Udo Neumann

GUIDE FOR THE MICROSCOPICAL IDENTIFICATION OF ORE AND GANGUE MINERALS

Mineral profiles with photomicrographs

GUIDE FOR THE MICROSCOPICAL IDENTIFICATION OF ORE AND GANGUE MINERALS

Udo Neumann

Guide for the microscopical identification of ore and gangue minerals

Mineral profiles with photomicrographs

BIBLIOGRAFISCHE INFORMATION DER DEUTSCHEN NATIONALBIBLIOTHEK

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie, detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie http://creativecommons.org/licenses/by-nc-

nd/4.0/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.

Die Online-Version dieser Publikation ist auf dem Repositorium der Universität Tübingen verfügbar unter: http://hdl.handle.net/10900/89893

http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-898937 http://dx.doi.org/10.15496/publikation-31274

Tübingen University Press 2019 Universitätsbibliothek Tübingen Wilhelmstr. 32 72074 Tübingen tup@ub.uni-tuebingen.de www.tuebingen-university-press.de

ISBN (Hardcover): 978-3-947251-06-3 ISBN (PDF): 978-3-947251-07-0

Umschlaggestaltung: Susanne Schmid, Universität Tübingen Fotos Cover und Innenteil: Udo Neumann Satz, Layout und Bildnachbearbeitung: Sandra Binder, Universität Tübingen Druck und Bindung: Pro BUSINESS digital printing Deutschland GmbH Printed in Germany

CONTENT

Part A

1. Introduction	11
2. Acknowledgments	12
3. Check-list for ore microscopy	13
4. Explanation of terminology	14
5. Some abbreviations used in this guide	23
7. References	26
8. Tables	27

Part B: Mineral profiles and photomicrographs

of common ore and gangue minerals35
Bixbyite64
Blue-remaining covellite66
Bornite68
Boulangerite70
Bournonite72
Braunite74
Breithauptite76
Calcite78
Cassiterite80
Cerussite82
Chalcocite
Chalcopyrite
Chromite
Cinnabar90
Clinopyroxene92
Cobaltite94
Cohenite96
Columbite98
Copper

Covellite	102
Cubanite	104
Cuprite	106
Digenite	108
Djurleite	110
Dyscrasite	112
Emplectite	114
Enargite	116
Fahlore	118
Feldspar	120
Fluorite	122
Franckeite	124
Gahnite	126
Galena/Galenite	128
Garnet	132
Gersdorffite	134
Goethite	136
Gold	1 2 0
0010	120
Graphite	142
Graphite	142 144
Graphite Hausmannite Hematite	142 144 146
Graphite Hausmannite Hematite Ilmenite	142 144 146 150
Graphite Hausmannite Hematite Ilmenite Ilvaite	142 144 146 150
Graphite Hausmannite Hematite Ilmenite Ilvaite Imiterite	142 144 146 150 154 156
Graphite Hausmannite Hematite Ilmenite Ilvaite Initerite Iron	142 144 146 150 154 156 158
Graphite Hausmannite Hematite Ilmenite Ilvaite Initerite Iron Iscorite	142 144 146 150 154 156 158 160
Graphite Hausmannite Hematite Ilmenite Ilvaite Initerite Iron Iscorite Jacobsite	142 144 146 150 154 156 158 160 162
Graphite	142 144 146 150 154 156 158 160 162 164
Graphite Hausmannite Hematite Ilmenite Ilvaite Initerite Iron Iscorite Jacobsite Jamesonite Jordanite	142 144 146 150 154 156 158 160 162 164 166
Graphite Hausmannite Hematite Ilmenite Ilvaite Initerite Iron Iscorite Jacobsite Jamesonite Jordanite Kermesite	142 144 146 150 154 156 158 160 162 164 166 168
Graphite Hausmannite Hematite Ilmenite Ilvaite Initerite Iron Iscorite Jacobsite Jamesonite Jordanite Kermesite Kesterite	142 144 146 150 154 156 158 160 162 164 166 168 170
Graphite	142 144 146 150 154 156 158 160 162 164 166 168 170 172
Graphite	142 144 146 150 154 156 158 160 162 164 166 168 170 172 174

Luzonite178
Mackinawite
Maghemite182
Magnetite – Ti-Magnetite
Malachite
Manganite
Manganomelane192
Marcasite194
Marokite196
Maucherite
Metacinnabar
Miargyrite
Millerite
Molybdenite
Mückeite
Nickeline, Niccolite
Nsutite
Olivine
Olivine
Olivine 214 Orpiment 216 Osmium 218
Olivine214Orpiment216Osmium218Pararammelsbergite220
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226Pitchblende228
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226Pitchblende228Platinum230
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226Pitchblende228Platinum230Proustite232
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226Pitchblende228Platinum230Proustite232Pseudobrookite234
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226Pitchblende228Platinum230Proustite232Pseudobrookite234Pseudorutile236
Olivine214Orpiment216Osmium218Pararammelsbergite220Pearceite222Pentlandite224Perovskite226Pitchblende228Platinum230Proustite232Pseudobrookite234Pseudorutile236Pyrargyrite238
Olivine 214 Orpiment 216 Osmium 218 Pararammelsbergite 220 Pearceite 222 Pentlandite 224 Perovskite 226 Pitchblende 228 Platinum 230 Proustite 232 Pseudobrookite 234 Pseudobrookite 234 Pyrargyrite 238 Pyrargyrite 238 Pyrite 240
Olivine 214 Orpiment 216 Osmium 218 Pararammelsbergite 220 Pearceite 222 Pentlandite 224 Perovskite 226 Pitchblende 228 Platinum 230 Proustite 232 Pseudobrookite 234 Pseudorutile 236 Pyrargyrite 238 Pyrite 240 Pyrochlore 244
Olivine 214 Orpiment 216 Osmium 218 Pararammelsbergite 220 Pearceite 222 Pentlandite 224 Perovskite 226 Pitchblende 228 Platinum 230 Proustite 232 Pseudobrookite 234 Pseudorutile 236 Pyrargyrite 238 Pyrothore 240 Pyrochlore 244 Pyrolusite 246

Pyrrhotite	250
Quartz	254
Rammelsbergite	256
Ramsdellite	258
Realgar	260
Rutile	262
Safflorite	264
Scheelite	266
Siderite	268
Silver	270
Skutterudite	272
Sphalerite	274
Spinel	278
Spionkopite	280
Stannite	282
Stannoidite	284
Stibnite	286
Teallite	288
Tenorite (Melanocite)	290
Tetradymite	292
Thorianite	294
Titanite	296
Tourmaline	298
Ullmannite	300
Vaesite	302
Valleriite	304
Violarite	306
Wittichenite	308
Wolframite	310
Wuestite	312
Wurtzite	314
Yarrowite	316
Zircon	210

PART A

1. INTRODUCTION

Starting with the initial publications of Campbell & Knight (1905, 1906), the use of reflected polarized light for the observation of ore minerals and other opaque phases is now established as an essential method in earth sciences and materials science. It is a valuable part of the characterisation and interpretation of all kind of metallic ores in science and industry. In addition, reflected light microscopy is also used for the investigation of concretes, ceramics, metals/alloys, archaeological artefacts and in coal petrography.

The microscopical identification of opaque and translucent mineral phases is the first step during careful investigation of usually fine-grained ores, followed by the more important interpretation of the textural and structural features. Since ore mineral identification is in part also possible by using expensive and time-consuming table-top REM, μ -XRD and other sophisticated methods, the main purpose of microscopy is the observation of the intergrowths of different minerals and phases.

The interpretation of the ore fabric is essential in establishing a mineralogical paragenetic sequence and in consequence for the understanding of the often very complex ore genesis. In practice, selecting the ideal mineral processing technique for ores requires a) understanding the mineral content including the distribution of minor metals as possible by-products and more importantly b) determining the manifold mineral intergrowths in the raw ores for the optimal mineral liberation.

This guide includes optical properties for important ore and gangue minerals as well as photomicrographs of their typical appearances, textures, and assemblages.

Its initial purpose was to be a hand-out script

for the students attending my geosciences courses at the University of Tübingen. Therefore, you might find some German expressions and content here and there. This guide is primarily designed as additional material for students and does not replace reading a textbook of ore microscopy!

The basics of reflected-light microscopy and the profiles of about twenty of the most common ore minerals are the subject of the undergraduate course »Introduction to ore microscopy«, whereas the whole suite of about 130 minerals is studied in the graduate course »Ore petrology and ore microscopy«.

For the theoretical understanding of the principles and basics in reflected light microscopy please refer to the classical textbooks, such as Craig & Vaughan (1994), Mücke (1989, in German), and Bauman & Leeder (1991, in German).

Much more information about ore minerals can be found in the «bible« for ore microscopists from Paul Ramdohr (1975, in German, and 1980, in English), although his books are not designed for beginners. See the bibliography for additional publications.

Because ore microscopy is often an observation of qualitative optical properties and of textural features, students and scientists depend on a combination of detailed descriptions of the minerals (»mineral profiles«) and photomicrographs of their typical appearance. There are many publications concerning ore microscopy, but a practical, useful combination of valid mineral descriptions and photomicrographs is still missing, very expensive, or out of print.

Each ore and gangue mineral is presented on facing pages, with four or more photomicrographs on the right and the mineral profile on the left side.

Time-consuming quantitative measurements of the reflectance and the Vickers hardness provide us with the two basic parameters for the qualitative microscopy but are not applicable to standard microscopical investigations of ore mineralisations or non-ore rocks. However, in order to investigate an unknown phase by comparing it to a well-known mineral, these semi-quantitative parameters are important.

The values of reflectance and hardness are only two of many parameters which can be used for the identification of a mineral or a phase in artificial products, such as slags. Other important diagnostic criteria, such as internal reflections, twinning, texture, structure, or the mineral association/paragenesis, are in many cases far more helpful for the identification.

In order to be familiar with these features it is essential to have sufficient practice with many polished sections as possible. The faint optical differences especially in reflectance and in colour impression are a main obstruction for the beginner and often disillusioning. Therefore, I will stress the importance of using oil immersion objectives (see under Reflectance) and the other diagnostic parameters.

To identify an unknown mineral, it may be convenient for beginners to start with only a few selected properties, such as reflectance, bireflectance, and internal reflections. Check out tables I-V to help identify unknown minerals in combination with the mineral association. For a quick identification of gangue minerals see table 8.6.

Although scanning electron microscope (SEM) and electron microprobe analysis (EMPA) are routinely used for studying unknown phases today, the first step in analysing natural minerals or artificial phases is the microscopical investigation! To cite Louis J. Cabri (1987): »Without a proper understanding and use of a microscope and microscopic methods, the most sophisticated investigation is for naught. Let us hope that this message will be noted and remembered!«

The selection of mineral profiles and photomicrographs in this guide is restricted to the different ores and minerals available to the author. A large number of them are from the Schwarzwald (Black Forest) in SW-Germany since our group in Tübingen around Gregor Markl is intensively and extensively studying a variety of mineralisations in that region. Some readers will miss some selenides, tellurides, and PGE minerals, whereas other minerals in this guide might be of minor general significance.

In preparing these mineral profiles the following main references were used, especially Craig & Vaughan (1994), Criddle & Stanley (1993), Mücke (1989), Ramdohr (1980), and Uytenbogaardt & Burke (1985).

2. ACKNOWLEDGMENTS

First and foremost, I would like to thank Arno Mücke in Göttingen for the very stimulating discussions during many hours of research and teaching, and for the permission to modify his unpublished mineral profiles («Erkennungskarten«). Without him I would never have reached the deepest understanding of ore microscopy.

Many thanks also to the preparation staff, Peter Meyer, Göttingen, and Simone Schafflick and Indra Gill-Kopp, both Tübingen. Without their excellent work in preparing polished sections the exact descriptions and good photomicrographs of the minerals would not have been possible. I am also grateful to the many students I have had the last 30 years. Their interests in ore microscopy and ore geology stimulated my affords to present a user friendly guide for the identification of ore minerals in the microscope.

I am also very grateful to Manuel Scharrer for his review of the guide, and to him and Tatjana Epp for their readiness to help with and to teach in many of my exercise courses. Finally, I am particularly indebted to Amélie Stephan for her meticulous review of the English draft.

3. CHECK-LIST FOR ORE MICROSCOPY

You will need to have a clean, polished section. If necessary, manually polish the section with MgO powder. Then check the ore microscope (see Fig. 1) following these steps:

- Connect the lamp to the transformer (power cable in?).
- Switch on the transformer carefully step by step to high power:
 - Is there light on the microscope stage (use a piece of white paper for double-check)?

- Check the opaque illuminator:
 - Is the blue filter inserted?
 - Is the polariser inserted?
 - Are both the illuminator diaphragms (field F and aperture A) open?
- Make sure the analyser and other optical devices are not in the light path.
- Start with a low magnification objective (5x, red ring) for the first overview.

Figure 1: Microscope Leica Laborlux 12 Pol S for reflected and transmitted light microscopy. Diaphragm F = field diaphragm (»Leuchtfeldblende«), A = aperture diaphragm (»Aperturblende«). White line: Path of light from the lamp to the surface of the polished section; yellow line: Path of reflected light from the polished section to the eye.

4. EXPLANATION OF TERMINOLOGY

4.1. MINERAL NAME AND FORMULA

International used mineral name (also German names or synonyms) and simplified mineral formula.

4.2. VHN (VICKERS HARDNESS NUMBER)

Micro indentation hardness (Vickers Hardness Numbers) according to literature. The listed values are mainly compiled from Criddle & Stanley (1993) or estimated from other hardness measurements.

For most minerals the numbers are rounded due to compensate for inaccuracies while preparing and measuring the material. They are listed for a general comparison.

Because most users do not have the means to perform exact quantitative measurements, it is thus helpful to estimate the relative hardness of minerals.

An easy and quick way to get a first impression of the hardness of an unknown mineral is to check the polishing hardness and the scratch hardness, the presence of scratches.

During polishing of the section the hard minerals are more resistant to abrasion than the softer ones, leading to a kind of topography, where the hard grains stand above the surface of the softer grains, presenting a polishing relief. Under the microscope this relief between hard and soft minerals is visible as a black boundary line (see photos 23, 101, 370 and 465). Grain boundaries between similar hard grains are hard to detect and very thin. They are much thicker and easier to see, if the minerals show strongly differing hardness. The relief will be more distinct and visible after repeated polishing, because the softer minerals will be worn away quicker than the hard ones.

To determine the polishing hardness, it is recommended to bring the grain boundary line into focus and slightly close the aperture diaphragm. Then change the distance between objective and sample by lowering the microscope stage, the surface will get out of focus. During this operation a bright shining contour light line, the so-called Kalb line, will appear, which will move into the direction of the softer mineral. With this method it is possible to compare the relative hardness of adjacent minerals. Be aware that most minerals exhibit a more or less strong anisotropism of hardness (see sphalerite, photo 508), which is not (!) related to optical anisotropism! This is notably a problem for the quantitative measurements.

The extent of the scratching depends on the varying hardness of minerals. This is referred to as the scratch hardness. In general, soft minerals will show many broad and deep scratches whereas hard minerals may exhibit only few fine ones. To compare the scratch hardness, it is useful to look for scratches that extend across boundaries between different minerals, where the scratch varies in thickness or even disappears (see photo 25).

4.3. CRYSTAL SYSTEM

- tric. = triclinic
- mcl. = monocline
- o'rh. = orthorhombic
- trig. = trigonal
- tetr. = tetragonal
- hex. = hexagonal
- cub. = cubic.
- ps. = pseudo.

4.4. REFLECTANCE (R)

Quantitative reflectance values (R in %) in air and oil at 546 nm wavelength according to Criddle & Stanley (1993) unless otherwise noted. Some reflectance values (of low reflecting minerals) were calculated from refractive index n, others are rough approximations by the author. Be aware that published reflectance measurements usually have a large margin of error up to 5-10% due to measurement inaccuracies, the quality of the polished surface, tarnishing effects, varying chemical composition (solid solutions), and the presence of micro inclusions and internal reflections!

The reflectance (brightness) is a characteristic mineral property which is used in quantitative and qualitative ore microscopy.

Physically the reflectance of a phase depends on two parameters:

- Refraction (refractive index n) and
- Absorption (absorption coefficient k).

Minerals with low R values (non-metallics) only show weak absorption. Their absorption coefficient k is in general very small (< 0.03; mostly around 10^{-7}) and can be negligible in the Fresnel equation. For these minerals R_{air} is only a function of n:

$$R_{air} = \frac{(n-1)^2}{(n+1)^2}$$

With this equation you can calculate R values for minerals with small k directly from published refractive indices (n).

If the mineral is more opaque and has sufficiently high absorption (k > 0.03), the Beer'sche equation is valid.

Because R also depends on the medium (air, water, or oil) in which reflection takes place, the refractive index of the medium (N = refractive index of the medium, N = 1 for air, N = 1.518 for oil) has to be included in the final Fresnel equation:

$$R = \frac{(n-N)^2 + k^2}{(n+N)^2 + k^2}$$

From this equation it becomes apparent that using oil immersion (N = 1.518 instead of 1.000) the reflectance of a given mineral is reduced.

Because the expressions (n - N) and (n + N) change depending on the medium used, R is especially reduced for minerals with low values of k, whereas R of stronger absorbing minerals with higher k is less strongly reduced.

For the identification of minerals, it is not necessary to measure the exact values of the reflectance R. Beginning students should instead learn how to recognize a few very important and frequent ore minerals with their known R at first glance, to estimate the R values of the unknown minerals. These ore ,standards' are pyrite, arsenopyrite, chalcopyrite, pyrrhotite, fahlore, galena, sphalerite, hematite, magnetite, ilmenite, and rutile.

Because reflectance values in oil immersion are often not measured and/or published, the following diagram (Fig. 2) can be used for the rough estimation of R_{oil} from the published values of R_{air} . This data is compiled from data published by Criddle & Stanley (1993). Many optical properties of ore minerals are better visible and more distinctive with the help of oil immersion objectives. What are the advantages of immersion against «normal« air objectives?

- Small differences in reflectance of two minerals are more obvious in oil than in air because the relative difference is enhanced.
- The change of reflectance of an anisotropic mineral in different orientations – the bireflectance – is stronger in oil (see anisotropic factor A).
- Most minerals are only very weakly or not coloured when observed in air. By using immersion objectives, the colour impressions of the minerals and the reflection pleochroism of a single mineral are strongly enhanced!

The general reduction of R using oil immersion objectives is highly valuable and very useful for the mineral identification. Two minerals which have small differences in their R values in air are hardly to distinguish, whereas the same small difference in oil is more pronounced and easier to see. The reason is that the perceptibility of R differences does not depend of the absolute difference in R but on the relative difference.

The absolute difference of 1% in R is hardly to detect between two minerals with R_{air} of 21%, resp. 20% (relative difference = 5%), but easy to distinguish for two minerals in oil with R_{oil} of 6%, resp. 5% (relative difference = 18%), or even better with R_{oil} of 2%, resp. 1% (here relative difference = 66%). The same is true for the differences of minerals exhibiting bireflectance (see under A_{oil} , below).

Therefore, oil objectives (and of course days, weeks, even years of practice) will help to recog-

Figure 2: Diagram for the calculation of Roil from published Rair (data compiled from Criddle & Stanley, 1993)

nize the faint differences in reflectance and colour impression (»colour tint«) and thus to identify the minerals. This very simple tool is recommended for all practical courses and especially for the beginners, as already mentioned before by many professionals:

Ramdohr (1980): »It has to be emphasized over and over again that whoever shuns the use of oil immersion misses an important diagnostic tool and will never see hundreds of details described in this book.« (p. 293).

Craig & Vaughan (1981): »The presence of immersion medium (oil or water) reduces the reflectance of the minerals, but enhances colour differences, reduces diffuse light scattering, and generally permits the observation of weak anisotropism and bireflectance.« (p. 8).

Uytenbogaardt & Burke (1985): »Therefore, oil immersion is recommended here as a standard way for studying polished sections.« (Page VIII).

Gierth (1989): »Bei diesem (Polarisationsmikroskop) ist aber zumindest Eines unerläßlich: ein Objektiv für Ölimmersion in der Maßstabszahl zwischen 10x bis 20x; denn viele Beobachtungen sind eben nur bei Ölimmersion möglich.« (p. 1).

These observations are by no means new, but in many geoscience institutes today it is more or less common for some reasons (availability, price) to use ore microscopes without oil objectives.

Because immersion objectives have very short working distances, they should be used with care, especially when focussing on the polished surface of the section!

4.5. COLOUR IMPRESSION (CI)

Colour impressions in the mineral profiles are only given for oil immersion because the colour intensity

of a mineral is generally increased – therefore more easily visible – using immersion objectives.

For anisotropic minerals the colour impressions correspond to the orientation of R ($R_{o'}$, $R_{e'}$, R_{1} , R_{2} etc.) in the line above.

The selected blue filter and intensity of illumination should be kept constant for colour comparisons. For the detection of faint colour tints avoid colourful minerals in the direct neighbourhood of the unknown phase.

The impression of a mineral in reflected light appears with colour if the refractive index n and the absorption index k – and consequently the reflectance R – varies with different wavelengths, the dispersion of optical constants. If R is a function of (λ) \rightarrow minerals will have a colour impression.

Measuring the R values of a mineral for different wavelengths gives a curve which represents the mineral's specific spectral dispersion. Tabulated R values as a function of wavelength and the curve of dispersion can be found in Criddle & Stanley (1993). Minerals with nearly horizontal curves of dispersion show only non-coloured «colour« impressions ranging from white to black depending on R. These achromatic CI were subdivided in this guide from white – greyish white – whitish grey – grey – greyish black to black in order of decreasing R values.

If the value of R is different for special wavelengths, the minerals inherit some degree of colour. In ore microscopy these colours of the reflected light are named colour impressions (CI) to distinguish them from the mineral specific colour seen macroscopically or in transitted light. For example: the colour impression (CI) for hematite is whitish grey whereas the colour in transitted light is red which can be seen in the ore microscope as internal reflections, IR, see below.

Because the colour impressions of minerals in air are in most cases not strong and luscious, it is very helpful to use an oil immersion objective. If you are in doubt whether the mineral has a faint colour tint or not, take a look at a nearby sheet of white paper to standardize your impression by white balancing of your eyes.

Minerals with strong CI were described only by

colour, some with the addition of another colour tint. For less strong coloured minerals each colour impression is preceded by white or grey, depending on the overall reflectance, e.g. whitish blue, greyish brown. If the colour is not easily visible, this colour tint is added to the CI usually from white to grey, e.g. white tint yellow.

Although we are able to distinguish many fine colour tints, we are unfortunately not able to find the right terms for these colour nuances. In addition, every person has their own kind of seeing and naming colours, so that publishing the «right« name for a colour in the minerals profile is impossible. Scanning different ore microscopy books and tables shows that the colour impressions listed in them are not comprehensible and far from uniform, especially for the colours of anisotropic effects. The readers are encouraged to use and/or add their own impressions («looks like my washed-out pink polo shirt«). The faint colour impressions of pyrrhotite are such an example, cream rose - white tint yellow brown. It is easier and more convenient to declare it to be «tombac«, a kind of bronze. Every ore microscopy expert will know what you are talking about.

Beyond being subjective colour impressions can be influenced by:

- surrounding strong coloured minerals
- R (if < 25 % in oil more a less with grey tints)
- chemical composition for solid solutions
- grain orientation of anisotropic minerals
- surface quality of the polished section
- kind of objective (air oil), and
- lamp and the filter.

I would like to stress again that the colour impression is only one of many useful criteria to identify a mineral and should therefore not be overrated.

4.6. BIREFLECTANCE (BR AND RPL) IN OIL

Colour impression and/or reflectance of anisotropic minerals can vary under plane-polarized light without analyser due to the orientation of the mineral grain/crystal and as the stage of the microscope is rotated.

During rotation of the microscope stage anisotropic minerals show – as a function of their crystallographic orientation – variable optical effects with a maximum and a minimum every 90° and consequently the same effect all 180°. This bireflectance is generally the sum of two different effects, the changing of colour impression and reflectance. Reflection pleochroism (Rpl) means the colour impression of a mineral varies according to the position of the crystal to the polariser. Bireflection (BR, often also called bireflectance) means the mineral shows different reflectance values ($R_{a'}$, $R_{b'}$, $R_{c'}$, $R_{o'}$, R_{e}).

BR < Rpl: Minerals show mainly Rpl and less BR BR ~ Rpl: Minerals show BR as well as Rpl BR > Rpl: Minerals show mainly BR.

Minerals are either optical isotropic (cubic minerals) or anisotropic. The degree of the bireflectance of anisotropic minerals is

- 1. specific for a given mineral, i.e. the effects vary strongly from mineral to mineral
- dependent on the orientation of a mineral grain. An anisotropic mineral/crystal can show effects ranging from the maximum differences to not variable effects in its isotropic (basal) section depending on the orientation of the optical indicatrix to the section surface.

Having this in mind it is logical to look for a grain in a polycrystalline aggregate with the strongest visible differences of reflectance and/or colour impression in the two adjacent positions (maxima and minima). This is easy for minerals with variable reflectance values but not as simple for minerals with only differences in colour impression. If there is only one grain in the polished section and you see a weak bireflectance, then you know for sure that this mineral is not isotropic, but it is not possible to classify the BR (at least weak, but may be stronger in more optimal orientation). If this single grain shows no effects it is even worse, because you cannot decide whether it is an isotropic mineral or a basal section of an anisotropic mineral.

The mineral-specific effects of anisotropism with uncrossed polars are listed for their optimal orientation and grouped according to the seven main types of strength and the proportion of the three sub-types of BR vs. Rpl. See also tables 8.1-8.3.

As already mentioned above, the differences in BR and Rpl are much easier to see with the use of oil immersion objectives. The enhanced effects can be calculated from the anisotropic factor A_{air} and A_{oil} .

4.7. ANISOTROPIC FACTOR A

The anisotropic factor (A) for oil immersion is the relative bireflectance of a mineral calculated with the following equation:

$$A = 100* (R_{max} - R_{min}) / (\frac{1}{2}*(R_{max} + R_{min}))$$

The relative bireflectance is – in contrast to the absolute bireflectance – analogue to the visual impression, this is valid specifically for BR but not for Rpl).

The contrast factor Kf can be calculated by $Kf = A_{oil}/A_{air}$. It is obvious that the relative bireflection is much stronger using oil immersion objectives.

4.8. ANISOTROPISM EFFECTS UNDER CROSSED POLARS (AEXPOL)

Variable optical effects of the mineral under plane polarized light and crossed polars can be seen when the sample is rotated.

AExPol are variations in brightness and/or colour of an anisotropic mineral grain in an optimal orientation if the specimen is rotated. There should be four positions, each 90° apart, where the mineral grain shows minimum brightness or maximum darkness – called normal position – and four positions where the grain shows maximum brightness – called 45°- or diagonal position.

In general, minerals with low reflectance – and with low absorption – show no or only weak anisotropic colour effects under crossed polars, i.e. most oxides, while minerals with high reflectance can exhibit colours under crossed polars, especially under not precisely crossed polars.

The classification of AExPol is based primarily on the brightness in the 45°-position from very strong to very weak effects, which can further be subdivided depending on whether these effects are associated with a colour, a colour tint or no colour. The terms extremely strong, very strong, strong, distinct, weak, and very weak are used to describe the intensity of anisotropism (brightness).

To find the best grain orientation for the description of AExPol you have to find a grain which has the highest bireflection or reflection pleochroism (Rpl). This grain will also exhibit the largest differences between normal and 45°-position under crossed polars.

Optimum conditions for the observation of anisotropism effects under crossed polars are an intensive light source (always remove the blue filter!), objectives with low aperture/magnification (less than 40/50x), and the optimal grain orientation with the maximum variation between extinction and 45°-position.

Effects of weak anisotropism are better detected shifting the analyser a few degrees off the exactly crossed position to the polariser (named not precisely crossed polars) and by observing the sample using oil immersion.

Comparing the published colours for minerals leaves a frustrating impression. They are rarely identical or characteristic for a specific mineral and can vary very strongly from author to author. The reason for this potpourri is based on the different technical parameters used by these authors. In particular, the position of the polariser to the glass plate and the position of analyser to the polariser is important because tiny misfits from the ideal position(s) can lead to unreproducible effects.

The colours observed under crossed polars are not comparable with the interference colours in transmitted light microscopy. Instead, they are a combination of difficult to handle parameters.

These mixed colours are the sum of the

- Rotation of the plane of polarisation and the formation of elliptic polarized light during the reflection of the incoming light
- 2. Dispersion of the refractive indices and of the absorption coefficients
- Nature of the incoming light, which should be parallel, 100% linear polarised, and perpendicular to the surface of the section
- 4. Position of the analyser to the polariser
- 5. Position of the polariser to the glass plate (or prism)
- 6. Type of objective.

Points 1 and 2 are depending on the grain orientation and therefore controlled by material specific constants. Their co-action controls whether the mineral shows any colours under crossed polars. In contrast, points 3-6 are only technical factors. Disregarding these factors can lead to quite different effects and colours under crossed polars.

For reproducible and precise effects be aware of the following aspects:

- 2. The objectives should be stress-free (labelled P or Pol), and should have a small aperture, i.e. ob-

jective with a magnification power of less than 40/50x. Slightly close the aperture diaphragm.

- Precise orientation of the sample surface perpendicular to the axis of the microscope. Rotate the sample during multiple pressing with the section press.
- The section must have a perfect polishing. Otherwise many tiny scratches will lighten the grains and produce an atypical anisotropism (in German: Kratzeranisotropie) which is not mineral specific.
- The polariser must be oriented parallel to the glass plate and the analyser must be exactly 90° rotated from the polariser. This is of course only possible if the polars can be rotated.

A main division in the mineral profiles is made for the AExPol depending on whether the polar are precisely crossed (90°) or not. The adjustment of the polars is very delicate in respect to reproducible results. The optical differences between ideal and not exactly crossed polars are less obvious only for minerals with low R, which is dominated mainly by n, e.g. ilmenite, or for very bright minerals, which show non-coloured effects, e.g. molybdenite, mackinawite. Minerals with colourful AExPol are very sensible for the adjustment of the polars (see below).

Important to note: If a mineral shows a colour effect under crossed polars, this colour or colour tint is identical at each 45°-position only if the polars are exactly crossed and in the ideal position, 0°, 90°, respectively. When the analyser is not perfectly crossed with 90° to the polariser, you will see two different effects – in colour and brightness – in adjacent diagonal positions. This is especially pronounced for minerals, which have high absorption indices. In short: After the reflection of light on anisotropic minerals the two vibration directions of the wave R1 and R2 differ in amplitude and/or in phase, creating elliptically polarized light where the major axis of the ellipse is rotated.

In general, two methods can be used to perform an exact crossing of the polars.

1. With the help of an isotropic mineral, e.g. galena or magnetite. After adjusting of the polariser (if possible E-W) insert the analyser and adjust it until the mineral is as dark/black as possible.

2. With the help of highly reflecting, anisotropic minerals which show colour effects under crossed polars, e.g. arsenopyrite (see photos 26 and 27), marcasite, or nickeline. These minerals have different anisotropic effects in adjacent 45°-positions if the polars are not exactly crossed. Prior to the observation, a precise orientation of the sample surface perpendicular to the axe of the microscope is needed. Then, if possible, rotate the polariser into the 0° position and insert the analyser. During rotation of the stage, the mineral should show equal optical effects in all four 45°-positions. If you observe differences in colour and/or brightness move the analyser in one direction and observe the effects during rotation of the stage. If the differences are now stronger, you have to move the analyser into the other direction until the 45°-positions show optical identity. In sum, move the analyser until all four diagonal positions show very similar or at best identical effects. Now the polariser is in the ideal position and the analyser is precisely crossed 90°.

In general, with exactly crossed polars the overall field of view is generally dark and the effects are less colourful and much darker than those under slightly uncrossed polars.

4.9. EXTINCTION

Additional features accompanying the position with minimum brightness, the «normal« position, may be used for the identification of minerals. These are straight and uneven extinction, or the mineral grain shows complete, incomplete or undulate extinction just like in transmitted light. If the reflectance of a mineral is controlled by high absorption (k-values) these minerals often show incomplete extinction position, i.e. they are not completely black. In some cases, the normal position is slightly coloured, especially if the analyser is not exactly crossed.

4.10. INTERNAL REFLECTIONS (IR)

Important features for mineral identification are internal reflections (IR), which can be seen in minerals with a reflectance of R_{air} less than ~40% ($R_{oil} < ~25\%$).

Internal reflections are diffuse patches of light most often near fractures, cleavage planes, inclusions, and grain boundaries which are produced in minerals that are not completely opaque in transmitted light. These are minerals with low reflectance and more important with low absorption. That is the reason why the low reflecting graphite shows no IR. Due to its high absorption graphite is opaque even in very thin flakes.

The colour of the IR corresponds to the macroscopic colour of the mineral. The frequency and intensity of IR depend on grain size, amount of fractures or inclusions, and in some cases on the chemical composition, e.g. in rutile, cassiterite or sphalerite.

IR are more obviously recognized if the surface reflectance of the mineral is low, and/or if the polars are crossed. Intensity and amount of IR increase using an immersion objective, crossing the polars and rotating the grain into the normal position, decreasing the overall brightness of the other optical effects. In transparent minerals the numerous IR often mask and hide the anisotropism effects, e.g. anatase, cinnabar. Gangue minerals with their very low reflectance always show abundant IR, even under uncrossed polars. The colour of the IR can sometimes be used for their identification, e.g. epidote vs. garnet or biotite vs. muscovite.

Unfortunately, the intensity of the IR also depends on the grain size and the amount of discontinuity planes of the mineral (in German: Unstetigkeitsflächen). For example, large hematite grains only rarely exhibit IR, whereas fine-grained hematite aggregates are full of red IR. The IR of some minerals also vary in colour and intensity due to the variable content of minor elements. Iron-poor varieties of rutile, sphalerite, and cassiterite are full of yellow-white to colourless IR, whereas the iron-rich one's exhibit only few and dark brown IR. A classification of internal reflections with the typical minerals is compiled in table 8.4. See also table 8.6 for gangue minerals.

