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Abstract

Brain-Computer Interfaces (BCIs) enable users to control a computer by using pure
brain activity. Their main purpose is to restore several functionalities of motor dis-
abled people, for example, to restore the communication ability.
Recent BCIs based on visual evoked potentials (VEPs), which are brain responses to
visual stimuli, have shown to achieve high-speed communication. However, BCIs
have not really found their way out of the lab yet. This is mainly because all re-
cent high-speed BCIs are based on synchronous control, which means commands
can only be executed in time slots controlled by the BCI. Therefore, the user is not
able to select a command at his own convenience, which poses a problem in real-
world applications. Furthermore, all those BCIs are based on stimulation paradigms
which restrict the number of possible commands. To be suitable for real-world ap-
plications, a BCI should be asynchronous, or also called self-paced, and must be
able to identify the user’s intent to control the system or not. Although there some
asynchronous BCI approaches, none of them achieved suitable real-world perfor-
mances.
In this thesis, the first asynchronous high-speed BCI is proposed, which allows us-
ing a virtually unlimited number of commands. Furthermore, it achieved a nearly
perfect distinction between intentional control (IC) and non-control (NC), which
means commands are only executed if the user intends to. This was achieved by
a completely different approach, compared to recent methods. Instead of using a
classifier trained on specific stimulation patterns, the presented approach is based
on a general model that predicts arbitrary stimulation patterns. The approach was
evaluated with a "traditional" as well as a deep machine learning method.
The resultant asynchronous BCI outperforms recent methods by a multi-fold in mul-
tiple disciplines and is an essential step for moving BCI applications out of the lab
and into real life. With further optimization, discussed in this thesis, it could evolve
to the very first end-user suitable BCI, as it is effective (high accuracy), efficient
(fast classifications), ease of use, and allows to perform as many different tasks as
desired.
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Zusammenfassung

Eine Hirn-Computer Schnittstelle (engl. Brain-Computer Interface, BCI) erlaubt
einem Nutzer einen Computer nur mittels Gehirn-Aktivität zu steuern. Der
Hauptanwendungszweck ist die Wiederherstellung verschiedener Funktionen von
motorisch eingeschränkten Menschen, zum Beispiel, die Wiederherstellung der
Kommunikationsfähigkeit.
Bisherige BCIs die auf visuell evozierten Potentialen (VEPs) basieren, erlauben
bereits hohe Kommunikationsgeschwindigkeiten. VEPs sind Reaktionen, die im
Gehirn durch visuelle Stimulation hervorgerufen werden. Allerdings werden
bisherige BCIs hauptsächlich in der Forschung verwendet und sind nicht für
reale Anwendungszwecke geeignet. Grund dafür ist, dass sie auf dem synchronen
Steuerungsprinzip beruhen, dies bedeutet, dass Aktionen nur in vorgegebenen
Zeitslots ausgeführt werden können. Dies bedeutet wiederum, dass der Nutzer keine
Aktionen nach seinem Belieben ausführen kann, was für reale Anwendungszwecke
ein Problem darstellt. Um dieses Problem zu lösen, müssen BCIs die Intention des
Nutzers, das System zu steuern oder nicht, erkennen. Solche BCIs werden asynchron
oder selbstbestimmt genannt. Bisherige asynchrone BCIs zeigen allerdings keine
ausreichende Genauigkeit bei der Erkennung der Intention und haben zudem eine
deutlich reduzierte Kommunikationsgeschwindigkeit im Vergleich zu synchronen
BCIs.
In dieser Doktorarbeit wird das erste asynchrone BCI vorgestellt, welches sowohl
eine annäherungsweise perfekte Erkennung der Intention des Nutzers als auch
eine ähnliche Kommunikationsgeschwindigkeit wie synchrone BCIs erzielt. Dies
wurde durch die Entwicklung eines allgemeinen Modells für die Vorhersage von
sensorischen Reizen erzielt. Dadurch können beliebige visuelle Stimulationsmuster
basierend auf den gemessenen VEPs vorhergesagt werden. Das Modell wurde
sowohl mit einem „traditionellen“ maschinellen Lernverfahren als auch mit einer
deep-learningMethode implementiert und evaluiert.
Das resultierende asynchrone BCI übertrifft bisherige Methoden in mehreren
Disziplinen um ein Vielfaches und ist ein wesentlicher Schritt, um BCI-
Anwendungen aus dem Labor in die Praxis zu bringen. Durch weitere
Optimierungen, die in dieser Arbeit diskutiert werden, könnte es sich zum allerersten
geeigneten BCI für Endanwender entwickeln, da es effektiv (hohe Genauigkeit),
effizient (schnelle Klassifizierungen), und einfach zu bedienen ist. Ein weiteres
Alleinstellungsmerkmal ist, dass das entwickelte BCI für beliebige Szenarien
verwendet werden kann, da es annähernd unendlich viele gleichzeitige Aktionsfelder
erlaubt.
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Chapter 1

Introduction

In the 1960s, Paulo Freire stated that "only through communication can human life
hold meaning" [Fre70]. Communication is important for interpersonal relationships
and can be verbal or non-verbal, whereby the former is most important as it al-
lows to express yourself precisely. Unfortunately, several diseases can lead to a
loss of speech, or they can even lead to a complete loss of communication abil-
ity. For example, amyotrophic lateral sclerosis (ALS) causes a loss of voluntary
muscle control, whereby mental health is generally unaffected, which means pa-
tients are perceiving what is happening. Until today there is no cure and studies
have reported that between 75% and 95% of ALS patients will lose the ability of
speech [SWST81,BFN11].
Being trapped in one’s own body and especially no longer being able to communicate
with relatives must be awful. Over the last years, Brain-Computer Interfaces (BCIs)
have evolved as a helpful method to restore several functionalities of motor disabled
people. BCIs enable users to control a computer by using brain activity, which al-
lows, for example, to spell using a virtual keyboard. Recent BCI spellers are mainly
based on event-related potentials (ERPs) or visual evoked potentials (VEPs). The
latter are brain responses to visual stimuli and the idea to use it for communication
has been proposed by Sutter, who stated that "the electrical scalp response to a mod-
ulated target is largest if the target is located within the central 1◦ of the visual field"
and that "this makes it possible to construct a gaze-controlled keyboard" [Sut84].
Although recent BCI spellers [SRB12b,CWN+15] show high communication speed,
they are based on synchronous control, which means that commands are executed in
a certain time interval controlled by the BCI. However, those BCIs are not suitable
for real-world applications as they cannot differentiate between intentional control
and non-control state and will give a random output if a user is taking a break to
think or does not want to control the BCI for other reasons.
Furthermore, a user would intend to use the BCI at home and not only in a lab. But,
as recent BCIs are not really suitable for home-use, just a few were evaluated at
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2 CHAPTER 1. INTRODUCTION

home. In order that a BCI system can be used at home, it must fulfill some criteria,
whereby the most important are effectiveness, reliability, efficiency, functionality,
and mobile usage [MVD+15,HBKK15]. This means, the user wants to perform as
many as possible different tasks with the best possible accuracy, and those tasks
should be performed as fast as possible. Furthermore, the BCI should work reliably
for several years without malfunctioning and should optimally be usable on-the-go.
The goal of this work is to develop a BCI which addresses and improves the above-
mentioned criteria. In the following, an outline of this thesis will be given.
In chapter 2 the required fundamentals are explained, including BCIs, brain signal
recording techniques, and machine learning methods. In chapter 3 the history, as
well as the current state-of-the-art of several BCI approaches, are given. In chapter 4
a stimulation framework is proposed which allows to easily create different stimu-
lation layouts and ensures high synchronicity between the stimuli and the measured
EEG. The effects of an inaccurate synchronization to the performance of VEP BCIs
will be shown in chapter 5.
In chapter 6 an entirely new and unique stimulation paradigm is proposed, based on
fully random stimulation patterns. Based on this, a method (EEG2Code) is intro-
duced which is able to predict arbitrary stimulation patterns based on the measured
VEP responses. In chapter 7 the backward approach (Code2EEG) is explainedwhich
allows predicting the brain response to arbitrary stimulation patterns. In chapter 8
an optimized set of random stimulation patterns is introduced which increases the
performance compared to fully random stimulation patterns.
In chapter 9 it is proven that the EEG2Code, as well as the Code2EEG approach,
can be used for synchronous BCI control. In chapter 10 it will be shown that both
approaches can be used with a nearly unlimited number of targets. In chapter 11 the
EEG2Code approach was extended to allow asynchronous control and non-control
state detection.
In chapter 12 the mobile usage, which generally causes synchronization latencies,
was addressed and it will be shown that the approach can handle such latencies. In
chapter 13 the EEG2Code model was improved by using a deep-learning approach.
As collecting training data takes time and is inconvenient for the user, the perfor-
mance of the EEG2Code model using fewer train data was analyzed in chapter 14.
In chapter 15 it will be shown that different stimuli colors lead to a different periph-
eral perception of neighbored targets. Finally, in chapters 16 and 17 the results of
this thesis will be summarized and discussed.



Chapter 2

Fundamentals

2.1 Brain-Computer Interface

In 1973, the term "Brain-Computer Interface" (BCI) was coined by Jacques J. Vidal.
In the context of a BCI project, he considered whether the "observable electrical
brain signals can be put to work as carriers of information in man-computer com-
munication or for the purpose of controlling such external apparatus as prosthetic
devices or spaceships" [Vid73]. A few years later, in 1977, Vidal described the first
real-time BCI application [Vid77], which was based on "visual event-related poten-
tials", actually called visual evoked potential (VEP, see section 2.4).
Today, their main purpose is to restore several functionalities of motor disabled peo-
ple, for example, patients who suffered a stroke or have amyotrophic lateral sclerosis
(ALS). In general, a BCI can be understood as a communication pathway between
the brain and an external device and they can be divided into two types: passive BCI
and activeBCI. Furthermore, a BCI can operate in two different control modes: syn-
chronous or asynchronous. All those terms are important for the scope of this work
and will be explained in the following subsections.

2.1.1 Active BCI

As mentioned, the main purpose of a BCI is to restore several functionalities of mo-
tor disabled people. For example, to restore communication [BGW+11, SRB12a,
CWN+15], to control prostheses [HSF+06, HBJ+12, CWD+13], or to control a
wheelchair [LFMP+07, GNL+08, LPWY13] in order to give patients back parts of
their independence, and therefore, to improve the quality of life.
Those types of BCIs, are called active BCIs or explicit BCIs, as they enable users to
actively perform commands to control the corresponding environment. Zander et al.
defined an active BCI as "a BCI which derives its outputs from brain activity which

3
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is directly consciously controlled by the user, independently from external events,
for controlling an application" [ZKWR08].

2.1.2 Passive BCI

Contrary to an active BCI, a BCI can also be used in a passive manner. For example,
for workload detection [KSR+18] or emotion detection [MHH17, AC16]. Those
types of BCIs, are called passive BCIs or implicit BCIs, as the user is not able to
explicitly perform commands.
In general, an implicit interaction can be defined as "an action performed by the
user that is not primarily aimed to interact with a computerized system but which
such a system understands as input" [Sch00]. Zander et al. defined a passive BCI
as "a BCI which derives its outputs from arbitrary brain activity without the pur-
pose of voluntary control, for enriching a human-computer interaction with implicit
information" [ZKWR08].
It is worth to mention that an active BCI can be based on explicit information, like
motor imagery, or on implicit information, like event-related potentials or visual
evoked potentials (see section 2.4).
Furthermore, there are combinations of both. For example, Spüler et al. developed
a BCI that allows a user to actively perform commands, whereby the underlying
model is adaptively improved using implicit information, in that case, error-related
potentials, which are potentials that occur shortly after the user recognizes an er-
ror [SRB12b].

2.1.3 Synchronous control

Whether explicit and implicit, the control mode of a BCI is a fundamental property.
Most of recent BCIs make use of a synchronous control mode, which means that
commands are executed in a certain time interval controlled by the BCI.
For example, the fastest synchronous active BCI to-date by Chen et al. [CWN+15]
defines that the stimulation time lasts for 0.5 s with an additional 0.5 s of inter-
stimulation time. This means, the user has to fixate the desired command in the
specified time slot, otherwise the BCI will perform a random classification. Fur-
thermore, due to the used method, there are only 280 ms between command classi-
fication and the start of the next stimulation, which is only suitable for experienced
users.
Obviously, the advantage of synchronous control is, that the BCI does not have to
distinguish if the user wants to control the BCI or not. Contrary, the user must
know in advance exactly which commands he wants to perform. Furthermore, if
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the user no longer wants to execute commands, the BCI must be stopped and then
reactivated if the user wants to continue. Formotor disabled people this is impossible
and requires a third party. Therefore, synchronous BCIs are not suitable for real-
world applications.

2.1.4 Asynchronous control

Apractical BCI should be asynchronous, or also-called self-paced. Themajor task is
to identify the user’s intent to control the system, which is called the "Midas Touch"
problem [Moo03]. The BCI has to distinguish efficiently between the intentional
control (IC) state and the non-control (NC) state.
It must be noted that the term "asynchronous" is not uniformly defined. On the
one hand, it is used for early-stopping methods disregarding the NC state detection,
which means that the term is used to express that the duration of a trial is not strictly
defined by the BCI, but implicitly driven by the user. On the other hand, it is used
as explained above, for BCIs which can distinguish between IC and NC state. The
method proposed in this work allows both early-stopping and classification of the
user’s intent to control the system, which is why it is called asynchronous.
It also should be mentioned that no unified criteria exist for the evaluation of NC
state detection, which means it is not defined what a user should/could do during the
NC state.

2.2 Recording techniques

As the name implies, a BCI is based on brain activity, which must be recorded in any
manner. There are many recording techniques, which exploit different underlying
physiological processes. For example, there is an increased oxygen consumption
and an increased blood flow in active brain areas, called hemodynamic response.
Those changes can be measured with methods like near-infrared spectroscopy
(NIRS) [VPH+93] or functional magnetic resonance imaging (fMRI) [HSM09]. Al-
though BCI control is possible using NIRS [SZG+07] as well as fMRI [WMB+04],
both methods suffer from a bad temporal resolution.
For BCI control, a higher temporal resolution is preferred to allow a faster and more
responsive control. This can be achieved by measuring the electrical activity of the
brain, which in turn can be done using invasive as well as non-invasive recording
methods. For the former the electrodes are placed, for example, directly on the sur-
face of the brain, called Electrocorticography (ECoG). For the latter electrodes are
placed on the surface of the scalp, called Electroencephalography (EEG). While in-
vasivemethods achieve a better signal-to-noise ratio as the signals are not damped by
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the skull, they cause a high risk for tissue damaging or inflammations. For this rea-
son, non-invasive methods should be preferred, at least if a sufficient signal quality
can be achieved, which depends on the application purpose.
Recent works have shown that EEG is suitable for BCI applications, like spellers,
wheelchair control, and others, which is why it is also used for the scope of this work
and will be explained in detail.

2.2.1 Electroencephalography

The term Electroencephalography (EEG) was coined by Hans Berger, in 1929.
Although Richard Caton was the first who found that the brain of apes and rab-
bits produce electrical currents [Cat75], Berger was the first who derived a human
EEG [Ber29].
An EEG allows measuring the electrical activity on the scalp using electrodes which
are often fixated on an EEG cap, whereby the electrodes should be positioned de-
pending on the desired signals. Today, it is known that the electrical activity arises
from the neurons in the brain which communicate mainly over electricity. Since
there are approximately 86 billion neurons in the human brain [ACG+09], the EEG
records a summation of electrical activity from a large group of neurons with a sim-
ilar spatial location. As the skull damps the signals, the measured electric potentials
have amplitudes in a range of only 10 �V to 100 �V [AGA+04], therefore, the sig-

Amplifier Processing

EEG cap

Electrode Measured potentials
for each electrode

Figure 2.1: Sketch of how to record an Electroencephalogram. An EEG allows mea-
suring the electrical activity on the scalp using electrodes which are often fixated on an
EEG cap. For each electrode, the signals are amplified and can be used in the following
for a desired processing.
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nals must be amplified. For comparison, amplitudes using subdural electrodes are
up to 103 stronger. A sketch showing an exemplary EEG setup is depicted in Fig. 2.1.
The human skull has a different shape and size for different subjects, therefore, stan-
dardized electrode positions were determined to get comparable results. Mainly the
10-20 [Jas58] or 10-10 [CLN85] system is used.
There are several types of EEG electrodes, which can mainly be distinguished into
active/passive, and dry/gel/water based. Furthermore, the transmission can be wired
or wireless, respectively. Today, active gel-based electrodes show to have the best
signal-to-noise ratio, as an additional amplifier is placed within the electrode which
makes the signal less prone to external influences, like noise caused by loose wires.
Additionally, the usage of electrolyte gel increases the conductivity between the elec-
trodes and the scalp.
Contrary, using gel electrodes requires time-consuming preparation and the gel dries
out after a certain time. Dry electrodes can be used more easily and quickly, and it
was recently shown that they are suitable for high-speed BCI control [XWP+18],
albeit with a reduced performance compared to using gel electrodes.

2.3 Event-related potentials

To control a BCI, it must be driven by specific information that can be derived from
the brain. EEG based BCIs are often based on event-related potentials (ERPs), which
are defined as responses that occur after a specific, for example sensory, event and
are further subclassified in induced potentials and evoked potentials [DKF06]. The
latter are potentials which are time-locked to the stimulus and are further subclassi-
fied depending on the source of the event. For example, auditory [KFH+09, SK18]
and somatosensory stimuli [MPSNP06, LRL+14] can be used to evoke potentials.
Potentials based on visual stimuli have shown to achieve the best BCI performance
and are used in this work. Therefore, they will be explained in detail in the following.

2.3.1 Visual evoked potentials

As mentioned, in 1984, Sutter stated that "the electrical scalp response to a mod-
ulated target is largest if the target is located within the central 1◦ of the visual
field" [Sut84]. Depending on the type of stimulus, different responses (waveforms)
can be measured. For clinical use, the International Society for Clinical Electro-
physiology of Vision (ISCEV) defined standard protocols of how to evoke visual
potentials, for example, to prognosticate eyes with a poor vision before planning
surgery [OBB+16]. They defined three protocols with different types of stimuli,
whereby two of them are often used for BCI control:
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• Pattern reversal VEPs are evoked by using a checkerboard with white and
black blocks. With a rate of 2 Hz the checkerboard is reversed, which means
white blocks become black and vice versa. The resulting waveform is the
most commonly used when VEPs are described literature. It has 2 negative
and one positive wave (N75, P100, and N135 peaks), which appear at around
75ms, 100ms and 135ms after the stimulus, respectively. A typical waveform
is depicted in Fig. 2.2.
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Figure 2.2: A typical pattern reversal VEP response. Vectorized version of Fig. 2
in [OBB+16]. Reprinted by permission from Springer Nature, © Springer-Verlag Berlin
Heidelberg 2016.

• Flash VEPs are evoked using a white colored flash with a rate of 1 Hz, instead
of using a checkerboard. The resulting waveform consists of multiple positive
and negative waves, whereby P2, N3, and P3 and are the most prominent and
occur at around 110ms, 150ms, and 220ms, respectively. A typical waveform
is depicted in Fig. 2.3.
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Figure 2.3: A typical flash VEP response. Vectorized version of Fig. 4 in [OBB+16].
Reprinted by permission from Springer Nature, © Springer-Verlag Berlin Heidelberg
2016.
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Also, the shape and size of a stimulus influence the VEP response. Zerafa et
al. [ZCFC13] and Waytowich et al. [WYK17] analyzed the differences for both,
pattern reversal VEPs and flash VEPs.
Obviously, presentation rates of 1 Hz or 2 Hz, respectively, are not sufficient for
multi-target BCI control. Therefore, several paradigms were proposed in recent
years, which address this issue. The most common paradigms for BCI control will
be explained in the following subsection.

2.4 Paradigms for BCI control

For BCIs based on ERPs, a possible command will be linked to a specific
event/stimulus. Once the user focuses on a stimulus, the task is to classify the corre-
sponding command. Until today, several stimulation paradigms were proposed for
BCI control, whereby the most frequently used paradigms will be explained in the
following. They are also used in the scope of this work.

2.4.1 Steady-state VEP

Steady-state visual evoked potentials (SSVEPs) are evoked by visual stimuli which
are modulated with a certain frequency. The SSVEP is a periodic response of the
brain, whereby the frequency spectrum of SSVEP contains the stimulation frequency
and its harmonics.
In 1996, SSVEPs were first used for a BCI by Calhoun and McMillan, whereby the
BCI had only one 13.25 Hz stimulus and users were tasked to self-regularize the
SSVEP amplitude [CM96].
To use SSVEPs for multi-target BCI control, several frequencies and/or phase shifts
must be used. When the user gazes one of the targets, a power increase can be found
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Figure 2.4: Typical SSVEP response using a visual stimulus modulated with a 15 Hz
frequency. Shown are 1000 ms averaged over multiple trials.
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in the same frequency range as the stimulation frequency. For example, using a
15 Hz stimulus results in 15 waves per seconds, this can also be seen in Fig. 2.4.
In 2002, Cheng et al. proposed the first usable, and for those times, fast SSVEP
BCI with twelve possible commands [CGGX02]. In the following years, several
frequency paradigms and classification methods were proposed, which increased
the classification speed by a multi-fold [CWN+15].
It must be noted that the amplitudes of SSVEPs decrease for high frequencies and
Herrmann [Her01] has shown that they can only be found in the EEG by using stim-
ulation frequencies of up to 90 Hz.

2.4.2 Code modulated VEP

Sutter was the first who developed a BCI based on complex stimulation pat-
terns [Sut84]. In 1992, Sutter extended his work and developed a BCI based on code
modulated VEPs (cVEPs) by using pseudorandom codes with low auto-correlation,
also known as m-sequences, for stimulation. The BCI had 64 targets and an ALS
patient was able to spell 10 to 12 words per minute with a trial duration of 1.2 s. But
it is worth to note that invasive electrodes were used. [Sut92]
Although Sutter achieved outstanding results for that time, his proposed stimulus
paradigm has not been pursued for a few years. Instead, the previously explained
SSVEP paradigm become popular. The firsts who picked up Sutter’s paradigm were
Hanagata and Momose in 2002 and 2007 [HM02,Mom07], but could not compete
with the SSVEP paradigm. But Bin et al. has shown in 2009 and 2011, that a BCI
based on cVEPs can achieve high-performance and outperformed all VEP BCIs at
that time [BGW+09,BGW+11].
As mentioned, cVEPs are evoked by complex code modulated stimuli, an exemplary
m-sequence will later be shown in section 4.3.1. Self-explanatory, such a complex
stimulation pattern should also result in a complex VEP response. A typical cVEP
response is depicted in Fig. 2.5.

2.4.3 P300

A P300, formally P3b, is a wave with a positive, strong amplitude with a peak that
occurs approximately 300 ms after a rare task-related stimulus, for example, a user
is guided to gaze a desired target until it flashes. It must be noted that the peak time
varies between 250 and 500 ms [Pol07], which makes the detection more challeng-
ing. A typical P300 waveform is shown in Fig. 2.6, whereby it is averaged over
multiple trials.
P300s can be used for BCI control, whereby they are often used for BCI spellers.
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Figure 2.5: Typical cVEP waveform using a 63-bit pseudorandom code presented with
60 bit/sec. Shown are the first 500 ms averaged over multiple trials.

In 1988, Farwell and Donchin were the first who developed a P300 BCI speller.
The letters (and additional commands) were arranged in a 6 × 6 matrix, whereby
the rows and columns were flashed alternately in a random fashion for 100 ms with
500 ms inter-stimulus time. The user was tasked to count the flashes of the desired
target. This procedure evokes P300s and allows to classify the corresponding row
and column, which in turn are uniquely for a particular target. [FD88]
While the explained example is based on visual stimuli, P300 can also be evoked by
other sensory stimuli, like auditory stimuli [KFH+09].
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Figure 2.6: Typical P300 waveform. Shown are 500 ms averaged over multiple trials.

2.5 Machine learning

For BCI control, the measured brain signals are used. These signals must be ana-
lyzed suitably so that a particular target can be classified. For this, feature extrac-
tion is required which depends on the used stimulation paradigm. For example, for
SSVEPs the power spectrum can be used, as it is known that a power increase can be
detected in a specific frequency range depending on the stimulation frequency. Con-
trary, for other paradigms, like P300 or cVEP, the time domain is mostly used as a
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feature. Regardless of the feature extraction, preprocessing steps are usually recom-
mended to increase the signal-to-noise ratio, for example, spatial filters [SWRB14].
After feature extraction, those features must be assigned to the corresponding tar-
gets. Depending on the used stimulation paradigm, this requires a prior training
phase or not. For example, for an SSVEP BCI, the powers of the corresponding fre-
quencies can be used to classify the target, which does not necessarily require prior
training [DMPL11, Cec10]. Contrary, cVEPs are evoked by complex stimulation
patterns and can only be classified with prior training to differentiate them.
Machine learning is a computational way to solve such a task. In the past decades,
several algorithms were developed to build mathematical models based on a set of
training data. After training, those models can be used to make predictions of un-
known data not used for training. In general, machine learning algorithms can be
divided into supervised and unsupervised methods. The former requires a known
output (label) for each input data point, and the task is to find a solution that maps
the input data to the output data based on the training set. Contrary, unsupervised
methods do not require a known output, and the task is, for example, to cluster the
input data. For the current work, only supervised methods were considered, because
labels are known.
It must be noted, that a "label" could be a discrete or a continuous value. The for-
mer is called a classification problem, the latter a regression analysis. Additionally,
machine learning approaches are further differentiated into linear and non-linear ap-
proaches. The former enables only to recognize linear relationships, whereas the
latter can also recognize non-linear relationships. Both linear and non-linear ap-
proaches are used in the scope of this work.
An important fact is to avoid over-fitting of the trained model. Over-fitting means,
to "have unknowingly extracted some of the residual variation as if it represented
model structure" [BA03]. The term "residual variation" means, for example, noise,
which in turn is variance in the data that cannot be explained. Noise can be caused,
in the context of EEG data, by external factors (like rays) or the general brain activity
that is not task-related. This means, the prediction of an over-fittedmodel works well
on the training data but may fail on additional data. To address this problem, several
regularization approaches were developed.
In the following subsections, the machine learning approaches will be explained,
which are used in this work.

2.5.1 Ridge regression

Regression in general tries to estimate the relationships among (continuous) vari-
ables. This is done by minimizing or maximizing a specific function, called cost
function. Until today, several cost functions were proposed.
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In this work, the ridge regression is used, which is a linear approach and was intro-
duced by Hoerl and Kennard [HK70]. It is based on the Tikhonov regularization
and tries to minimize the following cost function

min
�

(

(y −X�)T (y −X�) + ��T �
) (2.1)

where � is a vector of coefficients (weights),X is the input, called predictor, y is the
desired output, called response, and � is a regularization parameter.
The minimization of this cost function can be solved by

�̂ =
(

(

XTX + �I
)−1XTy

)

∕�(X) (2.2)
�0 = ȳ − X̄�̂ (2.3)

where �̂ are the coefficients, �0 is a bias term, and I is the identity matrix. �̂ consists
of k coefficients �1…k, one for each input dimension of X.
To predict the response of a new data point x, the following equation is used

y = �0 + �1x1 +…+ �kxk (2.4)
where y is the prediction for a data point x = (x1,… , xk) with k dimensions.

