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Zusammenfassung

Die vorliegende Dissertation behandelt die Dynamik von Vielteilchen-Quantensyste-
men wechselwirkender Bosonen fiir groffe Teilchenzahlen N. Im ersten Teil wird eine
effektive Beschreibung der N-Teilchen-Zeitentwicklung effektiv niedrigdimensionaler
Bosegase hergeleitet. Im zweiten Teil konstruieren wir eine beliebig gute Approxima-
tion an die Dynamik schwach wechselwirkender Bosonen.

Der erste Teil der Dissertation beschéftigt sich mit der Dynamik N wechselwirkender
Bosonen in einer zigarren- oder scheibenformigen externen Falle, die die Bewegung der
Bosonen in zwei Dimensionen bzw. einer Dimension auf ein Gebiet der Groflenordnung
¢ einschréankt. Im gleichzeitigen Limes (N,e) — (00,0) verhélt sich das Gas effektiv
d-dimensional, wobei d = 1 der zigarrenférmigen und d = 2 der scheibenférmigen
Anordnung entspricht.

Die Wechselwirkung zwischen den Bosonen wird als nichtnegativ und beschrankt
angenommen. Da das Gas auf einer Langenskala der Ordnung 1 beschrieben wer-
den soll, betrachten wir ein entsprechend skaliertes Wechselwirkungspotential mit
Streulinge der Ordnung (N/e3~4)~!. Die Reichweite der Wechselwirkung wird propor-
tional zu (N/e3~9)=8 gewihlt, wobei der Skalierungsparameter 3 die Werte 8 € (0, 1]
annehmen kann. Die Wahl § = 1 entspricht der physikalisch relevanten Gross—
Pitaevskii-Skalierung.

Unter der Annahme, dass das System anfangs als Bose—FEinstein-Kondensat vor-
liegt, zeigen wir, dass die N-Teilchen Dynamik im Limes (NV,e) — (00,0) den Zus-
tand der Kondensation erhélt. Die zeitentwickelte Wellenfunktion ist Losung einer
d-dimensionalen nichtlinearen Gleichung, wobei die Stérke der Nichtlinearitdt von
B abhéangt. Fiir 5 € (0,1) erhalten wir eine kubisch-defokussierende nichtlineare
Schrédingergleichung, wahrend 8 = 1 einer Gross—Pitaevskii-Gleichung entspricht,
die explizit die Streuldnge der Wechselwirkung enthélt. In beiden Féllen hangt die
Kopplungskonstante iiber einen multiplikativen Faktor von der zigarren- bzw. schei-
benférmigen Falle ab.

Der zweiten Teil der Arbeit behandelt die Dynamik N d-dimensionaler Bosonen, die
iiber Paarpotentiale miteinander wechselwirken. Insbesondere betrachten wir Wech-
selwirkungen der Form (N — 1)"'N%y(NP.) fiir Skalierungsparameter 3 € [0, 1),
was die Situation vieler schwacher Wechselwirkungen modelliert. Das unskalierte Po-
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tential v wird als beschriankt angenommen, wobei keine Vereinbarung beziiglich des
Vorzeichens von v getroffen wird.

Die betrachteten Systeme sollen anfangs Bose—Einstein-Kondensation aufweisen,
wobei die Anzahl der Anregungen aus dem Kondensat im Anfangszustand als ausrei-
chend gering gefordert wird. Unter dieser Annahme konstruieren wir eine Folge von N-
Teilchen-Funktionen, die die wahre Vielteilchendynamik beziiglich der L?(R%)-Norm
mit beliebiger Genauigkeit beziiglich Potenzen von N~! annihern. Die approximieren-
den Funktionen werden als endliche Duhamel-Entwicklungen einer erstquantisierten
Bogoliubov-Zeitentwicklung konstruiert. Ein Zwischenresultat bilden Abschéatzungen
aller endlichen Momente der Anregungsanzahl in der zeitentwickelten Wellenfunktion.

vi



Summary

In this thesis, we study the dynamics of quantum many-body systems of interacting
bosons for large particle numbers N. We derive an effective description of the N-body
time evolution of quasi-low-dimensional Bose gases and construct an approximation

to any order of the dynamics of weakly interacting bosons.

The first part of the thesis is concerned with the dynamics of N interacting bosons in
a cigar-shaped or disc-shaped trap, which confines the bosons in two dimensions or one
dimension, respectively, to a region of order € in each direction. In the simultaneous
limit (N,e) — (00,0), the gas becomes quasi d-dimensional, where d = 1 for the
cigar-shaped and d = 2 for the disc-shaped confinement.

The interaction between the bosons is assumed non-negative and bounded. To
describe the gas on a length scale of order one, the interaction is scaled such that its
scattering length is of order (N/e3~%)~!, while its range is proportional to (N/e3~4)=5
with scaling parameter 5 € (0,1]. The choice 8 = 1 corresponds to the physically
relevant Gross—Pitaevskii scaling regime.

Under the assumption that the system initially exhibits Bose-Einstein condensa-
tion, we show that the N-body dynamics preserve condensation in the simultaneous
limit (N,e) — (00,0). The time-evolved condensate wave function is the solution of
a d-dimensional non-linear equation, where the strength of the non-linearity depends
on the scaling parameter 5. For g € (0,1), we obtain a cubic defocusing non-linear
Schrédinger equation, while the choice f = 1 yields a Gross—Pitaevskii equation fea-
turing the scattering length of the interaction. In both cases, the coupling parameter
depends on the confining potential.

In the second part of the thesis, we consider the dynamics of N d-dimensional bosons,
which interact with each other via a pair potential in the mean-field scaling regime.
More precisely, we study interactions of the form (N —1)"!N%y(NP.) for 8 € [0, 1),
which corresponds to the situation of many weak interactions. While we require the
unscaled potential v to be bounded, no assumption on the sign of v is made.

We assume that the system initially exhibits Bose-Einstein condensation with suf-
ficiently few excitations from the condensate. We derive a sequence of N-body wave
functions which approximate the true many-body dynamics in L?(R*Y)-norm to ar-
bitrary precision in powers of N~!. The approximating functions are constructed as

vii
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Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoli-
ubov time evolution. As an intermediate result, we prove estimates for finite moments
of the number of excitations in the time-evolved wave function.

viii



Acknowledgements

First of all, I thank Stefan Teufel for being a great advisor in every sense. Thank
you for all your time and patience, for outstanding support and encouragement, for
mathematical help and clarity and physical insight. I will miss our discussions at your
blackboard.

I am very grateful to Peter Pickl for being the second advisor of my thesis. Thank
you for your extraordinary hospitality in Kunshan and for sharing your brilliant ideas.

Moreover, I thank Detlef Diirr for constant support and advice over all the years
and for teaching the importance of getting things clear.

Special thanks go to Serena Cenatiempo for hosting me at GSSI and taking so much
of your time explaining your work, and for being a referee for this thesis.

I am grateful to Natasa Pavlovié, Peter Pickl and Avy Soffer for our collaboration, to
Maximilian Jeblick and Nikolai Leopold for many explanations about Gross—Pitaevskii,
and to Soren Petrat for long discussions about Bogoliubov theory.

I thank Roman Bause for always providing the (experimental) physics point of view,
and Felix Reihl for graphical support and much more.

Finally, huge thanks are due to my family and friends for your support during all
the time, and to the whole Mathematical Physics group in Tiibingen, who made it a
really great time.

ix






List of publications

a) Accepted publications
1. Derivation of the 1d nonlinear Schrédinger equation from the 3d
quantum many-body dynamics of strongly confined bosons
Lea Bofimann
Published in Journal of Mathematical Physics 60, 031902 (2019).
Cited in the following as [32] and included in Appendix A.1.

2. Derivation of the 1d Gross—Pitaevskii equation from the 3d quan-
tum many-body dynamics of strongly confined bosons
Lea Bofimann and Stefan Teufel
Published in Annales Henri Poincaré 20 (2019), 1003-10049.
Cited in the following as [35] and included in Appendix A.2.

b) Submitted manuscripts (available as preprints)

1. Derivation of the 2d Gross—Pitaevskii equation for strongly con-
fined 3d bosons
Lea Bofimann
Preprint, arXiv:1907.04547.
Cited in the following as [33] and included in Appendix B.1.

2. Higher order corrections to the mean-field description of the dy-
namics of interacting bosons
Lea BoBimann, Nataga Pavlovié¢, Peter Pickl, and Avy Soffer
Preprint, arXiv:1905.06164.
Cited in the following as [34] and included in Appendix B.2.

xi






Personal contribution

In all articles, the authors are ordered alphabetically.

a) Accepted publications

1. I am the single author of the article [32]. Stefan Teufel provided much
helpful advice and feedback and was involved in the closely related joint
project [35]. Fruitful discussions with Maximilian Jeblick, Nikolai Leopold,
Peter Pickl and Christof Sparber are gratefully acknowledged.

Scientific ideas: 95%. Paper writing: 100%.

2. The project [35] was realised in close collaboration with Stefan Teufel. The
proof of Lemma 4.9a-c is mainly due to Stefan Teufel, while I provided most
of the proof of Lemma 4.12. We thank Serena Cenatiempo, Maximilian
Jeblick, Nikolai Leopold and Peter Pickl for helpful discussions.

Scientific ideas: 45%. Paper writing: 50%.

b) Submitted manuscripts

1. T am the single author of the article [33]. Many ideas for the proof and the
presentation of the material originate from the joint project with Stefan
Teufel in [35]. T am thankful for helpful discussions with Serena Cenatiempo
and Nikolai Leopold.

Scientific ideas: 95%. Paper writing: 100%.

2. The original idea for the article [34] is due to Natasa Pavlovié¢, Peter Pickl
and Avy Soffer, who proved Theorem 1 for § = 0 and a = 3, including
the proof of Lemma 2.6 for § = 0. During my stay with Peter Pickl at
Duke Kunshan University, I generalised this to larger values of 3, which
in particular requires Proposition 2.4. The proof of this proposition is due
to Peter Pickl and me, where Peter Pickl provided the idea to follow the
strategy from [146] and I did the technical estimates. I observed that for
B > 0, assumption A3 can be relaxed to parameters v < 1, and generalised
Theorem 1 to arbitrary @ € N. The main part of the technical estimates

xiii



Contents

Xiv

and the introduction was written by me, while the review of the literature
was mostly contributed by Nata3a Pavlovié¢. Helpful discussion with Stefan
Teufel, Soren Petrat and Marcello Porta are gratefully acknowledged.

Scientific ideas: 25%. Paper writing: 50%.



Conventions and notation

e We use units where i = 1. Besides, except for Section 1.1, the particles are
assumed to have mass m = %

e The n-fold symmetric product of a one-body Hilbert space $ = L?(Q) for some
Q c R? is denoted as .
91 =9

sym

In particular, L2 (R") denotes the symmetric subspace of L?(R™Y).

e We use capital letters to denote the interaction W, its scattering length A, and
the length scale L of a system without specifying a frame of reference. In the
coordinates where L = 1 is chosen as length unit, the interaction is denoted as
wy with scattering length ay.

e An expression C that is independent of the number of particles N and the time
t is referred to as a constant. Additionally, in Sections 1.3.3 and 3.1, constants
must be independent of the width ¢ of the confinement.

e We use the notations A < B, A 2 B and A ~ B to indicate that there exists a
constant C' > 0 such that A < CB, A > CB or A = CB, respectively.

e The scalar product, norm and operator norm of the N-body Hilbert space are
denoted as

() = (, '>L2(RdN)a [ := ||‘||L2(RdN) and  |[|[|op = H'||L(L2(RdN))>
where d denotes the spatial dimension. For most of the thesis, we consider d = 3.
e The set of all permutations of n elements is denoted as &,,.

e The symbol = denotes the weighted many-body operators from Definition 1.4.1.
The only exceptions are Sections 1.2.5, 1.5.1 and 1.5.2, where - denotes the
Fourier transform.

e In Section 3.2, we write z* and z~ to denote (z + o) and (z — o) for any
fixed ¢ > 0, which is to be understood in the following sense: Let the sequence
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(Nnyen)nen — (00,0). Then

f(N,e) SN & VYo>0, f(Ny,en) SN, for sufficiently large n,
f(N,e)Se® & Vo>0, f(Np,en) Ser for sufficiently large n,
f(N,e) Spu® & Vo>0, f(Np,en) <

—0

) < per 9 for sufficiently large n.

These statements concern fixed o in the limit (V,e) — (00,0) and do in general
not hold uniformly as ¢ — 0.

e The decomposition of a function into its negative and positive part is denoted
as f = fi — f— with sign convention f, f_ > 0.

e We denote |r| :=max{z€Z: z<r}and [r|:=min{z€Z: z>r} forr e R.

In the single papers included in the appendix, the notation may vary and is indicated
in each paper separately.
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1. Introduction

Macroscopic physical systems are usually extremely complex since they contain a huge
number of constituents, whose motion is entangled as the result of interactions. An
explicit analytical description of the dynamics of such systems is practically impossi-
ble, and in many cases also a numerical solution is far beyond computational reach.
Moreover, even if it was feasible to explicitly predict the behaviour of each individual
constituent, this vast amount of information would not be very helpful for the un-
derstanding of the dynamics of the system as a whole. Much better suited for this
purpose is an appropriately coarse-grained approximation, which focuses on relatively
few collective degrees of freedom and monitors their time evolution. Such laws of mo-
tion are referred to as effective descriptions, and it is at the heart of statistical physics
to derive them from an underlying fundamental theory.

Since the groundbreaking works of Boltzmann and Maxwell dating back to the
19th century, effective models have many times been successful in the description
and prediction of physical phenomena. Most notably, the laws of thermodynamics
determine the evolution of macroscopic variables such as the temperature, pressure or
volume of an ideal gas consisting of many non-interacting particles, whose individual
motion is governed by Newton’s laws of classical mechanics. Another famous example
is the Boltzmann equation describing a gas of small interacting spheres, or the Vlasov
equation, which is applied to analyse the dynamics of stellar matter. Effective theories
arising from quantum mechanics are for example Hartree—Fock theory for fermions,
and the Hartree and Gross—Pitaevskii equation for the dynamics of interacting bosons.

By its very nature, an effective description is an approximation, and as such needs
to be justified from the full many-body theory with mathematical rigour. This means
that the solution of the microscopic evolution equation and the solution of the effective
equation should coincide in a suitable limit and with respect to an appropriately chosen
topology. Moreover, to judge the viability of the approximation, it is desirable to
quantify the approximation error in terms of the parameters of the model, such as the
number of particles, the size of the system, or the initial conditions.

This thesis contributes to the mathematically rigorous derivation of effective dy-
namics for systems of indistinguishable, interacting bosons. Macroscopic Bose gases
in current experiments contain at least N ~ 106 particles, whose individual motion is



1. Introduction

determined by the N-body Schréodinger equation
g () = Hv(eV (@), V() = v € LARY). (1.1)

Here, Li (R3N) denotes the symmetric subspace of the Hilbert space L?(R3V), whose
elements are square integrable and symmetric under the exchange of any two coordi-
nates, i.e.,

@bN(azl,...,xj,...,a:k,...,xN) = 1/}N(z1,...,xk,...,xj,...,xN) for j,ke{l,....,N}.

We use the normalisation convention % || r2wsyy = 1. The N-body Hamiltonian is
given as

N

HN(t) = Z (_QinAj + VeXt<t,.%'j)> + Z wint(aci — xj) , (1.2)

=1 1<i<j<N

where A denotes the Laplace operator acting on the jth particle with mass m, Ve
is an external trapping potential, and w™ describes the interaction between any two
particles.

Since we study very dilute gases, we neglect all interactions involving three or more
particles. Besides, we analyse the behaviour of the bosons at very low temperatures,
where their de Broglie wavelength is sufficiently large that microscopic details of the
scattering potential cannot be resolved. Hence, we simply assume w'™ to be spherically
symmetric, i.e., to depend only on the distance between two particles. Due to the
presence of the interaction w'™, solving (1.1) means to solve a differential equation in
N variables, which makes /" () practically inaccessible for any further analysis.

At extremely low temperatures, Bose gases display the fascinating phenomenon of
Bose-Einstein condensation, experimentally first realised in 1995. In this exceptional
state of matter, almost all particles occupy approximately the same quantum state.
The N-body wave function is therefore close to an N-fold product of a single wave
function ¢(t) depending on only one spatial variable, i.e.,

N () ~ ()N (1.3)

Due to the interactions, this is no exact equality but holds asymptotically as N — oo,
with respect to an appropriately chosen measure of distance. Since the great majority
of particles condenses into a cloud, where, roughly speaking, all particles behave as
one, the dynamics ¢(t) provide an effective description of the dynamics of the gas
as a whole. Due to the inter-particle interactions, the equation of motion for ¢(t) is
non-linear.



1.1. Ideal Bose gas

The first three projects of this thesis [32, 35, 33] concern the derivation of this
effective evolution equation for a very particular setup: we consider the case where
Ve in (1.2) confines the particles in one [33] or two [32, 35] spatial dimensions to a
region of order ¢ in each direction. In the simultaneous limit N — co and € — 0, we
derive a low-dimensional, non-linear equation determining the evolution of ¢(t). The
results of these projects are presented in Section 3.1.

While the overwhelming majority of particles in a Bose—Einstein condensate is ap-
proximately in the state ¢(t), relatively few bosons may be in a different state, forming
excitations from the condensate. Hence, approximating the N-body dynamics by ()
means ignoring these excitations. To obtain a more accurate but still simplifying
description of the system, one must additionally account for the dynamics of the exci-
tations. These dynamics can be described by an effective theory, the so-called Bogoli-
ubov approximation. Combining the evolution of the condensate with the dynamics of
the excitations, one obtains an effective N-body wave function that approximates the
actual dynamics ¢ () with respect to the L?-norm of the N-body Hilbert space. In
the last project of this thesis [34], which is discussed in Section 3.2, we derive higher
order corrections to this description.

In the remainder of the introduction, we review the mathematical and physical
notions and results that form the foundation for the results obtained in this thesis.
Chapter 2 summarises the objectives of the thesis, while the results are presented and
discussed in Chapter 3.

1.1. Ideal Bose gas

In this section, we recall the concept of Bose—Einstein condensation for an ideal gas.
Herein, we mainly follow [110, §62], [145, Chapter 2] and [153, Chapters 3 and 10].

Let us consider a d-dimensional ideal Bose gas of N indistinguishable, non-rela-
tivistic, spinless bosons with mass m in thermodynamic equilibrium. The dynamics
YN (t) of the N-body wave function are determined by the Hamiltonian H'9 which
decomposes into a sum of one-body Hamiltonians h,

N
. 1
Hldeal _ 2 :hj , h = — A + pext ,
o 2m

where A is the d-dimensional Laplace operator and h; denotes h acting on the j’th co-
ordinate. Consequently, the N-body eigenfunctions of H4¢?! are symmetrised products
of eigenfunctions of h. At temperature T = (kp3)~!, where kp denotes Boltzmann’s
constant, the mean occupation number n; of the single-particle state j with energy e;
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is determined by the Bose distribution function,

1
j>0. (1.4)

n] - eﬁ(q_ﬂ) —1 ’ -

The chemical potential satisfies ;1 < €y and is implicitly determined by the condition

1 1
320 Jj=0 Jj=1

Here, Ny counts the particles occupying the ground state, while all particles in excited
states contribute to Nex. To calculate the thermodynamic properties of the system
for large NV, one usually replaces sums over states by integrals over a density of states

g(e), i
o) = 1419 . e,

where G(e) is the total number of states with energy less than e. Naturally, this

quantity depends on the dimension as well as on the external trapping potential,
resulting in different values for the real-valued parameters o and C,. A free particle
in d dimensions in a volume V', whose dispersion relation is |p|(¢) = v/2me, yields

_ Vvd(\/ 2me)

G =
() (2m)d 7
where V;(R) = % is the volume of the d-dimensional ball with radius R. Hence,
d
d (m 2y
d
€) = Cyoe2 ", Cypg = 2221 )
g(e) d/2 d/2 F(% 1)
which corresponds to @ = g. If Ve is a d-dimensional harmonic potential with
frequencies w;, i = 1, ..., d, this yields
g(e) = 6d6d71 603 = 1
’ (d— 1wy wg’

corresponding to a = d.

For sufficiently large IV, we may approximate €y /= 0, which implies u < 0. Making
use of the density of states, we replace the sum defining Ney in (1.5) by the corre-
sponding integral. Substituting x = B¢, we obtain

s l.afl
— —Q
ch = /3 Ca/dxex_ﬁﬂ—l’ (16)
0
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which is increasing as p 17 0. For a > 1, the integral corresponding to u = 0 converges

and yields
i a—1
—a £ —a
Now£57°Cs [deZ— = proCal(a)(a), (17)
0

where ((a) = Y 7, n~* is the Riemann zeta function. Since (1.7) is finite and in
particular N-independent, the total particle number exceeds this value for sufficiently
large N, which implies that all excess particles must occupy the ground state and
thus contribute to Ng. This macroscopic occupation of a single one-body state —
macroscopic in the sense that the fraction of particles in this state does not vanish
in the limit N — oo — is called Bose-Einstein condensation (BEC). Its theoretical
existence was discovered in 1924 by Einstein [60, 61], building on a work by Bose [31].

Let us remark that it is only justified to replace the sum in (1.5) by an integral
because we exclude the first term 7 = 0 in the sum from this replacement and treat
it separately. The reason is that ng diverges in the limit u — 0, whereas all higher
terms of the sum converge to a finite value. In the integral (1.7), the density of states
g(€) ~ €2~! makes the integrand behave as 2“2 for # — 0, which diverges for o < 1.
Hence, for a@ > 1, the contribution of infinitesimal = is not appropriately accounted
for in the integration.

For a > 1, BEC occurs below a critical transition temperature T;, which is deter-
mined by the condition

N = Nex(Te,p=10) = B *Col'(a)¢()

as

Bt = kol = <cr<N>c<>>

For temperatures T' < T, the number of particles in the condensate is given by
T o
No=N|[1—| = .
° [ (Tc’) }

In conclusion, BEC at positive temperature occurs in systems whose density of
states g(e) is characterised by a parameter o > 1. The most renowned examples are
the spatially homogeneous 3d Bose gas (o = %) and the 3d gas in a harmonic trap
( = 3). In low dimensions, the situation changes: whereas the homogeneous 2d
Bose gas does not exhibit BEC at T" > 0, the phenomenon occurs for 2d bosons in
harmonic traps (o = 2). In case of the ideal 1d Bose gas, not even a harmonic trap

suffices for BEC, but one requires a potential that is more confining than parabolic.
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A comprehensive analysis of the behaviour of 1d and 2d bosons in power-law traps is
given in [11].

1.2. Interacting three-dimensional Bose gas at low
temperature

In this section, we summarise results concerning ground states of 3d interacting Bose
gases. First, we recall the concept of BEC for interacting particles and introduce the
scattering length from both a physical and mathematical point of view. Subsequently,
we discuss the case of a homogeneous gas, comment on relevant scaling regimes, and
conclude with an overview of ground state properties of a spatially inhomogeneous
gas. We mainly follow [109, §45 and §125], [119, Chapters 1,2,5,6,7 and Appendix C],
[129, Chapters 2,3,4 and 7], [145, Chapters 5,6], [153, Chapter 4] and [171, Chapter
19]. To keep the notation simple, we will from now on choose the mass of the bosons

_1
asm—Q.

1.2.1. Definition of BEC in an interacting Bose gas

The more realistic case of an interacting d-dimensional Bose gas is described by the
Hamiltonian (1.2). This Hamiltonian does not factorise into a sum of one-body Hamil-
tonians, and the N-body eigenfunctions can consequently not be expressed as products
of single-particle states. To give the concept of a macroscopic occupation of a single
one-body state meaning in the interacting context, it is rephrased in terms of reduced
densities.

For any k € {1, ..., N}, the k-particle reduced density matrix (or marginal) of an N-

body function 1"V € L?(R%) is the positive trace-class operator 71(;3\)] € LY(L2(R*Y)
with trace one, defined by its kernel

k
Vl(pl\)f('xla < Tl Y1, 7yk) =

N
dzppr-- deyy™ (21, ooy T, Thg 1, - EN) VN (Y1, ooy Yks Thot 15 - TN) -

RA(N—k)

Equivalently, in Dirac notation,

k
YR = Togn, v [V ) (V]
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Any reduced density matrix can be written in diagonal form as

<

k
71(/11\)] Z ’gOJ (pj )‘j > )‘j+1 >0, Z)\] =1, (19)
§=0 =

where {‘Pj}}lzo is an orthonormal system of L?(R%) with 0 < J < oo, and where
{A; }3]:0 denotes the corresponding set of eigenvalues of Vz(z;kf\)’ Physically, the reduced
densities are relevant because the expectation values of k-body operators (sums con-
taining only terms of the form A®) = A, ® 1y_, that act non-trivially on at most k
variables and as identities on all others) are completely determined by the k-particle

reduced density matrices since
(N, ABN) = T (5 4.

A particularly relevant example of a (symmetrised) one-body operator is the position

of the centre of mass of a system of N identical particles. Besides, note that the
particle density

N N 2 dugdan = Ny (2 1.10

TL(QZ) W ((E,Z’Q,...,(L’N)’ T2 TN ’YwN(xax) ( : )

RAN-1)

is completely determined by the one-particle reduced density matrix of 1%.

In terms of reduced densities, a more general definition of BEC was first proposed
by Penrose and Onsager in [144]:

An N-body state N exhibits BEC if and only if the largest eigenvalue Ao
of its reduced one-particle density matrix ’yq(plN is of order one.

Note that an N-body eigenstate " of an ideal gas in thermodynamic equilibrium is

given as a product of single-body eigenstates ¢; with occupation number n;, and the

corresponding reduced one-particle density matrix can be written as’

<

0 -3

7=0

2\3

(1)

Hence, for an ideal gas, the eigenvalues of ~ N correspond to relative occupation
numbers of the single-particle states, and the criterion by Penrose and Onsager is
equivalent to a macroscopic occupation of a single-particle state.

In particular in regard of the limit N — oo, this rather operational criterion requires
a more precise asymptotic formulation. In the mathematical literature, there appear

!This is shown in [130, Theorem 8.1].
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several notions of asymptotic BEC, and we refer to [130, Definition 9.1] for an overview.
The standard definition in the context of dynamics of N-body bosonic systems, also
referred to as complete asymptotic BEC, is as follows:

Definition 1.2.1. Let {wN}N be a sequence of normalised N-body wave functions
such that YV € L%_(]RdN). The system is said to exhibit complete asymptotic BEC in
the state ¢ € L*(RY) if and only if

lim Tr |7{) — —0.
dm Ty =) {el] =0
Equivalently, we have one of the following:

Lemma 1.2.2. Let {¢N}N be a sequence of normalised N -body wave functions such
that N € L2 (R¥). Further, let k > 1 and let ¢ € L*(RY) be normalised. Then the
following are equivalent:

. 1
(a) Jim Trpaes 2R — @) (el| =0,

() gim |25 —le)el| = tim Trpagay (102 - ehel) =0,

(¢) Jim <90, 1R

i

>L2(Rd)

(d) A}gnoo Tr 2 (gary 'ygi\), — ]go)(ap\‘ =0 for all k € N,

5216
() Jim_ |12~ 1)@l ), = O Sor all K EN,

L2(de)
where ||-||ms denotes the Hilbert-Schmidt norm.

These equivalences are well known and proofs are given, i.a., in [130, Theorems 9.4
and 13.2] and [158, Remark 1.4].

The occurrence of BEC in the ground state of an N-body system in a large box
of side length L in the thermodynamic limit (N, L — oo with fixed density ¢ := %)
has so far only been proven for a hard-core gas on a cubic lattice at half-filling, where
the particle number is half of the number of sites (see e.g. [4]). For particles in a
continuum, the thermodynamic limit has not yet been treated rigorously. However,
there are rigorous results proving BEC in the so-called Gross—Pitaevskii limit of infinite
dilution, and we will comment on this limit and the results in Section 1.2.3.

To define more precisely what is meant by a dilute gas, we first introduce the concept
of a scattering length. This parameter is crucial for the analysis of ultra-cold Bose
gases since it characterises all interaction-related properties of the gas to leading order.
In the following, we will focus on the physically most relevant case of a 3d interacting
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Bose gas. Since some crucial low-energy properties depend on the spatial dimension
in a non-trivial way, this analysis does not easily generalise to generic dimensions d,
and we comment on low dimensional problems in Section 1.3.

1.2.2. Scattering length

The quantum mechanical scattering of two 3d particles with mass % and mutual inter-
action potential W is most conveniently described in the centre-of-mass system. The
wave function ¢ of the motion relative to the centre of mass with energy 25 = 2k?
solves the stationary Schrédinger equation with reduced mass i,

(—A+ W (2)) ¢p(x) = Eg() (1.11)

where we used the relative coordinates x = (r, 0, ¢) and multiplied both sides with
a factor % for later convenience. Let us assume that the interaction potential W is
spherically symmetric and decays sufficiently fast to be negligible in the region r > R
for some R > 0. To solve (1.11) for this region, one makes the ansatz

. i|k|r
O(w) = e+ fr(O)— . (1.12)

where the scattering state ¢ is modelled as the superposition of an incoming plane
wave and an outgoing scattered wave. The latter depends on the scattering angle 6
via the scattering amplitude fr. At very low energies, i.e., as k — 0, the particles
cannot resolve the angular dependence of the scattering amplitude. Hence,

lim fi(0) =: -4, (1.13)

and the scattering state has the asymptotic form

¢o(x) =1— é for r> R. (1.14)
To justify this heuristic reasoning, one expands the solution of (1.11) in partial waves
with angular momentum [, solves the resulting equation for the radial part of the
wave function, and obtains an expansion of fj in terms of the Legendre polynomials
Py(cosf). Integrating |fx(6)|> over the whole solid angle yields the total scattering
cross-section, which turns out to be dominated by the contribution from [ = 0, the
so-called s-wave scattering. This justifies to keep only the term [ = 0 in f;(6), and a
comparison of (1.12) and (1.14) yields (1.13)2. As a consequence, the parameter A is
referred to as the s-wave scattering length of the interaction W.

2The full argument can be found in most standard textbooks on quantum mechanics, such as [109,
Chapter XVII] and [171, Chapter 19].
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Mathematically, the scattering length is defined via a variational principle, and the
following rigorous definition is taken from [125, Appendix A] and [168]. Let Br denote
the 3d ball with radius R, Bg := {z € R3: |z| < R}, and define

enld)i= [ (V6@ + IW@I6()P) ds. (1.15)

Br

Assume that the interaction potential W is spherically symmetric and compactly sup-
ported within the ball Bg, for some Ry > 0. Further, assume that the negative part of
Wis in L2 (R®) and assume that 11/ has no negative energy bound states in L?(R3),
i.e., that imp_,oo Er[¢] > 0 for all ¢ € H'(R?). Note that we use capital letters to
denote the quantities W, L and A without specifying a frame of reference. Later,
we will choose L as length unit, and in these coordinates W is expressed as wy with
scattering length ap.

Definition 1.2.3. Under the above assumptions on the interaction potential W, the
scattering length A of W is defined as

A:= lim A
Rseo 1
where AR is given by the variational principle
ArAR = inf {ER[¢] : ¢ € H'(BR), ¢(z) =1 for |z| = R} .

Existence and uniqueness of the minimiser of £ were shown by Lieb and Yn-
gvason in [125, Theorem A.1l], who also proved some important properties of this
minimiser [125, Lemma A.1]. We collect both statements in the following lemma.

Lemma 1.2.4. Let W satisfy the above assumptions. Then, in the subclass of func-
tions ¢ € H'(BR) such that ¢(x) = 1 for |x| = R, there is a unique function ¢q that
minimises Eg. The minimiser has the following properties:

(a) There exists a function fy : (0, R] — R such that ¢o(z) = fo(|z]), i-e., ¢o is
non-negative and spherically symmetric,

(b) oo satisfies
—Ado(z) + ;W (7)o () = 0 (1.16)

in the sense of distributions on Bgr with boundary condition fo(R) =1,
(c) for Rp <r < R,

1A

folr) = F*="(r) 1= T

10
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(d) the minimum value of Eg[@] is

A

Bp=dr—— .
R="T1"A/R

If W is non-negative, it holds additionally for all 0 < r < R that
(e) fo(r) > f2™P(r) and fo(r) is a non-decreasing function of r,
(f) 0 < A< Ry.

In the following, we will denote the scattering solution on R? corresponding to
R — oo by j. Written in a more compact form, Lemma 1.2.4 states that

A
j(‘r)zl_i |x’>R07
‘ﬁ' (1.17)
jlx)y>1—- — else,
||
hence,
1
A= lim |z|(1—j(x)) = /W(:E)j(x) dz. (1.18)
|z|—00 87TR3

To obtain the second equality, one notes that W (xz)j(z) = 2Aj(z) = 2(0? + 20,);(r)
by (1.16) and integrates by parts. The scattering solution j coincides with (1.14),
hence Definition 1.2.3 and Lemma 1.2.4 provide a mathematical framework for the
analysis of the low-energy scattering of two particles. While this definition of the
scattering length is most convenient here, we remark that an alternative definition
without variational principle, which includes potentials with bound states but admits
less singular local behaviour of the interaction potential, is given in [93, Definition 2].

In conclusion, the scattering of two sufficiently distant and low-energetic particles
is, to leading order, entirely characterised by the single parameter A. While the
interaction potential determines A uniquely, the converse is false. In fact, very different
potentials may have the same scattering length, hence their low-energy scattering is to
leading order equivalent. Since the scattering length of a hard sphere potential equals
its radius, this statement can be rephrased as follows: outside the range of their
mutual scattering potential, two sufficiently low-energetic particles do not resolve the
microscopic details of the interaction potential and behave as if scattered at a hard
sphere with radius A.

11
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1.2.3. Homogeneous dilute three-dimensional Bose gas

Let us begin with the homogeneous case, i.e., with N bosons in a cubic box A with
|A| = L? and periodic boundary conditions, where the bosons interact via repulsive
interactions. More precisely, we assume the two-body interaction potential to be non-
negative and compactly supported. The density of particles in the gas is then given

by
N

:ﬁ7

and the interaction W is characterised by its scattering length A > 0. Dilute means

%

that the mean inter-particle distance g_% is much larger than the length scale of the
interaction determined by its scattering length A, i.e., that

0A3 < 1.

The ground state energy per particle in the thermodynamic limit is defined as
1
. Eo(N,(N/o)3)
= 1
cole) = Jim =S

where Fy(N, L) denotes the ground state of the N-body Hamiltonian in the cubic box
with side length L. It satisfies the low-density asymptotics

lim co(0)
0A3-0 4mpA

=1, (1.19)

independently of the boundary conditions on the box. This formula was first proposed
by Bogoliubov in [29]. For a rigorous proof, one computes an upper and lower bound
and shows that they converge to the same limit. The upper bound was obtained by
Dyson in [59], while the lower bound was established more than forty years later by
Lieb and Yngvason in [124]. A summary of the proof is given in [119, Chapter 2].

The rigorous proof does not require any assumptions on properties of the ground
state. In particular, it does not pre-suppose BEC. However, in order to give a heuristic
justification of the formula (1.19), let us for a moment assume that the many-body
ground state is a condensate. In this case, Definition 1.2.1 suggests that the many-
body wave function ¥V be close to a factorised state @V where the condensate wave
function ¢ varies in space on the macroscopic length scale of the system. However, the
inter-particle interactions impose on ¥V a correlation structure on the much shorter
length scale determined by the interactions, which is not visible on the level of re-
duced densities. In [96], Jastrow proposed to model this situation by a trial function
consisting of the product state p®V overlaid with a microscopic structure determined

12
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by the scattering state j as

N
IIo(x;) II  Jlzk— )

=1 1<k<I<N
wg)r(mla ,CL'N) ~ N ! — — . (120)
Il o(z) II ek —m)

In fact, Erd6s, Michelangeli and Schlein proved in [63] that this characteristic short-
scale structure emerges dynamically within a very short time, even if the system was
initially in a pure product state with all particles independent of each other3.

In this spirit, let us formally estimate the ground state energy Ey(2,L) of two
particles in a large cubic box A with |A] = L3. The normalised ground state of
the box potential with periodic boundary conditions is given by ¢ = |A|7%, hence
we make the ansatz e (21, 22) = |A|7'j(z1 — 22), where j denotes the scattering
solution (1.17). Note that for sufficiently small A/L, we find |[cor||r2(a2) = 1 since

1- (;4' < j(z) < 1 implies that

24
> |[teorllT2az) = |A|2/dx1/dx2( le—m\)

2L

2A 1 2A A
= 1—— |Jdz— > 1——4 dr = 1—-167m—.
|A\ xm > i TI'/TT 67TL

Hence, we can neglect the normalisation factor in (1.20) for our heuristic argument.
This yields

Ey(2,L)
~ / ((IV1theor (1, 22)|* + |Vatbeor (x1, 22)|?) + W (21 — 22)[thcor (21, 22)[?) da1 a2
AxA
_ 2 (P + L) _ 8rd
= o [ (WP + fliPwe ) ar = & i ealil =
A

by Lemma 1.2.4d since j is the minimiser of £ for R — oo. For a sufficiently dilute
gas, the total energy essentially equals the sum of all %N (N — 1) such two-particle
contributions, and we conclude that

Eo(N,L) ~ N 4mAp

3This result was obtained for the Gross—Pitaevskii scaling regime, which is explained below.

13
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as in [119, p.13).

The second energy (scale) that is relevant for the analysis of the dilute Bose gas is
the energy gap in the box, or, equivalently, the (purely kinetic) ground state energy
of a free particle in the box |A| = L3,

Eyin(N,L) 372 1
N L2 L%
Comparing the kinetic energy per particle with the total energy per particle, one
observes that for these energies to remain comparable in the limit N — oo, i.e.,
Ekin(N7 L)

NA oL BaN D) (1.21)

1
60(9) ~ oA = I3 72 N

the scaling condition

I =9= const. (1.22)

must be satisfied. The limit N — oo such that ¢ is constant is the so-called Gross—
Pitaevskii (GP) limit. Note that condition (1.22) implies that

N ([ L\ 1
A= (g2 ) ~ —
ot =35 (93) ~ 52
hence the GP limit is a limit of infinite dilution, and the ground state asymptotics (1.19)

are valid in this case. Since kinetic and interaction energy remain comparable in this
limit N — oo, it is also called a dynamical limit of ultra-high dilution.

The GP scaling condition (1.22) requires that A, L or both quantities scale with N.
Among all equivalent realisations of this constraint, we will focus on two cases:

e A=const.,, L ~ N:
The N-independence of the scattering length implies that the two-body inter-
actions do not depend on the total number of particles. Hence, to increase the
number of particles in the box and remain in the ultra-dilute regime, the box
must grow proportionally to NN, which is much faster than the rate L ~ N 3
which corresponds to the thermodynamic limit with constant density.

e A~ N7! L =const.
Considering the problem on a fixed length scale implies that the scattering length
and thus the pair interaction must be rescaled in an N-dependent way. We will
see in Section 1.2.4 that the scattering length an of

wy (z) == N?w(Nz)

14
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for any N-independent potential w scales as N 1.

Both (and all other) realisations of (1.22) are equivalent in the sense that they cor-
respond to choices of a coordinate system and are related by coordinate transforms.
While the first option is more in accordance with physical reality, the second one
is more convenient for the mathematical analysis because in these coordinates, all
LP- and HP-norms of the condensate wave function, which varies on the scale L, are
N-independent.

For a homogeneous gas in the GP limit, the question of the occurrence of BEC in
the ground state was answered in the affirmative by Lieb and Seiringer in [118]. They
proved that if the box A is equipped with periodic or Neumann boundary conditions,
the one-particle reduced density matrix of the ground state ¥V satisfies

lim i / 'yl(pl]\),(:c;y) dedy =1, (1.23)

where the limit is taken such that g and g = NTA remain fixed. Since the ground state

of the free particle in the box A is ¢g = L_%, this statement is equivalent to
lim (20,7{%0) =1
Ngnoo SOO7 waN SOO I

which, in turn, means complete asymptotic condensation in the state ¢g by Lemma
1.2.2. Recently, this statement was extended to positive temperatures by Deuchert
and Seiringer in [57]. They showed that BEC occurs below a critical temperature,
which, to leading order, coincides with the critical temperature of the ideal gas.

1.2.4. Scaling regimes

As mentioned above, it is mathematically most convenient to keep the length scale L of
the system fixed and to rescale the interaction potential such that the scattering length
scales as N~!. The standard way of implementing this is to consider the interaction
potential

wy g(x) == N1 38u(NPz),  Be(0,1], (1.24)

where w is assumed to be non-negative, bounded, spherically symmetric, compactly
supported, and, in particular, independent of N. Naturally, this implies that the
scattering length a of w is N-independent as well. Let us for simplicity assume that
diam(suppw) = 1 and denote

R g := diam(suppwn g) ,

15
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which is consequently given by Ryg = N —B. We shall see that the scattering length
an of wy g shrinks as NV ~1 for the whole range of the scaling parameter 3, which
can be subdivided into three scaling regimes.

Gross—Pitaevskii regime: 5 =1

This scaling
wy(z) = N*w(Nx) (1.25)

realises the GP scaling condition (1.22) because the scattering length ay of wy is
given by

9

2=

anN =

which follows from the scaling behaviour of (1.16): Let w, be a potential with scat-
tering length a and corresponding scattering solution j,. Then the potential

wy(|z]) = bPwe (b|z|) (1.26)
has scattering length ¢, and the corresponding scattering state satisfies

Jo(@/b) = ja().

Clearly, the GP scaling condition is satisfied by the interaction wpy. Moreover, note
that the range of wy is of order N~! and thus comparable to ay. Since the scattering
length determines the length scale of the inter-particle correlations, which are described
by the zero-energy scattering solution (1.17), this means that the correlations vary on
the same scale as the interaction. Consequently, they remain visible even in the limit
N — oo, when Nwy (z) — [|w|[z1®s)d(z) in the sense of distributions.

Non-linear Schrodinger regime: 0 < 5 < 1

For 8 # 1, the interaction wy g is not of the form (1.26), hence its scaling behaviour
cannot immediately be deduced from (1.16). Instead, it is shown in [65, Lemma A.1]
that for any 0 < 8 < 1, the scattering length ax g of wy g satisfies

bo

li N = — 1.27
Ngnoo aN.p 81’ ( )

where

bO = NHwN,ﬁHLl(RS) = ”wHLl(RS)

is the so-called (first order) Born approzimation to the scattering length. The upper
bound for the asymptotics (1.27) follows from the Spruch—Rosenberg inequality [175],
which states that the scattering length of a potential not admitting bound states is

16
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always bounded above by its Born approximation. The lower bound is a consequence
of the property (1.17) of the scattering solution. Note that for a non-negative potential
w, the Spruch—-Rosenberg inequality is an immediate consequence of (1.18) because
the scattering solution satisfies 0 < j(z) < 1.

In view of the integral representation of the scattering length,
N8rmang = N/wNﬁ(a:)jN”g(x) dz = N3 /w(Nﬂa:)jNﬁ(a:) dz,

it is clear that the Born approximation can asymptotically coincide with the scattering
length only if jn g is approximately constant over the range of wy g. In the GP regime,
jn and wy are both peaked on the scale |x| < N~1, which causes the approximation
to break down. To verify this, observe that for all x € suppwy g,

jN,ﬁ(I‘) < jN’B‘\M:N—ﬁ =1- N’BCLN’B

since jy,g is non-decreasing by Lemma 1.2.4e. Hence, one estimates

bo —8rNayg = N3 / w(NP2)(1 — jyp(z))de > N PNaygby. (1.28)

Suppwy, g

In the GP regime 8 = 1, the relation Nay = a implies that by —87Nay > bpa = O(1),
hence the Born approximation is invalid. For g € (0,1), Nwy g still approximates a
§-distribution as N — oo, but its range shrinks proportionally to N—# and is therefore
much larger than the length scale of the correlations. This implies that to leading
order, the relevance of the correlations vanishes as N — oo, or, put differently, that
Jn,3 is approximately constant on the length scale N —B of the interaction.

In the physics literature, the standard way to justify the Born approximation, which
was originally found by Born in [30], is via perturbation theory. Consider the elastic
scattering of particles with mass m = % at a potential U, which satisfies

Ul e reyR* < 1, (1.29)

where R denotes the range of U. Under this condition, U can be seen as a pertur-
bation of the free Schrédinger equation, and perturbation theory leads to the Born
approximation (see e.g. [109, §125 and §45]). Equivalently, the Born approximation
is given by the first term of the series expansion that is constructed by iterating the
Lippmann—Schwinger equation (see e.g. [171, Chapter 19.4] or [145, Chapter 5.2]). To
give above condition a physical meaning, note that R~2 is the scaling behaviour of the
kinetic energy of a free particle in a box with side length R. Clearly, the condition
(1.29) is satisfied by wp g as long as < 1 because HwNﬁHLoo(Rs)R?Vﬁ < N8,

17
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Finally, let us remark that we refer to the scaling f € (0,1) as the Non-linear
Schrédinger (NLS) regime because the time evolution of the condensate wave function
in this scaling regime is determined by an NLS equation. This will be explained in
Section 1.4.

Mean-field regime: § < %

Although the Born approximation holds for the whole parameter range 5 € (0, 1), the
physical picture changes at the threshold g = %

e For > %, it holds that
-8 _1 _1
Ryg=NT"<KN73=p3,

i.e., the range of the interaction is much smaller than the mean inter-particle
distance. Besides, the amplitude N =137 of the interaction diverges as N — oo.
This corresponds to the situation of rare but very strong interactions.

e For 5 < %, we have on the contrary

Wl

Ryg> o0

and N~1138 5 0 as N — co. Hence, on average, every particle interacts with
many other particles and the interactions are weak, which characterises a mean-
field regime.

The limiting case 5 = 0, corresponding to the interaction wy o(z) = %w(x), is known
as the Hartree regime. In contrast to 8 > 0, the range of the interaction wy, does
not shrink as N grows but remains of the same order as the system size.

In conclusion, an N-body Hamiltonian with pair interaction wy (8 = 1) implements
the GP scaling condition (1.22), i.e., it describes a system with N-independent ratio
of kinetic and potential energy, using coordinates such that the length scale of the
system is independent of N. Note that for the dynamical problem, whose solution is
determined by the time-dependent Schrodinger equation, this rescaling of space comes
with a rescaling of time: the coordinate system (z,t) with L ~ 1 arises from the frame
(«',¢") with A ~ 1 by the coordinate transform (x,t) = (IN,, ]f[—;) Hence, times of order
one with respect to the frame (x,t) correspond to extremely long times with respect to
the frame (z’,t'). This relates to the low density of the gas, which causes the average
time between two collisions to be very long.

Systems whose interactions are compactly supported and scale with 8 < 1 do not
emerge via a coordinate transform from systems with N-independent interaction,
hence their analysis is rather of mathematical than of physical interest. However,

18
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in the next section and in particular in Section 1.4.4, we will explain that such inter-
action potentials are crucial for the study of the GP regime since they can be used as
effective or pseudo-potentials to approximate the GP interaction.

1.2.5. Dilute three-dimensional Bose gas in a trap

While the study of the homogeneous Bose gas is of great theoretical interest, dilute
Bose gases in external traps model actual experiments more realistically. Due to the
inhomogeneity of the system caused by the trap, we need suitable generalisations of
the parameters L, measuring the size of the trap, and g, corresponding to the mean
particle density.

The scale L is determined by the characteristic length (or oscillator length) of the

trapping potential V!,

2
Losc == )

w

where w denotes the order of the ground state energy of —A + V&t If VXt is taken
to be a harmonic oscillator, w is its frequency. Physically, this formula is motivated as
follows: consider a cloud of particles with mass % in the ground state of a harmonic
oscillator with frequency w. If the extension of the cloud is R, the potential energy of
a particle is Epop ~ inRz. Its kinetic energy is given by Fyi, ~ R~? since the typical
momentum of a particle in the ground state is p ~ R~!. The total energy is minimised
when Epot = Fyin, which determines the size of the cloud as R = Lo [145, Chapter
6.2].

As in the homogeneous case, we choose Log: as length unit, i.e., we fix Lose = 1. In

these coordinates, the N-body Hamiltonian is given as

N
Hy = Z (A +V™i(z))) + ZwN(JL"z' —zj), wy(z) = N*w(Nz), (1.30)
Jj=1 i<j

where V' and w are N-independent, w is non-negative, compactly supported and
has scattering length a, and wy has scattering length ay = a/N. The external trap
Vet is assumed to be non-negative, measurable and locally bounded, and to tend to
infinity as |z| — oco.

The mean particle density in the ground state is determined by the probability
distribution induced by the condensate wave function. To explain what is meant by
this, let us introduce the GP energy functional, which depends on the parameter
a = Napy and is defined as

£t le] = / (IVe(@)]? + V() |p(x)|* + dmalp(z)|!) dz (1.31)
R3
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for ¢ € D with*
D={pe H'(R): Vp|* € L'(R%), [lpllL2ms) =1} -

Mathematically, the functional T[] is formed by taking the ground state energy
per particle for the homogeneous gas as a local energy density for an inhomogeneous
system. Since o(z) = N|p(x)|?, this energy density is by (1.19) given as

drano(z) = d4nNay|e(z)|* = dmalp(z)|?.

To give a heuristic argument for this functional, note first that the system described
by the Hamiltonian (1.30) has two well-separated length scales: while the many-body
wave function changes slowly in space on the scale Los. = 1, the inter-particle correla-
tions vary on the extremely short length scale ayy ~ N~!. In the physics literature, one
deals with this separation of scales by absorbing the short-scale spatial variations into
an effective interaction U, which is then used to describe interactions between the
long-wavelength degrees of freedom. As long as U and wy have the same scattering
length, they are, to leading order, equivalent when it comes to calculating macroscopic
properties of the system, as was argued in Section 1.2.2.

The advantage of using the effective interaction potential U is that it can be chosen
such that its scattering length is approximated by the first order Born approximation.
The standard formal argument® is the following: one replaces wy by an interaction
Ut with the same scattering length ay as wy, which is sufficiently shallow to sat-
isfy (1.29), hence the Born approximation is valid for U®®. Subsequently, changing to
the momentum space representation, one argues that _in the low energy regime, it is
sufficient to consider the zero momentum component U “ff(0) of the Fourier transform
Ueft which is given as

e (0) = / U (5)de ~ Stay
R3
by the Born approximation. Finally, transforming back to position space, this corre-

sponds to the on-site interaction

Uo

8rand(x) =: Wé(w) (1.32)

Instead of the Hamiltonian (1.30) with pair interaction wy, one then studies the

“The definition is sensible as H'(R?®) < L*(R®) by the Sobolev embedding theorem, see e.g. [3,
Theorem 4.12].

5See e.g. [153, Chapter 4.1] and [145, Chapter 5.2.1]. Note that we transferred these arguments to
the coordinate frame with fixed length scale to fit in the presentation.
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1.2. Interacting three-dimensional Bose gas at low temperature

Hamiltonian
N

Ui
eff — Z (_Aj + Vext(xj)) + NO Zé(xl —xj) (1.33)
j=1 i<j
containing an effective delta interaction. Note that Uy = 8ma = O(1), hence all terms
in H*T are of the same order with respect to N.

Recall that in view of formula (1.18), the difference between 8may and [[wn|| 1 (rs)
is due to the correlation structure. Hence, by replacing wy by 8mayd(x) and not
simply by [lwn || rs)d(x), although wy(x) ~ ||wy|| L1 (rs)d(x) for sufficiently large N
in the sense of distributions, we have “integrated out” the short-wavelength degrees
of freedom and incorporated them in the effective interaction potential.

Since the correlation structure as in (1.20) is already taken into account in the effec-
tive interaction, one now adopts a mean-field approach and assumes that all particles
occupy the same normalised state . Evaluated on this product state, the energy
corresponding to the Hamiltonian Hef,

N / (Ve (@) + V() o) ) da
R3

+(NV -1) / 3Uole(@1) Plo(a2)[0(1 — w2) day day
R3xR3
~ N&Slpl,

is given by the GP energy functional.

The GP energy functional has a unique minimizer ¢S (up to a phase), which is pos-
itive and continuously differentiable (see e.g. [120, Theorem 2.1]). The corresponding

ground state energy is

B = inf &7lel= &[0

The minimiser ST solves the stationary GP equation,
(—A+ VTt dmalo?) ¢ = pe, (1.34)

in the sense of distributions. Here, u is the chemical potential, which is a Lagrange
multiplier arising from the normalisation condition for ¢$F. The stationary GP equa-
tion has the form of a stationary Schrodinger equation with non-linear potential term,
where the eigenvalue is the chemical potential. Note that for non-interacting particles,
the chemical potential and the energy per particle coincide, hence (1.34) reduces to

the linear Schrodinger equation.
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1. Introduction

These considerations lead to the following generalisation of the homogeneous particle
density o = N/L? to the inhomogeneous setting: the mean density is defined as the

o=y [ @) dr = N [ o @) do.
R3 R3

where 0S¥ = N|¢SP|? is the particle density (1.10) of the product state (¢ST)®N. In
the inhomogeneous context, dilute means that

average

Ea?v<<l.

The minimiser ST is N-independent, hence g is of order N. Consequently, we obtain
QaN ~ N72 as in the homogeneous case, which implies that the trapped gas with
interactions in the GP scaling regime is ultra-dilute.

In [120], Lieb, Seiringer and Yngvason proved that the minimum of the GP energy
functional with parameter a asymptotically describes the ground state energy per
particle, N~1Ey(N,ay), of the Hamiltonian (1.30). More precisely, they showed that

lim Eo(N; an) (N, an)

Jim =0 = ESF (1.35)

(see also [119, Chapter 6]). Moreover, Lieb and Seiringer showed that the ground state
YN of (1.30) exhibits complete asymptotic condensation in the state ST i.e.,

lim Tr
N—o0

1R = [pS* (%PH =0

([118] and [119, Chapter 7]). Note that the GP energy functional in a box A with
periodic or Neumann boundary conditions is minimised by the constant function

P ]A|_%, which yields the corresponding statements (1.19) and (1.23). For posi-
tive temperatures, a result similar to the homogeneous case was obtained by Deuchert,
Seiringer and Yngvason in [58].

1.3. Interacting Bose gas in one and two dimensions

In this section, we briefly summarise the 2d analogues of the results in Sections 1.2.3
and 1.2.5 and present an exactly solvable model for a 1d gas. In physical reality, low-
dimensional gases are realised in highly anisotropic traps which tightly confine the
motion of the 3d particles in one or two directions. Such systems are called quasi-
low-dimensional, and we summarise some of their relevant ground state properties in
Sections 1.3.3. The main references for this section are [119, Chapters 3, 6, 8, 9 and
Appendix B, [123], [145, Chapter 15.4], [147, Lectures 3 and 4], [153, Chapter 17.3],
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1.3. Interacting Bose gas in one and two dimensions
[164] and [170].

1.3.1. Two dimensions

As explained in Section 1.1, a homogeneous 2d ideal gas does not exhibit BEC at
positive temperature. However, BEC can occur in traps (e.g. in a harmonic trap)
since the potential changes the density of states g(e).

For the analysis of 2d interacting systems, the zero energy scattering solution, i.e.,
the minimiser of the 2d functional corresponding to £g from (1.15), plays an important
role. Consider a spherically symmetric, compactly supported potential W with range
Ry, whose negative part is contained in L'*(R?) for some ¢ > 0 and where $W has no
negative energy bound states in L?(R?). If W has scattering length A, the minimiser
of 512;1 satisfies

In(|z|/A)
2d _
O(x)*iln(R/A) R > |x| > Ry,

In(|z|/A)

¢O (x)— IH(R/A) |x‘—R0a
and the minimum of Sl%fl is
2d 2T
Er = In(R/A) "

Both statements are proven in [125, Theorem A.1 and Lemma A.1]. The density of a
gas of N particles in a quadratic box A with |A| = L? is given by

N
Q2d:ﬁ-

1
Since the mean inter-particle distance in two dimensions is given by o,*, the diluteness
condition for particles interacting via a potential with scattering length A is

QQdA2 < 1.

The ground state energy per particle of a dilute homogeneous 2d Bose gas in the
thermodynamic limit, e3%(024) = limy_,00 Eo(N, (N/ di)%) /N is asymptotically given
by

. e5? (02q)
im CIYES]
024420 4m 24| In(02q A?)

=1, (1.36)

independently of the boundary conditions on the box. This asymptotic formula was
first derived by Schick [161] for a gas of hard discs and rigorously proven by Lieb and
Yngvason in [125]. Note that in contrast to the 3d problem, the 2d ground state energy
of N particles, Eqg(N,L) ~ Ne24(02q), does not (asymptotically) equal N(N — 1)/2
times the energy of two particles. The latter can be calculated similarly as in the 3d
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1. Introduction

problem (Section 1.2.3) and yields

N(N - 1)
2

N(N -1)

8w _ _ _ -
ﬁ|ln(L 2A?)|7! & Ndmogqg|In(L724%)|7!

[119, pp. 27-28]. Here, in contrast to (1.36), the mean inter-particle separation g,

o=

in the logarithm is replaced by L, resulting in a much lower energy.

Let us now consider a 2d Bose gas in an external trapping potential. As in Sec-
tion 1.2.5, we choose the characteristic length of the trap as length unit, hence the
scattering length A = an depends on N. Analogously to the 3d case, one could take
47N [go |In(|o(2)[?a%,)| "¢ (x)|* dz as interaction term in the functional. However,
since In varies only slowly, it turns out that one may, to leading order, replace this
complicated expression by 4TNg [g. [o(z)|* dz, ie.,

Exy L] = / (IVee(@)]? + V(@) |p(2)]? + 4nNglip(z)|*) do (1.37)
R2

with subsidiary condition | lo|?> = 1. A valid choice for the coupling parameter g is

! (1.38)
9= 19 = 32" .
| In(22q0%)]
Here, 054 denotes a mean density, which is for simplicity taken as
2 =N [ 16§ @) do, (1.39)
R?
where @%P denotes the minimiser of ESP’M with coupling parameter ¢ = 1. Note

that one could also define g4 self-consistently, i.e., in terms of gp%l;, but the above
simpler choice is sufficient for a leading order estimate as g4 exclusively appears in
the logarithm.

In [121], Lieb, Seiringer and Yngvason prove that the minimum E](\},I;’Qd of E'](\;,gp’m
asymptotically coincides with the ground state energy per particle of a dilute 2d Bose
gas, N"'Ey(N,ay). More precisely, they show that in the limit N — oo such that
a%;09q — 0 and Ny fixed,

E34(N,ay)

lim
GP,2d
NEy g

=1. (1.40)
To realise the GP scaling regime, where Ng is fixed independently of N, the scattering
length an must decrease exponentially in N. A slower decrease implies g — oo, which

means that the kinetic term in the GP energy functional becomes negligible and ESgP’Zd

24



1.3. Interacting Bose gas in one and two dimensions

simplifies to the so-called Thomas—Fermi functional (see [121] for a rigorous proof).

1.3.2. One-dimension: Lieb—Liniger model

In one dimension, BEC does not occur in the homogeneous ideal Bose gas but takes
place in external traps which confine the particles stronger than a harmonic potential
[11]. A famous model of an interacting 1d Bose gas is the so-called Lieb—Liniger (LL)
model,

N g2

H}\}fg:—zﬁ—kg > 6z — ),

j=1 """ 1<i<j<N
which describes a uniform gas of N bosons interacting via repulsive zero-range poten-
tials with strength g > 0. It was originally proposed and analysed by Lieb and Liniger
in [115, 116]. The §-function potential is equivalent to the boundary conditions

(8j_ak)w‘xj¢xk _(aj _6k)¢‘ :g,(b’a:j:mk’

x; Tk

implying that 1 is continuous at the points where two particles coincide, while the
derivative is discontinuous and jumps by the value g. The particles are confined to an
interval of length L with periodic boundary conditions, hence the density is given by

N
01d = T
The relevant parameter of the model is
-9
01d

which corresponds to the ratio of the interaction energy per particle ~ g14 g to the
kinetic energy per particle ~ 1/ (gfdl)2 = p74. For v < 1, the gas is weakly interacting,
with v = 0 corresponding to the ideal gas. The case v > 1 describes a strongly
interacting gas, also called Tonks—Girardeau gas, where the limit v = co describes a
gas of impenetrable bosons. In [79], Girardeau proved that the energy spectrum of
such a gas coincides with the spectrum of a one-component spinless non-interacting
Fermi gas of the same density. Mathematically, this follows since v = oo implies the
boundary condition w}xj:xk = 0, which is solved by a (fermionic) Slater determinant,
multiplied with a sign function symmetrising the N-body wave function (see e.g. [145,
Chapter 15.4.1]).

As the density p1q decreases, the parameter  increases, implying that the gas
becomes more interacting. This peculiar feature is unique for the 1d case and contrasts
with the behaviour of two-and three-dimensional Bose gases.

In [116], Lieb and Liniger computed the eigenfunctions as well as the ground state
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1. Introduction

energy per particle in the thermodynamic limit N, L — oo with fixed density g14.
They showed that, irrespective of the boundary conditions on the 1d box, the ground
state energy is given by

1
39014 Y=9/oua <1,

o’ (01a) = glae(M) = § (1.41)
Tolg  vY=9/0a>1,

where e is the solution of an integral equation (see e.g. [119, Appendix B]) with the
specified asymptotic behaviour. For the Tonks-Girardeau gas (y = 00), e(l)d coincides

with the energy of N non-interacting fermions, while one obtains e} = 0 for the ideal
gas (7= 0).

1.3.3. Quasi-low-dimensional Bose gases

Effectively low-dimensional behaviour of a 3d gas occurs when the motion of the
particles in one or two spatial dimensions is frozen out as the result of a sufficiently
anisotropic trapping potential. Let L denote the longitudinal length scale and €L the
transverse length scale, implying that ¢ is a measure of the asymmetry of the set-up.
Studying the Bose gas for small €, one observes quasi-low-dimensional behaviour if the
energy associated with the motion along the trap is small compared to the energy gap
between transverse ground state and excitation spectrum, which scales as (eL)~2.
For the mathematical analysis of the ground state problem, we use the coordinates

z=(x,y) €R3, zeR?, ye R,

where z is the coordinate in the d longitudinal direction(s) and y is the coordinate in
the (3 — d) transverse direction(s). We consider the 3d Hamiltonian

N

H¥pca=> (_Aj + Ve () + V) (%’)) + ) walzm—z), (1.42)
j=1 1<i<j<N
h
where | ] iy | 1 L
and

()= v (5)

wa(z) = —sw(—) .

4 427\ A

The parameters L, ¢ and A are scaling parameters, while VL, VIl and w are taken as
fixed. We assume that the characteristic lengths of V- and VIl equal one, hence L and

Le measure the extensions of the trap, and that w has scattering length one, which
implies that the scattering length of w4 equals A since wy4 is of the form (1.26). The
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1.3. Interacting Bose gas in one and two dimensions

transverse ground states y and x° corresponding to the potentials V+(y) and Vi (y)
are related by scaling as

(&
(Fay+ V)=, (-ay V)t = A
with
el _ —3=d i
i) = (D () (1.43)

Let E?\SL@A denote the ground state energy of the Hamiltonian H]?{,‘fL7E7A. We are
interested in the behaviour of this quantity in the limit where N — oo and ¢ — 0,
i.e., the limit of large particle numbers and infinite asymmetry. For d = 1, this limit
was analysed by Lieb, Seiringer and Yngvason in [122, 123] and [119, Chapter 8]
and by Seiringer and Yin in [170], and the analogous problem for d = 2 was treated
by Schnee and Yngvason in [164] and [119, Chapter 9]. In both cases, the authors
assume that the potentials V- and VI are locally bounded, diverging as |y|, |z| — oo,
and homogeneous of degree s > (0. The potential w is assumed non-negative and
of finite range. In the remainder of this section, we summarise the results obtained
in [122, 123, 164], suitably adapted to our notation.

Quasi-one-dimensional Bose gas

Let us begin with d = 1, where the confinement is in two directions and consequently
x € Rand y € R?. The main result of [122, 123] by Lieb, Seiringer and Yngvason states
that in the limit ¢ — 0 and N — oo, the ground state energy EJ?(?}L@A of H]?{;%L@A
equals the minimum of a 1d functional that is obtained from an inhomogeneous LL
model with coupling parameter

S8TA
914 = W/Ix(y)\“dy = 87rz4/|><5(y)|4 dy. (1.44)
R2 R2

To construct it, we recall that the effective interaction term 47a|p|* in the 3d GP
energy functional SE’P (1.31) is formed by taking the homogeneous ground state en-
ergy per particle (1.19) with density o = N|p|? as local energy density. For the 1d
functional, one replaces 4may o = 4walp|? with the ground state energy of the homoge-
neous LL model, e}4(z) = o(z)?e(g14/0()). Here, e is the function which arises from
solving the stationary Schrodinger equation for the LL Hamiltonian with asymptotic
behaviour as in (1.41). Multiplying the resulting functional by N yields

gfl\fC}L,gm [Q] = / ('i V Q(l‘) Q(IL’)
R

2
+ VL” (z)o(z) + o(x)3e <g1d>) dzx (1.45)

27



1. Introduction

for o satisfying the normalisation condition [ o(x)dx = N. The functional (1.45) has
a unique minimiser, which is denoted by on. 1, 4,, and defines the mean 1d density

_ 1
014 ‘= N /(QN,L,gld(x))de7
R

analogously to the 3d mean density ¢ in Section 1.2.5. The corresponding length scale

— N
le:T

determines the characteristic length of the gas cloud, and the minimum of (1.45) is
denoted as

Efl\gngld = gld['QNvagm] .

The physical relevance of the functional (1.45) is established in [123, Theorem 1.1]:
With coupling parameter gi1q as in (1.44), it holds in the combined limit

(@) €—0,
N — oo and (b) EAL—>0, (1.46)

(¢) (eL)?*01q min{01q, g1a} — 0

that N
3d

. EXrea—Neope

lim 3 =

(1.46) EN L

1. (1.47)

Note that the three conditions (a) to (c) of the combined limit (1.46) are not indepen-
dent of each other. With regard to the asymptotic behaviour (1.41) of e}, condition
(c) is equivalent to the requirement that

1

etl)d@ld) < w,

which means that the longitudinal energy per particle must be much smaller than the
transverse energy gap.

In conclusion, the 3d ground state energy related to the longitudinal motion (where
the ground state energy in the confined directions is subtracted) is asymptotically
described by the minimiser of the 1d energy functional containing the LL energy
density, provided one chooses the LL-coupling parameter g as in (1.44). In this sense,
the ground state of a 3d Bose gas in a highly elongated trap is described by the 1d LL
model.

Depending on the ratio g14/0;4, the energy functional (1.45) simplifies in different
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1.3. Interacting Bose gas in one and two dimensions

limiting cases, dividing the parameter space into five regions, which can be grouped
into two physically very different regimes. To motivate this dichotomy, note that the
formula (1.19) for the ground state energy of a homogeneous 3d gas yields for the box
L1q % (eL) x (eL) the expression

3d NA
60 ~ .
(EL)Qle

While (1.19) is correct for any fixed e, it does not hold uniformly as ¢ — 0. Let us
compare this expression with the 1d energy per particle eéd@ld). Noting that giq
scales as A/(eL)?, we obtain by (1.41) the scaling behaviour

_ NA _
91d014 ~ m g14/01a < 1,
e(l)d(@d) ~ N2 '
0la ~ = 91d/01a > 1.
1d

While in the first case, the 1d formula for the energy per particle coincides with the
3d formula, this is not true in the second case. Note that the quantity g14/0;4 can
also be interpreted as the fraction e3¢ /034 Its behaviour as N — oo defines the two
regimes mentioned above:

® §14/01q4 < 1: The 1d limit of the 3d GP regime
In this regime, the predictions of 3d and 1d theory coincide, which was motivated
above by the comparison of e3d and eld. Since the LL parameter v is much
smaller than one, the gas is weakly interacting, which is equivalent to a high 1d
density. This regime subdivides into three regions, each of which is characterised

by a simpler form of the functional (1.45):

1. The ideal gas case: gi14/01q < N 2.
The interactions are so weak that e} = (g14/014)074 < fl_dQ , 1.e., their ef-
fect vanishes in comparison with the longitudinal kinetic energy. In (1.47),
the minimiser E}\}%L g4 of the LL functional can simply be replaced by
Ne”/L27 where el denotes the ground state energy of -02 + vl

2. The 1d GP case: g1q4/01q4 ~ N72.
In this region, the functional (1.45) reduces to the 1d GP functional

eitin o= [ (10v/2l@P + Vi @ete) + boue@)?) do.
R

where the interaction term is taken as the low-y-asymptotics (1.41) of the
LL ground state energy per particle. To bring this expression into a form
which is analogous to the 3d GP functional (1.31), where the dependence
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on the parameters N, L, g14 is exclusively encoded in the interaction term,
one notes that o(z) = N|®(z)|?, where & (x) = LfétID(x/L) by definition
of Vg. Substituting this into Sﬁi”ﬁd and dividing by N/L?, one obtains
the functional

SS&%,C;ML:/(W;E(I)(:E)F—I—V(:U)|<I>(a:)\2+%NgldL|<I>(x)|4) de (1.48)
R

for ® with [|®(z)]*dx = 1. The ground states of both functionals are
related by the scaling relation

epad _ N apid
N,L,gia — 127 1L,1,NgiaL~

The characteristic length scale Liq of the cloud can be computed via the
scaling relation

V) (L1a) ~ ed(@1a) - (1.49)

Since VIl is homogeneous of degree s and e} = (g1a/1q)024 ~ fl_dz , this
yields L1q ~ L, implying that the cloud longitudinally extends over the
whole trap, hence 9,4 ~ N/L. Finally, note that giq/0,q4 ~ N2 is equiva-
lent to the requirement that Ng1qL be fixed as N — oo, and that conditions
(b) and (c) in (1.46) are implied by (a). Hence, the statement (1.47) can
be simplified as follows:

In the limit N — oo and € — 0 such that Ng14L remains fixed,

3d el
EN,L,E,A - N(EL)Q
ﬂEGP,ld
L2 1)17NgldL

lim

=1. (1.50)

3. The 1d Thomas—Fermi case: N=2 < g14/01q4 < 1.
Since g14/0;q > N2 is equivalent to NgjqL — oo, it follows that ecl)d >
L4, ie., the gradient term in the functional (1.45) becomes negligible.
Hence, (1.45) is asymptotically equivalent to the 1d Thomas—Fermi func-
tional, which is given by the GP functional without kinetic term.

The ground state energy of a Bose gas in this first regime can also be obtained
as the limit € — 0 of the 3d GP energy. More precisely, let £S% , denote the GP
&L
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1.3. Interacting Bose gas in one and two dimensions

energy functional corresponding to the Hamiltonian H ]:{,C}L e A 1€y

NA
e%alel = [ (90 + (VA0 + V1) o) + an o)1) ds.
R3
(1.51)
Then it is shown in [123, Theorem 2.6] that in the limit ¢ — 0, A — 0,
l,l,NgldL

uniformly in g4, as long as 52E1Gf’§,§1dL — 0. In view of (1.47), this implies

that the ground state energy can be calculated by first taking the limit N — oo
and subsequently the limit € — 0. It implies that the 3d GP result (1.35) holds
uniformly as e — 0, provided the quantity NA/(Le?) remains bounded. This
requirement is in particular satisfied in region 2.

Moreover, it has been shown that the N-body ground state wév L€ of the Hamil-

tonian H i}i 1 4 exhibits BEC in regions 1 and 2, while the problem remains open
in region 3. More precisely, [123, Theorem 5.1] states that

1
T e [V e — [BF XN (@F X = 0, (1.53)
0

where ®GP(z) = L=29%P (/L) and ®°F is the minimiser of £ NowaL-

9/01q4 = 1: The true 1d regime.

In this regime, e}? and e3¢ differ from each other. In contrast to the first regime,
the second regime cannot be reached from a 3d energy functional as in (1.52),
and is, in this sense, truly 1d. The corresponding LL parameter -y is large, hence
the gas is strongly interacting with low 1d density. The ground state is not
expected to exhibit BEC; instead, the motion in the longitudinal direction is
strongly correlated. The true 1d regime can be split into two regions:

4. The LL case: gia/01q ~ 1.
In this region, neither of the asymptotics in (1.41) apply, hence the full LL
energy is required in the functional. Since e}d ~ N 272 > Z_Q, one can
neglect the gradient term of the functional (1.45).

5. The Tonks—Girardeau case: g1q/014 > 1.
This region is analogous to the LL case, with the only exception that
the asymptotics (1.41) for v — oo apply. Consequently, the expression
0%e(g14/0) in the functional can be replaced by %293.
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The ground state result (1.47) was extended in [170] by Seiringer and Yin to the
lower part of the excitation spectrum. More precisely, let Ejg\}if’& gy for k=1,2,3,...,
denote the k’'th eigenvalue of the Hamiltonian H ]?{,d L4 and denote by E}\?Lk 1 the k’th
eigenvalue of the LL Hamiltonian with coupling parameter g4 and external potential

v/,
1d Y o* I
Hrga = | —52 V(@) | +aa D 8w —aj). (1.54)
Jj=1 J 1<i<j<N

For fixed N, L and k, the authors prove that in the limit € — 0 and A — 0 such that
Ale — 0,

E3d,k . Net
. N,L.e,A (5L)2
lim TaR =1, (1.55)
N7L»91d

as long as Ejl\;iLk gy S ¢+ /(eL)?. Here, et denotes the spectral gap above the ground

state energy of —Aj + V4 (y) ([170, Corollary 1]). This statement follows from the
upper and lower bounds

Net (eL)?
3d,k 1d,k 1d,k
ENJZ@A = (eL)? + EN,L,gld(l —nr) (1 T EN7L,gld ; (1.56)
1
3d,k Ne 1d,k 1
Eniea = ot ENLg. 0= m0) 7 (1.57)

where

ool

1 2
B NA\S  , (NA L [(NA\3
”L—D<<EL> (%) ) w=c(%7)

for some constants C, D > 0 ([170, Theorem 1]). Hence, the spectrum of a Bose gas
in a cigar-shaped trap in an energy interval of size ~ (¢L)~2 above the ground state
asymptotically coincides with the spectrum of the LL model with coupling parameter
g1a- Note that this applies to all parameter regions 1 to 5.

Moreover, Seiringer and Yin prove a similar result for the eigenfunctions. For gg € R,
let 134 be an eigenfunction of H ]?(,dL . 4 With eigenvalue E?Vdf - 4> and let Pglod’k denote
the projection onto the eigenspace of H}Vd L.go with eigenvalue E}\?Lk . Further, let PjL

denote the projection onto l_[;vzl x°E(y;j). Then, for fixed N, L, k and go, Seiringer
and Yin prove that in the limit € — 0, A — 0 such that g14 — 9o,

lim (34, (PAAF @ PL ) it = 1 (1.58)

([170, Corollary 2]), where the tensor product refers to the decomposition L?(RY) ®
L2(R?N) of L2(R3Y) into longitudinal and transverse coordinates. This implies that
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1.3. Interacting Bose gas in one and two dimensions

the 3d eigenfunctions ¢3%* are, in L2(R3Y) sense, asymptotically of the product form
¢3d’k(zl,...,z ) & ¢1dk (T1,...,x HX (yj)

1d,k ; . . 1d . . 1d,k
where ¢ is an eigenfunction of H N.L.go corresponding to the eigenvalue EN TL.go"

Quasi-two-dimensional Bose gas

For d = 2, it was shown in [164] by Schnee and Yngvason that in the limit ¢ — 0,
the ground state energy E?\g L. Of the Hamiltonian I J%T%L,s, 4 converges to the ground
state energy of a 2d gas with effective 2d scattering length

1 el
Aoqg =L 1.
od aexp{ fR MO 2A} (1.59)

In view of (1.40), this 2d ground state energy E?%4 T Ngoq CAT be obtained by minimising
the 2d GP functional (1.37) with choice Vet = VIU,

EL N 0L = / (IVeL @) + V] (@) [@L(@)? + 4nNga| @1 (2)|) dw,  (1.60)
R2

where the corresponding coupling parameter go4 is given by

1

- 1.61
(@0 AZ,) (1.61)

god =

as in (1.38), with mean 2d density 9yq from (1.39). More precisely, Schnee and Yng-
vason prove that in the combined limit

(a) €—0,
N — o and (b) aAL -0, (1.62)
() (eL)*Bag2a — 0,

it holds that

E 1
lim X NEeA EDP g (1.63)
(1.62) E¥ "N

by [164, Theorem 1.1]. This statement is the 2d analogue of (1.47), where the role of
the LL functional (1.45) is taken by the 2d GP functional (1.60). As in the 1d case,
conditions (a) to (c) are not independent of each other. Condition (c) states that the
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2d energy per particle corresponding to the density 054, which scales as
2d = —
€y (02d) ~ 924024

by (1.36), must be much smaller than the transverse energy gap ~ (¢L) ™2

Similarly to the quasi-1d gas, there is a fundamental division into two parameter
regimes, which can be determined by comparing the expressions for the 3d and 2d
energy per particle, (1.19) and (1.36). Since the mean 3d density is given by

N 024

L) (L)’

this yields

ed3d NA/(sLL2 ) A A 1 el
0 2d 2

S — T T Y] = — |In(09q(Le
(Q)d 2d7Q2d 5[‘ ( 2d 2d)| el ( 2d( ) ) f’X ‘4 1y 4

which leads to the following two regimes:

1. |In(0yq(eL)?)| < (eL)/A: The 2d limit of the 3d GP regime.
By definition (1.59) of the effective 2d scattering length, this condition yields

- _ A
g2d = Hn(QQdA%d” T L’

hence €24(0yq) ~ (ADaq)/(L). Consequently, the 2d formula (1.36) leads to
the same result as the 3d formula (1.19). Moreover, one can replace goq by the
simplified coupling parameter

gm-/u (164

Similarly to the 1d problem, the ground state energy in this regime can be
understood as the limit ¢ — 0 of the minimum of the 3d GP functional SG

from (1.51) but with 1d confinement. It is shown in [164, Theorem 2.1] that in

the limit £ — 0 with goq = g3

GP
B, - &

lim —gb o = 1 (1.65)

1,Ng$H /L

uniformly in the parameters, as long as condition (c) in (1.62) is satisfied.
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1.4. Effective dynamics of the condensate wave function

2. |In(2yq(eL)?)| = (eL)/A: The true 2d regime.
In this regime,
2 _ _
920 ~ g5 = | In(@2a(eL)?)| "

and the logarithmic dependence on the density implies that the 2d and 3d pre-
dictions of the ground state energy lead to different results.

The relevant parameter for the 2d GP functional is Ngoq. Its size subdivides the
parameter space into three regions:

(a) Ngoq < 1: The ideal gas case.
The interaction term in the GP functional becomes negligible, hence this region
describes an ideal gas in an external trapping potential.

(b) Ngoq ~ 1: The GP case.
All terms in the GP functional are of the same order. In regime 1, this region cor-
responds to the scaling A ~ €& [ |y(y)|* dy, while one requires gyq ~ (L)~ 2e ™2V
to reach it from regime 2. In this region, BEC occurs in the ground state wév L€
of H ]Z{,‘J}Lﬁ’ 4- More precisely, [164, Theorem 1.3] states that in the limit N — oo

and € — 0 with Ng and L fixed,
Tepaqeey [rymae — [BETXEN@ET X 0, (1.66)

where ®F(z) denotes the minimiser of Sg;gpéfd from (1.60).

(¢) Ngoq > 1: The Thomas—Fermi case.
The gradient term in the GP functional becomes irrelevant, hence the GP func-
tional simplifies to the 2d Thomas—Fermi functional.

In contrast to the 1d problem, these three regions cannot be understood as subdivisions
of the regimes 1 and 2 but all can be reached from both regimes. This situation is
different from the 1d case since the splitting into regimes 1 and 2 depends on the
parameter | In(gyq(cL)?)|, whereas the relevant parameter for the 2d GP functional is
Ngoq. In contrast, in the 1d case, the regimes 1 and 2 are characterised by the size of
92d4/014, which is at the same time the relevant parameter for the functional (1.45).

1.4. Effective dynamics of the condensate wave function

Monitoring the dynamical behaviour of a condensed cloud after being released from
a trap is an important method in the experimental analysis of BECs. To understand
and predict the dynamics of a dilute Bose gas at zero temperature theoretically, one

must essentially solve two problems:
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e Persistence of BEC. Assume that the Bose gas initially exhibits BEC (which is
given if the gas is initially prepared in the ground state of a suitable external
trap). Show that the gas remains in the condensed phase under time evolution
if the trap is varied or completely removed.

e Fwolution equation. Derive an evolution equation for the condensate wave func-
tion, starting from the N-body dynamics. Since a macroscopic fraction of all
particles occupies the condensed state, this provides an effective description of
the dynamics of the Bose gas.

The second question has been thoroughly discussed in the physical literature, and we
begin this section by reviewing the standard formal derivation of the time-dependent
GP equation. The main references for this part are [80, Chapter 11], [129, Chapter 5],
[145, Chapter 7], and [153, Chapter 5|. Subsequently, we formulate the two problems
in precise mathematical terms and give an overview of rigorous results. Finally, we
explain in detail the stragety of proof developed by Pickl in [150, 151].

1.4.1. Time-dependent Gross—Pitaevskii equation

Let us consider the Hamiltonian Hy(¢) from (1.2) with interactions wy from (1.25)
in the GP scaling regime, i.e.,

HN(t) = Z (—Aj + VeXt(t,J}j)) + ZQUN(l‘i — .7,']') s

N
j 1<j

—_

J]=

where we admit time dependent external potentials V() to model the spatial varia-
tion of the external trap. To formally derive an evolution equation for the condensate,
one absorbs the correlation structure into the effective interaction potential (1.32) as
for the static problem and considers the Hamiltonian H°%(¢) (1.33),

N
Heff(t) _ Z (_Aj + VeXt(t,l‘j)) + % Z(S(J?Z - xj),

7j=1 1<J

acting on a product state N = ®N. Recall that the Schrodinger equation for a
Hamiltonian H = —Aga + V on L?(R?) can be obtained from the action principle

to
5/Ldt:0
t1
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1.4. Effective dynamics of the condensate wave function
for the Lagrange function L = [p, % () dz with Lagrange density
L= V-V + Vi — = (§9 =) |

where 1j; = 0n;/0t for g1 := 1), ny := 1. Considering ¢ and ¢ as two independent
fields, the action principle leads to the Euler-Lagrange equations

d 0. d 0% 0%
—_— —_— — :07 >: ]_727 167
dt 8nj Z dzy, o (g%) 877]' J ( )

which yield the Schrédinger equation and its complex conjugate.

