Functional renormalization group beyond the perturbative regime

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.advisor Andergassen, Sabine (Prof. Dr.)
dc.contributor.author Wentzell, Nils
dc.date.accessioned 2017-07-11T14:12:27Z
dc.date.available 2017-07-11T14:12:27Z
dc.date.issued 2017-07-11
dc.identifier.other 490740987 de_DE
dc.identifier.uri http://hdl.handle.net/10900/76916
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-769163 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-18318
dc.description.abstract This thesis aims at developing new schemes for the treatment of correlation effects in condensed matter systems using quantum field theoretical approaches. In particular, our goal is to extend the description of correlation physics at the two-particle level. This is necessary for an unbiased treatment of condensed matter systems that exhibit electronic correlations and competing ordering tendencies. In this respect, the functional renormalization group (fRG) approaches have surely contributed substantially over the last years, as they account for all scattering channels and their mutual feedback effects in an unbiased way. In spite of its flexibility, the application of the fRG is limited by its inherent perturbative nature. To go beyond the conventional weak-coupling implementations, we discuss the general idea to extend fRG based computational schemes by using an exactly solvable interacting reference problem as starting point for the RG flow. The systematic expansion around this solution accounts for a non-perturbative inclusion of correlations at both, the one-particle (self-energy) and two-particle (vertex functions) level. The full treatment of the two-particle vertex functions, however, poses a huge limitation to the numerical performance, not only in the fRG, but in several forefront many-body algorithms. In this perspective, we provide a detailed diagrammatic analysis of the frequency and momentum structures of the vertex functions, together with their physical interpretation. This constitutes the basis for sophisticated parametrization schemes. We then explain the technical details necessary for cutting-edge numerical implementations, and further benchmark our ideas using refined implementations of both, the fRG and the parquet approximation (PA). en
dc.description.abstract Diese Doktorarbeit beschäftigt sich mit der Entwicklung neuer Ansätze für die Behandlung von Korrelationseffekten in Materialien. Mit Hilfe quantenfeldtheoretischer Methoden steht dabei besonders die korrekte Berücksichtigung von zwei-Teilchen Streuprozessen im Vordergrund, die für die Beschreibung konkurrierender Instabilitäten essenziell ist. Zu deren Verständnis hat die funktionale Renormierungsgruppe (fRG), die die verschiedenen Streukanäle sowie deren Wechselspiel gleichermaßen beinhaltet, in den letzten Jahren wesentlich beigetragen. Trotz der hohen Flexibilität in der Anwendung weist die fRG als perturbative Methode aber Einschränkungen auf. Wir stellen hier einen allgemeinen Ansatz für eine Erweiterung über das Regime schwacher Kopplung hinaus vor, in dem ein exakt lösbares Referenzsystems als Startpunkt für den Renormierungsgruppenfluss verwendet wird. Die systematische Entwicklung um diese Lösung ermöglicht es Korrelationseffekte sowohl auf dem ein-Teilchen (Selbstenergie) als auch auf dem zwei-Teilchen Niveau (Vertex-Funktionen) nicht-perturbativ einzubeziehen. Die numerische Handhabung von zwei-Teilchen Vertex-Funktionen stellt jedoch für die fRG wie auch für zahlreiche andere moderne Vielteilchenmethoden eine große Herausforderung dar. In dieser Arbeit präsentieren wir eine umfassende diagrammatische Analyse der Frequenz- und Impulsstrukturen der Vertex-Funktionen sowie deren physikalische Interpretation. Die daraus gewonnen neuen Einsichten bilden die Grundlage für die Entwicklung effizienterer Parametrisierungen. Wir diskutieren die technischen Details der numerischen Implementierung und testen diese am Beispiel der fRG und der parquet Näherung (PA). de_DE
dc.language.iso en de_DE
dc.publisher Universität Tübingen de_DE
dc.rights ubt-podok de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de de_DE
dc.rights.uri http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en en
dc.subject.classification Quantenfeldtheorie , Renormierungsgruppe , Elektronenkorrelation de_DE
dc.subject.ddc 530 de_DE
dc.subject.other Strongly correlated electron systems en
dc.subject.other Nanostructures en
dc.subject.other Funktionale Renormierungsgruppe de_DE
dc.subject.other Functional renormalization group en
dc.subject.other Quantenfeldtheorie de_DE
dc.subject.other Quantum field theory en
dc.subject.other Parquet equations en
dc.subject.other Parquet-Gleichungen de_DE
dc.subject.other Stark korrelierte Elektronensysteme de_DE
dc.subject.other Nanostrukturen de_DE
dc.title Functional renormalization group beyond the perturbative regime en
dc.type PhDThesis de_DE
dcterms.dateAccepted 2016-09-07
utue.publikation.fachbereich Physik de_DE
utue.publikation.fakultaet 7 Mathematisch-Naturwissenschaftliche Fakultät de_DE

Dateien:

Das Dokument erscheint in:

Zur Kurzanzeige