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1. Introduction 
 

1.1. Impaired glucose metabolism: a global issue 

 

 The body’s inability to control its blood glucose levels adequately can be 

described as impaired glucose metabolism and, if certain criteria are fulfilled, as diabetes 

mellitus. This kind of metabolic disorder is becoming more and more prevalent in today’s 

world; thus, placing a huge burden onto our economic and healthcare systems.  

On a global level, Ogurtsova et al estimated that in 2015, 415 million people worldwide 

between the ages 20-79 years had diabetes and that the global health costs due to diabetes 

were 673 billion US (United States) dollars (Ogurtsova et al. 2017). Another study found 

that in 2015, the global expenditure for diabetes was about 1.31 trillion US dollars 

including indirect costs (Bommer et al. 2017).  

A study from the US comparing data sets from 1988-1994 and 2011-2012 with regards 

to diabetes prevalence found an increase over time with a prevalence between 12-14% in 

2011-2012 (Menke et al. 2015). Data from another US-based study conducted in 2016-

2017 showed a prevalence of diagnosed diabetes of 9.7%. This study also revealed that 

type 2 diabetes is predominant in comparison to type 1 diabetes (Xu et al. 2018).  

Data for Germany show that while the prevalence of diabetes did not vary significantly 

between 1997-1999 and 2008-2011, there was an increase in diagnosed diabetes seen 

(Heidemann et al. 2016). Tamayo et al found that the diabetes prevalence was 9.9% in 

2010 upon age and gender standardization (Tamayo et al. 2016). A study investigating 

the prevalence of gestational diabetes (pregnancy-related diabetes) in Germany between 

2014-2015 found a prevalence of 13.2% (Melchior et al. 2017). Regional differences 

within Germany have been detected with regards to impaired glucose metabolism (Stöckl 

et al. 2016). 

An increase in the prevalence of diabetes and the associated healthcare costs is expected 

in the future. Globally, it is expected that about 642 million people will be affected by 

diabetes in 2040 which will certainly have an impact on the social and financial systems 

(Ogurtsova et al. 2017). 
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 In the following, the state of impaired glucose metabolism and diabetes will be 

defined and classified, signs and symptoms will be discussed, complications will be 

outlined and diagnostic options given. 

 

 

1.1.1. Definition and types of prediabetes and diabetes mellitus 

 

Impaired glucose metabolism and diabetes mellitus (in the latter referred to as 

diabetes) are characterized by a malfunctioning control of blood glucose levels due to 

varying conditions. Today, we differentiate between diabetes, impaired glucose tolerance 

(IGT) and impaired fasting glucose (IFG). The World Health Organization (WHO) 

defines diabetes as fasting plasma glucose ≥7.0 mmol/l (126 mg/dl) or 2-hour plasma 

glucose after administration of an oral glucose tolerance test (OGTT) consisting of 75g 

oral glucose, ≥ 11.1 mmol/l (200 mg/dl). IGT is defined as fasting plasma glucose <7.0 

mmol/l (126 mg/dl) and 2-hour plasma glucose ≥7.8 and <11.1 mmol/l (140-200 mg/dl). 

IFG is defined as fasting plasma glucose between 6.1 and 6.9 mmol/l (110-125 mg/dl) 

and 2-hour plasma glucose <7.8 mmol/l (140 mg/dl) (World Health Organization and 

International Diabetes Federation 2006). The American Diabetes Association (ADA) 

Expert Committee lowered the levels for defining IFG from 6.1 mmol/l (110 mg/dl) to 

5.6 mmol/l (100 mg/dl) in 2003 (Genuth et al. 2003). IGT and IFG can be summarized as 

prediabetes. Normal glucose tolerance is characterized as the absence of either 

prediabetes or diabetes. 

 

Pathological changes in the blood glucose metabolism can have different underlying 

conditions. According to the ADA, there are four subgroups (American Diabetes 

Association 2018):  

The first subgroup is called type 1 diabetes and is considered an autoimmune 

condition. Autoantibodies against insulin, islet cells, glutamic acid decarboxylase (GAD) 

and tyrosinphosphatases destroy the pancreatic insulin-producing β-cells, thus leading to 

an absolute deficiency of insulin (American Diabetes Association 2014). Type 1 diabetes 
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can occur in conjunction with other autoimmune and also genetic disorders (Kota et al. 

2012) and reveals itself mostly during childhood. An upward trend in incidence has been 

reported (Patterson et al. 2009). A special subgroup is called idiopathic type 1 diabetes 

which is characterized by impaired production of insulin without signs for autoimmune 

processes (American Diabetes Association 2010). In a study published in 2018, the 

prevalence of type 1 diabetes in adults in the US was 0.5% and amongst adults diagnosed 

with diabetes, type 1 diabetes was the underlying subgroup in 5.6% (Xu et al. 2018). 

Type 2 diabetes is nowadays the predominant form of diagnosed diabetes (Xu et al. 

2018). The condition can be described as insulin-resistance of the target tissues in 

combination with a relative insulin deficiency (American Diabetes Association 2014). 

Type 2 diabetes is commonly seen in combination with other components of the metabolic 

syndrome such as impaired lipid metabolism, elevated blood pressure and obesity (Lin et 

al. 2015).  

The term prediabetes encompasses IGT and/or IFG and represents the precursor stage of 

diabetes. More than one out of three adults in the US suffer from prediabetes (Menke et 

al. 2015) and it is a credible and often underestimated disease state, with an approximate 

74.0% lifetime risk of progressing to diabetes (Ligthart et al. 2016). Wu et al showed that 

progression from newly diagnosed prediabetes to type 2 diabetes was 30.3% in 3 years 

(Wu et al. 2017).  

Gestational diabetes (pregnancy-related diabetes) is difficult to distinguish from 

preexisting type 1 or type 2 diabetes. Currently, gestational diabetes is defined as a first-

time diagnosis of diabetes in the second or third trimester without signs for pre-existing 

diabetes (American Diabetes Association 2018).  

 

Other etiologies include genetic defects in insulin production as well as action, 

endocrine conditions, disorders of the exocrine pancreas system, diabetes related to 

contact with chemicals or intake of drugs, infections and less common forms of immune-

mediated diabetes that can also lead to impaired glucose metabolism (American Diabetes 

Association 2014, American Diabetes Association 2018). 
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1.1.2. Symptoms of impaired glucose metabolism 
 

 There are no specific symptoms indicating prediabetes status. It has been found 

that patients with prediabetes did not show reduction in health-related quality of life in 

comparison to subjects with newly diagnosed diabetes (Seppälä et al. 2013).  

 In subjects affected by diabetes, symptoms can develop in hyperglycemia (high 

blood glucose levels) or hypoglycemia (low blood glucose levels) and can range from 

subtle to life-threatening. Typical hyperglycemic symptoms are polyuria (increased 

urination) and polydipsia (increased thirst) but also unspecific symptoms such as weight-

loss or polyphagia (increased appetite) (American Diabetes Association 2014). A life-

threatening complication of uncontrolled diabetes is called ketoacidosis. This condition 

is more often seen in type 1 diabetes and presents with high blood glucose levels, 

metabolic acidosis, and elevated ketone levels. The typical presentation of ketoacidosis 

includes symptoms such as polyuria, polydipsia, weight loss, fatigue, dyspnea, and 

vomiting as reviewed by Westerberg in 2013 (Westerberg 2013). On the other side, 

hypoglycemia can also be life-threatening and can present with autonomous, 

neuroglycopenic as well as malaise symptoms (Deary et al. 1993). 

 

 

1.1.3. Complications and comorbidities 

 

  Due to the development of advanced glycation end-products (AGE) in the 

bloodstream affecting vessel walls, impaired glucose metabolism can lead to micro- and 

macrovascular changes; thus, contributing to the global vascular risk. This metabolic 

disorder predominantly affects the cardiovascular, renal, and nervous system as well as 

the retina (Fowler 2008). Microvascular and macrovascular disease in type 2 diabetes are 

both independently associated with an adverse cardiovascular outcome. The combination 

of both carries the highest risk (Mohammedi et al. 2017). Interestingly, many of the 

complications associated with impaired glucose metabolism are statistically similar in 

subjects with prediabetes as compared to type 2 diabetes (Farrell and Moran 2014). 
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Furthermore, diabetes and its complications pose a substantial economic burden on 

healthcare systems worldwide. A study published in 2002 showed that the costs of 

complications in type 2 diabetes were calculated to an estimate of 47,240 US dollar per 

patient over a time span of 30 years with macrovascular disease being responsible for the 

majority of the total cost over the first 5 years (Caro et al. 2002). Multiple chronic 

comorbidities are often seen with the leading cluster consisting of high blood pressure, 

hyperlipidemia and adiposity (Lin et al. 2015). Subsequently, the rate of complications 

increases over time (Grimaldi et al. 2000).  

 

 

Microvascular complications 

 

 Chronic kidney disease in diabetes, also known as diabetic nephropathy, is seen 

in about 20-40% of all diabetics (American Diabetes Association 2007). In a prospective 

cohort study conducted in Singapore by Low et al, 45% of subjects with type 2 diabetes 

developed chronic kidney disease with albuminuria as the most common first 

manifestation (Low et al. 2016). Hypertension has been found to be an independent risk 

factor for diabetic nephropathy (Bentata et al. 2015).  

 Diabetic retinopathy (damage of the retina due to diabetes) affected 

approximately 93 million people worldwide in 2010 and its main features of retinal 

neovascularization and macular edema are potentially vision-threatening (Yau et al. 

2012). Today, we discriminate the proliferative and the non-proliferative subtypes. Polyol 

accumulation, AGE, oxidative damage, proteinkinase C and growth factors have all been 

described as contributing factors, as extensively reviewed by Fong et al (Fong et al. 

2004). Risk factors for diabetic retinopathy are elevated blood glucose and blood pressure 

as well as dyslipidemia (Yau et al. 2012).  

 The term diabetic neuropathy describes nerve damage due to diabetes and 

summarizes entities such as diabetic mononeuropathy, peripheral neuropathy and 

autonomic neuropathy. Its detailed pathophysiology is unknown; however, oxidative 

stress, polyol accumulation and AGE are considered to play a role (Fowler 2008). 

According to the ADA, reduction in the perception of vibration as well as loss of pressure 



14 

sensation as assessed by a 10g monofilament can be seen as predictors for the 

development of foot ulcers (American Diabetes Association 2007). Risk factors for 

peripheral diabetic neuropathy include, besides others, uncontrolled blood glucose levels 

as well as body height and age (Adler et al. 1997).  

 

 

Macrovascular complications 

 

 Macrovascular complications such as coronary artery disease (CAD), peripheral 

arterial disease or cerebrovascular disease and stroke are mostly due to processes leading 

to atherosclerosis (Fowler 2008). Diabetes is associated with a two to threefold risk of 

atherosclerotic diseases and affects women more strongly than men (Kannel and McGee 

1979). Data indicate that diabetes has deteriorating effects on the cardiac function as well 

(Devereux et al. 2000).  

 

 

Comorbidities 

 

 Elderly patients with diabetes show an increased risk for dementia (Xu et al. 

2004). Also, subjects with type 2 diabetes appear to have a higher prevalence of 

depression (Ali et al. 2006). It has, however, also been discussed that depressive 

symptoms may lead to a higher risk of type 2 diabetes in women (Arroyo et al. 2004). 

Also, a higher risk of hip fractures is suggested in patients with diabetes and potential 

explanations have been extensively reviewed by Starup-Linde et al (Starup-Linde et al. 

2017). Additionally, subjects with impaired glucose metabolism are more prone to 

infections, e.g. post-surgery (Chen et al. 2009).  

 As described earlier, type 2 diabetes is often associated with comorbidity clusters 

which include obesity (Lin et al. 2015). Fat distribution plays an important role since 

visceral adipose tissue (VAT) seems to have a stronger negative effect on cardiometabolic 

risk markers than subcutaneous adipose tissue (SAT) (Liu et al. 2010). Interestingly, 
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abdominal superficial subcutaneous adipose tissue seems to have advantageous effects in 

subjects with diabetes (Golan et al. 2012). Additionally, it has been shown that the relation 

of VAT to SAT, the so-called VAT/SAT ratio, can predict cardiovascular disease in 

subjects with diabetes (Fukuda et al. 2018). In elderly women, abdominal obesity as 

defined by employing the waist-to-hip ratio has emerged as a risk factor for the 

development of diabetes (Kaye et al. 1991). VAT has been shown to be responsible for 

disturbances in the lipid-lipoprotein profiles in women with impaired glucose tolerance 

(Lemieux et al. 2011).  

 

 

1.1.4. Diagnostics 

 

 Blood glucose levels should ideally be measured in venous blood plasma samples, 

as soon as the sample is drawn. Besides measurement of fasting glucose levels, a 75g 

OGTT may be administered on patients with suspected impaired glucose metabolism 

(World Health Organization and International Diabetes Federation 2006, American 

Diabetes Association 2014). Testing of glycosylated haemoglobin A1 (HbA1c), 

reflecting average blood glucose levels of the last 2 to 3 months, has been described as 

acceptable by the ADA in their 2018 Standards of Care, but a standardized and certified 

method is recommended (American Diabetes Association 2018). Subjects at risk for 

diabetes should undergo screening for diabetes and prediabetes (American Diabetes 

Association 2018). 
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1.2. The fat compartments surrounding the heart 

 

 Adipocytes are cells that primarily store energy-equivalents in the form of 

triglycerides. Clusters of adipocytes are called adipose tissue which can naturally be 

found in multiple locations in the body. Excess body fat is being stored in so-called 

ectopic fat depots. While some of these fat depots interact more locally with other 

surrounding cells and organs, others have systemic effects (Britton and Fox 2011). 

