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Abstract

Ever since the 1980s, researchers in computer science and robotics have been working
on making autonomous cars. Due to recent breakthroughs in research and devel-
opment, such as the Bertha Benz Project [ZBS+14], the goal of fully autonomous
vehicles seems closer than ever before. Yet a lot of questions remain unanswered.
Especially now that the automotive industry moves towards autonomous systems
in series production vehicles, the task of precise localization has to be solved with
automotive grade sensors and keep memory and processing consumption at a mini-
mum.
This thesis investigates the Simultaneous Localization and Mapping (SLAM) prob-
lem for autonomous driving scenarios on a parking lot using low cost automotive
sensors. The main focus is herby devoted to the RAdio Detection And Ranging
(RADAR) sensor, which has not been widely analyzed in an autonomous driving
scenario so far, even though they are abundant in the automotive industry for ap-
plications such as Adaptive Cruise Control (ACC). Due to the high noise floor, the
radar sensor has widely been disregarded in the Intelligent Transportation Systems
and Robotics communities with regards to SLAM applications. However in this
thesis, it is shown that the RADAR sensor proves to be an affordable, robust and
precise sensor, when modeling its physical properties correctly.
In this regard, a GraphSLAM based framework is introduced, which extracts features
from the RADAR sensor and generates an optimized map of the surroundings using
the RADAR sensor alone. This framework is used to enable crowd based localization,
which is not limited to the RADAR sensor alone. By integrating an automotive Light
Detection and Ranging (LiDAR) and stereo camera sensor, a robust and precise
localization system can be built that that is suitable for autonomous driving even
in complex parking lot scenarios. It it is thereby shown that the RADAR sensor is
strongly contributing to obtaining good results in a sensor fusion setup.
These results were obtained on an extensive dataset on a parking lot, which has been
recorded over the course of several months. It contains different weather conditions,
different configurations of parked cars and a multitude of different trajectories to
validate the approaches described in this thesis and to come to the conclusion that
the RADAR sensor is a reliable sensor in series autonomous driving systems, both
in a multi sensor framework and as a single component for localization.
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Zusammenfassung

Schon seit den 1980er Jahren ist das autonome Fahren ein entscheidendes For-
schungsgebiet in der Informatik und Robotik. Dank jüngster Erkenntnisse, die et-
wa durch die Bertha Benz Fahrt [ZBS+14] gewonnen wurden, rückt das Ziel des
vollautonomen Fahrzeugs wieder in greifbare Nähe. Dennoch bleiben viele Fragen
bisher unbeantwortet. Besonders nun, wo die Automobilindustrie in Richtung auto-
nomer Fahrbetriebe für den Serieneinsatz drängt, bleibt weiterhin die Aufgabe der
Fahrzeuglokalisierung mit serientauglichen Sensoren bisher unbeantwortet. Außer-
dem müssen in diesem Fall Speicher- und Rechenressourcen auf einem Minimum
gehalten werden.
In dieser Arbeit wir das Simultaneous Localization and Mapping (SLAM) Problem
für autonome Fahrszenarien auf einem Parkplatz näher analysiert. Dabei kommen
vor allem Radio Detection and Ranging (RADAR) Sensoren zum Einsatz, die bisher
zur Lokalisierung noch nicht im Detail analysiert wurden, obwohl sie zahlreich im
Rahmen von Fahrerassistenzsystemen wie Abstandregeltempomaten zum Einsatz
kommen. Da RADAR Sensoren ein hohes Grundrauschen haben, wurden diese bis-
her nur spärlich bei den hochpräzisen Verfahren, wie sie für das autonome Fahren
nötig sind, eingesetzt, weder in der Robotik noch in der Intelligent Transportation
Systems Community. In dieser Arbeit wird gezeigt, dass der RADAR Sensor ein
kosteneffizienter, robuster und präziser Sensor zur Fahrzeuglokalisierung sein kann,
wenn seine physikalischen Eigenschaften korrekt modelliert sind.
In diesem Zusammenhang wurde ein GraphSLAM basiertes Rahmenwerk entwickelt,
das markante Punkte nur auf Basis von RADAR Daten extrahiert und so eine op-
timierte Karte der Umgebung des RADAR Sensors generiert. Dieses wird weiterhin
benutzt, um eine Crowd basierte Lokalisierung umzusetzen, welche nicht nur auf den
RADAR Sensor limitiert ist. Indem weitere Sensoren, wie z.B. ein Laserscanner und
eine Stereokamera, hinzugenommen wurden, konnte ein robustes Lokalisierungssys-
tem entwickelt werden, welches das autonome Fahren auf dem Parkplatz ermöglicht
und den hohen Genauigkeitsanforderungen gerecht wird. Es wird gezeigt, dass der
RADAR Sensor eine entscheidende Rolle bei der durchgführten Sensorfusion spielt
und somit die hohe Gesamtperformance erst möglich macht.
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Die Ergebnisse dieser Arbeit werden auf einem Datensatz auf einem öffentlichen
Parkplatz evaluiert, der über mehrere Monate hinweg verschiedenste Szenarien ab-
deckt. Neben verschiedenen Wetterbedingungen und unterschiedlicher Parkplatzaus-
lastung, wurden auch eine Reihe verschiedener Parkmanöver erfasst. Die Auswertung
dieser Verfahren lässt die Aussage zu, dass der RADAR Sensor sich sowohl allein als
auch in einem größeren Framework für das autonome Fahren eignet.
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1 Introduction
The quest of autonomous cars in public roads is almost as old as the automobile
itself. In the 1920s, Houdina Radio Control, a company specializing in radio equip-
ment, built a radio controlled car that could roam the streets of downtown New
York City without a driver behind the steering wheel. The driver was instead con-
trolling the vehicle via a remote transmitter from a following car. The vision of
driverless and even self driving cars was born. Roughly a decade later, at the 1939
World’s Fair (later called Expo) in New York, the first autonomous car guided by
electric circuits in the ground was presented. But the completely unattended, fully
autonomous vehicle was still science fiction, though very present in the minds of car
manufacturers and research facilities.
It was not until the mid 2000s that the fully autonomous systems gained great
attention once again. In 2004, the first DARPA Grand Challenge offered a $1M
prize for the research company who could create an autonomous vehicle capable of
finishing a 150 mile route through the Mojave Desert. None of the participating
research teams were able to complete the course though. At the second DARPA
Grand Challenge in 2005, the participants had to create a fully autonomous car that
would reach a series of predefined GPS checkpoints, also in a desert environment.
Five cars succeeded in completing the course.
The DARPA Grand Challenge and at a later time the DARPA Urban Challenge
(2007) showed that fully autonomous driving had become almost real. Even though
typically huge contraptions on the roof of the car were required for environment
perception, the feasibility of autonomous driving had been proven. This impulse
started strong engagements both in academic research and industry towards series
production of autonomous cars.
In 2013, Daimler AG showed off how the technology could be brought to a close-
to-series production car with the S500 Intelligent Drive. This research vehicle was
equipped with a stereo camera and RADAR sensors for environment perception
that did not require large mounts on top of the car. The necessary sensors were
seamlessly integrated into the body of the car. With this sensor setup, the car drove
the 105 km Bertha Benz memorial route including urban, overland and highway
parts without the need of highly accurate GNSS/INS systems.
Since then, automotive manufacturers have been investing more and more into an
autonomous system that is robust enough to be bought and operated by customers
without the need of specially trained safety drivers or other means of human inter-
vention, without losing their aesthetic appeal due to disturbing sensor placement.
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Chapter 1 Introduction

In the work presented here, the RADAR sensor as a well-established automotive sen-
sor will be examined to solve one of the most challenging problems for autonomous
driving: the localization problem. In order to build reasonably moving vehicles that
can find their way in known or unknown areas, the localization problem is essential,
since it both enables path planning, as well as locating the vehicle’s position and
orientation with respect to potential points of interest, such as parking positions or
the driver’s destination.

To complete these tasks, localization with respect to a map is required. But since
the robot is moving in a potentially unknown environment, a high dimensional state
estimation needs to be performed. This includes not only estimating the current
vehicle position, but all the previous positions in the trajectory as well. This problem
has to be solved especially in GPS denied areas, such as parking garages or urban
traffic, where the line of sight to satellites is typically obstructed by tall buildings
and roofs. Thus to determine the vehicle’s pose, a map has to be generated.

A localization system capable of meeting the stated requirements with deployment
to customers in mind has to deal with two important factors: On the one hand, maps
used for localization and path planning must be up-to-date in order to achieve good
localization results. On the other hand, the accuracy of the solution has to remain
high enough, both with respect to sensor noise and to limited sensor information
due to highly changing environments or architectural constraints inside a vehicle,
such as transfer bandwidths of sensor data over a vehicle data bus.

1.1 Objectives and Contributions

One of the major areas of research for many manufacturers is the parking use case,
i.e. driving autonomously on a public parking lot. Significant progress has been
achieved by the V-Charge project [SSF15] for valet parking applications. Valet
parking allows vehicles to be parked fully autonomously in designated parking areas
such as parking garages equipped with special hardware infrastructure [TSW16]
to coordinate the vehicles. This use case was described by the Waymo CEO John
Krafcik as one of the most challenging ones for autonomous driving systems [Mat19].

In contrast to valet parking project, the main focus was placed on parking lots
located at office buildings (Figure 1.1) and on private property. Specifically, it was
not permitted to make use of any sort of active infrastructure or rely on any sort of
highly accurate global positioning, such as Differential Global Navigation Satellite
System (DGNSS). This way, the system was still capable of operating in parking
garages that typically do not have clear sky conditions. The lower image of the
figure shows the characteristics of the environment. On the one hand, the scenario
is rich in rigid structures very useful for localization. On the other hand, there are
numerous areas that are dynamic over time. One can expect different configurations
of parked cars each day and the occupancy of the parking lot will vary vastly over
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1.1 Objectives and Contributions

Figure 1.1: The parking scenario in front of an office building (upper image, Google
Maps) is shown as an areal photography. Parking scenarios as shown schemat-
ically in the lower image, are both an important and challenging problem for
autonomous driving applications.

the course of the day. At night the parking lot will be almost empty, while during
the day, the parking lot will be completely full, obstructing many of the immobile
structures from the line of sight of the vehicles sensors.
This thesis focusses on the localization aspects an autonomous driving project set on
a public or private parking lot without access to a highly accurate GNSS system. The
goal is to generate an accurate map using only automotive sensors and to provide a
robust localization that can ensure the safety and availability of the system even in
changing environments. Thus this thesis contributes to four main areas of research.
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Chapter 1 Introduction

The Lifelong Mapping problem is one of the most challenging ones when research-
ing SLAM. Because SLAM is performed in a high dimensional state space, the world
is usually assumed to be quasi-static due to computing limitations. In a changing
environment, the association of features to a map is much more challenging than in
a static environment. Additionally, the probability of existence of an object becomes
another variable in the state space. If the lifelong mapping is solved, the localization
system becomes more robust and the availability of the system increases, even if the
environment changes significantly, as e.g. in a public parking garage.

The RADAR sensor has been researched very little in the context of SLAM be-
cause of its high noise floor and otherwise adverse physical properties. Even though
it measures range and angle similar to a laser scanner, the accuracies and noise char-
acteristics are very different due to the physical behavior of light in the microwave
range. Interference can create ghost objects or hide real physical objects, the scat-
tering properties are highly material dependent and the angular resolution is much
worse than for laser scanners. On the positive side, due to the microwave lengths
of the RADAR waves, it penetrates thin layers of material, making them ideal for
invisible placement behind the bumpers of the car. They are also cost efficient and
well established in the automotive industry for driver assistance systems such as
ACC, but due to the noisy properties of the RADAR signals, solving the SLAM
problem proves to be much more challenging.

Collaborative Localization is a key technique to solving lifelong mapping effec-
tively and keeping maps up-to-date. Multiple vehicles contribute in a crowd based
approach to one unified map of the environment. That introduces additional chal-
lenges especially in the data association area. Cars from different manufacturers
may have different sensor setups or different types of sensors. To use a crowd based
approach to one’s advantage, compatibility of these maps needs to be ensured.

Computing restrictions limit the available processing power of a localization sys-
tem. Signal and data processing units in a customer vehicle are typically realized on
an Electronic Control Unit (ECU) with very limited computing resources, because
they are cooled passively. There are also restrictions regarding the implementation,
which has to fulfill certain guidelines as given in the Motor Industry Software Re-
liability Association (MISRA) standard. The focus of this thesis is mostly put into
meeting the computing restrictions necessary for an ECU implementation of the
localization. [SWK+16]
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1.2 Publications

1.2 Publications

During the course of this research, a number of publications have been made available
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• [SKR+16] F. Schuster, C. G. Keller, M. Rapp, M. Haueis, and C. Curio. Land-
mark based Radar SLAM Using Graph Optimization. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2016

• [WSD+16] M. Wörner, F. Schuster, F. Dolitzscher, C. G. Keller, M. Haueis,
and K. Dietmayer. Integrity for autonomous driving: A survey. In 2016
IEEE/ION Position, Location and Navigation Symposium (PLANS). IEEE,
2016

• [RDH+16b] M. Rapp, K. Dietmayer, M. Hahn, F. Schuster, J. Lombacher,
and J. Dickmann. FSCD and BASD: Robust landmark detection and descrip-
tion on radar-based grids. In 2016 IEEE MTT-S International Conference on
Microwaves for Intelligent Mobility (ICMIM). IEEE, 2016

• [SZK+17] F. Schuster, W. Zhang, C.G. Keller, M. Haueis, and C. Curio. Joint
graph optimization towards crowd based mapping. In International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2017

Invited Talk
• [SKH16] F. Schuster, C. G. Keller, and M. Haueis. Measuring the World:

Designing Robust Vehicle Localization for Autonomous Driving. In 2016 IEEE
Intelligent Vehicles Symposium (IV) - Workshops, 2016

Patents
• F. Schuster, M. Wörner, C. G. Keller, and M. Haueis. DE102015003666: Ver-

fahren zur Verarbeitung von erfassten Messdaten eines Sensors, 2016

• F. Schuster and C. G. Keller. DE102015011358: Verfahren zum Betrieb eines
Fahrzeugs, 2016

• F. Schuster, M. Wörner, C. G. Keller, and M. Haueis. DE102015011467: Ver-
fahren zur Erstellung einer digitalen Karte eines Parkraums, 2016
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Chapter 1 Introduction

1.3 Thesis Outline

This thesis can be divided into three major parts giving an introduction, explaining
the contributions of the research and providing an outlook into further applications.
In Chapter 2 the automotive RADAR sensor and its applicability to SLAM is exam-
ined in detail, describing what has to be taken into consideration when developing a
robust localization system with this particular sensor. The focus mainly lies on the
physical properties of the sensor and their implication on the concept of localization.
An overview of the different types of RADAR sensors and their current applications
is discussed in depth.
In Chapter 3, the vehicle setup and the experiments, as well as the dataset are
described in detail. The relevant information about runtime, computing resources
and time management are discussed. Furthermore, an introduction to each specific
sensor and a characterization of the ground truth device is given.
After the input signals have been characterized, we will focus on the major contri-
butions of this thesis in Chapter 4, namely the architecture of the software of the
GraphSLAM based on automotive sensors and the map generation process. The
localization and mapping process is described in detail. This includes a solution to
the lifelong mapping problem using crowd based approaches.
Since one major aspect of crowd based approaches is to handle different sensor config-
urations, in Chapter 5 we examine potential fusion of the RADAR based framework
with an automotive grade LiDAR sensor. It can be shown how GraphSLAM can
be used to keep multiple sensor layers consistent and how merging the information
form multiple sources improves the result by adding robustness to the localization.
To conclude this thesis, in Chapter 6, a summary of the contributions of this thesis
is providded, as well as a discussion of potential avenues of further improvements
and generalizations.

10



2 Fundamentals
In this chapter the necessary components for precise localization with the RADAR
sensor is introduced. This includes a description of the driving state in Section 2.1,
which describes the motion of the vehicle, as well as the specific properties of the
RADAR sensor in Section 2.2. In Section 2.3 an introduction to the most common
SLAM algorithms is given.

2.1 The Driving State

The driving state usually refers to the current velocity, as well as the angular velocity
of the vehicle. For the SLAM problem, this information is crucial because it usually
serves as a control update in any filter based approach to localization. Starting in
the early 1980s, cars have been outfitted with sensors to determine the driving state
with Honda’s Electro Gyro-Cator that used an Inertial Measurement Unit (IMU)
containing a helium gas gyroscope and projected the coordinates onto a 6 inch CRT
screen as can be seen in Figure 2.1. Even with the introduction of Global Positioning
System (GPS), the driving state estimation remained a vital part of navigation
algorithms as control updates in Kalman filter based position estimation.
Nowadays the driving state is used for multiple systems in the vehicle, namely the
Electronic Stability Program (ESP) and Anti-lock braking system (ABS) system.

Figure 2.1: Honda’s Electro Cyro-Cator from 1981 was said to be the first naviga-
tion system using an Inertial Measurement System to determine the driving state
of a vehicle (Source: Honda.com).

11



Chapter 2 Fundamentals

These need precise information about angular velocity as well as lateral and longitu-
dinal velocity to control the brakes of individual wheels in order to safely decelerate
the car in an emergency situation. The ESP ECU in a vehicle thus has an integrated
electronic gyroscope.

2.1.1 Ackermann Steering Geometry

Ackermann steering geometry [MSS06] is used to describe the dynamics of a vehicle
while it is moving and is used to develop steering systems without wheel slip. The
dynamics are especially relevant when determining the relative odometry of the
vehicle for autonomous driving applications. The principle is displayed in Figure 2.2.
The Ackermann motion model was introduced and patented in 1818, when it was
used to construct steered four wheeled systems that follow turning circles of different
radii, such that the center of rotation is given by a single point. Note that because
each wheel turns around the center of rotation with a different radius, the velocity
of the left wheels will be smaller than the right wheels in a left-hand turn and
vice-versa. Therefore, in order to ensure smooth steering, a differential has to be
introduced to the front axis to enable different rotation rates of the wheels.
Hence, the turning can be reduced to a bicycle model, describing the vehicle dy-
namics of two wheel steering (blue circles in Figure 2.2) to one single turning circle
through the centre of mass of the vehicle.

centre of turning circle

L

T

δ δrδl

δl δ δr

Figure 2.2: Ackermann steering describes the steering around a common centre of
rotation, such that there is no wheel slip. This is archived by turning both front
wheels with a different turning radius.
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2.1 The Driving State

In the context of autonomous driving, the Ackermann steering model is the founda-
tion to determining the odometry signal, which describes how the vehicle has moved
between two points in time. Consider a vehicle with wheel base L and tread T .
Then, a steering angle δ of the vehicle is guaranteed to be slipless if the angles of
the inner wheel δl and the outer wheel δr differ from δ such that the turning circles
of the outer and inner wheels are both centered around the same point of rotation.
It can immediately be seen that

δl > δ > δr (2.1)

and upon further inspection of Figure 2.2, we can see that the turning angles of the
front wheels and the angles between the wheels and the centre of rotation are in
fact equal to the steering angles of the individual wheels. Thus we can infer the
following relationship for the steering angle

tan δ = T

r
, (2.2)

where r is the curve radius. Furthermore the turning angles of each front wheel can
be determined by

δr = arctan T

r + L/2 , (2.3)

δl = arctan T

r − L/2 . (2.4)

With these results it can immediately be seen that each wheel travels a different arc
length when turning and is thus traveling at a different speed. For the front two
wheels, the speed is given by

vr = v0 + ω

2π (r − L/2), (2.5)

vl = v0 + ω

2π (r + L/2), (2.6)

where ω = δ̇ the angular velocity of the vehicle. In localization this difference in
wheel speed needs to be taken into account when calculating the control update from
the wheel encoders placed in each individual wheel. This process is usually referred
to as the relative odometry of the vehicle and is used in almost all localization
algorithms.
This set of equations can be integrated once more over time to determine the traveled
distance of each wheel. These result in the desired odometry output. Note though
that the double integration introduces quadratic errors into the Ackermann model.
Thus it can only be used for short periods of time, because the drift in heading and
position will increase quadratically over time. On top of the quadratic error, the
position of the vehicle cannot be estimated from odometry alone, since the starting
point is arbitrary and does not correspond to any specific position in the map.
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Chapter 2 Fundamentals

2.2 The RADAR Sensor

The RADAR sensor has been among the first active sensors that have been deployed
in vehicles to implement the adaptive cruise control ACC system. Since then it has
proven to be a reliable sensor in parking and longitudinal control systems.
RADAR sensors are categorized as active sensors, meaning that they can detect
and track objects by distributing electromagnetic waves into a volume in space. The
reflected energy from the objects is being detected and the time between transmission
and reception of the signal is measured. The RADAR can thus estimate angle θ,
distance r, amplitude A and relative velocity v of the detected object.
Several other sensors, such as camera, LiDAR or infrared sensors have been used to
perform these tasks1. The RADAR sensor on the other hand has proven to be more
robust towards weather influences [DWR+15] due to its wavelengths ranging from
around 1.2 cm to 3.8 mm. Thus the signal can penetrate layers of matter.
This chapter focuses on the details of the operation of RADAR sensors including
the physical principle of RADAR measurements, types of automotive RADARs and
their practical benefits and merits.

2.2.1 RADAR Architectures

The RADAR sensor concept itself exists since the 1930s and was originally developed
to detect enemy airplanes during W.W.II [Sko85]. Ever since, there have been
various different RADAR hardware architectures over the years for different use
cases. The focus in this thesis lies on the sensors developed in the automotive
context. In this case, only the following architectures are of importance and can
be divided into two main operation modes: continuous wave and pulsed RADARs.
These two modes are discussed in more detail in the following sections.

Continuous Wave RADARs

Continuous Wave (CW) RADARs transmit continuous frequency carriers as the
RADAR signal. If the carrier is unmodulated, the signal can only detect the velocity
of the object via Doppler shifts and can not detect its range. Thus, those types of
RADARs are not used for automotive applications and especially for the localization
use case, since stationary objects are of the most interest in this case. To be able
to measure a position, the RADAR signal is modulated. This can be done in two
popular ways:

1Thus the first ACC system as introduced by Mitsubishi in 1995 using a LiDAR, but suffering
from weather influences and dirt on the sensor.
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2.2 The RADAR Sensor

Frequency Chirped Architectures are the most popular in the automotive in-
dustry [AJ12]. As schematically shown in Figure 2.3, the RADAR wave consists of
linearly ascending and descending linear chirps. The frequency is ramped between a
minimum f0 and a maximum f1. The variation of the frequency effectively increases
the bandwidth of the RADAR wave and thus narrows the signal in the time domain
as shown in the upper part of Figure 2.3. Let Tx be the transmitted spectrum (as
displayed in the middle of Figure 2.3), then Rx shows a typical received signal from
an object. The returning signal is typically shifted both in frequency (∆f) and in
time (∆t). The frequency shift originates from the velocity of the object relative to
the RADAR and the time shift measures the time of flight and thus the distance
of the object from the sensor. Since it is a continuous wave RADAR, the actually
detected signal is the result of interference between the transmitted and the returned
signal Tx − Rx, which is depicted in the lower part of Figure 2.3, where fr is the
frequency component based on the target range and fd is the frequency increase due
to the target’s velocity.
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Figure 2.3: The emitted RADAR chirp wave form is depicted in the upper diagram,
while the frequency domain is shown in the middle graph (transmitted Tx and
received Rx signal). The lower graph shows the detected signal in the frequency
domain, which forms from interference between Tx and Rx.
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Figure 2.4: The pulsed RADAR consists of sequential frequency pulses. The wave
form is depicted in the upper diagram, while the frequency domain is shown in
the lower graph (Tx, Rx).

Pulsed RADAR systems transmit modulated RADAR pulses in fixed time inter-
vals, as illustrated in Figure 2.4. It can be adjusted by three main parameters, the
pulse width τp, the carrier frequency f0 and the repetition frequency fpr, whereas
the latter is the main parameter to determine the maximum range of the signal and
also the Doppler measurement resolution.

Pseudo-Random Noise Coded RADAR are widely used in communication sys-
tems for high data rates and robustness against electromagnetic interference2 [Sch13].
The pseudo-random code can be generated by feeding a signal through a Linear Feed-
back Shift Register (LFSR) generating an encoded signal with noise-like properties.
Applying this communication protocol to the RADAR sensor, the main advantage
is increased robustness against interference, eliminating one of the major sources of
noise in RADAR based object detection. However due to this encoding, repeating
signal patterns occur after 2m − 1 bits, where m is the length of the LFSR. In a
continuous signal stream, increasing the RADAR range thus means exponentially
more complex pattern generation circuitry. Thus the typical maximum range of
pseudo-random noise coded RADAR systems is limited to 10 m [JH13].

