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1. Introduction 

The idea of having to sleep on a problem to arrive at its solution is engrained 

into our society. When we talk to somebody about a difficult problem we cannot 

seem to solve, however much effort we invest into it, one common advice is to 

“have a night’s sleep over it”. Sleep is generally viewed as the predominant 

absence of consciousness and of behavioral control for a self-limited time 

period. This presents a stark contrast to wakefulness, when our conscious mind 

handles much of the information we can extract from our surroundings, which is 

then processed and consecutively either forgotten or retained for a later date. 

We are aware of some of the mechanisms and title this “thinking”. Naturally, if 

we perceive information, that is processed and deemed to be a problem in need 

of solving, we analyze its details, our memories of similar problems and their 

solutions, to come up with our current solution. All of this seems to require a 

conscious mind. Paradoxically, especially for extremely difficult problems, 

“sleeping on it” is claimed to be a viable alternative. 

This thesis evaluates the effects of targeted memory reactivation during rapid 

eye movement sleep versus active wakefulness on problem-solving of a video 

game puzzle.  

 

1.1. Sleep 

The notion that sleep is not only the absence of consciousness but provides a 

multitude of beneficial effects for our body and mind, has been extensively 

researched throughout history. Fascinated by the basic need of sleep, modern 

scientists and their predecessors have come up with a large array of theories of 

why sleep is so important for us. Today, there still remain many unanswered 

questions, which will continue to entice further research about the enigma of 

sleep. 

In sleep research it is paramount to scrutinize experiment protocols for possible 

confounding variables, which may skew the effects of sleep versus an equal 

length of wakefulness. Sleep is sensitive to changes of environment and thus, 
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test-runs or “adaptation nights” in the laboratory are used to mitigate this “first 

night effect” on sleep quality and structure (Agnew Jr et al, 1966). 

Comparison of subjective sleepiness between the wake and sleep condition is 

regularly used to evaluate possible sleep-deprivation or exhaustion. How 

different levels of sleepiness may affect performance in every individual study is 

difficult to assess. While it may seem easier, if the sleep group exhibits 

sleepiness and the wake group less so, the difference in alertness may impair 

the reliability and validity of the results. 

This dilemma leads the way to time off-sets for the two groups, where the sleep 

group performs the experiment in the evening, sleeps throughout the night and 

continues in the morning, while the wake group begins in the morning, remains 

awake throughout the day and carries on the experiment in the evening. This 

creates the problem of how to circumvent interference through circadian effects. 

Circadian effects may include among others, sleepiness caused by exhaustion, 

drowsiness after awakening, varied levels of alertness and activity during 

different day phases. Therefore, subjective sleepiness and alertness need to be 

analyzed to search for circadian effects.  

One strategy for minimizing the impact of circadian effects is to reduce the 

sleep interval to naps. Both groups start at the same time, while one group gets 

to nap for a defined length from minutes to a few hours, the other remains 

awake, and both continue at the same time with their experiment. The problem 

with naps versus regular night-time sleep, is that the inherent circadian rhythm 

may change sleep quality, quantity and architecture of subjects in the nap 

condition. Accordingly, it is difficult to extrapolate results of nap studies to sleep 

in general and night-time sleep in particular. 

 

1.2. Sleep Monitoring 

1.2.1. Electroencephalography 

Invented by Hans Berger in 1924, electroencephalography (EEG) was up until 

then the most accurate and practical method to analyze brain activity, while 
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impacting subjects minimally. It enabled novel approaches leading to major 

discoveries in neuroscience. Scientists continued development of applications 

to minimize the interference of sleep analysis via EEG and various supporting 

methods, aiming to get data as close to that of a natural setting as possible. 

Assemblies of neurons generate electric field potentials and micro currents, 

which traverse through surrounding tissue and pass through electrodes placed 

on the scalp to an amplifier and are transformed by a visualization tool to a 

voltage reading. The signal from one EEG electrode is compared to reference 

electrodes, the difference in µV represented by a continuous line. Researchers 

further separate the output according to the frequency and direction of voltage 

switches into alpha (8-12 Hz), beta (12-30 Hz), gamma (>30 Hz), delta (0.5-4 

Hz) and theta (4-8 Hz) waves (Buzsaki, 2006). However, at the time of writing 

there is no consensus on exact wave frequency band intervals. Additional 

signals are differentiated, such as spindles and k-complexes.  

Since the neuronal signal strength is so small, even minor body activity can 

distort the EEG reading. For this reason, an EEG is usually conducted with 

accompanying electromyography (EMG) and electrooculography (EOG), the 

entirety called a polysomnography. The EMG electrodes are commonly 

positioned on both sides of the chin and record muscle tone and activity in the 

proximity. The EOG electrodes are for the most part positioned 1 cm outwards 

and 1 cm up- or downwards from the lateral canthus and record eye movement 

signals. The signals from EMG and EOG can then be used to filter the EEG 

signal to decrease noise and provide further information on the cognitive state. 

The smaller the voltage amplitude of the target signal, the more filtering needs 

to be used to be able to differentiate signal from noise. In addition to EMG and 

EOG other auxiliary tools can be used, like rib bands measuring breathing and 

electrocardiogram (EKG, or ECG) measuring heart activity.  

 

1.2.2. Sleep Scoring 

The profound research of the brain in various states of mind has resulted in 

electroencephalographically derived models of sleep not as one static state but 
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dynamically changing sleep stages. These stages are characterized by a 

different composition of brain generated electric potentials, their frequencies, 

muscle tone and eye movements.  

As several models of sleep stages emerged, the one by Rechtschaffen and 

Kales, while originally intended to be used as a base for more elaborate 

concepts, became the gold standard for decades of sleep research (Himanen & 

Hasan, 2000; Rechtschaffen, 1968). In their manual, Rechtschaffen and Kales 

described how to differentiate sleep stages (sleep scoring) in an EEG recording 

of a person asleep. First, they divided the entire recording into small chunks 

called epochs. Furthermore, they split “sleep” into six stages: Sleep Stage 0 or 

“Wake Stage” (W), Sleep Stage 1 (S1), Sleep Stage 2 (S2), Sleep Stage 3 (S3), 

Sleep Stage 4 (S4) and Rapid Eye Movement Sleep Stage (REM sleep). If the 

subject moved during one epoch more than 50% of the time, or the EEG output 

was too distorted by the movement, that epoch would be scored as movement 

time (MT). Epochs that show more than 50% alpha activity were considered as 

W. EEG frequencies increasingly shift from higher frequencies, like alpha, beta, 

sigma and theta waves, which are common for wakefulness, to more 

synchronous slower delta waves throughout S1 to S4 (Armitage, 1995; 

Rechtschaffen, 1968). In S1 less than half of an epoch exhibits alpha activity. In 

S4 delta waves make up more than 50% of the epoch (Armitage, 1995; 

Rechtschaffen, 1968). 

REM sleep is characterized by low amplitude and high frequency waves, 

minimal muscle tone and jerking eye movements, which are eponymous for this 

stage and can only be found in REM sleep (Rechtschaffen, 1968). Even though 

the EEG of REM sleep looks more similar to W, S1 and S2, the consciousness 

of the sleeper is similarly limited as in S3 and S4. Since the EEG signals during 

REM sleep greatly differ from the continuous pattern from S1 to S4, the latter 

are also referred to as “non-REM sleep” (NREM) and REM sleep is also called 

“paradoxical sleep”. REM sleep may be further divided into tonic and phasic 

REM sleep. During phasic REM sleep apparent transient events like rapid eye 

movements are detectable on a large scale, whereas during tonic REM sleep 
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they are not as pronounced but remain present on a subclinical level (Steriade 

et al, 1989). 

Adaptations to the scoring method of Rechtschaffen and Kales have been made 

to streamline and modify the scoring process. One of these is provided by the 

American Academy of Sleep Medicine (AASM). In their own scoring manual, 

they refrain from distinguishing S3 and S4 from another and combine them to 

“slow wave sleep” (SWS) (Berry et al, 2016). 

Sleep patterns change over the course of life. At the time of birth, babies do not 

have any SWS. The amount of SWS reaches its peak in puberty and drops 

increasingly from there on (Feinberg, 1989). As of 30 years of age, men and 

women age differently in their sleep patterns, which results in significantly less 

SWS, REM sleep and more S2 in men compared to women of the same age 

(Ehlers & Kupfer, 1997). A meta-analysis of 65 studies regarding sleep stage 

distribution in healthy subjects from age 5 to 102 has confirmed that in adults 

total sleep time, percentages of SWS and REM sleep decreased with age and 

the ratio of wake after sleep onset, S1 and S2 increased with age (Ohayon et al, 

2004). Total sleep time decreased by about 10 minutes per decade of age. 

SWS percentage decreased about 2% per decade of age, while REM sleep 

percentage decrease was more evident after an age of 60. The ratio of wake 

after sleep onset, S1 and S2 was 5% higher for the group over 65 years of age 

compared to young adults (Ohayon et al, 2004).  

Research on gender specific differences in sleep has shown that for young men 

versus women in their twenties there is no significant difference in sleep stage 

distribution (Dijk et al, 1989). Spectral analysis showed for most frequencies 

among all sleep stages a higher power density in the female group, for which 

sexually contingent anatomical differences like skull thickness may be 

responsible (Armitage, 1995; Dijk et al, 1989). In women ageing-related 

changes in sleep architecture are relatively stronger but compared to age-

matched men, women have more total sleep time, SWS and less S2 (Ohayon et 

al, 2004).  
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Ever since sleep was divided into stages, research has aimed to find further 

characteristics of the stages and to identify individual functions.  

The stages S1 and S2 show a comparably light sleep with significantly 

decreased activity in the thalamus and largely remaining activity in the cortical 

areas (Baars, 1988). In SWS and REM sleep the sleep is deeper, with reduced 

activity in the cortical areas, explaining why it is less likely to awake directly 

from SWS or REM sleep through threshold stimuli (Baars, 1988). During the 

lighter sleep stages S1 and S2 the brain is still able to process auditory input 

and initiate according motor responses (Kouider et al, 2014). Lateralized 

readiness potentials (LRP), which correlate with planning and conduction of 

motor activity were measured above the motor and pre-motor cortices. During a 

discriminatory auditory task with conditioned responses for either right or left 

index finger, LRP responses persisted from wakefulness throughout 

drowsiness, S1 and S2. With increasingly deeper sleep, LRP responses were 

more delayed, slowed and changed in aspect (Kouider et al, 2014). 

Special sleep-stage and location-specific EEG-signals have been identified. In 

S2, k-complexes and sleep spindles (10-15 Hz) are encountered frequently. 

Sleep spindles are incited by GABAergic neurons in the thalamus which 

distribute their excitation to large parts of the neocortex (Diekelmann & Born, 

2010). Sleep spindles may occur during SWS, accompanied by slow oscillations 

(0.8 Hz) and sharp-wave ripples. Slow oscillations are preferentially generated 

in the neocortex and synchronize neurons, which creates highly active “up-

states” of depolarization and inhibited “down-states” of hyperpolarization. 

Sharp-wave ripples derive from the hippocampus and are associated with 

reactivation of memory traces. During SWS, blood concentration of cortisol 

reaches its minimum (Diekelmann & Born, 2010). Furthermore, SWS is 

accompanied by low levels of cholinergic activity in large parts of the brain, 

which sets it apart from all other sleep stages and wakefulness (Hasselmo, 

1999). In rats, ponto-geniculo-occipital waves (PGO waves) and theta waves 

are characteristic signals in REM sleep, but their functions have yet to be 

revealed in humans (Diekelmann & Born, 2010). PGO waves may induce a 
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broad reactivation of cortical memory representations during REM sleep (Lewis 

et al, 2018).  

 

1.3. Learning and Memory 

The findings in sleep research went hand in hand with those from other fields of 

neurosciences, especially learning and memory. Concepts about the process of 

remembering have always been part of philosophy and science. Before the 

dawn of cerebral non-invasive imaging technology and with advancements in 

neurobiology in the late twentieth century, the only objective measure able to 

detect memory was via remembering or retrieval of memories (Sara, 2000). 

There are multiple theories on how our memory is structured and generated. 

The creation of memories starts with our perception, where the neurophysiology 

is well researched. Our sensory systems code incoming stimuli and forward 

them to the thalamus which acts as a filter. The thalamus relays data according 

to its properties to the appropriate higher cortical areas and from there it may 

continue to its applicable typing of memory, this being either the declarative - 

further divided into semantic and episodic memory -, the procedural or the 

emotional memory. From the thalamus, data can traverse into cortical areas 

and may become encoded in a specific loop in the neuronal networks, forming 

what we call memory. Generally, there is a distinction made between different 

types of memory. Short-term memory may store currently relevant data from 

seconds to hours, until the data becomes either integrated into long-term 

memory, possibly being remembered for a life-time, or forgotten.  

Retrieval of memories is facilitated, when similar environmental sensations, like 

sounds, smells and objects, are present both at the time of the event and at the 

time of remembering (Tulving & Thomson, 1973). This suggests that during 

creation of a memory, ambiance is integrated into the “memory network” 

(Tulving & Thomson, 1973). Similarly, somatic contextual settings, e.g. 

hormonal milieus, can enable remembering after forgetting has occurred, 

possibly through influencing the memory system on a molecular level (Deweer 

& Sara, 1984; Sara, 2000). 
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Memories that share similar information are used to create associative models 

(schemas), which may be used to predict events in the outer world, allowing to 

plan ahead and adapt strategies to new obstacles (Lewis et al, 2018; Tse et al, 

2007).  

 

1.3.1. Memory Consolidation and Reconsolidation 

Different approaches offer an explanation of how memories may transition from 

short-term to long-term memory. The consolidation theory states that after an 

event is encoded, the early memory requires strengthening through 

consolidation to endure and to be remembered. A possible mechanism for 

memory consolidation is repeated memory reactivation. Analyzing patterns of 

neuron activity in primate brains during tasks and succeeding resting periods, 

showed repeated memory reactivations in a coherent and temporal order, which 

may be the electrophysiological equivalent of memory consolidation (Hoffman & 

McNaughton, 2002).  

The memory consolidation theory has its roots in the early twentieth century 

studies on retrograde amnesia in patients (Müller & Pilzecker, 1900; Sara, 

2000). Later experiments on animals have shown that the shorter the interval 

between the encoding of a memory and a disruption of cognitive function, the 

more likely amnesia occurs (Müller & Pilzecker, 1900; Sara, 2000). Over time a 

retained memory is integrated stronger into the cortical network until it may 

resist an intervention causing amnesia.  

Retrieval or updating of memories through integration of new information, 

incites a new consolidation process of the affected memories (Spear & Mueller, 

1984). This “reconsolidation”, makes memories everchanging entities within the 

neural network (Spear & Mueller, 1984). Research has provided conflicting 

results on the degree that consolidation and reconsolidation are qualitatively 

similar on a molecular, temporal and spatial level.  

Various animal experiments that were designed to target either the 

consolidation of new memories or the reconsolidation of existent memories 
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using protein-synthesis inhibitors, have demonstrated similar amnestic results, 

indicating a qualitative similarity between the two processes (Nader, 2003). 

Contextual settings can increase vulnerability to amnestic interventions for a 

limited time (Misanin et al, 1968). This could be explained by similar molecular 

processes executed during encoding and retrieval (Mansuy et al, 1998). 

Reactivation of a consolidated memory results either in its reconsolidation or 

extinction, which in updating the memory requires protein synthesis on a 

qualitatively similar level (Nader, 2003). This may explain earlier findings that 

extinction (the unlearning of conditioned responses) based therapy of 

obsessive-compulsive disorder in 28 cases was more successful if the memory 

was recalled prior to electro-convulsive shock therapy (Rubin, 1976). 

However, more recent attempts failed to recreate these results using 

pharmacological amnesic substances for traumatic related fear responses 

(Schiller & Phelps, 2011). Furthermore, animal experiments by a different 

research team concluded that extinction (the unlearning of conditioned 

responses) and reconsolidation rely on different molecular processes (Suzuki et 

al, 2004). 

Thus, Alberini et al proposed a model in which consolidation and 

reconsolidation involve similar cellular chain reactions promoting long-term 

potentiation (LTP) in neurons that take part in a memory trace but may be 

primarily located in different regions of the brain (Alberini, 2005). In an attempt 

to explain contradictory findings on this topic, the authors suggested that less 

consolidated memories and more intense reactivation make memories more 

susceptible to amnesia-introducing procedures. Furthermore, they support the 

theory that reconsolidation, like consolidation, for different types of memory 

(these being of emotional, episodic or procedural nature) may rely on spatially 

distinct cortical areas. They conclude that reconsolidation is qualitatively 

different from consolidation in that it most likely involves modulation and not 

recreation of memory traces (Alberini, 2005). Therefore, reconsolidation may be 

seen as a misnomer and together with consolidation, they could be 

permutations of a larger process of encoding and retrieval of memories (Dudai, 

2006). 
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The immediate and prolonged effects of memory reactivation during 

wakefulness suggest that reactivation per se may incorporate new types of 

information into preexisting memories (Gisquet-Verrier & Riccio, 2012). Being 

the first of a multi-step process of memory retrieval, reactivation renders the 

memory trace malleable, which enables the integration of new information and 

alleviates the accessibility of the memory. Multiple studies have shown that 

retention of original and updated memories after reactivation was already 

improved within a few minutes, which does not support the hypothesis that 

integrating new information into existing memory systems requires long 

processes of reconsolidation. Beyond that, recovery from amnesia or long-term 

forgetting after reactivation of the original memory was exhibited in similar short 

time frames and may persist for a long time (Gisquet-Verrier & Riccio, 2012; 

Spear & Riccio, 1994). The short-term effects of memory reactivation may be 

linked to the induced higher accessibility to the memories. At what point the 

facilitated retrieval deteriorates and becomes replaced by strengthening of the 

memory traces through reconsolidation is up to debate (Gisquet-Verrier & 

Riccio, 2012). 

 

1.3.2. Memory and Sleep 

During long days and nights of studying many students may wish for an easier 

method of integrating new information into their memory networks than actively 

and repeatedly revisit their text books. To them, being able to learn new 

information during sleep would be a dream come true. So far, research has 

shown that learning new information during sleep seems to be reserved for 

conditioning of automated responses only (Cox et al, 2014). Nevertheless, 

sleep scientists recommend that students improve their sleep schedule and 

quality to optimize their school performance, as sleep offers a multitude of 

beneficial effects to recently learned information (Ribeiro & Stickgold, 2014). 

Scientists have discovered that sleep can improve the recollection of recently 

studied data. How sleep is connected to the process of learning and the 

mechanisms of memory is continuously being researched. Sleep appears to 
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influence our memory process significantly, as supported by molecular 

correlates, like increased numbers of NMDA and AMPA receptors, to synaptic 

networks which reactivate and (re-) consolidate to become long-term 

potentiated and thus create long term memory of the data (Diekelmann & Born, 

2010).  

Findings suggest that encoding and retrieval of memories are most efficient 

during wakefulness and that preserving of memories (“memory consolidation”) 

is most effectively done during sleep (Diekelmann & Born, 2010). For 

declarative tasks, naps of only six minutes length versus an equal length of 

wakefulness were sufficient to significantly boost memory performance (Lahl et 

al, 2008). While various studies have shown that longer sleep periods yield 

larger improvements for declarative, procedural and emotional memory, they 

also suggest that the sleep period should take place at the latest on the day of 

encoding (Diekelmann & Born, 2010). 

One argument why consolidation would be most effective during sleep is that 

during this “off-line” time, re-activations needed to stimulate LTP of memory 

traces are possible without conflicting and possibly confusing inputs from the 

present circulating at the same time (McClelland et al, 1995). Moreover, results 

have shown that SWS may strengthen declarative memories, procedural and 

emotional memory consolidation (Giuditta et al, 1995; Maquet, 2001; Poe et al, 

2000). The highest improvements for all types of memories require both SWS 

and REM sleep to take place (Giuditta et al, 1995; Maquet, 2001; Poe et al, 

2000). Declarative and procedural memories which are deemed to have (more) 

future relevance are profiting more from memory consolidation during sleep, 

indicating a selectivity of the sleep-dependent memory consolidation (Oudiette 

et al, 2013; Wilhelm et al, 2011). Furthermore, sleep enhances associative 

learning through promotion of item integration, gist extraction, false memories 

and rule extraction (Chatburn et al, 2014). However, for different tasks, different 

cortical representations were found, correlating to benefits of sleep for 

associative learning. This makes it difficult to postulate on the overall system for 

associative learning and specifically how sleep affects this system (Chatburn et 

al, 2014). 
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Animal experiments have demonstrated that throughout the neocortex the same 

neurons which are active during an experience tend to be active during the 

following session of rest (Hoffman & McNaughton, 2002). This rest can be quiet 

wakefulness or sleep (Hoffman & McNaughton, 2002). A functional magnetic 

resonance imaging (fMRI) study by Peigneux et al on healthy subjects showed 

that even throughout active wakefulness, memory reactivations from declarative 

and procedural tasks persist, measured through increased regional blood 

oxygen level-dependent responses (Peigneux et al, 2006). Memory traces may 

be further processed, as post-training activity persisted for 15 minutes in 

hippocampal areas and for up to 1 hour in cortical areas. In confirmation of 

previous results, declarative tasks involved hippocampus signal increase, and 

procedural tasks produced signal increases in cerebello-frontal and cerebello-

striatal circuits, including the caudate nucleus. As to how similar in quantity and 

quality this is to the processing described in sleep studies remains unclear to 

the authors, as are the efficiency and extent of the reactivations compared to 

those in sleep (Peigneux et al, 2006).  

There is no consensus whether dreams are manifestations of memory 

reactivations or root from an entirely separate process. However, dreaming or 

mentation of a completed virtual maze task was correlated with better 

performance in the succeeding run, indicating that dreams themselves may be 

recognized cognitive representations of memory reactivation and may improve 

sleep-dependent processing of memories further (Wamsley et al, 2010). 

A concept about increased memory performance with sleep versus without 

sleep was proposed by Stickgold and Walter, called the “memory triage” 

(Stickgold & Walker, 2013). Their hypothesis tries to answer why memories are 

treated distinctively from each other, depending on specific qualities of these 

memories. According to their idea, what earlier was referred to as sleep-

facilitated or -dependent memory consolidation is an active process that 

involves selectively improved retention as is, integration into existing memory 

schemes and abstraction (Stickgold & Walker, 2013). The selection processes 

use specific tags, e.g. a prescribed future relevance of the information or the 

emotional context when the memory was conceived, which seem to have a 
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faster decay rate than the original memories themselves (Rauchs et al, 2011; 

Stickgold & Walker, 2013). This selectivity may be consciously incited and work 

through top-down feedback loops (running from the medial temporal, prefrontal 

and posterior parietal cortices) exhibited during sleep spindles (Wylie et al, 

2007). According to Stickgold and Walter, the triage is formed by memory 

consolidation, “item integration” into preexisting networks and “multi-item 

generalization”. “Multi-item generalization” may take forms like rule 

extrapolation, insight and gist extraction. In their view, these different forms of 

sleep-facilitated memory processing may be closely linked to the different sleep 

stages, although up until conduction of their review, there was no clear 

evidence for this (Stickgold & Walker, 2013). 

Information which is very adherent to an existing schema may bypass 

conventional hippocampus dependent memory consolidation and receive 

consolidation during REM sleep through a different faster consolidation circuit, 

including the medial prefrontal cortex (Durrant et al, 2015; Tse et al, 2007; van 

Kesteren et al, 2012). In a within-subject designed study, participants were 

asked to memorize new melodic tunes fitting into their culturally habituated 

musical schema (“tonal”), and tunes that did not fit the schema (“atonal”). Half of 

the tunes were encoded 24 hours prior to the retrieval task, and the other half 

30 minutes before. Subjects spent the daytime out on their own and the night in 

the laboratory under polysomnography. The retrieval task presented a mixture 

of studied and new melodies and tested the confidence of recognition. Tonal 

melodies learned 24 hours prior were recalled significantly more than atonal 

melodies. Atonal melody recognition from both encoding sessions was 

significantly lower than that of consolidated tonal melodies and non-significantly 

different from unconsolidated tonal recollection. Power spectral analyses of the 

frequency bands showed significant correlation differences for central theta 

activity with tonal versus atonal melody recognition. Neither slow wave activity 

nor sleep spindles were in significant correlation to tonal tune recognition 

(Durrant et al, 2015). The results of these studies may be explained by the 

“SLIMM”-model (van Kesteren et al, 2012). SLIMM states that the medial 

prefrontal cortex inhibits the medial-temporal lobe which maintains 
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hippocampus-dependent consolidation, if the neocortical memory trace exhibits 

enough schema-congruence (van Kesteren et al, 2012). Moreover, this type of 

schema-conformant consolidation appears to be REM sleep-related, if not 

dependent on it (Tse et al, 2011). 

 

1.3.3. Synaptic Homeostasis versus System Consolidation? 

Taking results from animal and human studies into account, Tononi et al 

developed the synaptic homeostasis hypothesis to explain one necessary basic 

function of sleep concerning the development and maintaining of memory 

(Tononi & Cirelli, 2006). They based it on the two-process model for sleep 

cycles by Borb and Achermann, which distinguishes the circadian part 

dependent on the suprachiasmatic nucleus and the homeostatic part which 

increases during wakefulness and decreases during sleep (Borb & Achermann, 

1999). Tononi and Cirelli’s explanation for the homeostatic effect is based on 

synaptic potentiation (LTP), which reaches its maximum before sleep and its 

minimum at the end of sleep; SWS and sleep-dependent upregulation of factors 

linked to depotentiation and depression are the embodiment of this 

downscaling. SWS activity is directly influenced by the amount of LTP 

accumulated during the day. Since slow wave activity is generated by 

synchronous de- and repolarization of regional neurons, this depresses the 

synchronizing effect that LTP has on two specific connected neurons. According 

to the authors, this ensures efficiency and functionality of the brain, by 

increasing the difference in potentiation between relevant and less relevant 

memories. Downscaling under a certain threshold synaptic potentiation results 

in dismantling of those synapses, thus requiring regular potentiation to stay 

intact (Tononi & Cirelli, 2006). Support for their theory comes through findings 

from Huber et al, who have demonstrated that if a certain brain area is more 

engaged by a cognitive task, the same area will exhibit more slow wave activity, 

from Van der Werf et al, who found that suppression of SWS resulted in 

reduced encoding capacity and from Mander et al, showing that age-dependent 

reduction of sleep spindles predicts less successful encoding of new information 
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(Huber et al, 2004; Mander et al, 2013; Van Der Werf et al, 2009). It remains 

unclear whether synaptic homeostasis would sufficiently explain results of 

increased memory and procedural task performance after sleep compared to 

wakefulness. The authors state that their theory and sleep-dependent (re-) 

consolidation would not be mutually exclusive. However, the synaptic 

homeostasis hypothesis delivers one possible answer why memory encoding of 

new information is enhanced after sleep (Tononi & Cirelli, 2006). A 

computational model of the concepts of synaptic homeostasis showed how new 

memories may be incorporated into old ones via integration and assimilation 

(Hashmi et al, 2013; Tononi & Cirelli, 2014) 

In response to the synaptic homeostasis hypothesis, Rasch and Born proposed 

the system consolidation theory, in which sleep plays a major role for memory 

retention (Rasch & Born, 2007). When a memory gets encoded, two separate 

memory traces are created. One is located in the short-term storage (for 

declarative memories including the hippocampus), the other in the long-term 

storage (neocortex). During sleep, the short-term memory loop running through 

the hippocampus reactivates repeatedly (e.g. in form of sharp-wave ripples), 

which induces consolidation of the long-term memory trace, the process called 

“training” and the result “system consolidation”. The reactivations take place 

preferentially in the early sleep half which contains more SWS (Rasch & Born, 

2007). In the late sleep period, which contains more REM sleep, “synaptic 

consolidation” is achieved through LTP (Diekelmann & Born, 2010). In addition 

to consolidating a memory, this may also go through a qualitative transformation 

creating new explicit knowledge and insight as shown by Wagner et al and Gais 

et al (Gais et al, 2007; Wagner et al, 2004). Once a memory is redistributed to 

the long-term memory, continuous reactivation makes it decreasingly reliant on 

the hippocampal “training” loop (Rasch & Born, 2007). The authors refer to 

numerous studies implicating that sleep does have a significantly stronger effect 

on memory retention and gaining of insight than passive wakefulness, therefore 

not only a state of general depression as described by Tononi and Cirelli 

(Rasch & Born, 2007; Tononi & Cirelli, 2006). Rasch and Born underline the 

importance of temporally coordinated memory trace reactivations in SWS, 
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which unlike during wakefulness is less likely to be disrupted and thus most 

important for memory consolidation in the long-term memory (Rasch & Born, 

2007).  

Peigneux et al stated in 2006 that memory reactivations during active 

wakefulness would serve as a method for updating existing memories with new 

data, rather than relaying them to the long-term memory (Peigneux et al, 2006). 

Studies using auditory or olfactory cues to reactivate associated memories of 

pre-sleep training experiences would support their theory. The more 

reactivations during sleep there could be incited, the stronger the consolidation 

and possible transformation of the memory would become (Peigneux et al, 

2006). Rasch and Born suggest that despite the LTP-aversive milieu of SWS, 

reactivation may tag synapses for LTP during succeeding REM sleep or 

wakefulness, both states generating a LTP-friendly environment (Rasch & Born, 

2007). 

The sequential hypothesis of the function of sleep declares that REM sleep has 

to follow SWS sleep in its physiological pattern to optimize memory 

consolidation (Giuditta et al, 1995). Diekelmann and Born incorporated this 

hypothesis into the system consolidation theory to explain the consolidating 

effects of SWS in defiance to its “long-term depression”-harboring transmitter 

constellation (Diekelmann & Born, 2010). They proposed that reactivation 

during SWS tags specific synapses which receive LTP during REM sleep (or S2 

or wakefulness) (Diekelmann & Born, 2010). These stages exhibit LTP-

appropriate transmitter milieus which facilitate the consolidation of a memory 

(Rasch et al, 2009b). Additionally, they stressed that while LTP might be 

impeded in large parts of the brain during SWS, reactivated neurons might still 

go through LTP (Diekelmann & Born, 2010). Support comes from studies that 

have shown that increasing the cholinergic tone during SWS or decreasing 

during REM sleep impaired sleep-associated consolidation (Gais & Born, 2004; 

Rasch et al, 2009a). In the end, the synaptic homeostasis hypothesis and 

system consolidation theory may both contribute to the beneficial effect of sleep 

on memory (Diekelmann & Born, 2010).  
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Taking into account the multitude of studies demonstrating SWS-dependent 

reactivation of memory traces, the system consolidation theory was renamed to 

“active system consolidation theory”, highlighting the fact that sleep is actively 

promoting consolidation of memories, instead of just protecting memories from 

interferences (Diekelmann & Born, 2010; Feld & Diekelmann, 2015; Rasch & 

Born, 2013). 

More research delivered evidence for both synaptic homeostasis hypothesis 

and active system consolidation, as presented by Almeido-Filho et al (Almeida-

Filho et al, 2018). At birth, both REM sleep duration and concentration of 

synaptic plasticity related enzymes and gene expressions are very high. This is 

a possible explanation for the fast-paced development at that time. The authors 

propose that particularly in the first 12 hours after hippocampus-dependent 

encoding, REM sleep may be essential for “memory corticalization”. The latter is 

the transition from recent short-term hippocampus-dependent memories to 

remote hippocampus-independent long-term memories. Findings from both 

fMRI studies and cellular metabolism studies support their concept that REM 

sleep, through activation of enzymes and increased immediate-early gene 

expression inducing synaptic LTP (especially “Zif-268”, or “Egr1”), induces 

calcium-dependent neocortical plasticity. Memory corticalization may enhance 

creativity through consecutive memory trace restructuring in the cortical network 

(Almeida-Filho et al, 2018). Furthermore, REM sleep-dependent corticalization 

may not only strengthen but also promote forgetting, depending on which type 

of tagging occurred during preceding wakefulness and NREM sleep, referred to 

as the “synaptic embossing theory” (Almeida-Filho et al, 2018; Poe, 2017). “Zif-

268” expression is especially high in cortical areas active during a prior novel 

experience and during REM sleep. Adapting the synaptic homeostasis 

hypothesis, Almeido-Filho et al state that SWS-dependent systemic 

downscaling is accompanied by specific upscaling of tagged networks either 

directly or during subsequent REM sleep. After training, REM sleep duration 

may be increased for up to 7 days. Among other popular theories, the synaptic 

homeostasis hypothesis and active system consolidation theory remain all the 
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more relevant, as they start to become facets of a larger picture concerning 

molecular and system memory processes (Almeida-Filho et al, 2018).  

Researchers have demonstrated that unlike in SWS, memory reactivations in 

REM sleep are less condensed and occur simultaneously for unrelated memory 

networks (Lewis et al, 2018). REM sleep reactivations may be induced through 

PGO waves, which in collaboration with high cortisol and acetylcholine levels 

and high expression of immediate-early genes facilitate activation and linking of 

associated schemas (Lewis et al, 2018).  

 

1.4. Targeted Memory Reactivation and Selectivity of Sleep-

Dependent Consolidation 

Studies have shown that under certain circumstances retention of data can be 

improved by stimulating the brain with data-associated impulses during certain 

sleep stages. This concept is called targeted memory reactivation (TMR). Unlike 

remembering, which requires consciousness, TMR aims to reactivate memories 

subconsciously during wakefulness or during sleep. Functionally, TMR is similar 

to that of contextual cueing but is intentionally presented during creation of a 

memory and again during processing of the memory, instead of during retrieval 

as contextual cueing was used previously (Deweer & Sara, 1984; Sara, 2000; 

Tulving & Thomson, 1973). A study comparing patients with unilateral or 

bilateral hippocampal sclerosis to matched healthy subjects found that TMR of 

declarative memories only benefitted subjects with at least one intact 

hippocampus, adding to evidence that declarative memory consolidation and 

declarative memory TMR requires hippocampal function (Fuentemilla et al, 

2013). 

There are different options to reactivate a memory, the most popular in sleep 

science being odor and auditory. Odor has proven to be a highly potent 

contextual cue during declarative tasks and unlike auditory or visual cues did 

not interfere with sleep architecture and subjects were not aware of it after 

waking (Carskadon & Herz, 2004; Chu & Downes, 2002; Parker et al, 2001; 

Rasch et al, 2007). Odor might be more likely to induce TMR for declarative and 
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emotional memories compared to sounds, because the olfactory system is not 

compromised during sleep through down-regulation of the thalamus (Schouten 

et al, 2017). However, audio stimuli may be a lot more specific to the associated 

memory. Furthermore, TMR should be using short stimuli durations to prevent 

habituation and if possible uncommon stimuli to prevent accidental reactivation 

of untargeted memories (Schouten et al, 2017). 

In auditory sleep TMR, a sound stimulation is played during encoding of the 

data (learning) and again during sleep. Like odor, audio is a very strong 

contextual cue, which increases retention rate the largest, when it is played 

during encoding and retrieval of a memory (Smith & Vela, 2001). Since sleep is 

more vulnerable to audio than odor concerning arousals, sound stimulation 

during sleep needs to be carefully implemented (Carskadon & Herz, 2004). 

Sound stimulation protocols vary greatly between studies. For some tasks it is 

possible to rely on previously learnt associations between a sound and an item, 

like “meow” and “cat”. In other cases, a new association needs to be induced 

between a sound and an item, or a category during the training session. This 

then enables it to reactivate the target memory upon presentation of the sound 

itself. The general assumption is that a better the cognitive connection between 

sound and target during training would result in a more effective TMR. 

Given the inherent differences between odor and auditory stimulation, it is 

possible that they may be used to reveal distinct underlying processes of 

selectivity of sleep-dependent memory consolidation. Furthermore, they may 

provide different results for similar memory tasks, which could give insight on 

how different cortical areas affected by TMR interact with another. 

 

1.4.1. Findings of Odor-based Targeted Memory Reactivation 

Initiating a surge of TMR-based studies, Rasch et al used semi-continuous (30s 

on-30s off) odor cueing during one declarative, visuo-spatial memory task and 

one procedural finger-tapping sequence task, then reapplied this odor during 

either SWS, REM sleep or wakefulness (Rasch et al, 2007). The only group that 
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benefitted from the odor stimulation was the SWS group and this only for the 

visuo-spatial memory task. No groups benefitted from odor stimulation in the 

finger-tapping sequence task (Rasch et al, 2007). As to why explicitly SWS 

consolidation of declarative tasks was affected by odor cueing, Rasch et al refer 

to the direct link between olfactory system and the hippocampus, the increased 

susceptibility of hippocampal reactivation during SWS and its importance for 

declarative memory consolidation (Rasch et al, 2007; Zelano & Sobel, 2005). 

Odor cueing during SWS prompted hippocampal memory reactivations, which 

was shown using fMRI, making this study a prime example for TMR during 

sleep (Rasch et al, 2007). 

Odor-TMR during wakefulness and during SWS may have different effects on 

performance in a visuo-spatial two-dimensional object location task 

(Diekelmann et al, 2011). TMR during wakefulness can increase lability in a 

succeeding interference task, whereas TMR during SWS may increase stability 

in that task. The two contrary results are possibly connected to reactivation of 

different cortical regions detected in fMRI and different neurohumoral milieus as 

described previously. In the fMRI, TMR during wakefulness reactivated 

predominantly the right lateral prefrontal cortex, while TMR during SWS 

reactivated the left hippocampus, retrosplenial, temporal and additional medial 

frontal areas. This may support the system consolidation theory, in that the 

redistribution of memory traces from hippocampal circuits to cortical circuits 

gets promoted through memory reactivation in SWS, and this process might be 

actively initialized by TMR. The system consolidation during SWS would protect 

the reactivated memories, whereas during wakefulness the post-reactivation 

destabilization as seen in previous studies using amnesic agents dominates. 

Importantly, subjects in the sleep stimulation group were awakened before REM 

sleep was reached, which in the system consolidation theory might be linked to 

post-SWS reactivation reconsolidation of memories (Diekelmann et al, 2011). 

90 minutes of SWS without TMR had a comparable consolidating effect on 

visuo-spatial memory as 40 minutes with odor-TMR, while 40 minutes of SWS 

without TMR were incapable of exhibiting a significant consolidating effect 

(Diekelmann et al, 2012). Throughout the nap, SWS odor-TMR of an 
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interference visuo-spatial memory task did not impair the non-reactivated sleep-

dependent consolidation of a target visuo-spatial memory task, suggesting that 

sleep consolidation is stronger than or insensitive to interference by TMR 

(Seibold et al, 2018). 

In a study by Diekelmann et al, odor-TMR during SWS could improve explicit 

knowledge of an implicitly learned sequence in the Serial Reaction Time Task 

(SRTT) but only for men (Diekelmann et al, 2016). These results support 

previous results that SRTT procedural performance is unaffected by SWS-TMR, 

and that gender and menstrual cycle may affect memory consolidation (Cousins 

et al, 2014; Diekelmann et al, 2016; Genzel et al, 2012). However, odor-cueing, 

unlike auditory TMR, may not be selective enough to promote consolidation of 

the implicitly learned underlying sequence in the SRTT (Diekelmann et al, 

2016). 

Moreover, TMR using odor presentation during sleep may increase creativity in 

problem-solving measured by the “Unused Uses Task” as described by Guilford 

(Guilford, 1967; Ritter et al, 2012).  

 

1.4.2. Findings of Auditory Targeted Memory Reactivation 

Rudoy et al published a study in 2009 in which they used auditory TMR to 

enhance recall in a visuo-spatial memory task (Rudoy et al, 2009). Subjects 

were asked to memorize the exact location of 50 unique objects on a computer 

screen. Every time the subjects interacted with a specific object, an object-

related short audio file would be played, e.g. “cat” would be accompanied by 

“meow”. After encoding, subjects took an approximately 75-minute nap during 

which white noise was presented at a steady sound pressure level. Half of the 

object sounds were then played in 5 second-intervals during SWS, while 

lowering the white noise accordingly to maintain the total sound pressure level. 

Retention was tested after the nap. The object location retrieval precision for the 

objects that were stimulated in SWS was significantly higher than for the others. 

Subjects were unaware of any sound stimulation having occurred during sleep 

and they were forced to guess which sounds were played during sleep. In a 
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control group that was presented with the audio stimulation in wakefulness, no 

significant benefit in object location retrieval precision for stimulated objects was 

detected. This study demonstrated that memory processing during sleep can be 

highly specific and audio stimulation can target specific memory traces for 

reactivation, without necessarily disturbing sleep (Rudoy et al, 2009).  

The addition of the explicitly stated variable future relevance of items to Rudoy 

et al’s study setup showed that “high-value” memories (as in having more future 

relevance) have a higher retention rate than “low-value” memories, but TMR 

can improve retrieval of low-value memories (Oudiette et al, 2013; Rudoy et al, 

2009). Beyond that, TMR during a difficult cognitive task in wakefulness 

resulted in better retention of only the reactivated half of low-value memories 

and no conscious recognition of stimulated sounds in a later test. TMR during 

SWS resulted in a higher retention rate for all low-value items, associated with 

the categorization of items in low- and high-value during training (Oudiette et al, 

2013). This discrepancy of wake stimulation and SWS stimulation may point at 

earlier findings of integrational properties of sleep-dependent consolidation 

which is able to interlink information that receives similar tags during encoding 

(Lau et al, 2011; Oudiette et al, 2013; Wagner et al, 2004). Furthermore, there 

was a significant correlation for REM sleep length with the number of forgotten 

low-level item locations, supporting the hypothesis that REM sleep promotes 

forgetting of insignificant memories. There was a significant correlation between 

delta power of slow waves with reactivated item retrieval, implying a correlation 

between SWS and reactivation triggered consolidation (Oudiette et al, 2013). 

SWS TMR resulted in significantly better recollection of items not highly 

memorized during training and for individuals who already had a high training 

recall accuracy (Creery et al, 2015). The optimal timing of SWS TMR is during 

the depolarization upstate of the slow-oscillation, which coincides with sharp-

wave ripple and sleep spindle events associated with hippocampus-dependent 

memory consolidation (Batterink et al, 2016; Rasch & Born, 2013; Rudoy et al, 

2009).  

Auditory TMR during SWS exhibited beneficial results for consolidation of visuo-

spatial memories with strong emotional components, as demonstrated by 
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Cairney et al (Cairney et al, 2014). The stronger the emotional component, and 

the more SWS sleep spindles were present during the nap, the better the 

retrieval performance. This corroborates findings that emotionally loaded 

memories are preferentially consolidated, even in the absence of REM sleep 

(Cairney et al, 2014). 

Auditory TMR may improve procedural memory. Study participants learned new 

melodies on a virtual keyboard and were subjected auditory TMR replaying one 

of them during SWS during a 90-minute nap. Procedural accuracy was 

increased for the reactivated melody compared to a non-reactivated melody and 

to a new melody (Antony et al, 2012). 

Replaying studied words from a foreign language during S2 and SWS resulted 

in better retrieval post-sleep for replayed words (Schreiner & Rasch, 2014). This 

correlated with more frontal negativity and slow waves and right frontal and left 

parietal oscillatory theta power for event-related potentials (ERP) during TMR 

(Schreiner & Rasch, 2014). These results were corroborated in a follow-up 

study (Schreiner et al, 2015). Evidence was found that during TMR in NREM 

sleep after presentation of a cue, there is a sensitive time frame in which 

additional stimuli may inhibit TMR-related memory gain (Schreiner et al, 2015). 

A per-subject individually designed machine learning algorithm was able to 

detect auditory TMR-induced frequency band changes in S2 and SWS, which 

may provide an opportunity to also detect natural task-specific memory 

reactivations automatically (Belal et al, 2018). Using auditory TMR to reactivate 

a hidden sequence of a visuo-auditory conditioned SRTT, the algorithm was 

able to detect significantly more SWS reactivations than S2 reactivations, 

suggesting there are numerically more triggered memory reactivations during 

SWS. S2-reactivations were preferentially identified in the second half of the 

night (Belal et al, 2018). 

Some approaches have failed to prove any beneficial effect of auditory TMR on 

sleep-dependent memory consolidation. Donohue and Spencer analyzed the 

effect of environmental sounds on retention rate of semantically unrelated word 

pairs (Donohue & Spencer, 2011). The semantic task differed qualitatively from 
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earlier studies that used spatial learning tasks. The setup of audio stimulation 

was different from Rudoy et al in that only one “ocean”-sound was played at a 

steady level during the entire encoding interval and one “ocean” or “rain” sound 

was played during the entire sleep interval with the subjects’ knowledge in their 

own beds. The authors did not find any significant improvement in the group 

having “ocean”-sound stimulation during encoding and sleep versus the control 

group having “ocean”-sound stimulation during encoding and “rain”-sound 

stimulation during sleep. Both sleep groups performed significantly better than a 

control group that did not sleep in the incubation interval, showing that their 

semantic task was receptive to sleep-dependent consolidation (Donohue & 

Spencer, 2011). Possible explanations for the inefficiency of TMR in this setup 

may include the continuous stimulus presentation, the awareness of the 

stimulation before sleep and after waking, the lack of stimulus specificity to the 

target memories and interfering reactivations of unrelated episodic memories 

associated with the “ocean” sound (Schouten et al, 2017).  

 

1.4.3. Induction of Forgetting Through Targeted Memory 

Reactivation 

Sleep-associated retrieval gain of memories reactivated through TMR versus 

forgotten memories are significantly correlated with fast sleep spindles in the 

13.5-15 Hz band in the left parietal cortex; the sleep spindle amount predicting 

higher retrieval for reactivated and lower retrieval for non-reactivated memories 

(Saletin et al, 2011). This suggests both active forgetting and active 

consolidation of appropriately “tagged” memories (Stickgold & Walker, 2013). 

TMR may also promote active forgetting (Simon et al, 2017). In the first part of 

the experiment, subjects were presented a word list. Words were followed by 

either a sound indicating the word should be forgotten, or a sound indicating the 

previous word should be retained. In the second part of the experiment a 

visuospatial object-location task was performed, during which item specific 

sounds were presented. During the first half of SWS 5 item specific sounds 

were presented in alternation with the forget cue. Seven days later, comparison 
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of the performance in the retrieval task of the reactivated items with 5 random 

non-reactivated items showed significantly lower recall of the objects, accuracy 

of object location placement and confidence rating. There was no correlation 

with specific sleep stages (Simon et al, 2017). 

 

1.4.4. REM Sleep and the Selectivity of Sleep-Dependent 

Consolidation  

The role of REM sleep in sleep-dependent consolidation is not clear. In the 

active system consolidation theory, REM sleep has the role of strengthening 

and weakening memories according to their SWS-dependent tagging 

(Diekelmann & Born, 2010). In line with this idea, Oudiette et al suggest that 

REM sleep may promote forgetting of memories with low future relevance, as 

seen in their study on auditory TMR of a visuo-spatial memory task (Oudiette et 

al, 2013). 

Auditory TMR in the second half of sleep during phasic REM sleep (REM sleep 

stage with apparent transient events like rapid eye movements) versus Stage 2 

versus no TMR, discovered that only the REM sleep TMR group exhibited 

increased retrieval and in addition generalization after being displayed pictures 

of faces (Sterpenich et al, 2014). The images depicted 120 negative and 120 

neutral rated faces, and two neutral sounds were assigned to either negative or 

neutral to be played when these were displayed. Both sounds were used as 

reactivating stimuli during TMR. After TMR either during phasic REM sleep or 

S2 or no TMR, subjects were asked to rate a mixed set of old and new pictures 

as “remember”, “know” or “new” (Sterpenich et al, 2014). TMR was applied 

during phasic REM sleep because animal studies have shown that it may be 

involved in active memory processing (Datta, 2000; Sterpenich et al, 2014). 

Stage 2 TMR resulted in neither better recollection during the retrieval task, nor 

generalization and integration into associative networks, unlike REM sleep 

TMR. After REM sleep TMR, the incidence of new images especially ones 

connoted negatively being recalled as “remembered” or “known” was 

significantly increased, which supports the hypothesized function of REM sleep 
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to generalize and abstract memories into existing or new associative networks 

(Cai et al, 2009; Sterpenich et al, 2014). fMRI examination demonstrated that 

the retrieval task increased activity in brain areas, such as hippocampus, 

precuneus and medial prefrontal and lateral superior prefrontal cortices 

connected to declarative memory tasks (Sterpenich et al, 2014). This indicates 

REM sleep-dependent processing of declarative memories (Sterpenich et al, 

2014). 

TMR may also be used to weaken social biases (Hu et al, 2015). Subjects’ bias 

was measured using two implicit associations tests, one for gender and one for 

race, to establish their baseline bias. During an encoding task, subjects 

responded to counter-stereotypical pairings presented with a distinct sound for 

gender and race bias. Pre-nap bias was significantly reduced from baseline. 

One of these sounds was presented during a 90-minute nap during SWS with 

polysomnography and post-nap bias revealed a significant decrease only for the 

cued bias. One-week post-encoding bias was measured and revealed only for 

the cued bias a non-significant increase compared to baseline (Hu et al, 2015). 

This was predicted by time spent in SWS x REM sleep, suggesting that this 

type of memory consolidation requires sequential SWS and REM sleep, as 

proposed in the active system consolidation theory and sequential hypothesis 

(Diekelmann & Born, 2010; Giuditta et al, 1995; Hu et al, 2015). 

Evidence supporting the sequential hypothesis surfaced that lexical competition 

between new fictional words and known words correlated with relative time 

spent in REM sleep (Tamminen et al, 2017). This suggests that TMR during nap 

in SWS may regulate memory processing during REM sleep, promoting item 

integration into existing vocabulary (Tamminen et al, 2017). 

 

1.5. Research on Problem-Solving and Sleep 

Within the field of neuroscience, problem-solving research is conducted by a 

variety of specializations. Different types of problems have been crafted to test 

various specific skills and cognitive capabilities. They range from intelligence, 

logic, orientation and mathematics to association, transfer and creativity. Not as 
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much the solution, but the path to find the solution and the techniques that have 

evolved over generations and during our lifetime are of utmost interest in 

neuroscience. Sometimes a problem is solved instantaneously, sometimes it is 

solved after countless attempts and other times it is solved after having turned 

to other activities. For sleep science, problem-solving is of special interest, 

since anecdotal reports and sayings attribute an intrinsic problem-solving 

capability to sleep. 

There are multiple ways to solve a problem, ranging from the application of a 

known algorithm to sudden insight. Earlier studies have shown that solving a 

problem through insight promotes an emotional reaction with increased activity 

in the amygdala and surprise (Bowden et al, 2005; Dougal & Schooler, 2007; 

Gick & Lockhart, 1995; Metcalfe, 1986). Furthermore, solving a problem through 

insight increases the probability of “discovery misattribution”, which is defined 

as falsely remembering to have known the solution in advance of solving the 

problem (Dougal & Schooler, 2007). These findings suggest that the experience 

of problem-solving may affect the emotional and episodic memory (Dougal & 

Schooler, 2007).  