Examples for ectopic fat depots include VAT, pericardial fat, or hepatic fat (Britton and 

Fox 2011). 

There is scientific evidence that ectopic fat depots, specifically VAT and epicardial fat 

are associated with cardiometabolic disease (Fox et al. 2007, Mahabadi et al. 2009).  

 

 In the following, the anatomy, physiology and pathophysiology of the fat depots 

surrounding the heart will be reviewed with a special emphasis on epicardial fat. 

 

 

1.2.1. Anatomy and description of the pericardial fat depots  

 

The heart is surrounded by different fat compartments. Pericardial fat can be seen 

as an umbrella term for the two distinct fat compartments epicardial and paracardial 

fat (Bertaso et al. 2013, Sacks and Fain 2007). Existing literature is highly inconsistent 

in the nomenclature of the fat compartment anatomy. Figure 1 outlines the localization of 

the different fat compartments as they will be referred to in the following study. 
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Figure 1: The pericardial fat depots  

Magnetic Resonance (MR) image of the thorax in the axial orientation. The heart is shown 

in the long axis. Epicardial fat (white asterisks) and paracardial fat (orange dotted lines) 

are separated by the pericardium (white arrow). The sum of epi- and paracardial fat is 

referred to as pericardial fat. Abbreviations: A, anterior; Ao, aorta descendens; L, left; 

LV, left ventricle; P, posterior; R, right; RV, right ventricle; V, vertebra. 

 

Epicardial fat is the fat compartment in closest proximity to the myocardium, 

within the visceral pericardium (Bertaso et al. 2013). Epicardial fat and the myocardium 

are in close proximity without a separating fascia and both are supplied by the same 

coronary artery blood supply (Corradi et al. 2004). It should be pointed out that epicardial 

adipocytes are smaller in volume (Marchington et al. 1989) and size (Bambace et al. 

2011) as compared to other fat depots. Epicardial fat contains cardiac ganglia (Arora et 

al. 2003) and can be infiltrated by inflammatory cells (Mazurek et al. 2003). It has been 

reported that epicardial fat thickness over the right ventricle is associated with right 

ventricle cavity size (Iacobellis 2009a) and that there is a muscle-fat ratio for each 

ventricle (Corradi et al. 2004). 
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The term paracardial fat is used to describe the fat compartment more distant 

from the heart and located outside the parietal pericardial layer (Bertaso et al. 2013). 

Other terms found in the literature that refer to paracardial fat are ‘mediastinal fat’ (Chen 

et al. 2015) or ‘intrathoracic fat’ (Thanassoulis et al. 2010a).  

 

 

1.2.2. Physiology and pathophysiology 

 

There are numerous physiological functions attributed to the epicardial fat depot. 

However, many functions are still not fully understood. 

Epicardial fat has been shown to have an insulin-independent high uptake of fatty 

acids, as well as an insulin-stimulated high rate of lipogenesis (Marchington and Pond 

1990). Based on these findings, it was hypothesized that the epicardial fat layer might 

serve in a buffer function to the myocardium by protecting it from high levels of free fatty 

acids while also supplying energy equivalents (Marchington and Pond 1990, Marchington 

et al. 1989). Notably, the epicardial fat depot does not decrease as fast as other body fat 

depots during exercise or weight loss surgery in type 2 diabetes (Jonker et al. 2013, van 

Schinkel et al. 2014). The expression of the mitochondrial uncoupling protein 1 is 

increased in epicardial fat, and it has thus been suggested that epicardial fat may also have 

a protective function against hypothermia (Sacks et al. 2009). Moreover, it is now known 

that epicardial fat has an endocrine function. Epicardial fat expresses and secretes over 

100 cytokines (Swifka et al. 2008). In samples collected during elective coronary artery 

bypass grafting, interleukin-1β, interleukin-6, tumor-necrosis-factor and other cytokines 

have been detected (Mazurek et al. 2003). Paracrine, which is close communication of 

cells by chemical substances, as well as vasocrine signaling pathways have been 

discussed for the interaction with the myocardium, the vessels and epicardial fat with its 

different cellular components (Sacks and Fain 2007, Yudkin et al. 2005).  

Although displaying many beneficial features, epicardial fat has also been reported to 

play a role in multiple pathological processes. Firstly, data suggest that epicardial fat is 

associated with coronary artery disease (CAD) (Iacobellis et al. 2011). In a large study 
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comprising 3,367 subjects without a history of CAD, epicardial fat was associated with 

progressing coronary artery calcification (Mahabadi et al. 2014). In a post-mortem study 

validated by autopsies, there was an association seen between epicardial fat volume and 

the extent of coronary stenosis (Sequeira et al. 2015). Notably, epicardial fat volume may 

also help to identify subjects at risk for coronary artery calcium burden (Yerramasu et al. 

2012). Interestingly, epicardial fat also seems to play a role in myocardial relaxation 

(Vural et al. 2014, Dabbah et al. 2014) and has been reported to be increased in patients 

who suffered from myocardial infarction (Homsi et al. 2018).  

Moreover, epicardial fat has an impact on the electrophysiology of the heart and may play 

a role in atrial fibrillation. Iacobellis et al noted, that epicardial fat thickness, as assessed 

by echocardiography, was higher in subjects suffering from permanent, rather than 

paroxysmal atrial fibrillation (Iacobellis et al. 2014c). In the Framingham Heart Study, an 

independent association of epicardial fat with prevalent atrial fibrillation was detected 

(Thanassoulis et al. 2010b). It has to be pointed out that the Framingham Heart Study 

uses the word “pericardial fat” to describe the fat inside the pericardial sac which for this 

study is defined as “epicardial fat”. Additionally, epicardial fat seems to possess the 

ability to induce fibrotic changes of the myocardium (Venteclef et al. 2015). 

Chronic obstructive pulmonary disease (COPD) can affect the heart as well. It has been 

shown that subjects suffering from COPD with advanced right ventricular systolic 

dysfunction had decreased epicardial fat thickness (Kaplan et al. 2015). Also, epicardial 

fat thickness is reported to be adversely associated with severity of COPD itself (Kiraz et 

al. 2016).  

Epicardial fat seems to play a very important role in impaired glucose metabolism such 

as prediabetes and diabetes and these interactions will be discussed in a separate chapter 

of the introduction. 

 

The physiological role of paracardial fat is not fully understood as of today. Only 

a few studies have investigated this particular fat compartment and found a correlation 

with visceral adipose tissue and metabolic risk factors (Thanassoulis et al. 2010a, Sicari 
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et al. 2011). A correlation between paracardial fat and coronary artery stenosis has been 

reported, but not as strongly as for epicardial fat (Sequeira et al. 2015).  

Six months exercise decreased paracardial fat volume, as reported by Jonker et al, but not 

epicardial fat in type 2 diabetics (Jonker et al. 2013). Bariatric surgery clearly reduced the 

amount of paracardial fat to a greater extent than epicardial fat (van Schinkel et al. 2014, 

Wu et al. 2016). 

 

 

1.2.3. Clinical relevance of epicardial fat 
 

 As described earlier, epicardial fat possesses a magnitude of beneficial but also 

several potentially adverse features. The full clinical relevance of epicardial fat is not 

fully understood as of today. Epicardial fat is discussed to be associated with CAD 

including non-calcified plaques (Alexopoulos et al. 2010), atrial fibrillation (Thanassoulis 

et al. 2010b), and it correlates with MR-derived signs for myocardial dysfunction in obese 

subjects with type 2 diabetes (Evin et al. 2016). It is increased in impaired glucose 

metabolism (Arpaci et al. 2015). Epicardial fat seems to influence established 

cardiometabolic risk factors such as hypertension (Teijeira-Fernandez et al. 2008), and 

glucose levels (Iacobellis et al. 2008a). In a combined positron emission tomography 

(PET) and computed tomography (CT) study, performed by Janik et al, epicardial fat 

measured on CT images was found to better predict ischemia than the established 

coronary artery calcium scoring test (Janik et al. 2010). Imaging of the epicardial fat 

compartment is easily performed by various imaging techniques as reviewed by 

Davidovich et al (Davidovich et al. 2013). Despite its relevance, assessment of epicardial 

fat volume or thickness is so far not routinely practiced in the general work-up of subjects 

at risk for cardiometabolic diseases. 

Epicardial fat can also be the primary origin of thoracic pain in case of epicardial fat 

necrosis (Baig et al. 2012).  
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1.2.4. The role of epicardial fat in obesity and impaired glucose 

metabolism 
 

Impaired glucose metabolism is, along with central obesity, disturbances in lipid 

metabolism and hypertension, a feature of the metabolic syndrome. This symptom 

complex is attributed to the Western lifestyle as shown by Rodriguez-Monforte et al 

(Rodriguez-Monforte et al. 2017). It has become clear that it is rather VAT that is 

associated with the development of impaired glucose metabolism (Neeland et al. 2012). 

VAT correlates well with epicardial fat as described by Iacobellis et al in 2003. They 

stated that epicardial fat assessed by echocardiography can be suggested as a predictor 

for VAT (Iacobellis et al. 2003). This correlation may be particularly true for obese 

subjects with diabetes (Jain et al. 2015, Levelt et al. 2016). Moreover, epicardial fat 

thickness has also been suggested as an indicator for obesity (Song et al. 2015). Vasques 

et al used ultrasound to measure the sagittal abdominal diameter and found that epicardial 

adipose tissue could be estimated by employing this parameter (Vasques et al. 2013).  

Moreover, epicardial fat thickness by ultrasound seems to predict hepatic steatosis in 

obesity (Iacobellis et al. 2014a). 

 

Little is known about the interactions of epicardial fat and the early stages of impaired 

glucose metabolism. Arpaci et al found transthoracic echocardiographically assessed 

epicardial fat thickness to be elevated in prediabetes as compared to subjects with normal 

glucose tolerance (Arpaci et al. 2015). Also, epicardial fat has been discussed as a marker 

for cardiovascular disease risk in subjects with prediabetes (Altin et al. 2016). Insulin 

resistance has been shown to be an independent predictor of epicardial fat thickness (Altin 

et al. 2017). This finding has also been described in coronary artery disease (Baldasseroni 

et al. 2013). Interestingly, Iacobellis and Leonetti were able to show that epicardial fat 

assessed by echocardiography was associated with insulin-resistance due to obesity 

(Iacobellis and Leonetti 2005). Components of the metabolic syndrome are also 

associated with epicardial fat (Wang et al. 2009).  

Epicardial fat has been shown to be elevated in subjects with type 2 diabetes (Song et 

al. 2015, Cetin et al. 2013, Wang et al. 2009). In a cross-sectional study conducted in 
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Korea, Chun et al found that an increased epicardial fat thickness has an impact on the 

diabetes prevalence in males (Chun et al. 2015). Moreover, in subjects with diabetes, 

epicardial fat displayed a more proinflammatory profile than in healthy controls and 

adipocytes were found to be larger than in the control group (Bambace et al. 2014). 

Additionally, miRNA expressed by epicardial fat, seems to play a role in coronary artery 

disease in subjects with type 2 diabetes (Liu et al. 2016). 

 

Briefly, it should be pointed out that higher amounts of epicardial fat were also 

reported in type 1 diabetics as compared to healthy controls (Iacobellis et al. 2014b).  

 

 

1.2.5. Imaging of the pericardial fat depots 
 

The pericardial fat depots can be assessed by different imaging techniques 

including ultrasound, computed tomography (CT) and magnetic resonance imaging 

(MRI), although there is currently no single gold-standard (Davidovich et al. 2013). Non-

radiological analysis like autopsy studies have also been performed and contributed to a 

better understanding of the fat depots (Sequeira et al. 2015).  

 

Echocardiography is an easily accessible, cost-effective tool for the assessment 

of pericardial fat depots. Normally, epicardial fat can be assessed in parasternal long-axis 

and short-axis views; clinical applications have further been reviewed by Iacobellis and 

Willens (Iacobellis and Willens 2009b). Potentially hazardous epicardial fat thickness 

threshold values have also been evaluated by Iacobellis et al (Iacobellis et al. 2008b). 

Agreements between echocardiographically assessed epicardial fat and epicardial fat 

from MRI are good (Iacobellis et al. 2003). However, echocardiography is limited in 

adipose patients and is a very subjective imaging technique that highly depends on the 

operator.  
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Computed tomography (CT) has been widely used to assess pericardial fat 

depots. This modality has been shown to be feasible (Sarin et al. 2008) and highly 

reproducible in the volumetric assessment of epicardial fat (Gorter et al. 2008). The 

assessment of the different pericardial fat compartments is dependent on the 

identifiability of the thin pericardium. The administration of contrast agent is, however, 

not necessary for this distinction (Cheng et al. 2010). Today, computer-assisted 

assessment promises reliable and fast measurement of cardiac fat depots (Ding et al. 