2The communication between processing units and the detectors at CERN are implemented
using PN codes to handle the harsh radiation near the particle collision point [Sch13].
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2.2.2 Physical Principle of RADAR Sensors

The RADAR sensor actively transmits electromagnetic waves with wavelengths in
the millimeter range. The signal therefore travels at the speed of light, given by
c ≈ 2.99× 108 m s−1. In order to detect a RADAR wave reflected by an object, it
must travel twice the distance between the object and the sensor.

The RADAR Range is thus given by the following equation

ρ = c

2δ, (2.7)

where δ describes the time delay between transmission and reception of the wave.
In order to avoid ambiguities between transmission and reception of signals, the
RADAR must wait for a sufficient amount of time δmax before it can transmit again.
Thus the maximum RADAR range is determined by

ρmax = c

2δmax =: c

2fp
. (2.8)

In pulsed RADAR systems, δmax is typically replaced by the pulse repetition fre-
quency fp.

The RADAR Resolution is another important characteristic of a RADAR sensor.
It describes how far two objects must be apart from one another to be identified as
separate objects by the RADAR. From figure Figure 2.4, it can easily be observed
that two pulses must be at least τp

2 apart to be visible as two distinct signals.
Therefore the RADAR resolution is given by

∆R = c

2τp = c

2B, (2.9)

whereas B := 1
τp

denotes the bandwidth of the RADAR signal. Thus, in order to
produce a signal with high resolution, the signal has to have a large bandwidth or
come in a narrow pulse.

The RADAR Equation

The simple form of the RADAR equation describes the relationship between the
received power PR from a target, its distance from the receiver r and its cross
section σt, as well as the characteristics of the antenna. This equation alongside
the characteristics described above are fundamental to design RADAR sensors for
specific applications, such as object detection or – in this thesis – SLAM.
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Figure 2.5: The RADAR waves are transmitted by the Transmitter Tx with an-
tenna Gain G and power PT and scattered off an effective area AR of the target.
The reflected signal that is caught by the Receiver Rx then has the remaining
power PR.

In order to deduce the RADAR equation, consider Figure 2.5. We assume a theo-
retically perfect antenna with antenna gain3 G. The power density of the antenna
is then

PR = PT G

4πr2 , (2.10)

where PT describes the transmitted power and r the distance of the target from the
sensor. The received power at the RADAR receiver is obtained by considering the
target’s RADAR cross section Γt. It represents the characteristics of the target, such
as the material and shape. It corresponds to its size as seen by the RADAR. By
also considering the receiver’s effective antenna area AR we obtain for the received
power

PR =
(
PT G

4πr2

)( Γt
4πr2

)
AR. (2.11)

From antenna theory we learn that G = 4πAR
λ2 , where λ is the wavelength of the

RADAR radiation [AJ12]. To keep the size of automotive RADARs small, the
RADARs use the same antennas for transmission and reception, such that G is
the same for transmitting and receiving signals. Thus we get the classical RADAR
equation

PR = PT G
2 λ2 Γt

(4π)3 r4 L
∝ Γt
r4 , (2.12)

3The antenna gain G = E ·D is a unit-less characterizing constant composed of the efficiency
E and the directivity D of the antenna.
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by adding the RADAR loss factor L ≥ 1 describing the loss induced by the geometric
shapes of the antennas to the equation. By rearranging the equation by distance r,
we can determine the maximum range of the RADAR with respect to the received
power

Rmax ∝
(

Γt
PR,min

) 1
4

. (2.13)

Then the maximum detection range is determined by the cross section of the target
and the minimum detectable received power PR,min, which is determined by the
Signal to Noise Ratio (SNR). It can be written as

SNR = PR,min
kB TeBn F

, (2.14)

where kB is Boltzmann’s constant, Te the effective noise temperature, Bn the receiver
noise bandwidth and F the receiver noise factor [JH13].
Due to low SNR and high power requirements, RADARs usually do not signal a
detection of a target from a single pulse, but rather integrate several pulses to
form a consolidated detection. Ideally this results in a linear relation, meaning N
detections cause an N -fold improvement of the SNR. Thus the maximum detection
radius is determined by

Rmax =
(

PT G
2 λ2 N Γt

(4πr3) kB TeBn F SNRmin

) 1
4

∝
(
N PT Γt
SNRmin

) 1
4

. (2.15)

With this equation, RADAR sensors can be parameterized by determining the SNR
through measuring false alarm rates of individual RADAR sensors and infer the
other parameters from these results.
In the automotive industry, there are mainly two different forms of RADARs: the
Long Range Radar (LRR) is designed to have a high Rmax, with a high directivity
of the antenna and thus a narrow Field of View (FOV). It is designed to detect the
traffic far ahead of the vehicle. These sensors can be utilized for ACC [DKB+12].
The Short Range Radar (SRR) on the other hand has a wide FOV and thus low
directivity. It is used to detect passing cars and also to find parking lots. In this
thesis, the SRR is utilized to detect the surrounding structure and serve as the
measurement update for the SLAM problem.

19



Chapter 2 Fundamentals

Doppler Frequency

Because the RADAR wavelengths are in the millimeter range, the Doppler effect
becomes significant when targets have relative velocity to the receiver. This results
in a frequency shift of the received wave to the transmitted one, which is called the
Doppler shift. It is given by

∆fd = ±2∆~v
λ

= ±2∆~vf0

c
, (2.16)

where c = λf0 is the light speed. For an approaching target, the frequency increases,
while for a receding target, the frequency decreases. The velocity ∆v can be broken
down into two angular components for azimuth and elevation and a radial component
∆~v = (vr, vθ, vψ). The Doppler shift refers only to the radial component of the
velocity vector, thus the Doppler shift is determined by

∆fd = ±2∆vf0

c
cos θ cosψ, (2.17)

where ∆v = |∆~v| and θ and ψ are the current azimuth and elevation, respectively.
Additionally to the shift in frequency, the antenna gain G increases quadratically for
smaller wavelengths, such that the SNR and the maximum detection radius increase
with Doppler shift.
In practice, the Doppler shift yields two main benefits that are unique to the RADAR
sensor. On the one hand, by observing the received frequency, the radial component
of the target’s speed can be determined. This can be used to improve tracking of
targets and help in situation analysis for autonomous driving to infer what other
participants in traffic are doing. On the other hand, the angular resolution of the
RADAR sensor can be improved as soon as the sensor is moving4. In practice that
means that the surrounding structure becomes sharper as soon as the vehicle starts
moving. In the following section Section 2.2.3, this principle, among others, will be
discussed in more detail.

2.2.3 Properties of RADAR Measurements

In this section the RADAR detections and the occurring artifacts due to the pre-
viously discussed physical properties of RADAR will be studied. While RADAR
sensors have the advantage of being weather independent, they usually provide less
accurate information about the environment than LiDAR or camera data. Out of
the most common automotive sensors, namely RADAR, (stereo) camera and LiDAR
the RADAR sensor is the least expensive, but the most noisy sensor. This provides
a series of challenges considering their use in SLAM algorithms, which are caused
by the physical properties described in the previous section.

4It must have a relative velocity to the surrounding environment.

20



2.2 The RADAR Sensor

Figure 2.6: Comparison of a RADAR point cloud (lower) with a high precision
sensor (LiDAR) point cloud (upper) on parking lot data in front of the parking
lot shown in Figure 1.1.

To illustrate those changes, consider Figure 2.6. It shows RADAR targets obtained
by a car equipped with four RADAR sensors, one in each vehicle corner. Parking
spaces in the lot are arranged in nine rows, each accessible from both sides. There
is an additional line of parking spaces at the far left, far right and bottom side of
the parking lot. The parking lot is surrounded by metal fences and dense hedges.
Since vehicles commonly have a metal surface, parked vehicles can be identified by
a U-shape of high amplitude and target density, most prominently depicted in the
center of the Figure where the trajectory crosses itself [AJ12]. The effects that lead
to the noisy sensor data can be categorized into five different classes: speckle, clutter,
limited angular resolution, limited resolution at low velocities and multi-path effects.
All of these sources of error can be observed in the lower image of Figure 2.6.

Speckle are the result of an optical phenomenon caused by coherent light inter-
fering with one another, called self-interference. Both constructive and destructive
interference can take place, causing both the disappearance of actual objects as well
as the emergence of ghost objects that do not correspond to any physical object.
These points can show up anywhere in open space and add a constant noise floor
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to the RADAR scan. It occurs especially frequently near objects with reflective
surfaces or large scattering cross sections. On the parking lot, parked cars cause the
most speckle. In Figure 2.7 speckle appear as numerous points appearing in empty
space between parked vehicles.

Eliminating speckle has been a major research area in RADAR sensor development
for many years and filtering is the most successful approach in reducing speckle.
Since in later sections, the points are matched to a map for pose estimation, speckle
cause problems only in the statistically unlikely case of ghost points are erroneously
matched to points in the map. Random points in open space that do not correspond
to anything are usually simply disregarded.

Clutter is generally defined as targets measured from undesired physical objects
that were not removed by filtering the input data. These points can be caused
by multiple sources on the parking lot such as pedestrians, heavy rain or reflections
from unwanted ground points. The points cause problems for localization algorithms
because they correspond to non-robust objects that are difficult or even impossible
to recognize repeatedly. While in LiDAR and camera systems ground points can
typically be detected very well (Figure 2.6), this becomes more difficult in RADAR
data, because it does not provide any height resolution. The only filtering method is
by reflectivity, which separates i.e. cars with high reflectivity very well from trees or
bushes with low reflectivity. Undesired ground points with high reflectivity cannot
be filtered by this method though. In Figure 2.8 the rain gutters in the ground are
not filtered from the input data, because they have a high reflectivity compared to
the surroundings.

Generally speaking, clutter is defined as unwanted RADAR signals exceeding the
detection threshold. Since clutter is mostly random, it is one of the most important
sources of error for pose estimation using SLAM as discussed in a detailed error

Figure 2.7: Increased number of targets on the road as a result of speckle.
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analysis in [AJ12] for range sensors. However when clutter is sparse, there are
multiple strategies to detect and remove clutter, such as clustering [SWK+16] and
more advanced outlier rejection algorithms. Most of the following sections will cover
how to cope with clutter in SLAM approaches in particular.

Limited Angular Resolution Typical angular resolutions of automotive sensors
are around 1◦, yielding to washed out signals in the distance. The effects on the
parking lot can be seen in Figure 2.7. While the row of parked cars on the left has
sharply resolved U shapes corresponding to the bumpers of parked cars, the parked
cars on the right cannot be discriminated from each other.

These resolution effects have high impact on SLAM performance, because objects
that are far away are most helpful when triangulating positions. The angular reso-
lution limitation is a large source of mismatches though and will thus yield wrong
position estimates quite frequently. This effect can be handled by data aggrega-
tion and weighting measurements from farther away accordingly. For a detailed
explanation see Section 4.1.

Resolution at Low Velocities As described before, the effective angular resolution
of the RADAR can be increased by measuring the relative velocity of objects to
the vehicle and separating objects with different velocities to yield better angular
separation. This yields a better separation of the targets if the vehicle is traveling
above a certain threshold velocity of around 5 km/h. However, if the vehicle becomes
too slow, the resolution of the RADAR sensor decreases and at some point it is not
able to sufficiently separate different objects any longer. This effect is illustrated
in Figure 2.9. The targets have been recorded when the vehicle was standing still.
This can be seen from 2.16, as the frequency of the reflected signal depends on the

Figure 2.8: Targets on the road and rain gutters (marked red) as illustration of
clutter. They have a high reflectivity and are therefore not filtered.
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velocity of the target. Then the angular separation of 2.9 can be studied to indicate
dependency of the resolution of the radar with the bandwith B.

There are ring shaped artifacts centered around the vehicle’s position. Even though
the individual points correspond to physical objects, assigning them to the map be-
comes increasingly difficult with the reduced angular resolution. This causes blurring
effects along angular direction in polar coordinates with stronger effect, the further
the detection is from the sensor. Thus we obtain a constant angular spread ∆φ and
an Euclidean spread ∆x, which depends on the distance from the sensor. This effect
can be observed by the keen eye in Figure 2.9.

While these effects can easily be removed by disregarding all RADAR points moving
below a threshold velocity of 5 km/h, it can yield to a significant amount of data
being unusable depending on the scenario at hand. In the parking lot this is espe-
cially problematic. Thus the points in the far field are typically rated more reliable
in SLAM applications to reduce wrong matches due to resolution artifacts.

Multi-Path Effects Highly reflective objects can lead to multi-path effects man-
ifesting in multiple positions reported for the same physical objects. The vehicle’s
tail lights are usually also a very good reflector of RADAR waves. In Figure 2.7 this
effect can be observed. The corners of the parked vehicles reflect RADAR waves
towards the ground resulting in ghost objects along the vehicle’s edges on the floor.

These points can cause mismatches for certain highly reflective objects, but the most
common example of parked cars plays a minor role, as parked cars are undesirable
localization objects to begin with. This means that SLAM algorithms for park-

Figure 2.9: Circular artifacts can result from insufficient vehicle velocities. The
vehicle is located at the center of the figure and has 360 degree RADAR coverage.
The circles originate from low angular resolution while the vehicle is standing still.
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ing lot have to have measures to prevent false positive matching due to changing
environments anyway and can take care of multiple reflections in the same manner.

2.3 The Simultaneous Localization and Mapping
(SLAM) Problem

The problem of pose estimation of a robot has been a central challenge since the
beginning of automation. It provides the connecting tissue between the robot’s envi-
ronment perception and its planning information. Depending on the estimated pose
in the map (containing planning and localization information consistently), the cor-
responding planning information is accessed to perform the required action of the
robot. A typical autonomous vehicle architecture is provided in Figure 2.10. The ar-
chitecture implies also that the localization problem does not answer the question of
where the vehicle is in the world, like GNSS based use cases suggest, but rather the
question of where the vehicle is located relative to its prerecorded planning informa-
tion – the map. This question can be answered by GNSS based solutions though by
having a sufficiently accurate georeferenced map, which is difficult to obtain in the
parking use case discussed in this thesis. Thus for the further investigation of this
thesis, GNSS based systems are only used as a reference system and not considered
as an integral part of the localization algorithm.

In this section, the SLAM problem is described theoretically and adopted to the
case of RADAR inputs. Specifically the GraphSLAM approach is described, since
it can be applied well to the RADAR sensor.

Sensor
Fusion SLAM...

Data
Sensor 2

Data
Sensor 1

Data
Sensor n

Odometry
sensor

Planning

Figure 2.10: Typical simplified architecture of a multi sensor autonomous driving
setup. The sensor data is usually aggregated in a sensor fusion module. The
fused sensor data is passed to the localization module, which provides the correct
planning information used for path planning.
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(a) Grid-based approaches discretize the state
space into static cells that represent the occu-
pancy probability by greyscale. Thus a map of
the surroundings can be generated.

(b) Feature-based approaches do not discretize
the state space, but mark sparse recognizable
objects in space that can be identified by sensors.

Figure 2.11: Grid and landmark based approaches are most common among SLAM
algorithms [LCW+12].

There has been a lot of research on the SLAM problem researched over the past
years [LCW+12], which show two types of SLAM problems. One is the online SLAM
problem. It estimates only the posterior distribution of the vehicle pose given the
most current pose xt and map mt. This formulation estimates only current values
of all relevant variables and discards past information. The other formulation is the
full SLAM problem. It estimates the posterior over the entire trajectory x1:t and
map information m1:t of the vehicle and accumulates all data that is necessary for
that purpose.
There have been multiple approaches solving both the online and full SLAM prob-
lem, resulting in a large variety of SLAM algorithms for different settings and un-
known environments. An overview is outlined in [LCW+12]. The algorithms can
be divided into feature-based approaches, such as [TM05] and grid-based ones, as
presented in [CCR07]. Feature-based approaches store a highly reduced amount of
information about the environment, which result in low memory consumption, at
the cost of robustness due to association problems [ZCS+08]. These techniques are
common for camera sensors [ZLS+14] and have recently been applied to the RADAR
sensor by Rapp et. al [RDH+16b]. Grid-based algorithms on the other hand have
proven to be effective when combined with range sensors, such as laser scanners
and RADARs [EP03]. Grid-based and feature-based approaches are displayed in
Figure 2.11 to showcase the difference between the approaches.
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2.3.1 The Bayes Filter

The basis of most localization algorithms is Bayesian mathematics [TBF05a], as
the localization problem is typically perceived as a probabilistic one. Let X be a
state variable and x be a specific state. Then we are interested in determining the
probability that X is in the particular state x called p(X = x). In other words, we
are interested in determining the specific pose of the vehicle, given all possible poses
in the map.
In Bayesian terms assume that we can determine a sufficiently accurate state esti-
mation by processing measurements zt and controls ut. The resulting probability
bel(xt|u1:t, z1:t) is called belief 5 and reflects the probability of the system being in
one possible realization xt of all possible states Xt, given the measurement zt and
the control ut. Furthermore we assume that the state xt has been reached by a
series of controls u1:t and measurements z1:t. The Bayes filter assumes furthermore
that each state xt is complete, meaning that all the information about xt is known
at time t and that no information about future states Xt+1 can be inferred by ut or
zt. The so-called Markov assumption thus states that each sensor measurement is
independent and does not contain information about future measurements.
In reality, the Markov assumption is usually violated when working with complex
measurement and motion models. Motion cannot be changed arbitrarily from one
timestamp t to another t + 1 and the FOVs of sensors overlap to produce similar
measurements for each timestamp. Also external conditions, such as other dynamic
objects cause occlusion, slow traffic causes state space updates with the same or
similar information due to the update rate of the sensors. This valuable information
about constraints between different positions is disregarded by the Markov model6.
Adverse effects of the Markov assumption being violated have to be considered when
optimizing localization algorithms for robustness.
By accepting the Markov assumption we can break down determination of the belief
bel(xt) into two steps, one for the control and one for the measurements:

bel(xt) =
∫
xt
p(xt|ut, x1:t−1)bel(xt−1) dxt, (2.18)

bel(xt) = ηp(zt|xt)bel(xt). (2.19)

The Bayesian filter applies a control update Equation 2.18 and a measurement update
Equation 2.19 to the prior belief bel(xt−1) to obtain the posterior distribution bel(xt)
recursively. Here, p(xt|ut, x1:t−1) is the probability of obtaining state xt by applying
control ut to the prior state, p(zt|xt) is the probability of obtaining the measurement
zt when in state xt and η serves as a normalization factor. Note that for discrete
state spaces, such as grid-based filtering, the integral in Equation 2.18 is replaced
by a sum for the discrete state variables.

5The belief is also known as the likelihood or a posteriori distribution of a state variable Xt.
6The dependency of states is better modeled by graph based methods described in Section 2.3.4.
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Generally bel(xt) can be seen as an intermediate distribution that shifts the proba-
bility of all poses given a control ut and Equation 2.19 is used to validate that pose
by comparing measurements to the inferred positions. The algorithm always ap-
plies the control update first and the measurement update afterwards7. A practical
example of this is shown in Figure 2.12. The most likely pose is thus determined
by max bel(xt), that is, if it can be determined unambiguously. In Figure 2.12 (b)
we can see that given the contents of the measurement zt and the geometry of the
map, information can cause the distribution to be inconclusive. Additionally we
assume complete certainty that the measurement indeed exists at least somewhere
in the state space. This may be a sufficient approximation for sensors with low false
alarm rates, but according to [AJ12] it is inappropriate when applied to RADAR
sensors. As shown in Section 2.2.3, there are many sources of error, which can lead
to numerous targets not corresponding to physical objects.

2.3.2 Extended Kalman Filter SLAM

One of the first solutions to the SLAM problem is based on an Extended Kalman
Filter (EKF), which is used for nonlinear state estimation of unimodal beliefs, mod-
eled by Gaussian noise. The discussed reasoning of this section is described in more
detail in [TBF05b] and will only be introduced shortly in this section.
We assume that the next state probability is mainly influenced by non-linear func-
tions g and h, respectively

xt = g(ut, xt−1) + εt (2.20)
zt = h(xt) + δt, (2.21)

where g(·) is the motion model and h(·) is the measurement model. xt and zt are
furthermore added with a constant error εt and δt, respectively. Since for arbitrary
nonlinear functions g and h, calculating the belief of xt is almost generally not
possible in closed form, the EKF calculates an approximation of the true belief by
approximating it with a Gaussian. In particular the belief bel(xt) is represented by
the mean µt and the covariance matrix Σt. The Kalman filter linearizes g and h to
obtain the Gaussian nature of the belief by first order Taylor expansion. We can
thus write

g(ut, xt−1) ≈ g(ut, µt−1) + g′(ut, µt−1)(xt−1 − µt−1) (2.22)
:= g(ut, µt−1) +Gtg(ut, µt−1) (2.23)

with Gt being the Jacobian of the state. It is an n × n matrix, with n being the
dimensionality of the state, which includes the pose of the vehicle and when solving

7Except for at t = 1 after initializing with a uniform distribution, because the shift would be
trivial.
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(a) t = 0: Initial state – the vehicle has no information and bel(x0) is assumed to be a uniform
distribution.

(b) t = 1: Measurement Update – The vehicle measures an object and updates bel(x1) accordingly

(c) t = 2: Control Update - the distribution bel(x2) is determined through a shift of bel(x1) along
the control u2. Through the uncertainty of the control, the distribution becomes less sharp.

(d) t = 2: Measurement Update – The vehicle incorporates another measurement z2 and the
distribution peaks a the position the measurement was taken

(e) t = 3: Control Update – The distribution is shifted yet again. The uncertainty of the control
update reduces the position confidence.

Figure 2.12: Visual representation of the two-fold Bayes filter process of control
update and measurement update [TBF05b]. Light blue distribution: measure-
ment update, dark blue: updated posterior and black dot: observed landmark.
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the full SLAM problem, also the observations of the surroundings. We thus obtain
the probability of the measurement update by a Gaussian

p(xt|ut, xt−1) ≈ det(2πRt)−
1
2 exp

(
−1

2[xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]TR−1
t

[xt − g(ut, µt−1)−Gt(xt−1 − µt−1)]
)

(2.24)

The same approximation can be done for the measurement model h resulting in
a Jacobian Ht for the measurement update. We then determine the belief bel(xt)
analogous to the Bayes filter approach Equations 2.18 and 2.19, but for Gaussian
probabilities. We can then write the mean and covariance for the motion update as

µ̄t = g(utµt−1), (2.25)
Σ̄t = GtΣt−1G

T
t +Rt, (2.26)

where Gt is the Jacobian and Rt is the covariance matrix of the motion model,
which is described by Ackermann steering geometry in this thesis. The measurement
update is given by

µt = µt +Kt(zt − h(µ̄t)), (2.27)
Σt = (I −KtHt)Σ̄t, (2.28)

where Kt describes the Kalman gain and is given by

Kt = Σ̄tH
T
t (HtΣ̄tH

T
t +Qt)−1. (2.29)

It represents the weight the measurement update of measurement zt gains over the
control update. The matrix Qt describes the covariance of the measurement and Ht

represents the Jacobian of the measurement model h. The complete mathematical
derivation of the EKF filter can be found in [TBF05b]. Extended Kaman filter
approaches are simple to implement and yield good results in non-complex scenarios.
In highly nonlinear systems though, the Extended Kalman filter approach fails due
to violations of the Gaussian assumption. Additionally the EKF only allows state
estimation based on the previous step. This makes recovery from false measurements
very difficult. Thus EKF approaches are generally not very robust against outliers
and require ample preprocessing of measurement and control inputs.
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2.3.3 Particle Filters

The previously described method and any variation thereof have one fundamental
problem. They assume that the posterior distribution is Gaussian and the control
and measurement update can be approximated by a first order Taylor expansion.
Now, especially when dealing with RADAR, these assumptions do not hold [RFM10].
Particle filtering has been successfully applied to robot localization with a given
static map, but can be extended to fulfill the purpose of SLAM.

