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Abstract 

 

A central objective in many archaeological and anthropological studies is the 

reconstruction of past human population structure and population history. Biological 

distance (biodistance) analysis is a powerful tool to infer genetic relationships across 

samples of human skeletal remains using cranial and dental phenotypes. The 

underlying assumption of biodistance analyses is that skeletal samples which share 

a set of phenotypic features are presumed to be genetically more closely related, while 

those that differ in their phenotypes are presumed to be genetically less similar. Teeth 

have become a favored dataset for biodistance analyses primarily because dental size 

and shape are assumed to be highly heritable and selectively neutral. Moreover, 

dental form remains unchanged after full formation and teeth are generally best-

preserved in the archaeological record, even when associated skeletal and DNA 

preservation is poor. 

 

This cumulative dissertation has two primary objectives: (1) to quantify the utility of 

dental phenotypes as a reliable proxy for neutral genomic data in a population and 

quantitative genetic framework; and (2) to apply a dental biodistance analysis to an 

archaeological case study: the Greek colonization of southern Italy. 

 

To address the first objective, I compare existing large phenotypic and genomic 

datasets sampled from worldwide modern human populations. Specifically, I generate 

biodistance estimates from two commonly employed dental phenotypic data types 

(metric and nonmetric traits) and two neutral genetic marker types (SNPs and STRs) 

using the R-matrix model, and explore their relationship using Mantel tests. Results 

show that biodistances based on dental phenotypes are significantly correlated with 

those based on neutral genetic data (on average r = 0.574, p < 0.001), validating tooth 

form as an efficient proxy for nuclear DNA data. Dental metric and nonmetric traits 

give concordant but varying results, indicating that combining both data types 

increases performance compared to using the features separately. Future work 

seeking to quantify the association between dental phenotypic and neutral genomic 

variation has great potential to identify dental data combinations that are most useful 

for tracking human population structure and history. 

 

To address the second objective, I collected a new dataset comprising 481 human 

skeletons with well-preserved dentitions from six archaeological sites along the 
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coastal area of the Gulf of Taranto, southern Italy, dating to precolonial (900-700 y 

BC) and postcolonial time periods (700-200 y BC). For both periods, I infer population 

structure using adonis, betadisper and isolation-by-distance models based on inter-

individual Gower distance coefficients using a mixture of dental metric and nonmetric 

traits. For the postcolonial period, I furthermore determine individual ancestries 

using naïve Bayesian classification based on dental nonmetric traits. Results indicate 

that precolonial southern Italy was characterized by moderate levels of population 

stratification. During postcolonial times, the area became a place of high mobility 

hosting ~ 10 % Greek newcomers and their descendants. Interestingly, individuals of 

Greek ancestry were equally distributed across Greek colonies and indigenous 

settlements. These findings support a gradual colonization model with substantial 

involvement of local populations and contradict the theory that Greek colonies were 

homogenous enclaves within conquered territories. Future work expanding the study 

area to Calabria and Sicily has great potential to generate a detailed picture of the 

colonial history of whole Magna Graecia. The case study in this dissertation provides 

a conceptual template for this and the provided raw data allow for repeatability. 

 

This dissertation bridges questions and analytical approaches of physical 

anthropology, population genetics and classical archaeology. Thereby it promotes 

multidisciplinary synergy between these research fields and highlights productive 

areas for future research. 
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Zusammenfassung 

 

Ein zentrales Anliegen archäologischer und anthropologischer Forschung ist die 

Rekonstruktion von Populationsstruktur und Populationsgeschichte vergangener 

menschlicher Bevölkerungen. Die biologische Distanzanalyse (Biodistanzanalyse) 

fungiert dabei als ein leistungsstarkes Instrumentarium, denn sie erlaubt anhand 

phänotypischer Merkmale an Knochen auf genetische Beziehungen zwischen 

Gruppen zu schließen. Die zugrundeliegende Annahme von Biodistanzanalysen ist, 

dass Gruppen, die ähnliche phänotypische Merkmale besitzen, genetisch enger 

verwandt sind, wohingegen jene, die sich in ihren Phänotypen unterscheiden, als 

genetisch weniger nah verwandt gelten. Zähne eignen sich im besonderen Maße für 

Biodistanzanalysen, da davon ausgegangen wird, dass Zahngröße und -form 

vornehmlich erblich bedingt und selektiv neutral sind. Hinzu kommt, dass die 

Zahnform, einmal vollständig ausgebildet, unveränderlich ist, und Zähne im 

archäologischen Kontext meist am besten überliefert sind, selbst bei generell 

schlechter Knochen- und DNS-Erhaltung. 

 

Die vorliegende kumulative Doktorarbeit hat zwei primäre Zielsetzungen: (1) Im 

Rahmen der Populationsgenetik und Quantitativen Genetik soll untersucht werden, 

inwiefern Zahnmorphologie als verlässlicher Proxy für genomische Daten verwendet 

werden kann. (2) In einer archäologischen Fallstudie zur Griechischen Kolonisation 

Süditaliens soll eine Biodistanzanalyse anhand von Zahndaten Anwendung finden. 

 

Im Hinblick auf die erste Zielsetzung werden umfangreiche dentalmorphologische 

und genomische Datensätze von rezenten Populationen aus aller Welt verglichen. Die 

Messung der Biodistanz erfolgt mittels des R-Matrix Modells anhand zweier häufig 

verwendeter dentalmorphologischer Datentypen (metrische und nicht-metrische 

Merkmale) sowie anhand zweier genetischer Markertypen (SNPs und STRs). Die 

Beziehung zwischen den Biodistanzmessungen wird mithilfe von Mantel Tests 

untersucht. Die Ergebnisse zeigen, dass die dentalmorphologischen Biodistanz-

messungen signifikant mit jenen der neutralen Genomdaten korrelieren (im 

Durchschnitt r = 0.574, p < 0.001). Dies belegt, dass Zahnmorphologie einen validen 

Proxy für nukleare DNS-Daten darstellt. Metrische und nicht-metrische 

Zahnmerkmale liefern dabei vergleichbare wenn auch variierende Ergebnisse; eine 

Kombination der beiden Datentypen ist demnach ihrer getrennten Verwendung 

vorzuziehen. Womöglich gelingt es zukünftiger Forschung, die die Stärke des 
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Zusammenhangs zwischen Zahnmorphologie und neutraler genomischer Variabilität 

untersucht, diejenigen Kombinationen von Zahnmerkmalen zu identifizieren, die sich 

am besten für die Rekonstruktion menschlicher Populationsstruktur und -geschichte 

eignen. 

 

Im Hinblick auf die zweite Zielsetzung habe ich einen neuen Datensatz erhoben, der 

481 menschliche Skelette mit gut überlieferten Zahnapparaten von sechs 

archäologischen Fundstellen entlang der Küstenregion des Golfs von Taranto in 

Süditalien umfasst, welche in die vorkoloniale (900-700 v. Chr.) und postkoloniale 

(700-200 v. Chr.) Zeit datieren. Ich verwende eine Kombination aus metrischen und 

nicht-metrischen Zahnmerkmalen und rekonstruiere für beide Zeiträume die 

Populationsstruktur anhand von adonis, betadisper und isolation-by-distance 

Modellen, die auf inter-individuellen Gower Distanzkoeffizienten basieren. Mithilfe 

nicht-metrischer Zahnmerkmale und naiver Bayes-Klassifikation ermittle ich zudem 

die individuelle Herkunft einzelner Individuen der postkolonialen Phase. Die 

Ergebnisse zeigen, dass im vorkolonialen Süditalien eine moderate Populations-

stratifizierung vorherrschte. Während der postkolonialen Zeit wurde das Gebiet zu 

einem Ort hoher Mobilität, der ~ 10 % griechische Neuankömmlinge und deren 

Nachkommen beherbergte. Interessanterweise finden sich Individuen griechischer 

Herkunft gleichmäßig über griechische Kolonien und indigene Siedlungen verteilt. 

Diese Ergebnisse befürworten ein schrittweises Modell der Kolonisation unter 

maßgeblicher Beteiligung lokaler Bevölkerungsgruppen und widersprechen der 

Theorie, dass griechische Kolonien homogene Enklaven innerhalb eroberter Gebiete 

waren. Zukünftige Forschung, die das Untersuchungsgebiet auf Kalabrien und 

Sizilien ausweitet, besitzt großes Potenzial ein detailliertes Bild der kolonialen 

Geschichte von ganz Magna Graecia zu liefern. Die Fallstudie in dieser Doktorarbeit 

liefert hierzu eine konzeptionelle Vorlage und die zur Verfügung gestellten Rohdaten 

ermöglichen Reproduzierbarkeit. 

 

Die vorliegende Doktorarbeit verbindet Kernfragen und analytische Ansätze der 

physischen Anthropologie, Populationsgenetik sowie der klassischen Archäologie. Sie 

fördert damit multidisziplinäre Synergien zwischen diesen Forschungsfeldern und 

zeigt vielversprechende Bereiche für zukünftige Forschung auf. 
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1. Introduction 

 

Reconstructing the history of mankind is an exciting and challenging endeavor 

involving many different interdisciplinary research disciplines. Bioarchaeology is the 

contextual study of the biology and culture of past human populations using skeletal 

remains interpreted within archaeological and historical problem orientations. The 

focus of this PhD research is on a particular bioarchaeological tool known as 

biological distance analysis (hereafter, biodistance).1 Biodistance analyses use 

phenotypic data from the cranium or dentition to estimate genetic similarity among 

regional or continental populations in order to reconstruct population structure and 

population history. These two terms are often used interchangeably, but they can be 

considered somewhat separately. Population structure refers to patterns of genetic 

variation among a set of contemporaneous populations generated by the effects of 

gene flow and genetic drift (Relethford, 1996). Population history is concerned more 

with inferences of ancestor-descendant relationships and evolutionary histories 

among populations caused by historical events such as large-scale population 

movements and culture contact (Relethford, 1996). In general, population structure 

studies tend to be regionally focused, while studies on population history are more 

continental in scale (Knudson and Stojanowski, 2008). 

 

But before getting into the details of this approach, it is worthwhile examining a more 

essential question: why are we doing this? Given the increasing wealth of ancient 

DNA (aDNA) data extracted from archaeological human remains, it might seem rather 

old-fashioned to deal with phenotypic data. Today, molecular studies are 

undoubtedly the most accurate tool for exploring population structure and 

population history, primarily because they involve hundreds of thousands of 

analytical markers. This contrasts with phenotypic studies, in which a given analysis 

rarely includes more than a few dozen characters. However, one pragmatic reason in 

favor of phenotypic approaches is that in many archaeological contexts skeletal and 

dental evidence is the only source of information available to researchers as poor 

preservation often precludes the extraction of endogenous DNA. Moreover, aDNA 

                                                           
1 Biological distance analysis is a tool of quantitative genetics, which is a branch of population 

genetics, drawing from modern evolutionary theory and concerned with the variation and evolution 

of phenotypes. According to Hefner et al. (2016), the term “biological distance analysis” has been 

used in population biology and physical anthropology since the early 1960s, whereas the origin of 

the abbreviation “biodistance” is not as clear but could probably be dated to the late 1970s. 
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degrades quickly in warmer climates, making paleogenomic approaches more feasible 

in some parts of the globe but less promising in others. Finally, aDNA data may never 

be as abundant as skeletal or dental data, limiting paleogenomic investigations to 

single individuals rather than entire populations. Thus, even in the 21st century, the 

popularity of biodistance analyses is still growing.2 

 

The main aim of this cumulative dissertation is to contribute to the field of 

biodistance analysis through both 1) methodological and 2) applied research. First, 

I tested the utility of dental phenotypic data as a proxy for nuclear DNA. In 

recent years, teeth have become a favored dataset for biodistance studies because 

dental phenotypes are assumed to be under strong genetic control. Furthermore, 

teeth are generally best-preserved in the archaeological record, even when the 

associated cranial and postcranial skeletal preservation is poor. However, despite the 

popularity of biodistance analyses utilizing dental phenotypes, few studies have 

systematically tested the assumption of genetic neutrality of dental phenotypic 

features in a population and quantitative genetic framework (Sofaer et al., 1972; 

Brewer-Carias et al., 1976; Harris, 1977; Hubbard et al., 2015). These investigations 

found contradicting results and some were limited by several issues related to sample 

size and traits selection. To contribute to this research field, I quantified the 

correlation of biodistance estimates among a large set of globally distributed modern 

human populations, derived independently from diverse dental phenotypic features 

and neutral genetic markers. Second, I applied dental biodistance analyses to an 

archaeological case study: the Greek colonization of southern Italy. The Greek 

colonization of southern Italy was a pivotal cultural encounter in antiquity, 

nevertheless, little is known about the scale of demographic impact and the Greek 

genetic legacy. Historians, archaeologists, demographers, and geneticists have 

proposed different degrees of Greek contribution, with scenarios ranging from a 

colonization process driven by a few Greek colonists living in biologically isolated 

enclaves within the conquered territories, to scenarios with substantial migration 

from Greece to Italy and intensive interaction between newcomers and locals (e.g. 

Pugliese Carratelli, 1996; Osborne, 1998; Yntema, 2000; Greco, 2002; Scheidel, 

                                                           
2 The popularity of biodistance analysis is attested by the vast amounts of research manuscripts, 

theses, and dissertations making use of this analytical tool. A recent Google Scholar search 

(https://scholar.google.com) for the term “biodistance” for a 10 year interval from the year 1970 

up until today returned the following results: 1970-1980: 3 hits; 1980-1990: 21 hits; 1990-2000: 

80 hits; 2000-2010: 313 hits; 2010-today: 719 hits. 

https://scholar.google.com/
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2003; Donnellan et al., 2016b, 2016a; Tofanelli et al., 2016). Studies using aDNA 

could help verifying these hypotheses, but it remains to be tested if human skeletal 

remains from southern Italy provide ancient collagen of high enough quality to be 

DNA sequenced. To address this debate, I collected a comprehensive dental 

phenotypic dataset from hitherto inaccessible skeletal collections and performed 

biodistance analyses aimed at reconstructing the population structure and history of 

southern Italy during the Greek colonization. 

 

The following sections introduce the theoretical, methodological and contextual 

backgrounds of this PhD project. Chapter 2 (Objectives and Research Questions) 

presents the main research goals, the specific research questions and study designs 

of the articles that form this cumulative dissertation. Chapter 3 (Results and 

Discussion) summarizes the key results of the articles and reviews the fundamental 

contributions of the dissertation to the field of biodistance analysis and research on 

the Greek colonization of southern Italy. Finally, Chapter 4 (Concluding remarks and 

area for future research) highlights productive areas for future work. 

 

1.1. Biodistance analysis 

 

“History and mathematics are not often a comfortable mix […]. That said, 

I must admit that biological distance analysis and paleodemography are 

probably the two most mathematical branches of bioarchaeology” 

(Konigsberg, 2006: 263-264) 

 

This chapter provides the reader with a brief introduction into the field of biodistance 

research. The historical development of the field, as well as recent trends in analytical 

approaches, have been subject to several reviews and edited books (Konigsberg, 2006; 

Stojanowski and Schillaci, 2006; Pilloud and Hefner, 2016) and I refer the interested 

reader to these excellent sources for additional detailed information. The chapter is 

divided into three subchapters: (1) Theoretical background; (2) Description of the 

data; and (3) A brief history of developments in statistical approaches. 

 

Theoretical background 

 

The underlying theoretical principle of biodistance analyses is relatively 

straightforward (Stojanowski and Schillaci, 2006): Populations which share a set of 

phenotypic features are presumed to be genetically more closely related, while those 



 

12 
 

that differ in their phenotypes are genetically less similar. The primary assumptions 

of biodistance analysis are: (1) skeletal phenotypes are an adequate proxy for the 

underlying genotype and changes in allele frequencies result in changes in skeletal 

features; (2) environmental (non-genetic) effects on phenotypic variation are minimal; 

(3) phenotypic expressions must be independent of age and sex; (4) populations under 

study are accurately represented by samples of archaeological human remains with 

attention paid to adequate sample sizes; and (5) the archaeological samples comprise 

specimens aggregated over similar temporal durations. 

 

Description of the data 

 

Biodistance analyses utilize phenotypic observations from archaeological skeletal 

remains as proxies for genotypic data. Cranial and dental observations are preferred 

because they are assumed to be the most heritable features of the human skeleton. 

Postcranial traits are less often used because weight-bearing bones are primarily 

functional and, thus, subject to selective forces (Stojanowski and Schillaci, 2006). In 

general, there are two different families of data that can be collected for the cranium 

and the dentition: metric and nonmetric traits. Metric traits are measured along 

continuous scales gathered by either hand-hold sliding calipers or more advanced 

three-dimensional imaging techniques. Cranial metrics are most common and have 

the longest history in anthropological research. Data collection is performed by 

measuring cranial inter-landmark distances with several different data recording 

protocols proposed over the course of time (Martin, 1928; Howells, 1989; Buikstra 

and Ubelaker, 1994). Dental dimensions are another frequently used metric dataset 

for biodistance analysis and, as with craniometric data, many different measurement 

protocols have been used (Kieser, 1990; Buikstra and Ubelaker, 1994; Hillson, 1996). 

The most commonly used measurements are mesiodistal and buccolingual 

dimensions of dental crowns. Hillson et al. (2005) added to this a set of alternative 

dental measurements, such as diagonal crown measurements and cervical diameters 

at the cement-enamel junction. These alternative measurements are highly promising 

as they reflect similar genetic signals as traditional dental measurements but are less 

affected by dental wear. Nonmetric traits are discontinuous phenotypic expressions 

recorded by visual scoring on either a binary scale (i.e. ‘absent’ or ‘present’) or an 

ordinal scale (i.e. ‘small’, ‘medium’, ‘large’). Although the expression of nonmetric 

traits is discontinuous, they are assumed to have an underlying continuous polygenic 

mode of inheritance (Hauser and DeStefano, 1989). Many of these traits are subtle 
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and not easy to detect; thus, nonmetric variables are somewhat more affected by 

observer error than metric variables. However, one decisive advantage of nonmetric 

traits is that they develop relatively early in the life of an individual and that their 

form remains unchanged after full formation. Several cranial nonmetric traits and 

their various expression levels have been identified, and attempts have been made to 

ensure standardized scoring procedures (Hauser and DeStefano, 1989). Dental 

nonmetric traits are another important dataset for comparative purposes gaining 

increasing popularity over the last few decades. Turner et al. (1991) classified a wide 

number of crown and root traits and established a standardized recording system 

which comprises a set of dental casts illustrating expression levels for various traits 

and specific scoring instructions to allow for repeatability (known as the Arizona State 

University Dental Anthropology System, or ASUDAS). 

 

Justification for using cranial and dental phenotypes as reliable proxies for the 

underlying genotype almost always rests on two types of studies: heritability studies 

and studies seeking the correlation between genetic and phenotypic distance 

estimates. Heritability (h2) is the statistical estimation of the relative proportion of 

total phenotypic variation that is due to additive genetic variation. It can be estimated 

by comparing phenotypic features across relatives, such as comparing parents and 

offspring, as well as twins. Conceptually, h2 estimates can range from 0 % (implying 

that the phenotype under investigation is not genetically determined but instead 

heavily influenced by environmental factors) to 100 % (implying that the phenotype 

is purely genetically determined and not influenced by any environmental factors). 

Numerous heritability studies exist for cranial metrics (Sjøvold, 1984; Carson, 2006), 

cranial nonmetric traits (Hauser and DeStefano, 1989), dental metrics (Kieser, 1990), 

and dental nonmetric traits (Scott and Turner, 1997). Studies found greatly varying 

phenotypic heritability estimates, with the mean heritability estimate somewhere 

around h2 = 55 % (Stojanowski and Schillaci, 2006). The heritability concept has been 

criticized because h2 estimates are population-specific and do not speak to the 

environments of other populations (Vitzthum, 2003; Visscher et al., 2008). Studies 

quantifying the correlation between genetic and phenotypic distance estimates 

are an alternative way of assessing the role of genetics in phenotypic variation. These 

studies test the congruence of genetic and phenotypic distance estimates across a set 

of populations for which both genomic and phenotypic data are available. Because of 

the inclusion of several populations, they are better suited to account for differential 

large-scale environmental effects on phenotypic variation in comparison to h2 
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estimates. Several researchers have applied this approach to cranial metric data 

(Roseman, 2004; Harvati and Weaver, 2006; Smith et al., 2007; Cramon-Taubadel, 

2009; Smith, 2009; Cramon-Taubadel, 2011; Smith et al., 2013; Herrera et al., 2014; 

Reyes-Centeno et al., 2017), but only few have done so for cranial nonmetric traits 

(Herrera et al., 2014), dental metrics (Harris, 1977), or dental nonmetric traits (Sofaer 

et al., 1972; Brewer-Carias et al., 1976; Hubbard et al., 2015). 

 

A brief history of developments in statistical approaches 

 

Biodistance analysis has undergone significant methodological transformations over 

the last decades, primarily due to the advent of computers and automated 

computational power enabling researchers to perform complex and time-consuming 

math. 

 

Historically, the first methods for the estimation of biodistances across groups were 

designed for use with metric data. Early multivariate statistical approaches 

essentially summed the mean differences in variables across groups (Pearson, 1926) 

but were quickly criticized primarily because they were not able to account for 

correlation among descriptors (Fisher, 1936). To correct for this weakness, 

Mahalanobis (1936) published his famous paper on the ‘generalized distance’ which 

is now also called the Mahalanobis distance or D2 statistic. This distance is a special 

case of the Euclidean distance, being able to account for correlation among variables 

by incorporating a variance-covariance matrix. Although very elegant, the major 

drawback of Mahalanobis’ D2 is that it assumes equal covariance structures across 

groups and relies on the computation of a single dispersion matrix. Statisticians 

therefore gained interest in developing D2 variants allowing for unequal covariances 

across groups (e.g. Bhattacharyya, 1943). These approaches, however, calculate 

pairwise distances each in a space defined by a different norm and therefore do not 

allow simultaneous representation of all distance estimates in a common reference 

space. Mahalanobis’ D2 therefore remained the most frequently used statistic in 

anthropological comparative research. Some years later, Penrose (1952) proposed his 

relatively straightforward ‘size and shape’ distance measurement, where ‘size’ is the 

square of the mean differences between groups and ‘shape’ a measure of variance. 

However, the primary problem of correlation among variables remained with this 

measure. In the early 1970s, Mahalanobis’s D2 and Penrose’s ‘size and shape’ were 
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fine-tuned in order to account for unequal sample sizes that are commonly employed 

in bioarchaeological studies (van Vark, 1970). 

