Dateien: | ||
URI: |
http://hdl.handle.net/10900/108847
http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1088479 http://dx.doi.org/10.15496/publikation-50224 |
Dokumentart: | PhDThesis |
Date: | 2020-11-02 |
Source: | Inhalte der Thesis basieren auf Resultaten aus den folgenden Veröffentlichungen: 1) P. Angelini, M. A. Bekos, H. Förster, and M. Kaufmann. On RAC drawings of graphs with one bend per edge. Theoretical Computer Science, 2020. 2) E. N. Argyriou, S. Cornelsen, H. Förster, M. Kaufmann, M. Nöllenburg, Y. Okamoto, C. N. Raftopoulou, and A. Wolff. Orthogonal and smooth orthogonal layouts of 1-planar graphs with low edge complexity. In T. C. Biedl and A. Kerren, editors, Graph Drawing and Network Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26- 28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 509–523. Springer, 2018. 3) M. A. Bekos, H. Förster, M. Gronemann, T. Mchedlidze, F. Montecchiani, C. N. Raftopoulou, and T. Ueckerdt. Planar graphs of bounded degree have bounded queue number. SIAM J. Comput., 48(5):1487–1502, 2019. 4) M. A. Bekos, H. Förster, and M. Kaufmann. On smooth orthogonal and octilinear drawings: Relations, complexity and Kandinsky drawings. Algorithmica, 81(5):2046–2071, 2019. 5) S. Chaplick, H. Förster, M. Hoffmann, and M. Kaufmann. Monotone arc diagrams with few biarcs. CoRR, abs/2003.05332, 2020. 6) H. Förster and M. Kaufmann. On compact RAC drawings. In ESA 2020, volume 173. LIPIcs, 2020. |
Language: | English |
Faculty: | 7 Mathematisch-Naturwissenschaftliche Fakultät |
Department: | Informatik |
Advisor: | Kaufmann, Michael (Prof. Dr.) |
Day of Oral Examination: | 2020-09-30 |
DDC Classifikation: | 004 - Data processing and computer science |
Keywords: | Graphenzeichnen , Algorithmus , Berechnungskomplexität , Mensch-Maschine-Kommunikation |
License: | http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=de http://tobias-lib.uni-tuebingen.de/doku/lic_mit_pod.php?la=en |
Order a printed copy: | Print-on-Demand |
Show full item record |