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SUMMARY 

Structure and function of lipids have been subject of intense studies for more than one 

century. However, during this time, the meaning of lipid has changed considerably, and 

nowadays lipids are defined as “small molecules derived from carbanion-based condensation 

of thioesters and/or by carbocation-based condensations of isoprene units”. The 

development of modern analytical techniques in the last decades led researchers to 

undertake the comprehensive analysis of lipids in biological systems, which has been defined 

as lipidomics. 

Mass spectrometry (MS) has been the most important analytical tool for the exponential 

growth that lipidomics has achieved in the last twenty years. Two main approaches have 

been employed in MS: shotgun lipidomics (in which lipid extract is directly infused into the 

mass spectrometer without lipid separation) and liquid chromatography hyphenated to MS 

(LC-MS) based lipidomics (in which the lipid extract is first separated chromatographically 

before MS detection). 

In this thesis, LC-MS based lipidomics studies were developed in order to determine proper 

conditions for analysis of as many lipid species as possible and with the most confident level 

of description. 

In a first study, the performance of four extraction protocols was compared for the analysis 

of lipids in Hela cells. The comparison was based on performance parameters such as 

extraction recoveries of endogenous lipids and internal standards, precision, and complexity 

of the protocols. For the comparison two traditionally employed protocols, based on biphasic 

systems (chloroform -methanol (MeOH)-H2O, known as Bligh & Dyer, and methyl tert-butyl 

ether (MTBE)-MeOH-H2O, known as Matyash), and two novel protocols based on 

monophasic systems of isopropanol (IPA)-H2O (IPA:H2O 75:25 v/v and IPA:H2O 90:10 v/v) 

were selected. The analysis of lipids after extraction was performed by reversed-phase ultra-

high performance liquid chromatography (UHPLC) coupled to quadrupole-time of flight mass 

spectrometry (QTOF) via electrospray ionization (ESI) using MS/MS by data-independent 

acquisition in positive and negative polarity mode with sequential window acquisition of all 

theoretical fragment ion mass spectra (SWATH). Freely available software (MS-DIAL) was 

employed for the processing of the data. The selected performance parameters showed that 

extraction with IPA:H2O 90:10 v/v performs similar to the Matyash protocol and better than 

Bligh & Dyer, with a protocol that is simpler and that can employ plastic labware instead of 
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glass. The use of IPA:H2O 90:10 v/v simplifies the protocol for analysis of lipids in reversed 

phase LC-MS lipidomics studies. 

In a second study, the optimized protocol with IPA:H2O 90:10 v/v was employed to study the 

changes in the lipid profile of keratinocytes after treatment with the natural compound 

betulin, which has proven wound healing properties. Data from untargeted UHPLC-ESI-QTOF-

MS/MS measurements of treated and control samples were subjected to a novel targeted 

data processing strategy for identification of lipids. This targeted data processing is based on 

the selection and analysis of a specific set of precursor and product ions for each lipid class 

and the corresponding comparison of their elution profiles not only for the lipid species but 

also for the whole lipid class in independent runs measured with opposite polarities. As a 

result of this analysis 440 out of 611 identified lipid species showed to be significantly 

regulated upon betulin treatment. Regulation can be described as a decrease in the 

concentration of cholesteryl esters and triacylglycerides and increase of 

glycerophospholipids, sphingolipids and diacylglycerides after the treatment with betulin. 

Finally, a third study was focused on a particular group of fatty acids, which are called short 

chain hydroxy fatty acids (SCHFA). The presence of the hydroxyl group along the alkyl chain 

of SCHFA made them chiral. Some enantiomers of these SCHFA are linked to particular 

diseases and are potential biomarkers for diagnosis. In this study SCHFA were studied for 

their chiral separation by HPLC on a set of quinine- and quinidine-derived chiral stationary 

phases. MS compatible conditions for chiral separation of all studied SCHFA are analyzed and 

reported. 
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ZUSAMMENFASSUNG 

Strukturen und Funktionen von Lipiden werden seit mehr als einem Jahrhundert intensiv 

untersucht. In dieser Zeit hat sich die Bedeutung von Lipiden jedoch erheblich geändert. 

Lipide werden heutzutage als "kleine Moleküle, die durch Kondensation von Thioestern auf 

Carbanionbasis und / oder durch Kondensation von Isopreneinheiten auf Carbokationbasis 

entstehen" definiert. Die Entwicklung moderner Analysetechniken der letzten Jahrzehnte 

veranlasste Forscherinnen und Forscher dazu eine umfassende Analytik von Lipiden in 

biologischen Systemen durchzuführen, welche schließlich als Lipidomik definiert wurde. Die 

Massenspektrometrie (MS) war seither das wichtigste analytische Instrument und zudem 

maßgeblich verantwortlich für das exponentielle Wachstum der Lipidomik in den letzten 

zwanzig Jahren. Im Allgemeinen werden zwei Hauptansätze in der MS verfolgt: Shotgun-

Lipidomik (bei welcher der Lipidextrakt ohne Lipidtrennung direkt in das 

Massenspektrometer injiziert wird) und MS Lipidomik mittels Flüssigchromatographie 

Kopplung (LC-MS) (bei welcher der Lipidextrakt vor der MS-Detektion chromatographisch 

aufgetrennt wird). 

In dieser Arbeit wurden LC-MS-basierte Lipidomik-Studien entwickelt, um geeignete 

Bedingungen für die Analyse möglichst vieler Lipidspezies zu ermitteln und dabei eine 

äußerst zuverlässliche Beschreibung der Lipide zu gewährleisten. 

In einer ersten Studie wurden die Extraktionsausbeuten von vier Protokollen für die Analyse 

von Lipiden in Hela-Zellen verglichen. Der Vergleich basierte auf Parametern wie der 

Wiederfindung von endogenen Lipiden und internen Standards, sowie der Präzision und der 

Komplexität der jeweiligen Protokolle. Für den Vergleich wurden zwei klassische Protokolle, 

welche aus zweiphasigen Systemen (Chloroform-Methanol (MeOH) -H2O, bekannt als Bligh 

& Dyer, und Methyl-tert-butylether (MTBE) -MeOH-H2O, bekannt als Matyash) bestehen, 

und zwei neuartige Protokolle, die einphasige Systeme mit Isopropanol (IPA) -H2O (IPA:H2O 

75:25 v/v und IPA:H2O 90:10 v/v) bilden, ausgewählt. Nach der Extraktion erfolgte die 

Analyse der Lipide durch Umkehrphasen-Ultrahochleistungsflüssigchromatographie 

(UHPLC), gekoppelt mit Quadrupol-Flugzeit-MS (QTOF) und Elektrospray-Ionisation (ESI). Für 

die MS/MS Datenaufzeichnung bei positiver und negativer Polarität wurde eine 

datenunabhängige Akquisitionsmethode namens SWATH (engl.: sequential window 

acquisition of all theoretical fragment-ion spectra) verwendet. 
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Die Verarbeitung der Daten erfolgte über eine frei verfügbare Software (MS-DIAL). Über die 

zuvor definierten Parametern konnte gezeigt werden, dass die Extraktion mit IPA:H2O 90:10 

v/v vergleichbare Ergebnisse zu dem Protokoll von Matyash liefert und besser als die 

Extraktion nach Bligh & Dyer funktioniert. Zudem ist die auf IPA-basierende Extraktion 

einfacher und kann auch mit Kunststoff-Laborbehältern anstelle von Glas durchgeführt 

werden. Die Verwendung von IPA:H2O 90:10 v/v vereinfacht demnach das Protokoll für die 

Analyse von Lipiden in Umkehrphasen-LC-MS Lipidomikstudien. 

In einer zweiten Studie wurde das optimierte Protokoll (IPA:H2O 90:10 v/v) angewendet, um 

die Veränderungen des Lipidprofils von Keratinozyten nach Behandlung mit dem Naturstoff 

Betulin zu untersuchen, der nachweislich wundheilende Eigenschaften aufweist. Daten aus 

nicht-zielgerichteten UHPLC-ESI-QTOF-MS/MS Messungen von behandelten Proben sowie 

von Kontrollproben wurden einer neuartigen, gezielten Datenverarbeitungstrategie zur 

Identifizierung von Lipiden unterzogen. Diese gezielte Datenverarbeitung basiert auf der 

Auswahl und Analyse eines spezifischen Satzes von Vorläufer- und Produktionen für jede 

Lipidklasse und dem entsprechenden Vergleich ihrer Elutionsprofile. Hierbei wurden nicht 

nur die einzelnen Lipidspezies, sondern auch Ergebnisse für die gesamte Lipidklasse aus 

unabhängigen Läufen beider Polaritäten berücksichtigt. Das Resultat dieser Analyse war, dass 

440 von 611 identifizierten Lipidspezies bei Betulinbehandlung signifikant reguliert wurden. 

Die Regulation kann als eine Abnahme der Konzentration von Cholesterylestern und 

Triacylglyceriden bei gleichzeitiger Zunahme von Glycerophospholipiden, Sphingolipiden und 

Diacylglyceriden nach der Behandlung mit Betulin beschrieben werden. 

Schließlich fokussierte sich eine dritte Studie auf eine bestimmte Gruppe von Fettsäuren, die 

kurzkettige Hydroxyfettsäuren (SCHFA) genannt werden. Durch die Anwesenheit der 

Hydroxylgruppe entlang der Alkylkette von SCHFA sind diese Analyte chiral. Einige 

Enantiomere dieser SCHFA werden mit bestimmten Krankheiten in Verbindung gebracht und 

sind potenzielle Biomarker bei der Diagnose. In dieser Studie wurde die chirale Trennung von 

SCHFA mittels HPLC an einer Reihe von auf Chinin und Chinidin aufbauenden, chiralen 

stationären Phasen untersucht. Zudem wurden MS-kompatible Bedingungen für die chirale 

Trennung aller untersuchten SCHFA analysiert und beschrieben. 
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INTRODUCTION 

1 Lipids and lipid classes 

1.1 Lipids 

Lipid is a concept that appeared more than one hundred years ago and that has evolved trough 

words like lipine, lipin, lipoid or lipide, which were having a more restricted meaning. However, 

there is not yet a widely accepted definition [1]. According to IUPAC, lipids are described as “a 

loosely defined term for substances of biological origin that are soluble in nonpolar solvents”[2]. 

This definition, given in terms of solubility, brings many inconsistencies when we consider the 

solubility of some polar compounds, which are nowadays classified as lipids. Precisely, with the 

goal of encouraging a comprehensive classification of lipids, Lipid Metabolites and Pathways 

Strategy (Lipid MAPS), a consortium created by lipid chemists, defined lipids as “hydrophobic or 

amphipathic small molecules which are originated entirely or partially by carbanion-based 

condensation of thioesters and/or by carbocation-based condensations of isoprene units” [3]. 

Christie and Han also proposed an interesting definition considering the nature of substances 

which are nowadays studied and analyzed as lipids: “Lipids are fatty acids and their derivatives, 

and substances related biosynthetically or functionally to these compounds”[4]. 

Table 1.1. Summary of the Major Functions of Individual Lipid Classes 

Cellular functions  Lipid classes 

Membrane structural 

component  

PC, PE, PI, PS, PG, PA, SM, CL, cholesterol, cerebroside (e.g., 

GalCer and GluCer), glycolipids, ST, gangliosides, etc. 

Energy storage and 

metabolism 

NEFA, TG, DG, MG, acyl CoA, acylcarnitine, etc.  

Signaling All lysolipids, DG, MG, acyl CoA, acylcarnitine, NEFA, eicosanoids 

and other oxidized FA, ceramide, sphingosine, S1P, psychosine, 

steroids, N-acyl ethanolamine, etc. 

Other special 

functions  

Plasmalogen (antioxidant), acylcarnitine (transport), CL 

(respiration), PS (cofactors, substrate of PE synthesis), etc. 

Table reproduced with permission from [1]. PC: phosphatidylcholines, PE: phosphatidylethanolamine, PI: 
phosphatidylinositol, PS: phophatidylserine, PG: phosphatidylglycerol, PA: phosphatidic acid, SM: sphingomyelin, CL: 
cardiolipin, NEFA: Non-esterified fatty acids, TG: triacylglycerides, DG: diacylglycerides, MG: monoacylglycerides, S1P: 
sphingosine 1-phosphate, GalCer: galactosyl ceramide, GluCer: glucosylceramide, ST: sterols 
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1.2 Biological importance of lipids 

Lipids are recognized as key component of many vital biological processes in living beings. Some 

of the principal functions of lipids in cells are: energy storage, structural integrity of cells and 

membranes and signaling [5–7]. More details about the role of some of the most well-known 

lipid classes are described in Table 1.1. 

1.3 Classification of lipids 

As mentioned before, one of the main goals of the consortium Lipid MAPS, was to establish a 

comprehensive classification of lipids. Thus, the lipid classification system introduced by Lipid 

MAPS consists of eight lipid categories which are having their own subclassification. These 

categories are fatty acyls (FA), Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP), 

Sterol lipids (ST), Prenol lipids (PR), Saccharolipids (SL) and Polyketides (PK) [3,8,9]. The 

nomenclature proposed by Lipid MAPS has been widely accepted and supported with a rich 

feedback from lipid researchers worldwide [8]. 

Figure 1.1. Skeleton of the 8 lipid categories defined by Lipid MAPS. In glycerolipids and glycerophospholipids at 
least one of R1, R2 or R3 has to be a radyl group. 

 

Figure 1.1 shows the basic structures of the lipid categories defined by the classification system 

of Lipid MAPS. This classification system is based on the concept of two fundamental building 

blocks: ketoacyl groups and isoprene groups [9]. Ketoacyl groups are the main building blocks, 
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by different metabolic pathways, of fatty acyls and polyketides. Fatty acyls, in general, and fatty 

acids (a specific class of fatty acyls), in particular, are the main constituents of more complex 

lipids such as glycerolipids, glycerophospholipids, sphingolipids and saccharolipids. Isoprene 

groups (dimethylallyl pyrophosphate and isopentenyl pyrophosphate) are the main building 

blocks of prenols and sterols. Cholesterol esters, a class of sterols, are a good example of lipids, 

where the two kinds of building blocks (ketoacyls and isoprenes) are present. 

In the cases of glycerolipids and glycerophospholipids, at least one radyl chain has to be attached 

to the glycerol moiety in order to be classified in that category. Radyl is a term used to describe 

the three different possibilities in which hydrocarbon chains are linked to the glycerol moiety. 

These three possibilities are acyl, alkyl or 1Z-alkenyl substituents (see Figure 1.1). 

Lipid MAPS possesses also the biggest database for lipid structures (Lipid MAPS Structure 

Database, LMSD), with more than 43000 structures to the date (available online at 

https://www.lipidmaps.org/). All the structures included in LMSD are strictly classified and 

labeled with a unique 12 characters code (14 characters for a few lipid classes), which include 

information about the database (2 characters), lipid category (2 characters), lipid class (2 

characters), lipid subclass (2 characters) and unique ID within the lipid subclass (4 characters). 

Figure 1.2 shows the distribution of lipid structures contained in LMSD, classified by categories. 

 

Figure 1.2. Distributions of structures available in LMSD. Updated 10.10.2019 from http://www.lipidmaps.org/ [8] 

1.4 Description of studied lipid classes 

As mentioned before, each lipid category has its own subclassification, which can be very 

complex. However, there are, in each lipid category, some classes or subclasses that are 

commonly studied because they are the most abundant ones or because of their biological 

importance. Here some of the most important ones are described. 
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1.4.1 Fatty acyls 

The main class of the fatty acyls are the fatty acids, because they are also building blocks of some 

other lipid categories. Saturated and unsaturated fatty acids with straight hydrocarbon chain are 

the most commonly found in nature. However, modifications including branched-chain fatty 

acids or the presence of heteroatoms attached to the main carbon chain also exist. 

In animal tissues, fatty acids can vary from 14 to 24 carbons but in some cases the range can be 

from 2 to 36 or more carbons. In some microorganisms 80 or more carbons are possible while 

in higher plants the range is more limited [4]. Table 1.2 shows the list of most common fatty 

acids. Odd-chain fatty acids are mainly produced by some microorganisms but are also present 

in low concentration in animal tissues. They are produced via propionyl coenzyme A or after 

alpha-oxidation of fatty acids. 

Table 1.2. Names and designations of most common fatty acids.

Common name Systematic name 
Shorthand 

designation1 

Butyric butanoic 4:0 

Caproic hexanoic 6:0 

Caprylic octanoic 8:0 

Capric decanoic 10:0 

Lauric dodecanoic 12:0 

Myristic tetradecanoic 14:0 

Palmitic hexadecanoic 16:0 

Stearic octadecanoic 18:0 

Arachidic eicosanoic 20:0 

Palmitoleic 9-hexadecenoic 16:1 (n-7) 

Oleic 9-octadecenoic 18:1 (n-9) 

Elaidic trans-9-octadecenoic 18:1 

Cis-vaccenic 11-octadecenoic 18:1 (n-7) 

Linoleic 9,12-octadecadienoic 18:2 (n-6) 

α –linolenic 9,12,15-octadecatrienoic 18:3 (n-3) 

γ –linolenic 6,9,12-octadecatrienoic 18:3 (n-6) 

dihomo- –linolenic 8,11,14-eicosatrienoic 20:3 (n-6) 

Arachidonic 5,8,11,14-eicosatetraenoic 20:4 (n-6) 

EPA 5,8,11,14,17-eicosapentaenoic 20:5 (n-3) 
 7,10,13,16,19-docosapentaenoic 22:5 (n-3) 

DHA 4,7,10,13,16,19-docosahexaenoic 22:6 (n-3) 

Reproduced with permission from Christie and Han, 2010 [4]. 1 Format of notation suggested according to Liebisch 
et al. [10]. 

 

Some special classes of fatty acyls are octadecanoids, eicosanoids and docosanoids which are 

fatty acids with multiple functional groups the designation of which is based on the number of 
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carbons of the biosynthetic precursor: jasmonic acid (18 carbons), arachidonic acid (20 carbons) 

and docosahexanoic acid (22 carbons), respectively. Subclasses of the eicosanoids are for 

example prostaglandins, leukotrienes and thromboxanes. 

Fatty alcohols, fatty aldehydes, fatty esters, fatty ethers and fatty amides are also classes 

belonging to the fatty acyl category. An important family of fatty esters are the carnitine esters 

(acyl carnitines, AC). They are well-known for being involved in the transport of fatty acids into 

mitochondria [11]. 

1.4.2 Glycerolipids 

Glycerolipids are defined because of the presence of glycerol moiety in their structure. One, two 

or three radyl substituents can be attached to the glycerol moiety. Acyl groups are the most 

common substituents leading to the lipid classes monoacylglycerides (MG), diacylglycerides (DG) 

and triacylglycerides (TG), respectively. 

1.4.3 Glycerophospholipids 

Glycerophospholipids contain at least one phospho group and one radyl chain attached to the 

glycerol moiety. Figure 1.3 shows the backbone structure of the most common 

glycerophopholipids. The presence of different substituents linked to the phospho group defines 

different lipid classes. If one of the radyl groups (R1 or R2) is lacking, the prefix lyso is used for 

the lipid class (e.g. Lysophophosphatidylcholine, LPC) 

 

Figure 1.3. Structure of main glycerophospholipid classes 

1.4.4 Sphingolipids 

Sphingolipids are defined by the presence of a sphingoid base in their structure. This sphingoid 

base is synthesized in cells from a long chain fatty acyl-CoA (commonly palmitoyl CoA) and the 

amino acid serine. Some of the most important sphingolipid classes are ceramides (Cer), 
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phosphosphingolipids and glycoshingolipids. Within the phosphosphingolipids, the subclass 

sphingomyelin is the most abundant in mammalian cells. 

 

Figure 1.4. Common structures of sphingolipids 

1.4.5 Sterols 

Sterols possess a core structure, which consists of four fused rings (perhydro-

cyclopentaphenanthrene) (see Figure 1.1). Some of the main lipid classes in this category are 

cholesterol and derivatives, steroid hormones, secosteroids, bile acids, amongst others. 

Cholesterol esters (CEs) are some of the most studied sterols in mammals. Cholesterol and its 

derivatives is one of the major classes of membrane lipids. 
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2 Liquid chromatography of lipids 

Considering the wide polarity range that lipids possess, liquid chromatography (LC) represents a 

very useful tool for their analysis since it is possible to separate lipid classes or lipid species 

according to their physicochemical properties. Also, LC enables the concentration of lipids for 

further analysis [12].The three most important LC configurations for analysis of lipid extracts are 

reversed phase LC (RPLC), normal phase LC (NPLC) and hydrophilic interaction LC (HILIC). In 2014, 

Cajka et al. published a review with the analysis of 185 lipidomics publications from the last 

decade (2004-2014). Figure 2.1A, shows the percentage of studies, from that selected group, 

that were using each type of LC configuration [12]. Figure 2.1B-C also shows the polarity and MS 

instruments employed in those studies. 

 

Figure 2.1. Use of different chromatographic and mass spectrometric systems in lipidomics analysis. Reproduced 
with permission from [12]. 

2.1 Reversed phase liquid chromatography 

RPLC is the type of LC most widely used for analysis of lipids. This technique is based on partition 

mechanism of the solutes into the stationary phase in accordance to their hydrophobicity [13]. 

In RPLC, the stationary phase (SP) is apolar and consists of silica particles which are 

functionalized with hydrocarbon chains (C30, C18, C8) or other groups like cyano, phenyl and 

alkyl chain with polar embedded group. Among these, the ones functionalized with C18, are the 

most employed. The mobile phase (MP) is polar and consists of water and water-miscible organic 

solvents (methanol, acetonitrile, isopropanol). In general, the mechanism for retention is 

described as hydrophobic interaction between the solutes and SP. When lipids are loaded into 

the column, and mobile phase contains some amount of water, the driving force for the 

retention of analytes in the hydrophobic SP comes mainly from an increase in entropy of the 

system rather than from intermolecular interactions [13]. Release of lipids from the SP occurs 

when the organic solvent content is increased in the MP. 
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In RPLC, lipid species with more and longer radyl chains elute later from the LC column. In the 

same way, lipid species with saturated radyl chains elute later than the corresponding ones with 

polyunsaturated radyl chains. 

The use of mobile phase additives improves RPLC separation and detection of lipids, especially 

when it is coupled to MS detection. The most common additives are ammonium formate, and 

ammonium acetate (in concentrations from 5 to 10 mM) or their corresponding acids, formic 

acid and acetic acid (in typical concentration ranging from 0.05 to 0.1%) [13]. 

2.2 Normal phase liquid chromatography 

NPLC separates analytes based on the polarity of their headgroups. The SP is polar and consists 

of silica or polar functionalized silica, and the MP consists of apolar solvents, like hexane or 

heptane, and a relatively more polar solvent miscible with it, like chloroform or isopropanol. 

Additives are usually acetic acid and ammonium acetate in low concentrations. In NPLC, the 

retention of analytes is based on the adsorption of polar groups of the molecule on the SP 

whereas apolar tails of lipids play a minor role leading to lipid class separations [13]. 

NPLC has the disadvantage that polar eluent fraction binds strongly to the SP which is not easily 

exchanged and leads to longer equilibration times. Furthermore, even traces of water will be 

strongly attached to the SP resulting in low reproducibility and must be carefully avoided. 

Another disadvantage is the low suitability of the mobile phase for electrospray ionization (ESI), 

since apolar solvent reduce ionization efficiency. Thus, dopant or post column mixing are often 

required [13]. 

2.3 Hydrophilic interaction liquid chromatography 

HILIC is a variant of NPLC. The SP is generally silica or polar functionalized silica like in NPLC and 

the MP is based on ACN-water mixtures, rich in ACN while other water-miscible organic solvents 

like MeOH, IPA, MTBE play no significant role. Unlike NPLC, HILIC uses normally between 5 and 

40 % content of water in the MP , and requires at least 2% of water to maintain an enriched 

layer of water on the SP [12]. Additives like ammonium formate and ammonium acetate allow 

to control the pH and ionic strength of the MP [1]. 

In HILIC, analytes are separated based on their partition between the MP and the water layer on 

the SP. However, once in the aqueous layer, analytes may interact with functional groups of the 

SP as well leading to a mixed partition-adsorption mechanism [13]. 
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In a similar way to NPLC, HILIC enables a separation of lipids based on their polarities. In 

comparison to NPLC, HILIC gives better reproducibility and robustness and it is more compatible 

with MS analysis [12]. 

2.4 Supercritical fluid chromatography 

Supercritical fluid chromatography (SFC) is a kind of chromatography which employs 

supercritical fluids (SF) or subcritical fluids as a mobile phase. Despite many substances have 

proven to have a good performance as SFs, CO2 is practically the only one used as mobile phase. 

The reasons for that are: it is inert, critical pressure and temperature are relatively easy to 

achieve (31 °C and 74 bar), it is nonflammable, it is cheap and it is environmentally friendly 

[14,15]. 

Considering that fluidized CO2 is a solvent with similar polarity to hexane, SFC was often 

considered only as an alternative for NPLC. However, eluotropic strength of CO2 can be modified 

with additives, which makes possible to use also reversed-phase type materials [14]. 

Some of the advantages of SFC over other chromatographic techniques are due to the low 

viscosity and high-diffusion coefficients of the MP. This allows the use of elevated linear 

velocities and to obtain highly efficient separations [16]. SFC based lipidomics leads to lipid class 

separation. It has the advantage over HILIC that also neutral lipids such as TGs and CEs are 

retained and can be analyzed while neutral lipids elute with or very close to t0 in HILIC. 

 

Figure 2.2. Elution profile of lipid extracts in four different LC configurations RPLC, NPLC, HILIC and SFC (in normal 
phase mode). All figures are reproduced with permission in the following manner: RPLC from [17], HILIC from [18], 
NPLC from [19] and SFC from [20]. 

2.5 Comparison of LC systems 

Figure 2.2 shows the separation profile of 4 different lipid extracts by using different kinds of 

chromatography. As can be seen NPLC, HILIC and SFC (in NP mode) allow the separation of 
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different lipid classes while in RPLC, many lipid classes elute at the same time. Despite of this, 

the strength of RPLC resides in their capacity to separate lipid species from the same lipid class.  

Since NPLC and HILIC have the capability of separating lipid classes and RPLC has the capability 

to separate lipid species based on the hydrophobicity of their fatty acyl chains, it has been 

common to observe approaches where a lipid class is first separated, via selective extraction, 

NPLC or HILIC, and then analyzed by RPLC for separation of lipid species. 2D LC, in an offline or 

online mode, has been employed for this purpose [21–24]. However, with the development of 

instrumentation and stationary phases, and specially with the introduction of UHPLC, many 

researchers have replaced the sequential NPLC-RPLC for a RP-UHPLC lipid separation [25–28]. 

 

Figure 2.3. Peak spotting plot for LPCs identified in a previous publication according to the number of double bonds. 
Reference is Yamada et al. [29]. db: double bonds. For series of 15, 18 and 22 carbons, one irregularity is marked with 
a red X and the expected retention time is showed with an arrow. These irregularities are most likely 
misidentifications. 

 

The retention behavior of different lipid classes in RPLC is an aspect that has been well described 

in terms of length and number of double bonds of the radyl chains [30–32]. This information is 

very useful and has a lot of potential on the identification of lipid species, since some 

misidentifications can be easily recognized by inspecting the elution profiles of the lipid species. 

However, there are publications where RPLC-MS is employed for analysis of lipids and 
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identification is only based on MS information leaving aside the rich chromatographic 

information. Figure 2.3 shows a peak spotting plot (in terms of retention time and m/z) of the 

lysophosphatidylcholines (LPC) species identified in a RPLC-MS lipidomic study published in 2013 

[29]. Identification was done in this case with an automated lipid identification software with no 

LC information taking into consideration. Identified species were reported with their 

corresponding m/z values and retention time, and for illustrative purposes Figure 2.3 has been 

elaborated here. As can be seen in this figure, there are a few clear inconsistent identifications. 
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3 Mass spectrometry for lipids 

Mass spectrometry is a technique dedicated to separate and analyze ions based on their mass 

to charge ratio (m/z) [33]. The principle of MS can be described in three simple steps [1]: 

• Formation of molecular ions and/or corresponding fragment ions 

• Separation of precursor ions or fragment ions by their m/z 

• Measurement of each ion abundancy. 

3.1 MS instrumentation 

Some standard components of a mass spectrometer are an ion source, a mass analyzer system, 

a detector, and a data processing system (Figure 3.1). 

In a first step, the sample is introduced into the ion source through an inlet or from a previous 

separation interface such as LC or GC, analytes are then vaporized and ionized. Once in the 

analyzer, ions in the gas phase are separated according to their m/z values and finally detected. 

 

Figure 3.1. Schematic diagram of a mass spectrometer. Reproduced with permission from [1]. 

3.1.1 Ion Source 

The ion source is the device where ions are generated. These ion sources are mainly defined for 

the ionization method employed [34]. An illustrative diagram has been published by Gross [33] 

(See Figure 3.2), which classifies the most important developed ion sources according to the 

hardness of the technique and the main type of analytes for what is was developed. Currently, 

electrospray ionization (ESI) is the most important technique used to generate molecular lipid 

ions in MS [6]. Details of this technique will be described below. 
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Figure 3.2. Ionization technique employed in MS, classified according to their application and estimated relative 
hardness of softness.  Reproduced with permission from [33]. 

3.1.1.1 Electrospray ionization (ESI) 

In ESI, sprayed small droplets are formed inside the ionization chamber. An applied high voltage 

provokes that sprayed aerosol droplets carry net charges. These droplets are exposed to high 

temperature, which leads to evaporation of the solvent and size reduction of droplets. Once 

multiple charges in the droplets get closer because of the size reduction, Rayleigh limit is reached 

and Coulomb fission is undergone [33]. Figure 3.3 shows a diagram of the ionization process in 

ESI.  

 

Figure 3.3. Schematic diagram of the principle of electrospray ionization.  Reproduced with permission from Han, 
2016. [1]. 
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ESI can be adapted to a broad range of flow rates and solvents in the MP. In ESI, even neutral 

lipids can form adducts with small cations and anions. Therefore, almost all nonvolatile lipids 

can be ionized [1]. Some of the advantages of ESI, are that the sensitivity of ESI-MS for lipid 

analysis is remarkably high in comparison to other approaches, the linear dynamic relationship 

between an ion peak intensity and concentration of the compound is very wide and the 

reproducibility is good [1]. 

3.1.2 Mass analyzer 

Once ions are generated in the ion source, they are transferred to the analyzer to be separated 

based on their m/z. During the last century, mass spectrometers based on different principles 

have been introduced. Mass resolution is probably the most important feature regarding MS 

instruments, and this has made a division line between low resolution (LR-) and high resolution 

(HR-) instruments. However, other features like sensitivity, acquisition speed, maintenance costs 

and price, are also very important. Furthermore, the possibility to combine two or more 

instruments (hybrid MS instruments) in one device, normally one LR-MS with one HR-MS 

instrument have opened a set of possibilities and approaches for analysis of metabolites. Table 

3.1 shows a comparison of some features of most common mass analyzers. In the following 

section, we will describe some of the features of quadrupole and TOF analyzer, which give origin 

to the QTOF instrument, one of the most employed instruments nowadays for analysis of lipids 

and is the kind of the main instrument employed in this work. 

Table 3.1. Comparison of the features of some common mass analyzers: 

Mass 
analyzer 

Mass 
resolutiona 

Mass 
accuracy 

(ppm) 

Sensitivity Identification Quantification 

LTQ (LIT) 2000 100-500 Good ++ + 

QQQ 1000 100-1500 High + +++ 

TOF/TOF-TOF 10,000-40,000 <5 High ++ ++ 

QTOF 10,000-60,000 <5 High ++ +++ 

Orbitrap 100,000-
800,000 

<3 Medium +++ ++ 

FTICR >1,000,000 <1-2 Medium +++ ++ 
Reproduced with permission from Wang et al. [35]. aMass resolution at full width half maximum. LTQ: linear trap 
quadrupole, QQQ: triple quadrupole, TOF: Time of flight, FTICR: Fourier-transform ion cyclotron resonance 

3.1.2.1 Quadrupole 

The principle of quadrupole is based on the use of oscillating electrical fields to selectively 

stabilize the trajectory of ions crossing the analyzer. At a specific time point only ions within a 
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specific range of m/z values (usually around 1 Da window) can cross the analyzer while the rest 

collide with the quadrupoles and are discarded. The potentials on the rods of the quadrupole 

can be changed rapidly, in a way that a new window of m/z values are able to cross the analyzer. 

In this manner, ions can be selected and detected. 

Quadrupole is a low-resolution instrument. However, the combination with a second 

quadrupole gives a wide versatility to the instrument. This combination includes an extra 

quadrupole in between which is employed as a collision cell (see Figure 3.1). In this way 

precursor ions coming from the first quadrupole can be selected and fragmented in the collision 

cell and their product ions can be analyzed in the second quadrupole analyzer. These 

instruments are known as triple quadrupoles (QQQ) and they are especially used for quantitative 

purposes in targeted lipidomic analysis [35]. MS and MS/MS experiments that can be performed 

in a triple quadrupole are described in section 3.2. 

3.1.2.2 Time of flight (TOF) 

Time of flight (TOF) analyzer measures the time required for ions to fly through a drift tube. 

Because same potential is applied to the ions at the entrance of the drift tube it is possible to 

establish a correlation between the time required to cross the tube and their m/z. An equation 

for conservation of energy, from potential energy to kinetic energy is expressed as 

𝑧𝑒𝑉 =
𝑚𝑣2

2
 

where z is the number of charges of the ion, e is the charge of electron, V is the potential applied 

to the ions, m is the mass of the ion and v is its velocity. v can be expressed as the ratio between 

the distance of the drift tube (d) and the time required to cross it (t), which leads to 

𝑚

𝑧
= 2𝑒𝑉 (

𝑡

𝑑
)
2

 

establishing the relationship between m/z and t. 

TOF analyzers can reach mass resolutions in the range of 10,000-40,000 and have  acquisition 

speed in the range of ms (typically 50 Hz equivalent to 50 spectra per s). Their relative cost can 

be described from low to middle. Hybrid TOF instruments with quadrupoles (QTOF) offer 

nowadays the possibility of obtaining product ion spectra, with high resolution at a high speed. 

This is especially useful in untargeted analysis of lipids, where data from many species and many 

samples are recorded and afterwards analyzed in order to describe qualitatively and 

quantitatively the lipidome of the samples. 
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3.1.3 Detector 

The detector is the last component of the mass spectrometer. This component works by 

recording an induced charge or a current produced when an ion passes by or hits a surface [1]. 

