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Zusammenfassung

Die vorliegende Dissertation behandelt die Dynamik von Vielteilchen-Quantensyste-

men wechselwirkender Bosonen für große Teilchenzahlen N . Im ersten Teil wird eine

effektive Beschreibung der N -Teilchen-Zeitentwicklung effektiv niedrigdimensionaler

Bosegase hergeleitet. Im zweiten Teil konstruieren wir eine beliebig gute Approxima-

tion an die Dynamik schwach wechselwirkender Bosonen.

Der erste Teil der Dissertation beschäftigt sich mit der Dynamik N wechselwirkender

Bosonen in einer zigarren- oder scheibenförmigen externen Falle, die die Bewegung der

Bosonen in zwei Dimensionen bzw. einer Dimension auf ein Gebiet der Größenordnung

ε einschränkt. Im gleichzeitigen Limes (N, ε) → (∞, 0) verhält sich das Gas effektiv

d-dimensional, wobei d = 1 der zigarrenförmigen und d = 2 der scheibenförmigen

Anordnung entspricht.

Die Wechselwirkung zwischen den Bosonen wird als nichtnegativ und beschränkt

angenommen. Da das Gas auf einer Längenskala der Ordnung 1 beschrieben wer-

den soll, betrachten wir ein entsprechend skaliertes Wechselwirkungspotential mit

Streulänge der Ordnung (N/ε3−d)−1. Die Reichweite der Wechselwirkung wird propor-

tional zu (N/ε3−d)−β gewählt, wobei der Skalierungsparameter β die Werte β ∈ (0, 1]

annehmen kann. Die Wahl β = 1 entspricht der physikalisch relevanten Gross–

Pitaevskii-Skalierung.

Unter der Annahme, dass das System anfangs als Bose–Einstein-Kondensat vor-

liegt, zeigen wir, dass die N -Teilchen Dynamik im Limes (N, ε) → (∞, 0) den Zus-

tand der Kondensation erhält. Die zeitentwickelte Wellenfunktion ist Lösung einer

d-dimensionalen nichtlinearen Gleichung, wobei die Stärke der Nichtlinearität von

β abhängt. Für β ∈ (0, 1) erhalten wir eine kubisch-defokussierende nichtlineare

Schrödingergleichung, während β = 1 einer Gross–Pitaevskii-Gleichung entspricht,

die explizit die Streulänge der Wechselwirkung enthält. In beiden Fällen hängt die

Kopplungskonstante über einen multiplikativen Faktor von der zigarren- bzw. schei-

benförmigen Falle ab.

Der zweiten Teil der Arbeit behandelt die Dynamik N d-dimensionaler Bosonen, die

über Paarpotentiale miteinander wechselwirken. Insbesondere betrachten wir Wech-

selwirkungen der Form (N − 1)−1Ndβv(Nβ·) für Skalierungsparameter β ∈ [0, 1
4d),

was die Situation vieler schwacher Wechselwirkungen modelliert. Das unskalierte Po-
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tential v wird als beschränkt angenommen, wobei keine Vereinbarung bezüglich des

Vorzeichens von v getroffen wird.

Die betrachteten Systeme sollen anfangs Bose–Einstein-Kondensation aufweisen,

wobei die Anzahl der Anregungen aus dem Kondensat im Anfangszustand als ausrei-

chend gering gefordert wird. Unter dieser Annahme konstruieren wir eine Folge von N -

Teilchen-Funktionen, die die wahre Vielteilchendynamik bezüglich der L2(RdN )-Norm

mit beliebiger Genauigkeit bezüglich Potenzen von N−1 annähern. Die approximieren-

den Funktionen werden als endliche Duhamel-Entwicklungen einer erstquantisierten

Bogoliubov-Zeitentwicklung konstruiert. Ein Zwischenresultat bilden Abschätzungen

aller endlichen Momente der Anregungsanzahl in der zeitentwickelten Wellenfunktion.
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Summary

In this thesis, we study the dynamics of quantum many-body systems of interacting

bosons for large particle numbers N . We derive an effective description of the N -body

time evolution of quasi-low-dimensional Bose gases and construct an approximation

to any order of the dynamics of weakly interacting bosons.

The first part of the thesis is concerned with the dynamics of N interacting bosons in

a cigar-shaped or disc-shaped trap, which confines the bosons in two dimensions or one

dimension, respectively, to a region of order ε in each direction. In the simultaneous

limit (N, ε) → (∞, 0), the gas becomes quasi d-dimensional, where d = 1 for the

cigar-shaped and d = 2 for the disc-shaped confinement.

The interaction between the bosons is assumed non-negative and bounded. To

describe the gas on a length scale of order one, the interaction is scaled such that its

scattering length is of order (N/ε3−d)−1, while its range is proportional to (N/ε3−d)−β

with scaling parameter β ∈ (0, 1]. The choice β = 1 corresponds to the physically

relevant Gross–Pitaevskii scaling regime.

Under the assumption that the system initially exhibits Bose–Einstein condensa-

tion, we show that the N -body dynamics preserve condensation in the simultaneous

limit (N, ε) → (∞, 0). The time-evolved condensate wave function is the solution of

a d-dimensional non-linear equation, where the strength of the non-linearity depends

on the scaling parameter β. For β ∈ (0, 1), we obtain a cubic defocusing non-linear

Schrödinger equation, while the choice β = 1 yields a Gross–Pitaevskii equation fea-

turing the scattering length of the interaction. In both cases, the coupling parameter

depends on the confining potential.

In the second part of the thesis, we consider the dynamics ofN d-dimensional bosons,

which interact with each other via a pair potential in the mean-field scaling regime.

More precisely, we study interactions of the form (N − 1)−1Ndβv(Nβ·) for β ∈ [0, 1
4d),

which corresponds to the situation of many weak interactions. While we require the

unscaled potential v to be bounded, no assumption on the sign of v is made.

We assume that the system initially exhibits Bose–Einstein condensation with suf-

ficiently few excitations from the condensate. We derive a sequence of N -body wave

functions which approximate the true many-body dynamics in L2(RdN )-norm to ar-

bitrary precision in powers of N−1. The approximating functions are constructed as
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Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoli-

ubov time evolution. As an intermediate result, we prove estimates for finite moments

of the number of excitations in the time-evolved wave function.
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Conventions and notation

• We use units where ~ = 1. Besides, except for Section 1.1, the particles are

assumed to have mass m = 1
2 .

• The n-fold symmetric product of a one-body Hilbert space H = L2(Ω) for some

Ω ⊂ Rd is denoted as

Hn+ =

n⊗

sym

H .

In particular, L2
+(RdN ) denotes the symmetric subspace of L2(RdN ).

• We use capital letters to denote the interaction W , its scattering length A, and

the length scale L of a system without specifying a frame of reference. In the

coordinates where L = 1 is chosen as length unit, the interaction is denoted as

wN with scattering length aN .

• An expression C that is independent of the number of particles N and the time

t is referred to as a constant. Additionally, in Sections 1.3.3 and 3.1, constants

must be independent of the width ε of the confinement.

• We use the notations A . B, A & B and A ∼ B to indicate that there exists a

constant C > 0 such that A ≤ CB, A ≥ CB or A = CB, respectively.

• The scalar product, norm and operator norm of the N -body Hilbert space are

denoted as

⟪·, ·⟫ := 〈·, ·〉L2(RdN ) , ‖·‖ := ‖·‖L2(RdN ) and ‖·‖op := ‖·‖L(L2(RdN )) ,

where d denotes the spatial dimension. For most of the thesis, we consider d = 3.

• The set of all permutations of n elements is denoted as Sn.

• The symbol ·̂ denotes the weighted many-body operators from Definition 1.4.1.

The only exceptions are Sections 1.2.5, 1.5.1 and 1.5.2, where ·̂ denotes the

Fourier transform.

• In Section 3.2, we write x+ and x− to denote (x + σ) and (x − σ) for any

fixed σ > 0, which is to be understood in the following sense: Let the sequence
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(Nn, εn)n∈N → (∞, 0). Then

f(N, ε) . N−x
−

:⇔ ∀ σ > 0, f(Nn, εn) . N−x+σ
n for sufficiently large n ,

f(N, ε) . εx
−

:⇔ ∀ σ > 0, f(Nn, εn) . εx−σn for sufficiently large n ,

f(N, ε) . µx
−

:⇔ ∀ σ > 0, f(Nn, εn) . µx−σn for sufficiently large n .

These statements concern fixed σ in the limit (N, ε)→ (∞, 0) and do in general

not hold uniformly as σ → 0.

• The decomposition of a function into its negative and positive part is denoted

as f = f+ − f− with sign convention f+, f− ≥ 0.

• We denote brc := max {z ∈ Z : z ≤ r} and dre := min {z ∈ Z : z ≥ r} for r ∈ R.

In the single papers included in the appendix, the notation may vary and is indicated

in each paper separately.
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1. Introduction

Macroscopic physical systems are usually extremely complex since they contain a huge

number of constituents, whose motion is entangled as the result of interactions. An

explicit analytical description of the dynamics of such systems is practically impossi-

ble, and in many cases also a numerical solution is far beyond computational reach.

Moreover, even if it was feasible to explicitly predict the behaviour of each individual

constituent, this vast amount of information would not be very helpful for the un-

derstanding of the dynamics of the system as a whole. Much better suited for this

purpose is an appropriately coarse-grained approximation, which focuses on relatively

few collective degrees of freedom and monitors their time evolution. Such laws of mo-

tion are referred to as effective descriptions, and it is at the heart of statistical physics

to derive them from an underlying fundamental theory.

Since the groundbreaking works of Boltzmann and Maxwell dating back to the

19th century, effective models have many times been successful in the description

and prediction of physical phenomena. Most notably, the laws of thermodynamics

determine the evolution of macroscopic variables such as the temperature, pressure or

volume of an ideal gas consisting of many non-interacting particles, whose individual

motion is governed by Newton’s laws of classical mechanics. Another famous example

is the Boltzmann equation describing a gas of small interacting spheres, or the Vlasov

equation, which is applied to analyse the dynamics of stellar matter. Effective theories

arising from quantum mechanics are for example Hartree–Fock theory for fermions,

and the Hartree and Gross–Pitaevskii equation for the dynamics of interacting bosons.

By its very nature, an effective description is an approximation, and as such needs

to be justified from the full many-body theory with mathematical rigour. This means

that the solution of the microscopic evolution equation and the solution of the effective

equation should coincide in a suitable limit and with respect to an appropriately chosen

topology. Moreover, to judge the viability of the approximation, it is desirable to

quantify the approximation error in terms of the parameters of the model, such as the

number of particles, the size of the system, or the initial conditions.

This thesis contributes to the mathematically rigorous derivation of effective dy-

namics for systems of indistinguishable, interacting bosons. Macroscopic Bose gases

in current experiments contain at least N ∼ 106 particles, whose individual motion is

1



1. Introduction

determined by the N -body Schrödinger equation

i d
dtψ

N (t) = HN (t)ψN (t) , ψN (0) = ψN0 ∈ L2
+(R3N ) . (1.1)

Here, L2
+(R3N ) denotes the symmetric subspace of the Hilbert space L2(R3N ), whose

elements are square integrable and symmetric under the exchange of any two coordi-

nates, i.e.,

ψN (x1, ..., xj , ..., xk, ..., xN ) = ψN (x1, ..., xk, ..., xj , ..., xN ) for j, k ∈ {1, ..., N} .

We use the normalisation convention ‖ψN‖L2(R3N ) = 1. The N -body Hamiltonian is

given as

HN (t) =

N∑

j=1

(
− 1

2m
∆j + V ext(t, xj)

)
+

∑

1≤i<j≤N
wint(xi − xj) , (1.2)

where ∆j denotes the Laplace operator acting on the jth particle with mass m, V ext

is an external trapping potential, and wint describes the interaction between any two

particles.

Since we study very dilute gases, we neglect all interactions involving three or more

particles. Besides, we analyse the behaviour of the bosons at very low temperatures,

where their de Broglie wavelength is sufficiently large that microscopic details of the

scattering potential cannot be resolved. Hence, we simply assume wint to be spherically

symmetric, i.e., to depend only on the distance between two particles. Due to the

presence of the interaction wint, solving (1.1) means to solve a differential equation in

N variables, which makes ψN (t) practically inaccessible for any further analysis.

At extremely low temperatures, Bose gases display the fascinating phenomenon of

Bose–Einstein condensation, experimentally first realised in 1995. In this exceptional

state of matter, almost all particles occupy approximately the same quantum state.

The N -body wave function is therefore close to an N -fold product of a single wave

function ϕ(t) depending on only one spatial variable, i.e.,

ψN (t) ≈ ϕ(t)⊗N . (1.3)

Due to the interactions, this is no exact equality but holds asymptotically as N →∞,

with respect to an appropriately chosen measure of distance. Since the great majority

of particles condenses into a cloud, where, roughly speaking, all particles behave as

one, the dynamics ϕ(t) provide an effective description of the dynamics of the gas

as a whole. Due to the inter-particle interactions, the equation of motion for ϕ(t) is

non-linear.

2



1.1. Ideal Bose gas

The first three projects of this thesis [32, 35, 33] concern the derivation of this

effective evolution equation for a very particular setup: we consider the case where

V ext in (1.2) confines the particles in one [33] or two [32, 35] spatial dimensions to a

region of order ε in each direction. In the simultaneous limit N → ∞ and ε → 0, we

derive a low-dimensional, non-linear equation determining the evolution of ϕ(t). The

results of these projects are presented in Section 3.1.

While the overwhelming majority of particles in a Bose–Einstein condensate is ap-

proximately in the state ϕ(t), relatively few bosons may be in a different state, forming

excitations from the condensate. Hence, approximating the N -body dynamics by ϕ(t)

means ignoring these excitations. To obtain a more accurate but still simplifying

description of the system, one must additionally account for the dynamics of the exci-

tations. These dynamics can be described by an effective theory, the so-called Bogoli-

ubov approximation. Combining the evolution of the condensate with the dynamics of

the excitations, one obtains an effective N -body wave function that approximates the

actual dynamics ψN (t) with respect to the L2-norm of the N -body Hilbert space. In

the last project of this thesis [34], which is discussed in Section 3.2, we derive higher

order corrections to this description.

In the remainder of the introduction, we review the mathematical and physical

notions and results that form the foundation for the results obtained in this thesis.

Chapter 2 summarises the objectives of the thesis, while the results are presented and

discussed in Chapter 3.

1.1. Ideal Bose gas

In this section, we recall the concept of Bose–Einstein condensation for an ideal gas.

Herein, we mainly follow [110, §62], [145, Chapter 2] and [153, Chapters 3 and 10].

Let us consider a d-dimensional ideal Bose gas of N indistinguishable, non-rela-

tivistic, spinless bosons with mass m in thermodynamic equilibrium. The dynamics

ψN (t) of the N -body wave function are determined by the Hamiltonian H ideal, which

decomposes into a sum of one-body Hamiltonians h,

H ideal =
N∑

j=1

hj , h = − 1

2m
∆ + V ext ,

where ∆ is the d-dimensional Laplace operator and hj denotes h acting on the j’th co-

ordinate. Consequently, the N -body eigenfunctions of H ideal are symmetrised products

of eigenfunctions of h. At temperature T = (kBβ)−1, where kB denotes Boltzmann’s

constant, the mean occupation number nj of the single-particle state j with energy εj

3



1. Introduction

is determined by the Bose distribution function,

nj =
1

eβ(εj−µ) − 1
, j ≥ 0 . (1.4)

The chemical potential satisfies µ ≤ ε0 and is implicitly determined by the condition

N =
∑

j≥0

nj =
∑

j≥0

1

eβ(εj−µ) − 1
= N0 +

∑

j≥1

1

eβ(εj−µ) − 1
=: N0 +Nex . (1.5)

Here, N0 counts the particles occupying the ground state, while all particles in excited

states contribute to Nex. To calculate the thermodynamic properties of the system

for large N , one usually replaces sums over states by integrals over a density of states

g(ε),

g(ε) =
dG(ε)

dε
=: Cαε

α−1 ,

where G(ε) is the total number of states with energy less than ε. Naturally, this

quantity depends on the dimension as well as on the external trapping potential,

resulting in different values for the real-valued parameters α and Cα. A free particle

in d dimensions in a volume V , whose dispersion relation is |p|(ε) =
√

2mε, yields

G(ε) =
V Vd(

√
2mε)

(2π)d
,

where Vd(R) = πd/2Rd

Γ(d/2+1) is the volume of the d-dimensional ball with radius R. Hence,

g(ε) = Cd/2ε
d
2
−1 , Cd/2 =

d
2

(
m
2π

) d
2 V

Γ(d2 + 1)
,

which corresponds to α = d
2 . If V ext is a d-dimensional harmonic potential with

frequencies ωi, i = 1, ..., d, this yields

g(ε) = C̃dε
d−1 , C̃d =

1

(d− 1)!ω1 ···ωd
,

corresponding to α = d.

For sufficiently large N , we may approximate ε0 ≈ 0, which implies µ ≤ 0. Making

use of the density of states, we replace the sum defining Nex in (1.5) by the corre-

sponding integral. Substituting x = βε, we obtain

Nex = β−αCα

∞∫

0

dx
xα−1

ex−βµ − 1
, (1.6)

4



1.1. Ideal Bose gas

which is increasing as µ ↑ 0. For α > 1, the integral corresponding to µ = 0 converges

and yields

Nex ≤ β−αCα
∞∫

0

dx
xα−1

ex − 1
= β−αCαΓ(α)ζ(α) , (1.7)

where ζ(α) =
∑∞

n=1 n
−α is the Riemann zeta function. Since (1.7) is finite and in

particular N -independent, the total particle number exceeds this value for sufficiently

large N , which implies that all excess particles must occupy the ground state and

thus contribute to N0. This macroscopic occupation of a single one-body state —

macroscopic in the sense that the fraction of particles in this state does not vanish

in the limit N → ∞ — is called Bose–Einstein condensation (BEC). Its theoretical

existence was discovered in 1924 by Einstein [60, 61], building on a work by Bose [31].

Let us remark that it is only justified to replace the sum in (1.5) by an integral

because we exclude the first term j = 0 in the sum from this replacement and treat

it separately. The reason is that n0 diverges in the limit µ → 0, whereas all higher

terms of the sum converge to a finite value. In the integral (1.7), the density of states

g(ε) ∼ εα−1 makes the integrand behave as xα−2 for x→ 0, which diverges for α ≤ 1.

Hence, for α > 1, the contribution of infinitesimal x is not appropriately accounted

for in the integration.

For α > 1, BEC occurs below a critical transition temperature Tc, which is deter-

mined by the condition

N = Nex(Tc, µ = 0) = β−αc CαΓ(α)ζ(α)

as

β−1
c = kBTc =

(
N

CαΓ(α)ζ(α)

) 1
α

.

For temperatures T ≤ Tc, the number of particles in the condensate is given by

N0 = N

[
1−

(
T

Tc

)α]
.

In conclusion, BEC at positive temperature occurs in systems whose density of

states g(ε) is characterised by a parameter α > 1. The most renowned examples are

the spatially homogeneous 3d Bose gas (α = 3
2) and the 3d gas in a harmonic trap

(α = 3). In low dimensions, the situation changes: whereas the homogeneous 2d

Bose gas does not exhibit BEC at T > 0, the phenomenon occurs for 2d bosons in

harmonic traps (α = 2). In case of the ideal 1d Bose gas, not even a harmonic trap

suffices for BEC, but one requires a potential that is more confining than parabolic.
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1. Introduction

A comprehensive analysis of the behaviour of 1d and 2d bosons in power-law traps is

given in [11].

1.2. Interacting three-dimensional Bose gas at low

temperature

In this section, we summarise results concerning ground states of 3d interacting Bose

gases. First, we recall the concept of BEC for interacting particles and introduce the

scattering length from both a physical and mathematical point of view. Subsequently,

we discuss the case of a homogeneous gas, comment on relevant scaling regimes, and

conclude with an overview of ground state properties of a spatially inhomogeneous

gas. We mainly follow [109, §45 and §125], [119, Chapters 1,2,5,6,7 and Appendix C],

[129, Chapters 2,3,4 and 7], [145, Chapters 5,6], [153, Chapter 4] and [171, Chapter

19]. To keep the notation simple, we will from now on choose the mass of the bosons

as m = 1
2 .

1.2.1. Definition of BEC in an interacting Bose gas

The more realistic case of an interacting d-dimensional Bose gas is described by the

Hamiltonian (1.2). This Hamiltonian does not factorise into a sum of one-body Hamil-

tonians, and the N -body eigenfunctions can consequently not be expressed as products

of single-particle states. To give the concept of a macroscopic occupation of a single

one-body state meaning in the interacting context, it is rephrased in terms of reduced

densities.

For any k ∈ {1, ..., N}, the k-particle reduced density matrix (or marginal) of an N -

body function ψN ∈ L2(RdN ) is the positive trace-class operator γ
(k)

ψN
∈ L1(L2(Rdk))

with trace one, defined by its kernel

γ
(k)

ψN
(x1, ..., xk; y1, ..., yk) :=
∫

Rd(N−k)

dxk+1 ··· dxNψN (x1, ..., xk, xk+1, ..., xN )ψN (y1, ..., yk, xk+1, ..., xN ) .
(1.8)

Equivalently, in Dirac notation,

γ
(k)

ψN
:= Trk+1,...,N |ψN 〉〈ψN | .
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1.2. Interacting three-dimensional Bose gas at low temperature

Any reduced density matrix can be written in diagonal form as

γ
(k)

ψN
=

J∑

j=0

λj |ϕj〉〈ϕj | , λj ≥ λj+1 > 0 ,
J∑

j=0

λj = 1 , (1.9)

where {ϕj}Jj=0 is an orthonormal system of L2(Rdk) with 0 ≤ J ≤ ∞, and where

{λj}Jj=0 denotes the corresponding set of eigenvalues of γ
(k)

ψN
. Physically, the reduced

densities are relevant because the expectation values of k-body operators (sums con-

taining only terms of the form A(k) = Ak ⊗ 1N−k that act non-trivially on at most k

variables and as identities on all others) are completely determined by the k-particle

reduced density matrices since

〈
ψN , A(k)ψN

〉
= Tr(γ

(k)

ψN
A(k)) .

A particularly relevant example of a (symmetrised) one-body operator is the position

of the centre of mass of a system of N identical particles. Besides, note that the

particle density

n(x) = N

∫

Rd(N−1)

|ψN (x, x2, ..., xN )|2 dx2 ··· dxN = Nγ
(1)

ψN
(x;x) (1.10)

is completely determined by the one-particle reduced density matrix of ψN .

In terms of reduced densities, a more general definition of BEC was first proposed

by Penrose and Onsager in [144]:

An N -body state ψN exhibits BEC if and only if the largest eigenvalue λ0

of its reduced one-particle density matrix γ
(1)

ψN
is of order one.

Note that an N -body eigenstate ψN of an ideal gas in thermodynamic equilibrium is

given as a product of single-body eigenstates ϕj with occupation number nj , and the

corresponding reduced one-particle density matrix can be written as1

γ
(1)

ψN
=

J∑

j=0

nj
N
|ϕj〉〈ϕj | .

Hence, for an ideal gas, the eigenvalues of γ
(1)

ψN
correspond to relative occupation

numbers of the single-particle states, and the criterion by Penrose and Onsager is

equivalent to a macroscopic occupation of a single-particle state.

In particular in regard of the limit N →∞, this rather operational criterion requires

a more precise asymptotic formulation. In the mathematical literature, there appear

1This is shown in [130, Theorem 8.1].
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1. Introduction

several notions of asymptotic BEC, and we refer to [130, Definition 9.1] for an overview.

The standard definition in the context of dynamics of N -body bosonic systems, also

referred to as complete asymptotic BEC, is as follows:

Definition 1.2.1. Let
{
ψN
}
N

be a sequence of normalised N -body wave functions

such that ψN ∈ L2
+(RdN ). The system is said to exhibit complete asymptotic BEC in

the state ϕ ∈ L2(Rd) if and only if

lim
N→∞

Tr
∣∣∣γ(1)

ψN
− |ϕ〉〈ϕ|

∣∣∣ = 0 .

Equivalently, we have one of the following:

Lemma 1.2.2. Let
{
ψN
}
N

be a sequence of normalised N -body wave functions such

that ψN ∈ L2
+(RdN ). Further, let k ≥ 1 and let ϕ ∈ L2(Rd) be normalised. Then the

following are equivalent:

(a) lim
N→∞

TrL2(Rd)

∣∣∣γ(1)

ψN
− |ϕ〉〈ϕ|

∣∣∣ = 0 ,

(b) lim
N→∞

∥∥∥γ(1)

ψN
− |ϕ〉〈ϕ|

∥∥∥
HS

:= lim
N→∞

TrL2(Rd)

(
γ

(1)

ψN
− |ϕ〉〈ϕ|

)2
= 0 ,

(c) lim
N→∞

〈
ϕ, γ

(1)

ψN
ϕ
〉
L2(Rd)

= 1 ,

(d) lim
N→∞

TrL2(Rdk)

∣∣∣γ(k)

ψN
− |ϕ〉〈ϕ|

∣∣∣ = 0 for all k ∈ N,

(e) lim
N→∞

∥∥∥γ(k)

ψN
− |ϕ〉〈ϕ|

∥∥∥
L(L2(Rdk))

= 0 for all k ∈ N,

where ‖·‖HS denotes the Hilbert-Schmidt norm.

These equivalences are well known and proofs are given, i.a., in [130, Theorems 9.4

and 13.2] and [158, Remark 1.4].

The occurrence of BEC in the ground state of an N -body system in a large box

of side length L in the thermodynamic limit (N,L → ∞ with fixed density % := N
Ld

)

has so far only been proven for a hard-core gas on a cubic lattice at half-filling, where

the particle number is half of the number of sites (see e.g. [4]). For particles in a

continuum, the thermodynamic limit has not yet been treated rigorously. However,

there are rigorous results proving BEC in the so-called Gross–Pitaevskii limit of infinite

dilution, and we will comment on this limit and the results in Section 1.2.3.

To define more precisely what is meant by a dilute gas, we first introduce the concept

of a scattering length. This parameter is crucial for the analysis of ultra-cold Bose

gases since it characterises all interaction-related properties of the gas to leading order.

In the following, we will focus on the physically most relevant case of a 3d interacting

8



1.2. Interacting three-dimensional Bose gas at low temperature

Bose gas. Since some crucial low-energy properties depend on the spatial dimension

in a non-trivial way, this analysis does not easily generalise to generic dimensions d,

and we comment on low dimensional problems in Section 1.3.

1.2.2. Scattering length

The quantum mechanical scattering of two 3d particles with mass 1
2 and mutual inter-

action potential W is most conveniently described in the centre-of-mass system. The

wave function φk of the motion relative to the centre of mass with energy 2E = 2k2

solves the stationary Schrödinger equation with reduced mass 1
4 ,

(
−∆ + 1

2W (x)
)
φk(x) = Eφk(x) , (1.11)

where we used the relative coordinates x = (r, θ, φ) and multiplied both sides with

a factor 1
2 for later convenience. Let us assume that the interaction potential W is

spherically symmetric and decays sufficiently fast to be negligible in the region r > R

for some R > 0. To solve (1.11) for this region, one makes the ansatz

φk(x) = eik·x + fk(θ)
ei|k|r

r
, (1.12)

where the scattering state φk is modelled as the superposition of an incoming plane

wave and an outgoing scattered wave. The latter depends on the scattering angle θ

via the scattering amplitude fk. At very low energies, i.e., as k → 0, the particles

cannot resolve the angular dependence of the scattering amplitude. Hence,

lim
k→0

fk(θ) =: −A , (1.13)

and the scattering state has the asymptotic form

φ0(x) = 1− A

r
for r � R . (1.14)

To justify this heuristic reasoning, one expands the solution of (1.11) in partial waves

with angular momentum l, solves the resulting equation for the radial part of the

wave function, and obtains an expansion of fk in terms of the Legendre polynomials

Pl(cos θ). Integrating |fk(θ)|2 over the whole solid angle yields the total scattering

cross-section, which turns out to be dominated by the contribution from l = 0, the

so-called s-wave scattering. This justifies to keep only the term l = 0 in fk(θ), and a

comparison of (1.12) and (1.14) yields (1.13)2. As a consequence, the parameter A is

referred to as the s-wave scattering length of the interaction W .

2The full argument can be found in most standard textbooks on quantum mechanics, such as [109,
Chapter XVII] and [171, Chapter 19].
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1. Introduction

Mathematically, the scattering length is defined via a variational principle, and the

following rigorous definition is taken from [125, Appendix A] and [168]. Let BR denote

the 3d ball with radius R, BR := {x ∈ R3 : |x| < R}, and define

ER[φ] :=

∫

BR

(
|∇φ(x)|2 + 1

2W (x)|φ(x)|2
)

dx . (1.15)

Assume that the interaction potential W is spherically symmetric and compactly sup-

ported within the ball BR0 for some R0 > 0. Further, assume that the negative part of

W is in L
3
2 (R3) and assume that 1

2W has no negative energy bound states in L2(R3),

i.e., that limR→∞ ER[φ] ≥ 0 for all φ ∈ H1(R3). Note that we use capital letters to

denote the quantities W , L and A without specifying a frame of reference. Later,

we will choose L as length unit, and in these coordinates W is expressed as wN with

scattering length aN .

Definition 1.2.3. Under the above assumptions on the interaction potential W , the

scattering length A of W is defined as

A := lim
R→∞

AR ,

where AR is given by the variational principle

4πAR = inf
{
ER[φ] : φ ∈ H1(BR) , φ(x) = 1 for |x| = R

}
.

Existence and uniqueness of the minimiser of ER were shown by Lieb and Yn-

gvason in [125, Theorem A.1], who also proved some important properties of this

minimiser [125, Lemma A.1]. We collect both statements in the following lemma.

Lemma 1.2.4. Let W satisfy the above assumptions. Then, in the subclass of func-

tions φ ∈ H1(BR) such that φ(x) = 1 for |x| = R, there is a unique function φ0 that

minimises ER. The minimiser has the following properties:

(a) There exists a function f0 : (0, R] → R+
0 such that φ0(x) = f0(|x|), i.e., φ0 is

non-negative and spherically symmetric,

(b) φ0 satisfies

−∆φ0(x) + 1
2W (x)φ0(x) = 0 (1.16)

in the sense of distributions on BR with boundary condition f0(R) = 1,

(c) for R0 < r < R,

f0(r) = fasymp(r) :=
1−A/r
1−A/R ,
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1.2. Interacting three-dimensional Bose gas at low temperature

(d) the minimum value of ER[φ] is

ER = 4π
A

1−A/R .

If W is non-negative, it holds additionally for all 0 < r ≤ R that

(e) f0(r) ≥ fasymp(r) and f0(r) is a non-decreasing function of r,

(f) 0 ≤ A ≤ R0.

In the following, we will denote the scattering solution on R3 corresponding to

R→∞ by j. Written in a more compact form, Lemma 1.2.4 states that





j(x) = 1− A

|x| |x| > R0 ,

j(x) ≥ 1− A

|x| else ,

(1.17)

hence,

A = lim
|x|→∞

|x| (1− j(x)) =
1

8π

∫

R3

W (x)j(x) dx . (1.18)

To obtain the second equality, one notes that W (x)j(x) = 2∆j(x) = 2(∂2
r + 2

r∂r)j(r)

by (1.16) and integrates by parts. The scattering solution j coincides with (1.14),

hence Definition 1.2.3 and Lemma 1.2.4 provide a mathematical framework for the

analysis of the low-energy scattering of two particles. While this definition of the

scattering length is most convenient here, we remark that an alternative definition

without variational principle, which includes potentials with bound states but admits

less singular local behaviour of the interaction potential, is given in [93, Definition 2].

In conclusion, the scattering of two sufficiently distant and low-energetic particles

is, to leading order, entirely characterised by the single parameter A. While the

interaction potential determines A uniquely, the converse is false. In fact, very different

potentials may have the same scattering length, hence their low-energy scattering is to

leading order equivalent. Since the scattering length of a hard sphere potential equals

its radius, this statement can be rephrased as follows: outside the range of their

mutual scattering potential, two sufficiently low-energetic particles do not resolve the

microscopic details of the interaction potential and behave as if scattered at a hard

sphere with radius A.
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1. Introduction

1.2.3. Homogeneous dilute three-dimensional Bose gas

Let us begin with the homogeneous case, i.e., with N bosons in a cubic box Λ with

|Λ| = L3 and periodic boundary conditions, where the bosons interact via repulsive

interactions. More precisely, we assume the two-body interaction potential to be non-

negative and compactly supported. The density of particles in the gas is then given

by

% =
N

L3
,

and the interaction W is characterised by its scattering length A ≥ 0. Dilute means

that the mean inter-particle distance %−
1
3 is much larger than the length scale of the

interaction determined by its scattering length A, i.e., that

%A3 � 1 .

The ground state energy per particle in the thermodynamic limit is defined as

e0(%) := lim
N→∞

E0(N, (N/%)
1
3 )

N
,

where E0(N,L) denotes the ground state of the N -body Hamiltonian in the cubic box

with side length L. It satisfies the low-density asymptotics

lim
%A3→0

e0(%)

4π%A
= 1 , (1.19)

independently of the boundary conditions on the box. This formula was first proposed

by Bogoliubov in [29]. For a rigorous proof, one computes an upper and lower bound

and shows that they converge to the same limit. The upper bound was obtained by

Dyson in [59], while the lower bound was established more than forty years later by

Lieb and Yngvason in [124]. A summary of the proof is given in [119, Chapter 2].

The rigorous proof does not require any assumptions on properties of the ground

state. In particular, it does not pre-suppose BEC. However, in order to give a heuristic

justification of the formula (1.19), let us for a moment assume that the many-body

ground state is a condensate. In this case, Definition 1.2.1 suggests that the many-

body wave function ψN be close to a factorised state ϕ⊗N , where the condensate wave

function ϕ varies in space on the macroscopic length scale of the system. However, the

inter-particle interactions impose on ψN a correlation structure on the much shorter

length scale determined by the interactions, which is not visible on the level of re-

duced densities. In [96], Jastrow proposed to model this situation by a trial function

consisting of the product state ϕ⊗N overlaid with a microscopic structure determined

12



1.2. Interacting three-dimensional Bose gas at low temperature

by the scattering state j as

ψNcor(x1, ..., xN ) ≈

N∏
j=1

ϕ(xj)
∏

1≤k<l≤N
j(xk − xl)

∥∥∥∥∥
N∏
j=1

ϕ(xj)
∏

1≤k<l≤N
j(xk − xl)

∥∥∥∥∥
L2(ΛN )

. (1.20)

In fact, Erdős, Michelangeli and Schlein proved in [63] that this characteristic short-

scale structure emerges dynamically within a very short time, even if the system was

initially in a pure product state with all particles independent of each other3.

In this spirit, let us formally estimate the ground state energy E0(2, L) of two

particles in a large cubic box Λ with |Λ| = L3. The normalised ground state of

the box potential with periodic boundary conditions is given by ϕ ≡ |Λ|− 1
2 , hence

we make the ansatz ψcor(x1, x2) = |Λ|−1j(x1 − x2), where j denotes the scattering

solution (1.17). Note that for sufficiently small A/L, we find ‖ψcor‖L2(Λ2) ≈ 1 since

1− A
|x| ≤ j(x) ≤ 1 implies that

1 ≥ ‖ψcor‖2L2(Λ2) ≥
1

|Λ|2
∫

Λ

dx1

∫

Λ

dx2

(
1− 2A

|x1 − x2|

)

= 1− 2A

|Λ|

∫

Λ

dx
1

|x| ≥ 1− 2A

L3
4π

2L∫

0

r dr = 1− 16π
A

L
.

Hence, we can neglect the normalisation factor in (1.20) for our heuristic argument.

This yields

E0(2, L)

≈
∫

Λ×Λ

((
|∇1ψcor(x1, x2)|2 + |∇2ψcor(x1, x2)|2

)
+W (x1 − x2)|ψcor(x1, x2)|2

)
dx1 dx2

=
2

|Λ|

∫

Λ

(
|∇j(x)|2 +

1

2
|j(x)|2W (x)

)
dx =

2

|Λ| lim
R→∞

ER[j] =
8πA

L3

by Lemma 1.2.4d since j is the minimiser of ER for R → ∞. For a sufficiently dilute

gas, the total energy essentially equals the sum of all 1
2N(N − 1) such two-particle

contributions, and we conclude that

E0(N,L) ≈ N 4πA%

3This result was obtained for the Gross–Pitaevskii scaling regime, which is explained below.

13
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as in [119, p.13].

The second energy (scale) that is relevant for the analysis of the dilute Bose gas is

the energy gap in the box, or, equivalently, the (purely kinetic) ground state energy

of a free particle in the box |Λ| = L3,

Ekin(N,L)

N
=

3π2

L2
∼ 1

L2
.

Comparing the kinetic energy per particle with the total energy per particle, one

observes that for these energies to remain comparable in the limit N →∞, i.e.,

e0(%) ∼ %A =
NA

L3

!∼ 1

L2
∼ Ekin(N,L)

N
, (1.21)

the scaling condition
NA

L
=: g = const. (1.22)

must be satisfied. The limit N → ∞ such that g is constant is the so-called Gross–

Pitaevskii (GP) limit. Note that condition (1.22) implies that

%A3 =
N

L3

(
g
L

N

)3

∼ 1

N2
,

hence the GP limit is a limit of infinite dilution, and the ground state asymptotics (1.19)

are valid in this case. Since kinetic and interaction energy remain comparable in this

limit N →∞, it is also called a dynamical limit of ultra-high dilution.

The GP scaling condition (1.22) requires that A, L or both quantities scale with N .

Among all equivalent realisations of this constraint, we will focus on two cases:

• A = const., L ∼ N :

The N -independence of the scattering length implies that the two-body inter-

actions do not depend on the total number of particles. Hence, to increase the

number of particles in the box and remain in the ultra-dilute regime, the box

must grow proportionally to N , which is much faster than the rate L ∼ N
1
3

which corresponds to the thermodynamic limit with constant density.

• A ∼ N−1, L = const.:

Considering the problem on a fixed length scale implies that the scattering length

and thus the pair interaction must be rescaled in an N -dependent way. We will

see in Section 1.2.4 that the scattering length aN of

wN (x) := N2w(Nx)
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1.2. Interacting three-dimensional Bose gas at low temperature

for any N -independent potential w scales as N−1.

Both (and all other) realisations of (1.22) are equivalent in the sense that they cor-

respond to choices of a coordinate system and are related by coordinate transforms.

While the first option is more in accordance with physical reality, the second one

is more convenient for the mathematical analysis because in these coordinates, all

Lp- and Hp-norms of the condensate wave function, which varies on the scale L, are

N -independent.

For a homogeneous gas in the GP limit, the question of the occurrence of BEC in

the ground state was answered in the affirmative by Lieb and Seiringer in [118]. They

proved that if the box Λ is equipped with periodic or Neumann boundary conditions,

the one-particle reduced density matrix of the ground state ψN satisfies

lim
N→∞

1

L3

∫

Λ×Λ

γ
(1)

ψN
(x; y) dx dy = 1 , (1.23)

where the limit is taken such that % and g = NA
L remain fixed. Since the ground state

of the free particle in the box Λ is ϕ0 ≡ L−
3
2 , this statement is equivalent to

lim
N→∞

〈
ϕ0, γ

(1)

ψN
ϕ0

〉
= 1 ,

which, in turn, means complete asymptotic condensation in the state ϕ0 by Lemma

1.2.2. Recently, this statement was extended to positive temperatures by Deuchert

and Seiringer in [57]. They showed that BEC occurs below a critical temperature,

which, to leading order, coincides with the critical temperature of the ideal gas.

1.2.4. Scaling regimes

As mentioned above, it is mathematically most convenient to keep the length scale L of

the system fixed and to rescale the interaction potential such that the scattering length

scales as N−1. The standard way of implementing this is to consider the interaction

potential

wN,β(x) := N−1+3βw(Nβx) , β ∈ (0, 1] , (1.24)

where w is assumed to be non-negative, bounded, spherically symmetric, compactly

supported, and, in particular, independent of N . Naturally, this implies that the

scattering length a of w is N -independent as well. Let us for simplicity assume that

diam(suppw) = 1 and denote

RN,β := diam(suppwN,β) ,
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which is consequently given by RN,β = N−β. We shall see that the scattering length

aN,β of wN,β shrinks as N−1 for the whole range of the scaling parameter β, which

can be subdivided into three scaling regimes.

Gross–Pitaevskii regime: β = 1

This scaling

wN (x) = N2w(Nx) (1.25)

realises the GP scaling condition (1.22) because the scattering length aN of wN is

given by

aN =
a

N
,

which follows from the scaling behaviour of (1.16): Let wa be a potential with scat-

tering length a and corresponding scattering solution ja. Then the potential

wb(|x|) := b2wa(b|x|) (1.26)

has scattering length a
b , and the corresponding scattering state satisfies

jb(x/b) = ja(x) .

Clearly, the GP scaling condition is satisfied by the interaction wN . Moreover, note

that the range of wN is of order N−1 and thus comparable to aN . Since the scattering

length determines the length scale of the inter-particle correlations, which are described

by the zero-energy scattering solution (1.17), this means that the correlations vary on

the same scale as the interaction. Consequently, they remain visible even in the limit

N →∞, when NwN (x)→ ‖w‖L1(R3)δ(x) in the sense of distributions.

Non-linear Schrödinger regime: 0 < β < 1

For β 6= 1, the interaction wN,β is not of the form (1.26), hence its scaling behaviour

cannot immediately be deduced from (1.16). Instead, it is shown in [65, Lemma A.1]

that for any 0 < β < 1, the scattering length aN,β of wN,β satisfies

lim
N→∞

NaN,β =
b0
8π

, (1.27)

where

b0 := N‖wN,β‖L1(R3) = ‖w‖L1(R3)

is the so-called (first order) Born approximation to the scattering length. The upper

bound for the asymptotics (1.27) follows from the Spruch–Rosenberg inequality [175],

which states that the scattering length of a potential not admitting bound states is
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1.2. Interacting three-dimensional Bose gas at low temperature

always bounded above by its Born approximation. The lower bound is a consequence

of the property (1.17) of the scattering solution. Note that for a non-negative potential

w, the Spruch–Rosenberg inequality is an immediate consequence of (1.18) because

the scattering solution satisfies 0 ≤ j(x) ≤ 1.

In view of the integral representation of the scattering length,

N8πaN,β = N

∫
wN,β(x)jN,β(x) dx = N3β

∫
w(Nβx)jN,β(x) dx ,

it is clear that the Born approximation can asymptotically coincide with the scattering

length only if jN,β is approximately constant over the range of wN,β. In the GP regime,

jN and wN are both peaked on the scale |x| . N−1, which causes the approximation

to break down. To verify this, observe that for all x ∈ suppwN,β,

jN,β(x) ≤ jN,β
∣∣
|x|=N−β = 1−NβaN,β

since jN,β is non-decreasing by Lemma 1.2.4e. Hence, one estimates

b0 − 8πNaN,β = N3β

∫

suppwN,β

w(Nβx)(1− jN,β(x)) dx ≥ N−1+βNaN,β b0 . (1.28)

In the GP regime β = 1, the relation NaN = a implies that b0−8πNaN ≥ b0a = O(1),

hence the Born approximation is invalid. For β ∈ (0, 1), NwN,β still approximates a

δ-distribution as N →∞, but its range shrinks proportionally to N−β and is therefore

much larger than the length scale of the correlations. This implies that to leading

order, the relevance of the correlations vanishes as N → ∞, or, put differently, that

jN,β is approximately constant on the length scale N−β of the interaction.

In the physics literature, the standard way to justify the Born approximation, which

was originally found by Born in [30], is via perturbation theory. Consider the elastic

scattering of particles with mass m = 1
2 at a potential U , which satisfies

‖U‖L∞(R3)R
2 � 1 , (1.29)

where R denotes the range of U . Under this condition, U can be seen as a pertur-

bation of the free Schrödinger equation, and perturbation theory leads to the Born

approximation (see e.g. [109, §125 and §45]). Equivalently, the Born approximation

is given by the first term of the series expansion that is constructed by iterating the

Lippmann–Schwinger equation (see e.g. [171, Chapter 19.4] or [145, Chapter 5.2]). To

give above condition a physical meaning, note that R−2 is the scaling behaviour of the

kinetic energy of a free particle in a box with side length R. Clearly, the condition

(1.29) is satisfied by wN,β as long as β < 1 because ‖wN,β‖L∞(R3)R
2
N,β . N−1+β.
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Finally, let us remark that we refer to the scaling β ∈ (0, 1) as the Non-linear

Schrödinger (NLS) regime because the time evolution of the condensate wave function

in this scaling regime is determined by an NLS equation. This will be explained in

Section 1.4.

Mean-field regime: β < 1
3

Although the Born approximation holds for the whole parameter range β ∈ (0, 1), the

physical picture changes at the threshold β = 1
3 .

• For β > 1
3 , it holds that

RN,β = N−β � N−
1
3 = %−

1
3 ,

i.e., the range of the interaction is much smaller than the mean inter-particle

distance. Besides, the amplitude N−1+3β of the interaction diverges as N →∞.

This corresponds to the situation of rare but very strong interactions.

• For β < 1
3 , we have on the contrary

RN,β � %−
1
3

and N−1+3β → 0 as N → ∞. Hence, on average, every particle interacts with

many other particles and the interactions are weak, which characterises a mean-

field regime.

The limiting case β = 0, corresponding to the interaction wN,0(x) = 1
Nw(x), is known

as the Hartree regime. In contrast to β > 0, the range of the interaction wN,0 does

not shrink as N grows but remains of the same order as the system size.

In conclusion, an N -body Hamiltonian with pair interaction wN (β = 1) implements

the GP scaling condition (1.22), i.e., it describes a system with N -independent ratio

of kinetic and potential energy, using coordinates such that the length scale of the

system is independent of N . Note that for the dynamical problem, whose solution is

determined by the time-dependent Schrödinger equation, this rescaling of space comes

with a rescaling of time: the coordinate system (x, t) with L ∼ 1 arises from the frame

(x′, t′) with A ∼ 1 by the coordinate transform (x, t) = (x
′
N ,

t′
N2 ). Hence, times of order

one with respect to the frame (x, t) correspond to extremely long times with respect to

the frame (x′, t′). This relates to the low density of the gas, which causes the average

time between two collisions to be very long.

Systems whose interactions are compactly supported and scale with β < 1 do not

emerge via a coordinate transform from systems with N -independent interaction,

hence their analysis is rather of mathematical than of physical interest. However,
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1.2. Interacting three-dimensional Bose gas at low temperature

in the next section and in particular in Section 1.4.4, we will explain that such inter-

action potentials are crucial for the study of the GP regime since they can be used as

effective or pseudo-potentials to approximate the GP interaction.

1.2.5. Dilute three-dimensional Bose gas in a trap

While the study of the homogeneous Bose gas is of great theoretical interest, dilute

Bose gases in external traps model actual experiments more realistically. Due to the

inhomogeneity of the system caused by the trap, we need suitable generalisations of

the parameters L, measuring the size of the trap, and %, corresponding to the mean

particle density.

The scale L is determined by the characteristic length (or oscillator length) of the

trapping potential V ext,

Losc :=

√
2

ω
,

where ω denotes the order of the ground state energy of −∆ + V ext. If V ext is taken

to be a harmonic oscillator, ω is its frequency. Physically, this formula is motivated as

follows: consider a cloud of particles with mass 1
2 in the ground state of a harmonic

oscillator with frequency ω. If the extension of the cloud is R, the potential energy of

a particle is Epot ∼ 1
4ω

2R2. Its kinetic energy is given by Ekin ∼ R−2 since the typical

momentum of a particle in the ground state is p ∼ R−1. The total energy is minimised

when Epot = Ekin, which determines the size of the cloud as R = Losc [145, Chapter

6.2].

As in the homogeneous case, we choose Losc as length unit, i.e., we fix Losc = 1. In

these coordinates, the N -body Hamiltonian is given as

HN =

N∑

j=1

(
−∆j + V ext(xj)

)
+
∑

i<j

wN (xi − xj) , wN (x) = N2w(Nx) , (1.30)

where V ext and w are N -independent, w is non-negative, compactly supported and

has scattering length a, and wN has scattering length aN = a/N . The external trap

V ext is assumed to be non-negative, measurable and locally bounded, and to tend to

infinity as |x| → ∞.

The mean particle density in the ground state is determined by the probability

distribution induced by the condensate wave function. To explain what is meant by

this, let us introduce the GP energy functional, which depends on the parameter

a = NaN and is defined as

EGP
a [ϕ] :=

∫

R3

(
|∇ϕ(x)|2 + V ext(x)|ϕ(x)|2 + 4πa|ϕ(x)|4

)
dx (1.31)
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for ϕ ∈ D with4

D =
{
ϕ ∈ H1(R3) : V ext|ϕ|2 ∈ L1(R3), ‖ϕ‖L2(R3) = 1

}
.

Mathematically, the functional EGP
a [ϕ] is formed by taking the ground state energy

per particle for the homogeneous gas as a local energy density for an inhomogeneous

system. Since %(x) = N |ϕ(x)|2, this energy density is by (1.19) given as

4πaN%(x) = 4πNaN |ϕ(x)|2 = 4πa|ϕ(x)|2 .

To give a heuristic argument for this functional, note first that the system described

by the Hamiltonian (1.30) has two well-separated length scales: while the many-body

wave function changes slowly in space on the scale Losc = 1, the inter-particle correla-

tions vary on the extremely short length scale aN ∼ N−1. In the physics literature, one

deals with this separation of scales by absorbing the short-scale spatial variations into

an effective interaction U eff , which is then used to describe interactions between the

long-wavelength degrees of freedom. As long as U eff and wN have the same scattering

length, they are, to leading order, equivalent when it comes to calculating macroscopic

properties of the system, as was argued in Section 1.2.2.

The advantage of using the effective interaction potential U eff is that it can be chosen

such that its scattering length is approximated by the first order Born approximation.

The standard formal argument5 is the following: one replaces wN by an interaction

U eff with the same scattering length aN as wN , which is sufficiently shallow to sat-

isfy (1.29), hence the Born approximation is valid for U eff . Subsequently, changing to

the momentum space representation, one argues that in the low energy regime, it is

sufficient to consider the zero momentum component Û eff(0) of the Fourier transform

Û eff , which is given as

Û eff(0) =

∫

R3

U eff(x) dx ≈ 8πaN

by the Born approximation. Finally, transforming back to position space, this corre-

sponds to the on-site interaction

8πaNδ(x) =:
U0

N
δ(x) . (1.32)

Instead of the Hamiltonian (1.30) with pair interaction wN , one then studies the

4The definition is sensible as H1(R3) ↪→ L4(R3) by the Sobolev embedding theorem, see e.g. [3,
Theorem 4.12].

5See e.g. [153, Chapter 4.1] and [145, Chapter 5.2.1]. Note that we transferred these arguments to
the coordinate frame with fixed length scale to fit in the presentation.
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1.2. Interacting three-dimensional Bose gas at low temperature

Hamiltonian

Heff =

N∑

j=1

(
−∆j + V ext(xj)

)
+
U0

N

∑

i<j

δ(xi − xj) (1.33)

containing an effective delta interaction. Note that U0 = 8πa = O(1), hence all terms

in Heff are of the same order with respect to N .

Recall that in view of formula (1.18), the difference between 8πaN and ‖wN‖L1(R3)

is due to the correlation structure. Hence, by replacing wN by 8πaNδ(x) and not

simply by ‖wN‖L1(R3)δ(x), although wN (x) ≈ ‖wN‖L1(R3)δ(x) for sufficiently large N

in the sense of distributions, we have “integrated out” the short-wavelength degrees

of freedom and incorporated them in the effective interaction potential.

Since the correlation structure as in (1.20) is already taken into account in the effec-

tive interaction, one now adopts a mean-field approach and assumes that all particles

occupy the same normalised state ϕ. Evaluated on this product state, the energy

corresponding to the Hamiltonian Heff ,

N

∫

R3

(
|∇ϕ(x)|2 + V ext(x)|ϕ(x)|2

)
dx

+(N − 1)

∫

R3×R3

1
2U0|ϕ(x1)|2|ϕ(x2)|2δ(x1 − x2) dx1 dx2

≈ NEGPa [ϕ] ,

is given by the GP energy functional.

The GP energy functional has a unique minimizer ϕGP
a (up to a phase), which is pos-

itive and continuously differentiable (see e.g. [120, Theorem 2.1]). The corresponding

ground state energy is

EGP
a = inf∫

|ϕ|2=1
EGP
a [ϕ] = EGP

a [ϕGP
a ] .

The minimiser ϕGP
a solves the stationary GP equation,

(
−∆ + V ext + 4πa|ϕ|2

)
ϕ = µϕ , (1.34)

in the sense of distributions. Here, µ is the chemical potential, which is a Lagrange

multiplier arising from the normalisation condition for ϕGP
a . The stationary GP equa-

tion has the form of a stationary Schrödinger equation with non-linear potential term,

where the eigenvalue is the chemical potential. Note that for non-interacting particles,

the chemical potential and the energy per particle coincide, hence (1.34) reduces to

the linear Schrödinger equation.
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These considerations lead to the following generalisation of the homogeneous particle

density % = N/L3 to the inhomogeneous setting: the mean density is defined as the

average

% :=
1

N

∫

R3

(
%GP
a (x)

)2
dx = N

∫

R3

∣∣ϕGP
a (x)

∣∣4 dx ,

where %GP
a = N |ϕGP

a |2 is the particle density (1.10) of the product state (ϕGP
a )⊗N . In

the inhomogeneous context, dilute means that

% a3
N � 1 .

The minimiser ϕGP
a is N -independent, hence % is of order N . Consequently, we obtain

% a3
N ∼ N−2 as in the homogeneous case, which implies that the trapped gas with

interactions in the GP scaling regime is ultra-dilute.

In [120], Lieb, Seiringer and Yngvason proved that the minimum of the GP energy

functional with parameter a asymptotically describes the ground state energy per

particle, N−1E0(N, aN ), of the Hamiltonian (1.30). More precisely, they showed that

lim
N→∞

E0(N, aN )

N
= EGP

a (1.35)

(see also [119, Chapter 6]). Moreover, Lieb and Seiringer showed that the ground state

ψN of (1.30) exhibits complete asymptotic condensation in the state ϕGP
a , i.e.,

lim
N→∞

Tr
∣∣∣γ(1)

ψN
−
∣∣ϕGP
a

〉 〈
ϕGP
a

∣∣
∣∣∣ = 0

([118] and [119, Chapter 7]). Note that the GP energy functional in a box Λ with

periodic or Neumann boundary conditions is minimised by the constant function

ϕGP
a = |Λ|− 1

2 , which yields the corresponding statements (1.19) and (1.23). For posi-

tive temperatures, a result similar to the homogeneous case was obtained by Deuchert,

Seiringer and Yngvason in [58].

1.3. Interacting Bose gas in one and two dimensions

In this section, we briefly summarise the 2d analogues of the results in Sections 1.2.3

and 1.2.5 and present an exactly solvable model for a 1d gas. In physical reality, low-

dimensional gases are realised in highly anisotropic traps which tightly confine the

motion of the 3d particles in one or two directions. Such systems are called quasi-

low-dimensional, and we summarise some of their relevant ground state properties in

Sections 1.3.3. The main references for this section are [119, Chapters 3, 6, 8, 9 and

Appendix B], [123], [145, Chapter 15.4], [147, Lectures 3 and 4], [153, Chapter 17.3],
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1.3. Interacting Bose gas in one and two dimensions

[164] and [170].

1.3.1. Two dimensions

As explained in Section 1.1, a homogeneous 2d ideal gas does not exhibit BEC at

positive temperature. However, BEC can occur in traps (e.g. in a harmonic trap)

since the potential changes the density of states g(ε).

For the analysis of 2d interacting systems, the zero energy scattering solution, i.e.,

the minimiser of the 2d functional corresponding to ER from (1.15), plays an important

role. Consider a spherically symmetric, compactly supported potential W with range

R0, whose negative part is contained in L1+ε(R2) for some ε > 0 and where 1
2W has no

negative energy bound states in L2(R2). If W has scattering length A, the minimiser

of E2d
R satisfies 




φ2d
0 (x) =

ln(|x|/A)

ln(R/A)
R > |x| > R0 ,

φ2d
0 (x) ≥ ln(|x|/A)

ln(R/A)
|x| ≤ R0 ,

and the minimum of E2d
R is

E2d
R =

2π

ln(R/A)
.

Both statements are proven in [125, Theorem A.1 and Lemma A.1]. The density of a

gas of N particles in a quadratic box Λ with |Λ| = L2 is given by

%2d =
N

L2
.

Since the mean inter-particle distance in two dimensions is given by %
− 1

2
2d , the diluteness

condition for particles interacting via a potential with scattering length A is

%2dA
2 � 1 .

The ground state energy per particle of a dilute homogeneous 2d Bose gas in the

thermodynamic limit, e2d
0 (%2d) = limN→∞E0(N, (N/%2d)

1
2 )/N is asymptotically given

by

lim
%2dA2→0

e2d
0 (%2d)

4π%2d| ln(%2dA2)|−1
= 1 , (1.36)

independently of the boundary conditions on the box. This asymptotic formula was

first derived by Schick [161] for a gas of hard discs and rigorously proven by Lieb and

Yngvason in [125]. Note that in contrast to the 3d problem, the 2d ground state energy

of N particles, E0(N,L) ≈ Ne2d
0 (%2d), does not (asymptotically) equal N(N − 1)/2

times the energy of two particles. The latter can be calculated similarly as in the 3d
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problem (Section 1.2.3) and yields

N(N − 1)

2
E0(2, L) =

N(N − 1)

2

8π

L2
| ln(L−2A2)|−1 ≈ N4π%2d| ln(L−2A2)|−1

[119, pp. 27–28]. Here, in contrast to (1.36), the mean inter-particle separation %
− 1

2
2d

in the logarithm is replaced by L, resulting in a much lower energy.

Let us now consider a 2d Bose gas in an external trapping potential. As in Sec-

tion 1.2.5, we choose the characteristic length of the trap as length unit, hence the

scattering length A = aN depends on N . Analogously to the 3d case, one could take

4πN
∫
R2 | ln(|ϕ(x)|2a2

N )|−1|ϕ(x)|4 dx as interaction term in the functional. However,

since ln varies only slowly, it turns out that one may, to leading order, replace this

complicated expression by 4πNg
∫
R2 |ϕ(x)|4 dx, i.e.,

EGP,2d
Ng [ϕ] :=

∫

R2

(
|∇ϕ(x)|2 + V ext(x)|ϕ(x)|2 + 4πNg|ϕ(x)|4

)
dx (1.37)

with subsidiary condition
∫
|ϕ|2 = 1. A valid choice for the coupling parameter g is

g =
1

| ln(%2da
2
N )| . (1.38)

Here, %2d denotes a mean density, which is for simplicity taken as

%2d := N

∫

R2

|ϕGP
N (x)|4 dx , (1.39)

where ϕGP
N denotes the minimiser of EGP,2d

N with coupling parameter g = 1. Note

that one could also define %2d self-consistently, i.e., in terms of ϕGP
Ng , but the above

simpler choice is sufficient for a leading order estimate as %2d exclusively appears in

the logarithm.

In [121], Lieb, Seiringer and Yngvason prove that the minimum EGP,2d
Ng of EGP,2d

Ng

asymptotically coincides with the ground state energy per particle of a dilute 2d Bose

gas, N−1E0(N, aN ). More precisely, they show that in the limit N → ∞ such that

a2
N%2d → 0 and Ng fixed,

lim
E2d

0 (N, aN )

NEGP,2d
Ng

= 1 . (1.40)

To realise the GP scaling regime, where Ng is fixed independently of N , the scattering

length aN must decrease exponentially in N . A slower decrease implies g →∞, which

means that the kinetic term in the GP energy functional becomes negligible and EGP,2d
Ng
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1.3. Interacting Bose gas in one and two dimensions

simplifies to the so-called Thomas–Fermi functional (see [121] for a rigorous proof).

1.3.2. One-dimension: Lieb–Liniger model

In one dimension, BEC does not occur in the homogeneous ideal Bose gas but takes

place in external traps which confine the particles stronger than a harmonic potential

[11]. A famous model of an interacting 1d Bose gas is the so-called Lieb–Liniger (LL)

model,

H1d
N,g = −

N∑

j=1

∂2

∂x2
j

+ g
∑

1≤i<j≤N
δ(zi − zj) ,

which describes a uniform gas of N bosons interacting via repulsive zero-range poten-

tials with strength g ≥ 0. It was originally proposed and analysed by Lieb and Liniger

in [115, 116]. The δ-function potential is equivalent to the boundary conditions

(∂j − ∂k)ψ
∣∣
xj ↓xk − (∂j − ∂k)ψ

∣∣
xj ↑xk = gψ

∣∣
xj=xk

,

implying that ψ is continuous at the points where two particles coincide, while the

derivative is discontinuous and jumps by the value g. The particles are confined to an

interval of length L with periodic boundary conditions, hence the density is given by

%1d =
N

L
.

The relevant parameter of the model is

γ =
g

%1d
,

which corresponds to the ratio of the interaction energy per particle ∼ %1d g to the

kinetic energy per particle ∼ 1/(%−1
1d )2 = %2

1d. For γ � 1, the gas is weakly interacting,

with γ = 0 corresponding to the ideal gas. The case γ � 1 describes a strongly

interacting gas, also called Tonks–Girardeau gas, where the limit γ = ∞ describes a

gas of impenetrable bosons. In [79], Girardeau proved that the energy spectrum of

such a gas coincides with the spectrum of a one-component spinless non-interacting

Fermi gas of the same density. Mathematically, this follows since γ = ∞ implies the

boundary condition ψ
∣∣
xj=xk

= 0, which is solved by a (fermionic) Slater determinant,

multiplied with a sign function symmetrising the N -body wave function (see e.g. [145,

Chapter 15.4.1]).

As the density %1d decreases, the parameter γ increases, implying that the gas

becomes more interacting. This peculiar feature is unique for the 1d case and contrasts

with the behaviour of two-and three-dimensional Bose gases.

In [116], Lieb and Liniger computed the eigenfunctions as well as the ground state
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energy per particle in the thermodynamic limit N,L → ∞ with fixed density %1d.

They showed that, irrespective of the boundary conditions on the 1d box, the ground

state energy is given by

e1d
0 (%1d) = %2

1de(γ) ≈





1
2g%1d γ = g/%1d � 1 ,

π3

3 %
2
1d γ = g/%1d � 1 ,

(1.41)

where e is the solution of an integral equation (see e.g. [119, Appendix B]) with the

specified asymptotic behaviour. For the Tonks–Girardeau gas (γ =∞), e1d
0 coincides

with the energy of N non-interacting fermions, while one obtains e1d
0 = 0 for the ideal

gas (γ = 0).

1.3.3. Quasi-low-dimensional Bose gases

Effectively low-dimensional behaviour of a 3d gas occurs when the motion of the

particles in one or two spatial dimensions is frozen out as the result of a sufficiently

anisotropic trapping potential. Let L denote the longitudinal length scale and εL the

transverse length scale, implying that ε is a measure of the asymmetry of the set-up.

Studying the Bose gas for small ε, one observes quasi-low-dimensional behaviour if the

energy associated with the motion along the trap is small compared to the energy gap

between transverse ground state and excitation spectrum, which scales as (εL)−2.

For the mathematical analysis of the ground state problem, we use the coordinates

z = (x, y) ∈ R3 , x ∈ Rd , y ∈ R3−d ,

where x is the coordinate in the d longitudinal direction(s) and y is the coordinate in

the (3− d) transverse direction(s). We consider the 3d Hamiltonian

H3d
N,L,ε,A =

N∑

j=1

(
−∆j + V ⊥εL(yj) + V

‖
L (xj)

)
+

∑

1≤i<j≤N
wA(zi − zj) , (1.42)

where

V ⊥εL(y) =
1

(εL)2
V ⊥

( y

εL

)
, V

‖
L (x) =

1

L2
V ‖
(x
L

)

and

wA(z) =
1

A2
w
( x
A

)
.

The parameters L, ε and A are scaling parameters, while V ⊥, V ‖ and w are taken as

fixed. We assume that the characteristic lengths of V ⊥ and V ‖ equal one, hence L and

Lε measure the extensions of the trap, and that w has scattering length one, which

implies that the scattering length of wA equals A since wA is of the form (1.26). The
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transverse ground states χ and χε corresponding to the potentials V ⊥(y) and V ⊥εL(y)

are related by scaling as

(
−∆y + V ⊥

)
χ = e⊥χ ,

(
−∆y + V ⊥εL

)
χεL =

e⊥

(εL)2
χεL ,

with

χεL(y) = (εL)−
3−d
2 χ

( y

εL

)
. (1.43)

Let E3d
N,L,ε,A denote the ground state energy of the Hamiltonian H3d

N,L,ε,A. We are

interested in the behaviour of this quantity in the limit where N → ∞ and ε → 0,

i.e., the limit of large particle numbers and infinite asymmetry. For d = 1, this limit

was analysed by Lieb, Seiringer and Yngvason in [122, 123] and [119, Chapter 8]

and by Seiringer and Yin in [170], and the analogous problem for d = 2 was treated

by Schnee and Yngvason in [164] and [119, Chapter 9]. In both cases, the authors

assume that the potentials V ⊥ and V ‖ are locally bounded, diverging as |y| , |x| → ∞,

and homogeneous of degree s > 0. The potential w is assumed non-negative and

of finite range. In the remainder of this section, we summarise the results obtained

in [122, 123, 164], suitably adapted to our notation.

Quasi-one-dimensional Bose gas

Let us begin with d = 1, where the confinement is in two directions and consequently

x ∈ R and y ∈ R2. The main result of [122, 123] by Lieb, Seiringer and Yngvason states

that in the limit ε → 0 and N → ∞, the ground state energy E3d
N,L,ε,A of H3d

N,L,ε,A

equals the minimum of a 1d functional that is obtained from an inhomogeneous LL

model with coupling parameter

g1d =
8πA

(εL)2

∫

R2

|χ(y)|4 dy = 8πA

∫

R2

|χε(y)|4 dy . (1.44)

To construct it, we recall that the effective interaction term 4πa|ϕ|4 in the 3d GP

energy functional EGP
a (1.31) is formed by taking the homogeneous ground state en-

ergy per particle (1.19) with density % = N |ϕ|2 as local energy density. For the 1d

functional, one replaces 4πaN% = 4πa|ϕ|2 with the ground state energy of the homoge-

neous LL model, e1d
0 (x) = %(x)2e(g1d/%(x)). Here, e is the function which arises from

solving the stationary Schrödinger equation for the LL Hamiltonian with asymptotic

behaviour as in (1.41). Multiplying the resulting functional by N yields

E1d
N,L,g1d

[%] =

∫

R

(∣∣∣∣
∂

∂x

√
%(x)

∣∣∣∣
2

+ V
‖
L (x)%(x) + %(x)3e

(
g1d

%(x)

))
dx (1.45)
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for % satisfying the normalisation condition
∫
R %(x) dx = N . The functional (1.45) has

a unique minimiser, which is denoted by %N,L,g1d and defines the mean 1d density

%1d :=
1

N

∫

R

(%N,L,g1d(x))2 dx ,

analogously to the 3d mean density % in Section 1.2.5. The corresponding length scale

L1d =
N

%1d

determines the characteristic length of the gas cloud, and the minimum of (1.45) is

denoted as

E1d
N,L,g1d

:= E1d[%N,L,g1d ] .

The physical relevance of the functional (1.45) is established in [123, Theorem 1.1]:

With coupling parameter g1d as in (1.44), it holds in the combined limit

N →∞ and





(a) ε→ 0 ,

(b) A
εL → 0 ,

(c) (εL)2 %1d min{%1d, g1d} → 0

(1.46)

that

lim
(1.46)

E3d
N,L,ε,A −N e⊥

(εL)2

E1d
N,L,g1d

= 1 . (1.47)

Note that the three conditions (a) to (c) of the combined limit (1.46) are not indepen-

dent of each other. With regard to the asymptotic behaviour (1.41) of e1d
0 , condition

(c) is equivalent to the requirement that

e1d
0 (%1d)� 1

(εL)2
,

which means that the longitudinal energy per particle must be much smaller than the

transverse energy gap.

In conclusion, the 3d ground state energy related to the longitudinal motion (where

the ground state energy in the confined directions is subtracted) is asymptotically

described by the minimiser of the 1d energy functional containing the LL energy

density, provided one chooses the LL-coupling parameter g as in (1.44). In this sense,

the ground state of a 3d Bose gas in a highly elongated trap is described by the 1d LL

model.

Depending on the ratio g1d/%1d, the energy functional (1.45) simplifies in different
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1.3. Interacting Bose gas in one and two dimensions

limiting cases, dividing the parameter space into five regions, which can be grouped

into two physically very different regimes. To motivate this dichotomy, note that the

formula (1.19) for the ground state energy of a homogeneous 3d gas yields for the box

L1d × (εL)× (εL) the expression

e3d
0 ∼

NA

(εL)2L1d

.

While (1.19) is correct for any fixed ε, it does not hold uniformly as ε → 0. Let us

compare this expression with the 1d energy per particle e1d
0 (%1d). Noting that g1d

scales as A/(εL)2, we obtain by (1.41) the scaling behaviour

e1d
0 (%1d) ∼





g1d%1d ∼
NA

(εL)2L1d

g1d/%1d � 1 ,

%2
1d ∼

N2

L
2
1d

g1d/%1d � 1 .

While in the first case, the 1d formula for the energy per particle coincides with the

3d formula, this is not true in the second case. Note that the quantity g1d/%1d can

also be interpreted as the fraction e3d
0 /%

2
1d. Its behaviour as N → ∞ defines the two

regimes mentioned above:

• g1d/%1d � 1: The 1d limit of the 3d GP regime

In this regime, the predictions of 3d and 1d theory coincide, which was motivated

above by the comparison of e3d
0 and e1d

0 . Since the LL parameter γ is much

smaller than one, the gas is weakly interacting, which is equivalent to a high 1d

density. This regime subdivides into three regions, each of which is characterised

by a simpler form of the functional (1.45):

1. The ideal gas case: g1d/%1d � N−2.

The interactions are so weak that e1d
0 = (g1d/%1d)%2

1d � L
−2
1d , i.e., their ef-

fect vanishes in comparison with the longitudinal kinetic energy. In (1.47),

the minimiser E1d
N,L,g1d

of the LL functional can simply be replaced by

Ne‖/L2, where e‖ denotes the ground state energy of −∂2
x + V ‖.

2. The 1d GP case: g1d/%1d ∼ N−2.

In this region, the functional (1.45) reduces to the 1d GP functional

EGP,1d
N,L,g1d

[%] =

∫

R

(
|∂x
√
%(x)|2 + V

‖
L (x)%(x) + 1

2g1d%(x)2
)

dx ,

where the interaction term is taken as the low-γ-asymptotics (1.41) of the

LL ground state energy per particle. To bring this expression into a form

which is analogous to the 3d GP functional (1.31), where the dependence
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on the parameters N , L, g1d is exclusively encoded in the interaction term,

one notes that %(x) = N |ΦL(x)|2, where ΦL(x) = L−
1
2 Φ(x/L) by definition

of V
‖
L . Substituting this into EGP,1d

N,L,g1d
and dividing by N/L2, one obtains

the functional

EGP,1d
1,1,Ng1dL

=

∫

R

(
|∂xΦ(x)|2 + V ‖(x)|Φ(x)|2 + 1

2Ng1dL|Φ(x)|4
)

dx (1.48)

for Φ with
∫
|Φ(x)|2 dx = 1. The ground states of both functionals are

related by the scaling relation

EGP,1d
N,L,g1d

=
N

L2
EGP,1d

1,1,Ng1dL
.

The characteristic length scale L1d of the cloud can be computed via the

scaling relation

V
‖
L (L1d) ∼ e1d

0 (%1d) . (1.49)

Since V ‖ is homogeneous of degree s and e1d
0 = (g1d/%1d)%2

1d ∼ L
−2
1d , this

yields L1d ∼ L, implying that the cloud longitudinally extends over the

whole trap, hence %1d ∼ N/L. Finally, note that g1d/%1d ∼ N−2 is equiva-

lent to the requirement that Ng1dL be fixed as N →∞, and that conditions

(b) and (c) in (1.46) are implied by (a). Hence, the statement (1.47) can

be simplified as follows:

In the limit N →∞ and ε→ 0 such that Ng1dL remains fixed,

lim
E3d
N,L,ε,A −N e⊥

(εL)2

N
L2E

GP,1d
1,1,Ng1dL

= 1 . (1.50)

3. The 1d Thomas–Fermi case: N−2 � g1d/%1d � 1.

Since g1d/%1d � N−2 is equivalent to Ng1dL → ∞, it follows that e1d
0 �

L
−2
1d , i.e., the gradient term in the functional (1.45) becomes negligible.

Hence, (1.45) is asymptotically equivalent to the 1d Thomas–Fermi func-

tional, which is given by the GP functional without kinetic term.

The ground state energy of a Bose gas in this first regime can also be obtained

as the limit ε→ 0 of the 3d GP energy. More precisely, let EGP
ε,NA

L

denote the GP
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1.3. Interacting Bose gas in one and two dimensions

energy functional corresponding to the Hamiltonian H3d
N,L,ε,A, i.e.,

EGP
ε,NA

L

[ϕ] =

∫

R3

(
|∇ϕ(z)|2 +

(
V ⊥ε (y) + V ‖(x)

)
|ϕ(z)|2 + 4π

NA

L
|ϕ(z)|4

)
dz .

(1.51)

Then it is shown in [123, Theorem 2.6] that in the limit ε→ 0, A→ 0,

lim
EGP
ε,NA

L

− e⊥
ε2

EGP,1d
1,1,Ng1dL

= 1 (1.52)

uniformly in g1d, as long as ε2EGP,1d
1,1,Ng1dL

→ 0. In view of (1.47), this implies

that the ground state energy can be calculated by first taking the limit N →∞
and subsequently the limit ε→ 0. It implies that the 3d GP result (1.35) holds

uniformly as ε → 0, provided the quantity NA/(Lε2) remains bounded. This

requirement is in particular satisfied in region 2.

Moreover, it has been shown that the N -body ground state ψN,L,ε0 of the Hamil-

tonian H3d
N,L,ε,A exhibits BEC in regions 1 and 2, while the problem remains open

in region 3. More precisely, [123, Theorem 5.1] states that

TrL2(R3)

∣∣∣∣γ
(1)

ψN,L,ε0

− |ΦGP
L χεL〉〈ΦGP

L χεL|
∣∣∣∣→ 0 , (1.53)

where ΦGP
L (x) = L−

1
2 ΦGP(x/L) and ΦGP is the minimiser of EGP,1d

1,1,Ng1dL
.

• g/%1d & 1: The true 1d regime.

In this regime, e1d
0 and e3d

0 differ from each other. In contrast to the first regime,

the second regime cannot be reached from a 3d energy functional as in (1.52),

and is, in this sense, truly 1d. The corresponding LL parameter γ is large, hence

the gas is strongly interacting with low 1d density. The ground state is not

expected to exhibit BEC; instead, the motion in the longitudinal direction is

strongly correlated. The true 1d regime can be split into two regions:

4. The LL case: g1d/%1d ∼ 1.

In this region, neither of the asymptotics in (1.41) apply, hence the full LL

energy is required in the functional. Since e1d
0 ∼ N2L

−2 � L
−2

, one can

neglect the gradient term of the functional (1.45).

5. The Tonks–Girardeau case: g1d/%1d � 1.

This region is analogous to the LL case, with the only exception that

the asymptotics (1.41) for γ → ∞ apply. Consequently, the expression

%3e(g1d/%) in the functional can be replaced by π2

3 %
3.
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The ground state result (1.47) was extended in [170] by Seiringer and Yin to the

lower part of the excitation spectrum. More precisely, let E3d,k
N,L,ε,A for k = 1, 2, 3, ...,

denote the k’th eigenvalue of the Hamiltonian H3d
N,L,ε,A and denote by E1d,k

N,L,g1d
the k’th

eigenvalue of the LL Hamiltonian with coupling parameter g1d and external potential

V
‖
L ,

H1d
N,L,g1d

=

N∑

j=1

(
− ∂2

∂x2
j

+ V
‖
L (xj)

)
+ g1d

∑

1≤i<j≤N
δ(xi − xj) . (1.54)

For fixed N , L and k, the authors prove that in the limit ε→ 0 and A→ 0 such that

A/ε→ 0,

lim
E3d,k
N,L,ε,A − Ne⊥

(εL)2

E1d,k
N,L,g1d

= 1 , (1.55)

as long as E1d,k
N,L,g1d

≤ ẽ⊥/(εL)2. Here, ẽ⊥ denotes the spectral gap above the ground

state energy of −∆⊥y + V ⊥(y) ([170, Corollary 1]). This statement follows from the

upper and lower bounds

E3d,k
N,L,ε,A ≥ Ne⊥

(εL)2
+ E1d,k

N,L,g1d
(1− ηL)

(
1− (εL)2

ẽ⊥
E1d,k
N,L,g1d

)
, (1.56)

E3d,k
N,L,ε,A ≤ Ne⊥

(εL)2
+ E1d,k

N,L,g1d
(1− ηU )−1 , (1.57)

where

ηL = D

((
NA

εL

) 1
8

+N2

(
NA

εL

) 3
8

)
, ηU = C

(
NA

εL

) 2
3

for some constants C,D > 0 ([170, Theorem 1]). Hence, the spectrum of a Bose gas

in a cigar-shaped trap in an energy interval of size ∼ (εL)−2 above the ground state

asymptotically coincides with the spectrum of the LL model with coupling parameter

g1d. Note that this applies to all parameter regions 1 to 5.

Moreover, Seiringer and Yin prove a similar result for the eigenfunctions. For g0 ∈ R,

let ψ3d,k be an eigenfunction of H3d
N,L,ε,A with eigenvalue E3d,k

N,L,ε,A, and let P 1d,k
g0 denote

the projection onto the eigenspace of H1d
N,L,g0

with eigenvalue E1d,k
N,L,g0

. Further, let P⊥εL
denote the projection onto

∏N
j=1 χ

εL(yj). Then, for fixed N , L, k and g0, Seiringer

and Yin prove that in the limit ε→ 0, A→ 0 such that g1d → g0,

lim
〈
ψ3d,k,

(
P 1d,k
g0 ⊗ P⊥εL

)
ψ3d,k

〉
= 1 (1.58)

([170, Corollary 2]), where the tensor product refers to the decomposition L2(RN ) ⊗
L2(R2N ) of L2(R3N ) into longitudinal and transverse coordinates. This implies that
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1.3. Interacting Bose gas in one and two dimensions

the 3d eigenfunctions ψ3d,k are, in L2(R3N ) sense, asymptotically of the product form

ψ3d,k(z1, ..., zN ) ≈ ψ1d,k(x1, ..., xN )
N∏

j=1

χεL(yj) ,

where ψ1d,k is an eigenfunction of H1d
N,L,g0

corresponding to the eigenvalue E1d,k
N,L,g0

.

Quasi-two-dimensional Bose gas

For d = 2, it was shown in [164] by Schnee and Yngvason that in the limit ε → 0,

the ground state energy E3d
N,L,ε,A of the Hamiltonian H3d

N,L,ε,A converges to the ground

state energy of a 2d gas with effective 2d scattering length

A2d = Lε exp

{
− 1∫

R |χ(y)|4 dy
· εL

2A

}
. (1.59)

In view of (1.40), this 2d ground state energy E2d
L,Ng2d

can be obtained by minimising

the 2d GP functional (1.37) with choice V ext = V
‖
L ,

EGP,2d
L,Ng2d

[ΦL] :=

∫

R2

(
|∇ΦL(x)|2 + V

‖
L (x)|ΦL(x)|2 + 4πNg2d|ΦL(x)|4

)
dx , (1.60)

where the corresponding coupling parameter g2d is given by

g2d =
1

| ln(%2dA
2
2d)| (1.61)

as in (1.38), with mean 2d density %2d from (1.39). More precisely, Schnee and Yng-

vason prove that in the combined limit

N →∞ and





(a) ε→ 0 ,

(b) A
εL → 0 ,

(c) (εL)2%2dg2d → 0 ,

(1.62)

it holds that

lim
(1.62)

1
NE

3d
N,L,ε,A − e⊥

(εL)2

E2d
L,Ng2d

= 1 (1.63)

by [164, Theorem 1.1]. This statement is the 2d analogue of (1.47), where the role of

the LL functional (1.45) is taken by the 2d GP functional (1.60). As in the 1d case,

conditions (a) to (c) are not independent of each other. Condition (c) states that the
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2d energy per particle corresponding to the density %2d, which scales as

e2d
0 (%2d) ∼ g2d%2d

by (1.36), must be much smaller than the transverse energy gap ∼ (εL)−2.

Similarly to the quasi-1d gas, there is a fundamental division into two parameter

regimes, which can be determined by comparing the expressions for the 3d and 2d

energy per particle, (1.19) and (1.36). Since the mean 3d density is given by

% =
N

L
2
(εL)

=
%2d

(εL)
,

this yields

e3d
0

e2d
0

∼ NA/(εLL
2
2d)

g2d%2d

∼ A

εL
| ln(%2dA

2
2d)| = A

εL

∣∣∣∣ln(%2d(Lε)2)− 1∫
|χ(y)|4 dy

εL

A

∣∣∣∣ ,

which leads to the following two regimes:

1. | ln(%2d(εL)2)| � (εL)/A: The 2d limit of the 3d GP regime.

By definition (1.59) of the effective 2d scattering length, this condition yields

g2d = | ln(%2dA
2
2d)|−1 ∼ A

εL
,

hence e2d
0 (%2d) ∼ (A%2d)/(εL). Consequently, the 2d formula (1.36) leads to

the same result as the 3d formula (1.19). Moreover, one can replace g2d by the

simplified coupling parameter

g
(1)
2d :=

∫

R

|χ(y)|4 dy
A

εL
. (1.64)

Similarly to the 1d problem, the ground state energy in this regime can be

understood as the limit ε → 0 of the minimum of the 3d GP functional EGP
ε,NA

L

from (1.51) but with 1d confinement. It is shown in [164, Theorem 2.1] that in

the limit ε→ 0 with g2d = g
(1)
2d ,

lim
EGP
ε,NA

L

− e⊥
ε2

EGP,2d

1,Ng
(1)
2d /L

= 1 (1.65)

uniformly in the parameters, as long as condition (c) in (1.62) is satisfied.
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1.4. Effective dynamics of the condensate wave function

2. | ln(%2d(εL)2)| & (εL)/A: The true 2d regime.

In this regime,

g2d ∼ g(2)
2d := | ln(%2d(εL)2)|−1 ,

and the logarithmic dependence on the density implies that the 2d and 3d pre-

dictions of the ground state energy lead to different results.

The relevant parameter for the 2d GP functional is Ng2d. Its size subdivides the

parameter space into three regions:

(a) Ng2d � 1: The ideal gas case.

The interaction term in the GP functional becomes negligible, hence this region

describes an ideal gas in an external trapping potential.

(b) Ng2d ∼ 1: The GP case.

All terms in the GP functional are of the same order. In regime 1, this region cor-

responds to the scaling A ∼ εL
N

∫
|χ(y)|4 dy, while one requires %2d ∼ (εL)−2e−2N

to reach it from regime 2. In this region, BEC occurs in the ground state ψN,L,ε0

of H3d
N,L,ε,A. More precisely, [164, Theorem 1.3] states that in the limit N →∞

and ε→ 0 with Ng and L fixed,

TrL2(R3)

∣∣∣∣γ
(1)

ψN,L,ε0

− |ΦGP
L χεL〉〈ΦGP

L χεL|
∣∣∣∣→ 0 , (1.66)

where ΦGP
L (x) denotes the minimiser of EGP,2d

Ng2d
from (1.60).

(c) Ng2d � 1: The Thomas–Fermi case.

The gradient term in the GP functional becomes irrelevant, hence the GP func-

tional simplifies to the 2d Thomas–Fermi functional.

In contrast to the 1d problem, these three regions cannot be understood as subdivisions

of the regimes 1 and 2 but all can be reached from both regimes. This situation is

different from the 1d case since the splitting into regimes 1 and 2 depends on the

parameter | ln(%2d(εL)2)|, whereas the relevant parameter for the 2d GP functional is

Ng2d. In contrast, in the 1d case, the regimes 1 and 2 are characterised by the size of

g2d/%1d, which is at the same time the relevant parameter for the functional (1.45).

1.4. Effective dynamics of the condensate wave function

Monitoring the dynamical behaviour of a condensed cloud after being released from

a trap is an important method in the experimental analysis of BECs. To understand

and predict the dynamics of a dilute Bose gas at zero temperature theoretically, one

must essentially solve two problems:
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• Persistence of BEC. Assume that the Bose gas initially exhibits BEC (which is

given if the gas is initially prepared in the ground state of a suitable external

trap). Show that the gas remains in the condensed phase under time evolution

if the trap is varied or completely removed.

• Evolution equation. Derive an evolution equation for the condensate wave func-

tion, starting from the N -body dynamics. Since a macroscopic fraction of all

particles occupies the condensed state, this provides an effective description of

the dynamics of the Bose gas.

The second question has been thoroughly discussed in the physical literature, and we

begin this section by reviewing the standard formal derivation of the time-dependent

GP equation. The main references for this part are [80, Chapter 11], [129, Chapter 5],

[145, Chapter 7], and [153, Chapter 5]. Subsequently, we formulate the two problems

in precise mathematical terms and give an overview of rigorous results. Finally, we

explain in detail the stragety of proof developed by Pickl in [150, 151].

1.4.1. Time-dependent Gross–Pitaevskii equation

Let us consider the Hamiltonian HN (t) from (1.2) with interactions wN from (1.25)

in the GP scaling regime, i.e.,

HN (t) =
N∑

j=1

(
−∆j + V ext(t, xj)

)
+
∑

i<j

wN (xi − xj) ,

where we admit time dependent external potentials V ext(t) to model the spatial varia-

tion of the external trap. To formally derive an evolution equation for the condensate,

one absorbs the correlation structure into the effective interaction potential (1.32) as

for the static problem and considers the Hamiltonian Heff(t) (1.33),

Heff(t) =
N∑

j=1

(
−∆j + V ext(t, xj)

)
+
U0

N

∑

i<j

δ(xi − xj) ,

acting on a product state ψN = ϕ⊗N . Recall that the Schrödinger equation for a

Hamiltonian H = −∆Rd + V on L2(Rd) can be obtained from the action principle

δ

t2∫

t1

Ldt = 0
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1.4. Effective dynamics of the condensate wave function

for the Lagrange function L =
∫
Rd L (x) dx with Lagrange density

L = ∇ψ · ∇ψ + V ψψ − i

2

(
ψψ̇ − ψ̇ψ

)
,

where η̇j ≡ ∂ηj/∂t for η1 := ψ, η2 := ψ. Considering ψ and ψ as two independent

fields, the action principle leads to the Euler-Lagrange equations

d

dt

∂L

∂η̇j
+

d∑

k=1

d

dxk


 ∂L

∂
(
∂ηj
∂xk

)


− ∂L

∂ηj
= 0 , j = 1, 2 , (1.67)

which yield the Schrödinger equation and its complex conjugate.

Let us derive the Euler–Lagrange equations corresponding to the effective Hamilto-

nian Heff(t) under the assumption that the N -body state factorises as ψN (t) = ϕ(t)⊗N .

Denoting x = (x1, ..., xN ), one computes the resulting Lagrange function as

L =

∫

R3N

( N∑

j=1

(
|∇xjψ|2 + V ext(t, xj)|ψ|2

)

+
U0

N

∑

i<j

δ(xi − xj)|ψ|2 −
i

2

(
ψψ̇ − ψ̇ψ

))
dx

≈ N

∫

R3

(
∇ϕ · ∇ϕ+ V ext(t, x)ϕϕ+

U0

2
ϕ2ϕ2 − i

2

(
ϕϕ̇− ϕ̇ϕ

))
dx ,

which reduces to a Lagrange function depending on the fields ϕ, ϕ and their respective

derivatives. The Euler–Lagrange equation (1.67) for ϕ is

i ∂∂tϕ(t) =
(
−∆ + V ext(t) + U0|ϕ(t)|2

)
ϕ(t) , (1.68)

which is known as time-dependent Gross–Pitaevskii equation, named after the two re-

searchers who independently discovered it in 1961 [90, 152]. It is an effective equation

which asymptotically describes the dynamics of an interacting Bose gas. The descrip-

tion is valid for sufficiently large particle numbers N and under the assumption of

BEC. It requires high dilution as well as sufficiently low temperatures such that the

thermal depletion of the condensate is negligible. Under these conditions, the GP

equation correctly predicts the behaviour on length scales much larger than the scat-

tering length, while it is not suited to describe phenomena over microscopic distances

comparable to the scattering length.

To conclude this section, note that above derivation can only be valid on a formal

level. First, we replaced HN (t) by Heff(t) without any control of the approximation,
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i.e., without proving that the time evolutions generated by HN (t) and Heff(t) are in

any sense close. Besides, to have a well-defined time evolution generated by Heff(t),

one needs to choose a self-adjoint extension of Heff(t) on an appropriate domain with

specific boundary conditions. Note that in our formal derivation of the Euler–Lagrange

equations, we simply treated the δ-operator as multiplication operator. A more de-

tailed analysis of the problems arising from using Heff(t) is given in [129, Chapter 5.2].

For a comprehensive analysis of N -body systems interacting via point interaction, we

refer to [55].

Second, by using the product ansatz ψN (t) = ϕ(t)⊗N , we tacitly assumed that the

first of the two questions mentioned at the beginning of this sections was answered

in the affirmative, namely, that condensation is preserved by the the time evolution.

Moreover, the splitting of the correlations from the condensate wave function by choos-

ing an appropriate effective interaction requires a more careful justification.

1.4.2. Time-dependent NLS and Hartree equation

Let us formally derive an effective equation for the Hamiltonian HN,β(t) with interac-

tion wN,β for β ∈ [0, 1) as in (1.24). To this end, recall that the inter-particle corre-

lations vary on a length scale that is much shorter than the range of the interaction,

hence they become invisible for sufficiently large N (see Section 1.2.4). Ignoring the

correlations and assuming a factorised N -body wave function, the interaction energy

contributed by two particles in the state ϕ⊗2 is given by

Eint(2) = 〈ϕ(x1)ϕ(x2), wN,β(x1 − x2)ϕ(x1)ϕ(x2)〉 =
〈
ϕ,wN,β ∗ |ϕ|2ϕ

〉
.

As before, one argues that the gas is sufficiently dilute that the total interaction energy

equals N(N−1)
2 Eint(2). Consequently, for sufficiently large N , the total ground state

energy is

E0(N) ≈ N

∫ (
|∇ϕ(x)|2 + V ext(x)|ϕ(x)|2 +

1

2
N3β

(
w(Nβ · ) ∗ |ϕ|2

)
(x)|ϕ(x)|2

)
dx .

In formal analogy to the GP functional, this leads to the effective dynamical equation

i d
dtϕ(t) =

(
−∆ + V ext(t) + wϕ(t)

)
ϕ(t) =: hϕ(t)ϕ(t) , (1.69)

where we introduced the abbreviation

wϕ(t) := N3βw(Nβ·) ∗ |ϕ(t)|2 . (1.70)
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For β = 0, this reduces to the N -independent Hartree equation,

i d
dtϕ(t) =

(
−∆ + V ext(t) + w ∗ |ϕ(t)|2

)
ϕ(t) . (1.71)

For β ∈ (0, 1), the effective interaction potential wϕ(t) is N -dependent. However,

wϕ(t) → ‖w‖L1(R3)|ϕ(t)|2 as N →∞

for sufficiently regular ϕ(t), hence (1.69) becomes the (time dependent) NLS equation

i d
dtϕ(t) =

(
−∆ + V ext(t) + ‖w‖L1(R3)|ϕ(t)|2

)
ϕ(t) . (1.72)

Alternatively, one can derive (1.72) analogously to the GP case. Since the Born ap-

proximation is applicable to wN,β, the parameter of the resulting effective δ-interaction

is given by

U0 = 8πNaN → ‖w‖L1(R3) as N →∞ ,

which follows from (1.27).

1.4.3. Rigorous derivation of the effective dynamics

To rigorously derive an effective description for the N -body dynamics generated by

the Hamiltonian

HN,β(t) =

N∑

j=1

(
−∆j + V ext(t, xj)

)
+
∑

i<j

wN,β(xi − xj) , β ∈ [0, 1] ,

it has proved successful to answer the two questions raised at the beginning of this

section simultaneously. Besides, it is more convenient to work in terms of reduced

densities than to argue on the level of the many-body wave function.

In mathematical terms, the problem is the following: Assume that at time t = 0,

the N -body state ψN0 exhibits complete asymptotic BEC in the state ϕ0. Let ψN (t)

denote the solution of the N -body Schrödinger equation with initial condition ψN0 ,

and let ϕ(t) denote the solution of the effective equation with initial datum ϕ0. The

goal is to show that ψN (t) exhibits BEC in the state ϕ(t), i.e., that

lim
N→∞

Tr
∣∣∣γ(1)

ψN0
− |ϕ0〉〈ϕ0|

∣∣∣ = 0 ⇒ lim
N→∞

Tr
∣∣∣γ(1)

ψN (t)
− |ϕ(t)〉〈ϕ(t)|

∣∣∣ = 0 . (1.73)

The rigorous derivation of such statements has been a very active field of research

in mathematical physics, and a variety of mathematical methods have been applied

to this problem. Several lecture notes reviewing different approaches are available,

for instance [22, 81, 159, 162]. In the following, we will give a brief overview of the
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different strategies and comment on the corresponding results, although without any

claim to completeness.

BBGKY approach

The Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) approach starts from the Hei-

senberg equation for the density matrix of an N -body state ψN (t). By tracing out

N − k particles, one derives an evolution equation for the k-particle reduced density

matrices γ
(k)

ψN (t)
, which yields the so-called BBGKY-hierarchy of N coupled equations.

Since the BBGKY approach is based on an abstract compactness argument, it does

not provide explicit error bounds.

The idea of using the BBGKY hierarchy in this context is due to Spohn, who derived

the Hartree equation for bounded pair potentials in [174]. Spohn’s approach was used

by Bardos, Golse and Maurer in [16] and by Erdős and Yau in [68] to derive the

Hartree equation for Coulomb-like potentials, and by Elgart and Schlein in [62] for

bosons with relativistic dispersion relation. It was extended by Erdős, Schlein and

Yau to interactions wN,β with larger scaling parameters in [64, 65, 66]. A different

and shorter proof of uniqueness of the hierarchy was provided by Klainerman and

Machedon in [105]. Bosons in a quadratic trap were considered by X. Chen in [44].

In [67], Erdős, Schlein and Yau extended their result to the case β = 1, using again

the BBGKY approach with the difference that the solution to the respective infinite

hierarchy includes correlations. Part of their proof was simplified by T. Chen, Hainzl,

Pavlović and Seiringer in [43].

Concerning low dimensional bosons, the BBGKY approach was used by Adami,

Bardos, Golse and Teta in [1, 2] to derive a 1d NLS equation for scalings β < 1
2 , and

by X. Chen and Holmer in [46] for the 1d focusing case with β ∈ (0, 1) and in [48] for

the 2d focusing case with β ∈ (0, 1
6).

Finally, X. Chen and Holmer applied the BBGKY method to derive effective 1d and

2d equations for 3d bosons in highly anisotropic traps [45, 47] (see Section 3.1.3).

Second quantised approach

Based on the works by Hepp [94] and Ginibre and Velo [77, 78] on classical limits of

bosonic systems, another approach was developed by Rodnianski and Schlein in [158]

and further improved in [42] by L. Chen, Lee and Schlein. The idea is to represent the

many-body system on a Fock space and study the time evolution of coherent initial

states, which also yields an explicit rate of convergence. In [21], Benedikter, de Oliveira

and Schlein extended this method to the GP scaling regime. Recently, Brennecke and

Schlein improved it for the GP case and N -body initial data to yield an optimal rate of

convergence [39]. For 2d bosons, an NLS equation was derived by Kirkpatrick, Schlein

and Staffilani in [104].
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Further approaches

We postpone the method by Pickl to the next section, since it is used in this the-

sis and therefore explained in detail. Apart from this, let us mention the approach

suggested by Fröhlich, Graffi and Schwarz in [73] and the related works [74, 75] by

Fröhlich, Knowles and Schwarz and Fröhlich, Knowles and Pizzo. Moreover, semiclas-

sical methods were applied by Ammari and Nier in [7], by Ammari and Breteaux in

[5], and by Ammari, Falconi and Pawilowski in [6]. For more details, we refer to the

lecture notes [22, 81, 159, 162] reviewing the different approaches.

1.4.4. First quantised approach by Pickl

The approach developed by Pickl in [148, 150, 151] is formulated in the first quantised

N -body setting, and, as a by-product, yields an explicit (but not optimal) estimate

of the rate of convergence. The main idea for Hartree and NLS scaling regime is to

define a functional

α : R× L2(R3N )× L2(R3)→ R+
0 , (t, ψN (t), ϕ(t)) 7→ α(t, ψN (t), ϕ(t)) =: α(t) ,

such that α(t) counts the (suitably weighted) relative number of particles in ψN (t)

that are outside the condensed phase. After proving that convergence of α(t) to zero

is equivalent to condensation at time t, one derives an estimate of the form

d
dtα(t) . C(t)α(t) + O(N) ,

which yields (1.73) by means of Grönwall’s lemma (Lemma 1.4.3). Since α(t) can

only be controlled if the argument ϕ(t) of α is the solution of the corresponding

NLS/Hartree equation in the limit N → ∞, this implicitly proves the respective

effective evolution equation.

For the GP scaling regime, the central idea of the proof is closely connected with the

heuristic derivation of the stationary GP equation in Section 1.2.5: using a modified

counting functional, one effectively replaces the very singular GP interaction wN by a

softer (but still singular) potential U
β̃

in the NLS scaling regime, which is defined such

that its scattering length asymptotically coincides with the scattering length of wN .

Roughly speaking, the NLS result covers the auxiliary potential U
β̃
, and it remains to

control the remainders from this substitution.

Before describing this strategy of proof in more detail, let us give an overview

of the results obtained using Pickl’s approach. In [149], Pickl covered interactions

without positivity condition for β < 1
6 , which was extended by Jeblick and Pickl

in [98] to potentials in the GP regime with sufficiently small negative part. Knowles

and Pickl [106] proved convergence of the reduced densities for bosons in the Hartree
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regime with singular interactions. Mitrouskas, Petrat and Pickl [135, 134] improved

this to convergence with respect to the energy trace norm, obtaining an optimal rate

of convergence, and Anapolitanos and Hott [8, 95] generalised the analysis to a larger

class of kinetic terms. Mixtures of condensates were studied by Anapolitanos, Hott

and Hundertmark [9] and by Michelangeli and Olgiati [132, 140], who also considered

spinor condensates [131, 133]. The dynamics of a tracer particle interacting with an

ideal Bose gas was studied by Deckert, Pickl, Fröhlich and Pizzo in [53], who also

considered high density Bose gases in a large box [54]. In [146], their result was

improved by Petrat, Pickl and Soffer.

Moreover, the approach was successfully applied to low dimensions: in [97], Jeblick,

Leopold and Pickl derived the time-dependent GP equation for 2d bosons, and an

effective focusing NLS equation for 2d was proved by Jeblick and Pickl in [99]. Finally,

effectively 1d and 2d equations for strongly confined 3d bosons were derived by von

Keler and Teufel in [100] and in the three projects [33, 32, 35] of this thesis (see

Section 3.1).

Hartree and NLS regime

The functional α can be understood as a measure of the relative number of particles

which do not occupy the condensate state ϕ. To implement this mathematically, one

introduces projectors onto the condensate wave function and its orthogonal comple-

ment.

Definition 1.4.1. For any ϕ ∈ L2(R3), let

pϕ := |ϕ〉 〈ϕ| , qϕ := 1L2(R3) − pϕ

denote the projectors onto ϕ and its orthogonal complement. With this, we define the

projection operators on L2(R3N )

pϕj := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ pϕ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−j

, qϕj := 1L2(R3N ) − pϕj

for j ∈ {1, . . . , N}. Further, for 0 ≤ k ≤ N , define the many-body projections

Pϕk :=
∑

J⊆{1,...,N}
|J |=k

∏

j∈J
qϕj
∏

l /∈J
pϕl =

1

(N − k)!k!

∑

σ∈SN
qϕσ(1) ···q

ϕ
σ(k)p

ϕ
σ(k+1) ···p

ϕ
σ(N)

and Pϕk = 0 for k < 0 and k > N . For any function f : N0 → R+
0 and d ∈ Z, define
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1.4. Effective dynamics of the condensate wave function

the operators f̂ϕ, f̂ϕd ∈ L
(
L2(R3N )

)
by

f̂ϕ :=
N∑

k=0

f(k)Pϕk , f̂ϕd :=
N−d∑

j=−d
f(j + d)Pϕj .

Obviously,
∑N

k=0 P
ϕ
k = 1, which implies that

1

N

N∑

j=1

qϕj =
1

N

N∑

k=0

N∑

j=1

qϕj P
ϕ
k =

1

N

N∑

k=0

kPϕk = (n̂ϕ)2 (1.74)

for the weight function

n(k) :=

√
k

N
.

As a consequence, the expected relative number of particles outside ϕ in a symmetric

N -body state ψN ∈ L2
+(R3N ) is given by

α(ψN , ϕ) := ⟪ψN , qϕ1 ψN⟫ = ⟪ψN , (n̂ϕ)2ψN⟫ . (1.75)

Note that since ψN is normalised,

α(ψN , ϕ) = 1− ⟪ψN , pϕ1ψN⟫ = 1−
〈
ϕ, γ

(1)

ψN
ϕ
〉
L2(R3)

.

Hence, the convergence α(ψN , ϕ)→ 0 as N →∞ is equivalent to complete asymptotic

condensation in the state ϕ by Lemma 1.2.2c. In particular, if the initial N -body state

ψN0 exhibits BEC in ϕ0, this implies

lim
N→∞

α(ψN0 , ϕ0) = 0 .

In fact, one has the freedom to choose any positive power of n(k) as weight in the

counting functional (see e.g. [100, Lemma 3.1]):

Lemma 1.4.2. Let {ψN}N be a sequence of normalised N -body wave functions such

that ψN ∈ L2
+(R3N ) and let ϕ ∈ L2(R3). Define

αf (ψN , ϕ) := ⟪ψN , f̂ϕ ψN⟫
for any weight function f : N0 → R+

0 . Then the following statements are equivalent:

(a) lim
N→∞

αna(ψN , ϕ) = 0 for some a > 0,

(b) lim
N→∞

αna(ψN , ϕ) = 0 for any a > 0,
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(c) lim
N→∞

TrL2(R3)

∣∣∣γ(1)

ψN
− |ϕ〉 〈ϕ|

∣∣∣ = 0.

In conclusion, the functional αna counts the relative number of particles outside the

condensate weighted with na(k), where the power a may be chosen for convenience. To

prove persistence of condensation, one chooses a suitable weight function f and shows

that the respective functional αf (t, ψN (t), ϕ(t)) satisfies a Grönwall-type inequality at

time t > 0. Here, the second argument ψN (t) of αf is the solution of the N -body

Schrödinger equation, d
dtψ

N (t) = HN,β(t)ψN (t), and the third argument ϕ(t) is the

solution of the respective effective equation

d
dtϕ(t) = hϕ(t)ϕ(t) :=

(
−∆ + V ext(t) + wϕ(t)

)
ϕ(t)

with wϕ(t) from (1.70).

While the weight n2 as in (1.75) is a good choice for the Hartree case, it is not

suitable to derive a Grönwall estimate for larger values of β. In this case, the Hartree

counting functional (1.75) needs to be modified in two respects, whose necessity will

be explained below when we sketch the proof.

• In addition to complete asymptotic condensation of the initial data, one assumes

that

lim
N→∞

∣∣∣Eψ
N
0

wN,β (0)− Eϕ0

‖wN,β‖1(0)
∣∣∣ = 0 , (1.76)

where E
ψN (t)
wN,β (t) = 1

N ⟪ψN (t), HN,β(t)ψN (t)⟫ denotes the energy per particle and

Eϕ(t)
‖wN,β‖1(t) denotes the GP functional (1.31) where the parameter a is replaced by

g = N
8π‖wN,β‖L1(R3). If ψN0 is close to the N -body ground state, this assumption

is physically motivated by the heuristic arguments given at the beginning of

Section 1.4.2. Note that for a time-independent external field, both E
ψN (t)
wN,β and

Eϕ(t)
‖wN,β‖1 are constants of motion. The energy difference (1.76) at time t is added

to the counting functional, resulting in

⟪ψN (t), f̂ϕ(t) ψN (t)⟫+
∣∣∣EψN (t)

wN,β
(t)− Eϕ(t)

‖wN,β‖1(t)
∣∣∣ .

Since both terms are non-negative, this expression converges to zero as N →∞
if and only if both complete condensation and the property (1.76) are preserved

at time t, given the weight f is chosen appropriately in the sense of Lemma 1.4.2.

• One chooses the weight n instead of n2 and modifies it by a smooth cut-off for

small k. More precisely, one uses the weight m, which is defined as

m(k) :=

{
n(k) for k ≥ N1−2ξ ,
1
2

(
N−1+ξk +N−ξ

)
else

(1.77)
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for some ξ ∈ (0, 1
2). Since

n(k) ≤ m(k) ≤ n(k) + 1
2N
−ξ ,

the functional αm converges to zero as N → ∞ if and only if αn converges to

zero, although the rate of the convergence differs by 1
2N
−ξ.

In conclusion, we use for the NLS scaling the counting functional

α<ξ,wN,β (t, ψN (t), ϕ(t)) := ⟪ψN (t), m̂ϕ(t)ψN (t)⟫+
∣∣∣EψN (t)

wN,β
(t)− Eϕ(t)

‖wN,β‖1(t)
∣∣∣ , (1.78)

which satisfies

lim
N→∞

α<ξ,wN,β (t, ψN (t), ϕ(t)) = 0 ⇔





lim
N→∞

Tr
∣∣∣γ(1)

ψN (t)
− |ϕ(t)〉〈ϕ|

∣∣∣ = 0

lim
N→∞

∣∣∣EψN (t)
wN,β

(t)− Eϕ(t)
‖wN,β‖1(t)

∣∣∣ = 0 .
(1.79)

As a consequence, the asymptotic closeness of the energies at time t > 0 comes as a

by-product of proving that complete condensation is preserved in time.

Since Grönwall’s lemma is at the core of the proof, let us recall its statement (see

e.g. [70, Appendix B.2.j]):

Lemma 1.4.3. Let η be a non-negative, absolutely continuous function on [0, T ] such

that
d
dtη(t) ≤ f(t)η(t) + g(t) for a.e. t ∈ [0, T ] ,

where f and g are non-negative, summable functions on [0, T ]. Then

η(t) ≤


η(0) +

t∫

0

g(s) ds


 e

∫ t
0 f(s) ds for all t ∈ [0, T ] .

In the NLS case, both terms in the functional α<ξ,wN,β contribute to the time deriva-

tive of α<ξ,wN,β . Differentiating the energy term yields for almost every t the estimate

∣∣∣∣ d
dt

∣∣∣EψN (t)
wN,β

(t)− Eϕ(t)
‖wN,β‖1(t)

∣∣∣
∣∣∣∣

=
∣∣∣ d

dt

(
Eψ

N (t)
wN,β

(t)− Eϕ(t)
‖wN,β‖1(t)

)∣∣∣

=

∣∣∣∣⟪ψN (t), ˙V ext(t, x1)ψN (t)⟫− 〈ϕ(t), ˙V ext(t)ϕ(t)
〉
L2(R3)

∣∣∣∣ , (1.80)

where the first equality holds by [117, Theorem 6.17] for almost every t if the map

t 7→ d
dt(E

ψN (t)
wN,β (t) − Eϕ(t)

‖wN,β‖1(t)) is continuous. This imposes on the external field the
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condition that the map t 7→ V ext(t) be C1.

The second contribution to the time derivative of α<ξ,wN,β is of the same form as d
dtα

in the Hartree case. For simplicity dropping the time dependences and indices ϕ(t),

one computes

d
dt ⟪ψN , f̂ ψN⟫

= i⟪ψN , [HN,β −
N∑

j=1

hj , f̂
]
ψN (t)⟫ (1.81)

= −N(N − 1)=⟪ψN , ZN,β(x1, x2)f̂ ψN⟫ (1.82)

= −N(N − 1)=⟪ψN , q1p2(f̂ − f̂−1)ZN,β(x1, x2)p1p2ψ
N⟫ (1.83)

−N(N − 1)=⟪ψN , q1q2(f̂ − f̂−2)wN,β(x1 − x2)p1p2ψ
N⟫ (1.84)

−2N(N − 1)=⟪ψN , q1q2(f̂ − f̂−1)ZN,β(x1 − x2)p1q2ψ
N⟫ , (1.85)

where

ZN,β(x1, x2) := wN,β(x1 − x2)− 1
N−1(wϕ(t)(x1) + wϕ(t)(x2)) . (1.86)

To compute d
dt f̂ , note that d

dtpj = i [pj , hj ], hence

d
dt f̂ = i [f̂ ,

N∑

j=1

hj ] .