In a Number Reduction Task (NRT), which tests insight into a hidden rule, 8 

hours of sleep after training doubled the number of insight occurrences within 

groups, compared to wakefulness (Wagner et al, 2004). Sleep may promote the 

extraction of explicit knowledge and gaining of insight through reorganization of 

memories. The reaction time improvement expected from repetitive tasks only 

occurred within the group of “non-solvers” but not in the group of “solvers”. 

“Solvers” refers to subjects discovering an intrinsic abstract rule, which provided 

participants with a faster way to solve the tasks than the one they were trained 

to do (Wagner et al, 2004). Furthermore, SWS-rich early night sleep promoted 

transformation of pre-sleep implicit rule knowledge to explicit knowledge, while 

REM-rich night sleep did not achieve this to a similar extent. A possible 

explanation is that REM-sleep can only stabilize implicit rule knowledge, not 

generate it (Yordanova et al, 2008).  
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Research on creative problem-solving has targeted the “incubation” effect 

(Gilhooly, 2016; Poincaré, 1910). Incubation starts after having encountered a 

problem and comprises moving to a different activity and possibly engaging in 

“unconscious work”, and ends either when a sudden insightful solution comes to 

mind or when the solution arises without sudden insight (Gilhooly, 2016; 

Poincaré, 1910). Two distinct experimental procedures have produced 

incubation effects. The “delayed incubation” takes place after subjects have 

unsuccessfully attempted solving the problem and the “immediate incubation” 

ensues when immediately after presentation of the problem, subjects are tasked 

with an incubation interference task (Gilhooly, 2016). Incubation research of 

creative problem-solving has largely focused on divergent problems, asking the 

subject for multiple possible novel solutions, and less on insight problems, 

which usually have a single solution. Three effects are hypothesized to 

contribute the incubation effect: conscious “intermittent work” during the interval, 

“beneficial forgetting” of fixated strategies from the earlier attempt and 

“unconscious work”. According to the review by Gilhooly on this subject, results 

from delayed and immediate incubation may only be explained in their entirety 

through “unconscious work”, perhaps in form of spreading cortical activation as 

proposed by Hélie and Sun (Gilhooly, 2016; Hélie & Sun, 2010). 

For the Remote Associates Test (RAT) napping containing REM sleep 

improved association and integration of items over mere napping with SWS or 

quiet wakefulness (Cai et al, 2009). The RAT is designed to test creative 

problem-solving using 3 to 1-word associations. Three words which have a 

common word associated to them are presented to the subject and the subject 

needs to identify the context word (e.g. “chalkboard”, “classroom” and “book” 

are associated with “school”). Problem-solving was enhanced for naps 

containing SWS or REM sleep and quiet wakefulness only if there was pre-

incubation exposure to the task. There was no better memory retention of the 

REM sleep nap group concerning the pre-incubation exposure, supporting the 

idea that problem-solving is not linked to better memory performance as 

described earlier by Dougal and Schooler (Cai et al, 2009; Dougal & Schooler, 

2007). These results may indicate that RAT performance gains rely on REM 



36 
 

sleep-dependent processing (Cai et al, 2009). Furthermore, more difficult 

associations of the RAT may require a broader spreading of activation across 

the neocortex to arrive at their solutions (as suggested by Ohlsson et al) and 

this may get facilitated through a night’s sleep incubation between practice and 

testing sessions especially for difficult RAT problems (Ohlsson, 1992; Sio et al, 

2013). However, some teams have not been able to replicate these results and 

presume that sleep may only strengthen memories of the training session, not 

creative problem-solving (Landmann et al, 2016). They state that creative 

problem-solving is uniquely different from conceptualization, rule learning or 

integration into existing schemas, in that it necessitates breaking down known 

algorithms and strategies and reassembling them in a new way. This does not 

get facilitated through sleep (Landmann et al, 2016; Landmann et al, 2014). 

Sleep after solving logical problems may facilitate analogical problem-solving of 

new problems with low surface similarity (Monaghan et al, 2015). Subjects were 

presented with 6 problems before either sleep or wakefulness, which they either 

solved or were given the solution to, and instructed that these might be of future 

relevance, prior to incubation. Each of these training problems was paired with 

an analogous target problem, each pair having low surface similarity, and the 

paired problems were presented after incubation to the subjects. Solving the 

training problems themselves or being given the solution did not change the 

solution rate of target problems. The sleep group performed significantly better 

on target problems but neither recognition of the training problem’s solution nor 

of similarity between the pairs was different from other groups. The authors 

ascribe the better performance of the sleep group to the structural 

generalization across all training problems promoted through active system 

consolidation (Monaghan et al, 2015). 

Schonauer et al tested the effect of incubation napping or awake versus none 

on creative problem-solving capabilities of magic tricks and insight problems 

and found no sleep-related improvement (Schonauer et al, 2018). In their 

experiment neither sleep nor incubation increased the likelihood to solve a 

problem, suggesting that sleep may not promote creative problem-solving 

competence. There was no significant difference in ratio of analytical, 
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algorithmic solutions to insight solutions between groups. They propose that 

incubation, which promotes spreading of activation, may not suffice to 

restructure the cortical representations of the problems giving way to new 

creative approaches (Schonauer et al, 2018).  

Lewis et al proposed a “broader form of the information overlap to abstract 

framework” (BiOtA), which states that repeated memory reactivation promotes 

reorganization, integration and concentration of memory and schema 

representations in the cortex (Lewis et al, 2018). Initial hippocampus-dependent 

memory replays in NREM sleep train the first level of cortical representations. 

These are mostly accurate to the original and overlapping components between 

memories. The memory replays can induce integration, abstraction and gist 

extraction. In the succeeding REM sleep episode, many cortical memory 

representations are randomly reactivated by PGO-waves, which trains their next 

level of cortical representations. Memories that include overlapping schematic 

information train the same cortical representation of the overarching schemas. 

Through high expression of acetylcholine and immediate early genes (e.g. Zif-

268), linking of activated cortical representations is facilitated, which leads to 

new associations. Repeated alternation of NREM sleep and REM sleep lead to 

incrementally more concentrated, schematic memory representations, which 

through receiving more total reactivation and potentiation may survive forgetting 

of the initial accurate memory and earlier cortical memories. Moreover, memory 

reactivation during REM sleep may be used to test the associated schemas, the 

best applicable strengthened most. Each reactivation cycle promotes further 

restructuring of memory representations, facilitating creative problem-solving. 

According to the BiOtA model, REM sleep memory reactivation helps to mitigate 

self-imposed constraints and create new associations, thus enabling strategy 

changes in analogical and creative problem-solving (Lewis et al, 2018). 

In 2014 Beijamini et al conducted a study which showed that naps improved the 

likelihood to solve a video game problem (Beijamini et al, 2014). Using the 

video game Speedy Eggbert Mania® (EPSITEC, 1999) as test for problem-

solving capability, subjects completed a 10-minute per level practice session 

(PS) until they ran out of time during one level. After a 90-minutes incubation 
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interval spent either napping or in quiet wakefulness, a testing session (TS) was 

performed, where subjects were tasked to solve the level, they were unable to 

complete during the PS. There was a significant difference in solver rate 

between groups, with twice as many in the sleep group. In the sleep group all 

subjects who reached SWS during their nap solved the problem. No significant 

correlation could be found between problem-solving and REM sleep during the 

nap. The significant effect of SWS and lack thereof for REM sleep may be 

related to the problem configuration, requiring visuo-spatial and logical-

reasoning skill to solve. The authors noted that subjects had been unaware of 

the second video-game session after their nap and that difficulty of the tested 

level in TS varied across subjects. Additionally, problem-solving rate did not 

correlate with participant-subjective expertise in video games (Beijamini et al, 

2014). This study is of particular interest for this present thesis, as it uses the 

same game as a tool to test problem-solving. 

 

1.6. Hypothesis 

Analyzing previous research, this present study proposed that targeted memory 

reactivation via sound stimulation during REM sleep will increase the likelihood 

to solve a problem in a video game compared to a targeted memory reactivation 

during wakefulness. Moreover, it was hypothesized that there would be a 

difference in problem-solving capabilities, depending on the level subjects were 

confronted with first in the testing session, i.e. whether the testing session starts 

with an uncompleted level from the training session, followed by a similar new 

level (“Analogical Problem-Solving Test”, APST) or vice versa. Both levels of 

the testing session shared a low surface similarity which has been shown to 

increase the problem-solving capabilities for analogical logical problems 

(Monaghan et al, 2015). In accordance with previous research, it was expected 

that after targeted memory reactivation during REM sleep, subjects would solve 

the known level significantly more often and faster than after targeted memory 

reactivation during wakefulness (Lewis et al, 2018). Moreover, this study 

expected subjects starting with the analogical level to solve the problem-solving 
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test significantly more often and faster than subjects starting with the problem-

solving test itself, as they shared a low surface similarity.  
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2. Methods 

2.1. Design and procedure 

This study attempted to assess the role of targeted memory activation (TMR) 

during REM sleep versus wakefulness for problem-solving. To test this, one 

level of the video game Speedy Eggbert Mania® (EPSITEC, 1999) was defined 

as problem-solving test (PST) and subjects between ages 18 to 30 were invited 

to participate. Upon accepting they were allocated to two groups – the REM 

sleep stimulation group (REM Stim) and the Wake stimulation group (Wake 

Stim). Furthermore, both groups were split into two sub-groups, where one half 

started the testing session with the Problem-Solving Test (PST) and the other 

half started with an Analogical Problem-Solving Test (APST), which exhibited a 

low surface similarity to the PST. In both levels, subjects needed to use two 

characters in collaboration to solve the puzzle. Both sub-groups completed both 

levels.  

Subjects who refused to participate in either the sleep experiment (REM Stim) 

or the wake experiment (Wake Stim), were allocated to the group of their 

preference. All other subjects were distributed randomly without preference. 

Upon joining this study, subjects were assigned a code, which was then used to 

pseudomize all documents and files processed by them. 

Subjects of the REM Stim group who have never slept in a sleep laboratory, 

were required to have an Adaptational Night at least one week before the 

Experimental Night. The Adaptational Night included questionnaires about their 

subjective sleep quality and sleeping in the sleep laboratory with in-ear 

headphones and EEG, EOG and EMG electrodes monitoring their sleep. After 

the Adaptational Night the EEG was scanned for any indications of neurologic 

illnesses or sleep irregularities. 

The study comprised a training and a testing session for each group, with an 

incubation interval with either sleep or wakefulness in between.  

Preparation 
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The experiment started for the REM Stim at 20:30 and for the Wake Stim group 

at 9:20 in the sleep laboratory (for detailed schedule see Appendices Figure 4). 

During the training and testing sessions the lighting was the same for both 

groups. Upon arrival, the room and its content were presented to the subject 

and they were given a questionnaire about the past 24 hours to check if the 

preparation was as instructed. Questionnaires, control tasks and the video 

game instructions were presented in German. The DSpan task included English 

instructions.  

Before the REM Stim group started the training session, they were prepared for 

polysomnography according to the procedure detailed in 2.5.  

Training Session 

The training session commenced at approximately 21:50 for the REM Stim 

group and at 9:20 for the Wake Stim group. Subjects were presented 

questionnaires assessing the mental state (Mental State Questionnaire (MSQ), 

see 2.6.1.), the mood state (Multidimensional Mood State Questionnaire Short-

Form A (MDBF-A), see 2.6.1.) and the previous history with video games 

(Gaming Background Questionnaire (GBQ), see 2.6.1.) of the subjects. 

Completion took approximately 10 minutes.  

Upon completion subjects completed a task designed to assess their short-term 

memory performance (Digital Span Task (DSpan), see 2.6.2.) and a task testing 

their vigilance via reaction time and accuracy (Vigilance Task (VT), see 2.6.2.) 

on a computer in their room. This step took approximately 10 minutes. 

Subjective sleepiness was evaluated with a questionnaire (Stanford Sleepiness 

Scale (SSS), see 2.6.1.) and subjects were presented with the instructions to 

the video game Speedy Eggbert Mania® (EPSITEC, 1999). Subjects were given 

as much time as they needed to fully study the instructions. On average, 

subjects spent 5 minutes on this step. 

Around 22:15 for the REM Stim group and 9:45 for the Wake Stim group, 

subjects were asked to insert headphones connected to the computer and the 

video game was started by the instructor. They were asked to complete five 



42 
 

levels, these being the four training levels of the video game and the problem-

solving test level. They were informed that they were on a ten-minute time limit 

for the problem-solving test level (PST). Subjects were unaware of the 

significance of the PST for this study. 

Subjects who completed all four training levels and were unable to solve the 

PST continued with the study. Subjects who did not meet these criteria were 

dropped from the study.  

Subjects continuing with the study were asked to complete a questionnaire 

assessing their game experience (Game Experience Questionnaire (GEQ), see 

2.6.1.). Completion took approximately 5 minutes. 

Incubation Interval 

After the training session an incubation interval followed. It started at 22:50 for 

the REM Stim group and 10:20 for the Wake Stim group. Subjects were given a 

10-minute break to use the lavatory or refresh.  

Around 23:00 participants of the REM Stim group laid down in bed with taped 

in-ear headphones and the electrodes were connected to the EEG amplifier. 

Sound calibration of white noise ensued, which was then continuously 

presented throughout the night at 36 dB (see 2.4.). Subjects were informed that 

they might hear sounds during the night. Lights were switched off and subjects 

were left to sleep. The instructor remained in the observation room until the 

subjects fell asleep. Ninety minutes after the lights were extinguished, live 

scoring of the EEG feed and application of the TMR protocol started (see 2.4.). 

Eight hours after the lights went out, subjects were awakened, asked if they had 

slept well, electrodes and headphones were removed, and they were given time 

to shower. Subjects then completed a questionnaire asking for subjective 

evaluation of their sleep quality (Sleep Quality questionnaire (SF-A-R), see 

2.6.1.) 

The incubation interval of the Wake Stim group started around 10:20 with the 

same sound calibration task as the REM Stim group, sitting at the desk in front 

of the deactivated monitor.  
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White noise was presented through Windows Media Player using computer 

volume setting of 31 using the internal volume setting to achieve a white noise 

of 36 dB. Participants were informed that the white noise would continue in the 

background of the first 45 minutes of “The Lion King 2: Simba’s Pride”. After 45 

minutes the movie was stopped, and subjects were given the opportunity to visit 

the lavatory. Upon return, they were instructed and completed a new complex 

vigilance task (Random Reaction Time Task (RRTT), see 2.6.2.), which would 

be accompanied by sounds (being the same stimulation protocol of the REM 

Stim group) played in the background. Completion of the RRTT took 

approximately 30 minutes. 

After completing the RRTT, subjects were instructed how to behave during the 

interval. They were prohibited from consuming caffeine, alcohol, medication, 

drugs, doing strenuous activities like sports or sex, playing video games and 

napping. They left the building around 11:45 and were unsupervised until arrival 

at the sleep laboratory approximately 7 hours and 35 minutes after leaving. A 

questionnaire inquiring on how they spent the time outside of the sleep 

laboratory (Day Activity Questionnaire, see 2.6.1.) was completed at about 

19:20, to confirm that subjects had adhered to protocol. 

Testing Session 

Testing session started at approximately 8:00 for the REM Stim group and at 

19:25 for the Wake Stim group. Subjects completed the MSQ, MDBF-A, DSpan, 

VT and SSS a second time. This took ca. 15 minutes. Subjects received the 

video game instructions and after they were ready, headphones were inserted, 

and the video game started by the instructor at ca. 8:15 for REM Stim and 19:40 

for Wake Stim group. 

For the second video game session groups were split in two. Subjects were 

randomly selected to either start with the PST (Level 3 of World 3) or an entirely 

new level, the APST (Level 3 of World 4). In each group, 8 participants started 

with the PST (7 female, 1 male), and 8 with the APST (6 female, 2 male). 

Completion of both levels was attempted by all sub-groups. Subjects were 

instructed that there was no time limit for completion of these levels. After 
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completion or resignation of both levels, subjects were presented the GEQ. This 

was ca. 8:55 for REM Stim and 20:20 for Wake Stim group. Next, recollection of 

sounds used in the TMR protocol was tested (Hear-No Hear Task (HNH, see 

2.6.2.). Subjects continued with a questionnaire asking about how they thought, 

felt and talked about the video game between sessions (Rehearsal 

Questionnaire, see 2.6.1.). 

Upon completion, subjects who did not solve levels during the testing session 

were shown the solution to those levels. The experiment concluded around 9:10 

for the REM Stim group and at approximately 20:35 for the Wake Stim group. 

 

2.2. Population 

To qualify for this study subjects must be healthy non-smokers between 18 and 

30 years of age, have no history of endocrine, sleep, neurological or psychiatric 

disorders, no history of drug or alcohol abuse, currently be under no medication 

other than the female contraception pill, have abstained from night shift work for 

at least 6 weeks prior to the experiment and be comfortable in German and 

basic English. Invitation was done via the circular mail service of the Eberhard 

Karls Universität Tübingen. In this study 50 subjects in total were recruited this 

way for the two groups “REM Stim” and “Wake Stim”. 24 were assigned to the 

REM Stim group and 26 to the Wake Stim group. For the 24 hours before and 

the time during the experiment alcohol, caffeine, drugs, medication other than 

the female contraception pill and napping were prohibited. In the night before 

the experiment participants were instructed to sleep no less than seven hours 

and not more than 9 hours. They were advised to eat a small meal before the 

experimental night for the REM Stim group and before each session for the 

Wake Stim group.  

From the REM Stim group eight subjects were removed from the analysis 

because of solving the problem during the training session (3 subjects), thought 

of the solution before sleep (1 subject), being aware of the audio stimulation 

during sleep (2 subjects), not having enough REM sleep to get more than 70% 

of the audio stimulation protocol (1 subject) and not finishing the experiment (1 
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subject). From the Wake Stim group ten subjects were removed from the 

analysis because of solving the problem during the training session (4 subjects), 

hearing disturbing sounds during the audio stimulation (1 subject), not having 

the second video game session recorded due to software issues (1 subject), 

having sexual intercourse in between the two sessions (1 subject), failing to 

complete the training levels (1 subject), failing to meet the criteria of the 

Random Reaction Time Task during the audio stimulation (1 subject) and not 

hearing any video game audio during the training session (1 subject). 

The data of one subject from the Wake Stim group was excluded only for the 

analysis of the Vigilance Task, because the task was taken twice in the first 

session. The rest of the data for the remaining 32 subjects entered the analysis. 

The average age of the included participants was 22.94 years (2.66) (Mean 

(SD)). 

All subjects were paid for their participation according to the standard tariff of 

the Eberhard Karls Universität Tübingen and gave written consent prior to the 

Adaptational Night and or the experiment. The study was approved by the 

ethics committee of the university (IRB 623/2014BO2). 

 

2.3. Problem-Solving Test: Using a Video Game as Research 

Tool 

The video game Speedy Eggbert Mania® was used to test the problem-solving 

skills of subjects in one level in particular, this being Level 3 of World 3 (further 

referred to as PST). The game is comparable to the more popular game 

Sokoban (Beijamini et al, 2014). Both require logical reasoning, while minimally 

relying on declarative or procedural memory to complete the game. At any 

given time, every move and succession of moves can be reversed, providing 

the player with limitless attempts to start anew. In Speedy Eggbert Mania® the 

player controls the movement and actions of an egg-shaped character named 

“Blupi” by mouse to reach a floating balloon which will bring him to the next 

level. To reach this goal the player needs to command Blupi to interact with an 

assemblage of boxes by moving them directly or indirectly throughout a limited 
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3D scenario. As the player progresses through the scenarios, the complexity 

and variety of available objects increases (Beijamini et al, 2014). 

The game features four different level styles (World 1-4), which depict different 

scenarios from lush jungles to volcanic craters with lava flowing around the 

center island, where the game action takes place. Each World has different 

ambient sounds that match the setting. Bubbling of lava, birds chirping, thunder, 

rain and other sounds accompany the player during the game. The playable 

character makes a distinct set of sounds, including moaning when pushing 

boxes, a sound played when the player asks for an impossible action and a 

sound played when the player commands the character to move to another 

place and running footsteps while moving to that spot. In some levels of these 

worlds, machinery is present, like cranes and hydraulic hammers, which make 

distinct sounds when “Blupi” interacts with them. Sounds may be steam release, 

motor sounds, high voltage sounds and others. When interacting with 

machinery, “Blupi” presses buttons on them, which is accompanied by a clicking 

sound. 

The difficulty of the levels increases from World 1 to World 4 and from their 

individual Levels 1 to 4 (see Appendices Figure 5 for a schematic overview of 

the levels). 

German instructions about how to play were handed out before starting the 

game. There all necessary information was provided, which subjects needed to 

solve any level. Importantly, it was stated how subjects could reverse all steps 

or restart at any given time in all levels.  

The instructions were available to the subjects for the entirety of both video 

game sessions. Computer sound level was set to 31. Screen capture recording 

was started using the CamStudio Software version 2.7.2 (RendersoftSoftware, 

2001), and the headphones inserted as soon as the game was launched by the 

instructor. 

Training Levels 

The training session started with four training levels before subjects 

encountered the PST. In these levels they had the opportunity to get 
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accustomed to the game and its mechanics. In the first level (Level 1 World 1) 

“Blupi” must push a box into a mine, upon which the latter detonates and frees 

the path to the first balloon. In the second level (Level 1 World 2) “Blupi” needs 

to build a bridge using all three available boxes to reach the second balloon. In 

the third level (Level 1 World 3) subjects had to use “Blupi” to interact with a 

crane, a tool through which they could indirectly move boxes from one spot to 

another, for the first time. The crane has only a limited amount of actions 

available, which are predetermined by the current level. Once those actions are 

used up, the crane breaks and subjects must either complete the puzzle without 

it or reverse their steps. Similarly, the fourth level (Level 2 World 3) required 

participants to use the crane to loosen up a large clump of boxes, so they could 

use them to build a bridge to the goal. The training levels were necessary, so 

subjects were aware of the limitations of the crane, the boxes and the character 

and the possibility to reverse their actions.  

Levels of Advice 

If certain check points were reached, the instructor gave advice to the subjects 

which helped them to finish all four training levels. For the training levels the 

following procedure was used when a subject was unable to finish them in a 

certain time limit: After 20 minutes in level 1 of World 1, subjects were given the 

hint that they needed to use the box to remove the obstacle to complete the 

level (1 subject). After 20 minutes in level 1 of World 2, subjects were given the 

hint that they should try to move the boxes in a way they have not tried before 

(1 subject). After 10 minutes in level 1 of World 3, subjects were shown where 

the “Restart” option was located (10 subjects) and after 20 minutes subjects 

were told how to interact with the crane (1 subject). 

Problem-solving Test 

The key problem of the experiment was a specific level of the video game 

Speedy Eggbert Mania®. The solution of this level was only possible by having 

a new idea similar to a sudden insight or by extrapolating the known mechanics 

and transferring them to the new puzzle. For this study, both paths were 

considered to be characteristic for problem-solving. Theoretically, it is possible 

that the solution is found by accident, however none of the solvers reported that 
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they have done so.  

The training session ended with the PST (Level 3 World 3), in which subjects 

only had 10 minutes to complete the puzzle before the instructor would interrupt 

and abort the game. In this level, subjects could access two “Blupis” at the 

same time and to solve the puzzle, both needed to reach one of two blue 

balloons. The solution to this puzzle is multi-staged with the key point being that 

subjects must use one of the characters to pick up the other character with the 

crane. Once subjects had this figured out, the rest of the solution was not 

different from the training levels. The level included a box, which could never be 

used to reach the goal but served as a distractor. Upon interruption after the 10-

minute mark, screen recording was stopped, and subjects were informed that 

they would have another chance at solving this level in the second session. 

Video Game Testing Session 

Subjects were told that unlike in the first session, there was no time limit this 

time, and as soon as they finished their starting level, they were supposed to 

play the other level. This was level 3 of World 4 for those who started with level 

3 of World 3 and vice versa. Subjects who were able to solve the PST in the 

second session are “solvers”, those who failed “non-solvers”. 

The APST (Level 3 World 4) features two “Blupis” as well, which in order to both 

reach the balloon must be used in coordination with one another by the player. 

However, this level does not require the player to operate a tool on another 

character, even though it is technically possible. Subjects were not tempted to 

try this, since once both characters were on the same side, no interaction with 

objects was necessary to complete the puzzle.  

For the testing session the following procedure was used, if a subject was 

unable to solve one or both levels. If a subject was playing for 40 minutes in a 

level, they were asked by the instructor whether they wanted to give up (which 

at this point all did), and if applicable play the second level (level 3 of World 3 (4 

subjects), level 3 of World 4 (1 subject)). If before the 40-minute time mark a 

subject asked, if they could give up the current level, they were told that they 

still had time to complete the level or could give up, if they did not want to 

continue (level 3 of World 3 (13 subjects), level 3 of World 4 (1 subject)). 
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2.4. Auditory Targeted Memory Reactivation during REM Sleep 

or Wakefulness 

Both groups received the same auditory targeted memory reactivation protocol. 

