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Abstract 

Properdin, the only known positive regulator of the alternative complement pathway (AP), 

has been a focus of controversy since its discovery by Louis Pillemer in 1954 [1], [2]. In the 

last years evidence accumulated that this glycoprotein acts as a pattern recognition molecule 

and initiates the AP upon recognition of specific glycan markers, apart from its established 

role in the stabilization of AP convertases [3]. In this work, human full-length properdin was 

produced in mammalian cells and the purified protein was found to be active and to form the 

previously reported dimeric, trimeric and tetrameric cyclic structures. STD-NMR experiments 

performed with a set of glycans suggested that negative charge is required for binding to 

properdin and that glycosaminoglycans (GAGs) are potential pathogen-associated molecular 

patterns (PAMPs) for properdin and may mediate direct AP activation by properdin. The 

results also confirmed reports that both positive and negative regulators of the AP, namely 

properdin and complement Factor H, bind to different epitopes on identical glycans.  

 

The structural complexity that contributes to the diversity of GAGs and glycans represents a 

significant challenge for their isolation for functional and structural studies. A common 

approach involves the use of GAG-depolymerizing enzymes, such as heparinase I from 

Pedobacter heparinus, followed by fractionation of the obtained oligosaccharides [4], [5]. 

However, since the most biological relevant oligosaccharides have a higher degree of 

polymerization than those usually obtained from heparinase, a structure-based engineering 

approach to rationally design this enzyme could alter the product distribution. Although 

recombinant heparinase I could be produced in E. coli and expression constructs with 

varying N- and C-terminal sequences were tested, an intrinsic low thermal and 

conformational stability was observed and no protein crystals were obtained for structure 

determination by X-ray crystallography and subsequent enzyme engineering.  

 

Over the past decades, inhibition of the c-Jun N-terminal kinase 3 (JNK3), a 

mitogen-activated protein kinase (MAPK) involved in the regulation of cellular responses to 

extracellular stimuli has become a promising strategy for treatment of neurodegenerative 

disorders such as Alzheimer’s and Parkinson’s diseases. However, up to date, no inhibitors 

targeting JNK3 have been approved by the FDA [6], [7]. Altering the substitution pattern of a 

pyridinylimidazole scaffold from a dual p38α/JNK3 MAPK inhibitor proved to be effective in 

shifting the selectivity towards JNK3 [8]. A similar binding mode of the two most potent 

inhibitors with an IC50 value <1 μM in the ATP binding pocket was confirmed by X-ray 

crystallography. While selectivity was achieved by addressing the hydrophobic region I of 

JNK3 with a small methyl group, addition of a S-methyl group contributed to the stability of 

the G-rich loop of JNK3, thus increasing the inhibitory potency. Future strategies to increase 

the inhibitory potency while preserving selectivity were devised from the determined JNK3 

crystal structures.  
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Zusammenfassung 

Properdin, der einzige bekannte positive Regulator des alternativen Wegs des 

Komplementsystems (abgekürzt mit AP für alternative complement pathway), ist seit seiner 

Entdeckung durch Louis Pillemer im Jahr 1954 Gegenstand von Kontroversen [1] [2]. In den 

letzten Jahren wurden verschiedene Hinweise dafür beschrieben, dass dieses Glykoprotein 

neben seiner bekannten Rolle bei der Stabilisierung von AP-Konvertasen auch als 

Mustererkennungsmolekül fungieren und den AP direkt initiieren kann [3]. Properdin wurde in 

der vorliegenden Arbeit rekombinant in Säugetierzellen hergestellt und es wurde gezeigt, 

dass das gereinigte Protein aktiv ist und die zuvor beschriebenen zyklischen Strukturen 

(Dimere, Trimere und Tetramere) bildet. STD-NMR-Experimente, die mit einer Reihe von 

Glykanen durchgeführt wurden, legen nahe, dass eine negative Ladung für die Bindung an 

Properdin erforderlich ist und dass Glykosaminoglykane (GAGs) als potenzielle 

Pathogen-assoziierte molekulare Muster (abgekürzt PAMPs für pathogen-associated 

molecular patterns) agieren und zur AP-Aktivierung durch Properdin führen könnten. Die 

Ergebnisse bestätigten auch die bestehende Vermutung, dass sowohl positive als auch 

negative Regulatoren des AP (Properdin und Komplementfaktor H) an identische Glykane 

binden können, die Bindung jedoch über die Erkennung verschiedener Epitope erfolgt.  

 

Die strukturelle Komplexität, die zur Vielfalt der GAGs und anderer Glykane beiträgt, stellt 

gleichzeitig eine große Herausforderung für deren Isolierung für funktionelle und strukturelle  

Studien dar. Ein verbreiteter Ansatz ist die Verwendung von GAG-depolymerisierenden 

Enzymen wie Heparinase I aus Pedobacter heparinus. Dabei werden die entstandenen 

Oligosaccharide mit unterschiedlichen Molekulargewichten mittels anschließender 

Fraktionierung erhalten [4], [5]. Die Entwicklung eines strukturbasierten Protein-Engineerings 

für dieses Enzyms könnte die Produktverteilung so verändern, dass die biologisch 

relevantesten Oligosaccharide mit einem höheren Polymerisationsgrad isoliert werden 

können. Heparinase I konnte erfolgreich in E. coli hergestellt werden und verschiedene 

Expressionskonstrukte mit variierenden N- und C-terminalen Sequenzen wurden getestet. 

Dabei wurde jedoch in allen Konstrukten eine intrinsische niedrige thermische und 

konformationelle Stabilität beobachtet und es wurden keine Proteinkristalle zur 

Strukturbestimmung mittels Röntgenstrukuranalyse erhalten. 

 

In den letzten Jahrzehnten wurde die Inhibition der c-Jun-N-terminalen Kinase 3 (JNK3), 

einer mitogenaktivierten Proteinkinase (MAPK), die an der Regulation der Zellreaktionen auf 

extrazelluläre Stimuli beteiligt ist, zu einer vielversprechenden Strategie für die Behandlung 

von neurodegenerativen Erkrankungen wie Alzheimer und Parkinson beschrieben. Bisher 

wurden jedoch keine Inhibitoren gegen JNK3 von der FDA zugelassen [6], [7]. Durch die 

Veränderung des Substitutionsmusters bzw. der Seitenketten eines Pyridinylimidazolgerüsts  
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eines dualen p38α/JNK3-MAPK-Inhibitor konnte die Selektivität in Richtung JNK3 

verschoben werden [8]. Mittels Röntgenstrukturanalyse konnte für die beiden potentesten 

Inhibitoren mit IC50-Werten <1 μM sehr ähnliche Bindungsmodi in der ATP-Bindungstasche 

bestätigt werden. Dabei wurde die Selektivität durch die Verwendung einer Methylgruppe, 

die mit der hydrophoben Region I von JNK3 interagiert, erhöht. Die Verwendung einer 

S-Methylgruppe erhöhte die inhibitorische Wirksamkeit durch die Stabilisierung einer 

Glycin-reichen Loopregion von JNK3. Anhand der bestimmten JNK3-Kristallstrukturen 

wurden weitere Strategien zur Erhöhung der inhibitorischen Wirksamkeit unter Beibehaltung 

der Selektivität entwickelt.  
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Abbreviations 

AMP-PCP β,γ-methyleneadenosine 5′-triphosphate disodium salt 

AMP-PNP Adenylyl-imidodiphosphate 

AP Alternative pathway of the complement system 

ATP Adenosine triphosphate 

BSA Bovine serum albumin 

B. thetaiotaomicron 

CCP 

Bacteroides thetaiotaomicron 

Complement control protein 

CD Circular dichroism 

CNS  Central nervous system 

CP Classical pathway of the complement system 

DSF Differential scanning fluorimetry 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTT Dithiothreitol 

FACS Fluorescence-activated cell sorting 

FB Factor B 

FD Factor D 

FDA U.S. Food and Drug Administration 

FH 

FI 

Factor H 

Factor I 

E. coli Escherichia coli 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 

EM Electron microscopy 

GAG Glycosaminoglycan 

GST tag Glutathione S-transferase tag 

HEK Human embryonic kidney 

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

HS Heparan sulfate 

IC50 Half maximal inhibitory concentration 

IEX Ion exchange chromatography 

IPTG Isopropyl-β-D-thiogalactopyranoside 

JNK c-Jun N-terminal kinase 

LB Luria broth 

LMWHs Low molecular weight heparins 
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LP Lectin pathway of the complement system 

MALDI-MS Matrix-assisted laser desorption/ionization mass spectrometry 

MAPK Mitogen-activated protein kinase 

MRE Mean residue weight ellipticity 

MS Mass spectrometry 

MW Molecular weight 

MWCO Molecular weight cutoff 

NGLs Neoglycolipids 

NHS Normal human serum 

NMR Nuclear magnetic resonance 

OD600 Optical density at 600 nm 

PAMP Pathogen-associated molecular pattern 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PDB Protein data bank 

PEG Polyethylene glycol 

PEI Polyethylenimine 

P. heparinus Pedobacter heparinus 

pI Isoelectric point 

PL Polysaccharide lyase 

PTM Post-translational modification 

PVDF Polyvinylidene fluoride 

RBCs Red blood cells/ Sheep erythrocytes 

RMSD Root mean square deviation 

RT Room temperature 

SEC Size exclusion chromatography 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SPR Surface plasmon resonance 

STD-NMR Saturation transfer difference nuclear magnetic resonance 

TBS-T Tris-buffered saline solution with 0.5% (v/v) Tween-20 

TCEP Tris (2-carboxyethyl) phosphine 

TEM Transmission electron microscopy 

TEV Tobacco Etch Virus 

TF antigen Thomsen-Friedenreich antigen 

Tm Melting or unfolding temperature 

TSR Thrombospondin 

UV 

VWA 

Ultraviolet 

Von Willebrand Factor A-type 
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1 Introduction 

1.1 The complement system  

The human complement system, an essential component of the innate immune response, 

serves as a first line of defense against pathogenic intruders and altered host cells [9]. 

Studied for the first time in the late 19th century, complement was initially identified as a 

heat-labile lytic fraction of human plasma that ‘complemented’ antibodies in their ability to 

recognize and fight bacteria [10]. To prevent inappropriate attack and thus avoid host tissue 

and organ damage, which can lead to autoimmune and chronic inflammatory diseases, the 

complement system must be tightly regulated. Complement comprises more than 30 soluble 

blood proteins and cell-surface bound proteins that act in plasma, tissues or within cells and 

serve as substrates, enzymes or modulators [11], [12]. Since the largest part of complement 

proteins are serum proteins and cellular receptors, glycosylation is an important factor in the 

complement system. These glycoproteins are synthesized in the liver, in macrophages and in 

lymphoid tissue and thus consist of a mixture of glycosylation variants (glycoforms) [13]. 

Proteins at the heart of the complement system, the so-called convertases, circulate in the 

blood in inactive forms (so-called zymogens). Upon complement activation, large 

conformational changes occur and successive enzymatic reactions serve to opsonize 

pathogens and induce inflammatory responses, which help immune cells to fight 

infections [14]. 

 

Depending on the context, the complement system can be activated through three distinct 

pathways, known as the classical (CP), lectin (LP) and alternative (AP) pathways (Figure 

1.1). Activation of the CP and LP occurs upon binding of pattern recognition molecules to 

molecular entities that are typical of pathogens [15]. The CP is triggered when complement 

protein C1 binds to foreign targets that have IgG or IgM antibody molecules attached via the 

hexameric pattern recognition molecule C1q [16]. The LP pathway is initiated in response to 

recognition of mannose residues on pathogen surfaces by mannose-binding lectins and 

ficolins [17]. Conversely, the AP is thought to be permanently active at low-level (so-called 

‘AP tickover’) and, therefore, requires continuous regulation. This pathway can be amplified 

through a positive feedback loop in the presence of pathogens [18].  

 

Zymogens are inactive precursors of complement proteases that require proteolytic cleavage 

to become active enzymes. Local activation of zymogens, such as C3 and C5, leads to their 

cleavage into smaller fragments, which subsequently associate with other proteins and 
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cleave and activate further zymogens in the complement pathway. The activation of a small 

number of complement proteins is therefore highly amplified by a cascade of enzymatic 

reactions, resulting in the generation of a large complement response [19]. In this way, the 

complement system can be ubiquitously present in an inactive form but rapidly become 

activated at sites of infection [14].  

 

1.1.1 The central role of complement protein C3 

All three pathways of the complement system culminate at the cleavage of the central 

zymogen C3. After activation of the complement system by antibody complexes, 

mannose-containing glycans or by spontaneous and induced hydrolysis of a labile thioester 

bond present in C3 on surfaces, C3 is cleaved into its active fragments [20]. Proteolytic 

activation of C3 by an enzymatic complex called C3 convertase, either the CP and LP C3 

convertase C4bC2a or the AP C3 convertase C3bBb, releases the small fragment C3a 

(~9 kDa) and the larger fragment C3b (~180 kDa) [21]. C3a is an anaphylatoxin that triggers 

a range of chemotactic and pro-inflammatory responses by binding to the C3a receptor on 

various effector cells, including recruitment of phagocytes to the site of infection, activation of 

leukocytes and an increase in vascular permeability [22]. C3b, on the other hand, is an 

opsonin that, upon cleavage of C3, undergoes a large structural change leading to exposure 

of a highly reactive but short-lived thioester. The exposed thioester moiety can tag cells or 

proteins by covalently binding to carbohydrates as well as hydroxyl and amino groups found 

on cell surfaces in close proximity to its site of generation [23], [24]. Once C3b has covalently 

attached to a pathogenic surface, terminal complement pathway activation occurs in the 

same manner, regardless of the pathway that initiated complement activity [25].  

 

1.1.2 Direct activation of the alternative complement pathway 

Unlike the CP and LP that rely on specific recognition molecules, the AP activates on any 

surface that is not actively protected by complement regulatory proteins [24], [26]. This 

system is initiated in the fluid-phase by the tickover as well as by contact activation on 

biological surfaces (e.g. platelets) and artificial surfaces (e.g. gas bubbles, biomaterial 

surfaces) and converts C3 into a bioactive form called C3(H2O) [27]–[29]. The thioester 

domain of C3(H2O) or C3b produced by the CP or LP exposes a binding site for another 

member of the AP known as Factor B (FB), which binds in a Mg2+-dependent manner and 

yields the pro-convertases C3(H2O)B or C3bB. This interaction occurs via the Von 

Willebrand Factor A-type (VWA) domain and three complement control protein (CCP) 

domains of FB. Upon activation, the serine protease Factor D (FD) binds to and cleaves the 

Factor B part of C3(H2O)B or C3bB which releases the N-terminal fragment Ba and 

generates the AP C3 convertase complex C3(H2O)Bb or C3bBb [30], [31]. During normal 
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physiological conditions, these C3 convertases constantly activate the complement system 

by interacting with additional C3 molecules and generating additional small amounts of C3b 

that expose the internal thioester bond and produce even more C3bBb [11]. However, C3 

convertases are not very stable on pathogenic surfaces and have a short half-life of 

90 seconds [32]. In this amplification loop, more C3b molecules are generated and deposited 

on cell surfaces, which trigger opsonization [33]. C3b can be further cleaved by Factor I (FI) 

into iC3b, C3dg and C3d and these fragments can be recognized by complement receptors 

and promote phagocytosis [34]. During the labeling of surfaces, C3b molecules bind to or 

near the C3 convertases that produced these C3b and generate a new enzymatic complex, 

called C5 convertase (C3bBbC3b). C5 convertases have a different substrate specificity and 

cleave the zymogen C5 into its active fragments C5a, a potent chemoattractant that acts as 

an inflammatory mediator by binding to its C5aR receptor, and the opsonin C5b [35], [36]. 

C5b can bind to C6, followed by a sequential binding of C7, C8 and C9 to form a multiprotein 

pore complex called membrane attack complex (MAC). This part of the complement system 

is termed ‘terminal pathway’ since all activation pathways converge at the level of C5. 

 

Properdin, also called Factor P, can bind to and stabilize the AP convertases thereby 

increasing their half-life by 5- to 10-fold and leading to enhanced complement activity [37]. In 

fact, evidence for the AP as an individual pathway emerged for the first time in the early 

1950’s when Pillemer reported a novel protein termed properdin (derived from the Latin verb 

perdere, ‘to destroy’) and its apparent capacity to activate the complement system on several 

targets in the absence of antibodies, i.e. without involvement of the CP [1], [38]. 
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1.1.3 Properdin as an initiator of the alternative pathway 

Glycans play essential roles in mammalian biology, for instance in cellular communication 

and in the modulation of immune and inflammatory responses. Although complement system 

regulation is achieved mainly by sets of protein-protein interactions, as outline above, 

protein-glycan interactions equally contribute to the maintenance of complement 

homeostasis [39], [40]. Among the complement regulators, interactions with 

glycosaminoglycans (GAGs) have been reported for properdin, the only known positive 

regulator of complement that may also act as a pattern-recognition molecule [41]. Despite all 

efforts that have been made to date, the understanding of the biological role of properdin as 

well as its mechanism of action is still fragmentary due to its oligomeric heterogeneity and 

the different sources of properdin used in biochemical studies [42]. The atomic 

three-dimensional structure of properdin has not yet been solved and controversies continue 

Figure 1.1 Overview of the complement system and the role of the alternative pathway. Complement 

activation is initiated by the CP, LP and AP. Pattern recognition molecules such as antibodies and 

mannose-binding lectins generate the C3 convertase C4bC2a. Unlike the CP and LP, the AP is 

activated by spontaneous hydrolysis of C3 originating the fluid-phase C3 convertase C3(H2O)Bb. C3 

convertases cleave plasma C3 molecules to generate C3a and C3b. C3b molecules can then 

covalently attach to cell surfaces and, together with FB and FD, lead to the formation of C3bBb 

convertases via an amplification loop. Properdin binds to C3bBb, extends its half-life and thus 

promotes efficient C3b deposition on cell surfaces. All pathways culminate in the formation of C3 and 

C5 convertases, which in turn generate the major effector molecules of the complement system: the 

potent pro-inflammatory anaphylatoxins (C3a and C5a) and the opsonins (C3b and C5b), which trigger 

phagocytosis and the membrane attack complex that can directly lyse targeted surfaces. All together 

these mechanisms contribute to pathogen and altered host cell elimination. Figure adapted from [11]. 
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to surround its role as a possible initiator of alternative complement pathway since its 

discovery by Pillemer and its coworkers in 1954 [1], [2]. 

 

1.1.4 Regulation of the complement system 

Although the AP effectively activates and amplifies on most pathogen surfaces, host cells 

and tissues need to be protected from inadvertent complement activation. Soluble or 

membrane-bound complement regulatory proteins can provide protection against 

complement activation by down-regulating the central proteolytic activity of the amplification 

and opsonization steps [43], [44]. The membrane-bound regulators, such as complement 

receptor 1 (CR1/CD35), membrane-cofactor protein (MCP/CD46/CD59), MAC-inhibitory 

protein (CD59) and decay-accelerating factor (DAF/CD55) are common proteins in the 

regulation of all three pathways. The process to differentiate between host cells from targets 

by the AP requires participation of Factor H (FH), C3b and potentially properdin via its role as 

a pattern-recognition molecule [3], [45]. Defective complement regulation due to mutations in 

the complement genes or the presence of autoantibodies against complement regulators has 

been associated with several diseases, such as atypical hemolytic uremic syndrome, 

membranoproliferative glomerulonephrithis in the kidney and aged-related macular 

degeneration in the eye [46], [47]. Besides, certain bacteria and viruses have found ways to 

utilize these host protection mechanisms and escape complement response [15]. For 

example, orthopox and herpes viruses express soluble proteins that structurally and 

functionally mimic host regulators [48]. 

 

FH is an elongated 150 kDa plasma glycoprotein and the main soluble regulator of the AP. 

This protein composed of 20 CCP modules can recognize specific markers on host cells and 

control complement activation on self-surfaces in addition to its regulatory activity in the 

fluid-phase [49], [50]. FH engages most effectively with C3b molecules when these are 

attached to self-surfaces carrying specific polyanionic self-markers such as GAGs and sialic 

acid [40], [51]. FH regulates complement by accelerating convertase decay activity via 

irreversible dissociation of Bb from C3 and C5 convertase complexes, thus inhibiting the 

complement amplification loop. In addition, FH can also act as a cofactor for FI-mediated 

cleavage of C3b and C3(H2O) generating the inactive fragments iC3b and iC3b(H2O), which 

can no longer form AP convertases [52], [53]. 

 

Whereas human FH functions to down-regulate AP activation, properdin up-regulates this 

pathway by stabilizing C3 convertases, which generate additional C3b molecules and lead to 

opsonization and formation of the lytic/terminal pathway [54]. These two key regulatory 

proteins often have opposing roles and can also directly compete with each other. It has 
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been reported that properdin could possibly limit FH cofactor activity by sterically interfering 

with the interaction between FH and FI [55]. Additionally, structural data obtained by electron 

microscopy (EM) have also indicated that properdin could affect FH decay accelerating 

activity [56]. 

 

1.1.5 Functional and structural features of properdin 

Properdin is a 53 kDa plasma glycoprotein synthetized as a single-chain molecule of 

469 amino acids, including a 27-amino acid leader sequence and 442 amino acids in the 

mature protein [57]. In contrast to other complement proteins, which are mainly produced in 

the liver, properdin is synthesized and secreted by various cell types, including neutrophils, 

monocytes, primary T cells and endothelial cells resulting in plasma levels ranging from 

4-25 μg/mL [58]. With an isoelectric point (pI) greater than 9.5, this highly positively charged 

protein at neutral pH is composed of several identical subunits that bind to each other in a 

head-to-tail manner under physiological conditions to form cyclic dimers (P2), trimers (P3), 

and tetramers (P4) in a 26:54:20 ratio [37], [59]. Each properdin monomer adopts a flexible 

rod-like structure and consists of seven non-identical tandem repeats of about 60 amino 

acids named thrombospondin type I repeats (TSR) (Figure 1.2A) [60]. The TSR motif was 

originally found in the adhesive glycoprotein thrombospondin but is also known to be present 

in the C6, C7, C8α, C8β and C9 terminal components of complement [61]. TSR domains of 

properdin have been numbered from the truncated N-terminal domain TSR0 followed by 

TSR1-6 [62]. Based on a sequence alignment between thrombospondin and properdin 

together with structural studies, highly conserved residues such as six cysteines, three 

tryptophans and two arginines have been identified within the core of each TSR domain, 

which comprises three antiparallel β-strands held together by three disulfide bonds (Figure 

1.2B) [41], [63]. Although the three-dimensional structure of properdin has not been 

determined to date, crystallization conditions have been recently reported and structures of 

other TSRs, such as TSR2 and TSR3 of human thrombospondin are available [63], [64]. The 

properdin monomer contains a single N-glycosylation site and 14 C-mannosylation sites at 

tryptophan residues that are part of a WxxW motif [65]. The N-linked oligosaccharide is 

attached to Asn 401 in TSR6 [66]. Unlike N-glycosylation, which is a rather common 

post-translational modification (PTM), C-mannosylation is an unusual PTM of tryptophan 

residues and its biological function is not yet clear. Recent studies highlighted the extensive 

heterogeneity of C-mannosylation in the different TSR domains of properdin and indicated a 

possible role for this modification in protein folding and stability [67], [68]. 
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Different approaches have been used to understand the biological role of properdin domains 

and oligomerization [3]. Higgins et al. investigated properdin deletion mutants, lacking single 

TSR domains and reported that some of these TSRs mediate properdin function and 

oligomerization. Whereas deletion of TSR3 did not affect properdin function, properdin 

lacking TSR4 was able to bind C3b but failed to stabilize C3bBb. Instead, properdin lacking 

TSR6 was unable to form oligomers, while properdin lacking either TSR5 or TSR6 was 

unable to bind C3b. Proteolytic nicking within TSR5 also interfered with C3b binding and 

C3bBb stabilization [66]. Key roles implicated for domains 5 and 6 were further supported by 

subsequent studies in which antibodies raised against human TSR5 and mouse TSR5 and 

TSR6 domains effectively inhibited properdin function in vivo and in vitro, 

respectively [69], [70]. According to structural studies performed by Pedersen et al. and 

Alcorlo et al., TSR5 is needed for the interaction with C3b and this binding occurs on top of 

the C345C domain of C3b. Besides, properdin was also suggested to contact the VWA 

domain of Factor B and TSR4 may be responsible for this interaction [56], [71]. The structural 

studies by Alcorlo et al. as well as by Sun et al. produced models for properdin 

oligomerization (Figure 1.3). These studies suggested roles for the TSR0-1 and TSR5-6 

domains in mediating contacts at the vertexes of properdin oligomers and also indicated 

variable combinations of the vertexes. These vertexes were assigned to be the structural unit 

of recognition and stabilization C3bBb convertases [56], [62]. In addition, previous studies 

reported the influence of properdin oligomers in C3 convertase stabilization and showed that 

the tetramer had a greater convertase stabilizing activity than both the trimer and the dimer 

Figure 1.2 Properdin monomer and three-dimensional structure of a TSR domain. A) Schematic 

representation of the properdin monomer and arrangement of TSR domains. The properdin monomer 

is composed of seven thrombospondin repeats labeled TSR0-6. The single N-linked glycosylation site 

located in TSR6 is indicated. B) Crystal structure of the homolog TSR2 and TSR3 domains from 

human thrombospondin (PBD 1LSL) [63]. The protein backbone is depicted in gray and side chains of 

the proposed key tryptophan and arginine residues that are part of the WxxW motif are shown in blue 

and green for TSR2, respectively. Disulfide bonds from TSR2 are shown in yellow. Figure adapted 

from [3], [102]. 
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[59]. Properdin tetramers were also the most efficient at inducing complement-mediated 

platelet-granulocyte aggregate formation [72]. This increased activity of tetramers is likely 

due to an increased avidity of properdin for the C3 convertases caused by the presence of 

multiple convertase binding sites [56]. By characterizing a patient-derived monomeric 

properdin, which contained a single point mutation (E244K) in TSR3, Pedersen et al. 

demonstrated that properdin oligomerization is essential for in vivo function [71].  

 

Properdin deficiency is a rare X-chromosomal linked disorder characterized by an increased 

susceptibility to infections with Neisseria meningitidis and a significantly higher risk of 

developing meningococcal infections compared to individuals without this deficiency 

[73], [74]. Three different types of properdin deficiencies have been described: type I which 

refers to complete absence of properdin, type II represented by low levels of properdin in 

plasma (1-10% of normal concentration), and type III with a normal concentration of 

dysfunctional properdin [75]. 

 

 

1.1.6 Properdin as an initiator of AP activity 

When properdin was first discovered, it was thought to act as an initiator of AP activity [1]. 

However, this theory was later discredited and replaced by the now widely accepted role of 

properdin as a positive regulator of preexisting AP activity [37]. Within the past decade, 

several studies have provided new insights into the function of properdin and rediscovered its 

ability to act as a pattern recognition molecule and initiate AP activity [58]. Using surface 

Figure 1.3 Model of properdin oligomerization and complement activation proposed by 

Alcorlo et al. [56]. A) 2D models of properdin and properdin-C3bBb convertase complexes. Models 

containing properdin trimers and tetramers were generated by combining the averages of single 

molecule images from negative-stain EM. B) Cartoon representation of properdin tetramer model. 

Molecular modeling suggested that the vertexes of properdin oligomers are composed by four TSR 

domains from two different monomers organized in a head-to-tail manner. Monomers are shown in 

different tones of blue and TSR domains are numbered from 0 to 6.  
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plasmon resonance (SPR), Hourcade et al. demonstrated that properdin has the ability to 

initiate the AP by providing a platform for de novo assembly of C3bBbP. Properdin 

immobilized on a biosensor surface and treated with purified complement proteins in the 

presence of Mg2+ associated with C3b or C3(H2O). The formed C3bP complex was able to 

bind FB and C3bBP was subsequently cleaved by FD, releasing Ba and generating 

surface-bound C3bBbP [76]. Whereas recognition of surfaces by C3b is relatively 

non-specific and thus requires a tight regulation, it is possible that properdin can selectively 

direct complement activation by recognizing and binding to specific target surfaces  [77]. 

According to Spitzer et al., once properdin has bound to a target surface, it initiates and 

propagates the complement response by recruiting C3b to the recognized surfaces and 

allowing de novo C3 convertase assembly as well as by providing C3 convertase 

stabilization (Figure 1.4) [78].  

 

Several studies have supported the role of properdin as a pattern recognition molecule that 

can bind directly to microbial surfaces such as Chlamydia pneumoniae, late apoptotic and 

necrotic cells as well as biological substrates such as bacterial lipopolysaccaride (LPS), 

heparan sulfate (HP), and zymosan [78]–[83]. However, caution needs to be taken when 

interpreting results of properdin binding studies since large aggregates of properdin (Pn) are 

formed during purification of this protein or upon repeated freeze-thaw cycles. These 

non-physiological aggregates of properdin, described by Farries et al. as large amorphous 

aggregates, and also designated as “activated” properdin, have distinct properties from 

physiological oligomers given their highly positive charge [84]. First, while retaining the ability 

to stabilize AP convertases, these aggregates can also spontaneously induce AP activation 

Figure 1.4 Proposed roles for properdin within the alternative complement pathway. Two models have 

been suggested for the initiation and assembly of AP C3 convertases on target surfaces. Model 

highlighted on the left side: assembly of AP C3 convertase is initiated via C3b, generated by the 

non-specific fluid-phase activation of C3, which covalently binds to non-specific surfaces located near 

its site of generation. The C3 convertase is then stabilized by properdin and complement activation 

can be propagated via the amplification loop. Model highlighted on the right side: properdin-direct 

initiation of AP results from the selective binding of properdin to target surfaces, which recruits 

C3(H2O) or C3b and provides a platform for de novo C3bBb assembly. Figure adapted from [3], [78]. 
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in solution leading to complement consumption [59]. Second, they may account for 

non-specific ionic interactions with target surfaces, such as Neisseria meningitidis, Neisseria 

gonorrhoeae, live Raji and Jurkat cells and non-activated platelets [85]–[87]. Separation of 

physiological forms of properdin (P2, P3 and P4) from Pn forms was thus recommended using 

ion exchange or size exclusion chromatography [88]. 

 

With the exception of C3 convertase proteins, all cell surface molecules reported to directly 

interact with properdin to date are negatively charged [58]. Sulfated GAGs including heparin, 

heparan sulfate (HS), chondroitin sulfate (CS), dextran sulfate and fucoidan have been 

shown to bind to properdin [80], [89]–[91]. Besides, it has also been demonstrated that 

properdin can recognize apoptotic T cells via HS and CS and contribute to their clearance by 

enhancing complement-mediated opsonization and phagocytosis [80]. Furthermore, 

properdin was shown to bind to heparin and HS on tubular epithelial cells leading to 

complement activation [90]. Other ligands reported for properdin include surface DNA on late 

apoptotic and necrotic cells [81]. However, since several of these studies utilized purified, 

unfractionated preparations of properdin, it is possible that these samples contained 

aggregates, which may bind to surfaces that native properdin present in plasma would not 

bind [33]. The methodologies used to study the binding of properdin to target surfaces have 

also contributed to the controversy around this protein. Most of the experiments performed to 

analyze the role of properdin as a pattern recognition molecule did not allow discrimination 

between initial binding of properdin and binding of properdin secondary to C3b deposition 

under physiological conditions [92]. Previous work by Harboe et al., where C3 cleavage was 

inhibited by peptide inhibitor compstatin Cp40, demonstrated that properdin binding to yeast 

zymosan and Escherichia coli (E. coli) is dependent on initial C3 deposition [93], [94]. 

Nevertheless, since the tickover mechanism is present under typical conditions in vivo and it 

is required to provide C3b molecules, the question of whether properdin can bind to target 

surfaces independently of C3 might not be of high relevance [95]. 

 

Further studies are thus necessary to determine specific interactions between properdin and 

surfaces and to identify new ligands for direct properdin binding to surfaces, such as glycans. 

The differences between the ability of purified physiological and non-physiological forms of 

properdin, as well as plasma- and neutrophil-derived properdin to bind surfaces should be 

carefully analyzed in order to determine if properdin can truly act as initiator of complement 

activation [58]. A better understanding of properdin function and regulation could potentially 

lead to the development of novel properdin inhibitors that block properdin-initiated activities 

without impairing its role in convertase stabilization [42]. 
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1.2 Role of glycans and glycosaminoglycans 

Glycans, one of the four molecular building blocks of life (nucleic acids, amino acids, lipids, 

and glycans), have a wide structural and functional diversity and participate in multiple 

biological processes in cells and tissues, including those that are fundamental for the 

modulation of the immune system [39], [96]. Initial recognition and interaction with cell 

surfaces is often mediated by glycans due to their structural diversity as well as their quantity 

and high avidity [97]. For example, the AP of complement is regulated on cell surfaces via 

glycans such as sialic acid or GAGs, which can dictate whether a positive or negative 

immune response occurs, including complement activation, as a result of the different sugar 

composition of a tissue’s glycomatrix [40], [98]. Sialic acids, formed by a nine-carbon 

backbone, are found attached to the end of glycan chains on human glycoproteins and can 

influence complement activation through Factor H binding [99]. The predominant form of 

sialic acid in humans is N-acetylneuraminic acid (Neu5Ac), which can be enzymatically 

removed with neuraminidase and convert non-activators of complement into 

activators [100], [101]. In the case of properdin, several glycans, including GAGs such as 

heparin and HS, have been identified as potential pathogen-associated molecular patterns 

(PAMPs) [9], [102]. Zaferani et al. have, for example, shown that besides recognizing distinct 

HS epitopes on renal tubular epithelial cells, properdin and FH require different sulfation 

patterns for interaction [103]. These findings demonstrate therefore the high impact of GAGs 

in the mediation of immune responses by recruiting both regulators of complement through 

the recognition of different sulfation motifs [54]. 

 

1.2.1 GAGs – Heparin and heparan sulfate 

GAGs are polyanionic, polydisperse, linear polysaccharides of varying molecular weights that 

reside within the extracellular matrix and on the surface of almost all mammalian cells 

[104],  [105]. These molecules are usually attached to proteins via a serine residue, one 

xylose moiety and two galactose moieties, forming the so-called proteoglycans [106]. Based 

on the composition of each monosaccharide as well as the position and configuration of the 

glycosidic linkage formed between repeating disaccharide units, GAGs can be classified in 

four groups: heparin/HS, chondroitin sulfate/dermatan sulfate, keratan sulfate and hyaluronic 

acid (Figure 1.5) [4]. In contrast to all other GAGs, which undergo post-polymerization 

modifications to exert their biological functions, such as epimerization, deacetylation and 

sulfation, hyaluronic acid exists solely as protein-free and is non-sulfated [107], [108].  
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Figure 1.5 Schematic representation and composition of GAGs. Except hyaluronic acid, which exists 

as protein-free, GAGs such as heparin/HS, chondroitin sulfate/dermatan sulfate and keratan sulfate 

are attached to proteins via serine residues, followed by one xylose and two galactose moieties. 

GAGs composition varies greatly, depending on the type of GAG as well as on their sulfation and 

acetylation state. S and A labels in HS denote sulfated and non-sulfated domains, respectively. Figure 

adapted from [105], [109]. 

 

Over several years, heparin and HS, the structurally most complex members of the GAG 

family of polysaccharides, have been shown to interact with a large number of proteins and 

thereby regulate a wide range of biological processes, including cell growth and proliferation, 

inhibition of angiogenesis, inflammation and viral infectivity [110]. Although these two GAGs 

share similar biosynthetic routes, heparin is found primarily in secretory granules of mast 

cells and is structurally simpler than HS, which is expressed and secreted by a variety of 

mammalian cells and is predominantly located on cell surfaces [111].  

 

Heparin and HS consist of the same disaccharide building blocks, an uronic acid residue, 

either α-L-iduronic acid (IdoA) or β-D-glucuronic acid (GlcA), 1,4-glycosidically linked to 

D-glucosamine (GlcN) [111], [112]. These building blocks can be subsequently modified by 

partial N-deacetylation/N-sulfation of GlcN units, C-5 epimerization of GlcA to IdoA residues 

and incorporation of O-sulfate groups at various positions [113] (Figure 1.5). As a result of 

such modifications that occur during chain extension in the biosynthesis of heparin and HS, 

the end products are highly heterogeneous with regard to chain length, charge, and 

substitution pattern [114]. Therefore, the combination of the different structural units and the 

arrangement of the disaccharides along a chain makes these molecules extremely complex, 
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with 32 (25) potential modifications for each disaccharide unit [115]. Heparin and HS are 

structurally closely related due to the same building blocks and identical glycosidic linkages, 

however they differ in their overall degree of sulfation [105]. While heparin exhibits a 

relatively uniform high level of sulfation with 2.5 to 3 sulfate groups per disaccharide unit, HS 

chain contains usually 0.5 to 1.5 sulfate groups per disaccharide and shows a more varied 

substitution pattern with alternating N-sulfated and N-acetylated domains (NS- and 

NA-domains, respectively) and a smaller amount of N-unsubstituted GlcN units [116], [117]. 

Also, whereas IdoA predominates in heparin, GlcA corresponds to the majority of the uronic 

acid present in HS [118], [119]. Heparin possesses the highest negative charge density of 

any know biological macromolecule and although the structural heterogeneity observed for 

HS is usually greater than for heparin, due to a higher occurrence of minor sequence 

variations, heparin can often mimic HS in in vitro studies. HS chains are generally longer 

than heparin and have an average molecular weight of 30 kDa as compared to 15 kDa for 

heparin [110], [113], [120].  

 

As a result of their polyanionic character as well as their distinct composition, flexibility, 

length and specific sulfation patterns, heparin and HS have great potential for interaction with 

positively charged moieties such as plasma proteins thereby mediating their biological 

functions [108], [119]. To date, the most studied interaction occurs between a 

pentasaccharide sequence of heparin and the serine protease inhibitor antithrombin III (AT) 

of the coagulation cascade. This specific interaction leads to a conformational change in AT 

resulting in heparin’s anticoagulant activity [121], [122]. Nowadays, heparin is widely used as 

an anticoagulant drug and pharmacological active pentasaccharides, such as Fondaparinux 

(also known as Arixtra), have been synthesized [123], [124]. However, since generation of 

GAGs with defined sequences is still difficult, the most commonly used heparins for 

pharmaceutical preparations comprise mixtures of high and low molecular weight 

heparins (LMWHs) [5], [125].  

 

1.2.2 Challenges to investigate glycans and glycan-binding 

The structural complexity that contributes to the diversity of GAGs and glycans in general 

also poses challenges for their isolation and molecular characterization [5]. As a result of the 

biosynthetic pathways, GAGs and glycans are highly heterogeneous and obtaining single 

molecular entities for functional and structural studies is still hardly possible [68]. Additionally, 

many glycan-protein interactions have low affinity with Kd-values typically within the milli- to 

micromolar range. [126]. In most studies using GAGs, enzymatic or chemical digestion prior 

to analysis is required to obtain defined oligosaccharides.  
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A common approach involves the use of GAG-depolymerizing enzymes, such as bacterial 

heparinases followed by fractionation of the smaller oligosaccharides according to length, 

chemical composition and charge [127]–[129]. Glycan-protein interactions can be 

subsequently studied by various methods such as nuclear magnetic resonance (NMR), SPR, 

X-ray crystallography and mass spectrometry (MS) [130], [131]. More recently, glycan arrays 

have also become a common tool to identify interactions involving glycans in a 

high-throughput manner. To address the challenge of glycan heterogeneity in nature, this 

method uses glycans or GAGs from natural sources or obtained via chemical and enzymatic 

synthesis. These molecules are then fluorescently tagged and attached to the surface of the 

array via covalent or non-covalent binding and glycan-protein interactions are determined by 

antibody-mediated fluorescence measurements and MS [97], [132].  
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1.3 GAG depolymerization by heparinases  

Glycosaminoglycans, namely heparin and HS, play key roles in diverse biological activities 

through their interaction with functional proteins. However, identifying GAG sequences that 

can target proteins with a high level of specificity remains a challenge since it is still difficult 

to obtain chemically defined GAGs in high purity and quantity [108]. Most methods of GAG 

analysis involve a depolymerization step utilizing enzymatic digestion of long and 

heterogeneous GAG polymer chains to smaller fragments by polysaccharide 

lyases  (PLs) [4]. The availability of these enzymes, especially heparinases from Pedobacter 

heparinus (P. heparinus), has greatly facilitated the analysis of heparin and HS since they 

cleave GAG chains with unique specificity [133], [134]. However, besides the high cost 

required for production of GAGs oligosaccharides with heparinases, the major product 

obtained is a disaccharide. According to previously published studies, defined GAGs with a 

higher degree of polymerization (dp) can target proteins with a higher level of 

specificity [135]–[137]. 

 

1.3.1 Pedobacter heparinus and the polysaccharide lyases 

P. heparinus is a gram-negative, non-pathogenic soil organism that is capable of using either 

heparin or HS as a sole carbon, nitrogen and sulfur source. This bacterium, first described in 

1956 by Paza and Korn as Flavobacterium heparinum (F. heparinum), has been extensively 

investigated due to its production of various enzymes involved in the degradation of 

polysaccharides, such as heparinases and chondroitinases [138]–[140]. Although, it is still 

unknown why a soil bacterium expresses PLs, it is likely that P. heparinus could use these 

enzymes to degrade GAGs from carcasses [141]. Based on their primary structure, these 

PLs have been classified into 23 families within the Carbohydrate Active enZymes 

(CAZymes) database [142].  

 

Most heparinase-producing bacteria were found in soil, however heparinases isolated from 

human intestine bacteria such as Bacteroides stercoris HJ-15 and Bacteroides 

thetaiotaomicron (B. thetaiotaomicron) have been reported [141], [143], [144]. Heparinases 

from P. heparinus are the most actively studied and widely used heparin/HS degrading 

enzymes [104]. This soil bacterium is capable of producing three heparin lyases differing in 

primary sequence, size, charge properties and substrate specificities: the 42.8 kDa 

heparinase I (family PL13), the 84.1 kDa heparinase II (family PL21) and the 70.8 kDa 

heparinase III (family PL12) [145], [146]. These periplasmic enzymes are positively charged 

at neutral pH (pI 8.5-10) and have been isolated using either sonication or osmotic shock. 

In 1992, Lohse and Linhardt reported the first single purification method to purify all three 
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heparinases to homogeneity [145], [147]. Sequence alignment of heparinases I, II and III 

revealed a low sequence homology (15% residue identity) at both DNA and amino acids 

levels [148].  

 

Heparinase I (EC 4.2.2.7) is specific for heparin and primarily cleaves next to IdoA (Figure 

1.6A), whereas heparinase III (EC 4.2.2.8) is specific for HS, cleaving next to GlcA, and 

heparinase II (no EC number assigned) has a wider specificity and can depolymerize both 

heparin and HS [149], [150]. In contrast to eukaryotic GAG depolymerizing enzymes that 

predominantly utilize a hydrolytic mechanism to cleave the glycosidic linkage, heparinases 

from bacterial sources catalyze the cleavage of heparin and HS chains through a 

β-elimination mechanism [104], [151]. The detailed β-elimination mechanism was proposed 

by Gacesa in 1987 and involves neutralization of the negatively charged C5 carboxylate 

group of the substrate followed by a base-catalyzed proton abstraction at C5 and subsequent 

β-elimination of the 4-O-glycosidic bond [152], [153]. This degradation mechanism leads to 

cleavage of glycosidic linkages formed between the amino sugar and the uronic acid and 

results in the formation of two chemically distinct ends: the sugar on the newly formed 

non-reducing end containing an unsaturated ring and the sugar on the new reducing end, 

which remains saturated [146]. According to commonly used nomenclature, sugars of the 

substrate are numbered in both directions from the cleaved bond. Sugars from the cleavage 

site toward the reducing end are numbered +1, +2, etc., whereas sugars toward the 

non-reducing end are labeled -1, -2, etc. with cleavage taking place between the -1 and +1 

subsites [154]. 

 

The double bond formed between the C4 and C5 carbons of the newly generated 

oligosaccharides at the non-reducing end moiety is conjugated with a carboxy moiety and 

serves as a chromophore that can be detected by UV light absorption at 232 nm (Figure 

1.6B) [141]. End products of these enzymatic reactions are usually described by their degree 

of polymerization, which corresponds to the total number of monomer units in that molecule 

[129]. Following enzymatic depolymerization, resulting mixtures of oligosaccharide fragments 

are physically separated based on their different sizes and charges. First, size exclusion 

chromatography is used to separate mixtures into size-uniform fractions such as 

disaccharides, tetrasaccharides, hexasaccharides and larger oligosaccharides, which can 

then be further purified to individual oligosaccharides using strong anion exchange or 

reverse-phase ion-pair high-performance liquid chromatography [155]–[157]. 
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Even though the substrate specificities of heparinases I-III are well known and the 

β-elimination mechanism is highly conserved across different PLs, the sequence of events 

that occur during enzymatic depolymerization of heparin is still controversial [146], [158]. 

Elucidation of the residues critical for catalysis as well as the substrate binding domains has 

been useful to understand the mechanism of action of these enzymes and for their 

development as tools for heparin and HS analysis. Although heparinases from P. heparinus 

are the best characterized, only structures of heparinases II and III are available up to date 

and no three-dimensional structure of heparinase I has been reported [159]–[161].  

 

Figure 1.6 Heparin depolymerization by heparinase I. A) Degradation of heparin by heparinase I. 

Heparin cleavage takes place between subsites -1 and +1 (indicated in gray) and yields 

oligosaccharides containing a 4,5-unsaturated bond (highlighted in blue). B) Separation of 

heparin-derived oligosaccharides by size exclusion chromatography. The unsaturared bond can be 

detected by UV light absorption at 232 nm and thus be used to monitor the enzymatic reaction.The 

labels represent the number of saccharide units in the depolymerization products with dp2 

(disaccharides) corresponding to the major product of the reaction. Product concentrations can be 

determined using the measured aborbance and the molar extinction coefficient for the unsatured 

disaccaride. Figure adapted from [155], [174]. 
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1.3.2 Structure and mechanism of heparinase I 

Heparinase I from P. heparinus was isolated and purified to homogeneity for the first time by 

Yang et al. in 1985 [162]. Since then the properties of this enzyme have been well 

characterized through a combination of site-directed mutagenesis, chemical and proteolytic 

digestions and other biochemical methods [163]. Heparinase I is a monomeric protein with 

an approximate molecular weight of 43 kDa and contains a large number of lysine 

residues (10%) consistent with its cationic nature (pI of 8.5). However, this enzyme is very 

sensitive to thermal denaturation and is most stable at temperatures below 30°C [151], [162]. 

As previously mentioned, this enzyme is found in the periplasm of P. heparinus and its 

primary structure comprises a typical prokaryotic native leader sequence that consists of 

21 amino acids. Cloning and expression of this enzyme lacking the signal peptide in E. coli 

has been successfully accomplished and showed that these first 21 amino acids are not 

essential for enzymatic activity [164].  

 

Multiple biochemical studies have been carried out to understand the structure-function 

relationship of heparinase I and its mechanism to depolymerize heparin. Based on these 

studies, a model of heparinase I binding site was proposed with the substrate binding pocket 

containing the catalytic domain comprising amino acids critical for its activity: C135, H203 

and K199 [165]–[167]. Besides, it was also hypothesized that the thiol group of C135 is 

negatively charged and due to is positively charged surrounding, it could act as a nucleophile 

and thereby initiate the β-elimination reaction in the active site [165]. H203 has also been 

implicated as a second acid catalyst serving to protonate the leaving hexosamine sugar. The 

highly basic heparin-binding site of heparinase I contains two Cardin-Weintraub 

heparin-binding consensus sequences (CB-1 and CB-2) motifs that seem to be involved in 

Ca2+ binding and enzymatic activity with CB-1 and CB-2 as high and low affinity sites, 

respectively. These binding sites might bridge heparin to heparinase I through Ca2+ in a 

ternary complex and orient the substrate in the active site region during catalysis [168], [169]. 

Although heparin binding to heparinase I is independent of Ca2+, this ion is important for its 

catalytic activity [169], [170]. The role of the positive charges within the heparin binding 

domain has also been investigated and results indicated that lysines 132, 198 and 199 

influence the enzymatic activity of heparinase I, with K199 showing a dominant effect, which 

suggested that it has a direct role in catalysis. [167]. All these findings are therefore 

consistent with the hypothesis that besides the consensus heparin binding motifs, the basic 

nature of the heparin binding domain present in heparinase I provides the necessary charge 

complementarity for specific heparin binding and creates the basic environment required for 

the catalytic activity [165], [169]. 
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Using matrix-assisted laser desorption ionization/mass spectrometry (MALDI-MS) and 

capillary electrophoresis, it was discovered that the mode of action of heparinase I is a 

two-step mechanism, with depolymerization occurring from the non-reducing end of the 

polysaccharide chain and leading to cleavage of the entire heparin molecule. In an initial 

step, heparin cleavage is preferentially exolytic at the non-reducing end of the substrate, 

although around 5% of endolytic cleavage also takes place at internal linkages. In a second 

step, the reaction is highly processive since this enzyme has a strong preference for cleaving 

the same substrate molecule sequentially towards the reducing end of the heparin chain 

before releasing it. After cleavage, the polysaccharide slides along the active site of 

heparinase I until the next cleavable bond is correctly oriented for catalysis [171], [172]. The 

trisulfated heparin disaccharide ΔUA2S-GlcNS6S is the major end product of this 

reaction [173]. 

 

Although no structure of heparinase I from P. heparinus has been solved yet, crystal 

structures of heparinase I from B. thetaiotaomicron without substrate and in complex with 

varying substrate lengths, including the H151A inactive mutant in complex with a 

dodecasaccharide heparin (Figure 1.7), were determined by Han et al. [174].  

 

Figure 1.7 Overall structure of H151A-inactive mutant of heparinase I from B. thetaiotaomicron in 

complex with a dodecasaccharide heparin (PDB 3INA). Protein backbone is highlighted according to 

different secondary structure elements, except the thumb domain, which is colored in purple. The 

active site, containing the heparin chain depicted in stick representation, transverses the heparinase I 

and is located next to the β-jellyroll fold. The single Ca2+ ion is shown as an orange sphere. Figure 

adapted from [174]. 
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This enzyme shows the classical β-jellyroll fold made of two antiparallel eight stranded 

β-sheets bent in the middle. In addition, a thumb-like insertion domain (thumb domain) was 

observed and it appears to participate in substrate binding. The resulting curvature in the 

inner-sheet of the β-jellyroll creates a long, extended canyon where the heparin substrate 

binds. This highly positively charged cleft also comprises the active site and the loops linking 

the β-sheets are variable in length and sequence [146], [174]. In contrast to heparinase I 

from P. heparinus, for which two Ca2+ binding motifs have been reported, a single Ca2+ 

bound in the hinge region between the β-jellyroll fold and the thumb domain was observed in 

the heparinase structure of B. thetaiotaomicron. This ion seems to organize residues 

involved in heparin binding and thus support the structural integrity of this enzyme. By 

analyzing three-dimensional structures captured at various stages of the reaction, the 3-step 

catalytic mechanism of heparinase I from B. thetaiotaomicron was proposed with H151 and 

Y357 residues acting as a general acid and base, respectively [168], [174].  

 

Crystal structures of other PLs have revealed that, although these enzymes have different 

structural folds, each one of them contains an elongated deep cleft to accommodate the 

polysaccharide substrate prior to catalysis [175]. Residues along this cleft interact with the 

substrate via hydrogen bonds, salt bridges and van der Waals contacts. These interactions 

are not only necessary for substrate binding but also to precisely orient the polysaccharide 

molecule for catalysis. Therefore, substrate specificity is derived from the shape of the active 

site cleft to precisely fit a given polysaccharide as well as the bonds that are formed with the 

different sugar rings [159], [176]. Like heparinase I, heparinase II is also able to 

depolymerize heparin and despite having very different overall architectures these enzymes 

show similarities in the arrangement of their catalytic residues [174]. One of the consensus 

sequences in heparinase II shares homology with a consensus sequence in the heparin 

binding site of heparinase I with the conservation of the positive charge and the catalytically 

histidine residue [148]. This represents a good example of convergent evolution of two 

different protein folds that adopted a similar enzymatic mechanism [146]. 

 

1.3.3 Heparinase I as a biochemical tool and its applications 

Heparinases, including heparinase I, have a wide range of applications in health care. 

Besides demonstrating potential for treatment of various diseases such as metastasis in 

various types of cancers, inflammation and angiogenesis, these enzymes have been 

valuable tools in the elucidation of heparin structures, production of therapeutically important 

LMWHs and blood deheparinization [136], [158], [177]. 
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In comparison to chemical depolymerization, enzymatic depolymerization of heparin by 

heparinases for production of LMWHs as anticoagulants and other heparin-derived 

oligosaccharides has a high selectivity. In addition, it offers the advantage that reaction 

conditions are milder and the reaction can be conducted without altering the fine structure of 

the fragments [4]. Up to date, P. heparinus is the major source for production of heparinase I. 

However, due to low yield and poor stability of this enzyme, costs for its application in 

industrial production of LMWHs are too high. Even though recombinant heparinases have 

been produced, obtaining large amounts of enzyme in an active and soluble form remains a 

major challenge [178], [179]. 

 

Moreover, although it is recognized that specific sequences of heparin and HS, typically from 

tetra- to decasaccharide in length, are responsible for modulation of biological activities of 

proteins, generation of such oligosaccharides is still difficult [180]. GAGs with a higher 

degree of polymerization, such as dp6 and dp8, can target proteins with a higher level of 

specificity due the possibility of reduced non-specific interactions [181]–[183]. Partial 

digestion of heparin and HS chains has been useful in generating small amounts of longer 

oligosaccharides. However, this strategy has a low reproducibility and requires individualized 

processing for every batch of depolymerization product [137]. An alternative is the 

modification of heparinase’s activity to decrease production of some oligosaccharides and 

increase the production of others, which are also usually present in very small amounts. For 

heparinase I, two examples have been reported, including the use of histamine in the 

depolymerization reaction as well as the enzyme immobilization on a solid support. Such 

approaches were able to either block potential cleavage sites or alter the properties of 

heparinase I and thus yield a different product profile distribution of heparin 

fragments [137], [184].  

 

A detailed understanding of the mechanism of action during heparin depolymerization by 

heparinase I together with the residues involved in its catalytic activity would provide a strong 

basis towards the development of enzymes with improved properties for a variety of 

applications. Heparinase engineering could create possibilities to produce more favorable 

LMWHs or longer oligosaccharides with specific sequences crucial for the biological activities 

of proteins. Development of rational approaches to protein engineering can lead to the 

design of novel tailored molecules with improved properties regarding stability, activity and 

potency. Structure-based protein engineering is a potential strategy to effectively incorporate 

site-specific changes at selected regions of the proteins [104], [137], [163]. This protein 

engineering method requires the combination of multiple techniques, including gene cloning, 

site-directed mutagenesis, protein expression and biochemical characterization, as well as a 

detailed level of structural information [185], [186].  
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1.4 X-ray crystallography 

Detailed knowledge of protein structures and macromolecules assemblies has been vital to 

study numerous biological processes from enzymatic reactions to immune evasion by 

viruses. Three-dimensional structures have revealed how enzymes interact with their 

respective substrates and how inhibitors can bind and disrupt activity, which is essential in 

the fields of protein engineering and drug discovery.  To determine three-dimensional 

structures of proteins at atomic resolution, electromagnetic radiation with a shorter 

wavelength than the visible light, such as X-rays, is required. To date, one of the most 

powerful methods to determine protein structures is X-ray crystallography. In the so-called 

X-ray diffraction experiments, macromolecules arranged in a regular array, called crystal 

lattice, are exposed to electromagnetic waves with wavelengths of 0.5-2.0 Å [187].  