 

Techniques for the estimation of biodistances based on nonmetric data are more 

complex and therefore it was not until the 1950s and 19060s that researchers first 

delved into this field. Many of the early approaches are based on the comparison of 

frequency profiles across samples and were directly derived from the field of 

population genetics. Sanghvi and Balakrishan (Sanghvi, 1953; Balakrishnan and 

Sanghvi, 1968; Sanghvi and Balakrishnan, 1972) were probably the first to publish 

several Euclidean distance statistics for frequency data utilizing the chi-square 

statistic, with some able to account for correlation among traits. At the same time, 

the ‘mean measure of divergence’ (MMD) was devised, a fairly complex technique for 

measuring the average difference in frequency profiles across groups by accounting 

for unequal sample sizes (Grewal, 1962). The method was popularized among 

bioarchaeologists by Berry and Berry (1967) who were the first to apply the technique 

to a set of human remains. The MMD formula was further modified and fine-tuned 

by various researchers addressing the issue of small sample sizes, variance 

stabilization, and fixed trait frequencies (Sjøvold, 1973; Green and Suchey, 1976). 

Increasing interest in the analysis of nonmetric traits resulted in the development of 

new and highly sophisticated methods for the complex treatment of discontinuous 

traits. From the generalized D2 distance, a Mahalanobis variant was extended for use 

with nominal or ordinal scaled trait data by incorporating a dispersion matrix of 

tetrachoric or polychoric correlations (Konigsberg, 1990; Konigsberg et al., 1993; 

Bedrick et al., 2000). In recent years, Nikita (2015) further modified the Mahalanobis 

D2 variant for discontinuous data and refined the approach to address the issue of 

non-positive-semidefinite dispersion matrices and effects of unequal sample sizes. 

 

Researchers also gained interest in combining metric with nonmetric data to 

improve biodistance performance, as compared to using the features separately. 

Krusińska (1987) proposed a weighted Mahalanobis D2 distance for mixed data as the 

weighted sum of a Mahalanobis D2 distance for continuous data and a Mahalanobis 

D2 variant for binary data. In the same spirit, Kozintsev et al. (1999) proposed to 

transfer metric and nonmetric data by two separate principal component (PC) 

analyses into PC scores which are then used as new variables in a second 'integral 

PC analysis'. Although these two methods are intuitively appealing, they do not 

account for correlation between metric and nonmetric datasets. This issue was finally 
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addressed by Bedrick et al. (2000) who developed a Mahalanobis D2 variant for mixed 

ordinal and continuous data using a grouped continuous model. Shortly afterwards, 

Leon and Carrière (2005) developed a highly promising Mahalanobis D2 variant for 

mixed binary, ordinal and continuous data by applying the Kullback-Leibler 

divergence to a general mixed-data model. 

 

In the 1970s and 1980s, researchers started to incorporate quantitative and 

population genetic theory into biodistance studies. Relethford and Lees (1982) 

distinguished between ‘model-free’ and ‘model-bound’ approaches for studying 

phenotypic variation across groups. Model-free approaches use for example D2 or 

MMD distance statistics to describe patterns of variation that can be interpreted in 

light of population structure and history. Model-bound approaches on the other 

hand are directly derived from population genetic theory and allow estimation of 

specific model parameters. 

 

A famous example of a model-bound approach is the R-matrix method which was 

originally developed to work with allele frequency data (Harpending and Jenkins, 

1973), and later modified for use with morphometrics (Williams-Blangero and 

Blangero, 1989; Relethford and Blangero, 1990; Relethford et al., 1997) and 

nonmetric traits (Konigsberg, 2006; Irish, 2010). The R-matrix method can be used 

to estimate a number of specific model parameters, such as FST, an index 

summarizing genetic differentiation among groups relative to the total amount of 

variation expected under no subdivision. Moreover, the R-matrix method can be used 

to estimate genetic distances among groups that account for the confounding effects 

of genetic drift. Finally, the R-matrix can be used to assess the level of extra-local 

gene flow experienced by the groups under study. Although promising, the R-matrix 

theory should be used sparingly in archaeological contexts unless the following 

assumptions are met: (1) the sampled groups are from the same time period and 

could have reasonably exchanged mates; (2) heritability estimates of the traits used 

are available; and (3) the effective population sizes of the groups are known or can be 

at least approximated. Since most archaeological samples violate the assumptions of 

the R-matrix theory, traditional model-free approaches continue to play a pivotal role 

in biodistance studies. 

 

Another famous example of a model-bound approach is the isolation-by-distance 

model (IBD), originally proposed by Wright (1943). The model states that if mobility 
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was low biodistances are expected to be strongly correlated with geography, whereas 

if mobility was high, biodistances are expected to be weakly correlated with 

geography. This expected relationship is usually investigated by performing Mantel 

tests (Mantel, 1967), a method determining the fit between a matrix summarizing 

biodistances across samples and another matrix summarizing geographic distances 

among samples. If samples are not contemporaneous researchers can use partial 

Mantel tests to control for the effect of a third matrix that summarizes temporal 

distances among samples (Legendre, 2000). Just recently, Loog et al. (2017) proposed 

a promising method that maximizes the correlation between a biodistance matrix and 

a matrix combining both spatial and temporal optimally scaled distance information 

(called mobility estimator Smax). Because IBD tests allow for samples from different 

time periods, they are most flexible and well-suited for analyzing mobility from 

spatially and temporarily sparsely sampled data. 

 

Although the emphasis of biodistance research is on group-level approaches, 

comparisons are also possible among individuals. Individual-level approaches gain 

increasing popularity because they are better suited for capturing the significant 

amount of human genetic variation within groups. A concentration on broad group-

level comparisons ignores such variation by treating the group as the unit of analysis. 

Probably one of the most useful inter-individual biodistance statistics is Gower’s 

similarity coefficient (Gower, 1971) because it can incorporate multiple variable 

scales (i.e. nominal, ordinal, continuous), different variable weights, and missing 

data. Individual-level analyses within a region or cemetery furthermore allow for a 

wide range of investigations directly articulated with the study of past social 

structures, such as the identification of kinship or the inference of post-marital 

residence practices (for an excellent review see Stojanowski and Schillaci, 2006). 

Individual-level approaches also allow for the classification of individuals into 

predefined groups which can be useful to detect individual ancestries. Although 

classification techniques are conceptually not considered distance estimates, they 

still belong to the broad field of biodistance research (see contributions in Pilloud and 

Hefner, 2016). The rise of learning machines has led to an explosion of highly 

sophisticated classification methods such as ‘neural networks’, ‘random forest’, or 

‘support vector machines’. These methods overcome problems of more traditional 

classification techniques such as overfitting or strong assumptions about the 

distribution of variables. Further details and elaboration of classification concepts 

lies beyond the scope of this chapter but can be found elsewhere (e.g. Ousley, 2016). 
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Nowadays, a countless variety of different biodistance statistics are available and 

researchers have to choose carefully which methods best suit their specific research 

questions. This primarily depends on the scale of investigation (group-level vs. 

individual-level), the inferential framework (model-free vs. model-bound) and the 

nature of the dataset (metrics vs. nonmetric traits), including attention paid to sample 

sizes and the amount of missing data. 

 

1.2. Archaeological case study: the Greek colonization of 

southern Italy 

 

“[Metapontion] is said to have been founded by the Pylians who 

sailed from Troy with Nestor; and they so prospered from farming, 

it is said, that they dedicated a golden harvest at Delphi” 

(Strabo’s Geography: 6.1.15) 

 

This chapter provides the reader with a brief introduction into the research field of 

the Greek colonization of southern Italy. The causes and modes of the Greek 

colonization has fascinated scholars for centuries and has spawned a huge 

bibliography. This chapter is by no means exhaustive but may serve as a concise 

review of previous research contributions in order to outline productive areas for 

future biodistance analyses. The chapter is divided into five subchapters: (1) 

Historical background; (2) Evidence from ancient written sources; (3) Archaeological 

evidence; (4) Present-day DNA evidence; and (5) Osteological evidence. 

 

Historical background 

 

During the eighth century BC, people coming from ancient Greece started to settle 

along the coasts of the Mediterranean. Greek seafarers founded more than 500 

colonies along the shores of the Black Sea, Anatolia, southern Italy, Sicily, North 

Africa and along the coast of southern France and Spain (Hansen and Nielsen, 2004). 

Among the regions settled by the Greeks, southern Italy was one of the most densely 

populated areas and eventually became known as Megálē Hellás or Magna Graecia 

(Greater Greece). Archaeological evidence suggests that Greek colonists initially 

settled in small groups, sometimes embedding themselves within the local indigenous 

populations. Over time, Greek colonies became increasingly urbanized and culturally 
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distinct settlements. The Greek colonization has been called "one of the most 

important cultural encounters in world history" (Angelis, 2016: 101), and its 

consequences in Mediterranean history were profound and long-lasting. It 

contributed to the creation of a Mediterranean-wide network of exchanges (Malkin, 

2005), to the development of urbanization along its shores (Malkin, 1994), to the 

spread of the alphabet (Boardman, 2014), and to the diffusion of Greek artistic and 

architectural traditions (Greco, 1992). 

 

The reasons why Greeks left their homeland and started colonization ventures are 

hotly debated and many opposing theories exist (e.g. overpopulation, hunger for 

territory, trade), each having supporters and opponents (Yntema, 2000). 

Overpopulation used to be a commonly accepted explanation but was gradually 

rejected by scholars as being void of actual evidence and plausibility (Scheidel, 2003). 

Hunger for territory as the decisive factor for colonization has been advocated by 

historians referring to ancient written sources. However, archaeological evidence 

showing that many of the colonized territories along the Mediterranean coast were 

already inhabited by large indigenous groups (e.g. Frey, 1991; Carter, 1998) suggests 

that this explanation is unlikely. Indeed, it might have been quite difficult for a small 

number of territory hungry Greek conquerors to survive and thrive in an adverse 

environment inhabited by hostile locals. From the 1980s onwards, trade became the 

prevailing explanation for the Greek diaspora, mainly because archaeological 

evidence proved that the exchange of goods pre-dated the arrival of Greek colonist by 

several decades (Yntema, 2000). 

 

While the impact of the Greek colonization is clearly visible in the historical and 

cultural heritage of southern Italy (e.g. through archaeological remains, architectural 

legacy and Greek-speaking minorities), researchers have argued for decades about 

its genetic contribution. In particular, the numerical size of migration from Greece 

and the degree of admixture between Greek colonists and indigenous populations are 

debated. Historians, archaeologists, demographers, geneticists, and osteologists have 

proposed different degrees of Greek contribution, with scenarios ranging from a 

colonization process driven by few Greek colonists living in biologically isolated 

enclaves within the conquered territories, to scenarios with substantial migration 

from Greece to Italy and intensive interaction between newcomers and locals 

(Osborne, 1998; Yntema, 2000; Scheidel, 2003; Donnellan et al., 2016b, 2016a; 

Tofanelli et al., 2016). In the following, I will briefly review these scientific 
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contributions to the debate in order to outline productive areas for biodistance 

analyses. 

 

Evidence from ancient written sources 

 

Early interpretations on the causes and modes of the Greek colonization were 

primarily based on survived texts from ancient Greek writers (Mitford, 1784; Grotte, 

1856; Beloch, 1886; Pais, 1894). Drawing from these historical sources, it was 

thought that the colonies (or apoikiai) were centrally organized expeditions sent out 

by a 'mother city' under the auspices of the Delphian oracle. They were led by an 

official founder (the oikistes), who chose the location and proceeded to divide the land 

in regular allotments distributed to the colonists. The oikistes was also responsible 

for establishing local cults (largely derived from the mother cities) and public spaces. 

In this view, the role of local populations, if at all considered, was essentially passive. 

They were deprived of land, resources and women to fulfill the colonies' needs while 

being the object of gradual acculturation (or 'hellenisation') (Burgers, 2004; 

Shepherd, 2005). Central to those early interpretations was the assumption that 

Greek colonies formed culturally and biologically homogenous enclaves within the 

conquered foreign territories. Within this framework, archaeological evidence (being 

very scarce at these times) was only considered when it supported the written 

evidence. Wherever the two research sources did not correspond, excuses were found 

to discard the former (Yntema, 2000). Philological approaches are, however, 

somewhat problematic, since most ancient written sources postdate the Greek 

colonization by several centuries and portray it solely from a Greek perspective. 

 

Ancient texts were also used to extrapolate the numerical size of Greek colonists that 

migrated to southern Italy. For example, Beloch (1886) reckoned that ~ 10 % of the 

population in southern Italy was Greek during Classical times (i.e. 400 y BC); an 

estimate based on approximated census counts primarily derived from historical 

enumerations of Greek military forces documented in ancient texts. In a more recent 

study, Scheidel (2003) performed demographic modeling based on reasonable 

population growth rates utilizing the census counts provided by Beloch (1886) and 

estimated that the original founding population during Archaic times (i.e. 700 y BC) 

was likely around 30,000 to 60,000 immigrants. The order of magnitude of such 

estimates, however, must be taken with caution as there is no guarantee that the 
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reported population estimates for the Classical period are correct or represent a 

reliable enumeration of 'biological' Greeks. 

 

Archaeological evidence 

 

Over the course of time, increasing archaeological evidence from early colonial 

contexts (700-500 y BC) pointed to a more complex picture that contrasted the 

proposed settlement homogeneity of the traditional colonial narratives. Specifically, 

in many Greek colonies, local indigenous material culture was unearthed from the 

earliest phases of the sites and, conversely, some non-colonial sites revealed evidence 

of mixed Greek-indigenous assemblages (Siena, 1986; Berlingò, 1993; Carter, 2006; 

Crielaard and Burgers, 2012; Denti, 2018). Based on those findings, the colonization 

process was considered an interplay of actions of both colonizers and colonized, and 

a more balanced investigation of both Greek and indigenous roles in the colonization 

process has been advocated. These developments led to an interpretation of Greek 

colonization emphasizing processes of collaboration and 'hybridization' between 

Greek newcomers and local indigenes, where the Greek-indigenous interaction 

shaped new, admixed cultures (Yntema, 2000; Malkin, 2002; van Dommelen, 2012). 

Although material culture is a valuable addition to ancient literary sources, it must 

be kept in mind that: 'pots are pots, not people'. The stylistic provenance of an object 

and the bio-geographic origin of its maker(s) may not be identical. Additionally, 

movements of object do not necessarily imply migration of people but can also result 

from trade or the diffusion and adoption of stylistic fashions. 

 

Present-day DNA evidence 

 

In recent years, geneticists have tried to tackle the question of the Greek colonization 

and its impact on southern Italy from a different angle. Using modern DNA data, 

several studies found that present-day southern Italians exhibit a genetic signature 

compatible with that found in modern Greeks (Di Gaetano et al., 2009; Sarno et al., 

2014; Tofanelli et al., 2016; Sarno et al., 2017). Di Gaetano et al. (2009) estimated a 

Greek genetic contribution of ~ 37 % to the population of Sicily and attributed the 

influx to the Classical period (2380 years before present, with a 95 % confidence 

interval ranging between 6940 and 675 years ago). In another study, Tofanelli et al. 

(2016) estimated that the size of the original founding population was probably 

between 1,000 to 6,000 immigrants and attributed the influx to the Archaic period 
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(800 - 400 y BC). The latter study suggests fewer immigrants than the study of 

Scheidel (2003) who reckoned with 30.000 to 60.000 newcomers. Although genomic 

studies are highly interesting, the problem with present-day genetic distributions is 

that they may not accurately reflect the effects of past migration events due to 

movements of people in more recent times. Moreover, genomic estimates of the timing 

of past migration events generally have wide ranging confidence intervals spanning 

several centuries or even millennia. Studies using aDNA could help verifying these 

findings, but it remains to be tested if human skeletal remains from southern Italy 

provide ancient collagen of high enough quality to be DNA sequenced. 

 

Osteological evidence 

 

The most promising approach for studying the Greek genetic contribution to southern 

Italy is to directly analyze ancient biological data from archaeological human remains. 

As detailed above (Chapter 1.1.), biodistance analysis provides a powerful tool for 

assessing relationships among past human populations, when no aDNA is preserved. 

Surprisingly, only a few studies have utilized biodistance methods to address the 

impact of Greek colonization on southern Italy so far (Henneberg, 1998; Rubini et al., 

1999). These studies found that the inhabitants of Greek colonies showed marked 

biological differences to indigenous Italian groups, possibly due to an influx of new 

genes. While this is an exciting finding, these studies were limited by several issues. 

First, they all employed few phenotypic variables, which generally reduces the 

accuracy of biological distance estimates (Sokal and Sneath, 1963). Second, all 

studies used either metric or nonmetric data; however, it has been shown that 

combining metric with nonmetric markers increases performance compared to using 

the features separately (Lease and Sciulli, 2005; Hefner et al., 2014). Third, none of 

the previous studies have used adequate comparative data from Greece which is 

essential to assess the degree of Greek genetic contribution to southern Italian 

populations. 

 

In conclusion, a thoroughly performed biodistance analysis using a comprehensive 

osteological dataset based on samples from several sites − both colonial and 

indigenous − has great potential to refine our understanding of the Greek colonization 

of southern Italy.  
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2. Objectives, research questions and study design 

 

The primary objectives of this dissertation were twofold: (1) to quantify the utility of 

dental phenotypes as a reliable proxy for neutral genomic data; and (2) to use dental 

biodistance analyses in an archaeological case study: the Greek colonization of 

southern Italy. 

 

In order to perform this PhD research, I was awarded with a 3-year doctoral 

research scholarship from the Gerda Henkel Foundation. Additional funding was 

provided by Prof. Dr. Richard Posamentir (Institute of Classical Archaeology, 

Tübingen University, Germany) and Prof. Dr. Katerina Harvati (Department of 

Paleoanthropology, Tübingen University, Germany). 

 

To address the first objective, I collaborated with an international team of experts 

from the fields of Physical Anthropology and Population Genetics in order to compare 

existing large phenotypic and genomic datasets from modern worldwide human 

populations (see Figure 1 in Appendix A). The dental phenotypic data was provided 

by Prof. Dr. Tsunehiko Hanihara (Department of Anatomy, Kitasato University, 

Japan). Neutral genomic data was provided by Dr. Silvia Ghirotto (Department of Life 

Sciences and Biotechnologies, Ferrara University, Italy) and by Dr. Nicole Creanza 

(Department of Biological Sciences, Vanderbilt University, USA). All statistical 

analyses were performed by me at the Department of Paleoanthropology, Tübingen 

University, Germany. The work of this project is summarized in Paper I. 

 

To address the second objective, I performed fieldwork in southern Italy to collect 

data on archaeological human remains. Between 2014 and 2018, I conducted six 

field campaigns, totaling approximately six months abroad. During that time, I 

collected a comprehensive dataset of 481 human skeletal remains with well-preserved 

dentitions from six archaeological sites from the coastal area of the Gulf of Taranto 

(for locations of the sites see Figure 1 in Appendix B; for site descriptions see 

Supplementary Information 1 in Appendix C). Data was collected at the storages of 

the National Archaeological Museums of Policoro, Metaponto and Taranto. Most of 

the time, I was accompanied by Dr. Giulia Saltini Semerari (Institute of Classical 

Archaeology, Tübingen University, Germany) who provided contact with the local 

museums and fundamentally helped to locate and assign the skeletal material of 

interest by checking excavation diaries and storage lists. Six undergraduate students 
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from Tübingen and Leiden University completed fieldwork internships as part of this 

project and greatly assisted in sorting, washing, and labeling the skeletons prior to 

the osteological data collection. Post-processing and analysis of the gathered data 

was conducted at the Department of Paleoanthropology, Tübingen University, 

Germany.3 The work of this project is summarized in Paper II (a preliminary 

investigation at the start of the project) and Paper III (the final investigation at the 

end of the project). 

 

Paper I (Appendix A): Can dental phenotypic data be used to adequately 

reconstruct neutral genomic relationships among populations? 

 

In the first study of this cumulative dissertation, I quantified the utility of dental 

phenotypes as a proxy for neutral genomic variation. To do so, I assessed the 

correlation of distance estimates between worldwide modern human populations 

derived independently from dental phenotypic features and neutral genetic markers. 

I employed two different dental phenotypic datasets for comparison: dental metrics 

and dental nonmetric traits. Both data types are commonly employed in biodistance 

studies but have been suggested being useful to different degrees (Coppa et al., 1998). 

Moreover, I employed two different neutral genomic datasets: Single Nucleotide 

Polymorphisms (SNPs) and Short Tandem Repeats (STRs). Both data types are used 

in contemporary genetic studies due to their highly polymorphic nature (Rubicz et 

al., 2007). It has been proposed that phenotypic variation should be compared to 

both neutral genomic data types (Reyes-Centeno et al., 2017) since the mutational 

rate of sequence change and the apportionment of modern human genetic variation 

is different in SNPs and STRs (Holsinger and Weir, 2009). For comparison I first 

matched genomic and dental phenotypic population samples from around the world 

using large existing databases. Matched SNP and dental phenotypic data were 

available for 19 populations and matched STR and dental phenotypic data were 

available for a subset of 13 populations (see Figure 1 in Appendix A). I then used the 

R-matrix method (Relethford et al., 1997) to calculate pairwise population kinship 

coefficients (rij) utilizing the genomic and dental phenotypic datasets independently. 

R-matrix analyses, founded on population and quantitative genetic theory, are most 

useful for comparing patterns of biological similarity from different types of data 

(Relethford, 2012). Additionally, these allowed me to correct for the confounding 

                                                           
3 The dataset is freely available at: [URL to GitHub will be added here before the publication of this 

thesis] 
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effects of genetic drift in different regions of the world by including estimates of 

effective population sizes (Ne) (Relethford, 1996; Reyes-Centeno et al., 2014). Finally, 

the associations between genomic and dental phenotypic kinship estimates were 

statistically assessed using Mantel correlation tests (Mantel, 1967). Dow-Cheverud 

tests (Dow and Cheverud, 1985) were used to determine whether dental metrics or 

dental non-metric traits are better suited to track neutral genomic relationships as 

calculated from SNP and STR data. 

