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Chapter 1. SUMMARY 

Plants are products of meristems. The root apical meristem (RAM) gives rise to the 

below-ground root system, while the shoot apical meristem (SAM) generates all the 

above-ground organs. The RAM and SAM contain highly organized stem cell niches, 

characterized by the presence of distinct cell types at various developmental stages. 

Meristems are thus ideal model tissues to study molecular regulatory mechanisms 

during development, via the generation of high-resolution expression atlases. In this 

dissertation, I aim to study the spatiotemporal regulation of gene expression during 

plant meristem development at a genome-wide level, including transcriptional 

regulation and post-transcriptional regulation.  

In my first study, high-throughput single cell RNA sequencing (scRNA-Seq) was used 

to build a cellular resolution gene expression atlas of the Arabidopsis root that includes 

all major cell types. In total, 4,727 single cell profiles were generated and analyzed. 

Developmental trajectories along root development were built. These depict a cascade 

of developmental progressions from stem cell to final differentiation. New regulators 

and downstream genes that define cell types or control cell state transition during the 

development were identified. This study demonstrates the power of applying scRNA-

Seq to plants, and provides a unique spatiotemporal perspective of root cell 

differentiation.  

In my second study, a high-resolution maize shoot apex expression atlas in appendix 

II (Knauer et al., 2019) was used to investigate the spatiotemporal action of 

microRNAs (miRNAs) during development. Expression patterns of miRNA precursors 

and mature miRNA accumulation were examined, revealing that miRNA accumulation 

is regulated at both transcriptional and post-transcriptional level. Examples of the latter 

included effects on miRNA processing and/or stability in the vasculature and the stem 

cell population at the SAM tip, as well as the movement of miRNA within developing 

leaf primordia. By integrating data from RNA-Seq and degradome-Seq, a system was 

devised to predict the regulatory mechanism employed by miRNAs on their targets. 

This study provides a first comprehensive investigation of how the activity of the 

miRNAs that are critical to developmental pattern are regulated across space and time, 

revealing inputs from processes of regulating transcription, processing, stability, 

mobilities and miRNA efficacy. 
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Chapter 2. ZUSAMMENFASSUNG 

Pflanzen sind Produkte von Meristemen. Das apikale Wurzelmeristem (RAM) führt 

zum unterirdischen Wurzelsystem, während das apikale Sprossmeristem (SAM) alle 

oberirdischen Organe erzeugt. RAM und SAM enthalten hochorganisierte 

Stammzellnischen, die sich durch das Vorhandensein verschiedener Zelltypen in 

verschiedenen Entwicklungsstadien auszeichnen. Meristeme sind somit ideale 

Modellgewebe, um molekulare Regulierungsmechanismen während der Entwicklung 

zu untersuchen; unter anderem durch die Erzeugung hochauflösender 

Expressionsatlanten. In dieser Dissertation möchte ich die raumzeitliche Regulierung 

der Genexpression während der Entwicklung von Pflanzenmeristemen auf 

genomweiter Ebene untersuchen, einschließlich der transkriptionellen - und der 

posttranskriptionellen Regulierung.  

In meiner ersten Studie wurde die Hochdurchsatz-Einzelzellen-RNA-Sequenzierung 

(scRNA-Seq) verwendet, um einen Genexpressionsatlas der Arabidopsiswurzel zu 

erstellen, der alle wichtigen Zelltypen umfasst. Insgesamt wurden 4.727 

Einzelzellenprofile generiert und analysiert. Entwicklungspfade entlang der 

Wurzelentwicklung wurden aufgebaut. Diese stellen eine Kaskade von 

Entwicklungsprozessen von der Stammzelle bis zur endgültigen Differenzierung dar. 

Neue Regulatoren und Zielgene, die Zelltypen definieren oder den Übergang von 

Zellzuständen während der Entwicklung steuern, wurden identifiziert. Diese Studie 

zeigt die Leistungsfähigkeit der Anwendung von scRNA-Seq in Pflanzen und bietet 

eine einzigartige raumzeitliche Perspektive der Wurzelzelldifferenzierung.  

In meiner zweiten Studie wurde ein hochauflösender Maisspross-Apex-

Expressionsatlas in Anhang I (Knauer et al., 2019) verwendet, um die raumzeitliche 

Wirkung von microRNAs (miRNAs) während der Entwicklung zu untersuchen. 

Expressionsmuster von miRNA-Vorläufern und reifer miRNA-Akkumulation wurden 

untersucht, was zeigt, dass die miRNA-Akkumulation sowohl auf transkriptioneller als 

auch auf post-transkriptioneller Ebene reguliert wird. Beispiele für Letztere beinhaltet 

Effekte auf die miRNA-Verarbeitung und/oder Stabilität im Gefäßsystem und in der 

Stammzellpopulation an der SAM-Spitze sowie die Bewegung der miRNA innerhalb 

der sich entwickelnden Blattprimordien. Durch die Integration von Daten aus RNA-

Seq und Degradome-Seq wurde ein System entwickelt, um den 
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Regulierungsmechanismus der miRNAs auf ihren Targets vorherzusagen. Diese 

Studie bietet eine erste umfassende Untersuchung, wie die Aktivität der für das 

Entwicklungsmuster kritischen miRNAs über Raum und Zeit reguliert wird, und zeigt 

Inputs aus Prozessen der Regulierung von Transkription, Verarbeitung, Stabilität, 

Mobilitäten und miRNA-Wirksamkeit. 
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Chapter 3. Introduction 

This dissertation describes three studies of plant meristems, where next generation 

sequencing (NGS) datasets have been analyzed, offering spatiotemporal insights into 

transcriptional and post-transcriptional regulation of gene expression. This chapter 

introduces some general concepts of regulation of transcript accumulation during plant 

development, presents structures of plant meristems, and describes established 

technologies for measuring gene expression level globally and spatiotemporally. In 

addition, this chapter also describes NGS platforms and analysis methods used in this 

work. Subsequent chapters include background information relevant to the studies 

presented in each chapter. Finally, objectives of this dissertation are presented.  

3.1 Gene regulation during plant development 

Plant development reflects an elaborate program of regulatory interactions that control 

gene expression in precise spatial and temporal patterns. Over the years, our 

understanding of the actions of Transcription Factors (TFs), microRNAs (miRNAs), 

and other signaling molecules, in the control of gene expression has increased, 

exponentially. In particular, the development of large-scale genomics approaches has 

been instrumental. These have revealed a surprising complexity in how the dynamic 

patterns of gene expression, which characterize the developmental progressions from 

stem cell to final differentiation, come about.  

3.1.1 Transcription Factors 

A substantial number of genes show a dynamic pattern of expression during plant 

development that contributes to the specification and differentiation of distinct cell and 

tissue types. Gene expression is typically regulated at multiple levels. On a 

transcriptional level, TFs ensure that genes are expressed properly either 

quantitatively, spatially, or temporally, during plant development.   

TFs form complexes together with other co-regulators to provide their activation and 

repression activity. TF members within a given complex can either directly or indirectly 

cooperate and confer differential occupancy, resulting in the complex behaving 

dynamically at any given promoter, allowing functional specificity (Biggin, 2011). Direct 



 12 

cooperativity such as direct protein–protein-interactions (PPIs) between the functional 

combination TFs can enhance the level of binding and determine cell types. For 

example, leaf polarity is typically determined by AS1-AS2 cooperation at the level of 

DNA binding (Phelps-Durr et al., 2005; Xu, 2003). In signaling pathways, TFs employ 

different partner TFs to regulate different target genes in different cellular contexts 

(Doerks et al., 2002). On the other side, indirect combination such as collaborative 

binding - multiple TFs recognize closely spaced binding sites within enhancers 

independently - can compete TF binding sequences at sites of accessible DNA with 

nucleosome, forming the cell-type-specific regulation (Reiter et al., 2017). 

Consequently, a TF complex regulates the expression of the same target genes 

differently in different cell types. 

TFs can be either direct or indirect targets in tissue-specific regulation (Biggin, 2011). 

In signaling pathways, TFs (like activator insufficiency or cooperative activation) are 

regulated by developmental cell signaling to control target gene transcription in the 

proper context, preventing their expression in all other cells (Doerks et al., 2002). 

However, TFs typically recognize short, degenerate DNA sequences that as a result 

occur quite frequently in most genes. The action of TFs in gene regulation is therefore 

far-more complex than often depicted in basic textbooks. Data from genome-wide 

chromatin immunoprecipitation (ChIP) analysis indicates that TFs occupy just a 

fraction of all possible sites. Binding site selection is in part determined by chromatin 

accessibility, although this does not fully explain the observed patterns of TF 

occupancy. On the other hand, TFs are found to occupy many hundreds or even 

thousands of sites where they have no apparent effect on transcriptional output.  

In addition, feedback, feedforward, and cross-regulatory loops among TFs leads to 

the formation of complex gene regulatory networks (GRNs). These guides gene 

cascades to control tissue development (Li and Davidson, 2009). In the process of 

plant evolution, the emergence of species-specific tissues and novel traits are a result 

of the reorganization of GRNs. As such, GRNs play an important role in plant 

developmental biology. There are two types of regulatory networks: continuous 

networks and discrete networks. Continuous networks connect each TF to all the 

genes, and show a weight on the connection to indicate the regulation degree, 

including many weak transcriptional regulatory interactions. Meanwhile, discrete 
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networks connect a TF to a subset of directed target genes, without weight on the 

connection (Biggin, 2011). 

In Chapter 4.1, a continuous GRN based on dynamically expressed TFs along the 

Arabidopsis trichoblast developmental trajectory is described. This reveals key players 

and suggests their regulatory reaction. Complex wiring between components, 

including many weaker connections, mediates the transition of cells from the stem cell 

niche to the root maturation zone. In addition, the network also implies a high degree 

of feedback regulation toward to the meristem, not only from the elongation zone but 

also from the genes in the maturation zone (Denyer, Ma et al., 2019). We constructed 

a discrete GRN based on the occurrences of TF binding motifs within the promoters 

of tissues-specific genes and revealed the combinatorial effects of diverse TFs 

promoting stem cell fates (Appendix II). TFs’ cell-type-specific cascades contribute 

hugely to spatiotemporal gene expression, even though some TF complex are 

expressed more broadly than the target genes they regulated. In addition, GRNs show 

hierarchical transcriptional regulation. In highly connected networks, mis-regulation of 

the top can lead to a collapse of the entire GRN, such as KN1 (Steffen et al., 2019).  

3.1.2 microRNAs 

miRNAs are small regulatory RNAs of about 21-24 nucleotides (nt) in length. MiRNAs 

play a role in almost every aspect of plant development including, embryogenesis, 

meristem organization, leaf development, flowering, and flower organ identity (D'Ario 

et al., 2017). Their importance in development is obvious from the severe defects 

observed from mutants within the genes required for miRNA biogenesis. MIR genes 

are transcribed into primary miRNAs (pri-miRNAs) containing a stem-loop structure 

which is processed into the precursor hairpin miRNA (pre-miRNA) by the 

endonuclease DICER-LIKE1 (DCL1) protein complex (Chen, 2009). Pre-miRNAs are 

further processed by DCL1 to generate the miRNA/miRNA* duplex, which is 

methylated on the ribose of the last nucleotide by the methyltransferase HEN1 to 

stabilize the immediate (Huang et al., 2009). After removal of the complimentary 

miRNA* sequence, the mature single-stranded miRNA is incorporated into an 

ARGONAUTE (AGO) effector complex to regulate mRNA targets (Chen, 2009; Rogers 

and Chen, 2013). Different from TFs that function at transcriptional level, miRNAs 

regulate gene expression post-transcriptionally. miRNAs bind in a homology-
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dependent manner to target mRNAs and trigger the degradation through transcript 

cleavage, and/or their translational inhibition.  

microRNAs are ideally suited to diversify gene expression programs and contribute to 

specification of distinct cell types during development by regulating genes post-

transcriptionally. Base pairing between small RNAs and target transcripts provides an 

exceptionally high degree of specificity, particularly in plants, and the direct repression 

of targets allows for rapid cell fate transitions. Small RNA regulation also confers 

sensitivity and robustness onto gene networks (Plavskin et al., 2016; Schmiedel et al., 

2015), and their movement through plasmodesmata is regulated independently from 

mobile proteins (Skopelitis et al., 2018). Small RNAs are mobile and represent a class 

of signalling molecules with properties distinct from other developmental signals, such 

as hormones, transcription factors, and peptides ligands. Moreover, recent findings 

indicate that the concentration gradients generated by the movement of small RNAs 

from a fixed source can generate sharp domains of target gene expression through a 

morphogen-like readout. This reflects a non-linear, threshold-based readout, which is 

a highly sensitive to the relative ratio of small RNA-to-target levels (Skopelitis et al., 

2017). When this ratio is above a given threshold, small RNAs can clear target 

transcripts or protein accumulation. Contrastingly, below this threshold, small RNAs 

can reduce target gene expression noise and show a rheostat behaviour. Thus, there 

are multiple types of small RNA-mediated regulatory modes in development 

(Skopelitis et al., 2017). 

Consistent with miRNAs having important roles in development, many display 

dynamic spatiotemporal patterns of expression/activity. How these patterns come 

about is addressed in Chapter 4.2, where I show how the spatiotemporal action of 

plant miRNAs during development is regulated at multiple levels through the regulation 

of miRNA transcription, processing/stability, and activity. 

3.2 Opportunities provided by high-throughput sequencing to understand gene 

regulation 

In 1869, Friedrich Meischer discovered DNA in Tübingen (Dahm, 2005). Much later, 

in 1943, DNA was proposed as the genetic material storing general heritable 

information (Avery et al., 1943). Hypotheses on how this might work followed from the 
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discovery of the double helix structure of DNA by Watson and Crick in 1953 (Watson 

and Crick, 1953). However, it was 1958, when Francis Crick stated the central dogma 

of molecular biology, which explained the flow of genetic information across all living 

organisms (Cobb, 2017; Crick, 1970): DNA is transcribed into RNA that is translated 

into protein.  

Accurate quantification of gene expression across specific tissues or cells is required 

for a comprehensive understanding of the complexity of gene regulation during plant 

development. In the past few decades, the technologies available to do this have 

developed rapidly. While methods such as the classical northern blot and reverse 

transcription polymerase chain reaction (RT-PCR) allowed the comparative 

quantitative analysis of gene expression for select genes (Alwine et al., 1977; Nick 

and John, 1993), development of DNA microarrays took gene expression 

quantification onto a high-throughput level (Shchena et al., 1995). However, the 

subsequent development of high-throughput parallel sequencing technologies 

revolutionized the way of quantifying gene expression. These sequencing-based 

technologies make it much easier and faster to measure gene expression, and also 

reveal information inaccessible by microarrays, such as expression of rare or novel 

RNA variates (Levy and Myers, 2016). A brief timeline of development of gene 

expression quantification is shown in Fig 1.  

 

Figure 1.  Timeline of gene expression quantification related method discovery. Red 

arrowheads indicate the introduction of novel sequencing methods. Green arrowheads 

indicate innovations in the plant filed. Yellow arrowheads indicate innovation in animal fields. 

Gray arrowheads indicate the milestone of relevant discoveries and innovations. 
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3.2.1 High-throughput sequencing 

The classical sequencing methodologies, such as Maxam and Gilbert, and Sanger 

sequencing, processed single templates at a time (Alllan and Walter, 1977; Sanger et 

al., 1977). In contrast, the so-called next-generation sequencing (NGS) methods are 

high-throughput and can process millions of DNA sequences in parallel (Levy and 

Myers, 2016). This allows for the quantitative investigation of whole transcriptomes 

with high sensitivity, high reproducibility, and in a very short time. The first commercial 

NGS technology was pyrosequencing, which was developed by 454 Life Science 

(named as 454 sequencing). Pyrosequencing involves bead-based emulsion PCR 

(emPCR), with hundreds of thousands of unique DNA templates on each bead (Elahi 

and Ronaghi, 2004). Another method, 454 sequencing detects the light signal 

released during a flow of enzymatic reactions during each dNTP incorporation (Figure 

2C) (Margulies et al., 2005). Ion Torrent (Life Technologies product, also named post-

light sequencing), detects pH differences caused by hydrogen release following each 

dNTP incorporation (Figure 2D) (Rothberg et al., 2011). Besides 454 and Ion Torrent 

sequencing, oligonucleotide ligation and detection (SOLiD) (Mardis, 2008) was a 

commonly used option. DNA fragments are sequenced by ligation (SBL). Each 

fluorometric signal represents a dinucleotide, as it used the two-base-encoded probes. 

This greatly facilitates the sensitivity of base calling as each base is probed multiple 

times (Mardis, 2008). However, each ligation signal represents one of several possible 

dinucleotides, since four fluorometric colors represent 16 two-base-combinations 

(Figure 2B). This leads to the term ‘color-space’ (rather than base-space), which must 

be deconvoluted during data analysis (Goodwin et al., 2016). 
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Figure 2. NGS sequencing. (A) Illumina sequencing. All four terminal nucleotides, carrying 

unique fluorescent labels, and DNA polymerase are added. One complementary nucleotide is 

added into each template at each time. Signal information is recorded before cleaving of 

fluorescent and terminating groups and entering into next round base incorporation. (B) SOLiD 

sequencing. Sequencing primers, DNA ligase and many unique probes (fluorescently labeled 

based on their first two bases) are added. One complementary probe is ligated to one template 

each time. After the fluorescence signal is recorded, the three universal bases and fluorophore 

are cleaved off and they enter into next round. (C) 454 sequencing. One type of natural non-

terminating nucleotides is added and one pyrophosphate molecule was released at each 

nucleotide incorporation. Pyrophosphate was finally converted into light signal to record the 

nucleotide sequence. (D) Ion Torrent sequencing. Same as 454, one type of natural non-

terminating nucleotide is added at each incorporation. Different from 454, H+ was released 

release in each nucleotide incorporation. Single information coming from pH change was 

detected and recorded before entering next round nucleotide incorporation.   

Currently, Illumina (Solexa) sequencing is by far the most popular NGS technology 

(Goodwin et al., 2016). It uses flow-cell bound cluster bridge amplification and 

fluorescent signals to detect each nucleotide addition (Figure 2A) (Heather and Chain, 

2016). The primers, complemented to the DNA library fragments adaptors, are 

densely coated on the surface of the flow cell. This enables the DNA fragments to 

randomly attach to the surface of the flow cell, creating bridged structures by an active 

heating and cooling step. Reactants and an isothermal polymerase interact with the 

bridge fragments to generate double strands, and when the denaturation occurs, the 
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double stranded DNA becomes single stranded fragments attached to the surface of 

the flow cell. Repetition of this process leads to clonal clusters of localized identical 

strands (Figure 3) (Goodwin et al., 2016; Mardis, 2008). The principle of nucleotide 

addition one by one and detecting the incorporation of each nucleotide is called 

sequencing-by-synthesis (SBS) (Fuller et al., 2009). Illumina sequencing applies the 

SBS mechanism and elongates the primer in a stepwise manner. Each of the four 

DNA bases are attached a different fluorophore in addition to a terminating group 

(Figure 2A). When the correct base is linked to the template, it is imaged and the 

nucleotides that have not been incorporated are washed away. The fluorescent branch 

and the terminating group are cleaved and the cycle can be repeated (Guo et al., 

2008). 

 

Figure 3. Illumina workflow of bridge amplification generating clusters. (A) Genomic 

DNA sample preparation; (B) Single-stranded DNA fragments are attached randomly to the 

surface of flow cell channels; (C) Bridge amplification; (D) Forming double-stranded bridge; 

(E) Denature forming single-stranded templated for next round amplification; (F) Generating 

dense clusters.  (Image from www.illumina.com) 
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Illumina sequencing is currently the most cost-effective and has the highest throughput, 

although 454 sequencing produces longer reads and SOLiD sequencing is more 

accurate in base calling (Heather and Chain, 2016). Besides that, Illumina dominates 

the short-read sequencing industry owing to its mature technology, such as a high 

level of cross-platform compatibility and its wide range of instruments. Illumina 

instruments range from the low-throughput MiSeq (~20 million reads/run) to the ultra-

high-throughput HiSeq X (~6 billion reads/run) (Goodwin et al., 2016).  

Library design  

The decreasing costs of sequencing and increasing accessibility of NGS machines 

has allowed researchers to develop a variety of measurement methods based on NGS. 

For example, the profiling and quantification of genome-wide transcriptomes (Wang et 

al., 2009), small RNAs (Hagemann-Jensen et al., 2018), TF binding (Johnson et al., 

2007; Bartlett et al., 2017), DNA methylation (Li and Tollefsbol, 2011), chromatin 

structure (Belton et al., 2012), and single nucleotides variants/polymorphisms 

(Kahvejian et al., 2008; Reuter et al., 2015). A successful -omics sequencing study 

requires the right choice of library and sequencing methodology (strand-specific or 

non-strand-specific library; single- or paired- end sequencing), suitable sequencing 

read length and depth, and the correct number of replicates. For example, single-end 

sequencing is appropriate for small RNA-Seq (small RNA sequencing) and RNA-Seq 

used for quantifying gene expression. Paired-end sequencing enables more accurate 

read alignment and the ability to detect single nucleotide polymorphisms (SNP) and 

insertion-deletion (indel) variants. Sequencing read-length can be shorter or longer, 

based on the experimental purpose. Longer reads are better for isoform analysis, while 

shorter reads are suitable for gene expression quantification. Also sequencing depth 

(the total number of reads sequenced for the given sample) depends on the goal of 

the experiment. The more reads, the larger number of genes detected. In most of 

eukaryotic bulk transcriptomes, five million mapped reads are sufficient to accurately 

measure medium to highly expressed gene (Sims et al., 2014).  

The requirement of full-length transcript sequencing verses 3’ end RNA sequencing 

also needs to be considered. 3’ RNA-Seq was designed to quantitatively measure the 

abundance of mRNA fragments, which produce only one 3’ end sequence per 

transcript (Torres et al., 2008). This overcomes the expression level estimation biases 
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introduced by transcript length when using full length transcript sequencing. Moreover, 

yielding the same amount of reads, 3’ RNA-Seq has the potential to detect more lower 

expressed genes than full-length transcript sequencing (Tandonnet and Torres, 2017). 

Therefore, for model species, such as Arabidopsis and maize, 3’ RNA-Seq is currently 

a better choice for quantifying gene expression and identifying differential expression.  

Spatially resolved gene expression by bulk RNA-Seq 

High-throughput sequencing technologies provide the opportunity to obtain the 

transcript profiles of any tissue of choice. However, given the complexity of most plant 

tissues, elucidating the molecular mechanism driving their development requires 

transcriptome-wide analysis of spatially resolved gene expression patterns to capture 

expression information on specific target cells. Laser capture microdissection (LCM) 

(Emmert-Buck et al., 1996), fluorescence-activated cell sorting (FACS) (Birnbaum et 

al., 2005), tissue specific mRNA purification by translating ribosome affinity purification 

(TRAP) (Heiman et al., 2014), isolation of nuclei tagged in specific cell types (INTACT) 

(Moreno-Romero et al., 2017), and spatial transcriptomics (ST) based on barcoded 

microarrays (Giacomello and Lundeberg, 2018) have been developed to isolate the 

plant input material of interest from whole tissues so that they can be analyzed at a 

high-resolution level. Different from animal cells, plant cells are surrounded by a cell 

wall which complicates the applications of many animal cell isolation technologies to 

plant tissues. Nonetheless, LCM is commonly used to dissect cell populations from a 

section of complex tissue (Nakazono, 2003; Scanlon et al., 2009). Tissues are 

scanned under a microscope and micro-dissected with a laser beam to separate them 

for further analysis (see Chapter 4.2 and Appendix II). Similarly, a FACS-based 

method was adapted to isolate plant cells of interest based on reporter lines 

expressing a fluorescent protein in defined cells of interest (Birnbaum et al., 2005). 

Tissues are protoplasted into single cells, and GFP-positive cells separated using 

FACs to study gene expression. This technology has been used to generate detailed 

gene expression atlases for the Arabidopsis root and inflorescence (Birnbaum et al., 

2003; Efroni et al., 2015; Yadav et al., 2009). The more recently developed INTACT 

and TRAP methods eliminate the need for protoplasting. In INTACT, nuclei of cells or 

tissues of  interest are labeled through transgenic expression of a biotinylated nuclear 

envelop protein, and then affinity purified on streptavidin-coated beads (Moreno-
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Romero et al., 2017). Similarly, tissue specific mRNA purification by TRAP combines 

cell-type-specific transgene expression with affinity purification of translating 

ribosomes (Tian et al., 2019). Finally, the ST method uses barcoded oligo-

deoxythymidine (oligo-dT) primers spotted in clusters on microarrays to capture 

transcripts from intact tissue sections for cDNA synthesis and sequencing. This 

technology thus couples transcriptomics to histological imaging to simultaneously 

quantify and localize gene expression (Giacomello and Lundeberg, 2018). 

Each of these technologies have their own strengths and weaknesses. Sample 

throughput and reliance on fixed tissue are major drawbacks of LCM; however, it is 

applicable to broader range of species. The time-consuming production of transgenic 

plant lines (> 6 months to generate stable lines carrying the desired transgene) limits 

the broader application of FACS, INTACT, and tissue specific TRAP. Whereas the 

array-based method ST suffers from a limited resolution and is only available to those 

model species with a reference genome.  

Spatially resolved gene expression by single cell RNA-Seq  

The gene expression analysis methods described above involve bulk samples, 

yielding an average gene expression from all target cells. This potentially masks 

cellular heterogeneity - transcripts that are expressed only in a minority of cells. 

Measuring the expression profiles of cells individually can reveal such heterogeneity 

and identify subpopulation expression variability, reflecting for instance developmental 

time or cell cycle progression, even within a specific tissue (Etzrodt et al., 2014; Qiu 

et al., 2017; Skelly et al., 2018). In 2009, RNA-Seq was firstly applied to examine the 

whole-transcriptome of a single cell in mouse blastomeres (Tang et al., 2009). Since 

then, methods for studying single cells transcriptomes have developed rapidly, and 

the throughput of single cell sequencing technologies has increased from dozens to 

millions of cells in animals (Svensson et al., 2018). The increasingly high-throughput 

nature of single cell RNA sequencing (scRNA-Seq) has been facilitated by the 

development of droplet technology (Klein et al., 2015; Macosko et al., 2015) and 

increased automation (Zheng et al., 2017). In brief, a cell is encapsulated within an oil 

droplet and lysed, and its transcripts reverse transcribed on barcoded beads. 

Following library production and sequencing, transcripts from individual cells can be 

identified from the bead-derived barcode and individual transcripts accounted for using 
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unique molecular identifiers (UMI) (Prakadan et al., 2017). As scRNA-Seq is able to 

measure transcript accumulation at the cellular level, it brings revolutionary 

discoveries to many fields such as deconstructing cell type in various tissues (Villani 

et al., 2017), tracing cell lineage and cell fate commitment in embryonic development 

and differentiation (Nelms and Walbot, 2019; Semrau et al., 2017; Trapnell et al., 

2014), inferring transcription dynamics and regulatory networks (Dixit et al., 2016; 

Tanay and Regev, 2017), identifying tumor heterogeneity (Venteicher et al., 2017), 

and detecting variation in stress response (Ricci et al., 2018).  

Different from mammalian systems, the complexity of plant cell structure and 

physiology – including the cell wall, vacuole, high osmotic pressure sensitivities, and 

high cell size variability and chloroplasts - increases the difficulty in processing tissues 

for single cell transcriptomic profiling. Nonetheless, low throughput scRNA-Seq has 

been performed successfully in plants (Efroni et al., 2015). In Chapter 4.1, I describe 

the first application of high-throughput scRNA-Seq in plants is described. This yielded 

an expression atlas of the Arabidopsis root composed of thousands of independently 

profiled cells which provides a spatiotemporal perspective of root cell-type 

differentiation at a resolution not previously achievable (Denyer, Ma et al., 2019) 

3.2.2 Computational analysis of -omics data  

Currently, NGS has applied broadly in the life science research community, but no 

single analysis pipeline can be used in all cases. Analysis strategies must be 

determined based on experimental and sequencing specificities. Given the aims of my 

dissertation, here I primarily focus on analysis of RNA-Seq data. Here, the major 

analysis steps include quality control, read alignment (mapping), quantification, 

normalization, differential expression analysis, functional annotation, and visualization 

(Conesa et al., 2016). In addition to the above, for species without a high-quality 

reference genome, a transcript assembly step is required. Furthermore, scRNA-Seq 

requires identifying variable genes (feature selection), reducing dimension, clustering 

cells, assigning cell types, building developmental trajectories and finally visualizing 

the result (Denyer, Ma et al., 2019).  

Quality control  
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The quality of sequencing data directly determines the success of the project. Quality 

estimation of transcriptome sequencing data involved in analysis of raw reads, read 

alignment, and reproducibility. For scRNA-Seq, one more parameter, the reads per 

cell, is added. NGS raw reads are recorded in a fasta file, which includes the 

nucleotide sequence (a sequence read) and the quality of sequence reads (phred 

score). FASTQC (Andrews, 2010) is a popular tool to perform QC analyses on Illumina 

sequencing reads. Its checks include analysis of phred score distribution showing 

sequence quality, GC content directing sequence bias or contamination, duplicate 

sequences indicating PCR artifacts, and overrepresented sequences reflecting 

sequence contamination. 

The percentage of mapped reads (alignment will be described later) is an important 

evaluation parameter, exposing potential contamination of sequencing samples and 

determining sequencing accuracy. However, the mapping ratio depends on the 

sequencing type, and the quality and complexity of the reference genome. For 

example, the mapping ratio in Arabidopsis is higher than that of maize, because the 

maize reference genome quality is lower, and its complexity is higher. For full length 

transcript sequencing, uniformity of read coverage across the gene body provides an 

additional valuable measure to assess library quality, as the sequencing reads will 

show a distribution bias when the RNA quality is low, for instance, due to RNA 

degradation. RSeQC (Wang et al., 2012) is a popular mapping quality control tool, 

calculating the reads distribution on the gene body.  

RNA-Seq is highly reproducible (Marioni et al., 2008). Variation is typically introduced 

by biological variation (Hansen et al., 2011). Several biological replicates are 

necessary to quantify gene expression by RNA-Seq. Increasing the number of 

replicates can overcome biological variability at a certain level, but also risks 

increasing the difficulty of statistical analysis and introducing the batch effects during 

sample library preparation (Liu et al., 2014). Data reproducibility between the 

replicates at a global gene expression level is typically estimated using Pearson’s 

correlation coefficient analysis. This calculates whether two variables are linearly 

related. The higher the Pearson’s coefficient, the better correlation among replicates. 

The expected coefficient of Pearson correlation among good replicates is above 0.95 

(Mortazavi et al., 2008), depending on the biological variation or heterogeneity of the 
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material under study. It can be used to detect and correct sample mis-annotation 

resulting from sample preparation, library construction, or sequencing. 

Alignment and quantification 

Read alignment (mapping) forms an important step in NGS analysis, such as RNA-

Seq, small RNA-Seq, ChiP-Seq (chromatin immunoprecipitation with DNA 

sequencing), and BS-Seq (Bisulfite sequencing). For RNA-Seq analysis, there are two 

mapping strategies to identify gene expression, dependent on reference genome 

availability and quality. Without a good quality reference genome, reads are first 

assembled into transcripts and subsequently mapped back onto these transcripts to 

calculate the number of reads per transcript. The availability of a high-quality reference 

genome allows reads to be mapped directly onto the genome to measure gene 

expression. Spliced transcript alignment to a reference (STAR) is a leading aligner 

and accomplishes the alignment step faster and more accurately than other current 

alternatives. It takes a new alignment algorithm that searches sequential maximum 

mappable seed in uncompressed suffix arrays followed by seed clustering and 

stitching procedure (Dobin et al., 2013). Next, HTSeq (Anders et al., 2015) or 

FeatureCounts (Liao et al., 2014) are applied to assign mapped reads to gene to 

estimate gene expression.  

As scRNA-Seq data is more complicated than bulk RNA-Seq data, scRNA-Seq 

analysis requires additional analysis: barcode processing. For example, 26 

nucleotides of Read1 contain the UMI and cell barcode sequences and 98 nucleotides 

of Read2 capture the biological information. Tools such as Cell Ranger integrated 

alignment (same as bulk RNA-Seq analysis, STAR is used as read mapper), barcode 

assignment and UMI counting. During barcode assignment, Cell Ranger can 

automatically infer intact barcodes based on all the known listed of barcodes, which 

allows 1-Hamming-distance away from an observed barcode, considering sequencing 

error. The final cell barcodes are determined based on the distribution of UMI counts 

(all top barcodes within the same order of magnitude are potential cell barcodes). For 

UMI counting, UMIs with 90% base call accuracy were considered valid if they are not 

homopolymers. When a UMI is 1-Hamming-distance away from another UMI (with 

more reads) with the same cell barcode, it is corrected to the UMI with more reads. 

Finally, PCR duplicates (same barcode sequence, same UMI tag, and mapped to the 
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same gene) are removed. Only confidently mapped (MAP 255), non-PCR duplicates 

with valid barcodes and UMIs should be used to generate the gene-barcode matrix 

(Zheng et al., 2017).  

Normalization 

Normalization is an important step to obtain the signal of interest by reducing 

unwanted biases generated from capturing efficiency, sequencing depth, dropouts, 

and other technical effects. In general, there are two types of normalization: within- 

sample normalization and between-sample normalization (Vallejos et al., 2017). 

Within-sample normalization aims to remove the gene-specific biases (e.g., gene 

length), which makes gene expression comparable within one sample (such as RPKM 

or FPKM, reads/fragments per kilobase per million). In contrast, between-sample 

normalization is used to adjust sample-specific differences (e.g., sequencing depth 

and capture efficiency) to enable the comparison of gene expression between 

samples (such as RPM, reads per million, or quantile normalization). Generally, these 

simple normalization strategies are based on sequencing depth or upper quartile. 

scRNA-Seq generates abundant zero-expression values and has a higher level of 

technical variation than bulk RNA-Seq. Using bulk RNA-Seq normalization may cause 

overcorrection or introduce artifacts in scRNA-Seq for lowly expressed genes. Seurat 

is popular tool to analysis single cell data. It employs a global-scaling normalization 

method that normalizes the gene expression measurements for each cell by the total 

expression, multiplies this by a scale factor (10,000 by default), and log-transforms the 

result (Butler et al., 2018; Satija et al., 2015). If UMI or spike-ins are used, 

normalization can be further refined based on the performance of UMI/spike-ins 

(Dillies et al., 2013; Evans et al., 2018). In order to reduce the domination of the highly 

expressed genes and offer them equal weight in downstream analysis, a linear 

transformation (scaling) was applied before dimensional reduction: shift the 

expression of each gene, so that the mean expression across cells is zero; scale the 

expression of each gene, so that the variance across cells is one (Butler et al., 2018; 

Satija et al., 2015). In summary, normalization and scaling aids to reduce technical 

noise.  