 

1.4.1 Protein crystallization and cryoprotection 

Protein crystals are highly ordered three-dimensional arrays comprising regular repetitions of 

protein molecules, which are held together by intermolecular interactions. In practice, initial 

protein crystals are a result of a high-throughput screening approach, performed with an 

automated crystallization setup and employing highly purified protein samples. Different 

precipitants, such as salts, alcohols or water-soluble polymers like polyethylene glycols 

(PEGs) are used to reduce protein solubility and initiate crystal growth. Protein crystallization 

is commonly achieved using the hanging or sitting drop vapor diffusion methods. A drop of 

pure protein is mixed with a precipitant-containing reservoir solution and equilibrated against 

the reservoir solution under sealed conditions. Since the protein-precipitant mixture is less 

concentrated than the reservoir solution, water molecules diffuse from the drop into the 

reservoir. Protein and precipitant concentrations gradually increase until the protein’s 

solubility limit is exceeded and the protein drop enters the supersaturated phase. When the 

precipitant or protein concentration is too high, the protein precipitates. However, under 

optimal crystallization conditions, the supersaturated solution reaches the nucleation zone, 

where crystallization nuclei can spontaneously form and reach a critical size to support 

subsequent crystal growth (Figure 1.8). Once crystals are in equilibrium with the saturated 

protein solution, they have reached their maximum size and growth terminates [187], [188].  
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Protein crystallization and crystal growth are influenced by parameters such as temperature, 

pH, protein and precipitant concentrations as well as drop and reservoir volumes. Seeding is 

an alternative approach to induce nucleation and facilitate crystallization. Thereby, solid 

material, such as small or crushed crystals and spherulites can be used as nucleating 

agents. These nucleating agents commonly called seeds are transferred to a crystallization 

drop to bypass the nucleation zone and therefore reduce the level of supersaturation that is 

required for crystal growth. Based on the size of the seeds, seeding is classified into 

micro- or macroseeding. In microseeding, tiny crystalline fragments are added to a 

crystallization drop of reduced supersaturation, whereas in macroseeding, a small single 

crystal (usually 5-50 μm) is transferred into a new crystallization solution with identical 

composition to continue crystal growth [189], [190]. Protein crystals are very fragile since 

they are loosely packed and contain a high fraction of solvent, accounting for about 30% to 

70% of the crystal volume. Solvent channels allow diffusion of ligand molecules through the 

crystal, often allowing ligand molecules to bind to the protein molecules in the crystalline 

state. During diffraction data collection, protein crystals are exposed to intense ionizing X-ray 

radiation causing crystal damage due to the formation of free radicals. To minimize crystal 

decay during X-ray exposure, crystals are cooled to cryogenic temperatures (about 100 K). 

Prior to flash-freezing with liquid nitrogen, crystals are transferred into cryoprotection 

conditions to prevent formation of crystalline ice that would result in strong diffraction of the 

ice crystals [191].  

 

Figure 1.8 Phase diagram illustrating protein crystallization by vapor diffusion. Equilibration of the 

protein-precipitant mixture against the reservoir solution increases both protein and precipitant 

concentrations. Crystal formation only occurs in the nucleation zone with subsequent crystal growth in 

the metastable zone. Arrow 1 illustrates a successful crystallization experiment where initial protein 

crystals are formed in the nucleation zone with subsequent crystal growth in the metastable zone. 

Arrow 2 represents an unsuccessful crystallization experiment where protein precipitation occurs. 

Figure adapted from [196]. 
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1.4.2 X-ray diffraction and data collection 

In a diffraction experiment, X-rays are scattered when the electromagnetic radiation interacts 

with the electrons of molecules in the protein crystal. Since the scattering of X-rays by a 

single molecule is too small to be detected, an arrangement of many molecules in a periodic 

lattice is required and the sum of all scattering events generates a diffraction pattern which 

reflects the crystal symmetry. The crystal lattice is formed by periodic repetition of a 

three-dimensional unit cell defined by the length of unit cell axes a, b, c and the unit cell 

angles α, β and γ. If multiple protein molecules with identical conformation are present in the 

unit cell, they can be transformed into each other by translational and rotational symmetry 

operations, and these symmetry operations are required to fully describe the protein crystal.  

The complete unit cell can thus be generated by applying crystallographic symmetry 

operations to the smallest unit present in the crystal, denoted as the asymmetric unit (ASU). 

Because biological molecules are chiral, some symmetry elements such as inversion centers 

or mirror planes, which occur in inorganic salt crystals, are not possible in their crystals. 

There are 65 possible space groups for crystals containing proteins [187]. 

 

The interpretation of X-ray diffraction data was first described by Sir William Lawrence Bragg 

as a reflection of X-rays by imaginary planes in a crystal lattice [192].  According to Bragg’s 

law, constructive interference of elastically scattered X-rays by a crystal lattice can give rise 

to a diffracted beam and can be observed in the form of discrete diffraction spots on a 

suitable detector (originally a photographic film) (Figure 1.9A). These spots are called 

reflections and the dimensions of the unit cell in the crystal lattice are inversely proportional 

to the distances that separate the recorded reflections. During the X-ray diffraction 

experiment, the crystal is continuously rotated, giving rise to multiple diffraction images 

(‘frames’). The virtual lattice generated from the overall diffraction set is defined as the 

reciprocal lattice. Lattice planes in the reciprocal lattice and their directions in 

three-dimensional crystals are specified by the Miller indices h,k,l and vectors  ℎ⃑⃑⃑  , 𝑘⃑ ,𝑙 . As 

described by Bragg’s equation (1.1), a reflection (h,k,l) is obtained when the path difference 

between X-ray waves with wavelength λ diffracting from parallel crystal planes, separated by 

a distance d under an angle of reflection θ, is equal to an integer n.  

 

𝑛𝜆 = 2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃      (1.1) 

 

The maximum angle θ corresponds to the minimum distance dmin between a set of lattice 

planes that can still be resolved, and therefore describes the resolution limit of a protein 

crystal. 

 

Bragg’s law can also be expressed through a geometrical construction, designated the Ewald 

sphere (Figure 1.9B). In this construction, a sphere with a radius 1/λ is drawn around the 
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crystal origin. The incident X-ray beam is directed towards the center of the sphere and when 

reciprocal lattice points (h,k,l) lie on the Ewald sphere Bragg’s law is obeyed and reflections 

can be recorded on a detector. The reciprocal space origin (0,0,0) is placed at the 

intersection of the Ewald sphere with the incident beam. During data collection only a few 

reflections can be observed at a given crystal orientation. Therefore, to record all reflections 

of a crystal, the reciprocal lattice points are brought to intersection with the Ewald sphere by 

rotating the crystal in the center of the sphere, and its reciprocal lattice around its own 

origin [193]. The number of recorded reflections is dependent on the crystal symmetry and 

diffraction limit.  

 

 

The observed diffraction spots can be assigned to the corresponding reciprocal space 

coordinates (h,k,l) during so-called indexing of the diffraction data. The information about the 

position of these reflections together with the distance of the detector and the wavelength 

used during data collection allows the calculation of the unit cell parameters. Once these 

parameters are correctly determined, intensities of all measured reflections can be obtained 

by integration. Accurate diffraction data measurements require high redundancy, which can 

be achieved by multiple independent measurements of equivalent reflections. Further data 

processing includes the application of scaling factors to render the data internally consistent 

and minimize differences between equivalent reflections, i.e. account for instance for the 

increasing decay of a crystal’s diffraction power due to inelastic scattering events.  

Symmetry-related reflections are then merged and converted into structure factors. When 

more than a single molecule is present in the asymmetric unit, phenomena such as twinning, 

Figure 1.9 Bragg's law and Ewald sphere construction. A) Illustration of Bragg’s law. In diffracting 

conditions, constructive interference occurs when the path difference of two waves diffracted at 

parallel crystal lattice planes equals an integer multiple of the wavelength of the incident X-ray beam. 

The scattered X-rays are then in phase and a reflection spot is produced. B) Ewald sphere 

construction with a radius of 1/ λ around the crystal. Reflections with coordinates h, k, l are recorded 

when Bragg’s law is fulfilled and reciprocal lattice points lie on the Ewald sphere. Figure adapted 

from [187], [194]. 
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and pseudo-translational or rotational symmetry can occur, making structure determination 

more difficult and sometimes impossible [195]. 

 

1.4.3 Structure determination and refinement  

To determine the distribution of electrons in the crystal and to obtain an electron density 

map, information of both amplitude and phase of each recorded reflection are required. This 

information is used to define a complex number, termed the structure factor Fhkl, which 

represents the sum of the scattering contributions from each and every atom in the unit 

cell (equation 1.2). 

 

𝐹ℎ𝑘𝑙 = |Fℎ𝑘𝑙 | ∙ exp (𝑖𝜑ℎ𝑘𝑙)     (1.2) 

 

The structure factor is a vector in the Argand diagram with the amplitude |Fhkl| and phase 

angle φhkl that describes each scattered beam that leads to a reflection (h,kl,) in reciprocal 

space. By determining the amplitude and phase for each Fhkl and applying a Fourier 

transformation, the electron density can be calculated for the crystal unit cell (equation 1.3) 

and the structure of the underlying diffracting molecule that ‘decorates’ the unit cell can be 

determined. 

 

𝜌(𝑥, 𝑦, 𝑧) =
1

𝑉
Σℎ,𝑘,𝑙Fℎ𝑘𝑙 ∙ exp [−2𝜋𝑖(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)]    (1.3) 

 

In this equation, x,y,z are the coordinates in real space and V corresponds to the volume of 

the unit cell. In a diffraction experiment, structure factor amplitudes can be determined 

directly from the measured intensities for each reflection since the intensity of a reflection is 

proportional to the square of the structure factor amplitude. However, the phase information 

cannot be extracted from the diffraction data, and as consequence, the electron density 

function ρ(x,y,z) cannot be directly obtained giving rise to the so-called phase 

problem [187], [196]. 

 

To overcome the phase problem and determine three-dimensional structures of proteins from 

diffraction patterns, several methods can be employed such as molecular replacement (MR), 

single or multiple isomorphous replacement (SIR/MIR), and single or multiple- wavelength 

anomalous dispersion (SAD/MAD). In case of small proteins and very high data resolution 

(at least 1.2 Å), structures can also be determined ab initio via direct methods [197].  

 

MR is widely used when a structural model similar to a molecule in the target crystal 

structure is available (for proteins usually more than 25% sequence identity is required). The 

known structure can be used as a preliminary model for the unknown structure . As 

structurally related protein molecules share similar Patterson maps, these maps can be 
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aligned by rotation and translations functions to place the known structure in the correct 

orientation and position in the unit cell of the unknown structure. In contrast to the electron 

density map, which requires both phase and amplitude information, a Patterson map can be 

calculated directly from the observed diffraction data, as phase information is not required. 

The Patterson function is the Fourier transform of the squared structure factor amplitude 

|Fhkl|2 with phases set to zero. The Patterson map derived from the observed data is a map of 

interatomic vectors containing information about the contents of the crystal and the obtained 

peaks in Patterson space correspond to the positions of the vectors between atoms in the 

unit cell. Once a MR solution is found, the initial phases derived from the known structure are 

combined with the measured structure factor amplitudes of the unknown structure and an 

initial electron density map with preliminary phases is calculated [198]. Model building is an 

iterative process for which the structure factors calculated from the model (Fcalc) are 

constantly compared to the experimental structure factors (Fobs). Two types of maps are 

commonly calculated: the electron density difference map (Fobs-Fcalc) and the double 

difference map (2Fobs-Fcalc) from which the molecular model is stepwise improved by 

modeling the amino acids into the density according to the primary sequence of the protein. 

This model is validated and improved through refinement cycles against the experimental 

data using the maximum-likelihood method.  

 

During structural refinement atomic coordinates and atomic displacement parameters are 

improved to maximize the agreement between the built model and the experimental X-ray 

data [199]. The refinement progress is monitored by crystallographic R-factors which 

compare measured (Fobs) and calculated (Fcalc) structure factor amplitudes (equation 1.4). 

 

𝑅 =
Σℎ𝑘𝑙||𝐹𝑜𝑏𝑠 (ℎ𝑘𝑙)|−|𝐹𝑐𝑎𝑙𝑐 (ℎ𝑘𝑙)||

Σℎ𝑘𝑙|𝐹𝑜𝑏𝑠(ℎ𝑘𝑙)|
     (1.4) 

 

During refinement of a protein model, the R-factor value should decrease indicating the 

convergence of the model with the experimental data. Data over-fitting can be observed by 

using a cross-validation in the form of a free R-factor. The Rfree is used to assess model and 

refinement quality. A small subset of reflections (5 to 10% of the data set) is flagged as ‘free’ 

and is excluded during refinement. This set of reflections allows an unbiased estimate of the 

improvement of the structure model and is usually higher than the Rwork, which comprises the 

reflections used during refinement [200]. Remaining bias from the MR model can be 

removed by calculating simulated annealing-omit maps. Phases can be further improved by 

applying a variety of density modification methods, like solvent flattening and 

non-crystallographic symmetry (NCS).  
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1.5 Inhibition of c-Jun N-terminal 3 kinase 

Elucidating atomic details of molecular interactions of protein-ligand complexes is essential 

for structure-based design and optimization of potential therapeutic drugs. Over the past 

decades, protein kinases became attractive targets in drug discovery. The importance of the 

c-Jun N-terminal kinase (JNK) family in the pathogenesis of numerous diseases has 

triggered an extensive development of medicinal chemistry strategies. Some of these 

strategies were based on crystal structures to identify and optimize JNK inhibitors suitable for 

clinical application [201], [202]. However, despite a significant amount of publications 

concerning JNK inhibitors and several candidates that have reached clinical trial phases, no 

JNK inhibitor has been approved by the U.S. Food and Drug Administration (FDA) to this 

date [6], [7], [203].  

 

1.5.1 Protein kinases  

Protein kinases are signaling enzymes that mediate protein phosphorylation, an essential 

step of signaling cascades, and regulate nearly every aspect of cellular function including 

gene expression, cell growth and proliferation, differentiation and apoptosis. Protein 

phosphorylation is carried out by transferring the terminal phosphoryl group from a 

nucleoside triphosphate, typically adenosine triphosphate (ATP), to the hydroxyl group of a 

serine, threonine or tyrosine residue of the target substrate protein or the kinase 

itself [204]-[206]. The phosphorylation process can be reversed by corresponding 

phosphatases, which are able to catalyze the removal of the phosphate group from the target 

protein [207], [208]. The superfamily of human protein kinases, generally described as the 

kinome, comprises 518 genes, accounting for approximately 1.7% of the human 

genome-encoded proteins [209].  

 

Most of the protein kinases share a common fold and have the same essential structural 

features but phosphorylate different target proteins and can be notably different in how their 

catalytic activity is regulated [210]. Differences in core sequence and flanking regions of 

kinases allow a fine-tuning of their activity, which results in a unique response of each kinase 

to a set of cell signaling events. Aberrant phosphorylation is implicated in an increasing 

number of diseases, making kinases potential drug targets in different therapeutic 

approaches. Treatment of such diseases is focused on selectively blocking the activity of the 

disease-associated kinase, which in turn prevents the effect of potential aberrant cell 

signaling events [211], [212].  
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1.5.2 Mitogen-activated protein kinases 

Eukaryotic cells recognize and respond to extracellular stimuli by engaging specific 

intracellular processes, such as the signaling cascade that leads to activation of the 

mitogen-activated protein kinases (MAPKs). This evolutionary highly conserved family of 

enzymes transmits external signals to various cytoplasmic and nuclear targets and regulates 

diverse cellular processes, such as proliferation, differentiation, cell cycle and cell 

death [213].  

 

Mammals express at least four distinctly related groups of MAPKs, including the extracellular 

signal-regulated kinases (ERK 1 and 2), the p38 MAP kinases (p38 α, β, γ and δ), the c-Jun 

N-terminal kinases (JNK 1, 2 and 3) and the ERK5. Each of the MAPKs can regulate several 

distinct and sometimes overlapping cellular processes, while differing in their main biological 

functions [214], [215]. MAPKs pathways are organized into kinase signaling modules, which 

are regulated by sequential phosphorylation (Figure 1.10). In most cases, MAPK signaling 

originates from the plasma membrane where transmembrane receptors are activated by 

extracellular ligands or stimuli. In general, ERK is preferentially activated in response to 

growth factors or mitogenic stimuli, whereas JNK and p38 kinases are most responsive to 

inflammatory cytokines and environmental stress, such as ionizing radiation, heat and 

oxidative stress [216], [217].  

 

MAPK activity is regulated through a three-tiered cascade composed of MAPKs, MAPK 

kinases (MAPKKs) and MAPKK kinases (MAPKKKs) [218]. MAPKs are activated by dual 

phosphorylation of threonine and tyrosine residues located in the activation loop adjacent to 

the active site. Once activated, these kinases transmit signals by phosphorylating serine and 

threonine residues on cytoplasmic and nuclear proteins. Specificity for different targets is 

conferred by amino acids surrounding the phosphorylation site and through interactions 

mediated by another site within the kinase that recognizes a distinct site on the 

substrate [219], [220].  
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In addition, several other regulators, activators and scaffolding proteins can influence the 

regulation of MAPK-mediated signaling pathways. Scaffolding proteins are multidomain 

proteins that can bind to multiple components of the MAPK cascade and thus increase the 

local concentration of cascade components, contribute to the spatial and temporal regulation 

of cascade activation, and/or localize the signaling module to a specific cellular site or 

substrate [221], [222].  

 

1.5.3 The JNK protein family 

JNKs, also known as stress-activated protein kinases (SAPK), were originally identified in 

1990 by their activation in response to a variety of environmental stimuli including growth 

factors, cytokines, heat shock, hyperosmolarity and UV-radiation [223], [224]. The name of 

this protein family was then given after their ability to phosphorylate the N-terminal domain of 

the transcription factor c-Jun [225]. In mammals, three genes encoding for JNKs have been 

identified: jnk1, jnk2 and jnk3, and each JNK gene has alternative splicing forms that result in 

at least 10 different isoforms [226]. Despite their structural homology, JNK genes follow a 

different tissue distribution pattern. jnk1 and jnk2 genes are ubiquitously expressed, whereas 

jnk3 gene has a more limited pattern of expression and is predominantly restricted to the 

Figure 1.10 Overview of MAP kinase signaling cascades with focus on activation of p38 MAPKs and 

JNKs. Each family of MAPKs is composed of three evolutionary conserved, sequentially acting 

kinases. Extracellular stimuli activate MAPKKK, which leads to phosphorylation and activation of 

MAPKK and, subsequently, stimulates MAPK activity through dual phosphorylation. Once activated, 

MAPKs phosphorylate target substrates. The dashed arrow represents the phosphorylation of p38 by 

MKK4. Figure adapted from [215]. 
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central nervous system (CNS), cardiac smooth muscle and the testis. In addition to this, 

JNK1, 2 and 3 are characterized by distinct substrate specificities, suggesting that different 

JNK isoforms could play specific roles in multicellular organisms [218], [227], [228].  

 

JNK activation requires dual phosphorylation of tyrosine and threonine residues within the 

conserved tripeptide motif T-P-Y located in the activation loop. This phosphorylation is 

mediated by two MAPK kinases, the MKK4 and MKK7. Although both kinases can activate 

JNK on both threonine and tyrosine residues, they seem to have different biochemical 

properties and significant differences in substrate specificity. First, even though full activation 

of JNK requires dual phosphorylation, MKK4 and MKK7 appear to preferentially 

phosphorylate JNK on tyrosine and threonine, respectively, indicating that these proteins 

function in a synergistic manner. Second, although, MKK3 and MKK6 are the main activators 

of p38 MAPKs, MKK4 can also phosphorylate p38. MKK7 functions instead as a specific 

activator of JNK [228]–[230]. An additional level of regulation of the JNK activation pattern is 

constituted by scaffolding and by other protein-protein interactions, which are crucial to the 

function of JNK in the cell. Examples of these scaffolds are JNK-interacting proteins (JIPs 1, 

2, 3 and 4) and β-arrestins [228], [231]. 

 

Activated JNKs phosphorylate multiple targets, including nuclear and non-nuclear substrates. 

The main cellular substrate activated by JNK-mediated phosphorylation is c-Jun, which 

causes increased transcription activity. In addition, JNK can also phosphorylate the 

transcription factors JunB, JunD, c-Fos, and ATF-2 that constitute, together with c-Jun, the 

activator protein-1 (AP-1) transcription factor family, and regulate the expression of several 

stress-responsive genes. JNKs also phosphorylate other transcriptions factors such as Elk-1, 

c-myc, NFAT, and the p53, which are not part of the AP-1 complex [218], [232], [233]. JNK 

mediates apoptosis not only through its effects on gene transcription, but also through 

phosphorylation of both pro- and anti-apoptotic proteins, such as members of the Bcl-2 family 

(Bcl-2, Bcl-xL, Bim and BAD), and regulation of their activity [234], [235].  

 

JNK is a multifunctional protein kinase involved in many physiological and pathological 

processes that modulate both cell survival and apoptosis depending on the cellular context. 

The JNK pathway plays critical roles in the pathogenesis of neurological disorders, including 

Alzheimer’s disease and Parkinson’s disease [236]. In addition to this, the JNK signaling 

pathway is also implicated in other diseases, such as type 2 diabetes, some types of cancer, 

stroke, heart disease, and inflammatory diseases [237]. Given the role of the JNK pathway in 

several pathological states, JNKs are promising drug targets for therapeutic intervention. 

Because of the complex cross-talk within the signaling cascade, as well as its response-

specific modulation, it is, however, difficult to predict potential adverse events that might arise 

from JNK pathway inhibition [202], [228], [238].  
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1.5.4 Structural features of JNKs 

Determination of three-dimensional structures of members of the JNK family and also other 

MAPKs has helped to understand the regulation of these enzymes and has also been crucial 

in the development of potential drug targets [202]. The first structure at atomic resolution of a 

JNK protein was determined in 1998 by Xie et al. [239]. This crystal structure containing 

inactive JNK3 in complex with the ATP analogue adenylyl-imidodiphosphate (AMP-PNP) and 

Mg2+ was determined at a resolution of 2.3 Å. The overall three-dimensional fold of JNK3 is 

similar to other protein kinases and it comprises all typical kinase motifs (Figure 1.11).  

 

 

 

Protein kinases contain 12 conserved subdomains, previously identified by sequence 

analysis, which are separated by divergent amino acid stretches that characterize each class 

of these enzymes [224], [240]. The catalytic domain of protein kinases, including JNKs, 

consists of a small, mostly β-stranded N-lobe connected by a hinge region to a large 

α-helical C-lobe. The cleft formed between the two lobes harbors the kinase activation site 

and the ATP-binding site. The adenine group of ATP is positioned between hydrophobic 

Figure 1.11 Three-dimensional structure of the inactive form of JNK3 in complex with AMP-PNP. The 

structure was reported for the first time in 1998 (PDB 1JNK) [239]. The active site, located between 

the N- and C-terminal lobes, is occupied with by the non-hydrolyzable ATP analogue coordinated by 

two Mg2+ ions (green spheres). The protein backbone is depicted in gray, while the characteristic 

kinase elements are highlighted in different colors. Part of the activation loop is missing, a common 

phenomenon for X-Ray structures of protein kinases since this loop is highly flexible.  
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residues and interacts with the hinge region via a bidentate hydrogen bond. The N-lobe or 

N-terminal domain comprises an antiparallel five-strand β-sheet motif and a single α-helix, 

denominated the αC-helix. This helix represents an important regulatory element for the 

catalytic activity, as it contains a glutamate residue that forms a salt bridge with a conserved 

lysine present in the β3 strand, which in turn coordinates the α- and β-phosphate groups of 

ATP. The most flexible part of this domain is a loop that lies between β1 and β2 strands, 

known as the glycine-rich loop or glycine-rich phosphate anchor loop, which comprises the 

conserved motif G-X-G-X-X-G-X-X. This loop is formed by hydrophobic residues that 

constitute the active site roof and contributes to the coordination of the triphosphate group of 

ATP via backbone interactions [241], [242]. In contrast, the C-terminal domain is mainly 

composed of α-helices and four short β-strands. The catalytic loop, located between β6 and 

β7 strands, comprises the highly conserved histidine-arginine-aspartate (HRD) motif, which 

plays a key role in the reaction catalysis. The aspartate residue takes part in the catalytic 

mechanism by deprotonating a hydroxyl group of the substrate. Within this loop there is also 

an asparagine residue that binds a Mg2+ ion coordinating the α- and γ-phosphate groups of 

ATP. The activation loop, located in the C-lobe, constitutes the primary site of 

phosphorylation and thereby plays a critical role in the kinase activation and deactivation 

processes. The length of this loop varies between different kinases and it usually contains 

one or more phosphorylation sites, which allow the activation of the enzyme by upstream 

kinases. In the case of JNKs, this sequence comprises the tripeptide motif T-X-Y. The 

activation loop is part of an extended activation segment, which begins at the DFG motif, a 

highly conserved sequence of three amino acids asparagine-phenylalanine-glycine that are 

part of the ATP binding site in the active kinase. The aspartate within this sequence chelates 

a Mg2+ ion that positions the β- and γ-phosphates for phosphotransfer, whereas the 

phenylalanine contributes to the correct positioning of the αC-helix in the N-lobe via two 

hydrophobic interactions. The activation segment plays the most critical role in regulation of 

the conformational changes in many kinases [243]–[245].  

 

The flexibility of the activation loop enables each kinase to adopt two catalytically important 

conformations, which are dependent on the protein phosphorylation state. The active 

conformation, in which the substrate can bind, is called the DFG-in conformation. Upon 

phosphorylation, the activation loop moves away from the catalytic center allowing substrate 

binding and catalysis. In the inactive state, known as the DFG-out conformation, the 

activation loop collapses into the active site, preventing the substrate from binding to the 

kinase domain. In this case, the aspartate residue points towards the ATP binding site, which 

leads to a mispositioning of the Mg2+ ion that coordinates the ATP phosphates. Additionally, 

the phenylalanine residue is perturbed and thus influences the αC-helix, which in turn affects 

the position of the catalytically important glutamate and alters the interface between the 
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N- and C-lobes. Structures of protein kinases share very similar features in their catalytic 

active state due to the high conservation of residues involved in the phosphorylation reaction. 

However, there are a variety of conformations accessible to different protein kinases in the 

inactive site, making their structural characterization by X-ray crystallography a challenge. In 

the case of JNKs, only the DFG-out conformation of the JNK2 structure is available up to 

date [211], [246], [247]. 

 

1.5.5 Development of JNK inhibitors 

During the past decades, a combination of high-throughput screening, kinase-specific 

libraries and structure-based drug design has helped in the discovery of new selective kinase 

inhibitors. Since deregulation of the JNK pathway is involved in the pathogenesis of several 

diseases, a large variety of small-molecule inhibitors of JNK have been generated but only a 

limited number of them has been evaluated in clinical trials [202]. Most of the chemical 

entities targeting JNKs are type I inhibitors that are defined by their ability to compete with 

and displace ATP within the ATP-binding site. These inhibitors form non-covalent 

interactions with the surrounding residues of the ATP binding site and can exert their activity 

regardless of the conformation adopted by the DFG motif in the activation loop. Despite the 

fact that this region shares significant amino acid sequence homology and a conserved core 

structure among kinases, there are still minor residue differences in and near the ATP 

binding pocket that enable a certain degree of selectivity [248], [249].  

 

A pharmacophore model developed by Traxler et al. to describe the ATP binding site has 

been successfully used for rational design of type I inhibitors [250]. This model defines five 

distinct subsites within the ATP binding site, which are characterized by different chemical 

environments and local sequence differences (Figure 1.12): 

 

1) Adenine binding region. All ATP-competitive inhibitors bind in this hydrophobic area and 

interact with the backbone amino acids of the hinge region via hydrogen bonds, mimicking 

ATP binding.  

2) Ribose binding pocket. This region has a hydrophilic character in most kinases and it 

can be exploited to accommodate hydrophobic substituents. As it is not conserved among 

kinases, it can be targeted to achieve selectivity and affinity. 

3) Phosphate region. This hydrophilic region has high solvent exposure and is generally not 

addressed to increase inhibitor binding affinity.  

4) Hydrophobic region I (HR1). Also known as hydrophobic back pocket or selectivity 

pocket, this region is not involved in ATP binding. A specific residue of the N-terminal 

domain, termed gatekeeper, controls the access to this region. Since the gatekeeper and 
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other residues surrounding this pocket are not highly conserved among kinases, this area 

can be targeted to improve inhibitor selectivity and binding affinity. 

5) Hydrophobic pocket II (HR2). This solvent-exposed area is also not address by ATP and 

can be exploited to gain binding affinity and selectivity since its amino acid composition is not 

conserved.  

 

The success of type I inhibitors demonstrates that, despite the highly conserved ATP binding 

site, it is possible to optimize inhibitor selectivity towards specific kinases. X-ray 

crystallography together with homology modeling enabled the characterization of structural 

differences within the vicinity of the ATP-binding site between JNK1, JNK2 and JNK3 and 

other MAPKs. The gatekeeper residue (corresponding to a methionine either in position 108 

in JNK1 and JNK2 or in position 146 in JNK3) restricts access to the selectivity 

pocket [236], [241]. Effective strategies for the design of selective type I inhibitors are based 

on differences in size, shape and polarity of the gatekeeper residue and can be used to 

increase selectivity and binding affinity. Unfortunately, these strategies are not effective to 

obtain selectivity among the JNK family itself, since these enzymes share a very high 

sequence identity. Therefore, the design of isoform-selective type I JNK inhibitors remains a 

Figure 1.12 Representation of Traxler’s pharmacore model used for the rational design of type I 

inhibitors. The ATP binding site of JNK3 is illustrated with the five distinct subsites located within this 

pocket highlighted in different colors. The protein backbone is displayed in blue and the compound in 

black. The only side chain shown is that of the gatekeeper residue of JNK3, M146. This residue alters 

the features of the hydrophobic region I, which can be addressed to achieve inhibitor selectivity or 

binding affinity. Figure adapted from [250]. 
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significant challenge [251].  

 

Compound SP600125 (from Celgene) was the first potent ATP-competitive kinase inhibitor 

possessing specificity for JNKs [252]. Although later shown to lack specificity by inhibiting all 

three JNK isoforms and also other kinases, a number of in vivo experiments using SP600125 

have demonstrated the potential of directly inhibiting JNK for treatment of autoimmune, anti-

inflammatory and neurodegenerative diseases (Figure 1.13). This compound still serves as a 

common reference in biological JNK assays [7], [253].  

 

 

A different approach to inhibit JNK activity is the use of peptide inhibitors that target the 

substrate-binding site or regulatory protein sites of the kinase, as for example the 

JIP1-derived peptides [254]. Targeting other sites on protein kinases than the ATP binding 

pocket avoids the possible problem of competing with high cellular ATP levels (1-5 mM) and 

also shows the highest degree of selectivity by exploiting sites that are unique to a particular 

kinase. However, a rational approach can hardly be used for the design and optimization of 

these type of inhibitors. Although the vast majority of efforts in the identification of inhibitors 

for the JNK pathway have focused on the JNK proteins themselves, JNK activity could also 

be suppressed by inhibiting the upstream MAPKKs, MKK4 and MKK7. Knowledge and 

control of inhibitor selectivity is important since off-target kinase inhibition potentially 

increases the risk of unwanted effects and toxicity [201], [255], [256]. 

 

1.5.6 Inhibition of JNK3 

JNK3, predominantly found in neuronal cells, is a widely studied target in drug discovery to 

treat a variety of neurological disorders such as Alzheimer’s disease, Parkinson’s disease, 

Huntington’s disease, multiple sclerosis and ischemia/reperfusion injury [257]. JNK3 activity 

is usually low in the brain but increases when irregularities in the cerebral metabolism occur. 

In the past years, significant progress has been made in the development of small-molecule 

inhibitors of JNKs, however achieving JNK3 selectivity is still a challenge due to the high 

Figure 1.13 Structure and biological activity of compound SP600125 [252]. The potency of a kinase 

inhibitor is typically expressed as the half maximal inhibitory concentration (IC50). This parameter 

determines the concentration of the drug candidate at which 50% of the kinase activity is 

inhibited [255]. 
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similarity among the JNK isoforms. Besides, compounds targeting CNS disorders have to 

overcome the additional challenge of penetrating the blood-brain barrier [6]. The first 

isoform-selective JNK3 inhibitor was reported by Zheng et al. [258]. This 

aminopyrazole-based inhibitor exhibited a high potency and selectivity against JNK3 with an 

IC50 value in the subnanomolar range and showed an isoform selectivity of >500/200-fold 

over JNK1/JNK2 and >20000-fold against p38α MAPK. Despite this success, isoform 

selective JNK1 and JNK2 inhibitors are still unavailable and there are no approved drug 

targets against any JNK to date [7]. 
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2 Objectives 

The work presented here is focused on three topics, namely structural and functional 

features of three proteins in their respective biological context. These are human properdin, 

the positive regulator of the alternative complement pathway, heparinase I from Pedobacter 

heparinus, a bacterial enzyme selective for heparin depolymerization and c-Jun N-terminal 

kinase 3, a human MAP kinase that is expressed primarily in the brain and that is implicated 

in several neurodegenerative disorders. The individual aims are divided in three different 

sections corresponding to each project. 

 

1. The role of properdin in the activation of the alternative complement pathway 

 

Properdin, the only positive regulator of the alternative complement pathway, has been a 

focus of controversy within the scientific community since its discovery by Louis Pillemer in 

1954. In the last decade new evidence accumulated for Pillemer’s hypothesis that the 

positive AP regulator may act as pattern-recognition molecule and initiate AP, apart from its 

widely accepted role in the stabilization of AP convertases. The three-dimensional structure 

of properdin has not been determined to atomic resolution to date and its role in glycan 

recognition and AP initiation remains unclear [2], [3]. The aim of this project consisted in the 

application of structural biology techniques, namely X-ray crystallography, EM, STD-NMR 

and glycan microarrays to study this protein at a molecular and atomic level and identify 

potential PAMPs that could activate the complement AP. To unravel the role of properdin as 

initiator of C3 convertase formation and AP activation, the following aims were pursued: 

 

• Develop and establish the production of recombinant human properdin in bacterial or 

mammalian cells and analyze its stability, folding and oligomerization state. 

• Evaluate the biological activity of recombinantly produced properdin in comparison to 

commercially available properdin via the standard hemolytic complement assay using red 

blood cells (RBCs).  

• Elucidate the glycan specificity of properdin by identifying glycans that may activate the 

complement AP via direct recruitment of properdin. 

• Determine the crystal structure of properdin to study the involvement of its domains in 

glycan binding at an atomic level.  

• Compare the glycan specificity of properdin to the specificity of Factor H, the negative 

regulator of AP and as such a properdin antagonist. 
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2. Production of recombinant heparinase I from Pedobacter heparinus for structure-

based protein engineering 

 

GAGs are heterogeneous polysaccharides that mediate important biological processes 

through interaction with proteins. Due to their high chemical and structural complexity, 

deciphering the precise GAG sequences that are responsible for protein interactions and 

biological events remains a challenge since defined and pure GAG oligosaccharides are 

barely commercially available. Enzymatic depolymerization of GAGs by polysaccharide 

lyases, such as heparinase I, followed by gel filtration and anion exchange chromatography 

is a common strategy to obtain size-defined or chemical homogeneous oligosaccharides. 

However, large amounts of heparinase I are required if GAG oligosaccharides are to be used 

in structural and functional studies. Besides, the most relevant oligosaccharides have a 

higher degree of polymerization than the main disaccharide product obtained via enzymatic 

cleavage. Although heparinases from P. heparinus are the most studied, no three-

dimensional structure of its heparinase I has been reported to date [146], [174]. To develop a 

structure-based protein engineering approach to rationally design a novel enzyme capable of 

producing larger amounts of longer heparin-derived oligosaccharides that are necessary to 

identify relevant interactions of proteins, heparinase I from P. heparinus was investigated 

with the following aims: 

 

• Establish the production of recombinant heparinase I from P. heparinus in order to 

establish GAG production via enzymatic depolymerization for structural and functional 

studies of GAG-binding proteins. 

• Determine crystal structures of heparinase I without substrate and in complex with heparin 

oligosaccharides to elucidate the catalytic mechanism of this enzyme.  

• Develop a structure-based engineering approach to introduce site-specific modifications in 

heparinase I that result in a new product profile distribution during enzymatic 

depolymerization yielding higher amounts of longer oligosaccharides. 

 

3. Structural-based optimization of selective type I c-Jun N-terminal kinase 3 

inhibitors 

 

Inhibition of JNK3 has become a promising strategy for treatment of several pathological 

states, including neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s 

disease. In the past years, the number of JNK3 inhibitors and publications concerning this 

topic significantly increased. However, it is still challenging to achieve selectivity within the 

kinome, and especially between the different JNK isoforms. Up to date, there are no clinically 

approved inhibitors targeting JNK3, which highlights the need for new drug candidates and 
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further optimization [6], [7]. The use of X-ray crystallography for structure-guided optimization 

of lead compounds is nowadays essential in drug discovery and development. 

Three-dimensional structures of JNK3 in complex with inhibitors accelerate inhibitor design 

and help to address issues such as selectivity, binding affinity and pharmacokinetics. In 

collaboration with Dr. Francesco Ansideri and Prof. Dr. Pierre Koch from the Institute of 

Pharmaceutical Sciences from the University of Tübingen, new selective JNK3 inhibitors 

were investigated with the following aims:  

 

• Elucidate the binding mode of two pyridinylimidazole-based compounds that act as 

selective ATP-competitive JNK3 inhibitors. 

• Confirm the possibility of a flip of the imidazole core of the compound class depending on 

its substitution pattern.  

• Gain insights into the role played by the different substituents around the 

pyridinylimidazole scaffold, namely the S-methyl group, in inhibitory activity and selectivity.  

• Devise further strategies from the three-dimensional structures of JNK3-inhibitor 

determined by X-ray crystallography to further increase binding affinity and selectivity of 

inhibitors. 
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3 Materials and Methods 

3.1 General 

All standard chemicals and reagents used in this work were of analytical grade and obtained 

from Calbiochem, Merck, Roth and Sigma-Aldrich. Buffers and solutions were prepared with 

MilliQ water and stored at room temperature or at 4°C. Buffers were sterile filtered (0.22 μm) 

and degassed at 4°C. Reducing agents such as Dithiothreitol (DTT), β-mercaptoethanol and 

Tris (2-carboxyethyl) phosphine pH 7 (TCEP) were freshly added to the buffers before 

usage.  

 

3.1.1 Bacterial strains 

Two E. coli strains were used in this work (Table 3.1). E. coli strain XL10 gold (Stratagene) 

was used for cloning and plasmid amplification and E. coli BL21 (DE3) strain (Novagen) was 

used for recombinant protein production. 

 

Table 3.1 Bacterial strains used in this work. 

E. coli strain Genotype 

XL10 gold TetRΔ(mcrA)183Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac Hte [F´ proAB lacIqZΔM15 Tn10 (TetR) (KanR) Amy]  

BL21 (DE3) F- ompT hsdSB(rB- mB-) gal dcm (DE3)  

 

3.1.2 Glycerol stock preparation 

E. coli culture glycerol stocks were prepared by mixing 700 μL of bacterial overnight culture 

with 300 μL of a 50% (v/v) sterile glycerol solution. Cultures were transferred to cryovials, 

flash frozen with liquid nitrogen and stored at -80°C.  

 

3.1.3 DNA isolation 

Plasmid DNA from 10 mL E. coli cultures was isolated using a miniprep kit (Promega). To 

isolate plasmid DNA from 0.5-2 L of E. coli cultures a maxiprep kit (Sigma-Aldrich) was used. 

Both kits were used according to manufacturers’ instructions.  
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3.1.4 DNA concentration determination 

DNA concentration and purity were determined via UV absorption at 260, 230 and 280 nm 

using a NanoDrop ND-1000 spectrophotometer (PEQLAB). 

 

3.1.5 Transformation of competent bacterial cells 

Transformation of chemically competent cells was carried out by addition of 50-100 ng of 

target DNA to 50 μL competent bacterial cells and incubation on ice for 30 min. To induce 

transformation, cells were exposed to a heat shock of 42°C for 20-30 s followed by 

incubation on ice for 2 min. After addition of pre-warmed (37°C) 900 μL of antibiotic-free 

Luria broth (LB) or Super optimal broth with catabolite repression (SOC) medium (Table 3.2), 

cells were allowed to grow for 1 h at 37°C and 400 rpm. Transformed cells were then plated 

on LB-Agar dishes (Table 3.2) supplemented with the respective antibiotics and incubated 

overnight at 37°C.  

 

Table 3.2 Media composition used for E. coli cell cultivation. 

LB LB-agar SOC 

1% (w/v) tryptone 

0.5% (w/v) yeast extract 

1% (w/v) NaCl 

1% (w/v) tryptone 

0.5% (w/v) yeast extract 

1% (w/v) NaCl 

6% (w/v) agar 

0.5% (w/v) yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM glucose 

 

3.1.6 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used to analyze protein expression, purity and stability by separating 

charged molecules according to their molecular weight in an electrical field. Discontinuous 

acrylamide gels consisting of a stacking gel and a 10, 12 or 15% total acrylamide resolving 

gel were prepared, depending on the molecular weight of the target protein (Table 3.3). 

Protein samples were mixed with 4x SDS-PAGE loading buffer (Table 3.4), incubated at 

95°C for 5 min and centrifuged at 14 000 rpm for 5 min before loading onto the gel. 

PageRuler unstained protein ladder (Thermo Fisher Scientific) was used as size standard 

and electrophoresis was carried out at 50 mA for 45-60 min. Electrophoresis buffer was 

prepared from a 10x stock (Roth) by dilution with MilliQ water. Gels were stained either with 

Coomassie staining solution (Table 3.4) or with Instant Blue solution (Expedeon) using an 

orbital shaker. 
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Table 3.3 Composition of 4x SDS-PAGE gels. 

Gel composition 
Resolving gel 

Stacking gel 
10% 12% 15% 

30% Acrylamide-Bisacrylamide  5 mL 4.5 mL 7.5 mL 1.3 mL 

1.5 M Tris pH 8.8  3.75 mL 3.75 mL 3.75 mL - 

1.5 M Tris pH 6.8  - - - 2.5 mL 

10% (w/v) SDS  150 μL 150 μL 150 μL 100 μL 

H2O  6 mL 5 mL 3.5 mL 6.1 mL 

10% (w/v) APS1 150 μL 150 μL 150 μL 100 μL 

TEMED2 7.5 μL 7.5 μL 7.5 μL 10 μL 

1 Ammonium persulfate 

2 Tetramethylenediamine 

 

Table 3.4 Composition of SDS-PAGE loading buffer and Coomassie staining solution. 

4x SDS-PAGE loading buffer Coomassie staining solution 

Glycerol (20 mL) 

1 M Tris pH 6.8 (20 mL) 

10% (w/v) SDS (10 mL) 

0.5 M EDTA1 pH 8 (1.63 mL) 

β-mercaptoethanol (4 mL) 

Bromophenol blue (20 mg) 

H2O (13 mL) 

Coomassie Brilliant Blue G250 (0.25 g) 

Ethanol (100 mL) 

H2O (900 mL) 

Concentrated HCl (2.5 mL) 

Stir overnight at room temperature 

1 Ethylenediaminetetraacetic acid 

 

3.1.7 Western blot 

Western blot was performed to confirm the presence of properdin and heparinase proteins in 

cell culture supernatant or after protein purification. Buffers and solutions used for western 

blots were prepared according to Table 3.5. Antibodies specific for the different target 

proteins are listed in Table 3.6. Protein samples were first subjected to SDS-PAGE where a 

prestained protein ladder (Thermo Fisher Scientific) was used. The gel was equilibrated in 

western blot transfer buffer for 15 minutes while a polyvinylidene fluoride (PVDF) membrane 

(0.45 μm pore size, Roth) was equilibrated for 10 minutes in methanol, 5 minutes in water, 

and finally another 10 minutes in transfer buffer. Whatman papers (VWR International) were 

briefly moistened with transfer buffer and the blot was assembled as follows from top to 

bottom: 4 Whatman papers, PVDF membrane, SDS-PAGE gel and 4 Whatman papers. 

Protein bands were transferred from the gel to the PVDF membrane by applying a current of 

20 V for 1h. Subsequently, the membrane was incubated for 1 h using milk solution at RT, 
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rinsed three times in Tris-buffered saline solution containing 0.5% (v/v) Tween-20 (TBS-T) 

and incubated overnight at 4°C with the respective primary antibody. On the following day, 

the membrane was rinsed again with TBS-T buffer and incubated for 1 h at RT with the 

respective secondary antibody. The membrane was rinsed once more with TSB-T and 

developed using the Amersham ECL detection reagents following the recommended protocol 

(GE Healthcare). Chemiluminescent detection was conducted with a ChemicDoc MP imaging 

system (Bio-Rad) and visualized using the Image Lab Touch Software (Bio-Rad). 

Colorimetric detection was used to visualize the prestained protein ladder and composite 

figures were generated by overlapping the results from both chemiluminescent and 

colorimetric detections. 

 

Table 3.5 Composition of buffers and solutions used for western blotting. 

Transfer buffer TBS-T buffer Milk solution 

Trizma base (3.025 g) 

Glycine (14.4 g) 

MeOH (200 mL) 

H2O (800 mL) 

Stored at 4°C 

200 mM Tris pH 7.5 

1.5 M NaCl 

0.5% (v/v) Tween-20 

Stored at RT 

5% (w/v) milk powder  

TBS-T buffer 

Freshly prepared 

 

 

Table 3.6 Primary and secondary antibodies used for western blotting. Dilutions performed in milk 

solution prepared in TSB-T as listed in Table 3.5 are indicated for each antibody. 

Primary antibody Dilution Secondary antibody Dilution 

Anti-c-myc (9E10) (Santa Cruz 

Biotech) 

Anti-His tag (Merck) 

Anti-mCherry (Thermo Fisher 

Scientific) 

Anti-Properdin (Abcam) 

1:1000 

 

1:5000 

1:3000 

 

1:2000 

Anti-mouse HRP conjugate 

(Novagen) 

 

Anti-rabbit HRP conjugate 

(Jackson Immuno Research)  

1:5000 

 

 

1:10 000 

 

 

3.1.8 Protein concentration determination 

Protein concentration was determined by measuring UV absorption at 280 nm using a 

NanoDrop ND-100 spectrophotometer (PEQLAB). The theoretical extinction coefficient (ε) at 

280 nm and the molecular weight (MW) of each protein were predicted using the ExPASy 

ProtParam computational tool (Table 9.1) and were used to calculate the protein 

concentration in mg/mL units [259]. 
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3.1.9 Analytical size exclusion chromatography (SEC) 

Analytical SEC was used to analyze the oligomerization state, homogeneity and purity of 

protein samples. A precision column (PC), as listed in Table 3.7, was mounted on an ÄKTA 

Ettan LC system (GE Healthcare) and equilibrated with the respective SEC buffer (indicated 

in the following sections). 30 μL of protein sample were injected via a sample loop previously 

rinsed with SEC buffer, the protein was eluted with an isocratic flow of 0.04-006 mL/min and 

fractions of 50 μL were collected in a 96-well plate. Molecular weights were calculated from 

the elution volumes of the peaks observed in the resulting chromatogram based on standard 

equilibration curves obtained with the GE Healthcare SEC low molecular weight (LMW) and 

high molecular weight (HMW) calibration kits.  

 

Table 3.7 Columns used for high-resolution SEC. The respective molecular separation range is 

indicated in Daltons (Da). Columns were purchased from GE Healthcare. 

Column Separation range (Da) 

Superdex Peptide PC 3.2/300 

Superdex 75 PC 3.2/300 

Superdex 200 increase PC 3.2/300 

Superose 6 PC 3.2/300 

100 - 7 000 (peptides) 

3000  - 70 000 (globular proteins) 

10 000 - 600 000 (globular proteins) 

5000 - 5 000 000 (globular proteins) 

 

3.1.10  Circular dichroism (CD) spectroscopy 

CD spectroscopy is a widely used technique to predict the secondary structure content of 

proteins and monitor their folding in different solution conditions, e.g. various combinations of 

pH, buffer and salts. Optically active molecules, such as proteins, exhibit differential 

absorption of circular polarized light in the far-UV (180 nm to 250 nm) mainly due to 

absorption by peptide bonds. The peptide backbone forms characteristic secondary 

structures such as α-helices, β-sheets, turns, and disordered sections, which exhibit 

distinctive CD spectra in the far-UV [260], [261]. CD spectra of protein and respective buffer 

samples as blanks were recorded on a J-720 spectropolarimeter (JASCO). Measurements 

were carried out at room temperature in a 0.1 cm path length quartz cuvette (Hellma 

Analytics) using a protein concentration of 0.4 mg/mL. Spectra were measured in a 195 nm 

to 250 nm wavelength range with an increment of 0.2 and bandwidth of 1 nm. Each spectrum 

reported in degrees of ellipticity (θ) was baseline corrected and represents spectra from ten 

individual scans. The data were converted to mean residue weight ellipticity (MRE) using 

equation (3.1).  

 

[𝜃]𝑀𝑅𝑊,𝜆 = 
𝑀𝑅𝑊 𝜃𝜆

10𝑑𝑐
                                                   (3.1) 
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The mean residue weight of a protein (MRW) is the molecular weight of the protein (in Da) 

divided by the number of peptide bonds (number of amino acids (N)-1). θ corresponds to the 

observed ellipticity at a given wavelength λ, d is the path length of the cuvette (cm) and c is 

the molar concentration of the measured sample (mol/L) [262]. Secondary structure analysis 

was carried out with the algorithm Beta Structure Selection (BeStSel), which assigns 

proportions of individual secondary structure elements to polypeptide and protein CD 

spectra [263].  

 

3.1.11  Differential scanning fluorimetry (DSF) 

DSF monitors the thermal unfolding of a protein in the presence of a fluorescent dye and is 

typically performed using a real-time PCR instrument. The fluorescence intensity of the dye 

increases in a non-polar environment, such as the hydrophobic core of a protein that 

becomes unfolded and exposed upon heating. Fluorescence is plotted as a function of 

temperature and the unfolding or melting temperature (Tm) of the protein can be derived from 

the inflection point of the resulting melting curve. DSF is mostly use to screen parameters 

that influence protein thermal stability such as protein mutations, ligand binding and buffer 

formulations (pH, salts and additives) [264], [265]. In this work, DSF was performed using a 

LightCycler 480 Real Time PCR (Roche) and the SYPRO ORANGE dye (Invitrogen) or a 

StepOnePlus Real Time PCR and the Protein Thermal Shift dye (Thermo Fisher Scientific). 

DSF was performed in a 96-well format and samples were heated starting from either 4°C or 

20°C to 95°C using a heating rate of 0.02°C/s or 1.6°C/s. SYPRO ORANGE dye was excited 

at 498 nm and the emission wavelength of 610 nm served as a readout. In the case of 

Protein Thermal Shift dye excitation was at 580 nm and the readout at 623 nm. The total 

reaction volume was 20 μL and final protein concentrations varied from 0.15 mg/mL to 

0.4 m/mL with final dye concentrations of 5x for SYPRO ORANGE and 8x for Protein 

Thermal Shift dye. Protein samples were either analyzed in individually prepared buffer 

conditions or after being diluted with solutions from commercial buffers screens (JBScreen 

Thermofluor FUNDAMENT, Jena Bioscience and Solubility & Stability Screen 2, Hampton 

Research). These screens allow the identification of protein-stabilizing buffer conditions, 

which are essential for protein purification, characterization and crystallization.  
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3.2 Project I  

3.2.1 Plasmids 

Plasmid design and site-directed mutagenesis for human properdin production, planned 

using SnapGene or SnapGene Viewer software (GSL Biotech), were based on a publication 

by Pedersen et al. [71]. The gene sequence was codon optimized for expression in 

mammalian cells, synthesized by BioCat and subcloned using HindIII and BamHI restriction 

sites into the pCEP4 episomal mammalian expression vector (Invitrogen). This vector uses 

the cytomegalovirus (CMV) immediate early enhancer/promoter for high-level expression of 

recombinant protein. Human properdin constructs, listed in Table 3.8, were designed with the 

endogenous Kozak sequence and signal peptide. In one of the expression constructs, 

properdin was fused C-terminally to mCherry after removal of mCherry’s endogenous start 

methionine. The mCherry fluorescent protein is frequently used as a reporter gene in the 

expression of cytosolic proteins and was used to detect protein expression and secretion via 

flow cytometry, fluorescence spectroscopy and western blotting. In a further expression 

construct, mCherry was replaced by the c-myc epitope, solely used for detection via western 

blotting. A poly-histidine tag (His10-tag) located at the C-terminal end of both constructs was 

used for purification via Nickel affinity chromatography and a Tobacco Etch Virus (TEV) site 

was inserted before the tag sequences, including mCherry, to allow for proteolytic cleavage. 

 

Table 3.8 Expression plasmids of human properdin. Protein sequence, cleavage site and fusion tags 

are indicated for each construct. The detailed protein sequence is shown in section 9.1. 

Plasmid name Protein sequence Specifications 

Properdin_mCherry Residues 1-4691 C-terminal TEV cleavage site, 

mCherry protein and His10-tag 

Properdin_c-myc Residues 1-469 C-terminal TEV cleavage site, c-myc 

epitope and His10-tag 

Properdin_E244K Mutation E244K C-terminal TEV cleavage site, 

mCherry protein and His10-tag 

1UNIPROT entry P27918  

 

3.2.2 Site-directed mutagenesis 

Properdin_mCherry substitution mutant E244K was generated by site-directed mutagenesis. 

Forward (5’-GGCCTGGCTTACAAGCAGAGGAGATGCACAGGCCTGC-3’) and reverse 

(5’-CATCTCCTCTGCTTGTAAGCCAGGCCGGGGCAAGGCTTTC-3’) primers were obtained 

from biomers.net. Due to the high melting temperature of the primers (Tm > 69°C) a 2-step 

polymerase chain reaction (PCR) was performed in 32 cycles to amplify the DNA. A total 



3 Materials and Methods 

 53 

reaction volume of 50 μL was prepared containing 25 ng of template DNA, 10 mM 

deoxyribonucleotide triphosphate (dNTPs), 25 μM primers and 0.5 μL ExactRun-DNA 

polymerase (Genaxxon bioscience). The time for the extension step at 72°C was calculated 

based on the length of the template DNA (15 s per 1 kb). PCR products were incubated with 

1 μL DpnI (Thermo Fischer Scientific) for 2 h at 37°C to digest template DNA followed by 

purification using the Wizard SV Gel and PCR Clean-up System (Promega) according to the 

manufacturer’s recommendation. The obtained DNA samples were concentrated using a 

vacuum centrifuge (Heto) and transformed in E. coli XL10 gold cells. Single colonies were 

selected, DNA was amplified and the mutation was verified by Sanger sequencing 

(Microsynth Seqlab). 