 

Paper II (Appendix B): What was the genetic impact of the Greek colonization 

on southern Italy? Evidence from population-level biodistance estimates based 

on dental nonmetric traits 

 

In the second study, I applied a dental biodistance analysis to an archaeological case 

study: the Greek colonization of southern Italy. Specifically, this study investigates 

whether there are biological differences between the inhabitants of the Greek colony 

of Metaponto and indigenous Italic populations in the surrounding hinterland. To do 

so, I collected dental nonmetric trait data from archaeological human skeletons from 

three indigenous Italic sites in the vicinity of Metaponto: Incoronata, Santa Maria 

d’Anglona and Passo di Giacobbe (900-350 y BC). I then compared the dental 

nonmetric trait frequencies of the indigenous populations to published dental 

nonmetric trait frequencies of two populations from the Greek colony of Metaponto: 

the ‘urban’ necropolis of Crucinia and the ‘rural’ necropolis of Pantanello (700-250 y 

BC) (Henneberg, 1998). I used the model-free MMD approach (Harris and Sjøvold, 

2004) to assess significant population relationships across the five sampled 

populations. Estimates were further visualized using a multidimensional scaling plot 

(Gower, 1966) to facilitate the interpretation of distance results. Finally, the model-

bound R-matrix method was used (Relethford et al., 1997) to calculate pairwise 

population kinship coefficients (rij) and between-population variation (FST). 

 

Paper III (Appendix C): What was the genetic impact of the Greek colonization 

on southern Italy? Evidence from individual-level biodistance estimates based 

on dental metric and nonmetric traits 

 

The third study takes my previous biodistance study on the Greek colonization of 

southern Italy to the next level. First, I expanded the study region by collecting 

additional samples from the Greek colonies of Metaponto, Siris and Taranto (700-200 
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y BC). Second, I employed a larger battery of dental phenotypic variables and 

combined metric with nonmetric traits to increase biodistance accuracy. Third, I 

investigated the study region by chronological time period to trace bio-historical 

developments through time. Fourth, I performed individual-level biodistance 

analyses, which are better suited to capture the significant amount of human genetic 

variation within groups than population-level biodistance estimates. Fifth, I 

integrated comparative data from Greece in order to identify individual ancestries and 

to quantify the Greek contribution to southern Italy. This study can be considered as 

an update of my previous investigation (Paper II) and should provide a more accurate 

reconstruction of the population history of southern Italy during the Greek 

colonization. 

 

Specifically, this study examines southern Italian population structure for two 

chronological time periods: precolonial (900-700 y BC) and postcolonial (700-200 y 

BC). For each time period, I inferred population structure using adonis, betadisper 

and isolation-by-distance models (Wright, 1943; Oksanen et al., 2016) based on inter-

individual Gower distance coefficients (Gower, 1971) using a mixture of dental metric 

and nonmetric traits. For the postcolonial period, I furthermore determined 

individual ancestries using naïve Bayesian classification (Meyer et al., 2017) based 

on dental nonmetric traits. 
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3. Results and discussion 

 

This section summarizes the key results from the three papers forming this 

cumulative dissertation and reviews the main contributions of this PhD project to (1) 

dental biodistance research; and (2) the study of Greek colonization of southern Italy. 

 

Paper I (Appendix A): Can dental phenotypic data be used to adequately 

reconstruct neutral genomic relationships among populations? 

 

The first study assessed the level of correlation between dental phenotypic (metrics 

and nonmetric traits) and neutral genomic (SNPs and STRs) distance estimates 

across a large set of worldwide modern human populations for which all four datasets 

were available. Mantel correlation tests showed that distance estimates between 

human populations based on dental phenotypes are significantly correlated with 

those based on neutral genetic data (on average: r = 0.574, p < 0.001) (see Table 1 and 

Figure 3 in Appendix A). This relatively strong correlation validates tooth form as a 

proxy for neutral genomic markers. Despite the differences in the mutational change 

and evolution of SNPs and STRs, both genomic datasets showed the same pattern 

and a similar degree of correlation with dental phenotypic variation. Although all 

correlations between dental phenotypes and neutral genetic markers were highly 

significant, their squared correlation coefficients (r2) indicated that only part of the 

dental phenotypic variation can be explained in terms of neutral genetic differences. 

Dental metric variation explained approximately 31 % of the neutral genetic 

differences among populations as calculated from SNPs and STRs. Dental non-metric 

variation explained about 40 % and 30 % of the neutral genetic differences among 

populations as calculated from SNPs and STRs, respectively. Thus, other non-

stochastic factors account for a large portion of the variation in dental morphology of 

modern humans, and we reason that a substantial portion of the variation can be 

explained by natural selection on dental morphology. This interpretation is consistent 

with previous inferences and direct genomic evidence linking non-neutral gene 

variants with specific tooth characteristics (Park et al., 2012; Mizoguchi, 2013; 

Hughes et al., 2016). 

 

The results of the Dow-Cheverud test indicated that dental metrics and dental 

nonmetric traits are both comparably well-suited in tracking neutral genetic 

relationships as calculated from SNPs and STRs. This result supports the previous 
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finding that different dental phenotypic data types give concordant but varying 

results, and supports the conclusion that reconstructions of population history are 

best served when both lines of evidence are investigated (Hemphill, 2016). Although 

not explicitly tested in this study, this finding further indicates that combining metric 

with nonmetric markers increases performance compared to using the features 

separately. This has been shown and suggested by several previous studies (Lease 

and Sciulli, 2005; Hefner et al., 2014) and should motivate future researchers to 

integrate multi-scale datasets. 

 

The level of agreement between distance estimates based on dental nonmetric traits 

and STRs found in this study is comparable to that previously found in the only other 

study that has tested the association of dental morphology and neutral genomic 

variation (Hubbard et al., 2015). Furthermore, the quantified degree of 

correspondence between dental and neutral genetic variation found in this study is 

similar to that found for other skeletal cranial elements, including the basicranium 

or the temporal bone (Roseman, 2004; Harvati and Weaver, 2006; Smith et al., 2007; 

Cramon-Taubadel, 2009; Smith, 2009; Cramon-Taubadel, 2011; Smith et al., 2013; 

Reyes-Centeno et al., 2017). From this it can be concluded that dental and cranial 

phenotypes are equally well-suited for reconstructing genetic relationships among 

populations. 

 

It is important to point out that this study is biased toward finding insignificant 

correlations between variation in neutral genetics and dental phenotypes. First, we 

compared matched but unpaired datasets, such that dental samples were from 

different individuals than those sampled for SNP and STR sequencing. Although it is 

a common and practical procedure to compare unpaired data at a global scale 

(Roseman, 2004; Harvati and Weaver, 2006; Smith et al., 2007; Cramon-Taubadel, 

2009; Smith, 2009; Cramon-Taubadel, 2011; Smith et al., 2013; Reyes-Centeno et 

al., 2017), it is likely that such an approach results in sampling bias given that 

genetic variation between human populations is low compared to within-population 

variation (Witherspoon et al., 2007). Second, it is possible that the dental metric and 

non-metric datasets used for this study do not capture enough phenotypic variation. 

The metric dental dataset used in this study comprised 28 well-established crown 

width and length measurements, but could be complemented with more and 

alternative measures, such as diagonal crown measurements and cervical diameters 

at the cement-enamel junction (Hillson et al., 2005), or other measurements that 



 

29 
 

derive from innovative and more robust 3D imaging techniques not requiring the use 

of hand-held calipers. Likewise, the dental nonmetric dataset was limited to 12 

ASUDAS traits while more than 30 ASUDAS traits have been identified as useful in 

detecting population relationships (Turner et al., 1991). Furthermore, the study 

utilized binary nonmetric dental trait counts, although research has shown that 

dichotomization of ordinal-scaled data into simplified binary categories may skew 

biological distance results (Nikita, 2015; Edgar and Ousley, 2016). Given the 

limitations of the study, the levels of association between neutral genetic and dental 

phenotypic distance estimates must therefore be considered as minimum values and 

not as exact correlations. This is exciting because it indicates that the true level of 

congruence may be higher than the relatively strong level of congruence found in this 

study. 

 

Future work seeking to quantify the exact correlation between dental phenotypic and 

neutral genomic variation should focus on (1) analyzing paired neutral genetic and 

dental phenotypic datasets from the same individuals, (2) using a large set of globally 

distributed population samples, (3) collecting both conventional and alternative 

dental metric and non-metric traits, and (4) comparing patterns of biological 

relationships from genetic and dental phenotypic data using similar distance 

measurement methods. By performing several comparisons using different 

combinations of dental metric and non-metric traits, future work could potentially 

identify dental data combinations that are most useful for tracking human population 

structure and history. 

 

Paper II (Appendix B): What was the genetic impact of the Greek colonization 

on southern Italy? Evidence from population-level biodistance estimates based 

on dental nonmetric traits 

 

The second study aimed at reconstructing genetic relationships between the 

inhabitants of the Greek colony of Metaponto and indigenous Italic populations in 

the surrounding hinterland by performing a population-level biodistance analysis 

utilizing dental nonmetric trait frequencies. MMD results showed that the frequency 

profiles of all populations under investigation significantly differed from each other 

(see Table 3 and Figure 2 in Appendix B). Moreover, MMD, rij and FST estimates 

revealed greater biological variation between the two geographically proximate 

Metaponto samples than between the geographically more distant indigenous groups 
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(see Tables 4 and 5 in Appendix B). This indicates that the Greek colony of Metaponto 

comprised large numbers of people with diverse geographical origins, whereas the 

indigenous Italic communities of the surrounding hinterland were relatively 

homogenous. This study is the first to provide direct biological evidence of the arrival 

of newcomers into the region using a newly gathered set of samples from colonial and 

indigenous contexts. The results are in general concordance with written sources, 

archaeological data and present-day DNA evidence, indicating migration influx from 

Greece from the Archaic period onwards (Yntema, 2000; Tofanelli et al., 2016). Our 

study showed that dental phenotypic evidence can produce interesting insights into 

the Greek colonization and should be considered a key tool to be integrated with 

material culture and ancient written sources-based studies of complex past 

interactions. 

 

Interestingly, our results disagree with a previous biodistance study performed by 

Henneberg (1998). She compared the ‘urban’ and ‘rural’ samples from Metaponto to 

two samples from central Italy near Rome dating to the 2nd century BC. She found 

that the rural people from Metaponto were more closely related to the indigenous 

Italic populations than to the urban people from Metaponto. Our study, in contrast, 

revealed similar degrees of differentiation between both Metapontian samples and 

indigenous populations. This discrepancy could have come about due to Henneberg’s 

use of comparative samples from Rome, which might be problematic in terms of 

distance in both space (> 500 km) and time (ca. 700 years). We argue that our newly 

sampled data from indigenous sites in the direct vicinity of Metaponto (< 20 km) with 

a closer temporal proximity (ca. 350 years difference) are better suited for comparative 

purposes. 

 

Nevertheless, it is important to point out that the results of this study could 

potentially be affected by several sources of bias. First, the study compared dental 

nonmetric trait frequency data collected by different researchers. The indigenous 

Italic samples were studied by me, while the Metaponto samples were studied by 

Henneberg (1998). Using data from different observers can introduce inter-observer 

error owing to slight discrepancies in the scoring technique of ASUDAS traits. 

Unfortunately, an inter-observer test could not be performed as the primary 

Metaponto dental data were not accessible at that time. Second, although a variety 

of dental metric and nonmetric traits were recorded for the indigenous Italic samples, 

only 12 nonmetric traits could be used for the biodistance analysis. These particular 
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traits were the only ones in the Metaponto samples that were dichotomized using the 

established ASUDAS thresholds and, therefore, allowed for standardized 

comparability. Relying on few phenotypic variables, however, is generally problematic 

as it may reduce the accuracy of biodistance estimates (Sokal and Sneath, 1963). 

Third, the study compared samples from different time periods. While the samples 

from Incoronata and Santa Maria d'Anglona date to precolonial times (900-750 y BC), 

the samples from Passo di Giacobbe, Crucinia and Pantanello date to postcolonial 

times (700-250 y BC). Comparing samples from different periods may bias 

biodistance estimates due to diversity introduced by temporal separation. 

Investigating the study region by chronological time period would have been a neat 

solution but would have resulted in insufficient study units (i.e. populations) per time 

slide. Thus, the results of this study should be treated with caution and future 

research considering the mentioned pitfalls is necessary to generate a more reliable 

reconstruction of the population history of southern Italy during Greek colonization. 

 

Paper III (Appendix C): What was the genetic impact of the Greek colonization 

on southern Italy? Evidence from individual-level biodistance estimates based 

on dental metric and nonmetric traits 

 

The third study takes our previous biodistance study on the Greek colonization of 

southern Italy further by (1) including additional samples, (2) employing a larger 

battery of dental phenotypic variables, (3) combining metric with nonmetric traits, (4) 

investigating the study region by chronological phase, (5) performing individual-level 

biodistance methods, and (6) integrating comparative data from Greece in order to 

identify individual ancestries and to quantify the Greek contribution to southern 

Italy. 

 

Our results showed that southern Italy was characterized by moderate levels of 

population stratification during precolonial times (900-700 y BC) but became a place 

of high mobility during postcolonial times (700-200 y BC) (see Figure 2, Tables 2 and 

3 in Appendix C). This result is in concordance with the arrival of Greek settlers in 

the region as indicated by numerous ancient written sources, archaeological finds 

and present-day DNA evidence (Yntema, 2000; Tofanelli et al., 2016). Moreover, we 

estimated a Greek contribution of ~ 10 % to the population of southern Italy. Our 

estimated Greek contribution is concordant with the size spectrum proposed by 

historical demographers, who reckoned with ~ 10 % Greeks in pre-Roman southern 
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Italy (Beloch, 1886). Our results also broadly agree with preliminary strontium 

isotopic evidence for the study region which indicates that 5 % of the postcolonial 

individuals are of non-local origin.4 Interestingly, our results disagree with genomic 

estimates of the ancient Greek contribution to southern Italy derived from present-

day DNA profiles. Di Gaetano et al. (2009) used the haplogroup lineage E-V13 to 

estimate a Greek contribution of ~ 37 % to the population of Sicily and attributed the 

migration influx to 2380 years before present (CI: 6940 to 675 years ago). A potential 

explanation for the discrepancy between our estimate and their genomic 

reconstruction could be that proportions of specific genetic lineages surviving in 

present-days populations may not be good proxies for assessing the effects of past 

migration events (see Tofanelli et al., 2016). Moreover, their genomic estimate of the 

timing of the influx has a wide ranging confidence interval spanning several 

millennia. The estimate provided in this study is directly derived from archaeological 

human remains and can therefore be considered a more precise estimate. 

 

We found that Greek immigrants and their descendants were equally distributed 

across sites and did not live in isolated colonial enclaves. This finding points towards 

a gradual colonization process with substantial involvement of local populations. This 

result supports current postcolonial theories about the Greek colonization and 

matches several archaeological discoveries indicating close interaction (Yntema, 

2000; Burgers, 2004). At the colony of Metaponto, for example, an indigenous-style 

hut was found with mostly Greek-style pottery and a smaller percentage of 

indigenous pottery (Siena, 1986). Moreover, at the indigenous site of Passo di 

Giacobbe, several burials contained Greek-style pottery (Schojer, 2010). Thus, our 

finding fits well the archaeological evidence, suggesting coexistence between a small 

number of Greek newcomers and indigenous Italic populations. 

 

Lastly, it has to be noted that our results deviate from the findings of our previous 

dental nonmetric distance study (Paper II), where we found a significant separation 

between the inhabitants of indigenous Italic sites and the colony of Metaponto which 

evidenced a higher amount of variability. This discrepancy can be explained as the 

results of three potential sources of bias in our previous study: (1) bias due to inter-

observer error; (2) bias due to the use of a limited number of traits; and (3) distortion 

                                                           
4 Isotopic analyses investigating strontium signals of human skeletal remains (n = 20) from 

the sites of Metaponto and Siris were performed by Anouk Vos (Leiden University) as part of 

her MSc thesis in 2017. 
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of the ‘true’ variability of the groups by using group centroid estimates for 

comparative purposes. The present study overcomes these potential sources of bias. 

It further highlights the need for individual-level analyses which are better suited to 

capturing the true variabilities of groups, and cautions against group-level analyses 

based on simplified centroid estimates, especially in geographically fine-scaled 

contexts where genetic differences between individuals are subtle. 

 

Our results might be affected by several possible sources of bias. First, our study is 

limited to archaeological sites from the Gulf of Taranto region. Expanding the study 

area to Calabria and Sicily and including additional indigenous Italic samples from 

the inland would help to generate a more comprehensive picture of the colonial 

history of whole Magna Graecia. This study provides a conceptual template for future 

research in this area and the provided raw data allow for repeatability. Second, there 

is a need to improve the reference samples used for the individual ancestry 

determinations. Specifically, this study used two reference samples as potential 

ancestry sources, ‘Italians’ and ‘Greeks’. However, the high degree of Mediterranean 

mobility involving a multiplicity of actors in addition to Greek seafarers (for example 

Phoenicians and Etruscans) leaves open the possibility that multiple agents might 

have been involved in the colonial process, not all of them necessarily coming from 

ancient Greece. Given our simplified two-sample study design, such individuals 

would be forced into one of the two ancestry reference samples, ‘Italian’ or ‘Greek’, 

regardless of their true ancestry. Using a large number of robust reference samples 

from all over the Mediterranean would allow us to overcome this problem and, 

furthermore, opens the possibility to explicitly test for the bio-geographical origin of 

the colonists. Third and last, it could be that dental phenotypic data may not capture 

adequate neutral genetic variation for geographically fine-scaled analyses. In fact, 

dental phenotypic data are considered to be most effective at higher geographic scales 

of study, particularly global and continental (Scott and Turner, 1997). However, in 

our study, we use a comprehensive set of mixed metric and nonmetric data with a 

trait battery outnumbering the variables employed in most dental biodistance studies 

so far. We therefore think our approach is adequate for detecting subtle genetic 

structures on a local scale. Nevertheless, future studies should systematically test 

the association of mixed metric and nonmetric dental datasets and neutral genomic 

variation on a local scale to identify dental data combinations that are most useful 

for reconstructing local population structure and history. 
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4. Concluding remarks and areas for future research 

 

Using human dental remains to reconstruct the population structure and history of 

past civilizations is a challenging and exciting endeavor with many possible 

applications for future archaeological and anthropological research. It requires 

careful and comprehensive data collection and thoughtfully performed data analysis. 

Today, a wide range of conventional and innovative data collection techniques allow 

for precise metric and nonmetric data recording and numerous software packages 

enable researchers to perform highly sophisticated and complex biodistance 

analyses. 

 

This dissertation demonstrates that even the simplest dental data types (i.e. 

measurements collected with a hand-hold caliper and nonmetric traits observed with 

the naked eye) can be used to reliably reconstruct genetic relationships among 

population. It further motivates researchers to combine metric and nonmetric 

datasets for biodistance analyses, as an integrative approach increases performance 

when compared to using the features separately. The author is confident that future 

work seeking to quantify the association between dental phenotypic and neutral 

genomic variation has great potential to identify dental data combinations that are 

most useful for tracking human population structure and history. 

 

This dissertation furthermore applies dental biodistance analyses to an exciting 

archaeological case study: the Greek colonization of southern Italy. Results support 

a gradual colonization model with substantial involvement of local populations and 

contradict the hypothesis that Greek colonies were homogenous enclaves within 

conquered territories. The case study shows that dental phenotypic evidence can 

produce new and highly interesting insights into the Greek colonization and should 

be considered a key tool to be integrated with material culture-based studies of 

complex past interactions. Expanding the study area to Calabria and Sicily has great 

potential to generate a detailed picture of the colonial history of the whole Magna 

Graecia. Moreover, including reference samples from several areas in ancient Greece 

and elsewhere in the Mediterranean opens up the possibility to explicitly test for the 

bio-geographical origin of the colonists. The case study in this dissertation provides 

a conceptual template for future research on the Greek colonization of southern Italy 

and the provided raw data allow for repeatability. 
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Reconstructing human population 
history from dental phenotypes
Hannes Rathmann1, Hugo Reyes-Centeno   1,2, Silvia Ghirotto2,3, Nicole Creanza4, Tsunehiko 
Hanihara5 & Katerina Harvati1,2

Dental phenotypic data are often used to reconstruct biological relatedness among past human groups. 
Teeth are an important data source because they are generally well preserved in the archaeological and 
fossil record, even when associated skeletal and DNA preservation is poor. Furthermore, tooth form 
is considered to be highly heritable and selectively neutral; thus, teeth are assumed to be an excellent 
proxy for neutral genetic data when none are available. However, to our knowledge, no study to date 
has systematically tested the assumption of genetic neutrality of dental morphological features on a 
global scale. Therefore, for the first time, this study quantifies the correlation of biological affinities 
between worldwide modern human populations, derived independently from dental phenotypes and 
neutral genetic markers. We show that population relationship measures based on dental morphology 
are significantly correlated with those based on neutral genetic data (on average r = 0.574, p < 0.001). 
This relatively strong correlation validates tooth form as a proxy for neutral genomic markers. 
Nonetheless, we suggest caution in reconstructions of population affinities based on dental data alone 
because only part of the dental morphological variation among populations can be explained in terms of 
neutral genetic differences.

In archaeological and paleontological studies, dental phenotypic data are often used to estimate biological relat-
edness among past human groups, in order to reconstruct migration events, population histories, or hominin 
phylogenies1–11. Dental morphology has become a favored dataset primarily because teeth are generally well 
preserved in the archaeological and fossil record, even when associated skeletal and DNA preservation is rela-
tively poor. Their better state of preservation results in teeth being recovered in higher quantities and, therefore, 
allows studies to employ larger samples and more robust statistical analyses. Furthermore, tooth form has been 
proposed to be highly heritable, selectively neutral, and evolutionarily conservative, thus, providing an excellent 
proxy for neutral genetic data12,13. Tooth crowns develop relatively early in the life of an individual and their form 
is not altered after full formation, except by wear or pathology. Finally, dental phenotypic data can be sampled 
in a non-destructive, cost-efficient, and straightforward manner using crown width and length measurements 
(hereafter, dental metrics) or visual scoring of well-established crown and root shape variants (hereafter, dental 
non-metric traits).

Despite the popularity of population genetic studies utilizing dental phenotypes as proxies for genetic mark-
ers, less than a handful of studies have attempted to directly test the level of congruence between population 
distance measures based on these two data types14–17. Those previous investigations found contradicting results, 
with some of them reporting weak to strong correlations, whereas others found that dental and genetic distances 
produced fundamentally different patterns of group relationships. Thus, the utility of dental morphology as an 
efficient proxy for genetic data, formally tested in human population genetic analyses, is currently unresolved. It 
also has to be noted that those previous studies were limited by several factors. First, most used serological data 
as genetic markers; however, contemporary genetic studies commonly utilize either single nucleotide polymor-
phisms (SNPs) or short tandem repeats (STRs) due to their highly polymorphic nature18. In fact, it has been pro-
posed that phenotypic variation should be compared to both neutral genomic data types19–21 since the mutational 
rate of sequence change and the apportionment of modern human genetic variation is different in SNPs and 
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STRs22. Second, most previous studies were limited to dental non-metric trait data; however, dental metrics are 
another important data source for biological distance studies and some researchers argue that crown measure-
ments may be collected with lower observer error than dental non-metric traits23. Third, all previous studies were 
limited to regional scales, with some of them analyzing only a few population samples, which reduces the power 
of statistical correlation tests between dental and genetic distance estimates. A study seeking to investigate dental 
morphological and neutral genetic correspondence with a large set of globally distributed population samples is 
still pending.