Feature selection and dimension reduction 
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scRNA-Seq data has a high dimensionality (M x N), which involves thousands of 

genes (M) and thousands of cells (N). In fact, only select genes are informative and 

reflect biological variation. Feature selection aids to remove the uninformative genes 

and identifies the most features to reduce the number of dimensions used in 

downstream analysis, which can largely speed up the calculations of large-scale 

scRNA-Seq data. Based on the assumption that the genes with highly variable 

expression across cells are a consequence of biological effects rather than technical 

noise, Seurat implements unsupervised feature selection algorithms to identify highly 

variable genes (HVGs) (Butler et al., 2018; Satija et al., 2015).  

After feature selection, principle component analysis (PCA) is used to merge the 

information from correlated feature genes into one principle component (PC) (Lever et 

al., 2017). This aids to reduce the dimensions and capture the greatest amount of 

variance in the data. In principle component analysis, PC1 explains the largest 

percentage of variance of the data and PC2 explains the second highest percentage 

of variance of the data, and so on. The PCs are ranked based on the percentage of 

variance explained by each one, and the lower ranking of the PC contributes to 

explaining the least variance of the data. Therefore, the lower ranked PCs cannot 

increase any information on the demonstration of the biological variability of the cells 

except by increasing the computational load. In Seurat, an ‘Elbow plot’ can be 

generated by a heuristic method: a ranking of principle components (Butler et al., 2018; 

Satija et al., 2015). For example, when we observe an ‘elbow’ around 10 PCs, it 

suggests that the majority of true signal is captured in the first 10 PCs. In summary, 

dimensionality reduction projects the data into a lower dimensional space by optimally 

preserving some key properties of the original data. 

Cell subpopulation identification (clustering cells and assigning cell types) 

PCA is often followed by clustering analysis to further identify sets of genes that define 

cellular subgroups and the biological function and significance of each group. The 

main goal of clustering is to separate individuals into subsets based on their similarity 

or distance between the data points. This allows heterogeneity within the population 

to be identified along with the genes that are responsible for these differences. 

Approaches for clustering cells can be mainly grouped into two categories based on 

whether prior information is used. If a set of known markers was used in clustering, 
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the method is prior information based supervised clustering, which would complicate 

the input and introduce bias. Alternatively, unsupervised clustering methods can be 

used for de novo identification of cell populations with scRNA-Seq data. The 

algorithms for unsupervised clustering can be mainly divided into the four types: k-

means, hierarchical clustering, density based clustering and graph clustering 

(Andrews and Hemberg, 2018). K-means is a fast approach that assigns cells to the 

nearest cluster center, and it requires the predetermined number of clusters. 

Hierarchical clustering can determine the relationships between clusters, but it 

generally works slower than k-means. Density-based clustering requires a large 

number of samples to accurately estimate densities, and it works well for droplet-

based datasets. Graph clustering is an extension of density-based clustering, which 

can deal with millions of cells fast and accurately. Moreover, graphs can easily 

represent complex nonlinear structure, such as cell populations of different sizes and 

densities. Seurat identifies the cell clusters mainly based on a graph-based clustering 

algorithm. Briefly, it embeds cells in a graph structure - for example a K-nearest 

neighbor (KNN) graph, with edges drawn between cells with similar feature expression 

patterns (based on the Euclidean distance in PCA space, and refining the edge 

weights between any two cells based on the shared overlap in their local 

neighborhoods via Jaccard similarity). It then attempts to partition this graph into highly 

interconnected  communities using modularity optimization techniques (Louvain 

algorithm) to iteratively group cells together (Butler et al., 2018; Satija et al., 2015).  

Once partitioning has been completed, the next step is to identify marker genes that 

are differentially expressed between different clusters (see differential expression 

analysis), which aids the assignment of cell types. Based on whether reference cell 

type information is available, approaches for assigning cell types are mainly classified 

into two types: (1) known tissue-specific makers, based on directly analyzing 

correlation with bulk RNA-Seq data captured from reference cells (by reporter-gene 

driven FACS, for example); and (2) using the cell type specific marker gene’s promoter 

to drive GFP expression and infer their tissue type or using the expression pattern of 

novel cell type makers, identified by unsupervised clustering, in the existing plant 

expression atlas to infer the tissue type. 

Construction of pseudotemporal trajectories 
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Cells often exist in a continuum of states, as there are rarely discrete states in many 

biological systems. scRNA-Seq is able to capture cells at various developmental 

stages in a single experiment. For example, transitional states defined by the 

continuously evolving gene expression profile of single cells (Milpied et al., 2018). In 

such situations, applying algorithms like graph-based clustering to cells transiting 

through a continuous process like cell differentiation often groups the cells into clusters 

that fail to reflect their progression through the process and capture the dynamic 

features of the transition. Trajectory inference (TI) algorithms are able to order cells 

along the trajectory of a continuously developmental process in a biology system, 

which allows the identification of cell types at the beginning, intermediate, and end 

state of the trajectory and reveal the gene expression dynamic across cells (Griffiths 

et al., 2018). Trajectory topology can be linear, bifurcating, or a tree/graph structure. 

Therefore, besides uncovering new makers for immediate states and identifying the 

factors triggering state transitions, developmental trajectories have the potential to 

reveal branched pathways, and inform regulatory dynamics of differentiation.  

Similar to cell clustering analysis, there are also three steps in TI: feature selection 

(choosing genes that define progress), dimension reduction, and cell ordering. 

Actually, the genes that are included in the ordering greatly impact the trajectory. Until 

now, more than 50 TI programs have been developed (Saelens et al., 2019). Based 

on the extent of the prior information used, TI methods are mainly classified into three 

types: supervised TI, semi-supervised TI, and unsupervised TI. Supervised TI uses 

sequential condition labels as input, which increases the complexity of input. For 

example, scRNA-Seq measurements of cells with a sequence of condition labels 

corresponding to progression along the process, such as timepoints in a time series 

(Treutlein et al., 2016). Semi-supervised TI can involve either selecting a set of known 

makers as features to order cells, or assigning a group of cells into cell states. Prior 

information can aid in finding the correct trajectory among many likely alternatives but 

incorrect or noisy prior information could bias the trajectory towards current knowledge. 

Moreover, prior information is not always easily available. Unsupervised TI discovers 

the important ordering genes from the data, rather than relying on prior knowledge, by 

employing as little prior biological information of the interest system as possible. 

Monocle2, is currently the most popular software, and can be used as either a semi-

supervised TI or an unsupervised TI method, considering that ordering genes could 
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be assigned as known makers or detected automatically (Qiu et al., 2017). Once the 

genes have been selected to order the cells, Monocle2 incorporates manifold learning 

and reversed graph embedding (RGE) to reduce the dimensionality of the data, which 

is robust, fast and powerful (Qiu et al., 2017). Besides that, it could explicitly recover 

the intrinsic structure from the data, which is different from conventional dimensionality 

reduction such as PCA or ICA (independent component analysis). In addition, 

Monocle assumes the trajectory has a tree structure: one end of it is the “root” (the 

beginning of biological process), and others are the “leaves” (the end of biological 

process). After projecting the expression data into lower dimensional space, Monocle2 

implements an advanced nonlinear reconstruction algorithm, DDRTree, to fit the best 

tree to the data. Although the Moncle1 is the early version of Moncle2, they employ 

distinct algorithms and Moncle2 improves branches detection and decreases the 

sensitive to low quality cells. Monocle1 builds a minimum spanning tree (MST) for cells 

to search for the longest backbone based on ICA, which is highly complex and require 

the user to specify the number of branches to search (Trapnell et al., 2014).  

Pseudotime is an abstract unit of progress in Monocle2, which tracks changes in 

expression as a function of progress along the trajectory, instead of as a function of 

time. Essentially, it is simply the distance between a cell and the start of the trajectory 

(shortest distance). The trajectory’s total length is the total amount of transcriptional 

change of a cell as it moves from the starting state to the end state (Qiu et al., 2017). 

Differential expression analysis  

Phenotypical variation results from molecular level diversity. Identifying differential 

expression of genes between specific conditions or tissues is a great aid to 

understanding this morphological diversity. It is also one of the most commonly 

performed tasks for RNA-Seq data analysis. DESeq2 and edgeR are the leading tools 

for use with fewer replicates (<12) in bulk RNA-Seq analysis (Schurch et al., 2016), 

which applies the principle of non-zero difference in average expression. However, 

unlike bulk RNA-Seq data, scRNA-Seq data tends to exhibit an abundance of zero 

counts and a complicated distribution and huge heterogeneity. Therefore, scRNA-Seq 

data requires the use of a new differential expression analysis beyond non-zero 

difference in average expression. Tools such as the Seurat package includes several 

tests for scRNA-Seq differential expression analysis: bimod, tobit, ttest, poisson, and 
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negbinom test. Of these, bimod is most popular and accurate (Chen et al., 2018). 

Bimod combines a discrete/continuous model and likelihood ratio test (LRT) to 

improve the testing power (McDavid et al., 2013). Discrete/continuous models are 

designed based on the fact that UMI counts at the single-cell level formed zero and a 

log-normal distribution. A likelihood ratio test (LRT) can simultaneously test for 

changes in mean expression (expressed genes) and in the percentage of expressed 

cells. Finally, it identifies positive and negative markers of a single cluster, compared 

to all other cells or each other clusters via differential expression analysis (Butler et al., 

2018; Satija et al., 2015).  

Functional analysis 

Characterization of molecular functions or pathways in which DEGs or tissue-specific 

genes are involved allows us to interpret their biological implication. Gene Ontology 

(GO) enrichment and pathway enrichment are two major functional analysis methods. 

Gene Ontology (Ashburner et al., 2000) and Bioconductor (Huber et al., 2015) contain 

annotation for most model species. For functional unannotated specifies, Blast2GO 

offers a suitable platform to annotate massive transcriptome datasets, based on a 

sequence similarity search across a variety of functional annotation database (Conesa 

et al., 2005). Model organisms usually have their own annotation database, for 

example, tair (https://www.arabidopsis.org/) for Arabidopsis, and maizeGDB 

(https://www.maizegdb.org/) for maize. In addition, there are some other databases 

such as gramene (http://www.gramene.org/) and phytomoze 

(https://phytozome.jgi.doe.gov/pz/portal.html), integrating the comparative functional 

genomics of crops and model plant species.  

Visualization 

Visualization of data is crucial for the interpretation of results. RNA-Seq data 

visualization necessities include those to assess the quality of reads (FASTQC), 

mapping of reads (IGV, Integrative genomics viewer), coverage of reads (RSeQC), 

and differential expression of genes (DEseq2). In addition, heatmaps benefit the visual 

comparison of signals on multiple samples. Besides those, scRNA-Seq requires 

additional visualization tools, such as those for analyzing clustering results. Seurat 

implements t-SNE (t-Distributed stochastic neighbor embedding) to visualize datasets 



 31 

at two- or three- dimensions space, without losing information about the relative 

distance between the plotted cells (local structure). For example, if the diversity of the 

cells was found to be well represented with ten PCs, then ten dimensions are required 

to represent the cells. t-SNE will plot the cells on a two- or three- dimensional plot in a 

way that maintains the ten-dimension relationship between cells, so that cells that are 

neighbors on a ten-dimension plot remain neighbors on a two- or three-dimension plot.  

Regulatory network 

A developmental GRN explains the instructions of spatial/temporal expression of 

regulatory genes or target genes (Li and Davidson, 2009). Accurately deciphering 

GRNs is central to understanding many developmental processes. Reverse 

engineering of gene regulatory networks aims at revealing the regulatory interactions 

among genes from high-throughput sequencing data, via computational algorithms 

(Hartemink, 2005). Controlling gene transcription by TFs is a key part of gene 

regulatory and plays vital roles in many fundamental biological processes. There are 

two typical ways to build TFs-centered gene regulatory networks: Inference of 

regulation through clustering of co-expression data and/or promoter motif analysis of 

clustered genes (D’hhaeseleer et al., 2000), and inferring the GRN through high 

throughput time series gene expression data (Sima et al., 2009). The first method 

builds a network with undirected edges (without an orientation) between two genes. 

The basic assumption is that those genes co-expressed or co-regulated, participate in 

a common regulatory module and share a common biological function, location or 

process. The second method builds a directed edge (with an orientation) between two 

genes, indicating a casual control and a regulatory relationship. The basic assumption 

is that over continuous time, the timings of up-and-down mRNA expression collected 

from the dynamic mRNA expression profiles, can explain transcriptional regulation. 

SCODE (Matsumoto et al., 2017), an efficient RGN inference algorithm from scRNA-

Seq during differentiation, takes the principle of the second method. Yeast 

hybridization (Joung et al., 2000), ChIP-Seq (Johnson et al., 2007), and DNA affinity 

purification sequencing (DAP-Seq) (Bartlett et al., 2017) offer an opportunity to test or 

verify such GRN linkages.  

3.3 Development of the meristem 
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In contrast to animals, much of plant development occurs post-embryogenesis. New 

organs are initiated from meristems, specialized niches that maintain a population of 

undifferentiated stem cells set aside during embryogenesis (Bosca et al., 2011; Zhang 

et al., 2017). While the shoot apical meristem (SAM) gives rise to all above-ground 

organs, like the leaves, stems, and flowers, the below-ground root system originates 

from the root apical meristem (RAM) (Aichinger et al., 2012).   

3.3.1 Root apical meristem 

Although the function of the RAM is in principle similar to that of the SAM, it is 

organized differently. Here, the quiescent center (QC) is surrounded by a single layer 

of tissue-specific stem cells (initials). The QC act as a signaling center, or organizer, 

and maintains the identity of neighboring stem cells (Jerome et al., 2018). These divide 

asymmetrically to generate the concentrically arranged tissue files of the root, 

specifically the stele, cortex, endodermis, and epidermis. The epidermis includes two 

type of cells: root hair epidermis and non-root hair epidermis. Beneath the QC are the 

columella initials that give rise to the columella, while the surrounding cells gives rise 

to the lateral root cap (Iijima et al., 2008). Along the root, there are several zones: the 

meristematic, elongation, differentiation and mature zones. The meristematic zone is 

at the root apical tip. Next to the meristematic zone is elongation zone where cells stop 

division and enter into rapid growth by elongation. Above the elongation region is the 

differentiation zone where cells undertake their final fate (Figure 4A). The obvious 

characteristic of the differentiation zone is the appearance of root hairs in the 

epidermis. This distinct structure of the Arabidopsis root provides an ideal tissue for 

analyzing the promise of scRNA-Seq.  Although several root atlases have been 

generated using reporter lines, they focused primarily on describing either radial or 

temporal expression profiles. However, scRNA-Seq allows to study them 

simultaneously. Here in Chapter 4.1, we present a high-resolution scRNA-Seq 

expression atlas of the Arabidopsis root that captures its precise spatiotemporal 

information.  
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Figure 4. The structure of meristems. A: root meristem. QC: quiescent center; LRC: later 

root cap; Col: columella; SCN: stem cell niche; MZ: meristem zone; EZ: elongation zone; DZ: 

differential zone; B: shoot apical meristem. CZ: central zone; OC: organizing center; RZ: rib 

zone; V: vasculature; L1: Layer1; L2: Layer2; P0-P2: different developmental stage of leaf 

primordia; 

3.3.2 Shoot apical meristem  

The SAM is composed of different functional domains (Takacs et al., 2012). The 

central zone (CZ), containing pluripotent stem cells, is located at the summit of the 

meristem. The peripheral zone (PZ), surrounding the CZ, is located at the lateral flanks 

of the SAM, and is where leaf primordia initiates. Beneath the CZ is the rib zone (RZ), 

from which the elongating stem develops (Jerome et al., 2018). Besides the PZ and 

CZ, organizing center (OC) resides directly underneath CZ and guides the stem cell 

maintenance in Arabidopsis (Pfeiffer et al., 2017) (Figure 4A). Different from 

Arabidopsis, maize has only two clonally separate layers superimposed on the CZ: an 

outer L1 (layer 1) deriving into the epidermis, and a sub-epidermal L2 (layer 2) 

(Aichinger et al., 2012). Cell division in the CZ replenishes the stem cell population, 

renews the meristem, and displaces the PZ. Different from the rapidly dividing PZ, 
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cells in the CZ divide relative infrequently to reduce accumulation mutations in stem 

cells (Takacs et al., 2012).  

Knauer et al., (2019, in review) generated a high-resolution gene expression atlas of 

the maize SAM, which revealed distinct gene expression signatures contributing to 

cell identity and the combinatorial activity of TFs driving the dynamic expression of 

individual family members defining cell types. In addition, it showed that distinct sets 

of genes govern the regulation and identity of stem cells in maize versus Arabidopsis. 
The distinct cell fates in the SAM are stably maintained despite the growth of the 

meristem, so cell fates are continuously defined in a highly dynamic and coordinated 

manner.  

Above all, given the dynamic nature of the stem cell niches and the fact that distinct 

cell fates are continuously defined in a close spatial and temporal vicinity, meristems 

are the ideal tissues to study spatiotemporal gene regulation in development.  

3.4 The objective of this study: 

The distinct structure and abundant of available resources of meristems make them 

ideal models to study molecular regulation mechanism during plant development. 

This dissertation includes the following two parts:  

Exploration of the high-throughput scRNA-Seq application on the Arabidopsis 

root apex: 

High-throughput scRNA-Seq have been widely-used in mammalian research, offering 

an opportunity to study the molecular heterogeneity of- and developmental 

progressions within- target tissues. However, the structure of plant cell, including the 

additional components of cell wall and vacuole increases the difficulty of droplet-based, 

high throughput scRNA-Seq application on plants. The Arabidopsis root, with its 

distinct spatiotemporal organization provides a perfect material to explore its 

application. This study aims to explore the high-throughput scRNA-Seq application in 

plant. 

Understand the small RNA spatiotemporal action in maize shoot apex: 
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MiRNAs play important roles in every aspect of plant development, considering their 

robust regulation, highly specify and rapid mode of action, and that their mature 

miRNAs accumulation is regulated both at transcriptional and post-transcriptional level. 

However, less is known about the spatiotemporal regulation mechanisms of miRNA 

accumulation and miRNA-mediated regulation mechanisms and regulation modes. 

The availability of a high resolution of maize shoot apex atlas (Knauer et al., 2019, in 

review) offers an opportunity to study the small RNAs spatiotemporal action in maize 

shoot apex. This study aims to reveal insights into the spatiotemporal regulation of 

miRNAs accumulation, and regulation mechanisms and regulation mode during 

driving plant development.  
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Chapter 4. Results and discussion 

4.1 Spatiotemporal Developmental Trajectories in the Arabidopsis Root 

Revealed Using High-Throughput Single-Cell RNA Sequencing 

 

Details see appendix I.  
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4.2.1 Abstract 

MiRNAs play important roles in every aspect of plant development. Small RNA 

regulation confers sensitivity and robustness onto gene regulatory networks, and the 

morphogen-like readout of small RNA mobility gradients yields sharply delineated 

domains of target gene expression. However, less is known about how the 

spatiotemporal patterns of miRNA activity are attained. The availability of a high-

resolution gene expression atlas of the maize shoot apical meristem (SAM) offers an 

opportunity to study this problem. Analysis of miRNA precursor gene expression 

across twelve functional SAM domains revealed substantial sub-functionalization, with 

distinct precursor genes marking stem cells versus differentiating organ primordia. 

Correlation analysis revealed that miRNA abundance, determined by small RNA deep 

sequencing, and precursor transcript levels across the SAM are highly correlated, with 

the exception of miRNAs localized to the vasculature and stem cells in the niche. Here, 

key enzymes involved in the miRNA biology, such as DICER-LIKE1, are minimally 

expressed. The spatial accumulation of miRNAs thus reflects regulation at both the 

transcriptional and post-transcriptional level. In addition, we identified miRNA target 

genes by bioinformatic prediction and experimentally validated them using parallel 

analysis of RNA ends (PARE); analyzing their regulation across the SAM. Integrating 

analysis of -omics data, we inferred miRNA regulation mechanism (transcript cleavage 

or translation repression) and regulation mode (clearance or rheostat) and revealed 

an unexpected variability in miRNA-mediated transcript cleavage efficiency. Together, 

our results reveal that the spatiotemporal action of plant miRNAs during development 

is regulated at multiple levels affecting miRNA transcription, processing/stability, and 

activity. 

4.2.2 Introduction 

MiRNA-driven regulation is a key component and a number of highly-conserved miRNAs 

target transcription factors (TFs) with specific roles in early stage development (D'Ario et al., 

2017; Li et al., 2016; Singh et al., 2018; Swarup and Denyer, 2019; Yang et al., 2018). For 

example, miR156-mediated repression of SQUAMOSA PROMOTER BINDING PROTEIN-

LIKE (SPL) transcription factors is required for both the proper leaf initiate rate (Schwarz et 

al., 2008; Wang et al., 2008). miR160-mediated regulation AUXIN RESPONSE FACTORS 

(ARF) genes is necessary for normal cotyledon numbers and positions (Liu et al., 2007; 
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Mallory et al., 2005; Wang et al., 2005). MiR164 regulates organ boundary size and maintain 

phyllotaxis set-up in meristem by its modulation of the CUC (CUP-SHAPED COTYLEDON) 

gene (Baker et al., 2005; Mallory et al., 2004; Nikovics et al., 2006; Peaucelle et al., 2007; 

Sieber et al., 2007).  MiR165/166 spatially restrict homeobox-leucine zipper family 

transcription factors during meristem and leaf development (Chitwood et al., 2009; Juarez et 

al., 2004; Jung and Park, 2007; Nogueira et al., 2007; Reinhart et al., 2002; Sakaguchi and 

Watanabe, 2012). MiR172 control APETALA2 (AP2) gene involved flower meristem identity 

transition (Chen, 2004; D'Ario et al., 2017; Irish and Sussex, 1990). MiR394 target 

WUSCHEL(WUS) suppressor LEAF CURLING REPRESIVENESS (LCR) in the organizing 

center (OC) to control meristem size (Knauer et al., 2013; Song et al., 2012). Therefore, 

miRNAs are able to define cell-type specific gene expression at the early stage according to 

spatial and temporal cues. 

MiRNA-target modules have been coopted for major innovations in plant evolution. MiRNAs 

bind in a homology-dependent manner to target mRNAs and trigger the degradation through 

transcript cleavage, and/or their translational inhibition. Mature miRNAs originate from MIR 

genes, which experiences transcription and processing catalyzed by multiple enzymes. Some 

key miRNA/target modules, central to proper plant development in Arabidopsis, have been 

found to function by-way-of translational repression besides cleavage. For examples, miR156 

and miR172 regulated their targets primarily by translation repression (Aukerman and Sakai, 

2003; Chen, 2004; Gandikota et al., 2007; He et al., 2018).  

In additional, miRNAs shape and diversify gene expression profiles of different cell types 

during development by post-transcriptional regulation. Recent finding indicates that miRNA 

could form highly precise mobile positional signals to generate sharp domains of target gene 

expression through a morphogen-like readout (Skopelitis et al., 2017). This reflects a non-

linear, threshold-based readout, which is a highly sensitive to the relative ratio of small RNA-

to-target levels (Skopelitis et al., 2017). When this ratio is above a given threshold, small RNAs 

can clear target transcripts or protein accumulation. Whereas below the threshold, small RNAs 

reduce target gene expression noise and show a rheostat behaviour. Thus, there are multiple 

types of small RNA-mediated regulatory modes in development (Skopelitis et al., 2017).  

So far, global study spatiotemporal accumulation and action of miRNAs with a developmental 

perspective localized tissues are lacking. To address these questions, using the maize (Zea 

mays) shoot apex as a model, we quantified miRNA levels in the shoot apex by miRNA-Seq 

before determining expression patterns using in-situ hybridization. Precursor (pri-miRNA) 

spatiotemporal accumulation across twelve SAM subdomains was also determined from 
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previous data (Knauer et al., 2019). These results show substantial sub-functionalization of 

precursor genes. Integrating analysis of RNA-Seq and degradome-Seq data, we identified the 

accurate miRNA target genes and systematically assigned the miRNA mediated gene 

regulation mechanism and regulation mode. Our results also demonstrated the factors related 

to the different sensitivity of efficacy of miRNA-mediated transcript cleavage. These results 

provide a foundation for spatiotemporal action of miRNAs during plant development. 

4.2.3 Results 

Expression patterns of miRNA precursors indicate substantial tissue-specific 

transcriptional sub-functionalization 

To understand small RNA spatiotemporal action during development, we took 

advantage of a recently described high-resolution maize SAM expression atlas 

(Knauer et al., 2019). The SAM is a specialized niche located at the tip of the growing 

plant shoot that orchestrates the balance between stem cell proliferation and organ 

initiation essential for post-embryonic shoot growth. The SAM provides a perfect 

context to study miRNA regulation. Cell fates within the growing niche are continuously 

defined in close a spatial and temporal vicinity, and expression of key cell fate 

determinants within the SAM is under miRNA control (Fouracre and Poethig, 2016; 

Petsch et al., 2015). Moreover, miRNA mobility between functional domains of the 

SAM is dynamically regulated (Skopelitis et al., 2018). 

The maize SAM atlas captures genome-wide expression profiles for ten distinct 

structural and functional domains within the maize vegetative shoot apex: the whole 

meristem, the stem cell-containing central zone, the incipient leaf (P0) at the meristem 

periphery, the L1 and L2 lineage layers overlaying these meristematic regions, 

developing leaf primordia P1, P2 and P3, the internode primordium, and the 

vasculature (Knauer et al., 2019; Figures 1A). Considering that small RNAs play 

important roles in adaxial-abaxial leaf polarity (Juarez et al., 2004; Nogueira et al., 

2007), we complemented the atlas by generating global gene expression data also for 

the adaxial and adaxial sides of P2-P3 leaf primordia (Figures 1B and 1C, Figure S1A-

D).  
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Figure 1. miRNA accumulation and precursor gene expression is highly correlated. (A) 

Schematic of a longitudinal section of a 14 day-old B73 seedling apex illustrating the ten 

domains profiled by laser microdissection RNA-Seq (Knauer et al., 2019). (B-E) Sections after 

laser microdissection of the adaxial (Ad) (B), adaxial (Ab) (C) sides of developing leaf 

primordia, and the center zone (CZ) in dcl1-2 (D), and wild type (E). (F) miRNA abundance 

and precursor expression levels are well correlated (r=0.85). Prominent outliers whose mature 

miRNA is less abundant than expected, are highlighted. 
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The 28 confirmed maize miRNA families comprise 141 precursor genes that together 

are predicted to produce 160 mature miRNAs (Table 1, Dataset S1). Instances where 

a single precursor is processed into more than one mature miRNA are seen in seven 

families. Notably, the MIR395 precursor genes contain sixteen miRNA stem-loops 

tandemly arrayed within four precursors (Dataset S1). Similar examples of 

polycistronic miRNAs are also found in the miR166, miR167, miR169, miR396, 

miR2118 and miR2275 families. 19% of mature miRNAs in maize are polycistronic 

miRNAs, which is similar percentage to those of Arabidopsis (20%) and rice (19%) 

(Merchan et al., 2009). Interestingly, polycistronic miR166, miR169 and miR395 are 

conserved in rice and Arabidopsis. It suggests a putative conservational origin of 

polycistronic MIR genes in evolution process.  

Although most of these miRNAs are broadly conserved across land plant evolution, 

the families themselves continue to diverge. This is also apparent at the level of the 

mature miRNA, where single nucleotide polymorphisms are not uncommon. Here, we 

detected 76 distinct miRNA sequences originating from 28 miRNA families (Table 1).  

41 of the 141 precursors were found to be expressed in at least one of the twelve 

subdomains in the shoot apex at a level ≥1 RPM in at least one of the twelve 

subdomains analyzed (Figure 1F; Dataset S1). Among them, three precursors are 

polycistronic MIR genes. Consistent with possible roles in development, hierarchical 

clustering revealed three major clusters describing the leaf primordia, vasculature, and 

meristem regions. Interestingly, this spatial separation mirrors that observed 

previously for transcription factors (TFs), which was found to be predictive of tissue 

identity and the overall expression profiles of domains within the apex (Knauer et al., 

2019). Precursors for multiple miRNAs are expressed within each of these apex 

regions, reinforcing the principle of a prominent contribution of miRNAs in patterning 

the shoot apex. Combinational input forms diverse gene networks on cell identity. 

These observed expression profiles hint at defined functions. For instance, MIR166b, 

c, d, k & n cluster together, and their expression reflects their recorded role in 

specifying abaxial identity (Chitwood et al., 2007; Nogueira et al., 2009; Nogueira et 

al., 2007). Similarly, MIR168a, b group together in the SAM. It is consistent with select 

miRNAs controlling developmental programs.  
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Table 1. Summary of miRNA family 

Family No. of precursors No. of miRNAs No. of unique miRNA# 
MIR156 12 12 3 
MIR159 11 11 5 
MIR160 6 6 2 
MIR162 1 1 1 
MIR164 8 8 4 
MIR166* 11 12 3 
MIR167* 8 9 2 
MIR168 2 2 1 
MIR169* 16 17 10 
MIR171 11 11 6 
MIR172 5 5 2 
MIR319 4 4 1 
MIR390 2 2 1 
MIR393 3 3 1 
MIR394 2 2 1 
MIR395* 4 16 4 
MIR396* 7 8 4 
MIR397 1 1 1 
MIR398 2 2 1 
MIR399 10 10 6 
MIR408 1 1 1 
MIR482 1 1 1 
MIR528 2 2 1 
MIR529 1 1 1 
MIR827 1 1 1 
MIR1432 1 1 1 
MIR2118* 5 7 7 
MIR2275* 3 4 4 
Total 141 160 76 

The 28 known miRNA families show variation in complexity. * Precursor genes produced 

multiple mature miRNAs. # The number of distinct miRNA sequences in miRNA family. 

For most miRNA families, only a small subset of its members is expressed in the apex, 

indicating some sub-functionalization among miRNA family members and less 

redundancy than perhaps expected. The expression patterns of members within single 

miRNA families reveal a further division of labor, with individual precursors 

differentially expressed across different domains of the apex (Figure S2). For example, 

both MIR394 precursors are expressed in the SAM, but only MIR394a is highly 

expressed in the vasculature, and MIR394b is expressed primarily on the adaxial side 

of leaf primordia. Similarly, precursors for miR159, miR160, miR169, and miR319 
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show redundant expression in the SAM but are differentially regulated across other 

regions of the apex. Additionally, for miR156, miR164, miR167, miR168, and miR172, 

precursor transcripts are primarily derived from just one of the family members (Figure 

S2). Interestingly, MIR169c and MIR169e,h, which generate different mature miRNA 

sequences, show differential accumulation in the meristem and vasculature. Similarly, 

miR166 precursors producing distinct mature miRNA sequences also show dynamical 

expression in leaf primordia.  

Taken together, these data indicate that the spatiotemporal patterns of miRNA activity 

result in-part from intricate transcriptional regulation of their precursor genes. This 

generates tissue-specific patterns of expression resulting in a division of labor among 

miRNA family members, with distinct genes functioning in the SAM, vasculature, or 

leaves. This indicates that these members likely play specialized roles in these tissue 

types.  

Expression levels of precursor genes and their mature miRNAs are highly 

correlated 

In maize, mature miRNA accumulation has been reported as being subject to complex 

tissue- and cell-type- specific post-transcriptional control (Nogueira et al., 2009). RNA-

Seq and small RNA sequencing (sRNA-Seq) data provides an opportunity to assess 

this level of regulation on miRNA accumulation. To investigate this, we performed 

sRNA-Seq on the apex, comprising the SAM, and up to four leaf primordia. 

Approximately 90% of the 18- to 26- nucleotide (nt) reads mapped to the maize 

reference genome, and small RNA size distribution is similar to that previously 

described in maize (Dotto et al., 2014; Petsch et al., 2015) 

28 miRNA families are predicted to produce 76 distinct mature miRNAs. Considering 

a raw read count cut-off of ≥10, 41 miRNAs, belonging to 25 families, are expressed 

across the apex. Correlation analysis shows that the relative abundance of a given 

miRNA is highly correlated (r=0.85) with the cumulative level of expression of the 

corresponding precursor genes across the meristem, internode, P1 to P3 leaf 

primordia, and vasculature (representing non-overlapping domains in the apex). 

Levels of miR166 and miR319 are higher than expected based on expression of their 

respective precursors. Conversely, for MIR156k, MIR164bdg, MIR169c, MIR169e,h 
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and MIR172c, mature miRNA accumulation is lower than predicted (Figure 1G, 

Dataset S1). This suggests a certain level of regulation at the level of miRNA 

processing and/or stability. Interestingly, the latter precursors (except MIR164b, -d, -

g) are mainly expressed in the vasculature (Figure 2, Figure S2). Genes required for 

small RNA biogenesis, function, and turnover show some expression variation across 

the apex (Figure S3, Dataset S2). However, interestingly, transcript levels for DCL1 

are particularly low in the vasculature compared to other regions of the apex, whereas 

expression of HEN1 SUPPRESSOR1 (HESO1), involved in miRNA turnover, is 

noticeably higher in the vasculature (Figure S3). However, their expression is lower 

than expected accumulation is not explained by a miRNA turnover speed (Zhai et al., 

2013). It is likely that differences in the activities of these enzymes contribute to the 

spatial regulation of miRNA accumulation, limiting miRNA levels in vasculature.  
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Figure 2. variation in precursor gene expression patterns across the maize shoot apex. 

Heatmap of 41 expressed precursors (RPM ≥1) are grouped into three clusters via hierarchical 

clustering analysis. Dash lines distinguish these clusters. Relative expression levels have 

been normalized and reflected in the color scale. Numbers on the heatmap depict expression 

value (RPM). Mer - meristem, Int – internode, Vas – vasculature. 

Mechanisms appear in place to regulate miRNA accumulation at the post-

transcriptional level. Nonetheless, the fact that miRNA abundance and precursor 

expression is strongly correlated suggests that miRNA accumulation is to a large 

extent determined at the transcriptional level (Figure 1F). We conclude, therefore, that 

precursor expression can thus serve as proxy for mature miRNA accumulation.  

Spatial regulation of miRNA accumulation in the SAM 

While a strong indicator of miRNA level, transcriptional regulation of precursor genes 

may not be a perfect prediction of the patterns of miRNA accumulation. Small RNAs, 

including miRNAs are able to move from cell to cell via plasmodesmata, and spread 

systemically through the vasculature (Vaten et al., 2011). The movement of small RNA 

is a carefully regulated process (Skopelitis et al., 2018). Particularly, small RNA 

movement between functional domains of the shoot stem cell niche and from the 

vasculature cambium is restricted. Small RNAs however serve as mobile positional 

signals within the developing leaf.  

