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1.1 The retina  

1.1.1 Embryogenesis  

The retina holds a unique and extraordinary position within neural tissue because 

it is the only part of the brain that can be visualized directly and non-invasively. 

These highly specialized neural cells are formed from an outpouching of the 

diencephalon, a secondary brain vesicle that emerges when the most cranial 

primary brain vesicle, the prosencephalon (forebrain) splits into tel- and 

diencephalon. The first morphological evidence of the retina can be seen with the 

emergence of optic sulci on the twenty-second day of embryonal development 

during the transformation of the neural plate into the neural tube, the rudiment of 

the central nervous system (CNS). With the completion of the neurulation 

process, the optic sulci become optic vesicles that are attached to the 

diencephalon by an optic stalk, which is later filled by the optic nerve fibres. 

Anteriorly, the neuroectoderm-lined optic vesicles are in contact with the surface 

ectoderm, which later forms the lens as well as the epithelium of the cornea. The 

optic vesicle invaginates and gives rise to the optic cup, which consists of a 

bipotential neuroretina [1, 2]. It forms two layers, which are initially separated by 

an intraretinal space (later termed subretinal space): the outer layer, which 

develops into the melanin containing retinal pigment epithelium (RPE), and the 

inner retinal layer [3]. While the anterior part of the inner retinal layer, the pars 

cecae retinae, forms the ciliary body and the unpigmented epithelium of the iris, 

the posterior part of the retina, the pars opticae retinae, forms what is most 

commonly thought of when describing the retina: the neural, light-sensing tissue 

of the eye (Fig. 1.1) [3].  
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Fig. 1.1: Embryogenesis of the human eye. The optic vesicle arises from the diencephalon and 
invaginates to become the optic cup. The bipotent neuroretinal epithelium differentiates into the 
RPE and the neural retina, which is colonized by waves of differentiating RPC to form the ten 
layers of the retina. The lens develops from the lens placode, which is formed by an invagination 
of the surface ectoderm. The optic stalk is later filled by the optic nerve and the hyaloid retinal 
artery.  
RPC: retinal progenitor cells, RPE: retinal pigment epithelium 

 

Initially, the inner neural retina layer is made up of the pseudostratified epithelial 

lining of the neural tube but is subsequently colonized by waves of multipotent 

retinal progenitor cells (RPCs) moving from the intraretinal space toward the 

vitreous body. This wave-like migration results in the formation of the retinal 

layers: the cells with the ability to convert photons into an electric signals, cone 

and rod photoreceptors, are formed in the first and second wave of cell migration, 

respectively. Further cell groups to differentiate from RPCs in the first wave are 

ganglion cells, which are the first neurons to differentiate in all vertebrate species 

[4], as well as the horizontal cells, a laterally connecting retinal interneuron. The 

second wave of cellular migration is completed with the formation of amacrine 

cells, which function as inhibitory interneurons. Lastly, migration and maturation 

of the bipolar cells, which connect photoreceptors and ganglion cells, and Mueller 

retinal glial cells complete the retinal layers [4, 5]. Ganglion cell axons form the 

innermost retinal layer and are gathered in the optic disc to form the optic nerve, 

which fills out the optic stalk and connect the outwardly accessible retina to the 

intracerebral CNS. Retinal development begins centrally and spreads toward the 

periphery. By the seventh month of fetal life, a primitive fovea, which will later 

become the point of highest visual acuity, forms, but does not mature until several 

months post-partum. The intraretinal space disappears by week seven of 

embryonal development, but the RPE and neural retina never fuse, creating a 
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potential culprit for neural retinal detachment from the RPE, but also an ideal 

potential space for local applications of therapeutic compounds such as gene 

therapy. 

 

The optic cup is surrounded by a mesenchymal capsule, which is derived from 

neural crest cells (NCC) and mesoderm. This mesenchymal encasing gives rise 

to two layers: the fibrous, avascular outer sclera, which among other things 

serves as an anchor for the extraocular muscles, and the vascular choroid, which 

serves to nourish the RPE and photoreceptors. The choroidal vessels originate 

from the posterior ciliary branches of the ophthalmic artery. The remaining retinal 

layers are nourished by the central retinal artery, a branch of the ophthalmic 

artery that develops from the proximal portion of the precursor hyaloid artery 

when the lens ceases to require vascular supply. Similar to the spatial 

development of the neural retina, its vascularization progresses from the optic 

head into the periphery, following neural differentiation. The only avascular site 

of the retina is the fovea. While blood supply is responsible for delivering 

nutrients, it also functions as an important barrier that in part regulates the 

immune privilege of an organ. Similar to the blood-brain or the blood-testes 

barrier, the blood-retina barrier partially accounts for the immune-privileged 

status of the eye, with the outer blood retina barrier formed by the tight junctions 

of the RPE and the inner blood retina barrier formed by the non-fenestrated 

endothelium of the retinal capillaries [6].  

 

1.1.2 Architecture 

The retina consists of ten layers, nine of which are formed by retinal neurons, 

Mueller glia cells and their respective synaptic connections. The RPE forms the 

outermost layer, which is not part of the neural retina, but is critical for preserving 

photoreceptor (PR) function and maintenance. It establishes the outer blood 

retina barrier as well as retinal adhesion, aids in the efficient processing of light 

waves by absorbing scattered light via its melanosomes and also plays a vital 

role in many metabolic needs of the retina from restoring of photopigments, over 

phagocytosis of shed PR outer segments to photopigment recycling and 
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production. Bruch’s membrane lies immediately adjacent to the RPE and is 

formed by the fusion of RPE’s basal membrane with the choriocapillaris. The 

second retinal layer is comprised of the photoreceptor outer segments (OS). In 

between these two layers lies the potential subretinal space created by the 

invagination of the optic vesicle discussed above. Despite the fact that based on 

the ontogeny, ‘intraretinal space’ would be the more apt term, I will follow the 

convention of using ‘subretinal space’ in the following. Connections between the 

Müller glial cells and PR form the outer limiting membrane (OLM), the third retinal 

layer, while photoreceptor nuclei form the fourth layer, the outer nuclear layer 

(ONL). Two other retinal layers, the sixth and the eight layer, also prominently 

feature neuronal nuclei and are named accordingly: the inner nuclear layer (INL) 

is comprised of the interneuron nuclei of bipolar, horizontal and amacrine cells as 

well as Mueller glial cell nuclei; the ganglion cell nuclei are contained in the 

ganglion cell layer. In between these three layers of cell nuclei, two synaptic 

layers are created: the outer plexiform layer (OPL) is formed by the synapses of 

the photoreceptor cells and the bipolar cells, while the inner plexiform layer (IPL) 

is formed by the synapses of the bipolar cells to the third neuron in the visual 

field, the ganglion cells. Axons of the ganglion cells make up the retinal nerve 

fiber layer, which is the ninth and second to last retinal layer. These axons all 

converge at the optic nerve papillae, the head of the optic nerve, and bundle to 

form the optic nerve. Finally, as a counterpart to the distal OLM, the Müller cell’s 

proximal terminations, also called footplates, covered with their basal lamina form 

the tenth and innermost retinal layer, the inner limiting membrane (ILM). This ILM 

lies directly adjacent to the posterior hyaloid membrane of the vitreous body, 

which fills out the vitreous cavity towards the anterior segment of the eye (Fig. 

1.2).  



Chapter 1 – General Introduction 

6 

 

Fig. 1.2: Layers of the retina. Three nuclear cell layers represent the first three neurons of the 
visual pathway. The ONL represent PR nuclei, the INL is comprised of interneuron nuclei and the 
GCL is made up of ganglion cell nuclei, whose fibres form the INFL. The PR consist of rods (grey) 
as well as red, green and blue wave-length sensing cones (coloured accordingly). The RPE is 
the outermost retinal layer and vital for photoreceptor health and morphogenesis. The IPL and 
OPL are layers formed by synaptic connections between photoreceptors and interneurons and 
interneurons and GC, respectively. Only pictured on histology is the ILM, which lies adjacent to 
the vitreous body and is formed by the basal membrane of microglia scaffold cells. The OLM, 
formed by microglia cells and their connections with the PR is represented in the dotted grey line. 
RPE: retinal pigment epithelium; ONL: outer nuclear layer; INL: inner nuclear layer, GCL: ganglion 
cell layer; OPL: outer plexiform layer, IPL: inner plexiform layer, INFL: inner nerve fibre layer.  
Figure reprinted with alterations and permission from Dominik Fischer. 

 

1.1.3 Visual pathway 

With an area of just 1 cm2 and a mere thickness of 150-400 microns, the 

transparent neural retina consists of approximately 120 million rod and 6.5 million 

cone photoreceptors, that synapse with one million ganglion cells via 

interneurons [7]. The axons of the ganglion cells form the nerve fiber layer and 

converge in the optic disc, the only part of the retina that cannot sense light 

(because it lacks the primary photoreceptors), and which corresponds to the blind 

spot on visual field testing. The medial optic nerve fibers are responsible for the 

temporal visual field and cross to the contralateral hemisphere in the optic 

chiasm. Together with non-crossing ipsilateral fibers responsible for the nasal 

components of the visual field, they form the optic tract and travel to the lateral 

geniculate nucleus (LGN) of the thalamus. The exception to this pathway is the 
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neurons involved in the pupillary light reflex, a brain stem reflex, which travel to 

pretectal area of the midbrain. In the LGN, the third neuron of the visual path 

synapses, and the light impulse reaches the primary visual cortex located around 

the calcarine fissure of the occipital cortex [8]. As with all neural fibers, the fibers 

of the visual pathway are arranged in a somatotopic fashion, with those projecting 

from the lower retinal reaching visual cortex via the Meyer loop while the superior 

retinal fibers reach the visual cortex via the dorsal optic radiation. Similar to the 

somatosensory homunculus, in which richly innervated parts of the body such as 

the hands are represented disproportionately compared with their physical side, 

the macula takes up the largest area of the visual cortex, even though it only 

takes up 20 mm2 out of a total retina area of 1092 mm2. This highlights the 

importance of the densely cone-populated macula in the subjective measure of 

visual acuity in humans. This pattern is shared among mammals, including the 

genus of Mus muluscus which is an important model for preclinical vision 

research [9]. 

 

1.1.4 Photoreceptor morphology 

Photoreceptors are sensory neurons that exhibit a highly polarized structure and 

clearly delineated composition that is mirrored in the three of the retina’s ten 

layers: photoreceptor outer segments form the second, photoreceptor nuclei the 

fourth layer and the photoreceptor synapse with interneurons make up the OPL, 

the fifth retinal layer. Complimentary to the outer segments (OS), photoreceptors 

have an inner segment (IS), two functionally and morphologically distinct 

compartments, which are joined by a non-motile ciliary structure, the connecting 

cilium (CC; Fig. 1.3 A).  

The OS is a highly specialized primary (aka non-motile) cilium in which 

phototransduction takes place. The IS houses the PR’s metabolic machinery and 

therefore consists of all organelles needed to provide for the high energy demand 

and deliver proteins for the PR’s biosynthetic and metabolic functions. The OS is 

made up of membrane infoldings in cones and double membrane discs in rods, 

which are continuously shed at the tip. This loss is compensated by continuous 

regeneration of membrane that is synthesized at the base of the CC and 
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transported to the OS. The RPE phagocytoses these shed products and is thus 

responsible for the continued viability of the PR [10]. The layout of the 0.2 µm – 

wide CC shares similarities to both the composition of a motile cilium and of the 

microtubular transport network in the axons of neurons. Starting from the IS, it is 

composed of a basal body, a somewhat confusingly named connecting cilium 

and an axoneme (Fig. 1.3 B) [11].  

It functions as a bidirectional gateway responsible for shuttling remarkable 

amounts of soluble and membrane-bound proteins necessary for 

phototransduction, including opsins, between inner and outer segments [12]. The 

10 % renewal rate of the OS per day illustrates the extraordinary feat the PR 

undergoes to ensure its full functionality [10]. 

The area proximal to the basal body in the IS is termed the transition zone and 

functions as a gatekeeper structure that regulates the movement of proteins 

through the CC. The transition zone also acts as a physical redistribution barrier 

via transition zone fibers that allows maintenance of the vastly different protein 

compositions in both inner and outer segments against a concentration gradient 

[13]. Similar to the microtubule composition in motile cilia, the axoneme is 

composed of nine microtubule doublets. But, unlike the axoneme of motile cilia, 

it lacks the two singlets at the centre. This is referred to as a 9 + 0 configuration, 

in contrast to a 9 + 2 composition of a motile cilium. The motor transport proteins 

Dynein and Kinesin are attached to the axoneme and enable bidirectional 

intraflagellar transport (IFT) along the axoneme and the CC and therefore 

between outer and inner segments of the photoreceptor [14] Thus, the integrity 

of the cilium and its attached protein network is absolutely essential in 

maintaining the function as well as the morphology of the PR. Anything that 

impedes the IFT along the axoneme will lead to the severe PR malfunction and 

ultimately result in retinal degeneration [14]. 
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Fig. 1.3: Photoreceptor morphology. Photoreceptors include rods and cones, both of which 
have a similar basic structure: their nuclei form the retinal ONL, the IS houses the cellular 
machinery for the production of proteins needed to replenish the OS. The OS consists of 
membrane infoldings (cones) and membrane discs (rods) with light sensitive photopigments 
(opsins) that are continuously shed and phagocytosed by the RPE. The CC acts as a gateway to 
transport proteins from the IS to the OS and also a barrier that is able to uphold the steep 
concentration gradient between the segments (A). The non-motile CC consists of a basal body, 
a connecting cilium and an axoneme. Motor proteins dynein und kinesin II facilitate antero- and 
retrograde transport along the axoneme, while the proteins attached to the basal ganglia are part 
of the ciliary gateway that controls protein (e.g. opsins) movement through the CC into the OS. 
RPGRIP tethers RPGRORF15 to the connecting cilium. Other binding partners of RPGRORF15 are 
PDE6 and CEP290, as we well as NPM and whirlin, which all play a role in coordinating 
intraflagellar transport.  
ONL: outer nuclear layer; CC: connecting cilium; RPGR: Retinitis pigmentosa GTPase Regulator; 
RPGRIP: RPGR interacting protein; RPE: retinal pigment epithelium; IS: inner segments; OS: 
outer segments 
Figure reprinted with minor alterations and permission from Dominik Fischer. 
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1.1.5 Phototransduction and visual cycle 

The first neuron in the visual pathway, made up of rod and cone photoreceptors, 

is perhaps the most impressive due to its ability to convert a photon first into a 

chemical and then into an electric signal that travels to the visual cortex. Although 

rods and cones operate by the same principle, they differ in their capabilities and 

anatomical location to complement each other’s specific roles in visual 

perception. Rods are predominantly located in the periphery of the retina and 

reach their maximal density 20° from the fovea. Due to their low threshold 

sensitivity for light, they are responsible for achromatic sight under night-time, 

dark-adapted (scotopic) conditions (hence the German proverb ‘In der Nacht sind 

alle Katzen grau’). Cones on the other hand have a relatively high threshold for 

light sensitivity and are responsible for high visual acuity and chromatic vision in 

light adapted (photopic) daytime conditions [15]. This difference in threshold and 

chromatic sensitivity is due to the varying amounts of opsin, the spectral 

sensitivities of the different opsin molecules, the molecular mechanisms of 

phototransduction and the intra-retinal processing of signals. Rods contain large 

amounts of rhodopsin and can therefore be activated by a single photon, the 

basic unit of light. Cones have comparatively low opsin levels and require several 

hundred photons for activation [16]. The number of photons correspond with the 

light intensity, consequently, light transmitted at night has very few photons and 

only has the ability to activate rods, whereas high intensity daylight would be ideal 

for cone activation. Cones achieve their highest density in the macular fovea, the 

point of highest visual acuity. The fovea is an avascular area of the retina 

populated exclusively by cones and thus designed to achieve high spatial, 

temporal and spectral resolution; it represents the point of highest visual acuity 

[17]. This is reflected in the 1:1:1 ratio of cone PR to bipolar to ganglion cells in 

the fovea, in contrast to the peripheral retina where several PR provide input into 

the same ganglion cell.  

Photons, the basic unit of light, must pass through eight inner retinal layers to hit 

the outer segments of the photoreceptors. Here, they initiate a photochemical 

transduction cascade by activating a group of transmembrane, G-receptor 

coupled proteins named opsins [18]. These photopigments are coupled with 11-
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cis retinal, a Vitamin A derived chromophore, which undergoes isomerization to 

all-trans retinal upon photon absorption [19]. Opsin stimulation leads to a series 

of chemical events which ultimately cause the levels of cGMP in the cell to fall, 

sodium channels to close and the photoreceptor to hyperpolarize. This results in 

a decrease in glutamate release from the photoreceptor synapse, which causes 

an excitatory or inhibitory signal to be passed along the neurons of the visual 

field, depending upon which interneuron the signal is transmitted to (ON or OFF 

bipolar cells). Thus, the electromagnetic signal is converted first to a chemical 

and then to an electric signal, which is passed to a sophisticated network of retinal 

interneurons for signal computation and then onward to the occipital cortex for 

visual perception.  

While rods have one opsin (rhodopsin), cones have three types: short wave (S)-

, medium (M)- and long wave (L)-opsins, which form the basis of colour vision 

[20]. These four opsins are activated by different electromagnetic wave lengths: 

495 nm stimulates rhodopsin, 440-450 nm stimulate S-opsins (blue), 535-555 nm 

activate M-opsins and 570-590 nm activate L-opsins. Due to the wavelength by 

which they are stimulated, S-opsins detect blue, M-opsins detect green and L-

opsins detect red colours. Cones are named after which opsin is present in them 

(e.g. S-cone). S-cones are predominantly located in the perifovealor region, 

whereas M- and L- cones are densest in the foveola, the centre of the fovea. Due 

to three different cone photopigments (L-, M- and S-opsin), each responsible for 

detecting a different wave-length, cones allow the detection of chromatic contrast, 

i.e. colour vision. 

 

 

1.2 Retinitis pigmentosa 

1.2.1 Overview 

The name retinitis pigmentosa is a descriptive one, and was first used by the 

Dutch ophthalmologist Franciscus Donders in 1857 when writing to his colleague 

Hermann von Helmholtz to report the characteristic intraretinal pigment deposits 

seen on fundoscopy of patients with advanced RP (Fig. 1.4) [21].  
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Fig. 1.4: Fundus phenotype of a 43-year old male with RPGR-XLRP. The fundus of a 43-year 
old male patient with RPGR-XLRP shows progressive disease. Typical bone spicule formation, 
which represents RPE migration into the neural retina secondary to photoreceptor degeneration, 
can be seen most prominently in the periphery and encroaching centrally. 
RPGR: Retinitis pigmentosa GTPase Regulator; XLRP: X-linked Retinitis Pigmentosa 

 

These deposits, also termed bone spicules, occur due to RPE migration into the 

neural retina layer secondary to photoreceptor degeneration and apoptosis [22]. 

The term retinitis is a misnomer owing to the fact that Donders believed the 

pathology to be inflammatory in origin. Only later was is discovered that rather 

than refer to one specific disease, the term “retinitis pigmentosa” (RP) 

encompasses a heterogeneous group of hereditary, monogenetic retinal 

diseases of which the vast majority feature a primary degeneration of rod and 

secondary degeneration of cone photoreceptors associated with a similar 

phenotypic presentation, especially toward the end of the disease course. As a 

whole, RP occurs with a frequency of 1:4,000 and affects more than 1 million 

people world-wide [23] [24] [25]. In an effort to categories this diverse group of 

hereditary conditions, RP can be divided by inheritance pattern. It is most 

commonly passed on in an autosomal-recessive manner (50-60 %), followed by 

an autosomal-dominant (30-40 %) and X-linked (5-15 %) pattern [26, 27]. A 

minority of RP are classified as sporadic (Fig. 1.5).  
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Fig. 1.5: Distribution of Retinitis Pigmentosa by inheritance pattern. RP is a heterogeneous 
group of monogenetic diseases that can further be characterized by inheritance pattern. It is most 
commonly passed on in an autosomal-recessive manner (50-60%), followed by an autosomal-
dominant (30-40%) and X-linked (5-15%) pattern. A small minority of RP are classified as 
sporadic. Mutations in RPGRORF15 cause approximately 90% of XLRP. This makes mutations in 
RPGRORF15 causal for 10-20% of total RP cases. 
RP: retinitis pigmentosa; XLRP: X-linked Retinitis Pigmentosa 

 

The majority of RP is confined to the retina, but there are some notable syndromic 

disorders within the autosomal recessive form of RP, which together make up 

about 20-30 % of all RP. Usher syndrome, arguably the most well-known 

syndromic form of RP, manifests as hearing loss in addition to RP and accounts 

for 20-40 % of autosomal recessive RP. Bardet-Biedel, RP associated with 

kidney malformation, obesity, cognitive impairment and hypogenitalism, is also 

inherited in an autosomal recessive manner and makes up 5 % of all RP 

regardless of inheritance [28, 29]. Even though over 50 genetic loci for RP have 

been discovered, 40 % of genes are still unidentified [23] underscoring the 
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remarkable genetic heterogeneity of this disease. Of the over 50 known genes, 

three stand out as being responsible for a disproportionately large part of RP: 

rhodopsin (RHO) mutations cause 25 % of autosomal dominant RP, USH2A 

mutations cause 20 % of autosomal recessive RP, and, finally, mutations in 

RPGRORF15 cause 70-90 % of X-linked retinitis pigmentosa. This makes 

mutations in RPGRORF15 causal for 10-20 % of total RP cases [30, 31]. Since 

these genotypes cause a disproportionally large part of RP, they represent 

particularly high yield targets for developing a causative treatment.  

The proteins encoded by mutated RP genes are involved in a plethora of different 

photoreceptor processes. Some, most notably rhodopsin, are involved in the 

phototransduction cascade, others, such as ABCA4 and RPE65, encode proteins 

involved in Vitamin A metabolism, while others are involved in maintaining the 

cilium or facilitating IFT (RPGR, USH1G, BSS1 among others), cell-to cell 

interaction, RNA intron splicing or pH regulation [23].  

 

1.2.2 Clinical phenotype  

In part due to the large heterogeneity of RP mutations, the rate of disease 

progression is highly variable between different types of RP. However, there is a 

general pattern of disease progression that holds true for a majority of RP 

patients: rod photoreceptors are the first to degenerate, causing night vision loss 

in adolescence coupled with progressive visual field constriction in young 

adulthood [23]. Due to these highly constricted visual fields, most patients 

become legally blind during their fifth decade of life [32, 33]. In this stereotypical 

disease pattern, cones are the last photoreceptors to degenerate, causing 

blindness during the seventh decade of life. In objective measures such as ERG, 

dysfunction often predates subjective perception of visual decline, with ERG 

studies showing dysfunction in RP patients as early as six years of age, even if 

these patients do not report subjective visual compromise until their teenage 

years [34]. Perimetry shows peripheral scotomas that enlarge over the years, but 

again, many patients do not realise this peripheral field loss until it is reduced to 

almost 50 % [35]. These findings highlight the importance and necessity of 

objective testing such as ERG along with psyochophysical tests such as 
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perimetry or visual acuity in order to accurately determine disease progression 

and/or response to therapy. As is to be expected, on histology, RP shows a 

severe disturbance of the ONL with preservation of the INL and ganglion cell layer 

early on in the disease. As the disease progresses, a secondary degeneration of 

interneurons and ganglion cells can be seen [23]. Refractive error can give an 

indication as to the inheritance pattern of RP. Dominant inheritance patterns tend 

to associate with hyperopia, whereas XLRP patients usually have a myopia of - 

2 diopters or more [33, 36]. This was underscored by the recent discovery of a 

novel RPGRORF15 mutation responsible for both XLRP and pathologic myopia 

[37].  

 

1.2.3 X-linked Retinitis Pigmentosa  

The X-chromosome was first sequenced in 2005, merely a little over a decade 

ago. It was found to harbour 1,098 genes, of which a disproportionate number 

are implicated in Mendelian disease [38]. This stems from the X-chromosome 

inactivation (XCI) in females, a process which equalizes the dosage of X-

chromosomal genes, and the hemizygosity of the X chromosome in males, which 

exposes recessive, monogenetic disease [38]. Also, in males, recombination 

between the sex chromosomes happens only in small, pseudoautosomal regions 

at the chromosomal tips whereas all other genes are strictly X-linked, disabling 

any repair mechanisms that might attenuate mutations [38].  

X-chromosomal RP (XLRP) is a particularly severe and early onset form of RP 

that predominantly affects males, although females can be affected due to 

unfavourable XCI [39, 40] There is also one known, genetically verified case of a 

female with Turner Syndrome (X0) being affected with a full-blown picture of 

XLRP [41].  

Twenty years before sequencing of the X-chromosome, linkage analysis was 

used to identify the first locus associated with XLRP. This subtype was named X-

linked retinitis pigmentosa type 2 (XLRP2) and was later confirmed with help of 

positional cloning [42, 43]. Since then, five additional loci responsible for XLRP 

have been discovered: XLRP3, XLRP6, XLRP23, XLRP24 and XLRP34 (Table 

1.1).  
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Symbol Location on X-
chromosome  

Gene Protein / Comment Disease 
Manifestation 

XLRP2 Xp11.23 RP2 Retinitis pigmentosa 
2, similar to human 
cofactor C involved 
in beta tubulin folding 

RP (10-20% 
of XLRP) 

XLRP3 Xp11.4 RPGR Retinitis Pigmentosa 
GTPase regulator, 
interacts with 
RPGRIP, PDE6D 
and IQCB 1, plays a 
role in ciliar transport 

RP (70-90% 
of XLRP) 

XLRP6 Xp21.3-
Xp21.2 

Unknown Unknown RP 

XLRP23 Xp22.2 OFD1 OFD1; centrosomal 
protein which 
interacts with other 
ciliopathy-associated 
proteins including 
lebercilin (LCA5) and 
SDCCAG8. 

Severe form 
of XLRP as 
well as 
various 
syndromic 
diseases 
with or 
without RP 

XLRP24 Xq26-Xq27 Unknown Unknown RP 

XLRP34 Xq28-qter Unknown Unknown  RP 

Table 1.1: Identified loci and genes responsible for XLRP. For three of the loci, underlying 
genes have been identified, for the others the corresponding genes as well as putative protein 
functions have yet to be identified.  
Table adapted from https://sph.uth.edu/retnet/home.htm. 

 

For three of these, corresponding genes have been identified. RP2 is responsible 

for XLRP2, RPGR for XLRP3 and OFD1 mutations were recently identified as the 

causal gene in a particularly severe form of XLRP, XLRP23 (Xp22.2 locus) [44, 

45]. 

By far the most common mutation causing XLRP are mutations in the Retinitis 

pigmentosa regulator (RPGR) gene, which is the causative mutation in 70-90 % 

of XLRP patients [30, 31] Although RPGR was identified via linkage analysis as 

the culprit gene causing RP3 as early as 1996 [46, 47], it could only account for 

less than 70 % of RP3 cases [48, 49]. This puzzle was solved with the discovery 

of the retina-specific isoform of RPGRORF15 utilizing an additional open reading 

frame (ORF15) as large terminal exon [50]. RPGRORF15 causes a total of 10-20 % 
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of all inherited retinal disease, which places it among the highest yield treatment 

targets for retinal dystrophies.  

 

1.2.4 Current treatments for RP 

When confronted with an RP patient, it is important to keep in mind the three 

extremely rare forms of RP which can indeed be treated given they are 

recognized early enough. All of these are syndromic RP phenotypes associated 

with neurologic disorders: abetalipoproteinaemia, phytanic acid oxidase 

deficiency (Refsum’s disease), and familial isolated vitamin E deficiency (α-

tocopherol transport protein deficiency). As can be inferred from the disease 

names, treatment consists of nutritional supplementation or food avoidance [51]. 

