Proof-theoretic harmony and the levels of rules: Generalised non-flattening results

DSpace Repositorium (Manakin basiert)


Dateien:

Zitierfähiger Link (URI): http://hdl.handle.net/10900/130949
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1309499
http://dx.doi.org/10.15496/publikation-72309
Dokumentart: Wissenschaftlicher Artikel
Erscheinungsdatum: 2014
Originalveröffentlichung: Second Pisa Colloquium in Logic, Language and Epistemology. Ed. by Enrico Moriconi and Laura Tesconi. Pisa: Edizioni ETS 2014, pp. 245-287
Sprache: Englisch
Fakultät: 7 Mathematisch-Naturwissenschaftliche Fakultät
Fachbereich: Informatik
DDC-Klassifikation: 004 - Informatik
100 - Philosophie
Schlagworte: Beweistheorie , Logische Partikel , Kalkül des natürlichen Schließens
Freie Schlagwörter: Beweistheoretische Semantik
Proof Theory
Logical Constant
Natural Deduction
Proof-theoretic Semantics
ISBN: 978-884674033-5
Lizenz: http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en
Gedruckte Kopie bestellen: Print-on-Demand
Zur Langanzeige

Abstract:

If we generate elimination from introduction rules, or, conversely, introduction rules from elimination rules according to a general pattern, we often observe a rise in level: To introduction rules that are just production rules, there correspond elimination rules that discharge assumptions, and vice versa. In a previous publication we showed that this situation cannot always be avoided, i.e., that elimination and introduction rules cannot always be ‘flattened’. More precisely, we showed that there are connectives with given introduction rules which do not have corresponding elimination rules in standard natural deduction, and vice versa. In this paper we generalise this result: Even if we allow for rules of higher levels, i.e. rules that may discharge rules used as assumptions, the level rise is often necessary. For every level n we can find a connective with introduction rules of level n, whose corresponding elimination rules must at least have level n+1, and a connective with elimination rules of level n, whose corresponding introduction rules must at least have level n+1.

Das Dokument erscheint in: