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activation molecule 

CD152 / CTLA-4 cluster of differentiation 152 / cytotoxic T-
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CD273 / PD-L2 / B7-DC cluster of differentiation 273 / programmed cell death 

2 ligand 
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1 ligand 
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DMEM Dulbecco’s modified Eagle medium 

DMSO dimethylsulfoxide 

dpi days post infection 
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E : T ratio effector : target cell ratio 

FACS fluorescence-activated cell sorting 
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FBS / FCS fetal bovine serum / fetal calf serum 

FITC  fluorescein isothiocyanate 

GBM glioblastoma 

GFP green fluorescent protein 

GM-CSF granulocyte-macrophage colony-stimulating factor 

GMP good manufacturing practice 

HCG human chorionic gonadotropin 

HNPCC hereditary non-polyposis colon cancer 

hpi hours post infection 

HSV-1 human herpes simplex virus type 1 
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ICD immunogenic cell death 

ICI immune checkpoint inhibitor 
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repeats 

IFN interferon 
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mAb monoclonal antibody 

MCP membrane cofactor protein (also CD46) 

MeV measles vaccine virus 

MHC major histocompatibility complex 

MIBE measles inclusion body encephalitis 

MOI multiplicity of infection 

MSI microsatellite instability 

MSS microsatellite stability 

NCI National Cancer Institute 

NDV Newcastle disease virus 

NIS sodium iodide symporter 
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PFS progression-free survival 

PR partial response 
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rpm revolutions per minute 

RECIST Response Evaluation Criteria in Solid Tumors 

rrVSV recombinant replicating vesicular stomatitis virus 

RT room temperature 

SCD super-cytosine deaminase 

SD stable disease 

SD standard deviation 

SEM standard error of the mean 

SLAM signaling lymphocytic activation molecule (also 

CD150) 

SPECT single photon emission computed tomography 

SSPE subacute sclerosing panencephalitis 

TAA tumor-associated antigen 

TCR T-cell receptor 

TH1 cell T helper cell type 1 

TIL tumor-infiltrating lymphocyte 
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VEGF vascular endothelial growth factor 



Abbreviations 

13 

 
 

VSV vesicular stomatitis virus 

wt wildtype 



List of figures 

 

14 

List of figures 
	

FIGURE	1,	A	-	B:	CANCER	INCIDENCE	AND	MORTALITY	IN	2012.	...................................................................	18	
FIGURE	2:	VIROTHERAPY	AS	HIGHLY	IMMUNOGENIC	STIMULUS	..................................................................	22	
FIGURE	3:	PRINCIPLES	OF	TUMOR-SPECIFIC	VIRAL	ONCOLYSIS	....................................................................	23	
FIGURE	4,	A	-	B:	SCHEMATIC	STRUCTURE	OF	THE	MEASLES	VIRUS	PARTICLE	(A)	AND	ITS	

RESPECTIVE	GENOME	(B)	......................................................................................................................................	29	
FIGURE	5:	SCHEMATIC	STRUCTURE	OF	THE	GENETICALLY	ENGINEERED	MEASLES	VIRUS	

GENOME	..........................................................................................................................................................................	30	
FIGURE	6:	PRINCIPLE	OF	COMBINING	ONCOLYTIC	VIRUS	(MEV)	WITH	IMMUNE	CHECKPOINT	

BLOCKADE	(ATEZOLIZUMAB,	NIVOLUMAB)	...................................................................................................	38	
FIGURE	7:	SCHEMATIC	ILLUSTRATION	OF	NK	CELL	CULTIVATION	..............................................................	49	
FIGURE	8:	PRINCIPLE	OF	IMMUNHISTOCHEMICAL	STAINING	FOR	FLOW	CYTOMETRY	.....................	52	
FIGURE	9:	96-WELL	ELECTRONIC	MICROTITER	PLATE	......................................................................................	56	
FIGURE	10:	PROCEDURE	OF	XCELLIGENCE	ANALYSIS	.........................................................................................	57	
FIGURE	11:	96-WELL	PLATE	OF	DILUTION	SERIES	FOR	MEV-GFP	VIRUS	GROWTH	CURVES	...........	61	
FIGURE	12:	WORKFLOW	OF	VIRUS	TITER	DETERMINATION	AFTER	COINCUBATION	WITH	NK	

CELLS	/	PBMC	AND	TREATMENT	WITH	ICI	...................................................................................................	63	
FIGURE	13:	SRB	CYTOTOXICITY	ASSAYS	OF	THE	MEV-GFP-INFECTED	HUMAN	CRC	CELL	LINE	

HT29	.................................................................................................................................................................................	65	
FIGURE	14:	SRB	CYTOTOXICITY	ASSAYS	OF	THE	MEV-GFP-INFECTED	HUMAN	CRC	CELL	LINE	

HCT-15	.............................................................................................................................................................................	66	
FIGURE	15:	SRB	CYTOTOXICITY	ASSAYS	OF	THE	MEV-GFP-INFECTED	HUMAN	CRC	CELL	LINE	SW-

620	.....................................................................................................................................................................................	67	
FIGURE	16:	SRB	CYTOTOXICITY	ASSAYS	OF	HT29	TUMOR	CELLS	AFTER	TREATMENT	WITH	

IMMUNE	CHECKPOINT	INHIBITORS	ATEZOLIZUMAB	OR	NIVOLUMAB	.............................................	68	
FIGURE	17:	SRB	CYTOTOXICITY	ASSAYS	OF	HCT-15	AFTER	TREATMENT	WITH	IMMUNE	

CHECKPOINT	INHIBITORS	ATEZOLIZUMAB	OR	NIVOLUMAB	.................................................................	69	
FIGURE	18:	FACS	ANALYSIS	OF	THE	BASAL	PD-L1	EXPRESSION	ON	HUMAN	COLORECTAL	

CARCINOMA	CELL	LINES	HT29,	HCT-15	AND	SW-620	UNDER	DIFFERENT	CULTURING	

CONDITIONS	.................................................................................................................................................................	70	
FIGURE	19:	FACS	ANALYSIS	OF	GFP	EXPRESSION	ON	MOCK-	OR	MEV-GFP-INFECTED	HUMAN	

COLORECTAL	CARCINOMA	CELL	LINES	HT29,	HCT-15	AND	SW-620	...............................................	73	
FIGURE	20,	A	-	C:	FACS	ANALYSIS	OF	PD-L1	EXPRESSION	ON	MEV-GFP-INFECTED	IN	COMPARISON	

TO	MOCK-INFECTED	HUMAN	COLORECTAL	CANCER	CELL	LINES	HT29,	HCT-15	AND	SW-620

	.............................................................................................................................................................................................	76	



List of figures 

15 

FIGURE	21,	A	-	C:	FACS	ANALYSIS	OF	PD-L1	EXPRESSION	ON	MEV-SCD-INFECTED	IN	COMPARISON	

TO	MOCK-INFECTED	HUMAN	COLORECTAL	CANCER	CELL	LINES	HT29,	HCT-15	AND	SW-620

	.............................................................................................................................................................................................	82	
FIGURE	22	A	-	B:	XCELLIGENCE	REAL-TIME	ASSAY	OF	HT29	AND	HCT-15	GROWTH	AND	

VIABILITY	UNDER	TREATMENT	WITH	MEV-GFP	AND	/	OR	IMMUNE	CHECKPOINT	

INHIBITORS	...................................................................................................................................................................	88	
FIGURE	23,	A	-	G:	XCELLIGENCE	REAL-TIME	ASSAY	OF	HT29	GROWTH	AND	VIABILITY	UNDER	

TREATMENT	WITH	MEV-GFP,	IMMUNE	CHECKPOINT	INHIBITORS	AND	PBMC	/	NK	CELLS	93	
FIGURE	24,	A	-	G:	XCELLIGENCE	REAL-TIME	CELL	PROLIFERATION	ASSAY	OF	HCT-15	GROWTH	

AND	VIABILITY	UNDER	TREATMENT	WITH	MEV-GFP,	IMMUNE	CHECKPOINT	INHIBITORS	

AND	PBMC	/	NK	CELL	COCULTURE	.................................................................................................................	102	
FIGURE	25,	A	-	C:	QUANTIFICATION	OF	ANTIVIRAL	EFFECTS	OF	IMMUNE	CHECKPOINT	

INHIBITORS	IN	A	VIRAL	GROWTH	CURVE	MODEL	ON	HT29	AND	HCT-15	TUMOR	CELLS	..	106	
FIGURE	26:	QUANTIFICATION	OF	ANTIVIRAL	EFFECTS	OF	CHECKPOINT	INHIBITORS	VIA	VIRUS	

TITRATION	ON	HT29	AND	HCT-15	TUMOR	CELLS	..................................................................................	108	



List of tables 

 

16 

List of tables	
	

TABLE	1:	MATERIALS	AND	DEVICES	FOR	CELL	CULTURE	.................................................................................	42	
TABLE	2:	USED	CELL	LINES	WITH	THEIR	CHARACTERISTICS	(NCI-WEBPAGE,	ACCESSED	AUGUST	

17,	2016)	.........................................................................................................................................................................	43	
TABLE	3:	DIFFERENT	CULTURE	VESSELS	AND	CORRESPONDING	AMOUNTS	OF	MEDIUM,	TRYPSIN	

OR	PBS	.............................................................................................................................................................................	44	
TABLE	4:	DIFFERENT	CULTURE	PLATES	AND	FITTING	NUMBERS	OF	CELLS	BEING	SEEDED	PER	

WELL	................................................................................................................................................................................	47	
TABLE	5:	CONCENTRATIONS	OF	IMMUNE	CHECKPOINT	INHIBITORS	USED	IN	DIFFERENT	

EXPERIMENTS	..............................................................................................................................................................	47	
TABLE	6:	MATERIALS	AND	DEVICES	FOR	FACS	ANALYSIS	................................................................................	51	
TABLE	7:	STAINING	ANTIBODIES	FOR	FACS	ANALYSIS	WITH	THEIR	CORRESPONDING	ISOTYPES

	.............................................................................................................................................................................................	51	
TABLE	8:	CD279	(PD-1)	FACS	ASSAY	STAININGS	AND	THE	RESPECTIVE	AMOUNTS	OF	ANTIBODY	

PER	STAIN	......................................................................................................................................................................	54	
TABLE	9:	MATERIALS	AND	DEVICES	FOR	SRB	ASSAY	..........................................................................................	55	
TABLE	10:	MATERIALS	AND	DEVICES	FOR	XCELLIGENCE	ANALYSIS.	..........................................................	57	
TABLE	11:	CELL	COUNTS	PER	WELL	USED	FOR	XCELLIGENCE	ANALYSIS	OF	DIFFERENT	CRC	CELL	

LINES	................................................................................................................................................................................	58	
TABLE	12:	AMOUNT	OF	TUMOR	CELLS	PER	WELL	USED	FOR	VIRAL	GROWTH	CURVES.	...................	60	
TABLE	13:	CELL	COUNTS,	MOIS,	E	:	T	RATIOS	AND	ICI	CONCENTRATIONS	USED	FOR	VIRAL	TITER	

DETERMINATION	.......................................................................................................................................................	63	
TABLE	15,	A	-	C:	FACS	ANALYSIS	OF	PD-L1	EXPRESSION	ON	MEV-GFP-INFECTED	IN	COMPARISON	

TO	MOCK-INFECTED	HUMAN	COLORECTAL	CANCER	CELL	LINES	HT29,	HCT-15	AND	SW-620

	.............................................................................................................................................................................................	77	
TABLE	15:	FACS	ANALYSIS	OF	PD-1	EXPRESSION	ON	NK	CELL	POPULATIONS	FROM	DIFFERENT	

HEALTHY	DONORS	.....................................................................................................................................................	85	



Introduction 

17 

1. Introduction 
 

1.1. Colorectal cancer as a major health problem 

1.1.1. Epidemiology of colorectal carcinoma 

Colorectal carcinoma (CRC) is considered a major health problem especially in 

industrialized nations. All over the world, this tumor entity depicts the third most 

common diagnosis of cancer (GLOBOCAN 2012, 1.36 million of 14.1 million new 

cancer cases / 9.7 %) and the fourth most common cause for cancer death (694,000 of 

8.2 million deaths / 8.5 %) with a higher incidence in more developed countries (12.1 % 

of new cancer cases in 2012 vs. 7.8 % in less developed countries) (Ferlay et al., 2015). 

Furthermore, referring to data from the US National Cancer Institute between 2012 and 

2014, overall lifetime risk of the diagnosis of CRC is described with 4.3 % of men and 

women (NCI-Webpage, Accessed April 23, 2017). 

In Germany, overall CRC mortality in men decreased by 36.7 % between 1989 and 

2011, in women even by 47.3 % (Ait Ouakrim et al., 2015). In contrast, mortality in all 

34 investigated European countries increased by 6 % in men, whereas it decreased by 

14.7 % in women. Differences between various geographic regions may probably be 

influenced by factors such as access and possibility of screening (especially 

colonoscopy with the possibility to remove early precursor lesions presenting as polyps, 

thus making CRC partly preventable (Simon, 2016)) and of treatment modalities, as 

well as nutritive habits and health-related lifestyle. 

Available access to early screening methods has also a great impact on overall CRC 

mortality, as localized CRC has a 5-year relative survival of 89.9 %, whereas the 

appearance of distant metastases goes along with a 5-year relative survival of only 13.9 

%, citing data from the NCI webpage collected between 2007 and 2013 (NCI-Webpage, 

Accessed April 23, 2017). These data furthermore comprise the necessity of novel 

therapeutic treatment strategies, especially for advanced CRC. 
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A) Cancer incidence and mortality in 2012 in men 

 
B) Cancer incidence and mortality in 2012 in women 

 
Figure 1, A - B: Cancer incidence and mortality in 2012. 
Cancer incidence (blue colored) and mortality (red colored) in (A) men and (B) women in 2012, 
depicting the differences between more and less developed countries. Among different cancer 
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entities, CRC takes rank three in men and rank two in women in regard to incidence in more 
developed countries. Taken of (Ferlay et al., 2015). 
 

1.1.2. Colorectal cancer - an overview of pathology and clinical presentation 

Most colorectal cancers develop in a sporadic, non-hereditary manner, often referring to 

a somatic mutation in the Wnt / β-catenin signaling pathway, namely in the adeno-

matous polyposis coli (APC) tumor suppressor gene (Rowan et al., 2000). 

Hereditary syndrome forms, on the contrary, are rather rare with approximately 5 % of 

CRC (Lung et al., 2015). One of the best known, the familial adenomatous polyposis 

(FAP), is also attributed to a mutation of APC on chromosome 5q21 - q22, but this time 

in the germ line, characterized by up to thousands of adenomatous polyps in 

adolescence (Bodmer et al., 1987; Nakamura et al., 1988; Groden et al., 1991). Another 

hereditary form of CRC displays Lynch syndrome, an entity of hereditary non-polyposis 

colon cancer (HNPCC) with germ line mutation leading to DNA mismatch repair 

deficiency, followed by an enormous rate of mutations. This inheritable defective DNA 

repair mechanism is also associated with numerous extracolonic cancers, most of all 

endometrial and ovarian (Carethers and Stoffel, 2015; Lung et al., 2015). 

Prolonged inflammation as a key factor in carcinogenesis likewise concerns forms of 

CRC, for example in patients with diagnosed inflammatory bowel disease (IBD), such 

as ulcerative colitis or Crohn’s disease (Lasry et al., 2016). Furthermore, this goes along 

with the finding that proinflammatory cytokines are able to increase Wnt signaling 

pathway activity (Ostaff et al., 2013). Emphasizing these links between inflammation 

and CRC, a further factor of carcinogenesis has to be taken into account: microbiota. To 

give only one example, investigations could show that the toxin of Bacteroides fragilis 

was able to increase transcription of β-catenin-regulated oncogenes (Sears, 2009; Saleh 

and Trinchieri, 2011). 

Apart from discussed pathogenesis factors of hereditary impact, family history of CRC 

and inflammation, also advanced age, black race, obesity, diabetes mellitus and 

smoking as well as alcohol consumption have been revealed as risk factors for CRC 

development (Cai et al., 2014; Oluyemi et al., 2014). As for advanced age, about 90 % 

of CRC occur beyond age of 50 (Herold, 2015). 
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Clinical presentation of CRC does not go along with reliable early symptoms, but blood 

admixture in stool or sudden changes in dejection habits can belong to the clinical 

pattern. 

Histopathological definition of a malignant polyp includes invasion of muscularis 

mucosae, hence being referred to as pT1 and being capable of metastasis (Engstrom et 

al., 2009).  

The way of metastasis follows mainly the portal vein, turning the liver and, secondly, 

the lung into most preferred regions of early tumor filiae. For metachronous liver 

metastases, cumulative 10-year incidences after first diagnosis of CRC are ranked at 

about 6 % for stage I and up to 30 % at stage III (Landreau et al., 2015). 

 

1.1.3. Existing therapeutic possibilities and problems in treatment of colorectal 

cancer 

Surgery represents the therapy option with greatest significance in treatment of CRC in 

both primary tumor and metastases in liver or lung, if complete tumor resection is 

possible. With the total mesocolic or mesorectal excision and the ablation of lymph 

nodes as well as infiltrated neighboring organs, a maximal local radicalness is supported 

(Herold, 2015). Although 70 - 80 % of patients with CRC diagnosis can be resected in 

sano (R0), 40 - 50 % suffer recurrence or later metastases (Gustavsson et al., 2015). 

Neoadjuvant or adjuvant (radio-) chemotherapy is used to treat higher UICC stages, 

including conventional chemotherapy with an oxaliplatin- or fluoropyrimidine-based 

regimen. For colon cancer, adjuvant chemotherapy is referred to as gold standard for 

stage III or higher in order to eliminate possible micrometastases and to improve 

progression-free survival (PFS) as well as overall survival (OS) (Lombardi et al., 2010; 

Gustavsson et al., 2015). 

The basis of the existing chemotherapy protocols represents 5-fluorouracil (5-FU), since 

its converted form 5-fluorodeoxyuridine monophosphate (FdUMP) appeared to be a 

potent inhibitor of thymidylate synthetase as a suicide substrate (Danenberg, 1977). 

Thymidine-containing desoxyribonucleotides result from methylation of uracil-

containing desoxyribonucleotides through thymidylate synthetase, thus being a key step 

of nucleic acid synthesis, which becomes blocked by 5-FU. Furthermore, incorporation 

of 5-FU into RNA as well as DNA is another mechanism of 5-FU-induced cytotoxicity 
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(Gill et al., 2003). Soon, folinic acid (leucovorin) was added to the treatment regimen, 

resulting in a prolonged survival, increased tumor response rates as well as improved 

PFS (Poon et al., 1989).  

Together with the topoisomerase I inhibitor irinotecan, oxaliplatin and the oral 5-FU 

prodrug capecitabine, the existing treatment regimens were compiled. 

As the era of monoclonal antibodies was introduced, bevacizumab, targeted against 

vascular endothelial growth factor (VEGF), and cetuximab / panitumumab, targeted 

against the epidermal growth factor receptor (EGFR) in patients with K-RAS wildtype 

(wt), replenished the spectrum of possible chemotherapeutics in CRC treatment. But 

yet, the median OS achieved in combination studies for metastatic disease in the last 30 

years did not rise above 23.9 months (Gustavsson et al., 2015), thus making the research 

for new therapeutical approaches inevitable. 

 

1.2. Virotherapy as an anti-cancer treatment approach 

1.2.1. Principles of virotherapy - how an infectious virus becomes anti-cancer therapy 

The idea behind virotherapy refers to the principle of tumor-specific oncolysis, 

therefore applying a virus with the hallmark of infecting tumor cells for replication and 

lysis afterwards, but sparing the surrounding healthy tissue. With the tumor cell lysis, 

viral progenies are released, which further infect neighboring tumor cells, thus 

representing a self-amplifying anti-cancer agent. Besides, concerning safety issues, the 

oncolytic virus (OV) should possess the trait of genetic stability as well as limited 

human pathogenicity, conceivably with well-known antiviral treatment available, also 

taking attenuated vaccine viruses or animal-pathogenic viruses into account (Kelly, 

2007). Finally, a hurdle in introducing new virotherapeutics consists in production of 

needed virus doses in terms of good manufacturing practice (GMP) guidelines (Thorne 

et al., 2005).  

Since the process of oncolysis leads to release of tumor-associated antigens (TAAs), 

thus setting an immunological stimulus, the direct tumor damage is completed by 

activating the host immune system against cancer, evading the tumorous immune 

escape mechanisms and thereby portraying virotherapy in an immunotherapeutical 

context (Naik et al., 2011; Russell et al., 2012). To put it into a nutshell, viral oncolysis 
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induces both innate immunity and adaptive anti-tumor immune response via tumor-

specific T-cell priming (Melcher et al., 2011; Naik et al., 2011; Turnbull S, 2015). The 

highly immunogenic cell death (ICD) following viral lysis shapes the tumor 

microenvironment towards a pro-inflammatory background, for example through 

release of pathogen-associated molecular patterns (PAMPs) or danger-associated 

molecular patterns (DAMPs): PAMPs display conserved microbial molecules identified 

via pattern recognition receptors (PRRs), whereas DAMPs lead to activation of innate 

immune cells such as dendritic cells (DCs) or tumor macrophages, which further 

arrange adaptive anti-tumor immune responses (Prestwich et al., 2009; Donnelly et al., 

2013; Woller N, 2014; Hardcastle et al., 2016; Marchini et al., 2016). 

 
Figure 2: Virotherapy as highly immunogenic stimulus 
OV-induced oncolysis functions as immunological impulse towards an innate as well as 
adaptive anti-tumor immune response. With the release of so-called pathogen-associated 
molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), antigen-
presenting cells (APC) such as dendritic cells (DC) are stimulated to mediate the 
immunological interplay against the foreign tumor neoepitopes. Figure from (Woller N, 2014). 
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Another mechanism of OV-induced tumor mass reduction involves strategies to impair 

tumor sustentative blood supply by targeting tumor endothelial cells (Breitbach et al., 

2013). Moreover, OVs were even found to aim at cancer stem cells, which are often 

resistant to conservative radio- or chemotherapy and play a crucial role in tumor relapse 

(Smith et al., 2014; Marchini et al., 2016). 

The leading characteristic of a candidate for virotherapy is certainly specificity in 

infection and replication behavior in terms of tumor cell tropism. Actually, several 

specifics of tumor cells make them more accessible for virus entrance and replication in 

comparison to related healthy tissue. To set an example, tumorigenesis mainly relies on 

the principles of avoiding apoptosis and of supplying autonomous growth, whereas a 

response to viral infection rather implements the opposite: apoptosis and inhibition of 

production of viral proteins via stop of translation (Russell et al., 2012). Namely, 

mutations in antiviral response pathways such as the interferon α / β	response make the 

tumor cell incapable of defending against viral infection. Nevertheless, these mutations 

are common: As interferon simultaneously impedes tumor growth, interferon pathway 

deficiency turns out to be advantageous in carcinogenesis (Stojdl et al., 2000; Russell 

and Peng, 2009). 

 
Figure 3: Principles of tumor-specific viral oncolysis 
Tumor cells are preferentially accessible for viral infection, as important antiviral pathways 
such as the interferon (IFN) pathway appear to be impaired in favor of unhindered tumor 
growth. Figure modified after (Liu T.C., 2007). 
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Other ways of targeting virus to cancer cells imply the usage of OVs dependent on 

tumor-specific surface receptors and proteases for host cell fusion and entry, or involve 

the exploitation of distinct specificities of replication and transcription in tumor cells 

(Cattaneo et al., 2008). 

A problem still to face in the field of virotherapy depicts the immunological clearance 

of systemically applied OV, especially of viruses also used for vaccination or with 

broad immunity-creating propagation (Fisher, 2006; Russell and Peng, 2009; Msaouel 

et al., 2013; Marchini et al., 2016). To elude such an early immunological clearance of 

OV by neutralizing antibodies in the bloodstream, several approaches were 

implemented in preclinical testing: combination of OVs with immunosuppressive drugs 

such as cyclophosphamide (Msaouel et al., 2013; Peng et al., 2013), protective coating 

of the virus particle (Fisher et al., 2001) or usage of so-called cell carriers (Iankov et al., 

2007). It will be the challenge to get the balance between optimal OV-induced anti-

tumor immune responses on the one hand and effective viral spread on the other hand. 

 

1.2.2. History of virotherapy - from historical approaches to new generations of 

genetically engineered oncolytic viruses 

In the early 20th century, the finding of viral oncolytic potential shortly followed the 

discovery of virus existence, when doctors witnessed cancer regression under naturally 

acquired viral infections (Kelly, 2007; Russell and Peng, 2009). But not until more than 

half a century had passed, clinical observances heralded the modern era of virotherapy 

in the 1970s and 1980s: In several cases, measles disease obtained shrinking of 

prominent Burkitt’s lymphoma tumors, shortly after the typical measles exanthema was 

noticed (Bluming, 1971; Taqi et al., 1981). Moreover, several cases of tumor regression 

in patients with Hodgkin’s disease (Greentree, 1983; Schattner, 1984) or chronic 

lymphatic leukemia (Hansen and Libnoch, 1978) were described after vaccination 

against measles or smallpox. Although the exact mechanisms of tumor-specific 

oncolysis were not fully understood, the immune-enhancing role of viral infection was 

assumed to be an important part of the resulting therapeutic effect, also considering the 

immunocompromised state accompanying those hematological tumor entities (Kelly, 

2007). As early as 1973, Minton et al. used killed mumps virus for an immune 

stimulation protocol in melanoma patients, who had already undergone several 
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treatment strategies such as surgery and chemotherapy, but still, clinical benefit was not 

of long duration (Minton, 1973; Kelly, 2007). 

