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1. Introduction 

1.1  Why do older adults fall? Risk factors for falling and their association 

with cognition 

Approximately about 30% of community-living people over 65 years of age fall 

(Gale et al., 2016; Gillespie, 2013; Rubenstein and Josephson, 2002). Falls lead 

to severe injuries, such as hip fractures in 5-10 % of the cases (Rubenstein and 

Josephson, 2002) and have a severe influence on quality of life (Stenhagen et 

al., 2014). 

Several causes and risk factors of falls have been identified. The causes of falls 

describe the actual reason for a fall. Important causes of falls are accidents or 

external circumstances, gait and balance disorders, (sudden) weakness, vertigo 

and dizziness, drop attacks, syncopes, postural hypotension, and visual 

disorders (Rubenstein et al., 1994; Rubenstein and Josephson, 2002).  

Risk factors are indicators of an increased risk, but do not directly or necessarily 

lead to falls. Important risk factors are age (Gale et al., 2016), female gender 

(Gale et al., 2016), gait and balance problems (Bergland and Wyller, 2004; Boele 

van Hensbroek et al., 2009; Gale et al., 2016), muscle weakness (Gale et al., 

2016; Moreland et al., 2004; Pluijm et al., 2006), previous falls (Bergland and 

Wyller, 2004; Pluijm et al., 2006), fear of falling (Boele van Hensbroek et al., 2009; 

Landers et al., 2016), cognitive deficits and dementia (Kearney et al., 2013), 

arthritis, chronic disorders in general (Gale et al., 2016), (multi)medication (Boele 

van Hensbroek et al., 2009; Gale et al., 2016; Ruxton et al., 2015), and visual 

impairment (Boele van Hensbroek et al., 2009; Gale et al., 2016).  

Prioritization, i.e., putting the main focus on a special action / task / object / aspect 

/ etc. and not on another, seems to be a particularly relevant risk factor for falling 

(Bloem, Valkenburg, Slabbekoorn and Van Dijk, 2001). This is because 

prioritization is relevant during almost all walking episodes. This relevance has 

nicely been demonstrated by, e.g., a study investigating stops of walking during 

talking (Lundin-Olsson et al., 1997). The authors found that persons who stopped 
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walking when talking have an increased risk for a future fall compared to those 

who did not stop walking in the same situation.  

 

 

Figure 1: Schematic overview of a selection of risk factors and causes for falls, highlighting the difference 
between these terms. 

 

This manuscript will focus on risk factors of falling. Based on recent reviews, 

impaired gait and balance, previous falls, and medication use are among the most 

relevant risk factors for falls (Ganz et al., 2007; Tinetti and Kumar, 2010). Of note, 

all three risk factors include cognitive aspects. It is thus probable that a better 

understanding of the interaction of cognition with gait and balance, knowledge 

about the influences of previous falls and (multi)medication has the potential to 

initiate interventions to reduce the risk of falling. In the following, the current 
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knowledge about these interactions and associations will be discussed in more 

detail. 

Impressive examples for the association of impaired gait and balance with 

cognitive deficits are cognitively demanding situations leading to falls 

(Robinovitch et al., 2013). Moreover, it has been shown that fallers have deficits 

in gait performance under dual tasking conditions but not under single tasking 

conditions (Yogev et al., 2007). We have recently shown that this deficit also 

occurs in patients with Parkinson’s disease (PD). We investigated a cohort of 40 

PD patients over a period of approximately three years, and found that higher 

dual task costs (i.e. the reduction in the performance of one task under dual 

tasking conditions when compared to the performance of the same task under 

single task conditions) significantly predicted the occurrence of the first fall 

(Heinzel et al., 2016). Pathomechanistic aspects of the interaction between 

cognition, gait and balance are discussed in the next chapter. Recent results from 

intervention studies support this association: motor training in combination with a 

cognitive task, e.g., when using a virtual reality setup is more effective in reducing 

the risk of falling in older adults (Mirelman et al., 2016) and in stroke patients 

(Pedreira da Fonseca et al., 2017), than motor training alone. 

Psychological and behavioural changes often accompany falls, which may 

include cognitive deficits in a portion of the persons affected (Ansai et al., 2017; 

Mirelman et al., 2012). This situation may best explain the contribution of 

cognitive deficits to the falls risk factor “previous falls”. Another factor in this 

interplay is fear of falling, an emotion triggered by (previous) falls (Haertner et al., 

2018; Hoang et al., 2017; Li et al., 2003). 

Medication use, another risk factor for falls, is also associated with cognitive 

deficits (Dhalwani et al., 2017; Díaz-Gutiérrez et al., 2017; Ruxton et al., 2015). 

Psychoactive drugs can lead to increased risk of falling through confusion and 

sedation (Campbell et al., 1999; Díaz-Gutiérrez et al., 2017; Lord et al., 1995; 

Seppala et al., 2018). Antihypertensive drugs induce a higher risk of falling 

through, e.g., symptomatic hypotensive episodes (Shimbo et al., 2016). In 

contrast, some drugs improve cognition and can thus have a positive effect on 
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walking and mobility, reducing the risk of falling. This effect has been shown with, 

e.g., galantamine, rivastigmine and methylphenidate (Chung et al., 2010; 

Gurevich et al., 2014; Henderson et al., 2016; Montero-Odasso et al., 2015). One 

of these studies (Montero-Odasso et al., 2015) investigated 43 patients with 

recently diagnosed Alzheimer’s disease (mean age of 77 years), found that 

improvement of mobility was associated with improvement of cognitive flexibility, 

an executive function. This study especially suggests that cognitive flexibility is 

an interesting candidate function for – and link between — the association of 

mobility (impairment) and cognition. This thesis investigates the association of 

cognitive flexibility in particular, with prioritization and gait parameters in a defined 

dual tasking paradigm in a large cohort of healthy older adults.  
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1.2  Supraspinal control of gait 

For a long time, gait was considered to be an automatic process. This assumption 

was built on a famous experiment, showing that a decerebrated cat can walk on 

a treadmill (Brown, 1911). This finding led to the assumption that central pattern 

generators delivering sufficient information for the performance of walking are 

located in the spinal cord. The responsible structure has also been postulated in 

humans (Illis, 1995), as it has been shown that muscle activity and stepping 

movements could be evoked in patients with paraplegia by a treadmill (Dietz et 

al., 1994). However, the existence and role of these spinal pattern generators in 

healthy humans is still not entirely clear. Nevertheless, it is well accepted that the 

supraspinal control of gait is much more important in humans and other bipedal 

walkers than in animals walking on four legs (Jahn et al., 2010; Takakusaki, 

2017). Insights into the mechanisms of supraspinal gait control have been gained 

by imaging studies using different techniques, such as positron emission 

tomography (after walking tasks (la Fougère et al., 2010; Malouin et al., 2003)) 

and functional magnetic resonance imaging (with imagination tasks of walking 

(Bakker et al., 2007; Jahn et al., 2004; Jahn, Deutschländer, Stephan, Kalla, 

Wiesmann, et al., 2008)). These studies showed that supraspinal brain areas 

project to the spinal cord, which can be interpreted as indirect evidence for the 

existence of spinal pattern generators. In any case, these projections enable us 

to adapt gait to external and internal obstacles and requirements. As several brain 

structures and networks contribute to supraspinal control of gait, only a simplified 

model is discussed here and shown in figure 2: The pontomedullary reticular 

formation is a central hub of this network (Takakusaki et al., 2016). It receives 

input from sensory tracts, the cerebellum and the midbrain locomotor region and 

projects to central pattern generators in the spinal cord (Takakusaki et al., 2016). 

In simple words, it “manages” the integration of gait modulation of the cerebellum 

and from the midbrain locomotor region. The midbrain locomotor region is 

another central hub of this network: it receives projections from “primary motor” 

(mainly motor cortex, basal ganglia and thalamus (Middleton and Strick, 2000)), 

“limbic” (mainly the limbic system and parts of the basal ganglia (Takakusaki et 

al., 2004)) and “frontal” circuits, all of which converge in the basal ganglia before 
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they approach the above-mentioned hub (Joel and Weiner, 2000; Middleton and 

Strick, 2000; Pelzer et al., 2014). The midbrain locomotor region projects to the 

pontomedullary reticular formation. This hub therefore “manages” the integration 

of influences of different circuits that involve higher networks including cortical 

structures. 

The “frontal” circuit plays a central role in this thesis. It consists mainly of frontal 

and prefrontal areas and the basal ganglia. This circuit manages, among other 

tasks, dual tasking, and a relevant number of publications suggest that it plays 

an important role in motor-cognitive interactions (Middleton and Strick, 2000; 

Suzuki et al., 2004). 
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Figure 2: Simplified model of brain structures and networks involved in supraspinal control of gait. Figure 
adapted from (Hobert et al., 2014; Jahn, Deutschländer, Stephan, Kalla, Hüfner, et al., 2008). 
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1.3  Gait assessment strategies 

In neurology gait is usually classified based on clinical observation and terms 

such as ataxic, parkinsonian, spastic, paretic, and anxious gait are used to 

describe pathological gait patterns (Jahn et al., 2010; Nonnekes et al., 2018; 

Snijders et al., 2007). This method relies strongly on the experience of the 

examiner, and is subjective and prone to bias. In recent years, the development 

has thus moved in the direction of quantitative and objective gait assessment 

strategies. 

A simple method to quantify gait is measuring gait speed, i.e., the total time 

needed to walk a defined distance. Gait speed is, e.g., a sensitive parameter for, 

and predictor of, overall survival time (Studenski et al., 2011) and cognitive 

decline (Buracchio et al., 2010). This parameter can be easily measured with, 

e.g., a stopwatch. 

More complex assessments of gait can be performed using lab-based 

techniques, such as optical and video-based systems (Kadaba et al., 1990), and 

pressure sensors on the floor or in special mats (Cutlip et al., 2000; McDonough 

et al., 2001). The main advantage of these methods is their high accuracy. 

Disadvantages are high costs and location dependency, e.g. in a gait lab. 

The next important step in technological development has been the design of 

inertial measurement units (IMUs). They can readily assess quantitative gait 

parameters. For example, these sensors allow the measurement of small and 

defined movements with high accuracy outside the lab, e.g., in the patient’s room 

and in the home environment of the patients and study participants. IMUs typically 

contain accelerometers (to measure acceleration), gyroscopes (to measure 

rotation), and often magnetometers (for the assessment of magnetic fields). IMUs 

can be worn on different locations of the body, mainly depending on the 

information that is to be collected (Hobert et al., 2014; Maetzler, Domingos, et al., 

2013; Sánchez-Ferro et al., 2016). IMUs positioned on the lower back and the 

feet allow the extraction of important gait parameters (Salarian et al., 2013). Raw 

data of the sensors can be “transformed” by specific algorithms to clinically 

relevant and understandable parameters. Such parameters are, e.g. gait speed, 
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number of steps/strides, step/stride time, double support time, gait variability, 

measures of gait regularity (e.g., phase coordination index (PCI) (Plotnik et al., 

2007)), and gait asymmetry. Specific parameters may belong to different gait 

domains (Lord, Galna, Verghese, et al., 2013; Verghese et al., 2008). Verghese 

and colleagues (Verghese et al., 2008) proposed three gait domains: rhythm, 

pace, and variability. Step frequency, swing time and stance time belong to the 

rhythm domain, gait speed and stride length belong to the pace domain, and 

double support time, stride length variability and swing time variability belong to 

the variability domain.  

Lab- and IMU-based assessments of gait are mainly performed under 

standardized conditions, e.g., to assess walking with and without dual tasking on 

a defined walking path. This aspect is relevant for this thesis. It should also be 

mentioned that more recent IMU-based studies are also assessing movements 

in unsupervised environments, e.g., in the homes of the participants (Ferreira et 

al., 2015; van Lummel et al., 2015; Pham et al., 2017). 
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1.4  Cognitive flexibility: An executive function associated with gait in older 

adults 

Executive functions are a set of cognitive functions, including planning, problem 

solving, goal-directed behaviour, sustaining or switching attention, sequencing, 

and cognitive flexibility (Chan et al., 2008). A universally accepted model of 

executive functions is not yet available. Miyake and colleagues (Miyake et al., 

2000; Miyake and Friedman, 2012) tested in 137 adults whether the three 

fundamental domains, updating, inhibition and shifting, are part of the executive 

functions. The authors performed a confirmatory factor analysis and a structural 

equation modelling analysis and found that the three domains reflect, at least 

partly, different aspects of executive functions (Miyake et al., 2000). The authors 

named this the “Unity and Diversity paradigm”. This model is currently widely 

accepted. 

In more detail, the authors found that updating describes the actualisation of 

working memory. It can be measured with, e.g., the Operation Span Test and the 

Keep Track Task (Miyake et al., 2000). Inhibition describes the suppression of 

dominant responses. It can be measured with the Stroop Test and the Tower of 

Hanoi Test (Miyake et al., 2000). Finally, shifting describes switching of attention 

between different tasks. It can be assessed with, e.g., the Wisconsin Card Sorting 

Test and the Trail Making Test (TMT) (Bowie and Harvey, 2006; Miyake et al., 

2000). Part of shifting is cognitive flexibility, which is necessary for e.g. dual 

tasking situations, where two tasks have to be performed simultaneously or 

alternating. It can be measured with the TMT (Miyake et al., 2000). 

An association of cognitive flexibility with gait has repeatedly been shown (Ble et 

al., 2005; Coppin et al., 2006; Hirota et al., 2010; Killane et al., 2014). Most of 

these studies used dual tasking paradigms with walking. One of the first studies 

focusing on this association was the longitudinal InChianti study (Invecchiare in 

Chianti, aging in the Chianti area study). This study included, in the cross-

sectional analysis, 1154 older adults with a mean age of 75 years (Ble et al., 

2005). The authors categorized study participants according to results obtained 

from the TMT into three groups and examined whether these three groups 
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showed different gait speeds during different walking conditions. They found no 

differences of gait speed in the walking at convenient speed condition between 

groups, but significant differences in the fast walking while avoiding obstacles 

condition: Participants with good TMT performance walked faster than did those 

with poor TMT performance. These results were confirmed in a more recent 

cross-sectional analysis in the same cohort, showing that poor TMT performers 

had slower gait speed under dual tasking conditions, but not under single tasking 

conditions (Coppin et al., 2006). These results suggested that cognitive flexibility 

influences walking during complex tasks (Ble et al., 2005; Coppin et al., 2006). 

The InChianti study raised some questions. First, can we learn something more 

from a quantitative assessment of the secondary task? Second, can we improve 

our understanding of the interaction of cognition and gait by adding, e.g. IMU-

based quantitative gait parameters to our analyses? Third, is performance under 

challenging conditions more effective for investigating and understanding the 

interaction between motor (gait) and cognitive function than performance under 

convenient conditions? 

This thesis addresses all three questions by including quantitative strategies in 

the assessment protocol. 

By addressing the first question (quantitative assessment of the secondary task), 

our study could investigate, to our best knowledge for the first time, whether 

cognitive flexibility is associated with prioritization. In the first publication of this 

thesis, the association of cognitive flexibility with prioritization during the dual 

tasking gait condition was analysed in almost 700 healthy older adults. 

By addressing the second and third questions, the second publication of this 

thesis focused on the association of cognitive flexibility with distinct quantitative 

gait parameters and changes thereof during increasingly difficult walking 

conditions. The following studies highlight the relevance of this research question: 

In a study with 493 Japanese adults, the influence of cognitive flexibility on gait 

speed was evaluated during different walking conditions (Hirota et al., 2010). The 

authors found an association between cognitive flexibility, measured with the 
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TMT, and parameters of mobility (i.e., gait speed and Timed- Up and Go test). 

Consistent with the results of the above-mentioned InChianti study (Ble et al., 

2005; Coppin et al., 2006), the authors of this study found stronger associations 

between the respective parameters in more difficult walking conditions, such as 

walking at fast speed, dual tasking and obstacle avoidance during walking. 

The Irish Longitudinal Study on Aging (TILDA) analysed the association of 

cognitive flexibility and gait during single and dual tasking during walking 

conditions in 4431 adults with a mean age of 62 years (Killane et al., 2014). The 

authors found that the Colour Trail Test (a variant of the TMT) was associated 

with gait speed in dual tasking but not in single tasking conditions. The authors 

argue for an important contribution of executive functions to gait performance, 

especially during complex walking situations. 

As both above-mentioned studies reported only about gait speed and did not 

include further sensor-based gait parameters, the second publication of this 

thesis investigated the association of cognitive flexibility with gait performance by 

including IMU-based gait parameters, again on a cohort of almost 700 older 

adults. 
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1.5  Research questions 

1. Is cognitive flexibility associated with prioritization? 

2. Is cognitive flexibility associated with quantitative gait parameters and their 

changes across increasingly difficult walking situations? 

 

This thesis attempts to answer these questions using the following approach: 

- In the first publication, 686 healthy older adults performed walks under 

dual and single tasking conditions. Out of these tasks, dual task costs were 

calculated and compared between good and poor TMT performers.  

- In the second publication, 661 healthy older adults wore a small IMU 

during walks under dual and single tasking conditions. Gait parameters 

and their changes over increasingly different walking conditions were 

analysed and compared with TMT values and between good and poor 

TMT performers. 
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2. Results 

2.1 Publication 1: Poor Trail Making Test Performance Is Directly 

Associated with Altered Dual Task Prioritization in the Elderly – Baseline 

Results from the TREND Study 

This section consists of the following publication: 

Poor trail making test performance is directly associated with altered dual task 

prioritization in the elderly--baseline results from the TREND study. 

Hobert MA, Niebler R, Meyer SI, Brockmann K, Becker C, Huber H, Gaenslen 

A, Godau J, Eschweiler GW, Berg D, Maetzler W. 

Published in PLoS One. 2011;6(11):e27831.  

 

(Bock, 2008)(Lindenberger et al., 2000)(Binder et al., 1999; Bloem et al., 2006; 

Soumare et al., 2009; Srygley et al., 2009; Yogev-Seligmann et al., 2008)(Bloem, 

Valkenburg, Slabbekoorn and Van Dijk, 2001; Bloem, Valkenburg, Slabbekoorn and 

Willemsen, 2001)(Beauchet et al., 2007; de Bruin et al., 2010; Drane et al., 2002; 

Lindemann et al., 2010; Yogev-Seligmann et al., 2010)(Bock et al., 2008; Corrigan and 

Hinkeldey, 1987; O’Shea et al., 2002)(Al-Yahya et al., 2011; Hall et al., 2011; Herman 

et al., 2010) (Lezak, 1995)(Winter, 1987) 
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2.2 Publication 2: Gait is associated with cognitive flexibility: A dual-

tasking study in healthy older people 

This section consists of the following publication including the online published 

supplementary data: 

Gait is associated with cognitive flexibility: A dual-tasking study in healthy older 

people. 

Hobert MA, Meyer SI, Hasmann SE, Metzger FG, Suenkel U, Eschweiler GW, 

Berg D, Maetzler W. 

Published in Frontiers in Aging Neuroscience. 2017 May 24;9:154.  

 

(Al-Yahya et al., 2011; Beauchet et al., 2010; Berryman et al., 2013; Bowie and 

Harvey, 2006; Brandes et al., 2006; Callisaya et al., 2011; Coppin et al., 2006; Crowe, 

1998) 

(Dijkstra et al., 2008; Ebersbach et al., 1995; Folstein et al., 1975; Gaenslen et al., 

2014) 

(Galna et al., 2013) (Gilbert and Burgess, 2008; Hausdorff et al., 2006; Hautzinger, 

1991; Heinzel et al., 2016; Hirota et al., 2010; Hobert et al., 2014) (Houdijk et al., 2008; 

Hughes et al., 1992; Klanker et al., 2013; Lindemann et al., 2008; Lord, Galna and 

Rochester, 2013)(Maetzler, Nieuwhof, et al., 2013; Maetzler and Hausdorff, 2012) 

(Lowry et al., 2012; Martin et al., 2013; Miyake et al., 2000; Miyake and Friedman, 

2012) 

(Montero-Odasso et al., 2009, 2011) (Plotnik et al., 2007, 2008, 2009) (Rasquin et al., 

2002) (Ruthruff et al., 2001; Smulders et al., 2012)(Stopford et al., 2012; Studenski et 

al., 2011; Verghese et al., 2008, 2009) (Wecker et al., 2005) (Yogev-Seligmann et al., 

2008; Yogev et al., 2007; Zijlstra and Hof, 2003) 
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3. Discussion 

The results of the two publications (Hobert et al., 2011, 2017) presented within 

this thesis show that cognitive flexibility influenced walking behaviour in 

community-dwelling older adults. In the following section, the results of both 

publications are discussed separately. Then, a new section introduces a common 

framework for a more general understanding of the association of cognitive 

flexibility with falls. 

3.1 Discussion of Publication 1 

The first paper analysed the association of cognitive flexibility and gait, with 

specific consideration of prioritization aspects in a cohort of healthy older adults. 

For this purpose, we used single and dual tasking paradigms. Cognitive flexibility 

was measured with the TMT. We found an association of cognitive flexibility and 

gait speed in the dual task walking when subtracting condition, but not in the 

single tasking walking at fast and at convenient speed and in the dual task 

walking while checking boxes condition. The most relevant findings of the study 

were as follows: Under the dual task walking while subtracting serial 7s condition, 

participants with poor cognitive flexibility had higher dual task costs for gait speed 

and lower dual task costs for subtraction errors compared to study participants 

with good cognitive flexibility. Moreover, on an absolute level, participants with 

poor cognitive flexibility had fewer subtracting errors under the dual task condition 

than under the single task condition. Dual task costs for the dual task walking 

while checking boxes condition showed no significant differences between good 

and poor TMT performers.  

3.1.1 Confirmation of previous studies 

These results are interesting for the following reasons: The paper confirms results 

from previous studies investigating the association of cognitive flexibility and gait 

in cohorts of older adults (Ble et al., 2005; Coppin et al., 2006; Hirota et al., 2010). 

For example, the results of the present study were comparable with those of the 

InChianti study, the first study investigating this association. The authors of the 

latter study found in their cohort of 926 participants that participants in the lowest 
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tertile of the delta TMT performance walked more slowly under a challenging 

walking condition (here: walking at fast speed with obstacles) than those in the 

highest tertile (Ble et al., 2005). Of note, participants investigated in the InChianti 

study were older (mean age 75 years compared to 64 years in our study), had a 

lower value in the MMSE (mean value 25.5 compared to 29 points in our study) 

and performed, as a mean, clearly worse in the TMT (the tertile with the best 

cognitive flexibility in the InChianti study was defined by delta TMT values below 

78 s, while in our study the tertile with the worst cognitive flexibility was defined 

by delta TMT values above 58 s). It can thus be concluded that the observations 

made in the InChianti study (Ble et al., 2005) and the other studies investigating 

cognitive flexibility in association with gait (Hirota et al., 2010; Killane et al., 2014) 

obviously holds true for younger and cognitively more flexible cohorts. 

3.1.2 Cognitive flexibility is associated with altered prioritization 

The publication presented – in our view for the first time – that participants with 

poor cognitive flexibility prioritize the subtracting task over the walking task, which 

is not the case in participants with good cognitive flexibility (i.e., the “gold 

standard”).  

Why is this meaningful? The main and surprising aspect of this observation is 

that participants with poor cognitive flexibility use obviously a dangerous strategy 

during complex walking situations: They focus on the relatively “useless” 

subtraction task during a challenging dual tasking paradigm and not on the 

“evolutionarily relevant” walking task, which may eventually lead to severe 

consequences such as falls and fractures.  

How can the behaviour of participants with poor cognitive flexibility be explained 

from a mechanistic point of view? A relatively simple model is based on the 

bottleneck theory. This theory describes the situation where two simultaneously 

performed tasks require the identical network, leading to a decrease of 

performance of at least one of the tasks due to an overload of the network 

(Pashler, 1994). This theory could explain our results: Our participants performed 

walking (a motor task), subtracting (a cognitive task), and dealing with a dual task 

situation (a cognitive task); that is, they performed two cognitive tasks and one 
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motor task. The bottleneck was thus in the “cognitive network”, which may have 

been overloaded in the poor TMT performers who a priori have limited cognitive 

resources. Two further observations may support this hypothesis: In the same 

study, we did not find significant differences in dual task costs between poor and 

good performers in walking when checking boxes condition. Based on the 

proposed model, in this paradigm, two motor tasks (walking and checking boxes) 

and one cognitive task (the dual tasking situation per se) were performed. Here, 

a bottleneck in the motor system could become visible but was not apparent in 

the cohort. However, we have independently investigated a cohort in which such 

a “motor bottleneck” is most likely apparent. We investigated 36 early PD patients 

with the same paradigms and with a mean time interval of approximately four 

months prior to the first fall. Only the dual task walking while checking boxes, but 

not dual task walking while subtracting serial 7s, predicted the first fall (Heinzel 

et al., 2016). These individuals, suffering primarily from a central motor disorder, 

performed two motor tasks and one cognitive task, and it is most likely the 

bottleneck in the “motor network” that explained the results that were, upon initial 

inspection in the first view, contrary to those found in the publication discussed 

here. 
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3.2 Discussion of publication 2 

The second publication evaluated the association of cognitive flexibility and 

selected gait parameters in single and dual tasking conditions, measured with an 

IMU at the lower back. In the first step, a correlation analysis between quantitative 

gait parameters and the TMT values was performed. Within this analysis, the 

numbers of significantly correlated parameters in each walking condition (single 

task walking at convenient speed, single task walking at fast speed, dual task 

walking while checking boxes, and dual task walking while subtracting serial 7s) 

were determined. 