4.11. TWINNING

Crystal twinning – the oriented intergrowth of two or more crystals of the same mineral – is an important mineral-specific parameter. It can be very helpful for the mineral identification and even for the genetic interpretation of a mineralisation.

The typical twinning of a given mineral is classified due to the mode (orientation and form) and frequency. Be aware that the twinning of a mineral can vary due to different parameters like primary growth, secondary transformations or deformations, and – very important – due to the crystal orientation.

In general, the easiest way to observe twinning is crossing the polars with a slightly uncrossed analyser. The twinning is of course dependent on the orientation of the anisotropic grain. In a specific position these twins can be missing, i.e. if the orientation of the single lamellae system is parallel to the surface of the section, so it is advisable to scan different grain orientations for the characteristic twinning.

The type of twinning is a result of the mineral formation process.

We distinguish three types:

- 1. growth twinning
- 2. inversion twinning
- 3. deformation twinning.

Twin formation during initial growth shows twinning after relative simple rules with generally one more or less straight twin boundary. Prominent examples are safflorite (star-like triplets), loellingite, rutile, cassiterite and marcasite.

Inversion twinning due to phase transformation is characterized by many adjoining lamellae (polysynthetic twinning). These fine lamellae are similar and parallel in certain mineral areas or domains but not in parallel arrangement in the whole grain. The lamellae are lens- or spindle-like and build up an interlaced network. Typical examples are chalcopyrite, bornite and stannite. The formation results from the inversion of a high-temperature modification into the low-temperature one. If an inversion twinning is visible, this feature can be used as geothermometer for the estimation of minimum formation temperatures.

Deformation twins, mechanical induced twinning, are similar to inversion twins, showing also unequal and lamellar but rarely spindle-like twins. They are accompanied by bending, cataclasis, crumpled lamellae (in German: »Zerknitterungslamellen«) and beginning recrystallization features. Examples are hematite, ilmenite, rutile, hausmannite, sphalerite, pyrrhotite, chalcopyrite, nickeline, stibnite and graphite.

4.12. FURTHER OBSERVATIONS

The morphology of crystals, cleavages, exsolution features and the intergrowth with other minerals, as well as structure and texture phenomena can be very useful for the identification and interpretation of complex ores. The user is strongly advised to consider these additional parameters beside the above mentioned optical parameters.

4.13. FORM, HABIT, TEXTURES

In many rocks and ores, the minerals exhibit their typical appearance with respect to the crystal morphology in form and habit (anhedral-euhedral, isometric, tabular, acicular, etc.), zoning, occurrence of exsolution bodies, and typical replacement, deformation and intergrowth features. For the mineral identification and the interpretation of the ore genesis it is very important and helpful to look carefully for these features. See tables 8.5 and 8.7.

4.14. CLEAVAGE (#)

Minerals with good cleavages in hand specimens do not necessary show this feature in polished section. The polishing process has great influence on the visibility of cleavage planes, seen as oriented fine black lines on the mineral surface. Powerful polishing can create many cleavages and deformation pits, whereas a careful polishing process can even eliminate all cleavage features by smearing over the cleavage fissures in soft minerals. Nevertheless, if a mineral shows cleavage planes, it can be an important feature for the identification.

In many ores and rocks, galena, pyrrhotite and minerals with sheet-like crystal structure, e.g. graphite, valleriite, molybdenite, can easily be identified by their typical cleavage features. The triangular black pits in galena are commonly visible and very typical.

4.15. PARAGENESIS (ASSOCIATION)

An important feature for the mineral identification are those minerals which are often in paragenesis (co-genetic phases) or in association (not co-genetic) with this mineral. Good knowledge of the most important assemblages is of valuable help for the identification of unknown minerals and should not be underestimated. See also table 8.5 and 8.7.

4.16. DIAGNOSTIC FEATURES

These are the most important criteria for the identification of a given mineral in the ore microscope.

4.17. NOTES, DRAFTS

Further important information and space for your own drawings and notes.

5. SOME ABBREVIATIONS USED IN THIS GUIDE

Abbr.	Explanation
A _{oil}	Intensity of bireflectance in oil (the anisotropic factor)
AExPol	Anisotropism effects with precisely crossed polars: intensity and colours (in oil)
AExPol (~)	Anisotropism effects with analyser rotated a few degrees (~ 2-5°) from its ideal position: intensity and colours (in oil)
BR and Rpl	Bireflection and reflection pleochroism (in oil)
BR ~ Rpl	BR as strong as reflection pleochroism
BR > Rpl	BR more pronounced than reflection pleochroism
BR < Rpl	BR less pronounced than reflection pleochroism
CI	Colour impression (in oil)
EB	Exsolution bodies
Formula (abbr.)	Simplified mineral formula (abbreviation after Whitney & Evans (2010), and Fontboté (2006))
IR	Internal reflections:
	Occurrence and colour in oil
Pol	Uncrossed polars (only one polariser)
x Pol	Precisely crossed polars
x Pol (~)	Not exactly crossed polars (with ~ 2-5° from the ideal position)
R (in % at 546 nm)	Reflectance values in air/oil (mainly after Criddle & Stanley (1993) unless otherwise noted, see below). [1]: after Uytenbogaardt & Burke (1985) [2]: after Ramdohr (1980)
VHN	Vickers Hardness Number (values mainly after Criddle & Stanley (1993) or estimated from Mohs hardness)
#	Cleavage, or cleavage after
X/XX	Crystal/Crystals

6. MINERAL ABBREVIATIONS (MODIFIED AFTER WHITNEY & EVANS (2010) AND FONTBOTÉ (2006))

Abbr.	Name	Abbr.	Name	Abbr	Name
ab	albite	cct	chalcocite	gru	grunerite
act	actinolite	cer	cerussite	gу	gypsum
adr	andradite	chl	chlorite (group)	hbl	hornblende
afs	alkali feldspar	chr	chromite	hc	hercynite
all	allanite	cin	cinnabar	hm	hematite
alm	almandine	cob	cobaltite	hsm	hausmannite
alu	alunite	ср	chalcopyrite	ill	illite
amp	amphibole (group)	срх	clinopyroxene	ilm	ilmenite
an	anorthite	crn	corundum	ilv	ilvaite
and	andalusite	cub	cubanite	iss	intermediate ss
ang	anglesite	cup	cuprite	jm	jamesonite
anh	anhydrite	CV	covellite	kam	kamacite (a-FeNi)
ank	ankerite	dg	digenite	kao	kaolinite
ant	anatase	di	diopside	ky	kyanite
ар	apatite (group)	dia	diamond	lin	linnaeite
asp	arsenopyrite	dol	dolomite	lm	limonite
aug	augite	el	electrum	lo	löllingite
az	azurite	eng	enargite	mal	malachite
bar	barite	ер	epidote	mc	microcline
bdy	baddeleyite	fa	fayalite	mgh	maghemite
bio	biotite	fh	fahlore (tnt-td)	mgs	magnesite
bn	bornite	fl	fluorite	mic	mica (group)
boul	boulangerite	fo	forsterite	mlr	millerite
brc	brucite	fsp	feldspar (group)	mm	montmorillonite
brk	brookite	gg	gangue	mnz	monazite
bxb	bixbyite	gn	galena	mol	molybdenite
cal	calcite	goe	goethite	mrc	marcasite
car	carrollite	gr	graphite	ms	muscovite
cas	cassiterite	grs	grossular	mss	monosulfide ss
cb	carbonate (group)	grt	garnet (group)	mt	magnetite
		1		1	-

contd.

Abbr.	Name	Abbr.	Name	Abbr	Name
ne	nepheline	ram	rammelsbergite	tae	taenite
nk	nickeline	rds	rhodochrosite	td/ttr	tetrahedrite
ol	olivine (group)	rlg	realgar	tlc	talc
орх	orthopyroxene	rt	rutile	tnr	tenorite
or	orthoclase	sa	sanidine	tnt	tennantite
orp	orpiment	sch	scheelite	trm	tremolite
phl	phlogopite	scp	scapolite (group)	tro	troilite
plag	plagioclase	sd	siderite	ttn	titanite
pn	pentlandite	ser	sericite	tur	tourmaline
ро	pyrrhotite	sfs	sulfosalts (class)	urn	uraninite
pph	pyrophanite	sk	skutterudite	usp	ulvöspinel
pr	proustite	sph	sphalerite	wf	wolframite (fb-hub)
prl	pyrophyllite	spl	spinel	WO	wollastonite
prv	perovskite	srp	serpentine (group)	wur	wurtzite
psb	pseudobrookite	SS	solid solution	wus	wüstite
рх	pyroxene (group)	stbn	antimonite = stibnite	zeo	zeolite (group)
ру	pyrite	stbn	stibnite	zrn	zircon
pyrg	pyrargyrite	stlb	stilbite		
qz	quartz	str	strontianite		

7. REFERENCES

- BAUMANN, L. & LEEDER, O. (1991): Einführung in die Auflichtmikroskopie.- Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig, 408 p. (out of print)
- **CABRI, L.C. (1987):** The mineralogy of precious metals: new developments and metallurgical implications - Presidential address. - Can. Mineral., 25, 1-7
- CRAIG, J.R. & VAUGHAN, D. J. (1994): Ore microscopy and ore petrography.- Second edition, Wiley-Interscience, NY, 448 p.
- **CRIDDLE, A. J. & STANLEY, C. J. (1993):** The quantitative data file for ore minerals.- Third edition, Chapman & Hall, London, 64 p. + 635 tables.
- CRIDDLE, A. J. & STANLEY, C. J. (2017): Quantitative Data File for reflectance values of minerals. Online: http://nrmima.nrm.se/Copy%20of%20 COMwavelengths.xls (last visit: 23.04.2018) (but R values listed only for air).
- Fontboté, L. (2006): Recommended abbreviations for studies on ore deposits. - https://www.unige. ch/sciences/terre/research/Groups/mineral_resources/opaques/ore_abbreviations.php (last visit: 18.05.2019)
- GIERTH, E. (1989): Leitfragen zur Bestimmung von Erzmineralien im Anschliff.- Clausthaler Tektonische Hefte, 25, Second edition, Verlag E. Pilger, Cl.-Zellerfeld, 131 p. (out of print)
- **INESON, P. R.(1989):** Introduction to Practical Ore Microscopy. - Longman, 192 p.
- IXER, R. A. & DULLER, P. R. (1998): Virtual Atlas of Opaque and Ore Minerals in their Associations. - http://www.atlas-of-ore-minerals.com. (last visit: 16. 05. 2019)
- MARSHALL, D., ANGLIN, C. & MUMIN, H. (2004): Ore Mineral Atlas. – Geol. Ass. Canada Mineral Deposits Division, 112 p.

MÜCKE, A. (1989): Anleitung zur Erzmikroskopie

mit einer Einführung in die Erzpetrographie.-Enke Verlag, Stuttgart, 187 p. (out of print)

- **Рісот, Р. & Јонан, Z. (1982):** Atlas of ore minerals.-Elsevier, Amsterdam, 458 p.
- **PRACEJUS, B. (2015):** The ore minerals under the microscope.- Atlases in Geoscience, 3, Elsevier, 1118 p.
- RAMDOHR, P. (1975): Die Erzmineralien und ihre Verwachsungen. – 4., bearbeitete und erweiterte Auflage, Akademie-Verlag, Berlin, 1277 p. (out of print)
- RAMDOHR, P. (1980): The ore minerals and their intergrowths.- English Translation of the 4th Edition in two volumes, Pergamon Press, Oxford/London, total 1205 p. (out of print)
- SPRY, P. G. & GEDLINSKI, B. L. (1987): Tables for the determination of common opaque minerals.-Economic Geology Publishing Company, New Haven, 52 p.
- UYTENBOGAARDT, W. & BURKE, E. A. J. (1985): Tables for microscopic identification of ore minerals.-2nd revised edition, Dover Publ., Inc. New York, 430 p.
- VAUGHAN, D. J. (2006) (ED.): Sulfide Mineralogy and Geochemistry.- Rev. Mineral. Geochem., Vol. 61, 714 p.
- WHITNEY, D. L. & EVANS, B. W. (2010): Abbreviations for names of rock-forming minerals. – Amer. Min., 95, 185–187.
- **HTTP:**//webmineral.com: The Mineralogy Database contains 4714 individual mineral species descriptions (2017) with links and a comprehensive image library.
- **HTTP:**//www.mindat.org: World's largest open database of minerals, rocks, and meteorites.
- HTTP://nrmima.nrm.se//imalist.htm: IMA mineral list with 5488 valid minerals (June 2019).
- HTTP://rruff.info: RRUFF Project website containing an integrated database of Raman spectra, X-ray diffraction and chemistry data for minerals.

8. TABLES

8.1. COLOUR IMPRESSION - REFLECTANCE - BR (WITH OIL IMMERSION)

I. Minerals wITHOUT colour impression (white to black) in oil					
R	BR/Rpl not visible to very weak	BR/Rpl weak to distinct	BR/Rpl strong to extremely strong		
> 50%	Silver 91 Platinum 59 Osmium > 48	Antimony 64-69			
50-35%	Iron 45 Gersdorffite 31 to 43 Clausthalite 37	Rammelsbergite 43-48 Tetradymite 41-48			
35-25%	Galena 28				
25-18%		Pyrolusite 23-30 Jordanite 23-25 Franckeite 21-22 Teallite 18-20	Bismuthinite 22-34		
18-10%		Hematite 12-16	Ramsdellite 9-25 Manganomelane 14-23		
10-5%	Alabandite 8.8 Anatase 6.6-6.8 Wurtzite 5 to 6 Sphalerite 5.0 to 5.4	Pseudobrookite 6-6.5	Mackinawite 5.2-28.4 Molybdenite 7.8-24.1 Rutile 6.9-9.3 Lithiophorite 2-8		
< 5%	Pyrolusite 4.9 Baddeleyite 3.1 3.3 Thorianite 3 Chromite 2 to 3 Scheelite 1.4 - 1.5 Spinel 0.4 to 3 Barite 0.2	Zircon 1.4-1.8	Lepidocrocite 2.0-6.2 Titanite 1.3-2.0 Cassiterite 1.8-2.4 Cerussite 0.8-2.5 Malachite 0.2-1.3 Siderite 0.1-1.1 Calcite 0.0-0.2		

Explanation:

3-5 means: minimal R-maximal R

3 to 5 means: R of mineral varies from 3 to 5% due to solid solutions

All R values above 10% are rounded

8.2. COLOUR IMPRESSION - REFLECTANCE - BR (WITH OIL IMMERSION)

II. Minerals with WEAK colour impression (tint) in oil						
R	BR/Rpl not visible to very weak	BR/Rpl weak to distinct	BR/Rpl strong to extremely strong			
> 50%		Allargentum 59-59.5				
50-35%	Pararammelsb. 45-47 Skutterudite 39 to 41 Pentlandite 37 Cobaltite 36 Maucherite 35-36	Bismuth 48-56 Dyscrasite 48-51 Cementite 40-42 Safflorite 39-40 Loellingite 38-41 Arsenopyrite 37-38 Arsenic 37-42				
35-25%	Ullmannite 33 Violarite 33	Schapbachite 27-33 Teallite 28-29				
25-18%	Chalcocite 18	Boulangerite 23-28 Emplectite 22-27 Bournonite 19-21	Jamesonite 21-29			
18-10%	Vaesite 17 Acanthite 15 to 16 Fahlore 15 to 17 Pyrostilpnite 14-15 Tiemannite 15 Kesterite 11-12	Djurleite 16-17 Polybasite 15-17 Pearceite 14-17 Cuprite 12-13 Enargite 11-15 Stannoidite 11-14	Nsutite 16-22 Miargyrite 16-18 Cinnabar 10-14 Orpiment 10-13			
10-5%	Wuestite 7.0 Braunite 6.4-7.0 Magnetite 5 to 8 Tit-Magnetite 5 to 6 Pseudorutile ~ 7	Realgar 6-8 Iscorite 5-6 Ferro-Columbite 5.0-5.4	Hausmannite 4.8-7.4 Marokite 4.5-6.4 Valleriite 1.6-10.7 Graphite 0.5-15			
< 5%	Pitchblende 3 to 4 Pyrochlore 2 to 5	Goethite 4.3-6.0	Manganite 3.5-7.5			

Explanation:

3-5 means: minimal R-maximal R

3 to 5 means: R of mineral varies from 3 to 5% due to solid solutions

All R values above 10% are rounded

8.3.	COLOUR	IMPRESSION -	REFLECTANCE – BR	(WITH OIL IMMERSION)
------	--------	---------------------	-------------------------	----------------------

III. Minerals with DISTINCT TO STRONG COLOUR impression in oil					
R	BR/Rpl not visible to very weak	BR/Rpl weak to distinct	BR/Rpl strong to extremely strong		
> 50%	Gold 72 Copper 57				
50-35%	Pyrite 39	Millerite 38-44 Marcasite 34-42	Breithauptite 24-35		
35-25%	Chalcopyrite 34	Nickeline 33-38	Berthierite 22-27		
25-18%	Bravoite 20	Pyrrhotite 23-28 Emplectite 22-27	Cubanite 24-28 Mückeite 24 Stibnite 16-33		
18-10%	Metacinnabar 11 Bornite 10 Maghemite 10	Stephanite 14-15 Pyrargyrite 13-15 Stannite 13-14 Stannoidite 11-14 Proustite 10-13	Sternbergite 11-23 Imiterite 13-17 Luzonite 12-14 Kermesite 11-15		
10-5%	Digenite 8.6 Jacobsite 8 Bixbyite 9.3		Tenorite 7.6-13.1 Spionkopite 6.1-12.3 Yarrowite 1.8-11.1		
< 5%		Wolframite 4.1-4.8	Ilmenite 4.9-6.7 Covellite 0.9-9.9 Ilvaite 1-2		

Explanation:

3-5 means: minimal R-maximal R

3 to 5 means: R of mineral varies from 3 to 5% due to solid solutions

All R values above 10% are rounded

8.4. CLASSIFICATION OF INTERNAL REFLECTIONS (IR) WITH EXAMPLES (IN OIL)

	rare	occasional	frequent	abundant
I. Red IR	Boulangerite Braunite Hematite (coar- se-grained) Tennantite Pyrophanite Jacobsite Chalcophanite Plagionite Enargite	Livingstonite Polybasite/Perceite Sphalerite (Fe-rich) Hausmannite Manganite (bloodred) Franklinite Rutile (Fe-rich) Wolframite Miargyrite	Kermesite Proustite Hematite (fine- grained) Rutile Mn-Wolframite	Realgar (yellowred) Cuprite (bloodred) Getchellite (bloodred) Cinnabar Zincite (light red)
II. Brown IR	Cassiterite (Fe-rich) Chromite (Mg-Al-) Columbite (Fe-Nb-) Sphalerite (Fe-rich) Uraninite, Braunite	Hetaerolite	Hoegbomite Lepidocrocite (brownish red) Titanite (Fe-rich)	Goethite Baddeleyite
III. Orange IR	Geikielite		Rutile	Manganotantalite Realgar
IV. Yellow IR	Geikielite	Hetaerolite	Titanite Zincite Sphalerite (Fe-poor) Cassiterite (Fe-poor)	Greenockite Orpiment Pyrochlore
V. Green IR		Alabandite Sphalerite (yellow green)	Hercynite Manganosite	Malachite
VI. Blue IR				Azurite Anatase (white blue) Galaxite
VII. White or colourless IR				Titanite Rutile (Fe-free) Scheelite, Zircon Cassiterite (Fe-free) Sphalerite (Fe-free)

8.5. COMMON INTERGROWTHS OF SOME IMPORTANT MINERALS (HOST – GUESTS)

Host	Guest	
Bornite	Chalcopyrite, fahlore, linnaeite	
Braunite	Hausmannite, hematite	
Cassiterite	Rutile, ilmenite, columbite	
Chalcopyrite	Sphalerite, cubanite, pyrrhotite, fahlore, bornite, stannite, mackinawite,	
	chalcopyrrhotite, briartite, gallite, renierite	
Chalcocite	Bornite, digenite, chalcopyrite	
Chromite	Ilmenite, hematite, rutile, escolaite	
Cinnabar	Metacinnabar	
Columbite	Uraninite, ilmenite, rutile	
Corundum	Hematite	
Cubanite	Chalcopyrite	
Digenite	Chalcopyrite, bornite, covellite	
Fahlore	Chalcopyrite	
Galena	Schapbachite, tetradymite, argentite, polybasite, cosalite,	
Graphite	Molybdenite	
Hematite	Ilmenite, corundum	
Hausmannite	Jacobsite	
Ilmenite	Hematite, rutile, corundum, spinel, magnetite	
Jacobsite	Hausmannite	
Linneite	Chalcopyrite, millerite	
Magnetite	Ilmenite, hematite, hercynite, ulvite, spinel, geikielite	
Pentlandite	Chalcopyrite, linnaeite, mackinawite	
Pyrrhotite	Pentlandite, chacopyrite, cubanite, mackinawite	
Rutile	Hematite, ilmenite, cassiterite	
Sphalerite	Chalcopyrite, pyrrhotite, fahlore, stannite, mackinawite	
Spinel	Magnetite, ilmenite	
Stannite	Sphalerite, chacopyrite, cubanite, fahlore, stannoidite	

Gangue	R _{air} /R _{oil} [%]	Optical properties	Other properties
	calculated from n	IR: Internal reflections BR: Bireflection	#: cleavage XX: crystals
Calcite	4-6/0.0-0.3	strong BR, white IR	#! polysynth. twinning
Siderite	5-9/0.1-1.1	extremly strong BR	#; common alteration to iron-oxihydroxides
Quartz	4.6/0	no BR, white IR	no #; many flincs! Hardness
Feldspar	4.3 to 4.8/0	unclear, many IR	#; with alteration minerals (clays)
Mica	5 to 7/0 to 0.2	BR; biotite: brown IR	# after one direction, tabular, bladed
Kaolinite, clay minerals	5/0 to 0.3	often »opaque«-like appearance	very fine flakes
Garnet	6 to 9/0.4 to 1.2	yellow-brown IR	no #, isometric habit, VHN
Amphibole/ Pyroxene	5 to 7/0.1 to 0.3	greenish-brown IR	typ. #
Olivine	6 to 8/0.2 to 0.7	colourless, no BR	no #, occ. with spinels
Fluorite	3.2/0	one of the darkest minerals, in part violet	# {111}, many flincs
Barite	5.9/0.1	no BR	# (001), tabular XX

8.6. IMPORTANT PROPERTIES OF COMMON GANGUE MINERALS

8.7. FORM, HABIT, TEXTURES (PHOTOS SHOWING THE CHARACTERISTIC FEATURES)

Feature	Photo number		
Habit, form of grains			
lsometric habit: cubic, octaedric, granular, rounded	49, 77,105, 117, 120, 184, 195, 269, 308, 429, 439, 444, 511, 512, 551		
Twodimensional habit: tabular, bladed, elongated, flaky	24, 37-40, 44, 45, 121, 133, 221, 222, 237, 361, 389, 545, 553		
Onedimensional habit: prismatic, acicular, needle-shaped, fibrous	16, 41, 69, 83, 205, 281, 284, 325, 534		
Skeletal	52, 55, 261, 265, 319, 403, 499, 585, 587		
Spherulitic (spheroidal), radial	29, 207, 277, 289, 326, 338, 445, 472, 589		
Concentrically banded	164, 233, 293, 295, 513-516, 563		
Botryoidal-reniform (collomorph)	21, 92, 185, 189, 375, 405-408, 431, 433		
Oolitic	88, 465		
Feathery-flowery	334		
Zoned grains	78, 90, 113, 268, 316, 323, 324, 402, 432, 441, 488, 510, 516, 522, 563, 599		
Growth twins	33, 49, 89, 137, 155, 225, 275, 297, 481, 485, 486, 508		
Cooling features (exsolution bodies and inversion twinning)			
Lamellar EB (discs, oleander leaf, plates)	139, 145, 148, 236, 241, 242, 244, 247, 251, 313, 388, 484		
Irregular, dispersed EB	5, 194, 313, 409, 459, 525		
Myrmekitic-graphic EB	67, 98		
Star-like, flame-like EB	398, 399		
Inversion twinning	66, 69, 75, 76, 100, 104		
Intergrowth textures			
Ophitic, intersertal, interlocked	231, 395, 450,, 497, 591		
Myrmekitic, symplectitic	121,168, 190, 513, 519, 548		
Poikiloblastic (sieve-like, idioblastic)	87, 167, 184, 308, 400, 439, 441, 494, 509		
Disseminated	102, 291		
Rimmed	511, 512		
Amoeboid	279		
Spongy cellular/boxy cellular	139, 140, 497		
Atoll-like	105, 106		

Filiform, graphic	93, 128, 272, 305, 355, 453, 539
Cellular, island shaped, boxwork	97, 107, 198, 349, 359, 403, 404, 466, 537, 538
Skeleton-shaped	55
Cusp-and-caries	11, 12, 31, 65, 185, 571
Lamellar (along cleavage or crystal planes)	15, 86, 92, 95, 156, 191, 229, 317, 322, 372, 454, 495, 521, 536, 541, 555, 561, 565, 571
Zonal	432, 502, 504
Atoll-like	438
Cement-shaped	200, 312
Pseudomorph	135, 208, 238, 331, 420, 422, 424, 440, 447, 448, 460, 479, 573, 595
Deformation-related textures	
Cataclastic, brecciated, broken	50, 69, 107, 108, 203, 235, 348, 437, 468, 529
Translation lamellae, pressure twins	85, 103, 134, 179, 239, 240, 249, 370, 452, 533
Bending	177, 361, 456
Planar alignment	221, 222

Replacement textures

PART B

MINERAL PROFILES AND PHOTOMICROGRAPHS OF COMMON ORE AND GANGUE MINERALS
Acanthite/Argentite (in German: Silberglanz)

Mineral name: Acanthite/Argentite **Formula:** Ag₂S

VHN: 20-60 Crystal System: mcl. (cub.)

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_1 = 30.4$	R ₂ = 31.2	$R_{(air)}$ after ^[1]
R _(oil) in %	(for 546 nm)	R ₁ = ~15	R ₂ = ~16	R _(oil) estimated
Colour impressio	on (in oil)	greyish white tint olive	greyish white	
BR ~ Rpl	(in oil)	weak		A _{oil} = 6

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars	
Anisotropism intensity/colour	weak without colour	weak with colour tint	
Colour: in 45° position	grey	grey tint violet – greyish olive brown	
in other positions	grey tint brown	olive brown – greyish violet	
Extinction position	impure, brownish black		
Mode of extinction	imperfect due to many scratches		
Internal reflections colour			
(IR) frequency			
Twinning mode	argentite – acanthite: complex lamellar to irregular twinning		
frequency	always, when inversion from argentite, missing in formation at T < 179°C		

Further observations

Form, habit, textures, cleavage	euhedral crystals, polygonal aggregates, earthy to spongy masses, as exsolution bodies {100} in galena; very soft
Paragenesis	silver, gn, fahlore, proustite, pyrargyrite, uraninite, py, cp, cv, sph, cerussite
Diagniostic features	rapid tarnishing, many scratches

Notes, drafts

^[1] after Uytenbogaardt & Burke (1985).

Inversion from the high-temperature modification argentite at 179°C forms twinned acanthite.

Untwinned acanthite crystallizes below 179°C.

BR and AExPol are more distinct after some time of light etching!

1 Acanthite, pyrite – Gnade Gottes (prob. near Brod), Bohemia, Czech Republic

Acanthite aggregate (light grey) beside small pyrites. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D120_01 Section: AS1063

As above, with crossed polars (but not exactly crossed) showing complex twinning of acanthite due to inversion from the cubic high temperature modification argentite.

Obj.: 10 × Polars: × Pol (~) Photo width: 1.4 mm Photo No.: D120_02 Section: AS1063

3 Acanthite, silver, ram, lo – Nieder-Beerbach, Odenwald, Germany

Acanthite (medium grey) between silver crystals (white), which are surrounded by rammelsbergite and loellingite (both light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D184_22 Section: MB25

4 Acanthite, silver, ram, lo – Nieder-Beerbach, Odenwald, Germany

As above, with crossed polars. Note the light AExPol of silver due to numerous tiny scratches. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D184_23 Section: MB2

Alabandite (in German: Alabandin)

Mineral name: Alabandite Formula: MnS VHN: 240 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in %	(for 546 nm)	R = 22.3	
R _(oil) in %	(for 546 nm)	R = 8.8	
Colour impression	n (in oil)	grey	against sph: lighter grey
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	in each position dark	
Colour: in 45° position	black	
in other positions	black	
Extinction position	black	
Mode of extinction		
Internal reflections colour	yellow green - olive green	
(IR) frequency	common - frequent	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	EB of po, cp, mackinawite
Paragenesis	jacobsite, sphalerite, chalcopyrite, mackinawite
Diagniostic features	green IR, EB

Notes, drafts

Rare mineral! Similar to SPHALERITE!

5 Alabandite, jacobsite, sph – Noda Tamagawa, Japan

Grain of alabandite (left, light grey) with sphalerite (right, medium grey), and jacobsite (upper part, olive).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_13 Section: AS215

6 Alabandite, jacobsite, cp, valleriite – Noda Tamagawa, Japan

Alabandite with tiny EB of chalcopyrite, surrounded by jacobsite (olive to green). Younger veinlets of valleriite (bronze).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_14 Section: AS215

7 Alabandite, jacobsite – Noda Tamagawa, Japan

Alabandite (grey) with good cleavage and light yellow green IR; small grains of jacobsite (green). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D103_05 Section: AS214

8 Alabandite, jacobsite – Noda Tamagawa, Japan

Equigranular alabandite grains (light grey) surrounded by jacobsite (green), which replaces garnet (nearly black). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D103_03 Section: AS214

Allargentum

Mineral name: Allargentum **Formula:** Ag₆Sb VHN: 170-200 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 69.5	R ₂ = 70.9	
R _(oil) in %	(for 546 nm)	R ₁ ~ 59	R ₂ ~ 59.5	R _(oil) estimated
Colour impressio	n (in oil)	yellowish white	yellowish white	rapid tarnishing
BR ~ Rpl	(in oil)	weak		A _{oil} = 1

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars	
Anisotropism intensi	ty/colour	distinct without colour	strong with colour	
Colour: in 45°	^o position	light grey	greyish brown	
in other	positions	brown	orange yellow - blue - purple	
Extinction position		bluish black		
Mode of extinction		straight		
Internal reflections	colour			
(IR) fi	requency			
Twinning	mode	lamellar after one or two direction; partly spindle-like		
f	requency	frequent		

Further observations	
Form, habit, textures, cleavage	equigranular, colloform; spindle-shaped EB of silver, overgrown by gersdorffite or loellingite; irregular fractures, no # (hackly/jagged fracture)
Paragenesis	native silver, dyscrasite, gersdorffite, loellingite
Diagniostic features	AExPol, no #, rapid tarnishing, paragenesis, many scratches

Notes, drafts

Occasional with low As-content. Similar to SILVER and DYSCRASITE.

9 Allargentum, loellingite, galena – Wenzel mine, Schwarzwald, Germany

Massive allargentum (centre with twinned grains, BR) with thin rim of loellingite in groundmass of galena (grey, left part of photo).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D185 16 Section: SSW16

10 Allargentum, loellingite, galena – Wenzel mine, Schwarzwald, Germany

As above with crossed polars. Lamellar twinning of allargentum is clearly visible.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D185 17 Section: SSW16

11 Allargentum, breithauptite, nk – Wenzel mine, Schwarzwald, Germany

Replacement of allargentum (centre to right side of photo, lamellar twinning, weak BR) by mixture of breithauptite (through Sb-diffusion in direct contact to allargentum, more violet than nickeline) plus nickeline (shades of orange); gersdorffite (light grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: 84_07 Section: Wenzel17

12 Allargentum, galena, calcite – Wenzel mine, Schwarzwald, Germany

Round aggregates of allargentum with gersdorffite rim (light grey) in part replaced by galena (medium grey) and calcite (dark grey).

Obj.: 2,5 × oil Polars: || Pol Photo width: 3.8 mm Photo No.: 85_02 Section: Wenzel5

Amphibole

Mineral name: Amphibole **Formula:** $Ca_2(Mg,Fe)_5[(OH)_2|Si_8O_{22}]$ VHN: Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _x ~ 5.9	R _z ~ 6.6	calculated from $n_{x'}$, n_{z}
R _(oil) in %	(for 546 nm)	R _x ~ 0.2	R _z ~ 0.3	calculated from $n_{x'}^{} n_{z}^{}$
Colour impressio	n (in oil)	»black« (but light IR!)	»black« (but light IR!)	
BR ~ Rpl	(in oil)	very weak – weak		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	not visible
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	greenish, brownish, rare bluish	
(IR) frequency	common	
Twinning mode	none	
frequency		

Further observations	
Form, habit, textures, cleavage	granular to euhedral XX, good # (amphibole-typical)
Paragenesis	cpx, ol, feldspar, qz, mt, po,
Diagniostic features	low R, amphibole-typical #

Notes, drafts

Optical properties are varying with composition!

13 Amphibole, olivine – Bürzlen, Urach volcanic field, SW-Germany

Amphibole crystal (with perfect #) and broken olivine grains (lower left part, without #) in olivine nephelinite.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D56_28 Section: Xeno5

14 Amphibole, garnet, manganomelane – Ungwan Mallam Ayuba, Nigeria

Groundmass of garnet and amphibole crystals (with #) is replaced by fine-grained manganomelane, lithiophorite, and limonite (white to medium grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D152_27 Section: AS238

15 Amphibole, cp, po – Horbach, Schwarzwald, Germany

Chalcopyrite and minor pyrrhotite replacing amphibole crystal along cleavage planes and fractures. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D196_22 Section: AS3197

16 Crocidolite, qz, mt, hm – BIF from Hamersley Range, Australia

Quartz with asbestiform crocidolite and euhedral magnetite (partly with hematite). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D107_24 Section: S1197A

Anatase

Mineral name: Anatase (ant) **Formula:** TiO₂ VHN: 600-700 Crystal System: tetr.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	R _o = 19.5	R _e = 19.1	
R _(oil) in % (for 546 nm)	R _o = 6.8	$R_{e} = 6.6$	
Colour impression (in oil)	grey	grey	many IR!
BR > Rpl (in oil)	very weak		A _{oil} = 3

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very weak	very weak
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	colourless, bluish white	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral to anhedral, rounded grains; usually small. Intergrown with rutile and pseudobrookite, replaces ilmenite
Paragenesis	ilmenite, rutile, hematite, magnetite, biotite
Diagniostic features	IR; similar to rutile (but rutile has strong BR and $R_p > R_p$)

Notes, drafts

Similar to SPHALERITE (which has a sulfide paragenesis) and RUTILE (see under rutile, p. 262).