But these exceptions prove the rule that until recently, no causal treatment 

existed for the vast majority of RP. The only treatment approaches that had 

shown some promise were supportive treatments in form of high dose Vitamin A 

substitution, which were able to slow disease progression according to an early 

study, but did not succeed in arresting or reversing loss of function [34].Two 

therapeutic approaches have led the field in providing novel treatment options for 

RP and more generally for IRDs: retinal prosthesis and gene therapy. The first 

revolutionizing treatment for IRDs came in form of a retinal prosthesis, implanted 

either sub- or epiretinally [52]. This device aims to substitute the function of 

degenerated photoreceptors and targets patients with end stage retinal 

degeneration regardless of cause. Rather than modifying the disease course, as 

gene therapy intends to do, retinal implants aim to restore function after complete 

photoreceptor degeneration has occurred (and gene therapy could not function 

any more due to lack of target cells). Promising results have been achieved, in 

particular with newer generation implants [53]. Gene therapy’s causative 

approach aims to solve degeneration by altering or preventing disease course, 

resulting in a highly personalized, causative approach to IRD treatment. In light 

of the swath of mutations responsible for IRDs and the highly selective patient 

selection for current clinical trials, the need for a more sweeping approach to IRD 

treatment is vital. Thus, the further development of the retinal implant can be seen 

as a complimentary field of exploration that goes hand in hand with gene therapy 
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IRD treatment. Gene therapy has evolved as a promising tool in the causative 

treatment of IRDs and will be discussed in more detail below. In addition, two 

promising therapies are at the horizon for IRDs. Stem cell therapy first showed 

promise as a treatment approach in the preclinical setting in 2006, when it was 

shown that rod precursor cells could successfully integrate and differentiate into 

into the mammalian ONL [54]. Since then, preclinical success has been 

translated into first-in-human phase I/II trails (NCT00874783, NCT03011541, 

NCT02464436) aiming to treat IRDs, including RP, with human retinal progenitor 

cells. First results regarding safety and tolerability of the therapy are expected as 

early as 2019 (NCT02464436). Genome engineering with CRISPR-Cas9 hold 

promise for IRDs, especially in mutations that are too large to be packaged in the 

conventional adeno-associated viral vectors used for gene therapy. Treatment 

strategies are being developed for in vivo animal models for patient cells in vitro 

[55]. 

 

 

1.3 Gene therapy 

1.3.1 Concept of gene therapy 

Gene therapy aims to treat diseases that result from a genetic mutation either by 

replacing the mutated gene, in the case of a loss of function, or by silencing the 

gene if it has undergone a gain of function mutation. This requires the introduction 

of a therapeutic gene, typically a coding sequence (cds) encoding the deficient 

gene, into a target cell, which then uses its own transcription- and translation 

machinery to continuously express the therapeutic gene. The transport of this 

nucleic acid can be accomplished either in form of virally vectored delivery or 

non-viral gene delivery. This therapeutic concept arose in the early 1970s when 

techniques to produce recombinant DNA were discovered that made it possible 

to produce cloned genes, which were shown to correct mammalian cell defects 

in vitro [56]. Since then, gene therapy has become a viable therapeutic strategy 

not only for monogenetic diseases, but also for some forms of cancer, neurologic 

and infectious diseases [57].  
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Two major concerns have plagued gene therapy from the start: firstly, an 

overwhelming and potentially fatal immune response to – usually systemically 

applied - viral vectors as well as the possibility of malignant transformation, which 

arises from integration of viral vectors and the activation of proto-oncogenes or 

inactivation of tumour suppressor genes of the genome [58, 59]. Viral vectors with 

a particular high risk of insertional mutagenesis are retroviral and lentiviral 

viruses, whose transgenes randomly integrate into the genome. The most 

prominent example if this occurred in a gene therapy trail for children with severe 

combined immunodeficiency X1 (SCID X1), where nine out of ten children 

contracted acute leukaemia as a result of insertional mutagenesis [58]. A 

milestone for gene therapy in Europe was achieved when alipogene tiparvovec 

(Glybera®), an AAV1-based gene therapy for patients with lipoprotein lipase 

deficiency (LPLD) was approved in October 2012. However, the therapy failed to 

meet criteria for approval by the US Federal Drug Administration (FDA) and in 

2017 it as announced that uniQure, the company responsible for marketing 

Glybera, would not be applying for a renewal of its European licence. This makes 

the approval of the first ocular gene therapy, voretigene neparvovec-rzyl (AAV2-

hRPE65v2; Luxturna) by the FDA in December of 2017 even more remarkable.   

 

1.3.2. Ex- and in-vivo gene therapy 

Ex-vivo gene therapy has become hugely relevant for treatment of benign and 

malignant hematologic conditions. The basic principle involves harvesting and 

selecting the appropriate cells from a patient’s blood, treating them with gene 

therapy in vitro and re-infusing the genetically altered cells into the patient’s blood 

stream, where they engraft and multiply. One of the most successful treatment 

strategies to arise from this concept is CD19 chimeric antigen receptor (CAR) T-

cell therapy in the field of cancer immunotherapy [60], a therapy which has 

recently been approved for therapy refractive, relapsed Diffuse large B cell 

lymphoma (DLBCL) as well as pediatric pre B-cell acute lymphocytic leukemia 

(ALL) by the US Food and Drug Administration (FDA). Here, the patients T cells 

are extracted using apheresis and treated with a lenti- or a retrovirus and a CD19 

receptor transgene which leads to CD19 receptor expression and a defined 
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specificity for B cells. After being expanded in vitro, these genetically engineered 

T-cells are then reinfused, engraft, undergo extensive proliferation and can target 

aberrant malignant B cells independently of HLA presentation [61]. Ex-vivo gene 

therapy is unique in that the vector exclusively targets the goal cells and 

successfully targeted cells can then be selected, while mutated or non-

transduced cells can be discarded. Unfortunately, this form of gene therapy is 

irrelevant for gene therapy that targets tissue bound, stable, non-dividing tissue 

cells, which is amenable almost exclusively to in-vivo gene therapy. One 

exception to this rule is the targeting of corneal endothelial cells [62, 63]. When 

utilising in-vivo gene therapy, the transgene is administered directly to the patient 

in either a local or systemic manner.  

 

1.3.3 Gene therapy and its use in ophthalmology 

1.3.3.1 Benefits and drawbacks of the eye as a target for gene therapy 

The success of gene therapy depends on a sufficient, long-term expression of 

therapeutic transgene coupled with an absence of immune-related events [64]. 

Due to many of its intrinsic qualities, the eye is uniquely positioned as a 

successful target for gene therapy. It is readily accessible, making it amenable to 

local injection of the viral vector. By foregoing systemic application, adverse 

systemic immune related events, which have plagued gene therapy in the past, 

are also circumvented [65]. Local immune response is also thought to be 

dampened due to the immune privileged status of the eye, although this 

hypothesis is seen in less absolute terms as human and preclinical trail data of 

both innate and adaptive immune response are becoming more readily available 

[66, 67]. The blood retina barrier is one component contributing to the immune 

privilege of the eye [68] and is also responsible for largely confining the viral 

vector to the injection space. This therefore creates a high viral vector 

concentration within the target tissue site. The resulting limiting of systemic 

spread not only increases the transduction of target cells but also lowers the 

systemic spread and therefore the potential targeting of germline cells, another 

crucial component in generating approval for a gene therapy. When thinking of 

the more practical side of designing a clinical trial, ocular gene therapy greatly 
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benefits from the eye being a paired organ. This results in an inbuilt intraindividual 

contralateral control which is even more valuable considering the symmetry of 

degeneration present in many IRDs [69]. Lastly, but perhaps most importantly, 

the retina harbours a particularly large amount of monogenetic degenerative 

diseases, making it a flag bearer for the understanding and study of 

monogenetically inherited conditions. As mentioned above, for most IRDs, 

treatment has remained elusive, which translates into an unmet need for 

causative therapies, which have the potential to provide a hugely benefit to 

individual physical and psychological health but also provide an economic benefit 

to society, given that IRDs are the most common cause of blindness in the 

working class population [70]. For all the benefits of ocular gene therapy, one 

drawback is the inability to directly measure transgene levels in a human clinical 

trial, since cells are non-dividing and their protein products locally confined. In 

contrast, counts of e.g. hematopoietic cells or levels of freely circulating proteins 

such as coagulation cascade factors can easily be determined and trended by a 

simple blood draw [71]. Hence functional, subjective parameters such as visual 

acuity, perimetry and objective measurements such as retinal thickness on OCT 

scan or ERG are clinically relevant surrogate markers for therapeutic transgene 

expression levels [72]. Hence, there is an added value of preclinical studies able 

to measure transgene expression with IHC or western blot.  

Gene therapy in ophthalmology has been used to treat a variety of eye diseases 

of both the anterior and posterior segment of the eyes using Adenoviral (Ad), 

Lentiviral and Adeno-associated viral vectors [73]. Within the broad spectrum of 

efforts to treat ocular disease with gene therapy, by far the most prominent strides 

have been made in using it as a causal treatment option for inherited retinal 

disease (IRDs) using Adeno-associated viral (AAVs) vectors [73]. 

 

1.3.3.2 Modifiable factors in ocular gene therapy  

Since the goal of gene therapy is to use just enough viral vector to achieve a 

sustained therapeutic transgene expression, it is important to think of factors that 

can be adjusted to achieve this. Overall, three modifiable pillars can be identified: 

vector delivery, the vector itself, and patient selection. Vector delivery can occur 
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in-vivo or ex-vivo, locally or systemically. In local administration, differing injection 

techniques can be harnessed. Surprisingly, ex-vivo gene therapy has indeed 

been used in ocular gene therapy when it was found that treating a transplanted 

cornea with Ad viral vectors prior to transplantation significantly prolonged 

transgene expression [62]. But up until now, the only viable option for IRDs is an 

in-vivo application of the therapeutic vector. In this setting, the vector can be 

delivered locally or systemically, and the eye lends itself well to gene therapy 

precisely because local application is possible. This decreases the likelihood of 

a systemic immune response and can lower the required vector dose, as well as 

create a tissue specificity simply by constricting the area of the vector’s reach. 

Yet the injection technique of in-vivo viral vector delivery is a much more 

contested debate, which mainly focuses on whether intravitreal or subretinal 

delivery is more efficacious. Intravitreal injection is a significantly easier injection 

technique than subretinal injection, which requires a much higher level of surgical 

skill and experience. Therefore, it might therefore introduce less variability into a 

trial, especially in a multi-centre trial that involves more than one surgeon. In 

theory, it also allows a more even spread of the viral vector throughout the retina 

and thus has the potential to target the entire retina, something that is virtually 

impossible to achieve with subretinal injection. When thinking of RP, in which PR 

degeneration starts in the periphery and progresses centrally in the majority of 

cases, this is a relevant point, especially when considering targeting patients to 

prevent rather than halt (or even partially reverse) retinal degeneration. Yet a 

subretinal injection technique has several important advantages over an 

intravitreal one, the most important being its superiority in transducing the 

required target cells. The most common cells that require transduction by viral 

vectors in IRD are RPE and PR cells. The subretinal space is enclosed by exactly 

these cell populations, whereas intravitreal injection requires the viral vector to 

cross eight or nine retinal layers to arrive at these target cells. This heightens the 

potential for off-target effects and would most likely need a much higher vector 

dosing. Also, similar to the immune deviation associated with the anterior 

chamber of the eye (ACAID), the subretinal space has been shown to exhibit a 

deviant immune response [74]. This is hypothesised to play a role in the finding 
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that the second eye to be injected with a therapeutic vector in an LCA gene 

therapy approximately 2.5 years after injection of the initially treated eye did not 

provoke an immune response [75].  

When thinking about the therapeutic viral vector itself, there are several families 

of viruses that have been used in gene therapy, the predominant ones being 

Lentiviruses, Adenoviruses (Ad) and Adeno-associated Viruses (AAV) [74]. In 

ocular gene therapy, AAVs have in evolved as the gold standard for gene therapy, 

with the number of publication and clinical trials utilizing AAV continuing to sharply 

increase [74]. AAVs can be modified to achieve a higher tissue specificity as well 

as higher transgene expression by changing the capsid or the transgene 

(promotor or regulatory elements). Improving capsid specificity could decrease 

the dose of vector and thus reduce the likelihood of an immune response as well 

as limit off target effects [76]. When considering transgene composition, using a 

cell-specific promotor increases tissue specificity, but usually represents a trade-

off regarding strength of transgene expression. To combat this, regulatory 

elements such as woodchuck hepatitis post-transcriptional regulatory element 

(WPRE) are often added to the transgene cassette to make up for this [64]. The 

capsid can be chosen to optimally transduce target cells, but it also can be altered 

to decrease proteasome mediated degradation [77]. Codon optimisation can 

provide the great benefit of increasing transgene stability and expression levels 

[71, 78]. These three approaches will be discussed in the coming sections. Once 

a therapy is translated from bench to bedside, other points of variability present 

themselves. Patient selection can exert considerable influence over the success 

of gene therapy. This ranges from more obvious things such as the morphological 

and functional characteristics of the patients’ disease to characteristics that are 

harder to determine in a scientific manner and include a stable psychological 

support system or realistic expectations of the therapy. Chapter 3 of this thesis 

will aim to procure some answers with regards to patient selection and outcome 

measures to determine success of clinical trials. 
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1.3.4 Adeno-associated virus (AAV) and its use in ocular gene 

therapy 

Adeno-associated virus (AAV) is a single stranded DNA virus that belongs to the 

genus of Dependoviridae, which in turn are part of the Parvovirus family [79]. As 

the name Dependovirus insinuates, AAV is reliant on a helper virus to replicate 

and therefore is a replication-defective, non-pathogenic satellite virus for humans 

[80]. Wild type AAV has a genome of approximately 4.7 kB, consisting of mainly 

linear, single stranded DNA. Although this function is not harnessed in 

recombinant AAV (rAAV), it is remarkable to note that wild type AAV is the only 

known eukaryotic virus to integrate site-specifically on chromosome 19 in the 

human genome [81]. Wild type AAV (wtAAV) is packaged in an icosahedral 

capsid, which is made up of the three capsid proteins VP1, VP2 and VP3 [82]. In 

recombinant AAVs (rAAVs), the rep and cap genes that code for four replication 

and three capsid proteins are replaced with a transgene cassette filled with a 

promotor and the therapeutic transgene. Just like their wild type counterparts, 

they are flanked by the 145 bp-inverted terminal repeat (ITR) sequence, which 

aid in the formation of concatemers after the host cell DNA polymerase converts 

the single stranded transgene into double stranded DNA. These concatemers 

persist as episomal structures in non-dividing host cells [83]. Due to their greatly 

reduced risk of integration into the host genome, rAAVs have an extremely low 

risk of insertional mutagenesis [84]. Attachment to the host cell depends on 

interaction of capsid proteins with cellular receptors such as integrins or heparan 

sulfate, which is the receptor for AAV2, followed by internalization [85]. The virus 

is then taken up via the endosomal route and transported to the nucleus via motor 

proteins within seconds [85]. Twelve different serotypes of AAV have been 

described so far, each with a unique cell tropism [86, 87]  

Besides adeno- and retroviruses, rAAVs have become some of the most 

important vectors in gene transfer. This is largely due to their ability to efficiently 

package transgenic DNA, their diverse and cell-specific tropism and their low 

immunogenicity as well as their ability to transduce nondividing cells. Due to their 

excellent safety profile in both pre-clinical animal studies and human clinical trials 

and adaptability to various cell lines and transgenes, rAAVs have emerged as the 
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gold standard for retinal gene therapy [88-90]. All major human gene therapy 

trials for RPE65-LCA, REP1-choroideremia and CNGA3-achromatopsia, have 

used rAAVs for viral vector delivery. A hybrid vector construct is normally used, 

in which the ITRs of AAV2 flank the therapeutic transgene as well as its promotor. 

This construct is packaged into different serotype capsids depending on the 

cellular tropism that is hoped to be achieved. Depending on their capsid amino 

acid sequence, each AAV serotype has the ability to bind to specific cell or tissue 

types (cellular tropism). In an effort to find AAVs that are particularly efficient at 

transducing a particular cell line, the capsid structures have been tested for their 

cellular tropism. For example, AAV2 is very efficient at transducing RPE, but not 

photoreceptors. Compared to AAV2, AAV8 is more successful in transducing 

photoreceptor cells with a dose-differential of approximately 10-fold [76, 91]. 

Recombinant AAV2/8 (rAAV2/8), the viral vector used in the pre-clinical mouse 

trail presented here, is an example of the creation of a recombinant AAV to restrict 

tropism to specific cell lines, in this case PRs. Creating a more specific cellular 

tropism possible could allow lowering of viral vector dose or achieving similar 

protein expression and limit off target effects that could occur with uptake in other 

cell lines.  

 

Gene therapy using AAVs has been demonstrated to be safe and efficacious in 

several preclinical animal studies [92]. This success has been translated into 

human clinical trials in the proof of principle trials for patients with Leber 

congenital amaurosis (LCA) caused by RPE65 mutations, which results in the 

lack of an essential enzyme in the Vitamin A cycle, thus causing irreversible RPE 

and secondary photoreceptor degeneration [76, 88, 93-96]. These studies 

culminated in the landmark approval of voretigene neparvovec-rzyl (AAV2-

hRPE65v2; Luxturna), the first ocular gene therapy, by the US Food and Drug 

Administration (FDA) in December 2017. Recently, further strides were made 

when the first gene therapy to target photoreceptors was subretinally 

administered to six patients with choroideremia caused by REP-1 mutations in a 

phase 1 / 2 clinical trial using AAV2 as a viral vector [72, 97].  
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1.3.4.1 Capsid-mutant AAV 

The term capsid mutant refers to changes in the structure of capsid proteins VP1-

3, most often single or multiple tyrosine (Y) to phenylalanine (F) substitutions in 

the amino acid sequence. Such alterations were engineered when it was 

observed that AAV transduction efficacy was significantly decreased by capsid 

tyrosine residue phosphorylation, a process mediated by epidermal growth factor 

receptor protein tyrosine kinase (EGFR-PTK) signalling (EGFR-PTK). 

Phosphorylated tyrosine residues were then tagged for proteasomal degradation 

by ubiquitin before they were able to reach the nucleus [98, 99]. Therefore, new 

AAVs with Y to F single point mutations were developed in which phenylalanine 

replaced each of the seven exposed tyrosine residues in VP3, making AAVs 

resistant to phosphorylation and subsequent ubiquitin-proteasome pathway 

degradation. This increased transduction efficacy up to 30-fold in vivo and 10-

fold in vitro by increasing the percentage of vectors that were transported to the 

nucleus and therefore, therapeutic levels of transgene expression could be 

maintained even while using a lower vector dose [77]. Ryals et al. could 

subsequently show that the more Y to F substitutions were made, the higher the 

transduction efficacy became [100]. Also, where in the amino acid sequence the 

Y to F substitutions made influenced the efficacy of transgene expression. An 

AAV2 with a substitution at the 444th amino acid position showed a 10-fold higher 

transduction efficacy than an AAV2 with a substitution at the 730th amino acid 

position [101]. 

 

1.3.5 Retinitis pigmentosa GTPase Regulator gene 

1.3.5.1 Isoforms 

RPGR is located on the short arm of the X-chromosome at the Xp11.4 locus and 

is expressed in at least ten different isoforms, five of which are considered to be 

protein coding [102-105]. The constitutive variant of RPGR is termed RPGREx1-19 

and is expressed widely throughout the body: at the centrioles of centrosomes in 

dividing cells and at the transition zone of cilia [46, 47, 50, 106]. It encodes a 90 

kDa protein with 19 transcribed exons, of which exons 1-10 encode a N-terminal 

RCC1-like domain (RLD), an evolutionary highly preserved domain which all 
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isoforms share. The dominant RPGR isoform of the retina is RPGRORF15 [50, 

107]. No mutation in RPGREx1-19 has been shown to be causative for retinal 

disease and all mutations known to cause XLRP3 occur in the RPGRORF15 

isoform [31, 50]. In turn, this implies that substitution of RPGRORF15 would be 

sufficient for the treatment of RPGR-XLRP. 

 

1.3.5.2 Structure  

RPGRORF15 encodes a 1152 amino acid protein and shares exon 1-14 and part 

of exon 15 with the constitutive isoform RPGREx1-19 (Fig. 1.6 B), whereas the C-

terminal domain of RPGRORF15 is unique among RPGR isoforms (Fig. 1.6 C).  

The N-terminal domain of RPGRORF15 consists of an amino acid structure that is 

very similar to the regulator of chromosome condensation (RCC1) guanine 

nuclear exchange factor. This N-terminal RCC1-like domain (RDL) is highly 

conserved among species and consists of six tandem repeats of 52-54 amino 

acids [46]. As the name implies, RCC1 is located in the nucleus and catalyses 

the guanine nucleotide (GTP) exchange reaction for Ran, a small GTPase. Thus, 

RCC1 plays a critical role in regulating the nucleocytoplasmic protein passage 

[108, 109]. The presence of a RCC1 homology domain within RPGR begs the 

question whether the protein is a putative guanine nuclear exchange factor. This 

would fit with the hypothesis that it plays a role in regulating protein passageway 

through the connecting cilium. The unique C-terminal exon, ORF15, is formed by 

the transcription machinery skipping a splice donor site for exon 15 [50]. ORF15 

takes up a little less than half of the exonic DNA sequence and encodes for 567 

amino acids. When anticipating ORF15’s sequence, we would expect to see a 

fairly even distribution of the four base pairs. Instead we see a heavy bias towards 

adenine and guanine nucleotides (> 98 % instead of the nominally expected level 

of 50 %), which make the sequence purine-rich and highly repetitive, resulting in 

a glycine (from GGG or GGA codons) and glutamic acid (GAG or GAA codons) 

rich protein sequence [50]. Due to this repetitive nature, ORF15 is predestined 

for mutations during DNA replication and therefore houses a disproportionate 

number of mutations: it takes up less than 50 % of the cDNA sequence, but 60 % 

of mutations cluster on this terminal exon [50, 110]. 
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Fig. 1.6: RPGR and its RPGRORF15 isoform. RPGR is located on the short of the X- chromosome 
at locus 11.4 (A). RPGREx1-19 is the constitutive RPGR isoform and  is ubiquitously expressed 
throughout the body (B). RPGRORF15 occurs via alternative splicing and is expressed 
predominantly in the eye It shared the Exon 1-14, including the RCC1 like domain with the 
constitutive RPGR isoform. ORF15 makes up at over half of the cDNA and mRNA (C). It is the 
only known form of RPGR that causes XLRP. 
RPGR: retinitis pigmentosa GTPase regulator; RCC1: regulator of chromosome condensation 
Figure reprinted with minor alterations and permission from Dominik Fischer.  

 

1.3.5.3 RPGR’s role in photoreceptor development 

RPGREx1-19 und RPGROR15 show divergent expression profiles during murine 

retinal development. RPGREx1-19 is predominantly expressed during early retinal 

maturation and expression levels decline with further PR development [111]. In 

lower vertebrates, such as the zebrafish, RPGREx1-19 is essential for retinal 

development, but experiments with a RPGR-/y knockout mouse model have 

shown it to be non-essential for PR development in higher vertebrates [112, 113]. 

This is supported by the fact the retina of XLPR patient shows no morphological 

abnormalities at the beginning of life [111]. The expression profile of RPGREx1-19 

indicates a specific but non-essential role of RPGREx1-19 in PR development, that 

is not yet fully understood [114]. However, as can be impressively witnessed by 
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the natural disease course of RPGR-XLRP patients, RPGRORF15 is essential for 

the maintenance of photoreceptors.  

 

1.3.5.4 Location and function 

Although the causal role of RPGRORF15 mutations in XLRP has been well 

established, the function of RPGRORF15 remains incompletely understood. 

Information to this end can be gained by examining the structure of RPGRORF15, 

but insight to this end can also can be gleaned from examining its binding 

partners in the connecting cilium (CC). The most important partner is the aptly 

named RPGR interacting protein (RPGRIP), a protein whose retinal isoform 

RPGRIP1alpha is exclusively and stably localized to the ciliary axoneme [103, 

115-117]. RPGRIP’s N-terminal is predicted to form a coil structure with which it 

binds to the ciliary axoneme [117]. Its C-terminal end binds to the RCC1-like, N-

terminal domain of RPGROR15 and therefore makes RPGRIP essential for the 

tethering of RPGROR15 protein to the CC after its synthesis in the IS [118-120] 

after it is synthesized in the IS. RPGRIP is proposed to function as part of a “ciliary 

gate” that controls the shuttling of proteins to the OS and mutations are known to 

be a cause of Leber Congenital Amaurosis (LCA) type 6 [121-124]. Furthermore, 

another protein, SPATA7, is vital for the correct localization of RPGRIP and 

mutations in SPATA7 cause LCA type 3 and juvenile RP [125]. Mutations in any 

of these three genes, STATA7, RPGRIP, or RPGRORF15, result in a similar pattern 

of PR degeneration, whose first sign is opsin mislocalisation to the plasma 

membrane, IS and ONL [113, 126]. This supports the argument that RPGRORF15 

might also be responsible for protein transfer from the IS to the OS. Opsin 

mislocalisation to the IS or CC is detectable in RPGRORF15 mutant mammals even 

before PR degeneration is perceived [113, 127]. This has been observed in 

mammalian models such as the naturally occurring C57BL/6JRd9/Boc mouse [127], 

the Rpgr-/y mouse [113] and XLRAP1 mutant dogs [128] as well as two human 

RPGR-XLRP carriers [129, 130]. Other notable binding partners that make up the 

RPGRORF15 interactome are PDE6, whose binding domain overlaps with that of 

RPGRIP [117]. Additionally, CEP20 is an important binding partner of RPGRORF15 

and also forms part of the microtubule associated protein complex at the 
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centrosome [131]. Contrary to the C-terminal RLD, ORF15 is not well preserved 

and even though it has been identified as a mutational hotspot in RPGR-XLRP, 

its function has not yet been elucidated. 

 

1.3.5.5 Phenotype of RPGR-XLRP 

Like all forms of XLRP and, in a broader sense, RP, RPGR-XLRP is known to 

exhibit a notoriously diverse phenotype, which results in highly variable disease 

progression. It usually presents as a rod-cone degeneration pattern, but a small 

number of patients present with a cone-rod phenotype [132]. In particular, reports 

show that patients with a mutation in the terminal ORF15 exon preferentially 

exhibit a cone-rod degeneration pattern [25]. Although it is possible to explain this 

phenotypic variability with allelic heterogeneity, it is puzzling to note that this 

variability persists in patients with the same mutation [133] and even in dizygotic 

twins [134]. It has been posited that genetic modifiers may play a part in this and 

changes in two single nucleotide polymorphisms were shown to be associated 

with particularly severe disease [133]. 

 

1.3.6 Approaches and challenges in gene therapy targeting 

RPGR-XLRP 

RPGR-XLRP is a model disease for gene therapy in several ways. It causes a 

large proportion of RP, 10 % by conservative estimate [23, 50], and no current 

forms of treatment exist, meaning a comprehensive patient cohort would likely 

profit from a causal therapeutic approach. Secondly, it is not just a prevalent, but 

also a severe form of RP which causes degeneration over a fairly short amount 

of time. This does not only make the disease more imperative to treat, but would 

also allow a treatment effect to be seen in a relatively short time frame [135]. 