The FastSLAM algorithm eliminates an important drawback of EKF-SLAM. By
implementing a multi-hypothesis filtering approach, singular wrong inputs into the
update functions do not cause divergence of the entire system. Therefore the
FastSLAM is also referred to as Particle Filtering. Particle filters represent the
belief as a collection of samples which are drawn at random. Sampling of the be-
lief distribution is only an approximation, but the samples are able to represent
arbitrary distributions. In the context of SLAM, these samples are called parti-
cles. In general, each particle can be seen as a hypothesis of the vehicle’s state
vector xt = (x1:t,mt, wt) which includes its trajectory x1:t and map mt as well as an
importance weight wt. A set of n particles at time t is denoted as

Xt = {x1
t , x

2
t , ..., x

n
t }. (2.30)

In each estimation the particles are scattered in a proposal distribution. It is a best
guess of the target distribution and can be chosen manually or result from the previ-
ous estimation. Usually an initial proposal distribution for the particles is assumed
at t = 0. The following proposals are obtained by applying the odometry motion
model to each particle taking motion noise into account. The posterior is called
target distribution. By sampling from the proposal distribution and then assigning
the importance weight to each particle based on observations of the surroundings,
the target distribution is approximated as visualized in Figure 2.13.

Using this method, the particles can now approximate the target distribution, but
the sampling is still based on the proposal distribution. To approximate the tar-
get distribution best, the samples should preferably be drawn based on the target
distribution. In order to correct this behavior, resampling is applied.

Resampling To correct the samples, we consider the temporary distribution of
particles displayed in Figure 2.13 (bottom). The goal is to generate a new set of n
particles (n constant over time) that best represent the posterior distribution. This
means that the state space with low probability is represented by few samples and
sections of the state space with high probability should contain a lot of samples.
Thus we draw n new particles from the temporary set. Each particle can be drawn
multiple times and the probability that each sample xit is drawn is given by wit, the
weight of the corresponding particle.
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Figure 2.13: Top: Proposal distribution (dashed) and target distribution (solid).
Middle: Particles sampled from the proposal distribution. Bottom: Sampled
particles weighted according to the temporary set [TBF05b].

Generally, the more particles are used to represent the posterior distribution, the
more accurate the result gets. An increasing number of particles requires a lot of
processing power and memory, considering that each particle contains the entire
trajectory and map in its state space. Therefore, techniques have been developed
which dynamically vary the number of particles or use memory more efficiently.
However, as described above, the SLAM posterior distribution not only contains
an estimate of vehicle position, but also describes the locations of map features.
Sampling over such a high dimensional space would require an enormous number
of particles. Thus Murphy [MG56] proposed the Rao-Blackwellized particle filter
[GSB05] which notes that only the vehicle trajectory and its own measurement
model (represented by an EKF) are enough to estimate the map. He was able to
show that the probability density for a state xt can be factorized into

p(x1:t,m|z1:t, u1:t−1) = p(x1:t|z1:t, u1:t−1)︸ ︷︷ ︸
pose update

p(m|x1:t, z1:t−1)︸ ︷︷ ︸
map update

. (2.31)

The particle filter algorithm executes the pose and map update from Equation 2.31
consecutively, including the particle update and resampling, which are depicted in
Algorithm1.
This method is called FastSLAM [TBF05b] and is a robust method of SLAM allowing
for exploration into unknown terrain and finding loop closures. Over time, incorrect
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Algorithm 1 Particle Filter
1: procedure Particle Update
2: Input: Particle set Xt−1, motion command ut
3: Output: Posterior particle set Xt
4: Xt = X̄t = 0
5: for k = 1 to n do
6: xkt ← sample_motion_model(ut, xkt−1)
7: wkt ← process_measurement_model(zt, xkt ,mk

t−1)
8: mk

t ← update_map(zt, xkt ,mk
t−1)

9: X̄t ← X̄t−1+ < xkt ,m
k
t , w

k
t >

10: procedure Resampling
11: for i = 1 to n do
12: x← draw from X̄t where probability for i ∝ wit
13: Xt ← Xt+ < xit,m

i
t >

14: return Xt

particles from wrong associations of features will be discarded, because they will
be assigned a small weight and not replicate in the resampling step. This behavior
is both an advantage and a drawback. Statistical errors are easily eliminated and
particles trusting singular wrong sensor data due to their current position in the
map input will be removed. Systematic errors, such as reflections from the RADAR
sensor on the other hand, affect all particles the same way. This can steer the entire
particle mass in an incorrect direction and the particle filter might diverge from the
ground truth [Che13]. Due to the limitations of particle filters, an even more robust
technique is described in the following section.

2.3.4 GraphSLAM

The GraphSLAM approach uses graph theory to model both the map and the tra-
jectory of the vehicle. It has proven to outperform other approaches in terms of both
mapping accuracy and robustness, as well as time complexity according to [BSG+09]
and [TBF05b]. The reason for its high performance and robustness is the naturally
sparse graph, which allows a solution in nearly linear time. A maximum likelihood
map can be obtained by means of iterative linearization and graph optimization.

The graph based SLAM problem is strongly related to the traditional geodetic map-
ping problem [ABS14], since both try to answer the same fundamental question:
how to minimize all errors introduced by all measurements on a large scale mapping
problem? Both in geodetic large scale mapping and in GraphSLAM approaches, the
minimization is based on a nonlinear least squares problem.

While the fundamental question answered is similar in geodetic mapping, applying
these methods to SLAM introduces additional challenges. In geodetic mapping,
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the feature association between individual measurements is typically done in an
offline process that can be maintained by human refinement. An autonomous vehicle
must rely on its automatic feature association to be robust enough in order to
provide a good result. Typical GraphSLAM approaches are divided into a front
end and a back end as depicted in Figure 2.14. The front end typically processes
the sensor data and associates the incoming sensor data to the map or to previous
observations to generate a graph with nodes and edges. From each associated data,
a constraint is formed that is included into the full graph and thus combines all
the information the sensor provides about its surroundings in a single mathematical
optimization problem. The back end then optimizes the entire graph with the new
information from the sensors. This mechanism does not only work unidirectional,
but as Figure 2.14 shows, the front end can take a previously optimized map into
consideration when performing data association and thus only adding new sensor
inputs into the map. The optimization on the back end is always performed on the
entire map to avoid running into local minima caused by incomplete or ambiguous
sensor data.

Graph Construction

The front end’s main purpose is graph construction from the raw sensor data and
to set up soft constraints between individual nodes and modeling them as edges of
a graph. A general representation of a graph as used in GraphSLAM is depicted in
Figure 2.15. The graph usually consists of the following components:

Pose Node The car-shaped node in Figure 2.15 represents the pose of the vehicle at
each point in time t = ti. The pose nodes usually consist of odometry measurements
and are added to the graph for each new odometry reading.

Odometry
& Sensor
Data

Front End:
Graph
Con-

struction

Back End:
Graph Op-
timization

Optimized
Trajectory
and Map

Unoptimized Map

Optimized Map

Figure 2.14: Fundamental architecture of the GraphSLAM algorithm.

34



2.3 The Simultaneous Localization and Mapping (SLAM) Problem

Pose-Pose Constraint The gray lines between the car-shaped nodes link the poses
recorded by odometry by soft constraints. Since the odometry estimates the pose
incrementally x1:t = x1:t−1 +xt−1:t, the estimation error of xt−1:t is herby determined
by a nonlinear function g, which is typically approximated by a Gaussian. Thus the
error of the odometry can be modeled as

εodo
t−1:t = xt−1 − g(xxt−1:t , ut). (2.32)

Under the Gaussian assumption the control error is normally distributed with the
information matrix Ωodo

t−1:t, defined by the Fisher information [LMV+17]. If we elimi-
nate systematic errors in the motion measurement, we can furthermore assume that
eodo
t−1:t is average-free. Then the information matrix equals the covariance matrix for
Gaussian error distributions. Thus we can write the cost function for the pose to
pose constraints for arbitrary time steps i and j as [TBF05b]

εodo
ij (xi, xj)TΩodo

ij εodo
ij (xi, xj). (2.33)

Landmark Node The star-shaped nodes in Figure 2.15 represent the location of the
landmarks in space. Each landmark will be assigned a unique identifier to be able to
differentiate them from each other. In practice obtaining these IDs from raw sensor
readings requires significant effort. The important challenge of extracting suitable
features for GraphSLAM is to describe them such that they can be recognized from
different positions as Figure 2.15 suggests, the more poses a landmark is observed
from and associated, the better the graph map. This process will be described in
more detail in Section 4.3.

Pose-Landmark Constraint The pose-landmark constraints link the landmark to
the odometry pose from which they were observed. They are depicted by the blue

Figure 2.15: Model of a feature-based graph using the odometry poses and land-
mark observations as nodes.
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line in Figure 2.15. Usually landmarks are not only observed from one single location
but they are observed from multiple different spots. These repeated measurements
of the same object provide the backbone structure to the entire graph and guarantee
the success of the following optimization process. The sensor measures the spatial
distance from the current pose of the vehicle to the object. Thus the measurement
model can be used to estimate the error for each expected measurements. Thus the
expected error is given by

εsens
t = zt − h(xt,m), (2.34)

where h(·) denotes the measurement model of our system. It returns the expected
sensor measurements given a position xt and a map m. Analogous to the odometry
constraints, average-free Gaussian distributions are assumed to formulate the con-
straints. This assumption is valid, because the constraint is only generated based
on the distance measurement from the sensor, which – even for RADAR sensors –
follows mostly linear equations. The error cost for poses xi and each landmark in
the map mj can be written as

εsens
ij (xi,mj)TΩsens

ij εsens
ij (xi,mj). (2.35)

Note that i and j are not indices with respect to time, but describe the unique
identifiers, each landmark and pose obtain. The graph constraint definition only
considers edges between specific nodes and models the time through the observations
of the landmarks. Like the particle filter algorithm, GraphSLAM is able to detect
loop closures, if the landmark handler in the front end assigns IDs of landmarks
globally and maintains a database, such that each landmark can be found again
even after a significant amount of time.
The solution to the GraphSLAM problem can be found in two different ways. The
landmark-based graphs utilize all the constraints described above to generate a com-
plete description of the world in one mathematical model, while pose graph methods
rely on only pose nodes and pose-pose constraints. In this approach, landmark sight-
ings from different locations are encoded as additional pose constraints. In [TBF05b]
it is furthermore shown that the amount of information in both approaches is the
same and that one can obtain a pose graph from a full graph by pruning all land-
mark nodes and collapsing all sets of pose-landmark constraints leading to the same
landmark into a single pose-pose constraint.

Graph Optimization

For the graph optimization, the more general case of the full GraphSLAM problem
is considered. The graph optimization is identical to the mathematics of bundle
adjustments from geodetic mapping techniques and solves the problem of refining
the coordinates of individual features (nodes) given measurement errors. The mini-
mization can be achieved by means of a nonlinear least-squares method to determine
the global minimum of the cost function, taking all constraints into account.
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The cost function of GraphSLAM is the sum of all constraints of the above described
components and thus given by

JGraph = xT0 Ω0x0︸ ︷︷ ︸
map origin constraint

+
∑
ij

eodo
ij (xi, xj)TΩodo

ij eodo
ij (xi, xj)︸ ︷︷ ︸

odometry constraints

+
∑
il

esens
il (xi,ml)TΩsens

il esens
il (xi,ml).︸ ︷︷ ︸

landmark measurement constraints

(2.36)

It contains the initial constraint xT0 Ω0x0 defining the center of the reference frame
and the sum of all landmark and pose constraints. The goal is now to minimize
JGraph, specifically

xmin = arg min
x

JGraph. (2.37)

Least-Squares Problem Analogous to [Küm13], let C be the set of all constraints,
such that Equation 2.36 can be simplified to

JGraph ≡ F (x) =
∑
c∈C

ec(x)TΩcec(x). (2.38)

Since F (x) is a nonlinear system, the minimum can typically not be found analyti-
cally. Let therefore x̂ be the initial guess for xmin. Therefore, we solve the equation
iteratively. Let x̂ be the initial guess. Then we approximate the error term linearly
around x̂ and obtain

ec(x̂+ ∆x) ' ec(x̂) + Jc∆x,

where Jc = ∂ec(x̂)
∂x̂

.
(2.39)

Thereby Jc denotes the Jacobian of the error function in x̂ for the given constraint
c. We can rewrite Equation 2.38 as the following

Fc(x̂+ ∆x) =
∑
c∈C

ec(x̂+ ∆x)TΩcec(x̂+ ∆x)

≈
∑
c∈C

(ec(x̂) + Jc∆x)TΩc(ec(x̂) + Jc∆x)

=
∑
c∈C

ec(x̂)TΩcec(x̂) + 2ec(x̂)TΩcJc∆x+ ∆xTJTc ΩcJc∆x

=
∑
c∈C

const+ 2
∑
c∈C

eTc ΩcJc∆x+
∑
c∈C

∆xTJTc ΩcJc∆x

:= const+ 2bT∆x+ ∆xTH∆x. (2.40)

Note that the cost function after approximation can be written as a function of
∆x only and we call it G(∆x) := const + 2bT∆x + ∆xTH∆x. This function is of
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quadratic form and therefore has a global minimum. The minimum ∆xmin with
respect to the initial guess can be found by taking the second derivative:

G′(∆x) = 2b+ 2H∆x != 0
G′′(∆x) = 2H ≥ 0.

The minimum can thus be found as the solution of the first derivative G′(∆xmin) = 0.
It follows that

H∆xmin = −b. (2.41)

This procedure finds an adequate solution xmin that is closer to the global minimum
than the initial guess. The Gauss-Newton method repeats this minimization for a
quadratic approximation and converges to the minimum of JGraph. A further defined
refinement is given by the Levenberg-Marquardt algorithm and is defined below.

Gauss-Newton Algorithm The Gauss-Newton algorithm is a popular method
used to solve nonlinear least-squares problems. It utilizes the basic optimization
method as described above, but applies it iteratively. This process is displayed in
Algorithm2. The procedure of the Gauss-Newton algorithm first requires a manual
initial guess of the position to enable the first linearization. In each further iter-
ation, the solution of the previous step serves as the initial guess. The difference
between the current and the previous solution is given by ∆x. Once the solution
has converged, the solution is returned.
While this method is more reliable than using a single least square estimation of the
minimum, the Gauss-Newton method is still very dependent on a good initial guess
and is prone to return local minima close to the initial guess. But since GraphSLAM
is interested in the global optimum, there is still room for improvement.

Algorithm 2 Gauss-Newton Algorithm
1: procedure Gauss-Newton
2: Input: x̂ initial guess
3: Output: xmin approximated minimum
4: x← x̂
5: while E < threshold : do
6: (H, b)← build_linear_system(x)
7: ∆x← solve(H, b)
8: E ← error(∆x)
9: x← x+ ∆x

10: return x
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Algorithm 3 Levenberg-Marquardt Algorithm
1: procedure Levenberg-Marquardt
2: Input: x̂ initial guess
3: Output: xmin approximated minimum
4: while E < threshold : do
5: (H, b)← build_linear_system(x)
6: E ← error(x, xold)
7: ∆x← solve((H − λI)∆x = −b)
8: x← x+ ∆x
9: if E < error(∆x) then
10: x← xold
11: λ← 2λ
12: else
13: λ← λ

2

14: return x

Levenberg-Marquardt Algorithm Another method to solve nonlinear least squares
problems is the Levenberg-Marquardt optimization algorithm [Mar63]. The ap-
proach uses the least-square linearization method iteratively, similar to the Gauss-
Newton approach, but it inserts a dampening factor and a backup and restore mech-
anism at each step. The update is computed via

(H + λI)∆x = −b. (2.42)

The dampening factor λ can be added to the linear equation system, because any
superposition of solutions of G′(∆x) = 0 is also a solution.
The dampening factor serves two purposes: On the one hand, the rank of the ma-
trix H may become incomplete if the solution is far from the initial guess and a
standard Gauss-Newton approach will terminate without a solution. This can be
mitigated, because λI always has full rank. Another benefit of this approach is
that the dampening factor may be adjusted dynamically to control the step size
of the minimization. If the initial guess is far from the minimum, the step size is
increased, whereas when it is close to the minimum, the step size is reduced. Thus
the Levenberg-Marquardt algorithm will converge in much fewer iterations. The
algorithm is denoted in Algorithm3. Note that the dampening factor is increased
or decreased depending on the error function.
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Robust Kernels The above described optimization methods will find an adequate
minimum to solve the GraphSLAM problem if the constructed graph has reasonably
much information about its surroundings. Bad sensor measurements will automati-
cally be weighed less in comparison to more reliable sensor measurements. Thus for
the RADAR sensor well formed landmarks on highly reflective surfaces will count
more towards the overall solution than bushes and trees with high noise and low
reflectivity. But because of the systematic errors of the RADAR sensor described in
Section 2.2, there are many ways that false constraints can find their way into the
cost function JGraph. As the graph optimization was described so far, these faulty
constraints will affect the global minimum significantly, if they result from highly
reflective patterns such as the speckle displayed in Figure 2.7. Thus an external
method to dampen the constraint as a whole is required.

In order to prevent outlier constraints from deteriorating the optimization, robust
kernels are introduced as yet another modification of the cost function that math-
ematically does not affect the minimum. Consider a single constraint Fc = eTc ωcec.
Note that the error ec has a quadratic influence in the optimization. Thus we need
to introduce a robust kernel ρ(·) mitigating the influence on the optimization for
very large errors. The typical robust kernels described in this thesis are displayed
in Figure 2.16. They can have the following form:
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Figure 2.16: The robust kernels plotted alongside the unaltered quadratic cost
function.
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Fc = ρ(
√
eTc ωcec), (2.43)

where ρ(·) is a symmetric function that leaves the solution unchanged. Several
variations of the robust kernels were proposed in the past, one of them being the
Huber kernel [Hub73]:

ρHuber(x) =

x2 for |x| 6 λ

2λ · |x| − λ2 for |x| > λ
. (2.44)

The Huber kernel retains the same behavior as the quadratic least-squares problem
for costs below λ. If the error becomes larger than λ the cost function increases only
linearly in e and not quadratic.
The variant used in the the GraphSLAM techniques in this thesis is the Cauchy
kernel, which is defined by

ρCauchy(x) = λ2 · log
(
x2

λ2 + 1
)
. (2.45)

Compared to the Huber kernel, the Cauchy kernel grows slower and the influence of
high costs is reduced even further.
Finally, the Dynamic Covariance Scaling (DCS) kernel proposed by [ATS+13] is
given by

ρDCS(x) =

x2 for x 6 λ

(wx)2 for x > λ
with w = 2λ

λ+ x2 . (2.46)

It reduces the influence of the higher-error constraints even in the assumption that all
large errors are outliers. This will cause the optimization to only significantly affect
local portions of the branch, as will be seen in real RADAR data in Section 4.4. These
kernels are an essential ingredient to successful graph optimization using RADAR
data, because it allows for adaptation to the physical properties of the sensor. In
the following sections the feature extraction and SLAM methods are described in
further detail.

Loop closures and the recognition of them play a significant role in the graph
optimization process. If constraints are only found between consecutive poses, a part
of the motion errors introduced into the graph cannot be recovered by the graph
optimization. In order to keep the map consistent nonetheless, the feature detection
algorithm must be able to detect these loop closures by recognizing previously seen
landmarks. Then, constraints can be introduced into the graph that can remove the
motion inaccuracies fully.
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2.3.5 Other SLAM Algorithms

Besides the major categories of algorithms described in the previous sections, the
research field of SLAM has been active over the past years, resulting in a large
variety of SLAM algorithms for different settings and environments. There are many
variations and adaptations to specific scenarios based on the fundamental principle
of EKF-SLAM, FastSLAM and GraphSLAM. An overview is outlined in [LCW+12].
The main distinction of these approaches is the map representation and measure-
ment model, which can be divided into feature-based algorithms, such as [TM05]
and grid-based ones, as overviewed in [CCR07]. Feature-based approaches store lo-
cally condensed information about the environment, usually as point features, which
results in low memory consumption, at the cost of reduced robustness due to associa-
tion problems [ZCS+08]. These techniques are common for camera sensors [ZLS+14]
and have recently been applied to the RADAR sensor [RDH+16b]. Grid-based algo-
rithms on the other hand have proven to be effective when applied to range sensors,
such as laser scanners [EP03].

Grid-based Approaches are usually combined with particle filters, because they
constantly validate multiple hypotheses to determine the most likely map. A lot
of effort was put into making grid lookups more efficient and to access information
from large datasets quickly. This can be done by approximating regularly shaped
areas in the map by polygons [PT05], by making spatial search more efficient with
octrees [FKW07, WHB+10] or by modifying the measurement model of the particle
filter such that it operates in a single global map [EP03].
Another map representation similar to the grid-based approach utilizes the idea of
GraphSLAM and Normal Distribution Transformation (NDT), intended for lifelong
navigation [EG13] in an attempt to make the SLAM problem independent of the
underlying sensor using NDT and a pose graph optimization. This approach is
largely independent of the sensor in terms of data structure (i. e. point clouds can
come from any sensor), but does not take into account unique physical phenomena,
inherent to the different sensors, such as RADAR.
In [KHD+09] a multi-layer grid-based approach is presented that obtains consistency
between each layer by matching the layers to one another. The joint registration of
individual layered floors of a large parking center provides a highly accurate map
of a multi-level parking lot using a precise LiDAR sensor. The presented approach
stores the interconnectivity of parking layers in the map through the edges of the
graph. In this paper however, the map generation is handled by multiple input
sources by a crowd of vehicles. All maps are therefore completely independent from
each other and have to be unified into one global map.
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Feature-Based Approaches have been mainly used with GraphSLAM and EKF-
SLAM in the past [TM05, PRLM+09]. Compared to grid-based approaches, memory
requirements decrease, while the number of preprocessing steps to achieve a good
map increases significantly. In addition to the feature extraction of robust features,
the feature association problem needs to be solved. These techniques are mostly ap-
plied to image sensors, since feature extraction is a common task in image processing
[ZLS+14] and methods for outlier rejection are abundant.

An advantage of feature-based approaches is the added flexibility. Feature-based
maps merely consist of a list of data points and can easily be updated by adding
or removing them. It is more involved, however, to keep grid maps up to date
[ZCS+08, MDBB12].

Localization using a RADAR sensor has been recognized in literature in recent
research [DAB+14]. Grid maps are used to aggregate the RADAR data into a
map that can be used for a semi-Markov chain localization [RHT+15], which was
performed on static maps. The full SLAM problem has not been addressed in this
approach. Thus, unlike [DAB+14], the presented approach in this thesis provides a
solution to the SLAM problem generating an optimized map.

The RADAR sensor has been less popular for solving the SLAM problem, especially
because of its noise characteristics and the fact that in an automotive RADAR sensor
one typically only has access to the detections [RSH+16] of the sensor and not the
full spectral information. Each detection consists of a range, an angular and an
amplitude measurement. There have been approaches to simulate the behavior of
a RADAR sensor to make the automotive grade hardware more accessible [BY06],
but there has not been an extensive real world dataset in the past.

Exploration of feature-based algorithms or solutions to the full SLAM problem has
yielded insular results with very different approaches [MVAV11]. Hence in localiza-
tion for seaborne vessels [CTG+11], after initial shape recognition, the final local-
ization algorithm is also performed on a grid map.

The resulting map is treated as an image, such that common feature detection
algorithms generate landmarks on the coast used for SLAM. Another approach
[CGB+10] uses scan matching on the reflected RADAR spectra in combination with
EKF-SLAM. By Fourier-Mellin transformation, the authors find an efficient tech-
nique to match scans and generate hypotheses for the vehicle pose. This approach
relies on the full spectral information. For the task of object classification using
shape information, such as cars [DHS+14], grid maps can be utilized.