Let us derive the Euler—-Lagrange equations corresponding to the effective Hamilto-
nian H°f(¢) under the assumption that the N-body state factorises as 1™V (t) = ¢(t)®V.

Denoting x = (z1, ..., Zx ), one computes the resulting Lagrange function as

N
L = /<Z(lvmjw|2+ve’“<t,xj>|¢|2)

Rr3N J=1
00§ ot (05
Pl —Z(ww—w))dx
N _ Uy _ i
~ N/(V(p-Vg0+Ve t(t,x)g090+2()@2902—2(90</?—90</?)> dx,
R3

which reduces to a Lagrange function depending on the fields ¢, @ and their respective
derivatives. The Euler-Lagrange equation (1.67) for @ is

ige(t) = (A + V() + Ul (t)]?) e(t) (1.68)

which is known as time-dependent Gross—Pitaevskii equation, named after the two re-
searchers who independently discovered it in 1961 [90, 152]. It is an effective equation
which asymptotically describes the dynamics of an interacting Bose gas. The descrip-
tion is valid for sufficiently large particle numbers N and under the assumption of
BEC. It requires high dilution as well as sufficiently low temperatures such that the
thermal depletion of the condensate is negligible. Under these conditions, the GP
equation correctly predicts the behaviour on length scales much larger than the scat-
tering length, while it is not suited to describe phenomena over microscopic distances
comparable to the scattering length.

To conclude this section, note that above derivation can only be valid on a formal
level. First, we replaced Hy(t) by H(t) without any control of the approximation,
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i.e., without proving that the time evolutions generated by Hy(t) and H®%(t) are in
any sense close. Besides, to have a well-defined time evolution generated by HeT(t),
one needs to choose a self-adjoint extension of H" () on an appropriate domain with
specific boundary conditions. Note that in our formal derivation of the Euler—Lagrange
equations, we simply treated the J-operator as multiplication operator. A more de-
tailed analysis of the problems arising from using H°% (¢) is given in [129, Chapter 5.2].
For a comprehensive analysis of N-body systems interacting via point interaction, we
refer to [55].

Second, by using the product ansatz ¥ (t) = p(t)®V, we tacitly assumed that the
first of the two questions mentioned at the beginning of this sections was answered
in the affirmative, namely, that condensation is preserved by the the time evolution.
Moreover, the splitting of the correlations from the condensate wave function by choos-
ing an appropriate effective interaction requires a more careful justification.

1.4.2. Time-dependent NLS and Hartree equation

Let us formally derive an effective equation for the Hamiltonian Hy g(t) with interac-
tion wy g for f € [0,1) as in (1.24). To this end, recall that the inter-particle corre-
lations vary on a length scale that is much shorter than the range of the interaction,
hence they become invisible for sufficiently large N (see Section 1.2.4). Ignoring the
correlations and assuming a factorised N-body wave function, the interaction energy
contributed by two particles in the state p®? is given by

Eint(2) = (@(x1)p(x2), wn g(z1 — 22)p(x1)0(22)) = (@, wn,sx|0[*¢) .

As before, one argues that the gas is sufficiently dilute that the total interaction energy

equals N(]gfl)Emt(Q). Consequently, for sufficiently large N, the total ground state

energy is

ex 1
EoN) ~ N [ (I90@P + V= @lo@) + 58 V) o) @l ) do.
In formal analogy to the GP functional, this leads to the effective dynamical equation

iGo(t) = (—A+ V() + 770 p(t) = hOp(t), (1.69)

where we introduced the abbreviation

w0 = N3Bu(NBY « (1) (1.70)

38



1.4. Effective dynamics of the condensate wave function

For 8 = 0, this reduces to the N-independent Hartree equation,
ido(t) = (A + V() +w = [p(t)]?) o) . (1.71)
For 5 € (0,1), the effective interaction potential w?® is N-dependent. However,
07 = ||w]| s ()P as N = oo

for sufficiently regular ¢(t), hence (1.69) becomes the (time dependent) NLS equation

ifio(t) = (A + V() + |l s le () P) o(t) - (1.72)

Alternatively, one can derive (1.72) analogously to the GP case. Since the Born ap-
proximation is applicable to wy g, the parameter of the resulting effective J-interaction
is given by

Uy =8rNay — |[w|1msy as N — oo,

which follows from (1.27).

1.4.3. Rigorous derivation of the effective dynamics

To rigorously derive an effective description for the N-body dynamics generated by
the Hamiltonian

N
Hyp(t) =Y (=85 + Vi (tz)) + D> wnplei—x;),  Be[01],
j=1 i<j
it has proved successful to answer the two questions raised at the beginning of this
section simultaneously. Besides, it is more convenient to work in terms of reduced
densities than to argue on the level of the many-body wave function.

In mathematical terms, the problem is the following: Assume that at time ¢ = 0,
the N-body state ¥’ exhibits complete asymptotic BEC in the state ¢g. Let 1V (¢)
denote the solution of the N-body Schrodinger equation with initial condition wév ,
and let ¢(t) denote the solution of the effective equation with initial datum ¢g. The
goal is to show that ¥ (t) exhibits BEC in the state ¢(t), i.e., that

- (1) _ - W _
Jm Tr oy s = feo){pol| =0 = lm Tr|yy, = le(®) ()| =0.  (1.73)

The rigorous derivation of such statements has been a very active field of research
in mathematical physics, and a variety of mathematical methods have been applied
to this problem. Several lecture notes reviewing different approaches are available,
for instance [22, 81, 159, 162]. In the following, we will give a brief overview of the
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different strategies and comment on the corresponding results, although without any
claim to completeness.

BBGKY approach

The Bogoliubov—Born—Green—Kirkwood—Yvon (BBGKY) approach starts from the Hei-
senberg equation for the density matrix of an N-body state ¥"V(t). By tracing out
N — k particles, one derives an evolution equation for the k-particle reduced density

(k)

matrices y ;N ) which yields the so-called BBGKY-hierarchy of N coupled equations.
Since the BBGKY approach is based on an abstract compactness argument, it does
not provide explicit error bounds.

The idea of using the BBGKY hierarchy in this context is due to Spohn, who derived
the Hartree equation for bounded pair potentials in [174]. Spohn’s approach was used
by Bardos, Golse and Maurer in [16] and by Erdés and Yau in [68] to derive the
Hartree equation for Coulomb-like potentials, and by Elgart and Schlein in [62] for
bosons with relativistic dispersion relation. It was extended by Erdd&s, Schlein and
Yau to interactions wy g with larger scaling parameters in [64, 65, 66]. A different
and shorter proof of uniqueness of the hierarchy was provided by Klainerman and
Machedon in [105]. Bosons in a quadratic trap were considered by X. Chen in [44].

In [67], Erdé8s, Schlein and Yau extended their result to the case § = 1, using again
the BBGKY approach with the difference that the solution to the respective infinite
hierarchy includes correlations. Part of their proof was simplified by T. Chen, Hainzl,
Pavlovi¢ and Seiringer in [43].

Concerning low dimensional bosons, the BBGKY approach was used by Adami,
Bardos, Golse and Teta in [1, 2] to derive a 1d NLS equation for scalings 8 < %, and
by X. Chen and Holmer in [46] for the 1d focusing case with 8 € (0,1) and in [48] for
the 2d focusing case with 8 € (0, %)

Finally, X. Chen and Holmer applied the BBGKY method to derive effective 1d and
2d equations for 3d bosons in highly anisotropic traps [45, 47] (see Section 3.1.3).

Second quantised approach

Based on the works by Hepp [94] and Ginibre and Velo [77, 78] on classical limits of
bosonic systems, another approach was developed by Rodnianski and Schlein in [158]
and further improved in [42] by L. Chen, Lee and Schlein. The idea is to represent the
many-body system on a Fock space and study the time evolution of coherent initial
states, which also yields an explicit rate of convergence. In [21], Benedikter, de Oliveira
and Schlein extended this method to the GP scaling regime. Recently, Brennecke and
Schlein improved it for the GP case and N-body initial data to yield an optimal rate of
convergence [39]. For 2d bosons, an NLS equation was derived by Kirkpatrick, Schlein
and Staffilani in [104].
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1.4. Effective dynamics of the condensate wave function

Further approaches

We postpone the method by Pickl to the next section, since it is used in this the-
sis and therefore explained in detail. Apart from this, let us mention the approach
suggested by Frohlich, Graffi and Schwarz in [73] and the related works [74, 75] by
Frohlich, Knowles and Schwarz and Frohlich, Knowles and Pizzo. Moreover, semiclas-
sical methods were applied by Ammari and Nier in [7], by Ammari and Breteaux in
[5], and by Ammari, Falconi and Pawilowski in [6]. For more details, we refer to the
lecture notes [22, 81, 159, 162] reviewing the different approaches.

1.4.4. First quantised approach by Pickl

The approach developed by Pickl in [148, 150, 151] is formulated in the first quantised
N-body setting, and, as a by-product, yields an explicit (but not optimal) estimate
of the rate of convergence. The main idea for Hartree and NLS scaling regime is to
define a functional

a:Rx D2RY) x IR 5 RE, (0N (1), 0(t) = alt, 0V (1), 0(t) = alb),

such that a(t) counts the (suitably weighted) relative number of particles in 1™ (¢)
that are outside the condensed phase. After proving that convergence of a(t) to zero
is equivalent to condensation at time ¢, one derives an estimate of the form

da(t) S Ct)alt) + o(N)

which yields (1.73) by means of Grénwall’s lemma (Lemma 1.4.3). Since a(t) can
only be controlled if the argument ¢(t) of « is the solution of the corresponding
NLS/Hartree equation in the limit N — oo, this implicitly proves the respective
effective evolution equation.

For the GP scaling regime, the central idea of the proof is closely connected with the
heuristic derivation of the stationary GP equation in Section 1.2.5: using a modified
counting functional, one effectively replaces the very singular GP interaction wy by a
softer (but still singular) potential UE in the NLS scaling regime, which is defined such
that its scattering length asymptotically coincides with the scattering length of wy.
Roughly speaking, the NLS result covers the auxiliary potential U 3 and it remains to
control the remainders from this substitution.

Before describing this strategy of proof in more detail, let us give an overview
of the results obtained using Pickl’s approach. In [149], Pickl covered interactions
without positivity condition for 8 < %, which was extended by Jeblick and Pickl
in [98] to potentials in the GP regime with sufficiently small negative part. Knowles
and Pickl [106] proved convergence of the reduced densities for bosons in the Hartree
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regime with singular interactions. Mitrouskas, Petrat and Pickl [135, 134] improved
this to convergence with respect to the energy trace norm, obtaining an optimal rate
of convergence, and Anapolitanos and Hott [8, 95] generalised the analysis to a larger
class of kinetic terms. Mixtures of condensates were studied by Anapolitanos, Hott
and Hundertmark [9] and by Michelangeli and Olgiati [132, 140], who also considered
spinor condensates [131, 133]. The dynamics of a tracer particle interacting with an
ideal Bose gas was studied by Deckert, Pickl, Frohlich and Pizzo in [53], who also
considered high density Bose gases in a large box [54]. In [146], their result was
improved by Petrat, Pickl and Soffer.

Moreover, the approach was successfully applied to low dimensions: in [97], Jeblick,
Leopold and Pickl derived the time-dependent GP equation for 2d bosons, and an
effective focusing NLS equation for 2d was proved by Jeblick and Pickl in [99]. Finally,
effectively 1d and 2d equations for strongly confined 3d bosons were derived by von
Keler and Teufel in [100] and in the three projects [33, 32, 35| of this thesis (see
Section 3.1).

Hartree and NLS regime

The functional a can be understood as a measure of the relative number of particles
which do not occupy the condensate state ¢. To implement this mathematically, one
introduces projectors onto the condensate wave function and its orthogonal comple-
ment.

Definition 1.4.1. For any ¢ € L*(R3), let

¥ = o) (¢l , q” = Tpo(psy — p7

denote the projectors onto ¢ and its orthogonal complement. With this, we define the
projection operators on L?(R3N)

pr=10--01ep*®1e---®1, ¢ :=1pgw —p/
-1 N=j

for 5 €{1,...,N}. Further, for 0 < k < N, define the many-body projections

1
Y. ® Y o_ ¥ ® ® (2
re= 3 1a1er = (N — k)!k! 2 Uo1) " ok)Po(k+1)" Pa()
JC{1,..,.N}jeJ 1¢J oE€B N

|J|=k

and P,f =0 for k <0 and k > N. For any function f : Ny — Rar and d € 7, define
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1.4. Effective dynamics of the condensate wave function

the operators fs\o, Ep el (LQ(RgN)) by

__ N-d
fe=> fmP¢,  f5=> fG+d)PY

k=0 j=—d

Obviously, ngvzo P? =1, which implies that
N2 =y 2 2 G =y 2 KR = (07 (1.74)
j=1 k=0 j=1 k=0

for the weight function

As a consequence, the expected relative number of particles outside ¢ in a symmetric
N-body state " € Li(R?’N) is given by

a(@, @) = (vV,afe") = (¥, (@9 . (1.75)
Note that since ¥ is normalised,
a(N, ) =1 — (N, pfyN) = <¢,VLIJ3¢>L2(R3) .

Hence, the convergence a (¢, ) — 0 as N — oo is equivalent to complete asymptotic
condensation in the state ¢ by Lemma 1.2.2c. In particular, if the initial N-body state
@ZJ(J)V exhibits BEC in ¢, this implies

lim a(yg, ¢o) = 0.
N—o0

In fact, one has the freedom to choose any positive power of n(k) as weight in the
counting functional (see e.g. [100, Lemma 3.1)):

Lemma 1.4.2. Let {¢V}n be a sequence of normalised N-body wave functions such
that YN € L2 (R3N) and let p € L*(R3). Define

as (", ¢) = (v, Fe ™))
for any weight function f : Ng — ]Rar. Then the following statements are equivalent:

(a) A}im na (YN, 0) = 0 for some a > 0,
—o0

(b) A}im ana (YN, ) = 0 for any a > 0,
—00
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(c) hm TI'L2(R3) ’)’wN ) (¢l = 0.

In conclusion, the functional i« counts the relative number of particles outside the
condensate weighted with n®(k), where the power a may be chosen for convenience. To
prove persistence of condensation, one chooses a suitable weight function f and shows
that the respective functional a s (¢, % (t), (t)) satisfies a Gronwall-type inequality at
time ¢ > 0. Here, the second argument 1V (¢) of ay is the solution of the N-body
Schrodinger equation, E@DN( ) = Hng(t)y¥N (t), and the third argument o(t) is the
solution of the respective effective equation

Siolt) = heOp(t) i= (= A+ V(1) + 70 (1)

with @#® from (1.70).

While the weight n? as in (1.75) is a good choice for the Hartree case, it is not
suitable to derive a Gronwall estimate for larger values of 8. In this case, the Hartree
counting functional (1.75) needs to be modified in two respects, whose necessity will
be explained below when we sketch the proof.

e In addition to complete asymptotic condensation of the initial data, one assumes
that
W
hm ‘EWON 5(0) =&

£ ] =0, (1.76)
where E»quj\v,(ﬁt) (t) = % (¥ (1), Hy,s(t)N () denotes the energy per particle and
5%0(t)
lwy, £ [t
9= % |]wN75||L1(R3). If 9} is close to the N-body ground state, this assumption

(t) denotes the GP functional (1.31) where the parameter a is replaced by

is physically motivated by the heuristic arguments given at the begmnlng of
Section 1.4.2. Note that for a time-independent external field, both EgN (Bt) and
©(t)

sl 2T€ constants of motion. The energy difference (1.76) at time ¢ is added

to the counting functional, resulting in

(v @ rOu ) + 0w -0 o)

llwn,gllx

Since both terms are non-negative, this expression converges to zero as N — co
if and only if both complete condensation and the property (1.76) are preserved
at time ¢, given the weight f is chosen appropriately in the sense of Lemma 1.4.2.

e One chooses the weight n instead of n? and modifies it by a smooth cut-off for
small k. More precisely, one uses the weight m, which is defined as

mk) = {n(k‘) for k > N1=%¢ (1.77)

% (N_1+§k + N‘S) else
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for some ¢ € (0, 3). Since
n(k) < m(k) < n(k)+ %N_g,

the functional o, converges to zero as N — oo if and only if «,, converges to
zero, although the rate of the convergence differs by %N -<,

In conclusion, we use for the NLS scaling the counting functional

N
O (10 (1), 0(0)) = (0¥ (0, OV ) + B O @) - £ 0] 07
which satisfies
Jim Tr ’wa — lp(t) w\) =0
lim ag,, 69N (0, 0(t) =0 < > (1.79)
N—oo >N, lim ‘E“’ (1) — &2 )( ~0.
N [ Fwn s w5l

As a consequence, the asymptotic closeness of the energies at time ¢ > 0 comes as a
by-product of proving that complete condensation is preserved in time.

Since Gronwall’s lemma is at the core of the proof, let us recall its statement (see
g. [70, Appendix B.2.j]):

Lemma 1.4.3. Let n be a non-negative, absolutely continuous function on [0,T] such
that

dn(t) < () +g(t)  for ae t €[0,T],

where f and g are non-negative, summable functions on [0,T]. Then

t
n(t) < | n(0) + /g(s) ds | elo F(=)ds for all t € [0,T7.
0

In the NLS case, both terms in the functional a?wN 5 contribute to the time deriva-
tive of ang 5 Differentiating the energy term yields for almost every t the estimate

BN O() — gﬂ@t) ”

dt‘ WN,B |ngH1
d wN() w(t)
& (B 0w -l )]

|
B '( oV (). Vo) (1)) — (1) VD))

, (1.80)

L2(R3)

where the first equality holds by [117, Theorem 6.17] for almost every ¢ if the map
(E;ZU)N (;)( t) — g (t)) is continuous. This imposes on the external field the

lwn gl

45



1. Introduction

condition that the map t + V¢ (¢) be C'.

The second contribution to the time derivative of a?wN 5 is of the same form as %a
in the Hartree case. For simplicity dropping the time dependences and indices p(t),
one computes

i v 7o)
- <<¢N [HNﬁ—ZhJ,f >> (1.81)

— —N(N- <<q/)  Zn gl 22) FoN ) (1.82)
= —N{N-1) 3« Noaipa(f — F0)Z B(fﬂlafﬂz)Plpr» (1.83)
N = )3 (0N qrea(F — Foyunsler —ppo™)  (184)
2NN = DS (0, a1ga(F — Fo)Znplan — e2)pra™ ) (185)

where
Zn (w1, 12) = wn g(x1 — 22) — g (@D (21) + TV (22)) . (1.86)

To compute %f, note that %pj =1i[pj, hj], hence

&l

R R N
le[f?zhj]
j=1

To obtain (1.83) to (1.85), one inserts identities 1 = (p; + ¢;)(p; + ¢;) on both sides of
the commutator and uses the symmetry of ¥/ as well as the identity

QMfATIijQV = Quﬂjﬁ—u@u y

where Qo = pip2, Q1 € {P1g2, (1p2}, Qo := q1¢g2 and T;; denotes an operator acting
non-trivially only on coordinates i and j (e.g. [32, Lemma 4.2b])%. Note that the
differences f — fy in (1.83) to (1.85) can be understood as operators that are weighted,
in the sense of Definition 1.4.1, with the derivative of f(k). For example, we obtain
n (1.83)

N

q1p2 (]? I- ) —Q1p2<§: 1))Pk+f(0)P0) =aqp2 > f'(k)P,

k=1 k=1

where f’(k) denotes the discrete derivative of f with respect to k. For the weight

5For convenience of the reader, we refer as far as possible to articles of this thesis. This does not
imply that these statements were originally proven there.
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1.4. Effective dynamics of the condensate wave function

f(k) = n%(k) = k/N, we find |f'(k)| = N~!, hence ||f — f_lHop = N~ In contrast,
the derivative of the weight f(k) = n(k) = \/k/N diverges as k — 0. This is the
reason why one introduces the cut-off &, which softens this singularity such that one
can derive the estimates Hf— ]?_1||Op < N~ and ||(J?— f_l)qld)NH <N (eg [32,
Lemma 4.1]). Analogous results hold for f— f,g.

Let us now analyse the four contributions (1.80) to (1.85) to the time derivative
of the counting functional. For simplicity, we will only discuss the problem of purely
repulsive interactions, i.e.,

wyp(z) >0 forall z € R®.

As mentioned above, the method has been extended to include attractive interactions
and repulsive interactions with a certain negative part, but this is beyond the scope
of this discussion.

o Energy term (1.80).
Recall that this term appears in the NLS regime, while it is not present in the
Hartree case. It contains exclusively interactions between the bosons and the
external field V!, which makes it the easiest term to control. The main idea is
the observation that for any f € L (R3),

(07, e ) = (o @) o | S Il ees) (0, 20) (187)

(e.g. [32, Lemma 4.7]). Hence, for an external field with bounded time deriva-
tive, (1.80) is small if the N-body state is close to a condensate.

e (qp—pp) term (1.83).
Note that ¢;@?® (z2)p; = 0, hence (1.83) contains the difference

P2 <(N — Dwy,g(ar — z2) — 070 (1‘1))192

between the true pair interaction wy g and the effective one-body interaction
potential w*®. Since

(N = Dpown g(z1 — 22)p2
= (N = Dlp(w2)) (p(w2), wnp(x1 — z2)p(w2)) (p(w2)| = Xt WD (21)ps,

this difference converges to zero as N — oco. Since || (J?— f_l)qle < N~lin both
NLS and Hartree case, we conclude that (1.83) — 0 as N — oo. This indirectly
proves that the time evolution of ¢(t) is determined by a non-linear equation,
whose non-linearity may differ from the non-linear term @w#® in (1.69) at most
by o(1). In particular, this includes the N-independent NLS equation (1.72)
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with non-linear term [|w| 2(rs)|e|?.

(1.84) and (1.85), Hartree scaling.

Both terms can be estimated by straightfoward applications of the Cauchy—
Schwarz inequality, using that ||g19™ |2 = (v, 7)) < a(t, 9", ¢). The pre-factor
of order O(N?) is essentially cancelled since ||wy g—o| 2wy SN ~1 and because
Hf— f_d||0p < N~ The full argument is given in [150].

(qq—pp) term (1.84), NLS scaling.

For 8 > 0, an estimate as in the Hartree case does not suffice. Among other
38 .

< N7 7% is not small enough to compensate for

~

obstructions, [|wx gl 72(r3)
the pre-factor. One solves this by integration by parts, exploiting that the anti-
derivative of wy g is less singular than wy g. Heuristically speaking, shifting
one derivative from the strongly peaked interaction to the N-body wave func-
tion yields an improvement because the great majority of particles occupies the
condensate wave function, which varies slowly in space. In the course of the
integration by parts, derivatives Vy fall upon projectors p; and ¢ as well as on
the N-body wave function ¥V, In the first case, note that Vp = |V¢){(¢|, hence
|Vip1llop = O(1) for sufficiently regular ¢. To control ||V1%]|, one observes
that
EYL @) > [V |2 = (N, vt m)w )| > (1Vig]E - 0(1)

wN7[3
N
because wy g > 0 and if V' is assumed bounded. Since EZﬁng (0) is of order
O(1) and the time derivative depends only on the N-independent quantity V<!,
this yields the a priori bound ||V14"| < 1, which is sufficient to control (1.84).

(pg—qq) term (1.85), NLS scaling.

Following the same strategy of integration by parts, one finds that above a priori
estimate is not sufficient, but a better control of the kinetic energy ||V1q19"||?
contributed by a particle outside the condensate is required. More precisely, one
needs a bound of the form

V1™ € a8y, , (0", 0) +0(1) . (1.88)

To this end, one first proves that

N
Bions = € o) 2 V192 = [[Vel? = o(1) . (1.89)

wN,p lww, sl

Now one inserts the identity p; + ¢ after V1, expands the scalar product and



1.4. Effective dynamics of the condensate wave function

observes that
IViprp V1 = (IVell® = Vel 2 lpe™ |12 = [Vell® S lar™]1* = (o, n%p™)
and that

(™, p1 (=A@ )| = ’«ﬁ%?ﬁle(—Al)fhﬁé?PN»‘ < HA1P1HopHﬁ%¢NH2
IVellPllawl* = (N, apV) Vel < (", ap™)

since g1 = n? in the sense of operators on L2 (R3) as in (1.75). Together, this
yields
Lo

wns ~ Sl gl

> IVigN P = (N, ™) — (N, 22N ) — o(1)
> ViV )P = (N, meN) - o(1)

which, by definition of ang’B, is precisely the bound (1.88). In conclusion,
this estimate is only possible because the energy term is part of the counting
functional and because the weight m is chosen such that m(k) > n(k) for any k,
which, in particular, excludes the Hartree weight n2. This finally motivates the
form (1.78) of the counting functional.

Altogether, the estimates of the four terms lead to the inequality

G afn, L0V, 00)) S gy, , L0V, 00) +o(1)

which concludes the proof by Lemma 1.4.3 and the equivalence (1.79).

GP regime

For an interaction wy in the GP scaling regime, the functional ang

)

cannot satisfy
a Gronwall inequality. This can be seen from the (pp—pq) term (1.83) in the time
derivative of asz, which contains the difference between the full pair interaction wy
and the effective interaction potential, now given by 8ma|p|?. As explained above,
this term is only small if the non-linear term in the effective equation differs from
w1 = N3w(N-) * |¢]? ~ Jwll 11 r3)lel* at most by o(1). However, [Jw||L:gs) is
precisely the first order Born approximation by to the scattering length a, and we
argued in (1.28) that the difference between by and 8ma is of order one.

The functional a  is no suitable counting functional for the GP scaling regime

SwN
because it counts the (weighted) relative number of particle outside p®~. However, due
to the inter-particle correlations, the condensate is no product state, and one should

instead count the particles outside the correlated state 2 (1.20). Although this is
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also true in the NLS scaling regime, it becomes relevant only in the GP regime, where
the difference between p®V and 2 is visible on the length scale of the interaction
in the limit N — oo.

Consequently, one requires a new counting functional that takes the correlations
into account, similarly to the heuristic derivation of the GP energy functional (Sec-
tion 1.2.5), where the correlations were absorbed into the effective ¢ interaction (1.32).
To describe the correlations, we use an auxiliary function fg € CH(R3), which asymp-
totically coincides with the scattering solution jy on suppwy and equals one for
sufficiently large |z|. It is defined as the solution of the zero energy scattering equa-
tion of wy — UE’ where U 5 is an auxiliary potential which is constructed such that the
scattering length of wy — Ug equals zero:

Definition 1.4.4. Let 3 € (0,1). Define

{N”E}Ea for NP < |z] < R=,

0 else,

where RE 1s the minimal value in (N*E, oo] such that the scattering length of wy — UE
equals zero. Let f5 € CL(R3) be the solution of

< — A+ J(wn(2) — Ug(z)))fg(z) =0 for|z| < R,

f5z) =1 for |z[ = Ry,

(1.90)

and define
gg =1 fg

Using f,g instead of jy has the technical advantage that 9z and V fﬁ are compactly
supported. To modify the counting functional such that the role of @®V is taken by
the correlated state Hévzl () [T1<par<n fg(q:k — 1), one substitutes the first term
of ang by

(™, me) = <<wN, [T 300 — a)m [ ] £ — xs>wN>>

k<l r<s

(o V) = NV = DR (¢, g5 — z2)@e" ) . (191)

Q

Here, we used the symmetry of ¥V (t) = v, expanded both products by writing fg =
1-— 95 and kept only the terms which are at most linear in 95

Note that the substitution reproduces the original functional up to a correction term.
This additional expression plays a crucial role: it effectively leads to the replacement of
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1.4. Effective dynamics of the condensate wave function

wy by U 5 f-ﬁv in the time derivative of the new functional, especially in the problematic
term (1.83). To demonstrate this, let us consider the case N = 2 with V&' = (.
Abbreviating Zélz) = wa(z1 — 22) — 8ma(lp(z1)|> + |p(z2)|?) analogously to (1.86),
and with the notation F(1?) := F(z; — x5) for any F : R® — R, we obtain

BB = o[, ] ) — -2 o, 47 m).
2 (o o)) = 2afe. (o0 2] wV)
+23((", (wly? U[g”)) f;” 4V, f(12 m)w».

Adding these expressions and using that 95 = 1 - fg, we observe that the term

<<z/JN Zs (12) maN >> cancels. It remains, among other contributions,

—23 <<wN, ( §2 707 — sra(lp(en)” + |90(I’2)|2)> ﬁmpN» . (1.92)

This is precisely (1.82) with wy replaced by U 3 fB, which can be seen as follows: Since
E € (0,1), Ugfg is a potential in the NLS scaling regime”, hence its scattering length
is asymptotically given by the Born approximation HUBfBH r1(r3)- This expression
asymptotically coincides with the scattering length of wy because

/Ug(x)fg(x) dz = /U}N(SU)fB'(l‘) dr ~ /wN(x)jN(:c) dz = 8man

R3 R3 R3

by construction of fg, which asymptotically equals jy on suppwy. Consequently,
the coupling parameter for the non-linear evolution generated by Ug fg equals 8ra,
which implies that (1.92) can be controlled by the result from the NLS regime. It only
remains to prove that the remainders from the substitution vanish as N — oo. In this
sense, the mathematical understanding of interactions in the NLS regime is a crucial
ingredient for obtaining an effective description of the dynamics the GP regime.

Let us remark that the underlying physical idea of this replacement is the same
as in the heuristic derivation of the GP energy functional (Section 1.2.5): to leading
order, a sufficiently distant and low-energetic particle does not resolve the difference
between two scattering potentials whose scattering lengths are (asymptotically) equal.
Recall that the heuristic argument consists of a two-stage replacement: first, one
replaces the interaction wy with a softer interaction U®T with the same scattering
length for which the Born approximation holds — however, without control of the
approximation. Second, U is replaced by Uy/Nd(x), where Uy = 8ma. Again, this is

"In fact, U[;fg is not exactly of the form N71+35w(NE-). Hence, one must slightly enlarge this class
of potentials, as is in Definition 3.1.3.
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far from rigorous, and the mathematical problems coming with the replacement by a
d-interaction are sketched at the end of Section 1.4.1. In a sense, Pickl’s method can
be understood as a rigorous version of these heuristics: the role of U? is taken by Us,
and the control of the remainders provides the missing control of the approximation;
subsequently, the full proof for the NLS regime takes the place of the second stage of

the replacement.

Proving that the new functional (1.91) converges to zero as N — oo is only meaning-
ful if the correction term vanishes in the limit, since this ensures the equivalence (1.79)
for the new counting functional. Therefore, one replaces m by the weighted many-body
operator 7 defined as

7= mbpips + M (p1a2 + @1p2) | (1.93)

where m® and m? denote the operators corresponding to the weight functions
m(k) = m(k) —m(k+1),  mb(k) := m(k) —m(k+2).

When replacing m by 7 in (1.91), one gains an additional projection p;, which allows
the estimate of g[%u)pl instead of g[%u). Besides, m?®(k) and m?(k) can be understood
as discrete derivatives and thus, as explained above, compensate for powers of V.
Note that the change m — 7 does not affect the replacement of wy by U 3 because one

can show that [Z](\}Q),T/fb] = [Z](\P),?] (see e.g. [32, Lemma 4.2d]). Hence, the counting
functional for the GP scaling of the interaction is defined as

Ay (0, 9) 1= 0 (66N, 0) = N(N = DR (0, g5(e1 — 22) 120N ) (1.99)
with ag,, = asin (1.78).

Following the steps sketched for N = 2, and for simplicity dropping again all time
dependences and indices ¢(t), the time derivative of ag ., is bounded by

| ey (60N, )] (1.95)
S o v o), [+ Ve 2050 o
+NS <<¢N (@) Pgg 7o » +N%S <<¢N 95 Pz N >> (1.97)
+N2G <<¢N (V1 ggQ)) ViryN >> (1.98)
NS (g, g1 [|go<x3>\2,ﬂw>> N ([0, gl [l 7w ) (1.99)
+N4S <<z/;N, 957wy WV» (1.100)
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1.4. Effective dynamics of the condensate wave function

#8230, g0 [lp(an 2, 7] 0 (1.101)

where we used the abbreviation

2.7 = (Uzf3)(er - e2) = {4 (le(@)” + p(@)])

Let us analyse the different contributions:

e NLS term (1.96).
The first part of (1.96) is exactly the energy term (1.80), and the second part
equals (1.82) with interaction potential UE fg. However, one cannot immediately
use the result from the NLS case, since it relies on the energy estimate (1.88).
Note that although the GP interaction potential is in (1.96) replaced by a poten-
tial in the NLS scaling regime, the dynamics of the N-body wave function 1~
are still generated by the GP Hamiltonian. For these dynamics, |[Viq9?| is
not asymptotically zero because the microscopic structure described by fﬁ varies
on the same length scale as the interaction and thus contributes a kinetic energy

of O(1).
Since this kinetic energy is localised around the scattering centres, one can show
a bound similar to (1.88) for the kinetic energy on a subset A; C R3*V, where
appropriate holes around these centres are cut out, namely

114 VigpN[* S ag,, (69N, 0) +o(1). (1.102)

The main tool of the proof is the inequality

(12)

2wy Vil 4+ 4 (0 (0§ = U0?) 0 20 for e D(Vy) (1.103)

([151, Lemma 5.1(3)] and [97, Lemma 7.10]). To show (1.103), one first argues
that the one-body operator H%» := —A+1 > vezn(WN —Uz)(- — 2k), where Z,
is an n-elemental subset of R? with distance between any two elements larger
than QRE’ is for each n € N a positive operator. To see this, one observes

that FB" =11,,ez, fg(' — 21,) satisfies HZ"FEZ" = 0. Besides, recall that H%»

is positive if and only if all of its eigenvalues are non-negative. If H%" had a
negative eigenvalue, its ground state g would be strictly positive, which leads
to a contradiction when considering the scalar product <Fg”, H%mpg).

Using the positivity of H%» for any n € N, one shows that the quadratic form

QW) = 1 cn, VIR + 3 (¥, (wy = Uglp) . v € H'(RY)
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is non-negative: Assuming that there exists a ¢ € H!(R?) such that Q(¢)) < 0,
one identifies a set Z,, and a function yr € H'(R?) such that (xg, H*"xr) < 0
for some n, contradicting the positivity of H%». The function yp is constructed
in such a way that the part of (x g, H%"xr) inside a ball with radius R containing
a sufficiently large neighbourhood of Z,, equals nQ(J) < 0. The decay of xr
outside the ball is chosen such that its positive kinetic energy is not large enough
to cancel this negative contribution, given n is chosen sufficiently large. Finally,

one deduces (1.103) from the non-negativity of Q.

Let us now explain why (1.103) is crucial for the derivation of (1.102). Inserting
identities 1.4, 4+ 1, where A; := R3N \ Aj, one can show with (1.87) that

By = €21 2 LAV P + 1, VioN P — (0N, ") — o(1)
+% <<¢N’ (w](\}Q) _ %‘90(%1)’2> ¢N>> '

The second line contains the difference between the pair potential and the effec-
tive one-body potential, hence, it would be small if wy was replaced by UE or
UE fg. However, simply adding and subtracting UE does not solve the problem

since the remainder &1 (7, (wg\?) -U £12))¢N ) is neither small nor necessarily
non-negative. This is where the inequality (1.103) comes into play: defining B;
as the set where all particles from {2, ..., N} are mutually too distant to iteract
with each other and B; as its complement, one infers from (1.103) that

_ 12 12
1, 1 Va0V 2+ 25 (10", @ — Um0 ) 20, (1104
which follows because 15,9 € D(V1) and since A; is chosen sufficiently large
that it contains a ball with radius RE around each scattering centre. Hence, one
inserts identities 1, + 15 , which yields

ag,, () +o(l) 2 114, Vigr™N ||

g, 15,V 2+ 352 (0, 15, (0ff? - 082

_N-1
2

I

<<wN, 15, ng)wN» — ([N, 8ralp(z) 20N

where we dropped some non-negative contributions. By (1.103), the second line
is non-negative. The last line can be controlled similarly to the comparable terms
in the NLS estimate (1.89) and since the set B is sufficiently small.

Finally, recall that the energy estimate (1.88) enters only in the (gg—gp)-term
(1.85). Hence, one modifies this term by suitable insertion of identities 1 =
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14, + 1z,. The expressions containing 14, can be controlled by (1.102), while
one estimates the terms containing 1z by exploiting the smallness of Aj.

e Remainder terms (1.97) to (1.101).
These terms collect the remainders from the substitution wy — U 3 fE' To control
them, one mainly uses properties of the scattering solution fg, for whose proof

it is crucial that 95 has compact support of diameter ~ N—. To control (1.98),
one integrates by parts, using that the condensate wave function varies on a
much larger length scale than the microscopic structure 95

In summary, these steps lead to the bound

Socuy (EVV(E),0(1) S af,, YN (), et) +o(1) .

Finally, one shows that the correction term in (1.94) is of order o(1), which concludes
the derivation of the GP equation by Lemma 1.4.3 and (1.79).

1.5. Excitations from the condensate

Recall that complete asymptotic BEC implies that a macroscopic fraction of the bosons
occupies the condensate state ¢ € L?(R3), which is mathematically formulated as
the convergence of the reduced density matrices (Definition 1.2.1). Note that this
convergence does not imply that the N-body wave function v is close to the product

RN

state ¥ in any stonger sense than in the sense of reduced densities. This can be

infered from two reasons:

e Since the bosons interact with each other, the N-body ground state as well as the
lower excited states (which are expected to exhibit BEC) feature a microscopic
correlation structure around the scattering centres as in (1.20), which minimises
the energy. To leading order in N, these correlations are not visible in the
reduced density matrix, even in the most singular GP scaling. In contrast, the
difference between the N-body state and a pure product is large with respect to
the L2(R3") norm, and in particular with respect to any stronger norm involving
the energy®.

e A microscopic fraction of the total number of particles can be excited from the
condensate without destroying the state of BEC. While this does not affect the
leading order behaviour of the reduced densities, it has a huge effect on the

8 An argument for the mean-field regime is given in [113, Corollary 2]. For larger values of 3, where
the correlation structure becomes relevant, some more work is required since one needs to prove
that the normalisation factor in (1.20) converges to one.
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L?(R3N)-norm. To motivate this, consider a non-interacting gas, whose ground
state is given by the product state p®V. Naturally, a symmetric N-body state

N

~ 1

¢($1, ""‘TN) = NZCPL(*IJ)SOG?(N_I)(:CM "'7xN\xj)’
j=1

where one particle occupies a state o L ¢ orthogonal to ¢ in L?(R%)-sense and
all other particles are in the state o, fulfils the criterion of complete asymptotic
BEC. However, it is not close to ¢®V in L2(R3V)-sense since

19— VI = 2= 2R (4, 0°)) = 2

for normalised functions ¢, ¢*.

The ground state results such as (1.19) and (1.35) discussed so far, as well as the
dynamical statement (1.73), are related to the behaviour of the (correlated) condensate
wave function. The validity of these results implies that the effects due to the particles
outside the condensate are of higher order with respect to N—1, related to the fact that
it is very unlikely to find a relevant number of such particles in the low energy states.
Hence, to derive the next-to-leading order corrections to the ground state energy and
to obtain a more precise characterisation of the dynamics than in terms of reduce
densities, these excitations from the condensate must be included in the description.

Since the excitations are often described in the language of second quantisation,
we begin with an overview of this formalism and recall the related notation, which
is essentially taken from [22, Chapter 3|. Subsequently, we summarise the results of
Bogoliubov theory concerning the energy spectrum as well as the dynamics of the
excitations. The main references are [134, Chapter 2|, [137], [145, Chapter 8], [146],
[163] and [169].

1.5.1. Second quantisation

To describe bosonic states where the number of particles is not fixed, one introduces
the bosonic Fock space over the one-body Hilbert space $) = L?(2) for some Q C RY,

F- @3- @,

n>0 sym n>0

whose elements are denoted by ¢ = (gﬁ("))nzo. It is equipped with the inner product

<¢a ¢>]~' = ZW)(”)’ ¢(n)>f)" )

n>0
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1.5. Excitations from the condensate

corresponding to the norm

lolr =D N5

n>0

We consider only normalised vectors ¢ € F, hence o™ H%n determines the probability
for the state ¢ to have n particles. States with a fixed number of particles, i.e., Fock
vectors with exactly one non-zero component, are eigenvectors of the number operator
N, which is defined by its action

W)™ = ng™.

The vacuum state is denoted by Q2 = (1,0,0,...).

For f € $, the creation and annihilation operators a*(f) and a(f) are defined as

(@*(/)9) " (@1, o wn) = \}ﬁme)W—%,...,xjuxm,...,xn), n>1
j=1

(a(f)¢)(")(x1,...,xn) = \/n+1/dxf(x)¢(”+1)(:c,x1,...,xn), n>0,

Q

i.e., a*(f) and a(f) create and annihilate a particle in the state f. To write them in
a more compact form, one introduces the operator-valued distributions a}, a, as

(= [dof@a, o) = [T@ e

Q Q

For f,g € 9, creation and annihilation operator satisfy the canonical commutation
relations (CCR)

[a(f),a* (9] = {f,9)5 . la(f) alg)] = [a*(f),a"(9)] = O,
which correspond to the relations
a2, 0] =0(z =), laz,ay] = [a5, 0] =0
of the operator-valued distributions.

The second quantisation dI'(J (1)) of a one-body operator J(!) acting on § is defined
by the requirement that

(s )o) 5 g,
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where J](l) = 1901 @ JO) & 129 denotes the operator on H™ acting as J) on
the particle j and as the identity on all other particles. If the operator J() has an
integral kernel J™)(z;7), its second quantisation is given by

dr(JW) —/dx/dy JW () atay .

Q Q

For k-particle operators J*) acting on 55’_1 with integral kernel J®) (21, ...,z y1, ..., yi),
this generalises to

dI’(J(k)) = /dx1-~-dmk/dy1---dyk J(k)(azl,...,xk;yl,...,yk)aj;l---a;kayk~-~ayl.
Qk Qk

Since the number operator is the second quantisation of the identity, it can be expressed
as
N =dI'(1) = /dxa;ax. (1.105)
Q

The second quantisation dI'(Hy(t)) = Hn(t) of the Hamiltonian Hy(t) from (1.2) is
determined by its action (Hy (t)¢)™ = H(n)( )™ with

n

H](\;L) = Z (*Aj + VeXt(t,l‘j)) + Z wmt(mi — l’j) ,

=1 1<i<j<n

hence

Hy(t) = /dxvxa;vx% /deeXt(t x)ayag + /d:p/dy wmt —y)aya, yayQz -
R3 R3 R3

Note that the parameter N, which enters, e.g., in the interaction if w™ is chosen as
wy or wy,g, is not related to the number of particles of the system, which can take
any value. When restricted to the N particle sector L2(R3V) C F, Hy(t) coincides
with Hy(t) from (1.2).

To describe a uniform Bose gas in a cubic box A with side length L and periodic
boundary conditions, it is most convenient to work in momentum space. The plane
waves L™ 2e~PT for p € A* := 2273 form a basis of L*(A), which leads to the intro-

duction of the operator-valued distributions in momentum space,

a, =a"(e”"") = /dm e Prar ap :=a(e ") = /da: e??a, .
A A

Hence, a,, and a, can be understood as Fourier transforms of a; and a,, which create
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1.5. Excitations from the condensate

and annihilate a particle with momentum p € A*. From the CCR of a, and a}, one
derives the corresponding relations

[ap,a:;] = 0p.q» lap, aq] = [a;,a;] =0.

In this representation, the total number operator is

_ *
N=Y aa,

pEA*

and the second quantised Hamiltonian is given as

N 1 — . .
H= ) |pPaja,+ 273 > wt(p) Y ai, a5 ,akag, (1.106)
peEA* pEA* q,kEN*

where

@(p) = /wmt(az)eip'x dz
A

t

denotes the Fourier transform of w™™. For the choice w™ = wy,3, one finds

— 1 _rp
) = 5 (35) -

1.5.2. Bogoliubov theory for ground state energy and lower excitation
spectrum

At low energies, one expects the lowest-lying single-particle state to be macroscopically
occupied. For the uniform Bose gas in the box A, this lowest state is given by the
plane wave with momentum zero. Macroscopic occupation means that the expectation
value of the number operator counting the particles in the zero-momentum mode is of
order N, i.e.,

No = agag ~ N .

Motivated by this observation, the following approximation scheme was proposed by
Bogoliubov in [29]:

e Since the expectation value of Nj is much larger than [ag, af] = 1, one replaces
a} and ag in (1.106) by v/N (c-number substitution). The resulting Hamiltonian
contains only creation and annihilation operators corresponding to states with
|p| > 0, describing excitations from the condensate.

*

P
which issue from interactions among the excitations. This yields a Hamiltonian

e Subsequently, one neglects all terms that are higher than quadratic in a}, and a,
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which is quadratic in a; and a, for |p| > 0 and contains no operators creating or
annihilating particles in the condensate.

Applying this so-called Bogoliubov approxzimation to (1.106) leads, with the abbrevia-
tion A% := A*\ {0}, to

Z |p\2a*ap + Ew”‘t(O) Z (a;‘(aqa}; — bqk)ak)
pEAL q,keA*

ot * % %k x ok * %
+573 g w™(p) (axa® Jaoao + ayagapao + agapaya_p + apa’ jaoa_p)
pEAT

1 — . . 1 . . )
tomm O UMPageq a0 gy D W (p)ag,at a0

p,qEAT P,gEA]
q7F—p
1 () 1 R
+ﬁ wht(p)ayay_,akao + 33 Z wmt(p)ag.,,ar_,aKag
p,keAT p,q,kENY
k#p k#p,q#—p
N(N —1) N —
~ 573 wint(0) + Z (]p|2a ap + ﬁwm(p) (apap +a* ,a_ p))
pEAj
N — . %
+ Z ﬁwmt(p)( a5, apa_p)
pEA:

where we replaced in the first term the number operator N' = > agaq by its value

qeEN*
N when evaluated on a state with N particles, and applied the Bogoliubov approxi-
mation in the remaining terms. For spherically symmetric interaction potentials w™"

this equals the so-called Bogoliubov Hamiltonian

Hpog = 5+ 0w™(0)
+ Z <<\p|2 + Qwint(p)> a;ap 4 %Qwint(p) (ap ar,+ apa_p)> : (1.107)
peAi

where 9 = 25 denotes the particle density. The first term in (1.107) is the energy
of N particles in the zero momentum (condensate) state. The term proportional to
a,ay is the energy of excitations moving in the mean-field created by the interactions
with all other particles. It describes the process where simultaneously a particle with
momentum p and a particle from the condensate are scattered into the zero-momentum
state and the state p, respectively. The last term corresponds to the scattering of two

condensate particles into a pair with momenta p and —p, and vice versa.
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1.5. Excitations from the condensate

Let us now study interactions w'™(z) of the form

w™ () = Nl_ Tons(@),  ons(e) = N3By(NPz), Belo,1) (1.108)

in a cubic box A with side length L = 1 and periodic boundary conditions, or, alter-
natively, in an external potential V' with characteristic length of order one. Conse-
quently, the density is o ~ N. We assume that the interaction v is bounded, spherically
symmetric and compactly supported. Here, we use a different notation than in (1.24),
where the prefactor ~ N~! was included in wn,3. The reason for this inconsistency
is that the notation (1.24) seems to be standard for deriving dynamical results on the
level of reduced densities, whereas the notation (1.108) is the usual convention for
static and dynamical results in relation with the Bogoliubov approximation. To make
the distinction clearer, we use v instead of w to denote the unscaled interaction poten-
tial. As explained in Section 1.2.4, the case 8 = 0 is the Hartree scaling, parameters
B < % describe a system with mean-field interactions, and the whole regime g < 1 is
referred to as NLS scaling of the interaction.

In the homogeneous case, the Bogoliubov Hamiltonian with interaction (1.108) is

Hp,, = 5500+ Y (1P +3 (%) 50, + 37 () (apa", + apay)) . (1.109)
peAi

where we used that

onp(p) =7 (&)
and approximated % ~ 1. To describe an inhomogeneous gas in an external poten-
tial Ve in R3 with ground state ¢, one uses the position space representation. The

corresponding Bogoliubov Hamiltonian can be written as”

HBog /dxa (h¥(z) + K{ (%)) az

(1.110)
/dx/dy K3 (z,y)aya, + K3 (z, y)axay>
R3
Here,
K{ =¢’K{q¢*,  K3(,):=(¢"®q")K5(,") (1.111)

with ¢¥ from Definition 1.4.1, where K is the Hilbert-Schmidt operator on L?(R?)
with kernel

K{ (z;y) = p(@)on sl — y)e(y),

9See, e.g., [137, Equation (31)].
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and where the two-body function I?g’ is given by

E{(z,y) = p(@)on sz — y)e(y).

Further,
h? = —A+ V™ f oy g |p|? — p?, (1.112)

where we abbreviated
7= un g * || (1.113)

as in (1.70). The phase parameter u% € R is usually chosen as
pe = %/dflf/dylw(w)lz\w(y)lzvzv,g(x —y). (1.114)
3 R3

To motivate this particular choice of u¥, observe that it implies the compatibility
of the energies in the time-dependent setting: under the assumption of condensation
Y(t) = ga(t)@’N, the N-body energy per particle can be approximated as

(N(t), Hupp™ (1)) = %«W(t),iawfv(t)» ~ (p(1),i0ip(1)) p2(ms)

{0 (347 e 0P ) )

2=

which coincides with the effective energy per particle,
(), (A + V=t Gong * |ot)*) o(t)) sy »

for above choice of u#®) ([113, p. 1615]). Note that the operator h¥ in (1.112) coincides
with the expression in (1.69) up to pu¥. As long as exclusively the dynamics of the
condensate wave function were concerned, we could neglect this phase parameter since
it cancels in the reduced density matrix.

Since the Bogoliubov Hamiltonian is quadratic, it can be explicitly diagonalised
by means of a Bogoliubov transformation. To remove the off-diagonal contributions
apa’,
operators satisfying the CCR in such a way that (1.107) written in terms of by, bp is

and apa_p in Hpog, one introduces a new set by, by, of creation and annihilation

diagonal. This can be achieved by a transformation

* *

by = u(p)ay +v(p)aZ,, b_p = u(p)a—p +v(p)a,,

where u(p) and v(p) must satisfy the condition

u(p)® —v(p)®* =1
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1.5. Excitations from the condensate

for b, by, to fulfil the CCR. This is clearly given if

u(p) = cosh(ey),  v(p) = sinh(ay)

for any oy, € R, and one finds that the choice

[pl? + owt(p) — \/Ip!4 + 2|p|2 owit(p)

tanh(ay)
ow™(p)

removes the off-diagonal part in (1.107).
As a consequence, the Hamiltonian ]H[OBOg from (1.109) for S = 0 can be written as

Hiog = ERog + Y, " ()b3by (1.115)
pGAi
where
Efoe = F50) =5 > (Ip*+3(p) — ') » (1.116)
pEAY
(p) = VIp[*+2pPo(p). (1.117)

Note that €%(p) is linear in |p| for small momenta, whereas the dispersion relation is
quadratic in the non-interacting case. Moreover, the sum in E%Og is absolutely conver-
gent, which can be seen by expanding the square root. In conclusion, the Bogoliubov
approximation provides the next-to-leading order correction (order one) to the ground
state energy (order N). Moreover, it states that the excitation spectrum, i.e., the

spectrum of H%Og — E]%Og, is given by
> oy, mpe{0,1,2,...}, (1.118)
pEA:

which implies that the system behaves like a system of non-interacting bosons with
energies e%(p).

These predictions of the Bogoliubov approximation were rigorously justified by
Seiringer in [167] for bosons on the unit torus in the Hartree scaling regime. More
precisely, for interactions vy g with 8 = 0, where v is assumed to be bounded and
of positive type!'®, the author shows that (1.116) describes the N-body ground state
energy up to errors of order N -3, Besides, the excitation spectrum below an energy

threshold ¢ is proven to be of the form (1.118), up to errors of order (’)(ngff).
This result was extended by Grech and Seiringer in [83] to the inhomogeneous

0This means that v has only non-negative Fourier coefficients.
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setting, and by Derezinski and Napiérkowski in [56] to the case of a large but finite
volume in the limit N, L — oo, provided that the volume does not grow too fast
relatively to the number of particles.

The works [83, 167] were generalised by Lewin, Nam, Serfaty and Solovej in [114]
to bosons in the Hartree scaling regime which interact via potentials of a generic form
and for a range of possible kinetic terms. In this abstract setting, they obtain a list of
conditions under which the validity of the Bogoliubov approximation can be rigorously
shown. Roughly speaking, it is sufficient to have BEC in the ground state ¢y with
optimal error term, i.e., <g00, 71(/)1]\)]<p0> >1-0O(N™).

In [114], the authors introduce a method which can be understood as a rigorous
implementation of the c-number substitution. They observe that any symmetric V-
body wave function ¥V € ﬁﬂy can be decomposed as

N
=) NP g, ¢F) (1.119)
k=0
for p € $ and ¢, = (5@ ) 0 € ]-"— , where
N k k
Fi) = PR} c Fro = P Rett (1.120)
k=0 sym k>0 sym

is the truncated bosonic Fock space over the one-body space {¢}+ of excited parti-
cles. Here, {¢}* denotes the orthogonal complement of the one-dimensional subspace
spanned by ¢ in §). Further, ® denotes the symmetric tensor product, which is for
Vo € H, Yy € HY defined as

(¢a Qs %)(xl, .. anrb) =

a N '7$O'a O'a O'CL Y
m;w @) ¥2lTotort)y - To(asn)

where G, denotes the set of all permutations of a + b elements. The addend k£ =0
in (1.119) describes the condensate, while the terms k € {1, ..., N} correspond to the
excitations. In the following, we refer to §<(pk) as k-particle excitation. By construction,

(1.121)

every k-particle excitation &(Ok) € 5")’1 is orthogonal to ¢ in every coordinate. The
relation between the N-body state " and the corresponding excitation vector §p is
given by the unitary map

4ol 5 FEY L N e alyN =g, (1.122)

For af, ap denoting the creation and annihilation operator corresponding to the con-
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1.5. Excitations from the condensate

densate ¢, its action is explicitly given as

N . (],Nij
U5 = P - l) (e)® (MW) (1.123)

J=0

([114, Proposition 4.2]), i.e., it annihilates N — j particles from the condensate and
projects the resulting j-particle state onto the orthogonal complement of the conden-
sate wave function. The map 4%, can be used to factor out the condensate, as was
done by Bogoliubov with the replacement aj,ap — v N: Denote by N the number
operator on ]-'i]pv and let p,q € A. Conjugation with U, yields

Ujajao(Uy)" = N-N,
URaja,(U%)* = VN —Na,,

ULarao(Uy)" = apvVN —-N,
URapaq(UR)" = agaq

as identities on ff where we identified 1) € $ with the Fock vector (0,...0,%,0...)
to make sense of the action of creation and annihilation operator. Hence, all operators
agy, ag are replaced by a factor V/N — N each, corresponding to the number of particles
in the condensed state. Using these relations, one conjugates the Hamiltonian (1.106)
with %, which leads to an excitation Hamiltonian £ acting on the excitation Fock
space (see, e.g., 24, Eqn. (3.3)]). The constant and quadratic term (with respect to
the number of creation and annihilation operators) of £? correspond to leading order
to Hgog Bog>
takes the number operator N of the excitations to be zero, while N is explicitly taken

from (1.109). The sub-leading order contributions are different: in HY . one
into account in £?. Besides, £° contains a cubic and a quartic term, which can be
shown to be small for 5 = 0.

For further related results in the Hartree scaling regime, we refer to the proceedings
[112] by Lewin and the references contained therein, as well as to the series of works
by Pizzo [154, 155].

This analysis for the mean-field regime was extended to singular interactions kv g
with 8 € (0,1) and sufficiently small x by Boccato, Brennecke, Cenatiempo and Schlein
in [24]''. They consider a homogeneous Bose gas and prove that the N-body ground
state energy as well as the lower excitation spectrum can be calculated by the Bogoli-
ubov approximation. For 8 > 0, the interaction vy () converges to ||v[|1(gs)d(z) in
the sense of distributions as N — oo, hence v(p) ~ v(0) for sufficiently large N. In
conclusion, the formulas (1.116) and (1.118) contain the first order Born approxima-

tion to the scattering length of vy g. Since this approximation becomes less accurate

HFollowing the strategy developed in [26], this constraint on & can be removed [41, p. 6].
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for larger f3, it needs to be replaced by a higher order approximation for larger values
of . Essentially, the authors of [24] show that (1.116) and (1.118) correctly describe
the N-body ground state and excitation spectrum if ©(0) is replaced by a suitably
truncated Born series expansion. More precisely, they prove that

; G 2, - 5, K0(0)? .
EBOg = 4n(N —1)aly — 5 Z Ip|* + kv(0) — e’ (p) — e +O(N™9),
peAi
e’(p) = /Ip|* +2[p[2x5(0)

for all 0 < a < 8 such that a < % Here, 87Ta]5\, denotes N times the Born expansion
for the scattering length of the potential kvy g, which is truncated at order k > ﬁ
([24, Theorem 1.1]).

The appearance of the higher order terms in the Born series is related to the fact that
the map $%; factors out the condensate ©®N. However, the interactions between the
particles induce a short-scale correlation structure in the sense of (1.20), which cannot
be neglected for larger scaling parameters 5. Mathematically, the authors of [24] deal
with this by conjugating the excitation Hamiltonian £? by a generalised Bogoliubov
transformation

T = exp (; > (mpbibt, - h.c.)) : (1.124)
PEA*
where the coefficients 7, are related to the Fourier transform of the zero-energy scat-
tering solution from Lemma 1.2.4 (see [24, Section 3|). The operators by, b_, are
modified creation/annihilation operators, which are defined as

NN NN
bp = N ap, bp = Clp T s

which have the advantage that T leaves the space }'fév invariant.

For interactions in the GP regime, the Born approximation is invalid since all terms
in the expansion are of the same order, which implies that the complete Born series
must be taken into account. As a consequence, the leading order term of the Bogoli-
ubov ground state energy (1.116) contains the full scattering length of the interaction,
which is consistent with the leading order result (1.19). This was made rigorous by
Boccato, Brennecke, Cenatiempo and Schlein in [25, 27], who extended their analy-
sis [24] for the NLS regime to the GP scaling of the interaction.

Heuristically, the standard formal argument to derive the Bogoliubov energy for
the GP scaling is by considering the effective Hamiltonian HT as in (1.33), which
is constructed by applying the first order Born approximation to a softer potential
U with the same scattering length. This results in the effective -interaction (1.32),
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1.5. Excitations from the condensate

which contains the scattering length and thereby takes the correlation structure into
account (see Section 1.2.5). Applying the Bogolibubov approximation to H®" yields
the Bogoliubov energy with the full scattering length (see e.g. [145, Chapter 8.1]).

1.5.3. Dynamics of the excitations and norm approximation

The rigorous results (1.73) presented in Section 1.4.3 provide an approximation of
the N-body dynamics ¥V () in the sense of reduced densities. This approximation
corresponds to the control of the majority of all particles, which, up to a relative
number that vanishes as N — oo, occupy the time evolved condensate wave function.
A much stronger notion of distance is provided by the L?(R3)-norm, which requires
the control of all N particles. In particular, this implies that the excitations from the
condensate can no longer be omitted from the description. In this sense, the norm
approximation of ¢V () can be understood as next-to-leading order correction to the
description with respect to reduced densities.

In the Fock space setting, i.e., for initial states ¥V (0) that are no N-body states
but belong to an appropriate class of Fock space initial data, a norm approximation
was first obtained by Grillakis, Machedon and Margetis in [88, 89], and further results
were proven in [49, 77, 78, 86, 87, 108, 158]. To rigorously derive norm approximations
for initial N-body states ¢V (0) € L% (R3Y), two ways are known in the mathematical
physics literature:

e One can decompose ¥ (¢) via (1.119) into a (time dependent) condensate (t)
and orthogonal excitations. One then shows that the Fock space time evolution of
the excitations is generated by the Bogoliubov Hamiltonian, while the evolution
of the condensate is determined by the respective effective equation.

e Alternatively, one can define a first quantised analogue of the Bogoliubov Hamil-
tonian on the N-body Hilbert space and prove that its time evolution, which de-
scribes both condensate and excitations, approximates the full N-body dynamics

N (t).
Let us now consider the dynamics 1™V (¢) generated by the Hamiltonian

N

. 1

Hyp =3 (Z8;+VS(x) + 5= D onpl@i— ) (1.125)
Jj=1 1<i<j<N

with interactions as in (1.108). In the following, we briefly review and compare both
approaches.
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Second quantised approach

The first norm approximation of the N-body dynamics 1" (t) was obtained by Lewin,
Nam and Schlein in [113] for 8 = 0 and V' = 0 for interaction potentials v satisfying
the operator inequality v? < (1 — A) on L?(R?) in dimension d > 1. For initial data
of the form
N
6 =D e® P e, i, (1.126)
k=0
where the initial excitation vector xo € F1, is assumed to be normalised and such
that
(0, dT(L = A)xo) 7, < 00,

they prove that

=0
LQ(RdN)

lim

N
N—o0 —

PN (t) =3 o) PN @ x W)
k=0

for all times ¢ > 0. The time-evolved excitation vector x(t¢) solves the Bogoliubov
equation, which will be explained below. The optimal rate of convergence is expected
to be of order N~ 2 for every fixed ¢ € R (see [113, Remark 3]).

For V' = (), this result was extended in a series of works [137, 138, 139] by Nam
and Napidérkowski. They consider initial data of the form (1.126) for appropriate initial
excitation vectors xo € Fi,, and show that that there exists a parameter 6 > 0 and
a function f : R — R such that

< f(H) N9, (1.127)

L2(RaN)

Hw(t) =3 eV @, W (h)
k

=0

where 0 and f depend on the particular situation:

e The work [137] concerns 3d bosons with non-negative interaction potentials scal-
ing with g € |0, %) The initial excitation vector is assumed to be quasi-free
(see below). In this case, (1.127) holds with the parameter 6 = 1 — 35 and
with f(t) = e“*(1 + (x0, Ny X0))* for some constant C' > 0 depending only on

”900||H2(R3)-

e In [139], this analysis for the 3d defocusing case is extended to the scaling regime
B €0, %) The initial excitation vector is required to be quasi-free and to satisfy

(X0, Npox0) < keN®,  {x0,dT(1 — A)xo) < ke NT* (1.128)

for all € > 0, where k. > 0 is independent of N. The authors derive (1.127) for
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all ¢ > 0 with § = (1 — 28 —¢)/2 and f(t) = C-(1 + t)'*¢, where the constant
C. > 0 depends only on k¢ and ¢.

e Finally, in [138], the authors consider the focusing case with non-positive inter-
actions in dimensions d = 1 for § > 0 and d = 2 for § € (0,1). The initial data
are assumed such that

{(x0,dI'(1 = A)xo) < C

for some constant C' > 0. The resulting parameter § is given as § = % for the
1d and 0 < § < £(1 — B) for the 2d case, while the explicit form of f(t) is not
specified.

The excitations x(t) = (x®(t))32, € F Lp(t) contained in the approximating wave
function are determined by the Bogoliubov evolution,

9X(1) = Hiog (X (1), (1.129)

with Hgog(t) as in (1.110). Written explicitly, (1.129) equals the coupled equations
for the components x (¥ (t)

latx(k) (t7 L1y --ey :L'k)

k
= 3 (r# O + K7 (@) Ot s o)

j=1

S K (s, a)x D (t, w \ i\ )

1 1
_i_fi

2 \% k(k —1) 1<i<j<k

1 -
+§\/ (k+1)(k+2) /d:c dy K;p(t)(x, X ED (. x, x,y) (1.130)

for £ > 0, with Kf(t), K;p(t) and h¥®) as defined in (1.111) and (1.112). Note that
the time dependence of ”Hgog(t) is due to the time dependence of the condensate wave
function ¢(t). As a consequence, the vacuum of the excitation Fock space varies in
time, and, moreover, the operators K; ® and K3 ® from (1.111) are time dependent
via ¢(t).

Let us now recall the notion of quasi-free states and comment on their relevance in
the context of the Bogoliubov time evolution. This part is taken from [137, Lemma

8] and [173, Theorem 10.4]. A more thorough discussion is given, e.g., in the lecture
notes [173] by Solovej.

Definition 1.5.1. Let ¢ € F be a normalised vector in a bosonic Fock space F over
a Hilbert space $ such that
(6, N¢) < oo.
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Define the generalised one-particle density matrix of ¢ as

T, = (’”ﬁ %’T)
o ]1+’y¢

on H®H, where $H denotes the dual of . The one-body density matrices Vo :H—H
and o H — 9 are defined as

(fir29)g = (,a"(9)a(f)d)r,  (fras9)g = (b, alg)alf)9)

for f,g € $. Then it holds that
Yo =0, Tr(7¢):<¢a-/\/’¢>v O£¢:Oé£, I'y>0.

The state ¢ is called quasi-free if and only if

Voos = agh oy = (1 + ),

10
r Ty=-Ts.
¢(0 1) ¢ ¢

Note that for ¢ € $Y, ie., for ¢ with fixed particle number N, V4 is the usual
reduced one-particle density matrix (1.8). Quasi-free states satisfy the so-called Wick
property: for af € {a*,a}, n > 1 and fi, ..., fon € 9,

or, equivalently, if and only if

(6,05 () (fo) 0 (fon-1)8) =0,

f
n (1.131)

<¢aaﬁ(fl)aﬁ(h)“'aﬁ(f2n)¢>f = > H<¢, aﬁ(fa(Qj—l))aﬁ(fa(2j))¢>

o€EPa, ]:1

]__ Y
where Py, denotes the set of pairings
Py, ={0 €6y, : 0(2j —1) <min{o(2j),0(2j + 1)} for all j}.

Hence, all expectation values with respect to a quasi-free state ¢ can be computed
from the mere knowledge of its one-body densities (74, a). Moreover, finite moments
of the number operator are determined by its expectation value: for all £ > 1, there
exists a constant Cy > 0 such that

(0. NO)r < Co(1+ (9, Ng))* (1.132)
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for all quasi-free states ¢ in F (see e.g. [137, Lemma 5]). Finally, it is well known
that the unique ground state of a Bogoliubov Hamiltonian is quasi-free (see e.g. [114,
Theorem A.1)).

To characterise the dynamics of the excitations, it is crucial to note that the time
evolution generated by Hg og Preserves the quasi-free property: if xo € F1, is a quasi-
free state, then the solution x(t) € F i ) of (1.129) is quasi-free for all ¢ € R and

(), Ny x (1)) < e (14 (x0, NipoX0))* (1.133)

for a constant C' depending only on [|¢o||2(rs) ([137, Proposition 4]). Note that in
combination with (1.132), this implies a bound on the growth of finite moments of
the number of excitations in the wave function evolving under the Bogoliubov time
evolution.

Since the quasi-free property is preserved by the Bogoliubov time evolution, the
excitation vector x(t) at any time ¢ € R is characterised by its one-body densities
(Vx()> Qx(1))- As a consequence, it was shown in [137] that the Bogoliubov equation
(1.129) is for initial quasi-free states equivalent to the coupled system of equations

Oy = (0?0 + K7D (8) = vy (R0 + K1)

t * t)\ %
+E5 Do — o (K5)
(1.134)
. . t
10y (1) = (h?® 4 Kf( ))ax(t) + ax(t)(hp(t) i K;p( ))T

t t t
+K5Y + K5 )75(15) + i K5

\

with initial datum (7y,, @y,). A comparable system of equations was derived by Gril-
lakis and Machedon in [86, Eqns. (17a-b)] for the Fock space setting. Note that
also for an initial state x¢ which is not quasi-free, the solution x(¢) of (1.129) solves
(1.134). However, (1.134) is not equivalent to (1.129) since x(t) is not quasi-free and
consequently not uniquely determined by its one-body densities.

For larger values of the scaling parameter (3, the evolutions of ¢(t) and Eo(t) do
not (approximately) decouple any more as a consequence of the short-scale structure
related to the two-body scattering process. In [108], it is argued that in the 3d defo-
cusing problem, this is the case for # > 3 ([108, Section 2, following (35)]). For the
range 3 € (0, 1), an accordingly adjusted variant of (1.127) for appropriately modified
initial data was obtained by Brennecke, Nam, Napiérkowski and Schlein in [38] for the
3d defocusing case. Here, the dynamics of the condensate wave function are described
by a modified N-dependent Hartree equation with nonlinearity vy g fn * | (t)|?, where
fn is related to the zero energy scattering solution, similarly to fg in Definition 1.4.4

71



1. Introduction

(see [38, Eqn. (23)]). For 5 € (0,1) and N — oo, this converges to the N-independent
NLS equation (1.72). A similar estimate for the many-body evolution of appropriate

classes of Fock space initial data for 5 € (0,1) was obtained by Boccato, Cenatiempo
and Schlein in [28].

First quantised approach

An alternative way of decomposing the N-body wave function ¥V (¢) into a condensate
cp(t)®N and orthogonal excitations is by means of the projections p?*) and ¢*® onto
©(t) and its orthogonal complement (Definition 1.4.1). In terms of the many-body
projection operators P,f ® on L2(R3N),

1
v w P ©
(N — k)lk! Z 9%51)" ok)Po(k+1)" Po(N) >

ceGyn

P? =

the part of ¥"V(t) in the condensate is given by Pga(t)¢N(t). The part of ¥ (t) cor-
responding to k-particle excitations equals P]f (t)i/)N (t) for k > 1. By construction,
P,f (t)P,Zf(t) = 6k7k/P,f (t), and the identity Zgzo P,f ©_q implies the decomposition

N
WNty = Y PN (). (1.135)
k=0

Note that as opposed to the decomposition (1.119), P,f(t)wN is an N-body wave func-
tion, i.e., it contains both the condensate and the excitation part.

In [135, 134], Mitrouskas, Petrat and Pickl introduced an effective Hamiltonian

H®  which is constructed as follows:

e First, one adds and subtracts from Hy g in each coordinate the mean-field Hamil-
tonian h#®) from (1.112), resulting in

N N
t 1 i _
Hyg = 200+ 53 D ol =3 00 ay) + Nu?
j=1 i<j j=1
_ g: pe® 1 3 (Uw _ 50 (3,) — 570 (2,) + Qﬂw(w)
j=1 ’ N -1 i<j ’

Here, we used the notation 7% as in (1.113) and abbreviated v%jg = un g(Ti—xj).
e Second, inserting identities

1= (pf" + )7 4 ¢?)
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before and after the expression in the brackets yields with the relations

PO, 09) 20 _ 50l0) (40 e0ge) ()20

p; vg D (zi)pl =2p% v p? (t) (1.136)
the decomposition

Hyp = H® o) L gel)

where
o) 1 () ;2 (),,(i) 2 (1), 2 ()
rret) . P(t ® ] t) o(t
HPW .= Zhj +N_1Z<pZ a7 vy gl )
j=1 1<j
—i—pf(t)pf()vg\,%ql () sp(t)—i-hc> (1.137)
1 id _ _
cPt) .= - Z <qf(t)q;0(t)( 5\/25 — 570 (1) —v*"(t)(a:j)) x
1<J
x(qf p?™ 4 pflg S0())+hc> (1.138)
1
) ._ () @(t)
Qf N—1;qi q;"" x

« (v% — 50 (z;) — 790 (2,) + zuv@)) o Vq? . (1.139)

e Finally, discarding all terms from Hy g which are cubic (C*®) or quartic (Q#®)
in the number of projections ¢#®) yields the effective Hamiltonian H#®).

The resulting Hamiltonian H?® has a quadratic structure comparable to HBOg( E

all terms in Hy g — Zj hf(t), which form an effective two-body potential, contain
exactly two projectors ¢ onto the complement of the condensate wave function,

while Hgog

(t) is quadratic in the creation and annihilation operators of the excitations.

The Hamiltonian H¥® is particle number conserving and acts on the N-body
Hilbert space LQ(R?’N ), i.e., it determines the evolution of both condensate wave func-
tion and excitations. In contrast, ’Hgog(t) operates on the excitation Fock space F ;)
and does not conserve the particle number. It exclusively concerns the dynamics of
the excitations with respect to the condensate wave function, which, in turn, evolves

according to the non-linear dynamics generated by (1.112).

Making use of H?® | Mitrouskas, Petrat and Pickl derive in [135] a norm approx-
imation for the N-body dynamics 1™ (¢). They consider 3d bosons in the Hartree
regime 3 = 0 for interactions v satisfying the operator inequality v < (1 — A). The
initial N-body state 1} is assumed such that

(a) |E1/’éV — &9 S N1, where EY := 3, (¢, Hy ) ;2 (rany 1s the energy per particle
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and £¥ := (¢, h?p) L2(r3) denotes the Hartree energy,

(b) (', <jﬁ1 q}oo)wév» SN forn=1,2,3,

(o) 1P2w ] S N~2, where P%. = > P¢ projects onto the subspace of L?(R3")
k odd
with an odd number of particles outside the condensate.

For initial states satisfying (a) to (c), the authors prove that the time evolution ﬁw(t, s)
generated by H¥(®) approximates the N-body dynamics. More precisely, they show
that there exists a constant C' > 0 such that

[ (t) = T (1, 0)0 ||* < 0 N = (1.140)

[135, Theorem 2.1]. A related result for Bose gases with large volume and large density
was proved by Petrat, Pickl and Soffer in [146, Theorem 1.2].

Comparison of both approaches

Let us first compare the decompositions (1.119) and (1.135) of an N-body wave func-
tion ¥"V. Note that by definition of the projectors P} (Definition 1.4.1),

P,wa(xl, ...,:UN)

= N ]{7 'k" Z k’+1 (p(xJ(N)>qf(1)Qf(k) X

ceGN

/dyl /dyN keW1) - @(UN—k) VN (To(1)s s To(hy Y1s s YN—k)

(Y 6 (o).

where, by definition (1.121) of the symmetric tensor product,

§<(pk)($1,---7$k) =/ (¥) Qf"'%f/dykﬂ’"/dyNSO(ka)---X

R3 R3
X SO(yN) ’l/)N(:[;la coos They Y41, 7yN) .

(1.141)

Obviously, §<(pk) is symmetric under permutations of its arguments, and §<(pk) is orthog-
onal to ¢ in every coordinate, i.e.,

/RS @(xj)ggg)(a:l,...,xj,...,xk)d:cj :0, p;p&(pk) :0, q;pfg(ak) fook)
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1.5. Excitations from the condensate

for every j € {1,...,k}. Hence, §, = ( gg))k o € .7:— , and (1.141) determines
precisely the elements of the excitation Fock vector L% ¢N for 4%, from (1.122). In
fact, (1.141) can be understood as the translation of (1.123) into the first quantised
language.

Consequently, the probability of finding k particles in ¥V outside the condensate

®N

% is given equivalently by

N
1812 gy = (Vlaf -+ afpE 1 -+ 5™ I = | PEO™ 2

The expected number of excitations from ¢®V in the state ¢V is
N N
<§¢7N@ fw);:fg = Z k”f&k)H%z(R%) = Z kHPIfﬁ)NHQ
k=0 k=0
N
SR (AT B
k=0
where n? denotes the weighted operator from Definition 1.4.1 with weight function

For a € N, the a’th moment of the number of excitations is given as

N
(6 N3 &)y = N (0 hrpee ) = WGP e

k=0

As a consequence, assumption (b) by Mitrouskas, Petrat and Pickl can equivalently
be expressed as the requirement that the first three moments of the initial number of
excitations be bounded uniformly in V.

In [135], the authors prove that the excitations in ap(t, 0)v{Y asymptotically coincide
with the solutions of the Bogoliubov evolution equation (1.129) as N — oco. More
precisely,

o let &, = (5&?)2\;0 = UR°{" denote the excitations from po®V in the initial
state ¢év ,

ot 0)yd" denote the excitations from o®)®N in

- ) \ -
o let Eu = (€510 = 45T
the time evolved state U, »(t,0)0

o1,
N
0>

o let x(t) = (X(k) (t))k>0 denote the solutions of the Bogoliubov equation (1.129)
with initial datum (x(0))5_y = &po-
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Then there exists a constant C > 0 such that

Z &t = x|

[135, Lemma 2.3]. Following the lines of the proof of [146, Theorem 2.2] for Bose gases

’ < €O+’ N1 (1.143)
L2(R3k) — )

with large volume, this bound can presumably be improved to an error of order N 2.

To prove (1.143), the authors of [135, 146] use (1.141) to extract the excitations
gcp(t) = u(jfl(t) [7%7 (tv OW(])V

from the solution ﬁw(t, 0)yd =: ¥N (t) of the N-body Schrédinger equation i%QZN(t) =
H?®pN (). This leads to the system of coupled equations

latf (21, - , Tk)

k
(hW(t) + C(l)ch( )(.’L'])> f((t))(xl7 s k)
7j=1
2 2
+§C',g )2 Py Z K2 x,,x])gfo(t) )(wl,...,mk\xi\xj)
1<z<]<k:

. .
+§C,§2) VE+ Dk +2) /d:r dyS (2, )€l P (@1, o mp,myy) (1.144)

for 0 < k < N, where

ny N-—-k 2
-k g

VI - k-1
U |

For k = 0, the first two lines are defined as zero, and for £ = 1 the second line equals
zero by definition. Since 0(2) Cﬁ) , = 0, the third line does not contribute for
ke {N—-1,N}.

A comparison of this hierarchy (1.144) with the Bogoliubov hierarchy (1.130) reveals
two differences:

e In (1.144), additional combinatorial factors C,gl) and C’,(f) appear. Note that
these factors are approximately given by 1 + % Hence, for k = O(1), these
factors are asymptotically one.

e The equations (1.144) and (1.130) do not coincide for £ > N—1. By construction,
= (k)
Sott) =
Bogoliubov solution do not necessarily vanish for £ > N.

0 for k > N, whereas the components x*)(¢) of the solution of the
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Since ||x*)(t)|| r2(rsk) is very small for k of order IV, the error terms from both sources
can be controlled sufficiently well to prove the statement (1.143).

1.6. Experiments

In this section, we briefly account for the experimental perspective on BEC, mainly
based on [23], [101], [111, Chapter II], [145, Chapter 1] and [153, Chapters 1 and 9].
Subsequently, we collect some experimental results concerning quasi-low-dimensional

Bose gases.

BEC in dilute atomic gases was first realised in 1995 with rubidium [10] at Boulder
and with sodium [52] at MIT, for which Cornell, Ketterle and Wieman were awarded
the 2001 Nobel Prize in Physics. Moreover, also in 1995, first evidence of BEC was
found in lithium [37, 36]. Since then, many dilute atomic gases have been confirmed
to exhibit BEC, such as 'H, 7Li, *Na, 39K, 4K, 52Cr, ®Rb, 8"Rb, 33Cs, '"°YDb and
174y and superfluid *He.

To create a BEC, one needs to cool the gas until the de Broglie wavelength of
the atoms is comparable to their average separation. However, the thermodynamic
equilibrium at the given conditions of temperature and pressure usually corresponds
to a crystal. To observe BEC, one must prevent the gas from solidifying during this
cooling process, which is possible for extremely dilute gases: At low temperatures,
the decay of the gas phase is mainly due to three-body recombinations, which lead
to the formation of molecules. If the density of the gas is sufficiently low, three-body
collisions occur only very rarely, and one can observe a metastable gaseous phase that
lasts several seconds to minutes. Typically, the particle density required for BEC is
10'3-10"%cm ™3, which is by several orders of magnitude smaller than the density of
molecules in air at room temperature and atmospheric pressure, ~ 10?cm=3.

Due to this extreme dilution and the corresponding large inter-particle distances,
one requires temperatures of order 107°K or less'? to observe BEC. To reach such low
temperatures in alkali atoms with sufficiently many atoms remaining in the cloud to
be observed, one combines different cooling and trapping methods [50, 101]:

e First, the gas is pre-cooled by so-called laser cooling in a magneto-optical trap,
where three pairs of counter-propagating laser beams along the three axes are
tuned below the atomic resonance frequency (i.e., the wave length is red-shifted
with respect to the resonance wave length). Due to the Doppler effect, an atom
moving in the opposite direction as a laser beam blue-shifts the incoming pho-
tons closer to the resonance, while a co-propagating atom red-shifts the light
away from the resonance. Hence, on average, each atom absorbs more photons

12These values are taken from [145, Chapter 1].
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opposing its motion. Since the emitted photons have no preferred direction, this
leads to a net decelerating force.

e Subsequently, one applies so-called evaporative cooling. By reducing the depth
of the trap, one removes the more energetic atoms, which carry more than the
average energy. As a consequence, the remaining atoms thermalise at a lower
temperature.

The duration of this cooling and trapping cycle varies between some seconds and some
minutes, and the resulting condensates usually contain between 10? and 10° atoms'3.
A detailed explanation of different trapping and cooling techniques is, for example,

given in [145, Chapter 4] and [72, Chapters 9-10].

By creating and observing BECs, a wide range of physical phenomena has been
explored over the last two decades. From the experimental point of view, BECs are
very attractive since they can be manipulated by lasers and magnetic fields. Due to
the low density, the microscopic length scales are sufficiently large that the condensate
wave function is directly observable by optical means and interference phenomena can
be studied. Moreover, if the atom species has a Feshbach resonance, it is possible to
precisely tune the interaction by changing an external electric or magnetic field, which
in particular allows the study of strongly correlated many-body systems.