To obtain (1.83) to (1.85), one inserts identities 1 = (pi + qi)(pj + qj) on both sides of

the commutator and uses the symmetry of ψN as well as the identity

Qµf̂ TijQν = QµTij f̂µ−νQν ,

where Q0 := p1p2, Q1 ∈ {p1q2, q1p2}, Q0 := q1q2 and Tij denotes an operator acting

non-trivially only on coordinates i and j (e.g. [32, Lemma 4.2b])6. Note that the

differences f̂− f̂d in (1.83) to (1.85) can be understood as operators that are weighted,

in the sense of Definition 1.4.1, with the derivative of f(k). For example, we obtain

in (1.83)

q1p2

(
f̂ − f̂−1

)
= q1p2

( N∑

k=1

(
f(k)− f(k − 1)

)
Pk + f(0)P0

)
= q1p2

N∑

k=1

f ′(k)Pk ,

where f ′(k) denotes the discrete derivative of f with respect to k. For the weight

6For convenience of the reader, we refer as far as possible to articles of this thesis. This does not
imply that these statements were originally proven there.
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f(k) = n2(k) = k/N , we find |f ′(k)| = N−1, hence ‖f̂ − f̂−1‖op = N−1. In contrast,

the derivative of the weight f(k) = n(k) =
√
k/N diverges as k → 0. This is the

reason why one introduces the cut-off ξ, which softens this singularity such that one

can derive the estimates ‖f̂ − f̂−1‖op . N−1+ξ and ‖(f̂ − f̂−1)q1ψ
N‖ . N−1 (e.g. [32,

Lemma 4.1]). Analogous results hold for f̂ − f̂−2.

Let us now analyse the four contributions (1.80) to (1.85) to the time derivative

of the counting functional. For simplicity, we will only discuss the problem of purely

repulsive interactions, i.e.,

wN,β(x) ≥ 0 for all x ∈ R3 .

As mentioned above, the method has been extended to include attractive interactions

and repulsive interactions with a certain negative part, but this is beyond the scope

of this discussion.

• Energy term (1.80).

Recall that this term appears in the NLS regime, while it is not present in the

Hartree case. It contains exclusively interactions between the bosons and the

external field V ext, which makes it the easiest term to control. The main idea is

the observation that for any f ∈ L∞(R3),

∣∣∣⟪ψN , f(x1)ψN⟫− 〈ϕ, f ϕ〉L2(R3)

∣∣∣ . ‖f‖L∞(R3) ⟪ψN , n̂ψN⟫ (1.87)

(e.g. [32, Lemma 4.7]). Hence, for an external field with bounded time deriva-

tive, (1.80) is small if the N -body state is close to a condensate.

• (qp–pp) term (1.83).

Note that q1w
ϕ(t)(x2)p1 = 0, hence (1.83) contains the difference

p2

(
(N − 1)wN,β(x1 − x2)− wϕ(t)(x1)

)
p2

between the true pair interaction wN,β and the effective one-body interaction

potential wϕ(t). Since

(N − 1)p2wN,β(x1 − x2)p2

= (N − 1)|ϕ(x2)〉 〈ϕ(x2), wN,β(x1 − x2)ϕ(x2)〉 〈ϕ(x2)| = N−1
N wϕ(t)(x1)p2 ,

this difference converges to zero as N →∞. Since ‖(f̂− f̂−1)q1ψ‖ . N−1 in both

NLS and Hartree case, we conclude that (1.83)→ 0 as N →∞. This indirectly

proves that the time evolution of ϕ(t) is determined by a non-linear equation,

whose non-linearity may differ from the non-linear term wϕ(t) in (1.69) at most

by O(1). In particular, this includes the N -independent NLS equation (1.72)
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with non-linear term ‖w‖L2(R3)|ϕ|2.

• (1.84) and (1.85), Hartree scaling.

Both terms can be estimated by straightfoward applications of the Cauchy–

Schwarz inequality, using that ‖q1ψ
N‖2 = ⟪ψ, n̂ψ⟫ < α(t, ψN , ϕ). The pre-factor

of order O(N2) is essentially cancelled since ‖wN,β=0‖L2(R3) . N−1 and because

‖f̂ − f̂−d‖op . N−1. The full argument is given in [150].

• (qq–pp) term (1.84), NLS scaling.

For β > 0, an estimate as in the Hartree case does not suffice. Among other

obstructions, ‖wN,β‖L2(R3) . N−1+ 3β
2 is not small enough to compensate for

the pre-factor. One solves this by integration by parts, exploiting that the anti-

derivative of wN,β is less singular than wN,β. Heuristically speaking, shifting

one derivative from the strongly peaked interaction to the N -body wave func-

tion yields an improvement because the great majority of particles occupies the

condensate wave function, which varies slowly in space. In the course of the

integration by parts, derivatives ∇1 fall upon projectors p1 and q1 as well as on

the N -body wave function ψN . In the first case, note that ∇p = |∇ϕ〉〈ϕ|, hence

‖∇1p1‖op = O(1) for sufficiently regular ϕ. To control ‖∇1ψ
N‖, one observes

that

Eψ
N

wN,β
(t) ≥ ‖∇1ψ

N‖2 −
∣∣⟪ψN , V ext(t, x1)ψN⟫∣∣ ≥ ‖∇1ψ

N‖2 −O(1)

because wN,β ≥ 0 and if V ext is assumed bounded. Since E
ψN0
wN,β (0) is of order

O(1) and the time derivative depends only on the N -independent quantity V ext,

this yields the a priori bound ‖∇1ψ
N‖ . 1, which is sufficient to control (1.84).

• (pq–qq) term (1.85), NLS scaling.

Following the same strategy of integration by parts, one finds that above a priori

estimate is not sufficient, but a better control of the kinetic energy ‖∇1q1ψ
N‖2

contributed by a particle outside the condensate is required. More precisely, one

needs a bound of the form

‖∇1q1ψ
N‖2 . α<ξ,wN,β (t, ψN , ϕ) + O(1) . (1.88)

To this end, one first proves that

|EψNwN,β − E
ϕ
‖wN,β‖1 | & ‖∇1ψ

N‖2 − ‖∇ϕ‖2 − O(1) . (1.89)

Now one inserts the identity p1 + q1 after ∇1, expands the scalar product and
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1.4. Effective dynamics of the condensate wave function

observes that

‖∇1p1ψ
N‖2 − ‖∇ϕ‖2 = ‖∇ϕ‖2‖p1ψ

N‖2 − ‖∇ϕ‖2 . ‖q1ψ
N‖2 = ⟪ψN , n̂2ψN⟫

and that

∣∣⟪ψN , p1(−∆1)q1ψ
N⟫∣∣ =

∣∣∣∣⟪n̂ 1
2
1 ψ

N , p1(−∆1)q1n̂
− 1

2ψN⟫∣∣∣∣ ≤ ‖∆1p1‖op‖n̂
1
2ψN‖2

= ‖∇ϕ‖2‖q1ψ‖2 = ⟪ψN , n̂ψN⟫ ‖∇ϕ‖2 . ⟪ψN , n̂ψN⟫
since q1 = n̂2 in the sense of operators on L2

+(R3N ) as in (1.75). Together, this

yields

|EψNwN,β − E
ϕ
‖wN,β‖1 | & ‖∇1q1ψ

N‖2 − ⟪ψN , n̂ψN⟫− ⟪ψN , n̂2ψN⟫− O(1)

& ‖∇1q1ψ
N‖2 − ⟪ψN , m̂ψN⟫− O(1) ,

which, by definition of α<ξ,wN,β , is precisely the bound (1.88). In conclusion,

this estimate is only possible because the energy term is part of the counting

functional and because the weight m is chosen such that m(k) ≥ n(k) for any k,

which, in particular, excludes the Hartree weight n2. This finally motivates the

form (1.78) of the counting functional.

Altogether, the estimates of the four terms lead to the inequality

d
dtα

<
ξ,wN,β

(
t, ψN (t), ϕ(t)

)
. α<ξ,wN,β

(
t, ψN (t), ϕ(t)

)
+ O(1) ,

which concludes the proof by Lemma 1.4.3 and the equivalence (1.79).

GP regime

For an interaction wN in the GP scaling regime, the functional α<ξ,wN cannot satisfy

a Grönwall inequality. This can be seen from the (pp–pq) term (1.83) in the time

derivative of α<ξ,wN , which contains the difference between the full pair interaction wN
and the effective interaction potential, now given by 8πa|ϕ|2. As explained above,

this term is only small if the non-linear term in the effective equation differs from

wϕ(t) = N3w(N ·) ∗ |ϕ|2 ≈ ‖w‖L1(R3)|ϕ|2 at most by O(1). However, ‖w‖L1(R3) is

precisely the first order Born approximation b0 to the scattering length a, and we

argued in (1.28) that the difference between b0 and 8πa is of order one.

The functional α<ξ,wN is no suitable counting functional for the GP scaling regime

because it counts the (weighted) relative number of particle outside ϕ⊗N . However, due

to the inter-particle correlations, the condensate is no product state, and one should

instead count the particles outside the correlated state ψNcor (1.20). Although this is
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also true in the NLS scaling regime, it becomes relevant only in the GP regime, where

the difference between ϕ⊗N and ψNcor is visible on the length scale of the interaction

in the limit N →∞.

Consequently, one requires a new counting functional that takes the correlations

into account, similarly to the heuristic derivation of the GP energy functional (Sec-

tion 1.2.5), where the correlations were absorbed into the effective δ interaction (1.32).

To describe the correlations, we use an auxiliary function f
β̃
∈ C1(R3), which asymp-

totically coincides with the scattering solution jN on suppwN and equals one for

sufficiently large |x|. It is defined as the solution of the zero energy scattering equa-

tion of wN −Uβ̃, where U
β̃

is an auxiliary potential which is constructed such that the

scattering length of wN − Uβ̃ equals zero:

Definition 1.4.4. Let β̃ ∈ (0, 1). Define

U
β̃
(x) :=

{
N−1+3β̃a for N−β̃ < |x| < R

β̃
,

0 else,

where R
β̃

is the minimal value in (N−β̃,∞] such that the scattering length of wN −Uβ̃
equals zero. Let f

β̃
∈ C1(R3) be the solution of





(
−∆ + 1

2

(
wN (z)− U

β̃
(z)
))
f
β̃
(z) = 0 for |x| < R

β̃
,

f
β̃
(x) = 1 for |x| ≥ R

β̃
,

(1.90)

and define

g
β̃

:= 1− f
β̃
.

Using f
β̃

instead of jN has the technical advantage that g
β̃

and ∇f
β̃

are compactly

supported. To modify the counting functional such that the role of ϕ⊗N is taken by

the correlated state
∏N
j=1 ϕ(xj)

∏
1≤k<l≤N fβ̃(xk − xl), one substitutes the first term

of α<ξ,wN by

⟪ψN , m̂ψN⟫ 7→ ⟪ψN ,∏
k<l

f
β̃
(xk − xl) m̂

∏

r<s

f
β̃
(xr − xs)ψN⟫

≈ ⟪ψN , m̂ψN⟫−N(N − 1)<⟪ψN , g
β̃
(x1 − x2)m̂ψN⟫ . (1.91)

Here, we used the symmetry of ψN (t) ≡ ψ, expanded both products by writing f
β̃

=

1− g
β̃
, and kept only the terms which are at most linear in g

β̃
.

Note that the substitution reproduces the original functional up to a correction term.

This additional expression plays a crucial role: it effectively leads to the replacement of
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wN by U
β̃
f
β̃

in the time derivative of the new functional, especially in the problematic

term (1.83). To demonstrate this, let us consider the case N = 2 with V ext = 0.

Abbreviating Z
(12)
2 := w2(x1 − x2) − 8πa(|ϕ(x1)|2 + |ϕ(x2)|2) analogously to (1.86),

and with the notation F (12) := F (x1 − x2) for any F : R3 → R, we obtain

d
dt ⟪ψN , m̂ψN⟫ = i⟪ψN , [Z(12)

2 , m̂
]
ψN⟫ = −2=⟪ψN , Z(12)

2 m̂ψN⟫ ,
−2 d

dt<⟪ψN , g(12)

β̃
m̂ψN⟫ = 2=⟪ψN ,(g(12)

β̃

[
Z

(12)
2 , m̂

]
ψN⟫

+2=⟪ψN , (w(12)
N − U (12)

β̃
)f

(12)

β̃
m̂+ 4∇1f

(12)

β̃
· ∇1m̂

)
ψN⟫ .

Adding these expressions and using that g
β̃

= 1 − f
β̃
, we observe that the term

⟪ψN , Z(12)
2 m̂ψN⟫ cancels. It remains, among other contributions,

−2=⟪ψN ,(U (12)

β̃
f

(12)

β̃
− 8πa(|ϕ(x1)|2 + |ϕ(x2)|2)

)
m̂ψN⟫ . (1.92)

This is precisely (1.82) with wN replaced by U
β̃
f
β̃
, which can be seen as follows: Since

β̃ ∈ (0, 1), U
β̃
f
β̃

is a potential in the NLS scaling regime7, hence its scattering length

is asymptotically given by the Born approximation ‖U
β̃
f
β̃
‖L1(R3). This expression

asymptotically coincides with the scattering length of wN because

∫

R3

U
β̃
(x)f

β̃
(x) dx =

∫

R3

wN (x)f
β̃
(x) dx ≈

∫

R3

wN (x)jN (x) dx = 8πaN

by construction of f
β̃
, which asymptotically equals jN on suppwN . Consequently,

the coupling parameter for the non-linear evolution generated by U
β̃
f
β̃

equals 8πa,

which implies that (1.92) can be controlled by the result from the NLS regime. It only

remains to prove that the remainders from the substitution vanish as N →∞. In this

sense, the mathematical understanding of interactions in the NLS regime is a crucial

ingredient for obtaining an effective description of the dynamics the GP regime.

Let us remark that the underlying physical idea of this replacement is the same

as in the heuristic derivation of the GP energy functional (Section 1.2.5): to leading

order, a sufficiently distant and low-energetic particle does not resolve the difference

between two scattering potentials whose scattering lengths are (asymptotically) equal.

Recall that the heuristic argument consists of a two-stage replacement: first, one

replaces the interaction wN with a softer interaction U eff with the same scattering

length for which the Born approximation holds — however, without control of the

approximation. Second, U eff is replaced by U0/Nδ(x), where U0 = 8πa. Again, this is

7In fact, Uβ̃fβ̃ is not exactly of the form N−1+3β̃w(N β̃ ·). Hence, one must slightly enlarge this class
of potentials, as is in Definition 3.1.3.
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far from rigorous, and the mathematical problems coming with the replacement by a

δ-interaction are sketched at the end of Section 1.4.1. In a sense, Pickl’s method can

be understood as a rigorous version of these heuristics: the role of U eff is taken by U
β̃
,

and the control of the remainders provides the missing control of the approximation;

subsequently, the full proof for the NLS regime takes the place of the second stage of

the replacement.

Proving that the new functional (1.91) converges to zero as N →∞ is only meaning-

ful if the correction term vanishes in the limit, since this ensures the equivalence (1.79)

for the new counting functional. Therefore, one replaces m̂ by the weighted many-body

operator r̂ defined as

r̂ := m̂bp1p2 + m̂a(p1q2 + q1p2) , (1.93)

where m̂a and m̂b denote the operators corresponding to the weight functions

ma(k) := m(k)−m(k + 1), mb(k) := m(k)−m(k + 2) .

When replacing m̂ by r̂ in (1.91), one gains an additional projection p1, which allows

the estimate of g
(12)

β̃
p1 instead of g

(12)

β̃
. Besides, ma(k) and mb(k) can be understood

as discrete derivatives and thus, as explained above, compensate for powers of N .

Note that the change m̂ 7→ r̂ does not affect the replacement of wN by U
β̃

because one

can show that [Z
(12)
N , m̂] = [Z

(12)
N , r̂ ] (see e.g. [32, Lemma 4.2d]). Hence, the counting

functional for the GP scaling of the interaction is defined as

αξ,wN (t, ψN , ϕ) := α<ξ,wN (t, ψN , ϕ)−N(N − 1)<⟪ψN , g
β̃
(x1 − x2) r̂ϕ ψN⟫ (1.94)

with α<ξ,wN as in (1.78).

Following the steps sketched for N = 2, and for simplicity dropping again all time

dependences and indices ϕ(t), the time derivative of αξ,wN is bounded by

∣∣ d
dtαξ,wN (t, ψN , ϕ)

∣∣ (1.95)

.
∣∣∣∣⟪ψN , ˙V ext(z1)ψN⟫− 〈ϕ, ˙V ext ϕ

〉
L2(R3)

∣∣∣∣+N2=⟪ψN , Z̃(12)

N,β̃
m̂ ψN⟫ (1.96)

+N=⟪ψN , |ϕ(x1)|2g(12)

β̃
r̂ ψN⟫+N2=⟪ψN , g(12)

β̃
r̂ Z

(12)
N ψN⟫ (1.97)

+N2=⟪ψN , (∇1g
(12)

β̃
) · ∇1r̂ ψ

N⟫ (1.98)

+N3=⟪ψN , g(12)

β̃

[
|ϕ(x3)|2, r̂

]
ψN⟫+N3=⟪ψN , g(12)

β̃

[
w

(13)
N , r̂

]
ψN⟫ (1.99)

+N4=⟪ψN , g(12)

β̃

[
w

(34)
N , r̂

]
ψN⟫ (1.100)
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1.4. Effective dynamics of the condensate wave function

+N2=⟪ψN , g(12)

β̃

[
|ϕ(x1)|2, r̂

]
ψN⟫ , (1.101)

where we used the abbreviation

Z̃
(12)

N,β̃
:= (U

β̃
f
β̃
)(x1 − x2)− 8πa

N−1(|ϕ(x1)|2 + |ϕ(x2)|2) .

Let us analyse the different contributions:

• NLS term (1.96).

The first part of (1.96) is exactly the energy term (1.80), and the second part

equals (1.82) with interaction potential U
β̃
f
β̃
. However, one cannot immediately

use the result from the NLS case, since it relies on the energy estimate (1.88).

Note that although the GP interaction potential is in (1.96) replaced by a poten-

tial in the NLS scaling regime, the dynamics of the N -body wave function ψN

are still generated by the GP Hamiltonian. For these dynamics, ‖∇1q1ψ
N‖ is

not asymptotically zero because the microscopic structure described by f
β̃

varies

on the same length scale as the interaction and thus contributes a kinetic energy

of O(1).

Since this kinetic energy is localised around the scattering centres, one can show

a bound similar to (1.88) for the kinetic energy on a subset A1 ⊂ R3N , where

appropriate holes around these centres are cut out, namely

‖1A1∇1q1ψ
N‖2 . α<ξ,wN (t, ψN , ϕ) + O(1) . (1.102)

The main tool of the proof is the inequality

‖1|x1−x2|<Rβ̃∇1ψ‖2 + 1
2 ⟪ψ,(w(12)

N − U (12)

β̃

)
ψ⟫ ≥ 0 for ψ ∈ D(∇1) (1.103)

([151, Lemma 5.1(3)] and [97, Lemma 7.10]). To show (1.103), one first argues

that the one-body operator HZn := −∆ + 1
2

∑
zk∈Zn(wN −Uβ̃)(·− zk), where Zn

is an n-elemental subset of R3 with distance between any two elements larger

than 2R
β̃
, is for each n ∈ N a positive operator. To see this, one observes

that FZn
β̃

:=
∏
zk∈Zn fβ̃(· − zk) satisfies HZnFZn

β̃
= 0. Besides, recall that HZn

is positive if and only if all of its eigenvalues are non-negative. If HZn had a

negative eigenvalue, its ground state ψG would be strictly positive, which leads

to a contradiction when considering the scalar product 〈FZn
β̃
, HZnψG〉.

Using the positivity of HZn for any n ∈ N, one shows that the quadratic form

Q(ψ) := ‖1|·|≤R
β̃
∇ψ‖2 + 1

2

〈
ψ, (wN − Uβ̃)ψ

〉
, ψ ∈ H1(R3)
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is non-negative: Assuming that there exists a ψ̃ ∈ H1(R3) such that Q(ψ̃) < 0,

one identifies a set Zn and a function χR ∈ H1(R3) such that 〈χR, HZnχR〉 < 0

for some n, contradicting the positivity of HZn . The function χR is constructed

in such a way that the part of 〈χR, HZnχR〉 inside a ball with radius R containing

a sufficiently large neighbourhood of Zn equals nQ(ψ̃) < 0. The decay of χR
outside the ball is chosen such that its positive kinetic energy is not large enough

to cancel this negative contribution, given n is chosen sufficiently large. Finally,

one deduces (1.103) from the non-negativity of Q.

Let us now explain why (1.103) is crucial for the derivation of (1.102). Inserting

identities 1A1 + 1A1
, where A1 := R3N \ A1, one can show with (1.87) that

|EψNwN − E
ϕ
a | & ‖1A1∇1q1ψ

N‖2 + ‖1A1
∇1ψ

N‖2 − ⟪ψN , n̂ψN⟫− O(1)

+N−1
2 ⟪ψN ,(w(12)

N − 8πa
N−1 |ϕ(x1)|2

)
ψN⟫ .

The second line contains the difference between the pair potential and the effec-

tive one-body potential, hence, it would be small if wN was replaced by U
β̃

or

U
β̃
f
β̃
. However, simply adding and subtracting U

β̃
does not solve the problem

since the remainder N−1
2 ⟪ψN , (w(12)

N −U (12)

β̃
)ψN⟫ is neither small nor necessarily

non-negative. This is where the inequality (1.103) comes into play: defining B1

as the set where all particles from {2, ..., N} are mutually too distant to iteract

with each other and B1 as its complement, one infers from (1.103) that

‖1A1
1B1∇1ψ

N‖2 + N−1
2 ⟪1B1ψN , (w(12)

N − U (12)

β̃
)1B1ψ

N⟫ ≥ 0 , (1.104)

which follows because 1B1ψ
N ∈ D(∇1) and since A1 is chosen sufficiently large

that it contains a ball with radius R
β̃

around each scattering centre. Hence, one

inserts identities 1B1 + 1B1 , which yields

α<ξ,wµ(t) + O(1) & ‖1A1∇1q1ψ
N‖2

+‖1A1
1B1∇1ψ

N‖2 + N−1
2 ⟪ψN ,1B1(w

(12)
N − U (12)

β̃
)ψN⟫

−N−1
2

∣∣∣∣⟪ψN ,1B1U (12)

β̃
ψN⟫− ⟪ψN , 8πa|ϕ(x1)|2ψN⟫∣∣∣∣ ,

where we dropped some non-negative contributions. By (1.103), the second line

is non-negative. The last line can be controlled similarly to the comparable terms

in the NLS estimate (1.89) and since the set B1 is sufficiently small.

Finally, recall that the energy estimate (1.88) enters only in the (qq–qp)-term

(1.85). Hence, one modifies this term by suitable insertion of identities 1 =
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1A1 + 1A1
. The expressions containing 1A1 can be controlled by (1.102), while

one estimates the terms containing 1A1
by exploiting the smallness of A1.

• Remainder terms (1.97) to (1.101).

These terms collect the remainders from the substitution wN 7→ U
β̃
f
β̃
. To control

them, one mainly uses properties of the scattering solution f
β̃
, for whose proof

it is crucial that g
β̃

has compact support of diameter ∼ N−β̃. To control (1.98),

one integrates by parts, using that the condensate wave function varies on a

much larger length scale than the microscopic structure g
β̃
.

In summary, these steps lead to the bound

d
dtαξ,wN

(
t, ψN (t), ϕ(t)

)
. α<ξ,wN

(
t, ψN (t), ϕ(t)

)
+ O(1) .

Finally, one shows that the correction term in (1.94) is of order O(1), which concludes

the derivation of the GP equation by Lemma 1.4.3 and (1.79).

1.5. Excitations from the condensate

Recall that complete asymptotic BEC implies that a macroscopic fraction of the bosons

occupies the condensate state ϕ ∈ L2(R3), which is mathematically formulated as

the convergence of the reduced density matrices (Definition 1.2.1). Note that this

convergence does not imply that the N -body wave function ψ is close to the product

state ϕ⊗N in any stonger sense than in the sense of reduced densities. This can be

infered from two reasons:

• Since the bosons interact with each other, the N -body ground state as well as the

lower excited states (which are expected to exhibit BEC) feature a microscopic

correlation structure around the scattering centres as in (1.20), which minimises

the energy. To leading order in N , these correlations are not visible in the

reduced density matrix, even in the most singular GP scaling. In contrast, the

difference between the N -body state and a pure product is large with respect to

the L2(R3N ) norm, and in particular with respect to any stronger norm involving

the energy8.

• A microscopic fraction of the total number of particles can be excited from the

condensate without destroying the state of BEC. While this does not affect the

leading order behaviour of the reduced densities, it has a huge effect on the

8An argument for the mean-field regime is given in [113, Corollary 2]. For larger values of β, where
the correlation structure becomes relevant, some more work is required since one needs to prove
that the normalisation factor in (1.20) converges to one.
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L2(R3N )-norm. To motivate this, consider a non-interacting gas, whose ground

state is given by the product state ϕ⊗N . Naturally, a symmetric N -body state

ψ̃(x1, ..., xN ) :=
1

N

N∑

j=1

ϕ⊥(xj)ϕ
⊗(N−1)(x1, ..., xN \ xj) ,

where one particle occupies a state ϕ⊥ ⊥ ϕ orthogonal to ϕ in L2(Rd)-sense and

all other particles are in the state ϕ, fulfils the criterion of complete asymptotic

BEC. However, it is not close to ϕ⊗N in L2(R3N )-sense since

‖ψ̃ − ϕ⊗N‖2 = 2− 2<⟪ψ̃, ϕ⊗N⟫ = 2

for normalised functions ϕ, ϕ⊥.

The ground state results such as (1.19) and (1.35) discussed so far, as well as the

dynamical statement (1.73), are related to the behaviour of the (correlated) condensate

wave function. The validity of these results implies that the effects due to the particles

outside the condensate are of higher order with respect to N−1, related to the fact that

it is very unlikely to find a relevant number of such particles in the low energy states.

Hence, to derive the next-to-leading order corrections to the ground state energy and

to obtain a more precise characterisation of the dynamics than in terms of reduce

densities, these excitations from the condensate must be included in the description.

Since the excitations are often described in the language of second quantisation,

we begin with an overview of this formalism and recall the related notation, which

is essentially taken from [22, Chapter 3]. Subsequently, we summarise the results of

Bogoliubov theory concerning the energy spectrum as well as the dynamics of the

excitations. The main references are [134, Chapter 2], [137], [145, Chapter 8], [146],

[163] and [169].

1.5.1. Second quantisation

To describe bosonic states where the number of particles is not fixed, one introduces

the bosonic Fock space over the one-body Hilbert space H = L2(Ω) for some Ω ⊆ Rd,

F =
⊕

n≥0

n⊗

sym

H =
⊕

n≥0

Hn+ ,

whose elements are denoted by φ = (φ(n))n≥0. It is equipped with the inner product

〈ψ, φ〉F =
∑

n≥0

〈ψ(n), φ(n)〉Hn ,
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corresponding to the norm

‖φ‖F =
∑

n≥0

‖φ(n)‖2Hn .

We consider only normalised vectors φ ∈ F , hence ‖φ(n)‖2Hn determines the probability

for the state φ to have n particles. States with a fixed number of particles, i.e., Fock

vectors with exactly one non-zero component, are eigenvectors of the number operator

N , which is defined by its action

(Nφ)(n) = nφ(n) .

The vacuum state is denoted by Ω = (1, 0, 0, . . . ).

For f ∈ H, the creation and annihilation operators a∗(f) and a(f) are defined as

(a∗(f)φ)(n)(x1, ..., xn) =
1√
n

n∑

j=1

f(xj)φ
(n−1)(x1, ..., xj−1, xj+1, ..., xn) , n ≥ 1

(a(f)φ)(n)(x1, ..., xn) =
√
n+ 1

∫

Ω

dxf(x)φ(n+1)(x, x1, ..., xn) , n ≥ 0 ,

i.e., a∗(f) and a(f) create and annihilate a particle in the state f . To write them in

a more compact form, one introduces the operator-valued distributions a∗x, ax as

a∗(f) =

∫

Ω

dxf(x) a∗x , a(f) =

∫

Ω

dxf(x) ax .

For f, g ∈ H, creation and annihilation operator satisfy the canonical commutation

relations (CCR)

[a(f), a∗(g)] = 〈f, g〉H , [a(f), a(g)] = [a∗(f), a∗(g)] = 0 ,

which correspond to the relations

[ax, a
∗
y] = δ(x− y) , [ax, ay] = [a∗x, a

∗
y] = 0

of the operator-valued distributions.

The second quantisation dΓ(J (1)) of a one-body operator J (1) acting on H is defined

by the requirement that

(
dΓ(J (1))φ

)(n)
=

n∑

j=1

J
(1)
j ψ(n) ,
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where J
(1)
j := 1

⊗(j−1) ⊗ J (1) ⊗ 1⊗(n−j) denotes the operator on Hn acting as J (1) on

the particle j and as the identity on all other particles. If the operator J (1) has an

integral kernel J (1)(x; y), its second quantisation is given by

dΓ(J (1)) =

∫

Ω

dx

∫

Ω

dy J (1)(x; y) a∗xay .

For k-particle operators J (k) acting on Hk+ with integral kernel J (k)(x1, ..., xk; y1, ..., yk),

this generalises to

dΓ(J (k)) =

∫

Ωk

dx1 ··· dxk
∫

Ωk

dy1 ··· dyk J (k)(x1, ..., xk; y1, ..., yk)a
∗
x1 ···a∗xkayk ···ay1 .

Since the number operator is the second quantisation of the identity, it can be expressed

as

N = dΓ(1) =

∫

Ω

dx a∗xax . (1.105)

The second quantisation dΓ(HN (t)) = HN (t) of the Hamiltonian HN (t) from (1.2) is

determined by its action (HN (t)φ)(n) = H
(n)
N (t)φ(n) with

H
(n)
N =

n∑

j=1

(
−∆j + V ext(t, xj)

)
+

∑

1≤i<j≤n
wint(xi − xj) ,

hence

HN (t) =

∫

R3

dx∇xa∗x∇xax +

∫

R3

dxV ext(t, x)a∗xax +
1

2

∫

R3

dx

∫

R3

dy wint(x− y)a∗xa
∗
yayax .

Note that the parameter N , which enters, e.g., in the interaction if wint is chosen as

wN or wN,β, is not related to the number of particles of the system, which can take

any value. When restricted to the N particle sector L2(R3N ) ⊂ F , HN (t) coincides

with HN (t) from (1.2).

To describe a uniform Bose gas in a cubic box Λ with side length L and periodic

boundary conditions, it is most convenient to work in momentum space. The plane

waves L−
3
2 e−ip·x for p ∈ Λ∗ := 2π

L Z
3 form a basis of L2(Λ), which leads to the intro-

duction of the operator-valued distributions in momentum space,

a∗p := a∗(e−ip·x) =

∫

Λ

dx e−ip·x a∗x , ap := a(e−ip·x) =

∫

Λ

dx eip·x ax .

Hence, a∗p and ap can be understood as Fourier transforms of a∗x and ax, which create
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1.5. Excitations from the condensate

and annihilate a particle with momentum p ∈ Λ∗. From the CCR of ax and a∗x, one

derives the corresponding relations

[ap, a
∗
q ] = δp,q , [ap, aq] = [a∗p, a

∗
q ] = 0 .

In this representation, the total number operator is

N =
∑

p∈Λ∗
a∗pap ,

and the second quantised Hamiltonian is given as

H =
∑

p∈Λ∗
|p|2a∗pap +

1

2L3

∑

p∈Λ∗
ŵint(p)

∑

q,k∈Λ∗
a∗q+pa

∗
k−pakaq , (1.106)

where

ŵint(p) =

∫

Λ

wint(x)e−ip·x dx

denotes the Fourier transform of wint. For the choice wint = wN,β, one finds

ŵN,β(p) =
1

N
ŵ
( p

Nβ

)
.

1.5.2. Bogoliubov theory for ground state energy and lower excitation
spectrum

At low energies, one expects the lowest-lying single-particle state to be macroscopically

occupied. For the uniform Bose gas in the box Λ, this lowest state is given by the

plane wave with momentum zero. Macroscopic occupation means that the expectation

value of the number operator counting the particles in the zero-momentum mode is of

order N , i.e.,

N0 = a∗0a0 ∼ N .

Motivated by this observation, the following approximation scheme was proposed by

Bogoliubov in [29]:

• Since the expectation value of N0 is much larger than [a0, a
∗
0] = 1, one replaces

a∗0 and a0 in (1.106) by
√
N (c-number substitution). The resulting Hamiltonian

contains only creation and annihilation operators corresponding to states with

|p| > 0, describing excitations from the condensate.

• Subsequently, one neglects all terms that are higher than quadratic in a∗p and ap,

which issue from interactions among the excitations. This yields a Hamiltonian
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which is quadratic in a∗p and ap for |p| > 0 and contains no operators creating or

annihilating particles in the condensate.

Applying this so-called Bogoliubov approximation to (1.106) leads, with the abbrevia-

tion Λ∗+ := Λ∗ \ {0}, to

H =
∑

p∈Λ∗+

|p|2a∗pap +
1

2L3
ŵint(0)

∑

q,k∈Λ∗

(
a∗q(aqa

∗
k − δq,k)ak

)

+
1

2L3

∑

p∈Λ∗+

ŵint(p)
(
a∗pa
∗
−pa0a0 + a∗pa

∗
0apa0 + a∗0a

∗
0apa−p + a∗0a

∗
−pa0a−p

)

+
1

2L3

∑

p,q∈Λ∗+

ŵint(p)a∗q+pa
∗
q−paqaq +

1

2L3

∑

p,q∈Λ∗+
q 6=−p

ŵint(p)a∗q+pa
∗
−pa0aq

+
1

2L3

∑

p,k∈Λ∗+
k 6=p

ŵint(p)a∗pa
∗
k−paka0 +

1

2L3

∑

p,q,k∈Λ∗+
k 6=p,q 6=−p

ŵint(p)a∗q+pa
∗
k−pakaq

≈ N(N − 1)

2L3
ŵint(0) +

∑

p∈Λ∗+

(
|p|2a∗pap +

N

2L3
ŵint(p)

(
a∗pap + a∗−pa−p

))

+
∑

p∈Λ∗+

N

2L3
ŵint(p)

(
a∗pa
∗
−p + apa−p

)
,

where we replaced in the first term the number operator N =
∑

q∈Λ∗ a
∗
qaq by its value

N when evaluated on a state with N particles, and applied the Bogoliubov approxi-

mation in the remaining terms. For spherically symmetric interaction potentials wint,

this equals the so-called Bogoliubov Hamiltonian

HBog = N−1
2 % ŵint(0)

+
∑

p∈Λ∗+

((
|p|2 + % ŵint(p)

)
a∗pap + 1

2%ŵ
int(p)

(
a∗pa
∗
−p + apa−p

))
, (1.107)

where % = N
L3 denotes the particle density. The first term in (1.107) is the energy

of N particles in the zero momentum (condensate) state. The term proportional to

a∗pap is the energy of excitations moving in the mean-field created by the interactions

with all other particles. It describes the process where simultaneously a particle with

momentum p and a particle from the condensate are scattered into the zero-momentum

state and the state p, respectively. The last term corresponds to the scattering of two

condensate particles into a pair with momenta p and −p, and vice versa.
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1.5. Excitations from the condensate

Let us now study interactions wint(x) of the form

wint(x) =
1

N − 1
vN,β(x) , vN,β(x) = N3βv(Nβx) , β ∈ [0, 1) (1.108)

in a cubic box Λ with side length L = 1 and periodic boundary conditions, or, alter-

natively, in an external potential V ext with characteristic length of order one. Conse-

quently, the density is % ∼ N . We assume that the interaction v is bounded, spherically

symmetric and compactly supported. Here, we use a different notation than in (1.24),

where the prefactor ∼ N−1 was included in wN,β. The reason for this inconsistency

is that the notation (1.24) seems to be standard for deriving dynamical results on the

level of reduced densities, whereas the notation (1.108) is the usual convention for

static and dynamical results in relation with the Bogoliubov approximation. To make

the distinction clearer, we use v instead of w to denote the unscaled interaction poten-

tial. As explained in Section 1.2.4, the case β = 0 is the Hartree scaling, parameters

β < 1
3 describe a system with mean-field interactions, and the whole regime β < 1 is

referred to as NLS scaling of the interaction.

In the homogeneous case, the Bogoliubov Hamiltonian with interaction (1.108) is

Hβ
Bog = N

2 v̂(0) +
∑

p∈Λ∗+

(
|p|2 + v̂

( p
Nβ

)
a∗pap + 1

2 v̂
( p
Nβ

)
(a∗pa

∗
−p + apa−p)

)
, (1.109)

where we used that

v̂N,β(p) = v̂
( p
Nβ

)

and approximated N−1
N ≈ 1. To describe an inhomogeneous gas in an external poten-

tial V ext in R3 with ground state ϕ, one uses the position space representation. The

corresponding Bogoliubov Hamiltonian can be written as9

HβBog =

∫

R3

dx a∗x (hϕ(x) +Kϕ
1 (x)) ax

+ 1
2

∫

R3

dx

∫

R3

dy
(
Kϕ

2 (x, y)a∗xa
∗
y +Kϕ

2 (x, y)axay

)
.

(1.110)

Here,

Kϕ
1 := qϕK̃ϕ

1 q
ϕ , Kϕ

2 (·, ·) := (qϕ ⊗ qϕ) K̃ϕ
2 (·, ·) (1.111)

with qϕ from Definition 1.4.1, where K̃1 is the Hilbert-Schmidt operator on L2(R3)

with kernel

K̃ϕ
1 (x; y) := ϕ(x)vN,β(x− y)ϕ(y) ,

9See, e.g., [137, Equation (31)].
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and where the two-body function K̃ϕ
2 is given by

K̃ϕ
2 (x, y) := ϕ(x)vN,β(x− y)ϕ(y) .

Further,

hϕ := −∆ + V ext + vN,β ∗ |ϕ|2 − µϕ , (1.112)

where we abbreviated

vϕ := vN,β ∗ |ϕ|2 (1.113)

as in (1.70). The phase parameter µϕ ∈ R is usually chosen as

µϕ = 1
2

∫

R3

dx

∫

R3

dy|ϕ(x)|2|ϕ(y)|2vN,β(x− y) . (1.114)

To motivate this particular choice of µϕ, observe that it implies the compatibility

of the energies in the time-dependent setting: under the assumption of condensation

ψ(t) ≈ ϕ(t)⊗N , the N -body energy per particle can be approximated as

1

N
⟪ψN (t), HN,βψ

N (t)⟫ =
1

N
⟪ψN (t), i∂tψ

N (t)⟫ ≈ 〈ϕ(t), i∂tϕ(t)〉L2(R3)

=
〈
ϕ(t),

(
−∆ + V ext + vN,β ∗ |ϕ(t)|2 − µϕ(t)

)
ϕ(t)

〉
L2(R3)

,

which coincides with the effective energy per particle,

〈
ϕ(t),

(
−∆ + V ext + 1

2vN,β ∗ |ϕ(t)|2
)
ϕ(t)

〉
L2(R3)

,

for above choice of µϕ(t) ([113, p. 1615]). Note that the operator hϕ in (1.112) coincides

with the expression in (1.69) up to µϕ. As long as exclusively the dynamics of the

condensate wave function were concerned, we could neglect this phase parameter since

it cancels in the reduced density matrix.

Since the Bogoliubov Hamiltonian is quadratic, it can be explicitly diagonalised

by means of a Bogoliubov transformation. To remove the off-diagonal contributions

a∗pa
∗
−p and apa−p in HBog, one introduces a new set b∗p, bp of creation and annihilation

operators satisfying the CCR in such a way that (1.107) written in terms of b∗p, bp is

diagonal. This can be achieved by a transformation

bp = u(p)ap + v(p)a∗−p , b−p = u(p)a−p + v(p)a∗p ,

where u(p) and v(p) must satisfy the condition

u(p)2 − v(p)2 = 1
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1.5. Excitations from the condensate

for b∗p, bp to fulfil the CCR. This is clearly given if

u(p) = cosh(αp) , v(p) = sinh(αp)

for any αp ∈ R, and one finds that the choice

tanh(αp) =
|p|2 + %ŵint(p)−

√
|p|4 + 2|p|2%ŵint(p)

%ŵint(p)

removes the off-diagonal part in (1.107).

As a consequence, the Hamiltonian H0
Bog from (1.109) for β = 0 can be written as

H0
Bog = E0

Bog +
∑

p∈Λ∗+

e0(p)b∗pbp , (1.115)

where

E0
Bog = N

2 v̂(0)− 1
2

∑

p∈Λ∗+

(
|p|2 + v̂(p)− e0(p)

)
, (1.116)

e0(p) =
√
|p|4 + 2|p|2 v̂(p) . (1.117)

Note that e0(p) is linear in |p| for small momenta, whereas the dispersion relation is

quadratic in the non-interacting case. Moreover, the sum in E0
Bog is absolutely conver-

gent, which can be seen by expanding the square root. In conclusion, the Bogoliubov

approximation provides the next-to-leading order correction (order one) to the ground

state energy (order N). Moreover, it states that the excitation spectrum, i.e., the

spectrum of H0
Bog − E0

Bog, is given by

∑

p∈Λ∗+

e0(p)np , np ∈ {0, 1, 2, . . . } , (1.118)

which implies that the system behaves like a system of non-interacting bosons with

energies e0(p).

These predictions of the Bogoliubov approximation were rigorously justified by

Seiringer in [167] for bosons on the unit torus in the Hartree scaling regime. More

precisely, for interactions vN,β with β = 0, where v is assumed to be bounded and

of positive type10, the author shows that (1.116) describes the N -body ground state

energy up to errors of order N−
1
2 . Besides, the excitation spectrum below an energy

threshold ξ is proven to be of the form (1.118), up to errors of order O(ξ
3
2N−

1
2 ).

This result was extended by Grech and Seiringer in [83] to the inhomogeneous

10This means that v has only non-negative Fourier coefficients.
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setting, and by Dereziński and Napiórkowski in [56] to the case of a large but finite

volume in the limit N,L → ∞, provided that the volume does not grow too fast

relatively to the number of particles.

The works [83, 167] were generalised by Lewin, Nam, Serfaty and Solovej in [114]

to bosons in the Hartree scaling regime which interact via potentials of a generic form

and for a range of possible kinetic terms. In this abstract setting, they obtain a list of

conditions under which the validity of the Bogoliubov approximation can be rigorously

shown. Roughly speaking, it is sufficient to have BEC in the ground state ϕ0 with

optimal error term, i.e.,
〈
ϕ0, γ

(1)

ψN
ϕ0

〉
≥ 1−O(N−1).

In [114], the authors introduce a method which can be understood as a rigorous

implementation of the c-number substitution. They observe that any symmetric N -

body wave function ψN ∈ HN+ can be decomposed as

ψN =
N∑

k=0

ϕ⊗(N−k) ⊗s ξ(k)
ϕ (1.119)

for ϕ ∈ H and ξϕ =
(
ξ

(k)
ϕ

)N
k=0
∈ F≤N⊥ϕ , where

F≤N⊥ϕ :=

N⊕

k=0

k⊗

sym

{ϕ}⊥ ⊂ F⊥ϕ :=
⊕

k≥0

k⊗

sym

{ϕ}⊥ (1.120)

is the truncated bosonic Fock space over the one-body space {ϕ}⊥ of excited parti-

cles. Here, {ϕ}⊥ denotes the orthogonal complement of the one-dimensional subspace

spanned by ϕ in H. Further, ⊗s denotes the symmetric tensor product, which is for

ψa ∈ Ha, ψb ∈ Hb defined as

(ψa ⊗s ψb)(x1, ..., xa+b) :=

1√
a! b! (a+ b)!

∑

σ∈Sa+b
ψa(xσ(1), ..., xσ(a))ψb(xσ(a+1), ..., xσ(a+b)) ,

(1.121)

where Sa+b denotes the set of all permutations of a+ b elements. The addend k = 0

in (1.119) describes the condensate, while the terms k ∈ {1, ..., N} correspond to the

excitations. In the following, we refer to ξ
(k)
ϕ as k-particle excitation. By construction,

every k-particle excitation ξ
(k)
ϕ ∈ Hk+ is orthogonal to ϕ in every coordinate. The

relation between the N -body state ψN and the corresponding excitation vector ξϕ is

given by the unitary map

UϕN : HN+ → F≤N⊥ϕ , ψN 7→ UϕNψ
N := ξϕ . (1.122)

For a∗0, a0 denoting the creation and annihilation operator corresponding to the con-
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densate ϕ, its action is explicitly given as

UϕNψ
N =

N⊕

j=0

(1− |ϕ〉〈ϕ|)⊗j
(

aN−j0√
(N − j)!

ψN

)
(1.123)

([114, Proposition 4.2]), i.e., it annihilates N − j particles from the condensate and

projects the resulting j-particle state onto the orthogonal complement of the conden-

sate wave function. The map UϕN can be used to factor out the condensate, as was

done by Bogoliubov with the replacement a∗0, a0 7→
√
N : Denote by N the number

operator on F≤N⊥ϕ and let p, q ∈ Λ∗+. Conjugation with UϕN yields

UϕNa
∗
0a0(UϕN )∗ = N −N ,

UϕNa
∗
0ap(U

ϕ
N )∗ =

√
N −Nap ,

UϕNa
∗
pa0(UϕN )∗ = a∗p

√
N −N ,

UϕNa
∗
paq(U

ϕ
N )∗ = a∗paq

as identities on F≤N⊥ϕ , where we identified ψ ∈ HN with the Fock vector (0, . . . 0, ψ, 0 . . . )

to make sense of the action of creation and annihilation operator. Hence, all operators

a∗0, a0 are replaced by a factor
√
N −N each, corresponding to the number of particles

in the condensed state. Using these relations, one conjugates the Hamiltonian (1.106)

with UϕN , which leads to an excitation Hamiltonian Lβ acting on the excitation Fock

space (see, e.g., [24, Eqn. (3.3)]). The constant and quadratic term (with respect to

the number of creation and annihilation operators) of Lβ correspond to leading order

to Hβ
Bog from (1.109). The sub-leading order contributions are different: in Hβ

Bog, one

takes the number operator N of the excitations to be zero, while N is explicitly taken

into account in Lβ. Besides, Lβ contains a cubic and a quartic term, which can be

shown to be small for β = 0.

For further related results in the Hartree scaling regime, we refer to the proceedings

[112] by Lewin and the references contained therein, as well as to the series of works

by Pizzo [154, 155].

This analysis for the mean-field regime was extended to singular interactions κvN,β
with β ∈ (0, 1) and sufficiently small κ by Boccato, Brennecke, Cenatiempo and Schlein

in [24]11. They consider a homogeneous Bose gas and prove that the N -body ground

state energy as well as the lower excitation spectrum can be calculated by the Bogoli-

ubov approximation. For β > 0, the interaction vN,β(x) converges to ‖v‖L1(R3)δ(x) in

the sense of distributions as N → ∞, hence v̂(p) ≈ v̂(0) for sufficiently large N . In

conclusion, the formulas (1.116) and (1.118) contain the first order Born approxima-

tion to the scattering length of vN,β. Since this approximation becomes less accurate

11Following the strategy developed in [26], this constraint on κ can be removed [41, p. 6].
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for larger β, it needs to be replaced by a higher order approximation for larger values

of β. Essentially, the authors of [24] show that (1.116) and (1.118) correctly describe

the N -body ground state and excitation spectrum if v̂(0) is replaced by a suitably

truncated Born series expansion. More precisely, they prove that

EβBog = 4π(N − 1)aβN −
1

2

∑

p∈Λ∗+

(
|p|2 + κv̂(0)− eβ(p)− κ2v̂(0)2

2|p|2
)

+O(N−α) ,

eβ(p) =
√
|p|4 + 2|p|2κv̂(0)

for all 0 < α < β such that α ≤ 1−β
2 . Here, 8πaβN denotes N times the Born expansion

for the scattering length of the potential κvN,β, which is truncated at order k > 1
1−β

([24, Theorem 1.1]).

The appearance of the higher order terms in the Born series is related to the fact that

the map UϕN factors out the condensate ϕ⊗N . However, the interactions between the

particles induce a short-scale correlation structure in the sense of (1.20), which cannot

be neglected for larger scaling parameters β. Mathematically, the authors of [24] deal

with this by conjugating the excitation Hamiltonian Lβ by a generalised Bogoliubov

transformation

T = exp

(
1
2

∑

p∈Λ∗
(ηp b

∗
pb
∗
−p − h.c.)

)
, (1.124)

where the coefficients ηp are related to the Fourier transform of the zero-energy scat-

tering solution from Lemma 1.2.4 (see [24, Section 3]). The operators bp, b−p are

modified creation/annihilation operators, which are defined as

bp :=

√
N −N
N

ap , b∗p := a∗p

√
N −N
N

,

which have the advantage that T leaves the space F≤N⊥ϕ invariant.

For interactions in the GP regime, the Born approximation is invalid since all terms

in the expansion are of the same order, which implies that the complete Born series

must be taken into account. As a consequence, the leading order term of the Bogoli-

ubov ground state energy (1.116) contains the full scattering length of the interaction,

which is consistent with the leading order result (1.19). This was made rigorous by

Boccato, Brennecke, Cenatiempo and Schlein in [25, 27], who extended their analy-

sis [24] for the NLS regime to the GP scaling of the interaction.

Heuristically, the standard formal argument to derive the Bogoliubov energy for

the GP scaling is by considering the effective Hamiltonian Heff as in (1.33), which

is constructed by applying the first order Born approximation to a softer potential

U eff with the same scattering length. This results in the effective δ-interaction (1.32),
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which contains the scattering length and thereby takes the correlation structure into

account (see Section 1.2.5). Applying the Bogolibubov approximation to Heff yields

the Bogoliubov energy with the full scattering length (see e.g. [145, Chapter 8.1]).

1.5.3. Dynamics of the excitations and norm approximation

The rigorous results (1.73) presented in Section 1.4.3 provide an approximation of

the N -body dynamics ψN (t) in the sense of reduced densities. This approximation

corresponds to the control of the majority of all particles, which, up to a relative

number that vanishes as N →∞, occupy the time evolved condensate wave function.

A much stronger notion of distance is provided by the L2(R3N )-norm, which requires

the control of all N particles. In particular, this implies that the excitations from the

condensate can no longer be omitted from the description. In this sense, the norm

approximation of ψN (t) can be understood as next-to-leading order correction to the

description with respect to reduced densities.

In the Fock space setting, i.e., for initial states ψN (0) that are no N -body states

but belong to an appropriate class of Fock space initial data, a norm approximation

was first obtained by Grillakis, Machedon and Margetis in [88, 89], and further results

were proven in [49, 77, 78, 86, 87, 108, 158]. To rigorously derive norm approximations

for initial N -body states ψN (0) ∈ L2
+(R3N ), two ways are known in the mathematical

physics literature:

• One can decompose ψN (t) via (1.119) into a (time dependent) condensate ϕ(t)

and orthogonal excitations. One then shows that the Fock space time evolution of

the excitations is generated by the Bogoliubov Hamiltonian, while the evolution

of the condensate is determined by the respective effective equation.

• Alternatively, one can define a first quantised analogue of the Bogoliubov Hamil-

tonian on the N -body Hilbert space and prove that its time evolution, which de-

scribes both condensate and excitations, approximates the full N -body dynamics

ψN (t).

Let us now consider the dynamics ψN (t) generated by the Hamiltonian

HN,β =
N∑

j=1

(
−∆j + V ext(xj)

)
+

1

N − 1

∑

1≤i<j≤N
vN,β(xi − xj) (1.125)

with interactions as in (1.108). In the following, we briefly review and compare both

approaches.
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Second quantised approach

The first norm approximation of the N -body dynamics ψN (t) was obtained by Lewin,

Nam and Schlein in [113] for β = 0 and V ext = 0 for interaction potentials v satisfying

the operator inequality v2 . (1 −∆) on L2(Rd) in dimension d ≥ 1. For initial data

of the form

ψN0 =
N∑

k=0

ϕ0
⊗(N−k) ⊗s χ(k)

0 , (1.126)

where the initial excitation vector χ0 ∈ F⊥ϕ0 is assumed to be normalised and such

that

〈χ0, dΓ(1−∆)χ0〉F⊥ϕ0 <∞ ,

they prove that

lim
N→∞

∥∥∥∥∥ψ
N (t)−

N∑

k=0

ϕ(t)⊗(N−k) ⊗s χ(k)(t)

∥∥∥∥∥
L2(RdN )

= 0

for all times t ≥ 0. The time-evolved excitation vector χ(t) solves the Bogoliubov

equation, which will be explained below. The optimal rate of convergence is expected

to be of order N−
1
2 for every fixed t ∈ R (see [113, Remark 3]).

For V ext = 0, this result was extended in a series of works [137, 138, 139] by Nam

and Napiórkowski. They consider initial data of the form (1.126) for appropriate initial

excitation vectors χ0 ∈ F⊥ϕ0 and show that that there exists a parameter δ > 0 and

a function f : R→ R+ such that

∥∥∥∥∥ψ(t)−
N∑

k=0

ϕ(t)⊗(N−k) ⊗s χ(k)(t)

∥∥∥∥∥

2

L2(RdN )

≤ f(t)N−δ , (1.127)

where δ and f depend on the particular situation:

• The work [137] concerns 3d bosons with non-negative interaction potentials scal-

ing with β ∈ [0, 1
3). The initial excitation vector is assumed to be quasi-free

(see below). In this case, (1.127) holds with the parameter δ = 1 − 3β and

with f(t) = eCt(1 + 〈χ0,Nϕ0χ0〉)4 for some constant C > 0 depending only on

‖ϕ0‖H2(R3).

• In [139], this analysis for the 3d defocusing case is extended to the scaling regime

β ∈ [0, 1
2). The initial excitation vector is required to be quasi-free and to satisfy

〈χ0,Nϕ0χ0〉 ≤ κεN ε , 〈χ0, dΓ(1−∆)χ0〉 ≤ κεNβ+ε (1.128)

for all ε > 0, where κε > 0 is independent of N . The authors derive (1.127) for
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all ε > 0 with δ = (1 − 2β − ε)/2 and f(t) = Cε(1 + t)1+ε, where the constant

Cε > 0 depends only on κ0 and ε.

• Finally, in [138], the authors consider the focusing case with non-positive inter-

actions in dimensions d = 1 for β > 0 and d = 2 for β ∈ (0, 1). The initial data

are assumed such that

〈χ0, dΓ(1−∆)χ0〉 ≤ C

for some constant C > 0. The resulting parameter δ is given as δ = 1
2 for the

1d and 0 < δ < 1
3(1 − β) for the 2d case, while the explicit form of f(t) is not

specified.

The excitations χ(t) = (χ(k)(t))∞k=0 ∈ F⊥ϕ(t) contained in the approximating wave

function are determined by the Bogoliubov evolution,

i d
dtχ(t) = HβBog(t)χ(t) , (1.129)

with HβBog(t) as in (1.110). Written explicitly, (1.129) equals the coupled equations

for the components χ(k)(t)

i∂tχ
(k)(t, x1, ..., xk)

=
k∑

j=1

(
hϕ(t)(xj) +K

ϕ(t)
1 (xj)

)
χ(k)(t, x1, ..., xk)

+
1

2

1√
k(k − 1)

∑

1≤i<j≤k
K
ϕ(t)
2 (xi, xj)χ

(k−2)(t, x1, ..., xk \ xi \ xj)

+
1

2

√
(k + 1)(k + 2)

∫
dx dy K

ϕ(t)
2 (x, y)χ(k+2)(t, x1, ..., xk, x, y) (1.130)

for k ≥ 0, with K
ϕ(t)
1 , K

ϕ(t)
2 and hϕ(t) as defined in (1.111) and (1.112). Note that

the time dependence of HβBog(t) is due to the time dependence of the condensate wave

function ϕ(t). As a consequence, the vacuum of the excitation Fock space varies in

time, and, moreover, the operators K
ϕ(t)
1 and K

ϕ(t)
2 from (1.111) are time dependent

via ϕ(t).

Let us now recall the notion of quasi-free states and comment on their relevance in

the context of the Bogoliubov time evolution. This part is taken from [137, Lemma

8] and [173, Theorem 10.4]. A more thorough discussion is given, e.g., in the lecture

notes [173] by Solovej.

Definition 1.5.1. Let φ ∈ F be a normalised vector in a bosonic Fock space F over

a Hilbert space H such that

〈φ,Nφ〉 <∞ .
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Define the generalised one-particle density matrix of φ as

Γφ :=

(
γφ αφ
α∗φ 1+ γTφ

)

on H⊕ H, where H denotes the dual of H. The one-body density matrices γφ : H→ H

and αφ : H→ H are defined as

〈f, γΦg〉H = 〈φ, a∗(g)a(f)φ〉F , 〈f, αφ g〉H = 〈φ, a(g)a(f)φ〉

for f, g ∈ H. Then it holds that

γφ ≥ 0 , Tr(γφ) = 〈φ,Nφ〉 , αφ = αTφ , Γφ ≥ 0 .

The state φ is called quasi-free if and only if

γφαφ = αφγ
T
φ , αφα

∗
φ = γφ(1+ γφ) ,

or, equivalently, if and only if

Γφ

(
1 0

0 −1

)
Γφ = −Γφ .

Note that for φ ∈ HN , i.e., for φ with fixed particle number N , γφ is the usual

reduced one-particle density matrix (1.8). Quasi-free states satisfy the so-called Wick

property: for a] ∈ {a∗, a}, n ≥ 1 and f1, ..., f2n ∈ H,





〈
φ, a](f1)a](f2)···a](f2n−1)φ

〉
F

= 0 ,

〈
φ, a](f1)a](f2)···a](f2n)φ

〉
F

=
∑

σ∈P2n

n∏

j=1

〈
φ, a](fσ(2j−1))a

](fσ(2j))φ
〉
F
,

(1.131)

where P2n denotes the set of pairings

P2n = {σ ∈ S2n : σ(2j − 1) < min{σ(2j), σ(2j + 1)} for all j} .

Hence, all expectation values with respect to a quasi-free state φ can be computed

from the mere knowledge of its one-body densities (γφ, αφ). Moreover, finite moments

of the number operator are determined by its expectation value: for all ` ≥ 1, there

exists a constant C` > 0 such that

〈φ,N `φ〉F ≤ C` (1 + 〈φ,Nφ〉)` (1.132)
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1.5. Excitations from the condensate

for all quasi-free states φ in F (see e.g. [137, Lemma 5]). Finally, it is well known

that the unique ground state of a Bogoliubov Hamiltonian is quasi-free (see e.g. [114,

Theorem A.1]).

To characterise the dynamics of the excitations, it is crucial to note that the time

evolution generated by HβBog preserves the quasi-free property: if χ0 ∈ F⊥ϕ0 is a quasi-

free state, then the solution χ(t) ∈ F⊥ϕ(t) of (1.129) is quasi-free for all t ∈ R and

〈
χ(t),Nϕ(t)χ(t)

〉
≤ eCt (1 + 〈χ0,Nϕ0χ0〉)2 (1.133)

for a constant C depending only on ‖ϕ0‖H2(R3) ([137, Proposition 4]). Note that in

combination with (1.132), this implies a bound on the growth of finite moments of

the number of excitations in the wave function evolving under the Bogoliubov time

evolution.

Since the quasi-free property is preserved by the Bogoliubov time evolution, the

excitation vector χ(t) at any time t ∈ R is characterised by its one-body densities

(γχ(t), αχ(t)). As a consequence, it was shown in [137] that the Bogoliubov equation

(1.129) is for initial quasi-free states equivalent to the coupled system of equations





i∂tγχ(t) = (hϕ(t) +K
ϕ(t)
1 )γχ(t)(t)− γχ(t)(h

ϕ(t) +K
ϕ(t)
1 )

+K
ϕ(t)
2 αχ(t) − α∗χ(t)(K

ϕ(t)
2 )∗

i∂tαχ(t) = (hϕ(t) +K
ϕ(t)
1 )αχ(t) + αχ(t)(h

ϕ(t) +K
ϕ(t)
1 )T

+K
ϕ(t)
2 +K

ϕ(t)
2 γTχ(t) + γχ(t)K

ϕ(t)
2

(1.134)

with initial datum (γχ0 , αχ0). A comparable system of equations was derived by Gril-

lakis and Machedon in [86, Eqns. (17a-b)] for the Fock space setting. Note that

also for an initial state χ0 which is not quasi-free, the solution χ(t) of (1.129) solves

(1.134). However, (1.134) is not equivalent to (1.129) since χ(t) is not quasi-free and

consequently not uniquely determined by its one-body densities.

For larger values of the scaling parameter β, the evolutions of ϕ(t) and ξϕ(t) do

not (approximately) decouple any more as a consequence of the short-scale structure

related to the two-body scattering process. In [108], it is argued that in the 3d defo-

cusing problem, this is the case for β ≥ 1
2 ([108, Section 2, following (35)]). For the

range β ∈ (0, 1), an accordingly adjusted variant of (1.127) for appropriately modified

initial data was obtained by Brennecke, Nam, Napiórkowski and Schlein in [38] for the

3d defocusing case. Here, the dynamics of the condensate wave function are described

by a modified N -dependent Hartree equation with nonlinearity vN,βfN ∗ |ϕ(t)|2, where

fN is related to the zero energy scattering solution, similarly to f
β̃

in Definition 1.4.4
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(see [38, Eqn. (23)]). For β ∈ (0, 1) and N →∞, this converges to the N -independent

NLS equation (1.72). A similar estimate for the many-body evolution of appropriate

classes of Fock space initial data for β ∈ (0, 1) was obtained by Boccato, Cenatiempo

and Schlein in [28].

First quantised approach

An alternative way of decomposing the N -body wave function ψN (t) into a condensate

ϕ(t)⊗N and orthogonal excitations is by means of the projections pϕ(t) and qϕ(t) onto

ϕ(t) and its orthogonal complement (Definition 1.4.1). In terms of the many-body

projection operators P
ϕ(t)
k on L2(R3N ),

Pϕk =
1

(N − k)!k!

∑

σ∈SN
qϕσ(1) ···q

ϕ
σ(k)p

ϕ
σ(k+1) ···p

ϕ
σ(N) ,

the part of ψN (t) in the condensate is given by P
ϕ(t)
0 ψN (t). The part of ψN (t) cor-

responding to k-particle excitations equals P
ϕ(t)
k ψN (t) for k ≥ 1. By construction,

P
ϕ(t)
k P

ϕ(t)
k′ = δk,k′P

ϕ(t)
k , and the identity

∑N
k=0 P

ϕ(t)
k = 1 implies the decomposition

ψN (t) =
N∑

k=0

P
ϕ(t)
k ψN (t) . (1.135)

Note that as opposed to the decomposition (1.119), P
ϕ(t)
k ψN is an N -body wave func-

tion, i.e., it contains both the condensate and the excitation part.

In [135, 134], Mitrouskas, Petrat and Pickl introduced an effective Hamiltonian

H̃ϕ(t), which is constructed as follows:

• First, one adds and subtracts from HN,β in each coordinate the mean-field Hamil-

tonian hϕ(t) from (1.112), resulting in

HN,β =
N∑

j=1

h
ϕ(t)
j +

1

N − 1

∑

i<j

v
(ij)
N,β −

N∑

j=1

vϕ(t)(xj) +Nµϕ(t)

=
N∑

j=1

h
ϕ(t)
j +

1

N − 1

∑

i<j

(
v

(ij)
N,β − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

)
.

Here, we used the notation vϕ as in (1.113) and abbreviated v
(ij)
N,β := vN,β(xi−xj).

• Second, inserting identities

1 = (p
ϕ(t)
i + q

ϕ(t)
i )(p

ϕ(t)
j + q

ϕ(t)
j )
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before and after the expression in the brackets yields with the relations

p
ϕ(t)
i v

(ij)
β p

ϕ(t)
i = vϕ(t)(xj)p

ϕ(t)
i , p

ϕ(t)
i vϕ(t)(xi)p

ϕ(t)
i = 2µϕ(t)p

ϕ(t)
i (1.136)

the decomposition

HN,β = H̃ϕ(t) + Cϕ(t) +Qϕ(t) ,

where

H̃ϕ(t) :=
N∑

j=1

h
ϕ(t)
j +

1

N − 1

∑

i<j

(
p
ϕ(t)
i q

ϕ(t)
j v

(ij)
β q

ϕ(t)
i p

ϕ(t)
j

+p
ϕ(t)
i p

ϕ(t)
j v

(ij)
N,βq

ϕ(t)
i q

ϕ(t)
j + h.c.

)
, (1.137)

Cϕ(t) :=
1

N − 1

∑

i<j

(
q
ϕ(t)
i q

ϕ(t)
j

(
v

(ij)
N,β − vϕ(t)(xi)− vϕ(t)(xj)

)
×

×(q
ϕ(t)
i p

ϕ(t)
j + p

ϕ(t)
i q

ϕ(t)
j ) + h.c.

)
, (1.138)

Qϕ(t) :=
1

N − 1

∑

i<j

q
ϕ(t)
i q

ϕ(t)
j ×

×
(
v

(ij)
N,β − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

)
q
ϕ(t)
i q

ϕ(t)
j . (1.139)

• Finally, discarding all terms from HN,β which are cubic (Cϕ(t)) or quartic (Qϕ(t))

in the number of projections qϕ(t) yields the effective Hamiltonian H̃ϕ(t).

The resulting Hamiltonian H̃ϕ(t) has a quadratic structure comparable to HβBog(t):

all terms in HN,β −
∑

j h
ϕ(t)
j , which form an effective two-body potential, contain

exactly two projectors qϕ(t) onto the complement of the condensate wave function,

whileHβBog(t) is quadratic in the creation and annihilation operators of the excitations.

The Hamiltonian H̃ϕ(t) is particle number conserving and acts on the N -body

Hilbert space L2(R3N ), i.e., it determines the evolution of both condensate wave func-

tion and excitations. In contrast, HβBog(t) operates on the excitation Fock space F⊥ϕ(t)

and does not conserve the particle number. It exclusively concerns the dynamics of

the excitations with respect to the condensate wave function, which, in turn, evolves

according to the non-linear dynamics generated by (1.112).

Making use of H̃ϕ(t), Mitrouskas, Petrat and Pickl derive in [135] a norm approx-

imation for the N -body dynamics ψN (t). They consider 3d bosons in the Hartree

regime β = 0 for interactions v satisfying the operator inequality v2 . (1 −∆). The

initial N -body state ψN0 is assumed such that

(a) |EψN0 −Eϕ0 | . N−1 , where Eψ := 1
N 〈ψ,HN,βψ〉L2(R3N ) is the energy per particle
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and Eϕ := 〈ϕ, hϕϕ〉L2(R3) denotes the Hartree energy,

(b) ⟪ψN0 ,( n∏
j=1

qϕ0
j

)
ψN0 ⟫ . N−n for n = 1, 2, 3,

(c) ‖Pϕ0

oddψ
N
0 ‖ . N−

1
2 , where Pϕodd :=

∑
k odd

Pϕk projects onto the subspace of L2(R3N )

with an odd number of particles outside the condensate.

For initial states satisfying (a) to (c), the authors prove that the time evolution Ũϕ(t, s)

generated by H̃ϕ(t) approximates the N -body dynamics. More precisely, they show

that there exists a constant C > 0 such that

∥∥ψN (t)− Ũϕ(t, 0)ψN0
∥∥2 ≤ eC(1+t)2N−1 (1.140)

[135, Theorem 2.1]. A related result for Bose gases with large volume and large density

was proved by Petrat, Pickl and Soffer in [146, Theorem 1.2].

Comparison of both approaches

Let us first compare the decompositions (1.119) and (1.135) of an N -body wave func-

tion ψN . Note that by definition of the projectors Pϕk (Definition 1.4.1),

Pϕk ψ
N (x1, ..., xN )

=
1

(N − k)!k!

∑

σ∈SN
ϕ(xσ(k+1))···ϕ(xσ(N)) q

ϕ
σ(1) ···q

ϕ
σ(k) ×

×
∫

R3

dy1 ···
∫

R3

dyN−k ϕ(y1)···ϕ(yN−k)ψ
N (xσ(1), ..., xσ(k), y1, ..., yN−k)

=:
(
ϕ⊗(N−k) ⊗s ξ(k)

ϕ

)
(x1, ..., xN ) ,

where, by definition (1.121) of the symmetric tensor product,

ξ(k)
ϕ (x1, ..., xk) :=

√(
N
k

)
qϕ1 ···qϕk

∫

R3

dyk+1 ···
∫

R3

dyN ϕ(yk+1)···×

× ϕ(yN )ψN (x1, ..., xk, yk+1, ..., yN ) .

(1.141)

Obviously, ξ
(k)
ϕ is symmetric under permutations of its arguments, and ξ

(k)
ϕ is orthog-

onal to ϕ in every coordinate, i.e.,

∫

R3

ϕ(xj) ξ
(k)
ϕ (x1, ..., xj , ..., xk) dxj = 0 , pϕj ξ

(k)
ϕ = 0 , qϕj ξ

(k)
ϕ = ξ(k)

ϕ
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for every j ∈ {1, ..., k}. Hence, ξϕ := (ξ
(k)
ϕ )Nk=0 ∈ F≤N⊥ϕ , and (1.141) determines

precisely the elements of the excitation Fock vector UϕNψ
N for UϕN from (1.122). In

fact, (1.141) can be understood as the translation of (1.123) into the first quantised

language.

Consequently, the probability of finding k particles in ψN outside the condensate

ϕ⊗N is given equivalently by

‖ξ(k)
ϕ ‖2L2(R3k) =

(
N
k

)
‖qϕ1 · · · qϕk p

ϕ
k+1 · · · p

ϕ
Nψ

N‖2 = ‖Pϕk ψN‖2 .

The expected number of excitations from ϕ⊗N in the state ψN is

〈ξϕ,Nϕ ξϕ〉F≤N⊥ϕ =
N∑

k=0

k‖ξ(k)
ϕ ‖2L2(R3k) =

N∑

k=0

k‖Pϕk ψN‖2

= N ⟪ψN , N∑

k=0

k
NP

ϕ
k ψ

N⟫ = N‖n̂ϕψN‖2 ,

where n̂ϕ denotes the weighted operator from Definition 1.4.1 with weight function

n(k) =

√
k

N
.

For a ∈ N, the a’th moment of the number of excitations is given as

〈
ξϕ,N a

ϕ ξϕ
〉
F≤N⊥ϕ

= Na⟪ψN , N∑

k=0

( kN )aPϕk ψ
N⟫ = Na‖(n̂ϕ)aψN‖2 . (1.142)

As a consequence, assumption (b) by Mitrouskas, Petrat and Pickl can equivalently

be expressed as the requirement that the first three moments of the initial number of

excitations be bounded uniformly in N .

In [135], the authors prove that the excitations in Ũϕ(t, 0)ψN0 asymptotically coincide

with the solutions of the Bogoliubov evolution equation (1.129) as N → ∞. More

precisely,

• let ξϕ0 =
(
ξ

(k)
ϕ0

)N
k=0

= Uϕ0

N ψ
N
0 denote the excitations from ϕ0

⊗N in the initial

state ψN0 ,

• let ξ̃ϕ(t) =
(
ξ̃

(k)
ϕ(t)

)N
k=0

= U
ϕ(t)
N Ũϕ(t, 0)ψN0 denote the excitations from ϕ(t)⊗N in

the time evolved state Ũϕ(t, 0)ψN0 ,

• let χ(t) =
(
χ(k)(t)

)
k≥0

denote the solutions of the Bogoliubov equation (1.129)

with initial datum (χ(0))Nk=0 = ξϕ0 .
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Then there exists a constant C > 0 such that

N∑

k=0

∥∥∥ξ̃ (k)
ϕ(t) − χ

(k)(t)
∥∥∥

2

L2(R3k)
≤ eC(1+t)2N−1 (1.143)

[135, Lemma 2.3]. Following the lines of the proof of [146, Theorem 2.2] for Bose gases

with large volume, this bound can presumably be improved to an error of order N−2.

To prove (1.143), the authors of [135, 146] use (1.141) to extract the excitations

ξ̃ϕ(t) = U
ϕ(t)
N Ũϕ(t, 0)ψN0

from the solution Ũϕ(t, 0)ψN0 =: ψ̃N (t) of the N -body Schrödinger equation i d
dt ψ̃

N (t) =

H̃ϕ(t)ψ̃N (t). This leads to the system of coupled equations

i∂tξ̃
(k)
ϕ(t)(x1, ..., xk)

=

k∑

j=1

(
h
ϕ(t)
j + C

(1)
k K

ϕ(t)
1 (xj)

)
ξ̃

(k)
ϕ(t)(x1, ..., xk)

+
1

2
C

(2)
k−2

1√
k(k − 1)

∑

1≤i<j≤k
K
ϕ(t)
2 (xi, xj)ξ̃

(k−2)
ϕ(t) (x1, ..., xk \ xi \ xj)

+
1

2
C

(2)
k

√
(k + 1)(k + 2)

∫
dx dyK

ϕ(t)
2 (x, y)ξ̃

(k+2)
ϕ(t) (x1, ..., xk, x, y) (1.144)

for 0 ≤ k ≤ N , where

C
(1)
k =

N − k
N

, C
(2)
k =

√
(N − k)(N − k − 1)

N
.

For k = 0, the first two lines are defined as zero, and for k = 1 the second line equals

zero by definition. Since C
(2)
N = C

(2)
N−1 = 0, the third line does not contribute for

k ∈ {N − 1, N}.
A comparison of this hierarchy (1.144) with the Bogoliubov hierarchy (1.130) reveals

two differences:

• In (1.144), additional combinatorial factors C
(1)
k and C

(2)
k appear. Note that

these factors are approximately given by 1 + k
N . Hence, for k = O(1), these

factors are asymptotically one.

• The equations (1.144) and (1.130) do not coincide for k ≥ N−1. By construction,

ξ̃
(k)
ϕ(t) = 0 for k > N , whereas the components χ(k)(t) of the solution of the

Bogoliubov solution do not necessarily vanish for k > N .
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Since ‖χ(k)(t)‖L2(R3k) is very small for k of order N , the error terms from both sources

can be controlled sufficiently well to prove the statement (1.143).

1.6. Experiments

In this section, we briefly account for the experimental perspective on BEC, mainly

based on [23], [101], [111, Chapter II], [145, Chapter 1] and [153, Chapters 1 and 9].

Subsequently, we collect some experimental results concerning quasi-low-dimensional

Bose gases.

BEC in dilute atomic gases was first realised in 1995 with rubidium [10] at Boulder

and with sodium [52] at MIT, for which Cornell, Ketterle and Wieman were awarded

the 2001 Nobel Prize in Physics. Moreover, also in 1995, first evidence of BEC was

found in lithium [37, 36]. Since then, many dilute atomic gases have been confirmed

to exhibit BEC, such as 1H, 7Li, 23Na, 39K, 41K, 52Cr, 85Rb, 87Rb, 133Cs, 170Yb and
174Yb and superfluid 4He.

To create a BEC, one needs to cool the gas until the de Broglie wavelength of

the atoms is comparable to their average separation. However, the thermodynamic

equilibrium at the given conditions of temperature and pressure usually corresponds

to a crystal. To observe BEC, one must prevent the gas from solidifying during this

cooling process, which is possible for extremely dilute gases: At low temperatures,

the decay of the gas phase is mainly due to three-body recombinations, which lead

to the formation of molecules. If the density of the gas is sufficiently low, three-body

collisions occur only very rarely, and one can observe a metastable gaseous phase that

lasts several seconds to minutes. Typically, the particle density required for BEC is

1013–1015cm−3, which is by several orders of magnitude smaller than the density of

molecules in air at room temperature and atmospheric pressure, ∼ 1019cm−3.

Due to this extreme dilution and the corresponding large inter-particle distances,

one requires temperatures of order 10−5K or less12 to observe BEC. To reach such low

temperatures in alkali atoms with sufficiently many atoms remaining in the cloud to

be observed, one combines different cooling and trapping methods [50, 101]:

• First, the gas is pre-cooled by so-called laser cooling in a magneto-optical trap,

where three pairs of counter-propagating laser beams along the three axes are

tuned below the atomic resonance frequency (i.e., the wave length is red-shifted

with respect to the resonance wave length). Due to the Doppler effect, an atom

moving in the opposite direction as a laser beam blue-shifts the incoming pho-

tons closer to the resonance, while a co-propagating atom red-shifts the light

away from the resonance. Hence, on average, each atom absorbs more photons

12These values are taken from [145, Chapter 1].
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opposing its motion. Since the emitted photons have no preferred direction, this

leads to a net decelerating force.

• Subsequently, one applies so-called evaporative cooling. By reducing the depth

of the trap, one removes the more energetic atoms, which carry more than the

average energy. As a consequence, the remaining atoms thermalise at a lower

temperature.

The duration of this cooling and trapping cycle varies between some seconds and some

minutes, and the resulting condensates usually contain between 102 and 109 atoms13.

A detailed explanation of different trapping and cooling techniques is, for example,

given in [145, Chapter 4] and [72, Chapters 9–10].

By creating and observing BECs, a wide range of physical phenomena has been

explored over the last two decades. From the experimental point of view, BECs are

very attractive since they can be manipulated by lasers and magnetic fields. Due to

the low density, the microscopic length scales are sufficiently large that the condensate

wave function is directly observable by optical means and interference phenomena can

be studied. Moreover, if the atom species has a Feshbach resonance, it is possible to

precisely tune the interaction by changing an external electric or magnetic field, which

in particular allows the study of strongly correlated many-body systems.

Most closely connected to the projects [32, 33, 35] of this thesis are experiments

with quasi-low-dimensional Bose gases, which are realised in highly anisotropic traps

satisfying the condition

~ω⊥ � kBT ,

where ω⊥ denotes the frequency of a confining harmonic potential. The cross-over

from a 3d gas to quasi-1d and quasi-2d condensates was experimentally first realised

in 2001, i.a., by Görlitz et al. in [82]. In this work, the authors studied sodium atoms

in anisotropic magnetic (1d) and optical (2d) traps and increased the aspect ratios

up to values of 50–100 while reducing the number of atoms. The condensates were

quasi-low-dimensional, while the thermal component of the gas remained 3d.

Subsequently, a series of works focusing on various features of these systems followed.

To avoid problems arising from the detection of very low particle numbers due to the

very low densities, the strong confinement was in many experiments realised by optical

lattices, which allows the simultaneous study of many copies of the 1d/2d system. The

optical lattices are created by the superposition of counter-propagating laser beams,

which form standing waves. A 1d lattice is created by a single interference pattern

from a pair of laser beams, which yields a periodic array of disc-shaped potentials. To

build a 2d optical lattice, one uses two orthogonal standing waves, which results in

13Values taken from [101, Section I].
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a 2d periodic array of cigar-shaped trapping potentials (see, e.g., the review [23] by

Bloch).

Quasi-1d gases are particularly well suited for absorption imaging. For 3d systems,

this method entails an integration over one spatial direction, which can be avoided with

a quasi-1d gas. Physically, it is very interesting to observe the crossover to the Tonks–

Girardeau (TG) regime (see Section 1.3.3). In this regime, which corresponds to a very

large LL parameter γ, the repulsive interactions between the atoms are so strong that

the wave function vanishes whenever the positions of two particles coincide, implying

that the bosons acquire fermionic properties. However, due to the symmetry of the

wave function, some bosonic behaviour remains, such as the characteristic bosonic

momentum distribution. Besides, quasi-1d gases can also be used to realise physical

models such as the Heisenberg spin chain [76, 156]. Exemplary and without any

claim to completeness, we collect in the following some interesting experiments that

produced and studied quasi-1d Bose gases:

• In [165], Schreck et al. prepared a BEC of 7Li atoms immersed in a Fermi sea of
6Li atoms, with the effect that the 7Li condensate behaved as quasi-1d BEC.

• Greiner et al. [84] stored rubidium atoms in a 2d optical lattice of ∼ 103 tightly

confining potential tubes. When suddenly released from the trap, the single con-

densate wave functions expand and interfere. Note that the tunnelling of atoms

in the thermal cloud is irrelevant at low temperatures due to the small energies,

whereas tunnelling of ground state atoms is enhanced due to the macroscopic

occupation. Hence, the BECs at the optical lattice sites form a phase-coherent

ensemble and interference patterns can be studied. As one result, the authors

observed that the quasi-1d nature of the individual BECs was preserved over

much longer times than the lifetime of the phase coherence between neighbour-

ing lattice sites.

• Moritz et al. [136] also produced cigar-shaped BECs of rubidium in a 2d optical

lattice and experimentally confirmed that the gas could locally be well described

by a local LL model, even though the whole sample was 3d. They realised

thermal quasi-1d gases, where not only the atoms in the condensate but also the

thermal cloud behave one-dimensionally. To study the crossover to a 1d thermal

gas, they heated an initially pure BEC for some time by means of off-resonant

photon scattering. While the radial size was unaffected, the axial width of the

cloud increased with the trapping time.

• Esteve et al. [69] realised a quasi-1d Bose gas of rubidium atoms within a highly

anisotropic magnetic trap created by an atom chip. By increasing the density at

fixed temperature, they let the gas pass through the first regime of the quasi-1d
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gas described in Section 1.3.3, starting from the ideal gas case and ending at the

GP case. They observed the density fluctuations by taking absorption images in

the transverse direction. In the GP regime, the density fluctuations are given by

the Bogoliubov approximation, which was experimentally confirmed for thermal

energies approximately equal to the confinement energy.

• Kinoshita, Wenger and Weiss [103] created an array of “quantum Newton’s cra-

dles” out of 3000 parallel tubes of quasi-1d Bose gases with an average of 100

rubidium atoms per tube. While maintaining the transverse confinement, they

put each atom in a superposition of two states with opposite (longitudinal) mo-

mentum and let the system evolve in the longitudinal direction. Although the

two momentum groups collided with each other thousands of times, the systems

did not approach equilibrium.

• Meinert et al. [128] prepared a system of 3500 cigar-shaped gases of cesium atoms

in tubes created by a pair of interfering laser beams. They immersed into each

tube a single strongly interacting impurity, which was accelerated by gravity.

By adiabatically tuning the scattering length using a Feshbach resonance, they

obtained a quasi-1d Bose gas with large LL parameter γ (see Sections 1.3.2 and

1.3.3). Although the systems were translation invariant, the authors observed

Bragg reflections, which are expected to arise from strong correlations of the

bosons that lead to a lattice-like behaviour. Moreover, this resulted in periodic

dynamics of the impurity, comparable to Bloch oscillations.

• The first TG gas of rubidium atoms in a 2d optical lattice was realised by Paredes

et al. in [141], who used a 1d periodic potential along the third axis to reach

the required large values of γ. Due to the spatial modulation, the atoms can

be interpreted as quasi-particles with an increased effective mass, which yields

effective values of γ up to γ = 100. This procedure resulted in an array of

quasi-1d tubes of TG gases consisting of about 20 atoms each.

In a different experimental setup, Kinoshita, Wenger and Weiss [102] created an

array of 20 quasi-1d rubidium gases in the TG regime, using two independent

laser traps. At extremely low temperatures and fixed longitudinal confinement,

the authors studied the atoms at increasingly strong transverse confinement,

reaching values of γ up to γ = 5.5. Eventually, the axial trapping potential

was removed and the free 1d motion of the atoms within the quasi-1d tubes was

analysed.

Quasi-2d BECs in disc-shaped geometries were, for instance, created in the following

experiments:
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• Burger et al. [40] considered rubidium atoms in a 3d cigar-shaped static magnetic

trap whose axis was superimposed by a 1d optical lattice, resulting in an array

of 2d discs. As a consequence of the magnetic potential, the central lattice sites

contained a higher number of atoms, leading to a higher critical temperature for

the central clouds. Hence, when lowering the temperature, BEC occured first in

the central lattice sites and successively spread in the radial direction.

• Rychtarik et al. [160] realised quasi-2d BECs of cesium atoms in a so-called

gravito-optical surface trap, consisting of an evanescent laser wave on the surface

of a horizontally aligned prism in combination with gravity pushing the atoms

onto the prism. They reached the BEC phase transition in a 3d situation via

evaporative cooling and subsequently increased the trap anisotropy to bring the

condensate into the 2d regime.

• In [166], Schweikhard et al. produced quasi-2d gases of rubidium atoms in a

rapidly rotating trap, where the centrifugal force was so large that it nearly

cancelled the radial confining force.

• Smith et al. [172] created and studied quasi-2d condensates of rubidium atoms

in extremely anisotropic combinations of magnetic and optical traps, where the

trap anisotropy was gradually increased up to an aspect ratio of 700. Since no

atoms were discarded in this process, this resulted in relatively large quasi-2d

BECs of up to 105 atoms.

An intriguing 2d-specific phenomenon is the Berezinskii–Kosterlitz–Thouless (BKT)

phase transition to a superfluid state at low temperatures. Recall that at positive

temperature, the phase transition to BEC is impossible for a uniform 2d Bose gas in

the thermodynamic limit. As BEC is associated with long-range order, its absence in

2d means that the (two-point) correlation functions decay with increasing distance.

Whereas the decay is exponential in space at high temperatures, it becomes algebraic

below a finite critical temperature if the atoms interact repulsively. As a consequence,

the system exhibits quasi-long-range order and forms a so-called superfluid “quasi-

condensate”. This behaviour only occurs for repulsively interacting systems, hence

interactions in 2d cannot be regarded as corrections to the ideal gas case as in 3d but

fundamentally change the physical situation.

Microscopically, the BKT phase transition is related to the emergence of a topo-

logical instead of a long-range order. Below the critical temperature, vortices (phase

defects around which the phase varies by a multiple of 2π) can only exist as bound

vortex-antivortex pairs, which create no net circulation along larger contours. Above

the critical temperature, the pairs break up into free vortices, which destroys the

quasi-long-range order. For a detailed explanation, we refer to the lecture notes [91]

by Hadzibabic and Dalibard.
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For trapped 2d condensates, BEC is possible at finite temperature, and the relation

of BEC and BKT phase transitions depends on the size of the system and the strength

of the interactions. In presence of repulsive interactions and in sufficiently large sys-

tems, BEC is suppressed and replaced by the BKT transition. The BKT crossover has

experimentally been studied in several works, for instance in the following experiments:

• Hadzibabic et al. [92] prepared disc-shaped gases of rubidium atoms. They ob-

served long-range coherence at low temperatures, whose loss at higher tempera-

tures coincided with the onset of the formation of free vortices. In a follow-up

experiment, Krüger, Hadzibabic and Dalibard [107] measured the critical atom

number of quasi-2d Bose gases in harmonic trapping potentials at different tem-

peratures. While being about five times higher than the critical numbers corre-

sponding to BEC in a 2d ideal gas, they were in agreement with the predictions

of the BKT phase transition.

• Studying the behaviour of sodium atoms in a quasi-2d optical trap, Cladé et

al. observed in [51] a theoretically predicted intermediate non-superfluid quasi-

condensate regime between the thermal and the superfluid phase.

• Fletcher et al. [71] created a quasi-2d potassium gas with tunable interactions

and experimentally confirmed that BKT and BEC phase transition unify in the

limit of vanishing interactions.
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Low-dimensional Gross–Pitaevskii equation for strongly confined bosons

The starting point for the first part of this thesis was the work [100] by von Keler and

Teufel. Here, the authors consider N interacting bosons in three dimensions that are

in two spatial dimensions strongly confined to a region of order ε, which is modelled

by a quantum waveguide with non-trivial geometry. They prove that in the limit

(N, ε) → (∞, 0), the dynamics of the system are effectively described by a 1d NLS

equation. Since the analysis in [100] is restricted to the parameter range β ∈ (0, 1
3),

the first objective was to extend this result beyond the mean-field regime. Naturally,

since the physically relevant case is the GP scaling of the interaction, the long-term

goal was the derivation of a 1d GP equation for β = 1.

It turned out that Pickl’s strategy [151] could be adapted to the situation with

strong confinement, leading to a proof for the full NLS regime β ∈ (0, 1) in [32], and

eventually to a proof of the 1d GP equation in [35]. We decided to focus on straight and

untwisted waveguides, and could therefore replace the Dirichlet boundary conditions

from [100] by a more realistic confining potential.

The natural next question was to extend this result to a disc-shaped confinement,

which would lead to a 2d effective equation. This was finally established in [33] for

the full range β ∈ (0, 1].

Higher order corrections to the mean-field dynamics

The objective of the second part of the thesis was the derivation of higher order

corrections to the norm approximation of the dynamics of weakly interacting bosons.

Approximations with respect to the L2-norm of theN -body Hilbert space have recently

been proved in different settings, and the corresponding results are summarised in

Section 1.5.3.

To obtain higher order corrections to the norm approximation with respect to N−1,

Pavlović, Pickl and Soffer developed the idea to extend the first quantised approach

introduced by Mitrouskas, Petrat and Pickl in [135] by using Duhamel expansions that

are truncated after finitely many terms.

The original draft by Pavlović, Pickl and Soffer covered the next order correction
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to the norm approximation for the Hartree scaling β = 0 in d = 3 dimensions. Hence,

the aim was to extend this analysis to arbitrary order with respect to N−1 and to a

range of scaling parameters β as large as possible.
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In this chapter, we present and discuss the results obtained in this thesis. Section 3.1

collects the results obtained in [32, 33, 35], which are partially joint work with Stefan

Teufel. In Section 3.2, we report on the project [34], which is joint work with Nataša

Pavlović, Peter Pickl and Avy Soffer. For convenience of the reader, we partially

adapted the notation to present the results in a consistent way.

3.1. Low-dimensional Gross–Pitaevskii equation for strongly

confined bosons

3.1.1. Results

We consider a gas of N 3d bosons in an extremely asymmetric set-up, where the

particles are strongly confined in one or two spatial directions. To describe such

systems mathematically, we use the coordinates

z = (x, y) ∈ R3 , x ∈ Rd , y ∈ R3−d , d = 1, 2 ,

where x ∈ Rd denotes the longitudinal direction(s) and y ∈ R3−d is the coordinate in

the confined direction(s). The relevant length scales of the problem are

• L : the length scale in the longitudinal direction,

• εL : the length scale in the transverse direction,

• A : the length scale of the scattering length.

The parameter 0 < ε� 1 measures the spatial asymmetry. For convenience, we choose

L as length unit, which implies that the transverse length scale is ε. The confinement

is modelled by the rescaled potential

1

ε2
V ⊥

(y
ε

)
,

where V ⊥ : R3−d → R acts only on the y-coordinates. We impose on V ⊥ suitable

assumptions to ensure that the ground state χ of the operator −∆y + V ⊥ with eigen-

value E0 is localised on a length scale of order one. The normalised ground state
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χε ∈ L2(R3−d) of −∆y + 1
ε2
V ⊥(yε ) is then given by

χε(y) = ε−
3−d
2 χ

(y
ε

)
,

(
−∆y +

1

ε2
V ⊥

(y
ε

))
χε(y) =

E0

ε2
χε(y) , (3.1)

which in particular implies the localisation of χε on the scale ε. Since the energy

gap between ground state and first excited state scales as ε−2, transverse excitations

are, for sufficiently small ε, strongly suppressed. As as consequence, the great major-

ity of particles remains in the transverse ground state under time evolution, merely

undergoing phase oscillations.

As explained in Section 1.2.3, the choice L = 1 coerces a rescaling of the interaction

to remain in the physically relevant GP scaling regime. As in (1.21), this rescaling is

determined by the requirement that the ground state and kinetic energy per particle

be comparable, where the relevant kinetic energy is in this case the longitudinal kinetic

energy. Since the density of the gas scales as

% =
N

ε3−d ,

the total ground state energy is by (1.19) of order ANε−(3−d), while the longitudinal

kinetic energy is of order one. Hence, the GP scaling condition (1.22) reads

A ∼ ε3−d

N
. (3.2)

As shown in Section 1.2.4, this condition is implemented by the interaction potential

wµ(z) =
1

µ2
w

(
z

µ

)

for a compactly supported, bounded and non-negative interaction potential w with

scattering length a, where we introduced the parameter

µ :=
ε3−d

N

measuring the range of the interaction. It coincides with the scale of the scattering

length of wµ, which is given as

A = aµ = µa ,

where a denotes the scattering length of w.

Finally, we admit an additional, possibly time-dependent external field varying on

the length scale L‖ = 1, which may act on both x an y coordinates. To emphasize

the distinction from V ⊥, this potential is called V ‖ : R × R3 → R. The full N -body
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Hamiltonian is given as

Hµ(t) =

N∑

j=1

(
−∆j +

1

ε2
V ⊥

(yj
ε

)
+ V ‖(t, zj)

)
+
∑

i<j

wµ(zi − zj) . (3.3)

We study the dynamics of the system in the simultaneous limit (N, ε) → (∞, 0), i.e.,

in the joint limit of infinite particle number and infinite spatial asymmetry. The state

ψN,ε(t) at time t is determined by the solution of the N -body Schrödinger equation

with Hamiltonian Hµ(t) and initial datum ψN,ε0 ∈ L2
+(R3N ), which is assumed to

exhibit complete asymptotic BEC in the state ϕε0 ∈ L2(R3). Given the strong con-

finement, the condensate wave function ϕε0 is assumed to factorise into the transverse

ground state χε and a longitudinal part Φ0 ∈ L2(Rd),

ϕε0(z) = Φ0(x)χε(y) .

The goal of this project is to prove that complete asymptotic condensation in a fac-

torised one-body state is preserved by the time evolution, i.e., that

lim
(N,ε)→(∞,0)

Tr

∣∣∣∣γ
(1)

ψN,ε0

− |ϕε0〉〈ϕε0|
∣∣∣∣ = 0 ⇒ lim

(N,ε)→(∞,0)
Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|

∣∣∣ = 0

for ϕε(t) = Φ(t)χε, where the longitudinal part Φ(t) is the solution of the effective

d-dimensional GP equation

i ∂∂tΦ(t, x) =
(
−∆x + V ‖(t, (x, 0)) + b|Φ(t, x)|2

)
Φ(t, x) , Φ(0) = Φ0, (3.4)

with coupling parameter

b := 8πa

∫

R3−d

|χ(y)|4 dy = 8πa ε3−d
∫

R3−d

|χε(y)|4 dy . (3.5)

Note that this parameter b is precisely Ng1d from (1.44) for d = 1 and 8πNg
(1)
2d

from (1.64) for d = 2, respectively, with choices L = 1 and A = aµ. Consequently, (3.4)

is the time-dependent GP equation corresponding to the 1d-/2d- GP functionals (1.48)

and (1.60) with potential V ‖ = V ‖(t, (x, 0)).

To heuristically motivate the evolution equation (3.4) with coupling parameter (3.5),

note that µ� ε as long as N is sufficiently large, implying that the interaction appears

δ-like even on the scale ε. Formally replacing wµ by 8πaµδ(x1 − x2)δ(y1 − y2) as in

the heuristic argument in Section 1.2.5, we absorb the short-scale correlation structure

into the effective interaction. Further, note that |χε|2 acts δ-like on the scale length
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where V ‖ varies, in the sense that

∫

R3−d
dy |χε(y)|2V ‖(t, (x, y)) =

∫

R3−d
dy |χε(y)|2V ‖(t, (x, 0)) +O(ε) ≈ V ‖(t, (x, 0))

for sufficiently regular V ‖. By (3.1), with aµ = µa and since Φ, χ and χε are nor-

malised, this yields the total energy

E0(N, ε) = N
〈

Φ(x)χε(y),
(
−∆x −∆y + 1

ε2
V ⊥(yε ) + V ‖(t, z)

)
Φ(x)χε(y)

〉
L2(R3)

+N(N−1)
2 8πaµ 〈χε(y1)χε(y2), δ(y1 − y2)χε(y1)χε(y2)〉L2(R3−d×R3−d) ×

×〈Φ(x1)Φ(x2), δ(x1 − x2)Φ(x1)Φ(x2)〉L2(Rd×Rd)

≈ N E0
ε2

+ 〈Φ, (−∆x)Φ〉L2(Rd) +N
〈

Φ(x), V ‖(t, (x, 0))Φ(x)
〉

+Nε3−d4πa
〈
Φ, |Φ|2Φ

〉
L2(Rd)

∫

R3−d
|χε(y)|4 dy

= N


E0

ε2
+

∫

Rd

(
|∇xΦ(x)|2 + V ‖(t, (x, 0))|Φ(x)|2 + b

2 |Φ(x)|4
)

dx


 ,

which equals the d-dimensional GP energy functional with coupling parameter b
8π ,

plus the transverse ground state energy. The time-dependent d-dimensional GP equa-

tion (3.4) can then be formally justified as argued in Section 1.4.1.

As explained in Section 1.4.4, Pickl’s strategy of proof requires not only the as-

sumption that the system initially exhibits complete asymptotic BEC in the state

ϕε = Φχε but also an estimate of the initial energy of the N -body wave function. The

corresponding quantities in the situation with strong confinement are

• the “renormalised” energy per particle: for ψ ∈ D(Hµ(t)
1
2 ),

Eψwµ(t) := 1
N ⟪ψ,Hµ(t)ψ⟫− E0

ε2
, (3.6)

• the effective longitudinal energy per particle: for Φ ∈ H1(Rd),

EΦ
b (t) :=

〈
Φ,
(
−∆x + V ‖(t, (x, 0)) + b

2 |Φ|2
)

Φ
〉
L2(Rd)

. (3.7)

To model the situation in real experiments, we consider the two limits N →∞ and

ε→ 0 simultaneously. Our analysis does not cover all possible sequences {(Nn, εn)}n∈N
in N× (0, 1) with limiting behaviour (Nn, εn)→ (∞, 0) as n→∞ but requires certain

restrictions on the relation of the two parameters N and ε. In particular, ε must shrink

sufficiently fast compared to N−1 to ensure that the spectral gap in the transverse
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direction grows fast enough to sufficiently suppress transitions into transverse excited

states. This is regulated by the so-called admissibility condition. Moreover, if the

confinement is in one spatial dimension (d = 2), we require a second, although very

weak condition, referred to as moderate confinement condition, which states that ε

cannot shrink too fast either. Both conditions seem to be rather of technical than of

physical nature, and we comment on their necessity in detail in Section 3.1.3. More

precisely, we consider the following sequences:

Definition 3.1.1. Let {(Nn, εn)}n∈N ⊂ N×(0, 1) such that limn→∞(Nn, εn) = (∞, 0),

and let µn := ε3−d
n /Nn. Then the sequence is called

• (Θ -) admissible, if

lim
n→∞

εΘ
n

µn
= lim

n→∞
Nnε

Θ+d−3
n = 0 , (3.8)

• (Γ-) moderately confining, if

lim
n→∞

εΓ
n

µn
= lim

n→∞
Nnε

Γ+d−3
n =∞ . (3.9)

The admissibility condition (3.8) can only be satisfied for Θ > 3 − d. Clearly, the

larger Θ, the weaker the condition. Moreover, it is less restrictive for d = 2 than

for d = 1. The moderate confinement condition (3.9) is automatically fulfilled for

Γ ≤ 3−d, and we require Γ < Θ to ensure the compatibility with (3.8). The condition

is weaker for smaller Γ and smaller d. In conclusion, Θ and Γ can take the values

Θ ∈ (3− d,∞] , Γ ∈ [3− d,Θ) ,

where Θ =∞ and Γ = 3− d mean imposing no condition at all.

To prove that (3.4) effectively describes the dynamics of the condensate, we require

restrictions on the parameters Θ and Γ, which depend on the dimension d. To express

these choices in a more compact way, we use the notation x+ and x− to denote (x+σ)

and (x− σ) for any fixed σ > 0, which is to be understood in the following sense: Let

the sequence (Nn, εn)n∈N → (∞, 0) and σ > 0. Then

f(N, ε) . N−x
−

:⇔ f(Nn, εn) . N−x+σ
n for sufficiently large n ,

f(N, ε) . εx
−

:⇔ f(Nn, εn) . εx−σn for sufficiently large n ,

f(N, ε) . µx
−

:⇔ f(Nn, εn) . µx−σn for sufficiently large n .

Using this notation, the weakest possible restrictions covered by our analysis are given
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by

(Θ,Γ)d =





(
12
5

−
, 2
)

for d = 1 ,

(3, 1+) for d = 2 .
(3.10)

Note that for d = 1, we may choose Γ = 2 = 3− d, which means that our proof does

not require any moderate confinement condition. These constraints are discussed in

detail in Section 3.1.3.

Finally, our analysis is only sensible for times where the condensate wave function

Φ(t) exists, and, moreover, we require H2d(Rd)-regularity of Φ(t) for our proof. Since

the evolution equation (3.4) is non-linear, the regularity of the initial datum Φ0 is

not necessarily preserved globally in time. Hence, let us define the maximal time of

H2d(Rd)-existence,

T ex
d,V ‖ := sup

{
t ∈ R+

0 : ‖Φ(t)‖H2d(Rd) <∞
}
,

which depends on the dimension d of the non-linear equation and on the external

potential V ‖(·, (·, 0)). Conditions on V ‖ under which the existence is global in time

are specified in [32, Assumption A3 and Appendix A] for d = 1 and in [33, Remark 1]

for d = 2.

In conclusion, we make the following assumptions on the model (3.3) and on the

initial data:

A1 Interaction potential.

Let the unscaled potential w : R3 → R be bounded uniformly in N and ε,

spherically symmetric and non-negative and let diam (suppw) = 1.

A2 Confining potential.

Let V ⊥ : R3−d → R such that−∆y+V
⊥ is self-adjoint on its domainD ⊂ L2(R3−d)

and has a non-degenerate ground state χ with ground state energy E0 < σess(−∆y+

V ⊥).

Assume further that the negative part of V ⊥ is bounded and that χ ∈ C2
b (R3−d),

i.e., that χ is bounded and twice continuously differentiable with bounded deriva-

tives. We choose χ normalised and real.

A3 External field.

Let V ‖ : R × R3 → R such that for fixed z ∈ R3, V ‖(·, z) ∈ C1(R). Fur-

ther, assume that for each fixed t ∈ R, V ‖(t, ·), V̇ ‖(t, ·) ∈ L∞(R3) ∩ C1(R3) and

∇yV ‖(t, ·), ∇yV̇ ‖(t, ·) ∈ L∞(R3).

A4 Initial data.

Let (N, ε) → (∞, 0) be an admissible and moderately confining sequence with
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parameters (Θ,Γ)d given by (3.10). Assume that the family of initial data,

ψN,ε0 ∈ D(Hµ(0)) ∩ L2
+(R3N ) with ‖ψN,ε0 ‖2 = 1, is close to a condensate with

condensate wave function ϕε0 = Φ0χ
ε for some normalised Φ0 ∈ H2d(Rd), i.e.,

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣γ(1)

ψN,ε0

− |Φ0χ
ε〉〈Φ0χ

ε|
∣∣∣ = 0 . (3.11)

Further, let

lim
(N,ε)→(∞,0)

∣∣∣∣E
ψN,ε0
wµ (0)− EΦ0

b (0)

∣∣∣∣ = 0 . (3.12)

Under these assumptions, we prove that condensation in a factorised one-body state

is preserved by the N -body time evolution, and that the longitudinal part of the

condensate wave function evolves according to a d-dimensional GP equation.

Theorem 3.1.2. Let d ∈ {1, 2} and assume that the potentials w, V ⊥ and V ‖ satisfy

A1 – A3. Let ψN,ε0 be a family of initial data satisfying A4, and let ψN,ε(t) denote the

solution of the N -body Schrödinger equation with Hamiltonian (3.3) and initial datum

ψN,ε0 . Then, for any 0 ≤ T < T ex
d,V ‖,

lim
(N,ε)→(∞,0)

sup
t∈[0,T ]

Tr
∣∣∣γ(1)

ψN,ε(t)
− |Φ(t)χε〉〈Φ(t)χε|

∣∣∣ = 0, (3.13)

lim
(N,ε)→(∞,0)

sup
t∈[0,T ]

∣∣∣EψN,ε(t)wµ (t)− EΦ(t)
b (t)

∣∣∣ = 0 , (3.14)

where the limits are taken along the sequence (N, ε) from A4. Here, Φ(t) is the solution

of (3.4) with initial datum Φ(0) = Φ0 from A4.

Theorem 3.1.2 combines the statements of [35, Theorem 1] for d = 1 and [33, The-

orem 1] for d = 2. In fact, we prove (3.13) and (3.14) for a larger class of interaction

potentials, including not only interactions in the GP scaling regime but also interac-

tions in the NLS regime such as

wµ,β(z) = µ1−3βw(µ−βz) , β ∈ (0, 1) (3.15)

(see [32, Theorem 1] and [33, Theorem 1]). The main motivation to consider such

interactions is that they are crucial for the proof in the GP regime, where the central

idea is the replacement of wµ by an appropriate, softer scaling interaction in the NLS

regime, as explained in Section 1.4.4. Therefore, we postpone the discussion of these

interactions to the next section.

Finally, our proof provides an estimate of the rate of the convergence of the reduced

densities. Since this rate is not optimal, we do not state it here, but it can easily be

recovered from the estimates of the single contributions to the time derivatives of the
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respective counting functional, together with the quantitative version of Lemma 1.4.2

([32, Lemma 3.6]). For d = 1, the rates are collected in [32, Corollary 3.9] and [35,

Corollary 3.5].

3.1.2. Strategy of proof

Pickl’s method (Section 1.4.4) was first adapted to the situation with strong con-

finement by von Keler and Teufel in [100], who cover the mean-field scaling regime

β ∈ (0, 1
3). Our proof can be understood as an extension of these ideas to the whole

range β ∈ (0, 1].

In addition to the projectors

p := pϕ
ε

:= |ϕε(t)〉〈ϕε(t)| , q := qϕ
ε

:= 1L2(R3) − p

onto the condensate and its complement, one introduces projectors onto its longitudi-

nal and transverse part. Define the orthogonal projections on L2(R3)

pΦ := |Φ(t)〉〈Φ(t)| ⊗ 1L2(R3−d) , qΦ := 1L2(R3) − pΦ,

pχ
ε

:= 1L2(Rd) ⊗ |χε〉〈χε| , qχ := 1L2(R3) − pχ ,

which are lifted to many-body projections on L2(R3N ) as in Definition 1.4.1. They

satisfy the relations

p = pΦpχ
ε
, qΦq = qΦ , qχ

ε
q = qχ

ε
, q = qχ

ε
+ qΦpχ

ε
= qΦ + pΦqχ

ε
. (3.16)

As explained in Section 1.4.4, one of the key ideas of Pickl’s strategy of proof is the

substitution of the GP interaction by a softer interaction in the NLS scaling regime.

More precisely, this interaction should be contained in the following set:

Definition 3.1.3. Let β ∈ (0, 1) and η > 0. Define Wβ,η as the set containing all

families

wµ,β : (0, 1)→ L∞(R3,R), µ 7→ wµ,β,

such that for any µ ∈ (0, 1)

(a) wµ,β ≥ 0 is spherically symmetric with ‖wµ,β‖L∞(R3) . µ1−3β and with

Rµ,β := diam(suppwµ,β) ∼ µβ,

(b) lim
(N,ε)→(∞,0)

µ−η |bβ,N,ε − bβ| = 0 ,

where

bβ,N,ε := N

∫

R3

wµ,β(z) dz

∫

R3−d

|χε(y)|4 dy = µ−1

∫

R3

wµ,β(z) dz

∫

R3−d

|χ(y)|4 dy ,
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and

bβ := lim
(N,ε)→(∞,0)

bβ,N,ε .

The parameter bβ,N,ε determines the coupling parameter of the effective (N, ε)-

dependent non-linear evolution equation for Φ(t) in the NLS scaling regime, analo-

gously to wϕ(t) in (1.69). In the limit (N, ε) → (∞, 0), it converges to an (N, ε)-

independent evolution equation with coupling parameter bβ := lim(N,ε)→(∞,0) bβ,N,ε,

analogously to ‖w‖1 in (1.72). The parameter η measures how fast bβ,N,ε converges to

this limit. Note that the interaction wµ,β(z) = µ1−3βw(µ−βz) is contained in Wβ,η for

every η > 0 and corresponds to the coupling parameter

bβ = ‖w‖L1(R3)

∫

R3−d
|χ(y)|4 dy . (3.17)

As for the GP scaling, we must restrict our analysis to sequences (N, ε) satisfying

an admissibility as well as a moderate confinement condition (Definition 3.1.1). For

β ∈ (0, 1), the corresponding parameters Θ and Γ are given by

(Θ,Γ)d,β =





(
2
β ,

1
β

)
for d = 1 ,

(
3
β

−
, 1
β

)
for d = 2 .

(3.18)

In both cases, we may choose Γ = 1
β , which implies that the moderate confinement

condition can be written as

lim
(N,ε)→(∞,0)

µβ

ε
= 0 .

Since the range of wµ,β ∈ Wβ,η is of order µβ, this condition µβ � ε implies that

the interaction is supported well within the confining potential. Hence, in the NLS

scaling regime, the moderate confinement condition is physically motivated, whereas

the admissibility condition is a technical restriction also in this regime (see also Section

3.1.3).

Although our goal is to derive an evolution equation in d < 3 dimensions, the

problem is still three-dimensional, in the sense that the condensate wave function

ϕε = Φχε is a 3d object. Hence, the counting functionals for NLS and GP scaling

regime are defined analogously to (1.78) and (1.94) from the 3d case without strong

confinement, namely

α<ξ,wµ,β (t) := ⟪ψN,ε(t), m̂ϕεψN,ε(t)⟫+
∣∣∣EψN,ε(t)wµ,β

(t)− EΦ(t)
bβ

(t)
∣∣∣ , (3.19)

αξ,wµ(t) := α<ξ,wµ(t)−N(N − 1)<⟪ψN,ε(t), g(12)

β̃
r̂ϕε ψN,ε(t)⟫ , (3.20)
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with m̂ϕε from (1.77) and r̂ϕε from (1.93). Here, EΦ(t)
bβ

(t) is defined as (3.7) with bβ as

in Definition 3.1.3. The function g
(12)

β̃
:= g

β̃
(z1 − z2) denotes the complement of the

zero energy scattering solution f
β̃

of the potential wµ − Uβ̃ as in(1.90). Here, U
β̃

is

defined analogously to Definition 1.4.4, i.e.,

U
β̃
(z) := µ1−3β̃a1

µβ̃<|z|<R
β̃

(z) ,

where R
β̃

is defined as the minimal value such that the scattering length of wµ − Uβ̃
equals zero.