 

3.2.3 Mammalian cell culture 

FreeStyle 293-F cells purchased from Thermo Fisher Scientific are derived from 293 cells, a 

permanent cell line established from primary embryonal human kidney transformed with 

sheared human adenovirus type 5 DNA and adapted for serum-free suspension culture. 

Cells were cultured in suspension in FreeStyle 293 medium (Gibco) without serum and were 

maintained at 37°C on an orbital shaker platform (Celltron, Infors HT) rotating at 125 rpm in a 

humidified incubator containing 8% CO2. Cell viability and density was determined according 

to the trypan blue dye exclusion method (Trypan blue stain 0.4%, Gibco) using a Neubauer 

chamber [266]. Cells were thawed, cultured and frozen according to the manufacturer’s 

recommendations (Invitrogen). Disposable, sterile Erlenmeyer flasks of 125, 250 or 500 mL 

with vented cap (Corning) were used for cell cultivation. 

 

3.2.4 Transient transfection of expression constructs 

The protocol described here is representative for a transfection in one flask of 500 mL 

containing a cell suspension of 160 mL. This protocol was improved by reducing the cell 

density on the day of transfection and by using a ratio of 1:4 of transfection reagent to DNA 

for transient transfection. Approximately 24 h before transfection, cells were passaged at 

0.6 x 106 or 0.7 x 106 cells/mL. On the day of transfection, the cell density was about 

1.5 x 106 cells/mL and cells were diluted with pre-warmed medium at 37°C to 

1 x 106 cells/mL. Viability of cells was usually higher than 85% and cells were transiently 

transfected using final concentrations of 0.5 mg/L plasmid DNA and 2 mg/L polyethylenimine 

(PEI-25 kDa, Polysciences). Mixtures containing plasmid DNA and the transfection reagent 

PEI diluted into OptiPro SFM medium (Gibco) were prepared separately with a total volume 

of 2.4 mL and incubated for 5 min at room temperature. The two mixtures were subsequently 

combined and incubated for 15 min at room temperature to allow complex formation. The 

DNA-lipid mixture was then slowly added to the cell suspension while swirling the flask. 
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Transfected cells were incubated at 37°C, 8% CO2 on an orbital shaker platform rotating at 

125 rpm. After 7 days of incubation, medium containing the secreted protein was harvested 

and cell debris was removed by centrifugation at 4 000 x g for 10 min. Harvested supernatant 

was either frozen at -20°C or directly used for purification of target proteins. Volumes of cell 

suspension and DNA-lipid mixture were proportionally adapted when using flaks of 125 mL 

or 250 mL. 

 

3.2.5 Immunoprecipitation of His-tagged proteins 

To detect secreted properdin via western blotting, His-tagged proteins present in the 

harvested supernatant were enriched by immunoprecipitation. Immunoaffinity resin coated 

with anti-His monoclonal antibody (GenScript) was resuspended and 100 μL of the slurry 

was transferred to a 1.5 mL tube. 500 μL of TBS buffer were added to the resin and the 

mixture was centrifuged at 10 000 rpm for 60 s at 4°C. Afterwards, buffer was discarded and 

this washing step was repeated twice. 100 μL of concentrated cell supernatant, previously 

concentrated 10-fold with a Vivaspin 20 centrifugal concentrator with a molecular weight 

cutoff (MWCO) of 50 kDa (Sartorius), were added to the tube containing the washed resin 

and the solution was mixed gently. Subsequently, the anti-His affinity resin was incubated 

with the supernatant for 4 h at 4°C while rotating the tube on a shaker platform to allow 

binding of the histidine residues of the target protein to the resin. After incubation, the tube 

was centrifuged once more at 10 000 rpm for 60 s at 4°C, supernatant was discarded and 

the washing step was repeated three times. For visualization of immunoprecipitated proteins, 

resin with the bound target protein was mixed with 30 μL of SDS-PAGE loading buffer and 

the mixture was heated for 10 min at 95°C followed by centrifugation at 10 000 rpm for 60 s 

at 4°C to spin down the resin. Supernatant was collected and analyzed by western blotting.  

 

3.2.6 Fluorescence measurement 

Expression and secretion of properdin fused to mCherry was followed within a period of 

7 days post-transfection by measuring the mCherry fluorescence as previously reported by 

Duellman et al. [267]. 50 μL of transfected cell suspension were mixed with the same amount 

of water and centrifuged at 15 000 rpm for 1 min. 90 μL of the mixture were transferred to a 

black 96-well F-bottom plate (Greiner Bio-One) and fluorescence intensity was recorded with 

an infinite M200 microplate reader (Tecan). mCherry fluorescence was measured using an 

excitation wavelength/bandwidth of 590/9 nm and an emission wavelength/bandwidth of 

645/20 nm. Measurements were performed in duplicate and non-transfected cells were used 

to determine the background signal.  
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3.2.7 Fluorescence-activated cell sorting (FACS) analysis 

Flow cytometry can be used to assess and optimize transfection efficiency of transient gene 

expression at the cell level. In this work, the fluorescence of mCherry fused to properdin was 

measured to quantify target protein expression. Samples of 500 μL of cell suspension were 

collected post-transfection and centrifuged at 300 x g for 10 min using a table 

centrifuge 5415D (Eppendorf). Medium was discarded and transfected cells were washed 

with 500 μL of phosphate-buffered saline (PBS) and the previous centrifugation step was 

repeated. After removing the PBS solution, cell pellet was resuspended in 150 μL PBS and 

transfection efficiency was analyzed by flow cytometry using CytoFlex S (Beckman Coulter). 

To measure fluorescence-expressing cells, the flow cytometer was set to 10 000 events for 

the different experiments. Non-transfected cells were used as a negative control for 

appropriate gating and to measure background fluorescence. Data were analyzed using the 

FACSDiva software (Beckman Coulter) and dot plots of forward scatter (FSC) versus side 

scatter (SSC) of mCherry-producing cells were generated. A gate was designated on each 

dot plot to include as many mCherry-positive cells as possible. In addition, a histogram plot 

of cell counts versus fluorescent signal was generated using the CytoFlex channel ECD. The 

fluorescent dye was excited with a 561 nm laser and the emitted light was detected with a 

610/20 band pass (BP) fluorescent channel. In this plot, the % of fluorescent cells 

(successfully transfected) within the total cell population was reported.  

 

3.2.8 Ni2+ affinity chromatography 

Ni2+ affinity chromatography was used as a first purification step for His-tagged proteins. 

Harvested supernatant containing target secreted protein (500 mL to 1L) was diluted in buffer 

containing 20 mM sodium phosphate, 500 mM NaCl, 5 mM imidazole with the pH adjusted to 

7.4. Diluted supernatant was loaded onto a 5 mL HisTrap excel column (GE Healthcare) at a 

flow rate of 1.5 mL/min using a peristaltic pump. After loading, the column was mounted on a 

ÄKTA purifier system (GE Healthcare) and washed with 25% washing buffer containing 

20 mM sodium phosphate pH 7.4, 0.5 M NaCl, 10 mM imidazole. After removing 

unspecifically bound proteins, a stepwise gradient of elution buffer containing 500 mM 

Imidazole was applied to elute the target protein. A first step of 85% elution buffer was 

applied for 3 mL and the pump was paused for about 30 min to allow the dissociation of 

histidine residues from the nickel resin. A flow rate of 1 mL/min was used to elute properdin 

fused to mCherry or c-myc and 1 mL fractions were collected. A step of 100% elution buffer 

was subsequently applied to elute the remaining protein bound to the column. Collected 

fractions were analyzed by SDS-PAGE and fractions containing target protein were pooled 

and concentrated using a Vivaspin 20 centrifugal concentrator with a MWCO of 

50 kDa (Sartorius). 
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3.2.9 Tag cleavage and reverse Ni2+ affinity chromatography 

To remove the C-terminal His-tag as well as the mCherry or the c-myc epitope, concentrated 

protein fractions were incubated with TEV protease (1 μg of TEV /10 μg of target protein) 

previously diluted 1:10 in cleavage buffer containing 20 mM sodium phosphate pH 7.4, 

500 mM NaCl and 0.5 mM Ethylenediaminetetraacetic acid (EDTA). The mixture containing 

His-tagged protein and His-tagged TEV protease was dialyzed overnight at 4°C against the 

cleavage buffer using a dialysis membrane with a MWCO of 6-8 kDa (Spectrum Labs). 

Dialyzed protein was filtered and applied onto a 1 mL HisTrap ExCel column 

(GE Healthcare) at a flow rate of 0.8 mL/min. Washing and elution buffers, used in the first 

Ni2+ affinity chromatography step, were used once again in this purification step to separate 

cleaved target protein. Cleaved properdin was collected in the flow-through, whereas 

mCherry or c-myc fused to His-tag as well as the TEV protease were eluted from the column 

with 100% buffer B. Fractions containing cleaved properdin were pooled, concentrated and 

dialyzed overnight at 4°C against SEC buffer containing 10 mM HEPES pH 7.3 and 150 mM 

NaCl. Protein stability and oligomerization were analyzed via analytical SEC using a 

Superose 6 PC 3.2/300 column. To further characterize properdin, DSF and CD 

measurements were performed using SEC buffer, as described in section 3.1.  

 

3.2.10  Protein deglycosylation  

Deglycosylation of properdin was attempted with the use of endoglycosidases Endo Hf and 

PNGase F (New England Biolabs) to release the N-linked oligosaccharides produced by the 

mammalian cells. Protein samples were separately incubated with an excess of enzyme to 

cleave off the N-linked oligosaccharides overnight at 4°C. Samples were analyzed by 

SDS-PAGE on the following day. 

 

3.2.11  Isolation of sheep erythrocytes and hemolytic complement assay 

To assess the biological activity of different properdin preparations, the complement activity 

hemolytic assay was performed using sheep erythrocytes (RBCs) as previously reported by 

Blaum et al. [101]. This assay was originally designed by Sánchez-Corral et al. to detect 

Factor H related complement regulatory defects in patients [268]. RBCs were obtained from 

defibrinated sheep blood (TCS Biosciences), whereas commercial properdin (Factor P), 

properdin-depleted serum and normal human serum (NHS) were obtained from Complement 

Technologies. 1 mL of sheep RBCs was transferred to a 15 mL falcon tube and diluted with 

10 mL of 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) gelatin from pork skin (Fluka) and 

5 mM EDTA. EDTA was used to chelate and remove Ca2+ ions from the cell suspension in 
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order to inhibit the Ca2+-dependent classical pathway during hemolysis. The cell suspension 

was gently mixed and centrifuged at 500 x g for 10 min at 4°C. The supernatant and a layer 

of leukocytes were discarded and the procedure was repeated twice with the same buffer 

and subsequently three times with 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) gelatin, 

5 mM MgCl2 and 5 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid 

(EGTA). EDTA was replaced by EGTA to selectively bind Ca2+ from serum but not Mg2+, 

since this ion is a cofactor to complement Factor B. The sample was centrifuged at 1 000 x g. 

After discarding the supernatant, cells were stored at 4°C overnight and the washing step 

was repeated once more with 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) gelatin, 

5 mM MgCl2 and 5 mM EGTA to remove lysed cells before proceeding with the hemolytic 

assay. The amount of cells was determined by measuring the absorption at 412 nm (A412). 

An A412 value of 0.87 at 1 cm path length corresponds to a cell concentration of 

5 x 108 RBCs/mL (Kerry Pangburn, Complement Technologies, personal communication). 

Cells were treated with neuraminidase from Clostridium perfringens (New England Biolabs) 

to remove sialic acid. Approximately 6 x 109 cells were resuspended in a total reaction 

volume of 100 μL using buffer containing 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) 

gelatin and 500 units of neuraminidase and the reaction was incubated for 30 min at 37°C. 

Afterwards, 150 μL of 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) gelatin, 5 mM MgCl2 

and 5 mM EGTA were added and the cells were centrifuged at 500 x g for 1 min at 4°C. The 

supernatant was removed and the washing step was repeated twice. For the hemolytic 

assay, approximately 1.7 x 108 neuraminidase-treated cells and cells that were treated 

identically except for the omission of the neuraminidase treatment were used. Cells were 

mixed with 20 μL of NHS (intact, heat-inactivated for 30 min at 56°C or properdin-depleted) 

and buffer 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) gelatin, 5 mM MgCl2 and 5 mM 

EGTA and/or properdin (10 μg/mL and 15 μg/mL) to obtain a total reaction volume of 40 μL. 

The reaction, prepared in a V-shaped bottom 96-well plate (Greiner Bio-One) was incubated 

for 20 min at 37°C. Hemolysis was stopped by addition of 150 μL cold buffer containing 

20 mM HEPES pH 7.3, 145 mM NaCl and 5 mM EDTA, followed by centrifugation at 

1500 x g for 5 min at 4°C. 150 μL of the supernatant was transferred to a F-bottom UV-star 

transparent 96-well plate (Greiner Bio-One) and the absorbance at 415 nm was measured 

using an infinite M200 microplate reader (Tecan). Results are expressed relative to the total 

osmolysis of RBCs in water. The experiment was repeated two times and a standard error 

was calculated for each sample. 

 

3.2.12  Saturation transfer difference nuclear magnetic resonance (STD-NMR)  

Ligand-based NMR spectroscopy techniques such as STD-NMR have been widely used for 

directly monitoring ligand binding to protein receptors in solution. STD-NMR can be used to 

study weak protein-ligand interactions (Kd in mM to μM range) via non-scalar magnetization 
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transfer from a large protein to smaller ligands, e.g. glycans. Since signals from small ligands 

are observed, the molecular weight of the protein is not a limiting factor in an STD 

experiment, unlike in protein-observed NMR techniques. Mixtures containing different ligands 

can be efficiently screened as long as resonances from the ligands do not 

overlap [269], [270]. The STD-NMR experiment is based on the nuclear Overhauser effect 

between the protein and the ligand in the case of complex formation with fast off-rates. In 

STD experiments, a spectrum obtained with selective saturation of protein proton 

resonances (on-resonance spectrum) is subtracted from a spectrum recorded without such 

selective protein saturation (off-resonance spectrum). In the resulting difference spectrum 

only proton resonances of the ligand that received saturation indirectly from the protein 

(saturation transfer) will remain. Non-bound ligands that are present in the same solution do 

not experience such saturation transfer, their signals are, therefore, of equal intensity in the 

on- and off-resonance spectra and will not appear in the resulting difference spectrum. For a 

ligand that binds to the receptor only resonances belonging to those protons of the ligand 

that are in close contact to the protein (up to 5 Å) receive saturation transfer and appear in 

the difference spectrum, with their relative intensities reflecting the positioning with respect to 

the protein. Based on this procedure the binding epitope on the ligand can be determined 

from STD experiments [271].  

 

NMR spectra were recorded between 283 K and 287 K using 3 mm tubes (200 μL sample 

volume) on a Bruker AVIII-600 MHz spectrometer equipped with a room temperature probe 

head. Data were processed with TOPSPIN 3.0 (Bruker). Samples for STD-NMR spectra 

contained 1 mM of each of the different glycans (Table 3.9) and 15-15.7 μM of properdin 

fused to mCherry or properdin after tag removal. Before NMR experiments, proteins were 

buffer exchanged with 10 kDa MWCO Slide-A-Lyzer Mini devices (Thermo Fisher Scientific) 

to NMR buffer containing 20 mM potassium phosphate, pH 7.4, 150 mM NaCl in D2O. 

Glycan samples of the same concentration but with no protein present were used as controls 

to verify that no direct excitation of the glycans occurred during the on-resonance irradiation 

step of the STD pulse program. Off- and on-resonance irradiation frequencies were set to 

−30 ppm and, depending on the glycan, to 0 ppm or 6.9 ppm, respectively. The irradiation 

power of the selective pulses was 57 Hz, the saturation time was 2 s, and the total relaxation 

delay was 3 s. A 50-ms continuous-wave spin-lock pulse with a strength of 3.2 kHz was used 

to suppress residual protein signals. A total number of 512 scans were recorded. Spectra 

were multiplied with a Gaussian window function prior to Fourier transformation.  
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Table 3.9 Glycans used for STD-NMR experiments. 

Glycan Sequences 

Arixtra or Fondaparinux (Mylan) 

TF antigen (Elicityl) 

HepMer1 M06 S03a (Iduron) 

HepMer1 M09 S06a (Iduron) 

Hep dp4 (Iduron) 

Hep dp6 (Iduron) 

Polysialic acid dp52 

Lactose (Elicityl) 

Asialo-GM1 (Elicityl) 

GlcNS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S-OMe 

Galβ1-3GalNAc disaccharide 

(GlcNS-GlcA)3-p-nitrophenyl  

(GlcA-GlcNS)2-(GlcA-GlcNS6S)2-GlcA-p-nitrophenyl 

Heparin tetrasaccharide 

Heparin hexasaccharide 

α2,8-linked Neu5Ac dp5 

Galβ1-4Glc  

Galβ1-3GalNAcβ1-4Galβ1-4Glc 

1HS/Heparin oligomers of defined sequence 

2 Provided by Prof. Harald Neumann, University of Bonn 
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3.3 Project II  

3.3.1 Plasmids 

Plasmid design was initially performed based on a publication from Han et al., reporting the 

first crystal structure of bacterial heparinase I from B. thetaiotaomicron [174]. All expression 

constructs were designed using the SnapGene or SnapGene Viewer software.  

Genes were synthesized either by Eurofins Genomics (Ebersberg) or BioCat (Heidelberg) 

and subcloned using NdeI and BamHI or NdeI and XhoI restriction sites into pET28a and 

pET21b vectors, respectively. All sequences were codon optimized for expression in 

E. coli (DE3) strains. With the exception of construct HepIv2, which contained part of the 

native signal peptide at the N-terminus, in constructs HepIv1 and HepIv3 the signal peptide 

was omitted (Table 3.10). A His6-tag located at the N- or C-terminal end was used for 

purification via Ni2+-affinity chromatography. Thrombin and human rhinovirus 3C protease 

(HRV3C) cleavage sites were inserted into HepIv1 and HepIv2 constructs, respectively.  

 

Table 3.10 Plasmids used to express recombinant heparinase I from P. heparinus. The detailed 

protein sequence is shown in section 9.1 

Plasmid name Protein sequence Vector Antibiotic Specifications 

HepIv1 Residues 22-3841 pET28a 

 

Kanamycin 

 

N-terminal His6-tag, 

thrombin cleavage site 

HepIv2 Residues 12-384 pET28a Kanamycin N-terminal His6-tag, 

HRV3C cleavage site  

HepIv3 Residues 22-384 pET21b Ampicillin C-terminal His6-tag  

1UNIPROT entry Q05819 

 

3.3.2 Expression of heparinase constructs in E. coli cells 

For gene expression, overnight cultures containing 10-20 mL of LB medium supplemented 

with 50 μg/mL Kanamycin or 100 μg/mL Ampicillin were either inoculated with bacteria from 

glycerol stocks or a single bacteria colony from LB-Agar plates. Starter cultures were grown 

overnight at 37°C and 110 rpm for 12-16 h and added to larger expression cultures 

containing 1-2 L of LB medium supplemented with the respective antibiotics. Incubation at 

37°C and 90 rpm was performed until an optical density at 600 nm (OD600) of 0.5-0.7 was 

reached. Target gene expression was induced by addition of 0.1 mM to 1 mM of 

isopropyl-β-D-thiogalactopyranoside (IPTG) and overnight cultivation at 20°C and 90 rpm. 

The next morning, cells were harvested by centrifugation at 7 000 rpm and 4°C for 20 min 

(Sorvall RC 6+, rotor SLC-4000). Cell pellets were either directly used for purification or 

stored at -80°C. 
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3.3.3 Cell disruption  

Cell pellets were resuspended in 10 mL of lysis buffer/g of wet cells and supplemented with 

one cOmplete, Mini, Ethylenediaminetetraacetic acid (EDTA)-free tablet (Roche) and 0.1 unit 

of Benzonase (Novagen) per approximately 50 mL of cell suspension to inhibit serine and 

cysteine proteases and degrade nucleic acids, respectively. Different buffers were used for 

cell disruption depending on the expressed construct (Table 3.11). Lysis was performed 

either by homogenizing the cells on an Avestin EmulsiFlex C3 instrument at a pressure of 

700-800 bar for 20-30 min or by sonication using a Branson Digital Sonifier. Lysis of culture 

from a large-scale expression was conducted with an amplitude of 40% and an overall pulse 

time of 4-6 min (cycles of 0.5 s pulse on and 0.5 s pulse off) while cooling the cells in an ice 

bath. Cell debris were removed by centrifugation at 17 000 rpm and 4°C for 30 min (Sorvall 

RC 6+, rotor: SS-34). The supernatant was collected and sterile filtered with a sterile 0.22 μm 

nitrocellulose membrane filter (Millipore).  

 

Table 3.11 Lysis buffer used for cell disruption. 

HepIv1 construct HepIv2/HepIv3 constructs 

50 mM Tris-HCl pH 7.5/ pH 8 

500 mM NaCl 

10 mM imidazole 

 

50 mM HEPES pH 8 

150 mM NaCl 

5 mM β-mercaptoethanol 

125 mM L-Arginine hydrochloride 

0.01% (w/v) Triton X-100  

 

3.3.4 Ni2+ affinity chromatography 

Ni2+ affinity chromatography was used as a first purification step for all expressed 

heparinase I constructs due to the presence of a His6-tag at the N- or C-terminal end of the 

protein. Protein extracts were loaded onto a 5 mL HisTrap FF crude column (GE Healthcare) 

mounted either on a ÄKTA prime plus or ÄKTA purifier system (GE Healthcare) at a flow rate 

of 1 mL/min, and pre-equilibrated with washing buffer. The column was washed with 5-20% 

of elution buffer to remove unspecifically bound proteins. For the purification of HepIv2, an 

additional washing step was included with a buffer containing 1 M NaCl and 20% (v/v) 

glycerol to disrupt ionic and hydrophobic interactions formed with the target protein. 

His-tagged target protein was eluted from the column using linear or stepwise gradients of 

elution buffer (Table 3.12). Collected fractions were analyzed by SDS-PAGE and fractions 

containing target protein were pooled and concentrated using a Vivaspin 20 centrifugal 

concentrator with a MWCO of 10 kDa (Sartorius).  
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Table 3.12 Buffers used for the first purification step of heparinase I. Washing and elution buffers are 

indicated for the purification of each construct. 

Buffer HepIv1 construct HepIv2/HepIv3 constructs 

Washing 

 

 

 

Elution 

50 mM Tris-HCl pH 8 

500 mM NaCl 

10 mM imidazole 

 

Washing buffer containing 500 mM 

imidazole 

50 mM HEPES pH 8 

150 mM NaCl 

5 mM β-mercaptoethanol 

20 mM imidazole  

Washing buffer containing 500 mM 

imidazole 

 

3.3.5 His-tag cleavage and reverse Ni2+ affinity chromatography of HepIv1 

To remove the N-terminal His-tag from HepIv1 construct, bovine thrombin protease 

(Calbiochem) was added to the pooled fractions containing target protein (1 unit of thrombin/ 

0.5 mg of His-tagged protein). The mixture was dialyzed against a buffer containing 50 mM 

Tris-HCl pH 8, 150 mM NaCl, 2.5 mM CaCl2 and 1 mM DTT overnight at 4°C using a dialysis 

membrane with a MWCO of 6-8 kDa (Spectrum Labs). Dialyzed samples were filtered and 

applied onto a 5 mL HisTrap FF crude column connected to a 1mL HiTrap Benzamidine FF 

column (GE Healthcare) at a flow rate of 1 mL/min. Cleaved protein was collected in the 

flow-through fractions and dialyzed into a buffer containing 5 mM HEPES pH 7.5, 

150 mM NaCl and 1 mM DTT. His-tagged protein as well as cleaved His-tag and thrombin 

protease remained bound to the HisTrap and HiTrap Benzamidine columns.  

 

3.3.6 Preparative size exclusion chromatography  

SEC was used as final purification step to separate molecules according to their 

size/oligomerization state and exchange the buffer of HepIv1. A Superdex 200 Increase 

10/300 GL column (GE Healthcare) mounted on a BioLogic DuoFlow chromatography 

system (Bio Rad) was equilibrated with SEC buffer containing 50 mM HEPES pH 7.5, 

150 mM NaCl and 1 mM TCEP or a buffer containing 20 mM Super buffer (citric 

acid:HEPES:CHES 2:3:4) pH 4, 250 mM NaCl and 1 mM TCEP. 500 μL of filtered protein 

sample was injected via a sample loop previously rinsed with water and SEC buffer. Protein 

was eluted with an isocratic flow of 0.6 mL/min and collected fractions were analyzed by 

SDS-PAGE. Fractions containing target protein were pooled and concentrated using a 

Vivaspin 20 centrifugal concentrator with a MWCO of 10 kDa (Sartorius). Purified protein was 

either kept at 4°C or flash frozen and stored at -80°C. 
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3.3.7 Ion exchange chromatography (IEX)  

Cation exchange chromatography was used as a second purification step for the HepIv2 and 

HepIv3 constructs since heparinase I has a theoretical isoelectric point above 9 and is, 

therefore, positively charged at the pH used for the purification (Table 9.1). Pooled and 

concentrated fractions from the Ni2+ affinity column were applied onto one or more 

gravity-flow PD-10 desalting columns (GE Healthcare), depending on the protein volume. 

Buffer was exchanged to IEX start buffer containing 50 mM HEPES pH 8, 20 mM NaCl and 

5 mM β-mercaptoethanol to decrease the sample ionic strength prior to IEX. The recovered 

protein solution was filtered at 0.22 μm and applied with a flow rate of 0.8 mL/min onto a 

1 mL HiTrap SP Sepharose FF (GE Healthcare), previously equilibrated with start buffer. 

After washing the column with start buffer, steps of 5 % and 10% of elution buffer containing 

1 M NaCl were applied followed by a linear gradient up to 100% of elution buffer. 

Protein-containing fractions were analyzed by SDS-PAGE and pooled accordingly. The 

combined eluted fractions containing heparinase were further dialyzed against a buffer 

containing 50 mM HEPES pH 7.5, 150 mM NaCl, 2 mM DTT and stored at 4°C or -80°C. 

 

3.3.8 Crystallization and crystal testing 

Initial crystallization trials were performed on 96-well sitting drop crystallization plates (Intelli 

plate, Art Robbins Instruments) with commercially available screens (from Qiagen, Molecular 

Dimensions and Hampton Research) and a reservoir volume of 50 μL or 100 μL. His-tagged 

or cleaved HepIv1 as well as His-tagged HepIv2 at final concentrations ranging from 

0.7 mg/mL to 8 mg/mL were used. Crystal trial drops were set using an automated 

crystallization robot (Freedom evo, Tecan or Gryphon, Art Robbins Instruments) by pipetting 

0.2-0.3 μL of protein solution and 0.2-0.3 μL of reservoir solution for each crystallization 

condition. Crystallization plates were sealed and incubated at 4°C or 20°C. To distinguish 

between salt and protein crystals and verify their diffraction quality, crystals were flash frozen 

in liquid nitrogen and tested with an in-house X-ray diffraction system equipped with a 

rotating copper anode X-ray generator (MicroMax-007HF, MSC Rigaku) and a mar345 dtb 

image plate detector (Marresearch) at CuKα-radiation (λ=1.5418 Å). 

 

3.3.9 Heparinase activity assay 

Heparinase activity was analyzed by measuring formation of the C4-C5 double bond at the 

non-reducing end of oligosaccharide products indicated by absorption at 232 nm. The 

experimental procedure used was based on the activity assay protocol recommended by 

R&D systems. The activity assay was performed using commercial heparinase I purchased 

from R&D systems and recombinantly produced HepIv1 (1.15 mg/mL) stored in buffer 
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containing 50 mM HEPES pH 7.5, 150 mM NaCl and 2 mM DTT. A stock solution of 

20 mg/mL of sodium heparin substrate (Bioiberica) was initially prepared in water. 300 μL 

reactions were prepared in a F-bottom UV-star transparent 96-well plate (Greiner Bio-One) 

with heparinase I (0.5 μL, 5 μL or 10 μL) and 0.75 mg/mL of sodium heparin diluted in assay 

buffer containing 50 mM Tris-HCl pH 7.5, 100 mM NaCl and 2 mM, 5 mM or 10 mM CaCl2. 

A substrate blank prepared with heparin substrate and assay buffer was included to 

determine the background absorbance. All assays were performed at 35°C based on 

findings from Lohse and Linhardt, who determined this to be the optimal temperature for 

activity of heparinase I from P. heparinus [145]. The enzymatic depolymerization was 

monitored by UV absorption measurements at 232 nm with an infinite M200 microplate 

reader (Tecan) at regular intervals of 20 s. Reactions were stopped by incubation at 100°C 

for 3 min and the depolymerization solution was then filtered and analyzed via analytical 

SEC. Heparin-derived oligosaccharides were size-fractionated on a Superdex Peptide 

PC 3.2/300 column and eluted with assay buffer containing 10 mM CaCl2. Separation of 

heparin-derived oligosaccharides was monitored by UV absorption at 232 nm.  
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3.4 Project III  

3.4.1 Samples 

Pure JNK3 protein and 4-methyl-5-(pyridine-4-yl) imidazole derivatives (compounds 38 

and 44) used for crystallization and nanoDSF experiments were provided by Prof. Dr. Frank 

M. Böckler and Dr. Francesco Ansideri, respectively, from the Institute of Pharmaceutical 

Sciences from the University of Tübingen. JNK3 was purified according to the experimental 

procedure described by Lange et al. [272] and stored in 50 mM HEPES pH 7, 100 mM NaCl, 

2 mM MgCl2, 10 mM β-mercaptoethanol buffer at -80°C. Solutions of compounds 38 and 44 

were prepared in dimethyl sulfoxide (DMSO) to final concentrations of 100 mM and stored at 

-20°C.  

 

3.4.2 Crystallization 

Initial JNK3 crystals were obtained following the experimental procedure described by Lange 

et al. [272]. A mixture containing pure JNK3 in 50 mM HEPES pH 7, 100 mM NaCl, 2 mM 

MgCl2, 10 mM β-mercaptoethanol buffer as well as 1 mM AMP-PCP 

(β,γ-methyleneadenosine 5′-triphosphate disodium salt (Sigma-Aldrich)), 0.4 mM Zwittergent 

(Calbiochem) and 10% (v/v) ethylene glycol was prepared and incubated on ice for 30 min. 

Final protein concentration was 10 mg/mL and a reservoir solution containing 0.1 M Bis-Tris 

pH 5.5, 0.2 M NaCl and 28-31% (v/v) PEG 3350 was used for crystallization. Drops were set 

up with 1 μL of protein mixture and 1 μL reservoir solution, and crystals were grown at 20°C 

using the sitting drop vapor diffusion method. To improve the initial crystal quality, lower 

protein concentrations and microseeding were used. Best diffracting crystals were obtained 

using a final JNK3 concentration of 5 and 2.5 mg/mL together with microseeding and a 

reservoir solution containing 29% (v/v) of PEG 3350. A seed stock for microseeding was 

prepared using initial crystals that were crushed in 50 μL reservoir solution by vortexing with 

a Polytetrafluoroethylene (PFTE) bead (Hampton Research). Serial tenfold dilutions of the 

seed stock were prepared with reservoir solution and 0.2 μL of seed solution were 

transferred to a freshly prepared crystallization drops. After one week, AMP-PCP containing 

crystals were incubated with compounds 38 and 44 for 36 h. The drop solution was gradually 

exchanged by reservoir solution supplemented with 10 mM of either compound 38 or 44 

previously prepared in DMSO. For data collection, crystals incubated with compounds were 

cryoprotected by stepwise incubation in reservoir solution containing 10 mM of the respective 

compound and 15% (v/v) glycerol. For structural comparison, AMP-PCP containing crystals 

without compounds were   also analyzed. For cryoprotection, 15% (v/v) glycerol was added 

to the reservoir solution. Cryoprotected crystals were collected in nylon loops and 

flash-frozen in liquid nitrogen for synchrotron data collection.  
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3.4.3 Data collection and structure determination  

Diffraction quality of protein crystals was evaluated using the in-house X-ray diffraction 

system. Full data sets were collected at the X06DA beamline at the Swiss Light Source (Paul 

Scherrer Institute, Villigen, Switzerland) at 100 K using a Pilatus 2M-F detector and a 

wavelength of 1 Å. Diffraction images were indexed, integrated and scaled using XDS [273]. 

Phase information was obtained by molecular replacement with MOLREP [274] using a 

search model derived from another JNK3-inhibitor complex structure (PDB ID 4X21) [272]. 

For structural refinement alternating model building and reciprocal refinement cycles were 

performed. Model building was carried out with Coot [275] and restrained reciprocal 

refinement including transition-libration-screw (TLS) parameterization was performed with 

REFMAC5 [276]. After the final refinement step, ligand molecules were removed from the 

model and a simulated annealing omit difference map was calculated with PHENIX [277]. 

The final structures were validated using MolProbity [278].  

 

3.4.4 Nano differential scanning fluorimetry (nanoDSF) 

To analyze the influence of ligand binding on JNK3 stability, nanoDSF measurements were 

conducted using a Prometheus NT.48 instrument (NanoTemper Technologies). With this 

dual-UV technology, protein unfolding can be followed by monitoring changes in intrinsic 

fluorescence of tryptophans and tyrosines as a result of their exposure to aqueous buffer 

environment.  

 

Protein and ligand samples were prepared in protein buffer containing 50 mM HEPES pH 7, 

100 mM NaCl, 2 mM MgCl2, 10 mM β-mercaptoethanol. Compounds (stock concentration of 

10 mM in DMSO) and AMP-PCP (stock concentration of 19 mM in protein buffer) were 

diluted to 100 μM in protein buffer. Final concentrations of 5 μM JNK3 and 50 μM ligand were 

used. 10 μL of each sample were loaded into glass capillaries and measured in triplicates. 

Capillaries were heated from 20 to 70°C with a heating rate of 1°C/min. Changes in 

fluorescence were monitored as the ratio of the emission wavelengths 350 and 330 nm as a 

function of temperature. First derivative analysis was used to determine unfolding 

temperatures (Tm). 
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4 Project I  

The role of properdin in the activation of the 

alternative complement pathway 

 

 

 

Contributions to this work 

Dr. Katharina Hipp from the electron microscopy facility of the Max Planck Institute for 

Developmental Biology, Tübingen, analyzed purified properdin samples by negative-stain 

transmission electron microscopy (TEM). Dr. Lisete Silva and Dr. Yan Liu from the 

Glycosciences laboratory, Department of Medicine from the Imperial College London, 

performed and analyzed a glycan array screening of purified properdin. Dr. Bärbel Blaum 

from the Interfaculty Institute of Biochemistry, University of Tübingen, carried out STD-NMR 

measurements. 
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4.1 Results 

4.1.1 Design of properdin expression constructs 

Expression constructs of human properdin for recombinant production in mammalian cells 

were designed based on a publication by Pedersen et al. using a pCEP4 expression 

vector [71]. These constructs contained the endogenous Kozak sequence (CAAATGA) 

followed by the native signal peptide of properdin required for secretion, which comprises 

27 amino acids. The designed sequence lacked the native properdin stop codon, TAA, 

reported to terminate the properdin gene [279]. Instead, a c-myc tag or the fluorescent 

protein mCherry tag were C-terminally fused to properdin after a TEV cleavage site and 

glycine/serine linker to facilitate detection of protein expression and protein 

purification (Figure 4.1).  

 

 

Although the gene reporter mCherry is often used for detection of cytosolic proteins, in this 

work mCherry was C-terminally fused to properdin (properdin_mCherry) and protein 

expression was analyzed by fluorescence measurements. In a second construct, the 

mCherry sequence was replaced with the c-myc epitope (properdin_c-myc), which is 

commonly used to detect protein expression via western blots. Additionally, both constructs 

comprised a His10-tag at the C-terminus for purification via Ni2+ affinity chromatography.  

  

Figure 4.1 Expression constructs designed for the recombinant production of human properdin in 

mammalian cells. The TEV cleavage site is indicated and c-myc and mCherry tags used for detection 

are highlighted in different colors. The different box length indicates the relative size of the proteins. 

TSR stands for thrombospondin repeat. 
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4.1.2 Transient transfection and expression of properdin  

The mammalian FreeStyle 293-F cell line adapted to suspension culture in serum-free 

medium was used to express both the properdin_mCherry and the properdin_c-myc 

constructs. Cells were transiently transfected with 0.5 mg/L plasmid DNA and 2 mg/L PEI 

and incubated at 37°C, 8% CO2 on an orbital shaker platform rotating at 125 rpm. 

Supernatant containing secreted properdin was collected 3 days post-transfection, 10-fold 

concentrated using a Vivaspin 20 centrifugal concentrator and immunoprecipitated using an 

anti-His affinity resin in order to increase the concentration of target protein for detection. 

Supernatant from transfected cells without plasmid DNA was treated identically and used as 

a negative control to identify unspecific bands in SDS-PAGE and western blot analysis. 

Samples of the collected supernatant before and after concentration and 

immunoprecipitation were analyzed by SDS-PAGE and identical bands were observed for all 

samples with the exception of a faint band at approximately 100 kDa within the concentrated 

supernatant of cells transfected with the properdin_mCherry construct (Figure 4.2A). This 

band could correspond to secreted properdin fused to mCherry although the calculated 

molecular weight based on the primary amino acid sequence would be only 78.1 kDa (Table 

9.1). Since western blotting is more sensitive than SDS-PAGE and specific antibodies were 

available to identify the target proteins, samples of collected supernatant were analyzed 

using anti-mCherry and anti-c-myc as primary antibodies, respectively. For the western blot 

incubated with anti-mCherry no significant bands were observed for the negative control and 

samples containing properdin fused to c-myc. However, supernatant samples of 

properdin_mCherry showed two identical strong bands at about 100 kDa, which most likely 

corresponded to the secreted and glycosylated properdin fused to mCherry (Figure 4.2B). 

Instead, for the western blot incubated with anti-c-myc antibody, multiple bands were 

observed for all concentrated and immunoprecipitated supernatant samples, including the 

negative control (Figure 4.2C). These bands observed at MWs lower than 55 kDa resulted 

from unspecific binding of the antibody to the anti-His affinity resin used for 

immunoprecipitation. Protein bands with higher intensity were observed at about 67 kDa for 

supernatant samples of properdin_c-myc and most likely corresponded to the secreted 

protein fused to the c-myc epitope despite the calculated theoretical MW of 52.6 kDa (Table 

9.1). 
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Since properdin is heavily glycosylated, the higher molecular weight observed by SDS-PAGE 

and western blot in comparison to the predicted molecular weight based on the amino acid 

sequence could arise through glycosylation [280]. However, as the glycosylation pattern of 

properdin produced in FreeStyle-293F cells is unknown, the theoretical MW of the secreted 

proteins could not be calculated precisely. 

 

4.1.3 Direct expression detection of properdin fused to mCherry 

Expression of properdin fused to the fluorescent protein mCherry was further analyzed by 

fluorescence measurements over a period of 7 days post-transfection. Cells were transfected 

with two different ratios of plasmid DNA vs. transfection reagent PEI (1:4 and 1:2, 

respectively) with DNA concentrations varying between 0.5 mg/L and 1 mg/L and a PEI 

concentration of 2 mg/L. Fluorescence intensities of supernatant samples collected every 

day during a period of 7 days after transfection were measured and correlated with the 

amount of expressed and secreted mCherry (Figure 4.3A). The background fluorescence of 

serum-free medium was determined by measuring supernatant from non-transfected cells 

and showed that the measured fluorescence signal was only derived from secreted mCherry 

Figure 4.2 Expression of properdin constructs in FreeStyle-293F cells. A) SDS-PAGE of supernatant 

samples stained with Instant Blue solution. Lanes assigned with odd and even numbers correspond to 

supernatant before and after concentration and immunoprecipitation, respectively. (1, 2) negative 

control, (3, 4) supernatant of properdin_mCherry and (5, 6) supernatant of properdin_c-myc. 

B) Western blot obtained using anti-mCherry as primary antibody. Bands at approximately 100 kDa 

correspond to expressed properdin fused to mCherry. C) Western blot obtained with anti-c-myc 

antibody. Bands visible at approximately 65 kDa correspond to expressed properdin fused to the 

c-myc epitope, whereas bands at lower MWs probably resulted from unspecific binding of the antibody 

to the resin. 
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protein and not from the medium used to grow the cells. For all supernatant samples, an 

increase of the mCherry fluorescence signal was observed over time, indicating that 

properdin fused to mCherry was still being secreted 7 days after transfection. This 

fluorescence signal was higher for supernatant from cells transfected with a DNA:PEI ratio of 

1:4 than for those transfected with a 1:2 ratio. The transfection efficiency of cells incubated 

with both DNA:PEI mixtures was determined by FACS analysis using the gene reporter 

mCherry (Figure 4.3B). Transfected cells harvested over a period of 7 days post-transfection 

showed an increasing number of fluorescent cells, indicating that properdin fused to mCherry 

was successfully expressed. On day 7, about 42% of the cells transiently transfected with a 

ratio of 1:4 were fluorescent, whereas only about 28% of the cells were fluorescent within the 

total cell population when transfected with a ratio of 1:2.  

 

Considering that both experiments showed a higher fluorescence signal for cells transfected 

with a lower amount of DNA (DNA:PEI ratio of 1:4), this ratio was selected to transiently 

transfect cells with the properdin_mCherry construct for properdin production as well as an 

incubation period of 7 days post-transfection. The same DNA:PEI ratio and incubation period 

Figure 4.3 Expression of properdin_mCherry followed by fluorescence of secreted mCherry and FACS 

analysis over a period of 7 days post-transfection. Cells were transiently transfected with mixtures 

containing different ratios of PEI:plasmid DNA. Non-transfected cells were used as negative control. 

A) Normalized fluorescence signals of secreted mCherry followed over time. Supernatant samples 

were collected and analyzed each day and the correspondent fluorescent signal is depicted as 

spheres. Serum-free medium from non-transfect cells (control) is displayed in black and supernatants 

from transfection with ratios of PEI:DNA 1:4 and 1:2 are highlighted in gray and teal, respectively. 

B) Transfection efficiency analyzed by FACS on day 7 post-transfection. Expressed mCherry was 

used as a reporter gene to follow transfection of the cells. Transfection efficiency is shown as the % of 

fluorescence cells indicated for each plot. 
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were also used for transfection of properdin_c-myc since no fluorescent measurements could 

be performed with this construct. Expression of properdin fused to mCherry was improved by 

reducing the amount of cells present in suspension from 2 x 106 cells/mL to 1 x 106 cells/mL 

on the day of transfection (Figure 4.4). FACS analysis showed that, under these conditions, 

66% of the cells were fluorescent 7 days after transfection, meaning that higher transfection 

efficiency was achieved when a smaller number of cells was used for transfection.  

 

These results were confirmed by fluorescence measurements performed using supernatant 

samples, which also showed a higher fluorescence signal compared to previous 

experiments. Therefore, transfection of a lower number of cells in suspension increases the 

amount of expressed and secreted protein that can be used for purification. 

 

4.1.4 Purification of recombinant properdin  

Secreted properdin fused to mCherry followed by a His10-tag was purified by Ni2+ affinity 

chromatography. Approximately 1 L of harvested supernatant diluted 1:1 in buffer containing 

20 mM sodium phosphate, 500 mM NaCl, 5 mM imidazole adjusted to pH 7.4 was loaded 

onto a 5 mL HisTrap excel column (Figure 4.5A). A washing step was performed with 

125 mM imidazole to remove unspecifically bound proteins from the cultivation medium and 

His-tagged properdin was eluted with 425 mM imidazole. Fractions containing the target 

protein were pooled and 1 μg of self-produced TEV protease per 10 μg of His-tagged 

properdin was added. The mixture was dialyzed into a buffer containing 20 mM sodium 

phosphate pH 7.4, 500 mM NaCl and 0.5 mM EDTA and subsequently purified by reverse 

Ni2+ affinity chromatography using a 1 mL Histrap excel column (Figure 4.5B). Cleaved 

properdin was collected in the flow-through and the mCherry_His10-tag as well as the TEV 

protease (also fused to a His-tag) bound to the column and were eluted with 

500 mM imidazole. Purified properdin was dialyzed against a buffer containing 10 mM 

HEPES pH 7.3 and 150 mM NaCl, concentrated and subsequently analyzed by analytical 

SEC using a Superose 6 column. Properdin is known to oligomerize and form cyclic 

Figure 4.4 Improved expression of properdin_mCherry. Transfection was performed with a lower cell 

density (1 x 106 cells/mL). Non-transfected cells were used as a control and a transfection efficiency of 

about 66% was determined by FACS after an incubation period of 7 days post-transfection.  
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tetramers, trimers and dimers in a 20:54:26 ratio [59]. Size exclusion chromatograms of 

properdin before and after tag removal revealed the presence of properdin in three different 

oligomerization states (Figure 4.5C). The three elution peaks were observed at 1.22 mL, 

1.31 mL and 1.47 mL, which corresponded to approximate molecular weights of 331 kDa, 

203 kDa and 85 kDa, respectively (column calibrated with globular proteins). Considering 

that SDS-PAGE bands corresponding to properdin were observed at higher MWs, the three 

elution peaks most likely corresponded to tetrameric, trimeric and dimeric properdin. 

However, these oligomeric forms of properdin were present in a different ratio compared to 

previously reported data. Properdin samples collected at the different purification stages 

(prior to the first purification step to cleaved and purified protein) were analyzed by 

SDS-PAGE and compared to properdin (Factor P) purchased from Complement Technology 

Inc., which has been purified from human serum (Figure 4.5D). Protein bands at 

approximately 58 kDa showed that recombinantly produced properdin had an identical 

molecular weight to properdin purified from human serum. Besides, the observed molecular 

weight shift from approximately 100 kDa to 58 kDa as well as the presence of single bands in 

sample of properdin after mCherry and His-tag removal also indicated that properdin was 

successfully purified.  

 

On average, about 0.5 mg of purified mature properdin were obtained from approximately 

500 mL of harvested supernatant when using a cell density of 2 x 106 cells/mL for 

transfection. However, when the cell density was reduced to 1 x 106 cells/mL, a 2-fold 

increase in the protein yield was observed, which correlated with the higher transfection 

efficiency measured for these cells. 
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Analysis of properdin samples by western blot using anti-mCherry (Figure 4.6A) and 

anti-properdin antibodies (Figure 4.6) confirmed the identity of bands observed by 

SDS-PAGE. The western blot developed with an anti-mCherry antibody demonstrated that 

cleavage of properdin and tag removal was successfully achieved, and a western blot 

obtained with anti-properdin antibody confirmed the presence of the target protein in the 

purified samples. 

 

 

 

Figure 4.5 Purification of properdin fused to mCherry. A) Ni2+ affinity chromatography. Properdin 

eluted with 400 mM imidazole and pooled fractions are highlighted in green. B) Reverse Ni2+ affinity 

chromatography. Cleaved properdin was collected in the flow-through and pooled fractions are 

highlighted in green. C) Analytical size exclusion chromatograms obtained using a Superose 6 PC 

3.2/300 column. Chromatograms of properdin fused to mCherry after the first purification step and 

cleaved properdin after reverse Ni2+ affinity are highlighted in gray and black, respectively. 

D) SDS-PAGE analysis of properdin samples from the different purification steps, including 

commercial properdin (Factor P) from Complement Technology as positive control. (1) Factor P, 

(2) harvested supernatant containing secreted target protein, (3) pooled fractions after the first 

purification step, (4)  dialyzed protein containing the TEV protease and the cleaved tag and (5) purified 

properdin after tag removal (6) concentrated purified properdin used for SEC analysis. Proteins bands 

at approximately 58 kDa correspond to Factor P and purified properdin after tag removal. 
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Purification of supernatant containing secreted properdin fused to c-myc was also performed 

by Ni2+ affinity chromatography. After the first purification step, His-tagged properdin fused to 

c-myc was analyzed by analytic SEC using a Superose 6 column (Figure 4.7A) and 

SDS-PAGE (Figure 4.7B). Both results showed that the production of properdin fused to 

c-myc was identical to the production of properdin fused to mCherry and that the 

corresponding oligomeric species were present in solution. 

 

 

Based on the results from both purifications, mCherry did not seem to influence the 

biophysical properties of purified properdin. Besides the advantages of using this protein to 

Figure 4.6 Western blot analysis of properdin samples collected throughout the purification. Samples 

correspond to (1) commercial Factor P, used as positive control, (2) harvested supernatant containing 

secreted target protein, (3) pooled fractions after the first purification step, (4) dialyzed protein 

containing the TEV protease and the cleaved tag and (5) pure properdin after tag removal. A) Western 

blot obtained with anti-mCherry as primary antibody. B) Western blot obtained with anti-properdin as 

primary antibody.  

Figure 4.7 Analysis of His-tagged properdin fused to c-myc. A) Size exclusion chromatogram obtained 

using a Superose 6 PC 3.2/300 column showing a similar elution profile to cleaved properdin. 

B) SDS-PAGE analysis of His-tagged properdin fused of c-myc after the first purification step.  
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detect transfection and protein expression, this red fluorescent protein is also useful for 

purification since its presence can be easily observed by the color of the solution. 

 

4.1.5 Biochemical and biophysical characterization of properdin  

After purification, properdin samples fused to either mCherry (Figure 4.8A) or c-myc (Figure 

4.8B) or after tag removal (Figure 4.8C) were examined by negative-staining TEM to 

structurally determine the effect of the different tags on the formation of properdin oligomers. 

Electron micrographs showed a similar morphology for all samples, demonstrating that tags 

fused to properdin did not impact its structural properties. Properdin was mostly composed of 

ring structures heterogeneous in size. Structures resembling a triangle or a rectangle were 

also observed and most likely corresponded to trimeric and tetrameric properdin [56]. 

Although aggregated species were not observed by SEC analysis, EM micrographs showed 

large amorphous aggregates (not shown here), which could be caused during sample 

preparation. Negative staining using uranyl acetate might have affected the structural 

integrity of properdin and contributed to its aggregation. Electron micrographs of freshly 

purified samples or after a freeze-thaw cycle showed that the aggregate content was not 

altered. However, a higher amount of aggregates was observed in electron micrographs of 

carbon-coated grids that were incubated with the different proteins, negative-stained and 

stored for a few weeks before analyses, suggesting that the formation of aggregates could 

be an artifact of sample preparation and grid storage. 
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Since EM results further supported the notion that mCherry did not have an impact on the 

biophysical properties of properdin, the properdin_mCherry expression construct was 

Figure 4.8 Gallery of raw images of properdin oligomers selected from electron micrographs. 

Glow-discharged carbon-coated grids were incubated with purified properdin variants (concentrations 

ranging from 40 μg/mL to 60 μg/mL), negatively stained with 1% (w/v) uranyl acetate and examined 

with a Tecnai G2 Spirit BioTwin transmission electron microscope operated at 120 kV. Images were 

collected on a Gatan Ultrascan 4 000 CCD-camera at final magnifications of 30 000x or 49 000x. 

100 nm or 200 nm scale bars are included next to the respective selected images of properdin 

oligomers. Electron micrographs were provided by Dr. Katharina Hipp from the Max Planck Institute 

for Developmental Biology, Tübingen. A) Electron micrographs of properdin fused to mCherry. 

B) Electron micrographs of properdin fused to c-myc. C) Electron micrographs of properdin after tag 

removal. 
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selected to recombinantly produce properdin for further experiments, including biochemical 

and biophysical characterization and interaction studies. 

 

Mature properdin contains a single N-glycosylation site in the sixth TSR, which is not 

essential for its activity or oligomerization [66]. Since the presence of such a long, flexible 

glycan chain can interfere with the formation of crystal lattices, enzymatic deglycosylation of 

properdin was attempted using endoglycosidases Endo Hf and PNGase F (Figure 

4.9A) [281]. These two enzymes cleave N-linked glycans to different extents, with PNGase F 

having the broadest specificity, cleaving nearly all types of N-linked glycans. SDS-PAGE 

analysis of purified properdin samples incubated with both enzymes showed that Endo Hf 

resulted in partial enzymatic deglycosylation, with only a small reduction in size. For 

properdin incubated with PNGase F a molecular weight shift of 5 kD was observed, 

suggesting that removal of the N-linked glycan was successfully accomplished. Besides the 

bands corresponding to properdin, observed between 50 kDa and 60 kDa, the additional 

bands visualized on the SDS-PAGE gel corresponded to Endo Hf and PNGase F enzymes, 

which have apparent molecular weights of 70 kDa and 36 kDa, respectively. Purified 

properdin was further characterized by comparing its oligomeric distribution by analytical 

SEC after a freeze-thaw cycle and after an incubation at 4°C for 7 days (Figure 4.9B). Similar 

to freshly purified properdin, size exclusion chromatograms demonstrated the presence of 

different oligomeric species in solution, which were previously presumed to be tetramers, 

trimers and monomers of properdin. According to these results, storage of purified protein 

samples for a short period of time at different temperatures did not influence the structural 

stability nor the oligomerization profile of properdin. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Biochemical characterization of purified properdin. A) Enzymatic deglycosylation of purified 

properdin after tag removal. Endo Hf and PNGase F were incubated with properdin samples and 

differences in MWs observed by SDS-PAGE correlate with the N-glycosylation state. B) Analysis of 

properdin stability after a storage period of 7 days at different temperatures. Size exclusion 

chromatograms were obtained using a Superose 6 PC 3.2/300 column. SEC profiles of properdin 

stored at 4°C or after freeze and thawing are depicted in teal and black, respectively. 
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Thermal unfolding of purified properdin was monitored by measuring the fluorescence 

intensity of an aromatic fluorescent dye upon binding to properdin during a temperature 

gradient (Figure 4.10A). Results from the first derivative analysis of fluorescence profiles 

measured in triplicate by DSF showed that purified properdin has a moderate stability with a 

determined Tm of 57.4±0.3°C. CD spectroscopy was used to analyze the secondary structure 

content of purified properdin but recorded spectra were untypical and did not display 

characteristics associated with the different secondary structural elements (Figure 4.10B). A 

prominent ellipticity maximum was consistently observed at about 230 nm for different 

recorded spectra but ellipticity measured at lower wavelengths was variable. This maximum 

most likely resulted from the presence of disulfide bonds, which are optically active and 

contribute to CD [60], [282]. Native properdin contains an absolute number of 20 disulfide 

bridges. 

4.1.6 E244K properdin mutant 

Monomeric properdin was recently reported to occur as a result of a single point mutation in 

TSR3. This mutation, consisting of the replacement of a glutamate residue at position 244 by 

Figure 4.10 Biophysical characterization of purified properdin by DSF and CD spectroscopy. 