It consisted of a constant chain of 22 one-second sound tracks, starting and 

finishing with one of two cues. The cues were bell sounds, which were not 

encountered during any other part of the experiment, until the Hear-No Hear 

task. The enveloped 20 sounds were taken directly from the PST level. These 

audio snippets were from an audio recording of the solution to the puzzle in the 

shortest possible way. Sounds of bubbling lava, steam sounds by the crane, 

running footsteps, “Blupi” moaning when pushing buttons, mechanic and high-

voltage sounds of the crane moving, “Blupi” moaning when pushing boxes and 

“Blupi” celebrating to have reached the balloon that takes him to the next level. 

The audio chain was repeated for 10 times and ended with the finish cue of the 

last chain after around 22 minutes. 

Before any TMR occurred, a sound calibration task was performed, whereby 

computer sound level was adjusted to 1 and using an E-Prime audio calibration 

protocol subjects were presented with white noise. If the subjects could not hear 

the white noise at the lowest computer volume setting, it was increased by 

increments of 1 and the E-Prime task repeated until they could hear the white 

noise. In the REM Stim group, after the sound calibration, computer volume was 

set to a value between 4 and 10 and the white noise was then played by 

Windows Media Player adapted internal volume settings for the entire night, 

creating 36 dB white noise. As soon as the REM sleep stage was detected, the 

audio stimulation protocol was started and stopped whenever the sleep stage 

changed, a motor or EEG arousal occurred. For a successful stimulation 70% 

needed to be completed within the REM sleep stage. The audio stimulation 

protocol run via E-Prime stimulated at a volume between 47.55 dB and 60.12 

dB on top of the white noise played at 36 dB. 

As the participants of the Wake Stim group were instructed about the Random 

Reaction Time Task (RRTT), they were informed that the task would be 
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accompanied by sounds (being the same stimulation protocol of the REM Stim 

group) played in the background. Subjects were reminded that it was of utmost 

importance to perform well in the RRTT. Throughout the RRTT, sound 

stimulation was played with computer sound level 6 to 7, accompanied with 

white noise at varying internal volume settings in Windows Media Player with a 

sound pressure level of 36 dB. Stimulation was presented only during the RRTT 

runs, not in the 30 second breaks in between at 54.79 to 56.40 dB. 

 

2.5. Sleep Recording and Staging 

For the REM Stim group 16 electrodes in total were used to monitor the 

subjects’ sleep. Nine EEG electrodes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4), two 

reference electrodes on the mastoids, two EOG electrodes (caudolateral of the 

left and craniolateral of the right eye), two EMG electrodes (above the mental 

foramen) and one ground electrode in the center of the forehead were applied 

according to standard procedure using the 10/20 positioning system (Jasper, 

1958). It was ensured that all impedances were less than 5 kΩ, using a manual 

impedance measurement device (Mini-Imp by TEMEC Instruments B.V.). 

Before the sleep interval, impedances were checked via BrainVision software 

(BrainProducts, 2000) to be below 5 kΩ for every electrode.  

Total number of EEG channels was 13. The sampling rate was set at 200 Hz 

with sampling intervals of 5 ms. The EEG amplifier used was the BrainVision 

BrainAmp. Before lights were turned off, white noise was started and applied via 

headphones. Scoring was done live using the system of Rechtschaffen and 

Kales (Rechtschaffen, 1968). Sleep stages S3 and S4 were scored as SWS as 

in the AASM guidelines for 30-second epochs (Berry et al, 2016). Eight hours 

after the subjects were left to sleep, the white noise was stopped, they were 

awakened by the instructor. Post-experiment, all polysomnography data was 

processed in BrainVision Analyzer® (BrainProducts, 2015) to obtain better data 

visualization for sleep scoring. Processing ensued according to criteria of the 

Rechtschaffen & Kales manual (Rechtschaffen, 1968). The two EOG channels 

were interpolated and together with EMG, C3 and C4 EEG channels used for 
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scoring. If C3 and C4 both malfunctioned during longer periods of sleep, all 

EEG channels were enabled for scoring. Data of EEG and interpolated EOG 

channels was filtered by applying a low cutoff of 1 Hz and a high cutoff of 35 Hz. 

EMG data was filtered with 0.03 Hz as low cutoff and 90 Hz as high cutoff. A 

notch filter of 50 Hz was enabled for all channels. No cutting of the 

polysomnographic data was performed. 

Offline rescoring was performed without knowledge of when stimulation had 

occurred by two independent persons manually using the unpublished, non-

commercial sleep scoring software SchlafAus Version 1.5.0.1 (Gais, 2000). 

According to the procedure described above, epoch-by-epoch visual-stage 

scoring was performed by two persons trained at better than 80 % agreement. 

The sleep latency was defined as the time until the first S1-epoch that was 

followed by a S2-epoch. 

 

2.6. Control variables 

This study used questionnaires, cognitive tasks, sound calibration tasks and 

sleep monitoring to extensively search for any confounding variables that might 

conceal or alter the association between TMR and the solution of the posed 

problem. 

 

2.6.1. Questionnaires 

All questionnaires were presented to the subjects in their German versions. 

Subject Data Questionnaire 

This custom-built questionnaire (Institute for Medical Psychology and 

Behavioral Neurobiology, Tübingen, unpublished) was used to precisely 

determine the population of participants. Subjects were asked about their age, 

gender, vision aids, smoking habits, right- or left-handedness and occupation or 

specialization. Furthermore, the state of the subjects that day was assessed, 

allowing free text answers for health, medication or drugs, their last alcoholic or 
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caffeinated beverage, abnormal stress and night shift during the past six weeks. 

To analyze their sleeping habits, questions regarding their regular as well as 

their last bedtime, their amount of sleep, their wake-up time and day time sleep 

were presented. To determine possible effects of being accustomed to the 

setting, subjects were asked whether they had participated in any sleep 

associated studies prior to joining ours.  

Mental State Questionnaire (MSQ) 

In this custom-built questionnaire (Institute for Medical Psychology and 

Behavioral Neurobiology, Tübingen, unpublished), subjects were asked to rate 

how activated, strained, tired, motivated and concentrated they were on a 5-

level Likert-type scale, where the very left equaled not at all and the very right 

equaled very much. This was used to check whether the current mood of the 

subjects affected their performance in the experiment. 

Abbreviated Multidimensional Mood State Questionnaire (MDBF-A) 

Subjects answered a short form of the German version of the Multidimensional 

Mood Questionnaire (Steyer et al, 1994). The participants expressed how 

content, rested, restless, bad, worn-out, composed, tired, great, uneasy, 

energetic, uncomfortable and relaxed they felt on a scale from 1 to 5, where 1 

equaled not at all and 5 very much. These items were then processed 

according to the scoring protocol to generate values of the individual spectrums 

of good-bad, awake-tired and calm-nervous. This resulted with one value for 

each spectrum ranging from 4 to 20, where the high end of the spectrum 

represented positive values “good mood”, “alert” and “calm”, 12 being neutral 

and 4 represented “bad mood”, “tired” and “nervous”.  

Gaming Background Questionnaire (GBQ) 

This questionnaire, custom-built for this study by Felipe Beijamini (Institute for 

Medical Psychology and Behavioral Neurobiology, Tübingen, unpublished), 

aimed at discovering the prior experiences subjects had with video games. 

Subjects were asked about having played a video game before, starting age, 

frequency, weekly amount and their top three video game genres for a list of 24 
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items (action, fighting, first person shooters, role-playing games, massive 

multiplayer online role-playing games, flight simulators, race simulators, sports 

games, military games, space simulators, strategy games, strategic war games, 

real-time strategy games, god simulators, economic simulation/build-up strategy 

games, adventure games, arcade games, maze games, music games, pinball, 

platformers, puzzle games, third-person shooters and survival games). Subjects 

were obligated to fill out their top three, even if they have never played any of 

these genres. In this case, they were asked to rank by sympathy towards any of 

the genres. For analysis top 1 picks received 3 points, top 2 picks 2 points and 

top 3 picks 1 point. All non-picked genres were given 0 points. 

Stanford Sleepiness Scale (SSS) 

This questionnaire (Hoddes et al, 1972; Hoddes et al, 1973) examined the 

sleepiness of participants in the training and testing session before they started 

their video game session. On a scale of 1 to X (being the eighth level) they were 

asked to rate their sleepiness. Each item had a subjective statement 

associated, ranging from “I feel activated, vitalized, attentive and wide awake” to 

“Sleeping”.  

Game Experience Questionnaire Core Module and Post Game Module 

(GEQ) 

The GEQ (IJsselsteijn et al, 2013) allowed participants to evaluate their 

experience during the video game. They were asked to rate 50 subjective 

statements with 0-4, where 0 equaled not at all and 4 equaled absolutely. All 

items were processed according to the scoring protocol to generate values for 

the overarching attributes of “competence”, “sensory and imaginative 

immersion”, “flow”, “tension/annoyance”, “challenge”, “negative affect”, “positive 

affect”, “positive experience”, “negative experience”, “tiredness” and “returning 

to reality” (IJsselsteijn et al, 2013). All item values associated to the same 

attribute were then averaged to result in the final value of each attribute ranging 

from 0 to 4.  

Sleep Quality Questionnaire (SF-A-R) 
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The SF-A-R (Görtelmeyer, 1985) returns the subjective assessment of the 

subjects’ sleep by giving them ample possibilities to characterize it, while still 

providing some rating scales which can be statistically analyzed. It included 

questions about the time to fall asleep, image intrusions, muscle twitching, 

waking up during the sleep interval, dreaming, sweating, post-sleep headache 

and exhaustion from the prior day. Subjects of the REM Stim group were given 

the possibility to assess their sleep quality by rating their sleep from 1 being 

“very much” to 5 being “not at all” concerning how even, deep, well, relaxed, 

undisturbed, smooth and ample it was. They assessed their pre-sleep mood by 

how carefree, exhausted, in need of sleep, overstrained, even-tempered, calm, 

tired and relaxed they had felt on a scale from 1 being “very much” to 5 being 

“not at all”. Participants rated their post-sleep mood by how even-tempered, 

drowsy, energetic, eager, alerted, refreshed, well-rested and relaxed they felt.  

Day Activities Questionnaire 

This questionnaire, specifically designed for this study by Felipe Beijamini and 

Susanne Diekelmann (Institute for Medical Psychology and Behavioral 

Neurobiology, Tübingen, unpublished), was completed by the Wake Stim group 

at the end of their incubation interval. It was specifically designed to confirm that 

subjects adhered to the study protocol during their time away from the 

laboratory. They were to answer whether during their absence from the sleep 

laboratory they had consumed alcoholic or caffeinated beverages, napped, 

performed sports or similar strenuous activities or played any video games. 

Additionally, they could recount in short form what their activities during the 

early and late afternoon had been. 

Rehearsal Questionnaire 

This questionnaire, specifically drafted for this study by Felipe Beijamini and 

Susanne Diekelmann (Institute for Medical Psychology and Behavioral 

Neurobiology, Tübingen, unpublished), helped to determine how subjects have 

actively reflected their first session video game experience until their second 

session. It was inquired whether they thought about the game or talked to 

somebody about the game. Additionally, subjects could specify how much on a 
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scale from 1 to 5 (with 1 being not at all and 5 being very much) they thought 

about the game generally, by excitement or frustration, its solution, their 

frustration, any previously undiscovered abilities of the character, or a hidden 

solution, their feelings, their mistakes or whether they did not think at all about 

the game during this time frame. 

 

2.6.2. Cognitive Tasks 

Digit Span Task (DSpan) 

The Digit Span Task (Mueller, 2011b) required to remember a non-repeating 

sequence of three to ten non-repeating digits (0-9). It was operated through 

PEBL Version 0.14, a GPL-licensed psychology software for coding and 

conducting experiments (Mueller; PEBL, 2010). Short-term memory 

performance was tested. Subjects who did not manage to repeat a five-digit 

sequence successfully would have been excluded from the experiment (0 

subjects). Subjects who skipped the instructions and failed to repeat the five-

digit sequence could repeat the task and were included in the experiment, if 

they could repeat the five-digit sequence. The test data of the DSpan Task was 

then omitted for the statistical analysis (1 subject).  

 Vigilance Task (VT) 

The Vigilance task used by this study, derives from the Visual Reaction Time 

task by Dinges and Powell (Dinges & Powell, 1985) and tested the alertness of 

subjects as an objective control task. For five minutes subjects reacted to a red 

dot appearing on the left or right side of the monitor with two corresponding 

keys X or M as fast as possible. Subjects were asked to aim for a reaction time 

faster than 500 ms. If the wrong key was hit the message “False” appeared on 

screen. Time between appearances of the sign was 2, 4, 6, 8 or 10 seconds in 

a random order. Instruction was given to keep the left and right index finger 

always on top of the keys. Reaction times of more than 1000 ms were excluded 

from the analysis. This task was run via E-Prime version 2.0.10.242. E-Prime is 

a software which provides the means to code and design a behavioral 
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experiment. It is distributed by Psychology Software Tools (Schneider et al, 

2002).  

Random Reaction Time Task 

Using the PEBL software, the integrated variation of the four-choice response 

time task (Mueller, 2011a) was customized, to ensure the Wake Stim group 

would not be paying attention to the sound stimulation presented during this 

task via in-ear headphones.  

It featured a white crosshair appearing on the four quadrants of their screen. 

Each quadrant had a key assigned to it, these being “F”, “J”, “V” and “N”. The 

task consisted of 5 runs with 500 crosses each. Between runs, 30-second 

pauses were given, during which subjects had time to see a summary of their 

performance of their last run with average accuracy and reaction time. During 

the task there was no indication whether the right or wrong key was pressed. 

The cross would remain on screen until the first key press was detected. 200 

ms later the cross would reappear again in any quadrant. Subjects were 

instructed to remain below 500 ms average reaction time and above 80% 

accuracy in each run, or they would fail the task and the experiment would be 

terminated. They were recommended to aim for less than 450 ms average 

reaction time and more than 85% accuracy. 

Hear-No Hear Task (HNH) 

Via an E-Prime executable, which was specifically designed for this study by Felipe 

Beijamini, 33 sounds were presented through headphones to the subject, who 

needed to choose or guess, whether they remembered the sound from the 

interval between video game sessions, or not. From the 33 sounds 31 were 

taken out of the video game. 20 of them had been presented during the 

stimulation and 11 distractors had not been. The remaining two sounds were 

not related to the video game but cues of start and end of one audio stimulation 

cycle. This task helped to show whether subjects were aware of the stimulation 

or not. The distractors and cue sounds helped to differentiate between memory 

of video game sounds and audio stimulation.  
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2.7. Statistical Analysis 

The study setup provided a vast number of variables, which were analyzed 

thoroughly via SPSS 23.0.0.2 64-bit version (IBM, 2015) using the following 

methods.  

Problem-Solving Test Performance 

The solving speed in seconds of the PST between solvers of REM Stim and 

Wake Stim groups and between PST solvers starting with the PST and subjects 

starting with the APST were compared using a univariate 2 x 2 ANOVA with 

condition (REM Stim versus Wake Stim) and balancing (PST first or APST first) 

as between-subject factors. The solving speed in seconds of the APST in the 

testing session (Analogical Problem Solving Test, APST) between APST-

solvers of REM Stim and Wake Stim groups and between APST-solvers starting 

with the PST and subjects starting with the APST were compared using a 

univariate 2 x 2 ANOVA with condition (REM Stim versus Wake Stim) and 

balancing (PST first or APST first) as between-subject factors.  

The rate of solvers versus non-solvers was compared between REM Stim and 

Wake Stim groups with a chi-square test. Furthermore, a three-way cross-tab 

chi-square statistic was used, with condition (REM Stim versus Wake Stim) as 

control variable, and balancing (PST first or APST first) and PST solving as 

variables.  

To test if the procedure for helping subjects during the video game training 

session according to the specific check points presented in 2.5 predicted a 

higher ratio of solving the PST, chi-square tests were performed on all individual 

help given by the operator and whether the PST was solved or not. 

Furthermore, a four-way cross-tab chi-square statistic was performed, with 

balancing as control variable 1, condition as control variable 2, with the 

individual help procedures and PST solving as variables, This analysis 

assessed whether the advice procedure affected subjects differently, depending 
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on whether they were subject to a different protocol (condition) and whether 

they had started with the PST or not in the testing session (balancing). 

Video Game Training Level Performance 

To assess whether a good performance in the training session predicted 

problem-solving of the PST, the training level performance index (TLPI) was 

calculated, comparing the individual time to solve (TTS) to the mean solving 

time of each of the four training levels (TTS1-TTS4). 

𝑇𝐿𝑃𝐼𝑥 =
1

(
(

𝑇𝑇𝑆1𝑥
𝑀𝑒𝑎𝑛(𝑇𝑇𝑆1)

) +

(
𝑇𝑇𝑆2𝑥

𝑀𝑒𝑎𝑛(𝑇𝑇𝑆2)
) + (

𝑇𝑇𝑆3𝑥
𝑀𝑒𝑎𝑛(𝑇𝑇𝑆3)

) + (
𝑇𝑇𝑆4𝑥

𝑀𝑒𝑎𝑛(𝑇𝑇𝑆4)
)
)

 

Comparison of the TLPI between “solvers” and “non-solvers” (PST solving) of 

REM Stim and Wake Stim (condition) ensued by using a univariate ANOVA with 

condition and PST solving as between-subject variables.  

Hear-No Hear Task 

Analysis of the data from the HNH-task for bias of the corrected recognition 

accuracy of stimulation game sounds (“CorrRecSGSound”) was performed. 

CorrRecSGSound was calculated by subtracting the false alarm rate (“1-

AccDistx”) from the recognition accuracy of stimulation game sounds (“AccGS).  

𝐶𝑜𝑟𝑟𝑅𝑒𝑐𝑆𝐺𝑆𝑜𝑢𝑛𝑑𝑥 = (𝐴𝑐𝑐𝐺𝑆𝑥 − (1 − 𝐴𝑐𝑐𝐷𝑖𝑠𝑡𝑥) 

The corrected recognition accuracy of stimulation game sounds was analyzed 

with a univariate ANOVA with condition (REM Stim versus Wake Stim) and 

“solving” (solvers versus non-solvers) as between-subject factors (see exact 

description 2.3) from all groups. Accuracy for non-game stimulation sounds was 

not examined, since there were no non-game sound distractors presented 

during the HNH-task. 

Sleep Scoring 

Sleep stage length and number of arousals were compared between the solvers 

and non-solvers in the REM Stim group with an independent t-test. The same 
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comparison with another independent t-test ensued between subjects who had 

participated in a sleep study prior to this one and those who had not. This was 

to check whether adaptation to the setting of sleep experiments in general lead 

to a more normal sleep pattern.  

Subject Data Questionnaire 

From the data from the Subject Data Questionnaire, a chi-square test was 

performed, analyzing the gender distribution and prior participation in a sleep 

study between the REM Stim and Wake Stim group to check for bias. Data was 

examined for a possible bias for age, usual amount of sleep and amount of 

sleep last night between the REM Stim and Wake Stim group with an 

independent t-test. 

Mental State Questionnaire (MSQ) 

To test for significant mental state differences between REM Stim versus Wake 

Stim groups as well as morning versus evening sessions, two repeated 

measures multivariate analyses of variance (MANOVA) tests on the data 

generated by the questionnaire were run. A 2 x 2 MANOVA with Condition 

(REM Stim versus Wake Stim) as between-subject factor and Run (training 

versus testing session) and a 2 x 2 MANOVA with Condition as between-

subject factor and Time (morning versus evening session) as within-subject 

factor were conducted. Dependent variables were “Activated”, “Strained”, 

“Tired”, “Motivated” and “Concentrated”. 

Abbreviated Multidimensional Mood State Questionnaire (MDBF-A) 

Examining possible significant between-group differences of subject mood 

states for REM Stim vs Wake stim groups and morning versus evening 

sessions, two repeated measures MANOVA tests on the scored MDBF-A 

questionnaires were performed. A 2 x 2 MANOVA with Condition (REM Stim 

versus Wake Stim) as between-subject factor and Run (training versus testing 

session) and a 2 x 2 MANOVA with Condition as between-subject factor and 

Time (morning versus evening session) as within-subject factor were 
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conducted. Dependent variables were “Good mood – Bad mood”, “Alert – 

Tired”, and “Calm – Nervous”. 

Gaming Background Questionnaire (GBQ) 

Balancing of habitual gamers and no-gamers between groups was checked. 

No-gamers were removed from the analysis of this questionnaire. Starting age 

to play video games provided by the GBQ between REM Stim and Wake Stim 

groups was analyzed with an independent t-test. The video game genre 

preferences, frequency of playing and amount of playing of REM Stim and 

Wake Stim groups was analyzed using a Mann-Whitney U test (MWU). 

Furthermore, a correlation of TLPI with video gaming starting age was tested 

with Pearson’s r. A correlation of TLPI with frequency and with amount of 

playing per week was tested using Spearman’s r. 

Stanford Sleepiness Scale (SSS) 

The possible bias between the REM Stim and Wake Stim group concerning the 

pre-test sleepiness taken from the SSS questionnaire was tested with a 

repeated measures ANOVA. A 2 x 2 ANOVA with Condition (REM Stim versus 

Wake Stim) as between-subject factor and Run (training versus testing session) 

and a 2 x 2 ANOVA with Condition as between-subject factor and Time 

(morning versus evening session) as within-subject factor were conducted.  

Game Experience Questionnaire Core Module and Post Game Module  

(GEQ) 

A 2 x 2 x 2 MANOVA with Condition (REM Stim versus Wake Stim) and Solving 

(PST solvers versus non-solvers) as between-subject factors and Run (training 

versus testing session) as within-subject factor was conducted. Dependent 

variables were “Competence”, “Sensory and Imaginative Immersion”, “Flow”, 

“Tension/Annoyance”, “Challenge”, “Negative Affect”, “Positive Affect”, “Positive 

Experience”, “Negative Experience”, “Tired” and “Returning to Reality”.  

There was no test for circadian differences between morning and evening 

sessions performed, because GEQ scores are sensitive to having successful or 
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unsuccessful experiences in the video game, which would overlay any circadian 

effects that might be suspected. 

Sleep Quality Questionnaire (SF-A-R) 

Two analyses of the data generated by this questionnaire were performed, one 

for between-group differences between solvers versus non-solvers and one for 

subjects with prior sleep-study experience versus first-timers of the REM Stim 

group. A chi-square test was used to determine whether subjects remembered 

having sudden image flashes before falling asleep. Moreover, a Mann-Whitney 

U test was run, comparing whether subjects fell asleep immediately, whether 

they remembered dreaming, the amounts of muscle twitching, awakenings and 

sweating while asleep, how much head ache they had in the morning and how 

exhausting the evening session was. For the subjective assessed length of the 

four longest awakenings, if applicable, and the sleep quality variables, as well 

as the pre-sleep and post-sleep mood rated by the subjects themselves in 

several qualities, an independent t-test was used for analysis. The subjective 

assessment of the time delay until sleep was correlated to the sleep onset as 

scored in polysomnography using Spearman’s correlation rs.  

Day Activities Questionnaire 

No statistical evaluation of data from the Day Activities Questionnaire was 

performed, as its purpose was to corroborate that subjects conformed to study 

protocol during their time away from the laboratory. 

Rehearsal Questionnaire 

The data of the Rehearsal Questionnaire concerning whether subjects had 

thought about the game after playing and whether they had talked to anyone 

about the game was analyzed using a three-way chi-square test. Condition 

(REM Stim versus Wake Stim) was set as control variable and thinking and 

talking about the game were compared to PST solving.  

Additionally, a 2 x 2 MANOVA with Condition (REM Stim versus Wake Stim) 

and Solving (PST solvers versus non-solvers) as between-subject factors was 

conducted to analyze how much subjects thought about the game generally, by 
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excitement or frustration, its solution, their frustration, any by them yet 

undiscovered abilities of the character, or a hidden solution, their feelings, their 

mistakes or whether they did not think at all about the game during this time 

window.  

Digit Span Task (DSpan) 

From the data gathered by the DSpan task using two ANOVA tests, possible 

bias was checked in REM Stim versus Wake Stim groups and morning versus 

evening session concerning the pre-video game session memory span. A 2 x 2 

MANOVA with Condition (REM Stim versus Wake Stim) as between-subject 

factor and Run (training versus testing session) and a 2 x 2 MANOVA with 

Condition as between-subject factor and Time (morning versus evening 

session) as within-subject factor were conducted. Repeated measure was 

“Memory Span”. 

Vigilance Task (VT) 

Data from the VT was tested using two ANOVA tests, to assess possible bias in 

REM Stim versus Wake Stim groups and morning versus evening session 

concerning the pre-video game mean reaction time. A 2 x 2 MANOVA with 

Condition (REM Stim versus Wake Stim) as between-subject factor and Run 

(training versus testing session) and a 2 x 2 MANOVA with Condition as 

between-subject factor and Time (morning versus evening session) as within-

subject factor were conducted. Repeated measure was “Mean Reaction Time”. 

Random Reaction Time Task 

Performance differences in the Wake Stim group between solvers and non-

solvers concerning their mean reaction time and mean accuracy during the 

RRTT were tested by using an independent t-test. 
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3. Results 

3.1. Analysis of the Problem-Solving Test (PST) 

A chi-square test was performed to compare solving rate between Wake Stim 

and REM Stim groups (Figure 1). There were no differences in solving rate 

between conditions (Pearson chi-square χ²(1, N = 32) = 1.13, p = 0.29). 

 

 

 

 

Figure 1: PST problem-solving rate between groups with either REM sleep 

TMR or active wakefulness TMR 

PST Solving: Whether or not subjects solved the Problem-Solving Test (PST). 