To investigate spatiotemporal regulation of miRNA accumulation, we determined 

patterns of miRNA localization in the shoot apex via in situ hybridization, focusing on 

those small RNAs implicated in development (Figure 3). Most miRNAs were found to 

accumulate in a pattern across the apex consistent with the expression domains of 

their precursors (Figure 2 and Figures 3A-E). For example, miR156 and its precursors 

are broadly expressed in the apex; miR160 and its precursors are mainly accumulated 

in leaf primordia and the vasculature; and miR164 is found within leaf primordia. 

miR166 is predominantly expressed in abaxial side of leaf primordia.   

While the pattern of miRNA accumulation generally matches that of its precursors, 

miRNA mobility appears to effect miRNA accumulation. Besides miR166, which is 

known to move from its source on the abaxial side to generate an accumulate gradient 

across the adaxial-abaxial axis (Juarez et al., 2004), our data demonstrates the 
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mobility of miR167, miR319 and miR394. Opposite to miR166, miR394 moves from 

its source on the adaxial side towards the adaxial, generating an accumulate gradient 

(Figure 3F). miR319 moves from vasculature to their surrounding cells and miR167 

from early leaf primordia to their surrounding cells (Figure 3E, 3G). We therefore 

summaries that the range of small RNA mobility is in part determined by the 

abundance of a small RNA. 

 

Figure 3. in situ hybridization reveals regulation of miRNA accumulation in the maize 

shoot apex. (A-G) select miRNAs show distinct expression profiles. (H-J) In contrast to the 

mature miRNA (F), miR319 precursors show expression also in the SAM. (G-L) Likewise, in 

contrast to the mature miRNA (G), miR394 precursors accumulate in the CZ and vasculature 

(K-L). (M-P) Same as above, miR167 precursors also show accumulation in the SAM.   
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However, there are notable exceptions. For example, while mature miR319 is 

detectable primarily in the vasculature, its precursors are expressed in both the 

vasculature and the SAM CZ (Figure 3E and 3H-J). Similarly, miR394 accumulates on 

the adaxial side of developing leaf primordia in line with the pattern of precursor 

expression but is undetectable in the CZ despite the equivalent two precursors’ 

expression in this domain of the SAM (Figure 3F and 3K-L). Finally, miR167 

precursors are detectable in the CZ, while no mature miRNAs are. Although both of 

them are accumulated in internode and leaf primordia (Figure 3G and 3M-P). 

To further investigate these miRNAs’ accumulation regulation mechanisms, we 

generated RNA-Seq data from the meristematic CZ of a dcl1-2 mutant line (Figure 1D-

E, Dataset S3). miR167, miR319, and miR394 precursors’ expression was found to 

be up-regulated in the mutant compared to wild type (Figure S4). This is consistent 

with the previous finding that all mature miRNAs’ accumulation levels are decreased 

in dcl1-2 compared to wild type (Petsch et al., 2015). Interestingly, the transcripts’ 

increasing level among precursors is different in dcl-1 relative to wildtype. This 

indicates that DCL1 processing ratio is different among precursors, and the relative 

expression level of precursor in dcl1-2/wildtype serves as a proxy for miRNA 

processing efficiency. This result reinforces the principle that mature small RNAs 

accumulation is regulated at spatial, transcriptional, and post-transcriptional levels in 

the SAM.  

The efficiency of miRNA-directed transcript cleavage  

To identify all targets, including conserved and non-conversed (novel) targets, we 

performed target prediction analysis by using the TargetFinder tool and validated them 

by degradome analysis. Altogether, 114 target genes were identified (Dataset S4), 

nearly all of which are conserved when compared to those recorded for Arabidopsis. 

This highlights the extensive conservation of not only miRNAs, but also their targets 

(Chorostecki et al., 2017). 

The fact that potential target genes might not be expressed, weakly expressed, or 

translational repressed, means it is likely that other targets could not be detected by 

degradome sequencing. Given the observed conservation of targets, an additional 48 

target genes were detected via phylogenetic analysis, 39 of which are not expressed 
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in the maize shoot apex (Dataset S4). For the other nine expressed target genes, 

seven of them belong to five expressed miRNA families: miR159, miR166, miR167, 

miR393 and miR396 (three) (Figure S5). miR166 target is highly accumulated in the 

CZ of the meristem, while miR166 does not accumulate in there (Figure S5B). miR159 

and its target are co-expressed in the same domain, while polymorphisms in 

complementary binding sites are different from its other targets. Same to miR393, 

different polymorphisms in complementary binding sites are detected compared to 

their other targets (Figure S7). Three expressed miR396 targets have the same 

complementary binding sites and expression pattern as the other targets (Figure S5E, 

Figure S7), and the probability is that they are regulated at a translation level.  

 

Figure 4. The sensitivity of miRNA-mediated transcript cleavage. (A) For 105 expressed 

targets (≥1 RPM in any one subdomain), the ratio of cleaved transcript to un-cleaved transcript 

was calculated by relative PARE signature. The PARE signature was divided by the targets’ 

average expression in a miRNA accumulation domain. Below the red line (the relative 
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degradome signature is 0.5), the relative PARE signature of targets is low. (B-E) Heatmaps of 

miR156 (B), miR160 (C), miR169 (D), and miR319 (E) accumulation, and their targets’ 

expression level in select apex subdomains: Mer - meristem, Int – internode, Vas - vasculature, 

P1, P2, and P3. Left side of heatmap reflects the relative accumulation of miRNA to targets. 

Bracketed numbers indicate the relative PARE signature. Red line (left of heatmap) is the ratio 

of miRNA expression to target expression (in miRNA accumulation domain). (F-G) 

Complementary binding sites between select miR160 (F) and miR169 (G) and their targets. 

The blue bases identify a G:U bulge. Red indicated a mismatch. 

Sequence divergence during evolution can give rise to novel miRNA-target modules. 

Indeed, most miRNA families generate multiple mature miRNA variants, and the 

differences in complementarity affect the range of possible targets. For example, four 

miR159 variants do not always share the same targets (Dataset S4). Similarly, miR166, 

miR169, miR171, and miR396 variants regulate the different targets. Interestingly, one 

of three non-conserved targets are regulated by two miR166 variants, which is distinct 

from novel targets identified for miR166 in rice (Salvador-Guirao et al., 2018). This 

reflects the evolvability of miRNAs and their targets.  

To globally estimate the sensitivity of efficacy of miRNA-directed transcript cleavage, 

we calculated the ratio of cleaved transcripts reflected by the PARE signatures, to the 

un-cleaved target mRNA levels (Figure 4A). The results show these ratios vary 

substantially even among targets within individual miRNA families, as well as targets 

across miRNA families. This indicates that miRNA-directed transcript cleavage 

efficacy differs between targets of the same miRNA. Relative, lower PARE signatures 

are indicative of either low miRNA accumulation, or miRNA mediated translational 

regulation. For example, miR166 targets are regulated at translational level and have 

low cleavage signatures.  

Four targets coming from miR156, miR160, miR169 and miR319 show the highest 

sensitivity of cleavage efficacy. Interestingly, through analyzing the ratio of miRNA to 

targets, we discovered that the highly efficient cleavage of targets of miR156 and 

miR319 have the highest ratio of relative miRNA accumulation to targets (Figure 4B). 

However, miRNA160 and miR169 failed the above rule. A miR160 target gene 

(GRMZM5G808366) was found to be have the highest ratio of miRNA to target, but its 

cleavage efficacy is relatively low. By further analyzing the binding sites of miRNAs, 
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we uncovered that binding sites’ complementarity polymorphisms are the second 

factor affecting miRNA efficacy besides the ratio of miRNA to targets. The low efficacy 

of targets gene (GRMZM5G808366) is because of more single nucleotide 

polymorphisms (SNPs) in miRNA complementarity binding site than other targets 

(Figure 4F). Similarly, SNPs in miRNA::target complementary binding site play a major 

role in determining the cleavage efficacy of targets gene (GRMZM2G0919164) 

regulated by miR169 (Figure 4G).  

Aside from sequence complementarity polymorphisms, and the ratio of miRNA to 

target affecting the cleavage efficacy of target genes regulated by the same miRNA, 

there are several other factors that can affect the cleavage efficacy of target genes 

regulated by different miRNA families. For example, RNA-binding proteins or target 

accessibility (Li et al., 2014a). AGO1 mediates both target cleavage and translational 

repression (Iwakawa and Tomari, 2015)  and the different binding efficacy of miRNA 

to AGO protein affects the efficacy of target cleavage .   

Complexity of the mechanisms of miRNA-mediated gene regulation across the 

meristem 

To understand the action of small RNAs on their target genes, it is necessary to know 

the regulatory mechanism (transcript cleavage or translational repression) and the 

regulatory mode (clearance or rheostat) that a miRNA employs in the regulation of its 

targets. To determine this, we built a model to infer the regulation mechanism and 

regulation mode by integrating analysis of the miRNA accumulation level, un-cleaved 

targets’ mRNA accumulation level in miRNA accumulation domains, and the PARE 

signatures reflecting the target cleavage level (Table S1). A regulation mechanism 

model such as this relies on the principle that translational repression has only a subtle 

effect on mRNA accumulation. If the relative PARE signature is low, this indicates that 

a given miRNA does not cleave many transcripts. Conversely, if the miRNA-target 

level ratio is high (≥1). It suggests that there is enough miRNA to regulate the targets. 

If a target’s expression in miRNA accumulating domains is high (≥10), this suggests 

that the targets are predominantly regulated by translation inhibition (Table S1). A 

regulation mode model relies on the principle that clearance would clear out the targets 

on a mRNA or protein level. If the PARE signature is high (≥0.5) and target’s 
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accumulation in miRNA accumulating domains is low (<10), this suggests that targets 

are clear out by miRNA and it is regulated by miRNA at clearance mode (Table S1).   

Based on our model, we systematically estimated the regulation mechanism and 

mode of miRNA/target modules. Nine families were found to regulate their targets at 

transcript cleavage level and seven miRNA families were found to regulate their 

targets at both a transcriptional cleavage and translational repression level (Dataset 

S5, Table S2). The regulation mechanism of miRNA families is highly consistent with 

the reported Arabidopsis miRNA regulation mechanisms (Table S2). miR156 and 

miR159 has been found to regulate their targets at both a transcript cleavage and 

translational inhibition level (Aukerman and Sakai, 2003; Gandikota et al., 2007; He et 

al., 2018; Li et al., 2014b; Li et al., 2013; Schwab et al., 2005). We predict that miR166, 

miR167, and miR394 predominantly regulate their targets through translational 

repression. Further, for the miR166 family, where miRNA accumulation is abundant, 

target expression also appears high, suggesting that miR166 targets are 

predominantly regulated by translational repression. Reinforcing this, a recent study 

showed that targets were cleared by miR166/miR165 at a protein level (Skopelitis et 

al., 2017). 

To study further the link between the action of small RNAs on their target genes, and 

the contribution of miRNAs to development in the SAM, we analyzed the spatial 

correlation between the sum expression of precursors for each family, and the sum 

expression of corresponding targets genes. Typically, for translational repression, 

target mRNA was found to be only slightly changed following dynamic miRNA 

accumulation. For example, miR156 and miR172 accumulate in the vasculature, 

where target expression is reduced far less than in other domains (Figure 6SA). The 

same principle applies to abaxially-accumulated miR166 (Figure 6SA). Here, target 

expression decreases little in the abaxial domain, compared to the adaxial domain. 

With regards the other three dynamically expressed miRNA families: miR167 is 

predominantly expressed in leaf primordia, miR171 is mainly accumulated in L1, 

distinguishing it from L2 and miR394 distinguishes the adaxial and abaxial side. 

Different from other miRNAs, miR159 is broadly expressed in the shoot apex (Figure 

6SB). 
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Taken together, we summarize that these miRNAs provide a major contribution to 

target-protein accumulation regulation in the SAM, and/or fine-tune target 

accumulation in a particular domain in which the miRNA accumulates. For the targets 

which are regulated on a transcript cleavage level, the dynamically expressed miRNAs 

spatially restrict their target mRNA accumulation in different cell types (Figure 5A). For 

example, meristem versus leaf primordia (miR160), vasculature (miR169), L1 versus 

L2 (miR164). Non-dynamically expressed miRNAs (such as miR162, miR390, miR393 

and miR396) limit their targets broadly in all tissues (Figure 5B). 

 

Figure 5: Nine miRNA families were found to regulate targets solely on a transcript-

cleavage level in the maize apex. Expression of pri-miRNA and targets across 12 

subdomains. (A) Dynamically expressed miRNAs spatially restrict target accumulation: 

miRNA160, miR168, miR319, miR169, and miR164 families. (B) Non-dynamically expressed 

miRNAs and targets: miR162, miR390, miR393, and miR396. Left axis (red): pri-miRNA 

expression level (sum expression of all expressed precursors in same family); right axis (blue): 

target gene expression level (sum expression of all targets to the same miRNA family). On the 

A
Pri vs Mer (Mer+ Vas) vs Pri

L1 vs L2Vas

B
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top of box annotate miRNA mainly accumulation domain verse non-accumulation domain. Mer 

- meristem, Vas – vasculature, Pri – Primordia.  

4.2.4 Discussion 

The availability of high-resolution maize shoot apex transcriptome atlas data (Knauer 

et al., 2019) offered an opportunity to investigate the spatial temporal action of miRNAs 

during development. Substantial sub-functionalization of precursor genes reflects the 

concepts that miRNAs are regulated at transcriptional level. The inconsistency of 

miRNAs’ and their precursors’ expression level suggests that miRNAs’ accumulation 

are also regulated at post-transcriptional level. Dynamic expression of enzymes 

participated in miRNA biology across shoot apex point to DCL1 and HESO1 as the 

two major factors affecting miRNAs spatiotemporally accumulation. Besides the above, 

the mobility of miRNAs is also revealed as a contributor to miRNA accumulation. 

These complex regulation of miRANs’ spatiotemporal accumulation confers miRNAs 

robustness to drive development.   

Targets are the central to understand miRNA function. miRNAs can obtain new 

function by acquiring new targets in the evolution process (Baldrich et al., 2018). Here, 

novel targets are revealed in maize by computational prediction and degradome-Seq 

validation. Actually, miRNA targets are highly conserved between Arabidopsis and 

maize. In Arabidopsis, SPL9 is more sensitive than SPL13 to miR156/miR157-directed 

transcript cleavage (He et al., 2018). Consistent with this, our result reveals the distinct 

sensitivity of efficacy of miRNAs-mediated transcriptional cleavage. These different 

efficacies of miRNA-mediated cleavages are related to the nature of polymorphisms 

in miRNA/targets complementary binding sites and miRNA/target ratio. In animals, 

miRNA polymorphisms are associated with disease, and single nucleotide 

polymorphisms in miRNA/targets binding sites may result in the escape of a target 

from inhibition or degradation by a miRNA (Chin et al., 2008; de Almeida et al., 2018; 

Gebert and MacRae, 2019; Gong et al., 2012). In addition, target accessibility is also 

determined by the secondary structure of target genes (Li et al., 2014a; Zheng et al., 

2017), RNA-binding proteins (Li et al., 2014a), and AGO proteins (Iwakawa and 

Tomari, 2015; Jeong et al., 2013). These are also suggested factors affecting the 

different miRNA families mediated cleavage efficacy. 
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Here, we systematically reveal more miRNAs mediated regulation mechanisms by 

integrating RNA-seq and degradome-Seq. Besides the known miRNA regulation 

mechanisms (Gandikota et al., 2007; He et al., 2018; Li et al., 2014b; Schwab et al., 

2005), here we report three more miRNAs who mediated their targets’ expression 

through translational regulation,  pointing out the underestimation of the translational 

regulation in plants. Additionally, we also reveal the miRNAs regulation mode 

(clearance and rheostat), which offers the resource for further genetic analysis of the 

biological phenotype variation. Finally, we reveal the spatiotemporal interaction of 

miRNA/target modules across maize shoot apex, which form sharp boundaries of 

expression within tissues and determine the fate of cell types. The strong or slight anti-

correlation of spatiotemporal transcriptional accumulation of miRNA and their targets 

was related to the regulation mechanism and mode.  

In conclusion, this study provides a foundation for further investigate mechanism of 

miRNA regulation and offers new insights to miRNA dynamical action in plant 

development.  

4.2.5 Materials and methods: 

Plant materials 

All analyses were performed on 14 day-old seedlings grown under 16 h 24°C light and 

8 h 20°C dark cycles. The dcl1-2 allele (Petsch et al., 2015) was introgressed for 4 

generations into B73 prior to analysis. 

Laser microdissection and RNA-Seq library construction and sequencing 

Cells of interest were collected by laser microdissection as described previously 

(Knauer et al. 2019) from at least six independent apices per biological replicate. 

Adaxial and abaxial tissues were collected from P2 and P3 leaf primordia of 14-day-

old B73 seedling apices. For the dcl1-2 to wild-type comparisons, the center zone and 

P2-P3 leaf primordia were dissected from 14-day-old seedling apices of mutant and 

wild-type siblings. RNA was extracted and linearly amplified as described in Knauer et 

al. (2019), and single-end RNA-Seq libraries constructed using standard Illumina 

protocols (Illumina). Libraries for the adaxial and abaxial sides of leaf primordia were 
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sequenced (100bp) on the Illumina HighSeq2000 platform, whereas the dcl1-2 and 

wild-type sibling libraries were sequenced (68 bp) on the Illumina HiSeq2500 platform. 

Annotation of pri-miRNAs and genes with functions in miRNA biology 

Considering that some miRNA genes were not well predicted and wrongly annotated 

among the Filtered Gene Set (version FGSv5b), genomic coordinates for all pri-

miRNAs were manual curation based on available transcriptome data for B73 and 

Mo17 apices (Li et al., 2013a). Pre-miRNA annotations in miRbase (version 2) were 

blasted back to B73 RefGen_v2, and the location of the pri-miRNA defined based on 

the distribution of RNA-Seq reads at the locus. For MIR genes for which transcriptome 

data was not available, the gene model was annotated to cover the pre-miRNA hairpin 

+/- 100 nucleotides. Curated precursor locations were used to determine transcript 

accumulation across tissues. Maize genes with functions in small RNA biology were 

identified based on information from published work, or through identification of maize 

homologs of known Arabidopsis genes using standard homology searches (Blastp 

2.26++) or the paralog search tool in BioMart (http://www.gramene.org) (Tello-Ruiz et 

al., 2017). Expression values for genes with paralogous functions were summed 

together, and relative expression across the twelve SAM domains determined. 

Gene expression analysis 

RNA-Seq data for the adaxial and abaxial tissue samples was processed and 

analyzed as described in Knauer et al. (2019). Trimmed reads were aligned to the B73 

RefGen_V2 using GSNAP, and uniquely mapped reads allowing ≤2 mismatches every 

36 bp and less than 5 bases for every 75 bp as tails were used for subsequent 

analyses. pri-miRNA expression values were calculated for all twelve B73 shoot apex 

samples based on the annotated precursor models. Target gene expression values 

were calculated similarly, or collected from Knauer et al. (2019). Heatmap analysis 

used the R package gplots heatmap.2 and clustering method was set default 

hierarchical clustering.  

For the dcl1-2 to wild-type comparisons, sequence reads (single-end, 68 bp) were 

trimmed using Trimmomatic version 0.36 (Bolger et al., 2014), and aligned to the B73 

RefGen_v2 reference genome with TopHat version 2.1.1(Kim et al., 2013). Gene 
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(based on version FGSv5b and the corrected precursor annotation) expression values 

were calculated on uniquely mapped reads using HTSeq version 0.9 (Anders et al., 

2015), and DEseq2 (Love et al., 2014) was used to calculate differentially expression 

(absolute log2FC ≥1 and q <0.05) on genes with expression levels ≥1 RPM in at least 

one library.  

Small RNA data analysis 

Total RNA was extracted from shoot apices comprising the SAM and up to four leaf 

primordia using TRIzol reagent (Invitrogen) followed by treatment with DNase I 

(Promega). Small RN-Seq libries were prepared from 1.2 !g total RNA using TruSeq 

Small RNA sample preparation kit (Illumina). Libraries were quantified with the KAPA 

Illumina library Quantification Kit (KAPABIOSYSTEMS) and sequenced on the 

Illumina HiSeq2000 platform. Sequence reads were trimmed using Cutadapt version 

1.13 (Martin, 2011) and trimmed reads, 18-26 nucleotides in length, aligned to the 

maize B73 RefGen_v2 genome (release 5a.57) using Bowtie version 1.1.2 (Langmead 

et al., 2009), allowing no mismatches and a maximum of 20 alignments per read. 

Reads matching known structural RNAs (rRNAs, tRNAs, sn-RNAs and sno-RNAs) 

from Rfam database (http://www.sanger.ac.uk/software/Rfam) and GeneBank 

noncoding RNA database (http://blast.ncbi.nlm.nih.gov/) were removed from further 

analysis. The remaining sequences were annotated using bedtools version 2.25.0 

(Quinlan and Hall, 2010) to known miRNAs in miRbasev2. 	

Small RNA Target identification 

Potential targets were predicted using Target Finder 

(https://github.com/carringtonlab/TargetFinder), allowing a maximum score of 5. 

Predicted targets were validated by PARE data generated previously (Dotto et al., 

2014) from B73 seedling apices. PARE tag abundance was calculated for the large 

(31nt, WL) and small (5nt, Ws) window, and cleavage sites filtered to retain only those 

for which Ws/WL ≥0.75 and Ws ≥ 4. Homologous analysis of predicted targets using 

MapMan annotations of the maize filtered gene set v5b.60 (Usadel et al., 2009), aids 

to annotate Arabidopsis homologous genes and allowed us to identify the potential 

target genes without PARE signature.   
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Correlation analysis  

Total expression across the meristem, internode, P1, P2, P3 and vasculature (non-

overlapping tissues in the atlas) was calculated for all precursors associated with a 

give mature miRNA. Total precursor expression and miRNA abundance were 

normalized at log-scale, and the Pearson-correlation calculated in R. 

RT-PCR and in situ hybridization 

For RT-PCR, 4 ug RQ1 DNAse (Promega) treated a RNA was converted into cDNA 

using the Supterscript III First-Strand synthesis System (Invitrogen) with random 

hexamer primers according to manufacturer’s protocol. In situ hybridizations were 

performed on apices of 14 day-old B73 seedling according to (Javelle and 

Timmermans, 2012) using the following probe concentrations and hybridization:	

 

 

 

 

 

 

 

 

 

probe sequence label hybridization 
temperature 

amount 
pmol/slide 

miR156 GTGCTCACTCTCTTCTGTCA 5'+3'-DIG 50°C 10 
miR160 TGGCATACAGGGAGCCAGGCA 5'+3'-DIG 55°C 10 
miR164 TGCACGTGCCCTGCTTCTCCA 5'-DIG 57°C 0.5 
miR166 GGGAATGAAGCCTGGTCCGA 5'-DIG 50°C 10 
miR167 TAGATCATGCTGGCAGCTTCA 5'-DIG 55°C 10 
miR319 GGGAGCACCCTTCAGTCCAA 5'+3'-DIG 50°C 10 
miR394 GGAGGTGGACAGAATGCCAA 5'+3'-DIG 55°C 5      
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4.2.7 Supplementary figures: 

 

 

 
 
Figure S1. Precision of LCM of Ab and Ad. (A-B) in-situ expression pattern for maker genes 

IG1 and ARF3a, matching their transcripts levels in the Ad and Ab domain of RNA-Seq 

libraries (C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 74 

 
 
Figure S2. Precursor gene expression patterns in shoot apex. Heatmap of 41 expressed 

precursors (RPM ≥1) (corresponding to Figure 2) are shown based on family order. Relative 

expression levels have been normalized and reflected in color scale. Numbers on the heatmap 

depict expression value (RPM). Mer - meristem, Int – internode, Vas – vasculature.  
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Figure S3. 24 enzymes participating in miRNA biology show differential expression 

across twelve maize shoot apex subdomains. Expression level across subdomains of the 

same enzymes is summed together, and the percentage share of expression for each 

subdomain is plotted. DCL1 is lowest expressed in the vasculature and tip and while HESO1 

is highest accumulated in the vasculature (indicated by red circles). Enzymes are separated 

into four functional processes: primary miRNA biogenesis, miRNA processing, nuclear export 

and miRNA activity.  
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Figure S4. Expression level of precursor genes in mutant (dcl1-2) and wildtype. Here 

only include precursor gene are expressed in dcl1-2 (RPM≥1). 
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Figure S5. Five miRNA families and their target genes expression patterns in shoot 

apex. Heatmap of expressed precursors (RPM ≥1) and their miRNA targets are shown in (A) 

miR169, (B) miR166, (C)miR167, (D)miR393, (E) miR396. Relative expression levels have 

been normalized and reflected in color scale. Numbers on the heatmap depict expression 

value (RPM). Bracketed numbers indicate the PARE signature. Mer - meristem, Int – internode, 

Vas – vasculature.  
 

 

Figure S6. Seven miRNA families were found to regulate targets on both a transcript-

cleavage, and translational repression level in the maize apex. Expression of pri-miRNA 

and targets across 12 subdomains (corresponding to Figure 5). (A) Dynamically expressed 

miRNAs spatially restrict target accumulation: miR167, miR156, miR172, miR166, and 

miR394. (B) Non-dynamically expressed miRNAs and targets: miR159. Left axis (red): pri-

Pri vs Mer Vas

L1 vs L2 Ad vs Ab

A

B
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miRNA expression level (sum expression of all expressed precursors in same family); right 

axis (blue): target gene expression level (sum expression of all targets to the same miRNA 

family). Mer - meristem, Vas – vasculature, Pri – Primordia. 

 

 
 

 

 

miR156k 
miR156abcdefghil 

CACGAGCGAGAGAAGACAGU 
CACGAGUGAGAGAAGACAGU 

GRMZM2G067624(97.1) 
GRMZM2G126018(83.12) 
GRMZM2G307588(83.12) 
GRMZM2G160917(83.12) 
GRMZM2G460544(83.12) 
GRMZM2G097275(17.76) 
GRMZM2G414805(16.38) 
GRMZM2G371033(10.60) 
GRMZM5G878561(10.60) 
GRMZM5G806833(7.27) 
GRMZM2G061734(7.27) 
GRMZM2G163813(5.93) 
GRMZM2G065451(3.98) 
GRMZM2G113779(2.00) 
GRMZM2G106798(1.03) 
GRMZM2G101511(0.85) 
AC233751.1_FG002(0.85) 
GRMZM2G148467(0.52) 

AUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
AUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 
GUGCUCUCUCUCUUCUGUCA 

 

miR159af GUCUCGAGGGAAGUUAGGUUU 
GRMZM2G139688(5.68) 
GRMZM2G423833(0.57) 
GRMZM2G093789(0.57) 
GRMZM2G028054(0.00) 

UGGAGCUCCCUUCACUCCAAG 
CAGAGAUCCCUUCGAUCCAAA 
CAGAGAUUCCUUCGAUCCAAA 
UGGAGCCCCCUUCAGUCCAAA 

 

miR60abcdg ACCGUAUGUCCCUCGGUCCGU  
miR160f GCCGUAUGUCCCUCGGUCCGU 

 GRMZM2G081406(117.38) 
GRMZM2G153233(18.98) 
GRMZM2G159399(18.98) 
GRMZM2G390641(12.63) 
GRMZM5G808366(1.78)  

AGCCAUACAGGGAGCCAGGCA 
AGGCAUACAGGGAGCCAGGCA 
AGGCAUACAGGGAGCCAGGCA 
AGGCAUACAGGGAGCCAGGCA 
UAGCAUGCAGGGAGCCAGGCA  

 
 
miR162 ACCUACGUCUCCAAA-UAGCU 
GRMZM2G040762(0.40) UGGAUGCAGAGGUUUUAUCGA 

 

miR164abcdg ACGUGCACGGGACGAAGAGGU 
GRMZM2G114850(0.40) 
GRMZM2G139700(0.43) 
GRMZM2G393433(2.32) 
GRMZM2G063522(0.00) 

AGCAGGUGCCCUGCUUCUCCA 
AGCUCGUGCCCUGCUUCUCCA 
AGCUCGUGCCCUGCUUCUCCA 
AGCAAGUGCCCUGCUUCUCCA 
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miR166bcd CCCCUUACUUCGGACCAGGCU 
GRMZM2G042250(17.03) 
GRMZM2G109987(16.25) 
GRMZM2G469551(2.97) 
GRMZM2G003509(2.80) 
GRMZM2G178102(2.80) 
GRMZM2G066341(1.15) 
AC187157.4_FG005(0.00) 

CUGGGAUGAAGCCUGGUCCGG 
CUGGGAUGAAGCCUGGUCCGG 
CUGGGAUGAAGCCUGGUCCGG 
UUGGGAUGAAGCCUGGUCCGG 
UUGGGAUGAAGCCUGGUCCGG 
GGGAUGUGAAGUCUGGUCCAG 
CCGGGAUGAAGCCUGGUCCGG 

 

miR166m CUCCUUACUUCGGACCAGGCU 
GRMZM2G042250(17.03) 
GRMZM2G109987(16.25) 
GRMZM2G469551(2.97) 
GRMZM2G003509(2.80) 
GRMZM2G178102(2.80) 
AC187157.4_FG005(0.00) 

CUGGGAUGAAGCCUGGUCCGG 
CUGGGAUGAAGCCUGGUCCGG 
CUGGGAUGAAGCCUGGUCCGG 
UUGGGAUGAAGCCUGGUCCGG 
UUGGGAUGAAGCCUGGUCCGG 
CCGGGAUGAAGCCUGGUCCGG 

 

miR166nk UCCCUAACUUCGGACCAGGCU 
GRMZM2G042250(17.03) 
GRMZM2G109987(16.25) 
GRMZM2G469551(2.97) 
GRMZM2G003509(2.80) 
GRMZM2G178102(2.80) 
AC187157.4_FG005(0.00) 
GRMZM2G029692(0.00) 

UGGGAU-GAAGCCUGGUCCGG 
UGGGAU-GAAGCCUGGUCCGG 
UGGGAU-GAAGCCUGGUCCGG 
UGGGAU-GAAGCCUGGUCCGG 
UGGGAU-GAAGCCUGGUCCGG 
CGGGAU-GAAGCCUGGUCCGG 
ACUGAUUGCAGCCUGGUCCGG 

miR166nk UCCCUA-ACUUCGGACCAGGCU 

GRMZM2G066341(1.15) GGGGAUGUGAAGUCUGGUCCAG 
 

miR167abcd AUCUAGUACGACCGUCGAA-GU  
GRMZM2G078274(12.70)    
GRMZM2G035405(12.70) 
GRMZM2G475882(7.93) 
GRMZM2G081158(7.93) 
GRMZM2G073750(0.00) 
GRMZM2G028980(0.00) 

UAGAUCAGGCUGGCAGCUUGUA 
GAGAUCAGGCUGGCAGCUUGUA 
UAGAUCAGGCUGGCAGCUUGUA 
AAGAUCAGGCUGGCAGCUUGUA 
AAGAUCAGGCUGGCAGCUUGUA 
GAGAUCAGGCUGGCAGCUUGUA 

 

miR168ab CAGGGCUAGACGUGGUUCGCU 
GRMZM2G441583(2.75) 
GRMZM2G039455(2.33) 
GRMZM2G361518(0.00) 

UUCCCGAGCUGCACCAAGCCC 
UUCCCGAGCUGCACCAAGCCC 
CUCCCGAGCUGCGCCAAGCAA 
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miR169cr GGCCGUUCAGUAGGAACCGAC 
GRMZM2G091964(158.78) 
GRMZM5G853836(81.78) 
GRMZM5G829103(67.82) 
GRMZM2G165488(64.80) 
GRMZM2G000686(30.97) 
GRMZM2G040349(19.50) 
GRMZM2G037630(3.35) 
GRMZM2G038303(0.87) 
GRMZM5G857944(0.85) 

CAGGCAAUUCAUUCUUGGCUU 
UAGGCAAAUCAUUCUUGGCUG 
UAGGCAAAUCAUUCUUGGCUG 
UAGGCAAAUCAUUCUUGGCUG 
CUGGCAACUCAUCCUUGGCUU 
GUGGCAACUCAUCCUUGGCUC 
GUGGCAAUUCAUCCUUGGCUU 
GUGGCAACUCAUCCUUGGCUU 
CAGGCAAUUCAUCCUUGGCUU 

 

mmiR169fh AUCCGUUCAGUAGGAACCGAU 
GRMZM2G091964(158.78) 
GRMZM5G853836(81.78) 
GRMZM5G829103(67.82) 
GRMZM2G165488(64.80) 
GRMZM2G000686(30.97) 
GRMZM2G037630(3.35) 
GRMZM5G857944(0.85) 

CAGGCAAUUCAUUCUUGGCUU 
UAGGCAAAUCAUUCUUGGCUG 
UAGGCAAAUCAUUCUUGGCUG 
UAGGCAAAUCAUUCUUGGCUG 
CUGGCAACUCAUCCUUGGCUU 
GUGGCAAUUCAUCCUUGGCUU 
CAGGCAAUUCAUCCUUGGCUU 

miR169fh AU-CCGUUCAGUAGGAACCGAU 
GRMZM2G040349(19.50) 
GRMZM2G038303(0.87) 

UGUGGCAACUCAUCCUUGGCUC 
UGUGGCAACUCAUCCUUGGCUU 

 

miR171deij CUAUAACCGUGCCGAGUUAGU 

GRMZM2G037792(32.15) 
GRMZM5G825321(31.25) 
GRMZM2G098800(12.48) 
GRMZM2G110579(12.47) 
GRMZM2G079470(7.52) 
GRMZM2G051785(0.60) 
GRMZM2G060265(0.00) 

GAUAUUGGCGCGGCUCAAUCA 
GAUAUUGGCGCGGCUCAAUCA 
GAUAUUGGCGCGGCUCAAUCA 
GAUAUUGGCGCGGCUCAAUCA 
GAUAUUGGCGCGGCUCAAUUA 
GAUAUUGGCGCGGCUCAAUCA 
GAUACUGGCGCGGCUCAACUA 

 

172c UACGUCGUAGUAGUU-CUAAGA 
GRMZM5G862109(37.63) 
GRMZM2G176175(37.40) 
GRMZM2G076602(10.87) 
GRMZM2G174784(5.45) 
GRMZM2G160730(4.32) 
GRMZM5G879527(3.93) 
GRMZM2G700665(3.40) 

CUGCAGCAUCAUCAG-GAUUCU 
CUGCAGCAUCAUCAG-GAUUCU 
CUGCAGCAUCAUCAC-GAUUCC 
CUGCAGCAUCAUCAC-GAUUCC 
CUGCAGCAUCAUCAG-GAUUCC 
GUGUGGCAUCAUCAAGUAUUCA 
CUGCAGCAUCAUCAG-GAUUCU 

 

miR319bcd CCCUCGUGGGAAGUCAGGUU 
GRMZM2G089361(19.23) 
GRMZM2G115516(19.23) 
GRMZM2G015037(4.85) 
GRMZM2G020805(3.57) 
GRMZM2G028054(3.03) 

AGGGGGACCCUUCAGUCCAA 
AGGGGGACCCUUCAGUCCAA 
AGGGGACCCCUUCAGUCCAG 
AGGGGGGCCCUUCAGUCCAA 
UGGAGCCCCCUUCAGUCCAA 
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miR393c CUAGUUACGCUAGGGAAACCU  
GRMZM2G135978(40.42) 
GRMZM5G848945(2.62) 
GRMZM2G137451(0.00) 

GA-CAAUGCGAUCCCUUUGGA 
GA-CAAUGCGAUCCCUUUGGA 
ACACAAUGCGAUCCCUUUGGA 

 

miR394ab CCUCCACCUGUCUUACGGUU  
GRMZM2G064954(2.55) 
GRMZM2G119650(1.88) 

GGAGGUGGACAGAAUGCCAA 
GGAGGUGGACAGAAUGCCAA 

 

 

miR396abg GUCAAGUUCUUUCG-ACACCUU 
GRMZM2G041223(311.92) 
GRMZM2G129147(311.18) 
GRMZM2G098594(156.90) 
GRMZM2G119359(156.90) 
GRMZM2G045977(0.00) 
GRMZM2G034876(60.82) 
GRMZM2G067743(0.00) 
GRMZM2G178261(18.92) 
GRMZM2G018414(3.76) 
GRMZM2G124566(5.45) 
GRMZM2G105335(6.23) 
GRMZM2G099862(3.70) 
GRMZM2G033612(3.58) 
GRMZM5G853392(1.05) 
GRMZM5G850129(0.00) 
GRMZM2G045977(0.00) 
GRMZM2G067743(0.00) 

CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
UCGUUCAAGAAAGCAUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCAUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
UCGUUCAAGAAAGCAUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 

 

miR396cd GUCAAGUUCUUUCGGACACCU 
GRMZM2G041223(311.92) 
GRMZM2G129147(311.18) 
GRMZM2G098594(156.90) 
GRMZM2G119359(156.90) 
GRMZM2G045977(0.00) 
GRMZM2G034876(60.82) 
GRMZM2G067743(0.00) 
GRMZM2G178261(18.92) 
GRMZM2G018414(3.76) 
GRMZM2G124566(5.45) 
GRMZM2G105335(6.23) 
GRMZM2G099862(3.70) 
GRMZM2G033612(3.85) 
GRMZM5G853392(1.05) 
GRMZM5G850129(0.00) 
GRMZM2G045977(0.00) 
GRMZM2G067743(0.00) 

CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
UCGUUCAAGAAAGCAUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCAUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
UCGUUCAAGAAAGCAUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
CCGUUCAAGAAAGCCUGUGGA 
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Figure S7. Complementary binding sites between sixteen select miRNA families and 

their targets. These sixteen families corresponding to figure 5 and figure S6. The blue bases 

identify a G:U bulge. Red indicated a mismatch. Bracketed numbers (red text) indicate the 

PARE signature. 