2015). CT has been applied for the assessment of pericardial fat depots in large studies 

such as the Framingham Heart Study (Rosito et al. 2008, Thanassoulis et al. 2010a, 

Thanassoulis et al. 2010b) or the Heinz Nixdorf Recall study (Mahabadi et al. 2014). 

However, the employment of CT is always linked to radiation exposure of the mostly 

healthy study subjects. 

 

Cardiac magnetic resonance (CMR) imaging has also been employed for the 

assessment of pericardial fat depots. MRI provides a high soft tissue contrast and 

therefore plays a very important role in fat imaging. It has for example been employed in 

research concerning whole-body adipose tissue profiles (Machann et al. 2005). MRI – in 

comparison to CT – does not require ionizing radiation. MRI-based exams as well as CT 

tend to be more operator-independent than echocardiography (Wang et al. 2003). 

Volumetric (Flüchter et al. 2007) as well as thickness measurements (Iacobellis et al. 

2003) have been conducted so far; however, study results indicate that the volumetric 

approach has a better interobserver variability (Flüchter et al. 2007). Pericardial fat 

volume assessment by MRI has been validated against postmortem studies in merino 

sheep, thereby establishing MRI is an important diagnostic tool (Nelson et al. 2009). 

Images can be acquired in four-chamber view orientation (Jonker et al. 2013) or in the 

short axis (Chen et al. 2015). It has been shown that MRI-based cardiac fat mass as 

assessed in a volumetric approach on short axis views correlates very well with 

planimetric assessment of cardiac fat derived from long axis images (Sironi et al. 2012). 

Studies on scanners with 3 Tesla magnets have also been conducted in the last years 

(Gaborit et al. 2012).  
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Analysis of the fatty acid composition of different fat depots including epicardial 

fat has been conducted by proton nuclear MR spectroscopy (Burgeiro et al. 2016). 

Epicardial fat has also been assessed in PET/CT and its relationship to myocardial 

ischemia was analyzed (Janik et al. 2010). 
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1.3. Aim and scientific hypothesis 
 

Subjects with impaired glucose metabolism and diabetes are at considerable risk for 

developing cardiovascular disease (Kannel and Mcgee 1979). However, the underlying 

detailed pathophysiology is highly complex. It is also known that certain body fat depots 

such as VAT play a role in impaired glucose metabolism and metabolic alterations 

(Lemieux et al. 2011, Hayashi et al. 2003, Fox et al. 2007). The ectopic fat depot 

epicardial fat has recently emerged as a potential correlate for cardiovascular risk (Rosito 

et al. 2008). Earlier cohort studies often employed radiation-based CT (Mahabadi et al. 

2009, Mahabadi et al. 2014). Due to its high soft-tissue contrast and non-ionizing image 

generation, MRI is suitable for large cohort studies. Also, assessment of epicardial fat has 

been described as feasible in MRI (Flüchter et al. 2007). It is clear that the trend in 

imaging cohort studies including thousands of healthy subjects is shifting towards MRI 

(Gatidis et al. 2017) and that there will be an increasing need to analyze body structures 

on these images. Future applications for assessment of the pericardial fat compartments 

could include not only epidemiological research but also approaches in individualized 

medicine.  

 

The aim of the underlying study was to manually assess the pericardial fat depots on 

MR images in the cine steady state free precession (SSFP) sequence, long axis (four 

chamber view), in a clinically cardiovascular healthy cohort. We aimed at comparing 

measurements from the systolic and diastolic assessment. Epicardial and paracardial fat 

depots were then analyzed in the light of impaired glucose metabolism as well as in 

relation to other MRI-derived body fat depot measurements and traditional cardiovascular 

risk factors. We also aimed at analyzing the association between epi-and paracardial fat 

and imaging-based LV parameters for subclinical LV dysfunction. Parts of this study aim 

have been previously published (Rado et al. 2019). 
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Our hypothesis was that assessing pericardial fat depots on MR images in the cine 

SSFP sequence is feasible for assessing the pericardial fat depots in both the systolic and 

diastolic heart cycle. We hypothesized that there are differences in epi- and paracardial 

fat between subjects with normal glucose tolerance and subjects with prediabetes and 

diabetes that allow for a more detailed characterization of their role in impaired glucose 

metabolism. Also, we hypothesized that there are independent associations between MR-

based markers for early LV impairment and epicardial fat. 
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2. Material and Methods 

 

2.1. Study population 

 

The KORA study – short for “Kooperative Gesundheitsforschung in der Region 

Augsburg” (Cooperative Health Research in the Region Augsburg) - is a follow-up of the 

MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg 

surveys that were conducted by the WHO in the 1980s and 1990s in the Augsburg region 

(Löwel et al. 2005). The KORA study was initiated in 1996 as a follow-up 

epidemiological study with a focus on cardiovascular risk and metabolic diseases. The 

detailed study set up has been described by Holle et al (Holle et al. 2005). The history 

and structure of the KORA study is depicted in Figure 2. 

 

Figure 2: Overview of the KORA study 

This figure shows an overview of the KORA study including the MRI study (depicted as 

‘MRT’) which is nested within the KORA FF4 cohort, a follow up of the original S4 

cohort. Abbreviations: GEFU, General (Morbidity) Follow Up; MRT, Magnetic 

Resonance Tomography; Tel, Telephone interview; U, Untersuchung (examination). This 

image is a courtesy of KORA Studien Koordination, Institut für Epidemiologie II, 

Helmholtz Zentrum München, Germany. 
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 The KORA MRI sub-study is nested within the KORA FF4 cohort and subjects 

were recruited between 2013/2014. Female and male subjects aged 25-74 years were 

included. The study details regarding inclusion and exclusion criteria for the MRI sub-

study have been outlined in a previous publication (Bamberg et al. 2017). In brief, 

subjects were eligible for participation if they had an established glucose tolerance status 

(either previously diagnosed diabetes or results of an OGTT). Exclusion criteria included 

age greater 72 years, history of clinically significant cardiovascular disease, inability to 

undergo MRI exams (e.g. implants, claustrophobia), pregnancy or lactation, or missing 

OGTT results. Moreover, subjects with contraindications for undergoing contrast-

enhanced MRI exams were also excluded from the study (e.g. renal impairment with 

serum creatinine ≥1.3mg/dl, allergies to gadolinium-based contrast). Before participating 

in the MRI examination, informed written consent was obtained from each study subject. 

Ethical approval was also collected from the institutional review board of the Medical 

Faculty of the Ludwig Maximilians University Munich, Germany (Bamberg et al. 2017, 

Rado et al. 2019) under the project number 498-12. This ethical approval was reviewed 

and confirmed by the institutional review board of the Medical Faculty of the Eberhard 

Karls University Tübingen, Germany under the project number 576/2016BO2. 

 

Subjects without an established diagnosis of diabetes underwent an OGTT. 

Glucose tolerance status was determined according to WHO recommendations: diabetes 

was defined as fasting plasma glucose ≥7.0 mmol/l (126 mg/dl) or 2-hour plasma glucose 

≥11.1 mmol/l (200 mg/dl). IGT was defined as fasting plasma glucose <7.0 mmol/l (126 

mg/dl) and 2-hour plasma glucose ≥7.8 and <11.1mmol/l (140-200mg/dl). IFG was 

defined as fasting plasma glucose 6.1 to 6.9 mmol/l (110 to 125 mg/dl) and 2-hour plasma 

glucose <7.8 mmol/l (140 mg/dl) (World Health Organization and International Diabetes 

Federation 2006).  

 

 Further health-related information, including physical exams, blood samples and 

interviews, was performed at dedicated study centers in an established and standardized 

fashion between 2013 and 2014 (Bamberg et al. 2017). Collection of relevant covariables 

will be described later. 
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2.2. MR imaging parameters 

 

The complete study protocol for the KORA MRI study including the imaging 

parameters for the different sequences has been described in the study overview 

(Bamberg et al. 2017). In brief, the KORA MRI study focuses on cardiovascular imaging 

as well as assessment of different body fat compartments. Subjects included in this study 

underwent whole-body MRI with a pre-set protocol including multiple imaging 

sequences. Image acquisition was performed using a 3 Tesla Magnetom Skyra MRI 

(Siemens Healthineers, Erlangen, Germany) (Bamberg et al. 2017).  

 

For the single-slice analysis of the pericardial fat depots, a cine steady-state free 

precession (SSFP) sequence in the long axis of the heart (four chamber view) was 

employed with the imaging parameters as follows: time-to-repetition (TR) 29.97 ms, 

time-to-echo (TE) 1.46 ms, field-of-view (FOV) 297 x 360 mm, slice thickness 8 mm, 

matrix 240 x 160, spatial resolution 1.5 x 1.5 mm2, flip angle 63° (Bamberg et al. 2017). 

 

The volumetric analysis of pericardial fat, VAT and SAT was conducted in a dual-

echo volume interpolated breath hold examination (VIBE) Dixon sequence with the 

following imaging parameters: TR 4.06 ms, TE 1.26, 2.49 ms, FOV 488 x 716 mm, slice 

thickness 1.7 mm, matrix 256 x 256, spatial resolution 1.7 x 1.7 mm2, flip angle 9° 

(Bamberg et al. 2017). 

 

Further cardiac imaging included a short-axis cine SSFP sequence with the 

following imaging parameters: TR 29.97 ms, TE 1.46 ms (10sl), FOV 297 x 360 mm, 

slice thickness 8 mm, matrix 240 x 160, spatial resolution 1.5 x 1.5 mm2, flip angle 62°, 

as well as a Fast Low Angle Shot (FLASH) sequence with the following parameters: TR 

700-1000 ms, TE 1.55 ms, TI (inversion time) 280-345 ms, FOV 300 x 360, slice 

thickness 8 mm, matrix 256 x 140, spatial resolution 1.4 x 1.4 mm2, flip angle 20-55° 

(Bamberg et al. 2017). 
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The proton-density fat fraction of the liver (PDFFhepatic) was assessed in a multi-

echo VIBE Dixon sequence during a 15 second breath hold with imaging parameters as 

follows: TR 8.90 ms, TE 1.23, 2.46, 3.69, 4.92, 6.15, 7.38 ms, FOV 393 x 450 mm, slice 

thickness 4 mm, matrix 256 x 179, spatial resolution 1.8 x 1.8 mm2, flip angle 4 ° 

(Bamberg et al. 2017).  

 

 

2.3. MR image analysis 

 

Pericardial fat depots (single-slice approach): Image analysis was conducted 

employing a software (OsiriX Lite, Pixmeo SARL, Bernex, Switzerland). The MR 

images were manually imported into the software. For measurements of the fat areas, the 

tool called ‘polygonal region of interest (ROI)’ was employed. The pericardium was 

individually identified. Epicardial fat was segmented manually between the myocardium 

and the pericardium while small structures embedded in the adipose tissue (e.g. the 

coronary arteries) were not segmented separately. The pericardial fat compartment was 

segmented following the anatomical borders of the myocardium, lungs, aorta and ventral 

thoracic wall. Small structures embedded in the adipose tissue were also not segmented 

separately. Epi- and pericardial fat areas were assessed in the maximal systolic and 

diastolic heart cycle which were individually identified (Rado et al. 2019) (Figure 3).  
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Figure 3: Assessment of the epicardial and pericardial fat compartments 

Manual assessment of the pericardial (blue line) and the epicardial (green line) fat depots 

in the systolic (A) and the diastolic (B) heart cycle on images derived from the cine SSFP 

sequence in the long axis (four chamber view). The amount of paracardial fat was 

calculated by subtraction following segmentation (Rado et al. 2019). Abbreviations: Ao, 

aorta descendens; L, left; LV, left ventricle; R, right; RV, right ventricle; V, vertebra. 

 

The areas of the pericardial and epicardial fat depots were recorded in centimeters squared 

[cm2] and the results were documented in an Excel sheet (Microsoft, Redmond, 

Washington, USA). The amount of paracardial fat was determined by subtraction 

following the formula: paracardial fat = pericardial – epicardial fat (Rado et al. 2019). 

Additionally, image quality was evaluated on a five-point Likert scale with 1 = ‘very 

good’ to 5 = ‘not assessable’. A final consensus reading was performed to rule out gross 

reading mistakes. Additionally, intra- and interreader reproducibility were assessed in a 

cohort subset of N=38. Throughout the reading process, readers were blinded with regards 

to subject identity and health status (Rado et al. 2019).  

 

 Pericardial Fat (volumetric approach): From the acquired dual-echo Dixon 

images, automatically calculated fat-selective tomograms were employed for further 

analysis. MR images were visualized on an offline workstation (SyngoVia, Siemens 

Healthineers, Forchheim, Germany) and axial tomograms were reconstructed 

automatically with a slice thickness of 2.5 mm, seamless. Pericardial fat was segmented 

from the diaphragm to the pulmonary bifurcation by manually selecting the slices. 

