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Abstract

This dissertation evaluates how methodologies from machine learning can be applied in
experimental psychology to gain new insights from neurophysiological data. Using two
examples from memory psychology, the experimentally collected EEG data are evaluated
once with classical group-level statistics and once with classification methods from the
field of machine learning. The combination of the results of both methods shows that new
insights can be gained that will profitably advance research in experimental psychology.
The use of new methodologies in this area is necessary because conventional group-level
statistics have problems that have spread extensively in science and have had serious
consequences, especially in the replication crisis that started in the year 2000. The
benefits of machine learning can help to alleviate these problems. In comparison to the
use of group-level statistics alone, the combination of both methods allows data to be
evaluated equally at both group and single-subject levels in order to obtain a complete
picture of the data. Also, the information of individual regions can be compared and
evaluated with that of an entire association of sensors collecting data. In this way,
underlying patterns can also be considered. The addition of machine learning also enables
explorative data analysis, which is not yet feasible in the area of group statistics.

In concrete terms, the application of machine learning techniques has made it pos-
sible to refine the characterization of executive functions and to draw up new hypotheses
regarding episodic memory. Of great importance were methodologies that make the
operation of machine learning processes transparent. This allowed the application to
be legitimized and the results to be interpreted for a specific purpose. Furthermore,
the comparison of the behavioral accuracy and the accuracy of the machine learning
process was particularly valuable. In this comparison it could be shown that there is
not necessarily a connection between the visual processing of an image and its active
recognition. Both case studies were able to show in a representative manner which
possibilities arise from the use of machine learning methods and thus present new findings
which would not have been possible without the application of machine learning in this
context.



Zusammenfassung

Im Rahmen dieser Dissertation wird evaluiert wie Methodiken aus dem maschinellen
Lernen angewendet werden kénnen um in der experimentellen Psychologie neue Erken-
ntnisse aus neurophysiologischen Daten zu gewinnen. An zwei Beispielen aus der
Gedéachtnispsychologie, werden die experimentell erhobenen EEG Daten jeweils einmal
mit klassischen Gruppen Statistiken ausgewertet und einmal mit Klassifikationsverfahren
aus dem Bereich des maschinellen Lernens. Die Kombination aus den Ergebnissen beider
Verfahren zeigt, dass neue Erkenntnisse gewonnen werden konnen, die die Forschung
in der experimentellen Psychologie gewinnbringend vorantreiben. Der Einsatz neuer
Methodiken in diesem Bereich ist notwendig, da die konventionelle Gruppen-Statistik
Probleme aufweist, die sich grofiflichige in der Wissenschaft ausgebreitet und schwer-
wiegende Folgen nach sich gezogen haben, die sich insbesondere in der Replikationskrise
zeigen, die in den 2000ern begann. Die Vorteile, die sich durch den FKinsatz von
maschinellem Lernen ergeben, konnen dazu beitragen diese Probleme mafigeblich zu
lindern. Im Vergleich zur Anwendung von Gruppen-Statistik alleine, ermdoglicht die
Kombination aus beiden Methoden, dass Daten sowohl auf Gruppen als auch auf
Versuchspersonenebene gleichermafien ausgewertet werden konnen, um ein vollsténdiges
Bild der Daten zu erhalten. Zum anderen konnen die Informationen einzelner Regionen,
mit denen von einem ganzen Verband von Daten sammelnden Sensoren verglichen und
ausgewertet werden. So konnen auch Muster in Betracht gezogen werden. Auch wird
mit dem Hinzufiigen des maschinellen Lernens die explorative Datenanalyse ermdoglicht,
welche im Bereich der Gruppen-Statistik bisher nicht durchfiithrbar war.

Konkret konnte durch die Anwendung maschineller Lernverfahren die Charakterisierung
von exekutiven Funktionen verfeinert und neue Hypothesen beziiglich des episodischen
Gedachtnisses aufgestellt werden. Von grofler Wichtigkeit waren Methodiken, die die
Arbeitsweise der maschinellen Lernverfahren transparent gestalten. Durch sie konnte
die Anwendung legitimiert und eine zweckgebundene Interpretation der Ergebnisse
durchgefithrt werden. Weiterhin besonders wertvoll war die Gegeniiberstellung von der
behavioralen Genauigkeit und der Genauigkeit des maschinellen Lernverfahrens. In
diesem Vergleich konnte gezeigt werden, dass zwischen der visuellen Verarbeitung eines
Bildes und dessen aktiver Wiedererkennung nicht notwendigerweise ein Zusammenhang
besteht. Beide Fallbeispiele konnten repréasentativ zeigen, welche Moglichkeiten sich durch
den Einsatz von maschinellen Lernverfahren ergeben und dadurch neue Erkenntnisse
présentieren, die ohne die Anwendung des maschinellen Lernens in diesem Kontext nicht
moglich gewesen waren.
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Chapter 1

Introduction

Experimental psychology is a methodology that gains scientific knowledge through the
conduction and analysis of experiments. Comprehensive knowledge of statistical methods
is indispensable for experimental psychology since every finding needs substantiation
with tests that asses the statistical significance. However, statistical methods have many
limitations that people are not aware of, making the correct use of statistics a challenge.
In general, it is easy to unintentionally draw wrong conclusions from statistical tests due
to the narrow window each method provides concerning the hypothesis to be tested and
properties the data needs to fulfill in order to work correctly.

That the limitations and false interpretations of statistical methods are an issue
that has real consequences, shows the current crisis of reproducibility in social sciences,
in particular, in the field of psychology. In 2015 researchers created a project (Repro-
ducibility Project) [1] in which they replicated 100 studies from three of the top-ranking
journals. As a result, they reported that they failed to reproduce the results of the
original publications in 64 % of all cases. One of the consequences of this project is
damaged credibility concerning the current state of the art procedures and methodologies
in the affected fields of research. Of course, the origin of this crisis is manifold, like
malpractices such as p-hacking, issues of power, and mathematical issues that can emerge
from flaws in the use and interpretation of statistical methods. If handled with, care
group-level statistics can provide reliable results. However, the many pitfalls in standard
approaches make it hard to reach reproducible and reliable results.

To this end, it needs to be mentioned that the methods in statistics continuously
develop. Some of the progress might, however, be found under the term machine learning
instead of statistics. The field has developed in a way that the transition between
statistics and machine learning became very fluent, and a distinction between the two
fields becomes more and more complex.

To find a solution that makes it easier to avoid the pitfalls of standard approaches, it
might be useful to look into an advanced field of statistics, which also includes the field
of machine learning. Interestingly there is already a field of research that makes use
of machine learning on experimental physiological data, which, however, serves mainly
a different purpose. The field of Brain-Computer Interface (BCI) research, which is a
small but very interdisciplinary community, develops applications and tools that use

3
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brain activity as a control mechanism. The field evolved around patients with severe
limitations of muscle control, to enable patients to restore control over body parts or even
more fundamental, to regain the ability to communicate with the world. A typical BCI
application records brain activity (in many cases with electroencephalography (EEG))
and categorizes the activity into control, and non-control intentions of the subject. The
categorization is usually done with the help of machine learning algorithms, that can
learn patterns in the brain activity which are associated with the control or non-control
intention.

When comparing this application scenario with the analysis of data in experimen-
tal psychology, it is possible to draw parallels between the two. In both cases, the focus
is on the differentiability of two or more conditions. In BCI research, the success of
differentiating the control and non-control intention is measured in classification accuracy,
describing in how many cases the correct intention was decoded. The easier it is for the
algorithm to separate the data correctly, the higher the classification performance. In
addition to the evaluation of the performance of the algorithm and finally of the BCI
application, the accuracy can also be used to make a statement about the extent of the
differences between the two categories. If, for example, the data is not distinguishable
because it originates from the same condition, the performance would be similar to the
chance level. If, on the other hand, the data is from two different conditions, performance
values significantly above chance level can be expected. Looking now at the described
conditions as two or more experimentally manipulated conditions from a psychological
study for which the decision should be made whether they originate from the same
distribution, the connection between the two disciplines becomes clear. Compared to
group-level statistics, machine learning has several advantages that make it attractive
concerning an application in experimental psychology. Within the scope of this thesis,
these advantages will be worked out to show that machine learning is a suitable tool in
experimental psychology to reduce and potentially overcome the current issues.

1.1 Objective and aim of this thesis

The objective of this thesis is to promote the usage of machine learning in the field
of experimental psychology. The usage and interpretation of statistical methods have
several flaws that need attention since many researchers are not aware of these issues.
To simplify interpretation and reduce the potential sources of errors, this thesis proposes
the use of machine learning in addition to conventional analysis techniques. Apart from
simplification, this thesis aims to show that standard group-level statistics and machine
learning techniques are two approaches that work hand in hand and complement each
other meaningfully. Both techniques have a different way to approach the available
data, and also provide access to different levels of information. The main objective of
this thesis is to show which methodology can answer which question, according to the
level of information that can be accessed. The hypothesis is that the combination of
both methodologies creates a more complete and informative picture of the experimental
data, which leads to higher reproducibility and new insights that cannot be gained with
conventional methods only.
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Overall, this work is highly interdisciplinary, covering aspects of many disciplines
and topics ranging from psychology and informatics to neurobiology. Due to this nature,
it is not possible to deal with all issues in depth without going beyond the scope of this
thesis. Therefore, it has been decided to limit the introductory as well as the discussion
chapters to the relevant information that is needed to understand the basic mechanisms
of the experiments and the respective effects.

1.2 Structure of this thesis

The thesis is divided into four parts to elaborate on the use of machine learning as a tool
in experimental psychology.

Part I starts with an introduction into the relevant fields of statistics and ma-
chine learning, including a problem statement that points out the limitations of state of
the art group-level statistics. It also includes an introduction to BCI research because
this field has an exemplary character for the development of this thesis. The chosen field
of application is memory psychology, which will also be presented in its essential parts
within this introductory section.

The core of this thesis will be two case studies, which will be used to demonstrate
the purpose and benefit of using ML in experimental psychology. Each case study consists
of several experimental studies that cover a specific process or research question. The
case studies have specifically been chosen to include the core parts of human memory,
from short to long-term, and also to show the diversity of the achieved benefits by using
the proposed methodology.

Part II includes the first case study and focuses on working memory and associ-
ated mental processes. A particular focus will be on the characterization of executive
functions (EFs), which are the core processes of working memory. The main aim will be
to decode the individual EFs on a neurophysiological level by using ML. In particular,
four studies will be performed in which two of the EFs will be combined each to assess
their properties in a pairwise comparison.

Part IIT includes the second case study and focuses on processes related to episodic
memory. In particular, the processes of memory encoding, memory retrieval, and decision
confidence will be under investigation. Again, four studies have been performed to reveal
the characteristics of the respective processes.

Part IV closes the thesis with a summarizing and concluding chapter that elabo-
rates on the benefits that the addition of ML to conventional analysis techniques can
achieve in experimental psychology. It also contains an overall discussion to merge the
results and findings from the two case studies on an abstract level since the two cases
could also be considered as stand-alone research questions.

Figure 1.1 shows an overview of the full structure of the thesis.
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Chapter 2

From statistics to machine
learning

Statistics as well as machine learning belong to the field of data science. Data science
is a discipline that models, organizes and summarizes data to understand its underlying
structure. Despite their similarities, Breiman [2] describes the two fields as two cultures,
that so far seldom work together. Machine learning, which is often described as predictive
modeling, is often used to automatically categorize large amounts of data. It puts a focus
on algorithmic methods and model skill to work well on future and so far unseen data.
It evolved from statistical methods and is today mostly located in the field of computer
science.

Statistics or statistical learning is a mathematical perspective on modeling data with a
focus on fitting models as good as possible, to describe a set of data as precise as possible.
Overall, the two fields have a lot in common, but do pursue different aims. One way of
stating these aims would be to say statistics are hypothesis-driven to find explanations for
data, whereas ML is data-driven to find patterns that can be matched on new data. For the
experimental psychology, both aims are equally important, but so far only the explanation
part is implemented by default. In the following, the basics of both fields that are essential
for this thesis will be elaborated, to understand the conceptual differences and to get an
idea of the potential gains that can be achieved in combining the two methodologies. For
conciseness, this chapter only includes the technical basics. A problem statement that
deals with the problems of statistics will be given in Chapter 4. Thus, the focus can
be better directed to the relevant points that are dealt with in this thesis, regarding the
promotion of using ML in addition to classical statistics in experimental psychology.

Different in aims: Information vs Prediction

2.1 Inferential statistics for hypothesis testing

The field of statistics deals with mathematical descriptions of quantitative data. There
is a subdivision into descriptive statistic that describes data with the help of its general
tendency and variability and there is inferential statistic that models probabilities and
random effects in the generation of data. Standard procedure in any form of statistical data
analysis is to propose a hypothesis to be tested, that describes the relationship between
the two or more groups of data. For the field of experimental psychology the basis of
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each research experiment is a theory based hypothesis about a certain cognitive state or
form of human behavior. For simplification it can be stated that each hypothesis consists
of the following statement: ”When X changes in the experiment, then the measurable
value Y changes as follows...”. Y is representative of the cognitive state Z. Therefore, each
theoretical hypothesis needs to be embedded into an experiment that uses the measure(s)
Y that is operational for Z to evaluate the hypothesis. To assess whether the measurable
change is meaningful, a statistical hypothesis is formulated. This is either corroborated or
rejected based on the p-value that indicates the significance of the performed statistical
tests. Since only a limited amount of data samples can be collected, it needs to be assured
that the samples are representative for the respective population the samples are drawn
from. Only then it can be evaluated if the two or more samples originate from the same
(no meaningful difference between the samples) or a different (measurable and meaningful
difference between the samples) population. A standard assumption is that the population
is normally distributed, hence the collection of samples is ideally also normally distributed.
Random errors and the influence of chance on the collection of samples though can cause
deviations from the normal distribution.Almost every form of statistical data analysis
evaluates the likelihood of observing the drawn samples simply by chance, to assess the
validity of the results and the respective conclusions that can be drawn [3, 4]. To give a
very quick example: When throwing a dice ten times, it is possible to observe ten sixes
in a row but not very likely. It would not be correct to conclude that each throw results
in a six, except, of course, the dice is biased. Therefore, further analyses are needed to
understand and correctly judge the observations of dice throws.

2.1.1 T-test

One of the standard statistical test that is performed, is a T-test. A T-test can answer
the question if the means of two collected samples differ. This can be an interesting
information to find out if an experimental condition or treatment causes a measurable
difference between two samples. As already mentioned, it needs to be assessed if the
differences that can be found are meaningful and systematical or if they are due to chance.
To find that out, all theoretically possible differences are constructed and sorted according
to their probability of being observed in a so-called T-distribution. When looking at two
populations X and Y the basic assumption of a T-test is always that the means of X and
Y (z and 7) do not differ [5]. This assumption is also called the nullhypothesis Hy.

Hy:T=79 (2.1)

To estimate if the nullhypothesis holds, based on the collected samples x and y, a T-value
is calculated, as can be seen in Equation 2.2.

T—y

o i

n and m are the sample sizes of r and y respectively and o represents the standard
deviation of the whole population, which is not known, but can be estimated with the
calculated variance of the populations o2 and 05 .

b (n—l)ag—k(m—l)ag
n+m-—2

t= (2.2)

(2.3)
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The null hypothesis is rejected if the T-value follows the conditions below
1
[t] > t(1 — S +m —2) (2.4)

« represents the level of significance and can be chosen freely. « = 0.05 has been used as
a standard for years now, but it needs to be stated that this value is arbitrary and can be
chosen differently if suitable.

In general, the level of significance expresses a probability value (p-Value). It indicates
the probability with which the calculated difference of the two samples, or an even more
extreme difference, can be observed when the Hy holds. A value of 0.05 can be translated
in a probability of 5 % that this result occurs simply by chance. The p-value is not a
measure of how right the assumption is or how important the difference is, but only a
measure of how likely it is that the nullhypothesis is falsely rejected.

2.1.2 Analysis of Variance (ANOVA)

If more than two samples are to be tested a different test is required. The analysis
of variance (ANOVA) is conceptually similar to a multiple two-sample T-tests, and can
therefore be used for more samples. It is more conservative than multiple individual tests
and therefore more accurate, because estimation errors do not accumulate over several
steps. Again the nullhypothesis Hy assumes that all group means of the data samples are
equal, stating that there is no systematical difference between the investigated populations
[6].

Hy:pp=pos=ps=...= ug (2.5)

A rejected nullhypothesis implies that at least one, but possibly all populations differ
in their mean. Once again a distribution is established, that describes the probability
with which the individual groups can theoretically vary from each other, a so-called F-
distribution. To estimate the probability and therefore the location in the distribution,
the variance within SSyw and between SSp the groups 1, .., k is calculated.

ZZ(%‘,J‘ ~7)’ = ZZ(%J —7)*+my (7 -7)° (2.6)

J o G (2.7)

k is the number of groups and m the number of samples within the groups. Again « repre-
sents the level of significance which is usually determined to be at 0.05. The nullhypothesis
is rejected when the following condition holds

F < F(k—1k(m—1),a) (2.8)

Also in this case, a significance level of o = 0.05 is selected as a default value, stating that
the chances of achieving this or more extreme results by random are less or equal to 5%.

9
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2.1.3 Correction for multiple testing

As already mentioned, it is possible that differences between two or more data samples
are purely coincidental and due to random variations. The bigger the parameter space,
the higher the chances of a randomly sampled difference (also known as the look-elsewhere
effect). Therefore, it is required to determine the parameter space of interest according
to the posed hypothesis, to avoid chance level effects. In some cases, however, testing the
hypothesis requires several statistical tests to be performed. To avoid wrong conclusions,
a correction of the chance level must be made in such cases.

Bonferroni correction

One of these corrections was proposed by Bonferroni [7] and suggests to simply correct
the significance level according to the number of made comparisons m. The criterion
according to which the null hypothesis is to be rejected is therefore:

«
— 2.
r<o 29)

This is known to be a rather conservative method, but overall an accepted measure to
avoid misguided findings.

2.1.4 Covariance and correlation

The covariance and the correlation are measures that are used to quantify the relationship
between variables of two samples. If two variables co-vary systematically, there is clearly
a relation between the two. The covariance can be positive or negative, describing the fact
that both variables either vary simultaneously in the same direction (positive) or if they
vary in opposite directions (negative). Equation 2.10 describes how the covariance of two
samples x and y can be calculated. n represents the size of the samples, whereas T and ¥y
represent the means of the samples, with respect to the investigated variable.

i (@ —T) - (4 —7) (2.10)

cou(i,y) = -

The covariance can be interpreted linearly. High values (positive as well as negative)
describe strong relationships, whereas small values quantify weak relationships. To this end
it needs to be mentioned, that the covariance is an unstandardized measure which is hard
to compare between different experiments. However, there is a standardized form which is
called correlation. It relates the covariance to the maximally achievable covariance, which
scales all values to a range between -1 and 1. Equation 2.11 shows how the correlation
can be calculated between the two samples x and y. o represents the standard variation
of the sample x or y as indicated by the subscripted coefficient.

oy = COVemp _ cov(x,y) (2.11)

COUmaz Oy + Oy

The coefficient of determination is the squared correlation r? which can further be
interpreted as the proportion of the variance in the response variable that is predictable
from the explanatory variable(s). In other words, 2 is representative for the percentage
of variance that can be explained by the explanatory variables. This can be applied

10
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to estimate the variance caused by the experimental condition but also as a qualitative
measure to find out how well a statistical or machine learning model fits the real data.
Values range from zero to one and the higher the value the higher the explainable variance
or the better the fit of the model.

2.2 Machine Learning

Machine learning is a field in which algorithms can learn from and make predictions on
data without explicitly being told what to learn. There are different forms of algorithms
that differ according to the way the knowledge is gained from the data. This can for
example be supervised (data is already provided in categories that need to be learned),
unsupervised (no additional information is given), or reinforcement learning (good outputs
are rewarded to reinforce the model) algorithms. For the application of machine learning,
the same statement holds, that has already been formulated for statistical methods: Only
a limited amount (samples) of data can be collected, which is why assumptions must be
made about the totality of the population to be investigated. Ideally the sample is repre-
sentative for the population, but chances are that this is not the case. However, machine
learning is not concerned with calculating probabilities, but with finding an abstraction
level that comprehensively describes the data and at the same time applies to new data
as unrestrictedly as possible.

2.2.1 Linear Regression

Linear regression is a method that belongs in both sections, statistics as well as machine
learning. It models the relationship of the data by finding a linear function that captures
all data points with a minimal error. It can both, predict concrete values for the response
variable, but also quantify the relationship between response and explanatory variables.
To calculate a linear regression, a standard linear equation, as can be seen in Equation
2.12, is set up in which the gradient a is modeled by the covariance of the two samples x
and y and the standard deviation o2 of the explanatory variable = (2.13).

b=9—a-T (2.12)
a= —Cov(ﬁ’ ) (2.13)
O‘x

Linear regression is restricted to one predictor or response variable with a linear relation
to the explanatory variable. There exist other forms, such as the multiple regression to
model more than one predictor or regression that can model non-linear relationships.

Regularization

If it is considered, once again, that a data sample does not necessarily have to be
representative for a population, then it becomes intuitively clear why a simple linear
equation is often not sufficient to describe a population. The process of creating a model
that fits exactly to the available data and loses sight of the generalizability to new data is
also known as overfitting. In the field of machine learning, where predictions are the most
important, people are aware of the problem of overfitting, which is why various measures
have been developed to prevent it.

11
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One of these measures is regularization. For linear regression there are two popu-
lar forms of regularization, that modify the objective of the linear function to simplify the
model. A simplification of the model is helpful in so far as it disregards special subtleties
of the sample and thus reduces the danger of overfitting.

Ridge regression (L2 Norm) is one form of regularization that aims to find a minimal
distance of the regression function to the data points by minimizing the sum of errors
and the weight vector within the function.

k
min » (yi — (Az; + b)) + A Ai]|? (2.14)
i=1

Lasso regression (L1-Norm) is another form of regularization that, in addition to
minimizing the sum of errors, aims to reduce the number of data points that influence the
regression function by setting as many weights as possible to zero. By this the model is
simplified which helps to view the data on a more abstract level and therefore, to reduce
overfitting.

k
min» (yi — (Az; +b))* + Al Ail|! (2.15)
=1

The only difference between Lasso and Ridge regression is that the regularization term is
an absolute value in Lasso.

2.2.2 Support vector machines

Support vector machines (SVMs) have been developed in 1974 by Vapnik et al. [8] as a
mathematical procedure for pattern recognition. They belong to the group of supervised
machine learning algorithms. The data on which this procedure is applied to needs to be
represented in a vector space. The aim is to find a hyperplane in this vector space that
separates the data into two classes according to the underlying, but not a priori defined
pattern. The hyperplane can be described with the following linear equation

w=>b/z; (2.16)
if the data is available in the following format:
(171,?/1)-n(.’1?n,yn),17 € Rmvye _17+1 (217)

x are the data points in the vector space, whereas y represents the class label of the
respective data points. The position of the hyperplane is chosen in a way that the distance
between the closest data point and the hyperplane, the so called margin, is maximal to
guarantee a clear and optimal separation of the data even if new data points enter the
scene. The hyperplane is defined by a normal vector w and a bias b as described in
Equation 2.16. The separation of the data can be described mathematically as follows:

(w-x;))—b>1 for y; =1 (2.18)
(w-x;)) —b< -1 for y;=-1 (2.19)

12
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The two Equations 2.18 and 2.19 describe that the data points belonging to the same class
will be positioned on the same side of the hyperplane. Data points from the other class
will be on the opposite site. The margin has the size of ﬁ which is why minimizing

$||wl| will lead to a maximal margin. To ensure that all data points of one class will end
up on the same side of the hyperplane the following constraint needs to be fulfilled:

yi((w, zi) +b) > 1 (2.20)

The optimization problem that needs to be solved in order to position the hyperplane with
a maximal margin can be described as follows:

w,b a>0

minmax{%HwHQ—Zai[yi(w-xi —b) — 1]} (2.21)
i=1

The constraints of the optimization problem are shown in Equation 2.22 and 2.23.

m
> iy =0 (2.22)
i—1
m
w = Z QYT (2.23)
i—1

Plugging Equation 2.22 and 2.23 into the optimization problem displayed in Equation 2.21
will lead to the rephrased optimization problem:

m m
1
max W(a) = E %= E a0y (T4, T5) (2.24)
i—1 Jri—1

When applying this approach to new and unknown data, the distance of every data point
x; to the hyperplane will be calculated. Due to the sign of the computed distance (positive
or negative) a decision can be made on which side of the hyperplane the data point needs
to be located. The word machine in the name of the support vector machine is due to the
fact that the approach belongs to the class of machine learning algorithms. The addition of
support vectors in the name has been chosen as the position of the hyperplane is defined by
only a small number of vectors that are closest to the hyperplane. They are used to define
and maximize the margin, all other data points are not needed to for this representation.
Figure 2.1 visualizes the separation of a set of data points due to their shape with an
optimal positioned hyperplane.

Kernel functions

If no linear separation of the data is possible as it was in Fig 2.1, a transformation into a
higher dimensional space can be considered in which a separation might become possible.
Figure 2.2 provides a simple example for the transformation of data points into a higher
dimensional space, enabling a linear separation of the data via the application of a plain
quadratic function. The transformation of the data can be computationally very expensive,
which is why an application of this might be unfeasible in some cases. The so called kernel
trick [9] can be applied, as it manages to solve the problem without actually computing
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Figure 2.1: Support vector machines (SVMs) - The datapoints z; of two classes are
separated by a line in this 2D example. The two classes are represented by circles and rectangles,
which are assigned the labels y = -1 and y = 1 respectively. In a 3D or more dimensional
example the line will be represented by a hyperplane. The hyperplane is positioned in space in
a way that the two classes (circles and rectangles) are separated and the distance (the margin)
between the hyperplane and the closest samples of each class is maximal. The vectors closest to
the hyperplane therefore define the position of the hyperplane and are called support vectors.
In this example a perfect separation of the two classes is possible.

the transformation. The key insight that is needed for the application is that Equation
2.24 only accesses the training data in terms of their inner products (p(x), p(x)). Kernels
functions are inner products that can be chosen to match the problem at hand. Therefore,
kernel functions are plugged in the equation instead of the 'simple’ inner product by which
the inner products between the images of all pairs of data are computed in the feature
space, without doing the actual transformation.

K(z,y) = (p(2), p(x)) (2.25)

Several types of kernels exist, even for data represented as graphs or strings. In the
following, two kernel functions will be named to give an impression of what kind of trans-
formations are possible.

RBF kernel
K(z,2") = exp( ||l‘_w,HQ) (2.26)
r,x') = exp 952 .
Linear kernel
K(z,2') = (z72' + ¢) (2.27)
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Figure 2.2: Example of a kernel function - Example of a transformation of not linearly
separable data into a higher dimensional space. The two classes are displayed with a red and
green color. A simple quadratic function makes it possible to find a linear separation of the

two classes.

2.2.3 Cross-validation

One possibility to validate the model of the trained classifier of an SVM or any other
machine learning algorithm, which can be seen as a prove of its generalizability to new
data, is to perform a cross-validation. It enables to test the data model on unseen data,
without the need for new data. Typically a k-fold cross-validation is applied which denotes
dividing the available data into k subsets. k—1 of the subsets are used to train the classifier
and the last remaining subset is used to test and evaluate the classifier. This is repeated
k times to ensure that every sample was used for both training and testing purposes. The
average performance of all k runs is calculated and stated as the overall performance. The
most commonly used is the 10-fold cross-validation. Figure 2.3 an example of how a cross

validation is performed.

Acc 1: xx % Acc 2: xx % Acc 3:xx %

Acc k: xx %

——

k - times

I Testset
Trainset

Total Accuracy:

LT
k

Figure 2.3: Cross-validation - The data is cut into k parts, according to the k specified in
k-fold. In k iterations, each time the k-th part is used for testing, all other remaining parts
for training the classifier. By this, each part is used for testing once and the full data set is
evaluated within the cross-validation. To get an overall measure for the dataset, the average

over all k-folds is reported.
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Chapter 3

Brain-Computer Interfaces (BCls)

To understand why the field of BCI research might be a useful example to improve data
analysis in experimental psychology, this chapter will cover the fundamentals of the tech-
nology. Historically, BCIs are an assisting technology that have been developed for people
with severe motoric impairments and disabilities caused by stroke or diseases like amy-
otrophic lateral sclerosis (ALS) [10],[11]. Their main task is to translate human brain
activity, which equates with the users’ intent, into machine commands that are executed
by a computer. By this, patients get the chance to restore control over body parts or
even more fundamental, get the chance to regain the ability to communicate with the
world. To this end, research and industry continuously work on the development of possi-
ble BCI applications that could be used in an everyday context by both the healthy and
the impaired.

Using machine learning on experimental physiological data. An example

3.1 Assessment of brain signals

As a start a way needs to be found to measure brain activity that can be used to control an
application. There exist several possibilities to asses brain signals. However, not all of them
are of practical use for a BCI. In general, the techniques can be divided into two categories:
invasive and non-invasive. Invasive methods imply that sensors are implanted directly on
the brain to derive the brain signals, which is usually only an option for patients in which
the benefits outweigh the risks of the implantation. For healthy users, only non-invasive
techniques are reasonable. Specifically of interest are near-infrared spectroscopy (NIRS)
and electroencephalography (EEG) since they are transportable and comparably cheap,
contrasted to magnet-encephalography (MEG), which needs helium cooling or magnet
resonance imaging (MRI) that requires a shielded room, due to a high magnetic field.
In this thesis, electroencephalography (EEG) was the method of choice. Therefore, the
detailed introduction will be limited to this technique.

3.1.1 Electroencephalogram (EEG)

Hans Berger has recorded the first human EEG in 1924 [12]. It measures brain activity
via differences in voltage on the surface of the scalp by placing electrodes on the surface
of a subjects’ head. The placement of the electrodes follows a pattern that was designed
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to standardize the setup. Most commonly used is the 10-20 system [13] that refers to a
pattern that distributes the electrodes relative to the head size, all over the head. Herbert
Jasper invented the system in 1958, and the numbers 10 and 20 refer to a percentage of a
distance reaching from nasion (approximately between the eyebrows) to inion (a tangible
point where skull ends) and from ear to ear. The two distances describe a horizontal and
a vertical axis on the head on which the electrodes will be positioned. This system has
been introduced to be able to produce comparable and reproducible results. In Figure 3.1
a) an exemplary placement of electrodes according to the 10-20 system can be seen.

A typical EEG recording consists of a time series of voltage values for each electrode.
Commonly used sampling frequencies of the signal are 256 or 512 Hz (resulting in 256
or 512 values per second). Hence, the EEG has a very high temporal resolution in the
range of milliseconds, which is a desirable property for the research of signal processing
in the brain. Unfortunately, it has a low spatial resolution. One reason for this is that
the measured signal represents a sum activity of many brain cells. The signal is passively
conducted through water and the top of the skull, making it challenging to locate the
exact origin of the signal. On the other hand, the skullcap in particular, but also other
layers located between the electrode and the brain, have an extremely dampening effect.
Only signals that originate from an outer cortex of the brain can be measured, or those
that are so strong that they can still be detected at a great distance despite the signal
loss. Despite this deficit, EEG recordings have clinical use for diagnostics of epilepsy,
brain death, or various kinds of sleeping disorders. It has no side effects and can be used
without restriction on any subject or patient. Therefore, it became one of the most used
techniques for the assessment of brain activity in BCls.
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(a) 10-20 placement (b) EEG setup

Figure 3.1: EEG setup and placement - a) Schematic overview of the electrode placement
according to 10-20 system [13]. The numbers 10 and 20 refer to a percentage distance in relation
to the size of the head. This ensures a standardized placement of the electrodes independent
of the concrete head size. b) EEG cap placed on subject. The electrodes are placed in a cap
and are connected to the amplifier via cable.

3.2 Feature extraction

As a second step, in the development and application of a BCI, it is necessary to identify
properties of interest within the recorded brain signal. Intentions and thoughts which
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are used to control the application are usually limited to short and specific time frames.
Relevant properties of the signal regarding time or sensor space, are usually called features.
A certain set of features can qualify as a BCI control signal if it is characteristic and can
reliably be produced by a subject. In this thesis, two categories of features have been used
that will be introduced in the following.

3.2.1 Event-related potentials (ERPs)

One common class of features are event-related potentials (ERPs). They represent the
activity that is caused by a certain event, in the form of the time series of recorded voltage
values. Event-related potentials can either be elicited by sensory perception or cognitive
processes. The standard approach to extract an ERP is, therefore, to look at the onset
of the event and follow the signal for a predefined window of time. To get a clean and
meaningful form of an ERP, it is reasonable and advisable to look at more than one
event of the same type since EEG recordings vary a lot and are prone to record artifacts.
Averaging over all events reduces the variation of the signal, especially the variation that
is not due to the event itself. To give one specific example, the P300 will be introduced as
the most commonly used ERP in BCI research. The P300 is an ERP that is elicited due
to evaluation and categorization of a presented stimulus [14]. When time-locked to the
event it appears strongest at electrodes over the parietal cortex, with a latency of 250-500
ms and an intensity of 10 - 20 pV' [15]. Typically, the peak of the potential is centered
around 300 ms, and since it is a positive deflection, the name P300 can be explained. It
does not matter if the stimulus is visual or auditory, in both cases P300s can be elicited.
A general observation is, the less frequent the stimulus, the higher the amplitude of the
P300. A typical task for the examination of the P300 signal is the oddball paradigm
[16]. Two different stimuli are presented in a sequence of stimuli. One of the stimuli
is less frequent than the other and therefore called the oddball stimulus. The waveform
of a P300 can be seen in Figure 3.2 among other typical and well known ERPs such as
the error-related negativity (ERN) which associated with the monitoring of errors [17],
the N400, a component that can be observed as a response to words or other meaningful
stimuli and [18] the P600 which is a language relevant component that can be associated
with syntactical processing of sentences [19].

3.2.2 Frequency band power

A second common class of features is the frequency band power. They represent the
activity that is caused by oscillations and rhythmic activity of groups of neurons. To vi-
sualize and identify this kind of activity, it is easier to look at the recorded EEG signal in
the frequency domain instead of the time domain. Synchronized activity of many groups
of neurons is specified as event-related synchronization (ERS), whereas a desynchronized
activity is specified as event-related desynchronization (ERD). This transformation from
time to frequency domain can be performed with methods like the Fast Fourier Transfor-
mation (FFT) or Burgs maximum entropy method [20]. Regarding nomenclature, it has
been established to group ranges of frequencies into so-called bands. For brain activity, a
grouping into five bands has been proposed, which are enumerated in the following: Delta
1-4 Hz slow wave sleep, Theta 5-7 Hz drowsiness or arousal, Alpha 8-12 Hz relaxation
to attenuates in mental exertion, Beta 13-31 Hz attenuated during active movement, and
Gamma > 32 Hz. The presence or absence of waves in individual frequency bands can
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Figure 3.2: ERPs - Example of waveforms of commonly known ERPs, such as the ERN,
P300, N400 and P600. They are all stimulus-locked which means that they can only be observed
and identified in a specific time frame after the stimulus has occurred !.

be associated with cognitive states and pathological disorders. Alpha waves, for example,
can be found as a steady rhythm during relaxation which will get attenuated while doing
mental exercises, especially over the occipital lobe [21]. Beta waves, as another example
can usually be found over the motor cortex and can be associated with active muscle
contraction and movement [22].

3.3 Filtering of the data

In addition, to extract relevant time frames from the signal, it is also important to ensure a
certain level of quality of the signal. Signals that can be measured from the EEG electrodes
via the amplifiers are in the range of ¢V and, unfortunately, prone to pick up noise from
many different kinds of sources. To ensure that only signals related to brain activity
remain, components related to something else need to be eliminated. In the following,
filter methods for three kinds of errors or issues will be described that improve the data
quality.

3.3.1 Artifact correction

A common source of artifacts that is not related to brain activity is movement. Changes
in the signal arise when the subject starts moving during the measurement, which includes
even minor movements such as blinking, yawning, crossing legs, or finger stretching. Sub-
jects are instructed not to move if possible. However, some movements occur naturally
that cannot be restricted (e.g., blinking). For that reason, algorithms have been devel-
oped that filter out eye movement artifacts via independent component analysis (ICA) or
regression methods [23].

'"Picture  taken  from  https://www.inverse.com /article/32958-ethics-brain-computer-interface-
technology-concerns
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3.3.2 Re-referencing

Voltage is a relative measure, that refers to a difference in potential between two sites.
Hence, a reference electrode needs to be placed in addition to the scalp electrodes. De-
pending on the position, the reference has a larger or smaller effect on all other electrode
sites. The most frequently used sites of reference, to minimize the effect of the reference
on all other electrodes, is the nose or the mastoids (point behind the ears). Despite mini-
mizing the effect, it is still present, which is why it can be recommended to remove it. The
common average referencing filter (CAR) [24] is a filter that subtracts the average
value of all electrodes. The average across all electrodes is considered to be an estimate of
the activity at the reference site that is equally present at all sites. Subtracting the mean,
therefore, removes the influence of reference. Equation 3.1 demonstrates how the CAR is
calculated and applied to the data.

1 n
n
=1

n represents the number of used electrodes and VF® is the potential of electrode i with
respect to the previously used reference.

3.3.3 Signal-to-noise ratio

In addition to that, there are also methods that improve the signal-to-noise ratio, which
can be useful to better bring out the control signal, in contrast to the non-control signal.
One method is, for example, the canonical correlation analysis (CCA) [25], [26]. It is
an approach for feature extraction that finds the maximal correlation between two sets of
data X and S by applying the linear transformations W, and W; (see Equation 3.2).
Ty QT
max Wx X5 Ws (3.2)
W JWEXXTW - WESSTW

In practical terms, this means for the example of ERP detection, that the algorithm
alms to maximize the correlation between the averaged ERP signal and the single-trial
recordings. Figure 3.3 visualizes how the CCA is used during a k-fold-cross validation in
a typical classification example for BCls.
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Figure 3.3: Example for CCA in ERP detection - Simplified visualization of the CCA
which is classically applied within a cross-validation during the classification. The average
ERP of the condition is used as a target to which the correlation shall be maximized within all
individual trials. The found transformation W is then applied to the test data.

3.4 Classification

As the last step, it is necessary to identify the control signal when it occurs in the record-
ing. This is necessary to identify which intent the user has and, therefore, to decide which
command needs to be sent to the application. To achieve that, supervised learning ap-
proaches are most commonly used, which implement a specified training in which the user
creates control and non-control signals to collect training data. The training data is then
used to train a machine learning classifier that learns to detect and distinguish the two
types of signals from each other. For many BCls, SVMs are used, but also other algo-
rithms are possible and equally appropriate [27]. The classifier is used in the application
to automatically detect the users’ intent, which is then sent to the application to execute
a command. Mostly, feedback is provided to the user, which then closes the loop of the
application. Figure 3.4 shows an example of a BCI setup depicting the workflow of a BCI
application, to make the closed loop scenario more comprehensible.

3.5 BClIs as a research tool

In general, there is a movement in the field of BCI research that aims to utilize BCIs as
a research tool. So far, this topic has not made much progress, but few examples show
the potential of data analysis within the closed-loop of an application. To sketch the idea,
one example will be shown in the following.

Schultze-Kraft and colleagues were interested in the so-called readiness potential (RP) and
its significance during the execution of movements [28]. The RP is associated with the
preparation of movement and can be found in the EEG shortly (around 1000 ms) before
the onset of movement. The authors were interested in the question if the RP is the
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Figure 3.4: Workflow of a BCI - The application is visually presented on a computer screen
to a subject that is connected to a EEG cap. The recorded signals go through an amplifier and
are filtered to remove artifacts, and possibly to improve the signal to noise ratio. Features are
extracted and fed into a classification algorithm that tries to identify the control command.
The result of the classification is passed on to the application layer which implements the
command. The usage of the application can be seen as a closed-loop.

trigger that initiates the movement or if it is rather an indicator for the decision to move.
In practical terms, they aimed to find out: Is cancellation of the movement still possible
after the RP has been elicited or not? A closed-loop application was built to identify the
appearance of the RP in real-time and to send a stop signal to the application to instruct
the user not to perform the planned movement (if possible). The authors found that it
is possible to cancel the movement if the stop signal appeared at least 200 ms before the
onset of movement, and therefore at least 800 ms after the onset of the RP. After 800 ms
it is no longer possible to cancel the movement, indicating that a point of no return has
been passed.