The most employed detectors are electron multipliers [1]. Table 3.2 shows a comparison of the 

most common detector principles employed in MS. 

Table 3.2 Comparison of commonly used detectors: 

Detector Type Advantages Trade-Offs 

Faraday cup Robustness, stable sensitivity, and 

good for measuring ion 

transmission 

Low amplification (∼10) 

Scintillation counter Extremely robust, long lifetime (>5 

yrs), good sensitivity (∼106) 
Sensitive to light 

Electron multiplier (EM) Fast response, good sensitivity 

(∼106) 
Short lifetime (1–2 yrs) 

High-energy dynodes w/EM Increased sensitivity for measuring 

high mass 
May shorten lifetime of EM 

Array Fast response, good sensitivity, 

simultaneous detection 

Low resolution (∼0.2 amu), 

expensive, short lifetime (<1 yr) 
FT-MS (Orbitrap) Mass analyzer serves as the 

detector of high resolution 
Used only for the specific 

instruments 

Reproduced with permission from [1]. 

3.2 MS experiments 

Figure 3.4 shows a scheme for classification of MS experiments which have been distributed in 

three main different categories: 1) single MS, 2) Tandem MS, and 3) Combined single + tandem 

MS experiments. The main function of the analyzer(s) in single and tandem MS experiments is 

also described in Table 3.3. 

3.2.1 Single MS experiments 

Single MS experiments are performed by using only one analyzer. In tandem mass 

spectrometers it implies that only one spectrometer keeps working while the other one works 

in a transmission mode. For example, in a triple quadrupole single MS experiment can be 

performed either in the Q1 or Q3 quadrupole. 

3.2.1.1 Survey Scan 

In this experiment all precursor ions are scanned in one analyzer of the MS instrument. This 

experiment allows to have an overview of all ions generated at a certain time point in the source 

of the spectrometer. Depending on the resolution and accuracy of the instrument, molecular 

formula of precursor ions can be determined. Also, isotopic pattern of the ions can be observed. 
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Figure 3.4. Scheme for classification of MS experiments. 1 In Ion trap instruments it is possible to perform MSn 
experiments, it means that fragment ions can be isolated and further fragmented with a new PIA or SRM experiment 
2 QTRAP instruments have some further specific scan modes 3 In high resolution instruments as QTOF and QOrbitrap, 
this experiment is described as Parallel Reaction Monitoring (PRM). 

3.2.1.2 Selected ion monitoring (SIM) 

In SIM, a narrow window of m/z values are selected and monitored [36]. In a quadrupole 

instrument a SIM experiment takes shorter time than a survey scan and therefore it can be 

convenient to save some time by monitoring only m/z values of interest, instead of a whole 

range. On the other hand, it is also possible to measure a single ion over the same (i.e. longer) 

time which results in enhanced sensitivity. The spectrum of a SIM experiment is quite simple 

since only a short m/z window is being monitored (normally 1 Da). In LC-MS, a SIM 

chromatogram shows the total current produced by the traced m/z values through the whole 

run. This trace is very useful for quantitation purposes since height and area of peaks can be 

compared with those of standard solutions of analytes. In high resolution instruments such as 

TOF, with a high acquisition speed, it is more practical to measure a Survey Scan, since a SIM 

chromatogram for a particular m/z value can be obtained from the Survey Scan as extracted ion 

chromatograms (EIC). 

MS experiments

Single MS experiments

Survey Scan

Selected ion monitoring
(SIM)

Tandem MS/MS 
experiments1,2

Product Ion Analysis3 (PIA)

Selected Reaction
Monitoring2 (SRM)

Precursor ion scan (PIS)

Neutral loss scan (NLS)

Combined

Single + tandem

(usually Survey Scan + PIA)

Data dependent
acquisition (DDA)

Data independent
acquisition (DIA)

MSE or All ion
fragmentation (AIF)

MSAll

SWATH
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3.2.2 MS/MS experiments for analysis of lipids 

MS/MS experiments can be performed when two or more analyzers are coupled or when there 

is the possibility of tandem MS in time in the same analyzer, as in the case of ion trap. For these 

tandem MS experiments, precursor ions reach the first analyzers where they are filtered, after 

that, ions are transferred to a collision cell where energy is applied in order to generate 

fragments which are filtered in the second analyzer. 

Table 3.3 Comparison among scan modes in mass spectrometry: 

Experiment 

Mass 
Analyzer 1 

(precursor 
ions) 

Collision 
Cell 

Mass analyzer 
2 

(fragment 
ions) 

Application 

Survey scan Scanning - -  

SIM Selecting - -  

Product ion 
analysis 

Selecting 

Precursor 
ions are 
broken 

into 
fragment 

ions 

Scanning 
To obtain structural 

information about the 
precursor ions 

PIS Scanning Selecting 
To detect the analytes 

yielding an identical 
fragment ion after CID 

NLS Scanning Scanning 
To detect the analytes losing 
a common neutral fragment 

after CID 

SRM Selecting Selecting 
To monitor a particular CID 

reaction 
Reproduced and modified with permission from [1]. 

3.2.2.1 Product Ion analysis 

In this experiment precursor ions are selected by its m/z in a first analyzer, then their 

fragmentation is induced in a collision cell and their fragments are scanned in a second analyzer. 

For this experiment the user should know which precursor ions have to be analyzed (except in 

combined MS + MS/MS workflows, see 3.2.3). 

3.2.2.2 Selected reaction monitoring/Multiple reaction monitoring (SRM/MRM) 

For this experiment, both analyzers are set to filter a specific m/z value. SRM is performed mainly 

in low resolution instruments: triple quadrupole or quadrupole ion trap. This is a targeted 

approach since the identity of species to be analyzed and their corresponding fragmentation 

pattern must be known previously. This is the most typical experiment for quantitation of 

metabolites, because of the short time required for the experiment and the good selectivity 
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given by the filtration of a precursor and its fragment ion. Normally, the experiment is performed 

in LC-MS, where an SRM chromatogram allows to monitor the elution (as a chromatographic 

peak) of analytes that produce the preselected precursor and fragment ion. Areas and heights 

of peaks generated after the elution of metabolites are used for quantitation after comparison 

with its corresponding standards. 

Recently, an approach called Parallel reaction monitoring (PRM; also called HR-MRM) has been 

implemented in QTOF and QOrbitrap instruments, and has been compared with SRMs [37]. 

However, PRM is a PIA experiment rather than an SRM experiment, since it filters a precursor 

ion and all its fragments are analyzed. Thus, in LC-MS a PRM experiment not only allows the 

identification of metabolites, since high resolution m/z values of fragments are determined, but 

also quantification, since “SRM chromatograms” can be reconstructed from the measured data. 

3.2.2.3 Precursor ion scan (PIS) and Neutral loss scan (NLS) 

PIS and NLS will be explained and analyzed together because their applicability is very similar. 

In PIS, fixed m/z window is selected in the second analyzer, while the first one scans precursor 

ions which give this fragment (product) ion. In this way, only when a precursor ion produces a 

fragment with the specific m/z value, a signal is detected. In NLS both analyzers are scanning at 

the same time, with a predetermined offset of m/z values between the two analyzers, then only 

when precursor and product ion are fulfilling this offset a signal will be recorded. 

PIS and NLS are typical integrated experiments in triple quadrupoles and Qtrap instruments. 

QTOF machines can acquire multiple PIS, but not NLS [38]. 

PIS and NLS are specially used for untargeted analysis of specific lipid classes in lipidomics, 

because these lipid classes have a typical fragmentation pattern where a specific neutral 

fragment is lost (e.g. loss of 87 in PS) or a typical fragment ion is produced (e.g. 184 in PC). A 

drawback of this method is that only one PIS or NLS can be performed at the time which means 

that only one lipid class is normally studied at the time [38]. 

These experiments are specially applied in shotgun lipidomics [39–41] (See 4.3.1.1). However 

also applications have been reported for LC-MS lipidomics studies [42–44]. 

Figure 3.5 shows the spectra of a rat myocardial lipid extract which is analyzed with PIS and NLS 

experiments. In this example an ion with m/z 885.7 is having a signal in the precursor ion scan 

experiments corresponding to characteristics fragments of inositol phosphate and fatty acyls 

18:0 and 20:4. 
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Figure 3.5. Corresponding spectra of different PIS and NLS experiments of a rat myocardial lipid extract. Reproduced 
with permission from [35]. 

Table 3.4 shows the list of most common PIS and NLS experiments employed for the analysis of 

specific lipid classes. 

3.2.3 Combined MS + MS/MS workflows 

This kind of workflow consists of at least two different experiments. In all the cases these 

experiments include a first MS experiment (usually a Survey Scan) and at least a second MS/MS 

experiment (usually Product ion analysis). 

These approaches are especially useful for untargeted analysis of metabolites where MS/MS 

information is required for identification of compounds but the identity of species in the sample 

is unknown. Considering the complexity of the approach, HR-MS instruments are commonly 

employed for performing these kind of experiments. 

3.2.3.1 Data dependent acquisition (DDA) 

Data dependent acquisition (DDA) receives its name because the second (MS/MS) experiment 

is defined by a list of criteria which are applied to the results of the first experiment. Generally, 

a Survey Scan experiment is performed in a first stage and precursor ions detected are 

immediately analyzed for deciding, based on set criteria, which of them will be triggered for an 
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MS/MS experiment. This selection is normally based on the intensity of detected precursor ions 

but also it is possible to establish lists of m/z values which will be included or excluded 

automatically for the MS/MS experiment [45]. 

A disadvantage of DDA is that MS/MS chromatograms, which are oftentimes more selective 

and/or more sensitive cannot be extracted because full MS/MS data sets are not available. 

Table 3.4. Example of some PIS and NLS experiments applied in ESI–MS/MS analysis of lipids. 

Lipid class(es) analyzed Polarity Scan mode 

PC, LysoPC, SM Positive PIS of 184+ 

PE and LysoPE Positive NLS of 141 

PA, PG and LysoPG Negative PIS of 153- 

PI Negative PIS of 241- 

PS Negative NLS of 87 

SQDG Negative PIS of 225- 

MGDG Positive PIS of 243+ 

DGDG Positive PIS of 243+ 

PC, SM Negative PIS of 168- 

PE Negative PIS of 195- 

PS Negative NLS of 185 

PG Positive NLS of 189 

Cer Positive PIS of 264+ 

CE Positive PIS of 369+ 

Modified from references [6,39,46]. 

3.2.3.2 Data Independent acquisition (DIA) 

In data independent acquisition (DIA) the second experiment is completely defined before the 

measurement of the sample and is totally independent of the results from the first experiment. 

There are three well known possibilities of this approach. In all of them a MS scan experiment is 

initially measured, and successive MS/MS experiments are executed afterwards. 

DIA is a good strategy for acquiring comprehensively MS and MS/MS data over an entire range 

of m/z values [47]. In this manner retrospective analysis of the data can be done once new 

databases are created or new algorithms for identification of lipids are developed without need 

for remeasuring samples. 

3.2.3.2.1 MSAll 

In this approach, hundreds or thousands of MS/MS experiments (PIA) are acquired in order to 

obtain MS/MS fragmentation of all the precursor ions within certain m/z range (e.g. 100-1500 

Da). Thus, PIA experiments are designed by filtering a narrow m/z window at the time, normally 

1 Da, and obtaining its product ion spectra. This experiment is only used in shotgun lipidomics 

because of the large cycle time required (a few minutes, Figure 3.6A)) [48,49]. 
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3.2.3.2.2 MSE or all ion fragmentation (AIF) 

In this approach, all the precursor ions are selected at the same time for a PIA experiment. MSE 

is normally used in LC-MS analysis in which in each MS cycle two experiments are performed, 

one MS survey scan at low collision energy, leading to no fragmentation, followed by a full scan 

at high collision energy, leading to fragmentation and corresponding to an MS/MS experiment 

with broad band precursor isolation. Depending on the complexity of the sample and the 

performance of the LC separation the MS/MS spectra can be very complex. It requires a 

deconvolution step to determine which product ions belong to each precursor ion (Figure 3.6B). 

3.2.3.2.3 SWATH 

SWATH represents a middle point between the last two approaches, since here the MS/MS 

experiments consist of multiple PIA for precursor ions from selected sequential m/z windows. 

Size can be adjusted for each window. As in the case of MSE, SWATH is usually employed in LC-

MS analysis and also requires a deconvolution process to determine which product ions 

correspond to each precursor ion. This deconvolution step is less complex in SWATH since 

precursor ions are split and fragmented in groups and not all at the same time. Figure 3.6 shows 

a relative comparison in term of time and design of experiments for MSAll, MSE and SWATH. As 

it can be seen, MSALL requires a much larger number of experiments, which takes more time but 

allow to have simpler MS/MS spectra, MSE is faster but MS/MS spectra are quite more complex 

(composite spectra), whereas SWATH is also fast (cycle time around 1 s) and MS/MS spectra are 

less complex than MSE. Also, in SWATH experiments the background noise is filtered more 

efficiently leading to higher sensitivity [50]. 

 

Figure 3.6. Schematic representation of DIA experiments A) MSAll, B) MSE and C) SWATH 

3.3 Fragmentation pattern of studied lipid classes 

Ionization of lipids occurs by many different mechanisms. In ESI, the polar headgroups of most 

lipid classes play a key role for ionization and therefore fragmentation patterns can be linked to 

each lipid class. 
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Some lipid classes ionize significantly in both polarities while other ones can ionize only under 

one polarity. In the cases where the lipid ionizes in both polarities possibilities for identification 

increase considerably. In most instances, the formation of ions involves attachment of charging 

species such as H+, NH4
+ or alkali metal (Na+, Li+) in positive polarity and attachment of HCOO-, 

CH3COO-, Cl- or the loss of H+, in negative polarity. Table 3.5 shows the adducts most commonly 

observed during ESI of each lipid class. 

In tandem MS, each of these adducted forms has unique behavior that provides information 

relevant to the structural features of the lipid. The following description about fragmentation 

pattern of some of the most studied lipid classes will be done considering the employment of 

ESI sources and CID. 

Table 3.5. Molecular species formed during electrospray ionization of lipids. 

Lipid class Positive mode Negative mode 

LPC, PC [M + H]+, [M + Na]+ 
[M–H]–, [M + HCOO]–, [M + 
CH3COO]– 

LPE, PE [M + H]+, [M + Na]+ [M–H]– 
PG [M + H]+, [M + NH4]+, [M + Na]+ [M–H]– 
PI [M + H]+, [M + NH4]+, [M + Na]+ [M–H]– 
PS [M + H]+ [M–H]– 
PA  [M–H]– 
CE [M + NH4]+, [M + Na]+  
SM [M + H]+ [M + HCOO]–, [M + CH3COO]– 
Cholesterol [M–H2O+H]+  
MG, DG, TG [M + NH4]+, [M + Na]+  
MGDG, DGDG, 
SQDG 

[M + NH4]+, [M + Na]+ [M–H]– 

Fatty acids  [M–H]– 
CL [M + H]+, [M + NH4]+, [M + Na]+ [M–H]–, [M–2H]2– 

Cer, GluCer, LacCer [M + H]+, [M + NH4]+, [M + Na]+ 
[M–H]–, [M + HCOO]–, [M + 
CH3COO]– 

Reproduced with permission from [12,51]. MGDG: monogalactosyldiacylglycerol, DGDG: digalactosyldiacylglycerol, 
SQDG: sulfoquinovosyl diacylglycerol 

3.3.1 Fatty acyls 

3.3.1.1 Fatty acids 

Fatty acids are analyzed in negative mode. Under typical mobile phase conditions carboxylate 

anions [M-H]- are formed and analyzed. For saturated fatty acids fragmentation by CID yields 

typically only the product ion [M-H2O-H]-. 

Considerably more fragments can be obtained for polyunsaturated carboxylate anions, which 

may give information about the position of double bonds. For polyunsaturated fatty acids, for 

example, [M-CO2-H]- is typically yielded [11]. 
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3.3.1.2 Acyl carnitines 

Acyl carnitines are analyzed in positive mode. The tandem mass spectra of ACs are characterized 

by the presence of high abundant m/z 85 which is explained as the result of two neutral losses. 

The first one is the neutral loss of fatty acid and the second one the loss of trimethylamine. The 

fragment produced by direct neutral loss of trimethylamine can also be observed (see Figure 

3.7). 

 

Figure 3.7. Common fragments of acyl carnitines in positive mode 

3.3.2 Glycerolipids 

Glycerolipids are, with a few exceptions, neutral lipids. Therefore, their characterization is made 

somewhat more challenging. In most of the cases, the formation of ions for glycerolipids 

requires the attachment of species like H+, NH4
+ or an alkali metal such as Na+ or Li+. Therefore, 

fragmentation studies of glycerolipids are mainly performed in positive mode. 

3.3.2.1 Triacylglycerol (TG) 

Fragmentation of ammonium adduct of TG yields a product ion spectrum consisting of [M+H]+ 

and diglyceride-like product ions for each of the unique fatty acyls attached to the glycerol 

moiety. Figure 3.8 shows the most common fragments observed after CID of TG, which 

correspond to neutral losses of ammonia and neutral losses of the three acyl chains [11,52–54]. 
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Figure 3.8. Typical product ions of TGs 

3.3.2.2 Diacylglycerol (DG) 

In the case of DG similar losses to the ones described for TG occur. One additional product ion 

corresponding to the loss of water and ammonia (loss of 35 Da) is present (Figure 3.9) [11,52–

54]. 

 

Figure 3.9. Typical product ions of DGs 
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3.3.2.3 Monoacylglycerol (MG) 

Collisional activation in the case of MG leads to the corresponding acylium ion of carboxylate 

(see Figure 3.10) [11]. 

 

Figure 3.10. Acylium product ion of carboxylate in MGs 

3.3.3 Glycerophospholipids 

Glycerophospholipid are characterized by the presence of a phospho group esterified to the sn3 

position of glycerol moiety. Different groups attached to the phospho group produce different 

lipid classes. The phospho group in combination with this substituent is called headgroup and it 

determines the characteristics of the spectrum for that lipid class [1]. 

ESI ionization forms both positive and negative molecular species [M+H]+ and [M-H]- for most 

glycerophospholipids. However the abundance of these ions in positive and negative mode 

depends strongly on the corresponding headgroup [11,55]. 

The decomposition of the positive ion species reveals information typically about the polar 

headgroup since each of the phospholipid classes specifically decompose to unique product 

ions. Analysis of product ions generated by CID of [M-H]- gives information about the radyl 

groups [11,55]. 

3.3.3.1 Analysis of positive ions for phospholipids 

The most abundant product ion for GP, in positive mode, is obtained after the cleavage of 

phosphoester bond from the glycerol moiety. This process can produce two results: the case 

where the net positive charge is located in the polar phosphorylated headgroup and the 

diglyceride-like fragment is neutral, as it occurs in PCs with the typical fragment with m/z 184.07 

(phosphocholine), or a second possibility where diglyceride-like fragment is charged and the 

polar headgroup is neutral, as it occurs in PE, PS, PG, PI and PA, with typical neutral losses of 

141, 185, 172, 260 and 96 Da, respectively (see Figure 3.11) [55]. 



Mass spectrometry for lipids 

27 

 

Figure 3.11. Loss of polar headgroups for [M+H]+ ions of glycerophospholipids 

3.3.3.2 Analysis of negative ions for phospholipids 

Negative [M-H]- or adducts are common for glycerophospholipids. In the case of PC, negative 

ions are originated from an adduct ion with acetate, formate, chloride or other anionic adduct. 

This anionic group can produce a demethylation reaction forming methyl acetate, methyl 

formate, methylchloride or other. This means that an abundant product ion [M-15]-, 

corresponding to the loss of methyl, is present in the spectrum of PCs. For further fragmentation, 

this product ion [M-15]- of PC behaves similar to the [M-H]- precursor ions of the other 

phospholipids [55]. 

The most prominent fragment ions formed after collisional activation of [M-H]- (or [M-15]- for 

PC) are derived from the fatty acyl ester groups as carboxylate anions (Figure 3.12). In another 

process, anionic phosphate can attack a 2-acyl proton in either sn1 or sn2 ester moiety to yield 

the loss of a neutral ketene (Figure 3.13). A third kind of fragment, observed in tandem spectra 

of [M-H]-, occurs after neutral loss of fatty acids at position sn1 or sn2 (Figure 3.14) [11,56,57]. 
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Figure 3.12. Mechanism for formation of carboxylate anions from [M-H]- of phospholipids. 

 

Figure 3.13. Mechanism for loss of neutral ketenes (RxCH=C=O) from [M-H]- of phospholipids 

 

Figure 3.14. Mechanism for loss of RxCOOH from [M-H]- of phospholipids. 

 

In addition to the product ions described for the different phospholipids, there are some of 

them, which are particular for some lipid classes. For example, in the case of PS a neutral loss of 

serine residue forms an ion identical to that of phosphatidic acid which is very prominent, and 

it is described as [M-H-87]- [11,56,57]. 

3.3.4  Sphingolipids 

Sphingolipids are a major category of lipids which contain a long-chain sphingoid base, such as 

sphingosine or sphinganine, as a structural unit. Here, fragmentation patterns of three of the 

most important classes of sphingolipids will be discussed [11,52–54]. 
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3.3.4.1 Ceramides 

Ceramides form both positive ([M+H]+) and negative ([M-H]-) molecular ions easily. The most 

abundant product ion formed after CID of [M+H]+ corresponds to cleavage of amide bond and 

loss of one or two molecules of water, which produces the ions called N’ and N’’, respectively. 

Additionally, ceramides produce fragment ionsdue to the loss of one or two molecules of water. 

Another interesting fragment ion corresponds to the loss of water followed by the loss of a 

neutral formaldehyde molecule (See Figure 3.15) [11,52–54]. 

 

Figure 3.15. Common fragments after CID of [M+H]+ of ceramides 

 

CID of negative ions [M-H]- of ceramides yields a few product ions which are described with 

specific alphabetic letters. These fragments, represented in Figure 3.16, allow to confirm not 

only the length of sphingoid base but also the N-acyl chain. 

 

Figure 3.16. Common fragments after CID of [M-H]- of ceramides 

3.3.4.2 Sphingomyelins 

As in the case of PC, CID of [M+H]+ of sphingomyelins is dominated by the m/z 184, which 

corresponds to the loss of positively charged phosphocholine. In ESI negative mode, SM form 

adducts with formate, acetate or chloride, which drive the loss of a methyl group and the 

corresponding [M-15]- product ion. Collisional activation of [M-15]- yields a product ion at m/z 
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168 and m/z 79 corresponding to the formation of N-dimethylaminoethylphosphate and HPO3
- 

[11,52–54]. 

3.3.4.3 Hexosylceramides 

Fragmentation of hexosylceramides shows similarities with that of ceramides. Figure 3.17 shows 

the most common product ions observed after CID of [M-H]- of hexosylceramides [11,52–54]. 

 

Figure 3.17. Common fragments after CID of [M+H]+ of hexosylceramides 

3.3.5 Sterols 

3.3.5.1 Cholesteryl esters 

CE lipids form charged adducts with NH4
+ or Na+ dependent on the abundance of these cations 

in the electrospray solvent. CID of [M+NH4]+ generates a spectrum which is dominated by the 

product ion with m/z 369 which corresponds to the cholestene cation, which is also common 

after CID of cholesterol [11]. As in the case of glycerolipids, fragmentation studies for CE are 

mainly performed in positive mode. 

 

Figure 3.18. Common fragment after CID of [M+NH4]+ of cholesteryl esters 
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4 Lipidomics 

Lipidomics is  defined as the “comprehensive characterization of lipids in biological systems” 

[58]. In fact the concept of lipidome appeared in literature before and it was described as “the 

entire collection of chemically distinct lipid species in a cell, an organ, or a biological system” 

[59]. It is estimated that the lipidome can consist of over 100 000 unique structures [60]. General 

workflows for lipidomic analysis consist of sample preparation, extraction, measurement and 

data processing. 

4.1 Sample preparation 

Sample preparation is a key step in lipid analysis and it is responsible for most of the variability 

of results. For the sample preparation protocol, it is important to consider the approach for 

analysis of lipids that will be employed afterwards. Thus, for example, the presence of 

contaminants is more critical in shotgun lipidomics than in LC-MS approaches, since this could 

produce a higher ion suppression effect in direct infusion. In the case of LC-MS based 

approaches, different elution times for contaminants and analytes of interest reduce the effect 

of their presence [1,61]. 

For the sampling process, it is important to avoid contamination of other materials in the sample 

of interest (e.g. presence of blood in tissue samples). Also, it is very important to consider which 

kind of normalizer will be used for the sample. Typical normalizers are wet weight, dry weight, 

cell counting, protein content, DNA content or creatinine content, etc [62]. 

In current analysis methods, the amount of sample required is relatively small, therefore, special 

care must be taken to ensure that the used amount of sample is representative to the entire 

source material. Typical amount of samples used for lipidomics analysis are 1-100 mg of wet 

tissue, a million of cells (with exceptions for small sized cells), 5-500 μL of plasma [51]. 

It is recommended to extract samples as soon as possible, to avoid changes during storage. Yang 

et al. [63], for example, have demonstrated how storage of plasma samples, at 4 °C during 24 h, 

is enough to produce significant changes in the concentration of some lipids (see Figure 4.1). If 

storage is required, samples must be frozen rapidly with dry ice or liquid nitrogen and stored in 

glass container at -20 °C or lower temperature, under nitrogen atmosphere [5,61,64,65]. 
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Figure 4.1. Change in the level of LPCs, from plasma samples extracted at different time points after storage at 4 
°C.  Reproduced from [51,63]. 

 

Hydrolysis and autoxidation of lipids should be kept under control during the whole analysis 

workflow. Lipolytic enzymes, for example can hydrolyze lipids during prolonged storage at −20 

°C, therefore it is suggested to homogenize and extract tissue samples at the lowest temperature 

applicable [66]. Acidic pH can also effect hydrolysis of fatty acid residues [66] and because of 

that only in particular cases, addition of acids is considered an alternative for improving 

extraction of some lipid classes. In the case of autoxidation, the contact with the air, especially 

for lipid extracts, must be avoided. Handling under nitrogen atmosphere and the addition of 

antioxidants such as butylated hydroxytoluene (BHT) are recommended [61]. 

4.2 Extraction 

Many aspects must be considered while designing a lipid EP. As shown before, lipids can be very 

diverse in terms of polarity and EPs cover only a portion of all lipid classes. Therefore, the choice 

of a solvent for lipid extraction determines which kind of lipids will be mainly recovered from 

the sample [58].  

The type of sample and the location of the lipids in the sample can be also critical since some 

lipids have some association with proteins and polysaccharides in some parts of the cell. The 

interaction between lipids and those components can be in the form of van der Waals’ forces, 

hydrogen bonds or ionic bonds [1]. 

4.2.1 Biphasic extraction protocols 

Most widely employed protocols for extractions of lipids have been based on biphasic systems. 

The strategy has been to employ a ternary mixture of solvents for extraction. After that, 

additional amount of the two solvent with higher difference in polarity are added in order to 

create a biphasic system, which contains the extracted lipids in the organic layer, while the rest 

of components in the sample remains in the aqueous layer. 
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4.2.1.1 Extraction with CHCl3 

Two EPs with the system chloroform-methanol-water (CHCl3-MeOH-H2O), were introduced in 

1950s and they have been used extensively as “gold standards” methods for extraction of lipids. 

These two methods, known as Folch [67] and Bligh & Dyer [68], possess  together more than 80 

000 citations to date. 

In the case of the Folch protocol, it is based on the use of a mixture of chloroform/methanol 

(2:1, v/v) for extraction of lipids, then water or 0.9% NaCl is added to wash the solvent extract. 

In the Bligh and Dyer protocol, chloroform/methanol/H2O (1:1:0.9, v/v/v) is used for extraction. 

Some disadvantages of these protocols include the use of chloroform, which is very toxic and 

difficulty for collecting the chloroform extract from the bottom layer, which cause some 

contamination of the lipid extract. 

4.2.1.2 Extraction with hexane 

A less toxic alternative with hexane-isopropanol-water (Hexane-IPA-H2O) was proposed in 1978 

by Hara et al. [69]. However, in many comparisons the recoveries for polar lipid classes with this 

EP showed to be low. 

4.2.1.3 Extraction with MTBE 

An EP with the system MTBE-methanol-water (MTBE-MeOH-H2O) [70] was introduced in 2008 

and it has become popular because in comparison to the protocols with CHCl3, they have similar 

or even better performance, the extraction is easier and the solvents are less toxic.  

MTBE method employs a ratio MTBE/methanol/water 5:1.5:1.45, (v/v/v). This method has the 

advantage that, at the moment of the phase separation, the organic layer is located in the top, 

which makes its removal and automation easier. A drawback is that the MTBE phase contains a 

significant amount water which can cause carry-over problems. 

4.2.1.4 Extraction with BUME 

A protocol with the mixture butanol-MeOH-H2O was proposed in 2012 [71]. This method is 

called BUME because of the organic solvents present in the extraction mixture. The method 

showed similar or better recoveries than Folch method for specified lipid classes. This method 

has also the advantage that organic phase after the extraction is located in the top layer, as in 

the case of MTBE extraction. 
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4.2.2 Monophasic extraction protocols 

Biphasic systems offer the advantage of eliminating polar interferences in the aqueous layer, 

which can interfere with the performance of the techniques for analyzing the lipids. However, 

when LC-MS and especially RPLC-MS approaches are employed, polar impurities can be 

separated during elution and the use of monophasic systems are an alternative for lipid 

extraction. 

Some monophasic mixtures like CHCl3:MeOH (2:1 v/v) [72,73] and 1-butanol/methanol (1:1 v/v) 

[74] have been reported for lipidomics studies on plasma samples, and CHCl3:MeOH (1:2 v/v) 

has been used for sphingolipids analysis in mammalian cells [75,76]. In all the cases good 

recoveries have been reported. 

4.2.2.1 Case of isopropanol 

Aqueous isopropanol is another case of monophasic mixture which has been used for extraction 

of lipids, particularly on microalgae [77]. As mentioned previously isopropanol has also been 

used in the system hexane-isopropanol-water for extraction of lipids [58,74,78–83], reporting 

low recoveries for some lipid classes. However, it must be indicated that in this ternary system, 

two phases are present and the organic layer (employed for the analysis of lipids) is composed 

mainly of hexane and only a small portion of isopropanol. It means that most of the isopropanol 

is discarded as part of the aqueous layer. 

4.3 Sample analysis 

4.3.1 MS based lipidomics approaches 

Mass spectrometry with ESI source is undoubtedly the most important analytical tool for 

analysis of lipids. There are, within MS, two different approaches for the measurement of 

samples. These two main approaches are differentiated in the form how lipid extract solutions 

are introduced in the mass spectrometer. The first approach is direct infusion, also known as 

shotgun lipidomics, and the second one is LC-MS based lipidomics which incorporates the use 

of LC for the analysis [1]. To date these two approaches have similar popularity. 

4.3.1.1 Shotgun lipidomics 

In shotgun lipidomics, the lipid extract is continuously injected, at a fixed flow rate, to the ESI 

source and ionization occurs while keeping constant the concentration of lipids [35]. One of the 

disadvantages in general for shotgun lipidomics is that in-source fragmentations may 

compromise the analysis for certain lipid classes [84]. There are three main approaches for 
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shotgun lipidomics, which are defined as tandem MS, high resolution MS-based and 

multidimensional MS-based shotgun lipidomics [85]. 

4.3.1.1.1 Tandem MS shotgun lipidomics 

Conventional shotgun lipidomics is performed by tandem MS analysis of lipid classes using PIS 

and NLS experiments with low resolution instruments. Advantages of this kind of shotgun 

lipidomics include simplicity, efficiency, ease of management, and less expensive 

instrumentation [35]. However, some disadvantages of this approach are among others that the 

detection in some specific experiments (PIS or NLS) is not entirely specific for the lipid class of 

interest, the presence of isobaric lipid species limits identification, the fatty acyl (FA) 

substituents of lipid species are not identified and some irregularities in detection are not easily 

recognized during and after the experiments [35]. 

4.3.1.1.2 High resolution MS-based shotgun lipidomics 

With the development of MS instruments and the improvements in sensitivity, resolution and 

accuracy, new possibilities of shotgun lipidomics were also implemented. One possibility has 

been high mass accuracy/resolution multi-PIS (or NLS) shotgun lipidomics [85–88] and the other 

one is the use of DDA and DIA (such as MSAll), which are supported by the development of 

software able to process the information from full MS scans and product ion spectra [89]. 

4.3.1.1.3 Multidimensional MS-based shotgun lipidomics 

A last alternative has been called multidimensional MS-based shotgun lipidomics (MDMS-SL), 

which involves more than MS. This approach is based on the chemical and physical properties 

of each lipid class. For example, derivatization and selective extraction for specific lipid classes 

are some of the strategies included here. 

4.3.1.2 LC-MS based lipidomics 

LC-MS includes a separation step, which allows to reduce the complexity of the lipid mixture 

that is reaching the MS-source at any time. Also, new information in terms of retention can be 

used for identification of lipid species and finally low abundant species can be better analyzed 

since ion suppression is lower. 

Most common MS experiments employed in LC-MS lipidomics are SRM (MRM), which is 

especially used for targeted quantification. Untargeted approaches with LC-MS employ high 

resolution instruments with combined experiments such as DDA and DIA (MSE and SWATH). 
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As mentioned before, compared to direct infusion systems, HPLC uses retention time to increase 

specificity for lipid identification, but it complicates quantitation, because matrix effects and 

solvent composition are unique in each point of the chromatographic run and standardization is 

difficult [90]. 

4.3.2 NMR based analysis of lipids 

NMR has been an important tool for analysis of lipids. It possesses some advantages in 

comparison to MS approaches, like nondestructive sample analysis, the possibility of direct 

quantitation, high reproducibility, possibility to obtain molecular dynamics information [5,91]. 

However, also some disadvantages like the low sensitivity and higher complexity of NMR 

spectra, due to overlapped signals, have to be mentioned [92]. 

1H-, 13C-, and 31P-NMR and the corresponding 2D experiments are especially employed for 

structural analysis of lipids, but also for quantitative purposes [93]. 

In general, NMR represents a complementary tool to MS for analysis of lipids. 

4.4 Processing of data 

Depending on the strategy employed for lipid analysis, the processing of the data has different 

grades of complexity. Here, a brief description of the steps required for processing of untargeted 

data, obtained after LC-MS analysis with DIA (MSE or SWATH) will be discussed. 