2.5.2 Convolutional neural network

Although there are several non-linear approaches [BGV92, SW03], only a deep-
learning approach is used in this work, because it was shown that such approaches
outperform "traditional" machine learning approaches, especially for image classi-
fication and speech recognition [SZ14], but also for BCI control [KML17].
In general, deep-learning methods are "representation-learning methods with multi-
ple levels of representation, obtained by composing simple but non-linear modules
that each transform the representation at one level (starting with the raw input) into
a representation at a higher, slightly more abstract level" [LBH15]. Combining mul-
tiple of those transformations allows learning complex mapping functions.
There are many different deep-learning approaches, in this work the so-called Con-
volutions Neural Network (CNN) is used. A CNN adapts the idea of receptive fields,
which are biologically inspired. In the visual system, a receptive field of a single cell
can be defined as "the region of retina (or visual field) over which one can influence
the firing of that cell", whereby neighboring cells can have overlapping receptive
fields [HW62]. For a CNN, this means that the output of an artificial neuron is
influenced by a set of spatially adjacent input neurons.
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2.5.2.1 Operations

As for other neural networks, a CNN generally consists of an input layer, (multiple)
hidden layers, and an output layer, whereby the information flows uni-directionally
from the input to the output, which is called feedforward. Each hidden layer trans-
forms its input into an output through a specific operation. While there are many
types of such operations, only those used in this work will be explained. The op-
eration description is based on the Keras framework [C+15], which was used to
implement the CNN.
Convolution A convolution operation is the basis of a CNN. As mentioned, the
output of a neuron is influenced by a set of spatially adjacent input neurons. It must
be mentioned that neighbored output neurons have neighbored/overlapping input
neurons. This shows the peculiarity of CNNs, as they take the spatial structure
of the input into account. The connections between those neurons are weighted,
whereby the weight-matrix, called kernel, is the same for each output neuron and
will be trained. The output ℎi of a single output neuron with n input neurons can becalculated by:

ℎi =
n
∑

j=1
xj ⋅wj + b (2.5)

where xj is the input coming from neuron j and wj is the corresponding weight of
the connection.
A convolutional operation has multiple input parameters. The most important are
kernel_size, stride, and padding. The former defines the spatial shape of the
receptive field but it must be considered that the shape must not exceed the shape of
the input. The kernel will then be moved over the input data, whereby the step size in
each dimension is a parameter, called stride. This implies that the output shape of
the layer depends on the stride, doubling it means halving the corresponding output
dimension. Another important parameter is padding, which can be set to same or
valid and defines what happens when the kernel reaches the edges of the input data.
The former assures that the output shape is the same as the input shape, at least for a
stride of 1. For this, the edges of each dimension of the input data will be filled up
with zeros (depending on the kernel size) in order that the kernel can step beyond the
edges. Contrary, valid causes no padding, which means that the output shape will
be reduced depending on the kernel shape. In general, multiple kernels are trained
for each convolutional layer.
Actually, only Conv1D operations are performed in the scope of this work, but in
part on 2D input data, which requires to use the Conv2D operation.
Dense The dense operation is just a regular fully connected neural network layer.
Contrary to the convolutional layer, the weights are unique for each connection, and
the spatial structure is not considered. This also implies that the input shape, as
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well as the output shape, is a vector. The output of a neuron is also calculated using
Eq. 2.5, whereby the number of neurons is a definable parameter.

Activation Generally, the output of a neuron follows an activation function '.
Considering the output h = (ℎ1, ..., ℎN ) forN output neurons:

hact = '(h) (2.6)

The simplest activation function would be the linear function '(h) = h, but various
function types can be used. In this work, the rectified linear unit (ReLU) and softmax
functions are used:

'ReLU(h) = max(0,h) (2.7)
'softmax(h)i = eℎi

∑N
j=1 e

ℎj
∀i ∈ 1…N (2.8)

The ReLU function just removes negative values by mapping them to zero. The
softmax function instead "squeezes" anN-dimensional vector to the interval [0, 1],
in other words, the input will be normalized into a probability distribution, whereby
the sum over theN dimensions equals 1.

Batch Normalization Generally, a deep network, like CNN, consists of multiple
layers, and the parameter optimization of each layer assumes that the output of prior
layers does not change, but this is the case for each training step. Obviously, this
slows down the training.
In 2015, Ioffe and Szegedy addressed this and introduced the batch normalization,
with the results of a faster andmore stable deep network training by removing the so-
called internal covariate shift [IS15]. The batch normalization is generally applied
after weight multiplication, but before applying the activation function ', since the
learning weights are causing the shift.

Pooling Pooling operations are used to reduce the number of dimensions. In the
case of EEG, we have a high-dimensional space (samples×channels), while the out-
put is generally low-dimensional, for example, the number of classes. Pooling layers
are similar to convolutional layers, whereby each output neuron has a receptive field.
Contrary, no weights are trained, but the input is transferred to an output using a
static function. Such a function takes the output of all input neurons in the receptive
field and returns, for example, the average or the maximum of all values. In this
work, only the latter is used.
As a pooling layer is similar to a convolutional layer, it also has the same parameters:
pooling_size, stride, and padding, whereby the former defines the shape of the
receptive field.
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Dropout The dropout operation is a generalization method, which helps prevent
over-fitting. It has one rate parameter, which defines a fraction of randomly chosen
input units (connections) which will be set to 0, in other words, a random fraction
of connections will be "eliminated".
Reshape Reshape is a simple operation which transforms a given input with a
specific shape to another shape while maintaining the number of elements.

2.5.2.2 Hyperparameters

All parameters of the previously mentioned operations are called hyperparameters,
but only a part of all hyperparameters was mentioned. They should be chosen with
care as they can drastically affect the performance. But, tuning hyperparameters
for deep neural networks is difficult, as there are many parameters which influence
each other. A common method to tune parameters is grid search, which means the
parameters will be varied in a certain range and the set of parameters, which resulted
in the best performance, will be chosen. But, deep-learning approaches are generally
computational expensive, and testing many sets of parameters can take a lot of time.
Besides the above-mentioned operation parameters, the following parameters are
important.
Learning rate As for other machine learning approaches, a CNN updates the
weights by minimizing a cost function. For this, the so-called gradient descent is
calculated, whereby the gradient is the derivative of the cost function. The mini-
mization is an iterative progress whereby the learning rate defines the step size
of the weight adjustment, and the gradient defines the direction.
It must be noted, the general goal is to find the global minima of the cost function,
but generally, there are multiple local minima. Using a lower learning rate can
cause a stuck in local minima, whereby a larger learning rate could result in an
overshoot of the global minima.
Batch size Instead of using the complete set of train data and only updating the
weights once, several small subsets, called batches, could be used. Each batch will
be propagated through the network, and the weights will be updated for each batch.
In general, the greater the batch size, the better the performance. Contrary, a large
batch size leads to increased computational costs.
Number of epochs The number of epochs defines how often the entire training
(propagating the complete train data) process will be repeated. Using fewer epochs
could result in worse performance as the network could be further improved, which
means the output is an under-fitted model. Contrary, using (too) many epochs re-
quires more time and could result in an over-fitted model. In general, the number of
epochs should be increased until the performance increase flattens.



2.6. PERFORMANCE EVALUATION 17

2.6 Performance evaluation

To evaluate the performance of an approach, several measures can be used. Depend-
ing on whether a classification or a regression approach is used, various methods are
suitable. Furthermore, to compare different approaches, not all methods are appro-
priate, because several factors must be considered. For example, to compare differ-
ent BCI spellers, the number of possible targets, the classification accuracy, as well
as required classification duration has to be taken into account. In the following, the
used performance measures will be explained.

2.6.1 Accuracy

To evaluate the performance of a classification problem, a most commonly used
method is to calculate the accuracy, which depends on the number of correctly per-
formed classifications and the total number of performed classifications:

ACC = number of correctly performed classifications
number of all performed classifications . (2.9)

It is important to note, that the accuracy does whether take the number of possible
commands (classes) nor the duration required for classification into account. There-
fore, comparing the accuracy of one system to another makes only sense if both have
an equal number of possible commands and an equal classification duration. Fur-
thermore, the accuracy is only meaningful if each class was equally tested or if the
predictor was trained using an equal number of data points for each class, respec-
tively. Besides, the chance level must be considered.

2.6.2 Information transfer rate

The accuracy is not sufficient to compare the performance of different BCIs, as vary-
ing factors (like the different classification durations) are not taken into account.
Today, the information transfer rate (ITR) is a commonly used method to compare
BCIs. It was initially introduced by Claude Shannon in 1948 [Sha48], whereby it
was first used by Wolpaw et al. in the context of BCIs [WRMP98].
The ITR estimates the information (bits) that can be transferred per time-unit and it
can be calculated with the following equation:

ITR =
(

log2N + P log2 P + (1 − P ) log2
1 − P
N − 1

)

⋅
60
T

[bit/min] (2.10)

where P is the prediction accuracy, T is the required time in seconds per classifica-
tion andN is the size of the alphabet (number of classes).
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Asmentioned, the ITR is just an estimation, furthermore, it does not take corrections
into account. But corrections are usually required if misclassifications occur, at least
for a BCI speller. This was addressed byDal Seno et al., they proposedUtility, which
can be seen as the ITR taking corrections into account [DSMM10].
It can be calculated using the following equation:

U =
(

(2P − 1) ⋅ log2 (N − 1)
)

⋅
60
T

[bit/min] (2.11)
where the parameters are the same as for the ITR. Considering a BCI speller, the ITR
will be 0 bit/min if the achieved accuracy equals the chance level. Contrary, theUtil-
ity will be 0 bit/min until an accuracy of 50% is achieved, as each misclassification
requires an additional (correct) classification for correction.

2.6.3 Pearson Correlation

While the accuracy and the ITR can be used for classification approaches, they are
not suitable for regression approaches. For this, a method is required which com-
pares two (continuous) variables.
In 1895, Karl Pearson proposed the correlation coefficient, based on the work of
Sir Francis Galton [Pea95]. It is a measure to express the degree of linear interre-
lationship between two variables. The value range lies within the interval [−1, 1],
whereby a value of 0 means that X and Y have no linear correlation. A value < 0
means the variables are negatively correlated, whereas a value > 0 means that the
variables are positively correlated.
The Pearson correlation coefficient r between two variables X and Y can be calcu-
lated by:

r = corr(X, Y ) =
cov(X, Y )
�X�Y

(2.12)

where cov(X, Y ) is the covariance between X and Y , and �X∕�Y are the standard
deviations of X and Y , respectively.
Squaring r results in the coefficient of determination r2, which is the proportion of
variance in the dependent variable that is predictable from the independent variable.



Chapter 3

State of the art

3.1 Synchronous Brain-Computer-Interfaces

In 1977, Vidal described the first real-time synchronous BCI application [Vid77],
which was based on single VEP responses. The stimuli were short xenon flashes for
30 �s followed by 400 ms inter-stimuli time. In this study, he implemented a virtual
maze which the user must go through, with four actions: up, down, left, and right.
Until today, several synchronous BCIs were developed, whereby most of them are
based on SSVEPs, cVEPs, and P300s. The differences between the proposed meth-
ods are mainly the stimuli design, the feature extraction as well as the classification
method.

3.1.1 P300

In 1988, Farwell and Donchin were the first who developed a P300 BCI
speller [FD88]. The letters (and additional commands) were arranged in a 6 × 6
matrix, whereby the rows and columns were flashed alternately in a random fash-
ion for 100 ms with 500 ms inter-stimulus time. The user was tasked to count the
flashes of the desired target. This procedure evokes P300s and allows to classify the
corresponding row and column, which in turn are uniquely for a particular target.
For the classification, they used a step-wise discriminant analysis (SWDA) followed
by a peak selection and a covariance evaluation. They stated that their P300 speller
achieved an ITR of 12 bit/min with an accuracy of 95% and 26 s per classification,
but by using Eq. 2.10, this results in only 10.6 bit/min.
In the following years, several approaches were made to improve the accuracy
and/or the ITR [TGW06,GDS+09,JAK+04,HAAN13,KK14,CG11,SLS18,MHT17,
SBK+12, PPS11, ZGW08]. For example, in 2006, Thulasidas et al. used a sup-
port vector machine (SVM) and achieved an average accuracy of 95% with 22 s
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per classification, which corresponds to an ITR of 12.6 bit/min [TGW06]. Guger
et al. used a linear discriminant analysis (LDA) but achieved only an ITR of 8.9
bit/min [GDS+09]. Those methods are generally based on averaging multiple P300s
to increase the signal-to-noise ratio, as a single trial P300 detection have lower ac-
curacies between 65% and 70% [JAK+04,HAAN13].
In 2014, Kaufmann and Kübler developed a P300 speller (6 × 6 targets), where
they highlighted multiple two rows or columns simultaneously, instead of only
one [KK14]. Furthermore, instead of increasing the luminance of a row/column,
they used the face of Albert Einstein and the ying-yang sign. The stimuli were pre-
sented for 160 ms followed by 186.6 ms inter-stimulus time. For classification, they
used a regularized linear discriminant analysis (rLDA). In an offline analysis, they
showed to achieve an average ITR of 106.2 bit/min, which outperforms previous
P300 BCIs by far.
Although recent deep-learning approaches have shown to further improve the per-
formance [CG11, SLS18], P300 BCIs still lack in a relatively slow classification
speed. Mainly because the P300 peak times vary between 250 and 500 ms [Pol07],
and because the P300 amplitude decreases if the user gets used to the infrequent
stimulus [RP99].

3.1.2 cVEP

As already mentioned, Sutter was the first who developed a BCI based on complex
stimulation patterns [Sut84]. In 1992, Sutter extended his work and developed a
BCI based on code modulated VEPs (cVEPs) by using pseudorandom codes with
low auto-correlation, also known as m-sequences, for stimulation. The BCI had 64
targets, and an ALS patient was able to spell 10 to 12 words per minute with a trial
duration of 1.2 s. But it is worth to note that invasive electrodes were used. [Sut92]
The basic idea of a cVEP BCI is to modulate several targets with the same stimuli
pattern but shifted. Afterward, the goal is to detect the corresponding shift, which
is unique for each target. This is possible as stimulation patterns with low auto-
correlation are used.
Although Sutter achieved outstanding results for that time, his proposed stimulus
paradigm has not been pursued for a few years. In 2002 and 2007, Hanagata andMo-
mose were the first who picked up Sutter’s paradigm and showed that it can be used
with EEG electrodes, but they achieved low ITRs of <20 bit/min [HM02,Mom07].
In 2009 and 2011 Bin et al. were the first who achieved a high-spelling perfor-
mance [BGW+09,BGW+11]. They outperformed all recent VEP BCIs and achieved
ITRs of 108.1 bit/min. The performance improvement was mainly achieved by us-
ing a spatial filter based on a canonical correlation analysis (CCA). In an initial train
phase, the users had to gaze a reference target for multiple trials, the corresponding
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spatially filtered EEG was averaged and acted as a template. For each target, the
template was shifted according to the shift of the stimulation pattern. During the
test phase, the target classification was done by calculating the correlation coeffi-
cient between the spatially filtered EEG and all templates, the corresponding target
whose template correlates most was selected.
The method was further improved by Spüler et al. using a one-class support vector
machine (OCSVM) instead of averaging the spatially filtered EEG [SRB12a]. In
combination with an adaptive classification algorithm based on error-related poten-
tial (ErrPs) they achieved an average online ITR of 144 bit/min. [SRB12b]

3.1.3 SSVEP

In 1996, SSVEPs were first used for a BCI by Calhoun and McMillan, whereby the
BCI had only one 13.25 Hz stimulus, and the users were tasked to self-regularize
the SSVEP amplitude [CM96]. Until today, many BCIs based on SSVEPs were
developed [CGGX02, Vol11, CWW+11, MCVH12, DMPL11, PMTA09, ZTLZ17,
XWP+18,YCW+15,ZXCY14,HLJ+12,Cec10,TZ15,ZXL+12,CWN+15].
In 2002, Cheng et al. proposed the first usable, and for those times, fast
SSVEP BCI with twelve possible commands and achieved an average ITR of
27.15 bit/min [CGGX02]. They used a fast fourier transformation (FFT) to cal-
culate the power frequencies in the measured EEG. For each stimulation frequency
(between 6 Hz and 14 Hz), the power of the frequency as well as for the second har-
monic were summed up. If the power was over a certain threshold (twice the mean
of the amplitude spectrum between 4 Hz and 35 Hz), the corresponding target was
selected. This implies that their method does not require a prior training phase.
As mentioned in section 2.4.1. The SSVEP is a periodic response of the brain,
whereby the frequency spectrum of SSVEP contains the stimulation frequency and
its harmonics. Especially the latter makes frequency coding for multiple targets
quite challenging, as harmonic frequencies should be avoided. Furthermore, as most
standard computer monitors are used for stimuli presentation, the number of usable
frequencies is further limited. For example, using a frame rate of 60 Hz allows
a maximum stimulation frequency of 30 Hz, additionally, the stimulus frequency
should be a whole divisor of the frame rate.
In 2011, this was addressed by Ivan Volosyak, who developed an SSVEPBCI speller
with only 5 targets, whereby four of them allow navigating through the 32 let-
ters/symbols of the keyboard. To spell the selected letter, the fifth target is used. The
advantage of this approach is that fewer targets are used, which makes the classifi-
cation easier. Contrary, spelling a letter requires to perform multiple classifications,
which reduces the spelling speed. Nevertheless, this approach achieved an average
ITR of 61.7 bit/min. [Vol11]
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In the same year, Cao et al. addressed the same issue with another approach. Instead
of using navigation targets, the used 3 different 15 target layout, whereby two of
these targets were used to switch between layouts. In total, this allows for spelling
42 different letter/symbols. With an average ITR of 61.6 bit/min, they achieved an
equal spelling performance. [CWW+11]
All methods mentioned so far, make use of frequency coding, which means each
target is modulated with its own stimulation frequency. Contrary, also phase coding
can be used, which means several targets are modulated with the same stimulation
frequency, but with varying phase shifts. For example, Manyakov et al. developed
an SSVEP BCI with 6 targets, all modulated with a 10 Hz stimulus, but successive
targets are phase-shifted by �∕3. They achieved an average ITR of approximately
25 bit/min. [MCVH12]
In general, the stimulus coding and target identificationmethods play important roles
in the performance of BCIs based on SSVEPs. In 2015, Chen et al. [CWN+15]
have shown that a complex stimuli design combining multiple frequencies and phase
shifts, called joint frequency-phase modulation (JFPM), enhances the discriminabil-
ity between SSVEPs with a very narrow frequency range. As mentioned above, this
is the most challenging conditions in frequency coding. They implemented a 40-
target BCI speller which achieved an average online ITR of 267 bit/min and dras-
tically reduced the required time for a classification, compared to all recent non-
invasive BCIs. But, as mentioned in the previous chapter, their method is only suit-
able for experienced users, as the time between classification and the next stimulus
amounts only 280 ms.

3.2 Asynchronous Brain-Computer-Interfaces and
non-control state detection

As explained in the previous chapter, synchronous BCI spellers are not suitable for
real-world applications, because if the user needs too much time to think about the
following word, the BCI will not wait and will classify a random command. There-
fore, a practical BCI should be asynchronous, or also called self-paced. As men-
tioned, the term "asynchronous" is not uniformly defined for BCIs, sometimes it is
used for early stopping methods disregarding the non-control (NC) state detection
and sometimes for distinguishing between IC and NC. It is also worth to note that no
state-of-the-art criteria exist what a user should/could do during the NC state, which
makes the comparability difficult.
Some methods make use of hybrid BCIs combining several brain activities, for ex-
ample, using ERPs (like P300) to distinguish between IC state and NC state in
combination with steady-state VEPs (SSVEPs) for classification [PPS11,LPWY13].
Others use threshold methods, like Cecotti [Cec10] who developed an asynchronous
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SSVEP BCI distinguishing between IC state and NC state by normalizing fre-
quency powers for each stimulus frequency following a minimum energy combi-
nation approach, and the frequency is detected if the normalized frequency power
is greater than a predefined threshold, otherwise an NC state is detected. Another
approach was proposed by Suefusa and Tanaka [ST18] who developed an asyn-
chronous SSVEP BCI using multiset canonical correlation analysis (MCCA) and
a multi-class support vector machine to distinguish between 28 IC classes and the
NC class. However, compared to synchronous methods which achieve ITRs >100
bpm, the current asynchronous BCIs are substantially slower, with 67.7 bpm being
the fastest asynchronous system [ST18] to date.
Furthermore, different approaches addressing the NC state detection are also not di-
rectly comparable. On the one hand, there are trial-based approaches with fixed trial
durations classifying each trial as IC or NC, on the other hand, there are continuous
classifications without fixed trial durations. For the former, it is possible to specify
the NC detection accuracy and recent works [ASA+11, PPS11, PFH+15,MNK+17,
PMTA09,XLX+13] achieved accuracies between 76.94% and 98.91%. For the lat-
ter, it is possible to specify the number of erroneous classifications during the NC
state per time unit, and recent works [ZGW08, LPWY13,ABG18] achieved 0.7 to
0.49 erroneous classifications per minute. In summary, all of them did not achieve a
reliable NC state recognition, meaning the BCI executes random commands during
the NC state, which decreases the user experience.

3.3 Home-use Brain-Computer-Interfaces

As mentioned, one of the main purposes of BCIs is to restore communication of mo-
tor disabled people, for example, patients who suffered a stroke or have amyotrophic
lateral sclerosis (ALS). Obviously, a user would intend to use the BCI at home and
not only in a lab. But recent BCIs are not really suitable for home-use, either they
are based on synchronous control or asynchronous control with low spelling perfor-
mance and insufficient NC state detection.
All previously mentioned BCIs were evaluated in a lab and mainly with healthy sub-
jects. Until today, only a few works addressed the home-use of BCIs with disabled
users [VMS+06,SVW10,MMV+12,MSM+14,MVD+15,HBKK15].
In order that a BCI system can be used at home, it must fulfill some criteria. Mi-
ralles et al. and Holz et al. have defined some such criteria [MVD+15,HBKK15].
Miralles et al. also asked users to rate criteria by priority, according to that, the most
important criteria are effectiveness, reliability, and robustness. Obviously, a BCI has
no real benefit if tasks cannot be performed with a certain accuracy and if the BCI
system does not work reliably. Further important criteria are functionality (as many
different tasks as possible), ease of use, efficiency (communication speed), comfort,
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and mobile usage, in that order. One of the most challenging criteria is robustness,
optimally, a home-use BCI should work for several years without malfunctioning.
All recently evaluated home-use BCIs are based on P300 ERPs. For example, Sell-
ers et al. developed a system with two different layouts, one allows for spelling, and
the other one allows environmental control, like controlling a TV. They evaluated
their system for a period of 2.5 years with a 51-year-old man with advanced ALS. A
user’s caregiver had to learn to operate the system, which includes placing/preparing
the EEG gel electrodes and starting the software. The system was remotely cali-
brated 1-2 times per week, and the caregivers made notes regarding system usage
and performance changes. The results revealed that the P300 responses have re-
mained stable in magnitude and form for the whole period. Also, the classification
performance remained stable at around 83% (18.5 bit/min). They also noted that the
user was satisfied with the system as it enables him to communicate with his family
and improved his independence. [SVW10]
Another long-term study is by Holz et al. [HBKK15], they developed a home-use
BCI based on the Brain Painting framework [ZHK+13]. The system was used by a
73-year-old female ALS patient for 14 months. Within that period, approximately
200 paint sessions were performed by the user. After each session, the user was
asked to give a subjective rating with justification for the following criteria: effec-
tiveness, efficiency, satisfaction, and quality of life. The results reveal that the system
had "a positive impact on happiness, self-esteem, [...], self-confidence, and ability
to participate". Furthermore, the user stated that the system makes her “happy and
free". But the authors also point out, that the system cannot be used independently,
the user has to wait for a third person to set up the BCI. [HBKK15]
The BCI systems proposed by Mak et al. [MMV+12] and McCane et al. [MSM+14]
were also evaluated with ALS patients. Although the systems were used at the user’s
home, the systems were only used for a single day and were assisted by an expert.
Altogether, these results show the importance of home-use BCI, as they significantly
improve the quality of life for affected persons. But those systems must be further
improved to increase the performance and to reduce the dissatisfaction, for example,
caused by misclassifications.

3.4 Brain response prediction to visual stimuli

Until today, there are virtually no methods which are able to predict the brain re-
sponse to visual stimuli. To the best of my knowledge, there are only three notable
works which will be introduced in the following.
Recently, Sobreira et al. [STK18] developed a deep-learning model which simulates
the visual pathway. Their model was designed in three layers, whereby those layers
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should represent the functionality of several cells which are involved in the visual
pathway. But it must be mentioned that the model is not entirely biologically plausi-
ble. The input of themodel are images with a size of 640×640 pixels, and the outputs
are 400 spiking neurons representing the predicted SSVEP, whereby the model has a
temporal resolution of 0.01 ms. They evaluated their model using differently shaped
stimuli, like checkerboard, squares, circles, and others. The different shapes were
presented for 200 ms followed by a black image for 600 ms. Unfortunately, only
results for 4 of those stimuli were given, which resulted in a median r2 = 0.828. But
it must be emphasized that the method was not evaluated for complex stimulation
patterns which result in complex VEPs but only for single stimuli.
Another approach was developed by Wang et al. [WGG15]. They developed a com-
putational model which can predict (only) SSVEPs for a given frequency. Besides
the frequency, the model is based on several parameters, like the number of har-
monics, the amplitude strength, and the phase shift, respectively. They proposed
that their model can be used for the design and implementation of a multi-target
SSVEP-based BCI. For example, by analyzing predicted SSVEPs for varying param-
eters, they found that the harmonic SSVEP components could provide valuable in-
formation for frequency detection. Unfortunately, they neither compared the model
predictions to real measured SSVEPs, nor they evaluated if their findings really im-
prove the classification performance. Therefore, the model prediction should be
interpreted with caution. Furthermore, as shown in Fig. 2.4, an SSVEP response
shows a (more or less) static course, which is obviously easier to predict as complex
VEPs, like cVEPs (see Fig. 2.5).
One notable exception investigating a more general approach to use visual stim-
ulation that is not restricted to predefined patterns is the work by Thielen et
al. [TvdBFD15]. Their model assumes that the response to a complex stimulation
pattern is a linear superposition of individual single-flash VEPs [CPAD+11]. Thie-
len et al. therefore developed a convolution model that breaks down a complex
stimulation pattern in smaller sub-components and models the response to a com-
plex stimulation pattern by a superposition of the responses to the sub-components.
While this approach allows for a more flexible prediction model, the stimulation pat-
terns are not fully arbitrary, as they can only be composed of short and long pulses.
Furthermore, although their method should be able to predict the brain response
to random compositions of short/long pulses, they only evaluated the performance
using a small subset of 65 stimulation patterns with 120 bits each. Unfortunately,
although they used the method for BCI control, they did not analyze the brain re-
sponse prediction of their model on a single trial basis but averaged over multiple
trials, which resulted in r2 = 0.476.
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Chapter 4

Visual stimulation framework for
high synchronicity

In the field of visual neuroscience as well as for BCIs, experiments based on visual
stimuli are often required to have a strict timing on a millisecond scale. For exam-
ple, if an experiment presents visual stimuli and the subject has to push a button to
measure the reaction time, it’s required to know the exact timing of both the stimulus
and the button press, generally, this is done by storing timestamps. If there are any
latencies, they should be corrected, otherwise, the results will be distorted leading
to wrong conclusions like measured reaction times are longer as they really are.
Especially for VEP based BCIs, it is required to know the exact timings of stim-
uli presentation, as the brain responds in a millisecond scale. If stimuli timings
vary, VEPs will be time-shifted corresponding to that variation. Recent studies
have shown that latencies of P300 event-related brain potentials (ERP) and error-
related potentials (ErrPs) vary depending on the experiment [GP02, ICM+14] and
that correcting latencies leads to a better generalization [ICM+14] and an increased
performance [MHT17].
As shown by Wilson et al. [WMSW10] a PC has several potential factors which
cause latencies, for example, the operating system latency, the video output latency,
or the monitor input lag. Since most experiments use PCs for stimulus presenta-
tion and data analysis, those latencies should be considered. They also showed that
several other factors exist especially for BCIs. They used BCI2000 [SMH+04] a
general-purpose software system for BCI control and measured latencies caused by
the amplifier, the software signal processing, and other factors. If the factors which
cause more or fewer static latencies are known, they can be corrected easily by fix-
ing the timestamps or by shifting the data, respectively. Contrary to static latencies,
varying latencies (jitter) can dramatically alter the results and are harder to handle, as
it is required to know how latencies vary and the data must be corrected accordingly.
If the jitter is not corrected, it could lead to a distortion of results.
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In this chapter, the Simplified Application for Visual Experiments (SAVE) frame-
work is introduced. It allows to easily create presentation layouts with arbitrary
stimulation paradigms. Furthermore, it can be controlled through TCP/IP and as-
sures exact synchronization of the visual stimuli with an EEG amplifier.