Most closely connected to the projects [32, 33, 35] of this thesis are experiments
with quasi-low-dimensional Bose gases, which are realised in highly anisotropic traps
satisfying the condition

hwt > kpT,

where w® denotes the frequency of a confining harmonic potential. The cross-over
from a 3d gas to quasi-1d and quasi-2d condensates was experimentally first realised
in 2001, i.a., by Gorlitz et al. in [82]. In this work, the authors studied sodium atoms
in anisotropic magnetic (1d) and optical (2d) traps and increased the aspect ratios
up to values of 50-100 while reducing the number of atoms. The condensates were
quasi-low-dimensional, while the thermal component of the gas remained 3d.
Subsequently, a series of works focusing on various features of these systems followed.
To avoid problems arising from the detection of very low particle numbers due to the
very low densities, the strong confinement was in many experiments realised by optical
lattices, which allows the simultaneous study of many copies of the 1d/2d system. The
optical lattices are created by the superposition of counter-propagating laser beams,
which form standing waves. A 1d lattice is created by a single interference pattern
from a pair of laser beams, which yields a periodic array of disc-shaped potentials. To
build a 2d optical lattice, one uses two orthogonal standing waves, which results in

13Values taken from [101, Section I].
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a 2d periodic array of cigar-shaped trapping potentials (see, e.g., the review [23] by
Bloch).

Quasi-1d gases are particularly well suited for absorption imaging. For 3d systems,
this method entails an integration over one spatial direction, which can be avoided with
a quasi-1d gas. Physically, it is very interesting to observe the crossover to the Tonks—
Girardeau (TG) regime (see Section 1.3.3). In this regime, which corresponds to a very
large LL parameter -y, the repulsive interactions between the atoms are so strong that
the wave function vanishes whenever the positions of two particles coincide, implying
that the bosons acquire fermionic properties. However, due to the symmetry of the
wave function, some bosonic behaviour remains, such as the characteristic bosonic
momentum distribution. Besides, quasi-1d gases can also be used to realise physical
models such as the Heisenberg spin chain [76, 156]. Exemplary and without any
claim to completeness, we collect in the following some interesting experiments that
produced and studied quasi-1d Bose gases:

e In [165], Schreck et al. prepared a BEC of "Li atoms immersed in a Fermi sea of
6Li atoms, with the effect that the “Li condensate behaved as quasi-1d BEC.

e Greiner et al. [84] stored rubidium atoms in a 2d optical lattice of ~ 103 tightly
confining potential tubes. When suddenly released from the trap, the single con-
densate wave functions expand and interfere. Note that the tunnelling of atoms
in the thermal cloud is irrelevant at low temperatures due to the small energies,
whereas tunnelling of ground state atoms is enhanced due to the macroscopic
occupation. Hence, the BECs at the optical lattice sites form a phase-coherent
ensemble and interference patterns can be studied. As one result, the authors
observed that the quasi-1d nature of the individual BECs was preserved over
much longer times than the lifetime of the phase coherence between neighbour-
ing lattice sites.

e Moritz et al. [136] also produced cigar-shaped BECs of rubidium in a 2d optical
lattice and experimentally confirmed that the gas could locally be well described
by a local LL model, even though the whole sample was 3d. They realised
thermal quasi-1d gases, where not only the atoms in the condensate but also the
thermal cloud behave one-dimensionally. To study the crossover to a 1d thermal
gas, they heated an initially pure BEC for some time by means of off-resonant
photon scattering. While the radial size was unaffected, the axial width of the
cloud increased with the trapping time.

e Esteve et al. [69] realised a quasi-1d Bose gas of rubidium atoms within a highly
anisotropic magnetic trap created by an atom chip. By increasing the density at
fixed temperature, they let the gas pass through the first regime of the quasi-1d
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gas described in Section 1.3.3, starting from the ideal gas case and ending at the
GP case. They observed the density fluctuations by taking absorption images in
the transverse direction. In the GP regime, the density fluctuations are given by
the Bogoliubov approximation, which was experimentally confirmed for thermal
energies approximately equal to the confinement energy.

Kinoshita, Wenger and Weiss [103] created an array of “quantum Newton’s cra-
dles” out of 3000 parallel tubes of quasi-1d Bose gases with an average of 100
rubidium atoms per tube. While maintaining the transverse confinement, they
put each atom in a superposition of two states with opposite (longitudinal) mo-
mentum and let the system evolve in the longitudinal direction. Although the
two momentum groups collided with each other thousands of times, the systems
did not approach equilibrium.

Meinert et al. [128] prepared a system of 3500 cigar-shaped gases of cesium atoms
in tubes created by a pair of interfering laser beams. They immersed into each
tube a single strongly interacting impurity, which was accelerated by gravity.
By adiabatically tuning the scattering length using a Feshbach resonance, they
obtained a quasi-1d Bose gas with large LL parameter v (see Sections 1.3.2 and
1.3.3). Although the systems were translation invariant, the authors observed
Bragg reflections, which are expected to arise from strong correlations of the
bosons that lead to a lattice-like behaviour. Moreover, this resulted in periodic
dynamics of the impurity, comparable to Bloch oscillations.

The first TG gas of rubidium atoms in a 2d optical lattice was realised by Paredes
et al. in [141], who used a 1d periodic potential along the third axis to reach
the required large values of 7. Due to the spatial modulation, the atoms can
be interpreted as quasi-particles with an increased effective mass, which yields
effective values of v up to v = 100. This procedure resulted in an array of
quasi-1d tubes of TG gases consisting of about 20 atoms each.

In a different experimental setup, Kinoshita, Wenger and Weiss [102] created an
array of 20 quasi-1d rubidium gases in the TG regime, using two independent
laser traps. At extremely low temperatures and fixed longitudinal confinement,
the authors studied the atoms at increasingly strong transverse confinement,
reaching values of v up to v = 5.5. Eventually, the axial trapping potential
was removed and the free 1d motion of the atoms within the quasi-1d tubes was
analysed.

Quasi-2d BECs in disc-shaped geometries were, for instance, created in the following

experiments:
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e Burger et al. [40] considered rubidium atoms in a 3d cigar-shaped static magnetic
trap whose axis was superimposed by a 1d optical lattice, resulting in an array
of 2d discs. As a consequence of the magnetic potential, the central lattice sites
contained a higher number of atoms, leading to a higher critical temperature for
the central clouds. Hence, when lowering the temperature, BEC occured first in
the central lattice sites and successively spread in the radial direction.

e Rychtarik et al. [160] realised quasi-2d BECs of cesium atoms in a so-called
gravito-optical surface trap, consisting of an evanescent laser wave on the surface
of a horizontally aligned prism in combination with gravity pushing the atoms
onto the prism. They reached the BEC phase transition in a 3d situation via
evaporative cooling and subsequently increased the trap anisotropy to bring the
condensate into the 2d regime.

e In [166], Schweikhard et al. produced quasi-2d gases of rubidium atoms in a
rapidly rotating trap, where the centrifugal force was so large that it nearly
cancelled the radial confining force.

e Smith et al. [172] created and studied quasi-2d condensates of rubidium atoms
in extremely anisotropic combinations of magnetic and optical traps, where the
trap anisotropy was gradually increased up to an aspect ratio of 700. Since no
atoms were discarded in this process, this resulted in relatively large quasi-2d
BECs of up to 10° atoms.

An intriguing 2d-specific phenomenon is the Berezinskii-Kosterlitz—Thouless (BKT)
phase transition to a superfluid state at low temperatures. Recall that at positive
temperature, the phase transition to BEC is impossible for a uniform 2d Bose gas in
the thermodynamic limit. As BEC is associated with long-range order, its absence in
2d means that the (two-point) correlation functions decay with increasing distance.
Whereas the decay is exponential in space at high temperatures, it becomes algebraic
below a finite critical temperature if the atoms interact repulsively. As a consequence,
the system exhibits quasi-long-range order and forms a so-called superfluid “quasi-
condensate”. This behaviour only occurs for repulsively interacting systems, hence
interactions in 2d cannot be regarded as corrections to the ideal gas case as in 3d but
fundamentally change the physical situation.

Microscopically, the BKT phase transition is related to the emergence of a topo-
logical instead of a long-range order. Below the critical temperature, vortices (phase
defects around which the phase varies by a multiple of 27) can only exist as bound
vortex-antivortex pairs, which create no net circulation along larger contours. Above
the critical temperature, the pairs break up into free vortices, which destroys the
quasi-long-range order. For a detailed explanation, we refer to the lecture notes [91]

by Hadzibabic and Dalibard.
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For trapped 2d condensates, BEC is possible at finite temperature, and the relation

of BEC and BKT phase transitions depends on the size of the system and the strength

of the interactions. In presence of repulsive interactions and in sufficiently large sys-

tems, BEC is suppressed and replaced by the BKT transition. The BKT crossover has

experimentally been studied in several works, for instance in the following experiments:
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e Hadzibabic et al. [92] prepared disc-shaped gases of rubidium atoms. They ob-

served long-range coherence at low temperatures, whose loss at higher tempera-
tures coincided with the onset of the formation of free vortices. In a follow-up
experiment, Kriiger, Hadzibabic and Dalibard [107] measured the critical atom
number of quasi-2d Bose gases in harmonic trapping potentials at different tem-
peratures. While being about five times higher than the critical numbers corre-
sponding to BEC in a 2d ideal gas, they were in agreement with the predictions
of the BK'T phase transition.

Studying the behaviour of sodium atoms in a quasi-2d optical trap, Cladé et
al. observed in [51] a theoretically predicted intermediate non-superfluid quasi-
condensate regime between the thermal and the superfluid phase.

Fletcher et al. [71] created a quasi-2d potassium gas with tunable interactions
and experimentally confirmed that BKT and BEC phase transition unify in the
limit of vanishing interactions.



2. Objectives

Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

The starting point for the first part of this thesis was the work [100] by von Keler and
Teufel. Here, the authors consider N interacting bosons in three dimensions that are
in two spatial dimensions strongly confined to a region of order €, which is modelled
by a quantum waveguide with non-trivial geometry. They prove that in the limit
(N,e) — (00,0), the dynamics of the system are effectively described by a 1d NLS
equation. Since the analysis in [100] is restricted to the parameter range 5 € (0, %),
the first objective was to extend this result beyond the mean-field regime. Naturally,
since the physically relevant case is the GP scaling of the interaction, the long-term
goal was the derivation of a 1d GP equation for g = 1.

It turned out that Pickl’s strategy [151] could be adapted to the situation with
strong confinement, leading to a proof for the full NLS regime g € (0,1) in [32], and
eventually to a proof of the 1d GP equation in [35]. We decided to focus on straight and
untwisted waveguides, and could therefore replace the Dirichlet boundary conditions
from [100] by a more realistic confining potential.

The natural next question was to extend this result to a disc-shaped confinement,
which would lead to a 2d effective equation. This was finally established in [33] for
the full range 8 € (0, 1].

Higher order corrections to the mean-field dynamics

The objective of the second part of the thesis was the derivation of higher order
corrections to the norm approximation of the dynamics of weakly interacting bosons.
Approximations with respect to the L2-norm of the N-body Hilbert space have recently
been proved in different settings, and the corresponding results are summarised in
Section 1.5.3.

To obtain higher order corrections to the norm approximation with respect to N—1,
Pavlovié¢, Pickl and Soffer developed the idea to extend the first quantised approach
introduced by Mitrouskas, Petrat and Pickl in [135] by using Duhamel expansions that
are truncated after finitely many terms.

The original draft by Pavlovi¢, Pickl and Soffer covered the next order correction
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to the norm approximation for the Hartree scaling 6 = 0 in d = 3 dimensions. Hence,

the aim was to extend this analysis to arbitrary order with respect to N~! and to a

range of scaling parameters 3 as large as possible.
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3. Results and Discussion

In this chapter, we present and discuss the results obtained in this thesis. Section 3.1
collects the results obtained in [32, 33, 35], which are partially joint work with Stefan
Teufel. In Section 3.2, we report on the project [34], which is joint work with Natasa
Pavlovié, Peter Pickl and Avy Soffer. For convenience of the reader, we partially
adapted the notation to present the results in a consistent way.

3.1. Low-dimensional Gross—Pitaevskii equation for strongly
confined bosons
3.1.1. Results

We consider a gas of N 3d bosons in an extremely asymmetric set-up, where the
particles are strongly confined in one or two spatial directions. To describe such
systems mathematically, we use the coordinates

Z:(x,y)€R37 xeRd7 yeRg_da d=1,2,

where 2 € R? denotes the longitudinal direction(s) and y € R3¢ is the coordinate in
the confined direction(s). The relevant length scales of the problem are

o L: the length scale in the longitudinal direction,
o cL: the length scale in the transverse direction,
o A: the length scale of the scattering length.

The parameter 0 < € < 1 measures the spatial asymmetry. For convenience, we choose
L as length unit, which implies that the transverse length scale is €. The confinement
is modelled by the rescaled potential

1
=7 (2)
£ €
where V14 : R37¢ — R acts only on the y-coordinates. We impose on V1 suitable

assumptions to ensure that the ground state x of the operator —A, + V1 with eigen-
value Ey is localised on a length scale of order one. The normalised ground state
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X° € LA(R3™4) of —A, + 5 V+(¥) is then given by

==Y, (At () w-Dcw. e

which in particular implies the localisation of x° on the scale €. Since the energy
gap between ground state and first excited state scales as €2, transverse excitations
are, for sufficiently small e, strongly suppressed. As as consequence, the great major-
ity of particles remains in the transverse ground state under time evolution, merely
undergoing phase oscillations.

As explained in Section 1.2.3, the choice L = 1 coerces a rescaling of the interaction
to remain in the physically relevant GP scaling regime. As in (1.21), this rescaling is
determined by the requirement that the ground state and kinetic energy per particle
be comparable, where the relevant kinetic energy is in this case the longitudinal kinetic
energy. Since the density of the gas scales as

N
Q_ 537d’

the total ground state energy is by (1.19) of order AN £~=4)  while the longitudinal
kinetic energy is of order one. Hence, the GP scaling condition (1.22) reads
53—d

A~ (3.2)

As shown in Section 1.2.4, this condition is implemented by the interaction potential

for a compactly supported, bounded and non-negative interaction potential w with
scattering length a, where we introduced the parameter

- 53_d
M T N

measuring the range of the interaction. It coincides with the scale of the scattering
length of w,, which is given as
A=a,=pa,

where a denotes the scattering length of w.

Finally, we admit an additional, possibly time-dependent external field varying on
the length scale Ll = 1, which may act on both 2 an y coordinates. To emphasize
the distinction from V=, this potential is called VI : R x R3 — R. The full N-body
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

Hamiltonian is given as

N 1 ”
LACEDY <—Aj + 5Vt (;ﬂ) + v, zj)) +3 walzi— 7). (33)

j=1 1<J

We study the dynamics of the system in the simultaneous limit (N,e) — (00, 0), i.e.,
in the joint limit of infinite particle number and infinite spatial asymmetry. The state
YNe(t) at time ¢ is determined by the solution of the N-body Schrédinger equation
with Hamiltonian H,(t) and initial datum ¢év © € L% (R3N), which is assumed to
exhibit complete asymptotic BEC in the state ¢ € L*(R3). Given the strong con-
finement, the condensate wave function ¢f is assumed to factorise into the transverse
ground state x° and a longitudinal part ®; € L%(R%),

©5(2) = Po(z)x(y) -

The goal of this project is to prove that complete asymptotic condensation in a fac-
torised one-body state is preserved by the time evolution, i.e., that

lim Tr
(N,e)—(0,0)

=0 li Tr (1) _ < (¢ » 0
T (Nerse00) ‘7 Sl A ONCH O]

1
Vone — Bl
0
for p*(t) = ®(t)x°, where the longitudinal part ®(¢) is the solution of the effective
d-dimensional GP equation

iZ0(ta) = (=2, + VIt (2,0) + ot 2)?) (t,z),  B(0) =D, (3.4)

with coupling parameter

bimsna [ )ty = smas [ )y, (3.5)
R3*d Ri’)fd

Note that this parameter b is precisely Ngiq from (1.44) for d = 1 and 87N gé?

from (1.64) for d = 2, respectively, with choices L = 1 and A = a,,. Consequently, (3.4)
is the time-dependent GP equation corresponding to the 1d-/2d- GP functionals (1.48)
and (1.60) with potential VIl = VIl(t, (z,0)).

To heuristically motivate the evolution equation (3.4) with coupling parameter (3.5),
note that p < € as long as N is sufficiently large, implying that the interaction appears
d-like even on the scale e. Formally replacing w, by 87a,é(x1 — 22)d(y1 — y2) as in
the heuristic argument in Section 1.2.5, we absorb the short-scale correlation structure
into the effective interaction. Further, note that |x|? acts é-like on the scale length
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3. Results and Discussion

where VI varies, in the sense that

/ dylxs(y)IQV”(t,(fc,y))Z/ dy X W)V, (2,0) + O(e) = VI, (2,0)
R3—d R3—d

for sufficiently regular VI. By (3.1), with a, = pa and since ®, x and x° are nor-
malised, this yields the total energy

Bo(N,e) = N (@@ (), (=8 = &y + V) + VI 2)) @@ W)

+ M= 8ma, (xF (1) X" (12), 6 — y2) X (W)X (42)) L2 rs-axs-a) X

X (@(21)(22), 6(z1 — 22) (1) (22)) L2(Re xR

L2(R%)

Q

N 4 (@, (~20)0) gy + N (0(2), V]2, (2,0)@() )

Ve (0,182 8) ey [ )y

= N fgo—i—/(!VJ;(I)(:U)\Q—i—Vl(t,(az,O))](I)(x)\Q—i—g|¢>($)]4)dx ,
Rd
b

8
plus the transverse ground state energy. The time-dependent d-dimensional GP equa-

which equals the d-dimensional GP energy functional with coupling parameter

tion (3.4) can then be formally justified as argued in Section 1.4.1.

As explained in Section 1.4.4, Pickl’s strategy of proof requires not only the as-
sumption that the system initially exhibits complete asymptotic BEC in the state
©° = ®x* but also an estimate of the initial energy of the N-body wave function. The
corresponding quantities in the situation with strong confinement are

e the “renormalised” energy per particle: for ¢ € D(H#(t)%),
Ey, () = (v, Hu(H)o) — 8, (3.6)
e the effective longitudinal energy per particle: for ® € H'(R?),

E2(t) = <c1>, (—Am + VI, (2,0)) + g\cby?) q>> (3.7)

L2(RY)

To model the situation in real experiments, we consider the two limits N — oo and
¢ — 0 simultaneously. Our analysis does not cover all possible sequences {(V,,, €p,) }nen
in N x (0,1) with limiting behaviour (N, e,) — (00, 0) as n — oo but requires certain
restrictions on the relation of the two parameters NV and €. In particular, € must shrink
sufficiently fast compared to N~! to ensure that the spectral gap in the transverse
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

direction grows fast enough to sufficiently suppress transitions into transverse excited
states. This is regulated by the so-called admissibility condition. Moreover, if the
confinement is in one spatial dimension (d = 2), we require a second, although very
weak condition, referred to as moderate confinement condition, which states that e
cannot shrink too fast either. Both conditions seem to be rather of technical than of
physical nature, and we comment on their necessity in detail in Section 3.1.3. More
precisely, we consider the following sequences:

Definition 3.1.1. Let {(Np,en)},cny € Nx(0,1) such that limy, oo (Np, €n) = (00,0),
and let py, = €>~1/N,,. Then the sequence is called

e (O©-) admissible, if

S
lim % = lim N,e®+d3 =0, (3.8)
n—o0 l,l,n n— o0
e (T'-) moderately confining, if
T
lim =% = lim N,eit93 = o0. (3.9)
n—oo /’I/n n—oo

The admissibility condition (3.8) can only be satisfied for © > 3 — d. Clearly, the
larger ©, the weaker the condition. Moreover, it is less restrictive for d = 2 than
for d = 1. The moderate confinement condition (3.9) is automatically fulfilled for
I' <3—d, and we require I' < © to ensure the compatibility with (3.8). The condition
is weaker for smaller I' and smaller d. In conclusion, © and I' can take the values

©c@3-do], Tec[3-d0),

where © = 0o and I' = 3 — d mean imposing no condition at all.

To prove that (3.4) effectively describes the dynamics of the condensate, we require
restrictions on the parameters © and I', which depend on the dimension d. To express
these choices in a more compact way, we use the notation % and 2~ to denote (x + o)
and (z — o) for any fixed o > 0, which is to be understood in the following sense: Let
the sequence (Np, €n)nen — (00,0) and o > 0. Then

f(N,e) SN &  f(Npen) SN, for sufficiently large n,
f(N,e) Se®™ & f(Ny,en) Ser? for sufficiently large n,
f(N,e) Sp* &=  f(Nn,en) Sul~? for sufficiently large n .

Using this notation, the weakest possible restrictions covered by our analysis are given
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3. Results and Discussion

by

%‘,2) ford =1,

(0,T)g = ( (3.10)

(3,17)  ford=2.
Note that for d = 1, we may choose I' = 2 = 3 — d, which means that our proof does

not require any moderate confinement condition. These constraints are discussed in
detail in Section 3.1.3.

Finally, our analysis is only sensible for times where the condensate wave function
®(t) exists, and, moreover, we require H24(R%)-regularity of ®(t) for our proof. Since
the evolution equation (3.4) is non-linear, the regularity of the initial datum ®q is
not necessarily preserved globally in time. Hence, let us define the maximal time of
H?4(R%)-existence,

s,)i/\l := sup {t eRY : 12| fr2e ey < oo} ,

which depends on the dimension d of the non-linear equation and on the external
potential VII(-, (-,0)). Conditions on VI under which the existence is global in time
are specified in [32, Assumption A3 and Appendix A] for d = 1 and in [33, Remark 1]
for d = 2.

In conclusion, we make the following assumptions on the model (3.3) and on the
initial data:

A1l Interaction potential.
Let the unscaled potential w : R?> — R be bounded uniformly in N and e,
spherically symmetric and non-negative and let diam (supp w) = 1.

A2 Confining potential.
Let V+ : R34 — R such that —A,+V = is self-adjoint on its domain D C L*(R379)
and has a non-degenerate ground state x with ground state energy Ey < 0ess(—Ay+
V.
Assume further that the negative part of V+ is bounded and that x € CZ(R3~%),
i.e., that x is bounded and twice continuously differentiable with bounded deriva-
tives. We choose x normalised and real.

A3 Ezxternal field.
Let VI : R x R® — R such that for fixed z € R?, Vi, 2) € C'(R). Fur-
ther, assume that for each fixed t € R, Vi, ), Vit ) e L°(R?) N CY(R3) and
vV, vyVi(E,-) € L2(R3).

A4 Initial data.
Let (N,e) — (00,0) be an admissible and moderately confining sequence with
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

parameters (©,I')4 given by (3.10). Assume that the family of initial data,
wév’a € D(H,(0)) N L2 (R3) with Hzpév’aw = 1, is close to a condensate with
condensate wave function ¢§ = ®¢x® for some normalised ®y € H?¥(R?), i.e.,

1)

et ) T2 [Tyve — [20X) (BoxC]| = 0 (3.11)
Further, let
. wN,s &
(Ne)aloo0) | 0)=4 ()‘ (3.12)

Under these assumptions, we prove that condensation in a factorised one-body state
is preserved by the N-body time evolution, and that the longitudinal part of the
condensate wave function evolves according to a d-dimensional GP equation.

Theorem 3.1.2. Let d € {1,2} and assume that the potentials w, V* and VIl satisfy
Al - A3. Let wéV’E be a family of initial data satisfying A4, and let Y\(t) denote the
solution of the N -body Schrédinger equation with Hamiltonian (3.3) and initial datum

Yo <. Then, for any 0 <T < TS,

li T 1) — | ®(EVENDP (1) E
el o) s TR~ [R(0X) (@O

lim  sup |EY 0@ - 2@ = o, 3.14
(N,e)—(0,0) tG[O%} ‘ ( ) b ( )‘ ( )

= 0, (3.13)

where the limits are taken along the sequence (N, e) from A4. Here, ®(t) is the solution
of (3.4) with initial datum ®(0) = &g from A4.

Theorem 3.1.2 combines the statements of [35, Theorem 1] for d = 1 and [33, The-
orem 1] for d = 2. In fact, we prove (3.13) and (3.14) for a larger class of interaction
potentials, including not only interactions in the GP scaling regime but also interac-
tions in the NLS regime such as

wup(z) = '~ Fw(pfz), e (0,1) (3.15)
(see [32, Theorem 1] and [33, Theorem 1]). The main motivation to consider such
interactions is that they are crucial for the proof in the GP regime, where the central
idea is the replacement of w, by an appropriate, softer scaling interaction in the NLS
regime, as explained in Section 1.4.4. Therefore, we postpone the discussion of these
interactions to the next section.

Finally, our proof provides an estimate of the rate of the convergence of the reduced
densities. Since this rate is not optimal, we do not state it here, but it can easily be
recovered from the estimates of the single contributions to the time derivatives of the
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3. Results and Discussion

respective counting functional, together with the quantitative version of Lemma 1.4.2
([32, Lemma 3.6]). For d = 1, the rates are collected in [32, Corollary 3.9] and [35,
Corollary 3.5].

3.1.2. Strategy of proof

Pickl’s method (Section 1.4.4) was first adapted to the situation with strong con-
finement by von Keler and Teufel in [100], who cover the mean-field scaling regime
g e (0, %) Our proof can be understood as an extension of these ideas to the whole
range (3 € (0, 1].

In addition to the projectors

pi=p" = O t)],  qi=q" =1lp2gs —p

onto the condensate and its complement, one introduces projectors onto its longitudi-
nal and transverse part. Define the orthogonal projections on L?(R?)

pq> = |(p(t)><(p(t)| & :H.L2(R3—d) y q(I> = :H.LQ(RB) —pCI),
PX = Trema) © XN, ¢* = L2y — P~
which are lifted to many-body projections on L?(R3Y) as in Definition 1.4.1. They
satisfy the relations
p=p"0", ¢14=¢", ¢q=9¢", q=¢"+"»" =¢"+p%¢". (3.16)

As explained in Section 1.4.4, one of the key ideas of Pickl’s strategy of proof is the
substitution of the GP interaction by a softer interaction in the NLS scaling regime.
More precisely, this interaction should be contained in the following set:

Definition 3.1.3. Let 5 € (0,1) and n > 0. Define Ws,, as the set containing all
families
w,p:(0,1) = LR R),  p+— wyg,

such that for any p € (0,1)

(a) wup > 0 is spherically symmetric with ||wy, gllpe®s) S pr =38 and with
R, 5 := diam(suppw,,g) ~ u?,

b lim b —bs| =0,

) xSy P80 = bl

where

byne = N / wp(2) dz / W) dy = p / w,p(z) dz / () dy,
RS R?’*d R3 R?,fd
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

and

bg = li b .
p (N,s)l—r>l(loo,0) Al

The parameter bg . determines the coupling parameter of the effective (N,e)-
dependent non-linear evolution equation for ®(¢) in the NLS scaling regime, analo-
gously to w?® in (1.69). In the limit (N,e) — (00,0), it converges to an (N,e)-
independent evolution equation with coupling parameter bg := lim(y ) (c0,0) b5,V e
analogously to ||w||1 in (1.72). The parameter 7 measures how fast bg y . converges to
this limit. Note that the interaction wy, g(z) = u!=3Pw(u=72) is contained in Wg,, for
every 11 > 0 and corresponds to the coupling parameter

b= ol [l dy. (317)

As for the GP scaling, we must restrict our analysis to sequences (N,¢) satisfying
an admissibility as well as a moderate confinement condition (Definition 3.1.1). For
B € (0,1), the corresponding parameters © and I' are given by

(©,1)qp = (3.18)

In both cases, we may choose I' = %, which implies that the moderate confinement
condition can be written as 5

lim — =0.

(N,g)—(0,0) €

Since the range of w, 3 € Ws,, is of order p?, this condition p® < e implies that
the interaction is supported well within the confining potential. Hence, in the NLS
scaling regime, the moderate confinement condition is physically motivated, whereas
the admissibility condition is a technical restriction also in this regime (see also Section

3.1.3).

Although our goal is to derive an evolution equation in d < 3 dimensions, the
problem is still three-dimensional, in the sense that the condensate wave function

¢ = ®x° is a 3d object. Hence, the counting functionals for NLS and GP scaling
regime are defined analogously to (1.78) and (1.94) from the 3d case without strong
confinement, namely

gy, ,(t) = <<wN’€( ), m#* = (1) (EW“ (¢t 5;1;“)( )(, (3.19)
Ogu(t) = 0F,, (1)~ NV - 1>%<<W<t>,g§”r?fwNﬂt))) CEY
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with m#® from (1.77) and % from (1.93). Here, Sl;l;(t) (t) is defined as (3.7) with bg as

in Definition 3.1.3. The function gém) = gg(zl — 2z9) denotes the complement of the

zero energy scattering solution fE of the potential w, — UE as in(1.90). Here, UB is
defined analogously to Definition 1.4.4, i.e.,

., 1-38
UE(Z) =M Ba:ﬂ“w§<‘z|<RB(z) ’
where RE is defined as the minimal value such that the scattering length of w,, — UE
equals zero.

To prove the convergence of these functionals, we must eventually compare the
3d pair interaction w, 3 and the d-dimensional effective one-body potential bg|®|*.
To cope with this dimensional difference, we construct an effectively d-dimensional
interaction w, g by integrating out the transverse degrees of freedom in w, g, i.e.,

wuﬁ(wl—'xﬂf“(/idyﬂxf@h)P j/ Ay X () P (21 — 22)
R?,fd RSﬂi

As an immediate consequence of this definition, we find
Py Py wup(z — 22)py py =Wy p(x1 — 22)pt Py - (3.21)

We now suitably insert identities (p1 + ¢1)(p2 + ¢2) in the time derivatives of the
functionals (3.19) and (3.20) on both sides of the scalar products and decompose
them, using the relations (3.16). By (3.21), the contribution with pX p)~ on both sides
produces the effectively d-dimensional interaction w, 3, while the other contributions
can be understood as remainders from this substitution.

As in Section 1.4.4, we first derive an estimate of the time derivative of aé wp s (t)
for interactions w, g € Ws,, in the NLS scaling regime. Subsequently, we use this

result for the GP case.

NLS regime

For interactions in the NLS scaling regime as in Definition 3.1.3, we obtain
1 2
$05 0,0 5 ac®) + L0 + 920 + alt)

for almost every t € [0,79%,,). The terms 74 <, ’y(l) and 7(2) contain the quasi-d-

da, v b,< b,<

imensional interaction w,, 3, hence they are comparable to (1. rom the fully
di ional int ti w3, h th ble to (1.82) f the fully 3d
case. Moreover, they are of the same form for both d = 1,2. For the last term,
Yr.d» Which collects the remainders from the substitution w, + w, g, we distinguish

between d = 1 and d = 2. To write the expressions in a more compact form, we
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

abbreviate

2 2 b
Z;(:,B) = w;(tl,ﬂ) o (|B(t, 1)) + [ (8, 22)]?)

and drop all superscripts ¢ (¢). This yields

Yac(t) = ‘<<¢N’E(t),V”(t,zl)sz’g(t)»—<<I>(t),v||(t7(=T70))(I)(t)>L2(Rd)
=23 (N4 (8), 1n (VI (¢, 20) = VIR, (21,00) pro™= (1))

Wty = N[0V 0.7 pY paZ pipev (1)

)

2 T € €
Ayl(»,l(t) = N ’«#’N’E(t% Q?QEDZ w“,g(lil — :L’g)p(lbpg)pi< p%( sz ’
A O e CEE N 2 SR AO) |

s ‘ <<wN’€(t)7 N2 |D(t,21) ’2P1Q2¢N’E(t)>> ) :

where

Te {Nﬁz‘il, Nmb_2}

is in each term chosen such that the term becomes maximal. For d = 1, we obtain the
remainder term

() = N[00, a tTul T ppe™ ()
N |00, @ a2 + 0P @) Tl F a0

+N)<<7!}N’€ t), (h QQ lp1 p2 uﬁp1q2 ¢N6( )»

where to € {pg,qg,qgI> pgs} such that the first line becomes maximal. For reasons
explained below, the case d = 2 requires one more splitting of the projections ¢s in
the second line into ¢o = q%‘e + qg) p%‘s. This yields

e IONES N}({wwt),q;%TwS?plpng»E(t)))]
+N ’«dJN’E(t) (q1 2 + g1 Py Q2 )lwuﬁpl% N )>>‘

+N’<<¢N’€(t),q1 a lwi’g)plpz a3 E(t)»

9

g 1> £ e 12 154
W30 = N(¥0, @ e ey + el ) el Dl v o))

+N MwN (1), qtadpY py Twl3 prgy ¢N’E(t)>>‘ :
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Let us analyse the single terms and, in particular, comment on the differences to the

fully 3d problem from Section 1.4.4.

96

e Energy term 4 <(t).

Similarly to the 3d expression (1.80), this term contains the interactions between
the bosons and the external field V. The second line is specific for the problem
with strong confinement and is due to the fact that the N-body Hamiltonian
contains the 3d external field VI (¢), while only the value of VI(t) at y = 0
enters in the effective equation. In addition to the argument for (1.80), one
expands VI(¢, (z,-)) around zero and estimates the remainders, which entails
the regularity assumptions in assumption A3.

1
(¢®p®-p®p®) term Ay (¢).

The 3d counterpart of véli (t) is (1.83). Since ¢f|®(x2)|?p? = 0, it follows that
1)

7y~ (t) contains the difference

p— b
P (T (@1 — @2) = 2l ) p

between the quasi-d-dimensional pair interaction and the effective d-dimensional
one-body interaction potential. The estimate works analogously to the 3d case
and crucially requires the moderate confinement condition. This constraint en-
sures that w, g is localised well within the region accessible to the confined
bosons, implying that the full interaction potential contributes to w, . If it
were instead that i > e, the predominant part of w3 would be localised in
a practically inaccessible area, hence one expects py W,p(z1 — x2) pY — 0 as
(N,e) — (00,0) (see also the discussion of the moderate confinement condition
in Section 3.1.3).

(¢%q®-p®p®) and (q%¢®~q®p®) terms 4,7 (t).

The first two lines of %52 (t) correspond to the 3d expressions (1.84) and (1.85),
while the third line is a remainder, which is easily controlled since it does not
contain w,, g. As in the 3d problem, the first two lines are estimated by integra-
tion by parts, which, however, is now only in x as W, 3 is a function on R%. Since
the explicit form of Green’s function depends on the dimension, the estimates

for d = 1,2 are mutually different and differ from the 3d problem.

For d = 1, we implement the integration by parts by defining the function Egl
as the solution of the equation ;—;Em = W, 5 on the interval [~ N %1, NA1] with
Dirichlet boundary conditions for some ; € [0,1]. To prevent contributions from
the boundary upon integrating by parts on this interval, we insert a smoothed
step function, whose derivatives can be controlled (see [32, Definition 4.18]).
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For d = 2, we define h, as the solution of the equation Ah, = W, 3 — U, on
R?. Here, U, is a potential with [0, 12y = W allL1(r2) Which is supported
within a 2d ball B, with radius p for some p € (i, 1] ([33, Definition 5.4]).
As a consequence of Newton’s theorem, Ep is supported in B,, and we can
integrate by parts in z without the appearance of boundary terms. To cope with
the logarithmic divergence of the 2d Green’s function, we integrate by parts
twice. This is the reason why we define h, not on a ball with Dirichlet boundary
conditions as was done for d = 1: while the results are the same when integrating
by parts once, the additional factors p~! from a second derivative falling on the
smoothed step function are too large.

As in the 3d problem, an a priori estimate ||V, ¢Py™V¢(¢)||? < 1 suffices for the
first but not for the second line of 71522 (t), both for d = 1 and d = 2. Here, we
derive the improved estimate

Ve gt ™= ()2 < af (1) +0(1)

([32, Lemma 4.21]) by adapting the proof of the corresponding 3d lemma, which
again involves a splitting of the interaction by means of the projectors pX~ and
¢¥" and an integration by parts. Naturally, remainder terms similar to Yr<(t)
appear, and they are controlled as explained below.

Remainder term ~,1(t) for d = 1.

This term does not have any 3d counterpart since it collects all terms without
pi‘e pgs on both sides of the scalar product, i.e., the remainders from the substi-
tution wy, g — W, . The integration by parts, which is now in three dimensions,
is realised via the function h. solving Ah. = w, g on a 3d ball with radius ¢
and Dirichlet boundary conditions, in combination with a suitable smoothed
step function. In contrast to the integration by parts in x, we must now handle
derivatives V,, hitting YV or ¢, which contribute a factor e~! each.

To compensate for these factors, one observes that transverse excitations are
extremely suppressed due to the strong confinement. Since the interaction w, g
is non-negative and the external potential VIl is bounded, one finds, for simplicity
dropping all time-dependencies, that

o) = B (1) 2 (W (<A + HVEE) - B) ) - o)
= (a0 (—ay + SV - B) ¢ V<) - o)

because (—A,, + E%Vl(yg—l) - %) p’fE =0 by (3.1). On the one hand, the spec-

97



3. Results and Discussion

W, 3(+,y) diverges only logarithmically in p~

tral gap between the ground state and the first excited state scales as e~2, hence
X, N, ~A VJ_ Y1 Ey X Ne\l > 1 N N
q1 ¢ 9 Y1 + ( e ) 82 1/] ~ g2 ¢ 7Q1 1/] .

On the other hand, assumption A2 states that ||(V+ — Eo)— || poo (r3-a)
implying that

<1’

~

(o o™ (~an + 2V - &) aTuVe)
> [V ™) = SNV = Bo)- |l oo oo lla)

In conclusion, we obtain the a priori estimates

e o™ @ Ses Vet M0l S 1.

Note that each term in 7, 1(t) contains a projection qi‘s, hence one gains a factor
¢ in each expression. Moreover, by means of the admissibility condition, small
positive powers of N can be compensated for by powers of €, which is crucial for
the estimate.

Remainder terms 75}2) (t) and 7 ( ) ford = 2.

The term fy( )( t) can be estlmated by a 3d integration by parts, similarly to
Yra(t). Note that the second and third line each contain two projections ¢X,
each of which contributes a factor . While one € cancels the factor e ! from
the derivative, the second € compensates for all surplus positive powers of V.

(2)

Since the two terms in 7, (t) contain only one projection ¢X~ each, this strategy
of a 3d integration by parts does not work here. Note that this was different for
d = 1 due a different ratio of € and N. Instead, one controls ’y( ) (t) by observing
that both lines contain the expression
PY wu (21— 22)pY = Wag(en — w2, y2)pY

which defines a function where one of the y variables of the pair interaction is
integrated out, while it still depends on the second one. Now we integrate by
parts only in the z-variable as explained for d = 2 in ’yéz (t). First, this has the
advantage that V, does not generate factors e~!. Second, the z-anti-derivative of
1 which can be compensated for by
any positive power of € or N™!, due to admissibility and moderate confinement
condition.

In conclusion, the estimates described above lead to the following theorem, which

combines the statements of [32, Theorem 1] for d = 1 and [33, Theorem 1] for d = 2:
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

Theorem 3.1.4. Let € (0,1), d € {1,2} and w, g € Wa,, for some n > 0. Assume
that the potentials V- and VI satisfy assumptions A2 and A3. Let wév’a be a family
of initial data satisfying A4 with parameters (0,I')q 5 as in (3.18) and with Efo (0)
replaced by 52;0 (0). Let ™N¢(t) denote the solution of the N-body Schrédinger equation
with Hamiltonian

N
=3 (A + FVE () VI ) + Y we (3.22)

7j=1 1<J

and initial datum z/)év’s. Then, for any 0 <T < T

a,vi’
lim sup Tr () —|®()x W P(t)x®|| = 0O,
By Sup T [y [@(t)x")(®(t)
lim sup ‘Eﬁi;(ﬂ(t) —Elz(t)(t)‘ = 0,

(N,E)A)(OO,O) tE[O,T}
where the limits are taken along the sequence from A4. Here, ®(t) is the solution of
the NLS equation (3.4) but with coupling parameter bg from Definition 3.1.5.

GP regime

Let us now turn to the proof of Theorem 3.1.2 for the interaction w,, in the GP scaling
regime. Abbreviating

700 = wu(n — ) — g (@) + |0t 22)]%),
Zilg) = (U3f5> (21 — 22) — 25 (|@(t, 21) 2 + | D(¢, 22)]?)

and dropping all superscripts ¢°(t), the time derivative of the GP counting functional
(3.20) can be estimated as

| e, ()] S AS(8) + Ya(t) + 76(t) + velt) + vat) + ve(t) + £ ()

for almost every t € [0, T° q 1), where

Y(t) = '((w’“(t),v’(t,zlw’s(t)}) — (@), VI(t, (z,0)0(1))
N (00, ar (VI 21) = VI (,0)pio ™ (1))

+N2 ‘<<,(/)NE( ) Z(12 sz( )»‘

L2(R4)

vt = N ({60, [Vt 20) = VI 00,7 w40
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3. Results and Discussion

W) = N ‘«W’E(t% B (t,0) P %N’€<t>>>]

N2 <<¢N,s(t>7 g[(;z) ?Z£12)¢N,e<t)>>’ 7

w®) = N (e, (Vigd?) - mire))
alt) = 3|06 [z ) 050
#6040, 587 [l 710
u®) = N0, 600 [ o)
) = N (000 [o e 7) V(o))

As in the 3d case, these expressions fall into two categories:

e NLS term y<(t).

100

This term is the counterpart of (1.96), i.e., it corresponds to the time deriva-
tive of the NLS counting functional with interaction UE fg. To show that the
result from the NLS case can be transferred, one first observes that U 3 fE € Wﬁn

for n € (0,1 — B). Second, one needs to choose B such that the admissibil-
ity /moderate confinement condition with parameters (©,I"); from (3.10) implies
that the same sequence (N, ¢) is also admissible/moderately confining with pa-
rameters (O, F)d,E from (3.18).

For d =1, we have (8,T); = (127,2) and (©,T), 5 = (2/8,1/B), which implies
the sufficient condition 3 € %, %Jr] since

g 4 N62/5—2 _ N€12/5*—2€2/E—12/5* -0,

5
6 ~
B>l = NV g

IN

v

For d = 2, the respective parameters are (©,T)y = (3,17) and (@,I‘)QE =
(3//3,1/B), hence the compatible range of 3 is [L~, 1] because

l

<1 = N€3/§_1 = N5253/5_3 — 0,
B>1" =  NllUB Nyl -l B g

Note, however, that these conditions are further restricted by requirements in



3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

the proof.

)

As explained in Section 1.4.4, the estimate of the second line of 7,52< needs to be

adapted to the GP dynamics. First, one proves the estimate

114, Vo, af (1% S 0, (8) +0(1)

where A; is the subset of R3" where appropriate 3d holes around the scattering
centres are cut out. The basic idea of the proof is the same as for the fully 3d
estimate (1.102), which crucially relies on the inequality (1.103). However, it
becomes more involved due to the confinement: To be able to apply (1.103), we

must show that

15,18 Vo™ O + (0700 (=2 + V) = B ) 0™ 0))
2 111, 15, Vg @) - 0(1)

i.e., that the positive term ||V,,9"¢(¢)||> compensates not only for a sufficient
share of the negative part of <<1[)N’5(t),]151 (wy — Ug)(m)?/)N’a(t)» but also for
the large negative part of E% <<1/1N7€(t), (vte) - Eo)le’a(t)». To this end, we
introduce a new set A7 as the projection of A; onto the hypersurface y = 0.
Since the corresponding characteristic functions ]lﬁf and 14¢ act non-trivially
only on the z variables and 1p, and 1g act non-trivially only on the variables
Z2,...,ZN, the corresponding multiplication operators commute with A,,. In
particular, Iz Ilgle’E(t) and IlAclch’E(t) are contained in the domain of A,,.
Hence, by suitable insertion of ]lff + 1 42, by positivity of the operator —A,, +
g%Vl(ye—l) — % and since Ilj-f > 17, in the sense of operators, one extracts the
required contribution from the scalar product. To control the remaining terms,
we exploit the smallness of A” by means of the Gagliardo-Nirenberg-Sobolev
inequality in the z variables. Consequently, the estimates depend non-trivially
on the dimension d. For d = 1, the resulting expressions can be controlled by
the admissibility condition alone, while for d = 2 the moderate confinement
condition is additionally required.

Finally, we estimate 7,522 by integration by parts and insertion of 14, + Lz, .

The contributions with 14, are controlled by the new energy estimate, while
one uses the 3d Sobolev inequality to exploit the smallness of A; to bound the
terms with 17 . For d = 2, this integration by parts is done in two stages to cope
with the logarithmic divergences from the 2d Green’s function, which is similar
to the 3d problem. More precisely, one introduces two auxiliary potentials 5“51
and 7y, which are supported on balls with radius p*' and 1, respectively, and

defined such that their L!(R?)-norms coincide with ||U" 5 fBH L1(r2)- Subsequently,
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3. Results and Discussion

the differences Uz f5 — 0,5 and 0,5, — U1 are integrated by parts, and finally we
exploit different properties of the solution of the respective Poisson’s equation.

o Remainder terms vq(t) to v£(t). The terms v,(t) to vf(t) are equivalent to (1.97)
to (1.101), while v,(t) is particular for the situation with confinement, similarly
to the second line of v, «(t) in the NLS case.

The main difference ub comparison with the 3d problem is the term ~.(¢).
While (1.98) is estimated via integration by parts, this does not work in the
situation with confinement, where each derivative V carries a factor e . For
d = 1, this is circumvented by proving suitable estimates for Vgg. In the case
d = 2, one splits the scalar product into its x and y components, where the
moderate confinement condition is crucial to control for the control of the y
component. Moreover, the admissibility condition is required for both d = 1 and
d=2.

3.1.3. Discussion

To the best of our knowledge, the problem of deriving a low-dimensional NLS equation
directly from the 3d N-body dynamics has been studied in three cases, while a low-
dimensional GP equation has not been derived before:

e in [45], Chen and Holmer consider the case d = 2 with repulsive interactions for

Be(0,2),

e in [47], the same authors study d = 1 with attractive interactions for scaling
parameters 3 € (0, %),

e in [100], von Keler and Teufel cover repulsive interactions for d = 1 and § €
(0, %), where the confinement is realised by a waveguide with non-trivial geom-
etry.

Let us briefly present these results, suitably adapted to our notation.

Chen and Holmer consider the Hamiltonian H), 5 as in (3.22) without external trap
and with a harmonic confining potential in 3 — d dimensions,

Vi) =v*,  SVEE) =2,

where the frequency of the rescaled potential is w = €72, They consider interactions
wy g as in (3.15) for w a Schwartz function. In [45], it must be non-negative, while
the authors assume in [47] that [w(z)dz < 0 but w may not be negative everywhere.
They admit initial data satisfying (3.11) and assume that the initial renormalised
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

energy per particle is bounded uniformly in N and ¢, i.e., that

sup (5 (00 By ) - ) 51 (3.29
Under these conditions, the authors prove that that (3.13) is satisfied, i.e., that the
condensation in a factorised state is preserved by the time evolution, where the lon-
gitudinal part ®(¢) solves an NLS equation. Their proof uses the method of BBGKY
hierarchies sketched in Section 1.4.3 and, as a consequence, does not provide any
estimate of the rate of the convergence. In [45], the coupling parameter is given
by bg = [w(z)dz [ [x(y)[*dy, and in [47], they obtain the coupling parameter
bg = — | [w(2) dz| gz [x(y)|* dy. As in our case, Chen and Holmer do not consider all
possible sequences (IV,e) — (00,0) but impose the following constraints:

e For the focusing problem d = 1 in [47], they assume that

2_o 1 ——2_
Ner =<1, N7 =0 <1, (3.24)

~

where

_ 3 _ - 7_
VQ(B)—min{lﬁfg, 5 5]152%+oo-]1/3<%, 12_62[37 8 55} )

@

1
5

Note that the first condition in (3.24) plays the role of an admissibility condition,
while the second one is a moderate confinement condition.

e For the de-focusing problem d = 2 in [45], the condition is

N71e™2B) <22 forall o > 0, (3.25)

where

1-§ 38— 3B+3 B+}
28 7 1-387 1-8"1=-28("

The inequality (3.25) is a moderate confinement condition, while no admissibility

v(f) := max {

condition is imposed.

Below, we comment on the relation with our conditions (3.18).

The work [100] by von Keler and Teufel concerns a Bose gas which is confined to
a quantum waveguide with non-trivial geometry, i.e., to a region of space contained
in an e-neighbourhood of a curve in R?. The confinement is modelled via Dirichlet
boundary conditions. The authors consider the interaction (3.15) for 8 € (0, %), where

w is assumed bounded, spherically symmetric, compactly supported and non-negative.
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3. Results and Discussion

Under the assumptions (3.11) and (3.12), they prove (3.13) and (3.14), where the
longitudinal part of the wave function evolves according to the 1d NLS equation (3.4)
with coupling bg and with additional potential terms from the twisting and bending
of the waveguide. Their proof uses Pickl’s first quantised method, and our proof can
be understood as an extension of the ideas in [100]. Von Keler and Teufel impose
the admissibility condition £3 /P — 0, as well as the moderate confinement condition
12 /e — 0. Moreover, they also consider sequences (N, &) — (00,0) with p?/e — oo.
This is possible for 5 € (0, %) and leads to bg = 0 in the effective equation (see the
discussion of the moderate confinement condition below).

In the remainder of this section, we discuss the assumptions of our model as well as
the obtained results and compare them to [45, 47, 100].

Assumptions on the potentials

We consider interaction potentials that are bounded, spherically symmetric, compactly
supported and non-negative. With regard to actual inter-atomic interaction potentials,
it would be more realistic to describe the interactions by potentials with positive
scattering length but with a certain negative part. Since Pickl’s approach was recently
adapted to such potentials in [98], it is likely that our result can be extended in a similar
way.

In comparison to all previous works [45, 47, 100], which are restricted to values of
B strictly smaller than %, our result covers more singular scalings of the interaction,
and in particular includes the physically relevant GP scaling.

Assumption A2 is fulfilled by a harmonic potential as considered by Chen and
Holmer but includes also, for example, any smooth and bounded potential with at
least one bound state below the essential spectrum. In particular, it is not necessary
that the potential diverges as |y| — oo since the confining effect of the potential
is due to the rescaling by e: by [85, Theorem 1], the transverse ground state x° is
exponentially localised on the scale €.

Moreover, our result can easily be modified to a confinement via Dirichlet boundary
conditions as in [100]. The main difference in the proof is the estimate of expressions
such as ’yél), which contain the difference between the quasi-d-dimensional interaction
w,,p and the effective one-body potential. To take the boundary of the waveguide into
account, one divides the dy-integral into an integral over those y sufficiently distant
from the boundary that supp w, g((z,y) —-) is completely contained in the waveguide,
and into an integral over the rest, which is easily estimated. The extension of our
result to quantum waveguides with non-trivial geometry is not straightforward, since
a Taylor expansion was used in [100] and the kinetic term contains an additional vector
potential.
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

Finally, assumption A& includes any bounded and sufficiently regular external po-
tential V. In contrast to the works by Chen and Holmer, we admit time-dependent
potentials VI as in [100], which is important to observe non-trivial dynamics.

Assumption on the initial data

For the GP scaling of the interaction, an external potential VI (¢, z) = VIl(z) for some
homogeneous VI of degree s € [2,00] and a confining potential diverging at infinity,
the Hamiltonian (3.3) coincides with the Hamiltonian (1.42) with parameters L = 1
and A = a,. In this case, the two parts (3.11) and (3.12) of assumption A4 were
proven for the N-body ground state in [122, 123] for d = 1 and in [164] for d = 2 (see
Section 1.3.3):

e For d =1 and 3 = 1, the parameter g14 from (1.44) is in our model given by

8ma 1
—N1p=22 Yy ~ = .
g1d b= /!X(y)! dy ~
R

2

Besides, 9,4 ~ N, hence g14/0;q ~ N2, which implies that our model is in
parameter region 2 (“The 1d GP case”) of the quasi-1d gas. The 1d GP func-
tional Ef fj }\1,21(1 coincides with (3.7), hence (1.50) yields the second part (3.12) of
A if wév’a is the N-body ground state of the Hamiltonian (3.3) and ®q is the
minimiser of the GP energy functional (3.7). Moreover, the first part (3.11) of
A4 follows from (1.53).

e For d = 2 and 8 = 1, our model is contained in parameter regime 1 (“The 2d
limit of the 2d GP regime”) of the quasi-2d gas, which is characterised by the

simplified coupling parameter gé? from (1.64). In our model,

m__ b _a 4y L
i = o = | KWy~
R

implying that the gas is part of region (b) (“The GP case”). Consequently, the
two parts (3.11) and (3.12) of assumption A4 follow from (1.63) and (1.66) if
wév ° is chosen as the N-body ground state and ®; as the minimiser of the 2d
GP functional (3.7).

In conclusion, the two parts of A4 concerning condensation and the energy per particle
are fulfilled at least for the N-body ground state in the GP scaling. These assumptions
coincide with the assumptions made in [100]. Besides, the first part (3.11) concerning
condensation is also required in [45, 47]. While (3.12) is stronger than the correspond-
ing assumption (3.23) by Chen and Holmer, let us remark that assumptions like (3.12)
are rather standard in the literature as soon as larger values of 8 are concerned.
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3. Results and Discussion

In addition, A4 restricts the choice of the limiting sequence {(Ny, &)} nen to se-
quences satisfying moderate confinement and admissibility condition. In the remain-
der of this section, we discuss these constraints, quantify the coverage of the parameter
range, and compare this to the related works [45, 47, 100].

Restrictions on the limiting sequence for 5 € (0,1)

Let us begin the discussion with Theorem 3.1.4 for scalings f € (0,1). Here, the
admissibility condition (3.18) can be expressed as

2
iﬁ<<1 d=1
1

g3

for sufficiently large N and small e. The moderate confinement condition (3.18) is
given by the requirement

ﬁ <1, d=1,2,

€
for sufficiently large N and small . Figure 3.1 shows the parameter space N x [0, 1],
where we plot for clarity the parameters N~! and . A sequence (N,e) — (o0,0)
can pass through this space in an arbitrary way from the top right to the bottom left
corner. The two boundaries correspond to the two-stage limits where first limy_, oo at
constant ¢ and subsequently € — 0 (dark solid line) and vice versa (light solid line). In
actual experiments, the confinement is often by a harmonic potential, whose frequency

2

w = £~ 2 is roughly proportional to the number of particles N.! This relation is drawn

as black dashed line in Figure 3.1.

Our analysis covers a subset of N x [0, 1]. The admissibility condition bounds the
possible sequences away from the edge case lim._,glimy_,~o, while the moderate con-
finement condition obstructs them from approaching the edge case limy_ oo lime_g.
The dark region in Figures 3.2 and 3.3 shows the parameter range covered by our
analysis for d = 1,2 and some exemplary values of § € (0,1). The white area is
prohibited by the admissibility condition, while the light grey area is ruled out as a
consequence of the moderate confinement condition. Naturally, these restrictions are
meaningful only for sufficiently large IV and small €. This implies that only the section
of the plot around the bottom left corner is of importance, whereas the elements of
the sequence around the top right corner are not constrained by any admissibility or
moderate confinement condition.

For d = 1, the moderate confinement condition imposes a restriction only for § < %

!This statement is taken from [45, p. 915] and [47, p. 592].
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

Nfl

Figure 3.1.: Parameter space N X [0, 1] containing all sequences (NN, &) — (00,0). The
dark solid line corresponds to the limit lim._glimy_, while the light
solid line describes the case limpy_, o lim._,g. The black dashed line depicts
the relation N ~ £~2, which corresponds to a harmonic confining potential
with frequency proportional to N.

This follows immediately from the definition of p, which implies that p®/e < 1 is

trivially true for 8 > % For d = 2, the condition is meaningful for the full range

B € (0,1), becoming less restrictive with increasing /3.

We expect the moderate confinement condition to be optimal, in the sense that
we expect the correct effective equation (3.4) to be a linear evolution with coupling
parameter bg = 0 if the limiting sequence is such that u /e — oo. This was shown in
[100] for d = 1, B € (0,%) and a confinement by Dirichlet boundary conditions. As
remarked earlier, we expect this to extend to 5 < % and to hold also for d = 2 and

8 < 1. To motivate this expectation, recall that the moderate confinement condition
(1)

b and in the energy estimate via

enters the proof exclusively in the estimate of ~
(1)
b<"
by Dirichlet boundary conditions on some sufficiently nice subset Q.. C R3~%¢ with

a term of the same form as = Let us consider this expression for a confinement

diameter re for some fixed r > 0. For bg = 0, this leads to the estimate

1 12
%QSNMmeM-—NSw!WM@mW/ﬁwwawﬂwwﬂ

d
;11§§r5 Rd Qre
< N0 [T [ [ dyuia)
Re QT%?/ ub
< (L) 3—d
~ UB 9
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Figure 3.2.: Subset of the parameter space N x [0, 1] covered by our result for some
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exempary values of 5 € (0,1) for d = 1. Our analysis covers the dark
region. The white region is prohibited as a consequence of the admissibility
condition, and the light grey region cannot be reached due to the moderate
confinement condition.
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-

N—l

()d=2p8=3 (fd=2,8="1

=

Figure 3.3.: Coverage of the parameter space N x [0, 1] for d = 2 and some exemplary
choices of 8 € (0,1). While our result applies in the dark grey area, the
white and light grey region are prohibited by admissibility and moderate
confinement condition, respectively.
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which is small by assumption. Moreover, note that the condition 1”/e — oo implies
the admissibility condition, hence the other estimates remain valid. To extend this
argument to a confinement by potentials, recall that x¢ is by assumption A2 localised
on the scale ¢.

The admissibility condition is more restrictive for larger S and means a much
stronger constraint for d = 1 than for d = 2 (see in particular Figures 3.2 and 3.3).
Note that the curve corresponding to a harmonic confinement with frequency pro-
portional to N (Figure 3.1) is contained in the region included by the admissibility
condition for d = 1 with 8 < % and for d =2 and all g < 1.

The stronger admissibility condition for d = 1 is, at least to some extent, due to
the fact that the estimates of the earlier work [32] (d = 1) are not optimal and can
presumably be improved with the ideas from [33] for d = 2. To see this, recall that the
admissibility condition is required for d = 1 because of the remainder term ~, 1(¢) and
because of the energy estimate, where it enters via a term that is essentially ~,.1(t). A
comparison with the corresponding expression 7512) (t) for d = 2 leads to the following
result:

e The respective first lines of v, 1(¢) and 7512) (t) coincide. For d = 1, one obtains

2\ 2 - )
Wra(t) S <€B> (E+N71)%N£ S <63225N§+61*5N*¥) N¢
o)

— <(N52_2> +M125>N£

(see [32, Section 4.4.3, estimate of (20)]), which can be controlled by the weaker

admissibility condition N g3 /P2 5, corresponding to the choice © = %_

in the case d = 2 (see [33, Section 5.2.2, estimate of (23)]).

(NI

as

e The second and third line of 7,1 (¢) lead to the worse estimate

(2)
1P

(see [32, Section 4.4.3, estimates of (21) and (22)]), resulting in the admissibility
condition ©® = 2/3. To estimate the corresponding terms for d = 2, we split the
projector ¢z into a term with q%ce, which effectively gains a factor €, and remainder
terms, which we control by defining the interaction w,, g and integrating by parts
only in the x coordinate. We expect this strategy to be applicable also for d = 1,
which should lead to a weaker admissibility condition.

We require the admissibility condition to estimate the remainders v, ~ from the
substitution of w,, g by the quasi-d-dimensional interaction w,, g. It is needed to control
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3.1. Low-dimensional Gross—Pitaevskii equation for strongly confined bosons

terms like the expression €2/ = NPe2728 where surplus factors of N must be
compensated for by powers of . Since 72 is the scale of the energy gap between
transverse ground state and excitation spectrum, this condition can be understood as
the requirement that this gap must grow sufficiently fast compared to V.

Let us compare moderate confinement and admissibility condition to the constraints
imposed in the related works [45, 47, 100].

In [100], von Keler and Teufel impose the same moderate confinement condition and
moreover prove that sequences with p? /e — oo yield a free evolution equation (see
above discussion). In [45, 47], Chen and Holmer require the moderate confinement
conditions (3.24) (d = 1) and (3.25) (d = 2).

e Ford=1and g < %, their exponent v5(/3) equals 12?—2_5, which corresponds to
our arguably optimal condition, while they impose a much stronger condition
for all larger values of § (see also [47, Figure 1]).

e For d = 2, their parameter v(3) equals % for 8 < %, which coincides with our
condition, while they constrain the parameter range much stronger for larger
(see also [45, Figure 1]).

An admissibility condition is required in the two papers [47, 100] concerning d = 1.
While the constraint 3 /P < 1 in [100] is stronger than our condition, the require-
ment (3.24) in [47] can be expressed as g2 /P < 1, which is slightly weaker than
our condition. For d = 2 in [45], Chen and Holmer do not require any admissibility
condition.

The parameter regions covered by Chen and Holmer in [45, 47] are plotted in Figures
3.4 and 3.5. Sequences (N, ¢) within the dark grey regions are admitted by their results,
while the white and light grey regions are excluded. As explained above, we expect a
free evolution equation for limiting sequences within the light grey regions.

In comparison, our analysis (Theorem 3.1.4) covers the region between the dashed
and dotted black lines. As remarked before, especially the region of the parameter
space around the bottom left corner is of relevance, which implies that for larger
values of 3, our restrictions are considerably weaker than the conditions imposed by
Chen and Holmer.

Note that for both d = 1,2, our moderate confinement condition becomes weaker
with increasing #. In contrast, the moderate confinement condition by Chen and
Holmer becomes more restrictive as § increases and thereby limitates the range of 5:
for d = 1, their analysis can only cover 8 for which the moderate confinement curve
lies below the admissibility curve, which is the case for 8 < % For d = 2, there is
no admissibility condition but the moderate confinement condition becomes infinitely
restrictive (i.e., v(8) = oo for v(3) from (3.25)) for B = 2.
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&
o Lt
0 N1 1
(c)d=1,8=5 (d)d=1,8=2
Figure 3.4.: Coverage of the parameter space N x [0, 1] for d = 1 for some exemplary
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choices of 8 € (0, %) The result by Chen and Holmer in [47] covers the
dark grey region, while the white and light grey region are excluded from
their analysis. In comparison, our admissibility and moderate confinement
conditions (3.18) are drawn as black dashed line and black dotted line,
respectively, hence our Theorem 3.1.4 applies in the region enclosed by
these curves. For limiting sequences within the light grey region, we expect

a free evolution as effective equation.
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0 N1 1 0 N1 1
(c)d=2,8=1 d)d=28=%

Figure 3.5.: Coverage of the parameter space N x [0, 1] for d = 2 and some exemplary
choices of B € (0,2). In [45], Chen and Holmer cover sequences within
the dark grey region, while the white and light grey area are excluded.
In comparison, Theorem 3.1.4 applies to all sequences between the black
dashed line and the black dotted line, where the dashed line corresponds
to the admissibility and the dotted line to the moderate confinement con-
dition (3.18). Limiting sequences within the light grey region are expected

to yield a free effective evolution equation.
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Physically, we expect that no admissibility condition should occur at all. To moti-
vate this, one first observes that for the GP scaling 5 = 1, the gas is for both d = 1,2
in a scaling regime where the ground state energy is described by the 3d GP functional
uniformly in ¢ (see Section 1.3.3, (1.52) and (1.65))2. More precisely, the ground state
energy can be calculated by minimising the 3d GP functional (1.51) corresponding the
Hamiltonian H,, at fixed e, which corresponds to taking the limit N — oo first and
subsequently letting € — 0.

Second, on the dynamical side, it is known for 5 € (0, 1] that the limit lim._,¢ limy_,,
corresponding to a dimensional reduction on the level of the effective equation, yields
precisely the effective evolution equation (3.4) with the correct coupling parameter
(3.17). The Hamiltonian H,, g(t) can be written as

M-

(—Aj + Ve (t, zj)> + N~1+38 Zw(ﬁﬁ) (NB(Zi _ Zj)) 7 (3.26)
1 i<j

Hyp (t) =

J

where
VE(t,2) = E%Vl(%) + Vi, 2, wg) (2) := eBDA=3)yy (= (B-d)B)

for a potential w with (V,e)-independent scattering length a. Let us now fix € as
a parameter and study the (e-dependent) dynamics in the limit N — oco. If the
system originally exhibits complete asymptotic BEC in some one-body state go((f),
the result [151] implies® that this property is preserved in time, provided e remains
fixed. The condensate wave function at time ¢ is then given as the solution of the 3d

NLS (1.72) or GP equation (1.68) with e-dependent coupling parameter. Note that
() _ 3-d
lwg L1 rsy = €™ llwll Ly gs)
and for 8 = 1, the scaling relation (1.26) implies that wge)(z) = 726 d)yy(e=Bd) )
has scattering length e3~%a. Hence, for each fixed ¢, the effective evolution equation

for p(®) is given by

i20E(t,2) = (—A + VO (t,2) + gl (2, Z)P) 0@, 2), (3.27)

2To be precise, this was shown under the assumption that the external field V! acts only on the z
coordinate and is a homogeneous function, and that the confining potential V*(y) tends to co as
ly| — oo

3Note that Pickl’s method as described in Section 1.4.4 requires a bounded external field. Therefore,
to be precise, this holds only for bounded confining potentials V.
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where
by = [wllzirsy B€(0,1),
8ma B=1.

Note that for 5 = 1, (3.27) is precisely the time-dependent equation corresponding to
the 3d e-dependent GP functionals (1.51) and (1.60). Naturally, this result holds for
every fixed € > 0 but, since the rate of convergence is not uniform in ¢, it does not
extend to the simultaneous limit (N,e) — (00,0). In fact, deriving an estimate that
is uniform both in N and in ¢ was precisely the purpose of the projects [32, 33, 35] of
this thesis.

To take the limit e — 0 of (3.27), one writes (3.27) in the rescaled coordinates
3-d

y > §:=c ty. With gO(t, (z,7)) == 2z ¢ (¢, (z,e7)), this equation yields

i25E(1) = (=0 + & (A5 +VEG)) + VIt (5,29) + 650 (1)) 59(0).
(3.28)
For V1 (y) = |y|? and V”(t,z) = |2|2, the limit ¢ — 0 of (3.28) was studied by Ben
Abdallah, Méhats, Schmeiser and Weishiupl in [19]. 4 They assume that the initial
3d wave function,
5 (@,5) = 2r(@)x(w),

factorises exactly into some normalised function ®; € D((—A, + \x]z)%) and the
ground state x of —A, + V+ with eigenvalue Ey. Under this condition, the authors
prove that for every T' < oo, there exists a constant ¢p depending on 1" such that

sup || (1) — e EYE (1) y|| 2 gy < ere,
te(0,T)

where ®(t) is the solution of

000 = (- + V1@ +He@P) o0, 5= [ w)l'dy.
R3—d

Hence, in the confinement limit ¢ — 0, the 3d e-dependent one-body dynamics (3.27)
converge to the d-dimensional NLS/GP equation (3.4) with coupling parameter (3.5)
or (3.17), respectively. In the de-focusing case, the analysis in [19] is valid for both
d =1,2, while only d = 1 is included in the focusing case.

Let us remark that the above two-stage process does not yet prove that (3.4) effec-
tively describes the N-body dynamics in the limit lim._,glimy_,o, since the confine-

“In fact, they consider a (d + n)-dimensional non-linear Schrédinger equation with a rather generic
non-linearity, which includes the cubic focusing and de-focusing case. The confinement is realised
by an anisotropic harmonic potential, where the quotient of the trap frequency in the d unconfined
directions and the trap frequency in the n confined directions tends to zero.
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ment limit ¢ — 0 is proven under the assumption that the condensate wave function
©©) factorises exactly for e > 0. In contrast, we assume with A4 merely factorisation
in the limit ¢ — 0. To rigorously prove Theorem 3.1.2 for the limit lim._o limy_so0,
the proof of the dimensional reduction needs to be adapted to admit more generic
initial conditions. However, also this incomplete argument suggests that our analysis
should hold without imposing any admissibility condition.

A comparable result without the strict factorisation assumption was obtained by
Méhats and Raymond in [126]. In this work, the authors study the cubic NLS equation
in a 2d waveguide, i.e., an e-tube with Dirichlet boundary conditions around some
curve in R2. They consider a 2d initial datum () which is close to its projection onto
the transverse ground state x°, up to an error of order € with respect to the L?-norm.
The authors show that in the limit € — 0, the non-linear evolution is in L?-sense well
approximated by the 1d cubic NLS equation (3.4) with coupling parameter (3.17),
with an additional potential term from the curvature of the waveguide.

For further analytical results concerning the dimensional reduction of different types
of non-linear Schrodinger equations, we refer to [13, 14, 17, 18, 127]. Moreover, nu-
merical treatments are given in [12, 15].

Restrictions on the limiting sequence for the GP scaling

Our main result, Theorem 3.1.2 for the GP scaling of the interaction, holds for se-
quences (N,e) — (00,0) satisfying assumption A4 with parameters (©,I"); given
by (3.10). The admissibility condition states that for any fixed o > 0 and sufficiently
large N and small ¢,

Nes" <1 d=1,

Net« 1 d=2.

The moderate confinement condition appears only for d = 2 and implies that for any
fixed o,
N le77«1, d=2,

for sufficiently large N and small €. Figure 3.6 visualises the corresponding subsets of
Nx[0,1]. Asin the case 8 € (0,1), the admissibility condition is much more restrictive
for d = 1 than for d = 2. The harmonic confinement with frequency ~ N (Figure 3.1)
is excluded in d = 1, while it coincides with the boundary of the admissible region
for d = 2. Moreover, note that although we impose two constraints on the limiting
sequence for d = 2, the area covered by our analysis is larger than for d = 1.

The moderate confinement condition occurs only for d = 2. We require this condition
for the following reasons:

e Recall that v<(t) is controlled by applying the result for the NLS scaling for
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b N-L 1 N-1

(a)d=1,p8=1 b)yd=28=1

Figure 3.6.: Coverage of the parameter space N x [0, 1] for the GP scaling and dimen-

sions d = 1,2. Theorem 3.1.2 holds for sequences (N,¢) within the dark
grey area. The moderate confinement condition for d = 2 is realised for
the choice o = 0.01.

some parameter B . Hence, the moderate confinement condition with parameter
I'; must ensure that the sequence (NN, ¢) is at the same time moderately confining
with a parameter I' AF satisfying (3.18). While this is automatically given for
d =1 as long as B > % since Nel/8=2 5 oo for all E > %, the case d = 2 requires
the a moderate confinement condition with parameter

r>p"t

which ensures that B B
Nel/B=1 = NP1 UB-T . oo

Besides, the moderate confinement condition is required for the GP energy es-
timate (see [33, Section 6.3]) and enters in the estimate of the remainder term
Ye(t) (see [33, Section 6.6.2]).

As a consequence of the first point, the moderate confinement condition (3.18) restricts

the possible choices of 5 for the GP case. Moreover, B must be chosen compatible

with the admissibility condition, which enters the proof at several places:

e The admissibility condition is required for the estimate of the remainder term
7a(t) and, in the case d = 1, also for the control of v4(t) (see [35, Sections 4.5.2
and 4.5.5] and [33, Section 6.6.2]).

e The admissibility condition with parameter ©4 must imply that the sequence
(N, €) is admissible with a parameter O, 5 that satisfies (3.18). This can also be

117



3. Results and Discussion

seen graphically when comparing Figure 3.6 with Figures 3.2 and 3.3: 5 must
be chosen such that the dark grey region in Figure 3.6a is completely contained
in the respective dark grey region in Figure 3.2 for d = 1, and analogously for
Figure 3.6b and Figure 3.3 for d = 2.

e The admissibility condition is required for the GP energy estimate (see [35,
Section 4.3] and [33, Section 6.3]). Besides, one needs the © 4. 5-admissibility of
the sequence (N, €) to control the term v<(¢) by means of the GP energy lemma
([35, Section 4.5.1] and [33, Section 6.6.1]).

Moreover, the GP energy estimate restricts the possible choices of B by the requirement
that it must be larger than the diameter of the holes around the scattering centres that
constitute the set A. For presumably merely technical reasons, the diameter of this
hole must scale as p° with § > %, independently of the dimension. Besides, to contain
the full microscopic structure, it must be larger than the support of the scattering
solution 95 which scales as u®. Hence, we require

5>2.
For d = 1, this condition determines the weakest possible admissibility condition for

which Theorem 3.1.2 holds: For B = %, we find O, 5= 2/ E = %, hence the sequence

(N,e)is ©, -admissible in the sense of (3.18)if © = % Hence, the choice 3 > % leads

12—
5
to also control the remainder terms.

to our condition with © = . Finally, it turns out that this condition is sufficient
As mentioned above, we require for d = 2 also the moderate confinement condition
to obtain the GP energy estimate, which leads to the additional constraint

~ TI'+1
ﬁ>—2r .

The weakest possible moderate confinement condition is given by I' = 1%, implying
B > 17. As a consequence, the weakest possible admissibility condition is the one that
makes any Oo-admissible sequence also @27B—admissible with B = 17 in the sense of
(3.18), which leads to our choice © = 3.

As for scalings 8 € (0,1), we understand the admissibility condition in the GP case
as a purely technical restriction. In the previous section, we motivated the expecta-
tion that our result should hold without such a constraint, although a rigorous proof
certainly requires some new ideas.

Whereas the moderate confinement condition for 5 € (0, 1) is physically motivated
and presumably ideal, the corresponding condition for the GP scaling and d = 2
is, to our understanding, a technical constraint, although a less restrictive one than
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the admissibility condition. For d = 1, our result is not obstructed by this condi-
tion and extends to the full region up to the edge case corresponding to the limit
lim y—soo lim, _yq.

The limiting case itself is not included in our model. However, the result [170] by
Seiringer and Yin for d = 1, which is summarised in Section 1.3.3, suggests that the
statement of Theorem 3.1.2 should extend to this edge case. Recall that by (1.55)
and (1.58), the LL Hamiltonian Hjl\fc,ll,b/N (1.54) with coupling parameter g14 = b/N,
for b as in (3.17), can be understood as the limit ¢ — 0 of the Hamiltonian H,. In
their paper, the authors remark that, as a consequence, H, converges to Hzlv(%l,b /N ®
Psl, where Pj denotes the projector onto (x?)®". This convergence is meant in the
following norm resolvent sense: Denote by E1

N1Lb/N the lowest eigenvalue of Hjl\;il b/N
and let A € C\ [Er& 00 be fixed. Then

N,1,b/N>

1 1
lim — ®Pr||=0. (3.29)
0N = (Hy =250 A—Hy v °

By Trotter’s theorem (e.g. [157, Theorem VIII.21]), norm resolvent convergence of
two operators implies that the unitary time evolutions generated by these operators
converge strongly. However, since (3.29) is not quite a norm resolvent convergence
in the standard sense, it merely indicates that the dynamics generated by H, and
by Hjl\gl,b N respectively, should be asymptotically equal. Moreover, to complete the
argument, one needs to take the limit N — oo of the resulting 1d N-body wave
function and show that initial condensation is preserved by the dynamics. The time-
dependent GP equation (3.4) should then emerge as Euler—Lagrange equation (see
Section 1.4.1).

Finally, let us remark that the statement (1.55) concerning the excitation spectrum
does not hold uniformly in N. However, regarding the lower and upper bound (1.56)
and (1.57), one realises that it remains true in the simultaneous limit (N, &) — (o0, 0)
if the parameters ny and 77 are bounded uniformly in N. For our scaling of the
interaction, NA/(eL) ~ &, this would be the case if £8N?2 5 0 as (N,e) — oo, which
corresponds to the admissibility condition N eis < 1.
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3.2. Higher order corrections to the mean-field dynamics of
interacting bosons

3.2.1. Results

We consider a system of N d-dimensional bosons with weak interactions in the mean-
field scaling regime, described by the Hamiltonian

N
Hy () Z —A; 4+ VYU, z5)) Z’UN/B —xj). (3.30)
7=1 Z<j

Here, V' denotes some possibly time-dependent external potential, which is chosen
such that Hy g(t) is self-adjoint on the time-independent domain H2(R). The
interaction is given by

oy g(x) = N¥Py(NPz), Belo, ), (3.31)

where v : R — R is assumed bounded, spherically symmetric and compactly sup-
ported. As explained in Section 1.2.4, the scaling (3.31) is a mean-field scaling: the
range of vy g is much larger than the mean inter-particle distance IV —1/d and the total
prefactor (N — 1)"' N9 tends to zero as N — oo. The scaling 8 = 0 corresponds to
the Hartree regime.

The dynamics of the N-body system are described by the unitary time evolution
{U(t, s) }+,ser, which satisfies the Schrédinger equation

idU(t,s) = Hys(t)U(t, s), U(s,s)=1. (3.32)
The N-body wave function at time ¢ € R is denoted as
() =U(t,0)0, o€ L3 (RW). (3.33)
We consider systems which initially exhibit BEC. As explained in Section 1.4.2, the
dynamics of the condensate wave function are determined by the Hartree equation
(1.112),
iS(t) = (—A+ V) + 790 - 12O (t) = P O@p(),  (3.34)

where 77() and #®) are defined as in (1.113) and (1.114),

WO =y s o, =1 / do / dylo(t, ) 2lo(t,y) Pons(z — ).
R
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3.2. Higher order corrections to the mean-field dynamics

The Hartree evolution of the condensate characterises the N-body dynamics v (t) on
the level of reduced densities in the sense of (1.73). A more precise characterisation of
the dynamics is an approximation with respect to the L?(R*V)-norm, for which also
the excitations from the condensate need to be regarded. The corresponding results
(1.127) and (1.140) are presented in Section 1.5.3.

The goal of this project is to derive higher order corrections to this norm approxi-
mation, i.e., to approximate the N-body wave function in norm to arbitrary order in
powers of N~!'. More precisely, we construct a sequence of N-body wave functions
{w&a) (t)}aen € L2(R?) such that, for sufficiently large N,

Il (t) =9 @)IF < CONTPED - Befo, 4), (3.35)

for some time-dependent constant C'(¢). The exponent §(f, ) is positive and depends
on § and on a parameter v which is introduced below. For our analysis, we apply and
extend the first quantised framework introduced in Section 1.5.3, which is based on
the works [135, 134, 146].

To derive an approximation with higher precision, we require stronger bounds on
the initial excitations. More precisely, we assume that the first A moments of the
number of excitations from the condensate in the initial state are sub-leading, where
the choice of A depends on the index a of the sequence wfaa) (t) in (3.35).

Recall that the excitations from the condensate cp(t)®N are given by the truncated

Fock vector
_ PN <N
oy = Uy U7 () € FL
with components (1.141). The excitation Fock space }“i]p\;t) was defined in (1.120),

and the map uﬁ(” was introduced in (1.122). The a’th moment of the number of
excitations from po®N contained in the initial state 1 is

(€o0r Ny Eioo) <N—Zk“H£ 132 s

where Nw(t) denotes the number operator on .Fffp\zt). Our assumption on the initial
data can be formulated as follows: Let v € (0,1]. We assume that for all a € {0, ..., A},
there exists some constant C'(a) depending only on a such that

(G0 Mooben) v < ClON NO=e. (3.36)
Note that v = 0 corresponds to the trivial bound <§@0>N$0€<po> < N¢ while v =1

implies that the bound is uniform in N. Hence, (3.36) states that the expected number
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of excitations contained in 1y must be sub-leading, in the sense that the moments of
the relative number of excitations, i.e., the expectation values of (N,,/N)%, must
vanish as N — oo.

Note that (3.36) provides a bound on the high components of the excitation vector
since, for example,

N
S R NED 2 gy S NOTA = D2, ) S N
k=0

In other words, it must be very unlikely to find significantly many particles outside
the condensate, whereas no such restriction is imposed on excitations involving only
very few particles (with respect to N).

For our analysis, it is more convenient to write (3.36) in a different way. By (1.142),
the inequality (3.36) is equivalent to

1G520) Goll* = N~ (€, N 0) e < C@NT,
0

where n® denotes the weighted operator from Definition 1.4.1 with weight function
n(k) =4/ % We now introduce a second weight function,

m(k) := \/k;\r,i1

such that the corresponding operator m? is related to n¥ via
(n?)% < (m¥®)?* < 2%(n¥)? 4 N~¢ (3.37)
in the sense of operators. In terms of me, (3.36) can equivalently be expressed as
|(m#5)*gol* < C'(a) N7 (3.38)

for some constant C’(a) depending on a. In the following, we prefer to work with the
version (3.38), since this simplifies many statements, in particular Proposition 3.2.3b
below.

Our analysis is valid for times where the solution ¢(t) of the Hartree equation exists
in H*(R%)-sense for k = [2]. The maximal time of H*(R?)-existence is defined as

TS et = sUD {t € RE : () i rey < oo for k = (gl]} .

It depends on the dimension d, the sign of 7#(®), and the regularity of the external
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trap Vext(t).

Our assumptions on the model (3.30) and on the initial data can be summarised as

follows:

Al Interaction potential. Let v : R* — R be spherically symmetric and bounded
uniformly in N. Further, assume that suppv C {x € R?: |z| < 1}.

A2 External potential. Let V' : R x R? — R such that V(- z) € C(R) for each
r € RY and Ve*(t,.) € L>®°(R?) for each t € R.