A first step consists of filtering and feature detection, with data obtained from the MS Survey 

Scan. In this step, a list of recorded m/z values for ions that exceed a determined intensity 

threshold is obtained for each sample. These features, described by their retention time, m/z 

value and signal intensity, can be further analyzed and compared between different samples. In 

order to compare them, an alignment step is required previously. Since the retention time and 

m/z values measured for the same ionic species in deferent samples are not exactly the same, 

the alignment checks, within defined tolerances, which ones correspond to the same lipid. 

The comparison of features from different samples is performed on the intensity values. 

However, these values must be normalized. The idea of normalization is to control unwanted 

systematic deviations produced by factors during measurements or sample-preparation steps 

[12,51,64,94]. 

4.4.1 Deconvolution 

As explained before, when a PIA experiment is performed, precursor ions within a window of 

m/z values, are filtered and transferred to a collision cell, where fragmentation occurs. 
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Generated product ions are analyzed afterwards in a second analyzer. The complexity of the 

obtained product ion spectra depends on the amount of different precursor ions selected in the 

first analyzer, which is directly related with the size of the employed m/z window. The usefulness 

of the experiment resides here in the capacity to connect information of precursor and fragment 

ions, it means in determining which fragments are coming from each precursor ion. If this is 

accomplished, identification of species can be done with information of product ions but also 

more selective quantitative information can be obtained from product ions. In LC-MS, a 

deconvolution process is applied for achieving this goal. The principle of the deconvolution is to 

analyze the elution profile of precursor ions (from the survey scan experiment) and fragment 

ions (from the corresponding PIA experiment), to determine their relationship. A similarity score 

for the elution profiles is calculated and when a threshold is reached, a fragment ion is assigned 

to the corresponding precursor ion. Cases where two or more species have total coelution 

cannot be solved with this algorithm. Also, it is challenging the analysis of common product ions 

coming from coeluting species, especially for the low abundant ones. Figure 4.2 illustrates the 

process of deconvolution. 

 

Figure 4.2. Example of deconvolution in cases of chromatographic coelutions. By courtesy of Waters GmbH [95] 

4.4.2 Identification 

Until now, it has been explained how to make a comparison of a feature, described in terms of 

m/z and retention time, based on its intensity. However, the most meaningful part comes in the 
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moment that is possible to describe that feature as a metabolite. For helping with this 

identification, different kinds of information can be collected and analyzed. The first and most 

powerful filter correspond to m/z of the precursor ion [96], which can remove up to 99.9% of 

the false candidates [96], and together with an analysis of the isotopic pattern allow to 

determine the formula of the molecular species. Retention time obtained from LC run can be 

very useful. In the case of NPLC or HILIC, the lipid class can be automatically determined. In the 

case of RPLC, elution pattern can be very useful for confirmation of identifications. However, it 

is through MS/MS spectra, that most of the identification can be done [5]. For this, proper 

deconvolution is required (see Figure 4.2). In the case of lipids, it was described in section 3.3, 

that most of the lipid classes have specific fragmentation patterns that allow to identify different 

components in the structure [94]. With proper knowledge, analysis of product ion spectra can 

lead to the identification, however, this labor is time consuming and requires a lot of expertise. 

Experimental and in silico lipid spectra databases have been created and algorithms have been 

developed for the comparison of experimental and stored product ion spectra [27,97]. 

With the use of MS/MS, the lipid class, length of carbon chains, and number of double bonds in 

each radyl chain can be annotated. Positions of double bond and position of sn in glycerol moiety 

are difficult to distinguish by MS/MS. Therefore, structures are usually reported at this lower 

level of annotation [12]. 
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5 Chiral lipidomics 

Considering the wide variety of cellular function in which lipids participate, it is important to 

determine their molecular structure as accurate as possible [98]. 

As it has been described above, MS techniques allow to obtain a lot of information in this regard. 

Figure 5.1 shows for example the level of identification that can be reached with information 

supplied by MS and MS/MS experiments [99]. 

It is important to highlight that proper guidelines have been established for the identification 

process in order to avoid misannotation of lipids [10,65,100]. 

 

Figure 5.1. Hierarchy of lipid identification and characterization. Reproduced with permission from [99] 

 

Nevertheless, MS suffers limitations to distinguish between structural isomers. There is often 

incomplete information to decide when the mass spectral signals correspond to a single 

molecule or isomeric mixture [60]. Some of the specific limitations concern the position of each 

radyl esterified to the glycerol backbone (sn position), the position of the double bond within 

the fatty acyl chains and stereochemistry of the double bonds (E/Z) or other functionalized 

carbons (R/S) [98]. 

Different approaches have been reported in order to solve those issues. However, these 

approaches are time consuming, require normally abundant amount of sample and they can be 

done only in targeted approaches for a small amount of samples. Therefore, they are not 

available for high-throughput lipidomic analyses [98]. 

Silver-ion chromatography for example has been used in the separation of double-bound  

isomers, cis- and trans-isomers, or regioisomers of TG, since they form weak complexes with the 

silver ions in the SP [12]. 
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5.1 Use of chiral chromatography 

Chiral chromatography has been specially employed in lipidomics for the analysis of chiral 

isomers of eicosanoids, MG and DG [1]. 

Eicosanoids are compounds produced after oxidation of polyunsaturated fatty acids (PUFA). It 

has been demonstrated that these compounds play an important role in many biological 

processes in renal, reproductive and cardiovascular systems [101]. 

The oxidation of PUFAs can be done in organisms via enzymatic or non-enzymatic reactions with 

oxygen reactive species. In the case of enzymatic oxidation almost pure enantiomers are usually 

obtained, whereas in the case of oxidation with free radicals racemic mixtures are commonly 

produced. For this reason, oxygenated PUFA derived from non-enzymatically reactions are used 

as biomarkers of oxidative stress and tissue damage [101]. 

Because of the involvement of these oxygenated PUFA in biological processes and because their 

biological activity is mostly linked to one specific enantiomer, chiral stationary phases (CSP) have 

been developed and employed for their analysis. 

Polysaccharide-based CSPs have been especially used in this regard, they have good chiral 

recognition towards oxygenated PUFAs. Additionally these CSPs are compatible with normal- 

and reversed-phase elution modes [101]. 

5.2 Case of short chain hydroxy fatty acids 

Short chain hydroxy fatty acids (SCHFA) are a relatively small group of fatty acids, which contain 

less than 10 carbons with one hydroxyl group along the chain. The presence of the hydroxyl 

substituent in the alkyl chain generates in most of the cases a stereogenic center and hence the 

occurrence of enantiomers.  

Some SCHFA are known for their relationship with particular human diseases, some of them  

inherited metabolic disorders. Therefore, the analysis of these small lipids has become an 

important issue in areas such as biochemistry and clinical chemistry. 

The enantioseparation of SCHFA is challenging in chiral chromatography since it is difficult to 

establish enough interaction points between chiral selector and surroundings of the stereogenic 

center [102]. 
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AIM OF THE WORK 

 

The general aim of this thesis was to develop improvements in methodologies for analysis of 

lipids.  

In a first study, the goal was to evaluate the most critical steps in an LC-MS lipidomic workflow. 

In this regard sample preparation and particularly extraction protocols are critical because they 

have high incidence in the variability of results and because they determine the main classes of 

lipids that will be analyzed. The proposal was then to evaluate four lipid extraction protocols in 

terms of lipid recoveries, precision of results and complexity of protocols, in order to determine 

proper conditions for lipidomic analysis of Hela cells. 

In a second study, the goal was to evaluate and describe the changes on lipid profile of 

keratinocytes after the treatment with the compound betulin, which has proven wound healing 

effects. A challenge in this approach was the development of a strategy for data processing, 

especially for increasing the number of high confidence identifications while avoiding 

misidentifications that are common when some software packages are employed. 

In a third study, the goal was to develop targeted methodologies for enantioseparation of short 

chain hydroxy fatty acids (SCHFA). In this regard a list of chiral SCHFA involved in critical 

biological processes but especially with inherited diseases, was identified. The idea was to 

evaluate a set of quinine- and quinidine- chiral stationary phases in order to obtain baseline 

resolution with chromatographic conditions that are compatible with MS analysis for the chiral 

analysis of SCHFA. 
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6.2 Abstract 

In this study, two monophasic isopropanol-water mixtures (IPA:H2O 75:25 v/v and IPA:H2O 90:10 

v/v) were compared with traditionally employed biphasic methods of Bligh & Dyer and Matyash 

et al. as extraction systems for lipidomics analysis in Hela cells. Samples were analyzed by 

UHPLC-ESI-QTOF-MS/MS in positive and negative mode using sequential window acquisition of 

all theoretical fragment ion spectra (SWATH) and a relatively new software (MS-DIAL) was 

employed for the processing of the data which includes detection of peaks, MS/MS spectra 

deconvolution, identification of detected lipids and alignment of peaks through the analyzed 

samples. 

The studied performance parameters such as precision, recoveries of isotopically labeled 

internal standards and endogenous lipids, number of extracted lipids, and complexity  of 

employed procedure showed that extraction with IPA:H2O 90:10 v/v performs similar to the 

Matyash protocol and better than Bligh & Dyer as well as IPA:H2O 75:25 v/v. However, less 

complex monophasic protocol which is simpler to implement and can be executed in plastic 

rather than glass, make the monophasic IPA:H2O 90:10 v/v protocol an excellent alternative to 

the classical biphasic protocols for reversed phase LC-MS lipidomics studies. 

 

6.3 Introduction 

Liquid chromatography-mass spectrometry (LC-MS) has become the most widely used analytical 

tool for lipidomics analysis in the last few years [7,85,103,104]. Despite many reported 

publications on this topic, there is no consensus about the most adequate protocol to follow. 

One of the most critical points is the sample preparation and therefore the choice of a solvent 

or solvent mixture for the lipid extraction, since this will determine which lipid classes are mostly 

recovered from the sample [58]. Extractions with the system chloroform-methanol-water 

(CHCl3-MeOH-H2O), at specific ratios, were introduced more than six decades ago, with the 

pioneering works of Folch [67] and Bligh & Dyer [68], and have frequently been described as 

“gold standards” [28,70,81,103,105–107]. Hexane-isopropanol-water (Hexane-IPA-H2O) was 

proposed in 1978 by Hara et al. as a less toxic option [69]. However, its performance in terms of 

wide coverage of distinct lipid classes is modest [80,82,83]. Recently, two methods using methyl 

tert-butyl ether-methanol-water (MTBE-MeOH-H2O) [70] and butanol-MeOH-H2O [71] were 

introduced and they have become popular because of their similar or even better performance, 

less tedious procedure for preparing the samples and less toxicity with respect to the chloroform 

mixtures. 
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Solvent mixtures have been suggested for lipid extraction after considering that most of the 

biological samples are composed of some amount of water and that the lipids are mainly soluble 

in organic solvents. Thus, the strategy for extractions of lipids has traditionally been based on 

two steps, a first one where a miscible solvent mixture (considering the water present in the 

sample) is added to the sample, which allows good interaction between solvent and sample 

matrix, and a second one where more aqueous or organic solvent or both are added to the 

original mixture in order to create a biphasic system which separates the extracted lipids, in the 

organic layer, from the rest of the sample, in the aqueous layer. However, considering that 

nowadays many workflows for lipidomics analysis include a reversed phase liquid 

chromatographic separation and polar interferences elute in the first minutes of the separation, 

the use of a biphasic system is not strictly required [61]. In 2017 Jurowski et al. [61] reviewed 

the use of some monophasic mixtures for lipidomics studies. Among the cited examples are 

CHCl3:MeOH (2:1 v/v) [72,73], 1-butanol/methanol (1:1 v/v) [74] for plasma samples, 

CHCl3:MeOH (1:2 v/v) for sphingolipids analysis in mammalian cells [75,76] and aqueous 

isopropanol for extraction of lipids on microalgae [77]. In 2014, Sarafian et al. [108] published a 

study showing a monophasic mixture IPA-H2O as a good choice for lipid extraction of plasma 

samples with good recoveries for most of the lipid classes. 

In this study, we evaluated the performance of monophasic isopropanol extraction in 

comparison to biphasic extraction protocols (EPs) in detail for lipid extraction from Hela Cells. 

No information about the suitability of this monophasic EP for mammalian cells and how it 

compares to classical EPs was available. Thus, two IPA-H2O mixtures (75:25 v/v and 90:10 v/v) 

were compared with the biphasic extraction systems: CHCl3-MeOH-H2O (2:2:1.8 v/v/v, Bligh & 

Dyer) [68] and MTBE:MeOH:H2O (10:3:2.5, v/v/v, Matyash) [70], which currently are two of the 

most widely employed protocols for lipid analysis [81–83,106,109–112]. 

6.4 Materials and Methods 

6.4.1 Materials 

Mobile phases were prepared with solvents of LC-MS grade. Methanol (MeOH), acetonitrile 

(ACN) and isopropanol (IPA) were supplied by Roth (Karlsruhe, Germany). As additive, formic 

acid (FA, 98%) was obtained by Carl Roth (Karlsruhe, Germany) and ammonium formate was 

purchased from Sigma–Aldrich (Steinheim, Germany). Water was purified by a water filtration 

system from Elga (High Wycombe, United Kingdom). 

Solvents for extraction were of HPLC grade: chloroform (CHCl3, ≥ 99.8%) and tert-butyl methyl 

ether (MTBE, anhydrous, 99.8%) from Sigma-Aldrich. 
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SPLASH™ Lipidomix® solution containing the following isotopically labeled internal standards 

(ILIS): 15:0-18:1(d7) PC, 15:0-18:1(d7) PE, 15:0-18:1(d7) PS, 15:0-18:1(d7) PG, 15:0-18:1(d7) PI, 

15:0-18:1(d7) PA, 18:1(d7) LPC, 18:1(d7) LPE, 18:1(d7) Chol Ester, 18:1(d7) MG, 15:0-18:1(d7) 

DG, 15:0-18:1(d7)-15:0 TG, 18:1(d9) SM, Cholesterol (d7) was obtained from Avanti Polar Lipids 

(Alabama, USA) (See Suppl. Table 6.1 for more information about internal standards). 

6.4.2 Cell culture 

The human cervical cancer HeLa cells adapted to serum free conditions (AC free, ECACC 

08011102) were grown in T75-flask and EX-CELL HeLa serum free media (Sigma Aldrich) 

supplemented with 2 mM L-glutamine (Sigma Aldrich), until they reached a density of around 2-

3 x 106 cells/mL. Afterwards they were transferred to 50 mL falcon tubes and centrifuged for 5 

min at 700 rcf, before the supernatant was discarded. The cell pellet was resuspended in 15 mL 

ice-cold Dulbecco’s Phosphate Buffered Saline (PBS, Sigma Aldrich) for washing and centrifuged 

again for 5 min at 700 rcf. The washing was repeated twice and after the last resuspension cells 

were counted in triplicate with a hemocytometer. According to the mean of the counted cells, 

aliquots containing approximately 8 x 105 cells were transferred randomly to 15 mL falcon tubes 

(for extraction with isopropanol mixtures) and 15 mL glass tubes (for extractions with CHCl3 and 

MTBE). Samples were centrifuged at 700 rcf for 5 min and the pellets were stored at -80 ºC until 

extraction. 

6.4.3 Extraction protocols 

Extraction solvents were kept on ice before their addition to the samples. For each EP, 10 

samples (pellets containing 8 x 105 cells) were extracted. In order to estimate the recovery of 

some lipid classes, 5 of these samples were spiked before the extraction with 100 µL of 5 % v/v 

SPLASH Lipidomix solution in methanol and were resuspended with 100 µL MeOH before the LC-

MS measurement (pre-extraction spiking). For the other 5 samples 100 µL of MeOH were added 

before the extraction and they were resuspended with 100 µL of 5 % v/v SPLASH Lipidomix 

solution before the LC-MS measurement (post-extraction spiking). Recoveries were calculated 

as ratio of average intensities for internal standards in the pre-extraction and post extraction 

spiked samples. 

6.4.3.1 Extraction with MTBE:MeOH:H2O (10:3:2.5, v/v/v, “MTBE”) 

This EP was based on Matyash et al. [70]. Either methanol or solution of 5% SPLASH Lipidomix 

in MeOH (100 µL) was added to the pellet. Then 1.4 mL of methanol and 5 mL of MTBE were 

added. Vortexing (30 s), ultrasonication (2 min) and vortexing (30 s) cycle was applied to disrupt 

the pellet. Samples were incubated on ice while shaking (500 rpm, 60 min). After the extraction, 



RESULTS AND DISCUSSION 

46 

1.25 mL of H2O was added and samples were incubated on ice for another 10 min. Afterwards, 

centrifugation at 3500 rcf for 10 min was applied and the upper layer was transferred to a glass 

tube. Samples were dried in an evaporator (Genevac EZ-2; Warminster, Pennsylvania, USA) for 

10 hours under nitrogen protection. The lipid extract was resuspended in 100 µL of either 

methanol or solution of 5% SPLASH Lipidomix while sonication (2 min) and vortexing (30 s) were 

applied. Centrifugation at 3500 rcf for 10 min was applied and the supernatant was transferred 

to vials for MS-measurements. During the last step, 10 µL aliquot of each sample were 

transferred to a separate vial to prepare a pooled QC sample. 

6.4.3.2 Extraction with IPA:H2O (75:25 v/v, “IPA75”) 

Either methanol or solution of 5% SPLASH Lipidomix in MeOH (100 µL) was added to the pellet. 

Then 5.0 mL of IPA:H2O (75:25 v/v) were added. Vortexing (30 s), ultrasonication (2 min) and 

vortexing (30 s) cycle was applied to disrupt the pellet. Samples were incubated on ice while 

shaking (500 rpm, 60 min). After the extraction, centrifugation at 3500 rcf for 10 min was applied 

and supernatant was transferred to a 15 mL falcon tube. Samples were dried in an evaporator 

for 10 hours under nitrogen protection. The lipid extract was resuspended in 100 µL of either 

methanol or solution of 5% SPLASH Lipidomix while sonication (2 min) and vortexing (30 s) were 

applied. Centrifugation at 3500 rcf for 10 min was applied and the supernatant was transferred 

to vials for MS-measurements. During the last step, 10 µL aliquot of each sample were 

transferred to a separate vial to prepare a pooled QC sample. 

6.4.3.3 Extraction with IPA:H2O (90:10 v/v, “IPA90”) 

As described before for extraction with IPA75, only that IPA:H2O (90:10 v/v) was used instead of 

IPA:H2O (75:25 v/v). 

6.4.3.4 Extraction with CHCl3-MeOH-H2O (2:2:1.8 v/v/v, “CHCl3”) 

This EP was based on Bligh & Dyer [68]. Either methanol or solution of 5% SPLASH Lipidomix in 

MeOH (100 µL) was added to the pellet. Then, 0.8 mL of H2O, 1.90 mL of MeOH and 1.0 mL of 

CHCl3 were added. Vortexing (30 s), ultrasonication (2 min) and vortexing (30 s) cycle was applied 

to disrupt the pellet. Samples were incubated on ice while shaking (500 rpm, 60 min). After the 

extraction 1.0 mL CHCl3 and 1.0 mL of H2O were added and samples were incubated on ice for 

another 10 min. Afterwards, centrifugation at 3500 rcf for 10 min was applied and the upper 

layer was transferred to a glass tube. Samples were dried in an evaporator for 10 hours under 

nitrogen protection. The lipid extract was resuspended in 100 µL of either methanol or solution 

of 5% SPLASH Lipidomix while sonication (2 min) and vortexing (30 s) were applied. 

Centrifugation at 3500 rcf for 10 min was applied and the supernatant was transferred to vials 
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for MS-measurements. During the last step, 10 µL aliquot of each sample were transferred to a 

separate vial to prepare a pooled QC sample. 

6.4.3.5 Blank extractions for all extraction protocols 

Seven blank extraction replicates for each EP were performed following the same steps indicated 

above, only that extraction solvents were added to empty falcon or glass tubes. For further 

analysis, an additional IPA90 blank EP (also 7 replicates) was performed replacing plasticware 

with glassware. The results from these blank samples were used to correct the result from the 

cell extractions. 

6.4.3.6 Extractions without internal standards 

One cell extract for each EP was prepared following the same steps described before, but no ILIS 

were added. These samples were used to validate assay specificity for internal standards i.e. to 

check that no significant signals are present at m/z and retention times corresponding to the 

ILIS. For all EPs no signals i.e. no interferences were found. 

6.4.4 LC-MS measurement 

All analyses were performed on an Agilent 1290 Series UHPLC instrument (Agilent, Waldbronn, 

Germany) coupled to a Sciex TripleTOF 5600+ mass spectrometer (Sciex, Concord, Ontario; 

Canada). Duospray ion source for ESI in positive and negative ion mode was used. Sample 

injections were done in randomized order with a Pal HTC-XS autosampler from CTC (Zwingen, 

Switzerland). QC samples were run at the beginning of the sequence, during the sequence (every 

five samples) and at the end of the sequence. 

Chromatographic separation was performed according to conditions published by Tsugawa et 

al. [113] in order to enable retention time scoring for peak identification with MS-Dial software. 

Briefly an Acquity UPLC CSH C18 Column, 130Å, 1.7 µm, 2.1 mm X 100 mm with an Acquity UPLC 

CSH C18 VanGuard Pre-column, 130Å, 1.7 µm, 2.1 mm X 5 mm (Waters, Eschborn, Germany) 

was used. The mobile phase was composed of 10 mM ammonium formate and 0.1 % formic acid 

in A) 60:40 ACN:H2O (v/v) and B) 90:10 (v/v) IPA:ACN. The following gradient profile was used: 

0.00 min, 15 % B; 2.00 min, 30 % B; 2.50 min, 48 % B; 11.00 min, 82 % B; 11.50 min, 99 % B; 12.00 

min, 99 % B; 12.10 min, 15 % B, 15.00 min, 15 % B. Flow rate was 600 µL/min and column 

temperature was 65 °C. The injection volumes were 3 µL and 5 µL for positive and negative 

mode, respectively. 

The following MS-settings of the mass spectrometer were used: Curtain gas (CUR) 35 psi, 

nebulizer gas (GS1) 60 psi, drying gas (GS2) 60 psi, ion-spray voltage floating (ISVF) +5500 V in 
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positive and -4500 V in negative mode, source temperature (T) 350°C, collision energy 45 V, 

collision energy spread 15 V, declustering potential (DP) 80 V, mass range m/z 50 – 1250 in ESI 

(+) and 50 – 1050 in ESI (-), and RF Transmission (RF) m/z 40: 50 % and m/z 120: 50 %. An external 

mass calibration was performed every five samples (see Suppl. Table 6.2). 

MS data was obtained by using sequential window acquisition of all theoretical fragment ion 

spectra (SWATH) [114,115], after optimizing Q1 windows size (See Suppl. Table 6.3) with Swath 

Tuner software [116]. 

6.4.5 MS data processing 

MS-Dial software (RIKEN, version 3.06) [113] was used to process the MS data (see parameters 

in Suppl. Table 6.4). This included detection of peaks, MS2 data deconvolution, compound 

identification and alignment of peaks through all the samples. For identification a cut off value 

of 80% was selected: This value is based on 6 different similarity scores: 1 for retention time, 1 

for m/z, 1 for isotopic pattern and 3 for MS/MS (dot product, dot product reversed and 

presence). An important condition established in MS-Dial was that a peak was selected for 

alignment only when it was present in at least 51% of the samples of one EP. Features which 

were relatively close (m/z difference less than 0.03 Da and retention time difference less than 

0.1 min) in the alignment file of MS-Dial were visually inspected in order to determine if they 

are effectively corresponding to more than one feature, otherwise the repeated feature was 

removed. List of aligned peaks from MS-Dial were further evaluated with Multiquant 3.0 (Sciex). 

Intensities were processed for principal component analysis (PCA) with MarkerView (Sciex) and 

exported to Excel for statistical analysis. A feature was considered for comparison between the 

different EPs when it was present in at least 90 % of the samples of one EP having a CV less than 

30% for the 10 extraction replicates of that protocol. Furthermore blank extraction samples 

were used to exclude features that have m/z difference less than 0.01 Da, retention time 

difference less than 0.5 min and fold change less than 5 between the cell extraction and blank 

extraction replicates (List of detected features in extraction blanks are in Appendix D). 

Peaks corresponding to internal standards were removed from MS-Dial detected features and 

were analyzed directly with Multiquant to evaluate the recoveries. 

6.5 Results and discussion 

In order to compare the different EPs some modifications were introduced to the originally 

published protocols. Thus, extraction volumes were modified to be as similar as possible for all 

EPs while keeping the solvent ratios for each EP as they were published. Variables like 

temperature, vortexing time, vortexing intensity, centrifugation time and centrifugation speed 
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were kept the same for all EPs. For the same reason no re-extractions were done for any of the 

EPs. The solvent evaporation step was performed overnight to save time and it was kept at 10 

hours even when the time required for the evaporation of each solvent ranges from less than 3 

hours, in the case for CHCl3 and MTBE, to approximately 6 hours, in the case of IPA75. Thus, all 

the extracts were kept under nitrogen atmosphere until resuspension to minimize possible 

oxidation of lipids. 

6.5.1 Chromatograms and principal component analysis (PCA) 

Total ion chromatograms (TICs) in positive and negative mode for extracted samples with 

different EPs (Figure 6.1) show a very similar profile with only some slight differences, especially 

during the first minutes. After processing the data with MS-Dial and Multiquant, peak intensities 

for detected features were analyzed by PCA (Figure 6.2). Score plots with the first two principal 

components, in both ESI (+) and ESI (-) mode (Figure 6.2A, 2C), show a clear separation between 

the samples extracted with each protocol, except for extractions with isopropanol 75% and 

isopropanol 90%, which are overlapped. This result indicates that the detected features and 

their corresponding intensities show significant alterations between the different EPs. Loadings 

plots, with the first two principal components, are shown in Figure 6.2B and 2D, for positive and 

negative mode respectively (for a better visualization, unknown features and lipid classes with 

less than five identified features were excluded from each loadings plot). In Figure 6.2B it is 

possible to note influences of some lipid classes to the shown differentiation of EPs in Figure 

6.2A, for example LPE are oriented in the direction of CHCl3 and PGs are oriented in the direction 

of the EPs IPA75 and IPA90, which means that those lipid classes are better extracted with the 

mentioned EPs. In the same manner, in Figure 6.2D, LPCs and LPEs are oriented in the same 

direction of the EP CHCl3 and Cers are oriented in the direction of the EPs IPA75 and IPA90. 
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Table 6.1. Description of processed features with MS-Dial and Multiquant softwares 

 ESI (+) ESI (-) 

Description Total CHCl3 IPA75 IPA90 MTBE Total CHCl3 IPA75 IPA90 MTBE 

Detected features in MS-

Dial 1 
1872 904 893 928 1038 1541 708 674 718 1015 

Detected features after 

processing with 

Multiquant2 

1382 1110 1054 1118 1183 1074 824 759 771 906 

Detected features after 

correction with blanks 
1167 

991 

(85 %) 

955 

(82 %) 

1003 

(86 %) 

985 

(84 %) 
842 

777 

(92 %) 

713 

(85 %) 

725 

(86 %) 

701 

(83 %) 

Identified features 292 
 

289 

(99 %) 

285 

(97.6 %) 

290 

(99.3 %) 

291 

(99.7 %) 
206 

 

205 

(99.5 %) 

201 

(97.6 %) 

205 

(99.5 %) 

200 

(97.1 %) 

• SM 29 29 28 29 29 22 22 22 22 22 

• PG 6 6 5 6 6 10 10 10 10 10 

• PE 29 29 29 29 29 55 55 54 55 55 

• PC 88 88 88 87 87 43 43 43 43 43 

• LPE 7 7 7 7 7 22 22 20 22 20 

• LPC 4 4 4 4 4 11 11 11 11 10 

• Cer-NS 12 12 10 12 12 6 6 6 6 6 

• Cer-NDS 5 5 5 5 5 2 2 2 2 2 

• TG 92 89 89 91 92      

• HexCer-NS 3 3 3 3 3 1 1 1 1 1 

• DG 12 12 12 12 12      

• CE 2 2 2 2 2      

• BMP 3 3 3 3 3      

• PS      1 1 1 1 1 

• PI      11 11 10 11 11 

• OxPS      1 1 1 1 1 

• OxPG      1 1 1 1 1 

• OxPE      6 6 5 5 5 

• OxPC      3 3 3 3 3 

• LPI      2 2 2 2 2 

• LPG      2 2 2 2 2 

• HexCer-NDS      5 5 5 5 5 

• FA      2 1 2 2 0 

1 present in at least 51 % of samples of one group. 2 present in at least 90 % of samples of one EP having a CV < 30% 

6.5.2 Number of detected features 

Table 6.1 and Figure 6.3 show the numbers and distribution of features detected in ESI (+) and 

ESI (-) for the EPs (Specific data about detected features can be observed in Appendix B). 

Features list obtained after processing with MS-Dial was reprocessed with Multiquant. In this 

manner we are combining the capabilities of MS-Dial for recognizing features and the 

identification of approximately 15 % of them with the capabilities of Multiquant for a more 

controlled integration, making it easier to determine whether a feature is present or not in a 
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group of samples. After the processing with Multiquant and the feature filtration (only those 

features which are present in at least 90 % of the samples of one EP and have a CV less than 30 

% for the replicates of that EP were selected) the number of features was reduced from 1872 to 

1382 in ESI (+) and from 1541 to 1024 in ESI (-) but the number of features which were found 

with each EP was higher (See Table 6.1). Similar procedures with MS-Dial and Multiquant were 

applied to blank extraction replicates and peak exclusion lists were used to filter only the 

features coming from the cell pellets (1167 features in ESI (+) and 842 features in ESI (-)). In 

terms of the total number of detected features, all extractions protocols show similar 

performance in ESI (+) (maximum difference is 4 % between IPA90 and IPA75) and a slight 

greater amount is obtained with CHCl3 in ESI (-) (difference of 9 % respect to the MTBE protocol). 

Venn diagrams in Figure 6.3 show the distribution of detected features in ESI (+) and ESI (-) 

modes. It is possible to see that 72 % of the features in ESI (+) and 77% in negative mode were 

detected with all EPs. In ESI (+) the amount of features that can be exclusively extracted with 

each EP is very similar (6.7 % with CHCl3, 5.7 % in common with IPA75 and IPA90 and 5.1% with 

MTBE). 

 

Figure 6.1. Representative TICs for samples extracted with four different EPs using A) ESI (+) and B) ESI (-) mode. 
Asterixes indicate major differences between the chromatograms. 
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Figure 6.2. PCA plots for intensities of detected features. A) Scores plot in ESI (+), B) Loadings plot including only lipid 
classes with more than 5 identified features ESI (+) C) Scores plot in ESI (-), D) Loadings plot including only lipid classes 
with more than 5 identified features ESI (-) 

 

In ESI (-), CHCl3 protocol extracts exclusively 9.7 % of total detected features in comparison to 

3.4 % of MTBE and 2.6 % of IPA75 and IPA90 (in common). These features detected with only 

one of the specific EP (or two of them in the case of IPA75 and IPA90) correspond to not 

identified features which are spread through the whole studied range of m/z and retention time 

and for this reason no specific lipid class can be assigned to them. 

6.5.3 Identified lipids and relative recovery of endogenous lipids 

Table 6.1 also shows the distribution of lipids identified with each EP (Specific data about 

identified features can be observed in Appendix C). Only IPA75 and MTBE extraction allowed the 
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identification of a few less features (2% less in each mode for IPA75 and 2% less in negative 

mode for MTBE), it means that in terms of the number of identified features the four studied 

EPs have similar performance. However, Figure 6.2B and 2D, already showed that even when 

similar number of lipids where detected with each EP, their intensities were significantly 

different for some lipid classes. 

 

Figure 6.3. Venn diagrams showing the distribution of detected features with each EP and their overlapping 
selectivities.  A) Results from ESI (+) and B) ESI (-) modes. 

 

In order to describe the relative ability of each EP to extract a particular lipid class, a relative 

recovery of endogenous extracted lipids was calculated using IPA90 as a reference. Thus, the 

average intensity of each identified lipid extracted with CHCl3, IPA75 and MTBE was normalized 

with respect to the average intensity of the same lipid after extraction with IPA90. Afterwards, 

the normalized values were averaged for the lipids belonging to the same lipid class (Figure 6.4, 

Suppl. Table 6.5). The results show similar intensities for some lipid classes independently of 

which protocol was employed. However, in some other cases significant differences are noted. 

In ESI (-) mode, for example, significantly lower intensities were obtained for polar lipids LPG, 

LPI, PG, PI, PS and FA when CHCl3 and MTBE extractions were employed. Also, higher intensities 

are achieved for LPE and LPC with CHCl3 protocol while lower ones are obtained with IPA75 and 

MTBE. This higher recovery for LPC and LPE with CHCl3 has to be further investigated considering 

that these are two of the most polar lipid classes and it is expected that polar mixtures IPA:H2O 

can extract better these substances, as it has been indicated previously [108]. 
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Figure 6.4. Relative lipid class recoveries of endogenous lipids obtained with different EPs and using IPA90 as a 
reference. A) Results from ESI (+) and B) ESI (-) modes. Numbers in parenthesis indicate the number of identified lipids 
from each lipid class that were normalized and averaged. 

6.5.4 Lipid recovery of internal standards 

To determine the absolute recovery of lipid classes with each EP, pre-extraction and post-

extraction spiking of the samples with a mixture of ILIS was performed. Figure 6.5 and Suppl. 

Table 6.6. 

 show the % recovery for each ILIS. As an average MTBE and IPA90 have the best performance. 

In the case of CHCl3, its performance is significantly higher than other protocols for the recovery 

of TG. IPA75 shows recoveries in most of the cases lower than the ones that can be reached with 

IPA90. CHCl3 protocols shows significantly lower recoveries for polar lipid classes PA, PI and PS. 

Here, it is important to highlight that beside the fact that ILIS were added to the pellet just before 

the addition of extraction solvent, which means they have less interaction with cellular matrix 

and more direct contact with extraction solvent than endogenous lipids, a good correlation was 

observed for the recoveries that were calculated with the ILIS in comparison with the relative 

recoveries of endogenous lipids described in section 3.3. Only exception for this finding was the 

anomalous mentioned case of LPEs and LPCs. 

Also, good correlation was observed between the obtained recoveries and reported results by 

Sarafian et al. [108] in plasma samples after extraction with isopropanol and relative comparison 

with protocols based on MTBE (Matyash) and CHCl3 (Bligh and Dyer, Folch). However, only 

recovery of odd-chained internal standards was reported at that moment and no comparison 

with endogenous lipids was done. 