Furthermore, several animal viruses were tested as an oncolytic therapeutic with 

controllable virulence: In contrast to many human pathogenic viruses, which are wide-

spread as natural infections or part of vaccination programs, animal viruses implicate 

the advantage of not being exposed to immunological clearance by preexisting anti-

bodies (Kelly, 2007). 

When successful cultivation of virus in laboratories, establishment of human cancer 

models in rodents and, finally, reverse genetics entered the stage of clinical basic 

research, virotherapy experienced a new boom (Kelly, 2007; Cattaneo et al., 2008; 

Russell and Peng, 2009). With the partly insufficient tumor tropism, the problem of 

early OV clearance by the host immune system or the lack of oncolysis efficacy, the era 

of viral genome manipulation in the late 20th century implied an enormous progress in 

establishing virotherapy in the field of oncology. But as a matter of fact, first attempts 

to improve efficacy of virus-mediated oncolysis had already been made before, for 

example as Moore and colleagues discovered that Russian Far East encephalitis virus 

provided better results in oncolysis of sarcoma after having been propagated in sarcoma 

cells beforehand, thereby enabling an adaption of viral replication to the host cell 

(Moore, 1952; Kelly, 2007).  

Utilizing the new options in genetic engineering, experiments of retargeting OVs to 

surface molecules expressed by cancer cells succeeded, with CD20 (Non-Hodgkin 

lymphoma) (Bucheit et al., 2003) or carcinoembryonic antigen (CEA) (Hammond et al., 

2001) as exemplary targets for creating a more specific tumor tropism. Other 

approaches of viral genome manipulation made non-invasive monitoring of viral 

spread- and elimination-kinetics possible, for example via insertion of marker genes 

such as CEA or the β-unit of human chorionic gonadotropin (β-HCG), whose serum 

levels not only reflected viral replication kinetics, but also correlated with the 

therapeutic outcome in animal models (Peng et al., 2002a). 

With regard to the field of radiovirotherapy, treatment with a measles vaccine virus 

(MeV) expressing the sodium iodide symporter (NIS), which can be found on thyroid 

follicular cells for iodide transport into the cell, was combined either with the 

application of I-123, or with the β-emitter	I-131. Thereby, monitoring of viral growth 
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kinetics via positron emission tomography (PET) or single photon emission computed 

tomography (SPECT) in the former, as well as an additive therapeutic option in the 

latter case could	be	realized	(Dingli et al., 2004).  

Genetic engineering was also used in attempt to increase anti-tumor immunostimulatory 

effects, for example enabling herpes virus (T-Vec) or vaccinia virus (JX-594) to express 

the granulocyte-macrophage colony-stimulating factor (GM-CSF) (Park et al., 2008; 

Kaufman et al., 2010). Finally, suicide-gene functions were exploited to convert 

systemically administered, harmless prodrugs into highly effective, local chemo-

therapies: By directly delivering necessary transforming enzymes via OV-vectors to the 

tumor location, preexisting resistances against virotherapy were successfully overcome 

(Graepler F., 2005; Lampe J, 2013; Lange S, 2013; Noll M., 2013; Yurttas C, 2014). 

To put it into a nutshell, possibilities of genetic engineering induced metamorphosis of 

virotherapy into a multifunctional instrument in cancer treatment. 

 

1.2.3. Oncolytic virus in clinical usage - from bench to bedside 

With the introduction of the first FDA- and EMA-approved virotherapeutic on the 

market in 2015, Imlygic® (Talimogene laherparepvec, Amgen, also shortened as T-VEC 

and developed as OncoVEXGM-CSF), a great hurdle was overcome in clinical 

development of virotherapy as an anti-cancer treatment. Approval of the GM-CSF 

expressing human herpes simplex virus HSV-1 for treatment of unresectable stage III / 

IV melanoma was given, after efficacy and, simultaneously, safety as well as feasibility 

of application were proven in a first phase III clinical trial with prolongation of overall 

survival (OS) from 18.9 months (GM-CSF only) to 23.3 months (T-VEC) (P = 0.051) 

(Andtbacka, 2015). Engineered to sustain major histocompatibility complex I (MHC I) 

presentation, to produce GM-CSF and to achieve effective, tumor specific viral 

replication and limited neuropathogenicity at the same time, T-VEC belongs to the third 

generation of OVs, genetically armed for better anti-tumor efficacy (Liu T.C., 2007; 

Andtbacka, 2015; Johnson et al., 2015). 

Without this possibility of sophisticated viral gene modification in the middle of the last 

century, early clinical trials had been executed with wildtype viruses, domesticated 

through passage in cell culture, such as West Nile virus, adenovirus, mumps or vaccinia 

virus (Liu T.C., 2007). 
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Currently, along with herpes simplex virus, numerous virotherapeutics are under 

clinical development, for example MeV, focused on non-invasively trackable MeV-

CEA and MeV-NIS (described in 1.2.2). Namely, a phase I trial of intratumoral or 

resection cavity application of MeV-CEA in glioblastoma multiforme patients 

investigated safety issues, with no dose limiting toxicities (DLTs) reported so far 

(ClinicalTrials.gov identifier NCT00390299) (Msaouel et al., 2009). In another phase I 

trial, MeV-NIS and MeV-CEA are tested for therapeutic efficacy against ovarian 

cancer, also exploring safety and toxicity in a dose escalation study, as well as shedding 

of replication-capable virus (NCT00408590) (Galanis et al., 2010). Along with 

predisposition to mutate or revert to wildtype, environmental shedding, for example in 

saliva, urine or blood, has to be particularly attributed in clinical trials with virothera-

peutics, which descend from originally pathogenic strains (Buijs et al., 2015). 

Addressing the tumor entity of treatment-refractory CRC, a first virotherapeutic phase 

Ib dose-finding trial was conducted with i.v. vaccinia virus Pexa-Vec, leading to a stable 

disease (SD) in 67 % of patients (Park et al., 2015). Furthermore, infusions of herpes 

simplex virus NV1020 or oncolytic adenovirus dl1520 (Onyx-015) into the hepatic 

artery were tested for CRC liver metastasis in phase I / II studies, resulting in acceptable 

toxicity profiles (Reid et al., 2002; Geevarghese et al., 2010). 

To overcome tumor-immanent resistances against viral oncolysis, researchers and 

clinicians now head for combination therapies with conventional chemotherapy, radio-

therapy, immunotherapy or targeted therapy. To give an example, squamous cell cancer 

of the head and neck is treated in a phase I/ II trial with T-VEC together with cisplatin 

and radiotherapy, resulting in 82.3 % of patients showing response according to 

RECIST criteria (Response Evaluation Criteria in Solid Tumors) (Harrington et al., 

2010). 

Multimodal immunovirotherapeutic treatment (for details, see 1.5), including immune 

checkpoint blockade, is evaluated in clinical phase Ib/II trials (T-VEC and ipilimumab / 

Yervoy®, Bristol-Myers Squibb, in patients with advanced melanoma, NCT01740297), 

as well as phase Ib/III trials (T-VEC and pembrolizumab / Keytruda®, MSD, also for 

treatment of advanced melanoma, NCT02263508). First results for T-VEC and 

ipilimumab prove tolerable safety without appearing DLTs and a 50 % objective 

response rate (ORR, 95 % CI, 26.0 to 74.0), including four patients (22 %) with 
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complete response (CR) (Puzanov et al., 2016). With regard to MeV virotherapy, a 

phase I study combining MeV-NIS with the immune checkpoint inhibitor (ICI) 

nivolumab (Opdivo®, Bristol-Myers Squibb) will start recruiting patients with recurrent 

non-small cell lung cancer in 2017 (NCT02919449). 

One of the latest successes in the field of immunovirotherapy was the treatment of 

advanced melanoma with Talimogene laherparepvec and pembrolizumab in a phase Ib 

clinical trial (NCT02263508) (Ribas et al., 2017), resulting in no apparent increase in 

toxicity compared to the respective monotherapies. In the rather small patient cohort of 

21, an ORR of 62 % was found, including CRs in 33 % of patients (both referring to 

immune-related response criteria). An ongoing phase III study allocates patients with 

advanced melanoma in a Talimogene laherparepvec plus pembrolizumab or a placebo 

plus pembrolizumab arm to further investigate OS as well as PFS (NCT02263508). 

To summarize, virotherapy has made a fine step forward towards proving its worth in 

clinical oncology, considering numerous clinical trials and the approval of Imlygic®. 

 

1.3. Measles virus - boon or bane in modern medicine? 

1.3.1. Morphology and classification of measles virus 

Measles virus, member of the family Paramyxoviridae, genus Morbillivirus, belongs to 

the enveloped viruses, containing a 16 kb negative strand genomic RNA coated with a 

nucleocapsid. The virion has a size of about 100 to 300 nm and is configured out of six 

structural proteins (Duke and Mgone, 2003; Knipe, 2013). 

Two glycoproteins, viral transmembrane hemagglutinin (H) and the fusion protein (F), 

were found responsible for receptor targeting (H) and viral entrance via membrane 

fusion (F) in Paramyxoviridae such as measles (Navaratnarajah et al., 2011). Measles 

wildtype virus possesses the ability to bind to the signaling lymphocytic activation 

molecule (SLAM or CD150) on B- and T-lymphocytes (Tatsuo et al., 2000) or to 

nectin-4 on human airway epithelium (Mühlebach M. D., 2011) for cell entrance, but 

measles vaccine strains such as Edmonston strain are also able to target the so-called 

membrane cofactor protein (MCP or CD46), which plays a role in regulation of the 

complement system. Interestingly, CD46 is expressed ubiquitously on nucleated cells 

(Dorig et al., 1993) and also on human tumor cells, here even in a higher degree 
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(Russell and Peng, 2009), which makes measles vaccine virus (MeV) suitable as a viro-

therapeutic. 

Other structural proteins are the matrix protein (M), nucleocapsid protein (N), 

phosphoprotein (P) and large polymerase proteins (L). The basic matrix protein (M) is 

part of the virion’s envelope, together with H and F. The nucleocapsid protein (N) is the 

protein transcribed first as well as most frequently, building the helical ribonucleocapsid 

together with the RNA genome. A component of replicase complex represents the large 

protein (L) with polymerase function, which is also part of the nucleocapsid and 

associated with the phosphoprotein (P), being a polymerase cofactor.  

The wildtype virus phosphoprotein transcription unit also codes for the proteins C and 

V, which, together with P, circumvent the translocation of STAT to the nucleus as well 

as STAT1 and STAT2 phosphorylation, thus counteracting the antiviral interferon 

response and enabling viral spread more efficiently (Cattaneo et al., 2008; Russell and 

Peng, 2009). Interestingly, an oncolytic MeV, genetically engineered to code for the 

wildtype P gene, was able to circumvent innate tumor cell immunity via suppression of 

the IFN pathway (Haralambieva et al., 2007). 

 
Figure 4, a - b: Schematic structure of the measles virus particle (a) and its respective 
genome (b) 
The enveloped measles virus particle (a) consists of six structural proteins. The matrix proteins 
(M) encompass the so-called ribonucleoprotein complex, comprising the nucleoprotein (N), 
which coats the negative strand genomic RNA, the RNA-dependent RNA polymerase called 
large protein (L) and its cofactor, the phosphoprotein (P). Hemagglutinin (H) and fusion 
protein (F) are responsible for receptor targeting as well as viral invasion into the host cell via 
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membrane fusion. The measles viral genome (b) codes for the six viral proteins and implies a 
transcriptional gradient from the N protein to the L protein with a decreasing amount of 
resulting protein products. The proteins C and V are alternative products of P and play an 
important role in antagonizing antiviral interferon responses. Figure from (Aref et al., 2016). 
 

Genetically engineered measles vaccine virus used in the field of virotherapy often 

encodes for further proteins, for example for the green fluorescent protein (GFP) to 

monitor successful infection, or for the prodrug-converting super-cytosine deaminase 

(SCD), which implements additional therapeutic effects in combination with the 

substrate and prodrug 5-fluorocytosine. Thereby, the transcriptional gradient from the N 

to the L protein implies that a gene position upstream of the region coding for the N 

protein results in maximal expression of the wanted protein product (see Fig. 5) (Lampe 

J, 2013; Hutzen et al., 2015). 

 
Figure 5: Schematic structure of the genetically engineered measles virus genome 
Genetically engineering of measles vaccine virus in the field of virotherapy implicates new 
possibilities of enhanced therapeutic effects or monitoring of virus spread. Based on 
recombinant technologies, marker genes such as the green fluorescent protein (GFP) or 
therapeutic genes such as the super cytosine deaminase gene (SCD) can be inserted into the 
viral backbone. 
 

The pathognomonic cytopathic effect (CPE) of measles infection depicts the formation 

of multinucleated syncytia after fusion of cells, also observable in vitro (Aref et al., 

2016). Furthermore, syncytia formation was found to be dependent on CD46 

expression, thereby leading to increased cell fusion in tumor cells, as they often 

overexpress CD46 (Anderson et al., 2004). Other cytopathic effects are altered cell 

shape as well as inclusion bodies (Nakai and Imagawa, 1969). 

With only one serotype existent, a monovalent vaccine is sufficient to protect against 

measles disease, but still, eight different classes (A - H) as well as several genotypes are 

distinguished, taking the gene sequences coding for M and H into account (Duke and 

Mgone, 2003). 
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1.3.2. Measles virus as an infectious pathogen - epidemiology and clinical 

appearance 

As a highly contagious illness, measles are a major health problem especially in 

developing countries, where vaccination is not available to everyone and where 

particularly children die as a consequence of severe measles infection. But also in 

industrialized nations with persisting vaccination gaps in the population, measles 

outbreaks are still on the agenda, listing 2.464 cases of measles in 2015 in Germany, 

with largest incidences in one-year-old and younger children (Robert-Koch-Institut, 

2016). Measles infection is a droplet infection entering via respiratory tract and casually 

via conjunctivae, while dissemination takes place via reticuloendothelial system (Duke 

and Mgone, 2003). After an incubation time of 10 - 12 days, prodromal symptoms such 

as rhinitis, conjunctivitis, fever, cough or measles enanthema (the pathognomonic 

Koplik spots) and, a few days later, exanthema evolve. Pneumonia turned out to be the 

most common fatal complication, accounting for 56 - 86 % of measles-related deaths, 

also often due to bacterial or viral superinfection (Duke and Mgone, 2003; Herold, 

2015). Acute postinfectious measles encephalitis (APME), measles inclusion body 

encephalitis (MIBE) and subacute sclerosing panencephalitis (SSPE) represent 

complications concerning the central nervous system in the context of measles 

infection, but are fortunately rather rare (Duke and Mgone, 2003). 

Interestingly, on the one hand, measles infection is associated with an induced 

immunosuppression with lymphopenia, opening the floodgates to opportunistic 

infections, whereas on the other hand, the resulting anti-measles immune response leads 

to lifelong immunity (de Vries and de Swart, 2014). 

 

1.3.3. Measles vaccine virus as a virotherapeutic agent 

With the already mentioned advantageous characteristic of MeV being able to target 

CD46, which is often overexpressed in tumor cells, and with the acceptable low toxicity 

as an attenuated vaccine strain (Msaouel et al., 2012), MeV seems to be an outstanding 

candidate for the development of a virotherapeutic. Moreover, MeV is able to harbor 

transgenes of large size, still with proven genetic stability (Buijs et al., 2015). 

Thus, measles OV already took part in numerous preclinical testing, resulting in 

successful virotherapy of various tumor entities such as melanoma (Donnelly et al., 
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2013; Kaufmann et al., 2013), lymphoma (Grote et al., 2001; Heinzerling et al., 2005; 

Kunzi et al., 2006), myeloma (Peng et al., 2001; Liu et al., 2010), hepatocellular 

carcinoma and other tumors of the liver (Blechacz, 2006; Zimmermann et al., 2009), 

glioblastoma (Phuong et al., 2003), ovarian cancer (Peng et al., 2002b; Hasegawa et al., 

2006) or pancreatic cancer (Penheiter et al., 2010), just to give some examples. 

Nevertheless, the usage of oncolytic MeV, which mostly descends from the attenuated 

vaccine Edmonston strain, brings along several problems to deal with. First of all, the 

high rate of vaccination in our population results in the problem of immunological 

clearance of systemically applied measles virus - one of the main obstacles of 

implementation of MeV-based virotherapy into clinical practice (Russell and Peng, 

2009). Yet, the anti-measles vaccination also displays a certain protection against 

unintended spread after application of MeV as virotherapeutic agent. Moreover, along 

with the clinical vaccination experience over the last decades, this virus can be referred 

to as fairly safe for usage in humans (Msaouel et al., 2009). 

Facing the clinical introduction of MeV, the problem of appropriate model systems in 

animals emerged. As mice do express neither CD46 nor SLAM (Msaouel et al., 2009), 

transgenic CD46 expressing mice had to be developed for safety evaluation (Mrkic et 

al., 1998; Kemper et al., 2001). By retargeting MeV to CD20, a CD20 expressing 

murine B16 melanoma model was successfully introduced, implying the advantage of 

an immunocompetent murine model, which was an inevitable step for testing MeV in 

the background of cancer immunotherapy (Engeland CE, 2014). Furthermore, 

preclinical toxicity testing was performed in non-human primates such as rhesus 

macaques (Msaouel et al., 2009). 

With the replication-trackable virotherapeutics MeV-CEA and MeV-NIS (as described 

in 1.2.2), representatives of the genus Morbillivirus finally entered the stage of clinical 

phase I and II trials (for details, see 1.2.3). 
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1.4. Immunotherapy as an anti-cancer treatment approach 

1.4.1. Principles of immunotherapy - how to activate the body’s defence against 

cancer 

Gene mutations and dysfunctional epigenetics are distinctive hallmarks of carcino-

genesis, resulting in expression of new proteins, which are foreign to our immuno-

logical self. With those potential epitopes for activation of an anti-cancer immune 

response, a tumor has to develop several immune escape mechanisms to circumvent an 

attack by the host’s immune system. ‘Immunoediting’ and ‘immunosubversion’ are two 

main strategies, implying selection of the least immunogenic tumor subclones and, on 

the other hand, following active prevention of immunological clearance by involving 

cellular and humoral manipulation of tumor microenvironment and tumor-distinct 

mechanisms, such as downregulation of MHC or expression of so-called immune 

checkpoint ligands (Zitvogel et al., 2006). The cellular components of cancer immune 

escape contain regulatory T-cells as well as myeloid-derived suppressor cells, while 

interleukin 6, interleukin 10, vascular endothelial growth factor or transforming growth 

factorβare part of the soluble elements in abrogating anti-tumor immune responses 

(Topalian et al., 2011). 

In the last decades, cancer research turned its attention to the role of immune 

checkpoints, which represent costimulatory or inhibitory receptors expressed on several 

immune effector cells. Together with their corresponding ligands, they were found to be 

responsible for modulating immune responses. 

For stimulation of naïve T-cells through a particular epitope, descending from a mutated 

cancer cell, two signals are necessary. First of all, the processed host-foreign antigen is 

presented via MHC class I to the T-cell receptor (TCR), which is done by DCs, acting 

as professional APCs. But without costimulatory signals, the T-cell would become 

anergic, hence not reactive (Esensten et al., 2016). The CD28 receptor on naïve CD4+ 

and CD8+ T-cells provides such a coregulatory, antigen-independent signal in case of 

stimulation by APCs, which express the ligands B7.1 (CD80) and B7.2 (CD86) (Chen 

and Flies, 2013; Zamarin D, 2015). Activation of CD28, member of immunoglobulin 

superfamily (IgSF), finally results in T-cell survival, proliferation and differentiation 

(Esensten et al., 2016). By contrast, inhibitory receptors, so-called immune checkpoint 

receptors such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4, also referred 



Introduction 

 

34 

to as CD152), compete against CD28, inhibiting IL-2 release and T-cell activity and 

furthermore possessing higher affinity for both CD28 ligands (Leach et al., 1996; 

Waldmann, 2003). 

Physiologically, the mechanism of APCs expressing those immune checkpoint ligands 

avoids autoimmune incidents and ensures immunological homeostasis, while cancer 

cells abrogate this mechanism for immune evasion. This is emphasized in the fact that 

Ctla-4-knockout mice suffer from severe systemic immune hyperactivation, not being 

able to keep T-cell response against self-antigens under control (Waterhouse et al., 

1995).  

In contrast to this, as already described as a mechanism of ‘immunosubversion’, tumor 

cells express immune checkpoint ligands to impede anti-tumor immune response 

(Zitvogel et al., 2006). These are the requirements for the grand entrance of therapeutic 

antibodies called immune checkpoint inhibitors (ICI), targeting receptors or ligands of 

immune checkpoint pathways to abrogate tumor immune escape or, in other words, 

create an anti-tumor immunity (Leach et al., 1996). 

Whereas CTLA-4 represents an immune checkpoint pathway which modulates initial T-

cell activation, some other immune checkpoint receptors such as programmed cell death 

1 receptor (PD-1 or CD279) and its ligands PD-L1 (also known as B7-H1 or CD274) 

and PD-L2 (also known as B7-DC or CD273) play an outstanding role in the regulation 

of ongoing T-cell immune responses (Topalian et al., 2011; Bauzon M, 2014; Postow et 

al., 2015). In contrast to CTLA-4, PD-1 can also be found on non-T-lymphocytic cells 

such as NK cells, B-cells, activated monocytes or DCs (Keir et al., 2008). As main 

ligand of PD-1 on solid tumors (Bauzon M, 2014), PD-L1 is found to be overexpressed 

in many human carcinomas, whereas healthy tissues do not express PD-L1 (Dong H., 

2002). Receptor / ligand interaction downregulates T-cell proliferation and cytokine 

production, and thus counteracts anti-tumor immune response. Moreover, IFN type I 

and IFN type II signaling both work as possible inductors of PD-L1 expression (Keir et 

al., 2008). 

High degrees of PD-L1 expression in the tumor microenvironment, especially on tumor-

infiltrating immune cells, proved to be favorable for developing responses on ICI 

therapy influencing PD-1 / PD-L1 pathway (Topalian et al., 2012; Taube et al., 2014). 

In a broader sense, a preexisting anti-tumor immune response such as tumor infiltration 
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with tumor-infiltrating lymphocytes (TILs) is in favor of ICI therapy success, as in this 

case, immune checkpoint blockade is able to counteract ensuing processes of tumor 

immune escape (Herbst et al., 2014; Tumeh et al., 2014). It thus seems to be the 

challenge to combine immunotherapeutics in a way that induces and improves anti-

tumor immune responses, even in poorly immunogenic cancer entities. 

 

1.4.2. Immune checkpoint inhibitors entering the stage of clinical trials as anti-cancer 

drugs 

With the anti-CD20 antibody rituximab, the first monoclonal antibody (mAb) was 

approved as anti-cancer drug in the 1990s, followed by numerous other mAbs against 

specific tumor-related antigens (Waldmann, 2003). Thus, the era of passive 

immunotherapy was initiated with a focus on targeted tumor therapy. 

Along with immune checkpoint blockade and anti-tumor-targeted mAbs, cancer 

vaccines and adoptive cell transfer also belong to the today’s spectrum of immuno-

therapy. But until the first ICI, the CTLA-4-targeted antibody ipilimumab (Yervoy®, 

Bristol-Myers Squibb), was FDA-approved for grade 3 and 4 melanoma in 2011, active 

immunotherapy was quite underestimated in clinical practice. 

Pembrolizumab (Keytruda®, MSD) was the first immune checkpoint targeted against 

PD-1 to be approved by FDA in 2014, and several others such as nivolumab (Opdivo®, 

Bristol-Myers Squibb, 2014) against PD-1 or atezolizumab (Tecentriq®, Roche, 2016) 

against PD-L1 followed, partly in fast-track approval procedure (Martin-Liberal et al., 

2017). 

MDX-1106, later nivolumab, which is now approved for unresectable or metastatic 

melanoma (2014), non-small cell lung cancer, renal cell carcinoma (both 2015), 

Hodgkin lymphoma and squamous-cell carcinoma of the head and neck (both 2016), 

was one of the first anti-PD-1 antibodies to enter phase I clinical trials (Martin-Liberal 

et al., 2017). Primarily safety and toxicity issues had to be examined: In this regard, 

good tolerability without any DLTs after a single dose could be proven (Brahmer et al., 

2010). For anti-tumor efficacy, this first trial showed several tumor regressions, along 

with one complete response (CR) in a CRC patient and two partial responses (PR) in 

melanoma and renal cell cancer, thus stating a therapeutic chance even for carcinomas 

considered to be rather non-immunogenic such as CRC (Brahmer et al., 2010). 
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Clinical trials with nivolumab continued up to phase III, for example in patients 

suffering from advanced melanoma as a second-line therapy after pretreatment with 

ipilimumab and, if BRAF mutation diagnosed, BRAF inhibitors, resulting in an 

improvement of objective responses from 10.6 % in the group receiving chemotherapy 

of investigator’s choice to 31.7 % in nivolumab group (Weber et al., 2015). 