In this example, the use of feedback, customized to the real-time brain processes, enabled
to determine the point in time after which a movement can no longer be canceled. The
study showed that using a real-time classification of brain signals can be a powerful tool
to answer open research questions.

3.5.1 Activation patterns

When taking one step back from making use of the full loop of a BCI application, it might
come to mind that also intermediate results from processes within the loop could be of
value to answer research questions. For example, it could be of interest based on which
criteria the decision boundary between the two classes was build. In terms of an SVM, this
decision boundary is build by the support vectors. Mathematically, each feature of the
input data gets assigned a weight, which determines its importance with respect to this
decision boundary. It is possible to interpret these weights in terms of activation patterns
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that represent the distinct properties of the categories that are separated by the SVM. A
method developed by Haufe and colleagues [29] can be used to transform the weights of
the SVM classifier into neurophysiological interpretable values. This transformation is a
necessary processing step since multivariate methods like SVMs combine information from
several channels to improve the signal to noise ratio, thereby preventing the possibility of
interpreting the involved parameters directly. The authors describe the step that is done
in an SVM as a backward model that transforms data z(n) to the optimized and separable
form s(n) by multiplying a transformation matrix on the data (Eq. 3.3).

WTz(n) = s(n) (3.3)

The transformation matrix represents the weights of the SVM, which are mathematically
optimized but cannot be interpreted regarding the neurophysiological importance of the
features that are used for the distinction of classes. The so-called activation pattern A
is calculated by multiplying the covariance matrices of the data with the weights of the
SVM to reveal the individual importance of the features (see Eq. 3.4).

A=SxWrg! (3.4)
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Figure 3.5: Workflow for the calculation of activation patterns - Schematic workflow
of the calculation of activation pattern A from EEG data. EEG data is cut into trials z; and
assigned a label (A/B) which represents the respective experimental condition. The features
of each trial are represented by the number of observations p and channels ¢ which are used to
categorize and separate each trials z; by mathematical optimization in an SVM. The separable
form of the data is now called y. Parameter w of the SVM and the covariance matrices of the
data = and the transformed version of the data y is used to calculate the activation pattern
A. Each value in A can be seen as a rank of importance for the respective feature during the
separation. The topological representation of activation pattern A for a specific observation p
is optional, but can be used to make it easier to interpret the pattern.
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Chapter 4

Problem statement: Limitations of
statistics in experimental

psychology

As already stated in the beginning, the use of statistical methods is not straightforward.
Especially in the field of experimental psychology, statistics have a crucial role, making it
indispensable for researchers to understand the implications of the applied methodology.
In addition to men-made difficulties that need to be considered, there are also limita-
tions of classical group-level statistics which are currently state-of-the-art in experimental
psychology. In the following, the biggest limitations within statistical methods will be
explained to create an understanding of the necessity to introduce ways that prevent pos-
sible pitfalls and narrow down limitations. Since this thesis focuses on one predominant
type of experimental data (EEG), the issues will be pinpointed to this data type.

Why do inferential statistics need to be augmented for data analysis in erperimental
psychology ¢

4.1 Missing analysis of patterns

EEG recordings are an example of a highly multidimensional dataset in experimental
psychology, because setups consist of 16 up to 128 electrodes from which each mea-
sures hundreds of values per second. The first step in the analysis and processing of
multidimensional data is usually to narrow the data down to time frames and sensors
of interest because much of the signal might be irrelevant or redundant. Interestingly,
whenever experimental psychology uses EEG as a measure, it is usually broken down to
a minimal number of dimensions, to test the posed hypothesis. The standard approach
is to choose the electrode(s) for analysis that is most likely to be affected by the
experimental condition according to the literature on which the hypothesis is based. The
motivation behind this is to reduce error accumulation that can be caused by multiple
significance tests. Choosing more sites and performing an appropriate correction for
multiple comparisons, can be done, but greatly reduces the chance of finding small to
medium effects. The minority of studies has medium-sized effects, let alone big effects,
hence making it clear why most researchers have suspended the idea of choosing more
electrodes in the analysis. Testing only sites of relevance, which are supported by the
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literature, seems to be a good solution to avoid that problem.

However, the approach of testing only individual sites omits the relation between
sensors. When considering that whole networks of structures control most processes
in the human brain, it seems plausible and even necessary to take more sensors and
especially the relation between sensors into account. The analysis of this relationship
could reveal meaningful patterns that help to understand the underlying processes
better. Consequently, finding a way that avoids choosing a loss of rich and meaningful
information over a statistical technicality, would be an excellent benefit for the analysis
of high dimensional data (such as EEG data) in experimental psychology.

4.2 Missing analysis of single-subject level

State-of-the-art analysis techniques comprise mostly of group-level statistics. They aim to
assess and quantify effects that generalize over whole populations. Averages and standard
deviations involved in T-tests or ANOVAs are the method of choice to achieve that. By
looking at the dataset as one construct, the information of a single subject does not weigh
in as an individual piece but as part of a whole. Apart from identifying individuals as
outliers in the analysis, which often occurs due to technical difficulties, the information of
a single subject is not important. By looking at the variance and confidence intervals of
the data, the information on individual subjects can, however, be captured to a certain
extent. It might be of interest though, in which subjects specifically the found effect is
present or not, and with which intensity. Counter-intuitively, this question gets especially
relevant when no overall significant effect can be found in the population at all. Not
finding a significant effect does not necessarily mean that there is no effect to be found.
Investigating the data on a single-subject level might reveal that an effect can be found
but only within a subgroup of the population. Or it might reveal that an effect can
be found within each subject but with a systematical variation that cannot be captured
by the group-level methods. Accordingly, the importance of patterns in brain data is
once more emphasized, but not only on a group but also a single-subject level. Finding
methods that also cover the level of single subjects comprehensively would be a great
gain for the acquisition of knowledge in experimental psychology. The relevance of this
issue gets clearer when turning the focus back to EEG data. The low spatial resolution
of the technology, in combination with individual differences in brain anatomy, can lead
to different measurable outcomes in the EEG signal even though the underlying processes
are the same in all subjects. Again, not finding an effect on the group-level does not
necessarily imply that there is no effect. In terms of EEG data, it could merely mean
that the phenotype of the effect is different between subgroups, if not between all subjects
altogether. Inter-subject variability in EEG data is highly present and even can be used
for the authentication of individuals without specific feature engineering or filtering [30].
Therefore, adding a single-subject level to the standard analysis seems to be a useful idea.

4.3 Missing identification of latent variables

Latent variables are variables that are not or cannot be measured directly but do have an
influence on the measurable variables in the experiment. This can for example be external
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factors such as the room temperature or the light situation that can cause differences in
the subjects behavior that are not caused by the experimental manipulations. The same
applies to internal factors such as fatigue, pain or emotions. They might not uniformly
be present within the measured population, but they likely account for a considerable
proportion of variance within the signal. Some methods can assess and quantify the
presence of latent variables. However, it is not common to check data for latent variables.
Since the general aim of statistical models is to fit the data as good as possible, latent
variables might have a major influence on the construction of the models. Depending on
which latent variable(s) are involved, they may be specific to a sample or a particular
property of the experiment, so the gain in knowledge that can be achieved by the model
may be limited. Since latent variables are neither qualitatively nor standardized recorded,
this limitation is very far-reaching and affects all experimentally obtained data. Therefore,
adding a methodology that accounts for the identification of latent variables by default
seems to be a useful idea.

4.4 Strictly explanatory data analysis

Statistical data analysis is hypothesis-driven and allows only conclusions concerning the
proposed hypothesis. The hypothesis makes statements about the to be expected effects
that are caused by the controlled manipulation of experimental conditions. In almost ev-
ery case, the theory cannot be measured directly but needs to be assessed by intermediate
variables, such as reaction time or task accuracy, which are then used to corroborate or
rejected the hypothesis. Due to this, very strict design and testing are inevitable to guar-
antee findings that can be associated with the variable of interest. Therefore, all details
from design to testing methodology needs to be well thought out and defined even before
data collection. In the end, this means if errors in the design are detected or the hypothesis
cannot be confirmed, the collected data often becomes useless. Explorative data analysis,
which would mean testing several hypotheses on the same set of data, is not suitable for
this methodology. Due to the sampling of data from bigger and unknown populations,
effects can always be found that stand out significantly from chance, with pronounced
multiple testing. By correcting the chance level according to the number of performed
tests, this issue can be contained. Still, other problems such as overfitting of statistical
models play a crucial role in this, further preventing excessive testing. As already stated,
most statistical models aim to model the data as well as possible. By modeling data as
precisely as possible to a specific research question other essential aspects on which the
data is based get neglected. This leads to ignoring relevant information while putting an
emphasize on potentially irrelevant information, which finally results in a distortion of
facts. Naturally, this is not desired and would lead only to insufficiently reliable scientific
findings. Therefore, it is always necessary to perform several consecutive experiments,
each specifically designed for one hypothesis, to explore more than one research question.
This is methodically flawless but very time and money consuming and, therefore, often
not feasible. Finding methodologies that allow exploratory data analysis within one ex-
periment by overcoming the issue of multiple testing and overfitting would be a desirable
goal to make the most out of existing data.
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4.5 Summary: Issues of reproducibility

The listing above might already suffice to grasp how it can easily happen that experimental
results might occur once but not necessarily again in a replication of a study. Of course,
there are other reasons, such as power issues caused by small sample sizes and malprac-
tices, which, however, will not be addressed here. This thesis wants to create awareness
that there is an urgent need for a methodology that can take multidimensional data into
account, without causing issues of multiple comparisons and extensive overfitting, while
taking patterns and the single-subject level into account. Understanding that patterns
could describe the measured effect and its underlying theory comprehensively or at least
more accurate than individual measurement points is crucial for decoding cognitive pro-
cesses further. Including pattern analysis is, therefore, a useful and necessary extension.
Especially for the example of EEG data, but also for other data types, it is also necessary
to take the single-subject level into account. Patterns may differ from subject to subject
regarding their particular location and strength of expression. But they can show a corre-
lation that cannot be described by averages. Especially due to the poor spatial resolution
of the measurement technology and the complexity of the human brain, a single-subject
view of the data would be advantageous. Overall, the focus should be on generalizability
and not only on the goodness of the fit. This ensures that the generated models also work
on new data. Thus, the data needs to be considered at a different level of abstraction,
which may do better justice to the target variables and capture them better than a model
that limits itself to the goodness of the fit. All of these issues would help to keep issues
of reproducibility down because. Mainly because the diversity of the data is no more
regarded as a disadvantage but integrated advantageously into the analyses. Last but not
least, the ability to perform exploratory data analysis without committing data dredging
and abusing the flaws of statistical testing would be desirable to make more and steady
progress in experimental psychology.

4.6 Proposal for an augmented methodology

This thesis represents a proposal for the introduction and promotion of machine learning
within the field of experimental psychology. In this thesis, SVMs are chosen to classify
data that correspond to a priori determined variables of interest. The classification pro-
cess, which is literally a process of separation, can be regarded as a practical implication
of the research question: ” Are those two samples that have been obtained under different
experimental conditions from the same population?”

If the data can be separated, it is highly likely that the data arises from two populations.
If it cannot be separated, the data originates from the same distribution. The separation
is quantified by accuracy values that state in how many cases the categorization into one
of the two determined variables is correct. Therefore, if the process of classification is suc-
cessful, which is expressed in high classification accuracies, the proposed null hypothesis
that both samples are from the same population can be rejected. Classification accuracies
around the chance level, on the other hand, would be indicators to corroborate the null
hypothesis and, therefore, to assume that the samples are from the same population.

In addition to delivering an equivalent function as classical hypothesis tests, ma-
chine learning has the prospect of solving the above-stated issues. The field of machine
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learning has its origin to a large extent in pattern recognition and the recognition of
regularities in large amounts of data. Therefore, it can take multiple levels of the data
into account, without the necessity of multiple hypothesis testing. Due to the high
focus on real-world applications and especially the application to new and unseen data,
the issue of overfitting is addressed, and solutions have been provided in many forms
(e.g., cross-validation and regularization). In many cases, the form of application has an
exploratory character. This helps to understand what the available data, and therefore,
the problem at hand is about. By exploring all properties of the data, it is possible to
find general models that can describe the data in its entirety and on an appropriate level
of abstraction. Last but not least, it can also be seen in Chapter 3 that using machine
learning methodology on single subjects only is not a concern, as long as a representative
amount of data has been collected for each subject individually. It is a standard approach
in BCI research and by that means, is also used for the research of mental states [31].
Further, the Chapter shows that ML does not need to be opaque. Methods exist that
make the approach more transparent and traceable. By this the results get interpretable
and provide deeper insights into the data. It has been shown that the approach provides
meaningful results in those fields. Overall, this short sketch of the idea of proposing the
application of machine learning in experimental psychology gives already a promising
estimate of how the existing issues could be overcome. This thesis will implement the
idea and provide results for creating a proof of concept.
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Chapter 5

Field of application: Memory

To test the proposed methodology of using machine learning in experimental psychology.
the field of learning and memory was chosen as an exemplary field. One of the reasons for
this choice is that it is a considerably broad topic that is still relatively poorly understood.
The second and more important reason is that it is a field that heavily relies on brain data
to make further progress to comprehensively identify processes during the learning, storage,
and retrieval of information. In the problem statement, it was made clear that especially
high-dimensional data, such as brain recordings via EEG, can lead to problems when using
standard techniques for statistical analysis. Accordingly, learning and memory seem like
a suitable field of application to establish a proof of concept of the proposed methodology.
In the following, an overview of the standard models of human memory will be given to
get an insight into the complexity of the field and the connection between the individual
components that will later be the focus of this thesis. Chapter 6 and 12 will then give a
more detailed introduction to cover the basics and standard theories that will be needed
to understand the paradigms of the two case studies performed in this thesis.

Choosing a stage for a proof of concept

5.1 Multi-component models

Human memory is a fascinating construct on which we highly depend on a moment to
moment basis. It can capture facts and episodes of daily life, conscious or unconsciously,
with almost limitless capacity. Regarding the issue of memory capacity, however, it quickly
comes to mind, that many things are easily forgotten or can only be remembered with
a high effort of learning. The proposition of a fragmenting of our memory system into
several components that differ in their capacity and the duration of how long information
can be stored there was therefore readily accepted. It was made by Atkinson and Shiffrin
in 1968 and can be found in the literature under the term multi-store model [32]. It
consists of three types of memory components that all have in common that they maintain
information for a certain amount of time after the source of information has vanished. The
three components are usually referred to as sensory memory, short-term memory,
and long-term memory.

Sensory memory allows retaining impressions of sensory information, such as touch, vision,
and sound, with a high capacity for a very short amount of time (under a second). For
many, this is rather a perception than a form of memory. Short-term memory deals with
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information that can be received and processed at the same time and is hence, limited in
capacity and can store information only for a short period (under a minute). Long-term
memory is theoretically unlimited in capacity and can store information for years or even
a lifetime. It represents knowledge that we are not consciously aware of all times, but that
can be actively retrieved into consciousness. All in all, this is a very comprehensive model
that still holds today, but it is certainly too simple to capture the complex reality.

Short-term memory

Only a few years after Atkinson and Shiffrin proposed their model, Baddeley and col-
leagues presented an extension of that model. It further fractions short-term memory into
a system of several components that are not only able to store, but also to manipulate
information, while still holding it within memory. The authors engraved the term working
memory for the system and describe it with three different components: central execu-
tive, phonological loop and visio-spatial sketchpad [33, 34]. The central executive
is an attention-related control structure, which coordinates the storage, rehearsal, and
transformation of information in memory through the so-called executive functions (EF's).
Since the EFs will be the center of the first case study, they will be introduced in detail
in Chapter 6. The phonological loop and the visio-spatial sketchpad can be described
as memory-related storage components for verbal and visual information. In 2000 the
authors refined the model by adding the episodic buffer as an intermediate component
that links working memory with long-term memory [35]. It transfers information from
and to long-term memory while consciously processing it and, therefore, closes the loop
between the two major memory components.

Long-term memory

Naturally, long-term memory is also an extensive construct of several components that
can store vast amounts of information. Current models define long-term memory as a
system of at least two components that distinguish between explicit (conscious) and
implicit (unconscious) knowledge [36]. A more coherent definition of the two types of
memory is the distinction of "knowing what” (facts, the experience of time, places, and
feelings) and "knowing how” (skills and conditioning), which can be assigned to explicit
and implicit memory respectively. For the component of explicit memory, there was a
further subdivision into episodic and semantic memory, categorizing information into
personal experience and factual knowledge. More subdivisions exist, but the so far given
level of detail will suffice for a general overview of the core constructs in memory that will
be needed in this thesis.

5.2 The focus of this thesis: Two case studies

To sum everything up, Figure 5.1 visualizes the connection and arrangement of all
relevant memory components that have been described within this chapter. For this
thesis, the focus is put on two central aspects within the construct of human memory,
to show representatively what can be achieved with the use of machine learning within
experimental psychology. The first core topic deals with current questions regarding the
central executive of working memory and its underlying constructs. The central executive
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Multi Store Model

o

Figure 5.1: Memory models - The three main components of human memory, sensory,
short-term and long-term memory are separate but interdependent constructs. Information
that enters human memory always starts in the sensory memory system and then either travels
from short to long-term memory or leaves the human memory system in either of the three com-
ponents. Especially the long and short-term memory system maintain a permanent connection.
This connection is used to exchanged information for the storage, retrieval, or maintenance of
information. Different subcomponents of each memory system are known, which are in parts
depicted within this figure.

is the key player in working memory and serves as a gateway and controlling instance
regarding the information that will be passed on to long-term memory. It is, therefore,
considered to be of particular importance. Due to its importance and the fact that it is
still not entirely understood, EFs the basis of the central executive, have been chosen as
the stage for the first case study.

As a second topic, the core functions of episodic memory, or rather long-term memory in
general, are under investigation. The central chain of processes that every information
needs to pass to be captured in long-term memory includes the encoding, storage, and
retrieval from long-term memory components. Here, too, there are still many unanswered
questions that clarification, especially when the processes are viewed in interaction and
not just as individual components.

The selected topics serve as a model for an exemplary proof of concept, which at

the same time should clarify central questions in memory psychology to significantly
advance research in this field.
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Chapter 6

Introduction into working memory
and executive functions

The first case study will deal with working memory (WM), and its core construct
executive functions (EFs). To complete the overview of Chapter 5, a more detailed
description of working memory will be given, with a major focus on EFs. The chapter is
supposed to give a basic overview over standard models and theories to provide the basic
knowledge that is needed for the studies described in the following.

As has been described in Chapter 5, WM can be seen as an extension of the con-
cept of short-term memory. It is as a system that allows temporary maintenance and
manipulation of information, which is helpful and indispensable to perform complex
tasks. It is a construct of several components, one of which is the central executive,
an attention-related control structure. Miyake and colleagues tied the concept of EFs
to this central executive. EFs are cognitive processes that are essential in the planning
and control of goal-directed behavior [37]. Together with Baddeley’s model of working
memory, Miyake’s concept of EF's describes the dominant view of the standard literature
concerning working memory [38].

6.1 Miyake and Friedman’s framework of the unity and di-
versity of EF's

Based on a latent-variable analysis of a bundle of executive tasks, Miyake and colleagues
[39] developed one of the best-known models describing the structure of different EFs.
According to this model, the three core EFs are named updating, inhibition, and shifting.
EFs play a pivotal role in many other and even recent WM theories (e.g., [40, 41, 42, 43, 44]
and [45]). According to these theories, the attentional control processes required to
pursue WM tasks are responsible for the severe limitation of human WM. Accordingly,
individual differences in WM capacity trace back to individual differences concerning
these EF's [42, 44]. Miyake and colleagues [39, 46] describe the relationship between the
three core functions in terms of unity and diversity, as they share many properties but
also have distinct characteristics as individual functions (see Figure 6.1). They state the
EFs are "separable but moderately correlated constructs” [39]. The unity and diversity
of EFs as individual components of WM, describing shared and unique properties of the
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EFs, has so far mainly been investigated through statistical analyses of behavioral data
in either healthy subjects or patients with frontal lobe impairments, see e.g., [47, 48]
and [49]. Until now, it remains unclear whether the shared and unshared variances of
performance in different EF tasks can be mapped either on a common attentional and
limited resource in the brain [50], a shared network [51] or, on EF-specific brain functions.
In 2012 [46] Miyake and colleagues have adapted their model based on studies performed
by Friedman [52, 53], stating that there is no unique variance for inhibition as it perfectly
correlates with the common properties of EFs. Overall this is a complicated question to
address. It has been found that tasks that reliably induce load on the same EF often
have low correlations with each other. Burgess and colleagues describe this is as an issue
of task impurity [48] because many non-executive processes are required to solve a task,
which can vary greatly even though the same core EF processes are present [54].

Collette et al. performed one example of studies that aimed to further investigate
the unity and diversity of EFs on healthy subjects with neuroimaging techniques
([65, 56]). The authors explored neural substrates for the EFs updating, inhibition, and
shifting using positron emission tomography (PET). Via conjunction and interaction
analysis, they compare a battery of tasks for each EF to reveal both unity and diversity
aspects within the collected brain data.

An assessment of differences in neural correlates of EFs using EEG data, that al-
lows a within-subject and not only between-subject comparison between EFs has so
far only been done by Scharinger and colleagues [57]. In their study, they manipulated
demands on the two EFs updating and inhibition independently. They analyzed indicators
of working memory load (WML), both at the behavioral level (reaction times (RTs)
and accuracies) and at the physiological level (pupil diameter, event-related potentials
in the EEG (ERPs), and EEG power spectra). The aim was to develop a detailed and
brain-related account of how load on different executive functions is interrelated. Their
study will be the starting point of this case study, but before I introduce the studies of
this thesis, the three core EFs will be presented to get a better understanding of the
issue.

6.1.1 Inhibition of information and responses

The EF inhibition describes the ability to suppress irrelevant information and to prevent
impulsive behavior in inadequate situations. For both scenarios, a high level of focused
attention is required to perform accordingly. To give a real-world example, the ability
to focus on one out of many simultaneous things comes in handy, for example, during
conversations in crowded and noisy environments. But also the avoidance of reflex-like
behavior is useful in daily life as in keeping information to oneself. Either literally by not
expressing an opinion or by keeping a straight face, which can be challenging in many
situations.

Many tasks have been developed to assess and test for the EF inhibition experi-
mentally. The so-called Stroop task [14] [58] [59] is one of them, in which color words
are presented on the screen and subjects are instructed to name the color of the font out
loud. The written words either match the color font or form a different color word. In

40



Introduction

Part II Working memory load and executive function
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Figure 6.1: Miyakes model of unity and diversity - The ability to perform executive
tasks is based on three core EFs: updating, inhibition and shifting. Each EF consists of
properties that are common for all three EFs (unity) and a individual component that is
different for each EF (diversity).

case of a mismatch, the information creates interference, and the dominant dimension (in
this case reading the word) needs to be suppressed to perform adequately. A mismatch
between the dimensions results in longer reaction times and also in more errors. The
same task also exists with number stimuli, in which the numerical and the physical size
of the numbers interfere. In this case dominant dimension is the numerical size of the
stimuli which needs to be suppressed.

The Eriksen Flanker Task is also a well known and standard tool in psychology to
measure and induce response inhibition [60], [61], [62]. In its original form, it consists
of arrows horizontally aligned on a screen. One of them is in the center. The subjects’
task is to indicate by means of a button press whether the arrow is pointing to the left or
the right. Three arrows accompany the central arrow to its left and right, which either
all point in the same direction, which can be equal or different from the direction of
the central arrow. Independent of the concrete task, it has been established to describe
matching dimensions as congruent and mismatching dimensions as incongruent from each
other. In some experiments, a third and neutral dimension is introduced to create a
visual distraction but without interference in the target dimension. Figure 6.2 shows a
short outline of the three tasks to get a better understanding. Since the Flanker task will
be the method of choice for the induction of inhibition demands within this thesis, some
more details about the task will be provided.

A general observation is that the reaction time (RT) is higher and the accuracy
lower for trials in which the flanker is incongruent (different) from the central item in
contrast to trials with congruent (equal) flankers. This effect has been described as the
Flanker congruency effect (FCE) [63]. Different ratios of congruent and incongruent
flanker items in- or decrease this congruency effect [64], [65]. A possible explanation is
the level of paid attention to the flanker items. The smaller the ratio of incongruent
flanker items, the lesser attention is paid to the irrelevant and peripheral stimuli. This
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phenomenon can also be described as the utility principle. The processing of the flanker
items is optimized by allocating only a specific amount of attention to the flanker items
depending on their utility [65]. In general, this observation can be described as an
interaction between the trial type (congruent or incongruent) of the current trial and
the previous trial, which is also known under the name Gratton effect. Seeing this as
modulation of cognitive control it is the main effect supporting the conflict adaptation
theory by Botvinick [66].

This phenomenon of interaction can be explained by an adjustment of cognitive control
due to the experience of conflict, mainly when conflict is aversive [67], [68], to be able to
manage the subsequent conflict better. Therefore, this effect is also known as a so-called
conflict adaptation effect.

Blau 2 7 S o Do
Griin 25 DD & DD
Rot 2 2 DEE = EEDE

Stroop Number Stroop Flanker

Figure 6.2: Examples inhibition task - The Stroop task requires the naming of the color
font while inference is created by displaying written color words in matching or mismatching
color fonts. A version of the task with numbers creates inference by a mismatch of physical
and numerical size of the displayed numbers. The flanker task requires to identify the direction
of the central arrow while the flanking arrows might interfere by pointing to the opposite
direction. Generally, a mismatch of stimulus dimensions creates inference that influences task
performance. A mismatch of stimuli dimensions is also described with as an incongruent, a
match of dimensions as a congruent condition.

6.1.2 Updating - information updating and monitoring

The EF updating describes the ability to monitor and store information into working
memory and to manipulate, change, or rearrange information within memory when
necessary [69]. A real-world example that requires updating is, e.g., a mental shopping
list that is adapted while walking through the grocery store and adding items to the cart.
The list can be altered, extended, or shortened at any time. Despite the active control
of what is entering and leaving WM, this process can also be passive. It has been found
that there is a temporal tagging of information to decide what is no longer needed [70] to
clear the storage space.

Again many tasks have been developed to assess the EF updating experimentally.
One example is the letter memory task [69] in which a strict recall of the last four letters
of a list is required, which can in theory, be arbitrarily long. Another example is the
Sternberg task [71] in which items need to be recognized as already seen or not out of a
list of up to 8 items. It has been found that the reaction time for the categorical answer
(ves or no) correlates positively with the length of the list. The method of choice for
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this thesis to induce load on updating demands is the so-called n-back task [72]. In a
typical n-back task paradigm, participants see a sequence of stimuli, presented one after
another. The task of the participants is to indicate via key press whether the current
stimulus matches or mismatches the reference stimulus they saw n-steps back concerning
a particular feature dimension (e.g., location, size, color, or identity). Depending on the
n-back level, the n-back task is supposed to impose increased updating demands with
increased n-level. The higher n-level the higher the reaction time as well as the error rate
[73], [74]. The n-back task is a widely used WM task in neurophysiological research for
studying effects of WM updating (e.g., [75]. [76], [77], [78], [79], [80], [81], [82]), which is

why it seemed to be an appropriate choice.

6.1.3 Shifting - mental set shifting

The EF shifting is often described as cognitive flexibility. A key concept in cognitive
flexibility is a task set, representing a set of rules that need to be collected, understood,
and linked to the situation to perform the correct actions. Shifting between task sets
is essential to be able to solve new and daily situations. An example of this abstract
definition is as simple as trying to imagine what purpose an item can have. A knife can
be used to cut food but can also be used as a weapon. A t-shirt is an item of clothing for
the torso, but can also be used as a protection from the sun on other body parts. It can
be used to dry something when using it instead of a towel, when more than one are tied
together they could work as a rope or a blanket. Possibilities are manifold but require
to think out of the box and to use the knowledge that is usually applied when using
other items. Overall it can be stated that this way of thinking is essential to fulfilling
goal-directed actions [83].

For the assessment of requirements on the EF shifting, many tasks have been de-
veloped. One typical task is the Wisconsin card sorting test (WCST), in which subjects
need to find the appropriate rule of sorting cards into categories [84]. The rule stays the
same for several trials and can be worked out with the help of categorical feedback from
the experimenter for each trial. Other typical tasks are plus and minus calculus operations
or to evaluate numbers and letters concerning a specific question (consonant or a vowel,
bigger than 5) in an alternating order. A general concept for the assessment of shifting
is the alternation between two tasks, requiring the application of two different rules to
solve the task correctly. Therefore, the appropriate response varies as a function of the
task. Jersild [85] did pioneer work in the area of task switching, investigating differences
in error rate and RT between blocks in which subjects only performed one task and
blocks in which they had to complete two different tasks. The result was that subjects
are much slower in blocks with two tasks than with one task. It was also found that the
effect is present between trials of different tasks within a block in which two tasks are
presented. Trials can be defined as switch trials if, in the previous trial, a different task
needed to be performed than in the current one, and as repeat trials when the previous
trial presented the same task as the current one. Switch trials have been shown to be
answered slower and with a higher error rate than repeat trials. The difference, especially
in RT, has been defined as a cost that is due to task switching [86]. Several subtypes of
costs have been identified in task switching, each caused by different processes that need
to be implemented during task switching in general. One major part of shifting costs is

43



Part II Working memory load and executive function Introduction

aggregated in the term alternation cost, which can be further divided into switch costs
(immediate shift costs) and mixing costs (costs due to having two tasks in general) [87].
Shifting costs reduce when getting a chance to prepare before a task switch. Showing
cues to indicate what is going to happen next allows preparation, which can reduce costs
significantly. Biedermann states that showing a cue speeds up the process of answering a
task in different calculus operations [88]. Still, it has also been demonstrated for a task
in which needs to be decided if the stimulus is odd or even[89].

6.2 Idea and hypothesis

The following sections will present a total of four studies that aim to characterize and
distinguish the three executive functions updating, shifting, and inhibition based on
their EEG correlates. The main question is if the theories and models by Miyake and
colleagues can be supported and interconnected with neural components. The hypothesis
is that the difficulty of finding individual variance of EF's arises from the incapability of
current state of the art methods of capturing the variance within EEG data. It seems
likely that EFs are based on patterns distributed all over the brain, which need to be
adequately assessed. It is also likely that the variance between subjects is rather high,
which is why an investigation on single-subject level is advisable to make progress with
this question. In particular the combination of updating with inhibition and inhibition
with shifting will be investigated in the following studies (for a schematic overview see
Figure 6.3).

To this end, research has established that executive functions have commonalities
but are individual processes that can be distinguished. The detailed characterization of
the commonalities and differences of the three EFs (unity and diversity), however, is still
an open question. Four studies have been designed in this thesis to realize the aim of
finding evidence for a better characterization of the EFs. Two crucial factors for solving
this problem will be a careful and unique task design combined with a machine learning
approach. The task design is unique as it combines two EFs in one task while keeping
non-EF variance to a minimum. It enables a comparison between two executive functions
within the same experimental setting but more importantly, within the same subject.
This design reduces the non-EF variance to a minimum and ensures that if a difference
occurs, the variance of the two EFs is the cause of it. To make use of this within subject
comparison prepared by the task design, the machine learning approach is needed. It
will extend the classical explanatory group-level approach also to the single-subject level.
Individual differences can therefore be investigated per subject as well as per group. In
addition, it enables to consider patterns in the rich and high dimensional EEG data
instead of single electrodes only without hitting statistical limitations.
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N-back Task Flanker Task 0dd/Greater Task

Figure 6.3: Idea and implementation - Content of working memory studies at a glance
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Chapter 7

Study 1: When Updating meets
Inhibition

Study 1 combines the EFs updating and inhibition to investigate their properties with
concerning unity and diversity aspects. Conceptually, Study 1 is a reanalysis of a study
initially performed by Scharinger and colleagues [57], with which I actively collaborated.
The results of Study 1 have in part been published in [90] and in [91] and will now be
presented in detail, from task design and experimental setup to the achieved results and
the implications of the latter.

Can correlates of unity and diversity for the two EF's updating and inhibition be found in
EEG data?

7.1 Task design

The experiment uses an integrated n-back flanker task to study interactions between the
two EFs updating and inhibition. The n-back task is used to induce demands on the
EF updating, whereas the flanker task is used to induce demands on the EF inhibition.
The simultancous presentation of the two tasks was realized by showing seven items at
once, from which one was positioned centrally, the other six on a flanking position to the
left and right of the central item (see Figure 7.1). The n-back task was performed on
the central item and used as the primary task in the experiment. The flanker was only
used as a secondary task, to which no action was required. The six flanking items, where
therefore congruent (identical) or incongruent (different) to the central item and fulfilled
a distracting purpose.

The list of stimuli of the task consisted of the four letters, S, H, C, and F. For
each trial, one out of these four letters was randomly chosen and presented centrally
on the screen either flanked by the same letters (e.g., HHH H HHH) or by randomly
chosen different letters (e.g., FFF H FFF). All letters were presented in gray on black
backgrounds in Arial at 25-point font size. Each stimulus was shown for 500 ms, followed
by a black screen for 1500 ms. Thus, each trial lasted 2000 ms. For a schematic overview
of the task see Figure 7.1. In the experiment, three levels of updating demands were
implemented (n = 0, 1, or 2) in a block design. For each trial in a block subjects indicated
via a key press (yes/no key) whether the central letter of the current trial was identical to
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HHH C HHH
500ms
CCC C ccC
1500ms
N, HHH H HHH

500ms

CCC C cCC

HHH H HHH Congruent
Trial

CCC C Cccc

HHH C HHH Incongruent
Trial

Figure 7.1: Experimental design - The task was presented on a black screen with white
letters as stimuli and flanker items. Stimuli were presented for 500 ms, followed by a blank
black screen in which the subject needed to answer the n-back task on the central item with yes
or no by pushing the respective key on the keyboard. The box on the right shows exemplary
which trials were used in the analysis as congruent or incongruent trials.

(target) or was different from (nontarget) the central letter they had seen in the sequence
n steps back. In the O-back condition, before the stimulus sequence started a randomly
chosen letter (S, H, C, or F') was displayed as the n-back target letter for the whole block
(no updating required). During the following stimulus sequence, each time this letter
occurred as the central letter, subjects had to press the yes key, in all other cases, the no
key. Subjects answers and reaction times were recorded. Each n-back level was presented
twice. Thus, subjects performed a total of six blocks with 154 trials each. The sequence of
blocks was randomly assigned for each subject, with the constraint that each n-back level
was presented once before an n-back level was presented for the second time. One block
lasted about 5 min. Within each block, half of the trials were targets, half of the trials were
nontargets. Concerning the flanking items, the experiment was designed in a way that
about one-third of the stimuli of each response category was incongruent and two-thirds
were congruent. The first four trials of each block were always congruent nontargets.
The trial sequences within the blocks were pseudorandomized, to avoid attenuation of
the interference effect for incongruent stimuli due to conflict adaptation processes (i.e.,
the so-called Gratton effect; [66], [92], [65]), incongruent-incongruent stimuli sequences
were excluded in advance during construction of the stimuli lists. In addition to that,
in each block 20 randomly chosen stimuli a sequence of 10 targets and non-targets was
replaced by stimuli without a central letter (i.e., ten targets and ten nontargets per
block consisted only of the flankers on both sides of a gap). In this cases, the subjects
were instructed to remember the flanker letters of the current trial for the following
comparison and to base their current target/nontarget judgment on a comparison of the
flanker letters with the previous central letter according to the n-back level. This was
done to avoid that the subjects become increasingly unaware of the flankers during a block.

Stimuli were presented using E-Prime presentation software (E-Prime 2 Professional,
Psychology Software Tools, Inc.). At the beginning of the study, subjects performed
training blocks for each n-back level. Training was repeated until subjects reached an
accuracy of at least 60 percent correct responses. During training, subjects’ accuracy was
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displayed at the end of a block to give them feedback regarding their performance. No
feedback was given during the actual task presentation.

7.1.1 Participants

22 subjects (22 right-handed, 12 females) with an average age of 22.64 (£4.31) participated
in the study, for which they were reimbursed with 8 euro per hour. All subjects had normal
or corrected to normal vision and no reported neurological disorders. Written and informed
consent was given by each subject, and the study was approved by the ethical committee
of the University of Tiibingen. All subjects were right-handed, which was validated with
a standardized questionnaire.

7.1.2 Technical setup

EEG was assessed with 32 electrodes (Acticap Brain Products) at a sampling rate of 500
Hz. The electrodes were placed according to the international 10/20 system [93] (Fpl,
Fp2, F7, F3, Fz, F4, F8, FC5,FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6,
P7, P3, Pz, P4, P8, O1, O2) with the reference at right mastoid and the ground electrode
at AFZ. Three additional electrodes were placed at the outer canthi of the and below the
left eye, to record an electrooculogram (EOG). Further details considering the technical
setup can be found in the original publication [57].

7.2 Data analysis

The reanalysis of the data was limited to the physiological data, as the behavioral data
has already been sufficiently evaluated in the original study. Therefore, only the procedure
of the physiological data will be explained in the following. The data was cut into epochs
of 0-1000 ms after stimulus onset with respect to the six categories as can be seen in
Figure 7.2. All in all, only artifact-free trials with correct responses were used for data
analysis, with additional exclusion of trials that might yield to any Gratton-like effect.
This includes congruent trials following incongruent trials, and all trials in which the
central item was missing (plus the two preceding trials each). Additionally, the first four
trials of each block were excluded. Two types of physiological features were evaluated:
ERPs and power spectra.

7.2.1 Neurophysiological analysis

The EEG data was bandpass filtered between 0.4 - 40 Hz and re-referenced to common
average. To remove artifacts, a threshold of 100 4V was chosen, and all trials exceeding
this level were discarded. Trials including eye movement artifacts were corrected using
independent component analysis (ICA) (rejection by visual inspection). For the investi-
gation of ERPs, the grand average over all subjects and trials was computed for each of
the six categories separately. Based on the results of [57], the electrode positions FZ, CZ,
PZ were chosen to be of major interest. Apart from the ERP analysis, the data was also
analyzed in the frequency domain to get insights into the spectral properties of the two
executive functions. For the calculation of the power spectra Burgs maximum entropy
method [20] was used with a model order of 32 and a bin size of 1. Again the grand aver-
age will be calculated to visualize the differences between the categories over all subjects.
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Figure 7.2: Datastructure - The data can be divided into three categories regarding the
n-back level, which represent different levels of updating demands. Each category can further
be divided into two subcategories regarding the Flanker condition, which represent different
levels of inhibition demands. In total a set of six categories can be distinguished and will be
used for analysis. : inhibition, : updating

To test whether the differences in the ERPs and power spectra between the categories
are statistically significant a Wilcoxon rank sum test was conducted over all subjects and
trials. The resulting p-values were Bonferroni corrected (according to the number of time
points or frequency bins), and the significance level was set to p < 0.05

7.2.2 ML based classification

For the investigation of the EFs by means of machine learning, support vector machine
(SVM) classification was chosen. A SVM with a linear kernel (C = 1) [94], [8] was applied
to differentiate between the six categories introduced above using the libsvm implemen-
tation for Matlab [95], [96]. The classification between categories was conducted for the
following pairs for each subject individually:

e Inhibition: Cong vs Incong
e Updating: Zero vs One, Zero vs Two and One vs Two
e EF's: Updating vs Inhibition

The aim is to separate EF demands from baseline demands, but also different EF demands
from each other. As the baseline demand within this study, congruent trials from the zero
back condition have been chosen, because neither updating nor inhibition demands should
be induced during those trials. For each data pair a subset of the data is used to train
a classifier, to learn the characteristics of each category. The remaining data is used to
evaluate the success of the learning and hence the skill of the classifier. This is done on
a single-trial and single-subject level. To ensure stable results a 10-fold cross validation
was performed for each classification. The datasets (training set as well as the test set)
were balanced for each comparison, by removing all spare trials if one of the classes had
more trials than the other, to ensure that the distribution of examples per class does not
have an influence on the result. For classification, again two different types of features
were used: CCA filtered ERP features [97] and power spectra. For each of the features,
an individual SVM was trained and evaluated. The performance of the classification
approach is measured in accuracy, stating in how many cases the classifier categorized a
trial correctly. Statistical significance of the classification results was determined by using
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permutation tests on the data. The statistical significance of the results was determined by
permutation tests with 1000 iterations [98, 99]. The classification performance achieved
in the permutations establishes an empirical null distribution on random observations,
which can be used to determine significance boundaries. Therefore, in each iteration
classification was performed in a 10-fold cross validation, but with randomly assigned
class labels in the training set instead of the correct class labels. The achieved accuracy
values were compared with the ones determined in the standard 10-fold cross validation.
Significance level was determined to be at p < 0.05, stating that the original classification
performance is significant when the performance values are higher than the 95th percentile
of the calculated empirical distribution.