Higher recoveries obtained with IPA90 respect to IPA75, especially for the most abundant lipid 

classes are also in good concordance with comparison done by Yao et al. [77] in microalgae and 
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soybeans, where aqueous isopropanol mixtures with 88 % and 95 % of isopropanol yielded 

higher oil extraction efficiency than mixtures with 50 % and 70 % isopropanol. 

Figure 6.5. Recoveries of isotopically labeled internal standards after pre and post-extraction spiking. A) Results 
from ESI (+) and B) ESI (-) modes. 

6.5.5 Precision 

For a comparison of precisions obtained with the EPs, CV % for each detected feature was 

calculated. A profile of the CVs for the features that were found with each EP (1167 features in 

ESI (+) and 842 features in ESI (-), Figure 6.3) is shown in Figure 6.6 and Suppl. Table 6.7. For 

features detected in ESI (+), CV profiles show to be very similar having a maximum CV % bin from 

10 to 15% and around 80 % of the features with CV less than 30 % independently of the 

employed EP. For features detected with ESI (-), IPA75 and IPA90 have a maximum CV bin from 

5 to 10 %, while CHCl3 and MTBE have a maximum CV bin from 10 to 15 %. All EPs have more 

than 90% of detected features with a CV below 30%. 

6.5.6 Protocol complexity 

Many publications have already made emphasis about the advantage of using EPs where the 

organic layer is the upper phase (as in MTBE protocol) and not the lower one (as in CHCl3 

protocol) of a two-phase partitioning system. The reason for this is the more tedious removal of 

the lipid containing organic phase when this one is in the bottom, especially because a layer of 

protein is located between the organic and aqueous layer. In the case of tested EPs IPA75 and 

IPA90, the fact of having a monophasic mixture makes this process even easier because only a 

separation of the supernatant from the solid residue is required. A possible disadvantage of 

employing monophasic mixtures for extraction rely on the presence of salts as part of the 

extract. However, in reversed phase LC-MS this is not necessarily a problem because these salts 

elute during the first minutes of chromatographic run. As part of this research, QC samples run 
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at the beginning, in between and at the end of measured sequences in ESI (+) and ESI (-), did not 

show significant differences in terms of intensity (see Suppl. Figure 6.1). 

 

Figure 6.6. Distribution of CVs (%) obtained for precision evaluation of peak intensities of features detected in all 
four EPs. A) Results from ESI (+) (1167 analyzed features) and B) ESI (-) modes (842 analyzed features). 

 

Another advantage for IPA75 and IPA90 extractions, is that they are compatible with 

plasticware, which does not happen with MTBE and CHCl3. In our study, extraction blanks were 

performed to remove those features which are not coming from cell pellets (lists of features 

detected in extractions blanks are in Appendix D). Additionally, an extra extraction blank for 

IPA90 using glassware, yielded a higher amount of detected features than the corresponding 

one using plasticware (See Suppl. Figure 6.2 and Suppl. Figure 6.3). This higher amount of 

detected features could be related with the cleaning process employed for the glass tubes. 

Therefore, in the case that glassware is employed for these extractions, either new glassware 

has to be utilized for each new extraction, which is very expensive or a very strict cleaning 

protocol has to be employed, which will demand extra time and make the process more tedious. 

Consequently, it can be said that the EPs IPA75 and IPA90, employing plasticware, are less time 

consuming, cheaper and easy to automatize. 

6.6 Concluding remarks 

After comparison of the performance for extraction of lipids, it is possible to conclude that there 

was no significant difference with the number of identified lipids with each EP. In terms of 

recoveries for different lipid classes, extraction with IPA90 showed similar results as MTBE for 

most of the lipid classes, better results than CHCl3 for the more polar lipid classes and better 

results than IPA75 for the less polar lipid classes. Precision with IPA mixtures showed to be 

slightly better in ESI (-) and similar in ESI (+) than the precision obtained with MTBE and CHCl3. 
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In terms of complexity, monophasic extractions with IPA offered a simpler, less time consuming 

and cheaper protocol. Also, MS signal intensities did not show any decrease after samples 

extracted with IPA:H2O mixtures were measured, which could be corroborated with the 

reproducibility of measured intensities for QC samples through the whole study. Considering all 

these aspects, extraction with IPA90 represents an excellent alternative as a solvent for 

developing reversed-phase LC-MS lipidomics studies. 
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6.9 Supplemental 

Suppl. Table 6.1. Information about internal standards of the SPLASH™ Lipidomix® Mass Spec Standard (in MeOH) 

Mixture Components Target Conc. (µg/mL) 

15:0-18:1(d7) PC 160 

15:0-18:1(d7) PE 5 

15:0-18:1(d7) PS 5 

15:0-18:1(d7) PG 30 

15:0-18:1(d7) PI 10 

15:0-18:1(d7) PA 7 

18:1(d7) LPC 25 

18:1(d7) LPE 5 

18:1(d7) Chol Ester 350 

18:1(d7) MG 2 

15:0-18:1(d7) DG 10 

15:0-18:1(d7)-15:0 TG 55 

18:1(d9) SM 30 

Cholesterol (d7) 100 

 

Suppl. Table 6.2. m/z values of sodium acetate clusters used for external calibration of QTOF 

ESI+ 

(m/z) 

ESI- 

(m/z) 

104.99230 141.01693 

351.00152 223.02000 

433.00459 305.02307 

515.00767 387.02615 

597.01074 469.02922 

679.01381 551.03230 

761.01689 633.03537 

843.01996 715.03844 

1007.02611 797.04152 

1089.02918 879.04459 
 

961.04767 
 

1043.05074 
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Suppl. Table 6.3. Information about design of MS experiments  

Experiment MS Type Accumulation 

time (ms) 

Pos mode Neg mode 

Min m/z Max m/z Min m/z Max m/z 

MS SCAN 80 50 1250 50 1050 

MS/MS SWATH 1 31 50.0 214.6 50.0 342.2 

MS/MS SWATH 2 31 213.6 281.8 341.2 453.6 

MS/MS SWATH 3 31 280.8 390.7 452.6 480.8 

MS/MS SWATH 4 31 389.7 480.4 479.8 507.8 

MS/MS SWATH 5 31 479.4 509 506.8 532.3 

MS/MS SWATH 6 31 508 536.5 531.3 566.8 

MS/MS SWATH 7 31 535.5 610.6 565.8 617.4 

MS/MS SWATH 8 31 609.6 677.1 616.4 687.1 

MS/MS SWATH 9 31 676.1 709.0 686.1 715.0 

MS/MS SWATH 10 31 708.0 735.1 714.0 744.1 

MS/MS SWATH 11 31 734.1 759.1 743.1 755.1 

MS/MS SWATH 12 31 758.1 773.1 754.1 776.0 

MS/MS SWATH 13 31 772.1 790.2 775.0 794.6 

MS/MS SWATH 14 31 789.2 811.2 793.6 807.6 

MS/MS SWATH 15 31 810.2 827.2 806.6 830.3 

MS/MS SWATH 16 31 826.2 856.2 829.3 840.1 

MS/MS SWATH 17 31 855.2 884.3 839.1 859.2 

MS/MS SWATH 18 31 883.3 915.9 858.2 889.1 

MS/MS SWATH 19 31 914.9 983.7 888.1 924.6 

MS/MS SWATH 20 31 982.7 1250.0 923.6 1050.0 
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Suppl. Table 6.4. Parameters used for processing of data with MS-Dial in negative and positive mode 

Mode POSITIVE NEGATIVE 

Data collection parameters 

Retention time begin 0.5 0.5 

Retention time end 13 13 

Mass range begin 50 50 

Mass range end 1250 1050 

Centroid parameters 

MS1 tolerance 0.01 0.01 

MS2 tolerance 0.025 0.025 

Peak detection-based TRUE TRUE 

Isotope recognition 

Maximum charged number 2 2 

Data processing 

Number of threads 4 3 

Peak detection parameters 

Smoothing method LinearWeightedMovingAverage LinearWeightedMovingAverage 

Smoothing level 3 3 

Minimum peak width 5 5 

Minimum peak height 3000 1000 

Peak spotting parameters 

Mass slice width 0.1 0.1 

Exclusion mass list (mass & tolerance)   

Deconvolution parameters 

Peak consideration Both Both 

Sigma window value 0.5 0.5 

Exclude after precursor TRUE TRUE 

MSP file and MS/MS identification setting 

MSP file MSDIAL-LipidDBs-VS35-FiehnO.lbm MSDIAL-LipidDBs-VS35-FiehnO.lbm 

Retention time tolerance 0.5 0.5 

Accurate mass tolerance (MS1) 0.01 0.01 

Accurate mass tolerance (MS2) 0.05 0.05 

Identification score cut off 80 80 

Text file and post identification (retention time and accurate mass based) setting 

Text file IS_PostIdentification_Pos.txt IS_PostIdentification_Neg.txt 

Retention time tolerance 0.1 0.1 

Accurate mass tolerance 0.01 0.01 

Identification score cut off 85 85 

Advanced setting for identification 

Relative abundance cut off 0 0 

Top candidate report TRUE TRUE 

Adduct ion setting 

 [M+H]+, [M+NH4]+, [M+Na]+ [M-H]-, [M-H2O-H]-, [M+Cl]-, [M+FA-H]- 

Alignment parameters setting 

Reference file QC-5.abf QC-05.abf 

Retention time tolerance 0.05 0.05 

MS1 tolerance 0.015 0.015 

Retention time factor 0.5 0.5 

MS1 factor 0.5 0.5 

Peak count filter 0 0 

N% detected in at least one group 51 51 

QC at least filter FALSE FALSE 

Tracking of isotopic labels FALSE FALSE 
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Suppl. Table 6.5. Relative recoveries of endogenous lipids extracted with CHCl3, IPA75 and MTBE EPs respect to 
IPA90 EP.  Each identified lipid was normalized with the corresponding intensity detected by using IPA90 EP. Then all 
the values from lipids belonging to the same lipid class were averaged and their standard deviation was calculated.  

ESI (+) ESI (-) 

Lipid class1 CHCl3
2 IPA752 MTBE2 Lipid class1 CHCl32 IPA752 MTBE2 

TAG (92) 1.12 (0.13) 1.01 (0.05) 1.11 (0.09) SM (22) 0.95 (0.02) 0.97 (0.02) 1 (0.03) 

SM (29) 0.91 (0.03) 1.01 (0.03) 0.99 (0.03) PS (1) 0.43 1.07 0.82 

PG (6) 0.85 (0.04) 1.01 (0.02) 0.93 (0.03) PI (11) 0.68 (0.04) 0.94 (0.03) 0.9 (0.03) 

PE (29) 0.92 (0.03) 1.03 (0.05) 1.03 (0.03) PG (10) 0.76 (0.06) 0.94 (0.04) 0.88 (0.04) 

PC (88) 0.99 (0.1) 0.96 (0.04) 0.95 (0.07) PE (55) 0.92 (0.03) 0.98 (0.02) 1.04 (0.03) 

LPE (7) 1.5 (0.18) 0.62 (0.06) 0.64 (0.15) PC (43) 0.95 (0.02) 0.98 (0.02) 1.04 (0.03) 

LPC (4) 1.34 (0.15) 0.93 (0.03) 0.96 (0.09) OxPS (1) 0.49 0.98 0.94 

HexCer-NS (3) 0.87 (0.02) 0.95 (0.05) 1.02 (0.02) OxPG (1) 1.1 0.97 1.05 

DAG (12) 1.09 (0.14) 0.84 (0.03) 0.92 (0.05) OxPE (6) 0.88 (0.02) 0.99 (0.01) 1.07 (0.02) 

Cer-NS (12) 0.92 (0.03) 1.06 (0.03) 1.02 (0.04) OxPC (3) 0.91 (0.01) 0.94 (0.02) 1.09 (0.02) 

Cer-NDS (5) 0.93 (0.04) 1.04 (0.05) 1.02 (0.03) LPI (2) 0.37 (0.16) 0.95 (0.02) 0.77 (0.07) 

CE (2) 1.21 (0.07) 1.03 (0.06) 0.81 (0.13) LPG (2) 0.32 (0.14) 0.95 (0.04) 0.69 (0.08) 

BMP (3) 1.02 (0.12) 0.98 (0.05) 0.93 (0.03) LPE (22) 1.63 (0.13) 0.58 (0.05) 0.57 (0.14) 

    LPC (11) 1.43 (0.11) 0.84 (0.07) 0.88 (0.14) 

    HexCer-NS (1) 1.02 0.89 1.01 

    HexCer-NDS (5) 0.98 (0.01) 0.89 (0.02) 0.99 (0.03) 

    FA (2) 0.9 0.96 (0.04)  

    Cer-NS (6) 0.92 (0.01) 0.99 (0.02) 0.8 (0.05) 

    Cer-NDS (2) 0.92 (0.01) 0.95 0.9 (0.04) 

Average 1.05 0.96 0.95 Average 0.87 0.93 0.87 

1In parenthesis it is indicated the number of lipids identified in each lipid class, 2Values in parenthesis are standard 
deviations for relative recoveries of lipids belonging to the same lipid class. 
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Suppl. Table 6.6. Recoveries of isotopically labeled internal standards after pre-extraction and post-extraction 
spiking 

Mode ESI (+) ESI (-) 

Isotopically labeled 

internal standard 
CHCl3 IPA75 IPA90 MTBE CHCl3 IPA75 IPA90 MTBE 

15:0-18:1(d7) DAG 116 (13) 93 (12) 81 (15) 102 (16) 98 (20) 118 (23) 81 (13) 113 (36) 

15:0-18:1(d7) PA Na+     30 (28) 88 (15) 107 (21) 90 (58) 

15:0-18:1(d7) PC 106 (12) 89 (10) 98 (6) 102 (20) 98 (6) 90 (12) 100 (7) 105 (10) 

15:0-18:1(d7) PE 80 (22) 86 (11) 103 (17) 103 (21) 85 (18) 92 (8) 104 (10) 95 (6) 

15:0-18:1(d7) PG Na+ 95 (20) 82 (20) 88 (8) 88 (11) 77 (4) 64 (8) 103 (13) 102 (10) 

15:0-18:1(d7) PI NH4+ 27 (8) 79 (20) 100 (14) 87 (14) 25 (5) 76 (10) 96 (8) 93 (6) 

15:0-18:1(d7) PS Na+     62 (30) 93 (19) 103 (26) 118 (33) 

15:0-18:1(d7)-15:0 

TAG 
96 (10) 33 (8) 60 (6) 72 (22)     

18:1(d7) Chol Ester 85 (14) 45 (6) 80 (9) 92 (21)     

18:1(d7) LPC 112 (21) 112 (11) 99 (11) 90 (13) 107 (16) 107 (10) 104 (11) 98 (17) 

18:1(d7) LPE 97 (20) 78 (12) 101 (13) 99 (21) 85 (23) 78 (16) 105 (15) 104 (12) 

18:1(d7) MAG 83 (96) 86 (37) 91 (32) 85 (66) 90 (19) 68 (16) 97 (21) 105 (33) 

Cholesterol (d7) 83 (26) 110 (19) 67 (20) 121 (58)     

d18:1-18:1(d9) SM 107 (14) 82 (5) 99 (8) 101 (6) 103 (8) 75 (6) 96 (8) 110 (8) 

Average 88 80 90 95 78 86 100 103 

1Values in parenthesis are standard deviations of absolute recoveries of ILIS 

Suppl. Table 6.7. Distribution of CVs (%) obtained for precision evaluation of peak intensities of features detected 
in all four EPs. 

 
% of features falling in the respective category 

 
ESI (+) ESI (-) 

CV bin(%) CHCl3 IPA75 IPA90 MTBE CHCl3 IPA75 IPA90 MTBE 

0-5 0.9 2.1 1.4 1.2 0.4 2.0 3.2 0.3 

5-10 11.8 12.7 14.2 12.3 20.5 32.3 33.5 17.1 

10-15 24.1 23.9 22.6 22.4 33.7 31.6 31.3 34.5 

15-20 20.2 20.3 17.0 18.9 20.2 17.4 12.7 22.7 

20-25 18.4 16.6 14.8 16.1 15.3 7.0 8.1 9.7 

25-30 13.8 11.3 9.8 12.8 6.6 6.5 2.9 8.7 

30-35 6.2 5.9 5.8 7.7 1.3 2.2 1.4 3.7 

35-40 2.4 3.7 3.4 4.5 0.4 0.8 0.8 1.9 

40-45 1.3 1.4 2.3 1.8 0.5 0.1 0.7 0.6 

45-50 0.2 0.7 2.9 0.7 0.9 0.0 0.1 0.1 

50-55 0.2 0.5 1.9 0.5 0.3 0.1 0.3 0.0 

55-60 0.3 0.3 1.1 0.6 0.0 0.0 0.8 0.3 

60-65 0.1 0.3 0.8 0.2 0.0 0.0 0.7 0.1 

65-70 0.0 0.0 1.1 0.1 0.0 0.0 1.5 0.0 

>70 0.1 0.3 1.0 0.1 0.0 0.0 1.9 0.3 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Suppl. Figure 6.1. Z values for selected features (based on their intensity) in QC samples through the run sequence 
in A) ESI (+) and B) ESI (-). The number in parenthesis for each QC sample is the position of that QC in the sequence 
of injected samples. SD means standard deviation 

 

 

Suppl. Figure 6.2. Venn diagram showing the distribution of detected features with blanks for EPs of IPA75 using 
plasticware, IPA90 using plasticware and IPA 90 using glassware in ESI (+). 
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Suppl. Figure 6.3. Venn diagram showing the distribution of detected features with blanks for EPs of IPA75 using 
plasticware, IPA90 using plasticware and IPA 90 using glassware in ESI (-). 
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7.2 Abstract 

Betulin is a pentacyclic triterpene with demonstrated healing properties in mid-dermal wounds. 

A few earlier studies have provided insights into the wound healing effects on the molecular 

level. However, there are still questions left on the molecular targets of betulin. Therefore, we 

have undertaken a pharmacolipidomics analysis of betulin in human immortalized keratinocytes 

to monitor alterations in the lipid profiles induced by treatment with betulin. 

For this purpose, lipid extracts of keratinocytes treated with betulin and untreated controls were 

comprehensively analyzed by an untargeted UHPLC-ESI-QTOF-MS/MS lipidomics profiling 

workflow using data-independent acquisition (DIA). Targeted data processing allowed the 

identification of 611 lipid species from 21 different lipid classes. Statistical analysis of the 

identified lipids show significant changes in 440 lipid species which can be described as down-

regulation of cholesteryl esters and triacylglycerides and up-regulation of glycerophospholipids, 

sphingolipids and diacylglycerides. 

Additionally, some other signals corresponding to triterpenes were found in the betulin group 

and suggested that betulin is incorporated (in the membrane) and metabolized in keratinocytes. 

7.3 Statement of significance of the study 

In this study we performed a comprehensive description of the lipidome of human immortalized 

keratinocytes and its changes after the treatment with betulin. Data processing was based on a 

target list of lipids. Our identification approach combines information from precursor and 

product ions obtained from analyses in both polarities under same chromatographic conditions 

and from elution patterns in reversed phase-LC of each lipid class. Cholesteryl esters (CEs) with 

very long fatty acid chains (up to 36 carbons) were detected and may serve as depot to support 

the synthesis of ceramides that play an important role in the skin barrier function. Significant 

changes of CEs (down regulated) upon betulin treatment as many other lipid classes are 

described. Results also suggest that betulin is incorporated and metabolized in the 

keratinocytes. 
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7.4 Introduction 

Betulin, a pentacyclic triterpene, was shown to exert a variety of different biological effects 

including anticancer, antiinflammatory, antifungal or antiviral activities[117,118]. Interestingly, 

in 2016 a birch bark preparation (Episalvan®) which contains betulin to around 80% has been 

approved by the European Medicines Agency (EMA) for the treatment of partial-thickness skin 

wounds. Studies on the molecular level with betulin have been conducted which explain the 

clinically proven wound healing effects[119–121]. Betulin influences the inflammatory and the 

new tissue formation phase in the wound healing process. It enhances the migration of 

keratinocytes and stimulates their differentiation. However, it has not yet been clarified whether 

or in which way the lipophilic betulin may act on cell membranes, permeate membranes to enter 

the cell or have an impact on the lipid profile of the cell. Up to now, it has only been proven with 

erythrocytes that betulin can replace cholesterol in the membranes leading to alterations of 

their membrane shapes[122]. 

In the case of skin, two of its most important barrier functions are the barrier to the movement 

of water and electrolytes and the barrier against invasive and toxic microbes[123]. Lipids are 

considered important players in the maintenance of these two functions, and ceramides, 

cholesterol and free fatty acids are particularly enriched in stratum corneum (SC), the outer layer 

of the epidermis[124–126], where keratinocytes show their last step of differentiation. 

Specific studies on murine keratinocytes, normal human keratinocytes or immortalized human 

keratinocytes showed a correlation between their lipid content and their state of differentiation. 

Analysis of lipid classes content by densitometry after HPTLC and fatty acid profiling by GC after 

derivatization were performed for that purpose[127–131]. More recently, lipidomics studies in 

keratinocytes have been performed to elucidate the effect of some factors like narrow band 

ultraviolet B[131], allergen and irritant compounds[132], dioxin[133], radical generator[134] 

and a glycolytic inhibitor[26]. 

From a methodological perspective, lipidomics profiling of biological samples is nowadays 

achieved by either targeted or untargeted approaches[51,64,135,136]. Untargeted assays are 

based on high-resolution mass spectrometry using direct infusion with FTICR- or Orbitrap-MS 

(shotgun lipidomics)[137,138] or employing UHPLC-MS/MS (with QTOF or QOrbitrap) in data-

dependent acquisition (DDA) or data-independent acquisition (DIA) mode. UHPLC-MS/MS with 

DIA[47] offers the possibility to acquire MS and MS/MS data comprehensively over the entire 

chromatogram and across all samples. It allows uncompromised retrospective data processing 

so that the measurements represent a digital map of the lipid phenotype of the biological 

sample. Data processing of untargeted lipidomics data can be quite elaborate and a number of 
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distinct procedures have been proposed for DIA data including software tools like MS-DIAL[113] 

or Lipid-Pro[139] which allow automated identification by matching in silico or experimental 

databases besides some general tools to process lipidomics data. Typical approaches for 

metabolite identification include a first filtering step based on matching of a precursor ion m/z 

and a second step based on similarity scores with MS/MS databases[96]. Also, scores for isotopic 

pattern similarity and retention time (in case of LC-MS) have been implemented as part of some 

identification algorithms[113]. 

In this work, we employ a targeted data processing approach on untargeted lipidomics data 

generated by DIA with SWATH in order to determine significant changes in human immortalized 

keratinocytes after treatment with betulin. For identification of lipid species we performed an 

approach which combines the analysis of specific fragments for each lipid class, the matching of 

retention times for identification in positive and negative mode and the analysis of retention 

time for a particular species within the retention time pattern of the whole lipid class. 

7.5 Materials and Methods 

7.5.1 Materials 

Methanol (MeOH), acetonitrile (ACN) and isopropanol (IPA), all LC-MS quality and formic acid 

(FA, 98%) were purchased from Roth (Karlsruhe, Germany). Ammonium formate was obtained 

from Sigma Aldrich (Steinheim, Germany). Water was purified by in-house Elga purification 

system (High Wycombe, United Kingdom). 

Isotopically labelled internal standards (ILIS) were purchased from Avanti Polar Lipids (Alabama, 

USA) as a ready to use mixture: SPLASH™ Lipidomix® solution (See Table A1 for more information 

about ILIS). Odd-chained lipid standards LPC 17:1 and PC 17:0-20:4 were obtained from Avanti 

Polar Lipids. Lupeol, betulinic acid and erythrodiol standards were obtained from Sigma Aldrich. 

Keratinocyte serum-free growth medium, supplements (recombinant human epidermal growth 

factor rhEGF, bovine pituitary extract BPE), 0.05% trypsin/EDTA (w/v) were bought from Thermo 

Fischer Scientific (Waltham, MA, USA); penicillin–streptomycin was obtained from Roche 

(Mannheim, Germany). Betulin was a gift from Birken AG, Niefern-Öschelbronn, Germany. A 10 

mM stock solution of betulin was prepared in DMSO. 

7.5.2 Cell culture and lipid extraction 

Human immortalized keratinocytes were kindly provided from Prof. Dr. L. Bruckner-Tuderman, 

Department of Dermatology, Medical Center, University of Freiburg. Human immortalized 

keratinocytes were cultivated in Keratinocyte SFM supplemented with rhEGF, BPE and 1 % v/v 
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penicillin/streptomycin at 5 % CO2 and 37 °C. Cells were split when they reached a confluency of 

80 %. Passage 3 or 4 were used. Cells were plated in 20 Petri dishes (10 cm2, 1 x 106 cells/ per 

dish) and cultivated for 4 days in 10 mL of the above mentioned medium for adherence. 10 

dishes were incubated with 1.95 µM betulin (10 µL of the 1.95 mM stock solution in DMSO) for 

8 hrs prior to removal of the medium and the remaining ones were used as control. Control 

samples were treated with 10 µL DMSO. The concentration of 1.95 µM of betulin was used, as 

this concentration has shown effects in our previous studies on the molecular wound healing 

effect[120]. On day 4, cells were incubated with 3 mL of trypsin (0.05 %) at 37°C. After 5 min 

cells were washed by adding 7 mL medium. The suspension was transferred into 15 mL falcon 

tubes and centrifuged for 5 min at 4°C and 1.200 rpm, respectively. The supernatant was 

withdrawn and the remaining cell pellets were washed and then frozen at -20°C in the falcon 

tubes until extraction. 

Lipid extraction was performed with IPA:H2O (90:10 v/v) as described previously [140] (See 

details of EP in Supplementary text A1). 

7.5.3 LC-MS measurement 

Analyses were performed by Agilent 1290 Series UHPLC instrument (Agilent, Waldbronn, 

Germany) coupled to Sciex TripleTOF 5600+ MS (Sciex, Concord, Ontario; Canada) with duospray 

source and Pal HTC-XS autosampler from CTC (Zwingen, Switzerland). Positive and negative ESI 

ionization were used in separate LC-MS runs with the same chromatographic separation 

conditions as described previously [113,140]. Briefly: Acquity UPLC CSH C18 (130Å, 1.7 µm, 2.1 

mm X 100 mm) column was utilized with Acquity UPLC CSH C18 VanGuard pre-column (130Å, 

1.7 µm, 2.1 mm X 5 mm) (Waters, Eschborn, Germany). The mobile phase was composed of 10 

mM ammonium formate and 0.1 % formic acid dissolved in 60:40 ACN:H2O (v/v) (A) and 90:10 

(v/v) IPA:ACN (B). Further details on LC gradient elution conditions and MS parameters can be 

found in Supplementary text A2.  

MS/MS data were obtained by data independent acquisition (DIA) using sequential window 

acquisition of all theoretical fragment ion mass spectra (SWATH)[114,115]. Q1 window sizes (See 

Table A3) were optimized with SwathTuner software[116] based on a QC sample. 

7.5.4 Lipid identification 

A lipid list was prepared and the target lipids were first searched and identified in a QC sample 

(pool of an aliquot of all study samples and injected after every 5th sample). Lipid classes were 

analyzed one by one. Notation of identified lipid species and fragment ions was done according 

to detailed rules proposed by Liebisch et al.[10] and Pauling et al.[100]. Thus, lipids were 
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annotated at the “lipid species level” (e.g. PC 34:2) or “molecular lipid species level” (e.g. PC 

16:1-18:1) depending on analyzed fragments, which were of three different types: lipid class-

selective fragment (LCF) (e.g. PC(184)), intermediate molecular lipid species-selective fragment 

(iMLF) (e.g. -PE O-(141)) and molecular lipid species-selective fragments (MLFs) (e.g. FA 

18:1(+C3H6O2)), whose definitions given by Pauling et al. [100], are copied in Supplementary 

text A3 (note, no distinction between alkyl ether (O-) and alk-1-enyl ether (P-) lipids was made 

in this work). For the identification (see Figure 7.1) a set of characteristic ions for each lipid class 

was selected and their m/z values were obtained from LipidBlast database[27,97]. Each set 

consisted of the most intense adduct ion in the TOF MS scan as well as the most intensive LCF 

or iMLF in the corresponding SWATH experiment, in both ESI (+) and ESI (-) (See list of fragments 

for each lipid class in Suppl. Table 7.4). EICs (of selected ions for each lipid) were compared by 

using PeakView (Sciex) in order to determine whether the lipid was present or not in the QC 

sample. For some of the lipid classes, also EICs of MLFs were analyzed to identify fatty acyl chains 

in the lipid species. Additionally, peak spotting maps of retention time versus precursor ion m/z 

of each identified lipid were generated for each lipid class. 

7.5.5 Lipid comparison and quantitation 

Precursor and selected fragment ions of identified lipids were analyzed through the whole set 

of samples with Multiquant 3.0 (Sciex, for integration parameters see Table A5). Peak apex 

intensities were exported for statistical analysis. Intensities were normalized with corresponding 

intensities (from TOF MS scan) of standard PC 17:0-20:4, which was added with the resuspension 

solvent after extraction and prior to LC-MS measurement. Concentrations for each lipid species 

were estimated, based on its normalized intensity and the response factor of ILIS from the 

corresponding lipid class. For those lipid classes with no internal standard added before 

extraction, a standard addition curve was prepared with QC sample. Response factors to 

estimate concentrations were obtained from the slope of standard addition curves (see Table 

A6). 

Reported concentrations of a lipid species are an average of its corresponding estimated 

concentrations from ESI (+) and ESI (-), and from precursor and fragment ion traces. 

7.5.6 Statistics 

Normalized intensities of precursor and product ions from positive and negative mode were 

combined and hypothesis testing was done in R statistical language (https://cran.r-project.org) 

using the non-parametric Mann-Whitney-U-test (obtaining a p-value for each studied trace) and 
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correction for multiple hypothesis testing adjusting a false discovery rate of <0.05 according to 

the approach proposed by Storey[141] (results reported as q-values). 

7.6 Results and discussion 

7.6.1 Lipid identification 

Identification of lipid species in QC samples was performed by analyzing EICs of specific 

precursor and product ions for each lipid class in TOF MS and SWATH, acquired in ESI (+) and ESI 

(-) using the same LC separation. Figure 7.1 shows an example comprising the following steps 

for identification of lipid species. 

Table A4 summarizes the list of precursor and fragment (product) ions selected for the 

identification of lipids from each lipid class. For each lipid class, the most abundant precursor 

ion in ESI-TOF-MS, positive and negative polarity, and the most intense LCF or iMLF in SWATH 

(positive or negative or both) were employed to identify all the lipids at the “lipid species level”. 

In total, 611 lipids from 21 lipid classes were identified at this level in QC samples and their 

distribution is shown in Suppl. Figure 7.1. 

EICs of precursor ions and LCF or iMLF for species of the same lipid class with equal number of 

carbons and different number of unsaturations (e.g. PE O-36:1 and PE O-36:2, see Figure 7.1C) 

show that their chromatographic separation is achieved by the employed LC method. 

Additional analysis of MLF allowed us to identify around 70% of the lipids at the “molecular lipid 

species level” (see Table B1) but also showed that in most cases a (partial) co-elution of lipid 

species (isomers) with the same number of carbons and unsaturations is occurring. For example, 

analysis of possible MLFs “FA x:y(+C3H6O2)” for PE O-36:2 showed the co-elution of PE O-18:1-

18:1, PE O-16:1-20:1 and PE O-18:2-18:0. Therefore, we decided to keep the annotation of lipids 

that were identified at the “molecular lipid species level”, but quantitative comparison was done 

at the “lipid species level” because of the better S/N obtained from EICs of precursor ions, LCFs 

and iMLFs. 
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Figure 7.1. Scheme for lipid identification process.  Briefly, A) a specific set of fragments for each lipid class was 
selected, B) m/z values from selected ions were obtained from LipidBlast database, C) EICs of selected ions were 
obtained and compared in corresponding TOF MS ESI (-) (top), TOF MS ESI (+) (middle) and SWATH (MS/MS) ESI (+) 
(bottom) experiments to determine which lipids are present in the sample, D) spotting maps for precursor ions of 
lipids identified, from the same lipid class, with ESI (+) and E) ESI (-) were plotted to check for possible 
misidentifications 
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In those cases, in which lipid species of the same class with the same number of carbons and 

unsaturations were chromatographically separated, individual species were analyzed and 

annotated with an extra Arabic number (e.g. PE O-36:4 (1) at 6.07 min, PE O-36:4 (2) at 5.91 min 

and PE O-36:4 (3) at 5.79 min, see Figure 7.1C). 

From Suppl. Figure 7.2 the distribution of MS data (precursor ions, LCFs and iMLFs) from 

different polarities and acquisition modes that were used for identification of lipids at the “lipid 

species level” and the subsequent comparison can be depicted. Thus, in 58% of the cases, 

identification was done by MS data measured in ESI (+) and ESI (-), while in the remaining 42% 

identification was done with measurement of only one polarity. This means that 58% of the lipids 

have an additional level of confidence for their identification by the other ionization mode since 

their presence was confirmed with the same retention time (± 3s) by separate chromatographic 

runs with distinct polarities. For the 42 % of lipid species identified with only one polarity, 32 % 

are in the ESI (+) mode which comprises mainly the analysis of ACs, CEs, TGs and DGs and 10 % 

are in the ESI (-) which corresponds mainly to the analysis of FAs and LPGs. 

As part of the identification process, peak spotting maps were plotted for each lipid class in order 

to check the distribution of identified lipids in terms of m/z and retention time (See Figure 7.1D-

E for case of ether PE and Suppl. Figure 7.3 or Suppl. Figure 7.4 for other lipid classes). In this 

manner, it is possible to observe very well-defined elution patterns for lipids of the same class 

depending on the total number of carbons and unsaturations. These elution patterns have been 

well described previously for reversed phase LC separations[31] and are commonly utilized in 

LC-MS lipidomics studies. However, this additional confirmative information, on the other hand, 

is also frequently neglected. We suggest elution patterns to be analyzed when LC-MS lipidomics 

studies are performed because they increase the confidence for identifications and can be used 

as an alert for checking possible misidentifications. On the other hand, scores for retention time 

similarities with databases have been included as part of some identifications algorithms [113]. 

However, this comparison only establishes a comparison between the lipid, which has to be 

identified, and the reference in the database without taking into account the retention time of 

species from the same lipid class, which have been already identified. 