With atezolizumab, FDA-approved since 2016 for second-line treatment of urothelial 

cancer after platinum-based chemotherapy (Markham, 2016), a representative of ICIs 

targeting PD-L1 was tested in several clinical trials, for example against cancer of the 

lung (Fehrenbacher et al., 2016) or against metastatic renal cell carcinoma (McDermott 

et al., 2016). In a phase II clinical trial of atezolizumab against urothelial carcinoma 

(NCT02108652), Rosenberg et al. described an ORR of 26 % in patients with ≥ 5 % of 

immune cells in the tumor microenvironment expressing PD-L1 in comparison to an 

ORR of 15 % in the whole study group irrespective of PD-L1 expression. As a 

consequence of those results, PD-L1 expression was given an important role in 

prediction of response to immune checkpoint blockade in urothelial carcinoma patients 

(Rosenberg et al., 2016). Moreover, it is discussed to supplement examination of PD-L1 

expression as sole biomarker with the investigation of preexisting T-cells specific for 

tumorous antigens to make predictions about patient-specific response to inhibition of 

PD-1 / PD-L1 signaling (Shin and Ribas, 2015). To summarize the clinical revolution of 

ICI in cancer immunotherapy, ICI not only became part of the everyday business of 

oncologists, but also progressed to the stage of personalized medicine. 

 

1.4.3. Immunotherapy and colorectal cancer - a way of treatment worthy to go? 

The role of immunotherapy in the treatment of CRC is quite controversial, as two 

different entities have to be differentiated: microsatellite stable (MSS) tumors and, on 

the other hand, CRC with defects in genes coding for DNA mismatch repair, which 

leads to an enormous mutational load and the phenomenon of microsatellite instability 

(MSI) (Boland and Goel, 2010). As those mutations result in numerous proteins foreign 

to our immunological self, thereby potentially serving as epitopes for T-cell activation, 

the consideration has to be why such highly immunogenic tumors can still grow and 

metastasize. This is even underlined with the observation of active CD8+ cytotoxic T-

lymphocytes (CTL) and T helper cells type 1 (TH1 cells) infiltrating the tumor micro-
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environment (Llosa et al., 2015). Apart from that, it is generally accepted that the 

degree of T-cell infiltration of CRC is of high prognostic as well as predictive 

relevance, emphasizing the outstanding role of interplay between tumor and immune 

system (Galon et al., 2006; Jager et al., 2016). 

The fact that immune checkpoint receptors and ligands such as PD-1 and PD-L1 are 

upregulated to a great extent in MSI colorectal tumors does not only explain the 

mechanism of immune escape, but also depicts an interesting relation between genotype 

and tumor microenvironment and a possibility of therapeutical intervention with ICI 

(Llosa et al., 2015; Xiao and Freeman, 2015). 

As a matter of fact, early phase trials with PD-1 blockade in patients with MSS CRC 

resulted in an absence of any immune-related objective responses (immune-related 

ORR of 0%), compared to 40% in the group of MSI patients. Moreover, the immune-

related PFS at week 20 was significantly higher in the MSI group (11% MSS vs. 78% 

MSI) (Le et al., 2015). 

To touch on a subject already raised in 1.1.2, the eminent role of microbiota in the 

immune cell / tumor cell interaction will have to be considered when discussing 

immunotherapy of CRC. To give only one example, it could be proven that some 

bacteria are able to impair NK cell-mediated anti-tumor immune responses, thus 

enabling tumor immune escape (Gur et al., 2015; Lasry et al., 2016). Even though this 

surely exceeds the topic of the dissertation thesis, such considerations with new possible 

therapeutic impacts should be followed, facing the growing awareness of the 

gastrointestinal microbiome as one of the main players in carcinogenesis. 

To put it into a nutshell, immunotherapy in CRC, especially with MSI status, depicts a 

treatment regimen worthy of being taken into account with a focus on modulation of the 

immunosuppressive tumor microenvironment. 

 

1.5. Combination of virus and immune checkpoint inhibitors in cancer therapy 

The rationale for combining virotherapy with ICI results from the experience with 

partly improvable therapeutical success with the respective monotherapies in different 

tumor entities. Synergistic effects are hoped for, since virotherapy is able to induce an 

active anti-tumor immune response inclusive of an ICI-favorable tumor micro-

environment, while immune checkpoint blockade showed to strengthen preexisting 
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immune responses by abrogating immune escape mechanisms, even creating 

immunological memory (Vile, 2014; Rajani and Vile, 2015). 

As viral-induced oncolysis leads to release of multiple foreign tumor antigens, thus 

establishing a prerequisite for activation of DCs and, following, cross-presentation of 

TAAs to T-cells in the lymph nodes, even poorly immunogenic tumors become a target 

of highly effective anti-cancer immune mechanisms (see 1.2.1). Furthermore, the 

presence of an OV itself with associated immunogenic viral antigens could serve as 

immunostimulans. But still, with the immunosuppressive mechanisms exploited by the 

tumor, including immune checkpoint ligand production, an immune response induction 

by virotherapy alone will probably not lead to long-time regression. 

 
Figure 6: Principle of combining oncolytic virus (MeV) with immune checkpoint blockade 
(atezolizumab, nivolumab) 
Tumor-specific viral infection, followed by replication and production of virions, results in 
highly immunogenic tumor cell lysis with release of antigens, which are foreign to the 
immunological self. These TAAs derive from genetic mutations or from epigenetic alterations, 
and depict potent epitopes for T-cell activation after presentation by DCs in lymph nodes. CD8+ 
CTLs, to name only one of the main actors in anti-tumor immune response, are impaired in 
their activity by PD-1 / PD-L1 checkpoint pathway, which is exploited by tumor cells for 
immune escape. Here, ICI such as atezolizumab or nivolumab interfere to strengthen and 
prolong OV-induced anti-tumor immune response. Figure modified after (Vile, 2014). 
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Gao and colleagues achieved to cure four out of five mice with peritoneal mammary 

tumor implants, using a combination therapy of recombinant replicating vesicular 

stomatitis virus (rrVSV), which was retargeted to infect Her2/neu positive cells, 

together with anti-CTLA4 mAb, whereas virotherapy alone could not induce any cure, 

but only prolong survival (Gao Y, 2009). Moreover, rechallenging trials without any 

further therapy in mice, which had received combination therapy before, resulted in 

tumor resistance: Those findings underlined the dynamic, active character of such a 

treatment regimen, obtaining immunological memory function. 

Woller et al. showed that systemic resistance against ICI therapy could be overcome by 

localized adenovirus-induced oncolysis in CMT64 lung adenocarcinomas, as an 

efficient elimination of disseminated lung tumors could be induced in mice (Woller N, 

2015). Interestingly, this CD8+ T-cell-dependent process of immune response went 

along with a broader spectrum of presented MHC class I T-cell epitopes. Moreover, it 

was proven that viral oncolysis could induce PD-L1 expression on APCs infiltrating 

cancer nodes of liver and lung, thus creating an ICI-favorable microenvironment. 

One possibility to investigate immune effects of a combination therapy in vitro was 

presented by Rajani and colleagues in a B16 melanoma cell culture model under NK 

cell coculture (Rajani K, 2016): The ICI-augmented NK cell activation by reovirus, 

resulting in improved tumor cell killing, confirmed the results of cure in a B16 model in 

immunocompetent C57Bl/6 mice after combination therapy of i.t. reovirus with i.v. 

anti-PD-1 mAb. 

With the realization of transgenic manipulation of virotherapeutics, several 

achievements were made in the subject of tumor-specific delivering of ICI, expressed 

by the virus itself with remaining oncolytic potential (Dias JD, 2012; Engeland CE, 

2014). Those results depict a possibility of not only increased efficacy, but also of 

reduction of unwanted immune-related adverse events in case of systemic ICI 

application. 

Investigating relevant effector cells mediating such a immunovirotherapy-induced anti-

tumor immune response, CD8+ T-cells as well as NK cells seem to be rudimental, but 

not CD4+ T-cell subsets (Juan J. Rojas, 2015; Rajani K, 2016). 
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But still, combination therapy implies difficulties in scheduling, as ICI-increased 

antiviral immune responses could be detrimental to viral replication when applied 

simultaneously. Rojas et al. therefore could prove the benefit of delayed ICI 

administration with regard to tumor regress and to survival in mice with renal 

adenocarcinoma, enabling an early phase of unhindered viral replication (Juan J. Rojas, 

2015).  

With those promising results from in vitro and animal model research, the first early-

phase clinical trials combining virotherapy and immune checkpoint blockade are 

already ongoing (as described in 1.2.3), and results will soon show clinical feasibility 

and response rates in the subset of the complex human immune system. 

In regard to clinical testing of immunovirotherapy in patients, one of the latest findings 

was made by Ribas and colleagues who applied combined Talimogene laherparepvec 

and pembrolizumab treatment in advanced melanoma (NCT02263508; for details, see 

1.2.3) (Ribas et al., 2017). Interestingly, taking tumor samples into account obtained 

prior to the first application of OV, response rates seemed to correlate neither with 

initial CD8+ T-cell-infiltration, nor with also frequently discussed predictive parameters 

such as PD-L1 or IFN-γ expression (Herbst et al., 2014; Tumeh et al., 2014). Especially 

in combination therapy responders, pretreatment with the herpes virotherapeutic itself 

achieved a shift towards a highly ICI-favorable tumor microenvironment, including not 

only immigration of CD8+ T-cells and enhanced expression of both PD-L1 and IFN- γ 

at the tumor site, but also a rise in CD4+ and CD8+ T-cells in blood samples. OV was 

therefore the prerequisite for implementation of a systemic anti-tumor response, 

strengthened by following ICI and OV applications - another in vivo proof of immuno-

virotherapy overcoming poor tumor immunogenicity (Ribas et al., 2017). 

 

1.6. Aim of this dissertation 

This dissertation aimed to investigate a combination therapy of measles vaccine virus 

(MeV-GFP) together with immune checkpoint blockade, targeted against PD-1 (nivolu-

mab) or PD-L1 (atezolizumab). We focused on examination of (i) whether measles OV 

could induce ICI-favorable effects in the tumor microenvironment in regard to PD-L1 

expression in CRC cell lines, (ii) synergistic therapeutical effects in the subset of CRC 

cell lines in coculture with NK cells or PBMC, namely an improved anti-tumor immune 
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response resulting in an increased tumor cell killing, and (iii) antiviral immune effects, 

considering the impact of ICI on efficient MeV-GFP replication and spread in colorectal 

tumor cells. 

Those cell culture experiments depict a necessary prerequisite to translate a combination 

treatment regimen of oncolytic measles vaccine virus and ICI influencing the PD-1 / 

PD-L1 pathway into animal models and, finally, early phase clinical trials for patients 

with advanced colorectal cancer disease. Paying attention to both anti-tumor and 

antiviral immune effects of such a combination has its eligibility in planning a future 

time schedule for a conceivable therapeutic regimen, thus respecting a possible 

impairment of measles replication by ICI-induced immune responses. 
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2. Materials and methods 
 

2.1. Cell culture of tumor cells 

2.1.1. Materials and devices for cell culture 
Table 1: Materials and devices for cell culture 
Materials and devices for cell culture  

Dulbecco’s modified Eagle’s medium 

(DMEM) (+ L-glutamine + 4.5 g / l 

glucose) 

SIGMA life science 

Dulbecco’s phosphate buffered saline 

(PBS) without Mg2+ and Ca2+ 

SIGMA life science 

Fetal calf serum (FCS) PAA Laboratories GmbH 

Opti-MEM®I + GlutaMAXTM-I Gibco by life technologiesTM 

Dimethylsulfoxide (DMSO) PanReac AppliChem 

RPMI 1640 (+ L-Glutamine + 25 mM 

HEPES) 

Gibco by life technologiesTM 

Pen Strep (Penicillin Streptomycin) Bio Whittaker, Lonza 

Recombinant Human Interleukin-2 (IL-2) ImmunoTools 

Trypsin-EDTA solution 0.25 % SIGMA life science 

Trypan Blue solution 0.4 % SIGMA life science 

Neubauer improved haemocytometer Karl Hecht Assistent GmbH 

Culture flask, 750 ml, 175 cm2 growth area Greiner Bio-One GmbH 

Culture flask, 300 ml, 75 cm2 growth area TPP  

15 ml Cellstar tubes® Greiner Bio-One GmbH 

50 ml polypropylene conical tube  Corning 

Cell strainer Greiner Bio-One GmbH 

1.5 ml safe-lock tube eppendorf 

2.0 ml safe-lock tube eppendorf 

C-Chip (disposable haemocytometer) Kisker Biotech GmbH & Co. KG 

Cryogenic vial Corning 
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Incubator for virus-free cell culture 

(HERA cell) 

Heraeus 

Incubator for virus-infected cell culture Memmert 

Megafuge 2.0 R centrifuge Heraeus SEPATECH 

Light microscope Olympus CK40 Olympus  

 

DMEM, PBS, Trypsin-EDTA and FCS were stored at 4 °C after opening, so DMEM + 

10 % FCS as well as PBS had to be incubated in the water bath at 37 °C before usage, 

while Trypsin-EDTA was warmed up at room temperature (RT). 

FCS and Trypsin-EDTA were stored frozen at -20 °C before usage. FCS had to be heat-

inactivated for 30 minutes at a temperature of 56 °C to inactivate proteins of the 

complement system. 

 

2.1.2. Used cell lines 

The used tumor cell lines derive from the National Cancer Institute NCI-60 tumor cell 

panel with the similarity of being of human colorectal carcinoma origin, but differing 

significantly in their characteristics of oncolysis resistance towards measles vaccine 

virus MeV-SCD as illustrated in the table below. African green monkey Vero cells were 

used for virus titration.  

 
Table 2: Used cell lines with their characteristics (NCI-Webpage, Accessed August 17, 
2016)  
The different NCI-60 human colorectal carcinoma cell lines differed substantially in their 
oncolysis resistance behavior after infection with MeV-SCD. 
Cell 

line 

Species Origin Doubling time 

in hours 

Oncolysis	resistance	

against	MeV-SCD		

SW-620 human colorectal 

carcinoma 

20.4 intermediate 

resistant 

HT29 human colorectal 

carcinoma 

19.5 susceptible 

HCT-

15 

human colorectal 

carcinoma 

20.6 high resistant 
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Vero African green 

monkey 

kidney epithelial 

cells 

24 - 96 

(Nahapetian et 

al., 1986) 

- 

 

2.1.3. Cell culture 

Cells were cultured permanently in plastic culture flasks of 750 ml and 300 ml volume, 

being stored humidified, 37°C-tempered and with 5 % CO2 in separated incubators for 

virus-infected cells as well as uninfected cells. Moreover, cultured cells were regularly 

tested for mycoplasma contamination. 

For excellent growth in monolayers, cells were passaged every three or four days. 

Cultivation took place in Dulbecco’s Modified Eagle’s Medium, supplemented with 10 

% fetal calf serum (FCS, also fetal bovine serum / FBS), which had been heat-

inactivated at 56 °C for 30 minutes before use.  

For splitting, cells were washed with phosphate buffered saline (PBS) and then 

detached with Trypsin-EDTA. Supporting the effect of the trypsin, culture flasks were 

incubated for about five minutes at 37°C. The EDTA additionally enhanced the 

trypsinization, creating an acidic environment. Detachment of cells from the flasks’ 

bottom could be controlled by light microscopy. The trypsin was inhibited by the FCS 

in the medium, which was used to remove the cells from the flasks’ ground. The cell 

suspension was collected in falcon tubes, followed by optional centrifugation at RT, 

1000 revolutions per minute (rpm), for 4 minutes. After centrifugation, the cell pellet 

was resuspended in about 5 ml of fresh medium, depending on the pellet’s size. At last, 

the cell suspension was returned into a culture flask in ratios of 1:2 to 1:20, depending 

on the growth kinetics of the respective cell line, and filled up with fresh medium. If the 

cells empirically tended to agglutination, the cell suspension was passed through a cell 

strainer.  

 

Table 3: Different culture vessels and corresponding amounts of medium, trypsin or PBS 
Culture vessel size DMEM + 10 % FCS Trypsin-EDTA PBS for washing 

Large culture flask 

(175 cm2) 

30 ml 3 ml 10 ml 

Medium culture 15 ml 1,5 ml 10 ml 
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flask (75 cm2) 

6 well plate 2 ml 0.5 ml 2 ml 

24 well plate 0.5 ml 0.2 ml 0.5 ml 

 

2.1.4. Counting of cells via Neubauer haemocytometer 

To count the number of cells in a solution, a Neubauer improved haemocytometer was 

used. Therefore, cells were trypsinized and centrifuged as described above. The cell 

pellet was resuspended in DMEM + 10 % FCS. 10 µl of cell suspension was added to 

90 µl of Trypan Blue solution 0.4 % in a 1.5 ml Eppendorf cup and after vortexing, the 

haemocytometer was charged with 10 µl of the stained cell suspension.  

Cells were counted in four large quadrants, using light microscopy, and the amount of 

cells per milliliter medium was calculated by the following formula. Vital cells could be 

distinguished from dead cells, as they were bright, whereas dead cells were stained dark 

blue by trypan blue. For counting, cells which were placed either on the left or on the 

lower, but not on the right or the upper margin of the quadrant were taken into account. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑚𝑙 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 =  
𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

4 ×10×10! 

 

Cell count was divided by four and multiplied by 104 to calculate the amount of cells 

per milliliter, afterwards multiplied by 10 as the original cell suspension was diluted 

with trypan staining at 1 : 10. 

The amount of counted cells in four quadrants should not exceed 300 or go below 50 to 

make the result reliable, so dilution could be necessary. If cells were too agglutinated, 

usage of a cell strainer was required. 

For counting of virus-infected cells, disposable haemocytometer chips were used. 

 

2.1.5. Cryopreservation of cells 

Tumor cell lines were cryopreserved at -150 °C. Therefore, the cells were washed, 

trypsinized and centrifuged as described. The cell pellet was resuspended in a special 

medium for cryopreservation, consisting of FCS + 10 % DMSO (dimethylsulfoxide).  
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1 ml of the suspension was used for one aliquot, being pipetted into a labeled cryotube. 

For optimal results, the tumor cells were frozen overnight in an isopropanol-filled 

freezing box at -80 °C, before they could be stored at -150 °C. 

 

2.1.6. Thawing of cells for recultivation 

Cells were thawed by carefully warming the cryotubes in the water bath at 37°C. 

Afterwards, cells were suspended in 8 ml of preheated DMEM + 10 % FCS in a 15 ml 

falcon tube and centrifuged for 4 minutes at 1000 rpm and 20 °C. 

The supernatant was discarded before the cell pellet could be resuspended in 5 ml of 

fresh medium and the suspension was added with 10 ml of medium in a middle-sized 

culture flask, which was stored in the incubator. Cell growth was controlled the next 

day by light microscopy. The medium was exchanged if necessary. 

 

2.1.7. Seeding of cells 

Tumor cells were seeded in different culture plates at diverging cell amounts, dependent 

on the cell line’s growth characteristics. 

After being washed with PBS, trypsinized and centrifuged, the cells were counted as 

described in 2.1.4. Furthermore, the needed amount of cell suspension for the distinct 

number of wells was calculated with the formula below and replenished with DMEM + 

10 % FCS. 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑖𝑛 𝑚𝑙 =  

 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑤𝑒𝑙𝑙

𝐶𝑜𝑢𝑛𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠𝑚𝑙
 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑤𝑒𝑙𝑙𝑠 

 

The cell lines which tended to agglutinate were passed through a cell strainer before, a 

multi-stepper was used and the cell suspension was thoroughly resuspended with 

medium to guarantee uniformity of the cell amount in the different wells. Conformity 

could be proved via light microscopy the day after. 

The table below shows the different culture plate sizes with the needed amount of tumor 

cells. 
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Table 4: Different culture plates and fitting numbers of cells being seeded per well 
Cell line  HT29 SW-620 HCT-15 

Required 

number of 

cells per well 

6-well plate 3 x 105 4 x 105 3 x 105 

24-well plate 3 x 104 4 x 104 2.5 x 104 

96-well plate  5 x 103 5 x 103 2.5 x 103 

 

2.1.8. Treatment of cells with immune checkpoint inhibitors 

Immune checkpoint inhibitors (ICI) targeted against PD-1, such as nivolumab 

(Nivolumab BMS®, Bristol-Myers Squibb) or pembrolizumab (Keytruda®, MSD), and 

against PD-L1, here atezolizumab (Tecentriq®, Roche), were a kind gift of PD Dr. 

Marcus Schittenhelm, University Hospital Tübingen, and stored at 4 °C. 

The concentrations of immune checkpoint blockade antibodies used for the respective 

experiments are listed below. 

 
Table 5: Concentrations of immune checkpoint inhibitors used in different experiments 
Experiments 

Concentration of ICI 

xCELLigence 5 µg / ml 

Viral growth curves 10 µg / ml 

Determination of viral titers 5 µg / ml 

 
 

2.2. Cell culture of virus-infected cells 

2.2.1. Used virus strains 

For infection with oncolytic measles vaccine virus, two different virus strains were 

used: MeV-GFP (GFP = green fluorescent protein) and MeV-SCD (SCD = super-

cytosine deaminase, a suicide gene functioning as prodrug-converting enzyme of 5-

fluorocytosine). Virus was stored at -80 °C in aliquots of 100 µl, 200 µl and 500 µl. 

 

2.2.2. Infection of cells 

For virus infection, tumor cells were seeded the day before in DMEM +10 % FCS in 

culture plates as described in 2.1.7. 
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Uniformity of cell seeding was verified the next day by light microscopy, before cells 

were infected with virus at different multiplicities of infection (MOI). Multiplicity of 

infection describes the ratio of virus particles per target cell, meaning that infection at a 

MOI of 1 implies that one plaque forming unit (PFU) of virus is used per tumor cell. 

The formula below was used to calculate the needed amount of virus suspension in 

regard to MOI, count of cells per well, virus titer and number of wells. 

𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑣𝑖𝑟𝑢𝑠 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 

 

= 𝑀𝑂𝐼 ×  
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑝𝑒𝑟 𝑤𝑒𝑙𝑙

𝑣𝑖𝑟𝑢𝑠 𝑡𝑖𝑡𝑒𝑟  × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑙𝑙𝑠 

 

For infection, virus suspensions were prepared in Opti-MEM®I + GlutaMAXTM-I (in the 

following abbreviated as Opti-MEM). Therefore, aliquots with the respective virus were 

thawed at RT, carefully vortexed and pipetted into calculated volumes of Opti-MEM, 

optionally using dilution series to prepare all needed MOIs. 

Cells were washed once with preheated PBS and infected with the respective virus 

solution. At 2.5 - 3 hpi, the inoculum was removed and DMEM + 10 % FCS was added. 

Phase contrast and, for MeV-GFP, fluorescence microscopy could verify success of 

infection as described in 2.2.3.  

As a matter of laboratory safety, UV-light irradiation of cell culture materials took place 

after working with virus under the laminar flow hood for complete virus inactivation. 

 

2.2.3. Control of tumor cell infection with MeV-GFP using fluorescence microscopy 

Successful infection of tumor cells with MeV-GFP could be monitored via fluorescence 

microscopy, using the OLYMPUS IX50 with connected upstream OLYMPUS U-RFL-

T. Phase contrast and fluorescence microscopy pictures could be taken with the F-View 

Soft Imaging System and anaLYSIS software.  

The MeV-GFP-infected CRC tumor cells could be detected as green lightening cell 

syncytia, as GFP (green fluorescent protein) implicates the intrinsic ability to fluoresce 

when stimulated with blue light. Therefore, fluorescence microscopy was used to 

determine viral titers (as described in 2.8.3). 
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2.3. Cell culture of NK cells and peripheral blood mononuclear cells 

Both NK cells and peripheral blood mononuclear cells (PBMC) were isolated from 

various healthy donors and a kind gift of AG Salih, either fresh in culture or as frozen 

aliquots. We therefore thank Stefanie Maurer, AG Salih, Internal Medicine II, 

University Hospital Tübingen, for providing the immune cells. 

 

2.3.1. Cultivation of immune cells 

NK cells were cultivated in 24 well plates with 1 x 105 irradiated feeder cells in 1 ml of 

NK cell medium (RPMI-1640 with 10 % FCS, 1 % Pen Strep (Penicillin Streptomycin) 

and 2 mM L-glutamine). To protect medium from evaporation, only eight wells in the 

middle of the plate were used for NK cell cultivation, whereas the other wells were 

filled with 1 ml PBS. 