The main results of this first analysis step were as follows: Of all gait parameters 

and conditions assessed, gait speed in the dual task walking while subtracting 

serial 7s condition was the parameter explaining the highest proportion of 

variance of cognitive flexibility. The dual task walking while subtracting serial 7s 

condition showed the highest number of gait parameters significantly correlated 

with TMT performance. 

Then, in the second analysis step, participants were categorized into groups 

according to TMT performance, and gait parameters were compared within each 

of the groups across the walking conditions, single task walking at fast speed, 

dual task walking while checking boxes, and dual task walking while subtracting 

serial 7s (single task walking at convenient speed was excluded as it was 

performed with a different gait speed compared to the above-mentioned 

conditions and thus not directly comparable). To estimate different strategies to 

adapt a fast gait to the demands of each condition, patterns of the significant 

differences within each group were visually compared between groups.  

As the main result of this analysis, patterns of the changes across the different 

walking conditions were altered in poor TMT performers compared to good TMT 

performers. The differences affected variability-associated but not pace- and 

rhythm-associated gait parameters. How can these findings be best explained? 



3. Discussion 

44 
 

3.2.1 Gait speed explains the highest proportion of variance of cognitive 

flexibility 

Gait speed was the parameter that explained the highest proportion of the 

variance of the TMT, confirming the importance of this parameter. It has been 

shown that gait speed is a sensitive - but not specific - marker, associated with, 

e.g., PD (Plotnik et al., 2007), atypical Parkinson syndromes (Raccagni et al., 

2018), gait deficits (Lord, Galna and Rochester, 2013), deficits in different 

cognitive domains (Al-Yahya et al., 2011), and a higher risk of future dementia 

(Buracchio et al., 2011), as well as more generally with impaired health status 

and reduced life expectancy (Studenski et al., 2011). In our study, only 7.4% of 

the variance of the TMT was explained by gait speed although this was the most 

relevant parameter. Our result supports previous findings suggesting that single 

gait parameters are too “weak” to explain much of the variance associated with 

distinct conditions and pathologies (Lord, Galna and Rochester, 2013). 

Nevertheless, combinations or panels of gait parameters could be more 

promising, as has been shown in a study investigating 10 PD patients, 11 patients 

with normal pressure hydrocephalus and 12 controls: The parameters gait speed, 

step length and step length variability showed differences between both patient 

groups and controls, but not between the PD patients and patients with normal 

pressure hydrocephalus. The latter two groups were different in foot angle, step 

width and step height (Stolze et al., 2001). One more recent study compared 

quantitative gait parameters under single and dual tasking conditions between 38 

patients with progressive supranuclear palsy (i.e., an atypical Parkinson 

syndrome) with 27 patients with normal pressure hydrocephalus (and 38 healthy 

controls). The accuracy of the discrimination between the two patient groups 

combining the gait parameters of all conditions was 97% (Selge et al., 2018). 

Another promising approach is to include gait parameters in more complex 

statistical methods, such as support vector machines. One study using data from 

foot mounted sensors in 23 PD patients and 16 controls found a precision of 

97.7% for differentiating between PD patients and controls (Tien et al., 2010). In 

a study with an unbiased approach with pattern recognition methods, a correct 
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classification rate for the differentiation between PD and controls of 81% was 

reached (Klucken et al., 2013).  

Such methods may soon be used for clinical purposes, e.g., as diagnostic tools 

and as measures of disease progression and treatment effects.  

Interestingly, parameters of the pace domain were more closely related to 

cognitive flexibility than were parameters of the variability domain. A previous 

study focusing on executive functions and gait found similar results (Martin et al., 

2013). Indirect support of our findings was also found in a phase II trial with 

donezepil in 43 newly diagnosed patients with Alzheimer’s disease (mean age of 

77 years). In this study, cognitive flexibility and gait speed improved significantly 

under treatment, but gait variability did not improve (Montero-Odasso et al., 

2015). Another study investigating 177 patients with Alzheimer’s disease (mean 

age of 82 years) found that gait speed at baseline was associated with a decline 

in executive functions but not in the other cognitive domains (Taylor et al., 2017). 

3.2.2 Dual task walking while subtracting serial 7s condition shows most 

significantly correlated parameters with cognitive flexibility 

The dual task walking while subtracting serial 7s condition showed the highest 

number of gait parameters significantly correlated with TMT performance. We 

interpret this in the way that a certain level of complexity is necessary to detect 

(more) differences between different groups. 

This effect has been found in previous studies. For example, a study with 25 

asymptomatic carriers of a LRRK2 mutation (mutation in the gene encoding for 

Leucine-rich repeat kinase 2; this is an autosomal-dominant mutation associated 

with a highly increased risk of PD) and 27 controls found significantly higher 

values for gait variability in the carriers of the mutation only in the dual tasking 

(i.e., walking while subtracting serial 7s) but not in the single tasking condition 

(Mirelman et al., 2011). In a study with 30 PD patients (mean age of 71 years) 

and 28 controls (mean age of 70 years), differences between the cohorts 

increased with increasing difficulties among the four gait tasks performed. The 

largest difference between both groups was found in the task walking while 

subtracting serial 7s (Yogev et al., 2005). Comparably, a study investigating the 
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effect of eight different dual task walking paradigms in 18 healthy younger (with 

a mean age of 24 years) and 15 healthy older adults (with a mean age of 67 

years) found that older adults had significantly higher dual task costs of gait speed 

than younger adults only in more difficult conditions. The condition with the largest 

difference in dual task costs was walking on a walkway with obstacles with 

simultaneously checking boxes (Bock, 2008). 

This finding may have implications for the design of future studies and clinical 

examination. Based on the model described above, individuals with a bottleneck 

in cognitive networks might show deficits mainly in (difficult) motor-cognitive 

interference tasks, while individuals with a bottleneck in motor networks might 

show them mainly in (difficult) motor-motor interference tasks. 

3.2.3 Patterns across walking conditions: Parameters of the variability domain 

are most informative 

In the comparison of the patterns of significant intra-group differences across 

walking conditions between the good and poor TMT performers, we found that 

both groups had the same patterns in the parameters gait speed, number of 

steps, step time and double support time. 

In contrast, stride time variability (measured with coefficient of variation, CV), gait 

asymmetry, and PCI showed different patterns between the good and poor TMT 

performers: Only the good TMT performers showed significant differences in all 

three parameters between the conditions dual tasking walking while checking 

boxes and the condition dual task walking while subtracting serial 7s. Only the 

poor TMT performers showed a significant difference in the PCI between the 

single task walking at fast speed condition and the dual task walking while 

checking boxes condition. 

This can be interpreted as the fact that older adults with poor cognitive flexibility 

seem to adapt less effectively to increasingly difficult walking conditions. A study 

with 50 adults with a mean age of 74 years performing a gait adaptability 

assessment with tasks to avoid obstacles and step on a defined target found 

similar results. Better performance in executive functions, as measured with the 

Stroop Test and the TMT, were associated with a better performance in the gait 
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adaptability assessment (Caetano et al., 2016). Another study investigating 

executive functions and a difficult walking condition, i.e., curved walking, also 

supports our findings: A cohort of 106 older adults with a mean age of 77 years 

was asked to walk on a figure 8 as well as on a straight walking path. The authors 

found a significant positive association of number of steps and TMT performance 

only in the more complex figure 8 walking path and not in the straight walking 

(Lowry et al., 2012). Walking on walking paths that contain curves, is particularly 

interesting for studying the adaptability of gait, as walking a curve requires an 

asymmetrical gait with adaptation of step length of one leg. Another analysis from 

the TREND study (Tübinger evaluation of Risk factors for Early detection of 

Neurodegenerative Disorders study), including 1054 people with a mean age of 

65 years, found different prioritization behaviours in poor TMT performers 

compared to good TMT performers only when walking on a circular walking path 

but not on a straight walking path (Salkovic et al., 2017). 

The finding that people with poor cognitive flexibility do not as effectively adapt to 

increasingly difficult walking situations as people with good cognitive flexibility do 

may be reflected by trips and slips. Trips and slips are (external) perturbations 

which require (successful) adaptation of gait to prevent a subsequent fall. 

Therefore, the person has per definition to switch from an easier to a more difficult 

walking situation, with trips and slips reflecting (at least indirectly) the response 

to this suddenly increasing walking difficulty. Trips and slips have been found 

among the most frequent reasons for falls in a study with 704 women with a mean 

age of 75 years (Lord et al., 1993). There is hope that the active observation of a 

deficit in adapting to increasingly difficult walking situations can lead to an 

effective treatment. A randomized controlled trial with 212 older adults performing 

one single session of slip training with repeated unannounced slips caused by a 

moveable platform in the walkway found a significantly reduced fall rate 

prospectively over 12 months in the therapy group compared with the control 

group (Pai et al., 2014). 
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3.3 Discussion of publication 1 and 2 

3.3.1 Proposed framework for the association of cognitive flexibility and falls 

The two publications presented here provide (additional) evidence that cognitive 

flexibility is associated with both, adaptation of gait (Hobert et al., 2017) and 

prioritization (Hobert et al., 2011). How could these aspects be brought together 

and lead to a clinical benefit for patients, e.g., help the clinician who is caring for 

older adults with a positive fall history? 

It is relatively easy to imagine the association of impaired gait adaptation and 

impaired prioritization capabilities with falls. Multitasking during gait with 

distracting elements can lead to a shift of prioritization, with preference of the 

non-walking task, and, consequently, to increased risk of falls. Similarly, the 

inability to adapt gait to environmental circumstances, e.g., uneven ground, can 

lead to a fall. For cognitive flexibility, this association with an increased risk of 

falling is not as obvious. The presented publications might close this gap: The 

association of cognitive flexibility with falls might work via the association of 

cognitive flexibility and (deficits in) prioritization and adaptation of gait. Figure 3 

presents a framework for the association of impaired cognitive flexibility with falls. 

Nevertheless, many more factors most likely contribute to the association 

between cognitive flexibility and falls, and more studies investigating this 

association are needed. Ideally, this evaluation is performed in a single and 

exhaustive study including all potentially contributing factors. Such a study would 

allow using statistical models that reflect the complexity of the interactions. We 

(Bettecken et al., 2017) recently used the International Classification of 

Functioning, Disability and Health (ICF) model (Kostanjsek, 2011) as a 

comprehensive framework for the statistical comparison of kinematic gait 

parameters with a measure of quality of life. However, it is very probable that 

even more complex, semi- or unsupervised models will eventually do the trick.  
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Figure 3: Proposed framework for the association between cognitive flexibility, prioritization and gait adaption 
with risk factors and causes of falls. Double arrows display the associations between cognitive flexibility and 
prioritization, and gait adaptation as found in the publications of this thesis. Continuous lines display 
contributions (to risk factors of falls) shown in previous studies. Scattered lines display suspected and very 
likely contributions (to causes of falls).  

 

3.3.2 Outlook 

The impact of the publications presented above and the more complex studies 

and analyses in this field that should take place in the future must allow an 
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individual person with daily relevant deficits in motor-cognitive interaction to be 

identified, classified, specifically counselled and treated based on the factor(s) 

that primarily drive(s) the deficit. Therefore, individual assessments of patients 

with deficits of cognitive flexibility should also include an assessment of motor-

motor and motor-cognitive interactions, to evaluate potential bottlenecks. 

Conversely, patients with a positive fall history should always be assessed with 

regard to potentially evident deficits in prioritization and adaptation of gait.  

3.3.3 Limitations 

The analyses shown here in both publications face some limitations. In addition 

to the limitations discussed in both publications themselves, the most important 

limitation is, in our view, that both publications contain only cross-sectional data 

and did not include a fall assessment. Such an assessment would allow direct 

conclusions about the predictive value of cognitive flexibility, prioritization and 

adaptation of gait for fall risk and falls. This aspect was considered for the follow-

ups of the TREND study: a structured assessment of falls has been added to the 

more recent waves of this longitudinal study. 
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4. Summary 

4.1 Summary in Englisch 

In recent years, it has been shown that there is a supraspinal network for the 

control of gait. It consists of motor, cognitive and limbic structures and their 

projections. These supraspinal networks have an important influence on walking 

behaviour, e.g., in dual tasking situations. Dual tasking situations are very 

relevant in everyday life, because they occur very often, e.g. when talking while 

walking. Deficits in dual tasking can lead to impaired walking and falls. These 

deficits are most likely driven by deficits in executive functions, such as cognitive 

flexibility, as they play a particularly important role in the control of dual tasking 

behaviour. 

This thesis presents and discusses two publications about the association of 

cognitive flexibility and prioritization, as well as the association of cognitive 

flexibility and quantitative gait parameters and their adaptation to dual tasking 

conditions. 

