Quantification of intratumoural heterogeneity in mice and patients via machine-learning models trained on PET-MRI data

DSpace Repository

Quantification of intratumoural heterogeneity in mice and patients via machine-learning models trained on PET-MRI data

Author: Katiyar, Prateek; Schwenck, Johannes; Frauenfeld, Leonie; Divine, Mathew R.; Agrawal, Vaibhav; Kohlhofer, Ursula; Gatidis, Sergios; Kontermann, Roland; Koenigsrainer, Alfred; Quintanilla-Martinez, Leticia; la Fougere, Christian; Schoelkopf, Bernhard; Pichler, Bernd J.; Disselhorst, Jonathan A.
Tübinger Autor(en):
Katiyar, Prateek
Frauenfeld, Leonie
Agrawal, Vaibhav
Kohlhofer, Ursula
Gatidis, Sergios
Quintanilla-Martinez, Leticia
Disselhorst, Jonathan A.
Schwenck, Johannes Walter
Divine, Mathew Ryan
Königsrainer, Alfred
La Fougère, Christian Jean
Schölkopf, Bernhard
Pichler, Bernd
Published in: Nature Biomedical Engineering (2023), Bd. 7, H. 8, S. 1014–1027
Verlagsangabe: Berlin : Nature Portfolio
Language: English
Full text: http://dx.doi.org/10.1038/s41551-023-01047-9
ISSN: 2157-846X
DDC Classifikation: 600 - Technology
Dokumentart: Article
Show full item record

This item appears in the following Collection(s)