For medium exchange, 200 µl of medium were carefully exchanged by 200 µl of fresh 

medium every two days. 

NK cells were stimulated by addition of interleukin 2 (IL-2) to the medium at 25 U / ml. 

For cocultivation with tumor cells, stimulation could be omitted on the last day of 

medium exchange to decrease NK cell-induced tumor cell killing activity. 

PBMC were also cultured in fluid culture, using plastic culture flasks of different sizes 

(see 2.1.1) and the same medium used for NK cells. Storage of immune cells took place 

in a humidified and 37 °C-tempered incubator, containing 5 % of CO2. 

 
Figure 7: Schematic illustration of NK cell cultivation 
NK cell cultivation took place in 24-well plates containing 1 ml of PBS in edging wells (blue 
colored wells) for evaporation protection and 1 ml of NK cell suspension on 1 x 105 feeder cells 
in the middle wells (fawn colored wells).  
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2.3.2. Thawing of NK cells 

Frozen NK cells were stored at -150 °C until the day before cocultivation. For thawing, 

NK cells were added to fresh NK cell medium as described before (2.3.1) and were 

centrifuged for 8 minutes at 800 rpm and RT. Afterwards, cells were resuspended in 

medium, together with IL-2 for stimulation (25 U / ml), and counted. 2 x 106 NK cells 

per well were cultured overnight in 1 ml of medium, considering the PBS evaporation 

protection mentioned in 2.3.1. 

 

2.3.3. Cocultivation of tumor cells with immune cells 

For xCELLigence analysis and virus titrations, tumor cell lines HCT-15 and HT29 were 

cocultured with NK cells (or PBMC, respectively) at different effector : target ratios (E : 

T ratios). An E : T ratio of 10 : 1 means that for each tumor cell, 10 immune cells were 

used for coincubation.  

Coincubation took place in 6-well or 96-well plates at different E : T ratios, after CRC 

tumor cells had been seeded and treated in the respective regimen (for coincubation 

during xCELLigence analysis, see 2.7.4, and for coincubation for viral titrations, see 

2.9). Tumor cells were counted again on the day of coincubation, since growth of the 

cells had to be considered for exact composition of NK cell suspensions, or particular 

growth factors were calculated in test runs.  

For the next step, NK cells (or PBMC) were pooled and wells were resuspended once 

with RPMI in the case of cultivation in well plates. Afterwards, cells were counted via 

Neubauer improved haemocytometer as described in 2.1.4 after centrifugation at 1200 

rpm and RT for 4 minutes, using 10 µl of cell suspension and 90 µl of trypan blue.  

To achieve the required immune cell amount for different E : T ratios in the exact 

volume of immune cell medium, cells were centrifuged again and the cell pellet was 

resuspended in the calculated amount of RPMI. Serial dilution was used to produce the 

different E : T ratios and coculture was realized by pipetting the needed amount of 

immune cell suspension into each well of the seeded tumor cell plates with incubation 

times from 48 to 58 hours at 37 °C. 

 



Materials and methods 

51 

2.4. Quantification of PD-L1 expression on tumor cell lines via FACS analysis 

2.4.1. Materials and devices for FACS analysis  

Table 6: Materials and devices for FACS analysis 
Materials and devices for FACS analysis  

Dulbecco’s phosphate buffered saline 

(PBS) without Mg2+ and Ca2+ 

SIGMA life science 

Fetal calf serum (FCS) PAA Laboratories GmbH 

Accutase® solution SIGMA life science 

4 % paraformaldehyde (PFA) Otto Fischar GmbH 

Gamunex 10% 100 mg / ml (FC block) Talecris Biotherapeutics GmbH 

5 ml polypropylene round-bottom tube Corning 

BD CellQuestTM analysis software BD Biosciences 

BD FACSCaliburTM BD Biosciences 

AttuneTM NxT Acoustic Focusing 
Cytometer 

ThermoFisher Scientific 

Megafuge 2.0 R centrifuge Heraeus SEPATECH 

 

2.4.2. Staining antibodies for FACS analysis with their corresponding isotypes 

Table 7: Staining antibodies for FACS analysis with their corresponding isotypes 

Staining antibody Isotype 

FITC anti-human CD3 BioLegend FITC Mouse IgG1, κ 

Isotype Ctrl 

BioLegend 

FITC anti-human CD56 

(NCAM) 

BioLegend FITC Mouse IgG1, κ 

Isotype Ctrl 

BioLegend 

PE anti-human CD46 BioLegend PE Mouse IgG1, κ 

Isotype Ctrl 

BioLegend 

PE anti-human CD274 

(B7-H1, PD-L1) 

BioLegend PE Mouse IgG2b, κ 

Isotype Ctrl 

BioLegend 

PE anti-human CD279 

(PD-1) 

BioLegend PE Mouse IgG1, κ 

Isotype Ctrl 

BioLegend 
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2.4.3. Staining for FACS analysis 

For the quantitative analysis of PD-L1 expression on the CRC cells, the immunohisto-

chemical method of fluorescence-activated cell sorting (FACS) was used.  

Therefore, cells were seeded in 6-well plates and infected with MeV-GFP or MeV-SCD 

(see 2.1.7 and 2.2.2 for seeding and infection of cells). For each staining approach, 5 x 

105 tumor cells were needed. Cells were washed with PBS and detached with accutase, 

which was used instead of trypsin in case of staining of surface markers. After 8 ml of 

FACS buffer (PBS + 10 % FCS) were added to the solved cells, the suspension was 

centrifuged for 4 minutes at 1000 rpm and RT. 5 x 105 tumor cells were diluted with 3 

ml PBS in FACS tubes and centrifuged again for 5 minutes at 1000 rpm and 4 °C. 

Afterwards, the supernatant was discarded and the pellet was resuspended in 50 µl of 

FACS buffer. 10 µl of Fc-block Gamunex were added to block unspecific binding sites. 

After 5 min of incubation on ice, PE-anti-human CD274 (PD-L1) antibody was added, 

and mouse IgG2b κ was used as isotype control. One sample remained unstained each. 

Incubation was performed for 30 minutes on ice after carefully vortexing each sample. 

Then 3 ml PBS were added and cells were again centrifuged for 5 minutes at 1000 rpm 

and 4 °C. The cell pellet was finally resuspended in 200 - 500 µl FACS buffer. Cells 

were fixed with paraformaldehyde (PFA, final concentration 1.3 %) so that they could 

be stored in the refrigerator until analysis.  

 
Figure 8: Principle of immunhistochemical staining for flow cytometry 
Flow cytometry allows qualitative and quantitative analysis of expression of particular proteins, 
for example the immune checkpoint ligand PD-L1 expression on PD-L1 positive tumor cells. As 



Materials and methods 

53 

many proteins such as PD-L1 are not able to fluoresce intrinsically, a specific antibody with 
conjugated fluorochrome, for example phycoerythrin (PE) or fluorescein isothiocyanate 
(FITC), is used for labeling. With a laser stimulus of defined wavelength, the fluorochrome is 
able to emit light with a higher wavelength, which can be transformed by the photomultiplier 
into an electric signal. 
 

2.4.4. Procedure of FACS analysis 

For FACS measurement and analysis of PD-L1 expression in HT29 and HCT-15, the 

cytometer FACSCalibur and the program CellQuest were used. For FACS measurement 

and analysis of PD-L1 expression in SW-620, AttuneTM NxT Acoustic Focusing 

Cytometer and the corresponding analysis software were used. 

 

2.5. FACS analysis of PD-1 expression on NK cell populations from different 

healthy donors 

For analysis of CD279 (PD-1) expression on NK cell subpopulations from either 

expanded NK cells or PBMC cultures of different healthy donors, flow cytometry was 

used. The amount of PD-1 expression was analyzed to investigate preconditions for 

immune checkpoint inhibitor interaction between PD-L1 expressing tumor cells and 

PD-1 expressing immune cells. 

 

2.5.1. Staining for CD279 (PD-1) expression 

CD279 expression on CD56 positive NK cell populations in both NK cells and PBMC 

cultures was analyzed. Therefore, cells were stained with FITC anti-human CD56 as 

well as PE anti-human CD279 and with the corresponding isotype controls FITC / PE 

Mouse IgG1, κ Isotype Ctrl (all BioLegend®). 5 x 105 immune cells were used per 

stain, which were added to 2 ml of FACS buffer (PBS + 10 % FCS) and centrifuged at 

1200 rpm, RT, for 4 minutes. Afterwards, staining took place in 50 µl of FACS buffer 

together with 10 µl of Gamunex, which was incubated on ice for 5 min beforehand. 

Single stains as well as one unstained sample were prepared for fluorescence 

compensation. 

Samples were incubated for 15 min on ice and then washed with 2 ml PBS. After 

centrifugation, the stained immune cells were resuspended in 300 µl of FACS buffer. 

The samples were stored in the refrigerator until time of analysis. 
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The amount of antibody used for the staining procedure can be extracted from the table 

below. 

 
Table 8: CD279 (PD-1) FACS assay stainings and the respective amounts of antibody per 
stain 
5 x 105 NK cells or PBMC were used for one stain. 
Staining Antibody Amount of  

antibody 

Amount of FACS 

buffer 

PE and FITC isotype 

control (PBMC and 

NK cells) 

mIgG1-PE 

mIgG1-FITC 

5 µl 

1 µl 

50 µl buffer + 10 µl 

Gamunex 

PE isotype control 

(PBMC and NK cells) 

mIgG1-PE 

CD56-FITC 

5 µl 

1 µl 

50 µl buffer + 10 µl 

Gamunex 

CD279-PE staining 

(PBMC and NK cells) 

CD279-PE 

CD56-FITC 

5 µl 

1 µl 

50 µl buffer + 10 µl 

Gamunex 

Single stain FITC 

(PBMC only) 

CD3-FITC 1 µl 50 µl buffer + 10 µl 

Gamunex 

Single stain PE 

(PBMC only) 

CD46-PE 1 µl 50 µl buffer + 10 µl 

Gamunex 

Unstained (PBMC 

only) 

- - 50 µl buffer + 10 µl 

Gamunex 

 

2.5.2. Analysis of CD279 expression via flow cytometry 

For CD279 expression analysis and presentation in dot plots with quadrant stats, 

FACSCalibur and the software CellQuest were used. 

 

2.6. Investigation of anti-tumor effects via sulforhodamine B cytotoxicity assay 

Sulforhodamine B (SRB) assays were used to investigate the degree of cytotoxicity 

after treatment of adherent human tumor cells with oncolytic drugs or measles vaccine 

virus. Thereby, the measured optical density correlated with the content of proteins and 

thus with the number of surviving cells (Skehan, 1990). 
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2.6.1. Materials and devices for SRB assay 
Table 9: Materials and devices for SRB assay 
Materials and devices for SRB assay  

sulforhodamine B SIGMA® life science 

trichloroacetic acid (TCA, 10 % w/v) Carl Roth GmbH + Co. KG 

acetic acid 1 % Merck (100 %) 

Tris base solution (TBS, 10 mM) SIGMA® life science 

Tecan GENios Microplate Elisa Reader MTX lab systems 

 

2.6.2. Procedure of SRB assay 

Tumor cells were seeded in 24-well plates in each 0.5 ml DMEM +10% FCS, as 

described in 2.1.7, and treated in the respective manner in quadruplicates. 

Fixation took place at different time points, washing each well with 0.5 - 1 ml PBS and 

fixing tumor cells in 250 µl of 10 % trichloroacetic acid (TCA) afterwards, both stored 

at 4 °C. TCA fixation was used to make intracellular proteins accessible for the SRB 

staining. Incubation time was at least 30 min before TCA could be tipped and collected 

for toxic waste. The plates were washed at least four times with tap water before they 

were dried at 40 °C overnight or longer. 

Staining was conducted for ten minutes at room temperature with 250 µl of SRB 

staining solution (0.4 % w/v SRB in 1 % acetic acid), targeting the basic amino acids. 

The excess dye was washed out with 1 % acetic acid, before being dried one more time 

over night at 40 °C. 

For measurement, the dye was resolved under basic conditions (pH 10.5) in about 1 ml 

of 10 mM Tris base, depending on the intensity of the pink staining. Finally, optical 

density (OD) was determined in 96-well plates at 550 nm, using Tecan GENios Elisa 

Reader. Therefore, 80 µl per well of the dissolved suspension were pipetted into the 96-

well plate in duplicates. If the OD of a single sample was over 2.0, all samples had to be 

diluted with 10 mM Tris to ensure exact measurement. 

The cell mass of treated cells was calculated in relation to MOCK-infected or untreated 

samples. Afterwards, for each experiment, means of the resulting quadruplicates were 

calculated. Data were illustrated using GraphPad Prism 4.0 software, showing the mean 

of three experiments with calculated standard error of the mean (SEM). If only one 
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representative experiment was shown, mean and standard deviation (SD) were 

calculated.  

 

2.7. xCELLigence real-time cell proliferation assay 

The xCELLigence Real-Time Cell Analyzer was used to examine the cell growth of 

adherent tumor cell lines continuously up to 130 hours. Moreover, the interactions of 

measles vaccine virus MeV-GFP, immune checkpoint inhibitors (nivolumab, 

atezolizumab) and immune cells (NK cells or PBMC) with the different CRC cell lines 

could be evaluated quantitatively throughout measurement.  

Therefore, the xCELLigence system analyzes the change of the electric impedance, 

which is influenced by cells adhering to gold boards in 96-well electronic microtiter 

plates, so-called E-Plates, thus creating an isolating monolayer and decreasing 

impedance.  

 
Figure 9: 96-well electronic microtiter plate 
 

The system works with a calculated cell index (CI), representing the change of 

impedance in relation to the background impedance with medium only (DMEM + 10 % 

FCS). The cell index is not only affected by the count of cells, which adhere to the 

bottom of the plate, but also by their shape and viability. 
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Figure 10: Procedure of xCELLigence analysis 
The schema represents the procedure of xCELLigence analysis of CRC tumor cell lines (HT29, 
HCT-15) under the influence of MeV-GFP- or MOCK-infection 21 hours after plating of tumor 
cells. Furthermore, coculture with PBMC or NK cells and application of immune checkpoint 
blockade took place at 51 hpi. For viral infection, a total FCS concentration of 5 % per well 
was chosen. Incubation of immune cells with ICI took place in RPMI + 10 % FCS for one hour 
before cocultivation. 
 

2.7.1. Materials and devices for xCELLigence analysis 

Table 10: Materials and devices for xCELLigence analysis. 
Materials and devices for xCELLigence analysis 

Triton X-100 Roth 

atezolizumab Genentech/Roche 

nivolumab Bristol-Myers Squibb 

E-Plate 96 AACEA Biosciences Inc. 

xCELLigence Real-Time Cell Analyzer 

(RTCA) 

Roche / AACEA Biosciences Inc. 

Biosafe eco (incubator) Integra Biosciences 

 

2.7.2. Seeding tumor cells for xCELLigence analysis 

The human CRC tumor cell lines HT29 and HCT-15 had to be seeded at a density 

where they remained in an exponential growth phase during the measurement period of 
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up to 130 hours. Suitable cell numbers were determined in pretest xCELLigence runs; 

cell counts used for each tumor cell line are listed in the table below. For seeding of 

tumor cells, see 2.1.7. 

 
Table 11: Cell counts per well used for xCELLigence analysis of different CRC cell lines 
Tumor cell line Cell count per well 

HT29 5 x 103 

HCT-15 2.5 x 103 

 

The samples were analyzed in triplicates per condition and for controls in sextuplicates. 

Allocation of the samples had to be planned considering the effects of drying-out in the 

wells at the E-plate margin. Those wells were best occupied with the Triton X-100 1 % 

control, which represented a standard value for maximal tumor cell killing. 

An exemplary plan of allocation for an E-plate used for xCELLigence analysis is shown 

below. 

PBS was filled into the spaces between the wells to prevent drying-out of the wells. 

Afterwards, 50 µl of DMEM + 10 % FCS were pipetted into each well for measurement 

of the background impedance value. Tumor cells were then added in 100 µl of DMEM 

+ 2.5 % FCS, resulting in a total FCS content of 5 % for viral infection the day after. 

 
Figure 8: Allocation of sample combinations for xCELLigence analysis of HT29 CRC cells 
On the left hand side: MOCK-infected cells using 10 µl of Opti-MEM. 
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On the right hand side: MeV-GFP-infected cells (MOI 2.5). 
Orange: Control. Blue: Triton X-100 1 % control. Red: Nivolumab or atezolizumab only, 
without immune cell coincubation.  
Wells located at the margin of the E-plates were used for Triton control or for maximum one 
well per triplet to not falsify the results by drying-out. 
Abbreviations: x: MOCK; M 2.5: MOI 2.5; Ate: atezolizumab; Niv: nivolumab; A+N: 
atezolizumab and nivolumab; 20:1 / 2.5:1 / 1:1 as effector : target ratios for immune cell 
coculture. 
 

2.7.3. Infection of tumor cells for xCELLigence analysis with MeV-GFP at different 

MOIs 

Viral infection with MeV-GFP at different MOIs, namely MOI 1 (in pretest runs) or 

MOI 2.5 for HT29 and MOI 10 for HCT-15, took place in 10 µl of Opti-MEM®. For 

HT29, a MOI of 2.5 was used in further experiments, considering well size and 

infection volume different from infection modus for FACS analysis or SRB assays. 

For MOCK infection, the same amount of Opti-MEM® was pipetted into the 

corresponding wells using a new pipette tip for each step. Viral infection had to take 

place within 30 minutes to not interfere with the measurement schedule of the 

xCELLigence analyzer. 

After the incubation time of three hours, 30 µl of DMEM + 38.3 % FCS were added to 

the E-plate to achieve a FCS concentration of 10 % in a total volume of 190 µl. 

 

2.7.4. Coincubation with peripheral blood mononuclear cells or NK cells at different 

effector : target ratios and treatment with immune checkpoint inhibitors 

Coincubation with PBMC or NK cells was performed in 20 µl of RPMI + 10 % FCS 51 

hours after infection with MeV-GFP. Additionally, 20 µl of 10 % Triton X-100 were 

added to control triplets to achieve maximal tumor cell killing. 

For the coculture, PBMC or NK cells were counted with the haemocytometer as 

described in 2.1.4. Effector : target (E : T) ratios from 20 : 1 to 0.5 : 1 were calculated 

considering a growth factor for the tumor cell lines which resulted from former FACS 

experiments with MeV-GFP- or MOCK-infected cells 48 hpi or, for HT29 infected at a 

MOI of 2.5, from separately plated cells which were counted 48 hpi. The required 

number of immune cells was pipetted into Eppendorf cups, centrifuged, and 

resuspended in the needed amount of RPMI + 10 % FCS. 
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For additional treatment with ICI, the immune cells were incubated with atezolizumab, 

nivolumab or both at a concentration of 5 µg / ml one hour before coincubation.  

 

2.7.5. Evaluation of xCELLigence analysis  

For analysis of the xCELLigence measurements, RTCA Software 1.2, version 1.2.1 

(Roche) was used. Graphs were generated with GraphPad Prism 4.0. 

 

2.8. Viral growth curves of MeV-GFP on HT29 and HCT-15 tumor cells 

2.8.1. Viral infection of HT29 and HCT-15 cells for preparation of virus growth 

curves 

For the measurement of viral replication, tumor cells were seeded in 6-well plates in 2 

ml DMEM + 10 % FCS in amounts listed in the table below. The day after, infection 

with the virotherapeutic MeV-GFP was performed as described in 2.2.2, using MOIs 

also specified in the table below. 

Infection took place in 1 ml of Opti-MEM, paying attention that the plates were swayed 

approximately every 15 minutes to ensure equability of infection. At 3 hpi, cells were 

washed three times with PBS and 1 ml of DMEM + 10 % FCS was added per well. 

To analyze the influence of the checkpoint inhibitors pembrolizumab (Merck / MSD) 

and atezolizumab on viral replication, the respective drug was added directly after 

infection with the new medium in a concentration of 10 µg / ml. 

 
Table 12: Amount of tumor cells per well used for viral growth curves.  
Cells were seeded in 6-well plates in 2 ml of DMEM + 10 % FCS. 
Tumor cell line Amount of tumor cells per well MOI used for viral growth curves 

HT29 2 x 105 MOI 5 

HCT-15 2 x 105 MOI 10 

 

Directly subsequent to that, the first samples were frozen at -80°C. Supernatants were 

transferred into test tubes and cells were scraped into 1 ml of Opti-MEM and also 

transferred into test tubes. 
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This procedure was repeated after 24, 48, 72 and 96 hours. For each point of time, the 

supernatant and the cell lysate of one well was used. 

 

2.8.2. Titration for virus growth curves 

The day before the viral titration, 1 x 104 Vero cells per well were seeded in 200 µl 

DMEM + 5% FCS in 96-well plates. After controlling the uniformity of cell adherence, 

the titration of the virus samples took place. Therefore, a 96-well plate was prepared for 

the serial dilution, providing 270 µl of DMEM + 5 % FCS in each well except for the 

first row.  

The samples were thawed in the water bath, vortexed and centrifuged at 3000 rpm for 2 

minutes. The supernatants were transferred into new Eppendorf cups, and 300 µl out of 

each sample were pipetted into the first empty well of the rows of the dilution plate. 

Now, 30 µl of the first well were transferred into the well below and so forth to create 

series of 1:10 dilutions, as shown in the picture below (Fig. 11).  

The diluted virus suspensions were used to infect Vero cells in quadruplicates, using 50 

µl of suspension per well. After 96 hours of infection in the incubator, the titration could 

be evaluated using fluorescence microscopy. 

 
Figure 11: 96-well plate of dilution series for MeV-GFP virus growth curves 
1 : 10 dilution series were used for the titration of MeV-GFP virus growth curves. Therefore, 
300 µl of the collected supernatants or cell lysates were pipetted into the first row of the plate. 
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Dilution was realized by transferring 30 µl out of those into 270 µl of DMEM + 5 % FCS, 
repeating that step seven times. 
 

2.8.3. Analysis of viral growth curves 

Growth curve samples were evaluated in quadruplicates via fluorescence microscopy. 

As the GFP expressed by MeV-GFP-infected tumor cells fluoresces green, infected 

wells could be detected easily as described in 1.2.4. 

For analysis, the amount of positive wells in each quad row was listed in Excel, 

calculating the viral titer in [PFU / ml]. Therefore, titers were deduced from the 50 % 

Tissue Culture Infective Dose (TCID50), describing the virus amount needed to induce 

cytopathic effects in 50 % of infected cells, which was calculated with a formula by 

Spearman and Kärber (Spearman, 1908; Kärber, 1931). 

𝑇𝐶𝐼𝐷!"
𝑚𝑙

 =  
𝑣𝑖𝑟𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑚𝑙
 =  

10!! !"#$%&$' !"##$!!.! ! !"#!"

0.03 𝑚𝑙 𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑 𝑣𝑖𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

 

A single well was considered as positive in case that at least one green fluorescing 

plaque / syncytium could be observed. 

With the calculated titers, line diagrams could be designed in GraphPad Prism 4.0. 

  

2.9. Determination of viral titers on HT-29 and HCT-15 tumor cells after coculture 

with NK cells or PBMC and treatment with atezolizumab or nivolumab 

To investigate the quantitative influence of ICI therapy and immune cell cocultivation 

on viral replication and spread in CRC cell lines, virus titers were determined. 

24 hours after seeding in 6-well plates, HT29 or HCT-15 tumor cells were infected with 

MeV-GFP at MOI 1 and 10, respectively. 48 hpi, both tumor cells and PBMC or NK 

cells were separately incubated for one hour with 5 µg / ml of each atezolizumab, 

nivolumab or both. Importantly, for treatment of tumor cells with ICI, a medium 

exchange was done, replacing the old medium with 1.8 ml of fresh DMEM + 10 % 

FCS. Incubation of immune cells took place in RPMI and the needed amount of PBMC 

/ NK cells was added after one hour in a volume of 200 µl to each well. 
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For control, one well was left without coincubation or ICI treatment, one well was 

coincubated with immune cells but without ICI and one well was coincubated with 

PBMC / NK cells and treated with control IgG Gamunex. 

Both supernatants and cell lysates were frozen 48 hours after coculture at -80° C, 

proceeding as described in 2.8.1. Therefore, supernatants were additionally centrifuged 

at 4000 rpm for 4 minutes to separate and discard NK cells or PBMC from supernatants. 

 
Table 13: Cell counts, MOIs, E : T ratios and ICI concentrations used for viral titer 
determination 
Tumor cell 

line 

Amount of tumor 

cells per well 

MOI used  E : T 

PBMC 

E : T  

NK 

ICI 

concentration 

HT29 2 x 105 MOI 1  10:1 2.5:1 5 µg / ml 

HCT-15 2 x 105 MOI 10 10:1 2.5:1 5 µg / ml 

 

Titration on Vero cells and calculation of the resulting MeV-GFP titers in PFU / ml 

were performed as described in 2.8.2 and 2.8.3. Bar diagrams were designed using 

GraphPad Prism 4.0.  