 

A three-way cross-tab chi-square statistic with condition (REM Stim versus 

Wake Stim) as control variable, and balancing (PST first or APST first) and PST 

solving as variables was performed, whether subjects in REM Stim group or 
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Wake Stim group had a higher rate of solving, if they started with the APST first 

(Figure 2). In total for both groups there was no significant effect for balancing 

on solving rate (Balancing*Solving, Pearson chi-square χ²(1, N = 32) = 0.13, p = 

0.72). In the REM Stim group, subjects starting with the APST solved 

significantly (indicated in figures and tables with “*” after p-value) more often 

than those starting with the PST (Balancing*Solving, Pearson chi-square χ²(1, N 

= 16) = 4.27, p = 0.04). In the Wake Stim group there was no effect for 

balancing on solving (Balancing*Solving, Pearson chi-square χ²(1, N = 16) = 

2.29, p = 0.13). 
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Figure 2: PST problem-solving rate between groups with either REM sleep 

TMR or active wakefulness TMR, separated by testing session level 

sequence 

PST Solving: Whether or not subjects solved the Problem-Solving Test (PST). 

PST Start: Subgroup starting with the PST in the testing session. 

APST Start: Subgroup starting with the Analogical Problem-Solving Test 

(APST) in the testing session. 

 

A chi-square test was performed to assess whether for all subjects any of the 

helping procedures in the training session affected the solving ratio of the PST. 
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No significant effect from any advice procedure on PST solving rate was found 

(all p ≥ 0.32). 

To analyze if there was a different impact from the helping procedures during 

training session on the solving rate dependent on condition and balancing, a 

four-way cross-tab chi-square statistic was performed. Balancing was used as 

control variable 1, condition as control variable 2, and the individual help 

procedures tested with PST solving were set as variables. All but one advice 

procedure did not test significantly with PST solving (all p > 0.24). 

The only advice procedure exhibiting a significant effect on the solving rate of 

the PST depending on the balancing, in total for both groups or any of the 

individual groups, was advice given on how to restart the level 3 after 10 

minutes of game time (“Restart Advice”; Table 1).  

REM Stim group PST starters were unlikely to solve the PST if they had not 

received Restart Advice in the training session (Table 1). REM Stim group 

APST starters did not solve more often if Restart Advice was given in the 

training session. In total REM Stim group subjects were unlikely to find the 

solution, if they had not received Restart Advice in the training session. 

Wake Stim group PST starters’ solving rate was independent of Restart Advice 

in the training session. Wake Stim group APST starters’ solving rate was 

independent of Restart Advice in the training session. In the entire Wake Stim 

group there was no effect for Restart Advice in the training session on solving 

rate of the PST. 

Across both REM and Wake Stim groups, PST starters were more likely to find 

the solution, if they received Restart Advice during the training session. Across 

both REM and Wake Stim groups, APST starters’ solving rate was independent 

of receiving Restart Advice during the training session. Across both REM and 

Wake Stim groups and both level sequences, solving rate was independent of 

having received Restart Advice in the training session (Table 1). 
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Table 1: Counts and statistical analysis of the impact by the helping procedure 

“Restart Advice” 

Condition1 Balancing2 Restart 

Advice3 

PST 

Solving4 

Four-Way Cross-Tab 

Chi-square Statistic 

No Yes Value df p 

REM Stim PST Start5 No 7 0 8.00 1 0.01* 

  Yes 0 1    

 APST Start6 No 3 3 1.60 1 0.21 

  Yes 0 2    

 Total No 10 3 6.15 1 0.01* 

  Yes 0 3    

Wake Stim PST Start No 1 3 0 1 1 

  Yes 1 3    

 APST Start No 2 3 2.88 1 0.09 

  Yes 3 0    

 Total No 3 6 0.91 1 0.34 

  Yes 4 3    

Both PST Start No 8 3 3.88 1 0.05* 

  Yes 1 4    

 APST Start No 5 6 0.29 1 0.59 

  Yes 3 2    

 Total No 13 9 1.00 1 0.32 

  Yes 4 6    

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Balancing refers to Testing session started with PST or APST Start 

3 In training level 3, if subjects did not solve the level in 10 minutes, they were 

shown where the restart option was located. 

4 Whether or not subjects solved the Problem-Solving Test (PST). 

5 Subgroup starting with the PST in the testing session. 

6 Subgroup starting with the Analogical Problem-Solving Test (APST) in the 

testing session. 
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PST solving speed of REM Stim PST solvers ranged from 368 s to 2201 s with 

a mean of 1117.83 s (685.52 s). PST solving speed of the REM Stim PST 

solver starting with the PST in the testing session (PST start, only one subject) 

was 368 s. PST solving speed of REM Stim PST solvers starting with the APST 

in the testing session (APST start) ranged from 468 s to 2201 s with a mean of 

1267.80 s (647.11 s).  

PST solving speed of Wake Stim PST solvers ranged from 491 s to 2280 s with 

a mean of 1143.33 s (652.20 s). PST solving speed of Wake Stim PST solvers 

with PST start ranged from 521 s to 2280 s with a mean of 1310.00 s (741.10 

s). PST solving speed of Wake Stim PST solvers with APST start ranged from 

491 s to 1015 s with a mean of 810.00 s (279.98 s). 

A univariate 2 x 2 ANOVA with condition (REM Stim versus Wake Stim) and 

balancing (PST first or APST first) as between-subject factors was conducted to 

check whether between solvers, solving speed of the PST differed between 

conditions and balancing (Figure 3). It revealed no differences between REM 

Stim group and Wake Stim group solvers (Condition, Pillai’s trace F(1,11) = 

0.33, p = 0.58) and no differences between PST-starter solvers and APST first 

solvers (Balancing, Pillai’s trace F(1,11) = 0.23, p = 0.64). There was no effect 

on solving speed of the PST for solvers found between conditions and starting 

level (Condition*Balancing, Pillai’s trace F(1,11) = 2.77, p = 0.12). 
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Figure 3: Mean PST problem-solving speed between groups with either 

REM sleep TMR or active wakefulness TMR, separated by testing session 

level sequence 

Solvers: Subjects who solved the Problem-Solving Test (PST). 

PST Start: Subgroup starting with the PST in the testing session. 

APST Start: Subgroup starting with the Analogical Problem-Solving Test 

(APST) in the testing session. 

Error Bars: ± 1 standard error (SE)* 

* Note: REM Stimulation Group Solvers with PST start have no standard error 

bar indicator, since only one subject of this subgroup solved the PST. 

 

 

Analogical Problem-Solving Test (APST) solving speed of REM Stim APST 

solvers ranged from 300 s to 1356 s with a mean of 628.75 s (354.19 s). APST 

solving speed of REM Stim APST solvers with PST start ranged from 313 s to 

1356 s with a mean of 781.63 s (445.52 s). APST solving speed of REM Stim 
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APST solvers with APST start ranged from 300 s to 690 s with a mean of 

475.88 s (130.08 s). 

APST solving speed of Wake Stim APST solvers ranged from 273 s to 930 s 

with a mean of 589.14 s (176.90 s). APST solving speed of Wake Stim APST 

solvers with PST start ranged from 273 s to 808 s with a mean of 564.43 s 

(176.84 s). APST solving speed of Wake Stim APST solvers with APST start 

ranged from 436 s to 930 s with a mean of 613.86 s (187.36 s). 

The solving speed of the APST between APST-solvers of REM Stim and Wake 

Stim groups and between APST-solvers starting with the PST and subjects 

starting with the APST were compared using a univariate 2 x 2 ANOVA with 

condition (REM Stim versus Wake Stim) and balancing (PST first or APST first) 

as between-subject factors. It revealed no significant differences in APST 

solving times dependent on condition (Pillai’s trace F(1, 26) = 0.16, p = 0.69), 

balancing (Pillai’s trace F(1, 26) = 1.67, p = 0.21) or both (Condition*Balancing, 

Pillai’s trace F(1, 26) = 3.21, p = 0.09).   

 

3.2. Analysis of Video Game Training Level Performance 

A 2 x 2 x 2 ANOVA with Condition, Balancing and PST solving (Solving) as 

between-subject variables revealed no difference between conditions on the 

training level performance index (TLPI, see 2.7; Table 2; Condition, Pillai’s trace 

F(1,24) = 0.12, p = 0.73). Solvers did not differ significantly in the TLPI from 

non-solvers (Table 2; Solving, Pillai’s trace F(1, 24) = 2.70, p = 0.11). TLPI 

varied significantly between level sequence subgroups (Balancing, Pillai’s trace 

F(1, 24) = 7.23, p = 0.01). There was no significant interaction between 

Condition and Balancing (Condition*Balancing, Pillai’s trace F(1, 24) = 0.50, p = 

0.49), Balancing and Solving (Balancing*Solving, Pillai’s trace F(1, 24) = 0.07, p 

= 0.79) or Condition, Balancing and PST Solving (Condition*Balancing*Solving, 

Pillai’s trace F(1, 24) = 0.02, p = 0.89). There was a significant interaction for 

Condition and Solving on the TLPI (Condition*Solving, Pillai’s trace F(1, 24) = 

6.65, p = 0.02). 
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Table 2: Descriptive Statistics of Training Level Performance Index (TLPI) 

Condition1 Balancing2 PST Solving3 Count  

N 

TLPI 

Mean (SD) 

REM Stim PST Start4 Non-Solvers 7 0.24 (0.12) 

  Solvers 1 0.22 (0) 

  Total 8 0.24 (0.11) 

 APST Start5 Non-Solvers 3 0.41 (0.18) 

  Solvers 5 0.35 (0.10) 

  Total 8 0.37 (0.13) 

 Total Non-Solvers 10 0.29 (0.15) 

  Solvers 6 0.33 (0.10) 

  Total 16 0.31 (0.13) 

Wake Stim PST Start Non-Solvers 2 0.15 (0.05) 

  Solvers 6 0.34 (0.08) 

  Total 8 0.30 (0.11) 

 APST Start Non-Solvers 5 0.25 (0.08) 

  Solvers 3 0.42 (0.04) 

  Total 8 0.31 (0.11) 

 Total Non-Solvers 7 0.22 (0.08) 

  Solvers 9 0.37 (0.08) 

  Total 16 0.30 (0.11) 

Both PST Start Non-Solvers 9 0.22 (0.11) 

  Solvers 7 0.33 (0.09) 

  Total 16 0.27 (0.11) 

 APST Start Non-Solvers 8 0.31 (0.14) 

  Solvers 8 0.38 (0.09) 

  Total 16 0.34 (0.12) 

 Total Non-Solvers 17 0.26 (0.13) 

  Solvers 15 0.35 (0.09) 

  Total 32 0.31 (0.12) 
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1 Condition refers to Rem Stim and Wake Stim groups. 

2 Balancing refers to Testing session started with PST or APST Start 

3 Whether or not subjects solved the Problem-Solving Test (PST). 

4 Subgroup starting with the PST in the testing session. 

5 Subgroup starting with the Analogical Problem-Solving Test (APST) in the 

testing session. 

 

Independent t-tests were used to further analyze the significant interaction 

between Condition and PST Solving on the TLPI. 

Independent t-tests revealed that REM Stim non-solvers and solvers did not 

differ in TLPI (t(14) = -0.51, p = 0.62). TLPI was significantly higher for solvers 

than non-solvers of the Wake Stim group (t(14) = -3.78, p < 0.01). Wake Stim 

mean TLPI for solvers was 0.37 (0.08) and 0.22 (0.08) for non-solvers. Solvers 

and non-solvers between conditions did not differ in TLPI (Solvers, t(13) = -

0.85, p = 0.41; Non-Solvers, t(15) = 0.25, p = 1.19). 

 

3.3. Analysis of the Hear-No Hear task (HNH) 

A univariate ANOVA of the corrected recognition of game sounds (see 2.7) 

revealed no differences between REM Stim and Wake Stim groups (main effect 

Condition, Pillai’s trace F(1, 28) = 2.76, p = 0.11), no differences between 

solvers and non-solvers in both groups (main effect Solving, Pillai’s trace F(1, 

28) = 1.30, p = 0.26) and no differences between solvers and non-solvers in 

between groups (interaction Condition*Solving, Pillai’s trace F(1, 28) = 0.29, p = 

0.60). Non-solvers mean corrected recognition of game sounds was 0.23 (0.28) 

(Mean (SD)) for REM Stim and 0.37 (0.36) for Wake Stim. Solvers mean 

corrected recognition of game sounds was 0.03 (0.17) for REM Stim and 0.29 

(0.44) for Wake Stim. 
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3.4. Analyses of the Sleep Quality Questionnaire (SF-A-R) and 

Polysomnography 

SF-A-R 

A chi-square test showed no significant difference between solvers and non-

solvers for sudden image flashes during falling asleep (χ²(2, N = 16) = 1.37, p = 

0.50). A Mann-Whitney U test was conducted to analyze how fast subjects felt 

they could fall asleep, whether they noticed muscle twitching, awakenings and 

sweating during the night, how well they remembered dreaming and how much 

headache and exhaustion from the prior day they felt in the morning. Of these 

parameters, none revealed significant differences between solvers and non-

solvers (all p ≥ 0.17), except that non-solvers felt they could fall asleep faster 

(non-solvers: Mdn = 3 (after 20 min), solvers: Mdn = 3.5 (4 = after 40 min); U = 

12.50, p = 0.04). An independent t-test was performed to test whether solvers 

and non-solvers noticed a different length of the four longest awakenings, if 

applicable, and whether they rated their sleep, pre-sleep or post-sleep mood 

differently, when presented a variety of attributes as described in 2.4.1. The 

independent t-test revealed that solvers assessed their post-sleep mood 

significantly more balanced than non-solvers (t(14) = -2.26, p = 0.04). Mean 

values for balanced were 1.80 (0.42) for non-solvers and 2.33 (0.52) for solvers. 

No other variables differed between solvers and non-solvers according to the 

independent t-test (all p ≥ 0.06). 

Analysis of subjects with prior sleep-study experience in sleep-studies versus 

first-timers was performed. A chi-square test showed no significant difference 

between subjects with prior sleep-study experience and first-timers for sudden 

image flashes during falling asleep (χ²(2, N = 16) = 0.69, p = 0.71). A Mann-

Whitney U test was conducted to analyze how fast subjects felt they could fall 

asleep, whether they noticed muscle twitching, awakenings and sweating during 

the night, how well they remembered dreaming and how much headache and 

exhaustion from the prior day they felt in the morning. Of these parameters, 

none revealed significant differences between subjects with prior sleep-study 

experience and first-timers (all p ≥ 0.22).  
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An independent t-test was performed to test whether subjects with prior sleep-

study experience and first-timers noticed a different length of the four longest 

awakenings, if applicable, and whether they rated their sleep in the laboratory 

differently, when presented a variety of attributes as described in 2.4.1. The 

independent t-test revealed no significant differences between subjects with 

prior sleep-study experience and first-timers (all p ≥0.07). 

Polysomnography 

An independent t-test revealed no differences between solvers and non-solvers 

in the REM Stim group for either total sleep time, or time spent in S1, in S2, in 

SWS, in REM sleep, awake after sleep started or in movement time (Table 3). 

Furthermore, there were no significant differences between solvers and non-

solvers in epochs with movement artifacts, time until sleep (S1 epoch with 

following S2 epoch), time until SWS and time until REM sleep (Table 3). 
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Table 3: Descriptive statistics and independent t-tests of polysomnography 

analysis split between solvers and non-solvers of REM Stim group 

Dependent Variable Descriptive Statistics Independent t-

tests 

Condition1  

 

 

t 

 

 

 

df 

 

 

 

p 

Non-solvers2  

N = 10 

Mean (SD) 

Solvers3 

N = 6 

Mean (SD) 

Total sleep4 (min) 462.95 (11.73) 456.00 (13.71) 1.08 14 0.30 

Total S1 (min) 26.70 (15.16) 31.41 (11.66) -0.65 14 0.53 

Total S2 (min) 260.30 (26.02) 261.83 (31.06) -0.11 14 0.92 

Total SWS (min) 68.15 (29.90) 64.83 (27.81) 0.22 14 0.83 

Total REM sleep (min) 90.90 (23.90) 73.00 (19.96) 1.54 14 0.15 

Total Wakefulness 

(min) 

14.85 (20.71) 23.25 (20.27) -0.79 14 0.44 

Sleep onset5 (min) 16.90 (11.21) 25.83 (14.38) -1.39 14 0.19 

SWS onset (min) 22.45 (25.84) 24.75 (10.03) -0.21 14 0.84 

REM sleep onset (min) 110.90 (49.29) 134.58 (76.44) -0.76 14 0.46 

Movement time (min) 2.05 (1.28) 1.67 (0.82) 0.65 14 0.52 

Epochs with movement 

artifacts (N) 

60.00 (16.07) 64.50 (19.38) -0.50 14 0.62 

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Non-Solvers being subjects who did not solve the PST. 

3 Solvers being subjects who solved the PST. 

4 Total sleep being the time the subject spent asleep after bedtime until the 

defined wake-up time after 8 hours. 

5 Sleep onset being the time from bedtime until sleep. 

 

Range for time until sleep was 3.5 minutes to 40.5 minutes with a mean of 

20.25 (12.82) (Mean (SD)). Range for total sleep time was 442.5 minutes to 

477.5 minutes with a mean of 460.34 (12.54) minutes. Range for time spent 



76 
 

awake after sleep was 0 minutes to 55 minutes with a mean of 18.00 (20.30) 

minutes.  

Performance of another independent t-test ensued, to search for differences in 

sleep between subjects in the REM Stim group that had prior experience with 

sleep studies and those that had not. From the mentioned parameters above, 

no significant differences were revealed (all p > 0.12), except that the subjects 

with prior sleep-study experience spent more time in movement time during 

sleep. Mean movement time was 1.40 (0.70) (Mean (SD)) for first-timers and 

2.75 (1.21) for subjects with prior sleep study experience (t(14) = -2.85, p = 

0.01). 

Spearman’s Correlation showed that the subjective assessment of the subject 

for the time it took to fall asleep correlated positively with the analysis of the 

polysomnography for time until sleep (Spearman Correlation rs = 0.78, p < 0.01) 

and negatively with the total sleep time (Spearman Correlation rs = -0.76, p < 

0.01). Furthermore, a negative correlation was found with time spent in SWS 

(Spearman Correlation rs = -0.62, p = 0.01). 

 

3.5. Comparison of Group Populations, the Subject Data 

Questionnaire and the GBQ 

Independent t-tests revealed that age did not differ between groups (Table 4). 

Usual amount of night sleep was not significantly different between groups. 

Amount of sleep in the night prior to the experiment did not differ between 

groups (Table 4). 
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Table 4: Means and statistical analysis of age, usual amount of night sleep and 

amount of sleep in the night prior to the experiment between REM Stim and 

Wake Stim groups 

Dependent Variable Descriptive Statistics Independent t-

tests 

Condition1 Mean (SD) t df p 

Age (years) REM Stim 22.69 (2.89) -0.53 30 0.60 

 Wake Stim 23.19 (2.48)    

Usual amount of night 

sleep (hours) 

REM Stim 8.03 (0.50) 0.89 30 0.38 

Wake Stim 7.88 (0.50)    

Night sleep before 

experiment (hours) 

REM Stim 8.03 (0.42) 1.45 30 0.16 

Wake Stim 7.78 (0.55)    

1 Condition refers to Rem Stim and Wake Stim groups. 

 

A chi-square test of independence showed that REM Stim and Wake Stim 

groups did not differ significantly regarding gender distribution, in having prior 

experience with sleep studies or in having previously played video games 

(Table 5). 
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Table 5: Descriptive statistics and statistical analysis of gender distribution, prior 

experience with sleep studies and having previously played video games 

between groups 

Dependent 

Variable 

Descriptive Statistics Chi-square Statistic 

Condition Category N Value df p 

Gender REM Stim Female 13 0.00 1 1 

 Male 3    

Wake Stim Female 13    

 Male 3    

Prior sleep 

study 

experience 

REM Stim No 10 0.58 1 0.45 

 Yes 6    

Wake Stim No 12    

 Yes 4    

Previously 

played video 

games 

REM Stim No 2 0.24 1 0.63 

 Yes 14    

Wake Stim No 3    

 Yes 13    

1 Condition refers to Rem Stim and Wake Stim groups. 

 

Two subjects from REM Stim and three subjects from Wake Stim groups were 

omitted from analysis of the GBQ, because they declared not to have played 

video games before. An independent t-test showed no differences between 

conditions for the age that subjects started to play video games (REM Stim 

10.36 (3.47) (Mean (SD)); Wake Stim 12.50 (2.97); t(25) = -1.72, p = 0.10)). A 

Mann-Whitney U test revealed no difference between REM Stim and Wake Stim 

groups in frequency (REM Stim: Mdn = 2 (twice a month), Wake Stim: Mdn = 2; 

U = 89, p = 0.90) or duration of video game sessions (REM Stim: Mdn = 1 (less 

than 3 hours per week), Wake Stim: Mdn = 1; U = 89, p = 0.88). Moreover, 

there was no difference in video game genre preferences between conditions 

(all p ≥ 0.06).  
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A correlation of TLPI with video gaming starting age was tested using Pearson’s 

r. A correlation of TLPI with frequency and with amount of playing per week was 

tested using Spearman’s r. No significant correlation with TLPI was found (all p 

≥ 0.06). 

 

3.6. Analyses of Mental State, Multidimensional Mood State 

Short-Form A (MDBF-A) and Stanford Sleepiness Scale 

(SSS)-Questionnaires 

Analysis of the Mental State Questionnaire (MSQ) 

A repeated measures 2 x 2 MANOVA showed no significant effect on mental 

state for REM Stim versus Wake Stim (Condition, Pillai’s trace F(5, 26) = 0.10, p 

= 0.99) and no significant effect for training (Run 1) versus testing session (Run 

2) (Table 6; Run, Pillai’s trace F(5,26) = 1.06, p = 0.40). However, mental state 

in the sessions was significantly different between groups for “strained”, “tired” 

and “motivated” (Table 6; Run*Condition, Pillai’s trace F(5, 26) = 4.65, p < 

0.01).  
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Table 6: Descriptive statistics and repeated measures 2 x 2 MANOVA of the 

Mental State Questionnaire 

Scales Condition1 Interaction Run*Condition 

REM Stim 

N = 16 

Mean (SD) 

Wake Stim 

N = 16 

Mean (SD) 

Univariate 

F p 

Activated Run 12 2.94 (1.00) 3.25 (0.58) 1.67 0.21 

 Run 23 3.44 (0.96) 3.25 (1.07)   

Strained Run 1 1.44 (0.63) 1.81 (0.83) 6.90 0.01* 

 Run 2 1.62 (0.89) 1.31 (0.48)   

Tired Run 1 3.19 (0.66) 2.63 (1.09) 7.64 0.01* 

 Run 2 2.19 (0.75) 2.75 (1.07)   

Motivated Run 1 3.31 (1.08) 3.88 (0.62) 8.69 0.01* 

 Run 2 4.00 (0.63) 3.50 (1.03)   

Concentrated Run 1 3.25 (0.58) 3.44 (0.73) 3.56 0.07 

 Run 2 3.69 (0.60) 3.38 (0.81)   

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Run 1 being training session. 

3 Run 2 being testing session. 

 

These three variables were then analyzed using dependent and independent t-

tests, accordingly. Independent t-tests revealed no significant difference for 

“strained”, “tired” and “motivated” between groups in either session (all p ≥ 

0.08).  

Dependent t-tests showed that in the testing session the REM Stim was 

significantly less tired than in the training session and more motivated (Table 7). 

Dependent t-tests of the Wake Stim group revealed that they were less strained 

in the testing session than in the training session (Table 7).  
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Table 7: Significant dependent t-tests of “strained”, “tired” and “motivated” and 

variable means with standard deviations of REM Stim and Wake Stim 

Dependent 

Variable 

Descriptive Statistics Dependent t-tests 

Condition1 Session Mean (SD) t df p 

Strained Wake Stim Run 12 1.81 (0.83) 2.24 15 0.04* 

  Run 23 1.31 (0.48)    

Tired REM Stim Run 1 3.19 (0.66) 3.87 15 <0.01* 

  Run 2 2.19 (0.75)    

Motivated REM Stim Run 1 3.31 (1.01) -2.71 15 0.02* 

  Run 2 4.00 (0.63)    

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Run 1 being training session. 

3 Run 2 being testing session. 

 

To check for possible circadian effects on the mental state, a repeated 

measures 2 x 2 MANOVA was performed, comparing evening (Time 1) with 

morning (Time 2) session. Mental state did not diverge between groups 

(Condition, Pillai’s trace F(5, 26) = 0.10, p = 0.99) but was significantly different 

in morning versus evening session (Time, Pillai’s trace F(5, 26) = 4.65, p < 

0.01). Subjects in the evening session were less strained (Pillai’s trace F(5, 26) 

= 6.90, p = 0.01), more tired (Pillai’s trace F(5, 26) = 7.64, p = 0.01) and less 

motivated (Pillai’s trace F(5, 26) = 8.69, p = 0.01). There was no difference in 

morning and evening sessions between groups (Condition*Time, Pillai’s trace 

F(5, 26) = 1.06, p = 0.40).  

 

Analysis of the Multidimensional Mood State Questionnaire Short-Form A 

(MDBF-A) 

A repeated measures 2 x 2 MANOVA showed no significant effect on mood 

state for REM Stim versus Wake Stim (Table 8; Condition, Pillai’s trace F(3, 28) 

= 1.22, p = 0.32). Subjects were in a less good mood in the testing session 
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(Run, Pillai’s trace F(3, 28) = 4.57, p = 0.01). Mood state in the sessions was 

significantly different between groups for ”Good-Bad” (GB) and “Alert-Tired” 

(AT) (Table 8; Run*Condition, Pillai’s trace F(3, 28) = 12.89, p < 0.01).  