ERPs

The ERP features upon which the SVM classifies are composed as follows. The 0-1000
ms epochs that have been prepared in the beginning will be used from 17 EEG channels
(FP1,FP2,F3 FZ F4 FC1,FC2,C3,CZ,C4,CP1,CP2,P3,PZ,P4,01,02). All other channels
of the setup are discarded to reduce the influence of noise and artifacts in the data. Due
to the sampling rate of 500 Hz one trial of ERP data is represented by 500 x 17 features.
As a way to improve the signal-to-noise ratio of the data, a spatial filtering method based
on canonical correlation analysis (CCA) was applied [26] with a filter size of 27 x 17. The
filter aims to minimize the variance within a class and to maximize the variance between
classes to improve the separability.

Power spectrum

Classification using features from the frequency domain was conducted on the power spec-
tra between 1-20 Hz, calculated on the same epochs as described above (0-1000 ms after
stimulus onset) with Burgs maximum entropy method [20] with a bin size of 1. The same
17 channels were used resulting in 19 x 17 features.

Cross-Class classification

Since the question of separability aims to answer the diversity aspect of Miyake’s model of
executive functions, another approach needs to be introduced to answer the unity aspect of
the EFs. For this, a cross-class classification was performed. Cross-class in this case means
using a classifier across classes and not only for the classes it was trained for. General aims
of this approach are, for example, to evaluate how well the trained classifier generalizes on
data that shares the same underlying mental process but has been collected from different
tasks. In BCI research this approach has practical reasons, regarding a minimization of
training time of a classifier. If the classifier generalizes well across tasks, no or only little
additional training is necessary on the new task to get the application running efficiently.
Overall, this can be used to evaluate how much of the measured effects are task specific
and how much can be accounted to the underlying shared mental process. Within this
study, this approach was used to measure the shared and overlapping properties of the
two EFs updating and inhibition. To simplify the explanation of the procedure, the two
EFs are named EF1 and EF2. The placeholders EF1 and EF2 need to be seen as an
abstract description, a concrete assignment of values or processes is not important for
now. For this study, a classifier was trained on the distinction of EF1 vs. BL, and then
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tested on EF2. Theoretically, this means that all answers the classifier will give are wrong.
However, if the two functions EF1 and EF2 have significant overlaps in their properties,
EF2 should be classified as EF1 with above-average frequency. If there is no such overlap,
the classification accuracy should be at a more random level, because no commonalities
can be found and the criteria the classifier is based on are also based on random choices.
This evaluation is done in both directions. Hence each EF is part of the train and the
test set once. Cross-class classification is performed on ERP as well as on power spectral
features. Again, for each classification the number of trials per class are balanced to avoid
the overrepresentation of one of the classes.

7.2.3 Neural activation patterns

To inspect the features used for the distinction in the classification approach, a method
developed by Haufe and colleagues [29] was used that transforms the weights of the SVM
classifier into neurophysiological interpretable values, in so-called neural activation pat-
terns. One classifier model is trained for each subject on the data of the respective cate-
gories. Applying the method on the model results is one activation value for each feature
that was used in the classification. To create a comprehensive picture of the resulting neu-
ral activation pattern, the values are averaged within and according to the two frequency
bands alpha (8-12 Hz) and theta (4-7 Hz). This is done for each subject individually,
but the median values across subjects will be depicted in a color-coded topological dis-
tribution, to visualize the results. By calculating the activation patterns the underlying
neurophysiological patterns that are responsible for the distinction can be inspected, which
can provide valuable information analyzing the unity and diversity of different EF's.
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7.3 Results

7.3.1 Neurophysiological data

ERPs

Figure 7.3 shows the grand average ERPs for the comparison of congruent and incongruent
flankers, the comparison of inhibition and baseline demands, under three different n-back
levels. It can be seen that statistically significant differences between the two flanker
conditions can be found across all three n-back levels. However the amount of statisti-
cally significant different time points seems to decline with increasing n-back level. Figure
7.4 shows the grand average ERPs of the pairwise comparison of the three n-back levels,
hence the comparison of updating and baseline demands, as well as the comparison of two
different magnitudes of updating demands. Again it can be seen that all comparisons pro-
vide statistical significant differences, across the displayed electrode positions. Differences
are largest for the Zero vs Two comparison (see Figure 7.4 b), followed by One vs Two
and Zero vs One. The ERP at position PZ can be identified as a P300, equally for all
comparisons.

Power spectra

Again, Figure 7.5 shows the comparison of congruent and incongruent flankers, hence
the comparison of inhibition and baseline demands, under three different n-back levels.
It can be seen that the comparison shows little to no statistical significant differences
throughout the three n-levels in the power spectra. At n-level zero, differences can be
found within occipital alpha (9-12 Hz) and within central theta (5-7 Hz). At n-level two,
no statistical significant differences can be found. When assessing properties of the EF
updating in the power spectra, Figure 7.6 shows that statistical significant differences
occur in all made distinctions. Again differences are biggest for the comparison of Zero
vs Two, representing the comparison baseline vs high updating demands.

To get a better overview of all available levels of the EFs in the data, the grand
average ERPs and power spectra for four out of the six categories are shown in Figure 7.7.
It can be seen that the four displayed conditions differ in amplitude, but the waveform
remains rather constant. The amplitude of the identified P300 at position Pz decreases
continuously with an increasing amount of load on the EFs. Also, the parietal /occipital
change in alpha power can be identified as an ERD as the power decreases with an
increasing amount of load, whereas the observed change in frontal theta power can be
identified as an ERS since the power increases with the amount of load.
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Figure 7.3: Grand average ERPs for Inhibition demands: Displayed are the electrode
positions Fz, Cz, Pz and O2 during all three n-back levels. Each subfigure represents one of
the n-back levels and displays a comparison of trials with congruent and incongruent flankers.
The grand average has been calculated over all 22 subjects. Grey areas indicate statistically
significant differences between the two conditions (p<0.05 Bonferroni corrected, according to
number of time points). A: Zero, B: One, C: Two : cong, : incong
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Figure 7.4: Grand average ERPs for Updating demands - Displayed are the electrode
positions Fz, Cz, Pz and O2 during a congruent Flanker. A pairwise comparison of trials
between the n-back levels can be seen in the three subfigures. The grand average has been
calculated over all 22 subjects. Grey areas indicate statistically significant differences between
the two conditions (p<0.05 Bonferroni corrected, according to number of time points). The
three n-back levels are depicted as follows A: Zero vs One, B: Zero vs Two, C: One vs Two,
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Figure 7.5: Grand average power spectra for Inhibition demands - Displayed are the
electrode positions Fz, Cz, Pz and O2 during all three n-back levels. Each subfigure represents
one of the n-back levels and displays a comparison of trials with congruent and incongruent

flankers. The grand average has been calculated over all 22 subjects.

Grey areas indicate

statistically significant differences between the two conditions (p<0.05 Bonferroni corrected,
according to number of time points). The three n-back levels are depicted as follows A: Zero,

B: One, C: Two,
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Figure 7.6: Grand average Power spectra for Updating demands - Displayed are the
electrode positions Fz, Cz, Pz and O2 during a congruent Flanker. A pairwise comparison of
trials between the n-back levels can be seen in the three subfigures. The grand average has been
calculated over all 22 subjects. Grey areas indicate statistically significant differences between
the two conditions (p<0.05 Bonferroni corrected, according to number of time points). A: Zero
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7.3.2 ML based classification

The results for separating the EFs from baseline demands and from each other with the
help of an SVM based ML classification approach can be seen in Table 7.1 - Table 7.3. The
comparison of updating demands reaches values between 59.77 % and 69.75 % for ERP
features and between 52.68 % and 66.32 % for spectral features. With minor exceptions,
the comparison works equally well under a congruent and incongruent flanker, as can be
seen in Table 7.1. The comparison between inhibition demands reaches accuracy values
between 55 and 60 % for ERP features, and around 50 % for the power spectral features,
which can be seen in Table 7.2. To evaluate if the EFs can be separated from each other,
categories that each only induce demands on one of the two EF's, were compared to each
other. Table 7.3 shows that the two EF's can be distinguished with up to 75 % accuracy on
the basis of their ERP features and with up to 64 % on the basis of their spectral features.

Table 7.1: Classification updating demands - Classification accuracies achieved for the
distinction of updating demands, from baseline and from each other, are shown with (incong)
and without (cong) additional load on the EF inhibition. Results are the average performance
of a SVM in a 10-fold cross-validation with a linear kernel on 0-1000 ms time frame. Used
were the CCA filtered ERPs of the 17 channels as one feature set and the power spectra
between 1-20 Hz for the same 17 channels as a second feature set. Statistical significance was
determined by calculating an empirical null distribution and is indicated by *. Significance
level was determined to be at p < 0.05.

Flanker Features Zero vs One | Zero vs Two | One vs Two
cong ERP (CCA) 61.20 %* 69.75 %* 63.59 %*
Power (1-20) 52.68 % 63.17 %* 64.00 %*
incong | ERP (CCA) 59.77 %* 69.56 %* 63.58 %*
Power (1-20) 57.31 %* 66.32 %* 63.23 %*

Table 7.2: Classification inhibition demands - Classification accuracies achieved for the
distinction of inhibition demands, from baseline, are shown with (One, Two) and without (Zero)
additional load on the EF updating. Results are the average performance of a SVM in a 10-
fold cross-validation with a linear kernel on 0-1000 ms time frame. Used were the CCA filtered
ERPs of the 17 channels as one feature set and the power spectra between 1-20 Hz for the same
17 channels as a second feature set. Statistical significance was determined by calculating an
empirical null distribution and is indicated by *. Significance level was determined to be at

p < 0.05.
Features cong vs incong | cong vs incong | cong vs incong
Zero One Two
ERP(CCA) 60.56 %* 60.62 %* 55.01 %*
Power(1-20) 50.75 % 51.22 % 49.91 %
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Table 7.3: Classification Inhibition vs Updating - Classification accuracies achieved for
the distinction between updating and inhibition demands are shown. Results are the average
performance of a 10-fold cross-validation with a linear kernel on 0-1000 ms time frame. Used
were the CCA filtered ERPs of the 17 channels as one feature set and the power spectra
between 1-20 Hz for the same 17 channels as a second feature set. Statistical significance was
determined by calculating an empirical null distribution and is indicated by *. Significance
level was determined to be at p < 0.05

Features Upl vs Inh | Up2 vs Inh
ERP (CCA) | 68.23 %* 74.73 %*
Power (1-20) | 55.46 %* | 64.13 %*

Neural activation patterns

In addition to the classification performance, the weights of the used SVM classification
approaches were also evaluated. After the transformation, they can be interpreted as neu-
ral activation patterns that describe the relevant differences between the tested conditions.
First, the distinction of the EF's against baseline demands is evaluated. Figure 7.8 shows
the neural activation pattern for the distinction of inhibition from baseline demands. It
can be seen that theta power at CZ seems to discriminative for this distinction. For the
distinction of updating from baseline demands, especially theta power at Fz seems to be
a discriminating factor, as can be seen in Figure 7.9. In direct comparison, when trying
to separate updating from inhibition demands, it can be seen that Theta power at Cz and
Alpha power at Cz and Pz seem to be discriminating between the two EFs. Figure 7.10

Cross-class classification

The results obtained by cross-class classification, to reveal if joint feature characteristics
are shared in large proportions by the two EFs, can be seen in Table 7.4. All results are
close to random except the classifications performed with the model trained on Up2 vs.
BL. The statistical analysis revealed that significantly more Inh trials had been assigned
to the class BL and not to Up2. So the classifier trained on one EF does not recognize the
demands imposed onto another EF. All other results do not provide statistical significance.
These results provide evidence that the neurophysiological signatures of the two EFs are
substantially different from each other, with a small number of joint features rendering a
cross-class classification impossible.

60



Study 1 Part IT Working memory load and executive function

Table 7.4: Cross-class classification - The table provides cross-class classification with a
SVM for ERP features as well as for the power spectra. The classifier was trained on Demand 1
vs BL and tested on trials belonging to Demand 2 only. Therefore, the here presented accuracies
represent the percentage of trials classified as BL and 100 - the here displayed percentage reveals
the share of trials classified as Demand 1 respectively. Statistical significance was determined
by calculating an empirical null distribution and is indicated by *. Significance level was
determined to be at p < 0.05

Features Trainset | Inh vs BL  Inh vs BL Upl vs BL Up2 vs BL
Testset Upl Up2 Inh Inh
ERP 52.93 % 51.22 % 49.81 % 57.92 %*
Power (1-20) 51.55 % 47.86 % 52.84 % 61.26 %*
Theta 4-7 Hz Theta 4-7 Hz 10 Theta 4-7 Hz

Alpha 8-12 Hz Alpha 8-12 Hz Alpha 8-12 Hz

«* o

(a) Zero (b) One (c) Two

Figure 7.8: Neural activation pattern of inhibition demands - Displayed is the color
coded activation pattern A calculated from the weights of the SVM, for the frequency bands
alpha and theta in a topological distribution. The neural activation pattern has an arbitrary
and undefined unit. A comparison of conflict conditions congruent (cong) and incongruent
(incong) is shown for the three n-back levels. The resulting values are an average over the
individual patterns of all 22 subjects. The three n-back levels are depicted as follows a) Zero,
b) One , c¢) Two
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Theta 4-7 Hz Theta 4-7 Hz Theta 4-7 Hz 30
150
60
100
40
50
20
0
-50 0
Alpha 8-12 Hz Alpha 8-12 Hz Alpha 8-12 Hz
160
150
100
50

(a) Zero vs One (b) Zero vs Two (c¢) Ome vs Two

Figure 7.9: Neural activation pattern of updating demands - Displayed is the color
coded activation pattern A calculated from the weights of the SVM, for the frequency bands
alpha and theta in a topological distribution. The neural activation pattern has an arbitrary
and undefined unit. A comparison of n-back levels is shown for the congruent flanker condition.
The resulting values are an average over the individual patterns of all 22 subjects. a) Zero vs
One, b) Zero vs Two, ¢) One vs Two
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Theta 4-7 Hz 35 Theta 4-7 Hz
30
25
20
15
10
5
0
Alpha 8-12 Hz i Alpha 8-12 Hz

(a) Upl vs Inh (b) Up2 vs Inh

Figure 7.10: Neural activation pattern of EF's - Displayed is the color coded activation
pattern A calculated from the weights of the SVM, for the frequency bands alpha and theta in
a topological distribution. The neural activation pattern has an arbitrary and undefined unit.
A comparison of updating (in two levels) and inhibition demands is shown in the following.
The resulting values are an average over the individual patterns of all 22 subjects. a) Upl vs
Inh (One vs Incong), b) Up2 vs Inh (Two vs Incong)
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7.4 Discussion

Can neural correlates for the EFs updating and inhibition be found in EEG data ?
Are there indicators for the unity and diversity of the EFs ¢

7.4.1 Neurophysiological analysis

The standard analysis of the ERPs averaged over the individual categories, reveals an
elicited P300 which decreases in amplitude throughout the conditions. A similar pattern
of results was found in the power spectra. The power spectra yield well-known indicators
for WML, namely alpha desynchronization and theta synchronization cf., [100, 101]. For
both feature sets, power spectra and ERPs, a statistically significant difference can be
found for tested levels of load on each of the EFs. However, it is likely that the significant
differences are due to the general amount of WML that is present throughout the task, and
not necessarily due to the demands of the individual EFs. Since updating is induced by the
main task and inhibition only by a secondary stimulus presentation to which no explicit
response was necessary, it can be assumed that the induced load is likely to be higher
for updating than for inhibition. Moreover, it is uncontroversial that updating demands
elicited by the 2-back task are more challenging than the ones elicited by the 1-back task,
as more letters need to be updated continuously in WM. A decrease in P300 amplitude,
as is present in the data, is also well in line with previous findings from the literature
concerning an increase of overall WML [100, 73]. Standard analysis techniques, therefore,
reveal differences between the six categories, but they can only be reliably linked to the
general amount of WML and not to specific properties of the individual EFs. To this
end, the neurophysiological data analysis does not provide specific correlates for the EF's
and also no indicators for unity or diversity of the two EF's, despite the found statistically
significant differences.

7.4.2 ML based classification

It could be shown that a significantly better than random distinction with an SVM clas-
sification approach is possible between the EF conditions by single-trial ERPs and also
single-trial power spectra. Therefore, it can be concluded that the statistically significant
differences are not only present on group-level, but also a single-trial and single-subject
level. A general observation that can be made is that the accuracy values mirror the
gradient that was found in the measured physiological signals. The bigger the difference
in induced WML between the conditions, the higher the accuracy for the respective dis-
tinction by SVM classification for both feature sets. The reliable generation of WML by
both executive functions, which seem to differ mainly in the amount, is an indicator for
the unity between the two EFs.

Concerning the comparably weak results for the EF inhibition, two reasons may be given.
In a more recent version of model Miyake and colleagues [46] state that the inhibition
ability is the core property of all EFs. Friedman and colleagues emphasize this statement
by postulating that there is no unique variance describing inhibition [53, 52]. Potentially,
this hypothesis of Miyake and Friedman could provide a theoretical explanation of why
inhibition trials provided the overall weakest results, neurophysiologically as well as in
terms of classification accuracy. However, it could also be argued that the secondary na-
ture of the flanker stimulus inducing the inhibition demands is the reason for that. No
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explicit reaction to this stimulus was demanded in contrast to the central stimulus used
for inducing updating demands. Designing a task that puts the inhibition demands more
into focus might resolve this issue and reveal clearer and stronger neural correlates for
inhibition.

To rule out that the differences that can be classified rely only on the amount of induced
WML and not on individual variance caused by the EFs, as well as the fact that the EF
inhibition does not have a unique variance, a cross-class classification was performed. The
cross-class classification was used to indicate how much the characteristics of the EF's over-
lap. If signal strength caused by the overall WML, would be the only difference between
the conditions, the overlap of characteristics should be large and cross-class classification
accuracies should be significantly above chance level. Three out of four performed tests
provided accuracies around the chance level for both types of features (ERPs and Power
spectra). The only exception was a classifier trained on Up2 vs. BL and tested on Inh tri-
als. It turned out that Inh is rather classified as BL than as Up2, revealing that Inh seems
to be closer to BLL demands than to Up2 demands. These results provide evidence for the
hypothesis that there are larger differences in the signals reflecting individual variance and
therefore the diversity of the EFs.

7.4.3 Neural activation patterns

In addition to cross-class classification, the neural activation patterns were inspected to
find out which features are prominently used in afore performed classifications. Overall,
the resulting values indicate that especially features in the occipital/parietal alpha and the
frontal theta yielded the highest weights. These features are known from the literature to
correlate with WML strongly. Apart from these WML related features, no other features
seem to play a prominent role. This is an important insight as it makes the ML approach
transparent and legitimizes the interpretation of the classification results concerning unity
and diversity of the EFs. The neural activation patterns revealed that the main difference
between the two EF's that can be assessed in the EEG signal is located in the theta band
power. Inhibition correlates with central theta, whereas updating with a more frontal theta
band power synchronization. This difference in feature characteristics renders the two EF's
differentiable by their neural signatures, thereby, accounting for the diversity of the two
EFs. Yet, the same values reveal a common correlation with occipital/parietal alpha
desynchronization in both EF, hence accounting for the unity of these functions. Since
the experimental design was chosen very carefully reducing all non-EF related variance to
a minimum, it seems legitimate to assume that the discovered differences in the patterns
can be traced back to the EFs and not to any confounds from external stimuli. Overall, it
can be concluded that both aspects of the theoretical model put forward by Miyake [39],
in which the unity and diversity of all three EFs is described, can be confirmed with the
data of this study.

7.5 Conclusion

The data collected in this study and analyzed with conventional group-level statistics and
machine learning techniques provide insights that support the theoretical model of Miyake
and colleagues [39] describing the unity and diversity of EFs. It can be shown that the two
executive functions updating and inhibition, which both induce WML, can be separated
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by single-trial ERPs and power spectra. Using power spectra yielded less accurate results
but allowed to reveal patterns in the spectra that can be extracted and linked to the two
individual executive functions. Inhibition is characterized by increased frontal activity in
the theta band, whereas updating demands are characterized by increased central activity
in the theta band. The results, substantiate the hypothesis that the two executive func-
tions should be considered as two separable processes in WM. Applying machine learning
techniques supplements the classical approaches, by taking the single subject level and
the full pattern of the available data into account. In the example of this study it enabled
to extract more knowledge out of existing data, then standard analysis techniques could
have provided.
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Chapter 8

Study 2: When Inhibition meets
Shifting

Study 2 combines the EF's inhibition and shifting to investigate their properties concerning
unity and diversity aspects. The design of the task is very closely related to the paradigm
of Study 1, to keep the current and the respective study as comparable as possible. So
far the results are unpublished and are therefore presented in full detail in the following
sections.

Can correlates of unity and diversity for the two EFs shifting and inhibition be found in
EEG data?

8.1 Task design

The experiment uses an integrated odd/greater and flanker task to study interactions
between the two EFs shifting and inhibition. The odd/greater task is used to induce
demands on the EF shifting, whereas the flanker task is used to induce demands on the EF
inhibition. The simultaneous presentation of the two tasks was realized by showing seven
items at once, from which one was positioned centrally, the other six on a flanking position
to the left and right of the central item. The odd/greater task was the primary task in
the experiment and performed on the central item. The flanker did not require any action
from the subject and was only presented as a secondary task. The six flanking items,
where congruent (identical) or incongruent (different) to the central item and fulfilled
a distracting purpose. Therefore, the visual presentation is precisely the same as in study 1.

The stimuli were no longer letters but numbers in the range of 1 to 9, excluding
5. The instruction is to answer either of the two questions with yes or no by a button
press on a standard keyboard (D and L): ”Is the central item greater than 5 7”7 or ”Is
the central item odd 7”7 Which of the two questions needs to be answered is defined and
signaled by a cue which is presented shortly before each trial. Again a block design is
used, presenting eight blocks in total. The eight blocks were presented divided into two
parts, enabling a break after half of the experiment. Two blocks consisted of the odd
task only, two of the greater than five task only and four blocks presented both tasks
in an alternated and random but balanced order. In each block, 120 trials are shown
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Figure 8.1: Experimental design - The task was presented on a black screen with white
numbers as stimuli and flanker items. Stimuli were presented for 500 ms, followed by a blank
black screen in which the subject needed to answer the question indicated by the cue with yes
or no by pushing the respective key on the keyboard. The box on the right shows exemplary
which trials were used in the analysis as congruent or incongruent trials. The cue <>’ posed
the greater than 5 question, the ’~~’ cue posed the is the central item odd question.

consisting of a cue (<> for greater, ~~ for odd) presented for 300 ms, the stimulus
presentation for 500 ms and a blank screen (1500 ms). Hence, experimental time accounts
approximately for 40 minutes plus individual brake time in between blocks. The ratio for
the congruency of the flanker items was on third congruent and two thirds incongruent.
Four trials per block were randomly chosen to be presented without a central stimulus in
which the subjects were asked to answer the greater or odd question with the flanking
items. Each number was presented equally often as a central item, leading to a balanced
amount of even and odd items as well as a balanced number of smaller and greater than
5 items. In addition, it was ensured that exactly half of the trials have to be answered
with yes, to counterbalance the key presses. The assignment of the yes and no key (yes
on D’ or 'L’) was counterbalanced across all subjects to avoid any bias due to handedness.

Before the start of the experiment, a short training phase was presented to famil-
iarize the subjects with the task. Three blocks consisting of 24 trials each are presented
to show each possible block once. During training feedback based on the performance is
provided to the subject after each block to indicate to the subject and instructor that the
task was fully understood and can be executed with sufficient accuracy. The subjects are
also asked to rate the effort after each training block that is needed and how successful
the subjects perceived their performance. During the real task, no feedback was provided.

8.1.1 Participants

21 subjects (18 females) participated in the study, for which they were reimbursed with
8 euro per hour. All subjects had normal or corrected to normal vision and no reported
neurological disorders. The participants gave written and informed consent, and the study
was approved by the local ethics committee. On average the subjects were 23.0 (£3.52)
years old and all right-handed.
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8.1.2 Technical setup

The subjects are seated in front of a computer screen (19 inches) on which the experiment
was presented by the software E-Prime (Version 2.0.10.356). A standard keyboard was
used for entering the answers, by which the correctness of an answer and the reaction time
are assessed. For recording EEG, a Brain Products Acticap system with 32 electrodes
was used and one Brain Products actiChamp amplifier which was sampled at 500 Hz
(PyCorder). The integrated high pass filter was set to 0.1 Hz and the built-in low pass
filter to 100 Hz. Additionally, a notch filter between 48-52 Hz was applied to eliminate
power line noise. 28 electrodes were used for the recording and placed according to the
extended 10-20 system [93] (FP1, FP2, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6, T7,
C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, PZ, P4, P8, O1, 02). The ground and
reference electrodes were placed on the right and left mastoid respectively, and impedances
were kept below 10 kS2.

8.2 Data analysis

Data will be analyzed with respect to behavioral data, which includes reaction time and
task accuracy as well as concerning physiological measures, including the EEG signal.
Trials are categorized according to the presented flanker condition (cong and incong), the
task (odd and greater) and the Shift which can occur trial wise (Repeat and Switch) or
blockwise (Single and Mixed). Shifting demands are supposed to be induced when more

cong incong
1111111 2223222

cong incong incong cong
1111111 2223222 2223222 1111111

Figure 8.2: Datastructure - The data can be divided into two categories regarding the
number of tasks within one block, which represent different levels of shifting demands. Each
category can further be divided into two subcategories regarding the flanker condition, which
represent different levels of inhibition demands. In total a set of six categories can be distin-
guished and will be used for analysis. : inhibition, : shifting

than one set of rules needs to be applied. Within a series of shifting trials it can further
be differentiated between trials in which the prior trial was from the same task (same rule
set), which is then called a Repetition trial and trials in which the preceding trial is from a
different task (different rule set) and is therefore called a Switch trial. Inhibition demands
are supposed to be induced when the flanker is incongruent to the central stimulus. To
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visualize the possible categories, Figure 8.2 shows the data structure of the experiment.
To investigate the data concerning properties of the two demands trials are sorted and
cut into epochs of 0-1300 ms after stimulus onset, based on six categories concerning the
shifting and inhibition demands that are present during that trial. In this task design a
blockwise manipulation of shifting demands, but also trial wise manipulation of shifting
demands can be investigated. Therefore, blocks with a single task are compared to blocks
with mixed tasks, as well as Switch vs. Repeat trials from mixed blocks. But baseline
demands are also compared to pure inhibition and pure shifting demands.

8.2.1 Behavioral data analysis

In terms of behavioral data, RT and task accuracy can be investigated an compared to
reveal differences and commonalities between the properties of the two executive functions
shifting and inhibition. Statistical significant differences between the categories have been
evaluated with an ANOVA, calculated on a linear regression model either on the RT or
task accuracy.

8.2.2 Neurophysiological analysis

For the physiological data, only artifact-free trials with correct responses were used for
data analysis, with additional exclusion of trials that might yield to any Gratton-like
effect. The data was bandpass filtered between 0.4 - 40 Hz and re-referenced to common
average. To remove artifacts, a threshold of 100 pV was chosen and all trials exceeding
this level were discarded. Trials including eye movement artifacts were corrected using a
regression method by Schloegl and colleagues [23]. A baseline correction was performed
with 100 ms pre-cue onset.

In addition to this restriction, only trials that were preceded by another congruent
trial have been selected. Incong trials are correctly answered trials with incongruent
flankers from blocks with mixed flankers, again with the restriction that only trials which
are preceded by a congruent trial are used for the analysis. In terms of physiological
data, the grand average ERPs, as well as the grand average spectra can be computed for
each of the six categories separately. Based on the results of [57], the ERPs at electrode
positions FZ, CZ, PZ were of major interest. For the calculation of the power spectra
Burgs maximum entropy method was used with a model order of 32 and a bin size of 1.
To test whether the differences in the ERPs and power spectra between the factor levels
are statistically significant a Wilcoxon rank sum test [102] was conducted over all subjects
and trials. The resulting p-values were Bonferroni corrected [103] and the significance
level was set to p < 0.05.

8.2.3 DML based classification

For the investigation of the EFs by means of machine learning, SVM classification was
chosen. A SVM with a linear kernel (C = 1) [94], [8] was applied to differentiate between
the six categories introduced above using the libsvin implementation for Matlab [95], [96].
The classification between categories was conducted for the following pairs for each subject
individually:
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e Inhibition: Cong vs. Incong
e Shifting: Single vs. Mixed, Switch vs. Repeat
e EF's: Shifting vs. Inhibition

The aim is to separate EF demands from baseline demands, but also different EF demands
from each other. As the baseline demand within this study, congruent trials from the
single blocks have been chosen, because neither shifting nor inhibition demands should
be induced during those trials. For each data pair, a subset of the data is used to train
a classifier, to learn the characteristics of each category. The remaining data is used to
evaluate the success of the learning and hence the skill of the classifier. This is done on
a single-trial and single-subject level. To ensure stable results 10-fold cross-validation
was performed for each classification. The datasets (training set as well as the test set)
were balanced for each comparison, by removing all spare trials if one of the classes had
more trials than the other, to ensure that the distribution of examples per class does not
influence the result. For classification, again two different types of features were used:
CCA filtered ERP features [97] and power spectra. The performance of the classification
approach is measured in accuracy, stating in how many cases the classifier categorized a
trial correctly. Statistical significance of the classification results was determined by using
permutation tests on the data.

The statistical significance of the results was determined by permutation tests with
1000 iterations [98, 99]. The classification performance achieved in the permutations
establishes an empirical null distribution on random observations, which can be used
to determine significance boundaries. Therefore, in each iteration classification was
performed in a 10-fold cross validation, but with randomly assigned class labels in
the training set instead of the correct class labels. The achieved accuracy values were
compared with the ones determined in the standard 10-fold cross validation. Significance
level was determined to be at p < 0.05, stating that the original classification performance
is significant when the performance values are higher than the 95th percentile of the
calculated empirical distribution.

ERPs

The ERP features upon which the SVM classifies are composed as follows. The 0-1000
ms epochs that have been prepared in the beginning will be used from 17 EEG channels
(FP1,FP2.F3,FZ.F4FC1,FC2,C3,CZ,C4,CP1,CP2,P3,PZ,P4,01,02). All other channels
of the setup are discarded to reduce the influence of noise and artifacts in the data. Due
to the sampling rate of 500 Hz one trial of ERP data is represented by 500 x 17 features.
As a way to improve the signal-to-noise ratio of the data, a spatial filtering method based
on canonical correlation analysis (CCA) was applied [26] with a filter size of 27 x 17. The
filter aims to minimize the variance within a class and to maximize the variance between
classes to improve the separability.

Power spectrum

Classification using features from the frequency domain was conducted on the power spec-
tra between 1-20 Hz, calculated on the same epochs as described above (0-1000 ms after
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stimulus onset) with Burgs maximum entropy method [20]. The same 17 channels were
used resulting in 19 x 17 features.

Cross-class classification

Since the question of separability aims to answer the diversity aspect of Miyake’s model of
executive functions, another approach needs to be introduced to answer the unity aspect
of the EFs. For this, a cross-class classification was performed. In this approach, a
classifier was trained on the distinction of EF1 vs. BL and tested on EF2. The reason
for this is as follows. If the functions have significant overlaps in their properties, EF2
should be classified as EF1 with above-average frequency. If there is no such overlap,
the classification accuracy should be at a more random level. This evaluation is done in
both directions. Hence each EF is part of the train and the test set once. Cross-class
classification is performed on ERP as well as on power spectral features.

8.2.4 Neural activation patterns

To inspect the features used for the distinction in the classification approach, a method
developed by Haufe and colleagues [29] was used that transforms the weights of the SVM
classifier into neurophysiological interpretable values, in so-called neural activation pat-
terns. One classifier model is trained for each subject on the data of the respective cate-
gories. Applying the method on the model results is one activation value for each feature
that was used in the classification. To create a comprehensive picture of the resulting neu-
ral activation pattern, the values are averaged within and according to the two frequency
bands alpha (8-12 Hz) and theta (4-7 Hz). This is done for each subject individually,
but the median values across subjects will be depicted in a color-coded topological dis-
tribution, to visualize the results. By calculating the activation patterns the underlying
neurophysiological patterns that are responsible for the distinction can be inspected, which
can provide valuable information analyzing the unity and diversity of different EFs.

8.3 Results

8.3.1 Behavioral data

In Table 8.1 the average accuracy and reaction time of the subjects can be seen, sepa-
rated according to the different levels of shifting and inhibition demands. Subjects were
significantly slower for trials in mixed blocks (blocks in which both tasks were performed
alternately) compared to single blocks (only one task needed to be performed). Subjects
were also much faster for repetition trials, compared to switch trials. The difference in
reaction time yielded a p-value of 0.056 and is therefore not statistically significant. How-
ever, it is very close to the chosen threshold of p = 0.05 that it can be hypothesized that
a non-random effect might be present. Regarding the inhibition demands it can be stated
that subjects are faster for congruent trials compared to incongruent trials, but in this
study the difference is not significant. Task accuracy reveals the same tendencies, showing
statistically significant differences for the block wise shifting demands (Single vs Mixed),
an almost significant difference for the trial wise manipulated shifting demands, but no
significant effect for the inhibition demands. The p-values for all performed tests can be
seen in Table 8.2.
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Table 8.1: Behavioral accuracy and reaction time - Average accuracy (Acc) and reaction
time (RT) of the subjects categorized according to the flanker condition (cong, incong), shift
condition (Single, Mixed, Switch or Repeat) and task (odd or greater).

Task Flanker | Single | Mixed | Repeat | Switch

Avg Acc [%] | Greater5 | cong 94 90 93 88
Greaterb | incong 92 90 89 91

OddEven cong 92 87 92 84

OddEven | incong 89 83 85 81

Both cong 93 89 92 86

Both incong 91 86 87 85

Avg RT [ms| | Greater5 | cong | 504.93 | 653.12 | 627.38 | 669.67
Greaterb | incong | 526.54 | 651.78 | 631.00 | 670.59
OddEven cong 557.20 | 681.28 | 632.43 | 709.68
OddEven | incong | 590.18 | 721.93 | 684.60 | 753.69
Both cong 531.06 | 667.20 | 629.90 | 689.67
Both incong | 558.36 | 686.85 | 657.80 | 712.14

Table 8.2: ANOVA on behavioral data - P-Values calculated for the average reaction
times (RT) and accuracies (ACC) of all subjects per condition. An ANOVA was performed
on a linear regression model, taking the Task, flanker condition and the Shift into account.
Significance level has been determined to be at p < 0.05.

Shift (Block) | Shift (Trial) | Task | Flanker
RT < 0.05 0.06 <0.05| 0.23
Acc < 0.05 0.07 <0.05| 0.08

8.3.2 Neurophysiological data

ERPs

Figure 8.3 shows the ERPs for the comparison of inhibition and baseline demands, whereas
Figure 8.4 shows the ERPs for the comparison of the shifting and baseline demands. For
the EF inhibition it can be seen that small differences exist between the ERPs at the four
presented electrode positions. The differences are more pronounced when performing a
single task, compared to multiple tasks and they are mainly present at electrode position
Cz. With regard to the EF shifting it can be seen that major differences exist for the
Single vs. Mixed comparison at several points in time at all electrode positions. The
differences seem to be again, most pronounced at position Cz. In contrast to that, the
Switch vs. Repeat comparison does not provide any statistically significant differences at
the four examined electrode positions. This mirrors the results that have been found in
the analysis of the behavioral data.
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Figure 8.3: Grand average ERPs for inhibition demands - Displayed are the electrode
positions Fz, Cz, Pz and O2 during Single and Mixed blocks. A pairwise comparison of trials
with congruent and incongruent flankers can be seen in the two subfigures. The grand average
has been calculated over all 21 subjects. Grey areas indicate statistically significant differences
between the two conditions (p<0.05 Bonferroni corrected, according to number of time points).
A: Single, B: Mixed, : cong, : incong
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Figure 8.4: Grand average ERPs for Shifting demands - Displayed are the electrode
positions Fz, Cz, Pz and O2. A pairwise comparison of trials with different shifting levels
all with congruent flanker can be seen in the two subfigures. The grand average has been
calculated over all 21 subjects. Grey areas indicate statistically significant differences between
the two conditions (p<0.05 Bonferroni corrected, according to number of time points).
A: Switch vs Repeat, B: Single vs Mixed, : single, : mixed, : repeat,
switch

Power spectra

The same comparisons have also been done for the signal in the power spectra. Figure 8.5
shows the comparison of inhibition and baseline demands. It can be seen that the
two conditions vary in the alpha and beta range, at all displayed electrode positions.
Figure 8.6 shows the comparison of shifting and baseline demands. In the blockwise
comparison (Single vs Mixed), which can be seen in subfigure A, statistically significant
differences can be seen throughout all displayed electrode positions, especially in the alpha
and theta range. For the trial wise comparison (Switch vs Repeat) no differences can
be found. Again this mirrors the results found in the ERPs and also in the behavioral data.

For the overall comparison and to get a complete picture, the grand average ERPs
and power spectra for four out of the six categories are shown in Figure 8.7. It can be seen
that the four conditions differ in amplitude, but the waveform remains rather constant.
Mixed ERPs are more positive in amplitude at Cz and Pz. The parietal /occipital change
in alpha power can be identified as an ERD as the power decreases with an increasing
amount of load. The change in frontal theta power can be identified as an ERS since the
power increases with the amount of load.
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Figure 8.5: Grand average Power spectra for inhibition demands - Displayed are the
electrode positions Fz, Cz, Pz and O2 during Single and Mixed blocks. A pairwise comparison
of trials with congruent and incongruent flankers can be seen in the two subfigures. The grand
average has been calculated over all 21 subjects. Grey areas indicate statistically significant
differences between the two conditions (p<0.05 Bonferroni corrected, according to number of

time points). A: Single, B: Mixed,
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Figure 8.6: Grand average Power spectra for shifting demands - Displayed are the
electrode positions Fz, Cz, Pz and O2. A pairwise comparison of trials with different shifting
levels can be seen in the three subfigures. The grand average has been calculated over all 21
subjects. Grey areas indicate statistically significant differences between the two conditions

(p<0.05 Bonferroni corrected, according to number of time points).
A: Switch vs Repeat, B: Single vs Mixed,
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Figure 8.7: Grand average All in One - Displayed are the electrode positions Fz, Cz, Pz
and O2. The grand average has been calculated over all 21 subjects.
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8.3.3 ML based classification

Classification results describe how well data could be discriminated on a single trial and
single subject basis. Table 8.3 - Table 8.5 provide the accuracy values for three distinc-
tions concerning the level of shifting and inhibition demands. First, again the inhibition
demands are compared to baseline demands which can be seen in Table 8.3. It can be
seen that all results have low accuracy values below 60 %. A general observation is that
accuracy tends to be higher for ERP than for the power spectral features. Secondly, it was
evaluated how well shifting demands can be separated from baseline demands. Table 8.5
shows the trial wise manipulation of shifting demands, the Switch vs. Repeat trials. In-
dependent of present or absent inhibition demands none of the performed classifications
reaches chance level, revealing that a distinction on single trial level is not possible. The
results for the block wise manipulation of shifting demands compared to baseline demands
can be seen in Table 8.4. Interestingly, in this case the classification exceeds chance level
in all cases and reaches maximum values of 75.22 %. As before, ERP features can be
distinguished with higher accuracy rates than power spectral features, independent of
present or absent inhibition demands. When trying to separate shifting from inhibition
demands, once while using all congruent trials from mixed blocks and once while using
only congruent switch trials it can be seen that the distinction is possible with accuracy
values up to 77 % (see Table 8.6). Both cases work equally well, stating that the neural
correlates of the two EFs can be separated.