A3 Initial data. Let ¢o € H*(RN) N LA (R™Y) and ¢y € H¥(RY), k = [4], both be
normalised. Let v € (0,1] and A € N. Assume that for any a € {0, ..., A}, there
exists a set of non-negative, a-dependent constants {€,},,<4 With €o = 1 such
that, for sufficiently large NV, o

oy < €

To construct the approximating sequence {1/}<(pa) (t) }aen, we recall the effective Hamil-
tonian H*®(t) from (1.137),

N

e Z 0y 12( #0020, ) 400

7=1 1<J

which generates the time evolution Uy(t, s). Since Uy (t,0)ty is close to 9(t) in norm
by (1.140), we define the first element 1/)5;1)(15) as

P (t) = Uy (t, 0)¢hp - (3.39)

With z/a(pl)(t) as starting point, the higher elements are constructed as Duhamel ex-
pansions in terms of the cubic and quartic terms C¥®) and Q#(*) given in (1.138) and
(1.139),

o) .— (qzo(t)q;e(t) (vg\% — 590 (z;) — v#® (xj)> %

1<j

«(gfOpe® 4 P {P(t))+h.c‘>
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t) o(t) so(t
Qrt) .— 1 Z ¢

1<J

X (UJ(\ZZ% — ¥ (x;) — ﬁ”(t)(xj) 4 2M¢(t)) (t)q;p( )

The next two elements of the sequence are defined as

V() = Up(t,0)¢0 — i /tdsfﬂp(t,s)C‘P(S)&p(S,O)lbo, (3.40)
0
~ t ~
W) = Tt 0p —i | dsT(t,s) (79 + Q7)) T (s, 000
0

t t . . .
- / ds; / dsy Uy(t, 52) CPED U, (52, 51) CPEVU,(s1,0)hp . (3.41)
0 S1

The a’th approximating function is constructed as follows:

Definition 3.2.1. Let If(t) = C*® and I“a = 0% Define the set

S,(Lk) ::{(jlj...,jn): jee{1,2} for £=1,....,n and ng:k:},
/=1

e., the set of n-tuples with elements in {1,2} such that the elements of each tuple
add up to k. Forn € N andn < k < 2n, define

t

™ = Y )] / ds, | T (t, 50)

(jly"'7jn)e$7(1k) v=1 \s,_,
n—1
X H < ;i(fz E)Ucp(sn 0y Sn—t 1)) Yo
=0
t
= (—1)n/ /d82 / o(t, sn) X
0

X Z <I lon )U (3n73n I)I (ST 1) : ﬁcp(SQ;Sl)ijl(Sl)) (317 )1/}07

(jlv' . '7J7L)ES71

where sg := 0. The products are understood as ordered, i.e., Hé;:o Py := PP --- Py,
for L € N and any expressions P;. Besides, let Téo) = ﬁw(t, 0)¢o forn=%k =0, and
T,(Lk) =0 for k <n and k > 2n.
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The elements of the sequence {@b&a)}aeN are defined as

a—1 min{2n,a—1}

T =3 Y 1®.
k=n

51 n=0

o
|
—

&
MO
—~

~
N—

I
M=

B
Il

NES

On

In the main result of this project, we prove that, given any desired precision of the
approximation with respect to N !, there exists an a € N such that the corresponding
function wfpa) (t) approximates the actual N-body dynamics ¢ (t) to that order. To
compute wfpa) (t), an a-dependent but N-independent number of steps is required, as
well as the knowledge of the (first order) norm approximation [Zp(t, 0)vy.

Theorem 3.2.2. Let 3 € [0, ;) and assume Al — A3 with A € {1,...,N} and with
v E (%, 1]. Let 1(t) and ¢(t) denote the solutions of (3.33) and (3.34) with initial
data ¥y and po from A3, respectively, and let 1/14(:) (t) be defined as in Definition 3.2.1.
Then for sufficiently large N, t € [O,Tjﬁ)yext) and a € {1, ..., L%J}, there exists a
constant c(a) such that

t
() [19(2 1 ) 95

(1) — @D @))* S e N—aB) (3.42)

where
1—4dp for 1—dp <~ <1,
6(B,7) = o ras (3.43)
3y—=2—-dB for == <y <1-dj.

3.2.2. Strategy of proof

The first part of the proof consists of estimating the growth of the number of excitations
under the time evolutions U (¢, s) and ﬁp (t,s) (Proposition 3.2.3). While the statement
for U(t, s) characterising the N-body dynamics is an interesting result on its own, the
corresponding assertion for ﬁw(t, s) is crucial for the proof of our main result. As a
second step, we use these bounds to prove Theorem 3.2.2.

Growth of higher moments of the number of excitations

Let us begin with a general statement concerning the growth of the number of exci-
tations under the dynamics U(t,s) and U,(t, s), irrespective of the initial number of
excitations.

Proposition 3.2.3. Let j €N, B € [0, 1) and assume Al and A2. Let ¢ € L% (R™),
s € R, ¢(s) € H*R?) for k = (%l], and let o(t) be the solution of (3.34) with initial
datum ¢(s). Then it holds for t € [s, s+ T3 Vext) and sufficiently large N that
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(a) for any b € Ny,

|me®y v, s)¢H2 < ety s) zjj e (W)j‘%Hz

n=0
b _— 2
+e(t, ) ZNn(71+d6)+d,8b H (m¢(5))b—n¢“ ’
n=0

(b)

—_— . 2 J — . 2
| (me0) Tt )| 5 et ) 30 N || o)
n=0
¢
where c(t,s) < exp {C’f||<p(31)|qu(Rd) dsl} for some C > 0.

This proposition is proven in [34, Proposition 2.4]. Note that part (a) concerning
the full time evolution U(t,s) contains two sums. The first sum runs from zero to j,
whereas the summation in the second sum may be chosen for convenience (see below).

As a consequence of (3.37), we can equivalently express Proposition 3.2.3 in terms
of n% instead of m®. For instance, part (b) can be formulated as

J
|2V Tt )l S et ) D2 NP1 (970 2yi—n |2 4 NIH0)

n=0

which contains an additional term N~7%". Since the proof of Theorem 3.2.2 requires
an iteration of this proposition, the version with m¥ is more convenient.

Under the additional assumption A3 on the initial data, Proposition 3.2.3 implies
that the first A moments of the number of excitations remain sub-leading under the
dynamics U (t,0) and U,(t,0) ([34, Corollary 2.5]): Denote c(t,0) = ¢(t) and

Soo = U0, Ep) = UZ (1), Eolt) = 5T (t,0)¢ .
Assume that

||(n/z%)a1/)0|]2 < N7 or, equivalently, that <59007N$o €00 >]_-fN < N=a
0

Then it follows
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e for the time evolution U(t, s) that

. , N—a(1-dB) for,Be[O,%d),l—d,BS’ySl,
[(me®) ()] < e(t)
N f0r56[07é)7d/8<’7§1_d67

or, equivalently, that

Ndba for Be0,59), 1-d3 <~y <1,

<£<p(t)7-/\/:g(t)£<p(t)>}_§]\f S c(t)
Lo NO=e  for fe(0,1), df <y <1-dB,

e for the time evolution (790(15,0) and 8 € [0, 1) that

/\~ N—e(=df)  for 1 —dB <y <1,
1(m#®) Uy (¢, 0)tho|* < e(t)
N—e for 0<y<1-4dg,

or, equivalently, that

N#a 1 —df<~y<1,

<5s0(t)7 eg(t)g‘#’(t)>]-‘f£’(t) <) NUI=Ye <~y <1—dp

The leading order terms in the sums in Proposition 3.2.3 change at v =1 —df: for
initial data satisfying A3, we obtain

Nn(_1+dﬂ)“<m)j—n¢0”2 < NrO-1+dB) =)

and
Nn(_1+d5)+d6b”(m)b_n%Hz < NPO-14d8)=b(y-d5)

hence the term corresponding to n = 0 is leading for v < 1 — df3, while the addend
with maximal n is the dominant contribution for v > 1 —df. Consequently, we obtain
different estimates for values of v below and above this threshold. The additional
restrictions on 8 and v for the time evolution U(¢,0) are due to the second sum in
Proposition 3.2.3a: if g < ﬁ or v > dpf, it is possible to choose b sufficiently large
that the first sum dominates for large N.

For # = 0, both time evolutions preserve the property A3 exactly with respect to IV,
up to a time dependent constant. For 8 > 0, the conservation is exact only for small
~, whereas one looses some power of N for larger . Further, note that for the range
7 € (0,dB), we do not obtain a non-trivial estimate for the excitations £, ;) contained
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in (1) = U(t, 0)u.

To prove Proposition 3.2.3, we essentially adapt the proofs of [135, Lemma 2.1]
and [146, Corollary 4.2] to our situation. The basic idea is to derive a hierarchy of j
Gronwall estimates for a variant of the counting functional used by Pickl for Hartree
and NLS regime (Section 1.4.4).

Let us consider the functional
(ISR 10) B TOXS CION AT

for some appropriate weight function f(k), where ¥(¢) stands for the wave function
evolving under either of the two dynamics covered by Proposition 3.2.3. If we choose
the weight f(k) as m(k)%/, the analysis presented in Section 1.4.4 leads to the estimate

&m0y w ()| = %«\I’(t)’(m)%ww» 3.44
S (v, e + o). o

The remainder term o(1) is at best of order N=1, hence (3.44) can at most lead to
the j-independent estimate

—

1(me®) W (t)]|? < N

by Grénwall’s Lemma 1.4.3, even if ||(m#0)7¥||> = 0. To improve this, we will modify
the estimates leading to (3.44) to yield a bound of the form

L (meDYw(1)|[2 < [|(meD)Y (@) |2 + o(1) | (me®)~Lu ()2 (3.45)

By Gronwall’s lemma, this leads to a statement of the kind

t
|(me®Yw(E) |2 < e " | [[(m#o) W[ + 0(1) / [(me@Y 1 w(s)|[ds |, (3.46)
0

to which we can again apply Gronwall’s lemma, using again (3.45) but now with the
choice j — 1. Iterating this procedure j times results in a bound of the form

[me @) w () < eCtZ )™ || (m#o )= |2 (3.47)

which suffices to prove Proposition 3.2.3.
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3.2. Higher order corrections to the mean-field dynamics

It remains to derive a suitable bound of the form (3.45). Recall that the time
derivative of the functional <<\If(t), f V’(t)\I/(t)» was computed in Section 1.4.4 as the sum

of the three expressions (1.83) to (1.85). Note that the Hamiltonian entermg (1.81) is
given by Hy 4(t) for the choice W(t) = (t) and by H?® (t) for (t) = U,(t, 0)¢bp, while
h in (1.81) is taken as h?(")(t). Due to the relations (1.136), the (gp—pp)-term (1.83)
equals zero. Moreover, in the case ¥(t) = (7¢(t,0)1/)0, also the (pg—qq)-term (1.85)
vanishes. In the sequel, we treat the two cases ¥(t) = ¢(t) and ¥(t) = ﬁw(t, 0)o
separately.

Case 1: U(t) = U,(t,0)tp.
This case is simpler since only the (gg—pp)-term (1.84) contributes. For simplicity
dropping all indices ¢(t), this term can be estimated as

~

NS (W), qraa(F - Fo ﬁwm@ Hirew))
SN(w(), (F = Fea)i®U(®)) + NP (0(t), (F - Fra) D)), (3.48)

which is to be understood as taking the maximum over (J?— f_g) and (]?— ]?2) (see
[34, Eqns. (45)-(46)]). Choosing f(k) as m(k)%, one observes that

m(k)20—1)

T m(k)20 " Vn(k) < m(k)% . (3.49)

m(k)% — m(k=2)%|

Consequently, instead of estimating ||]?— fﬂHop by means of the derivative |f’(k)| as
in Section 1.4.4, (3.48) is bounded in terms of ||/ ¥ (¢)|| and ||/~ ¥(¢)||, namely

|(3.48)] < I W(t)[|? + N~ |md e (b))?. (3.50)

This is precisely the required bound (3.45), and part (b) of Proposition 3.2.3 follows
from (3.47) with o(1) = N~1+d5,

Case 2: U(t) = ().

If ¥(t) denotes the wave function evolving under the full dynamics U (¢, s), the situ-
ation becomes more involved since the (pg—gq)-term (1.84) does not vanish. Hence,
additionally to (3.48), we must control the expression

NS <<¢(t)7 01¢2(f — J?—l)%Z](\%)pl%(fl - J?)%i/f(t)»
< N u), (F- Foatem)? (v, (F- Fozem)® s

[34, Eqn. (47)], where Z(mﬁ) = ](\}25) 770 (2;) — 790 (2;) + 2u#®. Choosing simply

f(k) = m(k)% as before only leads to the insufficient estimate |(3.51)] < N% | (t)]|2.
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3. Results and Discussion

To amend this, we introduce an auxiliary weight function

1
d +A 0<k<N -1
wy(k) :=¢ N for A € (0,1).
1 else

For A = 1, this essentially reduces to the weight m?(k). More precisely, the relation
between w)y (k) and m(k) is given by

wl (k) < NIONm2i(k) (3.52)
and '
} N0 (k) 0<k<N -1
m? (k) < 4 ' (3.53)
2 = 2wl (k) < wh(k) N *-1<k<N,
hence

m? (k) < NNl (k) + wl (k) (3.54)

for any b € N, where we exploited that wy (k) = 1 for k > N* — 1.

We now choose f(k) as w? (k). Similarly to (3.49), one finds for n = 1,2 that

wy (k)7 ! ‘
jwa(k) —wA(k£n)[ S ¢ N - — (9 (k).

Since Ef\j) (k) satisfies

A n2(k) S Nl k), ) (R)nt (k) S NTH (k)

~

we obtain

S {w@), @) + N w), o e @)
—1+dB+\ Py
S N7 (), wv() -
With the choice A = 1 — df3, the expression (3.51) is controllable, and we obtain a

bound of the form (3.45) with 0(1) = N~1245 for the weight w (k). Hence, (3.47)
implies
J
(@), w37 p(t)) < ey NI (4, @37 )
n=0

Finally, using the relations (3.52) and (3.53), one obtains an estimate in terms of m/,
which leads to part (a) of Proposition 3.2.3b. In particular, note that this construction
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3.2. Higher order corrections to the mean-field dynamics

via wy and (3.54) explain why we obtain two sums in part (a), while part (b) is of an
easier form.

Higher order corrections to the norm approximation

Let us now turn to the proof of the main result. The first element of the approximating
sequence {w&a)}aeN is given by (3.39) as

YD (t) = Uy(t,0)k -

To prove Theorem 3.2.2 for ¢ = 1 and to construct the next higher element of the
sequence corresponding to a = 2, we require three steps:

1. Expand the difference (U(t,0) — Uy(t,0))vo using Duhamel’s formula.

2. Estimate all contributions to this difference and identify the leading order term.
Its size yields (3.42) for a = 1 and fixes the exponent §(3, ).

3. To construct 1/15(02) (t), substitute U(t, s) by (750(75, s) in the leading order contribu-

tion(s) and add the resulting expression as a correction term to w&l)(t).

Step 1.
Recall that by construction of H?®)(t),

Hyp(t) = H?D (1) + O 4 g#t) |

hence, Duhamel’s formula yields
~ t ~
Ut )0 = Uy(t, sy —i | U(t,r) (CW’) + QW)) U, (r, ) dr (3.55)

s

for any ¢ € L?(R¥). Consequently,

t ~
—i / Ult,s) (cﬂs) + Q%’(s)) Uy (s,0)30 ds
0

le(t) — sO )] = \

(3.56)

IN

t _ t ~
[ 16500, 0ppollds + [ 1079005, 0)ol ds
0 0

by unitarity of U(t, s).

Step 2.
To identify the leading order contributions in (3.56), we combine Proposition 3.2.3b
with the following lemma ([34, Lemma 2.6]):
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3. Results and Discussion

Lemma 3.2.4. Let ) € L2 (R¥Y) and denote by p(t) the solution of (3.34) with initial
datum @y € H*(R?) for k = [%1 Then it holds for any j € Ng and t € [O,Tjﬁ)’vext)
that

(a) ”(mga ) an t>¢||2 <N2+2dﬁ||(m(p t))4+j¢”2

j 3
(b) [|(me®Y e Oy|2 < ()2 @y N2 (m D) 2.

At the core of the proof is the observation that Q¥®) /C¥®) contain four/three pro-
jections ¢#(*), each of which contributes an operator n®() by (1.74). By (3.37), this is

—

equivalent to gaining four/three factors m®(). The prefactors stem from combinatorial
considerations as well as from the L*(R%)/L?(R%)-norm of vy g.

Let us make this more precise at the example of Q¥(®) and j = 0: making use of the
abbreviation ZB = U](\Z[J[); 770 (2;) — 790 () + 2p#® with HZZHLOO(Rd) SN we
expand

|QrMy|? = ﬁZZ<<zp,qiququz'qg‘QkQZZ;fl(JkQW»

1<j k<l

S «1#,qszlﬁgm@Zﬂqwzw» + N«%DaQ1Q2Z132(J1Q2QS21636116131/1»
+N? <<¢7 (J1(J22152Q1Q2CI3Q4Z§4(J3Q4¢>>
< NP (i ||? + Nllgigegsm®||* + N?||q1g2g3q4%]|?) -

Since

Mg l? = 3 (W agw) < Y (. aigjauad)

i<j 0,5,k
AN
= N{(v. (32 0) ) < Nate)?
j=1
and analogously for the second and third term in the bracket, assertion (a) follows.

When applying Lemma 3.2.4 to (3.56), we obtain expressions of the form

[(me()7 T,y (5, 0)3h0]|?.

Using Proposition 3.2.3b and finally exploiting assumption A3 on the initial data, one
computes

3.2.4 - S N.a-~
[T (s, 0pl* S N 2T (5, 0o

3.2.3b 3 —
< N2+dB ZNn(—1+dﬁ)”(m¢o)3—nw0‘|2
n=>0
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3.2. Higher order corrections to the mean-field dynamics

3
/? N2+dB ZNn(flerﬁJr'y)f?ry.

- n=0
For the sake of readability, we dropped the time-dependent pre-factors, and we main-
tain this for the remainder of this section. As above, the size of v determines the
leading order term in the sum: for v > 1 — df3, the dominant contribution issues from
n = 3, whereas otherwise the addend corresponding to n = 0 is of leading order.
Consequently,

- N8 for 1 —dp<~y<1,
1C# ST (s, 0)h0l|* < (3.57)
N2HA=3y  for 2B <y <1 —dp.

To ensure that (3.57) converges to zero as N — oo, we restrict the range of parameters
~v admitted by assumption A3 to v € (%, 1]. Besides, in the first case, the bound is
only small for § < ﬁ, and the second case is anyway only possible for 8 < 4—1d. This

essentially causes the restriction of Theorem 3.2.2 to the parameter regime g € [0, 4—1d).

Analogously to (3.57), we obtain

~ N—2+6d5 for 1-dp <vy<1,
19T, (s,0)0]* S (3.58)

N34y for 2B <y <1 —dp.

Comparing (3.57) and (3.58), we conclude that the contribution with C#(*) domi-
nates: since 8 < 4—1d, it follows that N—21648 < N—1+4d8 and for v > % > df3, that
N2+2dp—4y  N2+dB=37  Thyis leads to the estimate

l(t) — 5D ()] < N7OEY) (3.59)

with 6(8,) from (3.43), which is precisely (3.42) for a = 1.

Step 3.

Finally, the second element ¢<Eo2) (t) of the approximating sequence is constructed by
adding to @Z)g)(t) the leading order contribution in (3.55) with the true time evolution
U(t,s) replaced by Uy,(t,s). This yields

~ t ~ ~
@ (t) = Uy(t, 0 — i /0 ds Uy (t, s)C? DU, (s,0)10 ,

which equals (3.40). In conclusion, the idea is to cancel the leading order contribution
to (3.59) but for the difference between U(t,s) and Uy (t,s). Since this difference is
evaluated on C‘P(S)Mp(s,O)wo, which is small in norm, this improves the first order

approximation @Z)g) (t).
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To prove (3.42) for a > 1 and to construct all higher elements ws(oa) (t) of the sequence,
one successively repeats the above three steps. In step three, one adds to 1/150&) () as
many terms of the expansion of ¥(t) — Q(f) (t) as needed to cancel the O(N~E).
contributions in the difference v (t) — z/)glﬂ)(t).

Let us demonstrate this scheme once more for a = 2. Using Duhamel’s formula

twice, we obtain

¢ ¢ ~ B
= —/ dsl/ dsa U(t, s2) (C“"(”)—FQ“’(S?)) U«p(Sz,Sl)C@(Sl)Uw(Sla0)1/)0
0

_ /Ot U(t,5)Q79T,(s,0)to ds,
which implies
lo(t) — 6@ @) / s / dsal|CECT (52, 51)C% T, (51, 0)ol
/ ds: / ds| Q02U (52, 51)C# Ty (51,0090l (3.60)
" /0 as[|Q#) T, (s, 0)

Combining Lemma 3.2.4 and Proposition 3.2.3b, the leading order term in (3.60) can
be estimated as

le?2T (32,31)(:%0(81 Up(s1,0)0]>

824,323 14dB) 11/ o3 r7 2
S NE ZN"<— +08) | (plon) PPN T, (1, 0V |
n=0
3.2.4,3.2.3b 3 6n —
2 N+248 57§ N (19) | (i 6=y |12
n=0 [=0
A3 3 6—n
= N~2428 37§ N (- 1kdB )6y
n=0 1=0

As before, considering the two ranges of v separately yields for sufficiently large NV

|C#62T g (52, 51)CPED Ty (51, 0)tho |2 S N=205) (3.61)
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3.2. Higher order corrections to the mean-field dynamics

with §(5,v) as in (3.43). Analogously, the second term is bounded by

N73+10d,8 1— d,B < v < 17
1Q#2) U, (52, 51)CP )Ty (51, 0) 0] S
N4+3dB—=Ty Q-Edﬂ <~v<1-dB,

and the third term was already treated in (3.58). In summary, we obtain
lo(t) =@ @ < NG,

Finally, adding the two expressions (3.58) and (3 61) to 1/1(2) (t) after substituting the
full time evolution U(t, s) by U, »(t,s) defines 1/)@ )( t) as given in (3.41).

Iterating this procedure a times proves Theorem 3.2.2 for any a € N. A key obser-
vation is that the leading term in every order is the expression containing exclusively
a cubic terms C¥®, which can be shown by iteratively applying Lemma 3.2.4 and
Proposition 3.2.3b.

3.2.3. Discussion

We begin the discussion with a review of results in the literature that are comparable to
Theorem 3.2.2 and Proposition 3.2.3. Subsequently, we comment on our assumptions
and discuss open questions and future perspectives.

Literature

To the best of our knowledge, the only existing result comparable to Theorem 3.2.2
is the work [142] by Paul and Pulvirenti. For the time evolution generated by the
Hamiltonian Hy g with 8 = 0 and V' = 0 and for factorised initial data, they
derive higher order approximations of the reduced density matrices. More precisely,
they construct a sequence {F; N (1) }nen of trace class operators on L2(R44) which

approximate the j-particle reduced density matrlx v(j )( t) for values of j < /N with
increasing accuracy. To compute the operator N ; "(t), a finite number of operations
is required, which depends on j and n but not on N.

The work by Paul and Pulvirenti is based on the method of kinetic errors from
[143] by Paul, Pulvirenti and Simonella. The j-particle reduced density matrix 'y](\?)(t)
is characterised in terms of the operators p?!) and the so-called correlation errors
EJN(t) € LY (L*(RI?)) as

J
=2 S PO PO (@) EN () (21 2 \ {20y 20 }) - (3.62)

k=0 1<ij<-+ <ip<j
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Here, we abbreviated z; := (z;;2}), and denoted by 'ygv(t)(zl, <.y zj) and p#®(z;) the
integral kernels of 7&?(7&) and p?® | respectively. Instead of considering the BBGKY-
hierarchy for the reduced densities, the authors of [143] derive equations for the corre-
lation errors, which, as in the BBGKY case, form an iterative hierarchy, in the sense

that EJN(t) depends on EY,

4+1(t). In [142], these correlation errors are expanded as

— itk
EN(@t) =Y &erHNTT .
k=0

It is shown that the coeflicients Ef(t) can be determined from the initial coefficients
Sjk,/(O) for ' < j+k, k' <k, in the following way:

e Tirst, a two-parameter semigroup Uj(t,s) on L£(L?(R79)) is constructed as a
Dyson expansion in terms of the linearisation of the Hartree flow around p#®).

e The truncation of this Dyson series after 2n + 1 steps yields the semigroup

UR(t,s).
e Replacing U;(t, s) by U (t, s) in the formula for EJ’? (t) yields the operators 8]1?’" (t).

e Adding all Ef’n(t) for k = 1,...,2n, one obtains the approximation EJN"(t) of
the correlation errors EJN (t).

e Finally, these EJN’"(t) define F' jN’"(t) via (3.62).

In conclusion, the approximating operators F]-N’"(t) can be determined by an N-
independent number of computations, needing as input only the initial data as well
as the knowledge of the solution of the Hartree equation and its linearisation around
this solution.

As a consequence of the very different approaches, it is not straightforward to com-
pare our result with the construction of Paul and Pulvirenti. We note the following:

e While our approximations are on the level of the time-evolved N-body wave
function, Paul and Pulvirenti derive higher order approximations of the reduced
density matrices.

e In our perception, the construction of 1/14(;1) (t) is more explicit than the operator-
based scheme sketched above. In both results, an a-dependent, N-independent
number of steps is required to obtain the a’th order approximation.

e The starting point in [142] is the time evolution Uj(t, s), which is related to the
linearisation of the Hartree flow around the solution of the Hartree equation. In
contrast, we use the time evolution U,(t, s).
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3.2. Higher order corrections to the mean-field dynamics

e While the analysis of Paul and Pulvirenti is restricted to factorised initial states,
we cover a larger and more general class of initial data.

e Finally, in contrast to [142], our result includes small values of 8 beyond the
Hartree scaling and admits possibly time-dependent external fields.

Let us also briefly comment on Proposition 3.2.3, where we estimate the growth
of the first A moments of the number of excitations when the system evolves under
the dynamics U(t,s) or Uy(t,s). Estimates of this kind are often needed to derive
effective descriptions of the dynamics of interacting bosons, e.g., in [20, 28, 42, 135,
146, 158]. Our proof extends comparable statements for § = 0 and d = 3 obtained
by Mitrouskas, Petrat and Pickl in [135, Lemma 2.1] and by Rodnianski and Schlein
in [158, Proposition 3.3]. For Bose gases with large volume and large density, a similar
estimate was derived by Petrat, Pickl and Soffer in [146, Corollary 4.2].

Assumptions on the potentials

Assumptions A7 and A2 are rather standard in the rigorous treatment of interacting
many-boson systems. Note that we make no assumption on the sign of the potential
or its scattering length but cover both repulsive and attractive interactions. Besides,
we admit a large class of time-dependent external traps V(¢ x), with the only con-
straints that they need to be bounded for fixed ¢ and continuous for fixed x.

Assumption on the initial data

The simplest example of an N-body state satisfying A3 is the product state 1) = ¢o®V,
which describes, e.g., the ground state of a non-interacting system. In contrast, the
ground state as well as the lower excited states of interacting systems are not close to
an exact product with respect to the L*(R?)-norm due to the correlation structure
related to the interactions.

Regarding interacting bosons, A3 is fulfilled for quasi-free states with subleading
expected number of excitations, since it holds for any quasi-free state £ € F and any
¢ > 1 that

(ENOFSN'TT = (6N) S C(1+N7

by (1.132). Note that we require a certain minimal size of 7, which is strictly greater
than 2. Since it follows from (1.142) and (1.74) that

NTHENE 5 = (0, nP0) = (w,afv) =1 - (p,2{p (3.63)

>L2(R3)

for ¢ = U% 1, the requirement that the expected number of excitations be bounded
uniformly in IV, which corresponds to v = 1, is equivalent to BEC with optimal rate

137



3. Results and Discussion

N~1 (see Lemma 1.4.2). Note that it was shown by Lewin, Nam, Serfaty and Solovej
in [114] that BEC with optimal rate is a sufficient condition for the validity of the
Bogoliubov approximation (see Section 1.5.2). Besides, A3 with parameter v < 1 is
comparable to the assumption (1.128) made by Nam and Napiérkowski in [138] to
obtain a norm approximation for the range 8 € [0, 3).

Finally, Mitrouskas showed in [134, Chapter 3] that assumption A3 with v = 1 is
fulfilled by the ground state and lower excited states of a homogeneous Bose gas on
the d-dimensional torus for g = 0.

More precisely, let g be the minimiser of the Hartree functional on the torus corre-
sponding to the ground state energy Ejy, and let 1, denote the n’th excited eigenstate
with energy F,. Then the author proves that there exist constants C, D > 0 such that

1PEon? < CePe

for all (E, — Ey) < a < N and with P° as in Definition 1.4.1. As a corollary of this
statement, it is shown that there exists C; > 0 such that

(n, g - g% ) < N7*Cy (1 + (E, — Ep)?) .

Due to the relation

(0, afaf) < I1(m#) I S Y- N (o af -qfw) + N7, (3.64)

j=1

which holds for any ¢ € L% (R?) ([34, Lemma 2.1a]), this implies that assumption A3
is satisfied.

Discussion of the result and perspectives

By construction, the first order correction @Z)g)(t) coincides with the norm approxima-
tion found by Mitrouskas, Petrat and Pickl in [135] for the Hartree scaling. Recall
that Theorem 3.2.2 establishes the approximation

N-(-48) 14 <y <1

W2 < of@ S5 le() gk gay ds

[9(t) =¥ I S e {N—C’w—?—dﬂ) st 1 g
For d = 3 and 3 = 0, this reproduces the result (1.140) up to a different time dependent
constant. Note that for d = 3, the exponent contains the H?(R3)-norm, which depends
on the choice of V. For instance, in the homogeneous case without external field,
this norm is preserved, which leads to the time dependence ~ e*. Hence, our result
can be understood as an extension of (1.140) to arbitrary dimensions and to the range
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3.2. Higher order corrections to the mean-field dynamics

B €10, 49)-

In comparison to the results [137, 138, 139] by Nam and Napiérkowski, our error
bounds for the first order correction are different. Making use of the equivalence
(1.143), we note the following:

e For d = 3, our bound § = 1 — 124 with assumption v € [1 — 3/, 1] is worse than
the result in [137]. Moreover, the analysis in [137] covers values of 3 up to %,
and, with a different rate, is extended in [138] to the range 3 € [0, 3).

e In dimension d = 2, our bound § = 1 — 83 under the assumption v € [1 — 24, 1]
needs to be compared to the bound § < (1 — ) obtained in [139]. We conclude
that our bound is better for g < % and worse for larger 8. Moreover, the
analysis by Nam and Napiorkowski covers the range 8 € (0, 1), which is much

larger than the regime |0, %) admitted by Theorem 3.2.2.

e For d = 1, our error bound under the assumption v € [1 — 3,1] is given as
d = 1—4p, while the respective parameter in [139] is 0 = % Hence, our estimate
is better for 8 € [0,3) and worse for B € (%, ). Besides, the result in [139]
includes all g > 0, while our analysis is restricted to the range g € [0, i)

To conclude this chapter, let us discuss the approximating functions wfaa) (t) from
a physical point of view. Due to the inter-particle correlations, the full N-body time
evolution () is an extremely complicated object: even if the system was initially in a
factorised state, the interactions instantaneously correlate the particles in the sense of
(1.20), making it very difficult to explicitly compute expectation values with respect
to 1 (t). In particular, the highly correlated dynamics v (t) are practically inaccessible
to any numerical analysis.

In this respect, the norm approximation provided by Nam and Napiérkowski in
[137, 138, 139] provides a huge simplification. If the initial wave function is described
by a quasi-free excitation vector §,,, this property is preserved by the Bogoliubov time
evolution. Hence, by the Wick property (1.131) of quasi-free state, all expectation val-
ues with respect to the time-evolved excitation vector ;) can be computed from the
one-body densities (fygw( b1 O t>). Since these densities are determined by the system
of equations (1.134) derived in [137], we conclude that every expectation value with
respect to the approximating function can be obtained by solving the NLS equation
for the condensate and the two equations (1.134) for the excitations. By unitarity of
the time evolutions generated by Hpoz and Hpy g, this observation extends to initial
states that are sufficiently close to quasi-free states.

At present, it remains an open question whether a comparable statement holds
true for the first-quantised time evolution U,(t,0)1g and the higher order corrections

wgl) (t) for an appropriate class of initial states. The specific form of H#®) suggests
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3. Results and Discussion

that the time evolved wave function (Zp(t, 0)t should develop less correlations than
the full dynamics 1(t), for which a heuristic argument is given in [146]: Since H#(®)
contains exclusively terms of the form

(12) (12) (12)
PLG2VN QP2 PIP2UN01G25  Q142Vy gP1D2

)

there are the following possibilities for the formation of correlations:

e If these operators are evaluated on a product state, the first two expressions
yield zero, while the third one produces a pair correlation between particles 1
and 2.

e When acting on a state where particles 1 and 2 are correlated, the third term
produces again such a state, while the first and second expression result in a
state where particles 1 and 2 are uncorrelated.

e If we have pair correlations of particles 1 and 3 and of 2 and 4, respectively,
then the first expression yields a state with a pair correlation of 2 and 3 and
with particle 1 and 4 uncorrelated. The second expression produces a state with
particles 1 and 2 in the condensate and particles 3 and 4 correlated, and the last
term results in a state where particles 1 and 2 are correlated and particles 3 and
4 are uncorrelated.

In summary, none of the terms in H#® can lead to higher correlations than pairs,
provided it acts on a state with at most pair correlations. Hence, it seems plausible
that the time evolution [Zp(t, s) might preserve the property of having at most pair
correlations. Naturally, this statement is quite vague and requires a precise formulation
in mathematical terms, and above heuristics are far from a rigorous proof.

By construction of the second order correction wg) (t), a state evolving under (790(3, 0)
with at most pair correlations is acted upon by a cubic term C¥#(), which contains three
projectors q. By a similar reasoning as above, one can argue that the resulting state
should have at most three-body correlations. This argument can be continued to
the next order corrections TIZJQ(DG) (t), where the length of the correlations grows with
a. In conclusion, these heuristics can be understood as a hint that the approximat-
ing functions [Zo(t, 0)1o and w&a) (t) should be simplifying and physically meaningful
approximations of the highly correlated dynamics 1) (t).
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Derivation of the 1d nonlinear Schrodinger equation from
the 3d quantum many-body dynamics of strongly confined
bosons

Lea BoSmann*

Abstract

We consider the dynamics of IV interacting bosons initially exhibiting Bose-Einstein
condensation. Due to an external trapping potential, the bosons are strongly con-
fined in two spatial directions, with the transverse extension of the trap being of
order €. The non-negative interaction potential is scaled such that its scattering
length is positive and of order (N/e?)~! and the range of the interaction scales as
(N/e2)=# for B € (0,1). We prove that in the simultaneous limit N — oo and
e — 0, the condensation is preserved by the dynamics and the time evolution is
asymptotically described by a cubic defocusing nonlinear Schrédinger equation in
one dimension, where the strength of the nonlinearity depends on the interaction
and on the confining potential. This is the first derivation of a lower-dimensional
effective evolution equation for singular potentials scaling with 5 > % and lays the
foundations for the derivation of the physically relevant one-dimensional Gross—
Pitaevskii equation (8 = 1). For our analysis, we adapt an approach by Pickl to
the problem with strong confinement.

1 Introduction

We consider a system of N identical bosons in R? interacting among each other through
repulsive pair interactions. The bosons are trapped within a cigar-shaped trap, which
effectively confines the particles to a region of length € in two spatial directions. To
describe this mathematically, let us first introduce the coordinates

2= (z,y) € RI2,

The cigar-shaped confinement is given by the scaled potential g%VJ- (%) for0<ex1
and V1 : R? — R. The Hamiltonian of this system is

N
Hy(t) =3 (—Aj + LV () + VH(t,Zj)> + 0 wla— ), (1)
= 1<i<j<N

where A denotes the Laplace operator on R3 and VIlis a possibly time-dependent
additional external potential. The units are chosen such that 7 =1 and m = % In the

*Fachbereich Mathematik, Eberhard Karls Universitat Tiibingen
Auf der Morgenstelle 10, 72076 Tiibingen, Germany
E-mail: lea.bossmann@uni-tuebingen.de
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limit € — 0, the system becomes effectively one-dimensional, in the sense that excitations
in the transverse direction are energetically strongly suppressed.

The interaction between the particles is described by the potential wg with scaling
parameter 5 € (0,1). For the sake of this introduction, let us for the moment assume

that
ws(z) = (%) w ((2)°2)

for some compactly supported, spherically symmetric, non-negative, bounded potential
w. This scaling describes a dilute gas, where the scaling parameter § interpolates
between the Hartree (8 = 0) and the Gross—Pitaevskii (8 = 1) regime. The proof of the
physically relevant Gross—Pitaevskii regime relies essentially on the result for 8 € (0, 1)
and is given in [4]. An important parameter characterising the interaction wg is its
effective range,

wi= ()77

We study the dynamics of the system in the simultaneous limit (N, ) — (00,0). The
state /N2 (t) of the system at time ¢ is determined by the N-body Schrédinger equation

iGN e(t) = He(t)™=(t) (2)
with initial datum ¢"¢(0) = @bév’g € LZ(R*) := ®),,L*(R?). We assume that the

system initially exhibits Bose—Einstein condensation, i.e., that the one-particle reduced
. . (1) N,
density matrix ’yw X of Yy,
0

k N N
o8 o= T v W) (3 ®

for k = 1, is asymptotically, as (N,e) — (00,0), close to the projection onto a one-
body state ¢§ € L2(R3). At low energies, the state factorises as a consequence of the
strong confinement and is of the form ¢f(z) = ®o(z)x°(y) (see Remark le). Here, ®g
denotes the wavefunction along the z-axis and x° is the normalised ground state of
Ay + évi(g) in the confined directions. Due to the rescaling by e, x© is given by

X (y) = 2x(Y), (4)
where ¥ is the normalised ground state of —A, + V-1(y).
In Theorem 1, we show that if the state of the system is initially such a factorised
Bose-Einstein condensate with condensate wavefunction pg = ®ox°*, i.e., if

im TI‘L2 (R3) = 0,

1
(N,e)—(00,0)

1
Ve = I£6) (4
0

where the limit (NV,e) — (00,0) is taken in an appropriate way, then the condensation
of the system into a factorised state is preserved by the dynamics, i.e., for all £ € R and

keN,

lim  Trpa g |12 ) = 9°(0) (7 ()% | = 0.

(N,e)—(00,0)

The condensate wavefunction at time ¢ is given by ¢(t) = ®(t)x°, where ®(¢) is the
solution of the one-dimensional nonlinear Schréodinger (NLS) equation

iZ0(t,2) = (= & + VI(t, (2,0)) + bsl@(t, 2)2) @t 2) = h(HD(t,2)  (5)
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with ®(0) = ®¢ and coupling parameter bg = |lwl| 11 (gs) [go [x(y)|* dy.

To our knowledge, Theorem 1 is the first rigorous derivation of an effectively lower-
dimensional evolution equation directly from the three-dimensional N-body dynamics
for 5 > % In [19], von Keler and Teufel consider a similar problem for 8 € (0, %) and in
[6] and [8], Chen and Holmer study interactions for different scaling regimes up to 8 < 1.
The extension to 5 € (0,1) requires a non-trivial adaptation of methods used for the
fully three-dimensional problem without strong confinement [33] to handle the additional
limit € — 0 and the associated dimensional reduction. Not only is this an interesting
mathematical problem on its own but it lays the foundations for the derivation of the
physically relevant effectively one-dimensional Gross—Pitaevskii equation corresponding
to the scaling § =1 [4]. In fact, the main idea of the proof in [4] is to approximate the
interaction wg—1 by a softer scaling interaction which is covered by our Theorem 1, and
to show that the remainders from this substitution vanish in the limit. The dimensional
reduction occurs in the approximated interaction, hence the result for 8 = 1 relies
essentially on the tools and results proven here.

Let us give a brief motivation of the effective equation (5). The N-body problem is
interacting, hence the effective evolution is nonlinear and the strength of the linearity
depends on the two-body scattering process. This process is to leading order described
by the (s-wave) scattering length ag of wg, which scales as (g)’l for g € (0,1] [9,
Lemma A.1]. This implies that, for 8 € (0,1), the length scale of the inter-particle
correlations is small compared to the range u = (g)’ﬁof wg. Hence, the correlations
are negligible in the limit and the two-body scattering process is described by the first
order Born approximation to the scattering length, 8mag ~ f wg(z) dz. The additional
factor [po |X(y)|* dy in the coupling parameter arises from integrating out the transverse
degrees of freedom in the course of the dimensional reduction.

Quasi one-dimensional Bose gases in highly elongated traps have been studied ex-
perimentally [12, 15] and the dynamical behaviour of such systems is of great physical
interest [11, 20, 28]. After the first proof of an effective Hartree evolution by Spohn [35],
the first rigorous derivation of an NLS evolution for three-dimensional bosons is due
to Erdés, Schlein and Yau [9]. The main tool of their proof is the convergence of the
BBGKY hierarchy, a system of coupled equations determining the time evolution of
all k-particle density matrices. Later, the authors adapted their proof to handle the
Gross—Pitaevskii scaling of the interaction [10]. A different approach providing rates
for the convergence of the reduced density matrices was proposed by Pickl [29, 32],
who derived effective evolution equations for NLS and Gross—Pitaevskii scaling of the
interaction, including time-dependent external potentials [33] as well as non-positive
[31, 17] and singular interactions [22]. A third method for the Gross—Pitaevskii case,
based on Bogoliubov transformations and coherent states on Fock space, was developed
by Benedikter, De Oliveira and Schlein [3], and an optimal rate of convergence was re-
cently proven by Brennecke and Schlein [5]. In [1, 7] and [21, 16, 18], effective equations
in one and two dimensions were derived from the respective one and two dimensional
quantum many-body dynamics.

Some authors have considered the problem of dimensional reduction for the NLS
equation. In [27], Méhats and Raymond study the cubic NLS equation in a two-
dimensional quantum waveguide, i.e., within a tube of width ¢ around a curve in R2.
They show that in the limit ¢ — 0, the nonlinear evolution is well approximated by
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a one-dimensional cubic NLS equation with an additional potential term due to the
curvature. Ben Abdallah, Méhats, Schmeiser and Weishéupl consider in [2] an (n + d)-
dimensional NLS equation subject to a strong confinement in d directions and derive an
effective n-dimensional NLS equation with a modified nonlinearity.

As mentioned above, there are few results concerning the derivation of lower-dimen-
sional NLS equations from the underlying three-dimensional N-body dynamics. Chen
and Holmer consider three-dimensional bosons with pair interactions in a harmonic
potential that is strongly confining in one [6] or two [8] directions. For a repulsive inter-
action scaling with 8 € (0, %) in case of the disc-shaped and for an attractive interaction
with g € (0, %) in case of the cigar-shaped confinement, they prove that the dynamics
are effectively described by a two- or respectively one-dimensional NLS equation. In
[19], von Keler and Teufel study a Bose gas confined to a quantum waveguide with non-
trivial geometry for scaling parameters 5 € (0, %) They prove that the evolution is well
captured by a one-dimensional NLS equation with additional potential terms arising
from the twisting and bending of the waveguide.

The remainder of this paper is structured as follows: in Section 2, we specify our
assumptions and present the result. Our proof follows an approach by Pickl, which is
outlined in Section 3. This section also contains the proof of our main Theorem 1, re-
lying essentially on two propositions. Finally, these propositions are proven in Section 4.

Notation. We will write A < B to indicate that there exists some constant C' > 0
independent of ¢, N,t,wév’e, ®( such that A < CB. The constant may depend on the
quantities fixed by the model, such as V+, y and VIl We will exclusively use the symbol
"~ to denote the operators from Definition 3.3. Besides, we will use the abbreviations

(od = Codegany s = M l2ayy  and - -llop := -l 2oy

2 Main Result

To study the effective behaviour of the many-body system in the simultaneous limit
(N,e) = (00,0), let us consider families of initial data 1/)év “ along sequences (N, &,) —
(00, 0) characterised as follows:

Definition 2.1. A sequence (Np,ep,) in N x (0, 1) is called admissible if

g2 N, —p
lim (Ny,e,) = (00,0) and  lim = =0 for pu, = <2) .
n— 00 n—00 [Iy e
It is called moderately confining if
lim 27 =0,
n—0o £,

Moderate confinement means that the extension ¢ of the confining potential shrinks
to zero but is still large compared to the range of the interaction u. This prevents
the interaction from being supported mainly in a region that is quasi inaccessible to
the particles due to the strong confinement. As u/e = N~P¢28~1 this condition is a
restriction only for 5 < %
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The admissibility condition ensures that the energy gap above the transverse ground
state, which is of order 72, grows sufficiently fast compared to p. In the proof, we
will use this condition to control transverse excitations into states that are orthogonal
to x° (see also Remark 2d). Note that for § > 0, €%/u = NP%=28 hence 6 = 2 is the
smallest exponent for which €°/u — 0 is possible for all § € (0,1). Both conditions
are comparable to the assumptions in [8] for an attractive interaction scaling with 8 €

(0,2)."

We consider interactions of the following type:

Definition 2.2. Let 3 € (0,1) and > 0. Define the set Wg, as the set containing all

families
wg : N x (0,1) = L®(R* R), (N,¢) —~ wg((N,e)),

such that for any (N,e) € N x (0,1)

)

(0) [ws((N, &)l| ey < (25) 7

(b) wg((N,¢e)) is non-negative and spherically symmetric,
(0) swpws((N,e)) € {z e R : |2 5 ()7},

(d) (N’E)lij(l )( 2)" | b (wg) — bg(ws)| = 0,

where

b e(wp) : N/wg ((N,e) dz/|x |4dy— = [ wg((N,¢e),2 dz/|x |4dy,
RZ’)

b = lim b .
5(wp) LN Ne(wg)

We will in the following abbreviate wg((V,€)) = wg, by(wg) = by and bg(wg) = bg.

Condition (d) ensures that the (IV, €)-dependent parameter by . converges sufficiently
fast to its limit bg. Clearly, the interaction (sﬂg)_wa((%)Bz) from the introduction
is contained in this set. In this case, bye = [|w|l1(rs) [z IX()* dy = b, hence (d) is
true for any n > 0.

In order to formulate our main theorem, we will need two different notions of one-
particle energies:

e The “renormalised” energy per particle: for ¢ € D(Hﬁ(t)%),
E¥(t) := 5 (W, Hp(t)W) 2 gony — 2, (6)

where Ey denotes the lowest eigenvalue of —A, + V1 (y). By rescaling, % is the

lowest eigenvalue of —A, + 5V+(%).

In our notation, the assumptions in [8] are N <e?2< N”Z(ﬁ)7 where v and v» are given by
3 — 1
n(B) = £ and vy = min{1 8 :F ]lB>1 too-lga, 25 ﬁ}. Note that N*1(Mg? = (%)m

1-8 B8 7ﬂ 1 287
and N"2(Pg? < ( )T-26 5 as v (B) < = 25, hence these conditions are comparable to our assumptions.
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e The effective energy per particle: for ® € H'(R),

E2(t) = <@, (—8% + VI, (z,0) + ”75|<I>\2) <I>> (7)

L2(R)

Further, we define the function ¢ : R — [1,00) by

i,j€{0,

t
N,e . i
e2(t) == 14 |EY0 " (0)| + |£20(0)| + /||V|(3, I poe 3y ds + ‘ ‘supl}HataékVH(t, I poo (m3)-
0 ke{1,2}

(8)

Note that e(t) is for each ¢t € R uniformly bounded in N and ¢ because we will assume

that Ew(])VE(O) — £%(0) as (N,e) — (00,0) (assumption A4 below) and boundedness
of 9i9), VIl (assumption A3 below). The function ¢ will be of use because, by the
fundamental theorem of calculus,

B 00 <) 1 and [E*O@)] < (1) -1 ®)

for any time ¢ € R. Note that if the external field VIl is time-independent, ¢2(t) < 1 for
any t, hence in this case, E¥"“®)(t) and £2®)(¢) are bounded uniformly in time.

Let us now state our assumptions:
A1l Interaction. Let the interaction wg € Wg,, for some n > 0.

A2 Confining potential. Let V+ : R? — R such that —A, + V= is self-adjoint and has
a non-degenerate ground state x with energy Ey < inf oess(—A, + VL). Assume
that the negative part of V' is bounded and that y € C%(Rz), i.e., x is bounded
and continuously differentiable with bounded derivative. We choose x normalised
and real.

A3 External field. Let VI : R x R? — R such that VII(-, 2) € C!(R). Further, assume
that for each fixed t € R, VI(t,(-,0)) € HY(R), VIi(t,-), VII(t, ) € L>*(R*)NC}(R?)
and V,VI(t,.), Vv, VI(t,-) € L(R3).

A4 Initial data. Assume that the family of initial data, Q/Jév’e € D(Hg(0)) N L2(R3N)
with Hzpév “||?> = 1, is close to a condensate with condensate wavefunction ¢f =
®(x° for some normalised ®y € H?(R) in the following sense: for some admissible,

moderately confining sequence (N, ¢), it holds that

1. T (1) _ @ € @ £ — 0 10
(e ) TR Tyne — [B0X) (Pox7] (10)

and

li EY°(0) — £%(0)| = 0. 11
(N’E)gr(loovo)‘ " (0) - £7(0)| (11)

Remark 1. (a) Assumption Al includes the interaction wg(z) = (Eﬂg)flﬁw w ((g)ﬁz)
for w : R — R spherically symmetric, non-negative and with supp w C B;(0). We

consider the larger class of interaction potentials Wg,, because due to this slight
generalisation, one may immediately apply the result of Theorem 1 in [4].
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(b) Assumption A2 is, for instance, fulfilled by a harmonic potential or by any bounded
smooth potential with a bound state below the essential spectrum. Note that it
is not necessary that the potential increases as |y| — oo. The confining effect of
the potential is due to the rescaling by ¢ because the ground state of —A, + v+
is exponentially localised [13, Theorem 1].

(¢) The regularity condition on V(¢ (-,0)) in A3 ensures the global existence of H>-
solutions of the NLS equation (5) (see Appendix A and Lemma 4.9). The further
requirements for V”, V”,VyV” and VyVH are needed to control the one-particle
energies and the interactions of bosons with the external field V.

(d) Due to assumptions Al — A3, the operators Hg(t) are self-adjoint on the time-
independent domain D(Hpg). As t — VI(t) € L(L?*(R?)) is continuous, Hg(t)
generates a strongly continuous unitary evolution on D(Hpg) [14].

(e) We assume in A4 that the system is initially given by a Bose—Einstein condensate
with factorised condensate wavefunction. Both parts (10) and (11) of the assump-
tion are standard when deriving effective evolution equations. For the scaling
parameter f = 1 and a homogeneous external field VI(z,0), it is shown in [26]
that the ground state of H;(0) satisfies assumption A4. Note that for initial data in
the ground state, it is important to admit a time-dependent external potential V|
to observe non-trivial dynamics. For related results without strong confinement,
we refer to the review [25] for § =1 and to [23] for § < 1.

Theorem 1. Let 3 € (0,1) and assume that wg, V* and VI satisfy A1 — A3. Let ¢év’€

be a family of initial data satisfying A4, let YN=(t) denote the solution of the N -body
N,e (k)

Schridinger equation (2) with initial datum ¥™<(0) = 1y and let Ve (t) denote its
k-particle reduced density matriz as in (3). Then for any T € R and k € N,
I Tr e = 12X @I | = 0 12
) e 1By T2 [Ty |[@(#)x) (()X7| (12)
and N
lim sup ’E¢ @) — £20) (t)‘ =0, (13)
]

(N,e)—(00,0) te[-T,T

where the limits are taken along the sequence from A4. ®(t) is the solution of the NLS
equation (5) with initial datum ®(0) = ®g from A4, where the strength of the nonlinearity
in (5) is given by bg from Definition 2.2, namely

= = m -
(N,e)—(00,0) (N,e)=(c0,0) <~

bg= lim by.= li 5[ ws(z) dz/ Ix(y)|* dy. (14)
R3 R2

Remark 2. (a) For the choice wg(z) = (Eﬂz)ng’Bw ((Eﬂz)ﬁz), we obtain the coupling
parameter bg = [[wl| 1 (s Jre Ix(y)|* dy.

(b) Our proof provides an estimate of the rate of the convergence of (12), which is

explicitly stated in Corollary 3.9. The rate is not uniform in time but depends on

it in terms of a double exponential. Note, however, that times of order one already
correspond to long times on the microscopic scale.
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Let us comment on the difference of our work to the result of von Keler and Teufel
[19], who consider § € (0, %) The extension to 5 € (0,1) means a physically rele-
vant improvement of the result: for g < %, the problem can still be considered as
a mean-field problem since the mean inter-particle distance o~ 3 ~ (g)fé is small
compared to the range of the interaction y = (%)_5 . For 8 > %, the mean-field
description breaks down and one must handle interactions which are too singular
to be covered by the approach of [19]. We solve this by an integration by parts of
the interaction, which comes at the price that one must control the kinetic energy
of the N-particle wavefunction (Lemma 4.11 and Lemma 4.21). Also, note that
our admissibility condition is weaker than the respective condition es /i — 0 in
[19], which cannot be satisfied for 5 > %

In [19], the bosons are trapped within a quantum waveguide with non-trivial ge-
ometry. The confinement is realised by means of Dirichlet boundary conditions,
which restrict the system to a tube of width ¢ around some curve in R3. In
our model, the confinement is by potentials. However, our result can easily be
modified to a confinement via Dirichlet boundary conditions, corresponding to a
straight and untwisted quantum waveguide. The main difference in the proof is
the estimate of fyél) (Section 4.4.2): one divides the expression (46) into an inte-
gral over those y sufficiently distant from the boundary that supp wg((x,y) —-) is
completely contained in the waveguide, and into an integral over the rest, which
is easily estimated.

In addition to moderately confining sequences, the authors of [19] consider se-
quences (N, ) — (00,0) with e/ — 0. This is possible for 3 € (0, ) and leads to
bg = 0 in the effective equation because an essential part of the interaction is cut
off such that the limiting effective equation becomes linear. We conjecture that
the same effect occurs in our setup.

Our analysis is restricted to sequences where ¢ < N 518 (Definition 2.1). As
remarked before, similar conditions are needed in the comparable works [6, 8]
whereas no analogue of this admissibility condition is required for the ground
state result in [26]. In combination with the work on the confinement limit of the
three-dimensional NLS equation in [2], this indicates that our dynamical result
should in principle hold without any admissibility condition. For our strategy of
proof, this condition is however indispensable to control the transverse excitations
out of the transverse ground state x°.

In [8], Chen and Holmer study attractive interactions, i.e., [ps wg(z)dz < 0. In
distinction from that work, we exclusively consider repulsive interactions with
wg > 0. However, as the condition wg > 0 seems to be crucial only to the proofs
of Lemma 4.11 and Lemma 4.21, it is likely that our result can be extended to
include repulsive interactions with a certain negative part.

3 Proof of the main theorem

To prove Theorem 1, we need to show that the expressions in (12) and (13) vanish in the
limit (IV,e) — (00, 0), given suitable initial data. Instead of estimating these differences
directly, we follow the strategy by Pickl [29, 30, 31, 32, 33] and define a functional
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ae (PN (1), ¢°(t)) which provides a measure of the part of the N-particle wavefunction
1™V that has not condensed into the single-particle orbital ©°. The functional is chosen
such that ag(¥Ne(t), p°(t)) — 0 is equivalent to (12) and (13). We follow in general
[33]. However, the strongly asymmetric confinement requires a nontrivial modification
of the formalism to treat the dimensional reduction and the more singular scaling of the
interaction. For the construction of ¢, we need the following projections:

Definition 3.1. Let ¢°(t) = ®(t)x°, where ®(¢) is the solution of the NLS equation (5)
with initial datum ®¢ from A4 and with x© as in (4). Let

p = [ (1)) (¥° ()],
where we have dropped the time dependence of p in the notation. For i € {1,..., N},
define the projection operators on L?(R3V)
Dj = 1® - 1p1®---®---1 and qj ;:]l_pj‘
i1 NZj
Further, define the orthogonal projections on L?(R?)
p® = [®(1) (2(1)] ® Lr2ge), q® = 12s —p%,

pxs — lLQ(R) ® |X6> <X6| , qXE = ]le(]R3) _pXE’

and define p7, ¢, p;.‘s and q;‘g on L}(R*Y) analogously to p; and ¢;. Finally, for
0 < k < N, define the many-body projections

Pi=(av @uPrs1 PN) gy = > TMwIle

JC{1,...N}jEJ IgJ
|J|=k

and P, =0 for k < 0and k> N.
In the sequel, we will write p; = |¢°(¢, 2;)) (¢°(¢, 25)|, p}l) = |®(t,z;)) (P(t,z;)| and

p;.cg = |x*(y5)) (x*(y;)|. Some useful identities of the projections are listed in the follow-
ing corollary:

Corollary 3.2. For0 < k< N and 1< j <N, it holds that

N N
(a) >> Py=1, 3 qjP=kPy,
k=0 =1

(b) pj =pip} , pie;=pid, pya=p)q5 and

Poi=p;, da=d, dp=0 forge{®x},

(c) gy =qfpy +p7qf +47q =af +4ip} =4qf +pia)
Proof. The first identity in (a) is due to the relation p; + ¢; = 1. The second identity
follows from the fact that

N N N N N N
DG=D 4 ) Pe=) > 4Pi=) kP
=1 =1 k=0 k=0 j=1 k=0

together with PyPy = 0 Pr,. While part (b) is an immediate consequence of Def-
inition 3.1, part (c) is implied by ¢ = 1 —p = (p® + ¢®)(P¥ + ¢°) — pPp¥° =
PP+ ¢*pX 4 ¢%gX. O
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Definition 3.3. For any function f : Ny — R{, define the operator fe L (L2(]R3N))
by

Mz

k=0

and, for any d € Z, the shifted operator f (L2(R3N)) by

N—d
=Y fi+dP

j=—d
We will in particular need the weight function n defined by n(k) := %

Definition 3.4. Define the functional af : L*(R3V) x L?(R3) — R by

N
ap (9= (1)) = (v, Fol) = > F(k) (. Piv)

k=0

The ¢°-dependence of ay is due to the p°-dependence of the projectors Pj. As the
operators P project onto states with exactly k particles outside the condensate, oy
is a measure of the relative number of such particles in the state . We choose the
weight f increasing and f(0) ~ 0, hence those parts of 1) with a larger “distance” to the
condensate contribute more to af(1), ). On the other hand, Py — the state where
all particles are condensed into ¢° — contributes hardly anything. The weight 7 is in
particular distinguished because for any symmetric wavefunction v € L2(R3V),

N N N
Q2 (0, 65(1) = > B (0, Petp) =D > % (0, ;) = )|
k=0 k=0 j=1
by Corollary 3.2a.

Lemma 3.5. Let ¥ € L2(R3Y) be a sequence of normalised N -particle wavefunctions
(

and let 'yN) be the sequence of corresponding k-particle reduced density matrices for some
fizred k € N. Lett € R. Then the following statements are equivalent:

(a) A}im ana (YN, 05 (1)) = 0 for some a > 0,
—00

(b) A}im ana (YN, 05 (1)) = 0 for any a > 0,
—00

(c) Jim [ = Ig*(0) <<,a€<t>|®’“||w<Rak» — 0 forall k €N,

(4) lim Trpagon |2y = [0°(0)) (¢° )|®’“’ =0 for all k € N,

(e) hm TrLg(Rs)

~ ¢ () (= (]| = 0.
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For the proof of this lemma, we refer to [19, Lemma 3.1] and to corresponding results in
[22, 32, 33, 34]. We will in the following choose the weight function m : Ny — R} with

k) n(k) for k > N1=2¢
m(k) =
% (N_1+5I<: + N‘g) else

for some & € (0, %), i.e., m equals n with a smooth cut-off to soften the singularity of
42 for small k. Clearly, n(k) < m(k) < n(k) + N~¢ for all k > 0 and & € (0,1), hence
am (¥, ¢°(t)) — 0 is equivalent to ay, (1), p°(t)) — 0 and thus to all cases in Lemma 3.5
for any choice of the parameter £. For the actual proof, we will consider a modified
version of this functional, namely

ag(t) = am(WNE (1), (1) + | BV O (1) — 20 (1)), (15)

The convergence of ag(t) to zero is equivalent to (12) and (13). Conversely, (10) and (11)
imply a¢(0) — 0 as (N,e) = (00,0). The main idea of the proof is therefore to derive
a bound for | $ag(t)| (Propositions 3.7 and 3.8), from which one obtains an estimate
for ag(t) by Gréonwall’s inequality. The propositions will be proven in Sections 4.3 and
4.4. The estimate of the rate of the convergence of ag(t) gained from this procedure
translates to a rate for the reduced density matrices:

Lemma 3.6. For ag(t) as in (15), it holds that

Tr ‘71(#1135(1‘/) |0°(8)) <<P8(t)" < 4/8ag(t),

N,e -
aelt) < |0 (1) - g<b<t><t>\+\/Tr\vﬁ,s(t)—|¢E<t>><¢€<t>\\+%N ‘.

Proof. Let us abbreviate 1)™¢(t) = v and drop all time dependencies. [22, Lemma 2.3]
implies
(. @%0) < Telyg — [0%) (7] | < VB (0, 3%9).

The first inequality is thus immediately clear as n(k)? < n(k) < m(k). For the second
inequality, recall that m(k) < n(k) + 3N ~¢, hence

(b ) < [ollllAwll + N6 < /{0, 7200 + N6 < Te[y D — Jg9) (o] | + EN

O
Proposition 3.7. Under assumptions A1 — A/,
|dta§(t)| < ra(®)] + ()]
e + 1 O + 7 O] + [ )
for almost every t € R, where
() = | (@0 VI e ) = (20, VI @ o)e) | (16)
—2NS (e (), ey (VIE, 21) = VIE (01,00) o™ (1)) (17)
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W(t) = =N =13 (V@) 2P mee o) (18)
= % 0 +97 0 +7 ),

@) = 2NN = DS (0N 0), af Ry peZy P pipa e (1)), (19)
w0 = N = DS (g wV(0), (2p2m L+ 1+ )il ) wi P pipee (@) (20)
—2N(N = DS (¥M40), (0 a2 + aT P @ ) wh P pigsv ™= (1)) (21)
—2N(N - 1)%<<¢N’E(t) P Y Py wl P pigy Nt )>> (22)
W) = =N = DS (@), af gF it opY vy wl P pipaw™E(n)) (23)
—2N(N = 1)S (0V=(1), af aF i 1pY Py wy P pipy g v e (1)) (24)
+2NbgS (™ (1), qugai® | (¢, 1) [*prg2 ™ (1)) - (25)
Here,

b
wy? = wg(z1 —22)  and z{ = wy® — 225 (19t 21)[? + |@(t, 22)[?)
and m®, mP denote the many-body operators corresponding to the weight functions
me(k) :=m(k) —m(k+1) and mP(k) :=m(k) — m(k+ 2).

The first term, ,, merely contains one-body contributions, i.e., interactions between
the bosons and the external field VI, and is therefore the easiest to estimate. Note
that (16) is small only if the system is in a state ¥V close to the condensate with

condensate wavefunction ¢° = ®x° (see Lemma 4.7). The term 3 handles the two-body
(1) (3)

contributions, i.e., interactions among bosons. The expressmns M and 7, contain the

quasi one—dlmensmnal interaction w(z; — x2) defined by p{ p2 wg(zl ZQ)piésp%(é: =:
W(z, — x9)pY p¥ (see Definition 4.18), where the transverse degrees of freedom are
integrated out. These terms are comparable to the corresponding three-dimensional
terms in [33]. 7152) has no equivalent in the situation without strong confinement as it
collects the remainders that arise upon approximating the three-dimensional interaction
wg with the quasi one-dimensional interaction w.

'yél) is physically most relevant because it depends on the difference between the quasi
one-dimensional interaction w and the one-dimensional effective potential bs|®(¢)|?. In
other words, this term is small if and only if (5) is the right effective equation, in
particular with the correct coupling parameter bg. Note that for this term it is crucial

that the sequence (N,¢) is moderately confining, i.e., that u/e — 0.
(2

For ~, ) to be small, we require in particular the admissibility of the sequence (N, ¢),
i.e., that €2/ — 0. The other key tool for the estimate is the observation that due to the
strong confinement, it is unlikely that a particle is excited in the transverse directions.
This implies in particular that ||gX ¥™(¢)|| = O(e) (Lemma 4.11).
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The estimate of %53) relies on a bound for the kinetic energy of the part of y™¢(t)

with at least one particle not in ®(¢), i.e., a bound for ||0,,¢F¥™N*(¢)|| (Lemma 4.21).
The proof of this bound again involves the splitting of the interaction wg into a quasi

one-dimensional part w and remainders. Hence for ’yb ) to be small, we require both
moderate confinement and the admissibility of the sequence (N, ¢). The last line (25) is
a remainder which is easily controlled.

Proposition 3.8. Let p be sufficiently small. Under assumptions A1 — A4, 4 to 7(3)

from Proposition 3.7 are bounded by

] £ (6. 20V @) +e) (1),

O] S (E+NT 3T ),

AP0l 5 (2) e,

OIS (jEw“““@>—s¢“Nw\+«waaxawM%>»+— +(5) +n 7

N () e {0 + [ as)

(SIS

for any & € (0, g], any By € (0, 8] and with n from Definition 2.2 and ¢(t) as in (8).

The estimate of 7( ) is essentially the same as in the case 8 € (0,3) in [19]. 7, must
be treated in a different way because the confinement is by a potential and not via
Dirichlet boundary conditions. For the terms 'ylg ) and 'ylgg), the argument from [19] does
not work because the interaction becomes too singular for 5 > % To cope with this, we
follow an idea from [33]: we identify a function h. such that wg = Ah. and integrate by
parts. Vh, is less singular, and the expressions resulting from V acting on ™ “(t) can
be controlled with Lemma 4.11 (or the refined version, Lemma 4.21).

Our strategy differs from [33] in a relevant point: in [33], the interaction wg is
approximated by a potential Ug, with softer but still singular scaling behaviour (81 < %)
The author first proves bounds for 8 < %, the second step is to estimate the contribution
from the difference wg — Up, using integration by parts. Instead of these two steps, we
define h, as the solution of Ah, = wg on a ball with Dirichlet boundary conditions and
integrate by parts on the ball. To prevent the emergence of boundary terms, we use
smoothed step functions whose derivatives can be controlled. This mathematical trick
enables us to avoid the separate estimate for 5 < %

The control of the kinetic energy (Lemma 4.21) required for the integration by parts
(3)

in 7,” is also different from the corresponding Lemma 5.2 in [33]. Instead of following
that path, we extend ideas from [19, Lemma 4.7] and [30, Lemma 4.6] and estimate
the part of the kinetic energy in the free direction. Besides, we use with Lemma 4.8a a
slightly sharpened version of [33, Lemma 4.3].

Proof of Theorem 1. From Propositions 3.7 and 3.8, we gather, for sufficiently small u,
that

| gae(t)] S Ct) (ag(t) + Re g, n(N,€))
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for almost every t € R, where
t
C(t) = e(t)exp {eQ(t) + / ¢?(s) ds} ) (26)
0

1
2 8
Regn(N,e) = L+ (%)2 + N N (X))

Recall that ¢(t) is for each t € R bounded uniformly in NV and € by assumption A4. The
differential version of Gronwall’s inequality yields

ag(t) < (ag(0) + Regy.(N, £)) oxp {2 /O o) ds}

for all £ € R. Due to assumption A4 and by Lemma 3.5, lim(y o) (00,0) @(0) = 0
and Re g, »(IV,€) vanishes in the limit (IV,e) — (00,0) for 51 € (0,5] and £ € (0, g],
&€ < 1— p1, because the sequence (N, ¢) is by assumption A4 admissible and moderately
confining. Again by Lemma 3.5, this implies (12) and (13) for any ¢ € R. O

Corollary 3.9. Lett € R. Then

T [y — |#°(2) <<P€(t)|‘ < (A(O) 2 (3)5 N+ (ég)n> y

X exp {/Otcm ds}

for C(t) as in (26) and where

A(0) := | ¥ (0) — £%0(0 \/ﬂ‘y —15) (

Proof. This follows from Lemma 3.6 after optimisation over ¢ and ;. 0

Remark 3. In the case without external field, i.e. VI = 0, we have 2l a2@®) S
C(||®oll g2(r)) uniformly in ¢, where C(||®o||2(r)) is some expression depending on

o]l 72z [36, Exercise 3.36]%. Defining & = 1+ (0)] + €% (0)|+ (C(|@ol r2qxy)?
in analogy to (8), this yields

1
1 3 .- )’ Py
Tr {2 = °0) (O] 3 (A<o>+z+(i?)2+N T+ () ) exp (¢t),

where the growth in time is an exponential instead of a double exponential.

4 Proofs of the propositions

4.1 Preliminaries

In this section, we prove several lemmata which are needed for the proofs of the proposi-
tions. The first ones establish several properties of the weighted operators f, Lemma 4.7

*To show this, one observes that Ea(®) := [, (|02®|* + c1|0.®|*|®|* + c2R((®.P)?) + c3|®|°) dw is
conserved for solutions of (5) with Vi = 0, with ¢1, c2 and c3 some absolute constants.

167



A. Accepted Publications

and Lemma 4.8 contain some useful estimates for scalar products, and the remainder of
the section covers properties of the condensate wavefunction ¢°(t). In the following, we
will always assume that assumptions Al — A4 are satisfied.

Lemma 4.1. Let f : Ng = R, d € Z and define
1:= N max{m®,,m’,},

where the max is to be understood in the sense of inequalities between operators, i.e.,
I = Nm2, if m*, —m>, is a positive operator and vice versa. Then

~ ~ /\l
(@) [fllop = lfallop = IF2115, = sup f(k),
0<k<N

() [1allop S 1. [lllop < N°.
Proof. Part (a) is obvious. For part (b), note that
N N
mn =Y (m(k—1)=mk)n(k)P,, M’y =>(m(k—2)—m(k))n(k)P.
k=1 k=2

The derivative of m with respect to k, where k is for the moment understood as real
variable, is given by

L — IN“In(k)! S A1-2€
m (k)= Smk) = { avew — 2V nk)T for k= N,

%N‘Hi else.

By the mean value theorem, |m(k)—m(k—j)| = jim/(x)| for j € {1,2} and k € (k—j,k).
For k > N2 |m/ (k)| = $N~In(k)~L. For k < N'=25, we obtain |m/(k)| = AN ~1*¢ <

%\/i—N = AN~!n(k)~L. Consequently,
N N
S mk— ) = m(k)|n(k) Py < AN S JER S N1
k=j k=j

in the sense of operators. This proves the first part of (b). For the second identity,
observe that |m’(k)| < $N~1*¢ uniformly in k > 0. O

Lemma 4.2. Let f,g:No — R be any weights and i,5 € {1,..., N}.
(a) Fork € {0,...,N},
fa=rfg=39f,  fpij=pif.  fo=q4f, [P.=Dl
(b) Define Qo == pj, Q1 = q;, Qo = pip;, Q1 € {pigj, aip;} and Q2 = qiq;. Let S; be
an operator acting only on factor j in the tensor product and Tj; acting only on i
and j. Then for p,v € {0,1,2}
Q,uijQV = Q,qufuqul/ and @ufTijéu = @/unjfuﬂ/@/y-
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(¢c) Let Si; be an operator acting only on the x-component of factor j. Then
q} [Se;p] = af Se;(f@ + f1p} )p]  and ¢ FSu;qf = af S, fq5-

(d) R A S
(T2, f] = [Ta2, p1p2(f — f2) + (P12 + up2)(f — f1)]-

We will apply parts (b) and (c) to unbounded operators, for instance to S; = V; and
Sz; = Oy,. In this case, the respective equality holds on the intersection of the domains
of the operators on both sides of the equation.

Proof. Part (a) follows immediately from PP, = 0y ;Py. For assertion (b), note that for
J=1

Qupkleu = Qu < Z H q; Hm) 51Qy

JC{2,..,N}jcJ i¢J
|J|=k—p

= Q,usl ( Z H q; le> Qv = Qu51Pk7M+I/QV7

JC{2,..,N}jeJ 1¢J
|J|=k—p

hence

N—(p—v)

Quf$iQu=QuSi | > flk+n—v)P| Qv =QuS1furQu.

k=—(n—v)

Assertion (c) is a consequence of part (b) and Corollary 3.2b, for example

@ fSe,p = (quSzj (pj + Qj)) Py = af Se;(f10} + faf )p
Finally, observe that

[Ti2, pip2(f — fo) + (1o + q1p2)(f—AfA1)] ~ R R
= [Tha, f] = [T12, qra2 f + (p1g2 + q1p2) f1 + p1p2fol.

The second commutator equals zero, which can be seen by inserting 1 = p1p2 + (p1g2 +
q1p2) + q1g2 in front of the commutator and applying part (c). O

For the next lemma, recall that the operators Py (Definition 3.1), and thus also the
weighted operators f (Definition 3.3), depend on the real variable ¢ due to the time
dependence of the projections p and gq.

Lemma 4.3. Let f: Ny — RS’.
(a) The operators Py and f are continuously differentiable as functions of time, i.e.,

Py, f€CY(R, L (L2R*N)))
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for 0 <k < N. Moreover,

&l

R R N
F=ilF. > m).
j=1

where h;(t) denotes the one-particle operator corresponding to h(t) from (5) acting
on the j™ coordinate.

(b) ij + VJ_(?J)a]/C\ =0 fOT‘ 1 < ] < N.

Proof. The first part of (a) is clear as ¢° € C! (R, L2(R3)). For the second part, note
that

[D()x7) (@(XF| = i [|@()x) (R(OXC], ()] = ilp, h(t)] and  §q = i[g, h(?)]

as ®(t) is a solution of (5). Assertion (b) is due to the fact that —A, + - V(L)
commutes with its spectral projection pf. O

&~

p:

&l

We will consider functions which are symmetric only in the variables of a subset of
{1, ..., N}, for instance the expressions ¢;1) and w(1 )1/) for ¢ € L2(R3V).

Definition 4.4. Let M C {1,..., N}. Define H g C L?(R3") as the space of functions
which are symmetric in all variables in M, i.e., for ¥ € Hg,

Y21y ooy 2y ey Zhy s ZN) = V(21, ooy Zhy vy 2y oy ZN) Vi, ke M.

Lemma 4.5. Let f : Ng = R} and Mj, M1 C {1,2,...,N} with 1 € My and 1,2 €
Mips.

N
(a') n* = % 'Z:l%
j:

) Ifavl? < 2l FAgl? v € Ha,

(¢) |faav|? < WW FR2GI2 Y € My,

Proof. Part (a) follows immediately from Corollary 3.2a. Consequently, for ¢ € Hy,,

Hfﬁwn%}vi« Paw) 2+ 3 (v Paw) = 200 g

JEMy

and analogously for 1) € Haq, ,,

1> w5 3 (o Poa) > P22 2 D52

Jk€EM1 2
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Corollary 4.6. Let f : Ny — R(J)r and Ha,, Ham, , as in Lemma 4.5.
(a) Forp € Hpm,,

IViFa ] S W flloplViarwll  and  (|10z, Fal vl S 1 Fllopl|Ozyafo]l.
(b) FOT'(Z)EIHMLQ;
IVifarat] S 1 fallopll Vil and (0w, Fafad ]l S 11 F Allopll O al el

Proof. Insertion of 1 = py + ¢; in front of V; yields with Lemma 4.2b

~ —~ ~ 4.1
IVifadbll < (1fllop + [ f1llop) [Viar | S 1 flopll Vaar9l

and

IViFaaavl < 1 iaaVial + 1fevia vl S (il + 1 Fllop ) V10101

by Lemma 4.5b as Viqiy) € Hyz . vy As n(k) < n(k+1), [[Ainllop < [[fn1llop = [[F7llop
by Lemma 4.1a. The respective second identities are shown analogously, using that
q®q = ¢* and that 9,,q7¢ € Hia,.. .N}- O

The next lemma provides an estimate of the difference between expectation values
with respect to a symmetric N-body wavefunction ¢ and with respect to ®(t).

Lemma 4.7. Let 1) € L2(R3N) be normalised and f € L=(R). Then

[, £@0)0) = (@), £ 12z | S 1 laoeiey (6, 70)

Proof. We drop the time dependence of ®. Inserting 1 = p; + ¢; on both sides of f(x1)
yields

[0 F@0) ) = (@, f®) oy | <[ prf @0p1) = (@, 5 ) oy
+ [ a1, f()av) [ + 2] (o, prf(z) @) |-

We estimate the first term as

(22 @) (@) f(1) [9(w0)) (@) |9 W) = (@, 1) o
< (@, D) gy (0, )| < (1 F ]l (8, 70)

by Lemma 4.5a and as 2 < ni. The second term is bounded by

|, fa) @) | < [ fllee@lland|* < 1]z (b, 70) -
For the third term, we compute

1

T—

<<ﬁ1lpl¢a f(fﬂl)ﬁéqw»‘

1 1 4.5b .
< fllee@lRielln2ql S 1 flle@) (¢, 7)),

where we have used that vk +1 < V& + 1, hence ny(k) < n(k) + N7z < 2n(k)

[RZA
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In the following lemma, we estimate two particular scalar products.

Lemma 4.8. Let Ojj be an operator that acts nontrivially only on the G and k™
coordinate and let F : R® x R® — R? for d € N.

(a) Let T, A € Haq for some M such that j ¢ M and k,l € M. Then
1
(0, 05A) | < I (14038, 050 |+ IMI T [050A]17)

(b) Let ry, si and t; denote operators acting only on the factors k and j of the tensor
product, respectively. Then for j #k #1# j,

| (76 F (25, zi) st T, miF (25, z0) st 1) | < ||lskF (25, zk)rkth‘HQ.

Proof. Using the symmetry of I'; A in all coordinates contained in M, we find

(T, 05 M) | < ATl | D2 OjmA
‘M| meM

=

< ||| Wlp( > (OjmA, 0jnA) + ZHOj,mAn?)

n,memM meM

n#m

M| -1 :
— e (B 0san 008 + L0s0a? )

For part (b), we use that, for instance, 7, and F(z;, 2;) commute, hence
| (50, sk F (25, zi)rimiF (25, 20) it D) | = | {rity L, s F (25, 20) F (25, zi) sirit 1) |

| (rit;T, F(zj, z1)sisuF (25, 2 )rat;T) |
sk F (2, z1)rit; ||

IN

O
The next lemma collects estimates for the time evolved condensate wavefunction.

Lemma 4.9. H%(R) solutions of the NLS equation (5) eist globally, i.e., for initial
data ®g € H?(R) it holds that ®(t) € H*(R) for any t € R. Moreover, for sufficiently
small g,

(a) [[®O)|l2m) =1, 2| 1y < e(t),

[P || oo () < e(t), (2 g2y S exp {62(1‘) + Jo e(s) ds} ;
(b) X Nrowey St IVXE] oo r2) S €72,

() || oo 3y S e(t)e™ V& (t)]| oo sy S e(t)e™

V1= ()1l L2ey < e(t)€‘2~
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Proof. For 3 < r < 4 and ®, € H"(R), (5) has a unique strong H"(R)-solution ® €

C(R; H"(R)) depending continuously on the initial data. The proof of this is sketched
in Appendix A. By assumption A4, &y € H?(R) and consequently ®(¢) € H?(R). This
implies & || ®(¢ )HLQ(R) = 0 and by definition of £2®) and e(t),

1151y < EXD () + 1V, )| oo ey < (). (27)

Besides, ®(t) € H%(R) C C!(R), hence

2ol = [ (FEOC) + TEO(E,0) de

—00

x

[ (2 OF + 18¢.0P) dc = [0 sy < 20

—0o0

| 21(0) I3 < 4 / (1, ) 2| (¢, 2) 2 d < 4[B(0)| ey 1D(8) 22y S (0.

IN

For ®(t) € H*(R), we obtain
& (14 1902w
23 <V'H(t, (-,0))® (1), (i>(t)>L2(R) — 2053 <<I>(t)2, <i>(t)2>

2V, )| ow ) (1 + 1RO F2my) + 2681 PO oo ) | )|y

hence by Gronwall’s inequality and as [[®(t)]|peo ) < e(t),

L2(R)

IN

IN

IeOBag < (14 190)12:)) exp {2 /O t (Vs ) ey + be(5)) ds}

exp {2e2(t) + 2/; ¢?(s) ds} :

This implies a bound for ||®(t)|| g2(r) because

N

1D 2y > 19" (8 L2y — bs|| D ()| 700 () — VI, ) oo @y 2 197 () L2y — ¢*(t)

and consequently

12t 2wy < 119" ()l 22wy + 29 (1) || 1wy

t t
< ez(t)+exp{e2(t)+/ ez(s)ds} gexp{ )+ [ ¢ }
0 0
By continuity of the solution map, this bound extends to ®(t) € H?(R). If the solution
®(t) € H3(R) C C%(R), we find further

PP = [ (TO#'Q) + TOEQ) o < [0

—0o0
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which extends to ®(t) € HZ?(R) by continuity of the solution map. For part (b),
recall that x°(y) = 1x(¥), hence IXE N poo (r2y = %HX||L0@(R2) < 1 and analogously

VXl p(r2) S . Together with (a), this implies the bounds for [|¢®(t)|| e (rs) and
Ve ()| oo (rs) as

Vet )P < (@t a)PIE )P+ 12(8 ) VXE (y)
S IO Bagys 2+ 2D S (1)
for any fixed time ¢ and € small enough. Finally,

V1 ()Pl Z2ms)

— I ROP R [+ [ 1ot as [ 19, WP dy
R2 R R2

N

()2 + 4e3(1) / IV () PN W) dy S (),
R2

O

Now we prove some elementary facts enabling us to estimate one- and two-body
potentials.

Lemma 4.10. Let t € R be fized and let j,k € {1,....N}. Let g : R3 x R® — R be
a measurable function such that |g(zj,z,)| < G(zk — 2;) almost everywhere for some

G:R3 5 R.