4.1 General description

The SAVE framework is implemented in MATLAB [MAT17] and is based on the
Psychtoolbox-3 [BV97], which in turn is based on the OpenGL® application pro-
gramming interface. In general, it is a framework for experiments based on visual-
evoked potentials (VEPs) and event-related potentials (ERPs). Among the prede-
fined layouts and stimulation patterns, it offers an interface to easily build presenta-
tion layouts with freely placeable targets (see section 4.4) and an interface to create
arbitrary stimulation patterns for each target of the layout (see section 4.3).
The stimuli presentation is bound to the refresh rate of the monitor and the presenta-
tion speed (number of frames per stimulus) can be defined. Since visual experiments
require strict stimuli timings, the framework also takes frame drops into account and
compensates them by informing the stimulation interface about the number of recent
frame drops, if any occur, and correct them if desired. Furthermore, it also takes the
monitor raster latency (see chapter 5) into account by offering information on where
each target is vertically placed on the screen, to easily correct the latencies.
The application is split into two modules communicating over TCP/IP. One module
is responsible for the experiment itself and one to remotely operating the experiment
(set parameters, choose targets, etc.). At each frame build, the operator module will
get information about how each target is modulated. The synchronization with an
EEG amplifier is done by the parallel port by giving information about the current
state (see section 4.2).
The framework was tested on Microsoft© Windows 10™ but should work on Linux
and Apple© macOS™ with some slight modifications. A detailed technical docu-
mentation, including how to create layouts/stimulation patterns and how to design
an experiment, can be found online [Nag19].

4.2 Synchronization with an EEG amplifier

The synchronization is realized using the parallel port as it has a near-to-zero latency
and it can be used with several EEG amplifiers to synchronize it with the recorded
EEG data. The 8 bits contain the following information:

• 1. bit: is 1 if a run has started, 0 otherwise.
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• 2. bit: is the stimulation pattern of the first target, this can be used to check if
the stimulation pattern is as expected.

• 3. bit: toggles between 1 and 0 for each drawn frame, this can be used to
detect frame drops and to synchronize the known stimulation patterns with
the sampling rate of the amplifier.

• 4. bit: is 1 during a trial and 0 otherwise.
• 5. - 8. bit: can be set dynamically for each implemented stimulation pattern.

For example, to mark the start of a sequence if a cyclic stimulation pattern is
used.

Therefore, the exact time point of a trial start/end, as well as the precise timing of
every single stimulus, can be determined.

4.3 Stimulation paradigms

Several widely used stimulation paradigms are already implemented in the frame-
work, additional paradigms can easily be implemented as explained in the documen-
tation. For the scope of the current work, the following stimulation paradigms are
used.

4.3.1 cVEP

This is a stimulation paradigm which uses a stimulation pattern with low auto-
correlation, also known as m-sequences. Those patterns are generated using the
code of Buračas and Boynton [BB02], which has 4 parameters (baseVal, powerVal,
shift, whichSeq) to vary the sequence. The generated m-sequence is assigned to
each target, but bit-wise shifted for successive targets, whereby the shift can be de-
fined and depends on the number of targets of the corresponding layout. The values,
used in the following experiments are (2,6,shift,1). With shift=1 this results in
the following 63-bit m-sequence:
101011001101110110100100111000101111001010001100001000001111110

4.3.2 SSVEP

This stimulation paradigm is based on frequencies, which means the single stimuli
are presented in a sinusoidal fashion, whereby the corresponding frequency and
phase-shift can freely be defined for each target of the layout. Here it is worth to
mention that the framework allows a binary stimulation (on/off) or stimulation with
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sinusoidal transitions between on and off. Furthermore, it should be considered
that the stimulation frequencies are limited by the refresh rate of the monitor. This
stimulation paradigm is used in chapter 5 and 15 with binary stimulation.

4.3.3 Random

This is a completely new stimulation paradigm introduced in this work. The
MT19937 [MN98] random generator is used to generate a fully random modulation
pattern for each target. The random generation can be varied by the seed parameter
of the random generator.

4.4 Layouts

Depending on the application purpose, a layout can be created with freely placeable
targets. Each target has two states, one which is shown as long as the stimulus is 1
and another one which is shown as long as the stimulus is 0. The size, shape, and
color can be set for every single target. As an alternative to a color, also a texture
can be set for each target. Additionally, each target can have a label whose color and
font size can freely be defined. In this work mainly the following layouts are used.

4.4.1 Matrix keyboard

Amatrix keyboard layout is often used for BCI spellers, as the targets are equal sized
and can be distributed evenly across the screen. In this work, a 4×8matrix keyboard
layout (32 targets in total) was built, whereby the targets have a rectangle shape are
labeled alphabetically from A to Z followed by ’_’ and numbers 1 to 5. The targets
are colored in white (binary 1) and black (binary 0) and are separated by a blank
black space. Additionally, there is a text-field above the targets showing the written
text. A screenshot of the layout is shown in Fig. 4.1.

4.4.2 QWERTZ keyboard

Although a matrix-keyboard with lexicographic order has advantages for scientific
purposes like equal sized targets, most participants/end-users are familiar with es-
tablished keyboard layouts. Therefore, also a 55 target German QWERTZ-layout
was built. The layout has a CAPS (⇩) and SHIFT (⇧) targets which allows writing
case-sensitive letters as well as all standard symbols and punctuation marks. Like
for the matrix layout, a text-field was placed above the targets. A screenshot of the
layout is shown in Fig. 4.2.
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A B C D E F G H

I J K L M N O P

Q R S T U V W X

Y Z _ 1 2 3 4 5

Figure 4.1: Matrix keyboard layout with 32 targets.

^ 1 2 3 4 5 6 7 8 9 0 ß ´ ←

q w e r t z u i o p ü +↹

⇩

⇧ ⇧

↲

a s d f g h j k l ö ä #

< y x c v b n m , . -

Figure 4.2: German QWERTZ keyboard layout with 55 targets.
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Chapter 5

Monitor raster latency and its effect

As explained in chapter 4, for VEP based BCIs it is required to know the exact tim-
ings of stimuli presentation, as the brain responds in a millisecond scale. Especially
varying latencies (jitter) should be corrected, otherwise, it could dramatically alter
the results. One jitter-causing factor is mostly unconsidered: the monitor rater la-
tency. Experiments using a monitor for stimulus presentation should consider the
fact of how a monitor will present every single frame. A frame will be presented
line-wise from top to bottom, resulting in an increased latency from the upper left
pixel to the bottom right pixel, the raster latency. More precisely, the latencies are
based on the addressing scheme of the monitor. For example, a cathode ray tube
(CRT) monitor presents the pixels from left to right and top to bottom. Furthermore,
a CRT scan can be un-interlaced (first line to last line) or interlaced (odd lines first
followed by even lines). Liquid crystal displays (LCDs) and organic light emitting
diode (OLED) displays generally present a frame line by line [PSD09]. Regardless
of the display technique, the total processing time of each frame is approximately
95% of the inverse of the refresh rate. For a refresh rate of 60 Hz, there will be a
delay of 0.95∕60 = 15.83 ms between the first and the last pixel of that frame, as
shown by Tobias Elze [Elz10]. This property of a monitor, that leads to varying la-
tencies, are attended by some researchers in the field of neuroscience [GVLdIM14]
but doesn’t seem to get much attention in visual BCI experiments, although all BCIs
using a standard monitor will be affected by the raster latency regardless of whether
they are based on cVEP, SSVEP, or ERP. Interestingly, in 1992 Sutter proposed the
"scan delay" of a CRT monitor which resulted in slightly asynchronous stimuli de-
pending on the vertical position of the stimulus [ST92]. This is exactly the described
raster latency, but no further attention was given to that by others.
In this chapter, the effects of the monitor raster latencies on SSVEP, cVEP, and P300
are shown. Furthermore, a method is proposed to correct the raster latencies, and
it is shown that the BCI performance can be significantly improved. Parts of the
results, figures and wording are already published in [NDRS18].
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5.1 Methods

5.1.1 Measuring raster latencies

To determine the raster latencies, an old CRT monitor (Iiyama A901HT), an old
LCD monitor (Dell 1908FPc) and a new LCD monitor (BenQ XL2430-B) of the
year 2016 using the latest technology with low reaction times, were measured. The
presentation layer was implemented using the framework of chapter 4. A stimulus
was presented once each second on the full screen-size for the length of one refresh
cycle of the monitor. Since the refresh rate was set to 60 Hz, each stimulus had
a length of 16.6 milliseconds. The parallel port was used as the trigger and was
set right after the Screen(’Flip’, ...) command, which should - theoretically
- present the stimulus immediately at the start of a refresh cycle if there were no
latencies at all. The time at which the stimulus was presented on the monitor was
determined by a photodiode which was held once at the top left and once at the
bottom right position of the monitor. To measure the timings an oscilloscope (Ro-
hde&Schwarz HMO1022) with a sampling rate of 25 kHz was used. All measures
were repeated 5 times for each monitor.
As the measured voltage of the parallel port switches immediately between states, it
is easy to determine the onset time which represents the theoretical stimulus onset
time. The monitors need a specific amount of time till full illumination is reached,
because of this and the fact that the photodiode has a small jitter the real stimulus
onset time of the monitors was specified as the time point at which 100 successive
samples (4 ms window) are above the mean baseline.

5.1.2 Analysis of SSVEP data

A simple SSVEP experiment was implemented to determine the effects of the mea-
sured raster latencies in the brain’s response.

5.1.2.1 Setup

The setup consisted of an g.USBamp (g.tec, Austria) EEG amplifier, a PC and the
LCD monitor (BenQ XL2430-B) mentioned above. The presentation of the stimuli
was operated from the PC and synchronized with the EEG amplifier by using the
parallel port. BCI2000 [SMH+04] was used as a general framework for recording
the data of the 32 electrodes, from which 30 were located at Fz, T7, C3, Cz, C4, T8,
CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8, PO10,
O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes were used
for electrooculography (EOG), one at the nasal bridge and one at the outer canthus
of the left eye. The ground electrode (GND) was positioned at FCz and reference
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electrode (REF) at OZ. The monitor refresh rate was set to 60 Hz and the amplifier
sampling rate to 600 Hz, resulting in 10 samples per frame.

5.1.2.2 Experimental design

The stimuli were presented at the top left and bottom right area of the monitor, to
evaluate the full magnitude of raster latencies caused by the monitor. The framework
of chapter 4 was used to present a 5 cm×5 cm square to the subject with a stimulation
rate of 1 Hz and 15 Hz, respectively. Each stimulus was presented for one frame,
resulting in a stimulus length of 16.6 milliseconds.
To avoid fatigue, a run consists of 4 parts with 2 minutes each: (1) 1 Hz top left
position, (2) 1 Hz bottom right position, (3) 15 Hz top left position, and (4) 15 Hz
bottom right position. In total the subject had to perform 3 runs, therefore, this
results in 6 minutes of EEG data for each stimulation frequency.

5.1.2.3 Processing

The EEG data was notch-filtered by the amplifier at 50 Hz and additionally to in-
crease the signal-to-noise ratio a 200th-order bandpass finite impulse response filter
was applied between 0.1 Hz and 30 Hz. To avoid a phase-shift due to the filter-
ing, the MATLAB filtfilt function was used, which performs zero-phase digital
filtering.
The EEG data of electrode O2 was analyzed by averaging over windows of 1-second
length, resulting in 6 ⋅ 60 = 360 windows for each of the 4 parts. To determine the
time-shift between the top-left and bottom-right position, the cross-correlation was
used. This results in the number of shifted samples at which the VEP responses
correlate most, which in turn can be converted to the time-shift.

5.1.3 Analysis of P300 data

5.1.3.1 Setup

The P300 data used for latency estimation is from [SBK+12], in which 24 subjects
(18 healthy, 6 motor impaired) used a P300 BCI speller in 2 sessions. For the P300
speller, the BCI2000 implementation was used, and the speller was presented on a
19 inch TFT monitor. The EEG data was recorded at a sampling rate of 256 Hz with
a g.USBamp (g.tec, Austria) EEG amplifier from 16 passive EEG electrodes placed
at F3, Fz, F4, T7, C3, Cz, C4, T8, Cp3, Cp4, P3, P4, Po7, Po8, and Oz. More details
about the setup can be found in [SBK+12].
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5.1.3.2 Processing

The EEG data was bandpass filtered by a 4th order Butterworth filter between 0.5 Hz
and 12 Hz. To visualize the P300, the average of all non-P300 trials was subtracted
from the average of all P300 trials, separately for each session of each subject. This
was done for the symbol in the top left of the speller matrix and the symbol in the
bottom right. To compute the latency between the two, a cross-correlation analysis
was performed.

5.1.4 Analysis of cVEP BCI data

Using the data from [SRB12b] an offline analysis was performed to compare the
performance differences of correcting the raster latencies versus not correcting.

5.1.4.1 Setup

The system consisted of an g.USBamp (g.tec, Austria) EEG amplifier, a PC and the
CRTmonitor (Iiyama A901HT) mentioned above. Stimulus presentation and online
classification were operated from the PC. The presentation of the stimuli was syn-
chronized with the EEG amplifier by using the parallel port. The data was recorded
using BCI2000 [SMH+04] with a sampling rate of 600 Hz. The visual stimuli (black
or white) were presented on the monitor with a refresh rate of 60 Hz and a resolution
of 640 × 480 pixels. DirectX (Microsoft Inc.) was used to ensure synchronization
of the presented stimuli with the refresh rate of the monitor. The presentation lay-
out had 32 targets (8 × 4 grid) surrounded by 28 non-targets and forms a 10 × 6
grid. For modulation of the stimuli, a 63-bit binary m-sequence was used, because
of its low autocorrelation property. For each target, the same sequence was used for
modulation, but circular-shifted by 2 bits for each successive target.

5.1.4.2 Experimental design

Each trial had a length of 1.05 seconds followed by 0.85 seconds for gaze shifting.
In total each of the 9 subjects had to perform 64 trials for training and 576 trials for
testing, split into two sessions.

5.1.4.3 Processing

The measured EEG data was processed as described in [SWRB14]. In short, the
data was spatially filtered by a canonical correlation analysis (CCA) and rather than
averaging the EEG data from multiple stimulation sequences, a one-class support
vector machine (OCSVM) was used to estimate the probability distribution of the
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data. The center of the OCSVM hyper-sphere was used as a template, which was
shifted to obtain templates for all targets. By calculating the Euclidean distance
between a new data point and all templates, the template with the smallest distances
to the new data point was obtained, and the corresponding target was selected.
To determine the time-shift between the top-left and bottom-right position, the cross-
correlation was used. As the cVEP BCI has different delays for each stimulus, the
data was corrected for the corresponding delay, to obtain only the monitor raster
latency.

5.1.4.4 Correcting raster latencies

As the exact position of the middle of each target row is known, their exact latency
can be calculated by using themeasured raster latency lm of the used IiyamaA901HT
monitor. The latency lr of each pixel row r of the monitor can be calculated by

lr = r ⋅
lm
n

(5.1)
where n is the number of vertical pixels depending on the resolution. Since the
resolution was set to 640 × 480 pixels, n = 480 in this case. Without re-sampling
of the EEG data, it can only be shifted sample-wise. Therefore, the latencies were
converted and rounded to the corresponding number of samples. This allows shifting
the OCSVM templates associated with a target row by the corresponding number of
samples. For the 4 target rows of the presentation layout, this results in a shift of 2, 3,
5 and 6 samples, respectively. The corrected templates are used for the classification
of the test trials. Of course, the trials used for spatial filter calculation were also
corrected by shifting each trial.

5.1.4.5 Performance evaluation

To assess the performance difference, the target prediction accuracy was used. Be-
cause of the ceiling effect, the difference between the most probable template (small-
est distance) and the second most probable template was analyzed for every single
trial. An increased difference is expected by correcting the raster latencies because
this indicates a clearer classification.

5.2 Results

5.2.1 Measuring raster latencies

First, the average delay and standard deviation (SD) between the trigger onsets and
the real stimulus onsets at the upper left position were analyzed. For the Iiyama



38 CHAPTER 5. MONITOR RASTER LATENCY

monitor, this results in 0.428 ms (SD = 0.0179 ms), for the BenQ monitor in 18.39
ms (SD = 0.034 ms), and for the Dell in 4.26 ms (SD = 0.213 ms). As the standard
deviations are quite low, 5 measures are enough for each measurement position. For
the bottom right position, the average delay is 15.35 ms (SD = 0.0415 ms) for the
Iiyama, 34.26 ms (SD = 0.137 ms) for the BenQ, and 20.14 ms (SD = 0.462 ms)
for the Dell. This results in raster latency of 14.92 ms between the upper left and
bottom right position for the Iiyama, 15.86 for the BenQ and 15.88 ms for the Dell.
Illustrations of the measures for these monitors are depicted in Fig. 5.1.
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Figure 5.1: Measured raster latencies of different monitors: Iiyama A901HT, Dell
1908FPc, and BenQ XL2430-B. The blue lines indicate the triggers at which a visual
stimulation was forced, for this the parallel port is used. The red and yellow lines are
the measured visual stimuli of the monitor at the top left and bottom right position.

5.2.2 Effects on VEP generation

Effects on SSVEPs: The plots in Fig. 5.2 show the averaged potential of the 1-
second windows of the 1 Hz and 15 Hz stimulation, respectively. The blue lines
represent the top left position and the red lines the bottom right position. For the
cross-correlation analysis of the 1 Hz stimulation, the first 250 ms of the VEP re-
sponse was used, resulting in a shift of 9 samples which corresponds to a time-shift
of 15 ms. For the 15 Hz stimulation, the full 1-second window was used for the
cross-correlation analysis, also resulting in 9 samples (15 ms).
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Figure 5.2: Averaged potential of the EEG data on electrode O2 collected during the
SSVEP experiment using stimulation frequencies of 1 Hz (top) and 15 Hz (bottom).
The blue lines correspond to the top left position and the red lines to the bottom right.
Shown are windows of 500 ms.

Effects on cVEP: Analogous to the SSVEP analysis, Fig. 5.3 shows the average
cVEP response of the top left and bottom right target of subject AD. The cross-
correlation analysis of the averaged 1.05 s trials results in 6 samples, which corre-
sponds to a time-shift of 10 ms.

Time [ms]
0 100 200 300 400 500

A
m

pl
itu

de
 [µ

V
]

-2

-1

0

1

2
cVEP

top left bottom right

Figure 5.3: Averaged potential of the spatially filtered EEG data of the first (top left)
and last (bottom right) target trials of subject AD. The blue line corresponds to the top
left position and the red line to the bottom right position. Data of the bottom right target
was corrected for the stimulus delay to only obtain the raster latency. Shown are the first
500 ms after trial start.
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5.2.3 Effects on P300

The plot in Fig. 5.4 shows the averaged potentials of the P300 EEG data on elec-
trode Cz for the top left and bottom right target, respectively. The cross-correlation
analysis revealed a shift of 3 samples which, due to the sampling rate of 256 Hz,
corresponds to a time-shift of 11.72 ms.
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Figure 5.4: Averaged potential of the P300 EEG data on electrode Cz for the top left
and the bottom right symbol in the speller matrix. The blue line corresponds to the top
left position and the red line to the bottom right position. Shown are the first 500 ms
after trial start.

5.2.4 Effects on BCI control performance

The previous analysis of the cVEP data reveals a time-shift of the measured cVEPs.
To determine the effects on the classification of a real BCI application, the perfor-
mance difference was analyzed by taking the raster latencies into account or not.
Tab. 5.1 shows the accuracies for the two sessions (S1 and S2) for each of the 9
subjects. The average accuracy of the not corrected data is 92.02% (7.98% error),
whereby the accuracy of the corrected data is 95.39% (4.61% error), which in turn is
a significant (p < 0.05, paired t-test) error reduction of 42.23%. It is also worth men-
tioning that correcting the data increased the performance from 60.24% to 89.41%
for the subject with the lowest performance (AE S1). Furthermore, the number of
perfect runs increased from 1 to 3.
Also, the difference between the Euclidean distances of the most probable and sec-
ond most probable target were analyzed for all trials of all subjects, whereas only the
9326 correctly classified trials were taken into account. On average the difference is
19.03% for the not corrected data and 22.5% for the corrected data, this is a highly
significant (p < 10−5, paired t-test) increase of the difference of 18.23%.
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Table 5.1: Comparison of the target prediction accuracies using raster latency
correction or not.

not corrected corrected
S1 S2 S1 S2

AA 96.88% 94.62% 97.22% 97.05%
AB 80.03% 87.48% 87.84% 94.22%
AC 98.61% 98.26% 98.61% 98.26%
AD 98.96% 100.00% 98.96% 100.00%
AE 60.24% 99.31% 89.41% 100.00%
AF 97.74% 94.97% 98.09% 95.66%
AG 99.83% 98.96% 100.00% 99.31%
AH 72.74% 86.63% 78.64% 92.01%
AI 96.18% 94.97% 96.70% 94.97%

Session ∅ 89.02% 95.02% 93.94 % 96.83%
Total ∅ 92.02% 95.39%
Error ∅ 7.98% 4.61%

Shown are the target prediction accuracies for all participant. Data acquisition was split
in two sessions (S1 and S2) for nine subjects (AA to AI). Additionally, due to the ceiling
effect, the target prediction error is given.

5.3 Discussion

5.3.1 Effects of raster latencies

The findings of the raster latency measures appear to be consistent with the results
of Tobias Elze [Elz10]. The measured raster latency between the top left and bottom
right position of 15.86 ms is nearly 95% of the refresh-cycle time of 16.6 ms, and it
seems to be consistent for each refresh cycle and different types of monitors.
A phase-shift for SSVEPs between the top left and bottom right position was de-
termined. As a 5 cm × 5 cm square was used for stimulation, the vertical distance
between the top and bottom square is 83.27% of the monitor’s full display height,
therefore, the theoretical time-shift should be 13.21 ms. The cross-correlation anal-
ysis resulted in 15 ms, but as the time resolution is bound to the sampling rate, the
real shift is between 13.3 ms and 16.6 ms.
As expected, the raster latencies also affect ERPs. The analysis of the P300 data
revealed a time-shift of 11.72 ms (3 samples), but due to the low sampling rate
of 256 Hz, the real time-shift is between 7.81 ms and 15.63 ms. Because of the
low sampling rate, accurate correction of the raster latency was not possible for
each target row, therefore, the BCI target prediction performance difference was
not analyzed. It is known that timings of ERPs also vary across conditions [GP02,
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ICM+14], and Mowla et al. [MHT17] showed that correcting latencies in general
leads to enhanced performance.
It is clearly confirmed that raster latencies have effects on both VEPs and ERPs. As a
VEPBCI speller normally arranges targets over several lines of themonitor, the EEG
data becomes asynchronous to the stimuli, which in turn reduces the performance.
By taking the raster latency into account, the average target prediction error could be
reduced from 7.98% to 4.61% for all runs of all subjects, this is a reduction of 42.23%.
Since the performance, by not taking the raster latency into account, was already
good the room for improvement was quite small. Because of this ceiling effect,
subjects with lower initial accuracy will profit more. For example, the accuracy
of the subject with the lowest performance (AE S1) has improved from 60.24% to
89.41%.
Additionally, the decision reliability was analyzed of each target classification. The
reliability should be better if the distance difference between the most probable and
second most probable target increases. The results reveal a highly significant in-
crease of 18.24%, indicating a generally more reliable classification.
This clearly confirms that correcting the raster latencies is important for cVEP BCIs
and will also affect all experiments depending on strict stimulus timing in a millisec-
ond scale using a standard computer monitor for stimulus presentation, like P300,
SSVEP, and other VEP experiments.
Furthermore, the average potentials of the spatially filter EEG data of every single
subject of the cVEP and P300 data were analyzed and revealed an equal shift for all
of them (only data for one subject is shown). This confirms that the effect of the
raster latency is independent of the subject.
The effects on the performance of an SSVEP BCI depends on the classification
method. A method using the frequency domain will result in the same power of
frequencies, as the frequency domain is independent of the time-shift. Another time-
shift independent method is the canonical-correlation analysis (CCA) with sine and
cosine templates, like the method of Chen et al. [CWN+15]. For those methods, the
performance difference by correcting the raster latency should be negligible. On the
other side, for classification methods detecting the phase-shift [YLC+13, PGD+11]
or more general which are time-dependent, the raster latency correction is highly
recommended.
For BCIs which display stimuli at one constant location [JDZ+14], the monitor raster
latency only causes a static shift from the expected onset to the real onset, which
should not affect the performance a lot.
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5.3.2 Addressing raster latencies

Besides the used method for correcting the raster latencies for a cVEP BCI by time-
shifting the templates, it is also possible to use a monitor with a higher refresh rate
to reduce the raster latencies. New monitors reach refresh rates up to 240 Hz and
quadrupling the refresh rate means the delay between the first and last line is divided
by four which is a maximum raster latency of 4.16 ms.
Alternatively, as a time-shift only occurs if the stimuli emitting unit causes raster
latencies, one can use other stimuli emitting units, like LEDs [HLJ+12], indeed this
depends on the experiment itself.
Furthermore, one can use classification methods which are not affected by the time-
shift, like CCA or using only the frequency domain in case of SSVEPs, as mentioned
above.
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Chapter 6

EEG2Code: predicting stimulation
patterns

The general understanding of Brain-Computer Interface (BCI) is, that it enables
users to actively control a computer by using brain activity. Those BCIs are al-
lowing active control, are called active or explicit BCIs. Contrary, there are passive
BCIs also called implicit, which do not allow active control, but to the brain activ-
ity is used, for example, to adapt the application to the user’s mental state. Passive
BCIs are mostly used for workload detection [GSF+17,WRB+17,KSR+18] or emo-
tion detection [MHH17, AC16]. In general, an implicit interaction can be defined
as "an action performed by the user that is not primarily aimed to interact with a
computerized system but which such a system understands as input" [Sch00].
Most of the active BCIs are based on event-related potentials (ERPs) or visual
evoked potentials (VEPs). The latter are brain responses to flickering visual stim-
uli. VEP BCIs are either based on the original idea of Sutter [Sut84] and use
complex stimulation patterns (also called codes) to elicit a code-modulated VEP
(cVEP) [SRB12b,BGW+11], or they are based on visual stimuli modulated by spe-
cific frequencies which evoke steady-state VEPs (SSVEPs) [CWN+15]. For both
methods, the number of possible stimulation patterns optimized for a specific target
layout. For example, the SSVEPBCI speller by Chen et al. [CWN+15] was designed
for a 40-target layout and adding more targets would require to redesign the stimuli
completely.
In this chapter, a new stimulation paradigm is proposed, which does not design a lim-
ited set of stimulation patterns for a specific purpose but make use of fully random
stimulation patterns. Furthermore, a model is presented which can predict stimu-
lation patterns of arbitrary VEPs. Therefore, it is an entirely new approach imple-
menting a passive BCI which allows extracting visual information that is contained
in the EEG. But it should be noted, that the usability of stimulation patterns is re-
stricted by the brain. Herrmann [Her01] has shown that brain responses can only be
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found by using stimulation frequencies of up to 90 Hz. Furthermore, the stimula-
tion rate is limited by the used hardware for stimulus presentation, like a computer
monitor. Therefore, "arbitrary stimulation patterns" should be interpreted as a huge
set of possible stimulation patterns relative to the used stimulation rate.
The general idea of the EEG2Code model was published in [NRS17], whereas parts
of the results, figures and wording are already published in [NS18].

6.1 Methods

6.1.1 Training

Themodel is based on a ridge regressionmodel, which uses the EEG signal to predict
the stimulation pattern during an arbitrary stimulation. The current work is based
on flash VEPs and considering their waveform (see section 2.3.1), it can be assumed
that the most prominent waves last for around 250 ms to 300 ms. Therefore, a 250
ms window of spatially filtered EEG data is used as predictor and the correspond-
ing bit of the stimulation pattern (0=black, 1=white) as response to train the ridge
regression model. The window is shifted sample-wise over the data during a trial,
meaning that it is required to use 250 ms of EEG data after trial-end, otherwise, the
last 250 ms of a stimulation pattern cannot be predicted. Fig. 6.1(A) depicts this pro-
cedure with a bit-wise window shifting for simplicity. The ridge regression model
is trained using Eq. 2.2 and Eq. 2.3, where X is a n × k-matrix with n the num-
ber of windows and k the window length (number of samples). y is a n × 1-vector
containing the corresponding bit of the stimulation sequence for each window. The
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Figure 6.1: Training of the EEG2Code regression model. Each 250ms window of the
spatially filtered EEG data will be projected to its corresponding bit (1 or 0) of the
corresponding stimulation pattern.
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regularization parameter � was not optimized but set to 0.001. Since a window has
a length of k = 150 samples, at the used sampling rate s = 600Hz, the output �̂ is
a coefficient vector of length 150, one for each input sample and the constant bias
term �0. The number of windows n depends on the number of trialsN , the average
trial duration d, the window length k, and the sampling rate s:

n = N (d ⋅ s − k) (6.1)

As described in section 6.1.5, N = 96 and d = 4s were used resulting in n =
216, 000 windows.