Here, for the first time, we seek to test for correlations of biological affinities among globally distributed mod-
ern human populations, derived independently from diverse dental phenotypic markers (metrics and non-metric 
traits) and neutral genetic loci (SNPs and STRs). To do so, we first matched genomic and dental phenotypic pop-
ulation samples from around the world using existing databases. Matched SNP and dental phenotypic data were 
available for 19 populations and matched STR and dental phenotypic data were available for a subset of 13 popu-
lations (Fig. 1). We then used the R-matrix method24 to calculate pairwise population kinship coefficients (rij) uti-
lizing the genomic and dental phenotypic datasets independently. R-matrix analyses, founded on population and 
quantitative genetic theory, are most useful for comparing patterns of biological similarity from different types of 
data and, additionally, allowed us to correct for the confounding effects of genetic drift in different regions of the 
world by including estimates of effective population sizes (Ne)19,24,25. Finally, we statistically assessed the associa-
tions between genomic and dental phenotypic kinship estimates using Mantel correlation tests. Dow-Cheverud 
tests were then used to determine whether dental metrics or dental non-metric traits are better suited to track 
neutral genomic relationships as calculated from SNP and STR data.

Results
Figure 2 illustrates biological affinities among globally distributed modern human populations, derived inde-
pendently from dental phenotypic markers and neutral genetic loci. While SNPs and STRs gave largely concord-
ant results, dental metric and non-metric traits revealed a somewhat different pattern. Overall, dental phenotypes 
successfully classified populations in broader geographic and continental areas.

Our results show that kinship estimates between human populations based on dental phenotypes are signifi-
cantly correlated with those based on neutral genetic data (Table 1, Fig. 3). The correlation values were relatively 
strong and similar for all four data type comparisons. Dental metric variation explained approximately 31% of the 
neutral genetic differences among populations as calculated from SNPs and STRs. Dental non-metric variation 
explained about 40% and 30% of the neutral genetic differences among populations as calculated from SNPs and 
STRs, respectively.

Table 1 also presents the results of the Dow-Cheverud test, which determined whether dental metrics or 
dental non-metric traits are significantly more strongly correlated with either SNP or STR markers. None of the 
comparisons were significant, indicating that dental metrics and dental non-metric trait data are both comparably 
well-suited in tracking neutral genetic relationships as calculated from SNPs and STRs.

Discussion
Our results validate the use of dental phenotypic data to infer neutral genetic relationships among human popula-
tions. This, at least to some extent, confirms the previous hypothesis13 that the worldwide human dental variation 
was primarily generated by random processes of genetic drift. We also found that different dental phenotypic data 
types, i.e. metric and non-metric traits, are both well-suited in serving as proxies for neutral genetic markers. This 

Figure 1.  Location of the modern human population samples used in this study. White squares indicate that 
the population was sampled for dental metric and non-metric traits. Grey squares indicate that the population 
was sampled for single nucleotide polymorphisms (SNPs). Black squares indicate that the population was 
sampled for single tandem repeats (STRs). Word map modified from BlankMap-World6, available at https://
commons.wikimedia.org/wiki/File:BlankMap-World6.svg (Public Domain).

https://commons.wikimedia.org/wiki/File:BlankMap-World6.svg
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result supports the previous finding that different dental phenotypic data types give concordant but varied results, 
and the conclusion that reconstructions of population history are best served when both lines of evidence are 
investigated23. Although all correlations between dental phenotypes and neutral genetic markers were highly sig-
nificant, their correlation coefficients indicated that only part of the dental phenotypic variation can be explained 
in terms of neutral genetic differences. Other non-stochastic factors therefore account for a large portion of the 
variation in dental morphology of modern humans. Because we controlled for the effect that sexual dimorphism, 
pathology, and wear can have on teeth, we reason that a substantial portion of the variation can be explained by 
natural selection on dental morphology. This interpretation is consistent with previous inferences and direct 
genomic evidence linking non-neutral gene variants with specific tooth characteristics26–28.

While it has been shown or suggested that linguistic and skeletal phenotypic variation can correlate differ-
entially with genomic variation based either on SNPs or STRs19,29, our results do not suggest this to be the case 

Figure 2.  Biological distances among human populations (dij) generated from neutral genetic and dental 
phenotypic data. Figures show scatterplot of the first two principal coordinates of: (a) dij distances generated 
from SNPs; (b) dij distances generated from STRs; (c) dij distances generated from dental metrics; and (d) dij 
distances generated from dental non-metric traits.

SNPs (19 populations) STRs (13 populations)

Dental metrics 0.558 (<0.001)1 0.556 (<0.001)1

Dental non-metric traits 0.635 (<0.001)1 0.547 (<0.001)1

Dental metrics vs. 
Dental non-metric traits 0.074 (0.155)2 −0.008 (0.464)2

Table 1.  Mantel and Dow-Cheverud tests. 1Mantel test of dental phenotypic kinship coefficients (rij) against 
neutral genetic rij. Reported values are Pearson correlation coefficients (r) and two-tailed significance (p, 
in parentheses) after 10,000 permutations. All comparisons are statistically significant after Bonferroni 
correction for multiple testing at α = 0.025. 2Dow-Cheverud test of dental metric rij versus dental non-metric 
rij. Reported values are correlation coefficients (p1Z) and two-tailed significance (p, in parentheses) after 10,000 
permutations. Positive correlation values indicate that dental metrics are more strongly correlated with neutral 
genetics. Negative correlation values indicate that dental non-metric traits are more strongly correlated with 
neutral genetics. None of the results are statistically significant at α = 0.05.
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for dental phenotypic variation. Despite the differences in the mutational change and evolution of SNPs and 
STRs30,31, both genomic datasets showed the same pattern and a similar degree of correlation with dental pheno-
typic variation.

The level of agreement between kinship estimates based on dental non-metric traits and STRs found in this 
study is comparable to that previously found in the only other study that has tested the association of dental 
morphology and neutral genomic variation17. That study compared dental and genetic distances among four 
modern groups in Kenya using paired data from 295 individuals. They calculated dental distances using a 
Mahalanobis-type (D2) distance for binary data32 derived from nine non-metric crown traits. Genetic distances 
were estimated using a delta-mu squared (Ddm) distance33 utilizing 42 STR loci. They compared both distance 
matrices with a Mantel test and found a moderate to strong positive correlation between the two distance types, 
although this result was not significant (r = 0.500, p = 0.21). The correlation coefficient reported here is slightly 
higher (r = 0.547, p < 0.001). This could be due to the larger battery of dental traits employed (12 traits vs. 9 
traits), the higher geographic scale of analysis (global scale vs. regional scale), and/or the use of different biolog-
ical relationship measures (R-matrix comparisons vs. D2 against Ddm). Moreover, the correlation reported here 
is highly significant, whereas the correlation presented by ref.17 was not, albeit that result was probably due to the 
Mantel test design based on only four populations.

More broadly, the quantified degree of correspondence between dental and neutral genetic variation reported 
here is similar to that found for other skeletal cranial elements19,34–40. Dental and cranial phenotypes are there-
fore equally well-suited for reconstructing genetic relationships among populations. However, we caution that 

Figure 3.  Regression of pairwise kinship coefficients among human populations (rij) generated from neutral 
genetic and dental phenotypic data. Figures show scatterplot, linear regression line, and 95% confidence interval 
of: (a) rij values generated from SNPs versus rij values generated from dental metrics; (b) rij values generated 
from STRs versus rij values generated from dental metrics; (c) rij values generated from SNPs versus rij values 
generated from dental non-metric traits; and (d) rij values generated from STRs versus rij values generated from 
dental non-metric traits.
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previous studies on the association of cranial and genomic variation are not directly comparable to ours since 
different populations have been sampled and diverse methodological approaches have been employed.

It is important to point out that our study is biased toward not finding significant correlations between var-
iation in neutral genetics and dental phenotypes. First, we compared matched but unpaired datasets, such that 
dental samples were from different individuals than those sampled for SNP and STR sequencing. Although it is 
a common and practical procedure to compare unpaired data at a global scale19,34–40, it is likely that it results in 
sampling bias given that genetic variation between human populations is low compared to within-population var-
iation41. Second, it is possible that the dental metric and non-metric datasets employed in this study do not cap-
ture adequate phenotypic variation. Our metric dental dataset comprises well-established crown width and length 
measurements, but could be complemented with alternative measures, such as diagonal crown measurements 
and cervical diameters at the cement-enamel junction42, or other measurements that derive from innovative and 
more robust 3D imaging techniques not requiring the use of hand-held calipers. Likewise, our dental non-metric 
dataset was limited to 12 traits while more than 30 traits have been identified as useful in detecting population 
relationships43. Furthermore, we utilized binary non-metric dental trait counts, although recent research has 
shown that dichotomization of ordinal-scaled data into simplified binary categories may skew biological dis-
tance results44,45. Given the limitations of our study, the levels of association between neutral genetic and dental 
phenotypic kinship estimates reported here must therefore be considered as minimum values and not as exact 
correlations. Paired data from individuals sampled worldwide, as has been employed at a smaller scale17, would 
provide a more accurate estimate of genetic and dental phenotype associations.

In conclusion, our results confirm that dental phenotypic data can be used as a proxy for neutral genomic data 
in studies of population relatedness, although we suggest caution and careful choice of dental features because 
only part of the dental variation among populations can be explained in terms of neutral genetic differences. 
Future work should focus on (1) analyzing paired neural genetic and dental phenotypic datasets from the same 
individuals, (2) using globally distributed population samples, (3) collecting both conventional and alternative 
dental metric and non-metric traits, and (4) comparing patterns of biological similarity from genetic and dental 
phenotypic data using the same quantitative genetic model. By performing several comparisons using different 
dental fields and different combinations of dental metric and non-metric traits, future work could potentially 
identify dental data combinations that are most useful for tracking human population history.

Materials and Methods
Matching population samples.  Materials for this study comprise four different types of data: SNP allele 
frequencies, STR allele frequencies, dental metrics, and dental non-metric traits. All data were taken from exist-
ing databases. We matched datasets for several globally distributed modern human populations for which both 
genetic and phenotypic data were available (Fig. 1, Supplementary Table S1). Populations were chosen for inclu-
sion in this study based on two criteria: first, availability of sufficient number of dental phenotypic specimens 
(i.e. both dental metrics and non-metric traits); and, second, availability of neutral genetic data (i.e. SNPs and/
or STRs). In instances where exact population matches could not be achieved, a geographically similar popula-
tion with ethno-linguistic affinities was selected. Matched SNP and dental phenotypic data were available for 19 
populations; however, STR data were only available for a subset of 13 populations. We note that the matched pop-
ulations are unpaired samples; that is, dental samples derive from different individuals than the genetic samples.

Neutral genetic data.  SNP allele frequencies were collated from various datasets46–55 for 19 populations 
comprising n = 1652 individuals sharing 1778 markers. The SNP data were merged using the plink 1.07 software56 
and polymorphisms possibly causing strand ambiguities (A/T or C/G) were removed. We then exploited the 
extent of linkage disequilibrium (LD) observed in each population to obtain an estimate of the effective popula-
tion size (Ne) through time. Linkage disequilibrium levels have been estimated independently in each population 
using all SNP markers available for that population. We evaluated for each SNP the genetic map position, and 
for each pair of SNPs separated by less than 0.25 cM we quantified LD as the r2

LD, calculated in plink 1.07. All 
observed r2

LD values were then binned into one of 250 overlapping recombination distance classes, from 0.005 cM 
to 0.25 cM. Following refs25,57, pairs of SNPs separated by less than 0.005 cM were not considered, and the adjusted 
r2

LD values were corrected for sample size. We finally calculated the effective population size in each recombina-
tion distance class through the formula: Ne = (1/4c)[1/r2

LD − 2], which corresponds to the effective population 
size 1/2c generations ago, where c is the distance between loci, expressed in Morgans58. The long-term Ne for each 
population was then calculated as the harmonic mean of the values of Ne over all the recombination distance 
classes. The estimated Ne values for each population are reported in the Supplementary Table S1.

In addition to the SNP data, we analyzed a dataset of STR allele frequencies that combined data from several 
studies; the merging of data is described in ref.59. Specifically, we used their MS5255 dataset, which has genotype 
data from 645 loci for 265 worldwide populations. At each locus, allele sizes are recorded for each individual. 
Following refs60,61, we tested for individual outliers by generating a matrix of individuals by alleles, performing 
a principal components analysis on this matrix, and defining an outlier as an individual with a score more than 
six standard deviations from the mean of any of the first four principal components. None of the individuals met 
these criteria, so all individuals were considered for further population-level analyses. We then restricted the 
dataset to n = 265 individuals in the 13 populations with both STR and dental data as described above.

Dental phenotypic data.  The dental phenotypic data were collected by one of us (T.H.) and comprise den-
tal metrics and dental non-metric traits from mostly the same individuals. Several samples are from collections 
of known age and sex. When demographic data were not available, age and sex were determined by T.H. using 
standard osteological methods62. When possible, approximately equal numbers of adult males and females were 
measured for both dental datasets for each population. However, we note that overall, the datasets are biased in 
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representing more males. Detailed information on the composition of the morphological datasets, such as coun-
try of origin, ethnic affiliation, and cultural background is given elsewhere63,64. We excluded samples older than 
2.000 years in order to avoid temporal bias.

The dental metric dataset consists of mesio-distal and bucco-lingual crown diameters of all teeth recorded 
for each individual (up to a total of 28 metric variables, excluding third molars). Only right teeth were measured, 
but when a right tooth was missing, damaged, or affected by wear or pathology, the corresponding left antimere 
was measured. All measurements were recorded according to the procedures of ref.12 using a digital sliding cali-
per accurate to 0.01 mm. T.H. quantified his level of intra-observer error by separately re-measuring a Japanese 
sample; measuring error was found to be insignificant63. Because not every tooth could be observed for each 
individual due to poor preservation or pathology, the dataset comprises large amounts of missing values. The 
multivariate statistical methods performed here require complete datasets; however, removing individuals with 
missing values would eliminate the bulk of the sample. Thus, missing data were imputed following ref.65 using 
the k-nearest neighbor (kNN) algorithm, conducted in the software R 3.3.166 using the VIM package67. The kNN 
algorithm searches the entire dataset for cases most similar to the one with missing data and generates a mean to 
replace the missing value(s). Prior to imputation, individuals with more than half of the measurements missing 
were removed from the analysis. In this way we ensured that less than 22% of the final dataset requires imputation 
(down from 56%). Raw measurements were then converted into shape variables by dividing each measurement 
by the geometric mean for all the measurements in each individual68. This standardization procedure removes 
gross size from the data in order to assess differences in the proportionate contribution of individual variables to 
overall tooth size. This procedure also has the advantage to adjust for size differences between individuals that 
may result from sexual dimorphism. A table listing the summary statistics of the dental metric dataset is provided 
in the Supplementary information (Table S2).

The dental non-metric trait dataset consists of observations for 15 morphological variables in the permanent 
dentition according to procedures detailed in ref.64. The 15 traits include characteristics attributed to the Asian69, 
European70, and sub-saharan African dental complex71,72, as well as the key crown traits that distinguish continen-
tal Southeast Asians from island Southeast Asians73. Most (14 of 15) traits follow the widely used Arizona State 
University Dental Anthropology System (ASUDAS) described by ref.43. This system has as reference set of dental 
casts illustrating expression levels for various traits and specific instructions that ensure a standardized scoring 
procedure that minimizes observer error. Although observations were made on both antimeres, scoring followed 
the individual count method74, where a trait was counted only once per dentition, regardless of whether or not the 
trait appeared bilaterally. In cases where a trait was expressed asymmetrically, we followed the standard ASUDAS 
protocol and scored the side with the highest expression level4,5,75,76. The dental observations were originally 
scored in a graded fashion and were subsequently dichotomized into simplified categories of presence or absence 
following the dichotomization thresholds detailed in ref.64. Thus, our final dataset consists of binary dental trait 
information (i.e. 0 = absent, 1 = present) for each individual. The multivariate statistical methods performed here 
can handle incomplete datasets; however, the amount of missing data should be reduced as much as possible in 
order to prevent non-positive-semidefinite dispersion matrices44. We therefore removed the most incomplete 
variables and individuals from the analysis in a systematical stepwise manner so that the final dataset consists 
of less than 40% missing data (down from 60%). Most dental traits listed in the ASUDAS have low or no sexual 
dimorphism13, which allows for pooling of sexes4,64,76. A table listing the final dental non-metric dataset is given 
in the Supplementary information (Table S3).

Generating population affinity matrices.  We independently estimated genetic and dental pheno-
typic affinities between the sampled populations using the R-matrix method. The R-matrix method was origi-
nally developed to work with allele frequency data77 and was later modified for use with morphometrics24 and 
non-metric traits78. These extensions make R-matrix analyses most useful for comparing patterns of biological 
relationships from different types of data79. The off-diagonal elements of an R-matrix quantify the biological 
relationship between population pairs with values ranging from +1 to −1. Those values are covariances about the 
regional centroid and are defined as average kinship coefficients (rij). Positive rij values indicate that two popula-
tions exhibit greater biological similarity than on average, and negative rij values denote that two populations are 
more distinct than on average. Moreover, the R-matrix can be scaled by weighing the samples by their population 
sizes in order to account for the confounding effects of genetic drift on small populations. Here, we included 
point values of effective population size (Ne) derived from levels of genetic linkage disequilibrium (values are 
reported in the Supplementary Table S1). The phenotypic R-matrices were calculated with a heritability estimate 
of h2 = 0.5, reflecting the approximate average of various heritability estimates of dental anatomy based on twin 
and family studies63,64.

Genetic R-matrices were generated from the allele frequency data using the RMAT 1.2 software, following the 
model described by ref.77. Genetic R-matrices were constructed for all 19 populations using the SNP data and for 
the subset of 13 populations using the STR data. Dental metric R-matrices were generated from the crown width 
and length measurements using the RMET 5.0 software, following the model described by ref.24. We constructed 
two dental metric R-matrices; one for the 19-population setup and a second for the 13-population subset. Dental 
non-metric R-matrices were generated from the discrete crown traits in R 3.3.1, following the methodology 
detailed in refs78,80,81. As with the dental metric dataset, we constructed two dental non-metric R-matrices; one 
for the 19-population dataset and a second for the 13-population subset. All estimated R-matrices are reported in 
the Supplementary information (Tables S4–S9).

Comparing population affinity matrices.  To measure the degree of association between genetic and 
dental phenotypic population kinship coefficients, we followed the protocol set forth by refs35,40 and compared 
the off-diagonal R-matrix values using Mantel tests. Mantel tests measure the congruence between two matrices 
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against a null model and assess statistical significance via a permutation procedure82. Genetic R-matrices based 
on SNPs and STRs were compared independently against the phenotypic R-matrices based on dental metrics 
and dental non-metric traits. The Mantel tests were conducted in R 3.3.1 using the vegan package83. Correlation 
significance was determined after 10.000 random permutations and significance levels were set to α = 0.025 to 
correct for multiple comparisons (Bonferroni correction: α = 0.05/2). We interpreted correlation strength fol-
lowing the convention of ref.84. We furthermore visualized the association of R-matrix values in regression plots, 
generated in R 3.3.1 using the ggplot2 package85. In addition to the Mantel tests, we performed Dow-Cheverud 
tests86 in order to determine whether dental metrics or dental non-metric traits could be considered signifi-
cantly more strongly correlated with neural genetic variation as calculated from SNPs and STRs. Dow-Cheverud 
tests were conducted in R 3.3.1. Correlation significance was determined after 10.000 random permutations and 
significance levels were set to α = 0.05. We furthermore visualized population affinities generated from neutral 
genetic and dental phenotypic data by deriving pairwise distances from the R-matrices24 and plotting them using 
principal coordinates analysis in R 3.3.1 employing the vegan83 and ggplot285 packages.

Data availability.  The data that support the findings of this study are available from T.H., S.G., and N.C. but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of T.H., S.G., and N.C.
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Evidence for Migration Influx into the
Ancient Greek Colony of Metaponto: A
Population Genetics Approach Using
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ABSTRACT Ancient Greek colonies were founded by Greek seafarers all along the Mediterranean coast as early as the
eighth century BC. Despite extensive archaeological and historical research, the population structure of the
inhabitants of Greek colonies and their relationship to indigenous populations are still debated. Here, we
perform a biodistance analysis to reconstruct migration and gene flow between the ancient Greek colony
of Metaponto (southern Italy) and indigenous groups in the surrounding hinterland (900–250 BC). We
collected dental nonmetric trait data of 355 human skeletons from the indigenous Italic sites of Santa Maria
d’Anglona, Incoronata and Passo di Giacobbe. This data set is compared with an urban and rural sample
of the Greek colony of Metaponto comprising 351 individual dentitions. The R-matrix approach is used to
estimate inter-population relationships and FST. The resulting kinship coefficients indicate that the three
indigenous groups exhibit greater similarity to each other and possess lesser similarity to the two Metapontian
samples. Interestingly, the two samples of Metaponto are least similar to each other, although they are
geographically very close. The FST estimates confirm this pattern and reveal greater biological variation
between the two nearbyMetaponto samples (FST = 0.0603) than between the three geographically fairly distant
indigenous groups (FST = 0.0389). We conclude that the Greek colony of Metaponto included large numbers of
people with diverse geographical origins, whereas the indigenous Italic communities of the surrounding
hinterland exhibited high levels of homogeneity and cohesion. Copyright © 2016 John Wiley & Sons, Ltd.