To prove the convergence of these functionals, we must eventually compare the

3d pair interaction wµ,β and the d-dimensional effective one-body potential bβ|Φ|2.

To cope with this dimensional difference, we construct an effectively d-dimensional

interaction wµ,β by integrating out the transverse degrees of freedom in wµ,β, i.e.,

wµ,β(x1 − x2) :=

∫

R3−d

dy1|χε(y1)|2
∫

R3−d

dy2|χε(y2)|2wµ(z1 − z2) .

As an immediate consequence of this definition, we find

pχ
ε

1 pχ
ε

2 wµ,β(z1 − z2)pχ
ε

1 pχ
ε

2 = wµ,β(x1 − x2)pχ
ε

1 pχ
ε

2 . (3.21)

We now suitably insert identities (p1 + q1)(p2 + q2) in the time derivatives of the

functionals (3.19) and (3.20) on both sides of the scalar products and decompose

them, using the relations (3.16). By (3.21), the contribution with pχ
ε

1 pχ
ε

2 on both sides

produces the effectively d-dimensional interaction wµ,β, while the other contributions

can be understood as remainders from this substitution.

As in Section 1.4.4, we first derive an estimate of the time derivative of α<ξ,wµ,β (t)

for interactions wµ,β ∈ Wβ,η in the NLS scaling regime. Subsequently, we use this

result for the GP case.

NLS regime

For interactions in the NLS scaling regime as in Definition 3.1.3, we obtain

∣∣∣ d
dtα

<
ξ,wµ,β

(t)
∣∣∣ . γa,<(t) + γ

(1)
b,<(t) + γ

(2)
b,<(t) + γr,d(t)

for almost every t ∈ [0, T ex
d,V ‖). The terms γa,<, γ

(1)
b,< and γ

(2)
b,< contain the quasi-d-

dimensional interaction wµ,β, hence they are comparable to (1.82) from the fully 3d

case. Moreover, they are of the same form for both d = 1, 2. For the last term,

γr,d, which collects the remainders from the substitution wµ 7→ wµ,β, we distinguish

between d = 1 and d = 2. To write the expressions in a more compact form, we
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abbreviate

Z
(12)
µ,β := w

(12)
µ,β −

bβ
N−1

(
|Φ(t, x1)|2 + |Φ(t, x2)|2

)

and drop all superscripts ϕε(t). This yields

γa,<(t) :=
∣∣∣⟪ψN,ε(t), V̇ ‖(t, z1)ψN,ε(t)⟫− 〈Φ(t), V̇ ‖(t, (x, 0))Φ(t)

〉
L2(Rd)

∣∣∣

−2=⟪ψN,ε(t), l̂q1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ

N,ε(t)⟫ ,
γ

(1)
b,<(t) := N

∣∣∣⟪ψN,ε(t), l̂ qΦ
1 p

χε

1 p2Z
(12)
µ,β p1p2ψ

N,ε(t)⟫∣∣∣ ,
γ

(2)
b,<(t) := N

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 l̂ wµ,β(x1 − x2)pΦ

1 p
Φ
2 p

χε

1 pχ
ε

2 ψN,ε(t)⟫∣∣∣
+N

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 l̂ wµ,β(x1 − x2)pΦ

1 q
Φ
2 p

χε

1 pχ
ε

2 ψN,ε(t)⟫∣∣∣
+bβ

∣∣∣⟪ψN,ε(t), q1q2 l̂ |Φ(t, x1)|2p1q2ψ
N,ε(t)⟫∣∣∣ .

where

l̂ ∈
{
Nm̂a

−1, Nm̂
b
−2

}

is in each term chosen such that the term becomes maximal. For d = 1, we obtain the

remainder term

γr,1(t) := N
∣∣∣⟪ψN,ε(t), qχε1 t2 l̂ w

(12)
µ,β p1p2ψ

N,ε(t)⟫∣∣∣
+N

∣∣∣⟪ψN,ε(t), (qχε1 q2 + qΦ
1 p

χε

1 qχ
ε

2 ) l̂ w
(12)
µ,β p1q2ψ

N,ε(t)⟫∣∣∣
+N

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 l̂ p

χε

1 pχ
ε

2 w
(12)
µ,β p1q

χε

2 ψN,ε(t)⟫∣∣∣ ,
where t2 ∈ {p2, q2, q

Φ
2 p

χε

2 } such that the first line becomes maximal. For reasons

explained below, the case d = 2 requires one more splitting of the projections q2 in

the second line into q2 = qχ
ε

2 + qΦ
2 p

χε

2 . This yields

γ
(1)
r,2 (t) := N

∣∣∣⟪ψN,ε(t), qχε1 t2 l̂ w
(12)
µ,β p1p2ψ

N,ε(t)⟫∣∣∣
+N

∣∣∣⟪ψN,ε(t), (qχε1 q2 + qΦ
1 p

χε

1 qχ
ε

2 ) l̂ w
(12)
µ,β p1q

χε

2 ψN,ε(t)⟫∣∣∣
+N

∣∣∣⟪ψN,ε(t), qχε1 qχ
ε

2 l̂ w
(12)
µ,β p1p

χε

2 qΦ
2 ψ

N,ε(t)⟫∣∣∣ ,
γ

(2)
r,2 (t) := N

∣∣∣⟪ψN,ε(t), (qχε1 qΦ
2 p

χε

2 + qΦ
1 p

χε

1 qχ
ε

2 ) l̂ w
(12)
µ,β p1p

χε

2 qΦ
2 ψ

N,ε(t)⟫∣∣∣
+N

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 p

χε

1 pχ
ε

2 l̂ w
(12)
µ,β p1q

χε

2 ψN,ε(t)⟫∣∣∣ .
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Let us analyse the single terms and, in particular, comment on the differences to the

fully 3d problem from Section 1.4.4.

• Energy term γa,<(t).

Similarly to the 3d expression (1.80), this term contains the interactions between

the bosons and the external field V ‖. The second line is specific for the problem

with strong confinement and is due to the fact that the N -body Hamiltonian

contains the 3d external field V ‖(t), while only the value of V ‖(t) at y = 0

enters in the effective equation. In addition to the argument for (1.80), one

expands V ‖(t, (x, ·)) around zero and estimates the remainders, which entails

the regularity assumptions in assumption A3.

• (qΦpΦ– pΦpΦ) term γ
(1)
b,<(t).

The 3d counterpart of γ
(1)
b,<(t) is (1.83). Since qΦ

1 |Φ(x2)|2pΦ
1 = 0, it follows that

γ
(1)
b,<(t) contains the difference

pΦ
2

(
wµ,β(x1 − x2)− bβ

N−1 |Φ(x1)|2
)
pΦ

2

between the quasi-d-dimensional pair interaction and the effective d-dimensional

one-body interaction potential. The estimate works analogously to the 3d case

and crucially requires the moderate confinement condition. This constraint en-

sures that wµ,β is localised well within the region accessible to the confined

bosons, implying that the full interaction potential contributes to wµ,β. If it

were instead that µβ � ε, the predominant part of wµ,β would be localised in

a practically inaccessible area, hence one expects pΦ
2 wµ,β(x1 − x2) pΦ

2 → 0 as

(N, ε) → (∞, 0) (see also the discussion of the moderate confinement condition

in Section 3.1.3).

• (qΦqΦ– pΦpΦ) and (qΦqΦ– qΦpΦ) terms γ
(2)
b,<(t).

The first two lines of γ
(2)
b,<(t) correspond to the 3d expressions (1.84) and (1.85),

while the third line is a remainder, which is easily controlled since it does not

contain wµ,β. As in the 3d problem, the first two lines are estimated by integra-

tion by parts, which, however, is now only in x as wµ,β is a function on Rd. Since

the explicit form of Green’s function depends on the dimension, the estimates

for d = 1, 2 are mutually different and differ from the 3d problem.

For d = 1, we implement the integration by parts by defining the function hβ1
as the solution of the equation d2

dx2
hβ1 = wµ,β on the interval [−N−β1 , Nβ1 ] with

Dirichlet boundary conditions for some β1 ∈ [0, 1]. To prevent contributions from

the boundary upon integrating by parts on this interval, we insert a smoothed

step function, whose derivatives can be controlled (see [32, Definition 4.18]).
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For d = 2, we define hρ as the solution of the equation ∆hρ = wµ,β − vρ on

R2. Here, vρ is a potential with ‖vρ‖L1(R2) = ‖wµ,β‖L1(R2) which is supported

within a 2d ball Bρ with radius ρ for some ρ ∈ (µβ, 1] ([33, Definition 5.4]).

As a consequence of Newton’s theorem, hρ is supported in Bρ, and we can

integrate by parts in x without the appearance of boundary terms. To cope with

the logarithmic divergence of the 2d Green’s function, we integrate by parts

twice. This is the reason why we define hρ not on a ball with Dirichlet boundary

conditions as was done for d = 1: while the results are the same when integrating

by parts once, the additional factors ρ−1 from a second derivative falling on the

smoothed step function are too large.

As in the 3d problem, an a priori estimate ‖∇x1qΦ
1 ψ

N,ε(t)‖2 . 1 suffices for the

first but not for the second line of γ
(2)
b,<(t), both for d = 1 and d = 2. Here, we

derive the improved estimate

‖∇x1qΦ
1 ψ

N,ε(t)‖2 . α<ξ,wµ,β (t) + O(1)

([32, Lemma 4.21]) by adapting the proof of the corresponding 3d lemma, which

again involves a splitting of the interaction by means of the projectors pχ
ε

and

qχ
ε

and an integration by parts. Naturally, remainder terms similar to γr,<(t)

appear, and they are controlled as explained below.

• Remainder term γr,1(t) for d = 1.

This term does not have any 3d counterpart since it collects all terms without

pχ
ε

1 pχ
ε

2 on both sides of the scalar product, i.e., the remainders from the substi-

tution wµ,β 7→ wµ,β. The integration by parts, which is now in three dimensions,

is realised via the function hε solving ∆hε = wµ,β on a 3d ball with radius ε

and Dirichlet boundary conditions, in combination with a suitable smoothed

step function. In contrast to the integration by parts in x, we must now handle

derivatives ∇y1 hitting ψN or ϕε, which contribute a factor ε−1 each.

To compensate for these factors, one observes that transverse excitations are

extremely suppressed due to the strong confinement. Since the interaction wµ,β
is non-negative and the external potential V ‖ is bounded, one finds, for simplicity

dropping all time-dependencies, that

O(1) = Eψ
N,ε

wµ,β
(t) & ⟪ψN,ε,(−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
ψN,ε⟫−O(1)

= ⟪qχε1 ψN,ε,
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
qχ

ε

1 ψN,ε⟫−O(1)

because
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
pχ

ε

1 = 0 by (3.1). On the one hand, the spec-
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tral gap between the ground state and the first excited state scales as ε−2, hence

⟪qχε1 ψN,ε,
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
qχ

ε

1 ψN,ε⟫ & 1
ε2
⟪ψN,ε, qχε1 ψN,ε⟫ .

On the other hand, assumption A2 states that ‖(V ⊥ − E0)−‖L∞(R3−d) . 1,

implying that

⟪qχε1 ψN,ε,
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
qχ

ε

1 ψN,ε⟫
≥ ‖∇y1qχ

ε

1 ψN,ε‖2 − 1
ε2
‖(V ⊥ − E0)−‖L∞(R3−d)‖qχ

ε

1 ψN,ε‖2 .

In conclusion, we obtain the a priori estimates

‖qχε1 ψN,ε(t)‖ . ε , ‖∇y1qχ
ε

1 ψN,ε(t)‖ . 1 .

Note that each term in γr,1(t) contains a projection qχ
ε

1 , hence one gains a factor

ε in each expression. Moreover, by means of the admissibility condition, small

positive powers of N can be compensated for by powers of ε, which is crucial for

the estimate.

• Remainder terms γ
(1)
r,2 (t) and γ

(2)
r,2 (t) for d = 2.

The term γ
(1)
r,2 (t) can be estimated by a 3d integration by parts, similarly to

γr,1(t). Note that the second and third line each contain two projections qχ
ε
,

each of which contributes a factor ε. While one ε cancels the factor ε−1 from

the derivative, the second ε compensates for all surplus positive powers of N .

Since the two terms in γ
(2)
r,2 (t) contain only one projection qχ

ε
each, this strategy

of a 3d integration by parts does not work here. Note that this was different for

d = 1 due a different ratio of ε and N . Instead, one controls γ
(2)
r,2 (t) by observing

that both lines contain the expression

pχ
ε

1 wµ,β(z1 − z2)pχ
ε

1 =: wµ,β(x1 − x2, y2)pχ
ε

1 ,

which defines a function where one of the y variables of the pair interaction is

integrated out, while it still depends on the second one. Now we integrate by

parts only in the x-variable as explained for d = 2 in γ
(2)
b,<(t). First, this has the

advantage that∇x does not generate factors ε−1. Second, the x-anti-derivative of

wµ,β(·, y) diverges only logarithmically in µ−1, which can be compensated for by

any positive power of ε or N−1, due to admissibility and moderate confinement

condition.

In conclusion, the estimates described above lead to the following theorem, which

combines the statements of [32, Theorem 1] for d = 1 and [33, Theorem 1] for d = 2:
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Theorem 3.1.4. Let β ∈ (0, 1), d ∈ {1, 2} and wµ,β ∈ Wβ,η for some η > 0. Assume

that the potentials V ⊥ and V ‖ satisfy assumptions A2 and A3. Let ψN,ε0 be a family

of initial data satisfying A4 with parameters (Θ,Γ)d,β as in (3.18) and with EΦ0
b (0)

replaced by EΦ0
bβ

(0). Let ψN,ε(t) denote the solution of the N -body Schrödinger equation

with Hamiltonian

Hµ,β(t) =
N∑

j=1

(
−∆j + 1

ε2
V ⊥

(yj
ε

)
+ V ‖(t, zj)

)
+
∑

i<j

wµ,β(zi − zj) (3.22)

and initial datum ψN,ε0 . Then, for any 0 ≤ T ≤ T ex
d,V ‖,

lim
(N,ε)→(∞,0)

sup
t∈[0,T ]

Tr
∣∣∣γ(1)

ψN,ε(t)
− |Φ(t)χε〉〈Φ(t)χε|

∣∣∣ = 0,

lim
(N,ε)→(∞,0)

sup
t∈[0,T ]

∣∣∣EψN,ε(t)wµ,β
(t)− EΦ(t)

bβ
(t)
∣∣∣ = 0 ,

where the limits are taken along the sequence from A4. Here, Φ(t) is the solution of

the NLS equation (3.4) but with coupling parameter bβ from Definition 3.1.3.

GP regime

Let us now turn to the proof of Theorem 3.1.2 for the interaction wµ in the GP scaling

regime. Abbreviating

Z(12)
µ := wµ(z1 − z2)− b

N−1(|Φ(t, x1)|2 + |Φ(t, x2)|2),

Z̃
(12)

µ,β̃
:=

(
U
β̃
f
β̃

)
(z1 − z2)− b

N−1(|Φ(t, x1)|2 + |Φ(t, x2)|2)

and dropping all superscripts ϕε(t), the time derivative of the GP counting functional

(3.20) can be estimated as

∣∣ d
dtαξ,wµ(t)

∣∣ . γ<(t) + γa(t) + γb(t) + γc(t) + γd(t) + γe(t) + γf (t)

for almost every t ∈ [0, T ex
d,V ‖), where

γ<(t) :=

∣∣∣∣⟪ψN,ε(t), V̇ ‖(t, z1)ψN,ε(t)⟫− 〈Φ(t), V̇ ‖(t, (x, 0))Φ(t)
〉
L2(Rd)

∣∣∣∣

+N
∣∣∣⟪ψN,ε(t), q1m̂

a
−1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ

N,ε(t)⟫∣∣∣
+N2

∣∣∣⟪ψN,ε(t), Z̃(12)

µ,β̃
m̂ψN,ε(t)⟫∣∣∣ ,

γa(t) := N3

∣∣∣∣⟪ψN,ε(t), g(12)

β̃

[
V ‖(t, z1)− V ‖(t, (x1, 0)), r̂

]
ψN,ε(t)⟫∣∣∣∣ ,
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γb(t) := N

∣∣∣∣⟪ψN,ε(t), |Φ(t, x1)|2g(12)

β̃
r̂ ψN,ε(t)⟫∣∣∣∣

+N2

∣∣∣∣⟪ψN,ε(t), g(12)

β̃
r̂ Z(12)

µ ψN,ε(t)⟫∣∣∣∣ ,
γc(t) := N2

∣∣∣∣⟪ψN,ε(t), (∇1g
(12)

β̃
) · ∇1r̂ ψ

N,ε(t)⟫∣∣∣∣ ,
γd(t) := N3

∣∣∣∣⟪ψN,ε(t), g(12)

β̃

[
|Φ(t, x3)|2, r̂

]
ψN,ε(t)⟫∣∣∣∣

+N3

∣∣∣∣⟪ψN,ε(t), g(12)

β̃

[
w(13)
µ , r̂

]
ψN,ε(t)⟫∣∣∣∣ ,

γe(t) := N4

∣∣∣∣⟪ψN,ε(t), g(12)

β̃

[
w(34)
µ , r̂

]
ψN,ε(t)⟫∣∣∣∣ ,

γf (t) := N2

∣∣∣∣⟪ψN,ε(t), g(12)

β̃

[
Φ(t, x1)|2, r̂

]
ψN,ε(t)⟫∣∣∣∣ .

As in the 3d case, these expressions fall into two categories:

• NLS term γ<(t).

This term is the counterpart of (1.96), i.e., it corresponds to the time deriva-

tive of the NLS counting functional with interaction U
β̃
f
β̃
. To show that the

result from the NLS case can be transferred, one first observes that U
β̃
f
β̃
∈ W

β̃,η

for η ∈ (0, 1 − β̃). Second, one needs to choose β̃ such that the admissibil-

ity/moderate confinement condition with parameters (Θ,Γ)d from (3.10) implies

that the same sequence (N, ε) is also admissible/moderately confining with pa-

rameters (Θ,Γ)
d,β̃

from (3.18).

For d = 1, we have (Θ,Γ)1 = (12
5

−
, 2) and (Θ,Γ)

1,β̃
= (2/β̃, 1/β̃), which implies

the sufficient condition β̃ ∈ [1
2 ,

5
6

+
] since

β̃ ≤ 5
6

+ ⇒ Nε2/β̃−2 = Nε12/5−−2ε2/β̃−12/5− → 0 ,

β̃ ≥ 1
2 ⇒ N−1ε2−1/β̃ → 0 .

For d = 2, the respective parameters are (Θ,Γ)2 = (3, 1+) and (Θ,Γ)
2,β̃

=

(3/β̃, 1/β̃), hence the compatible range of β̃ is [1−, 1] because

β̃ ≤ 1 ⇒ Nε3/β̃−1 = Nε2ε3/β̃−3 → 0 ,

β̃ ≥ 1− ⇒ N−1ε1−1/β̃ = N−1ε1−1+ε1+−1/β̃ → 0 .

Note, however, that these conditions are further restricted by requirements in
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3.1. Low-dimensional Gross–Pitaevskii equation for strongly confined bosons

the proof.

As explained in Section 1.4.4, the estimate of the second line of γ
(2)
b,< needs to be

adapted to the GP dynamics. First, one proves the estimate

‖1A1∇x1qΦ
1 ψ

N,ε(t)‖2 . α<ξ,wµ(t) + O(1) ,

where A1 is the subset of R3N where appropriate 3d holes around the scattering

centres are cut out. The basic idea of the proof is the same as for the fully 3d

estimate (1.102), which crucially relies on the inequality (1.103). However, it

becomes more involved due to the confinement: To be able to apply (1.103), we

must show that

‖1A1
1B1∇x1ψN,ε(t)‖2 + ⟪ψN,ε(t),(−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
ψN,ε(t)⟫

& ‖1A1
1B1∇1ψ

N,ε(t)‖2 − O(1) ,

i.e., that the positive term ‖∇y1ψN,ε(t)‖2 compensates not only for a sufficient

share of the negative part of ⟪ψN,ε(t),1B1(wµ − Uβ̃)(12)ψN,ε(t)⟫ but also for

the large negative part of 1
ε2
⟪ψN,ε(t), (V ⊥(y1ε )− E0)ψN,ε(t)⟫. To this end, we

introduce a new set Ax1 as the projection of A1 onto the hypersurface y = 0.

Since the corresponding characteristic functions 1Ax1 and 1Ax1 act non-trivially

only on the x variables and 1B1 and 1B1 act non-trivially only on the variables

z2, ..., zN , the corresponding multiplication operators commute with ∆y1 . In

particular, 1Ax11B1ψ
N,ε(t) and 1Ax1ψ

N,ε(t) are contained in the domain of ∆y1 .

Hence, by suitable insertion of 1Ax1 + 1Ax1 , by positivity of the operator −∆y1 +
1
ε2
V ⊥(y1ε )− E0

ε2
and since 1Ax1 ≥ 1A1

in the sense of operators, one extracts the

required contribution from the scalar product. To control the remaining terms,

we exploit the smallness of Ax by means of the Gagliardo–Nirenberg–Sobolev

inequality in the x variables. Consequently, the estimates depend non-trivially

on the dimension d. For d = 1, the resulting expressions can be controlled by

the admissibility condition alone, while for d = 2 the moderate confinement

condition is additionally required.

Finally, we estimate γ
(2)
b,< by integration by parts and insertion of 1A1 + 1A1

.

The contributions with 1A1 are controlled by the new energy estimate, while

one uses the 3d Sobolev inequality to exploit the smallness of A1 to bound the

terms with 1A1
. For d = 2, this integration by parts is done in two stages to cope

with the logarithmic divergences from the 2d Green’s function, which is similar

to the 3d problem. More precisely, one introduces two auxiliary potentials vµβ1
and ν1, which are supported on balls with radius µβ1 and 1, respectively, and

defined such that their L1(R2)-norms coincide with ‖U
β̃
f
β̃
‖L1(R2). Subsequently,
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the differences U
β̃
f
β̃
− vµβ1 and vµβ1 − ν1 are integrated by parts, and finally we

exploit different properties of the solution of the respective Poisson’s equation.

• Remainder terms γa(t) to γf (t). The terms γb(t) to γf (t) are equivalent to (1.97)

to (1.101), while γa(t) is particular for the situation with confinement, similarly

to the second line of γa,<(t) in the NLS case.

The main difference ub comparison with the 3d problem is the term γc(t).

While (1.98) is estimated via integration by parts, this does not work in the

situation with confinement, where each derivative ∇1 carries a factor ε−1. For

d = 1, this is circumvented by proving suitable estimates for ∇g
β̃
. In the case

d = 2, one splits the scalar product into its x and y components, where the

moderate confinement condition is crucial to control for the control of the y

component. Moreover, the admissibility condition is required for both d = 1 and

d = 2.

3.1.3. Discussion

To the best of our knowledge, the problem of deriving a low-dimensional NLS equation

directly from the 3d N -body dynamics has been studied in three cases, while a low-

dimensional GP equation has not been derived before:

• in [45], Chen and Holmer consider the case d = 2 with repulsive interactions for

β ∈ (0, 2
5),

• in [47], the same authors study d = 1 with attractive interactions for scaling

parameters β ∈ (0, 3
7),

• in [100], von Keler and Teufel cover repulsive interactions for d = 1 and β ∈
(0, 1

3), where the confinement is realised by a waveguide with non-trivial geom-

etry.

Let us briefly present these results, suitably adapted to our notation.

Chen and Holmer consider the Hamiltonian Hµ,β as in (3.22) without external trap

and with a harmonic confining potential in 3− d dimensions,

V ⊥(y) = y2 , 1
ε2
V ⊥(yε ) = ε−4y2,

where the frequency of the rescaled potential is ω = ε−2. They consider interactions

wµ,β as in (3.15) for w a Schwartz function. In [45], it must be non-negative, while

the authors assume in [47] that
∫
w(z) dz ≤ 0 but w may not be negative everywhere.

They admit initial data satisfying (3.11) and assume that the initial renormalised
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energy per particle is bounded uniformly in N and ε, i.e., that

sup
N,ε

(
1

N
⟪ψN,ε0 , Hµ,βψ

N,ε
0 ⟫− E0

ε2

)
. 1 . (3.23)

Under these conditions, the authors prove that that (3.13) is satisfied, i.e., that the

condensation in a factorised state is preserved by the time evolution, where the lon-

gitudinal part Φ(t) solves an NLS equation. Their proof uses the method of BBGKY

hierarchies sketched in Section 1.4.3 and, as a consequence, does not provide any

estimate of the rate of the convergence. In [45], the coupling parameter is given

by bβ =
∫
w(z) dz

∫
R |χ(y)|4 dy, and in [47], they obtain the coupling parameter

bβ = −
∣∣∫ w(z) dz

∣∣ ∫
R2 |χ(y)|4 dy. As in our case, Chen and Holmer do not consider all

possible sequences (N, ε)→ (∞, 0) but impose the following constraints:

• For the focusing problem d = 1 in [47], they assume that

Nε
2
β
−2 . 1 , N−1ε

− 2
ν2(β) . 1 , (3.24)

where

ν2(β) = min

{
1− β
β

,
3
5 − β
β − 1

5

1β≥ 1
5

+∞ · 1β< 1
5
,

2β−

1− 2β
,

7
8 − β
β

}
.

Note that the first condition in (3.24) plays the role of an admissibility condition,

while the second one is a moderate confinement condition.

• For the de-focusing problem d = 2 in [45], the condition is

N−1ε−2ν(β) ≤ ε2σ for all σ > 0 , (3.25)

where

ν(β) := max

{
1− β

2β
,

5
4β − 1

12

1− 5
2β

,
1
2β + 5

6

1− β ,
β + 1

3

1− 2β

}
.

The inequality (3.25) is a moderate confinement condition, while no admissibility

condition is imposed.

Below, we comment on the relation with our conditions (3.18).

The work [100] by von Keler and Teufel concerns a Bose gas which is confined to

a quantum waveguide with non-trivial geometry, i.e., to a region of space contained

in an ε-neighbourhood of a curve in R3. The confinement is modelled via Dirichlet

boundary conditions. The authors consider the interaction (3.15) for β ∈ (0, 1
3), where

w is assumed bounded, spherically symmetric, compactly supported and non-negative.
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Under the assumptions (3.11) and (3.12), they prove (3.13) and (3.14), where the

longitudinal part of the wave function evolves according to the 1d NLS equation (3.4)

with coupling bβ and with additional potential terms from the twisting and bending

of the waveguide. Their proof uses Pickl’s first quantised method, and our proof can

be understood as an extension of the ideas in [100]. Von Keler and Teufel impose

the admissibility condition ε
4
3 /µβ → 0, as well as the moderate confinement condition

µβ/ε → 0. Moreover, they also consider sequences (N, ε) → (∞, 0) with µβ/ε → ∞.

This is possible for β ∈ (0, 1
2) and leads to bβ = 0 in the effective equation (see the

discussion of the moderate confinement condition below).

In the remainder of this section, we discuss the assumptions of our model as well as

the obtained results and compare them to [45, 47, 100].

Assumptions on the potentials

We consider interaction potentials that are bounded, spherically symmetric, compactly

supported and non-negative. With regard to actual inter-atomic interaction potentials,

it would be more realistic to describe the interactions by potentials with positive

scattering length but with a certain negative part. Since Pickl’s approach was recently

adapted to such potentials in [98], it is likely that our result can be extended in a similar

way.

In comparison to all previous works [45, 47, 100], which are restricted to values of

β strictly smaller than 1
2 , our result covers more singular scalings of the interaction,

and in particular includes the physically relevant GP scaling.

Assumption A2 is fulfilled by a harmonic potential as considered by Chen and

Holmer but includes also, for example, any smooth and bounded potential with at

least one bound state below the essential spectrum. In particular, it is not necessary

that the potential diverges as |y| → ∞ since the confining effect of the potential

is due to the rescaling by ε: by [85, Theorem 1], the transverse ground state χε is

exponentially localised on the scale ε.

Moreover, our result can easily be modified to a confinement via Dirichlet boundary

conditions as in [100]. The main difference in the proof is the estimate of expressions

such as γ
(1)
b , which contain the difference between the quasi-d-dimensional interaction

wµ,β and the effective one-body potential. To take the boundary of the waveguide into

account, one divides the dy-integral into an integral over those y sufficiently distant

from the boundary that suppwµ,β((x, y)−·) is completely contained in the waveguide,

and into an integral over the rest, which is easily estimated. The extension of our

result to quantum waveguides with non-trivial geometry is not straightforward, since

a Taylor expansion was used in [100] and the kinetic term contains an additional vector

potential.
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Finally, assumption A3 includes any bounded and sufficiently regular external po-

tential V ‖. In contrast to the works by Chen and Holmer, we admit time-dependent

potentials V ‖ as in [100], which is important to observe non-trivial dynamics.

Assumption on the initial data

For the GP scaling of the interaction, an external potential V ‖(t, z) = V ‖(x) for some

homogeneous V ‖ of degree s ∈ [2,∞] and a confining potential diverging at infinity,

the Hamiltonian (3.3) coincides with the Hamiltonian (1.42) with parameters L = 1

and A = aµ. In this case, the two parts (3.11) and (3.12) of assumption A4 were

proven for the N -body ground state in [122, 123] for d = 1 and in [164] for d = 2 (see

Section 1.3.3):

• For d = 1 and β = 1, the parameter g1d from (1.44) is in our model given by

g1d = N−1b =
8πa

N

∫

R2

|χ(y)|4 dy ∼ 1

N
.

Besides, %1d ∼ N , hence g1d/%1d ∼ N−2, which implies that our model is in

parameter region 2 (“The 1d GP case”) of the quasi-1d gas. The 1d GP func-

tional EGP,1d
1,1,Ng1d

coincides with (3.7), hence (1.50) yields the second part (3.12) of

A4 if ψN,ε0 is the N -body ground state of the Hamiltonian (3.3) and Φ0 is the

minimiser of the GP energy functional (3.7). Moreover, the first part (3.11) of

A4 follows from (1.53).

• For d = 2 and β = 1, our model is contained in parameter regime 1 (“The 2d

limit of the 2d GP regime”) of the quasi-2d gas, which is characterised by the

simplified coupling parameter g
(1)
2d from (1.64). In our model,

g
(1)
2d =

b

8πN
=

a

N

∫

R

|χ(y)|4 dy ∼ 1

N
,

implying that the gas is part of region (b) (“The GP case”). Consequently, the

two parts (3.11) and (3.12) of assumption A4 follow from (1.63) and (1.66) if

ψN,ε0 is chosen as the N -body ground state and Φ0 as the minimiser of the 2d

GP functional (3.7).

In conclusion, the two parts of A4 concerning condensation and the energy per particle

are fulfilled at least for the N -body ground state in the GP scaling. These assumptions

coincide with the assumptions made in [100]. Besides, the first part (3.11) concerning

condensation is also required in [45, 47]. While (3.12) is stronger than the correspond-

ing assumption (3.23) by Chen and Holmer, let us remark that assumptions like (3.12)

are rather standard in the literature as soon as larger values of β are concerned.
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In addition, A4 restricts the choice of the limiting sequence {(Nn, εn)}n∈N to se-

quences satisfying moderate confinement and admissibility condition. In the remain-

der of this section, we discuss these constraints, quantify the coverage of the parameter

range, and compare this to the related works [45, 47, 100].

Restrictions on the limiting sequence for β ∈ (0, 1)

Let us begin the discussion with Theorem 3.1.4 for scalings β ∈ (0, 1). Here, the

admissibility condition (3.18) can be expressed as





ε2

µβ
� 1 d = 1

ε3−

µβ
� 1 d = 2

for sufficiently large N and small ε. The moderate confinement condition (3.18) is

given by the requirement
µβ

ε
� 1 , d = 1, 2 ,

for sufficiently large N and small ε. Figure 3.1 shows the parameter space N× [0, 1],

where we plot for clarity the parameters N−1 and ε. A sequence (N, ε) → (∞, 0)

can pass through this space in an arbitrary way from the top right to the bottom left

corner. The two boundaries correspond to the two-stage limits where first limN→∞ at

constant ε and subsequently ε→ 0 (dark solid line) and vice versa (light solid line). In

actual experiments, the confinement is often by a harmonic potential, whose frequency

ω = ε−2 is roughly proportional to the number of particles N .1 This relation is drawn

as black dashed line in Figure 3.1.

Our analysis covers a subset of N × [0, 1]. The admissibility condition bounds the

possible sequences away from the edge case limε→0 limN→∞, while the moderate con-

finement condition obstructs them from approaching the edge case limN→∞ limε→0.

The dark region in Figures 3.2 and 3.3 shows the parameter range covered by our

analysis for d = 1, 2 and some exemplary values of β ∈ (0, 1). The white area is

prohibited by the admissibility condition, while the light grey area is ruled out as a

consequence of the moderate confinement condition. Naturally, these restrictions are

meaningful only for sufficiently large N and small ε. This implies that only the section

of the plot around the bottom left corner is of importance, whereas the elements of

the sequence around the top right corner are not constrained by any admissibility or

moderate confinement condition.

For d = 1, the moderate confinement condition imposes a restriction only for β < 1
2 .

1This statement is taken from [45, p. 915] and [47, p. 592].
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0 1
0

1

N−1

ε

Figure 3.1.: Parameter space N× [0, 1] containing all sequences (N, ε)→ (∞, 0). The
dark solid line corresponds to the limit limε→0 limN→∞, while the light
solid line describes the case limN→∞ limε→0. The black dashed line depicts
the relation N ∼ ε−2, which corresponds to a harmonic confining potential
with frequency proportional to N .

This follows immediately from the definition of µ, which implies that µβ/ε � 1 is

trivially true for β ≥ 1
2 . For d = 2, the condition is meaningful for the full range

β ∈ (0, 1), becoming less restrictive with increasing β.

We expect the moderate confinement condition to be optimal, in the sense that

we expect the correct effective equation (3.4) to be a linear evolution with coupling

parameter bβ = 0 if the limiting sequence is such that µβ/ε→∞. This was shown in

[100] for d = 1, β ∈ (0, 1
3) and a confinement by Dirichlet boundary conditions. As

remarked earlier, we expect this to extend to β < 1
2 and to hold also for d = 2 and

β < 1. To motivate this expectation, recall that the moderate confinement condition

enters the proof exclusively in the estimate of γ
(1)
b,< and in the energy estimate via

a term of the same form as γ
(1)
b,<. Let us consider this expression for a confinement

by Dirichlet boundary conditions on some sufficiently nice subset Ωrε ⊂ R3−d with

diameter rε for some fixed r ≥ 0. For bβ = 0, this leads to the estimate

γ
(1)
b,< . N‖p2w

(12)
µ,β p2‖op = N sup

x1∈Rd
y1∈Ωrε

∫

Rd

dx2|Φ(x2)|2
∫

Ωrε

dy2|χε(y2)|2wµ,β(z1 − z2)

≤ Nµ ‖Φ‖2L∞(Rd)‖χε‖2L∞(Ωrε)

∫

Rd

dx

∫

Ω
rε/µβ

dy w(z)

.
(
ε
µβ

)3−d
,
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Figure 3.2.: Subset of the parameter space N × [0, 1] covered by our result for some
exempary values of β ∈ (0, 1) for d = 1. Our analysis covers the dark
region. The white region is prohibited as a consequence of the admissibility
condition, and the light grey region cannot be reached due to the moderate
confinement condition.
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Figure 3.3.: Coverage of the parameter space N× [0, 1] for d = 2 and some exemplary
choices of β ∈ (0, 1). While our result applies in the dark grey area, the
white and light grey region are prohibited by admissibility and moderate
confinement condition, respectively.
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which is small by assumption. Moreover, note that the condition µβ/ε → ∞ implies

the admissibility condition, hence the other estimates remain valid. To extend this

argument to a confinement by potentials, recall that χε is by assumption A2 localised

on the scale ε.

The admissibility condition is more restrictive for larger β and means a much

stronger constraint for d = 1 than for d = 2 (see in particular Figures 3.2 and 3.3).

Note that the curve corresponding to a harmonic confinement with frequency pro-

portional to N (Figure 3.1) is contained in the region included by the admissibility

condition for d = 1 with β < 1
2 and for d = 2 and all β < 1.

The stronger admissibility condition for d = 1 is, at least to some extent, due to

the fact that the estimates of the earlier work [32] (d = 1) are not optimal and can

presumably be improved with the ideas from [33] for d = 2. To see this, recall that the

admissibility condition is required for d = 1 because of the remainder term γr,1(t) and

because of the energy estimate, where it enters via a term that is essentially γr,1(t). A

comparison with the corresponding expression γ
(1)
r,2 (t) for d = 2 leads to the following

result:

• The respective first lines of γr,1(t) and γ
(1)
r,2 (t) coincide. For d = 1, one obtains

γr,1(t) .
(
ε2

µβ

) 1
2

(ε+N−1)
1
2N ξ .

(
ε

3−2β
2 N

β
2 + ε1−βN−

1−β
2

)
N ξ

=

((
Nε

3
β
−2
)β

2
+ µ

1−β
2

)
N ξ

(see [32, Section 4.4.3, estimate of (20)]), which can be controlled by the weaker

admissibility condition Nε3−/β−2 → 0, corresponding to the choice Θ = 3
β

−
as

in the case d = 2 (see [33, Section 5.2.2, estimate of (23)]).

• The second and third line of γr,1(t) lead to the worse estimate

∼
(
ε2

µβ

) 1
2

(see [32, Section 4.4.3, estimates of (21) and (22)]), resulting in the admissibility

condition Θ = 2/β. To estimate the corresponding terms for d = 2, we split the

projector q2 into a term with qχ
ε

2 , which effectively gains a factor ε, and remainder

terms, which we control by defining the interaction wµ,β and integrating by parts

only in the x coordinate. We expect this strategy to be applicable also for d = 1,

which should lead to a weaker admissibility condition.

We require the admissibility condition to estimate the remainders γr,< from the

substitution of wµ,β by the quasi-d-dimensional interaction wµ,β. It is needed to control
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3.1. Low-dimensional Gross–Pitaevskii equation for strongly confined bosons

terms like the expression ε2/µβ = Nβε2−2β, where surplus factors of N must be

compensated for by powers of ε. Since ε−2 is the scale of the energy gap between

transverse ground state and excitation spectrum, this condition can be understood as

the requirement that this gap must grow sufficiently fast compared to N .

Let us compare moderate confinement and admissibility condition to the constraints

imposed in the related works [45, 47, 100].

In [100], von Keler and Teufel impose the same moderate confinement condition and

moreover prove that sequences with µβ/ε → ∞ yield a free evolution equation (see

above discussion). In [45, 47], Chen and Holmer require the moderate confinement

conditions (3.24) (d = 1) and (3.25) (d = 2).

• For d = 1 and β ≤ 7
22 , their exponent ν2(β) equals 2β−

1−2β , which corresponds to

our arguably optimal condition, while they impose a much stronger condition

for all larger values of β (see also [47, Figure 1]).

• For d = 2, their parameter ν(β) equals 1−β
2β for β < 3

11 , which coincides with our

condition, while they constrain the parameter range much stronger for larger β

(see also [45, Figure 1]).

An admissibility condition is required in the two papers [47, 100] concerning d = 1.

While the constraint ε
4
3 /µβ � 1 in [100] is stronger than our condition, the require-

ment (3.24) in [47] can be expressed as ε2+/µβ � 1, which is slightly weaker than

our condition. For d = 2 in [45], Chen and Holmer do not require any admissibility

condition.

The parameter regions covered by Chen and Holmer in [45, 47] are plotted in Figures

3.4 and 3.5. Sequences (N, ε) within the dark grey regions are admitted by their results,

while the white and light grey regions are excluded. As explained above, we expect a

free evolution equation for limiting sequences within the light grey regions.

In comparison, our analysis (Theorem 3.1.4) covers the region between the dashed

and dotted black lines. As remarked before, especially the region of the parameter

space around the bottom left corner is of relevance, which implies that for larger

values of β, our restrictions are considerably weaker than the conditions imposed by

Chen and Holmer.

Note that for both d = 1, 2, our moderate confinement condition becomes weaker

with increasing β. In contrast, the moderate confinement condition by Chen and

Holmer becomes more restrictive as β increases and thereby limitates the range of β:

for d = 1, their analysis can only cover β for which the moderate confinement curve

lies below the admissibility curve, which is the case for β < 3
7 . For d = 2, there is

no admissibility condition but the moderate confinement condition becomes infinitely

restrictive (i.e., ν(β) =∞ for ν(β) from (3.25)) for β = 2
5 .
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Figure 3.4.: Coverage of the parameter space N × [0, 1] for d = 1 for some exemplary
choices of β ∈ (0, 3

7). The result by Chen and Holmer in [47] covers the
dark grey region, while the white and light grey region are excluded from
their analysis. In comparison, our admissibility and moderate confinement
conditions (3.18) are drawn as black dashed line and black dotted line,
respectively, hence our Theorem 3.1.4 applies in the region enclosed by
these curves. For limiting sequences within the light grey region, we expect
a free evolution as effective equation.
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Figure 3.5.: Coverage of the parameter space N× [0, 1] for d = 2 and some exemplary
choices of β ∈ (0, 2

5). In [45], Chen and Holmer cover sequences within
the dark grey region, while the white and light grey area are excluded.
In comparison, Theorem 3.1.4 applies to all sequences between the black
dashed line and the black dotted line, where the dashed line corresponds
to the admissibility and the dotted line to the moderate confinement con-
dition (3.18). Limiting sequences within the light grey region are expected
to yield a free effective evolution equation.
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Physically, we expect that no admissibility condition should occur at all. To moti-

vate this, one first observes that for the GP scaling β = 1, the gas is for both d = 1, 2

in a scaling regime where the ground state energy is described by the 3d GP functional

uniformly in ε (see Section 1.3.3, (1.52) and (1.65))2. More precisely, the ground state

energy can be calculated by minimising the 3d GP functional (1.51) corresponding the

Hamiltonian Hµ at fixed ε, which corresponds to taking the limit N → ∞ first and

subsequently letting ε→ 0.

Second, on the dynamical side, it is known for β ∈ (0, 1] that the limit limε→0 limN→∞,

corresponding to a dimensional reduction on the level of the effective equation, yields

precisely the effective evolution equation (3.4) with the correct coupling parameter

(3.17). The Hamiltonian Hµ,β(t) can be written as

Hµ,β(t) =
N∑

j=1

(
−∆j + V (ε)(t, zj)

)
+N−1+3β

∑

i<j

w
(ε)
β

(
Nβ(zi − zj)

)
, (3.26)

where

V (ε)(t, z) := 1
ε2
V ⊥(yε ) + V ‖(t, z) , w

(ε)
β (z) := ε(3−d)(1−3β)w(ε−(3−d)βz)

for a potential w with (N, ε)-independent scattering length a. Let us now fix ε as

a parameter and study the (ε-dependent) dynamics in the limit N → ∞. If the

system originally exhibits complete asymptotic BEC in some one-body state ϕ
(ε)
0 ,

the result [151] implies3 that this property is preserved in time, provided ε remains

fixed. The condensate wave function at time t is then given as the solution of the 3d

NLS (1.72) or GP equation (1.68) with ε-dependent coupling parameter. Note that

‖w(ε)
β ‖L1(R3) = ε3−d‖w‖L1(R3) ,

and for β = 1, the scaling relation (1.26) implies that w
(ε)
1 (z) = ε−2(3−d)w(ε−(3−d)z)

has scattering length ε3−da. Hence, for each fixed ε, the effective evolution equation

for ϕ(ε) is given by

i ∂∂tϕ
(ε)(t, z) =

(
−∆ + V (ε)(t, z) + ε3−dbβ|ϕ(ε)(t, z)|2

)
ϕ(ε)(t, z) , (3.27)

2To be precise, this was shown under the assumption that the external field V ‖ acts only on the x
coordinate and is a homogeneous function, and that the confining potential V ⊥(y) tends to ∞ as
|y| → ∞

3Note that Pickl’s method as described in Section 1.4.4 requires a bounded external field. Therefore,
to be precise, this holds only for bounded confining potentials V ⊥.
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3.1. Low-dimensional Gross–Pitaevskii equation for strongly confined bosons

where

bβ =

{
‖w‖L1(R3) β ∈ (0, 1) ,

8πa β = 1 .

Note that for β = 1, (3.27) is precisely the time-dependent equation corresponding to

the 3d ε-dependent GP functionals (1.51) and (1.60). Naturally, this result holds for

every fixed ε > 0 but, since the rate of convergence is not uniform in ε, it does not

extend to the simultaneous limit (N, ε) → (∞, 0). In fact, deriving an estimate that

is uniform both in N and in ε was precisely the purpose of the projects [32, 33, 35] of

this thesis.

To take the limit ε → 0 of (3.27), one writes (3.27) in the rescaled coordinates

y 7→ ỹ := ε−1y. With ϕ̃(ε)(t, (x, ỹ)) := ε
3−d
2 ϕ(ε)(t, (x, εỹ)), this equation yields

i ∂∂t ϕ̃
(ε)(t) =

(
−∆x + 1

ε2

(
−∆ỹ + V ⊥(ỹ)

)
+ V ‖(t, (x, εỹ)) + b|ϕ̃(ε)(t)|2

)
ϕ̃(ε)(t) .

(3.28)

For V ⊥(y) = |y|2 and V ‖(t, z) = |x|2, the limit ε → 0 of (3.28) was studied by Ben

Abdallah, Méhats, Schmeiser and Weishäupl in [19]. 4 They assume that the initial

3d wave function,

ϕ̃
(ε)
0 (x, ỹ) = ΦI(x)χ(y) ,

factorises exactly into some normalised function ΦI ∈ D
(
(−∆x + |x|2)

1
2

)
and the

ground state χ of −∆y + V ⊥ with eigenvalue E0. Under this condition, the authors

prove that for every T <∞, there exists a constant cT depending on T such that

sup
t∈(0,T )

‖ϕ̃(ε)(t)− e−iE0t/ε2Φ(t)χ‖L2(R3) ≤ cT ε ,

where Φ(t) is the solution of

i ∂∂tΦ(t) =
(
−∆ + V ‖(x) + b|Φ(t)|2

)
Φ(t) , b = b

∫

R3−d

|χ(y)|4 dy .

Hence, in the confinement limit ε→ 0, the 3d ε-dependent one-body dynamics (3.27)

converge to the d-dimensional NLS/GP equation (3.4) with coupling parameter (3.5)

or (3.17), respectively. In the de-focusing case, the analysis in [19] is valid for both

d = 1, 2, while only d = 1 is included in the focusing case.

Let us remark that the above two-stage process does not yet prove that (3.4) effec-

tively describes the N -body dynamics in the limit limε→0 limN→∞ since the confine-

4In fact, they consider a (d + n)-dimensional non-linear Schrödinger equation with a rather generic
non-linearity, which includes the cubic focusing and de-focusing case. The confinement is realised
by an anisotropic harmonic potential, where the quotient of the trap frequency in the d unconfined
directions and the trap frequency in the n confined directions tends to zero.
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ment limit ε → 0 is proven under the assumption that the condensate wave function

ϕ(ε) factorises exactly for ε > 0. In contrast, we assume with A4 merely factorisation

in the limit ε → 0. To rigorously prove Theorem 3.1.2 for the limit limε→0 limN→∞,

the proof of the dimensional reduction needs to be adapted to admit more generic

initial conditions. However, also this incomplete argument suggests that our analysis

should hold without imposing any admissibility condition.

A comparable result without the strict factorisation assumption was obtained by

Méhats and Raymond in [126]. In this work, the authors study the cubic NLS equation

in a 2d waveguide, i.e., an ε-tube with Dirichlet boundary conditions around some

curve in R2. They consider a 2d initial datum ϕ(ε) which is close to its projection onto

the transverse ground state χε, up to an error of order ε with respect to the L2-norm.

The authors show that in the limit ε→ 0, the non-linear evolution is in L2-sense well

approximated by the 1d cubic NLS equation (3.4) with coupling parameter (3.17),

with an additional potential term from the curvature of the waveguide.

For further analytical results concerning the dimensional reduction of different types

of non-linear Schrödinger equations, we refer to [13, 14, 17, 18, 127]. Moreover, nu-

merical treatments are given in [12, 15].

Restrictions on the limiting sequence for the GP scaling

Our main result, Theorem 3.1.2 for the GP scaling of the interaction, holds for se-

quences (N, ε) → (∞, 0) satisfying assumption A4 with parameters (Θ,Γ)d given

by (3.10). The admissibility condition states that for any fixed σ > 0 and sufficiently

large N and small ε, {
Nε

2
5
−σ � 1 d = 1 ,

Nε2 � 1 d = 2 .

The moderate confinement condition appears only for d = 2 and implies that for any

fixed σ,

N−1ε−σ � 1, d = 2,

for sufficiently large N and small ε. Figure 3.6 visualises the corresponding subsets of

N× [0, 1]. As in the case β ∈ (0, 1), the admissibility condition is much more restrictive

for d = 1 than for d = 2. The harmonic confinement with frequency ∼ N (Figure 3.1)

is excluded in d = 1, while it coincides with the boundary of the admissible region

for d = 2. Moreover, note that although we impose two constraints on the limiting

sequence for d = 2, the area covered by our analysis is larger than for d = 1.

The moderate confinement condition occurs only for d = 2. We require this condition

for the following reasons:

• Recall that γ<(t) is controlled by applying the result for the NLS scaling for
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(a) d = 1, β = 1
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(b) d = 2, β = 1

Figure 3.6.: Coverage of the parameter space N× [0, 1] for the GP scaling and dimen-
sions d = 1, 2. Theorem 3.1.2 holds for sequences (N, ε) within the dark
grey area. The moderate confinement condition for d = 2 is realised for
the choice σ = 0.01.

some parameter β̃. Hence, the moderate confinement condition with parameter

Γd must ensure that the sequence (N, ε) is at the same time moderately confining

with a parameter Γ
d,β̃

satisfying (3.18). While this is automatically given for

d = 1 as long as β̃ > 1
2 since Nε1/β̃−2 →∞ for all β̃ ≥ 1

2 , the case d = 2 requires

the a moderate confinement condition with parameter

Γ ≥ β̃−1

which ensures that

Nε1/β̃−1 = NΓ−1ε1/β̃−Γ →∞ .

• Besides, the moderate confinement condition is required for the GP energy es-

timate (see [33, Section 6.3]) and enters in the estimate of the remainder term

γc(t) (see [33, Section 6.6.2]).

As a consequence of the first point, the moderate confinement condition (3.18) restricts

the possible choices of β̃ for the GP case. Moreover, β̃ must be chosen compatible

with the admissibility condition, which enters the proof at several places:

• The admissibility condition is required for the estimate of the remainder term

γa(t) and, in the case d = 1, also for the control of γd(t) (see [35, Sections 4.5.2

and 4.5.5] and [33, Section 6.6.2]).

• The admissibility condition with parameter Θd must imply that the sequence

(N, ε) is admissible with a parameter Θ
d,β̃

that satisfies (3.18). This can also be
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seen graphically when comparing Figure 3.6 with Figures 3.2 and 3.3: β̃ must

be chosen such that the dark grey region in Figure 3.6a is completely contained

in the respective dark grey region in Figure 3.2 for d = 1, and analogously for

Figure 3.6b and Figure 3.3 for d = 2.

• The admissibility condition is required for the GP energy estimate (see [35,

Section 4.3] and [33, Section 6.3]). Besides, one needs the Θ
d,β̃

-admissibility of

the sequence (N, ε) to control the term γ<(t) by means of the GP energy lemma

([35, Section 4.5.1] and [33, Section 6.6.1]).

Moreover, the GP energy estimate restricts the possible choices of β̃ by the requirement

that it must be larger than the diameter of the holes around the scattering centres that

constitute the set A. For presumably merely technical reasons, the diameter of this

hole must scale as µδ with δ > 5
6 , independently of the dimension. Besides, to contain

the full microscopic structure, it must be larger than the support of the scattering

solution g
β̃
, which scales as µβ̃. Hence, we require

β̃ > 5
6 .

For d = 1, this condition determines the weakest possible admissibility condition for

which Theorem 3.1.2 holds: For β̃ = 5
6 , we find Θ

1,β̃
= 2/β̃ = 12

5 , hence the sequence

(N, ε) is Θ
1,β̃

-admissible in the sense of (3.18) if Θ = 12
5 . Hence, the choice β̃ > 5

6 leads

to our condition with Θ = 12
5

−
. Finally, it turns out that this condition is sufficient

to also control the remainder terms.

As mentioned above, we require for d = 2 also the moderate confinement condition

to obtain the GP energy estimate, which leads to the additional constraint

β̃ >
Γ + 1

2Γ
.

The weakest possible moderate confinement condition is given by Γ = 1+, implying

β̃ > 1−. As a consequence, the weakest possible admissibility condition is the one that

makes any Θ2-admissible sequence also Θ
2,β̃

-admissible with β̃ = 1− in the sense of

(3.18), which leads to our choice Θ = 3.

As for scalings β ∈ (0, 1), we understand the admissibility condition in the GP case

as a purely technical restriction. In the previous section, we motivated the expecta-

tion that our result should hold without such a constraint, although a rigorous proof

certainly requires some new ideas.

Whereas the moderate confinement condition for β ∈ (0, 1) is physically motivated

and presumably ideal, the corresponding condition for the GP scaling and d = 2

is, to our understanding, a technical constraint, although a less restrictive one than
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3.1. Low-dimensional Gross–Pitaevskii equation for strongly confined bosons

the admissibility condition. For d = 1, our result is not obstructed by this condi-

tion and extends to the full region up to the edge case corresponding to the limit

limN→∞ limε→0.

The limiting case itself is not included in our model. However, the result [170] by

Seiringer and Yin for d = 1, which is summarised in Section 1.3.3, suggests that the

statement of Theorem 3.1.2 should extend to this edge case. Recall that by (1.55)

and (1.58), the LL Hamiltonian H1d
N,1,b/N (1.54) with coupling parameter g1d = b/N ,

for b as in (3.17), can be understood as the limit ε → 0 of the Hamiltonian Hµ. In

their paper, the authors remark that, as a consequence, Hµ converges to H1d
N,1,b/N ⊗

P⊥ε , where P⊥ε denotes the projector onto (χε)⊗N . This convergence is meant in the

following norm resolvent sense: Denote by E1d,1
N,1,b/N the lowest eigenvalue of H1d

N,1,b/N

and let λ ∈ C \ [E1d,1
N,1,b/N ,∞) be fixed. Then

lim
ε→0

∥∥∥∥∥
1

λ−
(
Hµ − NE0

ε2

) − 1

λ−H1d
N,1,b/N

⊗ P⊥ε

∥∥∥∥∥ = 0 . (3.29)

By Trotter’s theorem (e.g. [157, Theorem VIII.21]), norm resolvent convergence of

two operators implies that the unitary time evolutions generated by these operators

converge strongly. However, since (3.29) is not quite a norm resolvent convergence

in the standard sense, it merely indicates that the dynamics generated by Hµ and

by H1d
N,1,b/N , respectively, should be asymptotically equal. Moreover, to complete the

argument, one needs to take the limit N → ∞ of the resulting 1d N -body wave

function and show that initial condensation is preserved by the dynamics. The time-

dependent GP equation (3.4) should then emerge as Euler–Lagrange equation (see

Section 1.4.1).

Finally, let us remark that the statement (1.55) concerning the excitation spectrum

does not hold uniformly in N . However, regarding the lower and upper bound (1.56)

and (1.57), one realises that it remains true in the simultaneous limit (N, ε)→ (∞, 0)

if the parameters ηU and ηL are bounded uniformly in N . For our scaling of the

interaction, NA/(εL) ∼ ε, this would be the case if ε
3
8N2 → 0 as (N, ε)→∞, which

corresponds to the admissibility condition Nε
3
16 � 1.
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3.2. Higher order corrections to the mean-field dynamics of

interacting bosons

3.2.1. Results

We consider a system of N d-dimensional bosons with weak interactions in the mean-

field scaling regime, described by the Hamiltonian

HN,β(t) :=
N∑

j=1

(
−∆j + V ext(t, xj)

)
+

1

N − 1

∑

i<j

vN,β(xi − xj) . (3.30)

Here, V ext denotes some possibly time-dependent external potential, which is chosen

such that HN,β(t) is self-adjoint on the time-independent domain H2(RdN ). The

interaction is given by

vN,β(x) := Ndβv(Nβx) , β ∈ [0, 1
d) , (3.31)

where v : Rd → R is assumed bounded, spherically symmetric and compactly sup-

ported. As explained in Section 1.2.4, the scaling (3.31) is a mean-field scaling: the

range of vN,β is much larger than the mean inter-particle distance N−1/d and the total

prefactor (N − 1)−1Ndβ tends to zero as N → ∞. The scaling β = 0 corresponds to

the Hartree regime.

The dynamics of the N -body system are described by the unitary time evolution

{U(t, s)}t,s∈R, which satisfies the Schrödinger equation

i d
dtU(t, s) = HN,β(t)U(t, s) , U(s, s) = 1 . (3.32)

The N -body wave function at time t ∈ R is denoted as

ψ(t) = U(t, 0)ψ0 , ψ0 ∈ L2
+(RdN ) . (3.33)

We consider systems which initially exhibit BEC. As explained in Section 1.4.2, the

dynamics of the condensate wave function are determined by the Hartree equation

(1.112),

i d
dtϕ(t) =

(
−∆ + V ext(t) + vϕ(t) − µϕ(t)

)
ϕ(t) =: hϕ(t)(t)ϕ(t) , (3.34)

where vϕ(t) and µϕ(t) are defined as in (1.113) and (1.114),

vϕ(t) = vN,β ∗ |ϕ(t)|2 , µϕ(t) = 1
2

∫

R3

dx

∫

R3

dy|ϕ(t, x)|2|ϕ(t, y)|2vN,β(x− y) .
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The Hartree evolution of the condensate characterises the N -body dynamics ψ(t) on

the level of reduced densities in the sense of (1.73). A more precise characterisation of

the dynamics is an approximation with respect to the L2(RdN )-norm, for which also

the excitations from the condensate need to be regarded. The corresponding results

(1.127) and (1.140) are presented in Section 1.5.3.

The goal of this project is to derive higher order corrections to this norm approxi-

mation, i.e., to approximate the N -body wave function in norm to arbitrary order in

powers of N−1. More precisely, we construct a sequence of N -body wave functions

{ψ(a)
ϕ (t)}a∈N ⊂ L2(RdN ) such that, for sufficiently large N ,

‖ψ(t)− ψ(a)
ϕ (t)‖2 ≤ C(t)N−aδ(β,γ) , β ∈ [0, 1

4d) , (3.35)

for some time-dependent constant C(t). The exponent δ(β, γ) is positive and depends

on β and on a parameter γ which is introduced below. For our analysis, we apply and

extend the first quantised framework introduced in Section 1.5.3, which is based on

the works [135, 134, 146].

To derive an approximation with higher precision, we require stronger bounds on

the initial excitations. More precisely, we assume that the first A moments of the

number of excitations from the condensate in the initial state are sub-leading, where

the choice of A depends on the index a of the sequence ψ
(a)
ϕ (t) in (3.35).

Recall that the excitations from the condensate ϕ(t)⊗N are given by the truncated

Fock vector

ξϕ(t) = U
ϕ(t)
N ψN (t) ∈ F≤N⊥ϕ(t)

with components (1.141). The excitation Fock space F≤N⊥ϕ(t) was defined in (1.120),

and the map U
ϕ(t)
N was introduced in (1.122). The a’th moment of the number of

excitations from ϕ0
⊗N contained in the initial state ψ0 is

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
F≤N⊥ϕ0

=

N∑

k=0

ka‖ξ(k)
ϕ0
‖2L2(Rdk) ,

where Nϕ(t) denotes the number operator on F≤N⊥ϕ(t). Our assumption on the initial

data can be formulated as follows: Let γ ∈ (0, 1]. We assume that for all a ∈ {0, ..., A},
there exists some constant C(a) depending only on a such that

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
F≤N⊥ϕ0

≤ C(a)N (1−γ)a . (3.36)

Note that γ = 0 corresponds to the trivial bound
〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
≤ Na, while γ = 1

implies that the bound is uniform in N . Hence, (3.36) states that the expected number
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of excitations contained in ψ0 must be sub-leading, in the sense that the moments of

the relative number of excitations, i.e., the expectation values of (Nϕ0/N)a, must

vanish as N →∞.

Note that (3.36) provides a bound on the high components of the excitation vector

since, for example,

N∑

k=0

kA‖ξ(k)
ϕ0
‖2L2(Rdk) . N (1−γ)A ⇒ ‖ξ(N)

ϕ0
‖2L2(Rdk) . N−γA.

In other words, it must be very unlikely to find significantly many particles outside

the condensate, whereas no such restriction is imposed on excitations involving only

very few particles (with respect to N).

For our analysis, it is more convenient to write (3.36) in a different way. By (1.142),

the inequality (3.36) is equivalent to

‖(n̂ϕ0)aψ0‖2 = N−a
〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
F≤N⊥ϕ0

≤ C(a)N−γa ,

where n̂ϕ denotes the weighted operator from Definition 1.4.1 with weight function

n(k) =
√

k
N . We now introduce a second weight function,

m(k) :=

√
k + 1

N
,

such that the corresponding operator m̂ϕ is related to n̂ϕ via

(n̂ϕ)2a ≤ (m̂ϕ)2a ≤ 2a(n̂ϕ)2a +N−a (3.37)

in the sense of operators. In terms of m̂ϕ, (3.36) can equivalently be expressed as

‖(m̂ϕ0)aψ0‖2 ≤ C ′(a)N−γa (3.38)

for some constant C ′(a) depending on a. In the following, we prefer to work with the

version (3.38), since this simplifies many statements, in particular Proposition 3.2.3b

below.

Our analysis is valid for times where the solution ϕ(t) of the Hartree equation exists

in Hk(Rd)-sense for k = dd2e. The maximal time of Hk(Rd)-existence is defined as

T ex
d,v,V ext := sup

{
t ∈ R+

0 : ‖ϕ(t)‖Hk(Rd) <∞ for k = dd2e
}
.

It depends on the dimension d, the sign of vϕ(t), and the regularity of the external
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3.2. Higher order corrections to the mean-field dynamics

trap V ext(t).

Our assumptions on the model (3.30) and on the initial data can be summarised as

follows:

A1 Interaction potential. Let v : Rd → R be spherically symmetric and bounded

uniformly in N . Further, assume that supp v ⊆ {x ∈ Rd : |x| . 1}.

A2 External potential. Let V ext : R × Rd → R such that V ext(·, x) ∈ C(R) for each

x ∈ Rd and V ext(t, ·) ∈ L∞(Rd) for each t ∈ R.

A3 Initial data. Let ψ0 ∈ H2(RdN ) ∩ L2
+(RdN ) and ϕ0 ∈ Hk(Rd), k = dd2e, both be

normalised. Let γ ∈ (0, 1] and A ∈ N. Assume that for any a ∈ {0, ..., A}, there

exists a set of non-negative, a-dependent constants {C a}0≤a≤A with C 0 = 1 such

that, for sufficiently large N ,

∥∥∥(m̂ϕ0)aψ0

∥∥∥
2
≤ C aN

−γa .

To construct the approximating sequence {ψ(a)
ϕ (t)}a∈N, we recall the effective Hamil-

tonian H̃ϕ(t)(t) from (1.137),

H̃ϕ(t) :=
N∑

j=1

h
ϕ(t)
j +

1

N − 1

∑

i<j

(
p
ϕ(t)
i q

ϕ(t)
j v

(ij)
N,βq

ϕ(t)
i p

ϕ(t)
j

+p
ϕ(t)
i p

ϕ(t)
j v

(ij)
N,βq

ϕ(t)
i q

ϕ(t)
j + h.c.

)
,

which generates the time evolution Ũϕ(t, s). Since Ũϕ(t, 0)ψ0 is close to ψ(t) in norm

by (1.140), we define the first element ψ
(1)
ϕ (t) as

ψ(1)
ϕ (t) := Ũϕ(t, 0)ψ0 . (3.39)

With ψ
(1)
ϕ (t) as starting point, the higher elements are constructed as Duhamel ex-

pansions in terms of the cubic and quartic terms Cϕ(t) and Qϕ(t) given in (1.138) and

(1.139),

Cϕ(t) :=
1

N − 1

∑

i<j

(
q
ϕ(t)
i q

ϕ(t)
j

(
v

(ij)
N,β − vϕ(t)(xi)− vϕ(t)(xj)

)
×

×(q
ϕ(t)
i p

ϕ(t)
j + p

ϕ(t)
i q

ϕ(t)
j ) + h.c.

)
,
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Qϕ(t) :=
1

N − 1

∑

i<j

q
ϕ(t)
i q

ϕ(t)
j ×

×
(
v

(ij)
N,β − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

)
q
ϕ(t)
i q

ϕ(t)
j .

The next two elements of the sequence are defined as

ψ(2)
ϕ (t) := Ũϕ(t, 0)ψ0 − i

∫ t

0
ds Ũϕ(t, s)Cϕ(s)Ũϕ(s, 0)ψ0 , (3.40)

ψ(3)
ϕ (t) := Ũϕ(t, 0)ψ − i

∫ t

0
ds Ũϕ(t, s)

(
Cϕ(s) +Qϕ(s)

)
Ũϕ(s, 0)ψ0

−
∫ t

0
ds1

∫ t

s1

ds2 Ũϕ(t, s2) Cϕ(s2)Ũϕ(s2, s1) Cϕ(s1)Ũϕ(s1, 0)ψ0 . (3.41)

The a’th approximating function is constructed as follows:

Definition 3.2.1. Let I
ϕ(t)
1 := Cϕ(t) and I

ϕ(t)
2 := Qϕ(t). Define the set

S(k)
n :=

{
(j1, ..., jn) : j` ∈ {1, 2} for ` = 1, ..., n and

n∑

`=1

j` = k

}
,

i.e., the set of n-tuples with elements in {1, 2} such that the elements of each tuple

add up to k. For n ∈ N and n ≤ k ≤ 2n, define

T (k)
n :=

∑

(j1,...,jn)∈S(k)n

(−i)n
n∏

ν=1




t∫

sν−1

dsν


 Ũϕ(t, sn)×

×
n−1∏

`=0

(
I
ϕ(sn−`)
jn−` Ũϕ(sn−`, sn−`−1)

)
ψ0

= (−i)n
t∫

0

ds1

t∫

s1

ds2 ···
t∫

sn−1

dsn Ũϕ(t, sn)×

×
∑

(j1,...,jn)∈S(k)n

(
I
ϕ(sn)
jn

Ũϕ(sn, sn−1)I
ϕ(sn−1)
jn−1

···Ũϕ(s2, s1)I
ϕ(s1)
j1

)
Ũϕ(s1, 0)ψ0 ,

where s0 := 0. The products are understood as ordered, i.e.,
∏L
`=0 P` := P0P1 · · ·PL

for L ∈ N and any expressions P`. Besides, let T
(0)
0 := Ũϕ(t, 0)ψ0 for n = k = 0, and

T
(k)
n := 0 for k < n and k > 2n.
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3.2. Higher order corrections to the mean-field dynamics

The elements of the sequence {ψ(a)
ϕ }a∈N are defined as

ψ(a)
ϕ (t) :=

a−1∑

k=0

k∑

n=d k
2
e
T (k)
n =

a−1∑

n=0

min{2n,a−1}∑

k=n

T (k)
n .

In the main result of this project, we prove that, given any desired precision of the

approximation with respect to N−1, there exists an a ∈ N such that the corresponding

function ψ
(a)
ϕ (t) approximates the actual N -body dynamics ψ(t) to that order. To

compute ψ
(a)
ϕ (t), an a-dependent but N -independent number of steps is required, as

well as the knowledge of the (first order) norm approximation Ũϕ(t, 0)ψ0.

Theorem 3.2.2. Let β ∈ [0, 1
4d) and assume A1 – A3 with A ∈ {1, ..., N} and with

γ ∈ (2+dβ
3 , 1]. Let ψ(t) and ϕ(t) denote the solutions of (3.33) and (3.34) with initial

data ψ0 and ϕ0 from A3, respectively, and let ψ
(a)
ϕ (t) be defined as in Definition 3.2.1.

Then for sufficiently large N , t ∈
[
0, T ex

d,v,V ext

)
and a ∈ {1, ..., bA6 c}, there exists a

constant c(a) such that

‖ψ(t)− ψ(a)
ϕ (t)‖2 . e

c(a)
t∫
0

‖ϕ(s)‖2
Hk(Rd) ds

N−aδ(β,γ), (3.42)

where

δ(β, γ) =





1− 4dβ for 1− dβ ≤ γ ≤ 1 ,

3γ − 2− dβ for 2+dβ
3 < γ ≤ 1− dβ .

(3.43)

3.2.2. Strategy of proof

The first part of the proof consists of estimating the growth of the number of excitations

under the time evolutions U(t, s) and Ũϕ(t, s) (Proposition 3.2.3). While the statement

for U(t, s) characterising the N -body dynamics is an interesting result on its own, the

corresponding assertion for Ũϕ(t, s) is crucial for the proof of our main result. As a

second step, we use these bounds to prove Theorem 3.2.2.

Growth of higher moments of the number of excitations

Let us begin with a general statement concerning the growth of the number of exci-

tations under the dynamics U(t, s) and Ũϕ(t, s), irrespective of the initial number of

excitations.

Proposition 3.2.3. Let j ∈ N, β ∈ [0, 1
d) and assume A1 and A2. Let ψ ∈ L2

+(RdN ),

s ∈ R, ϕ(s) ∈ Hk(Rd) for k = dd2e, and let ϕ(t) be the solution of (3.34) with initial

datum ϕ(s). Then it holds for t ∈
[
s, s+ T ex

d,v,V ext

)
and sufficiently large N that
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(a) for any b ∈ N0,

∥∥∥
(
m̂ϕ(t)

)j
U(t, s)ψ

∥∥∥
2

. c(t, s)

j∑

n=0

Nn(−1+dβ)
∥∥∥
(
m̂ϕ(s)

)j−n
ψ
∥∥∥

2

+ c(t, s)
b∑

n=0

Nn(−1+dβ)+dβb
∥∥∥
(
m̂ϕ(s)

)b−n
ψ
∥∥∥

2
,

(b)
∥∥∥
(
m̂ϕ(t)

)j
Ũϕ(t, s)ψ

∥∥∥
2
. c(t, s)

j∑

n=0

Nn(−1+dβ)
∥∥∥
(
m̂ϕ(s)

)j−n
ψ
∥∥∥

2
,

where c(t, s) . exp

{
C

t∫
s
‖ϕ(s1)‖2

Hk(Rd)
ds1

}
for some C > 0.

This proposition is proven in [34, Proposition 2.4]. Note that part (a) concerning

the full time evolution U(t, s) contains two sums. The first sum runs from zero to j,

whereas the summation in the second sum may be chosen for convenience (see below).

As a consequence of (3.37), we can equivalently express Proposition 3.2.3 in terms

of n̂ϕ instead of m̂ϕ. For instance, part (b) can be formulated as

‖(n̂ϕ)jŨϕ(t, s)ψ‖2 . c(t, s)

j∑

n=0

Nn(−1+dβ)
(

2j−n‖(n̂ϕ)j−nψ‖2 +N−j+n
)
,

which contains an additional term N−j+n. Since the proof of Theorem 3.2.2 requires

an iteration of this proposition, the version with m̂ϕ is more convenient.

Under the additional assumption A3 on the initial data, Proposition 3.2.3 implies

that the first A moments of the number of excitations remain sub-leading under the

dynamics U(t, 0) and Ũϕ(t, 0) ([34, Corollary 2.5]): Denote c(t, 0) ≡ c(t) and

ξϕ0 = Uϕ0

N ψ0 , ξϕ(t) = U
ϕ(t)
N ψ(t) , ξ̃ϕ(t) = U

ϕ(t)
N Ũϕ(t, 0)ψ0 .

Assume that

‖(m̂ϕ0)aψ0‖2 . N−γa , or, equivalently, that
〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
F≤N⊥ϕ0

. N (1−γ)a .

Then it follows
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• for the time evolution U(t, s) that

‖(m̂ϕ(t))aψ(t)‖2 . c(t)





N−a(1−dβ) for β ∈ [0, 1
2d) , 1− dβ ≤ γ ≤ 1 ,

N−γa for β ∈ [0, 1
d) , dβ < γ ≤ 1− dβ ,

or, equivalently, that

〈
ξϕ(t),N a

ϕ(t)ξϕ(t)

〉
F≤N⊥ϕ(t)

. c(t)





Ndβa for β ∈ [0, 1
2d) , 1− dβ ≤ γ ≤ 1 ,

N (1−γ)a for β ∈ [0, 1
d) , dβ < γ ≤ 1− dβ ,

• for the time evolution Ũϕ(t, 0) and β ∈ [0, 1
d) that

‖(m̂ϕ(t))aŨϕ(t, 0)ψ0‖2 . c(t)





N−a(1−dβ) for 1− dβ ≤ γ ≤ 1 ,

N−γa for 0 < γ ≤ 1− dβ ,

or, equivalently, that

〈
ξ̃ϕ(t),N a

ϕ(t)ξ̃ϕ(t)

〉
F≤N⊥ϕ(t)

. c(t)





Ndβa 1− dβ ≤ γ ≤ 1 ,

N (1−γ)a 0 < γ ≤ 1− dβ .

The leading order terms in the sums in Proposition 3.2.3 change at γ = 1− dβ: for

initial data satisfying A3, we obtain

Nn(−1+dβ)‖(m̂ϕ(s))j−nψ0‖2 . Nn(γ−1+dβ)−γj

and

Nn(−1+dβ)+dβb‖(m̂ϕ(s))b−nψ0‖2 . Nn(γ−1+dβ)−b(γ−dβ) ,

hence the term corresponding to n = 0 is leading for γ < 1 − dβ, while the addend

with maximal n is the dominant contribution for γ > 1−dβ. Consequently, we obtain

different estimates for values of γ below and above this threshold. The additional

restrictions on β and γ for the time evolution U(t, 0) are due to the second sum in

Proposition 3.2.3a: if β < 1
2d or γ > dβ, it is possible to choose b sufficiently large

that the first sum dominates for large N .

For β = 0, both time evolutions preserve the property A3 exactly with respect to N ,

up to a time dependent constant. For β > 0, the conservation is exact only for small

γ, whereas one looses some power of N for larger γ. Further, note that for the range

γ ∈ (0, dβ), we do not obtain a non-trivial estimate for the excitations ξϕ(t) contained
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in ψ(t) = U(t, 0)ψ0.

To prove Proposition 3.2.3, we essentially adapt the proofs of [135, Lemma 2.1]

and [146, Corollary 4.2] to our situation. The basic idea is to derive a hierarchy of j

Grönwall estimates for a variant of the counting functional used by Pickl for Hartree

and NLS regime (Section 1.4.4).

Let us consider the functional

⟪Ψ(t), f̂ϕ(t)Ψ(t)⟫ , Ψ(t) ∈ {ψ(t), Ũϕ(t, 0)ψ0} ,

for some appropriate weight function f(k), where Ψ(t) stands for the wave function

evolving under either of the two dynamics covered by Proposition 3.2.3. If we choose

the weight f(k) as m(k)2j , the analysis presented in Section 1.4.4 leads to the estimate

d
dt‖(m̂ϕ(t))jΨ(t)‖2 = d

dt ⟪Ψ(t), (m̂ϕ(t))2jΨ(t)⟫
. ⟪Ψ(t), (m̂ϕ(t))2jΨ(t)⟫+ O(1) .

(3.44)

The remainder term O(1) is at best of order N−1, hence (3.44) can at most lead to

the j-independent estimate

‖(m̂ϕ(t))jΨ(t)‖2 . eCtN−1

by Grönwall’s Lemma 1.4.3, even if ‖(m̂ϕ0)jΨ0‖2 = 0. To improve this, we will modify

the estimates leading to (3.44) to yield a bound of the form

d
dt‖(m̂ϕ(t))jΨ(t)‖2 . ‖(m̂ϕ(t))jΨ(t)‖2 + O(1) ‖(m̂ϕ(t))j−1Ψ(t)‖2 . (3.45)

By Grönwall’s lemma, this leads to a statement of the kind

‖(m̂ϕ(t))jΨ(t)‖2 . eCt


‖(m̂ϕ0)jΨ0‖2 + O(1)

t∫

0

‖(m̂ϕ(s))j−1Ψ(s)‖ ds


 , (3.46)

to which we can again apply Grönwall’s lemma, using again (3.45) but now with the

choice j − 1. Iterating this procedure j times results in a bound of the form

‖(m̂ϕ(t))jΨ(t)‖2 . eCt
j∑

n=0

O(1)n ‖(m̂ϕ0)j−nΨ0‖2 , (3.47)

which suffices to prove Proposition 3.2.3.
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It remains to derive a suitable bound of the form (3.45). Recall that the time

derivative of the functional ⟪Ψ(t), f̂ϕ(t)Ψ(t)⟫ was computed in Section 1.4.4 as the sum

of the three expressions (1.83) to (1.85). Note that the Hamiltonian entering (1.81) is

given byHN,β(t) for the choice Ψ(t) = ψ(t) and by H̃ϕ(t)(t) for Ψ(t) = Ũϕ(t, 0)ψ0, while

h in (1.81) is taken as hϕ(t)(t). Due to the relations (1.136), the (qp–pp)-term (1.83)

equals zero. Moreover, in the case Ψ(t) = Ũϕ(t, 0)ψ0, also the (pq–qq)-term (1.85)

vanishes. In the sequel, we treat the two cases Ψ(t) = ψ(t) and Ψ(t) = Ũϕ(t, 0)ψ0

separately.

Case 1: Ψ(t) = Ũϕ(t, 0)ψ0.

This case is simpler since only the (qq–pp)-term (1.84) contributes. For simplicity

dropping all indices ϕ(t), this term can be estimated as

∣∣∣N=⟪Ψ(t), q1q2(f̂ − f̂−2)
1
2 v

(12)
N,β p1p2(f̂2 − f̂)

1
2 Ψ(t)⟫∣∣∣

. N ⟪Ψ(t), (f̂ − f̂±2)n̂2Ψ(t)⟫+Ndβ ⟪Ψ(t), (f̂ − f̂±2)Ψ(t)⟫ , (3.48)

which is to be understood as taking the maximum over (f̂ − f̂−2) and (f̂ − f̂2) (see

[34, Eqns. (45)-(46)]). Choosing f(k) as m(k)2j , one observes that

|m(k)2j −m(k ± 2)2j | . m(k)2(j−1)

N
, m(k)2(j−1)n(k) . m(k)2j . (3.49)

Consequently, instead of estimating ‖f̂ − f̂±2‖op by means of the derivative |f ′(k)| as

in Section 1.4.4, (3.48) is bounded in terms of ‖m̂jΨ(t)‖ and ‖m̂j−1Ψ(t)‖, namely

|(3.48)| . ‖m̂jΨ(t)‖2 +N−1+dβ‖m̂j−1Ψ(t)‖2 . (3.50)

This is precisely the required bound (3.45), and part (b) of Proposition 3.2.3 follows

from (3.47) with O(1) = N−1+dβ.

Case 2: Ψ(t) = ψ(t).

If Ψ(t) denotes the wave function evolving under the full dynamics U(t, s), the situ-

ation becomes more involved since the (pq–qq)-term (1.84) does not vanish. Hence,

additionally to (3.48), we must control the expression

N=⟪ψ(t), q1q2(f̂ − f̂−1)
1
2Z

(12)
N,β p1q2(f̂1 − f̂)

1
2ψ(t)⟫

. N1+ dβ
2 ⟪ψ(t), (f̂ − f̂−1)n̂4ψ(t)⟫ 1

2 ⟪ψ(t), (f̂ − f̂−1)n̂2ψ(t)⟫ 1
2 (3.51)

[34, Eqn. (47)], where Z
(12)
N,β := v

(12)
N,β − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t). Choosing simply

f(k) = m(k)2j as before only leads to the insufficient estimate |(3.51)| . N
dβ
2 ‖m̂jΨ(t)‖2.
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To amend this, we introduce an auxiliary weight function

wλ(k) :=





k + 1

Nλ
0 ≤ k ≤ Nλ − 1

1 else
for λ ∈ (0, 1) .

For λ = 1, this essentially reduces to the weight m2(k). More precisely, the relation

between wλ(k) and m(k) is given by

wjλ(k) ≤ N j(1−λ)m2j(k) (3.52)

and

m2j(k) ≤




N−j(1−λ)wjλ(k) 0 ≤ k ≤ Nλ − 1

2j = 2jwbλ(k) . wbλ(k) Nλ − 1 ≤ k ≤ N ,
(3.53)

hence

m2j(k) . N−j(1−λ)wjλ(k) + wbλ(k) (3.54)

for any b ∈ N, where we exploited that wλ(k) = 1 for k ≥ Nλ − 1.

We now choose f(k) as wjλ(k). Similarly to (3.49), one finds for n = 1, 2 that

|wλ(k)− wλ(k ± n)| .





wλ(k)j−1

Nλ
0 ≤ k ≤ Nλ

0 else





=: `
(j)
λ (k) .

Since `
(j)
λ (k) satisfies

`
(j)
λ (k)n2(k) . N−1wjλ(k) , `

(j)
λ (k)n4(k) . N−2+λwjλ(k) ,

we obtain

|(3.48)| . ⟪ψ(t), ŵλ
jψ(t)⟫+Ndβ−λ ⟪ψ(t), ŵλ

j−1ψ(t)⟫ ,
|(3.51)| . N

−1+dβ+λ
2 ⟪ψ(t), ŵλ

jψ(t)⟫ .
With the choice λ = 1 − dβ, the expression (3.51) is controllable, and we obtain a

bound of the form (3.45) with O(1) = N−1+2dβ for the weight wjλ(k). Hence, (3.47)

implies

⟪ψ(t), ŵλ
jψ(t)⟫ . eCt

j∑

n=0

Nn(−1+2dβ) ⟪ψ0, ŵλ
j−nψ0⟫ .

Finally, using the relations (3.52) and (3.53), one obtains an estimate in terms of m̂j ,

which leads to part (a) of Proposition 3.2.3b. In particular, note that this construction
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via wλ and (3.54) explain why we obtain two sums in part (a), while part (b) is of an

easier form.

Higher order corrections to the norm approximation

Let us now turn to the proof of the main result. The first element of the approximating

sequence {ψ(a)
ϕ }a∈N is given by (3.39) as

ψ(1)
ϕ (t) = Ũϕ(t, 0)ψ0 .

To prove Theorem 3.2.2 for a = 1 and to construct the next higher element of the

sequence corresponding to a = 2, we require three steps:

1. Expand the difference
(
U(t, 0)− Ũϕ(t, 0)

)
ψ0 using Duhamel’s formula.

2. Estimate all contributions to this difference and identify the leading order term.

Its size yields (3.42) for a = 1 and fixes the exponent δ(β, γ).

3. To construct ψ
(2)
ϕ (t), substitute U(t, s) by Ũϕ(t, s) in the leading order contribu-

tion(s) and add the resulting expression as a correction term to ψ
(1)
ϕ (t).

Step 1.

Recall that by construction of H̃ϕ(t)(t),

HN,β(t) = H̃ϕ(t)(t) + Cϕ(t) +Qϕ(t) ,

hence, Duhamel’s formula yields

U(t, s)ψ = Ũϕ(t, s)ψ − i

∫ t

s
U(t, r)

(
Cϕ(r) +Qϕ(r)

)
Ũϕ(r, s)ψ dr (3.55)

for any ψ ∈ L2(RdN ). Consequently,

‖ψ(t)− ψ(1)
ϕ (t)‖ =

∥∥∥∥−i

∫ t

0
U(t, s)

(
Cϕ(s) +Qϕ(s)

)
Ũϕ(s, 0)ψ0 ds

∥∥∥∥

≤
∫ t

0
‖Cϕ(s)Ũϕ(s, 0)ψ0‖ ds+

∫ t

0
‖Qϕ(s)Ũϕ(s, 0)ψ0‖ ds

(3.56)

by unitarity of U(t, s).

Step 2.

To identify the leading order contributions in (3.56), we combine Proposition 3.2.3b

with the following lemma ([34, Lemma 2.6]):
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Lemma 3.2.4. Let ψ ∈ L2
+(RdN ) and denote by ϕ(t) the solution of (3.34) with initial

datum ϕ0 ∈ Hk(Rd) for k = dd2e. Then it holds for any j ∈ N0 and t ∈
[
0, T ex

d,v,V ext

)

that

(a) ‖
(
m̂ϕ(t)

)jQϕ(t)ψ‖2 . N2+2dβ‖
(
m̂ϕ(t)

)4+j
ψ‖2,

(b) ‖
(
m̂ϕ(t)

)jCϕ(t)ψ‖2 . ‖ϕ(t)‖2
Hk(Rd)

N2+dβ‖
(
m̂ϕ(t)

)3+j
ψ‖2.

At the core of the proof is the observation that Qϕ(t)/Cϕ(t) contain four/three pro-

jections qϕ(t), each of which contributes an operator n̂ϕ(t) by (1.74). By (3.37), this is

equivalent to gaining four/three factors m̂ϕ(t). The prefactors stem from combinatorial

considerations as well as from the L∞(Rd)/L2(Rd)-norm of vN,β.

Let us make this more precise at the example of Qϕ(t) and j = 0: making use of the

abbreviation Zβij := v
(ij)
N,β − vϕ(t)(xi) − vϕ(t)(xj) + 2µϕ(t) with ‖Zβij‖L∞(Rd) . Ndβ, we

expand

‖Qϕ(t)ψ‖2 = 1
(N−1)2

∑

i<j

∑

k<l

⟪ψ, qiqjZβijqiqjqkqlZβklqkqlψ⟫
. ⟪ψ, q1q2Z

β
12q1q2Z

β
12q1q2ψ⟫+N ⟪ψ, q1q2Z

β
12q1q2q3Z

β
13q1q3ψ⟫

+N2 ⟪ψ, q1q2Z
β
12q1q2q3q4Z

β
34q3q4ψ⟫

. N2dβ
(
‖q1q2ψ‖2 +N‖q1q2q3m̂

aψ‖2 +N2‖q1q2q3q4ψ‖2
)
.

Since

(
N
2

)
‖q1q2ψ‖2 =

∑

i<j

⟪ψ, qiqjψ⟫ < ∑

i,j,k,l

⟪ψ, qiqjqkqlψ⟫
= N4⟪ψ,( 1

N

N∑

j=1

qj

)4
ψ⟫ < N4‖m̂4ψ‖2

and analogously for the second and third term in the bracket, assertion (a) follows.

When applying Lemma 3.2.4 to (3.56), we obtain expressions of the form

‖(m̂ϕ(s))jŨϕ(s, 0)ψ0‖2.

Using Proposition 3.2.3b and finally exploiting assumption A3 on the initial data, one

computes

‖Cϕ(s)Ũϕ(s, 0)ψ0‖2
3.2.4

. N2+dβ‖(m̂ϕ(s))3Ũϕ(s, 0)ψ0‖2

3.2.3b

. N2+dβ
3∑

n=0

Nn(−1+dβ)‖(m̂ϕ0)3−nψ0‖2
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A3

. N2+dβ
3∑

n=0

Nn(−1+dβ+γ)−3γ .

For the sake of readability, we dropped the time-dependent pre-factors, and we main-

tain this for the remainder of this section. As above, the size of γ determines the

leading order term in the sum: for γ ≥ 1− dβ, the dominant contribution issues from

n = 3, whereas otherwise the addend corresponding to n = 0 is of leading order.

Consequently,

‖Cϕ(s)Ũϕ(s, 0)ψ0‖2 .




N−1+4dβ for 1− dβ ≤ γ ≤ 1 ,

N2+dβ−3γ for 2+dβ
3 < γ ≤ 1− dβ .

(3.57)

To ensure that (3.57) converges to zero as N →∞, we restrict the range of parameters

γ admitted by assumption A3 to γ ∈ (2+dβ
3 , 1]. Besides, in the first case, the bound is

only small for β < 1
4d , and the second case is anyway only possible for β < 1

4d . This

essentially causes the restriction of Theorem 3.2.2 to the parameter regime β ∈ [0, 1
4d).

Analogously to (3.57), we obtain

‖Qϕ(s)Ũϕ(s, 0)ψ0‖2 .




N−2+6dβ for 1− dβ ≤ γ ≤ 1 ,

N2+2dβ−4γ for 2+dβ
3 < γ ≤ 1− dβ .

(3.58)

Comparing (3.57) and (3.58), we conclude that the contribution with Cϕ(s) domi-

nates: since β < 1
4d , it follows that N−2+6dβ < N−1+4dβ and, for γ > 2+dβ

3 > dβ, that

N2+2dβ−4γ < N2+dβ−3γ . This leads to the estimate

‖ψ(t)− ψ(1)
ϕ (t)‖2 . N−δ(β,γ) (3.59)

with δ(β, γ) from (3.43), which is precisely (3.42) for a = 1.

Step 3.

Finally, the second element ψ
(2)
ϕ (t) of the approximating sequence is constructed by

adding to ψ
(1)
ϕ (t) the leading order contribution in (3.55) with the true time evolution

U(t, s) replaced by Ũϕ(t, s). This yields

ψ(2)
ϕ (t) := Ũϕ(t, 0)ψ0 − i

∫ t

0
ds Ũϕ(t, s)Cϕ(s)Ũϕ(s, 0)ψ0 ,

which equals (3.40). In conclusion, the idea is to cancel the leading order contribution

to (3.59) but for the difference between U(t, s) and Ũϕ(t, s). Since this difference is

evaluated on Cϕ(s)Ũϕ(s, 0)ψ0, which is small in norm, this improves the first order

approximation ψ
(1)
ϕ (t).

133



3. Results and Discussion

To prove (3.42) for a > 1 and to construct all higher elements ψ
(a)
ϕ (t) of the sequence,

one successively repeats the above three steps. In step three, one adds to ψ
(a)
ϕ (t) as

many terms of the expansion of ψ(t) − ψ(a)
ϕ (t) as needed to cancel the O(N−aδ(β,γ))-

contributions in the difference ψ(t)− ψ(a+1)
ϕ (t).

Let us demonstrate this scheme once more for a = 2. Using Duhamel’s formula

twice, we obtain

ψ(t)− ψ(2)
ϕ (t)

= −
∫ t

0
ds1

∫ t

s1

ds2 U(t, s2)
(
Cϕ(s2) +Qϕ(s2)

)
Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0

−i

∫ t

0
U(t, s)Qϕ(s)Ũϕ(s, 0)ψ0 ds,

which implies

‖ψ(t)− ψ(2)
ϕ (t)‖ ≤

∫ t

0
ds1

∫ t

s2

ds2‖Cϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖

+

∫ t

0
ds1

∫ t

s1

ds2‖Qϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖ (3.60)

+

∫ t

0
ds‖Qϕ(s)Ũϕ(s, 0)ψ0‖ .

Combining Lemma 3.2.4 and Proposition 3.2.3b, the leading order term in (3.60) can

be estimated as

‖Cϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖2
3.2.4, 3.2.3b

. N2+dβ
3∑

n=0

Nn(−1+dβ)‖(m̂ϕ(s1))3−nCϕ(s1)Ũϕ(s1, 0)ψ0‖2

3.2.4, 3.2.3b

. N4+2dβ
3∑

n=0

6−n∑

l=0

N (n+l)(−1+dβ)‖(m̂ϕ0)6−n−lψ0‖2

A3

. N−2+2dβ
3∑

n=0

6−n∑

l=0

N (n+l)(−1+dβ+γ)−6γ .

As before, considering the two ranges of γ separately yields for sufficiently large N

‖Cϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖2 . N−2δ(β,γ) (3.61)
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with δ(β, γ) as in (3.43). Analogously, the second term is bounded by

‖Qϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖2 .




N−3+10dβ 1− dβ ≤ γ ≤ 1 ,

N4+3dβ−7γ 2+dβ
3 < γ ≤ 1− dβ ,

and the third term was already treated in (3.58). In summary, we obtain

‖ψ(t)− ψ(2)
ϕ (t)‖2 . N−2δ(β,γ) .

Finally, adding the two expressions (3.58) and (3.61) to ψ
(2)
ϕ (t) after substituting the

full time evolution U(t, s) by Ũϕ(t, s) defines ψ
(3)
ϕ (t) as given in (3.41).

Iterating this procedure a times proves Theorem 3.2.2 for any a ∈ N. A key obser-

vation is that the leading term in every order is the expression containing exclusively

a cubic terms Cϕ(t), which can be shown by iteratively applying Lemma 3.2.4 and

Proposition 3.2.3b.

3.2.3. Discussion

We begin the discussion with a review of results in the literature that are comparable to

Theorem 3.2.2 and Proposition 3.2.3. Subsequently, we comment on our assumptions

and discuss open questions and future perspectives.

Literature

To the best of our knowledge, the only existing result comparable to Theorem 3.2.2

is the work [142] by Paul and Pulvirenti. For the time evolution generated by the

Hamiltonian HN,β with β = 0 and V ext = 0 and for factorised initial data, they

derive higher order approximations of the reduced density matrices. More precisely,

they construct a sequence {FN,nj (t)}n∈N of trace class operators on L2(Rjd) which

approximate the j-particle reduced density matrix γ
(j)
N (t) for values of j .

√
N with

increasing accuracy. To compute the operator FN,nj (t), a finite number of operations

is required, which depends on j and n but not on N .

The work by Paul and Pulvirenti is based on the method of kinetic errors from

[143] by Paul, Pulvirenti and Simonella. The j-particle reduced density matrix γ
(j)
N (t)

is characterised in terms of the operators pϕ(t) and the so-called correlation errors

ENj (t) ∈ L1(L2(Rjd)) as

γ
(j)
N (t)(z1, ..., zj)

=

j∑

k=0

∑

1≤i1<···<ik≤j
pϕ(t)(zi1)···pϕ(t)(zik)ENj−k(t)(z1, ..., zj \ {zi1 , ..., zik}) .

(3.62)
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Here, we abbreviated zl := (xl;x
′
l), and denoted by γjN (t)(z1, ..., zj) and pϕ(t)(zl) the

integral kernels of γ
(j)
N (t) and pϕ(t), respectively. Instead of considering the BBGKY-

hierarchy for the reduced densities, the authors of [143] derive equations for the corre-

lation errors, which, as in the BBGKY case, form an iterative hierarchy, in the sense

that ENj (t) depends on ENj+1(t). In [142], these correlation errors are expanded as

ENj (t) =

∞∑

k=0

Ekj (t)N−
j+k
2 .

It is shown that the coefficients Ekj (t) can be determined from the initial coefficients

Ek′j′ (0) for j′ ≤ j + k, k′ ≤ k, in the following way:

• First, a two-parameter semigroup Uj(t, s) on L(L2(Rjd)) is constructed as a

Dyson expansion in terms of the linearisation of the Hartree flow around pϕ(t).

• The truncation of this Dyson series after 2n + 1 steps yields the semigroup

Unj (t, s).

• Replacing Uj(t, s) by Unj (t, s) in the formula for Ekj (t) yields the operators Ek,nj (t).

• Adding all Ek,nj (t) for k = 1, ..., 2n, one obtains the approximation EN,nj (t) of

the correlation errors ENj (t).

• Finally, these EN,nj (t) define FN,nj (t) via (3.62).

In conclusion, the approximating operators FN,nj (t) can be determined by an N -

independent number of computations, needing as input only the initial data as well

as the knowledge of the solution of the Hartree equation and its linearisation around

this solution.

As a consequence of the very different approaches, it is not straightforward to com-

pare our result with the construction of Paul and Pulvirenti. We note the following:

• While our approximations are on the level of the time-evolved N -body wave

function, Paul and Pulvirenti derive higher order approximations of the reduced

density matrices.

• In our perception, the construction of ψ
(a)
ϕ (t) is more explicit than the operator-

based scheme sketched above. In both results, an a-dependent, N -independent

number of steps is required to obtain the a’th order approximation.

• The starting point in [142] is the time evolution Uj(t, s), which is related to the

linearisation of the Hartree flow around the solution of the Hartree equation. In

contrast, we use the time evolution Ũϕ(t, s).
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3.2. Higher order corrections to the mean-field dynamics

• While the analysis of Paul and Pulvirenti is restricted to factorised initial states,

we cover a larger and more general class of initial data.

• Finally, in contrast to [142], our result includes small values of β beyond the

Hartree scaling and admits possibly time-dependent external fields.

Let us also briefly comment on Proposition 3.2.3, where we estimate the growth

of the first A moments of the number of excitations when the system evolves under

the dynamics U(t, s) or Ũϕ(t, s). Estimates of this kind are often needed to derive

effective descriptions of the dynamics of interacting bosons, e.g., in [20, 28, 42, 135,

146, 158]. Our proof extends comparable statements for β = 0 and d = 3 obtained

by Mitrouskas, Petrat and Pickl in [135, Lemma 2.1] and by Rodnianski and Schlein

in [158, Proposition 3.3]. For Bose gases with large volume and large density, a similar

estimate was derived by Petrat, Pickl and Soffer in [146, Corollary 4.2].

Assumptions on the potentials

Assumptions A1 and A2 are rather standard in the rigorous treatment of interacting

many-boson systems. Note that we make no assumption on the sign of the potential

or its scattering length but cover both repulsive and attractive interactions. Besides,

we admit a large class of time-dependent external traps V ext(t, x), with the only con-

straints that they need to be bounded for fixed t and continuous for fixed x.

Assumption on the initial data

The simplest example of an N -body state satisfying A3 is the product state ψ = ϕ0
⊗N ,

which describes, e.g., the ground state of a non-interacting system. In contrast, the

ground state as well as the lower excited states of interacting systems are not close to

an exact product with respect to the L2(RdN )-norm due to the correlation structure

related to the interactions.

Regarding interacting bosons, A3 is fulfilled for quasi-free states with subleading

expected number of excitations, since it holds for any quasi-free state ξ ∈ F and any

` ≥ 1 that

〈ξ,N ξ〉F . N1−γ ⇒
〈
ξ,N `ξ

〉
F
. C`(1 +N1−γ)`

by (1.132). Note that we require a certain minimal size of γ, which is strictly greater

than 2
3 . Since it follows from (1.142) and (1.74) that

N−1 〈ξ,N ξ〉F = ⟪ψ, n̂ϕψ⟫ = ⟪ψ, qϕ1 ψ⟫ = 1−
〈
ϕ, γ

(1)
ψ ϕ

〉
L2(R3)

(3.63)

for ξ = UϕNψ, the requirement that the expected number of excitations be bounded

uniformly in N , which corresponds to γ = 1, is equivalent to BEC with optimal rate
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N−1 (see Lemma 1.4.2). Note that it was shown by Lewin, Nam, Serfaty and Solovej

in [114] that BEC with optimal rate is a sufficient condition for the validity of the

Bogoliubov approximation (see Section 1.5.2). Besides, A3 with parameter γ < 1 is

comparable to the assumption (1.128) made by Nam and Napiórkowski in [138] to

obtain a norm approximation for the range β ∈ [0, 1
2).

Finally, Mitrouskas showed in [134, Chapter 3] that assumption A3 with γ = 1 is

fulfilled by the ground state and lower excited states of a homogeneous Bose gas on

the d-dimensional torus for β = 0.

More precisely, let ϕ0 be the minimiser of the Hartree functional on the torus corre-

sponding to the ground state energy E0, and let ψn denote the n’th excited eigenstate

with energy En. Then the author proves that there exist constants C,D > 0 such that

‖Pϕ0
a ψn‖2 ≤ Ce−Da

for all (En − E0) ≤ a ≤ N and with Pϕ0
a as in Definition 1.4.1. As a corollary of this

statement, it is shown that there exists Ca > 0 such that

⟪ψn, qϕ0
1 · · · qϕ0

a ψn⟫ ≤ N−aCa (1 + (En − E0)a) .

Due to the relation

⟪ψ, qϕ1 ···qϕaψ⟫ ≤ ‖(m̂ϕ
)a
ψ‖2 .

a∑

j=1

N−a+j ⟪ψ, qϕ1 ···qϕaψ⟫+N−a , (3.64)

which holds for any ψ ∈ L2
+(Rd) ([34, Lemma 2.1a]), this implies that assumption A3

is satisfied.

Discussion of the result and perspectives

By construction, the first order correction ψ
(1)
ϕ (t) coincides with the norm approxima-

tion found by Mitrouskas, Petrat and Pickl in [135] for the Hartree scaling. Recall

that Theorem 3.2.2 establishes the approximation

‖ψ(t)− ψ(1)
ϕ (t)‖2 . e

c(a)
∫ t
0 ‖ϕ(s)‖

Hk(Rd) ds

{
N−(1−4dβ) 1− dβ ≤ γ ≤ 1

N−(3γ−2−dβ) 2+dβ
3 < γ ≤ 1− dβ .

For d = 3 and β = 0, this reproduces the result (1.140) up to a different time dependent

constant. Note that for d = 3, the exponent contains the H2(R3)-norm, which depends

on the choice of V ext. For instance, in the homogeneous case without external field,

this norm is preserved, which leads to the time dependence ∼ eCt. Hence, our result

can be understood as an extension of (1.140) to arbitrary dimensions and to the range
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β ∈ [0, 1
4d).

In comparison to the results [137, 138, 139] by Nam and Napiórkowski, our error

bounds for the first order correction are different. Making use of the equivalence

(1.143), we note the following:

• For d = 3, our bound δ = 1− 12β with assumption γ ∈ [1− 3β, 1] is worse than

the result in [137]. Moreover, the analysis in [137] covers values of β up to 1
3 ,

and, with a different rate, is extended in [138] to the range β ∈ [0, 1
2).

• In dimension d = 2, our bound δ = 1− 8β under the assumption γ ∈ [1− 2β, 1]

needs to be compared to the bound δ < 1
3(1−β) obtained in [139]. We conclude

that our bound is better for β < 2
23 and worse for larger β. Moreover, the

analysis by Nam and Napiórkowski covers the range β ∈ (0, 1), which is much

larger than the regime [0, 1
8) admitted by Theorem 3.2.2.

• For d = 1, our error bound under the assumption γ ∈ [1 − β, 1] is given as

δ = 1−4β, while the respective parameter in [139] is δ = 1
2 . Hence, our estimate

is better for β ∈ [0, 1
8) and worse for β ∈ (1

8 ,
1
4). Besides, the result in [139]

includes all β > 0, while our analysis is restricted to the range β ∈ [0, 1
4).

To conclude this chapter, let us discuss the approximating functions ψ
(a)
ϕ (t) from

a physical point of view. Due to the inter-particle correlations, the full N -body time

evolution ψ(t) is an extremely complicated object: even if the system was initially in a

factorised state, the interactions instantaneously correlate the particles in the sense of

(1.20), making it very difficult to explicitly compute expectation values with respect

to ψ(t). In particular, the highly correlated dynamics ψ(t) are practically inaccessible

to any numerical analysis.

In this respect, the norm approximation provided by Nam and Napiórkowski in

[137, 138, 139] provides a huge simplification. If the initial wave function is described

by a quasi-free excitation vector ξϕ0 , this property is preserved by the Bogoliubov time

evolution. Hence, by the Wick property (1.131) of quasi-free state, all expectation val-

ues with respect to the time-evolved excitation vector ξϕ(t) can be computed from the

one-body densities (γξϕ(t) , αξϕ(t)). Since these densities are determined by the system

of equations (1.134) derived in [137], we conclude that every expectation value with

respect to the approximating function can be obtained by solving the NLS equation

for the condensate and the two equations (1.134) for the excitations. By unitarity of

the time evolutions generated by HBog and HN,β , this observation extends to initial

states that are sufficiently close to quasi-free states.

At present, it remains an open question whether a comparable statement holds

true for the first-quantised time evolution Ũϕ(t, 0)ψ0 and the higher order corrections

ψ
(a)
ϕ (t) for an appropriate class of initial states. The specific form of H̃ϕ(t) suggests
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that the time evolved wave function Ũϕ(t, 0)ψ0 should develop less correlations than

the full dynamics ψ(t), for which a heuristic argument is given in [146]: Since H̃ϕ(t)

contains exclusively terms of the form

p1q2v
(12)
N,β q1p2 , p1p2v

(12)
N,β q1q2 , q1q2v

(12)
N,β p1p2 ,

there are the following possibilities for the formation of correlations:

• If these operators are evaluated on a product state, the first two expressions

yield zero, while the third one produces a pair correlation between particles 1

and 2.

• When acting on a state where particles 1 and 2 are correlated, the third term

produces again such a state, while the first and second expression result in a

state where particles 1 and 2 are uncorrelated.

• If we have pair correlations of particles 1 and 3 and of 2 and 4, respectively,

then the first expression yields a state with a pair correlation of 2 and 3 and

with particle 1 and 4 uncorrelated. The second expression produces a state with

particles 1 and 2 in the condensate and particles 3 and 4 correlated, and the last

term results in a state where particles 1 and 2 are correlated and particles 3 and

4 are uncorrelated.

In summary, none of the terms in H̃ϕ(t) can lead to higher correlations than pairs,

provided it acts on a state with at most pair correlations. Hence, it seems plausible

that the time evolution Ũϕ(t, s) might preserve the property of having at most pair

correlations. Naturally, this statement is quite vague and requires a precise formulation

in mathematical terms, and above heuristics are far from a rigorous proof.

By construction of the second order correction ψ
(2)
ϕ (t), a state evolving under Ũϕ(s, 0)

with at most pair correlations is acted upon by a cubic term Cϕ(s), which contains three

projectors q. By a similar reasoning as above, one can argue that the resulting state

should have at most three-body correlations. This argument can be continued to

the next order corrections ψ
(a)
ϕ (t), where the length of the correlations grows with

a. In conclusion, these heuristics can be understood as a hint that the approximat-

ing functions Ũϕ(t, 0)ψ0 and ψ
(a)
ϕ (t) should be simplifying and physically meaningful

approximations of the highly correlated dynamics ψ(t).
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Pitaevskii equation with strongly anisotropic confinement: formal asymptotics
and numerical experiments. Math. Models Methods Appl. Sci., 15(05):767–782,
2005.

[16] C. Bardos, F. Golse, and N. J. Mauser. Weak coupling limit of the n-particle
Schrödinger equation. Methods Appl. Anal., 7(2):275–294, 2000.

[17] N. Ben Abdallah, F. Castella, and F. Méhats. Time averaging for the strongly
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[54] D.-A. Deckert, J. Fröhlich, P. Pickl, and A. Pizzo. Dynamics of sound waves in
an interacting Bose gas. Adv. Math., 293:275–323, 2016.

[55] G. F. Dell’Antonio, R. Figari, and A. Teta. Hamiltonians for systems of N
particles interacting through point interactions. Ann. Inst. H. Poincaré Sect. A,
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[63] L. Erdős, A. Michelangeli, and B. Schlein. Dynamical formation of correlations
in a Bose–Einstein condensate. Commun. Math. Phys., 289(3):1171–1210, 2009.
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Derivation of the 1d nonlinear Schrödinger equation from

the 3d quantum many-body dynamics of strongly confined

bosons

Lea Boßmann∗

Abstract

We consider the dynamics of N interacting bosons initially exhibiting Bose–Einstein
condensation. Due to an external trapping potential, the bosons are strongly con-
fined in two spatial directions, with the transverse extension of the trap being of
order ε. The non-negative interaction potential is scaled such that its scattering
length is positive and of order (N/ε2)−1 and the range of the interaction scales as
(N/ε2)−β for β ∈ (0, 1). We prove that in the simultaneous limit N → ∞ and
ε → 0, the condensation is preserved by the dynamics and the time evolution is
asymptotically described by a cubic defocusing nonlinear Schrödinger equation in
one dimension, where the strength of the nonlinearity depends on the interaction
and on the confining potential. This is the first derivation of a lower-dimensional
effective evolution equation for singular potentials scaling with β ≥ 1

2 and lays the
foundations for the derivation of the physically relevant one-dimensional Gross–
Pitaevskii equation (β = 1). For our analysis, we adapt an approach by Pickl to
the problem with strong confinement.

1 Introduction

We consider a system of N identical bosons in R3 interacting among each other through
repulsive pair interactions. The bosons are trapped within a cigar-shaped trap, which
effectively confines the particles to a region of length ε in two spatial directions. To
describe this mathematically, let us first introduce the coordinates

z = (x, y) ∈ R1+2.

The cigar-shaped confinement is given by the scaled potential 1
ε2
V ⊥

(y
ε

)
for 0 < ε� 1

and V ⊥ : R2 → R. The Hamiltonian of this system is

Hβ(t) =
N∑

j=1

(
−∆j + 1

ε2
V ⊥

(yj
ε

)
+ V ‖(t, zj)

)
+

∑

1≤i<j≤N
wβ(zi − zj), (1)

where ∆ denotes the Laplace operator on R3 and V ‖ is a possibly time-dependent
additional external potential. The units are chosen such that ~ = 1 and m = 1

2 . In the
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limit ε→ 0, the system becomes effectively one-dimensional, in the sense that excitations
in the transverse direction are energetically strongly suppressed.

The interaction between the particles is described by the potential wβ with scaling
parameter β ∈ (0, 1). For the sake of this introduction, let us for the moment assume
that

wβ(z) =
(
N
ε2

)−1+3β
w
((

N
ε2

)β
z
)

for some compactly supported, spherically symmetric, non-negative, bounded potential
w. This scaling describes a dilute gas, where the scaling parameter β interpolates
between the Hartree (β = 0) and the Gross–Pitaevskii (β = 1) regime. The proof of the
physically relevant Gross–Pitaevskii regime relies essentially on the result for β ∈ (0, 1)
and is given in [4]. An important parameter characterising the interaction wβ is its
effective range,

µ :=
(
N
ε2

)−β
.

