dc.contributor.author |
Hedrich, Ulrike B. S. |
|
dc.contributor.author |
Lerche, Holger |
|
dc.contributor.author |
Pfeifer, Nico |
|
dc.contributor.author |
Boßelmann, Christian Malte |
|
dc.date.accessioned |
2023-08-21T05:01:52Z |
|
dc.date.available |
2023-08-21T05:01:52Z |
|
dc.date.issued |
2023 |
|
dc.identifier.issn |
1553-734X |
|
dc.identifier.uri |
http://hdl.handle.net/10900/144426 |
|
dc.language.iso |
en |
de_DE |
dc.publisher |
Public Library Science |
de_DE |
dc.relation.uri |
http://dx.doi.org/10.1371/journal.pcbi.1010959 |
de_DE |
dc.subject.ddc |
570 |
de_DE |
dc.subject.ddc |
600 |
de_DE |
dc.title |
Predicting functional effects of ion channel variants using new phenotypic machine learning methods |
de_DE |
dc.type |
Article |
de_DE |
utue.quellen.id |
20230619000000_00910 |
|
utue.personen.roh |
Bosselmann, Christian Malte |
|
utue.personen.roh |
Hedrich, Ulrike B. S. |
|
utue.personen.roh |
Lerche, Holger |
|
utue.personen.roh |
Pfeifer, Nico |
|
dcterms.isPartOf.ZSTitelID |
Plos Computational Biology |
de_DE |
dcterms.isPartOf.ZS-Issue |
Article e1010959 |
de_DE |
dcterms.isPartOf.ZS-Volume |
19 (3) |
de_DE |
utue.fakultaet |
04 Medizinische Fakultät |
de_DE |
utue.fakultaet |
07 Mathematisch-Naturwissenschaftliche Fakultät |
de_DE |