Key words: biological distance; dental nonmetric traits; Greek colonisation; migration; southern Italy

Introduction

Starting from the eighth century BC, people coming
from ancient Greece started to settle along the coasts
of the Mediterranean. Greek colonies were founded at
the shores of the Black Sea, Anatolia, southern Italy,
Sicily, North Africa and along the coast of southern
France and Spain. Archaeological evidence suggests
that they initially settled in small groups, sometimes
embedding themselves within the local indigenous
populations. With time, however, Greek colonies
became increasingly urbanised and culturally distinct

settlements. The Greek colonisation has been called
‘one of the most important cultural encounters in
world history’ (De Angelis, 2016: 101), and its conse-
quences in Mediterranean history were profound and
long-lasting. It contributed to the creation of a
Mediterranean-wide network of exchanges (Malkin,
2005), to the development of urbanisation along its
shores (Malkin, 1994) and to the spread of the alphabet
(Boardman, 2014).
Decades of extensive archaeological and historical

research have greatly enhanced our understanding of
this process, yet no consensus has been reached by
researchers regarding its interpretation. Especially
contentious are questions concerning the geographical
origin of the colonisers, and whether and to what
extent indigenous populations actively participated in
the colonial process (see, for example, contributions in
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Donnellan et al., 2016a, 2016b, with bibliography).
Although focused on interaction, this debate has mostly
been waged using ancient written sources, standard
typological associations of artefacts, burial practices or
architectural elements. Surprisingly, large-scale
biological investigations, which could provide crucial
information regarding migration and admixture, remain
rare (with a few recent exceptions, e.g. McIlvaine et al.,
2014; Tofanelli et al., 2015).
This paper evaluates the population structure of the

colonised coastal area along the Gulf of Taranto in
southern Italy (Figure 1). This region is home to three
major Greek colonies that developed in the course of
the late 8th to 6th centuries BC (Metaponto, Taranto
and Siris). It also provides extensive archaeological
evidence of indigenous sites and ‘mixed’ Greek-
indigenous contexts dating to the earliest phases of
colonisation (De Siena, 1986; Berlingò, 1993; Carter,
2006; Burgers & Crielaard, 2007; Denti, 2009; Bianco,
2012; Crielaard & Burgers, 2012). Here, we performed
a biological distance analysis to reconstruct migration
and gene flow between the ancient Greek colony of
Metaponto and indigenous populations in the sur-
rounding hinterland. According to written sources,
the colony of Metaponto was founded in the course
of the seventh century BC by Achaeans from the north-
ern Peloponnese (Carter, 1990a, 1990b). Biological
distances were generated on the basis of the R-matrix
approach (Relethford & Blangero, 1990) using dental
nonmetric trait data (Turner et al., 1991). Our analysis
addressed the following questions: (i) How are colonial

and indigenous populations biologically related to each
other? (ii) Is there evidence for Greek immigration into
the colony of Metaponto? (iii) Did the inhabitants of
the colony admix with the indigenous people of the
surrounding hinterland?

The debate over Greek colonisation

Traditional approaches have focused on the relationship
between colonies and their putative ‘mother cities’ (city
from which the colonisers allegedly originated as
indicated by ancient literary sources), searching for
similarities in their cults, traditions and material culture
(Boardman, 1964; Dunbabin, 1968; contributions in
Pugliese Carratelli, 1985, 1996; Greco, 2002;
Lombardo, 2009). Accounts of the early phases of
colonisation were often directly derived from literary
sources, as the archaeological evidence dating to that
time was still scarce. Central to these studies was the
idea that colonies were ‘well-organised state enterprises’
(Graham, 1981: 314), whose foundation had been
directed by the mother city and whose population was
substantially homogeneous. In this view, the role of
local populations, if at all considered, was essentially
passive. They were deprived of land, resources and
(possibly) women to fulfil the colonies’ needs while
being the object of gradual acculturation (or
‘hellenisation’) (Burgers, 2004; Shepherd, 2005a). How-
ever, this perspective has changed considerably in the
last two decades owing to an increase in archaeological

Figure 1. Map of the coastal area along the Gulf of Taranto showing archaeological sites mentioned in the text. [Colour figure can be viewed at
wileyonlinelibrary.com]
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data and to the reconsideration of traditional narratives
through the lens of new theories.
Archaeological discoveries in almost every region

where Greek colonisation occurred show a complex
picture that resists simple associations between assem-
blages and specific mother cities (Shepherd, 2005b;
Yntema, 2011). For example, painted pottery typical
of different areas of Greece, such as Corinth, Athens,
Euboea and Laconia, were often both imported and
locally produced within one colony (Osborne, 1998;
Yntema, 2000). Moreover, elements from local ‘indige-
nous’ material cultures and customs have also been
found in the early phases of most colonies (Buchner,
1975; Berlingò, 1993; Bianco, 2012, to name just a
few). In Metaponto, for example, an indigenous-style
hut was found with mostly Greek-style pottery and a
smaller percentage of indigenous productions (De
Siena, 1986). Conversely, some non-colonial sites
show evidence of ‘mixed’ assemblages, possibly
pointing to coexistence between Greeks and indigenes
(Burgers & Crielaard, 2007; Crielaard & Burgers, 2012;
Isler, 2012). One of those sites, which produced some
of the most compelling evidence of coexistence, is
Incoronata. Structures in both Greek and indigenous
building traditions were found (Carter, 2006), as well
as a large pottery production site that included locally
produced Greek and indigenous wares, alongside with
some interesting ‘hybrid’ examples (Denti, 2009). Thus,
the archaeological evidence associated with the early
colonisation points to more complex realities that
contrast with the proposed homogeneity of traditional
colonial narratives.
The direct involvement of local populations in the

process of colonisation has also come into sharper
focus with the adoption of postcolonial theories in
archaeological discourse (Van Dommelen, 1997,
2012; Burgers, 2004; Malkin, 2004). Guided in part
by these theoretical insights, some archaeologists have
shown that local populations underwent independent
patterns of socioeconomic development and political
strife (Peroni, 1994; Vanzetti, 2002; Burgers, 2004).
They also highlight the existence of patterns of close
interaction and ‘mixing’, whether interpreted within
the theoretical framework of frontiers (Lombardo,
1999; Spatafora & Vassallo, 2002; Greco, 2011; De
Angelis, 2016), middle ground (Malkin, 2002) or
hybridisation (Van Dommelen, 2005). More recently,
the idea that such interactions may have impacted
concepts of identity beyond a binary coloniser–
colonised system has come to the fore and led to new
conceptualisations of contacts as fluid and charac-
terised by a multiplicity of agents (Hodos, 2009;
Giangiulio, 2010; Kistler, 2012). In sum, views of the

Greek colonisation have gradually shifted from a
centrally organised event involving a uniform group
of individuals to a less homogeneous, long-term
process strongly shaped by interactions. However,
these arguments have not gained universal traction
and are still hotly contested, especially when it comes
to the relation between Greeks and indigenous popula-
tions (see, for example, the most recent contributions
in Greco, 2011; Nijboer, 2011; Yntema, 2011; De
Angelis, 2016; Donnellan et al., 2016a, 2016b).

Materials and methods

To evaluate admixture between Greek colonists and in-
digenous Italic populations, we examined dental non-
metric traits. Dental nonmetric traits are particularly
useful in detecting relationships between past human
groups, because twin and family studies have shown
that many of them are under strong genetic control
(Alt, 1997; Scott & Turner, 1997). In a recent study,
Hubbard et al. (2015) showed that relationship patterns
among groups based on dental morphology are corre-
lated with those obtained by nuclear DNA. Thus, den-
tal morphology can be used as a proxy for genomic data
when none are available. Furthermore, teeth are gener-
ally well preserved in archaeological contexts, even
where overall skeletal preservation is relatively poor.

The dental samples

This study uses two sources of data: (i) data gathered
by the first author and (ii) summary data from the
literature. We analysed 355 skeletons with well-
preserved dentitions from three indigenous sites in
the surrounding hinterland of the Greek colony of
Metaponto: Incoronata, Santa Maria d’Anglona and
Passo di Giacobbe. This data set was compared with
samples from the urban and rural areas of the Greek
colony of Metaponto published in Henneberg (1998)
comprising 351 individual dentitions. The locations of
the archaeological sites from where the skeletal
samples were drawn are shown in Figure 1. Summary
information about the samples, including cultural
affiliation, dating, number of examined individuals
and the researcher who collected the data, are listed in
Table 1. All skeletal samples were dated based on
pottery and grave good assemblages.
The urban Metaponto skeletal sample (URME) was

obtained from the Crucinia burial ground, an urban
cemetery just outside the city walls, and comprises
175 individuals. The rural Metaponto skeletal sample
(RUME) comes from the surrounding area in close
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proximity to the city of Metaponto. It is composed of
four cemeteries: most skeletons come from Pantanello
(n=158), fewer from Saldone (n=11), Sant’Angelo
(n=6), and Celeste (n=1) (Carter, 1990a, 1990b,
1998; Henneberg, 1998). The skeletal sample of
Incoronata (INCO) comes from two cemeteries situated
along the associated indigenous settlement and com-
prises 141 individuals (Chiartano 1983, 1994a,
1994b). The skeletal sample of Santa Maria d’Anglona
(SMDA) was obtained from three cemeteries in the vi-
cinity of the corresponding indigenous settlement:
Conca d’Oro (n=84), Cocuzzolo Sorigliano (n=16)
and Valle Sorigliano (n=3) (Frey, 1991). The skeletal
sample of Passo di Giacobbe (PADG) comes from two
burial grounds situated along the indigenous settlement
and consists of 110 individuals (Schojer, 2010). It
should be noted that combining different burial
grounds into a single bioarchaeological sample may in-
troduce error in the representativeness of skeletal sam-
ples and can lead to increased intra-group biological
heterogeneity. On the other hand, this procedure in-
creases sample sizes, and large samples are necessary
to detect phenotypic differences between populations
on a regional scale. We believe that pooling geograph-
ically close cemeteries into a single sample is reasonable
in our study, because archaeological findings suggest
that they belong to the same settlement (see aforemen-
tioned references).

Dental trait recording

We scored dental nonmetric traits in the permanent
dentition of each individual. All traits were recorded
according to the reference standards of the Arizona
State University Dental Anthropology System
(ASUDAS) described by Turner et al. (1991). This
system comprises a set of dental casts illustrating
expression levels for various traits and specific instruc-
tions to ensure a standardised scoring procedure.
Scoring followed the ‘individual count method’, where
a trait was counted only once per dentition, regardless
of whether or not the trait appeared bilaterally. In cases
where a trait was expressed asymmetrically, the side

with the highest expression level was scored (Turner &
Scott, 1977; Turner, 1985; Irish & Guatelli-Steinberg,
2003; Irish, 2005; Edgar, 2007; Irish & Konigsberg,
2007). Although this method has been claimed to
underestimate trait frequencies in poorly preserved
samples (Korey, 1980), it remains the standard protocol
in ASUDAS studies. To ensure accuracy, any observa-
tion that was potentially affected by dental wear, caries
or calculus was treated as missing data. The ordinal-
graded trait scores were dichotomised into binary cate-
gories of ‘present’ or ‘absent’ in order to calculate trait
frequencies. The applied dichotomisation thresholds
are in line with established breakpoints (Turner, 1987;
Scott & Turner, 1997; Irish & Guatelli-Steinberg, 2003).
Although a variety of traits were recorded for the in-

digenous Italic samples, only 13 could be used for the
comparison with the Metaponto samples (Table 2).
These particular traits are the only ones in the
Metaponto samples that were dichotomised using the
established ASUDAS thresholds.
To assess sexual dimorphism of the dental traits, we

performed Fischer’s exact tests. However, the test
could only be performed for 7 out of 13 traits (54%)
owing to the large number of individuals of unknown
sex in our sample. Any sex differences in trait expres-
sions were found to be statistically non-significant and
thus negligible (results not presented here). This find-
ing is concordant with the statement that most of the
dental traits listed in the ASUDAS have low or now
sexual dimorphism (Scott & Turner, 1997). Thus, we
adopted the standard procedure and pooled the sexes
(e.g. Irish, 2005; Irish & Konigsberg, 2007).

Quantitative analysis

The dental nonmetric data set was analysed within a
framework of population genetic models utilising the
R-matrix approach. The R-matrix model was originally
developed to work with allele frequency data by
Harpending and colleagues (Harpending & Jenkins,
1973; Harpending & Ward, 1982) and was later
modified for use with morphometric data (Relethford
& Blangero, 1990; Relethford et al., 1997). The

Table 1. Composition of the samples

Site Abbreviation Cultural affiliation Dating Sample size Observer

Incoronata INCO Indigenous Italic 900–750 BC 141 Rathmann (present study)
Santa Maria d’Anglona SMDA Indigenous Italic 850–750 BC 104 Rathmann (present study)
Passo di Giacobbe PADG Indigenous Italic 625–350 BC 110 Rathmann (present study)
Rural Metaponto RUME Greek colonial 600–250 BC 176 Henneberg (1998)
Urban Metaponto URME Greek colonial 700–300 BC 175 Henneberg (1998)
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application of the R-matrix to discrete nonmetric data
was discussed by Konigsberg (2006) and Irish (2010).
The present study follows the latter approach. Unless
otherwise noted, all calculations were performed in R,
version 3.2.0.
The first step in order to generate an R-matrix from

nonmetric data is to calculate a conventional model-
free distance matrix. There are two distance statistics
available that are commonly used by physical anthro-
pologists working with nonmetric traits: the mean
measure of divergence (MMD) (Sjøvold, 1977) and
the pseudo-Mahalanobis D2 (Konigsberg, 1990).
Previous work has shown that both distance statistics
yield comparable results (Irish, 2010; Nikita, 2015).
The choice of which statistic to use depends on the
nature of the data set, that is, sample sizes, number of
traits and amount of missing data. In the present study,
the MMD was used because it is an unbiased estimator
of population divergence and is run with summary
count data, allowing us to easily integrate the pub-
lished grouped data of both Metaponto samples
(Henneberg, 1998).
Prior to applying the MMD statistic, we removed

highly intercorrelated traits to avoid over-representing
variation from features that co-occur (Sjøvold, 1977).
Inter-trait correlations were determined by submitting
the ASUDAS rank-scale data to Kendall’s tau-b correla-
tion coefficient. Of strongly correlated traits (τb≥0.5),
the one with the fewest observations overall was
removed from the analysis. UM3 congenital absence
and LM3 congenital absence were found to be highly
correlated (τb=0.929). Consequently, UM3 congenital
absence was dropped from the analysis.

The MMD statistic converts a battery of trait fre-
quencies into a nonlinear distance value between group
pairs; low values indicate similarity and high values im-
ply dissimilarity (Harris & Sjøvold, 2004). The MMD
was calculated according to the formula in Sjøvold
(1977):

MMD ¼ 1
r

Xr

i¼1

θ1i � θ2ið Þ2 � 1
n1i þ 0:5

� 1
n2i þ 0:5

� �

where r is the number of traits used, n1i and n2i are the
numbers of individuals examined for the ith trait in the
two groups being compared and Θ1i and Θ2i are the
transformed frequencies of the ith trait in the two
groups. The transformed frequencies were calculated
using the Freeman & Tukey (1950) angular transforma-
tion to correct for small sample sizes and low (≤0.05) or
high (≥0.95) trait frequencies:

θ ¼ 1
2
sin�1 1� 2

k
nþ 1

� �
þ 1
2
sin�1 1� 2

kþ 1
nþ 1

� �

where k is the count of positive observations for a trait
in a sample of size n. MMD distances can be considered
significant if they are more than twice their standard
deviation (see Harris & Sjøvold, 2004; formula 12).
The nonlinear distance matrix produced by the

MMD was then submitted to multidimensional scaling
(MDS) to calculate an optimally scaled distance matrix
(Irish, 2010). Calculations were performed in SPSS,
version 22.0. (IBM Corp., Armonk, N.Y., USA), run-
ning an interval-level Alscal procedure. This procedure

Table 2. Dental nonmetric traits used in the analysis, with their dichotomisation breakpoints (absent/present), frequencies of positive
observations (%) and number of individuals scored (n) for the five population samples

Dental traits

INCO SMDA PADG RUME URME

Absenta Presenta % (n) % (n) % (n) % (n) % (n)

UC Tuberculum dentale 0 1–6 26.82 (41) 22.85 (35) 7.50 (40) 56.52 (69) 13.41 (82)
UM2 Hypocone 2–5 0–1 23.07 (52) 15.78 (38) 22.85 (35) 17.34 (98) 35.63 (87)
UM1 Cusp 5 0 1–5 13.15 (38) 26.41 (53) 4.76 (21) 34.48 (29) 0.00 (30)
UM1 Carabelli’s trait 0–4 5–7 28.88 (45) 20.33 (59) 23.33 (30) 25.39 (63) 29.62 (54)
UI2 Peg-shaped 0 1–2 0.00 (40) 2.43 (41) 2.08 (48) 3.33 (90) 3.17 (63)
UM3 Congenital absence 0 1 4.76 (42) 34.61 (26) 20.00 (40) 0.00 (74) 2.06 (97)
LP2 Lingual cusp variation 0-1 2–9 56.41 (39) 45.83 (24) 45.45 (22) 30.95 (84) 48.38 (62)
LM2 Groove pattern +,x y 3.92 (51) 15.15 (33) 13.88 (36) 17.47 (103) 0.00 (94)
LM1 Protostylid 0 1–7 36.84 (57) 39.68 (63) 19.14 (47) 58.44 (77) 53.84 (65)
LM1 Hypoconulid 1–5 0 7.79 (77) 9.21 (76) 8.62 (58) 13.79 (87) 28.08 (89)
LM2 Hypoconulid 1–5 0 86.2 (29) 77.41 (31) 96.77 (31) 96.42 (112) 97.95 (98)
LM1 Cusp 6 0 1–5 0.00 (34) 5.66 (53) 11.53 (26) 0.00 (87) 1.12 (89)
LM3 Congenital absence 0 1 3.92 (51) 29.62 (27) 17.3 (52) 2.50 (80) 2.32 (129)

INCO, Incoronata; SMDA, Santa Maria d’Anglona; PADG, Passo di Giacobbe; RUME, Rural Metaponto; URME, Urban Metaponto.
aColumns show the ordinal graded dental nonmetric trait scores according to Turner et al. (1991) collapsed into binary categories of
‘absent’ or ‘present’.
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scales the nonlinear MMD distances to the same scale
as squared Euclidean distances. This step is crucial, be-
cause only squared Euclidean distances exhibit a direct
relationship to average kinship and can be used to cal-
culate the R-matrix (Konigsberg, 2006).
Next, a codivergence matrix was derived from the

optimally scaled distance matrix, according to the
formula presented in Konigsberg (2006):

C ¼ �0:5 I � 1w′ð ÞD2 I � 1w′ð Þ′

where I is an identity matrix with the dimensions g× g
(g is the number of groups), 1 is a g× 1 column vector
of 1 s, D2 is the optimally scaled distance matrix and
w is a g× 1 column vector of relative population sizes.
Weighting with relative population sizes is recom-
mended to correct for genetic drift on small popula-
tions. We assumed that the effective population size
of the Greek colony of Metaponto was at least three
times the size of the surrounding indigenous Italic
villages, as indicated by settlement survey data and
architectural structure counts (Carter, 1990b; De
Angelis, 2003). The relative weights of the populations
(w) are therefore 3/9=0.333 for both Metaponto
samples and 1/9=0.111 for the three indigenous
samples. Minimum FST was calculated from the
codivergence matrix as follows (Konigsberg, 2006):

minFST ¼ w′diag Cð Þ
2tþ w′diag Cð Þ

where diag(C) is the diagonal of the codivergence ma-
trix converted into a column vector and t is the number
of traits. FST is a summary measure of genetic differen-
tiation between populations, taking into account the
total among-sample variation. Minimum FST is the most
conservative way of estimating FST, because complete
heritability of the used traits is assumed. The estimated
FST was calculated according to the formula in
Relethford (1994):

FST ¼ minFST
minFST þ h2 1� minFSTð Þ

where h2 is a heritability estimate for dental nonmetric
traits. For the present study, a heritability value of
h2=0.5 was used, which is the average of various
heritability estimates of dental traits based on twin
and family studies (Hanihara, 2010).
The R-matrix was then computed as follows

(Konigsberg, 2006):

R ¼ C 1� FSTð Þ
2t

The R-matrix diagonal elements (rii) are distances
from population i to the regional centroid and indi-
cate the degree of population divergence from the
pooled genetic average. Populations near the centroid
exhibit greater internal variation, and those farther
away have less variation as a result of genetic drift
and lower migration rates (Konigsberg, 2006). The
off-diagonal elements (rij) are covariances about the
regional mean and are defined as average kinship
coefficients between population i and j. Positive
values indicate greater genetic similarity and negative
values lesser similarity than average (Relethford &
Harpending, 1994).

Results

The resulting MMD distance matrix is provided in
Table 3. All populations differ significantly at
p<0.025. The indigenous Italic samples show rela-
tively small MMD distances to one another (between
0.045 and 0.058), whereas the Greek colonial sam-
ples of Metaponto are much more divergent (0.231).
Figure 2 presents the biological distance results ob-
tained by the MMD analysis implemented in an
MDS plot, where Kruskal’s stress value is 0.021 and
r2=0.995.
Table 4 provides the R-matrix from the MDS opti-

mally scaled MMD distances. The diagonal values (rii)
indicate that PADG and SMDA are farthest away from
the genetic centroid, INCO is closest and RUME and
URME possess intermediate values. The off-diagonal
kinship coefficients (rij) indicate that the indigenous
Italic populations exhibit greater genetic similarity to
each other and possess lesser genetic similarity to the
populations of the Greek colony of Metaponto. The

Table 3. Mean measure of divergence distance matrix between
indigenous Italic and Metapontian populations based on 12
dental nonmetric traitsa

INCO SMDA PADG RUME URME

INCO 0
SMDA 0.0453 0
PADG 0.0588 0.0464 0
RUME 0.0903 0.1254 0.2289 0
URME 0.0777 0.2291 0.1256 0.2313 0

INCO, Incoronata; SMDA, Santa Maria d’Anglona; PADG, Passo
di Giacobbe; RUME, Rural Metaponto; URME, Urban
Metaponto.
aAll distances are statistically significant at p< 0.025.

458 H. Rathmann et al.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Osteoarchaeol. 27: 453–464 (2017)



two populations of Metaponto show the least genetic
similarity to each other.
Table 5 lists the FST measures to evaluate genetic

differentiation between populations. When all five sites
are considered as a single sample, an FST value of
0.0706 is obtained. The value considerably decreases
when the three indigenous Italic sites are considered
alone (FST=0.0389). When the two Greek colonial
sites are considered alone, the value is more than one
and a half times higher (FST=0.0603). This indicates
that there is greater biological variation between the
sites of the Greek colony of Metaponto than between
the indigenous Italic sites in the hinterland.