Also, with the advent of genetic sequencing coupled with a clinical phenotype, it 

has become ever more possible to diagnose XLRP correctly, a certainty that was 

lacking when relying on a clinical diagnosis and history alone. However, several 

challenges have arisen in bringing RPGR-XLRP gene therapy from bench to 

bedside. 
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RPGR with its purine-rich ORF15 region has poor sequence stability due to its 

highly unbalanced, repetitive nature (see 1.3.2.1), which makes it difficult to 

maintain sequence integrity during AAV vector production, as demonstrated by 

several preclinical studies that have struggled with mutated vector constructs 

[136-138]. Although a truncated RPGRORF15 transgene was shown to rescue PRs 

in a murine preclinical study [136], this simply proves unharmful effects for one 

out of a myriad of possible mutations. Especially worrisome would be a mutated 

transgene exerting dominant negative effects that would result in an acceleration 

of disease progression. Indeed, Hong et al. showed that truncated versions of 

RPGR protein due to a premature stop codon lead to a degeneration that was 

faster in the injected eye then the natural disease progression exhibited by the 

control [139]. Once an unmutated therapeutic transgene has been administered, 

posttranscriptional processing of the therapeutic transgene presents a second 

challenge. The purine-rich, repetitive cDNA sequence of ORF15 harbours 

potential donor splice sites which leads to a hypothesised danger of subjecting 

this exon-only cDNA sequence to a PR’s splicing machinery used to scanning 

and processing intron/exon sequences. Potential splice variants arising from 

such an aberrant splicing could - similar to a mutated transgene - carry the 

potential of being ineffective or exert dominant negative effects. Even if these 

pitfalls have been traversed and transgene expression achieved, the expression 

levels must be high enough and of prolonged duration to ensure sustained 

restoration of function. In 2015, two important publications highlighted this 

problem: Jacobsen et al. followed three patients treated with AAV.RPE65 for up 

to six-years and showed that while visual sensitivity increased and peaked 

between one and three years after therapy, visual sensitivity progressively 

declined again thereafter. This rise and fall of visual sensitivity was accompanied 

by an invariable steady decline of photoreceptors as measured on OCT [140]. 

Bainbridge et al. independently reported similar long-term results of visual 

sensitivity increase in 12 patients starting at 6 months and a decrease in visual 

sensitivity decrease as early as one year after treatment [66]. On the flip side, 

administration of too high vector doses result in toxic effects [138]. These two 

poles highlight the importance of creating tools to optimize protein yield from 
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administered vectors as well as dose-escalation trials. All three of these problems 

are addressed by codon optimisation, a process discussed in the section below. 

 

1.3.6.1 Preclinical studies for RPGR-XLRP 

Developing a therapy for RPGR-XLRP has long been a goal due to the severity 

of the disease, the large proportion of RP it causes and therefore the number of 

people affected this disease. As in the development and approach to any 

disease, the creation of animal models jumpstarted a series of preclinical studies 

for RPGR-XLRP. In addition to the naturally occurring C57BL/6JRd9/Boc mouse 

line, Hong et al. created the knockout RPGR-/y mouse model [113]. Two naturally 

occurring canine models, both with different microdeletions in ORF15, but 

contrasting disease courses also exist: X-linked progressive retinal atrophy 1 

(XLPRA1) and 2 (XLPRA2) [128]. XLPRA1 presents with slow degeneration over 

years, whereas XLPRA2 presents with rapid disease progression and both are 

compatible with modelling human disease occurring within the first and second 

decades of life [90]. In addition to the preclinical study by Fischer et al., three 

preclinical trials for RPGR-XLRP have been published. In 2005, Hong et al. were 

able to demonstrate evidence of long-term and substantial rescue of function, 

structure in their knockout Rpgr-/y mice line using a truncated murine RpgrORF15 

transgene [136]. Subsequently, Beltran et al. succeeded in rescuing structure and 

function in two canine models of XLRP3 using human RPGRORF15 transgene 

driven by two different promotors and packaged into AAV2/5 

(rAAV2/5.hIRBP.hRPGRORF15 and rAAV2/5.hGRK1.hRPGRORF15) [90]. 

However, in 2015, the same group published results of a murine preclinical safety 

study, which showed ORF15 deletions, insertions and missense mutations in the 

vector production process [137]. No adverse events were seen using this mutated 

construct, but it must be noted that due to the recorded mutations the translated 

protein is not wild type RPGRORF15. Beltran reported that the same (mutant) 

vector had previously been used in the dog studies (personal communication). 

Nevertheless, the canine studies provide therapeutic proof of principle that 

RPGRORF15 can successfully be replaced in XLRP3 and thus provided a vital 

stepping stone in the quest for RPGR-XLRP gene therapy. The most promising 
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preclinical dose escalation safety study lead by Wu et al. was also hampered with 

mutations in ORF15 [138]. Four different dose categories (1 x 108, 3 x 109, 

1 x 109 and 3 x 109 vg) of murine Rpgr and human RPGRORF15 driven by human 

rhodopsin kinase (RK) promotor were tested in AAV8 and AAV9 capsids over the 

course of 18 months. The dose of 1x109 vg in AAV8 resulted in the best outcome 

in the RPGR-/y mouse when using RPGRORF15. Interestingly enough, the ideal 

dose using murine Rpgr transgene was lower, 3 x 108 vg using both AAV8 and 

AAV9. Toxicity could be shown at higher doses. But during the cloning process, 

the purine rich, terminal ORF15 exon once again proved amenable to mutations, 

with two out of five batches of vectors tainted by mutations [138].  

 

 

1.4 Codon optimization  

Codon optimisation attempts to address the fundamental challenges of transgene 

stability and protein expression levels faced in creating a gene therapy for RPGR-

XLRP. Codon optimization is based on the principle of degeneracy, sometimes 

also more aptly described as redundancy, of the human genome. This simply 

means that for all codons, with the exception of methionine and tryptophan, a 

single amino acid can be encoded by anywhere from two to six differing triplet 

codons. This can be illustrated when looking at the ratio of possible codons to 

number of amino acids: there are four bases, of which three make up a base 

triplet, which in turn translates into an amino acid, the building block for proteins. 

Hence, there are 64 (43) possible combinations of nucleotide triplets forming a 

codon, which determine the amino acid. If one takes into account that three triplet 

sequences code of stop codons not translated into protein, there are still 61 

combinations encoding for only 20 proteinogenic amino acids. In the case of 

glycin for example, four different triplet codons (GGG, GGA, GGC and GGU) 

encode this smallest amino acid, by which one can infer that several triplet 

codons must code for the same amino acid. These codons are then said to be 

redundant or synonymous. In the 1970s, it became apparent that the choice of 

redundant codons within genes was not arbitrary. By examining a bacteriophage 

that exhibited highly efficient protein expression and comparing it to another 
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bacteriophage that did not, Fiers et al. discovered that the ‘choice’ of the actual 

triplet out of the group of possible, synonymous combinations for any given amino 

acid constituted an important translational control mechanism by which cells 

could influence gene expression [141] as follows: The actual translation from 

mRNA to protein sequence in ribosomes requires tRNA molecules, which link 

specific codons to the corresponding amino acid. Importantly, even though 

synomymous codons translate for the same amino acid, each codon has a unique 

matching tRNA population carrying the corresponding amino acid. The amount 

of available such tRNA molecules differs in the cell, which in turn influences the 

specific efficiency of protein translation [142]. Codons with abundant levels of 

corresponding tRNA are dubbed “major codons”, and are preferentially used in 

highly expressed genes, whereas minor codons exhibit lower levels of 

corresponding tRNA and are used in genes with low transgene expression. This 

preference for certain redundant codons over others synonymous codons is 

termed codon bias, a widely reported phenomenon that is well preserved 

throughout evolution in prokaryotic and eukaryotic genomes [142-145]. In order 

to quantify the use of major codons and thus the strength of gene expression, 

Sharp et al. developed the codon adaptation index (CAI), a measurement of the 

use of major codons and thus an indication of the strength of gene expression 

[146]. The higher the CAI, the more major codons are used, the more rapidly this 

mRNA can be translated into protein and thus the more highly expressed these 

genes are [147]. Using a cell free model of Neurospora that allowed direct 

monitoring of protein translation velocity, Yu et al. were able to prove that the 

frequent use of major codons increased the speed of mRNA translation 

elongation [147]. But codon optimization plays a more all-encompassing role than 

simply increasing protein translation. For one, it can influence expression levels 

by modifying transcription levels through mechanism such as chromatin 

modification [148]. Also, by altering the speed of mRNA translation codon 

optimization was shown to also alter co-translational protein folding; one of the 

proposed mechanisms of which is affecting chaperone binding to nascent amino 

acid chains [147, 149]. Several analyses strengthen this finding by showing a 

correlation between codon usage bias and structural protein motifs, which 
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indicated that the mRNA sequence has a direct impact on protein folding [150, 

151].  

With de novo DNA synthesis becoming a broadly applicable tool, codon 

optimization is increasingly being used as a biotechnological tool to increase 

protein expression [152]. But similar to the endogenous use of codon 

optimization, far from simply increasing protein translation yield, goals of 

engineered codon optimization include elimination of GC sequences as well as 

avoidance of repetitive sequences and potential sites for transcription termination 

[153]. With codon optimization becoming more frequent, features that are taken 

into account when codon optimizing a gene are as follows: GC content, 

avoidance of repeats that might increase genetic mutations during cloning, Shine-

Dalagarno-like sequences, as well as sequences that promote strong mRNA 

secondary structures [152]. Interestingly enough, codon optimization is more or 

less effective depending on which gene is targeted: it has been shown to increase 

protein expression by 1000-fold in some genes, while not making any difference 

in the protein expression in other genes [152].  

 

1.4.1 Codon optimization and its use for RPGRORF15-XLRP gene 

therapy 

Codon optimization use for translating RPGRORF15 gene therapy into clinical trials 

serves a similar multifaceted goal: firstly, increased protein expression would 

require a lesser vector burden, which in turn would decrease the likelihood of an 

immune response as well as off target effects and increase the likelihood of 

achieving sustained therapeutic transgene expression. Since the RPGRORF15 

coding sequence takes up more than three quarters of space between the ITRs 

of the AAV2 transgene cassette, the prospect of not having to add additional 

regulatory elements such as WPRE to boost expression levels is vital. Also, and 

perhaps most importantly, the increased stability of the cDNA RPGRORF15 

sequence would result in a less mutation-prone transgene able to overcome a 

bottleneck that has hampered most RPGRORF15 transgene sequences when 

developing a gene therapy RPGR-XLRP. Of course, potential pitfall of codon 

optimization could arise: unlike wtRPGRORF15, RPGRORF15 is a foreign transgene 
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to the host, so it could be speculated that the potential for immune-mediated 

damage might be higher because of this. This could be exacerbated when using 

codon optimization on a null background, an otherwise extremely well-suited 

patient cohort due to the absence of dominant negative effects, since the protein 

is theoretically also foreign to these patients. Also, seeing the range of outcomes 

of codon optimization in gene translation in which gene expression is affected by 

codon optimization (from no change in protein translation to a 1000-fold 

increase), as well as considering the differing, proprietary algorithms companies 

provide to optimize a genetic codon sequence [152].  

 

 

1.5 Aims 

The aims of this thesis lie in contributing to the research that is optimising gene 

therapy for RPGR-XLRP with the goal of translating it into a clinical trial. This is 

achieved by looking at two very different, yet equally important angles, which are 

reflected in the division of the text body into the two separate chapters that follow:  

The second chapter contributes to the assessment of codon-optimisation as a 

tool to create an RPGRORF15 transcript that is i) more stable and therefore less 

prone to mutations in the vector production process and ii) exhibits increased 

production efficacy as a tool as a potential way forward in treating RPGR-XLRP 

with gene therapy. This involves answering questions about translational efficacy 

of coRPGRORF15 compared to wtRPGRORF15 in vitro, as well as determining 

transgene expression and correct transgene localisation as an indication of 

RPGRORF15 function in vivo. An assessment of single-mutant (Y733F) AAV 

capsids as a tool to further increase therapeutic transgene expression is 

evaluated as well.  

The third chapter contains a retrospective analysis of a two-centre, 50-patient 

cohort that will be on the receiving end of this RPGR-XLRP gene therapy. The 

analysis aims to elucidate functional characteristics and their development of the 

patient population living with RPGR-XLRP. Three central questions are asked 

when looking at the patient data: i) does the disease demonstrate symmetry 

between eyes and can the contralateral eye therefore be used as an internal 
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control in an interventional trial? ii) which subjective or objective clinical test is the 

most sensitive and robust outcome measure to reliably determine disease 

progression and in turn treatment safety and/or efficacy? iii) and lastly, is it 

possible to characterize the dynamic of disease progression to determine the 

optimal therapeutic window [69]? This retrospective investigation lays a 

foundation upon which a prospective, standardised, natural history trial can be 

conducted, which would allow a more in-depth and accurate assessment of these 

questions. 
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CHAPTER 2 

OPTIMISING GENE THERAPY FOR X-LINKED 

RETINITIS PIGMENTOSA 
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2.1 Materials 

2.1.1 Technical appliances and consumables 

Product  Number Company 

Biochrom EZ Read 400 
Microplate Reader 

80400141 Biochrom, Cambridge, 
UK 

Trans-Blot Turbo Transfer 
System 

1704155 Bio-Rad, Hertfordshire, 
UK 

PowerPac HC high-current 
power supply 

1645052 Bio-Rad 

Analogue tube rollers SRT6D R000103298 Cole-Parmer, 
Staffordshire, UK 

Galaxy R CO2 Incubator CO17301001 Eppendorf, Stevenage, 
UK 

Centrifuge  913 Hettich, Tuttlingen, 
Germany 

Pipette Controller Pipetboy acu2 155000 Integra Biosciences, 
Zizers, Switzerland 

Polystyrene Box N/A JB Packaging, Torpoint, 
UK 

Leica CM3050 S Research 
Cryostat 

CM3050 Leica Microsystems, 
Wetzlar, Germany 

Leica DMIL LED Inverted 
Fluorescence microscope 

11090137002 Leica Microsystems 

R100 Rotatest Shaker  3573 Luckham, Victoria 
Gardens, UK 

Amicon Ultra-15 Centrifugal 
Filter Units 

UFC900308 Millipore, Feltham, UK 

Snap i.d. 2.0 Protein Detection 
System for Western Blotting 

11370220 Millipore, Billerica, USA 

Retiga 2000R CCD Camera RET2000RF
M12 

Qimaging, Surrey, 
Canada 

Serological Pipette 5 ml 861253001 Sarstedt, Newton NC, 
USA 

Serological Pipette 10 ml 861254001 Sarstedt 

Serological Pipette 25 ml 861685001 Sarstedt 

Tissue Culture Plate 6 Well, 
Standard 

833920005 Sarstedt 

Tissue Culture Flasks T75 833911002 Sarstedt 

Tube 50 ml, 114 x 28 mm, PP 62547254 Sarstedt  

Tube 15 ml, 120 x 17 mm, PP 62554502 Sarstedt  

Eppendorf microtube 3810X Z606340  Sigma-Aldrich, Dorset, 
UK 

Polypropylene pellet pestles   Z359947 Sigma-Aldrich  

Pellet pestles cordless motor Z359971  Sigma-Aldrich  
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Product  Number Company 

10/20 µl XL Graduated Filter Tip 
20 µl (Sterile) 

S11203710 Starlab, Milton Keynes, 
UK 

20 µl UltraPoint Graduated Filter 
Tip (Sterile) 

S11201810 Starlab 

200 µl Graduated Filter Tip 
(Sterile) 

S11208810 Starlab 

1000 µl XL Graduated Filter Tip 
(Sterile) 

S11221830 Starlab 

Disposable Scalpels No 21, 
sterile 

507 Swann-Morton, Sheffield, 
UK 

Pierce 96-Well Polystyrene 
Plates, Corner Notch 

15041 ThermoFisher Scientific, 
Northumberland, UK  

NanoDrop 1000 
Spectrophotometer 

N/A ThermoFisher Scientific 

Azpac Sarogold PRO Cling 
Wrap Film 

12368039 ThermoFisher Scientific 

Neubauer Counting Chamber  6310696 VWR Chemicals Prolab, 
Leicestershire, UK 

ImmEdge Hydrophobic Barrier 
PAP Pen 

H4000 Vector Laboratories, 
Burlingame, California, 
USA 

Confocal scanning microscope   LSM710 Zeiss, Aalen, Germany 

N/A: not applicable 

 

2.1.2 Chemicals and reagents 

Product Number Company 

Tris buffered saline (10 x)  1706435 Bio Rad, Hertfordshire, 
UK 

Trans-Blot Turbo RTA Transfer 
Kit, LF PVDF 

1704275 Bio Rad 

Trans-Blot TurboTM 5 x 
Transfer Buffer  

10026938 Bio Rad 

Trans-Blot Turbo TM Midi-size 
Transfer Stacks 

10026915 Bio Rad 

Midi-size 0.45 µm low 
fluorescence (LF) PVDF 
membrane Trans-Blot® 
TurboTM (BioRad) 

1704275 Bio Rad 

Clarity Western ECL Substrate, 
200 ml 

1705060 Bio Rad 

Clarity Western ECL Substrate 
Luminol/enhancer solution 

10026380 Bio Rad 
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Product Number Company 

Clarity Western ECL Substrate 
Peroxide solution 

10026381 Bio Rad 

10 % Criterion TGX Precast Midi 
Protein Gel, 18 well, 30 µl  

5671034 BioRad 

7.5 % Criterion TGX Precast 
Midi Protein Gel, 18 well, 30 µl  

5671024 BioRad   

7.5 % Criterion TGX Precast 
Midi Protein Gel, 12 + 2 well, 45 
µl  

5671023 BioRad   

Trans-Blot Turbo TM Midi PVDF 
Membrane 

1704157 BioRad 

BLUeye Prestained Protein 
Ladder 

PM0070500 GeneDireX, USA 

Laemmli buffer 5 x BU117  Jena Bioscience, Jena, 
Germany 

TransIT-LT1 Transfection 
Reagent  

MIR2304 Mirus Bio, Wyomming, 
USA 

Tween 20  P1379 Sigma-Aldrich, Dorset, 
UK 

Water  W4502 Sigma-Aldrich 

Phosphate buffered saline 
(PBS; 10 x)  

P5493 Sigma-Aldrich 

cOmplete, Mini, EDTA-free 
Protease Inhibitor Cocktail 

11836170001 Sigma-Aldrich 

Laemmli buffer 2 x  S3401 Sigma-Aldrich 

EZBlue Gel Staining Reagent G1041 Sigma-Aldrich 

Pierce bicinchoninic acid (BCA) 
protein assay kit 

23225 ThermoFisher Scientific, 
Northumberland, UK 

Pierce TM BCA Protein Assay 
Reagent A, 1 x 500 ml   

23228 ThermoFisher Scientific 

Pierce BCA Protein Assay 
Reagent B, 1 x 25 ml  

1859078 ThermoFisher Scientific 

Albumin Standard 10 x 1 ml 
ampules 

23209 ThermoFisher Scientific 

Neurobasal A 10888022 ThermoFisher Scientific 

Gibco B-27 Supplement 17504044 ThermoFisher Scientific 

N-2 supplement 17502048 ThermoFisher Scientific 

Opti-MEM Reduced Serum 
Medium 

31985062 ThermoFisher Scientific 

Radio-Immunoprecipitation 
Assay (RIPA) Lysis and 
Extraction Buffer 

89900 ThermoFisher Scientific 

Ethanol absolute ≥99.8 % 
AnalaR NORMAPUR®  

20821321 VWR Chemicals Prolab, 
Leicestershire, UK 
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Product Number Company 

Methanol absolute ≥99.8 % 
AnalaR NORMAPUR®  

20847307 VWR Chemicals Prolab 

Tissue-Tek O.C.T. compound, 
Sakura Finetek 

25608930 VWR Chemicals Prolab 

 

2.1.3 Media  

Product Number Company 

Dulbecco's Modified Eagle's 

Medium (DMEM) - high glucose 

D6546 Sigma-Aldrich, Dorset, 

UK 

L-Glutamin solution, 200 mM G7513 Sigma-Aldrich 

Fetal Bovine Serum (FBS) F7524 Sigma-Aldrich 

Hydrocortisone 21-

hemisuccinate sodium salt  

H2270 Sigma-Aldrich 

Progesterone  P8783 Sigma-Aldrich 

Putrescine dihydrochloride  P7505 Sigma-Aldrich 

2-mercaptoethanol  516732 Sigma-Aldrich 

Dimethyl Sulfoxide (DMSO) D2650 Sigma-Aldrich 

Penicillin/Streptomycin 10,000 

U/mL 

15140122 ThermoFisher Scientific, 

Northumberland, UK 

 

2.1.4 Cell lines 

Cell line Description Company 

HEK293T  Human embryonic kidney cells 

expressing simian virus 40 (SV40) 

large T-antigen  

European Collection of 

Cell Cultures (ECACC), 

UK 

661W Transgenic mouse retinal tumor 

cell line expressing simian virus 40 

(SV40) T antigen  

Dr. Muayyad R. Al-Ubaidi 

(University of Oklahoma, 

USA)  
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2.1.5 Plasmids 

Plasmids Number Short form Company 

ITR.CAG.Kozak.coRPGRORF15.bGHpA.ITR  CAG.coRPGR GenScript 

ITR.CAG.Kozak.wtRPGRORF15.bGHpA.ITR   CAG.wtRPGR OriGene 

FIN-RK-GFP-WPRE  44358 RK.GFP Addgene, 

gift from Dr 

Susan 

Semple-

Rowland 

AAV-EF1a-doublefloxed-

chR2EYFP-WPRE-HGHpA   

20298 EF1a.EYFP^d

oublefloxed 

Addgene, 

gift from Dr 

Karl 

Deisseroth 

 

2.1.6 Viruses 

Virus Short form Origin 

rAAV2/8.RK.coR

PGR  

rAAV2/8.coRPGR  Gift from Dr Dominik 

Fischer, Nuffield 

Department of Clinical 

Neuroscience, University of 

Oxford, UK 

rAAV2/8.RK.wtR

PGR 

rAAV2/8.wtRPGR Gift from Dr Dominik 

Fischer, Nuffield 

Department of Clinical 

Neuroscience, University of 

Oxford, UK 

rAAV2/8.Y733F.R

K.coRPGR 

rAAV2/8.Y733F.coRPGR Gift from Dr Dominik 

Fischer, Nuffield 

Department of Clinical 

Neuroscience, University of 

Oxford, UK 

rAAV2/8.Y733F.R

K.wtRPGR 

rAAV2/8.Y733F.wtRPGR Gift from Dr Dominik 

Fischer, Nuffield 

Department of Clinical 

Neuroscience, University of 

Oxford, UK 
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Virus Short form Origin 

rAAV2/8.EF1a-

doublefloxed-

chR2EYFP-

WPRE-HGHpA  

rAAV2/8.control Gift from Dr Dominik 

Fischer, Nuffield 

Department of Clinical 

Neuroscience, University of 

Oxford, UK 

rAAV2/8.RK.GFP rAAV2/8.GFP Gift from Dr Dominik 

Fischer, Nuffield 

Department of Clinical 

Neuroscience, University of 

Oxford, UK 

 

2.1.7 Primary antibodies 

Anti-

body 

Num-

ber 

Company Source / 

target / 

clonality 

Anti-

body 

iso-

type 

Epitope Stock 

concen-

tration 

(mg/ml) 

Diluti-

on 

Tech-

nique 

C-

RPGR

^512-

531  

N/A Aldevron, 

Freiburg, 

Germany 

rabbit / 

human / 

polyclonal 

IgG  EKSLKL

SPVQK

QKKQQ

TIGE 

1,28 1:500 WB, 

ICC, 

IHC 

N-

RPGR

^19-

35/113

-129  

N/A Aldevron rabbit / 

human / 

polyclonal 

IgG KSKFA

ENNPG

KFWFK

ND,  

GNNEG

QLGGD

TEERN

T 

1,9 1:500 WB, 

ICC 
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Anti-

body 

Num-

ber 

Company Source / 

target / 

clonality 

Anti-

body 

iso-

type 

Epitope Stock 

concen-

tration 

(mg/ml) 

Diluti-

on 

Tech-

nique 

Anti-

RPGR 

(N-

termin

al) 

antibo

dy 

produc

ed in 

rabbit 

HPA

0015

93 

Sigma-

Aldrich 

Prestige 

Antbodies, 

Darmstadt, 

Germany 

rabbit / 

human / 

polyclonal 

IgG EINDTC

LSVATF

LPYSSL

TSGNV

LQRTL

SARMR

RRERE

RSPDS

FSMRR

TLPPIE

GTLGL

SACFL

PNSVF

PRCSE

RNLQE

SVLSE

QDLMQ

PEEPD

YLLDE

MTKEA

EIDNSS

TVESL

GETTDI

LNMTHI

MSLN 

0,2 1:500 

(WB), 

1:200 

(IHC) 

WB, 

ICC, 

IHC 

Anti-

RPGR 

(C-

termin

al) 

antibo

dy 

produc

ed in 

rabbit 

SAB

1303

617 

Sigma-

Aldrich 

rabbit / 

human / 

polyclonal 

IgG C-

terminus 

0,25 1:500 WB 

Rpgr 

Antibo

dy (M-

20)  

sc-

1467

6 

Santa Cruz, 

Santa Cruz, 

Heidelberg, 

Germany  

goat / 

mouse / 

polyclonal 

IgG near C-

terminus 

of 

mouse 

RPGR 

0,2 1:200 IHC 

RPGRI

P1 

Antibo

dy 

(E14) 

sc-

1607

53 

Santa Cruz  goat / 

mouse 

and rat / 

polyclonal 

IgG near N-

terminus 

of 

mouse 

RPGRIP 

0,2 1:200 IHC 
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Anti-

body 

Num-

ber 

Company Source / 

target / 

clonality 

Anti-

body 

iso-

type 

Epitope Stock 

concen-

tration 

(mg/ml) 

Diluti-

on 

Tech-

nique 

Anti-

GAPD

H 

Antibo

dy 

(Clone 

Name: 

OTI2D

9) 

TA80

2519 

OriGene, 

Cambridge, 

UK  

mouse / 

human, 

mouse, 

rat, dog 

and 

monkey / 

monoclon

al 

IgG full 

length 

human 

recombi

nant 

protein 

of 

human 

GAPDH 

(NP_00

2037)  

1 1:2000 WB 

Anti-

beta 

actin  

MA5-

1573

9 

ThermoFis

her 

Scientific, 

Northumber

land, UK 

mouse / 

human, 

mouse / 

monoclon

al  

IgG A 

slightly 

modified 

syntheti

c beta-

cytoplas

mic 

actin N- 

terminal 

peptide 

conjugat

ed to 

KLH  

  
 

N/A: not applicable 

 

2.1.8 Secondary antibodies 

Anti-

body 

Num-

ber 

Company Source / 

target / 

clonality 

Anti-

body 

iso-

type 

Epit-

ope 

Stock 

conce-

ntration 

(mg/ml) 

Diluti

-on 

Tech-

nique 

IRDye 

680RD  

926-

68072 

Li-Cor, 

Biotechno

logies, 

Cambridg

e, UK  

donkey / 

mouse / 

polyclonal 

IgG mouse 

IgG 

(H&L) 

1 1:10

000 

WB 

(fluore

scent)  

IRDye 

800CW  

926-

32212 

Li-Cor donkey / 

mouse / 

polyclonal 

IgG mouse 

IgG 

(H&L) 

1 1:10

000 

WB 

(fluore

scent)  

IRDye 

800CW  

926-

32213 

Li-Cor donkey / 

rabbit / 

polyclonal 

IgG rabbit 

IgG 

(H&L) 

1 1:10

000 

WB 

(fluore

scent)  
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Anti-

body 

Num-

ber 

Company Source / 

target / 

clonality 

Anti-

body 

iso-

type 

Epit-

ope 

Stock 

conce-

ntration 

(mg/ml) 

Diluti

-on 

Tech-

nique 

IRDye 

680RD  

926-

68074 

Li-Cor donkey / 

goat / 

polyclonal 

IgG goat 

IgG 

(H&L) 

1 1:10

000 

WB 

(fluore

scent)  

Donkey 

Anti-

Rabbit 

IgG H&L 

(HRP) 

preabso

rbed 

ab985

03 

Abcam, 

Cambridg

e, UK  

donkey / 

rabbit / 

polyclonal 

IgG rabbit 

IgG 

(H&L) 

0,5 1:10

000 

WB 

Donkey 

Anti-

Mouse 

IgG H&L 

(HRP) 

preabso

rbed 

ab987

99 

Abcam donkey / 

mouse / 

polyclonal 

IgG mouse 

IgG 

(H&L) 

0,5 1:10

000 

WB 

 

2.1.9 Animals 

Animal Origin 

C57BL/6J mice  The Jackson Laboratory, Bar Harbor, USA  

C57BL/6J Rd9/Boc mice  The Jackson Laboratory, Bar Harbor, USA  

Rpgr-/y mice  Tiansen Li, Neurobiology, 

Neurodegeneration & Repair Laboratory, 

National Eye Institute, Bethesda, USA 

Rhesus macaques (Macaca 

mullata) 

Medical Research Council Centre for 

Macaques, Porton Down, UK  

 

2.1.10 Software 

Software Version Company 

ImageStudioLite 4.0.21 LiCor Biosciences, 

Nebraska, USA 

Odysee Fc Imaging 

System  

Model No 2800 S/N 

OFC-0377 

LiCor Biosciences 

Excel for Macintosh OSX 36539 Microsoft, Redmond, 

USA 
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Software Version Company 

Statistical Package for 

Social Sciences version 

21 by IBM (SPSS21)  

21 SPSS Inc., Chicago, 

USA 

ImageJ/FIJI  2.0.0.-rc-43/1.51s ImageJ/FIJI  

 

 

2.2. Methods 

2.2.1 Cell Culture 

Utilizing western blots, cell lysate of HEK293T transfected with plasmids 

containing codon optimized (co) RPGRORF15 and wild type (wt) RPGRORF15 were 

used to compare and quantify RPGRORF15 transgene expression. 661W cells 

were employed to assess transducibility of wild type rAAV2/8 and single mutant 

rAAV2/8Y733F vector capsids. All cell culture work was performed under a class II 

cell culture hood (ThermoFisher Scientific, Northumberland, UK). Cell culture 

flasks were stored in a Galaxy R incubator (Eppendorf AG, Hamburg, Germany). 