 

Table 8: Descriptive statistics and repeated measures 2 x 2 MANOVA of the 

Multidimensional Mood State Questionnaire Short-Form A 

Scales Condition1 Main Effect 

Run 

Interaction 

Run*Condition 

REM 

Stim 

N = 16 

Mean 

(SD) 

Wake 

Stim 

N = 16 

Mean 

(SD) 

Both 

 

N = 32 

Mean 

(SD) 

Univariate 

 

 

Univariate 

F p F p 

Good-

Bad 

Run 12 18.19 

(1.52) 

18.25 

(1.73) 

18.22 

(1.60) 

8.05 0.01* 6.65 0.02* 

 Run 23 18.13 

(1.31) 

16.94 

(2.27) 

17.53 

(1.92) 

    

Alert-

Tired 

Run 1 12.87 

(2.50) 

15.56 

(2.92) 

14.22 

(3.00) 

0.98 0.33 24.39 <0.01* 

 Run 2 15.88 

(2.47) 

13.56 

(3.60) 

14.72 

(3.26) 

    

Calm-

Nervous 

Run 1 17.94 

(1.39) 

16.88 

(1.71) 

17.41 

(1.62) 

0.07 0.79 1.16 0.29 

Run 2 17.75 

(1.34) 

17.19 

(1.76) 

17.47 

(1.57) 

    

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Run 1 being training session. 

3 Run 2 being testing session. 
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Because of the significant interaction, GB and AT were analyzed using 

dependent and independent t-tests, accordingly. Independent t-tests revealed 

no difference for GB between groups (all p > 0.08) and that REM Stim was less 

alert in training session (t(30) = -2.80, p = 0.01) and more alert in testing 

session than Wake Stim group (t(30) = 2.12, p = 0.04).  

Dependent t-tests of the REM Stim group showed that they were more alert in 

the testing session (t(15) = -3.59, p < 0.01). Dependent t-tests of the Wake Stim 

group revealed that in the training session they were in better mood (t(15) = 

3.52, p < 0.01) and more alert (t(15) = 3.51, p < 0.01).  

To check for possible circadian effects on the mood state, a repeated measures 

2 x 2 MANOVA was performed, comparing evening (Time 1) with morning 

(Time 2) session. Mood state did not diverge between groups (Condition, Pillai’s 

trace F(3, 28) = 1.22, p = 0.32) but was significantly different in morning versus 

evening session (Time, Pillai’s trace F(3,28) = 12.89, p < 0.01). Subjects in the 

evening session were in a less good mood (Pillai’s trace F(3, 28) = 6.65, p = 

0.02) and less alert (Pillai’s trace F(3, 28) = 24.39, p < 0.01). There was a 

significant difference in morning and evening sessions between groups 

(Time*Condition, Pillai’s trace F(3, 28) = 4.57, p = 0.01), with groups being in a 

differently good mood in between sessions (Pillai’s trace F(3, 28) = 8.05, p = 

0.01). Because of the significant interaction, GB was analyzed using dependent 

and independent t-tests, accordingly. Independent t-tests revealed no significant 

difference for GB between groups in either session (all p ≥ 0.08).  

Dependent t-tests of the REM Stim group showed no difference of good mood 

between sessions. Dependent t-tests of the Wake Stim group revealed that in 

the morning session they were in better mood (t(15) = -3.52, p < 0.01).  

 

Analysis of the Stanford Sleepiness Scale (SSS) 

A repeated measures 2 x 2 ANOVA showed no significant effect on sleepiness 

for REM Stim versus Wake Stim (Condition, Pillai’s trace F(1, 30) = 0.58, p = 

0.45) and training versus testing (Table 9; Run, Pillai’s trace F(1, 30) = 0.96, p = 
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0.34). A significant effect for sleepiness in sessions between groups was found 

(Table 9; Run*Condition, Pillai’s trace F(1, 30) = 16.92, p < 0.01).  

 

Table 9: Descriptive statistics and repeated measures 2 x 2 ANOVA of Stanford 

Sleepiness Scale 

Scales Condition1 Interaction Run*Condition 

REM Stim 

N = 16 

Mean (SD) 

Wake Stim 

N = 16 

Mean (SD) 

Univariate 

F p 

Sleepiness Run 12 3.00 (0.82) 2.5 (0.63) 16.92 < 0.01* 

 Run 23 2.19 (0.54) 3.00 (0.89)   

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Run 1 being training session. 

3 Run 2 being testing session. 

 

Because of the significant interaction, sleepiness was analyzed using 

dependent and independent t-tests, accordingly. Independent t-tests revealed 

no significant difference for sleepiness between training sessions (t(30) = 1.94, 

p = 0.06), but REM Stim was significantly less tired in the testing session than 

Wake Stim (t(30) = -3.11, p < 0.01). 

Dependent t-tests of the REM Stim group showed that they were sleepier in the 

training session (t(15) = 3.57, p < 0.01). Dependent t-tests of the Wake Stim 

group revealed that they were more tired in the testing session (t(15) = -2.24, p 

= 0.04).  

To check for possible circadian effects on sleepiness, a repeated measures 2 x 

2 ANOVA was performed, comparing evening (Time 1) with morning (Time 2) 

session. Sleepiness did not diverge between groups (Condition, Pillai’s trace 

F(1, 30) = 0.58, p = 0.45) but was significantly different in morning versus 

evening session, subjects in the evening session being more sleepy (Time, 
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Pillai’s trace F(1, 30) = 16.92, p < 0.01). There was no significant difference 

sleepiness during morning and evening sessions between groups 

(Time*Condition, Pillai’s trace F(1, 30) = 0.96, p = 0.34). 

 

3.7. Analysis of the Game Experience Questionnaire (GEQ) 

A repeated measures 2 x 2 x 2 MANOVA of game experience with condition 

(REM Stim versus Wake Stim) and PST solving as between-subjects’ effects 

was performed (descriptive statistics see Appendices Table 13).  

Between-Subjects Effects  

There was no association between condition and game experience (Condition, 

Pillai’s trace F(11, 18) = 0.47, p = 0.90). Game experience in both sessions was 

different between solvers and non-solvers (Solving, Pillai’s trace F(11, 18) = 

2.43, p = 0.05). Solvers rated themselves higher in “competence” (Pillai’s trace 

F(11, 18) = 13.23, p < 0.01), “positive affect” (Pillai’s trace F(11, 18) = 15.05, p 

< 0.01) and “positive experience” (Pillai’s trace F(11, 18) = 8.23, p = 0.01). 

Solvers scored lower in “tension/annoyance” (Pillai’s trace F(11, 18) = 6.67, p = 

0.02) and “tired” (Pillai’s trace F(11, 18) = 6.24, p = 0.02). The other game 

experience qualities showed no significant differences between solvers and 

non-solvers (all p > 0.05).  

Depending on the condition, solving the PST had a significant effect on game 

experience concerning “competence”, “positive affect” and “positive experience” 

(Condition*Solving, Pillai’s trace F(11, 18) = 5.90, p = 0.02). Further testing of 

these three qualities was performed using independent t-tests, accordingly (for 

descriptive statistics see Appendices Table 13). 

Independent t-tests revealed that in the testing session subjects of the REM 

Stim group did not rate differently in any of these three qualities, whether they 

were solvers or non-solvers (all p ≥ 0.22). Solvers of the Wake Stim group 

exhibited higher “competence” (Run 1, t(14) = - 5.40, p < 0.01; Run 2, t(14) = - 

7.37, p < 0.01), “positive affect” (Run 1, t(14) = - 3.84, p < 0.01; Run 2, t(14) = - 

8.15, p < 0.01) and “positive experience” (Run 1, t(14) = - 2.58, p = 0.02; Run 2, 
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t(9.78) = - 7.09, p < 0.01) in training and testing sessions than non-solvers of 

Wake Stim. REM Stim non-solvers had a higher level of “positive affect” 

(t(12.49) = 2.26, p = 0.04) and “positive experience” (t(15) = 2.20, p = 0.04) in 

the testing session than Wake Stim non-solvers. “Competence” was 

comparable in all sessions between non-solvers and “positive affect” and 

“positive experience” did not differ in the training session between non-solvers 

(all p > 0.05). Wake Stim solvers had higher training level “competence” (t(13) = 

- 2.50, p = 0.03) and “positive experience” (t(13) = - 2.38, p = 0.03) than REM 

Stim solvers, while no difference was found for “positive affect” (all p > 0.05). 

Solvers did not differ in the testing session game experience (all p > 0.09). 

Within-Subjects Effects 

Game experience was significantly different between training and testing 

sessions (Run, Pillai’s trace F(11, 18) = 3.78, p = 0.01), with subjects in the 

testing session exhibiting lower assessments for “flow” (Pillai’s trace F(11, 18) = 

4.22, p = 0.05) and higher “tension/annoyance” (Pillai’s trace F(11, 18) = 8.20, p 

= 0.01) and “negative affect” (Pillai’s trace F(11, 18) = 7.07, p = 0.01).  

There was no dependency of session and condition on game experience 

(Run*Condition, Pillai’s trace F(11, 18) = 2.04, p = 0.09) nor of session and 

condition and PST solving on game experience (Run*Condition*Solving, Pillai’s 

trace F(11, 18) = 0.69, p = 0.73).  

There was a significant impact on game experience by PST solving depending 

on session (Run*Solving, Pillai’s trace F(11, 18) = 2.54, p = 0.04). In both 

sessions solvers rated higher in “competence” (Pillai’s trace F(11, 18) = 4.30, p 

= 0.05). Only in the testing session did solvers rate higher in “positive affect” 

(Pillai’s trace F(11, 18) = 10.05, p < 0.01) and “positive experience” (Pillai’s 

trace F(11, 18) = 6.79, p = 0.02). Only in the testing session did solvers rate 

lower in “tension/annoyance” (Pillai’s trace F(11, 18) = 4.94, p = 0.03), “negative 

affect” (Pillai’s trace F(11, 18) = 10.94, p < 0.01), “negative experience” (Pillai’s 

trace F(11, 18) = 9.09, p = 0.01) and “tired” (Pillai’s trace F(11, 18) = 10.93, p < 

0.01).  

Further analysis of the interaction effect seen for these variables was conducted 
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accordingly via independent and dependent t-tests. 

Independent t-tests indicated that in both sessions solvers rated higher in 

“competence” than non-solvers (Run 1, t(30) = -2.08, p = 0.05; Run 2, t(30) = -

4.13, p < 0.01). For the other qualities there were no differences between 

solvers and non-solvers in the training session (all p > 0.05). In the testing 

session solvers rated lower in “tension/annoyance” (Run 2, t(30) = 3.22, p < 

0.01), “negative affect” (Run 2, t(30) = 3.13, p < 0.01), “negative experience” 

(Run 2, t(26.93) = 2.73, p < 0.01) and “tired” (Run 2, t(22.87) = 3.23, p < 0.01). 

In the testing session solvers rated higher in “positive affect” (Run 2, t(30) = -

4.61, p < 0.01) and “positive experience” (Run 2, t(30) = -2.98, p = 0.01). 

Dependent t-tests showed that non-solvers exhibited higher “tension/ 

annoyance” (t(16) = -3.66, p < 0.01), “negative affect” (t(16) = -4.78, p < 0.01) 

and “negative experience” (t(16) = -3.56, p < 0.01) in the testing session 

compared to the training session. They exhibited lower “positive affect” (t(16) = 

2.74, p = 0.01) in the testing session than in the training session. Other qualities 

of game experience for non-solvers did not change between sessions (all p ≥ 

0.15). 

Dependent t-tests indicated that solvers rated higher in “positive experience” 

(t(14) = -2.48, p = 0.03) in the testing session than in the training session. Apart 

from this, there was no significant change of game experience for solvers 

between sessions (all p ≥ 0.06). 

3.8. Analysis of Rehearsal Questionnaire 

The three-way chi-square crosstab statistic, with condition as control variable 

and thinking about the game versus PST solving as variables, found no effect of 

having thought about the game for PST solving in either condition (REM Stim: 

Pearson Chi-Square χ²(2, N = 16) = 2.23, p = 0.33. Wake Stim: Pearson Chi-

Square χ²(1, N = 16) = 1.37, p = 0.24. Both conditions: Pearson Chi-Square 

χ²(2, N = 32) = 3.38, p = 0.19.). 

The three-way chi-square crosstab statistic, with condition as control variable 

and talking about the game versus PST solving as variables, found no effect of 

having talked to anyone about the game for PST solving in either condition 
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(REM Stim: Pearson Chi-Square χ²(1, N = 16) = 0.15, p = 0.70. Wake Stim: 

Pearson Chi-Square χ²(1, N = 16) = 0.04, p = 0.84. Both conditions: Pearson 

Chi-Square χ²(1, N = 32) = 0.38, p = 0.54.). 

A 2 x 2 MANOVA with PST solving and condition as between-subject factors 

found significant differences between REM Stim and Wake Stim groups (Table 

10; Condition, Pillai’s trace F(11, 18) = 2.52, p = 0.04). The Wake Stim group 

thought more about how funny the game was than the REM Stim group (Table 

10). No other variables were different between conditions (all p ≥ 0.08). There 

was no difference between solvers and non-solvers (Solving, Pillai’s trace F(11, 

18) = 1.19, p = 0.36). Subjects did not differ in their thinking and emotional 

attitude dependent on PST solving between conditions (Condition*Solving, 

Pillai’s trace F(11, 18) = 0.40, p = 0.94). 

 

Table 10: Descriptive Statistics and 2 x 2 MANOVA of the Rehearsal 

Questionnaire 

Scales  Condition1 PST Solving2 Main effect 

Condition 

Non-

Solvers3 

Mean (SD) 

Solvers4 

Mean (SD) 

Both 

Mean (SD) 

Univariate 

F p 

Thinking 

about the 

game 

REM Stim 2.9 (1.37) 3.5 (0.84) 3.13 (1.2) 2.33 0.14 

Wake Stim 2.29 (0.76) 2.89 (1.17) 2.63 (1.02)   

Both 2.65 (1.17) 3.13 (1.06) 2.88 (1.13)   

Thinking 

about 

solving 

REM Stim 2.8 (1.4) 4.17 (1.17) 3.31 (1.45) 0.67 0.42 

Wake Stim 2.71 (1.7) 3.44 (1.13) 3.13 (1.41)   

Both 2.76 (1.48) 3.73 (1.16) 3.22 (1.41)   

Thinking 

game was 

funny 

REM Stim 1.7 (1.06) 1 (0) 1.44 (0.89) 4.28 0.05* 

Wake Stim 2.29 (1.7) 2.22 (1.3) 2.25 (1.44)   

Both 1.94 (1.34) 1.73 (1.16) 1.84 (1.25)   

Thinking REM Stim 2.8 (1.55) 2.17 (1.17) 2.56 (1.41) 0.08 0.78 
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about 

frustration 

after game 

Wake Stim 3.14 (1.68) 2.11 (1.17) 2.56 (1.46)   

Both 2.94 (1.56) 2.13 (1.13) 2.56 (1.41)   

Thinking 

about 

“Blupi” 

abilities 

REM Stim 2.6 (1.9) 2.67 (1.63) 2.63 (1.75) 1.96 0.17 

Wake Stim 1.86 (1.07) 1.89 (1.17) 1.88 (1.09)   

Both 2.29 (1.61) 2.2 (1.37) 2.25 (1.48)   

Thinking 

about 

hidden 

solution 

REM Stim 3.6 (1.71) 4 (1.55) 3.75 (1.61) 1.25 0.27 

Wake Stim 3.43 (1.99) 2.78 (1.64) 3.06 (1.77)   

Both 3.53 (1.77) 3.27 (1.67) 3.41 (1.7)   

Thinking 

about 

feelings 

during 

game 

REM Stim 1.6 (0.84) 1.67 (0.82) 1.63 (0.81) 3.38 0.08 

Wake Stim 1.29 (0.49) 1.11 (0.33) 1.19 (0.4)   

Both 1.47 (0.72) 1.33 (0.62) 1.41 (0.67)   

Thinking 

about 

game 

because 

of 

frustration 

REM Stim 1.7 (1.06) 2.33 (1.21) 1.94 (1.12) 0.64 0.43 

Wake Stim 1.86 (1.21) 1.56 (0.88) 1.69 (1.01)   

Both 1.76 (1.09) 1.87 (1.06) 1.81 (1.06)   

Thinking 

about 

game 

because 

of 

excitement 

REM Stim 1.4 (0.52) 1.5 (0.55) 1.44 (0.51) 0.00 0.96 

Wake Stim 1.43 (0.79) 1.44 (1.01) 1.44 (0.89)   

Both 1.41 (0.62) 1.47 (0.83) 1.44 (0.72)   

Thinking 

about own 

mistakes 

during 

REM Stim 3 (1.83) 4 (1.1) 3.38 (1.63) 2.34 0.14 

Wake Stim 2.29 (1.6) 3 (1.41) 2.69 (1.49)   

Both 2.71 (1.72) 3.4 (1.35) 3.03 (1.58)   
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playing 

Not 

thinking 

about 

game 

REM Stim 2.3 (1.77) 1.5 (1.22) 2 (1.59) 0.57 0.46 

Wake Stim 2.43 (1.62) 2.22 (1.48) 2.31 (1.49)   

Both 2.35 (1.66) 1.93 (1.39) 2.16 (1.53)   

1 Condition refers to Rem Stim and Wake Stim groups. 

2 PST Solving represents whether or not subjects solved the Problem-Solving 

Test (PST). 

3 Non-Solvers being subjects who did not solve the PST. 

4 Solvers being subjects who solved the PST. 

 

 

3.9. Analyses of Digital Span Task (DSpan) and Vigilance Task 

(VT) 

Analysis of the Digital Span Task (Dspan) 

A repeated measures 2 x 2 ANOVA of the memory span revealed that the REM 

Stim group had a significantly longer memory span (Table 11; Condition, Pillai’s 

trace F(1, 29) = 11.63, p < 0.01) and no difference between training and testing 

sessions (Table 11; Run, Pillai’s trace F(1, 29) = 2.02, p = 0.17). No significant 

difference in memory span between groups and sessions was found (Table 11; 

Run*Condition, Pillai’s trace F(1, 29) = 0.37, p = 0.55). 
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Table 11: Descriptive statistics and repeated measures 2 x 2 ANOVA of the 

Digital Span Task 

Scales Condition1 Main effect Condition 

REM Stim 

N = 15 

Mean (SD) 

Wake Stim 

N = 16 

Mean (SD) 

Univariate 

F p 

Memory span Run 12 7.73 (1.62) 6.3 (1.00) 11.63 < 0.01* 

 Run 23 7.93 (1.49) 6.75 (0.93)   

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Run 1 being training session. 

3 Run 2 being testing session. 

 

To check for possible circadian effects on digit sequence memory span, a 

repeated measures 2 x 2 ANOVA was performed, comparing evening (Time 1) 

with morning (Time 2) session. Memory span was better in the REM Stim group 

(Condition, Pillai’s trace F(1, 29) = 11.63, p < 0.01). There was no significant 

difference between memory span performance in evening versus morning 

session (Time, Pillai’s trace F(1, 29) = 0.37, p = 0.55). There was no significant 

difference in sleepiness during morning and evening sessions between groups 

(Time*Condition, Pillai’s trace F(1, 29) = 2.02, p = 0.17).  

Analysis of the Vigilance Task (VT) 

A repeated measures 2 x 2 ANOVA of the mean reaction time in the vigilance 

task revealed no difference between groups (Table 12; Condition, Pillai’s trace 

F(1, 29) = 0.40, p = 0.53) and no difference between training and testing 

sessions (Run, Pillai’s trace Pillai’s trace F(1, 29) = 2.16, p = 0.15). No 

significant difference in mean reaction time between groups and sessions was 

found (Run*Condition, Pillai’s trace F(1, 29) = 0.34, p = 0.56). 
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Table 12: Descriptive statistics of the Vigilance Task 

Scales Condition1 

REM Stim 

N = 16 

Mean (SD) 

Wake Stim 

N = 15 

Mean (SD) 

Mean reaction time 

(ms) 

Run 12 449.91 (43.23) 446.35 (31.95) 

Run 23 444.57 (40.79) 433.93 (19.82) 

1 Condition refers to Rem Stim and Wake Stim groups. 

2 Run 1 being training session. 

3 Run 2 being testing session. 

 

To check for possible circadian effects on mean reaction time in the vigilance 

task, a repeated measures ANOVA was performed, comparing evening (Time1) 

with morning (Time2) session. There was no difference in mean reaction time in 

the vigilance task between groups (Condition, Pillai’s trace F(1, 29) = 0.40, p = 

0.53) and no difference between evening and morning sessions (Time, Pillai’s 

trace Pillai’s trace F(1, 29) = 0.34, p = 0.56). No significant difference in mean 

reaction time between groups and sessions was found (Time*Condition, Pillai’s 

trace F(1, 29) = 2.16, p = 0.15). 

 

3.10. Analysis of the Random Reaction Time Task (RRTT) 

Mean accuracy and mean reaction time in the RRTT were compared between 

solvers and non-solvers in Wake Stim group to check whether there was a 

difference in the reaction task performance between them. An independent t-

test revealed no differences in performance between solvers and non-solvers in 

the Wake Stim group (Mean accuracy in % t(14) = -1.60, p = 0.13. Mean 

reaction time in ms t(14) = -0.90, p = 0.38). Mean accuracy was 90.61 % (3.23 

%) for non-solvers and 92.87 % (2.42 %) for solvers. Mean reaction time was 

422.19 ms (28.87 ms) for non-solvers and 410.02 ms (25.00 ms) for solvers. 

  



93 
 

4. Discussion 

4.1. REM Sleep TMR Not Superior to Active Wakefulness TMR 

for Problem-Solving 

In contrast to this study’s starting hypothesis, the results have shown no 

significant beneficial effect of TMR during REM sleep versus TMR during active 

wakefulness on either likelihood or speed of problem-solving of a video game 

level. As of writing, this study is the first one to assess the effect of REM sleep 

TMR versus active wakefulness TMR on problem-solving of a video game level. 

However, various studies have covered partial aspects of this study’s approach.  

Other findings suggest that sleep promotes memory consolidation of 

declarative, procedural and emotional memories (Diekelmann & Born, 2010). 

Sleep also enhances associative learning (Chatburn et al, 2014). Evidence has 

accumulated that REM sleep may be important for optimal cognitive 

functionality in several ways. REM sleep seems to improve memory 

consolidation of novel events, and procedural and emotional memory, with an 

even stronger effect, if both SWS and REM sleep take place during 

consolidation sleep (Giuditta et al, 1995; Maquet, 2001; Poe et al, 2000). 

Furthermore, schema-adherent information is suspected to receive a special, 

faster type of consolidation during REM sleep (Durrant et al, 2015; Tse et al, 

2007; van Kesteren et al, 2012). The active system consolidation theory 

connects REM sleep to reactivation and LTP of SWS-reactivation tagged 

synaptic correlates of memories (Almeida-Filho et al, 2018; Diekelmann & Born, 

2010; Diekelmann et al, 2011; Gais & Born, 2004; Rasch & Born, 2007; Rasch 

et al, 2009b). Moreover, REM sleep is attributed a role in corticalization of 

hippocampus-dependent memories (Almeida-Filho et al, 2018). REM sleep 

consolidation is proposed to be specific to tags like those of future relevance, in 

that forgetting of items with no future relevance may be facilitated by REM sleep 

(Oudiette et al, 2013). Activation and linking of associated schemas may be 

facilitated by the special milieu of REM sleep (Lewis et al, 2018).  

The video game this study used requires minimal declarative and procedural 

memory and is not known to broad parts of the subject sample’s culture, so it is 
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not to be expected that special consolidation or linking of associated schemas 

affected problem-solving. Subjects were made aware that they had a second 

attempt at the PST, which could have induced preferential consolidation of 

related memories. Subjects in the REM Stim group did not perform better in the 

PST, even though they had post-training night sleep, which in the studies 

mentioned provided the strongest improvements in memory tasks (Diekelmann 

& Born, 2010). This study did not find a sleep-associated improvement in 

problem-solving. 

Additionally, TMR was applied during either REM sleep or during active 

wakefulness, depending on the condition. As during SWS, auditory TMR is 

viable in REM sleep, too, because both are characterized a higher threshold for 

stimuli-induced awakenings and slowed wakening (Baars, 1988). If it is ensured 

that the stimulation does not incite arousals, sleep architecture should remain 

largely unaffected. This may be achieved through continuous presentation of 

white noise throughout the night with repeated brief sound stimulations in the 

target interval, while a steady sound pressure level is kept (Rudoy et al, 2009; 

Sterpenich et al, 2014). 

This study used similar audio stimulation protocols as used in previous studies. 

The data suggests that sleep was not impaired for subjects in the REM sleep 

TMR (REM Stim) condition. 

Research concerning the effect of REM sleep TMR provided mixed results so 

far. Some showed benefits for declarative memory (Sterpenich et al, 2014). 

Others did not show any benefit for declarative or for procedural tasks (Rasch et 

al, 2007). Integration, generalization and abstraction of memories into existing 

or new associative networks may be facilitated during REM sleep (Cai et al, 

2009; Sterpenich et al, 2014). 