Beside using the grid map representation for localization, one can also use it as
an intermediate step for feature extraction [RGH+13]. This way data is locally
aggregated into a grid. Then the information is reduced in the form of individual
features. While the feature extraction in [RGH+13] is used for grid map registration
[TM05], it is shown in later sections that they can be used for a full SLAM.
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Contributions to Lifelong Mapping is one of the most challenging variants of the
SLAM problem, as it describes the unlimited maintenance of the map without any
human interaction. This thesis tries to solve this problem for the specific scenario of
a parking lot. In this specific scenario of SLAM in a defined area at different times
of the day, utilizing different vehicles, the environment is too dynamic to achieve a
robust localization with an outdated map, so it is vital to actively update the map
with more recent sensor data.
While robust localization algorithms can be designed that ensure a long half-life
of a map [ZLS+14], a continuous update allows for the most robust localization
[ZCS+08]. Map updates have been studied in the past using both landmark maps
[SWK+16] and grid maps [MDBB12]. These approaches decide on a landmark or
cell based level whether it is currently up-to-date.
In order to handle changing environments, there are approaches that create tempo-
rary maps [MDHGB10] to account for dynamic changes of the environment, thus
generating multiple map hypotheses for environments that looked differently in the
past. This improves localization, but it does not scale for rapid changes or a high
number of cars contributing, because it would generate a large amount of temporary
maps. Our approach maintains one globally consistent solution across inputs from
multiple vehicles and under changing environments. This has many advantages.
Mainly the map can be kept lean by pruning redundant feature information that
will only decrease performance without adding new information.
While with feature-based SLAM, the map update can be achieved fairly easy, more
complex methods have to be devised to keep grid maps up to date [ZCS+08],
[MDBB12]. Because of the static nature of grid maps, transition matrices to update
each cell with new data have to be defined in order to calculate the probability of
grid cell occupancy.
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2.4 Conclusion

In this section, we have highlighted the theory behind the RADAR sensor and its
Key Performance Indicator (KPI)s, such as resolution and SNR. Furthermore the
physical phenomena when working with an automotive RADAR on real data was
explained. RADARs emit microwave light of about 77 GHz either as a modulated
continuous wave CW or as pulsed frequency bursts. The most important KPI of
the sensor were introduced, including the RADAR resolution and range, depending
on the frequency bandwidth B and the repetition frequency fp respectively. Fur-
thermore the RADAR equation shows us the decline of received power proportional
to r−4, which determines the signal to noise ratio of the sensor. The latter can be
increased by better angular resolution while the vehicle is moving because of the
Doppler frequency. Finally a series of physical effects of the described phenomena
in the real world were discussed.
Additionally the theory behind SLAM algorithms, especially RADAR based SLAM
was introduced. Here, EKF-SLAM utilizing a Kalman filter update scheme to es-
timate the posterior distribution was introduced. The FastSLAM based approach
on the other hand samples from the prior distribution and propagates each sample,
also called particle with measurement update and control update to determine the
posterior distribution.
It was found explaining the different approaches to SLAM that for the automotive
case, a landmark based concept is the most promising, as it eases map updates
and does not come with large computation or memory demands. Furthermore the
GraphSLAM approach, which is the focus of this thesis, is introduced. It interprets
the SLAM problem as a graph optimization problem, generating a set of constraints
from measurements and odometry poses that can be optimized using Gauss-Newton
or Levenberg-Marquardt methods. It will be shown in Chapter 4 that feature based
solutions SLAM with RADAR fulfill the requirements for autonomous driving pur-
poses on parking lots.
Most of the current publications in the field of SLAM are based around those three
fundamental methods. Specific forms of these algorithms were surveyed in the re-
lated work in the area of SLAM and RADAR based localization. In the following
chapters, the setup and dataset used in this thesis, as well as the applications of the
elaborations of this chapter will be discussed.
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3 Experiments

The experimental setup is based on a Mercedes-Benz E-Class with additional sen-
sors, that could be interfaced directly by regular PC hardware. This setup enabled
the execution of a large amount of experiments collecting a sizable data set with a
broad sensor setup to validate the approaches presented in this thesis.

3.1 Sensor Setup

The vehicle is equipped with a set of standard and non-standard sensors for evalua-
tion to use in future products. An overview of the sensors and their opening angles
are depicted in Figure 3.1.
While in normal operation, the sensor data is only transmitted to specific ECUs
within the vehicle to perform very specific tasks, the goal for the autonomous driv-
ing project is to utilize all of them at the same time and in the same framework.

Figure 3.1: Schematic representation of the vehicle equipped with additional sen-
sors. The LiDAR opening angle can be seen in green and the four RADAR opening
angles are displayed in blue.
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Different sensors for different use cases are also communicating with different pro-
tocols depending on data rate requirements, as well as security and timing aspects.
The most common used in the automotive industry are Controller Area Network
(CAN), FlexRay and Ethernet. All of these data sources need to be bundled in a
single computing unit and aligned according to their specific characteristics for the
data to be usable for the autonomous driving system.

The Computing Hardware used in this setup is a standard Intel Core i7−3820QM
desktop PC with 16GB of onboard storage and an Nvidia GTX 780 Ti. It houses
interface cards for both CAN and FlexRay as well as standard 10G Ethernet. It
serves as the single computing unit where all algorithms for the autonomous driving
setup, not only the SLAM algorithm, is being run. In order to combine all the
sensor information in an underlying framework, the Automotive Data and Time-
Triggered Framework (ADTF)1 on Linux is being used to retrieve the data and
assign concurrent timestamps to all incoming signals. It handles the processing
from pressing a single button on the steering wheel to high data rate LiDAR sensors
all in one framework. All further remarks about algorithm runtime and memory
consumption will be based on this system.

Odometry Sensors are located in every wheel and use magnetic encoders to deter-
mine how far the vehicle has moved within a certain time interval. Each wheel has
96 permanent magnets generating 96 pulses per revolution. The wheel encoders are
thus capable of determining the velocity with a resolution of u/96, whereas u ≈ 2 m
is the circumference of the wheel. Additionally to the wheel encoders, there is a
Micro Electro Mechanical System (MEMS) based IMU located in the ESP ECU,
which transmits the roll, pitch and yaw rate to the computing unit. The odome-
try information updates every 50 ms and is transmitted over CAN, which can cause
non-constant latency of the odometry signal, resulting in larger than expected drifts.

The RADAR Sensors are located in the corners of the vehicle behind the bumpers.
Since the bumpers are made out of a thin plastic, the RADAR is able to penetrate
the material without much loss of signal strength.
The Frequency Modulated Constant Wavelength (FMCW) RADAR sensor specif-
ically built for automotive applications emits millimeter waves and records the re-
flected power distribution with respect to distance, the so called A-scope. In the
automotive industry though, A-scopes are preprocessed and packaged into target
lists, containing a reduced amount of information [BY06].
This configuration enables a 360◦ vision (with blind spots close to the sides of the
vehicle) of the environment. Each RADAR operates at a frequency of 76 GHz and is

1ADTF was developed by a consortium of the automotive industry and is widely being used
for experimental sensor integration and data acquisition.
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able to transmit up to 64 data points [SKR+16] . The maximum range in the data
sheet is listed as 40 m [RHT+15]. The angular resolution of the signal is 1◦. A typical
RADAR sensor can be seen in Figure 3.2 (a). These numbers have proven realistic
in the experiments conducted in this thesis, with the exception of measurements
near standstill, where the angular resolution decreases, as explained in Section 2.2.3.

The LiDAR sensor is mounted in the center of the front bumper and is very
unobtrusive compared to other LiDAR sensors like a Velodyne. It is the Ibeo Scala
research sensor, such as the one described in Ibeo’s technical report [ibe19] and
displayed in Figure 3.2 (b). It has an opening angle of 145◦ with a resolution of
0.25◦. It has four layers and a vertical field of view of 3.2◦. Its distance resolution is
listed as 4 cm and the update rate is 40 ms, while only two layers are transmitted per
25 Hz cycle. The sensor alternates between transmitting Layer 1 and 3 and Layer 2
and 4, effectively giving each layer an update rate of 12.5 Hz.
Due to the low mounting position and the narrow field of view, objects visible from
LiDAR are typically curbs, tree trunks and parked vehicles. The automotive LiDAR
does not provide high resolution point clouds of the entire environment like a roof
mounted Velodyne would.

The Stereo Camera equipped in the vehicle was used only sparingly within this
setup. It consists of the same setup as used by [Muf18], which contain two synchro-
nized cameras with 1400× 1024 px with a FOV of 80◦ and a focal length of 740 px
[MMPF]. The images are cropped vertically to 1400 px × 400 px to focus on the
relevant scene content. The Stereo processing with Semi-Global Matching (SGM)
[Hir06] was performed using a real-time implementation on a Field Programmable
Gate Array (FPGA).

Reference Positioning Sensors were equipped to the vehicle to measure the accu-
racy and reliability of the localization. The system for the dataset of this thesis was

.
(a) Typical RADAR sensor unit from
Continental AG [con19]

.
(b) Typical LiDAR sensor unit from
Valeo Automotive [ibe19]

Figure 3.2: Representations of the sensors used in the prototype vehicle.

49



Chapter 3 Experiments

an iMAR iTrace F400-E [iMA14]. It uses a deeply coupled DGNSS/INS system fus-
ing a high-end dual frequency GNSS receiver with a military grade IMU. According
to the dataset, the precision of the device is 2 cm± 2 mm, which is accurate enough
to validate the position requirements targeted in this thesis, hence the iTrace system
is furthermore referred to as the ground truth.

Reference Mapping Sensors were used to validate the map with an accurate
point cloud. It was generated using a total station, the Leica MS50 [ZLN09]. It
was operated in scanning mode to generate a millimeter accurate 3D point cloud of
the parking lot where most of the experiments were performed. The map was then
manually pruned of obstacles to generate a reference map to compare the SLAM
results to. The matching to the maps under test is done manually by identifying
common points from both maps visually. Newer total stations also generate textures
in addition to the highly accurate point clouds that can be used to generate even
more accurate reference maps.

3.2 Coordinate System and Calibration

To fuse the sensor information into a consistent result, each sensor has to be ex-
trinsically calibrated beforehand. For this thesis the vehicle coordinate system is
chosen based on the DIN ISO 8855 [iso11], which defines the origin a right-handed
Cartesian coordinate system centered on the rear axis midpoint. The coordinate
systems of each individual sensor can be seen in Figure 3.3.

R 1

R 2

R 3

Vehicle

R 4

GPS

L

Figure 3.3: The sensor coordinate systems for all relevant components (RADARs
R1 through R4 and LiDAR L). All sensor inputs are calibrated to the middle of
the rear axis of the vehicle. The red and blue arrows represent the x and y axis,
respectively and the green dots/crosses represent the z axis.
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The extrinsic mounting positions of the sensors are determined during mounting by
precisely measuring a reference target that is being tracked by a total station. By
also mounting a reflector on the vehicle close to the rear axis, the extrinsic calibration
parameters can be estimated. In addition to this initial calibration, the RADAR
sensors could be online calibrated by a hierarchical calibration routine [KBD+15] to
continuously update and improve the calibration. For any offline processing done in
this thesis, the calibration is considered to be static though.

The GNSS/INS sensor was mounted close to the rear axis to ensure a fast-converging
and precise calibration to the rear axis. The iTrace F400-E comes with an integrated
calibration mode that requires the vehicle to be driven in a series of shapes to
estimate the calibration parameters from the vehicle dynamics. The approach is
proprietary to iMAR, but appears to be close to the method described in [ABY+13].

3.3 Dataset

The parking lot presented in Figure 3.4 (a) was used for most of the experiments
performed in this thesis. To perform reliable benchmarks for SLAM, not only the
positioning accuracy, but also the accuracy of the map is of interest. Thus the
parking lot was digitalized into a highly precise, georeferenced reference map, which
can be seen in Figure 3.4 (b). The parking space consists of an area of approximately
150 m × 35 m with nine double rows of parking spots and is surrounded by fences
and vegetation.

The parking lot looks quite different during the day. Thus, when collecting data
from different times of the day and on different days, the configuration of parked
cars is always significantly different. This setting was used to generate two main
interesting datasets to evaluate the contributions of this thesis:

The eight shaped dataset consists of many different measurement days spread
across different times of the day. In each sequence, the trajectory across the parking
lot is similar and encompasses most of the parking lot surface. Thus the changing
environment and the effects on the proposed SLAM algorithms can be studied in
detail. As can be seen in Figure 3.4 (c), the trajectory has two loop closures that
should give immediate visual feedback on how consistent the SLAM algorithms
perform globally.

The realistic parking maneuvers are collected to simulate real world scenarios
of vehicles entering the parking lot and finding a suitable parking location au-
tonomously. The single entrance to the parking space is the common origin of all
trajectories. As can be seen in Figure 3.4 (d), each trajectory then finds a different
parking spot and comes to a stop. The trajectories do not contain any loop closures
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(a) Aerial picture of the parking lot (Source: Google Maps).

(b) 3D reference point cloud from a total station pruned from mobile objects.

  
  

(c) The eight shaped trajectory.

  
  

(d) The realistic parking maneuvers.

Figure 3.4: A Google Maps plot of the parking lot, alongside the 3D reference
point cloud and the available datasets.
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and represent the real world scenario of having short trajectories when the parking
lot is empty and long trajectories, when the parking lot is mostly occupied.

Characterization of Ground Truth

Ground truth of the vehicle pose has been recorded across the entire data set and
a statistical analysis of the standard deviation reported by the GNSS/INS system
is given by the following quantities. The mean error margin of the ground truth
was determined using the iTrace internal performance estimation. We consider the
latitude and longitude accuracy, as well as the Euclidean error

σ̄GT,d =
√
σ̄2

GT,lat + σ̄2
GT,lon. (3.1)

For the entire data set, the accuracies of the ground truth are given by:

σ̄GT,lat = (0.071± 0.232) m
σ̄GT,lon = (0.062± 0.213) m
σ̄GT,d = (0.094± 0.315) m

The result on the actual data set thus varies significantly from the data sheets
specifications, but is still suitable to serve as a ground truth system for the real
test ahead, because a mean error of below 10 cm is sufficient to prove reliability for
autonomous driving scenarios.
The increased deviation can be explained by the specific scenario. Parked cars, as
well as the multi story building, as well as the trees of the parking lot can block a
few satellites from view of the Global Navigation Satellite System (GNSS) antenna.
Additionally, the metallic surface of the vehicle’s roof may cause multiple reflections
and thus falsify signal travel times.
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In RADAR-based SLAM it is essential to take the physical properties of the sensor
into account. While the sensor has been widely used for object tracking, it was never
applied to SLAM so far. In the following sections the methods specifically designed
for RADAR sensors are described.

4.1 Radar Grid Mapping

As discussed previously in Section 2.3.5, grid maps are common representations of
the world and allow for SLAM algorithms like FastSLAM to work efficiently on two
dimensional grid maps. In this chapter, the approach by [DWR+15] is discussed in
detail to show the drawbacks and merits of grid map representations for RADAR
data.
The idea of discretizing the world into grid cells and representing the environment
by measuring the occupancy probability of each grid cell was first introduced in
sonar based mapping [ME85]. The two main assumptions for this technique are
that the world is static and that for any given time t the pose of the vehicle xt is
known. We can then discretize the the sensor view into a set ofM = {mi|i = 1...n}
two dimensional cells. Each cell stores the probability of occupancy of the area that
it represents. In the following section, we will present the sensor model, translating
sensor measurements into occupancy probabilities.

4.1.1 The Sensor Model

The sensor uncertainty model proposed by [DWR+15] for the RADAR sensor as-
sumes that the world is static and that each target can be described by a range and
an angle measurement (two dimensional) and an amplitude. The received RADAR
amplitude thus depends on three different physical properties:

The radial distance of the target from the sensor is the biggest influence on the
amplitude, because the amplitude A ∝ 1

r2 , as given by Equation 2.11. To achieve
a normalized amplitude, we increase the sensor sensitivity based on the measured
distance, compensating the dampening behavior at the cost of a higher SNR for
larger distances.
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The material, shape and viewing angle of the RADAR target helps identify
known targets [WBK+14]. These factors describe the RADAR cross section Γt of
the target.

Disrupting factors such as noise and multiple scattering (see Section 2.2.3) need
to be accounted for in the measurement model to incorporate the specific behavior.
This can be achieved by the Swerling models for the RADAR cross section Γt of
observed targets. To build the grid map, the Swerling III model [Sko08] is used in
this thesis, assuming a target consists of one major and several minor scatters, then
the probability p(Γt) of a cell being occupied is χ2 distributed

p(Γt) = 4Γt
Γ̂t

2 exp
(
−2Γt

Γ̂t

)
, (4.1)

where Γ̂t is the expected value of Γt. Furthermore, the distribution of the received
amplitude is then given by

p(A) = 8A3

Â4
exp

(
−2A2

Â2

)
with Â = c

√
Γ̂t, (4.2)

with the sensor specific constant c. The expectation and standard deviation of the
above χ2 distribution then follows as

µA = 3
4

√
π

2 Â, σA = Â

√
1− 9

32π. (4.3)

This RADAR specific sensor model can be used to build a grid map by aggregating
the detections into a grid and assigning probabilities to each cell by using the above
distribution function to determine the probability of a cell being occupied.

4.1.2 Layers of the RADAR Grid

The RADAR sensor returns the distance r, the bearing ϕ, the relative radial speed
and the amplitude A of all targets within the FOV. The amplitude A and the relative
position in space are the most interesting information to build the grid mapM. The
proposed algorithm builds two layers of the grid maps, one containing the occupancy
grid map, reflecting the probability that a cell is occupied, and the other layer
contains the amplitude information. The latter can be used to gain information
about the RADAR cross section and thus about the reflectivity and material of the
obstacles. Highly reflecting objects are usually metallic, while vegetation typically
has low reflectivity.
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RADAR Occupancy Grid Maps The occupancy grid mapping is common in
SLAM [TBF05b]. It relies on the binary assumption that each grid cell can only be
occupied (1) or free (0). Then the probability that all grid cells mi are in state si is
given by the posterior distribution

p(Mt|z1:t, x1:t) =
∏
i∈M

p(mi(t)|z1:t, x1:t). (4.4)

Because the large product over all cells in the grid map is hardly numerically stable,
[TBF05b] propose the log-odds representation of the individual grid cell given by

lt,i = log
(

p(mi|z1:t, x1:t)
1− p(mi|z1:t, x1:t)

)
with p(mi|z1:t) = 1− 1

1 + exp (lt,i)
(4.5)

being the sensor model. It models the influence of the measurement to the grid cells
and takes sensor specific effects into account.
In typical applications, such as LiDAR-based SLAM, the beam model is used. It
assumes that each measured target has a high probability of occupation and the
space in between the sensor and the target is free. This assumption is usually
correct for LiDAR and camera based approaches, because the sensors require line of

(a) Grid map based measurement model commonly used for LiDAR sensors,
where the space between the detection and the sensor is marked as free (white).

(b) Adaptation proposed by [DWR+15]. For RADAR sensors, free space is not
certain between sensor and target (light grey) cells. If multiple overlapping
scans confirm free space, it is marked as free (white cells in the center).

Figure 4.1: Sensor models showing the grid update based on the measurement
uncertainty of different sensors.
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sight to detect an object. Thus the resulting grid map looks like it was sketched in
Figure 4.1 (a). However this assumption does not hold true for the RADAR sensor.
As discussed previously, in some cases the RADAR sensor can see around obstacles
due to multiple scattering. Thus, an adaptation was proposed by [DWR+15], as
shown in Figure 4.1 (b). Fortunately, the sensor model in Section 4.1.1 reflects the
RADAR characteristics. Furthermore, Werber et al. [DWR+15] propose additional
plausibility factors, namely by a Plausibility Scaling (PS) factor and a Plausibility
Offset (PO).

Angle Plausibility punishes the detections close to the edge of the sensor FOV by
an angular plausibility scaling ϕPS and plausibility offset ϕPO as given by

pϕ = 1− 1
(1 + exp(−ϕPS(|ϕ|+ ϕPO))) . (4.6)

Range Plausibility favors detections close to the sensor, because due to the qua-
dratic loss in amplitude, the signal to noise ratio for high distance targets is de-
teriorating. This will be compensated by a range plausibility scaling rPS as given
by

pr = exp(−rPSr
2). (4.7)

Amplitude Plausibility favors highly reflecting targets to elevate good reflections
from the noise floor with an amplitude plausibility scaling factor APS and a plausi-
bility offset APO given by

pA = 1− 1
1 + exp(−APS(A+ APO)) . (4.8)

The plausibility is then combined to the total plausibility p = pϕ+pr +pA. The free
parameters were determined empirically by Werber et al. [DWR+15] and increase
the robustness of the sensor model significantly.
As the vehicle drives through the parking lot and constantly updates the grid map,
free space becomes more certain. If an obstacle has been scanned from multiple
angles, the contours of the objects sharpen to provide a clear representation of the
obstacle.
The algorithm was implemented based on the paper [DWR+15] for this thesis as
shown in Algorithm4 and provides the output given in Figure 4.2. For each grid
cell mi in the FOV, the inverse sensor model is calculated based on the distribution
described above. Then the plausibility correction are applied to correct for the radar
specific behavior. The final output is an updated likelihood for mi.
The variable l0 in Algorithm4 refers to the initial probability when no knowledge
from any sensor has been processed. It is usually initialized with l0 = 0, which
corresponds to a probability of p0 = 0.5.
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Algorithm 4 Radar Grid Mapping
1: procedure Occupancy Update
2: Input: Prior occupancy lt−1,i, state and measurement xt, zt
3: Output: Posterior occupancy lt,i
4: for mi ∈M∩ FOV (xt) do
5: l′t,i = lt−1,i + inverse_sensor_model(mi, xt, zt)− l0
6: lt,i = run_plausibility_model(l′t,i)
7: return lt,i

Figure 4.2: Resulting occupancy grid map.

4.1.3 Joint Occupancy Grid Maps

While the RADAR grid map approach was developed by [DWR+15] and serves as
a foundation for the GraphSLAM framework described in the following chapters, in
this thesis an improvement to the grid map approach to incorporate map updates
has been developed to improve the feature extraction on occupancy grid maps that
will be utilized in the following sections.
When cars are localizing on an occupancy grid map, they are bound to collect new
or updated information about their surroundings, especially in a highly dynamic
environment like a parking lot. Besides developing a robust localization approach
that can handle discrepancies in sensor and map data, the updated information
should end up in the map to prevent further deterioration of the map content. The
grid cells can be merged by the following logic:
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If Previous and Current map agrees the occupancy grid map increases, because
the occupancy level of the grid cell was confirmed by two independent measurements.
This scenario is met if the grid cell is measured as occupied lprev, lcurrent > 0 or as
free space lprev, lcurrent < 0. Then

lupdate = lprev + lcurrent. (4.9)

If Previous and Current map disagrees and the cell has changed from occupied
lprev > 0 to free space lcurrent < 0, then the information from the previous cell is
disregarded

lupdate = lcurrent. (4.10)

Unexplored regions that remain unexplored after the update lprev = lcurrent = 0
will not be updated

lupdate = 0. (4.11)

Evaluation

The evaluation is performed on the realistic parking maneuvers, which were de-
scribed in Section 3.3. The occupancy grid map and the corresponding update is
visualized in Figure 4.3 indicating the update of an occupied parking space in the
red box.
Accordingly the occupied cells were replaced by free space. While the update mech-
anism disregarding all previous information in Equation 4.10 seems too radical at
first, it has proven necessary in the highly dynamic environment of the parking lot
to incorporate the numerous changes that do not happen gradually but can rather
happen within minutes. Thus this update scheme was chosen also to achieve a solid
foundation for Section 4.3 and Chapter 5, where the RADAR occupancy grid map
is utilized for a feature based GraphSLAM approach.
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Figure 4.3: Update of the grid map on realistic parking maneuvers. The upper
image (previous map) holds three parked cars in the red box, while in the lower
image (current map) there are only two cars parked in the lower edge of the
parking space.
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4.2 Robust RADAR Cluster Map Representation

This section investigates the SLAM problem on RADAR data based on particle fil-
ters. While the previous approach focused on grid maps, which typically have high
memory consumption and can only be updated with a very precise map matching.
In this chapter, a novel approach is proposed. The RADAR sensor’s physical prop-
erties are taken into account by applying a unique stream clustering based map
representation.
The approach proposed in this section has several advantages over standard grid-
based or feature-based maps. Besides having a noise reducing influence on the
RADAR data, the map representation is especially suited for the highly dynamic
parking lot scenario. It is highly adaptive to dynamic environments and can be
used for exploration1. The resulting map is stored in an R-tree data structure to
maintain maximum flexibility and speeding up access to the data. Our experimen-
tal results indicate that the presented algorithm named ClusterSLAM takes a step
towards lifelong navigation in urban scenarios, as it outperforms the classical grid
representation in numerous aspects, as discussed in the following sections.

Raw
RADAR
Data

Clustering Map

Particle
Filter

estimated pose Scan
Matching

Vehicle
Odometry

Figure 4.4: Overview of the ClusterSLAM localization system. The system inputs
raw RADAR data, as well as the odometry and outputs an estimated pose.

1Exploration denotes adding previously unseen areas to the map.
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ClusterSLAM is implemented as a particle filter, which is specifically designed to
cope with RADAR data directly. By applying a density-based stream clustering
algorithm to the incoming sensor readings, noisy measurements can be disregarded
a priori and thus never reach the map.
The system architecture is displayed schematically in Figure 4.4. Raw data is clus-
tered to form a scan of the environment. Using scan matching, this scan is compared
and merged with a reference map to obtain the weights necessary for the particle
filter utilized by ClusterSLAM. Each particle contains its own hypothesized version
of the reference map, to which the current scan is compared.