Between 28 and 36 slices were included for this analysis, based on the individuals’ 
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anatomical heart sizes. The reconstructed tomograms were exported to a workstation and 

were reworked with an inhouse algorithm (Figure 4). Segmentations were corrected 

manually if necessary. Results are given in milliliters (ml) (J. Machann, personal 

communication).  

 

 
 

Figure 4: Principle of semiautomatic volumetric segmentation of pericardial fat 

This figure shows the fat-selective axial tomograms of one study subject as reconstructed 

from the dual-echo Dixon sequence before (A) and after (B) semiautomatic segmentation 

of pericardial fat (yellow). Figure 4C is a magnification view of the segmented pericardial 

fat on four different levels. This image material is a courtesy of PD Dr Jürgen Machann, 

Section on Experimental Radiology, Department of Diagnostic and Interventional 

Radiology, University Hospital Tübingen, Tübingen, Germany. 

 

VAT/SAT: VAT and SAT were analyzed on the fat-selective tomograms of the 

dual-echo VIBE Dixon sequence. A multiplanar reconstruction of the coronal data set 

into axial tomograms was performed from the femoral heads to the shoulders. The 

volumetric assessment of VAT was conducted between the femoral heads and cardiac 
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apex. The assessment of SAT was conducted between the femoral heads and diaphragm 

(Storz et al. 2018). An inhouse algorithm based on fuzzy-clustering (Würslin et al. 2010) 

was employed to semi-automatically assess VAT and SAT (Figure 5). The segmentation 

was corrected manually if necessary (Storz et al. 2018). Results are displayed in liters.  

 

 

Figure 5: Principle of visceral (VAT) and subcutaneous (SAT) adipose tissue 

assessment  

Fat-selective axial tomograms were reconstructed from coronal MR images (levels 

indicated by white lines on the sagittal and coronal images). VAT (red) and SAT (yellow) 

were automatically segmented. Figure A shows a study subject with a larger, and figure 

B with a smaller amount of VAT. This image material is a courtesy of PD Dr Jürgen 

Machann, Section on Experimental Radiology, Department of Diagnostic and 

Interventional Radiology, University Hospital Tübingen, Tübingen, Germany. 

 

PDFFhepatic: As previously described, a ROI was placed into the hepatic tissue on 

the PDFF maps, thereby carefully avoiding big adjacent vessels (Hetterich et al. 2016). 

Results are displayed in per cent. 

 

LV parameters included late gadolinium enhancement (LGE), LV ejection 

fraction (EF) as well as left ventricular concentricity index (LVCI) which includes 

myocardial mass and end-diastolic volume. Data for EF as well as LVCI were analyzed 

on SSFP images in the short axis (10sl) while LGE data were derived from FLASH short 

axis and a four-chamber view. Image analysis on the short-axis SSFP images was 
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performed in a semiautomated fashion as previously described by employing a software 

(cvi42, Circle Cardiovascular Imaging, Calgary, Canada) (Bamberg et al. 2017, Rado et 

al. 2019, Schlett et al. 2018). An EF of <55% was considered pathological (Ueda et al. 

2015). The LVCI was derived from LV myocardial mass divided by LV end-diastolic 

volume (Pun et al. 2011). LVCI values greater than 1.3 g/ml were considered pathological 

(Gaasch and Zile 2011). LGE was analyzed subendocardially, midmyocardially and 

epicardially by two readers in a consensus (Bamberg et al. 2017). The presence of LGE 

was considered pathological (Wu et al. 2001). A composite endpoint of subclinical LV 

impairment was defined for further analysis and consisted of the presence of LGE and/or 

LVEF <55% and/or LVCI > 1.3 g/ml (Rado et al. 2019). 

 

 

2.4. Covariables 

 

 Covariables were collected from standardized interviews, laboratory work and 

physical exams. The collection of the covariables has been previously described (Holle 

et al. 2005, Bamberg et al. 2017). 

 

 Body mass index (BMI) as anthropometric measure was calculated as weight by 

height squared [kg/m2]. With regards to blood pressure, hypertension was diagnosed if 

systolic blood pressures were ≥ 140mmHg and diastolic blood pressures ≥ 90mmHg. 

Also, hypertension was defined as taking antihypertensives whilst being aware of the 

hypertension diagnosis. Medication considered antihypertensive included beta blockers, 

diuretics etc. according to recent recommendations. Antithrombotic medication 

comprised antiplatelet and anticoagulant medication. The intake of drugs such as statins 

and fibrates were considered as lipid-lowering medication. Alcohol consumption data 

were derived from interviews and are given in g/day. Smoking information was derived 

from standardized interviews and results were grouped in the categories never, ex- and 

current smoker (Bamberg et al. 2017). Laboratory parameters such as total cholesterol, 

high-density lipoprotein (HDL), low-density lipoprotein (LDL), or triglycerides were 
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derived from fasting blood samples and were assessed in a standardized fashion as 

described by Seissler et al (Seissler et al. 2012). 

 

 

2.5. Statistical analysis 
 

Intraclass correlation coefficients (ICC) were calculated for analysis of intrareader 

and interreader reproducibility. The correlation between the single-slice and volumetric 

approach to assess pericardial fat was calculated by Pearson’s pairwise correlation 

coefficient.  

Demographic, clinical and imaging-based data are shown for all included study 

subjects as well as for the subgroups ‘normal glucose tolerance’, ‘prediabetes’ and 

‘diabetes’ and are shown as either median [25th;75th percentile] for continuous data or 

number (percentage) for categorical data and differences amongst these subgroups were 

analyzed either by Kruskal-Wallis equality of population rank test for continuous data, 

and χ2-test or Fisher’s exact test for categorical data (Rado et al. 2019). 

Pericardial fat depots in the systolic and diastolic measurements were described 

by giving the minimum, maximum and quartiles including the median. Additionally, the 

median [25th;75th percentile] is given for the different pericardial fat depots in both systole 

and diastole for the female and male subgroups separately. 

Correlations between cardiac fat data derived from systole and diastole were 

calculated by Pearson’s pairwise correlation coefficient and are presented as scatterplots. 

Agreements between systolic and diastolic cardiac fat parameters were also evaluated by 

plotting relative differences in Bland-Altman-Plots.  

Data for the pericardial fat depots for all study subjects included as well as the 

subgroups ‘normal glucose tolerance’, ‘prediabetes’ and ‘diabetes’ are presented as 

median [25th; 75th percentile] and p-values were analyzed by Kruskal-Wallis equality of 

population rank test. This analysis was conducted for the systolic and diastolic data. 

Additionally, boxplots depict the differences in systolic epicardial/paracardial fat between 

the subgroups (Rado et al. 2019). 
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Stepwise adjustment for potential confounders of the association between 

prediabetes and diabetes to epicardial/paracardial fat was performed by employing 

median regression analysis and data including β-coefficients, 95% confidence intervals 

and p-values are presented in a table format. Data were firstly adjusted for age and gender 

only, followed by adjustment for traditional cardiovascular risk factors (CVRF) which 

included hypertension, smoking, LDL and triglycerides. Additional adjustment included 

measures of body fat, namely BMI, SAT and VAT (Rado et al. 2019). A multivariate 

analysis of the relationship of epicardial/paracardial fat to cardiovascular risk factors was 

performed by employing median regression and data are presented in a table format 

including β-coefficients, 95% confidence intervals and p-values (Rado et al. 2019).  

Boxplots depict the differences in epicardial/paracardial fat amounts between 

healthy subjects and subjects showing subclinical LV impairment (Rado et al. 2019). The 

relationship between epicardial/paracardial fat and LV impairment was analyzed in a 

median regression model and was stepwise adjusted for traditional cardiovascular risk 

factors including diabetes status and VAT (Rado et al. 2019). 

Median regression models were employed since data for epicardial and 

paracardial fat were not evenly distributed (Rado et al. 2019).  

P-values <0.05 were defined as statistically significant. Data were analyzed in 

Stata 14.1 (Stata Corporation, College Station, TX, U.S.A.) (Rado et al. 2019). 
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3. Results 

 

3.1. General results 

 

400 subjects were primarily enrolled in the KORA MRI study. Images with an 

image quality rated 1-4 were included. Subjects with an image quality rated “5” (not 

assessable) and subjects without available images were not included in the final analysis 

(28 subjects, 7%, respectively). Of these, 1% had incomplete acquisition of the cine SSFP 

sequence and 6% had insufficient image quality due to motion artifacts, FOV 

misalignment, incomplete data acquisition or inability to delineate the pericardium 

sufficiently. Thus, 372 subjects were included in the underlying analysis (93%) (Rado et 

al. 2019). 

 

 

3.2. Quality management 

 

We found higher intraclass correlation coefficients (ICC) for intrareader than for 

interreader reproducibility. Results are depicted in Table 1. In general, ICCIntrareader as well 

as ICCInterreader were higher for the systolic as compared to the diastolic measurements. 

Due to this finding, further statistical analyses were conducted with the systolic fat 

measurements (Rado et al. 2019) unless otherwise indicated. 
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Table 1: Intraclass correlation coefficients for intrareader and interreader 

reproducibility of epicardial and pericardial fat depots 

This table depicts the intraclass correlation coefficients for intra- as well as interreader 

reproducibility for the epicardial and pericardial fat depots in both systole and diastole. 

These data have previously been published (Rado et al. 2019). 

 

Intraclass correlation coefficients (ICC) Systole Diastole 

ICCIntrareader (epicardial fat) 0.918 0.844 

ICCIntrareader (pericardial fat) 0.985 0.979 

ICCInterreader (epicardial fat) 0.884 0.765 

ICCInterreader (pericardial fat) 0.927 0.888 

 

 

There was a strong positive correlation seen between the systolic as well as 

diastolic single-slice pericardial fat measurement with the volumetric approach with a 

correlation coefficient of r=0.74, p<0.001.  

  

 

3.3. Study population characteristics  

 

Demographic data and clinical characteristics of the underlying study population 

are displayed in Table 2. Of 372 subjects included in the final analysis, 220 subjects had 

normal glucose tolerance, 100 were prediabetics and 52 were diabetics (Rado et al. 2019). 

All diabetic subjects included in this final analysis had type 2 diabetes (Rado et al. 2019). 

The median age in all subjects included was 57 years [49;64] and increased significantly 

from healthy controls to prediabetics and diabetics (p<0.001). Overall, 59.4% of the 

subjects included were male and the percentage of males increased from controls to the 

prediabetes and diabetes group (53.2%, 64% and 76.9%; p=0.004, respectively) (Rado et 

al. 2019). 
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With regards to cardiovascular risk factors, there was a significant increase from 

subjects with normal glucose tolerance to prediabetics and diabetics concerning BMI 

(26.6 kg/m2 vs 29.4 kg/m2 vs 30.4 kg/m2; p<0.001), hypertension (22.3% vs 45% vs 

71.2%; p<0.001), and triglycerides (95.5 mg/dl vs 136.5 mg/dl vs 177.82 mg/dl; 

p<0.001). Additionally, prediabetics and diabetics had lower HDL levels as compared to 

subjects with normal glucose tolerance (p<0.001). However, no significant differences 

were found for LDL and smoking (p=0.09 and p=0.11, respectively) (Rado et al. 2019).  

With regards to body fat composition, subjects with prediabetes and diabetes had 

higher amounts of VAT, SAT and PDFFhepatic as compared to subjects with normal 

glucose tolerance (all p<0.001) (Rado et al. 2019).  

In comparison to normoglycemic controls, intake of antihypertensive and lipid-

lowering medication was higher in the prediabetic and diabetic group (both p<0.001) 

(Rado et al. 2019).  
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Table 2: Demographic and clinical characteristics of the included study subjects 

Data are presented for the total study population as well as for the subgroups ‘normal glucose tolerance’, ‘prediabetes’ and ‘diabetes’. 

Absolute numbers (percentage) are given for categorical data and the median (25th; 75th percentile) is given for continuous data. 

Abbreviations: “BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; PDFF, proton density fat fraction; 

SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue” (Rado et al. 2019). This table has previously been published in the British 

Journal of Radiology (Rado et al. 2019). 