17 Anatase, rutile, ilmenite – Placer near Neualbenreuth, Oberpfalz, Germany

Rutile crystals (light grey) surrounded and partly replaced by anatase (medium grey), two elongated ilmenite grains (brown). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D110_01 Section: AS140

18 Anatase, rutile, ilmenite – Placer near Neualbenreuth, Oberpfalz, Germany

As above, now 90° rotated. Note reflectance of rutile now equals reflectance of anatase.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D110_02 Section: AS140

19 Anatase, rutile, ilmenite – Placer near Neualbenreuth, Oberpfalz, Germany

As above, with crossed polars. Anatase with colourless to bluish internal reflections in contrast to rutile with yellow IR. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D110_07 Section: AS140

20 Anatase – Placer near Neualbenreuth, Oberpfalz, Germany

Fine-grained aggregate of anatase pseudomorph after unknown phase.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D109_28 Section: AS140

Arsenic (in German: ged. Arsen)

Mineral name: Arsenic Formula: As VHN: 70-170 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 55.7	R _{e'} = 51.6	
R _(oil) in %	(for 546 nm)	R _o = 42.1	R _{e'} = 37.1	
Colour impressio	n (in oil)	white (tint yellow)	white tint blue	against galena: cream
BR ~ Rpl	(in oil)	distinct		A _{oil} = 12

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour tint
Colour: in 45° position	yellowish brown	light grey – yellowish grey
in other positions		dark grey
Extinction position	black	
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode	complex to lamellar twinning, pressure-twin lamellae	
frequency	frequent	

Further observations	
Form, habit, textures, cleavage	fine- to coarse-grained aggregates, in colloform bands, plume- or sheaf-like crystals; perfect basal cleavage (0001)
Paragenesis	wurtzite, skutterudite, rammelsbergite, bismuth, silver, arsenopyrite,
Diagniostic features	very rapid tarnishing to blue and brown!

Notes, drafts

The strong tarnishing cannot be rubbed off with paper (only wet polishing with MgO); after months or years most of the arsenic is altered and completely destroyed! For taking photomicrographs you can use only fresh polished section (don't wait more than 2-3 days!).

Position with CI = white tint blue and minimum R is not R_a as noted in Criddle & Stanley!

21 Arsenic, wurtzite – Michael im Weiler, near Lahr, Schwarzwald, Germany

Colloform aggregate of arsenic with coarse-grained outer part (in this area with visible BR). Lower left side of photo: wurtzite (dark grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D112_04 Section: L-4

22 Arsenic, wurtzite – Michael im Weiler, near Lahr, Schwarzwald, Germany

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D112_02 Section: L-4

23 Arsenic, allargentum – Nieder-Beerbach, Odenwald, Germany

Lamellar twinned grains of arsenic showing bireflection and relief due to light etching and strong, repeated polishing. Small inclusions of kutinaite (Ag₆Cu₁₇As₇) plus allargentum with high relief. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D165_27 Section: CHe12

24 Arsenic – Slag from Wiesloch, Baden, Germany

Ophitic network of arsenic laths in an artificial slag.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D46_03 Section: 15S9A

Arsenopyrite (in German: Arsenkies)

Mineral name: Arsenopyrite (asp) Formula: FeAsS VHN: 760-1200 Crystal System: mcl./tric.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 52.3	R _b = 51.9	R _c = 51.9
R _(oil) in %	(for 546 nm)	R _a = 37.6	R _b = 37.3	R _c = 37.2
Colour impressio	n (in oil)	white tint yellow	white tint cream	white tint bluish
BR < Rpl	(in oil)	weak to distinct		A _{oil} = 1

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very weak with colour	distinct with colour
Colour: in 45° position	bluish grey	yellow brown - turquoise blue
in other positions	grey, bluish	reddish brown
Extinction position	grey black	olive black
Mode of extinction	incomplete without colour	
Internal reflections colour		
(IR) frequency		
Twinning mode	complex (lamellar twinning in two directions; domains)	
frequency	very common	

Further observations	
Form, habit, textures, cleavage	very common as euhedral, rhomb-shaped crystals, often with strong relief to other sulfides; no #, but abundant cataclastic fractures
Paragenesis	pyrite, gold, gn, sph, po, and many more
Diagniostic features	grain shape, AExPol (»Felderteilung«, domain formation), cataclasis, hardness

Notes, drafts

Very variable As:S-ratio from 1.22 to 0.82! As-rich phases are monoclinic (ps.orh.); others: triclinic! Similar minerals: LOELLINGITE, SAFFLORITE, PYRITE, MARCASITE

25 Arsenopyrite, galena, geocronite – Sala, Västmanland, Sweden

Typical rhomb-shaped crystals of arsenopyrite crystals in galena (grey white) and geocronite (greenish grey, outer parts of photo). Note the varying intensity of scratches in the three minerals due to different hardness.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D22_29 Section: AS2877

26 Arsenopyrite – Hällefors, Sweden

Weak anisotropism of arsenopyrite under perfect crossed polars. Intensity varies due to »Felderteilung« (probably caused by different As/S ratio). Obj.: 20 × oil Polars: × Pol Photo width: 0.5 mm Photo No.: D219_25 Section: AS101

27 Arsenopyrite – Hällefors, Sweden

As above, but here with slightly uncrossed polars: arsenopyrite exhibits distinct anisotropism with brownish yellow and turquoise blue colours. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.5 mm Photo No.: D219_28 Section: AS101

28 Arsenopyrite, cp, tnt – Bräunsdorf, Saxony, Germany

Rhomboidal crystals of arsenopyrite with distinct reflection pleochroism (white – white tint yellow) in chalcopyrite (light yellow), and tennantite (grey). Note the cataclastic fractures of arsenopyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D130_05 Section: AS1745

Azurite

Mineral name: Azurite (az) **Formula:** $Cu_3[OH | CO_3]_2$ VHN: ~160 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 7.1	R ₂ = 8.6	calculated from n
R _(oil) in %	(for 546 nm)	R ₁ = 0.4	R ₂ = 0.9	calculated from n
Colour impressio	n (in oil)	grey (with blue IR)	grey (with blue IR)	
BR > Rpl	(in oil)	strong		A _{oil} = 77

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong	strong
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	deep blue	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	tabular, spherical to radial fibrous aggregates
Paragenesis	fahlore, luzonite, enargite, malachite
Diagniostic features	blue IR, BR

Notes, drafts

Azurite forms almost exclusively from fahlore, enargite, and luzonite.

29 Azurite, qz – Ühlingen, Waldshut, Schwarzwald, Germany

Spherical aggregates of azurite (light grey) pore filling between quartz (medium grey) in Buntsandstein.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D80_11 Section: DK1

30 Azurite, qz – Ühlingen, Waldshut, Schwarzwald, Germany

As above, with crossed polars; showing blue IR of azurite.

Obj.: 10 × Polars: × Pol Photo width: 1.4 mm Photo No.: D80_12b Section: DK1

Alteration of tennantite (light grey) by different secondary copper minerals (various shades of grey, chalcocite, covellite, ...), which are themselves replaced by youngest azurite (grey with light blue internal reflections). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D176_27 Section: JH3

32 Azurite, tennantite – Neubulach, Schwarzwald, Germany

As above, now with crossed polars.

Obj.: 10 × oil Polars: × Pol Photo width: 1.4 mm Photo No.: D176_26 Section: JH3

Baddeleyite

Mineral name: Baddeleyite **Formula:** ZrO₂

VHN: ~1100 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 13.4	R ₂ = 13.7	
R _(oil) in %	(for 546 nm)	R ₁ = 3.1	R ₂ = 3.3	
Colour impressio	n (in oil)	grey	grey	
BR > Rpl	(in oil)	weak		$A_{oil} = 6$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak without colour	weak without colour
Colour: in 45° position	grey	grey
in other positions	masked by IR	masked by IR
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	yellow brown to dark brown	
(IR) frequency	predominant	
Twinning mode	simple, and polysynthetic deformation twins after more than one direction	
frequency	/ common	

Further observations	
Form, habit, textures, cleavage	botryoidal and colloform masses, tabular crystals after {100}, cleavage {001} (then parallel elongation of XX). Replacement by zirkelite.
Paragenesis	mt, zirconolith, zirkelite, apatite, carbonates, valleriite, serpentine
Diagniostic features	paragenesis

Notes, drafts

CI often with tint yellow due to IR. Zirkelite $((Ca,Th,Ce)Zr(Ti,Nb)_2O_7)$ is slightly darker and shows red brown IR

33 Baddeleyite, carbonate – Carbonatite Pit, Phalaborwa, RSA

Baddeleyite twin within carbonate groundmass.

Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D195_17 Section: SL 98

34 Baddeleyite, carbonate – Carbonatite Pit, Phalaborwa, RSA

As above with crossed polars.

Obj.: 5 × Polars: × Pol Photo width: 2.8 mm Photo No.: D195_18 Section: SL 98

Euhedral baddeleyite with visible internal reflections and fine lamellar twinning.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D195_24 Section: SL 98

36 Baddeleyite, carbonate – Carbonatite Pit, Phalaborwa, RSA

As above with crossed polars. Fine lamellar twinning after two directions. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D195_23 Section: SL 98

Barite (in German: Baryt, Schwerspat)

Mineral name: Barite (bar) **Formula:** BaSO₄ VHN: ~170 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in % (for 5	46 nm)	$R_{a} = R_{b} = 6.0$	R _c = 5.8	calculated from n
R _(oil) in % (for 5	46 nm)	$R_{a} = R_{b} = 0.2$	$R_{c} = 0.2$	calculated from n
Colour impression	(in oil)	black (but light IR!)	black (IR!)	
BR ~ Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	not visible
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	white - colourless	
(IR) frequency	predominant	
Twinning mode	none	
frequency		

Further observations

Form, habit, textures, cleavage	large, tabular XX, perfect cleavage (001)
Paragenesis	fluorite, qz, gn, sph, py, hm,
Diagniostic features	#, tabular habit, no BR

Notes, drafts

37 Barite, goethite, hematite – Otto mine near Schottenhöfe, Schwarzwald, Germany

Plates of barite (medium grey, cleavage) overgrown by hematite (light grey) and goethite (slightly darker than hematite). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D69_22 Section: AS3248

38 Barite, quartz, sph – Prominent Hill, SE Cober Pedy, S-Australia

Barite plates (medium grey) intergrown with sphalerite (light grey); some quartz grains in sphalerite.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D67_13 Section: AS3598

39 Barite, sph, py, cp – Bleiche, Waldshut, Schwarzwald, Germany

Barite plates (dark grey with various IR) enclosing sphalerite (light grey), pyrite, and chalcopyrite (nearly white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D79_26 Section: DK-14

40 Barite, Im, mn-oxides – Otto mine near Schottenhöfe, Schwarzwald, Germany

Barite plate (dark with IR) with younger botryoidal limonite (medium grey, partly with brown IR) and feathery manganomelane (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D69_28 Section: AS3248

Berthierite

Mineral name: Berthierite **Formula:** FeSb₂S₄ VHN: 100-200 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in % (for 54	6 nm)	R ₁ = 36.6	R ₂ = 42.0	
R _(oil) in % (for 54	6 nm)	R ₁ = 21.6	R ₂ = 26.8	R ₂ elongation [001]
Colour impression ((in oil)	brownish pink	greyish white	
BR < Rpl ((in oil)	strong		A _{oil} = 22

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong without colour	strong with colour tint
Colour: in 45° position	greyish white (impure)	tint turquois - white
in other positions		brownish grey, bluish grey
Extinction position	black	
Mode of extinction	straight, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	tabular-needle-like XX, fibrous, in part oriented intergrown with or replaced by stibnite; decomposition into pyrite+stibnite. # is not visible.
Paragenesis	stibnite, po, py, asp, cp, gudmundite
Diagniostic features	Cl, paragenesis

Notes, drafts

 R_1 is similar to PYRRHOTITE (but more dark brown)!

41 Berthierite, stibnite, pyrite – Schneeberg, Saxony/Germany (?)

Lath of berthierite (brownish) replaced and surrounded by stibnite (greyish-white needles), and pyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D183_09 Section: AS1017

42 Berthierite, stibnite, pyrite – Schneeberg, Saxony/Germany (?)

As above, but 90° rotated, shows R_{max} of berthierite || elongation.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D183_08 Section: AS1017

43 Berthierite, stibnite, pyrite – Schneeberg, Saxony/Germany (?)

As above, with (not exactly) crossed polars. Berthierite shows turquoise colours of anisotropism. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D183_11 Section: AS1017

44 Berthierite, stibnite, pyrite – Schneeberg, Saxony/Germany (?)

Aggregate of berthierite laths (brownish) replaced and surrounded by stibnite (greyish white needles); one pyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D183_12 Section: AS1017 **Mineral name:** Biotite (bio) **Formula:** K(Fe,Mg)₃[(OH,F)₂|AlSi₃O₁₀] VHN: ~<100 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _x = 5.3	$R_{y} = R_{z} = 6.0$	calculated from n
R _(oil) in %	(for 546 nm)	R _x = 0.1	$R_{y} = R_{z} = 0.2$	calculated from n
Colour impressio	n (in oil)	dark grey (but IR!)	dark grey (IR!)	
BR > Rpl	(in oil)	strong		A _{oil} = 67

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	visible	visible
Colour: in 45° position	light grey; occasional the normal interference colours are visible	light grey
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	yellow brown to dark brown	
(IR) frequency	common	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	large, tabular XX, bended aggregates; perfect cleavage (001)
Paragenesis	zircon, rutile, ilmenite, goe, mt, qz, feldspar, chlorite
Diagniostic features	perfect #, tabular habit

Notes, drafts

45 Biotite, rutile – Radium Hill, Olary Prov., S-Australia

Tabular crystals of biotite (black) with alteration rims of limonite (medium grey). Some rutile grains (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D78_29 Section: AS3519

46 Biotite, limonite – Radium Hill, Olary Prov., S-Australia

Flakes of biotite fanned out (by stacks of clay mineral now replaced by limonite) and intergrown with limonite.

Obj.: 20 × oil Polars: || Pol Photo width: 1.4 mm Photo No.: D79_03 Section: AS3519

47 Chlorite, biotite, cobaltite – Ram, Blackbird, Idaho, USA

Flakes of chlorite (left side) with relicts of biotite (centre), both in cobaltite (white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D113_19 Section: R-06-04/1234.0

48 Chlorite, biotite, cobaltite – Ram, Blackbird, Idaho, USA

As above, with crossed polars. Note the violet-blue interference colours of chlorite replacing biotite, which has various interference colours. This is reflected light! Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D113_18 Section: R-06-04/1234.0

Bismuth (in German: ged. Wismut)

Mineral name: Bismuth Formula: Bi (± As, Te) VHN: <20 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 59.8	R _{e'} = 67.2	
R _(oil) in %	(for 546 nm)	R _o = 47.8	R _{e'} = 55.7	
Colour impressio	n (in oil)	white tint rose (brown)	whitish cream	
BR ~ Rpl	(in oil)			A _{oil} = 15

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour tint
Colour: in 45° position	greyish white tint olive	greyish white – yellow olive
in other positions		
Extinction position	grey black, scratches	
Mode of extinction	brownish black, scratches	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic, spindle-shaped after more than one direction; and coarse	
frequency	abundant	

Form, habit, textures, cleava- ge	dendritic, euhedral or droplet-like inclusions in Co-Ni-arsenides (partly with »frost splitting« cracks)
Paragenesis	Co-Ni-arsenides, asp, scheelite, bismuthinite
Diagniostic features	very low hardness, scratches, dark tarnishing, BR, paragenesis, texture

Notes, drafts

Native bismuth is an extensively very common native element. MAUCHERITE has no BR and is less coloured; BREITHAUPTITE is more rose.

49 Bismuth, safflorite, sk – Neuglück, Wittichen, Schwarzwald, Germany

Euhedral crystal of native bismuth showing simple and lamellar twinning; in groundmass of skutterudite and safflorite. Obj.: 20 × oil Polars: × Pol Photo width: 0.5 mm Photo No.: D215_22 Section: TÜ8

50 Bismuth, skutterudite – Mackenheim, Odenwald, Germany

Anhedral native bismuth (cream) surrounded by skutterudite (white). Note the fracturing of skutterudite due to the expanding during crystallisation of liquid bismuth with the formation of radial cracks (+dV!).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D167_10 Section: CHe22

51 Bismuth, safflorite – Ore boulder from Dom-Insel, Wroclaw, Poland

Anhedral bismuth (»Easter Bunny« in cream with scratches) enclosed by safflorite (white, some star-like twins). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D81_31 Section: AS3515

52 Bismuth, bismuthinite, rammelsbergite – Schneeberg, Saxony, Germany

Skeletal bismuth (cream-white, highest R), partly replaced by bismuthinite (medium grey), and later encrusted by rammelsbergite (nearly white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D82_07 Section: AS1762

Bismuthinite (in German: Bismuthinit, Wismutglanz)

Mineral name: Bismuthinite **Formula:** Bi₂S₃ VHN: 70-210 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 43.8	R _b = 37.1	R _c = 49.0
R _(oil) in %	(for 546 nm)	R _a = 29.1	R _b = 22.0	R _c = 33.6
Colour impressio	n (in oil)	greyish white tint blue	grey	whitish cream
BR > Rpl	(in oil)	strong		A _{oil} = 42

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism inte	nsity/colour	strong with faint colour tint	strong with faint colour tint
Colour: in	45° position	white tint yellow	grey – white tint yellow
in oth	ner positions		brownish
Extinction position		black, brown	
Mode of extinction		straight, often undulatory in large XX	
Internal reflection	s colour		
(IR)	frequency		
Twinning	mode	translation twins and crumpled lamellae	
	frequency	occasional	

Further observations

Form, habit, textures, cleavage	often in large lath-like XXs with perpendicular cracks; needles to fibrous XX; often replacing bismuth; # to longer elongation {010} common
Paragenesis	bismuth, cassiterite, stannite, wolframite, scheelite, molybdenite
Diagniostic features	paragenesis with native bismuth, #

Notes, drafts

of EMPLECTITE is perpendicular to elongation of crystals. R_c of bismuthinite is || elongation.

53 Bismuthinite, bismuth, asp – Stuhlskopf, BLZ, Schwarzwald

Replacement of bismuthinite (grey, BR) by native bismuth (cream). Euhedral pyrite with relief against bismuth and bismuthinite (lower left part). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_28 Section: WP303KL

54 Bismuthinite, bismuth, asp – Stuhlskopf, BLZ, Schwarzwald

Same as above, with crossed polars, showing strong anisotropism of bismuthinite and lamellar twinning of native bismuth.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D60_29 Section: WP303KL

55 Bismuthinite, bismuth – Locality unknown

Skeletal relicts of bismuthinite (greyish) in native bismuth.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D193_29 Section: KB0

56 Bismuthinite, – El Teniente, Chile

Fractured and twinned bismuthinite grain (BR, medium to light grey) with cleavage planes. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D193_20 Section: KB72

Bixbyite

Mineral name: Bixbyite **Formula:** Mn₂O₃

VHN: 900 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	22.8		
R _(oil) in % (for 546 nm)	9.3		
Colour impression (in oil)	greyish yellow olive		
BR Rpl (in oil)	A _{oil} = 0		

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	in each position dark	in each position dark
Colour: in 45° position	black	black
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	·	
(IR) frequency		
Twinning mode	(fine lamellar twinning is typical for anisotropic sitaparite)	
frequency		

Further observations	
Form, habit, textures, cleavage	usually in euhedral XX, often replaced by braunite+hematite
Paragenesis	braunite, hematite, manganomelane, pyrolusite
Diagniostic features	very similar to jacobsite

Notes, drafts

Sitaparite $(Mn,Fe,Ca)_2O_3$: not cubic, weak BR and AExPol.

57 Bixbyite, hollandite – Ultevis, Sweden

Bixbyite (yellow brown) with porous hollandite (greyish white), and few little braunites (medium grey). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D133_22 Section: AS216

58 Bixbyite, hausmannite – Sailauf, Hesse, Germany

Large grain of hausmannite (with strong BR and scratches) with inclusions of bixbyite (arrows; yellowish grey; slightly higher R than hausmannite).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_10 Section: S61

59 Bixbyite, braunite, hematite- Ultevis, Sweden

Bixbyite grain partly altered into braunite (medium grey) plus hematite (whitish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D133_28 Section: AS216

60 Bixbyite, pyrolusite, braunite – Haut Poirot, Vosges, France

Pyrolusite crystals with relictic core of bixbyite (arrows; veined by pyrolusite), and braunite (medium grey). Note dark patches (unknown composition) in pyrolusite as relicts of former bixbyite (present in the centre of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D138_04 Section: JD03

Blue-remaining covellite (in German: Blaubleibender Covellin)

Mineral profiles for blue-remaining covellite: see under SPIONKOPITE (p. 280) and YARROWITE (p. 316) 61 Spionkopite, bornite – Kesebol, Sweden

Spionkopite (shades of blue) with strong BR and distinct cleavage, surrounded by bornite (light brown). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D06_08 Section: AS1649

62 Spionkopite, bornite – Kesebol, Sweden

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D06_09 Section: AS1649

63 Yarrowite, malachite – Frankenberg, Hesse, Germany

Yarrowite (light blue, with R_{max}) with cleavage planes, in part replaced by malachite (green IR). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D148_11 Section: AS3554

64 Yarrowite, malachite – Frankenberg, Hesse, Germany

As above, 90° rotated. $R_{\rm min}$ of yarrowite is much darker and bluish with a faint violet tint.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D148_10 Section: AS3554

Bornite (in German: Bornit, Buntkupferkies)

Mineral name: Bornite (bn) **Formula:** α -Cu_sFeS₄ VHN: 90-100 Crystal System: o'rh. (ps.tetr.)

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	21.3		
R _(oil) in %	(for 546 nm)	10.4		
Colour impressio	on (in oil)	orange brown (tint violet)	older sections: tarnishing → violet brown	
BR Rpl	(in oil)	not visible		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars	
Anisotropism intensity/colour	extremely weak without colour	weak with faint colour tint	
Colour: in 45° position	grey	grey brown - grey black	
in other positions	grey		
Extinction position	black		
Mode of extinction	perfect, straight		
Internal reflections colour			
(IR) frequency			
Twinning mode	twisted, oleander-leaf twinning (if β -bornite); rare translation twins		
frequency	occasional		

Further observations	
Form, habit, textures, cleavage	often anhedral, rounded grains. EB of cp (spindles) or digenite. Decomposition into cp, and network of idaite lamellae
Paragenesis	chalcopyrite, cct, cv, dg, py, mt, valleriite, sph
Diagniostic features	CI, twinning

Notes, drafts

Varying composition of high-temperature β -bornite-ss (>265°C, cubic) Bn_{ss1}: »Brown bornite«, Cu/Fe = <5.0, (Cu+Fe)/S > 1.5 (no tarnishing), and Bn_{ss2}: »Purple bornite«, Cu/Fe = >5.0, (Cu+Fe)/S < 1.5 (rapid tarnishing) (see: CIOBANU ET AL. (2017): Ore Geology Rev., 81, 1218-1235). Between 200 and 265°C: (metastable) »intermediate bornite«.

65 Bornite, digenite, annilite, hem, mt – Kesebol, Sweden

Cusp-and-caries replacement of digenite/annilite (bluish) by bornite (orange-brown). Hematite in centre of digenite and on the right side of photo (here pseudomorph after magnetite). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D06_05 Section: AS1641

66 Bornite – Dognacska (Dognecea), W-Romania

Oleander-leaf shaped twinning of bornite. Not exactly crossed polars!

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.5 mm Photo No.: A81_05 Section: AS1064

67 Bornite, digenite – Kesebol, Sweden

Myrmecitic intergrowth of bornite (brown) and digenite (light blue). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D06_22 Section: AS1650

68 Bornite, chalcopyrite, yarrowite – La Plata mine, Chiriboga, Ecuador

Bornite with chalcopyrite veinlets, in part replaced by yarrowite (deep blue). Minor fahlore (greenish grey) and galena (whitish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D95_14 Section: AS3103

Boulangerite

Mineral name: Boulangerite (boul) **Formula:** Pb₅Sb₄S₁₁ VHN: 90-180 Crystal System: mcl.

Observations with one polar (AE Pol)						
R _(air) in %	(for 546 nm)	R ₁ = 37.4	R ₂ = 41.8			
R _(oil) in %	(for 546 nm)	R ₁ = 23.0	R ₂ = 27.6			
Colour impressio	n (in oil)	whitish grey tint olive	whitish grey			
BR ~ Rpl	(in oil)	distinct		A _{oil} = 9		

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct without colour	distinct without colour
Colour: in 45° position	greyish white	greyish white – greyish white
in other positions	light blue, rose white	greyish white tint rose and blue
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colour	red	
(IR) frequency	rare	
Twinning mode	(»twinned boulangerite« = jamesonite)	
frequency		

Further observations	
Form, habit, textures, cleavage	needle-shaped [001] or platy (100), fibrous, often in sub-parallel groups; # not observed; may be replaced by galena, fahlore, bournonite.
Paragenesis	galena, silver minerals, jamesonite, tetrahedrite
Diagniostic features	against stibnite much less anisotropic; weaker BR than jamesonite

Notes, drafts

 $R_1 \perp$ elongation, $R_2 \parallel$ elongation! In contrast to similar JAMESONITE: no visible #, bluish AExPol. $R_2 < R_{Galena}!$

69 Boulangerite, pyrite – Strassegg, Styria, Austria

Aggregate of elongated boulangerites (light grey) around and in between cataclastic pyrite. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D15_22 Section: AS196

70 Boulangerite, pyrite – Strassegg, Styria, Austria

As above, with crossed polars. Boulangerite with undulatory extinction. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D15_23 Section: AS196

71 Boulangerite, jamesonite, galena – Sala, Västmanland County, Sweden

Nearly invisible intergrowth of elongated crystals of boulangerite (right side) with jamesonite (left part of photo). Distinct higher reflecting elongated relicts of galena (greyish white, upper part). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D94_02 Section: AS245

72 Boulangerite, jamesonite, galena – Sala, Västmanland County, Sweden

As above, with crossed polars. Note the bluish colour and one red internal reflection (arrow) of boulangerite (B). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D94_05 Section: AS245
Bournonite

Mineral name: Bournonite **Formula:** PbCuSbS₃

VHN: 170-205 (on (010)) Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 35.6	R _b = 34.0	R _c = 35.5
R _(oil) in %	(for 546 nm)	R _a = 20.7	R _b = 18.9	$R_{c} = 20.4$
Colour impressio	n (in oil)	grey	grey tint olive	grey (tint blue)
BR ~ Rpl	(in oil)	distinct		A _{oil} = 9

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour tint	weak with colour
Colour: in 45° position	grey tint yellow olive	yellow olive – grey tint turquoise
in other positions	turquoise	yellow green, blue
Extinction position	brownish black	
Mode of extinction	perfect	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic in (110); ~ 90° in basal sections, parqueted twins, partly bended	
frequency	abundant and characteristic	

Further observations	
Form, habit, textures, cleavage	commonly polygonal grains, rounded inclusions in galena or fahlore; grains size varies strong from μm to cm.
Paragenesis	galena, fahlore, Ag-minerals, jamesonite
Diagniostic features	parquet-like twinning, isometric grains (unlike boulangerite, jamesonite)

Notes, drafts

73 Bournonite, pyrite – Apollo, Raubach, Westerwald, Germany

Bournonite (medium grey, faint BR) and pyrite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D94_25 Section: AS3592

74 Bournonite, pyrite – Apollo, Raubach, Westerwald, Germany

As above, with crossed polars. Polysynthetic twinning of bournonite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D94_26 Section: AS3592

75 Bournonite – Locality unknown

Typical parquet-like twinning of bournonite after two directions. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D13_20 Section: AS1006

76 Bournonite, pyrite – Obernberg am Brenner, Tyrol, Austria

Polysynthetic twinning of bournonite (parquet-like twinning). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D64_19 Section: AS3585

Braunite

Mineral name: Braunite **Formula:** $Mn^{2+}Mn_{6}^{3+}[O_{8}|SiO_{4}]$ VHN: 920-1200 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 18.9	R _{e'} = 19.9	
R _(oil) in %	(for 546 nm)	R _o = 6.4	R _{e'} = 7.0	
Colour impressio	on (in oil)	grey (tint brown)	grey tint brown	
BR ~ Rpl	(in oil)	weak		$A_{oil} = 9$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity	/colour	very weak without colour	very weak without colour
Colour: in 45° p	osition	greyish black	dark grey – black
in other po	ositions		
Extinction position		black	
Mode of extinction		perfect	
Internal reflections	colour	brown	
(IR) free	quency	very rare	
Twinning	mode	simple {112}, no lamellae	
fre	quency	very rare	

Further observations	
Form, habit, textures, cleavage	equigranular aggregates, often euhedral and zoned, often porous grain centre. # {112}
Paragenesis	other Mn-minerals
Diagniostic features	paragenesis, very weak anisotropism, similar to mt

Notes, drafts

~[3 $Mn_2O_3 * 1 MnSiO_3$]. For Mn^{2+} : Ca, Fe; for Mn^{3+} : Al, Fe, Si. Varying composition due to substitution of Si⁴⁺ + $Mn^{2+} \leftrightarrow 2Mn^{3+} \rightarrow [(3+x)Mn_2O_3 * (1-x)MnSiO_3]$ with x ~ 0.0-0.3

77 Braunite, manganomelane – Oberröthenbach, Schwarzwald, Germany

Equigranular braunite aggregates partly replaced by manganomelane (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D91_16 Section: IR19a

78 Braunite – Sailauf, Spessart, Germany

Euhedral crystal of braunite showing sharp zonation (slightly darker rim and irregular core zoning).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_12 Section: S61

79 Braunite, manganite – Sailauf, Spessart, Germany

Zoned braunite crystals surrounded by younger anhedral manganite aggregates. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_06 Section: S61

80 Braunite – Fallota near Bivio, Grisons, Switzerland

Aggregate of fine zoned braunites.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D38_11 Section: F3.2

Breithauptite

Mineral name: Breithauptite Formula: NiSb VHN: 400-600 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 47.2	R _{e'} = 38.2	
R _(oil) in %	(for 546 nm)	R _o = 35.2	R _{e'} = 24.5	
Colour impressio	on (in oil)	light pinkish	pinkish violet	
BR ~ Rpl	(in oil)	strong		A _{oil} = 36

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	r very strong with colour tint	very strong with colours
Colour: in 45° positio	n light greenish yellow	yellow green – bluish grey
in other positior	S	other colours
Extinction position	black	
Mode of extinction	perfect	
Internal reflections color	ır	
(IR) frequenc	y	
Twinning mod	e	
frequenc	y	

Further observations	
Form, habit, textures, cleavage	isolated granular or euhedral grains; rare tabular XX, core of arsenide rosettes. Often replaced by nickeline; no #
Paragenesis	nickeline, gersdorffite, safflorite, maucherite, ullmannite, silver, Ag-minerals
Diagniostic features	intensive colour, stronger BR and AExPol than nickeline

Notes, drafts

81 Breithauptite, nickeline – »Ontario«, Canada

Several grains of breithauptite (shades of rose-violet) in part replaced by nickeline (light to medium orange). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D94_21 Section: AS3432

82 Breithauptite, nickeline – »Ontario«, Canada

As above, with crossed polars. Breithauptite shows yellow green to bluish grey AExPol. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D94_22 Section: AS3432

83 Breithauptite, nickeline, millerite – »Ontario«, Canada

Rounded aggregate of breithauptite (violet tones), nickeline (orange colours), needle-like millerite (light yellow), and small outer zone with tiny crystals of cobaltite (strong relief). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D133_06 Section: AS3432

84 Breithauptite, nickeline, millerite – »Ontario«, Canada

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D133_07 Section: AS3432

Calcite

Mineral name: Calcite Formula: CaCO₃ VHN: ~ 80 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 6.1	R _e = 3.8	calculated from n
R _(oil) in %	(for 546 nm)	R _o = 0.2	$R_{e} = 0.0$	calculated from n
Colour impressio	on (in oil)	grey black (but light IR!)	black (but light IR!)	
BR > Rpl	(in oil)	very strong		A _{oil} = 133

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	r strong without colour	strong without colour
Colour: in 45° positio	n grey, masked by IR	grey – grey, masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colou	r white – colourless – multi-coloured	l (interference colours!)
(IR) frequency	predominant	
Twinning mod	e polysynthetic after one or two dire	ection (occ. bended)
frequenc	/ abundant	

Further observations	
Form, habit, textures, cleavage	anhedral to euhedral gangue mineral; cleavage {10–11} perfect.
Paragenesis	other gangue minerals, sphalerite, galena, pyrite

Notes, drafts

Diagnostic features

Dolomite, magnesite, and ankerite are very similar.

low R, very strong BR and AExPol

85 Calcite, cp, po – Artenberg quarry, Steinach, Schwarzwald, Germany

Calcite with polysynthetic twinning, partly bended. Note strong bireflection! Associated with chalcopyrite (yellow), pyrrhotite (cream), and pyrite (yellow white).