4.2.1 Map Representation

The map representation is of particular importance in this approach, as it deals with
three of the main sources of errors induced in the scenario at hand. Besides handling
the high noise RADAR data, the test scenario is highly dynamic and thus requires
a quick map update mechanism. Additionally, in the automotive industry, memory
requirements are typically very strict. Thus, regular particle filter approaches, where
each particle contains its own map, are impractical and costly to implement. Our
approach thus uses a common map for all particles. The state space of each particle
is only given by the pose and a particle weight.
Consider the RADAR data depicted in Figure 2.7. Despite the high noise floor, a
human can easily discern certain shapes that correspond to physical objects, such
as parked vehicles, rain gutters and curbs. A human is able to extract the essential
information from the noisy data by paying attention to the density of the targets in
certain locations and clusters forming specific shapes. The literature provides a va-
riety of density-based clustering methods, among the most popular is Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [EKSX96]. In contrast to
standard clustering algorithms such as k-means [KMN+], density-based clustering
algorithms do not require the number of clusters to be set beforehand and can be
applied to arbitrary shapes. Originally these algorithms were developed in data
mining applications for a large static data set with an unknown amount of search
results. Due to the distributed nature of most large data sets, density-based clus-
tering techniques have been applied to work on data streams rather than static data
sets [ECQZ06], where the full information of the state space is not available at t = 0,
but where more data is added over time. This data-driven approach can be applied
to SLAM, as each new measurement update can be understood as a new sample of
data being streamed into the data pool. The clustered data pool will represent the
map.
There are different approaches to density-based stream clustering [AWS14]. The
most suitable concept for the SLAM application is the micro cluster approach. It
is utilized in the DenStream algorithm [ECQZ06]. As the RADAR data consists of
two spatial coordinates and the amplitude (r, ϕ, A), as explained in Section 3.1, it
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is clustered by the stream clustering algorithm in these three dimensions. Examples
are depicted in Figure 4.5 and can be described by the following properties:

WC =
n∑
i=1

wi =
n∑
i=1

m−1∏
j=1

(1−N (dij|Cj, Rj)), (4.12)

Ci = 1
WC

n∑
i=1

ci = 1
WC

n∑
i=1

piwi, (4.13)

Csq = 1
WC

n∑
i=1

p2
iwi, (4.14)

Ri =
√
Csq − C2. (4.15)

They describe the cluster weight WC , the cluster center Ci, the center of mass
Csq and the the cluster radius Ri, respectively. Hereby i ∈ 0, ..., n iterates over the
number of clusters and j ∈ 0, ...,m iterates over the number of points of each cluster.
The cluster weight is thus determined by the Gaussian probability of each member
point being part of the cluster. The center of the cluster Ci represents the center
of mass of the cluster as determined by their members’ weight. Csq represents the
variance of points within the cluster and the cluster radius Ri represents the one
sigma range of the cluster. These parameters are generated in two update steps for
each cluster, the cluster generation, measuring the center and radius and the cluster
weight determination.

(a) O-Micro-Cluster (WC < Wthresh). (b) P-Micro-Cluster (WC ≥Wthresh).

Figure 4.5: Different types of micro clusters. (a) represents outlier micro clusters
with insufficient density. (b) potential micro cluster. The RADAR detections
are shown in blue, the standard deviation is shown in yellow. The dashed line
indicates the maximum size of each cluster before it is separated into two.
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The Cluster Formation takes place in each time step, when new RADAR data is
processed. The center point C is given by the center of mass of the RADAR targets
according to their weights. The radius R is defined as the standard deviation of the
target distribution, whereas the squared weighted sum Csq is used for simplification.
For each new incoming data point, these properties can be obtained iteratively.
Thus it is not required to store all RADAR data for the measurement update and
the map will only contain clusters described by these properties. After the update
step, the clusters are ranked with respect to their weightWC . It determines whether
a cluster is ranked as a p-micro-cluster or as an outlier. In each measurement update,
clusters can be promoted to p- or demoted into o-micro-clusters. Outliers are not
considered for the weight calculation or for for the particle filter update. A new
o-micro-cluster can be formed from a single RADAR point, if no other clusters are
in its surroundings.

The Cluster Weight is computed each time a new RADAR target is processed.
The weight calculation also encodes the RADAR-specific behavior of the algorithm.
In the context of this work, the weight wi for all n RADAR detections is calcu-
lated from the Gaussian probability N (dij|Cj, Rj)) that a RADAR target is visible
through the m−1 other clusters in the map, as illustrated in Figure 4.6. This means
that clusters can form behind other clusters, even though they are obstructed from
view. Due to the effects in Chapter 2, this is a feature unique to the RADAR sensor.
To approximate this behavior, i.e. the multiple scattering and penetration depth,
we assume that another cluster does not completely obstruct the line of sight, but
that a cluster is only fully opaque at the center of a cluster where the Gaussian
distribution is maximal. This is indicated in Figure 4.6.

di1
di2

di3

S

pi

C1

C2

C3

} }

R1

R3

R2

Figure 4.6: The cluster weight for a given point pi is calculated using the normal
distance dij of the center points Cj from the line of sight originating from the
sensor S for each pi. The radius Rj indicates the σj environment.
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Chapter 4 Radar Based SLAM

Hence, the total weight WC of the cluster is the sum of the individual containing
target weights wi. All clusters exceeding a threshold WC ≥ Wthresh are called p-
micro-clusters. In practice, we limit the weight by a parameter W < Wmax to define
a saturation limit.

These micro-clusters can be maintained incrementally allowing temporal accumula-
tion of the RADAR targets [ECQZ06]. Any new measurement xn+1 is added to the
nearest cluster according to the Mahalanobis distance,

d(x,C) =
√

(C − x)TΣ−1(C − x), (4.16)

where x represents the location of a new RADAR target, C the center of the cluster
and Σ the covariance matrix of the measurement of x. If the target is within the
maximum radius rmax of the cluster, a measurement is added to the cluster and its
properties (Cj, R) are updated. Note that adding another data point to a cluster
can be done iteratively, such that only a single pass is necessary.

Since the RADAR sensor described in Section 3.1 only yields 64 points per sensor,
significant cluster formation cannot be calculated from one sample of data. In order
to have enough radar points available, the RADAR data is aggregated for t = 0.5 s
before a new measurement update is performed.

Thus, the map consists of a set of clustersMp containing the accumulated RADAR
targets with properties (Equation 4.12−4.15). Unlike in grid structures, clusters
can be placed arbitrarily in 3D space containing the spatial coordinates x, y and
amplitude A, which can easily be associated to the polar coordinates of the RADAR
sensor and vice-versa by a simple coordinate transformation. Individual clusters are
stored in an R-tree data structure for the purpose of efficient spatial search, as well
as fast insertion and deletion.

In Figure 4.7, a cluster map is displayed in various levels of detail. Let the reader be
reminded that only p-micro-clusters are kept in the final map, thus leaving regions
of low measurement density free of clusters. In image Figure 4.7 (c), one can see the
outline of four parked cars grouped in pairs leaving a space between them in the
cluster representation. A common problem when dealing with measurements from
automotive RADAR sensors are reflections caused by metal surfaces. The single
cluster (light blue box labeled II.) is created in a strong reflection point from one
of the cars. Similarly, in Figure 4.7 (b), one can see a few clusters (light blue box
labeled I.) blocking the trajectory of the car. This is caused by reflections emitted
from the aforementioned rain gutter embedded in the road’s surface.

To further increase the robustness of the map and to handle dynamic environments,
each micro-cluster decays with time. The cluster weight WC is adjusted such that
the cluster has to be confirmed constantly by measurements (if the cluster is in
the FOV of the sensors). If it is not measured any more, the cluster decays into
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4.2 Robust RADAR Cluster Map Representation

an o-micro cluster, which is disregarded in the measurement update of the SLAM
algorithm. The adjusted cluster weight thus follows

WC,decay =
n∑
i=1

m−1∏
j=1

1−N (dij|Cj, Rj)− βwm. (4.17)

The free parameter β is a decay constant and wm is the weight of a unit cluster,
having the weight of one RADAR target with zero occlusion. Thus, each cluster
has to be observed frequently in order to remain a p-micro-cluster. If the weight

Figure 4.7: Map representation using p-micro-clusters in three levels of detail. As
before, the applied color scheme represents the mean amplitude of the clusters.
The ground truth trajectory is shown in green, odometry in red and the best
pose estimate in orange. The cars parked in the parking lot environment are
schematically overlayed in blue.
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drops below the above mentioned threshold Wthresh, it is degraded to an outlier and
disregarded for the pose estimation in the particle filter. On the other hand, if a
cluster has not been observed recently but is present once again, an outlier will be
promoted to p-micro-cluster within a few observations. The threshold Wthresh is
found by determining the average number of sightings of a highly reflective object.
The reader may notice that the disturbing factors (i.e. cars, pedestrians, reflections
and noise) are usually non-stationary, thus they can be suppressed by a decay on
the individual clusters. Therefore, only the stationary objects will remain in the
map. Reflections are usually non-stationary if the vehicle is moving, as reflecting
objects are measured from different viewing angles. Hence, when a car moves past
the reflecting object, the decay eliminates the clusters produced by reflection. For
the same reason, the decay helps eliminate moving objects while mapping, because
they are not detected in the same location every time. Lastly, the decay is used to
update the map due to environmental changes, such as cars not being parked in the
same location as before. Even though such clusters usually have a large weight, they
will be eliminated eventually, in case they are not confirmed by new measurements.
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4.2 Robust RADAR Cluster Map Representation

4.2.2 Particle Filter

The particle filter used in ClusterSLAM to determine the posterior distribution
closely resembles the algorithm explained in Algorithm1. For the motion update,
the odometry information from the vehicle is used, while the measurement model is
based on the clustering algorithm described in the previous section.

The motion update is calculated based on the Ackermann steering geometry de-
scribed in Section 2.1.1 and displayed in Algorithm5. The velocity v and yaw rate
ψv are extracted from the CAN and interpreted in a single track model. We as-
sume that within two consecutive time steps ∆t = t2 − t1, the car translates by
∆x = v∆t and is rotated by ∆θ. It is assumed that v is constant within ∆t. To
update the particle filter probabilistically, the equations of Section 2.1.1 need to be
sampled. As proposed in [TBF05b], a suitable sampling algorithm is to assume a
normal distribution for ∆x to approximate the error introduced by the constant
velocity assumption. It introduces four free parameters αi to model the offset mea-
sured in translational and rotational direction. They were estimated for the specific
parking lot scenario, where low velocities and tight turning radii introduce the most
drift into the odometry model. They were estimated in a simple gradient descent
to determine the least odometry drift on an eight shaped dataset after a full double
loop closure.

The measurement update is performed using scan matching on clustered RADAR
data to determine the posterior particle distribution and the particle weight. In this
case, a scan from current measurements S containing nS clusters are supposed to
be best aligned with the already matched map data M, containing nM RADAR
clusters.

Algorithm 5 Odometry Motion Model
1: procedure Motion Update
2: Input: Prior estimated odometry pose xt−1 = (xt−1, yt−1, θt−1), control ut
3: Output: Sample from the proposal distribution xt = (xt, yt, θt)
4: δrot1 = atan2(yt − yt−1, xt − xt−1)
5: δtrans =

√
(yt − yt−1)2 + (xt − xt−1)2

6: δrot2 = θt − θt−1 − δrot1
7: δ̂rot1 = δrot1 + sample_normal_distribution(α1δ

2
rot1 + α2δ

2
trans)

8: δ̂trans = δtrans + sample_normal_distribution(α3δ
2
trans +α4δ

2
rot1 +α4δ

2
rot2)

9: δ̂rot2 = δrot2 + sample_normal_distribution(α1δ
2
rot1 + α2δ

2
trans)

10: xt = xt−1 + δ̂trans cos(θt−1 + δ̂rot1)
11: yt = yt−1 + δ̂trans sin(θt−1 + δ̂rot1)
12: θt = θt−1 + δ̂rot1 + δ̂rot2

13: return xt
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(a) Poor match (b) Good match

Figure 4.8: Illustration of scan matching. The scan S (dark blue) is overlaid onto
the mapM. The vehicle pose is estimated based on the matching of S toM.

The objective is then to find the best match betweenM and S, such that the Eu-
clidean distance between all matched points is minimized. Figure 4.8 illustrates this.
There are a number of methods to determine and minimize the distance between
scans. Among the most prominent is the Iterative Closest Point (ICP) algorithm
[BM92]. However, since ICP does not model uncertainties, a more advanced method
is needed, which is based on NDT [SML12]. The NDT ?? represents the scan and
map as a mixture of Gaussians and use the L2 norm to determine the distance
between the sets S,M represented as

D(S,M,Θ) =
∑
s∈S

∑
m∈M

N (0|TM(µs,Θ)− µm, TM(Σs,Θ)− Σm), (4.18)

where TM(·,Θ) denotes the transformation from the sensor coordinate system to
the map coordinate system given the set of parameters Θ. To evaluate the sum in
a SLAM approach, the equation can be simplified to

d(S,M) = d1

nS∑
i=1

nM∑
j=1

exp
(
−d2

2 µ
T
ij(RTΣiR + Σj)−1µij

)
, (4.19)

with µij = Rµi − µj + t and R, t the rotation and translation component of TM,
respectively. The constants d1 and d2 are constants from the Gaussian distribution.
Thus, if each particle p holds its own mapMp and processes the same set of clus-
ters St at any given time, we can determine the particle weight based on the scan
matching distance given by Equation 4.19. Each micro-cluster si ∈ St is assigned to
its nearest neighbor mj ∈ Mi in terms of the Mahalanobis distance Equation 4.19
as described above. From the distance function, the particle weight for each of the
n particles in a set P is calculated with the following approach

Wi = maxi∈P(d(St,Mi))− d(St,Mi)
nmaxi∈P(d(St,Mi))−

∑
i∈P

d(St,Mi)
. (4.20)
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Algorithm 6 Low Variance Resampling
1: procedure Resampling
2: Input: Particle set Xt, weights wi ∈ Wp, number of particles M
3: Output: Resampled particle set X̄t
4: X̄t = 0
5: r = rand(0,M−1)
6: c = w1
7: i = 1
8: for m = 1 to M do
9: U = r + (m− 1)M−1

10: while U > c do
11: i = i+ 1
12: c = c+ wi
13: add xi to X̄t
14: return X̄t

Resampling of the particle filter yields the desired particle distribution. In total,
this procedure is called the low-variance resampling algorithm [TBF05b] and is de-
scribed in Algorithm6. The procedure is visualized in Figure 4.9 and is based on a
random number r being chosen at the start of the resampling process. From this
number, a set of equidistant samples is chosen. Thus particles with a high weight
will be drawn multiple times, while particles with low weight have a high chance of
being skipped. Without the particle resampling, a lot of particles would end up in
places of low probability, so they have to be contracted to regions with high impor-
tance weight again. However particle resampling also introduces errors, if a wrong
patch of sensor data causes a faulty measurement update. Thus resampling has to
be performed with care.

w1 w2 … wi

r r+M-1 r+2M-1 r+3M-1

Figure 4.9: Resampling of differently weighed particles. A random number r is
selected once. Then M particles are equidistantly sampled from the particles.
The color and length of the sticks indicates the weight. Darker colors and larger
segments correspond to higher weights. Thus it is ensured, that higher weighted
particles get redrawn more often. Based on [TBF05b].
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This standard approach described in Algorithm6 is initialized in lines 1–4 by drawing
a random number r from the interval [0,M−1] with M being the number of desired
samples. From the random seed r a sample for each of theM particles is drawn (U).
Then particles are selected based on their importance weight wi for the resampled
particle set X̄t. Thereby particles with large importance weight will be selected
proportionately more often than particle weights with small wi.

The initial conditions are based on the lost robot problem. With no prior infor-
mation, the particles would technically need to be scattered across the entire map
in a uniform distribution. In this case, we assume that we know the position of the
robot within the accuracy of a standard vehicle GNSS system. Hence, we scatter the
initial pose of the vehicle over an area of 16 m and 90◦ in heading around the origin
of the map, as this describes roughly the worst case of a low-cost GPS localization
as can be typically found in the production vehicles. This is merely done to reduce
the initial size of the state space such that the particles converge quickly to the true
pose.

4.2.3 Evaluation of ClusterSLAM

Two main situations have to be considered independently to evaluate the presented
algorithm. The initial mapping process with the vehicle in exploration mode is
discussed. Second, the localization on the prerecorded map and the map update is
discussed in detail.
The results have been produced on a subset of about 32 sequences of data collected
on parking drives from three different days from the eight shaped dataset introduced
in Section 3.3 because at the time of publication [SWK+16], only a subset of data was
available for processing. To remain consistent, the results are shown as published.

The Initial Mapping Process is completely relying on the sensor readings and
tries to construct a map from the given sensor data. The particle filter injects new
sensor data into a map from previous measurements. The corresponding initial
mapping thus only compares new sensor data to prior information and has no static
map in the background. In the autonomous parking scenario, this is used to perform
the initial manual recording of the parking lot. Further drives can then rely on the
map for pose estimation. Both are being presented in the following section.
Therefore, it is essential that the particle filter produces a consistent map. Most
importantly, loop closures have to be detected and the error at the end of the
trajectory has to be minimal. In Figure 4.10, the pose estimate error of the SLAM
algorithm is compared to the odometry error for a fully occupied parking lot. The
detection of the loop closure at the end of the trajectory results in a low error
of about 1 m at the end point. For a sequence recorded at 16:00 o’clock, the full
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4.2 Robust RADAR Cluster Map Representation

Figure 4.10: Deviation from ground truth of the pose error during the map creation
phase of the best particle2(dark blue) and the odometry (light blue) at 16:00 when
the parking lot is highly occupied. The loop closure has been detected with an
error of about 1 m at the end point.

trajectory has been displayed in Figure 4.7. In Figure 4.10 an optimized trajectory
from the particle filter is shown. The particle trajectory is very close to the ground
truth in most cases. One of the most important criteria for map quality is whether
loop closes can be detected. Since the trajectory is closed, we compare the end point
error for mapping runs at each time of the day in Figure 4.11. The main thing to
note is that the error is basically independent of data collection time and thus of
parking configuration. At 9:00 the parking space was usually only partially filled,

Figure 4.11: The mean error of the mapping process for all sequences in the data
set sorted by time of the day, which is an indicator for parking lot occupancy. The
error bars indicate a 1σ environment over all sequences, comparing the odometry
(light blue) to the ClusterSLAM pose estimation (dark blue).
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while at 16:00 almost every parking lot was occupied. By 18:00, almost all cars had
disappeared.

The Pose Estimation and Map Update is performed as soon as a map exists.
Then we apply the online localization and decay based map update described above
to model environmental changes in the measurement update. The map update is
graphically shown in Figure 4.12 and analyzed quantitatively in Figure 4.13, which
shows that despite changing environments, the localization of ClusterSLAM yields
consistent results. Even though at 18:00, the parking space was almost empty. For
the localization within the map, we assumed that the starting position is known with
standard vehicle GPS accuracy of about 16 m in radius and 20◦ in heading. After the
initial convergence phase of the particle filter (about 50 m), it yields an accuracy
less than 2 m despite highly dynamic environments while performing online map
updates. In Figure 4.12, the map update using the decay mechanism is depicted.
Comparing the clusters that refer to parked cars boxed in black, the map update
while passing the objects can be seen. Each cluster that is not measured any more
is demoted to an outlier and not used for the measurement update, but is retained
in the map. Thus, as soon as the car passes the same location in a full parking lot
again, within very few scans, the clusters can be reinstated and will positively affect
the localization result. For this reason the localization performance is consistent
throughout massive changes in the surroundings.

Figure 4.12: The vehicle (blue drop shape) passes a region that changed since the
initial mapping. Between the time steps t1 and t2, the map update removes the
two indicated cars (black boxes), while preserving the immobile structures.

2The best particle is described as the particle with the highest average weight across the entire
trajectory. It thus has the most consistent map to the sensor data.
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A localization step adds new clusters to the map, while others decay, resulting in a
map size of approx. 200 kB for a sequence from the given data set. This is several
orders of magnitude smaller than grid-based map representations, which typically
amount to several MB for the same area. The memory and computing requirements
thus allow this algorithm to be real time capable.
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Figure 4.13: Localization results after initial mapping at 16:00. The respective vehicle configurations are illustrated as
ground truth maps at the top. Each localization error with respect to the traveled distance compared to the odometry
result is shown directly below.
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4.2.4 Conclusion

In this chapter, a SLAM technique using automotive RADAR targets and odometric
sensors, developing a map from a stream clustering algorithm. The map represen-
tation is especially suited for dynamic environments, which was validated using an
extensive data set of a public parking space with different configurations of parked
cars. Environmental changes are managed by cluster decay, which adds robustness
to the system. We have shown that the presented map is suitable for localization
using ClusterSLAM. To suit the cluster map, a specially designed weight function
has been conceived to produce an accurate localization result despite the noisy and
inaccurate sensor data. The map representation combines the advantages of fea-
ture and grid based algorithms alike, containing a high information density, while
consuming little memory. Thus, our approach constitutes a significant step towards
lifelong mapping in unexplored scenarios.

4.3 Graph Based RADAR SLAM

In this section, an alternative solution to the RADAR based SLAM problem is
proposed. While the ClusterSLAM approach is providing a solid map update process
and decent localization accuracy, a GraphSLAM based approach can outperform the
ClusterSLAM approach in any category.
The localization can be improved compared to ClusterSLAM by generating land-
marks from the raw RADAR signal [RGH+13] and constructing a landmark map
with a GraphSLAM approach [TM05]. In contrast to clusters, the landmarks can
be distinguished from each other using a feature descriptor. This severely improves
the map matching performance and enables a high accuracy with a deterministic
graph based optimization. It can be shown that high accuracy in both mapping and
localization can be achieved, while keeping computation complexity and memory
usage to a minimum. The map is optimized and is stored in an R-tree [Gut84] data
structure to maintain maximum flexibility, while keeping lookup times low.
Due to the simplicity and compactness of a landmark map, this approach is not only
limited to the parking scenario. It can easily be scaled in a cloud based application
to perform at large scale in order to maintain the map across multiple vehicles.
Multiple cars can contribute to mapping a large scale environment, such as a multi
layer parking garage or even a country’s highway network. This is further discussed
in Section 4.4. The parking lot scenario, however, is among the most challenging
ones due to the different vehicle configurations, sensor occlusion in tight spaces and
moving objects.
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Figure 4.14: Overview of the GraphSLAM localization system.

The localization system is displayed in Figure 4.14. The raw RADAR data is
first passed through the feature detector to extract the features later used in the
GraphSLAM algorithm. The detected features are matched to the according map
data and outliers are detected through a RANdom SAmple Consensus (RANSAC)
algorithm drawing a subset of points from the matches to estimate the most likely
transformation between the current scan and the already stored map. The good
matches are assembled to a graph considering the vehicle odometry information to
form a graph, which is then optimized in the Graph Optimizer. The resulting map
is stored and used for further incoming measurements.
Aside from determining the inliers of the found matches, the RANSAC algorithm
also yields a transformation between the feature points and map points, effectively
localizing the vehicle in the map according to the detected landmarks. The following
sections describe the functionality of the individual building blocks of the system.
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4.3.1 RADAR Based Landmarks

The selection of appropriate robust features is essential for landmark based localiza-
tion algorithms and requires special adaptations in the case of the RADAR sensor.
Landmarks are generated in two basic steps, the feature detection and the feature de-
scription. While various methods are abundant in the image processing community,
this thesis implements both these steps based on [RDH+16b], which was developed
specifically for the RADAR in collaboration with Rapp et. al. For LiDAR sensors,
a method for feature extraction and description has been suggested in [TA10b]. It
uses a hierarchical clustering approach to detect individual features in dense LiDAR
data. However, this approach is not applicable to RADAR measurements because
the point density of 64 points per scan does not yield a high enough data density
for the hierarchical clustering.
The feature detector finds relevant points in the RADAR data and thus yields the
position of potential landmarks. In the RADAR signal domain, prominent points
are generally located around scatter centers, which are specific points with high
reflectivity and thus a low SNR. Furthermore, a scatter center can be tracked very
well, as the RADAR sensor continuously receives points from scatter centers. In
practice, scatter centers of RADAR data are typically e.g. metallic pole like objects
or metal fences. This is beneficial for the dynamic environments of the parking
lot, because the probability of finding the same object again after some time is
significantly higher than for vegetation.
The descriptor on the other hand analyzes the environment around a landmark to
generate a unique signature that corresponds to the particular landmark shape. The
signature must be sufficient to solve the feature association problem, since similarity
of descriptors corresponds to a similar surrounding of landmarks. In the described
approach it is thus necessary to aggregate the RADAR data over time to extract
the features. This can e.g. be achieved by constructing a grid map as presented in
Section 4.1 to detect the scatter centers on a more dense representation of the data.