6.1.2 Prediction

After training, the model is able to predict the bits of the stimulation pattern. Fig. 6.2
depicts the procedure, in which the measured EEG data is spatially filtered, and
the trained regression model is used to predict each 250 ms window (sample-wise
shifted). The regression model predicts a real number yi for each window i, whereby
y is calculated using Eq. 2.4. The predicted real values yi, in turn, can be interpretedas binary values by a simple threshold method, each value above or equal 0.5 is set to
be binary 1 and 0 otherwise. Afterward, the predicted binary sequence is compared
to the stimulation pattern using the Hamming distance.
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Figure 6.2: The EEG2Code model predicts an arbitrary stimulation pattern. A 250ms
windowwill be slided sample-wise over the spatially filtered EEG signal. For simplicity,
it is shown bit-wise using 3 exemplary windows. The trained model predicts a real
number for each window. Each value above 0.5 (gray dashed line) is interpreted as
boolean 1 or 0, otherwise. The resulting bit sequence can be compared (Hamming
distance) to the stimulation pattern (match = green, mismatch = red).
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6.1.3 Random modulation patterns

During the experiment, random stimulation patterns are used (see section 4.3). At
each monitor refresh a random integer (0 or 1) is generated for each target of the
used presentation layout, therefore, the binary sequence of a target is always random
without conscious repetitions and generated with a rate of 60 bit/s, continuously.
The pattern generation can be repeated or varied by using the same or a different
random seed, respectively. Fig. 6.3 shows four exemplary stimulation patterns.

6.1.4 Hardware & Software

The experimental setup is as shown in Fig. 6.3. The system consists of a g.USBamp
(g.tec, Austria) EEG amplifier, two personal computers (PCs), Brainproducts Act-
icap system with 32 channels and an LCD monitor (BenQ XL2430-B) for stimuli
presentation. Participants are seated approximately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. The stimuli are presented
using the framework introduced in chapter 4. A stimulus can either be black or
white, which can be represented by 0 or 1 in a binary sequence and is synchronized
with the refresh rate of the LCD monitor. The timings of the monitor refresh cycles
are synchronized with the EEG amplifier by using the parallel port.
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Figure 6.3: Setup of the experiment. The presentation layout is as shown on the moni-
tor, it has 32 targets which are separated by a blank black space. Each target is modulated
with its own random stimulation pattern. During a trial, the participant has to focus a
target. The measured EEG data is amplified, and a spatial filter is applied. Afterwards,
the EEGCode model uses the spatially filtered EEG and predicts the stimulation pattern
as shown in Fig. 6.2.
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PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection
was established to PC1 to send instructions to the presentation layer and to get the
modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.

6.1.5 Data acquisition

To test the model, 9 healthy subjects (5 female) were recruited. All subjects had
normal or corrected-to-normal vision. The age ranged from 18 to 23 years. Each
subject participated in one session and completed the whole experiment. None of
the subjects participated in other VEP EEG studies before.
Initially, the participants had to perform 2 runs to generate a spatial filter (see sec-
tion 6.1.6.3). The training phase was split into 3 runs, but with varying trial duration,
5 s, 4 s, and 3 s, respectively. The testing phase consists of 7 runs with a trial duration
of 2 s.
During all runs, the inter-trial time was set to 0.75 s, and the participants had to
perform 32 trials in lexicographic order using the matrix keyboard layout (see sec-
tion 4.4.1). This means that 3 ⋅ 32 ⋅ 4 ⋅ 60 = 23040 random stimuli were presented
during the training trials and 7 ⋅ 32 ⋅ 2 ⋅ 60 = 26880 stimuli during the testing trials.

6.1.6 Preprocessing

Several preprocessing steps were performed prior to the training as well as prior to
the prediction of the EEG2Code model. They will be explained in the following
subsections.

6.1.6.1 Frequency filter

The recorded EEG data is bandpass filtered by the amplifier between 0.1 Hz and
60 Hz using a Chebyshev filter of order 8. Furthermore, the amplifier was also to
configured with a notch-filter at 50 Hz to suppress the 50-Hz power line interference.
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6.1.6.2 Correcting raster latencies

As described in chapter 5, standard computer monitors (CRT, LCD) cause raster
latencies because of the line by line image build-up dependent on the refresh rate.
As the targets of the matrix-keyboard layout are arranged in multiple rows, the raster
latency was corrected as described in section 5.1.4.4.
For the used presentation layout (Fig. 4.1), the vertical center of the four target rows
r are at 231, 463, 695, and 927 pixels. Using Eq. 5.1 and the used vertical resolution
of n = 1080 pixels and the measured monitor raster latency lm = 15.86 ms (see
section 5.2.1), the latencies lr for each row are 3.39 ms, 6.80 ms, 10.21 ms, and
13.61 ms. With the used sampling rate of 600 Hz of the EEG amplifier, the monitor
raster latency is corrected by shifting the EEG data by round(lr ⋅ 600∕1000) samples,
which results in 2, 4, 6, or 8 samples, respectively.

6.1.6.3 Spatial filter

Recent studies [BGW+11, SRB12a] have shown increased classification accuracy
by using spatial filters to improve the signal-to-noise ratio of the brain signals. As
random stimulation is not suitable for spatial filter training, an m-sequence with low
auto-correlation is used for target modulation. The spatial filter training is done
using a canonical correlation analysis (CCA) as described in [SWRB14], except
that the presentation layout and stimulation duration differ. The presentation layout
is as described above, and the participants had to perform 32 trials (one per target)
whereby one trial lasts for 3.15 seconds followed by 1.05 for gaze shifting. As the
used modulation pattern has a length of 63 bits (1.05 seconds), this results in 96
sequence cycles per participant, which in turn are used for training the spatial filter.
The spatial filter is then used for the following experiment.

6.1.7 Performance evaluation

For the pattern prediction of the EEG2Codemodel, the binary values of the predicted
patterns were compared to the stimulation patterns by calculating the accuracy using
Eq. 2.9, which corresponds to how much of the stimulation pattern can be predicted
correctly.
In addition to the accuracies, the corresponding ITRs were calculated using Eq. 2.10
withN = 2 (1 or 0), P the corresponding pattern prediction accuracy, and T = 1∕60
as a single stimulus lasts for 1/60 s, and each bit was predicted individually.
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6.2 Results

The average results for each participant are shown in Table 6.1. When using random
visual stimulation, the EEG2Code model is able to predict the random stimulation
pattern with an average accuracy of 64.6% (the percentage of correctly predicted bits
in the bit-vector), which corresponds to an ITR of 232 bit per minute (bpm). For the
best subject, the EEG2Code model can predict 69.1% of the random stimulation
patterns correctly, which corresponds to an ITR of 389.9 bpm.
Additionally, the spatial filter trials were used to predict the corresponding m-
sequence. In average, the bit-prediction results in 65.9%, which corresponds to an
average ITR of 275.0 bpm. It is worth to note that this ITR is just for comparison
because the cardinality of random stimulation patterns is higher as the cardinality of
a shifted m-sequence.

Table 6.1: Results of the EEG2Code model prediction.

Random stimulation m-sequence
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm]
S1 69.1 389.9 69.7 414.4
S2 64.5 222.4 65.9 267.7
S3 63.7 196.5 64.9 235.3
S4 65.6 257.8 70.0 429.4
S5 66.3 282.7 65.7 260.5
S6 67.1 308.2 66.8 300.5
S7 63.7 196.8 64.6 225.3
S8 60.9 124.5 62.9 173.5
S9 60.2 109.4 62.7 168.7

mean 64.6 232.0 65.9 275.0
Shown are the average results of all subjects, whereby the best results are in bold font.
For the EEG2Code model, the accuracy (ACC) indicates how many bits of the stimula-
tion pattern can be predicted correctly. The ITR is calculated using Eq. 2.10 withN = 2
and T = 1∕60s. For the m-sequence prediction, the ITRs are just for comparison.

6.3 Discussion

Common approaches are based on predefined stimulation patterns, like specific fre-
quencies (SSVEP) or patterns with low auto-correlation (cVEP), therefore, they are
based on a limited set of possible stimulation patterns. Contrary, the EEG2Code
model, presented in this chapter, is a novel approach. It is the first method which
allows predicting arbitrary stimulation patterns, therefore, it offers new possibili-
ties. First and foremost, the set of possible stimulation patterns is only limited by
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the presentation speed. In the current work, the stimuli were presented with a rate
of 60 bit/s which in turn allows having a set of 260 = 1.15 ⋅ 1018 possible stimulation
patterns when using 1 s of EEG data.
The results have shown that the fully random stimulation patterns can be predicted
with an average accuracy of 64.6 %, which corresponds to an ITR of 232 bpm (with
a maximum of 69.1 % and 389.9 bpm). It must be noted that for the ITR calcu-
lation T = 1∕60s was used which is slightly biased due to the required window
length of 250 ms, but T approaches to 1∕60s and the bias decreases with increas-
ing trial duration. Furthermore, these ITRs reflect the visual information that can
be extracted from the EEG, but it cannot be compared to ITRs during active BCI
control, because the user cannot interact. It must be seen as a method which allows
transferring information (visual stimuli) with the human brain as a data channel.
If the accuracy could be further increased, for example by presenting the same stim-
ulation pattern multiple times, it would be possible to use error-correction codes,
how they are used for common data transfer methods.
Interestingly, the bit-prediction accuracies of the m-sequence are significantly (p <
0.05, paired t-test) higher as the prediction of random stimulation patterns. This will
be further addressed in chapter 8. In chapter 9 it will be shown how the model can
be used for active BCI control.
Finally, the approach could also be applied to other stimulation paradigms like sen-
sory or auditory stimulation.



Chapter 7

Code2EEG: predicting brain
responses to visual stimuli

As explained, the EEG2Code model presented in the previous chapter, is a novel
approach, as it predicts arbitrary stimulation patterns. Contrary, most of the recent
approaches [SRB12a,CWN+15] construct/train templates of EEG data for each used
stimulation pattern. The templates, in turn, are used to classify a new trial by com-
paring the new EEG data to each template.
One notable exception was proposed by Thielen et al. [TvdBFD15]. They developed
a method which is able to predict the brain responses to compositions of short and
long stimulation pulses, which allows creating multiple templates without a specific
training of the composition. While this approach allows for a more flexible pre-
diction model, the stimulation patterns are not fully arbitrary, as they can only be
composed of short and long pulses. Again, "arbitrary stimulation patterns" should
be interpreted as a huge set of possible stimulation patterns relative to the used stim-
ulation rate.
In this chapter, the backward model of the EEG2Code model is presented, called
Code2EEG. The model is able to predict the brains response to arbitrary stimulation
patterns, therefore, it can be used to create templates for each possible stimulation
pattern without a specific training of the stimulation pattern. Furthermore, it will be
shown that the predicted brain responses highly correlate with the measured EEG
using the same stimulation pattern, even on a single trial basis.
Parts of the results, figures and wording are already published in [NS18].
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7.1 Methods

7.1.1 Training

Like the EEG2Code model, the Code2EEG model is based on a ridge regression
model and trained on fully random stimulation patterns to predict the EEG response
based on a stimulation pattern. Also, a 250 ms windows (150 samples) is used and
the model is calculated using Eq. 2.2 and 2.3, where X is the window containing
the stimulation pattern and y is the spatially filtered EEG data for the corresponding
time-point. � was set to 0.001. The output �̂ of the ridge regression is a coefficient
vector of length 150. Fig. 7.1 depicts this procedure for three exemplary windows.

0 100 200 300 400 500

250 ms

Spatially filtered EEG

Stimulation pattern

Figure 7.1: Training of the Code2EEG regression model. Each 250ms window of the
modulation pattern will be projected to the corresponding value of the spatially filtered
EEG data.

7.1.2 Prediction

After training, the Code2EEG model is able to predict the brain response to an ar-
bitrary stimulation pattern. Eq. 2.4 is used for prediction, where x1… xk are the
k samples of the stimulation pattern window. The model prediction y can now be
compared to the measured (and spatially filtered) EEG. Fig. 7.2 depicts the proce-
dure.

7.1.3 Hardware & Software

The same setup was used as explained in section 6.1.4. For the sake of completeness,
it will be explained again.
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Figure 7.2: The Code2EEG model predicts the brains response to an arbitrary stimula-
tion pattern by sliding the 250 ms window over the stimulation pattern. For simplicity,
it is shown bit-wise using 3 exemplary windows.

The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. The stimuli are presented
using the framework introduced in chapter 4. A stimulus can either be black or
white, which can be represented by 0 or 1 in a binary sequence and is synchronized
with the refresh rate of the LCD monitor. The timings of the monitor refresh cycles
are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection
was established to PC1 to send instructions to the presentation layer and to get the
modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.
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7.1.4 Data acquisition

The data from the previous experiment was used, as described in section 6.1.5. Also,
the same preprocessing steps were performed, as described in section 6.1.6. For the
sake of completeness, the important parts will be explained again.
Initially, the participants had to perform 2 runs to generate a spatial filter (see sec-
tion 6.1.6.3). The training phase was split into 3 runs, but with varying trial duration,
5 s, 4 s, and 3 s, respectively. The testing phase consists of 7 runs with a trial duration
of 2 s.
During all runs, the inter-trial time was set to 0.75 s, and the participants had to
perform 32 trials in lexicographic order using the matrix keyboard layout (see sec-
tion 4.4.1), whereby the targets were modulated with fully random stimulation pat-
terns (see section 4.3).
Furthermore, as the Code2EEG model can predict the brain response to an arbitrary
stimulation pattern, it was tested with SSVEP and cVEP stimulation patterns. For
this, an additional participant was recruited and had to perform the spatial filter and
training session as described. Additionally, the participant had to perform 120 single
flash trials (1 Hz) and 120 SSVEP trials using 30 Hz stimulation frequency, whereby
each trial lasts for 1 s.
Both the 1Hz and the 30Hz patternwere presented using a single target in themiddle
of the screen, whereby it had the same size as the targets of the matrix keyboard
layout (Fig. 4.1). The m-sequences were presented as part of the data acquisition
used for spatial filter generation (see section 6.1.6.3).

7.1.5 Performance evaluation

Contrary to the EEG2Code model prediction, it is not possible to calculate the ac-
curacy. Therefore, the predictions of the brain responses are evaluated by using the
correlation coefficient between the predicted EEG and the spatially filtered EEG.
Additionally, to obtain a significance measure, the p-values are calculated under the
hypothesis that the correlation between the model prediction and the stimulation
pattern are equal to zero.
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7.2 Results

To evaluate the Code2EEG model, for each trial the stimulation pattern is used to
predict the corresponding brain response. The predicted response is then compared
to the measured spatially filtered EEG on a single trial basis, using the Pearson cor-
relation coefficient. This resulted in an average of r = 0.384 using fully random
stimulation patterns. The maximum is reached for subject S1 with an average of
r = 0.509, which corresponds to a coefficient of determination of r2 = 0.259. Ad-
ditionally, the p-values, under the hypothesis that the correlation is equal to zero
are given, whereby an average p-value of 1.3e−03 (up to 2.8e−17) was achieved. As
the p-values take the length of the trials into account, they prove that the EEG2Code
model prediction significantly correlates with the measured EEG response. Detailed
results for each participant are listed in Table 7.1.

Table 7.1: Results of the Code2EEG model prediction.

Subject r Pt
S1 0.509 2.8e−17
S2 0.338 2.7e−04
S3 0.364 8.0e−03
S4 0.396 1.1e−04
S5 0.464 8.9e−16
S6 0.409 8.5e−08
S7 0.270 4.4e−08
S8 0.344 9.1e−06
S9 0.257 3.2e−03

mean 0.384 1.3e−03

Shown are the average results of all subjects, whereby best results are in bold font. The
correlation (r) between the model prediction the measured EEG data is given as well as
the p-values P under the hypothesis that the correlation between the model prediction
and the stimulation pattern are equal to zero.

Beside using random stimulation patterns, the Code2EEG model was also used to
predict the response to a single-light flash of 16.6 ms, to a 30 Hz SSVEP pattern,
and to a cVEP m-sequence pattern of a single participant. The results are depicted
in Fig. 7.3, whereby each plot shows the predicted brain responses of the Code2EEG
model compared to the measured EEG averaged over multiple trials. It can clearly
be seen, that most of the VEP responses can be predicted, except the on-set.
To address this, the train data was filtered by stimulation patterns with fewer bit
changes (< 3 within 250 ms) to get mainly on-set responses. Using this data, an
additional Code2EEG model was trained, and the results show that the onset for all
tested stimulation patterns matches better, whereas the further prediction matches
worse (Fig. 7.4)
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Figure 7.3: Predicted brain responses of the Code2EEG model compared to the mea-
sured EEG. The black line represents the stimulation pattern, the blue line the predicted
brain response and the red line the spatially filtered EEG (120 trials averaged).
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Figure 7.4: Predicted brain responses of the Code2EEG model compared to the mea-
sured EEG. For the training, only stimulation patterns with < 3 bit-changes are used.
The black line represents the stimulation pattern, the blue line the predicted brain re-
sponse and the red line the spatially filtered EEG (120 trials averaged).
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7.3 Discussion

In this chapter, a model was presented which is able to predict the brain responses
to visual stimulation patterns. Contrary to comparable methods [TvdBFD15,
CCA+16], the presented method works with arbitrary stimulation patterns, while it
is only trained on a limited set of stimulation patterns. Random stimulation patterns
were used because it was assumed to cover most of the possible VEP responses.
Using fully random stimulation patterns, the correlation between the recorded EEG
and the predicted spatially-filtered EEG response results in r = 0.384. It should
be noted that the Code2EEG model only predicts the evoked response in the EEG,
and not the noise present in the EEG so that the correlation between the prediction
and the evoked response should actually be higher. On the other side, a correlation
of r = 0.384 means that r2 = 14.75% of the variance in the recorded EEG can be
explained by the Code2EEG model, thereby giving a lower bound for the signal-to-
noise-ratio (SNR) of the visual evoked response in the EEG. This is confirmed by
comparing the model prediction of the cVEP pattern to the averaged (and thereby
noise reduced) recorded EEG (Fig.7.3(C)), which resulted in a correlation of r =
0.551 (r2 = 30.4%).
Interestingly participant S8 achieved a similar correlation as S3 (0.344 vs. 0.364),
but the bit-prediction accuracy of S3 is clearly increased (63.7 bit/min vs. 60.9
bit/min).
The only comparable work is by Thielen et al. [TvdBFD15]. But it must be noted
that, although the method could be used with any stimulation pattern composed of
short and long pulses, they constructed two optimized distinct sets containing 65
pre-constructed 126-bit long stimulation patterns each, one for training and one for
testing, respectively. Unfortunately, although they used the method for BCI control,
they did not analyze the brain response prediction of their model on a single trial
basis but averaged over multiple trials, which resulted in r2 = 47.6%. At first glance,
this suggests a better performance, but as noted, the prediction is compared to an
averaged EEG, furthermore, only 65 stimulation patterns were tested. Contrary, the
presentedmodel in this workwas tested on fully random stimulation patterns without
conscious repetitions, which is why the responses cannot be averaged.
A further approach predicting SSVEPs is by Wang et al. [WGG15]. They con-
structed a computational model which is able to predict SSVEPs for a given fre-
quency. Unfortunately, the model was only evaluated for BCI control. Furthermore,
an SSVEP response shows a (more or less) static course, as shown in Fig. 7.3(b),
which is obviously easier to predict as complex VEPs, like cVEPs (see Fig. 7.3(c)).
Another approach predicting VEPs was recently published by Sobreira et
al. [STK18], but it is not directly comparable. They constructed a deep-learning
model which simulates the visual pathway. Their model is able to predict VEPs to
a single stimulus based on the shape of the stimulus, which resulted in a median
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correlation of r = 0.91. But it must be emphasized that the method is not able to
predict any other (complex) VEPs, which means it is not suitable for BCI control.
Finally, the presented approach is based on the assumption of linearity in the VEP
generation process [CPAD+11, LPR+06], it was shown that most of the VEP re-
sponse to arbitrary stimulation patterns can be explained by a superposition of sin-
gle VEP responses. But interestingly, the duration of the predicted single-flash VEP
response and the onset of the predicted 30 Hz SSVEP response is shortened in time
compared to the recorded VEP responses, whereas the sinusoidal part of the 30 Hz
SSVEP response matches well. It seems there is an initially slowed response after a
longer stimulation pause which the model cannot reflect because it is trained using
random stimulation patterns where longer stimulation pauses are unlikely. To ad-
dress this, a model was trained using only data with fewer bit changes (< 3 within
250 ms). The results show that the on-set for all evaluated stimulation patterns
matches good, whereas the further prediction matches worse (Fig. 7.4). This could
be an evidence, that the VEP generation is a non-linear process and will be further
addressed in chapter 13 by using a non-linear approach.
In chapter 9 it will be shown how the Code2EEGmodel can be used for BCI control.



Chapter 8

Optimization of stimulation patterns

As explained in section 2.3.1, the most prominent parts of a flash VEP are P2, N3,
and P3, the negative/positive potentials with peaks at around 110 ms, 150 ms, and
220 ms, (post-stimulus), respectively. But this means that VEPs will mix-up for
successive stimuli with a time interval lower than approximately 250 ms. It is not
entirely clear how this mix-up proceeds, as it might be a simple overlap of responses
or the brain might be entrained to the modulated stimuli [Her01].
Obviously, not each possible stimulation pattern could result in equal performances.
Imagine, a stimulation pattern which is always off or on would not result in a VEP, as
VEPs are evoked because of flickering. Furthermore, Herrmann [Her01] has shown
that VEPs can only be found by using stimulation frequencies of up to 90 Hz, which
is most probably caused due to the refractory period of neurons. Therefore, to get the
best classification performances, it is required to find modulation patterns evoking
brain responses which can be differentiated between others as effectively as possible.
In chapter 6 it was found that the bit-prediction accuracy using m-sequence stim-
ulation is significantly better as the random bit-prediction accuracy. Since the
EEG2Codemodel allows to use arbitrary stimulation patterns, it is possible to search
for specific properties of stimulation patterns which results in better classification
performances. In this chapter a specific property was tested which resulted in an
increased performance.
The general idea of the pattern optimization was published in [NRS18], whereas
parts of the results, figures and wording are already published in [NS18].
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8.1 Methods

8.1.1 Analyzing the m-sequence

As explained, not each possible stimulation pattern could result in equal perfor-
mances. Since the bit-prediction accuracies of the m-sequence are significantly
better as of random stimulation patterns, there must be a specific property of the
m-sequence.
The prediction of the EEG2Code model takes only 250 ms windows of EEG data
into account, therefore, the low auto-correlation of the m-sequence cannot be re-
sponsible for the increased performance. As mentioned, a stimulation pattern which
is always off or on would not result in a VEP, therefore, a specific property could
be the number of bit-changes. Again, since the EEG2Code model takes only 250
ms (15-bit) windows into account, all 15-bit long sub-sequences of the m-sequence
were analyzed for the number of bit-changes. To clarify, a bit-change is the change
of binary 1 to 0 and vice versa, respectively.

8.1.2 Effects of the number of bit-changes

To prove if the findings of them-sequence analysis, also the bit-prediction accuracies
using random stimulation patterns were analyzed. Using the data of chapter 6, an
offline analysis was performed by splitting each trial of the 7 test runs into all possible
250 ms long sub-trials. For each of those sub-trials, the bit-prediction accuracy and
the corresponding number of bit-changes were determined. Since the number is bit-
changes depends on the length of the bit sequence, the bit-change probability will
be given, which is the percentage of possible bit-changes. For example, a bit-change
probability of 100% means that each successive bit-changes from 0 to 1 or 1 to 0,
respectively.

8.1.3 Generate optimized stimulation patterns

Based on the findings of the bit-change analysis (see results), a set of all 15-bit
long sequences with 50% bit-change probability (7 bit-changes) was generated. This
results in a total number of 6,864 15-bit sequences.
In preparation of the BCI control, where different stimulation patterns should evoke
VEPs that are as different as possible, the set of the 6,864 sequences is further re-
duced, to get a set of sequences that are as dissimilar to each other as possible.
For this, 100,000 sets of 150 randomly chosen sequences out of the 6,864 bit-
sequences were generated. The set with the lowest average correlation coefficient
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between each sequence to all others was selected. The resultant subset has an average
correlation of -0.004 (SD = 0.276) between any sub-sequence to all others.
Since a 32-target matrix keyboard layout was used, the 15-bit sequences of the opti-
mized set must be assigned to the targets. This is done randomly without repetitions,
which means that the same sequence will only be assigned to a single target. Once
the sequence is presented, which took 250 ms using a presentation rate of 60 bit/sec,
a new one will be assigned. Contrary to assigning a static sequence to each target,
this allows modulating 150T∕250ms different targets, where T denotes the trial duration
in milliseconds.

8.1.4 Hardware & Software

The same setup was used as explained in section 6.1.4. For the sake of completeness,
it will be explained again.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. The stimuli are presented
using the framework introduced in chapter 4. A stimulus can either be black or
white, which can be represented by 0 or 1 in a binary sequence and is synchronized
with the refresh rate of the LCD monitor. The timings of the monitor refresh cycles
are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection
was established to PC1 to send instructions to the presentation layer and to get the
modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.
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8.1.5 Data acquisition

The data from the previous experiment was used, as described in section 6.1.5. Also,
the same preprocessing steps were performed, as described in section 6.1.6. For the
sake of completeness, the important parts will be explained again.
Initially, the participants had to perform 2 runs to generate a spatial filter (see sec-
tion 6.1.6.3). The training phase was split into 3 runs, but with varying trial duration,
5 s, 4 s, and 3 s, respectively. The testing phase consists of 7 runs with a trial du-
ration of 2 s. During the training and testing runs, the targets were modulated with
fully random stimulation patterns (see section 4.3).
The spatial filter runs and test runs were used to analyze the bit-prediction accuracy
relative to the number of bit-changes. In addition, to prove the findings, the partic-
ipants had to perform 7 more runs, also with a trial duration of 2 s, but using the
optimized set of stimulation patterns as explained.
During all runs, the inter-trial time was set to 0.75 s, and the participants had to
perform 32 trials in lexicographic order using the matrix keyboard layout (see sec-
tion 4.4.1).

8.1.6 Performance evaluation

As the EEG2Code model is used to analyze the optimized stimulation patterns, the
same performance evaluation was used. Therefore, the accuracy of how much of the
stimulation pattern can be predicted correctly, as well as the corresponding ITR was
analyzed. For the latter, Eq. 2.10 is used with N = 2 (1 or 0), P the corresponding
pattern prediction accuracy, and T = 1∕60 as a single stimulus lasts for 1/60 s and
each bit was predicted individually.

8.2 Results

For both, the used m-sequence as well as the fully random stimulation patterns,
the bit-change probability was analyzed for each 15-bit window. Fig 8.1 shows the
results for the m-sequence and reveals that 33 of the 63 windows have 7 or 8 bit-
changes, which corresponds to a bit-change probability between 50% and 57%. The
results for the random stimulation patterns are, of course, normally distributed with
its maximum at 50% bit-change probability (Fig. 8.2).
It was analyzed if the bit-change probability affects the bit-prediction accuracy, by
using the data from chapter 6. Fig. 8.3 shows the average bit-prediction accuracy
relative to the bit-change probability. It clearly shows that the accuracy is best for
bit-change probabilities between 40% and 60%, and decreases with a falling as well
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Figure 8.1: Analysis of them-sequence. Shown are the number of 15-bit sub-sequences
of the m-sequence relative to their bit-change probability.
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Figure 8.2: Distribution of all possible 15-bit long sequences relative to their bit-change
probability.

as rising bit-change probabilities.
To further prove the effects of the bit-change probability, the participants performed
trials using a set of optimized stimulation patterns which all have a bit-change proba-
bility of 50%, but not for intermediate parts (see Fig. 8.4). Table 8.1 shows the results
for each participant. The fully random stimulation patterns could be predicted with
an accuracy of 64.6% whereas an accuracy of 65.4% was achieved by using the op-
timized stimulation patterns, which corresponds to a significant (p < 0.05, paired
t-test) increase of the ITR to 264.9 bit/min with a maximum of 481.6 bit/min.