In both publications, more than 660 healthy older people, aged between 50 and 

80 years, were assessed using four single task conditions (subtracting, checking 

boxes, walking at convenient speed and walking at fast speed) and two dual task 

conditions (walking at fast speed with checking boxes and walking at fast speed 

with subtracting serial 7s). As a measure of cognitive flexibility, the Trail Making 

Test (TMT) was performed. 

In publication 1, dual task costs (i.e., the percent decline of task performance 

under dual tasking compared to single tasking) were calculated. The dual task 

cost of each task was compared between the tertile of participants with the best 

(good TMT performers) and of the tertile with the worst (poor TMT performers) 

performance in the TMT. Under the dual tasking walking while subtracting serial 

7s condition, good TMT performers prioritized walking over subtracting. 

Conversely, poor TMT performers prioritized the subtracting task over walking. 

These results suggested an association of cognitive flexibility and prioritization. 

In publication 2, quantitative gait parameters, collected with a wearable sensor-

unit, were correlated with performance of the TMT. We found that a higher 
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number of gait parameters were significantly correlated with the TMT when the 

gait task was more challenging. The strongest correlation was found for walking 

speed in the dual task walking while subtracting serial 7s condition. This indicates 

that gait speed is an important gait parameter for the investigation of the 

association of cognitive flexibility with gait, although the parameter is obviously 

unspecific. In addition, patterns of differences of gait parameters across the 

conditions of single task walking at fast speed and dual task walking while 

checking boxes and dual task walking while subtracting serial 7s were compared 

between good and poor TMT performers. Here, we found different patterns 

across conditions in the parameters gait variability, phase coordination index, and 

gait asymmetry. Subjects with good cognitive flexibility seem to switch or adapt 

strategies between tasks, while participants with poorer cognitive flexibility have 

limited resources for these adaptations. The findings of this analysis also suggest 

that cognitive flexibility is important for walking in older adults, and people with 

poor cognitive flexibility have deficits in adapting walking to challenging walking 

conditions. 

The results of both studies suggest that cognitive flexibility is an important 

contributor to safe walking, especially under challenging walking conditions, e.g., 

dual tasking. We hypothesize that prioritization and adaptation mechanisms of 

gait are parts of a complex interaction network between cognitive flexibility 

(deficits) and falls. This should be investigated in more detail in further studies. 
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4.2 Summary in German / Deutsche Zusammenfassung 

In den letzten Jahren konnte gezeigt werden, dass es eine supraspinale Kontrolle 

des Gehens gibt. Dieses Netzwerk umfasst neben motorischen Hirnarealen vor 

allem auch kognitive und limbische Strukturen und deren Projektionen. Dieses 

supraspinale Netzwerk hat einen wichtigen Einfluss v.a. auf das Verhalten 

während des Gehens z.B. in Dual Task Situationen. Dual Task Situationen sind 

sehr alltagsrelevant, da sie häufig vorkommen, z.B. in Form von Sprechen 

während des Gehens. Defizite in der Dual Task Fähigkeit beeinflussen die 

Qualität des Gehens und können z.B. zu Stürzen führen. Diese Defizite 

begründen sich wahrscheinlich auf Störungen der exekutiven Funktionen, wie 

z.B. kognitive Flexibilität, da diese eine wichtige Rolle in der Steuerung von Dual 

Task Verhalten spielen. 

Diese Arbeit besteht aus und diskutiert zwei Publikationen, die sich mit der 

Assoziation von kognitiver Flexibilität und Priorisierung, sowie kognitiver 

Flexibilität und quantitativ erhobenen Gangparametern und deren Anpassung bei 

Dual Task Aufgaben beim Gehen befassen. 

Für beide Publikationen wurden über 660 gesunde Probanden zwischen 50 und 

80 Jahren mit einem Assessment untersucht, das aus vier Single Task Aufgaben 

(Subtrahieren, Durchführen einer Ankreuzaufgabe, Gehen mit normaler 

Gehgeschwindigkeit und Gehen mit schneller Gehgeschwindigkeit) und zwei 

Dual Task Aufgaben (Gehen mit schneller Gehgeschwindigkeit mit 

gleichzeitigem Durchführen der Ankreuzaufgabe und Gehen mit schneller 

Gehgeschwindigkeit mit gleichzeitigem Subtrahieren) bestand. Als Maß der 

kognitiven Flexibilität wurde der Trail Making Test (TMT) durchgeführt. 

In Publikation 1 wurden die Dual Task Kosten berechnet, die die 

Leistungsverschlechterung in einer Aufgabe unter Dual Task im Vergleich zur 

Durchführung der gleichen Aufgabe unter Single Task Bedingungen 

beschreiben. Die Dual Task Kosten der einzelnen Aufgaben wurden zwischen 

dem Tertil der Probanden mit der besten und dem Tertil mit der schlechtesten 

Leistung im TMT verglichen. Es zeigte sich, dass die Probanden mit schlechterer 

Leistung im TMT die kognitive Aufgabe und nicht das Gehen in der Dual Task 
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Aufgabe Gehen mit schneller Gehgeschwindigkeit mit gleichzeitigem 

Subtrahieren priorisierten. Die Probanden mit besserer Leistung im TMT 

hingegen priorisierten die motorische Aufgabe gegenüber dem Subtrahieren. 

Dies weist auf eine Assoziation zwischen kognitiver Flexibilität und Priorisierung 

hin. 

In Publikation 2 wurden quantitative Gangparameter, die mittels eines tragbaren 

Bewegungssensors erhoben wurden, mit dem Ergebnis des TMT korreliert. Es 

zeigte sich, dass je schwerer die Gangaufgabe war, desto mehr Gangparameter 

signifikant mit dem TMT korreliert waren. Die stärkste Korrelation mit dem TMT 

wurde für den Parameter Gehgeschwindigkeit unter der Aufgabe Gehen mit 

schneller Gehgeschwindigkeit mit gleichzeitigem Subtrahieren gefunden. Dies 

unterstützt frühere Arbeiten die der Gehgeschwindigkeit eine hohe Relevanz in 

der Beschreibung von kognitiven Defiziten zugeordnet haben. Allerdings handelt 

es ich dabei um einen recht unspezifischen Marker. Zusätzlich wurden die Muster 

der Veränderungen der einzelnen Gangparameter über die Single Task Aufgabe 

Gehen mit schneller Gehgeschwindigkeit und die Dual Task Aufgaben Gehen mit 

schneller Gehgeschwindigkeit mit gleichzeitigem Durchführen der 

Ankreuzaufgabe und Gehen mit schneller Gehgeschwindigkeit mit gleichzeitigem 

Subtrahieren zwischen den guten und schlechten Tertial im TMT verglichen. 

Hierbei zeigten sich unterschiedliche Muster in den Parametern für 

Gangvariabilität, Gangregularität, und Gangasymmetrie. Die Probanden mit 

besserer kognitiver Flexibilität scheinen die Strategien zwischen den Aufgaben 

gewechselt, bzw. an die Aufgaben angepasst zu haben, was die Probanden mit 

schlechterer kognitiver Flexibilität nur eingeschränkt machten. Zusammengefasst 

deuten die Ergebnisse darauf hin, dass kognitive Flexibilität wichtig für das 

Gehen bei älteren Leuten ist und Probanden mit einer schlechteren kognitiven 

Flexibilität durchaus Probleme haben könnten, das Gehen an herausfordernde 

Geh-Bedingungen anzupassen.  

Die Ergebnisse beider Studien zusammen weisen darauf hin, dass kognitive 

Flexibilität sehr wichtig für das Gehen unter herausfordernden Geh-Situationen 

ist, wie z.B. Dual Tasking. Unsere Daten weisen auch darauf hin, dass 

Priorisierung und Adaptationsfähigkeit des Gehens Teil eines komplexen 
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Netzwerkes zwischen Defiziten in kognitiver Flexibilität und Stürzen sind. Es liegt 

daher nahe, dass Defizite in der Priorisierung und der Anpassung des Gehens 

an situative Erfordernisse, mögliche und wichtige Mechanismen hierfür sein 

könnten. Dies sollte jedoch in weiteren Studien gezielt untersucht werden. 

  



5. References 

56 
 

5. References 

Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J. Cognitive 
motor interference while walking: a systematic review and meta-analysis. 
Neurosci Biobehav Rev 2011; 35: 715–728. 

Ansai JH, de Andrade LP, Masse FAA, Gonçalves J, de Medeiros Takahashi 
AC, Vale FAC, et al. Risk Factors for Falls in Older Adults With Mild Cognitive 
Impairment and Mild Alzheimer Disease. J. Geriatr. Phys. Ther. 2017: 1. 

Bakker M, Verstappen CC, Bloem BR, Toni I. Recent advances in functional 
neuroimaging of gait. J Neural Transm 2007; 114: 1323–1331. 

Beauchet O, Allali G, Poujol L, Barthelemy JC, Roche F, Annweiler C. Decrease 
in gait variability while counting backward: a marker of ‘magnet effect’? J Neural 
Transm 2010; 117: 1171–1176. 

Beauchet O, Dubost V, Allali G, Gonthier R, Hermann F. ‘Faster counting while 
walking’ as a predictor of falls in older adults. Age Ageing 2007; 36 

Bergland A, Wyller TB. Risk factors for serious fall related injury in elderly 
women living at home. Inj. Prev. 2004; 10: 308–13. 

Berryman N, Bherer L, Nadeau S, Lauzière S, Lehr L, Bobeuf F, et al. Executive 
functions, physical fitness and mobility in well-functioning older adults. Exp. 
Gerontol. 2013; 48: 1402–9. 

Bettecken K, Bernhard F, Sartor J, Hobert MA, Hofmann M, Gladow T, et al. No 
relevant association of kinematic gait parameters with Health-related Quality of 
Life in Parkinson’s disease. PLoS One 2017; 12: e0176816. 

Binder E, Storandt M, Birge S. The relation between psychometric test 
performance and physical performance in older adults. J Gerontol A Biol Sci 
Med Sci 1999; 54: M428–M432. 

Ble A, Volpato S, Zuliani G, Guralnik JM, Bandinelli S, Lauretani F, et al. 
Executive function correlates with walking speed in older persons: the 
InCHIANTI study. J Am Geriatr Soc 2005; 53: 410–415. 

Bloem BR, Grimbergen YAM, van Dijk JG, Munneke M. The ‘posture second’ 
strategy: a review of wrong priorities in Parkinson’s disease. J. Neurol. Sci. 
2006; 248: 196–204. 

Bloem BR, Valkenburg V V, Slabbekoorn M, Van Dijk JG. The multiple tasks 
test. Strategies in Parkinson’s disease. Exp. Brain Res. 2001; 137: 478–486. 

Bloem BR, Valkenburg V V, Slabbekoorn M, Willemsen MD. The Multiple Tasks 
Test: development and normal strategies. Gait Posture 2001; 14: 191–202. 

Bock O. Dual-task costs while walking increase in old age for some, but not for 
other tasks: an experimental study of healthy young and elderly persons. J. 
Neuroeng. Rehabil. 2008; 5: 27. 



5. References 

57 
 

Bock O, Engelhard K, Guardiera P, Allmer H, Kleinert J. Gerontechnology and 
human cognition. Impact of cognitive decay on the ability to operate remote-
controlled devices while walking. IEEE Eng. Med. Biol. Mag. 2008; 27: 23–28. 

Boele van Hensbroek P, van Dijk N, van Breda GF, Scheffer AC, van der 
Cammen TJ, Lips P, et al. The CAREFALL Triage instrument identifying risk 
factors for recurrent falls in elderly patients. Am. J. Emerg. Med. 2009; 27: 23–
36. 

Bowie CR, Harvey PD. Administration and interpretation of the Trail Making 
Test. Nat Protoc 2006; 1: 2277–2281. 

Brandes M, Zijlstra W, Heikens S, van Lummel R, Rosenbaum D. 
Accelerometry based assessment of gait parameters in children. Gait Posture 
2006; 24: 482–486. 

Brown TG. The Intrinsic Factors in the Act of Progression in the Mammal. Proc. 
R. Soc. B Biol. Sci. 1911; 84: 308–319. 

de Bruin ED, Schmidt A, Bruin E de, Schmidt A. Walking behaviour of healthy 
elderly: attention should be paid. Behav Brain Funct 2010; 6: 59. 

Buracchio T, Dodge HH, Howieson D, Wasserman D, Kaye J. The trajectory of 
gait speed preceding mild cognitive impairment. Arch Neurol 2010; 67: 980–
986. 

Buracchio TJ, Mattek NC, Dodge HH, Hayes TL, Pavel M, Howieson DB, et al. 
Executive function predicts risk of falls in older adults without balance 
impairment. BMC Geriatr 2011; 11: 74. 

Caetano MJD, Menant JC, Schoene D, Pelicioni PHS, Sturnieks DL, Lord SR. 
Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older 
People. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 2016; 72: glw171. 