The Fast Scatter Center Detection (FSCD) algorithm Algorithm7 was specially
developed to incorporate the RADAR-specific physical behavior into a feature de-
tector. It operates on the RADAR grid map approach presented in Section 4.1 and
considers point like scatter centers, because those typically refer to human made
structures like lamp post or signs. Additionally, in Figure 2.7 multiple reflections
from vehicle bumpers typically form an ellipse rather than a circle and would thus
be filtered out. Similar to the Features from Accelerated Segment Test (FAST) de-
tector, FSCD applies a radial scheme to generate rotation invariant features, which
allows for physical objects to be seen from different directions and still yield the
same detection, which adds more robustness in complex scenarios.
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Algorithm 7 FSCD algorithm on an occupancy grid map
1: procedure FSCD
2: Input: Occupancy grid mapM
3: Output: Feature detections P
4: P = ∅
5: for all cells c do
6: if M(c) > κFSCD then
7: check = true
8: for scheme index j = 1 ... 16 do
9: if M(c) ≤M(cj) then

10: check = false
11: break
12: if check then
13: P ′ = c ∪ P ′
14: P = FSCD_clustering(P)
15: return P
16:
17: procedure FSCD_clustering(P)
18: P ′ = ∅
19: for all p ∈ P do
20: A = {p′ ∈ P : |p− p′| < ηFSCD}
21: remove A from P
22: p′ = 1/nA

∑
a∈A a

23: P ′ = p′ ∪ P ′

24: return P ′

The FSCD algorithm is described in Algorithm7. Consider an occupancy grid map
M generated like described in Section 4.1. Let c be the cell index that is being
tested for the existence of a scatter center andM(c) ≥ κFSCD the occupancy of the
tested cell. Then c is a scatter center as defined by Algorithm7, if

M(c) >M(cj),∀j = 1...16. (4.21)

In other words: The grid cell c is a scatter center if the occupancy peaks above
a threshold κFSCD and if there is no other local maximum within a radius of two
grid cells around the detection. A visualization of the surrounding cells cj is given
in Figure 4.15. The parameter κFSCD ensures the stability of the detection as it is
chosen such that a high number of detections have to be measured inM(c) in order
for it to be a scatter center.
In Algorithm7 each cell is tested for the condition Equation 4.21. Because a max-
imum of 16 compare operations are executed, the detector has linear complexity
with regards to the number of cells in the mapM.
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Figure 4.15: The radial scheme utilized in FSCD. The features are marked in white
(boxes in left image) and the relevant radial points are numbered from 1 to 16
(right) [RDH+16b].

If each detection fulfilling the condition of Equation 4.21 would be returned as a
landmark, there would be a multitude of detections on a single physical object.
This is due to the discretization error of the grid map. In Figure 4.15, at least four
grid cells fulfill Equation 4.21, but they all correspond to a single lamp post. To
compensate for the multiple associations, a cluster based pruning of the landmarks
is performed removing all double landmarks in a radius of ηFSCD and correcting the
position of the landmark to the cluster center. This behavior is displayed in the
FSCD_clustering procedure of Algorithm7.

Description For a landmark based SLAM approach, each landmark that is only
described by a position in space, is not sufficient to solve the feature association
problem, especially between the map and the current scan, because the coordinate
systems are different and the transformation is unknown. Thus each feature is
augmented using a descriptor. A descriptor encodes characteristic information about
the detected feature p in a feature vector fp. The pair (p, fp) is called a landmark.
There are a number of description techniques for feature points in literature, typi-
cally in image processing settings, i.e. Fast Retina Keypoints (FREAK) [AOV12],
Scale-Invariant Feature Transform (SIFT) [Lin12], Speeded Up Robust Features
(SURF) [BTV06] or Oriented FAST and rotated BRIEF (ORB) [RRKB11]. Each
feature detection utilizes similar methods to generate a maximally unique finger-
print of the surrounding pixels to obtain very recognizable landmarks with few
mismatches.
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In this thesis, the Binary Annular Statistics Descriptor (BASD) has been used
[RDH+16b] to generate a feature vector for each detection. The BASD was specif-
ically developed for map matching of RADAR grid maps and is fully rotation in-
variant [RDH+16b]. The method uses an annular partition of the surrounding3 of
the feature to provide expressive descriptors based on occupancy statistics of each
circle. For each ring, the following information is encoded in the descriptor fp:

µi = 1
nCi

∑
c∈Ci∩M

M(c) (4.22)

σi =
√ ∑
c∈Ci∩M

µi −M(c) (4.23)

medi = median(c ∈ Ci ∩M) (4.24)
mini = min(c ∈ Ci ∩M) (4.25)
maxi = max(c ∈ Ci ∩M). (4.26)

These statistics are computed for each circle around the extracted feature point
characterizing the surroundings of the point with statistical means. To compare
features efficiently, the feature vectors are first binarized.
In image processing, binary descriptors are especially useful, because of two main
advantages: On the one hand, the comparison of binary descriptors can be very
efficiently realized using the Hamming distance [Mal10]

∆(x, y) = |{i ∈ {1, . . . , n} : xi 6= yi}|. (4.27)

Figure 4.16: The same scenario as in Figure 4.15 is shown with the full descriptor
rings (right). To binarize the feature vector, the sign of the difference between
the statistical values of 4.22 to 4.26 are used [RDH+16b].

3The algorithm generates concentric circles around the detection
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On the other hand, the descriptors do not take up much memory. Both advantages
are especially relevant for large numbers of features or for real time applications,
such as the automotive SLAM algorithms.
Thus in this thesis, the properties of Equations 4.22 to 4.26 are encoded into a binary
vector by considering all rings nr surrounding a feature as indicated in Figure 4.16.
In the ith slot of the descriptor vector the binary information is stored, whether the
properties in the ith ring are smaller than the ones in the outer rings j = i+ 1...nr.
The comparison yields the following number of binary entries ne in the feature
vector:

ne = 5
nr−1∑
i=1

i = 5
2(nr − 1)nr. (4.28)

This approach has proven to be very reliable and repeatable among many different
RADAR grids, since it can be applied in grid registration [RGH+13]. The descriptors
calculated by BASD in combination with the landmark detection [RDH+16b] is used
to provide robust landmarks for the GraphSLAM approach. Beside the discussed
descriptor described above, the FREAK [AOV12] descriptor, commonly known in
image processing, is used as a reference implementation.

4.3.2 Graph Construction

The graph generation process consists of three different parts, which are displayed
in Figure 4.14: feature association, outlier detection and graph assembly. While the
feature association provides a set of landmark matches between the current vehicle
detections and the map, the outlier detection identifies and eliminates the mis-
matches induced by noise and the dynamic environment. In the graph construction,
the good matches are given a unique ID and are added to the graph as nodes.

Feature Association of the current set of landmarks S and the mapM is obtained
as described in Algorithm8. It yields a set of matches A stored as a list of tuples
(si,mi). Each tuple is called an association. Algorithm8 iterates over all found
landmarks in the current scan S and over all landmarks within a certain bounding
box B to find all associations a by calculating the Hamming distance, which counts
all differing bits of the binary descriptors of s and m. If the distance is below a
certain threshold dthresh, the association is added to A.
Each observed landmark s ∈ S contains a relative position to the vehicle’s rear
axis and each landmark mi ∈ M contains a position of the landmark in the map
coordinate system. Both retain a binary descriptor d, which consists of ne = 512
boolean elements. This number of elements has been proven effective detailing
enough of the surroundings on a RADAR grid with 20×20 cm resolution. In practice,
about sixty landmarks have to be compared to a local subsection B of the map,
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Algorithm 8 Binary feature matching
1: procedure Match
2: Input: set of detected landmarks S, mapM
3: Output: feature matches A
4: A = ∅
5: for all landmarks s in S, box B do
6: for all landmarks m inM∩B do
7: if ∆(s,m) < dthresh then
8: a = (s,m)
9: A = a ∪ A

10: return A

which contains on average about 300 landmarks. Thus the matching can be done
by a brute force matcher and still run in real time, as can be seen in the evaluation
Section 4.3.3.

Outlier Detection is necessary, because the landmark detection and matching pro-
cess are susceptible to outliers that can cause problems during graph optimization.
Hence outliers are geometrically identified using a RANSAC based technique. The
RANSAC algorithm follows the approach described in [RGH+14].

The desired variable is the rigid transformation T = (R, t) consisting of the rotation
and translation of the landmark locations in the vehicle frame to the map frame.
If all matches are consistent, any random subset of three matches could be used to
calculate T . When transforming all other landmarks in S to the map coordinate
system, they should be perfectly aligned with their counterpart in A. If there are
mismatches, the probability that three random matches cause a suitable transfor-
mation decreases. The RANSAC algorithm utilizes this technique to determine the
most likely transformation between vehicle frame and map frame, as well as a list
of inlier matches that are represented by the transformation best. The algorithm is
shown in Algorithm9.

In each iteration i, a sample subset of three matches A3 are selected randomly.
Based on this subset, the 2D rigid transformation parameters T are determined. If
matching features are within distance dthresh after transformation, it can be deter-
mined as an inlier. This is repeated ni times, while the transformation parameters
which produced the most inliers is returned as the best fitting transformation. In
practice, the number of RANSAC iterations ni varies with the percentage of outliers.
In this thesis, ni = 100 is chosen to ensure good transformation estimation in noisy
RADAR data.

The estimation of the transformation parameters is performed using Singular Value
Decomposition (SVD). According to the results of [SHR17], the problem of finding
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Algorithm 9 RANSAC
1: procedure RANSAC
2: Input: set of matches A, number of iterations ni, threshold dthresh
3: Output: set of inliers A′, transformation T
4: i = 0
5: Ainliers = ∅
6: while i < ni do
7: A3 = select_random_subset(A, 3)
8: T = compute_transformation(A3)
9: Aiinliers = compute_inliers(T, dthresh)
10: if |Ainliers| > |Aiinlier| then
11: Ainlier = Aiinlier
12: Tinliers = T

13: i = i+ 1
14: return Xinliers, Tinliers

the best fitting transformation that aligns two sets of corresponding points can be
written as a least square problem:

T = arg min
R,t∈R

N∑
i=1
||(Rpi + t)− qi||2, (4.29)

where pi and qi are associated points. An approach for minimizing the term was
proposed by [AHB87] and is applied here for two dimensional problems. To obtain
the optimal transformation, first consider the centroids of both sets:

p̄ = 1
n

∑
p∈Sn

pi (4.30)

q̄ = 1
n

∑
p∈Mn

qi, (4.31)

where Sn,Mn are the n selected landmarks from the current scan and from the map,
as selected A3. We further define the deviations from the centroids as:

xi := pi − p̄ (4.32)
yi := qi − q̄ (4.33)

Let X and Y be matrices with columns xi and yi, respectively with size 2 × n.
Then we define the covariance matrix S = XY T of size n2, with its singular value
decomposition

SV D(S) = UΣV T , (4.34)

85



Chapter 4 Radar Based SLAM

where U and V are unitary matrices that contain the singular vectors of the covari-
ance matrix S. Then the optimal rotation is given by

Rbest = V


1

1
. . .

det(V UT )

UT (4.35)

and the optimal translation can be obtained by

tbest = q̄ −Rp̄. (4.36)

Since the SVD method finds the best transformation analytically, the RANSAC
algorithm can be performed very efficiently using this estimation function. The re-
sulting transformation is then used to add the current scan to the map by assigning
a unique identifier to each landmark in the map. Outliers and unmatched land-
marks get new identifiers, while matched landmarks adopt the ID of their matched
counterparts.

The Graph Construction is based on Section 4.3 and uses the unique identifiers for
each landmark and the estimated vehicle poses from wheel odometry that outputs
an updated pose estimation about five times as often as new landmark data comes
in. Each odometry measurement and landmark observation is added to the graph
as vertex, whereas the observation of measurement accuracy as inferred from the co-
variance matrix from each pose is stored in the graph’s edges, both for odometry and
landmark measurements. The finalized graph is partially depicted in Figure 4.17.
Since the initial graph is only constructed using odometry, the map contains a large
amount of drift error (Figure 4.17 top left). To remove drifts and measurement
errors, a graph optimization is performed. This allows the system to solve the full
SLAM problem estimating the mapping trajectory as well as the landmark positions.

Graph Optimization is used to remove the introduced error from odometry and
RADAR measurements. The optimized graph is the globally consistent solution
to the SLAM problem. This is done in an offline process after the initial data
has been collected, matched and brought into the graph structure. In practice the
optimization is done after the car has been put to a stop in the parking garage.
The optimized graph serves as the map for subsequent autonomous drives in that
environment.
The cost function JGraph can be viewed as a set of interconnected springs under ten-
sion, where the landmark and odometry nodes are the junction points of the springs.
The amount of tension is inversely proportional to the measurement accuracy. By
releasing and relaxing all the springs, they will morph to an optimal state.
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To determine the optimal solution, a Levenberg-Marquadt (LM) algorithm [Mar63]
is performed, employing a robust Cauchy kernel of width 1.0m to ensure that the
LM algorithm does not choose an irrelevant local minimum far away from the desired
solution. To perform the graph optimization, the g2o [KGS+11b] library is used. It
is efficient for large optimization problems and the construction and optimization of
the graph are well optimized for the full SLAM problem. The resulting map is stored
in an R-tree [Gut84] data structure for fast access times during online localization
to guarantee fast matching between incoming landmark data and the stored map.

As can be observed in Figure 4.17, the optimization not only closes the loop of the
trajectory correctly, but corrects the position of the landmarks such that they are
more clearly representing the physical object. It can be observed, that in the upper
left, there are landmarks on a vehicle misaligned significantly before optimization,
but after optimization (upper right) the vehicle can be discerned from the landmark

unoptimized optimized

Figure 4.17: Graph of two portions of the parking lot before (left) and after (right)
optimization. The graph consists of odometry and landmark measurements (ver-
tices, green) and their observations (edges, gray). Before the optimization, the
map contains drift error, as depicted in the upper left. The red line indicates the
trajectory of the vehicle during mapping, landmarks are depicted in green.
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data. Additionally in the lower left image, the landmarks appear to represent a
continuous (wall like) structure. After optimization (lower right), one can see, that
in fact the structure is not solid, but interrupted. These landmarks correspond to
vehicle fronts of parked cars. The entire optimized map is depicted in Figure 4.18.

Having detailed the implementation of the RADAR GraphSLAM approach, in the
following section, the practical performance and experimental results are presented
in the initially given scenario of a parking lot.

4.3.3 Experimental Results

The experimental results are categorized in two main parts. Firstly, the mapping
result is analyzed, comparing the optimized RADAR point cloud to the ground
truth map generated using a total station. Secondly, the localization performance
is evaluated, comparing the trajectory to a ground truth positioning system. The
results were obtained on the full figure of eight shaped data set from Section 3.3.
By performing the localization and mapping on different days, the stability of the
implemented RANSAC and the optimization robustness are put to the test.

The Mapping performance can be measured based on the quality of the trajectory
reconstruction. The mean trajectory reconstruction errors across all 41 sequences
in the data set are given by Table 4.1 for two different description methods. The
mean error is below 1 m, while errors were in the order of 5− 10 m for unoptimized
maps, which purely rely on odometry information for trajectory reconstruction.
Figure 4.19 shows the growth of the error along the trajectory both before and after
the optimization. Without optimization, the error grows to around 7.5 m, while the
optimized residual error is limited to around 0.59 m.

Note that the BASD data can be processed significantly faster than the FREAK de-
scriptor, despite needing to process significantly more landmarks. This is due to the

Figure 4.18: Fully optimized map using GraphSLAM.
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Figure 4.19: The trajectory of the vehicle as measured by odometry (upper) and
calculated by the optimization (lower). Both plots include error ellipses, describ-
ing 95% confidence of the pose.

binary descriptor computing the distance between two descriptors with Hamming
distance, which is more efficient.
In the end, both descriptor types yield high precision maps. This is mainly due
to the outlier detection via RANSAC. Only a fraction of the features have to be
matched between scans, while the rest is found to be outliers. On the other hand,
the outlier detection costs processing time. One can see in Table 4.1 that while
BASD has by far the most landmarks per map, the processing time is very low
(39.2% of real time).

descriptor num. landmarks mean error processing time
FAST 5082 0.87 m 65.6% real time
BASD 7232 1.00 m 39.2% real time

Table 4.1: Mapping quality and processing speed, as percentage of real time for
different descriptors4.

4Values below 100% mean the algorithms run faster than real time.
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The position error of the landmarks can be inspected visually in Figure 4.20. The
landmarks that fall onto stationary objects are very precisely on the reference map.
The ground truth map is displayed in Figure 4.20 in red along with the mapping
result in blue. Deviations are mainly caused by parked cars that had been pruned
from the reference map. The mean errors per map are depicted in Figure 4.21 and
indicate that the resulting mapping procedure produces a highly accurate position
for the landmarks in the map. While only one map did not converge, which was
due to a parameter error in the odometry, all other optimizations – day and night
– resulted in consistently low errors of below 10 cm with respect to the ground
truth. The overall mean landmark error over all landmarks and all measurements is
µ = 6.8 cm. This is measured by finding the nearest neighbor for each landmark in
the optimized map in the ground truth map given a rigid transformation between
those two maps. The transformation has been determined by selecting 32 hand
labeled correspondences between optimized map and ground truth.

The Localization result for a single sequence is depicted in Figure 4.22. The dif-
ference in maps (black vs. gray) in the background shows that the parking lot was
almost fully occupied during mapping and only about half filled when localization
was performed. In localization (blue) scenarios with a more recent map or on a com-
pletely filled parking lot with not much variation left, the localization accuracy is
better than 1 m at all times because localization and mapping result agrees with each
other in both lateral and longitudinal direction. In regions of drastic change, where
lots of cars were moved, the localization fails due to insufficient number of good
matches after the outlier detection. If the maps differ significantly, the localization
output is considered unavailable. Figure 4.22 illustrates both the highly accurate
localization in similarly shaped areas, as well as disabled localization output (gaps
in blue line) due to few good matches in a drastically changed environment.
The overall localization system performed well for maps with minor changes in the
environment, while relocating multiple vehicles lead to detection of failure in the
outlier detection. In Section 4.4 and Chapter 5, ways to improve availability and
performance of the localization will be discussed.
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Figure 4.20: Overlay of the ground truth (red) and an optimized landmark map
(blue), which have been aligned by matching a set of points (green) by hand
between the ground truth and optimized landmark map.
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Figure 4.21: Mean point error of a selection of 32 hand labeled features. The blue
horizontal line at µ = 6.8 cm marks the mean error over all sequences.
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Figure 4.22: Estimated vehicle position (blue) vs. ground truth (red). The op-
timized maps of the mapping (black) and at the time of localization (gray) are
depicted. Mapping was performed on an almost fully occupied parking lot, while
localization was performed when it was half empty.

4.3.4 Conclusion

In this section a robust GraphSLAM system based on distinguishable features from
noisy automotive RADAR sensors was introduced. It was shown that using a strong
outlier detection and a robust map optimization, the maps become highly repre-
sentative and the localization becomes robust to outliers. Additionally, the online
pose estimation yields very accurate results in case of similar surroundings to the
mapping trajectory. Further improvements, such as an online map update and the
fusion with more sensors are followed up on in the upcoming chapters.
This section has set the foundation for the GraphSLAM framework used in this
thesis that can be expanded in further applications in multiple directions. The
most important goal is to add robustness to the system. Higher accuracy and
robustness is expected to be obtained by using landmarks from various sources,
such as LiDAR and camera, combining all in a common graph to build a map
across multiple sensors. Figure 4.22 suggests that by incrementally updating the
map during each localization run, one could model changing environments efficiently
and close the gaps in localization availability. This is shown in Section 4.4.
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4.4 Radar Map Updates using Joint Graph
Optimization

In this section, a fundamental extension to Section 4.3 is discussed. While in the
previous approach, the map is assumed to be static after initial mapping, this section
proposes a continuous mapping process across multiple drives and even different
cars to accumulate the mapping information of a large area into a crowd based
optimization. In this context the parking lot scenario is merely meant as a proof of
concept for a large scale cooperative mapping approach unifying maps of individual
cars across large areas, such as entire city or highway networks. A landmark based
GraphSLAM approach [SKR+16] is especially suitable to serve as a basis for crowd
based mapping, because it uses distinguishable landmarks that can be matched
independent of sensor model and software framework. The previous chapter thus
provided the framework for the expansion into more complex scenarios and more
precise and robust localization and mapping performance.
In a crowd based application, the RADAR sensor has an important advantage over
LiDAR sensors. The abundance of the sensor in many different cars over many man-
ufacturers makes RADAR input data for mapping a rich data source. Theoretically,
every vehicle that has a mobile connection to a backend server and an active cruise
control system (which is usually based on RADAR [MVAV11]) can be utilized to
contribute to the mapping of large areas for autonomous vehicles.
In this section it is shown that utilizing Joint Graph Optimization, autonomous driv-
ing can be enabled in many environments by collaboratively mapping out vast areas
very accurately even in areas with many semi-stationary objects, such as a park-
ing area. The presented approach shows that cooperative, non centralized mapping
alone – without the need for high precision sensors – is sufficient for autonomous
driving. It can also be used to augment manufacturer made maps or eliminate the
need for centralized mapping altogether, once enough vehicles are participating.

4.4.1 Joint Graph Optimization

The overview of the extended localization system is given in Figure 4.23. Each of the
n drives in the parking lot provide both Raw RADAR Data and Vehicle Odometry,
just as in previous sections, which is used to generate the map data. The original
part of the architecture (refer to Figure 4.14) was proposed in [SKR+16] and is
represented by the gray boxes of Figure 4.23. In this thesis, graph optimization is
adjusted to keep global consistency across multiple cars and drives. Each map is
registered in a Global Map Registration to ensure that they are aligned and in the
same coordinate system. The system does not rely on GPS for the registration, but
rather on feature matching between the different maps to find common landmarks
among the different drives. After the registration has been successful, landmark
selection and improvement is performed in the Map Refinement step. Landmarks
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are selected to keep the map up-to-date. In the following discussions, let the base
map be the map on the server that is always updated with the latest information
and let the local map be a map recorded by one vehicle at a specific time. The
objective is then to consistently integrate all local maps to the base map.