(a) For G € L*(R3),
19 (2j: z)pjllop S (D) 2I|G L1 (g3)-

(b) For G € L*(R3) N L>=(R?),
(25, z)pjllop = 1P5a (25, 20) lop S e(t)e |G| 2 (s)-
(c) For G € L*(R3) N L>®(R3),
(25 21)Vipillop = 16 (t: 2)) (V© (&, )] 9(255 28) llop S e(8)e ™2 |Gl L2 rs).-

(d) Now let g : RxR — R be a measurable function such that |g(xj, zy)| < G(xg —x;)
almost everywhere for some G € L*(R) N L>=(R). Then

lg(zjs 2)p5 llop = 1PF 9(j, 1) llop < e)IGlL2(r).

lg (a5, 21) 00,5 llop = N1@(t 7)) (Do, ®(t, 25)] 95, 21 )llop < 1@l 2wy | Gll 2Ry

Proof. Let 1 € L?(R3") and drop the time dependence of ¢¢ and ® in the notation.
Then

Ipsgtzr 20wl = () ()l 23, 20) () ()l
L W Platzs. 201 42 g

IN
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< 16 B |GG = )l ds 1]

The multiplication operators corresponding to G' and g as well as p;, V;p; and 8$jp;1’
are bounded. This implies the first equalities in (b) to (d). The second equalities follow
from

gz, z)pilley = sup (v, pilg(zj, z1)Ppjv) < |pjla(zis 2k) 1Pyl op
YEL?(R3N)
llbl=1
® 2 24\ —2
S HG||L2(R3)e (t)e ™,
G )PT 12 < 197 1G@)1p7 lop < G172 19117 oo )
l9(z5, 26)Vipillay = sup (0, 19%(27)) (V0% ()] (25, 20)[? V97 (25)) (% (25)] )
YEL?(RPN)
llll=1
< [ VR PG (e — 25)? dzj Ilpjlia, < IVeF|] G113
< P (%5 Kk j J IPjllop = ¥ 11 Loo (R3) L2(R3)
R3
and analogously for the second part of (d). O

4.2 A priori estimate of the kinetic energy

In this section, we prove estimates for the kinetic energy ||V ;4"()|| and related quan-
tities, which follow from the fact that the renormalised energy per particle BV ®) (t)
is bounded by e¢(t). Particularly meaningful is assertion (a) of the following lemma: it
states that the part of the wavefunction with one particle excited in the confined direc-
tions is of order €. The lemma provides a sufficient estimate for most of the terms in
Proposition 3.7. To bound (24), we require a better estimate (see Section 4.5).

Lemma 4.11. Let € be small enough and t € R be fized. Then

(@) |l v < e(t)e, i wN ()] < e(t)Ne,

(6) 102,07 llop < e(t), 102,92 llop < 19 ()] 272,
V3. PX llop S &7, IVipillop S 71,

(¢) 0n,aP =) < e(t), V1 M) < et),

[Valai e (0)]] £ Ne(h),
(d) N0s, ™2 (B < e(t), IV ™=@ S et IVipe@) S,
(¢) [IVilpy afa o™l St [Vip) aPad ¢N=(0)] < e(t).
Proof. Abbreviating ¢™(t) = 1, we compute

E¥(t) = § (v, Hp(t)y) — 2
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= <<¢ 1{,(% (—a ( Ay, + HVEHY) - %) + Vi, zj)>
+ S wplei =) o)

1<J
> [0n vl + (X 0 (— Ay + EVHE) - B) i o) = VIO )
since wg € W, is non—negative and (=4, + 512 VL) - EO) Xé(y1) = 0. E§ is the

smallest eigenvalue of —Ay, + = VL(yl) and as a consequence of the rescaling by g, the
spectral gap to the next eigenvalue is of order e~2. Hence

00 (0 + 272) — B ) 2 & (0 ).
which implies
1021117 + Hlai SI> < IVI(O)] oo (o) + [EY ()] < (). (28)
Besides, by assumption A2, ||(V+ — Ep) )—llzeo 2y < 1, hence
) = (a7 (~An 2V - B) e )
IV ol + & (0w, (VA2 - B) | aw)

L <<q"€1/), (VL(yfl) - Eo) qi‘sw»

IV i BIP = SNV = Bo)—ll e e llay &1° 2 [Vyuay ¢l - ()

AV

and consequently ||Vy1qi‘5w\|2 < ¢2(t). The remaining inequalities of (a) to (d) follow
(@) _ (<I>)

1020 llop < 197 ()l 22(®) and [Vy,py llop < IV HL2 ®2) S < e~ !. For the second part of
(d), note that

by Lemma 4.1b, Lemma 4.2b, by usmg that q; and from |[|0z, p1llop <

IVl < Vg0 9l + 1V p} ¢l Se(t) +e S et

for sufficiently small £ and fixed ¢ € R. Assertion (e) is a consequence of parts (a) to
(d) and Corollary 4.6, Lemma 4.1 and Lemma 4.5:

IVilpY afasv|? < 0w latasl)® + 1V, 0Y 12,1 a3 v|I* S () + e 2([av| %,
Vil afad v)? < (|10 af9]® + || Vyp) 12:lla5 1> < e(1).
u

For the last lemma in this section, we make use of Lemma 4.11a to prove an estimate
which is crucial for the control of ~4(t).

Lemma 4.12. Let f : R x R? — R such that f(t) € C{(R3) and V,f(t) € L=(R3) for
any t € R. Then

(@) [I(f(t,21) = f(t, (21,0))pY WMD) < el Vi f (8)l] o (m),
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(0) [I(f(t,21) = f(t, (21,0) ™= (O] < € (@) F () oo (r3y + Vi f ()] oo m3)) -
Proof. For the first part, we expand f(¢,(x1,-)) around y = 0, which yields
ICF(E 20) = £t (21, 00)pY ™= (1)
= oY Na(t)HQ/dyllxg(yl)l2 (f(t,21) = f(t, (21,0)))

R2
1

2
dy [x(%2)[? (/dsvyf(ﬂﬁhsyl) ' yl)
R2

0

IN

IN

EQ/dy|y|2|X(y)2|Vyf( Nioo@sy S IV ()00 my-
R2

The last step follows because x decays exponentially by [13, Theorem 1] since Ey <
Oess(Ay + VL) (A2). To prove the second part, we insert 1 = ¢f + p{ and apply
Lemma 4.11a. ]

4.3 Proof of Proposition 3.7

Let us from now on drop the time dependence of ®, ¢ and "¢ in the notation and
further abbreviate ¢ = 1. The time derivative of ag(t) is bounded by

[Sae(®)] <& (v )| + | &Y () - )] (29)
For the second term in (29), we compute first

(B - e)| = ’((1/} VI, z)w) = (@,VI(t, (x,0)) @) (30)

L2(R)|

By [24, Theorem 6.17], |%|E¢(t) -&*)|| = |%(Ew(t) — &£%(t))| for almost every t € R
because ¢ - & (E¥(t)—£%(t)) is continuous due to assumption A3. The first term in (29)
yields

4 (o, M)

2 illo [0 - ihﬂ”’w»

N (e [V ) = VI @, 0) ) )+ X (w26 @] )
2, [V 21) — VI (00,0)) ] ) ey
W [ qun-mavatn-m]o). o2

where Qo := pip2, Q1 = p1g2 + q1p2 and Q2 = q1g2. To expand (32), we write the
commutator explicitly and insert 1 = Q¢ + Q1 + Q2 appropriately before or after Z ém)_
Terms with the same (), on both sides cancel as a consequence of Lemma 4.2b. Hence
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IN(N = 1) (32)

= v (@ + @20 (0 — ) Qo — Qo — 2) 25> (@1 + @) ) )
5 <(w (@0 + Q)2 (i — 71)Q1 = Qi — ) 257 (Qo + Q2) ) )
0 (Qulns = ) 25 Qo + Qalii—s — )25 Qo ) )
-3 <<1/) (QOZ(12)(m 11— Mm1)Q1 + QOZ( P iy — )Q2>¢»
+5 (0, (Quz? (@ — )@ + Qa1 — ) 257 Q1 )v)
~5 (v (@i - ) Z52Q0 + @125 (- — )Qs ) )
= (v, Qi — )20 Qo) + S (¥, Qe — M-2) 25 Qov)

+9 (v Qo — 1) 257 Qu)

_|_

I
-
_—

—-

To simplify this expression, note that

N N N
M-y = Y mk)P,—> mk—1)P =Y (m(k) —m(k — 1)) P + m(0)P
— k=1 k=1
= —m%+m(0)P

and analogously

~

M —m_g = —m"y +m(0)Py +m(1)P;.
Using that Q1 Py = Q2Py = Q2P = 0, we consequently obtain

]\7((]\?;211) = —2%<<¢7Q1p2mci1z(12)p1p21/)>> (33)
—\Y<<¢7Q1Q2m QZ( p11021/)>> (34)
—23 <<¢7Q1Q2m_1Z/(3 )plqw», (35)

where we have in (33) and (35) exploited the symmetry of ¢ in coordinates 1 and 2.
According to Corollary 3.2¢, ¢ = ¢X~ + ¢®pX", hence

(33) = 23 (g} v, pon wy P pipov)) (36)
=25 (v, gF %y 22l pipavt)) (37)

In (36), we have used that the contribution of |®(z1)|> + |®(z2)|> vanishes because

g |®(x1) 2P = ¢ |@(z0))2pY = 0. Similarly, we expand (34) and (35) into terms

containing qX and terms containing p1 p2 wé 2) 2 Ep;.

(34) = —%<<qi‘sw,q2ﬁzb_gw(gw)p1p2w>>—%«q%‘ew,qwl b ywl? plpzw»

-3t il opt Y P upav)
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= =S v e+ p )yl pipav) (38)
—S (v, atadmtopY vy wy P pipavs) (39)
and
(35) = 23 (a\ ¢, @iyl prgo)) (40)
~23 (g v, afpY e 1w/(312)p1qa¢>> (41)
=23 (v, afgd 1P} Py wiPpiad v (42)
~23 (v, af g 1P} pY wy P pipy adv)) (43)
+ 724 (¥ e, [ @ (1) Pprgaty) (44)

Finally, we insert 1 = p; + ¢; on both sides of the commutator in (31) and apply
Lemma 4.2b. Analogously to above, we obtain

(81) i (v, (o1 4+ a0) (V1. 20) = VI, (@1,0)) (o + 1))
—iN <<¢ (p1 + @) (VI(t, 21) = VIt (21,0))) (1 + ql)w»

= —aNS (v, (Ve 21) = VI, (21,0))pr0 ) (45)

Collecting and regrouping all terms arising from (29) yields v, = (30) + (45), 1 = (32),
W= NN = 1) 37), 1Y = NNV = 1)[((36) + (38)) + ((40) + (41)) + (42)] and
W8 = N(N = 1)((39) + (43)+(44)). 0
4.4 Proof of Proposition 3.8

4.4.1 Proof of the bound for ~,(t)

As 2Nm*, < 1 for | from Lemma 4.1, we obtain with Lemma 4.7, Lemma 4.12,
Lemma 4.5b and Lemma 4.1b

) < [ (VI z) — Vit @r.0p) v
+ ‘«% V||(t, (ml,o))q/;» — <<I>, VH(t, (x,O))<I>>

e (1) + (1) (.7 E
Tl (V) 20) = Ve, @0, 00) vl S (0.

L2(R)

(A7)

4.4.2 Proof of the bound for ’yél)(t)

To estimate ’y(l), we need to prove that Nwg is close to the effective potential bg|®|?.
As (N — 1)m®, <, we obtain

01 % [t pe (N = bxcel@(en) P+ (e — REb) [2(20) ) prpav)
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%9 ‘«lAqiDi/J,p’fsm (Nwém - bN,5|<D($1)|2> p’fspzpibwm +((E)T"+ N e

for p small enough and with 7 from Definition 2.2 since wg € Ws,, and as 11g®| <1
by Lemma 4.1a. Writing the action of the projectors explicitly, we obtain by definition
of b N,e

b e|®(21)*p) pa

= N(/dy’lIXE(y’l)I4|<I>(x1)Izllw,ellu(m))p’fspz,

]RQ

pY pabn | ®(21)*pY p2

€ 12 € e
Y paNwl P pa N( /dy’1|x5(y’1)|2/dZQIWS(ZQ)IQMﬁ( { —Zz)>pi‘ P2,
R2 R3

where 21 := (21,y]). The substitution 2} — z := 2{ — 2} and subtraction of both lines
suggests the definition

(1) :ZN/\X \2dy1</|30 2 = 2) U)ﬁ(Z)dZ!@E(Zi')\2|wBHL1(R3)>- (46)
R2

Let us first consider an analogous expression where |¢°]? is replaced by some g €
C5°(R?). Expanding g(2] — -) around z{ yields

1
[ot = 2ua)d = g@Dlwsle) - [d= [ Tolat - s2)- 2wp(e s
R3 R3 0

— g(Dlwsllges) + R,

where
RV < sup [Vg(=) — s2)] / dz|zfws (2).
s€[0,1]
2€R3
Hence

IR|Z2mey S €' N 7202 Vg T2 ey

because |z| S p for z € suppwg and as wg € Wa,, implies
/ wg(z) dz < 82N_1bN7€ = EQN_l(bN,e — b[g) + 82N_1b5 < 2N (47)
R3

Consequently,

H /|X dyl(/g(z,l/_Z)wﬁ(z)dz_9(2/1/)||w,8||L1(R3))

2

< N? / day / A WOPRED| < NP 1Rz ey S 1261V 2 o)
R R2

2

2(®)
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where we have in the second step used Holder’s inequality. By density, this bound
extends to g € H'(R3) and in particular to g = |¢|2, hence
o 4.9
Tl 22y S pell Vel zms) < Se(t) (48)

and

N 4.10d
7] < WP T @) lop + (N7 4+ (B)7) 1) S (84 (3)77+ N7 &),

4.4.3 Proof of the bound for 7(2)( t)

Let us first define the functions needed for the integration by parts of the interaction.

Definition 4.13. Define h. : R — R by

Ewg

for |z| < e,

he(z) := { 4 |—d

0 else

where
2

¢ = G

We will abbreviate
RED = ez — 2).

Lemma 4.14. Let u < €. Then

(a) he solves the boundary value problem

Ahe(z) = wg(z) for z € B-(0), (19)
he(z) =0 for z € 0B.(0),
where B.(0) := {z € R : |2| < ¢}.

_1
(b) HVhEHLOO(R?’) ,S N— 1,U_2 2 HVhE”L?(R?’) ,S N_lu 362,

Proof. Green’s function for the problem (49) is G(z,() = ﬁ (KiZ' — ‘%‘ \zjc*|> , hence

hf’f(o) is the unique solution of (49). For part (b), define
ws () d¢ for |z]| <, = ULB(O d¢ for |z| <e,
WO(z) =, |z — (] W (z) = {4, [SRISEr-1

0 else, 0 else,

hence h(z) =t 2= (hV(2) + h(2)(z)) . We estimate h") and h(®) separately.
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Estimate of [Vh(M)|. Define R := diamsuppwg. Let |2| < 2R and substitute ¢ — (' :=
(—z Aswg € Wg, R < p, hence ('] < |¢] + |2] < 3R < p for ¢ € suppwg and
consequently

\wwwnswmmw)/ <P< (X))~ /|02¢<N12*

ICI<R I¢"|<3R

For 2R < || < ¢, note that { € suppwg implies |[¢| < R < $|z|, hence [z—¢| > |z|—[¢| >
$|2| and consequently

4 _ _ _ _
V)] < 7 [wslOd S NI S N

R3

due to (47). Hence,

1
/|Vh<1> )7 dz < / N72t 4 de + / N_254Wdz§N_2s4,u_1.
z

|z2|<2R 2R<|z|<e

|:%2%. For R S p

%|C*| and consequently

Estimate of [Vh(®)|. ¢ € suppwg implies |¢| < R, hence |¢*

1¢?
2R—

sufficiently small that 7 > 2, we observe |z] < & <

[¢* = 2| > [¢*[ — |2 > §I¢*| = 3. This yields

e wg(C _ 1 _ _
V@) = [ e S e Sl [ 110 S N < N
3 [CI<R
and consequently [s |Vh(2)(z)’2 dz S N72p%e < N7 24,71, O

Besides, we need a smoothed step function to prevent contributions from the bound-
ary when integrating by parts over the ball B.(0).

Definition 4.15. Let R := diamsupp wg. Define O, : R® — [0,1] by

1 for |z| < R,
O:(2) =< 6.(|z]) for R<|z] <¢,
0 for |z| > ¢,
where 6. : [R,e] — [0,1] is given by
exp (faif)
0 (z) == . (50)
exp( )+exp< wg)

Clearly, 6. is a smooth, decreasing function with 6-(R) = 1 and 6.(¢) = 0. We will write

0L = O.(z — 2).
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Lemma 4.16. Let u < €. Then
3
(@) [1Oc|lpoomsy =1, 1©cllL2ms) S €2,
(1) VOl St VO 2s) S <2

Proof. Part (a) follows immediately from the definition of ©.. For part (b), note that
R < paswg € W5, hence |40 (z) <2(e—R)P S22 (1 - L) el O

Corollary 4.17. Let p < e and j € {1,2}. Then
(@) i (V1) lop = 1 (V1882 )pjllop < ()N 1y~ 2e,
1(V1hE) -V illop = 197 (29)) (Ve () (V1) lop S e(t)N 1072,
(6) 1O lop = 108 pjllop < e(t)e,
1P (V10 lop = (V108D )plop < e(t)e ™2,
1082V p5llop = 9% (2)) (V™ (2)] O |lop < e(t)e 3.
Proof. This follows immediately from Lemma 4.10, Lemma 4.14 and Lemma 4.16. [J

Making use of these preliminaries, let us now estimate the three terms (20), (21) and
(22) that form 7152)(15).

FEstimate of (20). Define tg := 2ps+¢a(1 +p>2<5). Then we obtain with 7 from Lemma 4.1

|(20)]
S N‘<<ﬁt261¥6¢,w82)p1p2w>>‘ ‘<<lt v, 0w (12)p pw»‘
= N / dzN-1 / dz1(ﬁ2qi<5w)(z1, ey 2N) O (21 — 22)wp(z1 — 22) (P2p1¥) (21, -, 2N)
R3(N—1) B.(22)

as O;(z1 — 22) = 1 for z; — 22 € suppwg and supp O, = B.(0). Thus wg(z1 — 22) =
A1he(z1 — 2z2) on the whole domain of integration in the dzj-integral. Integration by
parts in z; yields

20 5 N |{f) v, 12000 (V1h0D) - Tipipav)| (51)
+N‘ lAQi(Ew,tz(Vl@ﬁ;m)) : (Vlhgm))plpw»‘ (52)
+N‘ V1lq 1/}7t2@(12)(V1h(12))p1p2¢»‘ (53)

where the boundary terms vanish because ©.(|z]) = 0 for |z| = e. We estimate these
expressions by application of Lemma 4.8. To this end, we write each term as (I', O1 2A)),
where I" and A are symmetric in the coordinates {2, ..., N}. Hence
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4.8a 75 12 12 13 13
GOl s N vl [{(£002 (T8 )ps - Vipiv, 00 (Vih)pg - Tipro))|
1
+N_1||t2@§12)(vlh£:12))p2 . v1p1w||2> 2

4.8b ~ e
< NJigy vl (Ip2082 (V1A D)tz - Vipr|?

D=

N80 (T1h )y - Vipro?)
< NIl 6l (Ip20U212, | (V1RED) - Vi |2,
1
N0 e ) (V1A |2, Va1 2,)
< (2 ) (e + N71)2 N
by Lemma 4.11, Lemma 4.16 and Corollary 4.17. Analogously,
621 5 NIl 6l (2 (V1hE )2 (V108 2)pu 2,

1
N VO )| (V11D ] 12,)

A

1 1
e3(t) (%) 2 (e+ N1 N¢,
63 5 NIV 6l (Ip208 |, | (71D 2,

1
FN O )| (V12D ] 12,)

A
NJ=

(s—l—N*l)% NE.

(%)

o0 (2)! 6 (2),

because N~ 27¢ < 1 as ¢ <1 and e3 Né = (%)%N5*

Hence

A

B
Lfor p<eas < 7.

Estimate of (21). Define t15 := q?pi‘g q%‘g + qi‘a q2. Analogously to the estimate of (20),

@) < N [T wf )| = N| (e, 002 (A1) piaay )

< N ‘«ﬁlzlﬁ? ol (va?) . lelthlﬁ»‘ (54)
+N ‘«Eﬁm’(ﬁ, (Vlegm)) . (V1h§12))p1QQ¢>>’ (55)
+N ’<<V1lAt12¢, @Q?)(Vlhgm)mqw»‘ : (56)

To estimate (54) to (56), we apply first Lemma 4.2b to commute 1 next to gz and use
the fact that ||l1g29]| < 1 by Lemma 4.1 and Lemma 4.5. Observing that t12 = t12q1¢2
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and consequently ||t12¢]] < Hqi‘EwH < ee(t) by Lemma 4.11a, we obtain
(54) = N ‘«tm% CI1CI25A@§12)(V1h§12)) (p1+ Q1)Q2V1P1¢>>‘
= N ‘<<t12¢7 OU(V1h(?) - (Iips +ZAQ1)V1P1Q2¢>>‘

= N ‘«tlwv ! (Vhl1?)). Wﬁqﬁm

SIS

IN

N1 100l oo e | (V152 - Vit loplTaazvl] S (1) ()

and analogously

(53) = (2w, (7:002) - (T1h0)piTigos))

ol

< Nyl VOL | ey | (VahID)pilloplTiav] S ¢(8) ()
(56) = N|(Vitz, 002 (Vin{?)piTiaav )
N (19108 & 0l + 710 61) 10l oo ey | (VahE )1 lop Bz |
< e (2)°

by Lemma 4.16, Corollary 4.17a and Lemma 4.11.

IN

Estimate of (22). Analogously to before,

@2 < N|{Tabadv.n B wf Pmat v)

_ N’ gt g2y, pY pX o2 (Alh(12 )p1q2 ¢>>\

< N|(lafadv.p} py O8D (Vinl?) - Vipia¥ v))|
+N |((Tatag v, p By (71602) - (V1D )pis v
N |1y e ad v, py 0L (V10D ) pay v )|

< Nllgtagellay v (Il@ellLoo(R3)ll(V1h§12)) +V1pilop

HIVOL oo ) 191 (V1502 o)

+N(ViipY @' a3 ¥ 1[1O:ll o ) P2 (V18D lop a3 |

s en(2)°

by Lemma 4.11, Lemma 4.16, Corollary 4.17 and Lemma 4.5. 0

4.4.4 Proof of the bound for 7,53)(75)

We estimate (25) as

@5)] S |(Tmaxe, 10(e) Pprasts )| S 1013w g arazélllaawl) S €2(2) (o6, )
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by Lemma 4.9 and Lemma 4.5¢c. For (23) and (24), we proceed similarly as in Sec-
tion 4.4.3 for the quasi one-dimensional interaction w instead of the three-dimensional
interaction wg.

Definition 4.18. Define
umw:/@MﬂmP/@mﬂmw%wm—w» (57)
R2 R2

Further, for 81 € [0, 1], define hg, : R — R by

N—A1
/ G2, z)w(z')da’ for |z| < N~F,
h,31 (58)
_N—B1
0 else,

where
Oea) = L NP (' + NP) (z = N~P) for 2’ <u, (59)
’ 2 (m’fN’ﬁl) (erN*ﬁl) for ' > x.

Besides, let R := diam suppw and define

1 for |x] < R,
O3, (x) =< 05,(|z]) for R < |z| < N~ (60)
0 for |z| > N=F1,

where g, : [R,N~5] — [0,1] is a smooth decreasing function with 63 (R) = 1,
05,(N~P1) = 0 analogously to (50). As before, we will write

w0 =i —ay), Ry =R —wy), B =0 (n ).
Lemma 4.19. (a) hg, solves the boundary-value problem
dxzﬁﬁl =w for x€[-N"F N-H]

hg, =0 for |z| = NP,

(0) |thsllpo® SN b 2@ SN -7
— — A
(¢) ©p |l <1, 19p,lL2@) SN2,
— o
||dq;@ﬁ1\|L°°(R) < NP ||%961||L2R) SNz

Proof. Part (a) is evident as G(2/, x) is Green’s function for the problem (61). For part
(b), we compute for x € [N N=F]

x N—B1
/ (2 + NPYw(') da! + / (2 — N-PYw(a') de!

_N—B1 T

|%Eﬁ1 ($)| = NQB1
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< lwolpe S N7

since
[l = [ do [ dnhl [ i) ot n -
R R2 R2
< I ey [ b )Pl S N (62)
R2
by (47). The second inequality in (b) follows from this as supp hg, = [N P, N=F1].
Part (c) is shown analogously to Lemma 4.16, noting that R < p. O

Corollary 4.20. Let j € {0,1}. Then

—(12) _h —(12)
(a) I (g5, llop S e()N ! (G55, ) (0,97 lop S 1R () |2y N1
12 81
() 197 (£5057 ) lop < (NS
Proof. This follows immediately from Lemma 4.10d and Lemma 4.19. 0

Estimate of (23). Observing that p>f€p2 wé )px px = @(12)])’1‘5])%‘5, we obtain analo-
gously to the estimate of (20)

@) s N|(latadv. @ Vi) = N |(TaPad . 857 (555" peav))|
< N|(Tatafe. 057 (555”) 0nptel pov)) (63)
o [t (857 (T0) ) o
+N |((0nTa? a3, 857 (35757) ot pavs )| (65)

The boundary terms upon integration by parts vanish as O, (£N ~B1) = 0. With Lem-
mata 4.1b, 4.5¢, 4.11, 4.19 and Corollary 4.20, we conclude

31

=~ 12 1 _b1

NP a3 016 e wyll (25 ) P o192, lop S €2(8) (0, ) N
1

(64) 2" N‘ Bratv. (8 (5657) (4767 ) p2)pils o)

T NIl x
X< <<q5p (dm@(m)) (dwlh( )> P11, 6 (d%@(m)) (dzlh( 3))p3plé¢>>‘

AN ( @(12)> (dxlh(u)) p2p1§¢\|2>§

~L 12 —(12
< NIl (198 (5857 120 (2757 o 12,13 el
1

(63)

IN

1

(12) 5 2
N8, 3 | (2P ) P12, 1312,
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S ) ()t (G0 au) + N < 20) () + NI

B1

T 702\ o 18 o -8
65) < NOw Tt ad ol 186l | (25757 ) p¥lop S (N

IN

Hence

(23)] S €*(t) ((W,ﬁz/})) LN N—1+61+5) _

Estimate of (24). For this term, we choose 51 = 0. Analogously to the estimate of (23),

@0l 5 N|(iatade.86” (&h67) pipY adv))
< N|{fafadw. 86" (56 ”) ounte vy ad )|
N |(TaPad e, (06 7) (506™) piol vy o v
N |((0nTat e, 86 (2 he ™) ool v adv)
< Nt adulllad vl (1Boll ol (26 ) 0erb oo
1 8ol e | (2476 2 lop)
+N a3 0 11Boll ) | (276 ) P llopllOn gt a3 v
10l () + e(t) (70D 0,2
The estimate ||0,,¢F%|| < e(t) (Lemma 4.11c) is not sharp enough to see that this

expression is small. We need a better control of the kinetic energy, which is established
in the following refined energy lemma:

Lemma 4.21. Under assumptions A1-A4,

® N, ex 2 ! 2(5)ds WNE(t) 1y o®(t)
102 P 0™ ()] S exp {e <t>+/0e<>d}(!E (1) = "0 (1)

=
SIS

+ (wNVe(), AN E)) + 4 +(%) +N5+(§¥)’7> :

The proof is given in the next section. As a consequence,

[N

ol s e {0+ [ st (120 01+ (wavp + 2 + (2)
+ N7+ <§¥)‘">.

O
Finally, this concludes the proof of Proposition 3.8.
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4.5 Proof of Lemma 4.21.

We prove a refined bound for the kinetic energy. The basic idea of the proof is compa-
rable to Lemma 4.11. However, we estimate the single terms in terms of ag(t) instead
of using ¢2(t). Abbreviating /V¢(t) = ¢ and ®(t) = ®, we obtain

E¥(t) — E2(t)
= 110001 = 19 1aqg) + (¥ (— 20 + ZVE) - B) v)
L (g wl Pl — % (1@ () Pw)
+5 (0|2 Po) — (2,1878) 4 g, )
+ (v vV 20w) - (2, V1 2,0)2)

L2(R)
> [0l — 193y + 3 (0 (N = Dl = bglo@)l?) )
=% (@) - (@, 10P0) 1y |
_‘ <<¢7 V“(t,zl)w» B <(D’ v (t’ (=, O))(I)>L2(]R) ‘
2 1001 = 191y + 5 (. (V= D™ —bsl2@P?) )

—e%(t) (v, ) — ¢ (t)e (66)

as «1/), ( Ay, + 2 Vl(yl) %) w» > 0. The last step follows by Lemma 4.7, Lemma 4.9
and Lemma 4. 12 analogously to Section 4.4.1. Further, using that ||0,,pfe|? =
191123 P12 = 197225 (1 — llg?112), we obtain

10012 = 0w aT ¥l + |02 pTY|1* + + ({001 Pap, Oy ] 1/’>> +c.c.)
> [|0n,aT ) + ||@/||%2(R) (1= [lgtv[?)
1
2

1 1 e P
—2 «n 27,02, pY (A2 qY +Aipy )w»‘

-
Ve
o

10esaP I + 12 ey — () () + B zwy), (67)
where we have used that n; < 7 and Lemma 4.5b. (66) and (67) yield
102, 6T 91? S BV () = E2 ()] + 19| 2 ry (v, 7)) 68)
(v, (bsl@@) = (N = D) o) + e 0)e.

We estimate the second term of (68) by inserting 1 = pipa + 1 — p1p2 into both slots of
the scalar product:

{4, (p1p2 +1 = p1p2) (bﬁlcb(ﬂffl)l2 — (N - 1)w,§12)) (p1p2 + 1 — p1p2)¥)
= <<¢,p1p2 (bﬁf@(l“lﬂ? - Nwélz)) p1p2¢ + 1/ w,(gu)plpzT/JHQ (69)

+ (%, (1 = p1p2)bs| (1) (1 — prp2)t) — (N = 1)[[y/wl? (1 = pip2)u|? (70
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+ ((v, p1pabs| (1) [P(1 — prp2)eb)) + c.c.) (71)
—(N =1 («1/%171;021% 2a —Plpzw» + c.c.) : (72)

Making use of I'(x;) from (46), the first term can be estimated as

(69) (v, pPT(z1)p1par)) + (¥, pip2(bne — b)|@(21)[*P1p2d)) + || (12 2y

) (E+ N+ ()T

by (48) and (47) with n from Definition 2.2. Note that at this point, it is crucial
that 8 < 1. For the second and third term, note that 1 — pips = ¢2 + ¢1p2 and

Iy/w!® (1 = pip2)||? = 0. Hence

4.10b
S

(70) < (¥, a2bs|@(21)Pq20)) + (v, qp2bs| @ (21)Pqrp2v) S (0, ) (1),

(71) < 2 ({ﬁ%w,plpzbm@(xl)szqﬁ—w))\ < (1) (5, )

by Lemma 4.5a and Lemma 4.9. For the last term, observe that 1 —pips = p1ge +q1p2 +
q1q2, hence, by symmetry of 1,

(72) < 2N } (v, prgowl prpowe)) )+N ‘<<1/),Q1£12wf312)p1p2w>>’
S N <<n 2 g, pruw p1p2n1¢>>’ (73)
+N ’«qi‘gw,qz(l +p§s)wf312)p1pzw>>( (74)
N |(( aFad Y v wl P pipav))| (75)

analogously to the decomposition of (35). Using (47), (73) is easily estimated as

4.10a

(73) S () (v, 7).
For (74), we obtain with g := g2(1 —&—p%‘a), similarly to the estimate of (20),
(14) < N ’«Cﬁ(g’éﬁ’ t200) (VA1) - V1p1p2¢>>‘
N [{(a 0 0291002 - (TuhEP)prpaw)|
N |Vt 4, 12002 (V1h D prpav))|

Nt 01 (18] 2@y IT1HED) - Vipalop + 01 (T1hED) o | ] o )

IN

1
N1 O o o1 (V1A op S (1) ()7

(75) is of the same structure as (23). Choosing 31 = 3, one computes analogously to (63)
to (65)

(75) = N

~_1 =(12 12 e 1
(- babat o0l (5757 ot womv)
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1 12 12 i e
< N <<n 2q q‘%’w,@( )( h( )) Oy P13 DY Pzi/)»‘

1
+N' aivln ZCJI D) ¢v 6(12) (dzl h(12)> p1p2ﬁ22¢>>‘
1 2 ~i
<<n 2qq w,qQ (dm@(l )) < h( )) p2n§p1¢>>‘

1 122y (1, ) N™7 + ()N~ (3, p) 2

—l—NHTL?wH (HpQ(dxl @(12))((1361 h(12)) <I>A2 1w”2

+N

NG

=

£ N (A 85D (L Ay W)
s ) ((wav)+ NP,

since na(k) < n(k) and by Corollary 4.6b and Lemma 4.11c. Besides, we have used that
N-P <1 and ||<I>||H2(R)N*§ < ¢2(t) for sufficiently large N at fixed time ¢. Thus,

1
@) 520 ((2)" + 87+ (w.a0)). (76)
Finally, inserting the bounds for (69) to (72) into (68) yields

10z, aT9l® S 1BV () — €7 (1)] + H@HHZ(R) (b, e

(t)<< ) +L4L NP+ (H) )

S epfed 2 [ @ ash (1890 - 2] + (v + &
+(2) + NI () )

since £ < (%)5 and e?(t) < exp {2¢(1)}. O

[SIE

A Well-posedness of the effective equation

Let % < r <4 and let the initial datum ®3 € H"(R). Local existence of H"-solutions of
(5) on the maximal time interval ¢ € [0, T}) follows from the usual contraction argument
on the subset K := {u € X : ||u||x < 2R} of the Banach space X := C ([0, T]; H"(R))
for some R > 0 and T < T}, where one uses that the map f : u > bglul?u 4+ VII(t, )u is
locally Lipschitz continuous on H"(R). To prove global existence, one shows first that
T, = T, for all 3 < r,s < 4 and concludes from an estimate of [@()[| g1 (r) that no
blow-up can occur [37]:

Let <r<s<4and &y € H*(R). Clearly, Ts < T,. Assume now Ts < T,.. Then
C’T = supye(o,1,) |2 (t) || gr(r) < o0. Applying twice the inequality

s

[uv]l gy < C (I1ull s w10l ) + Nl iy 101l 175 w))
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and using the fact that H*(R) is an algebra, one concludes that for ¢ € [0, T}]

t
IMWW®SWﬂMM+ﬂWMWMWNS
0

t
< Wl + € [ (€ +1V1 (5 o) 1966) oy .
0

Grénwall’s inequality implies that ||®(t)||sr) cannot blow up at ¢t = T, which con-
tradicts [0,7s) being the maximal time interval where H®-solutions exist. Therefore
Ty = T} =: Tiax. Hence for &g € H2(R), ®(t) € H?(R) for t € [0, Tinax). Consequently,
(27) implies that lim;7,,,, [|®#)[| g1 @) < 00, hence Ty = Tinax = 0.
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Derivation of the 1d Gross—Pitaevskii equation from the 3d
quantum many-body dynamics of strongly confined bosons

Lea Boimann* and Stefan Teufel*

Abstract

We consider the dynamics of IV interacting bosons initially forming a Bose—Einstein
condensate. Due to an external trapping potential, the bosons are strongly confined
in two dimensions, where the transverse extension of the trap is of order . The
non-negative interaction potential is scaled such that its range and its scattering
length are both of order (N/e2)~1, corresponding to the Gross-Pitaevskii scaling of
a dilute Bose gas. We show that in the simultaneous limit N — oo and € — 0, the
dynamics preserve condensation and the time evolution is asymptotically described
by a Gross—Pitaevskii equation in one dimension. The strength of the nonlinearity is
given by the scattering length of the unscaled interaction, multiplied with a factor
depending on the shape of the confining potential. For our analysis, we adapt a
method by Pickl [31] to the problem with dimensional reduction and rely on the
derivation of the one-dimensional NLS equation for interactions with softer scaling
behaviour in [4].

1 Introduction

We consider N identical bosons in R? interacting through a repulsive pair interaction.
The bosons are trapped within a cigar-shaped potential, which effectively confines the
particles in two directions to a region of order €. Using the coordinates

z=(z,y) € R"*2,

the confinement in the y-directions is generated by a scaled potential g%VJ- (%), where
V+:R? 5 Rand 0 < ¢ < 1. The Hamiltonian describing the system is

N
H(t)=>" <Aj + g%vl (%ﬂ) + Vi, zj)> + > wula - z), (1)
j=1 1<i<j<N

where A denotes the Laplace operator on R and VIl is an additional unscaled external
potential. The units are chosen such that h =1 and m = %
The interaction between the particles is described by the potential

wte) =t (2) it = @)
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and for some compactly supported, spherically symmetric, non-negative potential w.
This scaling of the interaction describes a dilute gas in the Gross—Pitaevskii regime,
which will be explained in detail below.

We are interested in the dynamics of the system in the simultaneous limit (N, e) —
(00,0). The state 9™¢(t) of the system at time ¢ is given as the solution of the N-body
Schrédinger equation

i () = H(t)yp™e (1) (3)
with initial datum $™<(0) = ¢3¢ € L2 (R3N) = @NmL*(R?). We assume that the

bosons initially form a Bose—Einstein condensate. Mathematically, this means that the

one-particle reduced density matrix 71(:]2,,5 of wév <
0

8 = T v (W (4)

N,
Y °

for k = 1, is asymptotically close to a projection |¢j)(¢f| onto a one-body state ¢j.
Because of the strong confinement, this condensate state factorises at low energies and
is of the form ¢§(z) = ®o(z)x°(y) € L*(R3) (see Remark 1c). Here, @y denotes the
wavefunction along the z-axis and x° is the normalised ground state of —A, + E%VJ‘(%)
Due to the rescaling by €, x° is given by

X“(y) = tx(¥), (5)

where Y is the normalised ground state of —A, + V=(y).
In Theorem 1, we show that if the system initially condenses into a factorised state,
i.e. )
. 1
1 T : —leg) (¢pl| =0
e o) T Yy |#6) (@0l

with ¢§ = ®ox® and &y € H2(R) (where the limit (N,e) — (00,0) is taken in an
appropriate way), then the condensation into a factorised state is preserved by the
dynamics, i.e. for all t € R and k € N

. (k) P 5 ®k| _
e I OO B

with ¢°(t) = ®(¢)x°. Moreover, ®(t) is the solution of the one-dimensional Gross—
Pitaevskii equation

i2®(t,z) = (—5— + VI, (2,0) + b|<I>(t,:n)|2) O(t,x) = h(t)D(t,z) (6)

with ®(0) = ®¢ and

b:87ra/ |X(y)|4dy:87ra62/ IX° ()] dy,
R2 R2

where a denotes the scattering length of the unscaled potential w.

To prove Theorem 1, we follow the approach developed by Pickl for the problem
without strong confinement [31], which is outlined in Section 3. To handle the singular
scaling of the interaction, he first shows the convergence for interactions with softer
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(but still singular) scaling behaviour, and as a second step uses this result to prove the
Gross—Pitaevskii case.

The derivation of the one-dimensional NLS equation for softer scalings of the inter-
action combined with dimensional reduction was done in [4]. In the present paper, we
extend the result from [4] to treat the Gross—Pitaevskii regime. As in [4], the strong
asymmetry of the problem requires non-trivial adjustments to the method by Pickl. A
description of the differences between our proof and [31] is given in Remark 3.

In the remaining part of the introduction, we will first motivate the scaling (2) of
the interaction. This scaling is physically relevant since, written in suitable coordinates,
it describes an (IV,e)-independent interaction. Subsequently, we comment on related
literature.

We wish to study N three-dimensional bosons in an asymmetric trap, which confines
in two directions to a length scale L' that is much smaller then the length scale Ll of
the remaining direction!. Hence, we have

Lt =eLl

with € < 1. The transverse confinement on the scale LT is achieved by the potential
ﬁVL(Lﬁ), where —A + V= is assumed to have a localised ground state. In the
remaining direction, the system is assumed to be localised in a region of length LI, The
particle density is thus

L_ N _ _N
Q3d LH(LL)Q i 52(LH)3 .

To observe Gross—Pitaevskii dynamics in the longitudinal direction in the limit (N, e) —
(00,0), we require the kinetic energy per particle in this direction, Fyinpp. ~ (Lh=2,
to remain comparable to the total internal energy per particle, i.e. the total energy
without the contributions from the confinement. For a dilute gas, the latter is given
by Epp. ~ Apsq [24, Chapter 2], where A denotes the (s-wave) scattering length of the
interaction. The physical significance of this parameter is the following: the scattering
of a slow and sufficiently distant particle at some other particle is to leading order
described by its scattering at a hard sphere with radius A. Consequently, the length
scale determined by A is the relevant length scale for the two-body correlations. The
condition Eyin pp. ~ Ep p. implies the scaling condition

2
i~ (7)

It seems physically reasonable to fix A ~ 1 since A describes the two-body scattering
process and should therefore be independent of N and . We will call this choice the
microscopic frame of reference. By (7), the length scales of the problem with respect to
this frame are given by LIl = eEZ and Lt = g, hence both tend to infinity as (N,e) —
(00,0). 034 is of order e* N2 and converges to zero, which shows that we indeed consider

a dilute gas. A useful characterisation of the low density regime is the requirement
1

that the mean (three-dimensional) inter-particle distance g;,* be much larger than the
scattering length, i.e. A303q — 0.

For the mathematical analysis, we follow the common practice to choose coordinates
where the longitudinal length scale LI = 1 is fixed. Consequently, L+ = ¢ and the

In this paragraph, the capital letters L, L+ and A indicate length scales. In Theorem 1 and the
remainder of the paper, we use units where LIl = 1.
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scattering length shrinks as A = a ?3 This frame of reference arises from the microscopic

frame by the coordinate rescaling z — Nz and ¢ — (5 )2t in the Schrédinger equation
(3), which yields the rescaled interaction (2). Note that times of order one with respect
to this frame correspond to extremely long times on the microscopic time scale, which
relates to the low density of the gas.

We admit an external field VIl varying on the length scale Lll. Consequently, it
depends on (N, e) with respect to the microscopic frame of reference and is (N, ¢)-
independent in our coordinates. As Ll > A, the external potential is asymptotically
constant on the scale of the interaction and therefore does not affect the scaling condition
(7).

Due to this scaling condition, the system always remains within the second of the five
regions defined by Lieb, Seiringer and Yngvason in [25]. In that paper, the authors prove
that the ground state energy and density of a dilute Bose gas in a highly elongated trap
can be obtained by minimising the energy functional corresponding to the Lieb— Liniger
Hamiltonian with coupling constant g = f Ix(y)|*dy [25, Theorem 1.1]. If go—! — 0,
where ¢ denotes the mean one—dimenswnal density, the system can be described as
one-dimensional limit of a three-dimensional effective theory. In particular, if go—! ~
N~2 which is true for our system due to (7), the ground state is described by a one-
dimensional Gross—Pitaevskii energy functional [25, Theorem 2.2]. The other regions
can be reached by scaling A differently.?

It is also instructive to consider softer scaling interactions of the form

wp(z) = (B) 7w (B)2) (8)

where the scaling parameter 5 € (0, 1) interpolates between the Hartree (5 = 0) and the
Gross—Pitaevskii (8 = 1) regime. In this case, the scattering length still scales as (5&2)’1
[9, Lemma A.1] whereas the effective range of wg is now of order (g)’ﬁ. This means
that as (N,e) — (00,0), the scattering length becomes negligible compared to the range
of the interaction, i.e. the two-body correlations become invisible on the length scale of
the interaction. Consequently, the scattering length is well approximated by the first or-
der Born approximation and the corresponding effective equation is the one-dimensional
NLS equation (6) with b replaced by [lwl|1(rs) [ze [x(y)|* dy [4].

Quasi one-dimensional bosons in highly elongated traps have been experimentally
probed [13, 15] and the dynamics of such systems are physically very interesting [11,
20, 27]. The first rigorous derivation of NLS and Gross—Pitaevskii equations for three-
dimensional bosons using BBGKY hierarchies is due to Erdés, Schlein and Yau [9, 10]. A
different approach was proposed by Pickl [28, 29, 31, 17], who also obtained rates for the
convergence of the reduced density matrices. A third method for the Gross—Pitaevskii
case, using Bogoliubov transformations and coherent states on Fock space, was proposed
by Benedikter, De Oliveira and Schlein [3]. Extending this approach, Brennecke and
Schlein [5] recently proved an optimal rate of the convergence. Several further results

2Let us assume that the external field V! is given by a homogeneous function of degree s > 0 acting
only in the 2-direction. The ideal gas case (region 1) is then obtained by the scaling A < e*N~! and
the Thomas-Fermi case (region 3) by choosing e?N™! <« A < 2N 2. Also the truly one-dimensional
regime can be reached: A ~ ¢>N =z corresponds to region 4 and A > 2N =z yields a Girardeau—Tonks
gas (region 5).
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concern bosons in one [1, 7] and two [21, 16, 18] dimensions. The problem of dimen-
sional reduction for the NLS equation was treated by Méhats and Raymond [26], who
study the cubic NLS equation in a quantum waveguide. In [2], Ben Abdallah, Méhats,
Schmeiser and Weishéupl consider an (n + d)-dimensional NLS equation subject to a
strong confinement in d directions and derive an effective n-dimensional NLS evolution.

There are few works on the derivation of lower-dimensional time-dependent NLS
equations from the three-dimensional N-body dynamics. Chen and Holmer consider
three-dimensional bosons with pair interactions in a strongly confining potential in one
[6] and two [8] directions. For repulsive interactions scaling with 8 € (0, 2) in case of
a disc-shaped and for attractive interactions with g € (0, %) in case of a cigar-shaped
confinement, they show that the dynamics are effectively described by two- and one-
dimensional NLS equations. In [19], von Keler and Teufel prove this for a Bose gas
which is confined to a quantum waveguide with non-trivial geometry for 8 € (0, %) In
[4], BoBmann considers bosons interacting through a potential scaling with g € (0, 1),
but apart from this in the same setting as here, and shows that the evolution of the
system is well captured by a one-dimensional NLS equation.

Notation. We use the notation A < B to indicate that there exists a constant C' > 0
independent of €, N, ¢, wév €, ®g such that A < CB. This constant may, however, depend
on the quantities fixed by the model, such as V*, y and 148 Besides, we will exclusively
use the symbol = to denote the weighted many-body operators from Definition 3.2 (see
also Remark 2) and use the abbreviations

()= Codpeanys M= Hllz@evy  and - l-flop := [l 2(z2(rany)-

2 Main Result

To study the effective dynamics of the many-body system in the limit (N,e) — (o0, 0),
we consider families of initial data z/)év ** along the following sequences (N, €,) — (00, 0):

Definition 2.1. A sequence (Np,e,) in N x (0,1) is called admissible if

-1
lim (Ny,en) = (00,0)  and lim S =0 for = (Nn>
n oo

n—oo Hn E3
for some 0 < § < %

The second condition ensures that the energy gap of order e~2 above the trans-
verse ground state x° grows sufficiently fast. In the proof, this will be used to control
transverse excitations into states orthogonal to x° (see also Remark 1le). Since

2

+0 S
—Eu = Ne° = 0,

§ must be strictly positive, otherwise Ne? — 0 would be impossible.
To formulate our main theorem, we need two different one-particle energies:

e The “renormalised” energy per particle: for ¢ € D(H(t)2),

EY(t) = & (0, H(t)p) — 2. (9)
where Ej denotes the lowest eigenvalue of —A, + V- (y). By rescaling, the lowest

cigenvalue of —A, + 5V+(¥) is %
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e The effective energy per particle: for ® € H'(R),

2
¥ (t) = (@, (=2 + VI(t. (2,0)) + 5o <1>>L2(R) . (10)
Further, define the function ¢ : R — [1,00) by
¢
N,e .
(1) := 1+ [E% (0)] + |€7(0)] + /||V(S7')||L°°(R3) ds
0 (11)

+ sup (|90, VI, )| oo es) -
i,j€{0,1}
ke{1,2}
Note that e(t) is for each ¢t € R uniformly bounded in N and ¢ because we will assume

that EwéV’E(O) — £%0(0) as (N,e) — (00,0) (see assumption A4 below) and boundedness
of VI and its derivatives (see assumption A3). The function e will be useful because, by
the fundamental theorem of calculus,

|EwN’S(t)(t)| <(t)—1 and |EPO()] < 3(t) -1 (12)

for any ¢ € R. Note that for a time-independent external field VI, it follows that
¢2(t) < 1 for any ¢, hence E¥"“()(¢) and £2®) (t) are in this case bounded uniformly in
time.

Let us now state our assumptions.

A1l Interaction. Let the unscaled interaction w € L (R3, R) be spherically symmetric,
non-negative and let suppw C {z € R3: |z| < 1}.

A2 Confining potential. Let V- : R? — R such that —A, + V+ is self-adjoint and has
a non-degenerate ground state x with energy Ey < inf oess(—A, + V4. Assume
that the negative part of V' is bounded and that y € C3(R?), i.e. x is bounded
and twice continuously differentiable with bounded derivatives. We choose x nor-
malised and real.

A3 External field. Let VI : R x R3 — R such that for fixed z € R3, VII(., 2) € C'(R).
Further, assume that for each fixed t € R, Vi, (-,0) e HYR), Vl(t,.), VI, ) e
L®(R3) NCY(R?) and V,VII(t,-), V,VII(t,-) € L®(R3).

A4 Initial data. Assume that the family of initial data, wév’g € D(H(0)) N LA (R3Y)
with ||'(/Jév €||? = 1, is close to a condensate with condensate wavefunction ¢f =
®ox° for some normalised @y € H?(R) in the following sense: for some admissible
sequence (N, ¢), it holds that

i ) (OO € el —
(N,s)11—r>1(100,0) Trpe(rs) Vi |Pox®)(Pox \‘ 0 (13)
and v
li E%7(0) — £%(0)| = 0. 14
(N,E)I—I>r(loo,0)‘ ( ) ( )) ( )
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Theorem 1. Assume that w, V* and VIl satisfy A1 — A3. Let ¢év’8 be a family of initial
data satisfying A4, let YN=(t) denote the solution of (3) with initial datum ™=(0) =
wév’e and let 'yq(ﬁ\),,g(t) denote its k-particle reduced density matriz as in (4). Then for any
TeR and k € N,

1 (k) 5 eIQk| __
1 T —|®(t (¢ =0 15
(9 o) e iy T EE) Ty T [RENE RN | (15)
and
m sup B0 £ O)] o, (16)
}

|
(N,E)—)(O0,0) te [—T,T

where ®(t) is the solution of (6) with initial datum ®(0) = g and with

b= 8ra / ()t dy. (17)
RZ

Here, a denotes the scattering length of w and the limits in (15) and (16) are taken
along the sequence from A4.

Remark 1. (a) Assumption A4 differs from the corresponding statement in [4] in that
we impose a weaker admissibility condition than the condition €2/ — 0 from [4],
which cannot hold for g = 1.

(b) A2 is fulfilled, e.g., by a harmonic potential or by any smooth potential with at
least one bound state below the essential spectrum. According to [14, Theorem 1],
A2 implies that the ground state y of —A, + V= decays exponentially. Thus, x°
is indeed exponentially localised on a scale of order €. The regularity condition
on VII(t,(-,0)) is needed to ensure the global existence of H? solutions of (6) (see
[4, Appendix A]). Due to assumptions A1-A3, the operators H(t) are for any
t € R self-adjoint on the time-independent domain D(H) and generate a strongly
continuous unitary evolution on D(H).

(¢) In [25], it is shown that the ground state of H(0) with a homogeneous external
field VI (z,0) satisfies assumption A4 (Theorem 2.2 and Theorem 5.1). Note that
to observe non-trivial dynamics in this case, it is important that we admit a time-
dependent external potential V1.

(d) Our proof yields an estimate of the rate of convergence of (15), which is given in
Corollary 3.5. This rate is not uniform in time but, contrarily, depends on it in
form of a double exponential.

(e) Our result is restricted to sequences where €% < N~ for some § € (0, 2) (Assump-
tion A4). Similar conditions appear also in comparable works [4, 6, 8] for 5 < 1.
However, for the ground state analysis in [25], no analogue of this admissibility
condition is required. On a formal level, together with the result of the strong
confinement limit of the three-dimensional NLS in [2], this suggests that our dy-
namical result could be extended to hold without imposing a condition on the rate
of convergence of €. As remarked before, in our proof this condition is crucial
to control the transverse excitations by an a priori energy estimate. A possible
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approach to weaken the condition might be to replace the transverse ground state
x° of the linear operator —A, + a%VJ-(E) by the z-dependent ground state of the
nonlinear functional

<§E(:c, ) <_Ay + HVE() +€%8mal@(2) P X (, ')|2) X (@, .>>L2(R2)

and to prove the smallness of transverse excitations by adiabatic-type arguments.

(f) We expect that our proof can be extended to cover systems that are trapped to
quantum waveguides with non-trivial geometry as in [19]. However, this is not
straightforward as a Taylor expansion of the interaction was used in [19] and the
kinetic term now includes an additional vector potential due to the twisting of the
waveguide.

(g) Further, we expect the same strategy to be applicable to one-dimensional confining
potentials resulting in effectively two-dimensional condensates. The solution of this
problem is not obvious since many of our estimates depend on the dimension and
cannot be directly transferred. For instance, Green’s function is different in two
dimensions and the ratio of N and & changes (the corresponding effective range is
t2q = €/N), making some key estimates invalid.

3 Proof of the main theorem

To prove Theorem 1, we must show that the expressions in (15) and (16) vanish in
the limit (N,e) — (00, 0) for suitable initial data. Instead of directly estimating these
differences, we follow the approach of Pickl [28, 29, 30, 31]. As one crucial first step, we
define a functional

of (R x LARWN) x LARY) 5 R, (6,47, 6°) o af (1,47, )

measuring the part of 1/ which has not condensed into ¢°. This functional is chosen
in such a way that a? (t, Ve (1), ©°(t)) — 0 is equivalent to (15) and (16). While we
roughly follow [31], the strong asymmetry of the setup and the more singular scaling of
the interaction require a non-trivial adaptation of the formalism. We also heavily rely
on the result in [4] for the case 8 € (0,1). The functional a? is constructed as follows:

Definition 3.1. Let » € L*(R?) be of the form ¢(z) = ®(z)x(y) for some ® € L?(R)
and x € L?(R?) and let

p¥i=|o)pl and ¢ :=1-p* €L(L*R?).
Further, define the orthogonal projections on L?(R?)

p? = @) (D] ® 1122, q® = 12s) —p%,

PX = L) @ [x) (X, q* = Lp2gsy — pX.

Note that p? = p®pX, ¢®/Xq? = ¢®/X, ¢¥ = ¢X + ¢®pX and p*/xg? = p®/xgx/?®,
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These one-body projections are lifted to many-body projections on L?(R3) by defining

pf::]l@t--l®1®p¢®1®~;v-®m]1 and ¢7:=1-p; forje{l,...,N},
J— =J

and analogously p?, qf, p;-c and q}. We will also write p” = [p(z;)) (¢ (25)]-
Finally, for 0 < k < N, define the symmetrised many-body projections

P =(af - afpfn pl)gm= 2 L1/ TI#f
JC{1,...N}YjeJ  1¢J

JI=F

and P =0 for k <0 and k> N.

Definition 3.2. Let f : Ny — R and d € Z. Using the projections PY from Defini-
tion 3.1, we define the operators f¢, f7 € £ (L*(R3Y)) by

R N N N—d
o= "fmps,  f=> fG+d)PY.
k=0 j=—d

Definition 3.3. For ¢ € (0, %), define the functional
1
ag :Rx L*(R*™) x L*(R*) DR x D(H2) x (H'(R) x L*(R?)) - R

by
OF (0,0 = @X) = (0, Y) + | EV(1) - £°(0)|

where the weight function m : Ny — ]Ra' is given by

®) £ for k > N2
m =
% (N_H'gk + N‘f) else.

For simplicity, we will not explicitly indicate the £-dependence of the weight m in
the notation. For the proof of Theorem 1, we will choose some fixed £ within a suitable
range.

The operators P,f project onto states with k particles outside the condensate de-
scribed by ¢. Consequently, (1, m¥1) is a weighted measure of the relative number
of such particles in the state 1. Note that the weight function m is increasing and
m(0) ~ 0, hence only the parts of 1 outside the condensate contribute significantly to
(1, m*P1p). For a sequence (V) nen of N-body wavefunctions, [4, Lemma 3.2]® implies
that <<¢N , mPyN >> — 0 as N — oo is equivalent to the convergence of the one-particle
reduced density matrix of 1)V to |¢){y| in trace norm or in operator norm. Further, con-
vergence of the one-particle reduced density matrix implies convergence of all k-particle
reduced density matrices. This is summarised in the following lemma:

3Lemma 3.2 in [4] collects different statements somewhat scattered in the literature. The respective
proofs can be found e.g. in [19, 22, 30, 31, 32].
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Lemma 3.1. Lett € R, k € N, p = &y € H'(R) x L?(R?) with ® and x normalised.
Let (V) yen C L2(R3N) be a sequence of normalised N -body wavefunctions and denote
by 71(;3\), the k-particle reduced density matriz of . Then the following statements are

equivalent:

(a) Jlim ag(t,vN,¢) =0 for some £ € (0, 3),

(b) Jim ag(t, v, ) =0 for any € € (0,4),

(¢) lim Tr]y® — |<p><<p|®k‘ —0 and lim ‘EW(t) - 5%)} =0 foralkeN,
N—o0 (] N—oo

(d) ]\}im Tr 71(;]% — |<p><g0|) =0 and lim ‘EwN(t) — Eq)(t)’ =0.
—00 N—oo

18

The relation between the rates of convergence of a£< (t, N, ) and ’y(l)

wN
1R = o) el] < \fag(tuN, 0),

o (b0, 0) < [BY (1) - 7(1)| + \/Tr R = leyel| + 3N ¢.

Proof. [4], Lemma 3.2 and Lemma 3.3. O

Tr

To prove Theorem 1, we evaluate the functional a; on the solution YNE(t) of (3) with

initial datum 1pév © given by assumption A4, the solution ®(t) of the Gross—Pitaevskii
equation (6) with initial datum ®¢ from A4, and the ground state x° of —A, + 8%VL(%)
from A2. For simplicity, we will abbreviate

af (1) = a (1 ¥V (1), @7 (1) = B()X°).

Due to Lemma 3.1, ag(t) — 0 is equivalent to (15) and (16); conversely, (13) and (14)
imply a? (0) — 0. Hence, to prove Theorem 1, it suffices to show the convergence of
ag(t) —0forall t € R.

In [4], the functional 04£< (t) is used as counting measure for the interaction (8) scaling
with 8 € (0,1). For the proof in that case, one first shows an estimate of the kind

%a?(tﬂ S af(t) + o(1) and subsequently applies Gronwall’s inequality, using that
ag (0) = 0.

For the Gross—Pitaevskii scaling of the interaction, we cannot simply estimate %a? (t)
for § = 1 because this derivative is not controllable with the methods used in [4]. To un-
derstand why this is the case, let us first give a heuristic argument why the NLS equation
with coupling parameter bg = [[w||11(rs) [z2 Ix(y)|*dy is the right effective description
for 5 € (0,1) but not for 8 = 1. To this end, we compute the renormalised energy per
particle with respect to the trial state prod(t, 21, ..., 28) = ©°(t, 21)@°(t, 22) - - - ¢° (¢, 2n),
i.e. the state where all particles are condensed into the single-particle orbital ¢°(¢). For
simplicity, we will ignore the external potential VIl and drop the time-dependence of °
in the notation. Making use of the fact that (—A, + V() — %) X°(y) = 0 and that
° is normalised, we obtain

% <<wprod7 Hl/)prod >> - %
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— (D), (—02,)B(x1)) + DL / | () [P ()

x / dz2|®(x1 — 1P2) 2 x (w1 — Ly)Pw(2)

= (ot (<02 + 4 ([ I an [wed) 10woR) o)) = oy

in the limit (IV,e) — (00,0), where we have chosen the limiting sequence in such a way
that % — 0.* Here, 8;6(071) is the effective energy per particle for g € (0,1), i.e. it
equals (10) with VI = 0 and b replaced by bg.

For the Gross—Pitaevskii scaling f = 1, this very argument yields the same one-
particle energy 5/?6(0,1)7 which differs from the correct expression (10) by an error of
O(1) as bg # b. The reason for this error is that for 8 = 1, the scattering length a,, of
w),, is of the same order as its range p, i.e. the inter-particle correlations live on the scale
of the interaction and thus decrease the energy per particle by an amount of O(1).

Hence, an initial state wév ° that is a pure product state is excluded by assumption
A4. This reasoning suggests to include the pair correlations in our trial function. To do
so, let us first recall the definition of the scattering length: the zero energy scattering
equation for the interaction wy, = g~ 2w(-/u) is given by

{<—A+ §,(9) 4ulz) =0 for 2] < ox, (18)

Ju(z) =1 as |z| = oo.
By [24, Theorems C.1 and C.2], the unique solution j, € C*(R?) of (18) is spherically

symmetric, non-negative, non-decreasing in |z| and

() =1—%  for |z| > pu,
]u( ) 2] | | 2 (19)
Ju(z) >1— 2 else.

The number a, € R is by definition the scattering length of w,. Equivalently,

8ma, = /wu(z)ju(z) dz. (20)

R3
By the scaling behaviour of (18), we obtain
12 (<A w(2)) ulnz) = 0

for |z| < oo, hence j,(z) = ji(2/p) and

ap = pa, (21)

where a denotes the scattering length of the unscaled interaction w = w;. From (19)
and (21), one immediately concludes that j, differs from one by an error of O(1) on

4This condition in [4], called moderate confinement, ensures that the extension ¢ is always large
. . B — — .. c e
compared to the range p® = (%)75 of the interaction wg. As £~ = N~Pc*’~1 this is a restriction only

for g < %; in particular, it is satisfied for 5 = 1.
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supp w,,. Hence, (20) implies that the first order Born approximation s%r Jwu(z)dzis no
valid approximation to the scattering length a, in the Gross-Pitaevskii regime, whereas
this approximation was justified for interactions wg as in (8) with 5 € (0,1).

For practical reasons, we will in the following consider a function fg which asymp-
totically coincides with j,, on suppwy, but is defined in such a way that f5(z) =1 for |z|
sufficiently large. This is achieved by constructing a potential UE in such a way that the
scattering length of w, — U 3 equals zero; fB is then defined as the scattering solution of
Wy, — UE' The advantage of using fg instead of j, is that Vfg and 1 — fE have compact
support, which is not true for j,.

Definition 3.4. Let 3 € (3,1). Define

. ,ul_gga for ,ug < |z| < Rz,
Us(z) :=
0 else,

where RE is the minimal value in (ug ,00] such that the scattering length of w, — UE
equals zero.

In Section 4.2, we show by explicit construction that a suitable RE exists and that

it is of order ,ug . We will abbreviate
Ugj) i=Us(zi —2) and w/(jj) = wu(z — zj).

Definition 3.5. Let f5 € C'(R3) be the solution of

— A+ 5 (wu(z) = Uz(2)) ) f5(2) =0 for |2] < R,
(—a+3( )

fg(z) =1 for |z| > Rj. 22)

Further, define
gE =1 fE
We will in the sequel abbreviate

(i3) .
95 :

Definitions 3.4 and 3.5 imply in particular that

/ (wu(2) ~ U3(2)) F5(2) dz = 0. (23)

RS

We now repeat the above heuristic estimate for the renormalised energy per particle
with the trial function® eor (21, ..., 2N) := Hivzl ©°(21) [ Li<iemen fg(zl—zm), where the
product state is overlaid with a microscopic structure characterised by fg. For VI = 0,
this yields

% <<7vzjcor7 chor >> - %

SNote that this trial function is not normalised. However, a reasoning similar to Lemma 4.10 leads

to the estimate 0 < 1 — ||[Yeor]|> < Np??. As B> %, the normalisation error is thus irrelevant for our
heuristic argument.
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<<H90 Zlc)Hf(lm) 02,0 (20) [] ¢ (=) 11 fl, )>>

k>1 <m k'>2 I'<m/

-1) <<kl;[1<p 2k ll;[n f(lm) (—A1f§2) i %wgz)fgg)) »
SICC I

k'>1 U'<m’

(t";m")#(1,2)

N—l)«H‘PE Hf~ (V ¢ (z1) - Vlf?”)
k>1 <m
e T A

k'>2 UV<m!
(1",m")#(1,2)

#0002 Tt TL™ (7152 - 91

k>1
<[Teen I 57)-

k'>1 U'<m’
(I'sm')¢

{(1,2),(1,3)}

Very roughly speaking, we may substitute fE ~ 1 unless we integrate against w,, which
is peaked on the set where fg # 1, or apply the Laplacian to fg. For the last line,

also note that supp Vfz C BRE(O) with Ry = (’)(ME) (Lemma 4.9), which is for 8 > 3

negligible compared to the mean inter-particle distance u%. Thus, the measure of the set
supp V1 f3(-—22)Nsupp Vlfg(-—zg) vanishes sufficiently fast in the limit (N, e) — (00, 0).

For the second line, note that (22) implies — 1f(12)—|—2 (12)f(12) Uéu) fg2). Besides,

1> fE > 1—au1_5 on the support of UP and fB ~ j,, on the support of w,, (Lemma 4.9).

Hence ||f§U§fg||L1(R3) ~ ||U§f-ﬁ~||L1(]Rs) A Jps wu(2)ju(z) dz = 8wpa according to (23)
and (21). Thus, the second line gives to leading order

]\721/d21|<p5(zl)|2/dz|<,05(zl —z)|2UE(Z)f§(Z)
—>47Ta/d1‘1|(1)(1'1)|4/dle(y1)|47

and the renormalised energy per particle is consequently given by the correct expression

% <<1/)COI‘7 chor» - %

= (a0, (<02, + 4 (370 [ )l an ) 190 ) 2te))

This heuristic argument indicates that the state of the system is asymptotically
close t0 Yeor. We will therefore modify the counting functional such that p{ps - - p% =
[¥prod) (¥prod| 1s replaced by [tcor) (Ycor|, i.€. Py is replaced by the projection onto the
product state overlaid with a microscopic structure minimising the energy. We substitute
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in the first term of o (t)

v o e IL% 2 T4

k<l r<s
~ (o) - N0V - DR (vl ), (24)

where we have used the symmetry of 9)V¢(¢) = 1 and expanded the products by writing
fg =1- 93 and keeping only the terms which are at most linear in g3.

This correction in the functional effectively leads to the replacement of w, by UE fE
in the time derivative of the new functional. The underlying physical idea is that the
low energy scattering is essentially described by the s-wave scattering length, hence
the scattering at w,, is to leading order equivalent to the scattering at UE fg. The
terms containing UE fE can be controlled by the result from [4]; the remainders from
this substitution must be estimated additionally. To understand how the substitution
works, let us for simplicity consider the case N = 2 with VI = 0. The full argument is
given in Section 4.4. Abbreviating Z(1?) := w,&u) —b(|®(x1)|?> + |®(x2)|?), we obtain

% <<¢’ ﬁl(psd)» = i<<11}, [2(12)’7/7\#8]71)» = 2 <<1/)’ Z(lQ)ﬁZSDSTZJ» )
_Q%g{«%ggwm@aw» _ 29«% (gg2) 202 557 + (wl(}z) B Ué”lz))fé}m’//ﬁws
VLD e ).

Adding these expressions and using that 95 = 1-— fg, we observe that the term

o202 o)

cancels. It remains, among other contributions,
=23 ((w, (U2 117 = (@) + [B@2)) 77 )

where w),, is replaced by U 3 fg.

Remark 2. To simplify the notation, we will in the following drop the index ¢ in all
projections and (weighted) many-body operators from Definitions 3.1 and 3.2. From
now on, p = p®pX° always projects onto ¢°(t) = ®(t)x°, where ®(t) is the solution of
the Gross—Pitaevskii equation (6) with initial datum ®¢ from A4, and x° is the ground
state of —A, + 5V (¥) from A2.

In our proof, we will use a slightly modified variant of the correction term in (24).
The reason for the modification is that Lemma 3.1 establishes the equivalence of (15)
and (16) with aF (t) — 0, hence we must ensure that the correction term converges to
zero in the limit (N, e) — (00,0). To make the correction term in (24) controllable, we
replace m by the weighted many-body operator 7, which is defined as follows:

Definition 3.6. Define the weight functions

m®*(k) := m(k) —m(k+ 1), mb(k) = m(k) —m(k +2),
mé(k) := mak) —m*(k+1), m¥k) := m k) —m*(k + 2),
meé(k) := mb(k) —mP(k + 1), mf (k) := mb(k) — mP(k + 2).
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The corresponding weighted many-body operators are denoted by M, 4 € {a,b,c,d, e, f}.
Further, define
7= m"pips + M*(pra2 + q1p2).-

Note that the weight functions mf correspond to discrete derivatives of m, which
appear in the computations when taking commutators with two-body operators such as
[(Z2(2) ).

When replacing m by 7 in (24), we gain an additional projection p;, which allows

us to estimate ggQ)pl instead of g%m) (Lemma 4.10b). This change does not affect the

replacement of w,, by UE because [Z1?), @] = [Z(12) 7] by Lemma 4.2c. The modified
functional is now defined as follows:

Definition 3.7.
ag(t) == af () - NV = DR (0 (1), g0 F0e(0))

In Proposition 3.2, the time derivative of the new functional a(t) is explicitly cal-
culated, following essentially the steps sketched for N = 2.

Proposition 3.2. Under assumptions A1 — A4,

| Gae®] < [y + Pra®] + o] + e + ra®)] + e + 1 ()]

for almost every t € R, where

Y<(t) = '«w%), Vit 209" () = (20, VI (. 0)2(0) ) (25)
—2NS (g™ (1), i, (VI(E, 21) = VIE, (21,0))po™ < (1)) (26)
—N(NV =)0 (), 20 meNE (1)), (27)
Bt = NV = D3 (V0,007 [Vt 2) - VI, 0). 7] ¥4 0))) (29)
w(t) =~V (0 be) + @290 7 (29)
—NS{[NE (), (b — D)@ ()] + [B(w2) 2 TN (1)) (30)
NV =13 (), 607 7 20BN o)), (31)
t) = AN = D3 (0790, (Tigl?) - Vi) (32
() = =NV = DN =23 (V40,1 o), 7] w0 (53)
F2N(N = 1)(N - 2)3 <<¢N’E(t), o9 [wll, 7] ¢N’5(t)>> , (34)
t) = AN - DOV - 2N =33 (0% 0.0 w0 o), 39)
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1) = 2N =23 (0% 0. g0 e 7] vV ). (36)
Here, we have used the abbreviations
20 = ) — gty (10 + [0()).
79 = Ug”fg” - (@@ + 9()),

where

by = lim " /U~( fﬁ(Z)dZ/x (y)|* dy.

(N,e)—(00,0)
R3

The first expression v< equals | o =(t)| with w,, replaced by the interaction Uz /3
The terms v, to s collect all remainders resulting from this replacement. Whereas ~,
arises from the strong confinement, +y, to v are comparable to the corresponding terms
from the problem without strong confinement in [31].

Proposition 3.3. Let u be sufficiently small and let assumptions A1 — A/ be satisfied.
Then there exist % <d< fp< QLM and 0 < £ < min{l — 3, g} such that for anyt € R

RIS e<t)exp{e2(t)+/t (S)ds}( () + (Ne¥)1 P 4 No1HEe
+Md_§‘§),

)] S 1)

|'yb(t)} 5 e?’(t) (51+[3+N71+5+5>

()] S () NTHHOHE,

ha®] S ) (7 + ()P

}’Ye(t)} < eS(t)EHE,

] S e

To control v<, we first prove that the interaction U 5/ s of the kind considered in [4]

and subsequently apply [4, Proposition 3.5]. This provides a bound of |y<(¢)| in terms
of

(ueo), muVe@) + [BL 00 - €55 ),

where Eggfg(t) and E(?Efg(t) denote the quantities corresponding to (9) and (10), re-
spectively, but where w,, is replaced by UE fE and b by

W sl [ Ixwl* v

The potential UE is chosen in such a way that limy ;)_ (s0,0) ”UEfBHLl(Ri”) = 8ma, hence
E*(t) = 55’5 fg(t) but

lim
(N,e)—(0,0)

B ) - B 0 ~ o), (37)
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To explain why one expects the energy difference (37) to be of order one, let us again con-
sider the trial function 9c,. Following the same heuristic reasoning as before (i.e. fg ~1
unless we integrate against w, or apply the Laplacian, fﬁ ~ j, on supp wy,, and fE ~1
on supp UE)’ this difference is to leading order given by

B2 ons (w2 = 3597 v
/dz1|<p5(z1)|4/dz F3(2)? (wplz) - Ug(z))‘
it [ g f3()

(20)

> M_lgg(u)/dzwﬂ(z)fg(z) ~ 8ma® ~ O(1).

In the first line, we have substituted 2z — z := 22— 21, approximated ¢°(z1+2) ~ ¢°(21)
for z € supp(wu—UE) and used the estimate ||¢5\|2L00(R3) < 72 (Lemma 4.5). Further, we

~ N

(23)

have decomposed fE =1-g; and used that 95 is decreasing in |z], gﬁ(u) ~ a and 95~ 0
on supp UE' Note that by (22), this difference between the potential energies equals
exactly the part of the kinetic energy (®cor, (—A1)%cor) that is due to the correlations.

As a consequence of (37), [4, Proposition 3.5] does not immediately provide a bound
of [y=(t)| in terms of ag(t). However, the energy difference enters merely in the
single term in this proposition® whose control requires a bound of the kinetic energy
102, g2 NE(¢)]|. For interactions wg scaling with 8 € (0,1), one shows that (neglecting
some terms that vanish in the limit)

B, (1) =€, (O] 2 (0, (A1 + S(VE(2) = By — (||
2 N0, d I + (102,079 — [197]1%)
> 0z, dF VI = 19712 (v, ) - (38)

Hence, essentially [0y, ¢Pv™N<(t)]]? < a?(t) [4, Lemma 4.17], which is why the energy
difference enters the estimate of |y<(¢)].

Turning back to the Gross—Pitaevskii regime, let us apply (38) to the interaction
Ugfg. Making use of the fact that £®(t) = Sg’gfg(t), we obtain

1,550 ~ BY O+ [EY(0) —€¥0)] 2 1By (1)~ (1)

2 N0 atel? — 11912 (o, i) -
Since |E;§Ef5(t)—E¢(t)| ~ O(1) already at time zero by (37) and |E¥(t)—E®(t)| < a?(t),
we expect
10:,a7% ] S ag(t) +0(1)
for the Gross—Pitaevskii scaling of the interaction. The additional O(1)-contribution
arises because one of the terms’ we have neglegted in (38) is not small for g = 1.

STt enters in (24) in [4], which is a part of 4\°) in Proposition 3.4. The estimate is given in [4,
Section 4.4.4].

"This is the term <<1/J, (N = Dwi? — b|<I>(3c1)|2)1/)>>. In the proof of Lemma 4.12, we cope with
this term essentially by adding and subtracting the potential UE' The term containing the difference
wy, — Uz together with the part of the kinetic energy close around the scattering centers is non-negative
(Lemma 4.9d). The terms containing Uz can be shown to vanish in the limit as in (38).
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The part of the kinetic energy orthogonal to the condensate |0, ¢F4|| is not small
since the microscopic structure does not vanish in the limit but carries a kinetic energy
of order O(1). This energy is the reason for the factor 8ma in the effective equation,
which is O(1) different from the factor [w| 11 (rs) for scalings 8 € (0,1) with negligible
microscopic structure.

To estimate the one problematic term in y<(t), one notes that the predominant
part of the kinetic energy is localised around the scattering centers, where the micro-
scopic structure is non-trivial. Therefore, we define the set A; (Definition 4.1) as R3V
where sufficiently large balls around the scattering centers are cut out, and show that
114, 0n, a0 ()12 S |EY (1) — E2 ()] + (v (t), np™=(¢))) plus some terms vanishing
in the limit (Lemma 4.12). Subsequently, we adapt the estimate from [4, Proposition 3.5]
to this new energy lemma, making use of the fact that the complement of A; is very
small.

The remainder of the proof consists of estimating the terms v, to ~; arising from
the effective replacement of w, by U 3 fg. The key tool for this is our knowledge of the
microscopic structure (Lemma 4.9 and Lemma 4.10).

Remark 3. In principle, we adjust the method from [31] to the situation with strong
confinement and to the associated more singular scaling of the interaction. We give a
new proof for Lemma 4.9a-c (concerning the microscopic structure) by exploiting the
spherical symmetry of the scattering problem to reduce it to an ODE and explicitly
construct its solution.

The proof of Lemma 4.12 (providing an estimate for the kinetic energy) becomes
more involved due to the confinement, since one must show that the positive expres-
sion ||V, %™V¥(¢)||*> compensates not only for a sufficient share of the negative part of
(WNe (), (w, — U5)¢N’E(t)>> as in [31] but also for the large negative part of the expec-
tation value 25 (¢™N<(t), (VE(2) — Eo)y™=(t)).

For the control of 4%, we follow [16]. The estimate of ~. is different from the problem
without confinement because each V contributes a factor e~'. To handle this, we prove
a new Lemma 4.11 which provides estimates for Vgg, and combine this with the new
estimate in Lemma 4.10e.

The last proposition ensures that the correction term converges to zero as (N, &) —
(00,0), which is required for the Gronwall argument.

Proposition 3.4. Under assumptions A1 — A4, the correction term in ag(t) is for all
t € R bounded as

‘N(N _ 1)§R<<¢N’5(t),gg2) ?wN’E(t)»‘ < SHBNES

Proof of Theorem 1. From Propositions 3.2 and 3.3, we gather that for sufficiently small
1, there exist suitable 3, £ and d such that

[Srac(0)] S C) (a0 + (e P N1y i)

for almost every ¢ € R. We have simplified the expression by noting that et < ¢ <
(Ne®) 6P because §(1+ & — B) <6(1+¢&) <lasd < 2 and { <1— B < £. Besides,
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we have used the abbreviation
t
C(t) = e(t)exp {ez(t) +/ e?(s) ds} . (39)
0

Recall that e(t) is for each t € R bounded uniformly in N and & by assumption A4. Let
us introduce the abbreviations

R(t) = —N( ) <<¢N5(t) (12) T¢Ns( )>> ’
B = (Ne )175+€—|—N*1+5+$+ud—%7%
By Proposition 3.4, |R(t)| < B uniformly in t. ag(t) + B is thus non-negative and

ag(t) = ag(t) = R(t) < ag(t) +[R(H)] S ae(t) + B,
agt)+B = ag(t)+R(t)+B S af(t) + B,

hence
Slaet)+ B) < O(t) (ag(t) + B)

for almost every ¢ € R. By the differential form of Gronwall’s inequality,

0 < af(t) Sagt) +B S (ag(0)+B) exp{z/otc(s)dS}

for all £ € R. The sequence (N, ¢) is admissible and £ < 1 — B, hence

lim B=0
(N,e)—(0,0)

and (13) and (14) imply by Lemma 3.1 that

0< i 0+B) < i (<0 B)?’éo,
= ooy OB S i g e O
which by Lemma 3.1 concludes the proof. O

Corollary 3.5. Let t € R. Then for any p € (0, 112)

Tr

Ve = IO D)

< (A(O)+N 12+P+(N5> ) exp{/ C(s }

with C(t) as in (39) and where

N
A(0) = ‘E% 5% \/Tr"y(l) — |©5) (¥

Proof. Follows from Lemma 3.1 after optimisation over &, ,g and d. O
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Remark 4. For VI = 0, one obtains (2@ r2r) S C(1Poll g2(r)) uniformly in ¢, where
C(||®oll pr2(r)) denotes some expression depending only on [|®o|| 2(r) [33, Exercise 3.36]®.

Defining ¢ := 1+ |Ewév’€(0)| +[£%0(0)| + (C(/[®ol| r2(r)))? in analogy to (11), we obtain
the rate

1
3 _3 2
Tr [y ey = [ ONF O] S (A<o>+N—fz+ﬂ+(Naé) : ) exp {1},

where the growth in time is exponential instead of doubly exponential.

4 Proofs of the propositions

4.1 Preliminaries

In this section, we collect some useful lemmata, which are for the most part taken from
[4] and we refer to this work for the proofs. Lemma 4.7 contains additional statements
following [31, Proposition A.2]. We will from now on always assume that assumptions
A1l — A4 are satisfied.

Lemma 4.1. Let f :Ng - R}, d € Z, p € {a,b} and v € {c,d,e, f}. Then
(@) | Fllop = I Fallop = 172112, = OSS}ENJ"(’?),
(0) [[1]lop < N71HE, i lop S N2 and |[Fllop S N7'H5,
(c) [mPqyp™=t)]| S N7,

(@) | faraz™< (0|2 S 1 F 2N

Proof. Assertions (a), (c) and (d) are proven in [4], Lemma 4.1 and 4.4. For part (b),
note that

1 1-2¢ __ 1 1-2¢
(k) = SUEN for k> N ' nd (k) = YN I for k> N ,
SN7IE else 0 else,

where / = 4. Hence |[m/(k)| < $N1¢ and |m/ (k)| < $N~273¢ for any k > 0. By
the mean value theorem, this implies e.g. [m®(k)| < N7 and |m¢(k)| < N~2+3¢, The
other expressions work analogously. O

Lemma 4.2. Let f,g: Ny — R} be any weights and i,j € {1,...,N}.

(a) For ke€{0,...,N},
fa="rfo=39f,  fri=pif, feu=qaf,  fP.=PDf
8To prove this, one observes that the quantity E» (D) =

Lo (102@)2 + ¢1]0:@%|®|* + c2R((2IxP)?) + c3|®|®) d is conserved for solutions of (6) with VIl = 0,
where c1, co and c¢3 denote some absolute constants.
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(b) Define Qo := pj, Q1 := qj, Qo := pipj, Q1 € {piqj, ¢ipj} and Q2 := giq;. Let S; be
an operator acting only on factor j in the tensor product and Tj; acting only on i
and j. Then for u,v € {0,1,2}

QﬂijQl/ = QijﬁL—VQV and @,ufTijéu = @pﬂjﬂ—y@w
(c)

~ ~ -~ ~ -~

[Tij, f1 = [Tij, pipi (f — f2) + (Pig; + @ip)(f — f1)]-
Proof. [4], Lemma 4.2. O
Lemma 4.3. Let f : Ny — R. Then

(a) Py, f€C'(R,L(L2R3N))) for 0 <k <N,

(b) |:_ij +£%vL(y)7ﬂ :OfOT‘l S]SN;

e

N N
() & =i[F. £ hs(0)].
‘7:
where hj(t) denotes the one-particle operator corresponding to h(t) from (6) acting
on the ™ factor in L?(R3N).