A) Thermal unfolding profile of cleaved properdin determined by monitoring the fluorescence intensity 

of a specific dye upon binding to properdin and its first derivative are plotted as a function of 

temperature. A Tm of 57.4±0.3°C was determined for the first derivative analysis. B) Far-UV CD 

spectrum of cleaved properdin. The signal is expressed as mean residue weight ellipticity plotted as a 

function of wavelength. A maximum of ellipticity was observed at about 230 nm. 
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a lysine (E244K), was discovered in a patient with a type II properdin deficiency [71]. Since 

heterogeneous protein samples are not favorable for the formation of high-quality crystals for 

structural determination, site-directed mutagenesis was used to introduce this single point 

mutation in the properdin_mCherry construct. FreeStyle 293-F cells were transiently 

transfected as previously described for wild-type properdin fused to mCherry but a lower 

transfection efficiency as well as a lower fluorescence signal of the supernatant containing 

secreted protein were observed. Harvested supernatant was purified using Ni2+ affinity 

chromatography followed by tag cleavage using TEV protease. In contrast to previously 

published results, size exclusion chromatograms of the recombinantly produced E244K 

properdin mutant revealed a similar elution profile as observed for wild-type properdin 

(Figure 4.11A). Bands observed for purified E244K properdin prior and after cleavage by 

SDS-PAGE showed a lower molecular weight for properdin mutant fused to mCherry 

(85 kDa) compared to the wild-type mCherry fusion protein (100 kDa), which could be a 

result of reduced glycosylation (Figure 4.11B). Bands that appeared at lower molecular 

weights for the cleaved sample corresponded to the cleaved mCherry_His10-tag and the TEV 

protease as observed by SEC analysis. The shift in molecular weight to about 55 kDa 

observed for the E244K properdin mutant confirmed that cleavage of the tag was successful. 

 

 

Following these unexpected observations, which did not confirm the reported findings that 

the E244K point mutation results in monomeric properdin, DNA sequencing of the mutated 

expression construct was repeated and the introduction of the single point mutation was 

Figure 4.11 Analysis of the recombinantly produced E244K properdin mutant. A) Size exclusion 

chromatograms of E244K mutant before (gray) and after mCherry cleavage (black) obtained using a 

Superose 6 PC 3.2/300 column showed elution profiles similar to wild-type protein. The three 

non-separated elution peaks are presumed to be tetramers, trimers and monomers of properdin. For 

the cleaved E244K properdin mutant, additional elution peaks observed at higher retention volumes 

corresponded to TEV protease and the cleaved mCherry tag. B) SDS-PAGE analysis of (1) E244K 

properdin mutant fused to mCherry and (2) cleaved E244K properdin mutant containing the cleaved 

mCherry and TEV protease. Bands at approximately 85 kDa and 55 kDa correspond to the E244K 

properdin mutant before and after cleavage, respectively. 
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confirmed. The results indicated that no monomers were formed and the oligomerization 

state of properdin was identical to wild-type protein under the conditions used for production 

of this properdin mutant. 

 

4.1.7 Alternative pathway-mediated hemolytic assay 

To assess the functional activity of the purified properdin variants, a hemolytic assay was 

performed by exposing sheep erythrocytes (RBCs) treated with neuraminidase to normal 

human serum (NHS) or properdin-depleted serum (Figure 4.12). Unmodified sheep RBCs 

usually do not activate the human AP [283]. However, enzymatic removal of sialic acid by 

neuramidase treatment triggers or augments the activation of the human AP and leads to 

RBCs lysis in the presence of NHS but not when exposed to properdin-depleted serum [101].  

 

 

All reactions were performed with neuraminidase treated and non-treated sheep RBCs, 

incubated at 37°C for 2 min and absorption at 415 nm was measured. Lysis of RBCs was 

normalized with respect to RBCs lysed in water. RBCs exposed to buffer, intact NHS, 

Figure 4.12 Hemolysis of sheep RBCs by purified properdin variants. Lysis of neuraminidase treated 

RBCs exposed to properdin-depleted NHS was stimulated through addition of properdin in a 

concentration-dependent manner. Reactions containing only buffer, NHS, heat-inactivated NHS, 

P-depleted NHS and Factor P from Complement Technology Inc. were included as controls. Lysis of 

non-treated RBCs is shown in light gray, whereas lysis of neuramidase treated RBCs is shown in dark 

gray. Lysis extent was quantified via absorption at 415 nm and are expressed relative to the total 

osmolysis of RBCs in water. The experiment was carried in duplicate and data shown represent mean 

values and standard deviations. Recombinant properdin was quantified based on the absorbance at 

280 nm while the Factor P concentration was based on the manufacturer’s product information. 
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heat-inactivated NHS and P-depleted NHS were used as controls. Sheep RBCs incubated 

with buffer containing 20 mM HEPES pH 7.3, 145 mM NaCl, 0.1% (w/v) gelatin, 5 mM MgCl2 

and 5 mM EGTA showed that about 5% of spontaneous lysis occurred under the chosen 

conditions. Reactions containing non-treated RBCs showed a low percentage of 

spontaneous lysis and increased lysis of treated RBCs was only observed when exposed to 

normal NHS but not in the presence of inactivated NHS or properdin-depleted serum. 

However, properdin-depleted serum supplemented with properdin triggered AP activation 

and stimulated lysis of treated sheep RBCs in a concentration-dependent manner. Purified 

recombinant properdin fused to mCherry or the c-myc tag, as well as, properdin after tag 

cleavage showed a higher level of RBCs lysis in comparison to Factor P purified from NHS. 

The highest activity was observed for purified properdin after tag removal, which also caused 

increased lysis of non-treated RBCs. Addition of 15 μg/mL of cleaved properdin resulted in 

about 55% of lysed RBCs. Purified E244K properdin mutant was also tested and lysis of 

RBCs was comparable to lysis of RBCs caused by other recombinantly produced properdin 

variants. 

 

4.1.8 Analysis of properdin-glycan interactions 

There is on-going controversy concerning the question whether properdin can act as a direct 

activator of the alternative complement pathway or merely act as a promotor of C3 

convertase activity [2]. Specific glycans are likely candidates for the direct activation 

hypothesis [3]. To identify glycans that might bind to properdin and lead to AP activation, a 

glycan array screening containing 885 lipid-linked oligosaccharide probes, neoglycolipids 

(NGLs) and glycolipids was performed (Figure 4.13). Both purified properdin after mCherry 

removal and rabbit anti-properdin antibody were included in the array. The rabbit anti-

properdin was used to detect properdin binding in the glycan array of properdin and served 

as background control. Glycan binding was detected with biotinylated anti-rabbit IgG followed 

by overlay with streptavidin-Alexa Fluor 647 and results were plotted as histogram charts of 

relative binding intensities. Both glycan arrays showed a low overall fluorescence signal and 

binding of properdin was observed only to glycan probes that were also bound by the 

antibody-based detection system in the absence of properdin. Apart from these binding 

signals, which displayed a good signal-to-noise ratio, negligible or no binding signals were 

detected in the glycan array screening of properdin under the conditions tested. These 

results suggested that either properdin does not bind to glycans under the tested conditions, 

that the glycan-affinity is beyond detection limit or that no specific-properdin glycans were 

present on the micro-array slides. 
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Figure 4.13 Glycan microarray analysis of properdin and anti-properdin. Properdin and rabbit 

anti-properdin antibody from Abcam (used as detection system and in the absence of protein as 

negative control) were diluted in blocking solution containing 10 mM HEPES pH 7.4, 150 mM NaCl, 

10 mM CaCl2, 1% (w/v) bovine serum albumin and 0.02% (w/v) casein and overlaid onto the arrays at 

room temperature for 1.5 h followed by 1 h of incubation with the corresponding detection system 

(rabbit anti-properdin for properdin and biotinylated anti-rabbit IgG for the anti-properdin). Binding was 

detected with biotinylated anti-rabbit IgG, incubated for 1 h, followed by 30 min overlay with Alexa 

Fluor 647-labeled streptavidin. Both samples were analyzed in a wide spectral screening and the 

binding signals are shown as means of the fluorescence intensity at 5 fmol/probe spot. Error bars 

represent half of the difference of signal intensities of duplicate spots for each glycan 

probe.  A) Histogram chart of properdin (100 μg/mL). B) Histogram of the negative control rabbit 

anti-properdin antibody (1:200 dilution). The assay was performed by Dr. Yan Liu and Prof. Ten Feizi, 

Imperial College London. 
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Representatives of different types of glycans were tested for properdin binding by STD-NMR 

using purified properdin samples either fused to mCherry or after mCherry and His10-tag 

removal. All spectra were recorded in D2O.  

 

Initial STD-NMR measurements were performed using properdin fused to mCherry and a 

mixture of two specific glycans, namely Arixtra, a synthetic heparin mimetic pentasaccharide, 

and Thomsen-Friedenreich (TF)-antigen, a disaccharide that resembles de-sialylated 

mammalian cell-surface glycans (Figure 4.14). In the STD-NMR difference spectrum, mostly 

resonances belonging to Arixtra were observed indicating that preferentially this glycan 

interacted with properdin.  

 

 

To verify if the mCherry_His10-tag part of the properdin fusion protein could have influenced 

binding of glycans, binding of Arixtra was probed once more using purified properdin after tag 

removal (Figure 4.16). Similar to properdin_mCherry, the difference STD-NMR spectrum 

showed binding of Arixtra to cleaved properdin, suggesting that mCherry and His10-tag did 

not interfere with glycan binding and that tag removal is most likely not necessary to perform 

such interactions studies and identify glycans that may bind to properdin. STD-NMR 

measurements with additional GAG molecules comprising different degrees of 

polymerization (dp4 and dp6) as well as a polysialic acid (dp5) were subsequently performed 

to evaluate the substantial negative charge effect on binding (Figure 4.15). Difference 

STD-NMR spectra showed binding of both GAGs, tetra- and hexasaccharides, to properdin, 

with several weak but unambiguous resonances from either molecule. Instead, in the 

STD-NMR spectrum of polysialic acid and properdin only resonances from the sialic acid 

Figure 4.14 STD-NMR spectra of purified properdin fused to mCherry. Spectra were recorded using a 

protein concentration of 16.7 μM and glycans at a concentration of 1 mM each. The truncated peak at 

4.7 ppm corresponds to the truncated HDO signal. A) 1H NMR reference spectrum of Arixtra 

(GlcNS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S-OMe). B) 1H NMR reference spectrum of TF-antigen 

(Galβ1-3GalNAc). C) 1H NMR reference spectrum of Arixtra and TF-antigen mixture. D) STD-NMR 

difference spectrum of Arixtra and TF-antigen mixture with properdin_mCherry. 
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methyl groups were observed between 1 ppm and 2 ppm. These resonances were found to 

arise from relaxation artifacts by a control STD-NMR experiment performed without protein.  

 

 

Apart from the TF-antigen, binding of two additional non-charged glycans such as lactose 

and asialo-GM1 oligosaccharide was also tested (Figure 4.16) However, no resonance 

signals were observed in either difference STD-NMR spectrum, which indicates that neither 

glycan bound to properdin and negative charge is most likely required for binding to 

properdin.  

Figure 4.15 STD-NMR spectra of purified properdin after tag removal with size-defined charged 

glycans. The truncated peak at 4.7 ppm corresponds to the truncated HDO signal. A) 1H NMR 

reference spectrum of Arixtra (top) and STD-NMR difference spectrum of 15.7 μM cleaved properdin 

with 1 mM Arixtra (bottom). B) 1H NMR reference spectrum of heparin dp4 (top) and STD-NMR 

difference spectrum (bottom). C) 1H NMR reference spectrum of heparin dp6 (top) and STD-NMR 

difference spectrum (bottom). D) 1H NMR reference spectrum of polysialic acid (α2,8-linked Neu5Ac) 

dp5 (top) and STD-NMR difference spectrum (bottom). NMR measurements with dp4, dp6 and 

polysialic acid were performed using a glycan concentration of 1 mM and cleaved properdin at 15 μM 

each. 
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Influence of glycan length and sulfation to properdin binding was also evaluated by 

STD-NMR using a mixture of defined GAGs, HepMers M06 S03a and M09 S06a from Iduron 

(Figure 4.17). These GAGs differ in length (6 vs. 9 pyranoses) and in sulfation. Resonances 

observed in the difference STD-NMR spectrum suggested that HepMer M09 S06a was most 

likely the only glycan binding to properdin. However, to confirm this observation, STD-NMR 

measurements should be repeated using the HepMers separately, given that both glycan 

spectra exhibit extensive spectral overlap. 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 STD-NMR spectra of purified properdin after tag removal with non-charged, non-sialylated 

glycans. Spectra were recorded using a protein concentration of 15 μM and glycans at a concentration 

of 1 mM. The truncated peak at 4.7 ppm corresponds to the truncated HDO signal. A) 1H NMR 

reference spectrum of lactose (Galβ1-4Glc) and STD-NMR difference spectrum (top and bottom, 

respectively). B) 1H NMR reference spectrum of asialo-GM1 oligosaccharide 

(Galβ1-3GalNAcβ1-4Galβ1-4Glc) and STD-NMR difference spectrum (top and bottom, respectively). 
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Overall, STD-NMR experiments showed that some glycans bind to properdin in solution and 

that factors like glycan charge, length and most likely sulfation are critical for the interaction.  

  

Figure 4.17 STD-NMR spectra of purified properdin after tag removal with sequence-defined 

heparin/HS oligosaccharides (HepMers). Spectra were recorded using a protein concentration of 

15.7 μM and HepMers at a concentration of 1 mM. The truncated peak at 4.7 ppm corresponds to the 

truncated HDO signal. A) 1H NMR reference spectrum of HepMer M06 S03a 

((GlcNS-GlcA)3-p-nitrophenyl). B) 1H NMR reference spectrum of HepMer M09 S06a 

((GlcA-GlcNS)2-(GlcA-GlcNS6S)2-GlcA-p-nitrophenyl). C) 1H NMR reference spectrum of HepMers 

M06 S03a and M09 S06a mixture. D) STD-NMR difference spectrum of cleaved properdin with a 

mixture containing both HepMers. 
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4.2 Discussion 

Since its discovery in 1954, human properdin has been a subject of controversy within the 

scientific community. Although extensive research has been done, both the structure and 

crucial aspects of properdin function remain unclear and oligomerization is still a major 

obstacle for a detailed analysis.  

 

Determination of three-dimensional structures requires high amounts of highly pure protein, 

which makes E. coli the most favorable expression organism for structural studies. However, 

recombinant production of proteins with correctly folded disulfide bonds, such as necessary 

for properdin, in E. coli cytoplasm remains a challenge due to its reductive environment.  

A construct comprising two domains of the structurally-related serum protein thrombospondin 

has been produced as glutathione S-transferase (GST) fusion protein in E. coli and its crystal 

structure has been determined, demonstrating that well-folded TSR domains proteins can be 

recombinantly produced in E. coli [284]. Based on these results, a similar approach was 

initially followed to express properdin constructs comprising TSR domains 4 to 6 fused to a 

N-terminal GST-tag or His-tag in E. coli cells, since these domains were shown to be 

involved in glycan binding and C3bBb-stabilizating functions [66]. The engineered E. coli 

strain named SHuffle was selected for properdin expression within the cytoplasm since it has 

been shown to promote folded and active proteins comprising disulfide-bonds. This is due to 

mutations in the E. coli cytoplasmic reductase genes (trxB and gor) and expression of the 

perisplasmic disulfide isomerase (DsbC) lacking its signal sequence in the cytoplasm [285]. 

Despite multiple attempts with varying parameters during protein expression and purification 

resulting properdin constructs were either insoluble or aggregates were observed after tag 

removal. One possibility is that besides correctly formed disulfide bonds, glycosylation might 

also be essential for the correct folding of properdin. 

 

As an alternative, mammalian cells containing the complex machinery required for 

post-translational modifications can be used to produce correctly folded recombinant 

proteins. Based on a publication from Pedersen et al., the FreeStyle 293F mammalian cells, 

derived from human embryonic kidney (HEK) 293 cells, were selected for the expression of 

human full-length properdin. By employing an approach using transient transfection, these 

cells can be used to generate significant amounts of recombinant protein in a short period of 

time. Since FreeStyle 293F cells are adapted to grow in suspension culture and reach high 

densities using serum-free medium, scalability of this process is not limited by cell culture 

surface availability and purification of secreted proteins is facilitated in absence of fetal 

bovine serum [286], [287].  
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Two expression constructs differing in their C-terminal part were designed, both comprising 

full-length properdin including its native signal peptide necessary for protein secretion and 

the endogenous Kozak sequence. Although detection of secreted proteins in the cell culture 

supernatant typically includes methods such as western blot or an enzyme-linked 

immunosorbent assay (ELISA), a detection method based on fluorescence measurements of 

a mCherry fusion reporter protein has also been shown to be applicable [267]. Therefore, 

one of the expression constructs was C-terminally fused to a c-myc epitope commonly used 

for protein detection via western blot, whereas the second expression construct was fused to 

the monomeric red fluorescent mCherry protein. Expression and secretion of both constructs 

was successfully observed by immunoprecipitation of cell culture supernatant samples 

followed by western blot analysis. To further improve protein expression and increase the 

yield of secreted protein, parameters including concentration of the cationic polymer PEI 

used as transfection reagent, concentration of DNA, incubation time after transfection as well 

as cell density at the time of transfection were analyzed and optimized using fluorescence 

signal of expressed properdin fused to mCherry. Cells and supernatant assayed up to 7 days 

post-transfection for the presence of fluorescence signal via FACS analysis and fluorescence 

measurements showed a higher transfection efficiency for cells transiently transfection with 

DNA:PEI complexes formed using a 1:4 and an increase in signal intensity over time. 

Transfection efficiency was optimized and the yield of secreted protein improved by 

transfecting cells with a viability greater than 90% and a cell density of 1 x 106 cells/mL 

instead of 2 x 106 cells/mL at the time of transfection. These results demonstrate the 

applicability of mCherry as a convenient reporter of successful production and secretion of 

complex human proteins in FreeStyle 293F cells. 

 

Addition of a His10-tag at the C-terminus of properdin expression constructs facilitated the 

purification of secreted protein by Ni2+ affinity chromatography. Removal of the C-terminally 

fused His10-tag and mCherry was accomplished by proteolytic cleavage using TEV protease 

and separation of these components resulted in highly pure mature properdin. Size exclusion 

chromatograms of properdin prior and after tag removal showed three overlapping elution 

peaks, which most likely corresponded to reported oligomeric species of properdin. This 

assumption was confirmed by direct comparison with properdin from human serum 

Factor P (Figure 4.18).  
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Despite the presence of three elution peaks at identical retention volumes, the relative 

proportion of the oligomeric species differed between serum-purified and recombinantly 

produced properdin. Oligomers of properdin were reported to be present as mixture of 

tetramers, trimers and dimers in a ratio of 26:54:20, whereas for recombinantly produced 

properdin an approximate ratio of 29:47:24 was estimated based on the absorption elution 

peak maxima at 280 nm. However, this ratio was neither observed for cleaved properdin nor 

for Factor P. Redistribution of the oligomerization profile of properdin has been observed 

before after denaturation-renaturation cycles, exposure to low pH or to guanidine [59]. The 

fact that serum-purified properdin did not oligomerize in the reported ratio suggests that other 

ratios are possible and dependent on environmental parameters such as concentration, 

storage and buffer components, all of which are parameters well known to impact protein 

oligomerization. No void volume peak was observed for serum-purified nor recombinant 

properdin, excluding the formation of higher-order oligomers that were reported to occur [84]. 

 

Expression and purification of properdin fused to c-myc and His10-tag showed similar elution 

profiles and purification levels as purified properdin fused to mCherry, indicating that a larger 

tag like mCherry at the C-terminus does not influence the structural and biochemical 

properties of recombinantly produced mature properdin. In contrast to protein recombinantly 

produced in E. coli, no aggregates or solubility issues were observed for both proteins 

produced in mammalian cells. Structural analysis by negative-staining TEM of unfractionated 

properdin samples, including properdin fused to mCherry or c-myc and cleaved properdin, 

showed discrete cyclic structures with variable sizes similar to those previously described by 

Smith et al. and Farries et al. [60], [84]. Besides these ring-shaped structures, which 

Figure 4.18 Comparison of analytical size exclusion chromatogram of recombinantly produced 

properdin after tag removal and Factor P purified from human serum. Factor P was purchased from 

Complement Technologies. On a Superose 6 PC 3.2/300 column three elution peaks corresponding to 

three different oligomerization states of properdin, namely tetramers, trimers and dimers, were 

observed. 
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corresponded to the different oligomeric species of properdin, non-physiological aggregates 

were also observed in the electron micrographs. Since no aggregates were observed via 

analytical SEC, it can be assumed that these large amorphous aggregates might have 

resulted from the harsh negative-staining treatment. Storage of protein samples fixed to the 

carbon-grids followed by negative-staining showed a higher amount of aggregates compared 

to samples that were prepared and immediately analyzed, which supported the assumption 

that properdin aggregates were an artifact of the sample treatment. Although the 

magnification used was not high enough to clearly visualize monomeric mCherry in the 

electron micrographs of properdin fused to mCherry, the similar morphology observed for all 

samples as well as the almost identical size exclusion chromatograms suggested that 

mCherry does not disturb the formation of properdin oligomers. Based on these results, the 

use of a fluorescent reporter like mCherry for direct detection of secreted protein in the cell 

culture media since is highly advantageous, as previously demonstrated for other 

proteins [267]. Measuring fluorescence signals of cell culture supernatant containing 

secreted protein has several advantages including measurement time, ease-of-use and 

reduced costs when compared to typical western blot and ELISA analysis. Thus, the 

expression construct of properdin C-terminally fused to mCherry was selected to further 

express protein for biochemical characterization and interactions studies.  

 

Deglycosylation of properdin was achieved by incubation with the endoglycosidase 

PNGase F. Properdin contains a single N-linked glycosylation site in TSR6 and previous 

studies have demonstrated that deglycosylated recombinant properdin was about 5 kDa 

smaller than plasma properdin [66]. In contrast to Endo Hf, which only resulted in partial 

deglycosylation of properdin, a shift of about 5 kDa was also observed by SDS-PAGE after 

cleavage with PNGase F indicating that properdin expressed in Freestyle 293F cells showed 

a degree of N-glycosylation similar to that of plasma properdin. Up to date the role of this 

glycosylation site it is not clear and properdin lacking N-glycosylation has been shown to 

form the normal distribution of oligomers and to have unaltered activity in the AP hemolytic 

assay [66]. However, N-linked glycosylation has been shown to be essential for correct 

folding of eukaryotic proteins and might play a role in properdin production. Since 

freeze-thawing cycles have been shown to convert native properdin into “activated” 

properdin, which consists of large amorphous aggregates that might form non-specific ionic 

interactions due to their high positive charge, storage conditions of properdin were 

analyzed [84]. Size exclusion chromatograms of properdin stored at 4°C for one week or 

properdin after one cycle of freeze-thawing revealed an identical elution profile to properdin 

directly after purification, excluding the presence of aggregates. Recombinantly produced 

properdin after tag removal showed a thermal unfolding temperature of about 57.4°C and an 

untypical CD spectrum lacking the common characteristics of secondary structural elements. 
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A similar spectrum has been previously reported with variable ellipticity signals in the far-UV 

and a constant maximum at approximately 230 nm, which was most likely due to the high 

content of disulfide bonds in the TSR domains [60]. Although such spectrum suggested the 

absence of significant classical secondary structure, TSR domains have been shown to have 

an antiparallel three-stranded fold [63]. It is well possible that the TSR fold does not result in 

CD spectra comparable to other types of β-stranded proteins. 

 

Up to date, determination of a three-dimensional structure of properdin at an atomic 

resolution was not possible due to its heterogeneous oligomerization state. However, 

alternative attempts using EM and small angle X-ray scattering (SAXS) were carried out, and 

most recently, crystals of properdin monomer variants were reported [56], [62], [64]. In 2017, 

properdin with the single point mutation E244K was found in a patient with type II properdin 

deficiency and discovered to form monomeric properdin due to is compact conformation 

analyzed by SAXS [71]. Therefore, site-directed mutagenesis was used to introduce this 

single mutation in the expression construct of properdin fused mCherry. Contrarily to 

published observations, recombinantly produced E244K properdin mutant was not 

monomeric and showed an oligomerization distribution similar to that of wild-type properdin. 

Due to this unexpected outcome and due to the fact that it is difficult to obtain homogeneous 

fractionated properdin oligomers in large amounts, crystallization of properdin for structure 

determination was not pursued.  

 

To evaluate the biologic activity of recombinant properdin and to investigate the different 

variants produced in the course of this thesis, a complement activity hemolytic assay was 

performed using sheep RBCs and compared to Factor P obtained from normal human 

serum. Similarly to human RBCs, sheep RBCs present sialic acid on their surface and are 

protected from complement mediated lysis when exposed to human serum in the absence of 

specific antibodies [288]. Upon treatment with neuraminidase, sheep RBCs activate the 

human AP in the presence of normal human serum with Mg-EGTA, which silences the CP 

and MBL pathways of complement. Complement activation, which results in lysis of RBCs, 

was measured by UV/Vis absorption due to an intensity increase at 415 nm of the samples 

as a result of released hemoglobin [100]. Addition of purified properdin variants, including 

properdin fused to mCherry or c-myc, cleaved properdin or E244K mutant to 

properdin-depleted serum in concentrations within the range of properdin present in plasma 

stimulated the lysis of desialylated sheep RBCs in a concentration-dependent manner. The 

highest level of sheep RBCs lysis was observed in the presence of cleaved properdin, 

whereas the opposite trend was determined in the presence of Factor P. Resurrection of cell 

lysis by addition of purified properdin to properdin-depleted serum was previously published, 
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and experiments performed with properdin and Factor H suggested that P activity on RBCs 

was regulated by both complement regulatory proteins [101].  

 

Although evidence has accumulated that properdin may act as pattern-recognition molecule 

and initiate AP activity besides the stabilization of AP convertases, its role in glycan 

recognition remains unclear. In particular, its glycan binding specificity remains unknown. 

A glycan array screening was performed using a polyclonal anti -properdin antibody for 

detection to elucidate the glycan specificity of properdin and identify potential glycan PAMPs 

that may activate the complement AP via direct recruitment of properdin. However, the only 

fluorescence signals observed in the glycan array screening of purified properdin were also 

visible in the control array performed with the antibody used for detection in the absence of 

properdin. Although these results suggested that no binding of properdin to glycans occurs, 

previous studies have shown that properdin interacts with glycans, such as heparin, HS and 

sulfatide [90], [91]. NGLs derived from such GAGs as well as sulfatide were present in the 

arrays used, excluding thus the possibility that no properdin-specific glycans were not part of 

the micro array slides analyzed. Therefore, these negative results suggested that either 

properdin does not binding to glycans under the chosen conditions, that the glycan-binding 

affinity is beyond the detection limit or that properdin oligomerization could result in a 

scenario where the binding epitopes of anti-properdin antibody are not accessible.  

 

Further glycan-interactions studies were performed in solution using STD-NMR. Difference 

STD-NMR spectra were recorded for both properdin fused to mCherry and properdin after 

tag removal in the presence of Arixtra, a synthetic heparin pentasaccharide, and besides 

showing that interaction occurred, these spectra also highlighted that mCherry does not 

interfere with binding. Therefore, properdin fused to mCherry could be potentially used to 

further investigate binding of properdin to apoptotic and necrotic cells, which was previously 

reported using fluorescence microscopy [81]. The fact that complement activation only 

occurs after neuramidase treatment of sheep RBCs raised the possibility that enzymatic 

removal of sialic acid of mammalian RBCs unmasks an AP-activating glycan epitope that is 

directly recognized by properdin. Since such an epitope would resemble or could be identical 

to the TF antigen formed by the Galβ1-3GalNAcα1 disaccharide, binding to properdin fused 

to mCherry was analyzed by STD-NMR but not signals were observed in the difference 

STD-NMR spectrum. Besides the highly charged Arixtra, binding of additional GAGs such as 

size-fractionated heparin dp4, dp6 and sequence-defined GAG oligosaccharides (HepMers) 

was also investigated and resonance peaks were observed in all difference STD-NMR 

spectra recorded. Although negative charge seems to have an effect on glycan binding to 

properdin, no resonances were observed in the difference STD-NMR spectrum of properdin 

with the charged polysialic acid dp5, indicating that a specific recognition process rather than 
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overall negative charge underlie binding of properdin to glycans. Further STD-NMR 

experiments of properdin with non-charged lactose and asialo-GM1 glycans showed no 

binding, demonstrating that charge is essential (but not sufficient) for glycan-properdin 

interactions. Overall, STD-NMR experiments showed that a specific set of glycans bind to 

properdin in solution and that factors like glycan charge, length and most likely sulfation are 

critical for the interaction. Nevertheless, caution needs to be taken when investigating 

charged glycans since properdin is highly positively charged and non-specific interactions 

with polyanions may occur.  

 

Although properdin and FH play distinct and opposite roles in the regulation of the alternative 

complement pathway, both proteins have been shown to bind renal tubular epithelial cells via 

the same HS polysaccharides chains. Through recognition of different and non-overlapping 

HS epitopes, properdin can activate the AP on tubular cells via HS while FH can inhibit the 

AP on these same cells also via HS [289]. However, these two regulatory proteins do not 

always recognize the same glycans, as shown for sialic acid which interacts with FH but not 

with properdin [101]. In 2005, Yu et al. demonstrated via SPR experiments that these two 

regulatory proteins also bind to heparin [89], but the binding epitopes have not been 

identified. Analysis of the relative intensities of different STD-NMR signals can be used for 

epitope mapping, giving thus information about the relative position of the ligand with respect 

to the binding site on the target protein [290]. Difference STD-NMR spectra recorded for 

properdin and FH in combination with Arixtra were compared and the binding epitopes are 

highlighted (Figure 4.19). 
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Differences in the relative intensities of STD-NMR signals suggest that binding of properdin 

and FH to heparin occurs via different epitopes, as previously observed for HS. For instance, 

the methyl group of Arixtra appears to be a key component of the binding of this 

pentasaccharide to properdin, while it is less prominent in the respective spectrum with FH. 

Likewise, while the GlcNS6S-H1 proton resonance is overrepresented in the FH STD-NMR 

difference spectrum when compared to the glycan’s reference 1H spectrum, suggesting an 

important contribution to the recognition, this is not the case for the respective spectrum 

obtained with properdin. These spectra confirm, at the atomic level, the assumption that 

while both regulators can bind to a set of related or even identical glycans they do so via 

recognition of different epitopes, and therefore likely also with different affinities. Although 

further studies are required to evaluate the effect of glycans tested on complement AP 

activation, STD-NMR experiments performed suggest that GAGs are potential properdin 

PAMPs and understanding their different structural characteristics that preferentially recruit 

properdin or Factor H could reveal novel ways to alter the level of AP activity for instance in 

the context of renal disease. 

 

Figure 4.19 Comparison of STD-NMR spectra of purified properdin and Factor H with the highly 

positively charged heparin pentasaccharide, Arixtra. The truncated peak at 4.7 ppm corresponds to 

the truncated HDO signal. A) 1H NMR reference spectrum of Arixtra, SD-NMR difference spectrum of 

15.7 μM cleaved properdin with 1 mM Arixtra. B) 1H NMR reference spectrum of Arixtra, STD-NMR 

difference spectrum of 7 μM Factor H with 1 mM Arixtra.  
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5 Project II  

Production of recombinant heparinase I from 

Pedobacter heparinus for structure-based 

protein engineering 

 

 

 

Contributions to this work 

Ronja Pogan and Dr. Charlotte Uetrecht from the Heinrich Pette Institute, Hamburg, 

performed native and top-down mass spectrometry measurements and determined the 

molecular mass of commercial heparinase I and HepIv1. Most of the generated data has 

been published in the Master thesis of Ronja Pogan [291]. Based on the obtained results, a 

new heparinase construct, HepIv2, was designed. Sophie Stotz from the group of Dr. Hubert 

Kalbacher, University of Tübingen, analyzed the SDS-PAGE bands by matrix-assisted laser 

desorption/ionization mass spectrometry. 
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5.1 Results 

5.1.1 Expression and purification of HepIv1 construct 

To produce recombinant heparinase I from P. heparinus for structural determination by X-ray 

crystallography and GAG cleavage via enzymatic depolymerization, an expression construct 

was designed based on the expression constructs of heparinase I from B. thetaiotaomicron, 

which resulted in crystal structures [174]. This construct, designated HepIv1, lacked the 

native leader sequence (amino acids 1 to 21, UNIPROT entry Q05819) but comprised a 

His6-tag followed by a thrombin cleavage site at the N-terminus to facilitate protein 

purification (the amino acid sequence is shown in section 9.1).  

 

After initial expression tests in E. coli with varying IPTG concentrations and incubation 

temperatures, the best expressions conditions were selected. Expression of HepIv1 in E. coli 

BL21 (DE3) cells, induced with 1 mM IPTG and incubated overnight at 20°C, yielded about 

3 g of cells per liter of LB medium. Harvested cells were disrupted via sonication, and 

although part of the expressed heparinase was found in the form of inclusion bodies, soluble 

protein was also obtained and used for purification. 

 

Ni2+ affinity chromatography was used as a first purification step and His-tagged HepIv1 was 

purified from the crude lysate by applying a step gradient elution with increasing imidazole 

concentrations (Figure 5.1A). A wash step was performed with 50 mM imidazole to remove 

weakly bound contaminants and the majority of target protein eluted at 250 mM imidazole. 

On a SDS-PAGE, fractions from the main elution peak showed a similar level of purity with 

one major band at approximately 45 kDa (Figure 5.1B). This band corresponded to 

His-tagged HepIv1, for which a molecular weight of 43.6 kDa was calculated based on its 

primary sequence (Table 9.1). Fractions containing His-tagged HepIv1 were pooled, 1 unit of 

thrombin protease was added per 0.5 mg of target protein and the reaction mixture was 

dialyzed overnight against cleavage buffer containing 50 mM Tris-HCl pH 8, 150 mM NaCl, 

2.5 mM CaCl2 and 1 mM DTT. Before proceeding with reverse Ni2+ affinity chromatography, 

cleavage efficiency was analyzed by SDS-PAGE, which revealed the presence of a single 

band at a lower molecular weight (approximately 41.8 kDa) correspondent to digested 

HepIv1 (Figure 5.1C). The cleaved protein was separated from the His-tag and thrombin 

protease by collecting the flow-through of the Ni2+ affinity column connected to a HiTrap 

Benzamidine column. Using preparative size exclusion chromatography, a final purification 

step was performed to separate potentially aggregated species and to exchange the 

protein’s buffer to a buffer containing 50 mM HEPES pH 7.5, 150 mM NaCl and 1 mM TCEP 

(Figure 5.1D). 
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SEC results showed one major elution peak at 14.7 mL, which corresponded to monomeric 

HepIv1, and a small peak at approximately 13 mL. This peak was found to correspond to 

dimeric HepIv1 by SEC when establishing its purification strategy. Consequently, a reducing 

agent, such as TCEP, was added to the final buffer to prevent potential non-native disulfide 

bond formation. Since size-homogeneous samples are an important parameter for 

successful protein crystallization, only fractions of the peak corresponding to monomeric 

protein were pooled, yielding a final amount of 26 mg of HepIv1.  

 

Purified HepIv1 was concentrated and vapor diffusion (‘sitting drop’) crystallization drops 

were set using a crystallization robot and commercially available crystallization screens. 

Figure 5.1 Purification of HepIv1 using Ni2+ affinity and size exclusion chromatography. A) Purification 

of His-tagged HepIv1 using a HisTrap 5 mL column. The target protein eluted at 250 mM imidazole. 

Pooled fractions are highlighted in green. B) SDS-PAGE analysis of (1) crude lysate, (2) flow-through 

collected during the loading phase, (3) fraction from the first peak obtained with 50 mM imidazole and 

(4) fractions from the elution peak obtained with 250 mM imidazole, containing His-tagged HepIv1. 

The band at approximately 45 kDa corresponds to monomeric His-tagged HepIv1. C) SDS-PAGE 

analysis of HepIv1 prior and after tag cleavage with thrombin. D) Preparative SEC of cleaved HepIv1 

after removal of His-tag and thrombin. A Superdex 200 Increase 10/300 GL column was used and one 

major peak corresponding to monomeric HepIv1 was observed. Pooled fractions are shown in green. 
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Despite multiple attempts with different crystallization conditions, incubation temperatures 

(4°C and 20°C) and starting material (protein with and without His-tag, addition of CaCl2, 

different HepIv1 concentrations), no protein crystal formation occurred. In all crystallization 

trials, the crystallization drop remained either clear, precipitation occurred or salt crystals had 

formed (identified as inorganic salt by X-ray diffraction). 

 

5.1.2 Biochemical and biophysical analysis of HepIv1 

To identify possible parameters that could prevent protein crystallization and to obtain more 

information related to the structure and biophysical characteristics of HepIv1, biochemical 

and biophysical methods such as CD spectroscopy, analytical SEC, native MS and DSF 

were employed.  

 

A CD spectrum of purified His-tagged HepIv1 was recorded and a minimum of ellipticity was 

observed at 215 nm (Figure 5.2A). To estimate the secondary structure content and to 

elucidate the fold of HepIv1, the algorithm BeStSel was used. By providing the measured 

mean residue weight ellipticity and the wavelength as input parameters, an experimental CD 

spectrum was calculated by the BeStSel server [263]. This spectrum was fitted to the linear 

combinations of pre-calculated and fixed basis spectra sets in order to estimate the 

secondary structure content of HepIv1. Antiparallel β-sheet (43.7%) was the major structural 

element and only a minor amount of α-helix was estimated to be present (1.7%).  

 

Although a reducing agent was included during purification, two elution peaks could still be 

observed when His-tagged HepIv1 was analyzed on an analytical Superdex 200 increase 

column (Figure 5.2B). The two elution peaks eluted at 1.39 mL and 1.56 mL and showed that 

His-tagged HepIv1 was not homogenous, with two species, monomer and dimer, present in 

solution. Peak fractions that were collected during elution were analyzed again on the same 

column, and the resulting chromatogram obtained with the monomeric sample was identical 

to the first chromatogram of His-tagged HepIv1. In contrast, the chromatogram obtained with 

dimeric protein showed two identical elution peaks corresponding to both dimers and 

monomers of His-tagged HepIv1.  
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Since nucleation and subsequent crystal growth is time-dependent and often slow, the 

thermal stability of HepIv1 was analyzed over time. Aliquots of purified HepIv1 without 

His-tag were incubated at different temperatures (-80°C, 4°C, 20°C and 30°C) for one week 

and the samples were then analyzed via analytic SEC and SDS-PAGE (Figure 5.3).  

Figure 5.2 Biophysical and biochemical analysis of His-tagged HepIv1. A) CD spectrum of His-tagged 

HepIv1 (0.4 mg/mL) in buffer containing 50 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP. The 

mean residue weight ellipticity is plotted as function of the wavelength with a minimum at 215 nm. 

B) Analysis of His-tagged HepIv1 by analytical SEC using a Superdex 200 increase PC 3.2/300 

column. Panel on the left shows the chromatogram of His-tagged HepIv1 with two elution peaks at 

1.39 mL and 1.56 mL corresponding to dimers and monomers species, respectively. Panel on the right 

shows the chromatograms obtained from isolated dimer and monomer elution peak fractions (depicted 

in teal and gray, respectively).  
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The single band observed for sample incubated at -80°C on the SDS-PAGE confirmed the 

purity of HepIv1 initially achieved during purification. However, elution peaks with lower 

intensities observed by SEC and the presence of bands at smaller molecular weights on the 

SDS-PAGE indicated that HepIv1 degradation occurred over time and with an increase of 

temperature. Since degradation of HepIv1 could have been caused by proteases that were 

not removed during purification, a protease inhibitor mix (cOmplete by Roche) as well as 

EDTA were added to purified HepIv1 to test this hypothesis. However, no change on the 

degradation effect was observed indicating that degradation of HepIv1 was caused by its 

intrinsically low thermal stability. 

 

Next, native MS measurements were performed to further investigate the low stability of 

HepIv1. This technique preserves the quaternary protein structure and it has the ability to 

simultaneously measure and determine the molecular mass of several species present in a 

mixture [292]. Besides purified HepIv1, a commercial heparinase I purchased from Iduron 

was also analyzed in order to determine the native N-terminus of the protein isolated from 

P. heparinus after secretion as a possible help for improved construct design. For protein 

analysis by native MS, a Q-TOF 2 (Quadrupole time of flight) mass spectrometer was used 

and the buffers of both enzymes were exchanged to a volatile buffer containing 150 mM 

ammonium acetate pH 7.5. Multiple ion signals observed in the MS spectra originated from 

multiple charged species of heparinase I and HepIv1 and were plotted as function of 

mass-to-charge ratio (m/z values) of detected ions. Native MS measurements of heparinase I 

from Iduron showed signals correspondent to two different species with molecular masses of 

42512.40 Da and 67106.87 Da (Figure 5.4A). Based on theoretical molecular weights, these 

species were identified to be monomeric heparinase I (mature protein has a MW of 41.3 Da) 

Figure 5.3 Thermal stability analysis of HepIv1. Samples of purified protein were incubated at -80°C, 

4°C, 20°C and 30°C and analyzed after one week. A) Analytical SEC performed with a Superdex 200 

increase PC 3.2/300 column. B) SDS-PAGE analysis. Protein bands visible at about 42 kDa 

correspond to intact HepIv1, whereas bands observed at smaller MWs most likely correspond to 

degradation fragments of HepIv1. 
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and bovine serum albumin (BSA). Heparinase I from Iduron is supplied with 0.2% BSA for 

stabilization. Initial MS measurements of HepIv1, for which a theoretical MW of 41.75 kDa 

after His-tag cleavage has been determined (Table 9.1), were performed using a protein 

concentration of 2.5 μM. However, after 2 weeks of protein freezing and storage, a higher 

concentration of about 21 μM was necessary to obtain a good signal. For the native MS 

spectrum of HepIv1 prior to storage, signals corresponding to three different species were 

observed (Figure 5.4B). Molecular masses of 41750.77 Da, 41753.77 Da and 83811.6 Da 

were determined and identified as denatured HepIv1 and HepIv1 in the monomeric and 

dimeric states, respectively. Unfolded proteins display a larger surface area and therefore 

gain more charges, whereas less charges are clustered on proteins with more compact 

conformations [292]. Native MS spectrum of HepIv1 after storage showed a double monomer 

peak as well as an increase of Hepv1 denaturation and dimerization (Figure 5.4C). The 

molecular masses of both peaks corresponded to monomeric HepIv1 (41878.6 Da and 

42130.50 Da), with one peak most likely resulting from a covalent attachment of a TCEP 

molecule to HepIv1 (the difference was about 250 Da, which corresponds to the molecular 

mass of TCEP). TCEP was included in the SEC buffer and it was therefore present in the 

HepIv1 solution prior to buffer exchange. The denaturation and dimerization of HepIv1 upon 

freezing and storage demonstrated once more the low stability of this enzyme. However, 

these species were not observed in native MS measurements of heparinase I from Iduron, 

indicating that this enzyme has a higher stability, which could either result from its native 

N-terminus sequence, the expression system or the presence of BSA. 
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Figure 5.4 Native MS spectra of heparinase I purchased from Iduron and purified HepIv1. MS 

measurements were performed with protein in buffer containing 150 mM ammonium acetate at pH 7.5. 

Signal intensities are plotted as a function of m/z values of detected ions. The determined MW for 

each protein is indicated on the right side. Values highlighted with asterisks were determined without 

calibration of the system. A) Native MS spectrum of heparinase I (Iduron) at 3 μM. Assigned charge 

states are depicted in green for heparinase I and in red for BSA. B) Native MS spectrum of HepIv1 at 

2.5 μM. Assigned charge states are depicted in dark geen for denaured HepIv1, light green for 

monomers of HepIv1 and intermediate green for dimers. C) Native MS spectrum of HepIv1 after 

storage in 150 mM ammonium acetate at pH 7.5 for two weeks at -20°C (21 μM). Assigned charged 

states are depicted in light green for denatured and folded HepIv1 monomer, in dark green for 

denatured and folded HepIv1 dimer and in blue for HepIv1 associated with TCEP. Spectra provided by 

Ronja Ponja and Dr. Charlotte Uetrecht, Heinrich Pette Institute, Hamburg. 
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DSF was used to determine the thermal stability, reflected by the melting temperatures 

(Tm values), of heparinase I and to investigate the difference in stability observed between 

the two enzymes. In addition to HepIv1 and heparinase I from Iduron, an additional 

commercial heparinase I purchased from R&D systems was investigated. Similar to HepIv1, 

this enzyme derived from P. heparinus was recombinantly produced in E. coli without the first 

21 amino acids and possessed a His6-tag at the N-terminus. Thermal unfolding curves of the 

three enzymes were determined by measuring the fluorescence signal of SYPRO ORANGE 

dye upon temperature increase (Figure 5.5A). Determination of Tm values for each protein 

was based on the first derivative analysis of the fluorescence curves (Figure 5.5B and Figure 

5.5C). 

 

 

Thermal unfolding curves and their corresponding first derivative demonstrated that 

recombinantly heparinases produced (HepIv1 and heparinase I from R&D systems) had a 

lower thermal stability in comparison to heparinase I from Iduron isolated from P. heparinus. 

Figure 5.5 Thermal stability analysis of HepIv1 and commercially available heparinase I by DSF.  

Fluorescence intensities and first derivatives are plotted as a function of temperature. Results for 

HepIv1 in SEC buffer containing 50 mM HEPES pH 7.5, 150 mM NaCl and 1 mM TCEP are depicted 

in black. For heparinase I from Iduron and R&D systems, results are shown in teal and gray teal, 

respectively. A) Thermal unfolding curves of HepIv1 and purchased enzymes. B) First derivative 

analysis obtained from the fluorescence profile. Due to differences in fluorescence intensity, results 

are shown in different panels for clarity. Results obtained for HepIv1 and heparinase I from R&D 

systems are shown at the top panel and results for heparinase I from Iduron are shown at the bottom 

panel. C) Tm values determined by DSF. Data shown represents mean values ± standard deviation of 

three measurements. 
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The high initial fluorescence observed for HepIv1 suggested that unfolded protein was 

already present in solution, as shown by native MS. Two Tm values were determined for this 

enzyme, 31.60°C and 45.34°C, and they are most likely due to the presence of species with 

distinct thermal stability in solution. A Tm of 32.38°C was determined for heparinase I from 

R&D systems, whereas a significantly higher Tm of 43.13°C was determined for heparinase I 

from Iduron. Since buffer formulations, as well as stabilizing additives such as BSA, have a 

significant impact on how proteins behave in solution and can strongly influence their 

stability, a 96-well commercial buffer screen was used in combination with DSF to analyze 

the effect of different buffer systems, salt concentrations and pH values on the thermal 

stability of HepIv1. Purified and concentrated HepIv1 prepared in SEC buffer was diluted in 

solutions from the buffer screen and the unfolding curves were recorded (Figure 5.6A). By 

determining Tm values for each condition from the first derivative analysis, the effect of the 

formulation components was evaluated. Results showing a significant increase of thermal 

stability are displayed in Figure 5.6. 

 

 

 

Figure 5.6 Effect of formulation components on the thermal stability of HepIv1. A) Unfolding curves of 

HepIv1 determined by DSF. HepIv1 was diluted in a Super Buffer composed of a citric 

acid:HEPES:CHES mixture with varying salt concentrations at pH 4 from a commercial screen 

(JBScreen Thermofluor FUNDAMENT). Conditions that resulted in a higher Tm are shown and 

compared to HepIv1 stored in SEC buffer (depicted in black). The bottom panel shows the first 

derivative analysis obtained from the fluorescence profile. Both panels are plotted as a function of 

temperature. B) Calculated Tm values for HepIv1 in buffers that result in higher thermal stability. 
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Buffer formulations containing low pH and high salt concentrations exhibited a single 

inflection point, as well as a significant increase of the thermal unfolding temperature. The 

best results were observed when using 100 mM of a Super Buffer composed of citric 

acid:HEPES:CHES in molar ratios of 2:3:4 in combination with 0.5-1 M NaCl at pH 4. 

A difference of about 10°C was observed for the Tm of HepIv1 in buffers containing 0.25 M 

and 0.5 M NaCl (42.1°C and 42.8°C, respectively) in comparison to HepIv1 in SEC buffer. 

Thermal stability of HepIv1 was further influenced by an increase of the salt concentration to 

1 M NaCl, which resulted in a Tm of 48.3°C. Based on these findings, a modified SEC buffer 

was used for purification of HepIv1. However, high salt concentrations are sometimes not 

favorable for protein crystallization as they can promote the formation of salt crystals. 

Therefore, since lower salt concentrations (0.25 M to 0.5 M) showed similar thermal 

unfolding compared to heparinase I from Iduron, a buffer containing 20 mM of Super Buffer 

at pH 4, 250 mM NaCl and 1 mM TCEP was used. In SEC-based experiments it was 

observed that presence of a reducing agent increased the content of the monomeric species. 

A Tm of 41.85°C was determined by DSF for HepIv1 purified with the new buffer and the 

thermal unfolding curve was comparable to the previously reported results obtained with the 

commercial buffer screen.  

 

A CD spectrum of HepIv1 after His-tag cleavage was recorded in the new buffer and a 

minimum of ellipticity was observed at about 215 nm (Figure 5.7A). This spectrum was 

identical to the spectrum reported for His-tagged HepIv1 in SEC buffer at pH 7.5, indicating 

that the buffer components did not have any measurable effect on the secondary structure 

content and folding of HepIv1. Additionally, analytic SEC was performed with two different 

concentrations of HepIv1 to analyze its influence on the molecular species present in solution 

(Figure 5.7B). Chromatograms obtained with 1 mg/mL and 2 mg/mL of HepIv1 showed a 

concentration-dependent effect on the oligomerization state of HepIv1. In contrast to the 

previously shown chromatograms, the major elution peak was observed at 1.42 mL, which 

corresponded to HepIv1 in the dimeric state. A peak at 1.59 mL corresponding to monomeric 

HepIv1 was also observed in both cases, but for HepIv1 at 2 mg/mL a third peak at lower 

retention volume was also present, indicating the formation of larger oligomers. 
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Despite the increase of the Tm value of HepIv1 with the modified SEC buffer, protein 

degradation could still be observed by SDS-PAGE and size heterogeneity was still a 

challenge for crystallization. Nevertheless, this protein was used to set up new crystallization 

drops using different conditions, but no protein crystals were observed. 

 

5.1.3 Design of HepIv2 construct 

The stability difference observed between HepIv1 and heparinase I purchased from Iduron 

suggested that their N-terminal sequence might differ and influence their biochemical 

properties. Studies have been performed to precisely identify the native leader sequence of 

heparinase I from P. heparinus, however it is still not clear where cleavage of the secretion 

signal occurs [164]. To determine the accurate mass of commercially available heparinase I 

different MS techniques were employed. Heparinase I from Iduron possessing the native 

secretion N-terminus sequence, was investigated by top-down analysis both in native and 

denatured conditions. Prior to top-down analysis measurements, the protein’s buffer was 

exchanged to 150 mM or 250 mM ammonium acetate at pH 7.4. A molecular mass of 

42501.22±1.3 Da was determined for the major protein species detected using an Orbitap 

Fusion mass spectrometer. Measurements performed with a Q-TOF 2 mass spectrometer 

showed an almost identical molecular mass of 42504.9±1.3 Da. Considering that the 

theoretical molecular weight of heparinase I lacking the first 21 amino acids is 41337.63 Da, 

the difference in molecular masses could be derived from 10 additional amino acids at the 

N-terminus sequence of mature heparinase I isolated from P. heparinus. The theoretical MW 

of heparinase I containing these additional 10 amino acids located at the N-terminus 

Figure 5.7 Biophysical and biochemical analysis of HepIv1 purified with the modified SEC buffer. 

A) CD spectrum of HepIv1 (0.4 mg/mL) in buffer containing 20 mM Super buffer, 250 mM NaCl and 

1 mM TCEP at pH 4. The mean residue weight ellipticity is plotted as function of the wavelength. 

B) Analytical size exclusion chromatograms of HepIv1 obtained with protein concentrations of 

1 mg/mL and 2 mg/mL (shown in black and in gray, respectively). On a Superdex 200 increase PC 

3.2/300 column three elution peaks were observed at 1.27 mL, 1.42 mL and 1.59 mL with the major 

peak corresponding to a dimer of HepIv1. 
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(QQLFLCSAYA) was determined to be 42462.94 Da. The remaining molecular mass 

difference between could result from an additional modification, such as the substitution of 

histidine to valine (38 Da) or acetylation (42 D). Based on these findings from Ronja Ponja 

and Dr. Charlotte Uetrecht, a new construct of heparinase I containing the additional 

10 amino acids at the N-terminus was designed to study their impact on the enzyme’s 

stability. No further potential modifications were included. 

 

5.1.4 Expression and purification of HepIv2 construct 

The new heparinase construct, named HepIv2, was expressed using the pET28a expression 

vector with the extended N-terminus sequence containing a part of the putative leader 

sequence of native heparinase I from P. heparinus (residues 12-21, UNIPROT entry 

Q05819). As for the HepIv1 construct this construct also encoded a N-terminal His6-tag 

followed by a cleavage sequence specific for the HRV 3C protease (the amino acid 

sequence is shown in section 9.1). 

 

During initial expression and purifications attempts using the same experimental procedures 

as described for HepIv1 two major challenges were encountered. First, HepIv2 exhibited a 

very low solubility, which resulted in very small amounts of soluble protein after cell lysis and 

a high propensity to precipitate during purification. Second, a high level of contaminants was 

observed after the first purification step using Ni2+ affinity chromatography. Although 

additional purification steps were performed some impurities could not be removed. To 

improve solubility of HepIv2 and increase the amount of soluble protein for purification, 

different expression conditions were tested, including different E. coli strains, cell culture 

media and starting material (glycerol stock or freshly transformed cells). Best results (amount 

of target protein vs. amount of impurities) were obtained using E. coli BL21 (DE3) cells, 

induced with 0.1 mM IPTG overnight at 20°C. In addition, lysis buffers with varying salts 

(150 mM and 300 mM NaCl and KCl), pH values (7.0, 7.5 and 8.0) and additives that 

influence protein solubility and reduce aggregation, such as Triton X-100, Urea and 

L-Arginine, were tested [293]. From this buffer screening approach, a buffer containing 

50 mM HEPES pH 8, 150 mM NaCl, 5 mM β-mercaptoethanol, 125 mM L-Arginine-HCl and 

0.01% (w/v) Triton X-100 was selected as lysis buffer. Cell disruption was also modified by 

using cell homogenization at a pressure of 700-800 bar instead of sonication. This new 

strategy contributed to a minor increase of soluble HepIv2, which was used for purification.  