Discussion

Our study has produced three important results: (i) the
gene pool of the Greek colony of Metaponto differed
from those of indigenous populations in the vicinities;
(ii) there was significant biological diversity between
the inhabitants of the rural and urban areas of
Metaponto; and (iii) the indigenous populations were
relatively homogeneous.
We are aware that our results could potentially be

affected by inter-observer error owing to discrepan-
cies in the scoring technique of the two different
researchers. An inter-observer test could not be per-
formed as the primary Metaponto dental data were
not accessible. However, each observer followed the
same definitions to score the dental traits, and both
observers are experienced in collecting data of this
nature. Nichol & Turner (1986) reported that most
dental traits can be observed with adequate inter-
observer reliability. In their study, misclassification
of ranked traits by more than one grade was low
(6–10%) for between-observer comparisons. Addi-
tionally, the performed trait dichotomisation reduces
intra-observer error by collapsing the ordinal graded
trait scores into simplified categories of ‘present’ or
‘absent’ in such a way that slight scoring discrepan-
cies are eliminated. Thus, we consider that inter-
observer error, although potentially present, cannot
solely account for our results.
The biological distinction between colonial and

indigenous populations (Table 4), and substantial
diversity between the samples of Metaponto despite
their close proximity to each other (Figure 1), suggests
gene flow from external sources into the colony. Two
plausible scenarios might account for the diversity in
Metaponto: first, a high degree of variability was
already present in the ‘founding’ population, and
second, population influx throughout the settlement’s
duration could have brought increasing diversity to
the group of original settlers. These scenarios are not
mutually exclusive.
The first scenario is that the high degree of diver-

sity can be attributed to an already variable ‘founding’
population, originating from different regions of
Greece. This scenario would support the hypothesis

Figure 2. Two-dimensional MDS plot of 12-trait mean measure of di-
vergence dental distances between Metapontian and indigenous Italic
populations. [Colour figure can be viewed at wileyonlinelibrary.com]

Table 4. R-matrix from MDS optimally scaled mean measure of
divergence distances between indigenous Italic and
Metapontian populations estimated using an overall heritability
of h2 = 0.5 for 12 dental nonmetric traits

INCO SMDA PADG RUME URME

INCO 0.0229
SMDA 0.0060 0.0439
PADG 0.0039 0.0166 0.0445
RUME �0.0064 �0.0020 �0.0196 0.0346
URME �0.0045 �0.0202 �0.0020 �0.0252 0.0341

INCO, Incoronata; SMDA, Santa Maria d’Anglona; PADG, Passo
di Giacobbe; RUME, Rural Metaponto; URME, UrbanMetaponto.

Table 5. Estimated FST values for indigenous Italic and
Metapontian populations

Grouping Number of sites FST

Total area 5 0.0706
Indigenous Italic 3 0.0389
Greek colonial 2 0.0603
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that the Greek colonisation, especially in its initial
phase, was largely the product of a non-centrally
organised, relatively chaotic process that developed
from a period of intense mobility across the Mediter-
ranean (the end of the Early Iron Age). This hypoth-
esis was first outlined by Osborne (1998), who
suggested that the early colonisation was the

product of a world in which many were constantly
moving across the seas, […] and where individuals
and small groups out of their own gain from time
to time came to believe that more or less permanent
settlement on foreign shores was both in their imme-
diate best interest and was sustainable (Osborne,
1998: 268; but see Moggi, 2008; Greco, 2011).

The second scenario is that population influx
throughout the colony’s duration brought increasing
biological variability to the original settler group.
Given the urban development and important eco-
nomic role of Metaponto, the fact that it would have
attracted people from different regions seems reason-
able. This would not necessarily imply direct partici-
pation in the political life of the colony, as for
example, women, slaves or foreigners would have
been excluded to varying degrees. Ultimately, this
result lends greater weight to the idea, put forward
by Ridgway (2006, 2007) and Shepherd (2005b),
that the cohesion of colonies as communities was
based on the construction of a common colonial
identity (as expressed through material culture) that
went beyond strict ethnic boundaries and biological
realities (see also Lombardo, 2009).
Future work investigating the Metaponto dental

remains by chronological phase has the potential to
shed light on whether biological diversity in the
colony originated in the earliest phase of its settlement,
in the course of its history or both.
It is not possible at present to determine whether

indigenous people were also part of the colonial
population at Metaponto. A high degree of extra-
local gene flow into the colony would cause the co-
lonial gene pool to remain distinct from those of in-
digenous populations even in the case of admixture.
Thus, extra-local gene flow into Metaponto must
have been higher than gene flow from indigenous
populations. This leaves the question of Greek-
indigenous admixture still open. Interestingly, a
modern DNA study revealed that there is indeed a
Greek genetic signature in southern Italian present-
day populations that can, by modelling the typical
mutation rate over the centuries, be attributed to a
migration influx somewhere between the eighth and

fifth century BC (Tofanelli et al., 2015). We hope that
future comparative work on bioarchaeological data
from the supposed mother cities in Greece will bring
us closer to understand the timing and degree of
Greek-indigenous admixture at Metaponto (for exam-
ple, McIlvaine et al., 2014).
Interestingly, the indigenous populations were rela-

tively homogeneous (FST=0.039) in comparison with
the colonial populations of Metaponto (FST=0.071).
This is especially striking when the fairly distant
geographical locations of the indigenous sites are taken
into account (Figure 1). This result suggests that a
long-term history of interconnectedness existed be-
tween indigenous communities, involving not only
economic and political relations but also mobility and
intermarriage. This implies that the sociopolitical land-
scape of indigenous communities was more complex
and dynamic than usually assumed. It also serves to di-
rect future research towards considering the develop-
ment of indigenous sites in relation to each other as
well as to the Greek colonies. The existence of such
well-connected networks between indigenous commu-
nities certainly affected the way Greek-indigenous dy-
namics played out. It would, for example, have affected
the capacity of indigenous populations to generate an
organised response to the arrival of the first settlers,
their openness to interaction and the degree to which
contact would have been destabilising.

Conclusion

This study is the first to apply a biological distance anal-
ysis utilising the R-matrix method to the study of ancient
Greek colonisation. By comparing samples from colonial
and indigenous contexts in southern Italy, we could show
that the gene pool of the Greek colony of Metaponto
differed from those of indigenous populations in the sur-
rounding hinterland. The distinction was likely the result
of extra-local gene flow into Metaponto originating from
(i) the diverse origin of the earliest colonial settlers and/or
(ii) the continued influx of new migrants into the colony
throughout its history. This suggests that Greek colonies
were dynamic places able to generate social cohesion
based on colonial identity rather than strictly geographi-
cal origin. This situation stands in contrast to the closer
than expected biological affinity between indigenous
populations that were geographically relatively distant.
Such homogeneity needs to be further investigated and
included in our reconstructions of colonial dynamics. Al-
though the scope of our study is limited, our results show
that bioarchaeological evidence can produce important
new insights into Greek colonisation and should be
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considered a key tool to be integrated with material
culture-based studies of complex past interactions.
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ABSTRACT 

 

Objectives: Around the 8th century BC, Greek seafarers founded several colonies 

along the coastal area of southern Italy. While the impact of the Greek colonization 

is clearly visible in the cultural heritage of the region, researchers have argued for 

decades about their genetic contribution. Especially contested is the numerical size 

of the migration from Greece and the degree of admixture between Greek colonists 

and indigenous populations. 

Materials and Methods: To address this debate, we collected osteological data from 

481 human skeletons from six archaeological sites along the Gulf of Taranto, dating 

to precolonial (900-700 y BC) and postcolonial periods (700-200 y BC). For both time 

periods, we inferred population structure using adonis, betadisper and IBD models 

based on inter-individual Gower distance coefficients based on 42 dental metric and 

nonmetric traits. For the postcolonial period, we furthermore determined individual 

ancestries using naïve Bayesian classification based on 28 dental nonmetric traits. 

Results: Precolonial southern Italy was characterized by moderate levels of 

population stratification. During postcolonial times, the area became a place of high 

mobility, hosting ~ 10 % Greek immigrants and their descendants. Greek newcomers 

were equally distributed across Greek colonies and indigenous Italic settlements. 

Discussion: Our study provides unique insights into the Greek colonization of 

southern Italy by using biological data from archaeological human remains. Our 

results support a gradual colonization model with substantial involvement of local 

populations and contradict the theory that Greek colonies were homogenous enclaves 

within conquered territories. 
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INTRODUCTION 

 

During the eighth century BC, people coming from ancient Greece started to settle 

along the coasts of the Mediterranean. They founded more than 500 Greek colonies 

at the shores of the Black Sea, Anatolia, southern Italy, Sicily, North Africa and along 

the coast of southern France and Spain (Hansen and Nielsen, 2004). Archaeological 

evidence suggests that they initially settled in small groups, sometimes embedding 

themselves within the local indigenous populations. Over time, Greek colonies 

became increasingly urbanized and culturally distinct settlements. The Greek 

colonization has been called "one of the most important cultural encounters in world 

history" (Angelis, 2016: 101), and its consequences in Mediterranean history were 

profound and long-lasting. It contributed to the creation of a Mediterranean-wide 

network of exchanges (Malkin, 2005), to the development of urbanization along its 

shores (Malkin, 1994), to the spread of the alphabet (Boardman, 2014), and to the 

diffusion of Greek artistic and architectural traditions (Greco, 1992). Among the 

regions settled by the Greeks, southern Italy was one of the most densely populated 

areas and eventually became known as Megálē Hellás or Magna Graecia (Greater 

Greece). 

 

Centuries of extensive research have greatly enhanced our understanding of the 

Greek colonization of southern Italy. Nevertheless, the nature of early settlements, 

the scale of demographic impact and the Greek genetic legacy are still largely debated. 

Historians, archaeologists, demographers, and geneticists have proposed different 

degrees of Greek genetic contribution, with scenarios ranging from a colonization 

process driven by a few Greek colonists living in biologically isolated enclaves within 

the conquered territories, to scenarios with substantial migration from Greece to Italy 

and intensive interaction between newcomers and locals (e.g. Pugliese Carratelli, 

1996; Osborne, 1998; Yntema, 2000; Greco, 2002; Scheidel, 2003; Donnellan et al., 

2016b, 2016a; Tofanelli et al., 2016). 

 

Early interpretations on the causes and modes of the Greek colonization were 

primarily based on survived texts from ancient Greek writers (Beloch, 1886; Pais, 

1894). Drawing from these historical sources, it was thought that the colonies (or 

apoikiai) were centrally organized expeditions sent out by a 'mother city' under the 

auspices of the Delphian oracle. They were led by an official founder (the oikistes), 

who chose the location and proceeded to divide the land in regular allotments 

distributed to the colonists. The oikistes was also responsible for establishing local 



cults (largely derived from the mother cities) and public spaces. In this view, the role 

of local populations, if at all considered, was essentially passive. They were deprived 

of land, resources and women to fulfill the colonies' needs while being the object of 

gradual acculturation (or 'hellenisation') (Burgers, 2004; Shepherd, 2005). Central to 

those early interpretations was the assumption that Greek colonies formed culturally 

and biologically homogenous enclaves within the conquered foreign territories. 

Within this framework, archaeological evidence (being very scarce at these times) was 

only considered when it supported the written evidence. Wherever the two research 

sources did not correspond, excuses were found to discard the former (Yntema, 

2000). Philological approaches are, however, somewhat problematic, since most 

ancient written sources postdate the Greek colonization by several centuries and 

portray it solely from a Greek perspective. 

 

Over the course of time, increasing archaeological evidence from early colonial 

contexts (7th century BC) pointed to a more complex picture that contradicted the 

proposed settlement homogeneity of the traditional colonial narratives. Specifically, 

local indigenous material culture was found in the early phases of many Greek 

colonies and, conversely, some non-colonial sites showed evidence of mixed Greek-

indigenous assemblages (Siena, 1986; Berlingò, 1993; Carter, 2006; Crielaard and 

Burgers, 2012; Denti, 2018). Based on those findings, the colonization process was 

considered an interplay of actions of both colonizers and colonized, and a more 

balanced investigation of both Greek and indigenous roles in the colonization process 

was advocated. These developments led to an interpretation of Greek colonization 

emphasizing processes of collaboration and 'hybridization' between Greek newcomers 

and local indigenes, where the Greek-indigenous interaction shaped new, admixed 

cultures (Yntema, 2000; Malkin, 2002; van Dommelen, 2012). Although material 

culture is a valuable addition to ancient written sources, it must be kept in mind 

that: ‘pots are pots, not people’. The stylistic provenance of an object and the bio-

geographic origin of its maker(s) may not be identical. Additionally, movements of 

objects do not necessarily imply migration of people but can also result from trade or 

the diffusion and adoption of stylistic fashions. 

 

Another interesting line of evidence was provided by scholars making use of 

population demographic modeling to calculate the numerical size of the migration 

from Greece that resulted in the establishment of early colonies in southern Italy. For 

example, Scheidel (2003) used census counts of Greeks living in southern Italy during 

Classical times (ca. 400 y BC) and by modeling population growth rates over the 



centuries, he estimated that the original founding population during Archaic times 

(7th century BC) was likely around 30,000 to 60,000 immigrants. Admittedly, the 

order of magnitude of such estimates must be taken with caution as they are based 

on approximated census counts primarily derived from historical enumerations of 

Greek military forces documented in ancient texts (Beloch, 1886). Although these 

numbers need not be wide of the mark, they certainly cannot be treated as the truth. 

 

In recent years, geneticists have tried to tackle the question of the Greek colonization 

and its impact on southern Italy from a different angle. Using modern DNA data, 

several studies found that present-day southern Italians exhibit a genetic signature 

compatible with that found in modern Greeks (Di Gaetano et al., 2009; Sarno et al., 

2014; Tofanelli et al., 2016; Sarno et al., 2017). Di Gaetano et al. (2009) estimated a 

Greek genetic contribution of ~ 37 % to the populations of Sicily and attributed the 

influx to the Classical period (2380 years before present, with a 95 % confidence 

interval ranging between 6940 and 675 years ago). In another study, Tofanelli et al. 

(2016) estimated that the size of the original founding population was probably 

between 1,000 to 6,000 immigrants and attributed the influx to the Archaic period 

(800 - 400 y BC). Although these studies are highly interesting, the problem with 

present-day DNA profiles is that they may not accurately reflect the effects of past 

migration events due to movements of people in more recent times. Moreover, 

genomic estimates of the timing of past migration events generally have wide ranging 

confidence intervals spanning several centuries or even millennia. Studies using 

ancient DNA (aDNA) could help verifying these findings, but it remains to be tested if 

human skeletal remains from southern Italy provide ancient collagen of high enough 

quality to be DNA sequenced. 

 

The most promising approach for studying the Greek genetic contribution to southern 

Italy is to directly analyze ancient biological data from archaeological human remains. 

Biodistance analysis (hereafter, biodistance) based on phenotypic features of the 

cranium or dentition provides a powerful tool for assessing relationships among past 

human populations, when no aDNA data is available. Surprisingly, only a few studies 

have utilized biodistance methods to addressed the impact of the Greek colonization 

on southern Italy (Henneberg, 1998; Rubini et al., 1999; Rathmann et al., 2017b). 

These investigations found that inhabitants of Greek colonies showed marked 

biological differences to indigenous Italian groups, possibly due to an influx of new 

genes. While this is an exciting finding, these studies were limited by several issues. 

First, they all employed few phenotypic variables, which generally reduces the 



accuracy of biological distance estimates (Sokal and Sneath, 1963). Second, all 

studies used either metric or nonmetric data; however, it has been shown that 

combining metric with nonmetric markers increases performance compared to using 

the features separately (Lease and Sciulli, 2005; Hefner et al., 2014). Third, all studies 

performed group-level biodistance analyses; however, individual-level biodistance 

methods are better suited for capturing the significant amount of human genetic 

variation within groups (Stojanowski and Schillaci, 2006). Fourth, none of the 

previous studies used adequate comparative data from Greece which is essential to 

quantify the degree of Greek genetic contribution to southern Italy. 

 

Here, we are taking previous biodistance studies on the Greek colonization of 

southern Italy to the next level by (1) analyzing a new dataset from several sites along 

the coastal area of the Gulf of Taranto region, (2) employing a large battery of 

phenotypic variables, (3) combining metric with nonmetric traits, (4) performing 

individual-level biodistance analyses, and (5) integrating comparative data from 

Greece in order to identify individual ancestries and to quantify the Greek 

contribution to southern Italy. Specifically, this paper examines changes in southern 

Italian population structure from the precolonial period (900-700 y BC) to the 

postcolonial period (700-200 y BC). Population structure for both time periods is 

inferred using adonis, betadisper and IBD models based on inter-individual Gower 

distance coefficients based on a mixture of dental metric and nonmetric traits. For 

the postcolonial period, we furthermore determine individual ancestries using naïve 

Bayesian classification based on dental nonmetric traits. 

 

This research has broad implications for understanding the Greek colonization of 

Magna Graecia. Our results contribute to the long-lasting debate about the Greek 

genetic signal found in southern Italy during postcolonial times and the degree of 

admixture between colonists and colonized. 

 

MATERIALS AND METHODS 

 

Skeletal samples 

 

We collected osteological data from 481 human skeletons with well-preserved 

dentitions from six archaeological sites from the coastal area of the Gulf of Taranto, 

southern Italy, dating from pre- to postcolonial periods (900-200 y BC) (Figure 1). The 

dataset was collected by a team from the University of Tübingen between the years 



2014 and 2018 at the storages of the National Archaeological Museums of Policoro, 

Metaponto and Taranto. Several of the skeletal remains were hitherto inaccessible 

and the majority has not been published before. 

 

The study region is of special importance to scholars concerned with the Greek 

colonization of Magna Graecia, because it is home to several major Greek colonies 

and features a wealth of well-studied indigenous sites (Siena and Tagliente, 1986; 

Greco, 1999; Yntema, 2000; Carter, 2006; Bianco, 2012). Our dataset comprises 

skeletons from three indigenous Italic settlements: Incoronata, Santa Maria 

d’Anglona and Passo di Giacobbe. These sites share a distinct indigenous cultural 

package, defined by specific grave good assemblages, flexed burial positions, and 

gender-specific burial orientations. Moreover, our dataset includes skeletons from 

three Greek colonies: Metapontion, Siris and Taras. According to ancient written 

sources, the colonies were founded in the course of the late 8th to 6th centuries BC 

by Greeks settlers from Achaia, Ionia and Laconia (Strabo: 6.1.14, 6.1.15, 6.3.2). The 

early colonies gradually grew into full-fledged urban centers, amassed a great amount 

of wealth owing to fertile farmland, and erected large temples and monumental public 

buildings. 

 

Table 1 gives summary information about the skeletal samples under study, 

including cultural affiliation, dating, total number of examined skeletons, as well as 

as subsamples used for different statistical analyses (see method section below). More 

detailed information and references about the individual archaeological sites are 

provided in the Supplements (Supplementary Information 1). All skeletons were dated 

based on grave good assemblages, including pottery and metal finds. 

 



 

Figure 1. Map of the Gulf of Taranto region showing the geographic locations of the archaeological sites 

analyzed this study. 

 

 

Table 1. Archaeological sites and sample sizes used in this study. 

Site Cultural 

affiliation 

Time period Dating Number of 

skeletonsa 

Analytic 

subset 1b 

Analytic 

subset 2c 

Incoronata Indigenous 

settlement 

Precolonial 900-750 y 

BC 

139 21 - 

Santa Maria 

d’Anglona 

Indigenous 

settlement 

Precolonial 850-700 y 

BC 

102 23 - 

Passo di 

Giacobbe 

Indigenous 

settlement 

Postcolonial 625-300 y 

BC 

105 20 14 

Metapontion Greek 

colony 

Postcolonial 600-200 y 

BC 

109 21 19 

Siris Greek 

colony 

Postcolonial 700-500 y 

BC 

19 8 7 

Taras Greek 

colony 

Postcolonial 700-500 y 

BC 

7 1 1 

a Total number of skeletons for which at least one dental metric or nonmetric trait was recorded 

b Subset of skeletons with well-preserved dentition used for the adonis, betadisper and Mantel test 

analyses 

c Subset of skeletons with well-preserved dentition used for the naïve Bayesian ancestry determination 

 

 

 

 



Data recording 

 

Sex and age-at-death estimates are fundamental to any osteological analysis. Sex 

estimation was based on pelvic and cranial morphology using standard osteological 

techniques (Buikstra and Ubelaker, 1994). Age-at-death estimates were based on 

dental development, fusion of epi- and apophyses, cranial and palatal suture closure, 

and morphological changes of the pubic symphyseal and auricular surfaces (Buikstra 

and Ubelaker, 1994). 

 

The biodistance analysis is based on dental morphology for a number of practical 

reasons: First, skeletal preservation of many southern Italian samples is poor, while 

teeth are generally well-preserved. Therefore, teeth were recovered from the sites in 

higher quantities than any other skeletal region, allowing us to employ large enough 

samples and robust statistical analyses. Second, tooth crowns develop relatively early 

in the life of an individual and their form remains unchanged once fully developed, 

except by wear or pathology. Third, tooth form has been proposed to be highly 

heritable and selectively neutral, thus providing an excellent proxy for neutral genetic 

data (Hillson, 1996; Scott and Turner, 1997). In fact, several recent studies have 

demonstrated the utility of dental phenotypic data in reconstructing genetic 

relatedness among populations on different geographic scales (Hubbard et al., 2015; 

Rathmann et al., 2017a) and even between individuals within a population (Ricaut et 

al., 2010; Paul and Stojanowski, 2015; Stojanowski and Hubbard, 2017). Finally, 

dental phenotypic data can be sampled in a non-destructive, cost-efficient and 

straightforward manner using crown width and length measurements (dental 

metrics) and visual scoring of crown and root shape variants (dental nonmetric traits). 

 

The dental metric dataset consists of 32 mesiodistal and buccolingual crown and 

cervical diameters of the permanent teeth recorded for each individual. Only polar 

teeth were recorded (UI1, UC, UP3, UM1, LI2, LC, LP3, LM1) in order to reduce genetic 

covariation between traits, and to minimize potential effects of fluctuating asymmetry 

and ontogenetic plasticity on adult tooth size (Stojanowski, 2003). Only left teeth were 

measured, but when a left tooth was missing, damaged, or affected by wear or 

pathology, the corresponding right antimere was measured. All measurements were 

recorded according to the procedures detailed in Hillson et al. (2005) using a Mitutoyo 

pointed blade digital sliding caliper accurate to 0.01 mm. 

 



The dental nonmetric trait dataset consists of observations for 34 morphological 

variables in the permanent dentition of each individual. All traits were recorded 

according to the reference standards of the Arizona State University Dental 

Anthropology System (ASUDAS) described in Turner et al. (1991). This system 

comprises a set of dental casts illustrating expression levels for various traits and 

specific instructions to ensure a standardized scoring procedure that minimizes 

observer error. Only traits on key teeth were recorded (Scott et al., 2016). Scoring 

followed the individual count method, where a trait was counted only once per 

dentition, regardless of whether or not the trait appeared bilaterally. In cases where 

a trait was expressed asymmetrically, the side with the highest expression level was 

scored (Turner and Scott GR., 1977; Turner, 1985; Edgar, 2007; Irish and 

Konigsberg, 2007). To ensure accuracy, any observation that was potentially affected 

by dental wear, caries or calculus was treated as missing data. We followed the 

standard procedure and dichotomized the ordinal-scaled dental trait scores into 

binary categories of absence (i.e. 0) or presence (i.e. 1) in order to reduce observer 

error and simplify data analysis. The applied dichotomization thresholds follow 

established breakpoints (Turner, 1987; Irish, 2016). For traits whose dichotomization 

breakpoints are not specified in the latter reference studies, we adopted the 

breakpoints used by anthropologists working in the Mediterranean (Parras, 2004; 

McIlvaine et al., 2014). 