We study the dynamics of the system in the simultaneous limit (N, ε)→ (∞, 0). The
state ψN,ε(t) of the system at time t is determined by the N -body Schrödinger equation

i d
dtψ

N,ε(t) = Hβ(t)ψN,ε(t) (2)

with initial datum ψN,ε(0) = ψN,ε0 ∈ L2
s(R3N ) := ⊗NsymL

2(R3). We assume that the
system initially exhibits Bose–Einstein condensation, i.e., that the one-particle reduced

density matrix γ
(1)

ψN,ε0

of ψN,ε0 ,

γ
(k)

ψN,ε0

:= Trk+1,...,N |ψN,ε0 〉 〈ψN,ε0 | (3)

for k = 1, is asymptotically, as (N, ε) → (∞, 0), close to the projection onto a one-
body state ϕε0 ∈ L2(R3). At low energies, the state factorises as a consequence of the
strong confinement and is of the form ϕε0(z) = Φ0(x)χε(y) (see Remark 1e). Here, Φ0

denotes the wavefunction along the x-axis and χε is the normalised ground state of
−∆y + 1

ε2
V ⊥(yε ) in the confined directions. Due to the rescaling by ε, χε is given by

χε(y) = 1
εχ(yε ), (4)

where χ is the normalised ground state of −∆y + V ⊥(y).
In Theorem 1, we show that if the state of the system is initially such a factorised

Bose–Einstein condensate with condensate wavefunction ϕε0 = Φ0χ
ε, i.e., if

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣∣γ
(1)

ψN,ε0

− |ϕε0〉 〈ϕε0|
∣∣∣∣ = 0,

where the limit (N, ε) → (∞, 0) is taken in an appropriate way, then the condensation
of the system into a factorised state is preserved by the dynamics, i.e., for all t ∈ R and
k ∈ N,

lim
(N,ε)→(∞,0)

TrL2(R3k)

∣∣∣γ(k)

ψN,ε(t)
− |ϕε(t)〉 〈ϕε(t)|⊗k

∣∣∣ = 0.

The condensate wavefunction at time t is given by ϕε(t) = Φ(t)χε, where Φ(t) is the
solution of the one-dimensional nonlinear Schrödinger (NLS) equation

i ∂∂tΦ(t, x) =
(
− ∂2

∂x2
+ V ‖(t, (x, 0)) + bβ|Φ(t, x)|2

)
Φ(t, x) =: h(t)Φ(t, x) (5)
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with Φ(0) = Φ0 and coupling parameter bβ = ‖w‖L1(R3)

∫
R2 |χ(y)|4 dy.

To our knowledge, Theorem 1 is the first rigorous derivation of an effectively lower-
dimensional evolution equation directly from the three-dimensional N -body dynamics
for β ≥ 1

2 . In [19], von Keler and Teufel consider a similar problem for β ∈ (0, 1
3) and in

[6] and [8], Chen and Holmer study interactions for different scaling regimes up to β < 1
2 .

The extension to β ∈ (0, 1) requires a non-trivial adaptation of methods used for the
fully three-dimensional problem without strong confinement [33] to handle the additional
limit ε → 0 and the associated dimensional reduction. Not only is this an interesting
mathematical problem on its own but it lays the foundations for the derivation of the
physically relevant effectively one-dimensional Gross–Pitaevskii equation corresponding
to the scaling β = 1 [4]. In fact, the main idea of the proof in [4] is to approximate the
interaction wβ=1 by a softer scaling interaction which is covered by our Theorem 1, and
to show that the remainders from this substitution vanish in the limit. The dimensional
reduction occurs in the approximated interaction, hence the result for β = 1 relies
essentially on the tools and results proven here.

Let us give a brief motivation of the effective equation (5). The N -body problem is
interacting, hence the effective evolution is nonlinear and the strength of the linearity
depends on the two-body scattering process. This process is to leading order described
by the (s-wave) scattering length aβ of wβ, which scales as (N

ε2
)−1 for β ∈ (0, 1] [9,

Lemma A.1]. This implies that, for β ∈ (0, 1), the length scale of the inter-particle
correlations is small compared to the range µ = (N

ε2
)−βof wβ. Hence, the correlations

are negligible in the limit and the two-body scattering process is described by the first
order Born approximation to the scattering length, 8πaβ ≈

∫
wβ(z) dz. The additional

factor
∫
R2 |χ(y)|4 dy in the coupling parameter arises from integrating out the transverse

degrees of freedom in the course of the dimensional reduction.

Quasi one-dimensional Bose gases in highly elongated traps have been studied ex-
perimentally [12, 15] and the dynamical behaviour of such systems is of great physical
interest [11, 20, 28]. After the first proof of an effective Hartree evolution by Spohn [35],
the first rigorous derivation of an NLS evolution for three-dimensional bosons is due
to Erdős, Schlein and Yau [9]. The main tool of their proof is the convergence of the
BBGKY hierarchy, a system of coupled equations determining the time evolution of
all k-particle density matrices. Later, the authors adapted their proof to handle the
Gross–Pitaevskii scaling of the interaction [10]. A different approach providing rates
for the convergence of the reduced density matrices was proposed by Pickl [29, 32],
who derived effective evolution equations for NLS and Gross–Pitaevskii scaling of the
interaction, including time-dependent external potentials [33] as well as non-positive
[31, 17] and singular interactions [22]. A third method for the Gross–Pitaevskii case,
based on Bogoliubov transformations and coherent states on Fock space, was developed
by Benedikter, De Oliveira and Schlein [3], and an optimal rate of convergence was re-
cently proven by Brennecke and Schlein [5]. In [1, 7] and [21, 16, 18], effective equations
in one and two dimensions were derived from the respective one and two dimensional
quantum many-body dynamics.

Some authors have considered the problem of dimensional reduction for the NLS
equation. In [27], Méhats and Raymond study the cubic NLS equation in a two-
dimensional quantum waveguide, i.e., within a tube of width ε around a curve in R2.
They show that in the limit ε → 0, the nonlinear evolution is well approximated by
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a one-dimensional cubic NLS equation with an additional potential term due to the
curvature. Ben Abdallah, Méhats, Schmeiser and Weishäupl consider in [2] an (n+ d)-
dimensional NLS equation subject to a strong confinement in d directions and derive an
effective n-dimensional NLS equation with a modified nonlinearity.

As mentioned above, there are few results concerning the derivation of lower-dimen-
sional NLS equations from the underlying three-dimensional N -body dynamics. Chen
and Holmer consider three-dimensional bosons with pair interactions in a harmonic
potential that is strongly confining in one [6] or two [8] directions. For a repulsive inter-
action scaling with β ∈ (0, 2

5) in case of the disc-shaped and for an attractive interaction
with β ∈ (0, 3

7) in case of the cigar-shaped confinement, they prove that the dynamics
are effectively described by a two- or respectively one-dimensional NLS equation. In
[19], von Keler and Teufel study a Bose gas confined to a quantum waveguide with non-
trivial geometry for scaling parameters β ∈ (0, 1

3). They prove that the evolution is well
captured by a one-dimensional NLS equation with additional potential terms arising
from the twisting and bending of the waveguide.

The remainder of this paper is structured as follows: in Section 2, we specify our
assumptions and present the result. Our proof follows an approach by Pickl, which is
outlined in Section 3. This section also contains the proof of our main Theorem 1, re-
lying essentially on two propositions. Finally, these propositions are proven in Section 4.

Notation. We will write A . B to indicate that there exists some constant C > 0
independent of ε,N, t, ψN,ε0 ,Φ0 such that A ≤ CB. The constant may depend on the
quantities fixed by the model, such as V ⊥, χ and V ‖. We will exclusively use the symbol
·̂ to denote the operators from Definition 3.3. Besides, we will use the abbreviations

⟪·, ·⟫ := 〈·, ·〉L2(R3N ) , ‖·‖ := ‖·‖L2(R3N ) and ‖·‖op := ‖·‖L(L2(R3N )).

2 Main Result

To study the effective behaviour of the many-body system in the simultaneous limit
(N, ε)→ (∞, 0), let us consider families of initial data ψN,ε0 along sequences (Nn, εn)→
(∞, 0) characterised as follows:

Definition 2.1. A sequence (Nn, εn) in N× (0, 1) is called admissible if

lim
n→∞

(Nn, εn) = (∞, 0) and lim
n→∞

ε2
n

µn
= 0 for µn :=

(
Nn

ε2
n

)−β
.

It is called moderately confining if

lim
n→∞

µn
εn

= 0.

Moderate confinement means that the extension ε of the confining potential shrinks
to zero but is still large compared to the range of the interaction µ. This prevents
the interaction from being supported mainly in a region that is quasi inaccessible to
the particles due to the strong confinement. As µ/ε = N−βε2β−1, this condition is a
restriction only for β < 1

2 .

A.1. 1d Nonlinear Schrödinger equation for strongly confined 3d bosons
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The admissibility condition ensures that the energy gap above the transverse ground
state, which is of order ε−2, grows sufficiently fast compared to µ. In the proof, we
will use this condition to control transverse excitations into states that are orthogonal
to χε (see also Remark 2d). Note that for δ > 0, εδ/µ = Nβεδ−2β, hence δ = 2 is the
smallest exponent for which εδ/µ → 0 is possible for all β ∈ (0, 1). Both conditions
are comparable to the assumptions in [8] for an attractive interaction scaling with β ∈
(0, 3

7).1

We consider interactions of the following type:

Definition 2.2. Let β ∈ (0, 1) and η > 0. Define the set Wβ,η as the set containing all
families

wβ : N× (0, 1)→ L∞(R3,R), (N, ε) 7→ wβ((N, ε)),

such that for any (N, ε) ∈ N× (0, 1)





(a) ‖wβ((N, ε))‖L∞(R3) .
(
N
ε2

)−1+3β
,

(b) wβ((N, ε)) is non-negative and spherically symmetric,

(c) suppwβ((N, ε)) ⊆
{
z ∈ R3 : |z| .

(
N
ε2

)−β}
,

(d) lim
(N,ε)→(∞,0)

(
N
ε2

)η | bN,ε(wβ)− bβ(wβ)| = 0,

where

bN,ε(wβ) := N

∫

R3

wβ((N, ε), z) dz

∫

R2

|χε(y)|4 dy = N
ε2

∫

R3

wβ((N, ε), z) dz

∫

R2

|χ(y)|4 dy,

bβ(wβ) := lim
(N,ε)→(∞,0)

bN,ε(wβ).

We will in the following abbreviate wβ((N, ε)) ≡ wβ, bN,ε(wβ) ≡ bN,ε and bβ(wβ) ≡ bβ.

Condition (d) ensures that the (N, ε)-dependent parameter bN,ε converges sufficiently
fast to its limit bβ. Clearly, the interaction (N

ε2
)−1+3βw((N

ε2
)βz) from the introduction

is contained in this set. In this case, bN,ε = ‖w‖L1(R3)

∫
R2 |χ(y)|4 dy = bβ, hence (d) is

true for any η > 0.
In order to formulate our main theorem, we will need two different notions of one-

particle energies:

• The “renormalised” energy per particle: for ψ ∈ D(Hβ(t)
1
2 ),

Eψ(t) := 1
N 〈ψ,Hβ(t)ψ〉L2(R3N ) − E0

ε2
, (6)

where E0 denotes the lowest eigenvalue of −∆y + V ⊥(y). By rescaling, E0
ε2

is the
lowest eigenvalue of −∆y + 1

ε2
V ⊥( y

ε2
).

1In our notation, the assumptions in [8] are Nν1(β) . ε−2 . Nν2(β), where ν1 and ν2 are given by

ν1(β) = β
1−β and ν2 = min

{
1−β
β
,

3
5
−β

β− 1
5

1β≥ 1
5

+∞ · 1β< 1
5
, 2β
1−2β

,
7
8
−β
β

}
. Note that Nν1(β)ε2 = ( ε

2

µ
)

1
1−β

and Nν2(β)ε2 ≤ ( ε
µ

)
2

1−2β as ν2(β) ≤ 2β
1−2β

, hence these conditions are comparable to our assumptions.
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• The effective energy per particle: for Φ ∈ H1(R),

EΦ(t) :=
〈

Φ,
(
− ∂2

∂x2
+ V ‖(t, (x, 0)) +

bβ
2 |Φ|2

)
Φ
〉
L2(R)

. (7)

Further, we define the function e : R→ [1,∞) by

e2(t) := 1 + |EψN,ε0 (0)|+ |EΦ0(0)|+
t∫

0

‖V̇ ‖(s, ·)‖L∞(R3) ds+ sup
i,j∈{0,1}
k∈{1,2}

‖∂it∂jykV
‖(t, ·)‖L∞(R3).

(8)
Note that e(t) is for each t ∈ R uniformly bounded in N and ε because we will assume

that Eψ
N,ε
0 (0) → EΦ0(0) as (N, ε) → (∞, 0) (assumption A4 below) and boundedness

of ∂it∂
j
ykV

‖ (assumption A3 below). The function e will be of use because, by the
fundamental theorem of calculus,

∣∣EψN,ε(t)(t)
∣∣ ≤ e2(t)− 1 and

∣∣EΦ(t)(t)
∣∣ ≤ e2(t)− 1 (9)

for any time t ∈ R. Note that if the external field V ‖ is time-independent, e2(t) . 1 for

any t, hence in this case, Eψ
N,ε(t)(t) and EΦ(t)(t) are bounded uniformly in time.

Let us now state our assumptions:

A1 Interaction. Let the interaction wβ ∈ Wβ,η for some η > 0.

A2 Confining potential. Let V ⊥ : R2 → R such that −∆y +V ⊥ is self-adjoint and has
a non-degenerate ground state χ with energy E0 < inf σess(−∆y + V ⊥). Assume
that the negative part of V ⊥ is bounded and that χ ∈ C1

b(R2), i.e., χ is bounded
and continuously differentiable with bounded derivative. We choose χ normalised
and real.

A3 External field. Let V ‖ : R× R3 → R such that V ‖(·, z) ∈ C1(R). Further, assume

that for each fixed t ∈ R, V ‖(t, (·, 0)) ∈ H4(R), V ‖(t, ·), V̇ ‖(t, ·) ∈ L∞(R3)∩C1(R3)

and ∇yV ‖(t, ·),∇yV̇ ‖(t, ·) ∈ L∞(R3).

A4 Initial data. Assume that the family of initial data, ψN,ε0 ∈ D(Hβ(0)) ∩ L2
s(R3N )

with ‖ψN,ε0 ‖2 = 1, is close to a condensate with condensate wavefunction ϕε0 =
Φ0χ

ε for some normalised Φ0 ∈ H2(R) in the following sense: for some admissible,
moderately confining sequence (N, ε), it holds that

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣γ(1)

ψN,ε0

− |Φ0χ
ε〉 〈Φ0χ

ε|
∣∣∣ = 0 (10)

and
lim

(N,ε)→(∞,0)

∣∣∣Eψ
N,ε
0 (0)− EΦ0(0)

∣∣∣ = 0. (11)

Remark 1. (a) Assumption A1 includes the interaction wβ(z) =
(
N
ε2

)−1+3β
w
(
(N
ε2

)βz
)

for w : R3 → R spherically symmetric, non-negative and with suppw ⊆ B1(0). We
consider the larger class of interaction potentials Wβ,η because due to this slight
generalisation, one may immediately apply the result of Theorem 1 in [4].
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(b) Assumption A2 is, for instance, fulfilled by a harmonic potential or by any bounded
smooth potential with a bound state below the essential spectrum. Note that it
is not necessary that the potential increases as |y| → ∞. The confining effect of
the potential is due to the rescaling by ε because the ground state of −∆y + V ⊥

is exponentially localised [13, Theorem 1].

(c) The regularity condition on V ‖(t, (·, 0)) in A3 ensures the global existence of H2-
solutions of the NLS equation (5) (see Appendix A and Lemma 4.9). The further

requirements for V ‖, V̇ ‖,∇yV ‖ and ∇yV̇ ‖ are needed to control the one-particle
energies and the interactions of bosons with the external field V ‖.

(d) Due to assumptions A1 – A3, the operators Hβ(t) are self-adjoint on the time-
independent domain D(Hβ). As t 7→ V ‖(t) ∈ L(L2(R3)) is continuous, Hβ(t)
generates a strongly continuous unitary evolution on D(Hβ) [14].

(e) We assume in A4 that the system is initially given by a Bose–Einstein condensate
with factorised condensate wavefunction. Both parts (10) and (11) of the assump-
tion are standard when deriving effective evolution equations. For the scaling
parameter β = 1 and a homogeneous external field V ‖(z, 0), it is shown in [26]
that the ground state of H1(0) satisfies assumption A4. Note that for initial data in
the ground state, it is important to admit a time-dependent external potential V ‖

to observe non-trivial dynamics. For related results without strong confinement,
we refer to the review [25] for β = 1 and to [23] for β < 1.

Theorem 1. Let β ∈ (0, 1) and assume that wβ, V ⊥ and V ‖ satisfy A1 – A3. Let ψN,ε0

be a family of initial data satisfying A4, let ψN,ε(t) denote the solution of the N -body

Schrödinger equation (2) with initial datum ψN,ε(0) = ψN,ε0 and let γ
(k)

ψN,ε(t)
denote its

k-particle reduced density matrix as in (3). Then for any T ∈ R and k ∈ N,

lim
(N,ε)→(∞,0)

sup
t∈[−T,T ]

TrL2(R3k)

∣∣∣γ(k)

ψN,ε(t)
− |Φ(t)χε〉 〈Φ(t)χε|⊗k

∣∣∣ = 0 (12)

and
lim

(N,ε)→(∞,0)
sup

t∈[−T,T ]

∣∣∣EψN,ε(t)(t)− EΦ(t)(t)
∣∣∣ = 0, (13)

where the limits are taken along the sequence from A4. Φ(t) is the solution of the NLS
equation (5) with initial datum Φ(0) = Φ0 from A4, where the strength of the nonlinearity
in (5) is given by bβ from Definition 2.2, namely

bβ = lim
(N,ε)→(∞,0)

bN,ε = lim
(N,ε)→(∞,0)

N
ε2

∫

R3

wβ(z) dz

∫

R2

|χ(y)|4 dy. (14)

Remark 2. (a) For the choice wβ(z) =
(
N
ε2

)−1+3β
w
(
(N
ε2

)βz
)
, we obtain the coupling

parameter bβ = ‖w‖L1(R3)

∫
R2 |χ(y)|4 dy.

(b) Our proof provides an estimate of the rate of the convergence of (12), which is
explicitly stated in Corollary 3.9. The rate is not uniform in time but depends on
it in terms of a double exponential. Note, however, that times of order one already
correspond to long times on the microscopic scale.
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(c) Let us comment on the difference of our work to the result of von Keler and Teufel
[19], who consider β ∈ (0, 1

3). The extension to β ∈ (0, 1) means a physically rele-
vant improvement of the result: for β < 1

3 , the problem can still be considered as

a mean-field problem since the mean inter-particle distance %−
1
3 ∼ (N

ε2
)−

1
3 is small

compared to the range of the interaction µ = (N
ε2

)−β. For β > 1
3 , the mean-field

description breaks down and one must handle interactions which are too singular
to be covered by the approach of [19]. We solve this by an integration by parts of
the interaction, which comes at the price that one must control the kinetic energy
of the N -particle wavefunction (Lemma 4.11 and Lemma 4.21). Also, note that

our admissibility condition is weaker than the respective condition ε
4
3 /µ → 0 in

[19], which cannot be satisfied for β > 2
3 .

In [19], the bosons are trapped within a quantum waveguide with non-trivial ge-
ometry. The confinement is realised by means of Dirichlet boundary conditions,
which restrict the system to a tube of width ε around some curve in R3. In
our model, the confinement is by potentials. However, our result can easily be
modified to a confinement via Dirichlet boundary conditions, corresponding to a
straight and untwisted quantum waveguide. The main difference in the proof is

the estimate of γ
(1)
b (Section 4.4.2): one divides the expression (46) into an inte-

gral over those y sufficiently distant from the boundary that suppwβ((x, y)− ·) is
completely contained in the waveguide, and into an integral over the rest, which
is easily estimated.
In addition to moderately confining sequences, the authors of [19] consider se-
quences (N, ε)→ (∞, 0) with ε/µ→ 0. This is possible for β ∈ (0, 1

2) and leads to
bβ = 0 in the effective equation because an essential part of the interaction is cut
off such that the limiting effective equation becomes linear. We conjecture that
the same effect occurs in our setup.

(d) Our analysis is restricted to sequences where ε � N
− β

2(1−β) (Definition 2.1). As
remarked before, similar conditions are needed in the comparable works [6, 8]
whereas no analogue of this admissibility condition is required for the ground
state result in [26]. In combination with the work on the confinement limit of the
three-dimensional NLS equation in [2], this indicates that our dynamical result
should in principle hold without any admissibility condition. For our strategy of
proof, this condition is however indispensable to control the transverse excitations
out of the transverse ground state χε.

(e) In [8], Chen and Holmer study attractive interactions, i.e.,
∫
R3 wβ(z) dz ≤ 0. In

distinction from that work, we exclusively consider repulsive interactions with
wβ ≥ 0. However, as the condition wβ ≥ 0 seems to be crucial only to the proofs
of Lemma 4.11 and Lemma 4.21, it is likely that our result can be extended to
include repulsive interactions with a certain negative part.

3 Proof of the main theorem

To prove Theorem 1, we need to show that the expressions in (12) and (13) vanish in the
limit (N, ε)→ (∞, 0), given suitable initial data. Instead of estimating these differences
directly, we follow the strategy by Pickl [29, 30, 31, 32, 33] and define a functional
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αξ(ψ
N,ε(t), ϕε(t)) which provides a measure of the part of the N -particle wavefunction

ψN,ε that has not condensed into the single-particle orbital ϕε. The functional is chosen
such that αξ(ψ

N,ε(t), ϕε(t)) → 0 is equivalent to (12) and (13). We follow in general
[33]. However, the strongly asymmetric confinement requires a nontrivial modification
of the formalism to treat the dimensional reduction and the more singular scaling of the
interaction. For the construction of αξ, we need the following projections:

Definition 3.1. Let ϕε(t) = Φ(t)χε, where Φ(t) is the solution of the NLS equation (5)
with initial datum Φ0 from A4 and with χε as in (4). Let

p := |ϕε(t)〉 〈ϕε(t)| ,
where we have dropped the time dependence of p in the notation. For i ∈ {1, . . . , N},
define the projection operators on L2(R3N )

pj := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ p⊗ 1⊗ · · · ⊗ · · ·1︸ ︷︷ ︸
N−j

and qj := 1− pj .

Further, define the orthogonal projections on L2(R3)

pΦ := |Φ(t)〉 〈Φ(t)| ⊗ 1L2(R2), qΦ := 1L2(R3) − pΦ,

pχ
ε

:= 1L2(R) ⊗ |χε〉 〈χε| , qχ
ε

:= 1L2(R3) − pχ
ε
,

and define pΦ
j , qΦ

j , pχ
ε

j and qχ
ε

j on L2(R3N ) analogously to pj and qj . Finally, for
0 ≤ k ≤ N , define the many-body projections

Pk =
(
q1 · · · qkpk+1 · · · pN

)
sym

:=
∑

J⊆{1,...,N}
|J |=k

∏

j∈J
qj
∏

l /∈J
pl

and Pk = 0 for k < 0 and k > N .

In the sequel, we will write pj = |ϕε(t, zj)〉 〈ϕε(t, zj)|, pΦ
j = |Φ(t, xj)〉 〈Φ(t, xj)| and

pχ
ε

j = |χε(yj)〉 〈χε(yj)|. Some useful identities of the projections are listed in the follow-
ing corollary:

Corollary 3.2. For 0 ≤ k ≤ N and 1 ≤ j ≤ N , it holds that

(a)
N∑
k=0

Pk = 1,
N∑
j=1

qjPk = kPk,

(b) pj = pΦ
j p

χε

j , pΦ
j qj = pΦ

j q
χε

j , pχ
ε

j qj = pχ
ε

j q
Φ
j and

p]j pj = pj, q]j qj = q]j, q]j pj = 0 for ] ∈ {Φ, χε},

(c) qj = qΦ
j p

χε

j + pΦ
j q

χε

j + qΦ
j q

χε

j = qχ
ε

j + qΦ
j p

χε

j = qΦ
j + pΦ

j q
χε

j .

Proof. The first identity in (a) is due to the relation pj + qj = 1. The second identity
follows from the fact that

N∑

j=1

qj =

N∑

j=1

qj

N∑

k=0

Pk =

N∑

k=0

N∑

j=1

qjPk =

N∑

k=0

kPk

together with PkPk′ = δk,k′Pk. While part (b) is an immediate consequence of Def-
inition 3.1, part (c) is implied by q = 1 − p = (pΦ + qΦ)(pχ

ε
+ qχ

ε
) − pΦpχ

ε
=

pΦqχ
ε

+ qΦpχ
ε

+ qΦqχ
ε
.
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Definition 3.3. For any function f : N0 → R+
0 , define the operator f̂ ∈ L

(
L2(R3N )

)

by

f̂ :=
N∑

k=0

f(k)Pk

and, for any d ∈ Z, the shifted operator f̂d ∈ L
(
L2(R3N )

)
by

f̂d :=

N−d∑

j=−d
f(j + d)Pj .

We will in particular need the weight function n defined by n(k) :=
√

k
N .

Definition 3.4. Define the functional αf : L2(R3N )× L2(R3)→ R by

αf (ψ,ϕε(t)) := ⟪ψ, f̂ψ⟫ =

N∑

k=0

f(k) ⟪ψ, Pkψ⟫ .
The ϕε-dependence of αf is due to the ϕε-dependence of the projectors Pk. As the

operators Pk project onto states with exactly k particles outside the condensate, αf
is a measure of the relative number of such particles in the state ψ. We choose the
weight f increasing and f(0) ≈ 0, hence those parts of ψ with a larger “distance” to the
condensate contribute more to αf (ψ,ϕε). On the other hand, P0ψ — the state where
all particles are condensed into ϕε — contributes hardly anything. The weight n̂ is in
particular distinguished because for any symmetric wavefunction ψ ∈ L2

s(R3N ),

αn2(ψ,ϕε(t)) =
N∑

k=0

k
N ⟪ψ, Pkψ⟫ =

N∑

k=0

N∑

j=1

1
N ⟪ψ, qjPkψ⟫ = ‖q1ψ‖2

by Corollary 3.2a.

Lemma 3.5. Let ψN ∈ L2
s(R3N ) be a sequence of normalised N -particle wavefunctions

and let γ
(k)
N be the sequence of corresponding k-particle reduced density matrices for some

fixed k ∈ N. Let t ∈ R. Then the following statements are equivalent:

(a) lim
N→∞

αna(ψN , ϕε(t)) = 0 for some a > 0,

(b) lim
N→∞

αna(ψN , ϕε(t)) = 0 for any a > 0,

(c) lim
N→∞

‖γ(k)
N − |ϕε(t)〉 〈ϕε(t)|

⊗k‖L(L2(R3k)) = 0 for all k ∈ N,

(d) lim
N→∞

TrL2(R3k)

∣∣∣γ(k)
N − |ϕε(t)〉 〈ϕε(t)|

⊗k
∣∣∣ = 0 for all k ∈ N,

(e) lim
N→∞

TrL2(R3)

∣∣∣γ(1)
N − |ϕε(t)〉 〈ϕε(t)|

∣∣∣ = 0.
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For the proof of this lemma, we refer to [19, Lemma 3.1] and to corresponding results in
[22, 32, 33, 34]. We will in the following choose the weight function m : N0 → R+

0 with

m(k) :=

{
n(k) for k ≥ N1−2ξ,
1
2

(
N−1+ξk +N−ξ

)
else

for some ξ ∈ (0, 1
2), i.e., m equals n with a smooth cut-off to soften the singularity of

dn
dk for small k. Clearly, n(k) ≤ m(k) ≤ n(k) + 1

2N
−ξ for all k ≥ 0 and ξ ∈ (0, 1

2), hence
αm(ψ,ϕε(t)) → 0 is equivalent to αn(ψ,ϕε(t)) → 0 and thus to all cases in Lemma 3.5
for any choice of the parameter ξ. For the actual proof, we will consider a modified
version of this functional, namely

αξ(t) := αm(ψN,ε(t), ϕε(t)) +
∣∣EψN,ε(t)(t)− EΦ(t)(t)

∣∣. (15)

The convergence of αξ(t) to zero is equivalent to (12) and (13). Conversely, (10) and (11)
imply αξ(0) → 0 as (N, ε) → (∞, 0). The main idea of the proof is therefore to derive
a bound for | d

dtαξ(t)| (Propositions 3.7 and 3.8), from which one obtains an estimate
for αξ(t) by Grönwall’s inequality. The propositions will be proven in Sections 4.3 and
4.4. The estimate of the rate of the convergence of αξ(t) gained from this procedure
translates to a rate for the reduced density matrices:

Lemma 3.6. For αξ(t) as in (15), it holds that

Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉 〈ϕε(t)|

∣∣∣ ≤
√

8αξ(t),

αξ(t) ≤
∣∣∣EψN,ε(t)(t)− EΦ(t)(t)

∣∣∣+

√
Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉 〈ϕε(t)|

∣∣∣+ 1
2N
−ξ.

Proof. Let us abbreviate ψN,ε(t) ≡ ψ and drop all time dependencies. [22, Lemma 2.3]
implies ⟪ψ, n̂2ψ⟫ ≤ Tr

∣∣γ(1)
ψ − |ϕε〉 〈ϕε|

∣∣ ≤
√

8 ⟪ψ, n̂2ψ⟫.
The first inequality is thus immediately clear as n(k)2 ≤ n(k) ≤ m(k). For the second
inequality, recall that m(k) ≤ n(k) + 1

2N
−ξ, hence

⟪ψ, m̂ψ⟫ ≤ ‖ψ‖‖n̂ψ‖+ 1
2N
−ξ ≤

√⟪ψ, n̂2ψ⟫+ 1
2N
−ξ ≤

√
Tr
∣∣γ(1)
ψ − |ϕε〉 〈ϕε|

∣∣+ 1
2N
−ξ.

Proposition 3.7. Under assumptions A1 – A4,

∣∣ d
dtαξ(t)

∣∣ ≤
∣∣γa(t)

∣∣+ |γb(t)|
≤

∣∣γa(t)
∣∣+
∣∣γ(1)
b (t)

∣∣+
∣∣γ(2)
b (t)

∣∣+
∣∣γ(3)
b (t)

∣∣

for almost every t ∈ R, where

γa(t) :=
∣∣∣⟪ψN,ε(t), V̇ ‖(t, z1)ψN,ε(t)⟫− 〈Φ(t), V̇ ‖(t, (x, 0))Φ(t)

〉
L2(R)

∣∣∣ (16)

−2N=⟪ψN,ε(t), q1m̂
a
−1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ

N,ε(t)⟫ , (17)
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γb(t) := −N(N − 1)=⟪ψN,ε(t), Z(12)
β m̂ψN,ε(t)⟫ (18)

= γ
(1)
b (t) + γ

(2)
b (t) + γ

(3)
b (t),

γ
(1)
b (t) := −2N(N − 1)=⟪ψN,ε(t), qΦ

1 m̂
a
−1p

χε

1 p2Z
(12)
β p1p2ψ

N,ε(t)⟫ , (19)

γ
(2)
b (t) := −N(N − 1)=⟪qχε1 ψN,ε(t),

(
2p2m̂

a
−1 + q2(1 + pχ

ε

2 )m̂b
−2

)
w

(12)
β p1p2ψ

N,ε(t)⟫ (20)

−2N(N − 1)=⟪ψN,ε(t), (qχε1 q2 + qΦ
1 p

χε

1 qχ
ε

2 )m̂a
−1w

(12)
β p1q2ψ

N,ε(t)⟫ (21)

−2N(N − 1)=⟪ψN,ε(t), qΦ
1 q

Φ
2 m̂

a
−1p

χε

1 pχ
ε

2 w
(12)
β p1q

χε

2 ψN,ε(t)⟫ , (22)

γ
(3)
b (t) := −N(N − 1)=⟪ψN,ε(t), qΦ

1 q
Φ
2 m̂

b
−2p

χε

1 pχ
ε

2 w
(12)
β p1p2ψ

N,ε(t)⟫ (23)

−2N(N − 1)=⟪ψN,ε(t), qΦ
1 q

Φ
2 m̂

a
−1p

χε

1 pχ
ε

2 w
(12)
β p1p

χε

2 qΦ
2 ψ

N,ε(t)⟫ (24)

+2Nbβ=⟪ψN,ε(t), q1q2m̂
a
−1|Φ(t, x1)|2p1q2ψ

N,ε(t)⟫ . (25)

Here,

w
(12)
β := wβ(z1 − z2) and Z

(12)
β := w

(12)
β − bβ

N−1

(
|Φ(t, x1)|2 + |Φ(t, x2)|2

)

and m̂a, m̂b denote the many-body operators corresponding to the weight functions

ma(k) := m(k)−m(k + 1) and mb(k) := m(k)−m(k + 2).

The first term, γa, merely contains one-body contributions, i.e., interactions between
the bosons and the external field V ‖, and is therefore the easiest to estimate. Note
that (16) is small only if the system is in a state ψN,ε close to the condensate with
condensate wavefunction ϕε = Φχε (see Lemma 4.7). The term γb handles the two-body

contributions, i.e., interactions among bosons. The expressions γ
(1)
b and γ

(3)
b contain the

quasi one-dimensional interaction w(x1 − x2) defined by pχ
ε

1 pχ
ε

2 wβ(z1 − z2)pχ
ε

1 pχ
ε

2 =:

w(x1 − x2)pχ
ε

1 pχ
ε

2 (see Definition 4.18), where the transverse degrees of freedom are
integrated out. These terms are comparable to the corresponding three-dimensional

terms in [33]. γ
(2)
b has no equivalent in the situation without strong confinement as it

collects the remainders that arise upon approximating the three-dimensional interaction
wβ with the quasi one-dimensional interaction w.

γ
(1)
b is physically most relevant because it depends on the difference between the quasi

one-dimensional interaction w and the one-dimensional effective potential bβ|Φ(t)|2. In
other words, this term is small if and only if (5) is the right effective equation, in
particular with the correct coupling parameter bβ. Note that for this term it is crucial
that the sequence (N, ε) is moderately confining, i.e., that µ/ε→ 0.

For γ
(2)
b to be small, we require in particular the admissibility of the sequence (N, ε),

i.e., that ε2/µ→ 0. The other key tool for the estimate is the observation that due to the
strong confinement, it is unlikely that a particle is excited in the transverse directions.
This implies in particular that ‖qχε1 ψN,ε(t)‖ = O(ε) (Lemma 4.11).
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The estimate of γ
(3)
b relies on a bound for the kinetic energy of the part of ψN,ε(t)

with at least one particle not in Φ(t), i.e., a bound for ‖∂x1qΦ
1 ψ

N,ε(t)‖ (Lemma 4.21).
The proof of this bound again involves the splitting of the interaction wβ into a quasi

one-dimensional part w and remainders. Hence for γ
(3)
b to be small, we require both

moderate confinement and the admissibility of the sequence (N, ε). The last line (25) is
a remainder which is easily controlled.

Proposition 3.8. Let µ be sufficiently small. Under assumptions A1 – A4, γa to γ
(3)
b

from Proposition 3.7 are bounded by

∣∣γa(t)
∣∣ .

(⟪ψN,ε(t), n̂ψN,ε(t)⟫+ ε
)
e3(t),

∣∣γ(1)
b (t)

∣∣ .
(µ
ε +N−1 + (N

ε2
)−η
)
e2(t),

∣∣γ(2)
b (t)

∣∣ .
(
ε2

µ

) 1
2
e3(t),

∣∣γ(3)
b (t)

∣∣ .
( ∣∣∣EψN,ε(t)(t)− EΦ(t)(t)

∣∣∣+ ⟪ψN,ε(t), n̂ψN,ε(t)⟫+ µ
ε +

(
ε2

µ

) 1
2

+N−
β1
2

+N−1+β1+ξ + (N
ε2

)−η
)
e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}

for any ξ ∈ (0, β4 ], any β1 ∈ (0, β] and with η from Definition 2.2 and e(t) as in (8).

The estimate of γ
(1)
b is essentially the same as in the case β ∈ (0, 1

3) in [19]. γa must
be treated in a different way because the confinement is by a potential and not via

Dirichlet boundary conditions. For the terms γ
(2)
b and γ

(3)
b , the argument from [19] does

not work because the interaction becomes too singular for β > 1
3 . To cope with this, we

follow an idea from [33]: we identify a function hε such that wβ = ∆hε and integrate by
parts. ∇hε is less singular, and the expressions resulting from ∇ acting on ψN,ε(t) can
be controlled with Lemma 4.11 (or the refined version, Lemma 4.21).

Our strategy differs from [33] in a relevant point: in [33], the interaction wβ is
approximated by a potential Uβ1 with softer but still singular scaling behaviour (β1 <

1
3).

The author first proves bounds for β < 1
3 , the second step is to estimate the contribution

from the difference wβ − Uβ1 using integration by parts. Instead of these two steps, we
define hε as the solution of ∆hε = wβ on a ball with Dirichlet boundary conditions and
integrate by parts on the ball. To prevent the emergence of boundary terms, we use
smoothed step functions whose derivatives can be controlled. This mathematical trick
enables us to avoid the separate estimate for β < 1

3 .
The control of the kinetic energy (Lemma 4.21) required for the integration by parts

in γ
(3)
b is also different from the corresponding Lemma 5.2 in [33]. Instead of following

that path, we extend ideas from [19, Lemma 4.7] and [30, Lemma 4.6] and estimate
the part of the kinetic energy in the free direction. Besides, we use with Lemma 4.8a a
slightly sharpened version of [33, Lemma 4.3].

Proof of Theorem 1. From Propositions 3.7 and 3.8, we gather, for sufficiently small µ,
that ∣∣ d

dtαξ(t)
∣∣ . C(t)

(
αξ(t) +Rξ,β1,η(N, ε)

)
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for almost every t ∈ R, where

C(t) := e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}
, (26)

Rξ,β1,η(N, ε) := µ
ε +

(
ε2

µ

) 1
2

+N−
β1
2 +N−1+β1+ξ + (N

ε2
)−η.

Recall that e(t) is for each t ∈ R bounded uniformly in N and ε by assumption A4. The
differential version of Grönwall’s inequality yields

αξ(t) ≤
(
αξ(0) +Rξ,β1,η(N, ε)

)
exp

{
2

∫ t

0
C(s) ds

}

for all t ∈ R. Due to assumption A4 and by Lemma 3.5, lim(N,ε)→(∞,0) αξ(0) = 0

and Rξ,β1,η(N, ε) vanishes in the limit (N, ε) → (∞, 0) for β1 ∈ (0, β] and ξ ∈ (0, β4 ],
ξ < 1−β1, because the sequence (N, ε) is by assumption A4 admissible and moderately
confining. Again by Lemma 3.5, this implies (12) and (13) for any t ∈ R.

Corollary 3.9. Let t ∈ R. Then

Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉 〈ϕε(t)|

∣∣∣ .
(
A(0) + µ

ε +
(
ε2

µ

) 1
2

+N−
β
4 + (N

ε2
)−η
) 1

2

×

× exp

{∫ t

0
C(s) ds

}

for C(t) as in (26) and where

A(0) :=
∣∣∣Eψ

N,ε
0 (0)− EΦ0(0)

∣∣∣+

√
Tr
∣∣∣γ(1)

ψN,ε0

− |ϕε0〉 〈ϕε0|
∣∣∣.

Proof. This follows from Lemma 3.6 after optimisation over ξ and β1.

Remark 3. In the case without external field, i.e. V ‖ = 0, we have ‖Φ(t)‖H2(R) .
C(‖Φ0‖H2(R)) uniformly in t, where C(‖Φ0‖H2(R)) is some expression depending on

‖Φ0‖H2(R) [36, Exercise 3.36]2. Defining ẽ := 1+ |EψN,ε0 (0)|+ |EΦ0(0)|+(C(‖Φ0‖H2(R)))
2

in analogy to (8), this yields

Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉 〈ϕε(t)|

∣∣∣ .
(
A(0) + µ

ε +
(
ε2

µ

) 1
2

+N−
β
4 + (N

ε2
)−η
) 1

2

exp ( ẽ t) ,

where the growth in time is an exponential instead of a double exponential.

4 Proofs of the propositions

4.1 Preliminaries

In this section, we prove several lemmata which are needed for the proofs of the proposi-
tions. The first ones establish several properties of the weighted operators f̂ , Lemma 4.7

2To show this, one observes that E2(Φ) :=
∫
R
(
|∂2
xΦ|2 + c1|∂xΦ|2|Φ|2 + c2<((Φ∂xΦ)2) + c3|Φ|6

)
dx is

conserved for solutions of (5) with V ‖ = 0, with c1, c2 and c3 some absolute constants.
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and Lemma 4.8 contain some useful estimates for scalar products, and the remainder of
the section covers properties of the condensate wavefunction ϕε(t). In the following, we
will always assume that assumptions A1 – A4 are satisfied.

Lemma 4.1. Let f : N0 → R+
0 , d ∈ Z and define

l̂ := N max{m̂a
−1, m̂

b
−2},

where the max is to be understood in the sense of inequalities between operators, i.e.,
l̂ = Nm̂a

−1 if m̂a
−1 − m̂b

−2 is a positive operator and vice versa. Then

(a) ‖f̂‖op = ‖f̂d‖op = ‖f̂ 1
2 ‖2op = sup

0≤k≤N
f(k),

(b) ‖l̂ n̂‖op . 1, ‖l̂‖op ≤ N ξ.

Proof. Part (a) is obvious. For part (b), note that

m̂a
−1n̂ =

N∑

k=1

(m(k − 1)−m(k))n(k)Pk, m̂b
−2 =

N∑

k=2

(m(k − 2)−m(k))n(k)Pk.

The derivative of m with respect to k, where k is for the moment understood as real
variable, is given by

m′(k) ≡ d
dkm(k) =





1
2
√
kN

= 1
2N
−1n(k)−1 for k ≥ N1−2ξ,

1
2N
−1+ξ else.

By the mean value theorem, |m(k)−m(k−j)| = j|m′(κ)| for j ∈ {1, 2} and κ ∈ (k−j, k).
For κ ≥ N1−2ξ, |m′(κ)| = 1

2N
−1n(κ)−1. For κ < N1−2ξ, we obtain |m′(κ)| = 1

2N
−1+ξ <

1
2

1√
κN

= 1
2N
−1n(κ)−1. Consequently,

N∑

k=j

∣∣m(k − j)−m(k)
∣∣n(k)Pk ≤ 1

2N
−1j

N∑

k=j

√
k
κPk . N−1

1

in the sense of operators. This proves the first part of (b). For the second identity,
observe that |m′(k)| ≤ 1

2N
−1+ξ uniformly in k ≥ 0.

Lemma 4.2. Let f, g : N0 → R+
0 be any weights and i, j ∈ {1, ..., N}.

(a) For k ∈ {0, ..., N},

f̂ ĝ = f̂g = ĝf̂ , f̂pj = pj f̂ , f̂ qj = qj f̂ , f̂Pk = Pkf̂ .

(b) Define Q0 := pj, Q1 := qj, Q̃0 := pipj, Q̃1 ∈ {piqj , qipj} and Q̃2 := qiqj. Let Sj be
an operator acting only on factor j in the tensor product and Tij acting only on i
and j. Then for µ, ν ∈ {0, 1, 2}

Qµf̂SjQν = QµSj f̂µ−νQν and Q̃µf̂TijQ̃ν = Q̃µTij f̂µ−νQ̃ν .
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(c) Let Sxj be an operator acting only on the x-component of factor j. Then

qΦ
j f̂Sxjp

Φ
j = qΦ

j Sxj (f̂ q
χε

j + f̂1p
χε

j )pΦ
j and qΦ

j f̂Sxjq
Φ
j = qΦ

j Sxj f̂ q
Φ
j .

(d)
[T12, f̂ ] = [T12, p1p2(f̂ − f̂2) + (p1q2 + q1p2)(f̂ − f̂1)].

We will apply parts (b) and (c) to unbounded operators, for instance to Sj ≡ ∇j and
Sxj ≡ ∂xj . In this case, the respective equality holds on the intersection of the domains
of the operators on both sides of the equation.

Proof. Part (a) follows immediately from PkPl = δk,lPk. For assertion (b), note that for
j = 1,

QµPkS1Qν = Qµ

( ∑

J⊆{2,...,N}
|J |=k−µ

∏

j∈J
qj
∏

l /∈J
pl

)
S1Qν

= QµS1

( ∑

J⊆{2,...,N}
|J |=k−µ

∏

j∈J
qj
∏

l /∈J
pl

)
Qν = QµS1Pk−µ+νQν ,

hence

Qµf̂S1Qν = QµS1




N−(µ−ν)∑

k=−(µ−ν)

f(k + µ− ν)Pk


Qν = QµS1f̂µ−νQν .

Assertion (c) is a consequence of part (b) and Corollary 3.2b, for example

qΦ
j f̂Sxjp

Φ
j = qΦ

j

(
qj f̂Sxj (pj + qj)

)
pΦ
j = qΦ

j Sxj (f̂1p
χε

j + f̂ qχ
ε

j )pΦ
j .

Finally, observe that

[T12, p1p2(f̂ − f̂2) + (p1q2 + q1p2)(f̂ − f̂1)]

= [T12, f̂ ]− [T12, q1q2f̂ + (p1q2 + q1p2)f̂1 + p1p2f̂2].

The second commutator equals zero, which can be seen by inserting 1 = p1p2 + (p1q2 +
q1p2) + q1q2 in front of the commutator and applying part (c).

For the next lemma, recall that the operators Pk (Definition 3.1), and thus also the
weighted operators f̂ (Definition 3.3), depend on the real variable t due to the time
dependence of the projections p and q.

Lemma 4.3. Let f : N0 → R+
0 .

(a) The operators Pk and f̂ are continuously differentiable as functions of time, i.e.,

Pk, f̂ ∈ C1
(
R,L

(
L2(R3N )

) )
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for 0 ≤ k ≤ N . Moreover,

d
dt f̂ = i

[
f̂ ,

N∑

j=1

hj(t)
]
,

where hj(t) denotes the one-particle operator corresponding to h(t) from (5) acting
on the jth coordinate.

(b)
[
−∆yj + 1

ε2
V ⊥(

yj
ε ), f̂

]
= 0 for 1 ≤ j ≤ N .

Proof. The first part of (a) is clear as ϕε ∈ C1
(
R, L2(R3)

)
. For the second part, note

that

d
dtp = d

dt |Φ(t)χε〉 〈Φ(t)χε| = i [|Φ(t)χε〉 〈Φ(t)χε| , h(t)] = i[p, h(t)] and d
dtq = i[q, h(t)]

as Φ(t) is a solution of (5). Assertion (b) is due to the fact that −∆yj + 1
ε2
V ⊥(

yj
ε )

commutes with its spectral projection pχ
ε

j .

We will consider functions which are symmetric only in the variables of a subset of

{1, ..., N}, for instance the expressions q1ψ and w
(12)
β ψ for ψ ∈ L2

s(R3N ).

Definition 4.4. LetM⊆ {1, . . . , N}. Define HM ⊆ L2(R3N ) as the space of functions
which are symmetric in all variables in M, i.e., for ψ ∈ HM,

ψ(z1, ..., zj , ..., zk, ..., zN ) = ψ(z1, ..., zk, ..., zj , ..., zN ) ∀ j, k ∈M.

Lemma 4.5. Let f : N0 → R+
0 and M1,M1,2 ⊆ {1, 2, ..., N} with 1 ∈ M1 and 1, 2 ∈

M1,2.

(a) n̂2 = 1
N

N∑
j=1

qj ,

(b) ‖f̂ q1ψ‖2 ≤ N
|M1|‖f̂ n̂ψ‖

2 ∀ψ ∈ HM1 ,

(c) ‖f̂ q1q2ψ‖2 ≤ N2

|M1,2|(|M1,2|−1)‖f̂ n̂2ψ‖2 ∀ψ ∈ HM1,2 .

Proof. Part (a) follows immediately from Corollary 3.2a. Consequently, for ψ ∈ HM1 ,

‖f̂ n̂ψ‖2 =
1

N

N∑

j=1

⟪ψ, f̂2qjψ⟫ ≥ 1

N

∑

j∈M1

⟪ψ, f̂2qjψ⟫ =
|M1|
N
‖f̂ q1ψ‖2

and analogously for ψ ∈ HM1,2 ,

‖f̂ n̂2ψ‖ ≥ 1

N2

∑

j,k∈M1,2

⟪ψ, f̂2qjqkψ⟫ ≥ |M1,2|(|M1,2| − 1)

N2
‖f̂ q1q2ψ‖2.
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Corollary 4.6. Let f : N0 → R+
0 and HM1, HM1,2 as in Lemma 4.5.

(a) For ψ ∈ HM1,

‖∇1f̂ q1ψ‖ . ‖f̂‖op‖∇1q1ψ‖ and ‖∂x1 f̂ qΦ
1 ψ‖ . ‖f̂‖op‖∂x1qΦ

1 ψ‖.

(b) For ψ ∈ HM1,2,

‖∇1f̂ q1q2ψ‖ . ‖f̂ n̂‖op‖∇1q1ψ‖ and ‖∂x1 f̂ qΦ
1 q

Φ
2 ψ‖ . ‖f̂ n̂‖op‖∂x1qΦ

1 ψ‖.

Proof. Insertion of 1 = p1 + q1 in front of ∇1 yields with Lemma 4.2b

‖∇1f̂ q1ψ‖ ≤ (‖f̂‖op + ‖f̂1‖op)‖∇1q1ψ‖
4.1

. ‖f̂‖op‖∇1q1ψ‖

and

‖∇1f̂ q1q2ψ‖ ≤ ‖f̂1q2∇1q1ψ‖+ ‖f̂ q2∇1q1ψ‖ .
(
‖f̂1n̂‖op + ‖f̂ n̂‖op

)
‖∇1q1ψ‖

by Lemma 4.5b as ∇1q1ψ ∈ H{2,...,N}. As n(k) ≤ n(k+1), ‖f̂1n̂‖op ≤ ‖f̂n1‖op = ‖f̂ n̂‖op

by Lemma 4.1a. The respective second identities are shown analogously, using that
qΦq = qΦ and that ∂x1q

Φ
1 ψ ∈ H{2,...,N}.

The next lemma provides an estimate of the difference between expectation values
with respect to a symmetric N -body wavefunction ψ and with respect to Φ(t).

Lemma 4.7. Let ψ ∈ L2
s(R3N ) be normalised and f ∈ L∞(R). Then

∣∣∣⟪ψ, f(x1)ψ⟫− 〈Φ(t), fΦ(t)〉L2(R)

∣∣∣ . ‖f‖L∞(R) ⟪ψ, n̂ψ⟫ .
Proof. We drop the time dependence of Φ. Inserting 1 = p1 + q1 on both sides of f(x1)
yields

∣∣∣⟪ψ, f(x1)ψ⟫− 〈Φ, fΦ〉L2(R)

∣∣∣ ≤
∣∣∣⟪ψ, p1f(x1)p1ψ⟫− 〈Φ, fΦ〉L2(R)

∣∣∣
+ | ⟪q1ψ, f(x1)q1ψ⟫ |+ 2| ⟪ψ, p1f(x1)q1ψ⟫ |.

We estimate the first term as
∣∣∣⟪ψ, pχε1 |Φ(x1)〉 〈Φ(x1)| f(x1) |Φ(x1)〉 〈Φ(x1)| pχε1 ψ⟫− 〈Φ, fΦ〉L2(R)

∣∣∣
≤ | 〈Φ, fΦ〉L2(R) ⟪ψ, q1ψ⟫ | ≤ ‖f‖L∞(R) ⟪ψ, n̂ψ⟫

by Lemma 4.5a and as n̂2 ≤ n̂. The second term is bounded by

| ⟪q1ψ, f(x1)q1ψ⟫ | ≤ ‖f‖L∞(R)‖q1ψ‖2 ≤ ‖f‖L∞(R) ⟪ψ, n̂ψ⟫ .
For the third term, we compute

∣∣∣⟪ψ, p1f(x1)n̂
1
2 q1n̂

− 1
2ψ⟫∣∣∣ 4.2b

=

∣∣∣∣⟪n̂ 1
2
1 p1ψ, f(x1)n̂−

1
2 q1ψ⟫

∣∣∣∣

≤ ‖f‖L∞(R)‖n̂
1
2
1 ψ‖‖n̂−

1
2 q1ψ‖

4.5b

. ‖f‖L∞(R) ⟪ψ, n̂ψ⟫ ,
where we have used that

√
k + 1 ≤

√
k + 1, hence n1(k) ≤ n(k) + N−

1
2 ≤ 2n(k) .

n(k).
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In the following lemma, we estimate two particular scalar products.

Lemma 4.8. Let Oj,k be an operator that acts nontrivially only on the jth and kth

coordinate and let F : R3 × R3 → Rd for d ∈ N.

(a) Let Γ,Λ ∈ HM for some M such that j /∈M and k, l ∈M. Then

| ⟪Γ, Oj,kΛ⟫ | ≤ ‖Γ‖(| ⟪Oj,kΛ, Oj,lΛ⟫ |+ |M|−1‖Oj,kΛ‖2
) 1

2
.

(b) Let rk, sk and tj denote operators acting only on the factors k and j of the tensor
product, respectively. Then for j 6= k 6= l 6= j,

| ⟪rkF (zj , zk)sktjΓ, rlF (zj , zl)sltjΓ⟫ | ≤ ‖skF (zj , zk)rktjΓ‖2.

Proof. Using the symmetry of Γ,Λ in all coordinates contained in M, we find

| ⟪Γ, Oj,kΛ⟫ | ≤ ‖Γ‖ 1

|M|

∥∥∥∥
∑

m∈M
Oj,mΛ

∥∥∥∥

≤ ‖Γ‖




1

|M|2

( ∑

n,m∈M
n6=m

⟪Oj,mΛ, Oj,nΛ⟫+
∑

m∈M
‖Oj,mΛ‖2

)



1
2

= ‖Γ‖2
( |M| − 1

|M| ⟪Oj,kΛ, Oj,lΛ⟫+
1

|M|‖Oj,kΛ‖
2

) 1
2

.

For part (b), we use that, for instance, rl and F (zj , zk) commute, hence

| ⟪tjΓ, skF (zj , zk)rkrlF (zj , zl)sltjΓ⟫ | = | ⟪rltjΓ, skF (zj , zl)F (zj , zk)slrktjΓ⟫ |
= | ⟪rltjΓ, F (zj , zl)slskF (zj , zk)rktjΓ⟫ |
≤ ‖skF (zj , zk)rktjΓ‖2.

The next lemma collects estimates for the time evolved condensate wavefunction.

Lemma 4.9. H2(R) solutions of the NLS equation (5) exist globally, i.e., for initial
data Φ0 ∈ H2(R) it holds that Φ(t) ∈ H2(R) for any t ∈ R. Moreover, for sufficiently
small ε,

(a) ‖Φ(t)‖L2(R) = 1, ‖Φ(t)‖H1(R) ≤ e(t),

‖Φ(t)‖L∞(R) ≤ e(t), ‖Φ(t)‖H2(R) . exp
{
e2(t) +

∫ t
0 e2(s) ds

}
,

(b) ‖χε‖L∞(R2) . ε−1, ‖∇χε‖L∞(R2) . ε−2,

‖ϕε(t)‖L∞(R3) . e(t)ε−1, ‖∇ϕε(t)‖L∞(R3) . e(t)ε−2,

‖∇|ϕε(t)|2‖L2(R3) . e(t)ε−2.
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Proof. For 1
2 < r ≤ 4 and Φ0 ∈ Hr(R), (5) has a unique strong Hr(R)-solution Φ ∈

C(R;Hr(R)) depending continuously on the initial data. The proof of this is sketched
in Appendix A. By assumption A4, Φ0 ∈ H2(R) and consequently Φ(t) ∈ H2(R). This
implies d

dt‖Φ(t)‖2L2(R) = 0 and by definition of EΦ(t) and e(t),

‖Φ(t)‖2H1(R) ≤ EΦ(t)(t) + ‖V ‖(t, ·)‖L∞(R3) ≤ e2(t). (27)

Besides, Φ(t) ∈ H2(R) ⊂ C1(R), hence

|Φ(t, x)|2 =

x∫

−∞

(
Φ′(t, ζ)Φ(t, ζ) + Φ(t, ζ)Φ′(t, ζ)

)
dζ

≤
x∫

−∞

(
|Φ′(t, ζ)|2 + |Φ(t, ζ)|2

)
dζ = ‖Φ(t)‖2H1(R) ≤ e2(t),

‖ ∂∂x |Φ(t)|2‖2L2(R) ≤ 4

∫

R

|Φ′(t, x)|2|Φ(t, x)|2 dx ≤ 4‖Φ(t)‖2L∞(R)‖Φ(t)‖2H1(R) . e4(t).

For Φ(t) ∈ H4(R), we obtain

d
dt

(
1 + ‖Φ̇(t)‖2L2(R)

)

= −2=
〈
V̇ ‖(t, (·, 0))Φ(t), Φ̇(t)

〉
L2(R)

− 2bβ=
〈

Φ(t)2, Φ̇(t)2
〉
L2(R)

≤ 2‖V̇ ‖(t, ·)‖L∞(R3)(1 + ‖Φ̇(t)‖2L2(R)) + 2bβ‖Φ(t)‖2L∞(R)‖Φ̇(t)‖2L2(R),

hence by Grönwall’s inequality and as ‖Φ(t)‖L∞(R) ≤ e(t),

‖Φ̇(t)‖2L2(R) ≤
(

1 + ‖Φ̇(0)‖2L2(R)

)
exp

{
2

∫ t

0

(
‖V̇ ‖(s, ·)‖L∞(R3) + bβe

2(s)
)

ds

}

. exp

{
2e2(t) + 2

∫ t

0
e2(s) ds

}
.

This implies a bound for ‖Φ(t)‖H2(R) because

‖Φ̇(t)‖L2(R) ≥ ‖Φ′′(t)‖L2(R) − bβ‖Φ(t)‖2L∞(R) − ‖V ‖(t, ·)‖L∞(R3) & ‖Φ′′(t)‖L2(R) − e2(t)

and consequently

‖Φ(t)‖H2(R) ≤ ‖Φ′′(t)‖L2(R) + 2‖Φ(t)‖H1(R)

. e2(t) + exp

{
e2(t) +

∫ t

0
e2(s) ds

}
. exp

{
e2(t) +

∫ t

0
e2(s) ds

}
.

By continuity of the solution map, this bound extends to Φ(t) ∈ H2(R). If the solution
Φ(t) ∈ H3(R) ⊂ C2(R), we find further

|Φ′(x)|2 =

x∫

−∞

(
Φ′(ζ)Φ′′(ζ) + Φ′′(ζ)Φ′(ζ)

)
dζ ≤ ‖Φ‖2H2(R),
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which extends to Φ(t) ∈ H2(R) by continuity of the solution map. For part (b),
recall that χε(y) = 1

εχ(yε ), hence ‖χε‖L∞(R2) = 1
ε‖χ‖L∞(R2) . 1

ε and analogously

‖∇χε‖L∞(R2) . 1
ε2

. Together with (a), this implies the bounds for ‖ϕε(t)‖L∞(R3) and
‖∇ϕε(t)‖L∞(R3) as

|∇ϕε(t, z)|2 ≤ |Φ′(t, x)|2|χε(y)|2 + |Φ(t, x)|2|∇χε(y)|2
. ‖Φ(t)‖2H2(R)ε

−2 + e2(t)ε−4 . e2(t)ε−4

for any fixed time t and ε small enough. Finally,

‖∇|ϕε(t)|2‖2L2(R3)

= ‖ ∂∂x |Φ(t)|2‖2L2(R)

∫

R2

|χε(y)|4 dy +

∫

R

|Φ(t, x)|4 dx

∫

R2

|∇y|χε(y)|2|2 dy

. e4(t)ε−2 + 4e2(t)

∫

R2

|∇yχε(y)|2|χε(y)|2 dy . e2(t)ε−4.

Now we prove some elementary facts enabling us to estimate one- and two-body
potentials.

Lemma 4.10. Let t ∈ R be fixed and let j, k ∈ {1, ..., N}. Let g : R3 × R3 → R be
a measurable function such that |g(zj , zk)| ≤ G(zk − zj) almost everywhere for some
G : R3 → R.

(a) For G ∈ L1(R3),
‖pjg(zj , zk)pj‖op . e2(t)ε−2‖G‖L1(R3).

(b) For G ∈ L2(R3) ∩ L∞(R3),

‖g(zj , zk)pj‖op = ‖pjg(zj , zk)‖op . e(t)ε−1‖G‖L2(R3).

(c) For G ∈ L2(R3) ∩ L∞(R3),

‖g(zj , zk)∇jpj‖op = ‖|ϕε(t, zj)〉 〈∇ϕε(t, zj)| g(zj , zk)‖op . e(t)ε−2‖G‖L2(R3).

(d) Now let g : R×R→ R be a measurable function such that |g(xj , xk)| ≤ G(xk−xj)
almost everywhere for some G ∈ L2(R) ∩ L∞(R). Then

‖g(xj , xk)p
Φ
j ‖op = ‖pΦ

j g(xj , xk)‖op ≤ e(t)‖G‖L2(R),

‖g(xj , xk)∂xjp
Φ
j ‖op = ‖|Φ(t, xj)〉 〈∂xjΦ(t, xj)| g(xj , xk)‖op ≤ ‖Φ‖H2(R)‖G‖L2(R).

Proof. Let ψ ∈ L2(R3N ) and drop the time dependence of ϕε and Φ in the notation.
Then

‖pjg(zj , zk)pjψ‖ = ‖|ϕε(zj)〉 〈ϕε(zj)| g(zj , zk) |ϕε(zj)〉 〈ϕε(zj)|ψ‖

≤
∫

R3

|ϕε(zj)|2|g(zj , zk)| dzj ‖pjψ‖
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≤ ‖ϕε‖2L∞(R3)

∫

R3

|G(zj − zk)|dzj ‖ψ‖.

The multiplication operators corresponding to G and g as well as pj , ∇jpj and ∂xjp
Φ
j

are bounded. This implies the first equalities in (b) to (d). The second equalities follow
from

‖g(zj , zk)pj‖2op = sup
ψ∈L2(R3N )
‖ψ‖=1

⟪ψ, pj |g(zj , zk)|2pjψ⟫ ≤ ‖pj |g(zj , zk)|2pj‖op

(a)

. ‖G‖2L2(R3)e
2(t)ε−2,

‖G(xj)p
Φ
j ‖2op ≤ ‖pΦ

j |G(xj)|2pΦ
j ‖op ≤ ‖G‖2L2(R)‖Φ‖2L∞(R),

‖g(zj , zk)∇jpj‖2op = sup
ψ∈L2(R3N )
‖ψ‖=1

⟪ψ, |ϕε(zj)〉 〈∇jϕε(zj)| g(zj , zk)|2 |∇jϕε(zj)〉 〈ϕε(zj)|ψ⟫
≤

∫

R3

|∇ϕε(zj)|2G(zk − zj)2 dzj ‖pj‖2op ≤ ‖∇ϕε‖2L∞(R3)‖G‖2L2(R3)

and analogously for the second part of (d).

4.2 A priori estimate of the kinetic energy

In this section, we prove estimates for the kinetic energy ‖∇jψN,ε(t)‖ and related quan-

tities, which follow from the fact that the renormalised energy per particle Eψ
N,ε(t)(t)

is bounded by e(t). Particularly meaningful is assertion (a) of the following lemma: it
states that the part of the wavefunction with one particle excited in the confined direc-
tions is of order ε. The lemma provides a sufficient estimate for most of the terms in
Proposition 3.7. To bound (24), we require a better estimate (see Section 4.5).

Lemma 4.11. Let ε be small enough and t ∈ R be fixed. Then

(a) ‖qχε1 ψN,ε(t)‖ ≤ e(t)ε, ‖l̂qχε1 ψN,ε(t)‖ ≤ e(t)N ξε,

(b) ‖∂x1pΦ
1 ‖op ≤ e(t), ‖∂2

x1p
Φ
1 ‖op ≤ ‖Φ(t)‖H2(R),

‖∇y1pχ
ε

1 ‖op . ε−1, ‖∇1p1‖op . ε−1,

(c) ‖∂x1qΦ
1 ψ

N,ε(t)‖ . e(t), ‖∇1q
χε

1 ψN,ε(t)‖ . e(t),

‖∇1 l̂q
χε

1 ψN,ε(t)‖ . N ξe(t),

(d) ‖∂x1ψN,ε(t)‖ ≤ e(t), ‖∇y1ψN,ε(t)‖ . ε−1, ‖∇1ψ
N,ε(t)‖ . ε−1,

(e) ‖∇1 l̂p
χε

1 qΦ
1 q

Φ
2 ψ

N,ε(t)‖ . ε−1, ‖∇1p
χε

1 qΦ
1 q

χε

2 ψN,ε(t)‖ . e(t).

Proof. Abbreviating ψN,ε(t) ≡ ψ, we compute

Eψ(t) = 1
N ⟪ψ,Hβ(t)ψ⟫− E0

ε2
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= ⟪ψ, 1
N

( N∑

j=1

(
−∂2

xj +
(
−∆yj + 1

ε2
V ⊥(

yj
ε )− E0

ε2

)
+ V ‖(t, zj)

)

+
∑

i<j

wβ(zi − zj)
)
ψ⟫

≥ ‖∂x1ψ‖2 + ⟪qχε1 ψ,
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
qχ

ε

1 ψ⟫− ‖V ‖(t)‖L∞(R3)

since wβ ∈ Wβ,η is non-negative and
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
χε(y1) = 0. E0

ε2
is the

smallest eigenvalue of −∆y1 + 1
ε2
V ⊥(y1ε ) and as a consequence of the rescaling by ε, the

spectral gap to the next eigenvalue is of order ε−2. Hence

⟪qχε1 ψ,
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
qχ

ε

1 ψ⟫ & 1
ε2
⟪ψ, qχε1 ψ⟫ ,

which implies

‖∂x1ψ‖2 + 1
ε2
‖qχε1 ψ‖2 ≤ ‖V ‖(t)‖L∞(R3) + |Eψ(t)| ≤ e2(t). (28)

Besides, by assumption A2, ‖(V ⊥ − E0)−‖L∞(R2) . 1, hence

e2(t) ≥ ⟪qχε1 ψ,
(
−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2

)
qχ

ε

1 ψ⟫
= ‖∇y1qχ

ε

1 ψ‖2 + 1
ε2
⟪qχε1 ψ,

(
V ⊥(y1ε )− E0

)
+
qχ

ε

1 ψ⟫
− 1
ε2
⟪qχε1 ψ,

(
V ⊥(y1ε )− E0

)
−
qχ

ε

1 ψ⟫
≥ ‖∇y1qχ

ε

1 ψ‖2 − 1
ε2
‖(V ⊥ − E0)−‖L∞(R2)‖qχ

ε

1 ψ‖2 & ‖∇y1qχ
ε

1 ψ‖2 − e2(t)

and consequently ‖∇y1qχ
ε

1 ψ‖2 . e2(t). The remaining inequalities of (a) to (d) follow

by Lemma 4.1b, Lemma 4.2b, by using that q
(Φ)
1 = 1 − p

(Φ)
1 and from ‖∂x1p1‖op ≤

‖∂x1pΦ
1 ‖op ≤ ‖Φ′(t)‖L2(R) and ‖∇y1pχ

ε

1 ‖op ≤ ‖∇χε‖L2(R2) . ε−1. For the second part of
(d), note that

‖∇y1ψ‖ ≤ ‖∇y1qχ
ε

1 ψ‖+ ‖∇y1pχ
ε

1 ψ‖ . e(t) + ε−1 . ε−1

for sufficiently small ε and fixed t ∈ R. Assertion (e) is a consequence of parts (a) to
(d) and Corollary 4.6, Lemma 4.1 and Lemma 4.5:

‖∇1 l̂p
χε

1 qΦ
1 q

Φ
2 ψ‖2 ≤ ‖∂x1 l̂qΦ

1 q
Φ
2 ψ‖2 + ‖∇y1pχ

ε

1 ‖2op‖l̂qΦ
1 q

Φ
2 ψ‖2 . e2(t) + ε−2‖n̂ψ‖2,

‖∇1p
χε

1 qΦ
1 q

χε

2 ψ‖2 ≤ ‖∂x1qΦ
1 ψ‖2 + ‖∇y1pχ

ε

1 ‖2op‖qχ
ε

2 ψ‖2 . e2(t).

For the last lemma in this section, we make use of Lemma 4.11a to prove an estimate
which is crucial for the control of γa(t).

Lemma 4.12. Let f : R × R3 → R such that f(t) ∈ C1(R3) and ∇yf(t) ∈ L∞(R3) for
any t ∈ R. Then

(a) ‖(f(t, z1)− f(t, (x1, 0))pχ
ε

1 ψN,ε(t)‖ ≤ ε‖∇yf(t)‖L∞(R3),
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(b) ‖(f(t, z1)− f(t, (x1, 0))ψN,ε(t)‖ ≤ ε
(
e(t)‖f(t)‖L∞(R3) + ‖∇yf(t)‖L∞(R3)

)
.

Proof. For the first part, we expand f(t, (x1, ·)) around y = 0, which yields

‖(f(t, z1) − f(t, (x1, 0))pχ
ε

1 ψN,ε(t)‖2

= ‖pχε1 ψN,ε(t)‖2
∫

R2

dy1|χε(y1)|2 (f(t, z1)− f(t, (x1, 0)))2

≤ 1
ε2

∫

R2

dy1|χ(y1ε )|2



1∫

0

ds∇yf(x1, sy1) · y1




2

≤ ε2

∫

R2

dy|y|2|χ(y)|2‖∇yf(t)‖2L∞(R3) . ε2‖∇yf(t)‖2L∞(R3).

The last step follows because χ decays exponentially by [13, Theorem 1] since E0 <
σess(∆y + V ⊥) (A2). To prove the second part, we insert 1 = qχ

ε

1 + pχ
ε

1 and apply
Lemma 4.11a.

4.3 Proof of Proposition 3.7

Let us from now on drop the time dependence of Φ, ϕε and ψN,ε in the notation and
further abbreviate ψN,ε ≡ ψ. The time derivative of αξ(t) is bounded by

∣∣ d
dtαξ(t)

∣∣ ≤
∣∣ d

dt ⟪ψ, m̂ψ⟫∣∣+
∣∣∣ d

dt

∣∣Eψ(t)− EΦ(t)
∣∣
∣∣∣ . (29)

For the second term in (29), we compute first

∣∣∣ d
dt

(
Eψ(t)− EΦ(t)

)∣∣∣ =

∣∣∣∣⟪ψ, V̇ ‖(t, z1)ψ⟫− 〈Φ, V̇ ‖ (t, (x, 0)) Φ
〉
L2(R)

∣∣∣∣ . (30)

By [24, Theorem 6.17],
∣∣ d

dt

∣∣Eψ(t)− EΦ(t)
∣∣∣∣ =

∣∣ d
dt

(
Eψ(t)− EΦ(t)

)∣∣ for almost every t ∈ R
because t 7→ d

dt

(
Eψ(t)−EΦ(t)

)
is continuous due to assumption A3. The first term in (29)

yields

d
dt ⟪ψ, m̂ψ⟫

4.3b
= i⟪ψ, [Hβ(t)−

N∑

j=1

hj(t), m̂
]
ψ⟫

4.3b
= iN ⟪ψ, [V ‖(t, z1)− V ‖ (t, (x1, 0)) , m̂

]
ψ⟫+ iN(N−1)

2 ⟪ψ, [Z(12)
β , m̂

]
ψ⟫

4.2d
= iN ⟪ψ, [V ‖(t, z1)− V ‖ (t, (x1, 0)) , m̂

]
ψ⟫ (31)

+iN(N−1)
2 ⟪ψ, [Z(12)

β , Q0(m̂− m̂2) +Q1(m̂− m̂1)
]
ψ⟫ , (32)

where Q0 := p1p2, Q1 := p1q2 + q1p2 and Q2 := q1q2. To expand (32), we write the

commutator explicitly and insert 1 = Q0 +Q1 +Q2 appropriately before or after Z
(12)
β .

Terms with the same Qµ on both sides cancel as a consequence of Lemma 4.2b. Hence

A.1. 1d Nonlinear Schrödinger equation for strongly confined 3d bosons

177



[N(N − 1)]−1 (32)

= i
2 ⟪ψ,((Q1 +Q2)Z

(12)
β (m̂− m̂2)Q0 −Q0(m̂− m̂2)Z

(12)
β (Q1 +Q2)

)
ψ⟫

+ i
2 ⟪ψ,((Q0 +Q2)Z

(12)
β (m̂− m̂1)Q1 −Q1(m̂− m̂1)Z

(12)
β (Q0 +Q2)

)
ψ⟫

= i
2 ⟪ψ,(Q1(m̂−1 − m̂1)Z

(12)
β Q0 +Q2(m̂−2 − m̂)Z

(12)
β Q0

)
ψ⟫

− i
2 ⟪ψ,(Q0Z

(12)
β (m̂−1 − m̂1)Q1 +Q0Z

(12)
β (m̂−2 − m̂)Q2

)
ψ⟫

+ i
2 ⟪ψ,(Q0Z

(12)
β (m̂− m̂1)Q1 +Q2(m̂−1 − m̂)Z

(12)
β Q1

)
ψ⟫

− i
2 ⟪ψ,(Q1(m̂− m̂1)Z

(12)
β Q0 +Q1Z

(12)
β (m̂−1 − m̂)Q2

)
ψ⟫

= =⟪ψ,Q1(m̂− m̂−1)Z
(12)
β Q0ψ⟫+ =⟪ψ,Q2(m̂− m̂−2)Z

(12)
β Q0ψ⟫

+=⟪ψ,Q2(m̂− m̂−1)Z
(12)
β Q1ψ⟫ .

To simplify this expression, note that

m̂− m̂−1 =

N∑

k=0

m(k)Pk −
N∑

k=1

m(k − 1)Pk =

N∑

k=1

(m(k)−m(k − 1))Pk +m(0)P0

= −m̂a
−1 +m(0)P0

and analogously
m̂− m̂−2 = −m̂b

−2 +m(0)P0 +m(1)P1.

Using that Q1P0 = Q2P0 = Q2P1 = 0, we consequently obtain

(32)

N(N − 1)
= −2=⟪ψ, q1p2m̂

a
−1Z

(12)
β p1p2ψ⟫ (33)

−=⟪ψ, q1q2m̂
b
−2Z

(12)
β p1p2ψ⟫ (34)

−2=⟪ψ, q1q2m̂
a
−1Z

(12)
β p1q2ψ⟫ , (35)

where we have in (33) and (35) exploited the symmetry of ψ in coordinates 1 and 2.
According to Corollary 3.2c, q = qχ

ε
+ qΦpχ

ε
, hence

(33) = −2=⟪qχε1 ψ, p2m̂
a
−1w

(12)
β p1p2ψ⟫ (36)

−2=⟪ψ, qΦ
1 m̂

a
−1p

χε

1 p2Z
(12)
β p1p2ψ⟫ . (37)

In (36), we have used that the contribution of |Φ(x1)|2 + |Φ(x2)|2 vanishes because
qχ

ε

1 |Φ(x1)|2pχε1 = qχ
ε

1 |Φ(x2)|2pχε1 = 0. Similarly, we expand (34) and (35) into terms

containing qχ
ε

and terms containing pχ
ε

1 pχ
ε

2 w
(12)
β pχ

ε

1 pχ
ε

2 :

(34) = −=⟪qχε1 ψ, q2m̂
b
−2w

(12)
β p1p2ψ⟫−=⟪qχε2 ψ, qΦ

1 p
χε

1 m̂b
−2w

(12)
β p1p2ψ⟫

−=⟪ψ, qΦ
1 q

Φ
2 m̂

b
−2p

χε

1 pχ
ε

2 w
(12)
β p1p2ψ⟫
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= −=⟪qχε1 ψ, q2(1 + pχ
ε

2 )m̂b
−2w

(12)
β p1p2ψ⟫ (38)

−=⟪ψ, qΦ
1 q

Φ
2 m̂

b
−2p

χε

1 pχ
ε

2 w
(12)
β p1p2ψ⟫ (39)

and

(35) = −2=⟪qχε1 ψ, q2m̂
a
−1w

(12)
β p1q2ψ⟫ (40)

−2=⟪qχε2 ψ, qΦ
1 p

χε

1 m̂a
−1w

(12)
β p1q2ψ⟫ (41)

−2=⟪ψ, qΦ
1 q

Φ
2 m̂

a
−1p

χε

1 pχ
ε

2 w
(12)
β p1q

χε

2 ψ⟫ (42)

−2=⟪ψ, qΦ
1 q

Φ
2 m̂

a
−1p

χε

1 pχ
ε

2 w
(12)
β p1p

χε

2 qΦ
2 ψ⟫ (43)

+
2bβ
N−1=⟪ψ, q1q2m̂

a
−1|Φ(x1)|2p1q2ψ⟫ . (44)

Finally, we insert 1 = p1 + q1 on both sides of the commutator in (31) and apply
Lemma 4.2b. Analogously to above, we obtain

(31) = iN ⟪ψ, (p1 + q1)
(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
m̂(p1 + q1)ψ⟫

−iN ⟪ψ, (p1 + q1)m̂
(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
(p1 + q1)ψ⟫

= −2N=⟪ψ, q1m̂
a
−1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ⟫ . (45)

Collecting and regrouping all terms arising from (29) yields γa = (30) + (45), γb = (32),

γ
(1)
b = N(N − 1) (37), γ

(2)
b = N(N − 1)

[(
(36) + (38)

)
+
(
(40) + (41)

)
+ (42)

]
and

γ
(3)
b = N(N − 1)

(
(39) + (43) + (44)

)
.

4.4 Proof of Proposition 3.8

4.4.1 Proof of the bound for γa(t)

As 2Nm̂a
−1 . l̂ for l̂ from Lemma 4.1, we obtain with Lemma 4.7, Lemma 4.12,

Lemma 4.5b and Lemma 4.1b

|(16)| .
∣∣∣⟪ψ,(V̇ ‖(t, z1)− V̇ ‖(t, (x1, 0))

)
ψ⟫∣∣∣

+

∣∣∣∣⟪ψ, V̇ ‖(t, (x1, 0))ψ⟫− 〈Φ, V̇ ‖(t, (x, 0))Φ
〉
L2(R)

∣∣∣∣
. e3(t)ε+ e(t) ⟪ψ, n̂ψ⟫ ,

|(17)| . ‖l̂n̂ψ‖‖(V ‖(t, z1)− V ‖(t, (x1, 0)))pχ
ε

1 ψ‖ . e2(t)ε.

4.4.2 Proof of the bound for γ
(1)
b (t)

To estimate γ
(1)
b , we need to prove that Nwβ is close to the effective potential bβ|Φ|2.

As (N − 1)m̂a
−1 ≤ l̂, we obtain

∣∣γ(1)
b

∣∣ .
∣∣∣⟪l̂qΦ

1 ψ, p
χε

1 p2

(
Nw

(12)
β − bN,ε|Φ(x1)|2 + (bN,ε − N

N−1bβ)|Φ(x1)|2
)
p1p2ψ⟫∣∣∣
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4.9

.
∣∣∣⟪l̂qΦ

1 ψ, p
χε

1 p2

(
Nw

(12)
β − bN,ε|Φ(x1)|2

)
pχ

ε

1 p2p
Φ
1 ψ⟫∣∣∣+

(
(N
ε2

)−η +N−1
)
e2(t)

for µ small enough and with η from Definition 2.2 since wβ ∈ Wβ,η and as ‖l̂qΦ
1 ψ‖ . 1

by Lemma 4.1a. Writing the action of the projectors explicitly, we obtain by definition
of bN,ε

pχ
ε

1 p2bN,ε|Φ(x1)|2pχε1 p2 = bN,ε|Φ(x1)|2pχε1 p2

= N

( ∫

R2

dy′1|χε(y′1)|4|Φ(x1)|2‖wβ‖L1(R3)

)
pχ

ε

1 p2,

pχ
ε

1 p2Nw
(12)
β pχ

ε

1 p2 = N

( ∫

R2

dy′1|χε(y′1)|2
∫

R3

dz′2|ϕε(z′2)|2wβ(z′′1 − z′2)

)
pχ

ε

1 p2,

where z′′1 := (x1, y
′
1). The substitution z′2 7→ z := z′′1 − z′2 and subtraction of both lines

suggests the definition

Γ(x1) := N

∫

R2

|χε(y′1)|2 dy′1

( ∫

R3

|ϕε(z′′1 − z)|2wβ(z) dz − |ϕε(z′′1 )|2‖wβ‖L1(R3)

)
. (46)

Let us first consider an analogous expression where |ϕε|2 is replaced by some g ∈
C∞0 (R3). Expanding g(z′′1 − ·) around z′′1 yields

∫

R3

g(z′′1 − z)wβ(z) dz = g(z′′1 )‖wβ‖L1(R3) −
∫

R3

dz

1∫

0

∇g(z′′1 − sz) · zwβ(z) ds

=: g(z′′1 )‖wβ‖L1(R3) +R(z′′1 ),

where

|R(z′′1 )| ≤ sup
s∈[0,1]
z∈R3

|∇g(z′′1 − sz)|
∫

R3

dz|z|wβ(z).

Hence
‖R‖2L2(R3) . ε4N−2µ2‖∇g‖2L2(R3)

because |z| . µ for z ∈ suppwβ and as wβ ∈ Wβ,η implies

∫

R3

wβ(z) dz . ε2N−1bN,ε = ε2N−1(bN,ε − bβ) + ε2N−1bβ . ε2N−1. (47)

Consequently,

∥∥∥∥∥N
∫

R2

|χε(y′1)|2 dy′1

( ∫

R3

g(z′′1 − z)wβ(z) dz − g(z′′1 )‖wβ‖L1(R3)

)∥∥∥∥∥

2

L2(R)

≤ N2

∫

R

dx1

∣∣∣∣∣∣

∫

R2

dy′1|χε(y′1)|2R(z′′1 )

∣∣∣∣∣∣

2

≤ N2‖|χε|2‖2L2(R2)‖R‖2L2(R3) . µ2ε2‖∇g‖2L2(R3),
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where we have in the second step used Hölder’s inequality. By density, this bound
extends to g ∈ H1(R3) and in particular to g ≡ |ϕε|2, hence

‖Γ‖L2(R) . µε‖∇|ϕε|2‖L2(R3)

4.9

. µ
ε e(t) (48)

and

∣∣γ(1)
b

∣∣ ≤ ‖l̂qΦ
1 ψ‖‖pΦ

1 Γ(x1)‖op +
(
N−1 + (N

ε2
)−η
)
e2(t)

4.10d

.
(µ
ε + (N

ε2
)−η +N−1

)
e2(t).

4.4.3 Proof of the bound for γ
(2)
b (t)

Let us first define the functions needed for the integration by parts of the interaction.

Definition 4.13. Define hε : R3 → R by

hε(z) :=





1

4π



∫

R3

wβ(ζ)

|z − ζ| dζ −
∫

R3

ε

|ζ|
wβ(ζ)

|ζ∗ − z| dζ


 for |z| < ε,

0 else

where
ζ∗ := ε2

|ζ|2 ζ.

We will abbreviate
h(ij)
ε := hε(zi − zj).

Lemma 4.14. Let µ� ε. Then

(a) hε solves the boundary value problem





∆hε(z) = wβ(z) for z ∈ Bε(0),

hε(z) = 0 for z ∈ ∂Bε(0),

(49)

where Bε(0) := {z ∈ R3 : |z| < ε}.

(b) ‖∇hε‖L∞(R3) . N−1µ−2ε2, ‖∇hε‖L2(R3) . N−1µ−
1
2 ε2.

Proof. Green’s function for the problem (49) is G(z, ζ) = 1
4π

(
1
|ζ−z| − ε

|ζ|
1

|z−ζ∗|

)
, hence

hε
∣∣
Bε(0)

is the unique solution of (49). For part (b), define

h(1)(z) :=





∫

R3

wβ(ζ)

|z − ζ| dζ for |z| < ε,

0 else,

h(2)(z) :=





∫

R3

ε

|ζ|
wβ(ζ)

|ζ∗ − z| dζ for |z| < ε,

0 else,

hence hε(z) =: 1
4π

(
h(1)(z) + h(2)(z)

)
. We estimate h(1) and h(2) separately.
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Estimate of |∇h(1)|. Define R := diam suppwβ. Let |z| ≤ 2R and substitute ζ 7→ ζ ′ :=

ζ − z. As wβ ∈ Wβ
η , R . µ, hence |ζ ′| ≤ |ζ| + |z| ≤ 3R . µ for ζ ∈ suppwβ and

consequently

|∇h(1)(z)| ≤ ‖wβ‖L∞(R3)

∫

|ζ|≤R

1

|z − ζ|2 dζ .
(
N
ε2

)−1+3β
∫

|ζ′|≤3R

1

|ζ ′|2 dζ ′ . N−1ε2µ−2.

For 2R ≤ |z| < ε, note that ζ ∈ suppwβ implies |ζ| ≤ R ≤ 1
2 |z|, hence |z−ζ| ≥ |z|−|ζ| ≥

1
2 |z| and consequently

|∇h(1)(z)| ≤ 4

|z|2
∫

R3

wβ(ζ) dζ . N−1ε2|z|−2 . N−1ε2µ−2

due to (47). Hence,

∫

R3

∣∣∇h(1)(z)
∣∣2 dz .

∫

|z|≤2R

N−2ε4µ−4 dz +

∫

2R≤|z|≤ε

N−2ε4 1

|z|4 dz . N−2ε4µ−1.

Estimate of |∇h(2)|. ζ ∈ suppwβ implies |ζ| ≤ R, hence |ζ∗| = ε2

|ζ| ≥ ε2

R . For R . µ

sufficiently small that ε
R > 2, we observe |z| < ε < 1

2
ε2

R ≤ 1
2 |ζ∗| and consequently

|ζ∗ − z| ≥ |ζ∗| − |z| > 1
2 |ζ∗| = 1

2
ε2

|ζ| . This yields

∣∣∇h(2)(z)
∣∣ =

∫

R3

ε

|ζ|
wβ(ζ)

|ζ∗ − z|2 dζ . ε−3‖wβ‖L∞(R3)

∫

|ζ|≤R

|ζ|dζ . N−1ε−1µ < N−1ε2µ−2

and consequently
∫
R3

∣∣∇h(2)(z)
∣∣2 dz . N−2µ2ε < N−2ε4µ−1.

Besides, we need a smoothed step function to prevent contributions from the bound-
ary when integrating by parts over the ball Bε(0).

Definition 4.15. Let R := diam suppwβ. Define Θε : R3 → [0, 1] by

Θε(z) :=





1 for |z| ≤ R,
θε(|z|) for R < |z| < ε,

0 for |z| ≥ ε,

where θε : [R, ε]→ [0, 1] is given by

θε(x) :=
exp

(
− ε−R
ε−x

)

exp
(
− ε−R
ε−x

)
+ exp

(
− ε−R
x−R

) . (50)

Clearly, θε is a smooth, decreasing function with θε(R) = 1 and θε(ε) = 0. We will write

Θ(ij)
ε := Θε(zi − zj).
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Lemma 4.16. Let µ� ε. Then

(a) ‖Θε‖L∞(R3) = 1, ‖Θε‖L2(R3) . ε
3
2 ,

(b) ‖∇Θε‖L∞(R3) . ε−1, ‖∇Θε‖L2(R3) . ε
1
2 .

Proof. Part (a) follows immediately from the definition of Θε. For part (b), note that

R . µ as wβ ∈ Wβ
η , hence | d

dxθε(x)| ≤ 2(ε−R)−1 . 2ε−1(1− µ
ε )−1 . ε−1.

Corollary 4.17. Let µ� ε and j ∈ {1, 2}. Then

(a) ‖pj(∇1h
(12)
ε )‖op = ‖

(
∇1h

(12)
ε

)
pj‖op . e(t)N−1µ−

1
2 ε,

‖
(
∇1h

(12)
ε

)
· ∇jpj‖op = ‖|ϕε(zj)〉 〈∇ϕε(zj)| (∇1h

(12)
ε )‖op . e(t)N−1µ−

1
2 ,

(b) ‖pjΘ(12)
ε ‖op = ‖Θ(12)

ε pj‖op . e(t)ε
1
2 ,

‖pj(∇1Θ
(12)
ε )‖op = ‖(∇1Θ

(12)
ε )pj‖op . e(t)ε−

1
2 ,

‖Θ(12)
ε ∇jpj‖op = ‖|ϕε(zj)〉 〈∇ϕε(zj)|Θ(12)

ε ‖op . e(t)ε−
1
2 .

Proof. This follows immediately from Lemma 4.10, Lemma 4.14 and Lemma 4.16.

Making use of these preliminaries, let us now estimate the three terms (20), (21) and

(22) that form γ
(2)
b (t).

Estimate of (20). Define t2 := 2p2 +q2(1+pχ
ε

2 ). Then we obtain with l̂ from Lemma 4.1

|(20)|
. N

∣∣∣⟪l̂t2qχε1 ψ,w
(12)
β p1p2ψ⟫∣∣∣ = N

∣∣∣⟪l̂t2qχε1 ψ,Θ(12)
ε w

(12)
β p1p2ψ⟫∣∣∣

= N

∫

R3(N−1)

dzN−1

∫

Bε(z2)

dz1(l̂t2q
χε

1 ψ)(z1, ..., zN )Θε(z1 − z2)wβ(z1 − z2)(p2p1ψ)(z1, ..., zN )

as Θε(z1 − z2) = 1 for z1 − z2 ∈ suppwβ and supp Θε = Bε(0). Thus wβ(z1 − z2) =
∆1hε(z1 − z2) on the whole domain of integration in the dz1-integral. Integration by
parts in z1 yields

|(20)| . N
∣∣∣⟪l̂qχε1 ψ, t2Θ(12)

ε (∇1h
(12)
ε ) · ∇1p1p2ψ⟫∣∣∣ (51)

+N
∣∣∣⟪l̂qχε1 ψ, t2(∇1Θ(12)

ε ) · (∇1h
(12)
ε )p1p2ψ⟫∣∣∣ (52)

+N
∣∣∣⟪∇1 l̂q

χε

1 ψ, t2Θ(12)
ε (∇1h

(12)
ε )p1p2ψ⟫∣∣∣ , (53)

where the boundary terms vanish because Θε(|z|) = 0 for |z| = ε. We estimate these
expressions by application of Lemma 4.8. To this end, we write each term as ⟪Γ, O1,2Λ⟫,
where Γ and Λ are symmetric in the coordinates {2, ..., N}. Hence
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|(51)|
4.8a

. N‖l̂qχε1 ψ‖
( ∣∣∣⟪t2Θ(12)

ε (∇1h
(12)
ε )p2 · ∇1p1ψ, t3Θ(13)

ε (∇1h
(13)
ε )p3 · ∇1p1ψ⟫∣∣∣

+N−1‖t2Θ(12)
ε (∇1h

(12)
ε )p2 · ∇1p1ψ‖2

) 1
2

4.8b
≤ N‖l̂qχε1 ψ‖

(
‖p2Θ(12)

ε (∇1h
(12)
ε )t2 · ∇1p1ψ‖2

+N−1‖t2Θ(12)
ε (∇1h

(12)
ε )p2 · ∇1p1ψ‖2

) 1
2

≤ N‖l̂qχε1 ψ‖
(
‖p2Θ(12)

ε ‖2op‖(∇1h
(12)
ε ) · ∇1p1‖2op

+N−1‖Θε‖2L∞(R3)‖(∇1h
(12)
ε )p2‖2op‖∇1p1‖2op

) 1
2

. e3(t)
(
ε2

µ

) 1
2 (
ε+N−1

) 1
2 N ξ

by Lemma 4.11, Lemma 4.16 and Corollary 4.17. Analogously,

|(52)| . N‖l̂qχε1 ψ‖
(
‖p2(∇1h

(12)
ε )‖2op‖(∇1Θ(12)

ε )p1‖2op

+N−1‖∇Θε‖2L∞(R3)‖(∇1h
(12)
ε )p2‖2op

) 1
2

. e3(t)
(
ε2

µ

) 1
2 (
ε+N−1

) 1
2 N ξ,

|(53)| . N‖∇1 l̂q
χε

1 ψ‖
(
‖p2Θ(12)

ε ‖2op‖(∇1h
(12)
ε )p1‖2op

+N−1‖Θε‖2L∞(R3)‖(∇1h
(12)
ε )p2‖2op

) 1
2

. e3(t)
(
ε2

µ

) 1
2 (
ε+N−1

) 1
2 N ξ.

Hence

|(20)| . e3(t)
(
ε2

µ

) 1
2 (
ε+N−1

) 1
2 N ξ . e3(t)

(
ε2

µ

) 1
2

because N−
1
2

+ξ < 1 as ξ < 1
2 and ε

1
2N ξ = ( ε

2

µ )
1
4N ξ−β

4 ε
β
2 . 1 for µ� ε as ξ ≤ β

4 .

Estimate of (21). Define t12 := qΦ
1 p

χε

1 qχ
ε

2 + qχ
ε

1 q2. Analogously to the estimate of (20),

|(21)| ≤ N
∣∣∣⟪l̂t12ψ,w

(12)
β p1q2ψ⟫∣∣∣ = N

∣∣∣⟪l̂t12ψ,Θ
(12)
ε

(
∆1h

(12)
ε

)
p1q2ψ⟫∣∣∣

≤ N
∣∣∣⟪l̂t12ψ,Θ

(12)
ε (∇1h

(12)
ε ) · ∇1p1q2ψ⟫∣∣∣ (54)

+N
∣∣∣⟪l̂t12ψ, (∇1Θ(12)

ε ) · (∇1h
(12)
ε )p1q2ψ⟫∣∣∣ (55)

+N
∣∣∣⟪∇1 l̂t12ψ,Θ

(12)
ε (∇1h

(12)
ε )p1q2ψ⟫∣∣∣ . (56)

To estimate (54) to (56), we apply first Lemma 4.2b to commute l̂ next to q2 and use
the fact that ‖l̂1q2ψ‖ . 1 by Lemma 4.1 and Lemma 4.5. Observing that t12 = t12q1q2
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and consequently ‖t12ψ‖ ≤ ‖qχ
ε

1 ψ‖ ≤ εe(t) by Lemma 4.11a, we obtain

(54) = N
∣∣∣⟪t12ψ, q1q2 l̂Θ

(12)
ε (∇1h

(12)
ε ) · (p1 + q1)q2∇1p1ψ⟫∣∣∣

= N
∣∣∣⟪t12ψ,Θ

(12)
ε (∇1h

(12)
ε ) · (l̂1p1 + l̂q1)∇1p1q2ψ⟫∣∣∣

= N
∣∣∣⟪t12ψ,Θ

(12)
ε (∇1h

(12)
ε ) · ∇1p1 l̂1q2ψ⟫∣∣∣

≤ N‖t12ψ‖‖Θε‖L∞(R3)‖(∇1h
(12)
ε ) · ∇1p1‖op‖l̂1q2ψ‖ . e2(t)

(
ε2

µ

) 1
2

and analogously

(55) = N
∣∣∣⟪t12ψ, (∇1Θ(12)

ε ) · (∇1h
(12)
ε )p1 l̂1q2ψ⟫∣∣∣

≤ N‖t12ψ‖‖∇Θε‖L∞(R3)‖(∇1h
(12)
ε )p1‖op‖l̂1q2ψ‖ . e2(t)

(
ε2

µ

) 1
2
,

(56) = N
∣∣∣⟪∇1t12ψ,Θ

(12)
ε (∇1h

(12)
ε )p1 l̂1q2ψ⟫∣∣∣

≤ N
(
‖∇1q

Φ
1 p

χε

1 qχ
ε

2 ψ‖+ ‖q2∇1q
χε

1 ψ‖
)
‖Θε‖L∞(R3)‖(∇1h

(12)
ε )p1‖op‖l̂1q2ψ‖

. e2(t)
(
ε2

µ

) 1
2

by Lemma 4.16, Corollary 4.17a and Lemma 4.11.

Estimate of (22). Analogously to before,

|(22)| ≤ N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ, p

χε

1 pχ
ε

2 w
(12)
β p1q

χε

2 ψ⟫∣∣∣
= N

∣∣∣⟪l̂qΦ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2 Θ(12)
ε

(
∆1h

(12)
ε

)
p1q

χε

2 ψ⟫∣∣∣
≤ N

∣∣∣⟪l̂qΦ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2 Θ(12)
ε (∇1h

(12)
ε ) · ∇1p1q

χε

2 ψ⟫∣∣∣
+N

∣∣∣⟪l̂qΦ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2 (∇1Θ(12)
ε ) · (∇1h

(12)
ε )p1q

χε

2 ψ⟫∣∣∣
+N

∣∣∣⟪∇1 l̂p
χε

1 qΦ
1 q

Φ
2 ψ, p

χε

2 Θ(12)
ε (∇1h

(12)
ε )p1q

χε

2 ψ⟫∣∣∣
≤ N‖l̂qΦ

1 q
Φ
2 ψ‖‖qχ

ε

2 ψ‖
(
‖Θε‖L∞(R3)‖(∇1h

(12)
ε ) · ∇1p1‖op

+‖∇Θε‖L∞(R3)‖p1(∇1h
(12)
ε )‖op

)

+N‖∇1 l̂p
χε

1 qΦ
1 q

Φ
2 ψ‖‖Θε‖L∞(R3)‖p1(∇1h

(12)
ε )‖op‖qχ

ε

2 ψ‖

. e2(t)
(
ε2

µ

) 1
2

by Lemma 4.11, Lemma 4.16, Corollary 4.17 and Lemma 4.5.

4.4.4 Proof of the bound for γ
(3)
b (t)

We estimate (25) as

|(25)| .
∣∣∣⟪l̂q1q2ψ, |Φ(x1)|2p1q2ψ⟫∣∣∣ . ‖Φ‖2L∞(R)‖l̂q1q2ψ‖‖q2ψ‖ . e2(t) ⟪ψ, n̂ψ⟫
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by Lemma 4.9 and Lemma 4.5c. For (23) and (24), we proceed similarly as in Sec-
tion 4.4.3 for the quasi one-dimensional interaction w instead of the three-dimensional
interaction wβ.

Definition 4.18. Define

w(x) :=

∫

R2

dy1|χε(y1)|2
∫

R2

dy2|χε(y2)|2wβ(x, y1 − y2). (57)

Further, for β1 ∈ [0, 1], define hβ1 : R→ R by

hβ1(x) :=





N−β1∫

−N−β1

G(x′, x)w(x′) dx′ for |x| ≤ N−β1 ,

0 else,

(58)

where

G(x′, x) := 1
2 N

β1





(
x′ +N−β1

) (
x−N−β1

)
for x′ < x,

(
x′ −N−β1

) (
x+N−β1

)
for x′ > x.

(59)

Besides, let R := diam suppw and define

Θβ1(x) :=





1 for |x| ≤ R,
θβ1(|x|) for R < |x| < N−β1 ,

0 for |x| ≥ N−β1 ,
(60)

where θβ1 : [R,N−β1 ] → [0, 1] is a smooth decreasing function with θβ1(R) = 1,
θβ1(N−β1) = 0 analogously to (50). As before, we will write

w(ij) := w(xi − xj), h
(ij)
β1 := hβ1(xi − xj), Θ

(ij)
β1 := Θβ1(xi − xj).

Lemma 4.19. (a) hβ1 solves the boundary-value problem





d2

dx2
hβ1 = w for x ∈ [−N−β1 , N−β1 ],

hβ1 = 0 for |x| = N−β1 .
(61)

(b) ‖ d
dxhβ1‖L∞(R) . N−1, ‖ d

dxhβ1‖L2(R) . N−1−β1
2 ,

(c) ‖Θβ1‖L∞(R) ≤ 1, ‖Θβ1‖L2(R) . N−
β1
2 ,

‖ d
dxΘβ1‖L∞(R) . Nβ1, ‖ d

dxΘβ1‖L2R) . N
β1
2 .

Proof. Part (a) is evident as G(x′, x) is Green’s function for the problem (61). For part
(b), we compute for x ∈ [−N−β1 , N−β1 ]

∣∣ d
dxhβ1(x)

∣∣ = Nβ1

2

∣∣∣∣
x∫

−N−β1

(x′ +N−β1)w(x′) dx′ +

N−β1∫

x

(x′ −N−β1)w(x′) dx′
∣∣∣∣
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. ‖w‖L1(R) . N−1

since

‖w‖L1(R) =

∫

R

dx

∫

R2

dy1|χε(y1)|2
∫

R2

dy2|χε(y2)|2wβ(x, y1 − y2)

≤ ‖χε‖2L∞(R2)

∫

R2

dy1|χε(y1)|2‖wβ‖L1(R3) . N−1 (62)

by (47). The second inequality in (b) follows from this as supphβ1 = [−N−β1 , N−β1 ].
Part (c) is shown analogously to Lemma 4.16, noting that R . µ.

Corollary 4.20. Let j ∈ {0, 1}. Then

(a) ‖pΦ
j ( d

dx1
h

(12)
β1 )‖op . e(t)N−1−β1

2 , ‖( d
dx1

h
(12)
β1 )(∂xjp

Φ
j )‖op . ‖Φ(t)‖H2(R)N

−1−β1
2 ,

(b) ‖pΦ
j

(
d

dx1
Θ

(12)
β1

)
‖op . e(t)N

β1
2 .

Proof. This follows immediately from Lemma 4.10d and Lemma 4.19.

Estimate of (23). Observing that pχ
ε

1 pχ
ε

2 w
(12)
β pχ

ε

1 pχ
ε

2 = w(12)pχ
ε

1 pχ
ε

2 , we obtain analo-
gously to the estimate of (20)

|(23)| . N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,w

(12)p1p2ψ⟫∣∣∣ = N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
β1

(
d2

dx21
h

(12)
β1

)
p1p2ψ⟫∣∣∣

≤ N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
β1

(
d

dx1
h

(12)
β1

)
∂x1p

Φ
1 p

χε

1 p2ψ⟫∣∣∣ (63)

+N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,

(
d

dx1
Θ

(12)
β1

)(
d

dx1
h

(12)
β1

)
pΦ

1 p
χε

1 p2ψ⟫∣∣∣ (64)

+N
∣∣∣⟪∂x1 l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
β1

(
d

dx1
h

(12)
β1

)
pΦ

1 p
χε

1 p2ψ⟫∣∣∣ . (65)

The boundary terms upon integration by parts vanish as Θβ1(±N−β1) = 0. With Lem-
mata 4.1b, 4.5c, 4.11, 4.19 and Corollary 4.20, we conclude

(63) ≤ N‖l̂qΦ
1 q

Φ
2 ψ‖‖Θβ1‖L∞(R)‖

(
d

dx1
h

(12)
β1

)
pΦ

2 ‖op‖∂x1pΦ
1 ‖op . e2(t) ⟪ψ, n̂ψ⟫ 1

2 N−
β1
2 ,

(64)
4.2b
= N

∣∣∣∣⟪l̂ 12 qΦ
1 ψ,

(
qΦ

2

(
d

dx1
Θ

(12)
β1

)(
d

dx1
h

(12)
β1

)
p2

)
p1 l̂

1
2
2 ψ⟫

∣∣∣∣
4.8a

. N‖l̂ 12 qΦ
1 ψ‖ ×

×
( ∣∣∣∣⟪qΦ

2

(
d

dx1
Θ

(12)
β1

)(
d

dx1
h

(12)
β1

)
p2p1 l̂

1
2
2 ψ, q

Φ
3

(
d

dx1
Θ

(13)
β1

)(
d

dx1
h

(13)
β1

)
p3p1 l̂

1
2
2 ψ⟫

∣∣∣∣

+N−1‖qΦ
2

(
d

dx1
Θ

(12)
β1

)(
d

dx1
h

(12)
β1

)
p2p1 l̂

1
2
2 ψ‖2

) 1
2

4.8b
≤ N‖l̂ 12 q1ψ‖

(
‖pΦ

2

(
d

dx1
Θ

(12)
β1

)
‖2op‖

(
d

dx1
h

(12)
β1

)
pΦ

1 ‖2op‖l̂
1
2
2 q2ψ‖2

+N−1‖ d
dxΘβ1‖2L∞(R)‖

(
d

dx1
h

(12)
β1

)
pΦ

1 ‖2op‖l̂
1
2
2 ‖2op

) 1
2
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. e2(t) ⟪ψ, n̂ψ⟫ 1
2

(⟪ψ, n̂ψ⟫+N−1+β1+ξ
) 1

2 . e2(t)
(⟪ψ, n̂ψ⟫+N−1+β1+ξ

)
,

(65) ≤ N‖∂x1 l̂qΦ
1 q

Φ
2 ψ‖‖Θβ1‖L∞(R)‖

(
d

dx1
h

(12)
β1

)
pΦ

1 ‖op

4.6b

. e2(t)N−
β1
2 .

Hence
|(23)| . e2(t)

(⟪ψ, n̂ψ⟫+N−
β1
2 +N−1+β1+ξ

)
.

Estimate of (24). For this term, we choose β1 = 0. Analogously to the estimate of (23),

|(24)| . N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
0

(
d2

dx21
h

(12)
0

)
p1p

χε

2 qΦ
2 ψ⟫∣∣∣

≤ N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
0

(
d

dx1
h

(12)
0

)
∂x1p

Φ
1 p

χε

1 pχ
ε

2 qΦ
2 ψ⟫∣∣∣

+N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,

(
d

dx1
Θ

(12)
0

)(
d

dx1
h

(12)
0

)
pΦ

1 p
χε

1 pχ
ε

2 qΦ
2 ψ⟫∣∣∣

+N
∣∣∣⟪∂x1 l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
0

(
d

dx1
h

(12)
0

)
pΦ

1 p
χε

1 pχ
ε

2 qΦ
2 ψ⟫∣∣∣

≤ N‖l̂qΦ
1 q

Φ
2 ψ‖‖qΦ

2 ψ‖
(
‖Θ0‖L∞(R)‖

(
d

dx1
h

(12)
0

)
∂x1p

Φ
1 ‖op

+‖ d
dxΘ0‖L∞(R)‖

(
d

dx1
h

(12)
0

)
pΦ

1 ‖op

)

+N‖qΦ
2 ψ‖‖Θ0‖L∞(R)‖

(
d

dx1
h

(12)
0

)
pΦ

1 ‖op‖∂x1 l̂qΦ
1 q

Φ
2 ψ‖

4.6b

. ‖Φ‖H2(R) ⟪ψ, n̂ψ⟫+ e(t) ⟪ψ, n̂ψ⟫ 1
2 ‖∂x1qΦ

1 ψ‖.

The estimate ‖∂x1qΦ
1 ψ‖ . e(t) (Lemma 4.11c) is not sharp enough to see that this

expression is small. We need a better control of the kinetic energy, which is established
in the following refined energy lemma:

Lemma 4.21. Under assumptions A1–A4,

‖∂x1qΦ
1 ψ

N,ε(t)‖ . exp
{
e2(t) +

∫ t

0
e2(s) ds

}(∣∣EψN,ε(t)(t)− EΦ(t)(t)
∣∣

+ ⟪ψN,ε(t), n̂ψN,ε(t)⟫+ µ
ε +

(
ε2

µ

) 1
2

+N−β + (N
ε2

)−η
) 1

2

.

The proof is given in the next section. As a consequence,

|(24)| . e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}(
|Eψ(t)− EΦ(t)|+ ⟪ψ, n̂ψ⟫+ µ

ε +
(
ε2

µ

) 1
2

+N−β + (N
ε2

)−η
)
.

Finally, this concludes the proof of Proposition 3.8.
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4.5 Proof of Lemma 4.21.

We prove a refined bound for the kinetic energy. The basic idea of the proof is compa-
rable to Lemma 4.11. However, we estimate the single terms in terms of αξ(t) instead
of using e2(t). Abbreviating ψN,ε(t) ≡ ψ and Φ(t) ≡ Φ, we obtain

Eψ(t)− EΦ(t)

= ‖∂x1ψ‖2 − ‖Φ′‖2L2(R) + ⟪ψ,(−∆y1 + 1
ε2
V ⊥(y1ε )− E0

ε2

)
ψ⟫

+N−1
2 ⟪ψ,w(12)

β ψ⟫− bβ
2 ⟪ψ, |Φ(x1)|2ψ⟫

+
bβ
2

(⟪ψ, |Φ(x1)|2ψ⟫− 〈Φ, |Φ|2Φ
〉
L2(R)

)

+⟪ψ, V ‖(t, z1)ψ⟫− 〈Φ, V ‖
(
t, (x, 0)

)
Φ
〉
L2(R)

≥ ‖∂x1ψ‖2 − ‖Φ′‖2L2(R) + 1
2 ⟪ψ,((N − 1)w

(12)
β − bβ|Φ(x1)|2

)
ψ⟫

− bβ
2

∣∣∣⟪ψ, |Φ(x1)|2ψ⟫− 〈Φ, |Φ|2Φ
〉
L2(R)

∣∣∣

−
∣∣∣⟪ψ, V ‖(t, z1)ψ⟫− 〈Φ, V ‖

(
t, (x, 0)

)
Φ
〉
L2(R)

∣∣∣

& ‖∂x1ψ‖2 − ‖Φ′‖2L2(R) + 1
2 ⟪ψ,((N − 1)w

(12)
β − bβ|Φ(x1)|2

)
ψ⟫

−e2(t) ⟪ψ, n̂ψ⟫− e3(t)ε (66)

as ⟪ψ, (−∆y1 + 1
ε2
V ⊥(y1ε )− E0

ε2

)
ψ⟫ ≥ 0. The last step follows by Lemma 4.7, Lemma 4.9

and Lemma 4.12, analogously to Section 4.4.1. Further, using that ‖∂x1pΦ
1 ψ‖2 =

‖Φ′‖2L2(R)‖pΦ
1 ψ‖2 = ‖Φ′‖2L2(R)(1− ‖qΦ

1 ψ‖2), we obtain

‖∂x1ψ‖2 = ‖∂x1qΦ
1 ψ‖2 + ‖∂x1pΦ

1 ψ‖2 +
(⟪∂x1qΦ

1 ψ, ∂x1p
Φ
1 ψ⟫+ c.c.