 

Ni2+ affinity chromatography was selected as a first purification step using a step elution 

gradient with increasing concentrations of imidazole (50mM, 100 mM, 250 mM and 500 mM) 

to potentially increase the purity of HepIv2 (Figure 5.8A). Prior to elution, a washing step was 
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performed with 1 M NaCl and 20% (v/v) glycerol to disrupt non-specific interactions formed 

between contaminants and HepIv2. Collected fractions were analyzed by SDS-PAGE and in 

contrast to previous purifications the amount of impurities was significantly reduced (Figure 

5.8B). One major band was observed at approximately 45 kDa, which corresponded to the 

MW of His-tagged HepIv2 (Table 9.1). Fractions from elution steps performed with 250 mM 

and 500 mM imidazole were pooled and further purified. Since neither removal of the His-tag 

neither hydrophobic interaction nor size exclusion chromatography improved purity, cation 

exchange chromatography was selected as a second purification step. HepIv2 has a very 

high theoretical pI of 9.2 and it is thus expected to be positively charged at a pH of 8 (Table 

9.1). Prior to purification, the buffer was exchanged with to reduce the salt concentration to 

20 mM NaCl. Two washing steps were performed using 50 mM and 100 mM NaCl followed 

by a linear elution gradient up to 1 M NaCl to elute bound HepIv2 (Figure 5.8C). Resulting 

chromatogram showed that no significant separation occurred, which was confirmed by 

SDS-PAGE (data not shown). Thus, most of the elution peak fractions were pooled for 

biochemical analysis and crystallization. Analytic SEC performed using a buffer containing 

50 mM HEPES pH 8, 150 mM NaCl, 5 mM β-mercaptoethanol showed that on a Superdex 

75 PC 3.2/300 column, HepIv2 eluted at 1.20 mL (Figure 5.8.D) This elution volume 

corresponded to a molecular weight of 37.5 kDa, which indicated the presence of monomeric 

His-tagged HepIv2.  
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The HepIv2 purification was thus optimized to yield pure and monomeric proteins, however  

only small amounts of pure HepIv2 were obtained due to its poor solubility. On average, from 

a cell pellet of 10 g, around 2 mg of protein were obtained after the first Ni2+ affinity 

purification step and less than 1 mg of purified His-tagged HepIv2 was obtained after the 

second, ion exchange chromatography (IEX), purification step. During HepIv2 concentration 

attempts using centrifugal concentrators, protein precipitation as well as a tendency of 

His-tagged HepIv2 to adhere to the membrane of the concentrator were observed, further 

decreasing the protein yield.  

 

Figure 5.8 Purification of HepIv2 using Ni2+ affinity and ion exchange chromatography. 

A) Chromatogram of His-tagged HepIv2 purification using a 5 mL HisTrap column. A major elution 

peak was observed with 250 mM Imidazole and pooled fractions are highlighted in green. 

B) SDS-PAGE analysis of (1) crude lysate, (2) flow-through collected during loading phase, (3) elution 

with 50 mM imidazole, (4) 100 mM imidazole, (5) 250 mM and (6) 500 mM Imidazole. The major band 

at approximately 45 kDa corresponds to His-tagged HepIv2. C) Cation exchange chromatography 

performed with a 1 mL HiTrap SP Sepharose column. A linear elution gradient was applied from 

100 mM to 1 M NaCl to elute HepIv2. Fractions that were pooled are shown in green. D) Size 

exclusion chromatogram obtained using a Superdex 75 PC 3.2/300 column. A single peak was 

observed at 1.20 mL corresponding to monomeric His-tagged HepIv2. 
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5.1.5 Analysis of HepIv2 thermal stability  

The impact of the extended N-terminus sequence on the thermal stability was analyzed by 

DSF and SDS-PAGE using purified His-tagged HepIv2. Initial thermal unfolding curves were 

determined for HepIv2 samples obtained after each purification step by monitoring the 

fluorescence of the Thermo Fisher Protein Thermal Shift dye upon steady temperature 

increase (Figure 5.9A). For each sample a Tm (mean values ± standard deviation of three 

measurements) was determined using the first derivative analysis. Similar thermal unfolding 

curves were observed for both samples (after Ni2+ affinity and IEX) and no increase in 

stability occurred in comparison to HepIv1. A Tm of 27.2±0.7°C was determined for pooled 

fractions containing HepIv2 after Ni2+ affinity chromatography, while a Tm of 31.7±0.4°C was 

determined for pooled fractions after cation exchange chromatography containing a higher 

amount of NaCl and no imidazole. These results showed once more the effect of buffer 

components on a protein’s stability. Although a stability screen from Hampton Research was 

used to further increase the thermal stability of HepIv2, Tm values determined for the different 

conditions did not show a significant increase compared to Tm determined for HepIv2 after 

cation exchange chromatography. Further analysis as well as crystallization attempts were 

performed using purified His-tagged HepIv2 that was dialyzed into a buffer containing 

50 mM HEPES, 150 mM NaCl, 2 mM DTT at pH 7.5. Aliquots of HepIv2 were incubated for 

one week at different temperatures (-80°C, 4°C and 20°C) and subsequently analyzed by 

SDS-PAGE (Figure 5.9B). In contrast to previous results, only faint bands were observed at 

lower molecular weights but reduced intensity of the band correspondent to HepIv2 at 20°C 

indicated that protein degradation nevertheless occurred.  
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The temperature effect on degradation of heparinase I was more severe for HepIv1 than for 

HepIv2, however similarly to HepIv1, crystallization attempts of His-tagged HepIv2 did not 

result in protein crystal formation.  

 

5.1.6 Expression and purification of HepIv3 construct 

A third expression construct, designated HepIv3, was designed based on a publication where 

the crystal structure of recombinant heparinase III from P. heparinus was reported [160]. The 

pET21b expression vector was used and besides lacking the putative leader sequence 

(i.e. with the N-terminus chosen as for HepIv1), this construct was designed with a His6-tag 

at the C-terminus without a cleavage site between the protein sequence and the tag (the 

amino acid sequence is shown in section 9.1).  

 

A strategy similar to that used for the production of HepIv2 was followed to express and 

purify HepIv3. A main difference consisted in the addition of 5 mM CaCl2 to all buffers since 

Figure 5.9 Thermal stability analysis of His-tagged HepIv2. A) Thermal unfolding curves of HepIv2 

determined by DSF. First derivative analysis of the fluorescence profile is shown in the bottom panel. 

All curves are plotted as function of temperature. Samples of His-tagged HepIv2 were analyzed after 

first and second purification steps (Ni-affinity and IEX depicted in black and in gray, respectively). 

B) SDS-PAGE analysis of HepIv2 samples incubated for one week at -80°C, 4°C and 20°C. The major 

band at approximately 45 kDa corresponds to intact HepIv2, whereas faint bands with smaller MWs 

likely resulted from protein degradation.  
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this additive was reported to aid in the stabilization of heparinase I [294]. During expression 

in E. coli BL21 (DE3) cells, samples were taken at different time points for SDS-PAGE 

analysis, as well as after cell harvest and lysis (Figure 5.10A). Besides the band at 42 kDa, 

possibly corresponding to expressed HepIv3 (Table 9.1), additional bands were observed at 

lower molecular weights. The intensity of these bands increased simultaneously with 

increasing expression of the target protein, which could be a result of co-expression, protein 

degradation or partial truncation of HepIv3 during protein expression. Ni2+ affinity 

chromatography was selected to purify the crude cell lysate containing soluble HepIv3 and 

verify if the potential contaminants or degradation fragments with smaller molecular weights 

could be separated (Figure 5.10B). Two washing steps with 25 mM and 50 mM imidazole 

were performed followed by a linear elution gradient up to 500 mM imidazole. A single elution 

peak was observed on the chromatogram and fractions from this peak were pooled for 

further purification. The protein buffer was exchanged via a gravity-flow PD-10 desalting 

column to decrease the salt concentration to 20 mM NaCl before proceeding with cation 

exchange chromatography. In this second purification, a linear elution gradient up to 

1 M NaCl was applied and, as in the previous step, a single elution peak was observed  

(Figure 5.10C). SDS-PAGE analysis of pooled fractions from both steps revealed that 

separation of bands at lower molecular weights could not be achieved and that the purity of 

HepIv3 was not improved by cation exchange chromatography (Figure 5.10D). A western 

blot was also performed with the same samples to find out if the observed bands 

corresponded to co-expressing and co-purifying contaminant proteins or if they were a result 

of protein degradation (Figure 5.10E). Using an anti-His antibody for detection, a similar set 

of bands was observed, which indicated the presence of full-length HepIv3 as well as 

partially cleaved HepIv3 with an intact C-terminal sequence.  
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To identify HepIv3, the main bands observed by SDS-PAGE were analyzed by MALDI-MS. 

The results obtained showed that the protein band observed at an MW of approximately 

42.5 kDa corresponded to the full-length protein. For this band, a sequence coverage of 

79.8% was determined and both N-terminal and C-terminal sequence stretches were 

identified (Figure 5.10A). In contrast, the protein band observed around 36 kDa with 

sequence coverage of 77.2% showed that the N-terminus sequence of HepIv3 was missing 

(Figure 5.10B). 

 

Figure 5.10 Expression and purification of HepIv3 using Ni2+-affinity and cation exchange 

chromatography. A) SDS-PAGE analysis of HepIv3 expression and cell lysis. Bands visible at 

approximately 42.5 kDa correspond to the molecular weight of HepIv3. (1) Before induction with IPTG, 

(2) 3.5 h after induction, (3) overnight growth, (4) solubilized cell pellet after lysis and (5) soluble 

fraction. B) Purification of His-tagged Hep1v3 using a HisTrap 5 mL column. After an initial washing 

step with low concentrations of imidazole, a linear elution gradient from 50 mM to 500 mM imidazole 

was applied to elute HepIv3. Pooled fractions are highlighted in green. C) Cation exchange 

chromatography used as a second purification step. A linear elution gradient was applied up to 1 M 

NaCl to elute HepIv3. Pooled fractions are highlighted in green. D) SDS-PAGE and E) Western blot 

analysis of pooled fractions containing HepIv3 from first (1) and second (2) purification steps. 

A composite figure was generated by overlapping results from both chemiluminescent and 

colorimetric detections with the Image Lab Touch Software (Bio-Rad). 
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Taken together, both western blot and MALDI-MS results confirmed the presence of 

full-length and partial fragments of HepIv3. Furthermore, these results showed that 

expression of HepIv3 construct resulted in partial N-terminal truncation of heparinase I. 

Expression of HepIv3 was repeated without CaCl2 but no increase in stability was observed.  

 

5.1.7 Activity assay of heparinase I and size-fractionation of oligosaccharides 

An enzymatic assay was performed to determine the catalytic activity of recombinantly 

produced HepIv1. This enzyme can be used to obtained small oligosaccharides from heparin 

via an enzymatic depolymerization reaction that proceeds via β-elimination, producing a 

carboxy-conjugated C-C double bond that can be detected at 232 nm [141]. Therefore, 

mixtures containing HepIv1 and sodium heparin as substrate were prepared and incubated 

at 35°C. Formation of the C4-C5 double bond at the non-reducing end of heparin-derived 

oligosaccharide products was measured by UV absorption at 232 nm, with heparinase I from 

R&D systems serving as a positive control. HepIv1 used in this assay was produced 

according to the experimental procedure developed for HepIv2 and stored at 4°C in buffer 

containing 50 mM HEPES pH 7.5, 150 mM NaCl and 2 mM DTT. For the assay a buffer 

Figure 5.11 MALDI-MS analysis of HepIv3 bands observed by SDS-PAGE. Gray bars and red 

residues denote areas covered by analysis of the tryptic digest. A) Analysis of protein band with the 

highest intensity observed at approximately 42.5 kDa. B) Analysis of protein band at around 36 kDa. 

Results were provided by Sophie Stotz, University of Tübingen. 
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containing 50 mM Tris-HCl pH 7.5, 100 mM NaCl and 10 mM CaCl2 was used, except when 

studying the effect of Ca2+ on HepIv1’s activity.  

 

The enzymatic depolymerization rate of heparin by HepIv1 was first investigated with varying 

concentrations of CaCl2 (2 mM, 5 mM and 10 mM) since Ca2+ is known to enhance activity of 

heparinase I (Figure 5.12A) [145]. Increasing absorption at 232 nm suggested that HepIv1 

was active and oligosaccharides products derived from heparin were produced. From the 

three concentrations of CaCl2 tested, the highest activity was observed for reactions 

prepared with 10 mM CaCl2. Thus, an assay buffer containing this concentration of CaCl2 

was selected for further experiments, in which the activity of HepIv1 was compared to the 

activity of commercial heparinase I from R&D systems (Figure 5.12B). Since the 

concentration of heparinase I from R&D systems was not known, two concentrations of 

HepIv1 were tested (2 μg/mL and 20 μg/mL) and a control reaction containing substrate and 

buffer was prepared to determine background absorption. UV absorption recorded at 232 nm 

showed that the concentration of heparinase I had a significant influence the rate of 

enzymatic depolymerization of heparin. Whereas reaction incubated with 2 μg/mL of HepIv1 

showed a very low rate of heparin degradation, an increase of UV absorption was observed 

when using HepIv1 at 20 μg/mL. However, while a continuous linear increase of the UV 

absorption was observed for heparinase I from R&D, a stagnation in the activity of the higher 

concentrated HepIv1 sample occurred after a few minutes of reaction time despite the 

presence of a large excess of substrate, possibly as a consequence of the thermal instability 

of HepIv1. 

 

Heparin-derived oligosaccharides obtained with both reactions were size-fractionated on a 

Superdex Peptide PC 3.2/300 column using assay buffer containing 10 mM CaCl2 (Figure 

5.12C). Separation was monitored by UV absorption at 232 nm and the observed elution 

peaks corresponded to oligosaccharides with different sizes/degrees of polymerization (dp) 

[4]. Both reactions yielded the main disaccharide (dp2) product (peak at approximately 1.55 

mL). However, only heparin degradation by heparinase I from R&D produced longer 

oligosaccharides, such as dp4 and dp6, while a large amount of non-cleaved substrate was 

observed for the HepIv1 reaction in the void volume peak. 
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Although a quantitative comparison of enzymatic cleavage of heparin by these two enzymes 

cannot be performed since the concentration of the commercial product was unknown, the 

obtained results suggested that recombinantly purified HepIv1 was less active than 

commercial heparinase I from R&D systems. 

 

  

Figure 5.12 Enzymatic depolymerization of heparin by heparinase I monitored by UV absorption at 

232 nm. Heparinase was incubated with sodium heparin at 0.75 mg/mL and incubated at 35° for 

10 min. A) Effect of Ca2+ concentration on the catalytic activity of purified HepIv1 at a protein 

concentration of 20 μg/mL. Concentrations of 2 mM (dark teal), 5 mM (light teal) and 10 mM 

(intermediate teal) of CaCl2 were tested. B) Comparison of catalytic activity of heparinase I from R&D 

systems and HepIv1. A substrate blank with buffer and substrate was included to determine the 

background absorbance (light gray). Reaction of commercial heparinase I and HepIv1 at 

concentrations of 2 μg/mL (1) and 20 μg/mL (2) are shown in dark gray, black and teal, respectively. 

C) Separation of heparin products released by both enzymes on a Superdex Peptide PC 3.2/300 

column after a reaction incubation period of 1 h. The assay buffer containing 50 mM Tris-HCl pH 7.5, 

100 mM NaCl and 10 mM CaCl2 was used for elution. 
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5.2 Discussion 

Glycosaminoglycans such as heparin and HS have been implicated in diverse biological 

activities through interaction with proteins. However, chemically defined and pure GAGs that 

can be used for functional and structural studies are difficult to obtain. A common strategy 

involves the enzymatic depolymerization of heparin by heparinase I from P. heparinus 

[4], [104]. Up to date, although the soil bacterium P. heparinus is the major source of 

heparinases, the only available three-dimensional structure of heparinase I is from 

B. thetaiotaomicron [174]. Despite sharing a sequence identity of 66.3%, heparinase I from 

B. thetaiotaomicron differs from heparinase I from P. heparinus by the absence of an 

apparent signal peptide at the N-terminus and an insertion of 8 amino acids within the 

heparin binding domain and calcium coordinating motif (Figure 5.13) [295]. This insertion is 

part of the tip of the so-called thumb domain in the B. thetaiotaomicron heparinase I and it 

has been shown to influence the enzyme’s activity. Distinct amino acids were identified to be 

critical for the catalytic activity of both enzymes, with only a catalytic base histidine residue 

conserved among them [170], [174].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although recombinant heparinase I expressed in E. coli cells is prone to aggregation and 

formation of insoluble inclusion bodies, expression conditions used in this study yielded 

soluble heparinase I protein that could be used for purification [298]. For the purification of 

recombinant HepIv1 lacking the signal peptide, a strategy comprising two Ni2+ affinity 

Figure 5.13 Sequence alignment of native heparinase I from P. heparinus and heparinase I from 

B. thetaiotaomicron. Only heparinase I from P. heparinus is predicted to contain a putative leader 

sequence. An insertion of 8 amino acids observed in the sequence of heparinase I from 

B. thetaiotaomicron, which corresponds to the tip of the thumb domain. Conserved residues are 

highlighted in blue and the catalytic critical amino acids C135 and H203 are marked with asterisks. 

Sequence alignment was carried out using Clustal Omega and displayed with ESPript [296], [297]. 
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chromatography steps, tag removal and a final polishing step using SEC resulted in highly 

pure mature HepIv1. Size exclusion chromatograms revealed, however, the presence of two 

species in solution, which corresponded to monomeric and dimeric HepIv1.  

 

Since dimerization of HepIv1 could be a result of non-native disulfide bonds formation 

between free cysteines in the protein, the sequence of heparinase I was analyzed and two 

cysteine residues (C135 and C297) were found in the predicted mature protein. Sequence 

alignment of heparinases I from P. heparinus and B. thetaiotaomicron showed that these two 

cysteine residues were conserved in the sequence of the homolog, which has in total six 

cysteines (Figure 5.13). To estimate the position and orientation of these cysteines, a 

homology model of heparinase I from P. heparinus was calculated via the SWISS Model 

server using the three-dimensional crystal structure of its homologue, which folds into a 

β-jelly roll with extended loops and an inserted partially helical domain, as a template (Figure 

5.14) [299].  

 

 

In the predicted structure, C135 and C297 were not located in close proximity, which makes 

the possibility of intramolecular disulfide bond formation unlikely. However, both residues 

were predicted to be exposed at the surface of the protein and might moderate 

intermolecular disulfide bonds between HepIv1 molecules. Reducing agents such as DTT 

Figure 5.14 Homology model of mature heparinase I from P. heparinus. The three-dimensional 

structure of heparinase I from B. thetaiotaomicron (PDB code 3IKW) was used as a template to predict 

the homology model with the SWISS Model server [299]. The N-terminus is indicated and C135 and 

C297 are highlighted in yellow. 
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and TCEP were thus included in the end of the purification to prevent non-native disulfide 

bond formation and to reduce the sample heterogeneity for crystallization. However, size 

exclusion chromatograms still showed the presence of both species in solution, with 

monomeric HepIv1 comprising the major species. Since conditions that facilitate protein 

crystallization cannot be predicted, an automated system for setting crystallization drops in 

combination with a variety of commercially available crystallization screens was used to 

obtain initial hints that could lead to the crystal structure of heparinase I. Although multiple 

parameters were tested, no protein crystals were observed. A substitution mutant where the 

non-catalytic active cysteine, C297, was replaced by serine (C297S) was also produced for 

protein crystallization experiments. However, this mutation did not prevent formation of 

oligomeric species and the protein showed a very low stability.  

 

To verify the structural integrity of HepIv1 and possibly understand the absence of crystal 

formation, different biophysical techniques were used. CD studies demonstrated that HepIv1 

was folded with the expected antiparallel β-sheet (43.7%) as its major secondary structural 

element. Based on these results, a β-sandwich fold was assumed for HepIv1, in line with the 

β-jellyroll fold observed in the homologue heparinase I from B. thetaiotaomicron. CD studies 

of heparinase I previously performed in the presence and absence of Ca2+ ions revealed no 

conformational change, which suggested that this ion is essential for catalytic activity rather 

than structural stability [168]. Besides, analysis of the oligomerization state of HepIv1 by 

analytical SEC demonstrated that separation of the monomeric and dimeric species could 

not be easily achieved since a dynamic equilibrium appeared to exist between both species. 

The most probable reason for the lack of protein crystallization was found when HepIv1 was 

exposed to a wide range of temperatures over a defined storage period. Severe protein 

degradation was observed and the effect was stronger for samples incubated at higher 

temperatures (20°C and 30°C), indicating that stability of HepIv1 was strongly 

temperature-dependent. In the past, Lohse and Linhardt have also described the low thermal 

stability of heparinase I from P. heparinus. Upon a cycle of freeze-thawing and storage at 

4°C, they observed that the initial catalytic activity of heparinase I was reduced to about 

50% [145]. This reduction of activity was most likely due to a loss of structural integrity of 

heparinase I, which resulted in its inactivation. Similar to previous observations, a mixture of 

different HepIv1 species was also detected by native MS measurements, this time including 

denatured protein. The fact that a higher protein concentration was required to obtain a good 

signal-to-noise ratio and that an increase of dimeric and denatures species occurred after 

storage of HepIv1 at -20°C for two weeks, demonstrated once more the low thermal stability 

of produced HepIv1. In agreement with previous observations, dimerization of HepIv1 was 

most likely unspecific and a result of concentration-dependent molecular interactions. Native 

MS measurements of heparinase I from Iduron containing the predicted mature N-terminus 
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suggested that this enzyme had a higher stability than HepIv1 since, besides BSA, which is 

commonly used to enhance storage stability of enzymes, only monomeric species were 

present in solution [145].  

 

Thermal unfolding curves determined by DSF also showed that heparinase I from Iduron was 

more thermally stable than purified Hepv1. Recombinant heparinase from R&D systems 

behaved similarly to purified HepIv1, showing a very low thermal stability with a Tm of about 

30°C. This difference of about 10°C observed between mature heparinase I isolated from 

P. heparinus (Iduron) and enzymes recombinantly produced in E. coli lacking the first 

21 amino acids (R&D systems and HepIv1) suggested that the N-terminus sequence might 

influence heparinase stability. Investigation of HepIv1 samples diluted in different buffer 

conditions from a commercial screen by DSF demonstrated that low pH values and higher 

salt concentrations resulted in increased thermal stability, with the best buffer showing a Tm 

increase greater than 10°C. This stability increase was probably derived from an electrostatic 

effect created by the counter ions from the salt since heparinase I has a theoretical pI greater 

than 9 and it is therefore strongly positively charged at pH 4. Based on these findings, a 

modified SEC buffer containing a higher salt concentration of 250 mM and a lower pH value 

of 4 was used for further experiments. However, protein degradation was still observed as 

well as the presence of monomers and dimers of HepIv1 in solution. The absence of protein 

crystals was thus most likely due to the low thermal and conformational stability of HepIv1 in 

combination with the presence of different oligomerization states in solution, including 

denatured protein. During crystallization, the long time span necessary for nucleation to 

occur increases the risk of protein degradation and the presence of denatured protein can 

induce excessive nucleation and lead to precipitation, lowering the soluble protein 

concentration below the critical range required for crystallization [187].  

 

Although the first 21 amino acids were predicted to comprise the signal peptide sequence of 

heparinase I from P. heparinus, the actual start site of mature heparinase I after cleavage of 

the signal peptide has not been experimentally determined. Absence of these amino acids in 

recombinantly produced heparinase I was shown to not influence its catalytic activity, but it 

could still have an impact on protein stability and folding [164]. Top-down MS measurements 

of commercially available heparinase I from P. heparinus comprising the mature protein 

sequence indicated a difference of almost 1 kDa between the MW determined for 

heparinase I from P. heparinus (about 42505 Da) and the theoretical MW of recombinant 

heparinase I produced in E. coli (41750 Da, including four non-native amino acids at the 

N-terminus, which result from the cleavage site sequence of thrombin). Based on these 

results, construct HepIv2 was designed containing 10 additional amino acids at the 

N-terminus (QQLFLCAYA), which resulted in a protein with an identical MW to mature 
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heparinase I from P. heparinus. In contrast to HepIv1, this protein showed a very low 

solubility, which significantly reduced the amount of soluble protein available for purification. 

Besides, most likely due to a higher hydrophobicity of this protein introduced by the extended 

N-terminus sequence, the purification strategy used for HepIv1 did not result in highly pure 

HepIv2. To improve levels of soluble HepIv2 and optimize its purification strategy, buffers 

with varying conditions were tested as well as different chromatographic techniques.  

Although purification of HepIv2 was successfully achieved, only very low amounts of protein, 

with low solubility, could be obtained. Folding and oligomerization of HepIv2 as determined 

by CD spectroscopy and SEC were identical compared to HepIv1. In contrast to previous 

assumptions regarding the N-terminus sequence of mature heparinase I, HepIv2 also 

showed a low thermal stability with a Tm of about 30°C and protein degradation was still 

observed when the protein was incubated at higher temperatures. Attempts to crystallize 

HepIv2 did also not result in protein crystal formation.  

 

According to results obtained with HepIv2, the difference of about 1 kDa observed between 

mature heparinase I from P. heparinus and recombinant heparinase I lacking amino acids 1 

to 21 did not seem to be explained by an extended N-terminus sequence of the mature 

protein. Another possible reason for the observed mass difference could be post-translational 

modifications of heparinase I by P. heparinus. In fact, one publication reported that upon 

cleavage of the leader sequence native heparinase I becomes O-glycosylated at S39 and 

that the N-terminal Q22 residues was further converted to pyroglutamate. The MW of the 

bacterial carbohydrate structure (about 1.1 kDa) and the absence of this as well as the 

N-terminal PTM in E. coli could be a plausible explanation for the observed discrepancy in 

molecular masses [148], [298]. Although glycosylation is more common for proteins 

produced in mammalian organisms, a similar glycosylation has also been reported for 

enzymes from F. meningosepticum [300]. Considering the previous observations, the higher 

thermal stability determined for heparinase I from Iduron could also be due to the addition of 

BSA in the Iduron preparation rather than a result of its possibly differing N-terminal 

sequence. Addition of BSA has been suggested to reduce molecular collision and formation 

of intermolecular associations, thus generally preventing dimerization and denaturation [301]. 

Addition of a protein such as BSA is a common strategy to preserve catalytic activity of 

enzymes for commercial use, however such a stabilization measure cannot be applied in 

protein crystallization trials.  

 

Investigation of a third expression construct, HepIv3, comprising the sequence of predicted 

mature heparinase I followed by a non-cleavable His6-tag at the C-terminus was terminated 

at a very early stage since N-terminal truncations were observed already during protein 

expression. A similar construct design was previously reported for recombinantly produced 
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heparinase III from P. heparinus where such an effect was not observed and its expression 

resulted in the determination of a three-dimensional crystal structure [160]. Although it is 

unknown why N-terminal truncation occurred it is possible that the His6-tag followed by a 

cleavage site at the N-terminus protected the N-terminus from proteolytic degradation at the 

N-terminus in HepIv1 and HepIv2.  

 

A preliminary activity assay performed with HepIv1 showed that the enzymatic 

depolymerization of heparin is dependent on the concentration of calcium ions. Ca2+ can 

enhance the activity of this enzyme and the highest activity, determined by monitoring the 

absorption at 232 nm, was indeed observed with a concentration of 10 mM CaCl2. Compared 

to commercial heparinase I from R&D systems, HepIv1 showed a lower activity resulting in a 

lower level of heparin-derived oligosaccharides, which was probably due to its thermal 

denaturation and subsequent inactivation.  

 

Up to date, research done on heparinase I from P. heparinus has been based on its 

predicted secondary structure and models developed using site-directed mutagenesis. 

Based on the obtained results, it is possible that the lack of structural studies on this enzyme 

is due to its very low thermal and conformational stability. This seems to be an intrinsic 

property of this enzyme and it could be that heparinase I produced by P. heparinus has a 

short half-life thus avoiding complete depolymerization of heparin to disaccharides. To select 

a stabilization strategy for heparinase I, understanding its thermal inactivation mechanism 

would be essential to identify possible enzyme-stabilizing agents that are compatible with 

crystallization, in order to enhance rigidity and prevent inactivation of the enzyme [301]. 

Protein engineering by random mutagenesis (error-prone PCR) is an alternative approach to 

obtain enzymes with higher stability. However, large libraries and a few mutagenesis cycles 

are required to find improved variants [302]. Structure-based engineering of heparinase I 

could not be accomplished since no protein crystals of recombinantly produced heparinase I 

were obtained. However, considering that crystal structures of heparinase I from 

B. thetaiotaomicron are available, this approach could be used in the future to modify this 

enzyme instead of heparinase I from P. heparinus. Modification of amino acids located at the 

heparin binding site could potentially switch the mechanism of action of heparinase I, 

resulting in a non-processive enzyme that would release medium-sized fragments of heparin 

instead of subsequently cleaving them until mostly disaccharides are obtained.  
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6 Project III  

Structural-based optimization of selective type 

I c-Jun N-terminal kinase 3 inhibitors 
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6.1 Results 

6.1.1 Development of selective JNK3 inhibitors 38 and 44 

To obtain selective inhibitors for JNK3, a compound with a pyridinylimidazole scaffold with 

dual activity for both JNK3 and p38α MAPK was selected as the starting point for subsequent 

modifications (compound 1a, Table 6.1). This compound was previously reported as a 

precursor for the synthesis of a fluorescent probe used in fluorescence polarization-based 

binding assay for JNKs [303], [304]. After several attempts to optimize this ATP-competitive 

lead compound, two type I inhibitors displaying high selectivity towards JNK3 were obtained 

and used for crystallization (compounds 38 and 44, Table 6.1). In detail, the 

pyridinylimidazole scaffold of compound 1a was first modified by substitution of the pyridine 

C2-position with a 4-morpholinoaniline group. To shift the preference of the inhibitor towards 

JNK3, the p-fluorophenyl group at the imidazole-C4 position of compound 1a was replaced 

by a methyl substituent at the imidazole-C4 position resulting in compound 44. This 

4,5-disubstituted imidazole was further modified by removal of the S-methyl group at the 

imidazole-C2 position yielding compound 38. The inhibitors were evaluated by ELISA to 

determine their ability to inhibit JNK3 and p38α MAPK [305]. Both inhibitors displayed no 

significant inhibition of p38α MAPK at tested concentrations (concentration producing 50% of 

inhibition (IC50) > 10 μM), while still being able to inhibit JNK3 with IC50 values in the 

sub-micromolar range. Additionally, presence of the 2-methylsulfanyl moiety in compound 44 

resulted in a two-fold increase in the inhibitory potency on JNK3 (IC50 = 363 nM). 
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Table 6.1 Structure and biological activity of type I inhibitors 38 and 44. IC50 values represent the 

mean value of three independent experiments. Values between parentheses correspond to inhibition 

at 10 μM concentration in percent. Results were obtained by Dr. Francesco Ansideri and 

Prof. Dr. Pierre Koch, Institute of Pharmaceutical Sciences, University of Tübingen [8].  

Compound Structure 
IC50 ± SD [nM] 

JNK3 
IC50 ± SD [nM]  
p38α MAPK 

1a 

 

24 17 

38 

 

833±139 >10 000 (41%) 

44 

 

363±34 >10 000 (48%) 

 

To elucidate the binding mode of 4-methyl-5-(pyridine-4-yl) imidazole derivatives and gain 

insight into the role of the S-methyl group introduced in compound 44, structures of JNK3 in 

complex with compounds 38 and 44 were determined by X-ray crystallography. The human 

JNK3 protein used for crystallization was truncated (the amino acid sequence is shown in 

section 9.1) and recombinantly produced in E. coli. A JNK3 construct lacking 39 residues at 

the N-terminus and 62 residues at the C-terminus was previously used to grow large, 

well-ordered crystals that diffracted to 2.3 Å resolution [239]. Contrarily to the phosphorylated 

protein used for inhibition studies, recombinant JNK3 was not phosphorylated and was, 

therefore, inactive. To date no structure was published of phosphorylated JNK3 and all 

available structures have several regions missing [244].  
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6.1.2 Crystallization of JNK3-inhibitor complexes 

Crystal growth is highly dependent on protein quality used for crystallization, and the protein 

should ideally be pure and homogenous. To verify the quality of the JNK3 sample provided 

before proceeding with crystallization experiments, analytical size exclusion chromatography 

and SDS-PAGE were used and sample purity and homogeneity was confirmed (Figure 6.1). 

On a Superdex 75 PC 3.2/300 column, JNK3 eluted at 1.18 mL, which corresponded to a 

MW of 41.9 kDa, indicating the presence of a monomeric protein. One major band at 

approximately 42 kDa was also visible in SDS-PAGE analysis, corresponding to the MW of 

the truncated protein as well (Table 9.1).  

 

Initial JNK3 crystals were obtained using a similar experimental procedure as described by 

Lange et al. [272]. Before setting up crystallization drops, JNK3 protein was incubated on ice 

for 30 min with the non-hydrolyzable ATP analogue AMP-PCP. The sitting drop vapor 

diffusion method was used for crystallization, and the amount of PEG 3350 was varied 

between 28-31% (v/v). Similar crystals were observed for all conditions tested (Figure 6.2). 

Crystal growth was observed over time and multiple lattices were present in the X-ray 

diffraction patterns. The obtained crystals only showed X-ray diffraction up to 3 Å resolution.  

 

Figure 6.1 Analysis of JNK3 protein sample using analytical SEC and SDS-PAGE. A) Size exclusion 

chromatogram obtained using a Superdex 75 PC 3.2/300 column. A single peak was observed at 

1.18 mL corresponding to monomeric JNK3. B) SDS-PAGE analysis of purified JNK3. The band at 

approximately 42 kDa corresponds to the molecular weight of monomeric truncated protein. 
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To improve crystal quality and achieve higher resolution, the protein concentration was 

reduced from 10 mg/mL to 5 and 2.5 mg/mL, and microseeding was used. Smaller crystals 

containing a single lattice and diffracting up to 1.76 Å (Figure 6.3) were obtained. 

Subsequently, crystals were incubated with 10 mM of inhibitors 38 and 44 for 36 h to obtain 

the complex structures. 

 

 

Data collection of crystals containing inhibitors 38 and 44 and crystals containing AMP-PCP 

was performed at the X06DA beamline (Swiss Light Source, Villigen, Switzerland). Three 

data sets with diffraction limits ranging from 2.10 Å to1.76 Å were obtained, and crystal 

structures were determined (Table 6.2). Although several JNK3-ATP analogue structures are 

available, JNK3-AMP-PCP was also determined for structural comparison purposes. 

Three-dimensional structures were solved in different orthorhombic space groups using 

molecular replacement. R-factors of the JNK3-38 structure (Rwork/Rfree: 21.81/26.85%) are 

slightly higher than those for the 44 and AMP-PCP complexes, most likely as a consequence 

of pseudo-translational symmetry as estimated using Xtriage [277].  

  

Figure 6.2 Initial JNK3 crystals containing AMP-PCP. Large crystals were obtained containing multiple 

diffraction lattices and showing limited diffraction up to 3 Å. 

Figure 6.3 Optimized JNK3 crystals containing AMP-PCP used for data collection after incubation with 

inhibitors. Crystals were improved by reducing the protein concentration from 10 mg/mL to 5 or 

2.5 mg/mL and microseeding. 
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6.1.3 Crystal structures of JNK3 complexes 

Table 6.2 Data collection and refinement statistics of JNK3 complex structures. Values between 

parentheses correspond to the respective highest resolution shell.  

 JNK3+AMP-PCP JNK3+38 JNK3+44 

PDB ID 6EQ9 6EMH 6EKD 

Data collection    

Space group P21212 P212121 C2221 

Cell dimensions    

a, b, c (Å) 
156.73,110.49, 

43.95 

88.56,114.26,  

157.80 

81.51,124.82, 

68.89 

α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90 

JNK3 monomer/ASU 2 4 1 

Resolution [Å] 
47.23-1.83  

(1.94-1.83) 

48.01-1.76  

(1.81-1.76) 

48.49-2.10  

(2.15-2.10) 

Measured reflections 784898 (108776) 4164005 (296660) 540357 (39002) 

Unique reflections 68590 (10906) 157963 (11494) 20913 (1538) 

Completeness [%] 98.8 (95.9) 99.9 (98.9) 100 (99.9) 

Redundancy 11.4 (10.0) 26.4 (25.8) 25.8 (25.4) 

CC1/2 [%] 99.9 (66.2) 100 (63.2) 100 (55.6) 

I/σ(I) 18.1 (1.6) 23.0 (1.4) 26.4 (1.6) 

Wilson B-factor [Å2] 29.75 30.84 43.8 

Refinement    

Resolution [Å] 47.23-1.83 48.01-1.76 48.49-2.10 

Rwork/Rfree 20.62/25.18 21.81/26.85* 20.56/25.90 

Number of atoms    

Protein chain a/b/c/d 2812/2606 2826/2826/2700/2665 2558 

Water 391 861 104 

Ligand** 62 100 27 

B-factors [Å2]    

Protein chain a/b/c/d 34.7/39.6 38.5/40.7/44.2/46.4 52.6 

Water 41.3 43.6 48.5 

Ligand** 47.9 37.7 46.9 

R.m.s. deviations    

Bond lengths [Å] 0.015 0.014 0.015 

Bond angles [°] 1.44 1.52 1.53 

* Pseudo translational symmetry is present.  

** AMP-PCP and compounds 38 and 44. 
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During model building, all ligands could be placed in the difference electron density map of 

JNK3 chains present in the asymmetric units of different crystals. Simulated annealing omit 

difference electron density maps were calculated with a radius of 5 Å around the ligand for all 

data sets (Figure 6.4). These maps confirmed the presence and highlighted the features of 

all ligands bound at the ATP binding pocket of JNK3. 

 

 

For JNK3 bound to compound 38 and AMP-PCP, more than one protein-ligand chain was 

present in the crystal asymmetric unit. Due to the lower B-factors and the high structural 

similarity to the other copies, only chain A from the symmetric unit of the crystal was used for 

further structural analysis. The four copies of JNK3-38 were compared by superposition 

using the align function of PyMOL (Figure 6.5). A root mean square deviation (RMSD) of 

0.2 Å was determined when chains B, C and D where aligned to chain A, indicating an 

overall very good alignment. Some displacement was caused by crystal contacts, however 

the orientation and placement of all compounds was almost identical. The same was 

observed for the JNK3 structure containing AMP-PCP, which comprised two copies in the 

asymmetric unit. 

 

 

 

 

Figure 6.4 Binding of non-hydrolyzable ATP analogue AMP-PCP and inhibitors 38 and 44 to JNK3. 

Simulated annealing omit Fobs-Fcalc electron density maps for the ligands bound to JNK3 were 

contoured at 3.0 σ and are displayed with a radius of 5 Å around the ligand. A) AMP-PCP bound to 

chain A of the crystal asymmetric unit. B) Compound 38 bound to chain A of the crystal asymmetric 

unit. C) Compound 44 bound to the only chain present in the asymmetric unit.  
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The JNK3 protein comprises two domains, the N-terminal domain mostly formed by 

β-strands and the C-terminal domain that is predominantly α-helical. A cleft formed between 

the two domains comprises the ATP-binding site where all ligands, inhibitors 38 and 44 and 

AMP-PCP had bound (Figure 6.6). During crystal incubation, these ATP-competitive 

inhibitors replaced the already bound AMP-PCP molecule in the binding pocket. Binding of 

compounds 38 and 44 occurred without causing major conformational changes in the protein 

backbone (only shown for the JNK3-44 structure). Both inhibitors interacted with the hinge 

region of the kinase via two hydrogen bonds involving the main chain carbonyl and the 

backbone amide of M149. In addition, the imidazole-N atom distal from the pyridine ring was 

part of a network of water-mediated hydrogen bonds, involving the side chain of K193 and 

the main chain of L206. The imidazole-N atom proximal to the pyridine ring participated in a 

water-mediated hydrogen bond with the side chain of N152. Further water-mediated 

hydrogen bonds included the backbone of G76 and the side chain of D207 in the JNK3-44 

structure and the side chain of N194 in the JNK3-38 structure. Multiple hydrophobic 

interactions involving the side chains of I70, V78, M146, V196 and L206 also contributed to 

inhibitor binding. The methyl group present in both inhibitors was oriented towards the HR1, 

Figure 6.5 Overlay of JNK3-38 copies present in the asymmetric unit. Superposition of the four copies 

was performed using the align function in PyMOL. A) Overview of the four protein chains and the 

ligand binding. The protein backbone is displayed in ribbon (chains A, B, C and D are highlighted in 

light gray, pink, dark gray and blue, respectively) and compound 38 bound to chain A is depicted as 

sticks. B) Close-up view of the binding site of chains A (light gray) and C (dark gray) and superposition 

of compounds bound to each copy of the asymmetric unit. Compounds are shown in in light gray, pink, 

dark gray and blue, for chains A, B, C and D, respectively. 
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and the orientation of the side of the gatekeeper residue M146 was identical for both 

complex structures. The 4-morpholinoaniline moiety occupied the solvent-exposed HR2 and 

no directed interactions with JNK3 were observed. A major structural difference between the 

two complex-inhibitor structures was observed for the glycine-rich loop. In the JNK3-44 

structure, the electron density in this region was well defined and all residues could be built in 

the model, while in the JNK3-38 crystal structure no electron density was visible for residues 

G71-G76. This region was clearly defined in the JNK3-AMP-PCP crystal structure and 

residues I70-V78 formed nonpolar interactions with the purine ring of AMP-PCP. Additionally, 

the adenine group of AMP-PCP interacted with JNK3 via two hydrogen bonds formed with 

the carbonyl group of E147 and the backbone amide of M149. The ribose hydroxyls formed a 

hydrogen-bonding network to the side chain of N152 and the carbonyl group of S193. The 

triphosphate group formed direct hydrogen bonds involving the side chains of residues G76, 

Q75, K93, K191. Other indirect hydrogen bonds were formed between the protein chain and 

the phosphate groups via water molecules and one Mg2+ ion. The interfaces formed between 

the ligands and the JNK3 protein were analyzed using the PISA server by measuring surface 

area that becomes inaccessible to solvent upon complex formation [306]. Buried surface 

areas of 455.4 Å, 385.1 Å and 538.8 Å were determined for complex structures containing 

compounds 44, 38 and AMP-PCP, respectively.  
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6.1.4 Determination of melting temperatures for unliganded and liganded JNK3 

An additional characterization of the ATP analogue and the two compounds included the 

determination of JNK3 protein melting temperature (Tm) in presence and absence of these 

ligands by nanoDSF. This methodology assesses the effect of a binding event on the target 

Figure 6.6 Crystal structure of JNK3 in complex with inhibitors featuring a pyridinylimidazole scaffold 

and AMP-PCP. A) Surface representation of JNK3 structure in complex with compound 44. Protein 

backbone is displayed as cartoon and compound 44 is shown as sticks. The ATP binding pocket is 

highlighted in cyan. JNK3 active site from JNK3-44 (B), JNK3-38 (C) and JNK3-AMP-PCP (D) 

complex structures are shown in the same orientation. Ligands and key residues for the interaction are 

highlighted in stick display. Water molecules are represented as red spheres and hydrogen bonds are 

depicted as black dashed line. Residues with common orientations and interactions are shown in light 

blue for the complex-inhibitor structures, whereas residues differing in their orientations are shown in 

the same color as the respective compound. Side chains of N152 (B) and N194 (C) displayed multiple 

orientations. In (D), the adenine and ribose groups of AMP-PCP are highlighted in green and the three 

phosphate groups in orange. A Mg2+ ion interacting with the phosphate groups of AMP-PCP is 

depicted as a green sphere.  
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protein’s thermal stabilization and can be employed as a screening tool for potential binders. 

Changes of the intrinsic fluorescence of tryptophan and tyrosine residues, as a result of 

temperature induced protein unfolding, were monitored for Tm determination. Measured 

melting curves and their correspondent first derivative analysis exhibited an increase in the 

thermal stability of JNK3 upon ligand binding, which can be seen by a shift in the inflection 

point of the melting curves towards higher temperatures (Figure 6.7A). First derivative 

analysis was used to determine the melting temperatures (Figure 6.7B). Tm of free JNK3 was 

determined to be 46.28°C. Tm increased to 48.12°C upon AMP-PCP binding and to 53.87°C 

and 54.83°C upon on binding of compounds 38 and 44, respectively. 

 

  

  

Figure 6.7 Effect of ligand binding on JNK3 thermal stability determined by nanoDSF. Melting curve 

corresponding to free JNK3 is shown in black. Melting curves of JNK3 complexes containing 

AMP-PCP and compounds 38 and 44, curves are displayed in light gray, yellow and teal, respectively. 

A) Intrinsic fluorescence intensity ratio of tryptophans and tyrosines (350/330 nm) as well as the first 

derivative are plotted as a function of temperature. B) Melting temperatures determined by nanoDSF. 

The data shown represents mean values ± standard deviation of three experiments. 
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6.2 Discussion 

Despite the efforts and the high number of reports concerning JNK3 inhibitors, there are still 

no approved drugs targeting this enzyme. Due to a high conservation of the ATP binding site 

within the kinome and the JNK family, achieving selectivity when investigating 

ATP-competitive inhibitors remains a significant challenge. Modification of the substitution 

pattern of a dual JNK3/p38α MAPK compound with a pyridinylimidazole scaffold (1a) proved 

to be effective in shifting the selectivity towards JNK3. With this approach, two new JNK3 

selective inhibitors (38 and 44) that exhibited a 2-fold difference in inhibitory potency were 

obtained. Both inhibitors share a high similarity, with the only difference being an additional 

S-methyl group at the imidazole-C2 position in compound 44. This substituent seems to be 

effective in enhancing the inhibitory potency towards JNK3 without losing selectivity. The 

crystal structures of JNK3 in complex with inhibitors 38 and 44 revealed the binding mode of 

these ATP-competitive inhibitors and shed light on the structural influence of S-methyl group 

in binding affinity. JNK3 crystals were obtained using a truncated form of JNK3 since some 

regions of the native protein are highly flexible and are known to interfere with lattice 

formation during crystallization [239].  

 

A structure of non-phosphorylated JNK3 containing the non-hydrolyzable ATP analogue 

AMP-PCP was initially solved to compare the structural differences upon inhibitor binding.  

This structure is highly similar to the first non-phosphorylated JNK3 structure in complex with 

an ATP analogue (AMP-PNP) reported in 1998 [239]. Superposition of the N-terminal 

(residues 56-149 and 382-400) and C-terminal (residues 150-208, 226-315 and 329-369) 

yielded a protein backbone RMSD of 0.853 Å. The main difference observed between the 

two structures was related to Mg2+ binding. In contrast to the first JNK3 structure, where two 

Mg2+ ions were mediating ATP binding, only one Mg2+ ion was defined in the electron density 

of the JNK3-AMP-PCP complex structure. This ion is essential for catalysis of protein 

kinases and is considered the primary metal since it is visible in the crystal structure at low 

concentrations of Mg2+ [243], [245]. In the JNK3-AMP-PCP structure, the β- and 

γ- phosphoryl groups of ATP and residue D207 chelated the Mg2+ ion.  

 

Incubation of JNK3 crystals containing AMP-PCP with compounds 38 and 44 proved to be 

an effective method to obtain the complex JNK3-inhibitors-crystal structures. AMP-PCP 

bound at the ATP binding pocket was replaced and a similar binding mode was observed for 

both inhibitors. As previously seen for this class of inhibitors, the pyridinylimdazole scaffold 

interacted with the hinge region of JNK3 via a bidentate hydrogen bond. These interactions 

are known to mimic the ATP binding to JNK3 and to highly contribute to an increase of the 

binding affinity of inhibitors [307]. Additionally, the methyl substituent at the imidazole-C4 

position was accommodated in the HR1 region, and the 4-morpholinoaniline group occupied 
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the solvent-exposed HR2 region. In the case of compound 44, the 2-methylsulfanyl moiety 

was positioned in the phosphate region. Docking studies reported by Dr. Francesco Ansideri, 

supported by a publication from Wityak et al., predicted an alternative binding mode for 

compound 38 that could explain the 2-fold difference in binding affinity [308], [309]. 

According to this hypothesis, a 180° flip of the imidazole ring with respect to the pyridine ring 

of compound 38 could occur in the absence of the S-methyl substituent. Due to this rotation, 

the methyl group would not occupy the hydrophobic selectivity pocket thus reducing its 

inhibitory potency on JNK3. This hypothesis could not be confirmed with the solved crystal 

structures since both inhibitors assumed the classical conformation with the 

4-methyl-substituent positioned towards the HR1 of JNK3, and the imidazole-N atom 

interacting with the conserved K93 via a water-mediated network of hydrogen bonds. The 

4-morpholinoaniline displayed high flexibility and due to the lack of direct interactions with 

JNK3, this group barely contributes to the inhibitor binding affinity. This substituent was 

solely introduced to replace the free terminal aniline group present in compound 1a, which 

was recognized by the ZINC 15 pattern tool to be potentially responsible for compound 

aggregation and might therefore cause assay interference that could result in misleading 

biological activities [310].  

 

Complex structures of JNK3-containing inhibitors 38 and 44, AMP-PCP and a dual JNK3/ 

p38α inhibitor from Scapin et al. (PDB code 1PMN) were compared to gain further insights 

into the structural basis for the observed selectivity of compounds 38 and 44 [311]. 

Superposition of these structures highlights the position of the gatekeeper residue M146 and 

the Gly-rich loop (Figure 6.8). As expected, in both complex structures containing the 

4-methyl substituted inhibitors, no movement of the gatekeeper residue occurred, and the 

orientation of its side chain is similar to the one observed in the presence of AMP-PCP. In 

contrast, when a bulky substituent such as the dichlorophenyl moiety of the dual JNK3/p38α 

inhibitor is present in the HR1 region, an induced-fit of movement of the hydrophobic side 

chain of M146 occurs. The shift of M146 creates a larger selectivity pocket that resembles 

the cavity of p38α MAPK, where the gatekeeper residue is T106. The small methyl 

substituent of compounds 38 and 44 was able to fit into the narrow selectivity pocket of JNK3 

and interact with the gatekeeper residue without altering its orientation. A variety of 

substituents, including aromatic and cycloalkyl moieties and branched aliphatic groups  were 

tested to replace the p-fluorophenyl group at the imidazole-C4 position of the dual 

inhibitor 1a. The effect of small alkyl groups was also evaluated with 4-unsubstituted and 

4-ethyl derivatives. As confirmed by the high-resolution crystal structures, the methyl 

substituent possessed the optimal length to target the selectivity pocket of JNK3. This moiety 

was therefore decisive in shifting the selectivity towards JNK3. Furthermore, the multiple 

hydrophobic interactions involving residues I70, V78, M146, V196 and L206 also seemed to 
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promote JNK3 selectivity since small and flat inhibitors that cannot reach into binding pockets 

are unable to form these interactions in the wider ATP binding site of p38α MAPK. These 

interactions have also been previously described by Scapin et al. [311].  

 

The most significant structural difference between the complex structures containing the 

4-methyl-5-(pyridine-4-yl) imidazole derivatives was observed for the G-rich loop. In the 

JNK3-38 complex structure, the lack of electron density in this area indicates high local 

flexibility, which has also been reported for other JNK3-inhibitor crystal structures [312]-[314]. 

However, in the JNK3-44 complex structure, the electron density for this loop was well 

defined, indicating a structural stabilization of this region upon interaction with the 

2-methylsulfanyl moiety. To confirm that the stabilization of the G-rich loop was driven by the 

presence of inhibitor 44, the crystal packing was analyzed and no strong crystal contacts 

were observed within this region. The hydrophobic and polar interactions formed between 

the S-methyl group and the G-rich loop appear therefore to be responsible for the downward 

positioning of this flexible loop, which adopted a similar position to the G-rich loop of 

JNK3-AMP-PCP (Figure 6.8). The compression of this loop was previously reported for a 

JNK3 complex crystal structure by Kamenecka et al. [315] and compared to the structure of 

Scapin et al. containing the dual JNK3/p38α MAPK inhibitor. The ability of the G-rich loop of 

kinases to “collapse” onto the ligand, thus creating a smaller, less solvent-exposed cavity 

with higher binding affinity for the inhibitor, has been also considered one element for 

selectivity [241]. The effect of the S-methyl group on the positioning of the G-rich loop is most 

likely the structural reason for the 2-fold gain in affinity of inhibitor 44 in comparison to 

inhibitor 38. 

Figure 6.8 Comparison of ligand-bound JNK3 structures with focus on the gatekeeper residue M146 

and the G-rich loop positioning upon inhibitor binding. Superposition of JNK3-44 (teal), JNK3-38 

(gray), JNK3-AMP-PCP (light blue) and dual JNK3/p38α MAPK inhibitor (dark blue) complex 

structures. Structures were superposed using the align function in PyMOL. The dual inhibitor structure 

was reported by Scapin et al. [311] (PDB code 1PMN). Side chains of gatekeeper residue and G-rich 

loop are depicted using the color code mentioned above. Only inhibitor 44 is shown for sake of clarity.  
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Binding of pyridinylimidazole-based inhibitors 38 and 44 to JNK3 was also assessed using a 

thermal shift assay. Tight binding of inhibitors stabilize the protein in its folded conformation, 

resulting in significantly higher melting temperatures [256]. Comparison of unfolding profiles 

and the determined Tm values of JNK3 upon ligand binding clearly showed that inhibitors 38 

and 44 have a significant influence on the thermal stability of the protein. The difference in 

observed Tm for both inhibitors correlates well with the results concerning inhibitory potency 

and stability of the G-rich loop. The determined Tm for inhibitor 44 supports the stabilization 

of G-rich loop by the 2-methylsulfanyl substituent observed in the crystal structure, 

contributing to its higher inhibitory potency on JNK3.  

 

The determined crystal structures allow for further rational design of analogues of inhibitor 44 

in order to increase its inhibitory potency on JNK3 without losing selectivity. One potential 

modification is the replacement of the 4-morpholinoaniline moiety accommodated in the HR2 

region, since no direct interactions were observed between this group and JNK3. This 

solvent-exposed area can be exploited to increase inhibitory potency by introducing 

substituents that can form interactions with the non-conserved amino acids of JNK3. 

Targeting residue Q155 located in the HR2 is a potential strategy to gain affinity and 

simultaneously selectivity on JNK3. This residue can act as both acceptor and donor of 

hydrogen bonds and is replaced by a shorter asparagine residue in p38α MAPK (Figure 6.9). 

In the JNK3-44 crystal structure, residue Q155 is located about 4 Å away from the 

4-morpholinoaniline moiety but it cannot be reached due to the rigidity of this substituent. 

Besides, this moiety is only able to accept a single hydrogen bond. A plausible strategy could 

consist in the replacement of this group by a trans-4-aminocyclohexanol substituent, which 

has been previously shown to form a hydrogen bond with Q155 in a crystal structure 

reported by Krenitsky et al. [316]. This approach has already been tested, and although the 

selectivity over p38α MAPK was preserved, no gain in affinity was obtained (see publication 

indicated at the beginning of this chapter [8]). This outcome suggested that the introduced 

moiety was not able to form the desired interaction with Q155 side chain.  
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The N152 residue of JNK3 also represents a potential target to increase binding affinity while 

preserving selectivity, since this residue is not conserved in p38α MAPK (Figure 6.9). In 

crystal structures containing inhibitors 38 and 44 a water-mediated hydrogen bond was 

observed between this residue and the imidazole-N atom proximal to the pyridine ring of both 

inhibitors. Previous attempts to substitute this position with aliphatic groups resulted in a 

detrimental effect on inhibitory activity, which is mostly like due to the disruption of the 

water-mediated hydrogen bond from with N152 observed in the crystal structures. An 

alternative strategy to target N152 and simultaneously gain binding affinity would be the 

introduction of a polar group that could directly form a direct hydrogen bond with N152.  