Table 8.3: Classification inhibition demands - Classification accuracies achieved with
ML approach with (Mixed) and without (Single) an additional load factor of shifting. Displayed
is the classification accuracy achieved with a SVM and a linear kernel during a 10 fold cross-
validation. Accuracy is reported for the two tasks (OddEven and Greater5) individually and
combined (both). The used time frame contains 1.3 s from stimulus onset (650 samples) from
15 channels. ERP features were additionally filtered with canonical correlation analysis (CCA),
whereas power spectral features were calculated with Burgs maximum entropy method from 1-
20 Hz. Statistical significance was determined by calculating an empirical null distribution with
permutation tests and is indicated by *. Significance level was determined to be at p < 0.05.

Task Features cong vs incong | cong vs incong | cong vs incong
Single Mixed Both

OddEven | ERP (CCA) 55.84 %* 53.21 % 60.68 %*
Power (1-20) 49.93 % 54.77 %* 53.56 %
Greater5 | ERP (CCA) 57.04 %* 55.44 %* 57.86 %*
Power (1-20) 49.83 % 53.31 % 52.77 %
Both ERP (CCA) 57.89 %* 56.78 %* 59.67 %*
Power (1-20) 51.37 % 52.02 % 52.53 %
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Table 8.4: Classification shifting demands (block) - Classification accuracies achieved
with ML approach with (incong) and without (cong) an additional load factor of inhibition.
Displayed is the classification accuracy achieved with a SVM and a linear kernel during a
10 fold cross-validation. Accuracy is reported for the two tasks (OddEven and Greaterb)
individually and combined (both). The used time frame contains 1.3 s from stimulus onset (650
samples) from 15 channels. ERP features were additionally filtered with canonical correlation
analysis (CCA), whereas power spectral features were calculated with Burgs maximum entropy
method from 1-20 Hz. Statistical significance was determined by calculating an empirical null
distribution with permutation tests and is indicated by *. Significance level was determined to
be at p < 0.05.

Task Features Single vs Mixed | Single vs Mixed | Single vs Mixed
cong incong both
OddEven | ERP (CCA) 72.22 %* 71.24 %* 74.70 %*
Power (1-20) 59.10 %* 59.08 %* 60.53 %*
Greater5 | ERP (CCA) 73.13 %* 70.34 %* 75.66 %*
Power (1-20) 61.85 %* 56.67 %* 61.88 %*
Both ERP (CCA) 75.22 %* 72.41 %* 76.98 %*
Power (1-20) 61.14 %* 58.30 %* 62.63 %*
Table 8.5: Classification shifting demands (trial) - Classification accuracies achieved

with ML approach with (flanker = incong) and without (flanker = cong) an additional load
factor of inhibition. Displayed is the classification accuracy achieved with a SVM and a linear
kernel during a 10 fold cross-validation. Accuracy is reported for the two tasks (OddEven
and Greaterb) combined only due to a insufficient number of trials. The used time frame
contains 1.3 s from stimulus onset (650 samples) from 15 channels. ERP features were ad-
ditionally filtered with canonical correlation analysis (CCA), whereas power spectral features
were calculated with Burgs maximum entropy method from 1-20 Hz. Statistical significance
was determined by calculating an empirical null distribution with permutation tests and is
indicated by *. Significance level was determined to be at p < 0.05

Task Features Repeat vs Switch | Repeat vs Switch | Repeat vs Switch
cong incong both
Both | ERP (CCA) 53.26 % 52.40 % 54.88 %
Power (1-20) 49.37 % 49.28 % 50.08 %

Table 8.6: Classification Inhibition vs Shifting - Classification accuracies achieved with
ML approach. Displayed is the classification accuracy achieved with a SVM and a linear kernel
during a 10 fold cross-validation. The used time frame contains 1.3 s from stimulus onset (650
samples) from 15 channels. ERP features were additionally filtered with canonical correlation
analysis (CCA), whereas power spectral features were calculated with Burgs maximum entropy
method from 1-20 Hz. Statistical significance was determined by calculating an empirical null
distribution with permutation tests and is indicated by *. Significance level was determined to
be at p < 0.05.

Task Features Inh vs Switch | Inh vs Mixed
Both | ERP (CCA) 77.56 % * 76.44 % *
Power (1-20) 59.39 % * 60.68 % *
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Neural activation patterns

The neural activation patterns that correspond to the SVM classifications can be seen in
the following. When trying to separate congruent from incongruent trials (inhibition form
baseline demands) it can be seen in Figure 8.8 that frontal but also parietal theta, and
occipital alpha seem to provide crucial and discriminative properties. For the distinction of
shifting vs. baseline demands it can be seen in Figure 8.9 that parietal theta and occipital
alpha seem to play an important role. In direct comparison it can be seen that especially
central theta is discriminative between the two EF (see Figure 8.10).

8.3.4 Cross-class classification

Last but not least the results for the cross-class classification are shown in Table 8.7.
They provide the last piece of evidence regarding the unity and diversity of inhibition and
shifting for the performed study. It can be seen that all results are close to random, which
make it seem like there is no significant amount of joint features, that could lead to a
confusion of the two EFs.

Table 8.7: Cross-class classification - The table provides cross-class classification with
a SVM for ERP features as well as for the power spectra. The classifier was trained on De-
mand 1 vs BL and tested on trials belonging to Demand 2 only. Therefore, the here presented
accuracies represent the percentage of trials classified as BL. Statistical significance was deter-
mined by calculating an empirical null distribution with permutation tests and is indicated by
*. Significance level was determined to be at p < 0.05.

Features Trainset | Inh vs BL Inh vs BL  Single vs Mixed Repeat vs Switch
Testset Mixed Switch Inh Inh
ERP (CCA) 48.85 % 50.69 % 47.84 % 50.70 %
Power (1-20 Hz) 54.27 % 48.97 % 49.85 % 47.72 %
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Figure 8.8: Neural activation pattern inhibition demands - Displayed is the color
coded activation pattern A calculated from the weights of the SVM, for the frequency bands
alpha and theta in a topological distribution. The neural activation pattern has an arbitrary
and undefined unit. A comparison of conflict conditions congruent (cong) and incongruent
(incong) is shown for the shifting levels Single and Mixed. The resulting values are an average
over the individual patterns of all 21 subjects. a) Single , b) Mixed

82



Study 2 Part IT Working memory load and executive function

Theta 4-7 Hz Theta 4-7 Hz 10
8
6
4
2
0
2
-4
-6
Alpha 8-12 Hz Alpha 8-12 Hz
180 30
160 25
140 20
120
100 15
80 10
60 5
40
(a) Single vs Mixed (b) Switch vs Repeat

Figure 8.9: Neural activation pattern shifting demands - Displayed is the color coded
activation pattern A calculated from the weights of the SVM, for the frequency bands alpha
and theta in a topological distribution. The neural activation pattern has an arbitrary and
undefined unit. A comparison of shifting conditions Single and Mixed, as well as Switch vs
Repeat is shown for the congruent flanker condition. The resulting values are an average over
the individual patterns of all 21 subjects. a) Single vs Mixed, b) Switch vs Repeat
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Figure 8.10: Neural activation pattern Inhibition vs Shifting - Displayed is the color
coded activation pattern A calculated from the weights of the SVM, for the frequency bands
alpha and theta in a topological distribution. The neural activation pattern has an arbitrary
and undefined unit. A comparison of shifting and inhibition demands . The resulting values
are an average over the individual patterns of all 21 subjects. a) Mixed vs Incong, b) Switch
vs Incong
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8.4 Discussion

Can neural correlates for the EF's shifting and inhibition be found in EEG data ?
Are there indicators for the unity and diversity of the EFs ?
Can the results be compared to study 17

8.4.1 Behavioral data

The analysis of the behavioral data showed statistically significant effects for shifting
demands compared to baseline demands when manipulated block wise, and almost
but no statistically significant effects for trial wise manipulation of shifting demands.
The manipulation of inhibition demands did not show significant effects. The lack of
statistical significance for the manipulation of inhibition demands can be due to the
secondary nature of the flanker task. No explicit reaction is required, therefore the focus
is clearly on the primary task odd or greater. Since the odd or greater task, especially
when the two are alternating, is already challenging it could also be hypothesized that a
limit is reached regarding the capacity of working memory. This would be in line with a
study from Sorqvist et al. which showed that task-irrelevant auditory stimuli caused less
interference under high as compared to low visual WM updating load [104].

When looking at the shifting demands, it can be seen that differences exist for
both types of manipulations (block and trial wise) when analyzing behavioral data. This
is well in line with the literature [85], which states the differences between blocks can be
observed, but also that the immediate shift of task also results in a measurable differences
regarding reaction time. The two manipulations, block and trial wise, can be summarized
under the term alternation cost, which is composed of switching and mixing costs. The
block wise manipulation and the resulting differences in RT between single and mixed
blocks can be described as mixing costs. Switch costs account for the differences in
performance due to immediate and trial wise switches of tasks and rule sets. That the
switch costs are not statistically significant might be due to the task ambiguity. The used
stimuli are exact the same in both tasks which can lead to so-called cross-talk effects.
Both task sets are active at the same time and only the cue indicates which needs to be
used to solve the task correctly. It has been shown that there are significant mixing cost
when mixing two unambiguous tasks [87].

Another effect independent of shifting and inhibition demands is the differences
between the odd and greater task. The data suggests that effect is significant for odd but
not for the greater task. Answers for the greater task were given much faster than for the
odd task. There is one possibility that can be the cause of this, which can be found under
the term spatial-numerical association of response code (SNARC). The SNARC effect
states that when dealing with numbers a mental number line is active in the background.
Due to this reactions to bigger numbers are faster with the right hand, whereas reactions
to smaller numbers are faster with the left hand [105]. Overall, it has been found that
the judgment of number magnitude is activated even when it is not relevant for the task.
Therefore, it is easier to blend out a flanking item if the distance (difference) between
the target and the flanker item is big compared to when it is small [106],[107]. A closely
related effect is the linguistic markedness association of response codes (MARC), which
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relates the parity of numbers with the response hand. It states that even numbers are
more associated with the right and are therefore answered faster with the right hand
compared to odd numbers which are answered faster with the left hand [108]. Since this
aspect of the data was not of relevance for the posed research question, no tests that
would confirm the presence or absence of these effects were performed. For future studies,
this relations should be kept in mind for a thorough and more refined task design that
controls for those effects.

8.4.2 Neurophysiological data

The neurophysiological data creates a similar impression compared to the behavioral data.
For the EF inhibition almost no differences can be found in the ERPs but some differences
in the power spectra when comparing it to baseline demands. Since similar results have
already been found in Study 1, this is not surprising. Here, too, the secondary nature
of the flanker task could play an important role. When comparing the demands of the
EF shifting, differences for single vs. mixed comparisons (blockwise manipulation) can
be found in the ERP as well as in the spectra. Interestingly for the switch vs. repeat
comparison (trialwise manipulation) no differences can be found at all. As already stated
in the discussion of the behavioral data, the task ambiguity could play a major role for
the not existing difference for trialwise manipulations. Concerning the very pronounced
difference in the blockwise manipulation the factor of task uncertainty can be named.
In the mixed blocks the two tasks were both presented equally often but in a random
manner, which task will be presented in the next trial was therefore always uncertain.
In single blocks in which only one task was presented, no task uncertainty prevailed.
Rubin and Meiran [87] found indicators that especially task uncertainty and differential
general control effort might be the main trigger for mixing costs, which is also reflected in
neurophysiological signals. The general control effort is well reflected in the ERPs, but also
in the spectra, resulting in an overall higher WL for the EF shifting compared to inhibition.
Classical ERS/ERD but also decreased P300 amplitudes could be found showing again
that the induction of WML is a common trait of EFs. Overall the hypothesis arises that
block wise manipulation compared to trial wise manipulation creates different patterns
of behavior and neurophysiological signals. The different anticipation and expectation of
task demands seems to control the behavior and therefore also the level of attention that
is paid towards to potentially conflicting stimulus.

8.4.3 DML based classification

Using ML based classification as an analysis tool, provided in many aspects the same
results as the classical group-level analysis. For the distinction of the EF inhibition from
baseline demands chance level performance has been found in the most cases, likewise
for the switch vs. repeat comparison of the EF shifting. In some cases the performance
exceeds the significance threshold but still, the values are close to 50 %. It can therefore
be assumed, that the addition of the single-subject level is not helpful for this particular
task. For the distinction of shifting vs baseline demands accuracies above 70 % have been
reached for ERP features, stating that this is a stable and pronounced difference. Again
it needs to be hypothesized that it is mainly the general amount of load that is classified
and distinguished in this case and not necessarily the specific properties of the EFs.

When classifying the two EFs against each other, however, high performance values above
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75 % were achieved. This indicates that the two EFs can be distinguished. The cross-
class classification results support this finding, since there only performance values around
chance level have been found. This is a crucial indicator that the two EFs do not share
a significant amount of joint features, supporting the diversity of the two EF's inhibition
and shifting.

8.4.4 Neural activation patterns

The neural activation patterns that have been established from the weights of the SVMs
suggest that again only features are of relevance in the distinction of the EFs that highly
correlate with WML. This corroborates the results from study 1 and further legitimizes this
approach and interpreting the patterns as characteristic properties of the EFs. Again it
seems that for the EF inhibition frontal theta plays a major role, whereas for shifting rather
a central or parietal theta are of relevance. Especially when comparing the two EFs against
cach other, a main difference can be seen at central theta. Doing this comparison with
switch and repeat trials reveals also a discriminative component in the central/parietal
alpha range, which is a lot less pronounced when using switch trials only.

8.5 Conclusion

The data collected in this study and analyzed with conventional group-level statistics and
machine learning techniques provides insights that support the theoretical model of Miyake
and colleagues describing the unity and diversity of EFs. Similar but not identical results
have been achieved compared to study 1. Inhibition is characterized by frontal theta
activation which cannot be located as precisely as in study 1. Shifting is characterized
by parietal theta. No significant cross-class classification has been found suggesting that
no joint features between the two EFs exist that make them interchangeable. Again the
induction of WML has been found as a common trait between EFs that modulates the
neural correlates (unity) but nevertheless a clear distinction between the EFs was possible
(diversity). More general, it was found that a blockwise manipulation of demands has
a greater effect than a trial wise manipulation. Due to this finding, it seems relevant to
reevaluate the task design concerning this factor, to avoid misguided hypothesis.
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Chapter 9

Study 3: When Inhibition meets
Updating IT (Between vs Within
Block effects)

Study 3 again investigates the unity and diversity of the EFs updating and inhibition.
Since the results from Study 2 brought a new perspective on the so far performed studies,
a follow-up study was designed. Study 2 revealed that a blockwise manipulation of EF
demands, in this case shifting, works well, whereas a within block manipulation does
not. Due to task design, an equivalent comparison for inhibition demands from Study 1
or 2 cannot be made. Neither can they for updating demands of study 2. Due to the
nature of an n-back task, updating demands need to be manipulated blockwise, else the
task cannot be solved. Flanker items, however, are constantly varied within each block,
but a variation between blocks can easily be realized. The results achieved in Study 2
give rise to the assumption that a between blockwise manipulation of inhibition demands
might be a useful extension of the analysis. Therefore, study 1 was extended by one
more condition that included blocks in which the flanker items simply did not alternate
between congruent and incongruent. A blockwise comparison of inhibition demands,
thereby gets feasible. For simplicity and to avoid an extensive duration of the experiment,
only blocks in which no inhibition demands are induced are presented. Hence, the flanker
items remained congruent throughout the full block. The results of this Study have in
part been published in [109], but will now be presented in full detail.

Is there a block effect for inhibition demands in the modified flanker task ?
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9.1 Task design

The experiment is based on the task design of Study 1, which was originally reported in
[67]. It combines two tasks: the n-back and the Eriksen-Flanker task. The simultancous
presentation of the two tasks was realized by showing seven items at once, from which
one was positioned centrally, the other six on a flanking position to the left and right
of the central item. The n-back task was performed on the central item and used as
the primary task in the experiment. The flanker was only used as a secondary task,
to which no action was required. The six flanking items, where therefore congruent
(identical) or incongruent (different) to the central item and fulfilled a distracting purpose.

Again the experiment was presented blockwise, this time with six blocks in total.
The number of n-back levels was reduced from three to two (0 and 1), where each level
was presented three times. For both n-levels, one block consisted of congruent flankers
only, and the two other blocks consisted of alternating congruent and incongruent (mixed)
flankers. To quickly repeat the task of the subjects: In each trial, subjects were asked to
decide whether the central item is equal to the one presented n-steps before. Therefore,
in each trial, an answer of yes or no was required by button press (keys D and L on
a standard keyboard). Yes and no answers were randomly distributed over each block
with a ratio of 1:1 and given with the index finger of either the right or left hand.
Which key represented the yes answer was counterbalanced throughout all subjects.
Each block included 120 trials, of two seconds length. One trial consisted of 500 ms
stimulus presentation and a 1500 ms long blank screen, hence one block was 4 minutes
long. In study 3 trials with no central item were omitted. All other details regarding

incongruent CCC C ccc

HHH C HHH
congruent
500ms
- -

1500ms
1500ms

CCC C ccc

HHH H HHH R HHH H HHH
Trial

Congruent
Trials
only

500ms

CCC C ccc CCC C ccc

HHH C HHH Incongruent CCC C cCC

Trial

Figure 9.1: Experimental design - The task was presented on a black screen with white
letters as stimuli and flanker items. Stimuli were presented for 500 ms, followed by a blank
black screen in which the subject needed to answer the n-back task on the central item with yes
or no by pushing the respective key on the keyboard. The box on the right shows exemplary
which trials were used in the analysis as congruent or incongruent trials in the mixed flanker
block.

the implementation have been kept equal, therefore, for more detail see the original
publication [57] or [90]. To familiarize the subjects with the experiment, each subject had
to perform training before starting the task. The training consisted of 2 short blocks (24
trials), one for each n-back level (0 and 1). The training blocks had to be repeated if the
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accuracy was below 60 % to ensure that the subject was able to solve the task correctly.

9.1.1 Participants

A new set of 21 subjects (18 females) was recruited to participate in the study, for which
they were reimbursed with 8 euro per hour. All subjects had normal or corrected to normal
vision and no reported neurological disorders. The participants gave written consent, and
the study was approved by the local ethics committee, and the study was performed in
accordance with the declaration of Helsinki. On average, the subjects were 22.95 (£3.23)
years old.

9.1.2 Technical setup

The subjects were seated in front of a computer screen (19 inches) on which the experiment
was presented by the software E-Prime (Version 2.0.10.356). A standard keyboard was
used for entering the answers, by which the correctness of an answer and the reaction
time were assessed. For the EEG recording, a Brainproducts Acticap system with 32
electrodes was used and one BrainProducts actiChamp amplifier, which was sampled at
500 Hz (PyCorder). The integrated high pass filter was set to 0.1 Hz and the integrated
low pass filter to 100 Hz. Additionally, a notch filter between 48-52 Hz was applied to
eliminate power line noise. 28 electrodes were used for the recording and placed according
to the extended 10-20 system [93] (FP1, FP2, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6,
T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, PZ, P4, P8, O1, O2). The ground and
reference electrodes were placed on the right and left mastoid respectively and impedances
were kept below 10 kS2.

9.2 Data analysis

Data will be analyzed with respect to behavioral data, which includes reaction time and
task accuracy as well as with respect to physiological measures, including the EEG signal.
Trials are categorized according to the presented flanker condition (congonly., cong and
incong) and according to the n-back level (0 and 1). A total of six categories can be
distinguished according to these criteria. Congonly trials represent all correct trials from
a block in which only congruent flankers were presented. Trials from the category cong,
are correct trials with a congruent flanker originating from blocks in which mixed flankers
(alternating between congruent and incongruent) were presented. Lastly, incong trials are
correct trials with incongruent flanker, originating from blocks with mixed flankers as well.
In addition to this restriction, only trials that were preceded by another congruent trial
have been selected. Incong trials are correctly answered trials with incongruent flankers
from blocks with mixed flankers, again with the restriction that only trials which are
preceded by a congruent trial are used for the analysis. For a better overview of the
chosen categories, they have been visualized in Figure 9.2.

9.2.1 Behavioral data analysis

The behavioral data will be analyzed with respect to reaction time and task accuracy.
To get an estimate of the group-level performance the averages will be calculated. After
assessing the task accuracy for each category and subject, only trials with correct responses
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cong only cong incong cong only cong incong
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Figure 9.2: Data structure - The data can be divided into two categories regarding the
n-back level, which represent different levels of updating demands. Each category can further
be divided into three subcategories regarding the Flanker condition, which represent different
levels of inhibition demands. In total a set of six categories can be distinguished and will be
used for analysis. : inhibition, : updating

have been used to calculate the average reaction times again per category and subject. As
an additional constraint, the first four trials per block were left out. Statistical significant
differences between the categories have been evaluated with an ANOVA, calculated on a
linear mixed effect model either on the RT or task accuracy. To reveal the specific level
on which significant differences are present, a pairwise t-test was performed as well on RT
and accuracy.

9.2.2 Neurophysiological data analysis

For the physiological data, only artifact-free trials were used for data analysis. The
data was bandpass filtered between 0.4 - 40 Hz and re-referenced to the common
average. To remove artifacts, a threshold of + 80 ;V was chosen, and all trials exceeding
this level were discarded. EOG artifact correction was performed with a regression
method by Schloegl and colleagues [23]. A pre-stimulus baseline (-100 and 0 ms)
was chosen to perform a baseline correction for every trial. Stimulus onset starts
with stimulus presentation in the n-back task. For the calculation of the power spectra
Burgs maximum entropy method [20] was used with a model order of 32 and a bin size of 1.

After choosing Fz, Cz, Pz, and O2 as representative channels for the evaluation,
the statistical significance of the grand average of the ERPs and spectra is investigated.
To reveal statistically significant differences in the signal, a Wilcoxon Ranksum Test
[102] is used to calculate the p-value. A Bonferroni correction according to the number
of used tests [103] is applied to correct for multiple comparisons. Significance level was
determined to be at p < 0.05.
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9.2.3 ML-based classification

For the investigation of the EFs by means of machine learning, support vector machine
(SVM) classification was chosen. A SVM with a linear kernel (C = 1) [94], [8] was applied
to differentiate between the six categories introduced above using the libsvm implemen-
tation for Matlab [95], [96]. The classification between categories was conducted for the
following pairs for each subject individually:

e Inhibition: Cong vs. Incong vs. Congonly
e Updating: Zero vs. One
e EF's: Inhibition vs. Updating

The aim is to separate EF demands from baseline demands, but also different EF demands
from each other. As the baseline demand within this study, congruent or congruent
only trials from the zero back condition have been chosen, because neither updating nor
inhibition demands should be induced during those trials. For each data pair, a subset of
the data is used to train a classifier, to learn the characteristics of each category. The
remaining data is used to evaluate the success of the learning and hence the skill of the
classifier. This is done on a single-trial and single-subject level. To ensure stable results a
10-fold cross-validation was performed for each classification. The datasets (training set
as well as the test set) were balanced for each comparison, by removing all spare trials
if one of the classes had more trials than the other, to ensure that the distribution of
examples per class does not have an influence on the result.

For classification, again two different types of features were used: CCA filtered
ERP features [97] and power spectra. The performance of the classification approach is
measured in accuracy, stating in how many cases the classifier categorized a trial correctly.
Statistical significance of the classification results was determined by using permutation
tests on the data.

The statistical significance of the results was determined by permutation tests with
1000 iterations [98, 99]. The classification performance achieved in the permutations
establishes an empirical null distribution on random observations, which can be used
to determine significance boundaries. Therefore, in each iteration classification was
performed in a 10-fold cross-validation, but with randomly assigned class labels in
the training set instead of the correct class labels. The achieved accuracy values were
compared with the ones determined in the standard 10-fold cross-validation. Significance
level was determined to be at p < 0.05, stating that the original classification performance
is significant when the performance values are higher than the 95th percentile of the
calculated empirical distribution.

ERPs

The ERP features upon which the SVM classifies are composed as follows. The 0-1000
ms epochs that have been prepared in the beginning will be used from 17 EEG channels
(FP1,FP2,F3,FZ F4FC1FC2,C3,CZ,C4,CP1,CP2,P3,PZ,P4,01,02). All other channels
of the setup are discarded to reduce the influence of noise and artifacts in the data. Due
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to the sampling rate of 500 Hz, one trial of ERP data is represented by 500 x 17 features.
As a way to improve the signal-to-noise ratio of the data, a spatial filtering method based
on canonical correlation analysis (CCA) was applied [26] with a filter size of 27 x 17. The
filter aims to minimize the variance within a class and to maximize the variance between
classes to improve the separability.

Power spectrum

Classification using features from the frequency domain was conducted on the power spec-
tra between 1-20, calculated on the same epochs as described above (0-1000 ms after
stimulus onset) with Burgs maximum entropy method. The same 17 channels were used,
resulting in 19 x 17 features respectively.

Cross-class classification

Since the question of separability aims to answer the diversity aspect of Miyake’s model of
executive functions, another approach needs to be introduced to answer the unity aspect
of the EFs. For this, a cross-class classification was performed. In this approach, a
classifier was trained on the distinction of EF1 vs. BL and tested on EF2. The reason
for this is as follows. If the functions have significant overlaps in their properties, EF2
should be classified as EF1 with above-average frequency. If there is no such overlap, the
classification accuracy should be at a more random level. This evaluation is done in both
directions. Hence, each EF is part of the train and test set once. Cross-class classification
is performed on ERP as well as on power spectral features.

9.2.4 Neural activation patterns

To inspect the features used for the distinction in the classification approach, a method
developed by Haufe and colleagues [29] was used that transforms the weights of the SVM
classifier into neurophysiological interpretable values, in so-called neural activation pat-
terns. One classifier model is trained for each subject on the data of the respective cate-
gories. Applying the method on the model results is one activation value for each feature
that was used in the classification. To create a comprehensive picture of the resulting neu-
ral activation pattern, the values are averaged within and according to the two frequency
bands alpha (8-12 Hz) and theta (4-7 Hz). This is done for each subject individually,
but the median values across subjects will be depicted in a color-coded topological dis-
tribution, to visualize the results. By calculating the activation patterns, the underlying
neurophysiological patterns that are responsible for the distinction can be inspected, which
can provide valuable information analyzing the unity and diversity of different EFs.

9.3 Results

9.3.1 Behavioral data

Table 9.1 shows the reaction time averaged over all participants and the overall accuracy
of the participants’ responses. To display differences between the experimental conditions,
the results are sorted and averaged individually for each flanker condition (congonly,
cong and incong) and n-back level (zero and one). Irrespective of the task conditions,
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Table 9.1: Behavioral accuracy and reaction time - Average accuracy (acc) and reaction
time (RT) of the subjects categorized according to the flanker condition (congonly, cong, incong)
and the n-back level (zero, one)

Flanker
n-back Level | congonly | cong | incong
Zero RT [ms] | 465.91 | 464.46 | 500.12
Acc [%)] 94.9 94.6 90.4
One RT [ms] | 519.41 | 543.10 | 541.29
Acc [%] 91.9 91.6 92.7

Table 9.2: ANOVA on behavioral data - P-Values calculated for the average reaction
times (RT) and accuracies (ACC) of all subjects per condition. An ANOVA was performed on
a linear regression model, taking the participant, n-Level, flanker condition and the interaction
between flanker condition and n-Level into account. Significance level has been determined to
be at p < 0.05.

Participant | Flanker | n-Level | n-Level:Flanker
RT < 0.05 <0.06 | <0.05 < 0.05
Acc < 0.05 0.16 0.15 < 0.05

participants were able to achieve an overall task accuracy of more than 90 %. Regarding
the n-back level, it can be seen that participants were consistently slower in trials from
blocks with n-back level one than in blocks with n-back level zero. With one minor
exception, it can also be said that the task accuracy is lower during n-back level one
than for level zero. When looking at the flanker conditions, it can be seen that congonly
and cong trials are answered equally fast and correct, whereas incong trials are slower
and less correctly answered by the participants. Interestingly, during 1-back cong and
incong answers are almost equally fast, while congonly answers have been given much
faster compared to the other two categories. An ANOVA revealed that reaction time is
significantly influenced by all tested factors, including participant, flanker congruency,
and the n-back level. It could also be shown that there is a significant interaction between
the flanker and the n-back level (see Table 9.2). When comparing the flanker conditions
pairwise to reveal all levels of the effect, it can be seen that there are differences between
the two available n-back levels (see Table 9.3). During n-back level zero, we find a
significant difference in RT between cong and incong trials as well as between congonly
and incong trials. During n-back level one we find significant differences in RT between
congonly and cong trials as well as between congonly and incong trials.

Interestingly, no significant difference in accuracy can be found for the flanker con-
ditions during n-back level one. During the 0-back condition, the congonly vs cong
comparison is not significantly different, whereas the other two comparisons are. Even
though the differences between the three levels are not consistently found across all
comparisons, the analysis of behavioral data provides first clues about three different
levels of inhibitory control and the interaction of the two EFs updating and inhibition.
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Table 9.3: Pairwise T-test on behavioral data - More detailed analysis of the two
individual factors flanker condition and n-Level. P-Values have been calculated for the average
reaction times (RT) and accuracies (ACC) of all subjects per condition with a paired t-test.
Significance level has been determined to be at p < 0.05.

Flanker
n-back Level | congonly vs cong | congonly vs incong | cong vs incong
Zero RT 0.67 < 0.05 < 0.05
Zero  Acc 0.70 < 0.05 < 0.05
One RT < 0.05 < 0.05 0.90
One  Acc 0.66 0.28 0.24

9.3.2 Neurophysiological analysis

ERPs

The grand average event-related potentials (ERPs) and spectra were calculated for the
four electrode positions Fz, Cz, Pz, and O2, which were chosen as representative positions
since it was shown by Scharinger and colleagues [57] as well as in study 1 [90], that those
positions are of particular interest. While evaluating the neurophysiological signals to
reveal if three levels of inhibition can be distinguished, three possible comparisons were
investigated (cong vs. incong, congonly vs. cong, congonly vs. incong), separately for
each of the two n-back levels. The results for the ERPs for n-back level zero can be seen
in Figure 9.3. It can be seen that at all four electrode positions almost no statistically
significant differences can be found. Figure 9.4 shows the ERPs for the comparison of the
n-levels.

Power spectra

In Figure 9.5 the comparisons of Flanker categories can be seen during n-back level zero.
For the power spectra, there are some indicators for differences in the congonly vs. incong
comparison, but none for the other two comparisons. In contrast to that, the comparison
of n-back levels shows statistically significant differences throughout all flanker conditions
as can be seen in Figure 9.6. The differences seem to be most pronounced during a congru-
ent flanker. The grand average ERPs and power spectra for four out of the six categories
are shown in Figure 9.7 to make the waveforms comparable between all conditions. It
can be seen that the four conditions differ in amplitude, but the waveform remains rather
constant. The change in frontal theta power can be identified as an ERS since the power
increases with the amount of load (zero congonly < zero cong < zero incong < one con-

gonly).
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Figure 9.3: Grand average ERPs for Flanker conditions - Displayed are the electrode
positions Fz, Cz, Pz and O2 during n level 0. A pairwise comparison of trials with congruent,
incongruent and congruent only flankers can be seen in the three subfigures. The grand average
has been calculated over all 21 subjects. Grey areas indicate statistically significant differences
between the two conditions (p<0.05 Bonferroni corrected, according to number of time points).

A: Cong vs Congonly, B: Congonly vs Incong, C: Cong vs Incong,
: incong

: congonly,

: cong,
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Grand average ERPs n-level one vs. zero - Displayed are the electrode
A comparison of trials

between n-back level one and zero can be seen in the three subfigures. The grand average
has been calculated over all 21 subjects. Grey areas indicate statistically significant differences
between the two conditions (p<0.05 Bonferroni corrected, according to number of time points).
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Figure 9.5: Grand average power spectra for n-back level 0 - Displayed are the electrode
positions Fz, Cz, Pz and O2 during n level 0. A pairwise comparison of trials with congruent,
incongruent and congruent only flankers can be seen in the three subfigures. The grand average
has been calculated over all 21 subjects. Grey areas indicate statistically significant differences
between the two conditions (p<0.05 Bonferroni corrected, according to number of frequency

bins). A: Cong vs Congonly, B: Congonly vs Incong,

C: Cong vs Incong,

: congonly,

1 cong, : incong
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Figure 9.6: Grand average Power spectra n-level one vs. zero - Displayed are the
electrode positions Fz, Cz, Pz and O2 during the three Flanker conditions. A comparison of
trials between n-back level one and zero can be seen in the three subfigures. The grand average
has been calculated over all 21 subjects. Grey areas indicate statistically significant differences
between the two conditions (p<0.05 Bonferroni corrected, according to number of time points).
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Figure 9.7: Grand average All in One - Displayed are the electrode positions Fz, Cz, Pz
and O2. The grand average has been calculated over all 21 subjects. A: ERP, B: Spectra,
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9.3.3 ML-based classification

In the classification approach, the same comparisons as in the previous analysis steps
were made. Table 9.4 shows the classification accuracies for the pairwise comparisons.
Depending on the used feature set (ERP or power spectra) the values range from 51.03 %
up to 63.07 % for the distinctions. The distinction worked best for the congonly vs. incong
comparison at n-back level zero and was least successful for cong vs. incong at n-back
level one. The null distribution determined by permutation tests for each distinction
individually revealed that most of the classification accuracies are statistically significant
above chance level. The only distinction in which no statistical significance was reached
with any of the used feature sets is the cong vs. incong comparison during n-back level one.

In Table 9.5 the performance values for the distinction of the two n-back levels
can be seen. Accuracy values between 60 - 68 % have been reached. Interestingly, the
performance is best for the distinction under the incongruent flanker condition for the
ERP feature set, while the performance is worst also during the incongruent flanker
condition, but for the power spectral feature set. The other two comparisons are almost
equal in performance and values do not vary between the feature sets.

Table 9.6 shows that when trying to distinguish the two EFs on the basis of their
ERPs or power spectra classification accuracies between 59 % and 62 % can be reached.
The performance values do not indicate that there is a difference between cong and
congonly trials while separating them from inhibition trials.

Table 9.4: Classification inhibition demands - Classification accuracies achieved for the
distinction of inhibition demands, from baseline, are shown with (One) and without (Zero)
additional load on the EF updating. Results are the average performance of a SVM in a 10-
fold cross-validation with a linear kernel on 0-1000 ms time frame. Used were the CCA filtered
ERPs of the 17 channels as one feature set and the power spectra between 1-20 Hz for the same
17 channels as a second feature set. Statistical significance was determined by calculating an
empirical null distribution with permutation tests and is indicated by *. Significance level was
determined to be at p < 0.05.

n-back level Features congonly vs. cong | congonly vs. incong | cong vs. incong
Zero ERP (CCA) 56.97 % 63.07 %* 57.44 %*
Power 59.90 %* 60.54 %* 51.03 %
One ERP (CCA) 54.56 % 55.23 % 50.11 %
Power 59.85 %* 59.96 %* 51.27 %
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Table 9.6: Classification Updating (Up) vs Inhibition (Inh) - Classification accuracies
achieved for the distinction between updating and inhibition demands are shown. Results are
the average performance of a SVM in a 10-fold cross-validation with a linear kernel on 0-1000
ms time frame. Used were the CCA filtered ERPs of the 17 channels as one feature set and the
power spectra between 1-20 Hz for the same 17 channels as a second feature set. Statistical
significance was determined by calculating an empirical null distribution with permutation tests
and is indicated by *. Significance level was determined to be at p < 0.05.

Features Up vs Inh | Up vs Inh
(cong only) (cong)

ERP (CCA) | 59.75 %* 62.20 %*

Power 59.31 %* 60.25 %*

Table 9.5: Classification updating demands - Classification accuracies achieved for the
distinction of updating demands, from baseline and from each other, are shown with (incong)
and without (cong, congonly) additional load on the EF inhibition. Results are the average
performance of a SVM in a 10-fold cross-validation with a linear kernel on 0-1000 ms time frame.
Used were the CCA filtered ERPs of the 17 channels as one feature set and the power spectra
between 1-20 Hz for the same 17 channels as a second feature set. Statistical significance was
determined by calculating an empirical null distribution with permutation tests and is indicated
by *. Significance level was determined to be at p < 0.05.

Features Zero vs One | Zero vs One | Zero vs One
(congonly) (cong) (incong)
ERP (CCA) 65.97 %* 62.95 %* 68.34 %*
Power 66.23 %* 62.39 %* 60.46 %*
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Neural activation patterns

To ensure the reliability of the ML approach, the features that have been used in the
classification approach are analyzed. This way it can be controlled that only features
related to the experimental condition and not caused by artifacts or features unrelated to
executive control are factored in.

Figure 9.8 shows the neural activation patterns for the spectral features during n-
back level zero. In particular for the alpha and theta frequency band which are known
to correlate highly with working memory load. It can be seen that the patterns that are
formed are similar in all three distinctions and only include frontal/central theta and
parietal alpha components. Therefore, it is clear that the distinction is not based on
noise but on features that are known for their correlation with working memory load and
executive control. The ability to interpret the process of classification neurophysiologically
legitimizes its use and also legitimizes the interpretation of the classification accuracies in
the context of mental state characterization.

In Figure 9.9, the neural activation patterns for the distinction of updating levels
can be found under different flanker conditions. In contrast to study 1, no clear frontal
theta pattern can be found, but it still can be seen, that frontal theta features play an
important role. Interestingly, not only occipital alpha but also occipital theta are further
of importance. In direct comparison of the two EFs, it can be seen in Figure 9.10 that the
pattern does not differ much when using congruent flanker only compared to congruent
flankers from the mixed flanker condition.

Cross-class classification

Table 9.7 shows the results of the cross-class classification. It can be seen that performance
values close to chance level have been achieved. The values are slightly above chance level,
but not distinctly. Therefore, it can be assumed that a small overlap in properties can be
found for the tested classes.

Table 9.7: Cross-class classification - The table provides cross-class classification with
an SVM for ERP features as well as for the power spectra. The classifier was trained on
Demand 1 vs. BL and tested on trials belonging to Demand 2 only. Therefore, the here
presented accuracies represent the percentage of trials classified as BL. Statistical significance
was determined by calculating an empirical null distribution with permutation tests and is
indicated by *. Significance level was determined to be at p < 0.05.

Trainset Zero congonly vs. incong | Zero vs. One congonly
Testset One congonly Zero incong
ERP 46.72 %* 46.12 %*
Power (1-20) 39.99 % * 48.12 %
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Figure 9.8: Neural activation pattern inhibition demands - Displayed is the color-coded
activation pattern A, for the frequency bands alpha and theta in a topological distribution.
The neural activation pattern has an arbitrary and undefined unit. A pairwise comparison of
conflict conditions congruent (cong), incongruent (incong) and congruent only (congonly) is
shown for n-back level zero. The resulting values are an average over the individual patterns
of all 21 subjects. a) Congonly vs. Cong, b) Congonly vs. Incong, ¢) Cong vs. Incong
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Figure 9.9: Neural activation pattern updating demands - Displayed is the color-coded
activation pattern A, for the frequency bands alpha and theta in a topological distribution.
The neural activation pattern has an arbitrary and undefined unit. A comparison of n-back
levels zero and one is shown for all flanker conditions. The resulting values are an average over
the individual patterns of all 21 subjects. a) Congonly, b) Cong, ¢) Incong
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Figure 9.10: Neural activation pattern Updating vs. Inhibition - Displayed is the
color-coded activation pattern A, for the frequency bands alpha and theta in a topological
distribution. The neural activation pattern has an arbitrary and undefined unit. A comparison
of shifting and inhibition demands . The resulting values are an average over the individual
patterns of all 21 subjects. a) Up (cong only) vs. Incong, b) Up (cong) vs. Incong
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9.4 Discussion

Can the results from study 1 be reproduced ?
Is there a block effect for the EF inhibition in the modified flanker task ?