Cell culture media stored was at 4 °C and pre-warmed in a 37°-degree water bath 

(ThermoFisher Scientific) prior to use.  

Western Blot was used to quantify transgene expression in HEK293T cells 

transfected with co or wt RPGRORF15 as well as to detect transgene expression in 

mice unilaterally injected with AAV8.coRPGR. Immuno-labeling was used to 

show correct localisation of codon optimised transgene to the photoreceptor 

cilium and to compare transduction efficiency between wild type and single 

mutant (Y733F) AAV8 capsids. 

 

2.2.1.1 Human embryonic kidney cells 

HEK293T cells are derived from human embryonic kidney cells of a healthy, 

aborted embryo, and were immortalized by Frank Graham in Alexander van der 

Eb’s laboratory in 1973 in Leiden, Netherlands. Transformation was achieved in 

Dr. Grahams 293rd experiment by culturing HEK cells with sheared adenovirus 5 

(AAV5) DNA, which resulted in a 4.5 kbp insertion of the AAV5 genome into 

chromosome 19 of the HEK cell line. This genome fragment encodes for 
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E1A/E1B proteins which interfere with cell cycle control pathways and inhibit 

apoptosis [154, 155]. Additionally, HEK293T cells express a temperature-

sensitive allele of the Simian Virus 40 (SV40) large T-Cell antigen. This 

considerably increases expression levels obtained with transient transfection by 

plasmid vectors that contain the SV40 origin of replication [156]. Additionally, 

SV40 T inhibits p53, which might increase proliferative drive [157].  

 

Resuscitation 

HEK293T cells were obtained from the European Collection of Cell Cultures 

(ECACC; UK) and aliquots of 2 x 106 cells were stored in 1.5 ml 90 % Fetal 

Bovine Serum (FBS; Sigma-Aldrich Company Ltd., Dorset, UK), 10 % Dimethyl 

sulfoxide (DMSO; Sigma-Aldrich) in liquid nitrogen at -196 °C. For resuscitation, 

cell vial aliquots were removed from the liquid nitrogen freezer, transported to the 

cell culture lab on dry ice and defrosted in a preheated water bath at 37 °C. The 

thawed cell suspension was pipetted into 10 ml of pre-warmed, 36 °C complete 

cell culture media: high glucose Dulbecco's Modified Eagle's Medium (DMEM) 

with 10 % FBS, 1 % 200 mM L-glutamin solution (all Sigma-Aldrich) and 1 % 

Penicillin/Streptomycin (ThermoFisher Scientific, Northumberland, UK) and spun 

down at 1200 rpm for 5 minutes at 4 °C. The supernatant was aspirated, and cells 

were carefully re-suspended in 1 ml DMEM and plated in a T75 flask (Sarstedt 

Inc., Newton NC, USA) with an additional 13 ml of DMEM. The flask was stored 

in a Galaxy R incubator (Eppendorf AG, Hamburg, Germany) at 37 °C with 5 % 

CO2. Before fresh media was added 24 h later, cells were washed in 2 ml 

Phosphate Buffered Saline (PBS; Sigma-Aldrich) to remove any damaged cells. 

Cell proliferation rates and the resulting confluency was determined daily under 

direct vision with light microscopy (Leica DMIL LED Inverted Fluorescence 

microscope, Leica Microsystems CMS GmbH, Wetzlar, Germany) at four- and 

ten-times magnification and documented with Retiga 2000R CCD Camera and 

QCapture Pro software (both Qimaging, Surrey, Canada).  
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Splitting  

When a cell confluency of approximately 70 % was reached, cell culture media 

was carefully removed from the T75 flask with a 25 ml serological pipette 

(Sarstedt). Preparation for splitting was undertaken with help of a gentle wash 

with 2 ml PBS to remove accumulated debris. Detachment of HEK293T cells from 

the flask bottom was induced by the addition of 1 ml PBS and a two-minute 

placement in an incubator. Sufficiency of cell detachment from the flask bottom 

was checked under direct vision with light microscopy. If the degree of 

detachment was deemed insufficient, mechanical force generated by tapping the 

flask was employed to further detach cells. Then, 9 ml of cell culture media was 

added, and a single cell suspension was attained by vigorously pipetting up and 

down. In order to achieve a 1:20 dilution, 3 ml of the generated cell suspension 

was added to a new, appropriately labeled T75 flask along with 3 ml of fresh cell 

culture media. 

 

2.2.1.2 Mouse cone photoreceptor-like cells (661W cell line) 

661W cells were cloned in the lab of Dr. Muayyad R. Al-Ubaidi from retinal tumors 

of a transgenic mouse line expressing the simian virus (SV) 40 T-antigen under 

control of the human interphotoreceptor retinol-binding protein (IRBP) promoter. 

In addition to SV40, immunoblot analysis of these cells in monolayer showed 

expression of cone - but not rod - photoreceptor proteins: blue and green cone 

pigments, transducin, and cone arrestin [158]. Biochemical properties also 

exclusively demonstrated cone characteristics. Hence, 661W cells are described 

as a “cone-like” photoreceptor cell line. 661W cells were obtained under material 

transfer agreement as a kind gift fom Dr. Muayyad R. Al-Ubaidi (University of 

Oklahoma, USA) and cultured according to his specifications. 

 

Cell resuscitation and splitting 

Cell storage, resuscitation and splitting were performed as described above for 

the HEK293T cell line, the exception being the cell media composition: 500 ml 

high-glucose DMEM with 40 μg/l hydrocortisone, 40 μg/l progesterone, 0.032 g/l 
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putrescine 40 μl/l, 2-mercaptoethanol (all Sigma-Aldrich), 100 mg/l penicillin, 100 

mg/l streptomycin (ThermoFisher) and 10 % FBS (Sigma-Aldrich).  

 

2.2.2 Animals 

Retinas of three mouse lines were obtained from a pre-clinical mouse trail 

conducted by Fischer et al. [78]. Two of the mouse lines, C57BL/6J Rd9/Boc and 

the transgenic Rpgr-/y line, showed a well-characterised XLRP phenotype [113, 

127], while the third, C57BL/6J, was used as a wild type control. With the goal of 

investigating safety and efficacy of gene therapy using an AAV2/8.RK.coRPGR 

vector, C57BL/6J and Rpgr-/y mice were injected with a AAV2/8.RK.coRPGR 

vector unilaterally in an unmasked randomised fashion, while the C57BL/6J 

Rd9/Boc mouse strain received the AAV2/8.RK.coRPGR vector in one eye and was 

sham-injected with AAV2/8.control in the contralateral eye in a masked and 

randomised manner. Both the AAV2/8.RK.coRPGR and the AAV2/8.control were 

diluted in BSS with 0.001 % PF-68 and injected at a dose of 1.5 x 109 vg. Retinas 

of all three mouse lines were used to assess for transgene expression with 

enhanced chemiluminescent (ECL) and Immunofluorescent Western Blot 

analysis as well as for assessment of correct localisation of coRPGR protein in 

photoreceptor ciliary body.  

 

Throughout all stages of experimental work, mice were kept under conditions as 

specified by the ARVO Statement for the Use of Animals in Ophthalmic and 

Vision Research and UK Home Office guidelines 

(https://www.opt.uh.edu/onlinecoursematerials/PHOP6275/2015_Materials/PHO

P6275_Class3_3_Animals_in_Research_ARVO_Statement.pdf). An ample 

supply of food and water was provided, animals were kept in individually 

ventilated cages and subjected to 12 h on/ 12 h off cyclic lighting. 

 

2.2.2.1 C57BL/6J mice  

The C57BL/6J mouse line is derived from the C57BL/6 mouse strain, a well-

known mouse strain that has been extensively characterised both phenotypically 
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and genetically and is often used as a genetic background for congenic and 

mutant mice [159]. This inbred substrain of C57BL/6 mice was purchased from 

the Jackson Laboratory (Bar Harbor, USA), home of the original C57BL/6 mouse 

colony, and imported into the UK through Charles River Laboratories (Margate 

Kent, UK). It was used as wild-type control. 

 

2.2.2.2 Rpgr-/y mice  

A knockout vector was generated to create targeted disruption of exon 4-6 in the 

Rpgr gene, the murine homologue of human RPGR, resulting in a deletion of 

exon 4-6 and therefore a truncated Rpgr coding sequence. The vector was 

injected into J1ES cells and successfully targeted clones were injected into 

blastocytes of C57BL/6 mice to generate chimeras. Male chimeras were crossed 

with C57BL/6 females and nullizygous offspring were obtained by intercrossing 

over several generations [113]. The resulting phenotype included mislocalisation 

of cone opsins as well as rhodopsin depletion, which led to a slowly progressing 

degeneration of both rod and cone photoreceptors. Frozen embryos of the Rpgr-

/y mice line were a generous gift of Tiansen Li (Neurobiology, Neurodegeneration 

& Repair Laboratory, NEI, Bethesda, USA) and were obtained under material 

transfer agreement.  

 

2.2.2.3 C57BL/6J Rd9/Boc mice  

The retinal degeneration 9 (Rd9) mouse is a naturally occurring mouse model of 

XLRP that was generated in the The Jackson Laboratory on a C57BL/6J 

background. Responsible for this phenotype is a 32-base pair (bp) duplication 

within the terminal exon ORF15, resulting in a frame-shift in the repetitive region 

of ORF15 and thus a prematurely occurring stop codon. This mutation lead to 

substantially reduced or absent levels of Rpgr-ORF15 on RT-PCR and non-

detectable protein levels of Rpgr-ORF15 in Western Blot. Retinal phenotype 

pathology included RPE pigment loss and slowly progressive decrease in outer 

nuclear layer (ONL) thickness [127]. Like the C57BL/6J mice, C57BL/6JRd9/Boc 

mice were purchased from the The Jackson Laboratory and brought into the UK 
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through the Charles River Laboratories, where they were quarantined before 

transport to the Biomedical Service Center at the John Radcliffe Hospital. 

 

Harvesting of mice eyes 

After primary electrophysiological endpoints of the pre-clinical trial were 

established, mice were sacrificed. Eyes were quickly enucleated and 

appropriately processed for immunohistochemistry without fixation as detailed 

above and Western Blots to detect localisation of RPGR to the as well as 

transgene expression.  

 

2.2.2.4 Rhesus macaque (Macaca mullata) 

Due to their close genetic and physiological resemblance to humans as well as 

their natural abundance, Rhesus monkeys are the most frequently used non-

human primates in biomedical and genetic research. Retinal tissue was collected 

from Rhesus macaque (M. mullata) aged 5-19 years at the Medical Research 

Council (MRC) Centre for Macaques (Porton Down, Salisbury, UK) that had 

undergone scheduled killing for separate purposes. Eyes were enucleated 

promptly after sedation with 10 mg kg−1 intramuscular ketamine and a lethal 

overdose of 200–300 mg kg−1 intravenous pentobarbitone. The tissue was placed 

in Neurobasal A (ThermoFisher Scientific) with 100 units/ml penicillin, 800 µl L-

glutamine (both Sigma-Aldrich), 2 % B-27 supplement and 1 % N-2 supplement 

(both ThermoFisher Scientific). Peripheral samples of the retina were attained 

after appropriate dissection and transported to the laboratory in a cooled 

polystyrene box (JB Packaging, Torpoint UK). Lysis of peripheral retinal samples 

were prepared for immunofluorescent western blotting in the same manner as 

the mouse retinal lysates.  
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2.2.3 Molecular Biology 

2.2.3.1 Transfection 

Transfections were carried out with the goal of comparing transgene expression 

between wild type (wt) and codon optimized (co) RPGRORF15. All transfections 

were performed on HEK293T cells seeded in 6-well tissue culture plates 

(Sarstedt Inc., Newton NC, USA) at a density of 2-6 x105 cells per well (Graham 

FL 1977, Characteristics of a human cell line transformed by, Journal of general 

virology).  

 

Plating of cells  

When cells in a T75 flask reached 70 % confluency and were ready for 

passaging, cells were detached from the flask bottom and a single-cell 

suspension created as described above. Before splitting, 1 ml of the cell 

suspension was extracted and 4 ml of DMEM cell media (Sigma-Aldrich) added. 

This mixture was spun down at 1000 rpm for 5 min at 20 °C, the supernatant 

aspirated and cells re-suspended in 5 ml of DMEM cell media. A Neubauer 

counting chamber (VWR, Leicestershire, UK) was used to determine the number 

of cells/ml of suspension: twenty µl of cell suspension was pipetted onto the 

counting chamber surface and covered with a microslip. Cells were counted in all 

four squares of the counting chamber at 10 x magnification and averaged to 

ascertain the number of cells per ml of cell suspension and as well as the total 

number of cells in suspension. Based on this calculation, an appropriate amount 

of DMEM cell media was added to ensure the goal average of 2-6 x105 cells in 

each well. Each well was filled with 2 ml of cell suspension. Cells were incubated 

for 24 – 48 h until the cell confluency in each well reached 50-70 %.  

 

Plasmids  

Both plasmid constructs were flanked by AAV2 inverted terminal repeat (ITR) 

sequences. The initial ITR was followed by a CAG promotor, a hybrid between 

the early cytomegalovirus enhancer and the chicken beta-actin promotor. The 

CAG promotor is commonly used to promote high levels of recombinant protein 
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expression in mammalian cell lines [160]. This abundant expression levels also 

hold true for several retinal cell lines, including photoreceptors [161]. The Kozak 

consensus sequence 5’-(GCC)GCCRCCATGG- 3’, with R being a purine, 

adenine or guanine, plays an important role in the initiation of translation in 

eukaryotes by improving the efficiency of ribosomal binding [162] and was 

therefore added to the immediately upstream of the plasmid start codon: 5’-

GCCACC-3’. After the RPGRORF15 transgene (either wild type or codon 

optimized), the Polyadenylation signal pA from the bovine growth hormone was 

followed by the second AAV2 ITR. For abbreviation purposes, the two plasmids 

will be referred to as p.CAG.wtRPGR and p.CAG.coRPGR. 

The plasmids containing co and wtRPGRORF15 were designed and kindly 

provided by Dr Dominik Fischer. The codon optimisation process was undertaken 

with help of the OptimumGeneTM algorithm (GenScript, Piscataway, USA), 

which looked at several parameters to increase the likelihood of a stable 

replication and efficient protein translation: the use of major codons was 

increased resulting in an increase in the CAI of over 10 % (from 0.73 to 0.87). 

Cryptic splicing sites, premature poly-A sites, chi sites and RNA instability motifs 

were all sought to be minimized. GC content, CpG islands and repeat sequences 

and restriction sight that could potentially interfere with cloning were minimized 

as well.  

Codon optimisation: The complete cds was subjected to the OptimumGeneTM 

algorithm (GenScript, Piscataway, USA) to optimize a variety of parameters that 

are critical to the efficiency of gene expression, including codon usage bias, GC 

content, CpG dinucleotides content, mRNA secondary structure, cryptic splicing 

sites, premature poly-A sites, internal chi sites and ribosomal binding sites, 

negative CpG islands, RNA instability motif (ARE), repeat sequences (direct 

repeat, reverse repeat, and Dyad repeat) and restriction sites that may interfere 

with cloning [135].  
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Positive control  

The positive transfection control was given by a FIN-RK-GFP-WPRE plasmid 

(Addgene plasmid # 44358, gift from Susan Semple-Rowland) [163]. Human 

Rhodopsin Kinase (RK) Promotor is a photoreceptor specific promotor and 

HEK293T cell expression of green fluorescent protein marker was used to asses 

for success of transfection.  

 

Negative control 

As a negative control, AAV-EF1a-doublefloxed-chR2EYFP-WPRE-HGHpA 

plasmid DNA (Addgene plasmid #20298, gift from the Karl Deisseroth) was used. 

Double-floxing improves upon the traditional two-part scheme for spatio-temporal 

control of transgene expression, in which a cre-recombinase with a cell-specific 

promotor cuts at two loxP sites, which flank a stop codon. Ideally, excision of the 

stop codon and induction of transgene expression will therefore be restricted to 

specific tissues, However, the stop codon may insufficiently hinder the repression 

of transgene expression. To tackle this problem of transcriptional leakage, Sohal 

et al. modified the procedure so that the transgene, in this case the fusion gene 

eYFP-ChR2, is initially truly inactivated by inversion [164]. EYFP-ChR2 is 

therefore flanked by not one but two incompatible loxP sites (hence double-

floxed) and transgene expression is subsequently achieved through serial 

recombination. First, the transgene is reoriented and then one of each two lox 

sites is excised by Cre recombinase, leaving a pair of incompatible loxP sites that 

are unresponsive to Cre recombinase. Since the plasmid would not come in 

contact with Cre recombinase this double-lox system ensures transgene 

expression will not occur and could therefore serve as a negative control. In 

addition to the EF1-alpha promotor, the woodchuck hepatitis virus post-

transcriptional regulatory element (WPRE) was also contained in the plasmid, as 

well a human growth hormone polyadenylation signal (hGH polyA). The eYFP-

ChR2 gene starts in an inverted, inactive orientation [165]. 

 

Transfection 
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Genomic DNA extraction with the NanoDrop 1000 Spectrophotometer 

(ThermoFisher Scientific), was used to determine the concentration of plasmid 

DNA per µl of solution. In preparation for transfection, 3.0 µl TransIT®-LT1 

Transfection Reagent (Mirus Bio, Wyomming, USA) was added to 250 μl of 

reduced serum Opti-MEM (ThermoFisher Scientific) substituted with 2 mM L-

glutamine (Sigma-Aldrich Company Ltd., Dorset, UK) and placed in six sterile 1.5 

ml Eppendorf microtubes 3810X (Sigma-Aldrich). The mixture was vortexed and 

left to incubate at room-temperature for 5 minutes. After the appropriate amount 

of plasmid DNA had been added to achieve a concentration of 1.0 µg of plasmid 

DNA per well, the mixture was incubated at room temperature for 30 minutes, 

and subsequently pipetted onto the wells dropwise. To ensure optimal, even 

distribution of the TransIT®-LT1:DNA complexes, the six well plate was gently 

rocked back and forth. 

 

Harvesting of transfected HEK293T cells 

After 24 - 48 hours, when a strong GFP expression in the positive control 

indicated successful transfection, media was removed, and wells were gently 

washed with 1 ml PBS to remove any accumulated debris. Cells were then 

detached from the well surface by adding 1 ml PBS and pipetting up and down 

vigorously. The cell suspension was placed in 1.5 ml Eppendorf microtubes 

3810X (Sigma-Aldrich) and spun down at 4 °C for 10 minutes at 1000 rpm. The 

supernatant was then discarded, and the cells re-suspended in 500 µl of PBS. 

This step was repeated, and the media completely removed. The cell pellet was 

stored at -80 °C or lysed directly. 

 

Lysis of HEK293T cells 

One cOmplete mini EDTA-free protease inhibitor cocktail tablet (ThermoFisher 

Scientific) was dissolved in 10 ml Radio-Immunoprecipitation Assay (RIPA; 

ThermoFisher Scientific) and incubated on ice for 30 min before use. Then, 150 

µl of RIPA with dissolved protease inhibitor was pipetted onto the harvested cell 

pellet. The cell pellet was re-suspended and mechanically disrupted with 
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polypropylene pellet pestels a motor-driven grinder (both Sigma-Aldrich). After 

cell fragments were spun down at 14,000 rpm and 4 °C for 30 min, the protein-

rich supernatant was harvested, aliquoted into 50 µl portions and stored at -

20 °C. 

 

Lysis of mouse and macaque retina 

The dissected, whole retina was added to 100 µl RIPA with protease inhibitor 

pellet. After the retina was mechanically homogenized, the mixture was spun 

slowly at 4 °C for 20 min in a cold room. Then it was spun down in a centrifuge 

(Hettich Zentrifugen, Tuttlingen, Germany) at 14 000 rpm at 4 °C for 20 minutes. 

The protein-rich supernatant was collected, aliquoted in 20 µl portions and stored 

at -20 °C. 

 

2.2.3.2 Transduction 

Transduction agents 

All viruses used for transduction were kindly provided by Dr. Dominik Fischer. 

The plasmids used in transfection as described above were modified for virus 

production in an effort to limit the expression of RPGR exclusively to 

photoreceptors. The cytomegalovirus early enhancer and chicken beta-actin, 

rabbit beta-globin hybrid (CAG) promoter, which favours ubiquitous tissue 

expression, was replaced a photoreceptor-specific rhodopsin kinase (RK) 

promotor: rAAV2/8.RK.coRPGR and rAAV2/8.RK.wtRPGR. In an effort to 

compare transduction efficiency of an altered capsid 

rAAV2/8.Y733F.RK.coRPGR and rAAV2/8.Y733F.RK.wtRPGR were also 

created. Similar to transfection AAV2/8. EF1a-doublefloxed-chR2EYFP-WPRE-

HGHpA served as a negative control. A positive control was provided by 

rAAV2/8.RK.eGFP. Virus purification was performed by iodixanol gradient 

ultracentrifugation [166]. To remove any residual iodixinol, isolated rAAV virus 

was further purified and and concentrated by buffer exchange (Amicon Ultra-15; 

Millipore) [167]. Viral genome particle concentration as well as capsid 
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concentration was determined by qPCR and ELISA, respectively, and a ratio of 

empty to full capsids established [78]. 

 

Transduction  

Despite being cells of murine origin, 661W cells were chosen for transduction due 

to their cone-like properties. To determine transduction efficacy of coRPGR 

compared with wtRPGR viral vectors as well as transduction efficacy between 

different viral capsids, six-well plates were seeded with 4 x 105 cells 661W cells 

per well. When cells reached a confluency of approximately 70 %, virus was 

diluted 1:10 and the appropriate amount added to 2 ml DMEM cell culture media 

to achieve a multiplicity of infection (MOI) of 10,000 vg per cell. When the positive 

control showed GFP expression as determined under a light microscope at 4- 

and 10-times magnification, the immunocytochemistry (ICC) of cells in a 

monolayer was performed. 

  

2.2.3.3 Transgene detection 

2.2.3.3.1 BCA Assay 

The protein concentration of each aliquot was quantified using the PierceTM 

bicinchoninic acid (BCA) Protein Assay Kit (ThermoFisher Scientific). The 

microplate procedure was used to calorimetrically quantify the amount of total 

protein: Reagents A and B (both Sigma-Aldrich) were mixed in a ratio of 50:1 to 

create a working reagent. This reagent and Albumin Standard (BSA; 2 mg/ml) 

were combined to create a series of nine diluted albumin standards with 

concentrations ranging from 25 – 2000 µg/ml, as well as a negative control void 

of BSA. Samples of the unknown protein aliquots were mixed with RIPA buffer to 

obtain a 1:10 dilution. Twenty µl of the diluted unknown protein samples was 

pipetted into a white 96-well microplate (ThermoFischer Scientific), and 160 µl of 

working reagent was added to create a 1:8 dilution. The dilution series for the 

known protein was added to the microplate in the same fashion. The same was 

done with the dilution series of known protein. A technical replicate was added 

for each protein well. After being placed on a shaker for 30 s, the microplate was 
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incubated at 37 °C for 30 minutes. Afterward, the absorbance at 562 nm was 

measured on a Biochrom EZ Read 400 Microplate reader with the Galapagos 

software (Biochrom, Cambridge, UK) and exported to an excel file. The average 

of the absorbance values between the technical replicate and the primary wells 

were taken for both known and unknown protein. The absorbance values of the 

dilution series coupled with the known protein concentrations provided a linear 

regression formula by which the protein concentration of the unknown protein 

was calculated. Care was taken to adjust the calculated value to the 1:10 dilution 

made previously. 

 

2.2.3.3.2 SDS-PAGE 

SDS-PAGE with HEK293T cells 

An equal amount of protein was denatured with 2 x Laemmli buffer (Sigma-

Aldrich) for 30 minutes at room temperature. Running buffer for SDS-PAGE was 

prepared from reverse osmosis H20 and Tris/Glycin/SDS in 10:1 parts. Ten µg 

total protein was loaded in each well of a Criterion™ TGX™ sodium dodecyl 

sulfate polyacrylamide Precast Midi Protein Gel (BioRad, Hertforshire, UK) for 

electrophoresis at 100 V for 1.5 h (SDS-PAGE). BLUeye prestained protein 

ladder (GeneDireX, UK) was added on either side of the gel to ensure a reference 

for protein size in kDa.  

 

SDS Page with mouse retinal lysate 

When using proteins derived from mouse retina, Laemmli buffer in 5 x 

concentrate (Jena-Biosciences, Jena, Germany) was used in order to allow for a 

higher protein concentration to be loaded into the wells. Up to 100 µg of protein 

was loaded in wells of 7.5 % CriterionTM TGXTM Precast sodium dodecyl sulfate 

polyacrylamide gel (Bio-Rad), 12 + 2 wells, 45 µl and ran at 100 V for 1.5 h as 

described above.  
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2.2.3.3.3. Western Blot 

Western Blot with TurboBlotTM 

Gels containers were cracked open and gels carefully placed onto polyvinylidene 

difluoride (PVDF) membranes with 0.2 μm pore size (Trans-Blot® TurboTM Midi 

PVDF, Bio-Rad). Proteins were blotted using the Trans-Blot® TurboTM Transfer 

Starter System (Bio-Rad) according to the manufacturer’s instructions. The midi 

setting, corresponding to the eponymous Midi PVDF Membrane, was used to blot 

the proteins with the 7-minute protocol, used for mixed molecular weight proteins, 

at 25 V. With guidance of the protein ladder, PVDF membranes were horizontally 

cut with disposable scalpels (Swann-Morton, Sheffield, UK) at the appropriate kD 

mark depending on size of the target protein and loading control. These sections 

were then stained independently with corresponding primary and/or secondary 

antibodies. For a complete list of antibodies used, see section 2.1.7 in Materials. 