 

 

All subjects 
Normal glucose  

tolerance 
Prediabetes Diabetes 

p-value 

 
N=372 N=220 N=100 N=52 

Age (years) 57 (49;64) 53 (47;62) 59 (51;66) 63.5 (58;69.5) <0.001 

Male gender (%) 221 (59.4%) 117 (53.2%) 64 (64%) 40 (76.9%) 0.004 

BMI (kg/m2) 27.99 (25.16; 31) 26.58 (24.25; 29.01) 29.43 (27.3; 33.82) 30.43 (27.12; 33.09) <0.001 

Hypertension (%) 131 (35.2%) 49 (22.3%) 45 (45%) 37 (71.2%) <0.001 

Antihypertensive 

medication (%) 
97 (26.1%) 39 (17.7%) 32 (32%) 26 (50%) <0.001 



41 

Antithrombotic 

medication (%) 
8 (2.2%) 3 (1.4%) 4 (4%) 1 (1.9%) 0.32 

HDL (mg/dl) 59.52 (48; 72) 62 (51; 77) 59.26 (49.72; 69.6) 48.16 (40.5; 61.2) <0.001 

LDL (mg/dl) 138 (116; 161) 136 (115.5; 162.5) 143.5 (123; 161.5) 130.5 (109.5; 150.5) 0.09 

Triglycerides (mg/dl) 110.5 (77.28; 162.5) 95.5 (69.5; 129.69) 136.5 (98; 184.62) 177.82 (114.76; 273.09) <0.001 

Lipid 

lowering  

medication (%) 

42 (11.3%) 15 (6.8%) 9 (9%) 18 (34.6%) <0.001 

SAT (l) 7.41 (5.53; 10.05) 6.75 (5.16; 8.88) 8.65 (6.35; 11.97) 8.65 (6.3; 11.27) <0.001 

VAT (l) 4.23 (2.69; 6.35) 3.14 (1.8; 4.72) 5.44 (3.97; 7.32) 6.88 (5.76; 8.45) <0.001 

PDFFhepatic (%) 4.77 (2.79; 12.21) 3.44 (2.2; 5.9) 11.6 (4.79; 17.93) 15.89 (6.86; 24.13) <0.001 
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Smoking status      

0.11 

   Never-smoker  136 (36.6%) 88 (40.0%) 32 (32.0%) 16 (30.8%) 

   Ex-smoker  163 (43.8%) 84 (38.2%) 50 (50.0%) 29 (55.8%) 

   Current-smoker 73 (19.6%) 48 (21.8%) 18 (18.0%) 7 (13.5%) 
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MRI-derived data for LV-function parameters were available in 345 subjects; 208 of them 

had normal glucose tolerance, 93 were prediabetics and 44 were diabetics. Significant 

changes between the groups with different glucose tolerance status were seen for EF, 

myocardial mass, LV end-diastolic volume, and LVCI but not for LGE.  Of the 345 

subjects included in this sub-analysis, 93 had at least one of the components of the defined 

composite endpoint for subclinical LV impairment (27%, respectively) with 6 (1.7%) 

subjects showing more than one of these findings (Rado et al. 2019). There was an 

increase in the composite pathologic LV findings seen from healthy subjects to 

prediabetics and diabetics (16.8%, 35.5%, 56.8%, p<0.001; respectively) (Rado et al. 

2019). Further details are shown in Table 3. 

 

 

Table 3: Differences in early LV impairment as determined by MR image analysis 

between subjects with normal glucose tolerance, prediabetics and diabetics  

Data are presented for all subjects included as well as for the subgroups ‘normal glucose 

tolerance’, ‘prediabetes’, and ‘diabetes’. Numbers (percentage) are shown for categorical 

data and median (25th;75th percentile) for continuous data. Abbreviations: “EF, ejection 

fraction; LGE, late gadolinium enhancement; LV, left ventricular; LVCI, left ventricular 

concentricity index” (Rado et al. 2019). This table has previously been published in the 

British Journal of Radiology (Rado et al. 2019). 

 

  

All  

subjects  

  

Normal  

glucose  

tolerance 

Pre- 

diabetes 
Diabetes 

p-value 

 N=345 N=208 N=93 N=44 

LV EF (%) 
70  

(65;75) 

70  

(65;74) 

72  

(66;77) 

69  

(64;74) 
0.03 

 LV EF <55%  
14  

(4.1%) 

10  

(4.8%) 

0  

(0%) 

4  

(9.1%) 
0.01 

LV myocardial 

mass (g) 

141 

(115;166) 

127 

(106;160) 

151 

(131;172) 

148 

(133;170) 
<0.001 
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LV end-diastolic 

volume (ml/m2) 

66  

(56;75) 

69  

(61;80) 

60  

(52;68) 

55  

(48;63) 
<0.001 

LVCI (g/ml) 
1.06 

(0.9;1.28) 

0.99 

(0.87;1.14) 

1.22 

(1.02;1.35) 

1.30 

(1.05;1.57) 
<0.001 

LVCI >1.3 g/ml  
77  

(22.3%) 

26 

(12.5%) 

30  

(32.3%) 

21 

(47.7%) 
<0.001 

LGE 
8  

(2.3%) 

2  

(1%) 

4  

(4.3%) 

2  

(4.6%) 
0.06 

LGE or LVCI 

>1.3 g/ml or LV 

EF <55%  

93  

(27%) 

35 

(16.8%) 

33  

(35.5%) 

25 

(56.8%) 
<0.001 

 

 

3.4. Pericardial fat depots in systolic and diastolic assessment 

 

Within the 372 subjects assessed, systolic pericardial fat values ranged from 3.3 

cm2 to 98.1 cm2 with a median of 26.5 cm2 and diastolic pericardial fat values ranged 

from 3.3 cm2 to 83.0 cm2 with a median of 23.6 cm2.  With regards to epicardial fat 

assessment, systolic epicardial fat values ranged from 0 cm2 to 33.7 cm2 with a median of 

8.7 cm2, and diastolic epicardial fat values ranged from 0 cm2 to 32.1 cm2 with a median 

of 7.7 cm2. The calculated paracardial fat amount ranged from 1.3 cm2 to 66.4 cm2 with 

a median of 18.3 cm2 in the systole, and from 1.6 cm2 to 64.1 cm2 with a median of 16.0 

cm2 in the diastole. Table 4 summarizes the above data. The median amounts of systolic 

epicardial and paracardial fat have been previously published (Rado et al. 2019). 
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Table 4: Pericardial fat depots in systolic and diastolic assessment 

All 372 subjects were included. This table shows the minimum, 25th, 50th, 75th percentile 

as well as the maximum amount of epi-, para- and pericardial fat in the systolic and 

diastolic measurements. All numbers given are in centimeters squared (cm2). 

Abbreviations: p, percentile 

 

 
minimum p25 p50 p75 maximum 

Pericardial fat  

(systole) 3.3 18.4 26.5 40.3 98.1 

Pericardial fat  

(diastole) 3.3 15.9 23.6 35.8 83.0 

Epicardial fat  

(systole) 0 5.6 8.7 11.2 33.7 

Epicardial fat  

(diastole) 0 5.1 7.7 10.6 32.1 

Paracardial fat  

(systole) 1.3 11.1 18.3 27.3 66.4 

Paracardial fat  

(diastole) 1.6 9.7 16.0 25.4 64.1 

  

 

 Correlations between the systolic and diastolic data for pericardial, epicardial as 

well as paracardial fat were investigated and very strong correlations were found between 

the systolic and diastolic data for all fat depots with the highest correlation coefficient for 

pericardial fat (r=0.99 vs r=0.98 vs r=0.90, for pericardial, paracardial and epicardial fat, 

respectively; Figure 6). 
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Figure 6: Correlations between the different pericardial fat depots in the systolic 

and diastolic heart cycle 

This figure shows the correlations between the systolic (y-axis) and diastolic data (x-axis) 

for the pericardial (A), epicardial (B) and paracardial (C) fat depots.  
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 Generally, data derived from systolic measurements were higher than from the 

diastolic measurements. In pericardial fat, the mean difference was 10.7%. In epicardial 

fat, the mean difference was 11.3%. For paracardial fat, the mean difference was 10.8%. 

Figure 7 depicts the agreements between systolic and diastolic measurements for the 

pericardial, epicardial and paracardial fat depots. 
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Figure 7: Agreements between systolic and diastolic measurements of the different 

pericardial fat depots 

Agreements between the data sets derived from systolic and diastolic measurements for 

pericardial (A), epicardial (B) and paracardial (C) fat are presented as Bland-Altman 

plots. Relative differences are plotted in per cent on the y-axis and averages are given in 

centimeters squared on the x-axis. 

 

 

In men, who accounted for 221 included subjects (59.4%, respectively), the 

median amount of epicardial fat in the systole was 9.2 cm2 (6.7;12.2) and for women (151 

subjects, 40.5%, respectively) 6.9 cm2 (4.7;9.7). The median amount of epicardial fat in 

the diastole was 8.8 cm2 (6.3;11.6) for men and 6.0 cm2 (4.0;9.1) for women. The median 

amount of pericardial fat in the systole was 32.6 cm2 (23.3;46.2) for men and 19.9 cm2 

(12.9;26.8) for women. The median amount of pericardial fat in the diastole was 30.8 cm2 

(21.5;42.4) for men and 17.1cm2 (11.2;24.5) for women, respectively. For the calculated 

amount of paracardial fat, the median amount of paracardial fat in the systole was 23.1 

cm2 (16.0;33.9) for men and 11.7 cm2 (7.8;17.5) for women, as well as 21.5 cm2 

(14.4;30.9) for men and 10.2 cm2 (6.7;16.0) for women in the diastole. In general, all fat 

depots were larger in men as compared to women, irrespective of the systolic or diastolic 

measurements.  
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In the systole, there was a significant increase in median pericardial fat from 

healthy controls to prediabetics and diabetics (22.8 cm2 vs 30.1 cm2 vs 40.3 cm2; p<0.001, 

respectively). Similar trends were seen for both the epicardial and paracardial fat depot 

separately (7.7 cm2 vs 9.2 cm2 vs 10.3 cm2 and 14.3 cm2 vs 20.3 cm2 vs 27.4 cm2; both 

p<0.001, respectively) (Rado et al. 2019); Table 5 and Figure 8).  

 

 

Table 5: Differences in the pericardial fat depots as assessed in the systole between 

subjects with normal glucose tolerance, prediabetics and diabetics  

Data are shown as median (25th; 75th percentile) and are displayed in centimeters squared 

[cm2]. Data from the table have been partially published (Rado et al. 2019). 

 

 All  

subjects 

 

Normal  

glucose  

tolerance 

Prediabetes 

 

Diabetes 

 

p-value 

 N=372 N=220 N=100 N=52  

Pericardial fat 

[cm2] 

26.5 

(18.4;40.3) 

22.8 

(14.6;32.1) 

30.1 

(22.8;43.5) 

40.3 

(29;53.6) 

<0.001 

Epicardial fat 

[cm2] 

8.7 

(5.6;11.2) 

7.7  

(5;10.3) 

9.2  

(6.9;11.8) 

10.3 

(7.6;14.4) 

<0.001 

Paracardial fat 

[cm2] 

18.3 

(11.1;27.3) 

14.3  

(9;22.5) 

20.3 

(15.5;30.1) 

27.4 

(20.7;37.8) 

<0.001 
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Figure 8: Differences between epicardial and paracardial fat in subjects with normal 

glucose tolerance, prediabetics and diabetics 

Boxplots depicting the stepwise increase in both systolic epicardial (A) and systolic 

paracardial (B) fat from healthy subjects to prediabetics and diabetics. All p were <0.001. 

The fat amounts are presented in centimeter squared [cm2] on the y-axis. This figure has 

previously been published in the British Journal of Radiology (Rado et al. 2019). 

 

 

Similar results were found for the diastolic assessment of the pericardial fat 

depots. Pericardial fat and both the epi- as well as paracardial fat depot increased from 

subjects with normal glucose tolerance to prediabetics and diabetics. Results are shown 

in Table 6. 
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Table 6: Differences in the pericardial fat depots as assessed in the diastole between 

subjects with normal glucose tolerance, prediabetics and diabetics 

Data are shown as median (25th; 75th percentile) and are displayed in centimeters squared 

[cm2].  

 

 All  

subjects 

 

Normal  

glucose  

tolerance 

Prediabetes 

 

Diabetes 

 

p-value 

 N=372 N=220 N=100 N=52  

Pericardial fat 

[cm2] 

23.6 

(15.9;35.8) 

20.0 

(12.8;29.4) 

26.2 

(20.9;39.6) 

38.0 

(24.7;48.4) 

<0.001 

Epicardial fat 

[cm2] 

7.7 

(5.1;10.6) 

6.9  

(4.4;9.7) 

8.6  

(5.9;11.1) 

9.8  

(7.5;13.3) 

<0.001 

Paracardial fat 

[cm2] 

16.0 

(9.7;25.4) 

12.4 

(7.7;20.6) 

18.7 

(13.6;27.3) 

26.2 

(17.6;34.1) 

<0.001 

 

 

3.5. Adjustment for potential confounders 
 

 In an unadjusted setting, there was an association between epicardial fat and 

prediabetes as well as diabetes seen (both p ≤0.02). After adjusting for age and gender, 

the association to prediabetes became non-significant (p=0.14) whereas epicardial fat was 

still associated with diabetes (p=0.02). The association attenuated for both the prediabetic 

and diabetic group after additionally adjusting for cardiovascular risk factors including 

hypertension, triglycerides, LDL and smoking (p=0.37 and 0.59, respectively) (Rado et 

al. 2019). Details are depicted in Table 7. 
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Table 7: Stepwise adjustment for potential confounders of the association between 

epicardial fat with prediabetes and diabetes 

The systolic data for epicardial fat were employed for this analysis. Data are derived from 

median regression and are displayed as ß-coefficient (95% confidence interval) and p-

value. P-values in bold are statistically significant. Abbreviations: “BMI, body mass 

index; CI, confidence interval; CVRF, cardiovascular risk factor; LDL, low-density 

lipoprotein; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue” (Rado et 

al. 2019). CVRF included hypertension, smoking, LDL and triglycerides. This table has 

previously been published in the British Journal of Radiology (Rado et al. 2019). 