9.4.1 Behavioral data

The general level of accuracy was high with more than 90 % in all conditions, stating
that the difficulty level was adequate and all subjects were able to perform the task
with sufficient accuracy. The ANOVA revealed that the n-back level and the flanker
congruency have a significant interaction, as well as a significant effect on the RT. Both
effects are expected according to literature [60, 110, 111]. Significant differences between
congruent and incongruent flanker trials have been found during zero, but not during
one back with respect to reaction time as well as to accuracy. The opposite result has
been found for congruent trials from mixed blocks compared to congruent trials without
flanker variation. RT is significantly different during one back, but not during zero back.
This reaction time effects that have been found to differ slightly from the original study
[67]. Scharinger and colleagues found an underadditive flanker effect on updating load,
but only at n-back level 2 not already at level 1. An underadditive flanker effect describes
a decrease in interference due to a general increase in attentional processes. During
n-back level one, no differences in RT between cong and incong trials were found. This
is an effect that can be due to a general increase in the attentional process has already
been found by other authors [110]. The effect underlines the unity aspect of EFs (c.f.
[39]) since it can be explained by relying on a common attentional resource, based on the
general activation of attentional processes that are shared. This means that based on a
high attentional level no more/additional capacities can be used for the flanker processing.

It can be argued that the cognitive load is lower in zero back condition and dur-
ing low cognitive load enough attentional resources are available to take the flanker into
account and also to solve the task sufficiently well. Hence, this could be an explanation of
why no difference in accuracy and RT can be found at 0-back between cong and congonly
trials. It can be hypothesized that the influence of the readiness to inhibit (cong trials)
on the performance seems to be minor but gets visible when additional load is present.
This would also lead to the assumption that no other confounds are introduced by using
congruent flankers only if no differences between the two experimental conditions can be
found during 0-back.

The approach using a block design to asses differences between congruent trials in
mixed flanker blocks and blocks without flanker variation is conceptually similar to other
studies [85], [112] in which the authors aimed to asses switch cost. They designed blocks
in which one task was performed purely and a block in which shifting between tasks was
necessary. The difference in time that was needed per block was called switch cost. A gen-
eral observation that was made and can be transferred to the results of this study is that
the reaction time is slower when mixed blocks are performed in contrast to pure blocks.
Theoretical validation that allows comparing congruent trials between the two blocks (con-
gruent only vs. mixed flanker block) can be found in a study by Rogers et al. [113]. They
showed that accuracy and reaction time improve immediately after a switch trial, but no
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further improvement can be seen in trial three and four after the switch. Since we filter all
congruent trials out that are not proceeded by a congruent trial, differences in behavioral
data should not reflect an acute shifting process that influences the current congruent trial.

Using neutral flankers only would be interesting to compare with, since they do
not represent competing items, but still, the use of inhibitory control might be necessary
to focus solely on the central item. In addition to that, using incongruent flankers only
would also be interesting. This would complete the analysis regarding the question of
how much influence the preparedness to inhibit, actual response inhibition and distractors
without conflict have. From the behavioral results of this study, it can be concluded that
two different levels of inhibitory control can be distinguished with statistical significance,
but not three.

9.4.2 Neurophysiological data

EEG signals have been investigated on a grand-average basis at four channels of inter-
est, covering frontal and parietal sites which are of interest concerning working memory
load. No nameable significant differences have been found, suggesting that either po-
tential differences between the experimental conditions cannot be assessed with EEG or
that existing difference vanish and lose statistical significance due to averaging over 21
subjects. It could be argued that showing the results of more channels could reveal dif-
ferent results. However, choosing to display more channels would result in a more strict
correction for multiple comparisons, making it even harder to find significant differences
between the experimental conditions. As already mentioned, the four chosen channels are
the most important on which effects would be expected. For the averaged power spectra,
the situation looks similar. Finding no significant effects there leads to the assumption
that no neurophysiological differences can be found. Due to this, it needs to be stated
that the classical standard analysis of ERPs and power spectra were not sufficient to draw
conclusions out of the data for distinguishing three levels of inhibitory control.

9.4.3 ML-based classification

With one minor exception, classification accuracy is highest for congonly vs. incong,
followed by congonly vs. cong trials. Accuracy is lowest for cong vs. incong comparisons,
independent of the n-back level. For each level distinction, statistically significant results
exist, indicating that three different levels of inhibitory control can be distinguished. No
inhibition, readiness to inhibit, inhibition. This fact underlines the initial assumption
that, even though behavioral data does not give rise to any difference between no
inhibition and readiness to inhibit at n-back level zero, statistically significant differences
exist in neurophysiological data.

Classification accuracy is less accurate when the n-back level is one, compared to
n-back level zero, emphasizing the interaction between the two conditions, which also
suits the flanker effect we found relying on shared attentional resources [110]. Due to this,
the non-significant performance for distinguishing cong vs. incong trials during n-back
level one can be explained. Therefore, it can be assumed that the higher the current
cognitive load, the less accurate is the classification accuracy. Congonly trials only require
the focus on one task without distraction, cong trials in mixed flanker blocks already the
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preparedness to inhibit potentially conflicting flankers and incong trials require the actual
execution of inhibitory control. This difference can be made visible with a classification
approach on EEG signals.

In general, the classification approach is interesting for differentiating between dif-
ferent mental states or experimental conditions as it works on a single trial basis of each
subject individually. Between-subject variability does not compromise the overall results
as much as this is the case in standard ERP analysis. No differences in behavioral data
do not mean that the experimental conditions do not induce different mental states.
The minor overlap of properties of updating and inhibition, specifically tested with the
new congonly condition that has been revealed in the cross-class classification might be
related to a unity aspect of the two EFs. Since the classification accuracy only deviates
minimally from the chance level, it can be assumed that it is a very small overlap of
properties. Therefore, it can also be assumed that a large amount of properties is distinct
and speaks for the diversity aspect.

9.4.4 Neural activation patterns

Apart from classifying the signals, it can be evaluated which neurophysiological features
led to the distinction in the classification approach. This knowledge can be a useful
extension to the prevailing analysis, as it gives more insight into the origin of the difference
in signals between conditions. The revealed results show that only features related to
working memory load have been denominated as important during the distinction.
The features with the greatest importance are in the theta range, at frontal electrode
positions, and in the alpha range at parietal electrode positions which are known to
correlate with working memory load [101, 114, 115]. No other features have been ranked
important. Therefore, it has been ensured that no artifacts or non-task related fea-
tures have been factored in. For this reason, the usage of this approach can be seen as valid.

Another general conclusion that can be drawn is that the same pattern, that has
been found in Krumpe et al. [90] could be replicated in this study for the EF inhibition.
The shift of alpha activity to PZ rather than OZ compared to the original study can
possibly be explained by using a different approach to correct for eye movement artifacts.
But in general, it needs to be noted that the study at hand was no exact replication.
Therefore, minor differences can be expected. Despite the differences and potential high
inter-subject variability, the reproducibility of the pattern reveals that this must be a
rather robust pattern that has been made visible by this technique.

9.5 Conclusion

The here presented results could show that three levels of inhibitory control can be dis-
tinguished with the help of ML approaches in a modified Flanker task. Classical analysis
approaches, including the analysis of behavioral and physiological data, did not create a
consistent picture of the presence and differentiability of three different levels of inhibitory
control. Behavioral data only gave rise to the presence of two levels, whereas the group-
based averages of EEG signals were not meaningful at all. When additionally looking at
the classification accuracies, it could be found that three levels of inhibitory control can
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be distinguished with statistical significance. The classification approach and its valid-
ity are supported by investigating the neurophysiological interpretation of the underlying
patterns that make the data distinguishable. This reveals how important it can be to also
integrate single subject analysis steps, to not lose meaningful inter-subject variability. It
could also be shown that the results from study 1 can in great parts be reproduced, and
it could additionally be shown that blockwise manipulation of inhibition demands does
differ from trialwise manipulation as was hypothesized. The effects are not as major as in
study 2 but nevertheless measurable.
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Chapter 10

Study 4: When Shifting meets
Inhibition II (Between vs. within
block effects)

Study 4 again investigates the unity and diversity aspects of the EFs Inhibition and Shift-
ing. Since the results from Study 2 brought a new perspective on the so far performed
studies, another follow-up study was designed. To achieve consistency in the results, it
has been decided to repeatedly perform study 2 with the extension of one more condition
in which there was no manipulation of inhibition demands by varying flanker items. Con-
ceptually, study 4 equals study 3. However, it is based on the task design of study 2. The
resulting design, therefore, allows the block- and trialwise manipulation of inhibition as
well as shifting demands. Hence, study 4 completes the analysis regarding the properties
of the EF inhibition by evaluating it in two different tasks (n-back and greater/odd) and
two different manipulation settings (block and trialwise)

Is there a block effect for inhibition demands in the modified flanker task ¢

10.1 Task design

As already stated, the experiment is based on the task design of study 2 with the addition
of one condition which has conceptually been introduced in study 3. The design of
the study comprises of two tasks: the odd and greater 5 task and the Eriksen-Flanker
task. The odd/greater task is used to induce demands on the EF shifting, whereas
the flanker task is used to induce demands on the EF inhibition. The simultaneous
presentation of the two tasks was realized by showing seven items at once, from which
one was positioned centrally, the other six on a flanking position to the left and right
of the central item. The odd/greater 5 task was performed on the central item and
used as the primary task in the experiment. The flanker was only used as a secondary
task, to which no action was required. The six flanking items, where therefore congruent
(identical) or incongruent (different) to the central item and fulfilled a distracting purpose.

Again the experiment was presented blockwise, this time with six blocks in total.
As in study 2, the levels of shifting demands can be categorized as follows: single (only
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Figure 10.1: Experimental design - The task was presented on a black screen with white
letters as stimuli and flanker items. Stimuli were presented for 500 ms, followed by a blank
black screen in which the subject needed to answer the odd-even/smaller-greater task on the
central item with yes or no by pushing the respective key on the keyboard. The box on the
right shows exemplary which trials were used in the analysis as congruent or incongruent trials
in the mixed flanker block.

one task during the entire block, odd or greater), mixed (both tasks during the block in
an randomly interleaved order), switch (current trial is from different task as the previous
one), repeat (current trial is from the same task as the previous one). Single and mixed
categories manipulate shifting demands blockwise, whereas switch and repeat manipulate
shifting demands trialwise. For a better overview of the categories and the resulting data
structure see Figure 10.2. To quickly repeat the task of the subject: In each trial, subjects
were asked to decide whether the central item is greater than 5 or odd. Which of the two
tasks needed to be performed was indicated by a queue which was presented for 300 ms
before each trial (<> for greater, ~~ for odd). Therefore, in each trial, an answer of yes
or no was required by button press (keys D and L on a standard keyboard). Yes and no
answers were randomly distributed over each block with a ratio of 1:1 and given with the
index finger of either the right or left hand. Which key represented the yes answer was
counterbalanced throughout all subjects. Each block included 120 trials, of 2.3 seconds
length. One trial consisted of 300 ms queue, 500 ms stimulus presentation and a 1500 ms
long blank screen. For a schematic overview of the experimental design, see Figure 10.1.

The stimuli were again numbers in the range of 1 to 9, excluding 5. Each number
was presented equally often as a central item, leading to a balanced amount of even and
odd items as well as a balanced number of smaller and greater than 5 items. The ratio for
the congruency of the flanker items was on third congruent and two thirds incongruent.
The six blocks were presented divided into two parts, enabling a break after half of the
experiment. Two blocks consisted of the odd task only (single), one of the greater than
five task only (single) and three blocks presented both tasks in an alternated and random
but balanced order (mixed). One of the single blocks was designated to show congruent
flanker items only, as well as one of the mixed blocks, whereas all other four blocks showed
congruent and incongruent flanker items. For consistency throughout all participants, it
was chosen to use one of the odd blocks in the single condition to present congonly flankers.

Before the start of the experiment, a short training phase was presented to famil-
iarize the subjects with the task. The training consisted of 3 short blocks (24 trials),
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one for each task level (odd (single) and greater 5 (single) and both tasks (mixed)).
The training blocks had to be repeated if the accuracy was below 60 % to ensure that
the subject was able to solve the task correctly. During training feedback based on
the performance is provided to the subject after each block to indicate to the subject
and instructor that the task was fully understood and can be executed with sufficient
accuracy. The subjects are also asked to rate the effort after each training block that
is needed and how successful the subjects perceived their performance. During the real
task, no feedback was provided.

10.1.1 Participants

21 subjects (18 females) participated in the study, for which they were reimbursed with
8 euro per hour. All subjects had normal or corrected to normal vision and no reported
neurological disorders. The participants gave written consent and the study was approved
by the local ethics committee. On average, the subjects were 22.95 (£3.23) years old.

10.1.2 Technical setup

The subjects were seated in front of a computer screen (19 inches) on which the experiment
was presented by the software E-Prime (Version 2.0.10.356). A standard keyboard was
used for entering the answers, by which the correctness of an answer and the reaction time
were assessed. For recording EEG, a Brain Products Acticap system with 32 electrodes
was used and one Brain Products actiChamp amplifier which was sampled at 500 Hz
(PyCorder). The integrated high pass filter was set to 0.1 Hz and the integrated low pass
filter to 100 Hz. Additionally, a notch filter between 48-52 Hz was applied to eliminate
power line noise. 28 electrodes were used for the recording and placed according to the
extended 10-20 system [93] (FP1, FP2, F7, F3, FZ, F4, F8, FC5, FC1, FC2, FC6, T7,
C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, PZ, P4, P8, O1, 02). The ground and
reference electrodes were placed on the right and left mastoid respectively and impedances
were kept below 10 kS2.

10.2 Data analysis

Data was analyzed with respect to behavioral data, which includes reaction time and task
accuracy as well as with respect to physiological measures, including the EEG signal.
Trials are categorized according to the presented flanker condition (Congonly, Cong and
Incong), the task (Odd and Greater) and the shift which can occur trialwise (Repeat
and Switch) or blockwise (Single and Mixed). Figure 10.2 again shows an overview of all
categories that were investigated.
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Figure 10.2: Datastructure - The data can be divided into three categories regarding
the number of tasks within one block, which represent different levels of shifting demands.
Each category can further be divided into three subcategories regarding the Flanker condition,
which represent different levels of inhibition demands. In total a set of nine categories can be
distinguished and will be used for analysis. : inhibition, . shifting.

10.2.1 Behavioral data analysis

In terms of behavioral data, RT and task accuracy can be investigated an compared to
reveal differences and commonalities between the properties of the two executive functions
shifting and inhibition. Statistical significant differences between the categories have been
evaluated with an ANOVA, calculated on a linear regression model either on the RT or
task accuracy.

10.2.2 Neurophysiological analysis

For the physiological data, only artifact-free trials with correct responses were used for
data analysis, with an additional exclusion of trials that might yield to any Gratton-like
effect. The data was bandpass filtered between 0.4 - 40 Hz and re-referenced to the
common average. To remove artifacts a threshold of 100 ©V was chosen and all trials
exceeding this level were discarded. Trials including eye movement artifacts were corrected
using a regression method by Schloegl and colleagues [23]. A baseline correction was
performed with 100 ms pre-cue onset.

In addition to this restriction, only trials that were preceded by another congruent
trial have been selected. Incong trials are correctly answered trials with incongruent
flankers from blocks with mixed flankers, again with the restriction that only trials which
are preceded by a congruent trial are used for the analysis. In terms of physiological
data, the grand average ERPs, as well as the grand average spectra, can be computed for
each of the six categories separately. Based on the results of [57], the ERPs at electrode
positions FZ, CZ, PZ were of major interest. For the calculation of the power spectra
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Burgs maximum entropy method was used with a model order of 32 and a bin size of 1.
To test whether the differences in the ERPs and power spectra between the factor levels
are statistically significant, a Wilcoxon ranksum test [102] was conducted over all subjects
and trials. The resulting p-values were Bonferroni corrected [103] and the significance
level was set to p < 0.05.

10.2.3 ML-based classification

For the investigation of the EFs by means of machine learning, SVM classification was
chosen. A SVM with a linear kernel (C = 1) [94], [8] was applied to differentiate between
the nine categories introduced above using the libsvm implementation for Matlab [95],
[96]. The classification between categories was conducted for the following pairs for each
subject individually:

e Inhibition: Cong vs. Incong vs. Congonly
e Shifting: Single vs. Mixed, Switch vs. Repeat
e EFs: Shifting vs. Inhibition

The aim is to separate EF demands from baseline demands, but also different EF demands
from each other. As the baseline demand within this study, congruent or congruent only
trials from the single blocks have been chosen, because neither shifting nor inhibition
demands should be induced during those trials. For each data pair, a subset of the data
is used to train a classifier, to learn the characteristics of each category. The remaining
data is used to evaluate the success of the learning and hence, the skill of the classifier.
This is done on a single-trial and single-subject level. To ensure stable results a 10-fold
cross-validation was performed for each classification. The datasets (training set as well
as the test set) were balanced for each comparison, by removing all spare trials if one of
the classes had more trials than the other, to ensure that the distribution of examples
per class does not have an influence on the result.

For classification, again two different types of features were used: CCA filtered
ERP features [97] and power spectra. The performance of the classification approach is
measured in accuracy, stating in how many cases the classifier categorized a trial correctly.
Statistical significance of the classification results was determined by using permutation
tests on the data.

The statistical significance of the results was determined by permutation tests with
1000 iterations [98, 99]. The classification performance achieved in the permutations
establishes an empirical null distribution on random observations, which can be used
to determine significance boundaries. Therefore, in each iteration classification was
performed in a 10-fold cross-validation, but with randomly assigned class labels in
the training set instead of the correct class labels. The achieved accuracy values were
compared with the ones determined in the standard 10-fold cross-validation. Significance
level was determined to be at p < 0.05, stating that the original classification performance
is significant when the performance values are higher than the 95th percentile of the
calculated empirical distribution.
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Cross-Class classification

Since the question of separability aims to answer the diversity aspect of Miyake’s model of
executive functions, another approach needs to be introduced to answer the unity aspect
of the EFs. For this, a cross-class classification was performed. In this approach, a
classifier was trained on the distinction of EF1 vs. BL and tested on EF2. The reason
for this is as follows. If the functions have significant overlaps in their properties, EF2
should be classified as EF1 with above-average frequency. If there is no such overlap,
the classification accuracy should be at a more random level. This evaluation is done in
both directions. Hence, each EF is part of the train and the test set once. Cross-class
classification is performed on ERP as well as on power spectral features.

10.2.4 Neural activation patterns

To inspect the features used for the distinction in the classification approach, a method
developed by Haufe and colleagues [29] was used that transforms the weights of the SVM
classifier into neurophysiological interpretable values, in so-called neural activation pat-
terns. One classifier model is trained for each subject on the data of the respective cate-
gories. Applying the method on the model results is one activation value for each feature
that was used in the classification. To create a comprehensive picture of the resulting neu-
ral activation pattern, the values are averaged within and according to the two frequency
bands alpha (8-12 Hz) and theta (4-7 Hz). This is done for each subject individually,
but the median values across subjects will be depicted in a color-coded topological dis-
tribution, to visualize the results. By calculating the activation patterns the underlying
neurophysiological patterns that are responsible for the distinction can be inspected, which
can provide valuable information analyzing the unity and diversity of different EFs.

10.3 Results

10.3.1 Behavioral data

Table 10.1 shows the average accuracy and reaction time of the subjects, summarized
according to the above defined categories. Regarding accuracy, it can be stated that
accuracies are higher for single than for mixed blocks, which is statistically significant
as can be seen in Table 10.2. When looking at RT's, it can be seen that answers have
been given significantly faster in single than in mixed blocks, as well as in repeat trials
compared to switch trials. Cong only trials are overall not more accurate than cong trials
but they are faster in the mixed condition. When comparing the three flanker conditions
in a pairwise t-test to each other, it can be seen in Table 10.3, that there seems to be no
statistically significant difference in neither of the tested combinations.
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Table 10.1: Behavioral accuracy and reaction time - Average accuracy (Acc) and
reaction time (RT) of the subjects categorized according to the flanker condition (cong, incong),
shift condition (Single, Mixed, Switch or Repeat) and task (Odd or Greater).

SubTask | Flanker | Single | Mixed | Repeat | Switch

Avg Acc [%] | Greaterb cong 97 90 91 90
Greaterb incong 96 91 89 89

Greaterb | cong only - 90 92 89

OddEven cong 93 86 90 84

OddEven | incong 92 88 89 87

OddEven | cong only 93 86 86 87

Both cong 95 88 90 87

Both incong 94 89 89 88

Both cong only - 88 89 88

Avg RT [ms] | Greaterb cong 517.19 | 716.7 | 712.55 | 720.65
Greaterb incong 529.13 | 726.34 | 715.24 | 742.24
Greaterb | cong only - 680.73 | 669.70 | 689.16
OddEven cong 577.81 | 762.46 | 729.16 | 784.11
OddEven | incong | 601.90 | 783.75 | 726.65 | 836.30
OddEven | cong only | 593.11 | 727.86 | 692.44 | 753.43

Both cong 547.50 | 739.58 | 720.85 | 753.28
Both incong 565.51 | 755.04 | 720.94 | 789.27
Both cong only - 704.29 | 681.07 | 721.29

Table 10.2: ANOVA on behavioral data - P-Values calculated for the average reaction
times (RT) and accuracies (ACC) of all subjects per condition. An ANOVA was performed
on a linear regression model, taking the task, flanker condition and the Shift into account.
Significance level has been determined to be at p < 0.05.

Shift (Block) | Task | Flanker
RT < 0.05 <0.05| 0.38
Acc < 0.05 <0.05| 0.99

Table 10.3: Pairwise T-test on behavioral data: More detailed analysis of the two
individual factors flanker condition and shifting on block level. P-Values have been calculated
for the average reaction times (RT) and accuracies (ACC) of all subjects per condition with a
paired t-test. Significance level has been determined to be at p < 0.05.

Flanker
Shift block | congonly vs. cong | congonly vs. incong | cong vs. incong
Single RT 0.61 0.79 0.43
Single Acc 0.88 0.58 0.33
Mixed RT 0.39 0.21 0.68
Mixed Acc 0.93 0.72 0.61
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10.3.2 Neurophysiological data

ERPs

The analysis of the ERPs shows, as in the previous studies, that there is no significant
difference for the EF inhibition compared to baseline conditions (see Figure 10.3). Figure
10.4 shows the ERPs for the shifting vs. baseline conditions and in this case, it can also
be seen what was found in study 2. There is no visible difference for the switch vs. repeat
comparison, but several areas at more than one electrode position that differ significantly
between single and mixed blocks. The grand average ERPs and power spectra for four
out of the six categories are shown in Figure 10.7 to make the waveforms comparable
between all conditions. It can be seen that the four conditions differ in amplitude, but
the waveform remains rather constant. The ERPs of the mixed block are more positive
in amplitude at Cz and Pz at several points in time compared to ERPs from the single
blocks. As in the previous studies, the parietal/occipital change in alpha power can be
identified as an ERD as the power decreases with an increasing amount of load and the
change in frontal theta power can be identified as an ERS since the power increases with
the amount of load.

Power spectra

Figure 10.5 shows the power spectra for the comparison of the inhibition demands in Single
Blocks. Only in the congonly vs. incong comparison provides statistically significant
differences. In Figure 10.6 the power spectra for the comparison of shifting demands
can be seen. The results are in line with the ones form the ERP analysis. The trialwise
manipulation (switch vs. repeat) does not show statistical significance, the single vs. mixed
comparison (blockwise manipulation) however, provides significantly different areas in the
signal at electrode position Cz.
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Figure 10.3: Grand average ERPs for inhibition demands Displayed are the electrode
positions Fz, Cz, Pz and O2 during Single blocks. A pairwise comparison of trials with con-
gruent only, congruent and incongruent flankers can be seen in the three subfigures. The grand
average has been calculated over all 21 subjects. Grey areas indicate statistically significant
differences between the two conditions (p<0.05 Bonferroni corrected, according to number of

time points). A: Congonly vs Cong, B: Congonly vs Incong, C: Cong vs Cong,

: congonly,

: incong.

: cong,
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Figure 10.4: Grand average ERPs for shifting demands - Displayed are the electrode
positions Fz, Cz, Pz and O2. A pairwise comparison of trials with different shifting levels during
a congruent Flanker can be seen in the three subfigures. The grand average has been calculated
over all 21 subjects. Grey areas indicate statistically significant differences between the two
conditions (p<0.05 Bonferroni corrected, according to number of time points). A: Single vs
Mixed, B: Switch vs Repeat, : mixed, : single, : repeat, : switch.
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Figure 10.5:
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Grand average Power spectra for inhibition demands - Displayed are

the electrode positions Fz, Cz, Pz and O2 during Single blocks. A pairwise comparison of trials
with congruent only, congruent and incongruent flankers can be seen in the three subfigures.
The grand average has been calculated over all 21 subjects. Grey areas indicate statistically
significant, differences between the two conditions (p<0.05 Bonferroni corrected, according to
number of time points). A: Congonly vs Cong, B: Congonly vs Incong, C: Cong vs Incong,

: congonly,

: incong.

: cong,
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Figure 10.6: Grand average Power spectra for shifting demands - Displayed are
the electrode positions Fz, Cz, Pz and O2. A pairwise comparison of trials with different

shifting levels during a congruent Flanker can be seen in the three subfigures.

The grand

average has been calculated over all 21 subjects. Grey areas indicate statistically significant
differences between the two conditions (p<0.05 Bonferroni corrected, according to number of

time points).A: Single vs Mixed, B: Switch vs Repeat,

repeat, : switch.
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Figure 10.7: Grand average All in One: Displayed are the electrode positions Fz, Cz,
Pz and O2. The grand average has been calculated over all 21 subjects. A: ERP, B: Spectra,
: single congonly, : single cong, : single incong, : mixed congonly.

10.3.3 ML-based classification

The Tables 10.4 - 10.6 provide the results for the classification approach in. In Table 10.4
it can be seen, that there are clear differences between the three comparisons. The cong
vs. incong comparison has by far the lowest accuracy values, whereas the other two
comparisons reach statistical significance with values between 57 - 67 %. Interestingly, the
performance is better for the power spectral features than for the ERP features. Table 10.5
shows the results for shifting vs. baseline demands, which was manipulated blockwise.
Results above 70% can be achieved for ERP features and up to 68 % for spectral features.
A clear difference can be seen for the separation during the presence of an incongruent
flanker compared to a congruent or congruent only flanker. As in the previous study,
the trialwise manipulation of shifting demands (switch vs. repeat) does not exceed the
chance level classification performance (see Table 10.6). Regarding the classification of
the two EFs against each other, it can be seen (see Table 10.7) that this is possible with
over 70% accuracy. Interestingly this works better for cong trials than for cong only trials
concerning ERP features, but inversely for power spectral features.
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Table 10.4: Classification inhibition demands - Classification accuracies achieved with
ML approach with (Mixed) and without (Single) an additional load factor of shifting. Displayed
is the classification accuracy achieved with an SVM and a linear kernel during a 10 fold cross-
validation. The used time frame contains 1.3 s from stimulus onset (650 samples) from 15
channels. ERP features were additionally filtered with canonical correlation analysis (CCA),
whereas power spectral features were calculated with Burgs maximum entropy method from 1-
20 Hz. Statistical significance was determined by calculating an empirical null distribution with
permutation tests and is indicated by *. Significance level was determined to be at p < 0.05.

Shift | Task Features cong only vs. cong | cong only vs. incong | cong vs. incong
Single | OE | ERP (CCA) 59.80 %* 62.46 %* 48.83 %
Power (1-20) 67.68 %* 57.02 %* 53.81 %
SG | ERP (CCA) - - 53.51 %
Power (1-20) - - 52.36 %
Mixed | OE | ERP (CCA) 52.47 % 62.46 %* 53.01 %
Power (1-20) 59.39 %* 57.02 %* 51.55 %
SG | ERP (CCA) - - 52.26 %
Power (1-20) - - 53.33 %

Table 10.5: Classification shifting demands (block) - Classification accuracies achieved
with ML approach with (Flanker = incong) and without (Flanker = cong) an additional load
factor of inhibition. Displayed is the classification accuracy achieved with an SVM and a linear
kernel during a 10 fold cross-validation. The used time frame contains 1.3 s from stimulus
onset (650 samples) from 15 channels. ERP features were additionally filtered with canonical
correlation analysis (CCA), whereas power spectral features were calculated with Burgs maxi-
mum entropy method from 1-20 Hz. Statistical significance was determined by calculating an
empirical null distribution with permutation tests and is indicated by *. Significance level was
determined to be at p < 0.05.

Task Features Single vs. Mixed | Single vs. Mixed | Single vs. Mixed
cong only cong incong
OE | ERP (CCA) 71.57 %* 68.61 %* 66.15 %*
Power (1-20) 67.90 %* 67.34 %* 61.15 %*
SG | ERP (CCA) - 73.53 %* 66.84 %*
Power (1-20) - 63.72 %* 63.59 %*

Table 10.6: Classification shifting demands (trial) - Classification accuracies achieved
with ML approach with (Flanker = incong) and without (Flanker = cong) an additional load
factor of inhibition. Displayed is the classification accuracy achieved with an SVM and a linear
kernel during a 10 fold cross-validation. The used time frame contains 1.3 s from stimulus
onset (650 samples) from 15 channels. ERP features were additionally filtered with canonical
correlation analysis (CCA), whereas power spectral features were calculated with Burgs maxi-
mum entropy method from 1-20 Hz. Statistical significance was determined by calculating an
empirical null distribution with permutation tests and is indicated by *. Significance level was
determined to be at p < 0.05.

Task Features Repeat vs. Switch | Repeat vs. Switch | Repeat vs. Switch
cong only cong incong
Both | ERP (CCA) 52.84 % 53.33 % 50.99 %
Power (1-20) 51.29 % 51.39 % 48.97 %
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Table

10.7:

Classification EFs Shifting vs.

Inhibition - Classification accuracies

achieved with ML approach. Displayed is the classification accuracy achieved with an SVM
and a linear kernel during a 10 fold cross-validation. The used time frame contains 1.3 s from
stimulus onset (650 samples) from 15 channels. ERP features were additionally filtered with
canonical correlation analysis (CCA), whereas power spectral features were calculated with
Burgs maximum entropy method from 1-20 Hz. Statistical significance was determined by cal-
culating an empirical null distribution and is indicated by *. Significance level was determined
to be at p < 0.05.

Task Features Inh vs. Switch | Inh vs. Mixed | Inh vs. Switch | Inh vs. Mixed
cong only cong only cong cong
Both | ERP (CCA) 67.78 %* 64.36 %* 71.92 %* 73.38 %*
Power (1-20) 65.12 %* 64.56 %* 58.91 %* 59.56 %*

Neural activation patterns

The neural activation patterns that resulted from the classification approach can be seen
in the following. When looking at all three Figures (10.8 - 10.10), it needs to be stated,
that fewer commonalities for the individual comparisons, but also fewer commonalities
concerning the previous studies can be found in the neural activation patterns. The alpha
band pattern is similar through the three comparisons but no overlap can be found for the
theta band (see Figure 10.8) for the EF inhibition. The neural activation patterns for the
shifting demands, block and trialwise, can be seen in Figure 10.9. The two patterns do not
seem comparable, but since there were no significantly above chance level classifications
for the Switch vs. Repeat classification, the depicted patterns might be due to chance
and do not necessarily represent a neural process. The Single vs. Mixed distinction is
characterized by parietal theta and alpha activity, which can in parts also be seen in
Study 2. For the distinction of the two EF's shifting and inhibition from each other, it can
be stated that occipital theta and parietal alpha seem to play an important role as can be
seen in Figure 10.10.

10.3.4 Cross-class classification

Again as a last step in the analysis, the results for the cross-class classification are shown.
It can be seen in Table 10.8 that most results are around the chance level. An exception
is the case in which the classifier was trained on single vs. mixed blocks and therefore on
blockwise manipulated shifting demands, and was tested on inhibition trials. Inhibition
trials are significantly more often categorized into the single class compared to the mixed
class.
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Table 10.8: Cross-class classification: The table provides cross-class classification for ERP
features as well as for the power spectra. The classifier was trained on Demand 1 vs. BL and
tested on trials belonging to Demand 2 only. Therefore, the here presented accuracies represent
the percentage of trials classified as BL and 100 - the here displayed percentage reveals the
share of trials classified as Demand 1 respectively. Statistical significance was determined by
calculating an empirical null distribution and is indicated by *. The level of significance was
determined to be at p < .05

Features Trainset | Inh vs. BL Inh vs. BL Single vs. Mixed Repeat vs. Switch
Testset Mixed Switch Inh Inh
ERP congonly | 50.30 % 49.24 % 35.46 % 46.40 %
Power (1-20 Hz) 53.95 % 50.08 % 51.41 % 47.03 %
ERP cong 50.28 % 50.72 % 29.01 %* 43.55 %
Power (1-20 Hz) 50.83 % 51.60 % 42.64 % 54.81 %
Theta 4-7 Hz Theta 4-7 Hz Theta 4-7 Hz

® @6

Alpha 8-12 Hz Alpha 8-12 Hz Alpha 8-12 Hz

. -,

(a) Congonly vs. Cong (b) Congonly vs. Incong (¢) Cong vs. Incong

Figure 10.8: Neural activation pattern inhibition demands - Displayed is the color
coded activation pattern A, for the frequency bands alpha and theta in a topological distribu-
tion. The neural activation pattern has an arbitrary and undefined unit. A pairwise comparison
of conflict conditions congruent only (cong only), congruent (cong) and incongruent (incong)
is shown for the shifting level Single. The resulting values are an average over the individual
patterns of all 21 subjects. a) Congonly vs. Cong, b) Congonly vs. Incong, ¢) Cong vs. Incong
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Theta 4-7 Hz i70 Theta 4-7 Hz i
Alpha 8-12 Hz i Alpha 8-12 Hz

(a) Single vs. Mixed (b) Switch vs. Repeat

Figure 10.9: Neural activation pattern shifting demands - Displayed is the color coded
activation pattern A, for the frequency bands alpha and theta in a topological distribution.
The neural activation pattern has an arbitrary and undefined unit. A comparison of shifting
conditions Single and Mixed, as well as Switch vs Repeat is shown for the congruent flanker
condition. The resulting values are an average over the individual patterns of all 21 subjects.
a) Single vs. Mixed, b) Switch vs. Repeat
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Figure 10.10: Neural activation pattern EFs Inhibition vs Shifting Displayed is the
color coded activation pattern A, for the frequency bands alpha and theta in a topological
distribution. The neural activation pattern has an arbitrary and undefined unit. A comparison
of shifting and inhibition demands. The resulting values are an average over the individual
patterns of all 21 subjects. a) Mixed vs Incong, b) Switch vs. Incong, ¢) Mixed vs. Incong
only, d) Switch vs. Incong only
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10.4 Discussion

10.4.1 Behavioral data

Since mainly the blockwise manipulation of flanker demands is of interest, the discussion
will mainly focus on this aspect of the results. The behavioral data showed that congonly
trials have a significantly reduced reaction time in mixed blocks compared to single blocks,
which is equally present for switch and for repeat trials. This is an indicator that there
seems to be a blockwise difference regarding the influence of the flanker items. In Study 3
this was described and hypothesized to be an effect of 'readiness’ and therefore an increased
level of attention that is required throughout blocks in which flankers varied compared to
a constantly congruent flanker. This effect only gets visible in the mixed block, therefore
in a condition with a high amount of cognitive load. A similar result was achieved in
study 3 when the effect of reduced reaction time only appeared during the 1-back but
not the 0-back condition. Therefore, this can be seen as one more indicator for shared
attentional resources [110]. Single blocks in which no shifting is required are easier to solve
and require less cognitive load than single blocks leaving enough resources available to not
cause a measurable difference. In the mixed block, however, more resources are required,
which is why the impact of constantly varying flanker items does produce a measurable
effect, as attentional capacities seem to reach a limit. Not finding a measurable influence
on accuracy could mean that the limit of attention is not overstepped, but still within
bounds leaving the error rate unaffected. Overall, all behavioral effects of Study 2 could
be replicated.

10.4.2 Neurophysiological data

Regarding the neurophysiological, the same observations as in Study 2 could be made,
regarding the Single vs. Mixed and the Switch vs. Repeat comparisons. Likewise for the
cong vs. incong comparisons of the flanker. Therefore, potential reasons and hypothesis
will not be repeated here. For the newly introduced manipulation of inhibition demands,
almost no differences have been found, except in the power spectra for the congonly vs.
incong comparison. Overall, again this leads to the assumption that either potential
differences between the experimental conditions cannot be assessed with EEG or that
existing difference vanish and lose statistical significance due to averaging over 21 subjects.

10.4.3 ML-based classification

The classification performance that has been achieved in this experiment is very com-
parable to Study 2. The main finding was that only the chance level performance was
achieved for inhibition vs. baseline as well as for switch vs. repeat classifications, but a
good performance for single vs. mixed classifications. Concerning the newly introduced
blockwise manipulation of inhibition demands, it can be stated that the influence is rather
small compared to the blockwise manipulation of shifting demands. Since this result was
already achieved in Study 3, when comparing inhibition to blockwise manipulated up-
dating demands, this was to be expected. Despite the rather small influence, there are
measurable differences caused by the blockwise manipulation of inhibition demands. Since
the classification performance drops notably in the distinction of inhibition and shifting
when congonly trials are used compared to when cong trials are used, could indicate that
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the additional load factor simplifies the distinction. More attentional focus is needed with
varying flankers, increasing the overall cognitive load during the shifting task and thereby
increasing the difference between the two. Cross-class classification again reveals that in
most cases there are no significant amounts of joint feature sets between the two EF's
shifting and inhibition. Interestingly though, inhibition trials (incongruent from single
blocks) were categorized significantly more often into the single block than into the mixed
block. This is theoretically not surprising, as this is the only case in which the train and
test set are from the same ’block’. In practice, it leads to the question of why this result
did not already come up in Study 2. It could be investigated that the overall mean is
influenced by a small number of subjects with high accuracies or it the general tendency
of all subjects is above the chance level. If the result is only based on individual subjects,
this difference between the two studies can easily be explained.

10.4.4 Neural activation patterns

Despite the similarities between Study 2 and 4 regarding all so far discussed results, the
neural activation patterns do not match well. Concerning the comparisons in which only
the chance level performance values have been achieved, this is not necessarily surprising.
In those cases, no distinguishable features have been found, and therefore, no meaningful
patterns. Regarding differences between Study 3 and 4 in terms of neural activation pat-
terns, it can be hypothesized that the difference between numbers and letters as stimuli
is one of the reasons for this. Processes regarding number processing are known to be
strongly active independent of the task at hand because it is such a deeply rooted mech-
anism. Repeating both Studies, with numbers and letters would be necessary to evaluate
this hypothesis. Further, it can be assumed that the differences between shifting and in-
hibition are more variate between subjects, making it harder to find a repeating pattern.
The classification results clearly speak in favor of unique variance of the shifting and inhi-
bition. The difficulties of finding a stable pattern that characterizes the two would explain
why Miyake and Friedman claim that no unique variance between the two EFs exists.

10.5 Conclusion

Overall, it can be concluded that the results are very similar but not identical to study 2
and 3. Again it could be shown that a blockwise manipulation of inhibition demands has
an influence on behavior and measurable signals, but the difference is not as severe as for
the manipulation of shifting demands. Further evidence for the unity and diversity of the
EF's inhibition and shifting could be collected with the help of machine learning approach.
The machine learning played a crucial role in the determination and quantification of
the influence of the blockwise manipulated inhibition demands, which could not be made
visible with conventional group-level statistics. Overall, many more studies need to be
performed to find patterns that fully characterize each EF on a comprehensive level.
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Chapter 11

Discussion

What can be learned from the results of all four studies based on characterizing executive
functioning in EEG with the help of machine learning ¢

In this chapter, the results from all four presented studies will be discussed and concluded
in an overall manner. The discussion will be divided into four categories, summarizing
the results concerning Miyake’s model of EFs (unity and diversity), potential effects that
arise through experimental design (block effects), practical implications of the findings
and lastly the advantages that are achieved by adding an ML approach to conventional
group-level analysis on psycho-physiological data.