 
Figure 12: Workflow of virus titer determination after coincubation with NK cells / PBMC 
and treatment with ICI 
Treatment with atezolizumab and / or nivolumab took place separately for tumor and immune 
cells, using a concentration of 5 µg / ml. 
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3. Results 
 

Aim of this dissertation thesis was to investigate a novel multimodal therapeutic 

approach for the treatment of advanced colorectal carcinoma (CRC). Thereby, a measles 

vaccine virus (MeV) virotherapeutic was combined with immune checkpoint inhibitors 

(ICI) under coculture with NK cells or peripheral blood mononuclear cells (PBMC) in 

vitro, using three CRC cell lines from the NCI-60 human tumor cell panel, i.e. cell lines 

HT29, HCT-15 and SW-620. 

For cytotoxicity analysis of the respective monotherapies, Sulforhodamine B (SRB) 

assays were performed to uncover preexisting resistances in the different tumor cell 

lines.  

After the basal expression rates of immune checkpoint ligand PD-L1 on CRC cell lines 

were investigated under different culturing conditions using flow cytometry, a next step 

was to focus on the influence of treatment with measles oncolytic virus (OV) on PD-L1 

expression. Furthermore, the existence of immune checkpoint receptor PD-1 on NK cell 

subpopulations was quantified via flow cytometry. 

The functional xCELLigence real-time cell proliferation assay was used to depict 

conceivable anti-tumor effects of our immunovirotherapeutic approach for CRC 

treatment under immune cell coculture. On the other hand, antiviral effects of immune 

checkpoint blockade were examined in a viral growth curve model and, secondly, in 

viral titrations of supernatants and lysates of measles-infected CRC cells after immune 

cell cocultivation. 
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3.1. Quantification of anti-tumor effects of monotherapeutic treatment with 

measles virotherapeutic or immune checkpoint blockade in colorectal 

carcinoma 

3.1.1. Measurement of cytotoxicity under MeV-GFP-infection in human colorectal 

carcinoma cell lines HCT-15, HT29 and SW-620 

To reveal possible preexisting resistances against the respective monotreatments, cyto-

toxic influence of MeV-GFP-infection on three human CRC cell lines from the NCI-60 

human tumor cell panel was determined by SRB cytotoxicity assays. Fixation of tumor 

cells was performed at 72 and 96 hours post infection (hpi). 

 
Figure 13: SRB cytotoxicity assays of the MeV-GFP-infected human CRC cell line HT29 
Infection of HT29 tumor cells took place at different multiplicities of infection (MOI), namely 
0.1, 0.5, 1, 5 or 10. MOCK-infected HT29 cells served as control and were equalized with 100 
% of the overall cell mass. Fixation of tumor cells took place at 72 or 96 hours post infection 
(hpi). 
Three independent experiments are shown, depicting mean and standard error of the mean 
(SEM). Analysis was performed in quadruplicates for each single experiment. For calculation 
of SEM, see 2.6. 
 

In HT29 tumor cells, MeV-GFP-infection achieved a multiplicity of infection (MOI)- 

and time-dependent reduction of tumor cell mass. Thus, HT29 turned out to be 

susceptible towards MeV-GFP-induced oncolysis, as already described by Noll et al. for 

the infection with MeV-SCD at a MOI of 1 (Noll M., 2013). Our results showed that 

viral infection at the highest MOI of 10 already reduced cell mass to an extent of 18.4 % 

± 11.4 (mean and SEM) of control at 72 hpi. After 96 hours, the cell mass residue 

decreased to a percentage of 10.6 % ± 6.7; so most tumor cells had been killed by then, 

which could also be observed via light microscopy with the dead cells being solved 

from the monolayer. 
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The HT29 tumor cell killing decreased at lower MOIs, as the trends in SRB assays 

clearly showed. Namely, referring to the lowest MOI of 0.1, tumor cell mass was only 

reduced to 88.1 % ± 3.4 of control cell mass at 72 hpi, whereupon a longer time of 

cultivation could not improve tumor cell killing in this single case with 88.7 % ± 4.8 at 

96 hpi. 

 
Figure 14: SRB cytotoxicity assays of the MeV-GFP-infected human CRC cell line HCT-
15 
Infection of HCT-15 tumor cells took place at different MOIs of 0.1, 0.5, 1, 5 or 10, respectively. 
MOCK-infected HCT-15 cells served as control and were equalized with 100 % of the overall 
cell mass. Fixation of cells took place at 72 or 96 hpi. 
Three independent experiments are shown, depicting mean and SEM. Analysis was performed 
in quadruplicates for each single experiment. For calculation of SEM, see 2.6. 
 

On the other hand, another human CRC cell line from the NCI-60 panel, HCT-15, was 

observed to be highly resistant towards MeV-GFP-induced oncolysis, also consistent 

with the results of Noll et al. for MeV-SCD. In this case, even the highest MOI of 10 

could not achieve a tumor cell mass reduction, neither at 72 hpi with 102.9 % ± 10.2 of 

control cell mass, nor at 96 hpi with 96.2 % ± 3.2 of control cell mass. 
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Figure 15: SRB cytotoxicity assays of the MeV-GFP-infected human CRC cell line SW-620 
Infection of SW-620 tumor cells took place at different MOIs of 0.1, 0.5, 1, 5 or 10, respectively. 
MOCK-infected SW-620 cells served as control and were equalized with 100 % of the overall 
cell mass. Fixation of cells took place at 72 or 96 hpi. 
Three independent experiments are shown, depicting mean and SEM. Analysis was performed 
in quadruplicates for each single experiment. For calculation of SEM, see 2.6. 
 

The last cell line depicted here, SW-620, was tested intermediate resistant to MeV-GFP-

oncolysis. 

With a remaining tumor cell mass of 58.3 % ± 2.1 (mean and SEM) at 72 hpi and of 

34.5 % ± 1.9 at 96 hpi using the highest MOI of 10, a time-dependent tumor cell mass 

reduction could be observed in SW-620. Furthermore, a MOI-dependent susceptibility 

to MeV-GFP could be proven. However, higher MOIs were necessary for effective 

tumor cell mass reduction. Namely, at 96 hpi, the remaining tumor cell mass after 

virotherapeutic treatment diminished from 99.1 % ± 0.4 for MOI 0.1 to 93.9 % ± 1.3 for 

MOI 0.5, 91.1 % ± 0.8 for MOI 1, 56.5 % ± 2.3 for MOI 5 and finally 34.5 % ± 1.9 for 

MOI 10. Whereas the MOIs of 0.1, 0.5 and 1 could not or only slightly achieve tumor 

cell killing at 72 and 96 hpi, a tumor cell mass decline could be found for the MOIs of 5 

and 10 at both times of measurement. 

To sum it up, MeV-GFP-infection achieved a MOI- and time-dependent reduction of 

HT29 and SW-620 tumor cell mass at 72 and 96 hpi in vitro. In contrast to those 

findings, the human CRC cell line HCT-15 was observed to be highly resistant to MeV-

GFP-induced oncolysis at both 72 and 96 hpi, referring to MOIs from 0.1 to 10. 
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3.1.2. Examination of cytotoxicity after treatment with immune checkpoint inhibitors 

nivolumab or atezolizumab in human colorectal carcinoma cell lines HCT-15 

and HT29 

SRB assays of human CRC cell lines HT29 and HCT-15 were performed to analyze 

possible anti-tumor effects of monotherapeutic treatment with immune checkpoint 

inhibitors nivolumab, targeted against PD-1, and atezolizumab, with PD-L1 as its target. 

Tumor cell lines HT29 (permissive to MeV oncolysis) and HCT-15 (resistant to MeV 

oncolysis) were investigated, as both were used for xCELLigence analysis in the 

following. 

HT29 

 

 
Figure 16: SRB cytotoxicity assays of HT29 tumor cells after treatment with immune 
checkpoint inhibitors atezolizumab or nivolumab 
One day after plating, HT29 and HCT-15 tumor cells were treated with 5 µg / ml of 
atezolizumab or nivolumab, or were left without ICI treatment after a medium exchange, 
respectively. At each 24, 48, 72 and 96 hours after treatment, cells were fixed and prepared for 
SRB analysis. 
Means ± SD of the cell mass relative to control cell mass of untreated cells are shown. Analysis 
was performed in quadruplicates. One representative experiment is depicted. 
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HCT-15 

 

 
Figure 17: SRB cytotoxicity assays of HCT-15 after treatment with immune checkpoint 
inhibitors atezolizumab or nivolumab 
 

Monotherapeutic treatment of both CRC cell lines HT29 and HCT-15 with 5 µg / ml of 

ICI nivolumab or atezolizumab, respectively, did not influence tumor cell viability in 

vitro, neither increasing nor decreasing the remaining cell mass at 24, 48, 72 or 96 hours 

after treatment.  

According to these observations and to our expectations, both drugs were not found to 

possess independent anti-tumor efficacy in the absence of immune cells, as no PD-1 / 

PD-L1 interaction could take place. 

 

3.2. Analysis of PD-L1 expression on different human colorectal carcinoma cell 

lines under the influence of measles-induced oncolysis 

As immune checkpoint ligand (PD-L1) expression on tumor cells and immune 

checkpoint receptor (PD-1) expression on immune cells both display key factors for a 

possible therapeutic ICI interaction, these parameters were investigated in further steps. 

Thereby, a focus was set on the influence of measles virotherapeutic-infection on the 

expression of PD-L1 on human CRC cell lines at first. 
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3.2.1. Basal PD-L1 expression in human colorectal carcinoma cell lines HT29, HCT-

15 and SW-620 under the influence of different culturing conditions 

As a standard of comparison, basal expression rates of the immune checkpoint ligand 

PD-L1 on tumor cell lines HT29, HCT-15 and SW-620 were investigated via FACS 

analysis, taking different culturing conditions into account. 

On the one hand, cells were cultured in DMEM + 10 % FCS, and on the other hand, 

cells were additionally incubated for three hours in the virus incubator with Opti-MEM, 

which was normally used for viral infection. 

	  

	  
Figure 18: FACS analysis of the basal PD-L1 expression on human colorectal carcinoma 
cell lines HT29, HCT-15 and SW-620 under different culturing conditions 
Tumor cells were plated and incubated with Opti-MEM in the virus incubator, similarly to the 
process of viral infection, or were left in DMEM + 10 % FCS in the incubator for uninfected 
cells instead. After three hours of incubation, medium was replaced by fresh DMEM + 10 % 
FCS in each case. 24 or 48 hours later, cells were collected for FACS staining of PD-L1 with 
PE anti-human CD274 (PD-L1). In case of HT29 and HCT-15, three independent experiments 
were performed, showing means ± SD of the percentages of PD-L1 expressing tumor cells. 
Regarding SW-620, one representative experiment is shown. W/o = without. 
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The three human CRC cell lines showed different degrees of basal PD-L1 expression. In 

detail, 14.8 % of HT29 cells, 2.8 % of HCT-15 cells and 2.6 % of SW-620 cells were 

found to express PD-L1 without addition of Opti-MEM. 

Moreover, PD-L1 expression of the three tumor cell lines reacted differently in regard 

to time of culturing and variation of used media. In SW-620 tumor cells, a time-

dependent increase in expression of PD-L1 could be observed (24 versus 48 hours of 

cultivation), namely a difference of 9.7 percentage points in cells cultured without Opti-

MEM (from 2.6 % of analyzed tumor cells to 12.3 %) and a difference of 1.0 percentage 

points in cells cultured including Opti-MEM incubation (from 3.5 % of analyzed tumor 

cells to 4.5 %). 

In the HCT-15 tumor cell line, an increase in PD-L1 expression with respect to duration 

of culture (24 versus 48 hours) could be observed, just as described for SW-620, namely 

a difference of 4.5 percentage points in cells cultured without Opti-MEM (from 2.8 % ± 

0.7 of analyzed tumor cells to 7.3 % ± 1.3) and a difference of 6.2 percentage points in 

cells cultured with Opti-MEM incubation (from 3.4 % ± 2.3 of analyzed tumor cells to 

9.6 % ± 2.1). 

An inverse effect could be found addressing HT29 tumor cells, where a time-dependent 

decrease in expression of PD-L1 could be observed, namely a difference of 6.5 

percentage points in cells cultured without Opti-MEM (from 14.8 % ± 1.9 of analyzed 

tumor cells to 8.3 % ± 0.8) and a difference of 8.6 percentage points in cells cultured 

including Opti-MEM incubation (from 22.5 % ± 2.3 of analyzed tumor cells to 13.9 % 

± 4.7). 

In HT29, a difference of PD-L1 expression could be observed when comparing the 

different culturing conditions DMEM + 10 % FCS versus Opti-MEM. A higher PD-L1 

expression was observed when cells were cultured in Opti-MEM with a difference of 

7.7 percentage points in cells collected after 24 hours (14.8 % ± 1.9 of tumor cells 

without Opti-MEM versus 22.5 % ± 2.3 of cells with Opti-MEM incubation) and a 

difference of 5.6 percentage points in cells collected after 48 hours (8.3 % ± 0.8 of 

analyzed tumor cells without Opti-MEM versus 13.9 % ± 4.7 of cells with Opti-MEM 

incubation). 

In HCT-15 as well as SW-620, no consistent difference in expression of PD-L1 with 

respect to different culturing conditions could be observed. A decrease of PD-L1 
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expression in SW-620 from 12.3 % of analyzed CRC cells without Opti-MEM to 4.5 % 

of cells with Opti-MEM incubation after 48 hours could not be reproduced for the first 

time of measurement after 24 hours. 

To summarize, culturing conditions with regard to medium and time of culturing could 

partly influence PD-L1 expression on human CRC cell lines, but not homogeneously in 

all three tested tumor cell lines. 

These pretests were of relevance to appraise whether in the following experiments 

infection with oncolytic measles vaccine virus was a reason for a change in PD-L1 

expression rates, or whether different culturing conditions pretended such an effect. 

 

3.2.2. PD-L1 expression in human colorectal carcinoma cell lines HT29, HCT-15 and 

SW-620 after infection with MeV-GFP 

After comparison of basal PD-L1 expression rates under different culturing conditions, 

FACS analysis of MeV-GFP-infected tumor cells HT29, HCT-15 and SW-620 was 

performed to examine the influence of viral infection on the expression of the immune 

checkpoint ligand. 

MeV-GFP as a virotherapeutic implicates the advantage that the viral infection of tumor 

cells can be quantified, as infected cells express the green fluorescent protein (GFP), 

which in turn can be detected by flow cytometry. First of all, appropriate viral infection 

of the three human CRC cell lines was proven by flow cytometry. 
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Figure 19: FACS analysis of GFP expression on MOCK- or MeV-GFP-infected human 
colorectal carcinoma cell lines HT29, HCT-15 and SW-620 
Tumor cells were infected with MeV-GFP using different MOIs of 1, 5 or 10, or were MOCK-
infected. Tumor cells were fixed for FACS analysis at 24 and 48 hpi. 
The percentages of GFP positive cells are given, representing successfully infected tumor cells. 
 

Time- and MOI-dependent MeV-GFP-infection could be proven in all three CRC cell 

lines by measuring GFP expression of infected tumor cells. 

Addressing HT29 cells infected at a MOI of 1, only 39.5 % of tumor cells at 24 hpi and 

95.2 % at 48 hpi revealed GFP expression. Referring to infection at the higher MOI of 

5, 72.1 % of cells expressed GFP at 24 hpi, further increasing to 98.3 % at 48 hpi. 

In contrast to this, only 12.0 % of HCT-15 tumor cells showed GFP expression at 24 hpi 

and 31.1 % at 96 hpi, albeit the higher MOI of 10 was used for infection.  

In SW-620 cells, a MOI of 5 achieved infection of 62.5 % of tumor cells at 24 hpi and 

99.5 % at 48 hpi. With an increase of MOI to 10, infection rates could be further 

augmented to 84.1 % of tumor cells at 24 hpi and stayed at a high level of 99.9 % at 48 

hpi. These observations seemed consistent with the different MeV-GFP susceptibilities 

found in SRB assays before. 

In a next step, PD-L1 expression on infected tumor cells was analyzed. 

 

 

 

 

 

 

 

 

 

GFP expression in SW-620 after infection with MeV-GFP

MOCK
MOI 5

MOI 1
0

0

20

40

60

80

100

Tu
m

or
 c

el
ls

 e
xp

re
ss

in
g 

G
FP

 [%
]

24 hpi

48 hpi



Results 

 

74 

A) PD-L1 expression on HT29 tumor cells, infected with MeV-GFP 

 

 
 

A) PD-L1 expression on HT29 tumor cells, infected with MeV-GFP 

24 hpi GFP 
positive 
[%] 

PD-L1 
positive 
[%] 

GFP and PD-
L1 positive 
[%] 

48 hpi GFP 
positive 
[%] 

PD-L1 
positive 
[%] 

GFP and 
PD-L1 
positive [%] 

MOCK 0.37 46.58 0.37  1.09 42.27 0.98 

MOI 1 39.52 52.03 19.59  95.20 76.71 73.63 

MOI 5 72.06 62.68 44.82  98.32 80.86 79.68 
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B) PD-L1 expression on HCT-15 tumor cells, infected with MeV-GFP

 

 
 

B) PD-L1 expression on HCT-15 tumor cells, infected with MeV-GFP 

24 hpi GFP 
positive 
[%] 

PD-L1 
positive 
[%] 

GFP and PD-
L1 positive 
[%] 

48 hpi GFP 
positive 
[%] 

PD-L1 
positive 
[%] 

GFP and 
PD-L1 
positive [%] 

MOCK 0.04 2.31 0.04  0.09 3.38 0.09 

MOI 10 12.01 2.43 0.16  31.09 20.80 10.32 
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C) PD-L1 expression on SW-620 tumor cells, infected with MeV-GFP 

 

 
Figure 20, A - C: FACS analysis of PD-L1 expression on MeV-GFP-infected in 
comparison to MOCK-infected human colorectal cancer cell lines HT29, HCT-15 and SW-
620 
MeV-GFP-infection of CRC cells was performed using different MOIs (MOI 1 and MOI 5 for 
HT29, MOI 10 for HCT-15 and MOI 5 and MOI 10 for SW-620) or cells were MOCK-infected. 
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Tumor cells were analyzed for PD-L1 expression at 24 and 48 hpi. Staining was performed with 
PE anti-human CD274 (aPD-L1 PE) or the respective PE IgG2b isotype control (isotype). In 
the dot plots of HT29 and HCT-15, percentages of PD-L1 positive cells are given irrespective of 
GFP expression status. In the dot plots of SW-620, the percentages of cells in each quadrant 
region are shown. 

 
Table 14, A - C: FACS analysis of PD-L1 expression on MeV-GFP-infected in comparison 
to MOCK-infected human colorectal cancer cell lines HT29, HCT-15 and SW-620 
The respective tables below list the percentages of GFP positive, PD-L1 positive and both GFP 
and PD-L1 positive tumor cells, referring to cells labeled with PE anti-human CD274. 

C) PD-L1 expression on SW-620 tumor cells, infected with MeV-GFP 

24 hpi GFP 
positive 
[%] 

PD-L1 
positive 
[%] 

GFP and PD-
L1 positive 
[%] 

48 hpi GFP 
positive 
[%] 

PD-L1 
positive 
[%] 

GFP and PD-
L1 positive 
[%] 

MOCK 0.25 3.48 0.17  0.42 4.48 0.29 

MOI 5 62.53 4.08 2.72  99.48 10.06 9.97 

MOI 10 84.09 3.60 2.86  99.93 7.19 7.16 

 
In HT-29 cells, PD-L1 expression 24 hpi increased from an initial level of 46.6 % of 

uninfected cells to a level of 62.7 % of cells infected at MOI 5. Further augmentation of 

PD-L1 expression could be observed at 48 hpi, finally reaching a level of 80.9 % of 

cells infected using MOI 5. 

In HCT-15, PD-L1 expression at 24 hpi did not change from an initial level of 2.3 % of 

MOCK-infected cells to a level of 2.4 % of cells infected at MOI 10, but an increase in 

PD-L1 expression could be observed at 48 hpi, finally reaching a level of 20.8 % of 

cells infected using MOI 10. 

In SW-620 cells, PD-L1 expression at 24 hpi could not be increased by MeV-GFP 

infection, with 3.5 % of uninfected cells expressing PD-L1 compared to 3.6 % of cells 

infected at MOI 10. Nevertheless, augmentation of PD-L1 expression could be observed 

at 48 hpi with 4.5 % of uninfected cells expressing PD-L1 versus 7.2 % of cells infected 

at MOI 10. However, no MOI-dependent relation of PD-L1 upregulation could be 

described, as even 10.1 % of tumor cells infected at MOI 5 expressed PD-L1 at 48 hpi. 

To sum it up, a MOI- and time-dependent upregulation of PD-L1 could be shown for 

HT29 and HCT-15 CRC cells. In SW-620, a greater proportion of MeV-GFP-infected 

tumor cells expressed PD-L1 than of uninfected tumor cells, but no MOI-dependency 

could be proven. Still, the PD-L1 expression in SW-620 rose with time of cultivation 

after OV infection. 
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As high levels of GFP expression unfortunately interfered with the PE fluorochrome, 

the percentage of PE positive cells increased in MeV-GFP-infected isotype controls as 

well. This has to be taken into account when considering results of PD-L1 expression, 

especially in the MeV-GFP susceptible cell line HT29, where high GFP expression 

levels were achieved with MOIs of up to 5 (see Fig. 19). Therefore, after effective 

infection was proven, MeV-SCD (not encoding the GFP marker gene) was used for 

measurement of PD-L1 expression in further experiments to avoid interference. 

 

3.2.3. PD-L1 expression in human colorectal carcinoma cell lines HCT-15, HT29 and 

SW620 after infection with MeV-SCD 

In a next step, the influence of MeV-SCD-infection on PD-L1 expression on human 

CRC cell lines was examined by flow cytometry, whereupon the interference of 

fluorescing GFP with PE fluorochrome, as described in 3.2.2, could be avoided. 

A) PD-L1 expression on HT29 cells, infected with MeV-SCD 
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B) PD-L1 expression on HCT-15 cells, infected with MeV-SCD

 

 

 

PD-L1 expression, HCT-15, 24 / 48 hpi with MeV-SCD at different MOIs
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C) PD-L1 expression on SW-620 cells, infected with MeV-SCD 
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Figure 21, A - C: FACS analysis of PD-L1 expression on MeV-SCD-infected in 
comparison to MOCK-infected human colorectal cancer cell lines HT29, HCT-15 and SW-
620 
MeV-SCD-infection of CRC cells was performed using different MOIs (MOI 1 or MOI 5 for 
HT29, MOI 10 for HCT-15 and MOI 5 or 10 for SW-620), or cells were MOCK-infected. 
Staining for PD-L1 analysis was performed at 24 or 48 hpi. Tumor cells were labeled with PE 
anti-human CD274 (aPD-L1 PE) or the respective PE IgG2b isotype control (isotype). In the 
graphs of HT29 and HCT-15, percentages of PD-L1 positive tumor cells, which were covered 
by the marker M1, are given. In the graphs of SW-620, percentages of PD-L1 positive tumor 
cells, covered by the region R1, are given.  
 
Comparable to our results for MeV-GFP, we could show that infection with MeV-SCD 

increased PD-L1 expression in all three human CRC cell lines in vitro. Expression 

further rose with augmentation of MOI and time of culture after infection for HT29 and 

HCT-15, whereas in SW-620, expression rose with increase of MOI but not with 

augmentation of time of culturing after infection with MeV-SCD. 

In HT29, an initial PD-L1 expression of 39.4 % of analyzed tumor cells at 24 hours 

after MOCK-infection could be increased to 56.6 % of tumor cells by MeV-SCD 

infection, using a MOI of 5. At 48 hpi, the initially lower level of PD-L1 positive HT29 

cells, namely 25.3 % of analyzed MOCK-infected tumor cells, could be enhanced to a 

PD-L1 expression on 75.3 % of cells via MeV-SCD-infection at MOI 5, thus PD-L1 

expression could be tripled by MeV treatment. Similar tendencies were observed with 

infection at a lower MOI of 1 (see Fig. 21, A). 

In HCT-15, an initially very low PD-L1 expression level of 5.9 % of MOCK-infected 

tumor cells was augmented to 9.7 % of tumor cells by MeV-SCD-infection at MOI 10, 

analyzed at 24 hpi. At 48 hpi, the slightly increased level of 10.5 % in MOCK-infected 

cells mounted to 35.6 % by OV treatment, thus again, PD-L1 expression rate even more 

than tripled. 
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Finally, in SW-620 tumor cells, an initial PD-L1 expression of 29.8 % of analyzed cells 

was increased to 53.1 % 24 hpi at MOI 5 and further to 61.6 % at MOI 10. Referring to 

measurements at 48 hpi, an initial expression of 3.4 % of SW-620 tumor cells rose to 

11.1 % at MOI 5 and to 13.2 % at MOI 10. Surprisingly, for SW-620 tumor cells, the 

dependency on time of culturing after OV infection was this time inverse in comparison 

to HT29 and HCT-15, as the PD-L1 expression in SW-620 CRC cells declined at 48 hpi 

for MOCK and both MOIs (see Fig. 21, C). However, this effect of decreased PD-L1 

expression rates after an augmented time of cultivation could not be reproduced in our 

experiments comparing different culturing media (Fig. 18) or analyzing PD-L1 

expression rates after MeV-GFP infection (Fig. 20 C). 