 

 

Supplementary datasets:  

Dataset S1.  RNA-Seq data revealing pri-miRNA and mature miRNA expression in the maize 

shoot apex. 

Dataset S2. RNA-Seq data revealing the expression of enzymes involved in miRNA biology 

in the maize shoot apex. 

Dataset S3. RNA-Seq data revealing gene expression in CZ of dcl1-2 and wildtype 

Dataset S4. RNA-Seq data revealing miRNA-target gene expression in the maize shoot apex. 

Dataset S5. The regulatory mechanism of miRNAs. 
 

 

 
 

 

 

 

 

 

 

miR396ef UUCAAGUUCUUUCG-ACACCUU 
GRMZM2G018414(3.76) 
GRMZM2G033612(3.58) 
GRMZM2G034876(60.82) 
GRMZM2G041223(311.92) 
GRMZM2G099862(3.70) 
GRMZM2G105335(6.23) 
GRMZM2G124566(5.45) 
GRMZM2G129147(311.18) 
GRMZM2G178261(18.92) 
GRMZM5G853392(1.05) 
GRMZM2G098594(156.90) 
GRMZM2G119359(156.90) 
GRMZM5G850129(0.00) 
GRMZM2G045977(0.00) 
GRMZM2G067743(0.00) 
GRMZM5G850129(0.00) 
GRMZM2G067743(0.00) 

CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCAUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
UCGUUCAAGAAAGCAUGUGGAA 
UCGUUCAAGAAAGCAUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 
CCGUUCAAGAAAGCCUGUGGAA 

 

miR398ab GCCCCCGCUGGACUCUUGUGU 
GRMZM2G058522(16.77) 
GRMZM2G169890(16.77) 
GRMZM2G106928(0.00) 

CGGGGGUCGCCUGAGAUCACA 
CGGGGGUCGCCUGAGAUCACA 
UGCGGGUGACCUGGGAA-ACA 
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Supplementary Tables: 
 

Table S1. A model used to infer the regulation mechanism and regulation 

mode of miRNAs by integrating degradome-Seq data and RNA-Seq data. 

RP RMT TE Mechanism Mode 

High (≥0.5) 

High (≥1) 
High (≥10) Cleavage/translational ? 

Low (<10) Cleavage clearance 

Low (<1) 
High (≥10) cleavage rheostat 

N.A. N.A. N.A. 

Low (<0.5) 

High (≥1) 
High (≥10) Translational/cleavage ? 

Low (<10) Promoter/cleavage ? 

Low (<1) 
High (≥10) Cleavage/translational rheostat 

N.A. N.A. N.A. 
 

RP: Relative PARE (PARE/targets); RMT: Ratio of miRNA to target; TE: Target expression 

in miRNA accumulation domain; Mechanism: regulation mechanism (transcript cleavage or 

translational repression); Mode: regulation mode (clearance or rheostat). 
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Table S2. Regulatory mechanisms of select miRNAs in maize shoot apex 
 

Family Maize Arabidopsis Ref 

miR156 both both 

Schwab et al; 2005; German et 
al., 2008;  

Gandikota et al., 2007; 
Brodersen et al., 2008; He et al., 

2018 

miR159 Both both 
Achard et al., 2004; Schwab et 

al; 2005; German et al., 2008; Li 
et al., 2014; Li et al., 2013; 

miR160 cleavage N.A. German et al., 2008; 
miR162 cleavage N.A. German et al., 2008; Li et al., 

2013; 
miR164 both both Schwab et al; 2005; German et 

al., 2008; Li et al., 2013; 
miR166 both N.A. German et al., 2008;  
miR167 both N.A. German et al., 2008;  
miR168 cleavage N.A. German et al., 2008; 
miR169 cleavage N.A. German et al., 2008; 

miR171 both both 
Llave et al., 2002; Kasschau et 
al., 2003; German et al., 2008; 

Brodersen et al., 2008; 

miR172 - both 
Kasschau et al., 2003; Schwab 

et al; 2005; German et al., 2008; 
Aukerman et al., 2003; Chen, 

2004; Li et al., 2013; 
miR319 cleavage cleavage Schwab et al; 2005; German et 

al., 2008; 
miR390 cleavage cleavage Marin et al., 2010; petsch et al., 

2015 
miR393 cleavage N.A. German et al., 2008; 
miR394 both N.A. German et al., 2008; 
miR396 cleavage N.A. German et al., 2008; 

 

 “-”: no evidence. “N.A.”: have PARE signature signal but not sure the regulation 

mechanism. 
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Chapter 5: General conclusion and discussion: 

Plant meristems are highly organized stem cell niches characterized by the presence 

of distinct cell types at various developmental stages. Meristems are therefore offer 

ideal models for the study molecular regulatory mechanisms during development via 

generation of high-resolution, spatiotemporal expression atlases. In the first part of 

this dissertation, I describe the first gene expression atlas of the Arabidopsis root 

generated by scRNA-Seq that reveals new developmental regulators and precise 

differentiation trajectories. In the second part: I describe using high resolution 

spatiotemporal expression data of the maize shoot apex to reveal the regulation 

mechanisms of miRNA spatiotemporal accumulation and action during development.  

I. A cellular resolution gene expression atlas of the Arabidopsis root 

generated by high-throughput single cell RNA sequencing technology 

reveals new developmental regulators and precise differentiation 

trajectories.  

Previous scRNA-Seq studies were limited to the analysis of just hundreds of cells 

(Efroni and Birnbaum, 2016; Efroni et al., 2016). However, development of 

combinatorial barcoding and increased automation allowed scRNA-Seq to profile the 

thousands of cells in one experiment (Klein et al., 2015; Macosko et al., 2015; Zheng 

et al., 2017). In this study, we first used high-throughput scRNA-Seq to build a gene 

expression atlas of the Arabidopsis root at cellular resolution. Here, scRNA-Seq 

proved to be highly sensitive and reproducible. Protoplasting-time, cell buoyancy, 

robustness and size, and tissue organization are all factors that can limit scRNA-Seq 

application. It is still worth to know how broad the application of this technology can 

be, by applying it to many plants and tissues.  

Genes induced by protoplasting were removed from all analysis to reduce technical 

noise. Among these induced genes are some key makers, including QC marker gene 

WOX5 (Forzani et al., 2014) and phloem companion cell marker, SUC2 (Birmbaum et 

al., 2003).Curiously, WOX5 was also detected in some cells of an endodermal cluster, 

suggesting cell type would be wrongly-annotated if we relied only on WOX5 to assign. 

In this analysis, supervised (known maker genes expression in cluster) and un-

supervised (novel identified cluster maker genes expression in root) methods was 
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used to assign cell types. The thousands of individual cell transcriptomes represent all 

major root cell types. Notably, the protoplast induced genes revealed a strong 

association with lateral root cap (LRC) cells, and therefore, the LCR cluster lost its 

identity after removing the protoplast induced genes, and therefore, LRC cluster lose 

its identity after removing the protoplast induced genes. However, in other recently 

published plant scRNA-Seq data, they did not remove such genes and LRC were 

identified based on a supervised method (Jean-Baptiste et al., 2019; Ryu et al., 2019; 

Shulse et al., 2019; Zhang et al., 2019). It could be that genes induced by protoplasting 

would probably not affect cell clustering but cell type calling. However, it is still worth 

to know how much impact of protoplast-induced genes on cell clustering and cell type 

calling in future. Also, these genes can complicate further analysis such as the 

construction of pseudotime trajectories and the production of GRNs. In this regard, we 

have found highly-induced genes to dominate these networks, introducing significant, 

potential, misleading bias. Besides the protoplast induced genes, sequencing depth 

and cell number are different in each of these recent studies. Next, it is also interesting 

to estimate how much effect on clustering by different sequencing depth, cell number 

treatment, which would offer useful suggestion for scRNA-Seq study. 

Meristem cells were enriched in our single cell root atlas data. This is likely due to the 

fact that meristematic cells are smaller and as such the technology may preferentially 

capture them. Sub-clustering analysis was able to distinguish cell types within the 

original meristem cluster. For example, QC and columella cells was separated from 

their shared original cluster by the sub-clustering analysis (Chapter 4.1 Figure 2E). 

Previous study (using FACS to cell sort followed by RNA-Seq) failed to separate 

meristematic cells to such a degree (Birnbaum et al., 2003; Brady et al., 2007). Here, 

they captured either single cell types without distinguishing developmental stages or 

single developmental stages without distinguishing tissue types. They would finally 

obtained the average expression of makers genes from multiple cell types/states 

(Brady et al., 2007). Here, the identified cell-type specific expression genes would offer 

an abundant resource for further genetic study.  

Pseudotime analysis offered a high-resolution developmental trajectory map of root 

cell development, and revealed regulators driving the transition from different 

developmental states along the root, on a  single cell type level, e.g. trichoblast and 
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cortex. GRN analysis of the cascade of TFs the trichoblast trajectory revealed the 

feedback regulation towards meristem and suggested the major nodes coordinating 

root cell transition.  

Here, scRNA-Seq captured all-types of cells in the RAM, which offered a good 

opportunity to study the molecular regulatory mechanisms behind of meristem 

development. Going forward, it should be possible to use this single cell data to 

address the gene networks defining and maintaining the quiescent center and stem 

cells niche. Further, it might be applied to answering how do stem cell initials define 

the identity of cell types, and which signals and gene networks regulate the 

developmental transition of individual cell types.  

II. Using maize shoot apex high resolution spatiotemporal expression data 

to reveal the regulation mechanism of miRNA spatiotemporal 

accumulation and action during development.  

miRNAs are critical for plant normal development. The available of high-resolution 

maize shoot apex transcriptome atlas data (Knauer et al., 2019) offered an opportunity 

to investigate the spatial temporal action of miRNAs during development. 

Comprehensive investigation miRNAs across the maize shoot apex was enhanced by 

analysis of their stability, mobility, efficacy, and activity. The complex regulation of 

miRNA accumulation confers miRNAs the robustness to drive plant development. 

Distinct miRNAs are identified shaping the sharp tissue boundary and determining the 

cell types fates during maize shoot apex development. Besides mature miRNAs, many 

miRNA* were detected in the shoot apex. Next, it would be interesting to investigate 

how miRNA* function in the maize shoot apex, or the reason why remain there. In 

addition, different isoforms of miRNAs are detected during data analysis. For example, 

zma-miR162 produces fourteen 20-nt (TCGATAAACCTCTGCATCCA) and 1113 21-

nt (TCGATAAACCTCTGCATCCAG) isoforms. Multiple distinct miRNA-like RNAs 

arising from a single miRNA precursor were identified in Arabidopsis (Zhang et al., 

2010). Novel miRNAs were discovered in maize ear and inflorescence (Liu et al. 2014). 

Therefore, it is also worth to identifying miRNA isoforms, novel miRNAs, and miRNA-

like RNAs to study the mechanism of those isoforms’ biogenesis, distribution and 

function in maize shoot apical meristem development. 
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Future prospect 

The technologies used to study the transcriptome are rapidly developing. Long-read 

(third-generation) sequencing enables us to directly read nucleotide sequence at 

single molecule level. For example, Pacific Bioscience’s (PacBio) single molecule real-

time sequencing (SAMRT) and Oxford Nanopore’s platform can be used to generate 

full-length cDNA sequences within targeted genes or across an entire transcriptome 

(Clarke et al., 2009; Eid et al., 2009). Long-read sequencing offers an opportunity to 

characterize transcript isoforms (Iso-Seq analysis), which increases the accuracy of 

transcript quantification with isoform-level resolution (Sharon et al., 2013). Recently, 

combing the scRNA-Seq with Iso-Seq analysis could identify more accurate transcript 

accumulation and reveal the cellular alternative splicing (Gupta et al., 2018). If we can 

combine the Iso-Seq and high throughput scRNA-Seq, it will aid to build a high 

resolution and highly-accurate transcriptomic atlas of plant cell types, and precisely 

assess the variety and range of cell types, cell states, and their transitions in the target 

tissues. 

Our ability to study the miRNA spatiotemporal accumulation regulation at a cellular 

level could be aided by integrating the high throughput scRNA-Seq and Iso-Seq. 

Currently, single cell miRNA profiling only is limits to only a few cells (Faridani et al., 

2016; Henriksen et al., 2018; Wang et al., 2019). Inevitably, the barcode-combining 

technologies will also be used in single cell miRNA profiling, and the single cell protein 

profiling will likely follow. These will be great step forward in the analysis of miRNA 

regulation mechanisms and regulation modes on a cellular level. 

In future, single cell profiling will not only to create a high-resolution, temporal, and 

spatial transcriptome maps of the plant tissues, but will also allow us to decipher high 

resolution transcriptional and post-transcriptional gene regulation networks on a cellar 

level. It will benefit us greatly to understand how plant cells are organized at molecular 

level and will allow as to answer what cell-specific regulatory mechanisms are applied 

to change their states during development, and in response to biotic and abiotic stress.  

 
 

 



 90 

References:  

Birnbaum, K., Shasha, D.E., Wang, J., Jung, J.W., Lambert, G.M., Galbraith, D.W., 
and Benfey, P.N. (2003). A Gene Expression Map of the Arabidopsis Root. Science 

302, 1956-1960. 

Brady, S.M., Orlando, D.A., Lee, J., Wang, J., Koch, J., Dinneny, J.R., Mace, D., Ohler, 
U., and Benfey, P.N. (2007). A High-Resolution Root Spatiotemporal Map Reveals 
Dominant Expression Patterns. Science 318, 801-806. 

Clarke, J., Wu, H.C., Jayasinghe, L., Patel, A., Reid, S., and Bayley, H. (2009). 
Continuous base identification for single-molecule nanopore DNA sequencing. Nat 
Nanotechnol 4, 265-270. 

Efroni, I., and Birnbaum, K.D. (2016). The potential of single-cell profiling in plants. 
Genome Biol 17, 65. 

Efroni, I., Mello, A., Nawy, T., Ip, P.L., Rahni, R., DelRose, N., Powers, A., Satija, R., 
and Birnbaum, K.D. (2016). Root Regeneration Triggers an Embryo-like Sequence 
Guided by Hormonal Interactions. Cell 165, 1721-1733. 

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, 
P., Bettman, B., et al. (2009). Real-time DNA sequencing from single polymerase 
molecules. Science 323, 133-138. 

Faridani, O.R., Abdullayev, I., Hagemann-Jensen, M., Schell, J.P., Lanner, F., and 
Sandberg, R. (2016). Single-cell sequencing of the small-RNA transcriptome. Nat 
Biotechnol 34, 1264-1266. 

Forzani, C., Aichinger, E., Sornay, E., Willemsen, V., Laux, T., Dewitte, W., and Murray, 
J.A. (2014). WOX5 suppresses CYCLIN D activity to establish quiescence at the 
center of the root stem cell niche. Curr Biol 24, 1939-1944. 

Gupta, I., Collier, P.G., Haase, B., Mahfouz, A., Joglekar, A., Floyd, T., Koopmans, F., 
Barres, B., Smit, A.B., Sloan, S.A., et al. (2018). Single-cell isoform RNA sequencing 
characterizes isoforms in thousands of cerebellar cells. Nat Biotechnol. 

Henriksen, T.I., Heywood, S.E., Hansen, N.S., Pedersen, B.K., Scheele, C.C., and 
Nielsen, S. (2018). Single Cell Analysis Identifies the miRNA Expression Profile of a 
Subpopulation of Muscle Precursor Cells Unique to Humans With Type 2 Diabetes. 
Front Physiol 9, 883. 

Jean-Baptiste, K., McFaline-Figueroa, J.L., Alexandre, C.M., Dorrity, M.W., Saunders, 
L., Bubb, K.L., Trapnell, C., Fields, S., Queitsch, C., and Cuperus, J.T. (2019). 
Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana. Plant Cell 
31, 993-1011. 



 91 

Klein, A.M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., 
Weitz, D.A., and Kirschner, M.W. (2015). Droplet barcoding for single-cell 
transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201. 

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., 
Bialas, A.R., Kamitaki, N., Martersteck, E.M., et al. (2015). Highly Parallel Genome-
wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 161, 1202-
1214. 

Ryu, K.H., Huang, L., Kang, H.M., and Schiefelbein, J. (2019). Single-Cell RNA 
Sequencing Resolves Molecular Relationships Among Individual Plant Cells. Plant 
Physiol 179, 1444-1456. 

Sharon, D., Tilgner, H., Grubert, F., and Snyder, M. (2013). A single-molecule long-
read survey of the human transcriptome. Nat Biotechnol 31, 1009-1014. 

Shulse, C.N., Cole, B.J., Ciobanu, D., Lin, J., Yoshinaga, Y., Gouran, M., Turco, G.M., 
Zhu, Y., O'Malley, R.C., Brady, S.M., et al. (2019). High-Throughput Single-Cell 
Transcriptome Profiling of Plant Cell Types. Cell Rep 27, 2241-2247 e2244. 

Wang, N., Zheng, J., Chen, Z., Liu, Y., Dura, B., Kwak, M., Xavier-Ferrucio, J., Lu, 
Y.C., Zhang, M., Roden, C., et al. (2019). Single-cell microRNA-mRNA co-sequencing 
reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat 
Commun 10, 95. 

Zhang, T.Q., Xu, Z.G., Shang, G.D., and Wang, J.W. (2019). A Single-Cell RNA 
Sequencing Profiles the Developmental Landscape of Arabidopsis Root. Mol Plant 12, 
648-660. 

Zhang, W., Gao, S., Zhou, X., Xia, J., Chellappan, P., Zhou, X., Zhang, X., and Jin, H. 
(2010). Multiple distinct small RNAs originate from the same microRNA precursors. 
Genome Biol 11, 81-99. 

Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R., Ziraldo, 
S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al. (2017). Massively parallel digital 
transcriptional profiling of single cells. Nat Commun 8, 14049. 

 

 

 

 

 

 

 

 



 92 

Appendices 

Appendix I. Spatiotemporal developmental trajectories in the Arabidopsis root 
revealed using high-throughput single cell RNA sequencing  

Tom Denyer*1, Xiaoli Ma*1, Simon Klesen1, Emanuele Scacchi1, Kay Nieselt2, and Marja C. 

P. Timmermans#1 

This study was published in Developmental Cell. T.D., X.M., and M.C.P.T. designed the 

project and experiments. T.D. generated the scRNA-Seq and bulk RNA-seq libraries and, 

together with S.K., generated and analyzed reporter lines. X.M. performed bioinformatics 

analyses. X.M. and E.S. carried out the GRN analysis. K.N. provided statistical and 

bioinformatic support. T.D. and M.C.P.T. wrote the manuscript.  

Appendix II. A high-resolution gene expression atlas links dedicated meristem 
genes to key architectural traits 

Steffen Knauer1,2,10, Marie Javelle2,8,10 , Lin Li3, Xianran Li4, Xiaoli Ma1, Kokulapalan 
Wimalanathan5,9, Sunita Kumari2, Robyn Johnston6, Samuel Leiboff6, Robert Meeley7, 
Patrick S. Schnable4, Doreen Ware2, Carolyn Lawrence-Dill4,5, Jianming Yu4, Gary J. 
Muehlbauer3, Michael J. Scanlon6 and Marja C.P. Timmermans1,2*  

This study has been submitted to Genome Research (under revision). It reports on a high-

resolution gene expression atlas of the maize shoot apex and links spatiotemporal resolved 

genes to key architectural traits. I contributed to data analysis and offered input for writing.  

Appendix III. Nonrandom domain organization of the Arabidopsis genome at the 
nuclear periphery.  

Xiuli Bi,1,5 Ying-Juan Cheng,2,3,5 Bo Hu,1 Xiaoli Ma,1 Rui Wu,4 Jia-Wei Wang,2 and Chang 
Liu1  

This study was published in Genome Research. It demonstrates that chromatin within the 

nuclear space has a defined spatial organization with silenced protein-coding genes and 

transposable elements preferentially located at the nuclear periphery. It further provides 

evidence for a spatial separation of DNA methylation pathways, such that transposons 

silenced via CHH methylation are located at the periphery, whereas interior positioned 

transposons are show signatures of distinct methylation pathways. I contributed to the latter 

methylation data analysis.  



 93 

Appendix I. Spatiotemporal developmental trajectories in the Arabidopsis root 

revealed using high-throughput single cell RNA sequencing 

 

Tom Denyer*1, Xiaoli Ma*1, Simon Klesen1, Emanuele Scacchi1, Kay Nieselt2, and 

Marja C. P. Timmermans#1 

1 Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 

32, 72076 Tübingen, Germany  

2 Center for Bioinformatics, University of Tübingen, Tübingen, Germany 

 

*These authors contributed equally 

# Corresponding author: marja.timmermans@zmbp.uni-tuebingen.de 

Developmental Cell: 48, 840–852  

  

 

   

 

  



 94 

Abstract 

High-throughput single cell RNA-sequencing (scRNA-Seq) is becoming a cornerstone 

of developmental research, providing unprecedented power in understanding dynamic 

processes. Here, we present a high-resolution scRNA-Seq expression atlas of the 

Arabidopsis root, composed of thousands of independently profiled cells. This atlas 

provides detailed spatiotemporal information, identifying defining expression features 

for all major cell types, including the scarce cells of the quiescent center. These reveal 

new developmental regulators and downstream genes that translate cell fate into 

distinctive cell shapes and functions. Developmental trajectories derived from 

pseudotime analysis depict a finely resolved cascade of cell progressions from the 

niche through differentiation that are supported by mirroring expression waves of 

highly interconnected transcription factors. This study demonstrates the power of 

applying scRNA-Seq to plants, and provides a unique spatiotemporal perspective of 

root cell differentiation.  

Introduction 

In recent years, high-throughput single cell transcriptomics has developed to a point 

of becoming a fundamental, widely-used method in mammalian research (Potter et al., 

2018). Thousands of cells can be profiled simultaneously and analyzed accurately, 

revealing unique insights into developmental progressions, transcriptional pathways, 

and the molecular heterogeneity of tissues. The increasingly high-throughput nature 

of single cell RNA-sequencing (scRNA-Seq) has been facilitated by the development 

of droplet technology (Macosko et al., 2015; Klein et al., 2015) and increased 

automation (Zheng et al., 2017). In brief, a cell is encapsulated within an oil droplet, 

lysed, and its transcripts reverse transcribed on barcoded beads. Following library 

production and sequencing, transcripts from individual cells can be identified from the 

bead-derived barcode and individual transcripts accounted for using Unique Molecular 

Identifiers (UMIs) (Prakadan et al., 2017). However, while commonly used in animal 

systems, additional technical demands such as the necessity to break down cell walls 

(with subsequent transcriptional effects), high osmotic pressure sensitivities, and high 

cell size variability, present potential challenges when applying this technology to 

plants. 
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The Arabidopsis root provides an ideal tissue for analyzing the promise of scRNA-Seq. 

The transcriptomes of key cell types have been well profiled, and the root shows a 

strict spatiotemporal organization. Radially, the root is organized in concentric rings of 

endodermis, cortex, and epidermis that surround a central stele, comprising the 

pericycle, phloem and xylem (Figure S1A). These cell types originate from a 

specialized stem cell niche in which initials, surrounding the quiescent center (QC), 

divide in a predictable manner, giving rise to long cell files that capture their 

developmental trajectory along the length of the root (Figure S1B). Several gene 

expression atlases of the Arabidopsis root have been produced (Birnbaum et al., 2003; 

Brady et al., 2007a; Li et al., 2016). These, however, have focused primarily on 

describing either radial or temporal expression profiles, and typically relied on reporter 

lines to assess select cell types. ScRNA-Seq on the other hand, allows the 

simultaneous, unbiased sampling of every type of cell at every developmental stage, 

in one experiment. 

Here, we present a high-resolution scRNA-Seq expression atlas of the Arabidopsis 

root that captures its precise spatiotemporal information, revealing new regulators, 

and defining features for all major cell types. We show how QC cells and meristematic 

cells are distinguished, and resolve intricate developmental trajectories that cells 

undergo during their transition from stem cell through differentiation. The precise 

waves of gene expression characterizing this process are mirrored by similar 

expression changes of highly interconnected transcription factors (TFs). Our atlas 

offers a unique spatiotemporal perspective of root cell-type differentiation at a 

resolution not previously achievable.   

Results 

Single cell RNA sequencing is highly sensitive and highly reproducible 

4,727 Arabidopsis root cells from two biological replicates were isolated and profiled 

using droplet-based scRNA-Seq.  At ~87k reads per cell, the median number of genes 

and transcripts detected per cell was 4,276 and 14,758, respectively (Figure S1C; 

Table S1). In total, transcripts for 16,975 genes were detected (RPM ≥1), which, after 

correction for read depth, represents ~90% of genes detected by bulk RNA-seq of 

protoplasted root tissue. Further, the global gene expression profiles of pooled scRNA-
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Seq and bulk RNA-seq are highly correlated (r = 0.9; Figure S1D), indicating that plant 

scRNA-Seq is highly sensitive. This methodology is also highly reproducible, as 

demonstrated by the facts that ~96% of genes expressed (RPM ≥1) in one scRNA-

Seq replicate are detectable in the second, and that expression across the two 

replicates is highly correlated (r=0.99; Figure S1E). 

Clusters comprise the major cell types in the root  

To identify distinct cell populations based on gene expression profiles, an unbiased, 

graph-based clustering was performed on the 4,727 single cell transcriptomes using 

the Seurat software package (Sajita et al., 2015; Butler et al., 2018) (Figure 1A). 

Genes induced by protoplasting (≥ 2-fold, q <0.05) were identified by standard RNA-

seq and dismissed prior to analysis (Figure S1F; Table S1). 15 distinct clusters were 

identified, each containing between 81 and 596 cells. These clusters harbored similar 

numbers of cells from each replicate and their gene expression profiles were highly 

correlated across the replicates (r between 0.95 and 1; Table S2), highlighting again 

the impressive reproducibility of this technique.  

In order to attribute cell identities to these clusters, expression of cell-type specific 

marker genes, either well established, or identified from a curated collection of root 

transcriptomic datasets (Table S2; Efroni et al., 2015), was compared across clusters. 

This allowed cell identities to be confidently assigned to eight of the 15 clusters in the 

cluster-cloud (Figure 1B; Table S2). Expression of key root development genes 

amongst these markers, such as PLT1, SCR, SHR, APL, COBL9, and GL2, shows 

high specificity to particular clusters (Figure S2). Cluster identities were confirmed with 

a complementary approach, whereby transcription profiles of differentially expressed 

(DE) genes governing the clusters were harvested from microarray datasets (Brady et 

al., 2007a), and analyzed for tissue specificity (Figure S1G). Together, these 

approaches revealed that, with the exception of lateral root cap cells (for which limited 

marker data is available), all known major tissue types in the root were captured and 

are represented by identifiable clusters. 
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Figure 1. Sequenced single cells cluster by identity. (A) t-SNE plot of 4,727 Arabidopsis 

root cells shows these group into 15 clusters with additional sub-clusters. (B) Expression of 

known cell-type marker genes across cells reveals the identity of clusters. Dot diameter: 
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proportion of cluster cells expressing a given gene; Color: mean expression across cells in 

that cluster. NC: niche and columella; QXC: QC, xylem and columella; VC: vasculature and 

columella. See Table S2 for details of all marker genes assessed. 

Clusters 9 and 13 comprise cortex and endodermal cells, respectively (Figure 1B; 

Figure S1G; Table S2). The identity of the endodermal cluster was further validated 

by the localized accumulation of GFP transcripts in one of the replicates generated 

from the pMIR166A:erGFP reporter line (see Methods; Figure 2A; Figure S3A). 

Additionally, when cells were re-clustered incorporating scRNA-Seq data of shortroot 

mutants (shr-3), which lack a defined endodermis (Helariutta et al., 2000; Figure S3A), 

otherwise well-dispersed shr-3 cells were absent from a cluster comprising 

endodermal cells of both wild-type replicates (Figure 2B; Figure S3). This cluster 

analysis also shows that shr cells, while present in all other clusters, localise on the 

outskirts of some (Figure 2B). This points to subtler effects of SHR on cell types other 

than the endodermis; although some of this phenomenon may also be attributable to 

the fact that shr-3 is in the Ler. background. Irrespective, this observation nicely 

highlights the potential of applying scRNA-Seq to identify hidden phenotypic changes, 

whether stemming from natural variation or mutations. 

Clusters 10 and 3 comprise trichoblast and atrichoblast cells, respectively (Figure 1B; 

Figure S1G; Table S2). Cluster 5 also contains trichoblast cells (Figure S1G). Although 

cells in this cluster show low expression of a number of atrichoblast marker genes, 

crucially, the trichoblast marker COBL9 is expressed in this cluster whereas the 

atrichoblast marker, GL2, is not (Figure 1B; Figure S2). The co-expression of 

atrichoblast marker genes hints at a degree of commonality between this subset of 

trichoblasts and their epidermal counterparts, perhaps reflecting a distinction in 

developmental stage to the trichoblast cells contained in clusters 10.  

Cluster 4 comprises stele cells while a neighboring cluster (12) comprises maturing 

xylem cells (Figure 1B; Figure S1G; Table S2). Consistent with the tissue complexity 

of the stele, subclustering reveals cell heterogeneity within cluster 4. Particularly, 

phloem and pericycle cells are separated into two discrete subclusters (Figure S4), as 

highlighted by the highly subcluster-specific expression of genes such as APL (C4.2), 

LBD29, and TIP2-3 (C4.1) (Figure 2D; Bonke et al., 2003; Porco et al., 2016; Gattolin 

et al., 2009).  
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Finally, cluster 11 comprises both columella and QC cells (Figure 1B; Figure S1G; 

Table S2), which can be separated into two subclusters. Subcluster 11.2 contains 

columella cells that express marker genes such as COBL2, NCED2, and ATL63 

(Figure 2E; Brady et al., 2007b; Efroni et al., 2015). In contrast, transcripts for the QC-

expressed genes AGL42, BBM, and TEL1 are largely limited to cells in subcluster 11.1 

(Figure 2E; Nawy et al., 2005; Efroni et al., 2015). Given the small number of QC cells 

per root, this cluster may well contain other, transcriptionally similar cells, perhaps the 

adjacent initials in the niche. However, importantly, the fact that QC cells are captured 

illustrates well the possibilities of this methodology for studying rare cell types or to 

elucidate transcriptional subtleties affecting small numbers of cells within a tissue. 

Meristematic cells cluster independently of tissue identity 

The identity of cells in the remaining clusters is less obvious. Overall gene expression 

in cells within clusters 0, 1 and 14 is comparatively low (Figure S5A), likely masking 

their identity at this level of sequencing resolution. However, expression values 

extracted from a longitudinal microarray dataset (Brady et al., 2007a) for the top DE 

genes defining these clusters suggest that they comprise mature cells of mixed identity 

(Figure S5B). In contrast, cells in the final four clusters (2, 6, 7 and 8) show markedly 

meristematic-based expression profiles (Figure S5B). Notable histone and 

cytokinesis-linked genes, such as KNOLLE, ENODL14, and ENODL15, are amongst 

the most prominently differentially expressed genes for these clusters (Figure S2; 

Table S2; Lauber et al., 1997; Adrian et al., 2015). Subclustering revealed some cell 

type identities, albeit that they are generally less distinct than those of the clusters 

described above. For example, subcluster 2.4 shows a distinct cortex identity (Figure 

S4). Curiously, this subcluster is positioned adjacent to the main cortex cell cluster. A 

comparable pattern is seen in clusters 7 and 8 with trichoblast cell identity apparent in 

those subclusters (7.3 and 8.3) closest to the adjacent defined trichoblast clusters 

(Figure S4).  
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Figure 2. Cell identity and developmental stage are reflected in the (sub)clustering. (A) 

t-SNE visualisation of the cluster cloud (both replicates) shows GFP transcripts localise 

specifically to pMIR166:erGFP cells in the endodermal cluster. (B) Wild-type and shr-3 cells 

were combined and clustered.  (left) The expression profiles for the top 10 DE genes from 
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cluster 15, taken from a microarray root atlas (Brady et al., 2007a), reveal an endodermal 

identity. Red line, mean expression profile; grey lines, individual expression profiles. (right) t-

SNE visualization of the wild-type and shr-3 cell cluster cloud shows endodermal cluster 15 

lacks shr-3 cells. (C) Pseudotime analysis of all wild-type cells reveals cells in the central 

clusters are earlier in the pseudotime trajectory, consistent with their meristematic identity. (D) 

t-SNE visualization of cluster 4 subclusters. Expression profiles of selected genes reveals 

pericycle and phloem identities for C4.1 and C4.2, respectively. (E) Expression of known cell-

type marker genes across cells of cluster 11 reveals the identity of subclusters. Dot diameter: 

proportion of cluster cells expressing a given gene; Colour: mean expression across cells in 

that cluster. t-SNE visualization of expression profiles of selected QC marker genes. 