 

All osteological data were collected by the lead author (H.R.). The dataset is freely 

available on GitHub (link here). The data sheet provides individual-level information 

about sex, age-at-death, dental metrics, dental nonmetric traits scores, and 

dichotomized dental nonmetric traits. 

 

Data preprocessing 

 

A number of data preprocessing steps were used to ensure that patterns of dental 

phenotypic variation most closely approximate underlying genotypic variation. First, 

H.R. quantified his level of intra-observer error by re-measuring a subsample of 

individuals from Santa Maria D’Anglona (n = 30) in two sessions separated by an 

interval of one week. Dental measurements from the two sessions were compared 

using intra-class correlation coefficients using the ICC function from the psych 

package (Revelle, 2017) in R (R Core Team, 2016). The resulting coefficients ranged 

from 0.929 to 0.998 with a significance of P < 0.05 for all comparisons 

(Supplementary Information 2, Table S1). Dichotomized dental nonmetric traits from 



the two sessions were compared using Cohen’s Kappa tests using the cohen.kappa 

function from the psych package in R. The resulting coefficients ranged from 0.621 

to 1.000 with a significance of P < 0.05 for all comparisons (Supplementary 

Information 2, Table S2). All comparisons indicated that intra-observer error was 

negligible. 

 

Second, sexual dimorphism on dental characters was analyzed using t-tests for 

metric variables and Fisher’s Exact-tests for dichotomized variables performed in R. 

For comparison, we only included individuals with secure sex determinations 

(n = 61). We found that 53 % of the metric variables (15 of 28) showed significant 

differences between sexes with P < 0.05 (Supplementary Information 2, Table S3). For 

the dichotomized variables we found that 4 % (1 of 25) exhibited a significant 

difference between the sexes with P < 0.05 (Supplementary Information 2, Table S4). 

Hence, further analyses have to correct for sexual dimorphism on metric features, 

while the effect of sexual dimorphism on nonmetric features can be neglected as has 

been proposed by previous ASUDAS studies (Scott and Turner, 1997; Irish, 2016). 

 

Third, inter-trait correlations between dental metric and nonmetric traits were 

analyzed using the mixed.cor function from the psych package in R. The mixed.cor 

function computes a heterogeneous correlation matrix consisting of Pearson 

correlations for metric variables, tetrachoric correlations for dichotomized variables, 

and biserial correlations for mixed variables. Correlations were generated using all 

observations with valid data for a pair of variables. The correlation matrix was then 

visualized using the corrplot function from the corrplot package in R (Wei and Simko, 

2017) (Supplementary Information 2, Figure S1). Metric variables were highly 

correlated with each other, with 71 % of all 496 pairwise comparisons exceeding 

r > 0.5. Dichotomized variables were largely independent from each other, with only 

7 % of all 465 pairwise comparisons exhibiting correlations of r > 0.5 or r < -0.5. 

Correlations between dichotomized and metric variables were found to be low as well, 

with only 5 % of all 942 pairwise comparisons exhibiting correlations of r > 0.5 or 

r < -0.5. In conclusion, we found a high amount of integration among dental metric 

descriptors, but general independence among dichotomized traits as well as among 

dichotomized and metric variables. Hence, further analyses have to correct for 

correlation among dental metric variables. 

 

 

 



Analyzing population structure for pre-and postcolonial southern Italy 

 

First, we computed biodistances among individuals using Gower distance coefficients 

following the protocol by Paul et al. (2013). Gower distance coefficients have been 

extensively used in anthropological kinship analyses (Ricaut et al., 2010; Stojanowski 

and Hubbard, 2017) because they can incorporate multiple variable scales (metric 

and nonmetric traits) and allow for missing data. Nevertheless, the amount of missing 

data should be reduced as much as possible in order to prevent that two individuals 

cannot be compared to each other because they have no traits in common. Because 

not every tooth could be observed in each individual due to poor preservation or 

pathology, our dataset comprises large amounts of missing values. We therefore 

removed the most incomplete variables and individuals from analysis in a 

systematical stepwise manner to ensure that no more than 33.3 % of variables were 

missing for any individual included in the final analysis. We removed all mesiodistal 

crown diameters and all diameters of the LI2 from the analysis because these 

variables contained too many missing values to be included. Furthermore, we 

removed dental nonmetric variables that were monomorphic and too data sparse. We 

also dropped duplicate dental nonmetric traits recorded on two key teeth, by 

removing the trait exhibiting fewer observations than the key tooth counterpart. This 

reduction procedure left us with a dataset of 94 individuals and 42 variables (21 

metric and 21 nonmetric traits), comprising less than 15 % missing values overall. 

Missing metric data were imputed following Kenyhercz and Passalacqua (2016) using 

the k-nearest neighbor (kNN) algorithm using the knn function from the VIM package 

in R (Kowarik and Templ, 2016). The kNN algorithm searches the entire dataset for 

cases most similar to the one with missing data and generates a mean to replace the 

missing value(s). Raw measurements were then converted into shape variables by 

dividing each measurement by the geometric mean for all the measurements in each 

individual (Jungers et al., 1995). This standardization procedure removes gross size 

from the data in order to assess differences in the proportionate contribution of 

individual variables to overall tooth size. Furthermore, it has the advantage to adjust 

for size differences between individuals that may result from sexual dimorphism. 

Because the Gower distance analysis requires trait independence, we transformed 

the highly correlated 21 dental metric variables into seven uncorrelated factor scores 

with Eigenvalues greater 1 by performing principal component (PCs) analysis using 

the principal function from the psych package in R. Finally, we generated a matrix 

summarizing pairwise Gower distances values among individuals using the daisy 

function from the cluster package in R (Maechler et al., 2017). 



 

After that, we assigned individuals to either the precolonial period (900-700 y BC) or 

the postcolonial period (700-200 y BC) based on the mean estimate of the burial’s 

dating range. This procedure resulted in two partitioned matrices, summarizing inter-

individual Gower distance values for precolonial individuals (n = 44) and for 

postcolonial individuals (n = 50). 

 

For each time period, we tested whether populations were structured by 

archaeological site. To check for significant differences in individual compositions 

among sites, we used the adonis function from the vegan package in R (Oksanen et 

al., 2016). Adonis can identify significant relationships resulting from compositional 

differences in either location (mean) or dispersion (variance) across sites. We therefore 

used the betadisper function from the vegan package in R to check for homogeneity 

of dispersions among sites to confirm that significant predictors in our adonis 

analysis reflect differences in location rather than dispersion. Relationships among 

individual compositions across sites were visualized using principal coordinates 

analysis (PCoA). Dispersions among sites were visualized using boxplots. All graphics 

were created in R using the above mentioned functions and the ggplot2 package 

(Wickham, 2009). 

 

For each time period, we further quantified whether population structure conforms 

to an isolation-by-distance model (IBD) (Wright, 1943). The model states that, if 

mobility was low, closely related individuals are expected to be buried closer together, 

whereas if mobility was high, closely related individuals are expected to be buried 

widely dispersed. To investigate this, we used Mantel tests to correlate inter-

individual biodistances (B) and inter-burial spatial distances (G). We further used 

partial Mantel tests to correlate B and G, while controlling for variation in individual 

burial datings (T). Mantel tests were performed using the mantel and mantel.partial 

functions from the vegan package in R. Computationally, B is the matrix summarizing 

the pairwise Gower biodistances among individuals; G is a matrix of straight-line 

geographic distances among each individual burial, estimated with the distm function 

from the geosphere package in R (Hijmans, 2017); and T is a matrix of Euclidean 

distances between the mean ages of the date ranges of each individual burial. 

 

 

 

 



Analyzing individual ancestries in postcolonial southern Italy 

 

We determined the ancestry of southern Italian individuals postdating colonization 

(700-200 y BC) based on dichotomized ASUDAS traits using naïve Bayesian 

classification. Naïve Bayes is a simple yet powerful classification technique commonly 

used in biodistance research (Edgar, 2005; Hefner and Ousley, 2014; Herrmann et 

al., 2016; Scott et al., 2018), assigning individuals to pre-defined groups based on 

posterior probabilities. Naïve Bayes is well-suited for analyzing dental nonmetric trait 

datasets because, first, the algorithm can handle missing data and, second, it 

performs best with independent predictors, which generally holds true when using 

ASUDAS traits (Supplementary Figure S1). We trained our naïve Bayesian model with 

two ancestry reference groups, ‘Italian’ and ‘Greek’. The Italian reference sample 

consists of pooled data from two precolonial sites in southern Italy (Incoronata and 

Santa Maria d’Anglona; 900-700 y BC). The Greek reference sample consists of pooled 

data from four sites from the Peloponnesus and Euboea (Asine, Lerna, Corinth and 

Karystos; 2000-200 y BC). The data from Asine and Lerna were obtained from the 

literature (Parras, 2004). The data from Corinth and Karystos were gathered by one 

of us (B.K.M). We only compiled ASUDAS data for our Greek reference sample which 

were gathered from key teeth (Scott et al., 2016) and which were dichotomized using 

the criteria detailed above. We chose to combine all four Greek samples into one large 

reference sample due to two reasons: (1) to ensure robust trait frequencies based on 

as many observations as possible, and (2) to allow for the largest possible trait 

battery, because some samples were scored for different dental trait setups. This 

procedure allowed us to employ a comprehensive battery of 28 ASUDAS traits for 

comparative purposes. 

 

Calculations were performed using the naiveBayes function from the e1071 package 

in R (Meyer et al., 2017). The estimated prior probabilities of the model were 

calculated as 0.536 for Italians and 0.464 for Greeks. Conditional probabilities for 

the analysis are presented in the Supplements (Supplementary Information 2, Table 

S5). Validation of the model was performed with a subset of training individuals from 

Italy (n = 30) and Greece (n = 5) for which sufficient individual-level data was 

available, i.e. no more than 33.3 % missing data. Italians and Greeks were correctly 

classified in 94 % of cases (Supplementary Information 2, Table S6). We then applied 

this trained naïve Bayes classification model to our test dataset consisting of 41 

individuals from postcolonial southern Italy with no more than 33.3 % missing data. 



Each individual was assigned to an ancestral group, either Italian or Greek, based on 

the estimated maximum class probability. 

 

RESULTS 

 

Precolonial period (900-700 y BC) 

 

Our adonis analysis revealed a significant difference among the inhabitants of the 

two precolonial sites under investigation; Santa Maria d’Anglona and Incoronata 

(Figure 2a, Table 2). Our betadisper analysis indicated that this difference was due 

to differential within-site variability and estimated the average dispersion for Santa 

Maria d’Anglona as 0.211, whereas the average dispersion for Incoronata was 

estimated as 0.167. Thus, inhabitants of Santa Maria d’Anglona were about one and 

a half times more variable as those living in Incoronata. Mantel tests revealed low, 

though significant population stratification according to a geographical IBD model 

(Table 3). Results were still significant when we took temporal variation due to 

differential burial datings into account. Thus, precolonial southern Italy was 

characterized by a moderate pattern of population stratification. 

 

Postcolonial period (700-200 y BC) 

 

Our adonis analysis revealed that there was no significant patterning across the 

inhabitants of the three postcolonial sites under investigation; Passo di Giacobbe, 

Metapontion and Siris (Figure 2b, Table 2). The site of Taras was removed from 

analysis because it comprised only a single individual. Our betadisper analysis 

indicated equal levels of within-site variability. Mantel tests likewise did not reveal 

any significant population stratification according to a geographical IBD model (Table 

3). Results were still not significant when we controlled for temporal variation due to 

differential burial dates. Thus, postcolonial southern Italy was characterized by a lack 

of population stratification, indicating high levels of mobility. 

 

Although we inferred an increase in mobility in comparison to the precolonial period, 

a cross-period adonis and betadisper analysis revealed that the general biological 

composition and variability of the area did not change significantly through time 

(Table 2). 

 



Our naïve Bayesian ancestry classifications revealed a presence of ~ 10 % Greeks 

within the area (4 of 41) (Supplementary Information 2, Table S7). Greek individuals 

were randomly scattered across the study region without any clear patterning being 

evident: ~ 21 % in Passo di Giacobbe (3 of 14), ~ 5 % in Metapontion (1 of 19), 0 % in 

Siris (0 of 7), and 0 % in Taras (0 of 1). Thus, Greek newcomers and their descendants 

were equally distributed across colonies and indigenous settlements. 

 

Table 2. ANOVA tables for adonis and betadiper models testing differences in location (mean) and 

dispersion (variance) of inter-individual Gower distances across sites and time periods. Shown are 

factor and residual degrees of freedom (Df), sum of squares (SS), mean sum of squares (MSS), F-

statistic values (F), proportion of explained variance (R2) and probability values (p). 
 

Adonis Betadisper 

Test Df SS MSS F R2 p SS MSS F p 

Differences across sites in 

the precolonial period 

1 0,134 0,134 3,273 0,072 0,001 0,021 0,021 8,319 0,006 

Residual 42 1,714 0,041 
 

0,928 
 

0,107 0,003 
  

Differences across sites in 

the postcolonial perioda 

2 0,076 0,038 0,926 0,039 0,536 0,002 0,001 0,372 0,691 

Residual 46 1,892 0,041 
 

0,961 
 

0,144 0,003 
  

Differences across pre- and 

postcolonial periods 

1 0,067 0,067 1,610 0,017 0,135 0,000 0,000 0,162 0,688 

Residual 92 3,854 0,042  0,983  0,255 0,003   

a To assess differences across sites during the postcolonial time period, we removed the single 

individual from Taranto because to produce results adonis and betadisper require that groups consist 

of at least two entities. 

Bold values are statistical significant at the 0.05 level 

 

 

Table 3. Mantel tests of isolation-by-distance (IBD) for pre- and postcolonial time periods. Simple 

Mantel tests correlating inter-individual biological distances (B) against geographical distances (G). 

Partial Mantel tests correlating B and G, while controlling for the effect of temporal distances (T). 

Shown are Person correlation coefficients (r) and probability values (p). 

Time Period IBD r p 

Precolonial B ~ G 0,081 0,002 
 

B ~ G, T 0,071 0,012 

Postcolonial B ~ G 0,001 0,487 
 

B ~ G, T 0,017 0,394 

Bold values are statistical significant at the 0.05 level 

 

 

 

 

 



 

Figure 2. Population structure of southern Italy during a) precolonial and b) postcolonial times. 

Figures show PCoA plots of inter-individual Gower distances (top) and boxplots represent distances to 

group centroids (bottom). Color-coding indicates archaeological sites. 

 

 

 

 



DISCUSSION 

 

In this study we used heritable dental phenotypic markers from archaeological 

human remains as a proxy for aDNA to assess the population history of southern 

Italy during Greek colonization. Our study has produced three important results: (1) 

precolonial southern Italy was characterized by moderate levels of population 

stratification; (2) during postcolonial times, southern Italy became a place of high 

mobility, hosting ~ 10 % Greek immigrants and their descendants; and (3) Greek 

newcomers were equally distributed across Greek colonies and indigenous Italic 

settlements. 

 

During precolonial times (900-700 y BC) southern Italy was characterized by a 

moderate pattern of population stratification. Although the inhabitants of the two 

sites under investigation, Santa Maria d’Anglona and Incoronata, shared a very 

similar genetic makeup, we uncovered a significant isolation-by-distance structure 

pointing to some levels of differentiation between the two spatially separated sites (ca. 

20 km plus two river valleys). Moreover, Santa Maria d'Anglona showed significantly 

higher internal variability, indicative of more diverse inhabitants from different places 

as compared to Incoronata. This result indicates greater regional importance of Santa 

Maria d’Anglona. Interestingly, this interpretation matches the greater wealth of 

burial goods found in this place and is in line with ancient written sources reporting 

that the settlement (also called Pandosia) was the seat of a king (or basileus) (Greco, 

1992: 34–40). The lower internal variability found in Incoronata matches the higher 

degree of equality in grave goods found in this place and supports the theory of a 

relatively homogenous population inhabiting the site (Siena, 1990). 

 

During postcolonial times (700-200 y BC) mobility of the inhabitants of southern Italy 

increases. This result is in concordance with the arrival of Greek settlers in this region 

as indicated by numerous written sources and archaeological evidence (Yntema, 

2000). We estimate a Greek contribution of ~ 10 % to the population of southern Italy. 

Our estimated Greek contribution agrees with the size spectrum proposed by 

historical demographers, who reckoned with ~ 10 % Greeks in pre-Roman southern 

Italy (Beloch, 1886). Our results also broadly agree with preliminary strontium 

isotopic evidence, indicating that 5 % (n=20) of the postcolonial individuals in the 

study region are of non-local origin (Vos et al. forthcoming). Our results disagree with 

genomic estimates of the ancient Greek contribution to southern Italy derived from 

present-day DNA profiles. Di Gaetano et al. (2009) used the haplogroup lineage E-



V13 to estimate a Greek contribution of ~ 37 % to the population of Sicily and 

attributed the migration influx to 2380 years before present (CI: 6940 to 675 years 

ago). A potential explanation for the discrepancy between our estimate and their 

genomic reconstruction could be that proportions of specific genetic lineages 

surviving in present-days populations may not be good proxies for assessing the 

effects of past migration events (see Tofanelli et al., 2016). Moreover, their genomic 

estimate of the timing of the influx has a wide-ranging confidence interval spanning 

several millennia. The estimate provided in this study is directly derived from 

archaeological human remains and can therefore be considered more precise. 

 

We found that Greek immigrants and their descendants were equally distributed 

across sites and did not live in isolated colonial enclaves. In fact, only ~ 4 % of the 

inhabitants of Metapontion, Siris and Taras were of Greek origin and ~ 96 % were 

locals. This finding points towards a gradual colonization process with substantial 

involvement of local populations. This result supports current postcolonial theories 

and models about the Greek colonization and matches several archaeological 

discoveries indicating close interaction (Yntema, 2000; Burgers, 2004). At the colony 

of Metapontion, for example, an indigenous-style hut was found associated with 

mostly Greek-style pottery and a smaller percentage of indigenous pots (Siena, 1986). 

Moreover, at the indigenous site of Passo di Giacobbe, several burials contained 

Greek-style pottery (Schojer, 2010). Thus, our finding fits well the archaeological 

evidence, suggesting coexistence between a small number of Greek newcomers and 

indigenous Italic populations. 

 

Despite the finding of ~ 10 % Greek contribution to southern Italy, it does not seem 

that the presence of newcomers and their descendants significantly impacted and 

reshaped the south Italian gene pool. Instead, the general biological composition and 

variability of the area remains relatively constant across pre-and postcolonial times. 

This could either be the result of the relatively low number of Greek newcomers or 

shared ancestry of Greeks and Italians making it difficult to observe significant 

biological differences. 

 

Lastly, it has to be noted that our results deviate from the findings of a previous 

dental nonmetric distance study from our working group (Rathmann et al., 2017b), 

where we found a significant separation between the inhabitants of indigenous Italic 

sites and the colony of Metapontion which evidenced a higher amount of variability. 

This discrepancy can be explained as the results of three potential sources of bias in 



our previous study: (1) bias due to inter-observer error; (2) bias due to the use of a 

limited number of traits; and (3) distortion of the ‘true’ variability of the groups by 

using group centroid estimates for comparative purposes. The present study 

overcomes these potential sources of bias. It further highlights the need for 

individual-level analyses which are better suited to capturing the true variabilities of 

groups, and cautions against group-level analyses based on simplified centroid 

estimates, especially in geographically fine-scaled contexts where genetic differences 

between individuals are subtle. 

 

Limitations to the study and areas for future research 

 

Our results might be affected by two possible sources of error: (1) sampling bias; and 

(2) methodological issues related to biological distance analyses based on dental 

phenotypes. We will discuss each aspect below and highlight productive areas for 

future research. 

 

First and foremost, our study is limited to archaeological sites from the Gulf of 

Taranto region. Expanding the study area to Calabria and Sicily and including 

additional indigenous Italic samples from the inland would help to generate a more 

comprehensive picture of the colonial history of whole Magna Graecia. This study 

provides a conceptual template for future research in this area and the provided raw 

data and R scripts in the supplements allow for repeatability. 

 

Second, we believe that there is a need to improve the reference samples used for the 

naïve Bayesian ancestry determinations. In our study, we used two large reference 

samples as potential ancestry sources; ‘Italians’ and ‘Greeks’. However, the high 

degree of Mediterranean mobility involving a multiplicity of actors in addition to Greek 

seafarers (for example Phoenicians and Etruscans) leaves open the possibility that 

multiple agents might have been involved in the colonial process, not all of them 

necessarily coming from ancient Greece. Given our simplified two-sample study 

design, such individuals would be forced to be classified as either ‘Italian’ or ‘Greek’, 

regardless of their true ancestry. Maybe this was the reason why validation of the 

model revealed a misclassification of Italians and Greeks 6 % of the time? Using a 

large number of robust reference samples from all over the Mediterranean would 

allow us to overcome this issue and, furthermore, opens the possibility to explicitly 

test for the bio-geographical origin of the colonists. 

 



Finally, it could be that dental phenotypic data may not capture adequate neutral 

genetic variation for geographically fine-scaled analyses. In fact, dental phenotypic 

data are considered to be most effective at higher geographic scales of study, 

particularly global and continental (Scott and Turner, 1997). Recent research has 

confirmed this and identified congruence in dental phenotypic and neutral genetic 

datasets from globally distributed populations, with correlations as high as r = 0.635 

(Rathmann et al., 2017a). Slightly lower correlations have been found for regionally 

distributed populations, with an agreement of r = 0.500 (Hubbard et al., 2015). At 

the within-population level, mixed results have been found, ranging from moderate 

to strong concordance (Paul and Stojanowski, 2015; Stojanowski and Hubbard, 

2017). However, it has to be noted that all previous studies used either metric or 

nonmetric data, though it has been shown that combining metric with nonmetric 

markers increases performance compared to using the features separately (Lease and 

Sciulli, 2005; Hefner et al., 2014). In our study, we use a comprehensive set of mixed 

metric and nonmetric data with a trait battery outnumbering the variables used in 

all above mentioned previous studies. We therefore think our approach is adequate 

for detecting subtle genetic structures on a local scale. Nevertheless, future studies 

should systematically test the association of large mixed metric and nonmetric dental 

datasets and neutral genomic variation on a local scale to identify dental data 

combinations that are most useful for reconstructing local population structure and 

history. 
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Supplementary Information 1 

 

Sample description 

 

Incoronata: Incoronata is an indigenous site covering a broad terrace between the 

Basento and Cavone rivers and is located roughly 8 km from the coast. The site 

consists of a large settlement distributed across the terrace and flanked by two 

extensive necropoleis. Archaeological evidence indicates that the settlement 

originated in the 9th century BC and came to an end at the end of the 7th century BC. 