Obj.: 2.5 × Polars: || Pol Photo width: 4.5 mm Photo No.: D03_09 Section: AS3468

86 Calcite, valleriite, bn, mt – Phalaborwa, RSA

Valleriite (shades of yellowish brown) replaces calcite (dark grey, black with internal reflections) along twin boundaries or cleavage planes. Magnetite (grey) and bornite (orange).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D09_13 Section: AS1817

87 Calcite, sph, gn – Tara mine, Navan, Co. Meath, Ireland

Co-precipitation (?) of euhedral calcite (dark grey) with sphalerite (grey, groundmass and as inclusion in cal), and tiny galena (white). Some quartz crystals (black). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D67_17 Section: AS3596

88 Calcite, qz, py, limonite – Wasseralfingen, Aalen, Germany

Oolitic iron ore with limonite ooids (partly with hematite) and quartz clasts (dark grey, internal reflections) in groundmass of younger calcite (rhombs, BR!) and some pyrite (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D62_17 Section: AS3597

Cassiterite (in German: Cassiterit, Zinnstein)

Mineral name: Cassiterite (cas) **Formula:** (Sn,Fe)O₂ VHN: 1240–1470 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 10.7	R _{e'} = 12.2	
R _(oil) in %	(for 546 nm)	R _o = 1.8	R _{e'} = 2.4	
Colour impressio	on (in oil)	dark grey	(lighter) grey	
BR > Rpl	(in oil)	strong		A _{oil} = 29

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	r weak without colour	weak without colour
Colour: in 45° positio	n dark grey, often masked by IR	grey – grey, often masked by IR
in other positior	5	
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections color	r brown (Fe-rich) to white (Fe-poor)	
(IR) frequenc	rare to predominant	
Twinning mod	simple & coarse ((101) »Visiergraupen«);	
frequenc	frequent; occasional	

Further observations	
Form, habit, textures, cleavage	high T.: coarse, isometric grains; low-T.: colloform to fibrous (»Holzzinn«); zoning often visible by IR, pores, and EB (columbite, rutile, wolframite,)
Paragenesis	columbite, rt, wolframite, stannite, cp
Diagnostic features	twinning, paragenesis, hardness; resembles titanite and other gangue minerals!

Notes, drafts

Similar to TITANITE.

89 Cassiterite – Igla Tin mine, Al Bahr al Ahmar, Egypt

Cassiterite twin showing strong BR.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D69_18 Section: AS3139

90 Cassiterite – Punta Santa Vittoria, Fluminimaggiore, Sardinia, Italy

Zoned cassiterite with different coloured internal reflections due to varying iron content of cassiterite.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D69_17 Section: AS1561

91 Cassiterite, anatase, tourmaline – Cornwall, England

Elongated cassiterites (medium grey with BR) beside tourmaline (nearly black), and anatase (light grey, lower part of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D184_10 Section: MD175

92 Cassiterite, pyrite, galena – Potosi, Bolivia

Colloform cassiterite (»Holzzinn«) around galena (white) and anhedral pyrite (yellowish white). Both, cassiterite and galena, are alteration products of primary teallite (structure relicts of tabular crystals in the upper and left side of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D109_12 Section: AS1024

Cerussite

Mineral name: Cerussite **Formula:** PbCO₃

VHN: ~ 160 Crystal System: o'rh., ps. hex.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	R _a = 8.2	$R_{b} = R_{c} = 12.2$	calculated from n
R _(oil) in % (for 546 nm)	R _a = 0.8	$R_{b} = R_{c} = 2.5$	calculated from n
Colour impression (in oil)	grey	grey	
BR > Rpl (in oil)	very strong		A _{oil} = 88

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very strong; masked by IR	very strong; masked by IR
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	white with coloured borders	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	weathering product of galena and other Pb-bearing sulfides; often as pseudomorphs; no # visible
Paragenesis	galena, fahlore, cp, anglesite, silver, covellite
Diagnostic features	very strong BR, paragenesis

Notes, drafts

93 Galena, anglesite, cerussite, qz – Sodmine, Eastern Desert, Egypt

Galena crystals replaced by cerussite (BR, shades of grey) in quartz matrix (dark grey).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D99_18 Section: AS3141

Alteration of galena crystals. First alteration phase is anglesite (dark grey) amoring relitic galena (greyish white). Both are rimmed by the second alteration phase: cerussite (BR, shades of grey); quartz matrix.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D100_16 Section: AS3141

95 Cerussite, galena, gersdorffite – Katzensteig, Schwarzwald, Germany

Replacement of galena by cerussite (greyish, strong BR!) along parallel cleavage planes of galena; two large grains of gersdorffite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D74_03 Section: SN40

96 Cerussite, quartz, barite – Sodmine, Eastern Desert, Egypt

Large cerussite grains (BR, light grey, some IR) and smaller barite crystals (medium grey); with quartz (darker grey, right side). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D99_19 Section: AS3141

Chalcocite (in German: Chalkosin, Kupferglanz)

Mineral name: Chalcocite (cct) Formula: Cu₂S VHN: 80-90 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 33.4	R _b = 33.4	R _c = 33.2
R _(oil) in %	(for 546 nm)	R _a = 18.3	R _b = 18.1	R _c = 17.9
Colour impressio	n (in oil)	whitish grey tint blue	whitish grey tint blue	whitish grey tint blue
BR ~ Rpl	(in oil)	very weak		A _{oil} = 2

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very weak with colour tint	very weak with colour tint
Colour: in 45° position	brownish black	dark brown – brownish black
in other positions	brownish black	brownish black
Extinction position	black	
Mode of extinction		
Internal reflections colour		
(IR) frequency	common	
Twinning mode	pseudomorph after high chalcocite: polysynthetic, spindle-shaped	
frequency	absent – common (depends on formation temperature)	

Further observations	
Form, habit, textures, cleavage	with myrmekitic exsolution bodies of bornite (and vice versa)
Paragenesis	covellite, digenite, djurleite, cp, bn, goethite
Diagnostic features	not as blue as digenite, paragenesis

Notes, drafts

CI and RV vary due to polishing and contents of Fe, Mn, Ag, Se, and Te. Former high chalcocite (hex.) is always present as low chalcocite (mcl.), T of inversion ~ 103-90 °C (FLEET, 2006; Rev. Mineral. Geochem., 61, 365-419). DJURLEITE (Cu₁₉₆S) is similar in colour and reflectance (but has no polysynthetic, spindle-shaped twins).

97 Chalcocite, pyrite – Wheel Turner mine, Mt. Painter, Australia

Secondary chalcocite (bluish grey) replacing pyrite in the cementation zone (boxwork structure).

Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D197_26 Section: WT80E

98 Chalcocite, bornite, hematite – Prominent Hill, SE Cober Pedy, S-Australia

Myrmecitic intergrowths of chalcocite and bornite (centre and upper part of photo) enclosed by platy hematite (grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D137_26 Section: WT80E

99 Chalcocite, bornite – Prominent Hill, SE Cober Pedy, S-Australia

Fine irregular intergrowth of chalcocite (bluish grey) with bornite (orange brown).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D137_28 Section: AS3589

100 Chalcocite, bornite – Prominent Hill, SE Cober Pedy, S-Australia

As above, with not perfect crossed polars. Note twinning of chalcocite due to the inversion of high-chalcocite to low-chalcocite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D137_30 Section: AS3589

Chalcopyrite (in German: Chalkopyrit, Kupferkies)

Mineral name: Chalcopyrite (cp) **Formula:** $Cu^{1+}Fe^{3+}S_2$ VHN: 180-200 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	45		
R _(oil) in %	(for 546 nm)	34		
Colour impressio	n (in oil)	yellow	against gold: yellow green	
BR ~ Rpl	(in oil)	extremely weak to abs	ent	$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour		very weak with faint colour tint	weak with colour
Colour: in 45° j	position	black grey with brown tint	light brown – black brown
in other p	ositions		yellow olive – grey with blue tint
Extinction position		black tint brown	
Mode of extinction		incomplete	
Internal reflections	colour		
(IR) fre	quency		
Twinning	mode	oleander-leaf-like {102}; and polysynthetic in 2 directions {112} resp.	
fre	equency	rare (inversion twins); and occasional (deformation twins) resp.	

Further observations	
Form, habit, textures, cleavage	very often anhedral; often as inclusion in sphalerite and pyrite; # is rare. EB of cubanite, mackinawite, sphalerite, and stannite; as EB in bornite, stannite
Paragenesis	sphalerite, stannite, py, po, cub, mackinawite, cv
Diagnostic features	yellow CI, anhedral grains form, paragenesis; selective tarnishing

Notes, drafts

High temperature cp formation from *intermediate solid solution* iss ((Cu, Fe, Zn, Sn)S) Above 557° C: cubic high-temperature phase.

Chalcopyrite-disease: Tiny anhedral cp grains in sphalerite as the result of an infiltration of Cu-rich fluids in Fe-bearing sphalerite.

Cp with unexsolved Cu₂S-content shows rapid tarnishing!

101 Chalcopyrite, gersdorffite, py, gold – Mitterberg, Salzburg, Austria

Groundmass of chalcopyrite (yellow) with pyrite crystals (yellowish white, relief) and gersdorffite (greyish white). Late gold impregnation (light yellow, left side) between fractured gersdorffite grains. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D16_03 Section: AS143

102 Chalcopyrite, sphalerite – Pfunderer Berg, S-Tyrol, Italy

»Chalcopyrite disease«: Infiltration of Fe-bearing sphalerite by Cu-rich fluids producing tiny grains of CuFeS₂ in ZnS. This is not an exsolution texture!

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D46_21 Section: AS3576

103 Chalcopyrite – W-Sonora, Tucson, AZ, USA

Deformation twins of chalcopyrite visible due to different strong tarnishing. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D90_04 Section: AS1780

104 Chalcopyrite – Calamita, Elba, Italy

Chalcopyrite with oleander-leaf like twinning due to inversion.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D107_06 Section: AS3144

Chromite

Mineral name: Chromite (chr) **Formula:** (Fe,Mg)(Cr,Al,Fe)₂O₄ VHN: 1300-1800 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in %	(for 546 nm)	10 to 15	depending on chemistry
R _(oil) in %	(for 546 nm)	2 to 3	magnesiochromite: 2.5 %
Colour impressio	on (in oil)	dark grey	
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	
Colour: in 45° position	black	
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	brown	
(IR) frequency	rare (and only at rims and fracture	s)
Twinning mode		
frequency		

Further observations

Form, habit, textures, cleavage	coarse, rounded aggregates, often fractured by cataclasis, zoning; commonly rimmed by magnetite; rare EB of ilmenite; no #
Paragenesis	magnetite, ilmenite, PGE minerals, Mg-silicates
Diagnostic features	paragenesis, brown IR, no #, hardness

Notes, drafts

Similar to MAGNETITE and SPHALERITE.

105 Chromite, olivine – Rhum, Scotland

Anhedral atoll-structured chromite cumulates (medium grey) around olivine grains (dark grey). Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D128_27 Section: AS1818

106 Chromite, mt, PGM – Rhum, Scotland

Polygonal chromite aggregates in triple-junction configuration. Tiny ilmenite exsolution bodies and early silicates in chromite. Between chromite grains (esp. in triple junctions) enrichment of magnetite (light grey rims) and unknown PGE-minerals (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_14 Section: AS1818

107 Chromite, mt, hm – Rzanovo, Kavardaci, Republic of North Macedonia

Serpentinized podiform chromite deposit with euhedral, cataclastic Cr-spinel. Fractured core of chr (grey) is partly corroded, replaced and rimmed by mt (lighter brownish grey). Late formation of hm (light greyish white) in the groundmass (also penetrating and replacing mt). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D181_01 Section: AS109

108 Chromite, cp, pn, laurite, Pt – UG2, Karee mine, Bushveld Complex, RSA

Euhedral to rounded grains of chromite (medium grey) with laurite (whitish yellow), (Pt,Fe) alloy (white), pentlandite (cream), and chalcopyrite (dark yellow). Obj.: 10 × oil Polars: || Pol Photo width: 1.4 mm Photo No.: D218_13 Section: AS8919a

Cinnabar (in German: Cinnabarit, Zinnober)

Mineral name: Cinnabar (cin) Formula: HgS VHN: 80-160 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 24.1	R _{e'} = 29.0	
R _(oil) in %	(for 546 nm)	R _o = 10.1	R _{e'} = 14.0	
Colour impressio	on (in oil)	grey tint violet	grey (tint green)	
BR > Rpl	(in oil)	strong		A _{oil} = 32

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars	
Anisotropism intensity/colour	distinct with colour	distinct with colour	
Colour: in 45° position	greyish olive	greyish olive	
in other positions			
Extinction position	masked by IR		
Mode of extinction	masked by IR		
Internal reflections colour	red		
(IR) frequency	abundant (often visible with one polar)		
Twinning mode	coarse/simple; rare translation twins		
frequency	rare		

Further observations	
Form, habit, textures, cleavage	predominant equigranular, foam structure, rarely interlocked grains; cleavage {10-10} rather perfect
Paragenesis	metacinnabar, stibnite, py, mrc, asp, realgar, orpiment
Diagnostic features	IR, paragenesis, many scratches

Notes, drafts

Similar to CUPRITE.

109 Cinnabar, metacinnabar, stibnite – Çirakman tepe, Ladik, Turkey

Anhedral grains of cinnabar (medium grey, some red IR) replacing metacinnabar (greyish brown relicts in cinnabar), intergrown with stibnite (white to light grey, partly with alteration to Sb-oxihydroxides). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_05 Section: AS154

As above, with crossed polars. Red internal reflections and distinct anisotropism of cinnabar; stibnite grains show strong effects (left side).

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D32_06 Section: AS154

111 Cinnabar, stibnite, arsenopyrite – Çirakman tepe, Ladik, Turkey

Cinnabar grains (different grey tones due to BR, some scratches) with triple junction grain boundaries. Two small stibnite grains (light grey), and tiny arsenopyrite inclusions in cinnabar (upper left part of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D213_29 Section: AS155

112 Cinnabar, stibnite – Çirakman tepe, Ladik, Turkey

As above, with crossed polars. Note the different visibility of AExPol versus IR in the cinnabar grains. One stibnite grain shows maximum anisotropism (bluish white). Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D213_28 Section: AS155

Clinopyroxene

Mineral name: Clinopyroxene (cpx) **Formula:** (Ca,Mg,Fe)₂Si₂O₆ VHN: ~ 600 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _x ~ 6.3	R _z ~ 7.3	calculated from $n_{x'}^{} n_{z}^{}$
R _(oil) in %	(for 546 nm)	R _x ~ 0.3	R _z ~ 0.5	calculated from $n_{x'}^{} n_{z}^{}$
Colour impressio	on (in oil)	»black« (but IR!)	»black« (but IR!)	
BR > Rpl	(in oil)	distinct		A _{oil} = 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	not visible
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	white – colourless – brownish	
(IR) frequency	predominant	
Twinning mode	lamellar after one direction	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	granular to euhedral, prismatic, zoning; # planes with 90°
Paragenesis	other rock-forming minerals, mt, po
Diagnostic features	low R, pyroxene typical #

Notes, drafts

Optical properties are varying with composition!

113 Clinopyroxene, olivine, spinel – Hohenstoffeln, Hegau, Germany

Zoned spinel (dark core of Al-Cr-spinel with lighter rim of magnetite) and relict of olivine crystal in fine-grained groundmass of pyroxene and magnetite. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D135_14 Section: AS2874

114 Clinopyroxene, mt – Bürzlen, Urach volcanic field, SW-Germany

Clinopyroxene crystal with small magnetite inclusions (light grey) in olivine nephelinite.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D99_01 Section: Xeno1b

115 Aegirine augite, sphalerite – Ilimaussaq, Greenland

Green prismatic aegirine augites with sphalerite crystal (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D122_17 Section: BR9

116 Clinopyroxene, mt, po – Ilimaussaq, Greenland

Syenite with anhedral grain of pyroxene. Tiny inclusions of pyrrhotite and magnetite in cpx. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D122_03 Section: GM1331

Cobaltite

Mineral name: Cobaltite (cob) Formula: CoAsS VHN: 1100-1300 Crystal System: o'rh. (ps. cub.)

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	50.7		
R _(oil) in %	(for 546 nm)	36.4		
Colour impressio	n (in oil)	white tint rose	more pink in older sections	
BR < Rpl	(in oil)	very weak (visible at g	grain boundaries)	$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour		very weak with colour	weak with colour
Colour: in 45° p	osition	brownish grey, bluish grey	brown – bluish grey
in other po	sitions		
Extinction position		brownish black	
Mode of extinction			
Internal reflections	colour		
(IR) free	quency		
Twinning	mode	complex, partly polysynthetic, partly chess-board-like	
free	quency	frequent (in larger grains)	

Further observations	
Form, habit, textures, cleavage	mostly euhedral large crystals, low temp. cobaltites show zoning (As/S). Perfect cleavage after {100}; also cataclastic textures.
Paragenesis	Co-Ni-arsenides, py, asp, skutterudite
Diagnostic features	euhedral form, hardness, twinning

Notes, drafts

Cl is similar to R_a/R_b of ARSENOPYRITE (white cream)

117 Cobaltite, asp – Blackbird, Idaho, USA

Crystal of cobaltite (tint rose, with #) intergrown with arsenopyrite (pure white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D112 24 Section: GH BB-15

118 Cobaltite, asp – Blackbird, Idaho, USA

As above, with crossed polars. Note weak anisotropism of cobaltite! Arsenopyrite with stronger anisotropism in bluish and brownish colours.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D112_26 Section: GH BB-15

119 Cobaltite, cp, py, mt – Ram, Blackbird, Idaho, USA

Euhedral cobaltite (white tint rose, marked C) beside pyrite-magnetite intergrowth (formerly po). Chalcopyrite (yellow) with fabric relict of former lamellar cubanite (now dissolved, black).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D113_14 Section: R-06-04/1234.0

120 Cobaltite, py, cp, marcasite – Todtnauer veins, Schwarzwald, Germany

Small rim of cobaltite (white tint rose) around zoned pyrite crystals (whitish yellow) with chalcopyrite (yellow) and marcasite (nearly white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D89_01 Section: JST 24

Cohenite (Cementite)

Mineral name: Cohenite (Cementite) Formula: (Fe,Ni)₃C

VHN: ~ 600 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_1 = 54^{[2]}$	$R_2 = 56^{[2]}$	
R _(oil) in %	(for 546 nm)	$R_{1} \sim 40$	R ₂ ~ 43	calculated from R_{air}
Colour impressio	n (in oil)	white tint rose	white tint yellow	all tints against iron
BR ~ Rpl	(in oil)	weak		A _{oil} = 5

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour tint	weak with colour tint
Colour: in 45° position	grey tint yellow	yellowish grey – dark grey (tint blue)
in other positions	dark grey	
Extinction position	black	
Mode of extinction	straight (to elongation)	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral, myrmekitic or partly fine lamellar intergrowth with iron
Paragenesis	iron, graphite, mt, pn
Diagnostic features	paragenesis, AExPol

Notes, drafts

Artificial (Fe, Ni)₃C is called CEMENTITE R, of cohenite is very similar to R of IRON (α -ferrite), but the CI is more yellow. ^[2] After RAMDOHR, 1980

121 Iron, gr, cementite – Thyssen smelter Schwelgern, Duisburg, Germany

Technical α -iron (white) in myrmekitic intergrowth (»perlite«) with cohenite/ cementite (Fe₃C, with faint yellowish tint; invisible in photo!); graphite flakes (dark grey to black). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D86_29 Section: AS3531

122 Iron, gr, cementite – Thyssen smelter Schwelgern, Duisburg, Germany

As above, with crossed polars. Note the isotropic behaviour of iron (only dark grey and often associated with graphite) in contrast to weak anisotropism of cementite (dark grey, olive brown-brown), and the strong effects of graphite (nearly white).

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D86_31 Section: AS3531

123 Iron, cohenite, ilmenite – Khungtukun massif, Taimyr, Sibiria, Russia

Grain of terrestrial iron (white) with some round and wormlike inclusions of cohenite (slightly more yellow, nearly invisible in photo). Both surrounded by skeletal ilmenite (brownish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D220_26 Section: AS3685

124 Iron, graphite, cementite – Khungtukun massif, Taimyr, Sibiria, Russia

As above, with crossed polars. Weak anisotropism of cementite is clearly visible. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D220_28 Section: AS3685

Columbite

Mineral name: Columbite **Formula:** (Fe,Mn)(Nb,Ta)₂O₆ VHN: 650–750 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 17.4 (14.6)*	R ₂ = 16.8 (13.7)*	
R _(oil) in %	(for 546 nm)	R ₁ = 5.4 (3.7)*	R ₂ = 5.0 (3.3)*	
Colour impressio	on (in oil)	grey tint brown	greyish brown	
BR ~ Rpl	(in oil)	weak (Ta-rich: distinct))	A _{oil} = 8 (11)

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism inten	sity/colour	weak without colour	weak without colour
Colour: in 4	5° position	grey	grey
in othe	er positions		
Extinction position		black	
Mode of extinction		perfect, straight, partly mosaic	
Internal reflections	colour	red-orange (Mn-rich: yellow brown)	
(IR)	frequency	Nb-rich: rare and dark; Ta-rich: frequently and lighter	
Twinning	mode	simple {201} ps.hexagonal	
	frequency	rare	

Further observations

Form, habit, textures, cleavage	euhedral XX (tabular (100)), also granular. EB of cas, ilm, rt, uraninite, as EB in cas; # not visible
Paragenesis	cassiterite, ilmenite, rutile, uraninite, tapiolith
Diagnostic features	weak AExPol, IR, paragenesis

Notes, drafts

WOLFRAMITE is similar, but has less IR and visible #.

* for Ferro-columbite (Fe, Mn)Nb $_2O_6$, and Mangano-Tantalite MnTa $_2O_6$ resp.

125 Columbite – Tveit, Iveland, Norway

Large columbite grain enclosing a small columbite grain in different orientation with higher reflectivity. The very weak bireflection of columbite in air is only visible at grain boundaries. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D86_13 Section: AS3452

126 Columbite – Tveit, Iveland, Norway

Same section as above. With oil immersion objective the bireflection of columbite is apparently stronger and easy visible. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D86_14 Section: AS3452

127 Columbite – Tveit, Iveland, Norway

As above, with crossed polars. Weak anisotropism and orange IR are visible. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D86_17 Section: AS3452

128 Columbite – Giles prospect, S-Spargoville, Coolgardie, Australia

Patchy alteration or replacement of primary pegmatitic columbite (grey) by younger columbite (slightly darker). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D90_24 Section: AS3621

Copper (in German: ged. Kupfer)

Mineral name: Copper Formula: (Cu,Ag,As) VHN: 80-100 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	64.6		
R _(oil) in %	(for 546 nm)	56.9		
Colour impressio	n (in oil)	white orange	tarnishing to brown	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	anisotropism due to scratches	anisotropism due to scratches
Colour: in 45° position	in each position homogeneous light	in each position homogeneous light
in other position	5	
Extinction position	greyish violet	
Mode of extinction		
Internal reflections colou	r	
(IR) frequency		
Twinning mode	9	
frequency		

Further observations	
Form, habit, textures, cleavage	coarse- to fine-grained aggregates, dendritic or spear-like crystals, zoning due to Ag or As content; many scratches
Paragenesis	cuprite, tenorite, chalcocite, enargite, bornite, pyrrhotite, iron, magne- tite
Diagnostic features	R, CI, scratches, paragenesis

Notes, drafts

Native copper grains in older sections are strongly tarnished or completely oxidized!

129 Copper, cuprite – Locality unknown

Replacement of native copper (light orange) by cuprite (grey, with red IR). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D43_23 Section: AS3547

130 Copper, cuprite – Locality unknown

As above, with crossed polars. Cuprite with abundant red IR, copper with anisotropism due to numerous scratches. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D43_25 Section: AS3547

131 Copper – Tsumeb, Namibia

Copper (partly tarnished) intergrown with carbonates and quartz (strong relief). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D05_13 Section: AS2508

132 Copper, cup, tnr, mal – British Empire Mine, Wheel Turner, S-Australia

Relicts of native copper in cuprite (grey), which itself is replaced by tenorite (brownish grey), and malachite (green IR). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D197_21 Section: BEM-375

Covellite (in German: Covellin)

Mineral name: Covellite (cv) **Formula:** »CuS« = $[Cu_3^{1+}(S_2)^{2-}S^{2-}]^a$ VHN: 50-140 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 6.6	R _{e'} = 23.7	
R _(oil) in %	(for 546 nm)	R _o = 0.9	R _{e'} = 9.9	
Colour impressio	on (in oil)	violet	greyish blue tint violet	
BR ~ Rpl	(in oil)	extremely strong		A _{oil} = 166

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism i	ntensity/colour	very strong with colour	very strong with colour
Colour:	in 45° position	light orange	orange – orange
in	other positions	light orange	
Extinction posi	tion	black	
Mode of extinc	tion	perfect, undulatory	
Internal reflect	ions colour		
(IR)	frequency		
Twinning	mode	deformation twins and translations (crumpled lamellae, »Zerknitterungslamellen«)	
	frequency	/ common	

Further observations	
Form, habit, textures, cleavage	platy to blade-like forms, often radial aggregates, replacing other Cu-sulfides and galena, pyrite; perfect # {0001}
Paragenesis	chalcocite, chalcopyrite, fahlore, bornite, enargite, pyrite
Diagnostic features	CI, Rpl, AE Pol

Notes, drafts

Covellite without violet CI in oil \rightarrow YARROWITE or SPIONKOPITE (»BLAUBLEIBENDER COVELLIN«) ^a: Covellite is a natural occuring superconductor (T_c < 1.63K) and accommodates Cu only in the 1+ oxidation state due to S-S bonds!).

in the formula is an electron »hole« delocalised through the lattice.
See: DI BENEDETTO ET AL. (2006), EJM, 18, 283-287.

133 Covellite, digenite, py – Bor, Serbia

Former euhedral crystals of covellite (dark blue, BR!) rimmed by pyrite (yellowish white). Both were replaced in part by digenite (greyish blue).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D42_11 Section: AS3545

134 Covellite, digenite, py – Bor, Serbia

Strong reflection pleochroism of covellite in oil immersion with blue and violet lamellae. Formation of crumpled lamellae due to deformation (»Zerknitterungslamellen«); pyrite (yellowish white), and small digenites (bluish). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D50_09 Section: AS113

135 Covellite, py, malachite – Frankenberg, Hesse, Germany

Cell wood structure replaced by covellite (violet), pyrite (yellow), and malachite (dark grey, left side of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D54_20 Section: AS3554

136 Covellite, py, malachite – Frankenberg, Hesse, Germany

As above with crossed polars. Cell wood structure replaced by covellite (orange AExPol!), pyrite (black), and malachite (green internal reflections). Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D54_19 Section: AS3554

Cubanite

Mineral name: Cubanite (cub) Formula: CuFe₂S₃ VHN: 150–260 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 35.4	R ₂ = 39.4	
R _(oil) in %	(for 546 nm)	R ₁ = 23.9	R ₂ = 28.2	
Colour impressio	n (in oil)	yellowish brown	cream-white	(\rightarrow cp: with bluish tint)
BR ~ Rpl	(in oil)	strong		A _{oil} = 16

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour	distinct with colour
Colour: in 45° position	bluish grey	greyish turquois – brownish orange
in other positions		
Extinction position	black	
Mode of extinction	perfect, straight	
Internal reflections colour		
(IR) frequency		
Twinning mode	1. polysynthetic {001}; 2. simple {110} triplets	
frequency	1. often; 2. frequently	

Further observations	
Form, habit, textures, cleavage	often anhedral as inclusion in cp and po; elongated, tabular XX; complex twinning due to inversion from isocubanite.
Paragenesis	cp, po, mackinawite
Diagnostic features	CI, twinning, paragenesis with cp, similar to po

Notes, drafts

T > 250°C: Isocubanite (cub.; synonym: Chalcopyrrhotite) with $\rm R_{_{oil}} \sim 23~\%$

137 Cubanite, pyrrhotite, mackinawite – Gryhytthan, Sweden

Triplet-twin of cubanite (with Rpl and BR) in pyrrhotite. Small inclusions of mackinawite (dark grey and white) in cubanite are clearly visible. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D26_07 Section: AS160

138 Cubanite, pyrrhotite, mackinawite – Gryhytthan, Sweden

As above, with crossed polars. Note the strong anisotropism of mackinawite.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D26_05 Section: AS160

139 Cubanite, chalcopyrite, mackinawite – Talnakh, Russia

Fine lamellae of cubanite (bluish grey - brownish grey) in chalcopyrite. Veinlets filled with secondary mackinawite (dark grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D27_10 Section: AS3062

140 Cubanite, chalcopyrite, mackinawite – Talnakh, Russia

As above, with crossed polars. White stringers are mackinawite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D27_11 Section: AS3062

Cuprite

Mineral name: Cuprite (cup) **Formula:** Cu₂O VHN: 180-220 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 26.0	R ₂ = 27.9	
R _(oil) in %	(for 546 nm)	R ₁ = 11.8	R ₂ = 13.1	
Colour impressio	n (in oil)	grey tint green	grey	\rightarrow Cu: greyish blue
BR ~ Rpl	(in oil)	distinct		A _{oil} = 10

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	weak without colour	distinct with colour
Colour: in 45° position	weak brightening	light blue - light olive green
in other position	5	
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colou	r red	
(IR) frequency	abundant	
Twinning mode	9	
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral to anhedral XX, needle-like, interlocked; replaces copper, chalcocite and is replaced by tenorite and secondary Cu-silicates/-car-bonates. Good # {111}.
Paragenesis	copper, tenorite, delafossite, malachite, chalcocite, limonite, cp
Diagnostic features	red IR, paragenesis

Notes, drafts

Most cuprites are anisotropic (probably due to polishing effects). Similar to CINNABAR.

141 Cuprite, copper, tenorite – Locality unknown

Cuprite (light grey) with inclusions of native copper (light orange), partly replaced by tenorite (brownish grey), and secondary brochantite (green IR, lower part of photo). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D58_30 Section: AS3548

142 Cuprite, copper – Locality unknown

Native copper in cuprite (here grey with blue tint against copper). Note faint cleavage planes after {111}. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D42_03 Section: AS3547

143 Cuprite, copper – Locality unknown

As above, with crossed polars. Note the distinct anisotropism of cuprite and the red IR. Copper with anisotropism due to scratches (»Kratzeranisotropie«). Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D42_05 Section: AS3547

144 Cuprite – Locality unknown

Red internal reflections and distinct anisotropism of cuprite.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D85_19 Section: AS3548
Digenite

Mineral name: Digenite (dg) **Formula:** Cu_{1.8+x}S (Cu₉S₅) VHN: 90-110 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in %	(for 546 nm)	21.9	
R _(oil) in %	(for 546 nm)	8.6	
Colour impression	on (in oil)	greyish blue	
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	greyish black
in other positions		
Extinction position	black	
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode	lamellar, more than one direction (spinel law)	
frequency	frequently	

Further observations	
Form, habit, textures, cleavage	anhedral, often replacing py, enargite, djurleite, anilite, bornite; »zerfallener Digenit« = mixture of djurleite+anilite
Paragenesis	chalcocite, cv, djurleite, anilite, bn
Diagnostic features	stronger blue and dull than chalcocite

Notes, drafts

The Cu-S-system is quite complex with different phases/formulae/structures! Cubic T-DIGENITE (low-digenite) stable between 83-76° C. ANILITE (Cu_{1.75}S) has a similar optic. See: FLEET (2006): Rev. Mineral Geochem. 61, 365-419, and WILL ET AL. (2002): EJM, 14, 591-598.

145 Digenite, chalcocite, covellite – Bor, Serbia

Digenite (blue) with oriented fine lamellae of chalcocite (bluish grey) replacing covellite (violet) and pyrite (white yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D50_10 Section: AS113

146 Digenite, anilite – Kesebol, Sweden

Digenite (blue) intergrown with anilite (light blue), penetrated by younger bornite (brown). See also photo no. 65. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D06_10 Section: AS1649

147 Digenite, anilite – Kesebol, Sweden

As above, with crossed polars. Digenite is almost black, anilite with strong anisotropism. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D06_17 Section: AS1649

148 »Zerfallener«, lamellar digenite – Amdalsverk, Norway

Separated biotite laths (greenish grey) partly replaced by lamellar intergrowth of anilite (medium blue) and djurleite (light greyish blue) formed by the low-temperature decomposition of former digenite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D05_21 Section: AS1646

Djurleite

Mineral name: Djurleite **Formula:** $Cu_{1.96}S(Cu_{31}S_{16})$ VHN: 70-80 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 31.7	R ₂ = 32.7	
R _(oil) in %	(for 546 nm)	R ₁ = 16.6	R ₂ = 17.4	
Colour impressio	n (in oil)	grey (tint blue)	grey	similar to chalcocite!
BR ~ Rpl	(in oil)	very weak		A _{oil} = 5

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	extremely weak without colour	weak with colour
Colour: in 45° position	brownish grey	greyish orange – dark brown
in other positions	brownish grey	impure bluish grey
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour		
(IR) frequency		
Twinning mode	lamellar twins after one direction (elongation)s	
frequency	common	

Further observations	
Form, habit, textures, cleavage	massive-granular, prismatic-tabular XX, some with # elongation
Paragenesis	covellite, chalcocite, goethite, malachite
Diagnostic features	R, paragenesis, lamellar twinning, lower R than chalcocite

Notes, drafts

Stable only below ~ 93° C. Bluish tint of CI varies depending on polishing process. Very similar to CHALCOCITE!

149 Djurleite, covellite – Dome Rock Mine, S-Australia

Large crystal of djurleite with cleavages and alteration cracks. Replacement by covellite (blue).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D159_10 Section: AS3550

150 Djurleite, covellite – Dome Rock Mine, S-Australia

Part of photo above, now with oil immersion. Due to the weak bireflection a lamellar twinning of djurleite is visible (NW-SE).

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D159_11 Section: AS3550

151 Djurleite, covellite – Dome Rock Mine, S-Australia

Granular, interlocked aggregate of djurleite with crackle-like alteration and newly formed covellite. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D159_15 Section: AS3550

152 Djurleite, covellite – Dome Rock Mine, S-Australia

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D159_14 Section: AS3550

Dyscrasite

Mineral name: Dyscrasite Formula: $Ag_{3+x}Sb_{1-x}$

VHN: ~ 150-180 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 60.1	R ₂ = 62.7	
R _(oil) in %	(for 546 nm)	R ₁ = 47.9	R ₂ = 51.2	
Colour impressio	n (in oil)	white cream	white	
BR ~ Rpl	(in oil)	weak		A _{oil} = 7

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour tint	distinct with colour
Colour: in 45° position	grey impure (tint yellow brown)	orange brown – yellow green – blue violet
in other positions	brownish grey	
Extinction position	black	
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode	few irregular or saw tooth-like {110}, also spindle-like twins	
frequency	frequency occasional	

Further observations	
Form, habit, textures, cleavage	euhedral, granular, isometric, occasional large XX; well-developed # {001}+{011}
Paragenesis	allargentum, native silver, gn
Diagnostic features	paragenesis, twinning, #

Notes, drafts

Dyscrasite formula: $x \le 0.2$. Similar to ALLARGENTUM.