It is interesting to note that when comprehending all the clusters together, the 

meristematic clusters are closely localized in the center of the cluster-cloud with the 

subcluster containing QC cells (11.1) at the heart of this. Meanwhile, those clusters 

with distinct, mature cell identities span out from the meristematic clusters (Figure 1A; 

Movie S1), suggesting an overall cluster arrangement that reflects developmental time. 

Subclustering of the meristematic clusters refines this idea, showing a degree of 

closeness of mature and developing cells of the same eventual fate. This notion is 

further supported by pseudotime analysis across all cells which reveals that genes 

differentially expressed in cells of the central clusters describe the beginning of cell 

fate progressions (Figure 2C).  

Likewise, the cluster-cloud reveals an organization that captures the “lineage” 

relationships between cell and tissue types. For instance, the trichoblast and 

atrichoblast clusters, as well as the xylem and vasculature, and the cortex and 

endodermis clusters, are positioned next to each other within the cluster cloud. The 

position of the columella in a cluster with QC cells indicates a higher degree of 

transcriptional accord between these cell types than between these cell types 

individually, and others. This is reflected in the fact that key developmental regulators, 

such as PLT2, PLT3, and PIN4 are coexpressed in the columella and QC (Galinha et 

al., 2007; Feraru and Friml, 2008). This way of contemplating clusters, along with 

pseudotime visualization, thus offers a valuable director for early comprehension of 

developmental trajectories, particularly in the absence of a priori knowledge, such as 

a reference atlas. 
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Novel marker genes define cluster identity in an unbiased manner 

Given that detailed reference datasets are available only for select tissue and organ 

types in very few plant species, we developed an unbiased approach to assign cell 

type identities to scRNA-Seq generated cell clusters. Genes differentially expressed 

in a given cluster compared to all other clusters (q <0.01; Average Log FC ≥0.25) were 

identified using ‘biomod’ on Seurat (McDavid et al., 2013). Differentially expressed 

genes were further narrowed down by applying the criteria that cluster-specific marker 

genes must be expressed in ≥10% of cells within the cluster (PCT1), and ≤10% of 

cells across all other clusters (PCT2). Applying these criteria, we uncovered expected 

marker genes alongside hundreds of novel genes diagnostic for a given 

developmental stage or cell type that encompass every cluster (Table S3).  

The top two cluster-specific genes (based on average Log FC) for each cluster are 

expressed across a substantial proportion of cells specifically within one cluster, with 

the exception of genes for clusters 0 and 1, which show substantial co-expression in 

cluster 14 (Figure 3A). In addition, GO overrepresentation analysis on cluster-specific 

gene sets reveal GO terms appropriate to their biology (Table S3). For example, the 

meristematic clusters 2 and 8 show an abundance of marker genes implicated in 

processes related to cell proliferation and DNA replication, respectively. Further, 

markers for the root-hair-cell cluster 10 are enriched in trichoblast differentiation and 

maturation terms, for the QC- and columella-containing cluster 11, in root development 

and starch biosynthesis, and for cluster 12, in xylem development and secondary cell 

wall biogenesis. Finally, genes required for the formation and suberisation of the 

Casparian strip are among the markers for cluster 13, which comprises endodermal 

cells. However, a notable outcome of this analysis is the number of marker genes for 

which a root function has yet to be assigned. This illustrates the potential of scRNA-

Seq for identifying new developmental regulators. 

To further validate this strategy for marker gene calling and for assigning cell identity 

to clusters without other reference, we assessed the spatiotemporal patterns of 

expression for select genes using transcriptional promoter:3xVenus-NLS reporter 

lines. Prioritizing by a balance of high log fold change, high PCT1, low PCT2, and a 

lack of prior biological information relating to cell type specificity and root development, 

we selected ten genes from across clusters. Expression for eight of the ten genes 
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tested localized to specific cell types and/or root zones in line with predictions. Specific 

expression in the cortex (AT1G62510), and maturing trichoblasts (MES15) was 

observed for marker genes for clusters 9 and 10, respectively (Figures 3B and 3C), 

while genes selected from cluster 4 revealed highly specific phloem (PME32) and 

pericycle (ATL75) expression (Figures 3D and 3E). MLP34 is expressed in the 

atrichoblasts, as expected for a marker for cluster 3 (Figure 3F). However, expression 

is also seen in cells of the lateral root cap (Figure 3F), a cell type to which a cluster 

could not be assigned. MLP34 shows expression in some cells in cluster 1 (Figure S2), 

indicating that this cluster may in-fact contain cells of the lateral root cap, although 

further analysis is needed to confirm this. Finally, expression of genes selected from 

the meristematic cluster 2 was found to localize to the meristematic cortex and 

endodermis (AT3G22120), the meristematic cortex (AT1G62500), or the meristematic 

vasculature (PIP2-8) (Figures 3G, 3H and 3I).  

Given the common occurrence of cis-regulatory motifs in introns of genes, the fact that 

promoter fusions for eight out of the ten marker genes tested confirm predictions is 

notable. This unbiased approach for assigning identity to cell clusters could prove 

invaluable when no reference data is available. Moreover, our results reveal a level of 

sensitivity beyond that of assigning whole cluster identity. This is typified by PME32 

and ATL75 whose promoter fusions show expression in the phloem and pericycle, 

respectively, in accordance with their expression being predominant in cells of 

subclusters 4.2 and 4.1, respectively (Figure S2). Furthermore, the meristematic 

vasculature marker, PIP2-8, is primarily expressed in cells of subcluster 2.3, 

positioned adjacent to the vasculature cluster, while the meristematic cortex & 

endodermis marker, AT3G22120, is mainly expressed in cells of subcluster 2.2 

positioned near these mature cell types (Figure S2). The expression patterns 

observed for the latter reporters thus further reinforce the hypothesis that meristematic 

subclusters share expression features with the mature cell types they are closest to. 

Moreover, a gene’s expression profile across the cluster cloud is a confident predictor 

of its localized expression in planta.  
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Figure 3. An unbiased, marker-gene-selection method is validated with transcriptional 

fusions. (A) Cluster specificity revealed by violin plots depicting expression level (length) and 

proportion of cells expressing (width) for the top two marker genes by differential expression 

(x-axis) across each cluster (y-axis). (B-J) Spatiotemporal expression patterns for promoter 

fusions for the following new marker genes reveals the predicted cell type specificities: (B) 

AT1G26510, cortex; (C) MES15, differentiating trichoblasts; (D) PME32, phloem; (E) ATL75, 

pericycle; (F) MLP34, atrichoblasts and lateral root cap, (G) AT3G22120, meristematic cortex 

and endodermis; (H) AT1G62500, meristematic cortex; (I) PIP2-8, meristematic vasculature; 
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(J) TEL1, QC. White arrowheads indicate endodermal cells; asterisks indicate trichoblasts. 

Scale bars = 20 µm.  

QC marker genes identified from scRNA-Seq data 

The fact that QC cells are captured offers a unique opportunity to study this rare cell 

type, a point quite pertinent given that RNA-seq analysis shows the established marker 

WOX5 to be induced upon protoplasting (Table S1). Within subcluster 11.1, 36 cells 

express at least half of 15 proposed QC genes (Figure 4A; Table S2; Efroni et al., 

2015; Nawy et al., 2005), which is in line with the sampling depth of scRNA sequencing 

and the relative low expression of most QC genes. The high number of QC cells 

captured likely reflects a bias in the methodology towards capturing small cells (see 

Methods), which may also account for an over-representation of meristematic cells. 

Reinforcing our QC cell calling, it is of note that genes marking initial cells directly 

neighboring the QC, such as AT3G22120, AT1G62500, and PIP2-8 (Figures 3G, 3H, 

and 3I), show no (33 cells), or negligible (3 cells) expression in the QC cells. 

Additionally, cells expressing such genes cluster away from the QC, in localized 

regions of meristematic cluster 2, adjacent to their mature-cell counterparts (Figure 

S2).  

Transcriptomic comparison between the QC cells and undifferentiated cells of the 

meristem (cells in clusters 2, 6, 7, and 8), identified 254 genes preferentially expressed 

in the QC (Table S3). While meristematic cells are distinguished by expression of 

genes involved in cell division and DNA replication, cells of the QC are not. Instead, 

transcription is an enriched GO term, as is auxin biosynthesis, which is fitting given 

the role of auxin in QC specification (Sabatini et al., 1999; Galinha et al., 2007). Further, 

unexpectedly, genes with functions in glucosinolate biogenesis and callose deposition 

are overrepresented among those genes differentially expressed in the QC (Table S3). 

This finding in particular is intriguing. Both processes are characteristic of a defence 

response, which seems curious given the QC’s internal location, insulated from 

external stimuli. Their prominence instead points towards a biology of QC cells not 

previously appreciated. The recent finding that 3-hydroxypropylglucosinolate acts as 

a reversible inhibitor of root growth (Malinovsky et al., 2017), is in this regard intriguing. 

Likewise, that small RNAs are prevented from moving in and out of the QC (Skopelitis 
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et al., 2018) points to unique regulation of cell-cell communication via plasmodesmata 

in the QC. 

Among the genes differentially expressed between the QC and meristematic cells of 

the root, 47 show a particularly strong expression bias to the QC cells (Log FC ≥0.25, 

PCT1 ≥10; PCT2 ≤10) (Table S3). Many of these genes are also expressed in mature 

cell types, predominantly columella cells, further reinforcing a certain shared-biology 

not present in the apical root meristem. However, ten genes clearly mark the QC cells 

(Figures 4B and 4C). Reporter lines for one them (TEL1) revealed high expression in 

the QC cells, and minimal expression elsewhere (Figure 3J). This expression 

contrasts strongly with that of genes marking various cell type initials (Figures 3G, 3H, 

and 3I). Amongst the eleven QC markers are several genes not previously described 

in connection to the QC, including AT3G18900 and SOT17 (Figure 4C; Table S3). 

Intriguingly, the latter functions in the glucosinolate pathway (Klein et al., 2006). This 

reinforces the prospect of there being a new layer to QC function, and highlights the 

potential for this technology in identifying novel developmental regulators and 

downstream genes that translate cell fate into distinctive cell shapes and functions.  

The limited number of QC-specific genes, in comparison to the number of specific 

markers identified for cell types such as the endodermis, xylem, and trichoblasts, 

would indicate that QC identity reflects the integrative outcome of multiple overlapping 

expression signatures. This idea is supported by the position of the QC at the 

intersection of an auxin maximum and SCARECROW activity (Shimotohno et al., 

2018). However, an alternative, non-mutually exclusive interpretation of this finding is 

that QC identity reflects a “subtractive” expression signature. In this scenario, the 

absence of expression of drivers of tissue identity and differentiation forms a key 

feature of QC identity. The facts that WOX5 acts as a transcriptional repressor 

(Forzani et al., 2014; Pi et al., 2015), and that genes, such as AT3G22120, 

AT1G62500, and PIP2-8 are mostly undetectable in the QC, supports this idea.  
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Figure 4. scRNA-Seq data of QC cells identifies novel QC marker genes. (A) t-SNE 

visualisation indicating the position of 36 QC cells at the centre of the cluster cloud. (B) QC 

cell specificity revealed by violin plots depicting expression level (length) and proportion of 

cells expressing (width) for 10 QC cell marker genes (y-axis) across each cluster (x-axis). 

Violin plots for two genes showing expression in the QC cells and the columella cluster (11.2) 

are also shown. *C11.1, subcluster 11.1 with QC cells removed. (C) t-SNE visualisation of 

expression profiles of selected QC marker genes. Cluster 11.1 is magnified in each case. 

Cell differentiation reflects finely resolved waves of gene expression  

One of the most exciting benefits of scRNA-Seq is that it allows for the simultaneous, 

unbiased analysis of every type of cell at every developmental stage, in one 

experiment. This is broadly illustrated by pseudotime analysis across all cells, which 

shows how central clusters are defined by expression of genes at the beginning of cell 

fate progressions, whereas mature cell types are peripheral in the cluster cloud (Figure 

2C).  However, although the cluster cloud represents a coarse landscape of 

developmental cell states, it does not reveal how individual cells traverse these states. 

To resolve the progressions that cells undergo during their transition from stem cell to 

mature trichoblast, we performed pseudotime analysis on cells of clusters 7, 5, and 
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10. This reveals a linear ordering of cells that reflects the cluster and subcluster 

arrangement (Figures 5A and 5B). In addition, we identified 3,657 highly dispersed, 

differentially expressed genes that fall into 8 distinct gene clusters (a-h), and depict 

successive waves of gene expression across pseudotime (Figure 5C; Figure S6A; 

Table S4).  

Reporter lines generated for representative genes of select clusters precisely reflect 

their pseudotime profiles (Figures 5D to 5H). AT5G62330 and PAE2 (cluster d) show 

a distinct peak of expression near the center of the pseudotime trajectory. Reporter 

lines for both genes capture this expression dynamic. pAT5G62330:3xVenus-NLS 

expression initiates in the distal meristem and persists into the elongation zone, 

whereas PAE2 is expressed slightly later and shows strong expression particularly in 

the early elongation zone (Figures 5D and 5E). Expression of AT1G05320 (cluster f) 

overlaps with that of AT5G62330 and PAE2 in elongating cells, but expression persists 

into the maturation zone and differentiated trichoblasts (Figure 5F). Finally, reporter 

activity for MES15 and EXT12 (cluster g), whose expression initiates late in the 

pseudotime trajectory, is first detected in cells exiting the elongation zone, with MES15 

expression starting slightly earlier with respect to the first visible protrusion of the 

emerging hair (Figures 5G and 5H), in accordance with its slightly earlier pseudotime 

projection.  
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Figure 5. Trichoblast development is guided by progressive waves of gene expression. 

(A) Pseudotime reconstruction of trichoblast development reveals a linear ordering of cells, 

reflecting cluster and subcluster arrangement. (B) Density distribution of cells across 

pseudotime. (C) Expression heatmap of 3,657 highly dynamically expressed genes ordered 

across pseudotime reveals trichoblast differentiation reflected in multiple progressive waves 

of gene expression. Significantly enriched GO terms for clusters are labelled. Lower bar, cell 

density distribution across clusters. (D-H) Spatiotemporal expression patterns for promoter 

fusions for the following genes reveals the pseudotime-predicted temporal localization: (D) 

AT5G62330; (E) PAE2; (F) AT1G05320; (G) MES15; (H) EXT12. White arrowheads indicate 

the start of expression. Expression dynamics for single genes plotted across trichoblast 

pseudotime are under the corresponding root images. (I) Expression heatmap of 230 

transcription factors (TFs) extracted from Figure 4C shows similar waves of TF expression. 

See Table S4 for full data. 

The pseudotime trajectory thus reflects with great precision the temporal expression 

changes of individual genes along the length of the root (Figure 5C), providing a 

refined view of the changes a cell undergoes during its transition from stem cell 

through to full differentiation. Genes predominantly expressed at the beginning of the 

developmental trajectory show an overrepresentation of DNA replication, cell 

proliferation, and ribosomal functions, as is expected for meristematic cells (clusters a 

and b; Table S4). At the other end of the trajectory, cluster g captures expression of 

genes involved in unidimensional growth, and root hair elongation and maturation. A 

previous gene regulatory network for epidermal cell differentiation had identified 154 

core root hair genes from which a temporal progression could be deduced (Bruex et 

al., 2012). ScRNA-Seq provides a new dimension of temporal resolution. Of the subset 

(98) of core root hair genes that show a dynamic pattern of expression across the 

pseudotime, the vast majority (84) are expressed late in the trajectory (cluster g; Table 

S4). In contrast, early cell fate determinants, including GL2, TRY, and WER, are 

expressed in cluster a (meristem). Our analysis thus reveals stepwise temporal 

progressions more dynamic than previously appreciated that connect early cell fate 

decisions to morphological and cellular changes.  

These stepwise progressions are primarily captured by the central gene expression 

clusters. Clusters d and e reveal cell growth and cell wall biogenesis amongst their 

enriched GO terms, while those of cluster f indicate a burst of cell morphogenesis 
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activity with an overrepresentation of genes involved in cytoskeleton reorganization, 

vesicle trafficking and a plethora of transport processes. Cell expansion and cell 

reorganization are processes known to occur during root hair development 

(Balcerowicz et al., 2015), and the pseudotime analysis identifies specific genes that 

could drive processes such as these during root hair differentiation (Table S4). Also 

found in cluster d is an abundance of flavonoid-associated genes, suggesting that this 

signaling is occurring during cell elongation, downstream of GL2 and WER, but 

upstream of many auxin/ethylene responsive genes which are overwhelmingly found 

in the later gene clusters (f and g).  

A highly interconnected TF gene regulatory network coordinates cell 

differentiation 

Expression profiles of the 239 TFs amongst the dynamically expressed genes mirror 

their waves of expression (Figure 5I; Table S4), pointing towards a causative 

relationship and an intricate regulation of cell fate progressions. Several of these are 

known to regulate specific stages of root hair development, including TRY, WER, and 

many bHLH TFs (notably, RSL2, RSL4, and LRL1). The expression clusters in which 

they reside accurately reflect their biological roles (Schellmann et al., 2002; Diet et al., 

2006; Bruex et al., 2012; Balcerowicz et al., 2015). Likewise, TMO7, previously 

reported as a central cell-to-cell communicator and regulator of root meristem activity 

(Lu et al., 2018), is found early on in the trajectory, while the central clusters contain 

TCP TFs connected to the exit of cell proliferation (Nicolas and Cubas, 2016), and 

ARR1, which regulates root meristem size (Dello Ioio et al., 2008). 

To elucidate further the genetic coordination along the trichoblast differentiation 

process, we inferred a Gene Regulatory Network (GRN) using a pipeline integrating 

the transformation of linear ordinary differential equations (ODEs) and linear 

regression (SCODE) (Matsumoto et al., 2017; Table S4; see Methods). Incorporating 

TF expression dynamics across pseudotime, the resultant network reveals key players 

in this process and their regulatory interactions. What is immediately clear from the 

network is the presence of major, highly-connected central regulators along the whole 

trajectory (Figure 6A), the majority of which have not previously been implicated in 

root development. Filtering the network down to its 25 core components (see Methods), 

we see several distinct passages of feedback regulation along each step of the 
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trichoblast differentiation trajectory (Figure 6B). Notable amongst these is 

considerable negative feedback from TFs at the end of the trajectory back to major 

nodes in the meristem, especially LRL3 (Figure 6B). This suggests that while positive 

and negative feedback loops in the meristem (also distinct) might maintain 

meristematic identity, the progression to differentiation gives rise to dominant 

components that influence the meristematic master-players.  

ATHB-20, and to a lesser extent, ATHB-23, stand out as positive regulators of the core 

network components in the neighboring, upstream, meristematic cluster, including the 

aforementioned TMO7. While it has been linked to ABA sensitivity in the root (Barrero 

et al., 2010), no defined role has yet been assigned to ATHB-20 in root development; 

yet a connection to a major player such as TMO7 suggests this to be the case. 

Pertinent to this, it is important to note that, with the exception of those in the late 

developmental cluster, the 25 core genes displayed in the network are not specific to 

trichoblast cell development (Figure S2; Table S4). This would indicate that they fulfil 

a similar role in other tissue layers, possibly coordinating growth and differentiation 

across the root. This notion is supported by pseudotime analysis of the cortex, which 

reveals an equally dynamic gene expression cascade mirrored by waves of 

transcription factor expression (Figures S6B and S6C; Table S4). With the notable 

exception of TMO7, many of the core nodes identified in the trichoblast network, 

including ATHB-20, ATHB-23, CBF5, GATA4 and GATA2, are also present in 

equivalent positions along cortex pseudotime. 

While negative feedback from differentiating root hair cells towards the meristem is 

notable in the simplified network, forward regulation of cell differentiation can be found 

as a culmination of many, weaker interactions from the meristematic and central nodes, 

in the extended network (Figure 6A; Table S4). The well-established regulators of 

trichoblast maturation, expressed at the end of the trajectory, are regulated by a 

combination of additive and opposing effects of broadly expressed (for example, 

ATHB-20, ATHB-23), and locally restricted (such as GL2 and WER) TFs. Network 

configurations in which tissue specific expression reflects the combinatorial output of 

many broadly expressed and locally restricted TFs are emerging as a general feature 

underlying development (Sparks et al., 2016; Reiter et al., 2017; Niwa, 2018; Barolo 

and Posakony, 2018), buffering the system and providing robustness.  
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Our network serves to particularly highlight the complex wiring between components 

mediating the transition of cells from the stem cell niche to the root maturation zone. 

Altogether, the pseudotime analysis of scRNA-Seq data indicates that these 

transitions are more gradual than previous data suggested. We see evidence of 

intricate dynamic transcriptional regulation, particularly across cells of the elongation 

zone. Termination of meristem activity and the initiation of the differentiation process 

appear coordinated across tissues, while the trichoblast maturation process relies on 

tissue-specific TFs whose activity comes about from the combinatorial regulation of 

dozens of temporally upstream players. 

 

Figure 6. A Gene Regulatory Network (GRN) predicts key regulators during trichoblast 

cell differentiation. (A) A GRN built of 229 TFs expressed dynamically across trichoblast 

pseudotime with a parameter cut-off of 0.1 (Table S4). (B) The same network with a parameter 

cut-off of 1.5. Node size is equivalent to the number of predicted connections. Edge colour 
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represents activation (red) or repression (blue). Edge width represents the strength of the 

predicted connection. 

Discussion 

While scRNA-Seq in plants has previously been limited to analysis of cells in their 

hundreds, the data presented here shows that profiling of developmentally complex 

tissues using high-throughput scRNA-Seq of thousands of cells offers an unparalleled 

view of the spatiotemporal expression dynamics cells undergo between exiting the 

niche and their final differentiation. 

scRNA-Seq of the Arabidopsis root proved to be sensitive and highly reproducible. 

Select genes induced by protoplasting as well as other plant physiology-based 

challenges are not prohibitive, but must be considered. For instance, the technology 

has an inherent bias towards smaller cells, such as those from meristems. Mature 

cells, while captured in sufficient numbers for analysis, are underrepresented in the 

atlas as their identities appear to become partially clouded during the protoplasting 

and cell capture processes. Likewise, epidermal cells are captured more readily than 

cells of the central stele. These trends, however, do not affect the types of analyses 

presented here. 

The nearly five thousand root cells profiled form a high-resolution atlas that captures 

all major cell types and developmental stages, including the scarce cells of the QC 

and niche. With this atlas, we can predict with precision the spatiotemporal patterns of 

gene expression within the root, as demonstrated by our reporter lines. Further, the 

atlas offers new insights into cellular processes characterizing distinct cell and tissue 

types. An unbiased approach to marker gene calling identified expression features 

defining each cluster and subcluster. These negate the need for a priori knowledge in 

assigning cluster identities and identify novel developmental regulators and 

downstream genes that give cells their distinctive forms and functions. As an example, 

SOT17 shows a QC-specific pattern of expression, and genes implicated in 

glucosinolate biosynthesis and callose deposition more generally show preferential 

expression in QC cells. Although a connection to cell-specific defence responses 

cannot formally be excluded, the latter finding more likely relates to plasmodesmata-
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mediated signaling, given the recent finding that small RNAs are blocked from moving 

in and out of the QC (Skopelitis et al., 2018).  

It is remarkable just how well the arrangement of cell clusters and subclusters 

described in our atlas reflects developmental time. In the very center are QC cells with 

a transcriptome distinctive from that of the surrounding initials and meristematic cells. 

Differentiating cells are on the periphery of the cluster cloud, adjacent to relevant 

meristematic subclusters. This cluster arrangement is likely a general feature of 

tissues that capture developmental trajectories, as a similarly developmentally-

informed cluster orientation has been recorded in a study of mouse spermatogenesis 

(Lukassen et al., 2018). In the case of the Arabidopsis root, it indicates that expression 

signatures linked to cell fate are not as strong as those defining stem cell or meristem 

identity. 

The progressions that cells undergo during differentiation are, however, far more 

dynamic than captured in just the cluster arrangement. As illustrated by the successive 

waves of gene expression revealed by pseudotime analysis, cells transitioning from 

the niche through differentiation follow finely resolved developmental trajectories, with 

progression steps beyond the commonly described meristematic, elongation and 

maturation zones. Our scRNA-Seq data offers the required resolution to distinguish 

the stepwise temporal progressions connecting early cell fate decisions to 

morphological and cellular changes. While the beginning and end of the trichoblast 

developmental trajectory have been described (Breux et al., 2012; Balcerowicz et al., 

2015), our data not only adds to this, but reveals additional gene expression dynamics 

occurring particularly in cells in the elongation zone. The number of progression steps 

observed, compared to the number of cells along the root, from the meristem to 

maturation, implies that the distinct progressions are characteristic of few, perhaps 

even individual, cells along the root elongation zone.  

Recent studies elaborate the idea that cell fate reflects the output of intricate gene 

regulatory networks in which numerous TFs control gene expression in a 

combinatorial manner (Sparks et al., 2016; Reiter et al., 2017; Niwa, 2018; Barolo and 

Posakony, 2018). This notion is reinforced by the pseudotime-derived trichoblast gene 

regulatory network, which shows that expression of major regulators of trichoblast 

maturation is linked to many, weak interactions from meristematic and central nodes. 
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Interestingly, the network also implies a high degree of feedback regulation towards 

the meristem, not only from the elongation zone, but also from genes in the maturation 

zone, such as LRL3. Normal root development requires that growth and differentiation 

be coordinated across tissue layers. In line with this, the central highly-integrated 

nodes predicted to coordinate the transitions between zones show similar pseudotime 

profiles in both the cortex and trichoblast lineages.  

An additional key application for the scRNA-Seq technology will be the profiling of 

mutants to more precisely define the cellular processes, cell types, or developmental 

stage affected. Cluster analysis of shr and wild type scRNA-Seq data revealed an 

expected absence of endodermal cells in the mutant (Helariutta et al., 2000), but also 

points to more extensive SHR-dependent cell fate changes. The shr scRNA-Seq data 

thus nicely exemplifies the enticing prospect this technology offers to discern 

phenotypes not easily recognized by standard RNA-sequencing, physiological, or 

even reporter-based approaches, whether stemming from natural variation, mutations, 

localized stress responses, or plant-microbe interactions. 

In summary, the atlas of the Arabidopsis root described here provides a unique 

spatiotemporal perspective of root cell type differentiation, increasing the number of 

discernible developmental domains along the length of the root and pointing to 

countless candidate developmental regulators that orchestrate this process. ScRNA-

Seq will rapidly become a central technique in the plant sciences as it already is in 

mammalian studies, providing previously unobservable developmental insights.  

Material and methods 

Experimental model and subject details 

All analyses were performed in the Arabidopsis Columbia (Col-0) ecotype with the 

exception of the shr-3 mutant line, which is in the Ler. ecotype. The pMIR166A:erGFP 

reporter and shr-3 mutant have been described previously (Miyashima et al., 2011; 

Helariutta et al., 2000, respectively). Plants were grown at 22°C on 1% agar plates 

containing 0.5x Murashige and Skoog (MS) medium (Duchefa Biochem.).  

Protoplast isolation 
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Seedlings were grown vertically on nylon mesh on agar plates. Roots of 6-day-old 

seedlings were cut approximately one centimeter from their tip, broadly diced with a 

scalpel blade, and treated with 7 ml protoplasting solution optimized for scRNA-Seq 

from a protocol in Birnbaum et al., 2003. Immediately before use, 1.5% Cellulase R-

10 and 0.1% Pectolyase (Duchefa Biochem.) were added to fresh protoplast buffer 

(0.1 M KCl, 0.02 M MgCl2, 0.02 M CaCl2, 0.1% BSA (Sigma Aldrich), 0.08 M MES, 

and 0.6 M Mannitol, adjusted to pH 5.5 with 0.1M Tris HCl), and mixed thoroughly. 

Root tissues were protoplasted for 2 hours at 20°C on an orbital shaker set at 200 

revolutions/minute. The mixture was subsequently filtered through a 100 µm nylon 

filter and rinsed with 1-5 ml of root protoplast buffer. Protoplasts were then centrifuged 

for 10 minutes (500 g – 4°C), the supernatant gently removed, and the pellet 

resuspended in 10 ml root protoplast buffer containing 0.4 M Mannitol and no CaCl2. 

This wash procedure was repeated once more, the protoplasts centrifuged as before, 

and resuspended in ~500 µl or less protoplast buffer without CaCl2 and with 0.4 M 

Mannitol. Protoplasts were validated under a light microscope, and if necessary any 

excess debris or un-protoplasted tissues removed with an additional washing step. 

Cells were filtered through a 40 µm cell strainer (Flowmi Bel Art SP Scienceware), 

quantified using a haemocytometer, and adjusted to a density of approximately 800-

900 cells per µl.  

Bulk RNA-seq library preparation and sequencing 

RNA was extracted using the Spectrum Plant RNA Extraction Kit (Sigma) from 

protoplasted and equivalent un-protoplasted root tissue collected at completion of the 

protoplasting procedure. RNA samples were quantified by Nanodrop, and quality 

assured based on Agilent RNA Bioanalyzer chip traces. mRNA was enriched by oligo-

dT pull-down using the NEBNext Poly(A) mRNA Magnetic Isolation Module, and RNA 

libraries constructed using the NEBNext Ultra II Directional RNA Library Prep Kit for 

Illumina with NEB Multiplex oligos. Final library size and quality was checked on a 

DNA High Sensitivity Bioanalyzer chip (Agilent), and libraries were quantified using 

the NEBNext Library Quantification Kit for Illumina.  

Single Cell RNA-seq library preparation and sequencing 
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Single cell RNA-seq libraries were prepared from fresh protoplasts according to the 

10x Genomics Single Cell 3’ Reagent Kit v2 protocol. For each replicate, 12,200 cells 

were loaded in the 10x Genomics Chromium single cell microfluidics device with the 

aim of capturing 7,000 cells. 11 cycles were used for cDNA amplification, as well as 

for final PCR amplification of the adapter-ligated libraries. Final library size and quality 

was checked on a DNA High Sensitivity Bioanalyzer chip (Agilent), and libraries were 

quantified using the NEBNext Library Quantification Kit for Illumina. ScRNA-Seq 

library sequencing was performed on the NextSeq (Illumina) platform, using the 

sequencing parameters 26,8,0,98.  

Generation and confocal imaging of reporter lines 

To verify select marker genes in vivo, promoter:3xYFP-NLS reporter lines were 

generated for the following genes:  AT1G62510, MES15, PME32, TEL1, AT3G22120, 

ATL75, MLP34, AT1G62500, PIP2-8, AT6G53980, AT3G15357, AT5G62330, 

AT1G57590, AT1G05320 and EXT12.  Promoter fragments between approx.  1.2 -  

3.5 kb were amplified using PCR primers containing KpnI and XmaI restriction sites, 

and introduced by classical cloning into binary vector JM164 (Mathieu et al., 2009) to 

generate transcriptional fusions to a nuclear-localized triple Venus tag.  All reporter 

constructs were transformed into the Col-0 background, and multiple independent 

events per construct (n ≥3) analyzed.  Roots of 7-day-old seedlings were mounted in 

10 μg/mL Propidium Iodide (PI) (Sigma-Aldrich) and imaged using a Zeiss LSM880 

laser-scanning confocal microscope.  Excitation for YFP was at 514 nm and images 

were acquired at 517 -  571 nm.  For PI, the excitation wavelength was 561nm, and 

images were collected at 589 -  718nm. 

Bulk RNA-seq analysis  

Sequence reads (pair-end, 75 bp) were trimmed using Trimmomatic (version 0.36; 

Bolger et al., 2014), and aligned to the Arabidopsis TAIR10 reference genome with 

STAR (Dobin et al., 2013). Gene expression values were calculated on uniquely 

mapped reads using HTSeq (version 0.7.2; Anders et al., 2014), and DEseq2 (Love 

et al., 2014) was used to calculate differentially expression (absolute log2FC ≥1 and 

q <0.05) on genes with expression levels ≥1 RPM in either replicate. For correlation 

analysis of gene expression between protoplasted and un-protoplasted root tissues, 
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the Log2 (mean RPM+1) expression values were calculated for each gene and the 

Pearson-correlation coefficient determined in R. 

Generation of single cell expression matrices  

Cell Ranger 2.0.2 (10X Genomics) was used to process scRNA-Seq data. Cell Ranger 

Count aligned the sequencing reads to the Arabidopsis TAIR10 reference genome 

using STAR (Dobin et al., 2013). For the mapping of GFP-derived transcripts, the 

sequence and gene structure for GFP were added to the reference fastq and gtf files, 

respectively. Aligned sequence reads with a valid cell barcode and UMI that mapped 

to exons (Ensembl GTFs TAIR10.37) were used to generate gene expression 

matrices from which PCR duplicates were removed. Valid cell barcodes were defined 

based on UMI distribution with the cutoff: cell read count > 5% of 99th percentile of 

7000 cells (Zheng et al., 2017). The output files for the two replicates were aggregated 

into one gene-cell expression matrix using Cell Ranger aggr with the mapped read 

depth normalization option.  

Dimensionality reduction, t-SNE visualization, and cell clustering analysis  

The Seurat R package (version 2.3.4) (Sajita et al., 2015; Butler et al., 2018) was used 

for dimensionality reduction analysis. Highly variable genes were identified across the 

single cells, after controlling for the relationship between average expression and 

dispersion. Genes were placed into 20 bins based on their average expression, and 

genes with an average expression value <0.011 removed. Within each bin, a z-score 

of log transformed dispersion measure (variance/mean) was calculated. A z-score cut-

off of 1 was applied to identify the highly variable genes. PCA was then performed 

using the variable genes as input. 50 PCs were selected as input for a graph-based 

approach to cluster cells by cell type (Villani et al., 2017) and used as input for t-

distributed stochastic neighbor embedding (t-SNE; Van Der Maaten and Hinton, 2008) 

for reduction to two- or three-dimensional visualization. A resolution value of 0.8 was 

used in all clustering analyses. Additionally, we used a random forest classifier 

(Breiman, 2001; Butler et al, 2018) to examine cluster distinctness and merged any 

clusters where the out-of-bag error (OOBE) of the classifier was >10%.  
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Identification of differentially expressed genes and cluster-specific marker 

genes  

Genes differentially expressed across clusters or subclusters were identified by 

comparing average expression values in cells of a given cluster to that of cells in all 

other clusters using the Seurat package likelihood ratio test (Bimod). The following 

cutoffs were applied: average expression difference ≥ 0.25 natural Log and q <0.01. 