7.6.2 Presence of long fatty acyl chains 

A first glance into the identified lipid species, especially those ones with only one fatty acyl chain, 

allows a good overview of the fatty acyl composition present in the studied sample. In the case 

of CE, it was interesting to observe the presence of an extended range of fatty acyl chains from 

CE 16:1 to CE 36:7. Figure A5 shows the distribution in terms of intensity for CEs identified in 

keratinocytes. Cholesteryl esters with long chain fatty acids have been suggested as a depot for 
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long chain fatty acids in human secretions [142]. This function may also apply for keratinocytes. 

Here, long fatty acyl chains in CE could be important for the synthesis of Cers and HexCers with 

long fatty acyl side chains, which play an important role in the skin barrier [143]. 

7.6.3 Concentration of lipid species 

ILIS from different lipid classes which were added to each sample before lipid extraction were 

used to estimate concentrations of lipid species in control samples, which are reported in Table 

B1. The total sum for each lipid class was calculated as µg of each lipid class per million of cells. 

Figure 7.2 shows the mass percentage of each lipid class with respect to the total amount of 

lipid. A comparison to previously reported estimations on lipid concentrations in keratinocytes 

[127–131] cannot be done in a straightforward manner because of methodological differences 

like extraction protocol, analytical technique for detection or lipid classes included in each 

particular study. However, most of the estimated percentages for the lipid classes content seem 

to be similar and only the percentage of CEs obtained in our study (22 %) seems to be 

considerably higher than previously reported values, which were less than 10 % in all the cases. 

7.6.4 Comparison of lipid classes after betulin treatment 

Characteristic precursor and fragment ion (LCFs and iMLFs) intensities from TOF MS and SWATH 

experiments, respectively, were compared for each lipid species from betulin (B1 to B10) and 

control samples (C1 to C10). The coefficients of variation of the signal intensities for each of 

these ion traces (MS and MS/MS) both in control and betulin-treated groups including 

measurement and biological variance was in average around 15 % (See Suppl. Figure 7.6 and 

Suppl. Table 7.7). The mere measurement variance was significantly less and close to 100% of 

the features showed a CV<30%. 
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Figure 7.2. Mass percentage distribution of analyzed lipid classes in keratinocytes (Control group).  Numbers in 
parenthesis are the quantities of lipids (µg/million cells, corresponding to pg/cell) determined in each class. 

 

Non-parametric Mann-Whitney-U test and a correction for false discovery rate were employed 

to determine statistically significant differences[141]. Table B1 shows the values of the fold 
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were obtained for the same lipid species regardless whether they were analyzed on precursor 

or fragment ion level in ESI (+) or ESI (-) being indicative for the good assay specificity. Out of 

611 identified lipids, 440 turned out to be significantly different (q<0.05). Relative intensities (as 

Z-scores) of significantly changed lipids are shown in Figure 7.3. It can be observed that even 
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samples treated with betulin, however, the FC observed for CEs is more pronounced (< 0.67 for 

most of them while in the case of TGs the FC is between 0.67 and 1.0). On the other side of the 

volcano plot, it is possible to see that the rest of studied lipid classes show a clear up-regulation 

and few species from some of these lipid classes are more significantly up-regulated (FC > 1.5 

see Table B3). Up-regulation of acyl carnitines (AC) can be highlighted here considering that four 

of them are included in the 10 most up-regulated species with a FC > 2.0. 

 

Figure 7.3. Heatmap for comparison of relative intensities of 440 lipids, identified in human immortalized 
keratinocytes, which showed a significant change (correction for false discovery rate after Mann-Whitney-U test, q-
value < 0.05) after treatment with betulin (1.95 µM). 
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Figure 7.4. Volcano plot for 611 identified lipid species whose intensity was compared between betulin-treated 
keratinocytes versus control keratinocytes. 
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before analysis. m/z-values and retention times of these peaks are summarized in Table A8. 

Combined information for adducts eluted at the same retention time and in different polarities 

allowed the determination of five molecular formulas of compounds, present in the extracts, 

corresponding to triterpenes. 

In order to determine if these signals originate from the betulin solution used for treatment of 

keratinocytes, standard solutions of betulin and other triterpenes (see chemical structures in 

Suppl. Figure 7.7) were analyzed by the same method (see Suppl. Table 7.9). 

Suppl. Figure 7.8 shows intensities of analyzed signals in samples treated with betulin, control 

samples and standard solution of betulin. As shown, two compounds, which were found in 

samples treated with betulin, were present in the betulin standard solution and were identified 

as betulin (eluted a 2.39 min) and betulinic acid (eluted at 2.64 min). This means that betulin 

and the impurity betulinic acid, either remained absorbed to the surface of keratinocytes despite 

washing steps after treatment or more likely, that betulin was incorporated into the lipid 

membrane of the keratinocytes and extracted with the organic solvents, which is worthwhile to 

be further investigated. The other three compounds, which have an increased intensity in 

treated samples compared to the control ones and are not present in the standard solution of 

betulin, were annotated as “betulin isomer”, “betulin loss of O” and “betulinic acid loss of CH2”. 

These compounds could correspond to metabolites of betulin produced in the keratinocytes. 

Future experiments should be undertaken to clarify in which way these metabolites arise. 

7.7 Concluding remarks 

The presented untargeted lipidomics approach with targeted data processing enables a detailed 

characterization of the lipidome in keratinocytes and can detect significant differences after 

“drug” treatment, shown by the natural product betulin. In total, 611 lipids were identified at 

the “lipid species level” and 440 of them showed to be significantly changed. Changes can be 

described in terms of lipid classes. Thus, CEs and TGs are significantly down-regulated in betulin 

treated samples and glycerophospholipids, sphingolipids and diacylglycerides are up-regulated. 

Additionally, the presence of betulin in extracts of keratinocytes (previously treated with betulin 

and washed) indicate that betulin may be incorporated into the membrane of keratinocytes. The 

presence of other triterpenes in betulin treated samples and absent in control samples could 

mean that betulin is metabolized in the keratinocytes. 
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7.10 Supplemental 

Supplementary text 1. Lipid extraction 

Extraction solvents were cooled down for at least 20 min on ice before their addition to samples. 

Lipid extraction was performed with IPA:H2O (90:10 v/v) as described previously [140]. Briefly, a 

5% (v/v) SPLASH Lipidomix solution was prepared in MeOH and then 50 µL of the diluted solution 

was added to the cell pellet. Next, 4.95 mL of IPA:H2O (90:10 v/v) were added. Samples were 

vortexed (30 s), sonicated (2 min) and vortexed again (30 s) to disrupt the pellet. Incubation on 

ice was continued on a shaker for 1h (500 rpm, 60 min). Samples were centrifuged (3500 rcf, 10 

min) and the supernatant was transferred to 15 mL falcon tubes. Samples were dried in an 

evaporator (Genevac EZ-2; Warminster, Pennsylvania, USA) for 10 hours under nitrogen 

protection. Dried extract was resuspended in 100 µL of methanol containing odd-chained lipid 

standards LPC 17:1 and PC 17:0-20:4 at 500 ng/mL and 125 ng/mL, respectively. Sonication (2 

min) and vortexing (30 s) were applied to ensure that lipids were not stuck to the surface of the 

extraction container. Then, samples were centrifuged (3500 rcf, 10 min) and the supernatant 

was transferred to vials for LC-MS measurements. Quality control (QC) sample was prepared by 

pooling together 15 µL aliquot of each sample. Samples were measured randomly and QC 

samples were run at the beginning, at the end and every fifth sample during the sequence. 

Supplementary text 2. Details about LC-MS measurement 

The gradient profile was as follows: 0.0 min, 15 % B; 2.0 min, 30 % B; 2.5 min, 48 % B; 11.0 min, 

82 % B; 11.5 min, 99 % B; 12.0 min, 99 % B; 12.1 min, 15 % B, 15.0 min, 15 % B. Flow rate was 

equal to 600 µL/min and column was kept at 65 °C. The injection volume was 3 µL for positive 

mode and 5 µL for negative mode. 

MS settings were used as follows: Curtain gas (CUR) 35 psi, nebulizer gas (GS1) 60 psi, drying gas 

(GS2) 60 psi, ion-spray voltage floating (ISVF) +5500 V in positive and -4500 V in negative mode, 

source temperature (T) 350°C, collision energy (CE) 45 V, collision energy spread (CES) 15 V, 

declustering potential (DP) 80 V, mass range m/z 50 – 1250 in ESI (+) and 50 – 1050 in ESI (-), and 

RF Transmission (RF) m/z 40: 50 % and m/z 120: 50 %. 
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An external mass calibration was performed during the sequence every five samples (see list of 

m/z values for calibration in Table A2). 

Supplementary text 3. Definitions of some lipid fragment types 

The notation of fragment ions in our document have been done in accordance to the open access 

document “Proposal for a common nomenclature for fragment ions in mass spectra of lipids” by 

Pauling et al. [100]. In order to facilitate the reading of our document we have copied here some 

important definitions, given in the mentioned document. 

“LCFs (lipid class-selective fragments) which are characterized by the properties that they 

can be both neutral and charged, are released from all lipid molecules belonging to the same 

lipid class and have identical mass, and they do not contain a hydrocarbon chain. Thus, LCFs 

provide information about structural attributes that are common to all molecules of a 

particular lipid class (e.g. a head group of a glycerophospholipid). Of note, masses of certain 

LCFs are not unique given that molecules from other lipid classes can release LCFs with 

identical masses (e.g. m/z 184.0733 can be released from LPC, PC, PC O-, SM species). 

Moreover, LCFs can only be used to identify lipid molecules at the “lipid species level” (e.g. 

PC 36:6)”. 

“MLFs (molecular lipid species-specific fragments) which are characterized by the properties 

that they can be both neutral and charged, and contain only one hydrocarbon chain with 

variations in the number of carbon atoms, double bonds and hydroxyl groups. Depending 

on the lipid class and category, these hydrocarbon chains can be classified as FA, alkanol and 

alkenol (i.e. plasmanyl and plasmenyl groups, respectively), LCB and sterol moieties. MLFs 

can be used to identify lipid molecules at the “molecular lipid species level” (e.g. PC 18:3-

13:3)”.  

“iMLFs (intermediate molecular lipid species-selective fragments) which are characterized 

by the properties that they can be both neutral and charged, and contain two or more 

hydrocarbon chains that depending on the lipid class can be composites of FA, alkanol, 

alkenol, LCB and sterol moieties. As for LCFs, iMLFs can only be used to identify intact lipid 

molecules at the “lipid species level” (e.g. PE 36:2).” 
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Suppl. Table 7.1. Information about internal standards of the SPLASH™ Lipidomix® Mass Spec Standard (in MeOH) 

Mixture Components Original concentration (µg/mL) 

Concentration after 

resuspension for MS analysis 

(µmol/mL) 

15:0-18:1(d7) DAG 9.40 8.0E-04 

15:0-18:1(d7) PA 7.40 5.5E-04 

15:0-18:1(d7) PC 160.70 1.1E-02 

15:0-18:1(d7) PE 5.70 4.0E-04 

15:0-18:1(d7) PG 29.10 2.0E-03 

15:0-18:1(d7) PI 9.10 5.5E-04 

15:0-18:1(d7) PS 4.20 2.8E-04 

15:0-18:1(d7)-15:0 TAG 57.30 3.5E-03 

18:1(d7) Chol Ester 356.10 2.7E-02 

18:1(d7) LPC 25.50 2.4E-03 

18:1(d7) LPE 5.30 5.4E-04 

18:1(d7) MAG 2.00 2.8E-04 

Cholesterol (d7) 98.40 1.3E-02 

d18:1-18:1(d9) SM 30.90 2.1E-03 

 

 

Suppl. Table 7.2. m/z values of sodium acetate clusters used for external calibration of QTOF 

ESI+ 

(m/z) 

ESI- 

(m/z) 

104.99230 141.01693 

351.00152 223.02000 

433.00459 305.02307 

515.00767 387.02615 

597.01074 469.02922 

679.01381 551.03230 

761.01689 633.03537 

843.01996 715.03844 

1007.02611 797.04152 

1089.02918 879.04459 
 

961.04767 
 

1043.05074 
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Suppl. Table 7.3. Information about design of MS and MS/MS experiments  

Experiment MS Type Accumulation 

time (ms) 

Pos mode Neg mode 

Min m/z Max m/z Min m/z Max m/z 

MS SCAN 80 50 1250 50 1050 

MS/MS SWATH 1 31 50.0 214.6 50.0 342.2 

MS/MS SWATH 2 31 213.6 281.8 341.2 453.6 

MS/MS SWATH 3 31 280.8 390.7 452.6 480.8 

MS/MS SWATH 4 31 389.7 480.4 479.8 507.8 

MS/MS SWATH 5 31 479.4 509 506.8 532.3 

MS/MS SWATH 6 31 508 536.5 531.3 566.8 

MS/MS SWATH 7 31 535.5 610.6 565.8 617.4 

MS/MS SWATH 8 31 609.6 677.1 616.4 687.1 

MS/MS SWATH 9 31 676.1 709.0 686.1 715.0 

MS/MS SWATH 10 31 708.0 735.1 714.0 744.1 

MS/MS SWATH 11 31 734.1 759.1 743.1 755.1 

MS/MS SWATH 12 31 758.1 773.1 754.1 776.0 

MS/MS SWATH 13 31 772.1 790.2 775.0 794.6 

MS/MS SWATH 14 31 789.2 811.2 793.6 807.6 

MS/MS SWATH 15 31 810.2 827.2 806.6 830.3 

MS/MS SWATH 16 31 826.2 856.2 829.3 840.1 

MS/MS SWATH 17 31 855.2 884.3 839.1 859.2 

MS/MS SWATH 18 31 883.3 915.9 858.2 889.1 

MS/MS SWATH 19 31 914.9 983.7 888.1 924.6 

MS/MS SWATH 20 31 982.7 1250.0 923.6 1050.0 
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Suppl. Table 7.4. Selected precursor and fragments ions for identification of each lipid class in ESI (+) and ESI (-) 

Lipid 
class 

ESI (+) ESI (-) 

Precursor ion 
TOF-MS scan 

LCF or iMLF 
Molecular lipid 
species-specific 
fragments (MLF) 

Precursor ion 
TOF-MS scan 

LCF or iML 
Molecular lipid species-
specific fragments (MLF) 

FA    [FA x:y-H]- 
 [M-H]- 

  

AC 
[AC x:y + H]+ 

 [M]+ 
AC(85) 

 [C4H5O2]+ 
    

CE 
[SE 27:1/x:y+NH4]+ 

 [M+NH4]+ 
ST 27:1(-H) 

Sterol Fragment 
    

LPC 
[LPC x:y+H]+ 

 [M+H]+ 
PC(184) 

 [C5H15NO4P]+ 
 

[LPC 
x:y+HCOO]- 
 [M+HCOO]- 

-LPC(60) 
 [M-CH3]- 

FA1 x:y(+O)/FA2 x:y(+O) 
SN1/SN2 

LPE 
[LPE x:y+H]+ 

 [M+H]+ 
FA x:y(+C3H6O2) 
 [M-C2H8NO4P]+ 

 [LPE x:y-H]- 
 [M-H]- 

 FA1 x:y(+O)/FA2 x:y(+O) 
SN1/SN2 

LPI 
[LPI x:y+NH4]+ 

 [M+NH4]+ 
  [LPI x:y-H]- 

 [M-H]- 

LPI(241) 
 [Inositol 

Phosphate-
H2O]- 

LPI(315) 
NL of 

SN1/SN2+H2O 

FA1 x:y(+O)/FA2 x:y(+O) 
SN1/SN2 

LPG    [LPG x:y-H]- 
 [M-H]- 

 FA1 x:y(+O)/FA2 x:y(+O) 
SN1/SN2 

BMP 
[BMP x:y+NH4]+ 

 [M+NH4]+ 
 

FA1 x:y(+C3H6O2) 
 [SN1+C3H5O]+ 

FA2 x:y(+C3H6O2)  
 [SN2+C3H5O]+ 

   

Cer 
[Cer x:y;z+H]+ 

 [M+H]+ 
 

LCB x:y;z(-H3O2) 
 [Sph-2H2O+H]+ 

FA x:y(+H3N) 
 [FAA+H]+ 

[Cer 
x:y;z+HCOO]- 
 [M+HCOO]- 

 FA x:y(+C2H3N) 
 [FA+NCCO-O-3H]- 

HexCer 
[HexCer x:y;z+H]+ 

 [M+H]+ 
 LCB x:y;z(-H3O2) 

 [Sph-2H2O+H]+ 

[HexCer 
x:y;z+HCOO]- 
 [M+HCOO]- 

  

PC 
[PC x:y+H]+ 

 [M+H]+ 
PC(184) 

 [C5H15NO4P]+ 
 

[PC 
x:y+HCOO]- 
 [M+HCOO]- 

-PC(60) 
 [M-CH3]- 

FA1 x:y(+O) and FA2 x:y(+O) 
SN1 and SN2 

EtherPC 
[PC O-x:y+H]+ 

 [M+H]+ 
PC(184) 

 [C5H15NO4P]+ 
 

[PC O-
x:y+HCOO]- 
 [M+HCOO]- 

-PC O-(60) 
 [M-CH3]- 

FA2 x:y(+O) 
SN2 

PE 
[PE x:y+H]+ 

 [M+H]+ 

-PE O-(141) 
 [M+H-

C2H8NO4P]+ 

 [PE x:y-H]- 
 [M-H]- 

 FA1 x:y(+O) and FA2 x:y(+O) 
SN1 and SN2 

EtherPE 
[PE O-x:y+H]+ 

 [M+H]+ 

-PE O-(141) 
 [M+H-

C2H8NO4P]+ 

FA x:y(+C3H6O2) 
NL of 

C2H8NO4P+SN1 

[PE O-x:y-H]- 
 [M-H]- 

 FA2 x:y(+O) 
SN2 

PI 
[PI x:y+NH4]+ 

 [M+NH4]+ 
-PI(277) 

 [M-C6H12O9P]+ 
 [PI x:-H]- 

 [M-H]- 
 FA1 x:y(+O) and FA2 x:y(+O) 

SN1 and SN2 

PG 
[PG x:y+NH4]+ 

 [M+NH4]+ 
-PG(189) 

 [M-C3H8O6P]+ 
 [PG x:y-H]- 

 [M-H]- 
 FA1 x:y(+O) and FA2 x:y(+O) 

SN1 and SN2 

PS 
[PS x:y+H]+ 

 [M+H]+ 

-PS(185) 
 [M+H-

C3H8NO6P]+ 

 [PS x:y-H]- 
 [M-H]- 

-PS(87) 
NL of 

C3H5NO2 

FA1 x:y(+O) and FA2 x:y(+O) 
SN1 and SN2 

SM 
[SM x:y;z +H]+ 

 [M+H]+ 
PC(184) 

 [C5H15NO4P]+ 
 

[SM 
x:y;z+HCOO]- 
 [M+HCOO]- 

-SM(60) 
 [M-CH3]- 

 

DG 
[DG x:y+NH4]+ 

 [M+NH4]+ 
 

-FA1(+OH) and -
FA2(+OH) 

SN1 and SN2 acyl 
loss 

   

TG 
[TG x:y+NH4]+ 

 [M+NH4]+ 
 

-FA1(+OH), -
FA2(+OH) and -

FA3(+OH) 
SN1, SN2 and SN3 

acyl loss 

   

Chol 
[SE 27:1-OH]+ 
[M-H2O+H]+ 
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Notes: LCF, Lipid class-selective fragments; iMLF, intermediate molecular lipid species-selective fragment. In black the 
recommended notation according to Pauling et al. [100] and in red the original notation from LipidBlast database[97] 
are given. x: number of carbons, y: number of double bonds, z: number of OH groups in the long chain base and acyl 
moiety. 

 

Suppl. Table 7.5. Parameter for integration of peaks in Multiquant 3.0 

MultiQuant parameter Value Unit 

Gaussian Smooth With 1.0 points 

RT Half Window 3 Sec 

Min. Peak Width 5 Points 

Min Peak Height 50 Cps 

Noise Percentage 40 % 

Baseline Sub. Window 2.00 Min 

Peak Splitting 1 Point 

 

Suppl. Table 7.6. Quantitation method for each analyzed lipid class 

Lipid class Standard Quantitation method 

FA Arachidonic acid-d8 

alpha-Linolenic acid-d14 

7 points standard addition 

AC C18:1 Carnitine 7 points standard addition 

CE 18:1(d7) Chol Ester 1 point calibration 

LPC 18:1(d7) LPC 1 point calibration 

LPE 18:1(d7) LPE 1 point calibration 

LPI 15:0-18:1(d7) PI 1 point calibration 

LPG 15:0-18:1(d7) PG 1 point calibration 

BMP 18:1-18:1 BMP 7 points standard addition 

Cer Ceramide d18:1/18:0 7 points standard addition 

HexCer Glucosyl(ß) Ceramide (d18:1/17:0) 7 points standard addition 

PC 15:0-18:1(d7) PC 1 point calibration 

EtherPC 15:0-18:1(d7) PC 1 point calibration 

PE 15:0-18:1(d7) PE 1 point calibration 

EtherPE 15:0-18:1(d7) PE 1 point calibration 

PI 15:0-18:1(d7) PI 1 point calibration 

PG 15:0-18:1(d7) PG 1 point calibration 

PS 15:0-18:1(d7) PS 1 point calibration 

SM d18:1-18:1(d9) SM 1 point calibration 

DG 15:0-18:1(d7) DAG 1 point calibration 

TG 15:0-18:1(d7)-15:0 TAG 1 point calibration 

Chol Cholesterol (d7) 1 point calibration 
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Suppl. Table 7.7. Distribution of coefficient of variations (CVs, %) for 1293 analyzed traces (of 610 identified lipid 
species) in each group of samples (See Suppl. Figure 3.6) 

CV bin (%) 

Samples treated with betulin 

N = 10 

Control samples 

N = 10 

QC 

10 injections 

Amount of traces 

0-5 0 1 36 

5-10 205 164 576 

10-15 402 510 383 

15-20 280 267 153 

20-25 171 153 90 

25-30 110 102 44 

30-35 69 50 8 

35-40 30 32 3 

40-45 10 8 0 

45-50 6 2 0 

50-55 5 1 0 

55-60 3 1 0 

60-65 1 0 0 

65-70 0 0 0 

>70 1 2 0 

Total 1293 1293 1293 

 

Suppl. Table 7.8. List of detected peaks in extract of keratinocytes with a significant FC for comparison between 
betulin and control group, which were analyzed as betulin related metabolites 

Number Analysis RT 
Measured 

m/z 

Assigned 

formula 

Exact 

mass 

Error 

(ppm) 

Assigned 

adduct 

Neutral 

formula 

Assigned 

compound 

1 
ESI (+) 2.39 

425.3781 C30H49O 425.3778 1  [M-H2O+H]+ 

C30H50O2 Betulin 
443.3883 C30H51O2 443.3884 0  [M+H]+ 

460.4143 C30H54NO2 460.4149 -1  [M+NH4]+ 

ESI (-) 2.39 487.3783 C31H51O4 487.3793 -2  [M+FA-H]- 

2 

ESI (+) 2.64 
457.3690 C30H49O3 457.3676 3  [M+H]+ 

C30H48O3 Betulinic acid 
474.3945 C30H52NO3 474.3942 1  [M+NH4]+ 

ESI (-) 2.64 
455.3540 C30H47O3 455.3531 2  [M-H]- 

911.7160 C60H95O6 911.7134 3  [2M-H]- 

3 ESI (+) 3.7 
425.3784 C30H49O 425.3778 1  [M-H2O+H]+ 

C30H50O2 Betulin isomer 
460.4156 C30H54NO2 460.4149 1  [M+NH4]+ 

4 ESI (-) 3.75 441.3360 C29H45O3 441.3374 -3  [M-H]- C29H46O3 
Betulinic acid 

loss of CH2 

5 ESI (+) 5.2 
444.4191 C30H54NO 444.4200 -2  [M+NH4]+ 

C30H50O 
Betulin loss of 

O 409.3817 C30H49 409.3829 -3  [M-H2O+H]+ 
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Suppl. Table 7.9. Retention times for standards of betulin and some other related compounds 

Standard (0.195 

mM) 

Assigned 

formula 

Analyzed 

adducts 
Measured m/z Exact m/z 

Error 

(ppm

) 

Mode 

Retentio

n time 

(min) 

Betulin C30H50O2 

[M-H2O+H]+ 425.377 425.3778 -2 
ESI 

(+) 2.39 
[M+H]+ 443.3877 443.3884 -1 

[M+NH4]+ 460.4142 460.4149 -2 

[M+FA-H]- 487.3776 487.3793 -3 ESI (-) 

Betulinic acid C30H48O3 

[M+H]+ 457.3679 457.3676 1 ESI 

(+) 2.64 [M+NH4]+ 474.3945 474.3942 1 

[M-H]- 455.3519 455.3531 -3 ESI (-) 

Erythrodiol C30H50O2 

[M-H2O+H]+ 425.3775 425.3778 -1 
ESI 

(+) 2.83 
[M+H]+ 443.389 443.3884 1 

[M+NH4]+ 460.4154 460.4149 1 

[M+FA-H]- 487.3774 487.3793 -4 ESI (-) 

Lupeol C30H50O 

[M-H2O+H]+ 409.3818 409.3829 -3 
ESI 

(+) 
5.03 [M+H]+ 427.3925 427.3935 -2 

[M+NH4]+ 444.4187 444.4200 -3 

[M+FA-H]- 471.3828 471.3844 -3 ESI (-) 5.03 

 

 

Suppl. Figure 7.1. Distribution of 611 identified lipids in QC samples according to their lipid class with number of 
identified lipids for each class. 

FA, 20 AC, 11 CE, 44

LPC, 24 LPE, 27

LPI, 10

LPG, 10

BMP, 5

Cer, 33

HexCer, 18

PC, 57

EtherPC, 30
PE, 46

EtherPE, 49

PI, 41

PG, 7

PS, 26

SM, 30

DAG, 45

TAG, 77
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Suppl. Figure 7.2. Venn diagram showing the number of lipids identified in each ion mode and the distribution MS 
data used for identification of lipids in QC samples of keratinocytes.  
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Suppl. Figure 7.3. Spot maps m/z versus retention time for specific adducts of lipid classes in TOF MS analyzed in 
the ESI (+) and ESI (-).  Colored series correspond to different number of unsaturation, db: amount of double bonds. 
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Suppl. Figure 7.4. Spot maps m/z versus retention time for specific adducts of lipid classes in TOF MS analysis either 
in the ESI (+) or ESI (-). Colored series correspond to different number of unsaturation, db: amount of double bonds. 
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Suppl. Figure 7.5. Relative intensities of CEs identified in betulin and control groups. CEs with fatty acyl chains from 
16:1 to 36:7 are present. Bar represents median and error bars standard error 

 

Suppl. Figure 7.6. Distribution of coefficient of variations (CVs, %) for 1293 analyzed traces (of 610 identified lipid 
species) in each group of samples, (See values in Table A6).  
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Suppl. Figure 7.7. Chemical structure of betulin and related compounds betulinic acid, erythrodiol and lupeol 
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Suppl. Figure 7.8. Absolute intensities of some triterpenes signals observed in lipid extract of keratinocytes 
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8 Publication III. Chiral separation of 2-hydroxyglutaric acid 

8.1 Title 

 

Chiral Separation of 2-Hydroxyglutaric Acid on Cinchonan Carbamate based Weak Chiral 

Anion Exchangers by High-Performance Liquid Chromatography 

 

Carlos Calderón 1, Jeannie Horak 1, Michael Lämmerhofer 1 * 

 

1 Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, 

Auf der Morgenstelle 8, 72076 Tübingen, Germany 

 

Reprinted with permission from Journal of Chromatography A, Volume 1467, Pages 239-245, 

DOI: 10.1016/j.chroma.2016.05.042 

Copyright (2016) Elsevier B.V. 
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8.2 Abstract 

D- and L-2-Hydroxyglutaric acid (D- and L-2-HG, respectively) are metabolites related to some 

diseases (2-hydroxyglutaric aciduria, cancer), which make their identification and analysis 

crucially important for diagnostic purposes. Chiral stationary phases (CSP) based on tert-

butylcarbamoyl-quinine and -quinidine (Chiralpak QN-AX and QD-AX), and the corresponding 

zwitterionic derivatives (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)) were employed in a weak 

anion-exchange mechanism to perform the enantiomer separation of D- and L-2-HG without 

derivatization. 

QD-AX CSP showed the most promising separation and therefore optimization of eluent, 

additives, and temperature, required for the baseline separation of solutes was carried out. 

Depending on experimental conditions resolution values ranged up to 2.0 with run times < 20 

min and MS-compatible conditions. Inversion on the elution order of D- and L-2-HG was possible 

by using the pseudo-enantiomeric QN-AX CSP. 

 

8.3 Introduction 

2-Hydroxyglutaric acid is a clinically relevant chiral metabolite existing in two enantiomeric 

forms, i.e. D-2-HG and L-2-HG (Figure 8.1a). Generally, their concentrations in humans are 

relatively low, with  intracellular levels in normal cells below 0.1 mM [146]. However, high 

concentrations of these compounds have been identified in some patients, who suffer of 

particular diseases. 

The best known of these diseases are D-2-hydroxyglutaric aciduria  and L-2-hydroxyglutaric 

aciduria, which are reported for the first time in 1977 [147,148] and 1980 [149], respectively. 

Since then, multiple reports of both types of diseases have been published [150,151,160–

163,152–159]. Also, cases of combined D,L-2-hydroxyglutaric aciduria have been reported [164]. 

The clinical phenotype of patients with D-2-hydroxyglutaric aciduria includes epilepsy, 

hypotonia and psychomotor retardation [156]. The clinical phenotype of patients with L-2-

hydroxyglutaric aciduria is characterized mainly by developmental delay, epilepsy and cerebellar 

ataxia [156]. 

More recently, high concentrations of D-2-HG have been identified in cancer cells, including 

gliomas, glioblastomas and acute myelogenous leukemia (AML), with mutations of the enzymes 

isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) [158,165]. 
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Mutated IDH enzymes reduce the compound 2-oxoglutarate (2-OG) to D-2-HG, considered an 

oncometabolite (or cancer-causing metabolite). 2-OG is a tricarboxylic acid (TCA) cycle 

intermediate and an essential cofactor for many enzymes [146]. The levels of D-2-HG in IDH 

mutant tumors can be extremely elevated, ranging from 1 mM to as high as 30 mM, hence being 

10 to 300 times higher than the normal values [146]. 

Due to the clinical importance of D-2-HG and L-2-HG, different methodologies have been 

developed in order to identify and quantify their concentration in biological fluids 

enantioselectively. Indirect gas chromatographic enantiomer analysis using precolumn 

derivatization with 2-( )̶-butanol as chiral derivatizing agent (CDA) for esterification and O-

acetylation with acetic anhydride [148,149,153] or with (S)-(+)-3-methyl-2-butanol for carboxyl 

group derivatization and O-trifluoroacetylation [163] have been proposed. Some reports 

described direct GC enantiomer separation methods with achiral derivatization, e.g. with ethyl 

chloroformate, and subsequent analysis on cyclodextrin-based enantioselective columns 

[161,166]. A number of studies also reported indirect LC-enantiomer separation of 2-HG, e.g. 

after derivatization with diacetyl-L-tartaric anhydride [160], or with N-(p-toluenesulfonyl)-L-

phenylalanyl chloride [167]. Only a few studies used direct liquid chromatographic enantiomer 

separation. In one study, D-2-hydroxyglutarate dehydrogenase activity was measured in cell 

homogenates derived from D-2-hydroxyglutaric aciduria patients using enantioselective ligand-

exchange LC with D-penicilamine-based CSP and 2 mM Cu(II) acetate in water-MeOH (90:10; 

v/v) as eluent [168]. This method showed excellent enantioselectivity but the Cu(II) ions in the 

eluent prevent its hyphenation to MS. In another study, enantiomeric separation of D- and L-2-

HG was achieved by HPLC-MS using a ristocetin A glycopeptide antibiotic silica gel bonded 

column [162]. Last but not least, the enantioselective determination of D-2-HG in urine samples 

by using enantioselective membrane electrodes  based on vancomycin and teicoplanin is worth 

to be mentioned [159]. 

In this study, a screening of the capability of four different chiral stationary phases (Figure 8.1b) 

for the separation of the enantiomers D- and L-2-HG is performed. Conditions for the separation 

without derivatization are optimized by using HPLC-MS compatible conditions. This allows a 

straightforward translation of the procedure obtained in this work to a MS related platform in a 

subsequent step for the analysis of biologically relevant samples such as from cancer patients 

using a HPLC-MS/MS approach. 
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8.4 Experimental 

8.4.1 Materials 

All solvents used were of HPLC grade. Acetonitrile (ACN) was purchased from Panreac 

(Barcelona, Spain), methanol (MeOH) was obtained from VWR (Vienna, Austria), ethanol (EtOH) 

was obtained from Sigma–Aldrich (Munich, Germany) and 1-propanol (PrOH) from Merck 

(Darmstadt, Germany). The employed water was purified by a water filtration system from Elga 

Veolia (Paris, France). Formic acid (FA) was supplied by Roth (Karlsruhe, Germany). Acetic acid 

(AcOH), ammonia in methanol (NH3), diethylamine (DEA) and triethylamine (TEA) were obtained 

from Sigma–Aldrich (Munich, Germany). 

The racemic mixture D,L-2-hydroxyglutaric acid sodium salt and the enantiomerically pure 

compound L-2-hydroxyglutaric acid sodium salt were purchased from Sigma–Aldrich. The 

enantiomer elution order was assessed by injection of single enantiomer and/or non-racemic 

mixtures. The analytes were dissolved in water or methanol at approximate concentrations of 

1.0 mg/mL. 

8.4.2 Instrumentation and chromatographic method 

All chromatographic measurements were performed on a 1100 Series HPLC from Agilent 

Technologies (Waldbronn, Germany) consisting of a solvent degasser, a binary pump, an 

autosampler, a column thermostat and a UV–VIS detector. The HPLC system was connected to 

a Corona® Charged Aerosol Detector, CAD® from ESA Biosciences Inc., (Chelmsford, U.S.A.). The 

nitrogen flow of the CAD was adjusted to 35 psi. Data acquisition and analysis were done with 

ChemStation chromatographic data software from Agilent Technologies. The void volumes of 

the columns were determined by injecting a solution of 10% acetone in MeOH with detection at 

280 nm. 

Four different chiral stationary phases were employed in this study: a Chiralpak ZWIX(+) column 

(150 x 4 mm ID, 3 µm particle size), a Chiralpak ZWIX(-) column (150 x 4 mm ID, 3 µm particle 

size), a Chiralpak QD-AX (150 x 4 mm, 5 µm) and a Chiralpak QN-AX (150 x 4 mm ID, 5 µm particle 

size) from Chiral Technologies Europe (Illkirch, France). 