153 Dyscrasite, sk – Wenzel mine, Schwarzwald, Germany

Euhedral crystal of dyscrasite rimmed by skutterudite and safflorite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: A86_19 Section: Wenzel792

154 Dyscrasite, galena – Wenzel mine, Schwarzwald, Germany

Dyscrasite (white) with cleavage beside galena (greyish white with perfect #).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D185_19 Section: SSW7

155 Dyscrasite – Pribram, Czech Republic

Saw tooth-like complex twinning of dyscrasite.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.5 mm Photo No.: A87_27 Section: AS1125

156 Dyscrasite – Wenzel mine, Schwarzwald, Germany

Single crystal of dyscrasite with distinct cleavage (pathway for alteration with tiny silver grains and greyish tarnishing). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D185_18 Section: SSW7

Emplectite

Mineral name: Emplectite **Formula:** CuBiS₂

VHN: 160-230 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ =37.3	R ₂ =42.2	
R _(oil) in %	(for 546 nm)	R ₁ =21.9	R ₂ =26.9	$R_2 = $ elongation
Colour impressio	on (in oil)	greyish white tint brown	greyish white tint olive	
BR ~ Rpl	(in oil)	distinct		$A_{oil} = 20$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	strong with colour tint	strong with colour
Colour: in 45° position	light grey with tint yellow green	light yellow – bluish
in other positions		dark violet brown
Extinction position	black	
Mode of extinction	straight, undulatory	
Internal reflections colou	·	
(IR) frequency		
Twinning mode	simple	
frequency	rare	

Further observations	
Form, habit, textures, cleavage	fibrous, needle-like XX ([001], rare flattened {010}; replaced by wittichenite. # (001) (bismuthinite has # {010})
Paragenesis	bismuthinite, wittichenite, bismuth, cp,
Diagnostic features	paragenesis

Notes, drafts

Low temperature phase (< 320° C) of CuBiS₂ (> 320° C: Cuprobismutite) CI against BISMUTHINITE: more yellow-olive BR orientation in UYTENBOGAARDT & BURKE (1985) is incorrect!

157 Emplectite – Grube Daniel im Gallenbach, Wittichen, Schwarzwald

Emplectite with distinct bireflection.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D141 12 Section: AS3647

158 Emplectite – Grube Daniel im Gallenbach, Wittichen, Schwarzwald

Yellow green anisotropism effects of emplectite.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D141 15 Section: AS3647

159 Emplectite – Grube Daniel im Gallenbach, Wittichen, Schwarzwald

As above, but 90° rotated.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D141_14 Section: AS3647

160 Emplectite, wittichenite, bismuth, cp – Wittichen, Schwarzwald

Large grain of emplectite (greyish white tint yellow) decomposes to a mixture of native bismuth (tiny white grains) plus wittichenite (medium grey), and chalcopyrite (yellow).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D141_18 Section: AS3647

Enargite

Mineral name: Enargite (eng.) **Formula:** $Cu^{1+}_{3}(As,Sb)^{5+}S_{4}$ VHN: 130–380 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 24.2	R _b = 25.2	$R_c \approx 28$
R _(oil) in %	(for 546 nm)	R _a = 10.9	R _b = 11.6	R _c ≈ 15
Colour impressio	n (in oil)	grey tint violet	grey tint brown	greyish cream
BR ~ Rpl	(in oil)	distinct		A _{oil} = 6

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/co	olour	strong with colour	strong with colour
Colour: in 45° pos	ition	greyish yellow	greyish yellow – reddish brown
in other posit	tions	reddish brown	greyish blue, red brown
Extinction position		black	
Mode of extinction		straight	
Internal reflections co	olour	deep red	
(IR) freque	ency	very rare	
Twinning m	ode	single lamellae and ps. hex. triplets {320}, deformations twins may occur	
freque	ency	very rare (i.e. in ore from Bor, Serbia)	

Further observations	
Form, habit, textures, cleavage	stubby prismatic XX, anhedral to rounded grains, paramorph after luzonite (partly twin lam. of luzonite); # {110} often visible
Paragenesis	luzonite, tnt, py, cp
Diagnostic features	paragenesis, luzonite is more orange brown and always twinned

Notes, drafts

A copperthioarsenat with As⁵⁺!

O'rh. Sb-endmember: Stibioenargite (»Famatinite«): Cu₃SbS₄

Dimorph with LUZONITE – stibioluzonite (tetr.); Sb-free enargite formed > 280°C

(Posfai & Buseck (1998): AM 83, 373-382).

Transformation to tennantite (gives a »porous tennantite«) or to tennantite with tiny chalcopyrite inclusions (so called »yellow tennantite«).

161 Enargite, pyrite – »Colorado«, USA

Reflection pleochroism of enargite; note the good cleavage of enargite grains. One tiny inclusion of pyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D115_12 Section: AS3635

162 Enargite, pyrite – »Colorado«, USA

As above, with (not exactly) crossed polars. Enargite shows no twinning (in contrast to luzonite). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D115_14 Section: AS3536

163 Enargite, tennantite, cp – Clara mine, Oberwolfach, Schwarzwald, Germany

Relicts of former euhedral enargite crystals (tint violet) replaced by a mixture of tennantite (grey) plus chalcopyrite (yellow). Note: The »yellow fahlore« in triangle on the right side is a very finegrained myrmekitic mixture of fahlore with chalcopyrite. This »yellow fahlore« is rimmed by chalcopyrite and fahlore. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D204_23 Section: MK35

164 Enargite, py, cv – Mahoni prospect, Lombok, Indonesia

Aggregates of anhedral enargite around zoned pyrite (white) and covellite (blue-violet). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D91_10 Section: AS3624

Fahlore (Tennantite – Tetrahedrite; in German: Fahlerz)

Mineral name: Fahlore (tnt-td) Formula: $(Cu,Ag,Fe)_{12}(As,Sb,Bi)_4S_{13}$ VHN: 300-380 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	tennantite: ~ 30	tetrahedrite: ~ 32	
R _(oil) in %	(for 546 nm)	~ 15	~ 17	
Colour impressio	n (in oil)	grey tint green	grey tint brown(olive)	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	in each position dark	in each position dark
Colour: in 45° position	black	black
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	red	
(IR) frequency	absent to common (high As content)	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	mostly anhedral; occasionally as inclusion in galena, no #
Paragenesis	galena, chalcopyrite, sphalerite, stannite, sulfosalts
Diagnostic features	R, CI, paragenesis

Notes, drafts

General formula: $[(Cu, Ag)^{[3]}_{6}[Cu^{1+},Zn,Fe,Hg,Ge,Mn,Cu^{2+}]^{[4]}_{6}] [(Sb,As,Bi)^{[3]}_{4}] [S^{[4]}_{12}S^{[6]}]$ TETRAHEDRITE: Sb-rich fahlore, TENNANTITE: As-rich fahlore. 165 Fahlore, cp, luzonite, cov – Clara mine, Oberwolfach, Schwarzwald, Germany

Fahlore (grey) penetrated and replaced by chalcopyrite (yellow). Luzonite (brownish) is transformed into covellite (blue-violet). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D54_06 Section: AS3578

166 Tennantite, sph, gn, cp, py – Boliden, Sweden

Isometric grains of greenish fahlore (here tennantite), together with sphalerite (dark grey), pyrite (whitish yellow), and chalcopyrite (yellow). Younger galena (greyish white) in fractures and on grain boundaries.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D93_03 Section: WT5 176-5

167 Tennantite, bn, py, cp – La Plata mine, Chiriboga, Ecuador

Small grains of anhedral fahlore (greenish grey) and euhedral pyrite (white) in complex intergrowth of bornite (brown) with chalcopyrite (yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: A69_18 Section: AS3101

168 Fahlore, bn, cp, gn, qz – Detzeln, S-Schwarzwald, Germany

Fahlore-carbonate-myrmekite enclosing galena (greyish white), chalcopyrite (yellow), and bornite (orange violet). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D79_21 Section: DK-11

Feldspar (in German: Alkalifeldspat)

Mineral name: (Alkali) Feldspar (fsp) Formula: (K,Na)AlSi₃O₈ VHN: ~ 800-900 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _x = 4.3	$R_{z} = 4.4$	calculated from ${\rm n_{x'}}{\rm n_z}$
R _(oil) in %	(for 546 nm)	R _x = 0.0	R _z = 0.0	calculated from $n_{x'}^{} n_{z}^{}$
Colour impressio	n (in oil)	»black« (but light IR!)	»black« (but light IR!)	
BR Rpl	(in oil)			A _{oil} = 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/color	ır not visible	not visible
Colour: in 45° positio	n masked by IR	masked by IR
in other position	IS	
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colo	ur white – colourless	
(IR) frequenc	y predominant	
Twinning mod	e simple	
frequenc	y occasional; common	

Further observations	
Form, habit, textures, cleavage	granular to euhedral XX, often altered to clay minerals with dusty appearance (not as clear as quartz); # after two directions
Paragenesis	qz, sericite, clay minerals, hematite, other rock-forming minerals
Diagnostic features	low R, no BR, #

Notes, drafts

169 Alkali feldspar, quartz, limonite – Vrábce, Czech Republic

Sandstone with relicts of feldspar (anhedral grains with numerous cracks) and quartz in a matrix of limonite (medium grey).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D41_18 Section: 3-6

170 Alkali feldspar, quartz – Oberröthenbach, Schwarzwald, Germany

Feldspar (with cleavage and alteration features), quartz, and tiny pyrolusite (nearly white). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D104_31 Section: IR 31b

171 Alkali feldspar, qz, bio – Grube Anton, Heubachtal, Schwarzwald, Germany

Crystal of alkali feldspar enclosed in quartz. Biotite flake (upper left).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D139_04 Section: WIT2

172 Alkali feldspar, silver, quartz – Wittichen, Schwarzwald, Germany

Precipitation of silver (white) in pores between quartz and feldspar, and along the cleavage plains of large feldspar grain. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D187_09 Section: KHF55

Fluorite (in German: Fluorit, Flussspat)

Mineral name: Fluorite (fl) **Formula:** CaF₂ VHN: ~ 180 Crystal System: cub.

Observations with one polar (AE || Pol)

R _(air) in %	(for 546 nm)	3.2	calculated from n
R _(oil) in %	(for 546 nm)	0.0	calculated from n
Colour impressio	on (in oil)	black (but IR!)	
BR Rpl	(in oil)		A _{oil} = 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	isotropic	isotropic
Colour: in 45° position	many IR	many IR
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	white, violet	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral to anhedral grains; many fluid inclusions (mostly rectangu- lar morphologies, in contrast to the more round flincs in quartz!)); perfect # {111}
Paragenesis	barite, qz, gn, sph, pitchblende
Diagnostic features	very low R, isotropic, perfect cleavage

Notes, drafts

173 Fluorite, carbonate, hm, cp – Olympic Dam, Australia

Euhedral to anhedral crystals of fluorite (fl, dark grey with black cleavage pits) in matrix of carbonate (medium grey), hematite (light grey), and chalcopyrite (yellow).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D101_22 Section: OD664

174 Fluorite, galena, quartz – Jenigi, Egypt

Fluorite vein (fl, dark grey to black) in galena (greyish white) parting a quartz crystal (qz, medium grey) and cerussite (light grey). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D99_20 Section: AS3140

175 Fluorite, carbonate, hm, cp – Olympic Dam, Australia

Clasts of fluorite (fl, with violet rim) in matrix of carbonate, hematite (light grey), and chalcopyrite plus pyrite (lower right of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D102_26 Section: OD662

176 Fluorite – Clara mine, Oberwolfach, Schwarzwald, Germany

Large fluorite crystal showing tiny fluid inclusions with rectangular morphology. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D204_19 Section: MK35

Franckeite

Mineral name: Franckeite **Formula:** $\sim Pb_5Sn_2FeSb_2S_{14}$ VHN: 30-100 Crystal System: tric.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 35.6	R ₂ = 37.5	
R _(oil) in %	(for 546 nm)	R ₁ = 20.7	R ₂ = 22.1	
Colour impressio	on (in oil)	greyish white	greyish white tint yellow	
BR ~ Rpl	(in oil)	weak		A _{oil} = 7

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour tint	distinct with colour
Colour: in 45° position	light grey tint brown	grey tint blue – greyish yellow
in other positions	brown, greyish blue	yellow brown, greyish blue
Extinction position	greyish black	
Mode of extinction	straight, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	translation twins (001); also perpendicular to elongation	
frequency	frequent	

Further observations	
Form, habit, textures, cleavage	tabular, radial fibrous, EB of po, as thin lamellae in cylindrite; # {010}
Paragenesis	stannite, gn, sphalerite, py, mrc, teallite, cylindrite
Diagnostic features	#, translation twins, low BR, little darker and less yellow than teallite

Notes, drafts

XX are often bended due to translation in (001). Cylindrite has stronger BR and different morphology.

F

177 Frankeite, pyrite, wurtzite – Oruro, Bolivia

Bended laths of franckeite (with perfect cleavage) intergrown with pyrite/ marcasite (various white-yellow colours due to tarnishing) and wurtzite (medium grey, centre).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D109_13 Section: AS1018

178 Frankeite, pyrite, wurtzite – Oruro, Bolivia

As above, with crossed polars.

Obj.: 10 × Polars: × Pol (~) Photo width: 1.4 mm Photo No.: D109_15 Section: AS1018

179 Frankeite – Oruro, Bolivia

Tabular franckeite crystals showing deformation features like twinning and crumpled lamellae (»Zerknitterungslamellen«). Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D109_25 Section: AS1019

180 Frankeite – Oruro, Bolivia

Crumpled lamellae and undulatory extinction of franckeite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D109_16 Section: AS1018

Gahnite

Mineral name: Gahnite **Formula:** (Zn,Fe,Mg)Al₂O₄

VHN: 1900-2400 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R = 8.4	calc. from n = 1.82	
R _(oil) in %	(for 546 nm)	R = 0.8		
Colour impressio	on (in oil)	dark grey		
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	isotropic, masked by IR	isotropic, masked by IR
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	bluish or greenish white	
(IR) frequency	abundant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	octahedral crystals; occasionally replaced by sphalerite, as EB in franklinite; distinct # {111}
Paragenesis	sph, ilm, rt, py, cas, po, asp
Diagnostic features	IR, paragenesis

Notes, drafts

Similar to ALABANDITE.

181 Gahnite, sphalerite – Mina Victoria, Bossost, N-Spain

Gahnite (left side) with visible cleavage planes beside sphalerite (right side).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D92_19 Section: AS3611

182 Gahnite, sphalerite – Mina Victoria, Bossost, N-Spain

As above, with crossed polars. Note the bluish IR of gahnite, and the brown IR of sphalerite.

Obj.: 10 × Polars: × Pol Photo width: 1.4 mm Photo No.: D92_20 Section: AS3611

183 Gahnite, sphalerite – Mina Victoria, Bossost, N-Spain

In oil immersion now strongly reduced reflectance (0.8%) of gahnite (left; with bluish white IR). Sphalerite on the right shows some brown IR. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D92_22 Section: AS3611

184 Gahnite, ilmenite, gangue – 9-Mile-Mine, Broken Hill, NSW, Australia

Euhedral crystal of gahnite with tiny inclusions of rounded ilmenites and gangue minerals. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D128_12 Section: AS3522

Galena/Galenite (in German: Galenit, Bleiglanz)

Mineral name: Galena/Galenite (gn) Formula: PbS VHN: 60-100 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (fo	or 546 nm)	43.0	
R _(oil) in % (fo	or 546 nm)	28.0	
Colour impression	(in oil)	greyish white	
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	grey black
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode	(only visible after etching)	
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral – anhedral, EB of miargyrite and schapbachite, inclusions of Ag-minerals and sulfosalts; # {100} → triangular pits (characteristic, but not with perfect polish!)
Paragenesis	sphalerite, chalcopyrite, marcasite, bravoite, Ag-minerals
Diagnostic features	cleavage, low polishing hardness, scratches

Notes, drafts

Similar to ULLMANNITE (ullmannite has higher R, more often visible zoned).

185 Galena, pyrite, sphalerite – Rammelsberg, Harz, Germany

Anhedral relict of galena (greyish white) replaced and surrounded by colloform and zoned pyrite (yellow-white) and sphalerite (grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D67_22 Section: AS3598

186 Galena – Balya, Turkey

Galena with characteristic triangular pits along cleavage lines || {100}.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_13 Section: AS156

187 Galena, pyrite, marcasite, sphalerite – Tepla, Slovenia

Left side: Galena intergrown with pyrite (white yellow). Right side: Marcasite plates (light yellow) accompanied with sphalerite (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D58_02 Section: AS3501

188 Galena, asp, qz – Hällefors, Sweden

Galena (greyish white, triangular pits) replacing arsenopyrite rhombs (nearly white) and quartz (dark grey). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D69_02 Section: AS101

189 Galena, sph, py – Tara Mine, Navan, Co. Meath/Ireland

Colloform aggregates of galena (light grey) and sphalerite (medium grey) with tiny pyrite grains. Obj.: 20 oil Polars: || Pol Photo width: 0.7 mm Photo No.: D67_15 Section: AS3596

190 Galena, cp, gold – Rammelsberg, Harz, Germany

Very fine and complex intergrowth of galena (light grey) with chalcopyrite (yellow) and gold (arrow, light yellow). Obj.: 20x oil Polars: || Pol Photo width: 0.7 mm Photo No.: D37_26 Section: AS3507

191 Galena – Riggenbach, Schwarzwald, Germany

Zoning of galena, visible due to oriented replacement by gangue mineral. Obj.: 20x oil Polars: || Pol Photo width: 0.7 mm Photo No.: D70_01 Section: B043

192 Galena, sph, cb – Aselfingen, Schwarzwald, Germany

Galena (light grey) replacing sphalerite crystals (medium grey), both in carbonate groundmass (shades of dark grey, BR). Obj.: 10x Polars: || Pol Photo width: 1.4 mm Photo No.: D80_02 Section: without No

193 Galena, py, mrc, sph – Grube Geyer, Saxony, Germany

Bird-eyes structure with fine-grained marcasite and pyrite (central part of photo) is in part replaced by galena (greyish white). Small sphalerites in the left part of photo. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D30_10 Section: AS1758

194 Galena, py, mrc, po – Locality unknown

Galena with tiny exsolution bodies of bournonite (slighty darker than galena). Some deformed cleavage planes with triangular pits.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D161_24 Section: TÜ43

195 Galena, py, cp, sph, cv – Zlaté Hory, Okres Jeseník, Czech Republic

Euhedral crystal of pyrite with round inclusions of galena (greyish white) and sphalerite (grey). Groundmass of chalcopyrite (yellow), sphalerite (grey with cp inclusions), and covellite (violet-blue). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D84_10 Section: AS2553

196 Galena, sph – Black smoker, Manus basin, Pacific Ocean

Sphalerite (and/or wurtzite) overgrown by galena (greyish white). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D213_18 Section: AS3652

Garnet (in German: Granat)

Mineral name: Garnet Formula: $(Fe,Mn)_3(Al,Fe)_2[(SiO_4)_3]$

VHN: ~1400 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	9 to 6	depending on composition	calculated from n
R _(oil) in %	(for 546 nm)	1.2 to 0.4		calculated from n
Colour impressio	n (in oil)	dark grey		
BR Rpl	(in oil)			A _{oil} = 0

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/co	olour	isotropic	
Colour: in 45° pos	ition	masked by IR	
in other posi	tions		
Extinction position			
Mode of extinction			
Internal reflections co	olour	from colourless, white to yellow green)	ı, orange, brown, red; (Cr-garnet:
(IR) frequ	ency	predominant	
Twinning r	node		
frequ	ency		

Further observations	
Form, habit, textures, cleavage	isometric habit, no #, many inclusions (rt, ilm, mt, cb, po)
Paragenesis	amphibole, px, qz, ep, mt, ilm, rt, goe, manganomelane
Diagnostic features	habit, no #, IR, hardness

Notes, drafts

197 Garnet, ilm, amp, cb – Ungwan Mallam Ayuba, Kaduna, N-Nigeria

Subhedral crystals of garnet (medium grey) surrounded by some ilmenites (light grey) and amphiboles (dark grey), which are partly replaced along cleavage planes by manganomelane (light grey). Note: tiny, slightly darker inclusions of carbonate (BR!) in garnet.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D84_18 Section: AS249

198 Garnet, ilm, manganomelane – Ungwan Mallam Ayuba, Kaduna, N-Nigeria

Garnet grains with beginning alteration to manganomelane (greyish white). Ilmenite in lower right part of photo. Note: tiny carbonate inclusions (black to dark grey \rightarrow BR!) as pre-metamorphic relicts in garnet.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_24 Section: AS239

199 Garnet, ilmenite, pyrite – Grandfontaine, Vosges, France

Large deformed grain of garnet (medium grey) with tiny inclusions of ilmenite (slightly lighter). Younger vein with pyrite (colours due to strong tarnishing). Obj.: 5 × Polars: || Pol Photo width: 2.6 mm Photo No.: D52_02 Section: AS2566

200 Garnet, mt, hem, carbonate – Rostock, Namibia

Garnet porphyroblast with inclusions of magnetite (light brown), quartz (dark grey) and carbonate (grey) in groundmass of magnetite/martite and mica. Note that only groundmass magnetites show martitization. Obj.: 10 × Polars: || Pol Photo width: 1.0 mm Photo No.: A81_03 Section: AS182

Gersdorffite

Mineral name: Gersdorffite Formula: (Ni,Co)AsS VHN: 520-910 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	57 (to 46)		
R _(oil) in %	(for 546 nm)	43 (to 31)	depending on composition	
Colour impressio	on (in oil)	white (tint yellow)	slow tarnishing	
BR Rpl	(in oil)			A _{oil} = 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	brownish black
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral XX ({100}+{111}), often zoned (Co, Fe; As/S; Sb); # {100} → triangular pits (less often than in galena)
Paragenesis	Co-, Ni-sulfides, -sulfarsenides and -arsenides
Diagnostic features	euhedral XX, #, hardness

Notes, drafts

Similar to ULLMANNITE.

201 Gersdorffite – Siegen, Germany

Zoned euhedral gersdorffite crystals (white - yellowish white) with tiny cleavage trails. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D31_17 Section: AS1747

202 Gersdorffite, py, cp – Holzbruck near St. Wilhelm, S-Schwarzwald, Germany

Gersdorffite (upper left part, yellow-white) accompanied by porous pyrite; chalcopyrite (yellow).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D74_01 Section: SN36

203 Gersdorffite, gold, cp, py – Mitterberg, Mühlbach, Salzburg, Austria

Cataclastic broken gersdorffite (greyish white, centre) with tiny fillings of gold (light yellow); in groundmass of chalcopyrite (yellow) plus pyrite crystals. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D16_06 Section: AS143

204 Gersdorffite, cp, mt, nickeline – Moran mine, Kambalda, W-Australia

Slightly tarnished gersdorffite grains (whitish grey) enclosing chalcopyrite (yellow, with minor mackinawite), some younger nickeline (orange), and magnetite (grey, with rounded inclusions of cp+cb). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D211_14 Section: S-710-1

Goethite (in German: Goethit, Nadeleisenerz)

Mineral name: Goethite (goe) **Formula:** α-FeOOH VHN: 660-800 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 18.3	R _b = 15.6	$R_{c} = 17.7$
R _(oil) in %	(for 546 nm)	R _a = 6.0	R _b = 4.3	R _c = 5.6
Colour impressio	n (in oil)	grey	grey (tint brown)	grey tint blue
BR ~ Rpl	(in oil)	weak to strong (only la	arger crystals)	A _{oil} = 33

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour		distinct without colour	distinct without colour
Colour: in 45°	position	grey	grey – greyish black
in other p	ositions		
Extinction position		often masked by IR, black	
Mode of extinction		perfect	
Internal reflections colour		yellow brown; also yellow, brown or	orange
(IR) fro	equency	abundant	
Twinning	mode		
fr	equency		

Further observations	
Form, habit, textures, cleavage	tabular, platy, concentric shell-like, fine crystalline to colloform, »Glaskopf« aggregates; weathering product of almost all iron minerals
Paragenesis	lepidocrocite, hematite, manganomelane, and other Fe minerals
Diagnostic features	IR, texture, paragenesis

Notes, drafts

Opt. features = f (crystallinity, grain size, porosity, polish, H_2O - content and composition (Al, Mn)). Mixed with other Fe-(Mn)-oxihydroxides as alteration/weathering/oxidation product of Fe-bearing minerals in fine- to cryptocrystalline masses (called LIMONITE, »Brauner Glaskopf«). Often pseudomorph after primary Fe-rich minerals (like pyrite or siderite).

205 Goethite – Ahnet-Mouydir, Hoggar Massif, Algeria

Euhedral crystals of goethite showing bireflection and some yellow brown internal reflections. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D34_20 Section: A188/3

206 Goethite – Ahnet-Mouydir, Hoggar Massif, Algeria

As above, with crossed polars; yellow brown internal reflections.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D34_20 Section: A188/3

207 Goethite – The Pinnacles, near Broken Hill, Australia

Colloform goethite with yellow to orange brown internal reflections.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D01_21 Section: AS3525

208 Goethite, py – Stuhlskopf, Schwarzwald, Germany

Pseudomorph replacement of pyrite crystals by goethite (limonite).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D61_05 Section: FP43-1

Gold

Mineral name: Gold Formula: (Au,Ag) VHN: 30-60 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	77	Au ₈₀ Ag ₂₀ : 84.0	
R _(oil) in %	(for 546 nm)	71	Au ₈₀ Ag ₂₀ : 79.4	
Colour impressio	n (in oil)	yellow	Ag-rich: white yellow	
BR Rpl	(in oil)		$A_{oil} = 0$	_

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	anisotropism due to scratches	anisotropism due to scratches
Colour: in 45° position	greenish black due to scratches	greenish black
in other positions	»Kratzeranisotropie«	»Kratzeranisotropie«
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	anhedral grains, dendritic; rare in large aggregates, i.e. often tiny grains! Zoning (Au-Ag)
Paragenesis	arsenopyrite, tellurides, stibnite, limonite, clausthalite, py, bismuthinite
Diagnostic features	high reflectance and bright yellow colour, poor polishing, »Kratzeranisotropie«

Notes, drafts

6 % Pd reduces $\rm R_{\rm oil}$ of gold to 50 %!

Be aware that other yellow minerals (such as pyrite, arsenopyrite, chalcopyrite) appear very dull, greyish-yellow or dirty yellowish-green, if in direct contact to gold grains.

209 Gold, pyrite – Witwatersrand, RSA

Mobilized gold (light yellow) in rounded and partly fractured grains of pyrite (greyish yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D83_09 Section: AS3472

210 Gold, pyrite, rutile – Witwatersrand, RSA

Pyrite grains (greyish yellow) with small veinlets of gold. Larger isolated gold particles and rutiles (dark grey) between pyrite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D96_06 Section: AS3472

211 Gold, bismuth, bismuthinite, cp – El Teniente, Chile

Large bismuthinite (good cleavage) with an inclusion of gold (whitish yellow) and bismuth (in direct contact to gold; slightly darker). Chalcopyrite (yellow) on the left side of photo. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D193_19 Section: KB72

212 Gold, tellurium, pyrite – Kochbulak, Uzbekistan

Anhedral gold (yellow) in association with native tellurium (white), both around anhedral pyrite grains (brownish grey). High-sulfidation epithermal gold deposit. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D135_10 Section: AS3056

213 Gold, chalcopyrite – Ashanti mine, Obuasi, Ghana

Gold veinlet in quartz with small grains of chalcopyrite (greenish grey). Obj.: 20x oil Polars: || Pol Photo width: 0.7 mm Photo No.: D96_03 Section: AS120

214 Gold, carbonate – Goldhausen, near Korbach, Kellerwald, Germany

Tiny gold flakes in carbonate-rich matrix (note BR and twinning).

Obj.: 10x Polars: || Pol Photo width: 1.4 mm Photo No.: D105_18 Section: AS111

215 Gold, emplectite, bismuthinite – Stuhlskopf, Schwarzwald, Germany

Small gold grains beside emplectite (brownish grey), bismuthinite (grey), and secondary Bi-minerals (yellow to reddish-brown, upper part of photo). Obj.: 20x oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_16 Section: Kindler11

216 Gold, galena, bornite, fahlore – La Plata-Mine, Chiriboga, Ecuador

Galena (light grey) with tiny veinlets of gold (yellow): Bornite (orange brown), rounded fahlore (greenish grey), and gangue (black). Obj.: 20x oil Polars: || Pol Photo width: 0.5 mm Photo No.: D95_15a Section: AS3103

217 Gold, gn, py, mrc – Felsenloch, BLZ, Schwarzwald, Germany

Large grain of gold (electrum $Au_{70}Ag_{30}$) associated with pyrite (cube at right side of gold), and galena (light grey). On the left side of photo large crystal of former pyrrhotite, now transformed to pyrite plus marcasite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D190_25 Section: CH54

218 Gold, py, cp, rt – Val Toppa, Pieve Vergonte, N-Italy

Thin veinlet of gold in pyrite (which includes rutile and chalcopyrite). Left side: rutile.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D203_16 Section: AS119

219 Gold, fahlore, asp, qz – Hoberg, Schwarzwald, Germany

Gold inclusions in fahlore (grey), surrounded by arsenopyrite (beige), and younger quartz. Note that quartz incorporated the existing gold inclusions (upper left side) of the fahlore after its replacement. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D207_17 Section: GL-Ho1

220 Gold, pyrite, covellite, dig – Bor, Serbia

Groundmass of pyrite with inclusion of gold (light yellow) and digenite (+cv). Large covellite crystal (violet) is replaced in part by pyrite and digenite (blue). Obj.: 20 × oil Polars: || Pol Photo width: 0.4 mm Photo No.: D214_19 Section: AS3545

Graphite

Mineral name: Graphite (gr) Formula: C VHN: 7-12 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 26	R _{e'} = 6	
R _(oil) in %	(for 546 nm)	R _o = 15	R _{e'} = 0.5	
Colour impressio	on (in oil)	light grey tint yellow	dark grey tint brown	
BR ~ Rpl	(in oil)	extremely strong		A _{oil} = 187

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	very strong with colour tint	very strong with colour
Colour: in 45° position	white with yellow tint	light yellow – light yellow
in other positions		
Extinction position	olive black	
Mode of extinction	straight, undulatory, disperse	
Internal reflections colou		
(IR) frequency		
Twinning mode	translations and crumpled lamellae	
frequency	very common	

Further observations	
Form, habit, textures, cleavage	often flaky, platy, tabular; # perfect (0001)
Paragenesis	manifold; often in metamorphic ores
Diagnostic features	BR, AExPol, in all positions not transparent \rightarrow no IR!

Notes, drafts

VALLERIITE is very similar to graphite (see fig. 571, 572)! MOLYBDENITE is much brighter!

221 Graphite, po – Kropfmühl, Passau, Germany

Sub-parallel flakes of graphite (grey) with pyrrhotite (light cream). Graphite flakes in position with highest reflectance. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D07_10 Section: AS1054b

222 Graphite, py – Skrammelfallsgruvan, Norberg, Sweden

Aligned graphite plates (brownish grey) in and around pyrite (light yellow).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D46_13 Section: AS3572

223 Graphite, ttn, carbonate – Kropfmühl, Passau, Germany

Two crystals of graphite (arrows) showing the strong bireflection. The lath on the left side is nearly as dark as the carbonate matrix (BR!, twinning). Elongated grain of titanite (light grey) in the centre. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D14_08 Section: AS1055a

224 Graphite, molybdenite, py – Skrammelfallsgruvan, Norberg, Sweden

Graphite flakes (brownish grey) intergrown with molybdenite (lighter bluish grey, arrow) enclosed in pyrite and pyrrhotite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D46_17 Section: AS3572
Hausmannite

Mineral name: Hausmannite (hsm) **Formula:** Mn₃O₄ VHN: 430-570 Crystal System: tetr..

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 20.2	R _{e'} = 16.3	R _{e'} = 13.3(*)
R _(oil) in %	(for 546 nm)	R _o = 7.4	R _{e'} = 4.8	R _{e'} = 3.0(*)
Colour impressio	on (in oil)	grey tint blue	grey tint brown (moiré)	
BR ~ Rpl	(in oil)	strong		A _{oil} = 43

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour tint
Colour: in 45° position	whitish yellow	greyish yellow – grey tint blue
in other positions	moiré effect	
Extinction position	grey black	
Mode of extinction	not perfect	
Internal reflections colour	red	
(IR) frequency	frequently	
Twinning mode	polysynthetic after more than one direction {101}	
frequency	always visible	

Further observations	
Form, habit, textures, cleavage	often euhedral {111}), very often replaced by pyrolusite along cracks
Paragenesis	pyrolusite, bixbyite, braunite
Diagnostic features	twinning, moiré effect, paragenesis, red IR

Notes, drafts

(*) after JAROSCH (1987); Mineral. Petrol., 37, 15-23.

225 Hausmannite – Jakobsberg, Sweden

Euhedral crystals of hausmannite with twins lamellae showing characteristic moiré appearance in the position of minimum reflectance. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_08 Section: AS212

226 Hausmannite – Jakobsberg, Sweden

Hausmannite with twinning and different strong anisotropism.