 

 Normal 

glucose 

tolerance 

Prediabetes Diabetes 

Epicardial fat 
 β (95 CI) 

p-

value 
β (95 CI) 

p-

value 

Unadjusted -Ref.- 1.54 

(0.23;2.84) 
0.02 

3.04 

(1.39;4.68) 
<0.001 

Adjusted for      

Age, gender -Ref.- 0.94  

(-0.29;2.16) 
0.14 

1.98 

(0.36;3.61) 
0.02 

Age, gender,  

CVRF 

-Ref.- 0.55  

(-0.66;1.76) 
0.37 

0.47  

(-1.26;2.2) 
0.59 

Age, gender, 

 CVRF, BMI 

-Ref.- 0.3  

(-0.87;1.47) 
0.62 

-0.08  

(-1.71;1.56) 
0.93 

Age, gender,  

CVRF, SAT 

-Ref.- 0.29  

(-0.89;1.47) 
0.63 

0.35  

(-1.3;2.01) 
0.68 

Age, gender,  

CVRF, VAT 

-Ref.- -0.41  

(-1.55;0.73) 
0.48 

-0.92  

(-2.53;0.7) 
0.27 

 

 

 For paracardial fat, there was a significant association between paracardial fat 

and prediabetes as well as diabetes after adjustment for age and gender seen (p=0.01 and 

<0.001, respectively). The association became non-significant for the prediabetes group 
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after adjusting for age, gender and cardiovascular risk factors. A significant association 

was seen for the diabetes group after adjustment for age, gender, CVRF without (p=0.04) 

and with BMI (p=0.03), as well as after adjustment for age, gender, CVRF and SAT 

(p=0.048) (Rado et al. 2019). Details are depicted in Table 8. 

 

 

Table 8:  Stepwise adjustment for potential confounders of the association between 

paracardial fat with prediabetes and diabetes 

The systolic data for paracardial fat were employed for this analysis. Data are derived 

from median regression and are displayed as ß-coefficient (95% confidence interval) and 

p-value. P-values in bold are statistically significant. Abbreviations: “BMI, body mass 

index; CI, confidence interval; CVRF, cardiovascular risk factor; LDL, low-density 

lipoprotein; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue” (Rado et 

al. 2019). This table has previously been published in the British Journal of Radiology 

(Rado et al. 2019). 

 Normal 

glucose 

 tolerance 

Prediabetes Diabetes 

Paracardial fat 
 β (95 CI) 

p-

value 
β (95 CI) p-value 

Unadjusted -Ref.- 5.15 

(1.36;8.94) 
0.01 

13.08 

(8.31;17.85) 
<0.001 

Adjusted for      

Age, gender 

 

-Ref.- 4.45 

(1.27;7.63) 
0.01 

8.77 

(4.57;12.97) 
<0.001 

Age, gender,  

CVRF 

-Ref.- 3.59  

(-0.1;7.28) 
0.06 

5.43 

(0.15;10.71) 
0.04 

Age, gender, 

CVRF, BMI 

-Ref.- 1.77  

(-1.34;4.88) 
0.26 

4.89 

(0.54;9.24) 
0.03 

Age, gender,  

CVRF, SAT 

-Ref.- 0.56  

(-2.74;3.86) 
0.74 

4.68 

(0.05;9.31) 
0.048 

Age, gender,  

CVRF, VAT 

-Ref.- -2.16  

(-4.91;0.59) 
0.12 

-1.72  

(-5.6;2.16) 
0.39 
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 In multivariate analysis, most traditional cardiovascular risk factors including age, 

hypertension or LDL were not significantly associated with either epicardial or 

paracardial fat. There was a strong association seen between VAT and epicardial as well 

as VAT and paracardial fat (β: 1.08 [0.76; 1.4], p<0.001; and β: 4.10 [3.32; 4.88], 

p<0.001, respectively). Furthermore, epicardial fat was associated with current smoking 

(β: 1.39 [0.07; 2.70], p=0.04). There was a negative association between paracardial fat 

and SAT seen (p=0.04) (Rado et al. 2019). Further details are given in Table 9.  

 

 

Table 9: Multivariate analysis of the relationship between the epicardial and 

paracardial fat depots to cardiovascular risk factors including body fat depots  

Systolic data for epicardial and paracardial fat were employed. Data are derived from 

median regression and are displayed as β-coefficient (95% confidence interval). 

Significant p-values are marked in bold font. Abbreviations: “CI, confidence interval; 

HDL, high-density lipoprotein; LDL, low-density lipoprotein; PDFF, proton-density fat 

fraction; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue” (Rado et al. 

2019). This table has been previously published in the British Journal of Radiology (Rado 

et al. 2019). 

  Epicardial fat Paracardial fat 

  β (95%CI) p-value β (95%CI) p-value 

Age (years) 0.03 (-0.03; 0.09) 0.27 0.01 (-0.14; 0.15) 0.93 

Male gender (%) -0.72 (-2.14; 0.70) 0.32 0.87 (-2.57; 4.31) 0.62 

Hypertension 

(%) 
-0.48 (-1.55; 0.59) 0.38 0.71 (-1.88; 3.31) 0.59 

LDL (mg/dl) -0.01 (-0.03; 0.001) 0.08 0 (-0.04; 0.04) 1.00 

HDL (mg/dl) 0.004 (-0.03; 0.04) 0.81 0.005 (-0.08; 0.09) 0.91 

Triglyceride 

(mg/dl) 
0.002 (-0.005; 0.008) 0.59 -0.002 (-0.02; 0.01) 0.8 

Alcohol (g/day) 0.007 (-0.02; 0.03) 0.54 -0.03 (-0.08; 0.02) 0.29 

Smoking     

   Never-smoker  -Ref.-  -Ref.-  
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3.6. Cardiac fat depots and early left-ventricular impairment 

 

 In general, subjects with early LV impairment as assessed on MR images, had 

significantly higher amounts of both epicardial and paracardial fat as compared to 

healthy subjects (p<0.001) (Rado et al. 2019) (Figure 9). 

Figure 9: Differences between amounts of epicardial and paracardial fat in 

subjects with and without signs for left ventricular impairment  

Epicardial (A) and paracardial (B) fat amounts in relation to signs of LV cardiac 

impairment (endpoint of LVEF<55%; presence of LGE; LVCI >1.3g/ml). Fat amounts 

are presented in centimeters squared [cm2] on the y-axis. This figure has been previously 

published in the British Journal of Radiology (Rado et al. 2019). 

   Ex-smoker  0.8 (-0.23; 1.82) 0.13 -1.27 (-3.76; 1.23) 0.32 

  Current-smoker 1.39 (0.07; 2.70) 0.04 -1.45 (-4.64; 1.73) 0.37 

VAT (l) 1.08 (0.76; 1.4) <0.001 4.10 (3.32; 4.88) <0.001 

SAT (l) -0.02 (-0.19; 0.16) 0.87 -0.46 (-0.89; -0.032) 0.04 

PDFFhepatic (%) -0.04 (-0.11; 0.03) 0.21 -0.17 (-0.33; 0.001) 0.05 
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 In an unadjusted setting, both epicardial and paracardial fat were associated with 

the combined endpoint of LV impairment (p=0.004 and <0.001, respectively). The 

association between epicardial fat and LV impairment persisted after adjustment for 

cardiovascular risk factors including diabetes (β: 1.63 (0.5; 2.76), p= 0.005). The 

association even remained independent upon additional adjustment for VAT (β: 1.13 

(0.22; 2.03), p=0.02) but became non-significant upon adjustment for BMI (p=0.09) 

(Rado et al. 2019). 

For paracardial fat, loss of significance was seen after adjustment for diabetes status 

(p=0.13) (Rado et al. 2019). Further details on the stepwise adjustment are given in Table 

10.  

 

 

Table 10: Epicardial and paracardial fat and associations to signs for early LV 

impairment  

Systolic data were employed for epicardial and paracardial fat and a stepwise adjustment 

for multiple variables was conducted. Data are presented as β-coefficient (95% 

confidence interval) and significant p-values are marked in bold font. Abbreviations: 

“BMI, body mass index; CI, confidence interval; LDL, low-density lipoprotein; LV, left 

ventricular; VAT, visceral adipose tissue. LV impairment was defined as a combined 

endpoint of LGE, EF <55% or LVCI > 1.3 g ml-1” (Rado et al. 2019). This table has been 

previously published in the British Journal of Radiology (Rado et al. 2019). 

  Epicardial fat Paracardial fat 

LV impairment β (95 CI) p-value β (95 CI) p-value 

Unadjusted 1.80 (0.57; 3.03) 0.004 6.9 (3.3; 10.49) <0.001 

Adjusted for     

Age, gender, 

smoking, 

hypertension, 

LDL 

1.26 (0.18; 2.35) 0.02 4.92 (1.79; 8.05) 0.002 
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Age, gender, 

smoking, 

hypertension, 

LDL, diabetes 

1.63 (0.5; 2.76) 0.005 2.63 (-0.75; 6.00) 0.13 

Age, gender, 

smoking, 

hypertension, 

LDL, diabetes, 

BMI 

0.95 (-0.15; 2.05) 0.09 1.63 (-1.63; 4.89) 0.33 

Age, gender, 

smoking, 

hypertension, 

LDL, diabetes, 

VAT 

1.13 (0.22; 2.03) 0.02 0.88 (-1.53; 3.30) 0.47 
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4. Discussion  

 

 In the present analysis, our aim was to investigate MRI-based, manually 

segmented, single-slice pericardial fat depots with a special emphasis on associations 

with impaired glucose metabolism and signs for subclinical left-ventricular impairment 

in a clinically cardiovascular healthy cohort from the general population (Rado et al. 

2019). In summary, the manual assessment of epicardial and pericardial fat in the systolic 

and diastolic heart cycle was feasible when employing the cine SSFP sequence in the long 

axis (four chamber view). Higher inter-reader and intrareader reproducibility was found 

for systolic as compared to diastolic readings (Rado et al. 2019). A strong correlation was 

seen between the volumetric and the single-slice assessment of pericardial fat. Very 

strong correlations were found between systolic and diastolic measurements for all 

pericardial fat depots. In general, systolic measurements were higher than diastolic 

measurements. Men had higher amounts of all fat depots as compared to women and 

regardless of the systolic or diastolic measurements.  

 There were significant differences seen in the amounts of epicardial and 

paracardial fat between prediabetics, diabetics and controls. We found a significant 

increase in epicardial as well as paracardial fat from healthy subjects to prediabetics and 

diabetics (Rado et al. 2019). Upon stepwise adjustment for traditional cardiovascular risk 

factors including body fat depots, this association became non-significant for both 

epicardial and paracardial fat. Multivariate analysis revealed that VAT was the best 

predictor for epicardial as well as paracardial fat (Rado et al. 2019) whereas no significant 

association was found for other traditional cardiovascular risk factors. 

 Subjects with signs for early subclinical LV impairment as determined on MR 

images had significantly higher amounts of epicardial and paracardial fat (Rado et al. 

2019). Epicardial fat was independently associated with MRI-derived signs for early LV 

impairment (endpoint: LVEF<55%; presence of LGE; LVCI >1.3g/ml) after adjusting 

for traditional cardiovascular risk factors including VAT, but a loss of significance was 

seen when adjusting for BMI instead of VAT. There was no independent association 

between paracardial fat and signs for LV impairment (Rado et al. 2019).  
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The manual assessment of the pericardial fat depots on MR images in the cine SSFP 

sequence was feasible (Rado et al. 2019). SSFP sequences are considered standard CMR 

sequences for analysis of especially the LV structure and function and are the preferred 

sequence for cine imaging (Kramer et al. 2013). Among others, SSFP imaging has been 

included in MR imaging protocols in emerging epidemiological studies including the 

German National Cohort (Bamberg et al. 2015) or the UK Biobank (Petersen et al. 2016). 

While labor-intensive and time-consuming, manual segmentation of the pericardial fat 

depots using this sequence has been found practicable in our approach; especially since 

the cine-sequence offers the possibility to assess the fat depots not only in one heart cycle 

but in the systole and the diastole. This finding is important as it allows for segmentation 

of the pericardial fat depots using standard images acquired during a whole-body MRI 

exam without employing an additional, specialized MRI sequence. Segmentation can 

only be conducted upon identification of the thin pericardium; however, identification 

was unsuccessful in only one data set of the 400 subjects included. The epicardial fat 

depot can then easily be detected as the fat located between the myocardium and the 

pericardium. In an attempt to avoid mistakes by overlapping ROIs, we opted to segment 

only the epicardial and the pericardial fat amounts and then deduct the amount of 

epicardial fat, thus obtaining the amount of paracardial fat. Similar approaches of 

segmenting only two of the fat depots and calculating the missing one by subtraction, 

have been described earlier (Thanassoulis et al. 2010a). Additionally, it needs to be 

pointed out that we did not segment small, non-fatty structures embedded in the 

pericardial fat depots separately. Thus, a minimal overestimation of the fat amounts 

cannot be ruled out in our study cohort. This attempt is in contrast to other approaches 

towards the fat assessment. In studies employing CT images for pericardial fat 

assessment, dedicated Hounsfield units were attributed to fat and the fat depots were then 

semi-automatically analyzed (Thanassoulis et al. 2010a). However, since we used our 

approach for all study subjects included in the final analysis, our data set can still be 

regarded as consistent within itself. 