Cluster-specific marker genes were selected from among the differentially expressed 

genes based on the criteria that marker genes must be expressed in ≥10% of cells 

within the cluster (PCT1), and ≤10% of cells across all other clusters (PCT2). 

Identification of cluster identities 

The top 10 DE genes (q <0.01) by fold change were identified for each cluster and 

expression profiles harvested from a cell-type specific and longitudinal microarray 

dataset (Brady et al., 2007a). In the case that microarray data was not available, the 

next best DE gene was selected. Average normalized expression for 10 DE genes 

across cell types and developmental stages was calculated and visualized in R. In a 

complementary approach, marker genes for key cell types were identified from Efroni 

et al. (2015), which integrates root expression data from multiple independent studies. 

Genes with high normalized expression in a particular cell type (spec. score ≥0.6 as 

detailed in Efroni et al., 2015) were filtered for specificity by applying a <0.2 spec. 

score cutoff for all other cell types. This latter criterion was not applied to 

phloem/phloem companion cells, and phloem/protophloem comparisons, as these cell 

types show considerable co-expression of most genes. See Supplementary Table S2 

for the list of marker genes. Expression of these genes was extracted from the 

combined single cell expression matrix and visualized using Seurat’s SplitDotPlot GG 

function. Genes with well-defined expression patterns were considered similarly.  

Correlation analysis  

For correlation analysis of merged single cell and bulk RNA sequence data, Log2 

(mean RPM+1) expression values for each gene from two replicates of pooled single 

cell and bulk RNA sequencing were quantile normalized and the Pearson-correlation 

coefficient calculated in R. For correlation analysis between single cell RNA-seq 
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replicates, the single cell data replicates were simulated as bulk RNA sequencing data, 

the Log2 (mean RPM+1) expression values calculated for each gene, and the 

Pearson-correlation coefficient between replicates calculated in R. For correlation 

analysis between the single cell replicates across individual clusters, the average 

expression of cells within a cluster was calculated for each replicate using the Seurat 

command AverageExpression(object, use.raw=T). The Pearson-correlation 

coefficient between the replicates was then determined for each cluster using Seurat 

CellPlot.  

Single cell developmental trajectory analysis  

Pseudotime trajectory analysis was performed using the Monocle2 R package 

(version 2.8.0) algorithm (Trapnell et al., 2014) on genes with a mean expression value 

≥ 0.011, and dispersion empirical value larger than the dispersion fit value. Cells were 

ordered along the trajectory and visualized in a reduced dimensional space. 

Significantly changed genes along the pseudotime were identified using the differential 

GeneTest function of Monocle2 with q-value < 0.01. Genes dynamically expressed 

along the pseudotime were clustered using the ‘plot_pseudotime_heatmap’ function 

with the default parameters. Transcript factors were annotated based on information 

from AtTFDB (https://agris-knowledgebase.org/AtTFDB/). Gene description 

information was downloaded from (https://www.arabidopsis.org).  

GO enrichment analysis 

Gene ontology (GO) biological process enrichment analyses (http://pantherdb.org) 

were performed on cluster-grouped differently expressed genes along the pseudotime 

(average expression ≥ 0.011) via fisher exact test (q <0.01, Fold enrichment >1). 

Gene regulatory network analysis 

The gene expression levels of transcription factors (Table S4) without genes with dual-

polar expression (cluster h) were normalized using the Monocle2 R package (version 

2.8.0) genesmoothcurve function (Trapnell et al., 2014). The pseudotime of each cell 

assigned by Monocle2 was normalized from 0 to 1. Gene regulatory network inference 

was calculated on dynamic TFs using SCODE (Matsumoto et.al., 2017) with 
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parameter z setting as 4, averaging 50x results to obtain reliable relationships. Gene 

regulatory inference was filtered using various cutoffs on parameter value, the results 

visualized using Cytoscape (Shannon et al., 2003), and the network topological 

parameters obtained with NetworkAnalyzer (Assenov et al., 2008).   

Data and software availability 

All high-throughput sequencing data, both raw and processed files, have been 

deposited in NCBI’s Gene Expression Omnibus and are accessible upon publication 

under accession number GSE123818. 
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Supplementary data 

Figure S1. ScRNA-Seq of the Arabidopsis root reveals distinct cell-type specific 

clusters; Related to Figure 1. (A) Transverse section of a mature root illustrating its radial 
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organisation. (B) Longitudinal cross-section of a mature root illustrating an organisation in 

three distinct developmental zones. Figures adapted from Root illustrations – figshare 

collection (2018). (C) Violin plots showing the distribution of genes and transcripts (UMIs) 

detected per cell. (D) Correlation between merged single cell and bulk-tissue RNA-seq 

measurement of gene expression from Arabidopsis root protoplasts. For each gene, the 

quartile normalisation of the log2-transformed mean RPM + 1 values from the merged scRNA-

Seq and bulk RNA-seq are plotted against each other. Colour represents cell numbers (log2, 

+1) from the scRNA-Seq data. (E) Correlation between single cell RNA-seq replicates of 

Arabidopsis Col-0 (Rep. 1) and pMIR166A:erGFP (Rep 2) root protoplasts. For each gene, 

log2-transformed RPM +1 values are plotted against each other. (F) Correlation between bulk 

RNA-seq measurements of gene expression from protoplasted and un-protoplasted 

Arabidopsis root tissue. r = Pearson’s correlation coefficient. 3,545 genes were induced upon 

protoplasting (see Table S1). (G) The expression profiles for the top 10 DE genes defining 

clusters, taken from a microarray root atlas (Brady et al., 2007a), reveal discreet cell identities. 

Red line, mean expression profile; grey lines, individual expression profiles. 
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Figure S2. Key Arabidopsis genes reveal distinct expression profiles across clusters. 

Related to Figure 1. t-SNE visualizations of cell clusters revealing defined expression profiles 

of key Arabidopsis development genes. 
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Figure S3. A localised GFP marker and mutant line validate cluster calling; Related to Figure 2. 

(A) Left - pMIR166A:erGFP expression is limited to the endodermal cell layer and the QC cells. Centre 
and right - wild-type (Col-0) and SHR mutant (shr-3). Yellow arrowheads indicate cortex cell-layers, 

white arrowhead indicates endodermal cell layer in Col-0, missing in shr-3. 6-day old root tips. (B) t-

SNE visualisation (right) of wild-type and shr-3 cells combined reveals 18 distinct clusters. (C) t-SNE 

visualisation of the cluster cloud (wild-type replicates) reveals expression of select rubisco subunit 

genes localised to a leaf-cell cluster. 
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Figure S4. Discreet cell identities can be found within select subclusters; Related to 

Figure 1. The expression profiles for the top ten DE genes defining subclusters, taken from a 

microarray root atlas (Brady et al., 2007a), reveal discreet cell identities. Red line, mean 

expression profile; grey lines, individual expression profiles. 
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Figure S5. Developmental stage-specific clusters can be identified. Related to Figure 1. 

(A) t-SNE visualization of UMI counts across all clusters. (B) The expression profiles for the 

top 10 DE genes defining subclusters, taken from a longitudinal microarray root atlas (Brady 

et al., 2007a), reveal meristematic- and differentiated-cell identities. Red line, mean 

expression profile; grey lines, individual expression profiles. 
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Figure S6. Cortex development is guided by distinct waves of gene expression; Related 

to Figure 5. (A) Expression dynamics for select single genes across pseudotime. Blue-scale, 

pseudotime value. (B) Pseudotime reconstruction of cortex development reveals a linear 

ordering of cells, reflecting cluster and subcluster arrangement. (C). Expression heatmap of 

highly dynamic genes ordered across pseudotime reveals cortex differentiation reflected in 

multiple distinct waves of gene expression. Significantly enriched GO terms for clusters are 

labelled. Lower bar, cell density distribution across clusters. See Table S4 for full data. 
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Table S1 to 5 (separate file) 

Movie S1. ScRNA-Seq of the Arabidopsis root reveals distinct clusters; Related to Figure 1. 

Data and software availability 

All high-throughput sequencing data, both raw and processed files, have been deposited in 

NCBI’s Gene Expression Omnibus and are accessible under accession number GEO: 

GSE123818.  
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Abstract  

The shoot apical meristem (SAM) orchestrates the balance between stem cell 

proliferation and organ initiation essential for post-embryonic shoot growth. Meristems 

show a striking diversity in shape and size. How this morphological diversity relates to 

variation in plant architecture, and the molecular circuitries driving it are unclear. By 

generating a high-resolution gene expression atlas of the vegetative maize shoot apex, 

we show here that distinct sets of genes govern the regulation and identity of stem 

cells in maize versus Arabidopsis. Cell identities in the maize SAM reflect the 

combinatorial activity of transcription factors (TFs) that drive the preferential, 

differential expression of individual members within gene families functioning in a 

plethora of cellular processes. Sub-functionalization thus emerges as a fundamental 

feature underlying cell identity. Moreover, we show that adult plant characters are to 

a remarkable degree regulated by gene circuitries acting in the SAM, with natural 

variation modulating agronomically-important architectural traits enriched specifically 

near dynamically expressed SAM genes, and the TFs that regulate them. Besides 

unique mechanisms of maize stem cell regulation, our atlas thus identifies key new 

targets for crop improvement.  

Introduction 

The SAM positioned at the plant’s growing shoot tip harbors a population of pluripotent 

stem cells, which serve as a persistent source of cells for postembryonic growth and 

organogenesis. A striking aspect of meristems is the tremendous diversity in 

morphology seen across plant species (Steeves and Sussex 1989). How this diversity 

relates to variation in overall plant architecture is unclear. SAM morphology does not 

seem to follow phylogeny (Steeves and Sussex 1989). This implies that the 

architectural diversity of the angiosperms is elaborated post-meristematically, and that 

the main function of the SAM is to balance stem cell proliferation with organogenesis. 

Contrary to this concept, quantitative variation in SAM structure in maize is correlated 

with adult morphological traits such as node number and flowering time (Leiboff et al. 

2015). This suggests that variations in adult plant architecture may be determined in 

part by regulatory mechanisms acting in the SAM, and that such regulatory networks 

form targets for selection in the improvement of agronomically-important traits.  
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The nature of these regulatory networks remains unclear. Much of our understanding 

of SAM function originates from studies in Arabidopsis. These illustrate that gene 

expression within the growing meristem is precisely coordinated in a highly spatial and 

temporal manner. Mobile signals, mechanical inputs, and environmental cues, all 

provide positional information to specify cell fates within the dynamic stem cell niche 

(Besnard et al. 2011; Pfeiffer et al. 2017). These inputs in part converge onto a 

negative feedback loop involving WUSCHEL (WUS) and CLAVATA (CLV) signaling 

that maintains stem cell number in the central zone (CZ) at the SAM tip. Additionally, 

these inputs, through their effects on auxin polar transport and signaling, link 

proliferation in the meristem to organ initiation in the peripheral zone (PZ) (Besnard et 

al. 2011; Pfeiffer et al. 2017).  

Many of the recognized regulators of meristem function predate the origin of the 

angiosperms, and their functions at the molecular level are conserved (Plackett et al. 

2015). However, whereas the roles for meristem regulators such as WUS and CLV1/3 

appear conserved across eudicots, substantial diversification in these regulatory 

pathways between monocot and eudicot lineages has been noted (Nardmann and 

Werr 2007). This raises the question as to whether diversity in SAM morphology is 

reflected at the level of molecular circuitries.  

To address this question and assess a link between SAM function and adult plant 

architecture, we generated a high-resolution gene expression atlas of the vegetative 

maize shoot apex. This shows that the molecular circuitries underlying distinct cell 

fates within the SAM are largely divergent from Arabidopsis, illustrating fundamental 

differences in stem cell regulation in both species. Cell identities in the maize SAM 

reflect the combinatorial activity of TFs that show subtle quantitative expression 

differences across the apex. These drive the preferential, differential expression of 

individual members within gene families functioning in a plethora of cellular processes. 

Allelic diversity present near these dynamically expressed genes, and the TFs that 

regulate them, links the molecular circuitries acting in the SAM to post-meristematic 

morphological traits. Besides unique mechanisms of maize stem cell regulation, the 

atlas thus identifies novel targets for selection in the improvement of agronomically-

important traits. 

Results 
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Tissue-specific genes contributing to cell identity 

To identify gene expression signatures associated with meristem function in maize, 

we used laser microdissection to isolate cells from the following distinct structural and 

functional domains within the shoot apex of 14 day-old B73 seedlings: the entire 

meristem, the stem cell comprising meristem tip (hereafter referred to as Tip), the 

incipient leaf (P0) at the meristem periphery, the L1 and L2 lineage layers overlaying 

these meristem regions, developing leaf primordia at P1, P2 and P3, as well as the 

internode primordium and vasculature (Figure 1A–C; Figure S1). Collectively, 

transcripts of 19,278 genes, or about half of the 39,656 annotated maize genes, are 

detectable at levels ≥ 2 RPM in at least one of the 10 domains sampled (Table S2). 

The number of genes expressed in discrete shoot apical domains varies little, and also 

their genome-wide expression profiles are highly correlated (Figure 1D, E). This 

indicates that the differential expression of a relatively small subset of genes underlies 

the specialized functions of distinct domains within the shoot apex.  

Figure 1. Tissue-specific genes contributing to cell identity. (A) Longitudinal section of a 

14 day-old B73 seedling apex. The 10 domains/tissues captured are illustrated. (B,C) Sections 

after laser microdissection of the L2 (B), or Tip, P0, and internode (C). (D) The number of 

genes expressed ≥2 RPM varies only slightly across tissues. (E) Correlation analysis identifies 

the Tip as the most distinctive cell type (red), followed by the vasculature (blue). Overall 
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expression in the two clonal layers is highly correlated (brown). Expression profiles of leaf 

primordia of successive plastochron (P) stages are also highly correlated (green), and closely 

match expression in the internode (yellow). Mer, meristem; Int, internode; Vas, vasculature. 

(F) Density plots show that most genes have high SE scores and low expression values. 

Genes with SE score < 2.33 (colored) show tissue-specific expression. For visual simplification, 

only genes with expression values ≤ 800 RPM are shown. (G) Heatmap of cell type specific 

genes shows most mark the vasculature, Tip, or L1. Primordium stage-specific transcripts 

were also identified. (H-M) In situ hybridization verifying specificity for select Tip- (H-J) and 

P0-specific genes (K-M). Meristem shape is outlined. Arrowheads, P0. 

To identify such genes, we first used Shannon entropy (SE) (Schug et al. 2005) to 

define genes showing domain-specific patterns of expression. Of the 964 genes with 

a SE score < 2.33, which considering the partial overlap of the regions captured were 

defined as domain specific, most mark the vasculature (587), Tip (130), or L1 (106) 

(Figure 1F, G; Table S3). Particularly the Tip-specific genes are noteworthy (Figure 

1F–J), as genes underlying maize stem cell identity have remained elusive. 

Additionally, genes specific to individual leaf stages, including the P0, had not been 

noted previously (Figure 1K–M). These gene sets provide a powerful resource to infer 

tissue-specific enhancer elements, to modulate spatial patterns of gene expression, 

or to assign spatiotemporal origins to single cell transcriptomic data (Denyer et al. 

2019).  

Genes with signaling-associated functions are overrepresented among the domain-

specific genes, pointing to particular signaling pathways underlying cell fate decisions 

(Table S4). For example, key cytokinin-synthesis genes show a Tip-specific pattern of 

expression, whereas gibberellic acid (GA) associated genes are among the 

primordium-specific genes, and genes involved in auxin, abscisic acid (ABA), jasmonic 

acid (JA) and ethylene signaling predominate the vasculature (Tabs S3, S4). Such an 

organization of hormone activities will increase the possibilities for specific spatial 

interactions needed to coordinate the many cell fate decisions within the growing shoot. 

In addition, of the 48 genes encoding CLE signaling peptides (Goad et al. 2017), 17 

are expressed in the apex, of which 4 show specificity for the vasculature, internode, 

or Tip (Figure S2A). The peptide derived from the single Tip-specific CLE gene is 

orthologous to rice FCP1 (Je et al. 2016). Although previously reported to be 
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primordium-derived (Je et al. 2016), ZmFCP1 is in fact specific to the Tip (Figure 

S2A,B), and could act through a CLE-WOX regulatory module within the SAM itself. 

Besides genes connected to cell-cell signaling, transcripts for a surprisingly large 

number of TFs accumulate in a tissue- or domain-specific manner. Whereas 7% of all 

expressed genes encode TFs (Figure 1D), consistent with a role in driving the primary 

molecular changes underlying cell identity, 117 of the 964 domain-specific genes 

represent TFs (>12%, Table S3). Expression of all 12 tissue-specific Dof TFs is limited 

to the vasculature, suggestive of a role as master regulators of vascular development. 

However, most TF families show some evidence of sub-functionalization with 

individual members showing specificity for distinct cell or tissue types. Conversely, 

each tissue expresses a diverse set of TFs, pointing to combinatorial inputs from TFs 

on cell identity.  

Dynamic expression of individual gene family members defines cell identity 

While SE identifies genes with a near on/off state in expression, more genes likely 

contribute in a quantitative manner to distinguish cell identities. We therefore next 

analyzed differentially expressed genes (DEGs) between the vasculature, Tip, and P0, 

the latter as a representative of the closely related leaf primordia (Figure 2A; Table 

S5). Genes preferentially expressed in the vasculature largely overlap with the 

vascular-specific genes, and show an overrepresentation for genes involved in 

signaling as well as cell wall homeostasis (Table S6). In the pairwise comparison 

between the Tip and P0, genes preferentially expressed in the P0 are enriched for 

functions connected to actively dividing cells and auxin signaling (Figure 2B; Table 

S6), known features of primordium initiation. Additionally, consistent with TFs driving 

developmental programs, differences are seen for select TF families. For instance, the 

NAC, GeBP, and ABI3/VP1 families are overrepresented among Tip-enriched genes, 

whereas YABBY TFs mark the P0 (Figure 2B). 
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Perhaps the most striking feature stemming from this analysis, however, is the fact 

that few functional categories or pathways are enriched among the DEGs (Figure 2B; 

Table S6). DEGs from all three pair-wise comparisons are annotated to function in 

numerous, widely diverse metabolic and cellular processes. Although these processes 

are typically represented by multi-gene families, single or highly select subsets of 

members within these families show a differential or tissue-specific pattern of 

expression (Figure 2C–F). Besides the CLE example mentioned above, individual 

LONELY GUY (LOG), ISOPENTENYL TRANSFERASE (IPT), PIN-FORMED (PIN), 

and YUCCA genes involved in hormone metabolism/signaling are DE across these 

tissues (Figure 2C, D; Figure S2C). Likewise, individual family members for cell wall 

modifying enzymes and redox regulation (e.g., expansins, pectin methylesterases, 

and glutaredoxins) known to act downstream of TFs and hormone signaling in 

meristem homeostasis and organogenesis (Schippers et al. 2016; Tognetti et al. 2017), 

are DE (Figure 2E; Figure S2D,E). Key features of cell identity are thus regulated 

across tissues by a comparatively small but functionally highly diverse set of DEGs.  

Figure 2. Dynamic expression of individual gene family members determines cell identity. (A) 

Pair-wise differential gene expression analyses between Tip, P0 and vasculature show ~10% 

of all expressed genes are DE (q < 0.01). Colors represent preferential expression within 

respective domains. (B) Enrichment analyses identified few functional categories over-
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represented among Tip vs P0 DEGs. Dashed line, significance threshold (p = 0.05). (C-F) 

Individual genes within gene families show abundant and differential expression across the 

apex. Examples are shown for gene families functioning in cytokinin (C), auxin (D), cell wall 

(E), or other signaling processes (F). Number of family members is shown in parenthesis. Only 

genes expressed ≥ 2 RPM are illustrated. Mer, meristem; Int, internode; Vas, vasculature. (G) 

Zmlog7 mutants display meristem termination phenotypes. (H,I) Cleared shoot apices of 

wildtype (H) and the small meristem mutant Zmdrp4a (I) . (J,K) Box-and-whisker plots of SAM 

size measurements of Zmdrp4a (J) or Zmfcp1 (K) and their respective wildtype siblings. N, 

number of wildtype/mutant apices measured. **, p < 0.01; ***, p < 0.001 according to Student’s 

t-test. 

Intriguingly, the expression level of such DEGs across all 10 tissues sampled often far 

exceeds that of the remaining more uniformly expressed family members (Figure 2C–

F; Figure S2C–E). This predicts a more limited degree of redundancy. Indeed, putative 

loss-of-function alleles available for 3 DEGs with strong preferential expression in the 

Tip, each show meristem phenotypes. Mutation of ZmLOG7 conditions a meristem 

termination phenotype (Figure 2G). This is contrary to Arabidopsis and rice, where log 

mutations have little or no effect on vegetative meristem size (Kurakawa et al. 2007; 

Tokunaga et al. 2012). In addition, mutations in the dynamin family member ZmDRP4a 

cause a reduction in SAM radius, whereas Zmfcp1 mutants show a significant increase 

in SAM size (Figure 2H–K; (Je et al. 2016)), consistent with the presence of a local 

CLE-WOX module regulating stem cell number.  

Thus, the cellular mechanisms linking patterns of TF activity to the differentiation of 

distinct cell types are highly complex, with DEGs predicted to function in a wide array 

of metabolic and cellular processes. Inputs from discrete signaling components and 

combinatorially acting TFs, many of which are expressed in a tissue-specific manner, 

drive strong, differential expression of select, often individual, genes within gene 

families to confer distinctive properties onto functional domains within the apex. Sub-

functionalization among members of functionally diverse gene families thus emerges 

as a key feature underlying cell fate differentiation. 

Molecular signatures underlying functional SAM domains 

Besides the classically defined peripheral and central zones, studies in Arabidopsis 

revealed the presence of an organizing center (OC) positioned immediately below the 
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CZ. The OC provides positional information required to specify stem cell fate, and 

balances activities in the central and peripheral zones of the SAM (Pfeiffer et al. 2017). 

Cells in the OC are characterized by expression of the WUS TF (Mayer et al. 1998). 

Interestingly, whereas WUS orthologs in other eudicot species share this pattern of 

expression (Galli and Gallavotti 2016), ZmWUS1 expression within the vegetative 

SAM is not conserved (Nardmann and Werr 2007). Likewise the CLV1 ortholog thick 

tassel dwarf1 is expressed in leaf primordia (Nardmann and Werr 2007), and ZmFCP1 

rather than the maize CLV3 ortholog specifically marks the SAM tip (Figure S2A, B). 

This indicates substantial diversification in the WUS-CLV signaling pathway between 

monocot and eudicot species, and leaves open the identity of an OC in the 

morphologically distinct maize SAM. To address this question and to identify molecular 

signatures that distinguish the functional SAM domains, we clustered genes based on 

their transcript profiles across the meristem, Tip, P0, and P1-P3 leaf primordia (Figure 

3A). Inclusion of the latter enhanced the ability to identify SAM specific signatures and 

allowed to follow the transition from indeterminate stem cell through differentiation.  

 

Figure 3. Divergent gene sets define functional SAM domains in maize versus 

Arabidopsis. (A) Expression heatmap of genes dynamically expressed during the transition 

from stem cell (Tip) to P3 organ primordium. Genes of Cluster 1 whose expression changes 

minimally are excluded. Mer, meristem. (B-D) Left: composite expression profiles of gene 

clusters marking the CZ (B), PZ (C) or OC (D). Right: in situ hybridization patterns of select 
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cluster members. Arrowheads, P0; N, number of genes in respective clusters; Red line, mean 

expression; Grey profile; range between highest and lowest values. (E-G) Mutations in the OC 

genes D1 (E), ZmHMA2 (F), and ZmCIPK4 (G) effect meristem height, radius, or both. N, 

number of measured wildtype/mutant individuals. n.s., not significant; **, p < 0.01; ***, p < 

0.001 according to Student’s t-test. (H) Percentages of maize genes expressed specifically in 

vasculature, during organ initiation, or in the OC or CZ with a similarly expressed Arabidopsis 

ortholog (dark red) or related paralog (light red). Maize genes without an identifiable 

Arabidopsis ortholog or near paralog are not shown. 

Among the 46 clusters obtained, two large gene clusters show increased or decreased 

expression with leaf ontogeny (Figure S3A, B), providing numerous markers for 

comparative analyses of leaf development. Additionally, few clusters show expression 

profiles expected for meristem core genes, with high relative expression in both 

meristem and Tip, and minimal expression during organogenesis (Figure S3C; Table 

S7). These clusters point to the presence of regulatory circuits promoting general 

meristem identity that presumably interact with more localized determinants to specify 

regional identities within the SAM.  

Importantly, several clusters show expression profiles consistent with expectations for 

the functional domains of the SAM. Two CZ-clusters with 173 genes (Figure 3B) 

comprise mostly Tip specific genes, but also genes expressed in both the Tip and 

vasculature, possibly reflecting a general stem cell function, as well as genes that 

specifically mark the L1 (e.g., ZmWOX9b, ZmWOX9c) or L2 (e.g., ZmFCP1), 

predicting layer specific contributions to the CZ (Figure S3D). In addition to P0 specific 

genes, the four PZ-clusters with 87 genes total (Figure 3C), include genes connected 

to leaf initiation (e.g., ZmWOX3a, Arf3b, ZmGA2ox, and fused leaves1), boundary 

formation (e.g. ZmCUC3-like), and axillary meristem formation (e.g., barren 

inflorescence2; Table S7). RNA in situ hybridization verified that selected genes in 

these clusters indeed show the predicted domain specific patterns of expression (Figs. 

1H–M, 3B, C).  

Genes expressed at a position equivalent to that of the Arabidopsis OC are predicted 

to show high expression in the meristem overall, and minimal expression in the Tip 

and leaf primordia. This profile is seen in three clusters, comprising 41 genes total 

(Figure 3D). In situ hybridization shows that transcripts for a gene of unknown function 
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representative of these clusters localize to a small group of cells at the SAM center 

below the CZ, recapitulating the canonical OC expression pattern of WUS (Mayer et 

al. 1998) (Figure 3D). Further, in line with a role as a signaling center critical for 

balancing stem cell maintenance and organogenesis, genes encoding the GA 3-

oxidase dwarf plant1 (D1), ZmBAS1, a LRR receptor kinase, as well as proteins 

related to calcium-, redox-, and sugar-based signaling are included in these clusters 

(Table S7). Moreover, three of the six genes with available loss-of-function alleles 

display quantitative effects on meristem height (d1), radius (Zmhma2) or both 

(Zmcipk4) (Figure 3E–G).  

Genes in these clusters thus identify a domain in the maize SAM equivalent in position 

and function to the Arabidopsis OC. Noteworthy, ten TFs, each representing a distinct 

family, are among the OC genes. However, neither ZmWUS1 nor any other WOX 

member shows this expression signature. In maize, the activity of a central signaling 

center required to balance cell fates within the shoot stem cell niche can thus be 

separated from WOX activity, pointing to divergence in the molecular networks 

underlying meristem function in maize compared to dicot species.  

Divergent molecular circuitries underlie SAM function in maize and Arabidopsis 

To examine the extent of such divergence and to assess the degree to which 

morphological diversity between the maize and Arabidopsis SAM is reflected at the 

level of molecular circuitry, we asked whether Arabidopsis homologs of the maize SAM 

domain specific genes show analogous patterns of expression. Notably, for about one 

third of maize domain specific genes, an Arabidopsis ortholog could not be identified. 

This percentage is surprising given that the origin of the layered meristem predates 

the divergence of monocot and dicot lineages (Gifford 1954), and that merely 19% of 

all expressed maize genes lack an identifiable Arabidopsis ortholog (Table S8). 

Moreover, whereas ~73% of maize vasculature specific genes have an Arabidopsis 

ortholog or close paralog with a vascular enriched pattern of expression, only 28% of 

remaining maize OC and CZ genes have a close Arabidopsis relative whose pattern 

of expression is conserved (Figure 3H). Also genes marking the incipient primordium 

(organ initiation clusters, Table S7) show more extensive expression conservation 

(Figure 3H; Table S8).  
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Aside from D1, the signaling-related genes connected to the maize OC lack homologs 

in Arabidopsis with a similar pattern of expression, and only two of the 10 TFs marking 

the maize OC have related genes enriched in the OC of Arabidopsis (Table S8). Within 

the CZ, particularly genes involved in transcriptional and post-transcriptional 

regulation, such as TFs, AGO5 and PUMILIO (PUM) genes, show a conserved pattern 

of expression (Table S8). AGO and Pumilio proteins are also required for germline 

and stem cell maintenance in animals (Siomi and Kuramochi-Miyagawa 2009; Slaidina 

and Lehmann 2014), pointing to possible fundamental features of stem cell regulation. 

Thus, while select processes are shared, highly divergent sets of genes define the OC 

and CZ in maize and Arabidopsis. This not only indicates crucial differences in stem 

cell regulation but also that the stem cell state itself can reflect the differential activity 

of a range of processes, a notion supported by the finding that quantitative expression 

level changes in  hundreds of genes involved in wide array of metabolic and cellular 

functions distinguish the CZ from leaf primordia (Figure 2A; Table S5).  

Complex TF signatures drive cell identities 

The expression divergence between maize and Arabidopsis raises the question how 

cell fates within the maize SAM are specified. Many TFs show tissue-specific or 

differential patterns of expression, predicting a causal relationship to the dynamic 

expression changes characterizing individual cell and tissue types. To address this, 

we performed a principal component analysis (PCA) considering expression values of 

all TFs across the 10 domains under study. This identified 3 principal components that 

distinguish meristematic tissues (PC1), vasculature (PC2) and internode (PC3), 

respectively (Figure 4A; Table S9). Interestingly, this spatial separation based merely 

on the expression profiles of TFs, which represent ~7% of all expressed genes, mirrors 

the overall trends observed in correlation analysis (Figure 1E). This supports the idea 

that defined sets of TFs underlie the cell- and domain-specific expression of select 

target genes within diverse gene families to specify cell fate.  

Further predicting causative relationships between specific TF families and tissue 

identity, the mean expression values of most TF families are strongly correlated with 

a given PC (Figure 4B,C; Table S9). 11 of the 55 maize TF families (http://grassius.org/) 

are positively correlated to vascular identity (PC2; Figure 4C), including the earlier 

mentioned Dof TFs, type-B ARRs known to promote vascular identity (Yokoyama et 
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al. 2007), as well as TUBBY and G2-like TFs of which several show vascular specific 

expression (Table S3). The mean expression values for 23 TF families are highly 

correlated with PC1, of which 17 are positively-correlated (Figure 4C). Among them 

the GeBP, FARL, NAC, and Homeobox TFs, which have a demonstrated link to 

meristem function (Vollbrecht et al. 2000; Aida and Tasaka 2006; Chevalier et al. 2008; 

Aguilar-Martínez et al. 2014). Mean expression for the remaining 6 families is 

negatively-correlated with PC1, suggesting they act as repressors of meristem identity 

and/or promote organogenesis. Indeed, YABBY, GRF, and OFP TFs either directly or 

indirectly repress KNOX gene function (Dai et al. 2007; Hay and Tsiantis 2010; Kuijt 

et al. 2014; Wang et al. 2016).  

Of the TF families positively-correlated to PC1, the GeBP, HB, ABI3/VP1 and NAC TF 

families are overrepresented among Tip enriched genes in DE and SE analyses 

(Figure 2B; Table S4). In addition, 81 out of 583 PC1-correlated TFs are included in 

the meristem core or subdomain clusters (Table S7). However, most TFs are 

expressed more broadly, and correlation to PC1 reflects the additive effect of more 

subtle quantitative expression differences from multiple TF family members across the 

vegetative apex. Interestingly, the collective quantitative expression differences of all 

PC1-correlated TFs offer a basis for generating meristem- and CZ-specific patterns of 

expression. Positive PC1-correlated TFs show highest cumulative expression in the 

meristem and the CZ particularly, whereas expression of TFs negatively-correlated to 

PC1 is lowest in these tissues. When combined, the opposing effects of these TFs 

could conceivably bring about tissue specificity (Figure 4D). Accordingly, the spatially 

restricted expression of meristem- and CZ-specific genes is predicted to reflect the 

combinatorial activities of multiple meristem-promoting and -repressing TFs. 
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Figure 4. Combinatorial effects of multiple TFs distinguish cell identities. (A) PCA showing TF 

expression across domains mirrors trends of genome-wide expression profiles with PC1 (red) 

and PC2 (blue) separating Tip and vasculature, respectively. PC3 (yellow) distinguishes the 

internode, and leaf primordia group together. (B) Mean TF family expression across domains 

correlates with given PCs. Examples are shown for PC1 (left) and PC2 (right). Correlation 
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coefficients (r) are indicated. V, vasculature; M, meristem; Int, internode. (C) Overview of 

correlation coefficients (r) for each TF family to each major PC. A threshold of 0.6 (dashed 

line) was used as correlation cut-off. Mean expression of TF families shown in red is 

negatively-correlated to meristem identity. (D) Diagrams illustrating combined expression 

values for all TFs positively- (green) and negatively-correlated (red) to PC1 together can 

govern cell type specificity (yellow). Grey, not examined. (E) Visualization of a GRN for select 

CZ-specific genes (yellow and blue) with combinatorial and hierarchical interactions from TF 

families positively- (green) and negatively-correlated (red) to PC1, as well as individual CZ-

specific TFs (blue). (F) Percentage of CZ-specific genes with binding sites for PC1-correlated 

TF families in their promoter. The number of tested motifs is given in parentheses. TF families 

shown in red are negatively-correlated to PC1. (G) Distribution of KN1 bound (dark orange) 

and KN1 bound and modulated (light orange) targets among apex-expressed genes grouped 

into 20 bins based on SE score (right y-axis) shows KN1 primarily targets dynamically-

expressed genes. Obs, observed; Exp, expected. (H) DEGs targeted by KN1 are preferentially 

expressed in organ primordia and vasculature. n.s., not significant; **, p < 0.01; ***, p < 0.001 

based on Chi-square test with Yates' continuity correction. 

Combinatorial effects of diverse TFs promote stem cell fate  

To test this hypothesis and to assess a contribution of PC1-correlated TFs to cell fate 

specification, we constructed a gene regulatory network (GRN) based on the 

occurrences of TF binding motifs within the promoters of CZ-specific genes. Indicative 

of functional regulatory interactions in vivo (Reece-Hoyes et al. 2013; Sparks et al. 