11.1 Unity and diversity

The central objective of the four performed studies was to reveal if Miyake’s model of
EFs can be corroborated with EEG data. The question was investigated by introducing
a particular task design that allows to pairwise compare EFs within one experiment and
the same subject. Since the question is mainly about the characterization of individual
variance, a task design that puts the individual in the foreground and allows comparisons
within the individual is indispensable. Statistics teach us that it is of great importance in
which order dimensions and their values are averaged to be able to make statements about
the variance and distribution of the variables to be examined. Since unity and diversity
are difficult to quantify, it is difficult to make a statement about the extent to which the
variance within an individual is an issue. Besides, there is the well-known problem of
latent variables, which can hardly be controlled and recorded, especially between different
individuals. So, if the relationship of EFs within a subject is estimated first, the variance
of latent variables can be actively minimized, since it should eliminate itself. In general, it
is more likely to find constants in the relationship than in the expression of the individual
EF's themselves, especially in rather small sample sizes.

The chosen task design, combined with the single-subject analysis via machine
learning enables to pursue this endeavor and provided promising results. Findings could
be replicated within the set of performed studies with different groups of subjects and
although the repeated measurements were no exact replications. Overall it can be
stated that especially the calculation of neural activation patterns and the cross-class
classification are tools that provided the most value regarding the question of unity and

133



Part II Working memory load and executive function Discussion

diversity if EFs. On the one hand, they complete the classical group-level statistics and
add information to the analysis that statistics only cannot provide. Patterns can be
extracted, and a statement about potential effect sizes of the patterns can be made by
looking at the classification accuracy at the same time. On the other hand, they also
validate the usage of an approach like this because the neural activation patterns make
the machine learning aspect transparent and comprehensible. It can easily be assessed if
the used patterns 'make sense’ considering the literature of previous research in the field.
In the performed studies they did because all relevant features are known to strongly
correlate with WML.

The most substantial evidence for the diversity of EFs is provided by the cross-
class classifications. The classification accuracies indicate that no significant joint overlap
of features is present because the values are not significantly above chance level. Also,
individual activation patterns could be found for all EFs which could in part be replicated
over all four studies.

Concerning unity, it could be shown that the amount of working memory load dif-
fers but is commonly distributed over the three functions. They all share the typical
ERS/ERD components that are known to be characteristic for WML. The amount of
load is in these studies must be seen as relative to the respective task, as they differ in
their subjective difficulty level and cannot be regarded as equal. The amount of load can,
therefore, be seen as a common EF property.

For future research, it is indispensable to perform more studies in a similar design,
but with different tasks that induce load on the individual EFs. Only by this, it can be
validated if the found neural activation patterns can be linked to the EFs directly or just
to task-specific properties. Also, it is necessary to further characterize the relationship of
the EFs to each other, to validate if there is (no) unique variance for inhibition, as has
been questioned by Friedman et al. [52, 53]. To this end, the results of this thesis would
indicate individual differences, but this needs to be confirmed.

11.2 Block effects

During the analysis of the studies, it has been found that there is a major difference
between a blockwise compared to a trialwise manipulation of EF demands. In blocked
conditions, usually, trials with two different levels of difficulty are compared to each other,
whereas in a trialwise comparisons, trials are compared with similar trials that are only
minimally different from each other. Therefore, the assessment of the two manipulation
types block vs. trial measures constant vs. spontaneous effects. It is rather intuitive
that constant effects are easier to capture than spontaneous effects because they usually
include less variation. For some tasks and effects, this is a well-known fact, but for
others, this aspect has so far been neglected and in some cases not even been considered
at all. For the Kriksen-Flanker task, for example, no preexisting study compares the
influence of blockwise variation of flanker congruency, only various variants of within
block manipulations. Usually, the focus of these studies is different from the one set
within the scope of this thesis, but nevertheless, knowing about blockwise effects within
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a Flanker task can help to understand processes and mental tactics that are used by
subjects. Interestingly two different forms of block effects were found. One type, that
has been detected in Study 2 for the EF shifting, shows indicators of differences between
block and trial wise manipulation within in all measured variables. Behavioral data, as
well as neurophysiological data in the classical group-level statistics, show significant
differences. The second form of block effect was found for the EF inhibition in Study 3
and 4, in which no signs of differences are found under low levels of cognitive load, neither
in behavioral nor in neurophysiological measures, but significant effects under high levels
of cognitive load in both measures while using group-level statistics. Especially the latter
form leads to the hypothesis, that a limit of attentional capacity was reached that in
consequence leads to longer RT and (in parts) in reduced accuracies on task. Many
studies and theories emphasize shared attentional resources of EFs and define this aspect
as a common underlying mechanism [110], [116], [42]. Finding that an additional load
factor influences the performance and leads to poorer results concerning RT and accuracy
can be seen as an indicator for limited resources. As long as there is enough capacity
the task can be fulfilled without loss, overstepping the capacity, however, leads to the
neglect of at least one of the task to ensure an overall stable and goal-directed performance.

For future research, this effect should also be tested for updating demands. Within the
current design, this was not possible, as the n-back task does not allow a trial wise
manipulation of updating demands. Another task that induces updating demands needs
to be used instead. Overall, the detection of the effect leads to the conclusion that an
even more careful experimental design is required. It seems to be of great importance to
find the individual variance that can be linked to an EF itself and not only to general
WML effects. It seems likely that mental strategies vary between a block and trialwise
manipulated conditions and therefore also the way of mental processing. This is a crucial
aspect that needs to be kept in mind when mental processes are the main focus of the
investigation.

11.3 Practical implications

Apart from the gain in theoretical knowledge of psychological processes, it can be argued
if there are other practical implications of the here presented results. To be able to detect
and identify specific types of load and not only workload in general would be a desirable
goal. Cognitive load theory (CLT) [117] describes the type and amount of cognitive load
that should be imposed on a learner to achieve optimal learning results. Assessing the
mental state a learner is in, based on the amount of WML, can be very useful to keep a
learner in a comfortable range to achieve optimal learning success. Being able to identify
which specific load a learner is under could be a useful extension to educational applications
to find an ideal way of presenting information to avoid an overload. Unfortunately, the
usage of ’simple’ SVM classification approaches did not provide indicators for a possible
use case. Classification accuracies do not reach values that are drastically above chance
level, which is necessary to provide any usability and improvement for human subjects
[118]. Nevertheless, it would be interesting to follow up on this thought by using more
sophisticated and powerful machine learning approaches that aim to separate the EFs.
To date, some approaches make even neural networks more transparent to understand
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what the algorithm learns such as the relevance backpropagation [119]. Exploring neural
networks with the framework of this studies would, therefore, a potential gain that should
be pursued.

11.4 The advantage of the ML approach

In summary and conclusion, it can be stated that the usage of ML on a single-subject level
adds valuable information to classical group-level statistics. There are several aspects,
which in part have already been named in the previous sections, but will be recalled here
in brevity to complete and round off the chapter. The classification approach adds the
single-subject level to the analysis, which can be an interesting factor in understanding
cognitive processes. It helps to understand the pronunciation of individual effects within a
sample. On the one hand, because it can easily be deduced if every subject has performed
on an equal level or if the effect has strong fluctuations between subjects. On the other
hand, classification accuracy can also be seen as a kind of effect size for the ensemble of
information that has been used in the classification. Both types of information would not
be accessible with standard group-level statistics. Calculating effect sizes can only be
done on a group-level and only for a small a prior defined excerpt of the data. Using the
coefficient of determination is a possibility to assess the strength of an effect for a broader
amount of information, but is rarely, if at all, done on a single-subject level. Considering
subjects individually is generally only done to determine outliers that affect the overall
data negatively. Therefore, measures exist that determine whether a subject individually
performs according to the expectations, but are not used to a greater extent.

Within the four studies, the properties of a single-subject helped a lot to under-
stand and quantify the strength of the load that has been imposed on the EFs and to
rank the importance and characteristics of the effects. This was of particular interest
concerning the trialwise manipulation of shifting demands. It could be shown that despite
significant effects on the behavioral data level, no effects on neurophysiological level
could be found, neither on the single subject nor on the group level. The exact opposite
was the case for the trialwise manipulation of inhibition demands. Under low cognitive
load, effects were invisible on the behavioral level but could be made visible on the single
subject level for neurophysiological data.

The use of SVMs enabled to calculate neural activation patterns from the parame-
ters of the machine learning algorithm that were crucial for the decision making. One
the one hand, this was a great advantage because the SVM is able to take the full
high-density data into account in the process of distinguishing the two EFs from each
other. Group-level statistics rarely do that due to limitations of multiple comparisons.
On the other hand, the machine learning approach enabled to visualize patterns that
are characteristic and therefore, discriminative for each EF. Within the studies, the
group-level analysis of ERP and power spectra only provided indicators for the unity of
the EFs. Differences between the individual experimental conditions were found that
correlated well with WML in general, but no more specific information could be drawn
out of the analysis. The calculated neural activation patterns showed more precisely
where differences between the two EFs can be found and how they are characteristic for
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the individual EF.

A last important advantage of the machine learning approach was the usage of
cross-class classification. It provides information about the overlap of patterns or features
between the classes of interest. If a classifier that is trained on a different set of features,
performs above chance level, it can be assumed that the tested features have joint
properties that the classifier is able to pick up. In the case of the four studies, cross-class
classification was not significantly above chance level, with minor exceptions, indicating
that each EF has its own variance. If one of the EFs does not have own variance, it would
be more highly unlikely to achieve the here presented results.

Overall it can be stated that the explanatory approach that is pursued by stan-
dard group-level statistics can be extended and well complemented by the machine
learning approach. More insights and more levels of information are added to the analysis
that round off the picture of the acquired data. The new insights are able to explain
more details and aspects that are of importance to understand the cognitive processes at
hand.
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Chapter 12

Introduction into episodic memory

The second case study will focus on episodic memory constructs. To complete the
overview of Chapter 5, a more detailed description of episodic memory is given, with a
major focus on memory encoding, decisions based on episodic memory content and in
terms of confidence and content.

This part will deal with one recognition memory task paradigm, which is inspired by
a study performed by Fukuda and colleagues [120]. For conciseness, only the relevant
information regarding the task and the involved cognitive processes will be given.

Episodic memory belongs to the explicit (declarative) part of long-term memory.
Aside from episodic memory, which contains events and facts that have occurred in
personal life, there is semantic memory, which refers to a factual knowing of things and
general world knowledge. Episodic memory is therefore responsible for storing experiences
of specific situations as well as visio-spatial and timing information of events. In contrast,
semantic memory is responsible for the storage of, for example, all the knowledge learned
in school including historical dates and biographical information, Latin names of plants
and animals or laws of physics.

To store and retrieve information at a later point in time to and from episodic memory,
various memory processes must be activated. In the following, three processes will be
defined and presented to get an overview of certain aspects of episodic memory. The
three processes are the central anchor points of this case study and form the basis of the
research questions to be answered. Since all the processes can also be summarized under
the term perceptual decision making, a few more sentences will be used to depict the
concept.

According to Sternberg and colleagues [71], perceptual decision making can be bro-
ken down into three stages: sensory encoding, decision formation, and motor execution.
Sensory encoding and decision formation are described in different theoretical frameworks.
In a detailed review, Gold and Shadlen made efforts to identify and dissociate the two
processes [121]. Two main theoretical groundworks are the basis of this: signal detection
theory [122] and sequential sampling framework [123]. Signal detection theory deals
with the inability to discriminate between the real sensitivity of subjects and their
(potential) response biases caused by conditions of uncertainty. The concept of sensitivity
describes the objective difficulty of the task, whereas the bias describes the effect of
the consequences a decision could have. Missing or detecting a stimulus according to
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its sensitivity level can be quantified by reaction time and in terms of EEG correlates
by P300 latency [124]. The sequential sampling theory, on the other hand, states that
the performance of a subject in an experimental task depends on two main factors:
the quality of the stimulus information and the quantity of information required before
making a response.

12.1 Memory encoding: Quality of memorization

The process by which information enters long-term memory or episodic memory can be
described as memory encoding. According to Baddeley [35], this is controlled and gated by
the so-called episodic buffer, which acts as a link between short- and long-term memory.
The success of memory encoding is defined by the ability to recall the information later,
whereas failure would be characterized by forgetting the information. The memorization
of information can be captured in EEG data and characterized by several correlates.
On the one hand, a larger sustained positivity at frontal electrodes has been found to
be present during the successful encoding of information [125], [126], [127]. On the
other hand, it has been found that alpha-band activity is more suppressed during the
encoding of items that are later remembered than for those that are later missed [128],
[129], [130]. Apart from increased synchrony in the alpha-band, it has also been reported
that beta-band power synchrony increases [129], [128], [131], as well as an increased
frontal theta coinciding with enhanced gamma power in posterior cortex regions for later
remembered (success) versus later forgotten items (failure) [132].

In particular, one further study is of importance, which will be the model for the
performed studies within this part. Fukuda and Woodman performed an old/new
recognition test in which a series of pictures was shown that should be remembered
[120]. In a test phase, memory was tested with known and new pictures, which should be
distinguished one by one. The authors claimed that a prediction of the success of memory
encoding is possible in real-time. However, this was only done in a post-hoc group-level
statistics approach. One study that tried to realize a machine learning based prediction of
memory encoding was performed by Noh and colleagues [133]. They used three individual
classifiers based on pre-encoding (power), and the actual encoding process (ERP and
power). A combination of the three achieved performance values around 59.65 %.

12.2 Memory retrieval: Familiarity and recognition

The process of accessing information stored in memory can be described as memory re-
trieval. Retrieving information from memory can, in many cases, be described as recogniz-
ing something as already known. Judging if something is familiar is often not difficult and
can be made intuitively with high precision. Retrieving more detailed information about
a situation or specific item, however, is often more difficult. According to dual-process
theory, the quality and quantity of recalled information are divided into two different pro-
cesses that can be distinguished on a neuronal level, namely familiarity and recollection
[134, 135]. Familiarity is a form of retrieval in which no context or detail information is
available. An item, a word, or a face seem familiar, but qualitative information cannot
be recalled [136, 137]. Recollection, in contrast to that, is a more effortful process de-
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scribing the retrieval of information, including specific details of the item or the context
from which it is known [134]. Both processes can be combined in a phenomenon called
old/new effect, describing differences between old and familiar items and new so far, not
familiar items. The early old/new effect at frontal areas 300-500ms after stimulus onset
(FN400) is presumed to reflect familiarity [138, 139]. There is also a parietal and late
old/new effect, which is a positive going event-related potential (ERP) observed between
500 and 800 ms, which associates with the process of recollection [140]. Animal studies
(mainly rodents and primates) have been performed to get a better understanding of pro-
cesses that are going on the visual cortex that is responsible for the initial processing of
visual information. These kinds of studies often apply invasive measurement techniques,
for example, single-cell derivations. As a general result of these studies, it has been found
that the anterior inferior temporal cortex is important for visual discrimination and plays
a big role in recognition memory [141]. Several types of neurons have been identified that
fire during item recognition, depending on how new or familiar the item is. For example,
there are individual neurons that fire when something is new (novelty neurons) [142], but
there are also recency neurons that fire when an item has recently been seen [143]. It
has been found that the information about novelty or recency holds within the level of
neurons up to 24h [143] before it vanishes. Due to this memory system on a neuron level,
it is possible, with single-cell derivations, to distinguish between new and familiar items
within 100 ms after the presentation by the neuronal signals.

12.3 Decision making: Confidence about memory

Certainty in decision making is an important prerequisite in everyday life, helping to make
informed and reasonable decisions in difficult circumstances. Decision confidence plays a
role in facilitating adaptive regulation of behavior and supports decision making in com-
plex situations. It affects how subsequent actions are planned or how something can be
learned from mistakes that have been made. Decision confidence is also crucial for plan-
ning actions in a complex environment, especially when subsequent decisions depend on
cach other or the final outcome of a situation [144, 145]. Unfortunately, it is not straight-
forward to extract decision confidence from behavioral or neurophysiological data as the
concept is deeply intertwined with other concepts. One example is evidence or situation
evaluation, which is essential to judge a current state correctly. An accumulation of evi-
dence and constant reevaluation of the available facts requires a broad chain of thoughts
which interacts with decision confidence [146]. Another example is the strong correlate of
reaction time with decision confidence as well as the error rate, which also varies greatly
with the confidence of the current and previous decisions. It was found that certainty is
inversely correlated with reaction time and directly correlated with accuracy and motion
strength [147]. Therefore, the level of confidence can easily be confounded with sensory
evidence or the planning and execution of motoric actions. Also, it could be shown that
previous choices and the respective feedback influence future decisions [148]. More general,
Gherman and colleagues [149] state that establishing certain confidence for a decision relies
on the same mechanism as the choice formation itself. Kiani and colleagues [150] found
that neurons in the lateral intraparietal cortex (LIP) represent evidence accumulation in
monkeys. Since it has been established that the outcome of previous choices influences the
current ones, it seems appropriate to suggest to add a fourth stage to Sternberg and col-
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leagues concept of perceptual decision making, namely outcome and feedback evaluation.
General effects concerning the neural correlates following positive or negative feedback
that can be found in almost all settings are error-related potentials and feedback-related
negativity (FRN). Both belong to the class of event-related potentials (ERPs). The error-
related negativity (ERN), for example, was observed in 1990 by Falkenstein et al. [17],
time-locked to the presentation of an erroneous event peaking at 80-150 ms. The potential
appears strongest at frontal and central electrode sites, has its origin in the anterior cin-
gulate cortex (ACC) [151], and it seems to be linked to error processing [152] and reward
prediction [153]. The error-related negativity is often followed by error-related positivity
peaking 250-500 ms after stimulus onset, which is generated in the posterior cingulate cor-
tex (PCC). This positive component is associated with conscious error perception [154].
There are event-related potentials that are specifically associated with feedback percep-
tion. Especially the feedback-related negativity (FN) is a phenomenon often reported as
a negative deflection 145-300 ms after unexpected feedback [155]. It is located frontocen-
trally and seems to be equal to the N200 component. Interestingly the FN only appears
when the feedback is presented immediately after a decision or reaction. The time frame,
which still counts as immediate, is at least one second long, according to Weinberg and
colleagues [156]. When too much time passes, the FN is no longer visible, but the P3
component remains unaltered, even if the delay is up to six seconds long. Concerning
decision confidence, literature states that error-related EEG signals vary in a graded way
with the level of confidence [157], and also that, it was found that error positivity (Pe)
varies in amplitude with subjective confidence. Both facts show that decision confidence
and error detection are closely related processes [158].

12.4 Idea and hypothesis

The literature regarding episodic memory and its related processes is manifold and difficult
to keep track of. Not only does episodic memory comprise the components of information
encoding, storage, and retrieval, but also other processes that can be associated with
the latter. Examples are the level of detail that can be remembered or the confidence
with which certain details can be recalled. Many studies from the field focus on one of
the processes in isolation within a very specific setting. Examples include but are not
limited to the ability to recall familiar and unfamiliar faces, free recall and cued recall
of information, confidence during gambling/situations of uncertainty, or the unfolding of
confidence with growing amounts of information. To create a systematic overview that
comprises of all core processes in a common and simple setting, a set of four studies was
created within the scope of this thesis. All four studies follow the same design of an
old/new recognition test, in which a set of pictures is studied during a training session
(see Figure 12.1). In a test session, familiar pictures from the learning session are shown
interleaved with new and unfamiliar pictures. The task is to decide for each picture in the
test session if the picture is familiar or not. The processes under investigation within all
four conducted studies will be:

e depth of memory encoding (remembered or not remembered)
e familiarity of the presented stimulus (known or unknown)

e levels of decision certainty (100 and 75 %)
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The results for each of the processes will be dealt with in a separate chapter starting
with memory encoding in Chapter 14, stimulus familiarity in Chapter 15, and lastly
decision certainty in Chapter 16. The four studies will be the data basis for all three
investigations, which is why the task design will be described only once in the upcoming
chapter (Chap. 13). The chosen design of the task allows investigating all processes
throughout different phases of the task, from the encoding to the outcome evaluation.
In total, four different phases are defined, starting with the encoding of the stimuli
during the learning session of the study. As a second phase the presentation during the
recognition test is considered, followed by the decision phase which covers the decision
making of the subject via a button press and at last, the feedback phase in which the
subject processes the categorical feedback stating if the given answer was correct or
wrong. The aim is to acquire findings that cover the basic mechanisms of the three stated
processes without additional restrains.

For each of the three processes, one phase is of particular interest. For the process
of memory encoding, this is, naturally, the encoding phase in which the subject tries
to actively remember the just presented stimulus during the training phase of the
experiment. For the process of stimulus familiarity, this is the presentation phase. In this
phase, the subject actively tries to recall the stimuli from the training of the experiment.
Lastly, in the process of decision confidence, the decision formation but also the decision
evaluation are of the most interest, making the decision and the feedback phase the target
of the investigation. For each of the just stated combinations of cognitive processes and
phases of the experiment, literature-based hypotheses exist about the anticipated effects.
Therefore, it is legit to perform classical hypothesis-driven group-level statistics. For all
other combinations, however, no concrete hypotheses exist. Nevertheless, it could be of
great interest to investigate whether correlations between the cognitive process in question
and other phases of the experiment exist. Overall, this can be seen as following up on all
processes that can be linked to the decision of the subject under the frame or label of one
specific research question, which could be highly beneficial for the general understanding
of human behavior. However, as stated in the problem statement, such an exploratory
and multiple testing of undirected hypotheses is highly problematic with methods from
the classical group-level statistic. For this purpose, the power of machine learning is
exploited to perform exploratory data analysis. The properties of ML, including the
generalizability and the avoidance of overfitting, enable to do a more broad analysis of
the data without running into the trap of losing significance due to multiple comparisons.
For this reason, ML will be applied in this part as a tool for exploratory data analysis, to
allow to make more of the available data.
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Figure 12.1: Exemplary depiction of a recognition test design - In a training session
pictures are presented in a serial manner and the subject is asked to remember as many as
possible. In a recognition test, the subject is again presented pictures in a serial manner, but
this time the subject is asked to decide and answer if the picture is familiar from the training
or new. All four studies that will be conducted in this part, follow this design.
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Chapter 13

Studies I - IV: Task design and
data analysis

In this chapter, a series of four studies will be presented that all evolve about a sim-
ple old/new recognition paradigm in which the subject is asked to learn items during a
serial presentation, which shall be recognized in a testing phase. Starting as a reproduc-
tion of Fukuda and Woodman’s study from 2015 [120], the row of studies resulted in a
hypothesis-generating research approach that covers central questions in episodic memory.
In total, four studies have been performed covering processes such as information retrieval,
decision making under different levels of confidence as well as feedback and performance
evaluation within the same experimental setting. Due to the similarity of the studies, the
design, technical setup, and methodology will be presented once in the beginning. Differ-
ences between the studies will subsequently be highlighted, and the results are sorted and
accumulated by a question to show the findings in a focused manner. The results of the
following studies have in part been published in [159] and [160], but will be presented in
detail in the following chapters.

13.1 Task design

The task design is based on a study originally performed by Woodman and Fukuda
[120]. The task was modified and implemented with minor differences concerning the
choices of possible levels of decision confidence. In general, the experiment is an old /new
recognition test and therefore, divided into a study phase in which the subjects were
asked to memorize as many pictures as possible and in a test phase in which a mixture
of new and already studied pictures were presented and the shown pictures needed to
be identified as known or unknown. In the study phase, a series of 500 pictures were
presented. A schematic sketch of the course of the experiment can be seen in Figure
13.1. All pictures are presented in a block design to enable breaks in between the study
phase. One block consisted of 50 pictures, after which a break can be made for as long
as needed. The continuation of the experiment is controlled manually by button press by
the subject. Each picture presentation can be seen as a separate trial. As stimuli, the
same picture dataset as in the Fukuda and Woodmans study was used [161]. The dataset
contained pictures displaying daily life objects on a white background without many
details. In the test phase, a series of pictures are presented to the subject, again in a
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Figure 13.1: Experimental setup - The four different phases of the experiment (Encoding,
Presentation, Feedback, and Decision) are indicated by the orange arrows over the appropriate
time frames, to indicate which time frames have been used in the analysis. The different rows,
indicated by the capitalized letters at the front of each row, represent the following stages. A:
Training phase (study I-IV), B: Test phase of study I, C: Test phase of study II, III, and IV.
The stimulus is depicted by a smiley and the button press by a blue rectangle. The timing and
duration of each frame and phase is noted below each frame.

block design with a break after 50 pictures each. The subject is asked to decide after each
picture presentation if the picture is new or already familiar. To answer the question, one
out of four options must be chosen: 100 % new. 75 % new, 100 % familiar, 75 % familiar.
The percentage represents the decision confidence with which the answer is given. To
choose one of the four possible answers the keys A, S, O or A on a standard German
keyboard were used. A stands for (100 %) and S for (75 %) on the left side, O (75 %)
and A (100 %) for the same values on the right side. Which side to choose (right or left)
is indicated by circles that appear next to the picture as soon as an answer is required
(1000 ms after stimulus presentation). The circles are blue and yellow, blue represents
familiar, yellow represents new. The sides on which the blue or yellow circle appears
switches after each block to exclude confounds due to the handedness of a subject. The
switch is indicated before the new block starts, and within a block, no changes are made
to avoid confusion.
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After the choice was made by the subject, feedback is presented for 1 s indicating
if the choice, independent of the certainty, was right or wrong. After the feedback
presentation, the next picture is presented, and the subject has to decide again about the
familiarity of the picture. The same set of pictures was chosen for each subject, whereas
the order of presentation and group affiliation (new or studied) was randomized.

13.2 Differences between studies

The four studies differ in their design only in the test phase of the experiment. In partic-
ular, three criteria have been altered, which are enlisted in the following;:

e Total number of pictures in the test phase
e Ratio of old and new pictures in the test phase
e Time between button press and feedback presentation

Table 13.1 gives an overview of the studies concerning the three named criteria. In ad-
dition, the recording time of the studies is added in the table, since this also differed
between the studies due to the enlisted changes in the criteria. The changes in design

Table 13.1: Overview of design differences - The parameters that vary between the four
studies are listed tabularly. The number of pictures refers to the number of presented pictures
in the test phase of the experiment. The ratio of pictures presented in the test phase was
either balanced (1:1) or unbalanced (1:2), whereby in the unbalanced case, twice as many old
as new pictures were presented. The time lag between button press and feedback presentation
is specified in seconds (s), the total recording time of the experiment in hours (h).

Study | Number of pictures | Ratio of pictures Time lag Recording time
New : Old Button and Feedback Total
I 750 1:2 - 1.15h
II 500 1:1 2s 1.2h
111 750 1:2 1s 1.3h
v 500 1:1 1s 1.1h

evolved dynamically after the assessment of the results of the individual studies. Only
a brief reasoning is given here to not anticipate the interpretation and discussion of the
results. Nevertheless, for the sake of clarity, the main reasons for the changes are outlined
briefly. A more detailed reasoning will be given later. Firstly, the number of presented
pictures in the test phase altered between 750 and 500, to be able to compare a balanced
as well as an unbalanced number of old vs. new stimuli. The ratio of old and new pictures
and the total number of presented pictures go hand in hand and can, therefore, be seen as
one factor instead of two. To avoid findings that are solely based on effects by the ratio of
stimuli, balanced and unbalanced ratios were tested to evaluate the resulting differences
and their cause. Secondly, the time between button press and feedback presentation was
varied between 0 and 2 s. The reason for this was that the original design (time lag of 0 s)
did not offer the possibility to separate feedback evaluation from decision making. The
button press is immediately followed by a feedback presentation by which any correlates
related to the decision making might get lost due to new input processing. The choice of
a time lag of 2 s brought other difficulties, which will later be stated and evaluated, which
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after all lead to a final value of 1 s. For a better understanding, Figure 13.1 also visualizes
differences regarding in part B and C.

13.3 Participants

For each study, a new group of subjects was recruited. The participation was voluntary
for every subject and could be ended at any time. All subjects gave written and informed
consent and received a reward of 8 euros per hour or credits relevant for their study for their
participation. The study was approved by the local ethics committee of the University of
Tiibingen and performed in accordance with the declaration of Helsinki.

13.3.1 Study I

In study I, a total of ten subjects participated, five males and five females, that were 22.7
(£3.91) years old on average. From the ten subjects, seven were right-handed, and all
had normal or corrected to normal vision. One subject needed to be excluded from the
analysis due to technical difficulties during the recording.

13.3.2 Study II

In study II, a total of 11 subjects participated, two males and nine females, that were on
average 20.45 (£1.13) years old. All subjects were right-handed and all had normal or
corrected to normal vision. Two subjects needed to be excluded from the analysis due to
technical difficulties during the recording.

13.3.3 Study III

In study III, a total of 11 subjects participated, one male and ten females, that were on
average 20.27 (+2.19) years old. Ten subjects were right-handed, and all had normal or
corrected to normal vision.

Two subjects needed to be excluded from the analysis due to technical difficulties during
the recording.

13.3.4 Study IV

In study IV, a total of 10 subjects participated, seven males and three females, that were
on average 22.6 (£4.93) years old. Eight subjects were right-handed, and all had normal
or corrected to normal vision. One subject needed to be excluded from the analysis due
to technical difficulties during the recording.

13.4 Technical setup

To perform the experiment, the subjects were seated in front of a computer screen (19
inches) on which the task was presented. The experiment was programmed and presented
in Matlab using the Cogent graphics extension. A standard keyboard was used for entering
the answers by the subject. For the recording of the electroencephalogram (EEG) data,
the software BCI2000 [162] was used sampling the data with a frequency of 512 Hz. A
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Brain Products Acticap system and two 16 channel g.tec g.USBamp amplifiers were set up
for the EEG recording. The integrated high pass filter was set to 0.1 Hz and the integrated
low pass filter to 100 Hz. Additionally, a notch filter between 48-52 Hz was applied to
eliminate power line noise. 29 electrodes were used for the recording and placed according
to the extended 10-20 system (FPz, AFz, F7, F3, FZ, F4, F8, FC3, FCz, FC4, T7, C3,
Cz, C4, T8, CP3, CPz, CP4, P7, P3, PZ, P4, P8, O1, Oz, 02, PO7, POz, PO8) and
three additional electrodes were used for electrooculogram (EOG) recordings at the outer
canthi of the eyes and one on the forehead between the eyes. The ground and reference
electrodes were placed on the right and left mastoid respectively, and impedances were
kept below 10 k2. To ensure that stimulus timing is accurately saved in the data, we used
the parallel port connected to the EEG amplifier.

13.5 Data analysis

Three different processes are of particular interest in the data analysis: Depth of
encoding, Stimulus familiarity, and Decision confidence. The three processes will
be analyzed separately in the following chapters within the set of the four conducted
studies. Irrespective of the process, the data will be analyzed in terms of reaction
time and task accuracy, neurophysiological signals, and classification accuracy based on
neurophysiological features. Since the methodological approach is the same in all four
studies, again, the procedure will be described once to avoid unnecessary repetitions.

The data can be categorized according to the predefined answers a subject was
able to give for each trial. The question ”Is this stimulus old or new?” could be answered
with one of the following four options:

e Old - 100 % or 75 % sure
e New - 100 % or 75 % sure

Since each of those answers can either be correct or wrong according to the true label
of the stimulus (Old or New), a total of eight categories can be distinguished. The task
itself allows a division into four phases covering the encoding and presentation of the
stimulus, the decision making and the feedback evaluation. Despite the vast number
of distinctions that can be made, there are two main categories for each of the processes
that are of particular interest:

e Depth of encoding: Remember - Forgotten
e Stimulus familiarity: Old - New
e Decision confidence: 75% - 100 %

For a better overview, the data structure of categories is visualized in Figure 13.2.

At this point, a further remark on the labeling and assigning of categories to each
trial might be necessary. For the depth of encoding, the categories can only be assigned
after the subject has made the decision about the familiarity of a trial in the recognition
test. Otherwise, it is not possible to know whether the subject remembers a trial or has
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Old - Familiar New

Figure 13.2: Data structure of episodic memory studies - The gray boxes represent
the level of familiarity in the data, which can be distinguished into old and new stimuli. The
blue boxes represent the level of decision confidence with which the subjects answer for each
stimulus and the orange boxes represent the level of encoding which either succeeded or failed.
To be precise, only the orange boxes on the right represent the level of encoding, since new
stimuli are not encoded in memory yet.

it forgotten. The labeling of trials in the encoding phase, which happens long before
the recognition test, is therefore made in retrospective. This also holds for trials in the
presentation and decision phase. For the stimulus familiarity, the categories old and new
are defined by experimental design and are known for each trial beforehand. The labeling
is, therefore, based on objective instead of subjective measures, compared to the depth of
encoding. Lastly, for the decision confidence, again, the categories can only be assigned
after the subject has made a decision about each trial with either high (100 %) or low
(75 %) confidence. Therefore, the labeling is subjective and assigned in retrospective
to trials of the encoding, presentation and decision phase, but directly linked to the
respective feedback phase.

It is clear that not every phase is representative of each of the three to be investi-
gated processes. In some of the phases, it might not even be possible to directly link
potential correlates and effects to one of the processes. But, nevertheless, it is an
interesting concept to follow up on correlates that are related, even if only indirectly,
to each of the processes through the entire experiment. Therefore, it has been chosen
to analyze the data of each process with classical and ML-based approaches concerning
the most representative phase. For the process of encoding the encoding phase will
be investigated because in this phase the process of stimulus encoding into memory is
represented best. For the process of stimulus familiarity, the presentation phase will be
investigated. Lastly, for the process of decision confidence, the feedback phase will be
investigated.

In addition to this focused analysis on one phase of the experiment, however, all other
phases are also investigated with ML in an exploratively driven approach to gain further
knowledge regarding the respective process. Therefore, for each of the three processes
of interest there is a classical and an exploratory analysis of the data, to get the most
complete picture of the data and a deeper understanding of the processes that are
investigated.
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13.5.1 Behavioral data analysis

The behavioral data will be analyzed with respect to reaction time and task accuracy.
A two-sample t-test is applied to find out if the performance and speed of the subjects
throughout the task differ concerning the main process. Also, an ANOVA will be per-
formed on a linear regression model to be able to assess statistically significant differences
between and across all four studies.

13.5.2 Neurophysiological data analysis

The neurophysiological data will be analyzed on an ERP basis. The data preprocessing
and analysis was performed in Matlab 2015b [96]. Firstly, a bandpass filter between 1
and 40 Hz was applied to the recorded EEG signal, and the signal was corrected for EOG
artifacts using a regression method proposed by Schoegl [23].

For each of the above described categories, the data was cut into trials of 1 s length,
starting with stimulus onset (see Figure 13.3). For the encoding phase, the stimulus onset
starts with stimulus presentation, likewise in the presentation phase in the recognition
test. In the decision phase, the onset of the phase is chosen to be at 250 ms before
button press which marks the decision of the subject/ onset of the phase starts with the
presentation of the circles, the point in time at which the subject was allowed to press a
button. The feedback phase starts with the onset of the feedback presentation.

Each trial was baseline corrected (-100 ms to 0 ms prestimulus or relative to the corre-
sponding event) and cut into trials of one or 1.25 s length depending on the respective
categories. Figure 13.3 shows a schematic overview of how the data is preprocessed from
the recording to individual trials. For the ERP analysis, additional filtering was performed
to exclude trials exceeding 80 or -80 uV from the analysis. After choosing representative
channels for the evaluation, the grand averages over all subjects were calculated for each
category individually to reveal if there are differences in the time domain. The statistical
significance of the differences in ERPs was established by using a Wilcoxon Ranksum
Test [102]. The resulting p-values were Bonferroni corrected according to the number
of used observations [103]. To chose adequate channels that are representative for the
investigation the coefficient of determination (R?) is computed to see which variance in
the data can be explained by the class label (for a detailed explanation see Section 2.1.4
in Chapter 2).

Since the latency is of significance here to precisely locate the effects, the ERPs
are corrected for all displayed studies concerning the raster latencies of monitors [163],
which are always present but rarely accounted for. For the specific model that was used
for the performed studies, a latency of 28 ms occurs from the trigger until stimulus
presentation. The displayed ERPs are, therefore, all corrected according to this latency
to have an adequate stimulus onset.

Additional analysis: Memory Encoding

To be able to compare the results achieved within the four studies in this thesis and the
original study of Fukuda and Woodman [120], additionally, a time-frequency represen-
tation was chosen for the analysis. In a time-frequency representation, the EEG signal
is transferred into the frequency domain, as has been done previously in this thesis by
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Statistics SVM

Figure 13.3: Neurophysiological data analysis - Visualization of preparation of data for
the neurophysiological analysis. The data of the EEG recording is cut into trials according to
events that specify the beginning of a trial. For that, the epoch (time) and channels (locations)
of interest are extracted from the full recording and saved in a new data structure to easily
access it in the later analysis. The analysis is then either performed with standard group-level
statistics or the machine learning approach.

applying Burgs maximum entropy method [20], but in dependency of time. By this,
changes over time within the power spectra can be visualized. The standard approach
is to use a sliding window, that slides over a larger time frame of interest with a fixed
window size (here: 400 ms) and a fixed window overlap (here: 380ms). A power spectrum
is then calculated for each window. For points in time that were sampled and calculated
several times during this process, a mean value is calculated from all available power
spectra. This results in a time series of power values which can then be graphically
displayed.

In the EEG data analysis very often graphically represented time series are com-
pared with each other. Instead of simply plotting them next to each other, it is also
possible to subtract them mathematically from each other and thus plot only the
differences graphically. This method is also known as the difference of means because
the mean ERPs of the conditions to be compared are subtracted from each other. For
some effects, this is the preferred technique because the differences can be assessed more
concise at one glance.

13.5.3 Classification

A SVM with a linear kernel (C = 1) [94], [8] was applied to differentiate between
the categories introduced above using the libsvim implementation for Matlab [95],
[96]. To ensure stable results 10-fold cross-validation for each comparison was imple-
mented. The datasets (training set as well as the test set) were balanced for each
comparison, by removing all spare trials if one of the classes had more trials than
the other. For classification, two different types of features were used: ERPs in the
time-domain and power spectra of the EEG data. The time-domain features are
based on 0-1000 ms epochs, starting at stimulus onset of the 21 channels (AFz FPz,
F3,FZ,F4 FC3,FzFC4,C3,CZ,C4,CP3,CPz,CP4,P3,PZ,P4,01,02,02). All other elec-
trodes were discarded to reduce the influence of noise and artifacts in the data. Due to
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the sampling rate of 512 Hz, one trial of ERP data is represented by 512 x 21 features.
As a way to improve the signal-to-noise ratio of the data, a spatial filtering method based
on canonical correlation analysis (CCA) was applied [26]. The filter aims to minimize
the variance within a class and to maximize the variance between classes to improve the
separability. Classification using features from the frequency domain was conducted on
the power spectra between 1-20 Hz calculated on the same time frame (0-1000 ms after
stimulus onset) with Burgs maximum entropy method for the same 17 channels (20 x 21
features).

To evaluate the performance of the classification approach, the accuracy was re-
ported, averaged over all subjects. To evaluate the potential influence of the reaction time
(RT), the classification was performed on the RT as well. Since a certain level of accuracy
can already be reached by chance, depending on the number of classes and used trials
per class, the statistical significance of the classification results needs to be established.
To achieve that an approach is used that estimates the chance level of classification
performance by calculating the binomial cumulative distribution [164]. This approach
gives rather generalized and conservative bounds, based on sample size and the number
of classes. Classification results exceeding the estimated chance level can, therefore, be
seen as statistically significant.