Obj.: 5 × Polars: × Pol Photo width: 2.8 mm Photo No.: D15_21 Section: AS212

227 Hausmannite, bixbite – Sailauf quarry, Spessart, Germany

Hausmannite (medium grey, BR!) with inclusions of bixbyite (yellowish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_10 Section: S61

228 Hausmannite – Jakobsberg, Sweden

Lamellar twinned hausmannite with red internal reflections.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D13_06 Section: AS212

Hematite (in German: Hämatit, Eisenglanz)

Mineral name: Hematite (hm) Formula: α -Fe₂O₃

VHN: 900 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 30.0	R _{e'} = 26.4	
R _(oil) in %	(for 546 nm)	R _o = 15.9	R _{e'} = 12.4	R _o elongation
Colour impressio	n (in oil)	white grey	white grey	
BR > Rpl	(in oil)	distinct		A _{oil} = 28

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct without colour	distinct with colour tint
Colour: in 45° position	grey	grey tint green – grey
in other positions	grey tint green	
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colour	deep red (»blood red«)	
(IR) frequency	abundant to rare (depending on gr	ain size)
Twinning mode	polysynthetic after more than one direction (trellis-work fence, »Jägerzaun«)	
frequency	Y rare (in magmatites), common (in metamorphosed ores)	

Further observations	
Form, habit, textures, cleavage	lens-shaped or tabular XX; martite: hem pseudomorph after mt {111}; EB of ilmenite (corundum, rutile) or as hematite-EB in ilmenite
Paragenesis	magnetite, ilmenite, rutile, goethite, pyrite
Diagnostic features	paragenesis, red IR (in small grains)

Notes, drafts

»cubic hematite« = see MAGHEMITE (γ -Fe₂O₃). ILMENOHEMATITE (Fe₂O₃ + FeTiO₃)-SOLID SOLUTION has R < 30-26/15-12.

229 Hematite, mt, martite, goe – The Pinnacles, near Broken Hill, Australia

Magnetite (brownish grey relicts) with strong martitization (martite; greyish white lamellae of hematite) surrounded and penetrated by younger goethite (grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D67_07 Section: AS3525

230 Hematite, mt, martite, goe – The Pinnacles, near Broken Hill, Australia

Same as above with crossed polars. Three sets of oriented hematite lamellae (120°) are easy visible. Numerous internal reflections of goethite, but only few red internal reflection of hematite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D67_08 Section: AS3525

231 Hematite – Terra Nera, Elba, Italy

Thin tabular hematite showing an ophitic network (»sperriges Gefüge«). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D50_17 Section: AS3162

232 Hematite, qz, carbonate – Mamatwan, Kuruman, RSA

Layer of medium grained hematite (light grey) with carbonate grains (dark grey) surrounded by layers of hematite plus silicates (light red internal reflections!) or carbonates (upper part with medium red IR). N-S trending hematite veinlet (whitish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D10_07 Section: M1

233 Hematite, goethite – W of Erg Teganet, Ahnet-Mouydir area, Algeria

Colloform intergrowth of hematite (light grey) and goethite (medium grey) around clasts of hematite-bearing sediments (grey to red). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D20_01 Section: A235

234 Hematite, mt- E of Jebel Bagline, Ahnet-Mouydir area, Algeria

Sandstone with hematite coated clasts of sediment (centre), metamorphic rock (lower part, with tiny plates of graphite), and quartz grains (black). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D21_07 Section: A316/3

235 Hematite, cp, py – Olympic Dam, Australia

Breccia of hematite (medium grey), chalcopyrite (yellow), and pyrite (whitish yellow) in groundmass of carbonate. Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D101_21 Section: OD653

236 Ilmenite-hematite – Sardes, Turkey

Placer sample with hematite grain showing tiny exsolution bodies of ilmenite (called »ilmenite-hematite«). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D106_17 Section: AS146

237 Hematite – Otto mine, Schottenhöfe, Schwarzwald, Germany

Hematite phantom crystals with lens-shaped cores and lath-like rims. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D69_21 Section: AS3250

238 Hematite, mt – Calamita, Elba, Italy

Mushketoffite: Magnetite (brownish grey) pseudomorph after hematite platelets (relicts are visible). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D84_06 Section: A3142

239 Hematite – Wadi Mubarak, Eastern Desert, Egypt

Hematite with typical twinning (»Jägerzaun« – trellis-work fence) due to deformation/ metamorphism. Twinning lamellae are oriented approx. 45° to the shistosity planes of the ore. Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D68_02 Section: AS177

240 Hematite – Wadi Mubarak, Eastern Desert, Egypt

As above with crossed polars. Note the almost complete absence of red internal reflections! Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D68_05 Section: AS177

Ilmenite

Mineral name: Ilmenite (ilm) **Formula:** FeTiO₃ VHN: 560-700 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 19.2	R _{e'} = 16.4	
R _(oil) in %	(for 546 nm)	R _o = 6.7	R _{e'} = 4.9	
Colour impressio	on (in oil)	greyish brown or only grey (tint brown)	brown often only greyish brown	
BR ~ Rpl	(in oil)	strong		A _{oil} = 31

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism int	ensity/colour	distinct without colour	distinct without colour
Colour: i	n 45° position	grey	grey – grey (tint green)
in o	ther positions		
Extinction position	on	black	
Mode of extinction		straight	
Internal reflections colour		only due to high Mn-content (pyro	phanite = MnTiO ₃): red
(IR)	frequency	rare	
Twinning	mode	polysynthetic after more than one direction	
	frequency	occasional	

Further observations	
Form, habit, textures, cleavage	elongated, lens- or tabular-shaped grains; often as EB in magnetite and hematite; often replaced/rimmed by »leached ilmenite« and (pseudo)rutile
Paragenesis	magnetite, hematite (also as EB), rutile, titanite
Diagnostic features	Cl, paragenesis

Notes, drafts

Mn-ilmenite: pyrophanite, Mg-ilmenite: geikielite. HEMOILMENITE (FeTiO₃ + Fe₂O₃)-SOLID SOLUTION has R > 20-17/8-5. Optical features varying distinct with contents of Fe₂O₃, MnO, and MgO. Alteration of ilmenite forms »leached ilmenite« (partly oxidized ilmenite with vacancies) and PSEUDORUTILE.

241 Ilmenite, rutile – Neils Valley, Jos plateau, Nigeria

Two large crystals of (hematite-)ilmenite in perpendicular orientation exhibiting the strong bireflectance (darker brown vs. grey with brownish tint, lighter) and tiny exsolution bodies of hematite. In the lower part of photo large grain of rutile (light grey) with small twin lamellae.

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: BR1 Section: AS134

242 Ilmenite, martite – Rhyolite of unknown locality

Unaltered ilmenite lamellae (brownish grey) in martitized magnetite (grey white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D57_01 Section: LW-44

Sandwich-type ilmenite-magnetite. Ilmenite (brownish grey) is patch-like oxidized into a fine mixture of hematite and rutile (light grey tones). Magnetite with tiny elongated exsolution bodies of spinel (dark grey). Zircon crystal (dark grey) with pyrite inclusion. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D52_14a Section: AS173

244 Hematite-ilmenite, rutile – Radium Hill, Olary Prov., S-Australia

Hematite-ilmenite: Ilmenite (matrix and one tabular crystal in brownish grey, BR!) with exsolution disks of light grey hematite. Intergrown with rutile (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D01_31 Section: AS3519

245 Hematite-ilmenite, cp – Railway gravel near Iberville, P. Q., Canada

Ilmenite (medium grey) with tiny elongated hematite exsolution bodies (light grey). These hematites are missing in part of the ilmenite along lamellar inclusion-rich zones and beside fractures (which are partly filled with chalcopyrite). Obj.: 20 × oil Polars: || Pol Photo width: 0.4 mm Photo No.: D97_01a Section: AS1563

246 Ilmenite, mt, py - »Corsica«

247 Ilmenite, mt – »Corsica«

Large ilmenite lath in groundmass of trellis-type ilmenite-magnetite. Much of the magnetite is replaced by gangue and pyrite (white yellow), leaving a trellis-type network of ilmenite lamellae. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D52_20 Section: AS264

Fine ilmenite lamellae in trellis-type intergrowth parallel {111} of magnetite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D37_29 Section: AS264

248 Ilmenite – »Corsica«

Relicts of trellis-type ilmenite lamellae and granular ilmenite grains. The groundmass magnetite is completely replaced by silicates. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D153_06 Section: AS264

249 Ilmenite, mt, pseudorutile – Otanmäki, Kajaani, Finland

Deformation twinning within ilmenite grains, some magnetite (slightly higher R). Minor formation of pseudorutle (bluish grey) along cracks.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D195_15 Section: AS1647

Complex exsolution feature of hematite-ilmenite (ilmenite with hematite-EB) with ilmenite-hematite (hematite with ilmenite-EB). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D141_19 Section: AS246

251 Ilmenite, mt – Flat mine, Evje, S-Norway

Grain of hematite-ilmenite (brownish grey ilmenite matrix with tiny bluish grey plates of hematite-EB) intergrown with elongated to skeletal magnetite (medium grey). The grain is surrounded by pyrrhotite and pentlandite (highest R). Obj.: 20 × oil Polars: || Pol Photo width: 0.6 mm Photo No.: D141_25a Section: AS2563

252 Ilmenite, rutile, anatase – Sardes, Turkey

Formation of fine-grained mixture of rutile plus anatase (»leucoxene«) as an alteration product around ilmenite (greyish brown). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D106_18 Section: AS146

Ilvaite

Mineral name: Ilvaite (ilv) **Formula:** CaFe²⁺, Fe³⁺[OH|O|Si,O₇] VHN: 700-1055 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in % (f	or 546 nm)	R ₁ = 10	R ₂ = 8	
R _(oil) in % (f	or 546 nm)	R ₁ = 2	R ₂ = 1	
Colour impression	(in oil)	grey tint yellow	dark blue	
BR < Rpl	(in oil)	very strong		A _{ail} = 66

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour	strong with colour
Colour: in 45° position	orange brown	orange brown – brownish orange
in other positions		
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour	yellow to red	
(IR) frequency	rare (at rims)	
Twinning mode	simple	
frequency	rare	

Further observations	
Form, habit, textures, cleavage	euhedral tabular XX and anhedral aggregates; replaces mt; alteration to goethite
Paragenesis	magnetite, hematite, ilmenite, Ca-Mg-silicates, goethite, po, py
Diagnostic features	Rpl, AExPol

Notes, drafts

253 Ilvaite, magnetite, hematite – Calamita, Elba, Italy

Different oriented ilvaite crystals (bluish grey to grey) surrounding a lens-like magnetite crystal (light brownish grey), which is rimmed by hematite (whitish grey). Late alteration product is limonite (medium grey).

Obj.: 10 × oil Polars: || Pol Photo width: 1.4 mm Photo No.: D14_21 Section: AS3136

254 Ilvaite - Calamita, Elba, Italy

Reflection pleochroism of ilvaite grains (different colour impressions from grey tint yellow to greyish blue). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D83_25 Section: AS3142

255 Ilvaite – Calamita, Elba, Italy

Same as above, with crossed polars. Ilvaite with characteristic orange anisotropism colours. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D83_29 Section: AS3142

256 Ilvaite, mt, hm – Calamita, Elba, Italy

Ilvaite partly replaced by magnetite (greyish brown) and hematite (light grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D84_04 Section: AS3142

Imiterite

Mineral name: Imiterite **Formula:** Ag₂HgS₂ VHN: 80-140 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 29.4	R ₂ = 32.0	
R _(oil) in %	(for 546 nm)	$R_1 \sim 13$	R ₂ ~ 17	R _(oil) estimated (*)
Colour impressio	on (in oil)	brownish grey	greyish blue	
BR ~ Rpl	(in oil)	strong		$A_{oil} = 27$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour	strong with colour
Colour: in 45° position	greyish blue	light greyish blue – grey tint brown
in other positions	brownish grey, olive	orange, yellow olive, blue
Extinction position	dark brownish grey	
Mode of extinction		
Internal reflections colour	orange red	
(IR) frequency	rare	
Twinning mode	lamellar (one direction)	
frequency	very rare	

Further observations	
Form, habit, textures, cleavage	euhedral to anhedral crystals; no #.
Paragenesis	acanthite, silver, polybasite, cinnabar, cp, sph, gn, asp
Diagnostic features	Rpl, AExPol

Notes, drafts

(*) R_{oil} data (14-13 %) from WALENTA & HESS (1985); Aufschluss, 36, 209-215, are probably too low.

257 Imiterite, argentite – Imiter, Morocco

Anhedral grains of imiterite (BR, medium greyish brown to light grey) intergrown with argentite (grey tint green). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D177_26 Section: BA1308

258 Imiterite, argentite – Imiter, Morocco

As above, with crossed polars. Note blue anisotropism colours of imiterite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: AS177_27 Section: BA1308

259 Imiterite, argentite, asp – Imiter, Morocco

Argentite (greyish green) enclosed by two grains of imiterite (upper part: light grey tint blue, lower part: grey tint brown). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D181_16 Section: BA1308

260 Imiterite, cinnabar – Çirakman tepe, Ladik, Turkey

Polycrystalline aggregate of imiterite (centre of photo, grey tint brown to light grey) beside cinnabar (medium grey, poor polishing, in part with red IR). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D32_08 Section: AS154

Iron (in German: ged. Eisen)

Mineral name: Iron (α-Ferrite) **Formula:** α-Fe VHN: 110-160 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in % (for 546 r	nm) 58	.1		
R _(oil) in % (for 546 r	nm) 4	.2		
Colour impression (in	oil) w	ite against cohen	ite: tint blue	
BR Rpl (in	oil)		$A_{oil} = 0$	

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	greyish black
in other positions		
Extinction position	black	
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode	not visible	
frequency		

Further observations	
Form, habit, textures, cleavage	droplets, sponge-like, skeletal grains; EB of cohenite (Fe ₃ C), oriented intergrown with mt or wuestite
Paragenesis	cohenite (=cementite), wuestite, mt, iscorite, graphite
Diagnostic features	paragenesis, similar to platinum but darker; cohenite is more yellow

Notes, drafts

Terrestrial formation of iron is rare, but often in meteorites and in artificial products. See also under: COHENITE. Meteoritic iron with < 6 wt.% Ni = α -(Fe, Ni) = Kamacite Meteoritic iron with > 6 wt.% Ni = γ -(Fe, Ni) = Taenite (artificial: austenite)

261 Iron, wuestite – Weil im Schönbuch, Stuttgart, Germany

Artificial medieval slag with tiny iron crystals (»hopper« and star-like, white), and skeletal wuestite aggregates (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D85_29 Section: AS3512

Old iron rope oxidized by sea water. Remnants of α-iron (white) in a mixture of different iron-oxihydroxides (shades if medium grey with some brown IR).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D51_30 Section: AS3534

263 Iron (kamacite, taenite) – Iron meteorite Gibeon

Broad lamellae of kamacite (matrix, with fine Neumann bands = mechanical, plate-shaped twin lamellae) enclosing elongated plessite (= mixture of kamacite + taenite). Thin rims of pure taenite (light yellowish white) are bordering the plessite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D215_10 Section: AS3649

264 Iron, po, pn, cp, wuestite, gr – Khungtukun massif, Taimyr, Sibiria, Russia

Formation of terrestrial iron (white) due to reduction of pyrrhotite (brownish cream), which is intergrown with chalcopyrite (yellow) and pentlandite (cream). At the contact between iron and pyrrhotite small grains of wuestite (medium grey). Graphite flake in the upper part of photo. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D221_01 Section: AS3686

Iscorite

Mineral name: Iscorite (Silicoferrite) **Formula:** $Fe_5^{2+}Fe_2^{3+}SiO_{10}$ VHN: --Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 16	R ₂ = 17	estimated
R _(oil) in %	(for 546 nm)	R ₁ = 5	R ₂ = 6	estimated
Colour impressio	on (in oil)	grey tint blue	grey tint brown	
BR < Rpl	(in oil)	distinct		A _{oil} = 18

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour tint	distinct with colour
Colour: in 45° position	grey tint orange	greyish brown – yellow brown (lighter)
in other positions	orange brown	orange, yellow olive, blue
Extinction position	black	
Mode of extinction	perfect, straight	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations

Form, habit, textures, cleavage	tabular, elongated, dendritic crystals in iron slags
Paragenesis	wuestite, mt, olivine
Diagnostic features	BR; in iron slags with wuestite, mt, and iron

Notes, drafts

R₂ || elongation.

Crystallization product of iron-rich and SiO₂-poor melts, cooling under slightly oxid. conditions. Ref.: NELL & VAN DEN BERG (1988): Trans. Inst. Min. Metall., 97, C53-C60. ROSE ET AL. (1990): J. Hist. Metall., 24, 27-32. 265 Iscorite, mt, wuestite, spinel – Medieval slag, Schalkstetten, N of Ulm, Germany

Iron slag with tiny tabular crystals of iscorite (medium grey tint brown, centre-right part of photo, arrow), skeletal magnetites and wuestites (left side) between zoned euhedral spinels (dark grey, with light magnetite rim). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D110_15 Section: AS3513

266 Iscorite, mt, wuestite, spinel – Medieval slag, Schalkstetten, N of Ulm, Germany

As above, but section 90° rotated. Iscorite now medium grey tint blue (arrow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D110_13 Section: AS3513

267 Iscorite, mt, wuestite, spinel – Medieval slag, Schalkstetten, N of Ulm, Germany

Enlarged part from above, with crossed polars. Note distinct orange anisotropism of iscorite. Obj.: 20 × oil Polars: × Pol Photo width: 0.4 mm Photo No.: D110_16 Section: AS3513

268 Iscorite, mt, wuestite, spinel – Medieval slag, Schalkstetten, N of Ulm, Germany

Zoned spinel crystals intergrown with tiny lamellar iscorites (medium grey) and dendritic wuestite (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.4 mm Photo No.: D110_21 Section: AS3513

Jacobsite (in German: Jakobsit)

Mineral name: Jacobsite **Formula:** (Mn,Fe,Mg)(Fe,Mn)₂O₄ VHN: 660-710 Crystal System: cub.

Observations with one polar (AE Pol)		
R _(air) in % (for 546 nm)	~ 21	
R _(oil) in % (for 546 nm)	~ 8	
Colour impression (in oil)	olive – olive brown – greyish olive	due to composition
BR Rpl (in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	red	
(IR) frequency	rare	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	granular, edge-rounded aggregates, often cataclasis; frequently zoned and patchy coloured
Paragenesis	limonite, pyrolusite, hematite
Diagnostic features	CI, similar to braunite (which is not greenish, but anisotropic)

Notes, drafts

Jacobsite with more than 54 % $Mn_3O_4 \rightarrow EB$ of HAUSMANNITE. Anisotropic jacobsite = Iwakiite (MnFe₂O₄; tetr.) See: MATSUBARA ET AL. (1979): Mineral J. (Tokyo), 9, 383-391.

J

269 Jacobsite, alabandite – Noda Tamagawa, Iwate, Japan

Equigranular aggregate of jacobsite (greyish olive, zoning) with alabandite (grey) in complex pyrometasomatic Mn-ore. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_11 Section: AS215

270 Jacobsite, alabandite, sph – Noda Tamagawa, Iwate, Japan

Jacobsite (greenish grey, upper and lower part), alabandite (light grey), and sphalerite (medium grey, partly with yellow brown IR).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_13 Section: AS215

271 Jacobsite, alabandite – Noda Tamagawa, Iwate, Japan

Granular aggregate of jacobsite (greenish grey) with few alabandite (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D103_02 Section: AS214

272 Jacobsite – Mina Barnabe, Bahia, Brazil

Jacobsite with spongy alteration rim.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D103_16 Section: AS218

Jamesonite

Mineral name: Jamesonite (jm) **Formula:** $Pb_4FeSb_6S_{14}$ VHN: 60-90 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_1 = 36.4 (\perp c)$	$R_2 = 44.2 (c)$	
R _(oil) in %	(for 546 nm)	$R_1 = 20.8 (\perp c)$	R ₂ = 28.8 (c)	
Colour impressio	on (in oil)	greyish tint olive	grey white tint (yellow) green	
BR ~ Rpl	(in oil)	distinct – strong		A _{oil} = 32

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour tint	distinct with colour tint
Colour: in 45° position	grey tint yellow	grey tint yellow – dark grey
in other positions		brown violet
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colour	orange red	
(IR) frequency	very rare	
Twinning mode	polysynthetic in one direction (100), always elongation of X	
frequency	predominant	

Further observations	
Form, habit, textures, cleavage	single X or bunches of needle-like XX without head planes, fibrous aggr. (»Feder-Erz«), compact masses; # (001) \perp to elongation, in part additional # elongation.
Paragenesis	gn, sph, asp, Ag-minerals, fahlore
Diagnostic features	CI, twinning elongation

Notes, drafts

In contrast to similar BOULANGERITE: #, no bluish AExPol, $R_2 > R_{Galena}$!

273 Jamesonite, galena – Sala silver mine, Västmanland County, Sweden

Granular jamesonite (with BR) with small relicts of galena (greyish white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D93_26 Section: AS245

274 Jamesonite, galena – Sala silver mine, Västmanland County, Sweden

Galena grain with two slightly darker jamesonite inclusions.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D94_08 Section: AS245

275 Jamesonite, galena – Sala silver mine, Västmanland County, Sweden

As above, with crossed polars. Note twinning within the two inclusions of jamesonite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D94_09 Section: AS245

276 Jamesonite, boulangerite – Sala silver mine, Västmanland County, Sweden

Jamesonite (lower right part of photo; reddish brown with faint twinning) beside boulangerite (bluish AExPol). See also photo no. 71 and 72! Obj.: 20 × oil Polars: × Pol (~!) Photo width: 0.7 mm Photo No.: D94_14 Section: AS245

Jordanite

Mineral name: Jordanite **Formula:** $Pb_{14}As_6S_{23}$

VHN: 110-140 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 38.1	R ₂ = 40.6	
R _(oil) in %	(for 546 nm)	R ₁ = 22.6	R ₂ = 25.1	
Colour impressio	n (in oil)	greyish white (tint green)	greyish white	
BR ~ Rpl	(in oil)	distinct		$A_{oil} = 10$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak without colour	distinct without colour
Colour: in 45° position	grey	light grey – dark grey
in other positions		
Extinction position	black	
Mode of extinction	undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic after (001)	
frequency	common	

Further observations	
Form, habit, textures, cleavage	rare euhedral elongated XX, often concentric to colloform masses; # (010)
Paragenesis	intergrown with schalenblende, galena, gratonite, other Pb-As-sulfosalts
Diagnostic features	paragenesis

Notes, drafts

Visually, R_2 (in oil) is very similar to R_{Galena} .

277 Jordanite, sphalerite – Michael im Weiler, Schwarzwald, Germany

Reniform aggregates of subparallel platy jordanite crystals (light grey) surrounded by sphalerite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D213_07 Section: KS1376

278 Jordanite, sphalerite – Michael im Weiler, Schwarzwald, Germany

As above, with crossed polars. Jordanite with undulatory extinction; sphalerite with deep red internal reflections.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D213_08 Section: KS1376

279 Jordanite, galena, sphalerite – Michael im Weiler, Schwarzwald, Germany

Irregular masses of jordanite (light grey) above and below a galena-rich layer (slightly more white), all in a groundmass of schalenblende. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D212_27 Section: KS1376

280 Jordanite, galena, sphalerite – Michael im Weiler, Schwarzwald, Germany

As above, with crossed polars. Note the undulatory extinction of jordanite, and the yellow to orange-red internal reflections of schalenblende. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D212_28 Section: KS1376

Kermesite

Mineral name: Kermesite **Formula:** Sb₂S₂O

VHN: 30-90 Crystal System: tric., ps. mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 25.1	R _b = 30.4	R _c = 25.9
R _(oil) in %	(for 546 nm)	R _a = 10.7	R _b = 15.1	R _c = 11.3
Colour impressio	n (in oil)	greyish olive	greyish blue	grey
BR < Rpl	(in oil)	strong		A _{oil} = 35

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour tint	distinct with colour
Colour: in 45° position	grey tint yellow	greyish blue – greyish yellow (lighter)
in other positions	greenish blue – blue violet	
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour	red violet	
(IR) frequency	abundant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	typical radial fibrous aggregates after [010]; oxidation product of stibnite (but no pseudomorphs!)
Paragenesis	stibnite
Diagnostic features	red violet IR, habit, paragenesis

Notes, drafts

281 Kermesite, stibnite – Bräunsdorf, Saxony, Germany (?)

Kermesite (slightly darker than stibnite) around stibnite needles (centre of photo, greyish white – white).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D99_21 Section: AS1017

282 Kermesite, stibnite – Bräunsdorf, Saxony, Germany (?)

Kermesite needles (medium grey) with elongated stibnites (greyish white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D99_22 Section: AS1017

283 Kermesite, stibnite – Bräunsdorf, Saxony, Germany (?)

As above, with crossed polars. Kermesite with characteristic red IR, and stibnite with strong AExPol. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D99_24 Section: AS1017

284 Kermesite, stibnite – Bräunsdorf, Saxony, Germany (?)

Kermesite needles in different orientation (upper left part) surrounded by stibnite needles. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D99_26 Section: AS1017

Kesterite

Mineral name: Kesterite **Formula:** β -Cu₂(Zn,Fe)SnS₄ VHN: ~ 340 Crystal System: tetr., ps. cubic

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 25.6	R _{e'} = 24.8	
R _(oil) in %	(for 546 nm)	R _o = 11.5	R _{e'} = 10.9	
Colour impressio	on (in oil)	grey tint olive	grey tint olive	
BR > Rpl	(in oil)	very weak		$A_{oil} = 5$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very weak without colour	weak without colour
Colour: in 45° position	dark grey	impure dark grey
in other positions		
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral to anhedral grains intergrown with stannoidite, stannite and other sulfides
Paragenesis	stannite, stannoidite, asp, wolframite, cassiterite
Diagnostic features	paragenesis

Notes, drafts

Fe-rich Kesterite: Ferrokesterite (often described as isostannite)

285 Kesterite, asp – St. Michaels Mount, Cornwall, England

Large grain of kesterite (grey) enclosed by arsenopyrite (white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_24 Section: AS3627

286 Kesterite, asp – St. Michaels Mount, Cornwall, England

As above with crossed polars; weak anisotropism is visible.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D155_25 Section: AS3627

Kesterite (grey) with relicts of stannoidite (orange brown), and arsenopyrite (white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_27 Section: AS3627

288 Kesterite, stannoidite, asp – St. Michaels Mount, Cornwall, England

As above with crossed polars showing weak anisotropism of kesterite and distinct anisotropism of stannoidite with spindle-like lamellae (centre of photo). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D155_26 Section: AS3627

Lepidocrocite (in German: Lepidokrokit, Rubinglimmer)

Mineral name: Lepidocrocite **Formula:** γ-FeOOH VHN: ~ 400 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 11.6	R ₂ = 18.4	
R _(oil) in %	(for 546 nm)	R ₁ = 2.0	R ₂ = 6.2	
Colour impressio	on (in oil)	dark grey – black (dull)	white grey tint blue	
BR > Rpl	(in oil)	extremly strong		A _{oil} = 102

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism inten	sity/colour	strong without colour	strong without colour
Colour: in 4	5° position	white	white – white
in othe	er positions		
Extinction position		black	
Mode of extinction		perfect	
Internal reflections colour brownish red, seldom reddish yellow or brown; not as brilliant red as in hematite		v or brown;	
(IR)	frequency	common	
Twinning	mode		
	frequency		

Further observations	
Form, habit, textures, cleavage	thin tablets, tabular, radial aggregates; often intergrown with goethite
Paragenesis	together with goethite as oxidation product of Fe-sulfides
Diagnostic features	strong BR and AExPol, brownish red IR

Notes, drafts

Extensively common, intensively less abundant than goethite. The similar LITHIOPHORITE has no IR!

289 Lepidocrocite, py, cp, carbonate – Rotgülden mine, Salzburg, Austria

Equigranular aggregate of Pyrite and chalcopyrite (upper part) in association with fan-shaped lepidocrocite (varying shades of grey → strong BR, central part). Carbonate groundmass with goethite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D22_16 Section: AS3536

290 Lepidocrocite – Rotgülden mine, Salzburg, Austria

As above, with crossed polars. Strong anisotropism of fan-shaped lepidocrocite (with some red internal reflections!) surrounded by goethite (many orange-brown IR).

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D22_18 Section: AS3536

291 Lepidocrocite, goethite – Stuhlskopf, Schwarzwald, Germany

Fine-grained mixture of goethite and lepidocrocite with minor hematite (light grey). Small grains of goethite and lepidocrocite are difficult to identify with uncrossed polars (but see next photo!). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D61_03 Section: FP43-1

292 Lepidocrocite, goethite – Stuhlskopf, Schwarzwald, Germany

As above, now with crossed polars. Lepidocrocite exhibits strong anisotropism (light grey to white), whereas anisotropism of goethite is weak and mainly masked by abundant internal reflections (varying yellow-brown). Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D61_02 Section: FP43-1

Lithiophorite

Mineral name: Lithiophorite **Formula:** $LiAl_2Mn_3O_9 * H_2O$ VHN: 60-100 Crystal System: mcl., ps. hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 20.4	R ₂ = 9.8	
R _(oil) in %	(for 546 nm)	R ₁ ~ 8	R ₂ ~ 1.5	estimated
Colour impressio	on (in oil)	grey white (tint blue)	grey black (tint brown)	
BR > Rpl	(in oil)	extremly strong		A _{oil} = 137

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong without colour	very strong without colour
Colour: in 45° position	white	white – white
in other positions	Co-rich: whitish rose	
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	fibrous, needle-like, garben-like aggregates, often zoned, replaces Mn-silicates and other Mn-minerals
Paragenesis	other Mn-minerals
Diagnostic features	paragenesis, AExPol, BR

Notes, drafts

 $\text{Li} \rightarrow \text{Co},$ Ni, Cu, and Pb.

Cl varies with composition (> 1-2 % CoO \rightarrow greyish rose), higher CoO content (called »asbolane«) \rightarrow pink. The similar LEPIDOCROCITE has internal reflections!

293 Lithiophorite, manganomelane – Ungwan Mallam Ayuba, N-Nigeria

Fine-grained lithiophorite aggregate (medium to dark bluish grey) intergrown with manganomelane (light grey); both replacing Mn-rich amphibole and spessartite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_09 Section: AS238

294 Lithiophorite, manganomelane – Ungwan Mallam Ayuba, N-Nigeria

As above, with crossed polars. Very strong anisotropism of lithiophorite is easy visible.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D13_10 Section: AS238

295 Lithiophorite, manganomelane – Ungwan Mallam Ayuba, N-Nigeria

Rhythmic layering of lithiophorite (BR) and manganomelane (highest R) as alteration product of garnet (upper left and lower right part of photo) and amphibole (lower centre of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_28 Section: AS238

296 Lithiophorite, mt, hm – Ruwan Doruwa, Kaduna, N-Nigeria

Layers of lithiophorite (BR; light to medium grey) with limonite (medium grey), and magnetite crystals (with beginning martitization). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D133_11 Section: AS241

Loellingite

L

Mineral name: Loellingite (lo) **Formula:** FeAs₂ VHN: 860-920 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 53.4	R ₂ = 55.5	
R _(oil) in %	(for 546 nm)	R ₁ = 38.4	R ₂ = 41.6	
Colour impressio	on (in oil)	whitish yellow	white tint blue	
BR < Rpl	(in oil)	distinct (stronger than	n safflorite)	A _{oil} = 8

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	r strong without colour	strong with colour
Colour: in 45° positio	light grey	greyish yellow – greyish blue
in other position	greyish white tints of yellow/blue	yellow brown – blue
Extinction position	greyish black	
Mode of extinction	not perfect, straight, patchy	
Internal reflections colou	r	
(IR) frequency		
Twinning mod	twins and triplets {110} (swallowtail, »Schwalbenschwanz«); polysynthetic {011}	
frequenc	common; rare	

Further observations	
Form, habit, textures, cleavage	often euhedral tabular XX, radial aggr., rare (visible) zoning;
Paragenesis	asp, nk, bismuth, gersdorffite, skutterudite
Diagnostic features	similar to safflorite but without orange brown AExPol and less zoned

Notes, drafts

Be aware of the complete solid solution loellingite – safflorite. Similar to ARSENOPYRITE and SAFFLORITE!

297 Loellingite – Nieder-Beerbach, Odenwald, Germany

Elongated crystals of loellingite with swallowtail (»Schwalbenschwanz«) twinning (indeed triplets) with distinct reflection pleochroism.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D172_26 Section: CHe11

298 Loellingite – Nieder-Beerbach, Odenwald, Germany

As above, with crossed polars showing strong anisotropism of loellingite (stronger than for asp).

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D172_27 Section: CHe11

299 Loellingite, asp, sph, gn – Geyer mine, Saxony, Germany

Elongated crystals of loellingite (core, whitish yellow) overgrown by arsenopyrite (white rim), in sphalerite (showing cp-disease), galena (greyish white), and complex pseudomorph of pyrite plus galena after pyrrhotite (left side of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D30_14 Section: AS1758

300 Loellingite, asp, sph, gn – Geyer mine, Saxony, Germany

As above, but 90° rotated. The colour impression of loellingite is now white tint blue.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D30_15 Section: AS1758

Luzonite

L

Mineral name: Luzonite – Stibioluzonite **Formula:** $Cu_{3}^{1+}(As,Sb)^{5+}S_{4}$ VHN: 200-400 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 24.5	R ₂ = 27.3	
R _(oil) in %	(for 546 nm)	R ₁ = 12.2	R ₂ = 14.0	
Colour impressio	n (in oil)	greyish yellow	orange brown	
BR < Rpl	(in oil)	strong		A _{oil} = 14

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour		strong without colour	strong wit colour tint
Colour: in 45° p	osition	light grey	light grey tint yellow – very dark grey
in other po	sitions		
Extinction position		black	
Mode of extinction		straight to morphology, oblique to the twin planes	
Internal reflections	colour		
(IR) freq	luency		
Twinning	mode	complex, fine lamellar twinning after two or three directions	
frec	quency	/ always, typical	

Further observations	
Form, habit, textures, cleavage	often paramorphic transformation to enargite, twinning, occasional zoned; no #!
Paragenesis	enargite, pyrite, chalcopyrite, fahlore, sphalerite
Diagnostic features	orange CI, twinning, AExPol

Notes, drafts

More orange brown than the similar ENARGITE.