8.3 Discussion

As explained, VEPs are evoked because of flickering stimuli, which implies that a
constant "off" stimulus as well as a constant "on" stimulus does not result in a VEP,
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Figure 8.3: Influence of the bit-change probability using the EEG2Code model. The
accuracies are averaged using all 250 ms (15 bit) sub-sequences of random modulation
trials grouped by the bit-change probability. The maximum bit-prediction accuracy is
reached between approximately 40% to 60%, meaning an average of 6 to 8 bit-changes.
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Figure 8.4: Distribution of the optimized stimulation patterns during the experiment.
The optimized set consists of 15-bit patterns with a bit-change probability of 50% each.
As those patterns were randomly concatenated during the experiment, a 50% bit-change
probability cannot be guaranteed for the intermediate parts.

therefore, there is a lower bound. As shown by Herrmann [Her01], VEPs can be
measured in the EEG only for stimulation frequencies of up to 90 Hz, which implies
that there is also an upper bound. Therefore, the stimuli rate must affect the strength
of VEPs.
In chapter 6 it was found that the bit-prediction accuracy using m-sequence stimula-
tion is significantly better as the random bit-prediction accuracy, which means that
the used m-sequence must have a better stimuli rate. An analysis of the m-sequences
reveals that 53% of all 15-bit sequences have between 7 and 8 bit-changes, which
in turn means that approximately every second bit has changed from 0 to 1 or vice
versa.
An analysis of the bit-prediction accuracy using the EEG2Code model proofed, that
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Table 8.1: Comparison of random and optimized stimulation.

Random stimulation Optimized stimulation
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm]
S1 69.1 389.9 71.2 481.6
S2 64.5 222.4 65.1 241.5
S3 63.7 196.5 65.0 237.0
S4 65.6 257.8 66.8 299.0
S5 66.3 282.7 67.1 311.2
S6 67.1 308.2 68.5 364.9
S7 63.7 196.8 65.0 235.9
S8 60.9 124.5 60.4 113.6
S9 60.2 109.4 59.7 99.0

mean 64.6 232.0 65.4 264.9
Shown are the average results of all subjects, whereby best results are in bold font. For
both, random stimulation and optimized stimulation, the accuracy (ACC) indicates how
many bits of the stimulation pattern can be predicted correctly. The ITR is calculated
using Eq. 2.10 with N = 2 and T = 1∕60s. For the optimized stimulation, the ITRs
are just for comparison.

the bit-change probability has significant effects. With bit-change probabilities be-
tween 40% and 60% the accuracy is best and decreases with a falling as well as
rising bit-change probabilities. The effect was further proofed by using optimized
stimulation patterns with 50% bit-change probability, which significantly increased
the ITR to 264.9 bit/min. Here it is worth to mention, that the optimized stimulation
patterns were randomly concatenated during the experiment, which means the 50%
bit-change probability cannot be guaranteed for the intermediate parts.
Altogether, the results show that the EEG2Code model can be used to analyze the
performance of different stimulation patterns or to be more precise to analyze the
performance of specific properties of stimulation patterns. Another approach could
be to search for stimulation patterns which can be predicted best for as many partici-
pants as possible, afterward those stimulation patterns could be used for stimulation.
Also, such an approach could be utilized for electrical stimulation for therapeutic
means, where optimal stimulation parameters need to be found to evoke a certain
response [WNS+14].
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Chapter 9

Synchronous BCI control

For the models, EEG2Code and Code2EEG explained in the previous chapters, it
was shown that they can decode/encode brain responses to arbitrary visual stimuli.
However, this passive BCI application has no purpose for the user. In order that a
user can use it for interactions, it is required to classify a specific interaction/target
depending on the corresponding model prediction.
Several synchronous BCI control approaches were developed, mainly used for
spelling or wheel-chair control, and have shown to be suitable for high-speed con-
trol. As already mentioned, the idea for an BCI speller was originally developed by
Sutter in 1984 [Sut84], who stated that "the electrical scalp response to a modulated
target is largest if the target is located within the central 1◦ of the visual field" and
that "this makes it possible to construct a gaze-controlled keyboard". Sutter imple-
mented a BCI speller in 1992 where he used 64 visual stimuli that were modulated
by a complex stimulation pattern.
In this chapter, it will be shown that both models are suitable for active BCI control,
by using them for a synchronous BCI speller. Several target classification meth-
ods will be tested, and a within-subject comparison to a state-of-the-art cVEP BCI
speller was performed. Additionally, the findings of chapter 8 that optimized stim-
ulation patterns lead to better model predictions will be analyzed in the context of
active BCI control.
Parts of the results, figures and wording are already published in [NS18].
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9.1 Methods

9.1.1 Target classification

For the EEG2Code model, there are two possibilities to classify the correct target.
On the one hand, it is possible to use the model prediction, which is a sequence of
real values, on the other hand, the predicted bit sequence can be used. Contrary, for
the Code2EEG model it is only possible to use the model output (predicted brain
response). An example of the EEG2Code model is depicted in Fig. 9.1.
Several distance/similarity measures were tested, which will be explained in the fol-
lowing.

9.1.1.1 Hamming distance

For the EEG2Codemodel, the first approach is to use theHamming distance between
the predicted bit sequence and the stimulation patterns of all targets. The Hamming
distance dH (x, y) is the number of mismatches between two points x and y of same
length n. In the case of the EEG2Code model, x is the stimulation pattern and y the
predicted bit sequence, both are of equal length n.
Therefore, the Hamming distance is a measure for the bit-prediction accuracy:

ACC = 1 −
dH (x, y)

n
(9.1)

The target stimulation pattern with the smallest Hamming distance (highest bit-
prediction accuracy) will be selected as the correct target.

9.1.1.2 Euclidean distance

Another distance approach is the Euclidean distance, which defines the distance in
the Euclidean space. The Euclidean distance de between two points x and y is de-
fined as

de(x, y) =

√

√

√

√

n
∑

i=1
(xi − yi)2 (9.2)

where n is the number of dimensions. In the case of the EEG2Code model, x is the
stimulation pattern and y the model prediction, which are of equal length n, depend-
ing on the trial duration. The target with the smallest distance will be selected.
The Euclidean distance could also be used for the Code2EEG model, but since the
range of the model prediction is not necessarily the same as for the spatially filtered
EEG, it was not used.
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EEG2Code

Target A r = 0.440

Target B r = 0.002

Target 4 r = 0.069

Target 5 r = 0.148

Figure 9.1: Example of the target classification using the EEG2Code model and the
pearson correlation coefficient. The blue line shows the EEG2Code model prediction
and the colored lines below are the target stimulation patterns. For simplicity, only
targets A, B, 4 and 5 are shown. Right to each stimulation pattern is the corresponding
correlation coefficient. The correlation is highest for target A, therefore, it is chosen as
the correct target.

9.1.1.3 Correlation

As explained in section 2.6.3, the correlation is a similarity measure, therefore, it is
also suitable for target classification. The method is used for both models. For the
EEG2Code model, the correlation coefficient is calculated between the model pre-
diction and the target stimulation pattern. For the Code2EEG model, it is calculated
between the predicted brain response and the spatially filtered EEG.

9.1.2 Hardware & Software

The same setup was used as explained in section 6.1.4. For the sake of completeness,
it will be explained again.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. The stimuli are presented
using the framework introduced in chapter 4. A stimulus can either be black or
white, which can be represented by 0 or 1 in a binary sequence and is synchronized
with the refresh rate of the LCD monitor. The timings of the monitor refresh cycles
are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection



72 CHAPTER 9. SYNCHRONOUS BCI CONTROL

was established to PC1 to send instructions to the presentation layer and to get the
modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.

9.1.3 Data acquisition

The data acquisition explained in chapters 6-8, was acquired through the syn-
chronous BCI experiment explained in this chapter, whereby for the online results
the EEG2Code model and the correlation coefficients were used to classify the tar-
gets. For the sake of completeness, the important parts will be explained again.
Initially, the participants had to perform 2 runs to generate a spatial filter (see sec-
tion 6.1.6.3). The training phase was split into 3 runs, but with varying trial duration,
5 s, 4 s, and 3 s, respectively. The testing phase was split into 14 runs with a trial
duration of 2 s. The runs were alternated using fully random stimulation patterns
(see section 6.1.3) and optimized stimulation patterns (see section 8.1.3).
During all runs, the inter-trial time was set to 0.75 s, and the participants had to
perform 32 trials in lexicographic order using the matrix keyboard layout (see sec-
tion 4.4.1).

9.1.4 Comparison to a cVEP BCI speller

To compare the EEG2Code BCI speller to a state-of-the-art cVEP BCI speller
method [SRB12a], a within-subject comparison was performed using the m-
sequence trials of the spatial filter runs. The cVEP analysis was performed as de-
scribed in [SRB12a] using a one-class support-vector-machine (OCSVM), for this
the 192 m-sequence trials (2 runs á 32 trials á 3 m-sequence cycles) were analyzed
using a randomized 10-fold cross-validation (CV). For the EEG2Codemodel trained
on the random stimulation patterns, all 192 trials were classified. Furthermore, a
randomized 10-fold cross-validation (CV) analysis was performed by using the m-
sequence trials also to train the EEG2Codemodel. To clarify, this means that the first
EEG2Code model was not trained on m-sequences, whereas the second EEG2Code
model is only trained on m-sequences.
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9.1.5 Performance evaluation

To analyze the performance of the synchronous BCI control, the accuracy of the
target prediction is calculated using Eq. 2.9. In addition to the accuracies, the cor-
responding ITRs were calculated using Eq. 2.10 withN = 32, P the corresponding
target prediction accuracy, and T = 2.75 s as a trial lasts for 2 s and the inter-trial
time was 0.75 s.

9.2 Results

9.2.1 Comparison of the different target classification methods

For the EEG2Code model, it is possible to use different methods to classify the
correct target based on the model prediction. All 14 test runs (448 trials in total)
were used to analyze the different performances. Table 9.1 shows detailed results
for each participant.
During the online BCI control, the correlation coefficient was used, which resulted
in an average target prediction accuracy of 97.9%. In a further offline analysis, the
synchronous BCI control was simulated using the Euclidean-distance for target clas-
sification, which resulted in a significantly (p < 0.05, paired t-test) reduced accuracy
of 95.4%. The third used method was the Hamming distance between the predicted
stimulation pattern and the target stimulation patterns which also resulted in a sig-

Table 9.1: EEG2Code BCI control using different target classification methods.

Correlation Euclidean Hamming
Subject ACC [%] ACC [%] ACC [%]
S1 100.0 100.0 99.3
S2 99.4 98.9 97.3
S3 97.8 96.0 94.0
S4 100.0 99.6 98.0
S5 99.6 99.3 97.1
S6 100.0 99.8 98.4
S7 98.9 97.8 93.5
S8 98.0 87.3 71.7
S9 87.7 79.7 69.2

mean 97.9 95.4 90.9
Target prediction accuracies (ACC) using the EEG2Code model with different target
classification methods: correlation coefficient, Euclidean distance, and Hamming dis-
tance. All runs with random stimulation patterns as well as optimized stimulation pat-
terns were analyzed (448 trials in total).
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nificantly (p < 0.05, paired t-test) reduced accuracy of 90.9%.

9.2.2 Comparison of EEG2Code and Code2EEG

In addition to the EEG2Code model, the Code2EEG was tested in an offline analy-
sis. For the target classification, the correlation coefficient was calculated between
the spatially filtered EEG and the predicted EEG of each target stimulation pattern,
whereby all 14 test runs were analyzed (448 trials in total). As shown above, the
EEG2Code model achieved an average target prediction accuracy of 97.9% (ITR:
104.4 bit/min) using the correlation coefficient. The Code2EEG model performs
significantly (p < 0.05, paired t-test) worse with an average accuracy of 93.9% (ITR:
96.8 bit/min). The ITRs were calculated including an inter-trial time of 0.75 s. De-
tailed results for each participant are shown in Table 9.2.

Table 9.2: BCI control comparison of EEG2Code and Code2EEG.

EEG2Code Code2EEG
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm]
S1 100.0 109.1 100.0 109.1
S2 99.4 107.2 96.2 99.9
S3 97.8 103.3 93.5 94.5
S4 100.0 109.1 99.1 106.5
S5 99.6 107.7 98.9 106.0
S6 100.0 109.1 99.3 107.1
S7 98.9 106.0 98.0 103.8
S8 98.0 103.8 80.6 72.6
S9 87.7 84.1 79.9 71.6

mean 97.9 104.4 93.9 96.8
Accuracies (ACC) and information transfer rates (ITR) using the EEG2Code and
Code2EEG model. For both models the runs with random stimulation patterns as well
as optimized stimulation patterns were analyzed (448 trials in total). ITRs are calculated
using Eq. 2.10 withN = 32 and T = 2.75s (including an inter-trial time of 0.75s).

9.2.3 Comparison of random and optimized stimulation pat-
terns

Since the EEG2Codemodel outperformed the Code2EEGmodel, it is used to further
analyze the target classification performance difference between fully random stim-
ulation patterns and the optimized stimulation patterns. The findings of chapter 8
suggest an improved performance.
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During each run the participants had to spell each letter in lexicographic order, mean-
ing 32 trials per run for a total of 224 trials for each stimulation type. Table 9.3 shows
the target prediction accuracies and the corresponding ITRs, including the inter-trial
time of 0.75 s. When using fully random stimulation patterns, the average accuracy
of target selection is 97.8%, which corresponds to 103.9 bpm with the used trial du-
ration of 2 s. As shown in chapter 8, using optimized modulation patterns resulted in
a better bit-prediction accuracy, this can also be confirmed for the target classifica-
tion, which results in an accuracy of 98.0% (104.9 bpm). But due to a ceiling effect,
the difference between random and optimized stimulation patterns is not significant.
Interestingly, only participant S9 achieved a better performance using fully random
stimulation patterns (84.8% vs. 90.6%).

Table 9.3: BCI control comparison of random and optimized stimulation.

optimized random
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm]
S1 100.0 109.1 100.0 109.1
S2 99.6 107.7 99.1 106.5
S3 99.1 106.5 96.4 100.4
S4 100.0 109.1 100.0 109.1
S5 100.0 109.1 99.1 106.5
S6 100.0 109.1 100.0 109.1
S7 99.6 107.7 98.2 104.3
S8 99.1 106.5 96.9 101.3
S9 84.8 79.3 90.6 89.2

mean 98.0 104.9 97.8 103.9
Accuracies (ACC) and information transfer rates (ITR) of the online BCI experiment
(EEG2Code model). Shown are the average results of all subjects using random stimu-
lation patterns and optimized stimulation patterns. ITRs are calculated using Eq. 2.10
withN = 32 and T = 2.75s (including an inter-trial time of 0.75s).

9.2.4 Comparison to a cVEP BCI speller

A within-subject comparison to a state-of-the-art cVEP BCI speller
method [SRB12a] was performed using the m-sequence trials of the spatial
filter runs. The results are listed in Table 9.4. By using the EEG2Code model
trained on trials using fully random stimulation patterns, an average target prediction
accuracy of 89.7 % was reached, which corresponds to an ITR of 155.3 bpm (with
N = 32 and T = 1.55s). It should be noted that the model was not trained on
any of the m-sequence trials. The EEG2Code model trained on only m-sequence
trials performs better with an accuracy of 90.8 % (ITR: 158.6 bpm). Using the
OCSVM method the average accuracy is 93.2 % (ITR: 166.5 bpm), whereas the
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results are not significantly better as the results of the EEG2Code model trained on
only m-sequences (p > 0.05, paired t-test).
Table 9.4: Performance comparison using m-sequence stimulation for cVEP BCI.

EEG2Code OCSVM [SRB12a]
trained on trained on trained on

Subject random sequences m-sequences m-sequences
S1 100.0% 100.0% 100.0%
S2 94.8% 97.9% 98.9%
S3 50.0% 39.0% 53.7%
S4 100.0% 99.5% 100.0%
S5 98.4% 98.4% 98.4%
S6 95.3% 96.3% 96.8%
S7 97.4% 98.4% 97.9%
S8 86.5% 91.6% 93.2%
S9 84.9% 95.8% 99.5%

mean 89.7% 90.8% 93.2%
Shown are the accuracies (ACC) of the target prediction on data where m-sequences
were used for stimulation. The EEG2Code model was trained once on random stim-
ulation patterns and once on the m-sequence trials using a randomized 10-fold cross-
validation (CV). The results are compared to the results using the one-class support
vector machine (OCSVM) also by using a randomized 10-fold CV. The results are av-
eraged over 192 trials with a duration of 1.05 s.

9.3 Discussion

In this chapter, it was shown that the EEG2Code, as well as the Code2EEG model,
can be used for BCI control. When using the EEG2Code model with correlation
coefficients for target selection, as done during the online BCI control, an average
accuracy of 97.9% was achieved, which corresponds to an ITR rate of 108 bit/min
with the used trial time of 2 s and the inter-trial time of 0.75 s. Using the Euclidean
distance measure resulted in 95.4% which is significantly less (p < 0.05, paired t-
test) compared to using the correlation coefficients. Using the Hamming distance,
resulted in a significantly (p < 0.05, paired t-test) worst performance (90.9%), which
could be explained by the loss of information due to the rounding of the model
prediction. Altogether, the results suggest using the correlation coefficient for target
selection to achieve the best classification accuracies.
A direct comparison of the EEG2Code and Code2EEGmodel reveals a significantly
(p < 0.05, paired t-test) better performance using the EEG2Code model (97.9%
vs. 93.9%). This can be explained by the fact, as discussed in chapter 7, that the
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Code2EEG model only predicts the evoked response in the EEG, and not the noise
present in the EEG, which in turn reduces the correlation coefficient by comparing it
to the spatially filtered EEG on a single trial basis. Contrary, the EEG2Code model
prediction is compared to the (noise-free) stimulation patterns. But although the
performance is reduced, with an ITR of 96.8 bit/min, it is more than twice as fast as
the only comparable work by Thielen et al. [TvdBFD15], which achieved an ITR of
38.1 bit/min at an even lower accuracy of 86%.
As shown in chapter 8, the EEG2Code model achieves a significantly better perfor-
mance by using the optimized stimulation patterns instead of fully random stimu-
lation patterns. The results can be confirmed for BCI control, the optimized stimu-
lation patterns resulted in a better target prediction accuracy (98% vs. 97.8%), but
because of the ceiling effect, the results are not significant. Furthermore, only partic-
ipant S9 achieved a better performance using the fully random stimulation patterns,
which, however, also shows up in the results of the bit-prediction accuracy. Interest-
ingly, S8 also achieved a better bit-prediction accuracy using the random stimulation,
but a better target prediction accuracy using the optimized stimulation patterns.
A further conceivable optimization for the BCI control could be the adaption of the
stimulation pattern. Starting with fully random patterns, the bit-prediction accuracy
of a defined length will be analyzed continuously and will be rated, for example,
by the accuracy itself. In the following the stimulation will be adapted, the higher
the bit-prediction accuracy of a pattern the more likely it will be presented. This
could lead to more optimized patterns. Additionally, also an adaptive train would
be possible, for example, a trial could be added to the training set if the stimulation
pattern can be predicted with a certain bit-prediction accuracy.
A within-subject comparison of the EEG2Code model to a state-of-the-art cVEP
BCI speller reveals a comparable performance. Although the EEG2Code model has
slightly reduced performance (90.8% vs. 93.2%), the difference is not significant
(p > 0.05, paired t-test).
The presented online BCI performance is below the best results reported for a cVEP
BCI (144 bpm [SRB12b]) or an SSVEP BCI (267 bpm [CWN+15]). However, the
BCI used in the online setup was not optimized to achieve a high ITR, but to be
comfortably usable by a BCI-naive person and to get the required data for the offline
analyses. The optimization of the parameters will be addressed in chapter 8.
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Chapter 10

Increasing the number of targets and
varying trial durations

As mentioned in chapter 6, recent VEP BCIs are either based on the original idea
of Sutter [Sut84] and use complex stimulation patterns to elicit a cVEP [SRB12b,
BGW+11], or they are based on visual stimuli modulated by specific frequencies
which evoke SSVEPs [CWN+15]. Although both methods differ in how the stimu-
lation pattern is constructed, both methods depend on the construction of a stimulus-
specific template, restricting the number of possible targets. For example, a state-of-
the-art cVEP BCI speller uses a 63-bit m-sequence, which is circularly shifted by 2
bits for each target, thereby allowing a total of 32 targets. To increase the number of
targets, the shift must be decreased, or the sequence length must be increased, either
decreasing performance or speed. Another approach is to group several targets and
use multiple m-sequences for each group [WLG+18, LWL18], but this approach is
also limited as the number of equal-sized m-sequences is limited. In case of SSVEP
BCIs, there are also some approaches to increase the number of targets, for example
by using multiple frequencies sequential coding [ZXL+12] or by using multi-phase
cycle coding [TZ15], but both show a reduced information transfer rates.
In this chapter, the two most significant advantages of the EEG2Code and the
Code2EEG model are addressed, the nearly unlimited number of targets as well as
the variable trial duration. In an offline analysis, the number of targets was increased
up to half a million targets, and the trial durations were varied between 0.5 s and 2
s.
Parts of the results, figures and wording are already published in [NS18].

79



80 CHAPTER 10. INCREASING NUMBER OF TARGETS

10.1 Methods

10.1.1 Varying trial duration and number of targets

The EEG2Code (chapter 6) and Code2EEG (chapter 7) model are based on a sliding
window approach, whichmeans the prediction does not require the complete data but
a 250 ms window, therefore, the trial duration can be varied. In an offline analysis,
the BCI performance was tested with varying the trials durations from 0.5 s to 2 s.
Furthermore, the models are trained on fully random stimulation patterns, therefore,
it is not required to use the same stimulation patterns for training and testing, but
arbitrary stimulation patterns can be used which in turn allows varying the number
of targets. Additional targets simply get another random stimulation pattern.
With a trial length of 2 s and 60 Hz refresh rate, there are 2120 = 1.33 ⋅1036 different
stimulation patterns when using fully random stimulation patterns and 1508 = 2.56 ⋅
1017 when using the optimized stimulation patterns, which therefore are the upper
bounds for the number of targets with 2 s trial duration. As mentioned in chapter 9,
the layout had 32 targets, which means the model prediction had to be compared to
the 32 stimulation patterns to classify the correct target. In an offline analysis, the
synchronous BCI control was simulated with up to 500,000 targets in steps of 50
targets, which means the model prediction has also to be compared to the additional
simulated targets, which essentially makes this a multiclass classification problem
with up to 500,000 classes.

10.1.2 Hardware & Software

The same setup was used as explained in section 9.1.2. For the sake of completeness,
it will be explained again.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. The stimuli are presented
using the framework introduced in chapter 4. A stimulus can either be black or
white, which can be represented by 0 or 1 in a binary sequence and is synchronized
with the refresh rate of the LCD monitor. The timings of the monitor refresh cycles
are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
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resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection
was established to PC1 to send instructions to the presentation layer and to get the
modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.

10.1.3 Data acquisition

The same data is used as explained in section 9.1.3, but only the test runs using
the optimized stimulation patterns were used, as the model prediction performed
better compared to fully random stimulation patterns (see chapter 8). For the sake
of completeness, the important parts will be explained again.
Initially, the participants had to perform 2 runs to generate a spatial filter (see sec-
tion 6.1.6.3). The training phase was split into 3 runs, but with varying trial duration,
5 s, 4 s, and 3 s, respectively. The testing phase consists of 7 runs with a trial duration
of 2 s.
During all runs, the inter-trial time was set to 0.75 s, and the participants had to
perform 32 trials in lexicographic order using the matrix keyboard layout (see sec-
tion 4.4.1). During the training runs the targets were modulated with fully random
stimulation patterns (see section 6.1.3) and during the test runs with the optimized
stimulation patterns (see section 8.1.3).

10.1.4 Performance evaluation

Since the analysis simulates a synchronous BCI control, the accuracy of the target
prediction (Eq. 2.9), as well as the corresponding ITRs, were calculated. For the
latter Eq. 2.10 is used withN the corresponding number of simulated targets, P the
corresponding target prediction accuracy, and T the used trial duration including an
inter-trial time of 0.5 s.
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10.2 Results

The results are based on the 7 runs with optimized stimulation patterns, as it was
shown in the previous chapters, that they perform better compared to fully random
stimulation. Furthermore, for ITR calculation an inter-trial-time of 0.5 s was used,
as this is sufficient for experienced participants.
Using the EEG2Code model with 32 targets, varying the length of the trials from
0.5 s to 2 s shows that average accuracy increases with longer trials, but the ITR
reaches its optimum of 154.3 bpm with a trial duration of 1 s. It is worth mentioning
that S1 achieved an ITR of 231.1 bpm using 600ms trial duration which corresponds
to an accuracy of 92.41 %.
The Code2EEGmodel is generally less accurate, reaching only 94.4 %with 2 s trials,
but still has an optimum average ITR of 146.6 bpm with a trial length of 0.75 s.
More detailed results for the EEG2Code model are shown in Fig. 10.1 and for the
Code2EEG model in Fig.10.2.
As both models are not limited to fixed stimulation patterns but work with arbitrary
patterns, the BCI was simulated with up to 500,000 targets in steps of 50 targets.
Fig. 10.3 shows the accuracies and ITRs of the EEG2Code model relative to the
number of targets. The averaged optimum ITR was at 235.3 bpm using 71,930 tar-
gets, although the optimum varied largely between subjects.
For subject S1 the ITR was still increasing at half a million targets with an accuracy
of 96.3% and an ITR of 432 bpm. Furthermore, S1 achieved an accuracy of 100% for
up to 29,500 targets. In Fig. 10.5 are detailed results for S1 showing the target vari-
ation for all trial durations, revealing a maximum ITR of 474.5 bpm using 472,700
targets and a trial duration of 1.5 s, which would be, to the best of our knowledge,
the highest reported ITR of an offline BCI.
Using the Code2EEG model, the maximum average ITR of 183.8 bpm is reached
with 9,600 targets with an average accuracy of 64.93%. Adding more targets de-
creases the ITR for most of the participants. Detail results for the Code2EEG model
can be found in Fig. 10.4.
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Figure 10.1: BCI performance using the EEG2Code model under different conditions.
Shown are the accuracies and ITRs (Eq. 2.10 withN = 32 the number of targets and T
the trial duration including 0.5 s inter-trial time). Each colored line is one subject and
the thick black line represents the mean of all subjects.
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Figure 10.2: BCI performance using the Code2EEG model under different trial dura-
tions. Shown are the accuracies and ITRs (Eq. 2.10 withN = 32 the number of targets
and T the trial duration including 0.5 s inter-trial time). Each colored line is one subject
and the thick black line represents the mean of all subjects.
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Figure 10.3: BCI performance using the EEG2Code model with a different number
of targets. Shown are the accuracies and ITRs (Eq. 2.10 with N the number of targets
and T = 2.5 the trial duration including 0.5 s inter-trial time). Each colored line is one
subject and the thick black line represents the mean of all subjects.
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Figure 10.4: BCI performance using the Code2EEG model with a different number
of targets. Shown are the accuracies and ITRs (Eq. 2.10 with N the number of targets
and T = 2.5 the trial duration including 0.5 s inter-trial time). Each colored line is one
subject and the thick black line represents the mean of all subjects.
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Figure 10.5: BCI performance of the best subject (S1) using the EEG2Code model.
Shown are the accuracies and ITRs (including 0.5 s inter-trial time) using varying num-
ber of targets for varying trial durations. Each colored line represents a different trial
duration. The maximum ITR of 474.5 bpm is reached using a trial duration of 1.5 s and
472,700 additional targets.