)

4.2c
≥ ‖∂x1qΦ

1 ψ‖2 + ‖Φ′‖2L2(R)

(
1− ‖qΦ

1 ψ‖2
)

−2

∣∣∣∣⟪n̂− 1
2 qΦ

1 ψ, ∂
2
x1p

Φ
1 (n̂

1
2 qχ

ε

1 + n̂
1
2
1 p

χε

1 )ψ⟫∣∣∣∣
4.11b

& ‖∂x1qΦ
1 ψ‖2 + ‖Φ′‖2L2(R) − ⟪ψ, n̂ψ⟫ (e2(t) + ‖Φ‖H2(R)

)
, (67)

where we have used that n̂1 . n̂ and Lemma 4.5b. (66) and (67) yield

‖∂x1qΦ
1 ψ‖2 . |Eψ(t)− EΦ(t)|+ ‖Φ‖H2(R) ⟪ψ, n̂ψ⟫

+ ⟪ψ,(bβ|Φ(x1)|2 − (N − 1)w
(12)
β

)
ψ⟫+ e3(t)ε.

(68)

We estimate the second term of (68) by inserting 1 = p1p2 + 1− p1p2 into both slots of
the scalar product:

⟪ψ, (p1p2 + 1− p1p2)
(
bβ|Φ(x1)|2 − (N − 1)w

(12)
β

)
(p1p2 + 1− p1p2)ψ⟫

= ⟪ψ, p1p2

(
bβ|Φ(x1)|2 −Nw(12)

β

)
p1p2ψ⟫+ ‖

√
w

(12)
β p1p2ψ‖2 (69)

+⟪ψ, (1− p1p2)bβ|Φ(x1)|2(1− p1p2)ψ⟫− (N − 1)‖
√
w

(12)
β (1− p1p2)ψ‖2 (70)
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+
(⟪ψ, p1p2bβ|Φ(x1)|2(1− p1p2)ψ⟫+ c.c.

)
(71)

−(N − 1)
(⟪ψ, p1p2w

(12)
β (1− p1p2)ψ⟫+ c.c.

)
. (72)

Making use of Γ(x1) from (46), the first term can be estimated as

(69) = ⟪ψ, pΦ
1 Γ(x1)p1p2ψ⟫+ ⟪ψ, p1p2(bN,ε − bβ)|Φ(x1)|2p1p2ψ⟫+ ‖

√
w

(12)
β p1‖2op

4.10b

. e2(t)
(µ
ε +N−1 + (N

ε2
)−η
)

by (48) and (47) with η from Definition 2.2. Note that at this point, it is crucial
that β < 1. For the second and third term, note that 1 − p1p2 = q2 + q1p2 and

‖
√
w

(12)
β (1− p1p2)‖2 ≥ 0. Hence

(70) ≤ ⟪ψ, q2bβ|Φ(x1)|2q2ψ⟫+ ⟪ψ, q1p2bβ|Φ(x1)|2q1p2ψ⟫ . ⟪ψ, n̂ψ⟫ e2(t),

(71) ≤ 2

∣∣∣∣⟪n̂ 1
2
1 ψ, p1p2bβ|Φ(x1)|2p2q1n̂

− 1
2ψ⟫∣∣∣∣ . e2(t) ⟪ψ, n̂ψ⟫

by Lemma 4.5a and Lemma 4.9. For the last term, observe that 1−p1p2 = p1q2 +q1p2 +
q1q2, hence, by symmetry of ψ,

(72) ≤ 2N
∣∣∣⟪ψ, p1q2w

(12)
β p1p2ψ⟫∣∣∣+N

∣∣∣⟪ψ, q1q2w
(12)
β p1p2ψ⟫∣∣∣

. N

∣∣∣∣⟪n̂− 1
2 q2ψ, p1w

(12)
β p1p2n̂

1
2
1 ψ⟫

∣∣∣∣ (73)

+N
∣∣∣⟪qχε1 ψ, q2(1 + pχ

ε

2 )w
(12)
β p1p2ψ⟫∣∣∣ (74)

+N
∣∣∣⟪ψ, qΦ

1 q
Φ
2 p

χε

1 pχ
ε

2 w
(12)
β p1p2ψ⟫∣∣∣ (75)

analogously to the decomposition of (35). Using (47), (73) is easily estimated as

(73)
4.10a

. e2(t) ⟪ψ, n̂ψ⟫ .
For (74), we obtain with t2 := q2(1 + pχ

ε

2 ), similarly to the estimate of (20),

(74) ≤ N
∣∣∣⟪qχε1 ψ, t2Θ(12)

ε (∇1h
(12)
ε ) · ∇1p1p2ψ⟫∣∣∣

+N
∣∣∣⟪qχε1 ψ, t2(∇1Θ(12)

ε ) · (∇1h
(12)
ε )p1p2ψ⟫∣∣∣

+N
∣∣∣⟪∇1q

χε

1 ψ, t2Θ(12)
ε (∇1h

(12)
ε )p1p2ψ⟫∣∣∣

≤ N‖qχε1 ψ‖
(
‖Θε‖L∞(R3)‖(∇1h

(12)
ε ) · ∇1p1‖op + ‖p1(∇1h

(12)
ε )‖op‖∇Θε‖L∞(R3)

)

+N‖∇1q
χε

1 ψ‖‖Θε‖L∞(R3)‖p1(∇1h
(12)
ε )‖op . e2(t)

(
ε2

µ

) 1
2
.

(75) is of the same structure as (23). Choosing β1 = β, one computes analogously to (63)
to (65)

(75) = N

∣∣∣∣⟪n̂− 1
2 qΦ

1 q
Φ
2 ψ,Θ

(12)
β

(
d2

dx21
h

(12)
β

)
pΦ

1 p
χε

1 n̂
1
2
2 p2ψ⟫

∣∣∣∣
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≤ N

∣∣∣∣⟪n̂− 1
2 qΦ

1 q
Φ
2 ψ,Θ

(12)
β

(
d

dx1
h

(12)
β

)
∂x1p

Φ
1 n̂

1
2
2 p

χε

1 p2ψ⟫
∣∣∣∣

+N

∣∣∣∣⟪∂x1 n̂− 1
2 qΦ

1 q
Φ
2 ψ,Θ

(12)
β

(
d

dx1
h

(12)
β

)
p1p2n̂

1
2
2 ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪n̂− 1
2 qΦ

1 ψ, q
Φ
2

(
d

dx1
Θ

(12)
β

)(
d

dx1
h

(12)
β

)
p2n̂

1
2
2 p1ψ⟫

∣∣∣∣
4.8

. ‖Φ‖H2(R) ⟪ψ, n̂ψ⟫N−β2 + e2(t)N−
β
2 ⟪ψ, n̂ψ⟫ 1

2

+N‖n̂ 1
2ψ‖

(
‖p2( d

dx1
Θ

(12)
β )( d

dx1
h

(12)
β )qΦ

2 n̂
1
2
2 p1ψ‖2

+N−1‖qΦ
2 ( d

dx1
Θ

(12)
β )( d

dx1
h

(12)
β )p2n̂

1
2
2 p1ψ‖2

) 1
2

. e2(t)
(⟪ψ, n̂ψ⟫+N−β

)
,

since n2(k) . n(k) and by Corollary 4.6b and Lemma 4.11c. Besides, we have used that

N−1+β < 1 and ‖Φ‖H2(R)N
−β

2 . e2(t) for sufficiently large N at fixed time t. Thus,

(72) . e2(t)

((
ε2

µ

) 1
2

+N−β + ⟪ψ, n̂ψ⟫) . (76)

Finally, inserting the bounds for (69) to (72) into (68) yields

‖∂x1qΦ
1 ψ‖2 . |Eψ(t)− EΦ(t)|+ ‖Φ‖H2(R) ⟪ψ, n̂ψ⟫

+e2(t)

((
ε2

µ

) 1
2

+ µ
ε +N−β + (N

ε2
)−η
)

. exp

{
2e2(t) + 2

∫ t

0
e2(s) ds

}(
|Eψ(t)− EΦ(t)|+ ⟪ψ, n̂ψ⟫+ µ

ε

+
(
ε2

µ

) 1
2

+N−β + (N
ε2

)−η
)

since ε <
(
ε2

µ

) 1
2

and e2(t) . exp
{

2e2(t)
}

.

A Well-posedness of the effective equation

Let 1
2 < r ≤ 4 and let the initial datum Φ0 ∈ Hr(R). Local existence of Hr-solutions of

(5) on the maximal time interval t ∈ [0, Tr) follows from the usual contraction argument
on the subset K := {u ∈ X : ‖u‖X ≤ 2R} of the Banach space X := C ([0, T ];Hr(R))
for some R > 0 and T < Tr, where one uses that the map f : u 7→ bβ|u|2u+ V ‖(t, ·)u is
locally Lipschitz continuous on Hr(R). To prove global existence, one shows first that
Ts = Tr for all 1

2 < r, s ≤ 4 and concludes from an estimate of ‖Φ(t)‖H1(R) that no
blow-up can occur [37]:
Let 1

2 < r < s ≤ 4 and Φ0 ∈ Hs(R). Clearly, Ts ≤ Tr. Assume now Ts < Tr. Then
CTs := supt∈[0,Ts]‖Φ(t)‖Hr(R) <∞. Applying twice the inequality

‖uv‖Hs(R) ≤ C
(
‖u‖Hs(R)‖v‖Hr(R) + ‖u‖Hr(R)‖v‖Hs(R)

)
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and using the fact that Hs(R) is an algebra, one concludes that for t ∈ [0, Ts]

‖Φ(t)‖Hs(R) ≤ ‖Φ0‖Hs(R) +

t∫

0

‖f(Φ(s))‖Hs(R) ds

≤ ‖Φ0‖Hs(R) + C

t∫

0

(
C2
Ts + ‖V ‖(s, ·)‖Hs(R)

)
‖Φ(s)‖Hs(R) ds.

Grönwall’s inequality implies that ‖Φ(t)‖Hs(R) cannot blow up at t = Ts, which con-
tradicts [0, Ts) being the maximal time interval where Hs-solutions exist. Therefore
Ts = Tr =: Tmax. Hence for Φ0 ∈ H2(R), Φ(t) ∈ H2(R) for t ∈ [0, Tmax). Consequently,
(27) implies that limt→Tmax‖Φ(t)‖H1(R) <∞, hence T1 = Tmax =∞.
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Derivation of the 1d Gross–Pitaevskii equation from the 3d

quantum many-body dynamics of strongly confined bosons

Lea Boßmann∗ and Stefan Teufel∗

Abstract

We consider the dynamics of N interacting bosons initially forming a Bose–Einstein
condensate. Due to an external trapping potential, the bosons are strongly confined
in two dimensions, where the transverse extension of the trap is of order ε. The
non-negative interaction potential is scaled such that its range and its scattering
length are both of order (N/ε2)−1, corresponding to the Gross–Pitaevskii scaling of
a dilute Bose gas. We show that in the simultaneous limit N →∞ and ε→ 0, the
dynamics preserve condensation and the time evolution is asymptotically described
by a Gross–Pitaevskii equation in one dimension. The strength of the nonlinearity is
given by the scattering length of the unscaled interaction, multiplied with a factor
depending on the shape of the confining potential. For our analysis, we adapt a
method by Pickl [31] to the problem with dimensional reduction and rely on the
derivation of the one-dimensional NLS equation for interactions with softer scaling
behaviour in [4].

1 Introduction

We consider N identical bosons in R3 interacting through a repulsive pair interaction.
The bosons are trapped within a cigar-shaped potential, which effectively confines the
particles in two directions to a region of order ε. Using the coordinates

z = (x, y) ∈ R1+2 ,

the confinement in the y-directions is generated by a scaled potential 1
ε2
V ⊥

(y
ε

)
, where

V ⊥ : R2 → R and 0 < ε� 1. The Hamiltonian describing the system is

H(t) =

N∑

j=1

(
−∆j +

1

ε2
V ⊥

(yj
ε

)
+ V ‖(t, zj)

)
+

∑

1≤i<j≤N
wµ(zi − zj), (1)

where ∆ denotes the Laplace operator on R3 and V ‖ is an additional unscaled external
potential. The units are chosen such that ~ = 1 and m = 1

2 .
The interaction between the particles is described by the potential

wµ(z) = µ−2w

(
z

µ

)
with µ :=

ε2

N
(2)
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and for some compactly supported, spherically symmetric, non-negative potential w.
This scaling of the interaction describes a dilute gas in the Gross–Pitaevskii regime,
which will be explained in detail below.

We are interested in the dynamics of the system in the simultaneous limit (N, ε)→
(∞, 0). The state ψN,ε(t) of the system at time t is given as the solution of the N -body
Schrödinger equation

i d
dtψ

N,ε(t) = H(t)ψN,ε(t) (3)

with initial datum ψN,ε(0) = ψN,ε0 ∈ L2
+(R3N ) := ⊗NsymL

2(R3). We assume that the
bosons initially form a Bose–Einstein condensate. Mathematically, this means that the

one-particle reduced density matrix γ
(1)

ψN,ε0

of ψN,ε0 ,

γ
(k)

ψN,ε0

:= Trk+1,...,N |ψN,ε0 〉〈ψN,ε0 | (4)

for k = 1, is asymptotically close to a projection |ϕε0〉〈ϕε0| onto a one-body state ϕε0.
Because of the strong confinement, this condensate state factorises at low energies and
is of the form ϕε0(z) = Φ0(x)χε(y) ∈ L2(R3) (see Remark 1c). Here, Φ0 denotes the
wavefunction along the x-axis and χε is the normalised ground state of −∆y + 1

ε2
V ⊥(yε ).

Due to the rescaling by ε, χε is given by

χε(y) = 1
εχ(yε ), (5)

where χ is the normalised ground state of −∆y + V ⊥(y).
In Theorem 1, we show that if the system initially condenses into a factorised state,

i.e.
lim

(N,ε)→(∞,0)
TrL2(R3)

∣∣∣γ(1)

ψN,ε0

− |ϕε0〉〈ϕε0|
∣∣∣ = 0

with ϕε0 = Φ0χ
ε and Φ0 ∈ H2(R) (where the limit (N, ε) → (∞, 0) is taken in an

appropriate way), then the condensation into a factorised state is preserved by the
dynamics, i.e. for all t ∈ R and k ∈ N

lim
(N,ε)→(∞,0)

TrL2(R3k)

∣∣∣γ(k)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|⊗k

∣∣∣ = 0

with ϕε(t) = Φ(t)χε. Moreover, Φ(t) is the solution of the one-dimensional Gross–
Pitaevskii equation

i ∂∂tΦ(t, x) =
(
− ∂2

∂x2
+ V ‖(t, (x, 0)) + b|Φ(t, x)|2

)
Φ(t, x) =: h(t)Φ(t, x) (6)

with Φ(0) = Φ0 and

b = 8πa

∫

R2

|χ(y)|4 dy = 8πa ε2

∫

R2

|χε(y)|4 dy,

where a denotes the scattering length of the unscaled potential w.

To prove Theorem 1, we follow the approach developed by Pickl for the problem
without strong confinement [31], which is outlined in Section 3. To handle the singular
scaling of the interaction, he first shows the convergence for interactions with softer
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(but still singular) scaling behaviour, and as a second step uses this result to prove the
Gross–Pitaevskii case.

The derivation of the one-dimensional NLS equation for softer scalings of the inter-
action combined with dimensional reduction was done in [4]. In the present paper, we
extend the result from [4] to treat the Gross–Pitaevskii regime. As in [4], the strong
asymmetry of the problem requires non-trivial adjustments to the method by Pickl. A
description of the differences between our proof and [31] is given in Remark 3.

In the remaining part of the introduction, we will first motivate the scaling (2) of
the interaction. This scaling is physically relevant since, written in suitable coordinates,
it describes an (N, ε)-independent interaction. Subsequently, we comment on related
literature.

We wish to study N three-dimensional bosons in an asymmetric trap, which confines
in two directions to a length scale L⊥ that is much smaller then the length scale L‖ of
the remaining direction1. Hence, we have

L⊥ = εL‖

with ε � 1. The transverse confinement on the scale L⊥ is achieved by the potential
1

(L⊥)2
V ⊥( ·

L⊥ ), where −∆ + V ⊥ is assumed to have a localised ground state. In the

remaining direction, the system is assumed to be localised in a region of length L‖. The
particle density is thus

%3d ∼ N
L‖(L⊥)2

= N
ε2(L‖)3

.

To observe Gross–Pitaevskii dynamics in the longitudinal direction in the limit (N, ε)→
(∞, 0), we require the kinetic energy per particle in this direction, Ekin,p.p. ∼ (L‖)−2,
to remain comparable to the total internal energy per particle, i.e. the total energy
without the contributions from the confinement. For a dilute gas, the latter is given
by Ep.p. ∼ A%3d [24, Chapter 2], where A denotes the (s-wave) scattering length of the
interaction. The physical significance of this parameter is the following: the scattering
of a slow and sufficiently distant particle at some other particle is to leading order
described by its scattering at a hard sphere with radius A. Consequently, the length
scale determined by A is the relevant length scale for the two-body correlations. The
condition Ekin,p.p. ∼ Ep.p. implies the scaling condition

A
L‖
∼ ε2

N . (7)

It seems physically reasonable to fix A ∼ 1 since A describes the two-body scattering
process and should therefore be independent of N and ε. We will call this choice the
microscopic frame of reference. By (7), the length scales of the problem with respect to
this frame are given by L‖ = N

ε2
and L⊥ = N

ε , hence both tend to infinity as (N, ε) →
(∞, 0). %3d is of order ε4N−2 and converges to zero, which shows that we indeed consider
a dilute gas. A useful characterisation of the low density regime is the requirement

that the mean (three-dimensional) inter-particle distance %
− 1

3
3d be much larger than the

scattering length, i.e. A3%3d → 0.
For the mathematical analysis, we follow the common practice to choose coordinates

where the longitudinal length scale L‖ = 1 is fixed. Consequently, L⊥ = ε and the

1In this paragraph, the capital letters L‖, L⊥ and A indicate length scales. In Theorem 1 and the
remainder of the paper, we use units where L‖ = 1.
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scattering length shrinks as A = a ε2

N . This frame of reference arises from the microscopic

frame by the coordinate rescaling z 7→ ε2

N z and t 7→ ( ε
2

N )2t in the Schrödinger equation
(3), which yields the rescaled interaction (2). Note that times of order one with respect
to this frame correspond to extremely long times on the microscopic time scale, which
relates to the low density of the gas.

We admit an external field V ‖ varying on the length scale L‖. Consequently, it
depends on (N, ε) with respect to the microscopic frame of reference and is (N, ε)-
independent in our coordinates. As L‖ � A, the external potential is asymptotically
constant on the scale of the interaction and therefore does not affect the scaling condition
(7).

Due to this scaling condition, the system always remains within the second of the five
regions defined by Lieb, Seiringer and Yngvason in [25]. In that paper, the authors prove
that the ground state energy and density of a dilute Bose gas in a highly elongated trap
can be obtained by minimising the energy functional corresponding to the Lieb–Liniger
Hamiltonian with coupling constant g = A

ε2

∫
|χ(y)|4 dy [25, Theorem 1.1]. If g%−1 → 0,

where % denotes the mean one-dimensional density, the system can be described as
one-dimensional limit of a three-dimensional effective theory. In particular, if g%−1 ∼
N−2, which is true for our system due to (7), the ground state is described by a one-
dimensional Gross–Pitaevskii energy functional [25, Theorem 2.2]. The other regions
can be reached by scaling A differently.2

It is also instructive to consider softer scaling interactions of the form

wβ(z) := (N
ε2

)−1+3βw
(

(N
ε2

)βz
)
, (8)

where the scaling parameter β ∈ (0, 1) interpolates between the Hartree (β = 0) and the
Gross–Pitaevskii (β = 1) regime. In this case, the scattering length still scales as (N

ε2
)−1

[9, Lemma A.1] whereas the effective range of wβ is now of order (N
ε2

)−β. This means
that as (N, ε)→ (∞, 0), the scattering length becomes negligible compared to the range
of the interaction, i.e. the two-body correlations become invisible on the length scale of
the interaction. Consequently, the scattering length is well approximated by the first or-
der Born approximation and the corresponding effective equation is the one-dimensional
NLS equation (6) with b replaced by ‖w‖L1(R3)

∫
R2 |χ(y)|4 dy [4].

Quasi one-dimensional bosons in highly elongated traps have been experimentally
probed [13, 15] and the dynamics of such systems are physically very interesting [11,
20, 27]. The first rigorous derivation of NLS and Gross–Pitaevskii equations for three-
dimensional bosons using BBGKY hierarchies is due to Erdős, Schlein and Yau [9, 10]. A
different approach was proposed by Pickl [28, 29, 31, 17], who also obtained rates for the
convergence of the reduced density matrices. A third method for the Gross–Pitaevskii
case, using Bogoliubov transformations and coherent states on Fock space, was proposed
by Benedikter, De Oliveira and Schlein [3]. Extending this approach, Brennecke and
Schlein [5] recently proved an optimal rate of the convergence. Several further results

2Let us assume that the external field V ‖ is given by a homogeneous function of degree s > 0 acting
only in the x-direction. The ideal gas case (region 1) is then obtained by the scaling A � ε2N−1 and

the Thomas–Fermi case (region 3) by choosing ε2N−1 � A� ε2N
s
s+2 . Also the truly one-dimensional

regime can be reached: A ∼ ε2N s
s+2 corresponds to region 4 and A� ε2N

s
s+2 yields a Girardeau–Tonks

gas (region 5).
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concern bosons in one [1, 7] and two [21, 16, 18] dimensions. The problem of dimen-
sional reduction for the NLS equation was treated by Méhats and Raymond [26], who
study the cubic NLS equation in a quantum waveguide. In [2], Ben Abdallah, Méhats,
Schmeiser and Weishäupl consider an (n + d)-dimensional NLS equation subject to a
strong confinement in d directions and derive an effective n-dimensional NLS evolution.

There are few works on the derivation of lower-dimensional time-dependent NLS
equations from the three-dimensional N -body dynamics. Chen and Holmer consider
three-dimensional bosons with pair interactions in a strongly confining potential in one
[6] and two [8] directions. For repulsive interactions scaling with β ∈ (0, 2

5) in case of
a disc-shaped and for attractive interactions with β ∈ (0, 3

7) in case of a cigar-shaped
confinement, they show that the dynamics are effectively described by two- and one-
dimensional NLS equations. In [19], von Keler and Teufel prove this for a Bose gas
which is confined to a quantum waveguide with non-trivial geometry for β ∈ (0, 1

3). In
[4], Boßmann considers bosons interacting through a potential scaling with β ∈ (0, 1),
but apart from this in the same setting as here, and shows that the evolution of the
system is well captured by a one-dimensional NLS equation.

Notation. We use the notation A . B to indicate that there exists a constant C > 0
independent of ε,N, t, ψN,ε0 ,Φ0 such that A ≤ CB. This constant may, however, depend
on the quantities fixed by the model, such as V ⊥, χ and V ‖. Besides, we will exclusively
use the symbol ·̂ to denote the weighted many-body operators from Definition 3.2 (see
also Remark 2) and use the abbreviations

⟪·, ·⟫ := 〈·, ·〉L2(R3N ) , ‖·‖ := ‖·‖L2(R3N ) and ‖·‖op := ‖·‖L(L2(R3N )).

2 Main Result

To study the effective dynamics of the many-body system in the limit (N, ε)→ (∞, 0),
we consider families of initial data ψN,ε0 along the following sequences (Nn, εn)→ (∞, 0):

Definition 2.1. A sequence (Nn, εn) in N× (0, 1) is called admissible if

lim
n→∞

(Nn, εn) = (∞, 0) and lim
n→∞

ε2+δn
µn

= 0 for µn :=
(
Nn
ε2n

)−1

for some 0 < δ < 2
5 .

The second condition ensures that the energy gap of order ε−2 above the trans-
verse ground state χε grows sufficiently fast. In the proof, this will be used to control
transverse excitations into states orthogonal to χε (see also Remark 1e). Since

ε2+δ

µ = Nεδ → 0,

δ must be strictly positive, otherwise Nεδ → 0 would be impossible.
To formulate our main theorem, we need two different one-particle energies:

• The “renormalised” energy per particle: for ψ ∈ D(H(t)
1
2 ),

Eψ(t) := 1
N ⟪ψ,H(t)ψ⟫− E0

ε2
, (9)

where E0 denotes the lowest eigenvalue of −∆y + V ⊥(y). By rescaling, the lowest
eigenvalue of −∆y + 1

ε2
V ⊥(yε ) is E0

ε2
.
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• The effective energy per particle: for Φ ∈ H1(R),

EΦ(t) :=
〈

Φ,
(
− ∂2

∂x2
+ V ‖(t, (x, 0)) + b

2 |Φ|2
)

Φ
〉
L2(R)

. (10)

Further, define the function e : R→ [1,∞) by

e2(t) := 1 + |EψN,ε0 (0)|+ |EΦ0(0)|+
t∫

0

‖V̇ ‖(s, ·)‖L∞(R3) ds

+ sup
i,j∈{0,1}
k∈{1,2}

‖∂it∂jykV
‖(t, ·)‖L∞(R3) .

(11)

Note that e(t) is for each t ∈ R uniformly bounded in N and ε because we will assume

that Eψ
N,ε
0 (0)→ EΦ0(0) as (N, ε)→ (∞, 0) (see assumption A4 below) and boundedness

of V ‖ and its derivatives (see assumption A3). The function e will be useful because, by
the fundamental theorem of calculus,

∣∣EψN,ε(t)(t)
∣∣ ≤ e2(t)− 1 and

∣∣EΦ(t)(t)
∣∣ ≤ e2(t)− 1 (12)

for any t ∈ R. Note that for a time-independent external field V ‖, it follows that
e2(t) . 1 for any t, hence Eψ

N,ε(t)(t) and EΦ(t)(t) are in this case bounded uniformly in
time.

Let us now state our assumptions.

A1 Interaction. Let the unscaled interaction w ∈ L∞(R3,R) be spherically symmetric,
non-negative and let suppw ⊆ {z ∈ R3 : |z| ≤ 1}.

A2 Confining potential. Let V ⊥ : R2 → R such that −∆y +V ⊥ is self-adjoint and has
a non-degenerate ground state χ with energy E0 < inf σess(−∆y + V ⊥). Assume
that the negative part of V ⊥ is bounded and that χ ∈ C2

b(R2), i.e. χ is bounded
and twice continuously differentiable with bounded derivatives. We choose χ nor-
malised and real.

A3 External field. Let V ‖ : R× R3 → R such that for fixed z ∈ R3, V ‖(·, z) ∈ C1(R).

Further, assume that for each fixed t ∈ R, V ‖(t, (·, 0)) ∈ H4(R), V ‖(t, ·), V̇ ‖(t, ·) ∈
L∞(R3) ∩ C1(R3) and ∇yV ‖(t, ·),∇yV̇ ‖(t, ·) ∈ L∞(R3).

A4 Initial data. Assume that the family of initial data, ψN,ε0 ∈ D(H(0)) ∩ L2
+(R3N )

with ‖ψN,ε0 ‖2 = 1, is close to a condensate with condensate wavefunction ϕε0 =
Φ0χ

ε for some normalised Φ0 ∈ H2(R) in the following sense: for some admissible
sequence (N, ε), it holds that

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣γ(1)

ψN,ε0

− |Φ0χ
ε〉〈Φ0χ

ε|
∣∣∣ = 0 (13)

and
lim

(N,ε)→(∞,0)

∣∣∣Eψ
N,ε
0 (0)− EΦ0(0)

∣∣∣ = 0. (14)
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Theorem 1. Assume that w, V ⊥ and V ‖ satisfy A1 – A3. Let ψN,ε0 be a family of initial
data satisfying A4, let ψN,ε(t) denote the solution of (3) with initial datum ψN,ε(0) =

ψN,ε0 and let γ
(k)

ψN,ε(t)
denote its k-particle reduced density matrix as in (4). Then for any

T ∈ R and k ∈ N,

lim
(N,ε)→(∞,0)

sup
t∈[−T,T ]

TrL2(R3k)

∣∣∣γ(k)

ψN,ε(t)
− |Φ(t)χε〉〈Φ(t)χε|⊗k

∣∣∣ = 0 (15)

and
lim

(N,ε)→(∞,0)
sup

t∈[−T,T ]

∣∣∣EψN,ε(t)(t)− EΦ(t)(t)
∣∣∣ = 0, (16)

where Φ(t) is the solution of (6) with initial datum Φ(0) = Φ0 and with

b = 8πa

∫

R2

|χ(y)|4 dy . (17)

Here, a denotes the scattering length of w and the limits in (15) and (16) are taken
along the sequence from A4.

Remark 1. (a) Assumption A4 differs from the corresponding statement in [4] in that
we impose a weaker admissibility condition than the condition ε2/µ→ 0 from [4],
which cannot hold for β = 1.

(b) A2 is fulfilled, e.g., by a harmonic potential or by any smooth potential with at
least one bound state below the essential spectrum. According to [14, Theorem 1],
A2 implies that the ground state χ of −∆y + V ⊥ decays exponentially. Thus, χε

is indeed exponentially localised on a scale of order ε. The regularity condition
on V ‖(t, (·, 0)) is needed to ensure the global existence of H2 solutions of (6) (see
[4, Appendix A]). Due to assumptions A1–A3, the operators H(t) are for any
t ∈ R self-adjoint on the time-independent domain D(H) and generate a strongly
continuous unitary evolution on D(H).

(c) In [25], it is shown that the ground state of H(0) with a homogeneous external
field V ‖(z, 0) satisfies assumption A4 (Theorem 2.2 and Theorem 5.1). Note that
to observe non-trivial dynamics in this case, it is important that we admit a time-
dependent external potential V ‖.

(d) Our proof yields an estimate of the rate of convergence of (15), which is given in
Corollary 3.5. This rate is not uniform in time but, contrarily, depends on it in
form of a double exponential.

(e) Our result is restricted to sequences where εδ � N−1 for some δ ∈ (0, 2
5) (Assump-

tion A4). Similar conditions appear also in comparable works [4, 6, 8] for β < 1.
However, for the ground state analysis in [25], no analogue of this admissibility
condition is required. On a formal level, together with the result of the strong
confinement limit of the three-dimensional NLS in [2], this suggests that our dy-
namical result could be extended to hold without imposing a condition on the rate
of convergence of ε. As remarked before, in our proof this condition is crucial
to control the transverse excitations by an a priori energy estimate. A possible
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approach to weaken the condition might be to replace the transverse ground state
χε of the linear operator −∆y + 1

ε2
V ⊥( ·ε) by the x-dependent ground state of the

nonlinear functional
〈
χ̃ε(x, ·),

(
−∆y + 1

ε2
V ⊥( ·ε) + ε28πa|Φ(x)|2|χ̃ε(x, ·)|2

)
χ̃ε(x, ·)

〉
L2(R2)

and to prove the smallness of transverse excitations by adiabatic-type arguments.

(f) We expect that our proof can be extended to cover systems that are trapped to
quantum waveguides with non-trivial geometry as in [19]. However, this is not
straightforward as a Taylor expansion of the interaction was used in [19] and the
kinetic term now includes an additional vector potential due to the twisting of the
waveguide.

(g) Further, we expect the same strategy to be applicable to one-dimensional confining
potentials resulting in effectively two-dimensional condensates. The solution of this
problem is not obvious since many of our estimates depend on the dimension and
cannot be directly transferred. For instance, Green’s function is different in two
dimensions and the ratio of N and ε changes (the corresponding effective range is
µ2d = ε/N), making some key estimates invalid.

3 Proof of the main theorem

To prove Theorem 1, we must show that the expressions in (15) and (16) vanish in
the limit (N, ε) → (∞, 0) for suitable initial data. Instead of directly estimating these
differences, we follow the approach of Pickl [28, 29, 30, 31]. As one crucial first step, we
define a functional

α<ξ : R× L2(R3N )× L2(R3)→ R , (t, ψN,ε, ϕε) 7→ α<ξ (t, ψN,ε, ϕε)

measuring the part of ψN,ε which has not condensed into ϕε. This functional is chosen
in such a way that α<ξ (t, ψN,ε(t), ϕε(t)) → 0 is equivalent to (15) and (16). While we
roughly follow [31], the strong asymmetry of the setup and the more singular scaling of
the interaction require a non-trivial adaptation of the formalism. We also heavily rely
on the result in [4] for the case β ∈ (0, 1). The functional α<ξ is constructed as follows:

Definition 3.1. Let ϕ ∈ L2(R3) be of the form ϕ(z) = Φ(x)χ(y) for some Φ ∈ L2(R)
and χ ∈ L2(R2) and let

pϕ := |ϕ〉〈ϕ| and qϕ := 1− pϕ ∈ L
(
L2(R3)

)
.

Further, define the orthogonal projections on L2(R3)

pΦ := |Φ〉〈Φ| ⊗ 1L2(R2), qΦ := 1L2(R3) − pΦ,

pχ := 1L2(R) ⊗ |χ〉〈χ|, qχ := 1L2(R3) − pχ .

Note that pϕ = pΦpχ, qΦ/χqϕ = qΦ/χ, qϕ = qχ + qΦpχ and pΦ/χqϕ = pΦ/χqχ/Φ.
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These one-body projections are lifted to many-body projections on L2(R3N ) by defining

pϕj := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ pϕ ⊗ 1⊗ · · · ⊗ · · ·1︸ ︷︷ ︸
N−j

and qϕj := 1− pϕj for j ∈ {1, . . . , N},

and analogously pΦ
j , qΦ

j , pχj and qχj . We will also write pϕj = |ϕ(zj)〉〈ϕ(zj)|.
Finally, for 0 ≤ k ≤ N , define the symmetrised many-body projections

Pϕk =
(
qϕ1 · · · qϕk p

ϕ
k+1 · · · p

ϕ
N

)
sym

:=
∑

J⊆{1,...,N}
|J |=k

∏

j∈J
qϕj
∏

l /∈J
pϕl

and Pϕk = 0 for k < 0 and k > N .

Definition 3.2. Let f : N0 → R+
0 and d ∈ Z. Using the projections Pϕk from Defini-

tion 3.1, we define the operators f̂ϕ, f̂ϕd ∈ L
(
L2(R3N )

)
by

f̂ϕ :=
N∑

k=0

f(k)Pϕk , f̂ϕd :=
N−d∑

j=−d
f(j + d)Pϕj .

Definition 3.3. For ξ ∈ (0, 1
2), define the functional

α<ξ : R× L2(R3N )× L2(R3) ⊃ R×D(H
1
2 )× (H1(R)× L2(R2))→ R

by

α<ξ (t, ψ, ϕ = Φχ) := ⟪ψ, m̂ϕψ⟫+
∣∣∣Eψ(t)− EΦ(t)

∣∣∣ ,

where the weight function m : N0 → R+
0 is given by

m(k) :=





√
k
N for k ≥ N1−2ξ,

1
2

(
N−1+ξk +N−ξ

)
else.

For simplicity, we will not explicitly indicate the ξ-dependence of the weight m in
the notation. For the proof of Theorem 1, we will choose some fixed ξ within a suitable
range.

The operators Pϕk project onto states with k particles outside the condensate de-
scribed by ϕ. Consequently, ⟪ψ, m̂ϕψ⟫ is a weighted measure of the relative number
of such particles in the state ψ. Note that the weight function m is increasing and
m(0) ≈ 0, hence only the parts of ψ outside the condensate contribute significantly to⟪ψ, m̂ϕψ⟫. For a sequence (ψN )N∈N of N -body wavefunctions, [4, Lemma 3.2]3 implies
that ⟪ψN , m̂ϕψN⟫ → 0 as N → ∞ is equivalent to the convergence of the one-particle

reduced density matrix of ψN to |ϕ〉〈ϕ| in trace norm or in operator norm. Further, con-
vergence of the one-particle reduced density matrix implies convergence of all k-particle
reduced density matrices. This is summarised in the following lemma:

3Lemma 3.2 in [4] collects different statements somewhat scattered in the literature. The respective
proofs can be found e.g. in [19, 22, 30, 31, 32].
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Lemma 3.1. Let t ∈ R, k ∈ N, ϕ = Φχ ∈ H1(R) × L2(R2) with Φ and χ normalised.
Let (ψN )N∈N ⊂ L2(R3N ) be a sequence of normalised N -body wavefunctions and denote

by γ
(k)

ψN
the k-particle reduced density matrix of ψN . Then the following statements are

equivalent:

(a) lim
N→∞

α<ξ (t, ψN , ϕ) = 0 for some ξ ∈ (0, 1
2),

(b) lim
N→∞

α<ξ (t, ψN , ϕ) = 0 for any ξ ∈ (0, 1
2),

(c) lim
N→∞

Tr
∣∣∣γ(k)

ψN
− |ϕ〉〈ϕ|⊗k

∣∣∣ = 0 and lim
N→∞

∣∣∣EψN (t)− EΦ(t)
∣∣∣ = 0 for all k ∈ N,

(d) lim
N→∞

Tr
∣∣∣γ(1)

ψN
− |ϕ〉〈ϕ|

∣∣∣ = 0 and lim
N→∞

∣∣∣EψN (t)− EΦ(t)
∣∣∣ = 0.

The relation between the rates of convergence of α<ξ (t, ψN , ϕ) and γ
(1)

ψN
is

Tr
∣∣∣γ(1)

ψN
− |ϕ〉〈ϕ|

∣∣∣ ≤
√

8α<ξ (t, ψN , ϕ),

α<ξ (t, ψN , ϕ) ≤
∣∣∣EψN (t)− EΦ(t)

∣∣∣+

√
Tr
∣∣∣γ(1)

ψN
− |ϕ〉〈ϕ|

∣∣∣+ 1
2N
−ξ.

Proof. [4], Lemma 3.2 and Lemma 3.3.

To prove Theorem 1, we evaluate the functional α<ξ on the solution ψN,ε(t) of (3) with

initial datum ψN,ε0 given by assumption A4, the solution Φ(t) of the Gross–Pitaevskii
equation (6) with initial datum Φ0 from A4, and the ground state χε of −∆y + 1

ε2
V ⊥(yε )

from A2. For simplicity, we will abbreviate

α<ξ (t) := α<ξ

(
t, ψN,ε(t), ϕε(t) = Φ(t)χε

)
.

Due to Lemma 3.1, α<ξ (t)→ 0 is equivalent to (15) and (16); conversely, (13) and (14)

imply α<ξ (0) → 0. Hence, to prove Theorem 1, it suffices to show the convergence of

α<ξ (t)→ 0 for all t ∈ R.

In [4], the functional α<ξ (t) is used as counting measure for the interaction (8) scaling
with β ∈ (0, 1). For the proof in that case, one first shows an estimate of the kind
| d
dtα

<
ξ (t)| . α<ξ (t) + O(1) and subsequently applies Grönwall’s inequality, using that

α<ξ (0)→ 0.

For the Gross–Pitaevskii scaling of the interaction, we cannot simply estimate d
dtα

<
ξ (t)

for β = 1 because this derivative is not controllable with the methods used in [4]. To un-
derstand why this is the case, let us first give a heuristic argument why the NLS equation
with coupling parameter bβ = ‖w‖L1(R3)

∫
R2 |χ(y)|4 dy is the right effective description

for β ∈ (0, 1) but not for β = 1. To this end, we compute the renormalised energy per
particle with respect to the trial state ψprod(t, z1, ..., zN ) = ϕε(t, z1)ϕε(t, z2) · · ·ϕε(t, zN ),
i.e. the state where all particles are condensed into the single-particle orbital ϕε(t). For
simplicity, we will ignore the external potential V ‖ and drop the time-dependence of ϕε

in the notation. Making use of the fact that
(
−∆y + 1

ε2
V ⊥(yε )− E0

ε2

)
χε(y) = 0 and that

ϕε is normalised, we obtain

1
N ⟪ψprod, Hψprod⟫− E0

ε2
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=
〈
Φ(x1), (−∂2

x1)Φ(x1)
〉

+ N−1
2N

∫
dz1|Φ(x1)|2|χ(y1)|2 ×

×
∫

dz|Φ(x1 − µβx)|2|χ(y1 − µβ

ε y)|2w(z)

→
〈

Φ(x1),

(
−∂2

x1 + 1
2

(∫
|χ(y1)|4 dy1

∫
w(z) dz

)
|Φ(x1)|2

)
Φ(x1)

〉
= EΦ

β∈(0,1)

in the limit (N, ε)→ (∞, 0), where we have chosen the limiting sequence in such a way

that µβ

ε → 0.4 Here, EΦ
β∈(0,1) is the effective energy per particle for β ∈ (0, 1), i.e. it

equals (10) with V ‖ = 0 and b replaced by bβ.
For the Gross–Pitaevskii scaling β = 1, this very argument yields the same one-

particle energy EΦ
β∈(0,1), which differs from the correct expression (10) by an error of

O(1) as bβ 6= b. The reason for this error is that for β = 1, the scattering length aµ of
wµ is of the same order as its range µ, i.e. the inter-particle correlations live on the scale
of the interaction and thus decrease the energy per particle by an amount of O(1).

Hence, an initial state ψN,ε0 that is a pure product state is excluded by assumption
A4. This reasoning suggests to include the pair correlations in our trial function. To do
so, let us first recall the definition of the scattering length: the zero energy scattering
equation for the interaction wµ = µ−2w(·/µ) is given by

{(
−∆ + 1

2wµ(z)
)
jµ(z) = 0 for |z| <∞,

jµ(z)→ 1 as |z| → ∞.
(18)

By [24, Theorems C.1 and C.2], the unique solution jµ ∈ C1(R3) of (18) is spherically
symmetric, non-negative, non-decreasing in |z| and




jµ(z) = 1− aµ

|z| for |z| > µ,

jµ(z) ≥ 1− aµ
|z| else.

(19)

The number aµ ∈ R is by definition the scattering length of wµ. Equivalently,

8πaµ =

∫

R3

wµ(z)jµ(z) dz. (20)

By the scaling behaviour of (18), we obtain

µ−2
(
−∆ + 1

2w(z)
)
jµ(µz) = 0

for |z| <∞, hence jµ(z) = j1(z/µ) and

aµ = µa, (21)

where a denotes the scattering length of the unscaled interaction w = w1. From (19)
and (21), one immediately concludes that jµ differs from one by an error of O(1) on

4This condition in [4], called moderate confinement, ensures that the extension ε is always large

compared to the range µβ = (N
ε2

)−β of the interaction wβ . As µβ

ε
= N−βε2β−1, this is a restriction only

for β < 1
2
; in particular, it is satisfied for β = 1.
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suppwµ. Hence, (20) implies that the first order Born approximation 1
8π

∫
wµ(z) dz is no

valid approximation to the scattering length aµ in the Gross–Pitaevskii regime, whereas
this approximation was justified for interactions wβ as in (8) with β ∈ (0, 1).

For practical reasons, we will in the following consider a function f
β̃

which asymp-

totically coincides with jµ on suppwµ but is defined in such a way that f
β̃
(z) = 1 for |z|

sufficiently large. This is achieved by constructing a potential U
β̃

in such a way that the
scattering length of wµ−Uβ̃ equals zero; f

β̃
is then defined as the scattering solution of

wµ −Uβ̃. The advantage of using f
β̃

instead of jµ is that ∇f
β̃

and 1− f
β̃

have compact
support, which is not true for jµ.

Definition 3.4. Let β̃ ∈ (1
3 , 1). Define

U
β̃
(z) :=

{
µ1−3β̃a for µβ̃ < |z| < R

β̃
,

0 else,

where R
β̃

is the minimal value in (µβ̃,∞] such that the scattering length of wµ − Uβ̃
equals zero.

In Section 4.2, we show by explicit construction that a suitable R
β̃

exists and that

it is of order µβ̃. We will abbreviate

U
(ij)

β̃
:= U

β̃
(zi − zj) and w(ij)

µ := wµ(zi − zj).

Definition 3.5. Let f
β̃
∈ C1(R3) be the solution of





(
−∆ + 1

2

(
wµ(z)− U

β̃
(z)
))

f
β̃
(z) = 0 for |z| < R

β̃
,

f
β̃
(z) = 1 for |z| ≥ R

β̃
.

(22)

Further, define
g
β̃

:= 1− f
β̃
.

We will in the sequel abbreviate

g
(ij)

β̃
:= g

β̃
(zi − zj) and f

(ij)

β̃
:= f

β̃
(zi − zj).

Definitions 3.4 and 3.5 imply in particular that
∫

R3

(
wµ(z)− U

β̃
(z)
)
f
β̃
(z) dz = 0. (23)

We now repeat the above heuristic estimate for the renormalised energy per particle
with the trial function5 ψcor(z1, ..., zN ) :=

∏N
k=1 ϕ

ε(zk)
∏

1≤l<m≤N fβ̃(zl−zm), where the

product state is overlaid with a microscopic structure characterised by f
β̃
. For V ‖ = 0,

this yields

1
N ⟪ψcor, Hψcor⟫− E0

ε2

5Note that this trial function is not normalised. However, a reasoning similar to Lemma 4.10 leads

to the estimate 0 ≤ 1 − ‖ψcor‖2 . Nµ2β̃ . As β̃ > 1
3
, the normalisation error is thus irrelevant for our

heuristic argument.
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= ⟪∏
k≥1

ϕε(zk)
∏

l<m

f
(lm)

β̃
, (−∂2

x1ϕ
ε(z1))

∏

k′≥2

ϕε(z′k)
∏

l′<m′
f

(l′m′)
β̃

⟫
+(N − 1)⟪∏

k≥1

ϕε(zk)
∏

l<m

f
(lm)

β̃
,
(
−∆1f

(12)

β̃
+ 1

2w
(12)
µ f

(12)

β̃

)
×

×
∏

k′≥1

ϕε(z′k)
∏

l′<m′
(l′,m′)6=(1,2)

f
(l′m′)
β̃

⟫
+2(N − 1)⟪∏

k≥1

ϕε(zk)
∏

l<m

f
(lm)

β̃
,
(
∇1ϕ

ε(z1) · ∇1f
(12)

β̃

)

×
∏

k′≥2

ϕε(z′k)
∏

l′<m′
(l′,m′)6=(1,2)

f
(l′m′)
β̃

⟫
+(N − 1)(N − 2)⟪∏

k≥1

ϕε(zk)
∏

l<m

f
(lm)

β̃
,
(
∇1f

(12)

β̃
· ∇1f

(13)

β̃

)

×
∏

k′≥1

ϕε(z′k)
∏

l′<m′
(l′,m′)/∈
{(1,2),(1,3)}

f
(l′m′)
β̃

⟫ .

Very roughly speaking, we may substitute f
β̃
≈ 1 unless we integrate against wµ, which

is peaked on the set where f
β̃
6= 1, or apply the Laplacian to f

β̃
. For the last line,

also note that supp∇f
β̃
⊆ BR

β̃
(0) with R

β̃
= O(µβ̃) (Lemma 4.9), which is for β̃ > 1

3

negligible compared to the mean inter-particle distance µ
1
3 . Thus, the measure of the set

supp∇1fβ̃(·−z2)∩supp∇1fβ̃(·−z3) vanishes sufficiently fast in the limit (N, ε)→ (∞, 0).

For the second line, note that (22) implies−∆1f
(12)

β̃
+ 1

2w
(12)
µ f

(12)

β̃
= 1

2U
(12)

β̃
f

(12)

β̃
. Besides,

1 ≥ f
β̃
≥ 1−aµ1−β̃ on the support of U β̃ and f

β̃
≈ jµ on the support of wµ (Lemma 4.9).

Hence ‖f
β̃
U
β̃
f
β̃
‖L1(R3) ≈ ‖Uβ̃fβ̃‖L1(R3) ≈

∫
R3 wµ(z)jµ(z) dz = 8πµa according to (23)

and (21). Thus, the second line gives to leading order

N−1
2

∫
dz1|ϕε(z1)|2

∫
dz|ϕε(z1 − z)|2Uβ̃(z)f

β̃
(z)

→ 4πa

∫
dx1|Φ(x1)|4

∫
dy1χ(y1)|4 ,

and the renormalised energy per particle is consequently given by the correct expression

1
N ⟪ψcor, Hψcor⟫− E0

ε2

→
〈

Φ(x1),

(
−∂2

x1 + 1
2

(
8πa

∫
|χ(y)|4 dy

)
|Φ(x1)|2

)
Φ(x1)

〉
.

This heuristic argument indicates that the state of the system is asymptotically
close to ψcor. We will therefore modify the counting functional such that pϕ1 p

ϕ
2 · · · pϕN =

|ψprod〉〈ψprod| is replaced by |ψcor〉〈ψcor|, i.e. P0 is replaced by the projection onto the
product state overlaid with a microscopic structure minimising the energy. We substitute
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in the first term of α<ξ (t)

⟪ψ, m̂ϕεψ⟫ 7→ ⟪ψ,∏
k<l

f
(lk)

β̃
m̂ϕε

∏

r<s

f
(rs)

β̃
ψ⟫

≈ ⟪ψ, m̂ϕεψ⟫−N(N − 1)<⟪ψ, g(12)

β̃
m̂ϕεψ⟫ , (24)

where we have used the symmetry of ψN,ε(t) ≡ ψ and expanded the products by writing
f
β̃

= 1− g
β̃

and keeping only the terms which are at most linear in g
β̃
.

This correction in the functional effectively leads to the replacement of wµ by U
β̃
f
β̃

in the time derivative of the new functional. The underlying physical idea is that the
low energy scattering is essentially described by the s-wave scattering length, hence
the scattering at wµ is to leading order equivalent to the scattering at U

β̃
f
β̃
. The

terms containing U
β̃
f
β̃

can be controlled by the result from [4]; the remainders from
this substitution must be estimated additionally. To understand how the substitution
works, let us for simplicity consider the case N = 2 with V ‖ = 0. The full argument is

given in Section 4.4. Abbreviating Z(12) := w
(12)
µ − b(|Φ(x1)|2 + |Φ(x2)|2), we obtain

d
dt ⟪ψ, m̂ϕεψ⟫ = i⟪ψ, [Z(12), m̂ϕε ]ψ⟫ = −2=⟪ψ,Z(12)m̂ϕεψ⟫ ,

−2 d
dt<⟪ψ, g(12)

β̃
m̂ϕεψ⟫ = 2=⟪ψ,(g(12)

β̃
[Z(12), m̂ϕε ] + (w(12)

µ − U (12)

β̃
)f

(12)

β̃
m̂ϕε

+4∇1f
(12)

β̃
· ∇1m̂

ϕε
)
ψ⟫ .

Adding these expressions and using that g
β̃

= 1− f
β̃
, we observe that the term

⟪ψ,Z(12)m̂ϕεψ⟫
cancels. It remains, among other contributions,

−2=⟪ψ,(U (12)

β̃
f

(12)

β̃
− b

β̃
(|Φ(x1)|2 + |Φ(x2)|2)

)
m̂ϕεψ⟫ ,

where wµ is replaced by U
β̃
f
β̃
.

Remark 2. To simplify the notation, we will in the following drop the index ϕ in all
projections and (weighted) many-body operators from Definitions 3.1 and 3.2. From
now on, p = pΦpχ

ε
always projects onto ϕε(t) = Φ(t)χε, where Φ(t) is the solution of

the Gross–Pitaevskii equation (6) with initial datum Φ0 from A4, and χε is the ground
state of −∆y + 1

ε2
V ⊥(yε ) from A2.

In our proof, we will use a slightly modified variant of the correction term in (24).
The reason for the modification is that Lemma 3.1 establishes the equivalence of (15)
and (16) with α<ξ (t) → 0, hence we must ensure that the correction term converges to
zero in the limit (N, ε)→ (∞, 0). To make the correction term in (24) controllable, we
replace m̂ by the weighted many-body operator r̂, which is defined as follows:

Definition 3.6. Define the weight functions

ma(k) := m(k)−m(k + 1), mb(k) := m(k)−m(k + 2),
mc(k) := ma(k)−ma(k + 1), md(k) := ma(k)−ma(k + 2),
me(k) := mb(k)−mb(k + 1), mf (k) := mb(k)−mb(k + 2).
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The corresponding weighted many-body operators are denoted by m̂], ] ∈ {a, b, c, d, e, f}.
Further, define

r̂ := m̂bp1p2 + m̂a(p1q2 + q1p2).

Note that the weight functions m] correspond to discrete derivatives of m, which
appear in the computations when taking commutators with two-body operators such as
[Z(12), m̂].

When replacing m̂ by r̂ in (24), we gain an additional projection p1, which allows

us to estimate g
(12)

β̃
p1 instead of g

(12)

β̃
(Lemma 4.10b). This change does not affect the

replacement of wµ by U
β̃

because [Z(12), m̂] = [Z(12), r̂ ] by Lemma 4.2c. The modified
functional is now defined as follows:

Definition 3.7.

αξ(t) := α<ξ (t)−N(N − 1)<⟪ψN,ε(t), g(12)

β̃
r̂ ψN,ε(t)⟫ .

In Proposition 3.2, the time derivative of the new functional αξ(t) is explicitly cal-
culated, following essentially the steps sketched for N = 2.

Proposition 3.2. Under assumptions A1 – A4,

∣∣ d
dtαξ(t)

∣∣ ≤
∣∣γ<(t)

∣∣+
∣∣γa(t)

∣∣+ |γb(t)|+ |γc(t)|+ |γd(t)|+ |γe(t)|+ |γf (t)|

for almost every t ∈ R, where

γ<(t) :=

∣∣∣∣⟪ψN,ε(t), V̇ ‖(t, z1)ψN,ε(t)⟫− 〈Φ(t), V̇ ‖(t, (x, 0))Φ(t)
〉
L2(R)

∣∣∣∣ (25)

−2N=⟪ψN,ε(t), q1m̂
a
−1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ

N,ε(t)⟫ (26)

−N(N − 1)=⟪ψN,ε(t), Z̃(12)m̂ψN,ε(t)⟫, (27)

γa(t) := N2(N − 1)=⟪ψN,ε(t), g(12)

β̃

[
V ‖(t, z1)− V ‖(t, (x1, 0)), r̂

]
ψN,ε(t)⟫ , (28)

γb(t) := −N=⟪ψ, b(|Φ(x1)|2 + |Φ(x2)|2)g
(12)

β̃
r̂ ψ⟫ (29)

−N=⟪ψN,ε(t), (b
β̃
− b)(|Φ(x1)|2 + |Φ(x2)|2) r̂ ψN,ε(t)⟫ (30)

−N(N − 1)=⟪ψN,ε(t), g(12)

β̃
r̂ Z(12)ψN,ε(t)⟫ , (31)

γc(t) := −4N(N − 1)=⟪ψN,ε(t), (∇1g
(12)

β̃
) · ∇1r̂ ψ

N,ε(t)⟫ , (32)

γd(t) := −N(N − 1)(N − 2)=⟪ψN,ε(t), g(12)

β̃

[
b|Φ(x3)|2, r̂

]
ψN,ε(t)⟫ (33)

+2N(N − 1)(N − 2)=⟪ψN,ε(t), g(12)

β̃

[
w(13)
µ , r̂

]
ψN,ε(t)⟫ , (34)

γe(t) := 1
2N(N − 1)(N − 2)(N − 3)=⟪ψN,ε(t), g(12)

β̃

[
w(34)
µ , r̂

]
ψN,ε(t)⟫ , (35)
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γf (t) := −2N(N − 2)=⟪ψN,ε(t), g(12)

β̃

[
b|Φ(x1)|2, r̂

]
ψN,ε(t)⟫ . (36)

Here, we have used the abbreviations

Z(ij) := w(ij)
µ − b

N−1

(
|Φ(xi)|2 + |Φ(xj)|2

)
,

Z̃(ij) := U
(ij)

β̃
f

(ij)

β̃
− b

β̃

N−1(|Φ(xi)|2 + |Φ(xj)|2),

where

b
β̃

:= lim
(N,ε)→(∞,0)

µ−1

∫

R3

U
β̃
(z)f

β̃
(z) dz

∫

R2

|χ(y)|4 dy.

The first expression γ< equals | d
dtα

<
ξ (t)| with wµ replaced by the interaction U

β̃
f
β̃
.

The terms γa to γf collect all remainders resulting from this replacement. Whereas γa
arises from the strong confinement, γb to γf are comparable to the corresponding terms
from the problem without strong confinement in [31].

Proposition 3.3. Let µ be sufficiently small and let assumptions A1 – A4 be satisfied.

Then there exist 5
6 < d < β̃ < 2

2+δ and 0 < ξ < min{1− β̃, β̃6 } such that for any t ∈ R

∣∣γ<(t)
∣∣ . e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}(
α<ξ (t) + (Nεδ)1−β̃ +N−1+β̃+ξ

+µd−
1
3
− β̃

2

)
,

∣∣γa(t)
∣∣ . e3(t) ε2,

∣∣γb(t)
∣∣ . e3(t)

(
ε1+β̃ +N−1+β̃+ξ

)
,

∣∣γc(t)
∣∣ . e2(t)N−1+β̃+ξ,

∣∣γd(t)
∣∣ . e3(t)

(
ε1+β̃ + (Nεδ)1−β̃+ξ

)
,

∣∣γe(t)
∣∣ . e3(t) ε1+β̃,∣∣γf (t)
∣∣ . e2(t) ε.

To control γ<, we first prove that the interaction U
β̃
f
β̃

is of the kind considered in [4]

and subsequently apply [4, Proposition 3.5]. This provides a bound of |γ<(t)| in terms
of ⟪ψN,ε(t), m̂ψN,ε(t)⟫+

∣∣Eψ
N,ε(t)

U
β̃
f
β̃

(t)− EΦ(t)
U
β̃
f
β̃
(t)
∣∣,

where EψU
β̃
f
β̃
(t) and EΦ

U
β̃
f
β̃
(t) denote the quantities corresponding to (9) and (10), re-

spectively, but where wµ is replaced by U
β̃
f
β̃

and b by

lim
(N,ε)→(∞,0)

µ−1‖U
β̃
f
β̃
‖L1(R3)

∫
|χ(y)|4 dy.

The potential U
β̃

is chosen in such a way that lim(N,ε)→(∞,0)‖Uβ̃fβ̃‖L1(R3) = 8πa, hence

EΦ(t) = EΦ
U
β̃
f
β̃
(t) but

∣∣∣Eψ
N,ε
0

U
β̃
f
β̃
(0)− EψN,ε0 (0)

∣∣∣ ∼ O(1). (37)
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To explain why one expects the energy difference (37) to be of order one, let us again con-
sider the trial function ψcor. Following the same heuristic reasoning as before (i.e. f

β̃
≈ 1

unless we integrate against wµ or apply the Laplacian, f
β̃
≈ jµ on suppwµ, and f

β̃
≈ 1

on suppU
β̃
), this difference is to leading order given by

N−1
2

∣∣∣⟪ψcor,
(
w(12)
µ − (U

β̃
f
β̃
)(12)

)
ψcor⟫∣∣∣

∼ N

∣∣∣∣
∫

dz1|ϕε(z1)|4
∫

dz f
β̃
(z)2(wµ(z)− U

β̃
(z))

∣∣∣∣
(23)∼ µ−1

∫
dz g

β̃
(z)wµ(z)f

β̃
(z)

≥ µ−1g
β̃
(µ)

∫
dz wµ(z)f

β̃
(z)

(20)∼ 8πa2 ∼ O(1).

In the first line, we have substituted z2 7→ z := z2−z1, approximated ϕε(z1+z) ≈ ϕε(z1)
for z ∈ supp(wµ−Uβ̃) and used the estimate ‖ϕε‖2L∞(R3) . ε−2 (Lemma 4.5). Further, we

have decomposed f
β̃

= 1−g
β̃

and used that g
β̃

is decreasing in |z|, g
β̃
(µ) ∼ a and g

β̃
≈ 0

on suppU
β̃
. Note that by (22), this difference between the potential energies equals

exactly the part of the kinetic energy ⟪ψcor, (−∆1)ψcor⟫ that is due to the correlations.
As a consequence of (37), [4, Proposition 3.5] does not immediately provide a bound

of |γ<(t)| in terms of α<ξ (t). However, the energy difference enters merely in the

single term in this proposition6 whose control requires a bound of the kinetic energy
‖∂x1qΦ

1 ψ
N,ε(t)‖. For interactions wβ scaling with β ∈ (0, 1), one shows that (neglecting

some terms that vanish in the limit)

|Eψwβ (t)− EΦ
wβ

(t)| & ⟪ψ, (−∆1 + 1
ε2

(V ⊥(y1ε )− E0
ε2

)ψ⟫− ‖Φ′‖2
& ‖∂x1qΦ

1 ψ‖2 + (‖∂x1pΦ
1 ψ‖2 − ‖Φ′‖2)

≥ ‖∂x1qΦ
1 ψ‖2 − ‖Φ′‖2 ⟪ψ, n̂ψ⟫ . (38)

Hence, essentially ‖∂x1qΦ
1 ψ

N,ε(t)‖2 . α<ξ (t) [4, Lemma 4.17], which is why the energy
difference enters the estimate of |γ<(t)|.

Turning back to the Gross–Pitaevskii regime, let us apply (38) to the interaction
U
β̃
f
β̃
. Making use of the fact that EΦ(t) = EΦ

U
β̃
f
β̃
(t), we obtain

|EψU
β̃
f
β̃
(t)− Eψ(t)|+ |Eψ(t)− EΦ(t)| ≥ |EψU

β̃
f
β̃
(t)− EΦ(t)|

& ‖∂x1qΦ
1 ψ‖2 − ‖Φ′‖2 ⟪ψ, n̂ψ⟫ .

Since |EψU
β̃
f
β̃
(t)−Eψ(t)| ∼ O(1) already at time zero by (37) and |Eψ(t)−EΦ(t)| ≤ α<ξ (t),

we expect
‖∂x1qΦ

1 ψ‖2 . α<ξ (t) +O(1)

for the Gross–Pitaevskii scaling of the interaction. The additional O(1)-contribution
arises because one of the terms7 we have neglegted in (38) is not small for β = 1.

6It enters in (24) in [4], which is a part of γ
(3)
b in Proposition 3.4. The estimate is given in [4,

Section 4.4.4].
7This is the term ⟪ψ, ((N − 1)w

(12)
µ − b|Φ(x1)|2)ψ⟫. In the proof of Lemma 4.12, we cope with

this term essentially by adding and subtracting the potential Uβ̃ . The term containing the difference
wµ−Uβ̃ together with the part of the kinetic energy close around the scattering centers is non-negative
(Lemma 4.9d). The terms containing Uβ̃ can be shown to vanish in the limit as in (38).
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The part of the kinetic energy orthogonal to the condensate ‖∂x1qΦ
1 ψ‖ is not small

since the microscopic structure does not vanish in the limit but carries a kinetic energy
of order O(1). This energy is the reason for the factor 8πa in the effective equation,
which is O(1) different from the factor ‖w‖L1(R3) for scalings β ∈ (0, 1) with negligible
microscopic structure.

To estimate the one problematic term in γ<(t), one notes that the predominant
part of the kinetic energy is localised around the scattering centers, where the micro-
scopic structure is non-trivial. Therefore, we define the set A1 (Definition 4.1) as R3N

where sufficiently large balls around the scattering centers are cut out, and show that
‖1A1∂x1q

Φ
1 ψ

N,ε(t)‖2 . |Eψ(t)− EΦ(t)|+ ⟪ψN,ε(t), n̂ψN,ε(t)⟫ plus some terms vanishing
in the limit (Lemma 4.12). Subsequently, we adapt the estimate from [4, Proposition 3.5]
to this new energy lemma, making use of the fact that the complement of A1 is very
small.

The remainder of the proof consists of estimating the terms γa to γf arising from
the effective replacement of wµ by U

β̃
f
β̃
. The key tool for this is our knowledge of the

microscopic structure (Lemma 4.9 and Lemma 4.10).

Remark 3. In principle, we adjust the method from [31] to the situation with strong
confinement and to the associated more singular scaling of the interaction. We give a
new proof for Lemma 4.9a-c (concerning the microscopic structure) by exploiting the
spherical symmetry of the scattering problem to reduce it to an ODE and explicitly
construct its solution.

The proof of Lemma 4.12 (providing an estimate for the kinetic energy) becomes
more involved due to the confinement, since one must show that the positive expres-
sion ‖∇y1ψN,ε(t)‖2 compensates not only for a sufficient share of the negative part of⟪ψN,ε(t), (wµ − Uβ̃)ψN,ε(t)⟫ as in [31] but also for the large negative part of the expec-

tation value 1
ε2
⟪ψN,ε(t), (V ⊥(y1ε )− E0)ψN,ε(t)⟫.

For the control of γd, we follow [16]. The estimate of γc is different from the problem
without confinement because each ∇ contributes a factor ε−1. To handle this, we prove
a new Lemma 4.11 which provides estimates for ∇g

β̃
, and combine this with the new

estimate in Lemma 4.10e.

The last proposition ensures that the correction term converges to zero as (N, ε)→
(∞, 0), which is required for the Grönwall argument.

Proposition 3.4. Under assumptions A1 – A4, the correction term in αξ(t) is for all
t ∈ R bounded as

∣∣∣∣N(N − 1)<⟪ψN,ε(t), g(12)

β̃
r̂ ψN,ε(t)⟫∣∣∣∣ . ε1+β̃N ξ− β̃

2 .

Proof of Theorem 1. From Propositions 3.2 and 3.3, we gather that for sufficiently small
µ, there exist suitable β̃, ξ and d such that

∣∣ d
dtαξ(t)

∣∣ . C(t)

(
α<ξ (t) + (Nεδ)1−β̃+ξ +N−1+β̃+ξ + µd−

1
3
− β̃

2

)

for almost every t ∈ R. We have simplified the expression by noting that ε1+β̃ < ε <

(Nεδ)1+ξ−β̃ because δ(1 + ξ − β̃) < δ(1 + ξ) < 1 as δ < 2
5 and ξ < 1− β̃ < 1

6 . Besides,
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we have used the abbreviation

C(t) := e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}
. (39)

Recall that e(t) is for each t ∈ R bounded uniformly in N and ε by assumption A4. Let
us introduce the abbreviations

R(t) := −N(N − 1)<⟪ψN,ε(t), g(12)

β̃
r̂ ψN,ε(t)⟫ ,

B := (Nεδ)1−β̃+ξ +N−1+β̃+ξ + µd−
1
3
− β̃

2 .

By Proposition 3.4, |R(t)| < B uniformly in t. αξ(t) +B is thus non-negative and

α<ξ (t) = αξ(t)−R(t) ≤ αξ(t) + |R(t)| . αξ(t) +B,

αξ(t) +B = α<ξ (t) +R(t) +B . α<ξ (t) +B,

hence
d
dt(αξ(t) +B) . C(t) (αξ(t) +B)

for almost every t ∈ R. By the differential form of Grönwall’s inequality,

0 ≤ α<ξ (t) . αξ(t) +B .
(
α<ξ (0) +B

)
exp

{
2

∫ t

0
C(s) ds

}

for all t ∈ R. The sequence (N, ε) is admissible and ξ < 1− β̃, hence

lim
(N,ε)→(∞,0)

B = 0

and (13) and (14) imply by Lemma 3.1 that

0 ≤ lim
(N,ε)→(∞,0)

(αξ(0) +B) . lim
(N,ε)→(∞,0)

(
α<ξ (0) +B

)
3.1
= 0,

which by Lemma 3.1 concludes the proof.

Corollary 3.5. Let t ∈ R. Then for any ρ ∈ (0, 1
12),

Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|

∣∣∣

.
(
A(0) +N−

1
12

+ρ +
(
Nεδ

) 3
12
−3ρ
) 1

2

exp

{∫ t

0
C(s) ds

}
,

with C(t) as in (39) and where

A(0) :=
∣∣∣Eψ

N,ε
0 (0)− EΦ0(0)

∣∣∣+

√
Tr
∣∣∣γ(1)

ψN,ε0

− |ϕε0〉〈ϕε0|
∣∣∣.

Proof. Follows from Lemma 3.1 after optimisation over ξ, β̃ and d.
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Remark 4. For V ‖ = 0, one obtains ‖Φ(t)‖H2(R) . C(‖Φ0‖H2(R)) uniformly in t, where
C(‖Φ0‖H2(R)) denotes some expression depending only on ‖Φ0‖H2(R) [33, Exercise 3.36]8.

Defining ẽ := 1 + |EψN,ε0 (0)|+ |EΦ0(0)|+ (C(‖Φ0‖H2(R)))
2 in analogy to (11), we obtain

the rate

Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|

∣∣∣ .
(
A(0) +N−

1
12

+ρ +
(
Nεδ

) 3
12
−3ρ
) 1

2

exp { ẽ t} ,

where the growth in time is exponential instead of doubly exponential.

4 Proofs of the propositions

4.1 Preliminaries

In this section, we collect some useful lemmata, which are for the most part taken from
[4] and we refer to this work for the proofs. Lemma 4.7 contains additional statements
following [31, Proposition A.2]. We will from now on always assume that assumptions
A1 – A4 are satisfied.

Lemma 4.1. Let f : N0 → R+
0 , d ∈ Z, ρ ∈ {a, b} and ν ∈ {c, d, e, f}. Then

(a) ‖f̂‖op = ‖f̂d‖op = ‖f̂ 1
2 ‖2op = sup

0≤k≤N
f(k),

(b) ‖m̂ρ‖op ≤ N−1+ξ, ‖m̂ν‖op . N−2+3ξ and ‖r̂‖op . N−1+ξ,

(c) ‖m̂ρq1ψ
N,ε(t)‖ . N−1,

(d) ‖f̂ q1q2ψ
N,ε(t)‖2 . ‖f̂ n̂2ψN,ε(t)‖2.

Proof. Assertions (a), (c) and (d) are proven in [4], Lemma 4.1 and 4.4. For part (b),
note that

m′(k) =

{
1

2
√
kN

for k ≥ N1−2ξ,

1
2N
−1+ξ else

and m′′(k) =

{
− 1

4
√
k3N

for k ≥ N1−2ξ,

0 else,

where ′ ≡ d
dk . Hence |m′(k)| ≤ 1

2N
−1+ξ and |m′′(k)| ≤ 1

4N
−2+3ξ for any k ≥ 0. By

the mean value theorem, this implies e.g. |ma(k)| . N−1+ξ and |mc(k)| . N−2+3ξ. The
other expressions work analogously.

Lemma 4.2. Let f, g : N0 → R+
0 be any weights and i, j ∈ {1, . . . , N}.

(a) For k ∈ {0, . . . , N},

f̂ ĝ = f̂g = ĝf̂ , f̂pj = pj f̂ , f̂ qj = qj f̂ , f̂Pk = Pkf̂ .

8To prove this, one observes that the quantity E2(Φ) :=∫
R
(
|∂2
xΦ|2 + c1|∂xΦ|2|Φ|2 + c2<((Φ∂xΦ)2) + c3|Φ|6

)
dx is conserved for solutions of (6) with V ‖ = 0,

where c1, c2 and c3 denote some absolute constants.
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(b) Define Q0 := pj, Q1 := qj, Q̃0 := pipj, Q̃1 ∈ {piqj , qipj} and Q̃2 := qiqj. Let Sj be
an operator acting only on factor j in the tensor product and Tij acting only on i
and j. Then for µ, ν ∈ {0, 1, 2}

Qµf̂SjQν = QµSj f̂µ−νQν and Q̃µf̂TijQ̃ν = Q̃µTij f̂µ−νQ̃ν .

(c)
[Tij , f̂ ] = [Tij , pipj(f̂ − f̂2) + (piqj + qipj)(f̂ − f̂1)].

Proof. [4], Lemma 4.2.

Lemma 4.3. Let f : N0 → R+
0 . Then

(a) Pk, f̂ ∈ C1
(
R,L

(
L2(R3N )

) )
for 0 ≤ k ≤ N ,

(b)
[
−∆yj + 1

ε2
V ⊥(

yj
ε ), f̂

]
= 0 for 1 ≤ j ≤ N ,

(c) d
dt f̂ = i

[
f̂ ,

N∑
j=1

hj(t)
]
,

where hj(t) denotes the one-particle operator corresponding to h(t) from (6) acting
on the jth factor in L2(R3N ).

Proof. [4], Lemma 4.3.

Lemma 4.4. Let Γ,Λ ∈ L2(R3N ) be symmetric in the coordinates {z2, ..., zN}, let r2

and s2 denote operators acting only on the second factor of the tensor product, and let
F : R3 × R3 → Rd for d ∈ N. Then

|⟪Γ, r2F (z1, z2)s2Λ⟫| ≤ ‖Γ‖(‖s2F (z1, z2)r2Λ‖2 + 1
N−1‖r2F (z1, z2)s2Λ‖2

) 1
2
.

Proof. [4], Lemma 4.7.

Lemma 4.5. The nonlinear equation (6) is well-posed and H2(R) solutions exist glob-
ally, i.e. for any initial datum Φ0 ∈ H2(R), it follows that Φ(t) ∈ H2(R) for any t ∈ R.
Besides, for sufficiently small ε,

(a) ‖Φ(t)‖L2(R) = 1, ‖Φ(t)‖H1(R) ≤ e(t), ‖Φ(t)‖L∞(R) ≤ e(t),

‖Φ′‖L∞(R) ≤ ‖Φ(t)‖H2(R) . exp
{
e2(t) +

∫ t
0 e2(s) ds

}
,

(b) ‖ϕε(t)‖L∞(R3) . e(t)ε−1, ‖∇ϕε(t)‖L∞(R3) . e(t)ε−2.

Proof. [4], Lemma 4.8.

Lemma 4.6. Let t ∈ R be fixed and let j, k ∈ {1, ..., N}. Let g : R3 × R3 → R
and h : R × R → R be measurable functions such that |g(zj , zk)| ≤ G(zk − zj) and
|h(xj , xk)| ≤ H(xk − xj) almost everywhere for some G : R3 → R, H : R→ R. Then

(a) ‖pjg(zj , zk)pj‖op . e2(t)ε−2‖G‖L1(R3) for G ∈ L1(R3),

(b) ‖g(zj , zk)pj‖op = ‖pjg(zj , zk)‖op . e(t)ε−1‖G‖L2(R3) for G ∈ L2 ∩ L∞(R3),

A. Accepted Publications

216



(c) ‖g(zj , zk)∇jpj‖op . e(t)ε−2‖G‖L2(R3) for G ∈ L2(R3),

(d) ‖h(xj , xk)p
Φ
j ‖op = ‖pΦ

j h(xj , xk)‖op ≤ e(t)‖H‖L2(R) for H ∈ L2 ∩ L∞(R).

Proof. [4], Lemma 4.9.

Lemma 4.7. Let ε be sufficiently small and t ∈ R be fixed. Then

(a) ‖∂x1pΦ
1 ‖op ≤ e(t), ‖∇y1pχ

ε

1 ‖op . ε−1, ‖∂2
x1p1‖op ≤ ‖Φ(t)‖H2(R),

‖qχε1 ψN,ε(t)‖ ≤ e(t)ε, ‖∂x1qΦ
1 ψ‖ . e(t), ‖∇y1qχ

ε

1 ψN,ε(t)‖ . e(t),

‖∂x1ψN,ε(t)‖ ≤ e(t), ‖∇y1ψN,ε(t)‖ . ε−1, ‖∇1ψ
N,ε(t)‖ . ε−1,

(b)

∥∥∥∥
√
w

(12)
µ ψN,ε(t)

∥∥∥∥ . e(t)N−
1
2 ,

(c) ‖w(12)
µ ψN,ε(t)‖ . e(t)N

1
2 ε−2,

(d) ‖p11suppwµ(z1 − z2)‖op = ‖1suppwµ(z1 − z2)p1‖op . e(t)N−
3
2 ε2,

(e) ‖p1w
(12)
µ ψN,ε(t)‖ . e2(t)N−1,

(f) ‖
(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
ψN,ε(t)‖ . e3(t)ε.

Proof. Part (a) is proven in [4, Lemma 4.10.]. E0
ε2

is the smallest eigenvalue of −∆y +
1
ε2
V ⊥(yε ), hence ⟪ψN,ε(t), (−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2
)ψN,ε(t)⟫ ≥ 0. This implies (b) as

e2(t) ≥ |EψN,ε(t)(t)| ≥ N−1
2

∥∥∥
√
w

(12)
µ ψN,ε(t)

∥∥∥
2
− ‖V ‖(t)‖L∞(R3)

& N‖
√
w

(12)
µ ψN,ε(t)‖2 − e2(t).

For part (c), observe that

‖w(12)
µ ψN,ε(t)‖ ≤ ‖wµ‖

1
2

L∞(R3)

∥∥∥
√
w

(12)
µ ψN,ε(t)

∥∥∥ . µ−1e(t)N−
1
2 .

Assertion (d) follows from Lemma 4.6b because ‖1suppwµ‖2L2(R3) . µ3. Part (e) is a
consequence of

‖p1w
(12)
µ ψN,ε(t)‖ = ‖p11suppwµ(z1 − z2)w(12)

µ ψN,ε(t)‖
≤ ‖p11suppwµ(z1 − z2)‖op‖w(12)

µ ψN,ε(t)‖ .

Finally, (f) is proven in [4, Lemma 4.11].

Lemma 4.8. Let ψ ∈ L2
+(R3N ) be normalised and f ∈ L∞(R). Then

∣∣∣⟪ψ, f(x1)ψ⟫− 〈Φ(t), fΦ(t)〉L2(R)

∣∣∣ . ‖f‖L∞(R) ⟪ψ, n̂ψ⟫ .
Proof. [4], Lemma 4.6.
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4.2 Microscopic structure

In this section, we prove some important properties of the solution f
β̃

of the zero-energy

scattering equation (22) and of its complement g
β̃
.

Lemma 4.9. Let f
β̃

as in Definition 3.5, jµ as in (18) and R
β̃

as in Definition 3.4.
Then

(a) f
β̃

is a non-negative, non-decreasing function of |z|,

(b) f
β̃
(z) ≥ jµ(z) for all z ∈ R3 and there exists κ

β̃
∈
(
1, µβ̃

µβ̃−µa
)

such that for |z| ≤ µβ̃,

f
β̃
(z) = κ

β̃
jµ(z),

(c) R
β̃
. µβ̃.

(d) ‖1|z1−z2|<Rβ̃∇1ψ‖2 + 1
2 ⟪ψ, (w(12)

µ − U (12)

β̃
)ψ⟫ ≥ 0 for any ψ ∈ D(∇1).

Proof. We prove this Lemma by explicitly constructing a spherically symmetric, con-
tinuously differentiable solution f

β̃
of (22). This solution is unique by [12, Chapter 2.2,

Theorem 16]. Consider f̃ : R+
0 → R with

f̃(r) := rf
β̃
(r), (40)

where r := |z|. f
β̃
∈ C1(R3) solves (22) precisely if f̃ solves the corresponding ODE





f̃ ′′(r) = 1
2

(
wµ(r)− U

β̃
(r)
)
f̃(r) for 0 < r < R

β̃
,

f̃(r) = r for r ≥ R
β̃
,

f̃(r) = 0 for r = 0,

(41)

where ′ ≡ d
dr . Analogously, (18) is equivalent to





j̃′′(r) = 1
2wµ(r)j̃(r) for 0 < r < µ,

j̃(r) = r − µa for r ≥ µ,
j̃(r) = 0 for r = 0,

(42)

where j̃ : R+
0 → R+

0 is defined as j̃(r) := rjµ(r) and depicted in Figure 1.

For 0 ≤ r ≤ µβ̃, f̃ ′′(r) = 1
2wµ(r)f̃(r) and f̃(0) = 0. Clearly, both conditions are

fulfilled by the choice f̃κ(r) = κ j̃(r) for some κ ≥ 1. Consequently,

f̃κ(µβ̃) = κ(µβ̃ − µa) and f̃ ′κ(µβ̃) = κ. (43)

For µβ̃ < r < R
β̃
, f̃κ solves f̃ ′′κ (r) = −1

2Uβ̃(r)f̃κ(r) and is subject to the boundary

conditions (43). As U
β̃

is constant over this region, the solution for µβ̃ < r < R
β̃

is

f̃κ(r) = κ
[
A sin(ur) +B cos(ur)

]
,
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Figure 1: Construction of the solution f̃κ
β̃

of (41). The lower black curve represents the

solution j̃ of (42), the dashed graphs mark the straight lines r and r−µa. The functions
f̃1 and f̃κ2 drawn in grey are exemplary members of the one-parameter family {f̃κ}κ≥1

with 1 < κ1 < κ2. For 0 < r < µβ̃, f̃κ(r) = κj̃(r) is a multiple of j̃(r). This implies

in particular that f̃κ(r) is a straight line with slope κ for µ < r < µβ̃. In the region

r > µβ̃, f̃κ is concave. The solution to (41) must become tangential to the straight line r

at some point r > µβ̃, which will be called R
β̃
. It is clear that f̃1 and f̃κ1 will not touch

the straight line r (at least not before they decrease and increase again). Contrarily,
f̃κ2 already intersects r at µ and is therefore ruled out as well. As the family is strictly
increasing in κ, there must be a curve in between f̃1 and f̃κ2 that is tangential to r at
some point. This is the solution f̃κ

β̃
of (41), drawn in black.

where u :=
√

1
2aµ

1−3β̃ and

A :=
(

(µβ̃ − µa) sin(µβ̃u) + u−1 cos(µβ̃u)
)
,

B :=
(

(µβ̃ − µa) cos(µβ̃u)− u−1 sin(µβ̃u)
)
,

i.e. A and B depend on the quantities µ, a and µβ̃ but are independent of κ. The two
parameters κ and R

β̃
must be chosen such that

f̃κ(R
β̃
) = R

β̃
and f̃ ′κ(R

β̃
) = 1. (44)

Denote the position of the first maximum of f̃κ by rmax. Clearly, rmax is independent
of κ. R

β̃
is defined as the minimal value where the scattering length of wµ − Uβ̃ equals

zero. This means

R
β̃

:= min{r ∈ (µβ̃, rmax] : f̃κ(r) = r and f̃ ′κ(r) = 1},
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i.e. R
β̃

is defined as the first value of r where f̃κ is tangential to the straight line f̃(r) = r.

This implies in particular that f̃κ is increasing. Clearly, R
β̃

depends on κ, hence it
remains to prove that suitable κ, R

β̃
exist. To this end, consider the one-parameter

family {f̃κ}κ≥1.

• For κ = 1, we have f̃1(r) = j̃(r) ≤ j̃(µβ̃) = µβ̃ − µa for r ≤ µβ̃. As f̃1 is concave

for µβ̃ < r < R
β̃
, this implies f̃1(r) < r for all r ∈ (µβ̃, rmax]. Consequently, the

choice κ = 1 cannot be a solution of (41).

• On the other hand, κ = µβ̃

µβ̃−µa > 1 can neither yield a solution because in this

case, f̃κ(µβ̃) = µβ̃ and f̃ ′κ(µβ̃) > 0, hence f̃κ > r for all r ∈ (µβ̃, rmax].

• Since f̃κ(r) = κf̃1(r), the one-parameter family is strictly increasing in κ. Together

with f̃κ(r) < r for κ = 1 and f̃κ(r) > r for κ ≥ µβ̃

µβ̃−µa , this implies that there must

be a unique κ
β̃
∈ (1, µβ̃

µβ̃−µa) such that f̃κ
β̃

satisfies (44).

To obtain an upper bound for R
β̃
, recall that f̃κ

β̃
is increasing and, by construction, C2

in [µβ̃, R
β̃
], hence

κ
β̃
− 1 = f̃ ′κ

β̃
(µβ̃)− f̃ ′κ

β̃
(R

β̃
) = −

R
β̃∫

µβ̃

f̃ ′′κ
β̃
(r) dr = 1

2aµ
1−3β̃

R
β̃∫

µβ̃

f̃κ
β̃
(r) dr

≥ 1
2aµ

1−3β̃ f̃κ
β̃
(µβ̃)(R

β̃
− µβ̃) & κ

β̃
µ1−3β̃(µβ̃ − µa)(R

β̃
− µβ̃).

With
κ
β̃
−1

κ
β̃

< µa

µβ̃
. µ1−β̃, this yields

R
β̃
− µβ̃ .

κ
β̃
− 1

κ
β̃
(µβ̃ − µa)

µ−1+3β̃ . µ2β̃

µβ̃ − µa
=

µβ̃

1− µa

µβ̃

. µβ̃

for sufficiently small µ. Due to the respective properties of f̃κ
β̃
, it is immediately clear

that f
β̃

is non-negative, that f
β̃
≥ jµ and that f

β̃
(z) = κ

β̃
jµ(z) for |z| ≤ µβ̃. To see that

f
β̃

is non-decreasing, observe that for µβ̃ ≤ r ≤ R
β̃
, f̃ ′κ

β̃
(R

β̃
) ≤ f̃ ′κ

β̃
(r) as f̃κ

β̃
is concave,

hence
1 = f̃ ′κ

β̃
(R

β̃
) ≤ f̃ ′κ

β̃
(r) = r(f

β̃
)′(r) + f

β̃
(r) ≤ r(f

β̃
)′(r) + 1

for µβ̃ ≤ r ≤ R
β̃

as f
β̃
(r) = r−1f̃κ

β̃
(r) ≤ 1. Thus (f

β̃
)′(r) ≥ 0 for all r ≥ 0.

Finally, for the proof of part (d), we refer to [31, Lemma 5.1(3)] and the analogous
two-dimensional statement in [16, Lemma 7.10]. The idea of the proof is the following:
one shows first that the one-particle operator HZn := −∆ + 1

2

∑
zk∈Zn(wµ −Uβ̃)(· − zk)

is for each n ∈ N a positive operator, where Zn is an n-elemental subset of R3 such
that BR

β̃
(zk) are pairwise disjoint for any two zk ∈ Zn. This first assertion follows

from the definition of f
β̃

and from the fact that if the ground state energy of HZn
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was negative, the ground state would be strictly positive. The next step is to prove

that the quadratic form Q(ψ) := ‖1|·|≤R
β̃
∇ψ‖2 + 1

2

〈
ψ, (wµ − Uβ̃)ψ

〉
for ψ ∈ H1(R3) is

nonnegative. Assuming that there exists a ψ̃ such that Q(ψ̃) < 0, one constructs a set
Zn and a function χR ∈ H1(R3) such that

〈
χR, H

ZnχR
〉
< 0 for some n, contradicting

the positivity of HZn which holds for all n ∈ N. The function χR is constructed in such
a way that the part of

〈
χR, H

ZnχR
〉

inside a ball with radius R containing a sufficiently

large neighbourhood of Zn equals nQ(ψ̃) < 0. The decay of χR outside the ball is chosen
such that its positive kinetic energy is not large enough to cancel this negative term for
sufficiently large n.

The next two lemmata provide estimates for expressions containing g
β̃

or ∇g
β̃
.

Lemma 4.10. For g
β̃

as in Definition 3.5 and sufficiently small ε,

(a) |g
β̃
(z)| . µ

|z| ,

(b) ‖g
β̃
‖L2(R3) . ε2+β̃N−1− β̃

2 , ‖p1g
(12)

β̃
‖op = ‖g(12)

β̃
p1‖op . e(t)ε1+β̃N−1− β̃

2 ,

(c) ‖g(12)

β̃
ψN,ε(t)‖ . εN−1,

(d) ‖p11supp g
β̃
(z1 − z2)‖op = ‖1supp g

β̃
(z1 − z2)p1‖op . e(t)ε−1+3β̃N−

3
2
β̃,

(e) ‖1supp g
β̃
(z1 − z2)ψN,ε(t)‖ . e(t)ε2β̃− 2

3N−β̃.

Proof. By Lemma 4.9b, f
β̃
(z) ≥ jµ(z), hence

g
β̃
(z) = 1− f

β̃
(z) ≤ 1− jµ(z) ≤ µa

|z|

and, since supp g
β̃
⊆ {z ∈ R3 : |z| ≤ R

β̃
. µβ̃},

‖g
β̃
‖2L2(R3) =

∫

|z|≤R
β̃

|g
β̃
(z)|2 dz . µ2

∫

|z|.µβ̃

1
|z|2 dz . µ2+β̃.

The second part of (b) then follows immediately from Lemma 4.6b. For part (c), observe

that ‖g(12)

β̃
ψ‖ . µ‖ 1

|z1−z2|ψ‖ and

∥∥∥ 1
|z1−z2|ψ

∥∥∥
2

=

∫

R3(N−1)

dzN ··· dz2

∫

R3

dz1ψ(z1, ..., zN )
(
∇1 · z1−z2

|z1−z2|2
)
ψ(z1, ..., zN )

= −2<⟪∇1ψ,
z1−z2
|z1−z2|2ψ⟫ ≤ 2‖∇1ψ‖

∥∥∥ 1
|z1−z2|ψ

∥∥∥ .

Consequently,

‖g(12)

β̃
ψN,ε(t)‖ . µ‖∇1ψ

N,ε(t)‖
4.7a

. µε−1.

The proof of (d) works analogously to the proof of Lemma 4.7d. Finally, using Hölder’s
inequality with p = 3, q = 3

2 in the dz1-integration, we obtain for (e)

‖1supp g
β̃
(z1 − z2)ψ‖2

A.2. 1d Gross–Pitaevskii equation for strongly confined 3d bosons

221



=

∫
dzN ··· dz2

∫
dz11supp g

β̃
(z1 − z2)|ψ(z1, ..., zN )|2

≤
∫

dzN ··· dz2

(∫
dz11supp g

β̃
(z1 − z2)

) 2
3
(∫

dz1|ψ(z1, ..., zN )|6
) 2

6

. µ2β̃

∫
dzN ··· dz2

(∫
dz1|ψ(z1, ..., zN )|6

) 2
6

.

Substituting z1 7→ z̃1 = (x1,
y1
ε ) and using Sobolev’s inequality in the dz̃1-integral, we

obtain

(∫
dz1|ψ(z1, ..., zN )|6

) 2
6

=

(
ε2

∫
dz̃1|ψ((x1, εỹ1), z2, ..., zN )|6

) 2
6

. ε
2
3

∫
dz̃1|∇z̃1ψ((x1, εỹ1), z2, ..., zN )|2

= ε−
4
3

∫
dz1

(
|∂x1ψ(z1, ..., zN )|2 + ε2|∇y1ψ(z1, ..., zN )|2

)

as ∇z̃1 = (∂x1 , ε∇y1) and dz1 = ε2 dz̃1. Hence by Lemma 4.7a,

‖1supp g
β̃
(z1 − z2)ψN,ε(t)‖2 . µ2β̃ε−

4
3
(
‖∂x1ψN,ε(t)‖2 + ε2‖∇y1ψN,ε(t)‖2

)

. µ2β̃ε−
4
3 e2(t).

Lemma 4.11. For g
β̃

as in Definition 3.5, it holds that

(a) ‖∇g
β̃
‖L2(R3) . N−

1
2 ε,

(b) ‖(∇1g
(12)

β̃
)p1‖op . e(t)N−

1
2 ,

(c) ‖(∇1g
(12)

β̃
) · ∇1p1‖op . e(t)N−

1
2 ε−1.

Proof. Denote r ≡ |z| and ′ ≡ d
dr . As g

β̃
is spherically symmetric, we define g̃(r) :=

rg
β̃
(r). Consequently,

|∇g
β̃
(r)| = |g

β̃
′(r)| = |g̃′(r)−g

β̃
(r)|

r ≤ |g̃′(r)|r +
|g
β̃

(r)|
r ,

g̃′(r) = 1− f̃ ′(r) and g̃′′(r) = −f̃ ′′(r) with f̃ from (40). Hence g̃′(R
β̃
) = 0 by (44) and

|g̃′(r)| = |g̃′(r)− g̃′(R
β̃
)| =

∣∣∣∣∣∣∣

R
β̃∫

r

f̃ ′′(ρ) dρ

∣∣∣∣∣∣∣
≤ 1

2

R
β̃∫

r

wµ(ρ)ρ dρ+ 1
2

R
β̃∫

r

U
β̃
(ρ)ρdρ (45)
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by (41) and as f̃(ρ) ≤ ρ. For 0 ≤ r ≤ µ,

|g̃′(r)| ≤ 1
2‖wµ‖L∞(R3)

µ∫

0

ρdρ+ 1
2aµ

1−3β̃

R
β̃∫

µβ̃

ρ dρ
4.9c

. 1 + µ1−β̃ . 1

and |g
β̃
(r)| ≤ 1, hence |g

β̃
′(r)| . 1

r . For µ ≤ r ≤ R
β̃
, the first term in (45) equals zero,

hence |g
β̃
′(r)| . µ1−β̃

r + µ
r2

by Lemma 4.10a. Thus

‖∇g
β̃
‖2L2(R3) =

µ∫

0

|g
β̃
′(r)|2r2 dr +

R
β̃∫

µ

|g
β̃
′(r)|2r2 dr . µ+ µ2−β̃ . µ.

The two remaining inequalities follow by Lemma 4.6.

4.3 Estimate of the kinetic energy

In this section, we provide a bound for the kinetic energy of qΦ
1 ψ

N,ε(t). The main part
of the kinetic energy results from the microscopic structure, which is localised around
the scattering centres (on the sets Cj in Definition 4.1 below). We show that the kinetic
energy in regions where sufficiently large neighbourhoods around these centres (the sets
Aj ⊃ Cj) are cut out is of lower order. To prove this, we will also need the sets Bj ,
which consist of all N -particle configurations where at most two particles interact (one
of which is particle j).

Definition 4.1. Let d ∈ (5
6 , β̃), j, k ∈ {1, ..., N} and define

aj,k :=
{

(z1, ..., zN ) : |zj − zk| < µd
}
,

cj,k :=
{

(z1, ..., zN ) : |zj − zk| < R
β̃

}
,

axj,k :=
{

(z1, ..., zN ) : |xj − xk| < µd
}
.

Then the subsets Aj , Bj , Cj and Axj of R3N are defined as

Aj :=
⋃

k 6=j
aj,k, Bj :=

⋃

k,l 6=j
ak,l, Cj :=

⋃

k 6=j
cj,k, Axj :=

⋃

k 6=j
axj,k

and their complements are denoted by Aj , Bj , Cj and Axj , i.e. Aj := R3N \ Aj etc.

Note that the characteristic functions 1B1 and 1B1 do not depend on z1, and 1Ax1 and
1Ax1 do not depend on any y-coordinate. Hence, 1B1 and 1B1 commute with all operators
acting exclusively on the first slot of the tensor product, and 1Ax1 and 1Ax1 commute
with all operators acting only the y-coordinates. The main result of this section is given
by the following lemma:

Lemma 4.12.

‖1A1∂x1q
Φ
1 ψ

N,ε(t)‖ . exp

{
e2(t) +

∫ t

0
e2(s) ds

}(
α<ξ (t) + (Nεδ)1−β̃ +N−1+β̃

) 1
2
.
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To prove Lemma 4.12, we need several estimates on the cutoff functions 1A1
, 1Ax1

and 1B1 .

Lemma 4.13. Let A1, Ax1 and B1 as in Definition 4.1. Then

(a) ‖1A1
p1‖op . e(t)µ

3d
2
− 1

2 , ‖1A1
∂x1p1‖op . ‖Φ(t)‖H2(R) µ

3d
2
− 1

2 ,

(b) ‖1A1
ψ‖ . µd−

1
3 (‖∂x1ψ‖+ ε‖∇y1ψ‖) for any ψ ∈ L2(R3N ),

(c) ‖1A1
∇y1pχ

ε

1 ψN,ε(t)‖ . e(t)N−
1
2 ,

(d) ‖1B1ψ‖ . µd−
1
3

(
N∑
k=2

(‖∂xkψ‖2 + ε2‖∇ykψ‖2)

) 1
2

for any ψ ∈ L2(R3N ),

(e) ‖1B1ψ
N,ε(t)‖ . εe(t),

(f) ‖1Ax1 q
χε

1 ψN,ε(t)‖2 . e2(t)ε2(Nεδ)1−β̃.

Proof. In the sense of operators, 1A1
= 1

⋃
k≥2

a1,k ≤
N∑
k=2

1a1,k . Hence, for any ψ ∈ L2(R3N )

‖1A1
p1ψ‖2 ≤

N∑

k=2

⟪ψ |ϕε(z1)〉
(∫

R3

dz1|ϕε(z1)|21a1,k(z1, zk)

)
〈ϕε(z1)|ψ⟫

4.5b

. e2(t)Nε−2µ3d‖p1ψ‖2

and the second part of assertion (a) follows analogously with Lemma 4.5a. Part (b) is

proven analogously to Lemma 4.10e, noting that
(∫

R3 dz11A1
(z1, ..., zN )

) 2
3 . N

2
3µ2d.

Part (c) follows from this with 1
3 − d < −1

2 and 2d − 5
3 > 0 and as ‖∇y1pχ

ε

1 ∂x1ψ‖2 .
e2(t)ε−2 by Lemma 4.7a and

‖∇y1∂y(1)1

pχ
ε

1 ψ‖2 + ‖∇y1∂y(2)1

pχ
ε

1 ψ‖2 . ε−4,

where we have put y1 = (y
(1)
1 , y

(2)
1 ). For assertion (d), note that 1B1 ≤

∑N
k=2 1Ak , hence

‖1B1ψ‖
2 ≤∑N

k=2‖1Akψ‖
2, and (e) follows from Lemma 4.7a and since d > 5

6 . Finally,

‖1Ax1 q
χε

1 ψ‖2 ≤
∫

R3N−1

dzN ··· dy1



∫

R

dx11Ax1 (x1, ..., xN )



(

sup
x1∈R

|qχε1 ψ(z1, ..., zN )|2
)
.

Note that
∫
R dx11Ax1 (x1, ..., xN ) . Nµd analogously to above. For the second factor

in the integral, the one-dimensional Gagliardo-Nirenberg-Sobolev inequality [23, Theo-
rem 8.5],

sup
x∈R
|f(x)|2 ≤ ‖f ′‖L2(R)‖f‖L2(R) for f ∈ H1(R),

implies

sup
x1∈R

|qχε1 ψ(z1, ..., zN )|2 ≤ ‖qχε1 ∂x1ψ(·, y1, ..., zN )‖L2(R)‖qχ
ε

1 ψ(·, y1, ..., zN )‖L2(R).
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Using Cauchy-Schwarz in the dy1 ··· dzN -integration, we obtain

‖1Ax1 q
χε

1 ψN,ε(t)‖2 . Nµd‖qχε1 ∂x1ψ
N,ε(t)‖‖qχε1 ψN,ε(t)‖

4.7a

. e2(t)N1−dε2d+1 = e2(t)(Nεδ)1−dε2ε2d−1+δ(d−1).

Assertion (f) follows from this because d < β̃ and since the last exponent is positive as
0 < δ < 2

5 and d > 5
6 .

We will use some techniques and intermediate results from [4], which are listed in
Lemma 4.14 below. In [4], one considers a class of interaction potentials W

β̃,η
([4,

Definition 2.2]), which, recalling that µ(N, ε) = ε2

N , can be characterised in the following
way:

Definition 4.2. Let η > 0. The set W
β̃,η

is defined as the set containing all families of
interaction potentials

v : (0, 1)→ L∞(R3,R), µ 7→ v(µ),

such that it holds for all µ ∈ (0, 1) that ‖v(µ)‖L∞(R3) . µ1−3β̃, v(µ) is non-negative and

spherically symmetric, supp v(µ) ⊆
{
z ∈ R3 : |z| . µβ̃

}
and

lim
µ→0

µ−η |b(µ, v)− b(v)| = 0,

where

b(µ, v) := µ−1

∫

R3

v(µ, z) dz

∫

R2

|χ(y)|4 dy and b(v) := lim
µ→0

b(µ, v).

Lemma 4.14. Let v ∈ W
β̃,η

for some η > 0.

(a) Let hε : {z ∈ R3 : |z| ≤ ε} → R be the unique solution of ∆hε = v(µ) with

boundary condition hε
∣∣
|z|=ε = 0 and denote h

(ij)
ε := hε(zi − zj). Then

‖p1(∇1h
(12)
ε )‖op . e(t)N−1µ−

β̃
2 ε.

(b) Let R . µβ̃ such that supp v(µ) ⊆ {z ∈ R3 : |z| ≤ R}. Let Θε ∈ C∞(R3, [0, 1]) be
spherically symmetric such that Θε(z) = 1 for |z| ≤ R, Θε(z) = 0 for |z| ≥ ε, and

Θε is decreasing for R < |z| < ε. Denote Θ
(ij)
ε := Θε(zi − zj). Then

‖∇Θε‖L∞(R3) . ε−1.

(c) Let β1 ∈ [0, β̃]. Define

v(µ, x) :=

∫

R2

dy1|χε(y1)|2
∫

R2

dy2|χε(y2)|2v(µ, (x, y1 − y2))
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and let hβ1 : [−N−β1 , N−β1 ] → R be the unique solution of d2

dx2
hβ1 = v(µ) with

boundary condition hβ1(±N−β1) = 0. Then

‖pΦ
1 ( d

dx1
h

(12)
β1 )‖op . e(t)N−1−β1

2 .

(d) Let R . µβ̃ such that supp v(µ) ⊆ {z ∈ R3 : |z| ≤ R}. For β1 ∈ [0, β̃], let Θβ1 ∈
C∞(R, [0, 1]) be an even function such that Θβ1(x) = 1 for |x| ≤ R, Θβ1(x) = 0

for |x| ≥ N−β1 and Θβ1 is decreasing for R < |x| < N−β1. Denote Θ
(ij)
β1 :=

Θβ1(xi − xj). Then

‖ d
dxΘβ1‖L∞(R) . Nβ1 , ‖pΦ

1

(
d

dx1
Θ

(12)
β1

)
‖op . e(t)N

β1
2 .

(e) Let ψ ∈ L2(R3N ) be symmetric in {z1, ..., zN}. Then

∣∣⟪ψ, p1p2 ((N − 1)v(µ, z1 − z2)) p1p2ψ⟫− ⟪ψ, b(v)|Φ(x1)|2ψ⟫∣∣
. e2(t)

(µβ̃
ε +N−1 + µη + ⟪ψ, n̂ψ⟫ ).

(f) Let ψ, ψ̃ ∈ L2(R3N ) and t2 ∈ {q2, q
Φ
2 p

χε

2 }. Then

N
∣∣∣⟪ψ, qχε1 t2v(µ, z1 − z2)p1p2ψ̃⟫∣∣∣ . e(t)µ−

β̃
2 (‖qχε1 ψ‖+ ε‖∇1q

χε

1 ψ‖)‖ψ̃‖.

(g) Let ψ ∈ L2(R3N ) be symmetric in {z1, ..., zN}. Then

N
∣∣∣⟪ψ, pχε1 pχ

ε

2 qΦ
1 q

Φ
2 ( d

dx1
Θ

(12)
β1 )( d

dx1
h

(12)

β̃
)p1p2ψ⟫∣∣∣ . e2(t) ⟪ψ, n̂ψ⟫ .

Proof. Parts (a) and (b) follow from Lemma 4.12, Lemma 4.13 and Corollary 4.14 in [4]
and assertions (c) and (d) are taken from Lemma 4.15 and Corollary 4.16 in [4]. Parts
(e) and (f) are (69)-(71) and (74) in [4], and (g) follows from the estimate of (75) in
[4].

Lemma 4.15. Let η > 0. Then the family U
β̃

is contained in W
β̃,η

.

Proof. Note that µ−1
∫
R3 Uβ̃(z) dz = 4π

3 a(R3
β̃
µ−3β̃ − 1) = 4π

3 ac for some c > 0 by

Lemma 4.9c, hence b(µ,U
β̃
) = b(U

β̃
). The remaining requirements are easily verified.

Lemma 4.16. Let 0 < η < 1− β̃. Then the family U
β̃
f
β̃

is contained in W
β̃,η

.
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Proof. We drop the µ-dependence of the family members and write U
β̃
f
β̃

instead of

(U
β̃
f
β̃
)(µ). By Lemma 4.9, f

β̃
is spherically symmetric, 0 ≤ f

β̃
(z) ≤ 1 and R

β̃
. µβ̃,

hence ‖U
β̃
f
β̃
‖L∞(R3) . µ1−3β̃ and suppU

β̃
f
β̃
⊆ {z ∈ R3 : |z| . µβ̃} by Definition 3.4 of

U
β̃
. Further,

µ−1

∫

R3

U
β̃
(z)f

β̃
(z) dz

(23)
= µ−1

∫

Bµ(0)

wµ(z)f
β̃
(z)

4.9b
= µ−1κ

β̃

∫

Bµ(0)

wµ(z)jµ(z)
(20)
= κ

β̃
8πa,

which yields b(µ,U
β̃
f
β̃
) = κ

β̃
8πa

∫
R2 |χ(y)|4 dy and consequently

b(U
β̃
f
β̃
) = lim

µ→0
b(µ,U

β̃
f
β̃
) = 8πa

∫

R2

|χ(y)|4 dy = b (46)

by Lemma 4.9b. This implies

|b(µ,U
β̃
f
β̃
)− b(U

β̃
f
β̃
)| = 8πa(κ

β̃
− 1)

∫

R2

|χ(y)|4 dy . µa

µβ̃ − µa
4.9b

. µ1−β̃.

Proof of Lemma 4.12. In the following, we abbreviate ψN,ε(t) ≡ ψ and Φ(t) ≡ Φ.

Eψ(t)− EΦ(t)

= ‖1A1∂x1q1ψ‖2 + ‖1A1∂x1p1ψ‖2 + 2< ⟪∂x1p1ψ,1A1∂x1q1ψ⟫+ ‖1A1
1B1∂x1ψ‖

2

+‖1A1
1B1∂x1ψ‖2 + ⟪ψ, (−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2
)ψ⟫+ N−1

2

∥∥∥1B1
√
w

(12)
µ ψ

∥∥∥
2

+N−1
2 ⟪ψ,1B1 (w(12)

µ − U (12)

β̃

)
ψ⟫+ N−1

2 ⟪ψ,1B1p1p2U
(12)

β̃
p1p21B1ψ⟫

+N−1
2 ⟪ψ,1B1(1− p1p2)U

(12)

β̃
(1− p1p2)1B1ψ⟫

+(N − 1)<⟪ψ,1B1p1p2U
(12)

β̃
(1− p1p2)1B1ψ⟫+ ⟪ψ, V ‖(t, z1)ψ⟫

−‖Φ′‖2L2(R) −
〈
Φ, b2 |Φ|2Φ

〉
−
〈

Φ, V ‖(t, (x, 0))Φ
〉

≥ ‖1A1∂x1q1ψ‖2
+‖1A1

1B1∂x1ψ‖2 + ⟪ψ, (−∆y1 + 1
ε2
V ⊥(y1ε )− E0

ε2
)ψ⟫

+N−1
2 ⟪ψ,1B1 (w(12)

µ − U (12)

β̃

)
ψ⟫ (47)

+2< ⟪∂x1p1ψ,1A1∂x1q1ψ⟫ (48)

+‖1A1∂x1p1ψ‖2 − ‖Φ′‖2L2(R) (49)

+ b
2

(⟪ψ, |Φ(x1)|2ψ⟫− 〈Φ, |Φ|2Φ
〉)

+⟪ψ, V ‖(t, z1)ψ⟫− 〈Φ, V ‖(t, (x, 0))Φ
〉

(50)
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+N−1
2 ⟪ψ,1B1p1p2U

(12)

β̃
p1p21B1ψ⟫− b

2 ⟪ψ, |Φ(x1)|2ψ⟫ (51)

+(N − 1)<⟪ψ,1B1(p1q2 + q1p2)U
(12)

β̃
p1p21B1ψ⟫ (52)

+(N − 1)<⟪ψ,1B1q1q2U
(12)

β̃
p1p21B1ψ⟫ . (53)

We will now estimate these expressions separately. For (47), recall that χε is the ground
state of −∆y + 1

ε2
V ⊥(yε ) with eigenvalue E0

ε2
, hence (−∆y1 + 1

ε2
V ⊥(y1ε )− E0

ε2
)pχ

ε

1 = 0 and

−∆y + 1
ε2
V ⊥(yε )− E0

ε2
≥ 0 as operator. Using further that 1Ax1 = (1Ax1 )2, 1B1 = (1B1)2

and their complements commute with −∆y1 + 1
ε2
V ⊥(y1ε )− E0

ε2
and with qχ

ε

1 , we conclude

⟪ψ, (−∆y1 + 1
ε2
V ⊥(y1ε )− E0

ε2
)ψ⟫

≥ ⟪1Ax11B1qχε1 ψ, (−∆y1 + 1
ε2
V ⊥(y1ε )− E0

ε2
)1Ax11B1q

χε

1 ψ⟫
≥ ‖1Ax11B1∇y1q

χε

1 ψ‖2

− 1
ε2
‖(V ⊥ − E0)−‖L∞(R2)‖1Ax1 q

χε

1 ψ‖2
4.13f

& ‖1A1
1B1∇y1qχ

ε

1 ψ‖2 − e2(t)(Nεδ)1−β̃

because 1Ax1 ≥ 1A1
in the sense of operators since Ax1 ⊃ A1. Further,

‖1A1
1B1∇y1ψ‖2 ≤ ‖1A1

1B1∇y1pχ
ε

1 ψ‖2 + ‖1A1
1B1∇y1qχ

ε

1 ψ‖2

+2‖1A1
1B1∇y1pχ

ε

1 ψ‖‖∇y1qχ
ε

1 ψ‖
. ‖1A1

1B1∇y1qχ
ε

1 ψ‖2 + e2(t)N−
1
2

by Lemma 4.7a and Lemma 4.13c. Together, this implies

(47) & ‖1A1
1B1∇1ψ‖2 + N−1

2 ⟪ψ,1B1 (w(12)
µ − U (12)

β̃

)
ψ⟫

−e2(t)
(
N−

1
2 + (Nεδ)1−β̃

)
.