The columns were conditioned with the selected mobile phase at a flow rate of 1.0 mL/min for 

at least 30 min, before performing analysis. Unless otherwise stated, the column temperature 

was kept at 25°C. 
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8.5 Results and discussion 

8.5.1 Column screening and elution order 

Chiralpak ZWIX(+) and ZWIX(-) as well as Chiralpak QD-AX and QN-AX correspond to chiral 

zwitterionic ion-exchangers and chiral anion exchangers, respectively, based on carbamoylated 

cinchona alkaloid derivatives as illustrated in Figure 8.1b. In the case of the chiral zwitterionic 

(ZWIX) selectors, successful separation of chiral acids [169], chiral bases [170,171] and 

zwitterionic chiral species [169,172,173] have been reported. Chiral weak anion-exchange 

(WAX) selectors have been employed for the chiral separation of amino acids derivatives [174–

176], acids [177] and peptides [178]. Although many chiral acidic compounds have been 

successfully separated using both types of selectors, it should be pointed out that in most of 

these cases, the acidic compounds corresponded to structures in which not only the acid motif 

but also other functional groups were present as supportive interaction sites with the chiral 

selectors (SO). This includes in particular aromatic rings for --interaction and amide or 

carbamate moieties with hydrogen donor-acceptor groups for H-bonding or dipole-dipole 

stacking. The lack of such interaction sites with strong directional nature makes the separation 

of enantiomers in the case of simpler molecules, like aliphatic hydroxy alkanoic acids, more 

difficult. The hydroxyl group can freely rotate so that the H-donor is less directed. Hydroxyl 

groups are furthermore strongly solvated in polar solvents such as water, which renders them 

less available for interaction with the chiral selector. In spite of these difficulties, lactic acid 

enantiomer separation has been reported by using QN-AX and QD-AX columns [179] and some 

3-hydroxycarboxylic acids have been separated by using ZWIX(+) and ZWIX(-) columns using a 

polar organic elution mode [180]. Different ratios of ACN-MeOH were used in those cases for 

the elution of analytes, and normally formic acid or acetic acid as additives (the dissociation 

products of which represent counterions) were employed to increase the elution strength. In 2-

HG another unfavorable structural feature is present in the analyte. The second carboxylic acid 

group increases the effective charge number which causes stronger retention. Furthermore, it 

may compete with the -carboxylic acid for interaction at the anion-exchanger site which leads 

to a mixture of distinct binding states, a situation that is often accompanied by a decrease in 

enantioselectivity [181]. All these aspects make method development for 2-HG rather 

challenging. 



RESULTS AND DISCUSSION 

98 

 

Figure 8.1. a) Enantiomers of 2-HG-, D-2-hydroxyglutaric acid and L-2-hydroxyglutaric acid, b) Chiral stationary 
phases tested in this study: Chiralpak QN-AX and QD-AX as well as Chiralpak ZWIX(+) and ZWIX(-) 

 

This raises the question for availability of a generic screening experiment, which can be utilized 

to figure out reasonable starting conditions for a systematic optimization. The column supplier 

typically suggests following a decision tree. However, this may need a couple of experiments 

until useful starting conditions are identified. We herein propose gradient elution, which is quite 

uncommon in enantiomer separation, as a generic screening run [182]. Considering the different 

retention capacities that ZWIX and WAX selectors possess, gradient elution was tested to 

approximate the conditions required for the elution of D- and L-2-HG. In a first approach, an 

ACN:MeOH ratio of 75:25 (v/v) was maintained constant and formic acid, constituting the 

competing acid additive, was increased from 0 to 90 mM in 30 min (acid additive gradient). As 

expected, 2-HG enantiomers were stronger retained on the WAX columns due to the 

intramolecular counterion effect [169]that sulfonic acid groups (see Figure 8.1b.) exert in case 

of ZWIX selectors (Figure 8.2, Suppl. Table 8.1). The sulfonic acid group is present in the chiral 

selector molecule in equimolar quantities to the anion-exchanger site at which 2-HG binds and 

contributes to the displacement of the analyte. Thus, the concentration of the displacer 

(competing acid) in the mobile phase can be lower or in other words the analyte elutes at lower 

retention factors as compared to the corresponding chiral anion-exchanger which lacks such 

intramolecular counterion effect. A slight separation was observed under tested conditions with 

ZWIX(+) (RS = 0.13) and no resolution with ZWIX(-) columns, while an almost baseline separation 

was achieved using QD-AX (RS = 1.35) and QN-AX (RS = 1.11) columns (Figure 8.2, Suppl. Table 
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8.2). Due to successful enantiomer separations with the chiral WAX columns, it was of interest 

to determine the elution order of D- and L-2-HG and more importantly if this elution order can 

be inversed by exchanging a QD-AX for a QN-AX column. Injection of pure L-2-HG enantiomer 

solution showed indeed an inversion in the elution order; D-2-HG is eluted first on the QD-AX 

column and L-2-HG is eluted first on the QN-AX column (Figure 8.2). It is a characteristic feature 

of quinine and quinidine carbamate selectors that are actually diastereomeric to each other but 

behave experimentally like pseudo-enantiomers. Other CSPs derived from natural chiral pool 

such as Chirobiotic phases do not offer such a possibility. This enables elution of the minor 

enantiomer ahead of the major enantiomer peak which is advantageous for the accuracy of the 

method and can be sometimes helpful for validation purposes. 

 

Figure 8.2. Generic gradient elution screening runs for a mixture of D- and L-2-HG, and  pure enantiomer L-2-HG 
using a) ZWIX (+) and ZWIX (-), b) QD-AX and c) QN-AX column. Eluent: A: ACN:MeOH (75:25;v/v), B: ACN:MeOH 
(75:25; v/v) with 90 mM FA; gradient profile, 0-100% B in 30 min; flow rate, 1.0 mL/min; column temperature, 25 °C. 
Note that system peaks are due to sodium in the sample (Na+-salt of analyte was used as sample) and aqueous sample 
matrix significantly deviating from eluent composition. Na+ is eluted at about t0 on the QD-AX column while it is 
retained on the ZWIX(+) column. 

 

In order to obtain more information about the separation of D- and L-2-HG and to possibly 

establish an even more generic screening method for chiral ion-exchanger columns, a second 

mixed polar modifier-acid additive gradient was tested by changing the composition of the bulk 

solvent from MeOH:ACN (5:95; v/v) to MeOH:ACN (100:0; v/v) and increasing at the same time 
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the concentration of formic acid from 10 to 90 mM. MeOH has higher elution strength than ACN 

and higher additive concentrations in channel B also promote elution. With such a mixed 

gradient it is easier to identify reasonable MeOH and formic acid concentrations for isocratic 

runs. Only ZWIX(+) and QD-AX were tested in this case because it was previously observed that 

their behavior is similar to the corresponding ZWIX(-) and QN-AX columns, respectively. Only 

slight separation with the ZWIX(+) column (RS = 0.19) and a partial separation with the QD-AX 

column (RS = 0.99) was achieved (see Suppl. Figure 8.2, Suppl. Table 8.2). Considering the 

conditions under which D- and L-2-HG were eluted, and reducing the strength of channel B at 

that moment by about 20 %, QD-AX column with initial isocratic conditions composed of 

ACN:MeOH (30:70; v/v) with 60 mM formic acid, flow rate 1.0 mL/min and temperature 25 °C 

were derived as starting choice for further isocratic optimization. 

8.5.2 Effect of ACN-MeOH ratio 

In previous screening runs it was assumed that in the employed polar organic mode the protic 

MeOH has stronger elution strength than the aprotic ACN owing to its competing effect for 

hydrogen bonding with the analyte enantiomers. In order to verify this and optimize the ratio of 

these two solvents, the influence of four different ACN and MeOH ratios was examined while 

keeping the formic acid concentration fixed at 60 mM (see Figure 8.3). As expected, a clear 

decrease of the retention was observed with higher concentrations of methanol. It exhibits 

favorable solvation capabilities of the polar analyte due to H-donor and H-acceptor properties 

as opposed to ACN which is a non-protic solvent with H-acceptor capabilities only. Selectivity 

values remain practically constant when the MeOH content was increased, while resolution 

showed at the beginning almost no change, when the MeOH content was varied from 100 % to 

75 %. It was then observed, that the resolution improved when less MeOH was employed (see 

Figure 8.3 and Suppl. Table 8.3). This improvement in resolution with lower MeOH content can 

be explained by the fact that MeOH strongly interacts with the analytes, interfering thereby 

significantly with the interaction between selector and selectand (SO-SA), as explained above. 

In a previous study [176], it was shown for a group of chiral acids that an increase of the 

percentage of acetonitrile (in an ACN:MeOH mixture) has a negative effect on resolution, which 

is opposite to the situation in the present case. However, in that study the chiral acids contained 

aromatic motifs which can interact with ACN molecules thus interfering with π-π interactions 

between selector and selectand. 
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Figure 8.3. Effect of ACN:MeOH ratios on the chromatographic parameters of the separation of D- and L-2-HG. 
Eluent: ACN:MeOH at different ratios (v/v) at constant FA concentration of 60 mM; flow rate, 1.0 mL/min; column 
temperature, 25 °C. 

 

It can be pointed out from this experiment that even MeOH at 100 % with 60 mM FA can be 

used as eluent obtaining an almost baseline separation (Rs = 1.39) with retention times lower 

than 10 minutes (Suppl. Figure 8.3 and Suppl. Table 8.3). 

8.5.3 Effect of alcohol-type 

MeOH is the most common protic solvent in polar organic mode while other types of alcohol are 

rarely investigated. Since resolution was slightly below baseline separation, also other alcohols, 

such as EtOH and n-PrOH, were tested, as polar modifiers, for their capability to yield slightly 

higher resolutions keeping the concentration of formic acid at 60 mM. Higher retention with 

decrease in polarity and a slight increase of separation factors were observed in the order MeOH 

< EtOH < n-PrOH. Yet, resolution decreased in this order due to less favorable mass transfer 

properties and lower chromatographic efficiencies of longer chain alcohols (see Figure 8.4a and 

Suppl. Table 8.4). 

8.5.4 Effect of water content 

2-HG with two carboxylic groups and its -hydroxyl functionality is a very hydrophilic compound. 

For solubility reason, aqueous conditions could be of advantage. A series of experiments were 

therefore envisaged in which methanol was replaced by water as polar co-solvent, thus ending 

up in a hydroorganic elution mode (HILIC or RP-type depending on percentage of water). As can 

be seen in Suppl. Figure 8.5, retention significantly decreased with increase of water content. 

Simultaneously, enantioselectivity declined and was lost at about 25% aqueous fraction. This 

stands in agreement with former findings for hydroxyalkanoic acid enantiomer separations on 

chiral ion-exchangers and can be explained by the unfavorable desolvation characteristics of the 
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analyte in aqueous solvents [179,180]. Note that 1-2% (v/v) of water are in contrast tolerated 

(e.g. Rs=1.28 with ACN:MeOH:H2O (49.5:49.5:1; v/v) + FA 60 mM and 1.27 without water i.e. 

ACN:MeOH (50:50; v/v) + FA 60 mM), and may be used for solubility reasons of very polar 

analytes in the eluent. Yet herein, further experiments were performed in the polar organic 

mode with non-aqueous conditions. 

8.5.5 Effect of amines 

Amines as mobile phase additives can participate as co-ions in the anion-exchange (AX) 

mechanism. It has been indicated in a previous study [176] that a strong decrease on retention 

of acidic compounds can be observed when amines are included in the eluent as co-ions in AX 

separations, emphasizing that elution strength increases in the order NH3<DEA<TEA. 

Nonetheless, another study indicates that there is practically no effect on chromatographic 

parameters when changing the type of co-ion for a ZWIX selector used in AX mode [183]. 

For earlier separation of D,L-2-HG a slight peak tailing was observed. It was therefore attempted 

to overcome this detrimental effect by addition of co-ions to the mobile phase. NH3, DEA and 

TEA, which differ in their degree of alkylation and basicity, were investigated to determine their 

effect on retention and resolution of D,L-2-HG. Each amine was added to the mobile phase at a 

concentration of 10 mM while the concentration of FA was maintained at 60 mM.  

Suppl. Table 8.5 summarizes the results obtained and corresponding chromatograms are shown 

in Figure 8.4b. Oppositely to the results of above indicated study [176], elution strength 

increases in the order TEA<DEA<NH3, and furthermore, elution is slightly faster when no amine 

is added to the mobile phase. This minor effect can originate from shifts in deprotonation 

equilibria of D,L-2-HG which is a stronger acid than formic acid. With addition of amines, the 

fraction of dissociated 2-HG increases with increased basicity of the additive. More 

deprotonated D,L-2-HG can produce stronger SO-SA interactions and therefore enhance 

retention. 

Unfortunately, a decrease in resolution was observed when the degree of alkyl substitution of 

the amine is increased and there was no favorable effect on peak shape with amine additives. 

Since the incorporation of a co-ion does not represent any practical advantage for the separation 

of D,L-2-HG, it was decided not to include it as a component  of the mobile phase. 
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Figure 8.4. Chromatographic runs for a mixture of D- and L-2-HG with a) different types of alcohols, and b) different 
types of co-ions (ammonia, NH3; DEA, diethylamine; TEA, triethylamine) in the mobile phase. a) Eluent: alcohol 100 
% (v/v) with 60 mM FA; flow rate, 1.0 mL/min; column temperature, 25 °C, and b) Eluent: 100 % MeOH (v/v) containing 
60 mM FA and 10 mM amine; flow rate, 1.0 mL/min; column temperature, 25 °C. 

8.5.6 Effect of additive concentration 

Modification of the acid additive concentration in the eluent represents a convenient way to 

adjust retention on chiral ion-exchange systems. Thus, after having established the general 

mobile phase composition for isocratic elution, the influence of formic acid concentration 

(ranging from 30 to 90 mM) was investigated. The solvent system ACN:MeOH (30:70; v/v) was 

selected as a compromise between higher resolution and faster elution. 

As expected, a significant decrease on retention was observed when higher concentrations of 

formic acid were used (Figure 8.5 and Suppl. Table 8.6). This trend in retention is clearly 

consistent with an anion-exchange retention mechanism, which has been previously described 

[176,184,185]. Practically, no change in enantioselectivity and only a small decrease in 

resolution were observed when the FA concentration was increased. In this case, a compromise 

has to be found between the quality of the required separation and the needed time for analysis. 

A baseline separation is possible when the concentration of FA is below 50 mM. Interestingly, it 
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was also observed during this experiment that the peak area and therefore the sensitivity of the 

CAD were increased when higher concentrations of FA were employed (Suppl. Figure 8.7c). 

 

Figure 8.5. Effect of FA concentrations  in accordance to the stoichiometric displacement model. Column: QD-AX; 
Eluent: ACN:MeOH (30:70;v/v) with different concentrations of FA; flow rate, 1.0 mL/min; column temperature, 25 
°C. 

 

Additional chromatographic runs were performed with 100 % MeOH as eluent and changing the 

concentration of FA (data not shown). This change allowed us to reduce the chromatographic 

run times while the resolution did not change significantly. When the FA concentration was 40 

mM, a Rs = 1.47 i.e. baseline separation was achieved. For that reason, these conditions were 

used for further optimization of flow rate and column temperature. 

Besides FA, AcOH was also tested as a displacer for the separation of D and L-2-HG (data not 

shown). However, even with an AcOH concentration as high as 150 mM, elution of analytes was 

not observed within 90 min, and for that reason further experiments with this acid additive that 

has a weaker net elution strength were not performed. 

8.5.7 Effect of Temperature 

The effect of column temperature on the separation was also studied as one of the last 

influential factors to be examined because its effect, at least on some chromatographic 

parameters (k1,2, , N1,2), is to some extent predictable on QD-AX and QN-AX columns. So far, 

with very few exemptions [186,187], adsorption and separation processes were found to be 

enthalpically driven, and expected for the present case as well. This implies that retention and 

separation factors decrease with increasing temperature, while plate numbers increase upon 

raising the temperature. Nonetheless, the resultant optimum of resolution has to be studied on 

a case-to-case basis.  
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Five different temperatures were used in the range from 10°C to 40°C using 100% MeOH with 

40 mM FA as eluent. The temperature effect can be analyzed in terms of the Van´t Hoff equation 

in accordance to eq. 1,  

𝑙𝑛𝑘 =  
∆𝐻°

𝑅𝑇
+
∆𝑆°

𝑅
+ 𝑙𝑛 (1) 

wherein ΔH° and ΔS° are standard enthalpy and entropy changes upon adsorption, R is the 

universal gas constant, T the absolute temperature in K, and  is the phase ratio. The 

corresponding relationship for the separation factors  is described by eq. 2 

𝑙𝑛 =  
∆𝐻°

𝑅𝑇
+
∆𝑆°

𝑅
 (2) 

wherein ΔΔH° and ΔΔS° are differential standard enthalpy and entropy changes between the 

two corresponding enantiomers. At this point it has to be emphasized that these 

thermodynamic parameters are macroscopic entities representing averages over adsorption at 

distinct sites[181,188]. 

 

Figure 8.6. Temperature dependence of retention and separation factors as illustrated by Van’t Hoff plots. Eluent: 
100 % MeOH containing 40 mM FA, flow rate: 1.0 mL/min. 

 

Figure 8.6 shows the corresponding Van´t Hoff plots and according to equation 2, estimated 

negative values for ΔΔH°(-1.297 ± 0.048 kJ mol-1) and ΔΔS° (-3.25 ± 0.16 J mol-1 K-1) permit to 

establish that the enantioseparation of D- and L-2-HG on QD-AX column is an enthalpically driven 

process.. Over the tested temperature range both enantioselectivity and resolution showed a 

clear trend with higher values the lower the temperature (Suppl. Figure 8.8b and Suppl. Table 

8.7). 
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8.5.8 Effect of flow rate 

Chiral separations of acidic compounds on chiral anion-exchangers are typically characterized by 

a relatively slow mass transfer term due to multi-point attachment of solutes on the sorbent 

surface and slow desorption kinetics. This is quite common for chiral separations on CSPs which 

exhibit therefore a steep C-term branch in H/u-curves. This behavior is found for 2-HG as well 

(Suppl. Figure 8.9b). Upon decrease of the flow rate by a factor of 2 from 1 mL/min to 0.5 

mL/min, the plate height is decreased by a factor of about 1.2. Although this translates into a 

gain in Rs by a square root of only 1.2 (gain in Rs by factor of ca. 1.1), this is significant but comes 

at the expense of longer run times (factor 2) (see Suppl. Figure 8.9c and Suppl. Table 8.8). 

8.5.9 Multi-criteria decision making 

The above stated experiments clearly indicated with which conditions a separation of 2-HG 

enantiomers can be achieved. However, some of these separations require long run times. To 

optimize both RS and run times Pareto-optimality plots were constructed by plotting Rs vs inverse 

of run time (Figure 8.7). From this plot it is straightforward to select acceptable conditions. 

Pareto optimal points are indicated in blue. Beyond their boundary to the right no other 

conditions were tested, which give better results i.e. higher resolution at shorter run times. 

 

Figure 8.7. Plot of resolution versus inverse of retention time for second peak, obtained during different 
chromatographic runs. Pareto optimal points in blue. Labels mean eluent composition % of ACN:% of MeOH: FA 
concentration (mM). F means flow (mL/min) and T means column temperature (°C). If not stated otherwise 
temperature was 25 °C and flow rate was 1.0 mL/min. Note, run time (tR2) was plotted in inverse scale because a 
smaller value is advantageous. Users can easily find the best compromise between resolution and speed of analysis. 

8.6 Conclusions 

Enantioseparation of underivatized D,L-2-HG was successfully achieved on a Chiralpak QD-AX 

column, operating in accordance to an anion-exchange mechanism. Full baseline separation was 
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accomplished with a mobile phase composed of MeOH with 40 mM FA, at a flow rate of 1.0 

mL/min and at a column temperature of 10°C. 

The elution order of enantiomers was determined on QD-AX and QN-AX columns showing an 

inversion of elution order by exchanging these columns confirming their pseudo-enantiomeric 

behavior. This represents an important advantage when the minor enantiomer must be 

analyzed in the presence of the major one. Such systematic reversal of the elution order is not 

possible with Ristocetin-based Chirobiotic R [162], also previously suggested for 2-HG 

enantiomer separation by LC. Compared to chiral ligand exchange systems, which are typically 

endowed with Cu(II) ions in the mobile phase and therefore incompatible with MS detection, 

the current enantioselective anion-exchange LC process has the advantage of providing fully MS-

compatible elution conditions. Thus, it can be concluded that the here presented 

chromatographic procedure represents currently the first choice for 2-HG enantiomer 

separation by LC-MS. 
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8.8 Supplementary material 

 

Suppl. Figure 8.1. Generic gradient elution screening runs for a mixture of D- and L-2-HG,  and  pure enantiomer L-
2-HG using different cinchona alkaloid-derived chiral ion-exchanger CSPs. Eluent: A: ACN:MeOH (75:25;v/v), B: 
ACN:MeOH (75:25; v/v) with 90 mM FA; gradient profile, 0-100% B in 30 min; flow rate, 1.0 mL/min; column 
temperature, 25 °C. Note that system peaks are due to sodium in the sample (Na+-salt of analyte was used as sample) 
and aqueous sample matrix significantly deviating from eluent composition. Na+ is eluted at about t0 on the QD-AX 
column while it is retained on the ZWIX(+) column. 

 

Suppl. Figure 8.2. a) Gradient profile and corresponding b) mixed polar modifier-acid additive gradient screening 
runs for a mixture of D- and L-2-HG, using ZWIX(+)  and QD-AX columns. Eluent: A: ACN:MeOH (95:5; v/v) with 10 
mM FA, B: MeOH with 90 mM FA; gradient profile, 0-100% B in 30 min; flow rate, 1.0 mL/min, temperature: 25 °C. 
Note that system peaks are due to sodium in the sample (Na+-salt of analyte was used as sample) and aqueous sample 
matrix significantly deviating from eluent composition. Na+ is eluted at about t0 on the QD-AX column while it is 
retained on the ZWIX(+) column. 
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Suppl. Figure 8.3. Chromatographic runs for a mixture of D- and L-2-HG at different ratios of ACN:MeOH.  Eluent: 
ACN:MeOH at different ratios (v/v) at constant FA concentration of 60 mM; flow rate, 1.0 mL/min; column 
temperature, 25 °C. 

 

 

Suppl. Figure 8.4. Effect of different types of alcohols on the chromatographic parameters.  Eluent: alcohol 100 % 
(v/v) with 60 mM FA; flow rate, 1.0 mL/min; column temperature, 25 °C. 
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Suppl. Figure 8.5. Chromatographic runs for a mixture of D- and L-2-HG at different ratios of ACN:H2O.  Eluent: 
ACN:H2O at different ratios (v/v) at constant concentration of 60 mM FA; flow rate, 1.0 mL/min; column temperature, 
25 °C. 

 

 

Suppl. Figure 8.6. Effect of different types of co-ions (ammonia, NH3; DEA, diethylamine; TEA, triethylamine) in the 
mobile phase on the chromatographic parameters.  Eluent: 100 % MeOH (v/v) containing 60 mM FA and 10 mM 
amine; flow rate, 1.0 mL/min; column temperature, 25 °C. 

 

 

Suppl. Figure 8.7. a) Chromatographic runs for a mixture of D- and L-2-HG at different FA concentrations using QD-
AX column, b) corresponding resolution and selectivity plots and c) peak area and USP tailing plots.  Eluent: 
ACN:MeOH (30:70;v/v) with different concentrations of FA; flow rate, 1.0 mL/min; column temperature, 25 °C. 
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Suppl. Figure 8.8. a) Chromatographic runs for a mixture of D- and L-2-HG, at different temperatures, b) 
corresponding plots of chromatographic parameters. Eluent: 100 % MeOH containing 40 mM FA, flow rate: 1,0 
mL/min. 

 

Suppl. Figure 8.9. a) Chromatographic runs for a mixture of D- and L-2-HG, at different flow rates, and b), c) 
corresponding plots of chromatographic parameters. Eluent: MeOH 100 % with 40 mM FA; temperature, 25 ° C. 
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Suppl. Table 8.1. Chromatographic parameters obtained for the separations of D- and L-2-HG in the counterion 
gradient elution screening runs on the four different CSPs. 

Column tR 1 [min] tR 2 [min] k* 1 k* 2 * N*1 N*2 RS 

ZWIX (+) 6.108 6.180 3.01 3.06 1.02 4782 1027 0.13 

ZWIX (-) 6.387 6.387 3.36 3.36 1.00 1695  0.00 

QD-AX 34.017 35.873 23.30 24.62 1.06 12343 8810 1.35 

QD-AX 35.479  24.34   8018   

QN-AX 32.472 34.736 22.11 23.72 1.07 4661 4148 1.11 

QN-AX 32.119  21.86   3048   

Chromatographic conditions:  Eluent: A: ACN:MeOH (75:25;v/v), B: ACN:MeOH (75:25; v/v) with 90 mM FA; gradient 
profile, 0-100% B in 30 min; flow rate, 1.0 mL/min; column temperature, 25 °C. k*, α* and N* represent apparent 
values 

 

Suppl. Table 8.2. Chromatographic parameters obtained during the mixed polar modifier-counterion gradient 
elution separation of D- and L-2-HG with QD-AX and ZWIX(+) column. 

Column tR 1  [min] tR 2 [min] k* 1 k* 2 * N*1 N*2 RS 

QD-AX 25.685 26.792 17.28 18.07 1.05 9486 8433 0.99 

ZWIX (+) 5.917 6.080 2.77 2.88 1.04 5266 300 0.19 

Eluent: A: ACN:MeOH (95:5; v/v) with 10 mM FA, B: MeOH with 90 mM FA; gradient profile, 0-100% B in 30 min; flow 
rate: 1.0 mL/min, temperature: 25 °C. k*, α* and N* represent apparent values 

 

Suppl. Table 8.3. Chromatographic parameters obtained for the separations of D- and L-2-HG at different 
ACN:MeOH ratios. 

ACN:MeOH 

(v/v) 
tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

0:100 8.200 9.168 4.56 5.21 1.14 2738 2261 1.38 

25:75 8.787 9.781 5.09 5.78 1.14 2829 2351 1.35 

50:50 11.647 12.971 7.28 8.23 1.13 3107 2698 1.44 

75:25 20.008 22.342 13.20 14.86 1.13 3222 2713 1.49 

Eluent: ACN:MeOH at different % (v/v) ratios with 60 mM FA, flow rate: 1.0 mL/min; column temperature: 25 °C. 
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Suppl. Table 8.4. Chromatographic parameters obtained for the separation of D- and L-2-HG by employing different 
types of alcohol 

Polar 

modifier 
tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

MeOH 8.200 9.168 4.56 5.21 1.14 2738 2261 1.38 

EtOH 10.994 12.418 5.95 6.85 1.15 1304 999 1.02 

PrOH 14.025 15.967 7.44 8.61 1.16 839 588 0.85 

Eluent: 100% alcohol with 60 mM FA, flow rate, 1.0 mL/min; column temperature, 25 °C. 

 

Suppl. Table 8.5. Chromatographic parameters obtained for the separation of D- and L-2-HG by employing different 
types of amines as co-ions 

Amine tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

- 9.256 10.402 5.27 6.05 1.15 2003 1866 1.28 

NH3 10.274 11.535 5.96 6.82 1.14 1770 1523 1.17 

DEA 10.840 12.184 6.34 7.25 1.14 1397 1095 1.02 

TEA 10.830 12.221 6.34 7.28 1.15 1037 857 0.92 

Eluent: 100% MeOH with 60 mM FA and 10 mM amine, flow rate, 1.0 mL/min; column temperature, 25 °C. 

 

Suppl. Table 8.6. Chromatographic parameters obtained for the separation of D- and L-2-HG at different 
concentrations of formic acid. 

FA conc 

[mM] 

tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

30 22.413 25.391 14.59 16.66 1.14 3855 2751 1.76 

40 16.169 18.181 10.24 11.64 1.14 3027 2585 1.54 

50 13.172 14.745 8.16 9.25 1.13 3180 2710 1.52 

60 10.824 12.065 6.53 7.39 1.13 2941 2399 1.39 

90 7.270 7.963 4.06 4.54 1.12 2643 1947 1.07 

Eluent: ACN:MeOH (30:70;v/v) with different concentrations of FA; flow rate, 1.0 mL/min; column temperature, 25 
°C. 
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Suppl. Table 8.7. Chromatographic parameters obtained during the separation of D- and L-2-HG at  different 
temperatures. 

Temperature 

[°C] 

tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

10 15.353 17.734 9.04 10.6 1.17 3171 3035 2.00 

18 14.176 16.181 8.37 9.69 1.16 3528 3186 1.90 

25 13.072 14.696 7.73 8.82 1.14 3851 3572 1.77 

32 11.966 13.311 7.05 7.96 1.13 4064 3676 1.65 

40 10.816 11.870 6.37 7.09 1.11 4179 3582 1.44 

Eluent: 100 % MeOH with 40 mM FA; flow rate, 1.0 mL/min; column temperature, 25 °C. 

 

 

Suppl. Table 8.8. Chromatographic parameters obtained during the separation of D- and L-2-HG at different flow 
rates 

Flow 

(mL/min) 

tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

1.0 12.218 13.827 7.18 8.26 1.15 2914 2383 1.58 

0.5 25.686 29.206 7.68 8.87 1.15 3382 3076 1.81 

0.3 47.117 53.502 8.59 9.89 1.15 3597 2874 1.79 

Eluent: 100 % MeOH with 40 mM FA; flow rate, 1.0 mL/min; column temperature, 25 °C. 
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9.2 Abstract 

Chiral short chain aliphatic hydrocarboxylic acids (HCAs) are common compounds being part of 

different biological processes. In order to control and understand these processes is of pivotal 

importance to determine the identity of the involved enantiomer or their enantiomeric ratio. In 

this study the capacity of quinine- and quinidine-derived chiral stationary phases to perform the 

enantioseparation of eight chiral HCAs (tartaric acid, isocitric acid, malic acid, glyceric acid, 2-

hydroxyglutaric acid, 2-hydroxybutyric acid, lactic acid and 3-hydroxybutyric acid) was 

evaluated. MS-compatible conditions consisting of ACN/MeOH mixtures as eluents with formic 

acid, acid acid and/or their ammonium salts as additives, temperatures between 10 and 25°C 

(except for -20°C for 3-hydroxybutyric acid) and a flow rate of 1.00 mL/min yielded full baseline 

resolution for all studied HCAs. Elution order for the HCA enantiomers was determined revealing 

different behaviors between the studied compounds. 

9.3 Introduction 

Short chain aliphatic hydroxycarboxylic acids (HCAs) are widely relevant compounds being 

amongst others part of metabolic pathways. The presence of the hydroxyl group along the alkyl 

chain often generates a stereogenic center which leads to the occurrence of two enantiomers 

(single stereogenic center) or several stereoisomers (more than one stereogenic center) with 

different chemical and biochemical properties. For this reason it is of utmost importance to 

strictly indicate which one of the enantiomers and stereoisomers, respectively, is used in a 

particular process. As a matter of consequence, proper methodologies for their separation, 

identification and quantification are required in areas such as biochemistry, clinical chemistry 

and quality control of products in the industry. 

In the case of lactic acid (LA) [166,189,190], 2-hydroxybutyric acid (2-HBA) [191], 3-

hydroxybutyric acid (3-HBA) [192], 2-hydroxyglutaric acid (2-HGA) [146,148,149,158], and 

glyceric acid (GlA) [193,194], alterations in the expected enantiomer ratio have been linked to 

some diseases. Their enantioselective analysis is consequently a major concern in biomarker 

studies and clinical analysis. 

In various industries, e.g. food industry, quality control based on enantioselective analysis of 

certain enantiomers of HCAs is also critically important, for example in wine production, the 

course and progress of malolactic fermentation, a determining factor on the taste of wine, can 

be monitored by enantiomeric profiling of L-malic acid (L-MA) and L-LA [195]. D-LA is found in 

all wines in small quantities, while L-LA is only found in wines which have undergone malolactic 

acid fermentation. The enantiomer ratio consequently depends on the microbiological state. 
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Adulteration of commercial products is another important issue that can be sometimes 

monitored by the quantification of the corresponding enantiomers. For example, L-enantiomers 

of tartaric acid (TA) and MA, extracted from plants, are used as additives in certain products but 

in some cases they are replaced for synthetic racemic mixtures that are illegal or must be 

indicated on the label [196–198]. 

The enantioseparation of short chain HCAs is evidently challenging due to the difficulty to 

establish enough points of interactions between the chiral selector and the surface of the 

metabolite around its chiral center [102]. 

Different kinds of chiral selector and various analytical approaches have been tested to separate 

HCA enantiomers. Barbas and Saavedra published in 2002 a review with the main achievements 

obtained by capillary electrophoresis in different modes (ligand-exchange, macrocyclic 

antibiotics, cyclodextrins, ion-pair) to separate metabolites like LA, 2-HBA, MA and TA [102,199]. 

More recently, chiral separations by ligand exchange capillary electrophoresis have been also 

reported for MA, isocitric acid (ICA) and TA [196,197,200,201]. Capillary electrochromatography 

has been proposed recently for the separation of enantiomers of malic acid [198]. Such 

electrokinetic separation methods are not established in many laboratories and therefore HPLC 

methods are usually preferred. 

In the case of liquid chromatography, different direct and indirect approaches have been 

reported for the chiral separation of HCAs. Indirect methods using derivatization with 1-(9-

fluorenyl)ethyl chloroformate for LA and MA [202] or using (S)(+)-1-(2-pyrrolidinylmethyl)-

pyrrolidine for LA and 3-HBA [192] are a few examples. Also derivatization with diacetyl-L-

tartaric anhydride [160,203], or with N-(p-toluenesulfonyl)-L-phenylalanyl chloride [167] for 

chiral separations of D- and L-2-HGA have been described. 