We found that the intraclass correlations were higher for the intrareader than for the 

interreader comparison. Similar results have been reported from the Framingham Heart 

Study (Rosito et al. 2008). This finding is expected and may stem from the routine an 

individual reader develops during the segmentation process. Intrareader as well as 
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interreader results were better for the pericardial as compared to the epicardial fat depots 

in both the systole and diastole. Rosito et al note the same finding of higher intraclass 

correlations for pericardial as compared to epicardial fat segmentation (Rosito et al. 

2008), although they only segmented the fat depots in one heart cycle. This finding may 

be explained by the smaller size of the epicardial fat depot which may more easily result 

in segmentation errors.  Interestingly, when comparing systolic and diastolic 

measurements, intrareader and interreader reproducibility were higher for the systolic 

measurements. This finding may be explained by better delineation and thus higher rates 

of agreement of the fat depots as the heart is contracted (Rado et al. 2019). In 

consideration of this finding, we decided to employ the systolic data in our statistical 

analysis (Rado et al. 2019), unless otherwise indicated.  

 

A good correlation was found between manually assessed single-slice pericardial fat 

and automatically assessed volumetric pericardial fat. Similar results for a planimetric 

versus volumetric approach for the epicardial fat depot as derived from CT images have 

been reported by Oyama et al (Oyama et al. 2011). Additionally, Sironi et al found that 

cardiac fat mass correlated with the cardiac fat area from assessment in the four-chamber 

view in a cohort of N=20 healthy subjects (Sironi et al. 2012). Our finding can be seen as 

reassurance that the selected sequence, approach and segmentation technique are 

acceptable for pericardial fat assessment.  

 

In our study, prediabetics and diabetics had a more unfavorable constellation 

concerning traditional cardiovascular risk factors such as the presence of hypertension or 

elevated triglycerides when compared to subjects with normal glucose tolerance (Rado et 

al. 2019). This finding may be due to impaired glucose metabolism being a part of the 

metabolic syndrome that is known as an array of disturbances in e.g. lipid metabolism 

and blood pressure (Grundy et al. 2004). There was an increase in the fat depots VAT, 

SAT, and PDFFhepatic from normoglycemic subjects to subjects with impaired glucose 

metabolism (Rado et al. 2019). It is well established that the accumulation of VAT is 

associated with an unfavorable cardiometabolic risk profile, even in healthy subjects (De 

Larochellière et al. 2014). In the Framingham Heart Study, Fox et al found VAT to be 
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associated with an adverse metabolic risk in 3001 subjects, independent of BMI or waist 

circumference (Fox et al. 2007). We found subjects with prediabetes and diabetes to be 

taking more cardioprotective medication such as antihypertensive or lipid-lowering 

medication than healthy controls (Rado et al. 2019). This finding needs to be taken into 

consideration when interpreting further results as these pharmaceuticals may influence 

the two investigated structures, namely body fat depots and cardiac function. Thus, our 

study results cannot be directly compared to drug-naïve individuals.  

 

There was a significant increase seen in the composite endpoint of subclinical LV 

impairment (LVEF<55%; LVCI >1.3g/ml; presence of LGE) from subjects with normal 

glucose tolerance to prediabetics and diabetics in this clinically cardiovascular healthy 

cohort (Rado et al. 2019). As has been mentioned earlier, it is known that diabetes is one 

of the major contributors towards cardiovascular disease (Kannel and Mcgee 1979). Our 

results, in conjunction with other findings from the same cohort (Bamberg et al. 2017) 

show that cardiovascular alterations already occur in prediabetic stages, and that these 

subclinical changes can be visualized by MRI. Future applications for these findings 

might open new ventures for preventative medicine.  

A significant increase in LV myocardial mass was noted in subjects with impaired 

glucose metabolism (Rado et al. 2019). This finding may be attributed to early structural 

changes of the myocardium in response to impaired glucose metabolism. An increase in 

LV mass in impaired glucose metabolism has previously been reported especially for 

women in the Framingham Heart Study by Rutter et al (Rutter et al. 2003). It is known 

that impaired glucose metabolism induces structural alterations such as increasing central 

artery stiffness (Schram et al. 2004).  

 

Within the 372 data sets included in the final analysis, the epicardial fat depots 

assessed in both the systole and the diastole were smaller than the paracardial fat depots 

(Rado et al. 2019). An inverse relation has been reported from the Framingham Heart 

Study by Mahabadi et al (Mahabadi et al. 2009). Sicari et al measured epicardial and 

paracardial fat on both echocardiography (thickness) and MR images (area) in the same 
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cohort and found the epicardial fat depots to be smaller than paracardial fat, regardless of 

the imaging method applied (Sicari et al. 2011). We conclude that both fat depots are 

volatile in size within the general population and contribute with our results to the broader 

picture.  

We found a median of 8.7 cm2 for epicardial fat and 18.3 cm2 for paracardial fat for 

all subjects (Rado et al. 2019) in the systolic assessment and 7.7 cm2 and 16 cm2 in the 

diastolic assessment, respectively. While every individual had measurable paracardial fat, 

the absence of measurable epicardial fat was noted in a few cases. We did not multiply 

the amount of fat with the slice thickness but worked with the primary numbers to avoid 

calculative bias. In a study conducted in Italy, MRI data derived from diastolic 

measurements showed a mean epicardial fat area of 8.27 cm2 and mean paracardial fat 

area of 18.13 cm2 (Sicari et al. 2011). Similar amounts have been reported by others 

(Sironi et al. 2012) and these data reflect our findings very well. We found that our results 

of epicardial fat are higher than for example by Oyama et al (Oyama et al. 2011) who 

measured epicardial fat areas in CT on certain anatomical levels in Japan. It is known that 

epicardial fat is ethnicity-dependent and therefore cannot be directly compared (Salami 

et al. 2013, Adams et al. 2017).  

In general, men had higher median amounts of all fat depots than women, regardless 

of the systolic or diastolic measurements. Gender differences in epicardial fat have been 

described previously, e.g. by Dagvasumberel et al, who found higher epicardial fat 

volume in men as compared to women but differences became comparable when 

adjusting for height and body surface index (Dagvasumberel et al. 2012). De 

Larochiellère et al also found higher amounts of epicardial fat in men than in women (De 

Larochellière et al. 2014). However, it needs to be noted that our results are purely 

descriptive and have not been adjusted for height, weight or body surface area. 

 

There was a strong correlation seen between data-sets derived from segmentations 

conducted in the maximal systole and the maximal diastole. Single-slice segmentation of 

pericardial fat depots in MRI in the long axis has been conducted in a couple of studies 

(Sironi et al. 2012, Sicari et al. 2011, Jonker et al. 2013, Van Schinkel et al. 2014) but to 

our knowledge, there are no cohort study data on the comparability of the diastolic and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Dagvasumberel%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22963346
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systolic measurements in this view so far. Teme et al showed strong correlations between 

epicardial fat assessment in the end-systole and end-diastole on short-axis MR images in 

20 subjects (Teme et al. 2014) and we support the same finding for the cardiac long-axis 

four chamber view in a cohort comprising 372 individuals. The highest correlation 

coefficient was seen for pericardial fat, followed by paracardial fat and then epicardial 

fat. We hypothesize that this finding relates to the absolute sizes of the fat depots. The 

strong correlations between both data sets also support the use of one dataset only for 

more sophisticated statistical analyses. It needs to be considered that the maximal systole 

and maximal diastole were determined subjectively on each image, which may 

theoretically constitute a source of error.  

 

Data derived from the systolic measurements were generally larger for all fat depots 

as compared to measurements in the diastole. This finding may be explained by 

employing a single-slice measurement and the contraction of the heart during the systole 

drawing surrounding structures including the fat depots into the field of view. Similar 

observations have been made for echocardiographically derived epicardial fat thickness 

in systole and diastole (Graeff et al. 2016). As the epicardial fat depot is anatomically 

closer to the movements of the heart than the paracardial fat depot, differences between 

systole and diastole were slightly larger for the epicardial fat depot than for paracardial 

fat.  

 

We found a significant increase in both the epicardial and paracardial fat depots from 

subjects with normal glucose tolerance to prediabetics and diabetics (Rado et al. 2019).  

Previous research found, that epicardial fat is increased in diabetes (Song et al. 2015) and 

even prediabetes (Arpaci et al. 2015). Moreover, epicardial fat thickness has been shown 

to be associated with diabetes prevalence in a male Korean cohort independent of multiple 

cardiovascular risk factors (Chun et al. 2015). Iacobellis and Leonetti stated, that there is 

a relation between epicardial fat and insulin-resistance (Iacobellis and Leonetti 2005). 

Thereby, our results are in line with the current literature and indicate that there may be 

structural changes in the body fat composition in impaired glucose metabolism and 
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insulin-resistance and the amount of epicardial fat seems to be associated with metabolic 

alterations.  

However, there is not much literature on the increase of paracardial fat in the light of 

impaired glucose metabolism. Thanassoulis et al argued that paracardial fat is correlated 

with metabolic risk in a study comprising 3,312 participants (Thanassoulis et al. 2010a) 

and Sicari et al also found correlations between paracardial fat and signs for metabolic 

syndrome in a study cohort of 49 subjects (Sicari et al. 2011). 

Data trends are very similar for assessment in the maximal diastole in the same study 

population. They also show a significant stepwise increase from healthy subjects to 

prediabetics and diabetics for both fat depots. However, and as discussed earlier, the 

absolute numbers are slightly smaller. 

 

Upon adjustment for age and gender, the association between prediabetes and 

epicardial fat attenuated. Furthermore, in subjects with diabetes, a loss of significance 

was found after adjusting for age, gender and traditional cardiovascular risk factors, 

whereas the association of paracardial fat and diabetes remained significant after 

adjusting for age, gender, traditional cardiovascular risk factors, BMI and SAT. The 

association between paracardial fat and diabetes became only non-significant after the 

additional adjustment for VAT (Rado et al. 2019). The differences in the loss of 

significance between the prediabetes and diabetes group may be explained by the more 

advanced structural changes in diabetes as compared to prediabetes in the development 

of the disease. Interestingly, traditional cardiovascular risk factors can be depicted as 

confounders for the association between diabetes and epicardial fat in our study. High 

levels of interaction between different cardiovascular risk factors are known; it has, for 

example, been shown that epicardial fat is associated to smoking (Monti et al. 2014) and 

the metabolic syndrome (Wang et al. 2009). On the other hand, epicardial fat, smoking, 

diabetes, or age influence coronary artery disease (Jeong et al. 2007). In short, our results 

contradict previously conducted studies such as Wang et al who found independent 

associations between CT-measured epicardial fat and diabetic status (Wang et al. 2009).  
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Available data in the literature are scarce for paracardial fat. Interestingly, we detected 

an association of paracardial fat to diabetes even after adjusting for age, gender and 

traditional risk factors (Rado et al. 2019). This finding is interesting by showing that the 

fat depot distant to the myocardium is not primarily affected by typical cardiovascular 

risk factors. As has been described earlier, Sicari et al found that paracardial fat correlates 

better with cardiometabolic risk markers than epicardial fat (Sicari et al. 2011). However, 

all associations became non-significant after additional adjustment for VAT, thereby 

underlining the potency and uniqueness of this distinct fat depot as previously described 

in the Framingham Heart Study (Fox et al. 2007). We conclude from our data that there 

is no independent association between either epicardial or paracardial fat and impaired 

glucose metabolism (Rado et al. 2019). Nonetheless, our study analyzes the contributions 

of epicardial and paracardial fat towards impaired glucose metabolism and in the context 

of other cardiovascular risk factors in this stepwise approach in great detail. 

 

In multivariate analysis, the strongest predictor for both epicardial and paracardial fat 

was VAT (Rado et al. 2019). Our results of this analysis are in line with other groups who 

reported a significant correlation particularly for epicardial fat and VAT (Iacobellis et al. 

2003), and a correlation especially in obese diabetics (Jain et al. 2015). VAT has been 

discussed as one of the ectopic fat storage sites to be used when other fat storage sites 

cannot compensate anymore (Smith 2015). Our study underlines the importance of VAT 

in the development of cardiometabolic disease states due to its detrimental effects via 

epicardial adipose tissue. Earlier studies have even suggested epicardial fat as a measure 

for VAT (Iacobellis et al. 2003). Interestingly, Graeff et al analyzed epicardial fat 

thickness by echocardiography in the ELSA-Brasil study and found that associations to 

cardiometabolic variables were mostly influenced by age, gender, race and central 

adiposity which was measured as waist circumference in this particular study (Graeff et 

al. 2016).  

A weaker association was found between epicardial fat and current smoking. As has 

been described, an association between epicardial fat and smoking has been discussed 

earlier in subjects with metabolic syndrome (Monti et al. 2014) and our study certainly 

comprises subjects with that complex metabolic manifestation. 
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It is known that paracardial fat correlates with VAT, as has been shown in the 

Framingham Heart Study by Thanassoulis et al (Thanassoulis et al. 2010a) and we are in 

line with that finding. Moreover, Sironi et al stated that it may be paracardial fat that is 

more associated with cardiovascular risk (Sironi et al. 2012), thus making it unclear to 

which extent which pericardial fat depot contributes to cardiovascular disease. 