As d < β̃, it follows that R
β̃
< 2R

β̃
< µd for sufficiently small µ, and consequently

C1 ⊂ A1 and (c1,k ∩ B1) ∩ (c1,l ∩ B1) = ∅ for k, l 6= 1, l 6= k. Hence,

1A1
1B1 ≥ 1C11B1 = 1

⋃
k≥2

c1,k∩B1 =
N∑

k=2

1c1,k∩B1 = 1B1

N∑

k=2

1c1,k

in the sense of operators, which implies

(47) & (N − 1)‖1c1,2∇11B1ψ‖2 + N−1
2 ⟪1B1ψ,(w(12)

µ − U (12)

β̃

)
1B1ψ⟫

−e2(t)
(
N−

1
2 + (Nεδ)1−β̃

)

& −e2(t)
(
N−

1
2 + (Nεδ)1−β̃

)
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by Lemma 4.9d because 1B1ψ ∈ D(∇1) and as 1c1,2 = 1|z1−z2|<Rβ̃ . Next, observe that

|(48)| ≤ |⟪∂x1q1ψ, ∂x1p1ψ⟫|+ ∣∣∣⟪∂x1q1ψ,1A1
∂x1p1ψ⟫∣∣∣

4.2b
≤

∣∣∣∣⟪n̂− 1
2 q1ψ, ∂

2
x1p1n̂

1
2
1 ψ⟫

∣∣∣∣+ ‖1A1
∂x1p1‖op‖∂x1q1ψ‖

. ‖Φ‖H2(R)

(⟪ψ, n̂ψ⟫+ e(t)µ−
1
2

+ 3d
2

)

by Lemma 4.7a and Lemma 4.13a. Due to ‖∂x1p1ψ‖2 = ‖Φ′‖2L2(R)‖p1ψ‖2,

|(49)| =
∣∣∣−‖1A1

∂x1p1ψ‖2 + ‖∂x1p1ψ‖2 − ‖Φ′‖2L2(R)

∣∣∣
. ‖Φ‖2H2(R)µ

−1+3d + e2(t)‖q1ψ‖2.

Applying Lemma 4.8 and Lemma 4.7f to (50) yields |(50)| . e2(t) ⟪ψ, n̂ψ⟫ + e3(t)ε.
Using the identity f

β̃
+ g

β̃
= 1 and decomposing 1B1 = 1− 1B1 , we estimate (51) as

|(51)| ≤ 1
2

∣∣∣⟪ψ, p1p2

(
(N − 1)(U

β̃
f
β̃
)(12)

)
p1p2ψ⟫− ⟪ψ, b|Φ(x1)|2ψ⟫∣∣∣

+N−1
2

∣∣∣⟪1B1ψ, p1p2(U
β̃
g
β̃
)(12)p1p21B1ψ⟫∣∣∣

+N−1
2

∣∣∣⟪ψ,1B1p1p2(U
β̃
f
β̃
)(12)p1p21B1ψ⟫

∣∣∣

+(N − 1)
∣∣∣⟪ψ,1B1p1p2(U

β̃
f
β̃
)(12)p1p2ψ⟫∣∣∣

4.14e

. e2(t)

(
µβ̃

ε +N−1 + ⟪ψ, n̂ψ⟫)+N‖1B1ψ‖‖p1(U
β̃
f
β̃
)(12)p1‖op

+N‖p1(U
β̃
g
β̃
)(12)p1‖op

. e2(t)

(
µβ̃

ε + ⟪ψ, n̂ψ⟫+ e(t)ε+ µ1−β̃ + µη
)

for any η < 1−β̃ by Lemma 4.13e and Lemma 4.6a. Here, we have used that U
β̃
f
β̃
∈ W

β̃,η

for η < 1− β̃ by Lemma 4.16, ‖U
β̃
f
β̃
‖L1(R3) . µ and

‖U
β̃
g
β̃
‖L1(R3) = aµ1−3β̃

∫

suppU
β̃

dz|g
β̃
(z)| . µ2−β̃

because |g
β̃
(z)| ≤ g

β̃
(µβ̃) ≤ κ

β̃
aµ1−β̃ on suppU

β̃
by Lemma 4.9b and (19). Decomposing

1B1 as before and abbreviating Q0 := p1p2 and Q1 := p1q2 + q1p2, we find

|(52)| . N

∣∣∣∣⟪1B1ψ,Q1U
(12)

β̃
Q0ψ⟫

∣∣∣∣+N

∣∣∣∣⟪ψ,Q1U
(12)

β̃
Q01B1ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪1B1ψ,Q1U
(12)

β̃
Q01B1ψ⟫

∣∣∣∣+N

∣∣∣∣⟪ψ,Q1U
(12)

β̃
Q0ψ⟫

∣∣∣∣
4.2b

. N‖1B1ψ‖‖p1U
(12)

β̃
p1‖op +N

∣∣∣∣⟪n̂− 1
2 q2ψ, p1U

(12)

β̃
p1p2n̂

1
2
1 ψ⟫

∣∣∣∣
. e2(t) (e(t)ε+ ⟪ψ, n̂ψ⟫)
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by Lemma 4.1d and Lemma 4.13e. For the last term, we decompose q = qχ
ε

+ pχ
ε
qΦ,

hence

|(53)|

. N

∣∣∣∣⟪1B1ψ, qχε1 q2U
(12)

β̃
p1p21B1ψ⟫

∣∣∣∣+N

∣∣∣∣⟪ψ, qχε1 qΦ
2 p

χε

2 U
(12)

β̃
p1p21B2ψ⟫

∣∣∣∣ (54)

+N

∣∣∣∣⟪1B1ψ, qχε2 qΦ
1 p

χε

1 U
(12)

β̃
p1p21B1ψ⟫

∣∣∣∣ (55)

+N

∣∣∣∣⟪1B1ψ, qΦ
1 q

Φ
2 p

χε

1 pχ
ε

2 U
(12)

β̃
p1p21B1ψ⟫

∣∣∣∣ , (56)

where we have exchanged 1↔ 2 in the second term of (54). As 1B1 and 1B1 are functions
of (z2, ..., zN ) but not of z1,

‖∇1q
χε

1 1B1ψ‖ = ‖1B1∇1q
χε

1 ψ‖ ≤ ‖∇1q
χε

1 ψ‖ . e(t)

and analogously ‖qχε1 1B1ψ‖ . e(t)ε by Lemma 4.7a, hence Lemma 4.14f implies (54) .

e2(t)
(
ε2

µβ̃

) 1
2
. By Lemma 4.14a, U

(12)

β̃
= Θ

(12)
ε ∆1h

(12)
ε . Integrating by parts in z1 yields

(55) ≤ N
∣∣∣⟪1B1∇1p

χε

1 qΦ
1 ψ, q

χε

2 Θ(12)
ε (∇1h

(12)
ε )p1p21B1ψ⟫∣∣∣

+N
∣∣∣⟪1B1ψ, qχε2 qΦ

1 p
χε

1 (∇1Θ(12)
ε ) · (∇1h

(12)
ε )p1p21B1ψ⟫∣∣∣

+N
∣∣∣⟪1B1ψ, qχε2 qΦ

1 p
χε

1 Θ(12)
ε (∇1h

(12)
ε )p2 · ∇1p11B1ψ⟫∣∣∣

. N‖(∇1h
(12)
ε )p1‖op

(
‖1B1ψ‖

(
‖∇Θε‖L∞(R3) + ‖∇1p1‖op

)

+‖1B1∇1p
χε

1 qΦ
1 ψ‖

)

. e2(t)
(
ε2

µβ̃

) 1
2
,

where we have used Lemmas 4.13e, 4.7a, 4.14b and 4.14c and the fact that

‖1B1∇1p
χε

1 qΦ
1 ψ‖2 = ‖1B1p

χε

1 ∂x1q
Φ
1 ψ‖2 + ‖qΦ

1 ∇y1pχ
ε

1 1B1ψ‖
2

≤ ‖∂x1qΦ
1 ψ‖2 + ‖∇y1pχ

ε

1 ‖2op‖1B1ψ‖
2 . e2(t).

Finally, choosing β1 = β̃ such that pχ
ε

1 pχ
ε

2 U
(12)

β̃
pχ

ε

1 pχ
ε

2 = Θ
(12)

β̃
( d2

dx21
h

(12)

β̃
)pχ

ε

1 pχ
ε

2 by Lemma

4.14c, we find with the abbreviations Q0 := p1p2 and Q2 := qΦ
1 q

Φ
2 p

χε

1 pχ
ε

2

(56) ≤ N

∣∣∣∣⟪1B1∂x1Q2ψ,Θ
(12)

β̃
( d

dx1
h

(12)

β̃
)Q01B1ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪1B1ψ,Q2Θ
(12)

β̃
( d

dx1
h

(12)

β̃
)∂x1Q01B1ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪1B1ψ,Q2( d
dx1

Θ
(12)

β̃
)( d

dx1
h

(12)

β̃
)Q01B1ψ⟫

∣∣∣∣
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+N

∣∣∣∣⟪ψ,Q2( d
dx1

Θ
(12)

β̃
)( d

dx1
h

(12)

β̃
)Q01B1ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪ψ,Q2( d
dx1

Θ
(12)

β̃
)( d

dx1
h

(12)

β̃
)Q0ψ⟫

∣∣∣∣
4.14g
≤ N‖( d

dx1
h

(12)

β̃
)pΦ

1 ‖op

(
‖∂x1qΦ

1 ψ‖+ ‖∂x1pΦ
1 ‖op + ‖1B1ψ‖‖

d
dxΘ

β̃
‖L∞(R)

)

+e2(t) ⟪ψ, n̂ψ⟫
. e2(t)

(
N−

β̃
2 + εβ̃

(
ε2

µβ̃

) 1
2

+ ⟪ψ, n̂ψ⟫) .
Thus, |(53)| . e2(t)

(
N−

β̃
2 +

(
ε2

µβ̃

) 1
2

+ ⟪ψ, n̂ψ⟫ ). The estimates for (47) to (53) imply

∣∣∣Eψ(t)− EΦ(t)
∣∣∣ & ‖1A1∂x1q1ψ‖2 − ‖Φ‖2H2(R)

(⟪ψ, n̂ψ⟫+ (Nεδ)1−β̃ +N−1+β̃
)

because µβ̃ε−1 < N−β̃, εµ−
β̃
2 < (Nεδ)

β̃
2 , β̃2 > 1− β̃ and µη < N−1+β̃ for sufficiently large

η < 1− β̃. As ‖1A1∂x1q
Φ
1 ψ‖ ≤ ‖1A1∂x1q1ψ‖+ ‖∂x1pΦ

1 ‖op‖qχ
ε

1 ψ‖ . ‖1A1∂x1q1ψ‖+ e2(t)ε
by Lemma 4.7a, this proves the claim with Lemma 4.5a.

4.4 Proof of Proposition 3.2

Also in this proof, we will abbreviate ψN,ε ≡ ψ and Φ(t) ≡ Φ. We need to estimate

d
dtαξ(t) = d

dtα
<
ξ (t)−N(N − 1)<

(
d
dt ⟪ψ, g(12)

β̃
r̂ψ⟫) . (57)

Proposition 3.4 in [4] provides a bound for | d
dtα

<
ξ (t)| for almost every t ∈ R. This bound

implies
∣∣ d

dtαξ(t)
∣∣ ≤ |γ<a (t)|+

∣∣∣∣γ<b (t)−N(N − 1)<
(

d
dt ⟪ψ, g(12)

β̃
r̂ψ⟫)∣∣∣∣

for almost every t, where we have added the superscript < to the notation to avoid
confusion. The two first terms are given by

γ<a (t) :=
∣∣∣⟪ψ, V̇ ‖(t, z1)ψ⟫− 〈Φ, V̇ ‖(t, (x, 0))Φ

〉
L2(R)

∣∣∣

− 2N=⟪ψ, q1m̂
a
−1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ⟫ , (58)

γ<b (t) := −N(N − 1)=⟪ψ,Z(12)m̂ψ⟫ = −N(N − 1)=⟪ψ,Z(12)r̂ψ⟫ . (59)

The last equality in (59) follows by Lemma 4.2c as
[
Z(12), m̂

]
=
[
Z(12), p1p2(m̂− m̂2) + (p1q2 + q1p2)(m̂− m̂1)

]
=
[
Z(12), r̂

]
(60)

since p1p2PN−1 = p1p2PN = (p1q2 + q1p2)PN = 0. For the second term in (57), we
compute with the aid of Lemma 4.3c

−N(N − 1)<
(

d
dt ⟪ψ, g(12)

β̃
r̂ψ⟫)
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= N(N − 1)=⟪ψ, g(12)

β̃

[
H(t)−

N∑

j=1

hj(t), r̂
]
ψ⟫ (61)

+N(N − 1)=⟪ψ, [H(t), g
(12)

β̃

]
r̂ψ⟫ . (62)

We expand the pair interaction in (61) as

∑

i<j

w(ij)
µ = w(12)

µ +
N∑

j=3

(
w(1j)
µ + w(2j)

µ

)
+

∑

3≤i<j≤N
w(ij)
µ

and use

w(12)
µ − b(|Φ(x1)|2 + |Φ(x2)|2) = Z(12) − N−2

N−1b(|Φ(x1)|2 + |Φ(x2)|2),

hence by Lemma 4.3b and the symmetry of ψ,

(61) = N2(N − 1)=⟪ψ, g(12)

β̃

[
V ‖(t, z1)− V ‖(t, (x1, 0)), r̂

]
ψ⟫ (63)

+N(N − 1)=⟪ψ, g(12)

β̃

[
Z(12), r̂

]
ψ⟫ (64)

−2N(N − 2)=⟪ψ, g(12)

β̃

[
b|Φ(x1)|2, r̂

]
ψ⟫ (65)

+2N(N − 1)(N − 2)=⟪ψ, g(12)

β̃

[
w(13)
µ , r̂

]
ψ⟫ (66)

+1
2N(N − 1)(N − 2)(N − 3))=⟪ψ, g(12)

β̃

[
w(34)
µ , r̂

]
ψ⟫ (67)

−N(N − 1)(N − 2)=⟪ψ, g(12)

β̃

[
b|Φ(x3)|2, r̂

]
ψ⟫ . (68)

For (62), note that

[
H(t), g

(12)

β̃

]
r̂ψ

= −
[
H(t), f

(12)

β̃

]
r̂ψ

= (∆1f
(12)

β̃
+ ∆2f

(12)

β̃
)r̂ψ + 2(∇1f

(12)

β̃
) · ∇1r̂ψ + 2(∇2f

(12)

β̃
) · ∇2r̂ψ

=
(
w(12)
µ − U (12)

β̃

)
f

(12)

β̃
r̂ψ − 2(∇1g

(12)

β̃
) · ∇1r̂ψ − 2(∇2g

(12)

β̃
) · ∇2r̂ψ,

hence

(62) = −4N(N − 1)=⟪ψ, (∇1g
(12)

β̃
) · ∇1r̂ψ⟫ (69)

+N(N − 1)=⟪ψ,(w(12)
µ − U (12)

β̃

)
f

(12)

β̃
r̂ψ⟫ . (70)

We now identify some of the terms in | d
dtαξ(t)| with the expressions in Proposition 3.2:

(63) = γa(t), (69) = γc(t), (66) + (68) = γd(t), (67) = γe(t) and (65) = γf (t). The
remaining terms are γ<a (t), γ<b (t), (64) and (70). The latter yield

γ<b (t) + (64) + (70)

A. Accepted Publications

232



= N(N − 1)=
(
− ⟪ψ,Z(12)r̂ψ⟫+ ⟪ψ, (1− f (12)

β̃
)
[
Z(12), r̂

]
ψ⟫

+⟪ψ, (w(12)
µ − U (12)

β̃
)f

(12)

β̃
r̂ψ⟫)

= N(N − 1)=
(
− ⟪ψ, g(12)

β̃
r̂Z(12)ψ⟫− ⟪Z(12)f

(12)

β̃
ψ, r̂ψ⟫

+⟪(w(12)
µ − U (12)

β̃
)f

(12)

β̃
ψ, r̂ψ⟫).

Observing that

Z(12)f
(12)

β̃
=
(
w(12)
µ − U (12)

β̃

)
f

(12)

β̃
+ U

(12)

β̃
f

(12)

β̃
− b

N−1

(
|Φ(x1)|2 + |Φ(x2)|2

)
f

(12)

β̃
,

we conclude

γ<b (t) + (64) + (70) (71)

= −N(N − 1)=⟪ψ, g(12)

β̃
r̂Z(12)ψ⟫

−N(N − 1)=⟪ψ,(U (12)

β̃
− b

N−1

(
|Φ(x1)|2 + |Φ(x2)|2

))
(1− g(12)

β̃
)r̂ψ⟫

= −N(N − 1)=⟪ψ, g(12)

β̃
r̂Z(12)ψ⟫ (72)

−N=⟪ψ, b(|Φ(x1)|2 + |Φ(x2)|2)g
(12)

β̃
r̂ψ⟫ (73)

−N=⟪ψ, (b
β̃
− b)(|Φ(x1)|2 + |Φ(x2)|2)r̂ψ⟫ (74)

−N(N − 1)=⟪ψ, Z̃(12)m̂ψ⟫ , (75)

where we have used the fact that =⟪ψ, Z̃(12)r̂ψ⟫ = =⟪ψ, Z̃(12)m̂ψ⟫ as in (60). Hence

(72) + (73) + (74) = γb(t) and γ<a (t) + (75) = γ<(t).

4.5 Proof of Proposition 3.3

4.5.1 Proof of the bound for γ<(t)

The main tool for the estimate of γ<(t) is Proposition 3.5 from [4], which we apply to
the interaction potential U

β̃
f
β̃

(which, given w, is completely determined by a choice for

µ and β̃, cf. Definitions 3.4 and 3.5). Let us therefore first verify that the assumptions
of this proposition are fulfilled, i.e. that

(a) µβ̃/ε→ 0, ε2/µβ̃ → 0 and ξ ≤ β̃
4 (for ξ from Definition 3.3),

(b) the family U
β̃
f
β̃

is contained in W
β̃,η

for some η > 0.

We will in the sequel drop the µ-dependence of the family members and simply write

U
β̃
f
β̃

instead of (U
β̃
f
β̃
)(µ). Part (a) is satisfied since µβ̃/ε → 0 because β̃ > 5

6 > 1
2 .

Further, ε2/µβ̃ =
(
Nεδ

)β̃
ε2−β̃(2+δ) <

(
Nεδ

)β̃ → 0 because β̃ ≤ 2
2+δ , and finally ξ < β̃

6
by assumption. Part (b) is proven in Lemma 4.16.

A.2. 1d Gross–Pitaevskii equation for strongly confined 3d bosons

233



Proposition 3.5 in [4] implies that for any β1 ∈ (0, β̃], γ<a (t) and γ<b (t) are bounded
by

|γ<a (t)|+ |γ<b (t)| . e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}(∣∣EψU
β̃
f
β̃
(t)− EΦ

U
β̃
f
β̃
(t)
∣∣

+ ⟪ψ, n̂ψ⟫+ µβ̃

ε +
(
ε2

µβ̃

) 1
2

+N−
β1
2 +N−1+β1+ξ + µη

)
,

(76)

where EψU
β̃
f
β̃
(t) and EΦ

U
β̃
f
β̃
(t) denote the respective quantities corresponding to (9) and

(10) but with wµ replaced by U
β̃
f
β̃

and b by b(U
β̃
f
β̃
). Note that the energy difference∣∣EψU

β̃
f
β̃
(t) − EΦ

U
β̃
f
β̃
(t)
∣∣ enters only in the estimate of γ<b (t), exclusively in the term (24)

in [4, Proposition 3.4], which is given by

−2N(N − 1)=⟪ψN,ε(t), qΦ
1 q

Φ
2 m̂

a
−1p

χε

1 pχ
ε

2 (U
β̃
f
β̃
)(12)p2p

χε

1 qΦ
1 ψ

N,ε(t)⟫ . (77)

To obtain a bound in terms of |Eψ(t)− EΦ(t)| instead of |EψU
β̃
f
β̃
(t)− EΦ

U
β̃
f
β̃
(t)|, we need

a new estimate of (77) by means of Lemma 4.12.
Define l̂ := Nm̂a

−1. We apply Lemma 4.14c and 4.14d with the choice β1 = 0, i.e.

Θ0
d2

dx2
h0 = U

β̃
f
β̃
, where pχ

ε

1 pχ
ε

2 (U
β̃
f
β̃
)(12)pχ

ε

1 pχ
ε

2 = pχ
ε

1 pχ
ε

2 U
β̃
f
β̃
(x1 − x2). Integrating by

parts and subsequently inserting the identity 1A1 + 1A1
before ∂x1q

Φ
1 ψ yields

(77) . N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
0 ( d2

dx21
h

(12)
0 )p2p

χε

1 qΦ
1 ψ⟫∣∣∣

≤ N
∣∣∣⟪1A1∂x1q

Φ
1 ψ, q

Φ
2 Θ

(12)
0 ( d

dx1
h

(12)
0 )p2p

χε

1 l̂1q
Φ
1 ψ⟫∣∣∣ (78)

+N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ,Θ

(12)
0 ( d

dx1
h

(12)
0 )p2p

χε

1 1A1∂x1q
Φ
1 ψ⟫∣∣∣ (79)

+N
∣∣∣⟪∂x1qΦ

1 ψ,1A1
qΦ

2 ( d
dx1

h
(12)
0 )Θ

(12)
0 pχ

ε

1 pχ
ε

2 pΦ
2 l̂1q

Φ
1 ψ⟫∣∣∣ (80)

+N
∣∣∣⟪1A1

pΦ
2 ( d

dx1
h

(12)
0 )Θ

(12)
0 pχ

ε

1 pχ
ε

2 qΦ
2 l̂q

Φ
1 ψ, ∂x1q

Φ
1 ψ⟫∣∣∣ (81)

+N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ, (

d
dx1

Θ
(12)
0 )( d

dx1
h

(12)
0 )p2p

χε

1 qΦ
1 ψ⟫∣∣∣ . (82)

To estimate (78), note that 1A1∂x1q
Φ
1 ψ and l̂1p

χε

1 qΦ
1 ψ are symmetric in {z2, ..., zN},

hence Lemma 4.4 implies

(78) . N‖1A1∂x1q
Φ
1 ψ‖‖pΦ

2 ( d
dx1

h
(12)
0 )‖op

(
‖l̂1qΦ

1 q
Φ
2 ψ‖+N−

1
2 ‖l̂1qΦ

1 ψ‖
)

4.14c

. e(t)
(
‖1A1∂x1q

Φ
1 ψ‖2 + ⟪ψ, n̂ψ⟫+N−

1
2 ‖1A1∂x1q

Φ
1 ψ‖

)

by Lemma 4.14c because ‖l̂1qΦ
1 ψ‖ . 1 by Lemma 4.1c and ‖l̂qΦ

1 q
Φ
2 ψ‖ . ‖n̂ψ‖ by

Lemma 4.1d. (79) is immediately controlled by

(79) . e(t)‖1A1∂x1q
Φ
1 ψ‖ ⟪ψ, n̂ψ⟫ 1

2 . e(t)
(
‖1A1∂x1q

Φ
1 ψ‖2 + ⟪ψ, n̂ψ⟫) .

Similarly, (82) . e(t) ⟪ψ, n̂ψ⟫. To estimate the two remaining terms, let

(sΦ
2 , t

Φ
2 ) ∈ {(pΦ

2 , q
Φ
2 ), (qΦ

2 , p
Φ
2 )}
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and l̂j ∈ {l̂, l̂1}. By Lemma 4.13b and Lemma 4.7a,

(80) + (81)

. N‖∂x1qΦ
1 ψ‖‖1A1

sΦ
2 ( d

dx1
h

(12)
0 )Θ

(12)
0 tΦ2 p

χε

2 pχ
ε

1 l̂jq
Φ
1 ψ‖

. Ne(t)µd−
1
3

(
‖sΦ

2 ( d2

dx21
h

(12)
0 )Θ

(12)
0 tΦ2 p

χε

2 pχ
ε

1 l̂jq
Φ
1 ψ‖

+ ‖sΦ
2 ( d

dx1
h

(12)
0 )( d

dx1
Θ

(12)
0 )tΦ2 p

χε

2 pχ
ε

1 l̂jq
Φ
1 ψ‖

+ ‖sΦ
2 ( d

dx1
h

(12)
0 )Θ

(12)
0 tΦ2 p

χε

2 pχ
ε

1 ∂x1 l̂jq
Φ
1 ψ‖

+ ε‖sΦ
2 ( d

dx1
h

(12)
0 )Θ

(12)
0 tΦ2 p

χε

2 ∇y1pχ
ε

1 l̂jq
Φ
1 ψ‖

)

. e(t)Nµd−
1
3 ‖pΦ

2 Uβ̃fβ̃(x1 − x2)‖op

+e(t)Nµd−
1
3 ‖( d

dx1
h

(12)
0 )pΦ

2 ‖op

(
‖ d

dxΘ0‖L∞(R) +N ξe2(t) + ε‖∇y1pχ
ε

1 ‖op

)

as ‖∂x1 l̂jqΦ
1 ψ‖ . ‖l̂j‖op‖∂x1qΦ

1 ψ‖ . N ξe(t) by Lemma 4.2b and Lemma 4.1. The last

line is bounded by e3(t)µd−
1
3N ξ by Lemma 4.14c and 4.14d and Lemma 4.7a. Finally,

note that |x1 − x2| < R
β̃
. µβ̃ for (x1 − x2) ∈ suppU

β̃
f
β̃
, hence

‖pΦ
2 Uβ̃fβ̃(x1 − x2)‖op = ‖pΦ

2 1|·|<Rβ̃ (x1 − x2)‖op‖Uβ̃fβ̃‖L∞(R)

4.6d

. e(t)‖U
β̃
f
β̃
‖L∞(R)‖1|·|<R

β̃
‖L2(R) . e(t)N−1µ−

β̃
2 .

The last bound follows since ‖1|x1−x2|<Rβ̃‖L2(R) . µ
β̃
2 and as

∣∣∣Uβ̃fβ̃(x)
∣∣∣ =

∫

R2

dy1|χε(y1)|2
∫

R2

dy2|χε(y2)|2(U
β̃
f
β̃
)(x, y1 − y2)

≤ ε−2

∫

R2

dy1|χε(y)|2
∫

|y|<R
β̃

dy‖U
β̃
f
β̃
‖L∞(R3) . ε−2µ1−β̃,

where we have used that |y| < R
β̃

for (x, y) ∈ suppU
β̃
f
β̃

as above and that χε is

normalised and ‖U
β̃
f
β̃
‖L∞(R3) . µ1−3β̃. Hence,

(77) . e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}(
α<ξ (t) + (Nεδ)1−β̃ +N−1+β̃ + µd−

1
3
− β̃

2

)
, (83)

where we have used Lemma 4.12 and the fact that µd−
1
3N ξ < µd−

1
3
− β̃

2 and N−
1
2 <

µd−
1
3
− β̃

2 .

Combining this new bound for (77) with the remaining estimates of [4, Proposi-
tion 3.5], we find

|γ<(t)| . e(t) exp

{
e2(t) +

∫ t

0
e2(s) ds

}
×
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×
(
α<ξ (t) +

(
Nεδ

)1−β̃
+N−1+β̃+ξ + µd−

1
3
− β̃

2

)
,

where we have chosen β1 = β̃ and used that −1 + 3β̃
2 + ξ > 0, µ1−β̃ < N−1+β̃+ξ,

µβ̃

ε < N−
β̃
2 < N−1+β̃+ξ and εµ−

β̃
2 < (Nεδ)

β̃
2 < (Nεδ)1−β̃.

4.5.2 Proof of the bound for γa(t)

By definition of r̂ and with Lemma 4.7f, Lemma 4.10b and Lemma 4.1b, we compute

|(28)|

. N3

∣∣∣∣⟪(V ‖(t, z1)− V ‖(t, (x1, 0))
)
ψ, g

(12)

β̃

(
p1p2m̂

b + (p1q2 + q1p2)m̂a
)
ψ⟫∣∣∣∣

+N3

∣∣∣∣⟪ψ, g(12)

β̃

(
p1p2m̂

b + (p1q2 + q1p2)m̂a
)(

V ‖(t, z1)− V ‖(t, (x1, 0))
)
ψ⟫∣∣∣∣

≤ 2N3‖(V ‖(t, z1)− V ‖(t, (x1, 0)))ψ‖‖g(12)

β̃
p1‖op

(
‖m̂a‖op + ‖m̂b‖op

)

. e3(t)N1+ξ− β̃
2 ε2+β̃ = e3(t)

(
Nεδ

)1+ξ− β̃
2
ε2+β̃−δ(1+ξ− β̃

2
) < e3(t)ε2

as β̃ − δ(1 + ξ − β̃
2 ) > 0 and since 1 + ξ − β̃

2 > 0.

4.5.3 Proof of the bound for γb(t)

Estimate of (29). By Lemma 4.10b, Lemma 4.1b and Lemma 4.5a and as −1− β̃
2 +ξ < 0,

|(29)| . N‖Φ‖2L∞(R)‖g
(12)

β̃
p1‖op

(
‖m̂a‖op + ‖m̂b‖op

)

. e3(t)N−1− β̃
2

+ξε1+β̃ < e3(t)ε1+β̃.

Estimate of (30). Note that b
β̃

= b(U
β̃
f
β̃
) = b by (46), hence (30) = 0.

Estimate of (31). By definition of r̂ and due to the symmetry of ψ,

|(31)| ≤ N2

∣∣∣∣⟪ψ, g(12)

β̃
p1m̂

bp2Z
(12)ψ⟫+ 2⟪ψ, g(12)

β̃
p1q2m̂

ap1Z
(12)ψ⟫∣∣∣∣

. N2‖p1g
(12)

β̃
‖op

(
‖m̂a‖op + ‖m̂b‖op

)
×

×
∥∥∥p1

(
w(12)
µ − b

N−1(|Φ(x1)|2 + |Φ(x2)|2)
)
ψ
∥∥∥

. e(t)N−
β̃
2

+ξε1+β̃
(
‖p1w

(12)
µ ψ‖+N−1‖Φ‖2L∞(R)

)

. e3(t)N−1− β̃
2

+ξε1+β̃ < e3(t)ε1+β̃

as a consequence of Lemma 4.10b, Lemma 4.1b, Lemma 4.7e and Lemma 4.5a.
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4.5.4 Proof of the bound for γc(t)

|(32)|

. N2

∣∣∣∣⟪1supp g
β̃
(z1 − z2)ψ, (∇1g

(12)

β̃
) ·
(
p2∇1(p1m̂

b + q1m̂
a)ψ +∇1p1q2m̂

aψ
)⟫∣∣∣∣

≤ N2‖1supp g
β̃
(z1 − z2)ψ‖

(
‖(∇1g

(12)

β̃
)p2‖op‖∇1p1‖op‖m̂b‖op

+‖(∇1g
(12)

β̃
)∇1p1‖op‖m̂a‖op + ‖(∇1g

(12)

β̃
)p2‖op‖∇1q1m̂

aψ‖
)

. e2(t)ε2β̃− 5
3N

1
2

+ξ−β̃ < e2(t)N
1
2

+ξ−β̃ < e2(t)N−1+ξ+β̃

because 2β̃ − 5
3 > 0 and 1

2 − β̃ < −1 + β̃ as β̃ > 5
6 . In the third step, we have used

Lemma 4.10e, Lemma 4.1b, Lemma 4.7a, Lemma 4.11 and the fact that

‖∇1q1m̂
aψ‖

4.2b
≤ ‖p1m̂

a
1∇1(1− p1)ψ‖+ ‖q1m̂

a∇1(1− p1)ψ‖
4.1a

. ‖m̂a‖op (‖∇1ψ‖+ ‖∇1p1ψ‖)
4.7a

. N−1+ξε−1.

4.5.5 Proof of the bound for γd(t)

Estimate of (33). With Lemma 4.10b, Lemma 4.1b and Lemma 4.5a,

|(33)| . N3

∣∣∣∣⟪ψ, g(12)

β̃
p1p2b

[
|Φ(x3)|2, m̂b

]
ψ⟫∣∣∣∣

+N3

∣∣∣∣⟪ψ, g(12)

β̃
(p1q2 + q1p2) b

[
|Φ(x3)|2, m̂a

]
ψ⟫∣∣∣∣

. N3‖g(12)

β̃
p1‖op‖Φ‖2L∞(R)

(
‖m̂a‖op + ‖m̂b‖op

)

. e3(t)N1+ξ− β̃
2 ε1+β̃ < e3(t)

(
Nεδ

)1+ξ− β̃
2

analogously to the estimate of γa(t).

Estimate of (34). Observe first that

r̂ = m̂bp1p2 + m̂a(p1(1− p2) + (1− p1)p2) = m̂a(p1 + p2) + (m̂b − 2m̂a)p1p2.

As a consequence,

|(34)| . N3

∣∣∣∣⟪ψ, g(12)

β̃
[w(13)
µ , r̂ ]ψ⟫∣∣∣∣

≤ N3

∣∣∣∣⟪ψ, g(12)

β̃
p2[w(13)

µ , m̂a]ψ⟫∣∣∣∣ (84)

+N3

∣∣∣∣⟪ψ, g(12)

β̃
w(13)
µ p1m̂

aψ⟫∣∣∣∣ (85)

+N3

∣∣∣∣⟪ψ, g(12)

β̃
p1(m̂a + p2(m̂b − 2m̂a))p1w

(13)
µ ψ⟫∣∣∣∣ (86)
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+N3

∣∣∣∣⟪ψ, g(12)

β̃
w(13)
µ p2p1(m̂b − 2m̂a)ψ⟫∣∣∣∣ . (87)

We estimate (84) to (87) separately.

(84) = N3

∣∣∣∣⟪ψ, g(12)

β̃
p2

[
w(13)
µ , p1p3(m̂a − m̂a

2) + (p1q3 + q1p3)(m̂a − m̂a
1)
]
ψ⟫∣∣∣∣ .

By definition of m̂c and m̂d,

p1p3(m̂a − m̂a
2) = p1p3m̂

d + p1p3 (ma(N + 1)PN−1 +m(N + 2)PN )

= p1p3m̂
d,

(p1q3 + q1p3)(m̂a − m̂a
1) = (p1q3 + q1p3)m̂c.

This leads to

(84) ≤ N3

∣∣∣∣⟪w(13)
µ ψ, g

(12)

β̃
p21suppwµ(z1 − z3)

(
p1p3m̂

d + (p1q3 + q1p3)m̂c
)
ψ⟫∣∣∣∣

+N3

∣∣∣∣⟪ψ, g(12)

β̃
p2

(
p1p3m̂

d + (p1q3 + q1p3)m̂c
)
w(13)
µ ψ⟫∣∣∣∣

. N3‖g(12)

β̃
p2‖op

(
‖m̂d‖op + ‖m̂c‖op

)
×

×
(
‖w(13)

µ ψ‖‖1suppwµ(z1 − z3)p1‖op + ‖p1w
(13)
µ ψ‖

)

. e3(t)N−1+3ξ− β̃
2 ε1+β̃ < e3(t)ε1+β̃

by Lemma 4.7, Lemma 4.10b and Lemma 4.1b. In order to estimate (85), observe first

that g
(12)

β̃
w

(13)
µ 6= 0 implies |z2− z3| . R

β̃
. This can be seen as follows: g

(12)

β̃
6= 0 implies

|z1 − z2| ≤ Rβ̃ and w
(13)
µ 6= 0 implies |z1 − z3| ≤ µ. Together, this yields

|z2 − z3| ≤ |z1 − z2|+ |z1 − z3| ≤ Rβ̃ + µ ≤ 2R
β̃
.

Consequently, (85) can be written as

(85) = N3

∣∣∣∣⟪ψ, g(12)

β̃
w(13)
µ 1B2R

β̃
(0)(z2 − z3)p1m̂

aψ⟫∣∣∣∣
= N3

∣∣∣∣⟪p11suppwµ(z1 − z3)w(13)
µ g

(12)

β̃
ψ,1B2R

β̃
(0)(z2 − z3)m̂aψ⟫∣∣∣∣

≤ N3‖p11suppwµ(z1 − z3)‖op‖gβ̃‖L∞(R3)‖w(13)
µ ψ‖‖1B2R

β̃
(0)(z2 − z3)m̂aψ‖

. e3(t)N1+ξ−β̃ε2β̃− 2
3 < e3(t)

(
Nεδ

)1+ξ−β̃

by Lemma 4.7 and as 2β̃ − 2
3 − δ(1 + ξ − β̃) > 0. We have used that as in the proof of

Lemma 4.10e,

‖1B2R
β̃

(0)(z2 − z3)m̂aψ‖2 . ε−
4
3µ2β̃(‖∂x1m̂aψ‖2 + ε2‖∇y1m̂aψ‖2)

. N−2+2ξ−2β̃ε4β̃− 4
3 e2(t)
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because by Lemma 4.1b, Lemma 4.2b and Lemma 4.7,

‖∂x1m̂aψ‖ . ‖m̂a‖op (‖∂x1p1ψ‖+ ‖∂x1(1− p1)ψ‖) . N−1+ξe(t)

and analogously ‖∇y1m̂aψ‖ . N−1+ξε−1. The remaining two terms (86) and (87) can
be estimated as

(86) . N3‖g(12)

β̃
p1‖op

(
‖m̂a‖op + ‖m̂b‖op

)
‖p1w

(13)
µ ψ‖

. e3(t)N−
β̃
2

+ξε1+β̃ < e3(t)ε1+β̃,

(87) = N3

∣∣∣∣⟪w(13)
µ ψ, g

(12)

β̃
p21suppwµ(z1 − z3)p1(m̂b − 2m̂a)ψ⟫∣∣∣∣

≤ N3‖w(13)
µ ψ‖‖g(12)

β̃
p2‖op‖1suppwµ(z1 − z3)p1‖op

(
‖m̂b‖op + 2‖m̂a‖op

)

. e3(t)N−
β̃
2

+ξε1+β̃ < e3(t)ε1+β̃,

where we used that ξ < β̃
6 as well as Lemma 4.7, Lemma 4.1b and Lemma 4.10b.

4.5.6 Proof of the bound for γe(t)

Using again Lemma 4.2c, |γe(t)| can be written as

|(35)| . N4

∣∣∣∣⟪ψ, g(12)

β̃

[
w(34)
µ , p3p4(r̂ − r̂2) + (p3q4 + q3p4)(r̂ − r̂1)

]
ψ⟫∣∣∣∣ . (88)

By definition of r̂ and m̂c/d/e/f , we obtain

p3p4(r̂ − r̂2) + (p3q4 + q3p4)(r̂ − r̂1)

= (p1q2 + q1p2)(p3q4 + q3p4)m̂c + (p1q2 + q1p2)p3p4m̂
d

+p1p2(p3q4 + q3p4)m̂e + p1p2p3p4m̂
f .

Due to the symmetry of (88) under the exchanges 1↔ 2 and 3↔ 4, this yields

|(35)| . N4

∣∣∣∣⟪ψ, g(12)

β̃
p1q2

[
w(34)
µ , p3q4m̂

c + p3p4m̂
d
]
ψ⟫∣∣∣∣ (89)

+N4

∣∣∣∣⟪ψ, g(12)

β̃
p1p2

[
w(34)
µ , p3q4m̂

e + p3p4m̂
f
]
ψ⟫∣∣∣∣ , (90)

where by Lemma 4.7e, Lemma 4.10b and Lemma 4.1b,

(89) ≤ N4

∣∣∣∣⟪ψ,w(34)
µ p3g

(12)

β̃
p1q2(q4m̂

c + p4m̂
d)ψ⟫∣∣∣∣

+N4

∣∣∣∣⟪ψ, g(12)

β̃
p1q2(q4m̂

c + p4m̂
d)p3w

(34)
µ ψ⟫∣∣∣∣

. N4‖p3w
(34)
µ ψ‖‖g(12)

β̃
p1‖op

(
‖m̂c‖op + ‖m̂d‖op

)

. e3(t)N−
β̃
2

+3ξε1+β̃ < e3(t)ε1+β̃

as ξ < β̃
6 . Analogously, one derives the same bound for (90).
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4.5.7 Proof of the bound for γf (t)

Finally, as a consequence of Lemma 4.1, Lemma 4.5a and Lemma 4.10,

|(36)| . N2

∣∣∣∣⟪ψ, g(12)

β̃
p2

[
b|Φ(x1)|2, m̂bp1 + m̂aq1

]
ψ⟫∣∣∣∣

+N2

∣∣∣∣⟪ψ, g(12)

β̃

[
b|Φ(x1)|2, p1m̂

a
]
q2ψ⟫

∣∣∣∣

. N2‖Φ‖2L∞(R)

(
‖p2g

(12)

β̃
‖op

(
‖m̂a‖op + ‖m̂b‖op

)
+ ‖g(12)

β̃
ψ‖‖q2m̂

aψ‖
)

. e3(t)N−
β̃
2

+ξε1+β̃ + e2(t)ε . e2(t)ε.

4.6 Proof of Proposition 3.4

Using Lemma 4.1b and Lemma 4.10b, we estimate

N(N − 1)<⟪ψ, g(12)

β̃
r̂ψ⟫ . N2‖g(12)

β̃
p1‖op

(
‖m̂a‖op + ‖m̂b‖op

)
. e(t)N ξ− β̃

2 ε1+β̃.
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H.-C. Nägerl. Bloch oscillations in the absence of a lattice. Science, 356:945–948,
2017.

[28] P. Pickl. On the time dependent Gross–Pitaevskii- and Hartree equation.
arXiv:0808.1178, 2008.

[29] P. Pickl. Derivation of the time dependent Gross–Pitaevskii equation without pos-
itivity condition on the interaction. J. Stat. Phys., 140(1):76–89, 2010.

[30] P. Pickl. A simple derivation of mean field limits for quantum systems. Lett. Math.
Phys., 97(2):151–164, 2011.

[31] P. Pickl. Derivation of the time dependent Gross–Pitaevskii equation with external
fields. Rev. Math. Phys., 27(01):1550003, 2015.

[32] I. Rodnianski and B. Schlein. Quantum fluctuations and rate of convergence towards
mean field dynamics. Commun. Math. Phys., 291(1):31–61, 2009.

[33] T. Tao. Nonlinear Dispersive Equations: Local and Global Analysis, volume 106.
American Mathematical Soc., 2006.

A. Accepted Publications

242



B. Submitted manuscripts

B.1. Derivation of the 2d Gross–Pitaevskii equation for
strongly confined 3d bosons

243



Derivation of the 2d Gross–Pitaevskii equation for strongly

confined 3d bosons

Lea Boßmann∗

Abstract

We study the dynamics of a system of N interacting bosons in a disc-shaped trap,
which is realised by an external potential that confines the bosons in one spatial
dimension to a region of order ε. The interaction is non-negative and scaled in such
a way that its scattering length is of order (N/ε)−1, while its range is proportional
to (N/ε)−β with scaling parameter β ∈ (0, 1]. The choice β = 1 corresponds to the
physically relevant Gross–Pitaevskii regime.
We consider the simultaneous limit (N, ε) → (∞, 0) and assume that the system
initially exhibits Bose–Einstein condensation. We prove that condensation is pre-
served by the N -body dynamics, where the time-evolved condensate wave function
is the solution of a two-dimensional non-linear equation. The strength of the non-
linearity depends on the scaling parameter β. For β ∈ (0, 1), we obtain a cubic
defocusing non-linear Schrödinger equation, while the choice β = 1 yields a Gross–
Pitaevskii equation featuring the scattering length of the interaction. In both cases,
the coupling parameter depends on the confining potential.

1 Introduction

Since two decades, it has been experimentally possible to realise quasi-two dimensional
Bose gases in disc-shaped traps [14, 31, 33]. The study of such systems is physically
of particular interest since they permit the detection of inherently two-dimensional ef-
fects and serve as models for different statistical physics phenomena [17, 18, 35]. In
this article, our aim is to contribute to the mathematically rigorous understanding of
such systems. We consider a Bose–Einstein condensate of N identical, non-relativistic,
interacting bosons in a disc-shaped trap, which effectively confines the particles in one
spatial direction to an interval of length ε. We study the dynamics of this system in the
simultaneous limit (N, ε)→ (∞, 0), where the Bose gas becomes quasi two-dimensional.
To describe the N bosons, we use the coordinates

z = (x, y) ∈ R2+1 ,

where x denotes the two longitudinal dimensions and y is the transverse dimension.
The confinement in the y-direction is modelled by the scaled potential 1

ε2
V ⊥

(y
ε

)
for

∗Fachbereich Mathematik, Eberhard Karls Universität Tübingen
Auf der Morgenstelle 10, 72076 Tübingen, Germany
E-mail: lea.bossmann@uni-tuebingen.de
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0 < ε� 1 and some V ⊥ : R→ R. In units such that ~ = 1 and m = 1
2 , the Hamiltonian

is given by

Hµ,β(t) =
N∑

j=1

(
−∆j +

1

ε2
V ⊥

(yj
ε

)
+ V ‖(t, zj)

)
+

∑

1≤i<j≤N
wµ,β(zi − zj) , (1)

where ∆ denotes the Laplace operator on R3 and V ‖ : R × R3 → R is an additional
external potential, which may depend on time. The interaction wµ,β between the par-
ticles is purely repulsive and scaled in dependence of the parameters N and ε. In this
paper, we consider two fundamentally different scaling regimes, corresponding to differ-
ent choices of the scaling parameter β ∈ R: β ∈ (0, 1) yields the non-linear Schrödinger
(NLS) regime, while β = 1 is known as the Gross–Pitaevskii regime. Making use of the
parameter

µ :=
ε

N
,

the Gross–Pitaevskii regime is realised by scaling an interaction w : R3 → R, which is
compactly supported, spherically symmetric and non-negative, as

wµ(z) =
1

µ2
w

(
z

µ

)
. (2)

For the NLS regime, we will consider a more generic form of the interaction (see Defini-
tion 2.2). For the length of this introduction, let us focus on the special case

wµ,β(z) = µ1−3β w
(
µ−βz

)
(3)

with β ∈ (0, 1). Clearly, (2) equals (3) with the choice β = 1. Both scaling regimes
describe very dilute gases, and we comment on their physical relevance below.

The N -body wave function ψN,ε(t) ∈ L2(R3N ) at time t ∈ R is determined by the
Schrödinger equation 




i d
dtψ

N,ε(t) = Hµ,β(t)ψN,ε(t)

ψN,ε(0) = ψN,ε0

(4)

with initial datum ψN,ε0 ∈ L2
+(R3N ) := ⊗NsymL

2(R3). We assume that this initial state
exhibits Bose–Einstein condensation, i.e., that the one-particle reduced density matrix

γ
(1)

ψN,ε0

of ψN,ε0 ,

γ
(1)

ψN,ε0

:= Tr2,...,N |ψN,ε0 〉〈ψN,ε0 | , (5)

converges to a projection onto the so-called condensate wave function ϕε0 ∈ L2(R3). At
low energies, the strong confinement in the transverse direction causes the condensate
wave function to factorise in the limit ε → 0 into a longitudinal part Φ0 ∈ L2(R2) and
a transverse part χε ∈ L2(R),

ϕε0(z) = Φ0(x)χε(y).
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The transverse part χε is given by the normalised ground state of − d2

dy2 + 1
ε2
V ⊥(yε ),

which is defined by (
− d2

dy2 + 1
ε2
V ⊥

( ·
ε

))
χε = E0

ε2
χε .

Here, E0 denotes the minimal eigenvalue of the unscaled operator − d2

dy2 + V ⊥, corre-
sponding to the normalised ground state χ. The relation of χε and χ is

χε(y) := 1√
ε
χ
(y
ε

)
. (6)

In this paper, we derive an effective description of the many-body dynamics ψN,ε(t).
We show that if the system initially forms a Bose–Einstein condensate with factorised
condensate wave function, then the dynamics generated by Hµ,β(t) preserve this prop-
erty. Under the assumption that

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣∣γ
(1)

ψN,ε0

− |ϕε0〉〈ϕε0|
∣∣∣∣ = 0 ,

where the limit (N, ε)→ (∞, 0) is taken along a suitable sequence, we show that

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|

∣∣∣ = 0

with time-evolved condensate wave function ϕε(t) = Φ(t)χε. While the transverse part
of the condensate wave function remains in the ground state, merely undergoing phase
oscillations, the longitudinal part is subject to a non-trivial time evolution. We show
that this evolution is determined by the two-dimensional non-linear equation





i ∂∂tΦ(t, x) =
(
−∆x + V ‖(t, (x, 0)) + bβ|Φ(t, x)|2

)
Φ(t, x) =: hβ(t)Φ(t, x)

Φ(0) = Φ0 .
(7)

The coupling parameter bβ in (7) depends on the scaling regime and is given by

bβ =





‖w‖L1(R3)

∫

R
|χ(y)|4 dy for β ∈ (0, 1),

8πa

∫

R
|χ(y)|4 dy for β = 1,

where a denotes the scattering length of w (see Section 3.2 for a definition). The evolu-
tion equation (7) provides an effective description of the dynamics. Since the N bosons
interact, it contains an effective one-body potential, which is given by the probability
density N |Φ(t)|2 times the two-body scattering process times a factor

∫
R |χε(y)|4 dy from

the confinement. At low energies, the scattering is to leading order described by the
s-wave scattering length aµ,β of the interaction wµ,β, which scales as aµ,β ∼ µ for the
whole parameter range β ∈ (0, 1] (see [11, Lemma A.1]) and characterises the length
scale of the inter-particle correlations.

For the regime β ∈ (0, 1), we find aµ,β � µβ, i.e., the scattering length is negligible
compared to the range of the interaction in the limit (N, ε)→ (∞, 0). In this situation,
the first order Born approximation 8πaµ,β ≈

∫
R3 wµ,β(z) dz is a valid description of the

scattering length and yields above coupling parameter bβ for β ∈ (0, 1).
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In the scaling regime β = 1, the first order Born approximation breaks down since
aµ,1 ∼ µ, which implies that the correlations are visible on the length scale µ of the
interaction even in the limit (N, ε)→ (∞, 0). Consequently, the coupling parameter b1
contains the full scattering length, which makes (7) a Gross–Pitaevskii equation.

Physically, the scaling β = 1 is relevant because it corresponds to an (N, ε)-in-
dependent interaction via a suitable coordinate transformation. The Gross–Pitaevskii
regime is characterised by the requirement that the kinetic energy per particle (in the
longitudinal directions) is of the same order of magnitude as the total energy per particle
(without counting the energy from the confinement or the external potential). For N
bosons which interact via a potential with scattering length A in a trap with longitudinal
extension L and transverse size εL, the former scales as Ekin ∼ L−2. The latter can be
computed as Etotal ∼ A%3d ∼ AN/(L3ε), where %3d denotes the particle density. Both
quantities being of the same order implies the scaling condition A/L ∼ ε/N .

The choice A ∼ 1 entails L ∼ N/ε, which corresponds to an (N, ε)-independent
interaction potential. Hence, to capture N bosons in a strongly asymmetric trap while
remaining in the Gross–Pitaevskii regime, one must increase the longitudinal length scale
of the trap as N/ε and the transverse scale as N . For our analysis, we choose to work
instead in a setting where L ∼ 1, thus we consider interactions with scattering length
A ∼ ε/N . Both choices are related by the coordinate transform z 7→ (ε/N)z, which
comes with the time rescaling t 7→ (ε/N)2t in the N -body Schrödinger equation (4).

For the scaling regime β ∈ (0, 1), there is no such coordinate transform relating wµ,β
to a physically relevant (N, ε)-independent interaction. We consider this case mainly
because the derivation of the Gross–Pitaevskii equation for β = 1 relies on the cor-
responding result for β ∈ (0, 1). The central idea of the proof is to approximate the
interaction wµ by an appropriate potential with softer scaling behaviour covered by the
result for β ∈ (0, 1), and to control the remainders from this substitution. We follow the
approach developed by Pickl in [30], which was adapted to the problem with strong con-
finement in [4] and [5], where an effectively one-dimensional NLS resp. Gross–Pitaevskii
equation was derived for three-dimensional bosons in a cigar-shaped trap. The model
considered in [4, 5] is analogous to our model (1) but with a two-dimensional confine-
ment, i.e., where (x, y) ∈ R1+2. Since many estimates are sensitive to the dimension
and need to be reconsidered, the adaptation to our problem with one-dimensional con-
finement is non-trivial. A detailed account of the new difficulties is given in Remarks 4
and 5.

To the best of our knowledge, the only existing derivation of a two-dimensional evo-
lution equation from the three-dimensional N -body dynamics is by Chen and Holmer
in [8]. Their analysis is restricted to the range β ∈ (0, 2

5), which in particular does not
include the physically relevant Gross–Pitaevskii case. In this paper, we extend their
result to the full regime β ∈ (0, 1] and include a larger class of confining traps as well
as a possibly time-dependent external potential. We impose different conditions on the
parameters N and ε, which are stronger than in [8] for small β but much less restric-
tive for larger β (see Remark 3). Related results for a cigar-shaped confinement were
obtained in [4, 5, 9, 22].

Regarding the situation without strong confinement, the first mathematically rig-
orous justification of a three-dimensional NLS equation from the quantum many-body
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dynamics of three-dimensional bosons with repulsive interactions was by Erdős, Schlein
and Yau in [11], who extended their analysis to the Gross-Pitaevskii regime in [12]. With
a different approach, Pickl derived effective evolution equations for both regimes [30],
providing also estimates of the rate of convergence. Benedikter, De Oliveira and Schlein
proposed a third and again different strategy in [3], which was then adapted by Bren-
necke and Schlein in [6] to yield the optimal rate of convergence. For two-dimensional
bosons, effective NLS dynamics of repulsively interacting bosons were first derived by
Kirkpatrick, Schlein and Staffilani in [23]. This result was extended to more singular
scalings of the interaction, including the Gross–Pitaevskii regime, by Leopold, Jeblick
and Pickl in [20], and two-dimensional attractive interactions were covered in [10, 21, 24].

The dimensional reduction of non-linear one-body equations was studied in [2] by
Ben Abdallah, Méhats, Schmeiser and Weishäupl, who consider an n + d-dimensional
NLS equation with a d-dimensional quadratic confining potential. In the limit where the
diameter of this confinement converges to zero, they obtain an effective n-dimensional
NLS equation. A similar problem for a cubic NLS equation in a quantum waveguide,
resulting in a limiting one-dimensional equation, was covered by Méhats and Raymond
in [28].

The remainder of the paper is structured as follows: in Section 2, we state our as-
sumptions and present the main result. The strategy of proof for the NLS scaling is
explained in Section 3.1, while the Gross–Pitaevskii scaling is covered in Section 3.2.
Section 3.3 contains the proof of our main result, which depends on five propositions.
Section 4 collects some auxiliary estimates, which are used in Sections 5 and 6 to prove
the propositions for β ∈ (0, 1) and β = 1, respectively.

Notation. We use the notations A . B, A & B and A ∼ B to indicate that there
exists a constant C > 0 independent of ε,N, t, ψN,ε0 ,Φ0 such that A ≤ CB, A ≥ CB
or A = CB, respectively. This constant may, however, depend on the quantities fixed
by the model, such as V ⊥, χ and V ‖. Besides, we will exclusively use the symbol ·̂ to
denote the weighted many-body operators from Definition 3.1 and use the abbreviations

⟪·, ·⟫ := 〈·, ·〉L2(R3N ) , ‖·‖ := ‖·‖L2(R3N ) and ‖·‖op := ‖·‖L(L2(R3N )).

Finally, we write x+ and x− to denote (x+ σ) and (x− σ) for any fixed σ > 0, which is
to be understood in the following sense: Let the sequence (Nn, εn)n∈N → (∞, 0). Then

f(N, ε) . N−x
−

:⇔ for any σ > 0, f(Nn, εn) . N−x+σ
n for sufficiently large n ,

f(N, ε) . εx
−

:⇔ for any σ > 0, f(Nn, εn) . εx−σn for sufficiently large n ,

f(N, ε) . µx
−

:⇔ for any σ > 0, f(Nn, εn) . µx−σn for sufficiently large n .

Note that these statements concern fixed σ in the limit (N, ε)→ (∞, 0) and do in general
not hold uniformly as σ → 0.

2 Main result

Our aim is to derive an effective description of the dynamics ψN,ε(t) in the simultaneous
limit (N, ε) → (∞, 0). To this end, we consider families of initial data ψN,ε0 along
sequences (Nn, εn) with the following two properties:
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Definition 2.1. Let {(Nn, εn)}n∈N ⊂ N × (0, 1) such that limn→∞(Nn, εn) = (∞, 0),
and let µn := εn/Nn. The sequence is called

• (Θ -)admissible, if

lim
n→∞

εΘ
n

µn
= Nnε

Θ−1
n = 0 ,

• (Γ-)moderately confining, if

lim
n→∞

εΓ
n

µn
= Nnε

Γ−1
n =∞ .

Our result holds for sequences (N, ε) that are (Θ,Γ)-admissible with parameters





1

β
= Γ < Θ <

3

β
β ∈ (0, 1) ,

1 < Γ < Θ ≤ 3 β = 1 .

(8)

To make a clear distinction between the cases β ∈ (0, 1) and β = 1, we use the following
notation:

• β ∈ (0, 1) : (Θ,Γ)β =
(
δ
β ,

1
β

)
. Hence, (8) implies 1 < δ < 3.

• β = 1 : (Θ,Γ)1 = (ϑ, γ). Here, (8) implies 1 < γ < ϑ ≤ 3.

By imposing the admissibility condition, we ensure that the diameter ε of the confin-
ing potential does not shrink too slowly compared to the range µβ of the interaction.
Consequently, the energy gap above the transverse ground state, which scales as ε−2,
is always large enough to sufficiently suppress transverse excitations. Equivalently, the
condition can be written as

εΘ

µ
= NεΘ−1 � 1 ⇔





εδ

µβ
� 1 β ∈ (0, 1)

εϑ

µ
� 1 β = 1

(9)

for sufficiently large N and small ε. Clearly, it is necessary to choose Θ > 1, and the
condition is weaker for larger Θ. In the proof, we require the admissibility condition
to control the orthogonal excitations in the transverse direction (see Remark 4), which
results in the respective upper bound for Θ. The threshold Θ = 3+ admits N ∼
ε−2, which has a physical implication: if the confinement is realised by a harmonic
trap V ⊥(y) = ω2y2, the frequency ωε of the rescaled oscillator ε−2V ⊥(y/ε) scales as
ωε = ωε−2. Hence, Θ = 3+ means that the frequency of the confining trap grows
proportionally to N .

The moderate confinement condition implies that, for sufficiently largeN and small ε,

µ

εΓ
= N−1ε1−Γ � 1 ⇔





µβ

ε
� 1 β ∈ (0, 1)

µ

εγ
� 1 β = 1 .

(10)

B.1. 2d Gross–Pitaevskii equation for strongly confined 3d bosons

249



0 1N 1
0

1

(a) β = 1
3

0 1N 1
0

1

(b) β = 2
3

0 1N 1
0

1

(c) β = 5
6

0 1N 1
0

1

(d) β = 1

Figure 1: Best possible coverage of the parameter space N × [0, 1] for some exemplary
choices of β ∈ (0, 1) and for β = 1. We chose the least restrictive conditions satisfying

Definition 2.1, i.e., (Θ,Γ)β = ( 3
β

−
, 1
β ) and (Θ,Γ)1 = (3, 1+). To make the moderate

confinement condition Γ = 1+ for β = 1 visible, we implemented it as Γ = 1.01.
Theorem 1 applies in the dark grey area, while the white region is excluded from our
analysis. In the light grey part, we expect the dynamics to be effectively described by a
free evolution equation. Plotted with Matplotlib [19].

Moderate confinement means that ε does not shrink too fast compared to µβ. For
β ∈ (0, 1), it implies that the interaction is always supported well within trap. This is
automatically true for β = 1 because µ/ε = N−1, but we require a somewhat stronger
condition to handle the Gross–Pitaevskii scaling (see Remark 5). This leads to the
additional moderate confinement condition for β = 1 with parameter γ > 1, which is
clearly a weaker restriction for smaller γ. The upper bound Γ < Θ is necessary to ensure
the mutual compatibility of admissibility and moderate confinement.

From a technical point of view, the moderate confinement condition allows us to
compensate for certain powers of ε−1 in terms of powers of N−1, while the admissibility
condition admits the control of powers of N by powers of ε.

To visualise the restrictions due to admissibility and moderate confinement, we plot
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in Figure 1 the largest possible subset of the parameter space N × [0, 1] which can be
covered by our analysis. A sequence (N, ε)→ (∞, 0) passes through this space from the
top right to the bottom left corner. The two boundaries correspond to the two-stage
limits where first N →∞ at constant ε and subsequently ε → 0, and vice versa. The
edge cases are not contained in our model.

The sequences (N, ε) → (∞, 0) within the dark grey region in Figure 1 are covered
by our analysis and yield an NLS or Gross–Pitaevskii equation, respectively. Naturally,
these restrictions are meaningful only for sufficiently large N and small ε, which im-
plies that mainly the section of the plot around the bottom left corner is of importance.
The white region in figures (a) to (c) is excluded from our analysis by the admissibility
condition. In figure (d), there is an additional prohibited region due to moderate con-
finement. Note that Chen and Holmer impose constraints which are weaker for small
β and stronger for larger β ∈ (0, 2

5), which are discussed in Remark 3 and plotted in
Figure 2.

The light grey region in Figure 1, which is present for β ∈ (0, 1), is not contained
in Theorem 1 as a consequence of the moderate confinement condition. We expect the
dynamics in this region to be described by an effective equation with coupling parameter
bβ = 0 since it corresponds to the condition ε/µβ � 1, implying that the the confinement
shrinks much faster than the interaction. Consequently, the interaction is predominantly
supported in a region that is essentially inaccessible to the bosons, which results in a free
evolution equation. For β < 1

3 and a cigar-shaped confinement by Dirichlet boundary
conditions, this was shown in [22].

As mentioned above, we will consider interactions in the NLS scaling regime β ∈
(0, 1) which are of a more generic form than (3).

Definition 2.2. Let β ∈ (0, 1) and η > 0. Define the set Wβ,η as the set containing all
families

wµ,β : (0, 1)→ L∞(R3,R), µ 7→ wµ,β,

such that for any µ ∈ (0, 1)





(a) ‖wµ,β‖L∞(R3) . µ1−3β,

(b) wµ,β is non-negative and spherically symmetric,

(c) %β := diam(suppwµ,β) ∼ µβ,

(d) lim
(N,ε)→(∞,0)

µ−η
∣∣∣∣bβ,N,ε(wµ,β)− lim

(N,ε)→(∞,0)
bβ,N,ε(wµ,β)

∣∣∣∣ = 0,

where

bβ,N,ε(wµ,β) := N

∫

R3

wµ,β(z) dz

∫

R

|χε(y)|4 dy = µ−1

∫

R3

wµ,β(z) dz

∫

R

|χ(y)|4 dy .

In the sequel, we will abbreviate bβ,N,ε(wµ,β) ≡ bβ,N,ε.

Condition (d) in Definition 2.2 regulates how fast the (N, ε)-dependent coupling pa-
rameter bβ,N,ε converges to its limit as (N, ε)→ (∞, 0). For the special case (3), we find
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that bβ,N,ε = ‖w‖L1(R3)

∫
R |χ(y)|4 dy is independent of N and ε, hence this interaction

is contained in Wβ,η for any choice of η > 0.

Throughout the paper, we will use two notions of one-particle energies:

• The “renormalised” energy per particle: for ψ ∈ D(Hµ,β(t)
1
2 ),

Eψwµ,β (t) := 1
N ⟪ψ,Hµ,β(t)ψ⟫− E0

ε2
, (11)

where E0 denotes the lowest eigenvalue of − d2

dy2 +V ⊥(y). By rescaling, the lowest

eigenvalue of − d2

dy2 + 1
ε2
V ⊥(yε ) is given by E0

ε2
.

• The effective energy per particle: for Φ ∈ H1(R2) and b ∈ R,

EΦ
b (t) :=

〈
Φ,
(
−∆x + V ‖(t, (x, 0)) + b

2 |Φ|2
)

Φ
〉
L2(R2)

. (12)

We can now state our assumptions:

A1 Interaction potential.

• β ∈ (0, 1): Let wµ,β ∈ Wβ,η for some η > 0.

• β = 1: Let wµ be given by (2) with w ∈ L∞(R3,R) spherically symmet-
ric, non-negative and with suppw ⊆ {z ∈ R3 : |z| ≤ 1}.

A2 Confining potential. Let V ⊥ : R→ R such that − d2

dy2 +V ⊥ is self-adjoint and has a

non-degenerate ground state χ with energy E0 < inf σess(−∆y+V ⊥). Assume that
the negative part of V ⊥ is bounded and that χ ∈ C2

b(R), i.e., χ is bounded and twice
continuously differentiable with bounded derivatives. We choose χ normalised and
real.

A3 External field. Let V ‖ : R× R3 → R such that for fixed z ∈ R3, V ‖(·, z) ∈ C1(R).

Further, assume that for each fixed t ∈ R, V ‖(t, ·), V̇ ‖(t, ·) ∈ L∞(R3)∩C1(R3) and

∂yV
‖(t, ·), ∂yV̇ ‖(t, ·) ∈ L∞(R3).

A4 Initial data. Let (N, ε) → (∞, 0) be admissible and moderately confining with
parameters (Θ,Γ)β as in (8). Assume that the family of initial data ψN,ε0 ∈
D(Hµ,β(0))∩L2

+(R3N ) with ‖ψN,ε0 ‖2 = 1, is close to a condensate with condensate
wave function ϕε0 = Φ0χ

ε for some normalised Φ0 ∈ H4(R2), i.e.,

lim
(N,ε)→(∞,0)

TrL2(R3)

∣∣∣γ(1)

ψN,ε0

− |Φ0χ
ε〉〈Φ0χ

ε|
∣∣∣ = 0 . (13)

Further, let

lim
(N,ε)→(∞,0)

∣∣∣∣E
ψN,ε0
wµ,β (0)− EΦ0

bβ
(0)

∣∣∣∣ = 0. (14)

In our main result, we prove the persistence of condensation in the state ϕε(t) = Φ(t)χε

for initial data ψN,ε0 from A4. Naturally, we are interested in times for which the
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condensate wave function Φ(t) exists, and, moreover, we require H4(R2)-regularity of
Φ(t) for the proof. Let us therefore introduce the maximal time of H4(R2)-existence,

T ex
V ‖ := sup

{
t ∈ R+

0 : ‖Φ(t)‖H4(R2) <∞
}
, (15)

where Φ(t) is the solution of (7) with initial datum Φ0 from A4.

Remark 1. The regularity of the initial data is for many choices of V ‖ propagated by the
evolution (7). For several classes of external potentials, global existence in H4(R2)-sense
and explicit bounds on the growth of ‖Φ(t)‖H4(R2) are known:

• The case without external field, V ‖ = 0, was covered in [34, Corollary 1.3]: for
initial data Φ0 ∈ Hk(R2) with k > 0, there exists Ck > 0 depending on ‖Φ0‖Hk(R2)

such that
‖Φ(t)‖Hk(R2) ≤ Ck(1 + |t|) 4

7
k+‖Φ0‖Hk(R2)

for all t ∈ R. If the initial data are further restricted to the set

Σk :=

{
f ∈ L2(R2) : ‖f‖Σk :=

∑

|α|+|β|≤k
‖xα∂βxf‖L2(R2) <∞

}
⊂ Hk(R2) ,

the bound is even uniform in t ∈ R. This is, for Φ0 ∈ Σk, there exists C > 0 such
that

‖Φ(t)‖Hk(R2) < C

for all t ∈ R [7, Section 1.2].

• For time-dependent external potentials V ‖(t, (x, 0)) that are at most quadratic in
x uniformly in time, global existence of Hk(R2)-solutions with double exponential
growth was shown in [7, Corollary 1.4] for initial data Φ0 ∈ Σk:

Assume that V ‖(·, (·, 0)) ∈ L∞loc(R × R2) is real-valued such that the map x 7→
V ‖(t, (x, 0)) is C∞(R2), the map x 7→ V (t, (x, 0)) is C∞(R2) for almost all t ∈ R,
and the map t 7→ sup|x|≤1 |V ‖(t, (x, 0))| is L∞(R). Moreover, let ∂αxV

‖(·, (·, 0)) ∈
L∞(R×R2) for all α ∈ N2 with |α| ≥ 2. Let Φ0 ∈ Σk(R2) with k ≥ 2. Then there
exists a constant C > 0 such that

‖Φ(t)‖Hk(R2) ≤ CeeCt

for all t ∈ R. In case of a time-independent harmonic potential and initial data
Φ0 ∈ Σk, this can be improved to an exponential rather than double exponen-
tial bound. Note, however, that unbounded potentials V ‖(t, z) are excluded by
assumption A3.

Theorem 1. Let β ∈ (0, 1] and assume that the potentials wµ,β, V ⊥ and V ‖ satisfy A1

– A3. Let ψN,ε0 be a family of initial data satisfying A4, let ψN,ε(t) denote the solution

of (4) with initial datum ψN,ε0 , and let γ
(1)

ψN,ε(t)
denote its one-particle reduced density

matrix as in (5). Then for any 0 ≤ T < T ex
V ‖,

lim
(N,ε)→(∞,0)

sup
t∈[0,T ]

Tr
∣∣∣γ(1)

ψN,ε(t)
− |Φ(t)χε〉〈Φ(t)χε|

∣∣∣ = 0, (16)
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lim
(N,ε)→(∞,0)

sup
t∈[0,T ]

∣∣∣EψN,ε(t)wµ,β
(t)− EΦ(t)

bβ
(t)
∣∣∣ = 0 , (17)

where the limits are taken along the sequence from A4. Here, Φ(t) is the solution of (7)
with initial datum Φ(0) = Φ0 from A4 and with coupling parameter

bβ :=





lim
(N,ε)→(∞,0)

bβ,N,ε for β ∈ (0, 1) ,

8πa

∫

R
|χ(y)|4 dy for β = 1

(18)

with bβ,N,ε from Definition 2.2.

Remark 2. (a) By [15, Theorem 1], the ground state χε of − d2

dy2 + 1
ε2
V ⊥( ·ε) is expo-

nentially localised on a scale of order ε for any potential V ⊥ satisfying A2. Valid
examples for V ⊥ are harmonic potentials or smooth, bounded potentials that ad-
mit at least one bound state below the essential spectrum.

(b) Due to assumptions A1–A3, the HamiltonianHµ,β(t) is for any t ∈ R self-adjoint on
its time-independent domain D(Hµ,β). Since we assume continuity of t 7→ V ‖(t) ∈
L(L2(R3)), [16] implies that the family {Hµ,β(t)}t∈R generates a unique, strongly
continuous, unitary time evolution that leaves D(Hµ,β) invariant. By imposing the
further assumptions on V ‖, we can control the growth of the one-particle energies
and the interactions of the particles with the external potential. Note that it is
physically important to include time-dependent external traps, since this admits
non-trivial dynamics even if the system is initially prepared in an eigenstate.

(c) Assumption A4 states that the system is initially a Bose–Einstein condensate
which factorises in a longitudinal and a transverse part. In [32, Theorems 1.1 and
1.3], Schnee and Yngvason prove that both parts of the assumption are fulfilled by
the ground state of Hµ,β(0) for β = 1 and V ‖(0, z) = V (x) with V locally bounded
and diverging as |x| → ∞.

(d) The situation of a strong confinement in two directions is studied in [4, 5]. Our
proof can be understood as an adaptation of these works, and we summarise the
mathematical differences in Remarks 4 and 5.

(e) Our proof yields an estimate of the rate of the convergence (16). Since we did not
focus on obtaining an optimal rate, we do not state it explicitly. However, it can
be recovered from the bounds in Propositions 3.6 and 3.11 by optimising over the
parameters.

Remark 3. The sequences (N, ε) → (∞, 0) covered by Theorem 1 are restricted by
admissibility and moderate confinement condition (Definition 2.1 and (8)). To conclude
this section, let us discuss these constraints:

• By (8), the weakest possible constraints are given by (Θ,Γ)β = ( 3
β

−
, 1
β ) for β ∈

(0, 1) and (Θ,Γ)1 = (3, 1+) for β = 1. Instead of choosing these least restrictive
values, we present Theorem 1 and all estimates in explicit dependence of the
parameters Θ and Γ, making it more transparent where the conditions enter the
proof. Moreover, the rate of convergence improves for more restrictive choices of
the parameters Γ and Θ.
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• In [8], Chen and Holmer prove Theorem 1 for the regime β ∈ (0, 2
5) under different

assumptions on the sequence (N, ε). The subset of the parameter range N× [0, 1]
covered by their analysis is visualised in Figure 2.
While no admissibility condition is required for their proof, they impose a moderate
confinement condition which is equivalent to our condition for β ∈ (0, 3

11 ]. For
larger β ∈ ( 3

11 ,
2
5), they restrict the parameter range much stronger1, and their

condition becomes so restrictive with increasing β that it limitates the range of
scaling parameters to β ∈ (0, 2

5).

• No restriction comparable to the admissibility condition is needed for the ground
state problem in [32]. Given the work [28] where the strong confinement limit of
the three-dimensional NLS equation is taken, this suggests that our result should
hold without any such restriction. However, for the present proof, the condition
is indispensable (see Remarks 4 and 5).

• As argued above, the moderate confinement condition for β ∈ (0, 1) is optimal,
in the sense that we expect a free evolution equation if µβ/ε → ∞. For β = 1,
we require that µ/εγ → 0 for γ > 1. Note that the choice γ = 1 would mean no
restriction at all because µ/ε = N−1. Our proof works for γ that are arbitrarily
close to 1. However, since the estimates are not uniform in γ, the case γ = 1 is
excluded.

• Although no moderate confinement condition is required to derive the one-dimen-
sional Gross–Pitaevskii equation in the cigar-shaped case [5], our analysis covers a
considerably larger subset of the parameter space N× [0, 1] than is included in [5].

In that work, the admissibility condition is given as Nε
2
5

−
→ 0, which is much

more restrictive than our condition.

3 Proof of the main result

The proof of Theorem 1, both for the NLS scaling β ∈ (0, 1) and the Gross–Pitaevskii
case β = 1, follows the approach developed by Pickl in [30]. The main idea is to avoid
a direct estimate of the differences in (16) and (17), but instead to define a functional

α<ξ,wµ,β : R × L2(R3N ) × L2(R3) → R+
0 , (t, ψN,ε(t), ϕε(t)) 7→ α<ξ,wµ,β (t, ψN,ε(t), ϕε(t))

in such a way that

lim
(N,ε)→(∞,0)

α<ξ,wµ,β (t, ψN,ε(t), ϕε(t)) = 0 ⇐⇒ (16) ∧ (17).

Physically, the functional α<ξ,wµ,β measures the part of the wave function ψN,ε(t) that

remains outside the condensed phase ϕε(t), and is therefore also referred to as a counting

1More precisely, Chen and Holmer consider sequences (N, ε) such that N � ε−2ν(β), where ν(β) :=

max
{

1−β
2β

, 5β/4−1/12
1−5β/2

, β/2+5/6
1−β , β+1/3

1−2β

}
. For the regime β ∈ (0, 3

11
], this implies ν(β) = 1−β

2β
, which is

equivalent to the choice Γ = 1
β

and thus exactly our moderate confinement condition. For β ∈ ( 3
11
, 1

3
], one

obtains ν(β) = β+1/3
1−2β

, which corresponds to the choice Γ = 5
3−6β

> 1
β

, and for β ∈ ( 1
3
, 2

5
), one concludes

ν(β) = 5β/4−1/12
1−5β/2

, corresponding to Γ = 5
6−15β

> 1
β

. Since the moderate confinement condition is weaker

for smaller Γ, we conclude that our condition is weaker for β > 3
11

.
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0 1N 1
0

1

(a) d = 2, β = 3
11

0 1N 1
0

1

(b) d = 2, β = 1
3

0 1N 1
0

1

(c) d = 2, β = 11
30

0 1N 1
0

1

(d) d = 2, β = 23
60

Figure 2: Coverage of the parameter space N × [0, 1] for some exemplary choices of
β ∈ (0, 2

5). In [8], Chen and Holmer cover sequences within the dark grey region,
while the white and light grey area are excluded. In comparison, Theorem 1 applies to
all sequences enclosed between the black dashed line and the black dotted line, where
the dashed line corresponds to the admissibility and the dotted line to the moderate
confinement condition. Limiting sequences within the light grey region are expected to
yield a free effective evolution equation. Plotted with Matplotlib [19].

functional. The index ξ is a parameter which is required for technical reasons and will
be defined below. The index wµ,β indicates that the evolutions of ψN,ε(t) and ϕε(t) are
generated by Hµ,β(t) and hβ(t), which depend, directly or indirectly, on the interaction
wµ,β. To define the functional α<ξ,wµ,β , we recall the projectors onto the condensate wave

function that were introduced in [29, 22]:

Definition 3.1. Let ϕε(t) = Φ(t)χε, where Φ(t) is the solution of the NLS equation (7)
with initial datum Φ0 from A4 and with χε as in (6). Let

p := |ϕε(t)〉 〈ϕε(t)| ,

where we drop the t- and ε -dependence of p in the notation. For i ∈ {1, . . . , N}, define
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the projection operators on L2(R3N )

pj := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ p⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−j

and qj := 1− pj .

Further, define the orthogonal projections on L2(R3)

pΦ := |Φ(t)〉 〈Φ(t)| ⊗ 1L2(R), qΦ := 1L2(R3) − pΦ,

pχ
ε

:= 1L2(R2) ⊗ |χε〉 〈χε| , qχ
ε

:= 1L2(R3) − pχ
ε
,

and define pΦ
j , qΦ

j , pχ
ε

j and qχ
ε

j on L2(R3N ) analogously to pj and qj . Finally, for
0 ≤ k ≤ N , define the many-body projections

Pk =
(
q1 · · · qk pk+1 · · · pN

)
sym

:=
∑

J⊆{1,...,N}
|J |=k

∏

j∈J
qj
∏

l /∈J
pl

and Pk = 0 for k < 0 and k > N . Further, for any function f : N0 → R+
0 and d ∈ Z,

define the operators f̂ , f̂d ∈ L
(
L2(R3N )

)
by

f̂ :=
N∑

k=0

f(k)Pk , f̂d :=

N−d∑

j=−d
f(j + d)Pj .

Clearly,
∑N

k=0 Pk = 1. Besides, note the useful relations p = pΦpχ
ε
, qΦq = qΦ,

qχ
ε
q = qχ

ε
and q = qχ

ε
+ qΦpχ

ε
= qΦ + pΦqχ

ε
. In the sequel, we will make use of the

following weight functions:

Definition 3.2. Define

n : N0 → R+
0 , k 7→ n(k) :=

√
k
N ,

and, for some ξ ∈ (0, 1
2),

m : N→ R+
0 , m(k) :=




n(k) for k ≥ N1−2ξ ,

1
2

(
N−1+ξk +N−ξ

)
else .

Further, define the weight functions m] : N0 → R+
0 , ] ∈ {a, b, c, d, e}, by

ma(k) := m(k)−m(k + 1), mb(k) := m(k)−m(k + 2),
mc(k) := ma(k)−ma(k + 1), md(k) := ma(k)−ma(k + 2),
me(k) := mb(k)−mb(k + 1), mf (k) := mb(k)−mb(k + 2).

The corresponding weighted many-body operators are denoted by m̂]. Finally, define

r̂ := m̂bp1p2 + m̂a(p1q2 + q1p2).

Note that m equals n with a smooth, ξ-dependent cut-off to soften the singularity
of dn

dk for small k.
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Definition 3.3. For β ∈ (0, 1), define

α<ξ,wµ,β (t) := α<ξ,wµ,β (t, ψN,ε(t), ϕε(t)) := ⟪ψN,ε(t), m̂ψN,ε(t)⟫+
∣∣EψN,ε(t)wµ,β

(t)− EΦ(t)
bβ

(t)
∣∣ .

The expression ⟪ψN,ε(t), m̂ψN,ε(t)⟫ is a suitably weighted sum of the expectation

values of Pkψ
N,ε(t), i.e., of the parts of ψN,ε(t) with k particles outside ϕε(t). As

m(0) ≈ 0 and m is increasing, Pkψ
N,ε(t) with larger k contribute more to α<ξ,wµ,β (t) than

Pkψ
N,ε(t) with smaller k. It is well known that the convergence ⟪ψN,ε(t), m̂ψN,ε(t)⟫→ 0

is equivalent to the convergence (16) of the one-particle reduced density matrix of ψN,ε(t)
to |ϕε(t)〉〈ϕε(t)|. Hence, the convergence α<ξ,wµ,β (t) → 0 is equivalent to (16) and (17).

The relation between the respective rates of convergence is stated in the following lemma,
whose proof is given in [4, Lemma 3.6]:

Lemma 3.4. For any t ∈ [0, T ex
V ‖), it holds that

Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|

∣∣∣ ≤
√

8α<ξ,wµ,β (t) ,

α<ξ,wµ,β (t) ≤
∣∣∣EψN,ε(t)wµ,β

(t)− EΦ(t)
bβ

(t)
∣∣∣+

√
Tr
∣∣∣γ(1)

ψN,ε(t)
− |ϕε(t)〉〈ϕε(t)|

∣∣∣+ 1
2N
−ξ .

3.1 The NLS case β ∈ (0, 1)

The strategy of our proof is to derive a bound for | d
dtα

<
ξ,wµ,β

(t)|, which leads to an

estimate of α<ξ,wµ,β (t) by means of Grönwall’s inequality. The first step is therefore to

characterise the expressions arising from this derivative.

Proposition 3.5. Assume A1 – A4 for β ∈ (0, 1). Let

w
(12)
µ,β := wµ,β(z1 − z2) and Z

(12)
β := w

(12)
µ,β −

bβ
N−1

(
|Φ(t, x1)|2 + |Φ(t, x2)|2

)

and define

L :=
{
Nm̂a

−1, Nm̂
b
−2

}
. (19)

Then
∣∣∣ d

dtα
<
ξ,wµ,β

(t)
∣∣∣ ≤

∣∣γa,<(t)
∣∣+ |γb,<(t)|

for almost every t ∈ [0, T ex
V ‖), where

γa,<(t) :=
∣∣∣⟪ψN,ε(t), V̇ ‖(t, z1)ψN,ε(t)⟫− 〈Φ(t), V̇ ‖(t, (x, 0))Φ(t)

〉
L2(R2)

∣∣∣ (20)

−2N=⟪ψN,ε(t), m̂a
−1q1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ

N,ε(t)⟫ , (21)

γb,<(t) := −N(N − 1)=⟪ψN,ε(t), Z(12)
β m̂ψN,ε(t)⟫ , (22)

=: γ
(1)
b,<(t) + γ

(2)
b,<(t) + γ

(3)
b,<(t) + γ

(4)
b,<(t) ,

with
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∣∣γ(1)
b,<(t)

∣∣ := N max
l̂∈L

∣∣∣⟪ψN,ε(t), l̂qΦ
1 p

χε

1 p2Z
(12)
β p1p2ψ

N,ε(t)⟫∣∣∣ , (23)

∣∣γ(2)
b,<(t)

∣∣ := N max
l̂∈L

max
t2∈{p2, q2, qΦ

2 p
χε

2 }

∣∣∣⟪ψN,ε(t), qχε1 t2 l̂w
(12)
µ,β p1p2ψ

N,ε(t)⟫∣∣∣ (24)

+N max
l̂∈L

∣∣∣⟪ψN,ε(t), qχε1 q2 l̂w
(12)
µ,β p1q

χε

2 ψN,ε(t)⟫∣∣∣ (25)

+N max
l̂∈L

∣∣∣⟪ψN,ε(t), qχε2 qΦ
1 p

χε

1 l̂w
(12)
µ,β p1q

χε

2 ψN,ε(t)⟫∣∣∣ (26)

+N max
l̂∈L

∣∣∣⟪ψN,ε(t), qχε1 qχ
ε

2 l̂w
(12)
µ,β p1p

χε

2 qΦ
2 ψ

N,ε(t)⟫∣∣∣ , (27)

∣∣γ(3)
b,<(t)

∣∣ := N max
l̂∈L

∣∣∣⟪ψN,ε(t), (qχε2 qΦ
1 p

χε

1 + qχ
ε

1 qΦ
2 p

χε

2 )l̂w
(12)
µ,β p1p

χε

2 qΦ
2 ψ

N,ε(t)⟫∣∣∣ (28)

+N max
l̂∈L

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 p

χε

1 pχ
ε

2 l̂w
(12)
µ,β p2q

χε

1 ψN,ε(t)⟫∣∣∣ , (29)

∣∣γ(4)
b,<(t)

∣∣ := N max
l̂∈L

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 l̂p

χε

1 pχ
ε

2 w
(12)
µ,β p1p2ψ

N,ε(t)⟫∣∣∣ (30)

+N max
l̂∈L

∣∣∣⟪ψN,ε(t), qΦ
1 q

Φ
2 l̂p

χε

1 pχ
ε

2 w
(12)
µ,β p1p

χε

2 qΦ
2 ψ

N,ε(t)⟫∣∣∣ (31)

+bβ max
l̂∈L

∣∣∣⟪ψN,ε(t), q1q2 l̂|Φ(t, x1)|2p1q2ψ
N,ε(t)⟫∣∣∣ . (32)

The term γa,< summarises all contributions from interactions between the particles
and the external field V ‖, while γb,< collects all contributions from the mutual interac-
tions between the bosons. The latter can be subdivided into four parts:

• γ(1)
b,< and γ

(4)
b,< contain the quasi two-dimensional interaction wµ,β(x1−x2) resulting

from integrating out the transverse degrees of freedom in wµ,β, which is given as

pχ
ε

1 pχ
ε

2 wµ,β(z1 − z2)pχ
ε

1 pχ
ε

2 =: wµ,β(x1 − x2)pχ
ε

1 pχ
ε

2

(see Definition 5.4). Hence, γ
(1)
b,< and γ

(4)
b,< can be understood as two-dimensional

analogue of the corresponding expressions in the three-dimensional problem with-
out confinement [30, Lemma A.4], and the estimates are inspired by [30]. Note

that γ
(1)
b,< contains the difference between the quasi two-dimensional interaction

potential wµ,β and the effective one-body potential bβ|Φ(t)|2, which means that
it vanishes in the limit (N, ε) → (∞, 0) only if (7) with coupling parameter bβ

is the correct effective equation. The last line (32) of γ
(4)
b,< contains merely the

effective interaction potential bβ|Φ(t)|2 instead of the pair interaction wµ,β, hence,
it is easily controlled.

• γ(2)
b,< and γ

(3)
b,< are remainders from the replacement wµ,β → wµ,β, hence they have

no three-dimensional equivalent. They are comparable to the expression γ
(2)
b in [4]

from the analogous replacement of the originally three-dimensional interaction by
its quasi one-dimensional counterpart.

B.1. 2d Gross–Pitaevskii equation for strongly confined 3d bosons

259



The second step is to control γa,< to γ
(4)
b,< in terms of α<ξ,wµ,β (t) and by expressions that

vanish in the limit (N, ε)→ (∞, 0). To write the estimates in a more compact form, let
us define the function eβ : [0, T ex

V ‖)→ [1,∞) as

e2
β(t) := ‖Φ(t)‖2H4(R2) + |Eψ

N,ε
0

wµ,β (0)|+ |EΦ0
bβ

(0)|+
t∫

0

‖V̇ ‖(s)‖L∞(R3) ds

+ sup
i,j∈{0,1}

‖∂it∂jyV ‖(t)‖L∞(R3) ,

(33)

where Φ(t) denotes the solution of (7) with initial datum Φ0 from A4. Note that eβ(t)

is bounded uniformly in N and ε because the only (N, ε)-dependent quantity E
ψN,ε0
wµ,β (0)

converges to EΦ0
bβ

(0) as (N, ε) → (∞, 0) by A4. The function eβ is particularly useful
since ∣∣EψN,ε(t)wµ,β

(t)
∣∣ ≤ e2

β(t)− 1 and
∣∣EΦ(t)
bβ

(t)
∣∣ ≤ e2

β(t)− 1

for any t ∈ [0, T ex
V ‖) by the fundamental theorem of calculus. Note that for a time-

independent external field V ‖, e2
β(t) . 1 as a consequence of Remark 1, hence E

ψN,ε(t)
wµ,β (t)

and EΦ(t)
bβ

(t) are in this case bounded uniformly in t ∈ [0, T ex
V ‖).

Proposition 3.6. Let β ∈ (0, 1) and assume A1 – A4 with parameters β and η in A1
and (Θ,Γ)β = ( δβ ,

1
β ) in A4. Let

0 < ξ < min
{

1
3 ,

1−β
2 , β , β(3−δ)

2(δ−β)

}
, 0 < σ < min

{
1−3ξ

4 , β − ξ
}
.

Then, for sufficiently small µ, the terms γa,< to γ
(4)
b,< from Proposition 3.5 are bounded

by
∣∣γa,<(t)

∣∣ . e3
β(t) ε+ eβ(t)⟪ψN,ε(t), n̂ψN,ε(t)⟫ ,

∣∣γ(1)
b,<(t)

∣∣ . e2
β(t)

(
µβ

ε +N−1 + µη
)
,

∣∣γ(2)
b,<(t)

∣∣ . e3
β(t)

((
εδ

µβ

) ξ
β

+ 1
2

+ ε
1−β

2

)
,

∣∣γ(3)
b,<(t)

∣∣ . e3
β(t)

((
δ
β

) 1
2
(
εδ

µβ

) ξ
β

+
(

1
1−β

) 1
2
N−

β
2

)
,

∣∣γ(4)
b,<(t)

∣∣ . e3
β(t)α<ξ (t) + e3

β(t)

(
µβ

ε +
(
ε3

µβ

) 1
2

+N−σ + µη + µ
1−β

2

)
.

Remark 4. (a) The estimates of γa,<, γ
(1)
b,< and γ

(2)
b,< work analogously to the corre-

sponding bounds in [4] and are briefly summarised in Sections 5.2.1 and 5.2.2.
While γa,< is easily bounded since it contains only one-body contributions, the

key for the estimate of γ
(1)
b,< is that for sufficiently large N and small ε,

N

∫
dy2|χε(y2)|2

∫
dz1|ϕε(z1)|2wµ,β(z1 − z2)

≈ N
(∫

dy2|χε(y2)|4
)
‖wµ,β‖L1(R3)|Φ(x2)|2 = bβ,N,ε|Φ(x2)|2
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due to sufficient regularity of ϕε and since the support of wµ,β shrinks as µβ. For
this argument, it is crucial that the sequence (N, ε) is moderately confining.

The main idea to control γ
(2)
b,< is an integration by parts, exploiting that the an-

tiderivative of wµ,β is less singular than wµ,β and that ∇ψN,ε(t) can be controlled

in terms of the energy E
ψN,ε(t)
wµ,β (t). To this end, we define the function hε as the

solution of the equation ∆hε = wµ,β on a three-dimensional ball with radius ε
and Dirichlet boundary conditions and integrate by parts on that ball. To prevent
contributions from the boundary, we insert a smoothed step function whose deriva-
tive can be controlled (Definition 5.1). To make up for the factors ε−1 from the

derivative, one observes that all expressions in γ
(2)
b,< contain at least one projection

qχ
ε
. Since ‖qχε1 ψN,ε(t)‖ = O(ε) (Lemma 4.9a), which follows since the spectral

gap between ground state and excitation spectrum grows proportionally to ε−2,
the projections qχ

ε
provide the missing factors ε. The second main ingredient is

the admissibility condition, which allows us to cancel small powers of N by powers
of ε gained from qχ

ε
.

(b) For γ
(3)
b,<, this strategy of a three-dimensional integration by parts does not work:

whereas qχ
ε

cancels the factor ε−1 from the derivative, we do not gain sufficient
powers of ε to compensate for all positive powers of N . Note that this problem
did not occur in [4], where the ratio of N and ε was different.2

To cope with γ
(3)
b,<, note that both (28) and (29) contain the expression pχ

ε

1 w
(12)
µ,β p

χε

1 ,

which, analogously to wµ,β, defines a function wµ,β(x1 − x2, y2) where one of
the y-variables is integrated out (Definition 5.4). We integrate by parts only
in the x-variable, which has the advantages that ∇x does not generate factors
ε−1 and that the x-antiderivative of wµ,β(·, y) diverges only logarithmically in µ−1

(Lemma 5.6b). Due to admissibility and moderate confinement condition, this can

be cancelled by any positive power of ε or N−1. In distinction to γ
(2)
b,<, we do not

integrate by parts on a ball with Dirichlet boundary conditions but instead add
and subtract suitable counter-terms as in [30] and integrate over R2. Note that
one obtains the same result when choosing the other path, but in this way the

estimates are easily transferable to γ
(4)
b,< (see below).

More precisely, we construct vρ(·, y) such that ‖wµ,β(·, y)‖L1(R2) = ‖vρ(·, y)‖L1(R2)

and that supp vρ(·, y) scales as ρ ∈ (µβ, 1] (Definition 5.4). As a consequence of
Newton’s theorem, the solution h%β ,ρ of ∆xh%β ,ρ = wµ,β − vρ is supported within

a two-dimensional ball with radius ρ. We then write wµ,β(·, y) = ∆xh%β ,ρ(·, y) +
vρ(·, y), integrate the first term by parts in x, and choose ρ sufficiently large
that the contributions from vρ can be controlled. The full argument is given in

2In the 3d → 1d case [4], the range of the interaction scales as µβ1d = (ε2/N)β , besides χε1d(y) =

ε−1χ1d(y/ε), and the admissibility condition reads ε2/µβ1d → 0. These slightly different formulas lead

to the estimate ‖(∇1h
1d
ε (z1 − z2))p1d

1 ‖op . N−1+ β
2 ε1−β , while we obtain in our case ‖(∇1h

(12)
ε )p1‖op .

N−1+ β
2 ε

1−β
2 (Lemma 5.2). Following the same path as in γ

(2)
b,<, e.g., for (28) (corresponding to (21)

in [4]), we obtain in the 1d problem the estimate ∼ N
β
2 ε1−β = (ε2/µβ1d)

1
2 , which can be controlled

by the respective admissibility condition. As opposed to this, we compute in our case that (28) ∼
N

β
2 ε

1−β
2 = (ε/µβ)

1
2 , which diverges due to moderate confinement.
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Sections 5.2.3 and 5.2.4.

(c) Finally, to estimate γ
(4)
b,< (Section 5.2.5), we define wµ,β as above and integrate by

parts in x, using an auxiliary potential vρ analogously to vρ (Definition 5.4). To
cope with the logarithmic divergences from the two-dimensional Green’s function,
we integrate by parts twice, following an idea from [30]. This is the reason why we

defined h%β ,ρ and h%β ,ρ on R2 and not on a ball, which would require the use of a
smoothed step function. While the results are the same when integrating by parts
only once, it turns out that the additional factors ρ−1 from a second derivative
hitting the step function cannot be controlled sufficiently well.

For (31), the bound ‖∇x1ψ
N,ε(t)‖2 . 1 from a priori energy estimates is insuffi-

cient, comparable to the situation in [30] and [4]. Instead, we require an improved
bound on the kinetic energy of the part of ψN,ε(t) with at least one particle or-
thogonal to Φ(t), given by ‖∇x1q

Φ
1 ψ

N,ε(t)‖2. Essentially, one shows that

∣∣EψN,ε(t)wµ,β
− EΦ(t)

bβ
(t)
∣∣

& ‖∇x1ψ
N,ε(t)‖2 − ‖∇xΦ(t)‖2 − O(1)

& ‖∇x1q
Φ
1 ψ

N,ε(t)‖2 + (‖∇x1p
Φ
1 ψ

N,ε(t)‖2 − ‖∇xΦ(t)‖2)− O(1)

≥ ‖∇x1q
Φ
1 ψ

N,ε(t)‖2 − ‖∇xΦ(t)‖2 ⟪ψN,ε(t), n̂ψN,ε(t)⟫− O(1) ,

which implies
‖∇x1q

Φ
1 ψ

N,ε(t)‖2 . α<ξ,wµ,β (t) + O(1) .

The rigorous proof of this bound (Lemma 5.7) is an adaptation of the correspond-
ing Lemma 4.21 in [4] and requires the new strategies described above, as well as
both moderate confinement and admissibility condition.

3.2 The Gross–Pitaevskii case β = 1

For an interaction wµ in the Gross–Pitaevskii scaling regime, the previous strategy,
i.e., deriving an estimate of the form | d

dtα
<
ξ,wµ

(t)| . α<ξ,wµ(t) + O(1), cannot work. To

understand this, let us analyse the term γ
(1)
b,<, which contains the difference between the

quasi two-dimensional interaction wµ,β and the effective potential b1|Φ(t)|2. As pointed
out in Remark 4a, the basic idea here is to expand |ϕε(z1 − z2)|2 around z2, which can
be made rigorous for sufficiently regular ϕε and yields

N

∫
dy2|χε(y2)|2

∫
dz1|ϕε(z1)|2wµ(z1 − z2) ≈ N

(∫
dy|χε(y)|4

)
‖wµ‖L1(R3)|Φ(x2)|2 .

(34)
Whereas this equals (at least asymptotically) the coupling parameter bβ for β ∈ (0, 1),
the situation is now different since b1 = 8πa

∫
|χ(y)|4 dy. In order to see that (34) and

b1 are not asymptotically equal, but actually differ by an error of O(1), let us briefly
recall the definition of the scattering length and its scaling properties.

The zero energy scattering equation for the interaction wµ = µ−2w(·/µ) is

{(
−∆ + 1

2wµ(z)
)
jµ(z) = 0 for |z| <∞ ,

jµ(z)→ 1 as |z| → ∞ .
(35)
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By [27, Theorems C.1 and C.2], the unique solution jµ ∈ C1(R3) of (35) is spherically
symmetric, non-negative and non-decreasing in |z|, and satisfies




jµ(z) = 1− aµ

|z| for |z| > µ,

jµ(z) ≥ 1− aµ
|z| else.

(36)

The parameter aµ ∈ R in (36) defines the scattering length of wµ. Equivalently,

8πaµ =

∫

R3

wµ(z)jµ(z) dz . (37)

From the scaling behaviour of (35), it is obvious that jµ(z) = jµ=1(z/µ) and that

aµ = µa , (38)

where a denotes the scattering length of the unscaled interaction w. Returning to the
original question, this implies that

b1 = 8πa

∫

R

|χ(y)|4 dy = N

∫

R

|χε(y)|4 dy

∫

R3

wµ(z)jµ(z) dz ,

and consequently

(34)− b1|Φ(x2)|2 = N |Φ(x2)|2
∫

R

|χε(y)|4 dy

∫

R3

wµ(z)(1− jµ(z))

≥ µ−1|Φ(x2)|2
∫

R

|χ(y)|4 dy (1− jµ(µ)) ‖wµ‖L1(R3) = O(1) ,

where we have used that ‖wµ‖L1(R3) = µ‖w‖L1(R3) and that jµ(z) is continuous and non-
decreasing, hence jµ(z) ≤ jµ(µ) for z ∈ suppwµ and 1 − jµ(µ) ≈ a. In conclusion, the

contribution from γ
(1)
b,< does not vanish if b1 is the coupling parameter in [4]. Naturally,

one could amend this by taking
∫
|χ(y)|4 dy‖w‖L1(R3) instead of b1 as parameter in the

non-linear equation. However, for this choice, the contributions from γ
(2)
b,< to γ

(4)
b,< would

not vanish in the limit (N, ε) → (∞, 0), as can easily be seen by setting β = 1 in
Proposition 3.6.

The physical reason why the Gross–Pitaevskii scaling is fundamentally different —
and why it requires a different strategy of proof — is the fact that the length scale aµ
of the inter-particle correlations is of the same order as the range µ of the interaction.
In contrast, for β ∈ (0, 1), the relation aµ,β � µβ implies that jµ,β ≈ 1 on the support
of wµ,β, hence the first order Born approximation 8πaµ,β ≈ ‖wµ,β‖L1(R3) applies in this
case.

Before explaining the strategy of proof for the Gross–Pitaevskii scaling, let us intro-
duce the auxiliary function f

β̃
∈ C1(R3). This function will be defined in such a way that

it asymptotically coincides with jµ on suppwµ but, in contrast to jµ, satisfies f
β̃
(z) = 1

for sufficiently large |z|, which has the benefit of 1− f
β̃

and ∇f
β̃

being compactly sup-
ported. To construct f

β̃
, we define the potential U

µ,β̃
such that the scattering length of

wµ − Uµ,β̃ equals zero, and define f
β̃

as the solution of the corresponding zero energy
scattering equation:
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Definition 3.7. Let β̃ ∈ (1
3 , 1). Define

U
µ,β̃

(z) :=

{
µ1−3β̃a for µβ̃ < |z| < %

β̃
,

0 else,

where %
β̃

is the minimal value in (µβ̃,∞] such that the scattering length of wµ − Uµ,β̃
equals zero. Further, let f

β̃
∈ C1(R3) be the solution of





(
−∆ + 1

2

(
wµ(z)− U

µ,β̃
(z)
))

f
β̃
(z) = 0 for |z| < %

β̃
,

f
β̃
(z) = 1 for |z| ≥ %

β̃
,

(39)

and define
g
β̃

:= 1− f
β̃
.

In the sequel, we will abbreviate

U
(ij)

µ,β̃
:= U

µ,β̃
(zi − zj) , g

(ij)

β̃
:= g

β̃
(zi − zj) and f

(ij)

β̃
:= f

β̃
(zi − zj).

In [5, Lemma 4.9], it is shown by explicit construction that a suitable %
β̃

exists and

that it is of order µβ̃. Note that Definition 3.7 implies in particular that
∫

R3

(
wµ(z)− U

µ,β̃
(z)
)
f
β̃
(z) dz = 0 , (40)

which is an equivalent way of expressing that the scattering length of wµ − Uµ,β̃ equals
zero. Heuristically, one may think of the condensed N -body state as a product state
that is overlaid with a microscopic structure described by f

β̃
, i.e.,

ψcor(t, z1, ..., zN ) :=
N∏

k=1

ϕε(t, zk)
∏

1≤l<m≤N
f
β̃
(zl − zm) . (41)

For β ∈ (0, 1), it holds that f
β̃
≈ 1, i.e., the condensate is approximately described by

the product (ϕε)⊗N — which is precisely the state onto which the operator P0 = p1 ···pN
projects. For the Gross–Pitaevskii scaling, however, f

β̃
is not approximately constant,

and the product state is no appropriate description of the condensed N -body wave
function. The idea in [30] is to account for this in the counting functional by replacing
the projection P0 onto the product state by the projection onto the correlated state ψcor.
In this spirit, one substitutes the expression ⟪ψ, m̂ψ⟫ in α<ξ,wµ,β (t) by

⟪ψ,∏
k<l

f
(lk)

β̃
m̂
∏

r<s

f
(rs)

β̃
ψ⟫ ≈ ⟪ψ, m̂ψ⟫−N(N − 1)<⟪ψ, g(12)

β̃
m̂ψ⟫ ,

where we expanded f
β̃

= 1− g
β̃

and kept only the terms which are at most linear in g
β̃
.

This leads to the following definition:

Definition 3.8.

αξ,wµ(t) := α<ξ,wµ(t)−N(N − 1)<⟪ψN,ε(t), g(12)

β̃
r̂ ψN,ε(t)⟫ .
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The new functional αξ,wµ(t) equals α<ξ,wµ(t) up to a correction term. Since the

convergence of α<ξ,wµ(t) is equivalent to (16) and (17), an estimate of αξ,wµ(t) is only

meaningful if this correction converges to zero as (N, ε) → (∞, 0). This is the reason
why we defined it using the operator r̂ (Definition 3.2) instead of m̂: as r̂ contains

additional projections p1 and p2, we can use the estimate ‖g(12)

β̃
p1‖op . ε−

1
2µ1+ β̃

2 instead

of ‖g
β̃
‖∞ . 1 (Lemma 6.2). In the following proposition, it is shown that this suffices

for the correction term to vanish in the limit.

Proposition 3.9. Assume A1 – A4. Then

∣∣∣∣N(N − 1)<⟪ψN,ε(t), g(12)

β̃
r̂ ψN,ε(t)⟫∣∣∣∣ . ε

for all t ∈ [0, T ex
V ‖).

By adding the correction term to α<ξ,wµ(t), we effectively replace wµ by U
µ,β̃
f
β̃

in the

time derivative of α<ξ,wµ(t). To explain what is meant by this statement, let us analyse

the contributions to the time derivative of αξ,wµ(t), which are collected in the following
proposition:

Proposition 3.10. Assume A1 – A4 for β = 1. Then

∣∣ d
dtαξ,wµ(t)

∣∣ ≤
∣∣γ<(t)

∣∣+
∣∣γa(t)

∣∣+ |γb(t)|+ |γc(t)|+ |γd(t)|+ |γe(t)|+ |γf (t)|

for almost every t ∈ [0, T ex
V ‖), where

γ<(t) :=

∣∣∣∣⟪ψN,ε(t), V̇ ‖(t, z1)ψN,ε(t)⟫− 〈Φ(t), V̇ ‖(t, (x, 0))Φ(t)
〉
L2(R2)

∣∣∣∣ (42)

−2N=⟪ψN,ε(t), q1m̂
a
−1

(
V ‖(t, z1)− V ‖(t, (x1, 0))

)
p1ψ

N,ε(t)⟫ (43)

−N(N − 1)=⟪ψN,ε(t), Z̃(12)m̂ψN,ε(t)⟫ , (44)

γa(t) := N2(N − 1)=⟪ψN,ε(t), g(12)

β̃

[
V ‖(t, z1)− V ‖(t, (x1, 0)), r̂

]
ψN,ε(t)⟫ , (45)

γb(t) := −N=⟪ψN,ε(t), b1(|Φ(t, x1)|2 + |Φ(t, x2)|2)g
(12)

β̃
r̂ ψN,ε(t)⟫ (46)

−N=⟪ψN,ε(t), (b
β̃
− b1)(|Φ(t, x1)|2 + |Φ(t, x2)|2) r̂ ψN,ε(t)⟫ (47)

−N(N − 1)=⟪ψN,ε(t), g(12)

β̃
r̂ Z(12)ψN,ε(t)⟫ , (48)

γc(t) := −4N(N − 1)=⟪ψN,ε(t), (∇1g
(12)

β̃
) · ∇1r̂ ψ

N,ε(t)⟫ , (49)

γd(t) := −N(N − 1)(N − 2)=⟪ψN,ε(t), g(12)

β̃

[
b1|Φ(t, x3)|2, r̂

]
ψN,ε(t)⟫ (50)

+2N(N − 1)(N − 2)=⟪ψN,ε(t), g(12)

β̃

[
w(13)
µ , r̂

]
ψN,ε(t)⟫ , (51)
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γe(t) := 1
2N(N − 1)(N − 2)(N − 3)=⟪ψN,ε(t), g(12)

β̃

[
w(34)
µ , r̂

]
ψN,ε(t)⟫ , (52)

γf (t) := −2N(N − 2)=⟪ψN,ε(t), g(12)

β̃

[
b1|Φ(t, x1)|2, r̂

]
ψN,ε(t)⟫ . (53)

Here, we have used the abbreviations

Z(ij) := w(ij)
µ − b1

N−1

(
|Φ(t, xi)|2 + |Φ(t, xj)|2

)
,

Z̃(ij) := U
(ij)

µ,β̃
f

(ij)

β̃
− b

β̃

N−1(|Φ(t, xi)|2 + |Φ(t, xj)|2),

where

b
β̃

:= lim
(N,ε)→(∞,0)

µ−1

∫

R3

U
µ,β̃

(z)f
β̃
(z) dz

∫

R2

|χ(y)|4 dy.

The proof of this proposition is given in Section 6.5. Note that the contributions to
the derivative d

dtαξ,wµ(t) fall into two categories:

• The terms (42)–(43) in γ< equal γa,< from Proposition 3.5, and (44) is exactly γb,<
with interaction potential U

µ,β̃
f
β̃
. Hence, estimating γ< is equivalent to estimating

the functional α<ξ,U
µ,β̃

f
β̃
(t), which arises from α<ξ,wµ(t) by replacing the interaction

wµ by U
µ,β̃
f
β̃
. Since U

µ,β̃
f
β̃
∈ W

β̃,η
for any η ∈ (0, 1− β̃) (Lemma 6.4), this is an

interaction in the NLS scaling regime, which was covered in the previous section.

• γa to γf can be understood as remainders from this substitution. γa collects
the contributions coming from the fact that the N -body wave function interacts
with a three-dimensional external trap V ‖, while only V ‖ evaluated on the plane
y = 0 enters in the effective equation (7). Since this is an effect of the strong
confinement, it has no equivalent in the three-dimensional problem [30], but the
same contribution occurs in the situation of a cigar-shaped confinement [5]. The
terms γb to γf are analogous to the corresponding expressions in [30] and [5].

The physical idea behind the replacement is that low-energy scattering at any potential is
to leading order described by the scattering length. Note that f

β̃
≈ 1 on suppU

µ,β̃
, hence

U
µ,β̃
≈ U

µ,β̃
f
β̃

and consequently the scattering length of wµ,β −Uµ,β̃fβ̃ is approximately

zero by construction (40). This implies that a sufficiently distant test particle with very
low energy cannot resolve the difference between the two potentials.