2016), cis-regulatory elements for all 13 PC1-correlated TF families with available 

binding position weight matrices are highly enriched in proximal promoters of CZ 

genes relative to whole genome incidence (Table S10).  

The GRN reveals a highly interconnected arrangement of possible transcriptional 

regulatory interactions. Each of the 13 PC1-correlated TF families can target a 

substantial number of CZ-specific genes (Figure 4E, F; Figure S4A). For instance, 

both FARL and HD-ZIPI DNA-binding motifs are present in the promoters of nearly 

half the CZ-specific genes (Figure 4F). Interestingly, both TF families mediate 

transcriptional responses downstream of light signaling (Harris et al. 2011; Siddiqui et 

al. 2016), pointing to mechanisms allowing for plasticity in the specification of 

functional SAM domains in response to environmental cues. Conversely, the 

promoters of CZ-specific genes contain cis-regulatory motifs for on average 5 distinct 
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PC1-correlated TF families, with some promoters containing binding sites for as many 

as 10 of the 13 families analyzed (Table S11). This reinforces the idea that domain- 

or tissue-specific expression reflects the combinatorial actions of multiple TFs. Further, 

the combination of TFs target sites in individual promoters varies considerably (Table 

S11), suggesting that tissue specificity can be achieved in many ways.  

Noteworthy, most promoters include binding sites for both TFs positively- and 

negatively-correlated to PC1 (Figure 4E, F; Figure S4A), consistent with the idea that 

the spatially restricted expression of CZ genes reflects the combinatorial activities of 

both meristem-promoting and -repressing TFs. The GRN further shows hierarchical 

transcriptional regulation, with more broadly expressed PC1-correlated TFs 

converging on the promoters of CZ-specific TFs (Figure 4e). Binding sites for both 

more broadly expressed and tissue-specific TFs are present in promoters of other CZ 

genes, generating a network configuration that would reinforce tissue specificity of cell 

fate determinants (Barolo and Posakony 2002; Niwa 2018). Given the 

overrepresentation of TFs among tissue-specific genes, such regulatory relationships 

appear a general feature underlying cell identities. 

KN1 promotes meristem fate by repressing organogenesis and differentiation 

The above GRN points to substantial redundancy among TFs in meristem regulation. 

Nonetheless, mutations in kn1, which is part of the meristem core cluster (Figure S3C), 

can show a highly penetrant meristem termination phenotype (Vollbrecht et al. 2000). 

Interestingly, KN1 targets (Bolduc et al. 2012) are specifically enriched among 

dynamically expressed genes (Figure 4G, H), indicating a role for KN1 in generating 

differential patterns of expression across the apex. KN1 particularly targets genes 

preferentially expressed in the vasculature and P0, where it is not itself expressed. 

KN1 thus seems to regulate meristem activity primarily by repressing differentiation 

rather than promoting meristem identity. Supporting this notion, genes predicted to 

drive organogenesis, e.g. auxin signaling, cytokinin turnover, and cell wall remodeling, 

are overrepresented among KN1 targets (Figure S4B; Table S12). Moreover, 

consistent with being a central hub in the CZ GRN, KN1 binds a substantial number 

(~23%) of PC1-correlated TFs. However, only TFs negatively-correlated to PC1 are 

enriched among the KN1 targets, whereas those positively-correlated are depleted 

(Table S13). Thus, KN1 is a master regulator of meristem activity that mediates 
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indeterminacy by selectively targeting key transcriptional regulators and signaling 

pathways that promote organogenesis and differentiation.  

Dynamically-expressed meristem genes modulate important architectural 

traits  

A combinatorial quantitative contribution from diverse TFs to cell fate specification 

confounds mutational analyses. We therefore took advantage of data from genome-

wide association studies (GWAS) to address function, and tested whether potential 

natural variation present at these loci contributes to the quantitative variation in plant 

morphology present among maize varieties. Individual traits measured in more than a 

dozen GWAS studies (see Table S14 for details) were broadly classified as being 

architectural or non-architectural in nature. Collectively, ~60% of SNPs associated 

with traits in either broad category are located within 10 kb of apex-expressed genes 

(Table S14). Strikingly, given the stringent criteria applied (see Methods), PC1-

correlated TFs are significantly enriched among expressed genes associated with 

plant architectural traits (Figure 5A). In contrast, natural variation linked to disease and 

metabolic traits maps preferentially near TFs underlying PC3. A breakdown into 

individual architectural traits shows that different PC1-correlated TF families control 

distinct morphological features (Figure 5B). For instance, natural variation near 

ABI3/VP1 and YABBY TFs is linked to diversity in plant height, whereas allelic diversity 

at Myb-rel and OFP TFs is strongly associated with leaf morphology traits, and at 

Trihelix and GRF TFs with node number.   

Plant morphological diversity is thus determined in part by TFs connected to cell fate 

decisions in the SAM. In addition, genes identified by SE to have a tissue-specific or 

dynamic pattern of expression are uniquely enriched near architectural Trait 

Associated SNPs (TASs), whereas constitutively expressed genes are strongly 

depleted (Figure 5A; Figure S5). This highlights an unexpected importance for 

polymorphisms near dynamically expressed genes in shaping morphological variation, 

and identifies such genes as key targets during breeding selection. Among the 

dynamically expressed genes, members of the meristem core and subdomain clusters 

are significantly enriched again only near architectural TASs, affecting a variety of 

morphology traits (Figure 5A, C). However, the subset of genes marking the CZ is 

depleted near SNPs underlying variation in the majority of adult plant characters. 
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Instead, natural variation near genes marking cells of the OC or PZ strongly influences 

the overall morphology of the plant (Figure 5C). Adult plant characters, including key 

agronomic traits, such as leaf angle, leaf shape, plant height, flowering time, and 

inflorescence morphology, are thus to a remarkable degree regulated by gene 

circuitries acting in the SAM.  

 

Figure 5. Dynamically-expressed meristem genes modulate important architectural traits. (A) 

Significance plot illustrating that natural variation underlying plant architectural traits is 

significantly enriched specifically near PC1-correlated TFs, dynamically expressed genes, and 

meristem-specific genes. In contrast, architectural TASs are strongly depleted near 

constitutively expressed genes. Dashed line, significance threshold (p = 0.05) based on Chi-

square test with Yates' continuity correction. Input gene numbers are given in parentheses. 

(B) Enrichments of TASs near individual TF families either positively- or negatively-correlated 

(red) to PC1 shows different TF families shaping distinct morphological features. (C) 

Enrichments of TASs influencing individual architectural traits near PC1-correlated TFs and 

genes marking the PZ and OC. TASs for most architectural traits are depleted near CZ-specific 

genes. 

Discussion 

The SAMs of most angiosperms share a basic functional organization. Meristems are 

nonetheless, characterized by striking diversity in shape and size (Steeves and 



 154 

Sussex 1989), as nicely exemplified by the highly divergent morphologies of the maize 

and Arabidopsis SAM. Our study shows that this morphometric diversity is reflected at 

the level of molecular circuitry. The high-resolution gene expression atlas identified 

molecular signatures defining critical domains of the maize vegetative apex. This 

reveals that distinct sets of genes underlie the regulation and identity of stem cells in 

maize versus Arabidopsis. Nevertheless, expression of ZmFCP1 specifically in the CZ 

of the maize SAM predicts the presence of a locally restricted CLE/WOX module to 

balance stem cell number and stably anchor the CZ to the growing shoot tip. In 

Arabidopsis, two opposing signaling centers provide relevant positional cues; mobile 

WUS from the OC promotes stem cell identity in distal cells, and epidermal-derived 

miR394 anchors the CZ to the SAM tip (Yadav et al. 2011; Knauer et al. 2013; Daum 

et al. 2014). In maize, the OC is not defined by WOX expression, and miR394 is absent 

from the SAM (Javelle and Timmermans, unpublished data), suggesting an alternative 

mechanism to maintain a region of stem cell competence at the tip. An intriguing 

hypothesis is that in the vegetative SAM of maize the sources of these signals are 

displaced. Likely candidates to promote stem cell identity are ZmWOX9b and 

ZmWOX9c, which are both expressed in the L1 of the CZ. Consistent with this idea, 

ZmFCP1 is primarily expressed in subepidermal layers, where it overlaps with its 

receptors FEA2 (Je et al. 2018) and FEA3 (Je et al. 2016). WOX9 protein could 

represent a steady, but inwards-directed stem cell-promoting factor that in conjugation 

with hormones and other signals originating from the OC provide the positional 

information required to stabilize stem cell activity in the growing niche. 

The cellular mechanisms linking positional inputs to patterns of TF activity and the 

differentiation of distinct cell and tissue types are highly complex. Cell identities are 

distinguished by the differential expression of hundreds of genes involved in wide array 

of metabolic and cellular processes. A surprising number of these DEGs are 

expressed at levels far exceeding those of other family members. Thus, reminiscent 

of divergent paralogs driving morphological innovation (Panchy et al. 2016), sub-

functionalization of gene family members is a key feature underlying the differentiation 

of distinct cell types. These findings further identify single DEGs as prime targets via 

which to shape plant morphology and manipulate developmental traits critical to crop 

improvement. 
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The CZ GRN further predicts that genes effecting cell identity are targeted by both 

activating and repressing TFs and that more broadly expressed TFs act in a 

combinatorial and hierarchical manner with cell type-specific TFs to define their 

spatially restricted patterns of expression. Network configurations in which target gene 

expression reflects the combinatorial additive and opposing effects of more general 

and locally restricted TFs is emerging as a general feature underlying developmental 

patterning (Barolo and Posakony 2002; Sparks et al. 2016; Reiter et al. 2017; Niwa 

2018). These complex network architectures buffer gene expression by reducing the 

impact of mutations in individual TFs and, moreover, allow cells to discriminate true 

signaling inputs from background gene expression fluctuations to provide robustness 

(Sokolik et al. 2015). These features are particularly relevant to plants given their 

sessile nature and the need to maintain stable developmental programs under highly 

variable conditions.  

Nevertheless, this mechanism of robustness remains inevitably accompanied by 

vulnerabilities, as perturbations in highly connected nodes, such as TFs at the top of 

a transcription cascade, can lead to a collapse of the entire network (Barabasi and 

Oltvai 2004). For instance, misregulation of KN1, which targets nearly half the TFs 

negatively-correlated with meristem fate, leads to severe developmental defects 

(Smith et al. 1992; Vollbrecht et al. 2000). Curiously, expression of very few targets is 

altered in such mutants (Bolduc et al. 2012). Perhaps, KN1 functions as a pioneer 

factor that facilitates binding of other TFs to regulate target gene expression in this 

context dependent manner (Reiter et al. 2017). However, given that KN1 primarily 

targets genes that function in organ primordia, an alternative, non-mutually exclusive 

view for the contribution of KN1 to SAM function is that it generates a state of default 

repression (Barolo and Posakony 2002). In this scenario, KN1 safeguards cells in the 

meristem from erroneously activating the differentiation program.  

Although morphological diversity between plant species is thought to elaborate 

primarily post-meristematically (Steeves and Sussex 1989), our data shows that maize 

plant architecture is to a remarkable degree regulated by molecular circuitries acting 

in the vegetative SAM. Both the high degree of TF connectivity and the broad spectrum 

of cellular processes underlying cell identity would allow a degree of circuitry 

evolvability. This is measured as quantitative variation, specifically in morphological 
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traits. Our findings highlight a distinctive contribution from allelic diversity near 

dynamically expressed genes to phenotypic variation. Particularly polymorphisms 

near PC1-correlated TFs connected to cell fate decisions in the SAM, as well as genes 

expressed in the organogenic PZ or in the OC, which orchestrates the balance 

between stem cell maintenance and organogenesis, are associated with 

morphological diversity. Besides defining genes governing the identity and function of 

critical domains within the maize SAM, our gene expression atlas thus identifies key 

targets for selection in the improvement of agronomically-important traits. 

Methods 

Plant materials 

All analyses were performed on 14 day-old B73 seedlings grown under 16 h 24°C light 

and 8 h 20°C dark cycles. Mutant alleles for ZmLOG7 (mu1030680, mu1052820), 

dwarf plant1 (d1-4), ZmCIPK4 (mu1046464); ZmHMA2 (mu1076495), 

GRMZM2G050234 (mu1037811, non-phenotypic), GRMZM2G416817 (mu1070579, 

non-phenotypic) and GRMZM2G168807 (mu1038844, non-phenotypic) were 

obtained from the Maize Genetics Cooperation Stock Center. DuPont Pioneer kindly 

screened for exon insertion alleles for ZmFCP1 and ZmDRP4a. Transposon insertion 

alleles were introgressed for 3-4 generations into B73 (Zmfcp1) or T43 (all other 

mutations) prior to genetic and phenotypic analysis. See Table S15 for gene IDs. 

Laser microdissection and RNAseq library construction 

Hand-dissected apices of 14 day-old B73 seedlings were fixed in acetone, embedded 

into paraffin, and sections of 8 µm spread on 1.0 PEN membrane Slides (Zeiss), as 

described (Scanlon et al. 2009). After deparaffinization in xylene, cells of interest were 

captured into AdhesiveCap 500 tubes (Zeiss) using the PALM Micro-Beam system. 

To minimize variation, tissue samples were captured from sections from at least 10 

individual apices for each of two biological replicates. RNA was extracted using the 

PicoPure RNA isolation kit (Arcturus), treated with DNaseI (Qiagen), and amplified 

with the TargetAmp 2-Round aRNA Amplification Kit 2.0 (Epicentre Biotechnologies). 

Single-end RNAseq libraries were constructed using standard Illumina protocols 

(Illumina) and sequenced (100 bp) on the Illumina HighSeq2000 platform.  
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Gene expression analyses 

The nucleotides of each raw read were scanned for low quality bases. Bases with a 

PHRED quality value <15 (out of 40), i.e. with error rates £ 3%, were removed by 

Data2Bio’s trimming pipeline. Trimmed reads were aligned to the B73 RefGen_V3 

using GSNAP (Wu and Nacu 2010), and uniquely mapped reads allowing ≤2 

mismatches every 36 bp and less than 5 bases for every 75 bp as tails were used for 

subsequent analyses. Read counts per gene were computed using B73 gene 

annotation version FGSv5b. Library metrics are listed in Table S1. Gene expression 

levels were normalized to RPM rather than RPKM, as linearly amplified RNA captures 

the 3’ 400-500 nucleotides of transcripts (Scanlon et al. 2009). Relatedness across 

tissue samples was determined based on the expression values of all genes 

expressed in each pairwise comparison using Pearson’s correlation in R. Subsequent 

analysis were performed on genes with a mean expression value ≥ 2 RPM in at least 

one of the 10 tissues sampled. Differential gene expression was determined using the 

DESeq (Anders and Huber 2010) package in R with default parameters and a BH-

corrected p value < 0.01 cut-off (Benjamini and Hochberg 1995). Cell type specific 

genes were identified by Shannon entropy (SE) (Schug et al. 2005). The SE density 

distribution for all expressed genes fits a Chi-square distribution (p < 2.2E-16, 

Pearson’s Chi-square normality test). SE scores <2.33 were considered as domain-

specific to account for overlaps among some of the domains analyzed. For cluster 

analysis, genes showing a ≥ 2-fold expression change in any 2-way comparison 

between meristem, Tip, P0 – P3 were identified using Cluster Affinity Search 

Technique. Cluster analysis on the dynamically expressed genes was conducted in 

the MultiExperiment Viewer (MeV) software package using Spearman Rank 

Correlation as a distance metric and a threshold parameter of 0.8 according to (Ben-

Dor and Yakhini 1999). Heatmaps were generated in R using the heatmap.2 function 

in the gplots package (Warnes et al. 2016). 

Enrichment analysis 

MapMan annotations of the maize filtered gene set (v5b.60 (Usadel et al. 2009)) were 

used for functional enrichment analyses using hypergeometric distribution-based 

enrichment testing with GOseq (Young et al. 2010). TFs and hormone related genes 
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were manually annotated based on information from Grassius (http://grassius.org) 

(Yilmaz et al. 2009) and published work, or through identification of maize homologs 

of known Arabidopsis genes using the paralog search tool in BioMart 

(http://www.gramene.org) (Tello-Ruiz et al. 2017). Enrichments were determined 

using Fisher’s exact test and reported as BH-adjusted p values (Benjamini and 

Hochberg 1995). Pathway analyses were performed with the ClueGO plug-in in 

Cytoscape (Shannon et al. 2003; Bindea et al. 2009) with standard settings on the 

GO/MolecularFunction, GO/BiologicalProcess, and KEGG databases. 

PCA and TF correlation analyses 

An expression matrix of all expressed TFs was compiled and after standardization, 

PCA was conducted using the Prcomp function in R. Under the assumption that TFs 

belonging to the same family are functionally interchangeable, the contributions of TF 

families to each principal component was estimated based on the correlations 

between principal component variables and the average expression values for each 

TF family using the Corrgram package in R. 

cis-regulatory motif enrichment  

To determine enrichment of cis-regulatory elements for PC1-correlated TFs within the 

promoters of Tip-specific genes, we used the computational prediction pipeline 

described in (Eveland et al. 2014) that leverages the Search Tool for Occurrences of 

Regulatory Motifs (STORM) from the Comprehensive Regulatory Element Analysis 

and Detection (CREAD) suite of tools (Smith et al. 2006). Enrichment scores for 51 

distinct position weight matrices (PWMs) for 13 PC1-correlated TF families obtained 

from (Franco-Zorrilla et al. 2014; Mathelier et al. 2015), were calculated based on their 

occurrence within promoter regions spanning 1 kb upstream to 500 bp downstream of 

the transcription start site in CZ specific genes over the complete B73 filtered gene set 

(v5b.60; Table S10). The Gene Regulatory Network was constructed in Cytoscape 

(Shannon et al. 2003).  

KN1 target enrichment  
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Bound, and bound and modulated KN1 targets were obtained from (Bolduc et al. 2012), 

of which 2960 and 574 are expressed within the apex, respectively. Target 

enrichments were calculated as divergence from expectation using the following 

formula, . Significance was calculated using Chi-square test with Yates' continuity 

correction in R. 

Trait associated SNP (TAS) enrichment 

Genes located within 10 kb of SNPs associated with architectural traits and non- 

architectural traits were identified in R (script available on request). See Table S14 for 

a complete list of trait associated SNPs and their classifications. Enrichments over the 

occurrence of all expressed genes near trait associated SNPs were calculated as 

divergence from expectation. Stringency was applied by removing possible 

redundancies among trait associations by: 1) considering genes containing multiple 

SNPs associated with a given trait only once, and 2) counting genes associated with 

multiple architectural, respectively, non-architectural traits only once. Significance was 

calculated using Chi-square test with Yates' continuity correction in R. 

RT-PCR and in situ hybridization 

For RT-PCR, 4 ug RQ1 DNAse (Promega) treated aRNA was converted into cDNA 

using the Superscript III First-Strand Synthesis System (Invitrogen) with random 

hexamer primers according to manufacturer’s protocol. In situ hybridizations were 

performed on apices of 14 day-old B73 seedlings according to (Javelle and 

Timmermans 2012). Gene specific primers used in these analyses are listed in Table 

S15. 

Meristem size measurements 

Hand dissected apices of mutant and non-mutant siblings were vacuum infiltrated for 

2x 15 min in FAA (10% formaldehyde, 5% acetic acid, 45% ethanol solution) and fixed 

overnight in fresh FAA on a shaker at 4°C. Dehydration was performed on a shaker at 

4°C for 1 h in 70%, 85%, 95%, and 100% ethanol, respectively, followed by 1 h in 100% 

ethanol at room temperature (RT). Apices were cleared overnight at RT on a shaker 

with ethanol:methyl salicylate (1:1), followed by 1 day in 100% methyl salicylate at RT, 
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changing the solution once. Images were acquired with Nomarski optics on a Leica 

DMRB transmitted light microscope connected to a MicroPublisher 5.0 RTV camera 

(QImaging). Meristem height and radius were measured at the height of the P1 cleft 

from near-median longitudinal optical sections. Values were determined from two 

independently introgressed lines, and normalized to the height and radius of wildtype 

siblings. Significance was determined by unpaired two-tailed Student’s t-test in 

GraphPad Prism.  

Arabidopsis expression analysis 

Arabidopsis orthologs and paralogs of domain specific maize genes were identified 

using BioMart v.07 Plant Genes 56 (http://www.gramene.org) (Tello-Ruiz et al. 2017). 

Expression profiles for the following Arabidopsis domains AtHB8 (xylem), S17shoot 

(phloem), WUS (OC), CLV3 (CZ), FIL (organ primordia), HDG4 (meristematic L2), 

HMG (meristematic L1), KAN1 (outer PZ) and LAS (organ boundary), were obtained 

from (Yadav et al. 2014). To accommodate the partial overlap between domains, the 

following comparatively lax criteria were applied to determine tissue specificity: 

vasculature, relative AtHB8 or S17shoot expression > 25% and expression in all other 

domains < 20%; organ initiation, exclude S17shoot and AtHB8 expression, relative 

FIL or LAS expression > 25%, expression in KAN, CLV3 and WUS < 20%; OC, 

exclude S17shoot and AtHB8 expression, relative WUS expression > 25%, expression 

in FIL, KAN, LAS, HMG and HGD4 < 20%; CZ, exclude S17shoot and AtHB8 

expression, relative CLV3 expression > 25%, expression in FIL, KAN, LAS < 20% (see 

Figure S3E; Table S8).  

Data access 

All high-throughput sequencing data, both raw and processed files, have been 

deposited in NCBI's Gene Expression Omnibus and are accessible upon publication 

under accession number SRP101301. Mean expression values for most tissues are 

also visible as a track on the MaizeGDB Genome Browser (http://www.maizegdb.org) 

under ‘Expression and Transcripts – Shoot Apex Atlas’. The authors declare that all 

other data supporting the findings of this study are available within the manuscript and 

its Supplemental files or are available from the corresponding author upon request. 
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Figure S1. Precision of LCM. (A) RT-PCR for marker genes kn1 and ltp1 on amplified RNA 

from laser captured domains reveals a high precision of laser microdissection. Consistent with 

their known expression domains, kn1 transcripts are present at high levels in the L2 of the 

meristem and Tip and barely detectable in the L1, internode, and developing leaf primordia, 

whereas ltp1 transcripts are detec Table Specifically in the epidermis of incipient and 

developing leaf primordia. Mer, meristem; Int, internode. (B) Transcript levels for the marker 

genes kn1, ltp1, outer cell layer4 (ocl4), drooping leaf ortholog2 (drl2), sparse inflorescence1 

(spi1), and like auxin resistant2 (ZmLAX2) across the domain RNAseq libraries reflect their 

previously reported in situ expression patterns, further confirming the precision of 

microdissections. See Table S15 for gene IDs and references. 
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Figure S2. Predominant differential expression of individual gene family members 

distinguishes cell identities. (A) Heatmap displaying expression profiles of expressed CLE 

genes. Asterisk, cell type specific CLEs. (B) In situ hybridization shows FCP1 transcripts 

accumulate in the L2 of the Tip. Arrowhead, P0. (C-E) Additional examples of gene families in 

which individual or select members show abundant and differential expression across the 

apex. Examples are shown for gene families with functions related to hormone signaling (C), 

cell wall remodeling (D), or redox regulation (E). Number of members in the family is shown 

in parenthesis. Only genes expressed at levels ≥ 2 RPM are shown. Mer, meristem; Int, 

internode; Vas, vasculature. 
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Figure S3. CAST clustering and transcriptional conservation. (A-C) Left: main gene 

clusters with expression profiles characteristic for leaf initiation (A), leaf progression (B) or 

meristem core identity (C). Right: representative in situ hybridization images. Red line, mean 

expression values; Grey profile, range between highest and lowest expression values. (D) 

Heatmap displaying expression profiles of key genes in the proposed SAM CLE-WOX 

signaling module. ZmFCP1 is expressed specifically in subepidermal layers of the CZ, 

expression overlaps with that of receptors FEA2 and FEA3. In contrast, expression of 

ZmWOX9b and ZmWOX9c specifically marks the L1 of the CZ. Mer, meristem; Int, internode; 

Vas, vasculature. (E) Expression profiles of all domain-enriched Arabidopsis genes 

considered for comparative analyses. Red line, mean expression values. Grey lines, individual 

expression profiles; N, Number of genes; Ath, Arabidopsis thaliana. 
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Figure S4. Combinatorial effects of diverse TFs distinguish cell identities. (A) 

Visualization of a GRN for all CZ-specific genes (yellow) with combinatorial interactions from 

TF families positively- (green) and negatively-correlated (red) to PC1, as well as individual CZ-

specific TFs (blue). CZ-specific TFs (blue) can themselves be targeted by more broadly 

expressed PC1-correlated TF families revealing a hierarchy in the GRN. (B) Enrichment 

analysis on all expressed KN1 targets reveals KN1 preferentially targets genes connected to 

organogenesis. Color intensity reflects different Mapman category ranks. TF families shown 

in red are negatively-correlated to PC1 and meristem identity. 

 

 

Figure S5. Dynamically expressed genes shape morphological variation. Significance plot 

illustrating that natural variation underlying plant architectural traits is significantly enriched near genes 

with highly dynamic patterns of expression across the apex. Apex-expressed genes were grouped into 

20 bins based on SE score. Architectural TASs are significantly enriched near genes with low SE scores 

(Bins 1-3), whereas most constitutive expressed genes with high SE scores (Bins 18-20) are depleted 

for TASs. Dashed line, significance threshold (p = 0.05) based on Chi-square test with Yates' continuity 

correction. 
 

 

 

Table S1 to 16 (separate file) 

 

 

 

 

 

 

 



 172 

Appendix III. Nonrandom domain organization of the Arabidopsis genome at 
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The nuclear space is not a homogeneous biochemical environment. Many studies have demonstrated that the transcription-
al activity of a gene is linked to its positioning within the nuclear space. Following the discovery of lamin-associated domains
(LADs), which are transcriptionally repressed chromatin regions, the nonrandom positioning of chromatin at the nuclear
periphery and its biological relevance have been studied extensively in animals. However, it remains unknown whether com-
parable chromatin organizations exist in plants. Here, using a strategy using restriction enzyme–mediated chromatin immu-
noprecipitation, we present genome-wide identification of nonrandom domain organization of chromatin at the peripheral
zone of Arabidopsis thaliana nuclei. We show that in various tissues, 10%–20% of the regions on the chromosome arms are
anchored at the nuclear periphery, and these regions largely overlap between different tissues. Unlike LADs in animals,
the identified domains in plants are not gene-poor or A/T-rich. These domains are enriched with silenced protein-coding
genes, transposable element genes, and heterochromatic marks, which collectively define a repressed environment. In ad-
dition, these domains strongly correlate with our genome-wide chromatin interaction data set (Hi-C) by largely explaining
the patterns of chromatin compartments, revealed on Hi-C maps. Moreover, our results reveal a spatial compartment of
different DNAmethylation pathways that regulate silencing of transposable elements, where the CHHmethylation of trans-
posable elements located at the nuclear periphery and in the interior are preferentially mediated by CMT2 and DRMmeth-
yltransferases, respectively. Taken together, the results demonstrate functional partitioning of the Arabidopsis genome in the
nuclear space.

[Supplemental material is available for this article.]

The spatial organization of the genome within the nucleus is crit-
ical for many cellular processes (Van Bortle and Corces 2012). It is
broadly accepted that the packing of chromatin inside the nucleus
is not random, but is structured into several hierarchical levels
(Gibcus and Dekker 2013). Cytological studies have shown that
within the nucleus, each chromosome occupies a distinct domain
known as the chromosome territory (CT). In Arabidopsis thaliana,
CTs in interphase nuclei were unequivocally demonstrated with
chromosome painting, which further revealed a predominantly
random arrangement of CTs with respect to each other (Pecinka
et al. 2004). Recent Arabidopsis Hi-C experiments also revealed
many structural features of plant chromatin packing at both the
chromosomal and the local levels (Feng et al. 2014b; Grob et al.
2014; Wang et al. 2015). At a gene level, several studies in
Arabidopsis demonstrated an association between chromatin loops
and gene transcriptional activity, which involves a diverse spec-
trum of regulatory factors (Crevillén et al. 2013; Liu et al. 2013;
Ariel et al. 2014; Cao et al. 2014). On the other hand, the nonran-
dom location of chromatin segments with different biological
properties within the nuclear space has long been documented.
In Arabidopsis, densely packed and aggregated heterochromatin

(chromocenters) is often tethered at the nuclear envelope, whereas
telomeres often cluster and reside in the nuclear interior around
the nucleolus (Armstrong et al. 2001; Fransz et al. 2002). Another
recent study demonstrated structural and regulatory roles of chro-
matin associated with the nuclear matrix in plants (Pascuzzi et al.
2014). Together with experiments showing global rearrangement
of chromatin triggered by various environmental and develop-
mental factors, such as light (Barneche et al. 2014; Bourbousse
et al. 2015), microbial infection (Pavet et al. 2006), and cell differ-
entiation (Tessadori et al. 2007), all these studies highlight a close
interaction between chromatin structure and function in plants.

Chromatin positioning at the nuclear periphery in animals
has been extensively studied. The nuclear lamina is a layer of
meshwork beneath the nuclear envelope, consisting of lamin
and lamin-associated membrane proteins (Dechat et al. 2008).
The nuclear lamin was found to participate in organizing chroma-
tin structures by serving as an anchoring site for heterochromatin
(for review, see Mattout et al. 2015). Genome-wide identification
of chromatin regions associated with the nuclear lamina in ani-
mals led to the discovery of lamin-associated domains (LADs),
which are large-sized, depleted of active histone marks, and low
in gene density (Pickersgill et al. 2006; Guelen et al. 2008). On
the other hand, the nuclear pore complex (NPC), a giant protein
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complex located at the nuclear envelope, has also been shown to
play a role in tethering chromatin. Based on studies in yeast and
several animal species, genes positioned close to the NPC tend to
be highly transcribed (Strambio-De-Castillia et al. 2010).

Except for cytological studies showing a preferential associa-
tion of chromocenters with the nuclear envelope, little is known
about chromatin positioning at the nuclear periphery in plants.
This is largely because plant genomes do not encode proteins
with sequences similar to those of nuclear lamins in animals, al-
though in several plant species, a meshwork similar to the nuclear
lamina beneath the nuclear envelope has been observed (Ciska
and Moreno Díaz de la Espina 2014). Nevertheless, over the past
few years, a group of plant-specific nuclear matrix constituent
proteins (NMCPs), such as CROWDED NUCLEI (CRWN) in
Arabidopsis, have emerged as “plant lamina” components (Ciska
and Moreno Díaz de la Espina 2014; Zhou et al. 2015). It appears
that plant lamina components are distinct from those of animals,
as another recently identified candidate, KAKU4, is also plant-spe-
cific (Goto et al. 2014).Moreover, NPC components have been sys-
tematically identified and investigated (Tamura et al. 2010;
Tamura and Hara-Nishimura 2013; Parry 2015). These recent ad-
vances in knowledge provide opportunities for in-depth studies
on various biological processes that occur at the plant nuclear pe-

riphery. In the present study, we identified and characterized
Arabidopsis chromatin regions preferentially associated with the
nuclear periphery on a genome-wide scale.

Results

RE-mediated ChIP reveals nonrandom chromatin distribution at
the nuclear periphery
As a part of the NPC basket, the Arabidopsis nucleoporin NUP1
(also known as NUP136) has been shown to specifically localize
at the nuclear periphery (Lu et al. 2010; Tamura et al. 2010). In
our first attempt, we sought to use the NUP1 protein, tagged
with green fluorescent protein (GFP), to identify chromatin that
directly interacts with NPC, which might be related to the “gene
gating” events that have been demonstrated in yeast and animals
(Blobel 1985; Strambio-De-Castillia et al. 2010). In agreement with
previously reported results, the NUP1:GFP fusion protein was lo-
calized specifically at the nuclear envelope (Fig. 1A).With a regular
chromatin immunoprecipitation (ChIP) method, however, we
could not identify any chromatin regions enriched by NUP1:GFP,
even with our ChIP-seq libraries being sequenced more deeply
than typically needed for Arabidopsis (Supplemental Table S1).

Figure 1. Identification of chromatin located at the nuclear periphery by RE-ChIP. (A) Localization of the NUP1:GFP protein in an Arabidopsis nucleus:
(scale bar) 2 µm. (B) Procedures for RE-mediated ChIP with NUP1:GFP (green). Chromatin (purple lines) fragmentation and isolation are conducted
with a combination of RE (restriction enzyme) digestion and mild sonication. (C) Normalized sequence coverage (50-kb window size) on Chromosome
5 from various ChIP experiments. The horizontal bars depict pericentromeric regions, within which centromeric regions are highlighted in red. (D)
NUP1:GFP RE-mediated ChIP-seq signal (50-kb window size), represented as the log2 value of the ratio between normalized anti-GFP and IgG coverage,
over all five chromosomes. Horizontal bars indicate the centromeric/pericentromeric regions, as in C.

A. thal iana chromatin positioning

Genome Research 1163
www.genome.org



 174 

 
 

 

 

In contrast, a parallel ChIP experiment conducted on the same
material, but with an antibody against RNA polymerase II, showed
expected enrichment on a housekeeping gene (Supplemental Fig.
S1), ruling out possible technical failures in our ChIP experiments.
This negative result implied that NUP1:GFP did not directly inter-
act with chromatin, or that such interactions, if they occurred,
were not efficiently preserved by the crosslinking treatment in
our ChIP experiment. To enhance the sensitivity of enriching
chromatin loosely interacting with NUP1:GFP, we developed a re-
striction enzyme (RE)-mediated ChIP protocol, inwhich onlymild
sonication was applied to break the nuclei following digestion of
chromatin with RE (Fig. 1B; Methods). In principle, compared
to a regular ChIP method, in which chromatin is sheared into
small fragments by much stronger sonic waves, RE-mediated
ChIP causes less disruption to higher-order structures; in the case
of NUP1:GFPChIP, thismethod allows enrichment of the chroma-
tin positioned around the NPC, or the nuclear periphery.