301 Luzonite, enargite, digenite, py – Bor, Serbia

Enargite (greyish) replacing luzonite (more brown, relicts of twinning is visible); pyrite with covellite, and digenite (with small chalcocite lamellae). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D50_05 Section: AS113

302 Luzonite, enargite, digenite, py – Bor, Serbia

As above, but 90° rotated. Enargite now with lower reflectance than luzonite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D50_06 Section: AS113

303 Luzonite, fahlore, cp – Clara mine, Oberwolfach, Schwarzwald, Germany

Luzonite (brown colours) in fahlore (grey), plus chalcopyrite and covellite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D54_09 Section: AS3578

304 Luzonite, enargite, py – »Colorado«, USA

Tiny inclusion of luzonite (orange brown – red brown; arrow in centre of picture) surrounded by enargite (greyish), pyrite (whitish yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D115_11 Section: AS3635
Mackinawite

Mineral name: Mackinawite **Formula:** (Fe,Ni,Co)_{1+x}S VHN: 50-180 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in % (for 546	nm)	R _o = 40.4	R _{e'} = 16.2	
R _(oil) in % (for 546	nm)	R _o = 28.4	R _{e'} = 5.2	
Colour impression (in	oil)	greyish white tint rose	grey	
BR ~ Rpl (in	oil)	extremely strong		A _{oil} = 138

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very strong with colour tint	very strong with colour tint
Colour: in 45° position	white tint yellow	white tint yellow – whitish grey
in other positions		
Extinction position	black	
Mode of extinction	straight, perfect, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	lamellar	
frequency	occasional (Mooihoek deposit)	

Further observations	
Form, habit, textures, cleavage	tabular to anhedral flakes and usually very small (some μm); as EB in iron-rich cp, together with cubanite
Paragenesis	cp, pn, py, cub, maucherite
Diagnostic features	BR, AExPol, paragenesis, small grain size (!)

Notes, drafts

x in formulae max. 0.08. Similar to MOLYBDENITE.

305 Mackinawite, cp – Phalaborwa, RSA

Groundmass of chalcopyrite (yellow, with #!) with small N-S veinlet of mackinawite, and extended areas of replacement features with mackinawite in different orientations (BR from nearly white to medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D200_16 Section: U2-130

306 Mackinawite, cubanite, po, cp – Gryhytthan, Sweden

Cubanite triplet with small flame-like inclusions of mackinawite (medium grey) and chalcopyrite, within pyrrhotite (poor polishing.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D26_03 Section: AS160

307 Mackinawite, cubanite, po, cp, py – Phalaborwa, RSA

Oriented mackinawite laths (white to dark grey) and two small pyrrhotite inclusions (reddish brown) within large cubanite grain (light grey). Chalcopyrite (lower left) and tiny pyrites. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D200_19 Section: U2-130

308 Mackinawite, py, cp – Zlaté Hory, Okres Jeseník, Czech Republic

Euhedral pyrite with rounded inclusions of gn+sph (lower left part), cp+sph, and cp+cub+ mackinawite (right part of pyrite). The flame-like inclusions of mackinawite (in cp) are distinct darker than cubanite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D84_13 Section: AS2553

Maghemite

Mineral name: Maghemite (mgh) **Formula:** $(Fe^{3+}_{0.67}\square_{0.33})Fe_2O_4$ VHN: ~ 400 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	24.4		
R _(oil) in %	(for 546 nm)	10.3		
Colour impressio	n (in oil)	bluish grey	against mt: greyish blue	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensi	ty/colour	homogeneous dark	
Colour: in 45	° position	black	
in other	positions		
Extinction position			
Mode of extinction			
Internal reflections	colour	brownish red (colour between hm	n and goethite)
(IR) f	requency	very rare	
Twinning	mode		
f	requency		

Further observations	
Form, habit, textures, cleavage	irregular, net- to cloud-like pseudomorphs after mt; alteration to hematite
Paragenesis	mt, hm, goe, lepidocrocite
Diagnostic features	Cl, plus paragenesis with magnetite or hematite

Notes, drafts

Titanomaghemite $(Ti^{4+}_{0.5}\Box_{0.5})Fe^{3+}_{2}O_{4})$ has higher R and does not alter to hematite. »Kenomagnetite«: Name for relicts of lacunar spinel formed as a transitional stage phase (between magnetite and maghemite) during hematitization of magnetite (first introduced 1969 by Kullerud et al., see MORRIS (1980), Econ. Geol., 75, 184-209).

309 Maghemite, mt, hm – Placer sample from Milos island, Greece

Magnetite grains (brownish grey) rimmed and replaced by maghemite (bluish grey, centre) or by hematite (whitish grey, grains on left side). Upper part of photo: ilmenite (with BR). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D08_10 Section: AS139

310 Maghemite, mt – Locality unknown

Irregular replacement of magnetite (brownish grey) by maghemite (bluish grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D53_15 Section: 9-2-2

311 Maghemite, mt – Locality unknown

Transformation of magnetite into maghemite (combined transmitted and reflected light). Matrix of clinopyroxene. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D53_25 Section: 8-6-3

312 Maghemite, mt, hm – Calamita, Elba, Italy

Complex oxidation process of magnetite. Main magnetite groundmass is replaced by hematite (greyish white), whereas two "fresh" magnetite crystals (left and right side of photo) show an internal irregular zone of maghemite (bluish white) replacements. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D14_14 Section: AS2600

Magnetite – Ti-Magnetite

 $\begin{array}{l} \textbf{Mineral name: (Ti-)Magnetite (mt)} \\ \textbf{Formula: } [Fe^{2+}]_{1+x} [Fe^{3+}]_{2-2x} [Ti^{4+}]_x O_4 \end{array}$

VHN: 500-550 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	20	Ti-Mt: 16 to 17	
R _(oil) in %	(for 546 nm)	8	Ti-Mt: 5 to 6	Mg-Ferrite: 5.9 %
Colour impressi	ion (in oil)	grey (often with brownish or yellow tint)	Ti-Mt: grey tint brownish pink	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark (*)	sometimes very weak without colour
Colour: in 45° position	black	greyish black
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral grains common; EB of ilmenite, ulvite, spinel etc. Zoning with Cr-/Al-/Mg-rich cores; often with beginning martitization (\rightarrow hem); no #
Paragenesis	hematite, ilmenite, spinel, chromite, pyrite
Diagnostic features	paragenesis, martitization, no IR, no #

Notes, drafts

CI and R are varying with composition (Ti, Mn, Cr, Al, Si).

Ti-rich end member (Fe_2TiO_4) = ULVÖSPINEL (ULVITE).

(*) Anisotropic magnetite (cloth-texture) probably results from exsolution of minute ilmenite lamellae. Visible fine zoning (very thin delicate zones!) is typical for SiO₂-rich magnetite in pyrometasomatic ores. »KENOMAGNETITE«: see maghemite.

313 Magnetite, ilm, spl, – Krzemianka, Suwalki-Intrusion, NE-Poland

Magnetite host with exsolution of a) trellis-type lamellae of ilmenite (brownish grey) and b) minute exsolution bodies of different oriented spinels (black, lens shaped or isometric), c) tiny spinel blebs bordering larger trellis-type ilmenites, indicating the younger age of these spinels.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_12 Section: AS198

Magnetite in cloth-type texture with fine exsolution bodies of ilmenite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D154_02 Section: GM1852

315 Magnetite, ilm, cloth-texture – Ilimaussaq, Greenland

As above with crossed polars. Note the distinct anisotropism of the cloth-texture. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D154_05 Section: GM1852

316 Magnetite, ilm – Ganawuri Complex, Jos Plateau, Nigeria

Magnetite with large ilmenite lamella (right side, partly altered to leached ilmenite, grey) and tiny trellis-type exsolution bodies of ilmenite, in addition to the scarcely visible cloth-texture. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_20 Section: AS324

317 Magnetite, hm – Wheel Turner mine, Mt. Painter, Australia

Magnetite with lamellae visible by slightly different reflectance (greyish brown), in part (esp. along lamellae contacts) replaced by hematite. In this case the reduced reflectance of magnetite is caused by silica-enrichment. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D87_09 Section: WT7

318 Magnetite, rutile – Kiruna, Sweden

Anhedral aggregates of magnetite (grey) with tiny inclusions of rutile (slightly higher R). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_01 Section: AS1742

319 Ti-Magnetite, cpx, nepheline – Hohenstoffeln, Hegau, Germany

Skeletal crystal of titanomagnetite ("Hopper"-crystal) in nepheline groundmass (dark grey) with large cpx crystals (medium grey). Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D43_12 Section: AS2873

320 Magnetite, hm, qz – Maria Schneegrube, Bergstadt, Moravia, Czech Republic

Metamorphic ore with rotated magnetite crystals in fine-grained groundmass of hematite and quartz. Note the newly formed quartz in the pressure shadows of the magnetites. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D105_07 Section: AS2540

321 Magnetite, hm, carbonate – BIF, Mamatwan mine, Hotazel, RSA

Banded iron formation: Fine-grained groundmass of »primary« hematite (light grey) and carbonate (dark grey) with larger crystals of younger (diagenetic?) magnetite (including hematite and carbonate relicts). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D17_17 Section: M4

322 Magnetite, hematite, goethite – BIF, Hamersley Range, Australia

Euhedral crystals of magnetite (violet-grey »kenomagnetite«) which show advanced transformation into hematite (martitization); some goethite (grey) between the magnetite grains.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D214_14 Section: BIF5

323 Magnetite, pyrite – San Leone, Sardinia, Italy

Patchy zoned magnetite (medium grey) with small veinlets of pyrite (light yellow) in pyrometasomatic ore. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D179_22 Section: AS204

324 Magnetite, hematite – Lakovica near Bucim, Macedonia

Pyrometasomatic ore with relicts of unzoned magnetite I (brown) in large hematite I laths (whitish grey) which are themselves overgrown by delicately zoned magnetite II (which is in part replaced by younger hematite II). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D105_14 Section: AS125

Malachite

Mineral name: Malachite (mal) **Formula:** $Cu_2[(OH)_2 | CO_3]$ VHN: ~ 160 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 7.7	R ₂ = 9.8	calculated from n
R _(oil) in %	(for 546 nm)	R ₁ = 0.2	R ₂ = 1.3	calculated from n
Colour impressio	on (in oil)	grey (with green IR)	grey (with green IR)	
BR > Rpl	(in oil)	extremely strong		A _{oil} = 147

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong	strong
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	various shades of green	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	tabular, spherical to radial fibrous aggregates
Paragenesis	other Cu minerals, barite, quartz, and azurite
Diagnostic features	green IR, BR

Notes, drafts

Similar to many Cu-sulfates (with usually weak BR).

325 Malachite, yarrowite, cv, fh – Frankenberg, Hesse, Germany

Tiny needles of malachite (green IR) replacing fahlore (grey), yarrowite (blue) and covellite (violet).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D95 22 Section: AS3554

326 Malachite, hm, goe – Yudnamutana Gorge, N. Flinders Range, S-Australia

Green internal reflections of radial fibrous malachite in cavity with colloform hematite (light grey) and goethite (medium grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D198_01 Section: YT-287

327 Malachite, hm, goe – Yudnamutana Gorge, N. Flinders Range, S-Australia

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D198_02 Section: YT-287

328 Malachite, hm, ilm, cuprite – British Empire Mine, Mt. Painter, S-Australia

Tabular crystal of hematite (greyish brown; with ilmenite exsolution bodies) beside cuprite (centre of photo, grey), and malachite (greenish).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D87_19 Section: BEM375neu

Manganite

Mineral name: Manganite **Formula:** γ-MnOOH VHN: 630-740 Crystal System: mcl., ps. o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_a \sim 17$	R _b = 14.1	R _c = 20.5
R _(oil) in %	(for 546 nm)	R _a ~ 5	R _b = 3.5	R _c = 7.5
Colour impressio	n (in oil)	grey tint brown	grey tint olive	grey
BR > Rpl	(in oil)	strong		A _{oil} = 73

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	strong with colour tint	strong with colour tint
Colour: in 45° position	greyish yellow	greyish yellow – grey tint blue
in other position		brownish grey
Extinction position	black	
Mode of extinction	straight, perfect, also undulatory	
Internal reflections colou	red – reddish brown	
(IR) frequency	rare – common	
Twinning mode	simple {011}	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	usually large elongated XX, often broken; replacement by pyrolusite; perfect # {010}
Paragenesis	pyrolusite, braunite, bixbyite, hollandite, hausmannite, manganomelane
Diagnostic features	replacement by pyrolusite, perfect #, similar to hausmannite

Notes, drafts

 R_{c} || elongation. R_{a} ~ isotropic section

329 Manganite, braunite – Sailauf quarry, Spessart, Germany

Porous grains of manganite (centre, distinct bireflection!) within braunite aggregate. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D60_02 Section: S61

330 Manganite, braunite – Sailauf quarry, Spessart, Germany

As above, with crossed polars. Manganite exhibits reddish brown internal reflections.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D60_04 Section: S61

331 Manganite, pyrolusite – Broken Hill, NSW, Australia

Manganite (medium to dark grey) is replaced by oriented pyrolusite (medium to light yellowish grey). This pseudomorph of pyrolusite after manganite is characterized by typical cracks ||(010)). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D33_04 Section: AS217

332 Manganite – Haut-Poirot, Vosges, France

Manganite crystals with distinct Rpl and BR. Replacement by pyrolusite (whitish yellow) starts at grain boundaries. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D138_21 Section: JD06

Manganomelane (cryptomelane – romanèchite)

Mineral name: Manganomelane (C.-R.)* **Formula:** (K,Ba)₂Mn₈O₁₆ * xH₂O

VHN: 600-900 (500-700) Crystal System: mcl. or o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ ~39(31)	R ₂ ~ 28 (23)	R estimated
R _(oil) in %	(for 546 nm)	R ₁ ~ 22 to 24 (16)	R ₂ ~ 13 to 15 (10)	R estimated
Colour impressio	on (in oil)	white (greyish white)	greyish white (grey tint brown)	
BR > Rpl	(in oil)	strong (strong)		A _{oil} = ~50

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct (strong) without colour	distinct (strong) without colour
Colour: in 45° position	greyish white	greyish white – grey
in other positions	R.: near ext.pos. olive brown	
Extinction position	black	
Mode of extinction	perfect	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures,	fibrous, needle-like X

Form, habit, textures, cleavage	fibrous, needle-like XX, botryoidal masses of acicular XX; often fine-grained and intergrown with other Mn-minerals
Paragenesis	pyrolusite, lithiophorite, goethite, nsutite, and primary Mn-minerals
Diagnostic features	morphology, paragenesis, alteration product of Mn ²⁺ -minerals

Notes, drafts

R_{Rom} < R_{Cry} (C.-R.)*: Cryptomelane – (Romanèchite values in parentheses). Romanèchite is often named hollandite. Optical properties are varying with composition and grain size!

333 Manganomelane, ramsdellite, pyrolusite – Mistake mine, Arizona, USA

Secondary formation of manganomelane needles (light grey to medium grey BR!) in pyrolusite (yellowish white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_15 Section: AS132

Plates and needles of Ba-rich manganomelane (whitish grey) within goethite (grey, partly with brown IR) from an altered hydrothermal barite vein.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: AS3248 Section: D69_29

337 Romanèchite (hollandite) – Clara mine, Schwarzwald, Germany

Large crystals of Ba-rich manganomelane with distinct BR (note the brownish tint for R_{min}).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D103_13 Section: AS2177

336 Romanèchite (hollandite) – Clara mine, Schwarzwald, Germany

As above, with crossed polars. Strong anisotropism effects of manganomelane are typical. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D103_14 Section: AS2177

Marcasite (in German: Markasit)

Mineral name: Marcasite (mrc) **Formula:** FeS₂ VHN: 760-1560 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 49.1	R ₂ = 56.2	
R _(oil) in %	(for 546 nm)	R ₁ = 34.3	R ₂ = 42.3	
Colour impressio	n (in oil)	white cream tint brown	white tint turquoise	
BR ~ Rpl	(in oil)	distinct		$A_{oil} = 20$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	distinct with colour	distinct with colour
Colour: in 45° position	yellow green	light grey yellow – turquoise
in other positions	different shades of green	brownish, green
Extinction position	black	
Mode of extinction	perfect, undulatory (if deformed)	
Internal reflections colou	·	
(IR) frequency		
Twinning mode	polysynthetic after one direction; and coarse after (110)	
frequency	common	

Further observations	
Form, habit, textures, cleavage	partly very fine-grained, colloidal, tabular crystals; not stable above 240° C → pyrite; replaces pyrrhotite (bird eyes-formation); # {101} distinct
Paragenesis	pyrite, pyrrhotite, galena, sphalerite
Diagnostic features	green AExPol, CI, paragenesis

Notes, drafts

Similar to ARSENOPYRITE, LOELLINGITE, and SAFFLORITE.

337 Marcasite, py – Tepla, Slovenia

MVT ore with pyrite (yellowish white) overgrown by tabular marcasite crystals.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D57_27 Section: AS3501

338 Marcasite, py – Tepla, Slovenia

Same as above, with crossed polars. Note the typical green (and brownish) colours of marcasite with crossed polars. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D57_28 Section: AS3501

339 Marcasite, py – Tepla, Slovenia

Two grains of marcasite (Rpl and BR visible) with small inclusion of pyrite (yellowish white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D57_31 Section: AS3501

340 Marcasite, py – Tepla, Slovenia

Same as above, with crossed polars. Note the undulatory extinction of marcasite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D57_33 Section: AS3501

Marokite

Mineral name: Marokite **Formula:** CaMn₂O₄ VHN: ~ 800 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 16.0	R ₂ = 18.6	
R _(oil) in %	(for 546 nm)	R ₁ = 4.5	R ₂ = 6.4	
Colour impressio	n (in oil)	grey tint rose	grey tint olive – yellow	
BR < Rpl	(in oil)	strong	A _{oil}	= 36

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour	strong with colour
Colour: in 45° position	yellowish green	olive green – greenish grey
in other positions	violet grey	
Extinction position	black	
Mode of extinction	not straight (after Ramdohr)	
Internal reflections colour	red	
(IR) frequency	frequent	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	coarse-grained or prismatic XX; # perfect {100}, good {001}
Paragenesis	hausmannite, lithiophorite, braunite, pyrolusite, manganomelane
Diagnostic features	Rpl, AExPol

Notes, drafts

341 Marokite, hausmannite, lithiophorite – Tachgagalt, Morocco

Grey porous hausmannite (upper part) with marokite (R_{max} = lighter than R of hausmannite). Small veinlet of lithiophorite (E-W, medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D133_14 Section: AS232

342 Marokite, hausmannite, lithiophorite – Tachgagalt, Morocco

As above, but 90° rotated. R_{min} of marokite now darker than R of hausmannite (grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D133_15 Section: AS232

343 Marokite, hausmannite, lithiophorite – Tachgagalt, Morocco

As above, with crossed polars. Note the yellowish green AExPol of marokite with some red IR. Hausmannite (with twinning and red IR), and veinlet of lithiophorite (very strong AExPol). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D133_17 Section: AS232

344 Marokite, hausmannite – Tachgagalt, Morocco

Small greyish hausmannite cubes (upper right part) beside large marokite crystals, which show strong reflection pleochroism (grey tint rose – grey tint olive yellow – grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D133_20 Section: AS232

Maucherite

Mineral name: Maucherite **Formula:** Ni₁₁As₈

VHN: 620-720 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_1 = 48.4$	R ₂ = 49.6	
R _(oil) in %	(for 546 nm)	R ₁ = 35.0	R ₂ = 36.0	
Colour impressio	on (in oil)	white tint ochre	white (impure)	
BR ~ Rpl	(in oil)	extremely weak		$A_{oil} = 2$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	very weak with colour	very weak with colour
Colour: in 45° position	brownish black	brown – light brown
in other position	5	
Extinction position	greyish black	
Mode of extinction	not perfect	
Internal reflections colou	r	
(IR) frequenc	y	
Twinning mod	e polysynthetic	
frequency	v occasional	

Further observations	
Form, habit, textures, cleavage	massive or anhedral elongated XX, replaces nickeline and vice versa
Paragenesis	Co-Ni-arsenides, esp. nickeline
Diagnostic features	very weak BR and AExPol, paragenesis

Notes, drafts

CI against nickeline more greyish.

345 Maucherite, nickeline – Sangershausen, Hesse, Germany

Maucherite (greyish) with relicts of nickeline (shades of orange).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D12_12 Section: AS1000

346 Maucherite, nickeline – Sangershausen, Hesse, Germany

Maucherite (groundmass) with small veinlet of millerite (light yellow), and nickeline (orange).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D12_13 Section: AS1000

347 Maucherite, nickeline – Sangershausen, Hesse, Germany

Maucherite with tiny relicts of nickeline, and small veinlets filled with younger millerite (light yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D98_22 Section: AS1000

348 Maucherite, nickeline – Sangershausen, Hesse, Germany

As above, with crossed polars. Weak, partly undulatory anisotropism of maucherite. Note strong anisotropism of millerite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D98_23 Section: AS1000

Metacinnabar (in German: Metacinnabarit)

Mineral name: Metacinnabar Formula: α-HgS VHN: ~ 100 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (1	for 546 nm)	25.2	
R _(oil) in % (1	for 546 nm)	11.2	
Colour impression	(in oil)	brownish grey	
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism inten	sity/colour	very weak without colour	very weak without colour
Colour: in 4	5° position	greyish black	greyish black
in oth	er positions		
Extinction position		greyish black	
Mode of extinction			
Internal reflections	colour		
(IR)	frequency		
Twinning	mode	polysynthetic after more than one direction ({111}+{211}) often	
	frequency	cy	
		frequent	

Further observations	
Form, habit, textures, cleavage	granular, anhedral aggregates; replacement by cinnabar (along twin lamellae, if present)
Paragenesis	cinnabar
Diagnostic features	CI, paragenesis

Notes, drafts

Similar to Hg-FAHLORE (schwazite), which is really isotropic, and has no twins.

349 Metacinnabar, cinnabar – Çirakman tepe, Ladik, Turkey

Relicts of metacinnabar (brownish grey) in cinnabar (grey with red IR).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_03 Section: AS154

350 Metacinnabar, cinnabar – Çirakman tepe, Ladik, Turkey

As above, with crossed polars. Metacinnabar is not completely black.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D32_04 Section: AS154

351 Metacinnabar, cinnabar, stibnite – Çirakman tepe, Ladik, Turkey

Relicts of metacinnabar (brownish grey) in cinnabar (grey, some red IR); anhedral stibnite (partly altered). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_05 Section: AS154

352 Metacinnabar, cinnabar, stibnite – Çirakman tepe, Ladik, Turkey

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D32_06 Section: AS154

Miargyrite

Mineral name: Miargyrite **Formula:** AgSbS₂

VHN: 100-130 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 31.4	R ₂ = 34.2	
R _(oil) in %	(for 546 nm)	R ₁ = 16.1	R ₂ = 18.2	
Colour impressio	n (in oil)	grey tint blue	grey tint rose cream	also grey moiré
BR < Rpl	(in oil)	strong		A _{oil} = 12

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensit	ty/colour	strong without colour	strong with colour tint
Colour: in 45°	oposition	light grey	yellowish grey
in other	positions		often masked by IR
Extinction position		often masked by IR	dark bluish violet
Mode of extinction		often undulatory	
Internal reflections	colour	raspberry red (similar to pyrargyrite, proustite)	
(IR) f	requency	common (but less intensive and less common than in pyrargyrite)	
Twinning	mode	polysynthetic	
f	requency	very rare	

Further observations

Form, habit, textures, cleavage	granular or thick tabular XX
Paragenesis	pyrostilpnite, sph, tetrahedrite, asp, gn, other Ag-minerals
Diagnostic features	strong Rpl, AExPol, IR

Notes, drafts

In comparison to PYRARGYRITE more white; against GALENA: lower R and more greenish brown.

353 Miargyrite, jamesonite, cassiterite – Oruro, Bolivia

Aggregate of miargyrite (centre, light grey, BR) with inclusions of euhedral jamesonite (white). Main mass is jamesonite; some isolated small cassiterite crystals (dark grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D109_17 Section: AS1018

354 Miargyrite, jamesonite, cassiterite – Oruro, Bolivia

As above, with crossed polars. Red internal reflections of miargyrite are visible.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D109_19 Section: AS1018

355 Miargyrite, argentite – Flammeck, Glottertal, Schwarzwald, Germany

Replacement of miargyrite (light grey, R_{max}) by argentite (slightly darker, porous). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D196_18 Section: AS274

356 Miargyrite, argentite – Flammeck, Glottertal, Schwarzwald, Germany

As above, but 90° rotated. Miargyrite (medium grey, with R_{min}) is now slightly darker than argentite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D196_17 Section: AS274

Millerite

Mineral name: Millerite (mir) Formula: NiS VHN: 190-380 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 50.0	R _{e'} = 54.2	
R _(oil) in %	(for 546 nm)	R _o = 37.9	R _{e'} = 43.8	
Colour impressio	on (in oil)	yellow tint green	whitish yellow	
BR ~ Rpl	(in oil)	distinct		A _{oil} = 14

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour
Colour: in 45° position	light yellow white	light ochre – light greyish blue
in other positions	light olive	ochre – blue
Extinction position	brownish black	
Mode of extinction	perfect, partly undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic after more than one direction	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	radiated to bundle-like aggr. of needle-shaped XX, rarely granular; # commonly visible
Paragenesis	pentlandite, py, gersdorffite, linneite, nickeline, maucherite
Diagnostic features	yellow CI and strong AExPol

Notes, drafts

Hydrothermal alteration of PENTLANDITE gives millerite + pyrite.

357 Millerite, violarite, spinel – Long Victor mine, Kambalda, Australia

Millerite with fine twinning; violarite (light grey, bottom right), and euhedral spinel (dark grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D90_27 Section: AS3617

358 Millerite, violarite, spinel – Long Victor mine, Kambalda, Australia

As above, with crossed polars. Strong AExPol und twinning of millerite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D90_28 Section: AS3617

359 Millerite, py, pn, violarite – Long Victor mine, Kambalda, Australia

Millerite (lower right part of photo, R_{min}, #) with euhedral pyrite crystals (upper part of photo). Relicts of pentlandite (cream, mainly replaced by light grey violarite) between pyrite and millerite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D90_30 Section: AS3617

360 Millerite, py, pn, violarite – Long Victor mine, Kambalda, Australia

As above, but 90° rotated. Millerite (right part of photo, R_{max}, #) with pyrite and pentlandite (replaced by violarite). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D90_29 Section: AS3617

Molybdenite (in German: Molybdänit, Molybdänglanz)

Mineral name: Molybdenite (mol) **Formula:** MoS₂ VHN: 20-30 (on (001)) Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 38.6	R _{e'} = 19.5	R _o elongation
R _(oil) in %	(for 546 nm)	R _o = 24.1	R _{e'} = 7.8	
Colour impression	on (in oil)	greyish white	grey (tint olive)	
BR > Rpl	(in oil)	extremely strong		A _{oil} = 102

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	very strong with colour tint	very strong with colour tint
Colour: in 45° position	white (tint yellow)	white (tint yellow) - white
in other positions	violet tints	violet tints
Extinction position	greyish black	
Mode of extinction	not perfect, undulatory	
Internal reflections colou	·	
(IR) frequency	/	
Twinning mode	twisted and bended »twins«, crumpled lamellae	
frequency	often	

Further observations	
Form, habit, textures, cleavage	tabular, flaky, often bended and twisted; # {0001} always visible
Paragenesis	cp, cas, asp, graphite
Diagnostic features	BR (!), AExPol, low hardness

Notes, drafts

Similar to MACKINAWITE (which has in general smaller grain size!).

361 Molybdenite, cp, bn, mt – Oravicza, Romania

Chalcopyrite (yellow) as youngest mineral beside older molybdenite (white – grey) and magnetite (dark grey); note the reaction rim of bornite (brown) between magnetite and chalcopyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D06_24 Section: AS1009

362 Molybdenite – Oravicza, Romania

Flakes of molybdenite, partly bended.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D06_25 Section: AS1009

363 Molybdenite, cassiterite – Locality unknown

Flakes of molybdenite (white to grey) around cassiterite (dark grey, in centre). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D161_12 Section: TÜ11

364 Molybdenite – Ocna de Fier, Caraș-Severin, Banat, Romania

Undeformed flakes of molybdenite under crossed polars showing the very strong anisotropism. Obj.: 10 × Polars: × Pol Photo width: 1.4 mm Photo No.: D93_13 Section: AS1009

Mückeite

Mineral name: Mückeite **Formula:** CuNi(Bi,Sb)S₃

VHN: 140-170 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 39	R ₂ = 34	
R _(oil) in %	(for 546 nm)	R ₁ ~ 24	R ₂ ~ 24	estimated
Colour impressio	n (in oil)	yellow-brown	grey tint olive	
BR << Rpl	(in oil)	strong		A _{oil} ~ 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct strong with colours	distinct with vivid colours
Colour: in 45° position	greyish yellow	blue – olive yellow
in other positions	light grey blue, orange brown	greyish green, orange
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral to subhedral crystals, tabular to {010}, elongated along [001]; # (010) perfect, (001) good; replaces lapieite.
Paragenesis	millerite, polydymite, bismuthinite, aikinite, lapieite
Diagnostic features	Rpl, AExPol, paragenesis

Notes, drafts

 $R_2 \parallel$ elongation and #.

 R_1 in oil is visually not very different from $R_2!$ (~ slightly lighter than R_{min} of bismuthinite)

PS: Not a common ore mineral, but in honour of my teacher Arno Mücke!

365 Mückeite, millerite, bismuthinite – Grüne Au, Siegerland, Germany

Complex intergrowth of elongated mückeite crystals (medium grey) with millerite (yellow). Background on left and right side is carbon coating from EMPA analysis.

0bj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D04 03 Section: AS126

366 Mückeite, millerite, bismuthinite – Grüne Au, Siegerland, Germany

Distinct refection pleochroism of mückeite (yellow brown to grey tint green), intergrown with millerite (yellow), and some tiny bismuthinites.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D186 20 Section: AS126

367 Mückeite, millerite, bismuthinite – Grüne Au, Siegerland, Germany

As above, but 90° rotated.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D04_04 Section: AS126

368 Mückeite, millerite, bismuthinite – Grüne Au, Siegerland, Germany

As above, but with (not exactly) crossed polars showing vivid anisotropism colours of mückeite.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D186 21 Section: AS126

Nickeline, Niccolite (in German: Nickelin, Rotnickelkies)

Mineral name: Nickeline (Niccolite, nk) Formula: NiAs VHN: 310-530 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 51.4	R _{e'} = 46.1	
R _(oil) in %	(for 546 nm)	R _o = 38.4	R _{e'} = 33.2	
Colour impressio	n (in oil)	whitish orange	white orange brown	
BR ~ Rpl	(in oil)	distinct		$A_{oil} = 14$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour	strong with colour
Colour: in 45° position	turquoise blue	greyish orange – turquoise blue
in other positions	bluish grey	light blue, orange brown
Extinction position	nearly black	
Mode of extinction	straight, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic after more than one direction; also simple growth twins	
frequency	occasional; rare	

Further observations	
Form, habit, textures, cleavage	common anhedral, granular, radial aggr., dendritic, cataclasis, often lamellar, black alteration products (parallel to #)
Paragenesis	Co-Ni-arsenides, bismuth, Ag-minerals
Diagnostic features	CI (maucherite has no BR and is less orange coloured), AExPol

Notes, drafts

CI of BREITHAUPTITE is much more violet.

369 Nickeline, gersdorffite – Zinkwand-Schöttern, Lungau, Carinthia, Austria

Nickeline (orange brown, BR) with gersdorffite crystals (greyish white).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D98_01 Section: AS1759

370 Nickeline, gersdorffite – Zinkwand-Schöttern, Lungau, Carinthia, Austria

Large gersdorffite crystal (greyish white) with numerous inclusions of nickeline. Note the thickness variation of the relief boundaries of nickeline grains against the gersdorffite matrix. The different orientation of the nickeline inclusions exhibit hardness anisotropism from 310-530. Gersdorffite grain has VHN ~ 530. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D98_11 Section: AS1759

371 Nickeline – Sangershausen, Hesse, Germany

Turquoise colours of nickeline under crossed polars; with deformation twins. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D12_16 Section: AS1000

372 Nickeline, safflorite – Nentershausen, Hesse, Germany

Euhedral crystal of nickeline (orange brown) with lamellar alteration features parallel cleavage, encrusted by safflorite (whitish). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D142_11 Section: AS163

Nsutite

Mineral name: Nsutite **Formula:** γ-(Mn⁴⁺,Mn³⁺)(0,OH)₂ VHN: ~ 1100 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o ~ 38	R _{e'} ~ 32	estimated
R _(oil) in %	(for 546 nm)	R _o ~ 22	R _{e'} ~ 16	estimated
Colour impressio	on (in oil)	greyish white	grey	
BR > Rpl	(in oil)	strong		A _{oil} ~ 32

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour tint	distinct with colour tint
Colour: in 45° position	greyish white tint rose yellow	greyish white tint yellow – white tint blue
in other positions		
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	only spherical, very fine fibres, rhythmical crusts, rare coarse grains; often replacing manganomelane and vice versa.
Paragenesis	maganomelane, pyrolusite, rhodochrosite
Diagnostic features	form, CI against manganomelane more yellow

Notes, drafts

Common alteration product of Mn-rich carbonates. Similar to MANGANOMELANE (stronger BR).

373 Nsutite, maganomelane, lm – Ungwan Mallam Ayuba, Kaduna, N-Nigeria

Nsutite (centre, colloform) enclosed by limonite (medium grey, lower left: vug with manganomelane plus limonite. Relicts of amphibole (upper part) and little altered garnet crystals (lower left and right). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_27 Section: AS238

374 Nsutite, maganomelane, pyrolysite – Ungwan Mallam Ayuba, N-Nigeria

Nsutite (lower left part of photo) intergrown with pyrolusite (yellowish white, highest R), and manganomelane (light grey, lower right). All three phases replace amphiboles and garnets. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_29 Section: AS238

375 Nsutite – Nsuta, Ghana

Colloform aggregate of nsutite with numerous cracks.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D103_09 Section: AS213

As above, with crossed polars. Note the nearly isotropic behaviour of the very fine-grained nsutite in the centre. Obj.: 10 × Polars: × Pol Photo width: 1.4 mm Photo No.: D103_11 Section: AS213

Olivine

Mineral name: Olivine (ol) **Formula:** (Mg,Fe)₂SiO₄ VHN: ~ 1300 Crystal System: o'rh.