Callisaya ML, Blizzard L, Schmidt MD, Martin KL, McGinley JL, Sanders LM, et 
al. Gait, gait variability and the risk of multiple incident falls in older people: a 
population-based study. Age Ageing 2011; 40: 481–487. 

Campbell AJ, Robertson MC, Gardner MM, Norton RN, Buchner DM. 
Psychotropic Medication Withdrawal and a Home-Based Exercise Program to 
Prevent Falls: A Randomized, Controlled Trial. J. Am. Geriatr. Soc. 1999; 47: 
850–853. 

Chan RCK, Shum D, Toulopoulou T, Chen EYH. Assessment of executive 
functions: review of instruments and identification of critical issues. Arch Clin 
Neuropsychol 2008; 23: 201–216. 

Chung KA, Lobb BM, Nutt JG, Horak FB. Effects of a central cholinesterase 
inhibitor on reducing falls in Parkinson disease. Neurology 2010; 75: 1263–9. 

Coppin AK, Shumway-Cook A, Saczynski JS, Patel K V, Ble A, Ferrucci L, et al. 
Association of executive function and performance of dual-task physical tests 
among older adults: analyses from the InChianti study. Age Ageing 2006; 35: 
619–624. 



5. References 

58 
 

Corrigan JD, Hinkeldey NS. Relationships between parts A and B of the Trail 
Making Test. J. Clin. Psychol. 1987; 43: 402–409. 

Crowe SF. The differential contribution of mental tracking, cognitive flexibility, 
visual search, and motor speed to performance on parts A and B of the Trail 
Making Test. J. Clin. Psychol. 1998; 54: 585–91. 

Cutlip RG, Mancinelli C, Huber F, DiPasquale J. Evaluation of an instrumented 
walkway for measurement of the kinematic parameters of gait. Gait Posture 
2000; 12: 134–8. 

Dhalwani NN, Fahami R, Sathanapally H, Seidu S, Davies MJ, Khunti K. 
Association between polypharmacy and falls in older adults: a longitudinal study 
from England. BMJ Open 2017; 7: e016358. 

Díaz-Gutiérrez MJ, Martínez-Cengotitabengoa M, Sáez de Adana E, Cano AI, 
Martínez-Cengotitabengoa MT, Besga A, et al. Relationship between the use of 
benzodiazepines and falls in older adults: A systematic review. Maturitas 2017; 
101: 17–22. 

Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet 1994; 
344: 1260–1263. 

Dijkstra B, Zijlstra W, Scherder E, Kamsma Y. Detection of walking periods and 
number of steps in older adults and patients with Parkinson’s disease: accuracy 
of a pedometer and an accelerometry-based method. Age Ageing 2008; 37: 
436–441. 

Drane DLD, Yuspeh RLR, Huthwaite JJS, Klingler LKL. Demographic 
characteristics and normative observations for derived-trail making test indices. 
Neuropsychiatry. Neuropsychol. Behav. Neurol. 2002; 15: 39–43. 

Ebersbach G, Dimitrijevic MR, Poewe W. Influence of concurrent tasks on gait: 
a dual-task approach. Percept Mot Ski. 1995; 81: 107–113. 

Ferreira JJ, Godinho C, Santos AT, Domingos J, Abreu D, Lobo R, et al. 
Quantitative home-based assessment of Parkinson’s symptoms: The SENSE-
PARK feasibility and usability study. BMC Neurol. 2015; 15: 89. 

Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method 
for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 
1975; 12: 189–98. 

la Fougère C, Zwergal A, Rominger A, Förster S, Fesl G, Dieterich M, et al. 
Real versus imagined locomotion: A [18F]-FDG PET-fMRI comparison. 
Neuroimage 2010; 50: 1589–1598. 

Gaenslen A, Wurster I, Brockmann K, Huber H, Godau J, Faust B, et al. 
Prodromal features for Parkinson’s disease - baseline data from the TREND 
study. Eur. J. Neurol. 2014; 21: 766–772. 

Gale CR, Cooper C, Aihie Sayer A. Prevalence and risk factors for falls in older 
men and women: The English Longitudinal Study of Ageing. Age Ageing 2016 



5. References 

59 
 

Galna B, Lord S, Rochester L. Is gait variability reliable in older adults and 
Parkinson’s disease? Towards an optimal testing protocol. Gait Posture 2013; 
37: 580–585. 

Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall? JAMA 2007; 
297: 77–86. 

Gilbert SJ, Burgess PW. Executive function. Curr. Biol. 2008; 18: R110-4. 

Gillespie LD. Preventing falls in older people: the story of a Cochrane review. 
Cochrane database Syst. Rev. 2013: ED000053. 

Gurevich T, Balash Y, Merims D, Peretz C, Herman T, Hausdorff JM, et al. 
Effect of rivastigmine on mobility of patients with higher-level gait disorder: a 
pilot exploratory study. Drugs R. D. 2014; 14: 57–62. 

Haertner L, Elshehabi M, Zaunbrecher L, Pham MH, Maetzler C, van Uem JMT, 
et al. Effect of fear of falling on turning performance in Parkinson’s disease in 
the lab and at home. Front. Aging Neurosci. 2018; 10: 78. 

Hall CD, Echt K V, Wolf SL, Rogers WA. Cognitive and motor mechanisms 
underlying older adults’ ability to divide attention while walking. Phys Ther 2011; 
91: 1039–1050. 

Hausdorff JM, Doniger GM, Springer S, Yogev G, Simon ES, Giladi N. A 
common cognitive profile in elderly fallers and in patients with Parkinson’s 
disease: the prominence of impaired executive function and attention. Exp 
Aging Res 2006; 32: 411–429. 

Hautzinger M. [The Beck Depression Inventory in clinical practice]. Nervenarzt 
1991; 62: 689–96. 

Heinzel S, Maechtel M, Hasmann SE, Hobert MA, Heger T, Berg D, et al. Motor 
dual-tasking deficits predict falls in Parkinson’s disease: A prospective study. 
Park. Relat. Disord. 2016; 26: 73–77. 

Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JCT, et al. 
Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a 
randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. Neurol. 
2016; 15: 249–258. 

Herman T, Mirelman A, Giladi N, Schweiger A, Hausdorff JMJ. Executive 
control deficits as a prodrome to falls in healthy older adults: a prospective 
study linking thinking, walking, and falling. J. Gerontol. A. Biol. Sci. Med. Sci. 
2010; 65: 1086–92. 

Hirota C, Watanabe M, Sun W, Tanimoto Y, Kono R, Takasaki K, et al. 
Association between the Trail Making Test and physical performance in elderly 
Japanese. Geriatr. Gerontol. Int. 2010; 10: 40–7. 

Hoang OTT, Jullamate P, Piphatvanitcha N, Rosenberg E. Factors related to 
fear of falling among community-dwelling older adults. J. Clin. Nurs. 2017; 26: 
68–76. 



5. References 

60 
 

Hobert MA, Maetzler W, Aminian K, Chiari L. Technical and clinical view on 
ambulatory assessment in Parkinson’s disease. Acta Neurol. Scand. 2014; 130: 
139–147. 

Hobert MA, Meyer SI, Hasmann SE, Metzger FG, Suenkel U, Eschweiler GW, 
et al. Gait is associated with cognitive flexibility: A dual-tasking study in healthy 
older people. Front. Aging Neurosci. 2017; 9: 154. 

Hobert MA, Niebler R, Meyer SI, Brockmann K, Becker C, Huber H, et al. Poor 
Trail Making Test Performance Is Directly Associated with Altered Dual Task 
Prioritization in the Elderly – Baseline Results from the TREND Study. PLoS 
One 2011; 6: e27831. 

Houdijk H, Appelman FM, Van Velzen JM, Van der Woude LH V, Van 
Bennekom CAM. Validity of DynaPort GaitMonitor for assessment of 
spatiotemporal parameters in amputee gait. J. Rehabil. Res. Dev. 2008; 45: 
1335–42. 

Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the 
accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. 
Neurology 1992; 42: 1142–1146. 

Illis LS. Is there a central pattern generator in man? Spinal Cord 1995; 33: 239–
240. 

Jahn K, Deutschländer A, Stephan T, Kalla R, Hüfner K, Wagner J, et al. 
Supraspinal locomotor control in quadrupeds and humans. In: Progress in brain 
research. 2008. p. 353–362. 

Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M, et al. 
Imaging human supraspinal locomotor centers in brainstem and cerebellum. 
Neuroimage 2008; 39: 786–792. 

Jahn K, Deutschländer A, Stephan T, Strupp M, Wiesmann M, Brandt T. Brain 
activation patterns during imagined stance and locomotion in functional 
magnetic resonance imaging. Neuroimage 2004; 22: 1722–1731. 

Jahn K, Zwergal A, Schniepp R. Gait Disturbances in Old Age. Dtsch. 
Aerzteblatt Online 2010; 107: 306–15; quiz 316. 

Joel D, Weiner I. The connections of the dopaminergic system with the striatum 
in rat and primates: An analysis with respect to the functional and 
compartimental organisation of the striatum. Neuroscience 2000; 96 No 3: 451–
74. 

Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity 
kinematics during level walking. J. Orthop. Res. 1990; 8: 383–392. 

Kearney FC, Harwood RH, Gladman JRF, Lincoln N, Masud T. The 
Relationship between Executive Function and Falls and Gait Abnormalities in 
Older Adults: A Systematic Review. Dement Geriatr Cogn Disord 2013; 36: 20–
35. 

Killane I, Donoghue OA, Savva GM, Cronin H, Kenny RA, Reilly RB. Relative 



5. References 

61 
 

association of processing speed, short-term memory and sustained attention 
with task on gait speed: a study of community-dwelling people 50 years and 
older. J. Gerontol. A. Biol. Sci. Med. Sci. 2014; 69: 1407–14. 

Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in 
humans and animals. Front. Neurosci. 2013; 7: 201. 

Klucken J, Barth J, Kugler P, Schlachetzki J, Henze T, Marxreiter F, et al. 
Unbiased and mobile gait analysis detects motor impairment in Parkinson’s 
disease. PLoS One 2013; 8: e56956. 

Kostanjsek N. Use of The International Classification of Functioning, Disability 
and Health (ICF) as a conceptual framework and common language for 
disability statistics and health information systems. BMC Public Health 2011; 
11: S3. 

Landers MR, Oscar S, Sasaoka J, Vaughn K. Balance Confidence and Fear of 
Falling Avoidance Behavior Are Most Predictive of Falling in Older Adults: 
Prospective Analysis. Phys. Ther. 2016; 96: 433–42. 

Lezak MD. Orientation and Attention. In: Lezak M, editor(s). Neuropsychological 
Assessment. New York, USA: Oxford University Press; 1995. p. 335–384. 

Li F, Fisher KJ, Harmer P, McAuley E, Wilson NL. Fear of Falling in Elderly 
Persons: Association With Falls, Functional Ability, and Quality of Life. Journals 
Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2003; 58: P283–P290. 

Lindemann U, Najafi B, Zijlstra W, Hauer K, Muche R, Becker C, et al. Distance 
to achieve steady state walking speed in frail elderly persons. Gait Posture 
2008; 27: 91–96. 

Lindemann U, Nicolai S, Beische D, Becker C, Srulijes K, Dietzel E, et al. 
Clinical and dual-tasking aspects in frequent and infrequent fallers with 
progressive supranuclear palsy. Mov Disord 2010; 25: 1040–6. 

Lindenberger U, Marsiske M, Baltes PB. Memorizing while walking: Increase in 
dual-task costs from young adulthood to old age. Psychol. Aging 2000; 15: 417–
436. 

Lord S, Galna B, Rochester L. Moving forward on gait measurement: Toward a 
more refined approach. Mov. Disord. 2013; 28: 1534–43. 

Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L. Independent 
domains of gait in older adults and associated motor and nonmotor attributes: 
validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci 2013; 68: 
820–827. 

Lord SR, Anstey KJ, Williams P, Ward JA. Psychoactive medication use, 
sensori-motor function and falls in older women. Br. J. Clin. Pharmacol. 1995; 
39: 227–34. 

Lord SR, Ward JA, Williams P, Anstey KJ. An epidemiological study of falls in 
older community‐dwelling women: the Randwick falls and fractures study. Aust. 
J. Public Health 1993; 17: 240–245. 



5. References 

62 
 

Lowry KA, Brach JS, Nebes RD, Studenski SA, VanSwearingen JM. 
Contributions of cognitive function to straight- and curved-path walking in older 
adults. Arch Phys Med Rehabil 2012; 93: 802–807. 

van Lummel RC, Walgaard S, Pijnappels M, Elders PJM, Garcia-Aymerich J, 
van Dieën JH, et al. Physical Performance and Physical Activity in Older Adults: 
Associated but Separate Domains of Physical Function in Old Age. PLoS One 
2015; 10: e0144048. 