Paracardial fat has been described to show an indifferent behavior between subcutaneous 

and epicardial fat as shown in the context of weight loss by Foppa et al (Foppa et al. 

2013).  

 

As our original cohort only comprises subjects without clinically manifest 

cardiovascular disease, we defined imaging-based parameters that represent subclinical 

pathological LV changes. The presence of LGE is a marker for focal fibrosis, for example 

after myocardial ischemia (Wu et al. 2001). LVCI is a marker for cardiac remodeling 

(Pun et al. 2011). An LVEF <55% has been suggested as a cutoff for patients with heart 

failure with preserved ejection fraction who may progress to reduced ejection fraction 

(Ueda et al. 2015). Interestingly, when combining these markers of LV impairment, both 

the epicardial and paracardial fat depots were higher in subjects fulfilling the criteria for 

this composite endpoint (Rado et al. 2019). Epicardial fat has been shown to affect the 

coronary microvasculature (Gaborit et al. 2012) and our findings also hint at a 

pathological influence of epicardial fat in the very early stages of LV impairment. Again, 

our study underlines the potential of imaging-based prevention in the future as very early 

LV changes can be detected before a clinical manifestation occurs.  

When stepwise adjusted, the association between epicardial fat and the composite 

endpoint of LV impairment remained significant after adjustment for diabetes and other 

cardiovascular risk factors. Even upon additional adjustment for VAT, the association 

remained independent. However, when adjusted for BMI instead of VAT, the association 

was rendered non-significant (Rado et al. 2019). We currently do not have a sufficient 

explanation for this finding although our hypothesis is that the different fat depots that 

are summarized in the calculated BMI may play different roles in the human body (Rado 

et al. 2019). As described earlier, the epicardial fat depot is very close to the myocardium 

and the coronary vessels and they are not separated by a fascia (Corradi et al. 2004). Our 
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finding may emphasize the strong local effect that epicardial fat has on its surrounding 

structures, even in clinically cardiovascular healthy subjects (Rado et al. 2019). 

Interestingly, the association between paracardial fat and LV impairment was 

rendered non-significant after adjusting for traditional cardiovascular risk factors 

including diabetes status (Rado et al. 2019). This finding may be explained by the 

anatomical remoteness of the paracardial fat depot to the myocardium and the coronary 

vessels. 

 

Future Directions for the use of epicardial fat data as derived from MRI are promising. 

Firstly, due to its non-ionizing nature, MRI is a unique tool for screening clinically 

healthy subjects. Nowadays, the SSFP sequence is a standard sequence in most CMR 

protocols (Kramer et al. 2013), thereby not prolonging the measurement process or 

delaying the routine work-flow. The segmentation of the pericardial fat depots can easily 

be integrated into the reporting routine. Nevertheless, concerns about the financial aspects 

and length of performing CMR have been raised (Madonna et al. 2019). MRI-based 

screening for epicardial fat as a predictor for dysfunctional adiposity can, in the future, 

hopefully be offered to subjects with symptoms of the metabolic syndrome who are at 

risk for developing adverse cardiac events in the future. Also, subclinical LV impairment 

can be analyzed on these MR images before it becomes clinically manifest. Hopefully 

epi- and paracardial fat can be used as predictors for the overall fat status of an individual 

as well. BMI and waist circumference measurements could then be underpinned by more 

sophisticated fat analysis without subjects undergoing time-consuming whole-body 

MRIs. The planimetric assessment of cardiac fat could also be integrated in the workflow 

when performing necessary non-contrast calcium-scoring CTs. The assessment of epi- 

and paracardial fat should be seen as an integral part in analyzing the complete body 

structure and the creation of imaging-based panels related to clinical and laboratory 

measurements should be aspired. This could help determine the subject’s overall 

metabolic status and improve the individual risk assessment. Additionally, these data 

could – with the individual’s informed consent – then be applied to develop a plan for 

individualized prevention, diagnostics and therapies but also to calculate estimated 

healthcare costs not only or the individual but for the general population. Data can also 
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be used to compare them to a larger set of anthropometric measurements and other fat 

compartments in the human body, such as renal/retroperitoneal fat in order to fully 

understand the fat deposition in the human body.  

The paracardial fat depot is widely unexamined and may very well not directly play 

a role in the development of cardiovascular disease but interact with the other different 

fat depots of the human body. Therefore, further research into this particular fat depot 

should be of high interest.  

 

Our study has limitations. Firstly, our cohort consists of Caucasian Western-European 

subjects only, therefore results concerning the amount of pericardial fat compartments of 

our study are only partially applicable to other, ethnically more diverse populations as 

has been discussed previously (Rado et al. 2019) and shown in several studies conducted 

so far (Adams et al. 2017, Apfaltrer et al. 2014). Moreover, subjects in the three subgroups 

‘normal glucose tolerance’, ‘prediabetes’ and ‘diabetes’ were not matched for e.g. age, 

gender or BMI and differed additionally in sample size. Thus, a part of our data has only 

descriptive character. We tried to overcome that fact by multivariate analysis but noted, 

that further prospective studies including matched and randomized subjects would be 

preferable (Rado et al. 2019). Also, subjects with prior cardiovascular disease were 

excluded from the study, thereby leaving the study cohort with clinically cardiovascular 

healthy subjects. In order to still analyze the effect of the fat depots on the left ventricle 

we had to employ imaging-based variables that helped us understand the subclinical 

implications of especially epicardial fat. Moreover, we could not analyze clinically 

manifest cardiac diseases and outcomes (Rado et al. 2019). While the previous facts may 

be seen as a limitation, it needs to be noted though, that this study is a baseline study and 

outcomes are not yet available. Thus, a longitudinal approach would be preferable in 

order to examine whether our findings with subclinical variables are of clinical 

significance in the future. Additionally, further studies including greater numbers of 

subjects with and without prior cardiovascular disease are warranted. Subjects included 

in the study were mostly not newly diagnosed with diabetes or under antidiabetic therapy 

according to German guidelines. This fact, together with the intake of cardioprotective 

medication in many study subjects, may have influenced our findings and may be 



69 

responsible for the early loss of significance concerning established cardiovascular risk 

factors. Also, we only included subjects with type 2 diabetes into the study. We 

segmented the pericardial fat depots manually. Also, maximal systole and diastole as well 

as the pericardium were subjectively identified, which may theoretically present a 

subjective source of error (Rado et al. 2019). Hence, a consensus reading was conducted 

to rule out possible great errors. Our study also shows a good correlation between 

manually and automatically assessed pericardial fat and we may hopefully overcome the 

problem of manual segmentation soon. 

 

In conclusion, the manual assessment of the pericardial fat compartments on MR 

images in the cine SSFP-sequence in the long axis (four chamber view) is feasible with 

the chosen approach (Rado et al. 2019). There were strong correlations seen between data 

derived from the systole and the diastole while measurements from the systole were 

larger. Our manually derived data for pericardial fat from single-slice long-axis 

measurements correlated well with automatically derived, volumetric data for pericardial 

fat.  

In all subjects included, the median paracardial fat depot was larger than the epicardial 

fat depot (Rado et al. 2019) and men had more median paracardial and epicardial fat than 

women. There were significant differences in epicardial as well as paracardial fat between 

healthy subjects, prediabetics and diabetics in our cohort without clinical manifest 

cardiovascular disease. However, the association between epicardial and paracardial fat 

to impaired glucose metabolism was not independent of other traditional cardiovascular 

risk factors. VAT was the strongest predictor for epicardial as well as paracardial fat in 

multivariate analysis (Rado et al. 2019). We also found an increase in subclinical 

measures of LV impairment ranging from healthy subjects to prediabetics and diabetics. 

Subjects with the composite endpoint of LV impairment had significantly higher amounts 

of both epicardial and paracardial fat. Upon stepwise adjustment, epicardial fat was 

independently associated with the composite endpoint of LV impairment, even when 

additionally adjusting for VAT but not for BMI. However, no independent association 

between paracardial fat and signs of subclinical LV impairment was found (Rado et al. 

2019).  
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Our study contributes to a better scientific understanding of both the epicardial and 

paracardial fat depot. We underline the feasibility of manually analyzing the cardiac fat 

depots on a standard MRI sequence which opens new venues for image interpretation in 

the diagnostic routine. While there is no independent association between impaired 

glucose metabolism and epicardial or paracardial fat, our study emphasizes the 

importance of VAT in the development of cardiometabolic diseases and the local 

deteriorating effect that epicardial fat has on the myocardium independent of VAT. 

Finally, our study results indicate, that an increase of epicardial fat seems to be one of 

many factors within the complex pathomechanism of cardiovascular and metabolic 

alterations, even in subclinical diseases. 
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Abstract 

 

Objective: To manually assess the pericardial fat depots on MRI (Magnetic Resonance 

Imaging) in a clinically cardiovascular healthy cohort and investigate associations 

between epicardial/paracardial fat and disturbances in the glucose metabolism as well as 

measures for subclinical left ventricular (LV) impairment. 

Material and Methods: 400 subjects from the KORA FF4 cohort with established 

glucose tolerance status underwent whole-body 3 Tesla MRI exams. Segmentation of the 

pericardial fat depots in the systolic and diastolic heart cycle was performed manually 

using a cine steady-state free precession (SSFP) sequence in the four-chamber view. Late 

gadolinium enhancement, LV concentricity index > 1.3g/ml and LV ejection fraction 

<55% were used to define LV impairment.  

Results: A total of 372 subjects were included in the final analysis. Systolic and diastolic 

measurements correlated very well (all r≥0.90). Epicardial and paracardial fat showed an 

increase from healthy subjects to prediabetics and diabetics (all p<0.001). The association 

between epicardial fat and diabetes became non-significant after adjusting for age, 

gender, hypertension, smoking, low-density lipoprotein (LDL) and triglycerides while 

paracardial fat remained significantly associated with diabetes even after additional 

adjustment for BMI and subcutaneous adipose tissue but not visceral adipose tissue 

(VAT). In multivariate analysis, VAT was the strongest predictor for epicardial and 

paracardial fat (both p<0.001). Epicardial fat was associated with subclinical measures of 

LV impairment independent of age, gender, smoking, diabetes status, hypertension, LDL 

and VAT (p=0.02) but not BMI (p=0.09). 

Conclusion: Increased epicardial and paracardial fat seen in prediabetics and diabetics is 

not independent of other cardiovascular risk factors including VAT. Epicardial but not 

paracardial fat is associated with early signs for LV impairment.   
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Zusammenfassung 

 

Ziel: Ziel der Arbeit war die manuelle Quantifizierung der perikardialen Fettdepots 

mittels MRT (Magentresonanztomographie) in einer klinisch kardiovaskulär gesunden 

Kohorte sowie die Bestimmung der Assoziation zwischen epikardialem/parakardialem 

Fett und gestörtem Glukosestoffwechsel sowie Zeichen subklinischer linksventrikulärer 

(LV) Einschränkung. 

Material und Methoden: 400 Probanden aus der KORA FF4 Kohorte mit etabliertem 

Glukosetoleranzstatus wurden mittels 3 Tesla Ganzkörper MRT untersucht. Die 

Segmentierung der perikardialen Fettdepots im systolischen und diastolischen 

Herzzyklus erfolgte manuell unter Benutzung einer cine steady-state free precession 

(SSFP) Sequenz im Vierkammerblick. Late Gadolinium Enhancement, LV 

Konzentrizitätsindex >1.3g/ml und eine LV Ejektionsfraktion <55% wurden zur 

Definition der LV Einschränkung verwendet.  

Ergebnisse: Es wurden 372 Probanden in die Analyse eingeschlossen. Systolische und 

diastolische Messungen korrelierten sehr gut (alle r≥0.90). Epikardiales und parakardiales 

Fett zeigten einen Anstieg von gesunden Probanden zu Prädiabetikern und Diabetikern 

(alle p<0.001). Die Assoziation zwischen epikardialem Fett und Diabetes wurde nicht 

signifikant nach Adjustierung für Alter, Geschlecht, Bluthochdruck, Rauchen, low-

density lipoprotein (LDL) und Triglyceride. Parakardiales Fett blieb signifikant mit 

Diabetes auch nach zusätzlicher Adjustierung für BMI und subkutanes Fettgewebe aber 

nicht viszerales Fettgewebe (VAT) assoziiert. In der multivariaten Analyse war VAT der 

stärkste Prädiktor für epikardiales und parakardiales Fett (beide p<0.001). Epikardiales 

Fett war mit subklinischen Markern einer LV Schädigung unabhängig von Alter, 

Geschlecht, Rauchen, diabetischem Status, Bluthochdruck, LDL und VAT (p=0.02), aber 

nicht BMI (p=0.09) assoziiert. 

Fazit: Erhöhtes epikardiales und parakardiales Fett bei Prädiabetikern und Diabetikern 

ist nicht unabhängig von anderen kardiovaskulären Risikofaktoren inklusive VAT. 

Epikardiales aber nicht parakardiales Fett ist mit frühen Zeichen einer LV Einschränkung 

assoziiert.  
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