Ligand exchange is also a mechanism employed in LC for LA, 2-HBA, GlA, 2-HGA, MA and TA 

enantioseparation [204,205], however, due to copper ions in eluent cannot be hyphenated to 

MS [206]. Direct HPLC separations have been reported by using macrocyclic antibiotic chiral 

stationary phases (CSPs) for LA [207], 2-HGA [162] and GlA [193] or anion exchange-type 

quinine- and quinidine-derived CSPs for LA [179], 2-HGA [208] and 3-HBA [180], but in some of 

these cases full baseline resolution was not achieved. 
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Figure 9.1. Structures of the studied aliphatic hydroxycarboxylic acids (HCAs) 

 

In this study, seven α-hydroxycarboxylic acids and one -hydroxycarboxylic acid (Figure 9.1) 

were selected in order to determine MS-compatible conditions for their full baseline resolution 

by employing four cinchona alkaloid-derived CSPs (Figure 9.2). It is supposed to be a first step 

towards enantioselective metabolomics of these important biological building blocks many of 

which are of clinical relevance. While in several of the above cited papers, it has been shown 

successful separations of the one or the other HCA, this work shows for the first time a 

systematic study and full baseline separation by direct HPLC enantiomer separation without 

derivatization of a wide range of HCAs of biological importance under MS-compatible conditions. 

9.4 Experimental 

9.4.1 Materials 

All solvents used were of HPLC grade. Acetonitrile (ACN) was obtained from J.T. Baker (Deventer, 

The Netherlands) and methanol (MeOH) was purchased from Sigma-Aldrich (Steinheim, 

Germany). Formic acid (FA) was obtained by Carl Roth (Karlsruhe, Germany). Glacial acetic acid 

(AcOH), ammonia in methanol (NH3) and ammonium acetate (NH4OAc) were supplied from 

Sigma–Aldrich (Steinheim, Germany). Water was purified by a water filtration system from Elga 

Veolia (Paris, France). 
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The reagents DL-tartaric acid, D-tartaric acid, threo-DsLs-isocitric acid trisodium salt, Ds-threo-

isocitric acid monopotassium salt, DL-malic acid disodium salt, L-malic acid disodium salt, DL-2-

hydroxyglutaric acid sodium salt, L-2-hydroxyglutaric acid sodium salt, D-glyceric acid sodium 

salt, L-glyceric acid sodium salt, (RS)-2-hydroxybutyric acid sodium salt, (S)-2-hydroxybutyric 

acid, (R)-2-hydroxybutyric acid, DL-lactic acid sodium salt, L-lactic acid lithium salt, (RS)-3-

hydroxybutyric acid sodium salt and (R)-3-hydroxybutyric acid were purchased from Sigma–

Aldrich. Solutions 2.0 mg/mL of each racemic mixture and 1.0 mg/mL of each pure enantiomer 

were prepared in water. Also solutions with enantiomeric ratio 2:1 (m/m) were prepared by 

combining proper aliquots of solutions of racemic mixtures and single enantiomers. 

The enantiomer elution order was assessed by injection of single enantiomer and/or non-

racemic mixtures (2:1; m/m). 

 

Figure 9.2. Chiral stationary phases tested in this study: Chiralpak QN-AX and QD-AX as well as Chiralpak ZWIX(+) 
and ZWIX(-) 

9.4.2 Instrumentation and chromatographic method 

LC experiments were carried out on a 1100 Series HPLC from Agilent Technologies (Waldbronn, 

Germany) equipped with a solvent degasser, a binary pump, an autosampler, a column 
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thermostat and a UV–VIS detector. UV signals were recorded at 220 nm. The HPLC system was 

connected to a Corona Charged Aerosol Detector, CAD from ESA Biosciences Inc., (Chelmsford, 

U.S.A.). The nitrogen flow of the CAD was adjusted to 35 psi. Data acquisition and analysis were 

done by using ChemStation software from Agilent Technologies. 

Four different chiral stationary phases were employed in this study: a Chiralpak QD-AX (150 x 4 

mm, 5 µm), a Chiralpak QN-AX (150 x 4 mm ID, 5 µm particle size), a Chiralpak ZWIX(+) column 

(150 x 4 mm ID, 3 µm particle size) and a Chiralpak ZWIX(-) column (150 x 4 mm ID, 3 µm particle 

size) from Chiral Technologies Europe (Illkirch, France). The void volumes of the columns were 

determined by injecting a solution of 10% (v/v) acetone in ACN with detection at 280 nm. 

The columns were conditioned with the selected mobile phase at a flow rate of 1.0 mL/min for 

at least 30 min, before performing analysis. Column temperatures below 10 °C were achieved 

by using methanol-water baths cooled with liquid nitrogen. 

9.5 Results and discussion 

9.5.1 Enantioseparation of aliphatic HCAs on QN-AX and QD-AX columns 

QN-AX and QD-AX are weak anion-exchange (WAX) columns employed mainly for the separation 

of chiral acidic compounds. Partial separation by using these columns was reported for 3-HBA 

[180] and baseline resolution was obtained for LA [179] and 2-HGA [208] previously. These three 

compounds along with other five HCAs were tested under different chromatographic conditions 

in order to achieve full baseline resolution for each of them by using compatible conditions for 

ESI-MS detection. 

9.5.1.1 Elution conditions for HCAs 

It was anticipated that HCAs with two and three carboxylic groups are compounds strongly 

retained on QD-AX and QN-AX CSPs and strong mobile phase conditions are required for their 

elution. Therefore, a mobile phase composed of MeOH/AcOH/NH4OAc (98:2:0.5; v/v/m, 

condition A) was tested initially on QD-AX column for the elution of the eight HCAs. Results for 

the separation are summarized in Table 9.1 and Suppl. Figure 9.1a. As it can be seen, the 

retention times for these compounds range from 2.1 min (3-HBA) to 75.8 min (TA, second peak). 

Except for ICA and TA, the other six HCAs elute in less than 20 min. Baseline separations were 

obtained for the isomers of GlA, MA and TA. In the case of TA, it has to be pointed out that, in 

spite of the long retention time, high selectivity ( = 1.94) and high resolution (Rs = 7.76) were 

obtained. Only 3-HBA did not show even a partial separation for its enantiomers. 
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Similar conditions were tested on the QN-AX column and the results are also indicated in Table 

9.1 and Suppl. Figure 9.1b. In this case, the retention times are slightly longer for most of the 

compounds except for ICA and TA, in which cases elution is not possible before 40 and 80 min, 

respectively. For the case of these 2 compounds a stronger mobile phase with 4% (v/v) acetic 

acid and 1% (m/v) ammoniun acetate (condition B) was used to elute the analytes (see Table 

9.1, and Suppl. Figure 9.2). 

Table 9.1. Resolution values and retention times (for second peak) obtained during enantioseparation of 
hydroxycarboxylic acids under different conditions 

Column Condition 

  3-HBA   LA   2-HBA   GlA   2-HGA   MA   ICA   TA 

  R
s
 tR2  

[min] 
  R

s
 tR2  

[min] 
  R

s
 tR2  

[min] 
  R

s
 tR2  

[min] 
  R

s
 tR2  

[min] 
  R

s
 tR2  

[min] 
  R

s
 tR2  

[min] 
  R

s
 tR2  

[min] 

QD-AX A   0.00 2.1   0.61 3.2   0.66 3.2   1.70 4.3   0.85 7.2   2.74 13.2   0.42 27.7   7.76 75.8 

QN-AX A   0.00 2.1   0.98 3.7   1.63 3.8   2.37 5.4   0.00 9.5   0.00 15.1     >45     >80 

QN-AX B                                       0.60 17.9   0.73 31.1 

QD-AX C   0.00 1.9   0.65 3.0   1.00 3.0   2.24 5.2   0.72 6.2   2.08 15.8             

QN-AX C   0.00 1.9   1.52 3.6   2.76 3.7   3.67 7.0   0.60 8.3   0.00 18.8             

QD-AX D                          1.53 13.4                   

QD-AX E   0.00 2.9   1.30 9.4   2.01 9.5                              

QN-AX E   0.00 3.0   3.24 11.9   4.82 12.7                              

QD-AX F  0.60 10.3                      

QN-AX F  0.54 9.8                      

QD-AX G  0.76 16.7                      

QD-AX H  1.52 49.3                      

ZWIX(+) I   0.00 2.1   0.00 2.0   0.00 2.0   2.60 3.0   0.00 2.0   0.00 2.2   0.00 2.5   1.06 3.5 

ZWIX(-) I   0.00 2.0   0.00 2.0   0.00 2.0   6.43 4.4   0.00 2.1   1.14 3.0   2.27 4.4   2.37 7.3 

ZWIX(-) J   0.00 2.1   0.00 2.1   0.00 2.1   7.05 5.9   0.00 2.1   1.28 3.3   2.50 4.8   2.19 8.6 

ZWIX(-) K   0.00 2.1   0.00 2.1   0.00 2.1   6.82 6.7   0.00 2.3   1.57 4.0   3.00 6.3   2.76 12.6 

A: mobile phase MeOH/AcOH/NH4OAc (98:2:0.5; v/v/m), 25 °C, 1.0 mL/min,  B: mobile phase MeOH/AcOH/NH4OAc 
(96:4:1; v/v/m), 25 °C, 1.0 mL/min, C: mobile phase 100 % MeOH containing 90 mM FA and 15 mM  NH3, 25 °C, 1.0 
mL/min, D: mobile phase 100 % MeOH containing 40 mM FA and 5 mM  NH3, 10 °C, 1.0 mL/min, E: mobile phase 
ACN/MeOH (50:50; v/v containing 15 mM FA, 25 °C, 1.0 mL/min, F: mobile phase ACN/MeOH (95:5; v/v) containing 5 
mM FA, 25 °C, 1.0 mL/min,  G: mobile phase ACN/MeOH (95:5; v/v) containing 2.5 mM FA, 10 °C, 1.0 mL/min, H: 
mobile phase ACN/MeOH (95:5; v/v) containing 17.4 mM AcOH, 1.0 mL/min, I: mobile phase ACN/MeOH (50:50; v/v) 
containing 60 mM FA, 25 °C, 1.0 mL/min, J: mobile phase ACN/MeOH (50:50; v/v) containing 60 mM FA, 10 °C, 1.0 
mL/min, K: mobile phase ACN/MeOH (50:50;  v/v) containing 30 mM FA, 10 °C, 1.0 mL/min 

In general, it is possible to see that QD-AX exhibits a better resolution for the separation of HCAs 

which are more strongly retained whereas the QN-AX reveals a better separation for the HCAs 

which are more weakly retained. 

According to these results and considering that the used mobile phases (conditions A and B) 

contains a high concentration of ammonium acetate not ideally suited for ESI-MS-analysis, a 

mobile phase with similar elution strength but lower salt (electrolytes) content was tested next. 

Formic acid (FA) and ammonia (NH3) were used instead of acetic acid (AcOH) and ammonium 
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acetate (NH4OAc). A mobile phase composed of 100 % MeOH containing 90 mM FA and 15 mM 

NH3 (condition C) was tested on the QD-AX and QN-AX columns. Compared to the previous 

conditions on the same two columns, slight improvements in resolution were obtained for LA, 

2-HBA and GlA but not for MA and 2-HGA (see Table 9.1 and Suppl. Figure 9.3). In the case of 

ICA and TA some problems occurred due to long retention times and lack of reproducibility of 

chromatographic runs with this mobile phase and for this reason their separation was resumed 

on the zwitterionic columns later. 

Because the separation already obtained for MA on QD-AX and GlA on QN-AX (under condition 

C) were good enough these compounds were not considered for further experiments on the two 

WAX columns. Conditions for improving the separation of 2-HGA and the less retained acids (2-

HBA, LA and 3-HBA) are evaluated in the next steps. 

9.5.1.2 Separation conditions for enantiomers of 2-HGA 

In the case of 2-HGA, a previous study [208] employing a QD-AX column allowed to obtain a 

baseline resolution by using a mobile phase composed of 100 % methanol containing 40 mM FA 

at 10 °C. However, this mobile phase is not sufficiently stable because of the fast decomposition 

of formic acid in methanol (yielding relatively quickly formic acid methyl ester under ambient 

temperature, as previously reported [209]). For this reason, a concentration of 5 mM ammonia 

(condition D) was incorporated into the mobile phase. With this addition of ammonia resolution 

was reduced until 1.53 but it is still baseline separation (see Table 9.1 and Suppl. Figure 9.4). 

9.5.1.3 Separation conditions for enantiomers of 3-HBA, LA and 2-HBA 

In an attempt to improve the resolution of the most weakly retained acids, part of methanol in 

the eluent was replaced with acetonitrile and the formic acid concentration was decreased 

providing a mobile phase composed of ACN/MeOH (50:50; v/v) containing 15 mM FA (condition 

E, note that in this case no problems with mobile phase stability were observed due to the 

presence of ACN in the methanolic eluent). No separation was obtained for 3-HBA but 

considerable improvement was achieved in resolution for the separation of 2-HBA and LA on 

QN-AX column (see Table 9.1 and Suppl. Figure 9.5). 

9.5.1.4 Separation conditions for enantiomers of 3-HBA 

Conditions already tested with QD-AX and QN-AX columns have not showed yet even a partial 

separation of 3-HBA. For this reason, a greater increase in acetonitrile percentage and greater 

decrease in formic acid concentration yielding a mobile phase of ACN/MeOH (95:5; v/v) 

containing 5 mM FA (condition F) were used, allowing to obtain a partial separation on both 
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columns. A slightly better resolution (Rs = 0.60) was obtained on QD-AX column (Table 9.1 and 

Suppl. Figure 9.6) and it was therefore employed for further experiments. In the next step, a 

systematic study (Suppl. Table 9.3) considering two acetonitrile-methanol ratios, three FA 

concentrations, two temperatures and two flow rates, allowed to find a maximum in resolution 

of 0.76 (mobile phase composed of ACN/MeOH (95:5; v/v), containing 2.5 mM FA, 10 °C, 1.0 

mL/min, condition G) which is still far from baseline resolution. For this reason acetic acid was 

re-employed as additive because it has been seen that separation factors are in some cases 

better with this counterion. Moreover, due to the low retention of 3-HBA there is no need for 

elevated counterion concentrations in this case for its elution. A mobile phase composed of 

ACN/MeOH (95:5; v/v) containing 17.4 mM AcOH (condition H), at 10 °C and with a flow rate of 

1.0 mL/min yielded a resolution of 1.00. 

Finally, the effect of changing the temperature from 20°C to -20°C (using five different 

temperatures) was studied. It turned out to have a major effect on resolution, being eventually 

possible to reach a baseline resolution (Rs = 1.52) at -20 °C (see Table 9.1 and Suppl. Figure 9.7). 

This temperature effect on separation factors was also analyzed in terms of the Van´t Hoff 

equation (eq. 1) 

𝑙𝑛 =  
∆𝐻°

𝑅𝑇
+
∆𝑆°

𝑅
 (1) 

wherein ΔΔH° and ΔΔS° are differential standard enthalpy and entropy changes between the 

two corresponding enantiomers, R is the universal gas constant, and T is the absolute 

temperature in K [210]. 

According to the experimental data applied to equation  1, values for ΔΔH° (-0.381 ± 0.006 kJ 

mol-1) and ΔΔS° (-0.92 ± 0.02 J mol-1 K-1) were obtained. They permit to conclude that the 

enantioseparation of (R)- and (S)-3-HBA on QD-AX column is an enthalpically driven process 

(Figure 9.3) [210]. 

9.5.2 Enantioseparation of hydroxycarboxylic acids on ZWIX(+) and ZWIX(-) 

The zwitterionic chiral stationary phases ZWIX(+) and ZWIX(-) (Figure 9.2) behave also as weak 

anion exchangers for the separation of HCA enantiomers because the sulfonic acid moiety does 

not represent a binding site which provides attractive interactions with HCAs. In contrast, this 

interaction site represents an intramolecular counterion owing to repulsive electrostatic 

interactions. Hence, due to the presence of this sulfonic acid group on the structure of 

zwitterionic CSPs, the retention of the HCA is weaker and they required milder conditions for 

elution than on the corresponding anion exchange (AX) congeners. 
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Figure 9.3. Temperature dependence of retention and separation factors as illustrated by van’t Hoff plots. Mobile 
phase ACN/MeOH (95:5; v/v) containing 17.4 mM AcOH, 1.0 mL/min 

 

Eluent gradients were initially used to determine proper conditions for the elution of all 

compounds. ACN/MeOH (50:50; v/v) containing 60 mM FA at 25 °C and 1.0 mL/min (condition I 

were selected and tested as isocratic conditions allowing the elution of all the HCAs in less than 

10 min on both ZWIX(+) and ZWIX(-) (see Table 9.1 and Suppl. Figure 9.8). However, considerably 

better results were obtained with the ZWIX(-) column, which showed baseline resolution under 

these conditions for TA, ICA and GlA and almost baseline resolution for MA (Rs = 1.14) (see Table 

9.1 and Suppl. Figure 9.8). In order to achieve full baseline resolution for these four compounds 

under the same conditions, temperature was decreased to 10°C (condition J) (see Suppl. Figure 

9.9) and subsequently the FA concentration was reduced to 30 mM (condition K) (see Suppl. 

Figure 9.10). Thus, a resolution of 1.57 was obtained for MA (Figure 9.4f), whereas the other 

three mentioned acids kept good resolution making possible a separation of the four HCAs in 

less than 15 minutes on the ZWIX(-) column. 

Figure 9.4 shows the best obtained separations of the eight studied HCAs from the different 

tested conditions with regard on obtaining full baseline resolution (Rs higher than 1.5) and 

shortest retention times (note, higher resolutions have been afforded for some HCAs with other 

conditions, yet at expense of longer run times; see Suppl. Material for full set of data). 

9.5.3 Elution order of HCAs on studied CSPs 

One important reported feature of quinine- and quinidine-derived CSPs is their pseudo-

enantiomeric behavior which allows in most of the cases inversion of elution order by changing 

from QD-AX to QN-AX, or from ZWIX(+) to ZWIX(-), or vice versa [181,211]. It is also expected to 

have the same elution order for a certain pair of enantiomers on the corresponding AX and ZWIX 
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derived from the same cinchona alkaloid. This means that the columns QD-AX and ZWIX(-) 

should reveal the same elution orders because they are both derived from quinidine (QD) and 

the same situation should hold for QN-AX and ZWIX(+) which are both derived from quinine 

(QN). 

 

Figure 9.4. Chromatographic runs for the best separations of HCA enantiomers performed on different CSPs. a) (RS)-
3-HBA  on QD-AX; condition H at -20 °C, b) DL-LA on QN-AX; condition C, c) (RS)-2-HBA on QN-AX; condition C, d) DL-
GlA on ZWIX(-); condition I, e) DL-2-HGA on QD-AX; condition D, f) DL-MA on ZWIX(-); condition K, g) DL-ICA on ZWIX(-
); condition I, h) DL-TA on ZWIX(-); condition I (for details of experimental conditions see Table 9.1) 

 

For the group of studied HCAs, elution order was determined on the columns for which partial 

or baseline separations were achieved, and this information is summarized in Table 9.2. Only for 

three HCAs (GlA, 2-HBA and TA) elution order could be determined on all four CSPs. Interestingly, 

their behaviors are different in each case. GlA follows the expected manner described above: 

the alkaloid moiety and its absolute configurations in position 8 and 9, respectively, are decisive 

for the elution order with stronger retention for the D-enantiomer on QN-AX and ZWIX(+) as 

well as the L-enantiomer on QD-AX and ZWIX(-) (Figure 9.5). For 2-HBA an inversion of elution 

order is observed by exchanging the QD-AX for QN-AX column, and vice versa, but not when 
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ZWIX(+) is exchanged for ZWIX(-) (Suppl. Figure 9.11). In the case of TA, there is no inversion of 

elution order obtained when QN-derived CSP is exchanged for QD-derived analog, neither when 

ZWIX(+) is exchanged for ZWIX(-) nor when QN-AX is exchanged for QD-AX columns. However, 

the elution order can be reversed by a change from the AX to the corresponding ZWIX column 

(Suppl. Figure 9.12).  

Table 9.2. Elution orders for hydroxycarboxylic acids on studied chiral stationary phases 

Compound 

Configuration of the first eluted enantiomer on each column 

QN-AX QD-AX ZWIX(+) ZWIX(-) 

3-HBA R (D) S (L) R (D) n.s. 

LA S (L) R (D) n.s. S (L) 

2-HBA S (L) R (D) S (L) S (L) 

GlA S (L) R (D) S (L) R (D) 

2-HGA S (L) R (D) S (L) n.s. 

MA n.s. R (D) n.s. S (L) 

ICA 1R,2S (D) 1R,2S (D) 1S,2R (L) 1S,2R (L) 

TA 2R,3R (L) 2R,3R (L) 2S,3S (L) 2S,3S (L) 

n.s.: no separation, TA (IUPAC name): 2,3-dihydroxybutanedioic acid, ICA (IUPAC name): 1-hydroxypropane-1,2,3-
tricarboxylic acid 

 

With respect to the other HCAs, elution order information could be determined only on two or 

three of the four CSPs. However, it can be seen that for example LA appears to behave like 2-

HBA, and ICA and MA appear to behave like TA. In the case of TA, ICA and MA is interesting their 

similar behavior because all of them are oligocarboxylic acids (i.e. di- or tricarboxylic acids) with 

carboxylic groups in positions 1 and 4. In contrast, 2-HGA which was the other oligocarboxylic 

acid (dicarboxylic acid) studied, having carboxylic groups in position 1 and 5 has a behavior of 

elution order which is completely different. The above mentioned situations can be an important 

indication for completely different mechanisms of interaction between these HCAs and the 

chiral selector anchored on the corresponding CSPs. 
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Figure 9.5. Chromatographic runs for a mixture of D- and L-GlA enantiomers or the D-GlA enantiomer on a) QN-AX 
column,  b) ZWIX(+) column, c) QD-AX column and d) ZWIX(-) column. 

9.6 Conclusions 

MS-compatible conditions for the enantioseparation (full baseline resolution) of eight HCAs 

were determined in at least one of the four CSPs employed. Except for the case of 3-HBA, 

conditions for the chiral separation consist of ACN/MeOH  mixtures as eluents containing FA 

and/or NH3 as additives, temperatures between 10 and 25°C and a flow rate of 1.00 mL/min. In 

the case of 3-HBA enantiomers, acetic acid (17.4 mM) as additive and a temperature of -20 °C 

were required to obtain baseline resolution. When possible elution order was determined for 

the enantiomers revealing at least three different behaviors between the studied compounds, 

it means that no reversion of elution order by exchanging QD-AX and QN-AX columns, or ZWIX(+) 

and ZWIX(-) is possible with all these compounds, and it has to be analyzed in a case to case 

basis. 
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9.8 Supplementary material 

 

Suppl. Figure 9.1. Chromatographic runs for a mixture of HCA enantiomers on a) QD-AX column and b) QN-AX 
column. Mobile phase MeOH/AcOH/NH4OAc (98:2:0.5; v/v/m), 25 °C, 1.0 mL/min 

 

 

Suppl. Figure 9.2. Chromatographic runs for a mixture of D- and L-ICA enantiomers and D- and L-TA enantiomers 
on a QN-AX column. Mobile phase MeOH/AcOH/NH4OAc (96:4:1; v/v/m), 25 °C, 1.0 mL/min 
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Suppl. Figure 9.3. Chromatographic runs for a mixture of HCA enantiomers on a) QD-AX column and b) QN-AX 
column. Mobile phase: 100 % MeOH containing 90 mM FA and 15 mM  NH3, 25 °C, 1.0 mL/min. 

 

Suppl. Figure 9.4. Chromatographic runs for a mixture of D- and L-2-HGA on QD-AX column. Mobile phase: 100 % 
MeOH containing 40 mM FA and 5 mM  NH3, 10 °C, 1.0 mL/min. 
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Suppl. Figure 9.5. Chromatographic runs for a mixture of less retained HCA enantiomers on a) QD-AX column and 
b) QN-AX column. Mobile phase ACN:MeOH 50:50 % v/v containing 15 mM FA, 25 °C, 1.0 mL/min 

 

Suppl. Figure 9.6. Chromatographic runs for a mixture (R)- and (S)-3-HBA enantiomers on a) QN-AX column and b) 
QD-AX column. Mobile phase ACN/MeOH (95:5; v/v) containing 5 mM FA, 25 °C, 1.0 mL/min  
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Suppl. Figure 9.7. Chromatographic runs for a mixture of (R)- and (S)-3-HBA at different temperatures from 20 (top) 
to -20 °C (bottom). Mobile phase ACN/MeOH (95:5; v/v) containing 17.4 mM AcOH, 1.0 mL/min 

 

Suppl. Figure 9.8. Chromatographic runs for HCA enantiomers on a) ZWIX(+) column and b) ZWIX(-) column. Mobile 
phase ACN/MeOH (50:50; v/v) containing 60 mM FA, 25 °C, 1.0 mL/min 
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Suppl. Figure 9.9. Chromatographic runs for a mixture of HCA enantiomers on a) ZWIX(-) column. Mobile phase 
ACN/MeOH (50:50; v/v) containing 60 mM FA, 10 °C, 1.0 mL/min 

 

Suppl. Figure 9.10. Chromatographic runs for a mixture of HCA enantiomers on a) ZWIX(-) column. Mobile phase 
ACN/MeOH (50:50; v/v) containing 30 mM FA, 10 °C, 1.0 mL/min 
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Suppl. Figure 9.11. Chromatographic runs for a mixture of (R)- and (S)-2-HBA enantiomers or single enantiomer on  
a) QN-AX column,  b) ZWIX(+) column, c) QD-AX column and d) ZWIX(-) column. 

 

 

Suppl. Figure 9.12. Chromatographic runs for a mixture of D- and L-TA enantiomers or the D-TA enantiomer on a) 
QN-AX column,  b) ZWIX(+) column, c) QD-AX column and d) ZWIX(-) column. 
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Suppl. Table 9.1. Chromatographic parameters obtained under different conditions for the separation of HCAs with 
QD-AX and QN-AX columns. 

Column Condition Compound tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

QD-AX A D,L-TA 39.772 75.839 28.68 55.60 1.94 2237 2633 7.76 

QD-AX A D,L-ICA 25.643 27.673 18.14 19.65 1.08 1247 260 0.42 

QD-AX A D,L-MA 10.403 13.154 6.76 8.82 1.30 2245 2189 2.74 

QD-AX A D,L-2-HGA 6.677 7.186 3.98 4.36 1.10 2399 1922 0.85 

QD-AX A D,L-GlA 3.842 4.335 1.87 2.24 1.20 3266 3112 1.70 

QD-AX A R,S-2-HBA 3.018 3.178 1.25 1.37 1.10 2023 3472 0.66 

QD-AX A D,L-LA 3.060 3.184 1.28 1.38 1.07 4139 3541 0.61 

QD-AX A R,S-3-HBA 2.090 2.090 0.56 0.56 1.00 946 
 

0.00 

QN-AX A D,L-MA 15.109 15.109 9.16 9.16 1.00 749 
 

0.00 

QN-AX A D,L-2-HGA 9.463 9.463 5.36 5.36 1.00 837 
 

0.00 

QN-AX A D,L-GlA 4.419 5.367 1.97 2.61 1.32 2237 2556 2.37 

QN-AX A R,S-2-HBA 3.332 3.778 1.24 1.54 1.24 2414 3027 1.63 

QN-AX A D,L-LA 3.396 3.669 1.28 1.47 1.14 2440 2732 0.98 

QN-AX A R,S-3-HBA 2.082 2.082 0.40 0.40 1.00 
  

0.00 

QN-AX B D,L-TA 27.816 31.066 17.74 19.93 1.12 686 751 0.73 

QN-AX B D,L-ICA 16.670 17.945 10.23 11.09 1.08 1541 815 0.60 

QD-AX C D,L-MA 12.612 15.761 7.19 9.24 1.28 1244 1582 2.08 

QD-AX C D,L-2-HGA 5.724 6.189 2.72 3.02 1.11 1553 1221 0.72 

QD-AX C D,L-GlA 4.465 5.229 1.90 2.40 1.26 3301 3220 2.24 

QD-AX C R,S-2-HBA 2.844 3.015 0.85 0.96 1.13 4311 5041 1.00 

QD-AX C D,L-LA 2.918 3.045 0.90 0.98 1.09 3832 3692 0.65 

QD-AX C R,S-3-HBA 1.949 1.949 0.27 0.27 1.00 369  0.00 

QN-AX C D,L-MA 18.779 18.779 11.50 11.50 1.00 465  0.00 

QN-AX C D,L-2-HGA 7.850 8.327 4.23 4.54 1.08 2247 1319 0.60 

QN-AX C D,L-GlA 5.437 6.975 2.62 3.64 1.39 3387 3701 3.67 

QN-AX C R,S-2-HBA 3.197 3.733 1.13 1.49 1.32 3354 7727 2.76 

QN-AX C D,L-LA 3.375 3.570 1.25 1.38 1.10 3737 7240 1.52 

QN-AX C R,S-3-HBA 1.913 1.913 0.27 0.27 1.00 291  0.00 

QD-AX D D,L-2-HGA 11.918 13.446 6.59 7.56 1.15 2913 2373 1.53 

QD-AX E R,S-2-HBA 8.689 9.488 4.91 5.45 1.11 7329 9602 2.01 

QD-AX E D,L-LA 8.739 9.411 4.94 5.40 1.09 3232 8249 1.30 

QD-AX E R,S-3-HBA 2.875 2.875 0.96 0.96 1.00 1146  0.00 

QN-AX E R,S-2-HBA 10.240 12.660 6.16 7.85 1.27 9303 8161 4.82 

QN-AX E D,L-LA 10.440 11.884 6.30 7.30 1.16 9906 10206 3.24 

QN-AX E R,S-3-HBA 3.031 3.031 1.12 1.12 1.00 566  0.00 

QD-AX F R,S-3-HBA 9.847 10.339 5.76 6.10 1.06 2935 2102 0.60 

QN-AX F R,S-3-HBA 9.483 9.804 5.20 5.41 1.04 5615 3810 0.54 

QD-AX G R,S-3-HBA 15.870 16.714 8.77 9.29 1.06 4861 2668 0.76 

QD-AX H at -20 °C R,S-3-HBA 46.089 49.346 27.72 29.75 1.07 10288 6422 1.52 

QD-AX H at -10 °C R,S-3-HBA 38.991 41.450 23.52 25.07 1.07 9224 6842 1.35 

QD-AX H at -0 °C R,S-3-HBA 31.956 33.757 19.37 20.51 1.06 7764 7353 1.19 

QD-AX H at 10 °C R,S-3-HBA 22.350 23.438 13.46 14.16 1.05 7419 6786 1.00 

QD-AX H at 20 °C R,S-3-HBA 17.830 18.600 10.66 11.16 1.05 6995 4974 0.81 

A: mobile phase MeOH/AcOH/NH4OAC (98:2:0.5; v/v/m), 25 °C, 1.0 mL/min,  B: mobile phase MeOH/AcOH/NH4OAC 
(96:4:1; v/v/m), 25 °C, 1.0 mL/min, C: mobile phase 100 % MeOH containing 90 mM FA and 15 mM  NH3, 25 °C, 1.0 
mL/min, D: mobile phase 100 % MeOH containing 40 mM FA and 5 mM  NH3, 10 °C, 1.0 mL/min, E: mobile phase 
ACN/MeOH (50:50; v/v) containing 15 mM FA, 25 °C, 1.0 mL/min F: mobile phase ACN/MeOH (95:5; v/v) containing 
5 mM FA, 25 °C, 1.0 mL/min,  G: mobile phase ACN/MeOH (95:5; v/v) containing 2.5 mM FA, 10 °C, 1.0 mL/min, H: 
mobile phase ACN/MeOH (95:5; v/v) containing 17.4 mM AcOH, 1.0 mL/min 
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Suppl. Table 9.2. Chromatographic parameters obtained under different conditions for the separation of HCAs with 
ZWIX(+) and ZWIX(-) columns. 

Column Condition Compound tR1  [min] tR2 [min] k 1 k 2  N1 N2 RS 

ZWIX(+) I D,L-TA 3.131 3.538 0.99 1.25 1.26 1506 1027 1.06 

ZWIX(+) I D,L-ICA 2.545 2.545 0.62 0.62 1.00 624 
 

0.00 

ZWIX(+) I D,L-MA 2.245 2.245 0.43 0.43 1.00 577 
 

0.00 

ZWIX(+) I D,L-2-HGA 1.960 1.960 0.25 0.25 1.00 341 
 

0.00 

ZWIX(+) I D,L-GlA 2.234 2.952 0.42 0.88 2.08 904 2148 2.60 

ZWIX(+) I R,S-2-HBA 2.047 2.047 0.30 0.30 1.00 372 
 

0.00 

ZWIX(+) I D,L-LA 2.029 2.029 0.29 0.29 1.00 571 
 

0.00 

ZWIX(+) I R,S-3-HBA 2.051 2.051 0.31 0.31 1.00 437 
 

0.00 

ZWIX(-) I D,L-TA 5.632 7.312 2.75 3.87 1.41 1635 1167 2.37 

ZWIX(-) I D,L-ICA 3.613 4.354 1.41 1.90 1.35 2827 2172 2.27 

ZWIX(-) I D,L-MA 2.772 3.035 0.85 1.02 1.21 2684 2396 1.14 

ZWIX(-) I D,L-2-HGA 2.140 2.140 0.43 0.43 1.00 1550 
 

0.00 

ZWIX(-) I D,L-GlA 2.643 4.399 0.76 1.93 2.54 3201 2433 6.43 

ZWIX(-) I R,S-2-HBA 1.968 1.968 0.31 0.31 1.00 284 
 

0.00 

ZWIX(-) I D,L-LA 1.997 1.997 0.33 0.33 1.00 251 
 

0.00 

ZWIX(-) I R,S-3-HBA 1.978 1.978 0.32 0.32 1.00 311 
 

0.00 

ZWIX(-) J D,L-TA 6.660 8.613 3.36 4.63 1.38 1414 1027 2.19 

ZWIX(-) J D,L-ICA 3.871 4.781 1.53 2.13 1.39 2326 2257 2.50 

ZWIX(-) J D,L-MA 2.928 3.286 0.91 1.15 1.26 1880 2121 1.28 

ZWIX(-) J D,L-2-HGA 2.146 2.146 0.40 0.40 1.00 399 
 

0.00 

ZWIX(-) J D,L-GlA 2.955 5.894 0.93 2.85 3.06 2506 1572 7.05 

ZWIX(-) J R,S-2-HBA 2.069 2.069 0.35 0.35 1.00 166 
 

0.00 

ZWIX(-) J D,L-LA 2.075 2.075 0.36 0.36 1.00 155 
 

0.00 

ZWIX(-) J R,S-3-HBA 2.102 2.102 0.37 0.37 1.00 161 
 

0.00 

ZWIX(-) K D,L-TA 8.952 12.647 4.84 7.25 1.50 1167 966 2.76 

ZWIX(-) K D,L-ICA 4.811 6.285 2.14 3.10 1.45 2156 2011 3.00 

ZWIX(-) K D,L-MA 3.470 3.980 1.26 1.60 1.26 2394 1900 1.57 

ZWIX(-) K D,L-2-HGA 2.313 2.313 0.51 0.51 1.00 376 
 

0.00 

ZWIX(-) K D,L-GlA 3.263 6.708 1.13 3.38 2.99 3660 1144 6.82 

ZWIX(-) K R,S-2-HBA 2.067 2.067 0.35 0.35 1.00 190 
 

0.00 

ZWIX(-) K D,L-LA 2.093 2.093 0.37 0.37 1.00 178 
 

0.00 

ZWIX(-) K R,S-3-HBA 2.066 2.066 0.35 0.35 1.00 210 
 

0.00 

I: mobile phase ACN/MeOH (50:50; v/v) containing 60 mM FA, 25 °C, 1.0 mL/min, J: mobile phase ACN/MeOH (50:50; 
v/v) containing 60 mM FA, 10 °C, 1.0 mL/min, K: mobile phase ACN/MeOH (50:50; v/v) containing 30 mM FA, 10 °C, 
1.0 mL/min 
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Suppl. Table 9.3. Systematic study and resolution obtained during optimization of conditions for separation of (R)- 
and (S)-3-HBA. 

