Predicting functional effects of ion channel variants using new phenotypic machine learning methods

DSpace Repositorium (Manakin basiert)

Zur Kurzanzeige

dc.contributor.author Hedrich, Ulrike B. S.
dc.contributor.author Lerche, Holger
dc.contributor.author Pfeifer, Nico
dc.contributor.author Boßelmann, Christian Malte
dc.date.accessioned 2023-08-21T05:01:52Z
dc.date.available 2023-08-21T05:01:52Z
dc.date.issued 2023
dc.identifier.issn 1553-734X
dc.identifier.uri http://hdl.handle.net/10900/144426
dc.language.iso en de_DE
dc.publisher Public Library Science de_DE
dc.relation.uri http://dx.doi.org/10.1371/journal.pcbi.1010959 de_DE
dc.subject.ddc 570 de_DE
dc.subject.ddc 600 de_DE
dc.title Predicting functional effects of ion channel variants using new phenotypic machine learning methods de_DE
dc.type Article de_DE
utue.quellen.id 20230619000000_00910
utue.personen.roh Bosselmann, Christian Malte
utue.personen.roh Hedrich, Ulrike B. S.
utue.personen.roh Lerche, Holger
utue.personen.roh Pfeifer, Nico
dcterms.isPartOf.ZSTitelID Plos Computational Biology de_DE
dcterms.isPartOf.ZS-Issue Article e1010959 de_DE
dcterms.isPartOf.ZS-Volume 19 (3) de_DE
utue.fakultaet 04 Medizinische Fakultät de_DE
utue.fakultaet 07 Mathematisch-Naturwissenschaftliche Fakultät de_DE


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

Das Dokument erscheint in:

Zur Kurzanzeige