Proof. [4], Lemma 4.3. O

Lemma 4.4. Let T, A € L*(R3N) be symmetric in the coordinates {23, ...,znx}, let ro

and se denote operators acting only on the second factor of the tensor product, and let
F:R3xR3 — R ford € N. Then

1
(T, raF (21, 22)528)] < T (lls2F (o1, 22)r2A 2 4+ g IraF (21, 22)520017)

Proof. [4], Lemma 4.7. O

Lemma 4.5. The nonlinear equation (6) is well-posed and H*(R) solutions exist glob-
ally, i.e. for any initial datum ®y € H?(R), it follows that ®(t) € H*(R) for any t € R.
Besides, for sufficiently small e,

(a) [2®)r2@) =1, 1211 () < e(t), 12(E) || oo () < e(t),
1| oo ey < @) |2z S exp {2(8) + J ¢(s) s}
(0) e O)llpeemsy S e()e™, Ve ()] poe(re) S et)e™.
Proof. [4], Lemma 4.8. O

Lemma 4.6. Let t € R be fized and let j,k € {1,....,N}. Let g : R® x R® — R
and h : R x R — R be measurable functions such that |g(2j,2)| < G(z — 2j) and

|h(zj, k)| < H(xk — x;) almost everywhere for some G : R> - R, H : R — R. Then
(a) |Pig(zi, 2k)pillop S (e ?[|Gllp1(rsy for G € LI(R?),
(b) llg(zj: ze)pillop = IPjg (s 2) lop S e()e |G pars) for G € L2 N L=(R),
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(c) I9(zj, 26)Vipillop < e(t)e 2|GlL2(msy for G € L*(R?),
(d) (s, 20)p5 llop = 105 (s 2) lop < ()| Hllp2(r) for H € L N L2(R).
Proof. [4], Lemma 4.9. O
Lemma 4.7. Let € be sufficiently small and t € R be fived. Then
(a) Haarlpl llop < e(2), Hvylpl llop S €™ L 1¢ lleOp <[|o(t )HH2(R)ﬂ
I YO < elte,  0ma®Ul S ), Vel DI S e,
100N =)l < e(t), Ve ™ @) St [Vie¥e@)] S

W [VulPure)] s con-,

(c) fwitPeNe(t)]| < e(t)N3e2,

(@) 1191 Lsupp o, (21 = 22)llop = [ Lsuppw, (21 — 22)p1llop S e(t)N~3e2,
(e) IlprwiPeN= ()] < N,

(F) (VI 20) = VIt (1,0)) w¥2(8)]] S (8.

Proof. Part (a) is proven in [4, Lemma 4.10.]. % is the smallest eigenvalue of —A, +
LVE(Y), hence (NV=(t), (—=Ay, + V(L) — £)pN=(t)) > 0. This implies (b) as

€2(t) > |E¢N€(t) t)| > N— IH / (12 sz H |VH(t)||Loo(R3)
> N uwl N2 - ().

For part (c), observe that

1
29N @) < ] e s

wf N S N,

Assertion (d) follows from Lemma 4.6b because HllsuppwHHLQ(Rs) < pd. Part (e) is a
consequence of

1w 2NN = 1 Lsupp (21 — z2)w PN (0)]

< lIp1 Lsuppw, (21 = 22) lop L PN (1))
Finally, (f) is proven in [4, Lemma 4.11]. O
Lemma 4.8. Let ¢ € L2 (R3N) be normalised and f € L°(R). Then

(@, fl)d) = (@), FO(1)) Loy | S 1|y (s 700) -

Proof. [4], Lemma 4.6. O
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4.2 Microscopic structure

In this section, we prove some important properties of the solution fg of the zero-energy
scattering equation (22) and of its complement 95-

Lemma 4.9. Let fg as in Definition 3.5, j, as in (18) and Ry as in Definition 3.4.
Then

(a) f—ﬁv is a non-negative, non-decreasing function of |z|,

_ p B
7€ (1, ME*MG) such that for |z| < pP,

(b) f5(2) = ju(z) forallz € R3 and there exists k
£3() = Rziu(),

(c) Ry <17,
() 10—y Vol + § (0 @l = U820 ) > 0 for any v € D).

Proof. We prove this Lemma by explicitly constructing a spherically symmetric, con-
tinuously differentiable solution fE of (22). This solution is unique by [12, Chapter 2.2,

Theorem 16]. Consider f : RS — R with

Fr) = rf5(r), (40)

where r:= [z]. fz € C1(R3) solves (22) precisely if f solves the corresponding ODE

F(r) = i (wu(r) - U—B(r)> f(r) foro<r< Rz,
fr for r > Ry, (41)

r
f 0 for r =0,

flr

~— —

where ' = %. Analogously, (18) is equivalent to

7'(r) = %wu(r)j(r) for 0 <r < p,
() =r—pa for r > p, (42)
Jjr)=0 for r =0,

where 7 : RS — R{ is defined as jr) = 7ju(r) and depicted in Figure 1.
For 0 < r < 4P, f"(r) = w,(r)f(r) and f(0) = 0. Clearly, both conditions are
fulfilled by the choice fi(r) = 53(7“) for some k > 1. Consequently,

£ty = k(i — pa) and  FL(uP) = k. (43)

For ,ug <r < Rg . solves f/(r) = —%Ug(r)ﬁ(r) and is subject:co the boundary
conditions (43). As UE is constant over this region, the solution for u? < r < RE is

fu(r) = H[A sin(ur) + B cos(ur)|,
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Figure 1: Construction of the solution ﬁg of (41). The lower black curve represents the
Si)lutionj of (42), the dashed graphs mark the straight lines r and r — pa. The functions
fi and f, drawn in grey are exemplary members of the one-parameter family { fy}.>1
with 1 < k1 < kg. For 0 < r < ,uE, ﬁ(r) = rj(r) is a multiple of j(r). This implies
in particular that f.(r) is a straight line with slope & for u < r < ME . In the region
r> ,uE , fH is concave. The solution to (41) must become tangential to the straight line r
at some point r > ME , which will be called RE' It is clear that ]?1 and f;l will not touch
the straight line » (at least not before they decrease and increase again). Contrarily,
[k, already intersects r at p and is therefore ruled out as well. As the family is strictly
increasing in x, there must be a curve in between fi and f, that is tangential to r at
some point. This is the solution f. of (41), drawn in black.

where u := 4/ %a,u1*35 and

= ((ME — pa) sin(pu) + ! COS(”B“)) ’

A
B = ((u" ~ pa)cos(p’u) — u"sin(u"u) )

i.e. A and B depend on the quantities u, a and ,wg but are independent of x. The two
parameters k and RE must be chosen such that

fo(R5) = R; and fL(Rz) =1. (44)

Denote the position of the first maximum of ﬁ by Tmax. Clearly, rpax is independent
of k. RE is defined as the minimal value where the scattering length of w, — U 3 equals
zero. This means

RE :=min{r € (ME, Tmax) © ﬁ(r) =7 and ﬂ(r) =1},
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ie. RE is defined as the first value of r where ﬁ is tangential to the straight line f(r) =r.

This implies in particular that f; is increasing. Clearly, RE depends on k, hence it
remains to prove that suitable &, RE exist. To this end, consider the one-parameter

family {ﬁ}le.

e For k =1, we have fl(r) =j(r) < j(ug) = ,ug — pa for r < ug. As fi is concave
for puf < r < Rj, this implies fi(r) < rfor all r € (4P, 7max). Consequently, the
choice k = 1 cannot be a solution of (41).

] . . . . .
e On the other hand, k = 5“ > 1 can neither yield a solution because in this
pP —pa

case, ﬁ(ug) = ug and ﬂ(ug) > 0, hence f, >r for all r € (,ug, T'max)-

e Since fx(r) = kf1(r), the one-parameter family is strictly increasing in k. Together

with f.(r) <7 for k = 1 and fu(r) > r for k > E”ﬁ , this implies that there must
1P —pa

. B P =~ .
be a unique 5 € (1, 7115*11&) such that f,. satisfies (44).

To obtain an upper bound for RE’ recall that ﬁé is increasing and, by construction, C2

in [,ug, RE]’ hence

g g
K51 = o) TRy == [ Ty =t [ Fyar
#E ,uE

> gap' = fo (W) (Ry — 1) Z ' (0 — pa)(Ry — ).

~

~_1 ~
With % <4 g =B, this yields

_ ~_1 - 28 _
no_ < "B BT D R L
rg(pf — pa) pP = pa e

for sufficiently small . Due to the respective properties of ﬁﬁ, it is immediately clear
that fﬁ is non-negative, that fg > j, and that fg(z) = mgju(z) for |z| < ug. To see that
[5 is non-decreasing, observe that for ME <r < Rg ﬂE(RE) < j‘zé (r) as ﬁﬂg is concave,

hence

1= FL(Ry) < Fi () = r(f3) () + F5(r) < r(f5) () + 1

for u? <r < Ry as fz(r) = r’lﬁa(r) < 1. Thus (fg)’(r) >0 for all » > 0.

Finally, for the proof of part (d), we refer to [31, Lemma 5.1(3)] and the analogous
two-dimensional statement in [16, Lemma 7.10]. The idea of the proof is the following:
one shows first that the one-particle operator H#» := —A + 1 > ez, (Wp — Uz)(- — zk)

is for each n € N a positive operator, where Z,, is an n-elemental subset of R? such
that BRE(Zk) are pairwise disjoint for any two z; € Z,. This first assertion follows

from the definition of fg and from the fact that if the ground state energy of H%»
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was negative, the ground state would be strictly positive. The next step is to prove
that the quadratic form Q(v) = |1} <, V9| + <¢ (w, — }ﬁ¢> for ¢ € H'(R?) is

nonnegative. Assuming that there exists a z/} such that Q(d)) < 0, one constructs a set
Z, and a function yg € H'(R3) such that <XR7 HZ"XR> < 0 for some n, contradicting
the positivity of H%" which holds for all n € N. The function yp is constructed in such
a way that the part of < xr, H?"x R> inside a ball with radius R containing a sufficiently

large neighbourhood of Z,, equals nQ(zZ) < 0. The decay of xr outside the ball is chosen
such that its positive kinetic energy is not large enough to cancel this negative term for
sufficiently large n. O

The next two lemmata provide estimates for expressions containing gz or Vgg.

Lemma 4.10. For gz as in Definition 3.5 and sufficiently small €,
(a) lg5(:) S £ .
(12 Brar—1-8
(0) gy S PN 5 p1g82llp = 9071 op < el FN15,
(c) lgg WM e(0)]] S eN 7
s 3
(d) ||p111suppgg(z1 = 22)|lop = ||]lsuppgg(z1 — 22)p1llop S e(t)eTINT2P
x5
(e) ||]lsuppgg(zl —2)p™M ()] S e(t)gw SN
Proof. By Lemma 4.9b, fg(z) > ju(2), hence
G5() = 1= f5(:) S1—jux) < @
and, since supp g5 € {z € R3: 2| < R; S ME},
oy = [ logPas s [ st
lzl<Fz BN

The second part of (b) then follows immediately from Lemma 4.6b. For part (c), observe
12
that [l Il < pll ol and

|21 —22]

ﬁw‘r = / dzn-- dzg/dzlw 21y eeey zN)( 1 |zz11:zz22|2)¢(217---7ZN)
R3(N—1)
- —2m(Vu, ;t;am)) < 20910l || i
Consequently,

4.7a
lgg e @Ol S ul Vi<l 5 pe™!

The proof of (d) works analogously to the proof of Lemma 4.7d. Finally, using Ho6lder’s
inequality with p =3, ¢ = % in the dz;-integration, we obtain for (e)

||Jlsuppg§(zl - 22)"/}H2
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/dZN..odZQ/dzl]]-suppgg(zl — 2)|¥(21, ey 2N)|?

/dZN"- dzo </ le]lsuppgg(Zl - ZQ)) ’ </d21|1/)(z1, ""ZN)|6> 6
MQE/dzN‘--dzz (/d21|1/1(217 e 2 )|6>b-

Substituting z1 — 21 = (21, %) and using Sobolev’s inequality in the dZi-integral, we

obtain
2
6 6
(/d2’1|’¢(21,...,21\])| )

= <52/d51|¢(($1,5?71)722,--~72N)|6>6

/dzl|vz1¢<(x1>€y1> R2;5 -y % N)|2

IN

N

N
C.O\KO

4
-3 / dz1 (|00 (z1, s 20)P + 21V (21, 20)P)
as Vz, = (04,,eVy,) and dz; = €2 dz;. Hence by Lemma 4.7a,

3 _4 e 15
Isuppg; (21 = 22)0™ @) S w775 (000 (O + (V™ @)1

S PP

Lemma 4.11. For gz as in Definition 3.5, it holds that
(a) IVg5llr2msy S N™ ze,
(b) H(Vw pillop S e(t)N72,
(¢) 1(V195%) - Vipillop S e(t)N 27",

Proof. Denote r = |z| and ' = %. As g5 is spherically symmetric, we define g(r) :=
rgg(r). Consequently,

()] 550

IVgz(r)l = lg5'(r)] = < F@l

G(r)=1—f'(r) and §"(r) = —f"(r) with f from (40). Hence § (R ) =0 by (44) and

Ry

R
F0) = 17(r) - 7 ()] = / Poao| <4 [wilowdo+} [Ustolodp  (15)

T
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by (41) and as fN(p) < p. For 0 <r <p,

RN
B
~ 4.9¢ ~
' (r)] < %II%Hm(mS)/de éaul?’ﬁ/pdp S 1+pP <1
0 ¥

and |g§(r)| < 1, hence |g§’(r)| < % For p <r < RE’ the first term in (45) equals zero,
’ + £ by Lemma 4.10a. Thus

hence |g5’(
R~

V5122 gay = / g5/ (P2 dr + / 97 P2 dr St i S

The two remaining inequalities follow by Lemma 4.6. O

4.3 Estimate of the kinetic energy

In this section, we provide a bound for the kinetic energy of ¢1™(t). The main part
of the kinetic energy results from the microscopic structure, which is localised around
the scattering centres (on the sets C; in Definition 4.1 below). We show that the kinetic
energy in regions where sufficiently large neighbourhoods around these centres (the sets
jj D @j) are cut out is of lower order. To prove this, we will also need the sets B;,
which consist of all N-particle configurations where at most two particles interact (one
of which is particle 7).

Definition 4.1. Let d € (2,5), j,k € {1,..., N} and define

Uk = {(%-- zN) |z -—Zk|<u}
Cjk = {(zl,.. ZN) 1z — 2] < RB}
aj, = {(zl,...,zN): |z; — x| <,ud},

Then the subsets A;, B;, Cj and X;C of R3N are defined as
= U aj ks E]‘ = U a1, éj = U Cjks .7(;3 = U a;”’k
k#j k,l#j k#j k#j
and their complements are denoted by A;, B;, C; and A7, ie. A; = R3N \ A; etc.

Note that the characteristic functions 13, and 1z do not depend on 21, and Ilfz and
1 42 do not depend on any y-coordinate. Hence, 15, and 1, commute with all operators
acting exclusively on the first slot of the tensor product, and 14 a and 147 commute
with all operators acting only the y-coordinates. The main result of this section is given
by the following lemma:

Lemma 4.12.

g O S exp {0+ [ @6)as} (ag + )T+ N

N[
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To prove Lemma 4.12, we need several estimates on the cutoff functions 17, ]IZT
and 1g .

Lemma 4.13. Let A, .7\910 and By as in Definition 4.1. Then

3d_1
2 2

3d_ 1
(@) |1, pillop S eOn® 72, 11, 0upillop S 1B 2y 1% 2,
(0) 115,91l S 15 (100,90 + €|V ¥ll) for any ¢ € L2(R3N),

€ _1
(¢) 1z, Vil v (@) S e()N 72,

1 N
(@) g o] < = (z (180, ]2 +a2||vykw||2>) for any v € LA(RV),

k=2
(¢) |15, 0Nt < ee(t),

(F) gzl eV (1) S ()2 (Neb) .

N
Proof. In the sense of operators, 17 =1 ) 4,, < > la,,,- Hence, for any ¢ € L2(R3N)
k>2

N
|1z pel? < ;(@ [ (20)) ( /R 3 dznw(znﬁnal,k(zhzw) (" (z1) )

42b 2\ Ne—2 34 2
S CONe 1 Ipy |

and the second part of assertion (a) follows analogously with Lemma 4.5a. Part (b) is
2

proven analogously to Lemma 4.10e, noting that (fR3 dz; ]ljl(zl, e zN)> : < N%MQd.

Part (c) follows from this with § —d < —1 and 2d — 3 > 0 and as ||Vy1p>f68x11/1||2 S
¢?(t)e~2 by Lemma 4.7a and

IV4,0, 097 Yl + IV4,0, @ p) YI? S

where we have put y; = (y§1)7y§2)). For assertion (d), note that 1z < Z,]CV:2 13, , hence

||]lglz/J||2 < Z,]CV:2|\]ljk1/)||2, and (e) follows from Lemma 4.7a and since d > 2. Finally,

x1€ER

||lzfqi‘5¢|\2 < / dzy- dy /d:pllAals(xl, cy TN (Sup g (21, ...,ZN)\2> .
R

R3N-1

Note that fR dzq ]lZ‘f (21, ...,xx) < Nu? analogously to above. For the second factor
in the integral, the one-dimensional Gagliardo-Nirenberg-Sobolev inequality [23, Theo-
rem 8.5],

Sup f@) P < 2@ @  for f e H'(R),
implies

SUI}%M (21, o 2n) P < gl O (o, oo 2n) eyl (s yn, - 2n) 2wy -
x1€
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Using Cauchy-Schwarz in the dy; --- dzy-integration, we obtain

£ d 1 15
Nga o™ O < Nulled ou ™ @)lllla v™ @)l

4.7a
g e2(t)N1—d€2d+1 _ eQ(t)(N86)1—d62€2d—1+5(d—1)'

Assertion (f) follows from this because d < 3 and since the last exponent is positive as
0<é<Zandd>2. O

We will use some techniques and intermediate results from [4], which are listed in
Lemma 4.14 below. In [4], one considers a class of interaction potentials Ws., ([4,

Definition 2.2]), which, recalling that u(N,e) = %, can be characterised in the following
way:

Definition 4.2. Let n > 0. The set VV~77 is defined as the set containing all families of
interaction potentials

v:(0,1) = L®(R3 R), p+ v(p),

such that it holds for all u € (0, 1) that [|v(p)|| feors) S ul_SE, v() is non-negative and
spherically symmetric, supp v(u) C {z eER?: 2] < ,wg} and

lim =7 [b(1, v) — b(v)| =0,
n—0
where
)=t [ oz ds [ @ty and b(o) = lim b o)
R3 R2 n—0

Lemma 4.14. Let v € Wgn for some n > 0.

(a) Let he : {z € R® : |z] < &} — R be the unique solution of Ah. = v(u) with
boundary condition h5||z|:5 =0 and denote hﬁ”’ = he(z; — 2;). Then

[Slpes}

11 (V1A [lop S ()N ™ 2e.

(b) Let R < ug such that suppv(pu) C {z € R3: |z] < R}. Let ©. € C®(R3,[0,1]) be
spherically symmetric such that ©.(z) =1 for |z| < R, ©.(2) =0 for |z| > ¢, and
©. is decreasing for R < |z| < e. Denote o) = O©:(z; — 2zj). Then

VO || poome) S

(¢) Let B1 € [0,5]. Define

v(p, ) = /R2 dyllx‘f(yl)IQ/RZ dya X (y2) v, (2,91 — y2))
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and let hg, : [-N~P1,N=P1] — R be the unique solution of %531 = v(p) with
boundary condition hg, (EN~P1) = 0. Then

(12)

1pT (g5, Mlop S ()N

(d) Let R < p B such that suppo(u) C {z € R3: |z2| < R}. For By € [0, 0], let Op, €
C®(R,[0,1]) be an even function such that ©g, (z) = 1 for |z] < R, O, (z) = 0

for |z > NP1 and ©p, is decreasing for R < |x| < N7P1. Denote @(]) :
Op, (z; — x). Then

12 i3
liBa e SN 16T (2505 ) lop S (NS

(e) Let i € L>(R3N) be symmetric in {z1,...,2x}. Then

[(¥, p1p2 (N = D)o(p, 21 — 22)) prp2wd) — (@, fj(v)lfb(wl)\zw»\
SO (K + N7 4 u + (o, ) ).

(f) Let ¥, ¢ € L2(R3N) and ty € {q2,q2pY }. Then

N {0 20, 21— 2)apad )| S el 2 "l + el FraX w9

(9) Let i € L2(R3N) be symmetric in {z1,...,25}. Then

N (0,2} 3 0P o (05, (7S ppaw)| S 2(0) (7).

Proof. Parts (a) and (b) follow from Lemma 4.12, Lemma 4.13 and Corollary 4.14 in [4]
and assertions (c) and (d) are taken from Lemma 4.15 and Corollary 4.16 in [4]. Parts
(e) and (f) are (69)-(71) and (74) in [4], and (g) follows from the estimate of (75) in
[4]. O

Lemma 4.15. Let n > 0. Then the family UE s contained in Wgn'

Proof. Note that p 1fR3 z)dz = 3 a(RZu‘Sﬁ 1) = 4§Tac for some ¢ > 0 by

Lemma 4.9c¢, hence b(u, U~) = b(U ~). The remaining requirements are easily verified. [

Lemma 4.16. Let 0 <n<1— E Then the family Ugfg s contained in WE?]'
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Proof. We drop the p-dependence of the family members and write UE fg instead of
(U~f6)( p). By Lemma 4.9, fﬁ is spherically symmetric, 0 < f/s( z) <1 and RE < ug,

hence (U5 f3llp®s) S pt= 35 and supp U EIFRSREAS R3: 2] ,uﬂ} by Definition 3.4 of
U~ Further

it [usanea @t [ use

R3 B(0)
49b  _ , 20)
= 1/15 / wy(2)ju(2) el rz8ma,
Bu(0)

which yields b(u, Uz fﬁ) = rg8ma Jz2 Ix(y )|* dy and consequently
~f~Y = | ~f~) — 4 e
U £5) = tim b U f) = 7 [ [x(o)l! dy = b (46)

by Lemma 4.9b. This implies
pa 49 =

e ralns — 1
b1, U f5) — b(U3.£3)| = Smals; — 1) R/ Klay s S

Proof of Lemma 4.12. In the following, we abbreviate ¢™N¢(t) = ¢ and ®(t) = ®

EY(t) — £2(1)
= ||]]-A18£C1Q17/)H2 + ||]1A18$1p11/)||2 + 2% <<8$1p1¢a 1A18$1Q1w>> + H]lﬁl ]lﬁlaxﬂﬁw
2
g L0 1P + 0 (~ B+ 5V — By + 252 1l

25t (o, 1, (wft? = 052) 0 )+ 252 (0, 1m0 e, )

+i51 <<¢ 1g, (1 —plpz)U( 21— pips 181¢>>
HO = DR ([ 16,1020 (1= pip) 1)) + [,V 20)0)

)2z — (@, §l0l20) - (@, V]2, (2,0)2)

114, 0z, 1|2
11, 18,00, 001 + (¥, (A, + V(L) — Z)p)

e <<w 1, (wf!? - gm))w» (47)

+2R (02, P19, La, O, 1) (48)

1, D 1011 — 192 (49)
+5 (v [e@) ) - (@,]22))

+ (v VI 200) - (2, VI, (@ 0pe)  (50)
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+8H <<1/1, ]181P1P2Ug2)p1p211817/)>> — 5 (v, [@(21)y)) (51)
+(N - 1R <<ZZ% 15, (p1g2 + CJ1P2)U§2)I)1P21817/’>> (52)
+(N — 1)%«% ]131Q1Q2U§2)Pl]92131¢>>- (53)

We will now estimate these expressions separately. For (47), recall that x° is the ground
state of —Ay, + 5 VJ-( ) with eigenvalue ES, hence (—Ay, + = V(L) — %)pl =0 and
—Ay+ 2 V(Y ) <% > 0 as operator. Using further that ILAl = (lzalv)Q, 1z, = (131)2

and thelr complements commute with —A,, + évi(%) — % and with qi‘i we conclude

(0, (~Ay, + HVE(L) - Byy)
> e (-8 + BV - Bt o)
> |1g1s Vya vl

—ll(vt - Eo)—llLoo(RZ)llllzfqi‘ I?
4.13f

Vv

114, 15, Vg )1 = (1) (N°) 1

because HZT > 1z, in the sense of operators since .»Tlgf D Aj;. Further,

1,16, V0l < 15,1, Vi 1P + g, B, Vs 0
+2/115, 15, Vi oY ¥V w||
114, 15, Vi aF )1 + 2(H)N "2

by Lemma 4.7a and Lemma 4.13c. Together, this implies
47) 2 13,16 Viol + 552 (6, 1, (wft - 007 u)
—e3(t) (N—% + (Neﬁ)l—ﬁ) .
As d < E, it follows that Rﬁ < 2RE < p for sufficiently small p, and consequently

@1 C Zl and (Cl,k N Bl) N (6171 N 81) = for k,l # 1,1 # k. Hence,

15,15 2 1g, 15, = 1 ¢ o8 = ) Lesns = Isy ) ey
k>2
in the sense of operators, which implies
(47) 2 (V= Dlite,Vals gl + 552 1m, (wff® - 002) 15,0
—e2(t) (N’% + (Ngé)lfﬁ)
—e(t) (N‘% - (Ne‘S)l—E)

LV
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by Lemma 4.9d because 1z, € D(V1) and as 1., , = ]]‘|21*22‘<RE' Next, observe that

68)] < 1, O 0] + | (00 010, T, Deumr )|
4%b <<ﬁéq1waaglplﬁ%¢>>l + ||]]-Xlax1p1||op||axlq1¢“
S N0l (G0, + (3 ¥)

by Lemma 4.7a and Lemma 4.13a. Due to |9, p19||* = || ®'||? 2(R)Hp11/)‘|27

@) = |1, eapr > + 100,10 — 19223
S @1+ () %

Applying Lemma 4.8 and Lemma 4.7f to (50) yields [(50)

| S ) (v, ) + (t)e.
Using the identity fﬁ +95= 1 and decomposing 15, = 1 — 1g,

, we estimate (51) as

601 < 3 |{vpme (= D@55 paw ) o) o)
L‘ ]1511/),]91]92(U~9,3 D12l v »’
‘ W, g, pip2(Uzf5)" )p1p2131¢>>’

+(V = 1) |((, 15, 1p2(UsF5) P prpev )

-
INE
[¢]

(0) (£ + N7 (00 ) + 11,0l (U75) i o
+Np1(U595) P p1 [lop

< 2w (’3 T A + e(t)e + 1P 4 m)

for any n < 1-8 by Lemma 4.13e and Lemma 4.6a. Here, we have used that Ugfg € Wgn
for n < 1— 8 by Lemma 4.16, ||UEfE||L1(R3) < p and

U395l 2 rs) = aul_gﬁ/ dzlgs(2)| S u*~°
supp UE

because ‘95(2)’ < gg(ug) < /@Ba,ul’g on supp Uz by Lemma 4.9b and (19). Decomposing
1p, as before and abbreviating Qo := p1p2 and Q1 := p1g2 + ¢1p2, we find

52) < N‘ 15,1, QU Qo ’+N‘ wcleﬁ%onBlw»‘
+N‘ (15,0, QU Q15,0 ) ‘+N‘ 0, @07 Q w)}‘

4.2b 12
S Nl Yl Uz " pillop + N

< () (e(t)e + (v, 70))

<<ﬁ_§Q21/17 P1 UB )plpznl ¢>> ‘
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by Lemma 4.1d and Lemma 4.13e. For the last term, we decompose q = ¢ + pXq®,
hence

|(53)]
< N‘«lglw,qi‘EQQUé«lz)p1p2151¢>>‘+N’<<¢,q1 a5 ¥ U( )plpzﬂzszw»’ (54)

S R R | (55)

+N '«Jlslzb, atarp vy Uéu)mpg Jlslzb» : (56)

where we have exchanged 1 <+ 2 in the second term of (54). As 1p, and 1z, are functions
of (22, ..., 2n) but not of z1,

IVig¥ Ls, ol = 15, Viay &) < [Vigl o] < e(t)

and analogously ||¢y 15,9 < e(t)e by Lemma 4.7a, hence Lemma 4.14f implies (54) <
1
e2(t) (Z—%) ’. By Lemma 4.14a, Uém) = @212)A1h§12>. Integrating by parts in 21 yields

(55) < N|(15, 710} aF .0} O (V1D )pipats, o))

N |((1, 0. aPpY (V10U2) - (Vihl)pipa1s,v))|
N |15, 0.6 aP P OUD(ViRID)ps - Vipi Ls, )
NH(V1h§12))p1||op<||]1§1¢“ (IVOell Lo sy + IV 1p1llop)

+115, V1pY aFvll)

N

< em(2)

P
where we have used Lemmas 4.13e, 4.7a, 4.14b and 4.14c and the fact that

115, VipY 6P vl* = 15,0} 0nal¢1” + laF Vyupy 15, ¢
10z gt 1% + V30 pY 12 ]1 15,117 S € ().

IN

Finally, choosing 31 = f such that pX p}’ Uéu) P pYX = ol (%E(Bm)p)f p} by Lemma

4.14c, we find with the abbreviations Qg := pip2 and Qs := qibq;bp)fspy
—(12
(56) < N] (15,00 Qo 007 (S )>Qomw>)‘
12
+N‘ 181¢7Q2@(12)(dm1 ( ))8m1Q0131¢>>‘

12
+N’ (15,0 Qs O4 ) (oA )>@onglw>>‘
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+N' w,QQ(fm@gm)(;:lh};”)Qw»‘

4.14g 12
< NH(dm RS 0E lop (192,61 + 102,57 lop + 115, Yl £E Ol w))
+e2(t) (o, )

N

e2(t) <N 74P (%)5 + <(z/},ﬁz/))>> .
Thus, [(53)] < ¢2(2) (N_g + (Z%)é + (¥, 7)) ). The estimates for (47) to (53) imply

BV () = €%(1)] 2 1A, Ors a1l — @32y (00, ) + ()17 4 N1
because ,ugs’l < N*E 5u_§ (N€6)§ B >1—fBand p" < N-148 for sufficiently large

1 <1—B. As||1a,05 79[ < (|14, x1q1¢|l+ 102, 5F lloplla ¢l S 114, Oy @1 0] + €2(t)e
by Lemma 4.7a, this proves the claim with Lemma 4.5a. O

4.4 Proof of Proposition 3.2
Also in this proof, we will abbreviate ¢"'* = ¢ and ®(t) = ®. We need to estimate

12)
fract) = o (0 - N - 1R (% (w.50770)). 57
Proposition 3.4 in [4] provides a bound for | $ ag (t)| for almost every ¢ € R. This bound

implies
£ - N0 - DR (4 “”Aw}))'

for almost every t, where we have added the superscript < to the notation to avoid
confusion. The two first terms are given by

| Gae®] < s (O] + |,

@) = [{p e m) - (e Vi @ope) | 5
— NS (g, @i (VI(t,20) — VIt (20,0)pro)
() = — N(N - 1)%<<¢, 2(12>ﬁup>> = _N(N - 1)s<<¢, Z<12>?¢>>. (59)

The last equality in (59) follows by Lemma 4.2c as
[Zm)ﬁt} = [Z(m),plpz(’ﬁ% — Mg) + (p1g2 + qp2) (M — ﬁh)} = {2(12)7 ﬂ (60)

since p1p2Py—1 = pip2Pn = (p1g2 + qip2) Py = 0. For the second term in (57), we
compute with the aid of Lemma 4.3c

v ()
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SLE U [H(t)—iw),ﬂw}} (51)
FN(N —1)S «z/; [(0),60”)] ﬂp» (62)

We expand the pair interaction in (61) as
N
Zwl(jj) — wl(Ll?) + Z (wl(}j) + w/(fj)) + Z wl(jj)
i<j j=3 3<i<j<N
and use
wi® = b(|®(21)|? + [@(w2)[*) = 212 — J=30(|®(a1)* + |@(2) %),

hence by Lemma 4.3b and the symmetry of 1,

(61) = NN - 1)3«1/;,9%12) VIt z1) = VI, (21,0),7] w» (63)
FN(N - 1S <<w g5 |202,7] z/)>> (64)
NV = 23 (6,687 (a7 ) (65)
FON(N — 1)(N - 2)3 <<¢ gg?) [wSB),?] w» (66)
HEN(N = DO = 2 = 3)3 (0.4 [P, 7] v (67)
~N(N = 1)(N - 2)S <<¢,g%12) [b]®(x3)[?, 7] ¢>> : (68)

For (62), note that
H().957| v
= — [H®. ] 7
= AU+ 8o+ 2(VifSD)  ViF 4+ 2(VafLP) - Vaiy
= (wf? — Ul 5 - 29190) - Vire - 229 - Ve,
hence

62) = —AN(V =13 (0. (Vigl?) - Vi) (69)

FN(N - 1)S «w <wf}2> — Ué”)) fé“)?w» . (70)

We now identify some of the terms in \%ag(tﬂ with the expressions in Proposition 3.2:

(63) = 7a(t), (69) = 7(t), (66) + (68) = ~a(t), (67) = 7(t) and (65) = 7y(t). The
remaining terms are v (t), v, (t), (64) and (70). The latter yield

7 (t) + (64) + (70)
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= V= 03( 0 2027 + (w0 - £ [202.7] )
i - o)
- v o)
(g ol ).

Observing that
209 (12 — (w12 — g2 0D gl (2 b (@) P + () ) 1417,
we conclude

Y (£) +(64) + (70) (71)

= N e
|

D3 {(w, (U8 - w ()P +12G@)R)) (1 - 07 )

_ <<¢,g(12)AZ(12)¢>> (72)
~NY ({ b(IB)l? + [B(a) g0 7 ) (73)
—NS((¥, (b = b)(|® (1) + @ () P)7w ) (74)
~N(N - 1)S <<¢ Z<12>m¢>>, (75)

where we have used the fact that %<<w, 2(12)?1/1» =9 <<w, Z(lg)ﬁzw» as in (60). Hence
(72) 4+ (73) + (74) = () and v (t) + (75) = y=(t). ]
4.5 Proof of Proposition 3.3

4.5.1 Proof of the bound for v=()

The main tool for the estimate of v<(t) is Proposition 3.5 from [4], which we apply to
the interaction potential U 3 fg (which, given w, is completely determined by a choice for

w and 5 , cf. Definitions 3.4 and 3.5). Let us therefore first verify that the assumptions
of this proposition are fulfilled, i.e. that

(a) Mg/s — 0, 52/,wng —0and & < g (for ¢ from Definition 3.3),
(b) the family Ugfg is contained in Wﬁn for some n > 0.

We will in the sequel drop the p-dependence of the family members and simply write
Uj/f5 instead of (U~f5)( ). Part (a) is satisﬁed since p?/e — 0 because 8 > 2 > 3.

Further, sQ/MfB = (Ns )B 2-5(2+9) < (Ne ) — 0 because B < and finally £ < g
by assumption. Part (b) is proven in Lemma 4.16.

2
246>
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Proposition 3.5 in [4] implies that for any 8, € (0, 5], 7<(t) and 4;(t) are bounded
by

< < ex 2 tQQS s P _o®
e (O] + i (0)] Sele) p{e (1) + /0 <>d}(|EU§fE<t> &1, (0| )

~ B 1 8
)+ o+ (5) 4 NTE g N ),

where E;ﬁ~ f-(t) and 5{1}5 fg(t) denote the respective quantities corresponding to (9) and
(10) but with w, replaced by UE fg and b by b(UB fg). Note that the energy difference
‘Egﬁfﬁ(t) — gqu)gfg(t)‘ enters only in the estimate of 7, (t), exclusively in the term (24)
in [4, Proposition 3.4], which is given by

—2N(N = DS (<0, aF a3 e 10} pY (U565 Dot gt @) . (77)

To obtain a bound in terms of |E¥(t) — £®(t)| instead of |E;§~f~(t) - Eggfa(tﬂ, we need
5
a new estimate of (77) by means of Lemma 4.12.
Deﬁne [ := Nm%,. We apply Lemma 4. 140 and 4 14d with the choice 51 = 0, i.e.

0y da:2 ho = Uz fﬁ, where py p2 (U~f~)(12)p1 p2 =p p2 U= fﬂ(azl x2). Integrating by
parts and subsequently inserting the identity 1.4, + 154 A before am% 1 yields

(1) 5 N|(laPadv, 867 (R0 wan} ol v
< N‘ 14,02, 47, ¢35 (12)(d$1hé 2 pap i w)}\ (78)
+N |(Ta? a3, 85 (L h6  papt’ 1Alazlq?w)>\ (79)
+N |(0r1af 0, 15,4 P (ad-hy )00 vy pd il w))] (80)
+N << 5 (32-h (12))9(12)291 p¥ aSlg, 0y, qf w)}) (81)
+N | (7 q;% (486 (R0 el al v (82)

To estimate (78), note that 1 4,0,,¢f and flpifq?w are symmetric in {29, ...,2n},
hence Lemma 4.4 implies

—(12) ~ _15
(78) S NILadeatvllpd (o lop (IaFas vl + N2 ihat v )
4.14

S o) (000 P01 + (0, 70 + N 514,00,

by Lemma 4.14c because ||l1q1 Y|l < 1 by Lemma 4.1c and qul @) < |ne] by
Lemma 4.1d. (79) is immediately Controlled by

(79) S ()| L, Bey g P | (0, 710) 2 < e(t) (1L, Ory aP 2 + (0, 05)) -
Similarly, (82) < e(t) (v, ny). To estimate the two remaining terms, let

(s3,t3) € {3, 43), (a3, p3)}
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and 2; S {Z\,Tl} By Lemma 4.13b and Lemma 4.7a,
(80) + (81)
7U2hgl2),e x° X7
S Now gtz 53 (5:ho )80 2w} 1Y Ligl Y|
_1 12)\ =(12 ey
S Ne@u' =3 (I3 (ko )86 13p5 pY Tty

1158 (R85 (280 g pY Y gl

+ 1153 (27585 P 20X Y Oy gty

+ellsd (R0 )86 3py V) Tl vl )
S e(t)N 5Hp2U~fﬁ(5’71 2)||0p

1 —(12 — .
+e(t)Nud A2 oo (150w ) + NEE2(0) + [V, o)
as ||8;151qu1 Y| < ||l HOPH&mq1 || < Nfe(t) by Lemma 4.2b and Lemma 4.1. The last
line is bounded by ¢3(¢ ) 3]~\/'£ by Lemma 4.14c and 4.14d and Lemma 4.7a. Finally,
note that |z1 — x| < RE < uP for (w1 — x9) € supp Ugfg, hence

I3 Uz 51 — w2)llop = D21} <r; (21 = 22) lopl U5 5l e )
4.6d _1 B
S DNV 5l L@ I <rylle@) S e (N 17>

The last bound follows since H1|x17x2|<R§”L2(]R) < ug and as

Tin@)| = [l [ dwhé @l st e - )

R2

R2
/dy1|X () / AUz 5l ey S e 207,
lyl<Rz

IN

where we have used that |y| < RE for (x,y) € supp Ugfg as above and that x°

normalised and ||UB’fEHLoo(R3) < ,ul_?’g. Hence,

(77) < e(t) exp {8@) + /0 t e2(s) ds} (ag@) + (Ne®)1 =8 4 N—1+6 4 Md—é—‘i) . (83)

W=

where we have used Lemma 4.12 and the fact that udféN € < pd-

1_B8
pd=37z,

Combining this new bound for (77) with the remaining estimates of [4, Proposi-
tion 3.5, we find

OIS e(t)exp{e2<t>+ /Otg(s)ds}x
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< NP e, a1-B
X ag(t)—|—<N5> + N +ptTsTe

Where we have chosen f; = 3 and used that —1 + 3’8 —|—£ > 0, ut= B < N-UHBHE,

W N5 < N-UFHE and ep 3 < (Ned)3 < (Ned)1-R, O

4.5.2 Proof of the bound for ~,(t)

By definition of 77 and with Lemma 4.7f, Lemma 4.10b and Lemma 4.1b, we compute

(28)]

<

~

N << <V”(t’ ) - V”(t’ (@1, O))> wvgé’m (plpzﬁzb + (p1g2 + Q1p2)ﬁla> ¢>>'

#8098 (mpa? + (12 + arpo)ii) (V1t21) = VIt (1,0))) w)}’

< NI VIt 20) = V1L, (0, 00))6 095 pallop (17 hop + 177

_ _ N B B
< SONHEET Z o) (Ne) T 2040 < o2
as B — 6(1+ & — )>Oandsmce1+§ >O O
4.5.3 Proof of the bound for ~,(t)

Estimate of (29). By Lemma 4.10b, Lemma 4.1b and Lemma 4.5a and as —1—g+§ <0,

@) S NIy 1821 lop (177op -+ 17 o)
< 23(t) 1—7—&-6 148 < 63(t)€1+ﬁ.
Estimate of (30). Note that by = b(UEfE) = b by (46), hence (30) = 0.

Estimate of (31). By definition of 7 and due to the symmetry of 1),

(31)] < <<w 'pii pzZ(”W» +2 <<w,g~ pLg2im p1Z(l2)w>>‘

12 ~a ~
N2p1gY op (17 o + 17" op )
< |lor (w2 = st (@) + [0(@)P)) o

_8 3 -
(=547 ([prof 2] + N[0l

N

N

< e3(t)N_1_§+551+5 < e3(t)51+5

as a consequence of Lemma 4.10b, Lemma 4.1b, Lemma 4.7e and Lemma 4.5a.
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4.5.4 Proof of the bound for ~.(t)

(32)]

(12)

B
< N2 Lauppgy (21 = 22)0l (| (Vi

(V195 )V 1p1llop [ lop + 11(V19

< NZ?

~

<<]Lsuppg§(zl —22)Y,(Vigz ") - (pzvl(mﬁlb +qm®)Y + V1p1q2?’ﬁa¢) >>‘

)szopHVM?lHopHﬁleop
(12)
B

522@)62,@73]\]%%75 < e2(t)N%+5’5 < E(HN-IHEHS

p2lop I V11

because QE - g > 0 and % — 5 < -1+ E as E > %. In the third step, we have used
Lemma 4.10e, Lemma 4.1b, Lemma 4.7a, Lemma 4.11 and the fact that

4.2b
Viggm®pl| < [|[prmiVi(1 —p1)y]| + [[aam*Vi(1 — p1)y||
4.1a - 4.7a Clte -1
S mop (IVL]] + [Vipi|]) S N-Tee.

~

Ol
4.5.5 Proof of the bound for ~,4(t)
Estimate of (33). With Lemma 4.10b, Lemma 4.1b and Lemma 4.5a,
31 5 N (6o mpad o) ) )
+N3 «w,ggm (p1g2 + qip2) b [|@(3)]*, M w»{
S N¥gSprllopl Bl17w ey (17l + 177
< e3(t)N1+5*§51+5 < (1) (N5‘5)1+£§
analogously to the estimate of v, (¢).
Estimate of (34). Observe first that
7= m’pip2 + W (pr(L — p2) + (1 = p1)pz) = M (p1 + p2) + (" — 2m*)p1ps.
As a consequence,
0] 5 N |(v.o07uf. 7o)
S st 1
NG <<z/;,g§2)w,g3)p17?l“w>>{ (85)
#8051+ (20 )| (36)
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+N3

<<w,gé witDpapy (in® — 2m w))' (87)
We estimate (84) to (87) separately.

(84) =

<<1/), (12) { (13),191103(7% —m3) + (p1g3 + q1p3)(M” — T?L(f)] ¢>>‘ .

By definition of m¢ and m?,

pip3(Mm® —ms) = pipsm? 4 pips (m*(N +1)Py_1 + m(N + 2)Py)
= p1P3fde,
(p1gs + qip3)m

(p1g3 + q1p3)(M* — mY)

This leads to

(84) < N3

<<w,(}3)1/% 9", Lsuppw, (21 — 23) (plp?,ﬁ“bd + (p1g3 + Q1p3)mc>¢>>’

+N3

<<7JJ, 9/%,12)112 (Plpsmd + (p1gs + Q1p3)mc) “’;(}3)1#»‘

(12)

A

~d ~
N9 pallop (17 op + 17°]lop )

% (0§ 4 Loupp (1 = 20)p1lop + 1Pyl
< es(t)N—1+3g—§€1+E < S)etP?

~

by Lemma 4.7, Lemma 4.10b and Lemma 4.1b. In order to estimate (85), observe first
that (12)wu 3 #0 1mphes |29 — 23] < R This can be seen as follows: g( 2) # 0 implies

|21 — 22| < Rj; and wu 13) # 0 implies |21 — 23| < p. Together, this yields
|20 — 23] < |21 — 22| + |21 — 23] < Rg—&-u < QRE‘

Consequently, (85) can be written as

(85)

<<w,g(12)w(13)113m (0 (22 — z3)p1m® d)»‘

= N3

<<pllsuppwp (Zl - 23) (3) (12)w7 ]1B2R (0)(22 — 23)Mm w»‘

IN

N2|lp1 Lsupp (21 = 23)||opllgg||Loo(R3>IIwL13)w||||132RE(0)(22 — z3)m Y

3 93 1+¢—f
< SEONTFEA2-E o B3 <N55>

by Lemma 4.7 and as 25— % —0(1+&— B) > 0. We have used that as in the proof of
Lemma 4.10e,

~ _4 93 ~ ~
Lz 0) (22 = )M YIP S e (100, M + € Vy, Pl

N—2+2§—2B€4§—322(t)

N
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because by Lemma 4.1b, Lemma 4.2b and Lemma 4.7,

10, | S 1M op (|02, 219 | + 102, (1 = pr)woll) S N7 e(t)

and analogously ||V, M| < N~1*¢e~1. The remaining two terms (86) and (87) can
be estimated as

12 ~ ~
86) < NllgS pullop (17 lop + 172" ) lIpreoft ]

S 63(t)N_§+£€1+E < eg(t)sHE,

<<wl(}3)¢’ g(~12)p2]15uppwu (21 — 23)171(7716 - 2ﬁ1a)w>>’

3
N g

(87)

IN

12 ~ ~
N w4 g5 pallopl Loupp (21 = 28)p1llop (172 lop + 2117 op
< e3(t)N’§+5ng < e3(t)51+g,
where we used that £ < % as well as Lemma 4.7, Lemma 4.1b and Lemma 4.10b. O

4.5.6 Proof of the bound for ~.(¢)

Using again Lemma 4.2c, |7.(t)| can be written as

(35)] S V! <<¢,gg?) [w,(f"l),psm(?* 72) + (P34 + q3pa) (7 — 7?1)} 1/)>>‘ . (88)

By definition of 7 and m</%/¢/f we obtain

p3pa (T —7T2) + (p3qa + q3pa) (T —71)
= (p1g2 + q1p2)(p3qa + q3pa) M + (p1ga + qup2)pspam®

+p1p2(p3qs + q3pa)ME + p1papapain’ .

Due to the symmetry of (88) under the exchanges 1 <+ 2 and 3 <« 4, this yields

35)] < N* <<¢,g%12)p1q2 [w£34),p3fJ4ﬁ”Lc +p3p4ﬁ1d} 1/)>>‘ (89)
+N* <<1/17 ggQ)pH?z [wft34),p3qw?le + p3p4ﬁ1f} ¢>>‘ ; (90)

where by Lemma 4.7e, Lemma 4.10b and Lemma 4.1b,

89) < N* <<1/1,w£34)p39§2)p1q2(q4ﬁf+p4ﬁ%d)1/)>>‘

+N* «1/1 g[(;l P p1ga(qain® + p4md)p3w,(f’4)w>> '

A

12 ~ ~

N 3wl 198> prllop (117 lop + 7% op
B

< es(t)N—§+3§81+E < e3(t)51+5

as £ < . Analogously, one derives the same bound for (90). Ol

[SEe
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4.5.7 Proof of the bound for /()

Finally, as a consequence of Lemma 4.1, Lemma 4.5a and Lemma 4.10,

(36)] < N?

(.90 [paten o+ ) )

+N?

(.98 floten ]

12 . . 12 .
S Ny (P26 lop (172l + 17 lop ) + llg P wlllezmv )
S e3(t)N_§+551+E + (e < E(t)e.
O
4.6 Proof of Proposition 3.4
Using Lemma 4.1b and Lemma 4.10b, we estimate
12) 12 ~ . _B 1.3
NV = DR (09876 ) < N190 7 pillp (171 op + 177 op) S e(NE 22147,
O
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Derivation of the 2d Gross—Pitaevskii equation for strongly
confined 3d bosons

Lea Bofimann*

Abstract

We study the dynamics of a system of N interacting bosons in a disc-shaped trap,
which is realised by an external potential that confines the bosons in one spatial
dimension to a region of order €. The interaction is non-negative and scaled in such
a way that its scattering length is of order (N/g)~!, while its range is proportional
to (N/e)~# with scaling parameter 3 € (0, 1]. The choice 8 = 1 corresponds to the
physically relevant Gross—Pitaevskii regime.

We consider the simultaneous limit (N,e) — (00,0) and assume that the system
initially exhibits Bose-Einstein condensation. We prove that condensation is pre-
served by the N-body dynamics, where the time-evolved condensate wave function
is the solution of a two-dimensional non-linear equation. The strength of the non-
linearity depends on the scaling parameter 8. For g € (0,1), we obtain a cubic
defocusing non-linear Schrodinger equation, while the choice 5 = 1 yields a Gross—
Pitaevskii equation featuring the scattering length of the interaction. In both cases,
the coupling parameter depends on the confining potential.

1 Introduction

Since two decades, it has been experimentally possible to realise quasi-two dimensional
Bose gases in disc-shaped traps [14, 31, 33]. The study of such systems is physically
of particular interest since they permit the detection of inherently two-dimensional ef-
fects and serve as models for different statistical physics phenomena [17, 18, 35]. In
this article, our aim is to contribute to the mathematically rigorous understanding of
such systems. We consider a Bose-Einstein condensate of N identical, non-relativistic,
interacting bosons in a disc-shaped trap, which effectively confines the particles in one
spatial direction to an interval of length . We study the dynamics of this system in the
simultaneous limit (IV,e) — (00, 0), where the Bose gas becomes quasi two-dimensional.
To describe the N bosons, we use the coordinates

z = (z,y) € R*,

where x denotes the two longitudinal dimensions and y is the transverse dimension.
The confinement in the y-direction is modelled by the scaled potential E%VL (%) for

*Fachbereich Mathematik, Eberhard Karls Universitat Tiibingen
Auf der Morgenstelle 10, 72076 Tiibingen, Germany
E-mail: lea.bossmann@uni-tuebingen.de
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0 < e < 1 and some V+ : R — R. In units such that 4 =1 and m = %, the Hamiltonian
is given by

N

Host) =Y <Aj + évi (%) + v'<t,zj)> + D wuplz—z), (1)

j=1 1<i<j<N

where A denotes the Laplace operator on R and VI : R x R® — R is an additional
external potential, which may depend on time. The interaction w, s between the par-
ticles is purely repulsive and scaled in dependence of the parameters N and €. In this
paper, we consider two fundamentally different scaling regimes, corresponding to differ-
ent choices of the scaling parameter 5 € R: § € (0,1) yields the non-linear Schrédinger
(NLS) regime, while § = 1 is known as the Gross—Pitaevskii regime. Making use of the

parameter
€

pi= N )
the Gross-Pitaevskii regime is realised by scaling an interaction w : R? — R, which is
compactly supported, spherically symmetric and non-negative, as

wn2) =g (2). @)

For the NLS regime, we will consider a more generic form of the interaction (see Defini-
tion 2.2). For the length of this introduction, let us focus on the special case

wp(2) = 1= w () (3)

with 8 € (0,1). Clearly, (2) equals (3) with the choice § = 1. Both scaling regimes
describe very dilute gases, and we comment on their physical relevance below.

The N-body wave function ¢™V¢(t) € L2(R3V) at time ¢ € R is determined by the
Schrédinger equation

iV (8) = Hup ()™= (1)
PNe(0) = g *

with initial datum 10(])\[’6 € L2(R?) := @ L?(R?). We assume that this initial state

(4)

sym
exhibits Bose—Einstein condensation, i.e., that the one-particle reduced density matrix
1 N
’7;127,5 Of w() ,87
0
1 N, N,
Yode = Tra, vl ) . (5)
0

converges to a projection onto the so-called condensate wave function 5 € L?(R3). At
low energies, the strong confinement in the transverse direction causes the condensate
wave function to factorise in the limit ¢ — 0 into a longitudinal part ®y € L?(R?) and
a transverse part x° € L?(R),

©5(2) = Po(z)x" ().
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1

The transverse part x° is given by the normalised ground state of —5—52 =+ ?VL(%),
which is defined by

2 .
(< + 3V () v = By

Here, Ey denotes the minimal eigenvalue of the unscaled operator —;—; + VL, corre-
sponding to the normalised ground state y. The relation of x* and yx is

X(y) = Zzx (%) - (6)

In this paper, we derive an effective description of the many-body dynamics ¥V¢(t).
We show that if the system initially forms a Bose—Einstein condensate with factorised
condensate wave function, then the dynamics generated by H,, g(t) preserve this prop-
erty. Under the assumption that

lim TI'L2 (R3) =0 5

(N,e)—(0,0)

1
R B
0

where the limit (N,e) — (00, 0) is taken along a suitable sequence, we show that

lim  Trpages) |1 — [ (ONEE ()] =0

(N,&)—(00,0)
with time-evolved condensate wave function ¢°(¢) = ®(¢)x°. While the transverse part
of the condensate wave function remains in the ground state, merely undergoing phase
oscillations, the longitudinal part is subject to a non-trivial time evolution. We show
that this evolution is determined by the two-dimensional non-linear equation

i20(t,z) = (—Ay + VIt (2,0)) + bg|®(t, 2)[2) D(t, ) =: hs(t)D(t, )

(7)
®(0) = .

The coupling parameter bg in (7) depends on the scaling regime and is given by

T / X'y for B € (0,1),
b = k
SM/ Ix(y)|* dy for B = 1,
R

where a denotes the scattering length of w (see Section 3.2 for a definition). The evolu-
tion equation (7) provides an effective description of the dynamics. Since the N bosons
interact, it contains an effective one-body potential, which is given by the probability
density N|®(t)|? times the two-body scattering process times a factor [; [x°(y)|* dy from
the confinement. At low energies, the scattering is to leading order described by the
s-wave scattering length a, g of the interaction w, g, which scales as a, g ~ p for the
whole parameter range 3 € (0,1] (see [11, Lemma A.1]) and characterises the length
scale of the inter-particle correlations.

For the regime 3 € (0,1), we find a, 3 < 1P, ie., the scattering length is negligible
compared to the range of the interaction in the limit (IV,e) — (00,0). In this situation,
the first order Born approximation 87a, 3 ~ [ps w,,5(2) dz is a valid description of the
scattering length and yields above coupling parameter bg for 5 € (0,1).

246



B.1. 2d Gross—Pitaevskii equation for strongly confined 3d bosons

In the scaling regime § = 1, the first order Born approximation breaks down since
au1 ~ f, which implies that the correlations are visible on the length scale ;1 of the
interaction even in the limit (N,e) — (00,0). Consequently, the coupling parameter by
contains the full scattering length, which makes (7) a Gross-Pitaevskii equation.

Physically, the scaling 8 = 1 is relevant because it corresponds to an (IV,e)-in-
dependent interaction via a suitable coordinate transformation. The Gross—Pitaevskii
regime is characterised by the requirement that the kinetic energy per particle (in the
longitudinal directions) is of the same order of magnitude as the total energy per particle
(without counting the energy from the confinement or the external potential). For N
bosons which interact via a potential with scattering length A in a trap with longitudinal
extension L and transverse size €L, the former scales as Eyj, ~ L~2. The latter can be
computed as Figial ~ Agzq ~ AN/(L3), where p34 denotes the particle density. Both
quantities being of the same order implies the scaling condition A/L ~ ¢/N.

The choice A ~ 1 entails L ~ N/e, which corresponds to an (NN, ¢)-independent
interaction potential. Hence, to capture N bosons in a strongly asymmetric trap while
remaining in the Gross—Pitaevskii regime, one must increase the longitudinal length scale
of the trap as N/e and the transverse scale as N. For our analysis, we choose to work
instead in a setting where L ~ 1, thus we consider interactions with scattering length
A ~ ¢/N. Both choices are related by the coordinate transform z +— (¢/N)z, which
comes with the time rescaling ¢ — (¢/N)?t in the N-body Schrédinger equation (4).

For the scaling regime 3 € (0, 1), there is no such coordinate transform relating w,, 3
to a physically relevant (NN, e)-independent interaction. We consider this case mainly
because the derivation of the Gross—Pitaevskii equation for § = 1 relies on the cor-
responding result for 5 € (0,1). The central idea of the proof is to approximate the
interaction w,, by an appropriate potential with softer scaling behaviour covered by the
result for 8 € (0, 1), and to control the remainders from this substitution. We follow the
approach developed by Pickl in [30], which was adapted to the problem with strong con-
finement in [4] and [5], where an effectively one-dimensional NLS resp. Gross—Pitaevskii
equation was derived for three-dimensional bosons in a cigar-shaped trap. The model
considered in [4, 5] is analogous to our model (1) but with a two-dimensional confine-
ment, i.e., where (z,y) € R*2. Since many estimates are sensitive to the dimension
and need to be reconsidered, the adaptation to our problem with one-dimensional con-
finement is non-trivial. A detailed account of the new difficulties is given in Remarks 4
and 5.

To the best of our knowledge, the only existing derivation of a two-dimensional evo-
lution equation from the three-dimensional N-body dynamics is by Chen and Holmer
in [8]. Their analysis is restricted to the range g € (0, %), which in particular does not
include the physically relevant Gross—Pitaevskii case. In this paper, we extend their
result to the full regime 8 € (0,1] and include a larger class of confining traps as well
as a possibly time-dependent external potential. We impose different conditions on the
parameters N and e, which are stronger than in [8] for small § but much less restric-
tive for larger 8 (see Remark 3). Related results for a cigar-shaped confinement were
obtained in [4, 5, 9, 22].

Regarding the situation without strong confinement, the first mathematically rig-
orous justification of a three-dimensional NLS equation from the quantum many-body
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dynamics of three-dimensional bosons with repulsive interactions was by Erdés, Schlein
and Yau in [11], who extended their analysis to the Gross-Pitaevskii regime in [12]. With
a different approach, Pickl derived effective evolution equations for both regimes [30],
providing also estimates of the rate of convergence. Benedikter, De Oliveira and Schlein
proposed a third and again different strategy in [3], which was then adapted by Bren-
necke and Schlein in [6] to yield the optimal rate of convergence. For two-dimensional
bosons, effective NLS dynamics of repulsively interacting bosons were first derived by
Kirkpatrick, Schlein and Staffilani in [23]. This result was extended to more singular
scalings of the interaction, including the Gross—Pitaevskii regime, by Leopold, Jeblick
and Pickl in [20], and two-dimensional attractive interactions were covered in [10, 21, 24].

The dimensional reduction of non-linear one-body equations was studied in [2] by
Ben Abdallah, Méhats, Schmeiser and Weishdupl, who consider an n + d-dimensional
NLS equation with a d-dimensional quadratic confining potential. In the limit where the
diameter of this confinement converges to zero, they obtain an effective n-dimensional
NLS equation. A similar problem for a cubic NLS equation in a quantum waveguide,
resulting in a limiting one-dimensional equation, was covered by Méhats and Raymond
in [28].

The remainder of the paper is structured as follows: in Section 2, we state our as-
sumptions and present the main result. The strategy of proof for the NLS scaling is
explained in Section 3.1, while the Gross—Pitaevskii scaling is covered in Section 3.2.
Section 3.3 contains the proof of our main result, which depends on five propositions.
Section 4 collects some auxiliary estimates, which are used in Sections 5 and 6 to prove
the propositions for 8 € (0,1) and 8 = 1, respectively.

Notation. We use the notations A < B, A 2 B and A ~ B to indicate that there
exists a constant C' > 0 independent of E,N,t,wéV’E,CDO such that A < CB, A > CB
or A = CB, respectively. This constant may, however, depend on the quantities fixed
by the model, such as V+, x and VII. Besides, we will exclusively use the symbol = to
denote the weighted many-body operators from Definition 3.1 and use the abbreviations

()= Codpeany s M= Hllz@avy andl-flop := [l (2 (rany)-

Finally, we write 2+ and 2~ to denote (z + o) and (x — o) for any fixed & > 0, which is
to be understood in the following sense: Let the sequence (N, en)neny — (00,0). Then

f(N,e) SN & forany o >0, f(Np,en) <N, *1 for sufficiently large n,
f(N,e) <e® & forany o >0, f(Np,e,) Jel™? for sufficiently large n,
f(N,e) Su® & forany o >0, f(Ny,en) S p= 9 for sufficiently large n .

Note that these statements concern fixed o in the limit (IV,e) — (00, 0) and do in general
not hold uniformly as o — 0.

2 Main result

Our aim is to derive an effective description of the dynamics ¢™V¢(¢) in the simultaneous
limit (N,e) — (00,0). To this end, we consider families of initial data wéV’E along
sequences (N, e,) with the following two properties:
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Definition 2.1. Let {(Nn,en)},eny € N x (0,1) such that lim, o0 (Np,en) = (00,0),
and let py, := €, /N,. The sequence is called

e (O-)admissible, if
S}

. € _
lim % = N, 1 =0,
n—o0 /Ln

o (I-)moderately confining, if

r

. € _
lim —% = Nyel ™' = 00.
n—oo /_,Ln

Our result holds for sequences (N, ¢) that are (©,T')-admissible with parameters

1 3
5_F<®<5 g€ (0,1), )

1<I'<O <3 5=1.

To make a clear distinction between the cases § € (0,1) and 8 = 1, we use the following
notation:

« Be(0,1): (©,1)= (4
e 3=1: (@,F)lz(ﬁ,’y

By imposing the admissibility condition, we ensure that the diameter € of the confin-
ing potential does not shrink too slowly compared to the range ;i of the interaction.
Consequently, the energy gap above the transverse ground state, which scales as 72,
is always large enough to sufficiently suppress transverse excitations. Equivalently, the

condition can be written as

). Hence, (8) implies 1 < § < 3.

Sl

~—

. Here, (8) implies 1 <y < ¥ < 3.

20

— <1 Be(0,1)
e® -1 1P
—=Ne"T' K1 & 9 (9)
H €

— <1 pg=1

7

for sufficiently large NV and small €. Clearly, it is necessary to choose © > 1, and the
condition is weaker for larger ©. In the proof, we require the admissibility condition
to control the orthogonal excitations in the transverse direction (see Remark 4), which
results in the respective upper bound for ©. The threshold ® = 3T admits N ~
£72, which has a physical implication: if the confinement is realised by a harmonic
trap V1 (y) = w?y?, the frequency w. of the rescaled oscillator e =2V 1 (y/¢) scales as
we = we™?. Hence, ® = 3% means that the frequency of the confining trap grows
proportionally to NN.

The moderate confinement condition implies that, for sufficiently large IV and small €,

1P
L — <1 pBe(0,1)
T= Nl Tl & € (10)
P w1 g=1.
I
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N1 1 N1

() B=3% (d)p=1

Figure 1: Best possible coverage of the parameter space N x [0, 1] for some exemplary
choices of 5 € (0,1) and for 5 = 1. We chose the least restrictive conditions satisfying
Definition 2.1, i.e., (0,I')3 = (%_,%) and (©,T); = (3,17). To make the moderate
confinement condition I' = 17 for 8 = 1 visible, we implemented it as I' = 1.01.
Theorem 1 applies in the dark grey area, while the white region is excluded from our
analysis. In the light grey part, we expect the dynamics to be effectively described by a

free evolution equation. Plotted with Matplotlib [19].

Moderate confinement means that & does not shrink too fast compared to p”. For
B € (0,1), it implies that the interaction is always supported well within trap. This is
automatically true for 8 = 1 because u/c = N~!, but we require a somewhat stronger
condition to handle the Gross—Pitaevskii scaling (see Remark 5). This leads to the
additional moderate confinement condition for 8 = 1 with parameter v > 1, which is
clearly a weaker restriction for smaller . The upper bound I' < © is necessary to ensure
the mutual compatibility of admissibility and moderate confinement.

From a technical point of view, the moderate confinement condition allows us to
compensate for certain powers of e ! in terms of powers of N1, while the admissibility
condition admits the control of powers of N by powers of €.

To visualise the restrictions due to admissibility and moderate confinement, we plot
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in Figure 1 the largest possible subset of the parameter space N x [0, 1] which can be
covered by our analysis. A sequence (N,e) — (00, 0) passes through this space from the
top right to the bottom left corner. The two boundaries correspond to the two-stage
limits where first N — oo at constant ¢ and subsequently € — 0, and vice versa. The
edge cases are not contained in our model.

The sequences (N,e) — (00, 0) within the dark grey region in Figure 1 are covered
by our analysis and yield an NLS or Gross—Pitaevskii equation, respectively. Naturally,
these restrictions are meaningful only for sufficiently large N and small €, which im-
plies that mainly the section of the plot around the bottom left corner is of importance.
The white region in figures (a) to (c) is excluded from our analysis by the admissibility
condition. In figure (d), there is an additional prohibited region due to moderate con-
finement. Note that Chen and Holmer impose constraints which are weaker for small
B and stronger for larger § € (0, %), which are discussed in Remark 3 and plotted in
Figure 2.

The light grey region in Figure 1, which is present for 8 € (0,1), is not contained
in Theorem 1 as a consequence of the moderate confinement condition. We expect the
dynamics in this region to be described by an effective equation with coupling parameter
bz = 0 since it corresponds to the condition ¢/ 1? < 1, implying that the the confinement
shrinks much faster than the interaction. Consequently, the interaction is predominantly
supported in a region that is essentially inaccessible to the bosons, which results in a free
evolution equation. For § < % and a cigar-shaped confinement by Dirichlet boundary
conditions, this was shown in [22].

As mentioned above, we will consider interactions in the NLS scaling regime 5 €
(0,1) which are of a more generic form than (3).

Definition 2.2. Let 3 € (0,1) and 1 > 0. Define the set Wg,, as the set containing all
families
wyp:(0,1) = LPRR), > w,g,

such that for any p € (0,1)

(@) [lwupllpemsy S =3,

(b) w,,p is non-negative and spherically symmetric,

(c) 0p = diam(suppwy, g) ~ p°,
d A 1 \bg e ~ lim bgwe =0,
(@) Jim g ew) = Jim b @W‘
where
bs.N.2 (W) ::N/wu,ﬂ(z) dz/XE(y)|4dy:M_1/wu,5(z) dz/|X(y)|4dy.
R3 R R3 %

In the sequel, we will abbreviate bg n . (w,,3) = bg,N,e-

Condition (d) in Definition 2.2 regulates how fast the (N, e)-dependent coupling pa-
rameter bg n . converges to its limit as (IV,e) — (00, 0). For the special case (3), we find
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that bgne = w1 rs) [g IX(¥)|* dy is independent of N and &, hence this interaction
is contained in Wg, for any choice of n > 0.

Throughout the paper, we will use two notions of one-particle energies:

e The “renormalised” enerqy per particle: for ’lz) c D(Hu,ﬂ(t)%)a
Bl (8) = % (6, Hup(08) — 2, (11)

where F( denotes the lowest eigenvalue of —% +V+(y). By rescaling, the lowest

. 2 o
eigenvalue of —f—yQ + 5%VJ‘(%) is given by %

e The effective energy per particle: for ® € H'(R?) and b € R,

EX(t) = <<1>, (—Ax + VI, (2,0)) + gvm?) q>> (12)

L2(R?)
We can now state our assumptions:

A1l Interaction potential.

e 3€(0,1): Let w,g € Wg, for some n > 0.

e 3=1: Let w,, be given by (2) with w € L>(R3, R) spherically symmet-
ric, non-negative and with suppw C {z € R?: |2| < 1}.

A2 Confining potential. Let V1 : R — R such that —Cf‘l—; + V1 is self-adjoint and has a

non-degenerate ground state y with energy Fy < inf O‘ess(fAy+VJ‘). Assume that
the negative part of V- is bounded and that x € Cg(R), i.e., x is bounded and twice
continuously differentiable with bounded derivatives. We choose x normalised and
real.

A3 External field. Let VI : R x R — R such that for fixed z € R3, VII(, 2) € CY(R).
Further, assume that for each fixed ¢t € R, VI(z,-), VIi(,-) € L®(R%) NC* (R?) and
oy VIt ), 9,VI(t,-) € L=(R3).

A4 Initial data. Let (N,e) — (00,0) be admissible and moderately confining with
parameters (0,I")s as in (8). Assume that the family of initial data w(])\/ < e
D(H,,5(0)) N L2 (R3N) with Hzpév’€||2 =1, is close to a condensate with condensate
wave function ¢§ = ®ox° for some normalised ®y € H*(R?), i.e.,

lim Tr 0. = [0x°) (@ox°]| = 0. 13
(e g T2 @) [ Vyne = [P0X") (07 (13)
Further, let
(N,£)—(c0,0) B bg

In our main result, we prove the persistence of condensation in the state ¢°(t) = ®(t)x*

for initial data wév © from A4. Naturally, we are interested in times for which the
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condensate wave function ®(t) exists, and, moreover, we require H*(R?)-regularity of
®(t) for the proof. Let us therefore introduce the maximal time of H*(R?)-existence,

o i=sup {t e R{ : 1®(t)] ga(rey < o0}, (15)

where ®(t) is the solution of (7) with initial datum ®q from A4.

Remark 1. The regularity of the initial data is for many choices of VIl propagated by the
evolution (7). For several classes of external potentials, global existence in H*(R?)-sense
and explicit bounds on the growth of ||®(t)|| g4 (g2) are known:

e The case without external field, VIl = 0, was covered in [34, Corollary 1.3]: for
initial data ® € H*(R?) with k > 0, there exists Cj, > 0 depending on 1ol w2y
such that

a5+
D) i (zy < Cr(L+ [E) T (| Dol ey
for all ¢ € R. If the initial data are further restricted to the set

ok = {f e LX) [ fllge = > [0 fllrame < oo} C HY(R?),

laf+18I<k

the bound is even uniform in t € R. This is, for & € 3¥, there exists C' > 0 such
that
@) |k (rey < C

for all t € R [7, Section 1.2].

e For time-dependent external potentials VII(z, (z,0)) that are at most quadratic in
x uniformly in time, global existence of H*(R?)-solutions with double exponential
growth was shown in [7, Corollary 1.4] for initial data ®q € %*:

Assume that VI(-,(-,0)) € LS (R x R?) is real-valued such that the map z
VIt (z,0)) is C>°(R?), the map x +— V (¢, (x,0)) is C>°(R?) for almost all t € R,
and the map ¢ — sup;|<; V¢, (2,0))] is L>°(R). Moreover, let 92V (-, (-,0)) €
L®(R x R2) for all o € N2 with |a| > 2. Let &y € X¥(R?) with k¥ > 2. Then there

exists a constant C' > 0 such that
1P ()| e (gey < Ce™

for all ¢ € R. In case of a time-independent harmonic potential and initial data
®y € ¥F, this can be improved to an exponential rather than double exponen-
tial bound. Note, however, that unbounded potentials V”(t, z) are excluded by
assumption A3.

Theorem 1. Let 3 € (0,1] and assume that the potentials w,, g, V+oand VI satisfy Al
— A3. Let ’QZJ(])V’E be a family of initial data satisfying A4, let YvN=(t) denote the solution

of (4) with initial datum wé\]’e, and let 77’(&113,6(1‘/) denote its one-particle reduced density
matriz as in (5). Then for any 0 <T <T7},
lim sup Tr fyfz;llzf,s(t) _ |q)(t)xs><q)(t)xsl —_ 0, (16)

(N,E)—)(O0,0) te [O,T]
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lim sup EZ’Z’UN’S(t) -0 = 0, 17
(N,e)—(00,0) tG[O,T] wh ( ) bﬂ ( ) ( )

where the limits are taken along the sequence from A4. Here, ®(t) is the solution of (7)
with initial datum ®(0) = ®g from A4 and with coupling parameter

lim  bye 0.1),
(N,E)E)I(loo,O) 8.N, for B € (0,1)

- 87m/Rx(y)I4dy for B =1

with bg N from Definition 2.2.

bs (18)

Remark 2. (a) By [15, Theorem 1], the ground state x° of —% + ZVE(2) is expo-
nentially localised on a scale of order ¢ for any potential V- satisfying A2. Valid

examples for V1 are harmonic potentials or smooth, bounded potentials that ad-
mit at least one bound state below the essential spectrum.

(b) Due to assumptions A7-A8, the Hamiltonian H,, g(t) is for any ¢ € R self-adjoint on
its time-independent domain D(H,, g). Since we assume continuity of ¢ — Vi) e
L(L*(R?)), [16] implies that the family {H, g(t)}, p generates a unique, strongly
continuous, unitary time evolution that leaves D(H,, g) invariant. By imposing the
further assumptions on V”, we can control the growth of the one-particle energies
and the interactions of the particles with the external potential. Note that it is
physically important to include time-dependent external traps, since this admits
non-trivial dynamics even if the system is initially prepared in an eigenstate.

(c) Assumption A4 states that the system is initially a Bose—Einstein condensate
which factorises in a longitudinal and a transverse part. In [32, Theorems 1.1 and
1.3], Schnee and Yngvason prove that both parts of the assumption are fulfilled by
the ground state of H,, 5(0) for 3 =1 and V(0 2) = V(z) with V locally bounded
and diverging as |z| — oco.

(d) The situation of a strong confinement in two directions is studied in [4, 5]. Our
proof can be understood as an adaptation of these works, and we summarise the
mathematical differences in Remarks 4 and 5.

(e) Our proof yields an estimate of the rate of the convergence (16). Since we did not
focus on obtaining an optimal rate, we do not state it explicitly. However, it can
be recovered from the bounds in Propositions 3.6 and 3.11 by optimising over the
parameters.

Remark 3. The sequences (N,e) — (00,0) covered by Theorem 1 are restricted by
admissibility and moderate confinement condition (Definition 2.1 and (8)). To conclude
this section, let us discuss these constraints:

e By (8), the weakest possible constraints are given by (0,I')5 = (%_, %) for B €
(0,1) and (©,T'); = (3,17) for B = 1. Instead of choosing these least restrictive
values, we present Theorem 1 and all estimates in explicit dependence of the
parameters © and I', making it more transparent where the conditions enter the
proof. Moreover, the rate of convergence improves for more restrictive choices of
the parameters I' and ©.

254



B.1. 2d Gross—Pitaevskii equation for strongly confined 3d bosons

e In [8], Chen and Holmer prove Theorem 1 for the regime 3 € (0, %) under different
assumptions on the sequence (N, ¢). The subset of the parameter range N x [0, 1]
covered by their analysis is visualised in Figure 2.

While no admissibility condition is required for their proof, they impose a moderate
confinement condition which is equivalent to our condition for § € (07 131] For
larger B € (%, %), they restrict the parameter range much stronger!, and their
condition becomes so restrictive with increasing g that it limitates the range of

scaling parameters to 8 € (0, 2).

e No restriction comparable to the admissibility condition is needed for the ground
state problem in [32]. Given the work [28] where the strong confinement limit of
the three-dimensional NLS equation is taken, this suggests that our result should
hold without any such restriction. However, for the present proof, the condition
is indispensable (see Remarks 4 and 5).

e As argued above, the moderate confinement condition for 8 € (0,1) is optimal,
in the sense that we expect a free evolution equation if p?/e — co. For g = 1,
we require that p/e7 — 0 for v > 1. Note that the choice v = 1 would mean no
restriction at all because u/e = N~1. Our proof works for v that are arbitrarily
close to 1. However, since the estimates are not uniform in ~, the case v = 1 is
excluded.

e Although no moderate confinement condition is required to derive the one-dimen-
sional Gross—Pitaevskii equation in the cigar-shaped case [5], our analysis covers a
considerably larger subset of the parameter space N x [0, 1] than is included in [5].

5
In that work, the admissibility condition is given as Ne5 — 0, which is much
more restrictive than our condition.

3 Proof of the main result

The proof of Theorem 1, both for the NLS scaling 8 € (0,1) and the Gross—Pitaevskii
case = 1, follows the approach developed by Pickl in [30]. The main idea is to avoid
a direct estimate of the differences in (16) and (17), but instead to define a functional

af, ,  Rx DA®%) x LR = Ry, (6,9M(0),0°(8) = aF,,, (L 9V4(1), 67 (1))
in such a way that

I S, (V) 9°(1) =0 16) A (17).
(N:E)gr(looyo) afku,ﬁ( Y ( >’('0 ( )) — ( ) ( )

Physically, the functional a , ; measures the part of the wave function ™'*(t) that
remains outside the condensed phase ©°(t), and is therefore also referred to as a counting

'More precisely, Chen and Holmer consider sequences (N, ¢) such that N > e~ 2¥®) where v(B) =

max{lgﬂﬁ, 5ﬂ'1/45/6,1/212, ﬁ/12+2/6, Bﬁl/d}. For the regime 8 € (0 this implies v(8) = 12—ﬂ ,

equivalent to the choice I' = 3 L and thus exactly our moderate confinement condition. For 8 € (= i1 g], one

2, which is

obtains v(8) = Blt;/;, which corresponds to the choice I' = ﬁ > %, and for 8 € (%, %), one concludes
5

_ 58/4-1/12
V(ﬁ)—va 6153

for smaller I', we conclude that our condition is weaker for g > %

corresponding to I' = > % Since the moderate confinement condition is weaker
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0 N-1 1 0 N-1 1
(c)d=2,5=g (d)d=2,8=3

Figure 2: Coverage of the parameter space N x [0,1] for some exemplary choices of
B € (0,2). In [8], Chen and Holmer cover sequences within the dark grey region,
while the white and light grey area are excluded. In comparison, Theorem 1 applies to
all sequences enclosed between the black dashed line and the black dotted line, where
the dashed line corresponds to the admissibility and the dotted line to the moderate
confinement condition. Limiting sequences within the light grey region are expected to
yield a free effective evolution equation. Plotted with Matplotlib [19].

functional. The index £ is a parameter which is required for technical reasons and will
be defined below. The index w,, 5 indicates that the evolutions of 1™V¢(t) and ¢°(t) are
generated by H,, 3(t) and hg(t), which depend, directly or indirectly, on the interaction
wy, 8. To define the functional aZ w50 We recall the projectors onto the condensate wave

function that were introduced in [29, 22]:

Definition 3.1. Let ¢°(t) = ®(t)x°, where ®(¢) is the solution of the NLS equation (7)
with initial datum ®( from A/ and with x° as in (6). Let

p = 1" (1) (¢ ()],

where we drop the ¢- and ¢-dependence of p in the notation. For ¢ € {1,..., N}, define
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the projection operators on L2(R3")

pj=1l®---®1lepR1®---®1 and g¢j:=1-p;.
j-1 N=j

Further, define the orthogonal projections on L?(R?)

p® = 12(1)) (2(t)| ® 112(m), ¢* = 1po@s) — p°,
PX = Lr2mey ® X°) (X7, ¢ = 1pams) — p¥,
and define pf, q;b, p}g and qf on L2(R3M) analogously to p; and ¢;. Finally, for
0 <k < N, define the many-body projections

Pr= (a1 arPrt1 " PN) gy = Z HQijl

JC{1,..,N}jeJ 1¢J
|T[=k

and P, = 0 for k < 0 and k > N. Further, for any function f : Ng — Rj and d € Z,
define the operators f, fg € £ (LQ(R3N)) by

R N R N—d
F=>_f®)Pe,  far=>_ f(i+d)PF;.
k

=0 j=—d

Clearly, ZkN:o P, = 1. Besides, note the useful relations p = p®pX°, ¢®q = ¢%,
¢ q=¢¥ and ¢ = ¢¥ + ¢®pX" = ¢® + p®¢*°. In the sequel, we will make use of the
following weight functions:

Definition 3.2. Define

n:No — Rf, k—n(k) =
and, for some ¢ € (0, 3),

n(k) for k > N1726

m: N — RT, m(k) .=
0 (k) %<N71+5k—|—]\775> else.

Further, define the weight functions mf : Ng — R, # € {a,b, ¢, d, e}, by
m®(k) == m(k) —m(k+ 1), mP(k) := m(k) —m(k +2),
me(k) == m®(k) —m*(k+ 1), ma(k) := m*(k) —m®(k + 2),
mé(k) == mP(k) —mP(k+1),  ml(k) = mb(k) — mP(k + 2).
The corresponding weighted many-body operators are denoted by m¥. Finally, define

7= mpips + M (p1g2 + q1p2).

Note that m equals n with a smooth, £-dependent cut-off to soften the singularity
of 3—2 for small k.
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Definition 3.3. For 8 € (0, 1), define
~ Ne @
OF (1) = aF (6N, 67 (1) = (e 0), mpe ) + Bl O 1) — &0 1)] .

The expression <<1/JN £ (1), map™v ’5(t)>> is a suitably weighted sum of the expectation
values of PyypNe(t), ie., of the parts of 1V(t) with k particles outside °(t). As
m(0) =~ 0 and m is increasing, Pyt™*¢(t) with larger k contribute more to O‘Z W s (t) than
Pyyp™=(t) with smaller k. It is well known that the convergence (¢™N(t), myp™=(t))) — 0
is equivalent to the convergence (16) of the one-particle reduced density matrix of ¢ (t)
to | (t))(p°(t)|. Hence, the convergence az wmﬁ(t) — 0 is equivalent to (16) and (17).
The relation between the respective rates of convergence is stated in the following lemma,
whose proof is given in [4, Lemma 3.6]:

Lemma 3.4. For any t € [0,177}), it holds that

Tr |y ey = I ONF O] < /805, .0,

N,e b _
OF (1) < |EL 0@ - €70 (1) + ¢ Te 1R = [ O) = 0] + SN,

3.1 The NLS case $ € (0,1)

The strategy of our proof is to derive a bound for |%o¢§< W, B(t)|, which leads to an

estimate of a? w B(t) by means of Gronwall’s inequality. The first step is therefore to
» Wy,

characterise the expressions arising from this derivative.