 

Enhanced Chemiluminescent (ECL) Western Blot  

Snap i.d.TM protein detection system 

The PVDF membranes were positioned in the wells of the SNAP i.d.TM protein 

detection system (Millipore Ltd., Feltham, UK). To prevent unspecific protein 

binding, a blocking solution consisting of 0.01M PBS with 0.1 % Triton-X (PBS-

T) combined with 3 % bovine serum albumin (BSA) was mixed and added to the 

membranes. A vacuum was applied to draw the PBS-T through the PVDF 

membrane, after which 3 ml of primary antibody solution was administered and 

incubated at room temperature for 10 minutes followed by vacuum application. 

The membranes were subsequently washed three times with PBS-T, followed by 

the incubation with horseradish peroxidase (HRP)-linked secondary antibody for 

10 minutes at room temperature. As previously described for the primary 

antibody, PVDF membranes were washed three times before being removed 

from the wells and incubated with ClarityTM Western ECL Substrate (Luminol 

Enhancer and Peroxide Solution, Biorad) for 3 minutes to activate 

chemiluminescence before imaging. Membrane sections were carefully re-

assembled in between Azpack™ Sarogold™ PRO Cling Wrap Film 

(ThermoFisher Scientific) to prevent the membrane from drying out during the 
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imaging process. Images were taken with Odyssey® FC imaging system (LiCor 

Biosciences) on the chemiluminescent channel and exported in an 

uncompressed tagged image file format (.TIFF) with 1200 dpi resolution.  

 

Optimization of ECL Western Blot 

For optimization of the western blotting, a more time-intensive blocking and 

antibody staining procedure was used. SDS-page and blotting were undertaken 

as described above. The PVDF membrane was blocked with 3 % BSA in PBS-T 

(0.1 %) for 45 minutes on an R100 Rotatest shaker (Luckham, Appliance number 

3573). The membranes were then placed in a tube with the side containing 

protein facing inward.  Primary antibody was applied, tubes placed on an 

analogue roller mixer SRT6 (Cole-Parmer, Staffordshire, UK) and incubated for 

1.5 hours. Afterwards, the membranes were washed with TBS 1 x and 0.1 % 

Tween three times for 7 minutes each and then incubated with the secondary 

antibody for 30 minutes, followed by an additional wash. The activation of 

chemical luminescence was achieved as described above.  

 

Immunofluorescent Western Blot 

In preparation for the blotting procedure, Trans-Blot® TurboTM Transfer buffer 5 x 

(BioRad) was mixed with reverse osmosis water (H2O) and ethanol absolute 

(AnalaR Normapur, VWR Chemicals) to create a 1 x concentration. The Midi-size 

0.45 µm low fluorescence (LF) PVDF membrane Trans-Blot® TurboTM (BioRad) 

was immersed in 100 % Methanol (VWR Chemicals Prolab, Leicestershire, UK) 

for approximately 1 minute until translucent, then transferred to a tray containing 

30 ml of 1 x transfer buffer for 3 minutes. Two Trans-Blot® TurboTM Midi-size 

transfer stacks (BioRad) were then submerged on a gel tray containing 50 ml of 

transfer buffer for 2-3 minutes. The blotting procedure was followed as described 

above. Depending on which antibody was used, quantitative western blot imaging 

was performed at 700- and 800-wave length channels for 2 minutes each.  
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2.2.3.3.4 EZ BlueTM Staining 

To compare banding pattern between cells transfected with coRPGR and 

wtRPGR, an SDS-Page was performed and stained with EZBlueTM Gel Staining 

Reagent (Sigma-Aldrich). Ten µg of protein was added to each well of a 7.5 % 

CriterionTM TGXTM Precast sodium dodecyl sulfate polyacrylamide gel (Bio-Rad) 

and electrophoresed at 100 V for 1.5 h (SDS-PAGE). The gel was submerged in 

double distilled water and washed on a R100 Rotatest shaker (Luckham) for 5 

minutes. This process was repeated twice before the SDS gel was submerged in 

EZBlueTM Gel staining reagent and incubated on the R100 Rotatest shaker for 1 

hour. Afterwards, the gel was washed for 1 hour while changing water 

periodically. The gel was imaged with Odyssey® FC imaging system (LiCor, 

Nebraska, USA) at the 700-wave length channel and the file saved at 300 dpi in 

an uncompressed (.TIFF) file format.  

 

2.2.3.3.5 Immunocytochemistry 

The cell culture media was pipetted off each well and carefully washed with 1 ml 

PBS. After cells were fixed with 250 µl at 4 % for 10 minutes at room temperature 

they were blocked with 10 % Donkey serum in 0.2 % Triton X for 30 minutes. A 

wash with 1 ml PBS followed. The primary antibody solution was applied and 

incubated at room temperature for one hour on a R100 rotatest shaker. After the 

wash step was repeated twice, the Hoechst 33342 dye and secondary antibody 

were applied and incubated for one hour. Care was taken to protect the samples 

from light exposure using aluminum foil. After an additional wash step, the cells 

were mounted in ProLong® Gold (Life Technologies) for fluorescence 

microscopy. 

 

2.2.3.3.6 Immunohistochemistry 

Eyes were embedded in Tissue-Tek® O.C.T. compound (VWR Chemicals 

Prolab) without fixation or dehydration and stored at -80 °C for future use. The 

Leica CM3050 S Research Cryostat (Leica Microsystems CMS, Wetzlar, 

Germany) was cooled to -18 °C and the embedded tissue was cryostated into 

12 µm sections and placed on a poly-L-lysine coated glass slide (Gerhard Menzel 
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GmbH, Thermo Fisher Scientific). The sections were dried for 5 minutes at room 

temperature to ensure melting of the OCT compound and to therefore prevent 

tissue mobilization during handling. While drying, an edge was drawn around 

each section with an ImmEdgeTM Hydrophobic Barrier PAP Pen (Vector 

Laboratories, Burlingame, USA) to ensure fluid containment within its margins. 

After sections were washed with 0.01 PBS for 1 minute, they were blocked with 

10 % donkey serum in PBS containing 2 % bovine serum albumin for 10 minutes. 

Incubation with the primary antibody diluted in 2 % bovine serum albumin for 45 

minutes followed. Sections underwent a second wash in PBS for 1 minute before 

they were once again incubated with fluorochrome- conjugated secondary 

antibodies and Hoechst 33342 dye at 1:5000 for 30 minutes. After sections were 

subjected to / underwent a final wash, they were mounted in ProLong Gold (Life 

Technologies) for fluorescence microscopy, which was performed in quick 

succession to the antibody staining.  

A confocal scanning microscope LSM 710 (Zeiss, Aalen, Germany) was used to 

visualize retinal tissue sections. By harnessing the fluorescence of Hoechst 

33342 dye, GFP/Alexa-488, Alexa-555, Alexa-568, and Alexa-635 with a 350-nm 

UV, 488-nm argon, and the 543-nm HeNe laser, XY sections through the retinal 

tissue were achieved and these images were processed using ImageJ software. 

Recreation of the XY images were achieved by merging stacks in ImageJ.  

 

2.2.4 Statistical Analysis 

2.2.4.1 ImageStudioLite 

ImageStudioLite (LiCor, Nebraska, USA) was used to quantitatively analyse 

Western Blots. Rectangles were drawn around each band to measure the signal 

intensity in arbitrary units [AU]. The background was determined using samples 

of all sides of the rectangle and was then automatically subtracted from the signal 

intensity of each band. In order to account for potential differences in total protein 

load between wells, absolute values of the target protein were normalized by 

dividing them through the signal intensity of their respective loading control. 

Signal intensities were exported into an excel spreadsheet and SPSS for further 

analysis and graph creation. The signal intensity was presented in a boxplot with 
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a 95 % confidence interval (CI). Using the wtRPGRORF15 expression as a 

reference point, fold increase of coRPGRORF15 was depicted using bar graphs 

with standard deviation (SD). Kolmogorov-Smirnoff test was performed to test for 

normal distribution within sample groups. For normally distributed data sets, 

Student’s t-test was applied, for non-normally distributed data sets the non-

parametric Mann-Whitney test was used. Statistical significance was defined as 

α = 0.05 for all tests.  

 

2.2.4.2 ImageJ 

Recreation of the XY confocal images was achieved with ImageJ [168] and FIJI 

[169]. Appropriate channels were selected and merged using the stack merging 

function. Brightness and contrast levels subsequently adjusted for optimal 

exposure.  

Transduction efficacy was quantified by converting the colour picture to an RGB 

stack and measuring the grey area of the green autofluorescence channel. As 

described above, normalcy was tested using Kolmogorov-Smirnoff test and 

Student’s test was used as a parametric test.  

 

2.3 Results 

2.3.1 Western Blots 

2.3.1.1. HEK293T cell lysate 

2.3.1.1.1 Optimisation of Western Blot protocol 

Codon optimisation of RPGR leads to stable and increased gene expression in 

HEK293T cells 

Several variables were adjusted to optimise the western blot protocol used to 

detect RPGRORF15 protein:  the amount of transfected HEK293T cell lysate loaded 

into a well, the antibody used to detect RPGRORF15, duration of primary and 

secondary antibody incubation, and the loading control used. In Fig. 1, HEK293T 

cell lysate previously transfected with coRPGRORF15 and wtRPGRORF15 plasmids 

was loaded into wells in three different concentrations (20 µg, 10 µg and 5 µg) 
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and stained with antibodies designed to target different epitopes of the human 

RPGRORF15. Two antibodies were specific for RPGRORF15’s N-terminal, while two 

other antibodies bound to epitopes in RPGRORF15’s C-terminal sequence (for 

more detailed information on epitope binding refer to Table 2.1.7 and 2.1.8 in the 

methods section). In the initial western blot series (Fig. 2.1 A) which compared 

three of the four antibodies, only anti-C-RPGR512-531 was able to elicit a strong 

signal for all RPGRORF15 protein concentrations as well as for both coRPGRORF15 

and wtRPGRORF15 transcripts (Fig. 2.1 A).  

In a head-to-head comparison of the remaining anti-N-RPGR antibody with the 

anti-C-RPGR512-531 antibody, anti-C-RPGR512-531 showed by far the strongest, 

clearest and most reliable protein binding signal throughout all concentrations of 

RPGR protein. While the anti-N-RPGR antibody bound fairly well to RPGR from 

the coRPGRORF15 plasmid, the RPGR from wtRPGRORF15 plasmid was barely able 

to elicit a signal.  

This can be explained by future results that show coRPGRORF15 transfected 

HEK293T cells elicit an average of two-fold higher RPGR expression than their 

HEK293T cell counterparts transfected with wtRPGRORF15. In an effort to 

determine the ideal protein loading dose for a western blot lane, 20 µg, 10 µg and 

5 µg of HEK293T cell lysate transfected with both coRPGRORF15 and 

wtRPGRORF15 plasmids was loaded into three wells throughout both experiments. 

When looking at the RPGR staining with anti-C-RPGR512-531 in Fig. 2.1 A, one 

can see that 5 µg of protein was difficult to detected, whereas 20 µg elicited a 

signal that produced unspecific binding. Ten µg of protein was able to show a 

strong antibody response within the dynamic range of signal detection and was 

therefore determined to be the optimal protein loading concentration. Since the 

loading control in form of actin consistently showed unspecific protein binding 

(Fig. 2.1 A and 2.1 B), the loading control was switched to the equally ubiquitously 

expressed anti-GAPDH (Fig. 2.2 B), which displayed more specific antibody 

binding.  
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Fig. 2.1: Optimization of western blot protocol for RPGR protein detection. In an effort to 
optimize RPGR protein detection, four different antibodies designed to bind at opposite terminals 
and four different amino acid sequences were compared in two different experiments (A, B). 
Throughout both experiments, three different protein concentrations (20µg, 10µg, 5µg) were 
loaded into wells. The C-RPGR512-531 antibody proved superior for protein detection, whereas a 
loading dose of 10µg proved ideal for a strong signal that was neither oversaturated nor too faint. 
A positive control was used to confirm the correct detection of C-RPGR512-531 (B). In Figure 2C, 
the improvements of using a longer antibody incubation time as well as a GAPDH instead of actin 
loading control can be seen.  
CoRPGR = codon optimised Retinitis Pigmentosa GTPase regulating gene; wtRPGR = wild type 
Retinitis Pigmentosa GTPase Regulator, nc = negative control, PL = protein ladder, kDa = kilo 
Dalton 

 

To further optimise antibody binding, a different protocol, which required 

significantly longer incubation times for both primary and secondary antibody, 

was used (Fig. 2.2 B). This method displayed far superior results and was 

therefore used in all future western blot experiments. 
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Fig. 2.2: Depiction of sequential workflow for quantifying and comparing coRPGR with 
wtRPGR transgene expression. Two wells of HEK293T cells, each paired with a technical 
replicate well, were transfected with coRPGR and wtRPGR-containing plasmids. The positive 
control was provided by a GFP plasmid, while a doublefloxed EYFP plasmid provided a negative 
control (A). Next, HEK293T cell lysate expressing coRPGR and wtRPGR transgene was loaded 
into wells and run on an SDS-page gel. Six technical replicates measured reproducibility of the 
results (B). Both the absolute signal intensity of coRPGR and wtRPGR protein bands, as well as 
the relative fold increase of coRPGR protein compared to wtRPGR protein were quantified (C). 
HEK203T cell lysate transfected with coRPGR showed a significantly stronger signal intensity (p 
= 0.03) as well as a significant mean fold increase over wtRPGR (p = 0.03).  
CoRPGR = codon optimised Retinitis Pigmentosa GTPase regulating gene; wtRPGR = wild type 
Retinitis Pigmentosa GTPase Regulator; co = codon optimised, wt = wild type, nc = negative 
control, PL = protein ladder, kDa = kilo Dalton 
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2.3.1.1.2 Western Blots with HEK293T cells utilizing technical and biological 

replicates 

Using this optimised method for western blotting, a significant difference in RPGR 

protein production between the HEK293T cells transfected with a plasmid-

containing coRPGRORF15 transgene and the cells transfected with a plasmid-

containing wtRPGRORF15 could be shown in two consecutive experiments. 

In preparation for each experiment, wells seeded with HEK293T cells were 

transfected with plasmids containing coRPGRORF15 transgene as well as 

wtRPGRORF15 transgene. As a positive control to signal successful transfection, 

a GFP-containing plasmid was used. An EYFP doublefloxed plasmid was used 

as a negative transfection control. In the first western blot, which made use of 

HEK293T cell lysate from a single transfection, co and wtRPGRORF15-transfected 

cell lysate was loaded and run on an SDS-page gel and the bands of interest, as 

well as a ubiquitously expressed loading control in the form of GAPDH, were 

made visible via western blot. Six additional technical control bands were run 

alongside each original coRPGRORF15 and wtRPGRORF15 lane to investigate 

whether results were truly reproducible. Lysate of coRPGRORF15-transfected cells 

showed a clear difference in both band signal intensity and fold increase 

compared with wtRPGRORF15-transfected cell lysate. In signal intensity, 

coRPGRORF15 lane showed a mean of 1.70 arbitrary units (AU; 95 % CI: 0.92 – 

2.48), whereas wtRPGRORF15 showed a mean of 0.92 AU (95 % CI = 0.42 – 1.42). 

Since the band intensity showed a normal distribution in all western blots utilising 

HEK293T cell lysate, parametric tests were used to determine significance. Using 

Student’s t-test (unpaired, one-tailed) for normally distributed values, the 

difference between the two means was shown to be significant (p = 0.03). To 

present this band signal increase in a more meaningful manner, the fold increase 

achieved by transfecting cells with coRPGRORF15-containing plasmid was 

calculated using the wtRPGRORF15-transfected cell signal as a baseline 

reference. Cells transfected with coRPGRORF15 showed a 1.86-fold increase (±SD 

0.92) over wtRPGRORF15 baseline mean of 1.00 (±SD 0.59; p = 0.03). While a 

GFP-containing plasmid was used as a positive control in transfection of 

HEK293T cells (Fig. 2.2 A) the corresponding lysate provided a negative control 
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throughout the blotting process. A positive control for RPGRORF15 protein 

detection in western blots was not available.  

To see whether the higher transgene expression levels results held true for 

biological as well as technical replicates, transfections done at three different time 

points (February 2015, January 2015 and June 2014) and spanning a total of 

nine months, were used to compare RPGRORF15 transgene expression between 

HEK293T cells transfected with coRPGRORF15 vs wtRPGRORF15-containing 

plasmid. Each biological replicate was coupled with a technical replicate (Fig. 2.3 

A). Results from the previous experiment not simply replicated but amplified in 

this setting: mean signal intensity for coRPGR was 2.04 AU (95 % CI: 1.15 – 

2.92, n = 6), compared with for 0.92 AU wtRPGRORF15 (95 % CI: 0.62 – 1.28; n = 

6, p < 0.007). The fold increase of coRPGRORF15 transgene expression was 2.15 

(±SD 0.89) compared to the baseline of 1 provided by the wtRPGRORF15 

transgene expression (±SD 0.31; p < 0.007; Fig. 2.3 B).  

When pooling the data of the previous western blot experiments (n = 13 for both 

wt and coRPGR bands), coRPGRORF15 bands showed a mean signal intensity of 

1.86 AU (95 % CI 1.36 – 2.36) and wtRPGRORF15 a mean signal intensity of 0.93 

AU (95 % CI: 0.67 – 1.19), with coRPGRORF15 providing a significantly higher 

signal intensity (p = 0.00074; Fig. 2.4 A). This pattern was augmented when 

looking at fold increase, where coRPGRORF15 provided a fold increase of 2.0 (±SD 

0.88) in comparison to wtRPGR (±SD 0.59). This fold increase proved highly 

significant (p = 0.00071; Fig. 2.4 B).  
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Fig. 2.3: Western Blot utilizing technical and biologic replicates confirms superiority of 
coRPGR-containing plasmid in generating transgene expression. Two biologic replicates in 
form of transfections done at different time points were added to the western blot in addition to 
technical replicates (A). Band signal quantification not only confirmed the superiority of coRPGR-
containing plasmid in its ability to produce a higher transgene expression but produced amplified 
results (B). Signal intensity was significantly higher than that of HEK293T cells transduced with 
wtRPGR plasmid (p < 0.007). Compared to wtRPGR plasmid, coRPGR plasmid elicited a 2.15 
increase in transgene expression compared (p < 0.007). 
CoRPGR = codon optimised Retinitis Pigmentosa GTPase regulating gene; wtRPGR = wild type 
Retinitis Pigmentosa GTPase Regulator; co = codon optimised, wt = wild type, nc = negative 
control, PL = protein ladder, kDa = kilo Dalton 
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Fig. 2.4: Combined analysis of western blot data amplifies superiority of coRPGR-
containing plasmid to induce RPGR transgene expression. Data of the previous two western 
blots was combined to conclusively show a significantly higher protein expression in HEK293T 
cells transfected with HEK293T cells. In a head to head comparison, mean signal intensity of 
coRPGR protein bands (n = 13) was 1.86 AU (95% CI 1.36 – 2.36) which proved significantly 
higher than the signal intensity of wtRPGR (0.93 AU; p < 0.001; A). When considering the more 
meaningful fold increase, coRPGR-containing transgene succeeded in doubling the transgene 
expression compared with wtRPGR-containing plasmid (p < 0.001; B). 
CoRPGR = codon optimised Retinitis Pigmentosa GTPase regulating gene; wtRPGR = wild type 
Retinitis Pigmentosa GTPase Regulator; co = codon optimised, wt = wild type, nc = negative 
control, PL = protein ladder, kDa = kilo Dalton, * = p < 0.001 

 

When looking at the western blots of HEK293T cells, it is important to note that 

the coRPGRORF15 bands did not display any additional bands that were not 

present in the wtRPGRORF15 lane, indicating the absence of erroneously spliced 

RPGR variants.  

 

2.3.1.2 Western Blots using mouse retinal lysates  

Therapeutic, subretinal AAV2/8.coRPGR vector injection leads to consistent, 

albeit variable, transgene expression in three mouse lines 

As part of a pre-clinical safety and efficacy trial led by Fischer et al., three mouse 

strains were subretinally injected with a single dose of 1.5 x 109 vg of 

AAV2/8.coRPGRORF15 diluted in BSS with 0.001 % PF-68. The C57BL6/J mouse 

strain was used as a wild type, while the naturally occurring C57BL6/JRd9/Boc 

mouse strain and the generated knockout Rpgr-/y mouse strain were used as 

models to mimic RPGR-XLRP in humans. When injecting the C57BL6/J and the 
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Rpgr-/y mouse strain, the contralateral eye was left untreated and used as an 

internal control, whereas the contralateral eye in C57BL6/JRd9/Boc mice was sham-

injected and acted as an internal control as well. The sham injection consisted of 

1.5 x 109 vg of a AAV2/8.control vector, as detailed in the methods section. 

Since retinal cells are non-dividing and subretinal injections only target a small 

part of the entire retina, RPGRORF15 transgene expression was not nearly as 

prominent in this cell population compared with the HEK293T cell lysate. 

Therefore, RPGRORF15 signal provided more challenging to pick up on western 

blot. More total protein – at times up to ten times the amount of protein used for 

HEK293T cell lysate - had to be loaded to adequately pick up an RPGRORF15 

signal. This corresponded to a stronger noise signal of other protein bands. Since 

these extraneous bands were present in both untreated and treated eyes, as well 

as the positive and negative controls, whereas an RPGRORF15 could only be 

picked up in the treated eyes, it was inferred to be true background noise, rather 

than abnormally spliced or truncated RPGR variants. 

Unlike western blot bands utilizing HEK293T cell lysate, RPGRORF15 bands 

derived from mouse retinal lysate were non-normally distributed so the non-

parametric Mann Whitney test was used to determine significance. The non-

normal distribution was determined by the Kolmogorov Smirnoff test (p > 0.05). 

 

2.3.1.2.1 C57BL6/J mice 

Western blots display consistent and clear - albeit variable - RPGRORF15 bands in 

the retinal lysate of nine C57BL6/J wild-type mice treated with 

AAV2/8.coRPGRORF15 vector. 

A total of nine pairs of C57BL6/J mice eyes, of which one eye had been treated 

with AAV2/8.coRPGR and the untreated contralateral eye served as an internal 

control, were assessed for RPGRORF15 detection via western blot. All 

therapeutically injected eyes showed a variable but consistent RPGR transgene 

expression (Fig. 2.5 A). The positive control in form of HEK293T cells transfected 

with coRPGRORF15 confirmed the validity of RPGR signal picked up in the mouse 

retina. The contralateral untreated eyes of each respective treated eye showed 

an absence of RPGRORF15 signal, which was confirmed by negative control in 
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form of GFP-transfected HEK293T cells. In an effort to further quantify the 

RPGRORF15 band signals, the signal intensity was measured and presented 

graphically. Whereas the untreated mice eyes (n = 9) had a mean signal intensity 

of 0.0001 AU (95 % CI 0.0001 – 0.0002), the mean RPGR signal intensity of 

therapeutically injected mice (n = 9) was 100-fold increased (0.0114 AU; 95 % 

CI: 0.019 – 0.021; p < 0.0001; Fig. 2.5 B). The wide confidence interval 

surrounding the RPGRORF15 expression signal in treated eyes is a reflection of 

the wide variation in signal intensity gained from the treated lysed retina.   

 
Fig. 2.5: Consistent, albeit variable, RPGR transgene expression in retinal lysate of 
C57BL6/J mice treated with AAV2/8.coRPGR. Retinal lysate of nine C57BL6/J wild-type mice 
treated with AAV2/8.coRPGR vector, showed consistent and clear - although variable - levels of 
RPGR protein on western blot. A positive control was provided by HEK293T cell lysate previously 
transfected with coRPGR-containing plasmid. The corresponding contralateral, uninjected eyes 
show no signs of RPGR transgene expression, as confirmed by the negative control, which 
consisted of GFP transfected HEK293T cells (A). These results were quantified by measuring the 
signal intensity of RPGR bands in arbitrary units (AU), which showed the RPGR signal being 
significantly more pronounced in treated mice, while the corresponding eyes showed virtually no 
signal (p < 0.0001; B).  

 

It should be noted that while the C57BL6/J mice used as a wild type in this trial 

would express murine RpgrORF15, the antibody used on Western Blotting was 

specific for human RPGRORF15, which meant that no protein cross contamination 

between endogenous and therapeutically administered protein could occur. 
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2.3.1.2.2 RPGR-/y mice 

Western blots display weak but consistent and clear RPGRORF15 bands in the 

retinal lysate of four RPGR-/y mice treated with AAV2/8.coRPGRORF15 vector. 

Four eye pairs of RPGR-/y mice, the murine homologue to XLRP in humans, 

which had received unilateral therapeutic injections, were analysed for 

RPGRORF15 transgene protein expression on western blot (Fig. 2.6 A). 

Interestingly enough, while the mean signal was weaker than in the other two 

mouse lines (0.0045 [AU] compared with 0.0114 [AU] and 0.0457872 [AU], the 

level of protein expression was remarkably consistent in all four samples, a fact 

which is reflected in the small confidence interval surrounding the mean 0.0045 

[AU] (95 % CI = 0.0018 – 0.0071; Fig. 2.6 B).  

 
Fig. 2.6: RPGR protein restored in RPGR-/y mice, the murine homologue to human RPGR-
XLRP. Transgene detection in RPGR-/y mice injected with AAV2/8.coRPGR showed a delicate 
but clear band, whereas no signal was picked up in the negative control group provided by the 
corresponding untreated mouse eyes (A). Compared to the untreated control eyes, 
therapeutically injected mouse eyes showed a significantly higher RPGR band intensity (p < 
0.0001; B) 

 

2.3.1.2.3 C57BL/6JRd9/Boc mice 

Western blots of five mice mice treated with AAV2/8.coRPGR vector display the 

strongest mean signal intensity but with greatest variability. 

In C57BL/6JRd9/Boc mice, the difference in signal intensities within the treated eye 

group (n = 5) was most apparent, a fact which is mirrored in the large confidence 

interval around the mean signal intensity of 0.0457872 AU (95 % CI = 0.0026 - 

0.0942; Fig. 7 A and B).  
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Fig. 2.7: RPGR detection in the naturally occurring XLRP mouse model C57BL/6JRd9/Boc 

indicates successful subretinal application of viral vector. This western blot features the 
highest variability of RPGR signal. Whereas lanes two, three and four feature the strongest RPGR 
signal detected in any of the blots utilising mouse retinal lysate, RPGR signal in lane five is 
virtually undetectable (A). The mean signal intensity of treated mice eyes is remarkably strong 
0.0457872 AU (95% CI = 0.0026 - 0.0942) and the highest of all mouse lines and the high 
variability within the treated group is reflected in the large confidence interval (95% CI = 0.0026 - 
0.0942). Like the untreated control in the other mouse lines, the difference in signal intensity in 
therapeutically injected mice was significantly higher than in scam injected mice (p < 0.0001; B) 

 

Within this group, we see by far some of the strongest RPGRORF15 bands (lane 

two, three and four), making the mean RPGRORF15 gene expression the highest 

of all mouse genotypes. Conversely, in lane five, RPGRORF15 protein is virtually 

undetectable. Even though the protein load of each well is significantly less than 

in Fig. 6 (average of 61.2 µg of protein vs. 90 µg of protein) effects of protein 

overload (distortion of lanes, increased extraneous protein bands) can be seen 

in this gel. Just like in untreated eyes of the two other mouse lines, sham-injected 

eyes showed no sign of a RPGRORF15 signal (0.002707 AU (95 % CI = 0.0006 – 

0.0048). The difference between treated and untreated eyes was significant (p < 

0.0001). 