Substituting the imidazole-N atom distal from the pyridine ring by a polar group could also 

contribute to a gain in affinity by formation of a direct hydrogen bond with K93 instead of a 

water-mediated hydrogen bond. Direct hydrogen bonds formed at this position have already 

been observed for p38 MAPK [317], [318]. However, achieving selectivity at this position 

might be difficult since the same residue is present in p38α MAPK (Figure 6.9). In addition to 

selectivity against p38α MAPK, a crucial aspect that needs to be considered when 

investigating this type of inhibitors is the intra-JNK selectivity. Compound 44 was tested on 

the three existing JNK isoforms and a similar inhibitory potency was determined for all of 

them. Nevertheless, a moderate preference (approximately 2.5- to 3-fold difference in 

binding affinity) was observed for JNK1 and JNK3 over JNK2 (see publication indicated at 

the beginning of this chapter [8]). 

 

Figure 6.9 Sequence alignment of residues surrounding the ATP binding site of JNK3 and p38α 

MAPK. Differing amino acids are depicted in bold in the p38α MAPK sequence. Sequence alignment 

was generated using Clustal Omega from European Molecular Biology Laboratory (EMBL-EBI) [319]. 

Figure was adapted from [6]. 
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7 Conclusions 

The following conclusions that can be drawn from this thesis: 

 

1. The role of properdin in the activation of the alternative complement pathway 

• Folded full-length properdin fused to c-myc or mCherry tags followed by a His10-tag was 

successfully produced in the mammalian FreeStyle 293F cells. 

• Purified protein fused to mCherry or after mCherry and His-tag removal was shown to 

form the previously reported cyclic structures. Size exclusion chromatograms revealed, 

however, a ratio of tetramers, trimers and dimers of properdin that differed from the 

previously reported ratios, which most likely resulted from the use of different 

experimental parameters.  

• In the fusion protein, mCherry did not interfere neither with properdin oligomerization nor 

with its functional activity, demonstrating that this fluorescence reporter could be used to 

follow properdin expression and secretion as well as to study the binding of properdin to 

apoptotic and necrotic cells by fluorescence microscopy.  

• Contrarily to published observations, recombinantly produced E244K properdin mutant 

was not monomeric and showed a oligomerization distribution similar to that of wild-type 

properdin. Therefore, crystallization of properdin for three-dimensional structural 

determination by X-ray crystallography was not pursued. 

• Although no binding of properdin to glycans was observed in glycan microarrays, 

STD-NMR experiments showed that a specific set of glycans binds to properdin in solution 

and that factors like glycan charge, size and sulfation are critical for the interaction.  

• Based on the performed experiments, GAGs are potential properdin PAMPs but further 

studies are required to evaluate their effect on complement activation in a physiological 

context. STD-NMR studies also showed that binding of both properdin and its antagonist 

FH to identical glycans occurs via recognition of different epitopes.  

 

2. Production of recombinant heparinase I from Pedobacter heparinus for 

structure-based protein engineering 

• The recombinant production of heparinase I from P. heparinus was successfully achieved 

using E. coli. CD spectroscopy and SEC analyses revealed that heparinase I was folded 

and mostly monomeric with an antiparallel β-sheet as the major secondary structural 

element. 

• Oligomerization of HepIv1 was also observed. Formation of oligomers was shown to be 

dynamic and concentration-dependent. Native MS also demonstrated that denatured 

species were present in solution and increased upon prolonged storage. 
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• Protein degradation was visualized over time and was found to increase with increasing 

temperature. Recombinant heparinase I was shown to have a very low thermal stability.  

• Despite different expression constructs comprising varied N- and C-terminus sequences 

and varying parameters such as protein concentrations, temperatures and buffer 

components, no proteins crystals were obtained.  

• Enzymatic depolymerization of heparin by HepIv1 was monitored via the absorbance at 

232 nm and shown to be dependent on the concentration of Ca2+. The low activity of 

HepIv1 construct and the low amount of heparin-derived oligosaccharides obtained from 

this protein was most likely due to its thermal denaturation and subsequent inactivation.  

• Modification of heparinase I by structure-based engineering could not be accomplished. 

The persistent thermal instability observed in this work suggests that, instead, the 

homologue crystal structures of heparinase I from B. thetaiotaomicron should be used in 

the future to alter the product profile of heparinase I. 

 

3. Structural-based optimization of selective type I c-Jun N-terminal kinase 3 inhibitors 

• The binding mode of selective type I JNK pyridinylimidazole inhibitors 38 and 44 was 

confirmed by X-ray crystallography. Both inhibitors revealed a similar binding mode in the 

ATP binding pocket, which matched the binding of previous pyridinylimidazole-based 

inhibitors. 

• The small methyl group oriented towards the hydrophobic region I was most likely the 

selectivity driver since it presented the optimal length to target this region of JNK3. 

• Contrary to docking studies no flip of the imidazole core was observed in the JNK3-38 

complex structure and the G-rich loop was only visible in the JNK3-44 structure, pointing 

out the role of the S-methyl group present in 44 in the stabilization of this flexible region. 

The inward “collapse” of the G-rich loop, concurrent with a conformational stabilization, 

seemed to be the structural reason for the 2-fold difference in inhibitory potency of JNK3 

between the two inhibitors.  

• The JNK3-44 complex showed the highest unfolding temperature when compared to the 

apo-form, AMP-PNP or JNK3-38 complex, in agreement with a structural stabilization of 

the G-rich loop by this inhibitor. 

• Targeting residues Q155, N152 or K93 of JNK3 for additional directed interactions are 

potential future strategies to increase the inhibitory potency of compound 44 while 

preserving its selectivity over p38α MAPK.  
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9 Appendix 

9.1 Amino acid sequences 

The native signal peptide of the corresponding protein is colored in blue and tags, cleavage 

sites as well as cloning artifacts are displayed in gray in the respective construct. 

 

Properdin_mCherry 

        10         20         30         40         50         60  

MITEGAQAPR LLLPPLLLLL TLPATGSDPV LCFTQYEESS GKCKGLLGGG VSVEDCCLNT  

 

        70         80         90        100        110        120  

AFAYQKRSGG LCQPCRSPRW SLWSTWAPCS VTCSEGSQLR YRRCVGWNGQ CSGKVAPGTL  

 

       130        140        150        160        170        180  

EWQLQACEDQ QCCPEMGGWS GWGPWEPCSV TCSKGTRTRR RACNHPAPKC GGHCPGQAQE  

 

       190        200        210        220        230        240  

SEACDTQQVC PTHGAWATWG PWTPCSASCH GGPHEPKETR SRKCSAPEPS QKPPGKPCPG  

 

       250        260        270        280        290        300  

LAYEQRRCTG LPPCPVAGGW GPWGPVSPCP VTCGLGQTME QRTCNHPVPQ HGGPFCAGDA  

 

       310        320        330        340        350        360  

TRTHICNTAV PCPVDGEWDS WGEWSPCIRR NMKSISCQEI PGQQSRGRTC RGRKFDGHRC  

 

       370        380        390        400        410        420  

AGQQQDIRHC YSIQHCPLKG SWSEWSTWGL CMPPCGPNPT RARQRLCTPL LPKYPPTVSM  

 

       430        440        450        460        470        480  

VEGQGEKNVT FWGRPLPRCE ELQGQKLVVE EKRPCLHVPA CKDPEEEELE NLYFQGGGSG  

 

       490        500        510        520        530        540  

GGSGGVSKGE EDNMAIIKEF MRFKVHMEGS VNGHEFEIEG EGEGRPYEGT QTAKLKVTKG  

 

       550        560        570        580        590        600  

GPLPFAWDIL SPQFMYGSKA YVKHPADIPD YLKLSFPEGF KWERVMNFED GGVVTVTQDS  

 

       610        620        630        640        650        660  

SLQDGEFIYK VKLRGTNFPS DGPVMQKKTM GWEASSERMY PEDGALKGEI KQRLKLKDGG  

 

       670        680        690        700        710        720  

HYDAEVKTTY KAKKPVQLPG AYNVNIKLDI TSHNEDYTIV EQYERAEGRH STGGMDELYK  

 

       730  

GGSGHHHHHH HHHH  

 

Properdin_c-myc 

        10         20         30         40         50         60  

MITEGAQAPR LLLPPLLLLL TLPATGSDPV LCFTQYEESS GKCKGLLGGG VSVEDCCLNT  

 

        70         80         90        100        110        120  

AFAYQKRSGG LCQPCRSPRW SLWSTWAPCS VTCSEGSQLR YRRCVGWNGQ CSGKVAPGTL  
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       130        140        150        160        170        180  

EWQLQACEDQ QCCPEMGGWS GWGPWEPCSV TCSKGTRTRR RACNHPAPKC GGHCPGQAQE  

 

       190        200        210        220        230        240  

SEACDTQQVC PTHGAWATWG PWTPCSASCH GGPHEPKETR SRKCSAPEPS QKPPGKPCPG  

 

       250        260        270        280        290        300  

LAYEQRRCTG LPPCPVAGGW GPWGPVSPCP VTCGLGQTME QRTCNHPVPQ HGGPFCAGDA  

 

       310        320        330        340        350        360  

TRTHICNTAV PCPVDGEWDS WGEWSPCIRR NMKSISCQEI PGQQSRGRTC RGRKFDGHRC  

 

       370        380        390        400        410        420  

AGQQQDIRHC YSIQHCPLKG SWSEWSTWGL CMPPCGPNPT RARQRLCTPL LPKYPPTVSM  

 

       430        440        450        460        470        480  

VEGQGEKNVT FWGRPLPRCE ELQGQKLVVE EKRPCLHVPA CKDPEEEELE NLYFQGSSGE  

 

       490    500  

QKLISEEDLN SAVDHHHHHH HHHH  

 

 

HepIv1 

        10         20         30         40         50         60  

MGSSHHHHHH SSGLVPRGSH MQQKKSGNIP YRVNVQADSA KQKAIIDNKW VAVGINKPYA  

 

        70         80         90        100        110        120  

LQYDDKLRFN GKPSYRFELK AEDNSLEGYA AGETKGRTEL SYSYATTNDF KKFPPSVYQN  

 

       130        140        150        160        170        180  

AQKLKTVYHY GKGICEQGSS RSYTFSVYIP SSFPDNATTI FAQWHGAPSR TLVATPEGEI  

 

       190        200        210        220        230        240  

KTLSIEEFLA LYDRMIFKKN IAHDKVEKKD KDGKITYVAG KPNGWKVEQG GYPTLAFGFS  

 

       250        260        270        280        290        300  

KGYFYIKANS DRQWLTDKAD RNNANPENSE VMKPYSSEYK TSTIAYKMPF AQFPKDCWIT  

 

       310        320        330        340        350        360  

FDVAIDWTKY GKEANTILKP GKLDVMMTYT KNKKPQKAHI VNQQEILIGR NDDDGYYFKF  

 

       370        380  

GIYRVGNSTV PVTYNLSGYS ETAR  

 

 

HepIv2 

        10         20         30         40         50         60  

MGSSHHHHHH SSGLEVLFQG PQQLFLCSAY AQQKKSGNIP YRVNVQADSA KQKAIIDNKW  

 

        70         80         90        100        110        120  

VAVGINKPYA LQYDDKLRFN GKPSYRFELK AEDNSLEGYA AGETKGRTEL SYSYATTNDF  

 

       130        140        150        160        170        180  

KKFPPSVYQN AQKLKTVYHY GKGICEQGSS RSYTFSVYIP SSFPDNATTI FAQWHGAPSR  

 

       190        200        210        220        230        240  

TLVATPEGEI KTLSIEEFLA LYDRMIFKKN IAHDKVEKKD KDGKITYVAG KPNGWKVEQG  
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       250        260        270        280        290        300  

GYPTLAFGFS KGYFYIKANS DRQWLTDKAD RNNANPENSE VMKPYSSEYK TSTIAYKMPF  

 

       310        320        330        340        350        360  

AQFPKDCWIT FDVAIDWTKY GKEANTILKP GKLDVMMTYT KNKKPQKAHI VNQQEILIGR  

 

       370        380        390  

NDDDGYYFKF GIYRVGNSTV PVTYNLSGYS ETAR  

 

 

HepIv3 

        10         20         30         40         50         60  

MQQKKSGNIP YRVNVQADSA KQKAIIDNKW VAVGINKPYA LQYDDKLRFN GKPSYRFELK  

 

        70         80         90        100        110        120  

AEDNSLEGYA AGETKGRTEL SYSYATTNDF KKFPPSVYQN AQKLKTVYHY GKGICEQGSS  

 

       130        140        150        160        170        180  

RSYTFSVYIP SSFPDNATTI FAQWHGAPSR TLVATPEGEI KTLSIEEFLA LYDRMIFKKN  

 

       190        200        210        220        230        240  

IAHDKVEKKD KDGKITYVAG KPNGWKVEQG GYPTLAFGFS KGYFYIKANS DRQWLTDKAD  

 

       250        260        270        280        290        300  

RNNANPENSE VMKPYSSEYK TSTIAYKMPF AQFPKDCWIT FDVAIDWTKY GKEANTILKP  

 

       310        320        330        340        350        360  

GKLDVMMTYT KNKKPQKAHI VNQQEILIGR NDDDGYYFKF GIYRVGNSTV PVTYNLSGYS  

 

       370  

ETARLEHHHH HH  

 

JNK3  

        10         20         30         40         50         60  

GGSMSKSKVD NQFYSVEVGD STFTVLKRYQ NLKPIGSGAQ GIVCAAYDAV LDRNVAIKKL  

 

        70         80         90        100        110        120  

SRPFQNQTHA KRAYRELVLM KCVNHKNIIS LLNVFTPQKT LEEFQDVYLV MELMDANLCQ  

 

       130        140        150        160        170        180  

VIQMELDHER MSYLLYQMLC GIKHLHSAGI IHRDLKPSNI VVKSDCTLKI LDFGLARTAG  

 

       190        200        210        220        230        240  

TSFMMTPYVV TRYYRAPEVI LGMGYKENVD IWSVGCIMGE MVRHKILFPG RDYIDQWNKV  

 

       250        260        270        280        290        300  

IEQLGTPCPE FMKKLQPTVR NYVENRPKYA GLTFPKLFPD SLFPADSEHN KLKASQARDL  

 

       310        320        330        340        350        360  

LSKMLVIDPA KRISVDDALQ HPYINVWYDP AEVEAPPPQI YDKQLDEREH TIEEWKELIY  

 

 

KEVMNSE  
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9.2 Molecular weight and isoelectric point 

Table 9.1 Theoretical MW and pI of the different recombinantly proteins presented in this work. 

Theoretical values were calculated based on the protein sequence using the ExPASy ProtParam 

computational tool [259]. Parameters are indicated for the his-tagged protein (after secretion in the 

case of properdin) and the protein after tag removal (cleaved protein). 

 

Construct 
Tagged protein Cleaved protein 

MW (kDa) Theoretical pI MW (kDa) Theoretical pI 

Properdin_mCherry 78.1 7.63 49.29 8.26 

Properdin_c-myc 52.6 7.91 49.29 8.26 

HepIv1 43.63 9.36 41.75 9.32 

Hep1v2 44.76 9.23 42.62 9.28 

HepIv3 42.53 9.27 - - 

JNK3 - - 42.21 7.52 
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ABSTRACT: Starting from known p38α mitogen-activated protein kinase
(MAPK) inhibitors, a series of inhibitors of the c-Jun N-terminal kinase (JNK)
3 was obtained. Altering the substitution pattern of the pyridinylimidazole scaffold
proved to be effective in shifting the inhibitory activity from the original target
p38α MAPK to the closely related JNK3. In particular, a significant improvement
for JNK3 selectivity could be achieved by addressing the hydrophobic region I with
a small methyl group. Furthermore, additional structural modifications permitted to
explore structure−activity relationships. The most potent inhibitor 4-(4-methyl-2-
(methylthio)-1H-imidazol-5-yl)-N-(4-morpholinophenyl)pyridin-2-amine showed
an IC50 value for the JNK3 in the low triple digit nanomolar range and its binding mode was confirmed by X-ray
crystallography.

■ INTRODUCTION

The mitogen-activated protein kinases (MAPKs) represent a
family of enzymes involved in several signal transduction
pathways, whose activation is part of a phosphorylation
cascade triggered by diverse extracellular stimuli. Among the
members of this family, the c-Jun N-terminal kinases (JNKs)
mostly respond to a variety of stress stimuli such as radiation,
osmotic or heat shock, oxidative insult, and proinflammatory
cytokines, modulating responses such as cell survival and
apoptosis.1 The JNK subfamily is encoded by the three genes
jnk1, jnk2, and jnk3, which in turn give rise to 10 different
isoforms through alternative splicing.2 Despite their structural
homology and the partially functional redundancy, these
isoforms follow a different tissue distribution pattern, JNK3
being restricted to the central nervous system, heart, and testis
oppositely to the ubiquitous expression of JNK1 and 2.2,3 In
addition to this, a different substrate specificity of the JNK1, 2,
and 3 suggests the existence of isoform-specific roles of these
enzymes, which were partially disclosed through gene knock-
out studies.4 There is well-documented evidence for the critical
role of the JNK subfamily members in several neuro-
degenerative diseases such as Parkinson’s and Alzheimer’s
disease, as well as in neuronal death derived by stroke and
ischemia/reperfusion injury.3−6 Furthermore, some members
of the JNKs are also involved in metabolic and inflammatory
diseases, and several studies suggest that these kinases might

contribute to the development and diffusion of some forms of
cancer,7−9 thus emerging as particularly attractive drug targets.
Despite the intense endeavor in the research of JNK inhibitors,
only a scarce number of candidates have reached clinical trial
phases and to date, none of them have been approved.10−12

Until early 2010s, a major challenge in the development of
JNK inhibitors has been the achievement of selectivity over the
closely related p38α MAPK,11 a member of the same family
which, analogously to the JNKs, participates in regulating the
cellular response to stress stimuli. This protein kinase was also
shown to assume a key function in different inflammatory and
neurodegenerative diseases13−15 and the simultaneous inhib-
ition of JNK and p38α MAPK is assumed to obtain a
synergistic effect in the treatment of some pathological
conditions.16 Nevertheless, obtaining a JNK-selective inhibitor
would be beneficial to fully elucidate the effective role of this
protein kinase in the aforementioned pathological conditions
and thereby assess its therapeutic potential. Furthermore, most
of the reported clinical trials on selective p38α MAPK
inhibitors have been discontinued because of the insurgence
of adverse effects mostly related to liver toxicity,17 leading to
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the assumption the activity on the p38α MAPK to be
undesired for an improved safety profile of JNK inhibitors.
Regarding the selectivity within the JNK subfamily, the

achievement of JNK isoform-selective inhibitors would be
desirable to dissect the contribution of the different isoforms in
various pathological conditions. However, the JNK1, 2, and 3
share more than 80% sequence identity, making the develop-
ment of isoform-specific inhibitors extremely challenging.
In the last decades, pyridinylimidazoles have encountered a

remarkable success in the field of p38α MAPK inhibition. This
class of inhibitors counts a large number of examples starting
from the precursor SB203580 to the optimized compound
LN950 (Figure 1), until reaching derivatives with low single
digit nanomolar IC50 values (a review on this class of
compounds has recently been published).18 As can be seen
from Figure 1, the reported p38α MAPK inhibitors are also
able to inhibit the JNK3 with IC50 values in the submicromolar
range, thus offering a suitable starting point for optimization
when aiming to target this enzyme. In 2016, we published
compound 1a as a balanced dual JNK3/p38α MAPK inhibitor,
which served as a precursor for the synthesis of a fluorescent
probe used in fluorescence polarization-based binding
assays.19,20 As it is evident from the biological activity of 1a
in comparison to the activity of previous inhibitors, modifying
the substitution pattern around the pyridinylimidazole scaffold
can contribute to a shift in selectivity toward the JNK3.
Some of us have recently reported the optimization of

compound 1a following a covalent inhibition approach
(compound 1b), which was based on the introduction of an
electrophilic moiety able to target a noncatalytic cysteine of the
JNK3 that is not conserved in the closely related p38α
MAPK.21 The aim of the herein presented work consists

instead in the achievement of a potent and selective JNK
inhibitor by structural modification of the pyridinylimidazole
scaffold following the canonical concept of reversible
inhibition.

■ RESULTS AND DISCUSSION

Chemistry. Despite the overall similarity of their structures,
the herein reported compounds were synthesized following
considerably diverse routes, especially with regard to the
construction of the five-membered heterocyclic central core.
The synthesis of compounds 5 and 8 was achieved as displayed
in Scheme 1. The route leading to the common intermediate 3,
starting from 2-fluoro-4-methylpyridine (2), is based on the
Marckwald imidazole synthesis22 and was previously reported
by Laufer et al.23 The substitution on the imidazole-C2-S
position was obtained by reacting imidazole-2-thione 3 with
the appropriate alkyl halide. Finally, the introduction of the 4-
morpholinoaniline moiety was carried out through nucleo-
philic aromatic substitution in acidic conditions, this
representing the final step for most of the herein presented
compounds. Applying these conditions to the hydroxyethyl
derivative 6 unexpectedly yielded imidazol-2-one 8, instead of
imidazole 7, as a result of a previously described rearrange-
ment.24

The preparation of 2,4,5-trisubstituted imidazole 13 and of
4,5-disubstituted imidazoles 14 and 18a−l is outlined in
Scheme 2. The route providing α-diketone 10 starting from 2-
fluoro-4-methylpyridine (2) was recently described by Ansideri
et al.,19 whereas the synthesis of intermediates 16a−l was
achieved following a similar approach. Ethanones 15a−l were
obtained by condensation of the appropriate ethyl ester with 2-
chloro-4-methylpyridine (9) and were subsequently oxidized

Figure 1. Tri- and tetrasubstituted pyridinylimidazoles. Data are taken from Ansideri et al.19 and Muth et al.21

Scheme 1. Synthesis of Imidazole 5 and Imidazol-2-one 8a

aReagents and conditions: (a) four-step route reported by Laufer and co-workers;23 (b) MeI, K2CO3, MeOH, rt, 18 h; (c) 2-bromoethyl acetate, t-
BuONa, MeOH, 55 °C, 3 h; and (d) 4-morpholinoaniline, 1.25 M HCl in EtOH, n-BuOH, 180 °C, 16 h.
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by SeO2 to the corresponding diketones (16a−l). Microwave-
assisted cyclization with formaldehyde and NH4OAc in
Radzisewski conditions25 then afforded the disubstituted
imidazoles 12 and 17a−l, whereas propionaldehyde and

methanolic NH3 were employed to obtain the 2-ethylimidazole
11. Finally, introduction of the 4-morpholinoaniline moiety at
the pyridine-C2 position, giving the final compounds 13, 14,
and 18a−l, was accomplished by the aforementioned
nucleophilic aromatic substitution.
The synthesis of 4,5-disubstituted pyridinylimidazoles 38

and 39, featuring a linear alkyl group at the imidazole-C4
position, required a different strategy than the examples having
aromatic or branched aliphatic moieties (14 and 18a−l). This
was mainly due to the fact that alkyl esters of linear alkanoic
acids did not undergo condensation with 2-chloro-4-methyl-
pyridine (9) to give the desired ethanone intermediates.
An alternative approach to compounds 38 and 39 could also

be employed for the synthesis of the 2,4(2,5)-disubstituted
imidazole 43 as well as for the 2,4,5-trisubstituted imidazoles
44 and 45 (Scheme 3). This route started from the
commercially available 1-(2-chloropyridin-4-yl)ethan-1-one
(21) or from the acylpyridines 22 and 23, which were
synthesized by Grignard reaction of the appropriate
alkylmagnesium bromide with Weinreb amide 20.
Formation of the corresponding oximes 24−26 and

following tosylation of the hydroxyl groups led to inter-
mediates 27−29. Tosylated oximes 27−29 were then first
converted into the α-aminoketones 30−32 through Neber
rearrangement26 and subsequently cyclized by KSCN, yielding
imidazole-2-thione derivatives 33−35. From these intermedi-
ates, it was possible to achieve the disubstituted imidazoles 36

Scheme 2. Synthesis of 4,5-Disubstituted Imidazoles 13, 14,
and 18a−la

aReagents and conditions: (a) route reported by Ansideri et al.;19 (b)
HCHO(aq), NH4OAc, AcOH, 180 °C microwave irradiation, 2−5
min; (c) propionaldehyde, 7 M NH3 in MeOH, 80 °C, 4 h; (d) 4-
morpholinoaniline, 1.25 M HCl in EtOH, n-BuOH, 180 °C 16 h; (e)
ethyl arylcarboxylate or ethyl alkylcarboxylate, NaHMDS, dry THF, 0
°C 1−5 h; and (f) SeO2, AcOH, 70 °C, 2−3 h; (R2 = see Table 2).

Scheme 3. Synthesis of Imidazoles 38, 39, 43−45, and 47a

aReagents and conditions: (a) SOCl2, reflux temperature, 5 h; (b) N,O-dimethylhydroxylamine hydrochloride, Et3N, dry DCM, 16 h; (c) EtMgBr
or n-PrMgBr, dry THF, −10 °C, 1−3 h; (d) NH2OH·HCl, 20% NaOH(aq), MeOH, H2O, 0 °C, 1−2 h; (e) TsCl, pyridine, rt, 24−72 h; (f)
EtOHabs, K, 0 °C, 2−16 h; (g) concd HCl, 50 °C, 1−4 h; (h) KSCN, MeOH, reflux temperature, 4 h; (i) H2O2, AcOH, rt, 15 min; (j) MeI, t-
BuONa, MeOH, 50 °C, 0.5−3 h; (k) 4-morpholinoaniline, 1.25 M HCl in EtOH, n-BuOH, 180 °C, 16 h; and (l) cyanamide, EtOH, reflux
temperature, 2 h.
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and 37 by oxidative desulfurization27 as well as the 2-
methylsulfanylimidazoles 40−42 via monomethylation. Alter-
natively, compound 46 displaying a 2-aminoimidazole core
could be prepared by cyclization of the α-aminoketone 31 with
cyanamide. Intermediates 36, 37, 40−42, and 47 were then
reacted with 4-morpholinoaniline, as previously mentioned, to
afford the final compounds 38, 39, 43−45, and 47,
respectively.
Several analogues of compound 44 featuring a different

substituent at the pyridine-C2 position (compounds 48a−h
and 48m, Scheme 4) could be prepared by nucleophilic

aromatic substitution of synthone 41 with p-phenylendiamine,
1-phenylethanamine, or with diverse branched or cycloalkyl
amines. In addition, compound 48h and the previously
reported 48m21 were coupled with different acid chlorides or
anhydrides to obtain the corresponding amides 48i−l and
48n−q (Scheme 4).
The introduction of a methyl substituent on the imidazole-N

atom, providing 1,2,4,5-tetrasubstituted imidazoles 50 and 57,
required a distinct approach depending on the desired N-
methylated regioisomer. In fact, double nucleophilic sub-
stitution of imidazole-2-thione 34 using excess of methyl
iodide almost exclusively afforded the regioisomer bearing the
substituent on the N atom away from the pyridine ring (49,
Scheme 5). The regioselectivity of the methylation reaction
was confirmed by crystal structure analysis of intermediate 49
(see Figure S1 in the Supporting Information) and was
attributed to the lower steric hindrance offered by the methyl
group compared to the pyridine ring. The regioisomer 54,
having the methyl group on the N atom adjacent to the
pyridine ring, was instead achieved by cyclizing the α-
aminoketone 31 with methyl isothiocyanate, followed by
methylation of the sulfur of the resulting N1-methylimidazole-
2-thione 51.
This approach, adapting a procedure published by Xi et al.,27

represents an unusual route to tetrasubstituted pyridinylimi-
dazoles and was recently reported by some of us for the
preparation of tetrasubstituted imidazoles bearing two
aromatic moieties at the 4 and 5 positions.28 The same
method could also be employed, using the appropriate alkyl

isothiocyanate, to achieve the N-ethyl- and the N-cyclopropyl-
imidazole derivatives 55 and 56, respectively. Unlike the
majority of the reported compounds, the introduction of the 4-
morpholinoaniline moiety, yielding compounds 50 and 57−
59, was carried out by palladium-catalyzed Buchwald−Hartwig
aryl amination.
The synthesis of the 1,5-disubstituted imidazole 66, bearing

an aromatic substituent on the imidazole-N1 atom, was
performed starting from 2-bromoisonicotinaldehyde (60) via
a two-step procedure as depicted in Scheme 6. Such a route

entails the formation of the imine derivative 61 and its direct
cyclization through the Van Leusen reaction29 using toluene
sulfonylmethylisocyanide (TOSMIC) and K2CO3. The analo-
gous route was unfortunately not accessible for the synthesis of
the N1-methyl substituted derivative 67 because of the
instability of the corresponding imine intermediate. As an
alternative, the preformed N1-methyl imidazole group was
introduced through Suzuki cross-coupling reaction30 between
5-bromo-1-methyl-1H-imidazole (62) and pyridinyl-boronic

Scheme 4. Synthesis of 4(5)-Methyl-2-methylsulfanyl-5-
(4)pyridin-4-ylimidazoles 48a−qa

aReagents and conditions: (a) cycloalkylamine (NEAT or n-BuOH),
180 °C, 24−72 h; (b) p-phenylendiamine, 1.25 M HCl in EtOH, n-
BuOH, 180 °C, 16 h; (c) trans-diaminocyclohexane, n-BuOH, 180
°C, 72 h; and (d) acyl chloride or anhydride, dry pyridine, rt, 16 h;
(R1, R2 = see Table 6).

Scheme 5. Synthesis of Tetrasubstituted Imidazoles 50 and
57−59a

aReagents and conditions: (a) KSCN, MeOH, reflux temperature, 4
h; (b) MeI, t-BuONa, MeOH, 80 °C, 3 h; (c) 4-morpholinoaniline,
Pd2(dba)3, Xantphos, Cs2CO3, dry 1,4-dioxane, 100 °C, 18 h; (d)
alkyl isothiocyanate, Et3N, 60 °C, 16 h; (e) AcOH, 80 °C, 1 h; (f)
MeI, t-BuONa, MeOH, 50 °C, 30 min; and (g) 4-morpholinoaniline,
Pd2(dba)3, XPhos, Cs2CO3, dry 1,4-dioxane, 100 °C, 16 h.

Scheme 6. Synthesis of 1,5-Disubstituted Imidazoles 66 and
67a

aReagents and conditions: (a) 4-fluoroaniline, AcOH, EtOH, reflux
temperature, 2 h; (b) TOSMIC, K2CO3, MeOH/dimethoxyethane
2:1, reflux temperature, 3 h; (c) Pd(PPh3)4, Cs2CO3, H2O, DMF, 60
°C, 24 h; and (d) 4-morpholinoaniline, t-BuONa, Pd2(dba)3, BINAP,
toluene, 80 °C, 3 h; (e) 4-morpholinoaniline, 1.25 M HCl in EtOH,
n-BuOH, 180 °C, 16 h.
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acid 63 (Scheme 6). The last step of both routes consisted of
the introduction of the 4-morpholinoaniline moiety. In the
case of the 4-fluorophenyl derivative 64, this was performed by
Buchwald−Hartwig amination giving compound 66, whereas
the acid-catalyzed nucleophilic aromatic substitution was
employed for the synthesis of compound 67.
The 1,2-disubstituted imidazole derivative 71 was obtained

starting from 2-chloroisonicotinonitrile (68), which was
initially reacted in a one-pot procedure described by Voss et
al.31 (Scheme 7). This reaction involves the formation of an

imidate, followed by substitution with acetal-protected amino-
acetaldehyde and final ring closure by deprotection, affording
2-(pyridine-4-yl)imidazole 69 in good yield. At last, N-
methylimidazole 70 was obtained by nucleophilic substitution
with methyl iodide and subsequently reacted with 4-
morpholinoaniline as previously discussed, yielding compound
71.
For the synthesis of compounds 75 and 78, presenting a

methylaminothiazole central core, an approach related to
Hantzsch thiazole synthesis32 was employed (Schemes 8 and

9). Thiazole 75 was obtained starting from 1-(4-fluorophenyl)-
2-(2-fluoropyridin-4-yl)ethan-1-one (72),23 whereas com-

pound 78 was synthesized starting from 1-pyridinyl-propan-
1-one (22). Both ketones 72 and 22 were monohalogenated at
the α-position under acidic conditions and then cyclized via N-
methylthiourea, affording intermediates 74 and 77, respec-
tively. Conclusively, substitution with 4-morpholinoaniline
yielded the desired compounds 75 and 78.

Biological Evaluation. All synthesized inhibitors were
evaluated by enzyme-linked immunosorbent assays33,34 to
determine their ability to inhibit JNK3 and p38α MAPK, and
the results are presented in Tables 1−4 and 6.

The free terminal aniline moiety of compound 1a is
considered to be potentially responsible for aggregation and
therefore might result in assay interference, as also pointed out
by analysis through the ZINC 15 pattern tool.35 For this
reason, the p-phenylendiamine moiety at the pyridine-C2
position of compound 1a was modified in a 4-morpholinoani-
line group, which has already been reported as a beneficial
substituent in this position.36 Resulting compound 5 (Table 1)
displayed extremely close inhibition values to its analogoue 1a
(1a, IC50(JNK3) = 24 nM; IC50(p38α MAPK) = 17 nM) and this
moiety was, therefore, maintained constant during the
investigation of other positions of the scaffold.
The first attempt, which was carried out to shift the

preference of compound 5 toward the JNK3, consisted of
modifying the central imidazole core together with acting on
the substitution at the imidazole-C2 position (Table 1).
Transformation of the methylsulfanyl group at the imidazole-
C2 position into an ethyl group or removal of the same group,

Scheme 7. Synthesis of Imidazol-2-yl Pyridine Derivative
71a

aReagents and conditions: (a) 30% NaOMe in MeOH, MeOH, 40
°C, 1 h; (b) aminoacetaldehyde dimethylacetal, AcOH, MeOH, reflux
temperature, 30 min; (c) 6 M HCl, reflux temperature, 18 h; (d) MeI,
NaH, dry DMF, rt, 2 h; and (e) 4-morpholinoaniline, 1.25 M HCl in
EtOH, n-BuOH, 180 °C, 16 h.

Scheme 8. Synthesis of 2-Methylaminothiazole 75a

aReagents and conditions: (a) Br2, 30% HBr in AcOH, 75 °C, 2 h;
(b) N-methylthiourea, EtOH, reflux temperature, 1 h; and (c) 4-
morpholinoaniline, 1.25 M HCl in EtOH, n-BuOH, 180 °C, 16 h.

Scheme 9. Synthesis of 2-Methylaminothiazole 78a

aReagents and conditions: (a) Br2, HBr 30% in AcOH, 75 °C, 4 h;
(b) N-methylthiourea, EtOH, reflux temperature, 1 h; and (c) 4-
morpholinoaniline, 1.25 M HCl in EtOH, n-BuOH, 180 °C, 16 h.

Table 1. Core Modifications on 4-F-Phenyl-Substituted
Derivativesa

aData of standard inhibitors SB203580 (p38α MAPK) and
SP600125 (JNK3) in our in-house activity assay are included.
bIC50 values are the mean of three experiments. cn = 16. dn = 20.
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resulting in compounds 13 and 14, respectively, did not seem
to affect the inhibitory activity on the two enzymes.
Replacement of the imidazole core with an imidazol-2-one
ring instead caused a decrease in the JNK3 inhibitory activity
while leaving the inhibition of p38α MAPK unchanged (8:
IC50(JNK3) = 142 nM; IC50(p38α MAPK) = 34 nM). The position of
the two nitrogen atoms at the central imidazole core seems to
be essential for the inhibition of both enzymes, as the different
arrangements of substituents around the five-membered ring of
1,5-disubstituted imidazole 66 resulted in a drop in activity on
both target kinases. On the other hand, exchange of 2-
sulfanylimidazole with 2-methylaminothiazole (75) yielded an
increase in inhibitory activity of 2.5- and 8-fold for JNK3 and
p38α MAPK, respectively.
To assess the effect of the substituent located in the

hydrophobic region (HR) I, the 4-fluorophenyl group was
replaced by different aromatic, alkyl, and cycloalkyl moieties
(Table 2). In terms of both ligand efficiency (LE) as well as

Table 2. Effect of Different Aryl and Alkyl Substituents at
the Imidazole C4(5) Position

aIC50 values are the mean of three experiments. bPercent inhibition at
indicated concentration.

Table 3. Modification of the Core on Methyl-Substituted
Derivatives

aIC50 values are the mean of three experiments. bPercent inhibition at
indicated concentration.

Table 4. Effect of Small Alkyl Substituents in the HR I

aIC50 values are the mean of three experiments. bPercent inhibition at
indicated concentration.
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lipophilic LE (LLE), the 4,5-disubstituted derivative 14 is the
most efficient one out of the series of Table 1 and serves,
therefore, as the optimal starting point for these modifications.
Moreover, this scaffold presents a substantially equal activity
compared to its S-methylated analogue 5, along with a
convenient synthetic strategy, facilitating the preparation of a
broad range of derivatives.
Most of the 4,5-disubstituted pyridinylimidazoles having an

aromatic moiety at the imidazole-C4 position (compounds
18a−f) revealed to be potent inhibitors for both enzymes,
displaying IC50 values down to the low double digit nanomolar
range. In general, addressing the HR I with a phenyl or
monosubstituted phenyl ring resulted in dual inhibitors
displaying a slight preference toward p38α MAPK over
JNK3. This trend is most distinct in the case of compound
18d having a 3-(trifluoromethyl)phenyl moiety, which presents
a 6-fold higher activity for p38α MAPK than for JNK3. The
only aromatic substituent stepping out of this trend was the
heteroaromatic N-methylpyrazole of compound 18f, producing
an overall decrease in activity on both kinases while conserving
a moderate preference toward JNK3 (18f: IC50(JNK3) = 758
nM; IC50(p38α MAPK) = 3259 nM). These findings indicate that
substitution on the phenyl ring is not beneficial when pursuing
selectivity on JNK3 and instead seems to be counter-
productive, increasing the activity on p38α MAPK. The reason
behind this lack of selectivity can be intuitively explained by
considering the dimensions of the hydrophobic pocket known
as HR I in the two target kinases. This cleft is wider in the
p38α MAPK than in JNK3 mostly because of a difference in
the “gatekeeper” residue (Thr106 in p38α MAPK vs Met146
in JNK3). However, as already mentioned in some
cocrystallization studies,37 aromatic moieties can induce a
shift of the flexible side chain of Met146 (JNK3), thus
essentially abolishing the size differences between the two
pockets. As a proof of that, even the bulky 2-naphthyl group of
compound 18e seems to be accommodated in the “reshaped”
hydrophobic pocket of JNK3, therefore resulting in a high
inhibitory potency. Moreover, attempts of substituting the
ortho and meta positions of the phenyl ring, seeking for
additional interactions, did not succeed and produced negative
outcomes instead (compounds 18b−d).
The replacement of the aromatic ring at the imidazole-C4

position by cycloalkyl moieties resulted in a dramatic decrease
in activity for both enzymes, with IC50 values in the low
micromolar range. The only exception was the cyclohexyl
derivative 18g that was able to interact with p38α MAPK with
an IC50 value of 726 nM, 2-fold more potent than on JNK3.
The inhibitory effect of compounds 18g−j on p38α MAPK,
decreasing alongside the reduction of the ring size, is
symptomatic of a gradually diminished capability of the cyclic
group to occupy the spacious cavity of the enzyme. On the
other side, JNK3 activity of derivatives 18g−i, bearing a four-
to six-membered ring at the imidazole-C4 position, remained
substantially constant, although significantly decreased com-
pared to the parent compound 14. An analogous scenario
occurred in the case of compounds featuring branched
aliphatic groups at the same position. The isopropyl derivative
18l, analogously to the closely related 18j, showed a significant
drop in activity on p38α MAPK, while conserving an IC50
value on JNK3 in the low micromolar range. On the other
hand, introduction of a tert-butyl moiety (18k) resulted in a
complete loss of activity on both JNK3 and p38α MAPK.
Because of their flexibility and low electron density, cyclic and

branched aliphatic groups are presumably unable to promote
the Met146 shift and therefore cannot fit in the narrow
hydrophobic back pocket of JNK3. A reasonable consequence
of this would therefore consist of the flip of the imidazole ring,
directing the branched or cyclic alkyl moieties away from the
hydrophobic back pocket of the JNK3, thus explaining the
similarity of the inhibitory activity regardless of the substituent
size.
In agreement with the trend of the series, methyl- and ethyl-

substituted imidazoles 38 and 39, respectively, displayed no
inhibition of the p38α MAPK (IC50 > 10 μM), however,
preserving activity on the JNK3. In particular, the methyl
derivative 38 represented the sole compound of this series
reaching a submicromolar activity on JNK3 without any
remarkable effect on the p38α MAPK. Moreover, this inhibitor
also represents the most efficient selective inhibitor of this
series in terms of LE and LLE and was therefore chosen as the
starting point for further investigations.
Once the methyl substituent at the imidazole-C4 position

was selected, our attention was refocused on the central core
(Table 3). Because of the presence of the methyl substituent,
all derivatives presented in this series lost their potency on the
p38α MAPK, with each one displaying an IC50 value higher or
equal 10 μM. Altering the arrangement of the substituents
around the imidazole ring proved beneficial in the case of the
1,5-disubstituted imidazole 67, slightly increasing its potency
compared to the precursor 38, whereas it was deleterious for
the 1,2-disubstituted derivative 71. Replacement of the
imidazole core with a 2-aminomethyl thiazole (78) also
revealed to be detrimental for the inhibitory activity. A
different approach consisted of the introduction of an
additional substituent on the imidazole-N atom, together
with a reintroduction of the S-methyl group at the C2 position,
yielding the tetrasubstituted imidazole scaffold already
reported in potent dual JNK3/p38α MAPK as well as JNK3
selective inhibitors.16,21 In the case of p38α MAPK, the effect
of an additional alkyl substituent on the imidazole ring has
been reported to be strictly dependent on the position of the
substituted N atom. Several examples have demonstrated
alkylation of the imidazole-N atom away from the pyridine ring
to cause a severe reduction of the activity because of the
impossibility to establish a hydrogen bond with the Lys53 of
the p38α MAPK.38,39 Because the same interaction has shown
to also occur in the binding to JNK3 (Lys93), an analogous
effect was expected on this enzyme as well and was confirmed
by the remarkably reduced JNK3 inhibition by compound 50,
carrying a methyl group on the distal imidazole N atom. On
the other hand, because several tetrasubstituted JNK3/p38α
MAPK inhibitors have been reported with an alkyl substituent
on the imidazole N adjacent to the pyridine ring, we assumed
this modification to be suitable with our 4-methyl substituted
scaffold as well. However, derivatives 57 and 58, featuring a
methyl and an ethyl substituent on the N atom proximal to
pyridine, respectively, unexpectedly presented an even lower
potency on JNK3 than the supposedly “wrong” regioisomer 50.
The drop in activity appeared to increase with the size of the
alkyl substituent, as N-cyclopropyl substituted 59 was almost
3-fold less active compared to its N-methyl analogue 57. This
outcome suggests that despite not hampering the formation of
a H bond with the Lys93, alkyl substituents at the imidazole N
atom proximal to pyridine reduce the tightness of the binding
to the JNK3 active site.
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To complete this series, starting from 4,5-disubstituted
imidazole 38, the original S-methyl group or a free amino
substituent was introduced at the imidazole-C2 position,
affording compounds 44 and 47, respectively. Although the 2-
amino imidazole derivative showed a drop in activity compared
to the parent compound 38, reintroduction of the S-methyl
group at the imidazole-C2 position surprisingly produced a 2-
fold increase in the inhibitory potency on JNK3 (44: IC50(JNK3)
= 363 nM; IC50(p38α MAPK) > 10 μM). This outcome prompted
us to reconsider our previous assumption regarding the role of
the 2-methylsulfanyl moiety. Although the S-methyl group
exerts no influence on the inhibitory activity when the 4-
fluorophenyl moiety is installed at the imidazole-C4 position, it
has a significant impact in the case of 4-methyl imidazole
derivatives.
In a closer evaluation concerning the influence of the alkyl

chain in position 4 of the imidazole core combined with the 2-
methylsulfanyl moiety in C2 position, the methyl group (44)
emerged once more as the substituent presenting the optimal
length to target the JNK3 HR I, when compared to the 4-
unsubstituted and to the 4-ethyl derivatives 43 and 45,
respectively (Table 4). Comparison of imidazoles 5 (Table 1)
and 44 (Table 4) reveals the replacement of the 4-fluorophenyl
ring at the imidazole-C4(5) position by a smaller methyl group
to result in a 1 order of magnitude loss in JNK3 inhibition and
in a complete loss of p38α MAPK inhibitory activity.
To elucidate the binding mode of the 4-methyl-substituted-

5-(pyridine-4-yl)imidazole derivatives, as well as to gain insight
into the role of the 2-methylsulfanyl group, crystal structures of
JNK3 in complex with compounds 38 and 44 were determined
(Figure 2).

The structures revealed a similar binding mode of the
inhibitors within the adenosine 5′-triphosphate (ATP) pocket
of JNK3 (Figure 2). As expected, both scaffolds interacted with
the hinge region of the kinase via two hydrogen bonds
involving the main chain carbonyl and backbone amine groups
of Met149 and mimicking the interactions of the enzyme with
ATP40 as well as with its nonhydrolyzable analogue β,γ-

methyleneadenosine-5′-triphosphate (AMP−PCP, Figure S3,
Supporting Information). In both structures, the imidazole-N
atom distal from the pyridine ring is part of a network of water-
mediated hydrogen bonds, involving the side chain of Lys93
and the main chain of Leu206. Further water-mediated
hydrogen bonds in the JNK3-38 crystal structure (Figure
2A) include the side chain of Asn194, whereas in the JNK3-44
structure (Figure 2B), the backbone of Gly76 and the side
chain of Asp207 are involved. The structure of JNK3 in
complex with inhibitor 38 also showed that the imidazole-N
atom proximal to the pyridine ring participates in a water-
mediated hydrogen bond with the Asn152 side chain and the
same interaction seems to be present in the JNK3-44, thus
explaining the detrimental effect produced by the substitution
of this position (compounds 57−59). Multiple hydrophobic
interactions comprising the gatekeeper Met146 and the side
chains of Ile70, Val78, Val196, and Leu206 were also observed.
These interactions have been previously described by Scapin et
al.37 and confer JNK3 selectivity as they cannot be formed in
the larger binding pocket of p38α MAPK. The methyl group
present in both inhibitors was oriented toward the HR I, which
resulted in an identical orientation of the side chain of the
gatekeeper residue Met146. The 4-morpholinoaniline moiety,
which occupied the solvent-exposed HR II, exhibited higher
flexibility and no direct interactions with JNK3, that is, this
moiety likely contributes barely or not at all to the binding.
A major structural difference between the two complex

structures was observed for the Gly-rich loop. In the JNK3-38
complex structure, no electron density for residues Gly71−
Gly76 was visible because of high local flexibility, a
phenomenon also encountered in other JNK3 crystal
structures.41−43 In the JNK3-44 complex, however, the
electron density for this loop was clearly defined, hinting to
a structural stabilization of this region upon interaction with
the 2-methylsulfanyl moiety in compound 44.
A superposition of our inhibitor complex structures with

crystal structures of JNK3 bound to AMP−PCP and the dual
JNK3/p38α MAPK inhibitor by Scapin et al.37 (PDB code:
1PMN) yielded insights into the structural basis for the
observed selectivity of compounds 38 and 44 (Figure 3).
As can be seen from this structural comparison, no

movement of the gatekeeper Met146 side chain is induced
by compounds 38 and 44 when compared to the AMP−PCP
complex, contrary to the dual kinase inhibitor studied by
Scapin et al. In the latter crystal structure, an induced fit of side
chain 146 occurred to accommodate the dichlorophenyl
moiety of the dual kinase inhibitor. Conversely, it appears
that the methyl substituent of compounds 38 and 44 was
unable to occupy the wider HR I of the p38α MAPK, while
possessing the optimal length to target the respective region of
JNK3. Therefore, this moiety determined the selectivity
achieved over p38α MAPK, demonstrated by the activities of
compounds listed in Tables 2−4. In the case of AMP−PCP
and compound 44, another result of the interaction is a
downward positioning of the flexible Gly-rich loop. A similar
compression of the binding pocket caused by a repositioning of
the Gly-rich loop was reported for a JNK3 complex crystal
structure by Kamenecka et al.44 and might be a result of
hydrophobic interactions and water-mediated hydrogen bonds
provided by inhibitor 44, which stabilized this otherwise
flexible section. Overall, as a result of inhibitor binding, the
JNK3 ATP binding pocket in our crystal structures appears
somewhat narrower in comparison to the p38α MAPK binding

Figure 2. Crystal structures of JNK3 in complex with inhibitors 38
(A) and 44 (B) featuring a pyridinylimidazole scaffold. Only the
JNK3 active site is shown. The protein backbone is displayed in gray.
The compounds, the side chain of gatekeeper Met146, and a part of
the Gly-rich loop are highlighted in stick display. Active site residues
with common orientations and interactions are shown in light blue,
whereas residues that differ between both complexes are highlighted
in the same color as the respective inhibitor. Side chains for which
multiple orientations are observed (Asn194 in complex with 38 and
Asn152 in complex with 44) are shown in both orientations. Water
molecules are represented as red spheres and hydrogen bonds are
shown as black dashed lines.
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site (where the gatekeeper is Thr106), an effect that is less
prominent for the dual kinase inhibitor (Figure 3) and
probably responsible for the selectivity of compounds 38 and
44. With respect to the 2-fold increase in the inhibitory
potency on JNK3 of compound 44 over its analogue 38, the
influence of the S-methyl group on the positioning of the Gly-
rich loop is the most likely structural reason for the significant
gain in affinity.
An additional characterization of the two compounds 38 and

44 included the determination of the protein melting
temperature (Tm) in the presence and absence of inhibitors
by nano differential scanning fluorimetry (nanoDSF). This
methodology consists of assessing the influence of the binding
event on the stability of the target protein and is carried out by
monitoring temperature-dependent changes in the intrinsic
protein fluorescence as a consequence of unfolding. The
corresponding curves (Figure S2, Supporting Information)
exhibited a significant increase in stability of JNK3 upon
inhibitor binding, as can be seen from the associated Tm values
(Table 5). The Tm value of JNK3 alone was determined to be
46.3 °C and increased to 53.8 and 54.8 °C in the presence of
compounds 38 and 44, respectively, which correlates well with
the results concerning the inhibitory activity and stability of the
Gly-rich loop.

A further approach in the pursuit of a tighter binding with
the JNK3 consisted of modifying the amino moiety at the
pyridine-C2 position (Table 6).
An initial attempt was carried out by introducing α-

methyl(phenyl)alkylamino moieties (compounds 48a−b) as
well as cycloalkylamino groups (compounds 48c−e). The
former moieties have been reported in potent p38α MAPK
inhibitors, for example, LN950 (Figure 1) and ML3403,45 and
were thus introduced to evaluate their effect on JNK3
inhibitory potency. In detail, these substituents were
hypothesized to yield an increase in the JNK3 inhibitory
activity while conserving selectivity over the p38α MAPK
because of the combination with the 4-methyl substituent on
the imidazole ring. However, the 3-methyl-2-butylamino group
(48a) resulted in a loss of activity compared to the 4-
morpholinoaniline precursor 44, although maintaining some
selectivity over the p38α MAPK. Substitution with the α-
methylbenzylamine, giving rise to compound 48b, was instead
counterproductive as it not only caused a tremendous drop in
JNK3 inhibition but also a recovery of the activity on the p38α
MAPK (48b: IC50(JNK3) = 7610 nM; IC50(p38α MAPK) = 3460
nM). On the other hand, although not reaching the potency of
the parent compound 44, the JNK3 inhibitory activity of
compounds bearing cycloalkylamino moieties at the pyridine-
C2 position (48c−e) increased alongside the size of the
aliphatic ring, a trend suggesting the importance of hydro-
phobic interactions in this area of the molecule. Nevertheless,
replacement of the cyclohexyl ring of 48e with the similar
tetrahydropyranyl group (48f) yielded, unexpectedly, a
remarkable loss of activity on JNK3.
A possible strategy to gain activity and selectivity on JNK3

would consist of targeting the side chain of Gln155 as this
residue is replaced by a shorter Asn in the p38α MAPK.46 As
suggested by the structure of the JNK3−44 complex (Figure
2), this amino acidic residue is located about 4 Å away from
the 4-morpholinoaniline-N atom but cannot be reached
because of the rigidity of this substituent. Moreover, the 4-
morpholinoanilino moiety is only able to accept a hydrogen
bond, whereas the Gln residue has the potential to act as both
acceptor and donor of hydrogen bonds. For this reason, trans-
4-aminocyclohexanol and trans-1,4-diaminocyclohexyl moieties
were selected for compounds 48g and 48h, respectively,
because of a higher flexibility and their additional capability to
donate hydrogen bond interactions. In particular, the former
moiety is also present in the structure of clinical candidate CC-
930, wherein it is reported to interact with the aforementioned
Gln155,47 and included in potent p38α MAPK inhibitors.45

Unfortunately, despite preserving the selectivity over the p38α
MAPK, none of the two inhibitors 48g and 48h succeeded in
overcoming the activity of the parent compound 44 on the
JNK3, with the latter displaying a 3-fold drop in potency. This
observation suggests an inability of the introduced moiety to
form the desired interaction with the Gln155 side chain or this
interaction being compensated by other factors. Additionally, it
underlines the necessity of the aromatic moiety at the pyridine-
C2 amino function for the binding to the JNK3. The
significantly lower activity of compound 48h could also derive
from the not tolerated protonation of its terminal amino
functionality. With the aim to reach the Gln155 side chain by
the introduction of an additional hydrogen bond acceptor, a
series of amides of compound 48h and of its aromatic
counterpart 48m was synthesized. This approach also permits
to seek additional interactions with the enzyme HR II.

Figure 3. Comparison of the gatekeeper Met146 orientation and the
Gly-rich loop positioning upon JNK3 inhibitor binding with other
ligand-bound JNK3 structures. Overlay of the JNK3-44 complex
structure (light green), the JNK3-38 complex structure (light red),
the AMP−PCP-bound JNK3 structure (light orange), and the 1PMN
structure reported by Scapin, et al.37 (blue). The superposition was
performed using the “align” function in PyMOL. The side chains of
the gatekeeper Met146 and the Gly-rich loop are highlighted. Only
compounds 38 and 44 are shown for the sake of clarity.