Proposition 3.5. Assume Al — A4 for g € (0,1). Let
12 12 12 b
wid = wus(a =) and  Z0P =) - g (020 + [0 (t @)

and define
L= {Nﬁz‘il, Nmb_Q} . (19)

Then
305 0,0 < Pac®] + <)

for almost every t € [O,T“i’ﬁ), where

Ya<(t) = ’<<1/}N’5(t),V\l(t,zl)z/JN’E(t)»—<<I>(t),V||(t,(x,O))(P(t)>L2(R2) (20)

—2NS ([N (@), 0 (VI 2) = VI @, 0) e (1), (@21)

Welt) = =NV =18 (V<0), 2P mpVe 1), (22)

= 20 F ) L)+ L),

with
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i) = N fllleag)«w’v (), gt Y p2Z P pipa ™= (1)) (23)
el o= N O b S|
N wax [0, ol T mas v 0 (25)
+N max (Ve t), ¥ afpy Tl pray ™ot )M (26)
N max (00, T FmpY ad 4@ ) (27)
2] = N r%léﬁg)((%b]v’s(t),(qu?pi‘s+Qi‘sqg’pé‘s)Twﬁffg)plpé‘gqg)wN’g(t)})‘ (28)
+N rlAneagMKbN’E(t) gt agpY Py w3 pat vV @) | (29)
@] = N rlpeag)«lﬁ’v’s(t) aP 3Ty v F ™)) (30)
+N rlpeazc‘«wjv (1), aP STy vl F ol v ()| (31)
+hgmax {7 (0), i@ 20 P () (32)

The term v, < summarises all contributions from interactions between the particles
and the external field VI, while Vp,< collects all contributions from the mutual interac-
tions between the bosons. The latter can be subdivided into four parts:

(1) (4)

* V< and v, _ contain the quasi two-dimensional interaction w,, 5(x1 —x2) resulting
from mtegratlng out the transverse degrees of freedom in w,, g, which is given as

£ £

Py Py wup(21 — 22)pt Py = Wy p(x1 — T2)pY Dy

(see Definition 5.4). Hence, fy( ) and 'y( ) can be understood as two-dimensional
analogue of the corresponding expressmns in the three-dimensional problem with-
out confinement [30, Lemma A.4], and the estimates are inspired by [30]. Note

that *yéli contains the difference between the quasi two-dimensional interaction

potential W, 5 and the effective one-body potential bz|®(¢)|?, which means that
it vanishes in the limit (IV,e) — (00,0) only if (7) with coupling parameter bg

is the correct effective equation. The last line (32) of 'y( )

| 2

contains merely the
effective interaction potential bg|® (%)
it is easily controlled.

. '71522 and 'y( )
no three-dimensional equivalent. They are comparable to the expression 'y( ) ; n [4]
from the analogous replacement of the originally three-dimensional interaction by
its quasi one-dimensional counterpart.

instead of the pair mteraction wy, 3, hence,

are remainders from the replacement w, 3 — W, 3, hence they have
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(4) .

The second step is to control 7, « to Vp< i terms of a§< wp (t) and by expressions that
» Wy,
vanish in the limit (N,e) — (00, 0). To erte the estimates in a more compact form, let

us define the function eg : [0,777) — [1,00) as

t
N,e .
eBl1) = 190y + 1L (O] + 162 0)] + / VIl e ds -

+ sup (0705 V ()] oo sy
4,j€{0,1}

where ®(t) denotes the solution of (7) with initial datum ®( from A4. Note that eg(t)

N,e
is bounded uniformly in N and e because the only (N, ¢)-dependent quantity Efﬁz 5(0)
converges to 5;0(0) as (N,e) = (00,0) by A4. The function eg is particularly useful
since

[EL O] <) -1 and g0 0] < ed(t) -1

for any t € [0,777}) by the fundamental theorem of calculus. Note that for a time-

independent external field V1, eﬁ( ) S 1 as a consequence of Remark 1, hence Eﬁ (t)( t)
and E,;I; (¢ )( t) are in this case bounded uniformly in ¢ € [0, T77).

Proposition 3.6. Let 5 € (0,1) and assume Al — A4 with parameters B and n in Al

and (0,5 = (%, %) in Ad. Let

O<§<min{%,%, ,g((?:gg}, O<0<min{1_T?’$,B—§}.

Then, for sufficiently small p, the terms vq < to ’y fmm Proposition 3.5 are bounded
by

Tac(®)] S ej(t) e +eat) (™), ™ (1)),

He @] S 30 (L + N ur),

2 ()]

N
s
W
=
7N

1 £ 1 5
D) () )

W20 < S ag(t) + ) <u:+ <e7> LN > _

ol 5 e (

(1)

Remark 4. (a) The estimates of v, <, Vo< and 'y( ) work analogously to the corre-
sponding bounds in [4] and are brleﬂy summarlsed in Sections 5.2.1 and 5.2.2.
While v, < is easily bounded since it contains only one-body contributions, the

(1)

p ~ is that for sufficiently large N and small ¢,

key for the estimate of ~
N/dy2|xe(y2)|2/dzl|@g(zl)|2wu,ﬂ(zl — 29)
= ([ nhe 1)l @) -

®(2)[?
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due to sufficient regularity of ©° and since the support of w, g shrinks as u?. For
this argument, it is crucial that the sequence (N, ¢) is moderately confining.

(2)

The main idea to control Vp.< 18 an integration by parts, exploiting that the an-

tiderivative of w,, g is less s1ngular than w), g and that Vi™(¢) can be controlled

in terms of the energy EZZ}U - (t). To this end, we define the function h. as the
solution of the equation Ah8 = w3 on a three-dimensional ball with radius
and Dirichlet boundary conditions and integrate by parts on that ball. To prevent
contributions from the boundary, we insert a smoothed step function whose deriva-
tive can be controlled (Definition 5.1). To make up for the factors e~! from the

2)

derivative, one observes that all expressions in Vp.< contain at least one projection

¢, Since ||gX ¥N=(t)|| = O(e) (Lemma 4.9a), Which follows since the spectral
gap between ground state and excitation spectrum grows proportionally to 72,
the projections ¢X~ provide the missing factors e. The second main ingredient is
the admissibility condition, which allows us to cancel small powers of N by powers
of € gained from ¢X°.

(b) For fylg i, this strategy of a three-dimensional integration by parts does not work:
whereas ¢X~ cancels the factor e~! from the derivative, we do not gain sufficient
powers of € to compensate for all positive powers of V. Note that this problem

did not occur in [4], where the ratio of N and e was different.?

To cope with fyé?’i, that
which, analogously to @, g, defines a function W, g(x1 — x2,y2) where one of
the y-variables is integrated out (Definition 5.4). We integrate by parts only
in the z-variable, which has the advantages that V, does not generate factors
e~ ! and that the z-antiderivative of w, 5(-,y) diverges only logarithmically in z~*
(Lemma 5.6b). Due to admissibility and moderate confinement condition, this can
be cancelled by any positive power of € or N~!. In distinction to 7&22, we do not
integrate by parts on a ball with Dirichlet boundary conditions but instead add
and subtract suitable counter-terms as in [30] and integrate over R?. Note that

one obtains the same result when choosing the other path, but in this way the

note that both (28) and (29) contain the expression p’fg (1 ;)pl ,

estimates are easily transferable to w (see below).

More precisely, we construct v,(-,y) such that [[w, 50, y) L1 w2y = V(5 )l 21 (m2)
and that suppv,(-,y) scales as p € (4%, 1] (Definition 5.4). As a consequence of
Newton’s theorem, the solution hy, , of Azhy, , =W, 5 — U, is supported within
a two-dimensional ball with radius p. We then write W, 3(-,y) = Agzhg, (-, y) +
Tp(-,y), integrate the first term by parts in z, and choose p sufficiently large
that the contributions from v, can be controlled. The full argument is given in

In the 3d — 1d case [4], the range of the interaction scales as p}, = (¢2/N)?, besides x5q(y) =
e 'x1a(y/e), and the admissibility condition reads £*/ pf 4w — 0. These slightly different formulas lead
to the estlmate (V1hid(z1 = 22))p1Yop < N71+§5175, while we obtain in our case ||(V1h§12))p1|\0p <
N5 (Lemma 5.2). Following the same path as in wé?i,
1-8 _

e.g., for (28) (corresponding to (21)

B
n [4]), we obtain in the 1d problem the estimate ~ N2¢ (Ez/pfd)%, which can be controlled
by the respective admissibility condition. As opposed to this, we compute in our case that (28) ~

g 1-8
Nze2 = (s/uﬁ)%, which diverges due to moderate confinement.
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Sections 5.2.3 and 5.2.4.

(c) Finally, to estimate 7152 A
parts in x, using an auxiliary potential v, analogously to v, (Definition 5.4). To
cope with the logarithmic divergences from the two-dimensional Green’s function,

we integrate by parts twice, following an idea from [30]. This is the reason why we

(Section 5.2.5), we define W, 3 as above and integrate by

defined hy, , and hy, , on R? and not on a ball, which would require the use of a
smoothed step function. While the results are the same when integrating by parts
only once, it turns out that the additional factors p~! from a second derivative
hitting the step function cannot be controlled sufficiently well.

For (31), the bound ||V, ¥™<(t)||?> < 1 from a priori energy estimates is insuffi-
cient, comparable to the situation in [30] and [4]. Instead, we require an improved
bound on the kinetic energy of the part of ¢V:(¢) with at least one particle or-
thogonal to ®(t), given by ||V, ¢Py™¢(¢)||>. Essentially, one shows that

|2 — &0
2 Ve ™ O = IVa2(0)]* — o(1)
2 Ve it ™ O + (Ve pT 0™ ()1 = [V22()]%) — 0(1)
> [[Var a0 ()7 — I Va@@)I* (™(0), (1)) — o(1) |

which implies
19aaPV (O S ag,,, (1) +0(1) .

The rigorous proof of this bound (Lemma 5.7) is an adaptation of the correspond-
ing Lemma 4.21 in [4] and requires the new strategies described above, as well as
both moderate confinement and admissibility condition.

3.2 The Gross—Pitaevskii case =1

For an interaction w, in the Gross-Pitaevskii scaling regime, the previous strategy,
i.e., deriving an estimate of the form |%a§w” GIBS O‘Zw# (t) + o(1), cannot work. To
(1)
term 9 o
quasi two-dimensional interaction w, g and the effective potential by |®(¢)|*. As pointed
out in Remark 4a, the basic idea here is to expand |p°(2; — 22)|? around z2, which can

be made rigorous for sufficiently regular ¢° and yields

which contains the difference between the
’2

understand this, let us analyse the term ~

N [ )? [ aaler e Punta— ) = 8 ([ GO fouls s o).
(34)
Whereas this equals (at least asymptotically) the coupling parameter bg for 8 € (0, 1),
the situation is now different since by = 8ma [ |x(y)|* dy. In order to see that (34) and
by are not asymptotically equal, but actually differ by an error of O(1), let us briefly
recall the definition of the scattering length and its scaling properties.
The zero energy scattering equation for the interaction w, = p=2w(-/p) is

(—A + %wu(z)) Ju(z) =0 for |z| < o0,
Ju(z) = 1 as |z| — oc0.
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By [27, Theorems C.1 and C.2], the unique solution j, € C*(R?) of (35) is spherically
symmetric, non-negative and non-decreasing in |z|, and satisfies

j(2)=1—1  for |z| > pu,
Ju(2) H 2] > p (36)
Ju(z) >1— %‘ else.
The parameter a, € R in (36) defines the scattering length of w,. Equivalently,
8ma, = /wp(z)ju(z) dz. (37)

R3
From the scaling behaviour of (35), it is obvious that j,(z) = ju—1(2/p) and that
Ay = pa, (38)

where a denotes the scattering length of the unscaled interaction w. Returning to the
original question, this implies that

61—87Ta/|x |4dy—N/|x (y) |4dy/wu( 2)ju(z)dz,
R3
and consequently
(34) — by D(zz)P = N|B(as)]? / @)l dy / wa(2)(1 — ju(2))

R3

> D) ? / @) dy (1 ) [l ey = O(L),

V

where we have used that [[wy||1(rs)y = pl|w|| 11 gs) and that j,(2) is continuous and non-
decreasing, hence j,(z) < j.(p) for z € suppw, and 1 — j,(¢) = a. In conclusion, the

contribution from 'ylgll does not vanish if b; is the coupling parameter in [4]. Naturally,
one could amend this by taking [ [x(y)[* dy|lw]| (r3) instead of by as parameter in the

non-linear equation. However, for this choice, the contributions from 7(2) to 7(4) would
not vanish in the limit (N,e) — (00,0), as can easily be seen by setting 8 = 1 in
Proposition 3.6.

The physical reason why the Gross—Pitaevskii scaling is fundamentally different —
and why it requires a different strategy of proof — is the fact that the length scale a,
of the inter-particle correlations is of the same order as the range p of the interaction.
In contrast, for 3 € (0,1), the relation a, 3 < 18 implies that Ju,p = 1 on the support
of wy, g, hence the first order Born approximation 8ma, g ~ ku,ﬂ||L1(R3) applies in this
case.

Before explaining the strategy of proof for the Gross—Pitaevskii scaling, let us intro-
duce the auxiliary function fg € CY(R3). This function will be defined in such a way that
it asymptotically coincides with j,, on suppw, but, in contrast to j,, satisfies fE(z) =1
for sufficiently large |z|, which has the benefit of 1 — f and V f being compactly sup-
ported. To construct f , we define the potential U N such that the scattering length of
wy, — U Y equals zero, and define f/; as the solution of the corresponding zero energy
scattering equation:
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Definition 3.7. Let 3 € (3,1). Define

1’3561 for E< z| < oz
UHE(Z) - {lu’ M | | QB?

0 else,

where % is the minimal value in (ug, oo| such that the scattering length of w, — ng
equals zero. Further, let f3 € C L(R3) be the solution of

( ~A+3 (wu<z> — UM,E(Z)) )fg(z) =0 for|z] < 25>
fg(z) -1 for |z| > 25

(39)

and define
gg = 1 — fE

In the sequel, we will abbreviate
U;(jjff) = Uuﬁ(zi - %), gg]) = gg(zz' —zj) and fé”) = fg(zi —z).

In [5, Lemma 4.9], it is shown by explicit construction that a suitable %5 exists and

that it is of order ,ug . Note that Definition 3.7 implies in particular that

/ (wu(z) - Uuyg(z)> f3(z)dz =0, (40)

R3

which is an equivalent way of expressing that the scattering length of w,, — U# i equals
zero. Heuristically, one may think of the condensed N-body state as a product state

that is overlaid with a microscopic structure described by fﬁ’ ie.,

N
¢cor(ta 21, -‘-7ZN) = H @E(tv Zk) H fﬁ('zl - zm) . (41)
k=1 1<l<m<N
For 5 € (0,1), it holds that fB ~ 1, i.e., the condensate is approximately described by

the product (¢°)®Y — which is precisely the state onto which the operator Py = p;---py
projects. For the Gross—Pitaevskii scaling, however, fg is not approximately constant,
and the product state is no appropriate description of the condensed N-body wave
function. The idea in [30] is to account for this in the counting functional by replacing
the projection Py onto the product state by the projection onto the correlated state 1¢or.
In this spirit, one substitutes the expression (1, my) in aZ wa s (t) by

«w, 1A% ]] fg%)} ~ )~ NV R (687w

k<l r<s

where we expanded f>=1-— 95 and kept only the terms which are at most linear in 95
This leads to the following definition:

Definition 3.8.
Qe (t) = g, (1) = NV = DR (60, 407 70
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The new functional ag,,,(t) equals aéwﬂ (t) up to a correction term. Since the
convergence of ozZ w, (t) is equivalent to (16) and (17), an estimate of ag ., (t) is only
meaningful if this correction converges to zero as (N,e) — (00,0). This is the reason
why we defined it using the operator 7 (Definition 3.2) instead of m: as 7 contains

142

additional projections p; and ps, we can use the estimate ||g~ Dillop S € 2u 2 instead

of || 95||oo < 1 (Lemma 6.2). In the following proposition, 1t is shown that this suffices
for the correction term to vanish in the limit.

Proposition 3.9. Assume Al — A4. Then
_ Ne (12) ~  Ne <
NV = DR {6V, 657 PN (1)) 5 ¢

for all't €10, T77).

By adding the correction term to az w, (t), we effectively replace w, by qu 3 fg in the
time derivative of aZ w (t). To explain what is meant by this statement, let us analyse
the contributions to the time derivative of ag y, (), which are collected in the following
proposition:

Proposition 3.10. Assume Al — A4 for 8 =1. Then
| G, )] < [y SO] + [ra®] + )] + ()] + a®)] + e )] + [v5(2)]

for almost every t € [0, T‘e/H), where

V<) = \((W(t» VI 200V (0) ) — (20, VI (0, 0)2(0)) | (42)
~ONS << WNE (), it 1(vH(t 2) = VI @, 0)pe™e@)  (43)
DS{(we@), 2P mpNe ), (44)

() = NV = D3 (V0,007 [Vt ) - Ve (1,00 7] 0 (0) ) (45)
W(t) = -NS {(wvﬁ(t), b0 1)+ [0(¢22) )9 Fu () (16)
~NS([wNE (1), (b — b) (@ (E,21)? + (¢, 2)[*) T4 (1)) (47)

SNV = D3 ([0, g7 720DV ) (48)

t) = ANV = D3 (00, (719l ViF e (). (49)
(t) = ~NW = DO =203 (070,907 [0t P F] V@) (50
PNV = DOV = 298 (60, 407 [l Flu(0) ). (51)
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t) = NI = DO =2 =33 (050,00 [w 7oV ). 652)

[3

lt) = 2N =28 (670,60 [l )27 040 (53)

Here, we have used the abbreviations

where

70D = ) — g (|0t @) P+ 0t )P
@) . () elid) _ b3 NE: N
Z . Hﬁfﬂ _1(|q)(taxl)| +|(I)<t,$j)| ))

PR — : _1 _ - 4
% = e o) /Uu,ﬁ(z)fﬁ(z) dz/lx(y)l dy.
R3 R2

The proof of this proposition is given in Section 6.5. Note that the contributions to
the derivative %O‘&% (t) fall into two categories:

e The terms (42)-(43) in v< equal 4 < from Proposition 3.5, and (44) is exactly 7 <

with interaction potential Uu 3 fE' Hence, estimating 7= is equivalent to estimating
the functional a?U 5 (t), which arises from a?w (t) by replacing the interaction

w,, by U f Smce U fﬂ € W for any n € (0,1 — ) (Lemma 6.4), this is an
mteractlon 1n the NLS scahng reglme which was covered in the previous section.

Ya to vy can be understood as remainders from this substitution. -, collects
the contributions coming from the fact that the N-body wave function interacts
with a three-dimensional external trap VI, while only VI evaluated on the plane
y = 0 enters in the effective equation (7). Since this is an effect of the strong
confinement, it has no equivalent in the three-dimensional problem [30], but the
same contribution occurs in the situation of a cigar-shaped confinement [5]. The
terms 7, to vy are analogous to the corresponding expressions in [30] and [5].

The physical idea behind the replacement is that low-energy scattering at any potential is
to leading order described by the scattering length. Note that f~ =~ 1 on supp U , hence

U

76 N

Y ~f= 5 and consequently the scattering length of w, 5 — U W =f= 3 is approx1mately

zero by construction (40). This implies that a sufficiently distant test particle with very
low energy cannot resolve the difference between the two potentials.

Proposition 3.11. Assume Al — A4, let t € [0,TSY) and let

v

max{%,%}<d<§<l, 0<§<min{%,;&ﬁ%}.

Then, for sufficiently small u,
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W) < Srer,

i E,
|76(t)’ SJ ( J 2 E)v
ha()] < ( @) d 55>
()] S e

@] < e‘;’(tﬁT-

Remark 5. (a) To estimate y<, observe first that we have chosen B such that U = f~

W~
/H7
makes the sequence (N, ¢) at the same time (©,T")

fining. Consequently, Proposition 3.6 yields

for some 7, and such that assumption A4 with parameters (©,I"); = (79 v)

5 -admissible /moderately con-

~ t P(t

VO] S afy @ Fo(1) = (N aeNe) + B D) - 200 + 00

(54)
However, this does not yet complete the estimate for < since we need to bound all

N,e
expressions in Proposition 3.10 in terms of ag w, = «wN’E, ﬁ"mbN’E» + }Efﬁ“ ® (t)—
&, q)(t) (t)|, up to contributions o(1). By construction of [5, it follows that by = by
(see (86) in Lemma 6.4), hence Sbft)(t) = Sli(t) (t). On the other hand, heuristic
5

3 indi W () wE() -
arguments” indicate that Ep; _:°(t) and Ey, “'(¢) differ by an error of order
BB
O(1), which implies that the right hand side of (54) is different from a? w, (t) by
o).

By Remark 4c, this energy difference enters only in the estimate of (31) in ’yég

via |V, a?y N> S « (t)+o(1). For the Gross—Pitaevskii scaling of the

<
YU, 555
interaction, ||V, ¢Fy™ E(t)||2 is not asymptotically zero because the microscopic
structure described by fE lives on the same length scale as the interaction and
thus contributes a kinetic energy of O(1). However, as this kinetic energy is
concentrated around the scattering centres, one can show a similar bound for
the kinetic energy on a subset A; of R3Y, where appropriate holes around these
centres are cut out (Definition 6.5). This is done in Section 6.3, where we show in
Lemma 6.7 that

104, Var g O S 0, (8) + 0(1).

The proof of this lemma is similar to the corresponding proof in [5, Lemma 4.12],
which, in turn, adjusts ideas from [30] to the problem with dimensional reduction.
However, since one key tool for the estimate is the Gagliardo—Nirenberg—Sobolev
inequality in the x-coordinates, the estimates depend in a non-trivial way on the

3See [5, pp. 1019-1020]. Essentially, when evaluated on the trial function ey from (41),
the energy difference is to leading order given by N<<1/)mr(t) (10(12> (U ﬁfﬁ)(”))zpmr(t)» ~

N [dzlg(t,z1)? [dzlf3(2)P(wu(2)  — U, 5(2)) ~ pt [ degg(2)wu(2) f5(2) >
,Lflg[;(u) Jdzwu(2) f5(2) ~ 8ra?, where we have dropped all sub-leading contributions.
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3.3

dimension of x. As one consequence, our estimate requires the moderate con-
finement condition with parameter v > 1, where no such restriction was needed
in [5].

Finally, we adapt the estimate of (31). In distinction to the corresponding proof
in [5, Section 4.5.1], we need to integrate by parts in two steps to be able to control
the logarithmic divergences that are due to the two-dimensional Green’s function.
Inspired by an idea in [30], we introduce two auxiliary potentials v, and 7y

such that ||Uu75f5||L1(Rz) = [[9,62 |1 g2y = 71 ]| 21 (m2), define EQE,M;;Q and h, s, | as

the solutions of Amﬁg[;,;ﬁ? = U#ﬁfg — %u‘?? and AIEH;;QJ = 5#32 — 71, and write

U.als = Axh@g,uﬁi’
controlled immediately, while we integrate the remainders by parts in x, making

+ Agﬁu@ 1 + 71. The expressions depending on 7; can be

use of different properties of EQE’ o2 and E}Lﬁ2,1 (Lemma 5.6b). Subsequently, we

insert identities 1 = 14, + 17, where A; denotes the complement of A;. On
the one hand, this yields |14, V., q¢P¥"¢(¢)||, which can be controlled by the new
energy lemma (Lemma 6.7). On the other hand, we obtain terms containing 1%,
which we estimate by exploiting the smallness of A;. The full argument is given
in Section 6.6.1.

The remainders v, to 7y are estimated in Sections 6.6.2, and work, for the most
part, analogously to the corresponding proofs in [5, Sections 4.5.2 — 4.5.7]. The
only exception is 7., where the strategy from [5] produces too many factors e 1.
Instead, we estimate the x- and y-contributions to the scalar product (Vgg) V7 =
(ngﬁ) Vo T+ (aygg)ay? separately. To control the y-part, we integrate by parts in
y and use the moderate confinement condition with v > 1. Again, this is different
from the situation in [5], where the corresponding term <. could be estimated

without any restriction on the sequence (IV,¢).

Proof of Theorem 1

Let 0 <T < T&. For 8 € (0,1), Proposition 3.6 implies that

vie

$05 0,0 S BOAE 4, (O + 5O R0V, )

for almost every ¢ € [0, 7] and sufficiently small p, where

&3

£ 1
B 2 p 1-8 _ B8
Ropsce)i= ()" + (5)  + 5+ 0T + N7+ N3

1-3¢

with 0 < 0 < min{-5>,3—¢}. Since t agw ﬁ(t) is non-negative and absolutely con-
» Wy,

tinuous on [0, T, the differential version of Gronwall’s inequality (see e.g. [13, Appendix
B.2.j]) yields

t
te3(s)ds
O‘Zwﬂ,g t) < efo €5 (5) <a§wuﬁ(0) Jr/o e%(s) ds)

for all ¢ € [0,7]. Since eg(t) is bounded uniformly in N and € by (14) and with

R
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For =1, observe first that Proposition 3.9 implies that the correction term in ag y, (t)
is bounded by e uniformly in ¢ € [0,7], provided p is sufficiently small. Hence, t
Q¢ w, (t) + € is non-negative and absolutely continuous and

aZ w, (t) S Qe (t) + € < g, (t) + Ry e(N,e)

for

N[

a B 5 o
R’Yvﬂvg(Nv 5) = (%) + (8%) 2 4+ (E%) 2 ¢ 4+e3 +N cl+2
with rnax{%;l 5} <d< ﬁ < 19 Consequently, Proposition 3.11 yields

| (g, (1) + )] S €1() (g, () + Ry (N, <))

for almost every t € [0, T| and sufficiently small u, which, as before, implies the statement
of the theorem because both € and R,y ¢(N,€) converge to zero as (NN, &) — oo.

4 Preliminaries

We will from now on always assume that assumptions A1 — A/ are satisfied.

Definition 4.1. Let M C {1,...,N}. Define Hpq € L*(R3M) as the subspace of
functions which are symmetric in all variables in M, i.e. for ¥ € H 4,

1/)(2’1, ooy Zfy eens By ...,ZN) = 1/)(2’1, ooy Zhy eoes gy ...,ZN) Vi, ke M.

Lemma 4.2. Let f : Ng - RJ, d € Z, p € {a,b} and v € {c,d,e, f}. Further, let
Mi, Mo C{1,2,...,N} with1l € M; and 1,2 € My 2. Then

(@) | Fllop = I fallop = IIF2 ||op* sup f(k),
<k<N

(b) I llop < N7HHE [ |lop S N7 and |[7llop S N7HE,

(c A2:N§

(@) | Far])? < Sl FAvl? for € Ha,,
Ifqg? < W||fﬁ21/)||2 for € Hpy s,
g g™ ()] S N1,

() IVifawl S IFloplVigrll for o € L2(R3N),
1V, FaP Ul S N Pllopl VayaP ]| for o € L2(R3N),

(1) V2 nrg2vll < =gl Allopl| Vogots | for o € Haay,
IVar fat ad vl < =g 1 f Allopl Vasgd ¢l for v € Ha,.

Proof. [4], Lemmas 4.1 and 4.5 and Corollary 4.6 and [5], Lemma 4.1. O
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Lemma 4.3. Let f,g: Ng — R be any weights and i,j € {1,...,N}.
(a) For k €{0,...,N},
fa=rg=g9f,  fpi=pif, fo=q4f,  [P.=Df
(b) Define Qo == p;, Q1 = qj, Qo = pip;, Q1 € {pigj, aip;} and Q2 = qiq;. Let S; be
an operator acting non-trivially only on coordinate j and T;; only on coordinates
i and j. Then for u,v € {0,1,2}
Q,uijQl/ = Qusjfu—l/Ql/ and é,ufTij@V = @uﬂjf,u—l/@w

(c)

~ ~ ~ ~ ~

(Tij, f1 = [Tij, pin; (f — f2) + (pig; + @ipj)(f — f1)].
Proof. [4], Lemma 4.2. O

Lemma 4.4. Let f: Ny — R{.
(a) The operators Py and f are continuously differentiable as functions of time, i.e.,
Py, feCH(R, L (LA(R*M)))

for 0 <k < N. Moreover,

&l
-

o),

=)

N
A:i[f,Zh
j=1

where h(ﬁj)(t) denotes the one-particle operator corresponding to hg(t) from (7)
acting on the j™ coordinate.

(b) |02 + 5V (L), f] =0 for1<j < N.

Proof. [4], Lemma 4.3. O

Lemma 4.5. Let ¢ € L2 (R3N) be normalised and f € L®(R?). Then

’«1/), F@)p) = (2(t), FO®)) r2(ma) | S I fll oo @2y (4, ) -
Proof. [4], Lemma 4.7. O

Lemma 4.6. Let I',A € L?>(R3N) € Hpq such that j ¢ M and k,l € M with j # k #
Il # 3. Let Oj be an operator acting non-trivially only on coordinates j and k, denote

by r, and s operators acting only on k™ coordinate, and let F : R® x R3 — R? for
d € N. Then

(a) 14T, 050A) | < IV (14050, O5uh) [+ [IMIH 05 A 12)
(b) | (rF (2, 2k)5k T 1 F (25, 20)i0) | < |5k F (25, 28) 3T
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1
(¢) (T, riF (25, 21)se A < TN (lskF (25, 2m)red | + IMITHIreF (25, 2 s1A]1?) 2 -
Proof. [4], Lemma 4.8 and [5], Lemma 4.4. O

Lemma 4.7. Let t € |0, T‘e/’ﬁ) Then for sufficiently small ¢,

(a) |2()]|L2(r2) =1,
1RO Lo r2) S NP(0)] 22y < es(t),
V2@ ()| oo 2y S (1D (8[| 3 mey < es(t),
[A2® ()| oo 2y S (1R (E)]| o (m2) < es(2),

(6) IxX°llz2@®) = 1, ||C%XEHL2(R) Sel,

ThEw)tdy =7t [ Ix(w)* dy,
R R

_1 _3
Xl Se720 NxX @) Se2,

(SIS

(c) 165 Loo(ray S ep(t)e 2,
3
Ve ()l Lo r2y S epl(t)e 2,

3

V19" () Pll L2 3y S ep(t)e2.

Proof. Part (a) follows from the Sobolev embedding theorem [1, Theorem 4.12, Part
I A] and by definition of eg. Part (b) is an immediate consequence of (6), and part (c)
is implied by (a) and (b). O

Lemma 4.8. Fiz t € [0,T7}) and let j,k € {1,...,N}. Let g : R3 xR3 - R, h :

R? x R? — R be measurable functions such that |g(z;, 2k)| < G(zk — z;) and |h(zj, zx)| <
H(xy, — x5) almost everywhere for some G : R* - R, H : R* — R. Let t; € {p;, Va,p;}
and t§ € {p}, V., py}. Then

(a) &) 9(zj, 2)tillop S G (t)e Gl r sy for G € LY(RY),

_1
(6) 1l9(zjs 26)t5llop = I1t5 9(z55 2)llop S e5(D)e ™2 (|Gl 2s)y for G € L2 L2(R?),
3
(¢) llg(zj: 26)Vjpillop < ea(t)e™ 2 1G] ros) for G € L*(R?),

(@) [Ih(wj, 2)t] lop = (67 (s, 2k )llop < es() | Hl|L2qwe) for H € L 0 L>(R?).

Proof. Analogously to [4], Lemma 4.10. O
Lemma 4.9. Let € be sufficiently small and fiz t € [0,T7}). Then for 8 € (0, 1]
(@) IVa,p7 llop < e5(t), 182,7 lop < e5(t),
10,2} lop < &7, 105,71 llop < 72,
e oM@ < es(t)e, Vgl el S es(t), 19y 0} ¥V =(@)I] S es(t),
Ve o™ @) < e(t), 1000 St Vi@ < et
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W [ ulZeveo] < cston .
38

1 1
(c) Hw,(},?;)wN’a(t)lI Seg(t)N"2p2" 7,

38 _1
(@) [|P1Lsuppw, (21 = 22)llop = [|Lsuppw, 5(21 — 22)p1llop S ea(t)z e 2,
12 _
(e) lprw 2N )]| < AN

Proof. Analogously to [4], Lemma 4.11 and [5], Lemma 4.7. For parts (c) and (e), note
that for 8 € (0,1),

lwp sl sy ~ wbsNe < plbgne —bgl+pbs S (55)

since wy, 3 € Wg,y for some n > 0. For 8 = 1, |wullpiwsy = plwllpimsy S p by
scaling. (]

Lemma 4.10. Let f : R x R® — R such that f(t,-) € CL(R3) and 9, f(t,-) € L>(R3)

for any t € [0, T7). Then

() [(£(t,21) = F(& (@1, 00)pF M=) < €]l Dy f ()] e )
(0) I(f(t,21) = f(t, (21,000 ()] < € (es(W)f(0) ]l oo ey + 10y.f ()| oo (m3)) -
Proof. Analogously to [4], Lemma 4.12. ]

Lemma 4.11. Let c € R. Then

(a) N~ InN < N~¢, eIne ! < e, pelnp=t < pe,
0—B ¢~
_ —=-€ €(0,1),
(b) &€InN < (©—1)e << 7 pe 1)
o B: 1,

,Yzl - =1,
d ¢~
_ € (0,1),
elnp~t <Oe° <{5C Z 0.1)
€ =1.

Proof. Observe that N < e+l and e7! < N ™ due to admissibility and moderate
confinement, hence n N < (0 —1)Ine~! and Ine~! < ﬁlnN. O
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5 Proofs for 3 € (0,1)

5.1 Proof of Proposition 3.5

The proof works analogously to the proof of Proposition 3.7 in [4] and we provide only
the main steps for convenience of the reader. From now on, we will drop the time
dependence of ®, ¢° and ¢ in the notation and abbreviate 1™ = 1. The time
derivative of ag W (t) is bounded by

$ags, O] <& (v me)| + | $1EL, 0 - 50| (56)
For the second term in (56), note that

&1Es 0 -& ol = |&Es, 0 -
(VI 200) = (@,V1 (1 (,0)) @)

for almost every ¢ € [0, 777)) by [25, Theorem 6.17] because ¢ — dt( wuﬁ( ) — 5'5; () is

continuous due to assumption A3. The first term in (56) yields

Swmw) = —2NS (e aqmty (VI ) - VI @) mel)  67)
—2N(N -1)3 <<¢,q1p2ﬁ“12(12)p1p2w» (58)

~N(N = D)3 (v, g’ w3 pipov) (59)

—2N(N — )J<<¢7Q1Q2mf1zé )plfhlﬁ», (60)

which follows from Lemmas 4.3 and 4.4. Expandlng q= qX +pX ¢® in (58) to (60) and
subsequently estimating Nm®, < 1 and Nm? 5 < 1 for 1 € £ from (19) concludes the
proof. O

5.2 Proof of Proposition 3.6

In this section, we will again drop the time dependence of PpVE(t), ©°(t) and ®(t) and
abbreviate wN € = 1). Besides, we will always take 1€ L from (19), hence Lemma 4.2
implies the bounds

[op SN, Nlaaw| S 1
for d € Z.

5.2.1 Estimate of 7, () and ’y(l)( t)
The bounds of v, «(t) and ,},( )( t) are established analogously to [4], Sections 4.4.1 and
4.4.2, and we summarise the main steps of the argument for convenience of the reader.

With Lemmas 4.5, 4.10 and 4.2d, we obtain

Na,< (O] S eh(t)e + ea(t) (v, 7)) -
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(1)

By Lemmas 4.7 and 4.2d and since w, g € Ws ), v, 2(t) can be estimated as

@) < [Tl e, pY pe(VelE — bonl@@)P)pipav))|
+ ‘ It e, py e (bﬁ,N,s - %bﬁ) |¢'(l‘1)\2p1p2¢>>‘

‘«7‘1?7/”1791(61729(331)19%)}’ +ed(t) (N4 ),

N

where

0r) =N [ P | [ 161 = 2)Pwale) dz = |5 Pl
R R3
(61)
Note that for any g € C3°(R?), [gs (21 — 2)wy5(2) dz = g(z1) |l wpsll L1 rs) + R(21) with

< sup |Vg(z1 — sz |/dz|z|wu5
s€[0,1]
2€R3

1
R(z)| == ‘/dz/Vg(zl —5z) - 2wy, g(z) ds
R3 0
Since |z| < p? for z € suppwy, g and by (55), this implies HRHLQ(Rg) S MQ'BHHVQHB(R;;),
which, by density, extends to g = |¢°|> € H'(R?). Hence,

P
1G] 2 @2y S NIIXCPll2@e” VIR S Ees(t)
by Holder’s inequality and Lemma 4.7. Using Lemmas 4.8d and 4.2d, we obtain

23)] S 3(t) (1 + N7 pr)

5.2.2 Estimate of 7522 (t)

The key idea for the estimate fy( )( t) is to integrate by parts on a ball with radius e,
using a smooth cut-off function to prevent contributions from the boundary.

Definition 5.1. Define h. : R — R, z + h.(2), by

1 wup(C e wup(C
- d¢ — / " for |z| <¢,
ho(z) = { I v-q S ?
0 else,
where (* := W{ Further, define H. : R? — [0,1], z — H.(z), by
1 for |z| < og,
H.(z) := { b(|z]) for op < |2] <e,

0 for |z| > ¢,

where b, : (03,€) = (0,1), 7 — b(r), is a smooth, decreasing function as in [4, Definition
4.15] with lim, ;b (r) = 1 and lim,—,. h-(r) = 0. We will abbreviate

hU9) = ho(z — zj), HED = He(z — %)-
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Lemma 5.2. Let p < €. Then

(a) he solves the problem Ah. = w, g with boundary condition hf‘\z\:g = 0 wn the
sense of distributions,

(0) IVhellr2gsy S p'™

(¢) |Hellpoomsy ST ([ Hell2rs) S €

Proof. The proof of Lemma 5.2 works analogously to Lemmas 4.12 and 4.13 in [4] and
we briefly recall the argument for part (b) for convenience of the reader. First, we define
1 . 2 . . 1
Kt )(z) = Js wl’zfé?) d¢ and A )(z) = Jps %'ulz;[i(f‘) d¢. To estimate \th )|, note that
I¢| < 05 S pb for ¢ € suppwy, 3. For |z| < 2¢3, this implies |z — (| < 303 < 15, hence
(VA (2)| S =28, For 204 < |2| < &, we find |z — ¢| > 1|2|, hence [VAM (2)] < pl2| 2.
For |h§2)|, observe that ¢ € suppw,, 5 implies [*| > &2 QEI, hence, for u small enough
that eggl > 2, we obtain |z]| <& < %52951 < 1{¢*|. Consequently, [¢* — 2| > |3€2[¢|72,
: : 2 _ -
which yields [VA| < 3wy sl Lo (g9) Jaupp, I3 dIC] S 732, Part (b) follows
from this by integration over the finite range of supp h.. Part (c) is obvious. O

We now use this lemma to estimate 7,522. Let ty € {p2, q2, qugf}. As H.(z1—29) =1

B
2,

3
2

1
o I VHe|[poomsy S e, [VH:| L2rs) S €2

for z; — 23 € suppw, g and besides supp H. = B:(0), Lemma 5.2a implies

0] = N [{(ftag v, HID A0 D pipo)|
N ’«lAQi(sw,tgHg(lz)(Vlhém) 'P2V1p1¢>>‘
N ({10 0, t2(T1HED) - (TR0 )papr )

N ‘«Vlfq{‘fw, to H§12)(v1h§12))p2p1¢»‘

IN

SIS

S NliaX ol (IpHED 2 I(T1082) - Fipr2, + N7 (T1hE2) Vi [3,)
NI 1 (2 (VahE )2 (T2 HE 2 )p 2,
%
NV H e sy (71D )12,
1
+NIV1Ta Il (Ip2HED 2 (1A D)pi] 2, + NI(T1AE D )pa )
< () (N'HgE% +N5u¥) :

where the boundary terms upon integration by parts vanish because H.(|z|) = 0 for

|z| = ¢, and where we have used Lemmas 4.6, 4.2, 4.8, 4.9a and 5.2. Similarly, one
computes
(25)] S eHONETEE,
26)] S ONTET,
S

(27)]
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The bound for 'ylgzi follows from this because N£u¥ = NS < 2" for

&< % and since the admissibility condition implies for £ < 32;‘5 . % that

13 1
B 3-8 s\gts 3=8_06-8 5
Nétze5 = ()7 22— < (=)
P P

+

@l
D=

5.2.3 Preliminary estimates for the integration by parts
(3)
b,< F b <
Wy 3(x1 —x2,y1) and W, g(x1 — x2), which result from integrating out one or both trans-
verse variables of the three-dimensional pair interaction w,, (21 — 22), and integrate by
parts in z. In this section, we provide the required lemmas and definitions in a somewhat
generalised form, which allows us to directly apply the results in Sections 5.2.4, 5.2.5, 5.3
and 6.6.1.

To control ~,° (t) and 71542(15), we define the quasi two-dimensional interaction potentials

Definition 5.3. Let o € (0,1] and define V, as the set containing all functions
o RZXR =R, (2,y) = Te(,y)

such that

(a) suppwy(-y) C{r €R?:|z| <o} forally € R,
(0)  [@ollpoorexr) S N 1o™2,
(

)
)

¢)  sup|[@y (-, y)llrmey SN,
yeR

(d) sup||@o (-, y)llL2@ey S N to .
yeR

Further, define the set

<l

=15, RS R2: 3@, €V, st. Ba(z) = /dy I () 25 (2, )
R
Note that suppw, C {x € R? : [z| < o} and, since x° is normalised, the estimates for
the norms of @, coincide with the respective estimates for w,. Next, we define the quasi
two-dimensional interaction potentials W, 5 and W, 5 as well as the auxiliary potentials
needed for the integration by parts, and show that they are contained in the sets V.
and V,, respectively, for suitable choices of o.

Definition 5.4. Let w, 3 € Wg, for some n > 0 and define

w5 R2xRoR, (5,y) = Wpey) = / A7 X @) 2w,y — 7) (62)
R

Wy,pB R? - R, T = W)= /dy \Xs(y)|2wu75(aﬂ,y). (63)
R

For p € (0p, 1], define

JR ST—
P s )lliwey  for |z] <p,
@:RQXR—HR, (x,y) = Tylx,y):= T g = | (64)
else,
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T, RZSR, @ o T,(z)i= / dy X (1) 2T, ) (65)
R

It can easily be verified that W, 3 and T, can equivalently be written as

Tos(z) = / Ay | () 2 / Ay [ (o) PP 5 (0 — 1)

R
_ 12 Bl ey for |z] <,
Vp(w) =
0 else.
Besides, note that
€ 12 € e
Py wldpY = Wegla —w2,m)p)
€ € 12 £ £ - e €
Py P wi,ﬂ)pT Py = Wep(r1 —z2)py Py -

Lemma 5.5. For W, 3, W, 3, U, and U, from Definition 5.4, it holds that
(a) W5 € Vg, Wi € Vogy TpE€Vp Ty €V,
(0) @5yl ey = 060 y) |1 g2y for any y € R,

1@ a2y = 10l L1 (r2) -

Proof. It suffices to derive the respective estimates for w, 5(-,y) and U,(-,y) uniformly
in y € R. For instance, Lemma 4.7 and (55) yield

y+og
e ) < e [ A lynisetns(e - )
y—o03
< e N_1Q/§2 ’
_ r._ . 1
va('ay)HLl(R?) = p2ﬂ_|wﬂ,ﬁ("y)HLl(IW)/]l|z|§pdx: ||wu,5(',y)||L1(R2) SN,
R2
and the remaining parts are verified analogously. O

In analogy to electrostatics, let us now define the “potentials” hy, 5, and ﬁglm
corresponding to the “charge distributions” @W,, — Wy, and Wy, — Wy, respectively.

Lemma 5.6. Let 0 < 01 <02 <1, Wy, € Vol and Wy, € VUQ such that for any y € R
186, (5 W)l 2y = @0y (5 ) [ L1 (R2) -
Define

horos :RExR — R
— 1
(m,y) = h01,02<x7y> = %/d§1n|$_£|<wa1(€ay) _502(573/)) (66)
R2
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and

>l

L2
oo0 (R — R

E o Tigyoy(t) = / Ay X (0) P o () (67)
R

Lety € R and (hoy 0:901,95) € { (For0a(+9) @0, (). Ts (1) ) (Roon B T ) |-

(a) he, o, satisfies
Axhal,oz = Wg; — Woy

in the sense of distributions, and

supp hoy o0 C {x eR?: lz| < 02} ,
(b) llhoy o5l r2®ey S N loz (1+1noy ),

1
Hvth,az”LQ(R?) SN (lnal_l)Q :

Proof. The first part of (a) follows immediately from [25, Theorem 6.21]. For the second
part, Newton’s theorem [25, Theorem 9.7] states that for |z| > o,

Bovos(2:8) = ol [ @y (€:9) = @ (€9)) € =0
R2

as W, (5 Y) | 12y = [@Woy (5 ¥)[| L1 (r2)- Besides, [25, Theorem 9.7] yields the estimate

ovn:0)| < 5| o] [ @ (€.9) +Ba (€9 dE S N7t
R?
by definition of w. Hence,
02
ovn (o ry € N2 [ dr € N7203(1+ oz ).
0

To derive the second part of (b), let us define the abbreviations

Tolnla) = [ d€lle—€5n(en).  Ble(en)i= [ deinle—elancn).

To estimate Vﬁf}fm, let y € R and consider £ € suppwy, (+,y), hence [¢| < o7. If

|x| < 201, we have |z — £| < |x| + |£] < 301, hence

301
E(l) < I d <N—1 -1
‘vx O’1,0’2(‘r7y)| ~ ||w0'1||L°°(R2><R) r ~ 01 .
0

If 201 < |z| < 03, this implies |z — | > |z| — |¢| > |z — 01 > 1|z|, and one concludes

—(1 7 B
Vb (9| < @/wol (&) dE SN .
R2
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To estimate V, h( )

01,027
¢ € supp Wy, hence

note that |z — ¢&| < |z| + €] < 209 for 2 € supp ho, 4, (-, y) and

2 _ _
Va0 0)| < bl leuay [ ] S N3
¢’ <2072
Part (b) follows from integrating over |z| < os. O

5.2.4 Estimate of ’y(g)( t)

To derive a bound for 71532, observe first that both terms (28) and (29) contain the

interaction w, 5. We add and subtract v, from Definition 5.4 for suitable choices of p,
i.e.,

Wya(x1 —22,91) = Wpg(r1 — 22,y1) — Up(®1 — 22, Y1) + Tp(1 — 22,91)

= Amlﬁgg,p(xl - 37272/1) +Ep(x1 - $2,y1)

by Lemma 5.6, which is applicable by Lemma 5.5.
Estimate of (28). Due to the symmetry of ¢, (28) can be written as

(28) N’ Q1 ",y w5 vy Y vl ¢>> <<q1 ¥, a3 Tpy w5 vy vy plad ¢>>

hence with (s?,t3) € {(p,¢3), (¢F,pT)} and for some p € (08,1],

@9) < N|(aX v afp} (Auhosplor — v2m) o Dist3v))|  (69)
N ({0 adpY Ty - w00y Tistedu)|. (69)

Since sTt$ contains in both cases a projector p® and a projector ¢®, the second term is

easily estimated as
(69) < Nliai 1 vllIpF (w1 — 22, 91)llop S Blt)ep™
by Lemmas 4.8d and 4.2d. For (68), note first that for (s¥,t3) = (¢¥,p%),
1(VasPros p(x1 = 22,91)) Va3 g 0X 100 < (Vs Ty p (@1 — 22, 31)) Va2 |2, [ 110t 0|
< ep(ON " (Inph)2
and for (s7,t3) = (p}, 43),

(Vashios p(@1 = 22, y1))PTVar a8 PX DUl < [(ViasFoos p (w1 — 22, 51))PT |12 V08 |
GON T (np)z

N

where we have used that gg ~ 1B, Hence, integration by parts in zo yields with
Lemma 4.6

69 < N (@ 00808 (Vashoup(ar = 22,900} Vast3lisF o))
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+N ‘<<Vz2 qugewv Qics (VIQEQﬁ,P(ml — X2, yl))t;bpi(g?ls?lﬁ»‘
NaX YI(TaaFogaplr = 22, 0) Vatd st pl Tt
+NIVaaa DY Ul (19Y P (Viaaho pl@r — w2, ) 8T 0

N

N (VT o1 — a2, )52 T 2)
< SN+ N2 )(Inp)7 .

Estimate of (29). For this term, we choose p = 1 and integrate by parts in xy. This
yields

) < N|(Tafad v, p¥ v 11 — w2 m)pbal v))|
+N ‘«lAqu’qg’ X P (Vashos1 (21— 22,51)) - Vaop3 g 10»‘
N |(Vaala? a3, 0Y B3 (Tashigua (o1 = w2, 90)) phal o))
NlaX wllita?af vl (Ip371 (o1 = 22,91) o

+|| (VmEWJ(Jn — 22,41)) ngpg)uop)
JFNHqi< w””pg) (vxzﬁgﬁ,l(xl - anﬂl))”ODHszlq(lbqg)wH
< Se(ln 1)z
S ep()e(lnp)

by Lemmas 4.2, 4.9a, 4.8d and 5.6. Together, the estimates for (28) and (29) yield

IN

1
3 _1 1\ - N3
2O S eh() (N + N75) (np)E S (o) (LN~ + N )
by Lemma 4.11. Since 8 € (0,1) and 3 —§ € (0,2) as § € (1,3), this implies
(3) 2
1L =B | 6 Ar26.3-6)2
WO S eh) (N7 + GNE)T
which yields the final bound for 'y( ) because, by admissibility and since & < %%,

¢
N () S (2)
1 = \n
5.2.5 Estimate of 7 (t)
First, observe that
82)] £ a1t lllazell®) e gy < €50 (v, ) .

Since both terms (30) and (31) contain the quasi two-dimensional interaction w, 3, we
integrate by parts in x as before, using that

Wyp (1 — 21) = Doy by p(01 — 72) + Ty (21 — 22)
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and choose p = N7 for 8, = min {%,B} in (30) and p = 1 in (31). In the sequel,

we abbreviate

(12)

=(12) =
wuﬁ = wﬂyﬁ(xl - .’EQ) ? (12)

=0,(z1 — z2), Rog.p = hogp(T1 — T2).

Estimate of (30). Integration by parts in z yields with Lemma 4.3b

ol < N |(Ratadud mm i) (10
=(12)
+N’ Vleql q2 (vx1hgﬁ p)p1p2w>>‘ (71)
—(12)
+N’ T4, qf (vmhgﬂ,p»vmlplpgw))‘. (72)

For the first term, we obtain with Lemmas 4.6c, 4.8d and for p = N~

1

~ —(12) -+ 12
(70)] < NPyl (|p2v; pii gyl + N “bnopnzwn?)

e(1) (<<¢,ﬁw>> + N*%%wl) ’

N

where we used that U, = 1/7,4/7, since T, > 0 and consequently

12 =(12 —=(12 = _
p2By VpallZ, < 3T 12,105 PP 112, < e Tl2: ey S €5(ON"2. (73)

To estimate (71) and (72), observe first that for any operator s; acting only on the first
coordinate,

=(12) =(13) ~
(8 (Vi srpatd a8 (92T, p>slp3¢>>
= << 08 ﬂslvzzmqiﬂ/’ (st gﬁp 31P3Q2 >>
(13
<< 085 p31PQQ3¢ ( CL’J 08P 51p3vx2q >>
o~ =13) (12) o~ =(13) o~
= << 08, p81V:52p2vx3QS 1/% hgﬁ p81PSQ2 71’ > + <<hgﬁ p31vx2p2q:)) 7,[1, hgﬁ p31v$3p3q2 ¢>>
=(13) (12) —(13)
<<h95 p81p2vx3q3 ¢; 08, pSIPSVIQ% ¢>> << 08, p31p2(J3 ’(/}7 08, pslvx3p3v1’2q2 ’(/}>>
S B hgupllFa) (Is1a3 01 + 111 Vasa 011 (74)

by Lemmas 4.2e and 4.9a. With Lemmas 4.6, 4.2 and 5.6b, we thus obtain for p = N5

- —(13)
() < Nuvzlzqi"w(({ (VarTigy 102063 (Vo it |

1
( 2) 2
NV 1|op)
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S 0 (¥t v E )

< N ) P :(12) o :(13)
[(72)] < Nlllgt || ({92 (Vashgy ) Varpipet, a5 (Vashy, ,) Ve, p1psy

(SIS

( 2)
+N~ 1” T1 gg,p)pQ H p”vﬂnpl ”op>

S 3O (NN £ NTE (I3

~

Together, this yields with Lemma 4.11
(B0)] £ e3(8) (W, 7] + B () (NTHHEHA 4 ()N (97 4 =07

Note that for p1 = min{ 1+4€ ,B} and since & < %, it holds that N—P1+¢ > N-3+E and
that —2 —l— +B1 < =B +£ Hence,

1(30)] < €3(t) (v, A) + 5 (H) N~ 18"
Estimate of (31). Observe first that for j € {0,1},

=(12) ~
le (V$2h’gﬁ p) 741 Q§¢\|2 (75)

1)~ 5 12 12) 2
= |||q’($1)><vx1‘1’($1)|hgﬁpljfhQ2¢|| +||p1h’gﬁpv$1l]q1 as ||

( 2)
+ <<<|‘1>(x1)><v () ‘hg[s p JQ1 a3, Yy Qﬁ,pvxl i q§>¢>> +he. )

=(1 )
thgﬂ P x1p1 Holeq qngQ + thg ppl ”opvalq q(QI)'l/)HQ

<
< Aol Zegae) (0, 70) + [ VargFol?) - (76)

Integration by parts in 3 with p = 1 yields with Lemmas 4.3b, 5.6, 4.9a and 4.11

GOl < N|{Tabadu.n T adstv)]

~ € £ :(12)
N ‘«zq?q%,ﬁ ¥ (thgﬁ,l)pibvmqg’w>>‘

e =(12) 4=~
+N‘<<Vx2qibq§’w,p¥ PY (Vashy, 1)p ?llqg’w»’

A

V(g @ F 2 loplla? vl + NIVaa a2 5P (Vi By )i a2

=(12)
N Vaa a8 0 (¥ (Vasligy gt af vl
=(12) ~ 3
+NT(Taarg, )0 12,103 012)
S ea(t) ({0, 0) + IVaraPul? + 5N )

With Lemma 5.7 below, we obtain

1
2 B
B S ed(t)ag,, () +eht) (HB n (/TB) N g +M)
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for B> = min {3, 1}. Together, the estimates of (30) and (31) yield

8 3\ 3 (B —e)- 1-8
P01 S 008, 0+ b0 (4 ()7 + 8O0 i)

5.3 Estimate of the kinetic energy for 5 € (0, 1)
Lemma 5.7. For 5 = min {%, 5} and sufficiently small pu,
1
B B 3\ 2 _B- 1-8
Va2 S ag, 0+ (*; F(S) 4 N ) .

Proof. Analogously to the proof of Lemma 4.21 in [4], we expand
By, 5(V) = &, ()

2 IVaraP el + Ny wl 3 (1 = pipa)y? (77)
[ 2 O ]«ﬁ%q?w,%p‘f ('@t +010} ) w»\ (79)

- ‘ ¥, p1p2 (Nw — bg|® (1) )plpﬂ/) ‘ - ”\/?plpﬂ/}HQ (79)
(72 arvpou D mmpans zb»‘ (80)

—N‘ 1/),611Q2w( )plpzl/)»‘

(
— (w0, (1 = p1p2)|®(a1) Pp1pavd))| — [{(, (1 = p1p2)|@(21)P(1 — prp2)v )| (
= [{v, 1@(@1) ) — (@, |@(x1)[*P)] (83)
[ v z0w) - (@, VIt @1, 00)2)|. (
Note that the second term in (77) is non-negative. For (78), we observe that
Vi PPN = IV ®l|72 2y = —IVa @722 laT w1* S €3(2) (v, 7))
and <<ﬁ_%qf>1/) Awlpq)ﬁ%w» < e%(t) (v, ny) . Making use of G(x) from (61) and Lemma
4.8, we find [(79)] S (t) (& + N1+ ") and |(80)] S es(t) (¥, 7). Insertion of
AZR2 yields 1(82)] < eﬁ( ) (v, np)). As a consequence of Lemmas 4.5 and 4.10, |(83)| +
[(84)] < e%(t) (v, ny) + e%(t)e. Finally, we decompose |(81)| as

8] < N‘«z/),q{(quw( )Plpﬂﬁ ‘+N‘ & v, qfpY w (g)plpﬂb»‘

+N)<<q a2, pX pX w! )p1p2¢>>‘

Analogously to the bound of (24) (Section 5.2.2), the first line is bounded by

_B 1-8
()2 +p ),

and the second line yields
e5(t) (v ) + N>
for B2 = min {3, 1} as in the estimate of (30) (Section 5.2.5). O
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6 Proofs for g =1

6.1 Microscopic structure

This section collects properties of the scattering solution fg and its complement 95
Lemma 6.1. Let fg and 05 as in Definition 3.7 and j,, as in (35). Then

(a) fB is a non-negative, non-decreasing function of |z|,

B
7€ (1, MEM—/MI) such that

(b) f5(2) = ju(z) for all z € R? and there exists K
f3(2) = Kgiu(2)
for [e] < i,
(c) o5~ 1,
() 18 -apey V61 + 4 (0, @l = 002)5 ) = 0 for any v € DV).

)

Proof. Parts (a) to (c) are proven in [5, Lemma 4.9]. For part (d), see [30, Lemma
5.1(3)]. O

Lemma 6.2. For g5 as in Definition 8.7 and sufficiently small ¢,
(@) lg5(2)| S &

B
(0) 950l 2@sy S u'*2,

1
(¢) IVgall2s) S w2,
12 c _
(@) llg§ P eN=0)| S N7

-, ~
(6) H]lsuppgg(21 - Zg)wN,E(t)H < el(t),uﬁs_§ — el(t)N—555—§7

p—1

(f) H]lsuppgg(-,zn—yz)(ml - xQ)wN’E(t)H SJ el(t),u P

Proof. Parts (a) to (c) are proven in [5, Lemmas 4.10 and 4.11]. Assertion (d) works
analogously as [5, Lemma 4.10c|. For (e), we obtain similarly to [5, Lemma 4.10¢]

p for any fixed p € [1,00).

2
Louppgs (21 = 2)0I < 27 [ dandzp [ daau e)’
supp g5 \~1 2 ~ M ZN Z2 21|Y(21, -5 2N ,
where we have used Holder’s inequality in the dz; integration. Now we substitute

21+ z1 = (21,%) and use Sobolev’s inequality in the dzi-integration, noting that
Vz = (Vg,,€0y,) and dz; = edz;. This yields

</dzl|¢(zl,...,ZN)|6>g = <6/d51|w((x1,5§1),22,..-,ZN)|6)
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5 é/le‘VZl ((x175§1>7227"'7ZN)‘2
2
— 3/dz1 (IVar (21, ooy 28)|* + €210y, (21, .. 28)[2)

The statement then follows with Lemma 4.9a. For part (f), recall the two-dimensional
Gagliardo—Nirenberg-Sobolev inequality: for 2 < ¢ < oo and f € H(R?),

q—2

19121 Ny = Sall Flzaces (85)

where S, is a positive constant which is finite for 2 < ¢ < oo (e g. [25, Theorem 8.5(ii)]

and [26, Equation (2.2.5)]). Consequently, ||f||zqm2) < ||f||1.J2(R2)HVf||L2 R?) for each
fixed ¢ € (2,00). Hence, for any fixed p € (1,00) and ¢ € L2(R*N)ND(V,,),

1 supp g5 (21 — 22) 9]

p=1
P
< /dzN~~-dy1 /]l|$|§g§d:l? /d:l?1|1[1(21,...,2’]\7)|2p
R2

R2

2p

Sl

p—1

p

25(17 1)
< /dzN ~dyy /dxlw(zl,...,zN)|2 /dx1|Vm1w(21,...,zN)|2

R2 R2

IN

where we have used Holder’s inequality in the dz; integration, applied (85), and finally
used again Holder in the dzy--- dy; integration. O

6.2 Characterisation of the auxiliary potential U,z

In this section, we show that both U 7 fz and U > from Definition 3.7 are contained
in the set W from Definition 2.2, which admits the transfer of results obtained in
Section 5 to these interaction potentials.

Lemma 6.3. The family U is contained in W for any n > 0.

Proof. Note that p=! [ps U ﬁ(z) dz = 4—”a(g‘?’»/f?’g — 1) = “Tac for some ¢ > 0 by

Lemma 6.1c, hence bﬁ NE(UMB) = lim(N c)—(c0,0) 0 3 Na(Uuﬂ) The remaining require-

ments are easily verified. O
Lemma 6.4. Let 0 <n <1 — 6 Then the family U f is contained in W~

Proof. As before, it only remains to show that U f satisfies part (d) of Definition 2.2.
To see this, observe that

i U @8 e @t [ w656 e [ ueie @ g,

R3 B,(0) B.(0)
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hence bE Ne

)

(Uu,EfE) = rz8ma Jg IX(y)|* dy. By Lemma 6.1b, this implies

A L
ol b (U, 585 =sma [ Wl dy = b (36)
R

and

6.1b ~
b5 3 (U, 5f5) = b = 8ma(k; — 1) [ [x(@)*dy S —<— < u'=P.
BNe\uplp) — B X ~ 3 ~H
J W = pa

6.3 Estimate of the kinetic energy for g =1

The main goal of this section is to provide a bound for the kinetic energy of the part
of 1™V:(t) with at least one particle orthogonal to ®(t). Since the predominant part
of the kinetic energy is caused by the microscopic structure and thus concentrated in
neighbourhoods of the scattering centres, we will consider the part of the kinetic energy
originating from the complement of these neighbourhoods and prove that it is subleading.
The first step is to define the appropriate neighbourhoods éj as well as sufficiently large
balls A; D C; around them.

Definition 6.5. Let max{%, %} <d<PB jke {1,..., N}, and define

ajk = {(21, e 2N) ] < ,ud},
Cik = {(21, ...,ZN) . ‘Zj fzk‘ < QE}’
aik = {(21, cn2N) ey — x| < ,ud},

Then the subsets Zj, Ej, Zj and Z;c of R3N are defined as

7 %) - T
A= Jae  Bj= Ua, = A = Ud

ki kol ket Kt
and their complements are denoted by A;, B;, C; and .A?, e.g., Aj = R3N \ A;.

The sets A; and .7{; contain all N-particle configurations where at least one other
particle is sufficiently close to particle j or where the projections in the z-direction are
close, respectively. The sets B; consist of all N-particle configurations where particles
can interact with particle j but are mutually too distant to interact among each other.

Note that the characteristic functions 14¢ and 13+ do not depend on any y-coor-
dinate, and 1, and 1p, are independent of z;. Hence, the multiplication operators
corresponding to these functions commute with all operators that act non-trivially only
on the y-coordinates or on zj, respectively. Some useful properties of these cut-off
functions are collected in the following lemma.

Lemma 6.6. Let A, ZT and By as in Definition 6.5. Then

d—1

3d—1 3d—1
(a) Hljlpl”wsel(t)/i 2, Hljlvmpl”olusel(t)ﬂ 2,
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(6) |17, %ll S 15 (IVa¥ll + €0y ¥ll) for any ¢ € LXR*N) N D(V)),

e _1
(¢) 115, 0yt NI S ex(t)e™ud s,

L/ N
(d) nglwu S 'udig <k¥2(|fvmk¢”2 + 52”8%1[’”2)) for any ¢ € L2(R3N) ND(Vy),
(e) 15,0 (1) S et()N2p?=5 = ey ()N~ TH3ed~3,

() gl S (N2 [l |V, ol 7 for any fived p € (1,00), ¥ € LAR*Y)
D(Va,),

1— X%, N, < 1 N 2d pT_l d 1
(9) gzay ™=@ S er(t)er (Npt) 2 for any fived p € (1,00).

Proof. The proof of parts (a) to (e) works analogously to the proof of [5, Lemma 4.13]:
one first observes that in the sense of operators, 17 < 22\22 lg, , and 1z < Zgﬂ 1%,

concludes that fR?, Loy, (21, 26) dz1 S p3¢, and proceeds as in the proof of Lemma 6.2e.
The proofs of (f) and (g) work analogously to the proof of Lemma 6.2f, where one uses
the estimate [po L= (z1,...,ox)dz; < Np2d. O

Lemma 6.7. Let 1 > B > d > max {72;;1’ %} Then, for sufficiently small p,

B
2

0 1— 5
114, Verad 0 <0 < e%u)a;wu(t)ﬂ%(t)((z) ()P 4 N )

Proof. We will in the following abbreviate ¢"V¢(t) = v and ®(t) = ®. Analogously to [5,
Lemma 4.12], we decompose the energy difference as

E3,(1) = £(1)
> L VergP 0l  |[Trraf L Voaial v &7)
11, 15, Ve 1P + {0 (=05, + 2VH(E) - 2)0)

#5 ot (wr? - UlD) )9

+2§R <<Va;1p1¢7 1A1vzlq1w>> (89)
L, Vo192 = (V2222 (90)
% ([ 10 Pw) - (@, 1020)) + (v, VI, 2)0)) - (2,VI(, (2,0)@) (91)
0 (0 1 iU D prpas, ) - 4 (0, BP0 (92)
+(N — 1)%«1/17 15, (p1g2 + Q1p2)U£§)p1p2161¢>> (93)
+(N — 1)%«1/17 ]1131(11(12U£’1§)p1p2]1811/1>>~ (94)

The first line is easily controlled as

(87) 2 |14, Var gt ))* — e} (t)e .
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To estimate (88), note that (¢, N Bi) N (c1; N Bi) = 0 by Definition 6.5 and since

~ N
d < B implies 95 < 2@5 < p?. Consequently, 17,15, = 1g 15, = 1p > Ie,, =
k=2

N
1p, > L}z, —z|<gy» Which yields with Lemma 6.1d
k=2

1 15, Va2 + N2 <<1131¢, (wi? -0 131¢>> >0,

To use this for (88), we must extract a contribution |1 15,9y,¢[|* from the remaining
expression (1), ( o2 + - Lviw) - %)w» To this end, recall that x° is the ground
state of 82 + VJ‘(%Q) corresponding to the eigenvalue f— hence Oy, = 82

52 L(y;) EO is a positive operator and Oy, 1) = Oy, ¢f w Since 1 a0 and 1z and their
complements commute with any operator that acts non-trivially only on y; and since
]IZ”f 1z ¢ and 1479 are contained in the domain of Oy, if this holds for ¢, we find

(¢, 00} = <<1z1131(ﬁ<61/%Oyllzflzglﬁ(slﬁ»
+ <<(]1*z g, + Lag)y, Oy, (Ig: 15, + 11A9f)¢>>

> |1z Ls0ua vl - *2H<vl—Eo>_||LooRunz;qx Uk

2 igls yl¢||2—2|<<131 @ 0, 0 1) | — e 21 vl
[0y py I

> 1= 1 2 _ 2 —1]\[24"2—’1_—2+3deE

2 HAlBlylwu O] G e e

for any fixed p € (1,00) by Lemma 6.6. Note that we have used in the last line the fact
that Ilﬁals > ILZ1 in the sense of operators as A; C Xf. Now choose p =1+

which is contained in (1,00) as 2d — 1 > % because d > 3 + % This yields

2
y(2d-1)—1°

_1(NM2d)p2;”l = (Nl L (24-1) L (v(2d-1)(p-1D)—p-1) _ (g)%l@dfl) < (i)ﬁ

v ev

because, since v > 1 and d < E,

p=l — _2Q2d-1) 2d—1 1
S Q-1 =55 > s > 5

For the second expression in the brackets, recall that d > 5 + 5 L by Definition 6.5, hence

2+%(Nu2d)%l _ (N*151*7) =1 (2d— D) (r=1)(2d-1)~2+2d)

2

< (4)FEY < e)ﬁ .

Consequently,
1
(88) 2 —ei(t) (&) 7 .

Analogously to the estimates of (48) to (50) in [5, Lemma 4.12], we obtain

) 5 &0 ((wav)+a")
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) (7 + ()
ed(t) (v, ) + e} (e,

where we decomposed 14, = 1 — 1, and used that ||V, p19|* = ”vx(I)H%Q(RQ)le,l/)HQ
as well as Lemmas 4.3b, 4.5, 4.7a, 4.9a, 4.10 and 6.6a. Analogously to the corresponding
terms (51) and (52) in [5, Lemma 4.12], we write (92) as

S
S

it <<(]1 — 1g,)¥, p1p2 ((Umgfg)(m) + (Uuyggg)(m)) pip2(1 — 131)7/)»—«1/},b1|‘1’($1)|2¢>>

and control the contribution with U 5f7 and without 1 by means of G (x) as in (61),

using the respective estimates from Section 5.2.1 since Uu,,/;’fﬁ € ng for n € (0,1 — 5)

For the remainders of (92), note that ||U

uyEHLI(RB) < poand that

10, 59501y = '™ 36/ dzlgz(2)| < aul_?’ﬂgg(uﬁ)/ dz Sp? 7.
supp ~ supp B
U””B UM,B

1

For (93), we decompose 1g, = 1 — 1z and insert n2n 2 into the term with identities
on both sides. This leads to the bounds

(92)] S (1) <”f Jrul_g%—N‘1 +N—d+ggd—é> ,
93) 5 ) (N-HEE (7))

Finally, for the last term of the energy difference, we decompose g = ¢X” + pX“¢®, which
yields

1(94)| < N‘ 1,9, ¢f Q2U( p1p21lp, Y ’-FN‘ b, ¢ g3 ¥ U( )p1p2¢>>‘ (95)

+N << 50,0 aF v} U( )p1p2¢>>’ (96)
+N «]1811/%% a7 pY U( )plpzﬂ&w»’ (97)
+N <<1/),ql Py Py U - plpzw»‘ (98)
+N <<1131w,q1 a3y Py U( )p1p2¢>>‘ (99)
+N «11511/),q?qébpi‘ipé‘sUETg)plpzlglw>> : (100)

where we used the symmetry under the exchange 1 <+ 2 of the second term in the first
line. For (95), note that 1s,v is symmetric in {2,..., N} and commutes with V; and
q¥ , hence we obtain, analogously to the estimate of (24) (Section 5.2.2), the bound

1(95)] < ef(1) <N§63;E+u ~> <e1(t)<< >§+N 2’6>
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since

[y
[y

Ngss%g = (Neﬁfl) 5377195 < (NsﬂA)

for B < 3. For the second line and third line, note that py U(m)p1 = pf U (@1
x2,Y2), with U 5 asin Definition 5.4, which is sensible since U 7€ W~ for any n > 0.
Hence, with 7, and hQ@m as in Definition 5.4 and Lemma 5.6, we obtaln With the choice

p=1
(96)] < N‘«(J?HEM»(J%E@AM —$27y2)p1p2¢>>‘
+N ‘«%Vrlﬁ ¥, a3 (Vor g (a1 — wz,yz))plpzw»)

| 15,0 (VB2 Vi)

1
2

N1, l155(@1 = 2, 32)pTllop (lla3 ¥ + N ")

A

1

N VargP O (Va1 (o1 = 2,208 op (13 12 + N1)?

N[

N1, Ul (T gt (21 = w2,2)) - Vs lop (Il w2+ N7
< S Inp)z(e + N7 2)

by Lemmas 4.6c, 4.9a, 5.6 and 6.6e. Similarly, but without the need for Lemma 4.6¢,
we obtain with p =1

~

97)] S (N HET 5 (Inp )z

Analogously to the bound of (30) in Section 5.2.5, using ﬁg@p with the choice p = N—i

1

and suitably inserting n27n %, we obtain
~ _1-
1(98)] S el (t) (v, i) + e (N7 .

Finally, with the choice p = N _%, the last two lines can be bounded as

_ =(12)
09 < N|(15, 04t adT P pioa)| + N }<<131q?w,q§(vmh%,p>ovxlplpzw»‘

( )
+N ‘ 1, Vg, a8 (Vs oy, p>p1p2¢>>

1
12 12 3
< Niug, vl (I 212 + N VpE,)
*( 2)
+N|15, Il (Var g p) - Var2F lop
(12) =(13)
+N||vm1q(11)w||<<<q(2b(vm1hg p)p1p2¢,Q3( mlhg p)plpslﬁ»
~1 712 0 :
+N H(lehgg,p)pl Hop
3 —d+2 _d-1 _1 “1\3
< el(t)(N 6e"s + N 2) (Inp™t)
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12) (12 ( )
100 5 Mg, 0l (187”50 o + N 2155, o + (T )58 s (1))

< GMNTHE i (I,

(SIS

where we used (74) with s; = p; as well as (73) and Lemmas 5.6, 6.6e, 4.11 and 4.9a.
Hence, we obtain with Lemma 4.11

(SIS

O] 5 =) <(Eﬂ) T N e +Nd+3e<dé>‘> + ) (6,70

S dm) &) (,70)

where we have used that —% < —d+ % and that e < N *ngd*%, which follows because

d—35 _1-d 9—1\ 48 1 g3 -5
eN“ " 6e3™ :(Nef) 557(*7)<(H) <1
since ¥ < 3. All estimates together imply

B, (1) = &0 > 14,V g7 1* = €i(8) (v, )
—e3(t) (Mlgﬁ+( ) + N~ d+6+( )B) ,

-~ 3 1
Where~we have used that 3d —1 >1— B as 8 >d > % and that £ < (6%) 572 because,
since5>%+%>%,

(S}

£ () < (8) < ()77

e

6.4 Proof of Proposition 3.9
Recalling that 7 = p1pem® + (p1g2 + q1p2)M?, we conclude immediately

N2

(teomnas 1 = 2200902 am + (ra + )y

17

SSHN-FHATE < d()eh
by Lemmas 6.2 and 4.2a and because 8> %. For fixed ¢ € [0, T77}) and sufficiently small
g, e%(t)s% < 1, hence this is bounded by ¢.

6.5 Proof of Proposition 3.10

This proof is analogous to the proof of [5, Proposition 3.2], and we sketch the main steps
for convenience of the reader. In the sequel, we abbreviate 9" = ¢ and ®(t) = ®.
Since

G g, (t) = Sag, () — N(N - DR (;;g <<¢,ggz>?¢>>> ,
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Proposition 3.5 implies that for almost every ¢ € [0, T“i?ﬁ)

| L g, | < Vo< (8)] +

) = NV = R (4 (a70)) | o

The second term in (101) gives

_N(N = )R ((;1 << a2, )
= (N_1>cs<<w, “2)[ A ZN: i), ] >> (102)

j=1

+N(N - 1S << [M(t 2)}%» (103)

In (102), we write >, _; w,gij) = wE}Q) +Z§Y:3 ( (1) 4 w(QJ)) + D 3<ici<n w( ) and use

the identity wS> — by (|®(21)|? + [B(x2)[2) = 20D — N=2p, (|&(21)|2 + |B(2)[2). This
yields

(102) = 7u(®) + 9(t) +7e(6) + 77(6) + NV = 13 (w907 [202,7] )
For (103), note that
10,957 7o = (wff? —U§?) P50 - 29190%) - Vire — 2297 - Ve,

hence

(103) = 7o(t) + N(N — 1)%«1/}, (w£12) — U}%)) fg?)?w» .

The expressions v4,<(t), 7,<t) together with the remaining terms from (102) and (103)
yield

Yo (8) + N(N — 1)3( = (w2970 + <<¢’ (1= 55 [209.7] w»
ol i) )
= Ya<(t) = N(N - 1)%<<1/”9%12)?Z(12)¢>>

SNV =13 ([ (002~ iy (100 + [0)?)) (1 - 927w
= () + ),

where we used that <<1/), 2(12)7/%» =S <<1/), 2(12)ﬁ1¢>> and that

(12) £12): (12) (13) (~12) (12) £12)_571 2 2 (~12)
20D = (wft? —u12) 0D L g U0 £ — i (j0() P + @) ) £ O
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6.6 Proof of Proposition 3.11
6.6.1 Estimate of v<(t)

To estimate y<(t), we apply Proposition 3.6 to the interaction potential U Bfﬁ’ which

makes sense since Uu Efg € WE’] for n € (0,1 — 5) by Lemma 6.4. Besides, we need
to verify that the sequence (N,¢), which satisfies A4 with (©,I'); = (¢¥,7), is also
admissible and moderately confining with parameters (@’F)E = (6/8,1/p) for some

§ € (1,3). We make the choice 0 = 195 N
By assumption, 1 > B > VH > > . Hence, 6 = 95 € (1,3) and we find

/B 0 -
R S ey
M M e/ e v
Since Proposition 3.6 requires the parameter 0 < £ < min {% , % B, 3—55 . %}, we

choose 0 < € < min{l%g7 2325719%}

Proposition 3.6 provides a bound for v<(¢), which, however, depends on a§ U,
and consequently on the energy difference |EU (0 =€ U ( )|- Note that oz5 U, st (
w818 B

enters only in the estimate of

GO < V| (T, afp) Y (U, 5720 B platv))|

(4)

in 7, _(t). Hence, we need a new estimate of (31) by means of Lemma 6.7 to obtain a

b01.1nd in tér.ms of |E$M3 (t) — éf; (t)|. Since U,5f3 € W5, we can define U € VQE
as in Definition 5.4,

Bfﬂ

—(12)
Yoy =U 5f5 Yy

£ £

€ € 12
py py (U, 55 pY
and perform an integration by parts in two steps: first, we replace Uu 3 fg by the potential
V. € §M52 from Definition 5.4, namely
T2, sl ey for fa] < p??,

0,8, (T) =
g 0 else ,

where we have chosen p = p% for some By € (O,E). Subsequently, we replace this

potential by 7; € Vi with p = 1, where 5, plays the role of U, 55 ie.,

_ . %”@%HLI(R?) for [z <1,
0 else.

By construction,

1T, 555l 1 ey = (10,82 |21 m2) = 71l 21 Ro),
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and ﬁ“@,l as defined in (67) satisfy the

hence, by Lemma 5.6a, the functions hg b2
equations B B

Achgs prz = U, 555 = Uupz s Dahymy =Vyum — 71
Hence,

PPy (U, 55520 1Y = (Bahy o + Aclyn s +51) 9Y 15

and consequently

e =(12) ~
By < N '({p’f vmq?w,q§<vmh%,uﬂz)pzq1‘>z1w>>] (104)
(12)
+N << ZCII 1/’)Q2( 1 g ,u52)p2vxl(h 7Z}>>’ (105)
o, & =(12)
+N <<Vxlql (UN7) (thuﬂz 1)p1 p2 Pz llfh 7/J>> (106)
+N (g1 ¥, q5 (V:mhuﬁz,l)pl Py D2 vzlql 1/1 (107)
+N |((Tatag e, 70 vy pEalv)| (108)

With Lemma 4.6a, the first two lines can be bounded as
(100 5 Nes() ({68 (Tugy s 201000 68 (T o a0 )
N T 13)

) (% + N7 (mph)*

() ~ _
(105) < NIVa, gt ¥lllpy (Vashy peo)lal e vl < (O mnpt

A

where we used for (104) the estimate (74) with s; = ¢® and ¢ = 117 and for (105) the
estimate (76) and applied Lemma 5.6b. To estimate (106) and (107), we insert identities
1 =14, + 1z to be able to use Lemma 6.7:

106) 4 07) < N (Vo L (Caoml afio)| (09
*( 2) )
+N « @8, 17, PopY (Vi hysa 1)l 63 w)} (110)
o o =(12) & &
+N <<1A1vx1(h V0,05 (Vayhyss 1)p2py 41 lu/)» (111)
—(12)
+N <<ZQ1 .03 (Vay hyin 1)p2pY 1, Ve, ] 1/)»‘ (112)

By Lemma 6.6b, we find for ¢ € L2(R3Y) and with z = (21, 2()

=(12) ~
11,4 (Vs By 1 )03 0012

= 17,4 (Qﬁgnhuﬁz;)pébinZ + || 1Z1q§(5x§2>huﬁz,1)pg}¢||2
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12) —(12) | o~ —(12) | o~
< pt (H( (1)h,ﬁz 1)1’2 ¢H2 + H( ) h,ﬁz;)pngQ + (8w§1>8m§2> huﬁzg)pg)(/}HQ

=(12) ~ =(12) -~
(0,0 P21) P2 Var VI + (9,2 1)02 Va0
=(12) ~
+2I(Ta T )0, T )
and analogously for the respective expression in (110). Note that for ¢,5 € {1,2} and

F € L*(R?) with Fourier transform F(k), it holds that ||8x(J)FHL2(R2) < ||Va FHL2(R2)
and that

10,0000 Fll 22y = IFORD |2y S 1MW) + (BD)) F 172 mey = 180 F |72 (ge) -
Hence, we conclude with Lemma 4.8d that
_1 = ~
(109) + (110) < N[ Va gt llu’ 5er(t) <|’Amh#ﬁz,1HL2(R2)||lq;b¢|
Vel 1 2@ IVar a0 | + €l Vahyon 1 [l 2(e2) 10y, PY o g 7#|>
S el (W NG i)
which follows because Agj#g? 1 = U,p,— V1. For the next two lines, note that 1 4, Vo qty

is symmetric in{2, ..., N}, hence we can apply Lemma 4.3a. Similarly to the estimate
that led to (74), integrating by parts twice yields

- —(12) —(12) -
(111) < NIIIIAlefJiI’dJII(IIllq?qg’wIIQIIhMﬁa,lvmpg’llﬁp+||p2huﬁz,1vx2l1q?q§wll2

o=

N (T a pl13)
Further, proceeding as in (76), we find

< *( ) ) :(12) TP D
(112) < N|1a, Ve q 1/’” ||hu/32 1Va:1p1 ||0p||lq a2 Y| + leh,ﬂz,lvml(h @Yl ) -
By Lemmas 4.2d, 5.6b and 6.6b, we obtain for j € {0,1}

=(12) ~
||p1hM52 1lJQ2 z1q1 ¢”2
=(12) =(12) =(12) ~
5 lehpBZ,1qu(2b]1«41v1‘1q(11>¢”2 + ’<< 191 ¢ lA JQQ h’uﬂz 1p1huﬂ2 1l_]QQ I1Q?¢>>‘

& =(12) =(12) ~
+ <<Vx1Q1 Y, 1,4 jQQ h;ﬁz 1P1hu52 IZJQ2 1A, Vo 1/)»

S lprhyn 1120104, ¥y P2
IV 012 Tlop (TP 1102 o + [T Vi o
+¢l|0y, P} HOPHhuﬁ? 1P1 “010) Hh;(ﬁQ) 1P1 ||0p
< BN L4, Vi, g0l + el (N5 (In )3
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Combining these estimates, we conclude with Lemma 6.7

(111) + (112)
S al) (114 Vi a9 ) + (9, 70) + N ) + (NS p® 5 (Inp )2

L 1-8
N e?(t)OéZw#(t) + ezll(t) ((f) + (5%)5"/2 +puz + NdJrg)

wlwy

Finally,

(108) < N|[iga2e|llg®e 7 P2 llop S €1 (t) (0, )

by Lemmas 4.2, 4.8d and by Definition 5.3 of il. With the choice B2 = % > %, all
estimates together yield

(M)

1

N =
1(31)| < e{’(t)azwu + ¢i(t) ((5:) + (£)57 g N‘d+2> :

In combination with the remaining bounds from Proposition 3.6, evaluated for E, n=
(1 — )~ and 0 = ¥, we obtain

8 1 1-8
<Ol S dag,, + ) ((j) ()57 +N—d+2> .