The immunofluorescent western blot (Fig. 2.8 A) further solidifies the trend 

displayed in preceding three chemiluminescent blots. In all three mouse lines, 

RPGRORF15 expression is captured in the eyes of therapeutically injected mice, 

whereas the untreated or sham injected contralateral mouse eyes show no 

RPGRORF15 signal, regardless of whether the eye was sham-injected or left 

untreated (Fig. 2.8 A). When the signal intensities of previous chemiluminescent 

western blots are displayed next to one other (Fig. 2.8 B), the results of the 

immunofluorescent western blot are mirrored in the graph. While RPGR-/y has the 
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lowest mean signal intensity, it also has the most consistent protein expression 

as reflected in the smallest confidence interval, whereas C57BL/6JRd9/Boc mice 

had the largest mean RPGRORF15 expression, but the largest intraindividual 

variability within the treated eye group. 

 

Fig. 2.8: Immunofluorescent western blot detects RPGR protein expression in three mouse 
lines subretinally injected with AAV2/8.coRPGR. RPGR gene expression was found in treated 
eyes of all three mouse lines. RPGR signal was weakest in RPGR-/y mice, and strongest in 
C57BL/6JRd9/Boc (8A). A summary of chemiluminescent western blot data mirrors the 
immunofluorescent blot. While RPGR-/y showed the least strong signal it also showed the most 
consistent RPGR expression (8B). An absence of RPGR signal is noted in all control eyes, 
regardless of whether they were treated were left untreated or sham injected with a control vector.  

 

The immunofluorescent blot was successfully able to get rid of much of the 

extraneous noise present on the chemiluminescent western blots. 
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2.3.1.3 Rhesus macaque (Macaca mullata) 

No endogenous levels of RPGRORF15 protein could be picked up in the Rhesus 

macaque retina  

In an effort to gage the endogenous level of RPGRORF15 protein in mammals, 

retinas of healthy Macaques were lysed and suspected to the same western blot 

protocol that had been previously used. Surprisingly enough, both western blots 

done at separate time points failed to pick up any sign of endogenous RPGRORF15 

signal (Fig. 2.9 A and B). 

 
Fig. 2.9: Two western blots of Macaque retinal lysate failed to detect endogenous 

RPGRORF15 protein expression. Two western blots to were unable to detect endogenous 

RPGRORF15 protein expression in the retinal lysate of healthy Macaque retina. No RPGRORF15 

signal was able to be detected in either blot (A; B), whereas the positive control signale emitted 
a robust signal. This is most likely due to degradation of RPGRORF15 by the fixation process and 
prolonged harvesting protocol. 
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2.3.1.4 EZ Blue staining of SDS-page gel 

EZ Blue staining of SDS-page gel shows similar banding pattern in both 

coRPGRORF15 and wtRPGRORF15 lanes 

In order to further investigate and compare the banding pattern of co and 

wtRPGR transfected HEK293T cells, the banding pattern was visualized by 

staining the SDS-page gel with EZ blue reagent (Fig. 2.10). When comparing the 

banding pattern of HEK293T cells transfected with coRPGR- and wtRPGR-

containing plasmid, the banding pattern looked remarkably similar between the 

two. This further indicates the stable expression and absence of splice variants 

or truncated proteins in cells transfected with coRPGRORF15-containing plasmid.  

 
Fig. 2.10: Similar banding pattern of HEK293T cell lysate transfected with co and wtRPGR 
indicates absence of splice variants or truncated of coRPGR. EZ Blue staining of SDS page 
gel shows a highly similar banding pattern for both coRPGR and wtRPGR. The lack of extraneous 
bands in the lane with coRPGR transfected HEK293T cells indicates a lack of splice variants or 
truncated RPGR protein.  
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2.3.2 Immunocytochemistry  

Single-mutant capsid results in a non-significant increase in increase in 

transduction efficacy of a cone-like cell line 

In transducing the cone-like cell line 661W with mutant AAV2/8Y733F and wild type 

AAV2/8 viral vectors containing coRGPRORF15 and wtRPGRORF15 transgene, the 

aim was to answer two questions:  

Firstly, was the transduction using single-mutant AAV8Y733F capsid more effective 

than transduction with wild-type AAV2/8 [100]? Secondly, was it possible to 

replicate the higher transgene expression of coRPGRORF15 versus wtRPGRORF15 

that we saw in transfected HEK293T cells?  

It was decided to use the cone-photoreceptor-like 661W cell line, which is derived 

from a murine retinal tumor, rather than HEK293T cells, a human embryonic 

kidney tumor cell line, in order to more closely align the cell culture experiments 

with the reality of therapeutic human photoreceptor transduction. 

Single-mutant AAV8Y733F capsid showed an increase in transduction of 661W 

cells when compared to the AAV2/8 wild type capsid, but this increase was non-

significant (p = 0.058, Fig. 2.12 A). The transfection results showing increased 

transgene expression of coRPGRORF15 in HEK203T cells could not be replicated, 

instead showing no significant difference in transgene expression between the 

two groups (p = 0.31, Fig. 2.12 B). The positive control was made up of 661W 

cells transfected with p.CAG.coRPGRORF15 and was strongly positive, whereas 

the negative control, which consisted of a double-floxed EYFP plasmid, remained 

staunchly negative, underscoring the validity of the experiment (Fig. 2.11).  
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Fig. 2.11: Comparison of transduction efficacy of two virus capsids and two transgenes in 
a cone-like 661W cell line. Immunocytochemistry was used to compare transduction efficacy of 
single-mutant AAV8Y733F capsid and wild-type AAV2/8 capsid. CoRPGRORF15 and wtRPGRORF15 
transgenes were alternately packaged in each of the capsids with the goal of assessing 
transduction efficacy. The plasmid CAG.coRPGR, which had been successful in transfecting 
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HEK293T cells provided a positive control, while a negative control was provided by 661W cells 
transduced with a double-floxed EYFP plasmid.  

 

2.3.3 Immunohistochemistry of sectioned mouse retina 

Therapeutic RPGRORF15 application results in gene expression and correct 

localisation in the connecting cilium of photoreceptors in a mouse line 

Western Blot was able to show transgene expression in mouse eyes 

therapeutically injected with coRPGRORF15, but to correct photoreceptor function, 

the protein must not merely be expressed but also correctly localized. 

Immunohistochemistry (IHC) was performed on unfixed sections of mouse retina 

stained for the RPGR-interacting protein (RPGRIP) as well as RPGRORF15. 

RPGRIP is localized to the CC and it is RPGRORF15’s binding partner, making it 

the ideal marker to assess correct co-localisation of RPGRORF15 to the connecting 

cilium. In all three mouse genotypes, the co-localization of RPGRORF15 with 

RPGRIP can be visualized in the connecting cilium (Fig. 2.13). The disorganised 

ONL seen on the IHC slides stem from the fact that tissue remained unfixed 

before staining.  

 

 
Fig. 2.12: Statistical evaluation of transduction efficacy of two virus capsids and two 
transgenes in a cone-like 661W cell line. AAV8Y733F capsid showed a non-significant (p = 
0.058), but increased transduction efficacy compared to wild type capsid (A). Transduction with 
codon-optimised RPGR did not yield a higher transduction efficacy than wild type RPGR 
transgene (p = 0.31; B) 
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Fig. 2.13: Retinas of therapeutically injected mouse eyes show transgene expression as 
well as physiological localization of RPGR to the connecting cilium. Immunohistochemistry 
of mouse eyes treated with subretinal injections of AAV2/8.coRPGR showed strong transgene 
expression as well as correct/physiological protein localization to the connecting cilium (CC). To 
better distinguish between the three antibody stainings, results for each antibody staining is 
presented on its own before presenting the composite image. The lack of fixation, which provides 
crosslinks between proteins and prevents artefacts produced by the knife cutting through the 
tissue with shearing forces varying as a function of tissue density, results in slightly disorganised 
tissue architecture. 
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2.4 Discussion 

2.4.1 CoRPGRORF15 leads to more stable and efficient transgene 

expression with the potential of limiting off-target effects and 

immune response 

CoRPGRORF15 increases transcriptional efficacy 

In the codon optimized RPGRORF15 construct, the rate of low-abundance codons 

was reduced from 10 % to 1 % and the codon adaptation index (CAI) was 

therefore increased from 0.73 in the wild-type sequence to 0.87 in the codon 

optimized transgene sequence [78]. One of the goals of RPGRORF15 codon 

optimization was to remove potential donor splice sites with the goal of reducing 

or even eliminating splice variants as well as to improve the stability of the 

RPGRORF15 sequence during the vector production process [78]. Increasing CAI 

would also increase expressional efficacy based on the fact that an increased 

CAI means more frequent use of preferred codons with more abundant tRNA 

populations for efficient translational activity [148]. This phenomenon, termed 

codon usage bias, is surprisingly well preserved throughout evolution and exists 

in all pro- and eukaryotic genomes [148]. In this study, western blotting comparing 

RPGRORF15 protein yield between coRPGRORF15 and wtRPGRORF15 transfected 

HEK293T cells was able to conclusively show a doubling of protein expression 

when using the codon optimized transgene sequence. Transcriptional efficacy 

can be seen as two sides of a coin: less transgene can achieve a higher protein 

yield. Less transgene burden decreases the potential for a local inflammatory 

response, but also for systemic spread – as well as the potential immune 

response that arises from it - and less risk for contiguous viral migration along the 

optic nerve. In a viral vector dose escalation trail, Vandenberghe et al. found 

traces of GFP transgene expression in the optic chiasm and lenticular nucleus at 

the highest dose [76]. This indicates that migration and contiguous spread of the 

viral vector within related tissues is dosage dependent. Thus, decreasing viral 

vector burden is one way to ensure transgene expression is limited to target 

tissues, limiting the potential for off targets effects, such as integration of the 

vector into the germ line or in other brain structures. Lower vector burden also 
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decreases the potential for an immune response, both acute and chronic, local 

and systemic. In the afore mentioned study, the highest dose intraocular injection 

lead to a formation of neutralizing antibodies targeting AAV capsids as well as 

the GFP transgene [76]. Independent studies of subretinal AAV injections in 

humans as well as other mammals are in line with this observation and report 

that high-dose AAV application undermines the idea of ocular immune privilege, 

causing an innate and adaptive immune response in the eye [66] [67]. If immune 

response is threshold dependent rather than linear to the dosage, ensuring a low 

viral vector load may become a vital component for gene therapy’s success. 

Keeping an immune response at bay might also prove to be important for the 

long-term success of therapeutic transgene expression. In two independent, 

long-term gene therapy trials for RPE65-LCA gene therapy, a slow decline in 

visual function was reported after an initial boost was observed six months post 

subretinal injection [66, 140]. While the loss of therapeutic efficacy months after 

treatment could be due to a non-immune mediated mechanism, such as silencing 

of the episomal transgene, immune-mediated clearance must be considered as 

a potential cause of this long-term therapeutic decline. Translational efficacy also 

means a higher protein expression can be achieved from a defined amount of 

viral vector. This might result in a prolonged, sustained protein expression and 

could potentially cause a more sustained improvement of visual function. While 

this does not solve the problem of functional and structural photoreceptor loss 

over time, it does have the potential to allow for a longer time before the viral 

vector needs to be re-administered.  

Codon optimisation has an additional benefit in that it allows an increases 

translational efficacy without the addition of viral, cis-acting regulatory elements 

such as WPRE that are often used to boost transcription for transgenes requiring 

a cell-specific promotor. This would free up space in the transgene cassette and 

decrease the exogenous and therefore potentially immunogenic substances 

being injected and - not least importantly – would make regulatory approval 

easier to obtain. 
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Indirect evidence of sequence fidelity and lack of splice variants in coRPGROR15 

protein 

In addition to a fold increase in transgene expression, the absence of additional 

bands in EZ Blue staining of SDS-page gel as well as western blot comparing wt 

and coRPGRORF15 expression profiles, provided indirect evidence that 

coRPGRORF15 transgene yielded true RPGRORF15 protein without splice variants. 

Also, the SDS Page stained with EZ Blue showed an identical migration pattern 

for coRPGRORF15 and wtRPGRORF15. Furthermore, the western blots of HEK293T 

cell lysate showed no extraneous bands in the coRPGRORF15 lanes. The 

extraneous bands in mice retinal lysate were present in both wild type and codon 

optimized as well as positive and negative controls and were thus interpreted as 

being a result of protein overload producing unspecific antibody binding. In a 

liquid chromatography experiment sequencing of RPGRORF15 protein Fischer et 

al. were able to sequence all but parts of the highly repetitive ORF15 sequence 

and show an identical protein sequence to that transcribed from wtRPGRORF15. 

In particular, the C-terminal protein end of the protein was able to be sequenced, 

which ruled out premature termination of translation [78]. The increased stability 

and lower mutation rate of coRPGRORF15 is vital once the necessity of a larger 

scale production arises in the light of clinical trials or commercialisation of 

RPGRORF15 gene therapy. It could thus pass through a bottle neck that many gene 

therapies for RPGR-XLRP have struggled with in the past [138, 170]. Also, the 

increased translation efficacy of the coRPGRORF15 construct would allow for a 

higher production yield and therefore lower production costs. 

 

2.4.2 Detecting coRPGRORF15 transgene expression and co-

localization with RPGRIP in three different mice lines  

As mentioned in the introduction, a drawback of ocular gene therapy is the 

inability to directly measure transgene expression. In clinical trials, downstream 

functional measures serve as a surrogate of successful transgene expression. 

Thus, the ability of a preclinical mouse trial to provide some information about the 

question of the scale of transgene expression is a major advantage. Transgene 
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expression levels were measured in two ways post-sacrifice of the animals: by 

western blot of retinal cell lysate and by IHC of unfixed, sectioned mouse tissue.  

 

2.4.2.1 CoRPGRORF15 transgene leads to consistent albeit variable 

expression in three different mice lines 

The observation that RPGRORF15 protein expression in retinal lysate of mice 

treated with AAV2/8.coRPGRORF15 was not nearly as strong as the expression in 

transfected HEK293T cells was not surprising and can be explained in two ways: 

HEK293T cells divide prodigiously and can therefore selectively ramp up 

transgene production. In vivo retinal cells on the other hand are stable cells 

permanently fixed in G0 cell cycle phase and are thus incapable of dividing. To 

exacerbate this disadvantage, subretinal injections are only able target a very 

small part of the entire retina (an argument often used in favour of intravitreal 

injection), whereas transfection of HEK293T cells in vitro targets virtually every 

plated cell in a high and therefore beneficial plasmid to cell ratio. Due to these 

facts, RPGRORF15 expression cannot be expected to be as prominent in a mouse 

retinal cell population compared with expression in HEK293T cell lysate. This 

relative weakness of the RPGRORF15 signal leads to the technical challenge of 

RPGRORF15 expression in mouse retinal cell lysate being much more difficult to 

detect on western blot. Consequently, more protein – at times up to ten times the 

amount of HEK203T cell lysate - had to be loaded to adequately detect an 

RPGRORF15 signal. This as well as the much more diverse protein expression 

profile of retinal cells, corresponded to a stronger noise signal of other protein 

bands, even when using an RPGRORF15 specific antibody. Since these extraneous 

bands were present in both untreated and treated eyes, as well as the positive 

and negative controls, whereas an RPGR could only be picked up in the treated 

eyes, these extraneous bands were inferred to be true background noise, rather 

than abnormally spliced versions of RPGRORF15 protein. 

Since the invitro transfection results convincingly showed a superiority of 

coRPGRORF15 transgene compared to wtRPGRORF15, the preclinical mouse trail 

undertaken by Fischer et al. solely made use of an AAV2/8.coRPGRORF15 viral 

vector for subretinal injection [78]. An RPGRORF15 fold increase between 
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wtRPGRORF15 and coRPGRORF15 transgene could therefore not be assessed in 

vivo. The strength of RPGRORF15 protein bands could be instead be visually 

assessed and compared to uninjected mouse. Protein bands were also quantified 

more objectively by measuring the signal strength in arbitrary units [AU]. By 

measuring RPGRORF15’s signal strength, several observations were made. While 

the RPGR-/y mouse produced the least strong signal, its signal was by far the 

most consistent. C57BL/6JRd9/Boc mice produced the strongest signal on average 

but demonstrated the largest signal variability. Finally, the wild type C57BL/6 

mice fell somewhere in the middle, producing a comparably strong RPGRORF15 

signal on average with variable consistency. While interpreting these results, it is 

important to keep in mind the small cohort size (n ranges from 5 to 9 eye pairs), 

which are largely due to above mentioned technical challenges of producing an 

adequate blot, when drawing conclusions from the data presented. 

Throughout all three mice lines, there was a reassuring lack of RPGRORF15 signal 

in both untreated and sham-injected eyes. This signals two things: as mentioned 

above, it confirms that the RPGRORF15 signal in the treatment group is a true 

RPGRORF15 signal. Secondly, it hints at an absence of viral vector transmission 

into the systemic circulation, an observation that was also made in previous gene 

therapy trials [75]. This is extremely important when thinking about an unwanted 

systemic immune response or the danger that the vector might shed form the 

injection site and integrate into germline cells, which would be a non-compatible 

breach of ethics.  

 

C57BL6/J mice 

While the wide variety of signal intensity could conceivably be attributed to a 

number of factors (see discussion below), it could not be traced back to the quality 

of surgery in the pre-clinical trials. For example, the fourth lane of the bottom WB 

in Fig 5 A gives us one of the strongest protein expressions, the surgical notes 

show that the RPE was penetrated [78]. Along these same lines, surgery with a 

difficult AC tap and small iris prolapse produced the same results as a surgery 

with no complications (Fig. 5 A, lane 1 and lane 2 respectively). But it is important 

to point out that while minor differences in surgical quality were present, mice with 
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surgical quality below a defined threshold (< 7 points in a predetermined scoring 

system) determined by a point scoring system were eliminated from the trial as 

insufficient retinal transduction could not be ruled out in these animals [78]. One 

could argue that by doing so, surgical variability was reduced as a source of 

transgene expression variability. 

 

RPGR-/y mice 

While transgene expression was restored in all mouse lines, the RPGR-/y mice 

provided the most consistent level of RPGRORF15 expression. This could be seen 

as strengthening the argument that a null mutation is the best background for 

gene therapy due to the fact that there is no competition with endogenous 

RGPRORF15 protein and therefore no potential of dominant negative effects of 

misfolded or truncated RPGRORF15. The only drawback in using null mutations 

would be the potential for a stronger immune response since the introduced 

protein would be a foreign one [76]. The codon optimised transgene is also a 

foreign one. 

Although this would not explain the contrary strong signal intensity and wide 

variability in C57BL/6JRd9/Boc mice, effectively also a null mutation.  

The relatively weak signal compared to the C57BL6/J signal might also be an 

indication of the challenges of rescuing a diseased retina rather than the healthy 

one. The retina of wild-type C57BL6/J mice is not hampered by degeneration, 

whereas the RPGR-/y mice exhibit photoreceptors (PRs) marked by degeneration 

starting at 2.5 months of age and might not be able to uptake, transcribe and 

translate the vectors in as effectively and efficiently as healthy PRs would be. 

This hypothesis might also be used to argue for an earlier injection time point in 

humans, where photoreceptors exhibit the least amount of damage and thus can 

process the transgene most efficiently. Also, the goal of preventing rather than 

halting or reversing PR degeneration would be more likely to be achieved in this 

manner.   

Considering that the two murine forms of RPGR-XLRP (RPGR-/y and 

C57BL/6JRd9/Boc mice) exhibits a mild phenotype compared to the human form 
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[113] [127] this points to the increased challenges posed by a more severely 

degenerated human retina when translating RPGR gene therapy into clinical 

RPGR-XLRP trials. On a more positive note, the effect on a functional level of 

rescuing a more severely damaged retina might be more pronounced and 

statistical significance of a treatment effect might be able to be shown with less 

patients needed in a human trial.  

As with the wild-type C57BL/6J mice, differences in surgical quality did not 

influence protein expression. The eyes in 1st and 4th WB both had a small 

epiretinal bleed post-surgery, but there was no difference in protein expression 

(surgical notes of the preclinical trial notes from Fischer et al., unpublished).  

It could be argued that consistent RPGRORF15 expression is more important than 

strong expression since the dose could be sequentially increased in a dose 

escalation trial to determine optimal dose effectiveness. This relatively weak 

signal in the RPGR-/y mice makes the need for a coRPGRORF15 transgene able to 

boost transcriptional efficacy even more apparent. And perhaps the weak 

expression in this knockout mouse line is an indicator that a higher dose is 

needed to promote sufficient RPGRORF15 expression. This begs the question of 

what can be defined as an adequate RPGRORF15 expression. The question is 

challenging to answer due to the lack of a mammalian positive control that could 

indicate normal RPGRORF15 expression in humans. The lack of knowledge of 

which RPGRORF15 dose would rescue photoreceptors as well as the recent 

indication from hemophilia trials that show clear relationship of dosing and 

treatment effect [71] are both strong reasons that a dose escalation should be 

part of a clinical trial. 

 
C57BL/6JRd9/Boc mice 

When looking at the C57BL/6JRd9/Boc blot, the question of sources for variability in 

protein expression become most apparent due to a large confidence interval 

which can be witnessed visually (qualitatively) as well as quantitatively. If 

variability did not arise from surgical technique, it could have arisen from technical 

difficulties in lysing the mouse retina, although this also seems less than likely 

given that all mouse retinas were lysed using the same protocol. If the difference 



Chapter 2 – Optimising Gene Therapy for XLRP 

91 

in expression is indeed a true difference, the variability might be due to a 

heterogeneous course of disease in mice, a fact often observed in humans, even 

if the same mutation is present [69, 134]. Perhaps some mice exhibited faster 

degeneration than others, making the transgene uptake less efficient or the 

number of PR available for transgene uptake was decreased. Perhaps the 

degeneration also varied locally, and some mice were injected in an area that 

had been subjected to more severe degeneration than others.  

 

When looking at the immunoblot (Fig. 8), which was done to compare all three 

mouse models side by side, we can see that the trend delineating itself in the 

individual blots holds true in the immunoblot as well. C57BL/6JRd9/Boc mice have 

the highest and strongest RPGRORF15 expression, whereas RPGR-/y mice have a 

weak RPGR protein band and the wild type C57BL/6J mouse falls squarely in the 

middle. This is an indication that the results from the western blots are not random 

due to technical difficulties in the experimental process but rather a true 

representation of transgene expression. The immunoblot also does a fair job of 

minimizing – though it does not eliminate – the prominent background noise 

present in the chemiluminescent western blots.  

 

2.4.3 Western Blot of Macaque retinal lysate was not able to pick 

up endogenous RPGR expression 

When looking at the strength of western blot bands in three different mouse 

models, it is difficult to put the RPGRORF15 band strength and therefore the 

efficacy of RPGR expression into context, because there is no positive human or 

mammalian control that could serve as a benchmark for sufficient RPGRORF15 

expression in a healthy retina. While a strong RPGRORF15 band would generally 

be viewed as more beneficial than a weak RPGR expression signal, perhaps high 

levels of RPGRORF15 are actually an overexpression and would result in a toxic 

effect on the retina. Having a positive mammalian control would consequently 

also give valuable feedback if RPGRORF15 was over or under dosed in the 

preclinical mouse trial. Hence, the western blots using lysed Macaque retina were 
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performed with the goal of determining a level of endogenous RPGRORF15 

expression.  

Macaque monkeys are valuable primate models for preclinical gene therapy 

studies for two reasons: the axial length of their eye is similar in length to a human 

eye and their retina is equipped with a fovea, a structure which other mammals, 

such as mice or dogs, do not have. Therefore, assessment of endogenous 

RPGRORF15 levels in the Macaque retina could provide valuable information of 

endogenous expression levels in their human counterpart. Unfortunately, in the 

two western blots of retinal lysate of healthy Macaque retinas utilizing a protein 

loading dose escalation, no endogenous RPGRORF15 was able to be detected in 

either of the blots, regardless of protein amount loaded.  

There are several possible hypotheses as to why endogenous Macaque 

RPGRORF15 was not picked up in the setting of immunofluorescent western blots: 

perhaps endogenous expression of Macaque RPGRORF15 is lower than 

anticipated, so that the fraction of RPGRORF15 present in Macaque retinal lysate 

was not strong enough to produce a detectable RPGRORF15 signal despite loading 

a large amount of protein (60 µg, 80 µg and 100 µg) in each well. If this were the 

case it would indicate overdosing in the treated mouse eyes and would raise 

questions about therapeutic protein overdosing and potential toxic effects, both 

direct and by triggering of the immune system. On the one hand this seems 

unlikely, simply due to the large amount of protein loaded. But when looking at 

the loading control, GAPDH, which is, contrary to RPGRORF15, a ubiquitously 

expressed protein, the signal is not as strong as to be expected when dealing 

with an ubiquitous protein. It could be therefore argued that this is an indicator 

that the far less highly expressed RPGRORF15 is really not able to be picked up 

simply due to quantity.  

Another explanation is that perhaps the antibody against human RPGRORF15 was 

not able to adequately pick up Macaque RPGRORF15. The antibody used targets 

the less well-preserved C-terminal ORF15 version of RPGR, which perhaps is 

not sequence homologous with the Macaque RPGRORF15.  

Yet the most likely explanation is that the protocol by which the Macaque eyes 

were processed resulted in the RPGRORF15 null signal. As mentioned in the 
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Methods section, all mice eyes were rapidly enucleated, placed in a lysis buffer 

and frozen within under 5 minutes. The tissue remained unfixed. On the other 

hand, the Macaque eyes were fixed and subjected to a much less rigorous 

harvesting timeframe than the mouse eyes. RPGR and the photoreceptor cilium 

are cellular organelles known to be sensitive to decay and epitope blocking due 

to tissue degeneration or fixation. Therefore, it is likely that RPGRORF15 was 

degraded due to tissue fixation and a prolonged harvesting process.  

 

2.4.3.1 Protein from coRPGRORF15 transgene co-localises to RPGRIP in the 

connecting cilium of three mouse lines 

As part of the machinery of the connecting cilium and its presumable function of 

shuttling protein from the inner to the outer part of the photoreceptor, 

RPGRORF15’s location is inextricably linked to its function. So, perhaps even more 

than in an enzyme disorder such as RPE65-LCA, it could be hypothesized that 

location is vital for rescuing function in RPGR-XLRP phenotype. All three mouse 

lines injected with coRPGRORF15 show correct co-localization with RPGRIP in the 

CC, another essential indicator that coRPGRORF15 transgene translates to a 

correct, fully-fledged and functioning RPGRORF15 protein product. 

Considering the functional importance successful co-localization of RPGRORF15 

to RPGRIP is another argument for using null mutations in RPGR gene therapy, 

as truncated constructs, at least those which are not subject to nonsense 

mediated decay, might very plausibly compete with therapeutic RPGRORF15 for 

RPGRIP binding. 

 

2.4.4 AAV2/8Y733F fails to a induce a significant increase in 

transduction efficacy of 661W cells  

While codon optimization creates an increased transduction efficacy by 

increasing protein translation, another possible way of maximizing transduction 

efficacy is to increase capsid affinity to target tissue by optimizing the amino acid 

structure of the capsid. An example of this is the use of AAV8 capsid, which 

targets photoreceptors with a much higher efficacy than the AAV2 capsid, which 
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is specific for RPE [76]. Beyond making the capsid more specific for a target cell 

line, the intracellular trafficking of the viral vector can be improved by modulating 

the capsid structure to improve the likelihood of the vector reaching the nucleus. 