Summing up, those in vitro findings of PD-L1 expression analysis after infection with 

MeV-SCD confirmed our hypothesis, based on experiments with MeV-GFP (described 

in 3.2.2), that measles OV infection could consistently increase expression of immune 

checkpoint ligand on all three CRC cell lines. Hence, these results promise success of 

an immunovirotherapeutic treatment approach for colorectal cancer, blazing a trail for 

ICI application by PD-L1 upregulation through MeV-treatment. Even the tumor cell 

line with very low basal PD-L1 expression rates, HCT-15, which, at the same time, had 

to deal with the highest MeV resistance rates, achieved PD-L1 expression rates of 35.6 

% at 48 hpi with MeV-SCD at MOI 10, increased from only 5.9 % for MOCK-infected 

cells at 24 hpi. 

Moreover, referring to HT29 tumor cells, the effect of PD-L1 upregulation via treatment 

with measles virotherapeutic could also compensate the trend of lower PD-L1 

expression rates due to longer time of cultivation. Effects are visible when comparing 

measurement at 24 and 48 hours after treatment with MeV or MOCK-infection, as 

depicted in Fig. 18, 20 A and 21 A. Referring to the effects of Opti-MEM incubation 

instead of cultivation in standard DMEM + 10 % FCS medium (see 3.2.1), PD-L1 

expression on HT29 tumor cells was augmented about 1.7-fold by Opti-MEM, whereas 

MeV-SCD-infection could even triple PD-L1 expression rates, both analyzed at 48 

hours after infection or after Opti-MEM incubation. 
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3.3. FACS analysis of PD-1 expression on NK cell populations from different 

healthy donors 

PD-1 / PD-L1 interaction displays the therapeutic target for both immune checkpoint 

inhibitors nivolumab and atezolizumab. Thus, after upregulation of PD-L1 on human 

CRC cell lines HT29, HCT-15 and SW-620 through MeV-GFP- as well as MeV-SCD-

infection could be proven, expression of immune checkpoint receptor PD-1 on CD56 

positive NK cell populations was investigated. NK cells and PBMC were a friendly gift 

from AG Salih, Tübingen, and had been isolated from four different healthy donors, 

labeled #1 to #4. Furthermore, NK cells from donor #3 and PBMC from donor #2 were 

used for coincubation in xCELLigence analysis of HCT-15 tumor cells later (Fig. 24 A 

- G). 

PD-1 expression on NK cell populations from different healthy donors
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Figure 22: FACS analysis of PD-1 expression on NK cell populations from different 
healthy donors 
PD-1 expression was analyzed on CD56 positive NK cell subsets from NK cells or from 
cultured PBMC, both from different healthy donors identified with #1 to #4. NK cell subsets 
were stained with FITC anti-human CD56 and PE anti-human CD279 (PD-1) or the respective 
FITC / PE IgG1 isotype controls. In the dot plots, percentages of both CD56 and PD-1 positive 
cells are given. 
 
Table 15: FACS analysis of PD-1 expression on NK cell populations from different healthy 
donors 
The percentages of CD56 positive, PD-1 positive and both CD56 and PD-1 positive cells are 
given. 

 CD56 positive [%] PD-1 positive [%] CD56 and PD-1 positive [%] 

PBMC #1 2.33 15.1 0.16 

PBMC #2 8.32 11.59 0.27 

NK #3 87.17 2.45 0.56 

NK #4 36.72 3.51 0.76 

 

FACS analysis of PBMC from donor #1 resulted in 2.3 % of CD56 positive cells, 

representing a NK cell subset; but only 0.2 % of analyzed cells were also positive for 

PD-1. Altogether, 15.1 % of PBMC expressed PD-1. 

PBMC from donor #2 showed a higher proportion of CD56 positive cells, namely 8.3 % 

of cells; but again, only 0.3 % of analyzed PBMC were simultaneously expressing PD-1 

and CD56. From the whole entity of PBMC, 11.6 % were positive for PD-1. 
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The NK cells from donor #3 consisted of 87.2 % of CD56 positive cells; and 0.6 % of 

these were also positive for PD-1. PD-1 expression of the overall cell population was 

measured in 2.5 % of investigated cells. 

The NK cells from donor #4 possessed only 36.7 % CD56 positive cells, maybe as a 

result of a shorter time of cultivation after preparation from blood samples. 0.8 % of 

these NK cells were double positive for CD56 and PD-1, whereas 3.5 % of the whole 

cell population was only PD-1 positive. 

Summing up, neither the CD56 positive cell subset of PBMC nor the CD56 positive 

expanded NK cells were found to have more than 1 % of PD-1 positive cells as a pre-

condition to take place in a direct PD-1 / PD-L1 interaction. Yet, it should be considered 

that only the CD56 positive NK cell subset was investigated for PD-1 expression. 

Namely, PD-1 expression on overall PBMC or NK cells ranged from 2.5 % to 15.1 %. 

 

3.4. In vitro therapeutic effects of combining MeV-GFP with immune checkpoint 

inhibitors and immune cell coculture in human colorectal carcinoma cell lines 

xCELLigence real-time cell proliferation assay was used for analysis of the anti-tumor 

effects of the three different therapeutics measles vaccine virus, immune cells and ICI in 

monotherapy, as well as the effects of combined treatment with (i) measles vaccine 

virus plus ICI, (ii) measles vaccine virus plus immune cells, (iii) immune cells plus ICI 

and (iv) measles vaccine virus plus immune cells plus ICI. 

For analysis, the two human CRC cell lines HT29 and HCT-15 were chosen, 

representing a MeV-GFP-susceptible as well as a MeV-GFP-resistant tumor cell line. 

The suitable tumor cell counts for the E-plates, MOIs as well as effector : target (E : T) 

ratios were established in multiple test runs (not shown here). For cell counts, it had to 

be taken into account that tumor cells remained in an exponential growth phase over the 

measurement period of 130 hours. MOIs as well as E : T ratios were selected 

accordingly that monotherapy did not lead to a complete tumor cell killing, making it 

possible to observe potential additional therapeutic effects of the combined treatment 

approaches. 

The influence of MHC mismatch between human tumor cell lines and different healthy 

immune cell donors posed a problem in examination of the suitable E : T ratios and had 

to be considered when comparing individual xCELLigence runs. 
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3.4.1. xCELLigence real-time cell proliferation assay for analysis of HT29 / HCT-15 

growth and viability under the influence of MeV-GFP-infection together with 

nivolumab and / or atezolizumab treatment 

First of all, it was examined whether addition of ICI nivolumab or atezolizumab alone 

could improve therapeutic effects in uninfected CRC cells or in tumor cells infected 

with the virotherapeutic MeV-GFP. 

In general, a supposable improvement of therapeutic effect has to be equated with a 

decrease of the cell index (CI), being influenced by tumor cell growth as well as tumor 

cell viability over the measurement period as described in 2.7. 

A) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI atezolizumab or nivolumab 

 
 

 

 

 

 

 

 

 



Results 

 

88 

B) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI atezolizumab or nivolumab 

 
Figure 22 A - B: xCELLigence real-time assay of HT29 and HCT-15 growth and viability 
under treatment with MeV-GFP and / or immune checkpoint inhibitors 
xCELLigence real-time cell monitoring assay was used to investigate growth and viability of 
CRC cells over a period of 130 hours under the influence of treatment with MeV-GFP, ICI, or a 
combination of both. 21 hours after plating of tumor cells, infection with MeV-GFP at the 
respective MOI (MOI 2.5 for HT29 and MOI 10 for HCT-15) or MOCK infection took place. 51 
hpi, nivolumab or atezolizumab were added in a concentration of 5 μg / ml each. 
The cell index (CI) is shown as a function of time. Measurement took place in triplets; means 
and SD are shown. For each tumor cell line, one representative experiment is shown. 
Niv = nivolumab, Ate = atezolizumab, MeV = MeV-GFP. 
 
In HT29, treatment with the measles virotherapeutic MeV-GFP more than halved the 

colorectal tumor cell growth and viability in comparison to controls after 130 hours. 

Relating to the addition of ICI to uninfected tumor cells, curves of atezolizumab and 

nivolumab were almost identical. A slight trend towards CI decrease compared to the 

control curve could be observed. The same applied for ICI addition to MeV-GFP-

infected HT29 tumor cells, where only a trend of CI decrease could be recorded by both 

atezolizumab and nivolumab. 
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To recapitulate, neither atezolizumab nor nivolumab could achieve a significant 

impairment of HT29 tumor growth and viability in a model without immune cells, as 

expected. 

In HCT-15, similar results could be observed. Addition of MeV seemed to change 

growth kinetics throughout measurement: Between 21 hours and about 80 hours after 

start of xCELLigence recording, the MeV curve rose earlier than the MOCK curve, 

whereas in the period between 80 hours and 130 hours, the steepness of the MeV curve 

clearly decreased in comparison to MOCK control. Thus, after 130 hours of 

measurement, the CI of infected tumor cells was almost halved in comparison to 

control, although HCT-15 had been considered highly resistant to MeV-GFP-mediated 

oncolysis in SRB assays (displayed in 3.1.1). 

In uninfected HCT-15, addition of each nivolumab and atezolizumab lead to a decrease 

of CIs, but in both cases less than the CI reduction achieved through measles infection. 

Results of uninfected HCT-15 tumor cells treated with atezolizumab should be regarded 

under reserve, referring to the range of SD. In MeV-GFP-infected tumor cells, no 

impairment of growth and viability by ICI could be recorded, as the two curves of ICI-

treated HCT-15 cells (yellow for nivolumab and dark blue for atezolizumab) were equal 

to that of the infected control (light green for MeV-GFP only). 

To put it into a nutshell, xCELLigence analysis of HCT-15 could show a CI decrease 

through MeV treatment and a trend of CI reduction through ICI treatment in uninfected 

tumor cells, but no consistent CI decrease through ICI in MeV-GFP-infected tumor 

cells. 

 

3.4.2. xCELLigence real-time cell proliferation assay for analysis of HT29 / HCT-15 

growth and viability under the influence of MeV-GFP-infection, treatment with 

nivolumab and / or atezolizumab and PBMC or NK cell coculture 

As previously performed without immune cells, the anti-tumor effects of our treatment 

approach with MeV and / or ICI were now investigated in human CRC cells under the 

influence of cocultivation with PBMC or NK cells. Thus, a PD-1 / PD-L1 interaction 

between tumor and immune cell was permitted, depicting a therapeutic possibility for 

ICI intervention. 
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A) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI atezolizumab and PBMC (E : T = 20 : 1) 

 
B) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI nivolumab and PBMC (E : T = 20 : 1)
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C) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI atezolizumab and nivolumab and PBMC (E : T = 20 : 1) 

 
D) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI atezolizumab and NK cells (E : T = 2.5 : 1) 
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E) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI nivolumab and NK cells (E : T = 2.5 : 1) 

 
F) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI atezolizumab and NK cells (E : T = 1 : 1) 
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G) HT29 (5.000 cells / well), infected with MeV-GFP (MOI 2.5) or MOCK-infected, 

together with ICI nivolumab and NK cells (E : T = 1 : 1) 

 
Figure 23, A - G: xCELLigence real-time assay of HT29 growth and viability under 
treatment with MeV-GFP, immune checkpoint inhibitors and PBMC / NK cells 
xCELLigence real-time assay was used to investigate growth and viability of human CRC cells 
over a period of 130 hours under influence of a combination of MeV-GFP, treatment with ICI 
and PBMC or NK cell coculture.  
21 hours after plating of 5.000 HT29 tumor cells per well, infection with MeV-GFP at MOI 2.5 
or MOCK infection took place. 51 hpi, NK cells or PBMC, which both had optionally been 
incubated with 5 μg / ml of nivolumab and / or atezolizumab one hour before, were added at 
an E : T ratio of 20 : 1 for PBMC and 2.5 : 1 and 1 : 1 for NK cells. For control, 5 μg / ml 
atezolizumab or nivolumab were added without immune cell coincubation. PBMC and NK cells, 
as described in 2.3, had been purified from different healthy donors before and were a kind gift 
of AG Salih. 
Triton X-100 1 % was used as a positive control for maximal tumor cell lysis. 
The cell index (CI) is shown as a function of time. Measurement took place in triplets; means 
and SD are shown. For each tumor cell line, one representative experiment is shown. 
Niv = nivolumab, Ate = atezolizumab, MeV = MeV-GFP, NK = NK cells. 
 

In comparison to anti-tumor effects of measles virotherapeutic, the addition of PBMC at 

51 hpi to uninfected HT29 CRC cells at an E : T ratio of 20 : 1 achieved an even higher 

grade of tumor cell mass and viability reduction in the respective xCELLigence run (see 

Fig. 23, A). Furthermore, PBMC together with MeV-GFP treatment even reached CI 

levels of the Triton X-100 1 % curve at about 100 hours after start of measurement, 

which displayed the control for maximal tumor cell killing. 
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Nevertheless, the further addition of the ICI atezolizumab under PBMC coincubation 

could improve tumor cell killing neither in uninfected, nor in MeV-infected HT29 

colorectal tumor cells (see Fig. 23, A). 

The same observations were made for nivolumab, the antibody targeted against PD-1, 

where ICI addition could again not further diminish HT29 tumor cell proliferation in 

comparison to treatment approaches with PBMC only, or PBMC together with 

oncolytic MeV-GFP (see Fig. 23, B). 

Finally, referring to a combination therapy of atezolizumab and nivolumab, thus 

targeting both, immune checkpoint ligand as well as receptor, ICI addition was again 

comparable in its therapeutic effects to treatment with PBMC only or PBMC plus 

measles OV-infection (see Fig. 23, C). 

Still, it should be considered that in the case of PBMC, possible therapeutic effects were 

rather exhausted, as the combination therapy consisting of immune cell coincubation 

together with MeV-GFP-treatment already achieved HT29 tumor cell reduction to a 

level of Triton X-100 1% control. 

NK cell coincubation at an E : T ratio of 2.5 : 1 was examined next (see Fig. 23, D). 

Here, in comparison to PBMC addition, NK cells also reduced HT29 tumor cell mass 

and viability, especially in a first period up to about 80 hours after start of measurement 

(8 hours after addition of NK cells), whereas in a second period until the end of 

measurement after 130 hours, the CI increased again with prevailing HT29 tumor cell 

growth. Hence, in contrast to PBMC coincubation at E : T = 20 : 1, less HT29 tumor 

cell killing was observed through addition of NK cells at E : T = 2.5 : 1, keeping in 

mind the descent of different donors and, thus, diversity of MHC mismatch. 

Similar to PBMC, NK cell coincubation of MeV-GFP-infected HT29 tumor cells even 

further decreased tumor cell mass over the whole measurement period. In contrast to 

NK cell coincubation only, this time no recrudescence of tumor growth did appear. 

However, considering the additional treatment with an ICI, atezolizumab once more 

could not improve anti-tumor effects in uninfected or MeV-GFP-infected HT29 CRC 

cells under coculture with NK cells. 

Nivolumab together with NK cell coincubation (E : T ratio 2.5 : 1) of uninfected HT29 

tumor cells did not show a consistent, sustained increase of tumor cell killing compared 

to NK cells only, which also applied for measles-infected HT29 tumor cells (see Fig. 
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23, E). Yet, a tendency of additional therapeutic gain through nivolumab application 

could be described in both MOCK- and MeV-GFP-infected HT29 tumor cells under NK 

cell cocultivation. 

As already found out for the higher E : T ratio, NK cell coincubation at an E : T ratio of 

1 : 1 achieved an early tumor cell proliferation reduction until 80 hours after start of 

measurement, followed by a second phase of tumor cell proliferation increase, so that 

the NK cell curve finally met the end point of the MeV-GFP curve (see Fig. 23, F). 

This time, addition of ICI, here atezolizumab, could attain a trend of tumor cell mass 

reduction in comparison to NK cells only, both in uninfected and MeV-GFP-infected 

HT29 tumor cells. Hence, the combination therapy of NK cells, measles virotherapeutic 

and anti-PD-L1 antibody was observed to reach best therapeutic results in this 

experiment. Still, the therapeutic effects could not accomplish those of using the higher 

E : T ratio of 2.5 : 1 in combination with ICI and measles OV. 

The last experimental setting with HT29 tumor cells tested the combination of NK cells 

at the lower E : T ratio of 1 : 1, MeV-GFP and nivolumab (see Fig. 23, G). ICI addition 

could again achieve a trend of improved tumor cell killing in the context of a triple 

therapy. Results were approximately comparable with the therapeutic effects of the 

same combination, only with atezolizumab instead of nivolumab. However, this trend 

could not be observed in uninfected tumor cells, where nivolumab together with NK 

cells acted even worse than NK cells only, thus achieving a lower therapeutic effect 

than MeV in monotherapy. 

 



Results 

 

96 

A) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI atezolizumab and PBMC (E : T = 10 : 1) 
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B) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI nivolumab and PBMC (E : T = 10 : 1) 
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C) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI atezolizumab and NK cells (E : T = 1 : 1)
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D) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI nivolumab and NK cells (E : T = 1 : 1) 
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E) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI atezolizumab and nivolumab and NK cells (E : T = 1 : 1) 
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F) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI atezolizumab and NK cells (E : T = 0.5 : 1) 
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G) HCT-15 (2.500 cells / well), infected with MeV-GFP (MOI 10) or MOCK-infected, 

together with ICI nivolumab and NK cells (E : T = 0.5 : 1) 

 
Figure 24, A - G: xCELLigence real-time cell proliferation assay of HCT-15 growth and 
viability under treatment with MeV-GFP, immune checkpoint inhibitors and PBMC / NK 
cell coculture 
xCELLigence real-time cell monitoring assay was used to investigate growth and viability of 
human CRC cells over a period of 130 hours under influence of a combination of MeV-GFP, 
treatment with ICI and PBMC or NK cell coculture. 
21 hours after plating of 2.500 HCT-15 tumor cells per well, infection with MeV-GFP at MOI 
10 or MOCK infection took place. At 51 hpi, NK cells or PBMC, which both had optionally 
been incubated with 5 μg / ml of nivolumab and / or atezolizumab one hour before, were added 
at an E : T ratio of 10 : 1 for PBMC and 1 : 1 or 0.5 : 1 for NK cells. As a control, atezolizumab 
or nivolumab were added without immune cell coincubation. PBMC and NK cells, as described 
in 2.3, had been purified from different healthy donors before and were a kind gift of AG Salih. 
The cell index (CI) is shown as a function of time. Measurement took place in triplets; means 
and SD are shown. For each tumor cell line, one representative experiment is shown. 
Niv = nivolumab, Ate = atezolizumab, MeV = MeV-GFP, NK = NK cells. 
 
The second CRC cell line tested in xCELLigence together with immune cell 

coincubation, measles virotherapeutic and ICI was HCT-15. 

PBMC at an E : T ratio of 10 : 1 achieved tumor cell killing comparable to MeV-GFP-

addition, referring to the end point of measurement (see Fig. 24, A). In this 

experimental subset, the treatment regimen of PBMC plus MeV-GFP-infection revealed 
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as the most efficient combination concerning oncolysis. Namely, after 130 hours of 

xCELLigence analysis, the analyzed CI of the double therapy amounted roughly 1/6 of 

the CI of untreated control. Yet, the maximal tumor cell killing of Triton X-100 1 % 

could not be reached by any therapeutic regimen. 

On the other hand, atezolizumab could not further strengthen tumor cell killing in 

uninfected tumor cells with the two curves for PBMC only and PBMC plus 

atezolizumab running almost identically. In MeV-GFP-infected cells, atezolizumab even 

worsened the anti-tumor effect of PBMC coincubation (also see Fig. 24, A). 

Results with PD-1-targeting nivolumab were comparable to those with atezolizumab 

(see Fig. 24, B). Best effects in tumor cell killing were achieved with the combination 

PBMC plus MeV-GFP, whereas ICI addition accomplished less tumor reduction 

(PBMC plus MeV-GFP plus nivolumab) or showed no therapeutic difference (PBMC 

plus nivolumab). 

The next step was to examine the influence of ICI addition on therapeutic effects of a 

combination of NK cells at E : T ratio 1 : 1 and MeV-GFP virotherapeutic (see Fig. 24, 

C). In this case, NK cell-induced decrease of CI was more distinct than the measles-

induced reduction. Still, the double treatment MeV plus NK cells achieved less 

therapeutic benefit in comparison to the findings in PBMC. Again, the combination NK 

cells plus MeV outplayed the two monotherapies in its therapeutic effect. 

After addition of atezolizumab, a trend of further CI reduction could be observed in 

comparison to NK cells plus MeV only; but in uninfected cells, this trend was not 

consistent. Maximum therapeutic effects, this time induced by triple therapy, again 

achieved CI reduction to about 1/6 of CI of control after 130 hours of analysis (also see 

Fig. 24, C). 

With nivolumab, observations in xCELLigence analysis were mostly the same: A trend 

of further CI reduction via PD-1-targeting ICI became only apparent in MeV-GFP-

infected HCT-15 tumor cells, but not in uninfected, where nivolumab addition induced a 

tendency of less therapeutic effect than NK cell coincubation alone (see Fig. 24, D). 

Still, the trend towards additional therapeutic use of ICI application as part of a triple 

combination therapy together with MeV and NK cells was observed slightly more 

noticeable than with atezolizumab, referring to Fig. 24 C. 



Results 

 

104 

Interestingly, application of both atezolizumab and nivolumab (see Fig. 24, E) could in 

turn not affirm a consistent trend of additional therapeutic effect in comparison to a 

regimen with NK cells plus MeV or to a treatment with NK cells only, which 

contradicted the findings of single ICI addition in Fig. 24 C and D. 

Besides, reduction of the NK cell E : T ratio from 1 : 1 to 0.5 : 1 could also not reveal 

an improved therapeutic benefit of ICI addition (see Fig. 24, F). This time, NK cells 

could not reach the amount of tumor cell killing of MeV-GFP-treatment. Nevertheless, 

the combination of NK cells plus MeV was still very successful in CI reduction, again 

reaching a CI of roughly 1/6 of the CI of untreated control after 130 hours of 

xCELLigence real-time analysis. In other words, combination therapy with MeV and 

NK cells at an E : T ratio of 0.5 : 1 could attain results in HCT-15 CRC treatment 

comparable to the same regimen with a higher E : T ratio of 1 : 1. Nonetheless, triple 

therapy with atezolizumab showed less therapeutic effect than the combination of OV 

and NK cells. 

The same lack of improved therapeutic effects was observed after addition of nivolumab 

to the combination of MeV plus NK cells (E : T = 0.5 : 1) (see Fig. 24, G). In this case, 

tendency towards less anti-tumor efficacy became even more striking than for 

atezolizumab in Fig. 24 F. 

 

To put it into a nutshell and recapitulate the findings of several xCELLigence runs, it 

could be observed in real-time cell viability and proliferation analysis of HT29 as well 

as HCT-15 tumor cell lines that (i) a treatment with MeV-GFP or immune cells 

considerably decreased CIs of both tumor cell lines and that (ii) a combined treatment 

of MeV-GFP infection and immune cell coincubation even resulted in additional 

reduction of CIs; but on the other hand, (iii) a combination of ICI (nivolumab and / or 

atezolizumab) in a triple therapeutic regimen together with measles virotherapeutic and 

immune cells could not further reduce tumor cell mass and viability in a consistent or 

sustainable way. 
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3.5. Quantification of antiviral effects of immune checkpoint inhibitors on the 

replication of MeV-GFP in human colorectal carcinoma cell lines 

The therapeutic principle behind immune checkpoint blockade with nivolumab or 

atezolizumab is the inhibition of PD-1 / PD-L1 interaction, which physiologically 

initiates a downregulation of anti-tumor immunity. But on the other hand, such an ICI-

induced stimulation of the human immune system might not only cause an efficient 

anti-tumor immune response, but also lead to an activation of immunological processes 

inhibiting viral spread and replication. 

Necessarily, this aspect has also to be taken into account referring to MeV-GFP-based 

virotherapy in combination with anti-cancer immunotherapy. Thus, the influence of ICI 

on MeV-GFP replication in human CRC cell lines became focus of our investigations. 

 

3.5.1. Quantification of antiviral effects of immune checkpoint inhibitors in a viral 

growth curve model on MeV-GFP-infected HT29 and HCT-15 tumor cells 

In a first step, viral growth curves were used to analyze the effect of immune checkpoint 

blockade on MeV-GFP replication in infected human CRC cell lines. Due to limited 

access to ICI, pembrolizumab was used for viral growth curves instead of nivolumab, 

both targeting the immune checkpoint receptor PD-1. The MOIs used for measles-

infection were selected accordingly to the different resistance patterns towards MeV-

induced oncolysis, which had been investigated with SRB assays before (see 3.1.1). 

The two tumor cell lines HT29 and HCT-15 were analyzed, which had also been used 

for xCELLigence analysis. 