QT

Equation 13.1 describes the binomial cumulative distribution, in which P(z) represents
the probability of predicting the correct class at least z times by chance. An appropriate
z can be chosen by multiplying the number of samples n with the desired significance
level (chosen to be at 0.05). C thereby represents the number of classes. The approach
should only be applied when the classes are balanced. Since they are in the classification
approach, this is a suitable measure.

13.5.4 Activation patterns

To inspect the features used for the distinction in the classification approach, a method
developed by Haufe and colleagues [29] was used that transforms the weights of the SVM
classifier into neurophysiological interpretable values, in so-called neural activation pat-
terns. One classifier model is trained for each subject on the data of the respective cate-
gories. Applying the method on the model results is one activation value for each feature
that was used in the classification. To create a comprehensive picture of the resulting
neural activation pattern, the values are shown in heatmaps presenting the calculated ac-
tivation pattern for each data point in the used time window of 1s for all EEG channels
utilized in the classification. This is done for each subject individually, but the median
values across subjects will be depicted in a color-coded topological distribution, to visu-
alize the results. By calculating the activation patterns the underlying neurophysiological
patterns that are responsible for the distinction can be inspected, which can provide valu-
able information analyzing each of the three processes of recognition memory (encoding,
stimulus familiarity, and decision confidence).
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Additional analysis: Stimulus familiarity

For stimulus familiarity, the results suggested that a direct comparison of behavioral
and classification performance could be of interest (see Chapter 15). For visualization,
a barplot was chosen to easily spot differences between the two measures for each subject
and each study. Of particular interest was to evaluate if classification accuracy based on
the ERPs in the presentation phase is significantly better than the behavioral accuracy.
Hence, a one-sided t-test was performed on the values of the behavioral accuracy and the
average classification accuracy of the 10-fold cross-validation of each subject. Subjects for
which a p-value of p < 0.05 was achieved were marked accordingly in the barplot.
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Chapter 14

Memory encoding

In this chapter, the results of all four conducted studies will be presented while fo-
cusing on the aspect of the depth of memory encoding. The aim is to find out if
the depth of memory encoding is reflected in the encoding phase of the experiment
because this is where the process of memory encoding takes place. The two classes or
conditions under investigation are items that are later remembered, and items that are
later forgotten. The label remembered and forgotten is assigned to the items by the
subjects themselves, as only their subjective rating can qualitatively identify an item
as remembered or forgotten. Therefore, the labels are assigned to the trials during
the encoding phase in retrospective based on the decision of the subject which takes
place in the decision phase, and therefore, at a much later point in time in the experiment.

Especially concerning the inspiration of the studies performed in part III, which
was the publication of Fukuda and Woodmann [120], it is also of interest to investigate
the process of memory encoding in terms of practical applications. The original study
claims the feasibility of real-time prediction of memory encoding. In other words, the
authors state that items that will later be forgotten can be identified based on their
EEG correlates during the encoding phase. Having knowledge about the success of
learning during the learning itself and not only in a query test after the learning has
been completed would be of high value for the development of learning applications.
However, an indispensable prerequisite for this would be the reliable prediction and
accurate identification of the depth of memory encoding. Therefore, another question
of this chapter will be: Can the depth of encoding be predicted based on physiological
signals, and is the accuracy high enough to use it in a practical application? Lastly,
the possibility to do exploratory data analysis with the help of machine learning will be
explored to evaluate possible benefits that can be gained by this methodology.

Is there a difference between good and bad encoding in neurophysiological data during the
encoding of a stimulus?
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14.1 Results

As in the previous sections, the analysis will start with classical group-level statistic ap-
proaches and continue with the MI-based analysis approach. The conditions good and
bad encoding will be represented by remembered and forgotten items, respectively.

14.1.1 Behavioral data

Table 14.1 shows the task accuracy and the RT for remembered and forgotten items of
all four studies. It can be seen that except for study I, answers have been given faster
for remembered items compared to forgotten items. The ratio of remembered vs. for-
gotten items, representing the accuracy on task, is similar throughout all four studies.
An ANOVA, however, revealed that no significant effects concerning the memory encod-
ing were found within the behavioral data (all p-values above 0.05). The above-stated
difference in reaction time is, therefore, not significant.

Table 14.1: Encoding Acc and RT - Represented are the numbers of remembered and
forgotten items in percent with respect to the number of all familiar trials from the training
phase which were presented in the test phase. The reaction time for each trial is presented in
seconds. Both measures are averaged over all trials and subjects of the respective study of the
experiment.

Study I # Pictures [%] | ReactionTime [s]

Remembered 74.40 1.213
Forgotten 25.60 1.119
Study II

Remembered 72.80 0.953
Forgotten 27.20 1.148
Study III

Remembered 79.08 0.702
Forgotten 20.92 1.028
Study IV

Remembered 68.04 0.591
Forgotten 31.96 0.765

14.1.2 Neurophysiological analysis

The neurophysiological analysis of the data regarding the two conditions remembered vs.
forgotten items revealed that there seems to be no common pattern within the elicited
ERPs between the four studies. Indicators for that can be found in Figure 14.1, 14.2 and
14.3. Figure 14.1 shows the calculated R? values in a heatmap. As previously stated, the
R? values put the variance that can be explained by the two classes in relation to each
other. The Figure shows that the values are small and that the distribution of the values
over all electrodes positions and points in time varies greatly between the four studies.
Figure 14.2 shows the grand-average ERPs of remembered vs. forgotten items. To make
the results relatable to the original study of Fukuda and Woodman [120], the ERPs are
depicted in three categories at channel Fz, as in the original study. The first two categories
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Figure 14.1: R? Values for ERPs remembered vs. forgotten in the encoding phase
- R? values describe the variance in the data that is explained by the class label, in this case
trials that were later remembered or forgotten. The subfigures account for the experimental
studies I-IV in ascending order. The R? values are color coded in a heaptmap, calculated for
each point in time of the 1000 ms time frame (x-axis) and for each electrode position (y-axis).

represent remembered items with high or low confidence, and the third represents forgotten
(missed) items. Again, it can be seen that the plots vary greatly between the four studies,
and only slight commonalities can be found. Especially intriguing is the variation of the
categories between the studies. Therefore, no common pattern regarding the relation
between remembered vs. forgotten items can be found. Lastly, Figure 14.3 shows a time-
frequency representation of signal generated for channel Oz (as in the original study).
This plot gives the same impression as the previous two presented before. There is no
characteristic of the signals that is equal or steady between the four experimental studies.
The relation of remembered (high or low confidence) and forgotten items is different in
each study.
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14.1.3 ML-based classification

The ML-based classification approach has been performed to evaluate if a prediction of
remembered vs. forgotten items is feasible on a single trial basis. The performance values
achieved by the SVM can be seen in Table 14.2. It can be seen that in all four studies,
accuracy values around 50 % have been achieved. Therefore, it needs to be stated that
no accuracy values significantly above chance level can be found for the prediction of
remembered vs. forgotten items in the encoding phase.

Table 14.2: Classification on ERPs remembered vs. forgotten - Classification on
ERPs (CCA filtered) of the encoding phase, 21 channels, 1s;, SVM linear kernel, 10-fold cross-
validation - remember vs. forgotten. Accuracies marked with * are significantly above chance
level (0.05) according to binomial cumulative distribution.)

Study I | Study II | Study III | Study IV
Encoding | 51.45 % | 51.39 % | 50.40 % | 54.08 %

14.1.4 Exploratory analysis approach

Since the task offers a lot more than only investigating the cognitive processes during the
encoding phase, all other phases of the experiment (presentation, decision, and feedback)
are also investigated regarding correlates of remembered and forgotten items. SVM
classification was performed on the CCA filtered ERPs of remembered and forgotten
items in the remaining phases, which can be seen in Table 14.3. For the presentation and

Table 14.3: Classification on ERPs remembered vs. forgotten - Classification on
ERPs (CCA filtered) of the remaining phases, presentation, decision and feedback, 21 channels,
1s, SVM linear kernel, 10-fold cross-validation - remembered vs. forgotten. Accuracies marked
with * are significantly above chance level (0.05) according to binomial cumulative distribution.)

Presentation | Decision | Feedback
Study I 51.80 % 5140 % | 71.62 %*
Study II 52.86 % 68.47 %* | 69.90 %*
Study 111 54.48 % 51.53 % | 71.76 %*
Study IV 54.69 % 57.69 % | 71.10 %*

the feedback phase, it can be seen that again, classification accuracies around 50 % have
been achieved which do not reach statistical significance. One exception is the decision
phase of study II, which accounts for 68 %. However, the feedback phase reveals that in
all four studies, a performance above 70 % is possible. For a more detailed view of the
achieved accuracies, the classification results of each individual subject can be seen in
Figure 14.4 (including the results from the encoding phase). The Figure shows that, with
small exceptions, performance above chance level is possible for every subject in every
study concerning the ERPs from the feedback phase. All other phases come off equally
badly and are located around the chance level for each subject and study. To understand
what the caused the exceptionally high classification results from the feedback phase
was, the activation pattern of the SVM has been calculated. A heatmap has been chosen
as a form of visualization, to get the information about the importance of each feature
at one glance. The results can be seen in Figure 14.5. The plots indicate that there
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Figure 14.4: Individual classification performance recognized vs. forgotten - The
horizontally aligned dots mark the reached classification accuracies for each subject individually,
for all three phases of the experiment. Each phase is represented in a different color, and the blue
line marks the chance level of each classification based on the binomial cumulative distribution.
The y-axis displays the classification accuracy in percent, while the x-axis displays the number
of available trials in each classification. chance threshold, @ encoding, = presentation, @

decision, ® feedback

are especially two point in time that are of value in the distinction of remembered vs.
forgotten items. Around 450-500 ms and 800 ms.

As a representative channel, due to the hypothesis that this could be an error re-
lated potential (ErrP), electrodeposition FCz has been chosen to display the differences
between the ERPs of remembered and forgotten items. An explanation for the hypothesis
will follow in the discussion of this chapter. Figure 14.6 shows, therefore, the difference of
means of the two ERPs from the feedback phase of the experiment. The high amplitudes
of the difference of means representation indicate that there are major differences between
the two classes at this electrode position. It can be seen that overall, the difference of
means looks similar for all four studies and is characterized by a positive peak around
500 ms, followed by a negative peak between 600 and 800 ms.
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Figure 14.5: Activation pattern for ERPs remembered vs. forgotten in the feed-
back phase - Activation pattern that has been calculated from the parameters of the SVM.
The subfigures account for the experimental studies I-IV in ascending order. The values of the
activation pattern are color coded in a heaptmap, calculated for each point in time of the 1000
ms time frame (x-axis) and for each electrode position (y-axis).
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Figure 14.6: Difference of means ERP in the feedback phase remember vs. for-
gotten - Displayed is difference of means at the electrode position FCz, calculated for each
point in time of the 1000 ms time frame (x-axis) and amplitude of the signal in pV (y-axis).
The grand average has been calculated over all 9 subjects.

14.2 Discussion

The discussion will focus on a comparison of the results that have been achieved in the
four performed studies and the results from the original study performed by Fukuda and
Woodman [120]. Additionally, the benefits and new insights that were gained by adding
the exploratory MIL-based approach to the data analysis.

14.2.1 Behavioral and neurophysiological data

Regarding the question raised at the beginning of this chapter (Is there a difference between
good and bad encoding in neurophysiological data during the encoding of a stimulus?) it
needs to be said, that neither the neurophysiological nor the behavioral data give rise to an
effect concerning the quality of memory encoding. Especially the ERPs show great variance
between the studies during the encoding phase. Since there are many reports about effects
regarding the encoding strength, it can be argued that the number of subjects within the
studies of this thesis is insufficient and not representative enough to obtain an effect. This
might be true to some extent, but a variance of this magnitude across studies gives rise
to the assumption that the effect is either very small or not stable enough to be easily
captured. Since the signal gives the same impression over all evaluated measures, the
evidence is multiplying towards a very small effect, that is unfortunately not reflected in
the presented data. The differences between the studies concerning the varied parameters,
cannot account for these major differences or it seems at least very unlikely. The process of
encoding happens at an earlier point in time than the subject could be aware of the ratio of
stimuli and be influenced by the time lag between button press and feedback presentation.
However, since the labels for the remembered and forgotten stimuli are collected during
the test phase and are only assigned retrospective to the trials from the training, it is still
possible that the ratio or the time lag does have an influence on the data.
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14.2.2 ML-based classification

The ML-based classification also revealed in all four studies that no effect for memory
encoding could be found. Classification accuracies are around the chance level for each
individual subject, but also on a group average level. Therefore, no differences between the
signals of remembered and forgotten items can be found that make them distinguishable.

Remarks to the original study

Since the starting point of this project was a reproduction attempt of the study by Fukuda
and Woodman [120], a few words should be said, that address the discrepancies that have
been found. The study was chosen because they claimed that a real-time detection of
memory encoding was possible in single trial EEG. When taking a closer look, it can be
seen that they provided proof of a group effect concerning memory encoding. Interestingly,
they explicitly formulated the questions of whether the signal can be used for real-time
prediction if the effects provide a sufficient magnitude on a single trial level. Depending on
how this term is interpreted, Fukuda and Woodman failed to hold and verify this promise.
A general remark needs to be made here regarding the used vocabulary. Especially in BCI
research, but also in other areas close to computer science, real-time prediction stands for
an online prediction of the signals. This means that immediately after the recording of
a trial, this trial is evaluated and its class affiliation is determined. Therefore, this also
means that each trial is treated as a standalone signal irrespective of the previous or fol-
lowing trial. For the authors, the vocabulary seems to have a different meaning, because
none of the above-stated characteristics fit their performed study. In their study, Fukuda
and colleagues arranged all recorded trials in quintiles according to signal strength and
magnitude, after the experiment, to show that trials with a strong signal are decent indi-
cators for a good memory encoding. In other fields of research, this would be considered
an offline analysis of the results, because the signals are evaluated after the recording has
ended. It needs to be assumed that Fukuda and Woodman refer to real-time prediction
in a sense, that the computation of the prediction can be done in a short amount of time
immediately after the experiment. Independent of this difference in terminology, there is
another difference that needs to be mentioned. Fukuda and Woodman used all the data
for the evaluation. This can be seen as a group-level analysis of signal strength.In the
classification approach of this thesis, the evaluation was done on a single subject level, in-
cluding validation of the build classification model. By disentangling this methodological
and terminological difference, it gets clear why misunderstandings and failures in repro-
duction can occur. Overall, the effects of the original study cannot be reproduced by
classical group-level analysis because the effect seems to be very small and the samples
of the four conducted studies in this thesis were too small and not representative enough
to find an effect. The effects regarding the prediction of the quality of memory encoding
can also not be found, which can be explained by major differences in methodology. A
reproduction of the study from Fukuda and Woodman was therefore, not possible.

14.2.3 Exploratory analysis approach

The additionally performed exploratory analysis approach revealed that remembered and
forgotten items can be distinguished in the feedback phase with up to 70 % accuracy.
Due to this the ERPs in the feedback phase have been investigated more closely. Since
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the classes remembered and forgotten are in this case identical with the categories correct
and wrong, the underlying effect that might be the cause of this can also be attributed
to the correctness of the answer. With this assumption in mind, it is not surprising that
the difference of means of the ERPs from the feedback phase can be identified as an
error-related potential (ErrP) [165]. Regarding the previous statement of an insufficient
number of subjects within the studies, it needs to be mentioned that for stable effects
such as the ErrP, even small amounts of subjects are sufficient to make the effect visible
and to consider it reliable.

The good and significantly above chance level classification results during the feed-
back phase can be traced back to ErrPs, based on the investigation of the activation
patterns from the SVM and the subsequent classical group-level ERP analysis. Despite
the chosen class labels - remembered and forgotten -, this effect has no direct relation to
the quality of memory encoding. Nevertheless, the two classes correspond perfectly to
correct and wrong answer which differ greatly during feedback perception and processing
in relation to ones own actions. It has been shown that ErrPs are stable enough to
use them reliably during a single-trial classification approach, even in online scenarios
[166, 167, 168]. Therefore, it is valid that also in this scenario good classification results
can be achieved on a single-subject and single-trial approach.

14.3 Conclusion

Regarding the strength of memory encoding, it needs to be stated, that within the four
performed studies no indicators for an effect of memory encoding could be found. Neither
in the classical group-level analysis, nor in the ML-based classification approach. Since
there are effects concerning the quality of memory encoding that have repeatedly been re-
ported in the literature, it needs to be assumed that on the one hand, the sample sizes have
been too small to find an effect within the here collected data. On the other hand, it can
also be assumed that the magnitude of the effect is very small on a single trial basis since
the classification approach equally failed in all studies and subjects. This finding should
be verified with bigger sample sizes though to make a more founded statement. Overall,
the analysis showed that there is a discrepancy of vocabulary between different scientific
disciplines which needs to be overcome to ensure better reproducibility and cooperation.
Regarding the benefit that could be achieved by additionally performing ML-based data
analysis, it can be stated that legit exploratory data analysis can be performed. The
combination of classification accuracy and activation pattern revealed an effect in the
feedback phase of the task, which could later be identified as ErrPs with classical analysis
approaches.
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Chapter 15

Stimulus familiarity

In the following, the results of all four studies will be presented with a focus on the
neurophysiological characteristics of stimulus familiarity. The aim is to find out if there
are differences between the processing of old and new stimuli during the time in which the
stimulus is presented to the subject. This point in time refers to the presentation phase
of the experiment during the recognition test. The label old and new for the individual
stimuli is, therefore, an objective label and is defined by experimental design. Since the
effect is commonly known as the old/new effect, the two categories will be named and
referred to accordingly from here on for the sake of simplicity. In addition to the classical
and ML analysis of the categories old and new, again the possibility to do exploratory
data analysis with the help of ML will be explored to evaluate possible benefits that can
be gained by this methodology. The results of this study have, in part, been published in
[160] but will be presented here in full detail.

Is there a difference between the processing of old and new stimuli that can be found in
the neurophysiological data?

15.1 Results

As in the previous sections, the analysis will start with classical group-level statistic ap-
proaches and continue with the ML-based analysis approach. The conditions old and new
will be based on the stimuli that have been presented in the training (old) and stimuli that
have only been presented in the recognition test (new). In contrast to the other chapters
dealing with memory encoding and decision confidence, there will be no evaluation of the
encoding phase concerning the process of stimulus familiarity. The simple reason for this
is that the encoding phase took place in the training of the experiment. New items have
only been shown in the recognition test in a later part of the experiment. Therefore, no
comparison between new and old items can be made.

15.1.1 Behavioral data

The results regarding differences between old and new stimuli in terms of behavioral
data can be seen in Table 15.1. It shows the task accuracy, and the RT averaged over
all subjects for each study individually. Regarding task accuracy, it can be seen that
similar proportions of accurate answers have been given for both categories in all four
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studies. Regarding reaction time, however, it can be seen, that in study IV subjects were
exceptionally fast with a tendency of answering faster for old than for new pictures, as
well as for correct compared to wrong answers. The same tendencies can also be found in
study III. Interestingly, study I and II do not agree with these tendencies. When looking
closer at study I and II to estimate the precise differences, it can be seen that study I
stands out because correct and wrong answers have been given approximately equally fast
for old stimuli and study II differs because the response to old and new stimuli was given
equally fast. The ANOVA confirmed that there are significant differences between studies
concerning the overall reaction time (p = .0029). Therefore, it is not surprising that no
overall effect for stimulus familiarity was found. However, a significant interaction between
the level of confidence and stimulus familiarity was observed (p = 3.712e-06) concerning
task accuracy.

Table 15.1: Stimulus Familiarity: Behavioral data - Numbers of correct and wrongly
answered trials split according to known (old) and unknown (new) pictures in percentage with
respect to the full amount of pictures that have been presented in the recognition test. The
RT is presented in seconds. Both measures RT and Acc are averaged values over all subjects.

# Pictures [%] || # Pictures [%] || ReactionTime [s] |
Study I Old New Old New
Correct 74.40 | 58.00 | 1.213 0.968
Wrong 25.60 | 42.00 1.119 1.150
Study II
Correct 72.80 | 64.40 0.953 0.959
Wrong 27.20 | 35.60 1.148 1.185

Study IIT

Correct 79.08 | 79.56 0.702 1.028
Wrong 20.92 | 20.44 1.028 1.293

Study IV

Correct 68.04 | 80.80 || 0.591 0.686
Wrong 31.96 | 19.20 0.765 0.724

15.1.2 Neurophysiological analysis

The neurophysiological analysis revealed that there seem to be discriminative areas in
the ERPs of the two categories, old and new stimuli. More precise, the signal at the
occipital electrodes seems to differ significantly during the presentation in the test phase.
Indicators for that can be found in the Figures 15.1 and 15.2. Firstly, the R? values have
been evaluated, which are depicted in the heatmaps in Figure 15.1. They are highest
around 100 ms at the occipital electrode positions (O1, Oz, O2) in all four studies, which
is indicated by the yellow color in the plots. When comparing the four studies to each
other, it can be seen that the values are smaller in the studies I and II compared to studies
III and IV, but the pattern they create is the same for all studies. To get a closer look
at what kind of information is provided at the occipital electrode positions, Figure 15.2
shows the ERPs at electrode position Oz. The Figure shows that around 100 ms a shift
in time occurs between the two ERPs of old and new stimuli. The ERP elicited by old
stimuli occurs a little earlier than the ERP elicited by new stimuli. In all four cases, this
difference in latency is statistically significant. Overall, it can be seen that the ERPs of
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Figure 15.1: R? Values for ERPs old vs. new in the presentation phase - R? values
describe the variance in the data that is explained by the class label, in this case trials that
were old or new. The subfigures account for the studies I-IV in ascending order. The R? values
are color coded in a heaptmap, calculated for each point in time of the 1000 ms time frame
(x-axis) and for each electrode position (y-axis).

study I and II differ in some aspects from the other two studies, but in general, it can be
stated that the same components can be found in each experimental study.

15.1.3 ML based classification

In the following, the results of the SVM classification will be presented. Table 15.2 shows
the performance of the SVM in terms of accuracy for all four studies. A further division
of the results was made concerning the correctness of the subjects’ answers, to reveal if
any differences in performance occur when all trials are used compared to using only the
correctly answered trials. At first glance, it can be seen that in study II no statistically
significant results can be found concerning the prediction of stimulus familiarity. For this
reason, study II will be omitted for now but will be dealt with later during the discussion.
When excluding study II, two interesting findings can be made. The first shows that
significant results of the SVM prediction can be found for the presentation phase of all
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Figure 15.2: Grand average ERPs in presentation and decision phase Old vs New
- Displayed is the electrode positions Oz for the presentation phase, calculated for each point in
time of the 1000 ms time frame (x-axis) and Amplitude of the signal in pV (y-axis). The grand
average has been calculated over all 9 subjects. Grey areas indicate statistically significant
differences between the two conditions (p<0.05 Bonferroni corrected, according to number of

time points).
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studies. Performance values between 63 and 75 % can be reached. Due to the similarity
of the average performance values of subjects and SVM classification, it was decided to
compare the two measures on a single-subject level. Figure 15.3 shows the performance
values one by one in a barplot, for each study individually. It can be seen that in 12
cases, the SVM classification outperforms the human ability to decide correctly. For 7
out of these 12 cases, the difference in performance is statistically significant. Especially
interesting are those subjects which performed below chance level. For all of them,
it was found that classification performance outperforms the behavioral performance
significantly.

To quickly evaluate if the subjective label reveals any interesting correlations, the
classification analysis was also performed on the same set of trials but grouped and
labeled according to the subjects’ answers. The results of that can also be seen in
Table 15.2. The numbers reveal that the accuracy values do not significantly exceed
chance level when all trials are taken into account. Since the correct answers only are
identical to the objective correct answers, no additional classification was performed for
this subset of trials.

Table 15.2: Classification on ERPs (CCA filtered) of the presentation phase - 21
channels, 1s, SVM linear kernel, 10-fold cross-validation - known vs. unknown. Accuracies
marked with * are significantly above chance level (0.05) according to binomial cumulative
distribution.)

Presentation Study I | Study II | Study IIT | Study IV
Objective All | 65.33 %* | 52.55 % | 74.78 %* | 72.52 %*
corr. | 63.57 %* | 52.32 % | 74.93 %* | 72.12 %*
Subjective All [ 5341 % |5339% | 5554 % |53.19%
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Figure 15.3: Accuracy subject vs machine - Comparison of classification vs behavioral
performance Old/New. The subfigures represent the studies I-IV, respectively. The yellow bars
display the accuracy of the classifier, the blue bars the behavioral accuracy. Cases in which the
classification performance exceeds the behavioral performance are marked with a pentagram.
The y-axis represents the accuracy in percent, and the x-axis displays the subjects in ascending
order. The blue pentagrams mark the cases in which the machine is better than the subject,
and the red pentagrams mark the cases in which the machine is significantly better than the

subject.
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15.1.4 Exploratory analysis approach

Since the task offers a lot more than only investigating the cognitive processes during
the presentation phase, all other phases of the experiment (decision and feedback) are
also investigated regarding correlates of old and new items. In addition, the reaction
time was used as a single feature for the classification, to see if this singular value can
also be predictive of the stimulus familiarity. Table 15.3 shows the respective results. It
can be seen that similar performance values can be found for the feedback phase, as in
the presentation phase. This is mainly valid for study I and III, but not for study IV.
Regarding the overall performance, there was no major difference between all and correct
answers only.

For the reaction time, it can be seen that no significant results can be reached,
making the RT a non-predictive feature for stimulus familiarity. Further, Figure 15.4
shows the classification performance of each individual subject in relation to the signifi-
cance threshold. Except for the decision phase, it can be seen that the performance of the
majority of subjects reaches statistical significance. To get an insight into the cause of the
good classification performance in the feedback phase, the activation patterns based on
the parameters of the SVM have been calculated. Figure 15.5 shows the patterns for all
four studies. It can be seen that there seems to be an area of interest around 350-450 ms
across the many, but mostly the central channels. Therefore, it has been decided to take
a closer look at the ERPs at channel Cz, which can be seen in Figure 15.6. It can be
seen, that study I and IT again differ from study III and IV. Study III and TV show two
positive peaks within the first 400 ms after stimulus onset, whereas study I and II only
show one broad positive deflection in this time frame. Interestingly, there is no major
difference between the studies II and IV compared to the studies I and III even though
the classification accuracies, indicated that there is a difference regarding this issue.
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Nevertheless, statistically significant differences can be found in all four studies, regarding
the categories old and new.

Table 15.3: Classification on ERPs (CCA filtered) of the remaining phases - The
remaining phases (decision and feedback) and the reaction time of the subjects, 21 channels,
1s, SVM linear kernel, 10-fold cross-validation - known vs. unknown. Accuracies marked with

* are significantly above chance level (0.05) according to binomial cumulative distribution.)
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Figure 15.4:

Decision | Feedback | Reactiontime
Study 1 All 4731 % 66.60 %* | 51.51 %
corr. | 52.38 % 64.98 %* | 51.33 %
Study IT | All 54.80 % 52.44 % 50.41 %
corr. | 56.12 % | 54.97 % | 51.11 %
Study IIT | All 53.31 % 71.16 %* | 53.73 %
corr. | 58.07 %* | 71.45 %* | 55.94 %
Study IV | All 50.75 % 53.36 % 50.82 %
corr. | 57.09 %* | 57.51 %* | 53.72 %
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accuracies for each subject individually, for all the three phases, presentation, decision and feed-
back of the experiment. Each phase is represented in a different color, and the blue horizontal
line marks the chance level of each classification based on the binomial cumulative distribution,
indicating when the chance level is exceeded significantly (p<0.05). The y-axis displays the
classification accuracy in percent, while the x-axis displays the subjects in ascending order.
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Figure 15.5: Activation pattern for ERPs old vs. new in the feedback phase -
Activation pattern that has been calculated from the parameters of the SVM. The subfigures
account for the experimental studies I-IV in ascending order. The values of the activation
pattern are color coded in a heaptmap, calculated for each point in time of the 1000 ms time
frame (x-axis) and for each electrode position (y-axis).
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Figure 15.6: Grand average ERPs in feedback phase old vs new - Displayed is the
electrode positions Cz for the decision phase, calculated for each point in time of the 1000 ms
time frame (x-axis) and Amplitude of the signal in pV (y-axis). The grand average has been
calculated over all 9 subjects. Grey areas indicate statistically significant differences between
the two conditions (p<0.05 Bonferroni corrected, according to number of time points).
new, : old

174



Stimulus familiarity Part III Episodic memory processes

15.2 Discussion

15.2.1 Behavioral data

In the behavioral data, mixed results can be found with respect to stimulus familiarity.
Overall, subjects were able to solve this task with more than 70 % accuracy on average, for
500 as well as 750 tested items. Except for study I, the RT shows a tendency for quicker
reactions towards old compared to new stimuli. However, no significant effect regarding
the reaction time was found. Even the classification approach did not reveal classification
above the chance level on the RT. It can be assumed that this is due to the manifold of
variables that needed to be considered in the analysis (decision confidence, correctness,
familiarity) and also to the studies I and II which seem to have produced results that
neither support study III and IV nor the literature in some of the investigated aspects.
Study I and IT differ from IIT and IV regarding the time lag between feedback presentation
and button press in each trial of the experiment. In study I there was no time lag at all,
whereas in study II, the time lag accounted for two seconds, compared to study III and
IV in which the time lag accounted for one second. It can be assumed that two seconds
might have been too long to remain focused on the task in between trials, whereas no time
lag at all might have been too short to switch the attention immediately to the next trial
after feedback presentation. Since similar results regarding the behavioral data of study
I and II have been found in Chapter 16 for the process of decision confidence, it seems
likely that the time lag is responsible for the irregularities in the behavioral data. The
stimulus ratio which has also been altered between the four studies can be ruled out as a
reason for those changes as both, balanced and unbalanced ratios, occur in the studies I11
and IV, which are otherwise stable in their results.

15.2.2 Neurophysiological data

Regarding the neurophysiological data, it was found that differences in the EEG signal
between old and new stimuli already occur at 100 ms after stimulus presentation. Old
stimuli seem to be processed a little faster, leading to a shift in latency of the ERPs
between old and new stimuli that lasts until 450 ms after stimulus onset. The mentioned
characteristics in the ERPs for old and new items do not necessarily suit the literature
concerning the existing old /new effect from recognition memory. Since the strongest and
most discriminative shift can be located at the occipital electrodes, the processing can very
likely be located in the visual cortex. Further, since the effect occurs as fast as 100 ms
after stimulus onset, this can be seen as an indicator for early visual processing, likely in
V1, which is a particular area in the visual cortex. None of the existing studies reported
a temporal shift for old vs. new items in the context of familiarity or the old/new effect.
However, the findings are very similar to the effects that have been measured in V1 via
invasive electrodes in rodents and primates [142, 143]. Compared to other studies, the
presentation and therefore, the study time is relatively short (250 ms) for each stimulus.
Eventually, this short presentation triggers slightly different mechanisms for storage and
information retrieval, which could be subconscious only. Many studies in recognition
memory rely on words as stimuli, for which a presentation of 250 ms would very likely
not be sufficient to process the stimulus fully. These two points can be seen as the major
reasons why the results are not comparable to the effects described in the literature.
Regarding the N400 which is reported to be an indicator of familiarity [138, 139], it can be
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said that there are no significant differences in amplitude between old and new stimuli in
our data. But it needs to be noted that, effects caused by familiarity seem in general to be
hard to compare because the epochs used for investigation are not always explicitly stated,
therefore, the studies might not use the same baseline. Also, in many cases, subjects are
prompted to answer if the stimulus is old or new with a signaling word or queue that
replaces the stimulus. In the here presented studies I-IV, the stimulus remains at the
center of the screen while the addition of two colored dots flanking the image left and
right prompt the subjects to answer. This form of prompting could also be a meaningful
difference, depending on the exact epoch that was under investigation.

15.2.3 ML-based classification

The classification accuracies showed that old and new stimuli could be separated during
the presentation phase. They reached more than 70 % throughout all studies and in
individual cases even exceeded the performance of the behavioral accuracy. This is an
interesting finding that supports the fact that the found differences in the signals belong
to a stable effect. Since subjects and the machine learning based classification performed
equally well on average, a direct comparison of the performance values was made on a
single-subject level. It surprisingly revealed that human memory could be outperformed
by the SVM classification in individual cases. This fact allows the development of two
hypotheses. On the one hand, it could mean that the initial visual processing of a stimulus
is independent of memory retrieval. This would explain both cases, the ones in which
humans perform better than the machines and vice versa. More precisely, it would mean
that both measures, behavioral and SVM performance would thereby be independent.
This hypothesis would be backed up by the finding of Fahy and colleagues [143] who
stated that in the stage of early visual processing, different neurons fire for familiar and
non-familiar items within 100 ms after stimulus presentation. Further, it was found that
V1 has memory on its own on this level of neurons that lasts up to 24 h. However,
another hypothesis would also be likely, stating that there are one or more processes in
the chain from visual perception to memory retrieval that can simply fail. In that case,
the two measures would be related to each other. Due to the bad spatial resolution of
EEG, the effect cannot be located exactly making it hard to follow up on either of the two
hypotheses. Other recording techniques are needed to shed more light onto this question.
Nevertheless, it seems likely that the human visual cortex has its own memory system on
a neuron level. About the connection between visual processing and memory retrieval,
however, no further assumptions can be made.

15.2.4 Exploratory analysis approach

The additionally performed exploratory analysis approach revealed that a separation
of old and new stimuli is also possible in the feedback phase in study I and III. Study
I and III have in common that the ratio of old and new stimuli that are presented in
the recognition test are unbalanced compared to study II and IV in which the ratio is
balanced. It can be hypothesized that this ratio has an influence on feedback perception
and processing, which makes the two classes separable in the feedback phase. Fven
though the ratio is not communicated to the subjects, they could subconsciously be aware
of it and adapt their behavior to achieve better performance. Overall, it seems very
likely that the ratio of old and new stimuli in the recognition test influences the decision
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making and also feedback processing. A subconscious knowledge about an imbalance can
alter the expectation for correct and wrong answers. Identifying this as a factor with an
impact on the results can be equated with the identification of a latent variable. Pointing
out that the ratio influences the data could only be achieved with the ML approach
because the standard ERP analysis did not give rise to any significant differences. This
is an interesting finding since many studies in memory psychology perform studies based
on a remember/know procedure. Most of the studies use unbalanced sets of pictures with
ratios of 2:1 or 3:1 (known to unknown pictures). Depending on the process that is under
investigation the influence of the ratio might not be of relevance. But nevertheless, it is
important to keep it in mind to not report confounded results.

Due to the high classification results during the feedback phase, and the respective
activation patterns, the ERPs of this phase have also been investigated at electrode
position Cz. Interestingly, there was no clear indicator in the group-level analysis that
could explain the differences between study I and III compared to II and IV. Therefore,
it needs to be assumed that the difference can be found on a multi-electrode or on a
single-subject level.

15.3 Conclusion

Stimulus familiarity is a property that can be detected and distinguished with classical
group-level analysis and with ML based classification. Differences between old and new
stimuli occur as early as 100 ms after stimulus presentation, which are visible especially
in the time-locked ERPs in occipital regions. Old stimuli are processed faster, which is
reflected in a shift of latency of the ERPs. Due to the timing and location of the effect
it can be assumed that it can be associated with early visual processing, possibly in V1.
Since ML based classification and human behavior performed equally well on average, a
direct comparison was made on single-subject level. It could be shown that in some cases
the machine outperforms human memory performance. This lead to the hypothesis that
the initial visual processing of a stimulus is independent of memory retrieval. Another
hypothesis could also be that there are one or more processes in the chain from visual
perception to memory retrieval that can fail, which would explain the here presented
findings. Lastly, it could be shown that machine learning can be a useful tool for the
identification of latent variables in a tightly knit network of experiments.
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Chapter 16

Decision confidence

In this chapter, the results of all four studies will be presented concerning the aspect of
decision confidence. It will be evaluated if the confidence with which the subject decides
if the stimulus is old or new, is reflected in physiological signals throughout the task. Two
levels of confidence have been assessed in the task, between which the subjects were able
to choose for each decision. A distinction between 100 % and 75 % confidence, which
can also be seen as high and low confidence, will be made in the following data analysis.
The label is, therefore, based on a subjective decision of the subject. Since the level of
confidence is likely to have the greatest effects in the decision phase and the feedback
phase, one of the two phases should be chosen for the investigation. For brevity, it has
been decided only to evaluate the feedback phase with the classical group-level approach.
Nevertheless, an evaluation of all phases was done by an ML-based classification approach
to explore the full data set.The results of this study have in part been published in [159],
but will be presented here in full detail.

Is there a difference between high and low levels of confidence in the neurophysiological
data?

16.1 Results

As in the previous sections, the analysis will start with classical group-level statistic ap-
proaches and continue with the ML-based analysis approach. The conditions high and low
confidence are labeled according to the subjects’ decision and will be investigated mainly
in the feedback phase of the experiment.

16.1.1 Behavioral data

Table 16.1 shows the behavioral data that was collected throughout the experiment sorted
according to the two levels of decision confidence. Presented are the averaged values over
all subjects for each study individually.

It can be seen, that except for study 2, more correct answers have been given with 100 %
than with 75 % confidence. In contrast to that, more wrong answers have been given with
75 % than with 100 % consistently in all four studies. Overall, more answers were given
correctly than wrong. Concerning reaction time, it can be seen that except for study I,
answers have been given faster when the level of confidence was high (100 %), compared
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to when the level was low (75 %). An ANOVA revealed that this effect on reaction time
is statistically significant (p < 5.06e7°).

Table 16.1: Confidence Acc and RT - Represented are the numbers of answers given
with 100 % or 75 % confidence in percent with respect to the number of all trials from the
recognition test. The reaction time for each trial is presented in seconds. Both measures are
averaged over all trials and subjects of the respective study.

# Pictures [%] || ReactionTime [s]
Study I || 100 % | 75 % || 100% | 75 %
Correct 44.27 | 19.33 || 1.161 1.107
Wrong 16.00 20.4 1.123 1.137
Study 11
Correct 33.80 | 32.80 | 0.840 1.126
Wrong 15.20 | 19.20 1.006 1.264

Study III
Correct | 44.00 | 35.24 || 0.586 1.093
Wrong 4.23 16.53 0.775 1.202

Study IV
Correct | 42.40 | 32.02 || 0.536 0.783
Wrong 8.40 17.18 || 0.611 0.816

16.1.2 Neurophysiological analysis

The results for the neurophysiological analysis of the feedback phase regarding differences
between high and low levels of confidence can be found in the Figures 16.1 and 16.2. Figure
16.1 displays which electrode positions and points in time provide information that helps
to dissociate the two levels of decision confidence using R? values. The R? values do not
show a consistent pattern over the four studies. It can be assumed that points of interest
are located around 500 and 800 ms broadly distributed over the head. Nevertheless, it has
been chosen to have a closer look at electrode position Cz, which can be seen in Figure
16.2. Cgz is a central position that is discriminative for many cognitive processes, and at
least in Study 3 and 4 the R? values suggest certain importance of the channel. Subfigure
A shows the ERPs after feedback stating the answer was correct, whereas subfigure B
shows the ERPs after feedback indicating the given response was wrong. Interestingly,
well-pronounced differences between the two levels of confidence can be found during the
perception of affirmative feedback, but almost no differences can be seen during opposing
feedback. This holds for all four studies.

16.1.3 ML based classification

The performance values of the SVM classification approach for the distinction of low and
high confidence in the feedback phase can be seen in Table 16.2. Again, it has been
differentiated between all, and correct answers only. It can be seen that study II and
IV have lower accuracy values than the other two studies. They all reach statistical
significance, but for study II and IV only values between 55 and 63 % can be reached,
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Figure 16.1: R? Values for ERPs 100 vs 75 % in the feedback phase - R? values
describe the variance in the data that is explained by the class label, in this case trials that
were answered with 100 % or 75 % confidence. The subfigures show the results of the studies
I-IV in ascending order. The R? values are color coded in a heaptmap, calculated for each
point in time of the 1000 ms time frame (x-axis) and for each electrode position (y-axis).
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Figure 16.2: Grand average ERPs in Feedback phase 100 vs 75 % confidence
- Displayed is the electrode position Cz, calculated for each point in time of the 1000 ms
time frame (x-axis) and Amplitude of the signal in puV (y-axis). The grand average has been
calculated over all 9 subjects. Grey areas indicate statistically significant differences between
the two conditions (p<0.05 Bonferroni corrected, according to number of time points). A:
Correct answers B: Wrong answers : 100 %, 275 %
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whereas for study I and IIT values around 70 % are achieved. No major differences between
all and correct answers only have been found regarding the performance values.