10.3 Discussion

As discussed, the BCI performance shown in chapter 9 was not optimized to achieve
a high ITR, but to be comfortably usable by a BCI-naive person and to get the re-
quired data for the offline analysis. The current results show that the parameters can
be optimized to achieve higher ITRs.
By reducing the trial duration to 1 s, the EEG2Code model achieved an average ITR
of 154.3 bpm and up to 231.1 bpm, which is a comparable performance like a state-
of-the-art cVEP BCI speller (144 bit/min) [SRB12b]. For shorter as well as longer
trial durations, the ITRs are lower.
Beside different trial durations, the BCI performance was analyzed by simulating
an increasing number of targets. Using the EEG2Code model with 1000 targets, the
average accuracy is still around 90% and goes down to around 55% for half a million
targets, with the best subject still achieving >95 % accuracy. As the Dictionary of
Chinese Variant Form compiled by the Taiwan (ROC) Ministry of Education in
2004 contains 106,230 individual characters, this BCI approach would theoretically
allow selecting each character of that alphabet individually. Although this thought
is purely theoretical as there are practical limitations, like both displaying or finding
a target out of such a high number of targets. Furthermore, increasing the number
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of targets and not increasing the monitor results in smaller targets which will also
reduce the performance. Nevertheless, those theoretical ITRs are still interesting as
they provide a lower bound for themaximum amount of information that is contained
in EEG data.
For the best subject S1, a detailed analysis was performed by using the increased
number of targets for each tested trial duration. A theoretical maximum ITR of
474.5 bpm was found by using a trial duration of 1.5 s. It is likely that the maximum
is even higher because only results for up to 500,000 targets were simulated and the
ITR was still rising at that point.
Compared to other types of BCIs, such a high number of possible targets is a unique
feature of the EEG2Code BCI. There are other approaches increasing the number
of targets, like using multiple m-sequences in cVEP BCIs [WLG+18, LWL18] or
by using a sequential coding strategy in SSVEP BCIs [ZXL+12, TZ15]. But both
are still limited, and there is, to the best of my knowledge, no method allowing a
virtually unlimited number of possible targets (e.g., 96.3 % accuracy for 500,000
targets with a trial length of 2 s for the best subject S1).
Although it was shown in chapter 9 that the EEG2Code model outperforms the
Code2EEG model, the analysis was done for both models, to confirm the findings.
It can be confirmed that the Code2EEG model performs significantly worse for all
trial durations as well as for the varying number of targets. As discussed in chapter 7
participant S8 achieved a similar correlation like S3 (0.344 vs. 0.364, Table 7.1) us-
ing the Code2EEG model, but the bit-prediction accuracy of S3 is clearly increased
(63.7 bit/min vs. 60.9 bit/min). This is also the case for the BCI control, S8 performs
significantly worse by using the Code2EEG model. Consequently, the EEG2Code
model is superior to the Code2EEG model, at least for BCI control.
Altogether, the EEG2Code model offers full flexibility for BCI application design
as the number of targets as well as the trial durations can be varied freely. Especially
the latter allows using the method for an asynchronous BCI, which will be addressed
in the following chapter.



Chapter 11

Asynchronous BCI control

Although recent BCI spellers [SRB12b,CWN+15] show high communication speed,
they are based on synchronous control, which means that commands are executed
in a certain time interval controlled by the BCIs. However, those BCIs are not suit-
able for real-world applications as they cannot differentiate between control and non-
control state and will give a random output if a user is taking a break to think or does
not want to control the BCI for other reasons. Therefore, a practical BCI should be
asynchronous, or also called self-paced, and should be able to identify the user’s
intent to control the system. The BCI has to distinguish efficiently between the in-
tentional control (IC) state and the non-control (NC) state, which has been tackled by
several methods [ASA+11,PPS11,PFH+15,MNK+17,PMTA09,XLX+13,ZGW08,
LPWY13,ABG18,ST18,Cec10,ZTLZ17,DMPL11,YLP+14,PAB+10].
Unfortunately, the comparison of those methods is difficult, partly because the term
"asynchronous" is not uniformly defined, sometimes it is used for early stopping
methods disregarding the NC state evaluation and sometimes for distinguishing be-
tween IC and NC. It is also worth to note that no state-of-the-art criteria exist what a
user should/could do during the NC state, which makes the comparability even more
difficult. Furthermore, there are trial-based approaches with fixed trial durations
classifying each trial as IC or NC [ASA+11, PPS11, PFH+15,MNK+17, PMTA09,
XLX+13], and on the other hand, there are continuous classifications without fixed
trial durations [ZGW08, LPWY13, ABG18]. However, compared to synchronous
methods, the current asynchronous BCIs are substantially slower, and all of them
did not achieve a reliable NC state recognition, meaning the BCI still executes ran-
dom commands during the NC state, which decreases the user experience.
In this chapter, the EEG2Code model is used to implement an asynchronous BCI
speller. It achieved a robust NC state detection under different conditions, like read-
ing or looking at another monitor, and still allows high-speed BCI control.
Parts of the results, figures and wording are already published in [NS19a].

87
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11.1 Methods

11.1.1 Asynchronous BCI control

Like for the synchronous BCI control, a method is required to choose the correct tar-
get out of others based on the EEG2Code model prediction y, and the classification
should only be done if y arises from one of the stimulation patterns. As shown in
chapter 6 y highly correlates with its corresponding stimulation pattern, and it was
shown in chapter 9 that the correlation works best for target classification.
The current approach for asynchronous control is designed to have variable trial du-
rations, but as the correlation coefficient does not take the length of y into account,
the corresponding p-values (under the hypothesis that the correlation coefficient is
greater than zero) are used instead for target classification. As mentioned, a classi-
fication should only be done if y arises from one of the stimulation patterns. Since
the EEG2Code model prediction reaches just a certain precision, a suitable p-value
threshold is required which will classify a target with a certain probability.
For better understanding, the complete procedure is depicted in Fig. 11.1. As men-
tioned, the approach is not based on a fixed trial length, therefore, the p-values are
calculated continuously using sub-trial windows. Those windows are called sub-
trials, on the hand to avoid mix-ups with the windows used for the EEG2Code model
prediction, and on the other hand, only a part of the current trial data is used once
a user-specific maximum trial length is reached. If a sub-trial window reaches its
maximum length, the windowwill be shifted, which means the beginning of the trial
will be discarded. As soon as a p-value is lower than a user-specific threshold (cal-
culated beforehand), the trial stops and the corresponding target t will be selected.
After an inter-trial time of 0.5 s the next trial starts. If none of the p-values reach the
threshold, the trial will continue, which is the case during a non-control phase or if
a target cannot be classified with a certain probability.

11.1.2 Threshold determination

As different participants do not have the same VEP responses, a user-specific thresh-
old is determined. Furthermore, for better-performing participants, shorter sub-trial
durations are sufficient, which is why also a user-specific upper sub-trial duration
was determined. It should be noted that longer sub-trial durations should generally
lead to a better target prediction, but if the sub-trial duration is too long, the classi-
fication after a non-control phase will take longer.
It was assumed that a minimum sub-trial length of 500 ms and a maximum sub-trial
length of 3000 ms should be sufficient for all participants. Based on this assumption,
each trial of the training runs was split into 50 randomly chosen sub-trials for each
length between 500 ms and 3000 ms (in steps of 250 ms). This results in a bucket of
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Figure 11.1: Asynchronous target classification. During a trial, the participant has
to focus a target. A spatial filter is applied to the measured EEG. For each 250 ms win-
dow (slided sample-wise) of the spatially filtered EEG signal (blue line), the EEG2Code
model predicts a real value (orange line) which highly correlates to the stimulation pat-
tern. For simplicity, it is only shown for 3 exemplary windows (magenta, green, cyan).
Note that the model prediction is delayed by 250 ms because of the sliding window ap-
proach. The resulting model prediction is now continuously compared to the stimula-
tion patterns of all targets, not by using the whole trial, but sub-trials (grey lines). It was
specified that a sub-trial has a user-specific maximum length (calculated beforehand),
once the maximum length is reached, the sub-trial window will be shifted, meaning
the beginning of the trial will be discarded. The comparison is done by calculating
the p-values with the hypothesis that the correlation coefficient is greater than zero, for
simplicity it is only shown for targets A, B, 4 and 5. If at any time one of the p-values
is lower than a user-specific threshold (calculated beforehand), the trial stops and the
corresponding target will be selected. After an inter-trial time of 0.5 s the next trial
starts.

50 sub-trials (per trial) for each of those sub-trial durations. For each of those sub-
trials, the corresponding p-values were calculated as explained above. Furthermore,
it was determined if the trial can be predicted correctly using only the sub-trial data.
The p-value threshold was defined as the p-value of the first percentile out of all
sub-trials that lead to a misclassification. For better understanding, this means that
99% of all misclassifications should be excluded by such a threshold. The maximum
sub-trial duration is defined as the duration where 99% of all correctly classified sub-
trials using that duration have lower p-values as the threshold. If this is not the case
for any sub-trial duration, it is set to 3000 ms.
To optimize the threshold for NC state detection, the participants had to perform a
single 2-minute trial where they had to look below the monitor. Using that trial, the
asynchronous procedure was simulatedwith the determined upper sub-trial duration.
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If any p-value occurs which is lower as the determined threshold, it becomes the new
threshold. To clarify, the lower the threshold, the better the accuracy and the better
the non-control state detection, but contrary the longer it takes until the threshold is
reached meaning longer trial durations.
Additionally, an offline analysis was performed to optimize the spelling performance
using several thresholds. For this, a threshold parameter was introduced, which de-
fines, as explained above, the percentile out of all sub-trials that lead to a misclas-
sification. The analysis was performed using threshold parameter values between 1
and 5 (in steps of 0.1). It is worth to note that the resulting thresholds are no longer
optimized for non-control state detection.

11.1.3 Hardware & Software

The same setup was used as explained in section 9.1.2. For the sake of completeness,
it will be explained again.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. The stimuli are presented
using the framework introduced in chapter 4. A stimulus can either be black or
white, which can be represented by 0 or 1 in a binary sequence and is synchronized
with the refresh rate of the LCD monitor. The timings of the monitor refresh cycles
are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection
was established to PC1 in order to send instructions to the presentation layer and to
get the modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.
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11.1.4 Data acquisition

Initially, the participants performed a run to generate a spatial filter, and the same
preprocessing steps were performed for all runs as described in section 6.1.6.
The training phase was split into three runs (32 trials each) with 4 s trial duration,
and 1 s inter-trial time, those runs are used for the regression model training and
threshold determination. To optimize the threshold for NC state detection, the par-
ticipants performed a run with a single 2-minute trial where they have to look at the
bottom. To test the asynchronous classification, the participants performed six runs
(32 trials each) with 500 ms inter-trial time. To test the NC state the participants
performed four runs, each starting with 0.5 min NC phase followed by 32 IC trials
and an additional NC phase with 0.5 min length. During NC phases, once the mon-
itor was covered, once the participants had to look at the bottom, once they had to
look at the left of the monitor, and once to close their eyes. During all mentioned
runs the matrix-keyboard layout (Fig. 4.1) was used, 32 trials each in lexicographic
order.
Afterward, each participant had to perform three runs using the German QWERTZ-
keyboard layout (Fig. 4.2). The participants were introduced to write "Asynchron
BCI" (case-sensitive), and they should correct any errors that occur. "Asynchron"
is the German word for "asynchronous". It was not prescribed how the participants
should spell upper-case or lower-case letters (shift-key or caps-key).

11.1.5 Performance evaluation

The accuracy of the target prediction (Eq. 2.9) was analyzed for the lexicographic
spelling as well as for the copy spelling. For the latter, the number of trials varies
between different runs and participants, therefore, the number of correctly predicted
trials was analyzed manually. Any trial which leads to a step closer to the desired
result is defined as a correctly predicted target, which means that also correcting a
miss-spelled letter is a correctly predicted target.
The corresponding ITRs were calculated using Eq. 2.10 with N the corresponding
number of targets (32 or 55), P the corresponding target prediction accuracy, and T
the average trial duration including the used inter-trial time of 0.5 s. Additionally,
as T varies, it is also given for each participant. Furthermore, the number of correct
targets (CT) per minute is given by

CT/min = (2 × ACC − 1) ⋅ 60
T
. (11.1)

Since CT/min does not take case-sensitive spelling into account, also the number
of correct case-sensitive letters (CL) per minute is given for the copy-spelling runs,
which can be calculated by

CL/min = total number of letters
total number of required trials ⋅

60
T
. (11.2)
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As "Asynchron BCI" consists of 13 letters and the participants had to perform three
runs, the total number of letters is 39. Note that the ITR cannot directly be compared
to CL/min as it does not take corrections into account, if this is desired, the Utility
measure (Eq. 2.11) should be used, as it also takes corrections into account.

11.2 Results

11.2.1 Online lexicographic spelling performance

For lexicographic spelling, a 4 × 8 matrix-keyboard (Fig. 4.1) was used. Table 11.1
lists the target prediction accuracy, the average trial time, the corresponding ITR
and the corresponding number of correct targets (CT) per minute for each partici-
pant. The average accuracy was 99.3% ± 0.43% with an average trial duration of
2.61 s ± 0.78 s (including an inter-trial time of 0.5 s), which corresponds to an av-
erage ITR of 122.7 bpm ± 33.2 bpm and 24.5 CT/min ± 6.7 CT/min, respectively.
Across all participants, theminimal andmaximal performance ranges from 76.2 bpm
(S08) to 170.9 bpm (S02).

Table 11.1: Results using the Matrix-Layout (lexicographic).

Subject CT/min Accuracy [%] ITR [bpm] Time [s] NC errors/min
S01 25.3 99.5 125.9 2.35 0
S02 34.2 99.0 170.9 1.72 0
S03 27.1 99.5 136.2 2.19 0
S04 15.9 100.0 80.0 3.76 0
S05 29.9 98.4 151.1 1.94 0.25
S06 19.7 99.5 99.5 3.02 0
S07 32.3 99.5 161.5 1.84 0.5
S08 15.2 99.5 76.2 3.91 0
S09 19.7 99.5 99.0 3.02 0
S10 25.5 99.0 126.9 2.31 0
mean 24.5 99.3 122.7 2.61 0.075

Shown are the results for the lexicographic spelling (matrix-layout, 32 targets, 192 tri-
als). The number of correct targets (CT) per minute, the target prediction accuracy,
the information transfer rates (ITR) and the average trial duration (including an inter
trial time of 0.5 s) are given. Using the matrix-layout, several non-control (NC) states
were tested (4 min in total), the results are given as the average number of erroneous
classifications per minute during the NC state. Best results are in bold font.
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11.2.2 Online non-control detection performance

As mentioned, the differentiation between IC and NC is important for an end-user
application. Therefore, the NC states were tested under four different conditions,
furthermore, both transitions were tested: IC to NC and vice versa. While each
IC state was always recognized for all participants, the NC state detection resulted
in 0.075 erroneous classifications per minute on average (Table 11.1). Here it is
worth mentioning that 8 out of the 10 participants had a perfect NC detection with
0 erroneous classifications per minute during the NC state (which lasted 4 minutes
in total).

11.2.3 Online case-sensitive copy-spelling performance

A matrix-keyboard with lexicographic order has the advantage of equal sized tar-
gets, but most participants/end-users are familiar with established keyboard layouts.
Therefore, the real-case performance using a 55 target German QWERTZ-layout
(Fig. 4.2) was tested by spelling three times "Asynchron BCI" (case sensitive). In
case of errors, the participants had to correct them by choosing the backspace-target
to delete the previous character.
Table 11.2 lists the same performance measures as for the matrix-layout, but addi-
tionally the number of correct letters (CL) per minute, which includes corrections
and case-sensitive letters. The average accuracy was 98.1%± 2.62%with an average
trial duration of 4.43 s ± 3.14 s (including an inter-trial time of 0.5 s), which cor-
responds to an average ITR of 104.9 bpm ± 54.8 bpm, 18.2 CT/min ± 9.4 CT/min,
and 15.6 CL/min ± 8.3 CL/min, respectively. Interestingly, compared to the ma-
trix layout, for some of the participants, the average trial time is highly increased,
especially for S01 and S08.

11.2.4 Offline threshold optimization

In general, the threshold is used to identify the correct target and to distinguish be-
tween IC and NC state. For the online experiment, the threshold was optimized for
NC state detection. In order to optimize it for spelling performance, several thresh-
olds were tested by simulating the asynchronous BCI using the lexicographic trials.
Fig. 11.2 shows the accuracies, ITRs, the number of erroneous classifications during
NC state and the average trial durations, averaged over all participants. The results
show that the communication speed can be optimized to an ITR of 132.4 bpm with
an average trial duration of 1.93 s including 0.5 s inter-trial time. However, using the
corresponding threshold during the NC state results in 14.4 erroneous classifications
per minute.
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Table 11.2: Results using the QWERTZ-layout (case-sensitive copy-spelling).

Subject CL/min CT/min Accuracy [%] ITR [bpm] Trials Time [s]
S01 6.5 8.8 94.9 50.9 59 6.13
S02 29.7 34.3 100.0 198.1 45 1.75
S03 21.3 24.5 100.0 141.9 45 2.44
S04 7.2 9.1 94.2 49.5 52 6.22
S05 22.6 26.1 100.0 151.0 45 2.30
S06 11.2 12.6 97.8 72.6 46 4.55
S07 19.0 22.4 94.2 129.9 52 2.37
S08 4.3 5.0 100.0 28.7 45 12.08
S09 13.3 15.4 100.0 88.9 45 3.90
S10 20.7 23.9 100.0 137.9 45 2.52
mean 15.6 18.2 98.1 104.9 48 4.43

Shown are the results for the case-sensitive copy-spelling (German QWERTZ-layout,
55 targets, spelling 3 times "Asynchron BCI"). The number of correct targets (CT) per
minute, the target prediction accuracy, the information transfer rates (ITR), the average
trial duration (including an inter trial time of 0.5 s) and the number of correct letters
(CL) per minute are given, whereby CL takes corrections and case-sensitive letters into
account. Best results are in bold font.
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Figure 11.2: Effects of different p-value thresholds. Shown are the accuracies, infor-
mation transfer rates (ITRs), erroneous classifications during the non-control state per
minute and the average trial duration including an inter-trial time of 0.5 s. The re-
sults using the threshold determined during the experiment is marked as "online". The
threshold parameter value defines the percentile of allowed misclassifications and the
resulting threshold is the highest p-value that leads to it (see Methods for details).
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11.3 Discussion

For an end-user application, the following factors must be met by a BCI: high com-
munication speed as well as asynchrony. While the former has been addressed and
achieved by several studies [SRB12b, CWN+15], the latter is still a key obstacle,
especially for NC state detection. The presented asynchronous BCI speller achieved
high communication speed (average of 122.7 bpm) as well as a robust NC state de-
tection with only 0.075 erroneous classifications per minute during the NC state.
Compared to the state-of-the-art asynchronous BCI speller [ST18] (67.7 bpm) the
ITR is nearly doubled. Furthermore, among the advantage of asynchronous con-
trol, the performance is even better compared to online synchronous BCI control
(chapter 9) which resulted in an ITR of 108.1 bpm.
As mentioned, besides communication speed, an end-user suitable BCI has to dis-
tinguish between intentional control (IC) and non-control (NC). Otherwise, the BCI
will execute random commands during NC states, which highly reduces the user
experience. While recent comparable methods for NC state detection [ZGW08,
LPWY13, ABG18] achieved up to only 0.49 erroneous classifications per minute
during the NC state, the presented method reduced the number of erroneous classi-
fications by a multi-fold of factor 6.5. Here it is worth mentioning that 8 of the 10
participants had no erroneous classifications during the NC state. Since the perfor-
mance of the NC detection only depends on the threshold, it can simply be optimized
for a perfect NC detection. For example, instead of using only a 2 min NC run for
threshold determination, the run-time could be increased in order to get the lowest
p-value that can occur during an NC state. Indeed, this would reduce the spelling
performance by increasing the required trial duration, but this can be counteracted by
defining two thresholds: one optimized for IC state and one optimized for NC state.
For example, if the user intends to go from IC to NC state a special target must be
gazed, which sets the corresponding threshold optimized for NC state. Once the
user intends to go back to IC state, the classification of the first intended target takes
longer, but afterward, the threshold will automatically be set to the threshold opti-
mized for IC state, which in turn allows for faster spelling. It was shown that an
optimized threshold results in an increased ITR (132.4 bpm vs. 122.7 bpm). Using
other methods for threshold optimization could increase the performance even more.
The spelling results revealed high variances between the participants, for example,
using the QWERTZ-layout, S02 achieved 198.1 bpm while S08 achieved only 28.7
bpm. Among the physical difference that always occur between different partici-
pants, it is caused by the determination of the optimal maximal sub-trial length. For
the determination, only durations between 0.5 s to 3.0 s were tested, but it turned
out, that 3.0 seconds is not enough for some of the participants. For example, for
S08 using the QWERTZ-layout and increasing the maximum sub-trial length to 6.0
s results in a faster classification with an average trial time of 8.1 s compared to
12.1 s using the maximum sub-trial length of 3.0 s. Fig. 11.3 shows this behavior
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for a single trial. However, increasing the maximum sub-trial length has one neg-
ative effect, it will increase the first classification time after the NC state, but the
advantage of faster classifications during the IC state outweigh the disadvantage.
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Figure 11.3: Comparison of the classification speed using different sub-trial durations.
The blue line represents the corresponding p-values of the correct target of one of the
trials of participant S08 using a sub-trial duration of 3 s which was determined during
the online experiment, whereby the red line represents the p-values of the same trial
using a sub-trial duration of 6 s. The grey dashed line indicates the p-value threshold
used for S08. It clearly shows that using a sub-trial duration of 6 s results in a faster
classification speed (approximately 8 s vs. 4.5 s), indicating that a maximum sub-trial
length of 3 s is too short for participant S08.

Furthermore, as shown in chapter 10 the method can be used with an arbitrary num-
ber of targets without further training. This was confirmed by the current results,
although trained using a 32-target matrix-keyboard, the method also works using a
55 target GermanQWERTZ layout. The results are slightly worse than using thema-
trix keyboard (104.9 bpm vs. 122.7 bpm), but this is mainly due to the reduced target
size (5×5 cm vs. 3×3 cm), as this results in lower VEP responses. On the other side,
4 participants achieved an equal or even higher ITR using the QWERTZ-keyboard.
Especially, S02 achieved 198.1 bpm resulting in 29.7 correct case-sensitive letters
per minute. Here it is worth to note that, as mentioned, it was not prescribed how
the participants should spell upper/lower-case. The optimal (fastest) solution to spell
"Asynchron BCI" was "⇧asynchron ⇩bci" as done by most participants, but some-
times it was spelled "⇩a⇩synchron ⇩bci" or "⇧asynchron ⇧b⇩ci", which requires
more trials. Therefore, this makes the comparability of CL/min difficult. However,
apart from that, all participants have noted that a familiar keyboard layout gives a
more natural spelling experience, which therefore is another important fact for an
end-user application.
To summarize, with an average ITR of 122.7 bpm this is the first asynchronous high-
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speed BCI. It is fully flexible with targets and has a new perfect NC state detection.
As those properties are missing in other high-speed BCIs, this is the first high-speed
BCI suitable for real-world applications.
Finally, as discussed in chapter 9, the stimulation, as well as the EEG2Code model
training, could be designed adaptively. With the high average accuracy of 99.3% it
would be possible to rate the used stimulation patterns by the resultant trial length,
the shorter a trial, the more likely the corresponding stimulation pattern will be used
again. Furthermore, the EEG2code model could be trained continuously, because
only 0.7% would result in wrong train data.
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Chapter 12

Effects of varying synchronization
latencies

In the previous chapter, an asynchronous high-speed BCI with robust non-control
state detection was proposed which is suitable for real-world applications. However,
as explained in chapter 4 and 5, the exact synchronization of the EEG data and the
presented stimulation patterns is important for the BCI performance. The synchro-
nization was achieved by using the parallel port, however, this significantly restricts
the number of devices that can be used for stimuli presentation. For real-world appli-
cations, it would be desirable to use each possible device, especially mobile devices,
in order to use the system wherever the user intends to. The mobile usage is further
restricted, as wired EEG electrodes/amplifier with low latencies were used in order
to achieve the best synchronization.
The best-case scenario would be to use wireless electrodes in combination with a
mobile device (like smartphones and tablets) for stimuli presentation and data anal-
ysis. However, this means that the synchronization can no longer be guaranteed on
a millisecond scale.
This issue will be addressed in the current chapter. For this, the asynchronous BCI
was simulated as described in the previous chapter, but with varying synchronization
latencies between 0 ms and 50 ms. The results prove that the EEG2Code model can
detect the latency itself with an average deviation of only 2.98 ms.

12.1 Methods

12.1.1 Simulate synchronization latencies

To simulate the synchronization latencies, the asynchronous BCI control was simu-
lated as described in chapter 11, but instead of using the trial-start trigger from the
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parallel port, the trial-start was varied with different latencies, which means the real
trial-start trigger was shifted backward.
Depending on the used synchronization method, a maximum latency can be guaran-
teed. For example, if a maximum latency of 25 ms can be guaranteed, the trial-start
trigger has to be shifted between 0 and 15 samples with the used sampling rate of
600 Hz. For each shift, the p-values between the EEG2Code model prediction and
the corresponding stimulation patterns were calculated. If one of those p-values
is lower than the p-value threshold, the target will be selected. For better under-
standing, this means that multiple comparisons for each stimulation pattern must be
made, one for each shift. With a maximum latency of 25 ms, this corresponds to 16
comparisons between the model prediction and each stimulation pattern.
This procedure was simulated with latencies between 0 ms and 50 ms, which corre-
sponds to a shift between 0 and 30 samples, respectively.

12.1.2 Hardware & Software

The same setup was used as explained in section 11.1.3. For the sake of complete-
ness, it will be explained again.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. A stimulus can either
be black or white, which can be represented by 0 or 1 in a binary sequence and is
synchronized with the refresh rate of the LCD monitor. The timings of the monitor
refresh cycles are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition and analysis. BCI2000 [SMH+04] is used as a gen-
eral framework for recording the data of the EEG amplifier, and the data processing
is done with MATLAB [MAT17]. The amplifier sampling rate was set to 600 Hz,
resulting in 10 samples per frame/stimulus. Additionally, a TCP network connection
was established to PC1 in order to send instructions to the presentation layer and to
get the modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.
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12.1.3 Data acquisition

To test the effects of varying synchronization latencies, the asynchronous BCI con-
trol (chapter 11) was simulated using the data as described in section 11.1.4.
The participants had to perform six runs (32 trials each) in lexicographic order using
the matrix-keyboard layout (Fig. 4.1) with 500 ms inter-trial time. Therefore, 6 ×
32 = 192 trials were analyzed for each participant.

12.1.4 Performance evaluation

To analyze the performance, the target prediction accuracy is calculated by using
Eq. 2.9. Furthermore, as the real trial-start trigger is known (through the parallel
port), also the deviation to the detected trial-start was determined. The detected
trial-start is the corresponding shift which had the lowest p-value and led to a target
classification (is smaller than the corresponding threshold).

12.2 Results

Fig. 12.1 shows the results averaged over all participants. Shown are the target clas-
sification accuracies as well as the average deviations of the detected latencies to
the real trial-starts in respect to the simulated maximum latency. The results using
a maximum latency of 0 ms represents the online BCI performance of the previous
chapter using the exact trial start trigger of the parallel port. If a maximum la-
tency of 5 ms can be guaranteed, the classification accuracy drops by 0.8% to 98.4%
compared to the online results, whereby the real trial-start can be detected with an
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Figure 12.1: Effects of varying synchronization latencies. Shown are the target pre-
diction accuracies as well as the deviation between the detected trial-start and the real
trial-start. Both in respect to the simulated maximum latency.
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average deviation of 1.07 ms. Using maximum latencies between 5 ms and 50 ms
results in a nearly linear decrease of the classification accuracy with the lowest ac-
curacy of 92.3% using a maximum latency of 50 ms, whereas the deviation of the
detected trial-start to the real trial-start increases to 2.98 ms, also approximately lin-
ear. The average trial durations are not shown, as they remain approximately the
same as during the online experiment (2.5 s vs. 2.6 s), which is as expected.