Lundin-Olsson L, Nyberg L, Gustafson Y. “Stops walking when talking” as a 
predictor of falls in elderly people. Lancet 1997; 349: 617. 

Maetzler W, Domingos J, Srulijes K, Ferreira JJ, Bloem BR. Quantitative 
wearable sensors for objective assessment of Parkinson’s disease. Mov. 
Disord. 2013; 28: 1628–37. 

Maetzler W, Hausdorff JM. Motor signs in the prodromal phase of Parkinson’s 
disease. Mov Disord 2012; 27: 627–633. 

Maetzler W, Nieuwhof F, Hasmann SE, Bloem BR. Emerging therapies for gait 
disability and balance impairment: promises and pitfalls. Mov. Disord. 2013; 28: 
1576–86. 

Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations 
during motor imagery of locomotor-related tasks: A PET study. Hum. Brain 
Mapp. 2003; 19: 47–62. 

Martin KL, Blizzard L, Wood AG, Srikanth V, Thomson R, Sanders LM, et al. 
Cognitive Function, Gait, and Gait Variability in Older People: A Population-
Based Study. J Gerontol A Biol Sci Med Sci 2013; 68: 726–732. 

McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability 
of the GAITRite system’s measurements: A preliminary evaluation. Arch. Phys. 
Med. Rehabil. 2001; 82: 419–425. 

Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and 
cognitive circuits. Brain Res. Brain Res. Rev. 2000; 31: 236–50. 

Mirelman A, Gurevich T, Giladi N, Bar-Shira A, Orr-Urtreger A, Hausdorff JM. 
Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann. Neurol. 
2011; 69: 193–7. 

Mirelman A, Herman T, Brozgol M, Dorfman M, Sprecher E, Schweiger A, et al. 
Executive function and falls in older adults: new findings from a five-year 
prospective study link fall risk to cognition. PLoS One 2012; 7: e40297. 

Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, et al. 
Addition of a non-immersive virtual reality component to treadmill training to 
reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet 
(London, England) 2016; 388: 1170–82. 

Miyake A, Friedman NP. The Nature and Organization of Individual Differences 
in Executive Functions. Curr. Dir. Psychol. Sci. 2012; 21: 8–14. 



5. References 

63 
 

Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The 
Unity and Diversity of Executive Functions and Their Contributions to Complex 
“Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000; 41: 49–
100. 

Montero-Odasso M, Bergman H, Phillips NA, Wong CH, Sourial N, Chertkow H. 
Dual-tasking and gait in people with mild cognitive impairment. The effect of 
working memory. BMC Geriatr 2009; 9: 41. 

Montero-Odasso M, Muir-Hunter SW, Oteng-Amoako A, Gopaul K, Islam A, 
Borrie M, et al. Donepezil improves gait performance in older adults with mild 
Alzheimer’s disease: a phase II clinical trial. J. Alzheimers. Dis. 2015; 43: 193–
9. 

Montero-Odasso M, Muir SW, Hall M, Doherty TJ, Kloseck M, Beauchet O, et 
al. Gait variability is associated with frailty in community-dwelling older adults. J 
Gerontol A Biol Sci Med Sci 2011; 66: 568–576. 

Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and 
falls in older adults: a systematic review and meta-analysis. J. Am. Geriatr. Soc. 
2004; 52: 1121–9. 

Nonnekes J, Goselink RJM, Růžička E, Fasano A, Nutt JG, Bloem BR. 
Neurological disorders of gait, balance and posture: a sign-based approach. 
Nat. Rev. Neurol. 2018; 14: 183–189. 

O’Shea S, Morris ME, Iansek R. Dual task interference during gait in people 
with Parkinson disease: effects of motor versus cognitive secondary tasks. Phys 
Ther 2002; 82: 888–897. 

Pai Y-C, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-
dwelling older adults’ annual fall risk: a randomized controlled trial. J. Gerontol. 
A. Biol. Sci. Med. Sci. 2014; 69: 1586–94. 

Pashler H. Dual-task interference in simple tasks: data and theory. Psychol Bull 
1994; 116: 220–244. 

Pedreira da Fonseca E, Ribeiro da Silva NM, Pinto EB. Therapeutic Effect of 
Virtual Reality on Post-Stroke Patients: Randomized Clinical Trial. J. Stroke 
Cerebrovasc. Dis. 2017; 26: 94–100. 

Pelzer EA, Hintzen A, Timmermann L, Tittgemeyer M. Satellitensysteme der 
Basalganglien - Anatomische Einordnung, klinische Relevanz. Fortschritte der 
Neurol. Psychiatr. 2014; 82: 323–329. 

Pham MH, Elshehabi M, Haertner L, Heger T, Hobert MA, Faber GS, et al. 
Algorithm for Turning Detection and Analysis Validated under Home-Like 
Conditions in Patients with Parkinson’s Disease and Older Adults using a 6 
Degree-of-Freedom Inertial Measurement Unit at the Lower Back. Front. 
Neurol. 2017; 8: 135. 

Plotnik M, Giladi N, Hausdorff JM. A new measure for quantifying the bilateral 
coordination of human gait: effects of aging and Parkinson’s disease. Exp Brain 



5. References 

64 
 

Res 2007; 181: 561–570. 

Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of walking and freezing 
of gait in Parkinson’s disease. Eur J Neurosci 2008; 27: 1999–2006. 

Plotnik M, Giladi N, Hausdorff JM. Bilateral coordination of gait and Parkinson’s 
disease: the effects of dual tasking. J Neurol Neurosurg Psychiatry 2009; 80: 
347–350. 

Pluijm SMF, Smit JH, Tromp EAM, Stel VS, Deeg DJH, Bouter LM, et al. A risk 
profile for identifying community-dwelling elderly with a high risk of recurrent 
falling: results of a 3-year prospective study. Osteoporos. Int. 2006; 17: 417–25. 

Raccagni C, Gaßner H, Eschlboeck S, Boesch S, Krismer F, Seppi K, et al. 
Sensor-based gait analysis in atypical parkinsonian disorders. Brain Behav. 
2018; 8: e00977. 

Rasquin SM., Verhey FR., Lousberg R, Winkens I, Lodder J. Vascular cognitive 
disorders: Memory, mental speed and cognitive flexibility after stroke. J. Neurol. 
Sci. 2002; 203: 115–119. 

Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. 
Video capture of the circumstances of falls in elderly people residing in long-
term care: an observational study. Lancet 2013; 381: 47–54. 

Rubenstein LZ, Josephson KR. The epidemiology of falls and syncope. Clin. 
Geriatr. Med. 2002; 18: 141–58. 

Rubenstein LZ, Josephson KR, Robbins AS. Falls in the nursing home. Ann. 
Intern. Med. 1994; 121: 442–51. 

Ruthruff E, Pashler HE, Klaassen A. Processing bottlenecks in dual-task 
performance: structural limitation or strategic postponement? Psychon. Bull. 
Rev. 2001; 8: 73–80. 

Ruxton K, Woodman RJ, Mangoni AA. Drugs with anticholinergic effects and 
cognitive impairment, falls and all-cause mortality in older adults: A systematic 
review and meta-analysis. Br. J. Clin. Pharmacol. 2015; 80: 209–20. 

Salarian A, Burkhard PR, Vingerhoets FJG, Jolles BM, Aminian K. A novel 
approach to reducing number of sensing units for wearable gait analysis 
systems. IEEE Trans. Biomed. Eng. 2013; 60: 72–7. 

Salkovic D, Hobert MA, Bellut C, Funer F, Renno S, Haertner L, et al. Evidence 
for a Selectively Regulated Prioritization Shift Depending on Walking Situations 
in Older Adults. Front. Aging Neurosci. 2017; 9: 75. 

Sánchez-Ferro Á, Elshehabi M, Godinho C, Salkovic D, Hobert MA, Domingos 
J, et al. New methods for the assessment of Parkinson’s disease (2005 to 
2015): A systematic review. Mov. Disord. 2016; 31: 1283–1292. 

Selge C, Schoeberl F, Zwergal A, Nuebling G, Brandt T, Dieterich M, et al. Gait 
analysis in PSP and NPH. Neurology 2018; 90: e1021–e1028. 



5. References 

65 
 

Seppala LJ, Wermelink AMAT, de Vries M, Ploegmakers KJ, van de Glind 
EMM, Daams JG, et al. Fall-Risk-Increasing Drugs: A Systematic Review and 
Meta-Analysis: II. Psychotropics. J. Am. Med. Dir. Assoc. 2018; 19: 371.e11-
371.e17. 

Shimbo D, Barrett Bowling C, Levitan EB, Deng L, Sim JJ, Huang L, et al. 
Short-term risk of serious fall injuries in older adults initiating and intensifying 
treatment with antihypertensive medication. Circ. Cardiovasc. Qual. Outcomes 
2016; 9: 222–229. 

Smulders K, Esselink RA, Weiss A, Kessels RP, Geurts AC, Bloem BR. 
Assessment of dual tasking has no clinical value for fall prediction in 
Parkinson’s disease. J Neurol 2012; 259: 1840–1847. 

Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait 
disorders in elderly people: clinical approach and classification. Lancet Neurol 
2007; 6: 63–74. 

Soumare A, Tavernier B, Alperovitch A, Tzourio C, Elbaz A. A cross-sectional 
and longitudinal study of the relationship between walking speed and cognitive 
function in community-dwelling elderly people. J Gerontol A Biol Sci Med Sci 
2009; 64 

Srygley JM, Mirelman A, Herman T, Giladi N, Hausdorff JM. When does walking 
alter thinking? Age and task associated findings. Brain Res. 2009; 1253: 92–99. 

Stenhagen M, Ekström H, Nordell E, Elmståhl S. Accidental falls, health-related 
quality of life and life satisfaction: a prospective study of the general elderly 
population. Arch. Gerontol. Geriatr. 2014; 58: 95–100. 

Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Illert M, Deuschl G. 
Comparative analysis of the gait disorder of normal pressure hydrocephalus 
and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2001; 70: 289–97. 

Stopford CL, Thompson JC, Neary D, Richardson AMT, Snowden JS. Working 
memory, attention, and executive function in Alzheimer’s disease and 
frontotemporal dementia. Cortex 2012; 48: 429–446. 

Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait 
speed and survival in older adults. JAMA 2011; 305: 50–58. 

Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and 
premotor cortices are involved in adapting walking and running speed on the 
treadmill: an optical imaging study. Neuroimage 2004; 23: 1020–1026. 

Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J. Mov. 
Disord. 2017; 10: 1–17. 

Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion 
and muscle tone with special reference to the role of the mesopontine 
tegmentum and medullary reticulospinal systems. J. Neural Transm. 2016; 123: 
695–729. 

Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M. Role of basal ganglia-



5. References 

66 
 

brainstem pathways in the control of motor behaviors. Neurosci. Res. 2004; 50: 
137–151. 

Taylor ME, Lasschuit DA, Lord SR, Delbaere K, Kurrle SE, Mikolaizak AS, et al. 
Slow gait speed is associated with executive function decline in older people 
with mild to moderate dementia: A one year longitudinal study. Arch. Gerontol. 
Geriatr. 2017; 73: 148–153. 

Tien I, Glaser SD, Aminoff MJ. Characterization of gait abnormalities in 
Parkinson’s disease using a wireless inertial sensor system. In: 2010 Annual 
International Conference of the IEEE Engineering in Medicine and Biology 
Society, EMBC’10. IEEE; 2010. p. 3353–3356. 

Tinetti ME, Kumar C. The patient who falls: ‘It’s always a trade-off’. JAMA 2010; 
303: 258–66. 

Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and 
incident fall risk in older adults. J Gerontol A Biol Sci Med Sci 2009; 64: 896–
901. 

Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, et al. Gait 
dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc 2008; 
56: 1244–1251. 

Wecker NS, Kramer JH, Hallam BJ, Delis DC. Mental Flexibility: Age Effects on 
Switching. Neuropsychology 2005; 19: 345–352. 

Winter DA. The biomechanics and motor control of human gait. 2nd ed. 
Western Ontario, Canada: University of Waterloo Press; 1987.  

Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and 
attention in gait. Mov. Disord. 2008; 23: 329–342. 

Yogev-Seligmann G, Rotem-Galili Y, Mirelman A, Dickstein R, Giladi N, 
Hausdorff JM. How does explicit prioritization alter walking during dual-task 
performance? Effects of age and sex on gait speed and variability. Phys. Ther. 
2010; 90: 177–86. 

Yogev G, Giladi N, Peretz C, Springer S, Simon ES, Hausdorff JM. Dual 
tasking, gait rhythmicity, and Parkinson’s disease: which aspects of gait are 
attention demanding? Eur J Neurosci 2005; 22: 1248–1256. 

Yogev G, Plotnik M, Peretz C, Giladi N, Hausdorff JM. Gait asymmetry in 
patients with Parkinson’s disease and elderly fallers: when does the bilateral 
coordination of gait require attention? Exp Brain Res 2007; 177: 336–346. 