Table 16.2: Classification ERPs 75/100% - Classification on ERPs (CCA filtered) of the
feedback phase of the subjects, 21 channels, 1s, SVM linear kernel, 10-fold cross-validation -
100 % vs 75 % decision confidence. Accuracies marked with * are significantly above chance
level (p < 0.05) according to binomial cumulative distribution.)

Study I Study II | Study III | Study IV
Feedback | All | 69.63 % * | 55.74 % * | 69.83 % * | 63.20 % *
corr. | 67.64 % * | 59.55 % * | 70.13 % * | 60.77 % *

16.1.4 Exploratory analysis approach

Since the task offers a lot more than only investigating the cognitive processes during the
feedback phase, all other phases of the experiment (encoding, presentation, and decision)
are also investigated regarding correlates of high and low confidence answers. In addition,
the reaction time was used as a single feature for the classification to see if this singular
value can also be predictive of decision confidence. The results can be seen in Table 16.3.
Except for the encoding phase, a distinction of the two levels of confidence have been
possible with accuracies above chance level in all phases and studies of the experiment.
The reaction was partly predictive for the level of decision confidence. Especially study
IT and IIT must be highlighted here since values close to 60 % or even up to 70 % have
been reached. Regarding the disassociation between correct and wrong answers, there is
no nameable difference between the subsets in all cases. For more detailed evaluation of
the classification results, the classification performance of each subject individually can
be seen in Figure 16.3. For the sake of completeness, Figure 16.5 and 16.4 show the
activation patterns for the decision and the presentation phase, respectively. However, no
commonalities or clear pattern can be found across the four studies for each of the phases.
Therefore, no further investigation was performed.

Table 16.3: Exploratory classification ERPs 75/100% - Classification on ERPs (CCA
filtered) of the remaining phases (encoding, presentation and decision) and the reaction time
of the subjects, 21 channels, 1s, SVM linear kernel, 10-fold cross-validation - 100 % vs 75 %
decision confidence. Accuracies marked with * are significantly above chance level (p < 0.05)
according to binomial cumulative distribution.)

Encoding | Presentation | Decision | Reactiontime

Study 1 All | 51.10 % | 57.97 % * 56.84 % * | 53.16 %

corr. | 46.08 % | 58.48 % * 54.60 % * | 54.94 %
Study IT | All | 5217 % | 56.24 % * 62.31 % * | 58.38 % *

corr. | 54.92 % | 56.16 % * 63.37 % * | 59.52 % *
Study IIT | Al | 50.30 % | 59.04 % * 58.91 % * | 66.37 % *

corr. | 50.33 % | 60.63 % * 58.94 % * | 67.39 % *
Study IV | All | 4813 % | 56.34 % * 54.71 % 57.96 % *

corr. | - % 59.76 % * 56.65 % * | 55.33 %
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Figure 16.4: Activation pattern for ERPs 100 vs 75 % confidence in the presen-
tation phase - Activation pattern that has been calculated from the parameters of the SVM.
The subfigures account for the experimental studies I-IV in ascending order. The values of the
activation pattern are color coded in a heaptmap, calculated for each point in time of the 1000
ms time frame (x-axis) and for each electrode position (y-axis).
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Figure 16.5: Activation pattern for ERPs 100 vs 75 % confidence in the decision
phase - Activation pattern that has been calculated from the parameters of the SVM. The
subfigures account for the experimental studies I-IV in ascending order. The values of the
activation pattern are color coded in a heaptmap, calculated for each point in time of the 1000
ms time frame (x-axis) and for each electrode position (y-axis).
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16.2 Discussion

16.2.1 Behavioral data

In the behavioral data, mixed results can be found concerning the dissociation of two
levels of decision confidence. The reaction times of study II-IV reflect what can also be
found in the literature. The subjects reacted much faster when they were highly confident
about their answer, compared to when they were less confident, as well as slower when
the answer was wrong than in cases in which the answer was correct [147]. Study I of
the experiment does not reflect that. The main reason for that might be the delay that
was introduced after study I between feedback and decision of the subject. Answering
the trials without mandatory breaks, only between blocks, could lead to a loss of focus.
Therefore, the subjects needed more time to refocus on a new stimulus and hence also
take more time to answer the trial in study I. Interestingly, the classification results based
on the reaction time, mirror this finding. In [169] the hypothesis was formulated that also
the ratio of known and unknown stimuli could be the cause of this since in study II, the
number of known and unknown pictures were equal and in study I it was a ratio of 1 to 2.
Study III and IV, however, mirror the distribution of known and unknown stimuli from
the previous studies and in both the expected differences in reaction time could be found.

16.2.2 Neurophysiological data

In the neurophysiological data, it has been found that clear indicators for the different
levels of confidence can only be found in reactions to correct feedback for all studies of
the experiment. This result is in line with literature [170], [171], [172] and therefore, not
surprising. Lack of significance between confidence levels in the wrong answers could also
be due to the available number of trials, which were a lot less than for correct answers,
consistently for all subjects. In general, it remains unclear if the neural responses are that
well distinguishable because the subjects were forced to assess their level of confidence
with every answer, or if the level of confidence would be reflected as well if there was no
need to quantify it after each trial. This fact is hard to revise because the subjective level
of confidence needs to be collected somehow to be able to label and categorize the data.
Still, since the self-assessment of the current progress in learning is an important marker
for deciding when a specific content has been learned sufficiently well, it is an interesting
finding.

16.2.3 ML based classification

The most pronounced differences between the EEG signals of the two levels of decision
confidence were found in the feedback phase. The differences lead to classification accu-
racies of up to 70 %. In study IT classification accuracy is inferior but still significantly
above chance level. The bad results of study II could be caused by the introduced delay
of 2 s between button press and feedback presentation. It is possible and rather likely
that the link between own action and the corresponding feedback is weakened by the long
pause, and thereby alters the processing and the reaction to the feedback.
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16.2.4 Exploratory analysis approach

The exploratory data analysis revealed that classification accuracies above chance level
have also been found in the presentation and in the decision phase. For the presentation
phase, it can be assumed that the strength of recognition or familiarity influences the
neural correlates, which in turns automatically translates into decision confidence, with
which the upcoming decision will be made. The same might still be true for the decision
phase. Here, however, also the motor preparation and execution for the decision could
already be included. It is likely that the accumulation of processes leads to a difference
concerning the categories regarding decision confidence, even if they do not directly rep-
resent the confidence of the subject. Since the activation patterns did reveal a common
pattern across the four studies for either of the two phases, it can be assumed that no
identifiable process is taking place during those phases. Further, this can be interpreted
as an indicator for the validity of the hypothesis about accumulated processes.

16.3 Conclusion

It could successfully be shown that trials labeled according to subjective decision confi-
dence, can be separated with statistical significance in all investigated phases of a simple
recognition task. The differentiability of high and low confidence levels could be shown
by classical group-level ERP analysis, as well as with a machine learning classification
approach. It is possible to distinguish two levels of decision confidence, with up to 70 %
classification accuracy, based on the ERPs of the subjects elicited by categorical feedback
to the given answer. The main effect resulting in this difference is based on the reaction
to positive feedback and not on negative feedback. While trying to disentangle feedback
processing from decision formation, it has been found that after introducing a delay of
2 seconds between entering the decision and receiving the corresponding feedback, the
performance drops immensely. This could either be due to not being able to link the
made decision to the corresponding feedback anymore or to the disentanglement of the
two phases, revealing that the effect is based on an accumulation of the processes of both
phases.
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Chapter 17

Discussion

What can be learned from the results of all four studies based on characterizing episodic
memory processes in EEG with the help of machine learning ?

In this chapter, the results from all four presented studies will be discussed and concluded
in an overall manner. The discussion will be divided into five categories, summarizing the
results with respect to possible latent mental processes that are present throughout the
task in addition to the investigated ones, the disentanglement of phases in the analysis
of the task, potential effects that arise through experimental design (ratio of known and
unknown stimuli), practical implications that could be of use, and lastly the advantages
that are achieved by adding an ML approach to conventional group-level analysis on
psycho-physiological data. The primary objective of the four performed studies was to
reveal core episodic memory effects without additional restrains of other processes.

17.1 Latent mental processes

Regarding the posed research questions and the used task design, a few remarks need
to be made before the concluding discussion. Although all phases allow some form of
prediction about all three processes, memory encoding, stimulus familiarity, and decision
confidence through classification accuracy and statistical analysis of the ERPs, the found
neural correlates might not be directly related to the process in question. Nevertheless,
each process can be used as an umbrella for all phases in the experiment, since the subject
labels each trial with a category for each process, and every trial passes all phases of the
experiment. To evaluate possible explanations besides the respective process, decision
confidence, memory encoding, and stimulus familiarity, all phases are quickly scanned for
possible effects and processes that could be present.

First, there is the phase where the stimulus was encoded in memory. As stimulus
encoding is the only process happening at this time point and no decision is involved,
there cannot be direct correlates of confidence or familiarity in this phase. However,
attention to the stimulus or the strength of encoding will influence all processes at a later
point, and thereby correlates of these processes can be found in the EEG.
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As the second phase of interest, the stimulus presentation in the recognition test
was investigated. The recognition test started with the instruction to decide about the
familiarity of a picture and to state the respective level of confidence. Therefore, in the
test presentation phase, mainly information retrieval takes place. The decision phase
was chosen as an intermediate step to capture the actual process of decision making by
selecting a window that starts with a trigger that indicates the subject that an answer
should now be given. Therefore, in this case, it might be legit to speak of decision
confidence but also movement preparation and execution.

As a last time window of interest, the feedback phase has been investigated to
evaluate if the level of confidence of the decision is also reflected in feedback perception
and evaluation. It is possible to speak about affirmation or disappointment, which
naturally varies with the level of confidence with which the corresponding decision was
made. All of these aspects should be considered, and only careful statements about the
actual mental process that is present should be made.

17.2 Disentanglement of phases

Interestingly the experimental design in its details played a major role in the findings
that have been made within this part of the thesis. Of particular interest here is the time
lag between picture presentation and decision making, as well as the time lag between
decision and feedback presentation. First, let’s talk about the time lag between picture
presentation and decision making. Within all four studies, subjects’ needed to wait for
one second after the stimulus presentation in the test phase, until they were allowed to
answer the task. This was already implemented in the original study of Fukuda and
Woodman [120] and therefore, not newly introduced within this thesis. Nevertheless,
it is a property that almost no other study implements. In most studies, subjects are
instructed to respond as fast as possible as soon as they made a decision after stimulus
presentation. In the studies of this thesis, subjects were also instructed to react as fast
as possible but only after the one second delay. Reactions before that were not recorded
and had to be repeated in the correct time frame. The hypothesis is that this delay
causes a disentanglement of visual processing and decision making. Therefore, this could
be the explanation of why the effect of faster stimulus processing of familiar stimuli was
not reported on humans before.

Concerning the time lag between button press and feedback presentation, it can be
stated that the amount of time that has passed also played a crucial role in the results. In
study I there was no delay at all, which resulted in overall uniformly distributed answers
of the subjects concerning reaction time. The known effects, which are faster reactions
for high confidence answers and faster reactions for correct answers, could not be found
in the data. Since these effects were present in the remaining three studies, it can be
assumed that the lack of a delay between answer and feedback presentation is the cause
for it. Possibly there was not enough time to refocus on the processing of the feedback
and on the upcoming trial that the behavior diverged from the known patterns. In study
IT a delay of two seconds was introduced, which changed the outcome of behavioral and
neurophysiological data significantly. Concerning reaction time, the anticipated effects
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could be found, but on a neurophysiological level, the effect vanished completely. This
became especially clear when looking at the classification performances which dropped
below chance level. Since the effect reappeared in study III and IV, it can be assumed
that a delay of two seconds was simply too long and the link between the made decision
and the corresponding feedback could not be made anymore. A shortening of the delay
to one second seemed to be an appropriate choice and a good compromise, that resulted
in stable effects and effects that are to be expected from the literature.

17.3 The ratio of known and unknown stimuli

Choosing different amounts of stimuli to be presented is also a choice of experimental de-
sign, which had interesting effects on the data. The model study of Fukuda and Woodman
proposed to show 500 stimuli in the training phase and 750 in the test phase from which
250 were new, and all 500 old pictures from the training phase were repeatedly shown.
To avoid potential confounds, throughout the development of the studies, it has been
decided to test both, a balanced and an unbalanced ratio of known and unknown stimuli
in the test phase of the experiment. Therefore, study I and IIT had an unbalanced ratio
as proposed by Fukuda and Woodman, and study II and IV had a balanced ratio of 250
old and 250 new pictures in the test phase. Overall, behavioral data did not give rise to
the assumption that any difference between the experimental parts exists concerning the
ratio of stimuli. The neurophysiological data on group-level did not show clear indicators
that the unbalanced ratio might be responsible for confounds or effects in the data.
Classification accuracies of the machine learning approach, however, show that the perfor-
mance of the classifier differs greatly for the individual studies when separating old from
new stimuli. Differences occur in the presentation phase and in the feedback phase, and
they are characterized by higher accuracy values for study I and IIT compared to IT and TV.

Differences can also be seen when the two levels of confidence are separated. The
two levels of confidence can be separated with much higher accuracies, when the ratio
of stimuli is unbalanced, compared to when they are balanced. This could either mean,
that subjects have a stronger and more stable pronouncement of confidence within the
task because they are aware of the unbalanced ratio and therefore of the increased chance
of making the correct choice. But it could also mean that other effects that are based
on confounds due to the unbalanced ratio are classified here, which should further be
investigated. Depending on the posed research question, this finding is essential and
needs to be considered. Most studies based on recognition tests use unbalanced ratios of
stimuli for testing.

17.4 Practical implications

For each of the three aspects that have been under investigation, considerations can be
made concerning the practical implications and future use of the achieved results. Overall,
a firm understanding of the field of episodic memory can lead to new insights regarding
memory encoding and retrieval, which in turns would help to find better ways to memorize
information. Educational applications based on the assessment of the current cognitive
state, have so far shown that it is possible to assess the amount of load a subject is
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under and to adapt the difficulty of arithmetic tasks to keep the subject within a com-
fortable range of load [173], [174]. According to cognitive load theory (CLT) [175], the
key to successful learning is to avoid cognitive over- or underload and to keep the learner
appropriately challenged.

17.4.1 Memory encoding

Regarding the aspect of memory encoding, it, unfortunately, turned out that a classifi-
cation of the effect cannot be managed on a single trial level. Predicting the success or
failure of memory encoding would have been a great achievement and would be a good
example to base a neuro tutor on. It would enable to repeat the content that has been
identified as bad or not encoded into memory at all, instead of repeating everything. The
paper published by Fukuda and Woodman [120] lead to believe that a neuro tutor based
on the strength of memory encoding could be built. Unfortunately, this is not true, which
is an interesting and important finding. Without the use of machine learning approaches,
this would not have been possible.

17.4.2 Stimulus familiarity

Concerning the aspect of stimulus familiarity, it can be said, that the practical implications
that have been found are especially of interest on a theoretical level. The analysis generated
hypotheses about the connection between early visual processing and memory retrieval.
Testing these hypotheses will be needed to get the inside about the specific connection
finally, but having a lead that promises valuable new insights is equally important. Since
the classification accuracies were above 70 %, a usage in BCI applications, however, would
also be possible. The threshold of 70 % is often seen as the limit that needs to be exceeded
to ensure a sufficient level of usability. Building applications that serve as lie detectors or
as memory aid would be conceivable.

17.4.3 Decision confidence

Being able to extract the confidence with which knowledge can be retrieved from memory
is also something that has practical implications. It can easily be imagined how having
knowledge about the level of the decision during decision making in an education based
application scenario might be interesting. It would allow to extract and identify content
that is not entirely secured in memory. This specific content could be recapitulated until
the subject reaches higher confidence during answering the question related to the content.
This would be a useful extension to error adaptive learning systems [176].

17.5 The advantage of using the ML approach

In summary and conclusion, it can be stated, that the usage of ML on a single-subject
level once again added valuable information to classical group-level statistics. There are
several aspects, which in part have already been named in the previous sections, but will
be recalled here in brevity to complete and round off the chapter.

It could be shown that classification accuracy is a very useful indicator of effect size, that
is able to quantify the influence of factors and variables. To some extent, classification
performance gives an indicator concerning the variance of the data and therefore, the
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stability of the effect on a single-trial level. This was especially of interest during the
investigation of stimulus familiarity. Without this measure of effect size, the influence of
the ratio of old and new stimuli might not have been detected. In combination with the
analysis concerning decision confidence, it could be seen, that there, the ratio also played
a role and is not negligible. Within this analysis, this can be interpreted as a form of
latent variable identification. The influence of the ratio cannot directly be measured but
is responsible for different outcomes between the experiments. In this example, it became
clear that it is possible to show foreign influences that can be observed and identified
more closely.

In addition to effect size and latent variable identification, it could also be shown
that classification analysis, in combination with classical group-level analysis, can put
brain activity in relation to behavioral performance and capabilities. In particular,
this became clear by comparing classification performance based on brain activity to
behavioral performance. Finding that SVM based classification categorize old and new
stimuli better than subjects can, reveals potentially new insights of memory processes.
Two hypotheses can be formulated for this issue. Either information gets lost during
the processing pathway from the visual cortex through other parts of the brain or that
the process of memory retrieval and the early visual processing of a stimulus effect are
completely independent processes. Again this is an insight that could not have been
made without the additional machine learning component.

Overall it can be stated that in this part of the thesis, ML served as a great tool
to generate new hypothesis about the data generating processes. Using classification
accuracy is a measure for effect size on complex data can have many advantages that
could not be provided by standard group-level analyses. Regarding the collection of all
four studies as one dataset, on which three research questions were asked could be seen
as an example of a well-controlled exploratory data analysis. It is ensured that overfitting
is prevented by using cross-validation mechanisms and despite the exploratory character,
the number of performed tests is limited to concrete research questions and controlled by
corrections for multiple comparisons. The possibilities that are opened up by this and
the general gain of ML are manifold and therefore highly valuable for future research.
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Chapter 18

Summary

In two parts, representing two case studies, this thesis demonstrated how machine learning
could be used to beneficially complement the standard analysis of EEG data in exper-
imental psychology. Before discussing the challenges and advantages involved in using
machine learning in experimental psychology, the results of this thesis will be summarized.

Part I - Introduction

gave an introduction to statistics and machine learning by underlining the similarities
and differences between the two fields. As an example of how machine learning is already
used for experimentally generated neuro-physiological data, BCls were introduced. The
field of BCI research shows successfully what can be achieved by using ML methodology
on brain data. In a problem statement, the issues that arise from group-levels statistics,
which are current state-of-the-art in experimental psychology were explained to reveal
why the introduction of a new methodology would be a good idea. Lastly, an introduction
into the field of human memory structures and memory psychology was given, as this was
the field of application for this thesis. Two out of the three presented memory structures
served as a stage for a proof of concept of the proposed use of the ML methodology within
the two case studies.

Part IT - Working memory and Executive Functions (EF's)

represented the first of two case studies, on which the benefits of using ML in experimental
psychology were shown. The case study dealt with the characterization of components in
human working memory based on EEG data. More precisely, the study aimed to identify
EFs and tried to capture their commonalities and differences, as these properties are
prominently debated in current research. To achieve this a series of four studies have
been performed.

In Chapter 7 the first out of four studies was introduced that focused on the two EFs
updating and inhibition. It was found that a general distinction of the two EFs is possible,
which can, on the one hand, be attributed to different amounts of WML that they induce.
On the other hand, distinct neural activation patterns have been found for each EF by
investigating the parameters calculated by the machine learning approach. ML was also
able to show that the neural correlates of the two EFs are not interchangeable and do
not significantly overlap, emphasizing the diversity of the two EFs.

In Chapter 8 the second study was introduced, that focused on the two EFs shifting
and inhibition. Again it was found that a general distinction is possible, which relies even
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stronger on the different amounts of WML that the two EFs induce. Nevertheless, ML
was able to provide distinct neural activation patterns, as well as proof for no significant
overlap of properties of inhibition and shifting.

Chapter 9 presented the third study of the series. It was a replication of Study 1 with
the addition of one more experimental condition. It could be shown that the results of
Study 1 can be reproduced in great parts, which can be seen as a strong indicator that
neural activation patterns of updating and inhibition are stable and might generalize
over a bigger population. The newly introduced condition revealed that not only two but
three levels of inhibitory control could be distinguished, depending on whether it is a
block or trial wise change of conditions.

Chapter 10 is the last study of part II and can be seen as a replication of Study 2,
again with the addition of one more experimental condition. It could also be shown that
three levels of inhibitory control exist, which get visible under additional cognitive load.
This finding speaks in favor of common attentional resources of the EFs. The patterns
for shifting and inhibition could not be replicated entirely, indicating that inter-subject
variability could play a bigger role here compared to updating.

Chapter 11 concluded part II by discussing the insights that have been gained within
the four studies concerning the unity and diversity of EFs. It also highlighted the
advantages that could be achieved by the addition of the ML methodology. Overall, part
IT showed how explanatory data analysis could be extended and complemented by using
ML approaches in combination with classical group-level statistics.

Part III - Episodic memory processes

represented the second of the two case studies on which the benefits of using ML in
experimental psychology were be shown. The case study dealt with properties of episodic
memory, which can be located in human long-term memory. In total four studies have
been performed that try to characterize aspects of memory encoding, memory retrieval
and the confidence with which the retrieved information can be expressed.

In Chapter 13 the design and implementation of all four studies was introduced together
with the performed analysis steps for data processing and analysis.

Chapter 14 dealt with the first investigated process within episodic memory, namely
memory encoding. The results of all four studies were aggregated concerning this process.
The initial assumption that the strength and therefore, also the success of memory
encoding can be predicted on the basis of EEG signals had to be refuted. It could be
shown that an overall group effect does not necessarily imply that the effect is present in
every subject and stable in every trial. Making real-time judgments about the encoding
strength was not possible.

Chapter 15 investigated the process of information retrieval during the presentation of
information within the four studies. It could be shown that familiar stimuli are processed
faster than new stimuli, which is characterized by a shift in latency of about 100 ms in
occipital ERPs. ML was able to show that the classification of ERPs can significantly
outperform the behavioral accuracy in the recognition test in individual cases. This
insight leads to the hypothesis that visual processing is either independent of memory
retrieval or part of the processing pathway, which is prone to fail on many occasions.
Without the ML approach, this hypothesis could not have been revealed.

Chapter 16 dealt with the aspect of decision confidence while judging if items can be
remembered or not. It could be shown that the decision confidence influences feedback
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processing on a neurophysiological level. The classification accuracy showed that the
influence is more distinct in parts in which the ratio of familiar and new stimuli was
unbalanced. It was also shown here to what extent the classification quality can and may
be interpreted as effect strength.

Chapter 17 concluded part III by discussing the insights that have been gained within
the four studies concerning processes of memory encoding. It also highlighted the
advantages that could be achieved by the addition of the ML methodology. Overall,
part III was an example of how machine learning allows for exploratory and hypothesis
generating data analysis within experimental psychology.
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Chapter 19

Discussion

How do the insights of part 1l and 111 fit together and how do they relate to the posed
problem statement?

To conclude this thesis, this chapter represents a final discussion evaluating the insights
gained from both performed case studies. The results are discussed mainly concerning the
problem statement formulated at the beginning to close the loop and to show the benefits
that can be achieved when using machine learning in experimental psychology. To set the
expectations right, it needs to be stated that the two methodologies, classical group-level
statistics, and single-subject machine learning, both access different levels of information
within the data. Hence a direct comparison of the methods is neither fair nor appropriate.
Group-level statistics is an essential tool in experimental psychology which can and will
not be replaced. Despite the importance, group-level statistics have limitations which
were in parts listed in the problem statement. Using machine learning in addition to
group-level statistics can attenuate these limitations, which was demonstrated in the two
experimental parts of this thesis. The field of application for the approach is not limited
to EEG data but can be used for other data types. However, the added value is especially
given with dense and high dimensional data, for which EEG is a typical example.

19.1 Patterns

Use high-density data in all its complezity instead of abandoning many dimensions due
to statistical technicalities

One of the main issues of classical group-level statistics is the complete omission of
potential relations between variables. This omission is a considerable disadvantage in
particular for high dimensional data such as EEG recordings because the human brain
is known to be a highly functional and interconnected network. The field of machine
learning has its origin to a large extent in pattern recognition and the recognition of
regularities in large amounts of data. Therefore, it is an excellent candidate to overcome
the issue of neglected patterns.

In this thesis, SVMs were chosen to classify data into classes which correspond to

a priori determined variables of interest. The SVM integrates all the given data into
one classification model to solve the classification problem. In the case of the performed
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studies electrode sets of 14 to 21 sensors with approximately 500 to 600 values each,
were used for the training of the SVMs. The solution of the problem, represented by the
resulting accuracy values and neural activation patterns are therefore based on amounts
of data that can by no means be captured with classical group-level statistics. The
interplay between sensors can be captured, independent of its complexity, as long as it can
mathematically be described. Patterns automatically flow into the data model without
encountering problems with corrections due to multiple comparisons of single electrodes.
However, the accuracy of the classification does not provide any information about the
properties of the found patterns. These must be extracted separately by taking a closer
look at the generated SVM model. Within this model, each feature received a weight
which indicates the importance with regard to the decision line that has been calculated
between the two classes. The use of special methods (e.g., Haufe et al. [29]), enables to
interpret these values in the sense of neural activity patterns.

Within this thesis, the recognition of patterns has played an important role, espe-
cially in the first case study. It could be shown that patterns exist that reflect the
relationship between two executive functions, which, to a large extent, also coincide
with the existing literature. Although the results could provide important indicators for
the unity and diversity of executive functions, which was the central topic of the first
case study, they have also shown something much more important. There are ways to
make machine learning approaches transparent, making it possible to understand how
they work. The fact that the neural activation patterns calculated by the parameters
of the SVM are largely consistent with the existing literature makes it clear that the
methodology provides meaningful results that can be used for the acquirement of new
knowledge.

In this work, only analyses with SVMs were made. There are even more powerful
machine learning methods that could be used for this purpose, especially since intensive
work is being done to develop methods that can make machine learning methods more
transparent. One example are neural networks whose way of working can be made visible
by relevance back propagation (cf.,[119]). Overall, it was necessary to start with simple
methods to show the value that can be achieved by adding ML to standard analysis
techniques while keeping the approach as transparent and comprehensible as possible. In
the next step, it would be worthwhile to explore more sophisticated methods to evaluate
which additional gains can be achieved to drive psychological research even further
forward.

19.2 Single-subject level
Incorporate inter-subject variability instead of eliminating it from the analysis

Group-level statistics reveal if the data of the full group of subjects as a whole supports the
posed hypothesis or not. Knowing how each subject behaves individually, in accordance
or contrary to the hypothesis is an interesting factor that so far does not get the deserved
attention in experimental psychology. Standard group-level statistics do not cover this
aspect of the collected data, because the overall effect within the full population is of
interest. By assessing confidence intervals it can be estimated how the collected data is
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distributed, and if adequately marked, it should be possible to reveal if individual subjects
diverge from the group or if the group in total is diverse. Correlation analysis can easily
be done for individual subjects, but depending on the sample size, and level of interest
(feature wise, electrode wise or full time series of the signal) it quickly gets complex and
unmanageable to consider every subject individually. So although it is possible to consider
the single-subject level, this is rarely or never practiced. In contrast to that, machine
learning makes it very easy to build single-subject data models as long as a sufficient num-
ber of training data is available for each individual subject (a recommended value are 100
trials per condition). By calculating an accuracy value for each model, it can be estimated
how an individual behaves concerning the posed research question. Comparing and eval-
uating one single value for each subject can easily be managed even in bigger data samples.

In this thesis, the specific performance of an individual subject was especially of
importance in the second case study. For the question of stimulus familiarity, the consid-
eration of the single-subject level has led to the generation of new influential hypotheses
regarding the memory function of the visual cortex. In these studies, by comparing
behavioral and machine learning performance subject by subject, it could be shown that
the passively elicited brain signal can be more discriminatory than the knowledge that can
be actively retrieved from memory by the subject. This difference between behavior and
brain activity indicates gaps in the processing pathway of information or independence
of visual processing and knowledge retrieval. This knowledge could only be gained
by looking at the single-subject level because the mean values of the two performance
measures did not give rise to this assumption. For the process of memory encoding, the
single-subject level also has a special significance. Finding that a single-subject and also
single-trial classification for the encoding strength is not possible, could indicate that the
process is not as stable or even not that discriminative, as the group-level analysis might
suggest.

But also for the first case study, the single-subject level was of great importance
for the achieved findings. The neural activation patterns were calculated for each subject
individually before they were averaged to get an overall estimate. This form of analysis
enabled to determine the relationship of the EFs within each subject without paying much
attention inter-subject variabilities that can differ from subject to subject. This order
of calculation first minimizes the variance within a subject by eliminating interfering
elements that are present in both EFs. Through the subsequent averaging across all
subjects, the variance between subjects is minimized, but only at the relevant level of
patterns and not at the irrelevant level of interfering factors.

In this work only within-subject classifications were performed, because a primary
focus was set on the single-subject level. For the sake of completeness, it also needs
to be mentioned that a cross-subject classification, i.e., a classification analysis that
uses the data of all subjects for the training and testing of a classifier, would also be
possible and complete and round off the analyses of all performed studies. Cross-subject
analysis can be seen as an equivalent measure for the group-level statistics, but with the
inclusion of patterns. With a leave-one-out cross-validation, a classifier could be trained
on all subjects except for one, which would then be used for testing and to evaluate the
classifier. Again the classification accuracy could be interpreted in terms of effect size
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for each subject individually, but the information of all subjects could be considered at
once. However, a well functioning cross-subject classification is a challenging problem
due to the particular issues of EEG recordings. Non-stationarities and big inter-subject
variabilities make it hard to find a common feature space in which the collected recordings
behave according to the same rules. To tackle this problem, normalization methods have
been developed that begin to soften the issue, but there is still a lot of work that needs to
be done. To name a few, methods like the Riemann Geometry [177] and the Stationary
subspace analysis [178] are examples that have found their way in BCI research to
normalize the available data for unified classifiers across subjects. Therefore, a focus of
future work could be on cross-subject classification to further deepen the knowledge of
cognitive processes on the group-level.

19.3 Latent variables
Detect and identify confounds or other factors of importance

Latent variables are variables that cannot be measured directly but have an influence
on the measurable outcome of an experiment. In most of the studies, the influence of
latent variables is fully neglected regarding the data analysis. Since the detection and
identification of latent variables is a complicated and so far unsolved problem, this can
hardly be criticized. Random effects model is a way in current statistics that try to
include and capture random effects within experimental data. Other methods like the
independent component analysis (ICA) can also be used to investigate the components
in the data, that show the most variance and therefore have the most influence on the
statistical model. However, they need to be additionally performed and do not necessarily
provide an output that helps to understand the data better.

In the second case study, it could be shown that ML can be a useful tool in the
identification of latent variables. The ratio of old and new stimuli within the test phase
of the experiment did have a significant impact on the neurophysiological signals of
subjects, which was not visible in the standard group-level analysis. The single-subject
classification approach, however, revealed that there are differences between experimental
parts with balanced ratios of old and new stimuli (II and IV) and unbalanced ratios
(I and III). In this particular case, it was not only possible to detect a latent variable
but also to identify it, due to the structure of the four consecutive experiments. In
other cases, this might not be that easy, because of fewer opportunities to compare the
influence of individual parameters. Nevertheless, the use of machine learning can help to
identify areas of interest that show a high level of classification accuracies, without easily
explainable effects. These areas can then be further investigated concerning potential
candidates of latent variables that could be responsible for the measured outcome. A big
advantage is that the classification performance serves as a measure of effect size and
conglomerates a lot of information in one value. Using the computed values as signposts
for what and which types of analyses need to follow to better understand the data, seems,
therefore, a great and easy to use idea.
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19.4 Exploratory and explanatory data analysis

Save data: Allowing exploratory data analysis by using well controllable analysis
techniques

Science suffers from high pressure to publish exciting, new, impressive, and influential
results. This is not only true for experimental psychology but the whole scientific
community. In general, aiming high in your endeavors is essential for succeeding and
gaining new insights. However, the pursuit of success always has a drawback. Failures,
which in scientific research can be null effects or results that are not in accordance with
the literature, are rarely reported as they cannot be used to acquire funding. Since
experiments "fail” at regular intervals, due to various reasons that might not be in the
control of the experimenter, a lot of research vanishes in cabinet drawers. Using the
study results for a different purpose instead of leaving it in a drawer is usually not an
option due to the strict limitations of hypothesis-driven designs. In addition, due to
probability distributions, the chance of finding effects by pure luck get higher, the more
often statistical tests are performed. Performing them anyway would only lead to the
publishing of random effects instead of null effects which are also not desired.

Especially for the second case study of the thesis, the possibility to perform ex-
ploratory data analysis was key to the achieved findings. Overall, three instead of one
research questions were asked for the assembly of studies based on episodic memory pro-
cesses. They were developed continuously and not based on a-priori defined hypothesis,
but on questions that can legitimately be asked when looking at the experimental design.
Multiple hypothesis testing is made possible by using different approaches that ensure in
their entirety that the findings are not random but tangible. The used methodologies
work hand in hand and support each other’s findings although their way of working is
independent of each other. Especially for the stimulus familiarity aspect of the study, it
could be shown that correlation analysis combined with group-level ERP analysis and
several classification approaches all supported the same effect.

Regarding the aspect of memory encoding, the exploratory ML approach, in combination
with the neural activation patterns revealed error-related potentials during the feedback
of the task, which could be validated by classical group-level analysis. Therefore, it could
be proven that the effects that can be identified in the ML-based exploratory analysis
approach are legit effects that enable greater insight into the available data. The fact that
the results are supported by more than one of the performed studies further enhances
credibility and reduces the probability of chance findings.

The machine learning methodology has several properties that lift the strict bar-
rier of exploratory data analysis to a certain extent. Apart from the issue of multiple
testing, statistical models often tend to overfit. The process of overfitting can also be
expressed by learning the data by heart or finding the wrong or no level of abstraction
for the data. One of the great strengths of machine learning are mechanisms that
counteract overfitting since the generalizability of the model is the priority. Key to finding
generalizing models is to simplify the model and also the parameter space. A reduction of
the parameter and model space thereby also reduces the chances of finding effects simply
by coincidence.
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It must be emphasized that rigorous testing without concrete research question is
still not possible and should not be encouraged at any time. Explorative data analysis can
only be realized through a tightly knit network of methods which combine generalizability
and inference of the data. In the case of contradictory results between the methods,
caution is required as far as interpretation is concerned. However, if the results work
together, this can be interpreted as a strong indication that a well-founded effect exists.

19.5 Reproducibility
Choose generalizability over the goodness of the fit to facilitate reproducibility

The Reproducibility Project [1] from the year 2015 showed impressively that social
sciences face a serious problem that needs to be overcome to create credible and
well-grounded research. Especially the already stated issue of overfitting, but essentially
a combination of all the above-stated issues play a crucial role in the emergence of the
crisis. The suggestion to use machine learning methods to eliminate the disadvantages of
standard group-level statistics, which are in great parts responsible for the issue, could
be demonstrably explained in this thesis as meaningful. In both experimental parts,
it was possible to replicate the results of studies and to underpin them with different
methodologies. In particular, it was also possible to replicate the results of an external,
not self-designed study. Scharinger and colleagues collected the data of study 1 from
the working memory part of this thesis. For the design and the survey of the follow-up
studies, the expertise of Dr. Scharinger was consulted, but the concrete implementation of
the experiment is different from the original study. Nevertheless, the same findings as in
the original study of Scharinger and colleagues [57] could be made using the conventional
as well as the ML approach. This means that both approaches generate consistent results.
However, the ML approach is less error-prone due to the inherent cross-validation and
the broader scope, facilitation the group as well as the single-subject level. Furthermore,
additional information could be generated regarding the unity and diversity of EFs, which
supplements the findings and therefore generate higher confidence in the overall results.
Taking this into account, it becomes apparent that the use of ML offers a possibility to
increase reproducibility by increasing the confidence in the results.

The second case study also showed that results could be replicated despite new
samples for each study. Especially in this part of the thesis, it could be shown that the
results achieved by machine learning, can be validated by classical group-level statistics.
Therefore, this part strongly legitimizes to use ML in the context of data analysis in
experimental psychology because it produces reliable and comprehensible results. The
cross-validation and generalizability make ML a strong tool that simplifies data analysis
and its validation compared to standard analysis approaches. But especially when using
the two approaches in combination with each other the strength and the advantages get
undeniably clear, further increasing the credibility of results.

In general, the main focus of this thesis was to make use of this generalizability of
the results and the gain in knowledge that can be achieved by the addition of the new
methodology. Generalizability is key for reproducibility for which deductions regarding
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the goodness of the fit, should willingly be accepted. For this reason, many inconspicuous
and at first glance, poor results can be found in this thesis, especially concerning the
model quality. Many classification accuracy values of the machine learning models lie
barely noticeably above the chance level. An improvement of the values would have very
likely been possible with parameter tuning or feature engineering. However, even with
results that appear poor, a tangible statement can be made, provided that it is ensured
that the deviation from the random level is significant. Therefore, the goodness of the fit
was neglected for the sake of a reliable prediction, and the credibility and reproducibility
of results.
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Chapter 20

Conclusion

Group-level statistics and machine learning are two methods with different strengths that
can access different levels of information in data. The classical group-based statistics
averages the available measures over all subjects and aims to find differences on a group
level. The basis of this analysis is to find what is common between all subjects within one
condition and to see if this condition is significantly different from a second condition.
A priori defined hypotheses that explain the expected effects are confirmed or rejected
based on the group-level statistics. The strength of this analysis is that the findings are
generalized over big amounts of data that allow inferences about the variance of the
effects across populations of subjects.

In contrast to that, the ML approach focused on finding statistically significant
differences between the two conditions for each subject individually. Instead of calcu-
lating averages or an analysis of variance, this is done by extracting mathematically
optimized patterns from the available signals, that make the conditions distinguishable.
To avoid over-fitting, cross-validation is implemented, that extracts the patterns from
one part of the data and then validates the applicability of the found patterns on a
second part of the data, that has explicitly been left out for testing. The strength of this
analysis is that it allows applying the gained knowledge to new data points. The approach
predicts the condition of each data point individually which implies that the findings are
generalized and validated on each subject separately that allow making inferences about
the variance of the effects within subjects.

The combination of both approaches, therefore, allows combining an explanatory
as well as a predictive approach to create more significant insights into the experimental
data. Conclusions can be drawn on a group level, but also on a single subject level.
Especially when dealing with EEG data, this is of great importance, as inter-subject
variability can be the key to understand complex mental states on the neurophysiological
level. In both parts, it could be demonstrated that different results are achieved when
using single-subject ML approaches, compared to standard group-level statistics. Recent
developments call for the use of both methodologies to make progress in the scientific
world [179], [180]. It is therefore suggested and encouraged by the results of this thesis
and the scientific community to take both analysis steps into account.
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List of Abbreviations

ALS Amythrophic lateral sclerosis
ANOVA Analysis of Variance

BCI Brain-Computer interface
CAR Common average referencing
CCA Canonical correlation analysis
CLT Cognitive load theory

EEG Electroencephalography

EF Executive Function

EOG Electrooculogram

ERD Event-related desynchronization
ERP Event-related potential

ErrP Error potential

ERS Event-related synchronization
FCE Flanker congruency effect

FRN Feedback-related negativity
ICA Independent component analysis
MEG Magnet encephalography

ML Machine learning

MRI Magnet resonance imaging learning
NIRS Near infrared spectroscopy
PET Positron emission tomography
RP Readiness potential

RT Reaction time

SVM Support vector machine

WM Working memory

WML Working memory load
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