Beside regular pose-to-pose and pose-to-landmark constraints, another type of con-
straint is introduced. It links the new map increment to the base map. These
virtual constraints are calculated via keyframes that are selected equidistantly in
space along the trajectory. First, the map trajectory of the local map and the base
map are subsampled to form a set of key points Klocal and Kbase. Since each map
is based in its own coordinate system with a random origin, the key points have to
be associated to the map. Thus, individual map increments around the key point
are matched with the other map resulting in a set of constraints between the local
map and the base map. The principle is shown in Figure 4.24. The key frames from
both the base map and the increment map connecting the two maps wherever a
match was found. In order to connect both maps, the corresponding features to
each key frame from the increment map are matched to key frames from the base
map. The key point method was mainly introduced to save processing time. It
would have been possible to match both maps without selecting specific regions by
just iterating over all landmarks in the map. This would not only require a large
amount of processing power, but it also does not improve accuracy. Due to the
equidistant sampling of key points, enough matching windows are selected to align
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Figure 4.23: Overview of the extended GraphSLAM localization system. Gray
elements depict the static localization system from [SKR+16], while the white
ones show the crowd based addition to the system.
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both maps with their corresponding counterparts without having to cross-reference
every landmark with all maps.
In summary, the global optimization problem for joint graph optimization is an
extension of Equation 2.36 and can be written as

JJGO =JBase + JLocal+∑
i∈Klocal∪Kbase

(xi − g(xm(i)))TR−1
i (xi − g(xm(i)))︸ ︷︷ ︸

virtual constraints

, (4.37)

with JBase representing the constraints of the base map, JLocal the constraints of the
local map and g(xm(i)), Ri the transformation of the matching key point (xm(i)) of
the local map to the key points of the base map xi.
In Figure 4.25, the result of the joint graph registration is displayed. From one frame
to the next, another local map is added to the base map and then optimized together
with the previous data by solving

x̂ = argmin(JJGO). (4.38)

To add robustness, the key frame matches are evaluated via RANSAC to exclude
outliers and calculate the transformation between the base map and the local map.
Similar to the original Feature Matcher from Section 4.3, a match will add a con-
straint connecting key frames from different maps. The edge connecting the node
stores the confidence of the particular match as determined by RANSAC, utilizing
a least squares estimation [Van08] to obtain a covariance to assign a contribution to
the Jacobian for each virtual constraint. Additionally, an extension to the RANSAC
algorithm proposed in Algorithm9 is implemented. As shown in Algorithm10, to
improve performance, in each iteration the randomly drawn subset of matches A3 is
rejected immediately, if the target and destination set do not form congruent trian-
gles up to a certain tolerance t. This saves many least square estimates and many

Figure 4.24: Local match based registration showing equidistant sampling of the
base map (red). The key points are matched to the increment map (blue) and
constraints between the two maps are determined.
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(a) Initial Map (b) Map Increment 1

(c) Map Increment 2 (d) Map Increment 3

(e) Map Increment 4 (f) Map Increment 4 – optimized

Figure 4.25: Joint optimization of six test drives. From (a) through (e) the graph
is optimized before another drive is added. The map gets more consistent incor-
porating new data during each additional parking drive. In (f) all six drives have
been optimized together to form a globally optimized map.
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point transformations if the initial set was an outlier. This adjustment is required
when matching the key point windows, because many combinations of windows do
not have matching counterparts at all. Thus speeding up the RANSAC procedure
is an integral part to allow Joint Graph Optimization.
Note that the update is done in an incremental fashion. The base map always stores
the most current information. By graph optimization, the most consistent alignment
among a new drive is determined and transformed into a common coordinate system.
If an incoming increment cannot be matched right away because it does not have any
overlapping region to the base map, the key points can be stored as metadata. Once
the base map has grown to overlap with the increment, it is integrated. The overall
map quality thus increases over the amount of information that is available about the
mapping area. In the case of Figure 4.25, the first three trajectories did not provide
sufficient information about the surroundings. Five different parking trajectories
were needed to build a consistent map of about half the available parking space
providing the best mapping quality with consistent information. This is especially
supported by the loop closure that individual drives usually do not form, but the
combination of drives oftentimes contains.
The more drives are added to the system and the larger the mapped area gets,
the more computationally intensive the optimization becomes. The Joint Graph
Optimization can be performed in a backend server platform that has virtually
unlimited resources available compared to the small computing units in today’s
production vehicles. The completed map can then be streamed on-demand to each
individual vehicle. Nevertheless the map data has to be refined regularly to limit
computing time, but most importantly to prevent deterioration of the entire map.

Algorithm 10 Modified RANSAC
1: procedure RANSAC
2: Input: set of matches A, tolerance t, number of iterations ni
3: Output: set of inliers A′, transformation T , covariance Cov(Xinliers)
4: i = 0
5: Ainlier = ∅
6: while i < ni do
7: A3 = select_random_subset(A, 3)
8: if !subset_is_congruent(A3, t) then
9: continue;
10: T = compute_transformation(A3)
11: Aiinliers = compute_inliers(T, dthresh)
12: if |Ainliers| < |Aiinlier| then
13: Ainlier = Aiinlier

14: i = i+ 1
15: Cov(Xinliers) = compute_covariance(Xinliers)
16: return Xinliers, T, Cov(Xinliers)
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4.4.2 Map Refinement

Transmitting the map from a server to local vehicles may remove the need for the
algorithm to run in real time, but it does not allow the map to become arbitrarily
large. As can be seen in Figure 4.25 in the upper left of each image, at the entrance
to the parking area, where the local maps overlap the most, the landmark density is
growing in the base map with each update, but providing no new information about
the surroundings. These landmarks have similar descriptors [RHT+15] and might
all be valid matches for new key frames. Besides increasing the map size, this also
introduces mapping errors, because many features only vary subtly in descriptor and
position provides many potential matches for a new incoming key frame. RANSAC
might also not detect the outlier because of the slight change. Thus, in this section
a feature rating and selection method is presented after the common registration of
multiple maps have been accumulated.

In order to control the local density of landmarks, a clustering algorithm is applied
to group landmarks locally. There are a number of ways to cluster a set of two di-
mensional points in Cartesian space. In this thesis, one of the most basic algorithms
was used, the mean shift algorithm with a Gaussian kernel, originally introduced by
[FH75] which does not require to preselect the number of clusters.

In Algorithm11 the algorithm is displayed. The shift point m(x) is the weighted
mean based on the neighborhood of points xi of x and can be computed as

m(x) =
∑
xi∈N(x)N (xi − x, σ)xi∑
xi∈N(x)N (xi − x, σ) , (4.39)

with the Gaussian distributionN and an isotropic kernel width σ ∈ R. In Figure 4.26
the clustered feature points are color coded. For all landmarks per cluster, a selection
algorithm is performed removing the most outdated information until the density
of a cluster is reduced below a threshold. In order to select the best features, each

Algorithm 11 Mean Shift Clustering
1: procedure Mean Shift
2: Input: set of points A, threshold ε
3: Output: set of clusters C
4: C = ∅
5: while A 6= ∅ do
6: for all x ∈ A do
7: m(x) = compute_shift(x)
8: if ||m(x)− x|| < ε then
9: C = C ∪ x

10: A = remove_element(A, x)
11: return C
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landmark in the cluster is assigned an age ω and a degree δ. The age relative to the
current map increment m0 is given by

ω = m0 −max{m ≤ m0 : landmark not observed in m}. (4.40)

The age formula describes the number of consecutive local maps, where the feature
has not been found in. Thus, only landmarks that have been recently observed will
end up in the map. Note that this algorithm does not remove the parked vehicles
in the parking lot, but rather empties parking spots that are no longer in use. The
degree ω denotes the amount of maps, a landmark was observed in the total set of
maps that form the base mapM:

δ = |{m ∈M|landmark observed in m}|. (4.41)

The features in each cluster are first sorted by their age starting with the youngest.
In the case that multiple landmarks have the same age, the degree is considered.
Landmarks that are oldest or observed least will be removed from the map only
leaving the most current and stable landmarks.

The ranking is performed for each cluster that exceeds a certain maximum density.
Landmarks are removed according to the above sorting until the density is beneath
the maximum density. Each time another increment is added to the base map, the
clusters are re-evaluated. Thus, the map size saturates when a lot of cars pass a
specific region frequently.

Figure 4.26: Clustering of landmarks in a map of the parking area. Different colors
indicate different clusters.
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4.4.3 Experimental Results

The experimental results are categorized into two main parts. The mapping accu-
racy of the joint graph optimization is analyzed by comparing the mapping result to
a highly accurate reference map generated by a total station [ZLN09]. Localization
accuracy is measured by comparing the trajectories both in map refinement and dur-
ing localization to a DGNSS/INS system. Additionally, the map size improvement
due to the map refinement is studied. In the following sections, both the mapping
and localization performance is evaluated on both data sets. Finally, the effects of
the feature selection are evaluated.
The experiments were conducted on the parking area in Figure 3.4 using 16 figure of
eight shaped datasets at different times, during daytimes and across seasons ranging
from June until December and about 15 real parking maneuvers from two different
vehicles equipped with RADAR and odometry sensors.

The accuracy of Joint Graph Optimization is shown in Figure 4.27. It compares
each optimized trajectory individually to the ground truth via Root Mean-Squared
Error (RMSE). The deviation can be expressed as the root mean squared error:

σ2
m = 1

|T |nt
∑
p∈T

∑
t

||xp(t)− xg(t)||2,

where p ∈ T are all poses in the trajectory T and nt are all time stamps for which a
localization output was computed. Each position xp is compared to the correspond-
ing ground truth position xg. The mean deviation σm is then computed for each
trajectory in the data set. Figure 4.27 (a) and (b) show the distribution of the mean
error over all the trajectories.
The comparison between the joint graph registration and the individual processing
does not seem to show any improvement in mapping quality at first glance. In
Figure 4.27 (b) even, the overall mapping performance seems to decrease slightly.
This effect can be explained by two influencing factors: While in Figure 4.27 (a)
the eight shaped dataset is mostly covering the same area, landmarks are usually
shared between the individual drives. The positions of these well known landmarks
are static and do not change relatively to each other. Thus the optimization error
remains constant even throughout visiting the area multiple times. The residual er-
ror results mostly from calibration offsets and the natural limitation of the RADAR
sensor, which is discussed in Section 3.3. Another effect might be the different con-
ditions during each drive. Different cars and different temperatures might affect
the odometry offset estimation and thus cause inconsistent drifts through different
sequences. In the real parking maneuvers of Figure 4.27 (b) on the other hand,
each sequence explores mostly new regions of the parking lot. Thus there are only
very few common landmarks visible in all the different passings. Therefore, in-
dividual landmark observations have a larger impact and slightly deteriorate the
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4.4 Radar Map Updates using Joint Graph Optimization

mapping results. With more passings of the same environment though, the error
will converge to the best possible results with the given sensor setup. In the real
parking maneuvers, a larger area has been covered, as visualized in Figure 4.25. Ad-
ditionally the base map stores the most recent information. This has an impact on
localization accuracy, since each car can benefit from the joint information of all
previous drives. Thus in Figure 4.28, the localization accuracy in the overlapping
eight shaped dataset has been analyzed. The parking lot is prone to a lot of changes
in the environment due to cars entering and leaving. In a complicated scenario like
this, the map update provides a significant improvement in localization accuracy.
This holds true for both the mean performance, improving from 0.79 m to 0.55 m
with respect to an outdated map, but most importantly the outlier trajectories have
improved significantly. We can see by the tail of the distribution in Figure 4.28 that
even in worst case scenarios, the localization performance is improved significantly.
The former will have a direct impact on the parking performance of an autonomous
system, while the latter will raise localization availability significantly.
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(a) The eight shaped dataset.
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(b) The real parking maneuvers.

Figure 4.27: Histogram of deviations from the ground truth. The dark blue color
indicates the individually processed maps, the light blue the joint optimization.
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Figure 4.28: Localization accuracy both with and without joint graph registra-
tion. On average, localization accuracy with single optimization is 0.79m. The
localization accuracy with joint graph registration is 0.55m.

As visualization, the different map update steps are shown in Figure 4.29. It can be
seen that the localization performance deteriorates in places with large differences
between the reference map (light gray) and the current map (dark gray). This
can be observed in the cutout windows of Figure 4.29. One can observe that the
localization system is robust against small changes in landmark configurations, but
with big differences in configuration, the localization result breaks down due to
insufficient matches. Nevertheless Joint Graph Optimization produces an up-to-
date and highly precise map increment that maintains the map independent from
the performance of the online localization, because the Joint Graph Optimization
can be performed at the end of the drive with all relevant information.
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4.4 Radar Map Updates using Joint Graph Optimization

(a) Localization on an up-to-date map.

(b) Localization on an outdated map.

Figure 4.29: Comparison of the localization performance and availability for the
updated map (a) and the outdated map (b). The grey dots represent the map
that was used for reference, while the black dots indicate landmarks measured
during localization. The triangles indicate the localization result.

Availability of the localization typically describes the percentage of time or dis-
tance where the localization algorithm was able to produce a useful result at all.
In Figure 4.29, the availability when localizing on an outdated map is significantly
lower than localizing on an up-to-date map, as can be seen when comparing the
amount of estimated positions (triangles) along the trajectory between Figure 4.29
(a) and Figure 4.29 (b).
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Figure 4.30: Feature map size on the eight shaped dataset, where all trajectories
overlap both with feature selection (dark blue) and without (light blue).

The Size of the Feature Map is illustrated in Figure 4.30 with respect to the figure
of eight shaped dataset. Since all trajectories on this dataset cover roughly the same
area, the map stores a similar amount of information after each update. Without
applying feature selection, the map size grows linearly with each additional local map
contribution, increasing by 160% after only 16 updates. This is impractical for large
scale applications and deteriorates the map quality significantly. With the result of
the pruning based on mean shift clustering described in Section 4.4.2, the size of the
feature map is maintained at a near constant level, while improving the localization
accuracy, as could be seen in Figure 4.28. With this important addition the crowd
based approach scales well over time and avoids adding redundant information. The
number of landmarks and thus the size of the map thus merely depends on the area
covered by the map. In the case of the eight shaped dataset with roughly 140 m by
50 m of mapped area the map size would be about 571 MB/km2.
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4.4.4 Conclusion

In Section 4.4, a unique map update mechanism for crowd based localization appli-
cations was presented. It was shown how multiple cars with different sensor setups
contribute to a global map via Joint Graph Optimization. Removing redundant
information from the map by clustering and ranking landmarks, both improved
localization performance and large scale applicability.
Summarizing the presented algorithm in Section 4.4, the initially introduced RADAR
based GraphSLAM idea [SKR+16] is extended to crowd based mapping for multiple
cars in a landmark based approach by joint graph registration and optimization.
The interconnection of landmarks is achieved via key points that link individual lo-
cal maps to the base map. To remove outdated landmarks that are no longer seen,
because they belong to semi-static objects, a pruning based on mean-shift clustering
and feature rating is implemented.
The evaluation shows three main benefits of this approach:
• Mapping quality remains constant even when adding unexplored areas due to

joint graph optimization.
• Localization quality is improved by keeping the map up-to-date.
• The data size per mapped area remains constant due to feature selection.

This section concludes the elaboration on the RADAR GraphSLAM framework. In
the following chapters the applications of the framework to more general approaches
in localization are discussed. This will include adding different sensor types in ad-
dition to RADAR to the localization system. Especially automotive LiDAR sensors
are becoming more popular among car manufacturers for autonomous driving. This
might add further accuracy and robustness because of the higher resolution and
range. Furthermore, it is investigated whether parked cars can be classified in the
feature maps based on the descriptors of the RADAR landmarks.
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5 Sensor Fusion in GraphSLAM

In this chapter the sensor fusion capability of the GraphSLAM framework is intro-
duced. It was shown in previous chapters that using RADAR data for localization
on a parking lot is sufficiently accurate, but in order to develop fail-operational
autonomous driving solutions, the robustness and reliability are especially impor-
tant. To establish a more reliable system that includes any subset of sensors, the
GraphSLAM framework introduced in Section 4.4 serves as a platform.
The RADAR GraphSLAM framework in Chapter 4 was developed such that it can
be extended easily by different modules to integrate landmarks from different sen-
sors. As the architecture is already separated into a front end and back end part,
the framework was modularized even further to enable multiple Feature Matcher
modules for multiple sensors to contribute to the online Graph construction. The
multi-sensor adaptation of the framework is displayed in Figure 5.1. The system can
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Figure 5.1: Overview of the GraphSLAM localization system. The gray elements
depict the static localization system from [SKR+16], while the white ones show
the crowd based addition to the system.
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process multiple input streams of sensor data by adding different Feature Extrac-
tor and Feature Matcher components for each sensor. The RANSAC and Graph
Construction then filter the outliers from all sensors and construct a graph that
contains nodes and edges from multiple sensors, all connected to the same backbone
of odometry poses. In the GraphSLAM back end the graph optimization remains
completely unchanged. This architecture allows for all sensor dependability to be
hidden in the feature extraction part of the SLAM algorithm. Most of the other
code parts remain modular and are unchanged when extending to multiple sensors.

The cost function that contains all constraints of the graph optimization Equation
4.37 must then consequently be extended to

JGraph,multiSens = xT0 Ω0x0︸ ︷︷ ︸
map origin constraint

+
∑
ij

eodo
ij (xi, xj)TΩodo

ij eodo
ij (xi, xj)︸ ︷︷ ︸

odometry constraints

+
∑
si∈S

∑
i,l

esiil (xi,ml)TΩsi
il e

si
il (xi,ml),︸ ︷︷ ︸

landmark measurement constraints for different sensors

(5.1)

where si ∈ S are the different sensors and each constraint eTΩe is now sensor
dependent. The correct parameters are determined by the Feature Matcher and
the RANSAC. Note that there are no empirical weighting factors that prioritize
the sensor inputs among each other. The graph optimization determines the most
consistent result based on the quality of the input data alone.

Now that data from multiple sensors have to be processed, the time synchronization
is important. Since the vehicle in Figure 3.1 has free running sensors that are not
triggered externally, latency effects come into play. Fortunately the ADTF frame-
work described in Section 3.1 handles the time synchronization and assigns times-
tamps according to their arrival time at the PC. It also assures that the data reaches
the Feature Matcher with the correct latency when simulating a measurement. For
testing outside the framework, a simple routine was built that can sort different
sensor inputs based on their timestamps. The final evaluation was performed in the
ADTF framework in order to have the best timing constraints possible.

In the following, two different sensor fusion setups are discussed. An extensive study
has been performed on the integration of the LiDAR sensor and a Feature Extractor
based on the Hough transform. Additionally in collaboration with [Muf18], a stereo
camera based GraphSLAM algorithm was performed on Stixel landmarks. This
chapter discusses the benefits of sensor fusion in the GraphSLAM framework with
respect to the localization accuracy and availability in the parking lot scenario and
on urban routes.
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5.1 LiDAR Landmark Integration

The LiDAR sensor is complementary to the RADAR sensor in many ways. The
accuracy and angular resolution of the LiDAR is significantly better and noise is
not an issue in ideal conditions. But the LiDAR sensor requires line of sight, cannot
easily be mounted in a desirable spot in a production vehicle and becomes increas-
ingly noisy in unfavorable weather conditions. Because RADAR and LiDAR are
complementary in many ways, fusing the two in a GraphSLAM is highly desirable.
In order to successfully integrate the LiDAR into the GraphSLAM framework, first
features have to be extracted from the point cloud and then the features have to be
integrated into the graph.

5.1.1 Generation of LiDAR landmarks

The landmark generation from LiDAR has been studied for various use cases like
selecting regions of interest [TA10a]. They showed that LiDAR data can be clustered
by a hierarchical clustering algorithm in order to determine regions of interest for
classification. Each cluster could be identified by geometric features. For the purpose
of this thesis, a simple feature extractor compatible with the established RADAR
GraphSLAM framework, was developed. This includes the generation of a descriptor
for each detected feature to enable the detection of loop closures. It should operate
in real time, use the information from a single scan only and detect the same features
from any view point (rotation invariance).

One possible approach analogous to Section 4.2 requires clustering LiDAR data. This
has been performed by [TA10a] to combine LiDAR data into a hierarchical clustering
of LiDAR point clouds and describing them by a bag of words approach. However,
in this thesis another, simpler approach is taken that takes the measurement model
into account. While RADAR data tends to accumulate in scatter centers that can
be found by a clustering algorithm, LiDAR data follows an angular sweeping and
thus forms a particular line shape that can be analyzed for features suitable for
localization. Similar approaches [BZ09] use the Hough transform to estimate the
shape of the surroundings, which provides excellent results for line and circular
features, but breaks down for small diameter features. For the laser scanner used
in Section 3.3, the point density of the automotive LiDAR scanner is oftentimes not
dense enough to find small features this way. Another approach [YO10] uses polar
histograms in a neighborhood of points to create scale invariant features, which
is a suitable method to handle scale invariance. However the algorithm does not
propagate the geometry provided by the scan as the Hough transformation would
and is thus susceptible for occlusions if only using a single scan. Thus in this chapter,
another approach based on the curvature of the extracted geometry information is
proposed.
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Figure 5.2: Curvature based feature detection. The second derivative of the upper
image is shown in the lower image.

By fitting a polygon to the smooth LiDAR data, as displayed in the upper part
of Figure 5.2, the curvature of the geometry can be obtained by calculating the
numerical second derivative from the raw scan, see lower part of Figure 5.2. The
approach is to find and select the correct peaks, which correspond to sharp corners or
discontinuities. Note that in Figure 5.2 all spikes in curvature are detected, but none
of the convex corners. This is done intentionally, because it would create shadow
features from occlusion, which move while the car is moving.
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5.1 LiDAR Landmark Integration

(a) Polar histogram visualizing radial and angular bins.

(b) Normalized Histogram over angular bins.

Figure 5.3: The descriptor of the LiDAR landmarks uses polar histograms around
the detected point.

The description of the landmarks follows a standard method [Kri14]. A polar his-
togram is plotted around every point, see Figure 5.3 (a) and per angular and radial
bin, the number of LiDAR points for each bin is stored, as shown in Figure 5.3 (b).
The vector is normalized to help with scale invariance, and shifted to the domi-
nant orientation, which refers to the orientation with the highest count to make the
descriptor rotation invariant.
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Figure 5.4: Ego motion estimation from LiDAR landmarks (blue dots) vs. refer-
ence measurement from the iTrace system (red line).

This rather simple approach was evaluated by performing a feature matching be-
tween two scans at ti and ti+1 estimating ego motion from all the sequences of the
figure-of-eight shaped dataset, as described in Section 3.3. The results for one tra-
jectory are shown in Figure 5.4. The ego motion follows the reference nicely with few
outliers. Note that no outlier rejection was performed in order to evaluate the native
tracking capability of the feature extractor and descriptor with regards to feature
stability and recognizability. While there are still some outliers found in Figure 5.4,
the overall performance was deemed sufficient, as there are no systematic shifts in
x and y direction and a precise heading estimation. Therefore, the landmarks are
stable and recognizable enough to be used in GraphSLAM.
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5.1.2 GraphSLAM with LiDAR

The LiDAR and RADAR fusion is straight-forward from an implementation point of
view. As described in Section 4.3 the landmark data is stored in an R-tree [Gut84].
In order to handle objects from different sensors, two separate data stores are used
to ensure that with each incoming scan, only landmarks from the same sensors are
matched with each other. Apart from that, there are no changes necessary to the
architecture described in Figure 2.14. The timing between RADAR, LiDAR and
odometry sensors is handled by the unique timestamps provided by ADTF, which
are assigned when the data reaches the vehicle PC. This means that some latency
is introduced by the different measurement principles of LiDAR and RADAR1, but
since these latencies are typically small compared to the measurement error, they are
not estimated separately in this approach. Instead the data is processed according
to the ADTF timestamp.
In Figure 5.5 an unoptimized map of RADAR and LiDAR features combined is
displayed. Note that due to different underlying physical measurement principles
and a different landmark generation process, the features do oftentimes not describe
the same physical object or one sensor is more distorted than the other. Nevertheless,
the optimization is able to compensate for these effects and produce a highly accurate
fusion map. The computation of such a map is explained in the following section.

Figure 5.5: RADAR and LiDAR landmarks (unoptimized) in the same optimiza-
tion problem with the LiDAR data in light blue and the RADAR data in black.

1LiDAR sensors use mirrors to deflect the beams, while RADAR has no moving parts.
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5.1.3 Evaluation

In the evaluation of the RADAR and LiDAR fusion, the results are processed on all
the datasets described in Section 3.3. In the following sections both the mapping and
localization performance is analyzed for the eight shaped dataset and the realistic
parking maneuvers. The localization accuracy between RADAR, LiDAR and fusion
is compared.

Initial Mapping accuracy is displayed in Figure 5.6. The RADAR performance
from Section 4.4 is compared to the LiDAR sensor and the fused result. As expected
the LiDAR sensor yields better pose estimation during mapping both due to the
higher resolution and the absence of clutter. The LiDAR sensor yields an average
mapping error of under 30 cm, which is about half of the RADAR sensor. The
fused result on the other hand has an average localization error of around 44 cm and
thus yields results between the RADAR and the LiDAR sensor which is expected
in a fusion algorithm using both sensors simultaneously. Reasons for this can be
systematic measurement errors of the individual sensors and small misalignments in
calibration. Any more occluded areas might profit more from the 360 ◦ coverage of
the RADAR, which helps in more complex parking space maneuvering scenarios.