Results differ when TMR is applied during sleep or wakefulness. Memory task 

performance in the wakefulness-TMR group appeared subpar to that of sleep-

TMR groups (Diekelmann et al, 2011; Oudiette et al, 2013). In this study there 

was no indication that REM Stim performed better in the target task than Wake 

Stim.  
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So far, most audio stimulation protocols for TMR have been simpler, consisting 

of one short sound per item. This study used a more complex audio stimulation 

protocol, in that sounds taken from the PST-level were used to attempt 

reactivation of PST-memories, to further facilitate problem-solving processes 

during the incubation interval. However, sounds were not exclusive to the PST, 

as two of the training levels have similar ambient sounds and “Blupi” sounds are 

the same for all the levels. Specifically, the “victory sound” of “Blupi” reaching 

the balloon was only encountered in the practice levels, and not during PST 

training. The sequence of the sounds presented during stimulation represented 

parts of the audio of the PST solution. It is unlikely that this exact sequence 

triggered preferentially PST-related memories, since subjects could play in any 

sequence during training or testing session and thus may have encountered the 

sounds in different sequences than that of TMR. 

While the positive effect of sleep on memory performance is largely accepted by 

the scientific community, sleep’s role in problem-solving remains a matter of 

debate. As proposed by the BiOtA model, REM sleep memory reactivation may 

help to reduce self-imposed constraints and induce new associations, which 

could then enable strategy changes in analogical and creative problem-solving 

(Lewis et al, 2018). Yet, some research teams found no effect or benefits 

associated to sleep on creative problem-solving (Landmann et al, 2016; 

Landmann et al, 2014). For the Remote Associates Test (RAT), results suggest 

that sleep promotes higher performance increases for difficult than for easier 

RAT problems, if compared to an equal time in wakefulness (Ohlsson, 1992; 

Sio et al, 2013). Furthermore, more time in REM sleep may be linked to this 

improvement in problem-solving (Cai et al, 2009). Several studies have shown 

that a better memory performance may not result in better problem-solving 

capability in the RAT (Cai et al, 2009; Dougal & Schooler, 2007).  

So far, one study has used the same video game to analyze sleep’s effect on 

problem-solving ability. In their study, Beijamini et al found only a significant 

effect for time spent in SWS during a post-training nap, not for REM sleep on 

problem-solving capability of levels from Speedy Eggbert Mania® (Beijamini et 

al, 2014; EPSITEC, 1999). The researchers proposed that the video game 
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problems might require visuo-spatial and logical reasoning skill to solve. 

Previous video game expertise did not affect the solving rate (Beijamini et al, 

2014).  

This present study cannot corroborate these findings. In REM Stim, solvers did 

not have more SWS than non-solvers. Study designs varied, as Beijamini et al’s 

study used napping in favor of night-sleep and defined individual subject-

specific levels, instead of one level as PST (Beijamini et al, 2014). Moreover, 

subjects were not aware of the testing session, so future relevance of their 

training session was unclear to them before incubation (Beijamini et al, 2014). 

This was different in this study, where subjects were informed that they would 

have a second attempt at the PST in the testing session. As demonstrated in 

other studies, the knowledge of a future relevance of an item increases the 

memory consolidation of this item, possibly at the expense of other items 

(Oudiette et al, 2013; Wilhelm et al, 2011). 

Previous studies indicate that for logical problems, sleep after solving a training 

set of problems has shown to facilitate solving of new analogical problems with 

low surface similarity to another (Monaghan et al, 2015). All training levels 

solved during the training session shared a variable amount of aspects with the 

PST. The key problem of the PST, being the interaction between two “Blupis” 

through use of the crane, was not one of these shared aspects. Possibly, there 

was not enough surface similarity with the PST to facilitate solution of the PST 

after sleep. 

Therefore, improvements in problem-solving by sleep may be either attributed 

to memory consolidation effects or other problem-solving facilitating sleep 

effects or both. Understanding what features of a problem task decide the type 

of cognitive processing during wakefulness may be required to gain insight into 

the selectivity of sleep-dependent treatment of these problem-solving tests. 

Further research on which types of problem tasks benefit from memory 

consolidation and which improvements in problem-solving cannot be attributed 

solely to memory consolidation needs to be conducted to unmask further sleep-

encouraged processes aiding problem-solving.  
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The results of this study suggest that the combination of night sleep and REM 

sleep TMR does not improve problem-solving skill in a video game puzzle 

compared to active wakefulness TMR with daytime wakefulness. It is unclear, 

whether a short incubation interval spent either asleep or awake as used in nap 

studies produces a greater difference in problem-solving. The implemented 

TMR protocol may have been unsuited to initiate sleep-dependent processing of 

problem-solving related information of the PST.  

It is possible that for this PST, REM sleep TMR was detrimental to problem-

solving, perhaps by interfering with corticalization and restructuring processes 

active during REM sleep (Almeida-Filho et al, 2018). Comparison to 

performance of a non-TMR sleep group is needed to explore this possibility. 

Additionally, a SWS-TMR control experiment may clarify if the TMR protocol is 

not suited explicitly for REM sleep stimulation. Perhaps subjects during active 

wakefulness profited more from TMR than during REM sleep, leveling sleep-

dependent benefits for problem-solving. A wake control group without TMR may 

help to assess this possibility. At last, the format of this problem-solving test 

may be exempted from sleep-dependent problem-solving improvement or the 

PST. Perhaps it was too difficult and too dependent on the virtual application of 

problem-solving skills. Support comes from the fact that subjects with better 

performance in the training levels, were more likely to solve the PST. Other 

problem-solving tests should be tested to see whether REM sleep TMR may 

improve performance in these tasks over active wakefulness TMR. 

Alternative protocols testing problem-solving with a within-subject approach 

may lead to more conclusive results for the effect of TMR on problem-solving 

during wakefulness or various sleep stages. A within-subject design may also 

help to assess whether TMR during the mentioned conditions disrupts sleep, 

preventing sleep-associated gain in problem-solving, as suggested above. 
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4.2. Facilitation of Problem-Solving Through Analogical Task 

Only in REM Stim Group 

This study did not confirm the hypothesis that subjects starting with a new 

analogical level, based on similar concepts as the PST, would be more likely 

and faster to solve the PST. This study found no effect of starting level on 

solving or speed of solving. However, if conditions are evaluated separately, 

REM Stim APST starters solved significantly more often than REM Stim PST-

starters but not faster. There was no difference in solving rate and speed 

between level sequence for subgroups of Wake Stim. 

Sleep after solving a training set of logical problems has shown to facilitate 

solving of new analogical problems with low surface similarity to another 

(Monaghan et al, 2015). Training levels may not have shared enough surface 

similarity to the PST to facilitate its solution. However, surface similarity to the 

alternative starting level of the testing session (hereafter noted as Analogical 

Problem-Solving Test, APST) may have been high enough. All subjects from 

the REM Stim group solved the APST, while two subjects from the Wake Stim 

group did not. These two also failed to solve the PST. One of these subjects 

started with the APST the other did not. An improvement in APST performance 

for REM Stim subjects through the analogical problem-solving facilitation as 

described by Monaghan et al is possible (Monaghan et al, 2015). 

It may be proposed that in addition to sleep-dependent facilitation of low surface 

similarity problems, REM Stim subjects benefitted from further video game 

“reactivations” through the APST before attempting the PST a second time. 

Since no benefits for level sequence was demonstrated in Wake Stim, the 

APST start in REM Stim may be either sleep or REM sleep TMR dependent. 

These improvements cannot be achieved similarly through wakefulness with 

TMR. If there was such a benefit for the REM Stim group, the question why 

REM Stim did not perform better overall in the PST than Wake Stim remains 

unresolved.  

Sleep TMR has been shown to be able to both selectively strengthen and 

promote forgetting of reactivated memories compared to wakefulness (Saletin 
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et al, 2011; Simon et al, 2017; Stickgold & Walker, 2013). In this specific case, 

this can be ruled out, as subjects were not informed until the testing session of 

having to play the APST, nor about their testing session level sequence. Thus, it 

is unlikely that any differential sleep-facilitated consolidation may explain the 

stark contrast between level sequence subgroups of the REM Stim group 

compared to the Wake Stim group. 

The synaptic homeostasis hypothesis explains better cognitive performance 

after sleeping through a process that involves downscaling of synaptic weights 

and emphasizing relative differences between synaptic strengths (Tononi & 

Cirelli, 2006). This may explain why REM Stim benefitted more from the APST 

start for the PST than Wake Stim: REM Stim subjects would be more receptive. 

However, this theory cannot account for the lack of overall better PST 

performance in the REM Stim group. 

It is unlikely that a “training effect” in the testing session was present. The 

additional testing session video game playing did not improve performance 

continuously over time, with the best performance at the end of the testing 

session. If this had been the case, APST starters would have performed better 

in the PST with a higher solving rate or faster solving time. This was only the 

case for REM Stim APST starters compared to REM Stim PST starters and only 

in solving rate, not solving time. Furthermore, PST starters would have 

performed better in the APST with higher solving rate or faster solving time. 

However, APST solving times were comparable between PST and APST 

starters for subjects who solved the APST. Since only two subjects were unable 

to solve the APST and both were part of Wake Stim, the sample size of this 

study is too small to disprove this possibility for solving rate. This study should 

be replicated using a larger sample size to analyze this possibility further. 

Overall, the findings of this study that REM Stim PST starters were unlikely to 

solve the PST compared to Wake Stim PST starters cannot be explained 

through any of the currently proposed theories. Additional processes that have 

selectively impaired REM Stim PST-starters’ performance compared to other 

subgroups could account for overall similar PST performance across groups. 
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This contrasts with the sleep-associated improvements many studies found for 

sleep condition groups in various experimental settings (Almeida-Filho et al, 

2018). Additional research on this field is required to examine sleep- and REM 

sleep-TMR associated problem-solving improvements depending on having 

played a new (and or analogical) level compared to subjects receiving active 

wakefulness TMR. 

 

4.3. Possible Confounding Variables 

Since there was no measurable gain in problem-solving ability through the 

combination of REM TMR and sleeping versus wake TMR and wakefulness, 

other factors must be considered that determined whether a subject solved or 

did not solve the PST. 

4.3.1. Sample Differences Between Conditions 

There were no inherent differences between samples in age, gender 

distribution, usual amount of sleep or sleep in the night prior to the experiment. 

Furthermore, there were no significant differences between groups in their video 

game habits and preferences.  

Consequently, the subject samples between conditions in this study did not 

differ in any of the obvious factors that were able to confound results. However, 

of the other control variables several yielded significant differences between 

conditions.  

Basic Cognitive Tests 

REM Stim showed a significantly longer memory span in the DSpan task than 

Wake Stim. Moreover, memory span was similar between training and testing, 

and morning and evening sessions. Even though a bias in digital memory span 

towards REM Stim could be identified, REM Stim and Wake Stim performed 

similarly in the PST. This suggests that the PST may not be sensitive to the 

differences in memory span between the two conditions. Moreover, the DSpan 

task did not exhibit a significant training effect, since both sessions’ 

performances were comparable. Vigilance was comparable between groups 
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with no significant differences between sessions. There was no training effect or 

bias between conditions identified. Vigilance and memory span appear unlikely 

to have confounded the results of the PST. The lack of training effects in these 

tasks is one reason for their prevalence in cognitive research.  

Video Game Ability  

Video game ability was assessed through the training level performance index 

(TLPI, see 2.7). A higher index indicates a faster solving speed of the training 

levels according to this study’s sample. Thus, the TLPI does not reflect testing 

session performance in solving speed or rate. 

Video game ability was comparable between conditions and between PST 

solvers and non-solvers. A significantly higher video game ability was identified 

for subjects starting with the Analogical Problem-Solving Test (APST) and for 

Wake Stim solvers. Moreover, the analysis suggests that TLPI does not 

correlate with earlier video game playing starting age, or frequency or amount of 

playing per week. This supports earlier findings that video game expertise does 

not yield better results in Speedy Eggbert Mania® (Beijamini et al, 2014; 

EPSITEC, 1999). 

The TLPI delivers one possible explanation for what determined PST solving in 

the Wake Stim group. Wake Stim subjects who performed better during the 

training session were more likely to solve. Additionally, APST starters had a 

higher TLPI than PST starters, which was true for all solvers and non-solvers 

alike. This may have exerted a confounding effect on PST-solving assessment 

between subgroups and inflated the effect described in 4.2, namely that REM 

Stim APST starters were more likely to solve than REM Stim PST starters.  

Ergo, the specific skill for the video game of interest is a possible confounding 

variable. Future studies should check for skill levels of their subjects in the 

problem task, when assuming impact of experimental interventions on problem-

solving.  
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4.3.2. Mental State, Mood State, Sleepiness and Circadian Effects 

To reveal possible confounding effects deriving from mental state, mood state 

and sleepiness, test results were compared between training and testing 

sessions. Additionally, these tests were analyzed according to the time of day 

they were conducted at to discover possible circadian effects. 

Mental State 

Mental state was not different between conditions and comparable between 

training and testing session across conditions. It was significantly different 

between groups depending on the session. While there was no difference found 

between groups, analyses of the individual groups showed that REM Stim was 

less tired and more motivated. Moreover, Wake Stim was less strained in the 

testing session than in the training session. 

Subjects who are more tired or strained or less motivated in their training 

session may perform worse, which may increase time spent in training levels, 

negatively affecting their TLPI. Since only the REM Stim group was more tired 

and less motivated and only the Wake Stim group was more strained in the 

training session, these effects may have negated each other. Alternatively, 

these effects have not been strong enough to significantly affect problem-

solving between groups or have been offset by the higher motivation and less 

tiredness or less strain in the testing session. Future studies should test 

whether conditions differ in mental state specifically before any problem-solving 

tests to assess possible confounding effects.  

Mood State  

Both conditions exhibited a similar mood state. Generally, subjects were in a 

less good mood in their testing session than in their training session. Mood 

state changed depending on condition and session. REM Stim was less alert in 

the training session and more alert in the testing session than Wake Stim. In-

group analysis demonstrated that REM Stim was less alert and Wake Stim was 

in a better mood and more alert in their training session than in their testing 

session. 
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PST performance may have been affected by mood state differences in the 

training and testing sessions. It remains unclear whether lower alertness in the 

training impaired problem-solving greater than lower alertness during the testing 

session. Therefore, a possible confounding effect on problem-solving must be 

considered. Future studies should assess the mood state of their subjects when 

studying problem-solving. 

Sleepiness 

Sleepiness was similar between conditions and between sessions. Comparison 

of conditions between sessions revealed a difference in sleepiness. Training 

session sleepiness was comparable between conditions, but REM Stim was 

significantly less sleepy in the testing session than Wake Stim. In-group 

analysis revealed that REM Stim was sleepier and Wake Stim was less sleepy 

in their training session than in the testing session. 

These results show that REM Stim may have benefitted from less sleepiness in 

their testing session compared to Wake Stim. However, difference in sleepiness 

was small (REM Stim testing 2.19 ± 0.54. Wake Stim testing 3.00 ± 0.89. testing 

t(30) = 2.12, p < 0.01). It is unlikely that different sleepiness levels alone have 

confounded results of the PST but may have attributed together with other 

candidate variables. 

Circadian Effects Between Conditions 

Time of day analysis revealed no different mental state between conditions. 

Analysis showed a circadian effect on mental state, being morning session 

subjects were more strained, more motivated and less tired than in the evening 

session. Comparing groups between sessions found no significant effect. 

Difference in mental state between conditions in the training and testing 

sessions may be partially explained through circadian effects. 

Circadian analysis indicated that mood state was not different between 

conditions. Mood state was affected by time of day, in that subjects were in a 

less good mood and less alert in the evening. Mood state varied between 

conditions between sessions. No difference between conditions was found and 
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individual group analysis of REM Stim revealed no difference between time of 

day. However, Wake Stim was in a better mood in the morning session than in 

the evening session. 

Analysis of circadian effects showed no difference in sleepiness between 

conditions at the same time. Time of day significantly impacted sleepiness with 

subjects exhibiting higher levels of sleepiness in the evening than in the 

morning. No difference in sleepiness was found comparing conditions between 

morning and evening sessions. 

Altogether, groups did not vary in mental state, mood state and sleepiness. 

Between session group differences can be partially explained through circadian 

effects. In the training session REM Stim may have been handicapped by less 

alertness compared to Wake Stim. 

In the testing session REM Stim may have benefitted from more alertness and 

less sleepiness than Wake Stim.  

It remains unclear how in-group differences between sessions in mental state, 

mood state and sleepiness that may be attributed to circadian effects have 

impacted problem-solving in this study. Whether it promotes higher chances in 

problem-solving, if training or testing is done during the morning or evening, 

should be examined further. 

 

4.3.3. Sleep quality in REM Stim 

For the most part, subjective sleep quality parameters were comparable 

between solvers and non-solvers of the PST. Interestingly, solvers claimed to 

have taken longer to fall asleep and felt more balanced after sleep than non-

solvers. Objective sleep parameters gained through polysomnography revealed 

no significant differences between solvers and non-solvers. The comparison of 

sleep study experts and first-timers revealed no differences in their subjective 

sleep quality. Apart from sleep study experts exhibiting more movement time 

during sleep, polysomnography between sleep study experts and first-timers 

was comparable. 
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To assess the meaningfulness of the subjective assessment of sleep latency, a 

correlation with polysomnographic values was tested. Although the subjective 

sense of time was exaggerated compared to what polysomnography revealed, 

a positive correlation was found. The longer subjects thought they needed to fall 

asleep, the longer the sleep onset and the shorter the time spent in SWS and 

the total sleep time were. 

The contradiction that solvers both stated they took longer to fall asleep and 

nevertheless felt more balanced after sleep compared to non-solvers is difficult 

to assess. If solvers’ falling asleep was impaired and they still felt more 

balanced the next morning, it may be assumed that their sleep was more 

replenishing than that of non-solvers or that they generally exhibit higher levels 

of feeling balanced in the morning or overall.  

It seems peculiar that subjects claiming to have had a harder time to fall asleep, 

performed better in the PST, when sleep has been implicated to have a 

beneficial effect on many cognitive functions (Almeida-Filho et al, 2018; 

Diekelmann & Born, 2010; Sara, 2000; Stickgold & Walker, 2013; Tononi & 

Cirelli, 2006). This study adds to the conflicting results of research on sleep and 

problem-solving. The present results support earlier findings that sleep may not 

have a big role in creative problem-solving and insight (Landmann et al, 2016; 

Schonauer et al, 2018). However, it is unclear how much creativity contributes 

to or how much insight is needed for solving this study’s PST. Other teams have 

found strong indications for improvements in problem-solving by sleep versus 

wakefulness (Beijamini et al, 2014; Cai et al, 2009; Monaghan et al, 2015; Sio 

et al, 2013; Wagner et al, 2004). This inconsistency may be explained by 

differences between nap and night-sleep studies and differences between 

problem tasks. It may be necessary to differentiate between these factors to 

clarify what does and what does not improve problem-solving. More research 

will be required to make comparisons between similar studies conclusive on this 

topic. 
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4.3.4. Stimulation Awareness 

RRTT Performance 

Solvers performed similarly to non-solvers in the RRTT. This contradicts that 

solvers payed more attention to the TMR than non-solvers, which could have 

increased their likelihood of successfully solving the PST. Overall Wake Stim 

subjects performed very well in the RRTT which makes it unlikely that they 

could concentrate on the TMR in addition to the RRTT. However, it cannot be 

ruled out that TMR was processed consciously in addition to subconscious 

mechanisms in the Wake Stim group, increasing their PST solving rate 

compared to REM Stim group. 

As is already standard practice, TMR recollection tasks should be used, to 

investigate whether large discrepancies in TMR recognition are present 

between sleep groups and wakefulness control groups. This could reveal a 

possible confounding effect on testing performance. 

HNH Performance 

Stimulation sound recognition varied between individuals, but no significant 

difference was found between solvers and non-solvers. Correct recognition of 

TMR sounds did not increase the likelihood of successfully solving the PST. 

By using this study’s specific TMR protocol, this experiment attempted to 

increase the effectiveness on problem-solving compared to simply replaying 

random sounds from the video game. The subconscious of the subjects was 

targeted, aiming to instigate a learning cycle of the sound pattern. 

Hypothetically, this might subconsciously lead the subject to the correct solution 

during the incubation interval or testing session.  

As discussed in 4.1, albeit the special TMR protocol, solving rates were not 

higher when compared to those from previous studies using no TMR (Beijamini 

et al, 2014). The effectiveness of TMR for this type of study should be further 

researched. 
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4.3.5. Auxiliary Possibly Confounding Variables 

Different TMR Onset Between Conditions 

The latency of TMR during the incubation interval was different between REM 

Stim and Wake Stim groups. REM Stim subjects received TMR not earlier than 

90 minutes after falling asleep, because live scoring was started at that time 

and REM sleep episodes usually occur later in sleep (Rechtschaffen, 1968). 

TMR was presented to Wake Stim subjects approximately 50 minutes to one 

hour after the incubation interval video footage was started. This discrepancy 

between TMR onset may have affected results of TMR between groups. 

Research teams should aim to keep TMR latency the same between groups, 

since research has shown that memories may change over time, starting as 

soon as the memory is created (Gisquet-Verrier & Riccio, 2012; Sara, 2000). 

Training Advice 

From the entire training session advice procedure, only the advice given how to 

restart a level had a significant impact on solving the PST. Further analysis 

showed that this affected only the PST starters of the REM Stim group. In this 

specific population there was an effect of Restart Advice on problem-solving 

probability. It is important to note that only one subject from the PST starter 

subgroup of REM Stim solved the PST and that subject received Restart 

Advice. Furthermore, Restart Advice was necessary for subjects to complete 

the training session. Even though subjects were given instruction on how to play 

the video game including how to restart a level, multiple subjects would not use 

this feature, even though they were at an impasse. While this study aimed to 

keep observer intrusions to a minimum, this helping procedure was deemed 

necessary. 

This study should be created using a larger sample size to confirm whether 

Restart Advice is not only coincidentally associated with problem-solving in this 

study’s results.  

Game Experience 
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Game experience was similar across conditions but different between solvers 

and non-solvers. Solvers generally had a more positive game experience and 

evaluated themselves more competent at the game. This was the case even 

after the training session, indicating a possible factor that determined who 

solved the PST. Overall, non-solvers had a more negative game experience, 

especially concerning emotional aspects. The differences in game experience 

related to the PST performance was expected. Solvers’ game experience 

improved after solving and non-solvers’ game experience worsened after 

unsuccessfully aborting the video game. In this study, the game experience in 

the testing session was more negative, related to the larger change in game 

experience in non-solvers. However, Wake Stim non-solvers rated their 

experience even worse than REM Stim non-solvers. Possibly this is related to 

the findings of the mood state and sleepiness analysis (see 4.3.2), where Wake 

Stim subjects tended to be in a worse mood and more tired before the testing 

session. Wake Stim solvers in the training session rated themselves more 

competent and showed higher positive affection to the game than REM Stim 

solvers. Again, this fits the findings of the mood state analysis (see 4.3.2), 

where Wake Stim subjects were in a better mood and more alert before their 

training session. 

To evaluate the importance of game experience on problem-solving, comparing 

the training session experience is essential, since testing session experience is 

very susceptible to subjective fulfillment through solving and frustration through 

non-fulfillment through not being able to solve the PST, as seen in 3.7. 

Moreover, subjects who were not able to solve during the testing session played 

for a longer time than solvers, which may have further increased their fatigue 

and listlessness towards the game. 

The training session comparison shows that subjects in the wake condition who 

felt more positively about the game were more likely to solve the PST. 

Interestingly, this correlation is significant, unlike the correlation to the objective 

training session performance in form of the TLPI. As to why the REM Stim 

group did not show similar tendencies is not clear. Self-assessment may be an 
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important contributor to problem-solving and should be further researched in 

related studies. 

Possible reasons why Wake Stim solvers and non-solvers differed more in their 

game experience may include additional circadian effects and differences in 

character personality traits (see 4.3.2). As mentioned in 2.7, this study refrained 

from running additional analyses for circadian effects for the GEQ, because the 

impact solving or non-solving have on the game experience. This would impair 

an identification of real circadian effects. In general, researchers should ask 

their subjects about their type of experience when conducting research on video 

games or problem-solving, as it could be shown here that game experience 

relates to better problem-solving performance. Perhaps additional motivation in 

form of a bonus for successful completion of the PST could increase the future 

relevance of the game and improve performance (Wilhelm et al, 2011). Future 

studies should aim to make the problem-solving as rewarding as possible, to 

ensure best performances of their subjects. 

Rehearsal 

Thinking or talking about the game during the incubation interval did not affect 

the likelihood of successfully solving the PST. The only measurable significant 

difference in reflection of and affection by the game during the incubation 

interval was that REM Stim thought more about how funny they rated the game. 

The Rehearsal Questionnaire was designed to help assessment on whether 

subjects rehearsed the video game during the incubation interval, while either 

awake going about their daily business or in bed, trying to sleep. As could be 

shown here, subjects of this study did not benefit from rehearsal for their PST 

performance. However, having enjoyed the game and thinking about how funny 

it was, was different between REM Stim and Wake Stim groups, with Wake 

Stim subjects remembering the game funnier than REM Stim subjects. Together 

with the game experience analysis, this supports the idea that Wake Stim 

subjects felt differently about the game than REM Stim subjects. 
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A possibility for PST solving in REM Stim subjects was that they thought about 

the solution while lying awake and thinking about the game before falling 

asleep. The analysis of the Rehearsal Questionnaire does not support this idea. 

Furthermore, subjects were asked after completion of the video game testing 

session when they had thought about the solution. If subjects said that it 

occurred to them before sleep, they were dropped from the study. This 

happened in one case. 

