Extraction of Linear Structures from LIDAR Images Using a Machine Learning Approach

DSpace Repository

Show simple item record

dc.contributor.author Laplaige, Clément
dc.contributor.author Ramel, Jean-Yves
dc.contributor.author Rodier, Xavier
dc.contributor.author Bai, Shuo
dc.contributor.author Guillaume, Ronan
dc.date.accessioned 2023-10-17T14:10:37Z
dc.date.available 2023-10-17T14:10:37Z
dc.date.issued 2023-10-31
dc.identifier.uri http://hdl.handle.net/10900/146431
dc.identifier.uri http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1464314 de_DE
dc.identifier.uri http://dx.doi.org/10.15496/publikation-87772
dc.description.abstract LiDAR (Light Detection And Ranging) technology makes it possible to generate highly accurate elevation models from the ground whatever the nature of the plant cover. LiDAR elevation models have proliferated during the past decade, delivering an unprecedented number of original archaeological finds in the forest. These include habitat, agricultural or funeral structures prior to the existence of forest cover, and also archaeological micro-structures directly linked to past forest economy. Until recently, LiDAR acquisitions in France were limited to small areas. However, the recent and rapid supply of large-scale reference data by the National Geographic Institute provides large amounts of very high-resolution data about areas covering several thousand square kilometers that were previously little known from an archaeological point of view. Manual digitization of remains is a time-consuming activity and does not guarantee exhaustive recognition of features. As part of the “SOLiDAR” project (a tribute to the federation of unions Solidarność) (http://citeres.univ-tours.fr/spip.php?article2133), we present a Machine Learning approach enabling reliable and flexible extraction and characterization of archaeological structures discovered in the LiDAR datasets. We have developed an open human-machine interface (HMI) that is accessible to the majority of archaeologists. This system, far from being a “black box”, can automatically process the remains but can also be used step by step, leaving the user to decide whether or not to validate the different processing parameters. de_DE
dc.language.iso en de_DE
dc.publisher Tübingen University Press de_DE
dc.subject.classification Archäologie , Maschinelles Lernen de_DE
dc.subject.ddc 930 de_DE
dc.subject.other LiDAR, Automated detection, Machine learning en
dc.title Extraction of Linear Structures from LIDAR Images Using a Machine Learning Approach en
dc.type BookPart de_DE
utue.publikation.fachbereich Archäologie de_DE
utue.publikation.fakultaet 5 Philosophische Fakultät de_DE
utue.opus.portal caa2018 de_DE
utue.publikation.noppn yes de_DE


This item appears in the following Collection(s)

Show simple item record