12.3 Discussion

To evaluate the effects of varying synchronization latencies, several maximum la-
tencies were tested, whereas, in a real-world scenario, those latencies can be caused
due to a data transfer of wireless EEG electrodes/amplifiers, as well as by using a
non-static method to synchronize the stimuli presentation with the EEG data.
During the previous experiments, the synchronization was done by using the parallel
port, which has low latencies in the range of 10−9 s. Alternatively, the synchroniza-
tion could be done by using time-stamps, which in turn requires to synchronize the
time between the hardware used for stimuli presentation and the hardware/software
used for EEG recording/analysis. If different hardware is used for both layers, like
done during the previous experiments, the time-stamps could be sent, for example,
using TCP/IP.
Exemplary, if a maximum latency of 50 ms can be guaranteed between the mea-
sured EEG data and the stimuli presentation, the results show that the performance
drops to 92.3%. It is assumed, that a maximum latency of 10 ms should be achiev-
able for time synchronization, which would result in an accuracy of approximately
98%. Regardless of this, since a classification depends on the used p-value thresh-
old, the worse performance can be counteracted by optimizing the threshold in order
to reduce the miss-classifications.
It is worth to note that the EEG2Code model was able to determine the real trial-start
with a deviation of only 2.98 ms using a maximum latency of 50 ms, which corre-
sponds to an average shift of 1.79 samples within the possible shift of 30 samples.
With a maximum latency of 10 ms, the deviation is only approximately 1 ms which
is less than a single sample. On the one hand, this proofs that the synchronization
of the measured EEG with the stimuli presentation is indeed within a millisecond
scale, and on the other hand it proves that the EEG2Code model can detect the la-
tency itself with a small deviation. It must be noted, that the data acquisition was
performed using the framework described in chapter 4, which synchronizes each
drawn frame/stimulus with the EEG. This means that a possibly occurring frame
drop, as well as small variation in the monitor’s refresh rate, can easily be corrected
by mapping the stimulation patterns to the EEG in respect to each drawn frame. Us-
ing the approach proposed in this chapter would also require to use, for example,
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time stamps to address this.
The results reveal that the proposed asynchronous BCI speller can also be used with-
out an exact synchronization. This offers the possibility to use it with mobile hard-
ware with which an exact synchronization cannot be realized. For example, with
a wireless EEG amplifier in combination with a tablet/smartphone for stimuli pre-
sentation and data analysis. This, in turn, allows using the system, for example,
on-the-way and therefore it further improves the usability for real-world applica-
tions.



104 CHAPTER 12. VARYING SYNCHRONIZATION LATENCIES



Chapter 13

Improve performance using
deep-learning

In chapter 6 the EEG2Codemodel was introduced by using a linear machine learning
approach, the ridge regression. The method was used as it is fast to calculate and
linearity of VEP generation was proposed in previous works [CPAD+11,LPR+06].
However, the results of chapter 7 suggest that non-linear processes take place during
the VEP generation.
There are several non-linear machine learning approaches, like support vector ma-
chines with non-linear kernels [BGV92], the non-linear regression approach by Se-
ber et al. [SW03], as well as deep-learning approaches. Of these, the latter has shown
to improve the performance compared to "traditional" machine learning approaches,
especially for image classification and speech recognition [SZ14].
One class of deep-learning algorithms are convolutional neural networks (CNNs)
(see section 2.5.2), which were already used in the field of BCIs. The first work
which explored CNNs for BCI is by Cecotti et al. [CG11]. They used 4-layer topol-
ogy to classify P300 ERPs, whereby the first layer was designed to learn spatial
filters, the second to learn temporal filters, and the third/fourth are fully connected
layers which perform the classification (P300 or not). They used the P300-speller
data from the third BCI competition [BMK+06] to evaluate their CNN and outper-
formed the methods used by the BCI competition winners. However, since the data
set contains only data of two subjects, no significant statement can be made.
Recently, Kwak et al. proposed a 3-layer CNN that uses frequency features as in-
put for robust SSVEP detection [KML17]. They compared their CNN approach to
other state-of-the-art methods for SSVEP decoding and outperformed all of them.
Especially for noisy EEG data obtained by a moving participant they achieved an
accuracy of 94.03%, which was significantly better than all other methods. Thomas
et al. performed a similar comparison, with the result that the CNN outperformed
all other state-of-the-art methods as well [TMS+17].
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In addition to the findings of chapter 7, those results suggest using a non-linear deep
learning approach. In this chapter also a CNN is used, as it is expected to signifi-
cantly improve the performance of the EEG2Code model.
Parts of the results, figures and wording are already published in [NS19b].

13.1 Methods

13.1.1 Convolutional EEG2Code model

The general topology of the CNN model is from the master thesis of Felix van
Gunsteren [Gun18] and was modified for the current work. A detailed structure
of the EEG2Code CNN is depicted in Fig. 13.1 which also shows the input/output
shape of each operation. A detailed explanation of each operation can be found in
section 2.5.2. Contrary to the EEG2Code ridge regression model, the data is not
spatially filtered beforehand. This means the model takes windows of size T × C ,
whereby T = 150 corresponds to the number of time samples (250 ms), and C = 32
corresponds to the number of EEG channels. The model consists of five layers,
whereby the first layer uses convolutional kernels of size 1 × 32, which means they
move over the channels and act as spatial filters. As a 16 Conv operation is per-
formed, this corresponds to 16 spatial filters in total. The idea was adapted from
Lawhern et al. [LSW+18] although they did not use it during the first layer. Contrary,
the second and third layer act as temporal filters and move over the time samples.
As mentioned by van Gunsteren, the first two layers could be combined in a single
layer with kernel size (64 × 32), but this would increase the number of parameters:
(64⋅32+1)⋅16 = 32784 operations compared to (1⋅32+1)⋅16+(64⋅1+1)1̇6 = 1568
operations. Furthermore, as shown by Lawhern et al. separating those layers per-
forms well on EEG data [LSW+18].
MaxPooling operations are performed to reduce the size of intermediate represen-
tation between layers. The BatchNorm operation results in a faster and more stable
training. The Dropout operation is used for regularization to avoid over-fitting of
the model. The Dense operation fully connects the input neurons with the given
number of output neurons. The Activation operations define/transform the out-
put of each neuron depending on a given activation function, whereby the softmax
function takes an un-normalized vector, and normalizes it into a probability distri-
bution, and therefore gives the probabilities that the initial input belongs to one of
the classes. Since the model is trained on two classes (0 or 1), the outputs are p0 and
p1, the probabilities for each class. It must be noted that p1 = 1 − p0. The model
is trained using a learning rate of 0.001 and a batch size of 256. In total 25 epochs
were trained, and the best model was selected as the final model.
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Figure 13.1: Topology of the EEG2Code convolutional neural network. The five layers
are indicated by the gray boxes. Each layer consists of different operations, whereby the
same operations are colored the same. Below each operation, the used parameters are
given, whereby the parameters for the Conv and MaxPooling are (kernel/pooling
size, stride, padding), and for BatchNorm (axis, scale, center). The edges are
labeled with the shape of the input and output data, respectively. The input of the model
is a 250 ms (T = 150 samples) window of EEG data with C = 32 channels. The output
is the probability that the input belongs to one of the classes (binary 1 or 0). As the
window is shifted sample-wise over the complete trial data, the output is the prediction
of the corresponding stimulation pattern. The general topology was proposed by Felix
van Gunsteren [Gun18] for P300 classification and was modified for the current work.
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13.1.2 Hardware & Software

A similar setup was used as for the (a)synchronous BCI control (see section 9.1.2),
except that the EEG2Code CNN computations were performed on an IBM Power
System S822LC with four Nvidia® Tesla P100 GPUs using Python v2.7 [Pyt10] and
the Keras framework [C+15]. The server was provided by the IBM Shared University
Research Grant and includes the IBM PowerAI environment.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, three personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. A stimulus can either
be black or white, which can be represented by 0 or 1 in a binary sequence and is
synchronized with the refresh rate of the LCD monitor. The timings of the monitor
refresh cycles are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition, whereby BCI2000 [SMH+04] is used as a general
framework for recording the data of the EEG amplifier. The amplifier sampling rate
was set to 600 Hz, resulting in 10 samples per frame/stimulus. A TCP network
connection was established to PC1 in order to send instructions to the presentation
layer and to get the modulation patterns of the presented stimuli. During the online
experiment, the EEG data was continuously sent to PC3 using a TCP connection.
PC3 performs the EEG2Code prediction and sent the classification to PC2.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.

13.1.3 Data acquisition

It shall be shown that the proposed EEG2code CNN model results in better perfor-
mances compared to the EEG2code ridge regression model (see section 6). There-
fore, an offline analysis was performed using the data of the previous chapters,
whereby the data of the training runs was split into two equal-sized sub-sets, one
used as training data and one used as validation data.
For the bit-prediction accuracy, as well as for the synchronous BCI control, the data
from chapter 9 is used. The important parts will be explained again. The training
phase was split into three runs, but with varying trial duration, 5 s, 4 s, and 3 s, re-
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spectively. During the training, fully random stimulation patterns (see section 6.1.3)
were used. The testing phase was split into 14 runs with a trial duration of 2 s. The
testing runs were alternated using fully random stimulation patterns and optimized
stimulation patterns (see section 8.1.3). For the bit-prediction accuracy, the seven
runs with fully random stimulation were used, whereby for the synchronous BCI
control, the seven runs with optimized stimulation were used. The participants had
to perform each run in lexicographic order, with 32 targets per run. It should be
mentioned that, in case of the bit-prediction, a "trial" is actually a single 250 ms
window.
For the asynchronous BCI control, the data from chapter 11 is used. The necessary
parts are explained again. The training phase was split into three runs with 4 s trial
duration and 1 s inter-trial time, whereby the optimized stimulation was used. The
testing phase consists of six runs with 500 ms inter-trial time, also 32 trials in lexico-
graphic order with optimized stimulation. For comparison reasons, the same p-value
threshold was used as determined during the online experiment (see section 11.1.2).
Furthermore, subject S01 who participated in the synchronous BCI control experi-
ment, also performed an additional experiment to prove that the bit-prediction per-
formance can also be achieved during an online analysis. For this, the participant
first performed the same training phase as for the asynchronous BCI control. After-
ward, 96 runs were performed with 5 s of random stimulation each, which means
300 random bits were presented per run.

13.1.4 Performance evaluation

Since the analysis includes the EEG2code pattern prediction, the synchronous BCI
control, as well as the asynchronous BCI control, the same performance measures
were used as described in sections 6.1.7, 9.1.5, and 11.1.5.

13.2 Results

13.2.1 Offline analysis: Simulated online experiment

First, the EEG2Code stimulation pattern prediction was analyzed which resulted in
an average accuracy of 74.9% using the fully random stimulation patterns, which
corresponds to an average ITR of 701.3 bit/min. It is worth to note that for S01 an
average accuracy of 83.4% was achieved, which corresponds to 1262.1 bit/min. Ad-
ditionally, the synchronous BCI control was simulated, which results in an average
accuracy of 99.5% using the optimized stimulation patterns and a trial duration of
2 s, which was used during the online BCI experiment. As the offline analysis in
chapter 10 suggest that a trial duration of 1 s results in the best BCI performance,
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Table 13.1: EEG2Code and synchronous BCI performance.

Pattern prediction BCI control (2 s) BCI control (1 s)
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm] ACC [%] ITR [bpm]
S01 83.4 1262.1 100.0 109.1 100.0 200.0
S02 72.9 567.3 99.6 107.7 94.6 177.3
S03 72.5 545.7 100.0 109.1 95.5 180.6
S04 76.8 787.9 100.0 109.1 98.7 193.2
S05 78.7 908.9 100.0 109.1 99.6 197.5
S06 75.4 704.9 100.0 109.1 98.7 193.2
S07 68.5 363.9 98.7 105.4 87.9 154.9
S08 77.1 807.1 100.0 109.1 99.6 197.5
S09 68.5 363.7 97.3 102.3 87.5 153.5
mean 74.9 701.3 99.5 107.8 95.9 183.1

Shown are the average results of all subjects, whereby best results are in bold font. The
EEG2Code pattern prediction as well as the results for the simulated synchronous BCI
control are shown. For both, the accuracy (ACC) as well as the ITR are given. The
ITRs are calculated using Eq. 2.10 withN = 2 (N = 32) and T = 1∕60 s (T = 2.75 s,
T = 1.5 s).

the BCI control was also simulated using a trial duration of 1 s. This results in an
average accuracy of 95.9% which corresponds to an ITR of 183.1 bit/min including
the inter-trial time of 0.5 s. Detailed results are listed in Table 13.1.
Furthermore, also the asynchronous BCI control was simulated using the 32-target
matrix-keyboard layout (Fig 4.1). The results for each participant are shown in Ta-
ble 13.2. The average target prediction accuracy is 98.5% (ITR: 175.5 bit/min) with
an average trial duration of 1.71 s (including 0.5 s inter-trial time). In total, 91.6% of
all trials could be classified faster compared to the ridge regression model. Finally,
this results in an average spelling speed of 35.3 correct targets per minute with a
maximum of 48.2 CT/min.

13.2.2 Online experiment

As discussed in chapter 6, the ITR calculation of the bit-prediction with T = 1∕60 s
is slightly biased due to the required window length of 250 ms. Therefore, and to
show that the bit-prediction performance can also be achieved in an online analysis,
a single-subject experiment was performed with subject S01 as a proof-of-concept.
In average for all 5 s runs, a bit-prediction accuracy of 83.4% was achieved which
corresponds to an average ITR of 1236.7 bit/min using an unbiased T = 5∕285 s.
The results for each run are depicted in Fig. 13.2.
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Table 13.2: Asynchronous spelling performance using the matrix-layout.

Subject CT/min Accuracy [%] ITR [bpm] Time [s] Faster [%]
A01 33.3 99.0 165.4 1.77 87.0
A02 48.2 97.9 238.9 1.19 97.4
A03 39.7 99.5 197.8 1.49 91.7
A04 28.7 99.5 142.8 2.07 91.1
A05 35.8 95.3 177.8 1.52 87.0
A06 30.7 99.0 152.4 1.92 93.2
A07 45.1 100.0 225.3 1.33 96.9
A08 25.8 97.4 127.8 2.21 90.1
A09 30.9 100.0 154.4 1.94 91.1
A10 34.8 97.4 172.3 1.64 90.1
mean 35.3 98.5 175.5 1.71 91.6

Shown are the results for the lexicographic-spelling (matrix-layout, 32 targets). The
number of correct targets (CT) per minute, the target prediction accuracy, the informa-
tion transfer rates (ITR), the average trial duration (including an inter trial time of 0.5
s) and the percentage of trials which could be predicted faster compared to the ridge
regression model. Best results are in bold font. The abbreviations of the subjects were
renamed to avoid confusion.
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Figure 13.2: Bit-prediction accuracies and corresponding ITRs achieved during an on-
line experiment of subject S01. The performances of all 96 runs, with 5 s stimulation
time each, are shown. During each run 300 bits were presented, whereby only 285 could
be predicted due to the window size of 250ms (15 bits). The ITRs were calculated using
Eq. 2.10 withN = 2 and T = 5∕285 s.

13.3 Discussion

The results of chapter 7 suggest that non-linear processes take place during the VEP
generation. Since the EEG2Code model, introduced in chapter 6, was based on the
linear ridge regression approach, it was expected to achieve a better performance by
using a non-linear approach.
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By using the multi-layer convolutional neural network, introduced in this chapter, an
average bit-prediction accuracy of 74.9% was achieved which corresponds to an ITR
of 701.3 bit/min, therefore, it significantly (p < 0.05, paired t-test) outperformed the
EEG2Code model based on ridge regression (232.0 bit/min), with more than tripling
the ITR. Noteworthy, S01 achieved an average ITR of 1.26 Kbit/min, which is an
outstanding performance for a passive BCI. Interestingly, S01 achieved exactly the
same bit-prediction accuracy of 83.4% during the online analysis. Here it is worth
to mention that the "worst" 5 s run resulted in an accuracy of 73.9 %, whereas the
best run resulted in 92.3%. The latter means that 263 out of the 285 random bits
could be correctly predicted, which corresponds to an ITR of 2.08 Kbit/min.
Compared to current state-of-the-art approaches, the EEG2Code CNN approach
clearly outperforms the previously fastest system by Chen et al. [CWN+15]. They
reported the previously highest ITR for a BCI, with an average ITR of 267 bit/min
and an online ITR of 319 bit/min for the best subject, which was raised with the
current approach to 701 bit/min and 1237 bit/min, respectively.
The performance improvement can also be confirmed for the synchronous as well as
the asynchronous BCI control. For the former, the ITR could be improved by 18.6%
using a trial duration of 1 s. For the latter, although the average accuracy is reduced
by 0.8%, the average ITR has increased by 43.0% to 175.5 bit/min, which is due to
the reduced average trial time (1.71 s vs. 2.61 s). Furthermore, with 35.3 correct
targets per minute, the spelling speed could be improved by 45.3%. Here it must
be noted, that the asynchronous performance is slightly biased, in average 91.6%
of all trials could be predicted faster, whereas the remaining 8.4% would require a
longer trial duration, which obviously cannot be simulated. Therefore, the average
trial duration of 1.71 s would actually be slightly longer.
Especially the worse participants benefit from the deep learning approach, for exam-
ple, the asynchronous spelling ITR of subject A08 has increased from 76.2 bit/min
to 127.8 bit/min, which represents the lower limit for the asynchronous BCI speller.
Furthermore, even the best performing participant A02 has profited, and the ITR
has increased by 68.0 bit/min to 238.9 bit/min, which represents the upper limit and
shows the potential of the presented asynchronous BCI.
Comparing the bit-prediction performance and the spelling performance, for the lat-
ter a ceiling effect can be observed. The visual information that can be decoded
from the EEG is substantially higher than the information that can be achieved for
spelling. While tripling the former, the latter is only increased by 43%. This can
be explained by the fact that the latter depends, among other facts, on the reaction
time of the subject, which is limited. For instance, to achieve a spelling ITR of 700
bit/min with a 32-target layout, the trial duration (including inter-trial time) must be
reduced to 430 ms with an accuracy of 100%. This means, a subject has to spell a
letter and to find the subsequent letter within 430 ms, which is nearly impossible, at
least for the long term. Furthermore, as the EEG2Code is designed to use 250 ms
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(150 samples) windows, this is a further limitation. For example, a stimulation time
of 300 ms (180 samples) results in only 30 predicted samples, which corresponds to
3 bits of the stimulation pattern and is obviously not enough for target classification,
at least for a multi-target layout.
To summarize, deep learning approaches have shown to improve the classification
compared to traditional machine learning approaches for BCI control as well as in
other research areas [SZ14,CG11,BMK+06,KML17, TMS+17]. In this chapter, it
was confirmed that a non-linear deep-learning approach also significantly improves
the BCI performance, at least for the EEG2code approach. With an asynchronous
spelling performance of 175.5 bit/min, the approach is approximately three times
faster compared to the previous state-of-the-art approach by Suefusa et al. which
achieved 67.7 bit/min [ST18].
Finally, due to the observed ceiling effect, the results suggest that more powerful
approaches for brain signal decoding will not translate into substantially better VEP
BCI control anymore.



114 CHAPTER 13. DEEP-LEARNING



Chapter 14

Reduced training data and
cross-subject performance

In the previous chapters, several advantages and optimizations of the EEG2Code
model were proposed, which improve the end-user suitability. However, one impor-
tant point has not been addressed: the amount of required training data. Collecting
training data takes time and is inconvenient for the user, therefore, the time required
to collect the training data should be as short as possible.
Generally, there are several ways to implement this. The most obvious is to test
how the BCI performance varies with a different amount of training data and to
choose the best trade-off between performance and training time. Another option is
to avoid training at all. As already explained, for SSVEP BCIs it is possible to detect
the corresponding frequencies without prior training, but recent works have shown a
relatively poor performance [FVG07,CC14,ZXCY14]. Contrary to use a train-free
method, it is possible to perform a subject-independent training, which means the
training is done using the EEG data of other users [LGZ08a, LGZ08b, RFPN11].
Those methods show an increased performance compared to train-free methods, but
not compared subject-dependent methods. A further approach is to use not only
subject-independent data but to further optimized the resultant model with subject-
dependent data, which has shown to further increase the performance [YCW+15,
WFG+16,CWNJ18].
In the previous chapters, the amount of training data used to train the EEG2Code
model has been arbitrarily determined during the experimental design, as it was as-
sumed that approximately 6 minutes of random stimulation should be sufficient to
cover most of the possible VEP responses. In this chapter, the performance of the
EEG2Code CNN model will be analyzed with respect to a varying amount of train-
ing data. Furthermore, a subject-independent classification is performed, whereby
for each subject a model will be trained only on the data of other subjects.
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14.1 Methods

14.1.1 Reduce training data

The amount of required training data used to train the EEG2Code model has been
arbitrarily determined during the experimental design and resulted in 3⋅32⋅4 = 384 s
of training data. With the used inter-trial time of 1 s, this results in a total training
duration of 8 min.
To test the performance with reduced training data, an offline analysis is performed
by varying the amount of training data between 10% and 100% in steps of 10%. For
example, a train size of 10% corresponds to approximately 38 s of training data. For
training, the EEG2Code CNN model, proposed in chapter 13, is used with the same
parameters. Also, the corresponding amount of training data is split into two sets of
equal size, one used for training and one used for validation, respectively.
Themodels are used to analyze the bit prediction accuracy aswell as the synchronous
BCI control performance using trials with 1 s trial duration.

14.1.2 Cross-subject

Instead of reducing the train duration, it would be best if no training is required at
all, therefore, an offline cross-subject analysis is performed. Again, the EEG2Code
CNN model (chapter 13) is used with the same parameters. For each participant, a
model is trained on the training data of 5 participants and validated on the training
data of 3 participants. In the following, themodel is used to analyze the bit prediction
accuracy as well as the synchronous BCI control performance using trials with 2 s
trial duration.

14.1.3 Hardware & Software

The same setup was used as described in the previous chapter (see section 13.1.2).
For the sake of completeness, it will be explained again.
The system consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal
computers (PCs), Brainproducts Acticap system with 32 channels and an LCDmon-
itor (BenQ XL2430-B) for stimuli presentation. Participants are seated approxi-
mately 80 cm in front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate
of 60 Hz and its native resolution of 1920 × 1080 pixels. A stimulus can either
be black or white, which can be represented by 0 or 1 in a binary sequence and is
synchronized with the refresh rate of the LCD monitor. The timings of the monitor
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refresh cycles are synchronized with the EEG amplifier by using the parallel port.
PC2 is used for data acquisition, whereby BCI2000 [SMH+04] is used as a general
framework for recording the data of the EEG amplifier. The amplifier sampling
rate was set to 600 Hz, resulting in 10 samples per frame/stimulus. Additionally, a
TCP network connection was established to PC1 in order to send instructions to the
presentation layer and to get the modulation patterns of the presented stimuli.
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.
The data was analyzed on an IBM Power System S822LC with four Nvidia® Tesla
P100 GPUs using Python v2.7 [Pyt10] and the Keras framework [C+15]. The server
was provided by the IBM Shared University Research Grant and includes the IBM
PowerAI environment.

14.1.4 Data acquisition

To analyze the performance of the EEG2code CNN model under the mentioned
conditions, the data of the synchronous BCI control (section 9.1.3) is used. Since
a worse performance is expected, compared to using the complete training data, an
offline analysis of the asynchronous BCI control makes no sense, as the threshold
will most likely not be achieved.
The complete training data of each participant consists of runs three runs with 32 tri-
als each. The trial durations of those runs are 5 s, 4 s, and 3 s, respectively, whereby
the targets were modulated with fully random stimulation patterns.
To test the bit prediction accuracy, the seven runs (32 trials each, 2 s trial duration)
with fully random stimulation are used. For the synchronous BCI control analysis,
the seven runs (32 trials each, 2 s trial duration) with optimized stimulation are used.
The participants had to perform all runs in lexicographic order using the matrix
keyboard layout (Fig. 4.1).

14.1.5 Performance evaluation

Since the analysis includes the EEG2code pattern prediction and the synchronous
BCI control, the same performance measures were used as described in sec-
tions 6.1.7 and 9.1.5.
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14.2 Results

Fig. 14.1 shows the bit prediction accuracies for each participant (colored lines) as
well as the average accuracy (black thick line) depending on the used train size,
whereby 100% corresponds to 384 s of training data. As expected, the accuracy
decreases with the decreasing amount of training data. With 100% of the training
data, the average accuracy is 71.2% (ITR: 504.5 bit/min) and decreases to 67.4%
(ITR: 335.7 bit/min) with 10% train size (38 s). Interestingly, the loss of informa-
tion is substantially greater for S01 (loss: -405.8 bit/min) compared to the other
participants (average loss: -139.2 bit/min, SD: 50.1 bit/min). On the other side, S01
achieved 74.7% using 10% of training data, which is even more as all other par-
ticipants achieved with 100% of training data. Although, the accuracy increase is
flattening out, a significant (p < 0.05, paired t-test) increase was always found by
doubling the train size.
The findings can be confirmed for the synchronous BCI control with 1 s trial dura-
tion. The results are depicted in Fig. 14.2. The average accuracy drops from 95.9%
to 89.4% by using only 10% of the training data. Although, S01 shows the largest
loss of information for the bit prediction accuracy, the BCI control accuracy of S09
drops substantially more (-24.1%) compared to the other participants (average loss:
-4.2%, SD: 3.1%). Contrary to the bit prediction accuracy, a significant (p < 0.05,
paired t-test) increase of the accuracy can only be found by doubling the train size
from 10% to 20%, from 40% to 80%, and from 50% to 100%, respectively.
The results of the cross-subject analysis can be found in Table 14.1. The analysis
of the bit prediction accuracy reveals an average of 59.1% and up to 61.1%. For the
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Figure 14.1: Bit prediction performance of the EEG2Code CNN model using different
amount of training data. Each colored thin line represents a participant and the black
thick line is average over all participants. The train size has a logarithmic scale.
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synchronous BCI control, an average accuracy of 62.9% was achieved. Here it is
worth to note that S04 achieved the best accuracy of 82.1% which corresponds to an
ITR of 75.0 bit/min.
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Figure 14.2: Synchronous BCI control performance of the EEG2Code CNN model
using different amount of training data. Used are trials of 1 s length. Each colored thin
line represents a participant and the black thick line is average over all participants. The
train size has a logarithmic scale.

Table 14.1: Cross-Subject results.

Pattern prediction BCI control
Subject ACC [%] ITR [bpm] ACC [%] ITR [bpm]
S01 61.1 128.6 73.7 62.5
S02 57.7 61.2 52.2 35.7
S03 58.8 80.8 60.3 45.0
S04 60.3 110.4 82.1 75.0
S05 60.2 109.4 65.6 51.7
S06 59.2 87.8 57.6 41.8
S07 58.9 83.1 61.2 46.1
S08 56.6 45.2 42.0 24.9
S09 59.0 83.8 71.4 59.4
mean 59.1 87.8 62.9 49.1

mean (within) 74.9 701.3 99.5 107.8
Shown are the average results of all subjects, whereby best results are in bold font. The
left part shows the results for the EEG2Code pattern prediction, whereas the right part
shows the results for the simulated synchronous BCI control. For both, the accuracy
(ACC) as well as the ITR are given. The ITRs are calculated using Eq. 2.10 withN = 2
(N = 32) and T = 1∕60s (T = 2.75s). For comparison, the within-subject results are
shown in the last row.
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14.3 Discussion

Although the entire train duration during the previous experiments lasted for only
8 min, it is desired to reduce the train duration to a minimum, as collecting training
data is inconvenient for the user. For comparison, the state-of-the-art synchronous
BCI speller by Chen et al. required exactly the same train duration [CWN+15].
While the train duration was arbitrarily determined for the previous experiments,
a detailed performance analysis of the EEG2Code CNN model was performed by
reducing the training data. Interestingly, using only 10% of the training data, which
corresponds to only 38 s of stimulation, reduced the average synchronous BCI con-
trol accuracy by only 6.5%. When using 30% of the training data, this results in a
accuracy loss of less than 1%, which suggests reducing the training time to approx-
imately 2 min. Contrary, the results also revealed that doubling the training data
always results in a significant improvement, which further suggests increasing the
train duration to get the best possible performance. It would also be interesting to
know at which training duration the performance cannot be further improved.
While reducing the training data resulted only in a moderate performance loss, the
cross-subject analysis resulted in an ITR of only 49.1 bit/min, but this was expected
due to the inter-subject variability of VEP responses. Furthermore, the model per-
forms spatial filtering, which depends on the placement of the EEG electrodes. Al-
though the placement was standardized, the position of the EEG cap on the scalp can
only be guaranteed to a certain degree. Additionally, the shape of the head varies
for different users. Nevertheless, the results are in the range of the best train-free
approaches [FVG07,CC14].
Finally, although a subject-independent model would be the most user-friendly ap-
proach, the results revealed that even a training phase of approximately 40 s resulted
in a highly increased performance: 49.1 bit/min vs. 136.7 bit/min using the same
inter-trial time. Obviously, due to the improved performance, one would take the
training phase in the acceptance.



