Abstract:
This thesis deals with catalytic conversions of carbonyl-sulfur building blocks using late transition metal-catalysts to provide valuable transformations for organic syntheses, by exploiting selective C-S bond activation under mild conditions. For this, cross-coupling reactions are crucial transformations in small to large scale organic syntheses and usually employ late transition metal-catalysts. While palladium is still an important catalyst for such conversions, replacement of this precious metal by iron, cobalt or nickel is incentivized by a favorable cost-efficiency, abundance or carbon-footprint, which was
presented in chapter 1 of this thesis. To this end, historical developments, overviews of current state-of-the-art methodologies and mechanistic studies of iron- and cobalt-catalyzed cross-couplings of Grignard reagents were reviewed in respective chapters.
In chapter 2, the iron-catalyzed cross-coupling of thioesters with alkyl manganese reagents was developed. These reagents enabled the reaction to proceed under mild conditions, short reaction times, medium catalyst loadings of a cheap iron-precatalyst while only necessitating low excess of manganese reagent. This led to the synthesis of a broad scope of ketones with examples of highly functionalized compounds such as derivatives of natural or pharmaceutical compounds. The regioselectivity of the
method as well as the tolerance of aryl (pseudo-)halides allowed for beneficial orthogonal reactivity. Furthermore, the observed formation of iron thiolates during the reaction demonstrated an advantage of thio-based building blocks on the overall reaction such as the stabilization of potential alkyl iron intermediates in presence of thiolate.
In chapter 3, the transition metal-catalyzed (Co, Ni) conversions of S-aryl thioformates or S-aryl thiocarbamates was studied. The carbonyl-sulfur building blocks were probed for reactions with organometallic reagents under catalytic conditions. The formylation of organozinc reagents by employing S-thioformates as formyl donors, was found to be promoted by cobalt-catalysis. With only fair yields, the results exhibited a complex reactivity of the starting materials as well as the aldehyde products. Additionally, both building blocks were studied as masked thiolate sources for the synthesis of thioethers, which proceeded with varying yields under reductive or cross-coupling conditions. For
thiocarbamates, the cobalt-catalyzed cross-coupling reaction also proceeded in the presence of styrene via hydromagnesiation.