Zijlstra W, Hof AL. Assessment of spatio-temporal gait parameters from trunk 
accelerations during human walking. Gait Posture 2003; 18: 1–10. 

  

 

  



6. Declaration of contribution 

67 
 

6. Declaration of contribution 

6.1 Declaration of contribution in Englisch 

Declaration of contribution to publication 1: 

Manuscript 1 is based on data collected within the frame of the TREND study. 

Markus Hobert performed the quantitative movement assessment of 715 study 

participants with another doctoral student (Sinja Meyer). These data represent 

the main data set of the publication. After data collection, Markus Hobert and 

Sinja Meyer entered the data into the database. In addition, further data from the 

TREND study, e.g., clinical and neuropsychological data collected by other staff 

members and doctoral students associated with the TREND study, were also 

included in the analysis. Markus Hobert spent approximately one year for data 

collection. The concept and hypothesis of the analysis was developed by Markus 

Hobert under the supervision of Prof. Dr. Walter Maetzler and with input from 

Prof. Dr. Daniela Berg and Prof. Dr. Gerhard Eschweiler. Markus Hobert carried 

out the statistical analysis with input by Dr. Raphael Niebler and Prof. Dr. Walter 

Maetzler. The manuscript was written by Markus Hobert and Prof. Dr. Walter 

Maetzler. All co-authors critically reviewed the manuscript. The revision during 

the submission process was carried out by Prof. Dr. Walter Maetzler together with 

Markus Hobert. The contributions of the individual authors are also documented 

in the "Author Contributions" section of the publication.  

Declaration of contribution to publication 2: 

Manuscript 2 is based on data collected within the frame of the TREND study. 

Markus Hobert performed the quantitative movement assessment of 715 study 

participants with another doctoral student (Sinja Meyer). These data represent 

the main data set of the publication. After data collection, Markus Hobert and 

Sinja Meyer entered the data into the database. In addition, further data from the 

TREND study, e.g., clinical and neuropsychological data collected by other staff 

members and doctoral students of the TREND study, were also included in the 

analysis. Markus Hobert spent approximately one year for data collection. Raw 

data sets of the quantitative motion analysis were converted by Markus Hobert to 



6. Declaration of contribution 

68 
 

another data format, and the markers set during the measurement were checked 

and corrected with the software provided by the manufacturer of the sensor-unit 

(McRoberts, The Hague, The Netherlands). Then, data sets were uploaded to the 

McRoberts analysis platform and analysed using an algorithm provided by 

McRoberts. Afterwards, Markus Hobert checked these data for plausibility and 

transferred them to the database. The concept and hypothesis of the analysis 

was developed by Markus Hobert under the supervision of Prof. Dr. Walter 

Maetzler. Markus Hobert carried out the statistical analysis independently. The 

manuscript was written by Markus Hobert and Prof. Dr. Walter Maetzler. All co-

authors critically reviewed the manuscript. The revision during the submission 

process was carried out by Markus Hobert together with Prof. Dr. Walter 

Maetzler. The contributions of the individual authors are also documented in the 

"Author Contributions" section of the publication.  

  



6. Declaration of contribution 

69 
 

6.2 Declaration of contribution in German / Erklärung zum Eigenanteil 

Erklärung zum Eigenanteil von Publikation 1: 

Die der Arbeit zugrunde liegenden Daten wurden im Rahmen der TREND-Studie 

erhoben. Markus Hobert führte die quantitative Bewegungsanalyse bei 715 

Studienteilnehmern mit einer weiteren Doktorandin (Sinja Meyer) durch. Diese 

Daten stellen den Hauptdatensatz der Publikation dar. Nach der Datenerhebung 

erfolgte die Dateneingabe durch Markus Hobert und Sinja Meyer. Darüberhinaus 

flossen auch weitere Daten aus der TREND-Studie, z.B. klinische und 

neuropsychologische Daten in die Analyse ein, die von anderen Mitarbeitern und 

Doktoranden der TREND-Studie erhoben wurden. Insgesamt war Markus Hobert 

ca. ein Jahr mit der Datenerhebung befasst. Das Konzept bzw. die Hypothese 

der hier durchgeführten Analyse entwickelte Markus Hobert selbständig unter 

Anleitung von Prof. Dr. Walter Maetzler und Input durch Prof. Dr. Daniela Berg 

und Prof. Dr. Gerhard Eschweiler. Die statistische Auswertung führte Markus 

Hobert nach Anleitung durch Dr. Raphael Niebler und Prof. Dr. Walter Maetzler 

selbstständig durch. Das Manuskript entwickelte Markus Hobert in 

Zusammenarbeit mit Prof. Dr. Walter Maetzler. Alle Ko-Autoren halfen durch die 

kritische Durchsicht des Manuskripts. Die Revision wurde von Prof. Dr. Walter 

Maetzler in Zusammenarbeit mit Markus Hobert durchgeführt. Die Beiträge der 

einzelnen Autoren sind außerdem in der Publikation im Abschnitt „Author 

Contributions“ dokumentiert.  

Erklärung zum Eigenanteil von Publikation 2: 

Die der Arbeit zugrunde liegenden Daten wurden im Rahmen der TREND-Studie 

erhoben. Markus Hobert führte die quantitative Bewegungsanalyse bei 715 

Studienteilnehmern mit einer weiteren Doktorandin (Sinja Meyer) durch. Diese 

Daten stellen den Hauptdatensatz der Publikation dar. Nach der Datenerhebung 

erfolgte die Dateneingabe durch Markus Hobert und Sinja Meyer. Darüberhinaus 

flossen auch weitere Daten aus der TREND-Studie, z.B. klinische und 

neuropsychologische Daten in die Analyse ein, die von anderen Mitarbeitern und 

Doktoranden der TREND-Studie erhoben wurden. Insgesamt war Markus Hobert 

ca. ein Jahr mit der Datenerhebung befasst. Die Datensätze der quantitativen 



6. Declaration of contribution 

70 
 

Bewegungsanalyse wurden von Markus Hobert ein anderes Format konvertiert, 

die während der Messung gesetzten Marker kontrolliert und mit der, vom 

Hersteller der Bewegungssensoren (McRoberts) bereitgestellten, Software 

korrigiert. Anschließend wurden die Datensätze auf die Analyseplattform von 

McRoberts hochgeladen und die Ergebnisse mit einem von McRoberts 

bereitgestellten Algorithmus analysiert. Diese Daten wurden von Markus Hobert 

anschließend auf Plausibilität überprüft bevor sie in die Datenbank übernommen 

wurden. Das Konzept bzw. die Hypothese der hier durchgeführten Analyse 

entwickelte Markus Hobert selbständig unter Anleitung von Prof. Dr. Walter 

Maetzler. Die statistische Auswertung führte Markus Hobert selbstständig durch. 

Das Manuskript entwickelte Markus Hobert in Zusammenarbeit mit Prof. Dr. 

Walter Maetzler. Alle Ko-Autoren halfen durch die kritische Durchsicht des 

Manuskripts. Die Revision wurde von Markus Hobert in Zusammenarbeit mit Prof. 

Dr. Walter Maetzler durchgeführt. Die Beiträge der einzelnen Autoren sind 

außerdem in der Publikation im Abschnitt „Author Contributions“ dokumentiert.  

  



7. Acknowledgement 

71 
 

7. Acknowledgement 
 

This thesis would not have been possible without the support and contributions 

of many people. 

First I want to express my deepest gratitude to my supervisor Prof. Dr. med. 

Walter Maetzler who supported me, guided me during the work done for this 

thesis and other projects. He also kept on motivating me and introduced me into 

“the world of scientific and clinical research” in Neurology and Geriatrics. In 

addition I want to thank also Prof. Dr. med. Daniela Berg who supported me and 

who initiated the TREND Study together with Prof. Dr. med. Walter Maetzler and 

Prof. Dr. med. Gerhard Eschweiler. 

I would like to give a special thanks to all members of the TREND Study team, 

especially Dr. med. Sinja Meyer and Dr. phil. Raphael Niebler, all co-authors, and 

to all other members of the Functional Neurogeriatrics Research Group and the 

Clinical Neurodegeneration Research Group at the University of Tuebingen, as 

well as the Neurogeriatrcs Research Group at the University of Kiel. 

I thank also the reviewers, who had helpful comments which improved the quality 

of the manuscripts. I want to thank all study participants for their participation. 

Last but not least I want to express my gratitude to my parents and my brother 

Sebastian for all the support and motivation. 

 

  



8. Publications 

72 
 

8. Publications 
 

Publications part of this thesis: 

Poor trail making test performance is directly associated with altered dual task 
prioritization in the elderly--baseline results from the TREND study. 
Hobert MA, Niebler R, Meyer SI, Brockmann K, Becker C, Huber H, Gaenslen A, 
Godau J, Eschweiler GW, Berg D, Maetzler W. 
PLoS One. 2011;6(11):e27831. 
 
Gait is associated with cognitive flexibility: A dual-tasking study in healthy older 
people. 
Hobert MA, Meyer SI, Hasmann SE, Metzger FG, Suenkel U, Eschweiler GW, 
Berg D, Maetzler W. 
Front Aging Neurosci. 2017 May 24;9:154.  
 
Contributions to conferences related to this thesis: 

Oral presentations at conferences: 

Poor trail making test performance is directly associated with altered dual task 
prioritisation in 686 elderly. 
Hobert MA, Niebler R, Meyer SI, Brockmann K, Becker C, Huber H, Gaenslen A, 
Godau J, Eschweiler GW, Berg D, Maetzler W. 
1st Joint World Congress of International Society of Posture and Gait Research 
(ISPGR) and Gait & Mental Function 2012, Trondheim, Norway. 
 
Einfluss von kognitiver Flexibilität auf das Gehen bei gesunden Älteren. 
Hobert MA. 
Jahrestagung der Gesellschaft für Neuropsychologie (GNP) 2015, Luebeck, 
Germany. 

Poster presentations at conferences: 

Quantitative gait parameter changes in good and poor Trail Making Test 
performers under challenging single and dual tasking conditions: Cross-sectional 
analysis in 673 elderly. 
Hobert MA, Meyer SI, Niebler R, Gaenslen A, Brockmann K, Wurster I, 
Eschweiler GW, Berg D, Maetzler W.  
2st Joint World Congress of International Society of Posture and Gait Research 
(ISPGR) and Gait & Mental Function 2013, Akita, Japan. 
 
Hat kognitive Flexibilität etwas mit dem Gangmuster zu tun? Quantitative 
Gangparameter von 673 Älteren unter Single- und Dualtasking Bedingungen. 
Maetzler W, Meyer SI, Niebler R, Metzger F, Eschweiler GW, Berg D, Hobert MA. 
Kongress der Deutschen Gesellschaft für Geriatrie (DGG) 2013, Hof, Germany. 
 



8. Publications 

73 
 

Quantitative gait parameter changes under challenging single and dual tasking 
conditions are associated with Trail Making Test performance: Cross-sectional 
analysis in 661 elderly. 
Hobert MA, Hasmann SE, Eschweiler GW, Berg D, Maetzler W. 
Jahrestagung der Deutschen Gesellschaft für klinische Neurophysiologie und 
funktionelle Bildgebung (DGKN) 2015, Tuebingen, Germany. 

 

Publications not related to this thesis: 

Validierung des Geriatrie-Checks in einer Kohorte von stationären 
neurologischen Patienten. 
Hobert MA, Bernhard FP, Bettecken K, Sartor J, Maetzler W, Jamour M. 
Z Gerontol Geriatr. 2018 Sep 11. 
 
Arm swing asymmetry in overground walking. 
Killeen T, Elshehabi M, Filli L, Hobert MA, Hansen C, Rieger D, Brockmann K, 
Nussbaum S, Zörner B, Bolliger M, Curt A, Berg D, Maetzler W. 
Sci Rep. 2018 Aug 24;8(1):12803. 
 
Wearables for gait and balance assessment in the neurological ward - study 
design and first results of a prospective cross-sectional feasibility study with 384 
inpatients. 
Bernhard FP, Sartor J, Bettecken K, Hobert MA, Arnold C, Weber YG, Poli S, 
Margraf NG, Schlenstedt C, Hansen C, Maetzler W. 
BMC Neurol. 2018 Aug 16;18(1):114. 
 
Brain-Area Specific White Matter Hyperintensities: Associations to Falls in 
Parkinson's Disease. 
Ciliz M, Sartor J, Lindig T, Pilotto A, Schäffer E, Weiss M, Scheltens P, Becker S, 
Hobert MA, Berg D, Liepelt-Scarfone I, Maetzler W. 
J Parkinsons Dis. 2018;8(3):455-462. 
 