Altogether, rehearsal should be analyzed when assessing performance 

increases in problem-solving over a longer incubation interval, especially if the 

environment of the subjects is not controlled during this time, as was the case in 

this study. While a possible confounding effect for rehearsal on problem-solving 

could not be found in this study, it cannot be ruled out for future studies. 

 

4.4. Study Design Difficulties and Limitations 

This study produced a high rate of failed experiments caused by difficulties 

within the design itself and technical difficulties. Only 32 of 50 experiments were 

successful, delaying the schedule significantly. Of the 18 failed experiments 8 

were REM Stim and 10 were Wake Stim group subjects.  

A single-blind approach was used, meaning that the experimenter always knew 

whether TMR or no TMR was applied. Subjects were only aware of being part 

of a wakefulness or sleep group. Subjects interested in the study that did not 

want to be in Wake Stim were allowed to participate in REM Stim and vice 

versa. This could have led to sample differences between conditions. In 

general, studies using double-blind (observers unknowing of subject group) or 

triple-blind (observers and separate evaluation committee oblivious to subject 

group) designs help to avoid observer bias. Higher observer expectation may 

increase subject performance, e.g. through subconscious differences in 

observer behavior (Rosenthal & Jacobson, 1968). 

Checkpoints 
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This study implemented a strict set of rules on when an experiment should be 

discontinued. Solving the PST in the training session lead to exclusion of the 

subject for this study and accounted for three failed experiments in REM Stim 

and four in Wake Stim. One subject in REM Stim reported to have figured out 

the PST solution before falling asleep, leading to exclusion of the study. For 

these subjects, no improvement on problem-solving would have been 

measurable using the described study design. In Wake Stim one subject was 

excluded, because of not adhering to the instructions given for the incubation 

interval. The instructions prohibited activities that may incite changes in 

hormonal balance (e.g. sexual intercourse, sports, stress, medication), 

modulate the wakefulness condition (sleeping, caffeine, alcohol) and conflict 

with neuronal representation and processing of the video game training session 

(playing other video games).  

The incubation interval instructions for Wake Stim aimed to keep the incubation 

interval between REM Stim and Wake Stim as similar as possible. However, it 

interfered with a normal day activity of the subjects, as those would have likely 

engaged in some of the prohibited activities. Perhaps this may be one reason, 

why subjects in the Wake Stim group were in a less good mood in the evening, 

as described in the mood state analysis (see 4.3.2). If the instructions had been 

more lenient, blood hormone analysis would have been required to prove that 

the daily activities of the Wake Stim group did not affect their hormone levels at 

the time of the testing session. However, they would not account for the 

incubation interval itself, during which the processing of the experiment 

experience has taken place. Another option would have been to keep the 

subjects in the sleep laboratory for the entire incubation interval, where 

monitoring of their activities and perhaps regular blood sampling would have 

been possible. Whether this method would have resulted in the Wake Stim 

subjects being of a better mood in the testing session is debatable. 

Technical Difficulties 

Two subjects from Wake Stim were removed from the study because of 

technical difficulties concerning audio. The audio setup for the Wake Stim group 

required correct connection of the audio cable to one of two computers. During 
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the video game sessions, audio was played through the computer used by the 

subjects. During the RRTT, white noise and TMR was presented using a 

separate computer. Sleep laboratories were shared among different research 

teams using different audio setups, which further increased the likelihood for 

mistakes in this study. One subject from Wake Stim was excluded because of a 

screen recording software error during the training session. CamStudio required 

a specific setup to correctly capture the on-screen footage on the computer 

used by this study (RendersoftSoftware, 2001). For unknown reasons, these 

settings would reset to default, causing loss of video footage. Video game 

footage was required for this study, because initially analysis of in-game 

behavior was planned. Later, this proved to be out of the scope of this study, as 

the planned scoring procedure for in-game behavior was too subjective and no 

other applicable methods were found. Future studies should prefer simple 

setups to decrease technical errors and using only validated tools.  

Polysomnography 

Absolute awareness of having received stimulation during sleep in REM Stim 

occurred in two cases and these were excluded. Comparison of their 

performance with those of the other REM Stim or Wake Stim subjects was not 

possible. The polysomnography used in this study adhered to the standards 

described in 2.3. During the sleep interval, live scoring was impeded by missing 

and distorted electrode signals. In the cases of the mentioned two subjects 

being awake during REM sleep stimulation, polysomnography data was not 

sufficiently intact to enable correct assessment of sleep stage and application of 

TMR was faulty. This study used sixteen electrodes in total, one ground 

electrode placed on forehead, nine of them placed over cortical regions and two 

each used for EMG, EOG and reference. This allowed to compensate for 

malfunctioning of multiple electrodes and achieve adequate live scoring. 

Electrode malfunctioning was a common occurrence in this study. Sweating and 

moving of subjects throughout the night most likely accounted for the dislocation 

and malfunctioning of electrodes, especially those placed frontally, occipitally 

and as EMG electrodes on the chin. While temperature-control at 24 °C was 

implemented in all sleep laboratories, subjects used their own sleep outfit and 
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may have varied in their heat tolerance while asleep. In some cases, even 

extensive amounts of tape were not able to prevent electrode malfunctioning 

throughout the night. Furthermore, thick, long or curly hair of some subjects 

impaired installation and persistence of electrodes. Offline scoring was 

performed as described in 2.3. and necessary to correctly score especially 

difficult epochs. If signals were too disrupted, the epoch was scored as 

Movement Time. More durable equipment may reduce the number of faulty 

TMR applications and consequently reduce the incidence of failed experiments. 

Rapid Eye Movement Sleep Targeted Memory Reactivation 

For REM Stim experiments, the stimulation stretched over multiple REM sleep 

episodes possibly prolongated by the difficult live scoring conditions. Number 

and length of REM sleep episodes and total amount of REM sleep varied 

between subjects. 15 REM Stim subjects received the entire TMR protocol. One 

subject received above 70% and could thus be included in the study. Another 

subject only received less than 70%, excluding him or her from this study. 

Variance of REM sleep between subjects has been documented in many 

studies. A meta-analysis of some of these conducted by Ohayon et al 

demonstrated that even among healthy subjects of similar age, sleep stage 

percentages, length and total amount have a high variance (Ohayon et al, 

2004). TMR protocols should be designed not only to include sufficient 

repetitions but also be short enough to be presented to a similar extent to all 

subjects. Moreover, it is still unclear how TMR during multiple sleep stage 

episodes compares to TMR during only one sleep stage episode. More 

research on this question is needed, to determine comparability of studies using 

different TMR protocols. 

Stress 

The protocol was very strenuous on both observer and subjects of the study. 

One REM Stim subject quit the experiment, having lost motivation. One Wake 

Stim subject was unable to solve the training levels and another one failed the 

RRTT during TMR. These subjects had to be removed from the study. While 

having a multitude of tests and questionnaires helps to detect confounding 
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variables, it also produces more stress for the subjects. Those more susceptible 

to stress may underperform, introducing further possible confounders. This 

should be kept in mind, when designing a study protocol. 

Evaluation of Problem-Solving 

This study used an all-or-none rating for the problem-solving of the PST (solving 

or not solving). The time-to-solve variable was only applicable to subjects who 

solved. There was no continuous variable to assess problem-solving of the PST 

for subjects who did not solve. In some cases, improvements in problem-solving 

between conditions may have not been high enough to lead to solution of the 

PST. A tool that provides a continuous variable for problem-solving ability is 

needed to reveal this “subclinical” increase in problem-solving. The tool may 

focus on behavior, analyzing which methods or strategies subjects use to solve 

the problem, the creativity of their approach, whether they have used it before 

and how fast they execute new strategies. Other options may be to use 

divergent problems as done by Gilhooly et al or to award points for correct steps 

to solve the problem as implemented by Monaghan et al (Gilhooly, 2016; 

Monaghan et al, 2015). However, a continuous variable for problem-solving 

may not predict solving of insight problems, since the mechanism of insight 

problems is unknown and thus not measurable (Bowden et al, 2005; Gick & 

Lockhart, 1995; Hélie & Sun, 2010; Ohlsson, 1992). The scoring procedure of 

problem-solving needs to be applicable explicitly to the used problem-solving 

test and there may not be a single best option for problem-solving studies in 

general. 

Effect of Targeted Memory Reactivation on EEG 

This study did not monitor EEG signal responses to TMR stimulation in Wake 

Stim. Therefore, a comparison of the TMR-induced cortical responses between 

REM sleep and wakefulness was not possible. Analyzing the effect of TMR on 

REM Stim subjects’ EEG was beyond the scope of this study. Other research 

teams using TMR should consider using EEG monitoring of all their groups to 

allow to discover whether responses to TMR are different between sleep stages 
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and wakefulness and whether such a difference is connected to a difference in 

problem-solving performance.  

Gender Distribution 

Due to the low numbers of male subjects interested in taking part in this study, 

no 50-50 gender distribution between conditions could be achieved. Male 

subjects were balanced among conditions, since results suggest males play 

video games more often than females (Király et al, 2017). Evidence has 

accumulated that in women the menstrual cycle may affect sleep-dependent 

memory consolidation and perhaps impair effectiveness of SWS TMR 

compared to men (Cousins et al, 2014; Diekelmann et al, 2016; Genzel et al, 

2012). This study did not check for menstrual cycle phase or sexual hormone 

level in female subjects. A confounding effect of hormonal cycle is possible. In 

future studies, menstrual cycle phase or sexual hormone levels should be 

tested to validate this possibility. Furthermore, research teams conducting 

studies about video games should verify that gender distribution is equal among 

conditions or to first use a male-only approach and later compare findings to 

mixed or female-only conditions.  
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Summary 

Anecdotal references and sayings attribute a beneficial effect of sleep on 

solving problems, especially if these are difficult. Currently scientific results are 

split. Some sleep research teams found beneficial effects on problem-solving, 

particularly for difficult problems (Sio et al, 2013). Other teams could not 

corroborate this (Landmann et al, 2016). Moreover, results indicate that 

sleeping after solving analogical problems facilitates the solution of logical 

problems after wakening (Monaghan et al, 2015).  

Sleep is a heterogenous process of distinguishable sleep stages 

(Rechtschaffen, 1968). Although studies keep providing new evidence for 

models and theories that postulate how subconscious sleep-facilitated 

improvements in learning, memory and problem-solving occur, there are no 

definitive answers yet (Almeida-Filho et al, 2018). As a possible equivalent for 

memory consolidation, neuronal activity during a task is replayed in a coherent 

and temporal order in a succeeding rest period (Hoffman & McNaughton, 2002). 

The reactivations may help to incorporate new types of information into 

preexisting memories (Gisquet-Verrier & Riccio, 2012).  

The reactivation of specific memory loops can be triggered in subjects, even 

when asleep (Rasch et al, 2007). This “targeted memory reactivation” (TMR) at 

large has produced increases in sleep-dependent memory processing, utilizing 

either olfactory or auditory stimuli as triggers (Schouten et al, 2017). Evidence 

has emerged that the rapid eye movement sleep stage (REM sleep) may be 

directly involved with the selectivity of sleep-dependent memory consolidation 

(Oudiette et al, 2013; Stickgold & Walker, 2013). REM sleep memory 

reactivations may reduce self-imposed constraints, thereby facilitating creative 

and analogical problem-solving (Lewis et al, 2018). 

This present study used auditory targeted memory reactivation (TMR) of 

problem-associated memories to facilitate the solution of a specific video game 

level (Problem-Solving Test, PST). Furthermore, this study used a second video 

game level with an analogical solution strategy (Analogical Problem-Solving 

Test, APST), which had been shown to increase the solving rate of logical 
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problems (Monaghan et al, 2015). In the present study 32 subjects participated 

and were allocated to the REM sleep TMR group (REM Stim) and to the active 

wakefulness TMR group (Wake Stim). After the video game training session 

(including an attempt at the Problem-Solving Test), REM Stim subjects slept 

overnight in the sleep laboratory and auditory TMR was applied during REM 

sleep. After a 45-minute break, Wake Stim subjects received auditory TMR 

while working on a vigilance task and pursued their regular day schedule 

outside the laboratory, to return in the evening for further testing. During the 

testing session half of each group started with the Problem-Solving Test (PST) 

and the other half with the Analogical Problem-Solving Test (APST) and all 

attempted to complete both levels. 

This study found no beneficial effect for REM sleep TMR over active 

wakefulness TMR on solving rate or speed of the PST. The theory that REM 

sleep memory reactivations facilitate problem-solving was not confirmed (Lewis 

et al, 2018). A beneficial effect of sleep for problem-solving as described by 

other authors was not found (Beijamini et al, 2014; Sio et al, 2013). PST solving 

was facilitated by prior APST solving only for REM Stim subjects. APST solving 

rate was higher in the REM Stim group. These results support that sleep 

improves analogical problem-solving (Monaghan et al, 2015). Possible 

confounding effects were mental and mood state, sleepiness and subjective 

video game experience. Apart from the latter, these effects seem to be partly 

related to the circadian rhythm (Borb & Achermann, 1999). 

Future studies should try to replicate these results with control conditions of 

slow wave sleep TMR and no TMR sleep and wake groups. Additionally, larger 

sample sizes should be used, to further assess the overall importance of sleep 

and TMR for problem-solving. Enhancing sleep procedures to optimize 

cognitive capabilities remain an interesting prospect for further research. 
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Zusammenfassung 

Anekdoten und Redewendungen weisen Schlaf einen positiven Effekt 

insbesondere auf das Lösen von schwierigen Problemen zu. Derzeit ist der 

Forschungsstand uneins. Manche Studien fanden Belege für verbessertes 

Lösen vor allem schwieriger Probleme durch Schlaf (Sio et al, 2013). Andere 

fanden keinen Effekt (Landmann et al, 2016). Durch Schlafen nach dem Lösen 

analoger Probleme verbessere sich das Problemlösen danach (Monaghan et al, 

2015).  

Schlaf ist ein heterogener Prozess unterscheidbarer Schlafstadien 

(Rechtschaffen, 1968). Obwohl Belege für Erklärungsmodelle der positiven 

Effekte von Schlaf auf Lernen, Gedächtnis und Problemlösung gefunden 

wurden, fehlen bisher die abschließenden Beweise (Almeida-Filho et al, 2018). 

Als mögliches Korrelat der Gedächtniskonsolidierung wiederholen sich 

kongruente neuronale Aktivierungen während einer Tätigkeit auch in den 

folgenden Ruhephasen (Hoffman & McNaughton, 2002). Diese Reaktivierungen 

können die Integration neuer Informationen in frühere Erinnerungen 

ermöglichen (Gisquet-Verrier & Riccio, 2012).  

Selbst während des Schlafes lassen sich Reaktivierungen bestimmter 

Erinnerungen triggern (Rasch et al, 2007). Mit olfaktorischen oder auditorischen 

Stimuli kann diese „Gezielte Erinnerungsreaktivierung“ (TMR) Effekte von 

Schlaf auf diese Erinnerungen verstärken (Schouten et al, 2017). Ein 

Zusammenhang des Rapid Eye Movement Schlafes (REM Schlaf) mit der 

Selektivität der schlafabhängigen Gedächtniskonsolidierung wurde beschrieben 

(Oudiette et al, 2013; Stickgold & Walker, 2013). Gedächtnisreaktivierungen im 

REM Schlaf können selbstauferlegte Einschränkungen abschwächen und damit 

kreatives und analoges Problemlösen fördern (Lewis et al, 2018). 

Die vorliegende Studie verwendete eine auditorische „Gezielte 

Erinnerungsreaktivierung“ (TMR) von Problem-assoziierten Erinnerungen um 

die Lösung eines speziellen Videospiellevels (Problem-Solving Test, PST) zu 

erleichtern. Ein weiteres Level mit einer analogen Lösungsstrategie (Analogical 

Problem-Solving Test, APST) wurde eingesetzt, welches Konzept in anderen 
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Studien die Lösungsrate von Problemen erhöhte (Monaghan et al, 2015). An 

dieser Studie nahmen 32 Probanden teil und wurden der REM Schlaf TMR 

Gruppe (REM Stim) und der Gruppe mit TMR während aktiven Wachseins 

(Wake Stim) zugeteilt. Nach einer Trainingseinheit (inklusive eines Versuches 

am Problem-Solving Test) schlief die REM Stim Gruppe über Nacht im 

Schlaflabor und erhielt TMR während des REM Schlafes. Wake Stim 

Probanden hingegen erhielten nach einer 45-minütigen Pause die TMR 

während eines Vigilanztestes und gingen ihren täglichen Aktivitäten außerhalb 

des Labors nach, um abends für weitere Tests zurückzukehren. In der 

Testeinheit startete die Hälfte jeder Gruppe mit dem Problem-Solving Test 

(PST) und die andere Hälfte mit dem Analogical Problem-Solving Test (APST) 

und alle versuchten beide Level zu lösen. 

Diese Studie fand keine verbesserte Lösungsrate oder -geschwindigkeit des 

PST durch REM Schlaf TMR im Vergleich zu der TMR während des aktiven 

Wachseins. Die Theorie, dass Gedächtnisreaktivierungen im REM Schlaf 

Problemlösen erleichtern, wurde nicht bestätigt. (Lewis et al, 2018). 

Beschriebene Verbesserungen des Problemlösens durch Schlaf konnten nicht 

bestätigt werden (Beijamini et al, 2014; Sio et al, 2013). Nur in der REM Stim 

Gruppe war PST-Lösungsrate höher nach APST-Lösung. Die Lösungsrate des 

APST selbst war höher in der REM Stim Gruppe. Dies könnte ein Beleg für ein 

verbessertes Lösen analoger Probleme nach dem Schlafen sein (Monaghan et 

al, 2015). Mögliche konfundierende Faktoren waren geistige und emotionale 

Verfassung, Schläfrigkeit und subjektives Erleben des Videospiels. Außer 

letzterem lassen sich diese teilweise durch die zirkadiane Rhythmik erklären 

(Borb & Achermann, 1999). 

Zukünftige Studien sollten versuchen diese Ergebnisse mit größeren 

Stichproben zu replizieren. Kontrollgruppen mit „Slow Wave“ Schlaf TMR, sowie 

Schlaf- und Wachgruppen ohne TMR sollten zusätzlich untersucht werden, um 

die Bedeutung von Schlaf und TMR auf Problemlösen im Gesamten 

einzuschätzen. Die Möglichkeiten einer Optimierung kognitiver Fähigkeiten 

durch additive Prozeduren während des Schlafes bleiben eine interessante 

Idee.  
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Appendices 

Table 13: Descriptive statistics of Game Experience Questionnaire variables 

Competence 

Run 11 

REM Stim Wake Stim Both 

Non-Solvers2 Solvers3 Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.3 (1.3)4 1.1 (0.6) 1.23 

(1.07) 

0.34 

(0.43) 

1.98 

(0.7) 

1.26 

(1.02) 

0.91 

(1.12) 

1.63 

(0.78) 

1.24 

(1.03) 

Run 25 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.04 (1.22) 1.67 

(0.77) 

1.28 

(1.09) 

0.29 

(0.43) 

2.29 

(0.61) 

1.41 

(1.15) 

0.73 

(1.02) 

2.04 

(0.72) 

1.34 

(1.1) 

Sensory and Imaginative Immersion 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.62 (0.85) 1.42 

(0.43) 

1.54 

(0.71) 

1.05 

(0.79) 

1.72 

(0.62) 

1.43 

(0.76) 

1.38 

(0.85) 

1.6 

(0.56) 

1.48 

(0.73) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.43 (0.86) 1.17 

(0.55) 

1.33 

(0.75) 

0.98 

(0.77) 

1.74 

(0.72) 

1.41 

(0.81) 

1.25 

(0.83) 

1.51 

(0.7) 

1.37 

(0.77) 

Flow 

Run 1 

REM Stim Wake Stim Both 
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Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

2.5 (0.61) 2.5 

(0.72) 

2.5 

(0.63) 

1.86 

(0.66) 

2.24 

(0.62) 

2.08 

(0.65) 

2.24 

(0.69) 

2.35 

(0.65) 

2.29 

(0.67) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

2.06 (0.88) 2.23 

(0.77) 

2.13 

(0.82) 

1.97 

(0.99) 

2.02 

(0.76) 

2 

(0.84) 

2.02 

(0.9) 

2.11 

(0.75) 

2.06 

(0.82) 

Tension/ Annoyance 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.37 (1.12) 1.39 

(1.39) 

1.38 

(1.18) 

1.9 

(1.37) 

0.89 

(0.83) 

1.33 

(1.18) 

1.59 

(1.22) 

1.09 

(1.07) 

1.35 

(1.16) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

2.33 (1.54) 1.56 

(1.07) 

2.04 

(1.4) 

3.14 

(0.66) 

1 

(1.35) 

1.94 

(1.54) 

2.67 

(1.29) 

1.22 

(1.24) 

1.99 

(1.45) 

Challenge 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.84 (0.82) 2.2 (0.7) 1.98 

(0.77) 

2.03 

(1.3) 

1.64 

(0.9) 

1.81 

(1.07) 

1.92 

(1.01) 

1.87 

(0.85) 

1.89 

(0.92) 

Run 2 

REM Stim Wake Stim Both 
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Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

2 (1.09) 2.2 

(0.68) 

2.08 

(0.93) 

2.26 

(0.95) 

1.38 

(0.64) 

1.76 

(0.89) 

2.11 

(1.01) 

1.71 

(0.76) 

1.92 

(0.91) 

Negative Affect 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.15 (1.02) 1 (0.55) 1.09 

(0.86) 

1.18 

(0.81) 

0.89 

(0.47) 

1.02 

(0.64) 

1.16 

(0.91) 

0.93 

(0.49) 

1.05 

(0.74) 

Run 2 
       

  

REM Stim Wake Stim Both 

  

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.8 (0.99) 0.88 

(0.52) 

1.45 

(0.95) 

1.68 

(0.66) 

0.89 

(0.83) 

1.23 

(0.84) 

1.75 

(0.85) 

0.88 

(0.7) 

1.34 

(0.89) 

Positive Affect 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

2.1 (1.16) 1.93 

(0.73) 

2.04 

(0.99) 

1.09 

(1.04) 

2.69 

(0.63) 

1.99 

(1.15) 

1.68 

(1.19) 

2.39 

(0.75) 

2.01 

(1.06) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.52 (1.24) 2.27 

(0.86) 

1.8 

(1.14) 

0.54 

(0.49) 

3 

(0.67) 

1.93 

(1.39) 

1.12 

(1.09) 

2.71 

(0.81) 

1.86 

(1.25) 

Positive Experience 
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Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.28 (0.81) 1.06 

(0.25) 

1.2 

(0.66) 

0.86 

(0.67) 

1.69 

(0.61) 

1.32 

(0.75) 

1.11 

(0.77) 

1.43 

(0.58) 

1.26 

(0.69) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.43 (1.24) 1.89 

(1.45) 

1.6 

(1.29) 

0.38 

(0.23) 

2.3 

(0.77) 

1.46 

(1.14) 

1 

(1.08) 

2.13 

(1.06) 

1.53 

(1.2) 

Negative Experience 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

0.88 (0.91) 0.83 

(0.73) 

0.86 

(0.82) 

0.98 

(1.06) 

0.5 

(0.33) 

0.71 

(0.75) 

0.92 

(0.94) 

0.63 

(0.53) 

0.79 

(0.78) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.35 (1.21) 0.69 

(0.71) 

1.1 

(1.07) 

1.4 

(0.85) 

0.44 

(0.61) 

0.86 

(0.86) 

1.37 

(1.05) 

0.54 

(0.64) 

0.98 

(0.96) 

Tired 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.3 (1.09) 1 (0.89) 1.19 

(1) 

0.64 

(0.56) 

0.5 

(0.35) 

0.56 

(0.44) 

1.03 

(0.94) 

0.7 

(0.65) 

0.88 

(0.82) 
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1 Run 1 being training session. 

2 Non-Solvers being subjects who did not solve the Problem-Solving Test (PST). 

3 Solvers being subjects who solved the PST. 

4 All values representing mean (SD). 

5 Run 2 being testing session. 

 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

1.1 (1.13) 0.17 

(0.26) 

0.75 

(1) 

1.93 

(1.21) 

0.56 

(0.63) 

1.16 

(1.14) 

1.44 

(1.2) 

0.4 

(0.54) 

0.95 

(1.07) 

Returning to Reality 

Run 1 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

0.4 (0.44) 0.39 

(0.53) 

0.4 

(0.46) 

0.1 

(0.16) 

0.22 

(0.24) 

0.17 

(0.21) 

0.27 

(0.38) 

0.29 

(0.38) 

0.28 

(0.37) 

Run 2 

REM Stim Wake Stim Both 

Non-Solvers Solvers Total Non-

Solvers 

Solvers Total Non-

Solvers 

Solvers Total 

0.5 (0.53) 0.17 

(0.28) 

0.38 

(0.47) 

0.24 

(0.37) 

0.44 

(0.62) 

0.35 

(0.52) 

0.39 

(0.47) 

0.33 

(0.52) 

0.36 

(0.49) 
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Figure 4: Detailed experimental schedule 
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Light blue: REM Stim procedure 

Yellow: Wake Stim procedure 

White: Procedure of both conditions 

 

 

Figure 5: Schematic overview of levels 

World 3 Level 3: Problem-Solving Test (PST) 

World 4 Level 3: Analogical Problem-Solving Test (APST) 

Red: Levels played during the training session. 

Blue: Levels played during the testing session. REM Stim and Wake Stim 

were split in to subgroups. Subgroups started the testing session with either 

PST or APST. 
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