Table 5. Determined Melting Temperatures (Tm) for JNK3
Alone and in Complex with Inhibitors 38 and 44

sample Tm (°C)a

JNK3 46.28 ± 0.58
JNK3-38 53.87 ± 0.04
JNK3-44 54.83 ± 0.04

aData represent mean value ± SD of a single experiment performed in
triplicate. nanoDSF measurements (Figure S2, Supporting Informa-
tion) were conducted using Prometheus NT.48 (NanoTemper
Technologies, Munich).
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Unfortunately, in neither of the two series, the introduction of
amide moieties permitted to gain an inhibitory activity
comparable with the precursor 44. In the series featuring a
cycloaliphatic amine (48i−l), only the small acetamide
derivative 48i exhibited an almost similar activity to the
precursor, whereas bulkier alkyl and aromatic residues
displayed a 2- to 3-fold decrease in potency. In an analogous
fashion, when considering the series derived from the aromatic
intermediate 48m, compounds bearing a tert-butyl or a
cyclohexyl amide (48p and 48q, respectively) showed a
significant drop in inhibitory activity, with IC50 values in the
micromolar range. On the other hand, both inhibitors carrying
an acetamido or benzamido moiety (48n and 48o,
respectively) were still able to inhibit the JNK3 with a potency
akin to the free amine derivative 48m. The comparison of the
two amide series also supports the theory of a higher suitability
of aromatic substituents at the pyridine-C2 amino position
when targeting the JNK3.
Compound 44 resulted as the best inhibitor of the

synthesized series and was, therefore, further investigated to
achieve a comprehensive characterization. At a first instance, to
evaluate the intra-JNK selectivity, compound 44 was tested on
the three JNK isoforms (Table 7). As expected, compound 44
inhibited the three isoforms with a similar potency but showed
a moderate preference for JNK1 and JNK3 over JNK2.

Moreover, inhibitor 44 was further screened against a panel
of 45 diverse kinases to achieve a preliminary evaluation of its
selectivity within the kinome. Out of the kinase panel, 10
kinases (including JNK1) were inhibited more than 50% at a
testing concentration of 10 μM (Table S3, Supporting
Information).
Additional studies were aimed at evaluating the inhibition of

the human-ether-a-̀go-go related gene (hERG) potassium
channels as well as liver cytochromes P450 (CYP450) to
highlight potential liabilities of the synthesized scaffold. As
displayed in Table 8, compound 44 showed a reduced
interference with the hERG channels (IC50 > 10 μM).
Regarding interaction with hepatic enzymes, compound 44

displayed low to moderate inhibition of four of the five tested

Table 6. Influence of Substituents at the Pyridine-C2
Position

aIC50 values are the mean of three experiments. bPercent inhibition at
indicated concentration. cAccording to the ZINC patterns tool,
compound 48m represents a potential pan-assay interference
compound. However, this compound was synthesized as the
intermediate for the preparation of inhibitors 48n−q. To estimate
the impact of the amide moiety present in compounds 48n−q on the

Table 6. continued

inhibition of the two kinases, the activities of 48m are listed in this
table.

Table 7. Inhibition Data of Compound 44 on the Three
JNK Isoforms

IC50 [nM]a

JNK1 JNK2 JNK3
119 468 184

aCompound 44 was tested by Reaction Biology corporation
(Malvern, PA, USA) using a radiometric assay.

Table 8. Inhibitory Activity of Compound 44 on hERG
Channels and on the Most Relevant CYP Isoforms

CYP450 inhibition
[% inhibition at 10 μM]

hERG inhibition
[% inhibition at 10 μM]

1A9 2C9 2C19 2D6 3A4

38.8 51.5 53.9 35.6 19.0 75.1
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isoenzymes, this representing a significantly cleaner profile in
comparison with previously reported inhibitors of this class.48

However, the elevated blockage of the most abundant CYP450
isoform 3A4 still constitutes a serious limit, which needs to be
solved by subsequent optimization strategies.
Finally, additional tests were performed to assess the

metabolic stability of methyl-substituted pyridinylimidazole
44 upon incubation with human liver microsomes. One of the
most serious limitations of previously reported 2-alkylsulfany-
limidazoles is their severe metabolization consisting of
oxidation of the thioether function to the corresponding
sulfoxide.48 Nevertheless, in vitro assays performed on
compound 44 demonstrated a substantial metabolic stability,
as approximately 80% of the unmodified compound was still
present after 4 h incubation (Figure S6, Supporting
Information). The major metabolite formed still appears to
be represented by the sulfoxide derivative (8.49%), although
modifications at the 4-morpholinoaniline substituent might
also be present.

■ CONCLUSIONS

Optimization of 4-(4-fluorophenyl)-5-(pyridin-4-yl)imidazole-
based p38α MAPK inhibitors by modification of the five-
membered heterocyclic core, the aryl moiety at the imidazole-
C4 position, and the pyridine-C2 amino function resulted in a
novel series of JNK3 inhibitors exhibiting high selectivity over
the closely related p38α MAPK. Biological evaluation of the
different pyridinyl-substituted five-membered rings provided
valuable insights into the structure activity relationship of this
scaffold with respect to JNK3 and p38α MAPK inhibitory
potencies. By addressing the HR I with a small methyl group, a
significant selectivity toward JNK3 was achieved. This feature
is not yet reported for this class of compounds, which have
been generally described as p38α MAPK inhibitors. The
binding mode at the ATP binding site of the enzyme for this
class of compounds was confirmed by X-ray structures of JNK3
crystals incubated with imidazoles 38 and 44. The most potent
inhibitor 4-(4-methyl-2-(methylthio)-1H-imidazol-5-yl)-N-(4-
morpholinophenyl)pyridin-2-amine (44) inhibits the JNK3 in
the low triple digit nanomolar range, is metabolically stable,
and displays a slight selectivity over the JNK2 isoform. Further
characterization of this inhibitor highlighted reduced inter-
actions with the hERG channel as well with most of the tested
CYP450 isoforms.

■ EXPERIMENTAL SECTION

Chemistry. General. All chemicals were purchased from
commercial sources unless otherwise specified and used
without further purification. Thin-layer chromatography
(TLC) reaction controls were performed for all reactions
using fluorescent silica gel 60 F254 plates (Merck) and
visualized under natural light and UV illumination at 254
and 366 nm. The purities of all tested compounds were
confirmed to be >95% as determined by reverse-phase high-
performance liquid chromatography (HPLC) using one of the
two following methods. In the case of method 1, the
instrument used was a Hewlett Packard HP 1090 Series II
LC equipped with a UV diode array detector (DAD)
(detection at 230 and 254 nm). The chromatographic
separation was performed on a Phenomenex Luna 5u C8
column (150 mm × 4.6 mm, 5 μm) at 35 °C oven
temperature. The injection volume was 5 μL and the flow

was 1.5 mL/min using the following gradient: 0.01 M
KH2PO4, pH 2.3 (solvent A), MeOH (solvent B), 40% B to
85% B in 8 min; 85% B for 5 min; 85% to 40% B in 1 min; 40%
B for 2 min; stop time 16 min. In the case of method 2, an
Agilent 1100 Series HPLC system was used, equipped with a
UV DAD (detection at 218, 254, and 280 nm). The
chromatographic separation was performed on an XBridge
C18 column (150 mm × 4.6 mm, 5 μm) and the oven
temperature was set to 30 °C. The injection volume was 10 μL
and the flow was 1.5 mL/min using the following gradient:
0.01 M KH2PO4, pH 2.3 (solvent A), MeOH (solvent B), 45%
B to 85% B in 9 min; 85% B for 6 min; stop time 16 min. Flash
column chromatography was performed using an Interchim
puriFlash 430 automated flash chromatography system with
Davisil LC60A 20−45 μm silica from Grace Davison and
Geduran Si60 63−200 μm silica from Merck for the
precolumn. Nuclear magnetic resonance (NMR) data were
obtained on a Bruker ARX NMR spectrometer at 250 MHz, on
a Bruker AVANCE III HD NMR spectrometer at 300 MHz, or
on a Bruker AVANCE NMR spectrometer at 400 MHz at
ambient temperature. Chemical shifts are reported in parts per
million (ppm) relative to tetramethylsilane. All spectra were
calibrated against the (residual proton) peak of the deuterated
solvent used. Mass spectra were recorded on an Advion
expression S electrospray ionization mass spectrometer (ESI-
MS) with TLC interface.

Experimental Procedures. General Procedure for the
Nucleophilic Aromatic Substitution with 4-Morpholinoani-
line (General Procedure A). In a pressure vial, the 2-halide
pyridine intermediate (1 equiv) and 4-morpholinoaniline (1.5
equiv) were suspended in n-butanol (3 mL) and 1.25 M HCl
in EtOH (1 equiv) was added. After tightly closing the vial, the
reaction mixture was heated in a heating block at 180 °C and
stirred for 18 h. After removing the solvent at reduced
pressure, the residue was purified by flash column chromatog-
raphy.

General Procedure for the Synthesis of Compounds 15a−
l (General Procedure B). In a three-neck round-bottom flask
under anhydrous conditions, 2-chloro-4-methylpyridine (9) (1
equiv) and the appropriate ethyl ester (1 equiv) were dissolved
in dry tetrahydrofuran (THF) (2 mL). After cooling the
reaction mixture to 0 °C, 2 M sodium bis(trimethylsilyl)amide
(NaHDMS) in dry THF (2.2 equiv) was added dropwise and
the mixture was stirred at 0 °C for 1.5−5 h. After adding H2O,
the aqueous phase was extracted three times with dichloro-
methane (DCM) or EtOAc and washed with NaCl saturated
solution. The combined organic layers were dried over
anhydrous Na2SO4 and the solvent was evaporated at reduced
pressure. The residue was finally purified by flash column
chromatography.

General Procedure for the Synthesis of Compounds 16a−
l (General Procedure C). Ethan-1-one intermediates 15a−l (1
equiv) and SeO2 (1.1 equiv) were suspended in 5−10 mL of
glacial AcOH and the reaction mixture was stirred at 65 °C for
2−3 h. After cooling to room temperature (rt), the formed
solid residue of Se was removed by filtration and the filtrate
was diluted with EtOAc and then washed with saturated
NaHCO3 solution four times. Finally, the organic phase was
washed with saturated NaCl solution, dried over anhydrous
Na2SO4, and concentrated at reduced pressure. The residue
was purified by flash column chromatography.

General Procedure for the Synthesis of Compounds 17a−
l (General Procedure D). In a pressure vial, ethane-1,2-dione
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derivatives 16a−l (1 equiv) and NH4OAc (10 equiv) were
suspended in 3 mL of glacial AcOH and after that a 37%
aqueous solution of formaldehyde (1 equiv) was added. The
reaction vessel was heated in a CEM microwave reactor at 180
°C, with an initial power of 200 W, for 2−5 min. The mixture
was added dropwise to NH4OH concentrated solution at 0 °C.
The suspension obtained was extracted three times with
EtOAc and the combined organic layers were dried over
anhydrous Na2SO4 and concentrated at reduced pressure. The
residue was purified by flash column chromatography.
General Procedure for the Synthesis of Compounds 48a−

h (General Procedure E). In a pressure vial, 2-chloro-4-(4-
methyl-2-(methylthio)-1H-imidazol-5-yl)pyridine (41) was
suspended in ≈2 mL of cycloalkylamine (in the case of solid
amine, 20 equiv of amine was added and the mixture was
suspended in ≈2 mL of n-butanol). The closed vial was then
heated at 180 °C and stirred for 48−120 h. The reaction
mixture was poured in H2O and the aqueous layer was
extracted three times with EtOAc. The combined organic
layers were dried over anhydrous Na2SO4 and concentrated at
reduced pressure. The residue was finally purified by flash
column chromatography.
General Procedure for the Synthesis of Compounds 48i−l

and 48n−q (General Procedure F). Under an argon
atmosphere, trans-N1-(4-(4-methyl-2-(methylthio)-1H-imida-
zol-5-yl)pyridin-2-yl)cyclohexane-1,4-diamine (48h) or N1-(4-
(4-methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)-
benzene-1,4-diamine (48m) was dissolved in 1.5 mL of dry
pyridine and after that the appropriate acid chloride or
anhydride was added and the reaction mixture was stirred at rt
for 16 h. The reaction mixture was poured in H2O and the
aqueous layer was extracted three times with EtOAc. The
combined organic layers were dried over anhydrous Na2SO4
and concentrated at reduced pressure. The residue was finally
purified by flash column chromatography.
2-Fluoro-4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imida-

zol-5-yl)pyridine (4).23 The title compound was synthesized as
described in the literature23 and analytical data were in
agreement with the reported ones.
4-(4-(4-Fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)-

N-(4-morpholinophenyl)pyridin-2-amine (5). The title com-
pound was synthesized according to general procedure A
starting from compound 4 (100 mg, 0.33 mmol) and 4-
morpholinoaniline (88.1 mg, 0.49 mmol). Purification by flash
column chromatography (SiO2, DCM/EtOH 100:0 to 9:1)
afforded 61 mg of the desired compound (40% yield); 1H
NMR (400 MHz, DMSO-d6): δ 2.61 (s, 3H), 3.00 (br s, 4H),
3.73 (br s, 4H), 6.53−6.75 and 6.88−7.00 (m, 2H), 6.82 (d, J
= 7.6 Hz, 2H), 7.09−7.42 (m, 4H), 7.43−7.61 (m, 2H), 7.82−
8.12 (m, 1H), 8.55−8.84 (m, 1H), 12.65 ppm (br s, 1H); 13C
NMR (101 MHz, DMSO-d6): δ 15.0, 15.1, 49.4, 66.2, 106.1,
106.4, 111.4, 111.7, 115.2 (d, J = 21.2 Hz), 115.7, 115.9, 119.9,
120.3, 126.2, 126.9, 129.5 (d, J = 8.1 Hz), 130.7 (d, J = 8.0
Hz), 133.7, 134.2, 134.8, 137.9, 138.7, 141.9, 142.7, 145.6,
145.9, 147.3, 148.1, 156.7, 161.9 ppm (d, J = 244.4 Hz); MS−
FAB m/z: [M] calcd for C25H24FN5OS, 461.2; found, 461.3;
HPLC (method 1): tR = 5.326 min (100%).
2-((4-(4-Fluorophenyl)-5-(2-fluoropyridin-4-yl)-1H-imida-

zol-2-yl)thio)ethan-1-ol (6).49 The title compound was
synthesized as described in the literature49 and analytical
data were in agreement with the reported ones.
4-(4-Fluorophenyl)-5-(2-((4-morpholinophenyl)amino)-

pyridin-4-yl)-1,3-dihydro-2H-imidazol-2-one (8). The title

compound was prepared according to general procedure A
starting from 6 (300 mg, 0.90 mmol) and 4-morpholinoaniline
(240.6 mg, 1.35 mmol). Purification by flash column
chromatography (SiO2, DCM/EtOH 97:03 to 85:15) afforded
200 mg of the desired compound (64% yield); 1H NMR (400
MHz, DMSO-d6): δ 2.81−3.11 (m, 4H), 3.58−3.85 (m, 4H),
6.42−6.65 (m, 2H), 6.80 (d, J = 6.6 Hz, 2H), 7.12−7.36 (m,
4H), 7.36−7.59 (m, 2H), 7.99 (dd, J = 4.7, 2.4 Hz, 1H), 8.65
(br s, 1H), 10.64 (br s, 1H), 10.72 ppm (br s, 1H); 13C NMR
(101 MHz, DMSO-d6): δ 49.3, 66.2, 105.2, 111.9, 115.6,
115.8, 115.9 (d, J = 19.0 Hz), 119.7, 120.5, 126.2 (d, J = 2.9
Hz), 129.9 (d, J = 8.0 Hz), 133.6, 138.2, 145.9, 147.9, 153.9,
156.6, 161.7 ppm (d, J = 245.9 Hz); MS−FAB m/z: [M + H]+

calcd for C24H22FN5O2, 431.18; found, 431.30; HPLC
(method 1): tR = 4.552 min (96.7%).

1-(4-Fluorophenyl)-2-(2-fluoropyridin-4-yl)ethane-1,2-
dione (10). The title compound was synthesized according to
the literature and the analytical data were in agreement with
the reported ones.50

4-(2-Ethyl-4-(4-fluorophenyl)-1H-imidazol-5-yl)-2-fluoro-
pyridine (11). To a solution of 10 (250 mg, 1.01 mmol) in
MeOH (5 mL), 7 M ammonia in MeOH (2.89 mL, 20.23
mmol) and propionaldehyde (88.11 mg, 1.52 mmol) were
added and the reaction mixture was heated to reflux
temperature and stirred for 4 h. After cooling down, the
solvent was evaporated at reduced pressure and the residue
was purified by flash column chromatography (SiO2, DCM/
EtOH 97:03 to 94:06), obtaining 125 mg of the desired
product (43% yield); 1H NMR (300 MHz, DMSO-d6): δ 1.28
(t, J = 7.6 Hz, 3H), 2.64−2.77 (m, 2H), 7.09 (s, 1H), 7.17−
7.40 (m, 3H), 7.47−7.56 (m, 2H), 8.06 (d, J = 5.4 Hz, 1H),
12.41 ppm (br s, 1H); MS-ESI m/z: [M + H]+ calcd for
C16H13F2N3, 286.1; found, 286.0; m/z: [M − H]− calcd for
C16H13F2N3, 284.1; found, 284.0; HPLC (method 2): tR =
3.680 min.

4-(2-Ethyl-4-(4-fluorophenyl)-1H-imidazol-5-yl)-N-(4-
morpholinophenyl)pyridin-2-amine (13). The title com-
pound was synthesized according to general procedure A
starting from 4-(2-ethyl-4-(4-fluorophenyl)-1H-imidazol-5-yl)-
2-fluoropyridine (11) (85 mg, 0.30 mmol) and 4-morpholi-
noaniline (80.2 mg, 0.45 mmol). The crude residue was
purified twice by flash column chromatography (SiO2, DCM/
EtOH 96:04 to 94:06) and (RP-C18, iso-propanol/H2O 1:1),
obtaining 32 mg of the desired compound (24% yield); 1H
NMR (300 MHz, DMSO-d6): δ 1.27 (t, J = 7.6 Hz, 3H), 2.69
(q, J = 7.6 Hz, 2H) 2.96−3.06 (m, 4H), 3.70−3.79 (m, 4H),
6.63−6.92 (m, 3H), 6.97 (br s, 1H), 7.12−7.57 (m, 6H),
7.86−8.08 (m, 1H), 8.60−8.79 (m, 1H), 12.20 ppm (br s,
1H); 13C NMR (101 MHz, DMSO-d6): δ 12.7, 21.2, 49.4,
66.2, 106.2, 115.9, 119.9, 120.2, 127.6, 129.6, 130.6, 134.4,
143.5, 149.6, 156.7, 162.6 ppm; MS-ESI m/z: [M + H]+ calcd
for C26H26FN5O, 444.2; found, 444.2; m/z: [M − H]− calcd
for C26H26FN5O, 442.2; found, 442.2; HPLC (method 2): tR =
4.960 min (98.6%).

4- (4 - (4 -F luoropheny l ) -1H- imidazo l -5 -y l ) -N- (4 -
morpholinophenyl)pyridin-2-amine (14). The title com-
pound was synthesized according to general procedure A
starting from 2-fluoro-4-(4-(4-fluorophenyl)-1H-imidazol-5-
yl)pyridine (12)19 (70 mg, 0.27 mmol) and 4-morpholinoani-
line (71.3 mg, 0.40 mmol). Purification by flash column
chromatography (SiO2, DCM/EtOH 95:05 to 90:10) afforded
70 mg of the desired compound (62% yield); 1H NMR (250
MHz, DMSO-d6): δ 2.93−3.07 (m, 4H), 3.66−3.79 (m, 4H),
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6.63−7.00 (m, 4H), 7.12−7.41 (m, 4H), 7.42−7.60 (m, 2H),
7.81 (s, 1H), 7.89−8.13 (m, 1H), 8.57−8.80 (m, 1H), 12.53−
12.78 ppm (m, 1H); MS-ESI m/z: [M + H]+ calcd for
C24H22FN5O, 415.18; found, 416.2; m/z: [M − H]− calcd for
C24H22FN5O, 414.2; found, 414.2; HPLC (method 2): tR =
3.692 min (97.9%).
N-(4-Morpholinophenyl)-4-(4-phenyl-1H-imidazol-5-yl)-

pyridin-2-amine (18a). The title compound was synthesized
according to general procedure A starting from compound 17a
(100 mg, 0.39 mmol) (for the synthesis of 17a see Supporting
Information) and 4-morpholinoaniline (103.4 mg, 0.58 mmol).
Purification by flash column chromatography (SiO2, DCM/
EtOH 97:03 to 90:10) afforded 138 mg of the desired
compound (89% yield); 1H NMR (300 MHz, DMSO-d6): δ
2.92−3.08 (m, 4H), 3.66−3.80 (m, 4H), 6.68 (dd, J = 5.3, 0.9
Hz, 1H), 6.82 (d, J = 9.0 Hz, 2H), 6.93 (br s, 1H), 7.30−7.53
(m, 7H), 7.82 (s, 1H), 7.97 (d, J = 5.3 Hz, 1H), 8.70 (s, H),
12.66 ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6): δ
49.4, 66.1, 106.5, 111.8, 115.9, 120.1, 127.6, 128.1, 128.6,
132.0, 134.0, 136.0, 142.4, 145.7, 147.2, 156.6 ppm; MS-ESI
m/z: [M + H]+ calcd for C24H23N5O, 398.2; found, 398.2; m/
z: [M − H]− calcd for C24H23N5O, 396.2; found, 396.3; HPLC
(method 1): tR = 3.513 min (99.1%).
4-(4-(2-Chlorophenyl ) -1H-imidazole-5-y l ) -N-(4-

morpholinophenyl)pyridin-2-amine (18b). The title com-
pound was synthesized according to general procedure A
starting from compound 17b (100 mg, 0.34 mmol) (for the
synthesis of 17b see Supporting Information) and 4-
morpholinoaniline (90.9 mg, 0.51 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
90:10) afforded 127 mg of the desired compound (87% yield);
1H NMR (300 MHz, DMSO-d6): δ 2.85−3.17 (m, 4H), 3.59−
3.89 (m, 4H), 6.51 (d, J = 4.8 Hz, 1H), 6.81 (d, J = 8.5 Hz,
2H), 6.92 (br s, 1H), 7.28 (d, J = 7.5 Hz, 2H), 7.37−7.67 (m,
4H), 7.79−8.01 (m, 2H), 8.60 (s, 1H), 12.63 ppm (br s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 49.4, 66.2, 104.8, 110.4,
115.9, 120.1, 127.4, 129.8, 130.5, 130.6, 132.5, 133.3, 134.0,
136.0, 136.0, 142.8, 145.7, 146.1, 147.4, 156.7 ppm; MS-ESI
m/z: [M + H]+ calcd for C24H22ClN5O, 432.1; found, 432.1;
m/z: [M − H]− calcd for C24H22ClN5O, 430.15; found, 429.8;
HPLC (method 2): tR = 3.671 min (99.4%).
4- (4 - (2 -Bromopheny l ) -1H- imidazo l -5 -y l ) -N- (4 -

morpholinophenyl)pyridin-2-amine (18c). The title com-
pound was synthesized according to general procedure A
starting from compound 17c (100 mg, 0.30 mmol) (for the
synthesis of 17c see Supporting Information) and 4-
morpholinoaniline (80.2 mg, 0.45 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
90:10) afforded 100 mg of the desired compound (71% yield);
1H NMR (300 MHz, DMSO-d6): δ 2.91−3.15 (m, 4H), 3.62−
3.95 (m, 4H), 6.51 (d, J = 4.2 Hz, 1H), 6.82 (m, J = 8.0 Hz,
3H), 7.09−7.60 (m, 5H), 7.67−8.01 (m, 3H), 8.63−8.97 (m,
1H), 12.66 ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6):
δ 49.3, 66.1, 104.7, 110.3, 115.9, 120.4, 124.0, 127.9, 130.6,
130.8, 132.5, 132.9, 133.6, 135.8, 145.9, 145.9, 146.9, 146.9,
156.4 ppm; MS-ESI m/z: [M + H]+ calcd for C24H22BrN5O,
476.1; found, 476.0; m/z: [M − H]− calcd for C24H22BrN5O,
474.1; found, 473.9; HPLC (method 2): tR = 3.669 min
(99.3%).
N-(4-Morpholinophenyl)-4-(4-(3-(trifluoromethyl)phenyl)-

1H-imidazol-5-yl)pyridin-2-amine (18d). The title compound
was synthesized according to general procedure A starting

from compound 17d (100 mg, 0.30 mmol) (for the synthesis
of 17d see Supporting Information). Purification by flash
column chromatography (SiO2, DCM/EtOH 97:03 to 90:10)
afforded 120 mg of the desired compound (86% yield); 1H
NMR (300 MHz, DMSO-d6): δ 2.96−3.10 (m, 4H), 3.68−
3.80 (m, 4H), 6.73 (d, J = 5.4 Hz, 1H), 6.80−6.92 (m, 3H),
7.34 (d, J = 8.8 Hz, H), 7.61−7.81 (m, 3H), 7.84 (br s, 1H),
7.96 (s, 1H), 7.99−8.09 (m, 1H), 8.94 (br s, 1H), 13.01 ppm
(br s, 1H); MS-ESI m/z: [M + H]+ calcd for C25H22F3N5O,
466.2; found, 465.9; m/z: [M − H]− calcd for C25H22F3N5O,
464.18; found, 463.8; HPLC (method 2): tR = 5.413 min
(100%).

N-(4-Morpholinophenyl)-4-(4-(naphthalen-2-yl)-1H-imi-
dazol-5-yl)pyridin-2-amine (18e). The title compound was
synthesized according to general procedure A starting from
compound 17e (100 mg, 0.327 mmol) (for the synthesis of
17e see Supporting Information) and 4-morpholinoaniline
(87.5 mg, 0.49 mmol). Purification by flash column
chromatography (SiO2, DCM/EtOH 100:0 to 90:10) afforded
88 mg of the desired compound (60% yield); 1H NMR (250
MHz, DMSO-d6): δ 2.79−2.96 (m, 4H), 3.61−3.80 (m, 4H),
6.53 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 5.1 Hz, 1H), 6.87 (br s,
1H), 7.18 (d, J = 8.8 Hz, 2H), 7.47−7.65 (m, 3H), 7.88 (s,
1H), 7.90−8.12 (m, 5H), 8.60 (s, 1H), 12.72 ppm (br s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 49.3, 66.1, 106.0, 111.8,
115.7, 120.1, 126.2, 126.5, 126.8, 127.6, 128.0, 128.1, 132.3,
133.1, 133.7, 136.4, 145.6, 147.7, 156.6 ppm; MS-ESI m/z: [M
+ H]+ calcd for C28H25N5O, 448.2; found, 448.3; m/z: [M −
H]− calcd for C28H25N5O, 446.2; found, 446.3; HPLC
(method 2): tR = 5.541 min (98.5%).

4-(4-(1-Methyl-1H-pyrazol-4-yl)-1H-imidazol-5-yl)-N-(4-
morpholinophenyl)pyridin-2-amine (18f). The title com-
pound was synthesized according to general procedure A
starting from compound 17f (105.0 mg, 0.40 mmol) (for the
synthesis of 17f see Supporting Information) and 4-
morpholinoaniline (107.0 mg, 0.60 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 100:0 to
70:30) afforded 148 mg of the desired compound (92% yield);
1H NMR (250 MHz, DMSO-d6): δ 2.92−3.09 (m, 4H), 3.65−
3.79 (m, 4H), 3.88 (s, 3H), 6.83−6.93 (m, 3H), 7.08 (s, 1H),
7.45 (d, J = 8.8 Hz, 2H), 7.60 (s, 1H), 7.79 (s, 1H), 7.93 (s,
1H), 8.00 (d, J = 5.4 Hz, 1H), 8.87 ppm (br s, 1H); 13C NMR
(101 MHz, DMSO-d6): δ 38.6, 49.4, 66.2, 106.2, 111.3, 112.1,
115.9, 120.2, 123.4, 129.4, 131.1, 134.0, 135.6, 137.7, 142.9,
145.8, 146.7, 156.5 ppm; MS-ESI m/z: [M + H]+ calcd for
C22H23N7O, 402.2; found, 402.4; m/z: [M − H]− calcd for
C22H23N7O, 400.2; found, 400.5; HPLC (method 2): tR =
1.766 min (100%).

4 - ( 4 - C y c l o h e x y l - 1 H - i m i d a z o l - 5 - y l ) - N - ( 4 -
morpholinophenyl)pyridin-2-amine (18g). The title com-
pound was synthesized according to general procedure A
starting from compound 17g (100 mg, 0.38 mmol) (for the
synthesis of 17g see Supporting Information) and 4-
morpholinoaniline (107.6 mg, 0.57 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
90:10) afforded 120 mg of the desired compound (78% yield);
1H NMR (300 MHz, DMSO-d6): δ 1.14−1.86 (m, 10H),
2.85−2.97 (m, 1H), 2.98−3.06 (m, 4H), 3.65−3.80 (m, 4H),
6.81−6.97 (m, 4H), 7.47 (d, J = 8.9 Hz, 2H), 7.64 (s, 1H),
8.04 (d, J = 5.3 Hz, 1H), 8.72 (br s, 1H), 12.25 ppm (br s,
1H); 13C NMR (101 MHz, DMSO-d6): δ 25.4, 26.0, 32.4,
34.9, 49.4, 66.2, 105.7, 111.5, 116.0, 120.5, 126.4, 127.7, 134.2,
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134.5, 143.2, 145.8, 147.3, 156.9 ppm; MS-ESI m/z: [M + H]+

calcd for C24H29N5O, 404.2; found, 404.4; m/z: [M − H]−

calcd for C24H29N5O, 402.2; found, 402.2; HPLC (method 2):
tR = 4.730 min (100%).
4 - ( 4 - C y c l o p e n t y l - 1 H - i m i d a z o l - 5 - y l ) - N - ( 4 -

morpholinophenyl)pyridin-2-amine (18h). The title com-
pound was synthesized according to general procedure A
starting from compound 17h (100 mg, 0.40 mmol) (for the
synthesis of 17h see Supporting Information) and 4-
morpholinoaniline (107.0 mg, 0.60 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
9:1) afforded 107 mg of the desired compound (69% yield);
1H NMR (300 MHz, DMSO-d6): δ 1.57−1.86 (m, 6H), 1.86−
2.05 (m, 2H), 2.96−3.06 (m, 4H), 3.30−3.50 (m, 1H), 3.69−
3.77 (m, 4H), 6.85−6.93 (m, 3H), 6.96 (s, 1H), 7.49 (d, J =
8.8 Hz, 2H), 7.70 (s, 1H), 8.05 (d, J = 5.4 Hz, 1H), 8.78 ppm
(s, 1H); 13C NMR (101 MHz, DMSO-d6): δ 25.1, 32.9, 36.3,
49.5, 66.2, 106.1, 111.6, 116.0, 120.3, 130.9, 131.5, 134.3,
134.8, 142.7, 145.7, 147.2, 156.8 ppm; MS-ESI m/z: [M + H]+

calcd for C23H27N5O, 390.2; found, 390.0; m/z: [M − H]−

calcd for C23H27N5O, 388.2; found, 387.9; HPLC (method 2):
tR = 4.071 min (99.6%).
4 - ( 4 - C y c l o b u t y l - 1 H - i m i d a z o l - 5 - y l ) - N - ( 4 -

morpholinophenyl)pyridin-2-amine (18i). The title com-
pound was synthesized according to general procedure A
starting from compound 17i (100 mg, 0.43 mmol) (for the
synthesis of 17i see Supporting Information) and 4-
morpholinoaniline (114.0 mg, 0.64 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
90:10) afforded 77 mg of the desired compound (48% yield);
1H NMR (300 MHz, DMSO-d6): δ 1.77−2.04 (m, 2H), 2.08−
2.37 (m, 4H), 2.90−3.11 (m, 4H), 3.70−3.76 (m, 4H), 3.78−
3.93 (m, 1H), 6.67−7.00 (m, 4H), 7.50 (d, J = 8.9 Hz, 2H),
7.59−7.73 (m, 1H), 8.03 (d, J = 5.0 Hz, 1H), 8.62−8.79 (m,
1H), 12.18−12.40 ppm (m, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 7.7, 28.6, 31.1, 49.4, 66.2, 106.0, 111.3, 116.0,
120.7, 128.0, 129.8, 133.7, 134.9, 142.3, 146.1, 146.5, 156.5
ppm; MS-ESI m/z: [M + H]+ calcd for C22H25N5O, 376.2;
found, 376.1; m/z: [M − H]− calcd for C22H25N5O, 374.2;
found, 373.9; HPLC (method 2): tR = 3.480 min (100%).
4 - ( 4 - C y c l o p r o p y l - 1 H - i m i d a z o l - 5 - y l ) - N - ( 4 -

morpholinophenyl)pyridin-2-amine (18j). The title com-
pound was synthesized according to general procedure A
starting from compound 17j (150 mg, 0.68 mmol) (for the
synthesis of 17j see Supporting Information) and 4-
morpholinoaniline (181.8 mg, 1.02 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 100:0 to
80:20) afforded 153 mg of the desired compound (62% yield);
1H NMR (250 MHz, DMSO-d6): δ 0.70−0.81 (m, 2H), 0.91−
1.02 (m, 2H), 2.06 (tt, J = 8.3, 5.2 Hz, 1H), 2.92−3.10 (m,
4H), 3.60−3.84 (m, 4H), 6.88 (d, J = 9.0 Hz, 2H), 7.08 (d, J =
5.1 Hz, 1H), 7.22 (s, 1H), 7.51 (d, J = 8.8 Hz, 2H), 7.55 (s,
1H), 8.05 (d, J = 5.6 Hz, 1H), 8.74 (s, 1H), 12.12 ppm (br s,
1H); 13C NMR (101 MHz, DMSO-d6): δ 7.4, 7.5, 49.5, 66.2,
105.4, 110.9, 116.0, 120.0, 134.1, 134.5, 145.6, 147.2, 156.8
ppm; MS-ESI m/z: [M + H]+ calcd for C21H23N5O, 362.2;
found, 362.6; m/z: [M − H]− calcd for C21H23N5O, 360.2;
found, 360.5; HPLC (method 2): tR = 2.699 min (100%).
4 - ( 4 - ( t e r t - B u t y l ) - 1 H - i m i d a z o l - y - y l ) - N - ( 4 -

morpholinophenyl)pyridin-2-amine (18k). The title com-
pound was synthesized according to general procedure A
starting from compound 17k (100 mg, 0.43 mmol) (for the

synthesis of 17k see Supporting Information) and 4-
morpholinoaniline (115.0 mg, 0.64 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
90:10) afforded 155 mg of the desired compound (96% yield);
1H NMR (300 MHz, DMSO-d6): δ 1.20−1.35 (m, 9H), 3.04
(br s, 4H), 3.74 (br s, 4H), 6.70−6.94 (m, 4H), 7.47−7.52 (m,
2H), 8.14−8.20 (m, 1H), 9.04 (br s, 1H), 9.10 ppm (br s,
1H); 13C NMR (101 MHz, DMSO-d6): δ 29.9, 31.6, 49.3,
66.1, 111.4, 114.9, 116.0, 120.6, 125.6, 133.4, 137.5, 138.7,
147.0, 156.1, 158.3, 158.7 ppm; ESI-MS m/z: [M + H]+ calcd
for C22H27N5O, 378.2; found, 378.3; ESI-MS m/z: [M − H]−

calcd for C22H27N5O, 376.2; found, 376.1; HPLC (method 2):
tR = 2.860 min (100%).

4 - ( 4 - I s o p r o p y l - 1 H - i m i d a z o l - 5 - y l ) - N - ( 4 -
morpholinophenyl)pyridin-2-amine (18l). The title com-
pound was synthesized according to general procedure A
starting from compound 17l (100 mg, 0.45 mmol) (for the
synthesis of 17l see Supporting Information) and 4-
morpholinoaniline (119.4 mg, 0.67 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to
90:10) afforded 124 mg of the desired compound (76% yield);
1H NMR (300 MHz, methanol-d4): δ 1.31 (d, J = 7.0 Hz, 6H),
3.07−3.16 (m, 4H), 3.25−3.45 (m, 1H), 3.80−3.91 (m, 4H),
6.86−6.94 (m, 2H), 6.96−7.03 (m, 2H), 7.30−7.39 (m, 2H),
7.65 (s, 1H), 8.03 ppm (d, J = 6.2 Hz, 1H); 13C NMR (101
MHz DMSO-d6): δ 22.4, 24.6, 49.5, 66.1, 106.2, 111.6, 115.9,
119.8, 131.9, 134.4, 134.5, 134.6, 143.8, 145.5, 147.2, 156.8
ppm; MS-ESI m/z: [M + H]+ calcd for C21H25N5O, 364.2;
found, 364.5; m/z: [M − H]− calcd for C21H25N5O, 362.2;
found, 362.3; HPLC (method 2): tR = 2.492 min (98.6%).

2-Chloro-4-(4-methyl-1H-imidazol-5-yl)pyridine (36).
Compound 3421 (1.0 g, 4.43 mmol) was suspended in glacial
AcOH (10 mL) and subsequently 30% H2O2 (602.7 mg, 17.72
mmol) was added dropwise and the reaction mixture was
stirred at rt for 15 min. After adding H2O, the pH was adjusted
to 8 using K2CO3 saturated solution and the aqueous phase
was extracted five times with EtOAc. The combined organic
layers were dried over anhydrous Na2SO4 and concentrated at
reduced pressure, affording 230 mg of the product which was
used in the following step without further purification (25%
yield); 1H NMR (300 MHz, DMSO-d6): δ 2.47 (s, 3H), 7.62
(dd, J = 5.3, 1.3 Hz, 1H), 7.65 (br s, 1H), 7.69 (s, 1H), 8.33
ppm (d, J = 5.2 Hz, 1H); 13C NMR (101 MHz, DMSO-d6): δ
11.7, 118.8, 119.1, 127.9, 130.5, 134.9, 145.9, 149.8, 150.8
ppm; MS-ESI m/z: [M + H]+ calcd for C9H8ClN3, 194.0;
found, 194.0; m/z: [M − H]− calcd for C9H8ClN3, 192.0;
found, 191.8; HPLC (method 2): tR = 1.375 min.

2-Chloro-4-(4-ethyl-1H-imidazol-5-yl)pyridine (37). Com-
pound 35 (400 mg, 1.67 mmol) (for the synthesis of
compound 35 see Supporting Information) was suspended in
glacial AcOH (10 mL) and subsequently 30% H2O2 (227.2
mg, 6.68 mmol) was added dropwise and the reaction mixture
was stirred at rt for 40 min. The reaction mixture was
concentrated at reduced pressure and after that 20 mL of
K2CO3 saturated solution was added. The aqueous layer was
extracted five times with EtOAc and the combined organic
layers were dried over anhydrous Na2SO4 and concentrated at
reduced pressure, affording 230 mg of the product which was
used in the following step without further purification (71%
yield); 1H NMR (300 MHz, DMSO-d6): δ 1.22 (t, J = 7.4 Hz,
3H), 2.85 (q, J = 7.4 Hz, 2H), 7.58 (d, J = 5.0 Hz, 1H), 7.62 (s,
1H), 7.70 (s, 1H), 8.33 ppm (d, J = 5.1 Hz, 1H); 13C NMR
(101 MHz, DMSO-d6): δ 13.4, 18.8, 119.1, 119.4, 129.7,
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133.8, 135.2, 145.8, 149.9, 150.8 ppm; MS-ESI m/z: [M + H]+

calcd for C10H10ClN3, 208.0; found, 208.1; m/z: [M − H]−

calcd for C10H10ClN3, 206.0; found, 205.9; HPLC (method 2):
tR = 1.653 min.
4-(4-Methyl-1H-imidazol-5-yl)-N-(4-morpholinophenyl)-

pyridin-2-amine (38). The title compound was synthesized
according to general procedure A starting from compound 36
(100 mg, 0.47 mmol). The crude product was purified twice by
flash column chromatography (SiO2, DCM/EtOH 90:10 to
80:20), (SiO2, EtOAc), obtaining 38 mg of the desired
compound (25% yield); 1H NMR (300 MHz, DMSO-d6): δ
2.42 (s, 3H), 2.94−3.09 (m, 4H), 3.63−3.81 (m, 4H), 6.88 (d,
J = 9.0 Hz, 2H), 6.94 (d, J = 5.1 Hz, 1H), 7.07 (s, 1H), 7.51
(d, J = 9.1 Hz, 2H), 7.60 (s, 1H), 8.04 (d, J = 5.4 Hz, 1H),
8.69 (s, 1H), 12.15 ppm (br s, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 11.4, 49.5, 66.2, 105.3, 110.8, 116.0, 119.7,
124.7, 133.0, 133.9, 134.6, 143.6, 145.5, 147.2, 156.8 ppm;
MS-ESI m/z: [M + H]+ calcd for C19H21N5O, 336.2; found,
336.2; m/z: [M − H]− calcd for C19H21N5O, 334.2; found,
334.1; HPLC (method 2): tR = 1.871 min (100%).
4-(4-Ethyl-1H-imidazol-5-yl)-N-(4-morpholinophenyl)-

pyridin-2-amine (39). The title compound was synthesized
according to general procedure A starting from compound 37
(100 mg, 0.48 mmol). The crude product was purified twice by
flash column chromatography (SiO2, DCM/EtOH 90:10 to
80:20), (SiO2, EtOAc), obtaining 110 mg of the desired
compound (65% yield); 1H NMR (300 MHz, DMSO-d6): δ
1.22 (t, J = 7.5 Hz, 3H), 2.70−2.90 (m, 2H), 2.92−3.11 (m,
4H), 3.62−3.85 (m, 4H), 6.80−6.98 (m, 3H), 7.07 (br s, 1H),
7.51 (d, J = 9.0 Hz, 2H), 7.61 (s, 1H), 8.04 (d, J = 5.0 Hz,
1H), 8.70 (br s, 1H), 12.03−12.48 ppm (m, 1H); 13C NMR
(101 MHz, DMSO-d6): δ 13.9, 18.5, 49.5, 66.2, 105.6, 111.0,
116.0, 119.8, 130.6, 132.5, 134.2, 134.6, 143.7, 145.5, 147.3,
156.9 ppm; MS-ESI m/z: [M + H]+ calcd for C20H23N5O,
350.4; found, 350.4; m/z: [M − H]− calcd for C20H23N5O,
348.2; found, 348.2; HPLC (method 2): tR = 1.774 min
(99.4%).
2-Chloro-4-(2-(methylthio)-1H-imidazol-5-yl)pyridine

(40). Under an argon atmosphere, compound 33 (500 mg,
2.36 mmol) (for the synthesis of compound 33 see Supporting
Information) and t-BuONa (454 mg, 4.72 mmol) were
dissolved in dry MeOH (20 mL) and after cooling the
reaction mixture to 0 °C, methyl iodide (147.5 μL, 2.36 mmol)
was added and the reaction mixture was stirred at 0 °C for 30
min. The reaction mixture was then heated to 55 °C and
stirred for 3 h. After cooling to rt, the solvent was evaporated at
reduced pressure and H2O was added. The aqueous phase was
then extracted two times with EtOAc and the combined
organic layers were dried over anhydrous Na2SO4 and
concentrated at reduced pressure. The residue was finally
purified by flash column chromatography (SiO2, DCM/EtOH
100:0 to 90:10) giving 396 mg of the desired compound (74%
yield); 1H NMR (400 MHz, DMSO-d6): δ 2.59 (s, 3H), 7.64−
7.72 (m, 1H), 7.73−7.79 (m, 1H), 8.03 (s, 1H), 8.31 (dd, J =
5.3, 1.8 Hz, 1H), 12.70 ppm (br s, 1H); MS-ESI m/z: [M +
H]+ calcd for C9H8ClN3S, 226.0; found, 225.9; m/z: [M −
H]− calcd for C9H8ClN3S, 224.0; found, 223.9; HPLC
(method 1): tR = 4.096 min.
2-Chloro-4-(4-methyl-2-(methylthio)-1H-imidazol-5-yl)-

pyridine (41). The title compound was prepared as previously
described21 and analytical data were in agreement with the
reported ones.

2-Chloro-4-(4-ethyl-2-(methylthio)-1H-imidazol-5-yl)-
pyridine (42). In a pressure vial, compound 35 (400 mg, 1.67
mmol) (for the synthesis of compound 35 see Supporting
Information) and t-BuONa (160.5 mg, 1.67 mmol) were
dissolved in dry MeOH (15 mL) and after cooling the reaction
mixture to 0 °C, methyl iodide (203 μL, 3.26 mmol) was
added. The vial was tightly closed and the mixture was stirred
at 50 °C for 1 h. The solvent was evaporated at reduced
pressure and the residue was purified by flash column
chromatography (SiO2, DCM/EtOH 99:01 to 95:05),
affording 378 mg of the product (89% yield); 1H NMR (300
MHz, CDCl3): δ 1.32 (t, J = 7.6 Hz, 3H), 2.63 (s, 3H), 2.89
(q, J = 7.6 Hz, 2H), 7.50 (dd, J = 5.3, 1.5 Hz, 1H), 7.64 (br s,
1H), 8.35 ppm (dd, J = 5.3, 0.4 Hz, 1H); 13C NMR (101
MHz, CDCl3): δ 13.5, 16.6, 19.4, 119.3, 120.7, 132.4, 135.1,
141.7, 145.0, 149.4, 151.9 ppm; MS-ESI m/z: [M + H]+ calcd
for C11H12ClN3S, 254.0; found, 254.0; m/z: [M − H]− calcd
for C11H12ClN3S, 252.0; found, 252.0; HPLC (method 2): tR =
3.575 min.

4 - ( 2 - (M e t h y l t h i o ) - 1 H - im i d a z o l - 5 - y l ) - N - ( 4 -
morpholinophenyl)pyridin-2-amine (43). The title com-
pound was synthesized according to general procedure A
starting from 40 (100 mg, 0.44 mmol) and 4-morpholinoani-
line (117.6 mg, 0.66 mmol). Purification by flash column
chromatography (SiO2, DCM/EtOH 100:0 to 90:10) afforded
92 mg of the desired compound (57% yield); 1H NMR (400
MHz, DMSO-d6): δ 2.54−2.62 (m, 3H), 2.92−3.09 (m, 4H),
3.63−3.78 (m, 4H), 6.87 (d, J = 7.8 Hz, 2H), 6.96 (d, J = 4.5
Hz, 1H), 7.17 (br s, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.76 (br s,
1H), 8.00 (d, J = 4.5 Hz, 1H), 8.75 (br s, 1H), 12.34−12.62
ppm (m, 1H); 13C NMR (101 MHz, DMSO-d6): δ 15.3, 49.5,
66.2, 104.1, 109.5, 116.0, 116.8, 119.7, 120.3, 134.6, 139.2,
142.0, 145.4, 147.3, 156.9 ppm; MS−FAB m/z: [M] calcd for
C19H21N5OS, 367.1; found, 367.2; HPLC (method 1): tR =
2.501 min (100%).

4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-N-(4-
morpholinophenyl)pyridin-2-amine (44). The title com-
pound was synthesized according to general procedure A
starting from 41 (100 mg, 0.42 mmol) and 4-morpholinoani-
line (112.3 mg, 0.63 mmol). Purification by flash column
chromatography (SiO2, DCM/EtOH 100:0 to 80:20) afforded
42 mg of the desired compound (26% yield); 1H NMR (400
MHz, DMSO-d6): δ 2.39 (br s, 3H), 2.52−2.60 (m, 3H),
2.93−3.09 (m, 4H), 3.61−3.83 (m, 4H), 6.78−6.94 (m, 3H),
7.06 (br s, 1H), 7.52 (d, J = 7.8 Hz, 2H), 8.03 (d, J = 4.3 Hz,
1H), 8.74 (br s, 1H), 12.27 ppm (br s, 1H); 13C NMR (101
MHz, DMSO-d6): δ 15.4, 25.4, 49.5, 66.2, 105.3, 110.5, 116.0,
119.6, 134.6, 145.4, 147.3, 156.7 ppm; MS−FAB m/z: [M +
H]+ calcd for C20H23N5OS, 382.2; found, 382.3; HPLC
(method 1): tR = 3.024 min (96.4%).

4-(4-Ethyl-2-(methylthio)-1H-imidazol-5-yl)-N-(4-
morpholinophenyl)pyridin-2-amine (45). The title com-
pound was synthesized according to general procedure A
starting from compound 42 (100 mg, 0.39 mmol) and 4-
morpholinoaniline (103.4 mg, 0.58 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 99:01 to
90:10) afforded 51 mg of the desired compound (33% yield);
1H NMR (300 MHz, DMSO-d6): δ 1.21 (t, J = 7.5 Hz, 3H),
2.55 (s, 3H), 2.78 (q, J = 7.4 Hz, 2H), 2.96−3.08 (m, 4H),
3.66−3.81 (m, 4H), 6.69−6.96 (m, 3H), 7.03 (br s, 1H), 7.52
(d, J = 8.8 Hz, 2H), 8.03 (d, J = 5.3 Hz, 1H), 8.67−8.81 (m,
1H), 12.07−12.37 ppm (m, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 13.9, 15.3, 18.7, 49.5, 66.2, 105.5, 110.8, 116.0,
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119.8, 133.2, 134.5, 139.7, 143.0, 145.5, 147.3, 151.6, 156.8
ppm; MS-ESI m/z: [M + H]+ calcd for C21H25N5OS, 396.2;
found, 396.3; m/z: [M − H]− calcd for C21H25N5OS, 394.2;
found, 394.1; HPLC (method 2): tR = 3.499 min (97.0%).
4-(2-Chloropyridin-4-yl)-5-methyl-1H-imidazol-2-amine

(46). Cyanamide (652 mg, 15.52 mmol) was dissolved in
EtOH (30 mL) and after heating at reflux temperature,
compound 31 was added portionwise over 1 h and the mixture
was stirred at the same temperature further for 3 h. After
cooling down, the solvent was evaporated at reduced pressure
and the residue was purified by flash column chromatography
(SiO2, DCM/EtOH/Et3N 95:05:0 to 80:18:2), obtaining 900
mg of the desired product (95% yield); 1H NMR (300 MHz,
DMSO-d6): δ 2.37 (s, 3H), 7.53 (d, J = 4.9 Hz, 1H), 7.62 (br
s, 3H), 8.42 (d, J = 5.1 Hz, 1H), 12.86 ppm (br s, 1H); 13C
NMR (75 MHz, DMSO-d6): δ 10.7, 117.6, 118.9, 119.4, 124.4,
139.2, 147.0, 150.3, 151.1 ppm; MS-ESI m/z: [M + H]+ calcd
for C9H9ClN4, 209.0; found, 208.9; m/z: [M − H]− calcd for
C9H9ClN4, 207.0; found, 206.9; HPLC (method 2): tR = 1.524
min.
4- (2 -Amino-5 -methy l -1H- imidazo l -4 -y l ) -N - (4 -

morpholinophenyl)pyridin-2-amine (47). The title com-
pound was synthesized according to general procedure A
starting from compound 46 (100 mg, 0.48 mmol) and 4-
morpholinoaniline (128.3 mg, 0.72 mmol). Purification by
flash column chromatography (SiO2, DCM/MeOH 99:01 to
90:10) and (SiO2, DCM/MeOH 95:05 to 80:20) afforded 46
mg of the desired compound (27% yield); 1H NMR (300
MHz, DMSO-d6): δ 2.30 (s, 3H), 2.95−3.07 (m, 4H), 3.67−
3.79 (m, 4H), 6.76 (dd, J = 5.4, 1.4 Hz, 1H), 6.83 (s, 1H), 6.89
(d, J = 9.0 Hz, 2H), 7.25 (br s, 2H), 7.50 (d, J = 9.0 Hz, 2H),
8.11 (d, J = 5.4 Hz, 1H), 8.91 (s, 1H), 12.37 ppm (br s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 11.0, 49.9, 66.7, 105.9,
110.6, 116.4, 120.1, 120.6, 122.2, 134.4, 137.5, 146.4, 147.4,
148.4, 157.2 ppm; MS-ESI m/z: [M + H]+ calcd for
C19H22N6O, 351.2; found, 351.1; m/z: [M Z H]− calcd for
C21H25N5OS, 349.2; found, 349.1; HPLC (method 2): tR =
1.876 min (96%).
4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-N-(3-meth-

ylbutan-2-yl)pyridin-2-amine (48a). The title compound was
synthesized according to general procedure E starting from 41
(85 mg, 0.355 mmol) and 3-methylbutan-2-amine. The crude
residue was purified by flash column chromatography (SiO2,
DCM/EtOH 100:0 to 80:20), affording 35 mg of pure product
(34% yield); 1H NMR (400 MHz, DMSO-d6): δ 0.79−0.94
(m, 6H), 1.03 (d, J = 6.6 Hz, 3H), 1.70−1.86 (m, 1H), 2.36
(br s, 3H), 2.54 (br s, 3H), 3.72−3.89 (m, 1H), 6.35 (d, J = 7.1
Hz, 1H), 6.53−6.92 (m, 2H), 7.86 (d, J = 5.3 Hz, 1H), 12.23
ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6): δ 15.4,
16.7, 17.9, 19.2, 32.1, 50.5, 104.1, 108.4, 127.0, 134.5, 139.0,
142.9, 146.5, 158.6 ppm; HPLC (method 1): tR = 3.355 min
(95%).
4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-N-(1-

phenylethyl)pyridin-2-amine (48b). The title compound was
synthesized according to general procedure E starting from 41
(100 mg, 417 mmol) and 1-phenylethan-1-amine. The crude
residue was purified by flash column chromatography (SiO2,
DCM/EtOH 100:0 to 80:20), affording 42 mg of pure product
(31% yield); 1H NMR (400 MHz, CDCl3): δ 1.38−1.55 (m,
3H), 1.96−2.13 (m, 3H), 2.36−2.54 (m, 3H), 4.50−4.69 (m,
1H), 5.50 (br s, 1H), 6.33 (br s, 1H), 6.77 (br s, 1H), 7.08−
7.34 (m, 6H), 7.84−7.98 ppm (m, 1H); 13C NMR (101 MHz,
CDCl3): δ 12.2, 16.8, 24.4, 52.3, 103.5, 110.7, 125.8, 127.0,

128.7, 140.7, 142.5, 144.6, 147.1, 158.0 ppm; HPLC (method
1): tR = 2.748 min (100%).

N-Cyclobutyl-4-(4-methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-amine (48c). The title compound was synthesized
according to general procedure E starting from 41 (150 mg,
0.62 mmol) and cyclobutylamine (48 h). The crude residue
was purified by flash column chromatography (SiO2, DCM/
EtOH 97:03 to 90:10), affording 83 mg of pure product (49%
yield); 1H NMR (300 MHz, DMSO-d6): δ 1.55−1.73 (m,
2H), 1.77−1.95 (m, 2H), 2.19−2.41 (m, 5H), 2.53 (s, 3H),
4.16−4.40 (m, 1H), 6.41−6.77 (m, 3H), 7.84−7.97 (m, 1H),
12.08−12.34 ppm (m, 1H); 13C NMR (101 MHz, DMSO-d6):
δ 11.3, 14.7, 15.5, 30.7, 46.1, 103.3, 109.0, 126.6, 134.5, 138.7,
142.7, 147.5, 158.3 ppm; MS-ESI m/z: [M + H]+ calcd for
C14H18N4S, 275.1; found, 275.0; m/z: [M − H]− calcd for
C14H18N4S, 273.1; found, 273.0; HPLC (method 2): tR =
2.499 min (99%).