Chapter 15

Peripheral perception of different
colors

The recently presented BCI, as well as most other VEP-based BCIs, make use of
alternating white-black stimuli [CWN+15,BGW+11,SRB12a]. However, also chro-
matic stimuli result in VEP responses and previous studies have shown that achro-
matic and different chromatic stimulation results in different VEPs with different
amplitudes as well as with different temporal courses [Reg66, KMP87, KRM96,
RSC+94,MRMK96]. Several chromatic stimuli (e.g., red-black, green-black, blue-
black) were tested by Duszyk et al. [DBR+14] with an SSVEP stimulation paradigm
and by Wei et al. [WFL16] with a cVEP stimulation paradigm. Both studies found
the best performance using white-black stimuli. Interestingly, Yan et al. have
shown that low-frequency red-green stimuli result in a better frequency recogni-
tion [YXL+17], which was also confirmed by Nezamfar et al. for a cVEP BCI
which achieved a better accuracy by using red-green stimuli [NSE15]. Aminaka
et al. compared blue-green stimuli to white-black stimuli with a cVEP stimulation
paradigm, the chromatic stimulation results in a slightly worse accuracy, but with a
lower danger for photosensitive epilepsy [AMR15].
As mentioned in a previous chapter, VEP BCIs are based on the idea of Sut-
ter [Sut84], who stated that "the electrical scalp response to a modulated target is
largest if the target is located within the central 1◦ of the visual field" and that "this
makes it possible to construct a gaze-controlled keyboard". However, although the
response to stimuli within the central 1◦ of the visual field is largest, Sutter has
also shown that responses can be measured in the peripheral parts of the visual
field [ST92]. In the case of a VEP BCI speller, this means that neighbored targets
(letters) to the gazed target are also in the visual field and causes unwanted responses,
which act as additional noise.
Considering the structure of the human eye, there two types of photoreceptor cells:
cones and rods, which are differently distributed over the retina. Cones are mainly
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located and densely packed in the central field and are responsible for color vision,
whereas rods are mainly located at the outer parts of the retina and are used for pe-
ripheral vision [PAF+01]. Moreover, as shown by Bowmaker and Dartnall [BD80],
cones are divided into three different types with different responses to different light
wavelengths: the long-wave (L) cones, the middle-wave (M) cones, and the short-
wave (S) cones with maximum responses at 564 nm, 534 nm, and 420 nm, respec-
tively. Rods, on the other hand, have a maximum response at 498 nm.
Altogether, and the fact that there are approximately 91 million rod cells and only
4.5 million cone cells on the human retina [PAF+01], lead to the assumption that
visual stimuli, excluding the wavelengths to which the rods respond, should lead to
less peripheral perception and therefore to less noise.
To the best of my knowledge, yet it was not analyzed how strong the peripheral
contribution is during a simultaneous stimulation of the central and peripheral visual
field, which is the case with a BCI speller, for example. In this chapter, this issue
will be addressed by analyzing the peripheral perception of different colors.

15.1 Methods

15.1.1 Analyze peripheral perception

To test the peripheral perception during a simultaneous stimulation of the central and
peripheral visual field, a layout with nine equal-sized targets was used (Fig. 15.1).
During the experiment, the center target is modulated with a 15 Hz SSVEP stimula-
tion pattern. The eight outer targets are modulated with a 20 Hz SSVEP stimulation
pattern. The participant has to focus solely on the center target.
Using the proposed layout, which could represent a section of the previously used
matrix keyboard layout (Fig 4.1), in combination with the used SSVEP stimulation
patterns, the peripheral perception can be analyzed using a frequency analysis. The
lower the 20 Hz proportion, the lower is the peripheral perception. Contrary, the
stronger the 15 Hz proportion, the stronger is the desired signal. The analysis was
done with several stimulation colors, which will be explained in subsection 15.1.3.

15.1.2 Stimulation pattern

As mentioned, the center target is modulated with a 15 Hz SSVEP stimulation pat-
tern, whereas the eight outer targets are modulated with a 20 Hz SSVEP stimulation
pattern. For this, a binary sequence is generated which represents the corresponding
stimulation pattern. The duration of an on- and off-stimulus is of equal length for
the 15 Hz stimulation, whereas for the 20 Hz stimulation the on-stimulus is half of
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Figure 15.1: The layout used to identify peripheral perception. The center square is
modulated with a 15 Hz SSVEP stimulation pattern, whereas the 8 outer squares are
modulated with a 20 Hz SSVEP stimulation pattern.

the duration of the off-stimulus, which results in the following stimulation pattern
for 1 s at the used presentation rate of 60 bit/s:
15 Hz: 110011001100110011001100110011001100110011001100110011001100
20 Hz: 100100100100100100100100100100100100100100100100100100100100

15.1.3 Color selection

As mentioned, the different cones on the retina respond differently to a different
wavelength, which suggests using the wavelengths with the maximum response:
564 nm, 534 nm, and 420 nm. Furthermore, wavelengths around 498 nm should
be avoided, to stimulate the rods as less as possible. On the other side, as many
cones as possible should be stimulated to get the strongest response. This, and the
fact that the absorption ranges of M- and L-cones overlap for most wavelengths,
suggest using the wavelength where the M- and L-cones respond equally, which is
at approximately 549 nm [BD80].
As a standard computer monitor is used for stimuli presentation, it cannot be guar-
anteed to emit only the desired wavelength. Therefore, an approximation is used by
converting the wavelengths to RGB values using the tool by Dan Bruton [Bru96].
Also, red-green stimuli were tested, because an increased BCI performance was
shown in previous studies. As a reference, white-black stimuli were tested, too.
The complete set of the tested colors is shown in Table 15.1.
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Table 15.1: Colors used for the analysis of the peripheral perception.

Color 1 Color 2
Wavelength RGB Color Wavelength RGB Color

– (255,255,255) – (0,0,0)
420 nm (106,0,255) – (0,0,0)
534 nm (108,255,0) – (0,0,0)
549 nm (160,255,0) – (0,0,0)
564 nm (207,255,0) – (0,0,0)
645 nm (255,0,0) 510 nm (0,255,0)

The wavelength, RGB color code, as well as the corresponding color, are given. RGB
values are approximated based on the wavelength using the tool by Dan Bruton [Bru96].
Color 1 is displayed for a binary 1 of the stimulation pattern, whereas Color 2 is dis-
played for a binary 0.

15.1.4 Analysis

To analyze the peripheral perception, a frequency analysis is performed. As the
participant has to focus the center target which is modulated with a 15 Hz SSVEP
pattern, this is the desired frequency, and the power should be as high as possible.
Contrary, the eight outer targets are modulated with a 20 Hz SSVEP pattern, there-
fore, the higher the 20 Hz power is, the higher is the peripheral perception.
The power spectrum is calculated using the discrete Fourier transformation, which
results in the magnitudeMk for each frequency bin k ∈ 1…N based on the signal
X of lengthN :
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The magnitudesM are transformed into decibel (dB) using the following equation:

Y = 20 ⋅ log10 (M) [dB] (15.2)
As the trials have a length of 1 s (see section 15.1.6), each frequency bin k is equiv-
alent to a frequency of k Hz, which ranges from 1 Hz toN∕2 Hz.
The power alone is meaningless for the current analysis, instead, the power-gainΔY
compared to the baseline B is the desired value. The baseline Bk of the correspond-ing frequency k is approximated using the mean between the adjacent frequencies.

ΔYk = Yk − Bk (15.3)
where: Bk =

(

Yk−1 + Yk+1
)

∕2 (15.4)
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Furthermore, the ratio R = ΔY15 Hz∕ΔY20 Hz is calculated, as an increased ratio indi-cates an increased 15 Hz power and/or a decreased 20 Hz power, which is desired.
Also, the average results of each colored stimulus are compared to the results of the
white-black stimulus, by calculating the corresponding difference. The higher the
difference, the superior the colored stimulus is.

15.1.5 Hardware & Software

The setup is similar to the previous experiments (see section 11.1.3). The system
consists of a g.USBamp (g.tec, Austria) EEG amplifier, two personal computers
(PCs), Brainproducts Acticap system with 32 channels and an LCD monitor (BenQ
XL2430-B) for stimuli presentation. Participants are seated approximately 80 cm in
front of the monitor.
PC1 is used for the presentation on the LCD monitor, which is set to refresh rate of
60 Hz and its native resolution of 1920 × 1080 pixels. The layout (Fig. 15.1) was
implemented using the framework described in chapter 4. A stimulus is represented
by 0 or 1 in a binary sequence and is synchronized with the refresh rate of the LCD
monitor. The timings of the monitor refresh cycles are synchronized with the EEG
amplifier by using the parallel port.
PC2 is used for data acquisition, whereby BCI2000 [SMH+04] is used as a general
framework for recording the data of the EEG amplifier. The amplifier sampling rate
was set to 600 Hz, resulting in 10 samples per frame/stimulus. The data processing
is done offline using MATLAB [MAT17].
A 32 electrodes EEG layout was used, 30 electrodes were located at Fz, T7, C3, Cz,
C4, T8, CP3, CPz, CP4, P5, P3, P1, Pz, P2, P4, P6, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, POO1, POO2, O2, OI1h, OI2h, and Iz. The remaining two electrodes
were used for electrooculography (EOG), one between the eyes and one left of the
left eye. The ground electrode (GND) was positioned at FCz and reference electrode
(REF) at OZ.

15.1.6 Data acquisition

Five participants were recruited to test the peripheral perception. The participants
had to perform two runs for each color pair shown in Table. 15.1, whereby Color 1
and Color 2 are shown depending on the binary sequence of the stimulation pattern.
Each run consists of 120 trials with a trial time of 1 s and without inter-trial time.
Therefore, this results in a total of 240 trials for each color pair.
Prior to the experiment, a participant was introduced to focus only on the center tar-
get (Fig.15.1). A run was started by the participant with a delay of 5 s after pressing
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the space key of the keyboard, therefore, the time between 2 runs was chosen by the
participants themselves. To exclude temporal effects, the runs were performed in
randomized order.

15.1.7 Preprocessing

The recorded EEG data is bandpass filtered by the amplifier between 0.1 Hz and
60 Hz using a Chebyshev filter of order 8 and an additional 50 Hz notch filter was
applied.
To improve the signal-to-noise ratio, a spatial filter is applied to each trial using a
canonical correlation analysis (CCA) similar to the method described in [SWRB14].
Only finding the best channel is different. The best channel is defined as the channel
that correlates most with the 15 Hz stimulation pattern. To take the phase shift into
account, the stimulation pattern is shifted sample-wise within the range of a full
phase (2�). Afterward, the spatial filter is trained as described in [SWRB14] and
applied to every single trial prior to the analysis.

15.2 Results

The frequency spectra are calculated for each subject and each color pair. Fig. 15.2
depicts the spectra for subject S1 including the approximated baselines and power-
gains. The power-gains for the white, 534 nm, 549 nm, and 564 nm are quite similar.
Contrary, using 420 nm results in a highly reduced 20 Hz power-gain. Interestingly,
using the red-green color pair results in a reduced power-gain for both the 15 Hz and
20 Hz frequencies, respectively.
Detailed results for each subject are listed in Table 15.2, whereby the best values
are highlighted in bold font. When using the white-black, as well as the 534 nm-
black color pair, results in the highest average 15 Hz power-gain of 6.6 dB, which
is desired. Contrary, the white-black color pair also results in the highest 20 Hz
power-gain of 9.7 dB, which indicates a high peripheral perception. In fact, except
for the 420 nm-black color pair, the average 20 Hz power-gain is even stronger than
the average 15 Hz power-gain, which can easily be seen by the corresponding ratios.
Interestingly, for S2 and S3 the 20 Hz power-gain is significantly stronger than the
15 Hz power-gain, for all color-pairs.
Conversely, the 420 nm-black color pair results in the best ratio of 1.28 between the
15 Hz power-gain and the 20 Hz power-gain. Especially S1 and S5 achieved a ratio
of 4.28 and 3.06, respectively. Here it is worth to note, that the 15 Hz power-gain
must also be considered, as a low power-gain corresponds to a weak VEP response.
Unexpectedly, comparing the red-green color pair to the white-black reveals a sig-
nificant decrease of power for both the 15 Hz and 20 Hz frequencies, respectively.
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Figure 15.2: Frequency spectra of subject S1 for different colored stimuli. The
black line represents the power in decibel (dB) for each frequency in Hertz (Hz). The
green lines are the approximated base lines, whereas the red lines correspond to the
power-gain. The 15 Hz stimulation pattern was focused by the subject, whereas the
20 Hz stimulation pattern was in the peripheral visual field.

15.3 Discussion

Most of recent VEP based BCIs make use of alternating white-black stimuli
[CWN+15,BGW+11,SRB12a]. However, several color pairs were tested [DBR+14,
WFL16, YXL+17, NSE15, AMR15], some superior to white-black and some not.
Since VEP BCIs have generally several targets, which are close together, the adja-
cent targets to a desired target are also in the visual field and cause additional noise to
the measured EEG. This peripheral perception was analyzed in the current chapter.
Since only five subjects were tested and the results are very different, the results
must be interpreted with caution. Furthermore, as it cannot be guaranteed that the
used monitor emits the desired wavelengths, the results should, therefore, serve as a
basis for a further analysis.
As expected, in average the white-black color pair results in the strongest desired
VEP response (15 Hz), but also in the strongest peripheral perception (20 Hz). As
mentioned, the rods have a maximum absorption rate at a wavelength of 498 nm,
therefore, lower/higher wavelengths should result in less peripheral perception.
Compared to white, which is a mixture of all wavelengths, using 534 nm, 549 nm,
and 564 nm results in a decreased power-gain of -0.2 dB, -0.6 dB, and -0.8 dB.
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Table 15.2: Peripheral perception of different colors

Color Power Subject Difference
pair gain S1 S2 S3 S4 S5 mean to white

15 Hz [dB] 10.8 4.7 2.4 9.7 5.7 6.6 0
20 Hz [dB] 10.9 13.5 10.3 6.9 6.8 9.7 0whitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhite

blackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblack Ratio 0.98 0.35 0.23 1.41 0.84 0.68 0
15 Hz [dB] 9.0 2.0 4.4 4.5 3.6 4.7 -1.9
20 Hz [dB] 2.1 5.7 6.1 3.4 1.2 3.7 -6.0420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm420 nm

blackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblack Ratio 4.28 0.35 0.72 1.35 3.06 1.28 0.59
15 Hz [dB] 10.7 4.4 4.0 8.2 5.4 6.6 -0.1
20 Hz [dB] 10.3 14.6 11.0 7.0 4.5 9.5 -0.2534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm534 nm

blackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblack Ratio 1.04 0.30 0.37 1.18 1.22 0.69 0.01
15 Hz [dB] 10.5 4.7 2.7 9.4 5.4 6.5 -0.1
20 Hz [dB] 10.9 12.3 9.5 6.7 5.9 9.1 -0.6549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm549 nm

blackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblack Ratio 0.96 0.38 0.28 1.41 0.92 0.72 0.03
15 Hz [dB] 11.2 3.0 3.4 7.7 3.3 5.7 -0.9
20 Hz [dB] 10.3 11.1 10.2 6.8 6.2 8.9 -0.8564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm564 nm

blackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblackblack Ratio 1.09 0.27 0.33 1.14 0.54 0.64 -0.04
15 Hz [dB] 3.7 2.9 1.9 0.5 1.5 2.1 -4.6
20 Hz [dB] 2.8 3.6 5.7 -0.4 1.8 2.7 -7.0645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm645 nm

510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm510 nm Ratio 1.32 0.80 0.33 -1.45 0.85 0.78 0.09
Shown is the power-gain in dB of both the 15 Hz and 20 Hz frequencies. The power-
gain is defined as the gain of power compared to the base line power, whereby the
base line power is approximated by averaging the power of the adjacent frequencies.
Furthermore, the ratio between the 15 Hz power-gain and the 20 Hz power-gain is given,
as the ratio increases for less peripheral perception. Additionally, to compare each color
pair to the white-black stimuli, the difference of the average power-gain as well as of
the average ratio is given. The best values are highlighted in bold font, whereby "best"
means the biggest power-gain for the 15 Hz frequency, the smallest power-gain for the
20 Hz frequency, and the biggest ratio between both, respectively.

Furthermore, using 420 nm results in an average decrease of -6.0 dB which corre-
sponds to a loss of power-gain by 61.9% compared to white. However, it must be
mentioned that also the 15 Hz power-gain is reduced by 28.8%, but in turn, this re-
sults in an average ratio of 1.28 compared to 0.68 for white. Here it is worth to note
that S1 achieved a ratio of 4.28 with only -16.6% loss of the 15 Hz power-gain com-
pared to white, this can easily be seen in Fig. 15.2, and implies that the peripheral
perception is highly reduced. The only counterexample is subject S4, who achieved
a better ratio using the white-black color pair.
Contrary to the findings of Yan et al. [YXL+17] and Nezamfar et al. [NSE15], the
red-green color pair resulted in a significantly worse power-gain compared to white,
for the 15 Hz as well as for the 20 Hz frequencies, which implies that the overall VEP
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response is highly reduced. However, here it is worth to mention that the presented
results are based on flash VEPs, whereas Yan et al. and Nezamfar et al. used a
pattern-reversal checkerboard, which evokes different VEPs (see 2.3).
To conclude, as the 420 nm-black color pair results in the best ratio and the fact that
all subjects mentioned that 420 nm causes less fatigue, suggest testing this color pair
for a BCI application. Additionally, also the greenish wavelengths could be used,
although the results are similar to the white-black color pair, the green color is more
pleasant for the eyes.
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Chapter 16

Summary

In this chapter, all the methods and results of this work are summarized to get a con-
densed overview before the final discussion. In advance, one of the main purposes
of BCIs is to restore communication of motor disabled people, like ALS patients. As
explained in section 3.3, a practical BCI should be most importantly effective (good
accuracy), efficient (fast classifications), ease of use, and should allow performing
as many different tasks as possible. Furthermore, it should also allow being used
independently at home.
The goal of this work was to develop an BCI which address all those criteria,
whereby the main focus was the independent usage. Prior to achieving this goal,
in chapter 4 a stimulation framework was proposed which allows to easily create
different stimulation layouts and ensures high synchronicity between the stimuli and
the measured EEG. The effects of inaccurate synchronization to the performance of
VEP BCIs was shown in chapter 5.
In chapter 6 a completely new and unique stimulation paradigmwas proposed, based
on fully random stimulation patterns. Based on this, a method (EEG2Code) was pro-
posed which can predict arbitrary stimulation patterns based on the measured VEP
responses. The resultant passive BCI showed that the visual information contained
in the EEG could be predicted with an average ITR of 232 bit/min and up to 390
bit/min.
In chapter 7 the backward approach (Code2EEG) was proposed. It was shown that
the variance in the brain response to arbitrary stimulation patterns could be explained
by up to 25.9% on a single trial basis. It was further shown that this approach allows
predicting the brain response to common stimulation paradigms, like SSVEP and
cVEP, although the model was never trained on such stimuli.
In chapter 8 an optimized set of random stimulation patterns was proposed which
increases the performance compared to fully random stimulation patterns.
In chapter 9 it was proven that the EEG2Code, as well as the Code2EEG approach,
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can be used for synchronous BCI control, with accuracies of 97.9% and 93.9%, re-
spectively. It was further shown that the optimized stimulation patterns also increase
the active BCI performance, although the results were not significant due to the ceil-
ing effect. Furthermore, a within-subject comparison has proven that the EEG2Code
approach can compete with a state-of-the-art cVEP BCI approach.
In chapter 10 it was shown that a reduced trial duration improves the synchronous
BCI performance to an average ITR of 154 bit/min and up to 231 bit/min. Further-
more, the main advantage of the proposed methods and the proposed stimulation
paradigm were addressed. It was proven that both, the EEG2Code and Code2EEG
approach, can be used with a nearly unlimited number of targets, which allows per-
forming as many different tasks as required.
In chapter 11 the EEG2Code approach was extended to allow asynchronous control.
In an online experiment, it was shown that the asynchronous approach achieves an
average accuracy of 99.3% with classification durations of 2.1 seconds on average.
Furthermore, it was also shown in an online experiment that the layout could be
switched to more targets, for example, a user-friendly German QWERTY layout,
which allowed to users to spell up to 29.7 correct case-sensitive letters per minute
with an average accuracy of 98.1%. This proves that the approach is effective and
efficient. To prove that the system can also be used independently, at least after the
system was started, it was shown that the non-control state can be determined per-
fectly under four different conditions for 8 of 10 participants, whereas the intended
control state was always detected for all participants.
In chapter 12 the mobile usage was addressed. As an exact synchronization can most
probably not achieved by using mobile devices (like wireless EEG electrodes), the
performance of the EEG2Code model was analyzed in respect to varying synchro-
nization latencies. It was shown that latencies in the range of up to 10 ms reduce the
accuracy of the asynchronous approach by only 1%.
In chapter 13 the EEG2Code model was improved by using a convolution deep neu-
ral network. Although the training took slightly longer compared to the ridge regres-
sion model, the classification can still be performed in real-time. The results have
shown that the asynchronous spelling performance can be increased to 176 bit/min
with nearly the same accuracy.
In chapter 14 the performance using fewer training data was analyzed. The cross-
subject analysis with no subject-dependent training data resulted in a drastically re-
duced performance. Contrary, reducing the training phase to 2 min, resulted in an
accuracy loss of less than 1%. This would improve the ease of use criteria.
In chapter 15 it was proposed to further analyze the BCI performance in respect
to the used stimuli color pair, as the results have shown that other color pairs than
white-black reduce the peripheral perception of neighbored targets which, in turn,
should improve the BCI performance.
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Discussion

As stated at the beginning of this thesis, being trapped in one’s own body and espe-
cially no longer being able to communicate with relatives must be awful. Today’s
technology allows to restore the ability to communicate by interpreting brain sig-
nals. Although recent BCI spellers show high communication speed, they are not
suitable for real-world applications. This was addressed in this work by developing
a BCI which allows high-speed asynchronous control and which efficiently detects
the user’s intent to control the system or not.
The proposed asynchronous BCI approach has shown to be effective, efficient, ease
of use, and allows to perform a virtually unlimited number of tasks. However, al-
though it is a big step for moving BCIs out of the lab, there are further points that
can and must be optimized in order to be suitable for end-user home-control. While
the individual parts of this thesis were already discussed, the final discussion will
focus on the issues that must be further addressed for end-user home-control as well
as how the performance could be further increased.
The first and most important issue is that the system was tested with healthy par-
ticipants. Although the presented BCI only requires a (corrected to) normal vision
and the ability to voluntary control eye movements, it cannot be guaranteed that the
system will achieve the same performance for end-user, like patients having amy-
otrophic lateral sclerosis (ALS). Unfortunately, there are virtually no studies com-
paring the performance difference of VEP based BCIs between healthy and impaired
peoples. To the best of my knowledge, the only studies are by Lim et al. [LHH+13]
and Hsu et al. [HLT+16], but no state-of-the-art methods were used, and only 1 and 3
ALS patients were analyzed, respectively, which is why no significant statement can
be made. There are some studies, evaluating the VEP generation of ALS patients,
with the result that some patients show slight abnormalities compared to healthy
people [REE86,MTN+98]. However, this does not necessarily mean that the BCI
performance will be reduced for such patients. What might be a problem, though, is
that some studies have reported that about 45% of ALS patients reveal some form of
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cognitive impairment [AFT+97,RSG+06]. Contrary, McCane et al. have found no
significant performance difference between 14 ALS patients and 14 healthy people
using a P300 speller [MHM+15].
Moreover, the performance was assessed under laboratory conditions. Although
the same conditions could be achieved at home, it would be desirable to use a BCI
on-the-go, which would most probably cause a decreased signal-to-noise ratio. For
example, movements will add additional noise to EEG recordings, or solar radiation
will reduce the contrast of the stimuli which in turn reduces VEP amplitudes.
Furthermore, the experiments were performed using gel electrodes, which requires
time-consuming preparation and the gel dries out after a certain time. Contrary, dry
electrodes can be used more easily and quickly, therefore, they are more convenient
for end-users. As it was recently shown that dry electrodes are suitable for high-
speed BCI control [Spü17, XWP+18], it would be interesting to assess the perfor-
mance of the proposed BCI approach, especially using wireless electrodes, as it was
shown that the approach could efficiently handle varying synchronization latencies.
Also, some possible optimizations have been mentioned. First and foremost, the
non-control detection should be optimized to avoid absolutely all classifications dur-
ing the non-control state, as random classifications decrease the user-experience and
could have negative effects depending on the application purpose. For example, if
the system is used to control lights, then it would surely not be desired that they
switch themselves on and off again and again. As mentioned in chapter 11 this
could be achieved by using a stricter threshold. While this would also reduce the
spelling performance, it is suggested to use two thresholds: one optimized for the
intentional control and one optimized for the non-control state.
Another optimization would be to make the BCI adaptive, because the EEG signals
are non-stationary over time, even within the same user [GW11]. Adaptive BCI ap-
proaches have also shown to increase the performance [BRW+07,SRB12b,LGK14].
As mentioned in chapter 11 with the high average accuracy of the presented ap-
proach, it would be possible to implement a semi-supervised adaption of the
EEG2Code model, whereby the model will be adaptively trained on test data which
will be labeledwith the predicted labels. Furthermore, the stimulation patterns could
be adaptively optimized, whereby each stimulation pattern might be rated depending
on the resultant trial length, the shorter a trial duration, the more likely the corre-
sponding stimulation pattern will be used again.
To conclude, a general model for the prediction of arbitrary sensory stimuli was
developed which allows discriminating 500,000 different visual stimuli based on
2 seconds of EEG data with an accuracy of up to 100 %. It was shown that the
presentedmethod could extract muchmore information from the EEG as can be used
for BCI control. The observed ceiling effect allows the conclusion to be drawn that
more powerful methods for brain signal decoding do not necessarily translate into a
substantially better BCI control anymore. Furthermore, the presented asynchronous
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BCI speller outperforms the previous state-of-the-art in several points. On the one
hand, it increased both the spelling speed and the non-control state detection by a
multi-fold. On the other hand, it is the most flexible system to-date, as it allows
to use a virtually unlimited number of targets. By addressing the above-mentioned
issues, the presented approach could pave the way to the very first end-user suitable
BCI that can be used for any application purpose.



136 CHAPTER 17. DISCUSSION



List of Abbreviations

ACC Accuracy
ALS Amyotrophic lateral sclerosis
BCI Brain-Computer Interface
bpm Bits per minute
CCA Canonical correlation analysis
CNN Convolutional neural network
CRT Cathode ray tube
cVEP Code-modulated visual-evoked potential
EEG Electroencephalography
EOG Electrooculography
ERP Event-related potential
ErrP Error-related potential
FFT Fast fourier transformation
GND Ground electrode
IC Intentional control
ITR Information transfer rate
JFPM joint frequency-phase modulation
LCD Liquid crystal display
LDA Linear discriminant analysis
LED Light emmiting diode
NC Non control
OCSVM One-class support vector machine
PC Personal computer
REF Reference electrode
ReLU rectified linear unit
SSVEP Steady-state visual-evoked potential
SVM Support vector machine
SWDA Step-wise discriminant analysis
SD Standard deviation
VEP Visual-evoked potential
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