6.6.2 Estimate of the remainders 7,(t) to v¢(t)

The estimates of v,(t), 75(t) as well as the bounds for v4(t) to v¢(t) work mostly anal-
ogously to the respective estimates in [5, Section 4.5], hence we merely sketch the main
steps for completeness.

Recalling that 7 := mPpips +m%(p1g2 + q1p2), one concludes with Lemmas 4.10, 6.2b
and 4.2b that

M@l S NV 20) = VI, @1, 00) 095 pllop (17 llop + 17 op )

B 348 1+6-£

< 4 14¢-8 348 _ 4 (ﬁ ) 2

S ei(t)N 2e 2 <o) (5

since § > 2,¢ < 5 and ¥ < 3. To estimate y,(t), note first that bz = b(Uu Efg) =b
by (86), hence (47) = 0. The two remaining terms can be controlled as

O)] S N2 ey l95 1 llop (17 hop + 172 )
S ONTEST < Ge'?

48] S N2p1gS llop (17 lop + 177110p ) lIp1 (w!? = (@) + [0(2))) ]
< SN < g

as a consequence of Lemmas 4.2b, 4.7a, 4.9e and 6.2b. The first term of ~4(¢) yields

12 ~ ~
GO S N Lauppg (21— 2201190 P lopll Bl iy (172 ep + 17 o
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35 38
S AN < (e

since 8 > 2 and ¢ < 5. For the second term of y4(t), we write 7 = m%(p1 + p2) +
(M — 2Mm*)p1pa, apply Lemma 4.3c with m¢ and m? from Definition 3.2, and observe
that gén) w!

and |21 — 23| < p for 21 — 23 € suppw,. This leads to

1) # 0 implies |z9 — 23| < 2QE because |21 — 29| < 05 for z1 — zo € supp 95

GD] <

~

3 <<¢,gé~12)p2 []lsuppwu(zl — z3)wy, 13, pipsm® + (p1gs + qips)m } ¢>>'

+N? <<p1 Tsuppw, (21 — 23)9[(312)10,313)1/)7 13295(0)(22 - 23)77”60“1/1»‘
—|—N3 <<Z/), (1 ) (ma +p2(mb _ zma))p1w£13)¢>>‘

N3 {( 99, 652 L, (21 — )1 (A1 m“)w})‘

S L R s B

1468 3
< &) <(j) + ﬁ)

since § > 2 and ¢ < {; and where we have estimated 11B,, (0)(22 — z3)m%p||? analo-
5

gously to Lemma 6.2e. Using Lemma 4.3c, the relation

p3pa(T — T2) + (p3qa + q3pa) (T — 1)
= (p1g2 + q1p2)(P3qa + q3pa)ME + (p1ga + qup2)pspam®

+p1p2(p3qa + g3pa)m® + p1papapam?

and the symmetry of 1), we obtain

e)| < <<1/J 'p qz[ (39 p3qam® + papaim? >>|
+N* <<1/)79~ ppz[ G paqaim® +p3p4mf} >>‘
< Nlpswulllgspillop (I\Wl\op + 7op)
S SN < et
by Lemmas 4.9¢, 6.2b and Lemma 4.2b. Finally,
0] S N2 265 oy (17%lop + [700l0p) S HON-THF < )™

The last remaining term left to estimate is v.(t), where we follow a different path than
in [5]: we decompose the scalar product of the gradients into its z- and y-component

and subsequently integrate by parts, making use of the fact that V,, g(~12) —Va, 9(12)
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and analogously for y. Taking the maximum over sy € {p2, g2} and e £ from (19), this
results in

e 5 [T Toamliow )|+ 8 | (Fasg - Vi) (119
N X (8, g U2, pyl N XE 0o SNV pod, 1o 114
+ p2 7( y2gg ) y1 P1 s )| + p2 7( y2gg )pg Y1 Q1 ( )

e DRCR ey [ ROty IR

With Lemmas 4.2b, 4.8, 4.9a and 6.2, the first line is easily estimated as

1) 5 N|(TalTrumilson | + 8 |(Fast gl Tl

+N ‘«w,géw)AmpllAsw ‘ +N ‘«w,ggQ)VmszmlAqliﬁ»’

B 8 /3
< SEHNHS < B

~

For the second line, we conclude with Lemma 6.2f that for any fixed p € (1, 00),

(114) S N‘<<8y2p3<£]]-suppgg(-,yl—yg)( $2)7/1a9~ y1p1l52¢>>
X° (12) 7
+N <<8112p2 ﬂsupng(~,y1—y2)<m1 - 952)%95 p25yllCI1¢>>

+N <<p§6 lsuppgg('7y1*y2)($1 - x2)¢a gé'u)awplayz/l\*s?w»

155 12 o~
+N <<p§ 11Slllegg(wylfyz)(xl - xQ)"/’ag/(g )8y2p28y1l(h¢>>
_ 12 12 —
S N g n ) @1 = 2200 (11957 pillop + 1195 p1lope™)
< QN T YT
With the choice p = 7+1, we obtain
3 ~y—1 3

(Nflslfv)3*25*5*56’75(5*ﬁ)*§*5(7*1)

SH Y]

3,38
Nﬁfi 5€7§+77

< (ﬁ)é—sg(v—l)(i—s) < (E%)%—E

since 3 > VH and ¢ < 1. Finally, the last line yields
e 12 -~ € 12 0D
(115) < N‘ O} 0190 misat | ‘ + N‘ (7.0 )aylplayglszw»'

+N‘ Oyt 95" pzaqulz/;)MN‘ w,gg”’ayzpzayquw)ﬂ
6

_B B_
< QNI < (1)

~

where the last inequality follows because

N—§+§5—% = (N~ 1o1- ﬂ/) 587_, -1 ~ (N~ 1o1- 7)2-5
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Higher order corrections to the mean-field description of the
dynamics of interacting bosons

Lea Bofmann? Natasa Pavlovié¢! Peter Pickl! and Avy Soffer?

Abstract

In this paper, we introduce a novel method for deriving higher order corrections to
the mean-field description of the dynamics of interacting bosons. More precisely, we
consider the dynamics of N d-dimensional bosons for large N. The bosons initially
form a Bose-Einstein condensate and interact with each other via a pair potential
of the form (N — 1)"'N%y(NP.) for 8 € [0, ;). We derive a sequence of N-body
functions which approximate the true many-body dynamics in L?(R?")-norm to
arbitrary precision in powers of N~!. The approximating functions are constructed
as Duhamel expansions of finite order in terms of the first quantised analogue of a
Bogoliubov time evolution.

1 Introduction

We consider a system of N bosons in R?, d > 1, interacting with each other via pair
interactions in the mean field scaling regime. The Hamiltonian of the system is given
by
al 1
o t
HA (1) ._Z(fAﬁvex (t, 7)) +ﬁ2v5(xi—xj). (1)

]:1 i<j

Here, V! denotes some possibly time-dependent external potential, and the interaction
potential v? is defined as

vﬂ(az) = Ndﬁv(Nﬁx), B e [O,%), (2)

for some bounded, spherically symmetric and compactly supported function v : R% — R.
In the following, we will make use of the abbreviation

B

v = o (x; — ) .
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Note that the prefactor (N — 1)~! in front of v” is chosen such that the interaction
energy and the kinetic energy per particle are of the same order. The mean inter-
particle distance is of order N~ d and therefore much smaller than the range of the
interaction, which scales as N~8. Hence, on average, every particle interacts with many
other particles, and the interactions are weak since (N —1)"' N9 — 0 as N — oco. This
implies that we consider a mean-field regime. In particular, the case § = 0 is known as
the Hartree scaling regime.

In this paper, we study the time evolution of the N-body system for large N when
the bosons initially exhibit Bose-Einstein condensation. We impose suitable conditions
on the external potential V' (¢) such that H?(t) is self-adjoint on D(H?(t)) = H?(R)
for each t € R. Consequently, H?(t) generates a unique family of unitary time evolution
operators {U(t,s)}+ scr via the Schrodinger equation

idU(t,s)=H ()U(t,s), U(s,s)=1. (3)
The N-body wave function at time ¢ € R is determined by
P(t) = U(t,0)¥(0) (4)
for some initial datum (0) = vy € LSym R4N). Due to the interactions, the characteri-
sation of the time evolution U(t, s) is a difficult problem. Even if the system was initially
in a factorised state, where all particles are independent of each other, the interactions
instantaneously correlate the particles such that an explicit formula for U(t, s) is quite
inaccessible.

To describe U(t, s) approximatively, one observes that the dynamics of the many-
body system can be decomposed into

e the dynamics of the condensate wave function ¢(t) € L?(R?), and

e the dynamics of the fluctuations around the (time-evolved) condensate.

More precisely, the N-body wave function ¢ (t) can be written as

Z%’ DN g, ) (5)
k=0

for some &,y = (fgc(i))fcvzo € F=N ({e(t)}*), where

FN (fo1t) = DR (6)

k=0 sym
is the truncated bosonic Fock space over the orthogonal complement in L?(R?) of the
span of ¢ € L?(R%). A definition of 552) will be given in (20). Further, ®; denotes the
symmetric tensor product, which is for 1, € L?(R%), ¢, € L?(R%) defined as

(wa s wb)(mlv' ama+b)
= ey a\Lo(1)s -+ Lo(a Lo(a+1) -2 To(a )
mg§+b¢ M (@) Vo(To(a+1) (a+b))

where G, denotes the set of all permutations of a+b elements. The addend &k = 0in (5)
describes the condensate, while the terms k € {1, ..., N} correspond to the fluctuations.

In the following, we will refer to fgc) (t) as k-particle fluctuation.
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1.1 A first order approximation to the N-body dynamics

A first approximation to the N-body dynamics is provided by the time evolution of the
condensate wave function. Its dynamics yield a macroscopic description of the Bose
gas, which, in the limit N — oo, coincides with the true dynamics in the sense of
reduced density matrices. In order to formulate this mathematically, one assumes that
the system is initially in a Bose—Einstein condensate with condensate wave function g,
ie.,

lim Tr 7(1)(0) — [o){¢ol| =0,
N—oo

where
FO(t) = oo w0 (0)) ((1)]

is the one-particle reduced density matrix of ¥ (¢) at time ¢. Then it has been shown,
see e.g. [1, 2, 11, 13, 18, 19, 32, 53], that

Jim T ]y O() — [p) (e(t)]| =0 (7)

o0

for any ¢ € R, where ¢(t) is the solution of the Hartree equation
ihio(t) = (—A + V() + 770 — u#0) ot) = b (1)(2) (8)

with initial datum ¢(0) = o and with

70 (z) = (vﬁ * IsO(t)!2> (z) := /Rd V(@ —y)le(t,y) | dy. )

Note that for 8 = 0, the equation (8) is the N-independent Hartree (NLH) equation.
For 8 > 0, the evolution is N-dependent and converges to the non-linear Schrédinger
(NLS) dynamics with N-independent coupling parameter f v in the limit N — oco. The
parameter ,u‘f’(t) is a real-valued phase factor, which we choose as

o0 = 1 / delp(t, 2)P 770 () = 1 / da / dy lo(t, ) Lot ) o (2 — ) (10)
R4 Rd R4

for later convenience. For the convergence with respect to reduced densities, this phase
is irrelevant since it cancels in the projection |¢(t))(p(t)].

One way to prove the convergence (7), and consequently to derive the NLH/ NLS
equation from a system of N bosons, is via the so-called BBGKY! hierarchy, which
was prominently used in the works of Lanford for the study of classical mechanical
systems in the infinite particle limit [36, 37]. The first derivation of the NLH equation
via the BBGKY hierarchy was given by Spohn in [54], and this was further pursued,
e.g., in [1, 2, 20, 21]. About a decade ago, Erdds, Schlein and Yau fully developed the
BBGKY hierarchy approach to the derivation of the NLH/NLS equation in their seminal
works including [18, 19]. Subsequently, a crucial step of this method was revisited
by Klainerman and Machedon in [33], based on reformulating combinatorial argument
in [18, 19] and a viewpoint inspired by methods of non-linear PDEs. This, in turn,
motivated many recent works on the derivation of dispersive PDEs, including [11, 12,

! (Bogoliubov-Born-Green-Kirkwood-Yvon)
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13, 14, 15, 32, 53]. In [52], Rodnianski and Schlein introduced yet another method for
proving (7), which uses coherent states on Fock space and was inspired by techniques of
quantum field theory and the pioneering work of Hepp [29].

In the context of the current paper, the most relevant works on the derivation of the
NLH/NLS equation are due to Pickl [50, 51], who introduced an efficient method for de-
riving effective equations from the many-body dynamics, transforming the physical idea
behind the mean-field description of an N-body system into a mathematical algorithm.
Instead of describing the condensate as the vacuum of a Fock space of fluctuations, this
approach remains in the N-body setting and uses projection operators to factor out
the condensate. This strategy was successfully applied to prove effective dynamics for
N-boson systems in various situations, e.g., [4, 8, 17, 30, 31, 34, 40, 41].

A much stronger notion of distance than the one expressed in (7) is provided by
the L2(R¥)-norm. Whereas closeness in the sense of reduced densities implies that the
majority of the particles (up to a relative number that vanishes as N — o0) is in the
state ¢(t), the norm approximation requires the control of all N particles. In particular,
this implies that the fluctuations around the condensate can no longer be omitted from
the description. In this sense, the norm approximation of ¢(¢) can be understood as
next-to-leading order correction to the mean-field description.

For the dynamics U(t, s), a norm approximation in d dimensions was proven in [38]
for B = 0 and V' = 0 under quite general assumptions on the interaction potential
v. In [44], this result was extended to the range 3 € [0, 3) for the three-dimensional
defocusing case, and in [45], the focusing case in dimensions one and two was treated
for 8> 0 and B € (0,1), respectively. In these works, the authors consider initial data
of the form

N
Yo=Y e @, xM(0) (11)
k=0
for some appropriate initial fluctuation vector x(0) := (x*(0))%2, € F({@o}*). It is
then shown that there exist constants C, C’ > 0 such that
2
< Ce”INTI, (12)
LQ(RdN)

N
H@b(t) =D NP e, XM (t)

k=0

where 6 = 1 for § = 0, § = 1 — 303 for the three-dimensional defocusing case with
B €10,%), and § = 3 and § < 1(1 — ) for the one- and two-dimensional focusing
case, respectively. The fluctuations x () = (x®(¢))52, € F({¢(t)}*) at time ¢ > 0 are
determined by the Bogoliubov evolution,

iix(t) = Hpog(t)x(1) - (13)

Here, Hpog(t) denotes the Bogoliubov Hamiltonian?, an effective Hamiltonian in Fock
space which is quadratic in the number of creation and annihilation operators.

2Written in second quantized form, Hpog(t) is defined as

Hooe(t) i= [ 0t (WO 0a) + K0 (0) ardo+ [ do [ dy (Kot mg)ata) + Kaltmglasa, ) |
R R Ra

where a; and a, denote the operator-valued distributions corresponding to the usual creation and
annihilation operators on F(L*(R%)). Besides, Ki1(t) := Q(t)K1(t)Q(t) with Q(t) := 1 — |o(t))((t)],
where K is the Hilbert-Schmidt operator on L?(R?) with kernel K1 (t,z,y) == o(t, z)v?(z — y)o(t, y).
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For three dimensions and scaling parameter § = 0, a similar result was obtained
in [42, 43] via a first quantised approach. More precisely, denote

pfY = J(t, 1))t )|

and
t t
q;a( ). _ pf( )
The auxiliary N-particle Hamiltonian H#(®) () is defined by subtracting from H?(t) in
each coordinate the mean-field Hamiltonian h#®)(t) from (8), inserting identities

( o(t) +q<ﬁ(t))( o(t) +q<P(t))

on both sides of the difference, and discarding all terms which are cubic, C*®, or quartic,
Q#®)in the number of projections ¢¥(*) (see Lemma 2.2). This yields

ﬁ¢(t)(t) — ih;‘p(t)(t)+zvl—12( w(t)qf(t) Zqu(t) o(t) er;o(t) (t) ZB]q;P(L‘) o(t) Jrh.c.) 7
Jj=1 1<J
(14)
which has a quadratic structure comparable to that of the Bogoliubov-Hamiltonian
Hpog(t): all terms in HA(t) — > hf(t) (t), which form an effective two-body potential,
contain exactly two projectors q*@(t) onto the complement of the condensate wave func-
tion, while Hpog () is quadratic in the creation and annihilation operators of the fluctu-
ations. However, H#®) (t) is particle number conserving and acts on the N-body Hilbert
space LQ(RdN ), i.e., it determines the evolution of both condensate wave function and
fluctuations. In contrast, Hpog(t) operates on the fluctuation Fock space F ({p(t)}),
does not conserve the particle number, and exclusively concerns the dynamics of the
fluctuations with respect to the condensate wave function evolving according to (8).
Under appropriate assumptions on the initial datum g, the time evolution U,(t, s)
generated by H#®) (t) approximates the actual time evolution U(t,s). More precisely,
there exist constants C, C’ > 0 such that

~ 2 142 _

1(U(2,0) = Up(t,0))vo][ > gany < Ce“ " N~ (15)
[42, Theorem 2.6]. Further, in the limit N — oo, the fluctuations in U »(t,0)1hg coincide
with the solutions of the Bogoliubov evolution equation: let {,, = ( gf))) denote

the fluctuations around ¢o®" in the initial state 1o under the decomp081tlon (5), let
Sy = (5;’52))2\;0 denote the fluctuations around go(t)®N in ﬁv(t,O)Qﬁo, and let x(t) =
(X(k) (t))k>0 denote the solutions of (13) with initial datum &g, for 0 < & < N and

gz) =0 for £ > N. Then

Z\ & -l

Further, Ks(t) := (Q(t) ® Q(t)) Ka(t), where the kernel of the two-body function Ka(t) is given by
Ka(t,x,y) := o(t, 2)v" (z — y)p(t,y) (e.g. [44, Equation (31)]).

< CePPN! (16)
LZ(]de)
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[42, Lemma 2.8]. Hence, the combination of (15) and (16) yields (12), with a different
time-dependent constant but the same N-dependence.

Beyond the mean field regime, a statement similar to (12) was shown in [46] for
the range S € [0, %) For larger values of the scaling parameter, the evolutions of
¢(t) and ,4) do not (approximately) decouple any more as a consequence of the
short-scale structure related to the two-body scattering process. For g € (0,1), an
accordingly adjusted variant of (12) for appropriately modified initial data was ob-
tained in [9] in the three-dimensional defocusing case. Similar estimates for the many-
body evolution of appropriate classes of Fock space initial data have been obtained
in [6, 16, 22, 23, 25, 26, 27, 28, 35, 52] for various ranges of the scaling parameter. A
related result for Bose gases with large volume and large density was proved in [49].

1.2 Higher order approximations to the N-body dynamics

In this paper, we introduce a novel method for deriving a more precise characterisation
of the dynamics, which approximates the N-body wave function to arbitrary order in
powers of N~!. This is achieved by constructing a sequence of N-body wave functions,
which are defined via an iteration of Duhamel’s formula with the time evolution ﬁ«p (t,s)
generated by H#®) (t). We work in the first quantized framework as was the case, e.g.,
in [42].

e In our first result, we estimate the growth of the first A moments of the number
of fluctuations when the system evolves under the dynamics U(t,s) or Uy(t, s).
Estimates of this kind are often needed to derive effective descriptions of the
dynamics of interacting bosons, e.g., in [5, 6, 10, 42, 49, 52]. Our proof extends
comparable statements for = 0 and d = 3 obtained in [42, Lemma 2.1] and [52,
Proposition 3.3], and for Bose gases with large volume and large density in [49,
Corollary 4.2]. The estimate is given in Proposition 2.4 and holds for g € [0, 2%
in case of the dynamics U(t, s), and for the full mean-field range 3 € [0, é) in case

of the dynamics Uy(t, s).

In the remainder of the paper, we assume that for some A € {1, ..., N}, the first A mo-
ments of the number of fluctuations in the initial state are sub-leading (see Assumption
A3). More precisely, let v € (0,1]. We assume that for all a € {0, ..., A}, there exists
some constant C(a) depending only on a such that

<§¢07N$0§g00> < C(G)N(l_ﬂa . (17)

Here, £, denotes the fluctuation vector corresponding to the initial state 1 as in (5),
and N, is the number operator on the Fock space F=V ({cpo}l) of fluctuations around
@o®N. Note that v = 0 corresponds to the trivial bound (&g, N% &p) < N In
this sense, our assumption states that the expected number of fluctuations in g is
sub-leading. Clearly, the larger we choose -, the stronger is the assumption.

e Under these conditions, we show in Corollary 2.5 that at any time ¢ and for
sufficiently large IV, the first A moments of the number of fluctuations remain
sub-leading, and the N-dependence NO=7a i (17) is replaced by NeBMa for
some (1 —7) <¢(B,7) < L.
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e In our second and main result (Theorem 1), we prove higher order corrections
to the norm approximation (12) for the scaling regime 3 € [0, ;). This is to
be understood in the following sense: we construct a sequence of N-body wave

functions {M(Da) (t)}aen C L2(R¥Y) such that, for sufficiently large N,
[46(8) = ) (1) 22 gax, < CON26 (1)

for some time-dependent constant C(t). The exponent §(3, ) is positive, depends
on 8 and v and is determined in Theorem 1.

The first element of the approximating sequence {wff) (t)} is given by

P (t) = Up(t, 0o -

For a = 1, the estimate (18) is thus well known since it coincides with the norm
approximation (15) and consequently with (12). To obtain the next higher cor-
rection with respect to N, we add an appropriate correction term to wg(@l) (t). We
expand the difference (U (t,s)— (Zp(t, S))’(/)O using Duhamel’s formula, identify the
leading order contribution, and approximate it by replacing U (¢, s) with ﬁw(t, s).
This leads to the second element

~ t ~ ~
SO (1) = Ua(t, 0o + 1 /O 0. (t, $)CPO T, (5, 0o dss.

For the third element, we expand the difference (U(t,s) — (ZP(t, s)) o to the next
order, using Duhamel’s formula twice, and subsequently follow the same strategy
as before. In this way, we construct all higher elements of the sequence as Duhamel
expansions with finitely many terms, each of which exclusively contains ¢y, the
auxiliary time evolution U,(t, s), and the cubic and quartic interaction terms ce®

and Q¢("). The precise definition of 1050&)(15) for any a, as well as a more detailed
explanation of the construction, is provided in Definition 2.2 and the preceding
discussion.

We note that higher order approximations of the reduced density matrices were
obtained by Paul and Pulvirenti in [47] for § = 0 and factorized initial data, based
on the method of kinetic errors from the paper by Paul, Pulvirenti and Simonella [48].
For j € {1, ..., N}, the authors of [47] construct a sequence {FJN’n(t)}neN of trace class

operators on L?(R/?), which approximate the j-particle reduced density matrix ) (t)
of the system with increasing accuracy up to arbitrary precision. The approximating
operators FJN’"(L‘) can be determined by a number of operations scaling with n. They
depend on the initial data as well as the knowledge of the solution of the Hartree equation
and its linearization around this solution.

Due to different methods used, it is not straightforward to compare the results of
[47] with the results of this paper. However, we list some features of our paper that
differ from the operator-based method of kinetic errors [47, 48]. In contrast to the
approach in [47], we derive approximations directly for the time-evolved N-body wave
function. Our construction is in terms of the Bogoliubov time evolution [7@ instead of
the linearized Hartree flow, and it is implemented as a robust algorithm that requires an
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a-dependent, N-independent number of explicit calculations to compute the a’th order
approximation. Moreover, the results obtained in this paper cover more generic initial
data satisfying (17) and include positive values of 3.

Notation. In the following, any expression C' that is independent of both N and ¢ will
be referred to as a constant. Note that constants may depend on all fixed parameters
of the model such as g, 1, v and V*(0). Further, we denote A < B and A 2 B to
indicate that there exists a constant C > 0 such that A < CB, resp. A > CB, and
abbreviate

(o dpz@avy = Coo)s I llzavy = -0 - le@e@anyy =21 llop-
(RIN)
Finally, we use the notation
7] :=max{z€Z: z<r}, [r]:==min{z€Z: z>r}

for r € R.

2 Main results

2.1 Framework and assumptions

Let us first recall from [39, 42, 43| the explicit decomposition of an N-body wave function
1 in terms of a condensate ¢®V and k-particle fluctuations around this condensate. To
this end, recall the following projections introduced in [50]:

Definition 2.1. Let ¢ € L2(R%). Define the orthogonal projections on L?(R?)
p7 = le)(pl,  ¢¥:=1-p%
and the corresponding projection operators on LQ(RdN )
Yl v .. PP
pP=19-21lep’010 --®1 and ¢ :=1-pf.
Jj—1 N—j
For 0 < k£ < N, define the many-body projections

pe o= > a1l = m 2 950 e Patern) Pav)

JCA1,..,N}jeJ I¢J o€GN
|J|=k

and P7 = 0 for k < 0 and k > N. Further, for any function f : No — Ra' and any
j € Z, define the operators f%\", ff el (L2(RdN)) by

. N . N—j
Fe=>"fR)PE,  ff =) fn+4)PY.
k=0

n=—j

We will in particular need the operators n? and m¥ corresponding to the weights

n(k) := \/%, m(k) := \/@
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The part of ¢ in the condensate is given by P4, and the part of ¢ corresponding to k
particles fluctuating around the condensate is precisely P4 for k > 1. By construction,

PP, = 61 P?. Besides, the identity SV P? =1 implies
N N
Y =S Py = Y PR g B (19)
k=0 k=0

for some &(pk) € L?(R%). To determine the explicit form of gﬁf), observe that by Defini-
tion 2.1,

P,fw(xl, ey L )
- (N- k: (N — k)NE! Z To(kr1)) (2 U(N))qf(l)“'qf(k) X
ceCN
X/dyr--/dijk O(1) - P(UN—k) V(To(1)s s To(k)s YLs s UN—k)
Rd R4

=: (¢®(N_k) Qs §(pk)> (1, ..., xN),
where, by definition of the symmetric tensor product,
(k)(xl, . {L'k) =

- q; /dxk_H /dmNgo Tp1) - @(@N) V(21 ooy Ty Tht 1y -+, TN ) - (20)

Obviously, ( ) is symmetric under permutations of all of its coordinates, and ffpk) is
orthogonal to © in every coordinate, i.e.,

for every j € {1, ..., k}. Hence, &(Ok) € ®§ym{g0}L. The fluctuations f&k), ke{0,...,N},
define a vector £, := ( &0), 501), e &N)) in the truncated Fock space F<V ({cp}J-) de-

fined in (6). The relation between the N-body state ¢ and the corresponding fluctuation
vector §, is given by the unitary map

85 AR — F=N ({go}L) s Y URY =, (22)

where &, is defined by (20). The vacuum (1,0, ...,0) of F=¥ ({¢}+) corresponds to the
condensate p®V | and the probability of k particles being outside the condensate equals

€17 2 ary = (Dllaf -+~ afpLyy -+ pRVIP = |PEw)? (23)

by (20). The number operator N, on F=V ({}+), counting the number of fluctuations,
is defined by its action

(Nga ggo)(k) = k&(pk) .
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The expected number of fluctuations around the condensate ¢®V in the state v is thus
given by
N
(o No &) e (1p3r) Z Bl 1T vy = Z HIPEYI® = <w’ > ~nF Z/J> (24)
k=0
=N IIHWH2

with n%® from Definition 2.1.

Let us now state our assumptions on the model (1) and on the initial data.

Al Interaction potential. Let v : R — R be spherically symmetric and bounded
uniformly in N, ie., [[v]feoge) < 1. Further, assume that suppv C {z € R4
x| < 1}

A2 Ezternal potential. Let V< : R x R? — R such that V(- z) € C(R) for each
r € R and V(t,.) € L®°(R?) for each t € R.

A3 Initial data. Let vo € D(HP(0)) N L2, (R¥N) and ¢o € H*(RY), k = [2], both be
normalised. Let v € (0,1] and A € N. Assume that for any a € {0, ..., A}, there
exists a set of non-negative, a-dependent constants {€}.,<4 With €o = 1 such

that, for sufficiently large N,
_—\a 2
[(77) vl < €anvor.

Our analysis is valid as long as the solution ¢(t) of the non-linear equation (8) exists in
H*(R%)-sense for k = [4]. The maximal time of H*(R?)-existence, T, yexts is defined
as

TS et = SUD {t € R : [|o(t) | g zety < 0o for k = (%1} (25)

and depends on the dimension d, the sign of 7¥(!), and the regularity of the external
trap Vt(¢).

Assumptions Al and A2 are rather standard in the rigorous treatment of interacting
many-boson systems. Note that we make no assumption on the sign of the potential or
its scattering length and thus cover both repulsive and attractive interactions. Besides,
we admit a large class of time-dependent external traps V', with basically the only
restriction that V°**(¢) must not obstruct the self-adjointness of H”(t) on H2(RY).

The third assumption provides a bound on the expected number of fluctuations
around the condensate po® in the initial state 1)y. Note that while v = 0 is the trivial
bound, the condition becomes more restrictive as 7 increases. We have chosen this
particular formulation of A3 for later convenience®. However, its physical meaning is
better understood from one of the following two equivalent versions of A3:

3Note that the operators n? and m¥ are equivalent in the sense that they are related via (36),
namely (n®)2* < (m?)2* < 2%(n¥)?* + N~¢, hence all results in terms of n% can be translated to the
corresponding statements in terms of n®. We chose to work with m¥ instead of 7i¥ because this makes
in particular Proposition 2.4 easier to write. For example, in terms of n?, Proposition 2.4b reads

J
1Y Talt, )l S O S0 NI (2570 2y~ 4 N7+
n=0
which contains an additional term N ™", Since the proof of our main result requires an iteration of
this proposition, the version with n¥ is more practicable.
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A3’ Let ¢ € D(H(0)) N L, (R¥Y) and @y € H¥(R?), k = [4], both be normalised.
Let v € (0,1] and A € N. Assume that for any a € {0, ..., A}, there exists a
set of non-negative, a-dependent constants {€’, }o<,<4 with &}, = 1 such that, for
sufficiently large IV,
lgf® -+ gfogho|* < €, N7
A3" Let ¢ € D(HP(0)) N Lgym(]RdN) and ¢o € HE(RY), k = [%], both be normalised.
Let v € (0,1], A € N and &, = 4% ¢)o. Assume that for any a € {0, ..., A}, there
exists a set of non-negative, a-dependent constants {€” }o<,<a with € = 1 such
that, for sufficiently large N,

N
<£¢“’N‘Z0 §W0>FSN({¢0}L) - Z ka”fg? ”%2(de) < N1=a,
k=0

The equivalence A3 < A3’ & A3” follows immediately from Lemma 2.1, whose proof
is postponed to Section 3.1.

Lemma 2.1. Let a € {1,..., N} and ¢ € L*(R?). Let ¢ € L2, (R™N) and &, = UZy.
Then

_ 2 A
(a) ||af--afv|* < H(m“")ad)H < 4aq) iN*a+ﬂ||qf...qf¢||2+N7a’
7j=1

) (6 NEE) penioys) < V| (7) 0 < 142 (6 M2 €)1 -

Hence, A3 can be understood as follows: Let A € N and consider sufficiently large
N such that A = O(1) with respect to N, i.e. A < 1. Then we assume that for any
a < A, the part of the wave function with any a particles outside the condensate is at
most of order N~7%,

Equivalently, A3 states that the first A < 1 moments of the number of fluctuations
must be sub-leading with respect to the particle number; for v = 1, they must even be
bounded uniformly in N. Here, “sub-leading” means that the moments of the relative
number of fluctuations, i.e., the expectation values of (J\/:p(t)/N)A, vanish as N — oo.
This, in turn, provides a bound on the high components of the fluctuation vector: for
example, 8 kAeW|2, gy S N4 implies 1112, ey S N7 In other
words, it must be very unlikely that significantly many particles are outside the conden-
sate, whereas we impose no restriction on fluctuations involving only few particles (with
respect to N).

As soon as a becomes comparable to N, i.e., a = N, the constants Q(l/’") are N-
dependent and the assumption is trivially satisfied. However, note that we demand that
N be large enough that A4 < 1.

The simplest example of an N-body state satisfying A3 is the product state ¢ =
0o®V. Whereas the ground state of non-interacting bosons (v = 0) is of this form, the
ground state as well as the lower excited states of interacting systems are not close to
an exact product with respect to the L?(R%)-norm due to the correlation structure
related to the interactions.
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Besides, it seems reasonable to expect that states exhibiting Bose—Einstein conden-
sation satisfy A3 for some (possibly very small) v, as it is well known that

lim Tr |y — ) ]| =0 < (m®)1||> = 0 for any j > 0
N—o0

lim ||
N—o00
(e.g. [50, Lemma 2.3]). Note, however, that we require a certain minimal size of -y, which
is strictly greater than 2 (Theorem 1).

To the best of our knowledge, there exists only one rigorous result in [43, Chapter 3]
that identifies situations where a Bose gas satisfies assumption A3. This work concerns a
homogeneous Bose gas on the d-dimensional torus and is restricted to the scaling 8 = 0.
For this case, it is shown that the ground state as well as the lower excited states fulfil
assumption A3 with v = 1 (and consequently for all v € (0, 1]). More precisely, let g
be the minimizer of the Hartree functional on the torus with ground state energy Ey,
and let v, denote the n’th excited state with energy F,,. Then the author proves that
there exist constants C, D > 0 such that || P{°,||?> < Ce=P4 for all (E, — Ey) <a < N.
As a corollary of this statement, it is shown that there exists C, > 0 such that

(s g0 -+ ¢, < N7C, (1 + (B, — Eo)*),

which implies that assumption A3’ is satisfied.

Let us conclude the discussion of our assumptions with a remark on the relation
between A3 and the so-called Wick property of quasi-free states*. In [39, Theorem A.1],
it was shown that the ground state of Hpg,s is a quasi-free state, which, via the map
4%, defines an N-body state ¥pog that converges to the actual ground state 1y in norm
as N — oo [39, Theorem 2.2]. For a quasi-free state y on a Fock space F, it is known
(e.g. [44, Lemma 5]) that for every a > 1, there exists a constant C, > 0 such that

OGN Y F < Ca(T+ (G NX)£)*

Hence, A3(>") holds with v = 1 for quasi-free states. Since it is somewhat similar to the
Wick property, it is referred to as quasi-free type property in [43].

Finally, let us recall from (14) the Hamiltonian He®) (t) introduced in [42, 43],

N
~ t
e = S nf)
j=1
1 (0),2(0),8 20 o) | o), o(t) B elt) o(t)
by S (F O g O )
1<j
which can be understood as first-quantised analogue of a Bogoliubov Hamiltonian. As
pointed out in the introduction, H*®(t) differs from HP(t) precisely by terms with
three or four projectors ¢?® ., denoted by Cc*® and Q™. In this sense, it is a quadratic
Hamiltonian comparable to Hpog(t).

4A state x in a Fock space F(£) over a Hilbert space $ is called quasi-free if it has a finite
particle number expectation and satisfies Wick’s Theorem: For all n and for all fi,....f, € 9
and for a* either the creation or the annihilation operator, (X, (L’i(fl)an(fz)..‘&ﬁ(fgn_l)x> =0

n

and <X?aﬁ(f1)aﬁ(f2)au(f2")x> = Z ) 1<X7au(fo'(ijl))aﬁ(fcr(Qj))X>7 where P2, = {(7 € Gy

ocEPy, j=
(2§ — 1) < min{o(2j),0(2j + 1)}V j} is the set of pairings.
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Lemma 2.2.

HA(t) = ]T_fcp(t)(t) + ) 4 Qe

where
e = ﬁ (qf<t>qf<t>( o @w(t)(m)f@so(t)(%)) ( @(t) e&(t) 4Pt w(t))
g
+h.c.> ,
Qw(t) = — 1 Z 90(75) 90( ) ( v vcp(t)( ) _ F’O(t) (xj) + 2u<p(t)> q;a(t)q}o(t) .
1<j
Proof.

N
B = YR+ g vl - Zv@<t><xj>+Nuw<t>

j=1 1<J Jj=1

N " 1
_ w(t - B _ =e(t) _ =) (.. o(t)
= ]E_l hi (1) + 1 ;q (v] o7 () — 0PV (5) + 2p )

Now one inserts identities 1 = (pf(t) +qf(t))(pf(t) +q;0(t))

in the brackets and uses the relations

before and after the expression

pZ o(t) Zp;/’( ) ﬁgo(t) (ij)pf(t), pf(t)5¢(t)(xi)pf( ) 2Mgo( ) <P(t) ’
which concludes the proof. O

The time evolution generated by He® (t) is denoted by Tj’w(t, s), and its well-posedness
is recalled in the following lemma.

Lemma 2.3. Let t € [0, Ty, Vext) Then H?W(t) is self-adjoint on D(H?W(t)) =
IjQ(RdN) and generates a unique family of unitary time evolution operators Uy(t,s).
Uy(t,s) is strongly continuous jointly in s,t and leaves H2(RN) invariant. For an

initial datum 1)y € L2 (RdN ), the corresponding N-body wave function at time t € R
will be denoted by

sym

p(t) = Up(t,0)00 - (26)
Proof. As a consequence of the Sobolev embedding theorem (e.g. [3, Theorem 4.12, Part
IA]), [le®) | Looray S Nl e (ray for k = [47. Hence, by definition (25) of T, et
/ﬂ’(t) and (N — 1)v‘p(t) are bounded uniformly in N for ¢t € [0 Tj’; Vext) Further,

t — H?O(t)y is Lipschitz for all ¢ € H2(R) because of (8), since ¢t — V(1) €
L(L?(RY)) is continuous and as $p?®) = i[p?® h#(1)(t)]. Hence, the statement of the
lemma follows from [24]. O
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2.2 Control of higher moments of the number of fluctuations

In our first result, we prove bounds on the growth of the expected number of fluctuations
under the time evolution. We consider both the actual N-body dynamics U(t,s) and
the dynamics U,(t, s) generated by the Hamiltonian H #(t)(¢). The estimates are stated
for ||(m®)24)||? as these expressions are required for the proof of our main theorem. By
Lemma 2.1, they easily translate to bounds on the corresponding quantities ||qy - - - g1
and <§¢,N$§¢>. The proofs of Proposition 2.4 and Corollary 2.5 are postponed to
Section 3.2.

Proposition 2.4. Let B € [0,2), assume Al and A2 and let ¢ € L2, (RI). Let
s €R, p(s) € H¥RY) for k = [%1, and let p(t) be the solution of (8) with initial datum

©(s). Then it holds fort € [s,5+ TS yext) and j € {1,..., N} that
(a) for any b € Ny,

2 2

"(@)jU(t,s>¢ < CJ;,SgNn(1+dﬁ)“(m>j”¢

i 21;0;,5 i (= 1+dB)+dBb (@) b-n "

n=0

2

(b)

2

)

2 < Cjt,s z]:Nn(—Hdﬁ) H (m)j_nw

n=0

H(@)] @(t,sw

iy 97 [? 2 d
where Ofs = 41390+ e S0l gy o

Proposition 2.4 provides an extension to positive 5 of [42, Lemma 2.1], where a com-
parable statement was shown for =0, vy =1 and d = 3 with a similar method. Under
the additional assumption A3 on the initial data, this implies the following estimates:

Corollary 2.5. Assume Al — A2 and A3 with vy € (0,1] and A € {1,...,N}. Let (1),
Po(t) and ¢(t) denote the solutions of (4), (26) and (8) with initial data o and ¢
from A3. Then fort € |:07Tc(l%’)1()7ve"t)’ sufficiently large N and a € {0, ..., A}, it holds
that
(a) for B € [0, 59),
——\a 2
|(me®0) ()| saci N0 for 1-ap<y <1
and for B € |0, é),

—

H <m¢(t))a¢(t)H2 SaC,CENT  for df <~ <1—dB,

(b) for B €0, 3),
—a ~ 2 aleN_“(l_dﬁ) forl—dp <~y <1,
[ (o) ett)]
aC,Ct N for0 <~y <1-4dg
with Ct .= CFP.
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At the threshold v = 1 — df3, the leading order terms in the sums in Proposition 2.4
change, hence we obtain two different estimates. The additional restrictions on § and
v in part (a) stem from the second sum in Proposition 2.4a. Only if either < % or
~v > df, it is possible to choose b sufficiently large that the first sum dominates for large
N.

By Lemma 2.1, Corollary 2.5 yields estimates on the growth of the first A moments
of the fluctuation number, given A3 with parameters A and 7. Let &, = UX v,

oy = LD (t) = 88DU(E 0)0o and &,y = U, (1) = UZDT,(¢,0)¢k. Then, for
sufficiently large N and for all a € {0, ..., A}, we obtain for g8 € [0, 2—1d)

(€por Ny €0) S N = <5w(t)’Ng(t)§w(t)> S CiNe 1-dB<~y<1,
and for 8 € |0, é)

(€ N E0) SN0 = e, N ) S CINUT® dB <y <1-4dB,

a (1-7)a <§"(t)’N$(t)§w(t)> < CLNbe 1-dB<~<1,
<§§90aN¢0§gao>§N v B ~
(&) Neow) S CENU® 0 <y <1-d8,

where we estimated a,€,,€"” < 1 for the sake of readability. For 8 = 0, both time
evolutions preserve the property A3” exactly, i.e., with the same power v of N, up to
a constant growing rapidly in ¢ and a. For g > 0, the conservation is exact only for
small -y, whereas one looses some power of N for larger v. Further, note that for the
range v € (0,dB3), we do not obtain a non-trivial estimate for the fluctuations &,q in

U(ta 0)1%

2.3 Higher order corrections to the norm approximation

Based on the estimates obtained in Proposition 2.4, our main result establishes correc-
tions of any order to the norm approximations (12) and (15): under assumption A3 on

the initial data, we construct a sequence {wg(aa)}aeN C L2(R%) such that
() — @ @)1 < C(t) N5

for some §(8,7) > 0, which may depend on (5 as well as on the parameter v from
assumption A3. For reasons given below, our analysis is restricted to the scaling regime
Be0,4)

As explained in the introduction, it is well known that the actual time evolution
() is close to the evolution v,(t) from (26) in norm. Hence, the first element of the

approximating sequence {wg(pa)}aeN is determined by
W (1) = Uy (1,00t

Using Duhamel’s formula, the difference between U (¢, )t and (790(15, )1 can be expressed
as

Ul(t,s)y = ﬁp(t, s)p — i/t Ul(t,r) (Cw(r) + Qcp(r)) (7@(7", s)dr (27)
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for any 1 € L*(R?). Consequently,

t ~
() =PI = ’—i /0 U(t,s) (C#C) + Q99) Ty (s,0)t0 ds

IN

t . t .
/0 1CPOT (s, 0)doll ds + /0 1Q70)T, (s, 0ol ds (28)

by the triangle inequality and as a consequence of the unitarity of U(t, s). The leading
order contribution in (28) is the term containing C¥(®) because the cubic interaction
terms are larger than the quartic ones in the following sense:

Lemma 2.6. Let ¢ € L2, (R¥) and denote by ¢(t) the solution of (8) with initial

sym

datum o € H*(R?), k = [4]. Then for any j € Ny and t € [0, T Vext) s

(a) || (m#®)’ Qe0y|2 < N2 (me®) Ty 2,

(0) [|(m#®)" CHOP|2 S 9 )p() |20 gy N+ (e ®) s 2.

The proof of this lemma is postponed to Section 3.3. For j = 0, it gives a bound
on the cubic and quartic terms; the more general statement j > 0 is included for later
convenience. /\~

When applying Lemma 2.6 to (28), we obtain expressions like ||(m®(*))7U, (s, 0)ty]|?.
To be able to use assumption A3 on the initial data, we need to interchange, in a sense,

the order of ﬁw(s, 0) and (m#())J. This is where Proposition 2.4 comes into play: from
part 2.4b, it follows for sufficiently large N that

_ 2.6 —= a~
e (s, 000l S N (#9350}

2.4b 3
< Cgs N2+dB Z NP(—1+dB) ||(T%)3_n¢0||2
n=0
A3 3
< Cgs N2+dB8 Z Ty Nn(71+dﬂ+7)73'y )
n=0

As in Corollary 2.5, the size of v determines the leading order term in the sum: for
~v > 1—dpg, the dominant contribution issues from n = 3, whereas otherwise the addend
corresponding to n = 0 is of leading order. Consequently,

_ C.s N—1+4d8 for 1—-d3<~<1
17T, (s, 000 < ’ . per=t (29)
P HFOI ~ 2+dB—3 2+dg
€305 N 7 for HE <y <1-dg.

To ensure that (29) converges to zero as N — oo, we have restricted the range of
parameters v admitted by assumption A3 to vy € (2+3d'8 , 1]. Besides, in the first case, the
bound is only small for g < 4—1d, and the second case is anyway only possible for 8 < ﬁ.
Hence, we can only cover the parameter regime 3 € |0, Tld)‘ Analogously to (29), we also
obtain

- Cg N—2t6d5 for 1—-df<~<1
1079 T (5,00 > S > pErstb (30)
ANACA LIRS 242d3—4 2+dB
Cf €y N* T ofor FEE <y <1-dB.
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Note that £ < ﬁ implies that —2 4+ 6d8 < —1 + 4df, and besides, it follows from
v > 2+T3d and 8 < 4171 that 2 + 2dS — 4v < 2+ df — 3. Consequently, the contribution
with C¥(®) dominates in (28) for sufficiently large N, which leads to the estimate

t 2
2

||1/J(t) _ wg(al) (t)HQ S N—é(ﬂ,'y) / /7035 ds ,S ec(l) fot”W(S)”Hk(Rd) dSN_‘S(B"Y) (31)
0

for some constant ¢(1) > 0 and with

1—4dp for 1-dg<~<1,

0(8,7) =
—2—dp+3y for %<v§lfd/8.
This yields (18) for n = 1.

To construct the second element wg)(t) of the approximating sequence, we need to

extract from (27) the relevant contributions such that [|1(t) —¢f02) ®)|]> < Ct)N—296B),
As a consequence of Lemma 2.6, we define

~ t ~ ~
SO() = Tp(t.0)p — i / ds T, (¢, $)CPO T (s, 0o .
0
which equals the leading order contribution in (27) but with the true time evolution
U(t, s) replaced by Uy(t,s). Put differently, the leading order contribution is cancelled

but for the difference between U(¢, s) and [zp(t, s). Since this difference is evaluated on
CSO(S)USD(S,O)L&(), which is small in norm, this is an improvement compared to the first

order approximation w((pl) (t). To verify this, let us compute the difference between v (t)

and z/)g(f) (t). Using twice Duhamel’s formula, we obtain
b — 0@ (1)
t ~ ~
_ i/ (U(t, s) — U(t, 5)) CEOT,(s,0)10 ds
0

t o~
5 / Ut 5) Q70T (s, 0}y ds
0
t t . .
N _/ dsl/ dsa U(t, s2) (CW(”) * QW(SZ)) Ugp(s2,51)CPV Uy (51, 0)20
0 S1

t
—i / U(t,s)Q°®)U,(s,0)¢p ds.
0

Due to the unitarity of U(t, s), we obtain with the triangle inequality
t ¢ - ~
o) =@ < [ s [ dsale® T (50,5007 T 51,000
52
t t B _
+/ dsl/ dss| QT (s, 51)CPV T, (51, 0)ho |
0 s1

t ~
+ / ds]| QPO T, (s, 0) o] (33)
0
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The leading order term in (33) can be estimated as

1C#B2)T (52, 51)CPEV T, (51, 0) o ]|

2.6,2.4b 3 — _
< N2+d50352—s1 ||4P(32)||?qk(Rd) Z Nn(=1+dB) ||(mw(sl))i'»fncso(sﬂU@(sh 0)7/10”2
n=0
2.6,24b 4+42dB v s2—s 2 2
<N ) |2 2 (52) e ¥
3 6—n
X DY ABTC, NI | (o) oonly |
n=0 [=0
? —24-2d8 v s2—51 2 2
€ NI () e g 9(52) e ) X
3 6—n
% Z Z 43—n065_n ¢6—n—l N(n+l)(—1+dﬁ+”y)—6’y .
n=0 [=0

As before, considering the two ranges of 7y separately yields for sufficiently large N
1C762 Ty (52, 51)C# Uy (51, 0)ebo |
< O O (1) e gy 0 (52) 2 gty N 2P

with 6(3,7v) from (32), where we have used that C! is increasing in a. Analogously, the
second term can be estimated as

|QPEDT, (52, 51)CP VT (51, 00|

Ot O o0l N2 for 1-df < <1,

O O Cqlp(s1) N3A=Ty for 28—y <1 — 4B,

2
HF(R?)

and the third term was already treated in (30). Combining all bounds, we obtain
t t 2
o) - w20l < ([ oras [ yepran) voaeo
0 S1
< 66(2) félls&(S)lli,k(Rd)ds N-20(8:)
for some ¢(2) > 0, which yields (18) for n = 2.

Iterating Duhamel’s formula (27) (a — 1) times, we construct 1/)5:) () as an expansion
with a — 1 terms, where the last term contains the true time evolution U(t, s) and all

others exclusively contain ﬁ@(t, s). Consequently, to construct wg) (t), we iterate (27)
once more, which yields

(U(t,O) - fjﬁp(t70)> '(/)
t
_ / dsTy(t,5) (€29 + Q79 Ty (s, 0)0
Ot t ~
—/ dsl/ dsy U(t,SQ) (CL‘D(SZ) + Qip(sz)) U@<52,81) X
0 S1
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X (C<p(sl) + Qp(Sl)) ﬁw(sl,O)T/}-

The leading order contributions issue from the first integral and from the expression with
two cubic interaction terms. Analogously to above, they determine the next element ¢g(03)

of the sequence {w&a)}aeN as
~ t ~ ~
PO = Tat, 000 —i [ dsT,(t,s) (C*D(S)JrQ“"(S)) U,0(s,0)%
0
t t 5 - -
—/ dsl/ dsa Uy(t, s2) CP52 U, (59, 51) CPEVT,(51,0)1hp ,
0 S1

and similar calculations as before yield |[1(t) — &3) )2 < C(t)N—3F). Continuing
the iteration of (27), we obtain for any a > 1 and sp = 0 the expansion

a1 t t t
Y(t) = Z(—i)”/dsl/dSQ---/ ds, U(t, 5n) (c¢<8n>+gw<8n>) Up (S, Sn_1) X
n=0 0 s1 Sn—1

- Uy(s2,51) (C*"(Sl) + Q‘O(Sl)) Uy (51,0)%0

t

t t
—|—(—i)“/dsl/d52--- / dsq U(t, sa) (C‘p(s“) + Qw(%)) ﬁg,(sa,sa,l) X
0

S1 Sa—1

X--'U¢(82, 81) (CSD(Sl) + Q%D(Sl)) ﬁw(slao)qﬁo

n—1
(—i /t dsy> ﬁip(t, Sn) H ( (C‘P(Snfz) + Q‘/’(Sn—e)) y
Su_1 i

X ﬁp(sn—fa Sn—@—l)) %

5]
|
—

3
Il
o
N
Il
—

a a—1
+ H (—i /t ds,,) U(t, sq) H < (C‘P(Saff.) + QQO(Saff)) %
v=1 Sv—1 £=0

< (0t sa_H)) b (34)

All products are to be understood as ordered, i.e. Hé:o Pp:= PP, ---Pp, for L € N and
any expressions Py. Extracting the leading contributions in each order, we construct the

sequence {@Dfpa) (t)}aen as follows:

Definition 2.2. Let If(t) = %) and I;o(t) = Q%) Define the set

n
ST(lk) = {(jl, ceydn) s Je€ {12} for £ =1,...,n and ng = k},
/=1

i.e., the set of n-tuples with elements in {1, 2} such that the elements of each tuple add
to k. Define forn e Nand n <k <2n

t

n n—1
T,Sk) = Z (—i)" H / ds, ﬁgo(t, 5n) H (Iﬁ(fzie)ﬁw(sn—& Sn7471)> o
(1y--rdn)€SHE) v=1 \s,_, (=0
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t t t
= (—i)n/d81/d82“‘ / dsp ﬁw(t,sn) X
0 51 Sn—1

(I T s I T, s I ) D1, 00,
(j1ye - rdn) €SS

where sg := 0. As above, the products are ordered. Forn = k = 0, let Téo) = (750(25, 0)vo,
and Ték) := 0 for k <n and k > 2n. Hence, T,(Lk) is an n-dimensional integral where the
integrand contains all possible combinations of Iﬁ(sl) such that ;" | ji = k.

Finally, the elements of the sequence {w&a)}aeN are defined as

a—1 k a—1 min{2n,a—1}
0@ = T =% S 1,
k=0 p= [gw n=0 k=n

Theorem 1. Let 3 € [0, 1) and assume Al - A3 with A€ {1,...,N} and v € (%, 1].
Let (t) and ¢(t) denote the solutions of (4) and (8) with initial data 1o and g from
A3, respectively, and let w&a) (t) be defined as in Definition 2.2. Then for sufficiently

large N, t € [0, Tsﬁ;,vext) and a € {1, ..., L%J}, there exists a constant c¢(a) such that

c(a i DIk s
o) — @ P e 8 e O yasory

where
1—4dp for 1—dp<~y<1,

0(8,7v) =
(6:7) {37—2—dﬂ for %<7§1—d5.

Hence, given any desired precision of the approximation, there exists some a € N
such that the corresponding function z/)fpa)(t) approximates the actual N-body dynamics
1 (t) to this order for large N. To compute l/)c(pa)(t), an a-dependent number of steps is
required, as well as the knowledge of the first quantised Bogoliubov time evolution. Put
differently, all higher order corrections to the norm approximation follow from the (first
order) norm approximation Uy(t,0)1 after an N-independent number of operations.
We cover initial states where the first A moments of the number of fluctuations are
sub-leading, where A depends on a but is independent of V.

3 Proofs

3.1 Preliminaries

Lemma 3.1. Let ¢y € H¥(R?) for k = [4], t € [0,T5¥ vext) and @(t) the solution
of (8) with inital datum .

(a) Let f : RYx R — R be a measurable function such that | f(z;,z1)| < F(2k — zj)
almost everywhere for some F : R* — R. Then

15 (1. 2)llop S () | ety

| F'll 2 (e
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(b) Let f: Ny — R Then PPV, fo) € CY(R, £ (L2(R™))) for 0 < k < N and
_ ___ N
470 =i[ 770,310,
J

)

where h;p(t) (t) denotes the one-particle operator h¥M)(t) from (8) acting on the j**
coordinate.

Proof. For part (a), see, e.g., [51, Lemma 4.1] and note that [|o(t)| Lo (ra) S [10(E) ||z (ray
by the Sobolev embedding theorem. Part (b) can be shown as in the proof of [51, Lemma
6.2). 0

Lemma 3.2. Let ¢ € L (R™), ¢ € L2(R?) and f : Ng — R

sym
—~\ 2 1 N
(a) (n?) =% > df.
7j=1
(b) Let a € {1,...,N}. Then for j €{0,...,a},
® 12 2 o (=52
laf -+~ agwl® < laf---af (7)) vl
(¢) In particular, this implies

R I e ] T o

Proof. For simplicity, let us drop all superscripts ¢. Part (a) is shown e.g. in [51, Lemma
4.1]. For part (b), observe that for any 1 < j < N,

g ql® = 5 @Woa - q) + Y5 (g0 qi0)
< xWqga (G -1+ (N =j+1)g)¥)

N
= (Y,q1-- g5 (i; Zm) ¢> = [lg1 -+ g1 |?
=1

by part (a). Since n is again symmetric, the statement follows by iteration. O

Lemma 3.3. Denote by T;; an operator acting non-trivially only on coordinates i and
j.

(a) Let o € L*(RY), let f,g : No — RS be any weights and i,j € {1,...,N}. Let
QG =p{py, Qf € {p7af.afp}} and Q3 == qfq]. Then, for p,v € {0,1,2},

(b) Let T,A € L2(R¥N) be symmetric under the exchange of coordinates in a subset
M C{1,...,N} such that j ¢ M and k,l € M. Then

1
(T | < 00 () (T3, Ty |+ MU T3 %)
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Proof. [51, Lemma 4.1] and [7, Lemma 4.7]. O

Proof of Lemma 2.1. Let us for simplicity drop all superscripts . First, observe that

n(k)?e = (£)" < (B4 =m(k)?  for k > 0, 55)
m(k)? < (%) = 29n (k)2 for k> 1,
hence
~2a ~2a a2a —a
nt < m <2%N““ + N (36)

in the sense of operators. The first part of (a) follows from Lemma 3.2b and the first
line in (35). For the second part, Lemma 3.2a implies

R P&\ _ o a
[R%p))? = <¢, NE :qj ¢> - N a<¢, § ( (a1 a aN) qll...qNN¢>
=~

a1+ +an=a

for aj,...,an € {0,...,a}. Due to the symmetry of v, since there are (?j) possibilities
to write a as the sum of j positive integers and with (al’”“”aN) < a!, this yields
S o G T Gt [P
=AY FAVES VAL
]:

Further, note that

PENT e (j: i) = <F‘€111) = % < 9ol (37)

and (]]V) < N7, hence

a

m - - N
||ma¢”2 <N [1+42% 1a!z (J.)qu...qu”Q
=1

Part (b) follows from (24) and (36). O

3.2 Proof of Proposition 2.4

Proof of Proposition 2.4. The proof of this proposition is essentially an adaptation of
the proof of [49, Corollary 4.2]. We begin with part (a). Let ¢ € L?(R%) symmetric,
s€Rand f: Ny — R} some weight function. Define

s (f58) = (Ut )0, 17O Ut )0 (38)
and
ij = (vg — 50 () — 57O (z;) + 2,u‘p(t)> . (39)

Let us for the moment abbreviate U (t, s)i) =: ¢;. By Lemma 3.1b,
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N
= i<wt, HO(t) ~ th(” (), f20) wt>
1% i, {Zlﬁg fett }1/1t>

_ oNG <¢t’ <f/¢(7)_ fﬁt)) #(0),6(0) 78 o), </>(t)¢> (41)
+NS <wta (@ - f¢§t)) 91 t)CIQSO(t)UmZH o (t) v(t) <f¢ W) ’ 7»bt> (42)

1 1
— =\ 2 — ——\ 2
+2NS <wt, <f¢(t>—ff§t)> a7 a5 27 g5 <ff“)—f¢<t>) wt>, (43)

where we have inserted 1 = (p] o) 4 qp(t))(p¢(t) + q¢(t)) on both sides of the commutator
and used Lemma 3.3a. Since q‘p() SO(t)Zﬁ Lp(t) w(t) = 0, we conclude that (41) equals

zero. From now on, we will for sunphmty drop the superscripts ¢(t). Let

N N
Lp:= { D _(fk) = f(k=2) P, 37 (k) = £k = 1) P,
k=1

k=2

N2 N1 (44)
Flet2)— ) PEO. ST (PR + 1) — f(R) P,f“)} .
k:o k=0

1

o —\ % N 2
Since, for example, (f - f—2) S g = (kz (f(k) — f(k— 2))P,f(t)> ¢1q2, this yields
=2

%O‘w,s@,sU? t)
~ ~1 ~1 ~1
s LﬂaX{N ‘<¢t,ZEQ1Q2U162p1P2l§¢t>) +N‘<1/}t,ZEQ1Q2Z1ﬁ2p1Q2151/1t>‘} . (45)
leLy

By Lemmas 3.1 and 3.2 and since ||vﬁ||%2(Rd) < N the first term in (45) leads to
~ ~
N ‘<¢tvl§QIQZUf2p1p2l§¢t>‘

1
~ ~ ~ _ ~ 3
S O NEqad (<q2vlﬁ2p2 12 p1¢y, Q3Ufgp3 l2p11/)t> +N 1H(J2vfzpzpl lQlﬁtHQ) ’

I

~ ~L ~L _ ~L
< NIz qlwt|(uhqwtuuplp?v%vf’gpsplHop|rmq2wt| +N 1uv@pzuzp|uzwtu?)

1 R R 1
< N (un Tat) " (e Ta%) + N7 (0,00} ) o) pn ) (46)
To obtain the estimate in the last line, note first that

102050 5p1P3llop = [P101302050151 lop = [lP1075p2l12, -
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Now we decompose vP =P + — v into its positive and negative part such that vi >0,
hence vi \/ \/vi (x), which leads to

Iprvgapallop = [lp1 (@ — 07 )12mal0p

< lpy/( v+ 21/ ( U+ )J1202]lop + P11/ (V1) 124/ (v 12p2Hop
swwmmmmmmﬂmmwﬂ

o)l ey 197l @y S M) pn ra
(R) (R)

by Lemma 3.1. The second term in (45) can be estimated as
1 3 1
N (v BagZlpiaalive)| S NP aadl 131 25p lop
1
a5 - 1 - 1
S N3 <¢t,ln4¢t>2 <¢t7l”2¢t>2 ||90(t)||Hk(Rd)(-47)

Now we choose for f the family of weight functions wi\ k> (wx(k))’ given by

kil 0<k<N-1,
wy(k):={ N (48)

1 else

for some 0 < A <1—dpf and j € {0,..., N}. The set corresponding to Ly from (44) is
called L ;. To bound the operators in L ;, note that for any a,b € No, a > b,
A A

(k+a)’ — (k+b) GI)F M a=b) + (1)K 2 (@® = 0*) + ..+ (@) = V)

ja](( )/’4:31 (j:é)k:j_2+...+(jzl)k:+1)

= jad(k+177},

IN

where we have used in the second line that for every 1 <m < j — 1,
' J(=1)! _ _J (i1 -1
() = Gomtc = = 72w U ) <3000

and that a/ > a’ — b’ for any 1 < ¢ < j and j > 1 (the statement is trivial for j = 0).
Since wy (k) < % for all k, especially also if k > N* — 1, we conclude that

(wr(k)) — (wr(k — 1)) < BHIZR o s (k)] l<k<N'—1,

= NN NA — —
(wrk+ 1)) = (wa(k)) < EEEIHE < joi (. — o g <k < NY -1,
(wa(k +2)) — (wx(k))

IN

IN

(k+3)5§§§k+1)j < j30 (kJ]rvlgj‘l — jgjiwk(]\]j);_l 0<k<N -1.

Besides, one computes analogously to above that (k + 1)/ — (k — 1)7 < 2j(k + 1)/}
hence

(wa(k)) — (wa(k —2)) < (k+]b);j—kﬂ 2 (k+1)1 ' —9j wxgs); ! 2<k<N 1.
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Finally, wy (k) = 1 for k > N* — 1, hence the above estimates imply
(wA(k)Y = (wr(k = 1)) < y*““*” <GYTINT = jy B N g k< N,
(wa(k) — (walk —2)) < 2B < join— = .72]% N 1<k <N\

For all other values of k, the differences yield zero. Thus, every element of L wl €3N be
bounded, in the sense of operators, by the operator corresponding to the weight functlon
. 'w/\(k’)jil A
; j3¥—~— 0< k< N?,
(k) = NA (49)

0 else.

Besides, since li(k‘) =0 for k > N* + 1, one obtains

Bkn*(k) < j3N~""wl(k), (50)

Bln'(k) < 37wl (k) < 537w (k) Vgt < j3/ N2 f(k) (51)

Inserting (49) to (51) into (46) and (47) 1,
we conclude that

B @st) S 33O n ) (sl t) + N Yoy (@ 750) . (52)

Now we apply Gronwall’s inequality, for now on using the abbreviations aw,%s(wi; t) =:
a;(t) and I; == f;||90(31)||§1k(]1§d) dsy. This yields

. ) t
Oé]‘(t) SJ 6]3‘7]’5 <Oéj(5) +j3]Ndﬁ—>\/ ||90(51)||2Hk(11§d)aj—1(81) dSl)
]3J[t ( )+]3]e](3J+3J 1)ItI Ndﬂ >\ 1(8)

t
+j(j — 1)3 DI (343 1)1t]t2N2(dﬁ—/\)/ |\<P(51)||12qk(ﬂad)aj—2(51)dsl

N

ej?’j[taj(s)

+731d @I NP (s)

4j(j — 1)3IHU DI BT 2NN o ()

Fi( = 1) — 2)3HGDH=2) I F 3 43D 2 )

t
X/ ||90(81)||§1k(Rd)04j—3(81)d81
<

jl n2itl=n) 935y dB—X
S Dot VRN e, (s,
n=0

where we have used that all integrands are non-negative and thus the upper boundary
of all integrals could be replaced by t. Written explicitly, this gives

J j
s (W51 S CFF DTN Nay (w5 s) = O 30NN (g i ),
n=0 n=0
(53)

328



B.2. Higher order corrections to the mean-field dynamics of interacting bosons
with . ,
b = 130D I a2

where we have estimated I]e*3'1t < ¢¥1t. To relate this estimate to ||m7v||?, observe

that for 0 <k < N,
w0 < (58 = (52! NI = i,
and

, . BV N300 = o (B) NN for 0 < k< N} —1,
m?](k) — (kf;\;l)] < (N ) ' )\( ) - =
27 = 27wl (k) for any b € N for N =1 <k <N.

Consequently, m? (k) < N‘j(l_k)wg\(kz) + w§ (k), and we conclude

aw,@,s(w‘;;t) = <¢t,@j¢t> < NION (Y, Py = NIl |2,
||7/7\”Lj'¢t||2 = <wt7 J'(/}t> S N_j(l_)\)aw,go,s(ng t) + 2jaqp,go,s(wl>)\§ t)
for any b € N. Inserting these estimates into (53) yields

IR U (t, 5)0|>
J b
< C;,s ZNn(71+d,3)”,rfijfn¢”2 _|_230bt,s ZNn(fler,B)er(lf)\)Hmbfnd)HQ'

~Y
n=0 n=0

To minimise the second term, we choose the maximal A = 1 — df3, which concludes the
proof of part (a).

The proof of part (b) is much simpler since we now consider the time evolution
ﬁg@(t, s). The term corresponding to (43) vanishes, which implies that we may directly
consider the weights m?/ (k) instead of taking the detour via w )\( ). Analogously to (38),
we define

G 51) 1= (Tplt, )0, PO T8, 5)0)

We will now abbreviate lzp(t, )¢ =: . In this notation,

dto%sos (f31)
N — -
<wt, 77O () = 3" (), fe® wt>
J=1
- iy <¢t7[ 2088 £ e 4 e @} Jt>

+i% <7’/}t7 [ o(t) Lp(t)vl qnp(t) o(t) +h.c., f¢ t)] ¢t>

— — — 3 ~
_ NS <1Zt7qf(t)q§(t) <f¢(t) _ ffg)) Ulzpsa(t)pg(t) (ﬁp(t) _ fso(t)) 2 ¢t>‘
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We now evaluate this expression for the weight m?/ (k), i.e.

2

Gy ps(m?5 1) = H <m¢(t)) i

This corresponds to wg\(k) with the choice A = 1 in (48). Consequently, we define
(k) := j3 N~'m20=Y (k) analogously to (49) and conclude that m?/ (k) —m? (k—2) <
U(k) and m? (k + 2) — m? (k) < l/(k). Analogously to the estimate of the first term
in (45) and using the relation (50) for A = 1, we obtain

—_—
o(t

j ~ . —~\J ~ —\J—1
1 (m70) 31 £ 30O ey (1 () B + 2071095 (D) ™ 7).
The same Gronwall argument which led to (53) concludes the proof. O

Proof of Corollary 2.5. From Proposition 2.4a and the assumptions on the initial data,
we conclude that for every b € N and sufficiently large IV,

HG@)%(”HQ S Ca ica_n NP(=1+d8+y)=7a
n=0

b
+2°Cf Z ¢, N (-1+dB+7)—b(y—dp)

n=0

If v > 1 —dp, the leading order terms in both sums are the ones with maximal n, hence

—\a 2
”(ms@(t)> W)H < (a4 1)Cf NUCHE) 4 (4 1)C)f N(1+240),
If one chooses b > all__2dd% for fixed B < 2%, the second term is for sufficiently large IV
dominated by the first one. For v < 1 — df, the leading order terms are those with
n = 0, hence

— 2

H <m90(t))aw(t)H < (a+1)CLE, N 4 (b+ 1)28Cf €, N~b(0=d8)

which yields a non-trivial bound only for v > dj. Part (b) follows analogously from part
(b) of Proposition 2.4 without the restrictions on 5 and ~ that are due to the second
sum. 0
3.3 Proof of Theorem 1

Proof of Lemma 2.6. We use the abbreviation Ziﬁj = viﬁj — 70 () — 5O () + 2%
as in (39), and drop all superscripts o(t) in p?®, ¢#®) and me® for simplicity. By
Lemma 3.3a, 9*®im® = m2Q?®)  hence

I QM| = =D <ma¢, QinijQinQleZ£ZQkQZma¢>
i<j k<l

= ﬁ<77A”ba1/)7Q1QQZf2Q1Q2ZfQQ1Q2ﬁ”La1/)>
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N(N=2) / ~ .
+ 1(\/71 ) <ma1/1,Q1CJ2Z1/82(]1Q2Q32153611Q3WG¢>

N(N—2)(N—3) / ~ .
+W <ma1/), Q1Q2ngQ1Q2Q3Q4Z§4Q3Q4ma¢>

S NP (|lggem™ )1 + Nllqrgagsm®o|* + N?|lqrg2q3aam®p| %) ,

where we have used that HZZH Leomd) SN 48 by Young’s inequality. Now observe that
(Mllagemel? = S (@, ggym®ey) < Y (@, qiggmy)
i<j 1,J

< Z (M, qiqaqm ) ,

iﬂj7k7l
hence
N 4
lpgem®p|* < N2 (Y, qigyqeam®y) = N <ﬁba¢, (}vzqg) m“¢>
ihj?k?l
— N2<maw’ﬁ8ma¢> < N2||T?L4+az/1||2,

by (35), and analogously

~ -1 ~ ~
lq1g2g3m || (%) Z (M), qiqjqrm®i)

i<j<k
S NN (m agigam®y) S N|mtey|?,
Y
N -1 N N
lpagamy|> = () D (M, agaam®y)
i<j<k<l
S N aggeamP) S [ty
i7j7k’l

This implies part (a). For part (b), note that by Lemma 3.3a,
macet) = T Z (QinZg'(Qipj +pz‘Qj)> mf
i<j

= ((pin + Qipj)ijQin> mZ,.
i<j

Consequently,
[eCe |2

= LD ( <ﬁﬁ¢, (aip; + i) 2, aia596 02y (Pray + qkpz)ﬁ%%¢>
1<j k<l

+ <ﬁ1(111/)7 (qipj + pin)Ziﬁjqiqj (pear + Qkpl)Z;fqukagl¢>
+ <m‘i1¢, G320 (pia; + qipy) ke Ziy (pear + q;cpz)ﬁl‘f@
+ <ﬁvfil¢, 403 23, (pig; + ;) (pear + qkpz)Z;flq;cqzﬁl‘iﬂb> >
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S NP (lamse ) + lagem® )% I 1k ey
+N1+dﬁ(”(J1(J2m1¢H2 + lam il |lgrgegzm® 12| + H(J1(J2T’Aﬂl¢”2) H@(t)”?{k(ugd)

+ NP (|l g1 gz v |? + lqrqeasm® |1 + |araem§d | || qraeasaam® 0] x
Xllw(t)llék(w)

similarly to the estimate of ||m2Q¥")||. The last inequality follows because by Lemma,

3.1a, ||plZfQH(2)p < Nd5||g0(t)||12qk(Rd) due to Young’s inequality and since ||vBH2LQ(Rd) <

N9 Further, note that

N_1 2a N—_1 2a N 2a
v oo (Soeeon) - (SyER) < (2 yER) e
k=0 k=0

k=0

§>
I

N 2a ;\7 2a N 2a
2a (Zm(k:—l)Pk> = <Z«/};Pk> < (Z ’gt,lpk> = Mm%
k=1 k=1 k=0

in the sense of operators. As in the estimate of Q¥(*), we thus obtain for ¢ € {-1,1}

|3>
Il

lpmgwl* < N7 (@gy, ggamie) = N? (A, mg* adp) < 22 N2 |me 5|2,
i7j7k

and analogously ||q1g2mde|| < 4°N||ma 3|2 and |q1gagsmiep|| < 4%|ma3p||%. To-
gether, this implies part (b). O
Proof of Theorem 1. Let a € Ny such that 6a < A. Recall that by Definition 2.2,

a min{2n,a}

vt = Y >, T

n=0 k=n
for any a > 0, where T,(lk) is given by
n t
T = > o )] / ds, | Uy(t, sn) tgjf ..... i
(j1,-+-s jn)GS(k) v=1 \g" |
where
0 for k < n and k > 2n,
t&) ..... gn) T vo fork=n=0,

n—1 .
H (I;‘:L(f;lil)ng@;n—Ea Sn—ﬁ—l)) wO else,
=0

with 17 = ¢#® and 15 = Q¢® and (ji, ..., jn) € Y. In this notation,

2n

I (e s 0 o) =X X )

=0 F=1 (1 gn)eSEY

332



B.2. Higher order corrections to the mean-field dynamics of interacting bosons

hence the Duhamel expansion (34) of ¢(¢) reads

a—1 2n

=35 T+ Z 7).

n=0k=n

Here, ﬁ(Lk) is obtained from T,gk) by replacing the first ﬁw(t, $n) by the full time evolution
Ul(t, sn), i.e., for n < k < 2n,

n t n—1
Tk = Z (—i)" H / ds, | U(t,sn H (I]i(sf Z)U (Sn— l;snflfl)) Yo

(jl aaaa ]")esr(Lk) v=1 Sy—1 I=
Consequently,

min{2a,a}

a—1 2n 2a
O ICRED DD DI CURS B LD D v
k=a

n=0 k=min{2n,a}+1 k=a
a—1 2n 2a
S D D - CE S s L (Tg")—Tg“)) (54)
n:[aTHW k=a+1 k=a+1

since the first double sum contributes only if 2n > a+1, and in this case min{2n,a} = a.

Note that for kK =n, j1 = --- = ji = 1, hence Tlgk) and T,gk) exclusively contain C#(1).
Using Duhamel’s formula, the last expression can thus be expanded as

fcga)iTcga)
t t

— (i) / ds; - / s (Ut 50) = Ut 50) ) CH0D T (50, 501)CP00)
0 Sa—1

><-~~C“"(Sl)[7¢(sl,0)q/zo
t ¢
— (i)t /d51~~~ /d5a+1U(t,8a+1) (Ceo(sa+1) + Qs@(sa+1)) Up(Sas1,50)CP0) x
0 Sa
X -~C¢(81)U¢(S1,0>T/)0
¢ ¢
= D (et / dsy - / AUt sar) 802 . (55)
0

Sa

By unitarity of U(¢,s) and ap(t, s),

t t
k
IT®| < 3 dsl---/d3n|tgh) _____ il
(]1 77777 ]n)GS,(lk) 0 0
t t
T k
HTTEIC)H < Z /dsln'/dsﬂtgjl) ..... jn)H )
(J1---rjn) €S O 0
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With this, (54) and (55) imply for a = 0,1

t

< 2 max /ds|t( 1S (56)

t
Tl(l) - i/dslU(t, Sl)t(2)
ke{1,2}

let) — D) = \ @

t
o) =201 = TP+~ [dsy [ dsaUt st

S1

o _

t t
(k)
< gm0 fane [l e 67
ke{2,3}) (... in)est 0 0
which coincides with (28) and (33). For a > 2, we find
l(t) — &t (@)
2 (k) (k) T(a+1)
< a T + a T + | T
a ne{(%{ﬂf.ﬂ_l}” n ake{aﬂ,.’f.,ga}” a I+ 1Tl
ke{a+1,..., 2(a—1)}
¢ t
(a+2)
+/d81m/d8“+1’ 1,1,.. 1,2)”
0 Sa
t t
< 2d° max Z /dslm / dsp, tgfl) in)
ne{[*$H],....a+1} o
kG{a2+1 ..... 2a} (j17"'7jn)€S’ELk) 0 Sn—1
< 2 (k
se om0 X fo / s 1.0 9
n<k (1,e.erjn)€SEY 0

where we used that a + 2 < 2a for a > 2. To estimate ||t( ) i )||2 fora+1<k<2a
and n < k, note first that Lemma 2.6 and Proposition 2 4b can be combined into the
single statement

H(n@)alj‘f’(“ﬁw(n s)sz

2+j+a

2 o4d — 14d ——\ 2+j+a—v 2 (59)
SN L 3 N +5)H(m¢(3)> y

for j € {1,2} and any ¢ € Lgym(RdN). Hence, with 6,, := 2(n—p+1)+(jn+in-1+-+iu)
and 7, := H5:0||g0(sn_g)||§{k(Rd), we obtain for n < k

(k) 2
1G]
. 5”
< N2+dBin Z C;:z—snflno Ny(=14dB) o
v1=0
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2
— On—11 n—l
X (m‘P(Sn*l)) H (Iﬁ(sz 2 (sn L5 Sn—L— 1)) Yo

(=1

nnl’/l

< N2 24dB(Jn+in— 1)771 Z Z 46n7ulcsn Sn— ICSn 1—Sn— QN(I/1+I/2)( 1+dpB) %

—1—V1
v1=0 wv2=0

—— \On—1—(v14+12) nl
(m%@(sn72)) H (Iﬁ(sz Z)Ucp(sn—fa Sn—f—l)) wo
(=2

2

X

A

On Sn—p—W1+-""+vu)

2(pt 1) +dB(jn+ -+ +in— T O e
5 N (u+1)+dB(jn In H)T],LL Z Z 05: ntC : l: (1/71-&-” +VM)
v1=0 Vyu4+1=0

s 0t A= (e ) N ) (< 14dB)

2
— On—p—W1+-+ru+1)) n-l
T (i
l=p+1
S
Sn d1—(v14- +vn-1)
< NP, Y > Aonte e = (it (ko) o
v1=0 vp=0
) Si—(nt ) |2
n n— S n d
Xcgsn ’ 1"'0611—(111—&--..—4—1/7171) N(V1+ o B)H m@0> ¢0 (60)

Since j1+,...,+jn = k and n < k < 2a, we find 67 = 2n + k < 3k < 6a < A, hence
assumption A3 yields

||(T%)51_(V1+“.+Vn)w0”2 S 0:51—(u1+...+un) NVt tvn)

Let us for the moment focus on the N-dependent factors in (60), thereby neglecting all
other contributions to the sum. This yields

on d1—(vi+- - +vn-_1)
N 2n+dBk—yd1 Z Z N(u1+---+un)(—1+d,8+w).

vy =0 Un =0

For v > 1 — dp, the leading order term in the sum ) is the term corresponding to
the choice v, = 9y — (11 + -+ + vp—1) = 2n + k — (v1 + -+ + vp—1), which yields the
total factor Nk(=1+dB) NdBo — N—k+2dB(n+k)  Thig factor is maximal for n = k. For
v < 1—dpg, the leading term corresponds to the choice v = --- = v, = 0, which yields
N2n(1=7)+k(dB=7)  Also here, the maximal contribution issues from n = k. In fact, the
leading contributions for both ranges of v can be summarised as N %57 where

1—4dp for 1—-dB<y<1,
(B,7) = 2rds
—2—dB+3y for =5E <y <1-—-dp

as defined in (32). Hence, for sufficiently large N, the dominating terms is the one with

n = k, which comes from t(k) ) t(k)
(G1--0dk) — T(L,..01)°
) (k)

max X )
(J150+2n)

(jl»- . ~7jn)€S'SLk)

-2
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and (56) to (58) can be summarised as

t t
_ et 2 (k) H
o) =wf Ol < @1 ma 3 s [ase | e
0 Sk—1
It remains to evaluate the estimate (60) for n = k. In this case, j; = --- = jp = 1 and
6, = 3(k — u+1). Note also that the constants C/! are increasing in a and ¢, hence
C&ik::—_(iirj-l-wu,l) < C’;(';;‘l). Further, observe that 8 + -+ + 0y = %k(k -1) < %kQ.
Consequently,

k—1
k 2 0, Sk—

..... P
where we have used that each sum }-, in (60) contains at most 6g—,41 = 3u + 1
addends, and that the prefactor of the leading order term for v > 1 — dg is €¢ = 1,
whereas it is €3 for v < 1 — dB3. Consequently, for sufficiently large N, the maximum
in (61) is attained for k = a+ 1. Inserting the explicit formula Cf’s = j139GHD Y I with

Iy = f;HSO(Sl)H%Ik(Rd) dsy yields

a

a —a t 193(v+1) 2
o)~ o O 5 N0 T ([ o)y s,

v=1

< ea93(“+1)ItItQa N—ad(ﬁﬂ) < egMIi N—a&(ﬂ,’y) s

where we have bounded all a-dependent, time-independent expressions by a constant
cS 1. O
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