As described previously, this has been shown to be achieved by replacing tyrosin 

(Y) amino acid residues with phenylalanine (F), which decreases the chance of 

the capsid being ubiquitinated and degraded before it can reach the nucleus [77]. 

In order to compare transduction efficacy of the wild type, AAV2/8 viral vector to 

single mutant AAV2/8Y733F capsid, a murine, cone-like photoreceptor cell line was 

chosen to in an effort to replicate in-vivo of subretinal injection as closely as 

possible.  

 

2.4.3.1 Non-significant increased transduction efficacy of single mutant 

Y733F capsid 

On average, the single-mutant capsid does show an increased transduction 

efficacy, but not a significant one (p = 0.058). There are several points that should 

be considered when interpreting these results: it is described that the more capsid 

Y-F substitutions are made, the greater the transduction efficacity will be [100]. 

Ryals and Boye et al. show that the capsid mutants with three Y-F substitutions 

have a much greater transduction efficacy of 661W cells than the single capsid 

mutants. Therefore, it could be hypothesized that one Y-F substitution is simply 

not enough to generate a meaningful increase in transduction. Also, the 

placement of the Y-F substitution within the amino acid sequence of the capsid 

influences transduction efficacy as well. When looking at retinal ganglion cells, it 

was shown that a Y444F AAV2 single capsid mutant showed a 10-fold higher 

transduction efficacy than its Y730F counterpart [101]. Perhaps transduction 

efficacy could have been improved not only by using a vector with multiple Y to 

F substitutions, but also a single-mutant capsid with a substitution at a different 

amino acid sequence number.  

In a more general argument, AAV8 is simply not the most efficient capsid for 

transducing 661W cells when compared to AAV1 or 2 [100] . And since 661W 

cells exhibit cone-like properties, but RP in the large majority of cases a rod-cone 

dystrophy, using cone-like cells to test transduction of a potential vector might not 
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be the ideal setting in which to mimic transduction for RPGR-XLRP treatment. 

Lastly, it is usually an uphill struggle to maintain a highly differentiated cellular 

phenotype such as that of a retinal photoreceptor in a cell culture. In fact, our 

661W cells – while characterized as cone-like cells in the original publication – 

did not exhibit the morphology of cone photoreceptors in vitro at all. Specifically, 

there was no connecting cilium with a differentiated inner and outer photoreceptor 

segment. The lack of a connecting cilium may also indicate that the 661W cells 

have de-differentiated to an extent that a) RPGR expression is downregulated 

and no longer needed in the normal functioning of these cells and that b) opsin 

expression is downregulated and the RK promoter of the transgene expression 

cassette might not be sufficient to drive significant transgene expression in these 

cells. 

 

2.4.3.2 No significance of transduction efficacy for coRPGRORF15 over 

wtRPGRORF15 

More troubling is the fact that coRPGR did not provide an increased transduction 

efficacy (p = 0.31), regardless of whether wild type or single-mutant Y733F 

capsids were used. These results stand in contrast to the HEK293T cell 

transfection results which showed a highly significant (p < 0.001) and 

reproducible increase in translation of coRPGR post transfection. The differences 

between the experiments were two-fold: the most important being that dissimilar 

cell lines were used (661W versus HEK293T). Secondly, the first experiment was 

a transfection, whereas the second was one was a transduction. Ryals et al. 

showed that compared to AAV1 and 2, AAV 8 does not lend itself well to 661W 

cell transduction [100]. Additionally, Vandenberghe et al. showed that AAV lends 

itself to more efficient rod rather than cone transduction [76].The HEK293T cell 

transfection results were reproducible with both technical and biologic replicates 

in different experiments at different time points. It could be argued that while 

whatever the cause of the non-significant difference in co and wtRPGR transgene 

expression in 661W cell line, the first set of experiments have shown us that the 

translation process is certainly more effective, so the bottleneck must not lie not 

in a less significant translation of protein but in the steps before the translation of 
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RPGRORF15 protein, either in the transduction efficacy or intracellular processing. 

And even if transcriptional efficacy were not to be improved with codon 

optimization, which it was shown to do using HEK293T cells, the decreased splice 

variants and increased stability in the vector cloning process, make the use of 

codon optimization a vital component in the vector production and of success in 

the RPGR gene therapy.  

 

2.4.3.3 Preparing for a clinical trial - which vector to use? 

The end-goal of the project of optimizing gene therapy for RPGR-XLRP is to lay 

the ground work for translation of RPGR-XLRP gene therapy from bench to 

bedside. In this setting, utilizing a vector that has previously been used both in 

retinal and systemically administered gene therapy trials [171] [172], has thus 

already been approved by regulators and most importantly already been proven 

to be safe and effective in patients lowers the hurdles for the coRPGRORF15-XLRP 

clinical trial approval. This becomes even more relevant when the transgene 

being used is a novel one with a not naturally occurring cDNA sequence, as is 

the case in coRPGRORF15 transgene. All these arguments were underscored by 

the fact that while single-mutant vector made a slightly increased vector efficacy, 

it was a non-significant increase. Based on this information, the decision to use 

the wild-type AAV2/8 viral vector in the preclinical murine trials for RPGR-XLRP 

gene therapy was made. 

Based on these results, as well as further functional information of the pre-clinical 

mouse trail published in Fischer et al., the pre-clinical approval of gene therapy 

utilizing coRPGRORF15 transgene was given and a dose-escalation, Phase I/II trial 

(NCT03116113) is currently underway.  
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CHAPTER 3 

RETROSPECTIVE ANALYSIS OF A 50-PATIENT RPGR-

XLRP COHORT 
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3.1 Materials and Methods 

 

The Materials and Methods utilised in the retrospective analysis of this patient 

cohort have previously been published by Bellingrath et al. [69].  

 

3.1.1 Patient characteristics 

A total of 50 patients, encompassing 100 eyes, were seen at two centres known 

for their expertise in the spectrum of IRDs: The University Eye Hospital in 

Tübingen, Germany, and the Oxford Eye Hospital in Oxford, United Kingdom. 

After an initial clinical diagnosis of RP was made and the mode of inheritance 

elucidated by the family history, patients were genetically sequenced to confirm 

RPGRORF15 mutations as the underlying cause of RP. In cases of discordance 

between clinical and genetic diagnosis, the genetic diagnosis of mutation in the 

RPGRORF15 gene had the final say in determining the diagnosis (e.g. in simplex 

cases). A total of 100 eyes were analysed in a retrospective, cross-sectional 

manner. The study was performed in accordance with the Declaration of Helsinki 

1975 (1983 revision). After a thorough review of both electronic records at the 

Tübingen University Eye Hospital and paper charts at the Oxford Eye Hospital, 

the following data were extracted from the notes: visual acuity (VA), visual fields, 

electroretinography (ERG), foveal thickness as well as data from the genetic 

testing. Based on the pattern of PR degeneration, patients were divided into three 

groups: a rod-cone degeneration phenotype, the most common pattern; a cone-

rod pattern of degeneration and finally, a subgroup of patients with a rod-cone 

phenotype featuring an affected fovea. ERG and perimetry were the tools used 

to divide patients into these phenotypic groups. 

For all genetic testing, institutional review board approval was secured.  

 

3.1.2 Molecular assessment 

In addition to being approved by the local research as well as the respective 

ethical review boards, all patients were required to give written consent to genetic 

testing. Standard protocols were used to extract genomic DNA from peripheral 
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blood samples. Testing was performed at the following five institutions: Centre 

for Genetics and Transcriptomics (CeGaT GmbH) and the molecular genetics 

institutions of the Universities of Tübingen, Regensburg, München and 

Manchester. Methods to analyse patient DNA samples in the previously 

mentioned laboratories included single-strand conformation polymorphism 

analysis, high resolution melting curve analysis, Sanger sequencing and next-

generation sequencing. Mutations found with these methods were confirmed 

using Sanger sequencing of PCR-amplified genomic DNA confirmed mutations 

[30, 110]. Between laboratories, extent and depth of analysis varied. It ranged 

from Sanger sequencing of solely the exon ORF15 or the RPGRORF15 gene to 

sequencing of all coding exons of both RPGRORF15 as well as panel sequencing 

of retinal dystrophy genes [30, 110, 173]. Categorisation of mutations included 

dividing them according to the type of mutation: missense, nonsense, insertions, 

deletions, gross deletions, and splice defects. Mutations occurring within exons 

were further categorized by the location of the mutation, with mutations ORF15 

mutations being grouped as one and considered separate from mutations 

occurring in exons 1-14.  

 

3.1.3 Clinical examinations 

Visual acuity 

Snellen charts were utilized to determine VA. If usage of pinhole improved VA, 

the pinhole-corrected VA was used in the data analysis. Where necessary for 

analysis, logMAR units were converted from original Snellen values using the 

formula: logMAR = -log (decimal acuity) [174]. 

 

Visual fields  

An Octopus 900 or a Goldmann perimeter (Haag-Streit, Koeniz, Switzerland) 

were used to assess visual fields [175, 176]. The boundaries of the visual fields 

as well as the blind spot were determined using I4e and III4e targets. At the 

University Eye Hospital in Tübingen, the area (in degrees2) was calculated using 

an in-built software measurement tool. Visual fields of the Oxford Eye Hospital 

patients were scanned from their paper records and Image J (version 2.0.0-rc-
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30/1.49s, http://imagej.nih.gov/ij/; provided in the public domain by the National 

Institutes of Health, Bethesda, MD, USA) was used to scan and determine the 

area. To do so, the outlines of the I4e and III4e targets were traced and the 

encompassed area calculated in degrees2 [24]. Even though it has already been 

shown that both methods result in comparable outcomes [177], compatibility of 

the two methods was tested by taking one patient’s field and calculating the visual 

field area in degrees using both methods. Since there was only a 1 % difference 

between the two methodologies in the calculated area (degrees2), the two 

methods were found to be compatible with one another in our study.  

 

Foveal thickness 

As has been described in previous studies [178], foveal thickness of patients in 

both locations was determined by scanning with spectral-domain optical 

coherence tomography (SD-OCT) using the Spectralis HRA+OCT platform 

(Heidelberg Engineering, Heidelberg, Germany) with its follow-up mode. The 

Caliper tool, which measures the thickness of the ONL combined with the inner 

and outer segment length (in other words, the PR layer), was used to determine 

retinal thickness in the central foveola. This thickness of the PR layer has been 

shown to be correlate with VA in patients with central serous chorioretinopathy 

[179]. In RP, there has also been some evidence shown for a relationship 

between foveal point thickness and VA [180]. In an effort to characterize central 

retinal architecture as well as measure the thickness of the remaining neuro-

retinal tissue, several high-speed B-scans were recorded. With the goal of 

improving signal to noise ratio (SNR), n > 9 scans were averaged for each B-

scan recording, the result of which was that SNR improved by the square root of 

n. Foveal thickness was measured in micrometers with the help of an in-built 

measurement tool provided by the Eye Explorer software (Heidelberg 

Engineering).  

 

Elecroretinography 

Patients ERG measurement was recorded with Espion (Diagnosys LLC, Lowell, 

MA, USA) in both centers. Measurements were taken in accordance to the 
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standards set by the International Society for Clinical Electrophysiology of Vision 

(ISCEV) 34. The following amplitudes were extracted from the ERG data: dark- 

adapted (DA) 0.01 cd*s, DA 3.0 cd*s, DA 10.0 cd*s, and light- adapted (LA) 3.0 

cd*s single flash recordings and 30-Hz flicker.  

 

3.1.4 Statistical Analysis 

SPSS version 21 by IBM (SPSS, Inc., Chicago, IL, USA) was used for all 

statistical work. Statistical methods used were bivariate correlation, histograms, 

generalized linear mixed model analysis and Kaplan-Meyer survival curves.  

 

Correlation between left and right eye 

To determine whether or not data was normally distributed, a histogram was 

created using the first measurement data point of each patient was taken. Normal 

distribution lines were then superimposed upon this histogram. If the data values 

were non-normally distributed, Spearman’s rho analysis was used to examine the 

correlation between right and left eye in the respective parameters. The first 

measurement of each patient was utilized for this analysis. 

 

Progression rate analysis 

There was a large variety in both the number of follow-up visits as well as the 

spacing in between these follow-up visits. In order to allow for this, generalized 

linear mixed model (GzLMM) analysis was used to determine the progression 

rate of disease in patients. Generally, analysis utilizing linear mixed models 

(LMM), is able to provide a roadmap for the longitudinal analysis of data with 

complex relationships and grouping of variables in more than one level. It also 

takes into account the relationships between a continuous, dependent variable 

and one or more predictor variables. Both repeated measurements and clustered 

data, all of which characterize the data in this study, as well as confounding 

interactions originating because the data stems from the same groups, can be 

investigated using LMMs. When comparing LMM to the more well-known 

repeated-measure analysis of variance, LMMs has the advantage of being able 

to be used for heterogenic data. This enables the inclusion of patients with 
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differing numbers of repeated measurements into the study. In addition to these 

advantages, the GzLMMs offer not only the ability to study nonlinear relationship 

functions, but also to investigate binary, ordinal and count variables. This offers 

a greater degree of depths and breadth of inquiry. In this analysis, the “subject” 

was represented by the patient number. The “repeated measures” variable was 

represented by the number of years from the first visit. By doing so, the model 

was able to account for difference in time between visits. The fixed effects 

encompassed both the intercept and the “patient age at visit” variable. The patient 

number was designated as a random effect. As a means of simplifying the model, 

only data from the left eye was used when symmetry was proven for a respective 

variable. Link functions was used as a tool to evaluate the linear model and 

gamma regression. The model with the best fit was selected depending on which 

had the lowest information criteria values (Akaike corrected and Bayesian). When 

both of the above-mentioned link functions gave similar or equal results, the more 

highly significant value (with a lower p-value) was given priority. The residual 

distribution was assessed for normality with the goal of making sure the model 

was fitting. 

 

Vision Survival Analysis 

Due to the previously mentioned highly variability in the spacing of patient visits, 

Kaplan-Meier survival curve analysis was done using both the full patient visits 

as well as just one visit per patient. This was done with the intention of hindering 

patients with many visits skewing the results. Both results are noted in the study. 

The following end points were used to estimate cumulative vision survival at 

varying ages: 6/6 vision, reading ability (defined as < 6/15), and legal blindness 

(defined as < 6/60). 

 

3.2. Results 

3.2.1 Patient Cohort Characterization 

Due to the inheritance mode of XLRP, and the resulting variability of disease in 

females, the cohort was limited to 50 genetically confirmed males with mutations 
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in RPGRORF15. The patient cohort ranged in from 7 to 69 years of age. The range 

of patient visits spanned from single visits to a total of 17 visits per patient. A 

majority of patients, 34 in total, were examined between 2 and 17 times. The 

remaining 16 patients were seen only a single time. The average number of 

follow-up visits from the patients that were seen more than once was 2.4 per 

patient (median = 1 visit). The timespan between recurrent visits also exhibited 

great variability, encompassing a range from 2 - 72 months between visits 

(median = 14 months). The overwhelming majority of patients, 47, showed a rod-

cone degeneration pattern and only 2 patients presented with a cone-rod 

degeneration pattern. The single remaining patient showed a rod-cone 

phenotype with an affected fovea (split fovea phenotype). The genotype 

underlying the three patients with cone-rod and rod-cone with split fovea 

phenotype were as follows: all of the three patients had ORF15 mutations. Of the 

two with a cone-rod degeneration had a deletion (c.2405_2406delAG; 

p.E802Gfs*32) and the other a nonsense mutation (c.2689G>T; p.E897*). The 

remaining patient with a split fovea phenotype displayed an underlying, 

hemizygous deletion (c.3077_3080delAAGG; p.E1026Gfs*62). Even though the 

number of phenotypic outliers was not large enough for an independent subgroup 

analysis, the three different patients were highlighted throughout the figures of 

the study [69].  

Patient 20 years or younger presented 18 % of our cohort. Almost half of this 

cohort (44 %) were in their first decade of life at the age of first presentation. 

Mutations in ORF15 and exon 1-14 were roughly equally present in the nine 

patients presenting before their third decade in life: four patients had an ORF15 

mutation, while five had a mutation in exon 1-14. In youngest population of the 

patient cohort, those presenting in their first decade, one had an ORF15 

mutations and three a mutation in exons 1-14. Of the patients 18 % of patients 

presenting prior to their 20s, none were related, and all had different genotypes 

[69].  
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3.2.2 Molecular Assessment 

All patients in this retrospective study had previously been sequenced and 

causative RPGRORF15 mutations were uncovered (Fig 3.1 A, Table 3.1). The 50-

patient cohort demonstrated 41 different mutations in the RPGRORF15 gene, with 

19 of those 41 mutations being the first reported mutations of their kind. Two 

mutations were reported several times: c.2405_2406delAG was represented 

seven times whereas the deletion c.2236_2237delGA mutation was present in 

four patients. When examining the sequence in which these mutations occur 

more closely, it is noticeable they both lie in repetitive, purine rich clustered 

sequences of ORF15. It should be noted that even though the sequences where 

the deletions occur are repetitive, the nucleotide sequences following the deletion 

are not identical to the deleted sequences, consequently the alignment between 

the shifted nucleotides remained suboptimal [69]. 

 

 
Fig. 3.1 Overview of mutation location as well as types of mutations occurring in the 50-
patient RPGR-XLRP cohort. ORF15 takes up almost half of the cDNA sequence of RPGRORF15 
(A), but houses almost three quarters of the mutations (A-C). Most mutations in the C-terminal 
ORF15 were deletions, whereas missense mutations cluster in the N-terminal exons 1-14 (B and 
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C). Deletions make up over half of the mutations, with missense representing the second largest 
group at 20% (D). 
Printed with permission from Julia-Sophia Bellingrath. This figure was previously published in 
IOVS by Bellingrath et al. 
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Pat 

No. 

Hemizygous mutations in RPGR 

Mutation type 

Previously 

described Nucleotide level Exon Protein level 

3 

gross deletion 

spanning exons 2-15 

(length of deletion not 

defined)  

2  gross deletion  novel 

12 c.69delT 2 p.E24Kfs*44 deletion novel 

15 c.112delG 2 p.V38Yfs*30 deletion novel 

29 c.154+3_6delTAGT   splice defect 
Neidhardt et al. 

2008 

8 c.247G>T 3 p.A83S missense Glöckle et al. 2014 

26 c.247+5G>A   splice defect novel 

25 c.283G>A 4 p.G95R missense novel 

17 c.296C>A 4 p.T99N missense Miano et al. 1999 

38 c.310+1G>A   splice defect Sharon et al. 2003 

16 c.389T>C 5 p.F130S missense novel 

42 c.408delT 5 p.F136L deletion Shu et al. 2007 

19 c.592G>A 6 p.G198R missense Sharon et al. 2015 

6 c.602A>T 6 p.H201L missense novel * 

43 c.779-5T>G   splice defect 
Neidhardt et al. 

2008 

39 c.865A>G 8 p.I289V missense Miano et al. 1999 

37 c.1059+6G>A   splice defect novel 

41 c.1147_1150delACTT 10 p.T383Afs*13 deletion  novel 

28 c.1217dupT 10 p.S407Ifs*46 duplication  novel 

46 c.1307G>A 11 p.G436D missense Sharon et al. 2000 

1 c.1872_1873delGA 15 p.E624Dfs*5 deletion Pusch et al. 2002 

22 c.1978dupG 15 p.Glu660Glyfs*4 duplication  novel 

31 c.2007G>A 15 p.W669* nonsense Bader et al. 2003 

9 c.2123A>G 15 p.E708G missense novel 

21 c.2180T>A 15 p.M727K missense novel 

24 c.2234_2237delGAGA 15 p.R745Kfs*69 deletion Breuer et al. 2002 

7 c.2236_2237delGA 15 p.E746Rfs*23 deletion Vervoort et al. 2000 

10 c.2236_2237delGA 15 p.E746Rfs*23 deletion Vervoort et al. 2000 

23 c.2236_2237delGA 15 p.E746Rfs*23 deletion Vervoort et al. 2000 

48 c.2236_2237delGA 15 p.E746Rfs*23 deletion  Vervoort et al. 2000 
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Pat 

No. 

Hemizygous mutations in RPGR 

Mutation type 

Previously 

described Nucleotide level Exon Protein level 

30 c.2321_2348del28 15 p.E774Gfs*32 deletion novel 

14 c.2384delA 15 p.E795Gfs*20 deletion Pusch et al. 2002 

11 c.2405_2406delAG 15 p.E802Gfs*32 deletion 
Vervoort et al. 2000 

† 

32 c.2405_2406delAG 15 p.E802Gfs*32 deletion Vervoort et al. 2000 

33 c.2405_2406delAG 15 p.E802Gfs*32 deletion Vervoort et al. 2000 

44 c.2405_2406delAG 15 p.E802Gfs*32 deletion Vervoort et al. 2000 

45 c.2405_2406delAG 15 p.E802Gfs*32 deletion Vervoort et al. 2000 

49 c.2405_2406delAG 15 p.E802Gfs*32 deletion 
Vervoort et al. 2000 

‡ 

50 c.2405_2406delAG 15 p.E802Gfs*32 deletion 
Vervoort et al. 2000 

§ 

35 c.2476_2477delAG 15 p.R826Gfs*8 deletion Pusch et al. 2002 

27 c.2543delA 15 pE848Gfs*241 deletion Pusch et al. 2002 

40 c.2590G>T 15 p.E864* nonsense Pusch et al. 2002 

5 c.2689G>T 15 p.E897* nonsense Glöckle et al. 2014 † 

34 c.2782G>T 15 p.G928* nonsense Pusch et al. 2002 

47 c.2790_2791delGG 15 p.E931Gfs*147 deletion Shu X et al. 2007 

36 c.2792delA 15 p.E931Gfs*158 deletion Pelletier et al. 2007 

13 

c.2840_2841ins  

(length of insertion not 

defined) 

15  insertion novel 

20 c.2944delG 15 p.E982Kfs*107 deletion Sharon et al. 2003 

2 c.2997_2998delGG 15 p.E1000Gfs*78 deletion Pusch et al. 2002 

18 c.3077_3080delAAGG 15 p.E1026Gfs*62 deletion novel 

4 c.3104_3105delAG 15 p.E1035Gfs*43 deletion novel 

 

Table 3.1 Overview of Molecular Testing Results in RPGR-XLRP Patient Cohort  
Comments: RefSeq NM_001034853, NP_001030025 † Cone-rod dystrophy; * Variant of unclear 
pathogenicity; ‡ Uncle of patient no. 50; § Nephew of patient no. 49 
Printed with permission from Julia-Sophia Bellingrath. This figure was also previously in IOVS by 
Bellingrath et al.  

 

Location of Mutation 

ORF15 has been reported to be a mutational hotspot within the RPGRORF15 gene 

[50, 110], and this was particularly pronounced in the present analysis’ patient 

cohort. Even though ORF15 accounts for 49 % of the exonic sequence, 71 % of 
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mutation were found to cluster in this terminal exon (Fig.s 3.1 B, 3.1 C). A pattern 

concerning the type of mutation and their location regarding exon 1-14 vs. ORF15 

could also be discerned. By far the largest mutation type were deletions, 85 % of 

which occurred in the C-terminal ORF15. Only 15 % of deletions occurred in the 

N-terminal of RPGRORF15. Missense mutations, on the other hand, which made 

up 20 % of mutations and therefore represented the second largest group of 

mutations, could predominantly be found in the N-terminal exons. Eighty percent 

of missense mutations occurred in the first exons 1-15, and only 20 % in ORF15, 

a relationship almost inverse to the exonic location of the deletions (Fig.s 3.1 B-

D). Previous studies confirm this trend [112, 181] with deletions (in/dels), and 

duplications clustered in the repetitive, purine (A/G)-rich ORF15 terminal exon 

region, and missense mutations as well as other substitutions occurring 

predominantly in the first 14 exons of RPGRORF15 [69].  

 

Correlation of location with severity of phenotype  

Previous reports show a correlation between location of mutation and disease 

phenotype. To test whether such a correlation could be shown in the present 

cohort, VA and perimetry (III4e target intensity) of patients with mutations in 

exons 1-14 were contrasted with those patients whose mutations occurred in 

ORF15. A high degree of symmetry was shown in all variables in the present 

patient cohort, so only data points from the right eye were considered in this 

analysis. Using the data set from one eye only also provided assurance that the 

data set would not be skewed by the use of two dependent variables. One patient 

visit for each patient was used as to not skew the data set by patients that had 

been examined a disproportionate number of times. Significant variability, but no 

significant difference in VA or perimetry could be shown between mutations 

located between in exons 1-14 and ORF15 (VA p = 0.9; perimetry p = 0.58; Fig.s 

3.2 A and B).  
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Fig. 3.2 Correlation of genotype with phenotype between mutations located on exon 1-14 
and ORF15. Contrary to previous studies, no evidence of a genotype to phenotype correlation 
could be shown when examining VA (A) or perimetry (B) as a stand-in for phenotype. 
Printed with permission from Julia-Sophia Bellingrath. This figure was also previously in IOVS by 
Bellingrath et al.  

 

In order to eliminate differences in progression between patients as a possible 

confounder, these results were replicated by the analysis of patients all in their 

fourth decade of life, which provided a back-up to the previously mentioned 

results [69]. 

 

3.2.3 Analysis of disease symmetry between eyes 

All four parameters (VA, ERG, foveal thickness and perimetry) were assessed for 

symmetry of disease. In every one of these parameters a highly significant degree 

of symmetry could be shown (p in all four measures < 0.001; Fig 3). Foveal 

thickness demonstrated the least amount of robustness with regards to symmetry 

between eyes (n = 35; rho = 0.75; p < 0.001; Fig 3 B). A much higher amount of 

symmetry was demonstrated by VA, a measurement of central visual function (n 

= 50; rho = 0.85; p < 0.001; Fig. 3.3 A). Perimetry using the III4e isopter showed 

an even higher degree of symmetry (rho = 0.96, n = 38, p < 0.001; Fig. 3.3 C). 

Even though correlation analysis of isopter I4e proved to be even more 

symmetrical (rho = 0.97, n = 30, p < 0.001), this is likely an overestimation caused 

by a floor effect, since 40 % of I4e measurements were nearly 0 in both eyes. Not 

enough data was available to analyse isopter Ve. ERG serves as perhaps the 

least variable and therefore most objective measure of retinal function and as 
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such is a particularly valuable measure. The comparison of ERG b-wave 

amplitude of right and left eyes showed symmetry in all measurements, although 

a confounding floor effect was noted in some measurements. The highest 

symmetry not subjected to a floor effect was seen in DA single-flash responses 

to a 3 cd*s stimulus (rho = 0.98, n = 32, p < 0.001; Fig. 3.3 D). Interestingly, there 

was no significant difference in symmetry in the three patients with cone-rod or 

rod-cone phenotype with split fovea compared to the majority of patients with rod-

cone dystrophy [69].  

 
Fig. 3.3 Symmetry analysis of a 50 patient RPGR-XLRP cohort. In all measures, disease 
proved symmetrical between eyes. Foveal thickness exhibited the least amount of symmetry (A), 
whereas both kinetic perimetry using the III4e target (C) and ERG b-wave amplitude provoked by 
DA 3.0 cd*s flash (D) demonstrated remarkable similarity between both eyes. Degeneration and 
its effect on central visual function was fairly symmetrical (B).  
Printed with permission from Julia-Sophia Bellingrath. This figure was previously published in 
IOVS by Bellingrath et al.  

 

3.2.4 Analysis of disease progression 

When looking at disease progression of RPGR-XLRP in this cohort, the same 

morphologic and functional parameters used to screen for symmetry were used 
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for evaluation of disease progression. As can be seen in Fig. 4 A and 4 B, the 

two parameters VA and foveal thickness were the most helpful in characterizing 

disease progression. The most fitting function to describe disease development 

over time was a logarithmic function. Logarithmic progression rates are reported 

in Table 3.2.  