Joint Graph Optimization was performed on the realistic parking maneuvers de-
scribed in Section 3.3. The results for the fusion based approach are shown in
Figure 5.7. When combining all the data to one unified map, the keypoint con-
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result per trajectory.
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Figure 5.7: The Joint Graph Optimization mapping error for RADAR, LiDAR and
fusion on the realistic parking maneuvers. The fusion is evaluated both with and
without feature selection. The boxes indicate the quantiles and the bars indicate
minimum and maximum errors.

straints between the reference map and the local map are most important. In this
case, due to the 360 ◦ vision of the RADAR sensor, it can contribute more to the
overall fusion result than the LiDAR with its very limited FOV can. Thus the fused
Joint Graph Optimization result improves with respect to the LiDAR when adding
the RADAR sensor, despite the singular RADAR performance being significantly
worse than the singular performance of the LiDAR. The mean fused mapping ac-
curacy with joint graph optimization is thus only 22 cm, compared to 28 cm with
just the LiDAR sensor. Furthermore, the performance of the feature selection is
comparable to the fused result with all the landmarks, but with significantly less
data. Thus gaining an up-to-date map at all times outweighs the slight deterioration
of map accuracy by the localization performance in Figure 5.7, which is comparable
to the LiDAR results.

The fused map from Joint Graph Optimization is displayed in Figure 5.8. The map
was registered to the ground truth map from the total station by manually selecting
equivalent points, such as tree trunks and lamp posts, which could be identified in
both maps. The RMS error of the transformation was approximately 35 cm, which
is in the order of magnitude of the mapping trajectory error. In Figure 5.8, the
color indicates the distance between points from both maps. As can be seen, the
static objects are located very precisely in the map (low point distance, blue), while
the cars in the center of the parking lot all have no reference point in the reference
map. This is due to the removal of all parked cars from the reference map to be
able to analyze the static environment. The static points are located on the curbs,
bike stands and fences in the parking lot and are all represented in various shades
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Figure 5.8: The finalized jointly optimized map from sensor fusion with respect to
the total station.

of blue in the map, representing a landmark error of less than 35 cm. Points that
do not correspond to static objects in the feature map are still an important part of
the map though, as they represent the dynamic environment and thus support the
localization significantly.

The Localization performance depends mostly on the feature matching accuracy
between the current scan and the map after the RANSAC was carried out. If
there are at least ten corresponding feature pairs with an error below 50 cm, the
feature matching can be considered a good match and is used for pose estimation.
In Table 5.1 the average uncertainty as reported by Algorithm10 in Section 4.4 is
displayed for one sequence of the dataset, which yields an average position estimation
error of 35 cm for RADAR only and 50 cm for LiDAR only, while the fused result
averages at 24 cm across for this very sequence.
The distance to ground truth is plotted over time in Figure 5.9. Because the tra-
jectory on the parking lot has many sharp turns, the LiDAR sensor has difficulties
finding good sets of matches with at least 10 landmarks, thus the position is prone

σx [m] σy [m] σθ [rad]
Radar 0.129 0.137 0.016
Lidar 0.141 0.207 0.009

Table 5.1: Average uncertainty of the feature matching estimation described in
x, y, θ by the standard deviation σ respectively.
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Figure 5.9: Position error for a specific trajectory comparing the odometry result
to the fusion and the individual sensors.

to more drift than the radar sensor. If a good match from the LiDAR is estab-
lished, the position error jumps typically to a much lower value than the RADAR
can achieve – see around travelled distance from 50 m to 100 m in Figure 5.9. The
fused result profits from both the consistent matches from the RADAR sensors and
the highly accurate LiDAR matches and achieves overall better performance than
the singular results as indicated by the purple line in Figure 5.9.
Fusing LiDAR and RADAR thus improves the overall accuracy and consistency
of the localization. While the mapping performed slightly worse when combining
the two sensors, the improvement in localization is significant with on average over
30% better localization performance than the high precision LiDAR and more than
300% better localization accuracy than RADAR alone. Combined with the avail-
ability improvements through Joint Graph Optimization and significant runtime
improvements due to Feature Selection, the localization performance is sufficient to
enable autonomous driving on the parking lot.
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Figure 5.10: Boxplot indicating the fused localization accuracy with an outdated
map and a current map on the eight shaped datatset.

The importance of the latter part is shown in Figure 5.10. While the fused localiza-
tion accuracy improves slightly with feature selection on an outdated map, the most
important part of the GraphSLAM framework is maintaining an up-to-date map.

In Figure 5.11 the cross validation between all eight shaped data is shown, because
the trajectories cover the same area and are thus suitable to serve both as a mapping
and localization input. On the x axis, the different mapping sequences and on the
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Figure 5.11: Cross validation of success rate of feature matching in eight shaped
dataset.
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5.1 LiDAR Landmark Integration

y axis the localization from different sequences is shown. The color indicates the
amount of good matches over all matches. As expected, the diagonal has only
perfect matches and on the same days of measurements, over 90% of landmarks are
identified again. The maps on other measurement days have roughly around 50%
to 70% of successful matching. Moreover the RADAR sensor Figure 5.11 (a) with
the BASD descriptors has a very high success rate even after several days, while
the LiDAR matching performance deteriorates significantly more (Figure 5.11 (b)).
This is on the one hand due to the descriptors, but also due to the measurement
principle of the RADAR sensor as the occupancy grid map from which the features
are extracted takes the reflection amplitude into account. The RADAR only reflects
strongly from manmade structures, such as sharp corners and cylinders. Thus, they
are also more persistent and recognizable in the landmark data. The LiDAR on
the other hand merely performs a surface scan and is thus more dependent on view
points, available line of sight and the geometry of parked vehicles.
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5.2 Stereo Camera Integration Using Stixel

Beside the introduction of LiDAR into the GraphSLAM framework, camera based
features are also suitable for GraphSLAM. It can be used to further increase the
robustness of the localization, because it has another viewing angle and provides an-
other means of feature extraction. The work provided in this section was performed
in collaboration with M. Muffert [Muf18]. For this approach a stereo camera system
is used to extract landmarks from disparity point clouds by introducing the Stixel
environment representation. These landmarks are furthermore tracked and added
as a third feature source to the GraphSLAM framework.

5.2.1 The Stixel Representation

In stereo vision, the raw image data is used to triangulate geometric information
from each individual pixel, e.g. with the SGM algorithm. For the 1400 px × 400 px
camera pair in the test vehicle this typically results to around 550,000 points per
timestamp. Classical feature extraction algorithms break down when extracting
features from such a high-density point cloud. Thus a data compression is required
that does not sacrifice too much useful information.
The Stixel environment representation fulfills these requirements by segmenting the
current disparity image into free space and object information [PF, BFP09]. It
assumes that most man made structures have either horizontal or vertical planar
surfaces and segments objects into vertically oriented adjacent rectangles. Each
rectangle is called a Stixel, and has a fixed width in image space and a variable
height. The free space is then given in the region from the bottom of the image to
the base point of the Stixel. An example image segmented with Stixel is displayed
in Figure 5.12. The Stixel representation reduces the amount of information that

Figure 5.12: The Stixel representation on a sample image [Muf18].
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5.2 Stereo Camera Integration Using Stixel

needs to be processed by a factor of 1000 and is robust against stereo outliers
[ESF12, EHPF12].

Generation of the Stixel Representation can be seen as a typical maximum a
posteriori estimation problem which is solved by dynamic programming [Bel54]. It
results in the most likely segmentation of the disparity image D into the classes
Cs ∈ {free space, obstacle} from the possible set S. Then the goal is to find the
most probable Stixel labeling S∗ given by

S∗ = arg max
S∈S

p(S|D). (5.2)

Because the Stixels are vertical objects in the image, it is more efficient to perform
W column-wise segmentations to obtain individual labelings Su at image position u
into Nu sub-classified Stixel snu. Each Stixel snu has the following characteristics:
• u: column coordinate
• vn(u,bt): row coordinates of bottom
• vn(u,tp): row coordinates of top
• dnu: disparity
• σ2

dnu
: precision

• cnu: confidence
• pnu: outlier probability

The disparity dnu is typically calculated by the mean over all disparity values that
are contained in the Stixel and accordingly the variance σ2

dnu
is calculated as the

standard deviation of the disparity distribution within the Stixel. The confidence cnu
and the outlier probability pnu are part of the result of the optimization problem in
Equation 5.2. The full solution using dynamic programming is described in [Pfe12].

Dynamic Stixels are an extension of the Stixel representation described above to
allow for object tracking. Up to this point, the Stixel only describe objects in a
single disparity image. To track individual Stixel over time, the tracking algorithm
is introduced by [PF10]. This approach requires the individual object velocities.
While the RADAR is able to output the radial velocities of objects natively, for
stereo based approaches they are estimated via optical flow [LK81]. Additionally,
the vehicle’s ego motion is required, as described in Section 2.1.1. Accordingly the
Stixel definition for a dynamic Stixel is given by

sn,dyn
u = {snu, ẋnu, żnu}, (5.3)

where ẋnu, żnu are the longitudinal and lateral velocity of the object, respectively.
The dynamic Stixels are thus tracked until they leave the FOV and can be referred
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to as a landmark in the context of this thesis. They each have a coordinate in
space – described by the column and row coordinates – and an identifier from the
tracking algorithm. Note that this identifier is not unique as required in Section 4.3
though. Thus the detection of a loop closure is inherently difficult with a Stixel
based approach.

5.2.2 GraphSLAM with Stixel

If the dynamic Stixels from Section 5.2.1 are treated as a landmark, they can be
included into a GraphSLAM approach similar to the ones in previous chapters. The
resulting graph can be seen in Figure 5.13. This has been done in collaboration
with Maximilian Muffert [Muf18] on the KITTI benchmark dataset [GLSU13]. The
Stixel extraction and tracking developed by Maximilian Muffert were combined with
the GraphSLAM framework developed in this thesis to show the results presented
in the following sections.

Stixel Graph Construction uses the dynamic Stixel and the odometry informa-
tion. The motion model constraints are given as in the previous chapters by the
Ackermann steering geometry. The pose-landmark constraints are generated from
the static Stixel as determined by the tracking in Equation 5.3. Since the Stixel are
tracked over time to determine the velocity, the observations forming a tracklet are
used as observations for the graph construction. To improve the optimization, only
the most stable features are selected, i.e. those that have been observed in at least in
50 frames. The measurement uncertainty is modeled by the theoretical precision of
the triangulated position from image coordinates of the bottom point of the Stixel.
Since the triangulation error increases quadratically with distance, only landmarks
up to 40 m from the sensor are considered.
As previously pointed out, tracking of the Stixels does not enable a global search
for matches like a descriptor matching approach would. However to detect loop
closures and formulate global constraints, a global matching is necessary. In [Muf18]
the loop closure detection was carried out by hand by assigning Stixel tracklets
corresponding to the same physical object the same ID. In practice, it would be
possible to generate a descriptor for each Stixel based on the neighboring object’s
characteristic properties, such as the disparity dnu, confidence cnu and the outlier
probability pnu to apply the full matching capability of the GraphSLAM framework
to the Stixel data.

Stixel Graph Optimization was done using the GraphSLAM framework described
in Section 4.3 using a Levenberg-Marquardt optimization. Since the trajectory vis-
its some locations multiple times, the optimization quality can be deduced from
the overlapping of landmark shapes at these intersections. The result of the opti-
mization for specific regions is shown in Figure 5.14. In the close-ups the landmark
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optimization is visualized: before optimization landmarks are spread across a large
146 CHAPTER 6. EVALUATION WITH UNCERTAIN POSES

Figure 6.1: The Construction of the Graph G(X0:t, M ) for the recorded image sequences. The
Stixel tracking is used to define Stixel tracklets which define static map features. Based on these
tracklets and Covariance/Information estimation, the observation constraints are defined in the
graph structure (top). The odometry information of the ego vehicle is applied to define the motion
constraints. With both constraint definitions the global graph G(X0:t, M ) is constructed (bottom).
An example of loop close detection is shown in a close-up bottom right. The blue colored map
features as well as the red colored map features represent the same obstacles. These features
represent the same obstacle and, therefore, they get the same IDs.

Figure 5.13: Construction of the graph from the recorded images. The tracked
Stixels (colored boxes) are added to the graph of odometry poses (blue trajectory).
The pose-to-landmark constraints are indicated by the black lines. The analysis
was performed on the KITTI dataset. Courtesy [Muf18].
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unoptimized optimized

Figure 5.14: Graph of multiple rounds across the same location before and after
optimization. The driven trajectory is shown in blue and the Stixel landmarks
are marked as colored squares [Muf18].

area, after optimization they all fall onto the same physical object. The application
of GraphSLAM to the KITTI dataset to a large scale urban scenario did not require
many adaptations of the framework and shows the versatility of the framework. In
practice, the urban scenario behaves significantly different to the parking lot, e.g.
large stretches of the map do not have any landmarks. Still the localization per-
forms reasonably well. The resulting landmark map before and after optimization
can be seen in Figure 5.15. For a full quantitative evaluation of the Stixel based
GraphSLAM approach, the interested reader is referred to the dissertation of Max-
imilian Muffert [Muf18] who produced the results as part of his investigations into
incremental map building with Markov Random Fields on Stixel data.
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Figure 5.15: The entire landmark map (from the KITTI dataset [GLSU13]) before
optimization (upper) and after optimization (lower) [Muf18].
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5.3 Conclusion

In this chapter, the sensor fusion based on the GraphSLAM framework was dis-
cussed. By generating landmarks with unique identifiers from different sensors, the
results of the GraphSLAM mapping and localization process can be improved with
respect to the RADAR sensor. While it could be shown that adding a highly accurate
LiDAR sensor improves the localization performance, it could also be demonstrated
that the RADAR sensor improves localization performance especially in unknown
environments due to its 360◦ vision and when the map is outdated because of its ro-
bust features. Furthermore, Stixel landmarks from a stereo camera system could be
integrated into the GraphSLAM framework showing the versatility of the framework
and the underlying g2o based optimization engine [KGS+11a].
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6.1 Conclusion

Vehicle localization is one of the most integral parts of autonomous driving, as it
links the surroundings as perceived by the sensors to a map. In most cases and
applications, highly precise DGNSS/INS systems are too expensive or impractical
to perform adequate localization. As described in Chapter 1, the focus of this thesis
lies on the parking use case, where the car also needs to perform well in GPS-denied
areas, such as parking garages and thus must solve the localization problem purely
with perception sensors. Here, the RADAR sensor is one of the most interesting and
challenging sensors, because it is affordable, unobtrusive and robust against changing
weather conditions. However it is intrinsically noisy and provides artifacts due to its
measurement principle. With this sensor, the parking scenario is broken down into
two steps: a manual recording of the parking trajectory, where the customer teaches
the car where it should park and an autonomous mode, where the vehicle has to
find its position on the initial map and then navigate to the predefined spot. But
since this map only represents a past version of the environment, the localization
performance on only the initial map will degrade over time. Thus this thesis solves
the full SLAM problem in order to maintain the map such that the system can find
the parking lot again for an indefinite period of time.
In Chapter 2 the unique characteristics of the RADAR sensor are described and the
concept of designing a localization system that is capable of handling the unique
point clouds that the RADAR provides. It is especially important to note the low
density and high noise floor of the point clouds, as well as RADAR specific outliers
such as speckle, multiple scattering and a limited angular resolution.
Yet, since an increasing amount of vehicles are equipped with RADAR sensors by
default today to enable the most basic driver assistance systems, the results of this
thesis are especially important for an application in a mass produced autonomous
vehicle. It was shown in Chapter 4 that the RADAR sensor alone is sufficient for
basic autonomous driving scenarios and that when taking the physical properties of
the sensor into account, the sensor can produce accurate results even in dynamic
scenarios like parking lots while keeping processing power and memory consumption
sufficiently low for real applications. With Joint Graph Optimization, a framework
is proposed in this thesis that not only enables shared access across multiple cars
to map data for different environments from a backend server, but also allows all
modern cars to participate in building a globally optimized map of the surroundings,
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where each vehicle provides an updated or new piece of the map. Thus, complex
parking lots, urban street networks or even highway networks can be mapped itera-
tively without the need for high cost sensors. Low cost localization systems such as
the RADAR GraphSLAM framework are more relevant than ever, as most vehicle
manufacturers are working on series autonomous driving systems that are fulfilling
autonomous tasks in different scenarios investigated in this thesis.
In order to measure the performance of the localization and to build a prototype
of the described system, a large dataset including measurements on a parking lot
on multiple days over the course of several months was recorded, as described in
Chapter 3. It was especially useful when evaluating the performance of the developed
localization methods in highly dynamic environments and measuring the difference
between using an outdated or an up-to-date map. The dataset does not only include
RADAR data though. It also contains vision and LiDAR sensors, which can be used
to analyze the drawbacks and merits of sensor fusion.
The contributions of this thesis have successfully introduced the RADAR sensor as
a viable option for accurate localization into the research field of intelligent trans-
portation systems and robotics. It was shown that RADAR sensors are capable of
more than the ordinary ACC application and produce highly robust and accurate
localization in complex, dynamic environments.

Radar Based Particle Filters were investigated both with a grid based map rep-
resentation and a novel cluster based representation in Section 4.1 and Section 4.2,
respectively. In both instances, we were able to solve the full SLAM problem using
particle filters. While for grid based approaches, the initial implementation was pro-
vided by Werber et. al. [DWR+15], we were able to extend the approach by adding a
map update capability to solve the full SLAM problem. The ClusterSLAM approach
introduces a map representation based on density-based stream clustering to model
the unique physical properties of the RADAR sensor. Solving the SLAM problem
using a FastSLAM based approach proved to be robust on the cluster map repre-
sentation. Furthermore the approach introduced a decay mechanism for clusters to
become irrelevant for localization if they were not continuously confirmed by new
measurements to handle the dynamic environment in the parking lot. However the
multitude of free parameters both in the map representation and the Particle Filter
reduced the suitable scenarios significantly and a more stable solution is needed.
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Radar based GraphSLAM is described in Section 4.3 and provides a much more re-
liable and accurate solution than the previous approaches. While the ClusterSLAM
approach used indistinguishable clusters to perform localization, the GraphSLAM
approach utilizes RADAR based landmarks, which are annotated with a unique sig-
nature based on the surroundings of the feature. The BASD descriptor specifically
designed to be used with RADAR grids was developed in collaboration with Rapp
et. al. [RDH+16a]. After a powerful outlier detection using RANSAC, a graph is
constructed using odometry information for pose constraints and the landmark ob-
servation as measurement constraints. Optimizing the graph yields a highly accurate
feature map, which can be used for localization with an accuracy of below 1 m. The
technique eliminates systematic, but local errors of the RADAR sensor by finding a
globally consistent solution when optimizing the entire map. The described use case
of self-parking on the parking lot can still be fulfilled if the optimization takes place
after the vehicle has reached the parking destination taking all a priori information
into account. The GraphSLAM algorithm serves as the foundation to a framework
that encompasses a variety of features, including map update, crowd based mapping
and sensor fusion. To the author’s knowledge the RADAR GraphSLAM framework
developed in this thesis is the first feature based RADAR localization and can show
an efficient localization with a small map size and little memory usage. In order to
achieve the level of robustness needed though, the map has to be kept up to date.

Joint Graph Optimization introduced in Section 4.4 is the first extension of the
RADAR GraphSLAM framework to enable crowd based mapping on the parking lot.
Instead of recording and optimizing the trajectory of the vehicle on-site, the infor-
mation can be transmitted to an off-site server solving a global optimization problem
over many maps from different sources and at different times of the day. This way,
even vehicles that are not equipped with a self-parking system can contribute to the
mapping of large areas when using an on-board RADAR sensor. The registration of
the maps is achieved via a set of key points that are placed equidistantly along the
mapping trajectory. Each key point then provides a small piece of the map, a key
frame. The key frames are stored and matched among the maps from other vehicles
to produce a set of constraints that interconnect the drives from different vehicles.
Then the optimization problem of multiple maps determines the most consistent
map given a large number of input maps. Redundant landmarks are then pruned
from the map to select the relevant information to be stored, because they are most
often used for localization. With an always up-to-date map, the localization result
on a jointly optimized map for the RADAR sensor is below 0.6 m with a constant
map size of about 571 Mb/km2. The architecture was designed such that only the
recording of the map data and the localization needs to run on the vehicle, while
any optimization and aggregation can be performed on a backend server. Due to
the compact nature of the BASD landmarks, only small amounts of data have to be
transmitted to the server.
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Sensor Fusion is added to the GraphSLAM framework in Chapter 5 in order to
improve the robustness of the system and to have a side-by-side comparison of the
RADAR sensor with other sensors. In particular, two other landmark sources are
considered: curvature based LiDAR landmarks and Stixel based stereo camera land-
marks. Features were extracted from the LiDAR sensor using a curvature based
detector and a scale invariant histogram based descriptor to provide stable land-
marks. The approach is validated through an ego motion estimation resulting from
tracking the landmarks. Since the landmarks proved suitable for localization, they
are added into the optimization problem mentioned above alongside the RADAR
landmarks and optimized together. The results of the fusion are compared to the
performance of the individual sensors. While the mapping performance of the fused
result was in between the LiDAR and RADAR mapping performance, localization
and map update improved significantly even with respect to the highly accurate
LiDAR sensor, because the RADAR landmarks prove to be very robust and the 360
degree RADAR setup ensures long tracking of individual landmarks, because they
are considerably longer inside the FOV of the sensors. The total accuracy of the
fused approach was below 0.3 m on an up-to-date map and thus proves suitable for
the described scenario.
Furthermore, the GraphSLAM algorithm was optimized with Stixel based land-
marks. Within a collaboration with [Muf18], it could be shown that slightly adapting
the GraphSLAM framework to include tracked Stixel landmarks, which resulted in
highly accurate maps. The experiments were executed on the KITTI urban dataset
and thus show that the approach can be expanded to the urban use case, rather
than the parking lot scenario.
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6.2 Future Work

The RADAR GraphSLAM framework is a modular software that can be extended
into a multitude of directions to further improve the localization performance, ro-
bustness and availability.
After a consistent map has been produced by Joint Graph Optimization, the land-
marks are selected based on their relevance, which is determined by the number
of maps containing a given landmark. An interesting extension could be to find a
descriptor based map selection before features are added into the map. Since most
landmarks that belong to dynamic objects are located on vehicle fronts, a classi-
fier could be trained to determine whether a certain BASD descriptor represents a
dynamic or static object. This should be possible because the descriptor uses the
geometry of the surroundings and each vehicle front has a recognizable shape that
would have a unique influence in the landmark description.
Another addition would be to enable the Stixel landmarks to detect loop closures
with the same reliability as the RADAR and LiDAR landmarks do. This can be
done in a similar way, as is done for the descriptors for BASD, by aggregating
the properties, e.g. the disparity and the outlier probability of each Stixel in the
neighborhood of the landmark, to obtain a specific signature that is invariant under
a larger range of view points and distances.
Further research is needed concerning the integrity of the position. While the ac-
curacy and availability are important to make an automotive system work, the
integrity, or the trustworthiness of the position estimation make the localization
system reliable and ensure a guaranteed remaining error rate [WSD+16, HSS+19].
Since the feature selection algorithm ranks the landmarks by their relevance with re-
spect to the number of observations and how recently they have been observed, it is
possible to deduct an integrity level from the quality of the landmarks. This ranking
can even be used to dynamically adjust the planned trajectory of the autonomous
system to find the most integer route, i.e. with the lowest expected remaining error.
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ABS Anti-lock braking system.
ACC Adaptive Cruise Control.
ADTF Automotive Data and Time-Triggered Framework.

BASD Binary Annular Statistics Descriptor.

CAN Controller Area Network.
CW Continuous Wave.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.
DCS Dynamic Covariance Scaling.
DGNSS Differential Global Navigation Satellite System.

ECU Electronic Control Unit.
EKF Extended Kalman Filter.
ESP Electronic Stability Program.

FAST Features from Accelerated Segment Test.
FMCW Frequency Modulated Constant Wavelength.
FOV Field of View.
FPGA Field Programmable Gate Array.
FREAK Fast Retina Keypoints.
FSCD Fast Scatter Center Detection.

GNSS Global Navigation Satellite System.
GPS Global Positioning System.

ICP Iterative Closest Point.
IMU Inertial Measurement Unit.
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KPI Key Performance Indicator.

LFSR Linear Feedback Shift Register.
LiDAR Light Detection and Ranging.
LRR Long Range Radar.

MEMS Micro Electro Mechanical System.
MISRA Motor Industry Software Reliability Association.

NDT Normal Distribution Transformation.

ORB Oriented FAST and rotated BRIEF.

RADAR RAdio Detection And Ranging.
RANSAC RANdom SAmple Consensus.
RMSE Root Mean-Squared Error.

SGM Semi-Global Matching.
SIFT Scale-Invariant Feature Transform.
SLAM Simultaneous Localization and Mapping.
SNR Signal to Noise Ratio.
SRR Short Range Radar.
SURF Speeded Up Robust Features.
SVD Singular Value Decomposition.
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