Number of 

experiment 

ACN-MeOH (v/v) 

Ratio  

FA concentration 

(mM) 

Temperature (°C) Flow rate 

(mL/min) 

Rs 

1 95.0:5.0 2.5 10 0.5 n.d. 

2 95.0:5.0 2.5 10 1.0 0.76 

3 95.0:5.0 2.5 25 0.5 n.d. 

4 95.0:5.0 2.5 25 1.0 0.65 

5 95.0:5.0 5 10 0.5 0.63 

6 95.0:5.0 5 10 1.0 0.43 

7 95.0:5.0 5 25 0.5 0.56 

8 95.0:5.0 5 25 1.0 0.55 

9 95.0:5.0 10 10 0.5 n.d. 

10 95.0:5.0 10 10 1.0 n.d. 

11 95.0:5.0 10 25 0.5 0.43 

12 95.0:5.0 10 25 1.0 0.44 

13 97.5:2.5 2.5 10 0.5 n.d. 

14 97.5:2.5 2.5 10 1.0 0.61 

15 97.5:2.5 2.5 25 0.5 n.d. 

16 97.5:2.5 2.5 25 1.0 0.61 

17 97.5:2.5 5 10 0.5 0.53 

18 97.5:2.5 5 10 1.0 0.49 

19 97.5:2.5 5 25 0.5 0.50 

20 97.5:2.5 5 25 1.0 0.50 

21 97.5:2.5 10 10 0.5 n.d. 

22 97.5:2.5 10 10 1.0 n.d. 

23 97.5:2.5 10 25 0.5 0.41 

24 97.5:2.5 10 25 1.0 0.33 

n.d.: not determined 
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10.2 Abstract 

Chiral 2-hydroxycarboxylic acids are compounds which have been linked to particular diseases 

and are putative biomarkers with some diagnostic potential. The importance of identifying 

whether a particular enantiomer is related to certain diseases has been encouraged recently. 

However, in many cases it has not yet been elucidated whether there are stereochemical 

implications with respect to these biomarkers and whether their enantioselective analysis 

provides new insights and diagnostic potential. In this study 13 disease related chiral 2-

hydrocarboxylic acids were studied for their chiral separation by HPLC on three cinchona 

alkaloid-derived chiral stationary phases. From a subgroup of eight 2-hydroxymonocarboxylic 

acids, baseline resolution could be achieved and inversion of elution order by exchanging tert-

butylcarbamoyl quinidine chiral stationary phase (Chiralpak QD-AX) for the corresponding 

quinine analogue (Chiralpak QN-AX) is shown for seven of them. Furthermore, conditions for 

chiral separation of the 2-hydroxydicarboxylic acids, citramalic acid, 2-isopropylmalic acid and 

2-hydroxyadipic acid are reported and compared to the previous reported conditions for 2-

hydroxyglutaric acid and malic acid. 

10.3 Introduction 

Chiral 2-hydroxycarboxylic acids are compounds which are known for their relationship with 

particular human illnesses, especially but not only with inherited metabolic diseases. Lactic acid 

(LA) [190], 2-hydroxy-3-methylbutyric acid (2-H-3-MBA) [212,213], 2-hydroxy-3-

methylpentanoic acid (2-H-3-MPA) [212,213], 2-hydroxyisocaproic acid (2-HICA) [212–214], 2-

hydroxyadipic acid (2-HAA) [215] and also 2-hydroxyglutaric acid (2-HGA) [148,150,156] are 

related to certain types of organic acidurias. Increased amounts of 2-HICA have also been found 

in patients with Zellweger syndrome, a congenital disorder [216]. 2-Hydroxycaproic acid (2-HCA) 

showed to be the most significant substance observed in the cerebrospinal fluid of a patient with 

Nocardia infection, an uncommon cause of meningitis [217]. 2-HBA, in the plasma, has been 

pointed out as a good marker for early stage type II diabetes [218] and 2-isopropylmalic acid (2-

IMA) has been described as a biomarker for asthma diagnosis [219]. Related to cancer, altered 

concentrations of LA have been found in tumors [220], and the enantiomer D-2-HGA has been 

described as an oncometabolite [158,165,221]. In other mammals, citramalic acid has been 

considered as a marker of several unusual chronic diseases developed in cheetahs (Acinonyx 

jubatus) [222]. 

In some of the mentioned cases, the occurrence and relevance of a particular enantiomer or the 

enantiomeric ratio has been indicated for their specific correlation with a disease or as a 

biomarker of disease. Struys [223], for example, described very well how critical is this indication 
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in the case of 2-HGA since L-2-HGA and D-2-HGA are related to different acidurias [156] and only 

D-2-HGA has been described as an oncometabolite [158]. 

Different studies have approached the enantioseparation of 2-hydroxycarboxylic acids. Some of 

them are ligand exchange CE [102,196,201], ligand exchange LC [224], GC analysis after 

derivatization [163], LC after derivatization [225], direct LC by using macrocyclic antibiotic chiral 

stationary phases (CSPs) [162,193,207] and quinine- or quinidine- derived CSPs 

[169,179,180,208,226,227], amongst others. 

 

Figure 10.1. Structures of the studied 2-hydroxycarboxylic acids 

 

In this study, a group of 13 potential biomarkers of disease with 2-hydroxycarboxylic acid 

structure (Figure 10.1) were tested on three cinchona alkaloid-derived CSPs (Figure 10.2) in 

order to determine MS-compatible conditions for their enantiomeric analysis. At the same time 

it was evaluated how certain modifications on the structure of 2-hydroxycarboxylic acids affect 

their retention and selectivity on the employed CSPs. 
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10.4 Experimental 

10.4.1 Materials 

The samples (RS)-2-hydroxybutyric acid sodium salt (RS-2-HBA), (R)-2-hydroxybutyric acid (R-2-

HBA), (RS)-lactic acid sodium salt (RS-LA), (S)-lactic acid lithium salt (S-LA), (RS)-2-hydroxy-2-

methylbutyric acid (RS-2-H-2-MBA), (RS)-2-hydroxy-3-methylbutyric acid (RS-2-H-3-MBA), (S)-2-

hydroxy-3-methylbutyric acid (S-2-H-3-MBA), (RS)-2-hydroxycaproic acid (RS-2-HCA), (RS)-2-

hydroxyisocaproic acid (RS-2-HICA), (S)-2-hydroxyisocaproic acid (S-2-HICA), (RS)-malic acid 

disodium salt (RS-MA), (S)-malic acid disodium salt (S-MA), (RS)-2-hydroxyglutaric acid sodium 

salt (RS-2-HGA), (S)-2-hydroxyglutaric acid sodium salt (S-2-HGA), (RS)-2-hydroxyadipic acid 

sodium salt (RS-2-HAA), (RS)-citramalic acid potassium salt (RS-CMA), (R)-citramalic acid sodium 

salt (R-CMA), (RS)-2-isopropylmalic acid (RS-2-IMA) were purchased from Sigma–Aldrich 

(Steinheim, Germany), (RS)-2-hydroxydecanoic acid (RS-2-HDA) was obtained from ABCR 

(Karlsruhe, Germany) and (2RS,3RS)-2-hydroxy-3-methylpentanoic acid (2RS,3RS-2-H-3-MPA) 

was purchased from Chemspace (Riga, Latvia). 

Mobile phases were prepared with solvents of HPLC grade. Methanol (MeOH) was supplied by 

Sigma-Aldrich (Steinheim, Germany) and acetonitrile (ACN) was purchased from J.T. Baker 

(Deventer, The Netherlands). As additives, formic acid 98% (FA) was obtained by Carl Roth 

(Karlsruhe, Germany) and 4 M ammonia (NH3) in methanol was purchased from Sigma–Aldrich 

(Steinheim, Germany). Water was obtained with a water filtration system from Elga Veolia 

(Paris, France). 

10.4.2 Instrumentation and chromatographic method 

LC experiments were carried out on two different instruments: Agilent 1100 Series G2445D 

LC/MSD Ion Trap (Waldbronn, Germany) and an Agilent 1100 Series HPLC equipped with a UV–

VIS detector and connected to a Corona Veo Charged Aerosol Detector (CAD), from Thermo 

Fisher Scientific (Waltham, Massachusetts, U.S.A.). The nitrogen flow of the CAD was adjusted 

to 60 psi. 

Data acquisition and analysis were done by using ChemStation software from Agilent 

Technologies.  

For the MSD Ion Trap negative mode was employed with a nebulizer pressure of 80 psi, dry gas 

flow of 12 L/min and dry temperature of 325 °C. Presented chromatograms from MSD Ion Trap 

correspond to the EIC ([M-H]-) of each studied 2-hydrocarboxylic acid with a mass tolerance of 

± 0.5 Da. 
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Three chiral stationary phases from Chiral Technologies Europe (Illkirch, France) were employed: 

a Chiralpak QD-AX (150 x 4 mm, 5 µm), a Chiralpak QN-AX (150 x 4 mm ID, 5 µm particle size) 

and a Chiralpak ZWIX(-) column (150 x 4 mm ID, 3 µm particle size). 10% (v/v) acetone solution 

in ACN with detection at 280 nm was used for determining t0 under each tested condition. 

Methanol-water bath cooled with liquid nitrogen was used when a column temperature lower 

than 0 °C was tested. 

 

Figure 10.2. Chiral stationary phases tested in this study: Chiralpak QN-AX and QD-AX as well as Chiralpak ZWIX(-) 

10.5 Results and discussion 

In order to determine MS-compatible conditions for the chiral separation of the 13 putative 

disease biomarkers with 2-hydrocarboxylic acid structure, they were classified into three 

different groups (see Figure 10.1) according to their structural similarity. The groups are as 

follows: 1) 2-H-2-MBA, 2-H-3-MBA, 2-H-3-MPA, 2-HICA, 2-HCA and 2-HDA which are 2-hydroxy 

monocarboxylic acids (2-HMCA) similar to previously studied LA and 2-HBA [226], 2) CMA and 2-

IMA which are homologues of MA and 3) 2-HAA, which was analyzed in comparison to 2-HGA 

and MA, another two dicarboxylic acids, to see the influence of the distance between the two 

carboxylic groups, since they are located in position 1-6, 1-5 and 1-4, respectively. 
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10.5.1 Enantioseparation of 2-hydroxy monocarboxylic acids on chiral weak anion-exchangers 

Because of the similar structure of these 2-HMCA with the already studied LA and 2-HBA, weak 

anion-exchange (WAX) columns QD-AX and QN-AX (see Figure 10.2), well described in the 

literature [228], were employed for their separation. In comparison with previously reported 

conditions [209]  for the separation of these two compounds a small amount of ammonia 

(ACN:MeOH 50:50 v/v containing 15 mM FA and 2.5 mM NH3, at 1.0 mL/min and 10 °C) was 

added to the mobile phase in order to increase its stability. 

Chromatograms for the chiral separation on QN-AX and QD-AX columns of the eight 2-HMCA 

are shown in Figure 10.3. The corresponding chromatographic data for the mentioned 

separations are summarized in Suppl. Table 10.1. As can be seen, in general better resolution 

can be obtained for the eight compounds on the QN-AX column, with which baseline resolution 

can be achieved for all compounds except 2-H-2-MBA. 

Figure 10.3. Chromatographic runs for a mixture and single enantiomers of 2-HMCA on A) QN-AX column and B) 
QD-AX column. Mobile phase ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 10 °C, 1.0 mL/min 

 

In the case of 2-H-2-MBA, the presence of a methyl group at the stereogenic center of the -

carbon perturbs the chiral recognition and leads to loss of enantioselectivity (Suppl. Table 10.1: 
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(Suppl. Table 10.1: condition B). Partial separation (Rs 0.50) was achieved on the QN-AX column, 

but no separation on QD-AX. 2-H-3-MPA has two stereogenic centers and it is possible to 

observe the separation of all four stereoisomers on both columns (QN-AX and QD-AX). Based on 

the peak areas the two corresponding pairs of enantiomers elute as peaks 1 - 4, and 2 - 3 

(wherein 1 is the compound with the shortest retention time and 4 is the compound with the 

longest retention time, see Suppl. Figure 10.2). 

10.5.2 Elution orders for 2-hydroxy monocarboxylic acids 

Availability of at least one pure enantiomer of the compounds LA, 2-HBA, 2-H-3-MBA and 2-HICA 

allowed determining the elution order of these compounds on QN-AX and QD-AX columns. The 

results are depicted in Figure 10.3. It can be seen that an elution order S<R occurs on the QN-AX 

column and the opposite R<S on the QD-AX column for the four compounds, confirming the 

possibility of inversion of the elution order by exchanging the two weak anion exchanger 

columns. 

For the cases of 2-H-3-MPA, 2-HCA and 2-HDA no pure enantiomer was available and it was 

therefore not possible to assign the configurations of the eluted enantiomers. However, it was 

possible to confirm the inversion of the elution order between the QD-AX and QN-AX columns 

by collecting the eluted  fractions of the peaks on the QN-AX column (identified from 1 to 2, or 

from 1-4 in case of 2-H-3-MPA) and injecting them on the QD-AX column (see Suppl. Figure 10.2, 

Suppl. Figure 10.3 and Suppl. Figure 10.4). 

Since retention increases with acetonitrile-content in the mobile phase composed of 

MeOH/ACN and enantiomer resolution is lost upon addition of water to the mobile phase, it can 

be assumed that the hydroxyl group takes part in the interaction with the chiral selector and 

thus enantiomer recognition process. The reversal of the elution order upon changing from QN-

AX to QD-AX may be based on this polar interaction with the selector’s carbamate, although it 

could not be completely excluded that an elution order reversal would occur when hydrophobic 

and/or steric interactions of the hydroxy acids’ alkyl residues are the secondary interactions 

supporting chiral recognition. 

10.5.3 Case of CMA and 2-IMA: homologues of malic acid 

For the enantiomeric separation of citramalic acid and 2-isopropylmalic acid similar 

chromatographic conditions as previously used for the separation of malic acid enantiomers 

were selected. Both weak anion exchanger column QD-AX and zwitterionic ion-exchanger 

column ZWIX (-) [169,229] showed to be effective for their chiral separations. However, stronger 

interaction of these compounds on the QD-AX column due to the second carboxylic acid 
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required higher amounts of FA and ammonia as additives which can be a problem while working 

with MS instruments. For this reason, further separations of citramalic acid (CMA) and 2-

isopropylmalic acid (2-IMA) enantiomers were focusing on the use of the ZWIX (-) column. A 

mobile phase consisting of ACN:MeOH 50:50 v/v containing 30 mM FA at 1.0 mL/min and 10 °C 

was employed. The results of this experiment can be seen in Figure 10.4A for CMA and Suppl. 

Figure 10.5A for 2-IMA (Suppl. Table 10.1: condition C). It was possible to achieve baseline 

separation for CMA (Rs 1.96). The elution order is S<R (see Suppl. Figure 10.5B), similar as 

previously reported for MA [226]. 

 

Figure 10.4. Chromatographic runs for the best achieved separations of 2-HDCA enantiomers performed on 
different CSPs. A) (RS)-CMA and (R)-CMA on ZWIX(−); condition C, B) (RS)-2-IMA on ZWIX(−); condition F, C) (RS)-2-
HGA on QD-AX; eluent: MeOH 100% containing 40 mM of FA and 5 mM NH3, at 1.0 mL/min and 10◦C and D) (RS)-2-
HAA on QN-AX; condition A (for details of experimental conditions see Suppl. Table 10.1). 
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was achieved (see Suppl. Figure 10.5 and Suppl. Table 10.1: conditions C-F). This is a bit 

uncommon behavior because typically with chiral ion exchanger systems the counterion 

concentration has primarily influence on the retention but does not affect significantly 

enantioselectivity (due to parallel regression lines of log k vs log [C] curves for first and second 

eluted enantiomer). Here, it seems that enantioselectivity is only originating when the analyte 

is tightly bound to the chiral selector (different slopes of log k vs log [C] curves; see later). 

Relatively high k values are needed to develop enantioselectivity. Indeed, there is also a slightly 

positive effect of higher ACN content on enantioselectivity (conditions E vs F), yet the counterion 

effect is more dominating here. 

10.5.4 Case of 2-HAA 

The strategy to determine the conditions for chiral separation of 2-HAA (a 2-HDCA with 

carboxylic groups in positions 1-6) was based on the previously observed trends regarding 

mobile phase effects on retention factors and selectivities of 2-HGA (a 2-HDCA with carboxylic 

groups in positions 1-5) and of MA (a 2-HDCA with carboxylic groups in position 1-4). A mobile 

phase consisting of 100 % MeOH containing 90 mM FA and 15 mM NH3, at 25 °C, with a flow 

rate of 1.0 mL/min was used for the elution of these compounds on the QD-AX column (see 

Suppl. Figure 10.6 and Suppl. Table 10.1: condition G). Significant differences of the retention 

factors indicate how determinant is the position of the two carboxylic groups (i.e. their distance 

from each other) on the interaction between these compounds and the quinidine- and quinine-

derived stationary phases, respectively. In the case of 2-HAA the interaction of the second 

carboxylic group (distant from the stereogenic center) seems to be not as strong as in the case 

of MA and therefore its behavior is more or less similar to the cases of 2-HMCAs, except for its 

much stronger retention. For this reason 2-HAA was tested with the employed conditions for 2-

HMCA on QD-AX and QN-AX columns (see Suppl. Table 10.1: condition A and Suppl. Figure 

10.7(A-B)), showing, as in the case of the 2-HMCAs, better resolution (Rs 1.58) on the QN-AX 

column than on the QD-AX column. The increased retention can be explained by a simple 

retention model for ion-exchange, the stoichiometric displacement model. According to this 

model, one solute ion is stoichiometrically displaced from the ion-exchange site by one 

counterion C so that a linear relationship between log k and log [C] can be derived (eq. 1) 

𝑙𝑜𝑔 𝑘 = 𝑙𝑜𝑔𝐾𝑧  𝑍 𝑙𝑜𝑔[ 𝐶] 

wherein k is the retention factor, [C] the molar concentration of the counterion in the eluent, Z 

is the slope of the linear regression line, and log Kz the intercept. Kz is a system specific constant 

depending on specific surface area, charge density on the surface and the ion-exchange 

equilibrium constant with exponential contribution of Z [230]. Z is related to the quotient of the 
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effective charge number of the analyte and the counterion (Z = zeff,i / zeff,c). As can be seen from 

Figure 10.5, the slope of the log k vs log [C] dependency is nearly factor 2 larger for 2-HAA than 

2-HCA. Since the effective charge number of the counterion is equal in both systems (the 

identical mobile phase was used), this can be explained by the differences in the effective charge 

number of the two analytes. Due to a second carboxylic group in 2-HAA, its effective charge 

number is almost factor 2 higher (ca. 1.5; note the pKa of the second carboxylic group is lower). 

Only at very high counterion concentration their retention factors will be in the same range, 

otherwise the 2-HAA is significantly stronger retained due to a larger log Kz (exponential 

contribution of Z to the intercept) [230]. The chromatograms for these separations can be found 

in the Suppl. Figure 10.8. 

 

Figure 10.5. Effect of FA concentrations on retention of (RS)-2-HCA and (RS)-2-HAA in accordance to the 
stoichiometric displacement model. Column: QN-AX; Eluent: ACN:MeOH (50:50;v/v) with different concentrations of 
FA while keeping constant the FA:NH3 ratio, at 1.0 mL/min and 10◦C. 

 

The inversion of the elution order of the enantiomers of 2-HAA were also confirmed by collecting 

single peaks after elution on the QN-AX column and their injection on the QD-AX column (Suppl. 

Figure 10.7). 

10.6 Concluding remarks 

Thirteen 2-hydroxycarboxylic acids, the majority of them never tested on cinchona alkaloid 

based chiral stationary phases, were classified into three different groups, in order to determine 

MS-compatible conditions for their chiral separation. A first group of eight 2-HMCAs were 

studied on QN-AX and QD-AX columns, showing in all the cases better resolution on the QN-AX 

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0

0.4

0.6

0.8

1.0

1.2

1.4

1.6

log k1 (2-HCA) = (-0.79  ) log CFA - (0.69  0.04)

R² = 0.9951

log k2 (2-HCA) = (-0.72  ) log CFA - (0.38  0.04)

R² = 0.9958

log k1 (2-HAA) = (-1.20  ) log CFA - (0.71  0.02)

R² = 0.9996

log k2 (2-HAA) = (-1.13  ) log CFA - (0.53  0.02)

R² = 0.9993

 log k1 (2-HCA)  log k2 (2-HCA)  log k1 (2-HAA)  log k2 (2-HAA)

lo
g

 k

log CFA



Publication V. Chiral separation of disease biomarkers - Conflict of interest statement 

147 

column. Only for 2-H-2-MBA it was not possible to achieve baseline resolution with the studied 

conditions. The same elution order and an inversion of the elution order by exchanging QD-AX 

and QN-AX column was confirmed for LA, 2-HBA, 2-H-3-MBA and 2-HICA. Since authentic single 

enantiomer standards with known configuration were available, the configuration of the eluted 

enantiomer peaks could be assigned. Thus, this method can now be used for determination of 

the absolute configuration of respective samples with unknown stereoconfiguration. For 2-H-3-

MPA (for both pairs of enantiomers), 2-HCA and 2-HDA the reversal of the elution order was 

confirmed. However, assignment of the absolute configurations is only possible for the latter 

two compounds by analogy considerations owing to a consistent chiral recognition mechanism. 

In a second group, CMA and 2-IMA, analyzed as homologues of MA, were studied and conditions 

for their chiral separations were determined on ZWIX (-) column. 

In the third group, 2-HAA was compared as a 2-HDCA with MA and 2-HGA. It was possible to 

observe how the presence of a second carboxylic group become less determinant in the 

interaction with the tested CSP when the distance of this second carboxylic group with respect 

to the first one is longer. Thereby, the strength of the interaction with the QD-AX CSP decreased 

with increasing distance of the carboxylic group from the stereogenic center and the first –

carboxylic group, respectively. MS-compatible conditions for the chiral separation of 2-HAA on 

QN-AX column are finally reported. 
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10.9 Supplementary material 

 

Suppl. Figure 10.1. Chromatographic runs for a mixture of (R)-and (S)-2-H-2-MBA  enantiomers on A) QN-AX column 
at 10 °C, B) QD-AX column at 10 °C, C) QN-AX column at -20 °C and D) QD-AX column at -20 °C. Mobile phase 
ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 1.0 mL/min 
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Suppl. Figure 10.2. Chromatographic runs for (2RS, 3RS)-2-H-3-MPA A) QN-AX column and B) QD-AX column. C) 
Chromatographic runs on QD-AX column of the peaks separately collected from elution on QN-AX column. Mobile 
phase ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 10 °C, 1.0 mL/min 
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Suppl. Figure 10.3. Chromatographic runs for a mixture of (R)-and (S)-2-HCA enantiomers on A) QN-AX column and 
B) QD-AX column. C) Chromatographic runs on QD-AX column of the peaks separately collected from elution on 
QN-AX column. Mobile phase ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 10 °C, 1.0 mL/min 
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Suppl. Figure 10.4. Chromatographic runs for a mixture of (R)-and (S)-2-HDA enantiomers on A) QN-AX column and 
B) QD-AX column. C) Chromatographic runs on QD-AX column of the peaks separately collected from elution on 
QN-AX column. Mobile phase ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 10 °C, 1.0 mL/min 
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Suppl. Figure 10.5. Chromatographic runs for a racemic mixture of 2-HAA on ZWIX (-) column. Conditions: A) mobile 
phase ACN:MeOH, 50:50, v/v containing 30 mM FA, 10 °C, 1.0 mL/min B) mobile phase ACN/MeOH (85:15; v/v) 
containing 30 mM FA, 10 °C, 1.0 mL/min,  C) mobile phase ACN/MeOH (50:50; v/v) containing 5 mM FA, 10 °C, 1.0 
mL/min and D) ACN:MeOH, 85:15, v/v containing 5 mM FA, 10 °C, 1.0 mL/min 
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Suppl. Figure 10.6. Chromatographic runs for racemic mixtures of 2-HDCAs on QD-AX  column A) (RS)-2-HAA, B) 
(RS)-2-HGA and C) (RS)-MA. Mobile phase, 100 % MeOH containing 90 mM FA and 15 mM NH3, 25 °C, 1.0 mL/min. 
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Suppl. Figure 10.7. Chromatographic runs for a mixture of (R)-and (S)-2-HAA enantiomers on A) QN-AX column and 
B) QD-AX column. C) Chromatographic runs on QD-AX column of the peaks collected from elution on QN-AX 
column. Mobile phase ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 10 °C, 1.0 mL/min 
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Suppl. Figure 10.8. Chromatographic runs showing the effect of FA concentrations on retention of (RS)-2-HCA and 
(RS)-2-HAA. Column: QN-AX; Eluent: ACN:MeOH (50:50;v/v) with different concentrations of FA while keeping 
constant the FA:NH3 ratio, flow rate, 1.0 mL/min; column temperature, 10◦C. 
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Suppl. Table 10.1. Chromatographic parameters obtained under different conditions for the separation of HCAs 
with QD-AX, QN-AX and ZWIX (-) columns. 

Column Condition Compound tR1  

[min] 

tR2 [min] k 1 k 2  N1 N2 RS 

QN-AX A (RS)-LA 11.913 14.181 6.91 8.41 1.22 930 974 1.32 

QN-AX A (RS)-2-HBA 11.158 15.210 6.40 9.09 1.42 1065 1383 2.66 

QN-AX A (RS)-2-H-2-MBA 9.324 9.324 5.19 5.19 1.00 273 
 

0.00 

QN-AX A (RS)-2-H-3-MBA 10.324 15.903 5.85 9.55 1.63 1336 1853 4.22 

QN-AX A (2RS, 3RS)-2-H-3-

MPA1-2 

9.427 10.844 5.26 6.20 1.18 1267 1548 1.29 

QN-AX A (2RS, 3RS)-2-H-3-

MPA2-3 

10.844 15.227 6.20 9.10 1.47 1548 2047 3.53 

QN-AX A (2RS, 3RS)-2-H-3-

MPA3-4 

15.227 17.242 9.10 10.44 1.15 2047 2120 1.40 

QN-AX A (RS)-2-HICA 10.121 13.293 5.72 7.82 1.37 1441 1630 2.62 

QN-AX A (RS)-2-HCA 10.597 14.354 6.03 8.52 1.41 1162 1611 2.77 

QN-AX A (RS)-2-HDA 10.792 15.745 6.16 9.45 1.53 979 1440 3.21 

QD-AX A (RS)-2-HBA 9.689 11.053 5.30 6.19 1.17 455 255 0.59 

QD-AX A (RS)-2-H-2-MBA 8.089 8.089 4.26 4.26 1.00 202 
 

0.00 

QD-AX A (RS)-2-H-3-MBA 9.116 11.060 4.93 6.19 1.26 575 562 1.13 

QD-AX A (RS)-2-H-3-MPA1-2 8.516 9.685 4.54 5.30 1.17 673 727 0.84 

QD-AX A (RS)-2-H-3-MPA2-3 9.685 10.622 5.30 5.91 1.12 727 601 0.58 

QD-AX A (RS)-2-H-3-MPA3-4 10.622 12.003 5.91 6.80 1.15 601 503 0.70 

QD-AX A (RS)-2-HICA 8.660 9.964 4.63 5.48 1.18 405 428 0.70 

QD-AX A (RS)-2-HCA 9.131 10.622 4.94 5.91 1.20 369 434 0.75 

QD-AX A (RS)-2-HDA 9.617 11.130 5.25 6.24 1.19 365 305 0.65 

QD-AX A (RS)-LA 8.876 9.935 4.77 5.46 1.14 528 368 0.58 

QN-AX B (RS)-2-H-2-MBA 10.347 11.822 5.03 5.89 1.17 434 150 0.50 

QD-AX B (RS)-2-H-2-MBA 9.093 9.093 4.34 4.34 1.00 107  0.00 

ZWIX(-) C (RS)-MA 2.873 3.196 0.89 1.11 1.24 1529 1309 0.98 

ZWIX(-) C (RS)-CMA 2.918 3.492 0.92 1.30 1.41 1799 2134 1.96 

ZWIX(-) C (RS)-2-IMA 3.121 3.121 1.06 1.06 1.00 1578  0.00 

ZWIX(-) D (RS)-2-IMA 5.368 5.368 2.51 2.51 1.00 1775  0.00 

ZWIX(-) E (RS)-2-IMA 5.685 6.222 2.75 3.11 1.13 1829 1448 0.89 

ZWIX(-) F (RS)-2-IMA 13.597 16.407 7.54 9.30 1.23 3582 3228 2.68 

QD-AX G (RS)-MA 12.612 15.761 7.19 9.24 1.28 1244 1582 2.06 

QD-AX G (RS)-2-HGA 5.724 6.189 2.72 3.02 1.11 1553 1221 0.71 

QD-AX G (RS)-2-HAA 4.023 4.294 1.71 1.89 1.11 1789 1950 0.69 

QN-AX A (RS)-2-HAA 43.954 48.354 29.48 32.53 1.10 4576 4486 1.58 

QD-AX A (RS)-2-HAA 28.277 32.611 17.39 20.20 1.16 1108 1230 1.20 

A: mobile phase ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, 10 °C, 1.0 mL/min, B: mobile phase 
ACN/MeOH (50:50; v/v) containing 15 mM FA and 2.5 mM NH3, -20 °C, 1.0 mL/min, C: mobile phase ACN/MeOH 
(50:50; v/v) containing 30 mM FA, 10 °C, 1.0 mL/min D: mobile phase ACN/MeOH (85:15; v/v) containing 30 mM FA, 
10 °C, 1.0 mL/min, E: mobile phase ACN/MeOH (50:50; v/v) containing 5 mM FA, 10 °C, 1.0 mL/min, F: mobile phase 
ACN/MeOH (85:15; v/v) containing 5 mM FA, 10 °C, 1.0 mL/min, G: mobile phase 100 % MeOH containing 90 mM FA 
and 15 mM NH3, 25 °C, 1.0 mL/min 

For (2RS, 3RS)-2-H-3-MPA four peaks were observed, therefore (2RS, 3RS)-2-H-3-MPA1-2 denotes chromatographic 
parameters between the first and second peak, (2RS, 3RS)-2-H-3-MPA2-3 between the second and third one and (2RS, 
3RS)-2-H-3-MPA3-4 between third and fourth one. 
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CONCLUDING REMARKS 

Lipidomics is a field, which has experienced a continuous growing during last twenty years. 

Despite the development reached until now, there are still important challenges remaining in 

each step of the workflow for lipidomics analysis. Sample preparation, sample measurement, 

data processing, identification and annotation of lipids are among them. In this dissertation, 

three main studies were developed addressing some of the most critical steps of lipidomics 

analysis. 

In the first study, two novel extraction protocols, IPA:H2O 90:10 v/v (IPA90) and IPA:H2O 75:25 

v/v (IPA75) were compared to two traditionally employed protocols known as Matyash and Bligh 

& Dyer. The method IPA90 showed good performance according to the evaluated parameters 

and represents a good alternative for extraction of lipids in LC-MS based lipidomics studies. 

Extraction with IPA90 showed similar recoveries for polar and apolar lipid classes to the Matyash 

protocol, better than Bligh & Dyer for most polar lipid classes and better than IPA75 for most 

apolar lipid classes. In terms of precision, the four extraction protocols showed similar results 

with an average CV % around 15 % for detected features. Furthermore, extractions with IPA:H2O 

do not require a separation of phases (organic layer from aqueous layer) which reduces the time 

for processing each sample and makes easier the automation of protocols. Also, the use of 

isopropanol instead of chloroform (in Bligh & Dyer) or MTBE (in Matyash), as the main solvent 

for extraction, enables the use of plasticware instead of glassware for handling of samples which 

also reduces costs and simplifies the protocol. 

In the second study, lipid profile of keratinocytes was analyzed in a pharmacolipidomic study 

with the natural compound betulin. Focus is this study was especially given to the annotation of 

identified lipids which in turn allowed an adequate comparison of the changes in the lipid profile 

of keratinocytes before and after treatment with betulin. The identification of lipids was done 

through a targeted data processing in which selected set of precursor and product ions was 

analyzed for each lipid class but also retention time for corresponding ionic species in positive 

and negative mode and retention time for species of the same lipid class were considered for 

the annotation. Spotting plots showing the elution pattern for species of the same lipid class 

depending on the number of carbons and unsaturations are given, and their use is here fully 

encouraged in each LC-MS studies as a measure to avoid misidentifications. Changes in about 

70% of the identified lipid species, evidence the significant influence of betulin in treated 

keratinocytes. A more detailed view of these changes shows a down-regulation of cholesteryl 

esters and triacylglycerides and an up-regulation of acyl carnitines, ceramides and most of the 

glycerophospholipids classes. These findings open the door to more targeted approaches in 
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order to determine the relationships between the changes in lipid classes and the healing effects 

evidenced in keratinocytes. 

In a third study (developed as publications III, IV and V), methodologies for chiral separation of 

a group of lipids described as short chain hydroxy fatty acids (SCHFA) were developed. Screening 

of different chiral stationary phases, bulk solvents, additives and temperature conditions were 

performed and baseline resolution conditions were achieved and reported for all studied SCHFA. 

This last study exemplifies the complexity in the different levels of annotation which must be 

considered when lipids are identified. Thus, recognition of different lipid species is based in this 

case on separation with chiral stationary phases, since MS analysis does not offer the possibility 

to differentiate between enantiomers. 
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