A) Viral growth curves on MeV-GFP-infected HT29 (MOI 5) 
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B) Viral growth curves on MeV-GFP-infected HCT-15 (MOI 10) 

    

 
Figure 25, A - C: Quantification of antiviral effects of immune checkpoint inhibitors in a 
viral growth curve model on HT29 and HCT-15 tumor cells 
For viral growth curves, supernatants as well as lysates of human CRC cells, which had been 
infected with MeV-GFP at MOIs of 5 or 10 before, were collected at 3, 24, 48, 72 and 96 hpi. 
ICIs pembrolizumab or atezolizumab (10 µg / ml) were added directly after infection. Titration 
was done on Vero cells. 
 
First, kinetics of viral replication and virus release were examined in human colorectal 

cancer cells without further ICI treatment. Both colorectal tumor cell lines achieved a 

maximum of MeV-GFP-production and -release at 48 hpi. Amounts of virus detected in 

tumor cell lysates were approximately comparable to those in supernatants, referring to 

the samples taken at 3, 24, 48, 72 and 96 hpi. The decrease of titers at 72 and 96 hpi 

could be explained by reduction of tumor cell mass through oncolysis, hence equating 

to a diminished capacity of virus production machinery. 

Virus titers reached 105 PFU / ml after infection at a MOI of 10 for HCT-15 and 

between 105 and 106 PFU / ml after infection at a MOI of 5 for HT29. These results 

could be expected, considering the different characteristics of resistance against MeV-

induced oncolysis. Moreover, the findings were approximately comparable to results of 

viral growth curves of MeV-SCD in HCT-15, conducted in our working group by Noll 

et al. (Noll M., 2013). 

Excluding the influence of NK cells or PBMC in this viral growth curve model, neither 

pembrolizumab nor atezolizumab influenced titers of MeV-GFP in supernatants or 

lysates of both tumor cell lines. These findings could exclude a direct influence of ICI 

on MeV-GFP replication kinetics or spread in the tested CRC cell lines. 
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3.5.2. Quantification of antiviral effects of immune checkpoint inhibitors in MeV-

GFP-infected HT29 and HCT-15 tumor cells after immune cell cocultivation 

In a next step, the influence of immune cell cocultivation was taken into account for 

analysis of the effects of ICI on viral replication and spread, so that the possibility of 

PD-1 / PD-L1 interaction between tumor cells and immune cells was given. 

After MeV-GFP-infection of human CRC cells, viral titers were compared under 

different treatment conditions, including addition of ICI nivolumab and / or 

atezolizumab. For immune cell cocultivation, NK cells were used with an E : T ratio of 

2.5 : 1; PBMC were applied with an E : T ratio of 10 : 1. 

The two tumor cell lines HT29 and HCT-15 were analyzed, which had also been used 

for xCELLigence analysis. 
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HCT-15 

    

    
Figure 26: Quantification of antiviral effects of checkpoint inhibitors via virus titration on 
HT29 and HCT-15 tumor cells 
In order to quantify conceivable effects of immune checkpoint blockade on viral replication in a 
model of human CRC cell / immune cell cocultivation, viral titers of each supernatants and 
lysates were determined after infection with MeV-GFP (MOI 1 for HT29 or MOI 10 for HCT-
15), treatment with nivolumab or atezolizumab and cocultivation with NK cells (E : T = 2.5 : 1) 
or PBMC (E : T = 10 : 1). 
Six treatment groups were differentiated: MeV-GFP-infected cells (i) without further treatment, 
(ii) with PBMC cocultivation alone, with PBMC cocultivation and additional (iii) nivolumab or 
(iv) atezolizumab incubation, with (v) PBMC cocultivation together with combined application 
of both nivolumab and atezolizumab or (vi) with PBMC cocultivation and IgG control. For ICI 
or human IgG control incubation, concentrations of each 5 µg / ml were used. 
Supernatants as well as lysates of the different treatment regimes were collected at 48 hours 
after cocultivation with immune cells. Titration was done on Vero cells. 
One out of two independent experiments is shown each. 
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viral replication in comparison to controls without ICI treatment or to controls with 

human IgG treatment instead. This seemed to be consistent with results observed in 

viral growth curve models on HT29 CRC cells (Fig. 25, A). Addition of immune cells 

alone did not reduce viral titers by more than a factor of 10. Application of IgG control 

together with NK cells / PBMC resulted in viral titers comparable to those after immune 

cell coculture. 

In a second experiment of NK cell / PBMC cocultivation, this time with MeV-GFP-

infected HCT-15 tumor cells, viral titers were again impaired by immune cell coculture, 

ranging between a factor of 100 to 1.000. As HCT-15 cells had proven to be MeV-GFP-

resistant in cytotoxicity assays (Fig. 14), supernatants as well as lysates generally 

contained a lower amount of viral particles than HT29, thus resulting in lower viral 

titers on average. Furthermore, it should be taken into account that a difference in 

immune cell-induced reduction of virus proliferation between the two CRC cell lines 

could also be due to various extents of MHC mismatch effects, relating to separate 

donors of immune cells and the different NCI-60 human tumor cell lines. 

Apart from that, treatment with nivolumab and / or atezolizumab showed no interference 

with viral replication in HCT-15 tumor cells as well. Referring to NK cells, no 

homogeneous reduction of viral titers by adding ICI could be observed in supernatants 

or lysates. Only in comparison to human IgG control, atezolizumab achieved a titer 

reduction of about factor 10 in supernatants. Referring to PBMC, ICI-induced decrease 

of viral titers of more than factor 10 could be observed neither in supernatants nor in 

lysates. These findings also seemed to be consistent with the results of viral growth 

curves on HCT-15 tumor cells (Fig. 25 B). 

 

In conclusion, ICI alone without immune cell coculture did not have any influence on 

replication in a viral growth curve model. Moreover, viral titrations under PBMC or NK 

cell coculture could not show a consistent influence of ICI on viral spread either. 

This correlated with the observations in in vitro xCELLigence real-time tumor cell 

growth and viability analysis, where ICI were found to have no additional anti-tumor 

effects in comparison to measles virotherapeutic and immune cells only. 
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4. Discussion 
 

The history of virotherapy can be dated back to the discovery of viruses over 100 years 

ago. In this context, the presumption that both naturally acquired viral infections and 

vaccinations with attenuated virus strains could induce regression of malignant tumors 

was reinforced by numerous clinical case reports (Bierman et al., 1953; Bluming, 1971; 

Hansen and Libnoch, 1978). The height of virotherapy was heralded with the possibility 

of genetic engineering of the viral genome, thus further improving tumor specificity 

(Hammond et al., 2001; Bucheit et al., 2003), implementing a non-invasive 

reconstruction of viral replication kinetics in the human organism (Peng et al., 2002a; 

Dingli et al., 2004) or realizing a supplemental activation of the host immune system 

against mutated tumor cells (Grossardt et al., 2013). 

With the genetically modified herpes simplex virus Talimogene laherparepvec 

(Imlygic®, Amgen), a first virotherapeutic was FDA- as well as EMA-approved for 

treatment of advanced melanoma in 2015 (Andtbacka, 2015; FDA, 2015). Beyond, 

MeV also became subject of clinical case reports and early clinical trials in cancer 

patients (Msaouel et al., 2009; Russell et al., 2014; Robinson and Galanis, 2017). But 

nonetheless, virotherapy still implicates serious obstacles for research, as monotherapy 

with OVs already encountered in vitro resistances in several tumor entities, including 

human CRC cell lines (Noll M., 2013), hence making new multimodal treatment 

strategies inevitable. 

A combined therapeutic regimen with ICI, for example mAbs against PD-1 and PD-L1, 

was chosen to overcome preexisting resistances by strengthening and consolidating the 

oncolysis-induced anti-tumor immune response (Dias JD, 2012; Engeland CE, 2014; 

Quetglas JI, 2015; Rojas et al., 2015; Woller N, 2015; Cockle et al., 2016; Rajani K, 

2016; Shen et al., 2016). In terms of partly ineffective monotherapeutic treatment of 

CRC with ICI (Jager et al., 2016), this multimodal approach seems particularly 

interesting to uncover the power of immunotherapy. 

In view of high prevalence and, on the other hand, still poor OS rates for metastatic 

disease in CRC (Gustavsson et al., 2015), our focus was set on three human CRC cell 

lines: HT29, HCT-15 and SW-620. 
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In vitro mono-treatment of human CRC with MeV virotherapeutic or ICI was not 

efficient enough to fully eradicate all tumor cell lines, partly facing preexisting 

resistances. 

In a first phase, monotherapeutic approaches for treatment of CRC were tested for their 

cytotoxic potential via Sulforhodamine B viability assay. 

For the measles virotherapeutic MeV-GFP, different patterns of resistance were found 

for the three human CRC cell lines. In detail, HT29 were found to be susceptible 

towards MeV-induced oncolysis, whereas SW-620 and HCT-15 showed preexisting 

resistance at 72 and 96 hpi, displaying remaining cell masses of almost 100 % at MOI 1. 

For SW-620, this resistance could be overcome by raising the MOI to 5 and 10. In 

contrast, not even an increase of the MOI up to 10 was able to overcome the resistance 

in HCT-15 tumor cells. These results complement findings of our laboratory, described 

by Noll et al. (Noll M., 2013), where SRB analysis was done for our suicide-gene 

enhanced virotherapeutic MeV-SCD at 96 hpi, using a MOI of 1. Here, HCT-15 

belonged to those NCI-60 tumor cell lines revealing the highest grade of resistance 

towards MeV-SCD-induced oncolysis. Noll and colleagues considered differences in 

antiviral interferon (IFN) response to depict a possible explanation for variations in 

MeV-resistance, referring to the innate immunity of tumor cells. Thereby, expression of 

a protein called IFIT (interferon-induced protein with tetratricopeptide repeats) could be 

demonstrated in the MeV-GFP- and MeV-SCD-resistant HCT-15 tumor cells, thus 

indicating an active IFN pathway (Noll M., 2013). By the way, a residual activity of 

IFN signaling in tumor cells does not dissent with the principle of tumor-specific 

oncolysis via IFN pathway deficiency, as explained in 1.2.1: Some tumor cells may still 

dispose of a remaining innate immunity, but mostly decreased in comparison to healthy 

tissue (Haralambieva et al., 2007). 

Appraising SRB results, MeV virotherapeutic as mono-treatment was found to be not 

able to eradicate all three human CRC cell lines, hence highlighting the urgency to 

enable multimodal virotherapeutic approaches. 

In a next step, SRB cytotoxicity assays proved that nivolumab and atezolizumab both 

did not possess any innate anti-tumor traits, which could be explained by lack of an 

immune cell / tumor cell interaction to interfere with. 
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Expression of the immune checkpoint ligand PD-L1, representing a predictive as well 

as prognostic factor for ICI therapy, could be increased by MeV-infection in all three 

human CRC cell lines. 

We set a focus on the question whether infection with an oncolytic measles virus could 

have impact on expression rates of the immune checkpoint ligand PD-L1 in the different 

human colorectal tumor cells. 

First of all, basal PD-L1 expression on the different tumor cell lines was examined and 

compared with regard to different culturing conditions concerning used media and time 

of culturing. 

Expectedly, the three human CRC cell lines differed in their basal PD-L1 expression: 

HT29 appeared to be the cell line with the highest percentage of PD-L1 expressing 

cells, namely 14.8 %, followed by HCT-15 with 2.8 % and SW-620 with 2.6 %. These 

observations fit into the pattern of earlier experiments from Llosa et al., where basal 

PD-L1 expression on human CRC was examined in relation to MSI status (Llosa et al., 

2015). Interestingly, HCT-15, which belongs to the MSI fraction of CRC (Abaan et al., 

2013; Ahmed et al., 2013), was a tumor cell line with low basal PD-L1 expression rates. 

In comparison to that, HT29 with MSS status (Abaan et al., 2013; Ahmed et al., 2013) 

expressed higher rates of PD-L1. This counteracts the hypothesis that the expression of 

immune checkpoint ligands in highly immunogenic MSI cancer, based on the high 

mutational load, represents an important immune escape mechanism. But actually, 

Llosa and colleagues could also not find high rates of PD-L1 expression on CRC tumor 

cells with MSI status in immunohistochemistry. In fact, PD-L1 expression was found on 

myeloid cells as well as TILs in tumor nests, tumor stroma and the lamina propria 

invasion front (Llosa et al., 2015), creating an immunosuppressive microenvironment. 

In regard to these findings, an interesting question, which could be followed in an 

appropriate mouse model of CRC, would be how tumor-infiltrating immune cells react 

in their PD-L1 expression in case of infection with a MeV virotherapeutic. To anticipate 

this idea, Woller et al. could prove that adenovirus-induced oncolysis was able to induce 

PD-L1 expression on tumor-infiltrating APCs in murine CMT64 lung tumors. 

Moreover, addition of anti-PD-1 to OV treatment further increased PD-L1 expression 

on APCs (Woller N, 2015). 
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In a next step, we examined the impact of different culturing conditions on PD-L1 

expression rates. Thereby, no consistent results for all three tumor cell lines were found. 

HT29 was the only tumor cell line to undergo consistent changes in PD-L1 expression 

after incubation with Opti-MEM for both times of measurement, hence an increase in 

PD-L1 expression was observed. In contrast to that, expression rates of PD-L1 in HT29 

CRC cells were impaired by longer duration of cultivation. This did not apply for HCT-

15 and SW-620, where PD-L1 expression rose with time of culturing. To put it into a 

nutshell, heterogeneous reactions to different culturing conditions rather negated a 

consistent mechanism of influence on PD-L1 expression, but might depict a possible 

impact of various factors of cell metabolism on PD-L1 expression. 

Finally, tumor cells were infected with the virotherapeutics MeV-GFP and MeV-SCD 

to analyze the consequences of MeV-OV treatment on PD-L1 expression, and thus on a 

possible ICI application. FACS analysis of immune checkpoint ligand expression after 

MeV-SCD-infection was performed to avoid distracting interference of the GFP with 

isotype- and anti-PD-L1-PE staining, arising especially in MeV-GFP-susceptible HT29 

tumor cells. In favor of a multimodal immunovirotherapeutic approach, measles 

infection induced a sustainable increase of PD-L1 expression in all three human CRC 

cell lines. Even in high-grade MeV-resistant HCT-15 tumor cells, MeV-SCD infection 

could increase PD-L1 expression from an original extent of 5.9 % for MOCK infected 

cells at 24 hpi to 35.6 % for infected cells at 48 hpi, using a MOI of 10. Moreover, PD-

L1 upregulation through MeV-SCD-infection was found to be time- as well as MOI-

dependent for the two CRC cell lines HCT-15 and HT29. 

In contrast to these findings, PD-L1 expression in SW-620 cells correlated positively 

with MOI but not with time of culturing after MeV-SCD-infection, as expression rates 

were considerably impaired at 48 hpi in comparison to 24 hpi for MOCK, MOI 5 and 

MOI 10. However, this effect could not be reproduced by using MeV-GFP for OV-

infection or by comparing different culturing media. Perhaps advanced MeV-SCD-

induced tumor cell killing at 48 hpi led to reduction of OV-infected, PD-L1-expressing 

SW-620 cells, but this theory would not explain a difference of 26.4 percentage points 

between PD-L1 expression in MOCK infected SW-620 cells at 24 hpi vs. 48 hpi. 

As it is commonly suggested that high PD-L1 expression rates on tumor targets 

correlate with a successful outcome for ICI treatment (Topalian et al., 2012; Taube et 
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al., 2014; Dunne et al., 2016), it seems to be worthy to take a step forward to investigate 

therapeutic effects of ICI combined with MeV virotherapeutic in a murine CRC model. 

To give an example, combination treatment with the virotherapeutic MeV-EGFR 

(targeting epidermal growth factor receptor for host cell entry) and anti-PD-1 mAb 

could achieve prolonged survival in a syngeneic murine glioblastoma (GBM) model 

(Hardcastle et al., 2016). Moreover, Hardcastle and colleagues investigated the 

influence of MeV-NIS-infection of human GBM39 and GBM12 tumor cells on the 

expression of PD-L1. Furthermore, the impact of MeV-NIS-infection was compared 

with IFN-γ treatment. Untreated, the two human GBM cell lines barely expressed PD-

L1 after 24 hours, but IFN-γ could achieve a significant increase in PD-L1 expression 

on both cell lines, in contrast to MeV-NIS. After 36 hours, MeV-NIS was also able to 

induce a significant increase of PD-L1 expression, compared to untreated cells or to 

controls treated with UV-inactivated MeV-NIS. Interestingly, the percentage of PD-L1 

expressing GBM tumor cells 36 hours after IFN-γ treatment was again higher than after 

OV-infection (Hardcastle et al., 2016). These findings of Hardcastle et al. in an in vitro 

model of human GBM were consistent to our investigations in PD-L1 expression on 

human CRC cell lines, and could maintain the hypothesis that oncolysis through MeV 

virotherapy induces an immunological stimulus, which can be consolidated in a second 

step by antibodies targeted to PD-1 or PD-L1. The ICI-favorable tumor micro-

environment due to the PD-L1 upregulation by MeV virotherapeutic strongly endorsed 

our approach to combine MeV-GFP with ICI for treatment of human CRC. 

The important role of IFN-γ in upregulation of PD-L1 expression on tumor cells was 

also shown by Dong et al. (Dong H., 2002). It is hypothesized that tumor infiltrating 

CD8+ T-cells are activated by contact to tumor specific antigens, thus secreting IFN-γ, 

which in turn upregulates PD-L1 expression on TILs and tumor cells, leading to an 

equilibrium of controlling anti-tumor immune response (Kim and Chen, 2016). On the 

other hand, activation of immune checkpoint receptor PD-1 diminishes the induction of 

IFN-γ secretion (Keir et al., 2008). Moreover, PD-L1 upregulation on monocytes is 

described as a consequence of IFN-γ and IFN-β signaling, referring to an approach of 

restraining autoreactive processes in the context of multiple sclerosis via interferon 

(Schreiner et al., 2004). In the special case of multimodal immunovirotherapy, virus-

induced oncolysis would activate CD8+ T-cells, which produce IFN-γ, leading to an 
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ICI-favorable PD-L1 upregulation (Rajani and Vile, 2015). Finally, to support this 

hypothesis, type I IFN receptor knockout mice with B16-F10 melanoma tumors were 

found to be resistant to a combination therapy out of Newcastle disease virus (NDV) 

and CTLA-4 blockade, whereas the combination treatment in C57Bl/6 mice could 

induce long-term survival (Zamarin D, 2014). 

In contrast to our findings and to those of Hardcastle et al., Rajani et al. appraised that 

reovirus infection of murine B16 melanoma cells at a MOI of 0.1 did not lead to a PD-

L1 upregulation in FACS analysis at 4 dpi. Interestingly, in further analysis of PD-L1 

expression on B16 tumor cells after additional coincubation with NK cells from tumor 

naïve mice, reovirus infection could slightly increase PD-L1 expression in comparison 

to B16 cells only treated with NK cell coincubation (Rajani K, 2016). Considering 

prolonged survival through combination therapy of B16 melanoma with reovirus and 

anti-PD-1 in C57Bl/6 mice, Rajani et al. concluded that in vivo therapeutic effects were 

not moderated by direct influence of reovirus-infection on PD-L1 expression. Rather, an 

indirect way via increased NK cell activation against reovirus-infected B16 tumor cells 

was discussed. 

On the one hand, differences between varying OVs and between in vitro mice and 

human tumor models should be taken into account. On the other hand, successful 

implementation of an OV / ICI combination therapy in a B16 melanoma mouse model, 

despite the background of lacking reovirus-induced PD-L1 upregulation (Rajani K, 

2016), points out that our multimodal immunovirotherapeutic approach should be 

transferred to a suitable immunocompetent CRC mouse model, even now that MeV 

infection seems to pave the way for successful ICI application. 

Taking the latest findings into account, first clinical trials support the hypothesis of 

improved efficacy in combining OVs with ICI: Talimogene laherparepvec and 

pembrolizumab were tested in patients with advanced melanoma, resulting in an ORR 

of 62 % and an acceptable toxicity profile in comparison to the respective 

monotherapies (NCT02263508) (Ribas et al., 2017). Remarkably, by adding the OV to 

the PD-1 inhibitor, therapeutic response was found to become independent from 

individual baseline levels of PD-L1 and IFN-γ expression or CD8+ T-cell infiltration. 

These results, even though referring to a phase I clinical trial with limited patient 
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numbers and a focus on safety, strongly underline our hypothesis of viral oncolysis 

overcoming preexisting resistances against immune checkpoint blockade. 

 

Poor PD-1 expression on NK cell populations from four different healthy donors 

could impair preconditions for achieving in vitro therapeutic effects with ICI 

treatment. 

In a next step, we examined whether CD56 positive NK cell subsets from healthy 

donors could express the immune checkpoint receptor PD-1, inevitable as a target for 

immune checkpoint blockade. The focus was set on NK cell populations, as they 

represent a part of the early, innate anti-cancer immune response (Waldhauer and 

Steinle, 2008), reproduced in the rather short measurement period of subsequent 

xCELLigence experiments. 

Our FACS analysis showed that the CD56 positive NK cells did not express PD-1 in a 

sustainable way: Neither in PBMC cultures (donor #1 and #2), nor in expanded NK 

cells (donor #3 and #4), more than 0.8 % of cells expressed PD-1, referring to CD56 

positive cell populations. Interestingly, there was a PD-1 positive, CD56 negative cell 

subset among expanded NK cells, namely 1.9 % of cells from donor #3 and 2.8 % of 

cells from donor #4. 

The result that almost no PD-1 expression could be found on CD56 positive NK cells 

seems to coincide with the experiments of Pesce et al. Here, PD-1 expression was 

investigated with the finding that NK cells of only about one fourth of overall 200 

healthy donors were able to express PD-1 in high levels. Furthermore, this PD-1 

positive population of NK cells was described as a CD56dim NK cell subset (Pesce et al., 

2016), referring to a differentiation between CD56dim CD16bright NK cells, which make 

up about 90 % of the human NK cells and hold a cytotoxic function, and CD56bright 

CD16dim NK cells, which were found to play an immunoregulatory role (Cooper et al., 

2001). 

Referring to investigations of a reovirus / ICI combination therapy from Rajani and 

colleagues in an in vitro model of murine B16 melanoma, the NK cells used for 

cocultivation, which had been purified from spleen or lymph nodes of tumor naïve 

C57Bl/6 mice beforehand, barely expressed PD-1. Hence, it was suggested that the 

process of ICI-induced NK cell activation did not happen in the direct way of blocking 
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PD-1 receptors located on NK cells, but via cytokine production by PD-1 positive 

mediator cells, which were found in the NK cell-enriched cultures, and which were 

further described as CD3 positive (Rajani K, 2016). 

To reconsider our findings, the low PD-1 expression rates on the tested NK cell sub-

populations could provide a possible explanation for the lack of additional therapeutic 

effects of ICI treatment in xCELLigence analysis. 

 

xCELLigence real-time tumor cell growth and viability analysis revealed outstanding 

therapeutic effects for a combination of MeV virotherapeutic and immune cell 

coincubation, but no additional tumor cell killing through ICI addition. 

For in vitro investigation of our immunovirotherapeutic approach in CRC, 

xCELLigence analysis of tumor cell proliferation and viability was chosen with the 

advantage of real-time measurement over a period of 130 hours. Notwithstanding, this 

in vitro model of tumor cell / immune cell coculturing could only depict a very 

simplified model of the complex human immune system, including limited possibilities 

concerning duration of measurement. 

In a first step, it was examined whether the addition of ICI alone could achieve 

therapeutic effects in uninfected as well as MeV-GFP-infected CRC cells without the 

influence of immune cell coculture. As expected, MeV alone already led to considerable 

tumor cell killing in HT29 cells. But neither atezolizumab nor nivolumab could 

sustainably diminish tumor cell growth and viability in comparison to controls, albeit 

surprisingly, a slight trend towards an increased tumor cell killing could be appraised in 

case of ICI addition to both infected and uninfected HT29 cells. Referring to HCT-15 

tumor cells, treatment with MeV-GFP at the high MOI of 10 could considerably reduce 

tumor cell mass, although this cell line was found to be resistant to a great extent 

towards MeV-induced oncolysis in end point SRB assays. Maybe, this effect could be 

partly traced back to the extremely low CRC cell counts seeded on xCELLigence E-

plates. Moreover, ICI addition led to a trend of decrease of CIs in uninfected, but not in 

infected HCT-15 tumor cells. Hence again, no consistent ICI-induced impairment of 

tumor cell growth and viability could be observed without a possible immune cell 

interaction. 
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To take a step forward, we hereupon cocultured CRC cells with NK cells or PBMC, 

respectively, and repeated the additional MeV-GFP-infection. Monotreatment with 

immune cells also attained good results in tumor cell killing compared to single MeV-

infection, comprehensibly dependent on E : T ratios and further uncontrollable 

influencing factors, such as degree of MHC mismatch between tumor and immune cells. 