N-Cyclopentyl-4-(4-methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-amine (48d). The title compound was synthe-
sized according to general procedure E starting from 41 (100
mg, 0.42 mmol) and cyclopentylamine (120 h). The crude
residue was purified by flash column chromatography (SiO2,
DCM/EtOH 95:05 to 90:10), affording 51 mg of pure product
(42% yield); 1H NMR (400 MHz, DMSO-d6): δ 1.36−1.74
(m, 6H), 1.84−1.98 (m, 2H), 2.37 (s, 3H), 2.54 (s, 3H),
3.99−4.15 (m, 1H), 6.60−7.02 (m, 3H), 7.88 (d, J = 5.6 Hz,
1H), 12.32 ppm (br s, 1H); MS-ESI m/z: [M + H]+ calcd for
C15H20N4S, 289.1; found, 289.0; m/z: [M − H]− calcd for
C15H20N4S, 287.1; found, 287.0; HPLC (method 2): tR =
3.265 min (98%).

N-Cyclohexyl-4-(4-methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-amine (48e). The title compound was synthe-
sized according to general procedure E starting from 41 (100
mg, 0.42 mmol) and cyclohexylamine (72 h). The crude
residue was purified twice by flash column chromatography
(SiO2, DCM/EtOH 97:03 to 90:10) and (SiO2, DCM/EtOH
95:05 to 90:10), affording 35 mg of pure product (27% yield);
1H NMR (400 MHz, DMSO-d6): δ 1.11−1.32 (m, 5H), 1.35
(br s, 1H), 1.52−1.63 (m, 1H), 1.64−1.76 (m, 2H), 1.80−1.96
(m, 2H), 2.35 (br s, 3H), 2.53 (s, 3H), 3.62−3.74 (m, 1H),
6.29 (d, J = 7.6 Hz, 1H), 6.53−6.83 (m, 2H), 7.88 (d, J = 5.3
Hz, 1H), 12.19 ppm (br s, 1H); MS-ESI m/z: [M + H]+ calcd
for C16H22N4S, 303.2; found, 303.1; m/z: [M − H]− calcd for
C16H22N4S, 301.2; found, 301.2; HPLC (method 2): tR =
4.347 min (100%).

4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-N-(tetrahy-
dro-2H-pyran-4-yl)pyridin-2-amine (48f). The title com-
pound was synthesized according to general procedure E
starting from 41 (80 mg, 0.33 mmol) and 4-aminotetrahy-
dropyran (120 h). The crude residue was purified by flash
column chromatography (SiO2, DCM/EtOH 95:05 to 90:10),
affording 30 mg of pure product (30% yield); 1H NMR (400
MHz, DMSO-d6): δ 1.33−1.48 (m, 2H), 1.87 (d, J = 10.6 Hz,
2H), 2.36 (br s, 3H), 2.53 (s, 3H), 3.40−3.45 (m, 2H), 3.76−
3.99 (m, 3H), 6.29−6.86 (m, 3H), 7.90 (d, J = 4.5 Hz, 1H),
12.20 ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6): δ
11.3, 15.4, 32.9, 46.2, 66.0, 104.2, 108.9, 126.6, 134.4, 138.7,
142.6, 147.2, 158.4 ppm; MS-ESI m/z: [M + H]+ calcd for
C15H20N4OS, 305.1; found, 305.0; m/z: [M − H]− calcd for
C15H20N4OS, 303.1; found, 303.1; HPLC (method 2): tR =
1.570 min (96%).

trans-4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-
pyridin-2-yl)amino)cyclohexan-1-ol (48g). The title com-
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pound was synthesized according to general procedure E
starting from 41 (100 mg, 0.42 mmol) and trans-4-amino-
cyclohexanol (484 mg, 4.20 mmol) and adding 2 mL of n-
butanol (120 h). The crude residue was purified by flash
column chromatography (SiO2, DCM/EtOH 92:08 to 80:20),
affording 37 mg of pure product (27% yield); 1H NMR (400
MHz, DMSO-d6): δ 1.10−1.35 (m, 4H), 1.76−2.00 (m, 4H),
2.22−2.42 (m, 3H), 2.52 (s, 3H), 3.41 (br s, 1H), 3.61 (br s,
1H), 4.47−4.70 (m, 1H), 6.14−6.85 (m, 3H), 7.78−8.02 (m,
1H), 12.06−12.36 ppm (m, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 11.3, 15.5, 30.6, 34.1, 48.5, 68.5, 104.1, 108.7,
126.5, 134.5, 138.6, 142.5, 147.3, 158.7 ppm; MS-ESI m/z: [M
+ H]+ calcd for C16H22N4OS, 319.1; found, 319.1; m/z: [M −
H]− calcd for C16H22N4OS, 317.1; found, 317.2; HPLC
(method 2): tR = 1.640 min (98%).
trans-N1-(4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-

pyridin-2-yl)cyclohexane-1,4-diamine (48h). The title com-
pound was synthesized according to general procedure E
starting from 41 (300 mg, 1.25 mmol) and trans-1,4-
diaminocyclohexane (2.8 g, 25 mmol) and adding 2 mL of
n-butanol (72 h). The crude residue was purified by flash
column chromatography (SiO2, DCM/EtOH 95:05 to 90:10),
affording 172 mg of pure product (43% yield); 1H NMR (300
MHz, methanol-d4): δ 1.23−1.42 (m, 4H), 1.85−2.13 (m,
4H), 2.41 (s, 3H), 2.55 (s, 3H), 2.58−2.75 (m, 1H), 3.56−
3.67 (m, 1H), 6.67 (br s, 1H), 6.73 (dd, J = 5.6, 1.5 Hz, 1H),
7.89 ppm (dd, J = 5.6, 0.6 Hz, 1H); 13C NMR (75 MHz,
DMSO-d6): δ 12.6, 15.9, 32.0, 35.5, 49.3, 50.4, 104.4, 109.0,
129.2, 133.0, 139.6, 142.0, 148.0, 159.2 ppm; MS-ESI m/z: [M
+ H]+ calcd for C16H23N5S, 318.2; found, 318.0; m/z: [M −
H]− calcd for C16H23N5S, 316.2; found, 316.1; HPLC (method
2): tR = 1.234 min (100%).
N-(trans-4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-

yl)pyridin-2-yl)amino)cyclohexyl)acetamide (48i). The title
compound was synthesized according to general procedure F
starting from 48h (180 mg, 0.57 mmol) and acetic anhydride
(116 mg, 1.14 mmol). Purification by flash column
chromatography (SiO2, DCM/EtOH 90:10 to 80:20) afforded
74 mg of the desired product (36% yield); 1H NMR (300
MHz, DMSO-d6): δ 1.14−1.35 (m, 4H), 1.74−1.87 (m, 5H),
1.90−2.06 (m, 2H), 2.26−2.41 (m, 3H), 2.53 (s, 3H), 3.43−
3.57 (m, 1H), 3.63 (br s, 1H), 6.21−6.80 (m, 3H), 7.75 (d, J =
7.8 Hz, 1H), 7.84−7.98 (m, 1H), 12.11−12.32 ppm (m, 1H);
13C NMR (101 MHz, DMSO-d6): δ 11.3, 15.4, 22.7, 31.2,
31.4, 47.3, 48.4, 104.2, 108.7, 126.6, 134.4, 138.7, 142.5, 147.1,
158.5, 168.1 ppm; MS-ESI m/z: [M + H]+ calcd for
C18H25N5OS, 360.2; found, 360.1; m/z: [M − H]− calcd for
C18H25N5OS, 358.2; found, 358.1; HPLC (method 2): tR =
1.647 min (99%).
N-(trans-4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-

yl)pyridin-2-yl)amino)cyclohexyl)benzamide (48j). The title
compound was synthesized according to general procedure F
starting from 48h (120 mg, 0.38 mmol) and benzoyl chloride
(80 mg, 0.57 mmol). Purification by flash column chromatog-
raphy (SiO2, DCM/EtOH 90:10 to 80:20) afforded 22 mg of
the desired product (13% yield); 1H NMR (300 MHz, DMSO-
d6): δ 1.20−1.57 (m, 4H), 1.78−2.11 (m, 4H), 2.28−2.43 (m,
3H), 2.54 (s, 3H), 3.60−3.90 (m, 2H), 6.26−6.88 (m, 3H),
7.36−7.58 (m, 3H), 7.75−8.01 (m, 3H), 8.27 (d, J = 7.9 Hz,
1H), 12.04−12.44 ppm (m, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 11.3, 15.4, 31.1, 31.6, 48.1, 48.6, 104.2, 108.7,
126.6, 127.2, 128.1, 130.9, 134.4, 134.8, 138.7, 142.7, 147.0,
158.5, 165.5 ppm; MS-ESI m/z: [M + H]+ calcd for

C23H27N5OS, 422.2; found, 422.0; m/z: [M − H]− calcd for
C23H27N5OS, 420.2; found, 420.0; HPLC (method 2): tR =
4.076 min (97%).

N-(trans-4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-yl)amino)cyclohexyl)cyclohexanecarboxamide
(48k). The title compound was synthesized according to
general procedure F starting from 48h (120 mg, 0.38 mmol)
and cyclohexane carbonyl chloride (83 mg, 0.57 mmol).
Purification by flash column chromatography (SiO2, DCM/
EtOH 95:05 to 80:20) afforded 29 mg of the desired product
(18% yield); 1H NMR (300 MHz, DMSO-d6): δ 1.05−1.43
(m, 9H), 1.54−1.87 (m, 7H), 1.90−2.10 (m, 3H), 2.23−2.42
(m, 3H), 2.53 (s, 3H), 3.45−3.72 (m, 2H), 6.15−6.84 (m,
3H), 7.56 (d, J = 7.6 Hz, 1H), 7.76−8.03 (m, 1H), 12.20 ppm
(br s, 1H); MS-ESI m/z: [M + H]+ calcd for C23H33N5OS,
428.2; found, 428.0; m/z: [M − H]− calcd for C23H33N5OS,
426.2; found, 426.1; HPLC (method 2): tR = 5.391 min
(98%).

N-(trans-4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-
yl)pyridin-2-yl)amino)cyclohexyl)pivalamide (48l). The title
compound was synthesized according to general procedure F
starting from 48h (120 mg, 0.38 mmol) and pivaloyl chloride
(69 mg, 0.57 mmol). Purification by flash column chromatog-
raphy (SiO2, DCM/EtOH 90:10 to 80:20) afforded 29 mg of
the desired product (19% yield); 1H NMR (400 MHz, DMSO-
d6): δ 1.08 (s, 9H), 1.15−1.40 (m, 4H), 1.64−1.77 (m, 2H),
1.92−2.05 (m, 2H), 2.25−2.41 (m, 3H), 2.53 (s, 3H), 3.46−
3.70 (m, 2H), 6.23−6.77 (m, 3H), 7.13 (d, J = 8.1 Hz, 1H),
7.89 (d, J = 4.5 Hz, 1H), 12.04−12.35 ppm (m, 1H); 13C
NMR (101 MHz, DMSO-d6): δ 11.3, 15.5, 27.4, 31.0, 31.6,
37.8, 47.5, 48.6, 104.1, 108.6, 126.6, 134.4, 138.7, 142.6, 147.1,
158.5, 176.5 ppm; MS-ESI m/z: [M + H]+ calcd for
C21H31N5OS, 402.2; found, 402.0; m/z: [M − H]− calcd for
C21H31N5OS, 400.2; found, 400.0; HPLC: tR = 4.114 min
(99%).

N1-(4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)pyridin-
2-yl)benzene-1,4-diamine (48m).21 The title compound was
prepared as previously described21 and analytical data were in
agreement with the reported ones.

N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-
pyridin-2-yl)amino)phenyl)acetamide (48n). The title com-
pound was synthesized according to general procedure F
starting from 48m (100 mg, 0.32 mmol) and acetic anhydride
(49 mg, 0.48 mmol). Purification by flash column chromatog-
raphy (SiO2, DCM/EtOH 97:03 to 90:10) afforded 37 mg of
the desired product (33% yield); 1H NMR (400 MHz, DMSO-
d6): δ 2.01 (s, 3H), 2.28−2.44 (m, 3H), 2.54 (s, 3H), 6.75−
7.04 (m, 1H), 7.10 (s, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.58 (d, J
= 8.8 Hz, 2H), 8.01−8.13 (m, 1H), 8.80−8.98 (m, 1H), 9.78
(s, 1H), 12.19−12.47 ppm (m, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 11.5, 15.6, 23.8, 105.9, 111.1, 118.4, 119.9,
127.3, 132.3, 134.2, 137.6, 139.2, 143.1, 147.3, 156.5, 167.9
ppm; MS-ESI m/z: [M + H]+ calcd for C18H19N5OS, 354.1;
found, 354.1; m/z: [M − H]− calcd for C18H19N5OS, 352.1;
found, 352.2; HPLC (method 2): tR = 2.035 min (98%).

N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-
pyridin-2-yl)amino)phenyl)benzamide (48o). The title com-
pound was synthesized according to general procedure F
starting from 48m (100 mg, 0.32 mmol) and benzoyl chloride
(67 mg, 0.48 mmol). Purification by flash column chromatog-
raphy (SiO2, DCM/EtOH 98:02 to 90:10) afforded 27 mg of
the desired product (33% yield); 1H NMR (400 MHz, DMSO-
d6): δ 2.41 (s, 3H), 2.56 (s, 3H), 6.97 (br s, 1H), 7.14 (br s,
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1H), 7.46−7.73 (m, 7H), 7.90−8.00 (m, 2H), 8.10 (d, J = 5.3
Hz, 1H), 9.01 (s, 1H), 10.12 (s, 1H), 12.29 ppm (br s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 14.2, 15.9, 106.4, 111.5,
118.6, 121.6, 128.0, 128.8, 129.2, 131.4, 131.7, 132.5, 135.6,
138.6, 139.9, 143.7, 147.7, 156.9, 165.5 ppm; MS-ESI m/z: [M
+ H]+ calcd for C23H21N5OS, 416.1; found, 415.7; m/z: [M −
H]− calcd for C23H21N5OS, 414.1; found, 413.7; HPLC
(method 2): tR = 4.357 min (97%).
N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-

pyridin-2-yl)amino)phenyl)cyclohexanecarboxamide (48p).
The title compound was synthesized according to general
procedure F starting from 48m (100 mg, 0.32 mmol) and
cyclohexane carbonyl chloride (70 mg, 0.48 mmol).
Purification by flash column chromatography (SiO2, DCM/
EtOH 97:03 to 90:10) afforded 40 mg of the desired product
(30% yield); 1H NMR (300 MHz, DMSO-d6): δ 1.11−1.50
(m, 5H), 1.56−1.85 (m, 5H), 2.22−2.36 (m, 1H), 2.40 (s,
3H), 2.55 (s, 3H), 6.94 (d, J = 5.0 Hz, 1H), 7.09 (br s, 1H),
7.47 (d, J = 9.0 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H), 8.06 (d, J =
5.4 Hz, 1H), 8.91 (s, 1H), 9.62 (s, 1H), 12.28 ppm (br s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 11.5, 15.4, 25.2, 25.4,
29.2, 44.7, 105.7, 110.9, 118.3, 119.7, 127.1, 132.5, 134.2,
137.3, 139.4, 142.8, 147.2, 156.4, 173.6 ppm; MS-ESI m/z: [M
+ H]+ calcd for C23H27N5OS, 422.2; found, 422.0; m/z: [M −
H]− calcd for C23H27N5OS, 420.2; found, 420.1; HPLC
(method 2): tR = 4.646 min (99%).
N-(4-((4-(4-Methyl-2-(methylthio)-1H-imidazol-5-yl)-

pyridin-2-yl)amino)phenyl)pivalamide (48q). The title com-
pound was synthesized according to general procedure F
starting from 48m (120 mg, 0.39 mmol) and pivaloyl chloride
(70 mg, 0.58 mmol). Purification by flash column chromatog-
raphy (SiO2, DCM/EtOH 97:03 to 90:10) afforded 74 mg of
the desired product (48% yield); 1H NMR (400 MHz, DMSO-
d6): δ 1.22 (s, 9H), 2.41 (s, 3H), 2.55 (s, 3H), 6.96 (d, J = 5.6
Hz, 1H), 7.11 (s, 1H), 7.50 (d, J = 8.8 Hz, 2H), 7.58 (d, J =
8.8 Hz, 2H), 8.07 (d, J = 5.3 Hz, 1H), 9.00 (s, 1H), 9.07 (s,
1H), 12.35 ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6):
δ 11.9, 15.4, 27.3, 38.9, 105.7, 110.9, 118.2, 121.1, 128.8,
132.5, 137.3, 139.5, 142.6, 146.7, 156.2, 175.9 ppm; MS-ESI
m/z: [M + H]+ calcd for C21H25N5OS, 396.2; found, 395.7;
m/z: [M − H]− calcd for C21H25N5OS, 394.2; found, 393.7;
HPLC (method 2): tR = 3.999 min (100%).
2-Chloro-4-(1,5-dimethyl-2-(methylthio)-1H-imidazol-4-

yl)pyridine (49). Under an argon atmosphere, compound 34
(250 mg, 1.11 mmol) and t-BuONa (213 mg, 2.22 mmol)
were dissolved in dry MeOH (10 mL), and after cooling the
reaction mixture to 0 °C, methyl iodide (205 μL, 3.32 mmol)
was added and the reaction mixture was let to heat to rt. The
reaction mixture was then heated to 80 °C and stirred for 3 h.
After cooling to rt, the solvent was evaporated at reduced
pressure and H2O was added. The aqueous phase was then
extracted two times with EtOAc and the combined organic
layers were dried over anhydrous Na2SO4 and concentrated at
reduced pressure. The residue was finally purified by flash
column chromatography (SiO2, DCM/EtOH 100:0 to 90:10)
giving 110 mg of the desired compound (39% yield); 1H NMR
(400 MHz, DMSO-d6): δ 2.44 (s, 3H), 2.54−2.62 (m, 3H),
3.34 (s, 3H), 7.47−7.77 (m, 2H), 8.34 ppm (d, J = 4.5 Hz,
1H); 13C NMR (101 MHz, DMSO-d6): δ 10.5, 15.4, 30.6,
119.1, 119.4, 130.5, 132.4, 142.3, 145.6, 149.8, 150.8 ppm;
HPLC (method 1): tR = 4.812 min.
4-(1,5-Dimethyl-2-(methylthio)-1H-imidazol-4-yl)-N-(4-

morpholinophenyl)pyridin-2-amine (50). Under an argon

atmosphere, tris(dibenzylidenaceton)dipalladium(0)
(Pd2(dba)3) (17.5 mg, 0.02 mmol) and 9,9-dimethyl-4,5-
bis(diphenylphosphino)xanten (Xantphos) (22.1 mg, 0.04
mmol) were dissolved in dry 1,4-dioxane (5 mL) and stirred
for 10 min. After that compound 49 (50 mg, 0.21 mmol),
Cs2CO3 (138.1 mg, 0.42 mmol), and 4-morpholinoaniline
(56.7 mg, 0.32 mmol) were added and the reaction mixture
was heated to 100 °C and stirred for 15 h. After cooling to rt,
the reaction mixture was diluted with DCM and the solid
residue was removed by filtration. The filtrate was then
concentrated at reduced pressure and the residue was purified
by flash column chromatography (DCM/EtOH 100:0 to
90:10) giving 61 mg of the desired product (73% yield); 1H
NMR (400 MHz, DMSO-d6): δ 2.36−2.44 (m, 3H), 2.54 (m,
3H), 2.93−3.05 (m, 4H), 3.45−3.55 (m, 3H), 3.67−3.76 (m,
4H), 6.79−6.96 (m, 3H), 7.07 (s, 1H), 7.54 (d, J = 7.3 Hz,
2H), 8.00−8.09 (m, 1H), 8.76 ppm (br s, 1H); 13C NMR (101
MHz, DMSO-d6): δ 10.5, 15.8, 30.5, 49.5, 66.2, 106.0, 111.0,
115.9, 119.5, 128.4, 134.4, 134.6, 140.9, 142.9, 145.4, 147.2,
156.7 ppm; MS−FAB m/z: [M] calcd for C21H25N5OS, 395.2;
found, 395.3; HPLC (method 1): tR = 3.156 min (98.7%).

5-(2-Chloropyridin-4-yl)-1,4-dimethyl-1,3-dihydro-2H-imi-
dazole-2-thione (51). In a pressure vial, compound 31 (200
mg, 0.77 mmol) (for the synthesis of compound 31 see
Supporting Information) and methyl isothiocyanate (284 mg,
3.88 mmol) were suspended in triethylamine (2 mL), and after
closing the vial tightly, the reaction mixture was stirred at 60
°C for 16 h. The excess of triethylamine was evaporated at
reduced pressure and the residue was suspended in glacial
AcOH and stirred at 80 °C for 1.5 h. The reaction mixture was
concentrated at reduced pressure and after that NaHCO3
saturated solution (20 mL) was added and the aqueous
phase was extracted four times with EtOAc. The combined
organic layers were washed with H2O and NaCl saturated
solution, dried over anhydrous Na2SO4, and concentrated at
reduced pressure. Finally, the residue was purified by flash
column chromatography (SiO2, DCM/EtOH 100:0 to 95:05),
affording 110 mg of the desired product (60% yield); 1H NMR
(300 MHz, DMSO-d6): δ 2.11 (s, 3H), 3.45 (s, 3H), 7.47 (dd,
J = 5.2, 1.4 Hz, 1H), 7.55−7.63 (m, 1H), 8.47 (d, J = 5.1 Hz,
1H), 12.51 ppm (br s, 1H); 13C NMR (75 MHz, DMSO-d6): δ
9.6, 32.4, 122.7, 122.9, 123.3, 124.4, 139.5, 150.2, 150.9, 161.8
ppm; MS-ESI m/z: [M − H]− calcd for C10H10ClN3S, 238.0;
found, 238.0; HPLC (method 2): tR = 2.353 min.

5-(2-Chloropyridin-4-yl)-1-ethyl-4-methyl-1,3-dihydro-
2H-imidazole-2-thione (52). The title compound was
prepared following the same procedure of compound 51
starting from 31 (200 mg, 0.77 mmol) (for the synthesis of
compound 31 see Supporting Information) and ethyl
isothiocyanate (335.5 mg, 3.85 mmol). Purification by flash
column chromatography (SiO2, DCM/EtOH 99:01 to 95:05)
afforded 128 mg of the desired compound (65% yield); 1H
NMR (300 MHz, CDCl3): δ 1.15 (t, J = 6.9 Hz, 3H), 2.14 (s,
3H), 4.04 (q, J = 6.7 Hz, 2H), 7.11 (d, J = 4.5 Hz, 1H), 7.21 (s,
1H), 8.46 (d, J = 4.8 Hz, 1H), 12.32 ppm (br s, 1H); 13C
NMR (101 MHz, CDCl3): δ 9.6, 14.1, 40.3, 122.5, 123.2,
124.2, 124.8, 139.5, 150.4, 152.4, 160.1 ppm; MS-ESI m/z: [M
− H]− calcd for C11H12ClN3S, 252.0; found, 252.0; HPLC
(method 2): tR = 3.168 min.

5-(2-Chloropyridin-4-yl)-1-cyclopropyl-4-methyl-1,3-dihy-
dro-2H-imidazole-2-thione (53). The title compound was
prepared following the same procedure of compound 51
starting from 31 (500 mg, 1.94 mmol) (for the synthesis of
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compound 31 see Supporting Information) and cyclopropyl
isothiocyanate (962.4 mg, 9.70 mmol). Purification by flash
column chromatography (SiO2, DCM/EtOH 100:0 to 95:05)
afforded 335 mg of the desired compound (60% yield); 1H
NMR (300 MHz, DMSO-d6): δ 0.43−0.53 (m, 2H), 0.79−
0.96 (m, 2H), 2.09 (s, 3H), 3.17−3.29 (m, 1H), 7.49 (dd, J =
5.2, 1.4 Hz, 1H), 7.55−7.64 (m, 1H), 8.45 (d, J = 5.2 Hz, 1H),
12.42 ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6): δ 6.5,
9.6, 27.0, 122.5, 122.9, 123.3, 124.4, 139.6, 149.6, 150.4, 163.9
ppm; MS-ESI m/z: [M − H]− calcd for C12H12ClN3S, 264.0;
found, 264.0; HPLC (method 2): tR = 3.057 min.
2-Chloro-4-(1,4-dimethyl-2-(methylthio)-1H-imidazol-5-

yl)pyridine (54). In a pressure vial, compound 51 (285 mg,
1.19 mmol) and t-BuONa (114.3 mg, 1.19 mmol) were
dissolved in dry MeOH (15 mL), and after cooling the
reaction mixture to 0 °C, methyl iodide (217 μL, 3.48 mmol)
was added. The vial was tightly closed and the mixture was
stirred at 50 °C for 30 min. After evaporating the solvent at
reduced pressure, H2O was added and the aqueous phase was
extracted four times with EtOAc. The combined organic layers
were washed with H2O and NaCl saturated solution, dried
over anhydrous Na2SO4, and concentrated at reduced pressure,
giving 290 mg of the product which was used in the following
step without further purification (96% yield); 1H NMR (300
MHz, CDCl3): δ 2.28 (s, 3H), 2.66 (s, 3H), 3.52 (s, 3H), 7.12
(dd, J = 5.2, 1.5 Hz, 1H), 7.22−7.24 (m, 1H), 8.44 ppm (d, J =
5.1 Hz, 1H); 13C NMR (101 MHz, CDCl3): δ 13.7, 15.8, 32.3,
122.0, 123.5, 126.8, 138.5, 141.1, 145.5, 149.9, 152.0 ppm;
MS-ESI m/z: [M + H]+ calcd for C11H12ClN3S, 254.0; found,
254.0; HPLC (method 2): tR = 1.720 min.
2-Chloro-4-(1-ethyl-4-methyl-2-(methylthio)-1H-imida-

zol-5-yl)pyridine (55). The title compound was synthesized
following the same procedure of compound 54 starting from
52 (125 mg, 0.49 mmol), t-BuONa (47 mg, 0.49 mmol), and
methyl iodide (90 μL, 1.44 mmol) giving 120 mg of the
product, which was used in the following step without further
purification (95% yield); 1H NMR (300 MHz, CDCl3): δ 1.13
(t, J = 7.2 Hz, 3H), 2.15 (s, 3H), 2.57 (s, 3H), 3.85 (q, J = 7.2
Hz, 2H), 7.06 (dd, J = 5.1, 1.5 Hz, 1H), 7.13−7.18 (m, 1H),
8.35 ppm (dd, J = 5.1, 0.5 Hz, 1H); 13C NMR (75 MHz,
CDCl3): δ 13.3, 15.5, 15.6, 39.7, 122.0, 123.5, 125.6, 138.3,
141.3, 144.4, 149.7, 151.8 ppm; MS-ESI m/z: [M + H]+ calcd
for C12H14ClN3S, 268.0; found, 268.0; HPLC (method 2): tR =
2.250 min.
2-Chloro-4-(1-cyclopropyl-4-methyl-2-(methylthio)-1H-

imidazol-5-yl)pyridine (56). The title compound was synthe-
sized following the same procedure of compound 54 starting
from 53 (210 mg, 0.74 mmol), t-BuONa (71.4 mg, 0.74
mmol), and methyl iodide (135 μL, 2.16 mmol) giving 200 mg
of the product, which was used in the following step without
further purification (95% yield); 1H NMR (300 MHz, CDCl3):
δ 0.59−0.71 (m, 2H), 0.93−1.03 (m, 2H), 2.27 (s, 3H), 2.67
(s, 3H), 3.03−3.14 (m, 1H), 7.19 (dd, J = 5.2, 1.5 Hz, 1H),
7.27−7.31 (m, 1H), 8.39 ppm (d, J = 5.1 Hz, 1H); 13C NMR
(75 MHz, CDCl3): δ 9.6, 13.9, 14.6, 26.1, 121.7, 123.1, 126.9,
138.1, 141.3, 148.3, 149.3, 151.5 ppm; MS-ESI m/z: [M + H]+

calcd for C13H14ClN3S, 280.1; found, 280.0; HPLC (method
2): tR = 2.763 min.
4-(1,4-Dimethyl-2-(methylthio)-1H-imidazol-5-yl)-N-(4-

morpholinophenyl)pyridin-2-amine (57). In an argon-flushed
pressure tube, compound 54 (100 mg, 0.39 mmol), 4-
morpholinoaniline (105.3 mg, 0.59 mmol), Pd2(dba)3 (36.1
mg, 0.04 mmol), 2-dicyclohexylphosphino-2′,4′,6′-triisopro-

pylbiphenyl (XPhos) (37.18 mg, 0.08 mmol), and Cs2CO3
(770.2 mg, 2.36 mmol) were suspended in dry 1,4-dioxane,
and after closing the vial tightly, the mixture was stirred at 100
°C for 36 h. The solvent was evaporated at reduced pressure
and after that NH4Cl saturated solution was added to the
residue and the aqueous phase was extracted five times with
EtOAc. The combined organic layers were washed twice with
H2O and NaCl saturated solution, dried over anhydrous
Na2SO4, and concentrated at reduced pressure. Finally, the
residue was purified twice by flash column chromatography
(SiO2, DCM/EtOH 95:05 to 90:10) and (SiO2 DCM/EtOH
97:03) giving 30 mg of the desired product (20% yield); 1H
NMR (300 MHz, CDCl3): δ 2.23 (s, 3H), 2.62 (s, 3H), 3.07−
3.23 (m, 4H), 3.46 (s, 3H), 3.83−3.94 (m, 4H), 6.52−6.62
(m, 2H), 6.72 (br s, 1H), 6.92 (d, J = 8.3 Hz, 2H), 7.24 (d, J =
8.4 Hz, 2H), 8.19 ppm (d, J = 5.1 Hz, 1H); 13C NMR (101
MHz, CDCl3): δ 13.7, 15.9, 32.2, 49.6, 66.8, 107.2, 114.1,
116.7, 124.2, 128.4, 131.6, 137.5, 140.4, 144.3, 146.7, 148.5,
157.1 ppm; MS-ESI m/z: [M + H]+ calcd for C21H25N5OS,
396.2; found, 396.5; m/z: [M − H]− calcd for C21H25N5OS,
394.2; found, 394.3; HPLC (method 2): tR = 2.116 min
(99.3%).

4-(1-Ethyl-4-methyl-2-(methylthio)-1H-imidazol-5-yl)-N-
(4-morpholinophenyl)pyridin-2-amine (58). Under an argon
atmosphere, 4-morpholinoaniline (98.8 mg, 0.55 mmol),
Pd2(dba)3 (16.94 mg, 0.02 mmol), XPhos (17.64 mg, 0.04
mmol), and Cs2CO3 (365 mg, 1.12 mmol) were placed and
after that compound 55 (100 mg, 0.37 mmol) previously
dissolved in 5 mL of dry 1,4-dioxane was added and the
reaction mixture was stirred at 100 °C for 18 h. The solvent
was evaporated at reduced pressure and after that NH4Cl
saturated solution was added to the residue and the aqueous
phase was extracted three times with EtOAc. The combined
organic layers were washed with H2O and NaCl saturated
solution, dried over anhydrous Na2SO4, and concentrated at
reduced pressure. Finally, the residue was purified by flash
column chromatography (SiO2, DCM/EtOH 100:0 to 95:05)
giving 30 mg of the desired product (20% yield); 1H NMR
(300 MHz, CDCl3): δ 1.16 (t, J = 7.1 Hz, 3H), 2.20 (s, 3H),
2.63 (s, 3H), 3.05−3.22 (m, 4H), 3.73−3.99 (m, 6H), 6.49−
6.64 (m, 2H), 6.81−7.03 (m, 3H), 7.24 (d, J = 8.7 Hz, 2H),
8.19 ppm (d, J = 5.0 Hz, 1H); 13C NMR (101 MHz, CDCl3):
δ 13.5, 15.8, 16.1, 39.8, 49.8, 66.9, 107.2, 114.6, 116.8, 124.0,
127.9, 132.3, 137.2, 140.3, 143.0, 148.3, 148.4, 157.7 ppm;
MS-ESI m/z: [M + H]+ calcd for C22H27N5OS, 410.2; found,
410.1; m/z: [M − H]− calcd for C22H27N5OS, 408.2; found,
408.1; HPLC (method 2): tR = 2.427 min (98.0%).

4-(1-Cyclopropyl-4-methyl-2-(methylthio)-1H-imidazol-5-
yl)-N-(4-morpholinophenyl)pyridin-2-amine (59). The title
compound was synthesized following the same procedure used
for the preparation of compound 58 starting from 56 (150 mg,
0.53 mmol), 4-morpholinoaniline (141.7 mg, 0.79 mmol),
Pd2(dba)3 (24.7 mg, 0.03 mmol), XPhos (25.2 mg, 0.05
mmol), and Cs2CO3 (524 mg, 1.61 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 100:0 to
95:05) afforded 86 mg of the desired product (40% yield); 1H
NMR (300 MHz, CDCl3): δ 0.63−0.72 (m, 2H), 0.87−0.97
(m, 2H), 2.22 (s, 3H), 2.65 (s, 3H), 2.91−3.02 (m, 1H),
3.09−3.19 (m, 4H), 3.80−3.93 (m, 4H), 6.63 (br s, 1H), 6.66
(d, J = 5.1 Hz, 1H), 6.81 (br s, 1H), 6.91 (d, J = 8.9 Hz, 2H),
7.24 (d, J = 8.9 Hz, 2H), 8.16 ppm (d, J = 5.1 Hz, 1H); 13C
NMR (101 MHz, CDCl3): δ 9.4, 13.8, 14.7, 26.1, 49.7, 66.8,
107.0, 114.3, 116.7, 124.0, 128.6, 132.0, 137.0, 140.7, 146.4,
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147.1, 148.3, 156.9 ppm; MS-ESI m/z: [M + H]+ calcd for
C23H27N5OS, 422.2; found, 422.0; m/z: [M − H]− calcd for
C23H27N5OS, 420.2; found, 420.1; HPLC (method 2): tR =
2.989 min (98.0%).
2-Bromo-4-(1-(4-fluorophenyl)-1H-imidazol-5-yl)pyridine

(64). 2-Bromoisonicotinaldehyde (60, 300 mg, 1.61 mmol), 4-
fluoroaniline (179 mg, 1.61 mmol), and AcOH (160 μL), were
dissolved in EtOH and the reaction mixture was stirred at
reflux temperature for 2 h. After cooling to rt, the solvent was
evaporated at reduced pressure and the residue was
resuspended in a mixture 2:1 of MeOH and 1,2-dimethoxy-
ethane (8 mL) and transferred into a three-neck round-bottom
flask under an argon atmosphere. TOSMIC (471.5 mg, 2.41
mmol) and K2CO3 (445 mg, 3.22 mmol) were added and the
mixture was stirred at reflux temperature for 3 h. The mixture
was cooled at rt and the solvent was evaporated at reduced
pressure. The residue was suspended in DCM and the organic
layer was washed three times with H2O and one time with
NaCl saturated solution. The organic phase was dried over
anhydrous Na2SO4 and evaporated at reduced pressure.
Finally, the residue was purified by flash column chromatog-
raphy (SiO2, DCM to DCM/EtOH 95:05) yielding 360 mg of
the desired compound (70% yield); 1H NMR (400 MHz,
DMSO-d6): δ 7.03 (d, J = 4.3 Hz, 1H), 7.30−7.50 (m, 5H),
7.69 (br s, 1H), 8.08 (br s, 1H), 8.24 ppm (d, J = 4.3 Hz, 1H);
13C NMR (101 MHz, DMSO-d6): δ 116.6 (d, J = 22.7 Hz),
120.5, 124.6, 128.3 (d, J = 8.8 Hz), 128.4, 131.9, 132.1 (d, J =
2.9 Hz), 139.5, 141.7, 142.0, 150.3, 161.8 ppm (d, J = 246.6
Hz); MS-ESI m/z: [M + H]+ calcd for C14H9BrFN3, 318.0;
found, 317.8; HPLC (method 1): tR = 5.51 min.
2-Chloro-4-(1-methyl-1H-imidazol-5-yl)pyridine (65).

Tetrakis(triphenylphosphine)palladium (367 mg, 0,317
mmol) was dissolved in dimethylformamide (DMF) (50
mL) and after that 5-bromo-1-methyl-1H-imidazole (62) (2.04
g, 12.7 mmol), (2-chloropyridin-4-yl)boronic acid (63) (1.0 g,
6.35 mmol), Cs2CO3 (4.13 g, 12.7 mmol), and H2O (228 mg,
12.7 mmol) were added and the reaction mixture was stirred at
60 °C for 24 h. The mixture was poured in H2O and the
aqueous phase was extracted five times with EtOAc. The
combined organic layers were washed with NaCl saturated
solution, dried over anhydrous Na2SO4, and concentrated at
reduced pressure. The residue obtained was purified by flash
column chromatography (SiO2, DCM/EtOH 95:05 to 90:10),
affording 160 mg of the desired product (13% yield); 1H NMR
(250 MHz, CDCl3): δ 3.79 (s, 3H), 7.27 (dd, J = 5.2, 1.6 Hz,
2H), 7.34 (br s, 1H), 7.38 (dd, J = 1.6, 0.6 Hz, 1H), 7.60 (br s,
1H), 8.43 ppm (dd, J = 5.2, 0.6 Hz, 1H); MS-ESI m/z: [M +
H]+ calcd for C9H8BrN3, 194.0; found, 194.0; HPLC (method
2): tR = 1.162 min.
4- (1 - (4 -F luoropheny l ) -1H- imidazo l -5 -y l ) -N- (4 -

morpholinophenyl)pyridin-2-amine (66). Under an argon
atmosphere, compound 64 (200 mg, 0.62 mmol), 4-
morpholinoaniline (134.5 mg, 0.75 mmol), t-BuONa (83.8
mg, 0.87 mmol), Pd2(dba)3 (20 mg, 0.02 mmol), and 2,2′-
bis(difenilfosfino)-1,1′-binaftile (BINAP) (30 mg, 0.02 mmol)
were dissolved in dry toluene (15 mL) and the reaction
mixture was then stirred for 3 h at 80 °C. After removing the
solvent at reduced pressure, the residue was suspended in H2O
and the aqueous phase was extracted with EtOAc. The
combined organic layers were then dried over anhydrous
Na2SO4 and concentrated at reduced pressure. Finally, the
residue was purified by flash column chromatography (DCM/
MeOH 100:0 to 95:05), affording 62 mg of the product (24%

yield); 1H NMR (400 MHz, DMSO-d6): δ 3.01 (s, 4H), 3.73
(s, 4H), 6.41−6.44 (m, 2H), 6.80−6.82 (m, 2H), 7.22−7.24
(m, 2H), 7.37−7.42 (m, 5H), 7.99 (s, 2H), 8.70 ppm (s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 49.3, 66.2, 106.3, 111.8,
115.8, 116.6 (d, J = 22.0 Hz), 127.4 (d, J = 9.0 Hz), 129.9,
132.5, 133.5, 137.3, 140.8, 146.0, 147.9, 156.6, 161.6 ppm (d, J
= 244.0 Hz); FAB−MS m/z: [M] calcd for C24H22FN5O,
415.2; found, 415.3; HPLC (method 1): tR = 5.08 min
(100%).

4-(1-Methyl-1H-imidazol-5-yl)-N-(4-morpholinophenyl)-
pyridin-2-amine (67). The title compound was synthesized
according to general procedure A starting from 65 (140 mg,
0.72 mmol) and 4-morpholinoaniline (192.5 mg, 1.08 mmol).
Purification by flash column chromatography (SiO2, DCM/
EtOH 100:0 to 90:10) afforded 50 mg of the desired
compound (35% yield); 1H NMR (250 MHz, DMSO-d6): δ
2.97−3.07 (m, 4H), 3.69−3.79 (m, 7H), 6.78−6.85 (m, 2H),
6.89 (m, J = 9.0 Hz, 2H), 7.22 (d, J = 1.2 Hz, 1H), 7.52 (m, J =
9.0 Hz, 2H), 7.76 (br s, 1H), 8.11 (d, J = 5.1 Hz, 1H), 8.85
ppm (br s, 1H); 13C NMR (101 MHz, DMSO-d6): δ 32.9,
49.4, 66.2, 106.9, 111.7, 115.9, 119.9, 128.9, 130.7, 134.0,
137.8, 141.1, 145.8, 147.8, 156.8 ppm; MS-ESI m/z: [M + H]+

calcd for C19H21N5O, 336.2; found, 336.3; m/z: [M − H]−

calcd for C19H21N5O, 334.2; found, 334.3; HPLC (method 1):
tR = 2.048 min (100%).

2-Chloro-4-(1H-imidazol-2-yl)pyridine (69). To a solution
of 2-chloroisonicotinonitrile (68) (2.0 g, 14.44 mmol) in
MeOH (8 mL), a 30% solution of NaOMe in MeOH (260 μL,
1.44 mmol) was added and the reaction mixture was stirred at
40 °C for 1 h. After that both 2,2-dimethoxyethan-1-amine
(1.56 mL, 14.44 mmol) and AcOH (1.56 mL, 27.27 mmol)
were added dropwise and the mixture was stirred at reflux
temperature for 30 min. After cooling to rt, the mixture was
diluted with MeOH (8 mL) and then 6 N HCl solution (7.2
mL, 43.2 mmol) was added and the mixture was stirred at
reflux temperature for 18 h. The solvent was evaporated at
reduced pressure and after that a 10% solution of K2CO3 was
added to the residue until reaching pH = 10. The precipitate
obtained was filtered off and washed with H2O, affording 2.01
g of the product which was used for the following step without
further purification (77% yield); 1H NMR (400 MHz, DMSO-
d6): δ 7.30 (br s, 2H), 7.78−7.91 (m, 1H), 7.95 (br s, 1H),
8.36−8.49 (m, 1H), 13.03 ppm (br s, 1H); 13C NMR (101
MHz, DMSO-d6): δ 118.1, 118.6, 124.8, 140.7, 141.9, 150.5,
151.1 ppm; MS-ESI m/z: [M + H]+ calcd for C8H6ClN3,
180.0; found, 179.8; m/z: [M − H]− calcd for C8H6ClN3,
178.0; found, 177.8; HPLC (method 1): tR = 2.346 min.

2-Chloro-4-(1-methyl-1H-imidazol-2-yl)pyridine (70).
Under an argon atmosphere, compound 69 (1.72 g, 9.61
mmol) was dissolved in dry DMF (20 mL) and after cooling
the reaction mixture to 0 °C, NaH (231 mg, 9.61 mmol) was
added and the mixture was stirred at 0 °C for 15 min. After
that methyl iodide (1.61 mL, 25.6 mmol) was added dropwise
and the reaction mixture was let to heat to rt and stirred for 90
min. The mixture was poured in H2O and the aqueous phase
was extracted three times with DCM. The combined organic
layers were dried over anhydrous Na2SO4 and the solvent was
evaporated at reduced pressure. Finally, the residue was treated
with a mixture of n-hexane/EtOAc 40:1 and the solid obtained
was filtered off and dried in vacuo, affording 793 mg of the
product which was used for the following step without further
purification (43% yield); 1H NMR (400 MHz, DMSO-d6): δ
3.82−3.93 (m, 3H), 7.09 (br s, 1H), 7.40 (br s, 1H), 7.71−
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7.78 (m, 1H), 7.80 (br s, 1H), 8.40−8.53 ppm (m, 1H); 13C
NMR (101 MHz, DMSO-d6): δ 34.8, 121.0, 121.6, 125.8,
128.7, 140.9, 142.3, 150.1, 150.8 ppm; MS-ESI m/z: [M + H]+

calcd for C9H8ClN3, 194.0; found, 193.8; HPLC (method 1):
tR = 1.161 min.
4-(1-Methyl-1H-imidazol-2-yl)-N-(4-morpholinophenyl)-

pyridin-2-amine (71). The title compound was synthesized
according to general procedure A starting from 70 (150 mg,
0.77 mmol) and 4-morpholinoaniline (205 mg, 1.15 mmol).
Purification by flash column chromatography (SiO2, DCM/
EtOH 95:05) afforded 100 mg of the desired compound (39%
yield); 1H NMR (400 MHz, DMSO-d6): δ 2.93−3.09 (m,
4H), 3.66−3.77 (m, 4H), 3.81 (s, 3H), 6.90 (d, J = 8.3 Hz,
2H), 6.95−7.04 (m, 2H), 7.09 (s, 1H), 7.31 (s, 1H), 7.52 (d, J
= 8.1 Hz, 2H), 8.15 (d, J = 4.8 Hz, 1H), 8.89 ppm (br s, 1H);
13C NMR (101 MHz, DMSO-d6): δ 34.6, 49.4, 66.1, 107.8,
111.9, 115.9, 120.0, 124.5, 127.9, 133.9, 138.5, 144.3, 145.8,
147.6, 156.7 ppm; FAB−MS m/z: [M] calcd for C19H21N5O,
335.2; found, 335.3; HPLC (method 1): tR = 2.359 min
(100%).
2-Bromo-1-(4-fluorophenyl)-2-(2-fluoropyridin-4-yl)-

ethan-1-one (73).51 Compound 7219 (1.0 g, 4.29 mmol) was
dissolved in 30% HBr in AcOH (6 mL). After cooling the
reaction mixture to 0 °C, Br2 (220 μL, 4.29 mmol) was added
dropwise and the reaction mixture was heated for 6 h at 40 °C.
After evaporating the solvent at reduced pressure, H2O was
added and the pH was adjusted to 8 using NH4OH solution.
The water layer was then extracted three times by DCM and
the combined organic layers were dried over anhydrous
Na2SO4 and concentrated at reduced pressure. Finally, the
residue was purified by flash column chromatography (SiO2, n-
hexane/EtOAc 7:3), affording 1.0 g of the desired compound
(75% yield). Analytical data were in agreement with the
reported ones.51

4-(4-Fluorophenyl)-5-(2-fluoropyridin-4-yl)-N-methylthia-
zol-2-amine (74). Compound 73 (513 mg, 1.64 mmol) and
N-methylthiourea (148 mg, 1.64 mmol) were dissolved in
EtOH and the reaction mixture was stirred at reflux
temperature for 1 h. After cooling to rt, the solvent was
evaporated at reduced pressure and then H2O was added. The
solution was alkalized to pH = 8 and then extracted three times
with DCM. The combined organic layers were dried over
anhydrous Na2SO4, concentrated at reduced pressure, and the
residue was purified by flash column chromatography (SiO2,
DCM/EtOH 95:05), obtaining 495 mg of the desired
compound (99% yield): 1H NMR (250 MHz, DMSO-d6): δ
2.89 (d, J = 4.6 Hz, 3H), 6.77 (br s, 1H), 6.93−7.02 (m, 1H),
7.14−7.29 (m, 2H), 7.40−7.52 (m, 2H), 8.04 (d, J = 5.4 Hz,
1H), 8.10 ppm (q, J = 4.8 Hz, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 30.8, 106.8 (d, J = 39.5 Hz), 114.2 (d, J = 3.7
Hz), 115.4 (d, J = 21.2 Hz), 120.4 (d, J = 3.7 Hz), 130.9 (d, J =
8.1 Hz), 131.4 (d, J = 3.7 Hz), 145.9 (d, J = 8.8 Hz), 147.6 (d,
J = 16.1 Hz), 149.2, 162.0 (d, J = 245.9 Hz), 163.4 (d, J =
234.2 Hz), 168.3 ppm; MS-ESI m/z: [M + H]+ calcd for
C15H11F2N3S, 304.3; found, 304.1; m/z: [M − H]− calcd for
C15H11F2N3S, 302.3; found, 302.1; HPLC (method 2): tR =
7.123 min.
4 - ( 4 - F l u o r o p h e n y l ) - N - m e t h y l - 5 - ( 2 - ( ( 4 -

morpholinophenyl)amino)pyridin-4-yl)thiazol-2-amine (75).
The title compound was synthesized according to general
procedure A starting from 74 (200 mg, 0.66 mmol) and 4-
morpholinoaniline (176.4 mg, 0.99 mmol). Purification by
flash column chromatography (SiO2, DCM/EtOH 97:03 to

90:10) afforded 143 mg of the desired compound (47% yield);
1H NMR (250 MHz, DMSO-d6): δ 2.87 (d, J = 4.9 Hz, 3H),
2.94−3.07 (m, 4H), 3.64−3.82 (m, 4H), 6.37 (dd, J = 5.4, 1.7
Hz, 1H), 6.54 (d, J = 1.0 Hz, 1H), 6.82 (m, J = 9.0 Hz, 2H),
7.12−7.25 (m, 2H), 7.27−7.38 (m, 2H), 7.42−7.55 (m, 2H),
7.85 (q, J = 4.6 Hz, 1H), 7.93 (d, J = 5.4 Hz, 1H), 8.69 ppm (s,
1H); 13C NMR (101 MHz, DMSO-d6): δ 30.7, 49.3, 66.1,
107.6, 112.7, 115.2 (d, J = 21.2 Hz), 115.8, 116.3, 120.0, 130.8
(d, J = 8.1 Hz), 131.8 (d, J = 2.9 Hz), 133.7, 141.0, 145.8,
146.7, 147.8, 156.7, 161.7 (d, J = 244.4 Hz), 167.3 ppm; MS-
ESI m/z: [M + H]+ calcd for C25H24FN5OS, 462.2; found,
462.1; m/z: [M − H]− calcd for C25H24FN5OS, 460.2; found,
460.1; HPLC (method 2): tR = 8.518 min (98.2%).

2-Bromo-1-(2-chloropyridin-4-yl)propan-1-one (76). 1-(2-
Chloropyridin-4-yl)propan-1-one (22) (3.0 g, 17.68 mmol)
was dissolved in a 30% solution of HBr in AcOH (20 mL), and
after cooling the mixture to 0 °C, bromine (900 μL, 17.68
mmol) was added and the reaction mixture was stirred at 45
°C for 2 h and then heated to 75 °C and stirred for additional
2 h. After evaporating the solvent at reduced pressure, H2O
was added and the pH was adjusted to 9 using NH4OH
solution. The aqueous phase was extracted three times with
DCM and the combined organic layers were washed with H2O,
dried over anhydrous Na2SO4, and concentrated at reduced
pressure. Finally, the residue was purified by flash column
chromatography (n-hexane/EtOAc 90:10 to 80:20), affording
2.3 g of the desired product (52% yield); 1H NMR (300 MHz,
CDCl3): δ 1.85 (d, J = 6.6 Hz, 3H), 5.07 (q, J = 6.6 Hz, 1H),
7.64 (dd, J = 5.1, 1.5 Hz, 1H), 7.76 (dd, J = 1.4, 0.7 Hz, 1H),
8.53 ppm (dd, J = 5.1, 0.7 Hz, 1H); 13C NMR (75 MHz,
CDCl3): δ 19.5, 41.2, 120.4, 123.0, 143.2, 150.9, 152.9, 191.2
ppm; MS-ESI m/z: [M + H]+ calcd for C8H7BrClNO, 247.9;
found, 248.0; m/z: [M + MeOH]+ calcd for C8H7BrClNO,
279.9; found, 280.0; HPLC (method 2): tR = 5.761 min.

4-(2-Chloropyridin-4-yl)-N,5-dimethylthiazol-2-amine
(77). Compound 76 (1.0 g, 4.0 mmol) and N-methylthiourea
(362.7 mg, 4.0 mmol) were dissolved in EtOH (20 mL) and
the reaction mixture was stirred at reflux temperature for 1 h.
The solvent was evaporated at reduced pressure and after that
the residue was suspended in H2O and the pH was adjusted to
8 using NH4OH solution. The resulting suspension was
extracted three times with DCM and the combined organic
layers were washed with H2O and NaCl saturated solution,
dried over anhydrous Na2SO4, and concentrated at reduced
pressure. Finally, the residue was purified by flash column
chromatography (SiO2, DCM/EtOH 95:05) giving 510 mg of
the desired product (53% yield); 1H NMR (250 MHz, DMSO-
d6): δ 2.43 (s, 3H), 2.83 (d, J = 4.9 Hz, 3H), 7.47 (q, J = 4.9
Hz, 1H), 7.61 (dd, J = 5.1, 1.5 Hz, 1H), 7.64−7.66 (m, 1H),
8.40 ppm (dd, J = 5.1, 0.7 Hz, 1H); 13C NMR (101 MHz,
DMSO-d6): δ 12.2, 30.5, 120.4, 121.2, 121.8, 141.0, 145.7,
149.8, 150.6, 165.5 ppm; MS-ESI m/z: [M + H]+ calcd, for
C10H10ClN3S, 240.0; found, 239.9; HPLC (method 2): tR =
9.091 min.

N,5-Dimethyl-4-(2-((4-morpholinophenyl)amino)pyridin-
4-yl)thiazol-2-amine (78). The title compound was synthe-
sized according to general procedure A starting from 77 (150
mg, 0.62 mmol) and 4-morpholinoaniline (165.8 mg, 0.93
mmol). Purification by flash column chromatography (SiO2,
DCM/EtOH 95:05) afforded 42 mg of the desired compound
(17% yield); 1H NMR (250 MHz, DMSO-d6): δ 2.40 (s, 3H),
2.82 (d, J = 4.9 Hz, 3H), 2.95−3.07 (m, 4H), 3.67−3.80 (m,
4H), 6.81−6.93 (m, 3H), 7.01 (br s, 1H), 7.34 (q, J = 4.6 Hz,
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1H), 7.46−7.58 (m, 2H), 8.07 (d, J = 5.4 Hz, 1H), 8.78 ppm
(s, 1H); 13C NMR (101 MHz, DMSO-d6): δ 12.3, 30.6, 49.5,
66.2, 108.2, 112.6, 115.9, 117.3, 119.7, 134.4, 143.3, 143.3,
145.5, 147.2, 156.6, 165.4 ppm; MS-ESI m/z: [M + H]+ calcd
for C20H23N5OS, 382.2; found, 382.2; m/z: [M − H]− calcd
for C20H23N5OS, 380.2; found, 380.2; HPLC (method 2): tR =
5.343 (99.4%).
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Sievers-Engler, A.; Lange, A.; Boeckler, F. M.; Lam̈merhofer, M.;
Koch, P.; Laufer, S. A. Tri- and Tetrasubstituted Pyridinylimidazoles
as Covalent Inhibitors of c-Jun N-Terminal Kinase 3. J. Med. Chem.
2017, 60, 594−607.
(22) Marckwald, W. Ein Beitrag zur Kenntniss der Imidazole und
der Constitution des Glyoxalins. Ber. Dtsch. Chem. Ges. 1892, 25,
2354−2373.
(23) Laufer, S. A.; Wagner, G. K.; Kotschenreuther, D. A.; Albrecht,
W. Novel substituted pyridinyl imidazoles as potent anticytokine
agents with low activity against hepatic cytochrome P450 enzymes. J.
Med. Chem. 2003, 46, 3230−3244.
(24) Koch, P.; Laufer, S. Unexpected Reaction of 2-Alkylsulfanyli-
midazoles to Imidazol-2-ones: Pyridinylimidazol-2-ones as Novel
Potent p38α Mitogen-Activated Protein Kinase Inhibitors. J. Med.
Chem. 2010, 53, 4798−4802.
(25) Radzisewski, B. Ueber Glyoxalin und seine Homologe. Ber.
Dtsch. Chem. Ges. 1882, 15, 2706−2708.
(26) Neber, P. W.; Friedolsheim, A. V. Über eine neue Art der
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