Proposition 3.11. Assume A1 – A4, let t ∈ [0, T ex
V ‖) and let

max
{
γ+1
2γ ,

5
6

}
< d < β̃ < 1, 0 < ξ < min

{
1−β̃

2 , 3−ϑβ̃
2(ϑ−1)

}
.

Then, for sufficiently small µ,

∣∣γ<(t)
∣∣ . e3

1(t)α<ξ,wµ + e4
1(t)

((
εϑ

µ

) β̃
2

+
( µ
εγ

) 1

β̃γ2 + ε
1−β̃

2 +N−d+ 5
6

)
,

∣∣γa(t)
∣∣ . e4

1(t)
(
εϑ

µ

)1+ξ− β̃
2
,
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∣∣γb(t)
∣∣ . e3

1(t) ε
1+β̃

2 ,

∣∣γc(t)
∣∣ . e3

1(t)

(
ε

1+β̃
2 +

( µ
εγ

) β̃
2
−ξ
)
,

∣∣γd(t)
∣∣ . e3

1(t)

((
εϑ

µ

)1+ξ−β̃
+ ε

1+β̃
2

)
,

∣∣γe(t)
∣∣ . e3

1(t) ε
1+β̃

2 ,
∣∣γf (t)

∣∣ . e3
1(t) ε

1+β̃
2 .

Remark 5. (a) To estimate γ<, observe first that we have chosen β̃ such that U
µ,β̃
f
β̃
∈

W
β̃,η

for some η, and such that assumption A4 with parameters (Θ,Γ)1 = (ϑ, γ)

makes the sequence (N, ε) at the same time (Θ,Γ)
β̃

-admissible/moderately con-
fining. Consequently, Proposition 3.6 yields

|γ<(t)| . α<ξ,U
µ,β̃

f
β̃
(t) + O(1) = ⟪ψN,ε, m̂ψN,ε⟫+

∣∣Eψ
N,ε(t)

U
µ,β̃

f
β̃

(t)− EΦ(t)
b
β̃

(t)
∣∣+ O(1) .

(54)
However, this does not yet complete the estimate for γ< since we need to bound all

expressions in Proposition 3.10 in terms of α<ξ,wµ = ⟪ψN,ε, m̂ψN,ε⟫+
∣∣Eψ

N,ε(t)
wµ (t)−

EΦ(t)
b1

(t)
∣∣, up to contributions O(1). By construction of f

β̃
, it follows that b

β̃
= b1

(see (86) in Lemma 6.4), hence EΦ(t)
b
β̃

(t) = EΦ(t)
b1

(t). On the other hand, heuristic

arguments3 indicate that E
ψN,ε(t)
U
µ,β̃

f
β̃

(t) and E
ψN,ε(t)
wµ (t) differ by an error of order

O(1), which implies that the right hand side of (54) is different from α<ξ,wµ(t) by

O(1).

By Remark 4c, this energy difference enters only in the estimate of (31) in γ
(4)
b,<

via ‖∇x1q
Φ
1 ψ

N,ε(t)‖2 . α<ξ,U
µ,β̃

f
β̃
(t) +O(1). For the Gross–Pitaevskii scaling of the

interaction, ‖∇x1q
Φ
1 ψ

N,ε(t)‖2 is not asymptotically zero because the microscopic
structure described by f

β̃
lives on the same length scale as the interaction and

thus contributes a kinetic energy of O(1). However, as this kinetic energy is
concentrated around the scattering centres, one can show a similar bound for
the kinetic energy on a subset A1 of R3N , where appropriate holes around these
centres are cut out (Definition 6.5). This is done in Section 6.3, where we show in
Lemma 6.7 that

‖1A1∇x1q
Φ
1 ψ

N,ε(t)‖2 . α<ξ,wµ(t) + O(1) .

The proof of this lemma is similar to the corresponding proof in [5, Lemma 4.12],
which, in turn, adjusts ideas from [30] to the problem with dimensional reduction.
However, since one key tool for the estimate is the Gagliardo–Nirenberg–Sobolev
inequality in the x-coordinates, the estimates depend in a non-trivial way on the

3See [5, pp. 1019–1020]. Essentially, when evaluated on the trial function ψcor from (41),

the energy difference is to leading order given by N ⟪ψcor(t), (w
(12)
µ − (Uµ,β̃fβ̃)(12))ψcor(t)⟫ ∼

N
∫

dz1|ϕε(t, z1)|2
∫

dz|fβ̃(z)|2(wµ(z) − Uµ,β̃(z)) ∼ µ−1
∫

dzgβ̃(z)wµ(z)fβ̃(z) ≥
µ−1gβ̃(µ)

∫
dzwµ(z)fβ̃(z) ∼ 8πa2, where we have dropped all sub-leading contributions.
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dimension of x. As one consequence, our estimate requires the moderate con-
finement condition with parameter γ > 1, where no such restriction was needed
in [5].

Finally, we adapt the estimate of (31). In distinction to the corresponding proof
in [5, Section 4.5.1], we need to integrate by parts in two steps to be able to control
the logarithmic divergences that are due to the two-dimensional Green’s function.
Inspired by an idea in [30], we introduce two auxiliary potentials vµβ2 and ν1

such that ‖U
µ,β̃
f
β̃
‖L1(R2) = ‖vµβ2‖L1(R2) = ‖ν1‖L1(R2), define h%

β̃
,µβ2 and hµβ2 ,1 as

the solutions of ∆xh%
β̃
,µβ2 = U

µ,β̃
f
β̃
− vµβ2 and ∆xhµβ2 ,1 = vµβ2 − ν1, and write

U
µ,β̃
f
β̃

= ∆xh%
β̃
,µβ2 + ∆xhµβ2 ,1 + ν1. The expressions depending on ν1 can be

controlled immediately, while we integrate the remainders by parts in x, making

use of different properties of h%
β̃
,µβ2 and hµβ2 ,1 (Lemma 5.6b). Subsequently, we

insert identities 1 = 1A1 + 1A1
, where A1 denotes the complement of A1. On

the one hand, this yields ‖1A1∇x1q
Φ
1 ψ

N,ε(t)‖, which can be controlled by the new
energy lemma (Lemma 6.7). On the other hand, we obtain terms containing 1A1

,

which we estimate by exploiting the smallness of A1. The full argument is given
in Section 6.6.1.

(b) The remainders γa to γf are estimated in Sections 6.6.2, and work, for the most
part, analogously to the corresponding proofs in [5, Sections 4.5.2 – 4.5.7]. The
only exception is γc, where the strategy from [5] produces too many factors ε−1.
Instead, we estimate the x- and y-contributions to the scalar product (∇g

β̃
) ·∇r̂ =

(∇xgβ̃)·∇xr̂+(∂ygβ̃)∂y r̂ separately. To control the y-part, we integrate by parts in
y and use the moderate confinement condition with γ > 1. Again, this is different
from the situation in [5], where the corresponding term γc could be estimated
without any restriction on the sequence (N, ε).

3.3 Proof of Theorem 1

Let 0 ≤ T < T ex
V ‖ . For β ∈ (0, 1), Proposition 3.6 implies that

∣∣∣ d
dtα

<
ξ,wµ,β

(t)
∣∣∣ . e3

β(t)α<ξ,wµ(t) + e3
β(t)Rη,β,δ,σ,ξ(N, ε)

for almost every t ∈ [0, T ] and sufficiently small µ, where

R<η,β,δ,ξ(N, ε) :=
(
εδ

µβ

) ξ
β

+
(
ε3

µβ

) 1
2

+ µβ

ε + µη + ε
1−β

2 +N−σ +N−
β
2

with 0 < σ < min{1−3ξ
4 , β−ξ}. Since t 7→ α<ξ,wµ,β (t) is non-negative and absolutely con-

tinuous on [0, T ], the differential version of Grönwall’s inequality (see e.g. [13, Appendix
B.2.j]) yields

α<ξ,wµ,β (t) . e
∫ t
0 e3β(s) ds

(
α<ξ,wµ,β (0) +

∫ t

0
e3
β(s) ds

)

for all t ∈ [0, T ]. Since eβ(t) is bounded uniformly in N and ε by (14) and with
R<η,β,δ,ξ(N, ε)→ 0 as (N, ε)→ (∞, 0), this implies (16) and (17) by Lemma 3.4.
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For β = 1, observe first that Proposition 3.9 implies that the correction term in αξ,wµ(t)
is bounded by ε uniformly in t ∈ [0, T ], provided µ is sufficiently small. Hence, t 7→
αξ,wµ(t) + ε is non-negative and absolutely continuous and

α<ξ,wµ(t) . αξ,wµ(t) + ε < αξ,wµ(t) +Rγ,ϑ,ξ(N, ε)

for

Rγ,ϑ,ξ(N, ε) =
(
εϑ

µ

) β̃
2

+
( µ
εγ

) 1
γ2 +

( µ
εγ

) β̃
2
−ξ

+ ε
1−β̃

2 +N−d+ 5
6

with max{γ+1
2γ ,

5
6} < d < β̃ < 3

ϑ . Consequently, Proposition 3.11 yields

∣∣ d
dt(αξ,wµ(t) + ε)

∣∣ . e4
1(t)

(
αξ,wµ(t) +Rγ,ϑ,ξ(N, ε)

)

for almost every t ∈ [0, T ] and sufficiently small µ, which, as before, implies the statement
of the theorem because both ε and Rγ,ϑ,ξ(N, ε) converge to zero as (N, ε)→∞.

4 Preliminaries

We will from now on always assume that assumptions A1 – A4 are satisfied.

Definition 4.1. Let M ⊆ {1, . . . , N}. Define HM ⊆ L2(R3N ) as the subspace of
functions which are symmetric in all variables in M, i.e. for ψ ∈ HM,

ψ(z1, ..., zj , ..., zk, ..., zN ) = ψ(z1, ..., zk, ..., zj , ..., zN ) ∀ j, k ∈M.

Lemma 4.2. Let f : N0 → R+
0 , d ∈ Z, ρ ∈ {a, b} and ν ∈ {c, d, e, f}. Further, let

M1,M1,2 ⊆ {1, 2, ..., N} with 1 ∈M1 and 1, 2 ∈M1,2. Then

(a) ‖f̂‖op = ‖f̂d‖op = ‖f̂ 1
2 ‖2op = sup

0≤k≤N
f(k),

(b) ‖m̂ρ‖op ≤ N−1+ξ, ‖m̂ν‖op . N−2+3ξ and ‖r̂‖op . N−1+ξ,

(c) n̂2 = 1
N

N∑
j=1

qj ,

(d) ‖f̂ q1ψ‖2 ≤ N
|M1|‖f̂ n̂ψ‖

2 for ψ ∈ HM1 ,

‖f̂ q1q2ψ‖2 ≤ N2

|M1,2|(|M1,2|−1)‖f̂ n̂2ψ‖2 for ψ ∈ HM1,2 ,

‖m̂ρ
d q1ψ

N,ε(t)‖ . N−1,

(e) ‖∇1f̂ q1ψ‖ . ‖f̂‖op‖∇1q1ψ‖ for ψ ∈ L2(R3N ),

‖∇x1 f̂ q
Φ
1 ψ‖ . ‖f̂‖op‖∇x1q

Φ
1 ψ‖ for ψ ∈ L2(R3N ),

(f) ‖∇2f̂ q1q2ψ‖ ≤ N
|M1|−1‖f̂ n̂‖op‖∇2q2ψ‖ for ψ ∈ HM1,

‖∇x2 f̂ q
Φ
1 q

Φ
2 ψ‖ ≤ N

|M1|−1‖f̂ n̂‖op‖∇x2q
Φ
2 ψ‖ for ψ ∈ HM1.

Proof. [4], Lemmas 4.1 and 4.5 and Corollary 4.6 and [5], Lemma 4.1.
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Lemma 4.3. Let f, g : N0 → R+
0 be any weights and i, j ∈ {1, . . . , N}.

(a) For k ∈ {0, . . . , N},

f̂ ĝ = f̂g = ĝf̂ , f̂pj = pj f̂ , f̂ qj = qj f̂ , f̂Pk = Pkf̂ .

(b) Define Q0 := pj, Q1 := qj, Q̃0 := pipj, Q̃1 ∈ {piqj , qipj} and Q̃2 := qiqj. Let Sj be
an operator acting non-trivially only on coordinate j and Tij only on coordinates
i and j. Then for µ, ν ∈ {0, 1, 2}

Qµf̂SjQν = QµSj f̂µ−νQν and Q̃µf̂TijQ̃ν = Q̃µTij f̂µ−νQ̃ν .

(c)
[Tij , f̂ ] = [Tij , pipj(f̂ − f̂2) + (piqj + qipj)(f̂ − f̂1)].

Proof. [4], Lemma 4.2.

Lemma 4.4. Let f : N0 → R+
0 .

(a) The operators Pk and f̂ are continuously differentiable as functions of time, i.e.,

Pk, f̂ ∈ C1
(
R,L

(
L2(R3N )

) )

for 0 ≤ k ≤ N . Moreover,

d
dt f̂ = i

[
f̂ ,

N∑

j=1

h
(j)
β (t)

]
,

where h
(j)
β (t) denotes the one-particle operator corresponding to hβ(t) from (7)

acting on the jth coordinate.

(b)
[
−∂2

yj + 1
ε2
V ⊥(

yj
ε ), f̂

]
= 0 for 1 ≤ j ≤ N .

Proof. [4], Lemma 4.3.

Lemma 4.5. Let ψ ∈ L2
+(R3N ) be normalised and f ∈ L∞(R2). Then

∣∣∣⟪ψ, f(x1)ψ⟫− 〈Φ(t), fΦ(t)〉L2(R2)

∣∣∣ . ‖f‖L∞(R2) ⟪ψ, n̂ψ⟫ .
Proof. [4], Lemma 4.7.

Lemma 4.6. Let Γ,Λ ∈ L2(R3N ) ∈ HM such that j /∈ M and k, l ∈ M with j 6= k 6=
l 6= j. Let Oj,k be an operator acting non-trivially only on coordinates j and k, denote
by rk and sk operators acting only on kth coordinate, and let F : R3 × R3 → Rd for
d ∈ N. Then

(a) | ⟪Γ, Oj,kΛ⟫ | ≤ ‖Γ‖(| ⟪Oj,kΛ, Oj,lΛ⟫ |+ |M|−1‖Oj,kΛ‖2
) 1

2
.

(b) | ⟪rkF (zj , zk)skΓ, rlF (zj , zl)slΓ⟫ | ≤ ‖skF (zj , zk)rkΓ‖2.
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(c) |⟪Γ, rkF (zj , zk)skΛ⟫| ≤ ‖Γ‖ (‖skF (zj , zk)rkΛ‖2 + |M|−1‖rkF (zj , zk)skΛ‖2
) 1

2 .

Proof. [4], Lemma 4.8 and [5], Lemma 4.4.

Lemma 4.7. Let t ∈ [0, T ex
V ‖). Then for sufficiently small ε,

(a) ‖Φ(t)‖L2(R2) = 1,

‖Φ(t)‖L∞(R2) . ‖Φ(t)‖H2(R2) ≤ eβ(t),

‖∇xΦ(t)‖L∞(R2) . ‖Φ(t)‖H3(R2) ≤ eβ(t),

‖∆xΦ(t)‖L∞(R2) . ‖Φ(t)‖H4(R2) ≤ eβ(t),

(b) ‖χε‖L2(R) = 1, ‖ d
dyχ

ε‖L2(R) . ε−1,
∫
R
|χε(y)|4 dy = ε−1

∫
R
|χ(y)|4 dy,

‖χε‖L∞(R) . ε−
1
2 , ‖ d

dyχ
ε‖L∞(R) . ε−

3
2 ,

(c) ‖ϕε(t)‖L∞(R3) . eβ(t)ε−
1
2 ,

‖∇ϕε(t)‖L∞(R3) . eβ(t)ε−
3
2 ,

‖∇|ϕε(t)|2‖L2(R3) . eβ(t)ε−
3
2 .

Proof. Part (a) follows from the Sobolev embedding theorem [1, Theorem 4.12, Part
I A] and by definition of eβ. Part (b) is an immediate consequence of (6), and part (c)
is implied by (a) and (b).

Lemma 4.8. Fix t ∈ [0, T ex
V ‖) and let j, k ∈ {1, ..., N}. Let g : R3 × R3 → R, h :

R2×R2 → R be measurable functions such that |g(zj , zk)| ≤ G(zk−zj) and |h(xj , xk)| ≤
H(xk − xj) almost everywhere for some G : R3 → R, H : R2 → R. Let tj ∈ {pj ,∇xjpj}
and tΦj ∈ {pΦ

j ,∇xjpΦ
j }. Then

(a) ‖(tj)† g(zj , zk)tj‖op . e2
β(t)ε−1‖G‖L1(R3) for G ∈ L1(R3),

(b) ‖g(zj , zk)tj‖op = ‖t†j g(zj , zk)‖op . eβ(t)ε−
1
2 ‖G‖L2(R3) for G ∈ L2 ∩ L∞(R3),

(c) ‖g(zj , zk)∇jpj‖op . eβ(t)ε−
3
2 ‖G‖L2(R3) for G ∈ L2(R3),

(d) ‖h(xj , xk)t
Φ
j ‖op = ‖(tΦj )†h(xj , xk)‖op ≤ eβ(t)‖H‖L2(R2) for H ∈ L2 ∩ L∞(R2).

Proof. Analogously to [4], Lemma 4.10.

Lemma 4.9. Let ε be sufficiently small and fix t ∈ [0, T ex
V ‖). Then for β ∈ (0, 1]

(a) ‖∇x1p
Φ
1 ‖op ≤ eβ(t), ‖∆x1p

Φ
1 ‖op ≤ eβ(t),

‖∂y1p
χε

1 ‖op . ε−1, ‖∂2
y1
pχ

ε

1 ‖op . ε−2,

‖qχε1 ψN,ε(t)‖ ≤ eβ(t)ε, ‖∇x1q
Φ
1 ψ‖ . eβ(t), ‖∂y1q

χε

1 ψN,ε(t)‖ . eβ(t),

‖∇x1ψ
N,ε(t)‖ ≤ eβ(t), ‖∂y1ψ

N,ε(t)‖ . ε−1, ‖∇1ψ
N,ε(t)‖ . ε−1,
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(b)

∥∥∥∥
√
w

(12)
µ,β ψ

N,ε(t)

∥∥∥∥ . eβ(t)N−
1
2 ,

(c) ‖w(12)
µ,β ψ

N,ε(t)‖ . eβ(t)N−
1
2µ

1
2
− 3β

2 ,

(d) ‖p11suppwµ,β (z1 − z2)‖op = ‖1suppwµ,β (z1 − z2)p1‖op . eβ(t)µ
3β
2 ε−

1
2 ,

(e) ‖p1w
(12)
µ,β ψ

N,ε(t)‖ . e2
β(t)N−1 .

Proof. Analogously to [4], Lemma 4.11 and [5], Lemma 4.7. For parts (c) and (e), note
that for β ∈ (0, 1),

‖wµ,β‖L1(R3) ∼ µ bβ,N,ε ≤ µ|bβ,N,ε − bβ|+ µ bβ . µ (55)

since wµ,β ∈ Wβ,η for some η > 0. For β = 1, ‖wµ‖L1(R3) = µ‖w‖L1(R3) . µ by
scaling.

Lemma 4.10. Let f : R × R3 → R such that f(t, ·) ∈ C1(R3) and ∂yf(t, ·) ∈ L∞(R3)
for any t ∈ [0, T ex

V ‖). Then

(a) ‖(f(t, z1)− f(t, (x1, 0))pχ
ε

1 ψN,ε(t)‖ ≤ ε‖∂yf(t)‖L∞(R3),

(b) ‖(f(t, z1)− f(t, (x1, 0))ψN,ε(t)‖ ≤ ε
(
eβ(t)‖f(t)‖L∞(R3) + ‖∂yf(t)‖L∞(R3)

)
.

Proof. Analogously to [4], Lemma 4.12.

Lemma 4.11. Let c ∈ R. Then

(a) N−c lnN < N−c
−

, εc ln ε−1 < εc
−
, µc lnµ−1 < µc

−
,

(b) εc lnN < (Θ− 1)εc
− .

{
δ−β
β εc

−
β ∈ (0, 1) ,

εc
−

β = 1 ,

N−c ln ε−1 < 1
Γ−1N

−c− =

{
β

1−βN
−c− β ∈ (0, 1) ,

1
γ−1N

−c− β = 1 ,

(c) N−c lnµ−1 < Γ
Γ−1N

−c− =

{
1

1−βN
−c− β ∈ (0, 1) ,

γ
γ−1N

−c− β = 1 ,

εc lnµ−1 < Θ εc
− .

{
δ
β ε

c− β ∈ (0, 1) ,

εc
−

β = 1 .

Proof. Observe that N < ε−Θ+1 and ε−1 < N
1

Γ−1 due to admissibility and moderate
confinement, hence lnN < (Θ− 1) ln ε−1 and ln ε−1 < 1

Γ−1 lnN .
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5 Proofs for β ∈ (0, 1)

5.1 Proof of Proposition 3.5

The proof works analogously to the proof of Proposition 3.7 in [4] and we provide only
the main steps for convenience of the reader. From now on, we will drop the time
dependence of Φ, ϕε and ψN,ε in the notation and abbreviate ψN,ε ≡ ψ. The time
derivative of α<ξ,wµ,β (t) is bounded by

∣∣∣ d
dtα

<
ξ,wµ,β

(t)
∣∣∣ ≤

∣∣ d
dt ⟪ψ, m̂ψ⟫∣∣+

∣∣∣ d
dt

∣∣Eψwµ,β (t)− EΦ
bβ

(t)
∣∣
∣∣∣ . (56)

For the second term in (56), note that

∣∣∣ d
dt

∣∣Eψwµ,β (t)− EΦ
bβ

(t)
∣∣
∣∣∣ =

∣∣∣ d
dt

(
Eψwµ,β (t)− EΦ

bβ
(t)
)∣∣∣

=
∣∣∣⟪ψ, V̇ ‖(t, z1)ψ⟫− 〈Φ, V̇ ‖ (t, (x, 0)) Φ

〉∣∣∣

for almost every t ∈ [0, T ex
V ‖) by [25, Theorem 6.17] because t 7→ d

dt

(
Eψwµ,β (t)− EΦ

bβ
(t)
)

is

continuous due to assumption A3. The first term in (56) yields

d
dt ⟪ψ, m̂ψ⟫ = −2N=⟪ψ, q1m̂

a
−1

(
V ‖(t, z1)− V ‖ (t, (x1, 0))

)
p1ψ⟫ (57)

−2N(N − 1)=⟪ψ, q1p2m̂
a
−1Z

(12)
β p1p2ψ⟫ (58)

−N(N − 1)=⟪ψ, q1q2m̂
b
−2w

(12)
µ,β p1p2ψ⟫ (59)

−2N(N − 1)=⟪ψ, q1q2m̂
a
−1Z

(12)
β p1q2ψ⟫ , (60)

which follows from Lemmas 4.3 and 4.4. Expanding q = qχ
ε

+ pχ
ε
qΦ in (58) to (60) and

subsequently estimating Nm̂a
−1 ≤ l̂ and Nm̂b

−2 ≤ l̂ for l̂ ∈ L from (19) concludes the
proof.

5.2 Proof of Proposition 3.6

In this section, we will again drop the time dependence of ψN,ε(t), ϕε(t) and Φ(t) and
abbreviate ψN,ε ≡ ψ. Besides, we will always take l̂ ∈ L from (19), hence Lemma 4.2
implies the bounds

‖l̂‖op . N ξ , ‖l̂d q1ψ‖ . 1

for d ∈ Z.

5.2.1 Estimate of γa,<(t) and γ
(1)
b,<(t)

The bounds of γa,<(t) and γ
(1)
b,<(t) are established analogously to [4], Sections 4.4.1 and

4.4.2, and we summarise the main steps of the argument for convenience of the reader.
With Lemmas 4.5, 4.10 and 4.2d, we obtain

|γa,<(t)| . e3
β(t)ε+ eβ(t) ⟪ψ, n̂ψ⟫ .
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By Lemmas 4.7 and 4.2d and since wµ,β ∈ Wβ,η, γ
(1)
b,<(t) can be estimated as

|(23)| ≤
∣∣∣⟪l̂qΦ

1 ψ, p
χε

1 p2(Nw
(12)
µ,β − bβ,N,ε|Φ(x1)|2)p1p2ψ⟫∣∣∣

+
∣∣∣⟪l̂qΦ

1 ψ, p
χε

1 p2

(
bβ,N,ε − N

N−1bβ

)
|Φ(x1)|2p1p2ψ⟫∣∣∣

.
∣∣∣⟪ l̂qΦ

1 ψ, p
χε

1 p2G(x1)pΦ
1 ψ⟫∣∣∣+ e2

β(t)
(
N−1 + µη

)
,

where

G(x1) := N

∫

R

|χε(y1)|2 dy1



∫

R3

|ϕε(z1 − z)|2wµ,β(z) dz − |ϕε(z1)|2‖wµ,β‖L1(R3)


 .

(61)
Note that for any g ∈ C∞0 (R3),

∫
R3 g(z1− z)wµ,β(z) dz = g(z1)‖wµ,β‖L1(R3) +R(z1) with

|R(z1)| :=
∣∣∣∣
∫

R3

dz

1∫

0

∇g(z1 − sz) · zwµ,β(z) ds

∣∣∣∣ ≤ sup
s∈[0,1]
z∈R3

|∇g(z1 − sz)|
∫

R3

dz|z|wµ,β(z).

Since |z| . µβ for z ∈ suppwµ,β and by (55), this implies ‖R‖2L2(R3) . µ2β+2‖∇g‖2L2(R3),

which, by density, extends to g = |ϕε|2 ∈ H1(R3). Hence,

‖G‖L2(R2) . N‖|χε|2‖L2(R)µ
β+1‖∇|ϕε|2‖ . µβ

ε eβ(t)

by Hölder’s inequality and Lemma 4.7. Using Lemmas 4.8d and 4.2d, we obtain

|(23)| . e2
β(t)

(
µβ

ε +N−1 + µη
)
.

5.2.2 Estimate of γ
(2)
b,<(t)

The key idea for the estimate γ
(2)
b,<(t) is to integrate by parts on a ball with radius ε,

using a smooth cut-off function to prevent contributions from the boundary.

Definition 5.1. Define hε : R3 → R, z 7→ hε(z), by

hε(z) :=





1

4π



∫

R3

wµ,β(ζ)

|z − ζ| dζ −
∫

R3

ε

|ζ|
wµ,β(ζ)

|ζ∗ − z| dζ


 for |z| < ε,

0 else,

where ζ∗ := ε2

|ζ|2 ζ. Further, define Hε : R3 → [0, 1], z 7→ Hε(z), by

Hε(z) :=





1 for |z| ≤ %β,
hε(|z|) for %β < |z| < ε,

0 for |z| ≥ ε,

where hε : (%β, ε)→ (0, 1), r 7→ hε(r), is a smooth, decreasing function as in [4, Definition
4.15] with limr→%β hε(r) = 1 and limr→ε hε(r) = 0. We will abbreviate

h(ij)
ε := hε(zi − zj), H(ij)

ε := Hε(zi − zj).
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Lemma 5.2. Let µ� ε. Then

(a) hε solves the problem ∆hε = wµ,β with boundary condition hε
∣∣
|z|=ε = 0 in the

sense of distributions,

(b) ‖∇hε‖L2(R3) . µ1−β
2 ,

(c) ‖Hε‖L∞(R3) . 1, ‖Hε‖L2(R3) . ε
3
2 , ‖∇Hε‖L∞(R3) . ε−1, ‖∇Hε‖L2(R3) . ε

1
2 .

Proof. The proof of Lemma 5.2 works analogously to Lemmas 4.12 and 4.13 in [4] and
we briefly recall the argument for part (b) for convenience of the reader. First, we define

h
(1)
ε (z) :=

∫
R3

wµ,β(ζ)
|z−ζ| dζ and h

(2)
ε (z) :=

∫
R3

ε
|ζ|

wµ,β(ζ)
|ζ∗−z| dζ. To estimate |∇h(1)

ε |, note that

|ζ| ≤ %β . µβ for ζ ∈ suppwµ,β. For |z| ≤ 2%β, this implies |z − ζ| ≤ 3%β . µβ, hence

|∇h(1)
ε (z)| . µ1−2β. For 2%β ≤ |z| ≤ ε, we find |z− ζ| ≥ 1

2 |z|, hence |∇h(1)
ε (z)| . µ|z|−2.

For |h(2)
ε |, observe that ζ ∈ suppwµ,β implies |ζ∗| ≥ ε2%−1

β , hence, for µ small enough

that ε%−1
β > 2, we obtain |z| ≤ ε < 1

2ε
2%−1
β ≤ 1

2 |ζ∗|. Consequently, |ζ∗ − z| ≥ |12ε2|ζ|−1,

which yields |∇h(2)
ε | . ε−3‖wµ,β‖L∞(R3)

∫
suppwµ,β

|ζ|3 d|ζ| . ε−3µ1+β. Part (b) follows

from this by integration over the finite range of supphε. Part (c) is obvious.

We now use this lemma to estimate γ
(2)
b,<. Let t2 ∈ {p2, q2, q

Φ
2 p

χε

2 }. As Hε(z1−z2) = 1

for z1 − z2 ∈ suppwµ,β and besides suppHε = Bε(0), Lemma 5.2a implies

|(24)| = N
∣∣∣⟪l̂t2qχε1 ψ,H(12)

ε ∆1h
(12)
ε p1p2ψ⟫∣∣∣

≤ N
∣∣∣⟪l̂qχε1 ψ, t2H

(12)
ε (∇1h

(12)
ε ) · p2∇1p1ψ⟫∣∣∣

+N
∣∣∣⟪l̂qχε1 ψ, t2(∇1H

(12)
ε ) · (∇1h

(12)
ε )p2p1ψ⟫∣∣∣

+N
∣∣∣⟪∇1 l̂q

χε

1 ψ, t2H
(12)
ε (∇1h

(12)
ε )p2p1ψ⟫∣∣∣

. N‖l̂qχε1 ψ‖
(
‖p2H

(12)
ε ‖2op‖(∇1h

(12)
ε ) · ∇1p1‖2op +N−1‖(∇1h

(12)
ε )∇1p1‖2op

) 1
2

+N‖l̂qχε1 ψ‖
(
‖p2(∇1h

(12)
ε )‖2op‖(∇1H

(12)
ε )p1‖2op

+N−1‖∇Hε‖2L∞(R3)‖(∇1h
(12)
ε )p2‖2op

) 1
2

+N‖∇1 l̂q
χε

1 ψ‖
(
‖p2H

(12)
ε ‖2op‖(∇1h

(12)
ε )p1‖2op +N−1‖(∇1h

(12)
ε )p2‖2op

) 1
2

. e3
β(t)

(
N ξ+β

2 ε
3−β

2 +N ξµ
1−β

2

)
,

where the boundary terms upon integration by parts vanish because Hε(|z|) = 0 for
|z| = ε, and where we have used Lemmas 4.6, 4.2, 4.8, 4.9a and 5.2. Similarly, one
computes

|(25)| . e3
β(t)N ξ+β

2 ε
3−β

2 ,

|(26)| . e3
β(t)N ξ+β

2 ε
3−β

2 ,

|(27)| . e3
β(t)

(
N ξ+β

2 ε
3−β

2 + µ
1−β

2

)
.
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The bound for γ
(2)
b,< follows from this because N ξµ

1−β
2 = N

−1+β+2ξ
2 ε

1−β
2 ≤ ε

1−β
2 for

ξ ≤ 1−β
2 and since the admissibility condition implies for ξ ≤ 3−δ

2 ·
β
δ−β that

N ξ+β
2 ε

3−β
2 =

(
εδ

µβ

) ξ
β

+ 1
2
ε

3−δ
2
− δ−β

β
ξ ≤

(
εδ

µβ

) ξ
β

+ 1
2
.

5.2.3 Preliminary estimates for the integration by parts

To control γ
(3)
b,<(t) and γ

(4)
b,<(t), we define the quasi two-dimensional interaction potentials

wµ,β(x1−x2, y1) and wµ,β(x1−x2), which result from integrating out one or both trans-
verse variables of the three-dimensional pair interaction wµ,β(z1 − z2), and integrate by
parts in x. In this section, we provide the required lemmas and definitions in a somewhat
generalised form, which allows us to directly apply the results in Sections 5.2.4, 5.2.5, 5.3
and 6.6.1.

Definition 5.3. Let σ ∈ (0, 1] and define Vσ as the set containing all functions

ωσ : R2 × R→ R, (x, y) 7→ ωσ(x, y)

such that 



(a) suppωσ(·, y) ⊆ {x ∈ R2 : |x| ≤ σ} for all y ∈ R ,

(b) ‖ωσ‖L∞(R2×R) . N−1σ−2 ,

(c) sup
y∈R
‖ωσ(·, y)‖L1(R2) . N−1 ,

(d) sup
y∈R
‖ωσ(·, y)‖L2(R2) . N−1σ−1 .

Further, define the set

Vσ :=



ωσ : R2 → R2 : ∃ ωσ ∈ Vσ s.t. ωσ(x) =

∫

R

dy |χε(y)|2ωσ(x, y)



 .

Note that suppωσ ⊆ {x ∈ R2 : |x| ≤ σ} and, since χε is normalised, the estimates for
the norms of ωσ coincide with the respective estimates for ωσ. Next, we define the quasi
two-dimensional interaction potentials wµ,β and wµ,β as well as the auxiliary potentials
needed for the integration by parts, and show that they are contained in the sets Vσ
and Vσ, respectively, for suitable choices of σ.

Definition 5.4. Let wµ,β ∈ Wβ,η for some η > 0 and define

wµ,β : R2 × R→ R, (x, y) 7→ wµ,β(x, y) :=

∫

R

dỹ |χε(ỹ)|2wµ,β(x, y − ỹ) , (62)

wµ,β : R2 → R, x 7→ wµ,β(x) :=

∫

R

dy |χε(y)|2wµ,β(x, y) . (63)

For ρ ∈ (%β, 1], define

vρ : R2 × R→ R , (x, y) 7→ vρ(x, y) :=





1
πρ
−2‖wµ,β(·, y)‖L1(R2) for |x| < ρ,

0 else,
(64)
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vρ : R2 → R , x 7→ vρ(x) :=

∫

R

dy |χε(y)|2vρ(x, y) . (65)

It can easily be verified that wµ,β and vρ can equivalently be written as

wµ,β(x) =

∫

R

dy1|χε(y1)|2
∫

R
dy2|χε(y2)|2wµ,β(x, y1 − y1) ,

vρ(x) =





1
πρ
−2‖wµ,β‖L1(R2) for |x| < ρ,

0 else.

Besides, note that

pχ
ε

2 w
(12)
µ,β p

χε

2 = wµ,β(x1 − x2, y1)pχ
ε

2 ,

pχ
ε

1 pχ
ε

2 w
(12)
µ,β p

χε

1 pχ
ε

2 = wµ,β(x1 − x2)pχ
ε

1 pχ
ε

2 .

Lemma 5.5. For wµ,β, wµ,β, vρ and vρ from Definition 5.4, it holds that

(a) wµ,β ∈ V%β , wµ,β ∈ V%β , vρ ∈ Vρ, vρ ∈ Vρ ,

(b) ‖wµ,β(·, y)‖L1(R2) = ‖vρ(·, y)‖L1(R2) for any y ∈ R,

‖wµ,β‖L1(R2) = ‖vρ‖L1(R2).

Proof. It suffices to derive the respective estimates for wµ,β(·, y) and vρ(·, y) uniformly
in y ∈ R. For instance, Lemma 4.7 and (55) yield

|wµ,β(x, y)| ≤ ‖χε‖2L∞(R)

y+%β∫

y−%β

dy1 1|y−y1|≤%βwµ,β(x, y − y1)

. ε−1µ1−2β ∼ N−1%−2
β ,

‖vρ(·, y)‖L1(R2) =
1

ρ2π
‖wµ,β(·, y)‖L1(R2)

∫

R2

1|x|≤ρ dx = ‖wµ,β(·, y)‖L1(R2) . N−1 ,

and the remaining parts are verified analogously.

In analogy to electrostatics, let us now define the “potentials” hσ1,σ2 and hσ1,σ2

corresponding to the “charge distributions” ωσ1 − ωσ2 and ωσ1 − ωσ2 , respectively.

Lemma 5.6. Let 0 < σ1 < σ2 ≤ 1, ωσ1 ∈ Vσ1 and ωσ2 ∈ Vσ2 such that for any y ∈ R

‖ωσ1(·, y)‖L1(R2) = ‖ωσ2(·, y)‖L1(R2) .

Define

hσ1,σ2 : R2 × R → R

(x, y) 7→ hσ1,σ2(x, y) :=
1

2π

∫

R2

dξ ln |x− ξ|
(
ωσ1(ξ, y)− ωσ2(ξ, y)

)
(66)
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and

hσ1,σ2 : R2 → R

x 7→ hσ1,σ2(x) :=

∫

R

dy |χε(y)|2hσ1,σ2(x, y) . (67)

Let y ∈ R and
(
hσ1,σ2 , ωσ1 , ωσ2

)
∈
{(
hσ1,σ2(·, y), ωσ1(·, y), ωσ2(·, y)

)
,
(
hσ1,σ2 , ωσ1 , ωσ2

)}
.

(a) hσ1,σ2 satisfies
∆xhσ1,σ2 = ωσ1 − ωσ2

in the sense of distributions, and

supphσ1,σ2 ⊆
{
x ∈ R2 : |x| ≤ σ2

}
,

(b) ‖hσ1,σ2‖L2(R2) . N−1σ2

(
1 + lnσ−1

2

)
,

‖∇xhσ1,σ2‖L2(R2) . N−1
(
lnσ−1

1

) 1
2 .

Proof. The first part of (a) follows immediately from [25, Theorem 6.21]. For the second
part, Newton’s theorem [25, Theorem 9.7] states that for |x| ≥ σ2,

hσ1,σ2(x, y) =
1

2π
ln |x|

∫

R2

(ωσ1(ξ, y)− ωσ2(ξ, y)) dξ = 0

as ‖ωσ1(·, y)‖L1(R2) = ‖ωσ2(·, y)‖L1(R2). Besides, [25, Theorem 9.7] yields the estimate

∣∣hσ1,σ2(x, y)
∣∣ ≤ 1

2π

∣∣ ln |x|
∣∣
∫

R2

(ωσ1(ξ, y) + ωσ2(ξ, y)) dξ . N−1
∣∣ ln |x|

∣∣

by definition of ω. Hence,

‖hσ1,σ2(·, y)‖2L2(R2) . N−2

σ2∫

0

r(ln r)2 dr . N−2σ2
2(1 + lnσ−1

2 )2 .

To derive the second part of (b), let us define the abbreviations

h
(1)
σ1,σ2

(x, y) :=

∫

R2

dξ ln |x− ξ|ωσ1(ξ, y), h
(2)
σ1,σ2

(x, y) :=

∫

R2

dξ ln |x− ξ|ωσ2(ξ, y) .

To estimate ∇xh(1)
σ1,σ2

, let y ∈ R and consider ξ ∈ suppωσ1(·, y), hence |ξ| ≤ σ1. If
|x| ≤ 2σ1, we have |x− ξ| ≤ |x|+ |ξ| ≤ 3σ1, hence

|∇xh(1)
σ1,σ2

(x, y)| . ‖ωσ1‖L∞(R2×R)

3σ1∫

0

dr . N−1σ−1
1 .

If 2σ1 < |x| ≤ σ2, this implies |x− ξ| ≥ |x| − |ξ| ≥ |x| − σ1 ≥ 1
2 |x|, and one concludes

|∇xh(1)
σ1,σ2

(x, y)| ≤ 2
|x|

∫

R2

ωσ1(ξ, y) dξ . N−1 1
|x| .
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To estimate ∇xh(2)
σ1,σ2

, note that |x − ξ| ≤ |x| + |ξ| ≤ 2σ2 for x ∈ supphσ1,σ2(·, y) and
ξ ∈ suppωσ2 , hence

|∇xh(2)
σ1,σ2

(x, y)| ≤ sup‖ωσ2‖L∞(R2×R)

∫

|ξ′≤2σ2

d|ξ′| . N−1σ−1
2 .

Part (b) follows from integrating over |x| ≤ σ2.

5.2.4 Estimate of γ
(3)
b,<(t)

To derive a bound for γ
(3)
b,<, observe first that both terms (28) and (29) contain the

interaction wµ,β. We add and subtract vρ from Definition 5.4 for suitable choices of ρ,
i.e.,

wµ,β(x1 − x2, y1) = wµ,β(x1 − x2, y1)− vρ(x1 − x2, y1) + vρ(x1 − x2, y1)

= ∆x1h%β ,ρ(x1 − x2, y1) + vρ(x1 − x2, y1)

by Lemma 5.6, which is applicable by Lemma 5.5.

Estimate of (28). Due to the symmetry of ψ, (28) can be written as

(28) = N
∣∣∣⟪qχε1 ψ, qΦ

2 l̂p
χε

2 w
(12)
µ,β p

χε

2 pχ
ε

1 pΦ
2 q

Φ
1 ψ⟫+ ⟪qχε1 ψ, qΦ

2 l̂p
χε

2 w
(12)
µ,β p

χε

2 pχ
ε

1 pΦ
1 q

Φ
2 ψ⟫∣∣∣ ,

hence with (sΦ
1 , t

Φ
2 ) ∈ {(pΦ

1 , q
Φ
2 ), (qΦ

1 , p
Φ
2 )} and for some ρ ∈ (%β, 1],

|(28)| ≤ N
∣∣∣⟪qχε1 ψ, qΦ

2 p
χε

2

(
∆x2h%β ,ρ(x1 − x2, y1)

)
pχ

ε

1 l̂1s
Φ
1 t

Φ
2 ψ⟫∣∣∣ (68)

+N
∣∣∣⟪qχε1 ψ, qΦ

2 p
χε

2 vρ(x1 − x2, y1)pχ
ε

1 l̂1s
Φ
1 t

Φ
2 ψ⟫∣∣∣ . (69)

Since sΦ
1 t

Φ
2 contains in both cases a projector pΦ and a projector qΦ, the second term is

easily estimated as

(69) ≤ N‖qχε1 ψ‖‖l̂1qΦ
1 ψ‖‖pΦ

1 vρ(x1 − x2, y1)‖op . e2
β(t)ερ−1

by Lemmas 4.8d and 4.2d. For (68), note first that for (sΦ
1 , t

Φ
2 ) = (qΦ

1 , p
Φ
2 ),

‖(∇x2h%β ,ρ(x1 − x2, y1))∇x2p
Φ
2 q

Φ
1 p

χε

1 l̂1ψ‖ ≤ ‖(∇x2h%β ,ρ(x1 − x2, y1))∇x2p
Φ
2 ‖2op‖l̂1qΦ

1 ψ‖
. eβ(t)N−1(lnµ−1)

1
2

and for (sΦ
1 , t

Φ
2 ) = (pΦ

1 , q
Φ
2 ),

‖(∇x2h%β ,ρ(x1 − x2, y1))pΦ
1∇x2q

Φ
2 p

χε

1 l̂1ψ‖ ≤ ‖(∇x2h%β ,ρ(x1 − x2, y1))pΦ
1 ‖2op‖∇x2q

Φ
2 l̂1ψ‖

. e2
β(t)N−1+ξ(lnµ−1)

1
2 ,

where we have used that %β ∼ µβ. Hence, integration by parts in x2 yields with
Lemma 4.6

|(68)| ≤ N
∣∣∣⟪qχε1 ψ, qΦ

2 p
χε

2 (∇x2h%β ,ρ(x1 − x2, y1))pχ
ε

1 ∇x2t
Φ
2 l̂1s

Φ
1 ψ⟫∣∣∣
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+N
∣∣∣⟪∇x2q

Φ
2 p

χε

2 ψ, qχ
ε

1 (∇x2h%β ,ρ(x1 − x2, y1))tΦ2 p
χε

1 l̂1s
Φ
1 ψ⟫∣∣∣

. N‖qχε1 ψ‖‖(∇x2h%β ,ρ(x1 − x2, y1))∇x2t
Φ
2 s

Φ
1 p

χε

1 l̂1ψ‖
+N‖∇x2q

Φ
2 p

χε

2 ψ‖
(
‖pχε1 sΦ

1 (∇x2h%β ,ρ(x1 − x2, y1))tΦ2 l̂1q
χε

1 ψ‖2

+N−1‖(∇x2h%β ,ρ(x1 − x2, y1))tΦ2 s
Φ
1 p

χε

1 l̂1ψ‖2
) 1

2

. e3
β(t)(N ξε+N−

1
2 )(lnµ−1)

1
2 .

Estimate of (29). For this term, we choose ρ = 1 and integrate by parts in x2. This
yields

|(29)| ≤ N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ, p

χε

1 pχ
ε

2 v1(x1 − x2, y1)pΦ
2 q

χε

1 ψ⟫∣∣∣
+N

∣∣∣⟪l̂qΦ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2

(
∇x2h%β ,1(x1 − x2, y1)

)
· ∇x2p

Φ
2 q

χε

1 ψ⟫∣∣∣
+N

∣∣∣⟪∇x2 l̂q
Φ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2

(
∇x2h%β ,1(x1 − x2, y1)

)
pΦ

2 q
χε

1 ψ⟫∣∣∣
≤ N‖qχε1 ψ‖‖l̂qΦ

1 q
Φ
2 ψ‖

(
‖pΦ

2 v1(x1 − x2, y1)‖op

+‖
(
∇x2h%β ,1(x1 − x2, y1)

)
∇x2p

Φ
2 ‖op

)

+N‖qχε1 ψ‖‖pΦ
2

(
∇x2h%β ,1(x1 − x2, y1)

)
‖op‖∇x2 l̂q

Φ
1 q

Φ
2 ψ‖

. e3
β(t)ε(lnµ−1)

1
2

by Lemmas 4.2, 4.9a, 4.8d and 5.6. Together, the estimates for (28) and (29) yield

|γ(3)
b,<(t)| . e3

β(t)
(
N ξε+N−

1
2

)
(lnµ−1)

1
2 . e3

β(t)
(

1
1−βN

−1− + δ
βN

2ξε2−
) 1

2

by Lemma 4.11. Since β ∈ (0, 1) and 3− δ ∈ (0, 2) as δ ∈ (1, 3), this implies

|γ(3)
b,<(t)| . e3

β(t)
(

1
1−βN

−β + δ
βN

2ξε3−δ
) 1

2
,

which yields the final bound for γ
(3)
b,< because, by admissibility and since ξ ≤ 3−δ

2
β
δ−β ,

N ξε
3−δ

2 =
(
εδ

µβ

) ξ
β
ε

3−δ
2
− δ−β

β
ξ ≤

(
εδ

µβ

) ξ
β
.

5.2.5 Estimate of γ
(4)
b,<(t)

First, observe that

|(32)| . ‖l̂q1q2ψ‖‖q2ψ‖‖Φ‖2L∞(R2) . e2
β(t) ⟪ψ, n̂ψ⟫ .

Since both terms (30) and (31) contain the quasi two-dimensional interaction wµ,β, we
integrate by parts in x as before, using that

wµ,β(x1 − x1) = ∆x1h%β ,ρ(x1 − x2) + vρ(x1 − x2)
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and choose ρ = N−β1 for β1 = min
{

1+ξ
4 , β

}
in (30) and ρ = 1 in (31). In the sequel,

we abbreviate

wµ,β
(12)

:= wµ,β(x1 − x2) , v
(12)
ρ := vρ(x1 − x2) , h

(12)

%β ,ρ
:= h%β ,ρ(x1 − x2).

Estimate of (30). Integration by parts in x1 yields with Lemma 4.3b

|(30)| ≤ N

∣∣∣∣⟪ l̂ 1
2 qΦ

1 q
Φ
2 ψ, v

(12)
ρ p1p2 l̂

1
2
2 ψ⟫

∣∣∣∣ (70)

+N

∣∣∣∣⟪∇x1 l̂q
Φ
1 q

Φ
2 ψ, (∇x1h

(12)

%β ,ρ
)p1p2ψ⟫

∣∣∣∣ (71)

+N

∣∣∣∣⟪l̂qΦ
1 ψ, q

Φ
2 (∇x1h

(12)

%β ,ρ
) · ∇x1p1p2ψ⟫

∣∣∣∣ . (72)

For the first term, we obtain with Lemmas 4.6c, 4.8d and for ρ = N−β1

|(70)| . N‖l̂ 1
2 qΦ

1 ψ‖
(
‖p2v

(12)
ρ p1 l̂

1
2
2 q

Φ
1 ψ‖2 +N−1‖v(12)

ρ pΦ
2 ‖2op‖l̂

1
2
2 ψ‖2

) 1
2

. e2
β(t)

(⟪ψ, n̂ψ⟫+N−
1
2

+ ξ
2

+β1

)
,

where we used that vρ =
√
vρ

√
vρ since vρ ≥ 0 and consequently

‖p2v
(12)
ρ p1‖2op ≤ ‖pΦ

2

√
v

(12)
ρ ‖2op‖

√
v

(12)
ρ pΦ

1 ‖2op . e4
β(t)‖vρ‖2L1(R2) . e4

β(t)N−2 . (73)

To estimate (71) and (72), observe first that for any operator s1 acting only on the first
coordinate,

⟪qΦ
2 (∇x2h

(12)

%β ,ρ
)s1p2ψ̃, q

Φ
3 (∇x3h

(13)

%β ,ρ
)s1p3ψ̃⟫

= −⟪h(12)

%β ,ρ
s1∇x2p2q

Φ
3 ψ̃, (∇x3h

(13)

%β ,ρ
)s1p3q

Φ
2 ψ̃⟫

−⟪h(12)

%β ,ρ
s1p2q

Φ
3 ψ̃, (∇x3h

(13)

%β ,ρ
)s1p3∇x2q

Φ
2 ψ̃⟫

= ⟪h(12)

%β ,ρ
s1∇x2p2∇x3q

Φ
3 ψ̃, h

(13)

%β ,ρ
s1p3q

Φ
2 ψ̃⟫+ ⟪h(12)

%β ,ρ
s1∇x2p2q

Φ
3 ψ̃, h

(13)

%β ,ρ
s1∇x3p3q

Φ
2 ψ̃⟫

+⟪h(12)

%β ,ρ
s1p2∇x3q

Φ
3 ψ̃, h

(13)

%β ,ρ
s1p3∇x2q

Φ
2 ψ̃⟫+ ⟪h(12)

%β ,ρ
s1p2q

Φ
3 ψ̃, h

(13)

%β ,ρ
s1∇x3p3∇x2q

Φ
2 ψ̃⟫

. e2
β(t)‖h%β ,ρ‖2L2(R2)

(
‖s1q

Φ
2 ψ̃‖2 + ‖s1∇x2q

Φ
2 ψ̃‖2

)
(74)

by Lemmas 4.2e and 4.9a. With Lemmas 4.6, 4.2 and 5.6b, we thus obtain for ρ = N−β1

|(71)| . N‖∇x1 l̂q
Φ
1 ψ‖

(⟪qΦ
2 (∇x2h

(12)

%β ,ρ
)p1p2ψ, q

Φ
3 (∇x3h

(13)

%β ,ρ
)p1p3ψ⟫

+N−1‖(∇x1h
(12)

%β ,ρ
)pΦ

1 ‖2op

) 1
2
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. e3
β(t)

(
N−β1+ξ lnN +N−

1
2

+ξ(lnµ−1)
1
2

)
,

|(72)| . N‖l̂qΦ
1 ψ‖

(⟪qΦ
2 (∇x2h

(12)

%β ,ρ
)∇x1p1p2ψ, q

Φ
3 (∇x3h

(13)

%β ,ρ
)∇x1p1p3ψ⟫

+N−1‖(∇x1h
(12)

%β ,ρ
)pΦ

2 ‖2op‖∇x1p
Φ
1 ‖2op

) 1
2

. e2
β(t)

(
N−β1 lnN +N−

1
2 (lnµ−1)

1
2

)
.

Together, this yields with Lemma 4.11

|(30)| . e2
β(t) ⟪ψ, n̂ψ⟫+ e3

β(t)
(
N−

1
2

+ ξ
2

+β1 + ( 1
1−β )

1
2N−( 1

2
−ξ)− +N−(β1−ξ)−

)

Note that for β1 = min{1+ξ
4 , β} and since ξ < 1

3 , it holds that N−β1+ξ > N−
1
2

+ξ and

that −1
2 + ξ

2 + β1 < −β1 + ξ. Hence,

|(30)| . e2
β(t) ⟪ψ, n̂ψ⟫+ e3

β(t)N−(β1−ξ)− .

Estimate of (31). Observe first that for j ∈ {0, 1},

‖pΦ
1 (∇x2h

(12)

%β ,ρ
)l̂jq

Φ
1 q

Φ
2 ψ‖2 (75)

= ‖|Φ(x1)〉〈∇x1Φ(x1)|h
(12)

%β ,ρ
l̂jq

Φ
1 q

Φ
2 ψ‖2 + ‖pΦ

1 h
(12)

%β ,ρ
∇x1 l̂jq

Φ
1 q

Φ
2 ψ‖2

+

(⟪|Φ(x1)〉〈∇x1Φ(x1)|h
(12)

%β ,ρ
l̂jq

Φ
1 q

Φ
2 ψ, p

Φ
1 h

(12)

%β ,ρ
∇x1 l̂jq

Φ
1 q

Φ
2 ψ⟫+ h.c.

)

. ‖h
(12)

%β ,ρ
∇x1p

Φ
1 ‖2op‖l̂qΦ

1 q
Φ
2 ψ‖2 + ‖h

(12)

%β ,ρ
pΦ

1 ‖2op‖∇x1 l̂q
Φ
1 q

Φ
2 ψ‖2

. e2
β(t)‖h%β ,ρ‖2L2(R2)

(⟪ψ, n̂ψ⟫+ ‖∇x1q
Φ
1 ψ‖2

)
. (76)

Integration by parts in x2 with ρ = 1 yields with Lemmas 4.3b, 5.6, 4.9a and 4.11

|(31)| ≤ N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ, p

χε

1 pχ
ε

2 v
(12)
1 qΦ

2 p
Φ
1 ψ⟫∣∣∣

+N

∣∣∣∣⟪l̂qΦ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2 (∇x2h
(12)

%β ,1
)pΦ

1∇x2q
Φ
2 ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪∇x2q
Φ
1 q

Φ
2 ψ, p

χε

1 pχ
ε

2 (∇x2h
(12)

%β ,1
)pΦ

1 l̂1q
Φ
2 ψ⟫

∣∣∣∣

. N‖l̂qΦ
1 q

Φ
2 ψ‖‖v

(12)
1 pΦ

1 ‖op‖qΦ
2 ψ‖+N‖∇x2q

Φ
2 ψ‖‖pΦ

1 (∇x1h
(12)

%β ,1
)l̂qΦ

1 q
Φ
2 ψ‖

+N‖∇x2q
Φ
2 ψ‖

(
‖pΦ

1 (∇x2h
(12)

%β ,1
)l̂1q

Φ
1 q

Φ
2 ψ‖2

+N−1‖(∇x2h
(12)

%β ,1
)pΦ

1 ‖2op‖l̂1qΦ
2 ψ‖2

) 1
2

. eβ(t)
(⟪ψ, n̂ψ⟫+ ‖∇x1q

Φ
1 ψ‖2 + 1

1−βN
−1−

)
.

With Lemma 5.7 below, we obtain

|(31)| . e3
β(t)α<ξ,wµ,β (t) + e4

β(t)

(
µβ

ε +
(
ε3

µβ

) 1
2

+N−β
−
2 + µη + µ

1−β
2

)
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for β2 = min
{
β, 1

4

}
. Together, the estimates of (30) and (31) yield

|γ(4)
b,<(t)| . e3

β(t)α<ξ,wµ,β (t) + e4
β(t)

(
µβ

ε +
(
ε3

µβ

) 1
2

+N−(β1−ξ)− + µη + µ
1−β

2

)
.

5.3 Estimate of the kinetic energy for β ∈ (0, 1)

Lemma 5.7. For β2 = min
{

1
4 , β
}

and sufficiently small µ,

‖∇x1q
Φ
1 ψ‖2 . e2

β(t)α<ξ,wµ,β (t) + e3
β(t)

(
µβ

ε +
(
ε3

µβ

) 1
2

+N−β
−
2 + µη + µ

1−β
2

)
.

Proof. Analogously to the proof of Lemma 4.21 in [4], we expand

Ewµ,β (Ψ)− Ebβ (Φ)

& ‖∇x1q
Φ
1 ψ‖2 +N‖

√
w

(12)
µ,β (1− p1p2)ψ‖2 (77)

−
∣∣∣‖∇x1p

Φ
1 ψ‖2 − ‖∇xΦ‖2L2(R2)

∣∣∣−
∣∣∣∣⟪n̂− 1

2 qΦ
1 ψ,∆x1p

Φ
1

(
qχ

ε

1 n̂
1
2 + pχ

ε

1 n̂
1
2
1

)
ψ⟫∣∣∣∣ (78)

−
∣∣∣⟪ψ, p1p2

(
Nw

(12)
µ,β − bβ|Φ(x1)|2

)
p1p2ψ⟫∣∣∣− ‖√w(12)

µ,β p1p2ψ‖2 (79)

−N
∣∣∣∣⟪n̂− 1

2 q1ψ, p2w
(12)
µ,β p1p2n̂

1
2
2 ψ⟫

∣∣∣∣ (80)

−N
∣∣∣⟪ψ, q1q2w

(12)
µ,β p1p2ψ⟫∣∣∣ (81)

−
∣∣⟪ψ, (1− p1p2)|Φ(x1)|2p1p2ψ⟫∣∣− ∣∣⟪ψ, (1− p1p2)|Φ(x1)|2(1− p1p2)ψ⟫∣∣ (82)

−
∣∣⟪ψ, |Φ(x1)|2ψ⟫− 〈Φ, |Φ(x1)|2Φ

〉∣∣ (83)

−
∣∣∣⟪ψ, V ‖(t, z1)ψ⟫− 〈Φ, V ‖(t, (x1, 0))Φ

〉∣∣∣ . (84)

Note that the second term in (77) is non-negative. For (78), we observe that

‖∇x1p
Φ
1 ψ‖2 − ‖∇xΦ‖2L2(R2) = −‖∇xΦ‖2L2(R2)‖qΦ

1 ψ‖2 . e2
β(t) ⟪ψ, n̂ψ⟫

and ⟪n̂− 1
2 qΦ

1 ψ,∆x1p
Φ
1 n̂

1
2ψ⟫ . e2

β(t) ⟪ψ, n̂ψ⟫ . Making use of G(x) from (61) and Lemma

4.8, we find |(79)| . e2
β(t)

(
µβ

ε +N−1 + µη
)

and |(80)| . eβ(t) ⟪ψ, n̂ψ⟫. Insertion of

n̂
1
2 n̂−

1
2 yields |(82)| . e2

β(t) ⟪ψ, n̂ψ⟫. As a consequence of Lemmas 4.5 and 4.10, |(83)|+
|(84)| . e2

β(t) ⟪ψ, n̂ψ⟫+ e3
β(t)ε. Finally, we decompose |(81)| as

|(81)| . N
∣∣∣⟪ψ, qχε1 q2w

(12)
µ,β p1p2ψ⟫∣∣∣+N

∣∣∣⟪qχε2 ψ, qΦ
1 p

χε

1 w
(12)
µ,β p1p2ψ⟫∣∣∣

+N
∣∣∣⟪qΦ

1 q
Φ
2 ψ, p

χε

1 pχ
ε

2 w
(12)
µ,β p1p2ψ⟫∣∣∣ .

Analogously to the bound of (24) (Section 5.2.2), the first line is bounded by

e3
β(t)(ε

3
2µ−

β
2 + µ

1−β
2 ),

and the second line yields

e2
β(t) ⟪ψ, n̂ψ⟫+ e3

β(t)N−β2
−

for β2 = min
{
β, 1

4

}
as in the estimate of (30) (Section 5.2.5).
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6 Proofs for β = 1

6.1 Microscopic structure

This section collects properties of the scattering solution f
β̃

and its complement g
β̃
.

Lemma 6.1. Let f
β̃

and %
β̃

as in Definition 3.7 and jµ as in (35). Then

(a) f
β̃

is a non-negative, non-decreasing function of |z|,

(b) f
β̃
(z) ≥ jµ(z) for all z ∈ R3 and there exists κ

β̃
∈
(
1, µβ̃

µβ̃−µa
)

such that

f
β̃
(z) = κ

β̃
jµ(z)

for |z| ≤ µβ̃,

(c) %
β̃
∼ µβ̃,

(d) ‖1|z1−z2|<%β̃∇1ψ‖2 + 1
2 ⟪ψ, (w(12)

µ − U (12)

µ,β̃
)ψ⟫ ≥ 0 for any ψ ∈ D(∇1).

Proof. Parts (a) to (c) are proven in [5, Lemma 4.9]. For part (d), see [30, Lemma
5.1(3)].

Lemma 6.2. For g
β̃

as in Definition 3.7 and sufficiently small ε,

(a) |g
β̃
(z)| . µ

|z| ,

(b) ‖g
β̃
‖L2(R3) . µ1+ β̃

2 ,

(c) ‖∇g
β̃
‖L2(R3) . µ

1
2 ,

(d) ‖g(12)

β̃
ψN,ε(t)‖ . N−1,

(e) ‖1supp g
β̃
(z1 − z2)ψN,ε(t)‖ . e1(t)µβ̃ε−

1
3 = e1(t)N−β̃εβ̃−

1
3 ,

(f) ‖1supp g
β̃

( · , y1−y2)(x1 − x2)ψN,ε(t)‖ . e1(t)µ
p−1
p
β̃

for any fixed p ∈ [1,∞).

Proof. Parts (a) to (c) are proven in [5, Lemmas 4.10 and 4.11]. Assertion (d) works
analogously as [5, Lemma 4.10c]. For (e), we obtain similarly to [5, Lemma 4.10e]

‖1supp g
β̃
(z1 − z2)ψ‖2 . µ2β̃

∫
dzN ··· dz2

(∫
dz1|ψ(z1, ..., zN )|6

) 2
6

,

where we have used Hölder’s inequality in the dz1 integration. Now we substitute
z1 7→ z̃1 = (x1,

y1

ε ) and use Sobolev’s inequality in the dz̃1-integration, noting that
∇z̃1 = (∇x1 , ε∂y1) and dz̃1 = ε dz1. This yields

(∫
dz1|ψ(z1, ..., zN )|6

) 2
6

=

(
ε

∫
dz̃1|ψ((x1, εỹ1), z2, ..., zN )|6

) 2
6
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. ε
1
3

∫
dz̃1|∇z̃1ψ((x1, εỹ1), z2, ..., zN )|2

= ε−
2
3

∫
dz1

(
|∇x1ψ(z1, ..., zN )|2 + ε2|∂y1ψ(z1, ..., zN )|2

)
.

The statement then follows with Lemma 4.9a. For part (f), recall the two-dimensional
Gagliardo–Nirenberg–Sobolev inequality: for 2 < q <∞ and f ∈ H1(R2),

‖∇f‖
q−2
q

L2(R2)
‖f‖

2
q

L2(R2)
≥ Sq‖f‖Lq(R2) , (85)

where Sq is a positive constant which is finite for 2 < q <∞ (e.g. [25, Theorem 8.5(ii)]

and [26, Equation (2.2.5)]). Consequently, ‖f‖Lq(R2) . ‖f‖
2
q

L2(R2)
‖∇f‖

q−2
q

L2(R2)
for each

fixed q ∈ (2,∞). Hence, for any fixed p ∈ (1,∞) and ψ ∈ L2(R3N ) ∩ D(∇x1),

‖1supp g
β̃
(x1 − x2)ψ‖2

≤
∫

dzN ··· dy1



∫

R2

1|x|≤%
β̃

dx




p−1
p


∫

R2

dx1|ψ(z1, ..., zN )|2p



2
2p

. µ
2β̃(p−1)

p

∫
dzN ··· dy1



∫

R2

dx1|ψ(z1, ..., zN )|2



1
p


∫

R2

dx1|∇x1ψ(z1, ..., zN )|2



p−1
p

≤ µ
2β̃(p−1)

p ‖ψ‖
2
p ‖∇x1ψ‖

2(p−1)
p ,

where we have used Hölder’s inequality in the dx1 integration, applied (85), and finally
used again Hölder in the dzN ··· dy1 integration.

6.2 Characterisation of the auxiliary potential Uµ,β̃

In this section, we show that both U
µ,β̃
f
β̃

and U
µ,β̃

from Definition 3.7 are contained
in the set W

β̃,η
from Definition 2.2, which admits the transfer of results obtained in

Section 5 to these interaction potentials.

Lemma 6.3. The family U
µ,β̃

is contained in W
β̃,η

for any η > 0.

Proof. Note that µ−1
∫
R3 Uµ,β̃(z) dz = 4π

3 a(%3
β̃
µ−3β̃ − 1) = 4π

3 ac for some c > 0 by

Lemma 6.1c, hence b
β̃,N,ε

(U
µ,β̃

) = lim(N,ε)→(∞,0) bβ̃,N,ε(Uµ,β̃). The remaining require-
ments are easily verified.

Lemma 6.4. Let 0 < η < 1− β̃. Then the family U
µ,β̃
f
β̃

is contained in W
β̃,η

.

Proof. As before, it only remains to show that U
µ,β̃
f
β̃

satisfies part (d) of Definition 2.2.
To see this, observe that

µ−1

∫

R3

U
µ,β̃

(z)f
β̃
(z) dz

(40)
= µ−1

∫

Bµ(0)

wµ(z)f
β̃
(z)

6.1b
= µ−1κ

β̃

∫

Bµ(0)

wµ(z)jµ(z)
(37)
= κ

β̃
8πa ,
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hence b
β̃,N,ε

(U
µ,β̃
f
β̃
) = κ

β̃
8πa

∫
R |χ(y)|4 dy. By Lemma 6.1b, this implies

lim
(N,ε)→(∞,0)

b
β̃,N,ε

(U
µ,β̃
f
β̃
) = 8πa

∫

R

|χ(y)|4 dy = b1 (86)

and

|b
β̃,N,ε

(U
µ,β̃
f
β̃
)− b1| = 8πa(κ

β̃
− 1)

∫

R

|χ(y)|4 dy
6.1b

. µa

µβ̃ − µa
. µ1−β̃.

6.3 Estimate of the kinetic energy for β = 1

The main goal of this section is to provide a bound for the kinetic energy of the part
of ψN,ε(t) with at least one particle orthogonal to Φ(t). Since the predominant part
of the kinetic energy is caused by the microscopic structure and thus concentrated in
neighbourhoods of the scattering centres, we will consider the part of the kinetic energy
originating from the complement of these neighbourhoods and prove that it is subleading.
The first step is to define the appropriate neighbourhoods Cj as well as sufficiently large
balls Aj ⊃ Cj around them.

Definition 6.5. Let max
{
γ+1
2γ ,

5
6

}
< d < β̃, j, k ∈ {1, ..., N}, and define

aj,k :=
{

(z1, ..., zN ) : |zj − zk| < µd
}
,

cj,k :=
{

(z1, ..., zN ) : |zj − zk| < %
β̃

}
,

axj,k :=
{

(z1, ..., zN ) : |xj − xk| < µd
}
.

Then the subsets Aj , Bj , Cj and Axj of R3N are defined as

Aj :=
⋃

k 6=j
aj,k, Bj :=

⋃

k,l 6=j
ak,l, Cj :=

⋃

k 6=j
cj,k, Axj :=

⋃

k 6=j
axj,k

and their complements are denoted by Aj , Bj , Cj and Axj , e.g., Aj := R3N \ Aj .

The sets Aj and Axj contain all N -particle configurations where at least one other
particle is sufficiently close to particle j or where the projections in the x-direction are
close, respectively. The sets Bj consist of all N -particle configurations where particles
can interact with particle j but are mutually too distant to interact among each other.

Note that the characteristic functions 1Ax1 and 1Ax1 do not depend on any y-coor-
dinate, and 1B1 and 1B1

are independent of z1. Hence, the multiplication operators
corresponding to these functions commute with all operators that act non-trivially only
on the y-coordinates or on z1, respectively. Some useful properties of these cut-off
functions are collected in the following lemma.

Lemma 6.6. Let A1, Ax1 and B1 as in Definition 6.5. Then

(a) ‖1A1
p1‖op . e1(t)µ

3d−1
2 , ‖1A1

∇x1p1‖op . e1(t)µ
3d−1

2 ,
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(b) ‖1A1
ψ‖ . µd−

1
3 (‖∇x1ψ‖+ ε‖∂y1ψ‖) for any ψ ∈ L2(R3N ) ∩ D(∇1),

(c) ‖1A1
∂y1p

χε

1 ψN,ε(t)‖ . e1(t)ε−1µd−
1
3 ,

(d) ‖1B1
ψ‖ . µd−

1
3

(
N∑
k=2

(‖∇xkψ‖2 + ε2‖∂ykψ‖2)

) 1
2

for any ψ ∈ L2(R3N ) ∩ D(∇1),

(e) ‖1B1
ψN,ε(t)‖ . e1(t)N

1
2µd−

1
3 = e1(t)N−d+ 5

6 εd−
1
3 ,

(f) ‖1Ax1ψ‖ . (Nµ2d)
p−1
2p ‖ψ‖

1
p ‖∇x1ψ‖

p−1
p for any fixed p ∈ (1,∞), ψ ∈ L2(R3N ) ∩

D(∇x1),

(g) ‖1Ax1 q
χε

1 ψN,ε(t)‖ . e1(t)ε
1
p (Nµ2d)

p−1
2p for any fixed p ∈ (1,∞).

Proof. The proof of parts (a) to (e) works analogously to the proof of [5, Lemma 4.13]:
one first observes that in the sense of operators, 1A1

≤∑N
k=2 1a1,k

and 1B1
≤∑N

k=2 1Ak ,

concludes that
∫
R3 1a1,k

(z1, zk) dz1 . µ3d, and proceeds as in the proof of Lemma 6.2e.
The proofs of (f) and (g) work analogously to the proof of Lemma 6.2f, where one uses
the estimate

∫
R2 1Ax1 (x1, ..., xN ) dx1 . Nµ2d.

Lemma 6.7. Let 1 > β̃ > d > max
{
γ+1
2γ ,

5
6

}
. Then, for sufficiently small µ,

‖1A1∇x1q
Φ
1 ψ

N,ε(t)‖2 . e2
1(t)α<ξ,wµ(t) + e3

1(t)

((
εϑ

µ

) β̃
2

+
( µ
εγ

) 1

β̃γ2 + µ
1−β̃

2 +N−d+ 5
6

)
.

Proof. We will in the following abbreviate ψN,ε(t) ≡ ψ and Φ(t) ≡ Φ. Analogously to [5,
Lemma 4.12], we decompose the energy difference as

Eψwµ(t)− EΦ
b1(t)

≥ ‖1A1∇x1q
Φ
1 ψ‖2 −

∣∣∣⟪∇x1q
Φ
1 ψ,1A1∇x1p

Φ
1 q

χε

1 ψ⟫∣∣∣ (87)

+‖1A1
1B1∇x1ψ‖2 + ⟪ψ, (−∂2

y1
+ 1

ε2
V ⊥(y1

ε )− E0
ε2

)ψ⟫
+N−1

2 ⟪ψ,1B1

(
w(12)
µ − U (12)

µ,β̃

)
ψ⟫ (88)

+2< ⟪∇x1p1ψ,1A1∇x1q1ψ⟫ (89)

+‖1A1∇x1p1ψ‖2 − ‖∇xΦ‖2L2(R) (90)

+ b1
2

(⟪ψ, |Φ(x1)|2ψ⟫− 〈Φ, |Φ|2Φ
〉)

+ ⟪ψ, V ‖(t, z1)ψ⟫− 〈Φ, V ‖(t, (x, 0))Φ
〉

(91)

+N−1
2 ⟪ψ,1B1p1p2U

(12)

µ,β̃
p1p21B1ψ⟫− b1

2 ⟪ψ, |Φ(x1)|2ψ⟫ (92)

+(N − 1)<⟪ψ,1B1(p1q2 + q1p2)U
(12)

µ,β̃
p1p21B1ψ⟫ (93)

+(N − 1)<⟪ψ,1B1q1q2U
(12)

µ,β̃
p1p21B1ψ⟫ . (94)

The first line is easily controlled as

(87) & ‖1A1∇x1q
Φ
1 ψ‖2 − e3

1(t)ε .
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To estimate (88), note that (c1,k ∩ B1) ∩ (c1,l ∩ B1) = ∅ by Definition 6.5 and since

d < β̃ implies %
β̃
< 2%

β̃
< µd. Consequently, 1A1

1B1 ≥ 1C1
1B1 = 1B1

N∑
k=2

1c1,k =

1B1

N∑
k=2

1|z1−zk|≤%β̃ , which yields with Lemma 6.1d

‖1A1
1B1∇1ψ‖2 + N−1

2 ⟪1B1ψ,
(
w(12)
µ − U (12)

µ,β̃

)
1B1ψ⟫ ≥ 0 .

To use this for (88), we must extract a contribution ‖1A1
1B1∂y1ψ‖2 from the remaining

expression ⟪ψ, (−∂2
y1

+ 1
ε2
V ⊥(y1

ε )− E0
ε2

)ψ⟫. To this end, recall that χε is the ground

state of ∂2
y1

+ 1
ε2
V ⊥(y1

ε ) corresponding to the eigenvalue E0
ε2

, hence Oy1 := −∂2
y1

+
1
ε2
V ⊥(y1

ε )− E0
ε2

is a positive operator and Oy1ψ = Oy1q
χε

1 ψ. Since 1Ax1 and 1B1
and their

complements commute with any operator that acts non-trivially only on y1 and since
1Ax11B1

ψ and 1Ax1ψ are contained in the domain of Oy1 if this holds for ψ, we find

⟪ψ,Oy1ψ⟫ = ⟪1Ax11B1q
χε

1 ψ,Oy11Ax11B1q
χε

1 ψ⟫
+⟪(1Ax11B1

+ 1Ax1 )ψ,Oy1(1Ax11B1
+ 1Ax1 )ψ⟫

≥ ‖1Ax11B1∂y1q
χε

1 ψ‖2 − ε−2‖(V ⊥ − E0)−‖L∞(R)‖1Ax1 q
χε

1 ψ‖2

& ‖1Ax11B1∂y1ψ‖2 − 2
∣∣⟪1B1∂y1q

χε

1 ψ, ∂y1p
χε

1 1Ax1ψ⟫ ∣∣− ε−2‖1Ax1 q
χε

1 ψ‖2

−‖1Ax1∂y1p
χε

1 ψ‖2

& ‖1A1
1B1∂y1ψ‖2 − e2

1(t)
(
ε−1(Nµ2d)

p−1
2p − ε−2+ 2

p (Nµ2d)
p−1
p

)

for any fixed p ∈ (1,∞) by Lemma 6.6. Note that we have used in the last line the fact
that 1Ax1 ≥ 1A1

in the sense of operators as A1 ⊆ Ax1 . Now choose p = 1 + 2
γ(2d−1)−1 ,

which is contained in (1,∞) as 2d− 1 > 1
γ because d > 1

2 + 1
2γ . This yields

ε−1(Nµ2d)
p−1
2p =

(
N−1ε1−γ) p−1

2p
(2d−1)

ε
1
2p

(γ(2d−1)(p−1)−p−1)
=
( µ
εγ

) p−1
p

(2d−1)
<
( µ
εγ

) 1

β̃γ2

because, since γ > 1 and d < β̃,

p−1
p (2d− 1) = 2(2d−1)

γ(2d−1)+1 >
2d−1
dγ > 1

β̃γ2
.

For the second expression in the brackets, recall that d > 1
2γ + 1

2 by Definition 6.5, hence

ε
−2+ 2

p (Nµ2d)
p−1
p =

(
N−1ε1−γ) p−1

p
(2d−1)

ε
p−1
p

((γ−1)(2d−1)−2+2d)

<
( µ
εγ

) p−1
p

(2d−1)
<
( µ
εγ

) 1

β̃γ2 .

Consequently,

(88) & −e2
1(t)

( µ
εγ

) 1

β̃γ2 .

Analogously to the estimates of (48) to (50) in [5, Lemma 4.12], we obtain

|(89)| . e2
1(t)

(⟪ψ, n̂ψ⟫+ µ
3d−1

2

)
,
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|(90)| . e2
1(t)

(
µ3d−1 + ⟪ψ, n̂ψ⟫) ,

|(91)| . e2
1(t) ⟪ψ, n̂ψ⟫+ e3

1(t)ε ,

where we decomposed 1A1 = 1 − 1A1
and used that ‖∇x1p1ψ‖2 = ‖∇xΦ‖2L2(R2)‖p1ψ‖2

as well as Lemmas 4.3b, 4.5, 4.7a, 4.9a, 4.10 and 6.6a. Analogously to the corresponding
terms (51) and (52) in [5, Lemma 4.12], we write (92) as

N−1
2 ⟪(1− 1B1

)ψ, p1p2

(
(U

µ,β̃
f
β̃
)(12) + (U

µ,β̃
g
β̃
)(12)

)
p1p2(1− 1B1

)ψ⟫−⟪ψ, b1|Φ(x1)|2ψ⟫
and control the contribution with U

µ,β̃
f
β̃

and without 1B1
by means of G(x) as in (61),

using the respective estimates from Section 5.2.1 since U
µ,β̃
f
β̃
∈ W

β̃,η
for η ∈ (0, 1− β̃).

For the remainders of (92), note that ‖U
µ,β̃
‖L1(R3) . µ and that

‖U
µ,β̃
g
β̃
‖L1(R3) = aµ1−3β̃

∫

suppU
µ,β̃

dz|g
β̃
(z)| ≤ aµ1−3β̃g

β̃
(µβ̃)

∫

suppU
µ,β̃

dz . µ2−β̃ .

For (93), we decompose 1B1 = 1 − 1B1
and insert n̂

1
2 n̂−

1
2 into the term with identities

on both sides. This leads to the bounds

|(92)| . e3
1(t)

(
µβ̃

ε + µ1−β̃ +N−1 +N−d+ 5
6 εd−

1
3

)
,

|(93)| . e3
1(t)

(
N−d+ 5

6 εd−
1
3 + ⟪ψ, n̂ψ⟫) .

Finally, for the last term of the energy difference, we decompose q = qχ
ε

+ pχ
ε
qΦ, which

yields

|(94)| . N

∣∣∣∣⟪1B1ψ, q
χε

1 q2U
(12)

µ,β̃
p1p21B1ψ⟫

∣∣∣∣+N

∣∣∣∣⟪ψ, qχε1 qΦ
2 p

χε

2 U
(12)

µ,β̃
p1p2ψ⟫

∣∣∣∣ (95)

+N

∣∣∣∣⟪1B1
ψ, qχ

ε

2 qΦ
1 p

χε

1 U
(12)

µ,β̃
p1p2ψ⟫

∣∣∣∣ (96)

+N

∣∣∣∣⟪1B1ψ, q
χε

2 qΦ
1 p

χε

1 U
(12)

µ,β̃
p1p21B1

ψ⟫∣∣∣∣ (97)

+N

∣∣∣∣⟪ψ, qΦ
1 q

Φ
2 p

χε

1 pχ
ε

2 U
(12)

µ,β̃
p1p2ψ⟫

∣∣∣∣ (98)

+N

∣∣∣∣⟪1B1
ψ, qΦ

1 q
Φ
2 p

χε

1 pχ
ε

2 U
(12)

µ,β̃
p1p2ψ⟫

∣∣∣∣ (99)

+N

∣∣∣∣⟪1B1ψ, q
Φ
1 q

Φ
2 p

χε

1 pχ
ε

2 U
(12)

µ,β̃
p1p21B1

ψ⟫∣∣∣∣ , (100)

where we used the symmetry under the exchange 1↔ 2 of the second term in the first
line. For (95), note that 1B1ψ is symmetric in {2, ..., N} and commutes with ∇1 and
qχ

ε

1 , hence we obtain, analogously to the estimate of (24) (Section 5.2.2), the bound

|(95)| . e3
1(t)

(
N

β̃
2 ε

3−β̃
2 + µ

1−β̃
2

)
< e3

1(t)

((
εϑ

µ

) β̃
2

+ µ
1−β̃

2

)
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since

N
β̃
2 ε

3−β̃
2 =

(
Nεϑ−1

) β̃
2
ε

3−ϑβ̃
2 ≤

(
Nεϑ−1

) β̃
2

for β̃ ≤ 3
ϑ . For the second line and third line, note that pχ

ε

1 U
(12)

µ,β̃
pχ

ε

1 = pχ
ε

1 U
µ,β̃

(x1 −
x2, y2), with U

µ,β̃
as in Definition 5.4, which is sensible since U

µ,β̃
∈ W

β̃,η
for any η > 0.

Hence, with vρ and h%
β̃
,ρ as in Definition 5.4 and Lemma 5.6, we obtain with the choice

ρ = 1

|(96)| . N
∣∣∣⟪qΦ

1 1B1
ψ, qχ

ε

2 vρ(x1 − x2, y2)p1p2ψ⟫∣∣∣
+N

∣∣∣⟪1B1
∇x1q

Φ
1 ψ, q

χε

2 (∇x1h%β̃ ,1(x1 − x2, y2))p1p2ψ⟫∣∣∣
+N

∣∣∣⟪qΦ
1 1B1

ψ, qχ
ε

2 (∇x1h
(12)
%
β̃
,1)∇x1p1p2ψ⟫∣∣∣

. N‖1B1
ψ‖‖vρ(x1 − x2, y2)pΦ

1 ‖op

(
‖qχε2 ψ‖2 +N−1

) 1
2

+N‖∇x1q
Φ
1 ψ‖‖(∇x1h%β̃ ,1(x1 − x2, y2))pΦ

1 ‖op

(
‖qχε2 ψ‖2 +N−1

) 1
2

+N‖1B1
ψ‖‖(∇x1h%β̃ ,1(x1 − x2, y2)) · ∇x1p

Φ
1 ‖op

(
‖qχε2 ψ‖2 +N−1

) 1
2

. e3
1(t)(lnµ−1)

1
2 (ε+N−

1
2 )

by Lemmas 4.6c, 4.9a, 5.6 and 6.6e. Similarly, but without the need for Lemma 4.6c,
we obtain with ρ = 1

|(97)| . e3
1(t)N−d+ 5

6 εd−
1
3 (lnµ−1)

1
2 .

Analogously to the bound of (30) in Section 5.2.5, using h%
β̃
,ρ with the choice ρ = N−

1
4

and suitably inserting n̂
1
2 n̂−

1
2 , we obtain

|(98)| . e2
1(t) ⟪ψ, n̂ψ⟫+ e3

1(t)N−
1
4

−
.

Finally, with the choice ρ = N−
1
2 , the last two lines can be bounded as

|(99)| . N
∣∣∣⟪1B1

ψ, qΦ
1 q

Φ
2 v

(12)
ρ p1p2ψ⟫∣∣∣+N

∣∣∣∣⟪1B1
qΦ

1 ψ, q
Φ
2 (∇x1h

(12)

%
β̃
,ρ) · ∇x1p1p2ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪1B1
∇x1q

Φ
1 ψ, q

Φ
2 (∇x1h

(12)

%
β̃
,ρ)p1p2ψ⟫

∣∣∣∣

≤ N‖1B1
ψ‖
(
‖pΦ

1 v
(12)
ρ pΦ

2 ‖2op +N−1‖v(12)
ρ pΦ

1 ‖2op

) 1
2

+N‖1B1
ψ‖‖(∇x1h

(12)

%
β̃
,ρ) · ∇x1p

Φ
1 ‖op

+N‖∇x1q
Φ
1 ψ‖

(⟪qΦ
2 (∇x1h

(12)

%
β̃
,ρ)p1p2ψ, q

Φ
3 (∇x1h

(13)

%
β̃
,ρ)p1p3ψ⟫

+N−1‖(∇x1h
(12)

%
β̃
,ρ)p

Φ
1 ‖2op

) 1
2

. e3
1(t)

(
N−d+ 5

6 εd−
1
3 +N−

1
2

) (
lnµ−1

) 1
2
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|(100)| . N‖1B1
ψ‖
(
‖pΦ

2 v
(12)
ρ pΦ

1 ‖op +N−
1
2 ‖pΦ

2 v
(12)
ρ ‖op + ‖(∇x1h

(12)

%β ,ρ
)pΦ

1 ‖ope1(t)

)

. e2
1(t)N−d+ 5

6 εd−
1
3 (lnµ−1)

1
2 ,

where we used (74) with s1 = p1 as well as (73) and Lemmas 5.6, 6.6e, 4.11 and 4.9a.
Hence, we obtain with Lemma 4.11

|(94)| . e3
1(t)

((
εϑ

µ

) β̃
2

+ µ
1−β̃

2 + γ
γ−1N

− 1
2

−
+ ε1− +N−d+ 5

6 ε(d− 1
3

)−
)

+ e2
1(t) ⟪ψ, n̂ψ⟫

. e3
1(t)

((
εϑ

µ

) β̃
2

+ µ
1−β̃

2 +N−d+ 5
6

)
+ e2

1(t) ⟪ψ, n̂ψ⟫ ,
where we have used that −1

4 < −d+ 5
6 and that ε� N−d+ 5

6 εd−
1
3 , which follows because

εNd− 5
6 ε

1
3
−d =

(
Nεϑ−1

)d− 5
6
ε

1
2
−ϑ(d− 5

6
) ≤

(
εϑ

µ

)d− 5
6 � 1

since ϑ ≤ 3. All estimates together imply

|Eψwµ(t)− EΦ
b1(t)| ≥ ‖1A1∇x1q

Φ
1 ψ‖2 − e2

1(t) ⟪ψ, n̂ψ⟫
−e3

1(t)

(
µ

1−β̃
2 +

(
εϑ

µ

) β̃
2

+N−d+ 5
6 +

( µ
εγ

) 1

β̃γ2

)
,

where we have used that 3d− 1 > 1− β̃ as β̃ > d > 5
6 and that µβ̃

ε <
( µ
εγ

) 1

β̃γ2 because,

since β̃ > 1
2 + 1

2γ >
1
γ ,

µβ̃

ε =
( µ
εγ

)β̃
εγβ̃−1 <

( µ
εγ

)β̃
<
( µ
εγ

) 1

β̃γ2

6.4 Proof of Proposition 3.9

Recalling that r̂ = p1p2m̂
b + (p1q2 + q1p2)m̂a, we conclude immediately

N2

∣∣∣∣⟪1supp g
β̃
(z1 − z2)ψ, g

(12)

β̃
(p1p2m̂

b + (p1q2 + q1p2)m̂a)ψ⟫∣∣∣∣
. e2

1(t)N−
3β̃
2

+ξε
1
6

+ 3β̃
2 < e2

1(t)ε
17
12

by Lemmas 6.2 and 4.2a and because β̃ > 5
6 . For fixed t ∈ [0, T ex

V ‖) and sufficiently small

ε, e2
1(t)ε

5
12 . 1, hence this is bounded by ε.

6.5 Proof of Proposition 3.10

This proof is analogous to the proof of [5, Proposition 3.2], and we sketch the main steps
for convenience of the reader. In the sequel, we abbreviate ψN,ε ≡ ψ and Φ(t) ≡ Φ.
Since

d
dtαξ,wµ(t) = d

dtα
<
ξ,wµ

(t)−N(N − 1)<
(

d
dt ⟪ψ, g(12)

β̃
r̂ψ⟫) ,
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Proposition 3.5 implies that for almost every t ∈ [0, T ex
V ‖),

∣∣ d
dtαξ,wµ

∣∣ ≤ |γa,<(t)|+
∣∣∣∣γb,<(t)−N(N − 1)<

(
d
dt ⟪ψ, g(12)

β̃
r̂ψ⟫)∣∣∣∣ . (101)

The second term in (101) gives

−N(N − 1)<
(

d
dt ⟪ψ, g(12)

β̃
r̂ψ⟫)

= N(N − 1)=⟪ψ, g(12)

β̃

[
Hµ(t)−

N∑

j=1

hj(t), r̂
]
ψ⟫ (102)

+N(N − 1)=⟪ψ, [Hµ(t), g
(12)

β̃

]
r̂ψ⟫ . (103)

In (102), we write
∑

i<j w
(ij)
µ = w

(12)
µ +

∑N
j=3

(
w

(1j)
µ + w

(2j)
µ

)
+
∑

3≤i<j≤N w
(ij)
µ and use

the identity w
(12)
µ − b1(|Φ(x1)|2 + |Φ(x2)|2) = Z(12) − N−2

N−1b1(|Φ(x1)|2 + |Φ(x2)|2). This
yields

(102) = γa(t) + γd(t) + γe(t) + γf (t) +N(N − 1)=⟪ψ, g(12)

β̃

[
Z(12), r̂

]
ψ⟫ .

For (103), note that

[
Hµ(t), g

(12)

β̃

]
r̂ψ =

(
w(12)
µ − U (12)

β1

)
f

(12)

β̃
r̂ψ − 2(∇1g

(12)

β̃
) · ∇1r̂ψ − 2(∇2g

(12)

β̃
) · ∇2r̂ψ,

hence

(103) = γc(t) +N(N − 1)=⟪ψ,(w(12)
µ − U (12)

µ,β̃

)
f

(12)

β̃
r̂ψ⟫ .

The expressions γa,<(t), γb,<t) together with the remaining terms from (102) and (103)
yield

γa,<(t) +N(N − 1)=
(
− ⟪ψ,Z(12)r̂ψ⟫+ ⟪ψ, (1− f (12)

β̃
)
[
Z(12), r̂

]
ψ⟫

+⟪ψ, (w(12)
µ − U (12)

µ,β̃
)f

(12)

β̃
r̂ψ⟫)

= γa,<(t)−N(N − 1)=⟪ψ, g(12)

β̃
r̂Z(12)ψ⟫

−N(N − 1)=⟪ψ,(U (12)

µ,β̃
− b1

N−1

(
|Φ(x1)|2 + |Φ(x2)|2

))
(1− g(12)

β̃
)r̂ψ⟫

= γ<(t) + γb(t) ,

where we used that =⟪ψ, Z̃(12)r̂ψ⟫ = =⟪ψ, Z̃(12)m̂ψ⟫ and that

Z(12)f
(12)

β̃
=
(
w(12)
µ − U (12)

µ,β̃

)
f

(12)

β̃
+ U

(12)

µ,β̃
f

(12)

β̃
− b1

N−1

(
|Φ(x1)|2 + |Φ(x2)|2

)
f

(12)

β̃
.
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6.6 Proof of Proposition 3.11

6.6.1 Estimate of γ<(t)

To estimate γ<(t), we apply Proposition 3.6 to the interaction potential U
µ,β̃
f
β̃
, which

makes sense since U
µ,β̃
f
β̃
∈ W

β̃,η
for η ∈ (0, 1 − β̃) by Lemma 6.4. Besides, we need

to verify that the sequence (N, ε), which satisfies A4 with (Θ,Γ)1 = (ϑ, γ), is also
admissible and moderately confining with parameters (Θ,Γ)

β̃
= (δ/β̃, 1/β̃) for some

δ ∈ (1, 3). We make the choice δ = ϑβ̃.
By assumption, 1 > β̃ > γ+1

2γ > 1
γ >

1
ϑ . Hence, δ = ϑβ̃ ∈ (1, 3) and we find

εδ/β̃

µ
=
εϑ

µ
,

µ

ε1/β̃
=

µ

εγ
εγ−1/β̃ ≤ µ

εγ
.

Since Proposition 3.6 requires the parameter 0 < ξ < min
{

1
3 ,

1−β̃
2 , β̃ , 3−δ

2 ·
β̃

δ−β̃

}
, we

choose 0 < ξ < min
{

1−β̃
2 , 3−ϑβ̃

2(ϑ−1)

}
.

Proposition 3.6 provides a bound for γ<(t), which, however, depends on α<ξ,U
µ,β̃

f
β̃
(t)

and consequently on the energy difference |EψU
µ,β̃

f
β̃
(t)−EΦ

U
µ,β̃

f
β̃
(t)|. Note that α<ξ,U

µ,β̃
f
β̃
(t)

enters only in the estimate of

|(31)| ≤ N
∣∣∣⟪l̂qΦ

1 ψ, q
Φ
2 p

χε

1 pχ
ε

2 (U
µ,β̃
f
β̃
)(12)pχ

ε

1 pχ
ε

2 pΦ
2 q

Φ
1 ψ⟫∣∣∣

in γ
(4)
b,<(t). Hence, we need a new estimate of (31) by means of Lemma 6.7 to obtain a

bound in terms of |Eψwµ,β (t)− EΦ
bβ

(t)|. Since U
µ,β̃
f
β̃
∈ W

β̃,η
, we can define U

µ,β̃
f
β̃
∈ V%

β̃

as in Definition 5.4,

pχ
ε

1 pχ
ε

2 (U
µ,β̃
f
β̃
)(12)pχ

ε

1 pχ
ε

2 = U
µ,β̃
f
β̃

(12)
pχ

ε

1 pχ
ε

2 .

and perform an integration by parts in two steps: first, we replace U
µ,β̃
f
β̃

by the potential

vµβ2 ∈ Vµβ2 from Definition 5.4, namely

vµβ2 (x) =





1
πµ
−2β2‖U

µ,β̃
f
β̃
‖L1(R2) for |x| < µβ2 ,

0 else ,

where we have chosen ρ = µβ2 for some β2 ∈ (0, β̃). Subsequently, we replace this

potential by ν1 ∈ V1 with ρ = 1, where vµβ2 plays the role of U
µ,β̃
f
β̃
, i.e.,

ν1(x) :=





1
π‖vµβ2‖L1(R2) for |x| < 1 ,

0 else.

By construction,

‖U
µ,β̃
f
β̃
‖L1(R2) = ‖vµβ2‖L1(R2) = ‖ν1‖L1(R2),
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hence, by Lemma 5.6a, the functions h%
β̃
,µβ2 and hµβ2 ,1 as defined in (67) satisfy the

equations

∆xh%
β̃
,µβ2 = U

µ,β̃
f
β̃
− vµβ2 , ∆xhµβ2 ,1 = vµβ2 − ν1 .

Hence,

pχ
ε

1 pχ
ε

2 (U
µ,β̃
f
β̃
)(12)pχ

ε

1 pχ
ε

2 =
(

∆xh%
β̃
,µβ2 + ∆xhµβ2 ,1 + ν1

)
pχ

ε

1 pχ
ε

2 ,

and consequently

|(31)| ≤ N

∣∣∣∣⟪pχε1 ∇x1q
Φ
1 ψ, q

Φ
2 (∇x1h

(12)

%
β̃
,µβ2 )p2q

Φ
1 l̂1ψ⟫

∣∣∣∣ (104)

+N

∣∣∣∣⟪pχε1 l̂qΦ
1 ψ, q

Φ
2 (∇x1h

(12)

%
β̃
,µβ2 )p2∇x1q

Φ
1 ψ⟫

∣∣∣∣ (105)

+N

∣∣∣∣⟪∇x1q
Φ
1 ψ, q

Φ
2 (∇x1h

(12)

µβ2 ,1)pχ
ε

1 pχ
ε

2 pΦ
2 l̂1q

Φ
1 ψ⟫

∣∣∣∣ (106)

+N

∣∣∣∣⟪l̂qΦ
1 ψ, q

Φ
2 (∇x1h

(12)

µβ2 ,1)pχ
ε

1 pχ
ε

2 pΦ
2∇x1q

Φ
1 ψ⟫

∣∣∣∣ (107)

+N
∣∣∣⟪l̂qΦ

1 q
Φ
2 ψ, ν

(12)
1 pχ

ε

1 pχ
ε

2 pΦ
2 q

Φ
1 ψ⟫∣∣∣ . (108)

With Lemma 4.6a, the first two lines can be bounded as

(104) . Ne1(t)
(⟪qΦ

2 (∇x2h
(12)

%
β̃
,µβ2 )p2q

Φ
1 l̂1ψ, q

Φ
3 (∇x3h

(13)

%
β̃
,µβ2 )p3q

Φ
1 l̂1ψ⟫

+N−1‖∇x1h
(12)

%
β̃
,µβ2p

Φ
2 ‖2op

) 1
2

. e3
1(t)

(
µβ2 +N−

1
2

) (
lnµ−1

) 1
2 ,

(105) . N‖∇x1q
Φ
1 ψ‖‖pΦ

2 (∇x2h
(12)

%
β̃
,µβ2 )l̂qΦ

1 q
Φ
2 ψ‖ . e2

1(t)µβ2 lnµ−1 ,

where we used for (104) the estimate (74) with s1 = qΦ
1 and ψ̃ = l̂1ψ and for (105) the

estimate (76) and applied Lemma 5.6b. To estimate (106) and (107), we insert identities
1 = 1A1 + 1A1

to be able to use Lemma 6.7:

(106) + (107) ≤ N

∣∣∣∣⟪∇x1q
Φ
1 ψ,1A1

qΦ
2 (∇x1h

(12)

µβ2 ,1)p2p
χε

1 qΦ
1 l̂1ψ⟫

∣∣∣∣ (109)

+N

∣∣∣∣⟪∇x1q
Φ
1 ψ,1A1

p2p
χε

1 (∇x1h
(12)

µβ2 ,1)l̂qΦ
1 q

Φ
2 ψ⟫

∣∣∣∣ (110)

+N

∣∣∣∣⟪1A1∇x1q
Φ
1 ψ, q

Φ
2 (∇x1h

(12)

µβ2 ,1)p2p
χε

1 qΦ
1 l̂1ψ⟫

∣∣∣∣ (111)

+N

∣∣∣∣⟪l̂qΦ
1 ψ, q

Φ
2 (∇x1h

(12)

µβ2 ,1)p2p
χε

1 1A1∇x1q
Φ
1 ψ⟫

∣∣∣∣ . (112)

By Lemma 6.6b, we find for ψ̃ ∈ L2(R3N ) and with x = (x(1), x(2))

‖1A1
qΦ

2 (∇x1h
(12)

µβ2 ,1)pΦ
2 ψ̃‖2

= ‖1A1
qΦ

2 (∂
x

(1)
1

h
(12)

µβ2 ,1)pΦ
2 ψ̃‖2 + ‖1A1

qΦ
2 (∂

x
(2)
1

h
(12)

µβ2 ,1)pΦ
2 ψ̃‖2
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. µd−
1
3

(
‖
(
∂2

x
(1)
1

h
(12)

µβ2 ,1

)
pΦ

2 ψ̃‖2 + ‖
(
∂2

x
(2)
1

h
(12)

µβ2 ,1

)
pΦ

2 ψ̃‖2 + ‖
(
∂
x

(1)
1

∂
x

(2)
1

h
(12)

µβ2 ,1

)
pΦ

2 ψ̃‖2

+‖
(
∂
x

(1)
1

h
(12)

µβ2 ,1

)
pΦ

2∇x1ψ̃‖2 + ‖
(
∂
x

(2)
1

h
(12)

µβ2 ,1

)
pΦ

2∇x1ψ̃‖2

+ε2‖(∇x1h
(12)

µβ2 ,1p
Φ
2 )∂y1ψ̃‖2

)
,

and analogously for the respective expression in (110). Note that for i, j ∈ {1, 2} and
F ∈ L2(R2) with Fourier transform F̂ (k), it holds that ‖∂x(j)F‖2L2(R2) ≤ ‖∇xF‖2L2(R2)
and that

‖∂x(i)∂x(j)F‖2L2(R2) = ‖k(i)k(j)F̂‖2L2(R2) . ‖((k(1))2 + (k(2))2)F̂‖2L2(R2) = ‖∆xF‖2L2(R2) .

Hence, we conclude with Lemma 4.8d that

(109) + (110) . N‖∇x1q
Φ
1 ψ‖µd−

1
3 e1(t)

(
‖∆xhµβ2 ,1‖L2(R2)‖l̂qΦ

1 ψ‖

+‖∇xhµβ2 ,1‖L2(R2)‖∇x1 l̂q
Φ
1 ψ‖+ ε‖∇xhµβ2 ,1‖L2(R2)‖∂y1p

χε

1 ‖op‖l̂qΦ
1 ψ‖

)

. e3
1(t)

(
µd−β2− 1

3 +N ξµd−
1
3 (lnµ−1)

1
2

)
,

which follows because ∆xhµβ2 ,1 = vµβ2−ν1. For the next two lines, note that 1A1∇x1q
Φ
1 ψ

is symmetric in{2, ..., N}, hence we can apply Lemma 4.3a. Similarly to the estimate
that led to (74), integrating by parts twice yields

(111) . N‖1A1∇x1q
Φ
1 ψ‖

(
‖l̂1qΦ

1 q
Φ
2 ψ‖2‖h

(12)

µβ2 ,1∇x2p
Φ
2 ‖2op + ‖p2h

(12)

µβ2 ,1∇x2 l̂1q
Φ
1 q

Φ
2 ψ‖2

+N−1‖(∇x1hµβ2 ,1)p2‖2op

) 1
2
.

Further, proceeding as in (76), we find

(112) . N‖1A1∇x1q
Φ
1 ψ‖

(
‖h

(12)

µβ2 ,1∇x1p
Φ
1 ‖op‖l̂qΦ

1 q
Φ
2 ψ‖+ ‖p1h

(12)

µβ2 ,1∇x1 l̂q
Φ
1 q

Φ
2 ψ‖

)
.

By Lemmas 4.2d, 5.6b and 6.6b, we obtain for j ∈ {0, 1}

‖p1h
(12)

µβ2 ,1 l̂jq
Φ
2 ∇x1q

Φ
1 ψ‖2

. ‖p1h
(12)

µβ2 ,1 l̂jq
Φ
2 1A1∇x1q

Φ
1 ψ‖2 +

∣∣∣∣⟪∇x1q
Φ
1 ψ,1A1

l̂jq
Φ
2 h

(12)

µβ2 ,1p1h
(12)

µβ2 ,1 l̂jq
Φ
2 ∇x1q

Φ
1 ψ⟫

∣∣∣∣

+

∣∣∣∣⟪∇x1q
Φ
1 ψ,1A1

l̂jq
Φ
2 h

(12)

µβ2 ,1p1h
(12)

µβ2 ,1 l̂jq
Φ
2 1A1∇x1q

Φ
1 ψ⟫

∣∣∣∣

. ‖p1h
(12)

µβ2 ,1‖2op‖1A1∇x1q
Φ
1 ψ‖2

+‖∇x1q
Φ
1 ψ‖2µd−

1
3 ‖l̂‖op

(
‖(∇x1h

(12)

µβ2 ,1)pΦ
1 ‖op + ‖h

(12)

µβ2 ,1∇x1p
Φ
1 ‖op

+ε‖∂y1p
χε

1 ‖op‖h
(12)

µβ2 ,1p
Φ
1 ‖op

)
‖h

(12)

µβ2 ,1p
Φ
1 ‖op

. e2
1(t)N−2‖1A1∇x1q

Φ
1 ψ‖2 + e4

1(t)N−2+ξµd−
1
3 (lnµ−1)

1
2 .
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Combining these estimates, we conclude with Lemma 6.7

(111) + (112)

. e1(t)
(
‖1A1∇x1q

Φ
1 ψ‖2 + ⟪ψ, n̂ψ⟫+N−1 lnµ−1

)
+ e3

1(t)N ξµd−
1
3 (lnµ−1)

1
2

. e3
1(t)α<ξ,wµ(t) + e4

1(t)

((
εϑ

µ

) β̃
2

+
( µ
εγ

) 1

β̃γ2 + µ
1−β̃

2 +N−d+ 5
6

)

Finally,

(108) . N‖l̂qΦ
1 q

Φ
2 ψ‖‖qΦ

1 ψ‖‖ν
(12)
1 pΦ

2 ‖op . e1(t) ⟪ψ, n̂ψ⟫
by Lemmas 4.2, 4.8d and by Definition 5.3 of V1. With the choice β2 = 3d−1

6 > 1−β̃
2 , all

estimates together yield

|(31)| . e3
1(t)α<ξ,wµ + e4

1(t)

((
εϑ

µ

) β̃
2

+
( µ
εγ

) 1

β̃γ2 + µ
1−β̃

2 +N−d+ 5
6

)
.

In combination with the remaining bounds from Proposition 3.6, evaluated for β̃, η =
(1− β̃)− and δ = ϑβ̃, we obtain

|γ<(t)| . e3
1(t)α<ξ,wµ + e4

1(t)

((
εϑ

µ

) β̃
2

+
( µ
εγ

) 1

β̃γ2 + ε
1−β̃

2 +N−d+ 5
6

)
.

6.6.2 Estimate of the remainders γa(t) to γf (t)

The estimates of γa(t), γb(t) as well as the bounds for γd(t) to γf (t) work mostly anal-
ogously to the respective estimates in [5, Section 4.5], hence we merely sketch the main
steps for completeness.

Recalling that r̂ := m̂bp1p2 +m̂a(p1q2 +q1p2), one concludes with Lemmas 4.10, 6.2b
and 4.2b that

|γa(t)| . N3‖(V ‖(t, z1)− V ‖(t, (x1, 0)))ψ‖‖g(12)

β̃
p1‖op

(
‖m̂a‖op + ‖m̂b‖op

)

. e4
1(t)N1+ξ− β̃

2 ε
3+β̃

2 < e4
1(t)

(
εϑ

µ

)1+ξ− β̃
2

since β̃ > 5
6 , ξ < 1

12 and ϑ ≤ 3. To estimate γb(t), note first that b
β̃

= b(U
µ,β̃
f
β̃
) = b1

by (86), hence (47) = 0. The two remaining terms can be controlled as

|(46)| . N‖Φ‖2L∞(R)‖g
(12)

β̃
p1‖op

(
‖m̂a‖op + ‖m̂b‖op

)

. e3
1(t)N−1− β̃

2
+ξε

1+β̃
2 < e3

1(t)ε
1+β̃

2 ,

|(48)| . N2‖p1g
(12)

β̃
‖op

(
‖m̂a‖op + ‖m̂b‖op

)
‖p1

(
w(12)
µ − b1

N−1(|Φ(x1)|2 + |Φ(x2)|2)
)
ψ‖

. e3
1(t)N−1− β̃

2
+ξε

1+β̃
2 < e3

1(t)ε
1+β̃

2

as a consequence of Lemmas 4.2b, 4.7a, 4.9e and 6.2b. The first term of γd(t) yields

|(50)| . N3‖1supp g
β̃
(z1 − z2)ψ‖‖g(12)

β̃
p1‖op‖Φ‖2L∞(R)

(
‖m̂a‖op + ‖m̂b‖op

)
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. e4
1(t)N1+ξ− 3β̃

2 ε
3β̃
2

+ 1
6 < e4

1(t)ε

since β̃ > 5
6 and ξ < 1

12 . For the second term of γd(t), we write r̂ = m̂a(p1 + p2) +
(m̂b − 2m̂a)p1p2, apply Lemma 4.3c with m̂c and m̂d from Definition 3.2, and observe

that g
(12)

β̃
w

(13)
µ 6= 0 implies |z2 − z3| ≤ 2%

β̃
because |z1 − z2| ≤ %

β̃
for z1 − z2 ∈ supp g

β̃

and |z1 − z3| ≤ µ for z1 − z3 ∈ suppwµ. This leads to

|(51)| . N3

∣∣∣∣⟪ψ, g(12)

β̃
p2

[
1suppwµ(z1 − z3)w(13)

µ , p1p3m̂
d + (p1q3 + q1p3)m̂c

]
ψ⟫∣∣∣∣

+N3

∣∣∣∣⟪p11suppwµ(z1 − z3)g
(12)

β̃
w(13)
µ ψ,1B2%

β̃
(0)(z2 − z3)m̂aψ⟫∣∣∣∣

+N3

∣∣∣∣⟪ψ, g(12)

β̃
p1(m̂a + p2(m̂b − 2m̂a))p1w

(13)
µ ψ⟫∣∣∣∣

+N3

∣∣∣∣⟪w(13)
µ ψ, g

(12)

β̃
p21suppwµ(z1 − z3)p1(m̂b − 2m̂a)ψ⟫∣∣∣∣

. e3
1(t)

(
N−1− β̃

2
+3ξε

1+β̃
2 +N1+ξ−β̃εβ̃−

1
3 +N−

β̃
2

+ξε
1+β̃

2

)

< e3
1(t)

((
εϑ

µ

)1+ξ−β̃
+ ε

1+β̃
2

)

since β̃ > 5
6 and ξ < 1

12 and where we have estimated ‖1B2%
β̃

(0)(z2 − z3)m̂aψ‖2 analo-

gously to Lemma 6.2e. Using Lemma 4.3c, the relation

p3p4(r̂ − r̂2) + (p3q4 + q3p4)(r̂ − r̂1)

= (p1q2 + q1p2)(p3q4 + q3p4)m̂c + (p1q2 + q1p2)p3p4m̂
d

+p1p2(p3q4 + q3p4)m̂e + p1p2p3p4m̂
f ,

and the symmetry of ψ, we obtain

|γe(t)| . N4

∣∣∣∣⟪ψ, g(12)

β̃
p1q2

[
w(34)
µ , p3q4m̂

c + p3p4m̂
d
]
ψ⟫∣∣∣∣

+N4

∣∣∣∣⟪ψ, g(12)

β̃
p1p2

[
w(34)
µ , p3q4m̂

e + p3p4m̂
f
]
ψ⟫∣∣∣∣

. N4‖p3w
(34)
µ ψ‖‖g(12)

β̃
p1‖op

(
‖m̂c‖op + ‖m̂d‖op

)

. e3
1(t)N−

β̃
2

+3ξε
1+β̃

2 < e3
1(t)ε

1+β̃
2

by Lemmas 4.9e, 6.2b and Lemma 4.2b. Finally,

|γf (t)| . N2e2
1(t)‖p2g

(12)

β̃
‖op

(
‖m̂a‖op + ‖m̂b‖op

)
. e3

1(t)N−
β̃
2

+ξε
1+β̃

2 < e3
1(t)ε

1+β̃
2 .

