Modeling immunotherapies in live 3D human cancer tissue bioreactors

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Zhang, Yizheng
dc.contributor.author Foth, Ivan
dc.contributor.author Makky, Ahmad
dc.contributor.author Bucher, Philip
dc.contributor.author Grimm, Melanie
dc.contributor.author Bruch, Peter-Martin
dc.contributor.author Hagelstein, Ilona
dc.contributor.author Dietrich, Sascha
dc.contributor.author Leibold, Josef
dc.contributor.author Flatz, Lukas
dc.contributor.author Feucht, Judith
dc.contributor.author Becker, Sven
dc.contributor.author Schürch, Christian M.
dc.date.accessioned 2026-01-30T09:16:09Z
dc.date.available 2026-01-30T09:16:09Z
dc.date.issued 2026-01-14
dc.identifier.issn 1838-7640
dc.identifier.uri http://hdl.handle.net/10900/174402
dc.identifier.uri http://nbn-resolving.org/urn:nbn:de:bsz:21-dspace-1744027 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-115727
dc.description.abstract Background: Cancer immunotherapies have shown remarkable efficacy in advanced malignancies, yet many patients remain unresponsive. This variability, along with concerns about adverse effects and healthcare costs, highlights the need for predictive biomarkers and physiologically relevant cancer models to forecast individual treatment responses. Existing systems inadequately recapitulate the human tumor microenvironment (TME), which is essential for understanding immune–tumor interactions and treatment efficacy. Here, we developed an ex vivo 3D human tissue culture model that preserves the native TME for functional immunotherapy testing. Such a short-term culture platform also supports functional precision medicine by enabling rapid ex vivo assessment of therapeutic responses to guide clinical decisions. Methods: Fresh, intact human lymph node (LN) tissue pieces were cultured in optimized perfusion bioreactors for three days, during which CAR T cell therapies and antibody-based treatments were administered. Post-culture analyses were performed using flow cytometry, histology, and multiplexed fluorescence microscopy. Results: The bioreactor system significantly improved tissue viability compared to traditional plate cultures. Novel CAR T cells with enhanced PI3K signaling exhibited superior tissue infiltration but showed comparable cytotoxicity to conventional CAR T cells. Pembrolizumab, a PD-1 inhibitor, significantly reduced lymphoma and melanoma cell viability without affecting benign LN tissues. Conclusions: This optimized bioreactor culture system provides a robust platform for evaluating immunotherapy efficacy within a physiologically relevant TME. It offers valuable potential for advancing personalized treatment strategies, accelerating the understanding of immunotherapy mechanisms, and improving clinical outcomes. en
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights cc_by de_DE
dc.rights ubt-podno de_DE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/legalcode.de de_DE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/legalcode.en en
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_ohne_pod.php?la=en en
dc.subject.ddc 610 de_DE
dc.subject.other perfusion bioreactor en
dc.subject.other 3D tissue culture en
dc.subject.other immune checkpoint inhibitor en
dc.subject.other CAR T cells en
dc.subject.other CODEX multiplexed fluorescence microscopy en
dc.title Modeling immunotherapies in live 3D human cancer tissue bioreactors en
dc.type Article de_DE
utue.publikation.fachbereich Medizin de_DE
utue.publikation.fakultaet 4 Medizinische Fakultät de_DE
utue.publikation.noppn yes de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige

cc_by Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: cc_by