On average, immune cells plus MeV in combination achieved best therapeutic results in 

our xCELLigence setting. This phenomenon supported the hypothesis of MeV-induced 

oncolysis setting an immunogenic stimulus, thus enhancing tumor cell killing by NK 

cells or PBMC.  

Donnelly et al. could prove this phenomenon for the human melanoma cell line Mel888, 

where MeV-infection lead to an increase of CD107 expression on CD3- CD56+ NK 

cells, with CD107 being a marker for NK cell activation and degranulation (Alter, 2004; 

Donnelly et al., 2013). Additionally to the described activation of innate immunity by 

MeV-induced oncolysis, Donnelly and colleagues could also find a DC-mediated 

activation of PBMC against Mel888 tumor cells, displaying mechanisms of an adaptive 

anti-tumor immune response induced by the OV. Summing up, these findings perfectly 

correlated with the increased killing of CRC cells in our xCELLigence analysis, when 

cells were MeV-infected and cocultured with immune cells. Nonetheless, it should be 

considered that effects of an adaptive immune response, as Donnelly et al. could show 

after one and two weeks of coculture, were rather questionable in our experimental 

setting, referring to a much shorter time of coculture. 

In a next step, the influence of immune checkpoint blockade in a triple therapeutic 

regimen together with MeV-GFP and immune cells was tested. Summing up results of 

overall xCELLigence runs with HT29 and HCT-15 cells, unfortunately, neither 

atezolizumab nor nivolumab application could homogeneously lead to an additional 

therapeutic gain. When addressing this lack of desirable ICI-induced improvement of 

tumor cell killing, several aspects should be considered. 

Firstly, a preexisting anti-tumor immunity, represented by tumor-infiltrating lympho-

cytes such as CD8+ T-cells, and the thereby induced PD-L1 upregulation, functioning as 

an immune escape answer of the tumor, were found to build the basement of a 

successful ICI interaction (Herbst et al., 2014; Tumeh et al., 2014). In case of our in 

vitro xCELLigence model, no preexisting tumor immunity could be expected, as the 
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immune cells had been isolated from healthy donors, and as no coincubation with CRC 

cells had taken place prior to xCELLigence analysis. Moreover, the already mentioned 

limited period of measurement, and therefore also of coculture, could implicate a lack of 

proper interaction between tumor cells, immune cells and immune checkpoint blockade. 

Adding another point, the FACS analysis of PD-1 expression on CD56 positive NK cell 

populations revealed rather low expression rates as a precondition to take place in a PD-

1 / PD-L1 interaction, which could be inhibited by ICI. According to those findings, 

PD-1 expression rates irrespective of CD56 status were not higher than 3.5 % of overall 

cells in enriched NK cell cultures, and not higher than 15.1 % of PBMC cultures. 

Interestingly, a further mechanism of NK cell-induced tumor cell killing could include 

antibody-dependent cellular cytotoxicity (ADCC), which is mediated by interaction 

between an IgG1 mAb, such as atezolizumab, and CD16, which displays a Fc receptor 

on NK cells (Cooper et al., 2001; Veluchamy et al., 2016). In contrast to nivolumab, 

namely an IgG4 mAb, CRC cell-opsonizing atezolizumab could therefore activate 

ADCC as an anti-tumor machinery independent from PD-1 / PD-L1 interaction. 

However, no consistent therapeutic difference could be found between treatment with 

NK cells plus atezolizumab and NK cells plus nivolumab in xCELLigence analysis. 

In contrast to the lack of an additional therapeutic effect of our triple therapy in vitro, 

Rajani et al. could show a significant increase in TNF-α release by tumor-naïve NK 

cells cocultured with murine B16 melanoma cells, which had been treated with a 

combination of reovirus and anti-PD-1 or anti-PD-L1 beforehand (Rajani K, 2016). 

Measurement took place in supernatants collected two days after coincubation and four 

days after reovirus infection, thus in a time period captured by our xCELLigence 

measurement. Moreover, Rajani and colleagues could prove that this multimodal 

immunovirotherapeutic treatment of B16 cells together with NK cell coculture 

significantly decreased tumor cell mass in the case of reovirus / anti-PD-1 treatment. 

Interestingly, this measurement was executed seven days after reovirus infection, thus 

not any longer in the time period of our xCELLigence analysis. It stayed unclear 

whether an analysis of residual tumor cells was also conducted at an earlier point of 

time together with TNF-α measurement. Apart from the fact that those experiments 

took place in a murine, and not human, in vitro model, a discrepancy between the two 

experimental settings could again be attributed to the different chronology of 
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measurement in investigations of Rajani et al. and our investigations. Hence, maybe a 

longer measurement period for xCELLigence analysis should have been chosen, which 

in turn would lead to the question whether our real-time setting could really afford 

measurement durations lasting longer than a week. 

To give a résumé over testing of an immunovirotherapeutic approach beyond in vitro 

tumor cell models, many favorable results could be depicted in animal models (Gao Y, 

2009; Dias JD, 2012; Engeland CE, 2014; Zamarin D, 2014; Quetglas JI, 2015; Rojas et 

al., 2015; Woller N, 2015; Cockle et al., 2016; Hardcastle et al., 2016; Shen et al., 2016) 

and in patients (NCT01740297 (Puzanov et al., 2016), NCT02263508, NCT03069378, 

NCT02626000, NCT02965716). Referring to patients with advanced melanoma, the 

immunovirotherapeutic combination of Talimogene laherparepvec and pembrolizumab 

was lately tested in a phase 1b clinical trial by Ribas and colleagues (NCT02263508), 

whereby the OV prepared the ground for improved efficacy of the ICI, resulting in a 62 

% ORR (Ribas et al., 2017). The difficulties to display such a complex context of 

interaction between tumor, immune system, virus and ICI in vitro and the prospects of 

success with those previous preclinical and clinical trials in vivo propose further 

analysis of our multimodal therapy in an appropriate immunocompetent CRC mouse 

model. 

 

As a result for in vitro analysis of conceivable ICI-induced antiviral immune effects, 

we appraised a lack of influence on viral replication and spread. 

One major challenge in the field of immunovirotherapy emerges to be the timing of 

virus and ICI application (Rajani and Vile, 2015; Rojas et al., 2015; Marchini et al., 

2016). By exploiting the ICI-consolidated anti-tumor immune response, a likewise 

induced antiviral immune response belongs to the other side of the coin. This, on the 

one hand, could impair viral replication and spread, leading to faster clearance of the 

OV, and thus diminishing the effects of direct tumor oncolysis. On the other hand, such 

an immune response directed towards foreign viral antigens could also improve virus-

induced tumor cell killing, if the host tumor cell expressed those viral proteins on its 

surface. 

Albeit in a different context, both sides of the coin should be illuminated in discussing 

antiviral immune responses: Facing the different aspects of already preexisting antiviral 
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antibodies, which neutralize the virotherapeutic in case of systemic delivery, several 

approaches were considered to circumvent an immunological clearance of OV (see 

1.2.1). But interestingly, the - at first glance undesirable - preexisting antiviral immune 

response could not simply be equated with a reduction of OV-induced anti-tumor 

immune response, as Bridle and colleagues showed: They proved that a sustainable anti-

tumor immune response can be induced by application of oncolytic VSV together with a 

boosting anti-adenoviral vaccination beforehand, with both vaccine and oncolytic virus 

expressing specific tumor antigens (Bridle et al., 2010). 

In either case, an immunovirotherapeutic regimen requires perfect timing, which seems 

to be indispensable for orchestrating a maximum effective tumor cell killing as well as 

long-lasting anti-tumor immune response. 

As a logical next step, we tried to quantify antiviral effects of immune checkpoint 

blockade in MeV-infected human CRC cells, both in viral growth curves and in 

titrations of lysates and supernatants of tumor cells infected and cocultured with PBMC 

or NK cells. Referring to the viral growth curve model, we could not find any influence 

of ICI on viral replication and spread, as it had been expected without the possibility of 

ICI interfering with a tumor cell / immune cell interaction. In the second case of virus 

titrations under immune cell influence, an indirect mechanism of ICI impairing viral 

replication could be anticipated, namely the mechanism of ICI reducing the tumor cell 

mass and thereby the capacity of virus production. But nonetheless, virus titrations did 

also not show a homogeneous interference of ICI with viral replication in CRC cells. 

This could correlate with the lack of additional anti-tumor effects in xCELLigence 

analysis through ICI application, together with MeV and immune cell treatment. 

In contrast to our findings, Rajani et al. described an anti-PD-1 antibody-induced 

decrease of reovirus titers in murine B16 melanoma cells cocultured with tumor-naïve 

NK cells (Rajani K, 2016). This decline in viral titers went along with a significant 

reduction of tumor cell mass after treatment with reovirus, anti-PD-1 and NK cells. In 

an in vivo syngeneic model of murine renal adenocarcinoma (Renca cells) or colorectal 

adenocarcinoma (MC38), Rojas et al. could prove via bioluminescence imaging that 

addition of anti-CTLA-4 antibody significantly impaired replication of an oncolytic 

vaccinia virus expressing a luciferase transgene, when ICI was administered as early as 

0, 3 and 6 days post infection (dpi) (Rojas et al., 2015). Furthermore, Rojas and 
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colleagues investigated the effects of different time schedules for an immunoviro-

therapeutic treatment approach, resulting in the finding that in contrast to the described 

early treatment regimen, which could not show a significant tumor mass reduction, a 

second treatment regimen with ICI application at 4, 7 and 10 dpi led to a considerable 

tumor cell mass decrease and improved overall survival. To summarize, those 

investigations suggest an advantage of delayed ICI administration, leaving enough time 

for the OV to replicate and to set an immunogenic stimulus via oncolysis. 

Moreover, these considerations should be also taken into account when discussing the 

application of OVs coding for anti-PD-1 or anti-PD-L1 with the advantage of local ICI 

delivery, thereby indicating that immune checkpoint blockade takes effects shortly after 

begin of viral replication. However, in a B16-CD20 murine melanoma model, Engeland 

et al. could show that intratumorous treatment with MeV on four consecutive days, 

combined with intraperitoneal injections of anti-PD-L1 antibody at 6, 9, 12 and 15 days 

after tumor implantation, was comparable to treatment with MeV encoding anti-PD-L1, 

referring to overall survival (Engeland CE, 2014). Interestingly, the same did not apply 

for anti-CTLA-4, where systemic application in combination with MeV virotherapeutic 

led to improved survival in comparison to MeV expressing anti-CTLA-4. Again, an 

attempt to explain these differences relates to aspects of timing: CTLA-4 is described to 

play an important role in early implementation of anti-tumor immunity, in contrast to 

PD-L1, showing effects in later stages of activation of the immune system against 

malignant cells (Pardoll, 2012; Engeland CE, 2014). Therefore, systemic application of 

anti-CTLA-4 could display an advantage at the early time of maximum effect in 

comparison to probably slower delivery of locally MeV-produced ICI, so Engeland and 

colleagues. Apart from that, it would display an interesting question whether the usage 

of anti-CTLA-4 antibodies such as ipilimumab would have been beneficial for our 

xCELLigence in vitro testing with a limited time of measurement, as they implement 

early interference with the anti-tumor immune response. 

Giving a résumé of the overall investigations of ICI-induced antiviral effects, our 

findings were not in accordance with those described in literature for other tumor 

models. Considering the individual experimental settings, differences between tumor 

models, various OVs, time of application and local or systemic administration of ICI 

should not be neglected. Still, the results of virus titrations in a CRC cell / immune cell 
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cocultivation model under ICI influence were rather unexpected, probably 

correspondingly to the missing anti-tumor effects of ICI in xCELLigence. 

 

A multimodal immunovirotherapeutic approach of MeV and immune checkpoint 

blockade emerged to be worthy further testing in an immunocompetent CRC mouse 

model. 

A successful immunovirotherapeutic treatment of CRC has to be evolved from an in 

vitro model, with testing in animal experiments as a second step, followed by clinical 

trials in patients. As argued above, MeV-induced PD-L1 upregulation in CRC cells 

turned out to be auspicious for such a combined treatment regimen, providing an ICI-

favorable immunological tumor microenvironment. Therefore, albeit xCELLigence 

analysis could not reveal an additional therapeutic gain of ICI application to MeV-

infected, immune cell-coincubated CRC cells in vitro, such a treatment regimen could 

be worthy to be tested in an immunocompetent mouse model. 

A major impediment of establishing an immunovirotherapeutic approach with MeV is 

displayed by the measles tropism to human cells, which requires CD46 as a surface 

protein for measles infection of the host cell (Naniche et al., 1993). Moreover, a human 

tumor model expressing CD46 could only be adopted in immunodeficient mice, for 

example NOD / SCID (non-obese diabetic / severe combined immunodeficiency) mice. 

This again would conflict with the fact that a successful immune checkpoint blockade is 

in need of an intact immune system with all its various players, and that it cannot be 

tested in immunodeficient animals in a way that is transferable to the human organism. 

Then why not use another virus for virotherapy, which is not dependent on the human 

cell tropism? Measles vaccine virus depicts several advantages in comparison to other 

OVs developed over the last years. First of all, measles vaccine virus was proved to be 

safe in clinical usage (Buijs et al., 2015) with long-time experience in terms of 

vaccination. Secondly, successful attempts to cure patients consolidated the application 

of measles OV as anti-cancer therapeutic (Russell et al., 2014), which was further 

pursued in several clinical trials (Msaouel et al., 2009; Robinson and Galanis, 2017). 

Last but not least, investigations in our working group concerning MeV virotherapy 

could show enhancement of therapeutic efficacy by arming the OV with suicide genes 

such as SCD, transforming the harmless prodrug 5-FC into the chemotherapeutic 5-FU 
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(Graepler F., 2005; Lampe J, 2013; Lange S, 2013; Noll M., 2013; Yurttas C, 2014). To 

cut short a long story of success in measles virotherapy, it was finally worthy to redirect 

measles tropism to other targets than CD46 (Schneider et al., 2000; Bucheit et al., 2003) 

and to overcome the problems of transducing measles OV into an immunocompetent 

mouse model (Engeland CE, 2014; Hardcastle et al., 2016). Furthermore, an immuno-

competent CRC model was introduced in C57BL/6 mice, combining murine MC38 

colon adenocarcinoma cells expressing CEA with a MeV virotherapeutic, which was 

redirected to this surface marker and additionally coded for another prodrug convertase, 

purine nucleoside phosphorylase (PNP), to make oncolysis more efficient (Ungerechts 

et al., 2007). In conclusion, a logical next step would be to further evaluate our 

immunovirotherapeutic approach in such a mouse model of CRC in vivo. 

Finally, the idea of exploiting the immunogenic stimulus of measles oncolytic 

virotherapy with new immunoenhancing therapies such as immune checkpoint blockade 

will soon accomplish the phase of clinical trials, for example combining MeV with anti-

PD-1 antibody in advanced pancreatic cancer (Engeland and colleagues, not yet 

recruiting). Moreover, new immunotherapeutics such as the so-called bispecific T-cell 

engagers (BiTE) arrived in clinical usage, which are able to recognize a tumor-specific 

antigen on the one hand, and a T-cell-specific surface marker on the other hand, thereby 

merging the T-cell directly with the tumor target (Huehls et al., 2015). Combined with 

measles OV, these BiTEs are tested for consolidating a long-lasting anti-tumor T-cell 

immunity (Speck et al., 2018). 

 

To sum up our findings, which comprise a new multimodal treatment strategy for CRC 

based on a combination of MeV virotherapeutic with immune checkpoint blockade 

targeting PD-1 or PD-L1, in vitro investigations could reveal that MeV-infection clears 

the way for ICI treatment by upregulation of immune checkpoint ligand PD-L1 on CRC 

tumor cells. For the discussed reasons and for the previously presented promising 

results of further preclinical trials in the field of immunovirotherapy, the missing 

additional therapeutic effect in xCELLigence analysis of combining ICI with MeV 

virotherapeutic under immune cell cocultivation should not lead to rejection of this 

immunovirotherapeutic approach in CRC, but - quite the contrary - to further testing in 

early clinical trials, i.e. phase I/II studies. 
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5. Summary 
 

In the recent past of virotherapy, the characteristic trait of virus-induced oncolysis to 

trigger an immunogenic stimulus against malignant cells was utilized for new immuno-

virotherapeutic combination approaches, thereby overcoming preexisting resistances. 

Aim of this dissertation thesis was to investigate such a novel multimodal therapeutic 

strategy for treatment of colorectal carcinoma (CRC). In an in vitro model of human 

CRC cell lines from the NCI-60 tumor cell panel, it was tested whether immune check-

point inhibitors (ICI) could achieve a therapeutic gain, combined with an oncolytic 

measles vaccine virus expressing green fluorescent protein (MeV-GFP) and with NK 

cells or peripheral blood mononuclear cells (PBMC). 

Sulforhodamine B (SRB) cytotoxicity assays were performed to uncover preexisting 

resistances of the respective monotherapies in the different tumor cell lines. In two 

human CRC cell lines, HT29 (susceptible to measles-induced oncolysis) and SW-620 

(exhibiting an intermediate resistance to measles-induced oncolysis), infection with 

MeV-GFP achieved a multiplicity of infection (MOI)- and time-dependent reduction of 

tumor cell mass, whereas HCT-15 tumor cells were observed to be highly resistant to 

MeV-GFP-induced oncolysis. Moreover, monotherapeutic treatment of HT29 and HCT-

15 with nivolumab (targeting PD-1) or atezolizumab (targeting PD-L1) did not reduce 

tumor cell viability in the absence of immune cells. 

FACS analysis of PD-L1 expression on CRC cell lines was conducted to firstly estimate 

the basal expression of this immune checkpoint ligand, whereupon tumor cells were 

measles-infected and, in a second step, the influence of infection on PD-L1 expression 

was investigated. Showing different degrees of basal PD-L1 expression, infection with 

both MeV-GFP and MeV-SCD, a suicide gene-enhanced measles virotherapeutic 

coding for Super-cytosine deaminase (SCD), increased PD-L1 expression in all three 

human CRC cell lines. In terms of MeV-SCD-infection, expression of PD-L1 further 

rose with augmentation of MOI for all three tested CRC cell lines and also with time of 

culture after infection for two out of three tested tumor cell lines. Furthermore, 

expression rates of the immune checkpoint receptor PD-1 on CD56 positive NK cell 

populations from four different healthy donors were investigated, resulting in less than 
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1 % of PD-1 positive cells. This result can be assessed as a poor precondition to take 

place in a direct PD-1 / PD-L1 interaction. 

In a next step, we tested for augmented anti-tumor efficacy under the influence of our 

combination treatment and immune cell coculture, using the real-time tumor cell growth 

and viability xCELLigence analysis. Thereby, the combination of immune cell co-

culture with measles infection could already show increased therapeutic effects in 

comparison to the respective monotreatments, albeit unfortunately, this effect could not 

be further strengthened by additional application of ICI (nivolumab and / or atezolizu-

mab). 

Finally, antiviral effects of immune checkpoint blockade were examined: Neither in a 

viral growth curve model, nor in viral titrations after immune cell coincubation, an 

influence of ICI on replication and spread of MeV-GFP in CRC cell lines could be 

found. 

 

To summarize, the upregulation of PD-L1 on human CRC cells via MeV-infection 

correlates with a promising therapeutic setting for combining ICI with measles-based 

virotherapy. However, in vitro xCELLigence analysis under immune cell coculture 

could not reveal a therapeutic gain of our immunovirotherapeutic approach. Nonethe-

less, considering the limited possibilities of an in vitro model of the complex human 

immune system, our therapeutic regimen should be further investigated in an immuno-

competent mouse model of CRC and, even more, in the context of early clinical trials 

(i.e. phase I/II studies). 
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Zusammenfassung  
 

In der jüngsten Vergangenheit der Virotherapie wurde die spezielle Eigenschaft der 

virusinduzierten Onkolyse, einen immunogenen Stimulus gegen bösartige Zellen zu 

triggern, ausgenutzt, um mit neuen immunovirotherapeutischen Kombinationsansätzen 

vorbestehende Tumor-Resistenzen zu überwinden. 

Ziel dieser Dissertationsschrift war es, einen solchen neuen multimodalen Therapie-

ansatz für das kolorektale Karzinom (CRC) zu untersuchen. In einem in vitro Modell 

humaner kolorektaler Karzinomzelllinien aus dem NCI-60 Tumorzellverzeichnis wurde 

getestet, ob Immun-Checkpoint-Inhibitoren (ICI) einen solchen therapeutischen Zusatz-

nutzen erbringen können, wenn sie mit onkolytischen Masernimpfviren, welche grün 

fluoreszierendes Protein exprimieren (MeV-GFP), und mit NK Zellen oder peripheren 

mononukleären Blutzellen (PBMC) kombiniert werden.  

Um vorbestehende Resistenzen der jeweiligen Monotherapien in den unterschiedlichen 

Tumorzelllinien zu testen, wurden zunächst Sulforhodamine B (SRB) Zytotoxizitäts-

assays durchgeführt. In zwei humanen kolorektalen Karzinomzelllinien, HT29 (suszep-

tibel gegenüber Masern-induzierter Onkolyse) und SW-620 (intermediär resistent 

gegenüber Masern-induzierter Onkolyse), konnte eine Infektion mit MeV-GFP eine 

konzentrations- und zeitabhängige Tumorzellmassenreduktion erreichen, wohingegen 

sich HCT-15 Tumorzellen als hoch resistent gegenüber MeV-GFP-induzierter Onkolyse 

erwiesen. Außerdem konnte gezeigt werden, dass die Monotherapie von HT29 und 

HCT-15 mit Nivolumab (gerichtet gegen PD-1) oder Atezolizumab (gerichtet gegen PD-

L1) die Tumorzellviabilität in Abwesenheit von Immunzellen nicht reduziert. 

In einem weiteren Schritt wurden FACS Messungen der PD-L1 Expression auf den 

genannten Darmkrebszelllinien durchgeführt, um zunächst die basale Expression dieses 

Immuncheckpoint-Liganden zu beurteilen, woraufhin die Tumorzellen mit Masern 

infiziert wurden und in einem zweiten Schritt der Einfluss einer Infektion auf die PD-L1 

Expression untersucht wurde. Ausgehend von unterschiedlichen basalen PD-L1 

Expressionsraten konnte eine Infektion sowohl mit MeV-GFP als auch mit MeV-SCD, 

einem Suizidgen-verstärkten Masernvirotherapeutikum, das für eine Supercytosin 
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Deaminase (SCD) kodiert, die PD-L1 Expression in allen drei huamanen Darmkrebs-

zelllinien steigern. Bezüglich der Infektion mit MeV-SCD stieg die Expression in allen 

drei getesteten Darmkrebszelllinien mit der Viruskonzentration und in zwei von drei 

getesteten Tumorzelllinien auch mit der Kultivierungszeit nach der Infektion. 

Zudem wurden auch die Expressionsraten des Immuncheckpoint-Rezeptors PD-1 auf 

CD56 positiven NK Zell-Populationen von vier unterschiedlichen, gesunden Spendern 

untersucht, wobei sich weniger als 1 % PD-1 positive Zellen ergaben. Dieses Ergebnis 

kann bewertet werden als eine ausgangsmäßig schlechte Voraussetzung dafür, an einer 

direkten PD-1 / PD-L1 Interaktion teilzunehmen.  

In einer Echtzeitmessung von Tumorzellwachstum und -viabilität im xCELLigence 

Assay wurde in einem weiteren Schritt unter Einfluss von unserer Kombinations-

therapie und von Immunzellkokultur auf eine erhöhte Anti-Tumor-Effektivität getestet. 

Dabei konnte bereits durch die Kombination von Immunzellkokultur mit Masern-

infektion ein gesteigerter therapeutischer Effekt im Vergleich zu beiden Monotherapien 

gezeigt werden, der sich jedoch leider durch zusätzliche Behandlung mit ICI 

(Nivolumab und / oder Atezolizumab) nicht weiter steigern ließ. 

Schließlich wurden antivirale Effekte einer Immuncheckpointblockade untersucht: 

Weder in einem Viruswachstumskurvenmodell, noch bei Virustitrierungen nach 

Immunzellkoinkubation konnte eine Beeinflussung der Replikation und Ausbreitung 

von MeV-GFP in CRC Zelllinien durch ICI gefunden werden. 

 

Zusammenfassend kann man davon ausgehen, dass die Hochregulierung von PD-L1 auf 

humanen Darmkrebszellen durch eine Infektion mit MeV einem vielversprechenden 

therapeutischen Ansatz entspricht, um ICI und Masern-basierte Virotherapie zu kombi-

nieren. Allerdings konnten in vitro xCELLigence Analysen unter Immunzellkokultur 

zunächst keinen therapeutischen Zugewinn durch unseren immunovirotherapeutischen 

Ansatz erkennen lassen. In Anbetracht der limitierten Möglichkeiten eines in vitro 

Modells des komplexen menschlichen Immunsystems sollte unser therapeutisches 

Regime allerdings dennoch in einem immunkompetenten Darmkrebs-Mausmodell und 

besser noch im Rahmen früher klinischer Studien (Phase I/II) genauer untersucht 

werden. 
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