Individuals were buried in a typical indigenous manner: bodies were buried in flexed 

positions, with gender-specific burial orientations. Males, as identified by their grave 

goods, faced right, while females faced left. The necropoleis have been largely 

published by Chiartano (1983, 1994b, 1994a). Further details about the settlement 

and the necropoleis can be found in Carter (1998), Orlandini (1999) and Denti (2018). 

We collected osteological data from 139 skeletons coming from the necropoleis of 

Incoronata indigena (n = 99) (GPS: 40.372589, 16.730201) and San Teodoro (n = 40) 

(GPS: 40.360514, 16.739261) dating from the 9th to the mid-8th century BC. The data 

were collected at the National Archaeological Museum of Metaponto. Dating of 

individual burials was based on grave good assemblages reported in unpublished 

https://github.com/taiyun/corrplot


museum inventory lists and on grave goods reported in Chiartano (1983, 1994b, 

1994a). 

 

Santa Maria d’ Anglona: Santa Maria d’ Anglona is an indigenous site situated on a 

hill between the Agri and Sinni rivers, about 14 km from the coast. The site consists 

of a settlement and two large necropoleis in the close vicinity of the hill. 

Archaeological evidence indicates that the settlement originated in the 9th century BC 

and came to an end in the 7th century BC. The material culture and flexed burial 

practice of the necropoleis follow indigenous traditions and are compatible with those 

found in Incoronata. Part of the necropoleis of Santa Maria d’ Anglona have been 

published by Frey (1991). We collected osteological data from 102 individuals 

obtained from the Conca d’ Oro necropolis (n = 85) (GPS: 40.243458, 16.551738) and 

the Valle Sorigliano necropolis (n = 17) (GPS: 40.236805, 16.560341) dating from the 

mid-9th to the final 8th century BC. The data were collected at the National 

Archaeological Museum of Policoro. Dating of individual burials was based on burial 

assemblages reported in Frey (1991) and based on information provided by Dr. 

Salvatore Bianco (personal communication). 

 

Passo di Giacobbe: Passo di Giacobbe is an indigenous site located on a small hill 

between the Gravina di Laterza and Brandano rivers, roughly 12 km from the coast. 

The site consists of a small settlement and a large necropolis encircling the eastern 

and western slopes of the hill. The site was occupied over a long period from the end 

of the 7th to the final 4rd century BC. The material culture and flexed burial rites of 

the necropolis follow indigenous traditions, however, several colonial pottery finds 

point to close contacts to the two nearby Greek colonies of Metapontion and Taras. 

Summary information about the site is reported in Schojer (1990, 1991, 1992, 1994, 

2010). We collected osteological data from 105 skeletons coming from the necropolis 

at the slope of the settlement plateau (GPS: 40.555282, 16.859746). The data were 

collected at the National Archaeological Museum of Taranto. Dating of individual 

burials was based on the date ranges reported in Schojer (1990, 1991, 1992, 1994, 

2010) and based on information provided by Dr. Teresa Schojer (personal 

communication). 

 

Metapontion: Metapontion is a Greek colony at the shores of the Taranto Gulf 

located between the Bradano and Basento river mouths. The colony is directly 

situated in the flat coast area bordering the sea, with a belt of necropoleis 

surrounding the city core. According to ancient written sources, the colony was 



founded at the end of the 7th century BC by Greeks from Achaia sent for by the 

Achaian colony of Sybaris in order to block the expansion of the Laconian colony of 

Taranto in the north (Strabo: 6.1.15). Additional information about the ancient 

written sources concerning Metapontion can be found in Yntema (2000). 

Archaeological evidence suggests that the area where Metapontion came into being 

was uninhabited before. Early Metapontion was probably a dispersed settlement with 

mixed Greek and indigenous material culture. The early village grew gradually, 

amassed a great amount of wealth owing to fertile farmland, and quickly developed a 

Greek urban center (polis) with several temples and a large Ekklesiasterion. The 

Metapontion area has been extensively surveyed and several detailed publications 

about the colonial urban center and the hinterland (chora) are available (Carter, 1998; 

Siena, 2001; Carter, 2006; Carter and Prieto, 2011). We collected osteological data 

from 109 individuals compiled from three necropoleis surrounding the colony of 

Metapontion: the Crucinia necropolis (n = 94) (GPS: 40.392593, 16.809456), the 

Pantanello necropolis (n = 12) (GPS: 40.391642, 16.777538), and the Torre di Mare 

necropolis (n = 3) (GPS: 40.370341, 16.813161). All data were collected at the 

National Archaeological Museum of Metaponto. Dating of individual burials from 

Crucinia was based on information provided by Prof. Dr. Angelo Bottini (personal 

communication). Individuals from Pantanello were dated based on the date ranges 

reported in Carter (1998). Dating of individual burials from Torre di Mare was based 

on unpublished museum inventory lists and information displayed in the museum 

exhibition. 

 

Siris: Siris is a Greek colony on the coast of the Taranto Gulf located between the 

Agri and Sinni river mouths. The site consists of a settlement located on an elongated 

ridge and several burial grounds along the sides. According to ancient written 

sources, the colony was founded in the mid-7th century BC by Greeks from Ionia that 

left their home after the Lydian conquest (Strabo: 6.1.14). Additional information 

about the ancient written sources concerning Siris is summarized in Yntema (2000). 

Archaeological evidence suggests that the area where the town of Siris arose was not 

inhabited before. Early Siris was an open, dispersed settlement with mixed Greek and 

indigenous material culture. The settlement developed gradually into a polis, 

including fortifications and one or two temples. In the final 6th century BC, the city 

was destroyed. Summary information about the settlement and necropoleis is 

provided in Berlingò (1993) and Osanna (2012). We collected osteological data from 

19 skeletons compiled from two burial grounds on both sides of the ridge: the 

Madonelle burial ground (n = 18) (GPS: 40.221702, 16.659968) and the Zona Castello 



burial ground (n = 1) (GPS: 40.216654, 16.680005) dating from the early 7th century 

to the final 6th century BC. The data were collected at the National Archaeological 

Museums of Policoro and Metaponto. Dating of individual burials was based on grave 

good assemblages reported in unpublished excavation reports and museum inventory 

lists and based on information provided by Dr. Antonio De Siena (personal 

communication). 

 

Taras: Taras is a Greek colony at the shores of the Taranto Gulf located at a narrow 

entrance to a small lagoon-like bay providing a sheltered harbor. Unfortunately, most 

settlement traces and necropoleis from Taras were covered and probably destroyed 

by the intense occupation of the present-day city of Taranto. Thus, archaeological 

knowledge about the site is sparse. According to ancient written sources, the colony 

was founded in the late 8th centuries BC by Greeks from Laconia (Strabo: 6.3.2). 

Additional information about the ancient written sources concerning Taras are given 

in Yntema (2000). Archaeological evidence from Taras indicate that the site was 

continuously inhabited from the Bronze Age onwards. Early Taras was a settlement 

characterized by indigenous material culture and few Greek imports. By the late 6th 

century BC, the site developed into a polis. Summary information about the 

archaeological evidence is provided in Yntema (2000). The skeletal sample of Taras is 

composed of 7 individuals widely distributed across the ancient city core (GPS: 

40.471209, 17.247914). The data were collected at the National Archaeological 

Museum of Taranto. Dating of individual skeletons was based on information 

provided by Dr. Antonietta Dell’Aglio (personal communication). 
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Table S1. Intra-observer error test for dental measurements using intra-class correlation coefficients 

(ICC). 

Dental measurement n ICC sig 

UI1-BL-CROWN 21 0.997 0.000 

UI1-MD-CROWN 11 0.985 0.000 

UI1-BL-CERVIX 23 0.992 0.000 

UI1-MD-CERVIX 23 0.984 0.000 

UC-BL-CROWN 29 0.998 0.000 

UC-MD-CROWN 20 0.994 0.000 

UC-BL-CERVIX 30 0.996 0.000 

UC-MD-CERVIX 30 0.987 0.000 

UP1-BL-CROWN 28 0.996 0.000 

UP1-MD-CROWN 12 0.987 0.000 

UP1-BL-CERVIX 27 0.993 0.000 

UP1-MD-CERVIX 27 0.939 0.000 

UM1-BL-CROWN 28 0.992 0.000 

UM1-MD-CROWN 15 0.987 0.000 

UM1-BL-CERVIX 30 0.991 0.000 

UM1-MD-CERVIX 30 0.993 0.000 

LI2-BL-CROWN 10 0.968 0.000 

LI2-MD-CROWN 8 0.929 0.002 

LI2-BL-CERVIX 10 0.978 0.000 

LI2-MD-CERVIX 10 0.965 0.000 

LC-BL-CROWN 27 0.990 0.000 

LC-MD-CROWN 17 0.994 0.000 

LC-BL-CERVIX 25 0.995 0.000 

LC-MD-CERVIX 25 0.986 0.000 

LP1-BL-CROWN 28 0.991 0.000 

LP1-MD-CROWN 12 0.995 0.000 

LP1-BL-CERVIX 27 0.991 0.000 

LP1-MD-CERVIX 27 0.983 0.000 

LM1-BL-CROWN 28 0.992 0.000 

LM1-MD-CROWN 12 0.995 0.000 

LM1-BL-CERVIX 30 0.992 0.000 

LM1-MD-CERVIX 30 0.988 0.000 

 

 

 

 

 



Table S2. Intra-observer error test for dental nonmetric traits using Cohen’s Kappa tests. 

Dental nonmetric trait  n Kappa sig 

Shoveling (UI1) 21 0.786 0.000 

Double Shoveling (UI1) 1 22 
  

Interruption Groove (UI2) 18 1.000 0.000 

Tuberculum Dentale (UI1) 21 1.000 0.000 

Tuberculum Dentale (UC) 22 1.000 0.000 

Mesial Ridge (UC) 1 17 
  

Distal Accessory Ridge (UC) 8 1.000 0.005 

Distal Accessory Ridge (LC) 7 1.000 0.008 

Mesial and Distal Accessory Cusps (UP1) 17 0.850 0.000 

Odontome (P1-P2) 9 1.000 0.003 

Metacone (UM2) 1 26 
  

Hypocone (UM2) 24 0.917 0.000 

Cusp 5 (UM1) 16 1.000 0.000 

Carabelli (UM1) 18 1.000 0.000 

Parastyle (UM1-UM3) 27 1.000 0.000 

Enamel Extension (UM1) 26 1.000 0.000 

Enamel Extension (LM1) 27 0.926 0.000 

Root Number (UP1) 22 1.000 0.000 

Root Number (UM2) 24 1.000 0.000 

Peg-shaped (UI2) 1 21 
  

Peg-reduced-missing (UM3) 22 1.000 0.000 

Lingual Cusp Variation (LP2) 18 1.000 0.000 

Anterior Fovea (LM1) 10 1.000 0.002 

Deflekting Wrinkle (LM1) 1 6 
  

Groove Pattern (LM2) 23 1.000 0.000 

Protostylid (LM1) 26 0.843 0.000 

Hypoconulid (LM1) 24 1.000 0.000 

Hypoconulid (LM2) 21 1.000 0.000 

Cusp 6 (LM1) 11 0.621 0.026 

Cusp 7 (LM1) 1 21 
  

Root Number (LC) 24 1.000 0.000 

Tome's Root (LP1) 23 0.881 0.000 

Root Number (LM1) 1 30 
  

Root Number (LM2) 24 1.000 0.000 

1 Cohen’s Kappa could not be calculated because the trait was monomorphic in both scoring sessions 

(either always ‘0’ or always ‘1’). 

 

 

 

 

 



Table S3. T-test for sexual dimorphism on dental measurements. 

Dental measurement n male n female t df sig 

UI1-BL-CROWN 13 17 -0.553 28 0.585 

UI1-MD-CROWN 2 5 -0.376 5 0.722 

UI1-BL-CERVIX 15 18 -0.581 31 0.565 

UI1-MD-CERVIX 15 18 -1.184 31 0.245 

UC-BL-CROWN 19 23 -3.858 40 0.000 

UC-MD-CROWN 4 10 -0.731 12 0.479 

UC-BL-CERVIX 20 21 -5.516 39 0.000 

UC-MD-CERVIX 19 21 -5.238 38 0.000 

UP1-BL-CROWN 19 25 -1.638 42 0.109 

UP1-MD-CROWN 3 6 -0.324 7 0.755 

UP1-BL-CERVIX 21 23 -2.329 42 0.025 

UP1-MD-CERVIX 21 23 -3.396 42 0.002 

UM1-BL-CROWN 13 20 -3.424 31 0.002 

UM1-MD-CROWN 2 4 -2.751 4 0.051 

UM1-BL-CERVIX 19 24 -2.713 41 0.010 

UM1-MD-CERVIX 19 24 -4.702 41 0.000 

LI2-BL-CROWN 1 0 2 
   

LI2-MD-CROWN 1 0 2 
   

LI2-BL-CERVIX 1 0 2 
   

LI2-MD-CERVIX 1 0 2 
   

LC-BL-CROWN 21 23 -5.185 42 0.000 

LC-MD-CROWN 2 9 -0.632 9 0.543 

LC-BL-CERVIX 21 2 -6.003 42 0.000 

LC-MD-CERVIX 21 23 -5.845 42 0.000 

LP1-BL-CROWN 23 23 -1.565 39 0.126 

LP1-MD-CROWN 9 18 1.307 11 0.218 

LP1-BL-CERVIX 23 4 -3.080 43 0.004 

LP1-MD-CERVIX 23 22 -3.775 43 0.000 

LM1-BL-CROWN 19 22 -1.689 30 0.102 

LM1-MD-CROWN 5 13 -1.708 5 0.148 

LM1-BL-CERVIX 22 2 -3.147 36 0.003 

LM1-MD-CERVIX 22 16 -2.936 36 0.006 

1 T-test could not be calculated because trait was present in only one sex 

 

 

 

 

 

 



Table S4. Fisher’s Exact test for sexual dimorphism on dental nonmetric traits. 

Dental nonmetric trait n male n female Fischer's Exact Test 

Shoveling (UI1) 10 11 0.635 

Double Shoveling (UI1) 1 12 19 
 

Interruption Groove (UI2) 15 18 0.034 

Tuberculum Dentale (UI1) 12 15 0.569 

Tuberculum Dentale (UC) 13 17 0.070 

Mesial Ridge (UC) 1 8 10 
 

Distal Accessory Ridge (UC) 1 1 3 
 

Distal Accessory Ridge (LC) 2 0 4 
 

Mesial and Distal Accessory Cusps (UP1) 9 10 0.582 

Odontome (P1-P2) 1 4 7 
 

Metacone (UM2) 21 27 0.186 

Hypocone (UM2) 16 24 0.740 

Cusp 5 (UM1) 4 8 1.000 

Carabelli (UM1) 11 8 0.074 

Parastyle (UM1-UM3) 15 25 0.375 

Enamel Extension (UM1) 18 23 0.679 

Enamel Extension (LM1) 17 19 0.342 

Root Number (UP1) 21 20 0.215 

Root Number (UM2) 19 24 0.351 

Peg-shaped (UI2) 19 21 0.475 

Peg-reduced-missing (UM3) 26 27 0.250 

Lingual Cusp Variation (LP2) 10 14 0.214 

Anterior Fovea (LM1) 2 0 3 
 

Deflekting Wrinkle (LM1) 2 0 3 
 

Groove Pattern (LM2) 14 17 0.304 

Protostylid (LM1) 12 19 1.000 

Hypoconulid (LM1) 12 17 0.414 

Hypoconulid (LM2) 6 12 0.515 

Cusp 6 (LM1) 1 3 4 
 

Cusp 7 (LM1) 5 15 1.000 

Root Number (LC) 23 20 0.465 

Tome's Root (LP1) 18 18 0.289 

Root Number (LM1) 1 22 24 
 

Root Number (LM2) 15 18 1.000 

1 Fisher’s Exact Test could not be calculated because trait was monomorphic 

2 Fisher’s Exact Test could not be calculated because trait was present in only one sex 

 

 

 

 

 



 

 

 

Figure S1. Correlations among dental metric and nonmetric traits. Dots indicate that pairwise 

correlation between binary traits could not be calculated because there was no variation. 

 

 

 

 

 

 

 

 

 

 



Table S5. Conditional probabilities for naïve Bayesian classification 

Shoveling_UI1 
 

0 1 

Greek 0,63 0,37 

Italian 0,70 0,30 

Interruption_Groove_UI2 
 

0 1 

Greek 0,74 0,26 

Italian 0,74 0,26 

Tuberculum_Dentale_UC 
 

0,00 1,00 

Greek 0,68 0,32 

Italian 0,77 0,23 

Mesial_Ridge_UC 
 

0 1 

Greek 0,95 0,05 

Italian 1,00 0,00 

Distal_Accessory_Ridge_UC 
 

0 1 

Greek 0,95 0,05 

Italian 0,83 0,17 

Mesial_and_Distal_Accessory_Cusps_UP1 
 

0 1 

Greek 0,96 0,04 

Italian 0,83 0,17 

Odontome_P1,P2 
 

0 1 

Greek 1,00 0,00 

Italian 0,96 0,04 

Metacone_UM2 
 

0 1 

Greek 0,01 0,99 

Italian 0,03 0,97 

Hypocone_UM2 
 

0 1 

Greek 0,14 0,86 

Italian 0,40 0,60 

Cusp_5_UM1 
 

0 1 

Greek 0,99 0,01 

Italian 0,89 0,11 

Carabelli_UM1 
 

0 1 



Greek 0,69 0,31 

Italian 0,56 0,44 

Parastyle_UM1,UM3 
 

0 1 

Greek 1,00 0,00 

Italian 0,99 0,01 

Enamel_Extension_UM1 
 

0 1 

Greek 0,59 0,41 

Italian 0,81 0,19 

Root_Number_UP1 
 

0 1 

Greek 0,85 0,15 

Italian 0,44 0,56 

Root_Number_UM2 
 

0 1 

Greek 0,02 0,98 

Italian 0,32 0,68 

Peg,shaped_UI2 
 

0 1 

Greek 0,98 0,02 

Italian 0,99 0,01 

Peg,reduced,missing_UM3 
 

0 1 

Greek 0,55 0,45 

Italian 0,85 0,15 

Lingual_Cusp_Variation_LP2 
 

0 1 

Greek 0,53 0,47 

Italian 0,47 0,53 

Anterior_Fovea_LM1 
 

0 1 

Greek 0,33 0,67 

Italian 0,65 0,35 

Deflekting_Wrinkle_LM1 
 

0 1 

Greek 0,90 0,10 

Italian 0,86 0,14 

Groove_Pattern_LM2 
 

0 1 

Greek 0,95 0,05 

Italian 0,92 0,08 

Protostylid_LM1 



 
0 1 

Greek 0,58 0,42 

Italian 0,61 0,39 

Hypoconulid_LM1 
 

0 1 

Greek 0,28 0,72 

Italian 0,09 0,91 

Hypoconulid_LM2 
 

0 1 

Greek 0,95 0,05 

Italian 0,85 0,15 

Cusp_6_LM1 
 

0 1 

Greek 1,00 0,00 

Italian 0,99 0,01 

Cusp_7_LM1 
 

0 1 

Greek 0,96 0,04 

Italian 0,96 0,04 

Root_Number_LC 
 

0 1 

Greek 0,91 0,09 

Italian 0,93 0,07 

Tomes_Root_LP1 
 

0 1 

Greek 0,92 0,08 

Italian 0,90 0,10 

 

 

 

 

Table S6. Confusion matrix from naïve Bayesian classification 

  True Total 

Greek Italian 

Predicted Greek 5 2 7 

Italian 0 28 28 

Total 5 30 35 

 

 

 

 

 



Table S7. Prediction results for 41 well-preserved individuals post-dating colonization 

Burial_ID prob,Greek prob,Italian pred,class 

CRUC_140 0,0080 0,9920 Italian 

CRUC_309 0,1078 0,8922 Italian 

CRUC_319 0,0271 0,9729 Italian 

CRUC_389 0,5426 0,4574 Greek 

CRUC_397 0,0426 0,9574 Italian 

CRUC_474_C 0,0023 0,9977 Italian 

CRUC_541 0,0899 0,9101 Italian 

CRUC_577 0,1697 0,8303 Italian 

CRUC_580 0,2020 0,7980 Italian 

CRUC_622 0,0037 0,9963 Italian 

CRUC_82 0,0706 0,9294 Italian 

PANT_130 0,1167 0,8833 Italian 

PANT_277-4 0,0123 0,9877 Italian 

PANT_292 0,0000 1,0000 Italian 

PANT_320 0,0250 0,9750 Italian 

PANT_356 0,0475 0,9525 Italian 

TORR_76 0,0182 0,9818 Italian 

TORR_89_1 0,0726 0,9274 Italian 

TORR_91 0,0007 0,9993 Italian 

PADG_?_Box_6 0,0003 0,9997 Italian 

PADG_137 0,2640 0,7360 Italian 

PADG_142 0,7762 0,2238 Greek 

PADG_149_1 0,0094 0,9906 Italian 

PADG_149_2 0,1850 0,8150 Italian 

PADG_156 0,8723 0,1277 Greek 

PADG_242 0,6612 0,3388 Greek 

PADG_272 0,0601 0,9399 Italian 

PADG_279 0,0570 0,9430 Italian 

PADG_290 0,0233 0,9767 Italian 

PADG_295 0,0873 0,9127 Italian 

PADG_319 0,1559 0,8441 Italian 

PADG_67 0,1947 0,8053 Italian 

PADG_71 0,0001 0,9999 Italian 

SIRI_1 0,0132 0,9868 Italian 

SIRI_1083 0,0079 0,9921 Italian 

SIRI_1222 0,1363 0,8637 Italian 

SIRI_260 0,0140 0,9860 Italian 

SIRI_813 0,0069 0,9931 Italian 

SIRI_904 0,3671 0,6329 Italian 

SIRI_948 0,2040 0,7960 Italian 

TARA_115 0,0145 0,9855 Italian 
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