Effect of Fear of Falling on Turning Performance in Parkinson's Disease in the 
Lab and at Home. 
Haertner L, Elshehabi M, Zaunbrecher L, Pham MH, Maetzler C, van Uem JMT, 
Hobert MA, Hucker S, Nussbaum S, Berg D, Liepelt-Scarfone I, Maetzler W. 
Front Aging Neurosci. 2018 Mar 27;10:78.  
 
Effect of physical activity on cognitive flexibility, depression and RBD in healthy 
elderly. 
Lerche S, Gutfreund A, Brockmann K, Hobert MA, Wurster I, Sünkel U, 
Eschweiler GW, Metzger FG, Maetzler W, Berg D. 
Clin Neurol Neurosurg. 2018 Feb;165:88-93. d 
 
The association between objectively measured physical activity, depression, 
cognition, and health-related quality of life in Parkinson's disease. 



8. Publications 

74 
 

van Uem JMT, Cerff B, Kampmeyer M, Prinzen J, Zuidema M, Hobert MA, Gräber 
S, Berg D, Maetzler W, Liepelt-Scarfone I. 
Parkinsonism Relat Disord. 2018 Mar;48:74-81. 
 
Validation of a Step Detection Algorithm during Straight Walking and Turning in 
Patients with Parkinson's Disease and Older Adults Using an Inertial 
Measurement Unit at the Lower Back. 
Pham MH, Elshehabi M, Haertner L, Del Din S, Srulijes K, Heger T, Synofzik M, 
Hobert MA, Faber GS, Hansen C, Salkovic D, Ferreira JJ, Berg D, Sanchez-Ferro 
Á, van Dieën JH, Becker C, Rochester L, Schmidt G, Maetzler W. 
Front Neurol. 2017 Sep 4;8:457. 
 
Dual-Task Performance in GBA Parkinson's Disease. 
Srulijes K, Brockmann K, Ogbamicael S, Hobert MA, Hauser AK, Schulte C, 
Fritzen J, Schwenk M, Gasser T, Berg D, Maetzler W. 
Parkinsons Dis. 2017;2017:8582740. 
 
White Matter Changes-Related Gait and Executive Function Deficits: 
Associations with Age and Parkinson's Disease. 
Sartor J, Bettecken K, Bernhard FP, Hofmann M, Gladow T, Lindig T, Ciliz M, 
Ten Kate M, Geritz J, Heinzel S, Benedictus M, Scheltens P, Hobert MA, Maetzler 
W. 
Front Aging Neurosci. 2017 Jun 30;9:213. 
 
Progression markers of motor deficits in Parkinson's disease: A biannual 4-year 
prospective study. 
Heinzel S, Bernhard FP, Roeben B, Nussbaum S, Heger T, Martus P, Hobert MA, 
Maetzler W, Berg D. 
Mov Disord. 2017 Aug;32(8):1254-1256. 
 
No relevant association of kinematic gait parameters with Health-related Quality 
of Life in Parkinson's disease. 
Bettecken K, Bernhard F, Sartor J, Hobert MA, Hofmann M, Gladow T, van Uem 
JMT, Liepelt-Scarfone I, Maetzler W. 
PLoS One. 2017 May 22;12(5):e0176816.  
 
Algorithm for Turning Detection and Analysis Validated under Home-Like 
Conditions in Patients with Parkinson's Disease and Older Adults using a 6 
Degree-of-Freedom Inertial Measurement Unit at the Lower Back. 
Pham MH, Elshehabi M, Haertner L, Heger T, Hobert MA, Faber GS, Salkovic D, 
Ferreira JJ, Berg D, Sanchez-Ferro Á, van Dieën JH, Maetzler W. 
Front Neurol. 2017 Apr 10;8:135. 
  
Home-Based Physical Behavior in Late Stage Parkinson Disease Dementia: 
Differences between Cognitive Subtypes. 
Cerff B, Maetzler W, Sulzer P, Kampmeyer M, Prinzen J, Hobert MA, Blum D, 
van Lummel R, Del Din S, Gräber S, Berg D, Liepelt-Scarfone I. 
Neurodegener Dis. 2017;17(4-5):135-144. 



8. Publications 

75 
 

 
Evidence for a Selectively Regulated Prioritization Shift Depending on Walking 
Situations in Older Adults. 
Salkovic D*, Hobert MA*, Bellut C, Funer F, Renno S, Haertner L, Hasmann SE, 
Staebler J, Geritz J, Suenkel U, Fallgatter AJ, Eschweiler GW, Berg D, Maetzler 
W. * equal contribution 
Front Aging Neurosci. 2017 Apr 4;9:75. 
 
Associations between Early Markers of Parkinson's Disease and Sarcopenia. 
Drey M, Hasmann SE, Krenovsky JP, Hobert MA, Straub S, Elshehabi M, von 
Thaler AK, Fallgatter AJ, Eschweiler GW, Suenkel U, Berg D, Maetzler W. 
Front Aging Neurosci. 2017 Mar 7;9:53. 
 
Dual Tasking for the Differentiation between Depression and Mild Cognitive 
Impairment. 
Metzger FG, Hobert MA, Ehlis AC, Hasmann SE, Hahn T, Eschweiler GW, Berg 
D, Fallgatter AJ, Maetzler W; TREND Study team. 
Front Aging Neurosci. 2016 Oct 13;8:235. 
 
Cerebrospinal Fluid Progranulin, but Not Serum Progranulin, Is Reduced in GRN-
Negative Frontotemporal Dementia. 
Wilke C, Gillardon F, Deuschle C, Hobert MA, Jansen IE, Metzger FG, Heutink 
P, Gasser T, Maetzler W, Blauwendraat C, Synofzik M. 
Neurodegener Dis. 2017;17(2-3):83-88. 
 
Prospective longitudinal course of cognition in older subjects with mild 
parkinsonian signs. 
Lerche S, Brockmann K, Pilotto A, Wurster I, Sünkel U, Hobert MA, von Thaler 
AK, Schulte C, Stoops E, Vanderstichele H, Herbst V, Brix B, Eschweiler GW, 
Metzger FG, Maetzler W, Berg D. 
Alzheimers Res Ther. 2016 Oct 10;8(1):42. 
 
New methods for the assessment of Parkinson's disease (2005 to 2015): A 
systematic review. 
Sánchez-Ferro Á, Elshehabi M, Godinho C, Salkovic D, Hobert MA, Domingos J, 
van Uem JM, Ferreira JJ, Maetzler W. 
Mov Disord. 2016 Sep;31(9):1283-92. 
 
Twelve-week sensor assessment in Parkinson's disease: Impact on quality of life. 
van Uem JM, Maier KS, Hucker S, Scheck O, Hobert MA, Santos AT, Fagerbakke 
Ø, Larsen F, Ferreira JJ, Maetzler W. 
Mov Disord. 2016 Sep;31(9):1337-8. 
 
C9orf72 is differentially expressed in the central nervous system and myeloid 
cells and consistently reduced in C9orf72, MAPT and GRN mutation carriers. 
Rizzu P, Blauwendraat C, Heetveld S, Lynes EM, Castillo-Lizardo M, Dhingra A, 
Pyz E, Hobert M, Synofzik M, Simón-Sánchez J, Francescatto M, Heutink P. 
Acta Neuropathol Commun. 2016 Apr 14;4(1):37. 



8. Publications 

76 
 

 
Quantitative Timed-Up-and-Go Parameters in Relation to Cognitive Parameters 
and Health-Related Quality of Life in Mild-to-Moderate Parkinson's Disease. 
Van Uem JM, Walgaard S, Ainsworth E, Hasmann SE, Heger T, Nussbaum S, 
Hobert MA, Micó-Amigo EM, Van Lummel RC, Berg D, Maetzler W. 
PLoS One. 2016 Apr 7;11(4):e0151997. 
 
Intra-Rater, Inter-Rater and Test-Retest Reliability of an Instrumented Timed Up 
and Go (iTUG) Test in Patients with Parkinson's Disease. 
van Lummel RC, Walgaard S, Hobert MA, Maetzler W, van Dieën JH, Galindo-
Garre F, Terwee CB. 
PLoS One. 2016 Mar 21;11(3):e0151881.  
 
Motor dual-tasking deficits predict falls in Parkinson's disease: A prospective 
study. 
Heinzel S, Maechtel M, Hasmann SE, Hobert MA, Heger T, Berg D, Maetzler W. 
Parkinsonism Relat Disord. 2016 May;26:73-7. 
 
Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in 
Neurodegenerative Disease. 
Wilke C, Gillardon F, Deuschle C, Dubois E, Hobert MA, Vom Hagen JM, Krüger 
S, Biskup S, Blauwendraat C, Hruscha M, Kaeser SA, Heutink P, Maetzler W, 
Synofzik M. 
Curr Alzheimer Res. 2016;13(6):654-62. 
 
Continuous leg dyskinesia assessment in Parkinson's disease -clinical validity 
and ecological effect. 
Ramsperger R, Meckler S, Heger T, van Uem J, Hucker S, Braatz U, Graessner 
H, Berg D, Manoli Y, Serrano JA, Ferreira JJ, Hobert MA, Maetzler W; SENSE-
PARK study team. 
Parkinsonism Relat Disord. 2016 Feb 10. pii: S1353-8020(16)30035-9. 
 
In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson's disease 
which can be attenuated by glycyrrhizin. 
Santoro M, Maetzler W, Stathakos P, Martin HL, Hobert MA, Rattay TW, Gasser 
T, Forrester JV, Berg D, Tracey KJ, Riedel G, Teismann P. Neurobiol Dis. 2016 
Feb 24;91:59-68. 
 
Limited effect of dopaminergic medication on straight walking and turning in early 
to moderate Parkinson’s disease during single and dual tasking 
Elshehabi M, Maier KS, Hasmann SE, Nussbaum S, Herbst H, Heger T, Berg D, 
Hobert MA, Maetzler W. 
Front Aging Neurosci. 2016 Jan 27;8:4. 
 
Freezing of Swallowing 
Maetzler W*, Rattay TW*, Hobert MA*, Synofzik M, Bader A, Berg B, Schaeffer 
E, Rommel N, Devos D, Bloem BR, Bender B. * equal contribution 



8. Publications 

77 
 

Mov Dis Clinical Pracitise 2016 3:5, 490–493. 
 
Association between vestibulo-ocular reflex suppression, balance, gait, and fall 
risk in ageing and neurodegenerative disease: protocol of a one-year prospective 
follow-up study. 
Srulijes K, Mack DJ, Klenk J, Schwickert L, Ihlen EA, Schwenk M, Lindemann U, 
Meyer M, Srijana KC, Hobert MA, Brockmann K, Wurster I, Pomper JK, Synofzik 
M, Schneider E, Ilg U, Berg D, Maetzler W, Becker C. 
BMC Neurol. 2015 Oct 9;15:192.  
 
Quantitative home-based assessment of Parkinson's symptoms: the SENSE-
PARK feasibility and usability study. 
Ferreira JJ, Godinho C, Santos AT, Domingos J, Abreu D, Lobo R, Gonçalves N, 
Barra M, Larsen F, Fagerbakke Ø, Akeren I, Wangen H, Serrano JA, Weber P, 
Thoms A, Meckler S, Sollinger S, van Uem J, Hobert MA, Maier KS, Matthew H, 
Isaacs T, Duffen J, Graessner H, Maetzler W. 
BMC Neurol. 2015 Jun 10;15:89. 
 
Instrumented functional reach test differentiates individuals at high risk for 
Parkinson's disease from controls. 
Hasmann SE, Berg D, Hobert MA, Weiss D, Lindemann U, Streffer J, Liepelt-
Scarfone I, Maetzler W. 
Front Aging Neurosci. 2014 Oct 24;6:286. 
 
Accelerometer-based quantitative analysis of axial nocturnal movements 
differentiates patients with Parkinson's disease, but not high-risk individuals, from 
controls. 
Louter M, Maetzler W, Prinzen J, van Lummel RC, Hobert M, Arends JB, Bloem 
BR, Streffer J, Berg D, Overeem S, Liepelt-Scarfone I. 
J Neurol Neurosurg Psychiatry. 2015 Jan;86(1):32-7. 
 
Technical and clinical view on ambulatory assessment in Parkinson's disease. 
Hobert MA, Maetzler W, Aminian K, Chiari L. 
Acta Neurol Scand. 2014 Sep;130(3):139-47.  
 
Mild parkinsonian signs in the elderly--is there an association with PD? 
Crossectional findings in 992 individuals. Lerche S, Hobert M, Brockmann K, 
Wurster I, Gaenslen A, Hasmann S, Eschweiler GW, Maetzler W, Berg D. 
PLoS One. 2014 Mar 27;9(3):e92878.  
 
Impaired trunk stability in individuals at high risk for Parkinson's disease. 
Maetzler W, Mancini M, Liepelt-Scarfone I, Müller K, Becker C, van Lummel RC, 
Ainsworth E, Hobert M, Streffer J, Berg D, Chiari L. 
PLoS One. 2012;7(3):e32240. 