We performed two RE-mediated ChIP-seq trial experiments
with different sonication intensities and examined the sequence
coverage with a 50-kb window setting to gain an overview of the
distribution of sequencing reads. Interestingly, the RE-mediated
ChIP with NUP1:GFP (hereafter referred to as NUP1 RE-ChIP-
seq) showed that chromatin in pericentromeric regions was gener-
ally enriched, whereas chromatin on the distal chromosome arms
tended to be depleted (Fig. 1C,D).Moreover, we foundmany inter-
stitial regions on the chromosome arms showing stronger contact
with NUP1:GFP (e.g., an interval corresponding to 2.0–3.0 Mb on
Chromosome 5) (Fig. 1D). In contrast, there were regions close to
pericentromeric chromatin but that exhibited depleted contact
with NUP1:GFP (e.g., an interval corresponding to 9.8–10.2 Mb
on Chromosome 3) (Fig. 1D). These patterns, which were clearly
correlated with sonication strength, could not be seen using our
regularChIP-seq assay (Fig. 1C, top). Tovalidate the RE-ChIPmeth-
od, we performed RE-ChIP-seqwith anti-H3K9me2 (Supplemental
Table S1) and compared the results with those derived from a
regular ChIP-seq (Stroud et al. 2014). Consistent with the fact
that the Arabidopsis pericentromeric heterochromatin is heavily
marked by H3K9me2, our RE-ChIP clearly captured this epige-
nomic feature at a global level (Supplemental Fig. 2A). In addition,
chromatin regions enriched by RE-ChIP-seq largely overlapped
with those enriched by the regular ChIP-seq, by which >80% of
chromatin regions enriched by ChIP-seq were found enriched in
each RE-ChIP-seq replicate (Supplemental Fig. 2B,C), indicating
the feasibility of the RE-ChIP method in capturing chromatin
features in plants. Furthermore, selected regions showing higher
NUP1 RE-ChIP signals could be confirmed with fluorescence in
situ hybridization (FISH) (Supplemental Fig. 3). Taken together,
our results suggest that certain chromatin regions on the
Arabidopsis chromosome arms are preferentially found near the
nuclear periphery.

It has been well demonstrated that chromocenters, which
consist of the centromere and pericentromeric regions, are located
preferentially at the nuclear periphery (Fransz et al. 2002; Fang and
Spector 2005). It was interesting that chromatin from centromeres
was not enriched in our NUP1 RE-ChIP-seq experiments (Fig. 1D).
A possible scenario accounting for this observation is that NPCs (or
at least NUP1-containing NPCs) are not evenly distributed at the
nuclear envelope, such that the NPC density is lower in regions
where chromocenters are anchored. For instance, kinetochore pro-
teins interact with Arabidopsis centromeres in almost all stages of
the cell cycle (Lermontova et al. 2013), and Gamma-tubulin
Complex Protein 3-interacting proteins (GIPs) play essential

roles in centromere assembly (Batzenschlager et al. 2015); these
interactionsmight sequester centromeres away fromNPCs.We ex-
amined nuclei in transgenic plants coexpressing NUP1:GFP and
mCherry:CENH3, in which the latter was exclusively loaded to
centromeres (Lermontova et al. 2006). We found that these two
proteins displayed complementary patterns at the nuclear periph-
ery, which explained our observation that centromeres were not
enriched by NUP1:GFP (Supplemental Fig. 4A). Apart from this,
consistent with the fact that pericentromeric chromatin is mostly
found at the nuclear periphery, the chromatin regions belonging
to the remaining pericentromeric regions showed the highest
NUP1:GFP RE-ChIP signals (Supplemental Fig. 4B–F).

Chromatin positioned at the nuclear periphery correlates
with Hi-C map
The conformation of the Arabidopsis genome in the nuclear space
has been recently revealed by several Hi-C experiments (Feng et al.
2014b; Grob et al. 2014;Wang et al. 2015). The Hi-Cmethod com-
bines chromatin conformation capture (3C) and high-throughput
sequencing to generate a comprehensive view of how chromatin is
folded (Lieberman-Aiden et al. 2009). Due to the nature of this
method, the Hi-C data only contains information on the position-
ing of chromatin with respect to itself (chromatin folding). As our
NUP1:GFP RE-ChIP-seq data focused on chromatin localization
with respect to the nuclear boundary, we considered whether
this nonoverlapping information could help us gain a better un-
derstandingof chromatin organization in the nuclei. Interestingly,
we found that NUP1:GFP RE-ChIP-seq signals were strongly corre-
lated with structural domains (SDs) derived from the Arabidopsis
Hi-C map (Grob et al. 2014), which could be visualized when the
chromosome armswere partitioned into two states using principal
component analysis (PCA) (Fig. 2A). It is worth noting that such
two-state classification, initially referred to as “AB” compartments,
was found to be strongly correlated to the demarcation of active/re-
pressed chromatin along the chromosome arms (Lieberman-Aiden
et al. 2009; Grob et al. 2014), and a connection between animal
LADs and the repressed compartment was recently shown on a
global scale (Vieux-Rochas et al. 2015). We found that chromatin
regions that had stronger contact with the nuclear periphery (with
stronger NUP1:GFP RE-ChIP-seq signals) were mostly classified as
the repressed compartment (Fig. 2A). Therefore, our results indi-
cate that the “AB” compartments of Arabidopsis chromatin are as-
sociated with a radial axis of nuclei, further indicating that
repressed chromatin is enriched at the nuclear periphery.

The Arabidopsis telomeres, except for those on the short arms
of Chromosomes 2 and 4, are located around nucleoli (Armstrong
et al. 2001; Fransz et al. 2002; Pontvianne et al. 2016). In general,
chromatin on the distal chromosome arms exhibits a positive cor-
relation with telomeres on a Hi-C map due to physical linkages,
and this correlation gradually drops when the genomic distance
increases. By checking the correlation between distal chromosome
arms and telomeres, we observed local valleys, most of which colo-
calized with the local peaks of NUP1:GFP RE-ChIP-seq data (Fig.
2B). Because these local valleys of correlation indicate decreased
chromatin interactions in the 3D space, this pattern agrees with
the fact that Arabidopsis telomeres are preferentially found in the
nuclear interior. We also found that some local valleys colocalized
with interactive heterochromatic islands (IHIs)/knot-engaged ele-
ments (KEEs), which are regions showing strong intra- and inter-
chromosomal interactions on Hi-C maps (Fig. 2B; Feng et al.
2014b; Grob et al. 2014). However, a comparison between KEEs
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and NUP1:GFP ChIP-seq did not reveal a connection between
them (Supplemental Fig. 5), suggesting that the clustering of
IHIs/KEEs does not preferentially occur at the nuclear periphery.

Chromatin positioning at the nuclear periphery has similar
patterns in different tissues
Our finding of the nonrandompositioning of chromatin at the nu-
clear periphery prompted us to further investigate the extent to

which these patterns vary among different plant tissues. In total,
we examined NUP1:GFP RE-ChIP-seq data generated from four
different tissues (Supplemental Table S1). The signal patterns, as
well as enriched genes, between biological replicates were highly
reproducible in each tissue (Fig. 3A; Supplemental Figs. 6–8).
Interestingly, at a chromosomal level, NUP1:GFP RE-ChIP-seq
data obtained from different tissues resembled each other (Fig.
3A; Supplemental Fig. 6). A common feature across these tissues
was that chromatin close to the centromere was more frequently

Figure 2. Correlation between chromatin anchored at the nuclear periphery and the Hi-C map. (A) Correlation between NUP1:GFP RE-ChIP-seq signal
and Hi-Cmap. The Hi-C maps (normalized at 20-kb resolution) of the left and right Chromosome 1 arms are shown as Spearman correlation matrices, from
which PCA was conducted; the eigenvalues of the first component are plotted below (red and blue bars) together with the NUP1:GFP signal (green lines,
20-kb window size), represented as the log2 value of the ratio between normalized anti-GFP and IgG coverage. (B) Anti-correlation between the telomeres
and NUP1:GFP RE-ChIP-seq signal. The left panel shows a Spearman correlation matrix of Chromosome 3 derived from a Hi-C map at 20-kb resolution.
Arrows depict KEE regions. The right panels highlight the 6-Mb distal chromosome regions, in which their correlation with the chromosome terminus
(the first 20 kb of Chromosome 3) in the Hi-C map are shown as black curves. Green curves show the NUP1:GFP signal, as in A. Due to physical linkage,
chromosome termini are expected to have strong colocalization with telomeres in the nucleus. In a Hi-C experiment, chromosome termini can be used to
infer the spatial interactions between telomeres and other genomic regions.
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found at the nuclear periphery than was chromatin on the distal
chromosome arms, which was reflected on a density plot showing
the distribution of enriched chromatin segments (Fig. 3B). We no-
ticed that in inflorescences, the difference in RE-ChIP-seq signal
amplitudes between the pericentromeric regions and distal chro-
mosome arms became much smaller, implying a lower selectivity
in positioning specific chromatin regions at the nuclear boundary
in reproductive tissues (Fig. 3A; Supplemental Fig. 6). Notably, for
each plant tissue used in this study, the RE-ChIP output signal was
the average of a mixture of different cell types. For the inflores-
cence tissue, compared to roots and leaves, the lower RE-ChIP sig-
nals around the pericentromeric regions might also be attributed
to a dilution effect among different cells with divergent chromatin
positioning patterns. Across different tissues, the regions enriched
at the nuclear periphery covered 10%–20% of the genome (Fig.

3C), with median sizes of 7–12 kb
(Supplemental Fig. 9; Supplemental
Table S2). A clustering analysis showed
that roots and leaves from 7-d-old seed-
lings formed a subgroup, although from
a tissue-identity point of view, leaf tissues
with different ages would be expected to
be clustered together (Supplemental Fig.
7). Nevertheless, due to the similar RE-
ChIP-seq signal profiles on a chromo-
somal scale (Fig. 3A; Supplemental Fig.
6), there were substantial overlaps of en-
riched chromatin regions between any
two given tissues (Fig. 3B,D). These re-
sults suggest that although both the line-
ar genome structure and the tissue
identity contribute to theway chromatin
is tethered at the nuclear periphery, the
former is the primary determinant.

Heterochromatic domains are enriched
at the nuclear periphery in Arabidopsis

Wenext explored thegenomic andepige-
nomic features associated with chroma-
tin positioned at the nuclear periphery.
As these chromatin regions were prefer-
entially located around centromeres, we
expected that features linked to the cen-
tromeric and pericentromeric regions
would be enriched. To reduce such
positional effects, we only included chro-
matin located at least 1Mb from pericen-
tromeric heterochromatin for all analyses
described below (unless otherwise stat-
ed). Of note, our analyses in this study
were not sensitive to a cutoff that we arbi-
trarily set. We obtained the same conclu-
sionswhenwechanged the cutoffs to 2or
3 Mb, in which more genomic regions
flanking the pericentromeric regions
were excluded.

Our association analyses of the
epigenetic and genomic features around
NUP1-enriched domain boundaries
showed similar epigenetic landscapes
compared to those of animal LADs, but

there were significant differences in terms of other genomic fea-
tures. For example, the NUP1-enriched domains were enriched
with classic heterochromatic marks, such as H3K9 methylation,
which has been linked to LADs (Towbin et al. 2012), and
H3K27me3, which has been shown to enhance the association of
chromatin to the inner nuclear membrane (Fig. 4A,B; Harr et al.
2015). Accordingly, the level of euchromatic marks was lower in-
side NUP1-enriched domains (Supplemental Fig. 10). On the other
hand, in contrast to LADs, NUP1-enriched domains were neither
substantially depleted with protein-coding genes (Fig. 5A;
Supplemental Figs. 11, 12A) nor enriched with A/T-rich sequences
(Fig. 4C). It isnot clearwhether theNUP1-enricheddomainbound-
aries are bound with insulator proteins, as they have not yet been
identified in plants. Nevertheless, we found that chromatin loops
connecting regions insideandoutside theNUP1-enricheddomains

Figure 3. Genome-wide identification of NUP1-enriched regions in various tissues. (A) Signals of
NUP1:GFP RE-ChIP-seq (20-kb window size), represented as the log2 value of the ratio between normal-
ized anti-GFP and IgG sequence coverage over Chromosome 1. For each tissue, the solid and dotted lines
depict two replicates. (B) Distribution of NUP1-enriched domains across the genome viewed with the
Integrative Genomics Viewer browser (Robinson et al. 2011). (C) Percentage of NUP1-enriched genomic
regions: (inf) inflorescence. (D) Venn diagram of genes enriched in four tissues.
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were underrepresented; whereas chromatin interactions restricted
within one NUP1-enriched domain were overrepresented (Fig.
4D). To acertainextent, this pattern is analogous to thatof topolog-
ically associating domains (TADs), which are predominant struc-
tural units of higher-order chromatin architecture in many
metazoan genomes (Dixon et al. 2012). Typically, chromatin inter-
actions within a TAD are observed more often than expected,
whereas those across TAD boundaries are underrepresented. As
chromatin insideNUP-enricheddomains showedsuppressed inter-

actions with outside regions in our study, from a spatial point of
view, these domains represented structures that were isolated
from their surroundings.

The Arabidopsis nuclear periphery is enriched for repressed
chromatin
Based on gene annotations, we found that in all tissues, trans-
posable element (TE) genes and pseudogenes were enriched

Figure 4. Epigenetic, genomic, and structural features of chromatin tethered at the nuclear periphery. (A) A representative genomic region from
Chromosome 1 showing the distributions of NUP1-enriched chromatin identified from 7-d-old leaf tissues (shaded in green) and various epigenetic marks.
Average enrichment means the percentage of regions (calculated from 100-bp windows) enriched for the respective epigenetic mark. (B,C) Epigenetic
marks (B) and GC content (C) around NUP1-enriched domain borders, shown as a vertical line separating the white and gray blocks. For each plot, the
area on the right indicates NUP1-enriched domains (although not all are larger than 10 kb). Average enrichment in B is defined as in A. The GC content
in C is in a window size of 100 bp, with a step size of 20 bp. Because enrichment of gene bodies is found inward from NUP1-enriched domain boundaries
(see Supplemental Fig. 12), for the background, we randomly picked 3000 genes with the same expression distribution profile as that of NUP1-enriched
genes. For these control genes, we extracted the 20-kb regions flanking either their transcription start sites or their transcription termination sites, which
were selected randomly. (D) Different types of chromatin loops associated with NUP1-enriched domains (including those in pericentromeric regions).
Chromatin loops are from Liu et al. (2016). For both “intra” and “across,” the number of observed chromatin loops are significantly different (P < 2.2 ×
10−16) relative to the permutation-based null distribution of the background, which was simulated by shifting the coordinates of NUP1-enriched domains
±50 kb or ±100 kb.
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compared to the control sets, whichwere simulated by shifting the
coordinates of the enriched regions a certain distance upstream or
downstream (Fig. 5A; Supplemental Fig. 11; Supplemental Table
S3). We considered these control sets to be more appropriate
than random permutations, as they maintained the distribution
pattern of the enriched regions across the genome. In terms of
transcriptional activity, the enriched protein-coding genes clearly
had lower expression levels (Fig. 5B), which aligned with our
finding that chromatin positioned at the nuclear periphery was
generally repressed (Figs. 2, 4). Interestingly, for genes with a tran-
scription direction toward the interior of the NUP1-enriched do-
mains, we observed a higher occurrence of transcription start
sites (TSSs) of genes with low transcription levels around domain
boundaries (Supplemental Fig. 12B), suggesting a role of gene bod-
ies in demarcating these chromatin domains. On the other hand,
TE genes enriched at the nuclear periphery did not show lower ex-
pression levels than those that were not enriched (Fig. 5B). Instead,
these two types of TE genes differed in terms of their lengths and
locations with respect to protein-coding genes; TE genes located

at the nuclear periphery were signifi-
cantly longer and were located further
from protein-coding genes (Supplemen-
tal Fig. 13). Additionally, TE genes en-
riched at the nuclear periphery showed
a higher average level of hetero-
chromatin marks, such as H3K9me2,
H3K27me1, and DNA methylation (Sup-
plemental Fig. 14). In terms of classes,
two class-II TE genes (MuDR and
CACTA-like) weremore likely to be found
at the nuclear periphery (Supplemental
Fig. 15). Taken together, the Arabidopsis
nuclear periphery defines a domain of
transcriptional repression enriched for
TE genes and transcriptionally inactive
protein-coding genes.

Positioning of TEs at the nuclear
periphery correlates with different
silencing pathways
Having shown that the nuclear periph-
eral zone was repressed, we next investi-
gated whether it was connected to
silencing of TEs. DNA methylation in
the CG, CHG, and CHH (H representing
any nucleotide except G) sequence con-
text plays a crucial role in regulating ex-
pression and transposition of TEs. We
noticed that TEs enriched at the nuclear
periphery had a higher DNA methyla-
tion level in all sequence contexts (Fig.
6). We next examined several DNA
methylation mutants by asking how
the corresponding types of methylation
would change in these two types of
TEs. Regardless of TE location in the nu-
clear space, mutations impairing CG or
CHGmethylation showed similar effects
(Fig. 6). Interestingly, when comparing
the CHH methylation patterns, we
found that TEs located at the nuclear pe-

riphery lost more DNA methylation in the cmt2 mutant; in con-
trast, TEs not located at the nuclear periphery lost more DNA
methylation in the drm1/2 double mutant (Fig. 6). These patterns
were also observed when we focused on TEs located in the peri-
centromeric regions (Supplemental Fig. 16). CHH methylation
over TE bodies is mediated by two partially overlapping path-
ways: RNA-directed DNA methylation (RdDM) and RdDM-inde-
pendent (Zemach et al. 2013; Stroud et al. 2014). However, it is
not clear how these two pathways branch to target different
TEs (for review, see Sigman and Slotkin 2016). DOMAINS
REARRANGED METHYLASE 1 (DRM1) and DRM2 are responsible
for CHH methylation in the RdDM pathway, whereas
CHROMOMETHYLASE 2 (CMT2) is required for the RdDM-inde-
pendent pathway (Cao et al. 2003; Stroud et al. 2013; Zemach
et al. 2013). Our results reveal a spatial association between TE lo-
cations and the demand on different CHH methylation path-
ways, in which CHH methylation of TEs located at the nuclear
periphery tends to be more dependent on CMT2, whereas the
other type of TE relies more on RdDM.

Figure 5. Enrichment of silenced genes at the nuclear periphery. (A) Number of TE genes (left) and pro-
tein-coding genes (right) enriched in different tissues. For each column, the observed number of genes is
significantly different (P < 0.001) relative to the permutation-based null distribution of the background
(generated as described in Fig. 4C): (inf) inflorescence. (B) Comparison of gene expression levels, which
are from a normalized tilling array data set (Laubinger et al. 2008). The P-values indicateMann-WhitneyU
test results.
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Discussion
It has long been recognized that theArabidopsis chromocenters are
preferentially found at the nuclear periphery, but it was unclear
whether such nonrandom localization was restricted to chromo-
centers. The present study demonstrates that the peripheral zone
of the Arabidopsis nucleus is also enriched with interstitial regions
on the chromosome arms, which are mainly heterochromatic.
This is reflected by the fact that these regions have higher percent-
ages of TE genes and silenced protein-coding genes (Figs. 4, 5). In
this regard, the nuclear periphery in plants is a functional com-
partment for docking repressed chromatin; therefore, the biologi-

cal properties of the nuclear periphery in
eukaryotes are highly conserved. An in-
triguing question is which factors are
involved in specifically tethering chro-
matin to the plant nuclear periphery. In
animals, lamins and lamin-associated
proteins have been identified as key fac-
tors involved in these events (for review,
see Harr et al. 2016). Unfortunately, to
identify the counterparts in plants, a
strategy based on a protein-sequence
similarity search might be of little use
compared to forward genetics approach-
es, because plants lack orthologs of lam-
ins and most lamin-associated proteins
(Ciska and Moreno Díaz de la Espina
2014). Nevertheless, the CRWN and
KAKU4 proteins in Arabidopsis have been
suggested as plant lamin candidates, and
CRWN mutations result in altered chro-
mocenter structure (Wang et al. 2013).
In the crwn4 mutant, although the chro-
mocenters decondensed, the regions
corresponding to the 5S RNA repeats re-
mained anchored at the nuclear periph-
ery (Wang et al. 2013). This suggests the
need to investigate higher-order crwn
mutants to clarify their potential roles
in tethering chromatin.

In this study, many highly ex-
pressed genes were also found to be
enriched at the nuclear periphery (Sup-
plemental Table S3), which could be at
least attributed to following reasons.
First, both the gene expression and RE-
ChIP-seq experiments were conducted
on tissues with a certain degree of cell-
type heterogeneity; therefore, even if ac-
tive transcription and positioning at the
nuclear periphery are mutually exclu-
sive, both events might be eventually
captured at a gene locus in a mixed
cell population. Second, the nuclear pe-
riphery does not absolutely inhibit tran-
scription. This has been demonstrated
in human cells by tracking the expres-
sion of a pool of genes after artificially
anchoring them to the nuclear enve-
lope; only a subset of the targeted genes
showed reduced expression (Finlan et al.

2008). Specifically in Arabidopsis, a recently reported case study
on the CHLOROPHYLL A/B BINDING (CAB) PROTEIN locus
showed that it is repositioned from the nuclear interior to the nu-
clear periphery together with robust transcriptional activation in
response to light stimuli (Feng et al. 2014a). Third, in plants,
there may be “gene gating” events that position actively tran-
scribed genes at the nuclear periphery through interactions
with nucleoporins (Blobel 1985). Several potential interactions
between transcription regulators (such as the TREX2 complex
and SUMO proteases) and NPC have recently been discussed (Par-
ry 2015). Although we did not detect any direct binding of NUP1
to chromatin with a regular ChIP-seq method, it remains

Figure 6. Comparison of DNA methylation over TEs. Patterns of TE DNA methylation (CpG, CHG,
CHH) in wild-type (WT) and mutants. The grouping of TEs is according to the enrichment results of
NUP1:GFP RE-ChIP-seq from30-d-old leaf tissues. Themethylation ratio is calculated in 100-bpwindows.
The signal over each TE is linearly transformed so that the boundaries of all TEs are aligned.

A. thal iana chromatin positioning

Genome Research 1169
www.genome.org



 180 

 
 

 

 

unknown whether other NPC components directly interact with
chromatin.

Interestingly, the RE-ChIP signals from the root tissue, which
consisted of nonmesophyll cells, were highly similar to those from
leaves,with themajority cell type beingmesophyll cells (Fig. 3A,B).
Compared to other tissues, RE-ChIP signals from inflorescences
showed a much lower extent of enrichment for chromatin at the
nuclear periphery, which might be attributed to a dilution effect
due to cell-type heterogeneity. Overall, the chromatin regions po-
sitioned at the nuclear periphery in plants tend to be conserved
among different tissues, suggesting that in general, the linear ge-
nomeper se contributes substantially to how it is deployedwith re-
spect to the nuclear peripheral zone on the chromosomal scale. By
showing a tight association between this pattern and the “AB”
compartment derived from Hi-C maps (Fig. 2A), we provide an
additional way to visualize and understand plant Hi-C maps in
the context of the nuclear space. Although Hi-C maps from
Arabidopsis roots or inflorescences are not presently available, we
suspect that the chromatin packing in these tissues would follow
a scheme in common with that of leaves, and all these Hi-C maps
would be strongly correlated with each other on a global level.

Having “AB” compartments in the nuclear space implies the
existence of a radial gradient, offering a spatial specificity with
which different regulatory pathways can regulate chromatin
activity. Globally, this is reflected by the observation that chromo-
centers and telomeres preferentially reside at the nuclear periphery
and nuclear interior (around the nucleolus), respectively (Fransz
et al. 2002). By showing that TEs are selectively tethered at the nu-
clear periphery, our results reveal additional features of this spatial
compartment. The differential loss of CHH DNA methylation on
TEs in the RdDM and RdDM-independent mutants implies a spa-
tial preference of these two TE-silencing pathways, in which
RdDM is under more demand in the nuclear interior (Fig. 6).
This correlates with observations that many small RNA pathway
components are concentrated around nucleoli in Arabidopsis (Li
et al. 2008; Pontes et al. 2013). From a spatial point of view, our re-
sults provide insights into how these two silencing pathways
might collaborate to regulate TEs (Zemach et al. 2013), as well as
how certain components of one pathway interact with each other
(e.g., a recently reported positive feedback loop between Pol IV-de-
pendent small RNA biogenesis and DRM2-dependent CHH meth-
ylation (Li et al. 2015)). It would also be of great interest to further
investigate the possible dynamic locations of TEs inmutants of TE-
silencing pathways.

Conventionally, chromatin regions that are preferentially
tethered to the nuclear periphery could be identified by the ChIP
method, such as those showcased in recent studies on animal nu-
clear lamin A and lamin B (Kubben et al. 2012; Lund et al. 2013;
Sadaie et al. 2013; Shah et al. 2013). Additionally, an alternative
approach is to anchor amodification enzyme on the nuclear enve-
lope and trace its footprint on the genome (Kind et al. 2013). This
method, which utilizes a DNA adenine methyltransferase (Dam)
that methylates DNA on the N6-adenine residue, has been applied
to Arabidopsis to identify targets of LIKE HETEROCHROMATIN
PROTEIN 1 (LHP1) as a complementary approach to the conven-
tional ChIP method (Zhang et al. 2007). A potential limitation of
these approaches is that the protein of interest must be in close
contact with chromatin. In plants, however, these proteins’ iden-
tities remain unknown. By performing RE-mediated chromatin
fragmentation in combination with mild sonication, our RE-
ChIP protocol alleviates the requirement that proteins of interest
must directly interact with chromatin, because in principle the

RE-ChIPwould better protect higher-order structures fromdestruc-
tion by strong sonic waves and would permit recovery of chroma-
tin in the proximity of a protein of interest even when the
interaction is not direct. In our opinion, this is a feasible method
for identifying chromatin, if it is positioned close to other subnu-
clear structures, such as the nuclear matrix, nucleolus, and various
nuclear bodies. The RE-ChIP method uses a restriction enzyme to
digest chromatin; therefore, the chromatin fragmentation pattern
is not randomand is dependent on both the restriction-cutting site
density and the digestion efficiency (Wang et al. 2015). Compared
to regular ChIPmethods, RE-ChIP cannot achieve resolution at the
nucleosomal level and is not suitable for genome-wide identifica-
tion of narrow peaks, such as the typical binding sites of transcrip-
tion factors.

Methods

Plant material
Arabidopsis thaliana transgenic plants NUP1:GFP in the nup136-1
(Salk_104728) background were grown at 23°C in long days (16 h
light/8hdark)onhalf-strengthMurashige andSkoog (MS)medium
supplemented with 1% sucrose and 0.3% Phytagel. The aerial and
root tissues of 7-d-old seedlings were harvested at Zeitgeber time
(ZT) 6 h. Other tissues, including 30-d-old leaf and inflorescence
with flower bud up to stage 9 (Smyth et al. 1990), were collected
from plants grown in growth rooms under long days at 23°C.

Plasmid construction
NUP1:GFPwas constructed with an overlapping PCR strategy. The
genomic fragment spanning 600 bp upstream of NUP1 to the
NUP1 stop codon was amplified with primers 5′-GTTCGTTAG
ACTGGTTTAGGT-3′ and 5′-TTTCTTCCTGGTGGATTTCTT-3′;
the genomic fragment spanning the NUP1 stop codon to 150 bp
downstream from NUP1 was amplified with primers 5′-TTTGGA
GAAGAAGGCTTCTCT-3′ and 5′-TAAGAAAAACACATTGTTCAA
G-3′; and GFP cDNA was amplified with primers 5′-AAGAAATCC
ACCAGGAAGAAAGCGGCCGCTGTGAGCAAGGG-3′ and 5′-CTT
GAACAATGTGTTTTTCTTAAGATCCACCAGTATCCTCAC-3′. These
PCR products were mixed and assembled by overlapping PCR
and amplified with primers 5′-GTTCGTTAGACTGGTTTAGGT-3′

and 5′-TTTGGAGAAGAAGGCTTCTCT-3′. The final PCR product,
in which GFP was fused with NUP1, was cloned into a Gateway-
compatible pGREEN-IIS binary destination vector (Karlsson et al.
2015). Similarly, to make the mCherry:CENH3 fusion protein,
mCherry was amplified with primers 5′-GTAAAAATCAATGG
CCATCATCAAGGAGTT-3′ and 5′-ACGCGATGCTTGGTTCTCGC
ACCGCCACCCTTGTACAGCTCGTCCATGC-3′, cenH3 (AT1G
01370) was amplified with primers 5′-GCGAGAACCAAGCATCG
CGT-3′ and 5′-TCACCATGGTCTGCCTTTTC-3′, these PCR prod-
ucts were assembled by overlapping PCR and amplified with prim-
ers 5′-GTAAAAATCAATGGCCATCATCAAGGAGTT-3′ and 5′-TC
ACCATGGTCTGCCTTTTC-3′. The PCR product was cloned into
a Gateway-compatible pGREEN-IIS binary destination vector con-
taining a 35S promoter (Karlsson et al. 2015).

RE-ChIP-seq library preparation
Tissueswere collected and fixed under vacuum for 30minwith 1%
formaldehyde inMC buffer (10mMpotassium phosphate, pH 7.0;
50 mM NaCl; 0.1 M sucrose) at room temperature. After fixation,
tissues were incubated at room temperature for 5 min under vacu-
um in MC buffer with 0.15 M glycine. Nuclei from 0.5 g fixed ma-
terial were used for each round of ChIP. Nuclei were isolated as
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described (Wang et al. 2015). Nuclei were permeabilized through
incubation with 150 µL 0.5% SDS for 5 min at 62°C, and SDS
was quenched with addition of 75 µL of 10% Triton X-100.
Following the nuclei permeabilization treatment, chromatin was
digested overnight with 150 units DpnII at 37°C, which was deac-
tivated the next morning for 20 min at 62°C. Next, nuclei were
collected after spinning at 1000g for 3 min, and suspended with
1 mL sonication buffer (10 mM potassium phosphate, pH 7.0;
0.1 mM NaCl; 0.5% Sarkosyl; 10 mM EDTA) and sheared by soni-
cation with a Covaris S220 instrument (set at 20dc, 1i, 200cpb, 15
sec). The sonicated sample was centrifuged at 14,000 rpm for 5
min, and the supernatant was mixed with 100 µL 10% Triton X-
100.Next, the sheared chromatinwasmixedwith an equal volume
of IP buffer (50mMHepes, pH 7.5; 150mMNaCl; 5mMMgCl2; 10
µMZnSO4; 1%TritonX-100; 0.05% SDS) and then equally divided
and incubated with anti-GFP antibody (Abcam, ab290) or normal
rabbit IgG (Santa Cruz, sc-2027), respectively. After overnight in-
cubation at 4°C, 10 µL Protein A/G magnetic beads (Pierce) were
added and incubated for 2 h at 4°C. The beads were washed at
4°C as follows: 3× with IP buffer, 1× with IP buffer having 500
mM NaCl, and 1× with LiCl buffer (0.25 M LiCl; 1% NP-40; 1%
deoxycholate; 1 mM EDTA; 10 mM Tris pH 8.0), for 5 min each.
Chromatin retained on beads was incubated in 200 µL elution
buffer (50 mM Tris, pH 8.0; 200 mM NaCl; 1% SDS; 10 mM
EDTA) for 6 h at 65°C, followed by Proteinase K treatment for 1
h at 37°C. DNA was extracted with a standard phenol-chloroform
method. To increase sequence diversity at the ends ofDNA, the im-
munoprecipitated DNA was incubated with dsDNA Fragmentase
(NEB) for 25 min at 37°C, which randomly cut DNA into ∼100-
to 200-bp fragments. The digested DNA was purified with
AMPure XP beads (Beckman Coulter), and all subsequent end re-
pairing, A-tailing, adaptor ligation, library amplification steps
were done through following a standard protocol (Illumina). The
final libraries were sequenced on an Illumina HiSeq 3000 instru-
ment with 2×150-bp reads.

Sequencing reads analysis
Paired-end reads were aligned against the Arabidopsis thaliana ref-
erence genome (TAIR10) using Bowtie 2 v2.2.4 (Langmead and
Salzberg 2012) with a “very sensitive” mapping mode. For each
replicate, the mapped reads were analyzed by SICER v1.1 (Zang
et al. 2009) to call enriched regions (parameters: W = 1000; G =
3000; FDR < 0.01). For each type of tissue, regions shared between
the two replicates were extracted, whichwere classified as domains
enriched at the nuclear periphery (or NUP1-enriched domains).
The Arabidopsis gene annotation was retrieved from Ensembl
Genomes (ftp://ftp.ensemblgenomes.org/) (release-24) (Kersey
et al. 2016). A gene was claimed enriched if >80% of its transcribed
region overlapped with NUP1-enriched domains.

FISH
The FISH experiment was performed as previously published
(Prieto et al. 2007;Wegel et al. 2009) withmodifications, in which
instead of biotin-16-dUTP, dinitrophenol-11-dUTP (DNP-11-
dUTP) (PerkinElmer) was used to label BAC probes in the nick
translation reaction. Slide pretreatment, hybridization, and post-
hybridization wash were carried out as described (Prieto et al.
2007). Detection of the digoxigenin-11-dUTP was done with
1:1000 mouse anti-digoxin antibody (Sigma, D-8156) and fol-
lowed by 1:150 goat anti-mouse antibody coupled to Alexa Fluor
488 (Invitrogen, A11017). Detection of the DNP-11-dUTP was
done with 1:500 rabbit anti-dinitrophenyl antibody (Invitrogen,
A6430) and followed by 1:150 goat anti-rabbit antibody coupled

to Alexa Fluor 546 (Invitrogen, A-11071). After the final wash
step, slides were mounted with SlowFade Diamond Antifade
Mountant with DAPI (Thermo Fisher Scientific).

Fluorescence microscopy
Confocal images were acquired with the Leica SP8 AOBS sys-
tem. The detection of various fluorophores (DAPI, Alexa Fluor
488, and Alexa Fluor 546) and fluorescent proteins (GFP and
mCherry) was according to the default settings. Image processing
was done with the Fiji software and final assembly in Photoshop.
For the distancemeasurement of FISH signals, first, a Z-stack image
was obtained by maximum projection of signals from five optical
sections. Then, the nuclear edge was defined by adjusting the
threshold of DAPI channel, and the distance between a FISH signal
and the nuclear edge was determined as described (Feng et al.
2014a). Only nuclei containing hybridization signals of both
probes were included in analyses.

Published genomic data
Data for gene expression in various tissues were from Laubinger
et al. (2008), bisulfite sequencing from Stroud et al. (2013), Hi-C
matrix (20-kb window setting) fromWang et al. (2015), and chro-
matin loops and other processed epigenetic data sets fromLiu et al.
(2016). Definition of centromeric regions (Chr 1, ∼14.08–15.61
Mb; Chr 2, ∼2.93–3.95 Mb; Chr 3, ∼13.16–14.55 Mb; Chr 4,
∼2.00–4.26Mb; andChr 5,∼10.93–12.66Mb)was according to co-
ordinates of BAC clones on the TAIR10 genome that overlapped
with the boundaries of estimated centromeric regions (The
ArabidopsisGenome Initiative 2000). The definition of pericentro-
meric heterochromatin (Chr 1, ∼11.5–17.7 Mb; Chr 2, ∼1.1–7.2
Mb; Chr 3, ∼10.3–17.3 Mb; Chr 4, ∼1.5–6.3 Mb; and Chr 5,
∼9.0–16.0 Mb) was according to Stroud et al. (2013).

Data access
All sequence data from this study have been submitted to theNCBI
Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra)
under accession number SRP079108.
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