The last remaining term left to estimate is γc(t), where we follow a different path than
in [5]: we decompose the scalar product of the gradients into its x- and y-component

and subsequently integrate by parts, making use of the fact that ∇x1g
(12)

β̃
= −∇x2g

(12)

β̃

B.1. 2d Gross–Pitaevskii equation for strongly confined 3d bosons

297



and analogously for y. Taking the maximum over s2 ∈ {p2, q2} and l̂ ∈ L from (19), this
results in

|γc(t)| . N

∣∣∣∣⟪ψ, (∇x1g
(12)

β̃
) · ∇x1p1 l̂s2ψ⟫

∣∣∣∣+N

∣∣∣∣⟪ψ, (∇x2g
(12)

β̃
)p2 · ∇x1 l̂q1ψ⟫

∣∣∣∣ (113)

+N

∣∣∣∣⟪pχε2 ψ, (∂y2g
(12)

β̃
)∂y1p1 l̂s2ψ⟫

∣∣∣∣+N

∣∣∣∣⟪pχε2 ψ, (∂y2g
(12)

β̃
)p2∂y1 l̂q1ψ⟫

∣∣∣∣ (114)

+N

∣∣∣∣⟪qχε2 ψ, (∂y2g
(12)

β̃
)∂y1p1 l̂s2ψ⟫

∣∣∣∣+N

∣∣∣∣⟪qχε2 ψ, (∂y2g
(12)

β̃
)p2∂y1 l̂q1ψ⟫

∣∣∣∣ .(115)

With Lemmas 4.2b, 4.8, 4.9a and 6.2, the first line is easily estimated as

(113) . N

∣∣∣∣⟪∇x1ψ, g
(12)

β̃
∇x1p1 l̂s2ψ⟫

∣∣∣∣+N

∣∣∣∣⟪∇x2ψ, g
(12)

β̃
∇x1p1 l̂s2ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪ψ, g(12)

β̃
∆x1p1 l̂s2ψ⟫

∣∣∣∣+N

∣∣∣∣⟪ψ, g(12)

β̃
∇x2p2∇x1 l̂q1ψ⟫

∣∣∣∣

. e3
1(t)N−

β̃
2

+ξε
1+β̃

2 < e3
1(t)ε

1+β̃
2 .

For the second line, we conclude with Lemma 6.2f that for any fixed p ∈ (1,∞),

(114) . N

∣∣∣∣⟪∂y2p
χε

2 1supp g
β̃

(·,y1−y2)(x1 − x2)ψ, g
(12)

β̃
∂y1p1 l̂s2ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪∂y2p
χε

2 1supp g
β̃

(·,y1−y2)(x1 − x2)ψ, g
(12)

β̃
p2∂y1 l̂q1ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪pχε2 1supp g
β̃

(·,y1−y2)(x1 − x2)ψ, g
(12)

β̃
∂y1p1∂y2 l̂s2ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪pχε2 1supp g
β̃

(·,y1−y2)(x1 − x2)ψ, g
(12)

β̃
∂y2p2∂y1 l̂q1ψ⟫

∣∣∣∣

. N1+ξε−1‖1supp g
β̃

(·,y1−y2)(x1 − x2)ψ‖
(
‖g(12)

β̃
∂y1p1‖op + ‖g(12)

β̃
p1‖opε

−1
)

. e2
1(t)N

ξ− 3β̃
2

+ β̃
p ε
− 3

2
+ 3β̃

2
− β̃
p .

With the choice p = γ+1
γ−1 , we obtain

N
ξ− 3β̃

2
+ β̃
p ε
− 3

2
+ 3β̃

2
− β̃
p = (N−1ε1−γ)

3β̃
2
−ξ− β̃

p ε
γβ̃( 3

2
− γ−1
γ+1

)− 3
2
−ξ(γ−1)

≤ ( µεγ )
β̃
2
−ξε(γ−1)( 1

4
−ξ) < ( µεγ )

β̃
2
−ξ

since β̃ > γ+1
2γ and ξ < 1

4 . Finally, the last line yields

(115) . N

∣∣∣∣⟪∂y2q
χε

2 ψ, g
(12)

β̃
∂y1p1 l̂s2ψ⟫

∣∣∣∣+N

∣∣∣∣⟪qχε2 ψ, g
(12)

β̃
∂y1p1∂y2 l̂s2ψ⟫

∣∣∣∣

+N

∣∣∣∣⟪∂y2q
χε

2 ψ, g
(12)

β̃
p2∂y1 l̂q1ψ⟫

∣∣∣∣+N

∣∣∣∣⟪qχε2 ψ, g
(12)

β̃
∂y2p2∂y1 l̂q1ψ⟫

∣∣∣∣

. e2
1(t)N−

β̃
2

+ξε−
1−β̃

2 <
( µ
εγ

) β̃
2
−ξ

,

where the last inequality follows because

N−
β̃
2

+ξε−
1−β̃

2 = (N−1ε1−γ)
β̃
2
−ξ ε

γβ̃
2
− 1

2
−ξ(γ−1) < (N−1ε1−γ)

β̃
2
−ξ

as β̃ > γ+1
2γ and ξ < 1

4 .
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Schrödinger equation with a strongly anisotropic harmonic potential. SIAM J.
Math. Anal., 37(1):189–199, 2005.

[3] N. Benedikter, G. de Oliveira, and B. Schlein. Quantitative derivation of the Gross–
Pitaevskii equation. Comm. Pure Appl. Math., 68(8):1399–1482, 2015.

[4] L. Boßmann. Derivation of the 1d nonlinear Schrödinger equation from the 3d
quantum many-body dynamics of strongly confined bosons. J. Math. Phys.,
60(3):031902, 2019.

[5] L. Boßmann and S. Teufel. Derivation of the 1d Gross–Pitaevskii equation from
the 3d quantum many-body dynamics of strongly confined bosons. Ann. Henri
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Lea Boßmann∗, Nataša Pavlović†, Peter Pickl‡, and Avy Soffer§

Abstract

In this paper, we introduce a novel method for deriving higher order corrections to
the mean-field description of the dynamics of interacting bosons. More precisely, we
consider the dynamics of N d-dimensional bosons for large N . The bosons initially
form a Bose–Einstein condensate and interact with each other via a pair potential
of the form (N − 1)−1Ndβv(Nβ ·) for β ∈ [0, 1

4d ). We derive a sequence of N -body
functions which approximate the true many-body dynamics in L2(RdN )-norm to
arbitrary precision in powers of N−1. The approximating functions are constructed
as Duhamel expansions of finite order in terms of the first quantised analogue of a
Bogoliubov time evolution.

1 Introduction

We consider a system of N bosons in Rd, d ≥ 1, interacting with each other via pair
interactions in the mean field scaling regime. The Hamiltonian of the system is given
by

Hβ(t) :=

N∑

j=1

(
−∆j + V ext(t, xj)

)
+

1

N − 1

∑

i<j

vβ(xi − xj) . (1)

Here, V ext denotes some possibly time-dependent external potential, and the interaction
potential vβ is defined as

vβ(x) := Ndβv(Nβx) , β ∈ [0, 1d) , (2)

for some bounded, spherically symmetric and compactly supported function v : Rd → R.
In the following, we will make use of the abbreviation

vβij := vβ(xi − xj) .
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Note that the prefactor (N − 1)−1 in front of vβ is chosen such that the interaction
energy and the kinetic energy per particle are of the same order. The mean inter-
particle distance is of order N−

1
d and therefore much smaller than the range of the

interaction, which scales as N−β. Hence, on average, every particle interacts with many
other particles, and the interactions are weak since (N −1)−1Ndβ → 0 as N →∞. This
implies that we consider a mean-field regime. In particular, the case β = 0 is known as
the Hartree scaling regime.

In this paper, we study the time evolution of the N -body system for large N when
the bosons initially exhibit Bose–Einstein condensation. We impose suitable conditions
on the external potential V ext(t) such that Hβ(t) is self-adjoint on D(Hβ(t)) = H2(RdN )
for each t ∈ R. Consequently, Hβ(t) generates a unique family of unitary time evolution
operators {U(t, s)}t,s∈R via the Schrödinger equation

i d
dtU(t, s) = Hβ(t)U(t, s) , U(s, s) = 1 . (3)

The N -body wave function at time t ∈ R is determined by

ψ(t) = U(t, 0)ψ(0) (4)

for some initial datum ψ(0) = ψ0 ∈ L2
sym(RdN ). Due to the interactions, the characteri-

sation of the time evolution U(t, s) is a difficult problem. Even if the system was initially
in a factorised state, where all particles are independent of each other, the interactions
instantaneously correlate the particles such that an explicit formula for U(t, s) is quite
inaccessible.

To describe U(t, s) approximatively, one observes that the dynamics of the many-
body system can be decomposed into

• the dynamics of the condensate wave function ϕ(t) ∈ L2(Rd), and

• the dynamics of the fluctuations around the (time-evolved) condensate.

More precisely, the N -body wave function ψ(t) can be written as

ψ(t) =

N∑

k=0

ϕ(t)⊗(N−k) ⊗s ξ(k)ϕ(t) (5)

for some ξϕ(t) =
(
ξ
(k)
ϕ(t)

)N
k=0
∈ F≤N

(
{ϕ(t)}⊥

)
, where

F≤N
(
{ϕ}⊥

)
:=

N⊕

k=0

k⊗

sym

{ϕ}⊥ (6)

is the truncated bosonic Fock space over the orthogonal complement in L2(Rd) of the

span of ϕ ∈ L2(Rd). A definition of ξ
(k)
ϕ(t) will be given in (20). Further, ⊗s denotes the

symmetric tensor product, which is for ψa ∈ L2(Rda), ψb ∈ L2(Rdb) defined as

(ψa ⊗s ψb)(x1, ..., xa+b)

:=
1√

a! b! (a+ b)!

∑

σ∈Sa+b
ψa(xσ(1), ..., xσ(a))ψb(xσ(a+1), ..., xσ(a+b)) ,

where Sa+b denotes the set of all permutations of a+b elements. The addend k = 0 in (5)
describes the condensate, while the terms k ∈ {1, ..., N} correspond to the fluctuations.

In the following, we will refer to ξ
(k)
ϕ (t) as k-particle fluctuation.
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1.1 A first order approximation to the N-body dynamics

A first approximation to the N -body dynamics is provided by the time evolution of the
condensate wave function. Its dynamics yield a macroscopic description of the Bose
gas, which, in the limit N → ∞, coincides with the true dynamics in the sense of
reduced density matrices. In order to formulate this mathematically, one assumes that
the system is initially in a Bose–Einstein condensate with condensate wave function ϕ0,
i.e.,

lim
N→∞

Tr
∣∣∣γ(1)(0)− |ϕ0〉〈ϕ0|

∣∣∣ = 0 ,

where
γ(1)(t) := Tr2,...,N |ψ(t)〉〈ψ(t)|

is the one-particle reduced density matrix of ψ(t) at time t. Then it has been shown,
see e.g. [1, 2, 11, 13, 18, 19, 32, 53], that

lim
N→∞

Tr
∣∣∣γ(1)(t)− |ϕ(t)〉〈ϕ(t)|

∣∣∣ = 0 (7)

for any t ∈ R, where ϕ(t) is the solution of the Hartree equation

i d
dtϕ(t) =

(
−∆ + V ext(t) + vϕ(t) − µϕ(t)

)
ϕ(t) =: hϕ(t)(t)ϕ(t) (8)

with initial datum ϕ(0) = ϕ0 and with

vϕ(t)(x) :=
(
vβ ∗ |ϕ(t)|2

)
(x) :=

∫

Rd
vβ(x− y)|ϕ(t, y)|2 dy . (9)

Note that for β = 0, the equation (8) is the N -independent Hartree (NLH) equation.
For β > 0, the evolution is N -dependent and converges to the non-linear Schrödinger
(NLS) dynamics with N -independent coupling parameter

∫
v in the limit N →∞. The

parameter µϕ(t) is a real-valued phase factor, which we choose as

µϕ(t) := 1
2

∫

Rd
dx|ϕ(t, x)|2 vϕ(t)(x) = 1

2

∫

Rd
dx

∫

Rd
dy |ϕ(t, x)|2|ϕ(t, y)|2vβ(x− y) (10)

for later convenience. For the convergence with respect to reduced densities, this phase
is irrelevant since it cancels in the projection |ϕ(t)〉〈ϕ(t)|.

One way to prove the convergence (7), and consequently to derive the NLH/ NLS
equation from a system of N bosons, is via the so-called BBGKY1 hierarchy, which
was prominently used in the works of Lanford for the study of classical mechanical
systems in the infinite particle limit [36, 37]. The first derivation of the NLH equation
via the BBGKY hierarchy was given by Spohn in [54], and this was further pursued,
e.g., in [1, 2, 20, 21]. About a decade ago, Erdős, Schlein and Yau fully developed the
BBGKY hierarchy approach to the derivation of the NLH/NLS equation in their seminal
works including [18, 19]. Subsequently, a crucial step of this method was revisited
by Klainerman and Machedon in [33], based on reformulating combinatorial argument
in [18, 19] and a viewpoint inspired by methods of non-linear PDEs. This, in turn,
motivated many recent works on the derivation of dispersive PDEs, including [11, 12,

1(Bogoliubov-Born-Green-Kirkwood-Yvon)
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13, 14, 15, 32, 53]. In [52], Rodnianski and Schlein introduced yet another method for
proving (7), which uses coherent states on Fock space and was inspired by techniques of
quantum field theory and the pioneering work of Hepp [29].

In the context of the current paper, the most relevant works on the derivation of the
NLH/NLS equation are due to Pickl [50, 51], who introduced an efficient method for de-
riving effective equations from the many-body dynamics, transforming the physical idea
behind the mean-field description of an N -body system into a mathematical algorithm.
Instead of describing the condensate as the vacuum of a Fock space of fluctuations, this
approach remains in the N -body setting and uses projection operators to factor out
the condensate. This strategy was successfully applied to prove effective dynamics for
N -boson systems in various situations, e.g., [4, 8, 17, 30, 31, 34, 40, 41].

A much stronger notion of distance than the one expressed in (7) is provided by
the L2(RdN )-norm. Whereas closeness in the sense of reduced densities implies that the
majority of the particles (up to a relative number that vanishes as N → ∞) is in the
state ϕ(t), the norm approximation requires the control of all N particles. In particular,
this implies that the fluctuations around the condensate can no longer be omitted from
the description. In this sense, the norm approximation of ψ(t) can be understood as
next-to-leading order correction to the mean-field description.

For the dynamics U(t, s), a norm approximation in d dimensions was proven in [38]
for β = 0 and V ext = 0 under quite general assumptions on the interaction potential
v. In [44], this result was extended to the range β ∈ [0, 13) for the three-dimensional
defocusing case, and in [45], the focusing case in dimensions one and two was treated
for β > 0 and β ∈ (0, 1), respectively. In these works, the authors consider initial data
of the form

ψ0 =

N∑

k=0

ϕ0
⊗(N−k) ⊗s χ(k)(0) (11)

for some appropriate initial fluctuation vector χ(0) := (χ(k)(0))∞k=0 ∈ F({ϕ0}⊥). It is
then shown that there exist constants C,C ′ > 0 such that

∥∥∥∥∥ψ(t)−
N∑

k=0

ϕ(t)⊗(N−k) ⊗s χ(k)(t)

∥∥∥∥∥

2

L2(RdN )

≤ CeC
′tN−δ , (12)

where δ = 1 for β = 0, δ = 1 − 3β for the three-dimensional defocusing case with
β ∈ [0, 13), and δ = 1

2 and δ < 1
3(1 − β) for the one- and two-dimensional focusing

case, respectively. The fluctuations χ(t) = (χ(k)(t))∞k=0 ∈ F({ϕ(t)}⊥) at time t > 0 are
determined by the Bogoliubov evolution,

i d
dtχ(t) = HBog(t)χ(t) . (13)

Here, HBog(t) denotes the Bogoliubov Hamiltonian2, an effective Hamiltonian in Fock
space which is quadratic in the number of creation and annihilation operators.

2Written in second quantized form, HBog(t) is defined as

HBog(t) :=

∫

Rd

a∗x
(
hϕ(t)(t, x) +K1(t)

)
ax dx+

∫

Rd

dx

∫

Rd

dy
(
K2(t, x, y)a∗xa

∗
y +K2(t, x, y)axay

)
,

where a∗x and ax denote the operator-valued distributions corresponding to the usual creation and
annihilation operators on F(L2(Rd)). Besides, K1(t) := Q(t)K̃1(t)Q(t) with Q(t) := 1 − |ϕ(t)〉〈ϕ(t)|,
where K̃1 is the Hilbert-Schmidt operator on L2(Rd) with kernel K̃1(t, x, y) := ϕ(t, x)vβ(x − y)ϕ(t, y).
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For three dimensions and scaling parameter β = 0, a similar result was obtained
in [42, 43] via a first quantised approach. More precisely, denote

p
ϕ(t)
j := |ϕ(t, xj)〉〈ϕ(t, xj)|

and
q
ϕ(t)
j := 1− pϕ(t)j .

The auxiliary N -particle Hamiltonian H̃ϕ(t)(t) is defined by subtracting from Hβ(t) in
each coordinate the mean-field Hamiltonian hϕ(t)(t) from (8), inserting identities

(p
ϕ(t)
i + q

ϕ(t)
i )(p

ϕ(t)
j + q

ϕ(t)
j )

on both sides of the difference, and discarding all terms which are cubic, Cϕ(t), or quartic,
Qϕ(t), in the number of projections qϕ(t) (see Lemma 2.2). This yields

H̃ϕ(t)(t) :=
N∑

j=1

h
ϕ(t)
j (t)+ 1

N−1
∑

i<j

(
p
ϕ(t)
i q

ϕ(t)
j vβijq

ϕ(t)
i p

ϕ(t)
j + p

ϕ(t)
i p

ϕ(t)
j vβijq

ϕ(t)
i q

ϕ(t)
j + h.c.

)
,

(14)
which has a quadratic structure comparable to that of the Bogoliubov-Hamiltonian

HBog(t): all terms in Hβ(t) −∑j h
ϕ(t)
j (t), which form an effective two-body potential,

contain exactly two projectors qϕ(t) onto the complement of the condensate wave func-
tion, while HBog(t) is quadratic in the creation and annihilation operators of the fluctu-

ations. However, H̃ϕ(t)(t) is particle number conserving and acts on the N -body Hilbert
space L2(RdN ), i.e., it determines the evolution of both condensate wave function and
fluctuations. In contrast, HBog(t) operates on the fluctuation Fock space F

(
{ϕ(t)}⊥

)
,

does not conserve the particle number, and exclusively concerns the dynamics of the
fluctuations with respect to the condensate wave function evolving according to (8).

Under appropriate assumptions on the initial datum ψ0, the time evolution Ũϕ(t, s)

generated by H̃ϕ(t)(t) approximates the actual time evolution U(t, s). More precisely,
there exist constants C,C ′ > 0 such that

∥∥(U(t, 0)− Ũϕ(t, 0)
)
ψ0

∥∥2
L2(RdN )

≤ CeC
′t2N−1 (15)

[42, Theorem 2.6]. Further, in the limit N →∞, the fluctuations in Ũϕ(t, 0)ψ0 coincide

with the solutions of the Bogoliubov evolution equation: let ξϕ0 =
(
ξ
(k)
ϕ0

)N
k=0

denote

the fluctuations around ϕ0
⊗N in the initial state ψ0 under the decomposition (5), let

ξ̃ϕ(t) =
(
ξ̃
(k)
ϕ(t)

)N
k=0

denote the fluctuations around ϕ(t)⊗N in Ũϕ(t, 0)ψ0, and let χ(t) =(
χ(k)(t)

)
k≥0 denote the solutions of (13) with initial datum ξϕ0 for 0 ≤ k ≤ N and

ξ
(k)
ϕ0 = 0 for k > N . Then

N∑

k=0

∥∥∥ξ̃ (k)ϕ(t) − χ
(k)(t)

∥∥∥
2

L2(Rdk)
≤ CeC

′t2N−1 (16)

Further, K2(t) := (Q(t)⊗Q(t)) K̃2(t), where the kernel of the two-body function K̃2(t) is given by

K̃2(t, x, y) := ϕ(t, x)vβ(x− y)ϕ(t, y) (e.g. [44, Equation (31)]).
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[42, Lemma 2.8]. Hence, the combination of (15) and (16) yields (12), with a different
time-dependent constant but the same N -dependence.

Beyond the mean field regime, a statement similar to (12) was shown in [46] for
the range β ∈ [0, 12). For larger values of the scaling parameter, the evolutions of
ϕ(t) and ξϕ(t) do not (approximately) decouple any more as a consequence of the
short-scale structure related to the two-body scattering process. For β ∈ (0, 1), an
accordingly adjusted variant of (12) for appropriately modified initial data was ob-
tained in [9] in the three-dimensional defocusing case. Similar estimates for the many-
body evolution of appropriate classes of Fock space initial data have been obtained
in [6, 16, 22, 23, 25, 26, 27, 28, 35, 52] for various ranges of the scaling parameter. A
related result for Bose gases with large volume and large density was proved in [49].

1.2 Higher order approximations to the N-body dynamics

In this paper, we introduce a novel method for deriving a more precise characterisation
of the dynamics, which approximates the N -body wave function to arbitrary order in
powers of N−1. This is achieved by constructing a sequence of N -body wave functions,
which are defined via an iteration of Duhamel’s formula with the time evolution Ũϕ(t, s)

generated by H̃ϕ(t)(t). We work in the first quantized framework as was the case, e.g.,
in [42].

• In our first result, we estimate the growth of the first A moments of the number
of fluctuations when the system evolves under the dynamics U(t, s) or Ũϕ(t, s).
Estimates of this kind are often needed to derive effective descriptions of the
dynamics of interacting bosons, e.g., in [5, 6, 10, 42, 49, 52]. Our proof extends
comparable statements for β = 0 and d = 3 obtained in [42, Lemma 2.1] and [52,
Proposition 3.3], and for Bose gases with large volume and large density in [49,
Corollary 4.2]. The estimate is given in Proposition 2.4 and holds for β ∈ [0, 1

2d)
in case of the dynamics U(t, s), and for the full mean-field range β ∈ [0, 1d) in case

of the dynamics Ũϕ(t, s).

In the remainder of the paper, we assume that for some A ∈ {1, ..., N}, the first A mo-
ments of the number of fluctuations in the initial state are sub-leading (see Assumption
A3). More precisely, let γ ∈ (0, 1]. We assume that for all a ∈ {0, ..., A}, there exists
some constant C(a) depending only on a such that

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
≤ C(a)N (1−γ)a . (17)

Here, ξϕ0 denotes the fluctuation vector corresponding to the initial state ψ0 as in (5),
and Nϕ0 is the number operator on the Fock space F≤N

(
{ϕ0}⊥

)
of fluctuations around

ϕ0
⊗N . Note that γ = 0 corresponds to the trivial bound

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
≤ Na. In

this sense, our assumption states that the expected number of fluctuations in ψ0 is
sub-leading. Clearly, the larger we choose γ, the stronger is the assumption.

• Under these conditions, we show in Corollary 2.5 that at any time t and for
sufficiently large N , the first A moments of the number of fluctuations remain
sub-leading, and the N -dependence N (1−γ)a in (17) is replaced by N c(β,γ)a for
some (1− γ) ≤ c(β, γ) < 1.
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• In our second and main result (Theorem 1), we prove higher order corrections
to the norm approximation (12) for the scaling regime β ∈ [0, 1

4d). This is to
be understood in the following sense: we construct a sequence of N -body wave

functions {ψ(a)
ϕ (t)}a∈N ⊂ L2(RdN ) such that, for sufficiently large N ,

‖ψ(t)− ψ(a)
ϕ (t)‖2L2(RdN ) ≤ C(t)N−aδ(β,γ) (18)

for some time-dependent constant C(t). The exponent δ(β, γ) is positive, depends
on β and γ and is determined in Theorem 1.

The first element of the approximating sequence {ψ(a)
ϕ (t)} is given by

ψ(1)
ϕ (t) = Ũϕ(t, 0)ψ0 .

For a = 1, the estimate (18) is thus well known since it coincides with the norm
approximation (15) and consequently with (12). To obtain the next higher cor-

rection with respect to N , we add an appropriate correction term to ψ
(1)
ϕ (t). We

expand the difference
(
U(t, s)− Ũϕ(t, s)

)
ψ0 using Duhamel’s formula, identify the

leading order contribution, and approximate it by replacing U(t, s) with Ũϕ(t, s).
This leads to the second element

ψ(2)
ϕ (t) = Ũϕ(t, 0)ψ0 + i

∫ t

0
Ũϕ(t, s)Cϕ(s)Ũϕ(s, 0)ψ0 ds .

For the third element, we expand the difference
(
U(t, s)− Ũϕ(t, s)

)
ψ0 to the next

order, using Duhamel’s formula twice, and subsequently follow the same strategy
as before. In this way, we construct all higher elements of the sequence as Duhamel
expansions with finitely many terms, each of which exclusively contains ψ0, the
auxiliary time evolution Ũϕ(t, s), and the cubic and quartic interaction terms Cϕ(t)
and Qϕ(t). The precise definition of ψ

(a)
ϕ (t) for any a, as well as a more detailed

explanation of the construction, is provided in Definition 2.2 and the preceding
discussion.

We note that higher order approximations of the reduced density matrices were
obtained by Paul and Pulvirenti in [47] for β = 0 and factorized initial data, based
on the method of kinetic errors from the paper by Paul, Pulvirenti and Simonella [48].
For j ∈ {1, ..., N}, the authors of [47] construct a sequence {FN,nj (t)}n∈N of trace class

operators on L2(Rjd), which approximate the j-particle reduced density matrix γ(j)(t)
of the system with increasing accuracy up to arbitrary precision. The approximating
operators FN,nj (t) can be determined by a number of operations scaling with n. They
depend on the initial data as well as the knowledge of the solution of the Hartree equation
and its linearization around this solution.

Due to different methods used, it is not straightforward to compare the results of
[47] with the results of this paper. However, we list some features of our paper that
differ from the operator-based method of kinetic errors [47, 48]. In contrast to the
approach in [47], we derive approximations directly for the time-evolved N -body wave
function. Our construction is in terms of the Bogoliubov time evolution Ũϕ instead of
the linearized Hartree flow, and it is implemented as a robust algorithm that requires an
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a-dependent, N -independent number of explicit calculations to compute the a’th order
approximation. Moreover, the results obtained in this paper cover more generic initial
data satisfying (17) and include positive values of β.

Notation. In the following, any expression C that is independent of both N and t will
be referred to as a constant. Note that constants may depend on all fixed parameters
of the model such as ϕ0, ψ0, v and V ext(0). Further, we denote A . B and A & B to
indicate that there exists a constant C > 0 such that A ≤ CB, resp. A ≥ CB, and
abbreviate

〈 · , · 〉L2(RdN ) =: 〈 · , · 〉 , ‖ · ‖L2(RdN ) =: ‖ · ‖, ‖ · ‖L(L2(RdN )) =: ‖ · ‖op.

Finally, we use the notation

brc := max {z ∈ Z : z ≤ r} , dre := min {z ∈ Z : z ≥ r}

for r ∈ R.

2 Main results

2.1 Framework and assumptions

Let us first recall from [39, 42, 43] the explicit decomposition of an N -body wave function
ψ in terms of a condensate ϕ⊗N and k-particle fluctuations around this condensate. To
this end, recall the following projections introduced in [50]:

Definition 2.1. Let ϕ ∈ L2(Rd). Define the orthogonal projections on L2(Rd)

pϕ := |ϕ〉〈ϕ|, qϕ := 1− pϕ

and the corresponding projection operators on L2(RdN )

pϕj := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗ pϕ ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−j

and qϕj := 1− pϕj .

For 0 ≤ k ≤ N , define the many-body projections

Pϕk :=
∑

J⊆{1,...,N}
|J |=k

∏

j∈J
qϕj
∏

l /∈J
pϕl =

1

(N − k)!k!

∑

σ∈SN
qϕσ(1) ···q

ϕ
σ(k)p

ϕ
σ(k+1) ···p

ϕ
σ(N)

and Pϕk = 0 for k < 0 and k > N . Further, for any function f : N0 → R+
0 and any

j ∈ Z, define the operators f̂ϕ, f̂ϕj ∈ L
(
L2(RdN )

)
by

f̂ϕ :=
N∑

k=0

f(k)Pϕk , f̂ϕj :=

N−j∑

n=−j
f(n+ j)Pϕn .

We will in particular need the operators n̂ϕ and m̂ϕ corresponding to the weights

n(k) :=
√

k
N , m(k) :=

√
k+1
N .
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The part of ψ in the condensate is given by Pϕ0 ψ, and the part of ψ corresponding to k
particles fluctuating around the condensate is precisely Pϕk ψ for k ≥ 1. By construction,

Pϕk P
ϕ
k′ = δk,k′P

ϕ
k . Besides, the identity

∑N
k=0 P

ϕ
k = 1 implies

ψ =
N∑

k=0

Pϕk ψ =:
N∑

k=0

ϕ⊗(N−k) ⊗s ξ(k)ϕ (19)

for some ξ
(k)
ϕ ∈ L2(Rdk). To determine the explicit form of ξ

(k)
ϕ , observe that by Defini-

tion 2.1,

Pϕk ψ(x1, ..., xN )

=
1

(N − k)!k!

∑

σ∈SN
ϕ(xσ(k+1))···ϕ(xσ(N)) q

ϕ
σ(1) ···q

ϕ
σ(k) ×

×
∫

Rd

dy1 ···
∫

Rd

dyN−k ϕ(y1)···ϕ(yN−k)ψ(xσ(1), ..., xσ(k), y1, ..., yN−k)

=:
(
ϕ⊗(N−k) ⊗s ξ(k)ϕ

)
(x1, ..., xN ) ,

where, by definition of the symmetric tensor product,

ξ(k)ϕ (x1, ..., xk) :=

=

√(
N
k

)
qϕ1 ···qϕk

∫

Rd

dx̃k+1 ···
∫

dx̃N ϕ(x̃k+1)···ϕ(x̃N )ψ(x1, ..., xk, x̃k+1, ..., x̃N ) . (20)

Obviously, ξ
(k)
ϕ is symmetric under permutations of all of its coordinates, and ξ

(k)
ϕ is

orthogonal to ϕ in every coordinate, i.e.,

∫

Rd
ϕ(xj) ξ

(k)
ϕ (x1, ..., xj , ..., xN ) dxj = 0 , pϕj ξ

(k)
ϕ = 0 , qϕj ξ

(k)
ϕ = ξ(k)ϕ (21)

for every j ∈ {1, ..., k}. Hence, ξ
(k)
ϕ ∈⊗k

sym{ϕ}⊥. The fluctuations ξ
(k)
ϕ , k ∈ {0, ..., N},

define a vector ξϕ :=
(
ξ
(0)
ϕ , ξ

(1)
ϕ , ..., ξ

(N)
ϕ

)
in the truncated Fock space F≤N

(
{ϕ}⊥

)
de-

fined in (6). The relation between the N -body state ψ and the corresponding fluctuation
vector ξϕ is given by the unitary map

UϕN : L2(RdN )→ F≤N
(
{ϕ}⊥

)
, ψ 7→ UϕNψ := ξϕ , (22)

where ξϕ is defined by (20). The vacuum (1, 0, ..., 0) of F≤N
(
{ϕ}⊥

)
corresponds to the

condensate ϕ⊗N , and the probability of k particles being outside the condensate equals

‖ξ(k)ϕ ‖2L2(Rdk) =
(
N
k

)
‖qϕ1 · · · qϕk p

ϕ
k+1 · · · p

ϕ
Nψ‖2 = ‖Pϕk ψ‖2 (23)

by (20). The number operator Nϕ on F≤N
(
{ϕ}⊥

)
, counting the number of fluctuations,

is defined by its action
(Nϕ ξϕ)(k) := k ξ(k)ϕ .
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The expected number of fluctuations around the condensate ϕ⊗N in the state ψ is thus
given by

〈ξϕ,Nϕ ξϕ〉F≤N({ϕ}⊥) =
N∑

k=0

k‖ξ(k)ϕ ‖2L2(Rdk) =
N∑

k=0

k‖Pϕk ψ‖2 = N

〈
ψ,

N∑

k=0

k
NP

ϕ
k ψ

〉

= N‖n̂ϕψ‖2
(24)

with n̂ϕ from Definition 2.1.

Let us now state our assumptions on the model (1) and on the initial data.

A1 Interaction potential. Let v : Rd → R be spherically symmetric and bounded
uniformly in N , i.e., ‖v‖L∞(Rd) . 1. Further, assume that supp v ⊆ {x ∈ Rd :
|x| . 1}.

A2 External potential. Let V ext : R × Rd → R such that V ext(·, x) ∈ C(R) for each
x ∈ Rd and V ext(t, ·) ∈ L∞(Rd) for each t ∈ R.

A3 Initial data. Let ψ0 ∈ D(Hβ(0))∩L2
sym(RdN ) and ϕ0 ∈ Hk(Rd), k = dd2e, both be

normalised. Let γ ∈ (0, 1] and A ∈ N. Assume that for any a ∈ {0, ..., A}, there
exists a set of non-negative, a-dependent constants {C a}0≤a≤A with C 0 = 1 such
that, for sufficiently large N ,

∥∥∥
(
m̂ϕ0

)a
ψ0

∥∥∥
2
≤ C aN

−γa .

Our analysis is valid as long as the solution ϕ(t) of the non-linear equation (8) exists in
Hk(Rd)-sense for k = dd2e. The maximal time of Hk(Rd)-existence, T ex

d,v,V ext , is defined
as

T ex
d,v,V ext := sup

{
t ∈ R+

0 : ‖ϕ(t)‖Hk(Rd) <∞ for k = dd2e
}

(25)

and depends on the dimension d, the sign of vϕ(t), and the regularity of the external
trap V ext(t).

Assumptions A1 and A2 are rather standard in the rigorous treatment of interacting
many-boson systems. Note that we make no assumption on the sign of the potential or
its scattering length and thus cover both repulsive and attractive interactions. Besides,
we admit a large class of time-dependent external traps V ext, with basically the only
restriction that V ext(t) must not obstruct the self-adjointness of Hβ(t) on H2(RdN ).

The third assumption provides a bound on the expected number of fluctuations
around the condensate ϕ0

⊗N in the initial state ψ0. Note that while γ = 0 is the trivial
bound, the condition becomes more restrictive as γ increases. We have chosen this
particular formulation of A3 for later convenience3. However, its physical meaning is
better understood from one of the following two equivalent versions of A3:

3Note that the operators n̂ϕ and m̂ϕ are equivalent in the sense that they are related via (36),
namely (n̂ϕ)2a ≤ (m̂ϕ)2a ≤ 2a(n̂ϕ)2a + N−a, hence all results in terms of n̂ϕ can be translated to the
corresponding statements in terms of n̂ϕ. We chose to work with m̂ϕ instead of n̂ϕ because this makes
in particular Proposition 2.4 easier to write. For example, in terms of n̂ϕ, Proposition 2.4b reads

‖(n̂ϕ)jŨϕ(t, s)ψ‖2 . C t,s
j

j∑

n=0

Nn(−1+dβ)
(

2j−n‖(n̂ϕ)j−nψ‖2 +N−j+n
)
,

which contains an additional term N−j+n. Since the proof of our main result requires an iteration of
this proposition, the version with n̂ϕ is more practicable.
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A3 ′ Let ψ0 ∈ D(Hβ(0)) ∩ L2
sym(RdN ) and ϕ0 ∈ Hk(Rd), k = dd2e, both be normalised.

Let γ ∈ (0, 1] and A ∈ N. Assume that for any a ∈ {0, ..., A}, there exists a
set of non-negative, a-dependent constants {C′a}0≤a≤A with C′0 = 1 such that, for
sufficiently large N ,

‖qϕ0
1 · · · qϕ0

a ψ0‖2 ≤ C′aN
−γa.

A3 ′′ Let ψ0 ∈ D(Hβ(0)) ∩ L2
sym(RdN ) and ϕ0 ∈ Hk(Rd), k = dd2e, both be normalised.

Let γ ∈ (0, 1], A ∈ N and ξϕ0 = Uϕ0

N ψ0. Assume that for any a ∈ {0, ..., A}, there
exists a set of non-negative, a-dependent constants {C′′a}0≤a≤A with C′′0 = 1 such
that, for sufficiently large N ,

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
F≤N({ϕ0}⊥)

=

N∑

k=0

ka‖ξ(k)ϕ0
‖2L2(Rdk) ≤ C′′aN

(1−γ)a .

The equivalence A3 ⇔ A3 ′ ⇔ A3 ′′ follows immediately from Lemma 2.1, whose proof
is postponed to Section 3.1.

Lemma 2.1. Let a ∈ {1, ..., N} and ϕ ∈ L2(Rd). Let ψ ∈ L2
sym(RdN ) and ξϕ = UϕNψ.

Then

(a)
∥∥qϕ1 ···qϕaψ

∥∥2 ≤
∥∥∥
(
m̂ϕ
)a
ψ
∥∥∥
2
≤ 4aa!

a∑
j=1

N−a+j
∥∥qϕ1 ···qϕj ψ

∥∥2 +N−a ,

(b)
〈
ξϕ,N a

ϕ ξϕ
〉
F≤N({ϕ}⊥)

≤ Na
∥∥∥
(
m̂ϕ
)a
ψ
∥∥∥
2
≤ 1 + 2a

〈
ξϕ,N a

ϕ ξϕ
〉
F≤N({ϕ}⊥)

.

Hence, A3 can be understood as follows: Let A ∈ N and consider sufficiently large
N such that A = O(1) with respect to N , i.e. A . 1. Then we assume that for any
a ≤ A, the part of the wave function with any a particles outside the condensate is at
most of order N−γa.

Equivalently, A3 states that the first A . 1 moments of the number of fluctuations
must be sub-leading with respect to the particle number; for γ = 1, they must even be
bounded uniformly in N . Here, “sub-leading” means that the moments of the relative
number of fluctuations, i.e., the expectation values of (Nϕ(t)/N)A, vanish as N → ∞.
This, in turn, provides a bound on the high components of the fluctuation vector: for

example,
∑N

k=0 k
A‖ξ(k)ϕ0 ‖2L2(Rdk) . N (1−γ)A implies ‖ξ(N)

ϕ0 ‖2L2(Rdk) . N−γA. In other

words, it must be very unlikely that significantly many particles are outside the conden-
sate, whereas we impose no restriction on fluctuations involving only few particles (with
respect to N).

As soon as a becomes comparable to N , i.e., a & N , the constants C
(′,′′)
a are N -

dependent and the assumption is trivially satisfied. However, note that we demand that
N be large enough that A . 1.

The simplest example of an N -body state satisfying A3 is the product state ψ =
ϕ0
⊗N . Whereas the ground state of non-interacting bosons (v = 0) is of this form, the

ground state as well as the lower excited states of interacting systems are not close to
an exact product with respect to the L2(RdN )-norm due to the correlation structure
related to the interactions.
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Besides, it seems reasonable to expect that states exhibiting Bose–Einstein conden-
sation satisfy A3 for some (possibly very small) γ, as it is well known that

lim
N→∞

Tr
∣∣∣γ(1) − |ϕ〉〈ϕ|

∣∣∣ = 0 ⇔ lim
N→∞

‖(m̂ϕ)jψ‖2 = 0 for any j > 0

(e.g. [50, Lemma 2.3]). Note, however, that we require a certain minimal size of γ, which
is strictly greater than 2

3 (Theorem 1).
To the best of our knowledge, there exists only one rigorous result in [43, Chapter 3]

that identifies situations where a Bose gas satisfies assumption A3. This work concerns a
homogeneous Bose gas on the d-dimensional torus and is restricted to the scaling β = 0.
For this case, it is shown that the ground state as well as the lower excited states fulfil
assumption A3 with γ = 1 (and consequently for all γ ∈ (0, 1]). More precisely, let ϕ0

be the minimizer of the Hartree functional on the torus with ground state energy E0,
and let ψn denote the n’th excited state with energy En. Then the author proves that
there exist constants C,D > 0 such that ‖Pϕ0

a ψn‖2 ≤ Ce−Da for all (En−E0) ≤ a ≤ N .
As a corollary of this statement, it is shown that there exists Ca > 0 such that

〈ψn, qϕ0
1 · · · qϕ0

a ψn〉 ≤ N−aCa (1 + (En − E0)
a) ,

which implies that assumption A3 ′ is satisfied.
Let us conclude the discussion of our assumptions with a remark on the relation

between A3 and the so-called Wick property of quasi-free states4. In [39, Theorem A.1],
it was shown that the ground state of HBog is a quasi-free state, which, via the map
UϕN , defines an N -body state ψBog that converges to the actual ground state ψ0 in norm
as N → ∞ [39, Theorem 2.2]. For a quasi-free state χ on a Fock space F , it is known
(e.g. [44, Lemma 5]) that for every a ≥ 1, there exists a constant Ca > 0 such that

〈χ,N aχ〉F ≤ Ca (1 + 〈χ,Nχ〉F )a .

Hence, A3(′, ′′) holds with γ = 1 for quasi-free states. Since it is somewhat similar to the
Wick property, it is referred to as quasi-free type property in [43].

Finally, let us recall from (14) the Hamiltonian H̃ϕ(t)(t) introduced in [42, 43],

H̃ϕ(t)(t) =

N∑

j=1

h
ϕ(t)
j (t)

+
1

N − 1

∑

i<j

(
p
ϕ(t)
i q

ϕ(t)
j vβijq

ϕ(t)
i p

ϕ(t)
j + p

ϕ(t)
i p

ϕ(t)
j vβijq

ϕ(t)
i q

ϕ(t)
j + h.c.

)
,

which can be understood as first-quantised analogue of a Bogoliubov Hamiltonian. As
pointed out in the introduction, H̃ϕ(t)(t) differs from Hβ(t) precisely by terms with
three or four projectors qϕ(t), denoted by Cϕ(t) and Qϕ(t). In this sense, it is a quadratic
Hamiltonian comparable to HBog(t).

4A state χ in a Fock space F(H) over a Hilbert space H is called quasi-free if it has a finite
particle number expectation and satisfies Wick’s Theorem: For all n and for all f1, ..., fn ∈ H
and for a] either the creation or the annihilation operator,

〈
χ, a](f1)a](f2) . . . a](f2n−1)χ

〉
= 0

and
〈
χ, a](f1)a](f2) . . . a](f2n)χ

〉
=

∑
σ∈P2n

n∏
j=1

〈
χ, a](fσ(2j−1))a

](fσ(2j))χ
〉
, where P2n = {σ ∈ S2n :

σ(2j − 1) < min{σ(2j), σ(2j + 1)}∀ j} is the set of pairings.
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Lemma 2.2.
Hβ(t) = H̃ϕ(t)(t) + Cϕ(t) +Qϕ(t) ,

where

Cϕ(t) :=
1

N − 1

∑

i<j

(
q
ϕ(t)
i q

ϕ(t)
j

(
vβij − vϕ(t)(xi)− vϕ(t)(xj)

)(
q
ϕ(t)
i p

ϕ(t)
j + p

ϕ(t)
i q

ϕ(t)
j

)

+h.c.

)
,

Qϕ(t) :=
1

N − 1

∑

i<j

q
ϕ(t)
i q

ϕ(t)
j

(
vβij − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

)
q
ϕ(t)
i q

ϕ(t)
j .

Proof.

Hβ(t) =
N∑

j=1

h
ϕ(t)
j (t) +

1

N − 1

∑

i<j

vβij −
N∑

j=1

vϕ(t)(xj) +Nµϕ(t)

=
N∑

j=1

h
ϕ(t)
j (t) +

1

N − 1

∑

i<j

(
vβij − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

)

Now one inserts identities 1 = (p
ϕ(t)
i +q

ϕ(t)
i )(p

ϕ(t)
j +q

ϕ(t)
j ) before and after the expression

in the brackets and uses the relations

p
ϕ(t)
i vβijp

ϕ(t)
i = vϕ(t)(xj)p

ϕ(t)
i , p

ϕ(t)
i vϕ(t)(xi)p

ϕ(t)
i = 2µϕ(t)p

ϕ(t)
i ,

which concludes the proof.

The time evolution generated by H̃ϕ(t)(t) is denoted by Ũϕ(t, s), and its well-posedness
is recalled in the following lemma.

Lemma 2.3. Let t ∈
[
0, T ex

d,v,V ext

)
. Then H̃ϕ(t)(t) is self-adjoint on D(H̃ϕ(t)(t)) =

H2(RdN ) and generates a unique family of unitary time evolution operators Ũϕ(t, s).

Ũϕ(t, s) is strongly continuous jointly in s, t and leaves H2(RdN ) invariant. For an
initial datum ψ0 ∈ L2

sym(RdN ), the corresponding N -body wave function at time t ∈ R
will be denoted by

ψ̃ϕ(t) = Ũϕ(t, 0)ψ0 . (26)

Proof. As a consequence of the Sobolev embedding theorem (e.g. [3, Theorem 4.12, Part
IA]), ‖ϕ(t)‖L∞(Rd) . ‖ϕ(t)‖Hk(Rd) for k = dd2e. Hence, by definition (25) of T ex

d,v,V ext ,

µϕ(t) and (N − 1)vϕ(t) are bounded uniformly in N for t ∈
[
0, T ex

d,v,V ext

)
. Further,

t 7→ H̃ϕ(t)(t)ψ is Lipschitz for all ψ ∈ H2(RdN ) because of (8), since t 7→ V ext(t) ∈
L(L2(Rd)) is continuous and as d

dtp
ϕ(t) = i[pϕ(t), hϕ(t)(t)]. Hence, the statement of the

lemma follows from [24].
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2.2 Control of higher moments of the number of fluctuations

In our first result, we prove bounds on the growth of the expected number of fluctuations
under the time evolution. We consider both the actual N -body dynamics U(t, s) and
the dynamics Ũϕ(t, s) generated by the Hamiltonian H̃ϕ(t)(t). The estimates are stated
for ‖(m̂ϕ)aψ‖2 as these expressions are required for the proof of our main theorem. By
Lemma 2.1, they easily translate to bounds on the corresponding quantities ‖q1 · · · qaψ‖2
and

〈
ξϕ,N a

ϕξϕ
〉
. The proofs of Proposition 2.4 and Corollary 2.5 are postponed to

Section 3.2.

Proposition 2.4. Let β ∈ [0, 1d), assume A1 and A2 and let ψ ∈ L2
sym(RdN ). Let

s ∈ R, ϕ(s) ∈ Hk(Rd) for k = dd2e, and let ϕ(t) be the solution of (8) with initial datum
ϕ(s). Then it holds for t ∈

[
s, s+ T ex

d,v,V ext

)
and j ∈ {1, ..., N} that

(a) for any b ∈ N0,

∥∥∥∥
(
m̂ϕ(t)

)j
U(t, s)ψ

∥∥∥∥
2

. C t,s
j

j∑

n=0

Nn(−1+dβ)
∥∥∥∥
(
m̂ϕ(s)

)j−n
ψ

∥∥∥∥
2

+ 2bC t,s
b

b∑

n=0

Nn(−1+dβ)+dβb
∥∥∥∥
(
m̂ϕ(s)

)b−n
ψ

∥∥∥∥
2

,

(b)
∥∥∥∥
(
m̂ϕ(t)

)j
Ũϕ(t, s)ψ

∥∥∥∥
2

. C t,s
j

j∑

n=0

Nn(−1+dβ)
∥∥∥∥
(
m̂ϕ(s)

)j−n
ψ

∥∥∥∥
2

,

where C t,s
j := j! 3j(j+1)e

9j
∫ t
s ‖ϕ(s1)‖2Hk(Rd) ds1.

Proposition 2.4 provides an extension to positive β of [42, Lemma 2.1], where a com-
parable statement was shown for β = 0, γ = 1 and d = 3 with a similar method. Under
the additional assumption A3 on the initial data, this implies the following estimates:

Corollary 2.5. Assume A1 – A2 and A3 with γ ∈ (0, 1] and A ∈ {1, ..., N}. Let ψ(t),
ψ̃ϕ(t) and ϕ(t) denote the solutions of (4), (26) and (8) with initial data ψ0 and ϕ0

from A3. Then for t ∈
[
0, T ex

d,v,V ext

)
, sufficiently large N and a ∈ {0, ..., A}, it holds

that

(a) for β ∈ [0, 1
2d),

∥∥∥
(
m̂ϕ(t)

)a
ψ(t)

∥∥∥
2

. aC t
a N

−a(1−dβ) for 1− dβ ≤ γ ≤ 1

and for β ∈ [0, 1d),

∥∥∥
(
m̂ϕ(t)

)a
ψ(t)

∥∥∥
2

. aC aC
t
a N

−γa for dβ < γ ≤ 1− dβ ,

(b) for β ∈ [0, 1d),

∥∥∥
(
m̂ϕ(t)

)a
ψ̃ϕ(t)

∥∥∥
2

.




aC t

a N
−a(1−dβ) for 1− dβ ≤ γ ≤ 1 ,

aC aC
t
a N

−γa for 0 < γ ≤ 1− dβ

with C t
a := C t,0

a .
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At the threshold γ = 1− dβ, the leading order terms in the sums in Proposition 2.4
change, hence we obtain two different estimates. The additional restrictions on β and
γ in part (a) stem from the second sum in Proposition 2.4a. Only if either β < 1

2d or
γ > dβ, it is possible to choose b sufficiently large that the first sum dominates for large
N .

By Lemma 2.1, Corollary 2.5 yields estimates on the growth of the first A moments
of the fluctuation number, given A3 with parameters A and γ. Let ξϕ0 = Uϕ0

N ψ0,

ξϕ(t) = U
ϕ(t)
N ψ(t) = U

ϕ(t)
N U(t, 0)ψ0 and ξ̃ϕ(t) = U

ϕ(t)
N ψ̃ϕ(t) = U

ϕ(t)
N Ũϕ(t, 0)ψ0. Then, for

sufficiently large N and for all a ∈ {0, ..., A}, we obtain for β ∈ [0, 1
2d)

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
. N (1−γ)a ⇒

〈
ξϕ(t),N a

ϕ(t)ξϕ(t)

〉
. C t

aN
dβa 1− dβ ≤ γ ≤ 1 ,

and for β ∈ [0, 1d)

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
. N (1−γ)a ⇒

〈
ξϕ(t),N a

ϕ(t)ξϕ(t)

〉
. C t

aN
(1−γ)a dβ < γ ≤ 1− dβ ,

〈
ξϕ0 ,N a

ϕ0
ξϕ0

〉
. N (1−γ)a ⇒





〈
ξ̃ϕ(t),N a

ϕ(t)ξ̃ϕ(t)

〉
. C t

aN
dβa 1− dβ ≤ γ ≤ 1 ,

〈
ξ̃ϕ(t),N a

ϕ(t)ξ̃ϕ(t)

〉
. C t

aN
(1−γ)a 0 < γ < 1− dβ ,

where we estimated a,C a,C
′′
a . 1 for the sake of readability. For β = 0, both time

evolutions preserve the property A3 ′′ exactly, i.e., with the same power γ of N , up to
a constant growing rapidly in t and a. For β > 0, the conservation is exact only for
small γ, whereas one looses some power of N for larger γ. Further, note that for the
range γ ∈ (0, dβ), we do not obtain a non-trivial estimate for the fluctuations ξϕ(t) in
U(t, 0)ψ0.

2.3 Higher order corrections to the norm approximation

Based on the estimates obtained in Proposition 2.4, our main result establishes correc-
tions of any order to the norm approximations (12) and (15): under assumption A3 on

the initial data, we construct a sequence {ψ(a)
ϕ }a∈N ⊂ L2(RdN ) such that

‖ψ(t)− ψ(a)
ϕ (t)‖2 ≤ C(t)N−aδ(β,γ)

for some δ(β, γ) > 0, which may depend on β as well as on the parameter γ from
assumption A3. For reasons given below, our analysis is restricted to the scaling regime
β ∈ [0, 1

4d).
As explained in the introduction, it is well known that the actual time evolution

ψ(t) is close to the evolution ψ̃ϕ(t) from (26) in norm. Hence, the first element of the

approximating sequence {ψ(a)
ϕ }a∈N is determined by

ψ(1)
ϕ (t) := Ũϕ(t, 0)ψ0 .

Using Duhamel’s formula, the difference between U(t, s)ψ and Ũϕ(t, s)ψ can be expressed
as

U(t, s)ψ = Ũϕ(t, s)ψ − i

∫ t

s
U(t, r)

(
Cϕ(r) +Qϕ(r)

)
Ũϕ(r, s)ψ dr (27)
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for any ψ ∈ L2(RdN ). Consequently,

‖ψ(t)− ψ(1)
ϕ (t)‖ =

∥∥∥∥−i

∫ t

0
U(t, s)

(
Cϕ(s) +Qϕ(s)

)
Ũϕ(s, 0)ψ0 ds

∥∥∥∥

≤
∫ t

0
‖Cϕ(s)Ũϕ(s, 0)ψ0‖ ds+

∫ t

0
‖Qϕ(s)Ũϕ(s, 0)ψ0‖ ds (28)

by the triangle inequality and as a consequence of the unitarity of U(t, s). The leading
order contribution in (28) is the term containing Cϕ(s) because the cubic interaction
terms are larger than the quartic ones in the following sense:

Lemma 2.6. Let ψ ∈ L2
sym(RdN ) and denote by ϕ(t) the solution of (8) with initial

datum ϕ0 ∈ Hk(Rd), k = dd2e. Then for any j ∈ N0 and t ∈
[
0, T ex

d,v,V ext

)
,

(a) ‖
(
m̂ϕ(t)

)j
Qϕ(t)ψ‖2 . N2+2dβ‖

(
m̂ϕ(t)

)4+j
ψ‖2,

(b) ‖
(
m̂ϕ(t)

)j
Cϕ(t)ψ‖2 . 4j‖ϕ(t)‖2

Hk(Rd)N
2+dβ‖

(
m̂ϕ(t)

)3+j
ψ‖2.

The proof of this lemma is postponed to Section 3.3. For j = 0, it gives a bound
on the cubic and quartic terms; the more general statement j ≥ 0 is included for later
convenience.

When applying Lemma 2.6 to (28), we obtain expressions like ‖(m̂ϕ(s))jŨϕ(s, 0)ψ0‖2.
To be able to use assumption A3 on the initial data, we need to interchange, in a sense,

the order of Ũϕ(s, 0) and (m̂ϕ(s))j . This is where Proposition 2.4 comes into play: from
part 2.4b, it follows for sufficiently large N that

‖Cϕ(s)Ũϕ(s, 0)ψ0‖2
2.6

. N2+dβ‖(m̂ϕ(s))3Ũϕ(s, 0)ψ0‖2

2.4b

. C s
3 N

2+dβ
3∑

n=0

Nn(−1+dβ)‖(m̂ϕ0)3−nψ0‖2

A3

. C s
3 N

2+dβ
3∑

n=0

C 3−nNn(−1+dβ+γ)−3γ .

As in Corollary 2.5, the size of γ determines the leading order term in the sum: for
γ ≥ 1−dβ, the dominant contribution issues from n = 3, whereas otherwise the addend
corresponding to n = 0 is of leading order. Consequently,

‖Cϕ(s)Ũϕ(s, 0)ψ0‖2 .




C s
3 N

−1+4dβ for 1− dβ ≤ γ ≤ 1 ,

C 3C
s
3 N

2+dβ−3γ for 2+dβ
3 < γ ≤ 1− dβ .

(29)

To ensure that (29) converges to zero as N → ∞, we have restricted the range of
parameters γ admitted by assumption A3 to γ ∈ (2+dβ3 , 1]. Besides, in the first case, the
bound is only small for β < 1

4d , and the second case is anyway only possible for β < 1
4d .

Hence, we can only cover the parameter regime β ∈ [0, 1
4d). Analogously to (29), we also

obtain

‖Qϕ(s)Ũϕ(s, 0)ψ0‖2 .




C s
4 N

−2+6dβ for 1− dβ ≤ γ ≤ 1 ,

C s
4 C 4N

2+2dβ−4γ for 2+dβ
3 < γ ≤ 1− dβ .

(30)
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Note that β < 1
4d implies that −2 + 6dβ < −1 + 4dβ, and besides, it follows from

γ > 2+3d
3 and β < 1

4d that 2 + 2dβ − 4γ < 2 + dβ − 3γ. Consequently, the contribution

with Cϕ(s) dominates in (28) for sufficiently large N , which leads to the estimate

‖ψ(t)− ψ(1)
ϕ (t)‖2 . N−δ(β,γ)




t∫

0

√
C s
3 ds




2

. e
c(1)

∫ t
0 ‖ϕ(s)‖2Hk(Rd) dsN−δ(β,γ) (31)

for some constant c(1) > 0 and with

δ(β, γ) :=

{
1− 4dβ for 1− dβ ≤ γ ≤ 1 ,

−2− dβ + 3γ for 2+dβ
3 < γ ≤ 1− dβ .

(32)

This yields (18) for n = 1.

To construct the second element ψ
(2)
ϕ (t) of the approximating sequence, we need to

extract from (27) the relevant contributions such that ‖ψ(t)−ψ(2)
ϕ (t)‖2 ≤ C(t)N−2δ(β,γ).

As a consequence of Lemma 2.6, we define

ψ(2)
ϕ (t) := Ũϕ(t, 0)ψ0 − i

∫ t

0
ds Ũϕ(t, s)Cϕ(s)Ũϕ(s, 0)ψ0 ,

which equals the leading order contribution in (27) but with the true time evolution
U(t, s) replaced by Ũϕ(t, s). Put differently, the leading order contribution is cancelled

but for the difference between U(t, s) and Ũϕ(t, s). Since this difference is evaluated on

Cϕ(s)Ũϕ(s, 0)ψ0, which is small in norm, this is an improvement compared to the first

order approximation ψ
(1)
ϕ (t). To verify this, let us compute the difference between ψ(t)

and ψ
(2)
ϕ (t). Using twice Duhamel’s formula, we obtain

ψ(t)− ψ(2)
ϕ (t)

= −i

∫ t

0

(
U(t, s)− Ũϕ(t, s)

)
Cϕ(s)Ũϕ(s, 0)ψ0 ds

−i

∫ t

0
U(t, s)Qϕ(s)Ũϕ(s, 0)ψ0 ds

= −
∫ t

0
ds1

∫ t

s1

ds2 U(t, s2)
(
Cϕ(s2) +Qϕ(s2)

)
Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0

−i

∫ t

0
U(t, s)Qϕ(s)Ũϕ(s, 0)ψ0 ds.

Due to the unitarity of U(t, s), we obtain with the triangle inequality

‖ψ(t)− ψ(2)
ϕ (t)‖ ≤

∫ t

0
ds1

∫ t

s2

ds2‖Cϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖

+

∫ t

0
ds1

∫ t

s1

ds2‖Qϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖

+

∫ t

0
ds‖Qϕ(s)Ũϕ(s, 0)ψ0‖ . (33)
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The leading order term in (33) can be estimated as

‖Cϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖2
2.6,2.4b

. N2+dβC s2−s1
3 ‖ϕ(s2)‖2Hk(Rd)

3∑

n=0

Nn(−1+dβ)‖(m̂ϕ(s1))3−nCϕ(s1)Ũϕ(s1, 0)ψ0‖2

2.6,2.4b

. N4+2dβC s2−s1
3 ‖ϕ(s1)‖2Hk(Rd)‖ϕ(s2)‖2Hk(Rd) ×

×
3∑

n=0

6−n∑

l=0

43−nC s1
6−nN

(n+l)(−1+dβ)‖(m̂ϕ0)6−n−lψ0‖2

A3

. N−2+2dβC s2−s1
3 ‖ϕ(s1)‖2Hk(Rd)‖ϕ(s2)‖2Hk(Rd) ×

×
3∑

n=0

6−n∑

l=0

43−nC s
6−n C 6−n−lN

(n+l)(−1+dβ+γ)−6γ .

As before, considering the two ranges of γ separately yields for sufficiently large N

‖Cϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖2

. C s2−s1
3 C s1

6 ‖ϕ(s1)‖2Hk(Rd)‖ϕ(s2)‖2Hk(Rd)N
−2δ(β,γ)

with δ(β, γ) from (32), where we have used that C t
a is increasing in a. Analogously, the

second term can be estimated as

‖Qϕ(s2)Ũϕ(s2, s1)Cϕ(s1)Ũϕ(s1, 0)ψ0‖2

.




C s2−s1
4 C s1

7 ‖ϕ(s1)‖2Hk(Rd)N
−3+10dβ for 1− dβ ≤ γ ≤ 1 ,

C s2−s1
4 C s1

7 C 7‖ϕ(s1)‖2Hk(Rd)N
4+3dβ−7γ for 2+dβ

3 < γ ≤ 1− dβ ,

and the third term was already treated in (30). Combining all bounds, we obtain

‖ψ(t)− ψ(2)
ϕ (t)‖2 .

(∫ t

0

√
C s1
6 ds1

∫ t

s1

√
C s2−s1
3 ds2

)2

N−2δ(β,γ)

. e
c(2)

∫ t
0 ‖ϕ(s)‖2Hk(Rd) dsN−2δ(β,γ)

for some c(2) > 0, which yields (18) for n = 2.

Iterating Duhamel’s formula (27) (a−1) times, we construct ψ
(a)
ϕ (t) as an expansion

with a − 1 terms, where the last term contains the true time evolution U(t, s) and all

others exclusively contain Ũϕ(t, s). Consequently, to construct ψ
(2)
ϕ (t), we iterate (27)

once more, which yields
(
U(t, 0)− Ũϕ(t, 0)

)
ψ

= −i

∫ t

0
ds Ũϕ(t, s)

(
Cϕ(s) +Qϕ(s)

)
Ũϕ(s, 0)ψ

−
∫ t

0
ds1

∫ t

s1

ds2 U(t, s2)
(
Cϕ(s2) +Qϕ(s2)

)
Ũϕ(s2, s1)×
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×
(
Cϕ(s1) +Qϕ(s1)

)
Ũϕ(s1, 0)ψ .

The leading order contributions issue from the first integral and from the expression with

two cubic interaction terms. Analogously to above, they determine the next element ψ
(3)
ϕ

of the sequence {ψ(a)
ϕ }a∈N as

ψ(3)
ϕ (t) := Ũϕ(t, 0)ψ − i

∫ t

0
ds Ũϕ(t, s)

(
Cϕ(s) +Qϕ(s)

)
Ũϕ(s, 0)ψ0

−
∫ t

0
ds1

∫ t

s1

ds2 Ũϕ(t, s2) Cϕ(s2)Ũϕ(s2, s1) Cϕ(s1)Ũϕ(s1, 0)ψ0 ,

and similar calculations as before yield ‖ψ(t) − ψ(3)
ϕ (t)‖2 . C(t)N−3δ(β,γ). Continuing

the iteration of (27), we obtain for any a ≥ 1 and s0 = 0 the expansion

ψ(t) =
a−1∑

n=0

(−i)n
t∫

0

ds1

t∫

s1

ds2 ···
t∫

sn−1

dsn Ũϕ(t, sn)
(
Cϕ(sn) +Qϕ(sn)

)
Ũϕ(sn, sn−1)×

×···Ũϕ(s2, s1)
(
Cϕ(s1) +Qϕ(s1)

)
Ũϕ(s1, 0)ψ0

+(−i)a
t∫

0

ds1

t∫

s1

ds2 ···
t∫

sa−1

dsa U(t, sa)
(
Cϕ(sa) +Qϕ(sa)

)
Ũϕ(sa, sa−1)×

×···Ũϕ(s2, s1)
(
Cϕ(s1) +Qϕ(s1)

)
Ũϕ(s1, 0)ψ0

=
a−1∑

n=0

n∏

ν=1

(
−i

∫ t

sν−1

dsν

)
Ũϕ(t, sn)

n−1∏

`=0

((
Cϕ(sn−`) +Qϕ(sn−`)

)
×

×Ũϕ(sn−`, sn−`−1)
)
ψ0

+

a∏

ν=1

(
−i

∫ t

sν−1

dsν

)
U(t, sa)

a−1∏

`=0

((
Cϕ(sa−`) +Qϕ(sa−`)

)
×

×Ũϕ(sa−`, sa−`−1)
)
ψ0 . (34)

All products are to be understood as ordered, i.e.
∏L
`=0 P` := P0P1 · · ·PL for L ∈ N and

any expressions P`. Extracting the leading contributions in each order, we construct the

sequence {ψ(a)
ϕ (t)}a∈N as follows:

Definition 2.2. Let I
ϕ(t)
1 := Cϕ(t) and I

ϕ(t)
2 := Qϕ(t). Define the set

S(k)n :=

{
(j1, ..., jn) : j` ∈ {1, 2} for ` = 1, ..., n and

n∑

`=1

j` = k

}
,

i.e., the set of n-tuples with elements in {1, 2} such that the elements of each tuple add
to k. Define for n ∈ N and n ≤ k ≤ 2n

T (k)
n :=

∑

(j1,...,jn)∈S(k)n

(−i)n
n∏

ν=1




t∫

sν−1

dsν


 Ũϕ(t, sn)

n−1∏

`=0

(
I
ϕ(sn−`)
jn−` Ũϕ(sn−`, sn−`−1)

)
ψ0

B. Submitted manuscripts

322



= (−i)n
t∫

0

ds1

t∫

s1

ds2 ···
t∫

sn−1

dsn Ũϕ(t, sn)×

×
∑

(j1,...,jn)∈S(k)n

(
I
ϕ(sn)
jn

Ũϕ(sn, sn−1)I
ϕ(sn−1)
jn−1

···Ũϕ(s2, s1)I
ϕ(s1)
j1

)
Ũϕ(s1, 0)ψ0 ,

where s0 := 0. As above, the products are ordered. For n = k = 0, let T
(0)
0 := Ũϕ(t, 0)ψ0,

and T
(k)
n := 0 for k < n and k > 2n. Hence, T

(k)
n is an n-dimensional integral where the

integrand contains all possible combinations of I
ϕ(sl)
jl

such that
∑n

l=1 jl = k.

Finally, the elements of the sequence {ψ(a)
ϕ }a∈N are defined as

ψ(a)
ϕ (t) :=

a−1∑

k=0

k∑

n=d k
2
e
T (k)
n =

a−1∑

n=0

min{2n,a−1}∑

k=n

T (k)
n .

Theorem 1. Let β ∈ [0, 1
4d) and assume A1 – A3 with A ∈ {1, ..., N} and γ ∈ (2+dβ3 , 1].

Let ψ(t) and ϕ(t) denote the solutions of (4) and (8) with initial data ψ0 and ϕ0 from

A3, respectively, and let ψ
(a)
ϕ (t) be defined as in Definition 2.2. Then for sufficiently

large N , t ∈
[
0, T ex

d,v,V ext

)
and a ∈ {1, ..., bA6 c}, there exists a constant c(a) such that

‖ψ(t)− ψ(a)
ϕ (t)‖2 . e

c(a)
t∫
0

‖ϕ(s)‖2
Hk(Rd) ds N−aδ(β,γ),

where

δ(β, γ) =

{
1− 4dβ for 1− dβ ≤ γ ≤ 1 ,

3γ − 2− dβ for 2+dβ
3 < γ ≤ 1− dβ .

Hence, given any desired precision of the approximation, there exists some a ∈ N
such that the corresponding function ψ

(a)
ϕ (t) approximates the actual N -body dynamics

ψ(t) to this order for large N . To compute ψ
(a)
ϕ (t), an a-dependent number of steps is

required, as well as the knowledge of the first quantised Bogoliubov time evolution. Put
differently, all higher order corrections to the norm approximation follow from the (first
order) norm approximation Ũϕ(t, 0)ψ0 after an N -independent number of operations.
We cover initial states where the first A moments of the number of fluctuations are
sub-leading, where A depends on a but is independent of N .

3 Proofs

3.1 Preliminaries

Lemma 3.1. Let ϕ0 ∈ Hk(Rd) for k = dd2e, t ∈
[
0, T ex

d,v,V ext

)
and ϕ(t) the solution

of (8) with inital datum ϕ0.

(a) Let f : Rd × Rd → R be a measurable function such that |f(zj , zk)| ≤ F (zk − zj)
almost everywhere for some F : Rd → R. Then

‖pϕ(t)1 f(x1, x2)‖op . ‖ϕ(t)‖Hk(Rd)‖F‖L2(Rd).
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(b) Let f : N0 → R+
0 . Then P

ϕ(t)
k , f̂ϕ(t) ∈ C1

(
R,L

(
L2(RdN )

) )
for 0 ≤ k ≤ N and

d
dt f̂

ϕ(t) = i
[
f̂ϕ(t),

N∑

j=1

h
ϕ(t)
j (t)

]
,

where h
ϕ(t)
j (t) denotes the one-particle operator hϕ(t)(t) from (8) acting on the jth

coordinate.

Proof. For part (a), see, e.g., [51, Lemma 4.1] and note that ‖ϕ(t)‖L∞(Rd) . ‖ϕ(t)‖Hk(Rd)
by the Sobolev embedding theorem. Part (b) can be shown as in the proof of [51, Lemma
6.2].

Lemma 3.2. Let ψ ∈ L2
sym(RdN ), ϕ ∈ L2(Rd) and f : N0 → R+

0 .

(a)
(
n̂ϕ
)2

= 1
N

N∑
j=1

qϕj .

(b) Let a ∈ {1, ..., N}. Then for j ∈ {0, ..., a},

‖qϕ1 · · · qϕaψ‖2 ≤ ‖qϕ1 · · · qϕj
(
n̂ϕ
)a−j

ψ‖2 .

(c) In particular, this implies

∥∥∥f̂ϕqϕ1 ψ
∥∥∥
2
≤
∥∥∥f̂ϕn̂ϕψ

∥∥∥
2
,

∥∥∥f̂ϕqϕ1 q
ϕ
2 ψ
∥∥∥
2
≤
∥∥∥∥f̂ϕ

(
n̂ϕ
)2
ψ

∥∥∥∥
2

.

Proof. For simplicity, let us drop all superscripts ϕ. Part (a) is shown e.g. in [51, Lemma
4.1]. For part (b), observe that for any 1 ≤ j ≤ N ,

‖q1 · · · qjψ‖2 = j−1
N 〈ψ, q1 · · · qjψ〉+ N−j+1

N 〈ψ, q1 · · · qjψ〉
≤ 1

N 〈ψ, q1 · · · qj−1 (j − 1 + (N − j + 1)qj)ψ〉

=

〈
ψ, q1 · · · qj−1

(
1
N

N∑

l=1

ql

)
ψ

〉
= ‖q1 · · · qj−1n̂ψ‖2

by part (a). Since n̂ψ is again symmetric, the statement follows by iteration.

Lemma 3.3. Denote by Tij an operator acting non-trivially only on coordinates i and
j.

(a) Let ϕ ∈ L2(Rd), let f, g : N0 → R+
0 be any weights and i, j ∈ {1, ..., N}. Let

Qϕ0 := pϕi p
ϕ
j , Qϕ1 ∈ {pϕi q

ϕ
j , q

ϕ
i p

ϕ
j } and Qϕ2 := qϕi q

ϕ
j . Then, for µ, ν ∈ {0, 1, 2},

Qϕµ f̂
ϕ Tij Q

ϕ
ν = Qϕµ Tij f̂

ϕ
µ−ν Q

ϕ
ν .

(b) Let Γ,Λ ∈ L2(RdN ) be symmetric under the exchange of coordinates in a subset
M⊆ {1, ..., N} such that j /∈M and k, l ∈M. Then

| 〈Γ, Tj,kΛ〉 | ≤ ‖Γ‖
(
| 〈Tj,kΛ, Tj,lΛ〉 |+ |M|−1‖Tj,kΛ‖2

) 1
2
.
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Proof. [51, Lemma 4.1] and [7, Lemma 4.7].

Proof of Lemma 2.1. Let us for simplicity drop all superscripts ϕ. First, observe that

{
n(k)2a =

(
k
N

)a ≤
(
k+1
N

)a
= m(k)2a for k ≥ 0,

m(k)2a ≤
(
2k
N

)a
= 2an(k)2a for k ≥ 1 ,

(35)

hence
n̂2a ≤ m̂2a ≤ 2an̂2a +N−a (36)

in the sense of operators. The first part of (a) follows from Lemma 3.2b and the first
line in (35). For the second part, Lemma 3.2a implies

‖n̂aψ‖2 =

〈
ψ,


 1

N

N∑

j=1

qj



a

ψ

〉
= N−a

〈
ψ,

∑

a1+···+aN=a

(
a

a1, ..., aN

)
qa11 · · · qaNN ψ

〉

for a1, ..., aN ∈ {0, ..., a}. Due to the symmetry of ψ, since there are
(
a−1
j−1
)

possibilities

to write a as the sum of j positive integers and with
(

a
a1,...,aN

)
≤ a!, this yields

‖n̂aψ‖2 =
a!

Na

a∑

j=1

(
N

j

)(
a− 1

j − 1

)
‖q1 · · · qjψ‖2 .

Further, note that

max
j={1,...,a−1}

(
a− 1

j − 1

)
=

(
a− 1

da−12 e

)
=

(a− 1)!

da−12 e!ba−12 c!
≤ 2a−1 , (37)

and
(
N
j

)
≤ N j , hence

‖m̂aψ‖2 ≤ N−a

1 + 22a−1a!

a∑

j=1

(
N
j

)
‖q1 ···qjψ‖2


 .

Part (b) follows from (24) and (36).

3.2 Proof of Proposition 2.4

Proof of Proposition 2.4. The proof of this proposition is essentially an adaptation of
the proof of [49, Corollary 4.2]. We begin with part (a). Let ψ ∈ L2(RdN ) symmetric,
s ∈ R and f : N0 → R+

0 some weight function. Define

αψ,ϕ,s(f ; t) :=
〈
U(t, s)ψ, f̂ϕ(t) U(t, s)ψ

〉
. (38)

and
Zβij :=

(
vβij − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

)
. (39)

Let us for the moment abbreviate U(t, s)ψ =: ψt. By Lemma 3.1b,
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d
dtαψ,ϕ,s(f ; t) (40)

= i

〈
ψt,


Hβ(t)−

N∑

j=1

h
ϕ(t)
j (t), f̂ϕ(t)


ψt

〉

= iN2

〈
ψt,
[
Zβ12, f̂

ϕ(t)
]
ψt

〉

= 2N=
〈
ψt,

(
f̂ϕ(t) − f̂ϕ(t)−1

)
q
ϕ(t)
1 p

ϕ(t)
2 Zβ12p

ϕ(t)
1 p

ϕ(t)
2 ψt

〉
(41)

+N=
〈
ψt,

(
f̂ϕ(t) − f̂ϕ(t)−2

) 1
2

q
ϕ(t)
1 q

ϕ(t)
2 vβ12p

ϕ(t)
1 p

ϕ(t)
2

(
f̂
ϕ(t)
2 − f̂ϕ(t)

) 1
2

ψt

〉
(42)

+2N=
〈
ψt,

(
f̂ϕ(t) − f̂ϕ(t)−1

) 1
2

q
ϕ(t)
1 q

ϕ(t)
2 Zβ12p

ϕ(t)
1 q

ϕ(t)
2

(
f̂
ϕ(t)
1 − f̂ϕ(t)

) 1
2

ψt

〉
, (43)

where we have inserted 1 = (p
ϕ(t)
1 + q

ϕ(t)
1 )(p

ϕ(t)
2 + q

ϕ(t)
2 ) on both sides of the commutator

and used Lemma 3.3a. Since q
ϕ(t)
1 p

ϕ(t)
2 Zβ12p

ϕ(t)
1 p

ϕ(t)
2 = 0, we conclude that (41) equals

zero. From now on, we will for simplicity drop the superscripts ϕ(t). Let

Lf :=

{
N∑

k=2

(f(k)− f(k − 2))P
ϕ(t)
k ,

N∑

k=1

(f(k)− f(k − 1))P
ϕ(t)
k ,

N−2∑

k=0

(f(k + 2)− f(k))P
ϕ(t)
k ,

N−1∑

k=0

(f(k + 1)− f(k))P
ϕ(t)
k

}
.

(44)

Since, for example,
(
f̂ − f̂−2

) 1
2
q1q2 =

(
N∑
k=2

(f(k)− f(k − 2))P
ϕ(t)
k

) 1
2

q1q2, this yields

d
dtαψ,ϕ,s(f ; t)

. max
l̂∈Lf

{
N
∣∣∣
〈
ψt, l̂

1
2 q1q2v

β
12p1p2 l̂

1
2ψt

〉∣∣∣+N
∣∣∣
〈
ψt, l̂

1
2 q1q2Z

β
12p1q2 l̂

1
2ψt

〉∣∣∣
}
. (45)

By Lemmas 3.1 and 3.2 and since ‖vβ‖2
L2(Rd) . Ndβ, the first term in (45) leads to

N
∣∣∣
〈
ψt, l̂

1
2 q1q2v

β
12p1p2 l̂

1
2ψt

〉∣∣∣

. N‖l̂ 12 q1ψt‖
(〈
q2v

β
12p2 l̂

1
2 p1ψt, q3v

β
13p3 l̂

1
2 p1ψt

〉
+N−1‖q2vβ12p2p1 l̂

1
2ψt‖2

) 1
2

. N‖l̂ 12 q1ψt‖
(
‖l̂ 12 q3ψt‖‖p1p2vβ12vβ13p3p1‖op‖l̂

1
2 q2ψt‖+N−1‖vβ12p2‖2op‖l̂

1
2ψt‖2

) 1
2

. N
〈
ψt, l̂ n̂

2ψt

〉 1
2
(〈
ψt, l̂ n̂

2ψt

〉
+N−1+dβ

〈
ψt, l̂ψt

〉) 1
2 ‖ϕ(t)‖2Hk(Rd) , (46)

To obtain the estimate in the last line, note first that

‖p1p2vβ13vβ12p1p3‖op = ‖p1vβ13p2p3vβ12p1‖op = ‖p1vβ12p2‖2op .
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Now we decompose vβ = vβ+ − vβ− into its positive and negative part such that vβ± ≥ 0,

hence vβ±(x) =
√
vβ±(x)

√
vβ±(x), which leads to

‖p1vβ12p2‖op = ‖p1(vβ+ − vβ−)12p2‖op
≤ ‖p1

√
(vβ+)12

√
(vβ+)12p2‖op + ‖p1

√
(vβ−)12

√
(vβ−)12p2‖op

. ‖ϕ(t)‖2Hk(Rd)

(
‖vβ+‖L1(Rd) + ‖vβ−‖L1(Rd)

)

= ‖ϕ(t)‖2Hk(Rd)‖vβ‖L1(Rd) . ‖ϕ(t)‖2Hk(Rd)

by Lemma 3.1. The second term in (45) can be estimated as

N
∣∣∣
〈
ψt, l̂

1
2 q1q2Z

β
12p1q2 l̂

1
2ψt

〉∣∣∣ . N‖l̂ 12 q1q2ψt‖‖l̂
1
2 n̂ψt‖‖Zβ12p1‖op

. N1+ dβ
2

〈
ψt, l̂ n̂

4ψt

〉 1
2
〈
ψt, l̂ n̂

2ψt

〉 1
2 ‖ϕ(t)‖Hk(Rd) .(47)

Now we choose for f the family of weight functions wjλ : k 7→ (wλ(k))j given by

wλ(k) :=





k + 1

Nλ
0 ≤ k ≤ Nλ − 1,

1 else

(48)

for some 0 < λ ≤ 1 − dβ and j ∈ {0, ..., N}. The set corresponding to Lf from (44) is
called L

wjλ
. To bound the operators in L

wjλ
, note that for any a, b ∈ N0, a > b,

(k + a)j − (k + b)j =
(
j
j−1
)
kj−1(a− b) +

(
j
j−2
)
kj−2(a2 − b2) + ...+ (aj − bj)

≤ jaj
((

j−1
j−1
)
kj−1 +

(
j−1
j−2
)
kj−2 + ...+

(
j−1
1

)
k + 1

)

= jaj(k + 1)j−1,

where we have used in the second line that for every 1 ≤ m ≤ j − 1,

(
j
m

)
= j(j−1)!

(j−m)((j−1)−m)!m! = j
j−m

(
j−1
m

)
≤ j
(
j−1
m

)
,

and that aj ≥ a` − b` for any 1 ≤ ` ≤ j and j ≥ 1 (the statement is trivial for j = 0).
Since wλ(k) ≤ k+1

Nλ for all k, especially also if k > Nλ − 1, we conclude that

(wλ(k))j − (wλ(k − 1))j ≤ (k+1)j−kj
Nλj ≤ j (k+1)j−1

Nλj = jwλ(k)
j−1

Nλ 1 ≤ k ≤ Nλ − 1,

(wλ(k + 1))j − (wλ(k))j ≤ (k+2)j−(k+1)j

Nλj ≤ j2j (k+1)j−1

Nλj = j2j wλ(k)
j−1

Nλ 0 ≤ k ≤ Nλ − 1,

(wλ(k + 2))j − (wλ(k))j ≤ (k+3)j−(k+1)j

Nλj ≤ j3j (k+1)j−1

Nλj = j3j wλ(k)
j−1

Nλ 0 ≤ k ≤ Nλ − 1.

Besides, one computes analogously to above that (k + 1)j − (k − 1)j ≤ 2j(k + 1)j−1,
hence

(wλ(k))j − (wλ(k − 2))j ≤ (k+1)j−kj
Nλj ≤ 2j (k+1)j−1

Nλj = 2jwλ(k)
j−1

Nλ 2 ≤ k ≤ Nλ − 1 .
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Finally, wλ(k) = 1 for k > Nλ − 1, hence the above estimates imply

(wλ(k))j − (wλ(k − 1))j ≤ j (k+1)j−1

Nλj ≤ j2j−1N−λ = j2j−1wλ(k)
j−1

Nλ Nλ − 1 < k ≤ Nλ,

(wλ(k))j − (wλ(k − 2))j ≤ 2j (k+1)j−1

Nλj ≤ j2jN−λ = j2j wλ(k)
j−1

Nλ Nλ − 1 ≤ k ≤ Nλ.

For all other values of k, the differences yield zero. Thus, every element of L
wjλ

can be

bounded, in the sense of operators, by the operator corresponding to the weight function

ljλ(k) =




j3j

wλ(k)j−1

Nλ
0 ≤ k ≤ Nλ,

0 else.

(49)

Besides, since ljλ(k) = 0 for k > Nλ + 1, one obtains

ljλ(k)n2(k) ≤ j3jN−1wjλ(k), (50)

ljλ(k)n4(k) ≤ j3jwjλ(k) k
N2 ≤ j3jwjλ(k)N

λ+1
N2 . j3jN−2+λwjλ(k). (51)

Inserting (49) to (51) into (46) and (47) and using that λ ≤ 1−dβ implies N
dβ+λ−1

2 ≤ 1,
we conclude that

d
dtαψ,ϕ,s(w

j
λ; t) . j3j‖ϕ(t)‖2Hk(Rd)

(
αψ,ϕ,s(w

j
λ; t) +Ndβ−λαψ,ϕ,s(w

j−1
λ ; t)

)
. (52)

Now we apply Grönwall’s inequality, for now on using the abbreviations αψ,ϕ,s(w
j
λ; t) =:

αj(t) and It :=
∫ t
s ‖ϕ(s1)‖2Hk(Rd) ds1. This yields

αj(t) . ej3
jIt

(
αj(s) + j3jNdβ−λ

∫ t

s
‖ϕ(s1)‖2Hk(Rd)αj−1(s1) ds1

)

≤ ej3
jItαj(s) + j3jej(3

j+3j−1)ItItN
dβ−λαj−1(s)

+j(j − 1)3j+(j−1)ej(3
j+3j−1)ItI2tN

2(dβ−λ)
∫ t

s
‖ϕ(s1)‖2Hk(Rd)αj−2(s1) ds1

. ej3
jItαj(s)

+j3jej(3
j+3j−1)ItItN

dβ−λαj−1(s)

+j(j − 1)3j+(j−1)ej(3
j+3j−1+3j−2)ItI2tN

2(dβ−λ)αj−2(s)

+j(j − 1)(j − 2)3j+(j−1)+(j−2)ej(3
j+3j−1+3j−2)ItI2tN

3(dβ−λ) ×

×
∫ t

s
‖ϕ(s1)‖2Hk(Rd)αj−3(s1) ds1

. ...

.
j∑

n=0

j!
(j−n)!3

n(2j+1−n)
2 e2j3

jItInt N
n(dβ−λ)αj−n(s) ,

where we have used that all integrands are non-negative and thus the upper boundary
of all integrals could be replaced by t. Written explicitly, this gives

αψ,ϕ,s(w
j
λ; t) . C t,s

j

j∑

n=0

Nn(dβ−λ)αψ,ϕ,s(w
j−n
λ ; s) = C t,s

j

j∑

n=0

Nn(dβ−λ)
〈
ψ, ŵλ

j−nψ
〉
,

(53)
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with

C t,s
j := j! 3j(j+1)e

9j
∫ t
s ‖ϕ(s1)‖2Hk(Rd) ds1 ,

where we have estimated Ijt e2j3
jIt < e9

jIt . To relate this estimate to ‖m̂jψ‖2, observe
that for 0 ≤ k ≤ N ,

wjλ(k) ≤
(
k+1
Nλ

)j
=
(
k+1
N

)j
N j(1−λ) = m2j(k)N j(1−λ),

and

m2j(k) =
(
k+1
N

)j ≤





(
k+1
Nλ

)j
N−j(1−λ) = wjλ(k)N−j(1−λ) for 0 ≤ k ≤ Nλ − 1,

2j = 2jwbλ(k) for any b ∈ N for Nλ − 1 ≤ k ≤ N.

Consequently, m2j(k) ≤ N−j(1−λ)wjλ(k) + wbλ(k), and we conclude

αψ,ϕ,s(w
j
λ; t) =

〈
ψt, ŵλ

jψt

〉
≤ N j(1−λ) 〈ψt, m̂2jψt

〉
= N j(1−λ)‖m̂jψt‖2,

‖m̂jψt‖2 =
〈
ψt, m̂

2jψt
〉
≤ N−j(1−λ)αψ,ϕ,s(w

j
λ; t) + 2jαψ,ϕ,s(w

b
λ; t)

for any b ∈ N. Inserting these estimates into (53) yields

‖m̂jU(t, s)ψ‖2

. C t,s
j

j∑

n=0

Nn(−1+dβ)‖m̂j−nψ‖2 + 2jC t,s
b

b∑

n=0

Nn(−1+dβ)+b(1−λ)‖m̂b−nψ‖2.

To minimise the second term, we choose the maximal λ = 1− dβ, which concludes the
proof of part (a).

The proof of part (b) is much simpler since we now consider the time evolution
Ũϕ(t, s). The term corresponding to (43) vanishes, which implies that we may directly

consider the weights m2j(k) instead of taking the detour via wjλ(k). Analogously to (38),
we define

α̃ψ,ϕ,s(f ; t) :=
〈
Ũϕ(t, s)ψ, f̂ϕ(t) Ũϕ(t, s)ψ

〉
.

We will now abbreviate Ũϕ(t, s)ψ =: ψ̃t. In this notation,

d
dt α̃ψ,ϕ,s(f ; t)

= i

〈
ψ̃t,


H̃ϕ(t)(t)−

N∑

j=1

h
ϕ(t)
j (t), f̂ϕ(t)


 ψ̃t

〉

= iN2

〈
ψ̃t,
[
p
ϕ(t)
1 q

ϕ(t)
2 vβ12q

ϕ(t)
1 p

ϕ(t)
2 + h.c. , f̂ϕ(t)

]
ψ̃t

〉

+iN2

〈
ψ̃t,
[
p
ϕ(t)
1 p

ϕ(t)
2 vβ12q

ϕ(t)
1 q

ϕ(t)
2 + h.c. , f̂ϕ(t)

]
ψ̃t

〉

= −N=
〈
ψ̃t, q

ϕ(t)
1 q

ϕ(t)
2

(
f̂ϕ(t) − f̂ϕ(t)−2

) 1
2

vβ12p
ϕ(t)
1 p

ϕ(t)
2

(
f̂
ϕ(t)
2 − f̂ϕ(t)

) 1
2

ψ̃t

〉
.
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We now evaluate this expression for the weight m2j(k), i.e.

α̃ψ,ϕ,s(m
2j ; t) =

∥∥∥∥
(
m̂ϕ(t)

)j
ψ̃t

∥∥∥∥
2

.

This corresponds to wjλ(k) with the choice λ = 1 in (48). Consequently, we define
lj(k) := j3jN−1m2(j−1)(k) analogously to (49) and conclude that m2j(k)−m2j(k−2) ≤
lj(k) and m2j(k + 2) −m2j(k) ≤ lj(k). Analogously to the estimate of the first term
in (45) and using the relation (50) for λ = 1, we obtain

d
dt

∥∥
(
m̂ϕ(t)

)j
ψ̃
∥∥2 . j3j‖ϕ(t)‖2Hk(Rd)

(∥∥
(
m̂ϕ(t)

)j
ψ̃
∥∥2 +N−1+dβ

∥∥
(
m̂ϕ(t)

)j−1
ψ̃
∥∥2
)
.

The same Grönwall argument which led to (53) concludes the proof.

Proof of Corollary 2.5. From Proposition 2.4a and the assumptions on the initial data,
we conclude that for every b ∈ N and sufficiently large N ,

∥∥∥
(
m̂ϕ(t)

)a
ψ(t)

∥∥∥
2

. C t
a

a∑

n=0

Ca−nNn(−1+dβ+γ)−γa

+2bC t
b

b∑

n=0

Cb−nN
n(−1+dβ+γ)−b(γ−dβ) .

If γ ≥ 1− dβ, the leading order terms in both sums are the ones with maximal n, hence

∥∥∥
(
m̂ϕ(t)

)a
ψ(t)

∥∥∥
2

. (a+ 1)C t
a N

a(−1+dβ) + (b+ 1)C t
b N

b(−1+2dβ).

If one chooses b > a 1−dβ
1−2dβ for fixed β < 1

2d , the second term is for sufficiently large N
dominated by the first one. For γ < 1 − dβ, the leading order terms are those with
n = 0, hence

∥∥∥
(
m̂ϕ(t)

)a
ψ(t)

∥∥∥
2

. (a+ 1)C t
a C aN

−γa + (b+ 1)2bC t
b C bN

−b(γ−dβ) ,

which yields a non-trivial bound only for γ > dβ. Part (b) follows analogously from part
(b) of Proposition 2.4 without the restrictions on β and γ that are due to the second
sum.

3.3 Proof of Theorem 1

Proof of Lemma 2.6. We use the abbreviation Zβij = vβij − vϕ(t)(xi)− vϕ(t)(xj) + 2µϕ(t)

as in (39), and drop all superscripts ϕ(t) in pϕ(t), qϕ(t) and m̂ϕ(t) for simplicity. By
Lemma 3.3a, Qϕ(t)m̂a = m̂aQϕ(t), hence

‖m̂aQϕ(t)ψ‖2 = 1
(N−1)2

∑

i<j

∑

k<l

〈
m̂aψ, qiqjZ

β
ijqiqjqkqlZ

β
klqkqlm̂

aψ
〉

= N
2(N−1)

〈
m̂aψ, q1q2Z

β
12q1q2Z

β
12q1q2m̂

aψ
〉
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+N(N−2)
N−1

〈
m̂aψ, q1q2Z

β
12q1q2q3Z

β
13q1q3m̂

aψ
〉

+N(N−2)(N−3)
4(N−1)

〈
m̂aψ, q1q2Z

β
12q1q2q3q4Z

β
34q3q4m̂

aψ
〉

. N2dβ
(
‖q1q2m̂aψ‖2 +N‖q1q2q3m̂aψ‖2 +N2‖q1q2q3q4m̂aψ‖2

)
,

where we have used that ‖Zβij‖L∞(Rd) . Ndβ by Young’s inequality. Now observe that

(
N
2

)
‖q1q2m̂aψ‖2 =

∑

i<j

〈m̂aψ, qiqjm̂
aψ〉 <

∑

i,j

〈m̂aψ, qiqjm̂
aψ〉

<
∑

i,j,k,l

〈m̂aψ, qiqjqkqlm̂
aψ〉 ,

hence

‖q1q2m̂aψ‖2 . N−2
∑

i,j,k,l

〈m̂aψ, qiqjqkqlm̂
aψ〉 = N2

〈
m̂aψ,

(
1
N

N∑

j=1

qj

)4

m̂aψ

〉

= N2
〈
m̂aψ, n̂8m̂aψ

〉
< N2‖m̂4+aψ‖2,

by (35), and analogously

‖q1q2q3m̂aψ‖2 =
(
N
3

)−1 ∑

i<j<k

〈m̂aψ, qiqjqkm̂
aψ〉

. N−3
∑

i,j,k,l

〈m̂aψ, qiqjqkqlm̂
aψ〉 . N‖m̂4+aψ‖2,

‖q1q2q3q4m̂aψ‖2 =
(
N
4

)−1 ∑

i<j<k<l

〈m̂aψ, qiqjqkqlm̂
aψ〉

. N−4
∑

i,j,k,l

〈m̂aψ, qiqjqkqlm̂
aψ〉 . ‖m̂4+aψ‖2.

This implies part (a). For part (b), note that by Lemma 3.3a,

m̂aCϕ(t) = 1
N−1

∑

i<j

(
qiqjZ

β
ij(qipj + piqj)

)
m̂a

1

+ 1
N−1

∑

i<j

(
(piqj + qipj)Z

β
ijqiqj

)
m̂a
−1.

Consequently,

‖m̂aCϕ(t)ψ‖2

= 1
(N−1)2

∑

i<j

∑

k<l

(〈
m̂a

1ψ, (qipj + piqj)Z
β
ijqiqjqkqlZ

β
kl(pkql + qkpl)m̂

a
1ψ
〉

+
〈
m̂a

1ψ, (qipj + piqj)Z
β
ijqiqj(pkql + qkpl)Z

β
klqlqkm̂

a
−1ψ

〉

+
〈
m̂a
−1ψ, qiqjZ

β
ij(piqj + qipj)qkqlZ

β
kl(pkql + qkpl)m̂

a
1ψ
〉

+
〈
m̂a
−1ψ, qiqjZ

β
ij(piqj + qipj)(pkql + qkpl)Z

β
klqkqlm̂

a
−1ψ

〉)
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. Ndβ
(
‖q1m̂a

1ψ‖2 + ‖q1q2m̂a
−1ψ‖2

)
‖ϕ(t)‖2Hk(Rd)

+N1+dβ
(
‖q1q2m̂a

1ψ‖2 + ‖q1m̂a
1ψ‖‖q1q2q3m̂a

−1ψ‖+ ‖q1q2m̂a
−1ψ‖2

)
‖ϕ(t)‖2Hk(Rd)

+N2+dβ
(
‖q1q2q3m̂a

1ψ‖2 + ‖q1q2q3m̂a
−1ψ‖2 + ‖q1q2m̂a

1ψ‖‖q1q2q3q4m̂a
−1ψ‖

)
×

×‖ϕ(t)‖2Hk(Rd)

similarly to the estimate of ‖m̂aQϕ(t)ψ‖. The last inequality follows because by Lemma

3.1a, ‖p1Zβ12‖2op . Ndβ‖ϕ(t)‖2
Hk(Rd) due to Young’s inequality and since ‖vβ‖2

L2(Rd) .
Ndβ. Further, note that

m̂2a
1 =

(
N−1∑

k=0

m(k + 1)Pk

)2a

=

(
N−1∑

k=0

√
k+2
N Pk

)2a

≤
(

2

N∑

k=0

√
k+1
N Pk

)2a

= 4am̂2a ,

m̂2a
−1 =

(
N∑

k=1

m(k − 1)Pk

)2a

=

(
N∑

k=1

√
k
NPk

)2a

≤
(

N∑

k=0

√
k+1
N Pk

)2a

= m̂2a

in the sense of operators. As in the estimate of Qϕ(t), we thus obtain for ` ∈ {−1, 1}

‖q1m̂a
`ψ‖2 < N−1

∑

i,j,k

〈m̂a
`ψ, qiqjqkm̂

a
`ψ〉 = N2

〈
n̂3ψ, m̂2a

` n̂3ψ
〉
≤ 22aN2‖m̂a+3ψ‖2 ,

and analogously ‖q1q2m̂a
`ψ‖ < 4aN‖m̂a+3ψ‖2 and ‖q1q2q3m̂a

`ψ‖ < 4a‖m̂a+3ψ‖2. To-
gether, this implies part (b).

Proof of Theorem 1. Let a ∈ N0 such that 6a ≤ A. Recall that by Definition 2.2,

ψ(a+1)
ϕ (t) =

a∑

n=0

min{2n,a}∑

k=n

T (k)
n

for any a ≥ 0, where T
(k)
n is given by

T (k)
n =

∑

(j1,...,jn)∈S(k)n

(−i)n
n∏

ν=1




t∫

sν−1

dsν


 Ũϕ(t, sn) t

(k)
(j1,...,jn) ,

where

t
(k)
(j1,...,jn) :=





0 for k < n and k > 2n,

ψ0 for k = n = 0,

n−1∏
`=0

(
I
ϕ(sn−`)
jn−` Ũϕ(sn−`, sn−`−1)

)
ψ0 else,

with I
ϕ(t)
1 = Cϕ(t) and I

ϕ(t)
2 = Qϕ(t) and (j1, ..., jn) ∈ S(k)n . In this notation,

n−1∏

`=0

((
Cϕ(sn−`) +Qϕ(sn−`)

)
Ũϕ(sn−`, sn−`−1

)
=

2n∑

k=n

∑

(j1,...,jn)∈S(k)n

t
(k)
(j1,...,jn) ,
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hence the Duhamel expansion (34) of ψ(t) reads

ψ(t) =

a−1∑

n=0

2n∑

k=n

T (k)
n +

2a∑

k=a

T̃ (k)
a .

Here, T̃
(k)
n is obtained from T

(k)
n by replacing the first Ũϕ(t, sn) by the full time evolution

U(t, sn), i.e., for n < k < 2n,

T̃ (k)
n :=

∑

(j1,...,jn)∈S(k)n

(−i)n
n∏

ν=1




t∫

sν−1

dsν


U(t, sn)

n−1∏

l=0

(
I
ϕ(sn−l)
jn−l Ũϕ(sn−l, sn−l−1)

)
ψ0 .

Consequently,

ψ(t)− ψ(a+1)
ϕ (t) =

a−1∑

n=0

2n∑

k=min{2n,a}+1

T (k)
n +

2a∑

k=a

T̃ (k)
a −

min{2a,a}∑

k=a

T (k)
a

=
a−1∑

n=da+1
2
e

2n∑

k=a+1

T (k)
n +

2a∑

k=a+1

T̃ (k)
a +

(
T̃ (a)
a − T (a)

a

)
(54)

since the first double sum contributes only if 2n ≥ a+1, and in this case min{2n, a} = a.

Note that for k = n, j1 = · · · = jk = 1, hence T
(k)
k and T̃

(k)
k exclusively contain Cϕ(sl).

Using Duhamel’s formula, the last expression can thus be expanded as

T̃ (a)
a − T (a)

a

= (−i)a
t∫

0

ds1 ···
t∫

sa−1

dsa

(
U(t, sa)− Ũϕ(t, sa)

)
Cϕ(sa)Ũϕ(sa, sa−1)Cϕ(sa−1) ×

×···Cϕ(s1)Ũϕ(s1, 0)ψ0

= (−i)a+1

t∫

0

ds1 ···
t∫

sa

dsa+1U(t, sa+1)
(
Cϕ(sa+1) +Qϕ(sa+1)

)
Ũϕ(sa+1, sa)Cϕ(sa) ×

×··· Cϕ(s1)Ũϕ(s1, 0)ψ0

= T̃
(a+1)
a+1 + (−i)a+1

t∫

0

ds1 ···
t∫

sa

dsa+1U(t, sa+1) t
(a+2)
(1,1,...,1,2) . (55)

By unitarity of U(t, s) and Ũϕ(t, s),

‖T (k)
n ‖ ≤

∑

(j1,...,jn)∈S(k)n

t∫

0

ds1 ···
t∫

0

dsn‖t(k)(j1,...,jn)‖ ,

‖T̃ (k)
n ‖ ≤

∑

(j1,...,jn)∈S(k)n

t∫

0

ds1 ···
t∫

0

dsn‖t(k)(j1,...,jn)‖ .
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With this, (54) and (55) imply for a = 0, 1

‖ψ(t)− ψ(1)
ϕ (t)‖ =

∥∥∥∥T̃
(1)
1 − i

t∫

0

ds1U(t, s1)t
(2)
(2)

∥∥∥∥ ≤ 2 max
k∈{1,2}





t∫

0

ds‖t(k)(k)‖



 , (56)

‖ψ(t)− ψ(2)
ϕ (t)‖ =

∥∥∥∥T̃
(2)
1 + T̃

(2)
2 −

t∫

0

ds1

t∫

s1

ds2 U(t, s2)t
(3)
(1,2)

∥∥∥∥

≤ 3 max
n∈{1,2}
k∈{2,3}





∑

(j1,...,jn)∈S(k)n

t∫

0

ds1 ···
t∫

0

dsn‖t(k)(j1,...,jn)‖





(57)

which coincides with (28) and (33). For a ≥ 2, we find

‖ψ(t)− ψ(a+1)
ϕ (t)‖

< a2 max
n∈{da+1

2
e,...,a−1}

k∈{a+1,...,2(a−1)}

‖T (k)
n ‖+ a max

k∈{a+1,...,2a}
‖T̃ (k)

a ‖+ ‖T̃ (a+1)
a+1 ‖

+

t∫

0

ds1 ···
t∫

sa

dsa+1

∥∥∥t(a+2)
(1,1,...,1,2)

∥∥∥

≤ 2a2 max
n∈{da+1

2
e,...,a+1}

k∈{a+1,...,2a}





∑

(j1,...,jn)∈S(k)n

t∫

0

ds1 ···
t∫

sn−1

dsn

∥∥∥t(k)(j1,...,jn)

∥∥∥





. a2 max
k∈{a+1,...,2a}

n≤k





∑

(j1,...,jn)∈S(k)n

t∫

0

ds1 ···
t∫

sn−1

dsn

∥∥∥t(k)(j1,...,jn)

∥∥∥





(58)

where we used that a + 2 ≤ 2a for a ≥ 2. To estimate ‖t(k)(j1,...,jn)‖
2 for a + 1 ≤ k ≤ 2a

and n ≤ k, note first that Lemma 2.6 and Proposition 2.4b can be combined into the
single statement

∥∥∥
(
m̂ϕ(t)

)a
I
ϕ(t)
j Ũϕ(t, s)ψ

∥∥∥
2

. 4a‖ϕ(t)‖2Hk(Rd)N
2+dβjC t−s

2+a+j

2+j+a∑

ν=0

Nν(−1+dβ)
∥∥∥∥
(
m̂ϕ(s)

)2+j+a−ν
ψ

∥∥∥∥
2 (59)

for j ∈ {1, 2} and any ψ ∈ L2
sym(RdN ). Hence, with δµ := 2(n−µ+1)+(jn+jn−1+···+jµ)

and ηµ :=
∏µ
`=0‖ϕ(sn−`)‖2Hk(Rd), we obtain for n ≤ k

‖t(k)(j1,...,jn)‖
2

. N2+dβjn

δn∑

ν1=0

C
sn−sn−1

δn
η0N

ν1(−1+dβ) ×
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×
∥∥∥∥∥
(
m̂ϕ(sn−1)

)δn−ν1 n−1∏

`=1

(
I
ϕ(sn−`)
jn−` Ũϕ(sn−`, sn−`−1)

)
ψ0

∥∥∥∥∥

2

. N2·2+dβ(jn+jn−1)η1

δn∑

ν1=0

δn−1−ν1∑

ν2=0

4δn−ν1Csn−sn−1

δn
C
sn−1−sn−2

δn−1−ν1 N (ν1+ν2)(−1+dβ) ×

×
∥∥∥∥∥
(
m̂ϕ(sn−2)

)δn−1−(ν1+ν2) n−1∏

`=2

(
I
ϕ(sn−`)
jn−` Ũϕ(sn−`, sn−`−1)

)
ψ0

∥∥∥∥∥

2

. . . .

. N2(µ+1)+dβ(jn+···+jn−µ)ηµ
δn∑

ν1=0

···
δn−µ−(ν1+···+νµ)∑

νµ+1=0

C
sn−sn−1

δn
···C sn−µ−sn−µ−1

δn−µ−(ν1+···+νµ) ×

×4δn+···+δn+1−µ−(ν1+···+(ν1+···+νµ)N (ν1+···+νµ+1)(−1+dβ)

×

∥∥∥∥∥∥

(
̂mϕ(sn−µ−1)

)δn−µ−(ν1+···+νµ+1))
n−1∏

`=µ+1

(
I
ϕ(sn−`)
jn−` Ũϕ(sn−`, sn−`−1)

)
ψ0

∥∥∥∥∥∥

2

. . . .

. N2n+dβ(jn+···+j1)ηn−1
δn∑

ν1=0

···
δ1−(ν1+···+νn−1)∑

νn=0

4δn+···+δ2−(ν1+···+(ν1+···+νn−1)) ×

×C sn−sn−1

δn
···C s1

δ1−(ν1+···+νn−1)
N (ν1+···+νn)(−1+dβ)

∥∥∥∥
(
m̂ϕ0

)δ1−(ν1+···+νn)
ψ0

∥∥∥∥
2

.(60)

Since j1+, ...,+jn = k and n ≤ k ≤ 2a, we find δ1 = 2n + k ≤ 3k ≤ 6a ≤ A, hence
assumption A3 yields

‖(m̂ϕ0)δ1−(ν1+···+νn)ψ0‖2 . C δ1−(ν1+···+νn)N−γδ1+γ(ν1+···+νn) .
Let us for the moment focus on the N -dependent factors in (60), thereby neglecting all
other contributions to the sum. This yields

N2n+dβk−γδ1
δn∑

ν1=0

···
δ1−(ν1+···+νn−1)∑

νn=0

N (ν1+···+νn)(−1+dβ+γ) .

For γ ≥ 1 − dβ, the leading order term in the sum
∑

νn
is the term corresponding to

the choice νn = δ1 − (ν1 + ··· + νn−1) = 2n + k − (ν1 + ··· + νn−1), which yields the
total factor Nk(−1+dβ)Ndβδ1 = N−k+2dβ(n+k). This factor is maximal for n = k. For
γ < 1− dβ, the leading term corresponds to the choice ν1 = · · · = νn = 0, which yields
N2n(1−γ)+k(dβ−γ). Also here, the maximal contribution issues from n = k. In fact, the
leading contributions for both ranges of γ can be summarised as N−kδ(β,γ), where

δ(β, γ) =

{
1− 4dβ for 1− dβ ≤ γ ≤ 1 ,

−2− dβ + 3γ for 2+dβ
3 < γ ≤ 1− dβ

as defined in (32). Hence, for sufficiently large N , the dominating terms is the one with

n = k, which comes from t
(k)
(j1,...,jk) = t

(k)
(1,...,1).

max
(j1,...,jn)∈S(k)n

∥∥∥t(k)(j1,...,jn)

∥∥∥ =
∥∥∥t(k)(1,...,1)

∥∥∥ ,

B.2. Higher order corrections to the mean-field dynamics of interacting bosons

335



and (56) to (58) can be summarised as

‖ψ(t)− ψ(a+1)
ϕ (t)‖ ≤ (a+ 1)2 max

a+1≤k≤max{2a,a+2}





t∫

0

ds1 ···
t∫

sk−1

dsk

∥∥∥t(k)(1,...,1)

∥∥∥




.(61)

It remains to evaluate the estimate (60) for n = k. In this case, j1 = · · · = jk = 1 and
δµ = 3(k − µ + 1). Note also that the constants C t

a are increasing in a and t, hence

C
sk−µ−sk−µ−1

δk−µ−(ν1+···+νµ−1)
≤ C

sk−µ
3(µ+1). Further, observe that δk + ··· + δ2 = 3

2k(k − 1) ≤ 3
2k

2.

Consequently,

‖t(k)(1,...,1)‖
2 . (1 + C 3k) 23k

2
N−kδ(β,γ)

k−1∏

µ=0

(
(3µ+ 1)C

sk−µ
3(µ+1)‖ϕ(sµ)‖2Hk(Rd)

)
, (62)

where we have used that each sum
∑

νµ
in (60) contains at most δk−µ+1 = 3µ + 1

addends, and that the prefactor of the leading order term for γ ≥ 1 − dβ is C 0 = 1,
whereas it is C 3k for γ < 1 − dβ. Consequently, for sufficiently large N , the maximum
in (61) is attained for k = a+1. Inserting the explicit formula C t,s

j = j! 3j(j+1)e9
jIt with

It =
∫ t
s ‖ϕ(s1)‖2Hk(Rd) ds1 yields

‖ψ(t)− ψ(a)
ϕ (t)‖2 . N−aδ(β,γ)

a∏

ν=1

(∫ t

0
e

1
2
93(ν+1)Isν ‖ϕ(sn)‖Hk(Rd) dsν

)2

. ea9
3(a+1)ItI2at N−aδ(β,γ) . e9

4aIt N−aδ(β,γ) ,

where we have bounded all a-dependent, time-independent expressions by a constant
c . 1.
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[18] L. Erdős, B. Schlein, and H.-T. Yau. Derivation of the Gross–Pitaevskii hier-
archy for the dynamics of Bose–Einstein condensate. Comm. Pure Appl. Math.,
59(12):1659–1741, 2006.

B.2. Higher order corrections to the mean-field dynamics of interacting bosons

337
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