 

Age group 
(range in 
years) 

Estimated average yearly progression rate [CI: 95%] 

Visual Acuity  
(LogMAR / year) 

Foveal thickness 
(µm / year) 

Perimetry III4e 
(deg2 / year) 

ERG b3.SF 
(µV / year) 

7 - 20 0.01 [0, 0.04] -2.35 [-2.67, -0.93] -416.44 [-88.83, -1165.17] 0 [0, 0] 

21 - 40 0.03 [0.01, 0.11] -1.91 [-1.84, -0.89] -131.07 [-13.23, -761.75] 0 [0, 0] 

41 - 60 0.07 [0.01, 0.39] -1.51 [-1.18, -0.83] -33.64 [-1.41, -462.03] 0 [0, 0] 

 
Table 3.2 Average disease progression rate per age group. 

 

Perimetry as measured with the III4e isopter was only able to describe disease 

progression in the first two decades of life, owing to the fact that by ages as early 

as 20-25, visual field loss can be nearly complete. This early loss of visual fields 

introduces a floor effect prompted by the fact that all patients present with a near 

complete loss of visual fields. This floor effect results in a lack of discriminatory 

power in efficacy analysis. In contrast to the other three parameters, disease 

progression as measured by ERG (Fig. 3.4 D, Table 3.3) did not show a 

correlation with age. As in the symmetry analysis, patients with the cone-rod or 

rod-cone dystrophy with split fovea did not manifest as outliers during disease 

progression analysis [69].  
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Fig. 3.4. Analysis of progression of XLRP3 patients examining left eye VA, III4e target 
perimetry, foveal thickness and ERG DA 3.0 cd*s flash. A logarithmic function best described 
the relationship between age and VA (A) as well as foveal thickness (B). Increased foveal 
thickness was the result of epiretinal membrane formation in some of the patients. Yet these were 
not excluded, since it would not have changed the outcome of the analysis. Once again, when 
examining III4e target perimetry (C) a logarithmic function best described the outcome. No 
correlation could be shown between age and ERG DA 3.0 cd*s flash (D).  
Printed with permission from Julia-Sophia Bellingrath. This figure was also previously in IOVS by 
Bellingrath et al.  
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A. Visual Acuity progression   

Model Term Coefficient CI 95% P-Value 

Intercept -2.116 [-2.747, -1.485] < 0.001 

Age at visit 0.049 [0.032, 0.065] < 0.001 

Number of levels 47   

Gamma Distribution. Log link function   

        

B. Foveal thickness progression   

Model Term Coefficient CI 95% P-Value 

Intercept 5.438 [5.095, 5.780] < 0.001 

age at visit -0.012 [-0.022, -0.003] 0.012 

Number of levels 36   

Gamma Distribution. Log link function   

    

C. Perimetry III4e progression   

Model Term Coefficient CI 95% P-Value 

Intercept 9.638 [8.188, 11.087] < 0.001 

Age at visit -0.068 [-0.112, -0.025] 0.003 

Number of levels 34   

Gamma Distribution. Log link function   

    

D. ERG b3.SF progression   

Model Term Coefficient CI 95% P-Value 

Intercept 3.872 [3.872, 4.453] < 0.001 

Age at visit 0 [0.000, 0.000] 1 

Number of levels 18   

Gamma Distribution. Log link function   

 
Table 3.3 Mixed model disease progression coefficients 

 

3.2.5 Subgroup analysis of disease progression 

The phenotypic heterogeneity and the heterogeneity in disease progression has 

been widely described among RP patients as a whole. To see whether this 

phenomenon was curbed when looking at patients with mutations not just in the 

same gene, but also in the identical genetic sequence, two deletions that were 

present in subgroups of seven and four patients, respectively, were analyzed.  
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RPGR mutation c.2405_2406delAG 

This was the largest subgroup and was comprised of seven patients with the 

identical c.2204_2205delAG; p.E802Gfs*32 mutation. Within this group, patient 

No. 49 and patient No. 50 were second degree relatives as noted in Table 1. 

Even in this patient group with identical mutations, no correlation could be 

established between disease progression and age (Fig. 3.5). Moreover, patient 

no. 11 exhibits a degeneration favouring cones, a cone-rod phenotype, while the 

other six patients manifested as the far more prevalent rod-cone phenotype [69].  

 
Fig. 3.5 Disease progression analysis in seven patients with c.2405_2406delAG mutation. 
Despite demonstrating an identical correlation, no uniform disease progression could be identified 
in any of the parameters. Even the phenotype varied, with one patient presenting with a cone-rod 
phenotype while the other six patients all demonstrated a rod-cone phenotype. 
Printed with permission from Julia-Sophia Bellingrath. This figure was previously published in 
IOVS by Bellingrath et al. 
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RPGR mutation c.2236_2237delGA  

Four patients of our cohort study presented with the c.2236_2237delGA, 

p.E746Rfs*23  genotype (Fig. 3.6). When looking exclusively at VA (R2 = 0.58, n 

= 4; P = 0.11; Fig 6 A) and foveal thickness (R2 = 0.96, n = 4, p = 0.05 Fig 6 B), 

the progression appeared to exhibit similarities. Yet ERG showed a wide degree 

of variation regarding symmetry and displayed a range from 0.50 (DA 3.0 cd*s) 

to a fairly symmetrical value of 0.81 (LA 3.0 cd*s; Fig 6 D). 30 Hz flicker had an 

R2 of 0.79 (n = 4, p < 0.01). When looking at perimetry, neither I4e nor III4e target 

showed a homogenous disease progression (Fig. 3.6 C). When looking at the 

patient data more closely, one can see that this is the result of patient No. 48 

presenting as an outlier with particularly poor results in the I4e target perimetry, 

but patient No. 7 showing a relatively well preserved III4e target perimetry [69].  

 
Fig. 3.6 Disease progression analysis in seven patients with c c.2236_2237delGA mutation. 
In this cohort, VA (A) and foveal thickness (B) showed a fair degree of symmetry, while perimetry 
(C) and ERG (D) did not. All patients presented with a rod-cone phenotype.  
Printed with permission from Julia-Sophia Bellingrath. This figure was also published in IOVS by 
Bellingrath et al.  
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3.2.6 Kaplan Meier Survival Curves 

While many measures, in particular the objective ones such as ERG and 

perimetry may be clinically robust, relevant and important, the most meaningful 

outcome measure for the patient is arguably VA. With the goal of estimating 

decline of VA, even in the face of a large variability between patients, Kaplan 

Meier survival curves were used to calculate a survival curve (Fig. 3.7). Three 

meaningful cutoff points for both the patient and the physician were used: loss of 

6/6 vision (0.0 logMAR), loss of reading ability (0.4 logMAR), and a drop of vision 

under the limit for legal blindness (1.0 logMAR). Right and left eye are shown 

separately in this context and this once again reveals the high amount of 

symmetry between eyes (Fig. 3.7 A and B).  

 
Fig. 3.7 Kaplan-Meier survival curves for the right and left eye of RPGR-XLRP patients. for 
right eyes (A) predicted a loss of 6/6 vision at a mean age of 34 years (+/- 2.9; 95% confidence 
interval), a loss of reading ability at 39 years (+/- 2.6), and progression to legal blindness at 48 
years (+/- 1.6). KMCs for left eyes (B) were similar, estimating a loss of 6/6 vision at a mean of 
34 years (+/- 2.4), a loss of reading ability at 37 years (+/- 2.5), and a reaching of the legal limit 
for legal blindness at 45 years (+/- 3.1).  
Printed with permission from Julia-Sophia Bellingrath. This figure was also previously in IOVS by 
Bellingrath et al. 

 

The most severe loss of VA was shown to happen in the third and fourth decade 

of life. To illustrate this more clearly, the following data can be considered: At 20 

years of age, more than 80 % of patients demonstrated 6/6 vision and more than 

90 % of patients were predicted to be capable of reading. In contrast to this, by 

age 40, over 20 % of patients are predicted to be legally blind and 50 % of 

patients are predicted to have lost reading ability. Merely 30 % retain 6/6 vision 
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in this age bracket. When looking at all age groups and all 50 patients, the mean 

estimated survival time for 6/6 vision was 34 years (+/-/2.9; 95 % confidence 

interval). A loss of reading ability occurred at 39 years (+/-2.6) and patients 

reached the legal limit for blindness at age 48 (+/- 1.6) [69]  

 

3.3 Discussion 

The present study confirms the severity of XLRP caused by mutations 

RPGRORF15. This can be seen in the early disease onset, which results in patients 

presenting as young as seven years of age. Nine patients presented before the 

age of 20 [69]. This is even more remarkable when one considers that, as 

mentioned in the introduction, a subjective loss in visual acuity or visual fields is 

not noted until a considerable part of the peripheral rods have already 

degenerated [23]. One potential confounder is the fact that some patients might 

already have a sibling or a relative that has known XLRP and present before 

subjective changes in VA or visual fields or nyctalopia occur. In the present study, 

none of the patients under the age of 20 had a relative being concurrently treated 

at the same institutions. There were four patients who presented under the age 

of 10, and three of them had mutations in exons 1-14 [69]. This could be 

interpreted as mutations at the N-terminal presenting earlier in age, but due to 

the extremely small sample size, the statistical power is too low to make a reliable 

hypothesis.  

Almost three quarters of mutations occurred in the terminal ORF15 exon, strongly 

confirming this C-terminal, purine rich exon as a mutational hotspot of the 

RPGRORF15 gene. Contrary to previous reports however, ORF15 mutations could 

not be shown to have a more or severe phenotype. Neither could they be shown 

to have a different phenotype regarding the phenotypic pattern of degeneration. 

In general, no genotype-phenotype relationship could be shown in regard to 

ORF15 mutations compared to exon 1-14 mutations [69]. These results differ 

from Sharon et al. and Fahim et al. who demonstrate a milder disease phenotype 

in patients with C-terminal ORF15 mutations than in patients with mutations in 

Exon 1-14 [31, 133]. It has been postulated that such a genotype-phenotype 

relationship could be explained by nonsense mediated decay not applying to 
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mutations in the terminal ORF15 exon and this might allow the transcribed 

truncated protein to retain residual function [31, 128]. However, it has also been 

shown by Hong et al. that a gain-of function mutation in ORF15 causes more 

severe disease progression than a null mutation due to dominant negative effects 

[139]. Another argument against genotype phenotype correlation in this context 

is provided when looking at the naturally occurring canine models of RPGR-

XLRP, termed X-linked progressive retinal atrophy. Both dogs with X-linked 

progressive retinal atrophy (XLPRA1) have mutations in ORF15, occurring 52 

nucleotides apart from each other, but one shows a slow progression (XLPRA1), 

the other more severe degeneration (XLPRA2). This falls in line with the results 

of the present patient cohort analysis, where a clear genotype-phenotype 

remains elusive. 

Symmetry in RP has been previously reported: as early as 1979, Massof et al. 

analyzed VA and perimetry (V4e) of a 60-patient cohort [182]. In this genetically 

unclassified cohort, the authors reported high symmetry between right and left 

eye. Subclassification of RP was determined by clinical phenotype and family 

history alone, and only 4 % showed an X-linked inheritance pattern [182]. 

Moreover, the cohort most likely showed a large genetic heterogeneity. This 

present study adds the vital observation that the symmetry proposed for the 

hugely genetically variable disease of RP holds true for XLRP patients with 

mutations occurring in RPGRORF15 [69]. With treatments becoming more targeted 

and personalized, information about more specific patient cohorts is a vital part 

of running clinical trials for new drugs or therapies. The results show that in 

clinical trials with RPGR-XLRP patients, the contralateral eye can be used as an 

internal control to measure treatment efficacy [69]. This practice has already been 

established in phase 1 and phase 2 clinical trials for Leber Congenital Amaurosis 

(LCA) [66, 140]. But in previous trails for RP treatment, regulatory agencies have 

wanted an interindividual control, despite evidence of a symmetrical RP 

phenotype [183]. The present study is able to show that the assumption of 

bilateral symmetry holds true not only for VA and perimetry, but also for foveal 

thickness and ERG b-wave amplitudes. ERG is a particularly interesting 

parameter in that it is an objective marker of photoreceptor function, unlike VA, 
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which can fluctuate according to the patient’s general state of concentration and 

well-being. Also, in recent long-term results of gene therapy trails for LCA, while 

VA and perimetry initially improved post treatment before declining again after six 

months, a continuous and steady decline of photoreceptor function in ERG was 

noted [66, 140]. This uniqueness of ERG might make this parameter useful as a 

long-term indicator of photoreceptor function. The greatest symmetry in the 

present patient cohort could be shown for perimetry using isopter area III4e, but 

its utility could be limited by the early loss of visual fields in RPGR-XLRP patients 

[69]. In a clinical trial setting with adult patients, a lack of progression could be 

impossible to prove due to this floor effect. A further possibility would be to utilize 

more sensitive perimetry measure (Ve) in the hopes of warding off the floor effect 

[69].  

When considering both the results of the symmetry and progression rate, VA 

could very well be the best choice to measure treatment efficacy. It is a functional 

outcome measure with an arguably the greatest subjective value to the patient. 

According to the present data, VA is less variable in younger patients [69]. 

Although it should be noted that test-retest variability could not be measured in 

this retrospective trail and would have to be assessed in the setting of a 

prospective trial. Both VA and perimetry are subjective measures. This 

psychophysical nature could be seen as problematic, especially in an unmasked 

trial. In an effort to limit test-retest variability, Bittner et al. were able to show a 

limitation to < 20 % in perimetry, but not further. This was achieved by using a 

single, experienced operator [184]. This setting might be probable to achieve in 

a single-center trial, but is highly unlikely to be in a multi-center trial. However, to 

generate adequate numbers in an RPGR-XLRP clinical trial, a multi-center 

clinical trial would most likely have to be conducted. ERG is in the unique position 

of offering an objective, quantitative outcome measure, that also displays high 

symmetry [69]. Unfortunately, with regards to disease progression, the present 

study was not able to show a correlation between ERG values [69]. Additionally, 

full-field ERG is generated as a sum potential and - contrary to perimetry -does 

not feature a spatial resolution, a particular drawback when using subretinal 

injection, where the therapy is limited to a particular spot in the retina where one 
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thus would expect to see a particular effect. Multifocal ERG data could provide a 

solution to this, but could not be analyzed in this retrospective, cross-sectional 

study due to lack of data. As a result of these findings, a prospective trail 

measuring multifocal ERG, VA, perimetry, and OCT data is needed to further 

compare the advantages of each outcome measure [69]. Additionally, based on 

several studies, the width of the photoreceptor ellipsoid zone (EZ) on OCT has 

the potential to become a highly relevant outcome measure for disease 

progression in XLRP3 [184-187]. A correlation between loss of visual field and 

thinning of the EZ in the transitional zone could be shown by Birch et al. [185]. 

EZ width is a potentially extremely robust marker due to its low repeat variability 

and its lack of susceptibility to floor effects regarding disease progression 

analysis. It is in the unique position of being a morphologic, and hence objective, 

outcome measure that correlates with the subjective perimetry measurements. 

As is evident from our subgroup analysis, even if patients carry the same 

mutation, a uniform disease progression or phenotype cannot be predicted [69]. 

This finding is hugely relevant for daily clinical practice and counseling, even in 

fields like prenatal counseling that is becoming more and more influenced by 

advancements in genetics. This evidence of considerable phenotypic variability 

in patients with identical mutations is conflicting. This is most likely to due to both 

the lack of statistical power in the extremely limited patient numbers as well as 

the possibility of unknown genetic and epigenetic confounders that may be 

influencing disease progression. Fahim et al., identified two SNPs associated 

with either a more or less severe disease progression [133]. Perhaps more 

research into these genetic and epigenetic modifiers might pave the way for 

discovering variability of genotype-phenotype relationship and eventually enable 

a more precise prediction of prognosis for patients and their offspring. 

As determined by Kaplan-Meier curves, the most impressive decline in VA occurs 

between the ages of 20 and 40 years [69]. Our results determining the median 

age for blindness were further strengthened by those of Sandberg et al., who 

determined the median survival age to be 45 years of age in their respective 

RPGR-XLRP cohort [188]. There are several different markers that can be used 

in a clinical trial to define treatment efficacy, one of them being lack of 
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progression. In this scenario, our analysis indicated patients should be selected 

before or at the beginning of this rapid rate of disease progression [69]. Another 

clinical endpoint may be to show VA gain, in addition to simply a lack of 

progression. In this case, patients perhaps should be chosen toward the end or 

after the period of sharp decline in VA [69]. To this end, Beltran et al. recently 

utilized a canine model to demonstrate that treatment during this intermediate 

disease stage is capable of significantly slowing and even arresting disease 

progression [189]. This finding has the potential to widen the therapeutic window 

of intervention in patients with RPGR-XLRP.  

 

In total, our results stipulate that degeneration between right and left eye are 

symmetrical [69]. Therefore, it is legitimate to use the contralateral eye as an 

internal control in the setting of an interventional, therapeutic trial. The highest 

symmetry was seen in the VA and foveal thickness as outcome measures. In 

younger patients where disease has not yet fully advanced, perimetry with III4e 

target intensity could present a promising outcome measure. Standing in contrast 

to previous studies, we could not show a genotype phenotype relationship 

between mutations occurring in ORF15 and in mutations occurring outside of it. 

Nor did identical mutations guarantee a similar disease progression or even a 

similar phenotype. Survival curve analysis as related to vision showed the 

steepest decline in the third and fourth decade of life, while the median age to 

reach legal blindness was 48 years. In the light of these results, a prospective, 

observational trail with genetically conformed RPGR-XLRP patients would be 

needed to further explore the endpoint utility [69]. 
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ABSTRACT 

 

Purpose 

Mutations in RPGRORF15 cause 70 to 90 % of the monogenetic disease X-linked 

retinitis pigmentosa (XLRP), making this gene a high-yield target for causal 

treatment with gene therapy. Due to the purine-rich, repetitive nature of the 

terminal ORF15 exon, maintaining transgene sequence fidelity has proven to be 

a road-block in translational efforts. This thesis contributes to the optimisation of 

a gene therapy for RPGR-XLRP in two ways: firstly, it aims to investigate codon 

optimization and use of mutant AAV capsids as a means to overcome the 

inherent instability of RPGRORF15 and increase transgene expression. Secondly, 

analysis of pre-treatment characteristics in a cohort of 50 RPGR-XLRP patients 

will assist both future prospective observational and interventional trials by 

determining symmetry of disease, rate of progression and suitability of outcome 

measures as endpoints for clinical trials. 

 

Methods 

In the first part of the thesis, Western Blot was used to quantify transgene 

expression in HEK293T cells transfected with codon optimised (co) or wild type 

(wt) RPGR plasmids as well as to detect transgene expression in mice unilaterally 

injected with AAV2/8.coRPGR. Immunolabeling was used to show correct 

localisation of codon optimised transgene to the photoreceptor cilium and to 

compare transduction efficiency between wild type and single mutant AAV8Y733F 

capsids. In the thesis’ second part, a retrospective, cross-sectional analysis of 50 

patients extracted visual acuity, visual fields (I4e and III4e targets), foveal 

thickness and ERG data points (ISCEV standard protocol) alongside molecular 

genetic data. Symmetry and progression were assessed using linear regression 

and cross-sectional analysis, respectively. Kaplan-Meyer Curves were used to 

estimate cumulative ‘survival’ of three important levels of visual function (full 

vision, reading ability, threshold to legal blindness) with age. 
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Results 

HEK293T cells transfected with p.coRPGR showed an increase in protein 

expression (p < 0.005) and demonstrated a superior transgene stability 

compared to the wild type control. Three different mouse lines, C57BL/6J, 

C57BL/6J Rd9/Boc and Rpgr-/y, treated with AAV2/8.coRPGR showed a reliable, 

albeit variable transgene expression and demonstrated co-localisation with 

RPGR interacting protein (RPGRIP) in the connecting cilium. Mutant capsid 

(AAV8Y733F) failed to show a significant increase in transduction of 661W cone-

like photoreceptor cells (p = 0.058). In the retrospective analysis of clinical data 

from XLRP patients, 73 % of exonic mutations occurred in ORF15. Yet no clear 

genotype-phenotype relationship could be established between mutations 

located in these two parts of the RPGR gene and patients with ORF15 mutations 

did not have a significantly different visual acuity (p = 0.9) or visual field (III4e; p 

= 0.6) than those with mutations in exons 1-14. Comparison of both eyes revealed 

a strong symmetry of degeneration in all outcome measures, with visual fields 

(I4e ρ = 0.99; III4e ρ = 0.96) and ERG (30 Hz flicker ρ = 0.95) exhibiting the highest 

symmetry. Disease progression eluded description by a simple function. Kaplan-

Meier curve (KMC) analysis predicts the most severe decline in vision between 

the third and fourth decade of life. 

 

Conclusions 

Codon optimisation of RPGR significantly increased transgene levels in 

HEK293T cells compared to a wild type RPGR expression cassette. 

AAV2/8.coRPGR injected mouse eyes reliably expressed RPGR protein that 

correctly localised to the photoreceptor connecting cilium in mouse models of 

RPGR-XLRP. 

High symmetry in all outcome measures confirm that the contralateral eye can 

be used as an internal control in an RPGR-XLRP gene therapy trial. The 

variability between patients makes an intra-individual control preferable to an 

inter-individual control. According to these findings, the most sensitive parameter 

to measure disease progression and treatment success in an interventional 

RPGR-XLRP trial seems to be kinetic visual field using the III4e target.  
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Overall, these two pillars of research contribute to the foundation enabling 

translation of RPGRORF15 gene therapy into a clinical trial. 
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ZUSAMMENFASSUNG 

 

Hintergrund 

Mutationen in dem RPGRORF15 Gen sind für 70 bis 90 % der X-chromosomal 

vererbten Retinitis Pigmentosa (XLRP) verantwortlich. Aufgrund dessen ist 

dieses Gen ein besonders vielversprechendes Target für die Entwicklung einer 

kausalen, gentherapeutischen Behandlungsstrategie. Allerdings stellte in 

bisherigen präklinischen Studien die Bewahrung der Transgen-Sequenz des 

Purin-reichen, repetitiven und terminalen Exons ORF15 den limitierenden Faktor 

in diesen Bestrebungen dar. Diese Dissertation trägt auf zwei Weisen zu der 

Weiterentwicklung einer Gentherapie für RPGR-XLRP bei: Zum einen werden 

Methoden der Codon-Optimierung und die Anwendung mutierte AAV-Kapside 

evaluiert um die inhärente Transgen-Instabilität zu überwinden und die Protein-

Expression zu steigern. Zum anderen wird durch eine retrospektive 

Querschnittsanalyse 50 RPGR-XLRP Patienten der Grundstein für prospektive 

Beobachtungs- und Interventionsstudien gelegt, indem die Symmetrie der 

Erkrankung, die Progressionsrate und der bestgeeignete Parameter für einen 

primären Endpunkt zukünftiger Studien untersucht wurden.  

 

Methoden 

Western Blots wurden genutzt, um die RPGRORF15  Transgen-Expression in zwei 

Szenarien zu quantifizieren: zum einen in HEK293T Zellen, die mit Codon-

optimierten (co) oder Wildtyp (wt) RPGR-Plasmiden transfiziert wurden, zum 

anderen in drei verschiedenen Mausstämmen, dessen Augen unilateral mit 

AAV.coRPGRORF15 injiziert wurden. Die Lokalisation des coRPGRORF15 

Transgens in Photorezeptor-Zilien dieser unilateral mit AAV2/8.coRPGRORF15 

injizierten Mäuse wurde anhand von Immunfärbung demonstriert. Ebenso wurde 

die Immunhistochemie dazu verwendet, die Transduktions-Effizienz zwischen 

Wildtyp und mutierten AAV8Y733F-Kapsiden in Zapfen ähnlichen 661W Zellen zu 

vergleichen. Im zweiten Teil der Arbeit wurden klinische Datenpunkte wie 

Sehschärfe, Perimetrie (I4e und III4e), foveale Dicke, ERG nach ISCEV-

Standard, sowie genetische Mutationsanalysen von 50 RPGR-XLRP Patienten 
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aus zwei Behandlungszentren extrahiert. Symmetrie und Progression wurden 

anhand linearer Regressions- und Querschnittsanalysen untersucht. Kaplan-

Meier-Kurven (KMC) wurden verwendet, um den Erhalt der Sehschärfe im 

Altersverlauf anhand drei wichtiger Parameter (volle Sehschärfe, Lesevermögen 

und die Gesetzesdefinition von Blindheit) zu analysieren.  

 

Ergebnisse 

HEK293T Zellen, die mit p.coRPGRORF15 transfiziert wurden, zeigten eine 

signifikant höhere Protein-Expression (p < 0.005) und demonstrierten eine 

überlegene Transgen-Stabilität gegenüber den Wildtyp Kontrollen. Drei 

verschiedene, mit AAV2/8.coRPGRORF15 behandelte Mauslinien (C57BL/6J, 

C57BL/6Rd9/Boc and Rpgr-/y), demonstrierten eine stabile Transgen Expression 

und zeigten eine physiologische Co-lokalisation mit RPGR-interagierendem 

Protein (RPGRIP) im Zilium der Photorezeptoren. Das mutierte AAV8Y733F-

Kapsid zeigte keine signifikant erhöhte Transduktions-Effizienz der 

zapfenähnlichen 661W-Zellen (p = 0.058). In der retrospektiven 

Querschnittsanalyse von 50 RPGR-XLRP-Patienten zeigten sich 73 % der 

Mutationen in dem terminalen ORF15 Exon. Es konnte keine Genotyp-Phenotyp-

Korrelation zwischen Mutationen etabliert werden, die in ORF15 und Exon1-14 

des RPGR-Gens auftraten, und somit wiesen Patienten mit ORF15 Mutationen 

keine bessere Sehstärke (p = 0.9) oder weiteres Gesichtsfeld (III4e; p = 0.6) auf 

als Patienten mit Exon1-14 Mutationen. Es zeigte sich eine hohe Symmetrie der 

Degeneration in allen klinischen Parametern, wobei die Perimetrie (I4e ρ = 0.99; 

III4e ρ = 0.96) und das ERG (30 Hz flicker ρ = 0.95) die höchste Symmetrie 

aufwiesen. Die Progression der Erkrankung konnte nicht mit einer einfachen 

Funktion beschrieben werden. Die KMC Analyse zeigte die am schnellsten 

progrediente und stärkste Degeneration der Sehschärfe zwischen der dritten und 

vierten Lebensdekade.  

 

Zusammenfassung 

Die Codon-Optimierung des RPGRORF15 Gens erhöht signifikant die Transgene-

Expression in HEK293T Zellen im Vergleich mit der Wildtyp RPGRORF15 
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Transgene-Expressions-Kassette. Augen von RPGR-XLRP Maus-Modellen, die 

mit AAV2/8.coRPGRORF15 injiziert wurden, exprimieren beständig das 

RPGRORF15 Protein, welches sich physiologisch in dem Photorezeptor-

Verbindungs-Zilium lokalisierte.  

Eine hohe Symmetrie aller klinisch erhobenen Parameter bestätigt, dass das 

kontralaterale Auge als eine intra-individuelle Kontrolle in einer RPGR-XLRP-

gentherapeutischen Studie verwendet werden kann. Die hohe Variabilität 

zwischen Patienten zeigt, dass diese intra-individuelle Kontrolle einer inter-

individuellen Kontrolle vorzuziehen ist. Gemäß den Ergebnissen der Studie ist 

die kinetische Perimetrie mit dem III4e Target der sensitivste Parameter, um das 

Voranschreiten der Degeneration sowie den Therapieerfolg in einer RPGR-XLRP 

Interventionsstudie zu messen. 
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