Observations with one polar (AE Pol)						
R _(air) in %	(for 546 nm)	R _x = 5.9	R _z = 6.3	calculated from $n_{x'}^{} n_{z}^{}$		
R _(oil) in %	(for 546 nm)	R _x = 0.2	R _z = 0.2	calculated from $n_{x'}^{} n_{z}^{}$		
Colour impressio	n (in oil)	»black« (but light IR!)	»black« (but light IR!)			
BR Rpl	(in oil)			$A_{oil} = 0$		

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	not visible
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	white – colourless	
(IR) frequency	predominant	
Twinning mode	none	
frequency		

Form, habit, textures, cleavage	granular to euhedral, with melt or sulfide inclusions, alteration to serpentine; no #.
Paragenesis	pyroxene, plagioclase, chromite, spinel, po, cp
Diagnostic features	low R, no BR, no #

Notes, drafts

Magmatic olivine often with pyrrhotite and/or spinel inclusions.

377 Olivine, phlogopite – Bürzlen, Urach volcanic field, SW-Germany

Mantle xenolith with olivine (note round sulfide inclusions, partly oxidized), and large tabular phlogopite Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D56_30 Section: Xeno5

378 Olivine, magnetite – Ganawuri complex, Jos Plateau, Nigeria

Alteration and oxidation of fayalite-rich olivine (reddish grey) resulting in the formation of younger magnetite (light grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_19 Section: AS3245

379 Olivine, spinel, mt – Gutenberger Steige, Urach, SW-Germany

Large anhedral crystal of olivine (right part of photo) with inclusions of euhedral, unzoned spinels (medium grey). Matrix with cpx, ol, melilite, perovskite, tiny magnetites and some larger zoned spinels with magnetite-rich rim. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D134_32 Section: AS3291

380 Olivine, spinel, troilite – Meteorite Brahin (pallasite)

Large, cracked olivine crystal from the Brahin pallasite with inclusions of spinel (medium grey, upper trail), and troilite (nearly white, lower trail). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D148_24 Section: 9031055
Orpiment (in German: Auripigment)

Mineral name: Orpiment (orp) Formula: As₂S₃ VHN: 20-50 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_a = 17.0*$	R _b = 22.4*	$R_{c} = 25.2*$
R _(oil) in %	(for 546 nm)	R _a = 5.1*	R _b = 8.9*	R _c = 11.0*
Colour impressio	n (in oil)	dark grey tint red	dark grey velvet	grey white
BR > Rpl	(in oil)	extremely strong		A _{oil} = 74

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity	/colour	strong without colour	strong without colour
Colour: in 45° p	osition	but usually masked by IR	but usually masked by IR
in other po	ositions		
Extinction position		masked by IR	
Mode of extinction		masked by IR	
Internal reflections	colour	white to yellow (lemon yellow)	
(IR) free	quency	abundant	
Twinning	mode	translations twins, bended	
fre	quency	frequent	

Further observations

Form, habit, textures, cleavage	needle-like or tabular (010) XX, tufted, radial fibrous, crusts, replaces realgar; # (010) always visible
Paragenesis	realgar, arsenic, marcasite, gelpyrite
Diagnostic features	paragenesis, yellow IR, low hardness, #

Notes, drafts

* calculated from $n_{_{a}}\!,\,n_{_{b'}}$ and $n_{_c}$ (2.4, 2.8, and 3.02, resp.)

381 Orpiment – Allchar, Macedonia

Orpiment with distinct bireflection and yellow IR. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D10_16 Section: AS106

382 Orpiment – Allchar, Macedonia

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D10_17 Section: AS106

383 Orpiment, marcasite – Allchar, Macedonia

Marcasite (light yellow) enclosed by orpiment (greyish).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D10_18 Section: AS106

384 Orpiment, arsenic – Michael im Weiler, near Lahr, Schwarzwald, Germany

Alteration of arsenic (white) to orpiment (grey to yellow).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D112_18 Section: L-4

Osmium (Iridosmium)

Mineral name: Osmium (Iridosmium) Formula: (Os,Ir,Ru) VHN: ~ 700-1000 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ ~ 62	R ₂ ~ 62	$forOs_{85}Ir_{12}Ru_{2}$
R _(oil) in %	(for 546 nm)	R ₁ ~ 47	R ₂ ~ 49	
Colour impressio	n (in oil)	white	white	tint blue against Pt
BR ~ Rpl	(in oil)	very weak		A _{oil} = 2

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour	distinct with colour
Colour: in 45° position	reddish brown	yellow red
in other positions		
Extinction position	brownish black	
Mode of extinction	straight	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	granular, tabular, often as EB {111} in platinum
Paragenesis	platinum, iridium, chromite, Pt-Fe-alloys
Diagnostic features	paragenesis, AExPol,

Notes, drafts

Reflectivity = f (chemistry), after CRIDDLE & STANLEY (1993): for $Os_{53}Ir_{40}Ru_5$: R = 63-66/51-54 for $Ir_{63}Os_{29}Ru_7$: R = 73/63

385 Iridosmium, platinum – Ural (prob. Nishe Tagilsk nugget)

Platelet of iridosmium (bluish white) in platinum groundmass.

Obj.: 20× oil Polars: || Pol Photo width: 0.7 mm Photo No.: D180_17 Section: AS1043

386 Iridosmium, platinum, chr – Ural (prob. Nishe Tagilsk nugget)

Elongated crystals of iridosmium (bluish white) in platinum. Lower left part shows chromite.

Obj.: 20× oil Polars: || Pol Photo width: 0.5 mm Photo No.: D180_08 Section: AS1043

387 Iridosmium, platinum – Ural (prob. Nishe Tagilsk nugget)

As above, with crossed polars. Note: red-orange AExPol of iridosmium. Obj.: 20× oil Polars: × Pol Photo width: 0.5 mm Photo No.: D180_10 Section: AS1043

388 Iridosmium, platinum – Ural (prob. Nishe Tagilsk nugget)

Platinum nugget with small tablets of exsolved iridosmium || {111} of platinum. Digital modified photo with enhanced image contrast. Obj.: 20× oil Polars: || Pol Photo width: 0.7 mm Photo No.: D180_14 Section: AS1043

Pararammelsbergite

Mineral name: Pararammelsbergite **Formula:** NiAs₂ VHN: 680-810 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 58.9	$R_2 = 59.7$ (elongation)	
R _(oil) in %	(for 546 nm)	R ₁ = 45.5	$R_2 = 46.8$ (elongation)	
Colour impressio	n (in oil)	white tint blue	white tint yellow	
BR ~ Rpl	(in oil)	weak		A _{oil} = 3

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour	distinct with colour
Colour: in 45° position	ochre brown	light ochre – orange brown – greenish grey
in other positions	no bluish colours	
Extinction position	brownish black	
Mode of extinction	straight, perfect	
Internal reflections colour		
(IR) frequency		
Twinning mode	simple	
frequency	rare	

Further observations	
Form, habit, textures, cleavage	tabular XX and anhedral grains; often replaces skutterudite and nickeline
Paragenesis	rammelsbergite, safflorite, nickeline
Diagnostic features	no lamellar twinning, no bluish AExPol, form

Notes, drafts

After Ramdohr and own observations the lightest of all Ni-Co-arsenides.

389 Pararammelsbergite, ram, nk – Boussmassse mine, Bou Azzer, Morocco

Pararammelsbergite crystal (centre of photo; whitish grey), surrounded by rammelsbergite (slightly darker), and nickeline (orange). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D99_05 Section: AS3571

390 Pararammelsbergite, ram, nk – Boussmassse mine, Bou Azzer, Morocco

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D99_07 Section: AS3571

Pararammelsbergite crystal (arrow, triangle crystal in the centre of photo; CI and R very similar to rammelsbergite), surrounded by rammelsbergite (main mass), and nickeline (orange). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D99_17 Section: AS3571

392 Pararammelsbergite, ram, nk – Boussmasse mine, Bou Azzer, Morocco

As above, but 90° rotated. Pararammelsbergite crystal is now clearly visible (centre of photo; R now higher against rammelsbergite), surrounded by rammelsbergite (main mass), and nickeline (orange). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D99_16 Section: AS3571

Pearceite

Mineral name: Pearceite **Formula:** (Ag,Cu)₁₆(As,Sb)₂S₁₁ VHN: 140-160 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 32.2	R _{e'} = 29.1	
R _(oil) in %	(for 546 nm)	R _o = 17.1	R _{e'} = 14.4	R _o elongation
Colour impressio	on (in oil)	grey tint violet blue	grey tint green	
BR < Rpl	(in oil)	distinct		A _{oil} = 17

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour	strong with colour
Colour: in 45° position	green	light yellow green – dark bluish green
in other positions		brown, violet blue
Extinction position	black	
Mode of extinction	straight, undulatory	
Internal reflections colour	red	
(IR) frequency	frequent (Sb-pearceite: absent; higher Cu-content: less IR)	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	euhedral pseudo hexagonal-plates, subparallel and rosette-like. # (001)
Paragenesis	other silver minerals, safflorite, tennantite
Diagnostic features	CI, AExPol, poor polishing (many scratches)

Notes, drafts

Polybasite: formula as pearceite but with Sb > As.

393 Pearceite, safflorite – Nieder-Beerbach, Odenwald, Germany

Pearceite with strong RpI (grey tint green to violet grey) in fine-grained safflorite matrix (greyish white); some tiny silver (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D145_23 Section: CHe26A

394 Pearceite, safflorite – Nieder-Beerbach, Odenwald, Germany

As above, with crossed polars. Typical greenish AExPol of pearceite.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D145_24 Section: CHe26A

395 Pearceite, lo, argentite, silver – Nieder-Beerbach, Odenwald, Germany

Pearceite (Rpl!) with argentite (greenish grey grain in lower right side of photo with tiny silver spots) surrounded by twinned loellingite crystals (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D146_13 Section: CHe26B

396 Pearceite, lo, argentite, silver – Nieder-Beerbach, Odenwald, Germany

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D146_14 Section: CHe26B

Pentlandite

Mineral name: Pentlandite (pn) **Formula:** (Ni,Fe)₉S₈ VHN: 270-290 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	48.9		
R _(oil) in %	(for 546 nm)	37.2		
Colour impressio	n (in oil)	white cream	(against pyrite: less yellow)	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	grey black (tint violet)	grey black tint violet
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	anhedral grains, or flame-like EB (0001) in pyrrhotite, excess Fe → mackinawite-EB; distinct # {111}!
Paragenesis	pyrrhotite, violarite, bravoite, chalcopyrite, millerite, spinel, mt, chr
Diagnostic features	octahedral #, flame-like EB, paragenesis with pyrrhotite!

Notes, drafts

Pentlandite is similar to PYRITE (but pn has distinct #!!) Co-pentlandite: (Co, Ni, Fe) ${}_9S_8$

397 Pentlandite, py, cp – Victor South mine, Kambalda, Australia

Pentlandite (cream, with typical #), partly replaced by pyrite (nearly white) and chalcopyrite (yellow).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D91_03 Section: AS3613

398 Pentlandite, po, py – Horbach, Schwarzwald, Germany

Flame-like pentlandite (creamy white) in pyrrhotite; euhedral pyrite (yellowish white).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D26_10 Section: AS2562

399 Pentlandite, po – Sudbury, Ontario, Canada

Granular and flame-like pentlandite along grain boundaries of pyrrhotite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D26_12 Section: AS1760

400 Pentlandite, violarite, spl, cp – Gill orebody, Kambalda, W-Australia

Large spinel with many inclusions of pentlandite (rimmed by violarite) and chalcopyrite (yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D91_01 Section: AS3617

Perovskite

Mineral name: Perovskite (prv) **Formula:** Ca(Ti,Nb)O₃ VHN: 1000 Crystal System: o'rh. (ps. cub.).

Observations with one polar (AE Pol)			
R _(air) in %	(for 546 nm)	16.6	
R _(oil) in %	(for 546 nm)	4.9	
Colour impression	n (in oil)	grey (tint blue)	
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	
Colour: in 45° position	masked by IR	
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	colourless – brown	
(IR) frequency	always	
Twinning mode	lamellar twinning, and complex	
frequency	abundant but rarely visible in polisi	ned sections

Further observations	
Form, habit, textures, cleavage	euhedral to anhedral crystals; intergrown with ilmenite or mt; often replaced by rutile or anatase
Paragenesis	mt, ilm, rt
Diagnostic features	paragenesis

Notes, drafts

CI and R varying with composition; very similar to SPHALERITE and TITANITE (BR!) Perovskite with Nb > Ti is named latrappite.

401 Perovskite, magnetite – Nephelinite from Hohenstoffeln, Hegau, Germany

Skeletal aggregate of perovskite (right side of photo) with white IR. Left side: magnetite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D153_20 Section: AS2873

402 Perovskite, spinel, mt – Nephelinite from Urach volcanic field, SW-Germany

Zoned spinel grains (spinel core with magnetite rim) and tiny perovskite crystals (higher R, white IR) in groundmass of cpx and nepheline. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D134_30 Section: AS 3291

403 Perovskite, mt, ilm – Tamazeght complex, Morocco

Right side: Perovskite crystals (medium grey) rimmed and replaced by ilmenite. Left side: Magnetite with ulvite exsolutions in »cloth-texture«. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_04 Section: TMZ29

404 Perovskite, rt, ilm – Tamazeght complex, Morocco

Perovskite twin (relict on the left side of the upper twin crystal) replaced by a mixture of ilmenite (greyish brown) and rutile (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_06 Section: TMZ29

Pitchblende (in German: Pechblende, Uraninit)

Mineral name: Pitchblende (Uraninite) **Formula:** UO₂ VHN: 500-550 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (for 5	546 nm)	13 to 14	
R _(oil) in % (for 5	546 nm)	3 to 4	
Colour impression	(in oil)	grey tint brown	
BR Rpl	(in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	
Colour: in 45° position	black	
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	dark brown	
(IR) frequency	rare	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	rare euhedral XX (uraninite s. s.), more often colloform, botryoidal or globular aggr., irregular shrinkage cracks, often filled with younger minerals (galena!), zoning
Paragenesis	gn, py, hm, thorianite, barite, coffinite
Diagnostic features	rhythmic texture, cracks, radioactive halo, galena inclusions

Notes, drafts

405 Pitchblende – Menzenschwand, Schwarzwald, Germany

Concentric masses of colloform pitchblende.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D81_01 Section: M31

406 Pitchblende, hematite, py – Menzenschwand, Schwarzwald, Germany

Colloform pitchblende overgrowing tabular hematite (light grey, probably pseudomorph after primary barite), pyrite.

Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D72_03 Section: A2

407 Pitchblende, bismuth, bismuthinite – Wittichen, Schwarzwald, Germany

Colloform pitchblende (grey) overgrowing skeletal bismuth (yellow tarnishing colours) which is partly altered to bismuthinite (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D185_27 Section: SW120

408 Pitchblende, barite, py – Menzenschwand, Schwarzwald, Germany

Pitchblende on euhedral barite tablet, small pyrites.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D81_09 Section: M31

Platinum (in German: ged. Platin)

Mineral name: Platinum Formula: (Pt,Fe) VHN: 300-400 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	70		
R _(oil) in %	(for 546 nm)	59	depending on composition	
Colour impressio	on (in oil)	white	against IrOs: tint yellow	
BR Rpl	(in oil)			A _{oil} = 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	in each position	in each position
in other positions	homogeneous grey	homogeneous grey
Extinction position	grey	
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode	(along {111}, only visible after etching)	
frequency		

Further observations	
Form, habit, textures, cleavage	often irregular grains or as EB. Can show extremely fine tabular EB of IrOs {111} and/or granular EB of iridium.
Paragenesis	Ir, IrOs, chromite, po, sperrylite
Diagnostic features	high R, paragenesis

Notes, drafts

Always with small iron content (4-21 %). $Pt_{_{80}}Fe_{_{20}}$ has $R_{_{air}}$ = 60 % (TOMA & MURPHY (1977), Can. Min., 15, 59-69).

409 Platinum, iridium, – Ural (prob. Nishne Tagilsk nugget)

Tiny exsolution bodies of iridium (slightly lighter and more white) in platinum. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D180_12 Section: AS1043

410 Platinum, iridium, iridosmium – Ural (prob. Nishne Tagilsk nugget)

Numerous tiny and some large exsolution bodies of iridium (nearly white) in platinum. Small lath of iridosmium (bluish white) below iridium grain in centre of photo (arrow).

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D180_13 Section: AS1043

411 Platinum, iridosmium – Ural (prob. Nishne Tagilsk nugget)

Wedge-shaped alteration features at platinum rim following extremely fine tablets of iridosmium (slightly darker than Pt, NW-SE direction). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D180_16 Section: AS1043

412 Platinum, iridosmium – Ural (prob. Nishne Tagilsk nugget)

Digital modified photo (with enhanced image contrast). Small tabular iridosmium within a large platinum grain, which shows a lamellar internal texture and a prominent darker rim. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D180_04 Section: AS1043

Proustite

Mineral name: Proustite Formula: $Ag_{3}AsS_{3}$

VHN: 50-150 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 27.7	R _{e'} = 24.2	
R _(oil) in %	(for 546 nm)	R _o = 13.1	R _{e'} = 10.4	
Colour impressio	on (in oil)	greyish blue tint brown	greyish blue	
BR ~ Rpl	(in oil)	distinct		A _{oil} = 23

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour
Colour: in 45° position	greyish yellow	grey – greyish yellow
in other positions	masked by IR	turquoise, violet
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	red to yellow	
(IR) frequency	frequent – abundant	
Twinning mode	coarse & simple; lamellar deformation twins	
frequency	occasional – frequent	

Further observations	
Form, habit, textures, cleavage	often perfect tabular to needle-shaped XX; irregular grains; no #!
Paragenesis	other Ag-sulfosalts, galena, native bismuth, arsenic, rammelsbergite
Diagnostic features	CI, light etching (within hours!), red IR; very similar to pyrargyrite!

Notes, drafts

Only limited miscibility with $\ensuremath{\mathsf{PYRARGYRITE}}$ ($\ensuremath{\mathsf{Ag}_3\mathsf{SbS}_3}$).

413 Proustite, calcite – Nieder-Beerbach, Odenwald, Germany

Proustite (light grey) embedded in isometric calcite grains.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D151_02 Section: CHe25

414 Proustite, calcite – Nieder-Beerbach, Odenwald, Germany

Numerous red internal reflections of proustite. Some crystals show anisotropism. Detail from photo above.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D151_12 Section: CHe25

415 Proustite, acanthite, pyrite – Jachymov (Joachimsthal), Czech Republic

Proustite (larger grain in centre and above) partly replaced by acanthite (right side with stippled surface; tint green). Small pyrite grains. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D156_14 Section: AS3629

416 Proustite, acanthite, pyrite – Jachymov (Joachimsthal), Czech Republic

As above, now with oil immersion. Bireflection of proustite is distinct, some red IR are visible. Acanthite (greyish green, poor polishing) and pyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D156_21 Section: AS3629

Pseudobrookite

Mineral name: Pseudobrookite (psb) **Formula:** Fe₂TiO₅ VHN: ~1000 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in % (for 546	5 nm)	$R_1 = 18.4$	R ₂ = 19.2	
R _(oil) in % (for 546	5 nm)	R ₁ = 6.0	R ₂ = 6.5	
Colour impression (i	in oil)	grey	grey	
BR > Rpl (i	in oil)	weak		A _{oil} = 8

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak without colour	weak without colour
Colour: in 45° position	grey	grey
in other positions		
Extinction position	black	
Mode of extinction	perfect	
Internal reflections colour	reddish brown to orange	
(IR) frequency	abundant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	often euhedral, tabular columnar XX; decomposition into rutile + hematite
Paragenesis	intergrown with hm (oxidation of ilm+titanomagnetite), ilm, rt, mt
Diagnostic features	similar to rutile (which has stronger BR, AExPol), IR, paragenesis

Notes, drafts

High-temperature formation due to oxidation of titanomagnetite.

417 Pseudobrookite, hm – Katzenbuckel, Odenwald, Germany

Pseudobrookite tablets (medium grey) intergrown with hematite (light grey) in nepheline syenite matrix. Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D24_02 Section: Kb42

418 Pseudobrookite, hm – Katzenbuckel, Odenwald, Germany

Pseudobrookite tablets (medium grey, some red IR) intergrown with hematite (light grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D24_04 Section: Kb42

419 Pseudobrookite, hm – Katzenbuckel, Odenwald, Germany

As above, with crossed polars. Pseudobrookite with reddish brown to orange IR. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D24_07 Section: Kb42

420 Pseudobrookite, hm – Katzenbuckel, Odenwald, Germany

Pseudobrookite plus hematite pseudomorph after euhedral crystals of magnetite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D24_13 Section: Kb42

Pseudorutile

Mineral name: Pseudorutile **Formula:** $\sim Fe_2^{3+}Ti_3O_9$ VHN: ~ 130 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R~19-20	(estimated)	
R _(oil) in %	(for 546 nm)	R ~ 7-8	depends of composition	
Colour impressio	n (in oil)	bluish grey		
BR Rpl	(in oil)	not visible		A _{oil} = 0

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	not visible to weak	not visible to weak
Colour: in 45° position	greyish black	greyish black
in other position	; ;	
Extinction position	black	
Mode of extinction		
Internal reflections colou	brownish to reddish-brown	
(IR) frequency	rare (in Fe-poor pseudorutiles)	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	Intermediate product during alteration of ilmenite to rutile, replacing primary ilmenite (or »leached ilmenite«), often with relicts of unaltered ilmenite
Paragenesis	ilmenite, »leached ilmenite«, rutile, magnetite, goethite
Diagnostic features	alteration product of ilmenite and leached ilmenite

Notes, drafts

General formulae $Fe_{2-y}^{3+}Ti_{3}O_{9-3y}(OH)_{3y}$ with y = 0-2 (pseudorutile: y = 0; leucoxene: y = 2)*.

* see: MÜCKE & CHAUDHURI (1991): Ore Geology Rev., 6, 25-44.

421 Leached ilmenite, pseudorutile, grt – Ungwan Mallam Ayuba, N-Nigeria

Aggregates of ilmenite (medium grey with brown tint) with rims of leached ilmenite and pseudorutile (lighter grey); matrix of garnets with limonite rim. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D84_20 Section: AS249

422 Ilm, leached ilmenite, pseudorutile – Tudun Kudu Hill, Kaduna, N-Nigeria

Replacements of ilmenite (core of grains, medium brownish grey) by leached ilmenite (lighter brownish grey) and finally by pseudorutile (light grey without brown tint, many cracks).

Obj.: 40 × oil Polars: || Pol Photo width: 0.3 mm Photo No.: A02_02 Section: TK1_3

423 Ilmenite, pseudorutile, rt – Placer from Neualbenreuth, Bavaria, Germany

Relict of ilmenite (brownish grey) within pseudorutile (bluish grey, many cracks); new crystallized large rutile (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D149_27 Section: AS140

424 Ilmenite, pseudorutile – Placer from Neualbenreuth, Bavaria, Germany

Alteration of ilmenite (brownish grey) to pseudorutile (bluish grey, many cracks). Obj.: 20 × oil Polars: || Pol Photo width: 0.4 mm Photo No.: D109_26 Section: AS 140

Pyrargyrite

Mineral name: Pyrargyrite (pyrg) **Formula:** Ag₃SbS₃

VHN: 50-150 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 30.4	R _{e'} = 28.5	
R _(oil) in %	(for 546 nm)	R _o = 15.0	R _{e'} = 13.3	
Colour impressio	n (in oil)	greyish blue (tint olive)	greyish blue	
BR ~ Rpl	(in oil)	weak	$A_{oil} = 12$	2

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour tint	weak with colour tint
Colour: in 45° position	greyish yellow	grey – greyish yellow
in other positions		turquoise, violet
Extinction position	black	
Mode of extinction	perfect	
Internal reflections colour	red	
(IR) frequency	frequent	
Twinning mode	simple; lamellar deformation twins	
frequency	occasional – frequent	

Further observations	
Form, habit, textures, cleavage	very often perfect single crystals; occasionally as irregular interlocked grains; limited solid solution with Ag_3AsS_3 (proustite); no #
Paragenesis	other Ag-sulfosalts, galena, bismuth
Diagnostic features	greyish blue CI, red IR, paragenesis

Notes, drafts

Monocline modification of Ag_3SbS_3 = see PYROSTILPNITE.

425 Pyrargyrite, gn, chalcedony – Todtnau, Schwarzwald, Germany

Pyrargyrite crystal (medium grey, centre of photo) partly replaced by galena (light grey) in matrix of chalcedony. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D89_08 Section: JSt1

426 Pyrargyrite, gn, chalcedony – Todtnau, Schwarzwald, Germany

As above, with crossed polars. Red internal reflections of pyrargyrite are visible.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D89_09 Section: JSt1

427 Pyrargyrite, clausthalite, tiemannite – Tilkerode, Harz, Germany

Euhedral pyrargyrite in clausthalite (light grey) beside carbonate (black) and tiemannite (brownish grey, in part replaced by clausthalite). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_15 Section: AS1752

428 Pyragyrite, acanthite – Gnade Gottes, Bohemia, Czech Republic

Pyrargyrite within strongly tarnished acanthite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D120_19 Section: AS1063

Pyrite

Mineral name: Pyrite (py) **Formula:** FeS₂ VHN: ~1500-1600 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	53.7		
R _(oil) in % (for 546 nm)	39.2		
Colour impression (in oil)	white yellow		
BR Rpl (in oil)		$A_{oil} = 0$	

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism inten	sity/colour	homogeneous dark	occasionally weak with colour tint
Colour: in 4	5° position	black	grey with impure colours (olive, yellow)
in othe	er positions		
Extinction position			
Mode of extinction			
Internal reflections	colour		
(IR)	frequency		
Twinning	mode		
	frequency		

Further observations	
Form, habit, textures, cleavage	very often as euhedral crystals, tiny crystal clusters in »framboids«; locking older minerals (e.g. po, cp) as relicts, often replaces po. Only rare # {100}!
Paragenesis	po (e.g. bird eyes), asp, mrc, cp, gold, and many more
Diagnostic features	form, cataclasis, many inclusions, hardness

Notes, drafts

One of the most common sulfides in rocks.

Other elements \rightarrow weak anisotropism (Se, As) or \rightarrow different R/Cl (Ni, Co, Cu, Ag) Ni-rich pyrite = bravoite (Cl more brownish, violet).

429 Pyrite, carbonate, cp – Sulphur Spring, Soannesville Group, W-Australia

VMS mineralization with small cubes of pyrite in fine-grained groundmass of carbonate (and minor cp).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D179_16 Section: MW3 (KCD26 core)

430 Pyrite, cp, po, sph, cub – Zlaté Hory, Okres Jeseník, Czech Republic

Large grain of pyrite with oval inclusion of chalcopyrite (yellow), pyrrhotite (light brown), sphalerite (dark grey), and cubanite (light grey)

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D28_25 Section: AS2553

431 Pyrite, bravoite – Gill orebody, Kambalda, W-Australia

Small veinlet of bravoite (slightly brownish white) in cataclastic pyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D127_28a Section: AS3617

432 Pyrite – Goldhausen, Korbach, Hesse, Germany

Zoned euhedral pyrite crystals partly replaced by limonite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D105_21 Section: AS111 Ρ

433 Pyrite, barite – Detzeln, NE Waldshut, SW-Germany

Colloform pyrite with fine zoning (digital enhanced contrast of photo), replacing tabular barites (black). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D79_28 Section: DK-14

434 Pyrite – Kocbulak, Usbekistan

Tarnishing of pyrite in older sections often show fine delicate zonings, which are not observable in fresh polished sections! Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D208_06 Section: AS3057

435 Pyrite, gn, sph – Rammelsberg, Harz, Germany

Framboidal pyrite (yellow white) within sphalerite (dark grey), and galena (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D169_11 Section: AS3508

436 Pyrite – Sebkha Mekkerhane, Hoggar Massif, Algeria

Agglomerates of tiny pyrite cubes in organic rich sediment. These more or less round pyrite concentrations are called »framboids« indicating possible bacterial sulfate reduction (BSR) and sulfide precipitation (starting with mackinawite). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D29_06 Section: A106/1

437 Pyrite, boulangerite – Strassegg, Styria, Austria

Deformed grain of pyrite with replacement features of younger boulangerite along cleavage planes (usually rare in pyrite).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D194_16 Section: AS196

438 Pyrite, bornite – Wittichen, Schwarzwald, Germany

Selective replacement of euhedral pyrite cube (light yellow relicts) by bornite (violet). Bornite is in part replaced by chalcocite (bluish grey)

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D157_22 Section: MM17

439 Pyrite, boulangerite, sph – Cleary Hill, Livengood, Alaska, USA

Poikilobastic crystal of pyrite enclosing boulangerite is surrounded by sphalerite and boulangerite. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D64_09 Section: AS3584

440 Pyrite, mrc, sph – Wilsbach, Münstertal, Schwarzwald, Germany

Agglomerate of pyrite grains (plus marcasite) pseudomorph after elongated pyrrhotite crystal. Some sphalerite grains (grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D73_13 Section: Bo69a

Pyrochlore

Mineral name: Pyrochlore **Formula:** (Na,Ca,U)₂(Nb,Ta,Ti)₂(O,OH)₇ VHN: 300-600 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	15 to 12		
R _(oil) in %	(for 546 nm)	5 to 2	depends on composition	
Colour impressi	ion (in oil)	grey (tint brown)		
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	isotropic	
Colour: in 45° position	masked by IR	
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	yellow – orange – red – brown	
(IR) frequency	always	
Twinning mode	simple (111) spinel law	
frequency	rare	

Further observations

Form, habit, textures, cleavage	euhedral single crystals (rare aggregates), very often zoned and poikiloblastic; frequent alteration features and intergrown with other Nb-Ta-W-phases
Paragenesis	Nb-Ta-minerals, cassiterite, magnetite, carbonates, fluorite
Diagnostic features	euhedral, zoned crystals

Notes, drafts

U-rich members show higher R. Similar to SPHALERITE.

441 Pyrochlore, magnesioferrite – Badberg, Kaiserstuhl, Germany

Euhedral pyrochlore crystals (medium grey with IR) on magnesioferrite (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D97_16 Section: AS1577

442 Pyrochlore, magnesioferrite – Badberg, Kaiserstuhl, Germany

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D97_19 Section: AS1577

443 Pyrochlore, carbonate – Badberg, Kaiserstuhl, Germany

Fine zoning of pyrochlore crystals (red IR) with replacement features; in carbonate groundmass. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D97_12 Section: AS1577

444 Pyrochlore, mt, ap, carbonate – Badberg, Kaiserstuhl, Germany

Poikiloblastic crystals of pyrochlore (medium grey; centre and upper right part of photo) and two magnesioferrite crystals (left side, slightly lighter) in carbonate-apatite(needles) groundmass. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D97_06 Section: AS1577

Pyrolusite

Mineral name: Pyrolusite **Formula:** β -MnO₂

VHN: ~ 100-1500* Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 38	R _{e'} = 45	
R _(oil) in %	(for 546 nm)	R _o = 23	R _{e'} = 30	R _e = elongation
Colour impressio	on (in oil)	greyish white	whitish yellow	
BR ~ Rpl	(in oil)	distinct		A _{oil} = 29

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour	strong with colour
Colour: in 45° position	white-yellow	light yellow – greyish tint yellow
in other positions	yellow brown	brown, bluish grey
Extinction position	grey black	
Mode of extinction	not perfect, undulatory, patchy	
Internal reflections colour	(pseudo IR due to fine cracks)	
(IR) frequency		
Twinning mode	simple {011}, twins and triplets	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	coarse-grained euhedral to prismatic XX, finegrained, massive, banded texture; often pseudomorph after manganite (often as relicts), then many cracks (010).
Paragenesis	manganomelane, manganite, nsutite, ramsdellite, braunite, hematite
Diagnostic features	high R (for oxides), paragenesis, parallel cracks

Notes, drafts

Typical oxidation product of MANGANITE. R_o of pyrolusite is very similar to R of NSUTITE. Section $\perp c$ (= \perp elongation, with R_o) is much harder and shows a better polish, whereas sections || c (= || elongation) seem to reflect much lower due to poor polishing! \rightarrow occasionally R_o in sections $\perp c$ is visual higher than R_e and R_o in sections || elongation! * VHN strongly depends on orientation, polishing, and type of aggregate!

445 Pyrolusite – Rappenloch, Schwarzwald, Germany

Radial growth of euhedral crystals of pyrolusite (whitish yellow).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D116_09 Section: KH-16

446 Pyrolusite – Oberröthenbach, Schwarzwald, Germany

Pyrolusite with distinct bireflection from whitish yellow (|| elongation) to greyish white (⊥ longation).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D91_15 Section: IR-19a

447 Pyrolusite, lithiophorite – Farallon Negro, Prov. Catamarca, Argentinien

Euhedral pyrolusite crystals surrounded by fine-grained lithiophorite (medium grey). Pyrolusite in the upper part as cross sections with $R_{o'}$ in the lower part longitudinal sections with R_{a} (colour more yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D143_21 Section: AS225

448 Pyrolusite, manganite, wolframite – Broken Hill, Australia

Manganite relicts (medium to dark grey) in newly formed pyrolusite (pseudomorph after manganite with typical cracks ||(010)). One large wolframite crystal (dark grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D103_20 Section: AS217

Pyrostilpnite

Mineral name: Pyrostilpnite Formula: Ag_3SbS_3

VHN: 95-115 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 29.7	R ₂ = 30.1	
R _(oil) in %	(for 546 nm)	R ₁ = 14.6	R ₂ = 14.8	
Colour impressio	on (in oil)	grey tint blue	grey tint blue	
BR ~ Rpl	(in oil)	very weak		$A_{oil} = 1$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very weak without colour	weak without colour
Colour: in 45° position	grey (masked by IR)	grey (masked by IR)
in other positions		
Extinction position	black, but masked by IR	
Mode of extinction		
Internal reflections colour	yellow – orange brown	
(IR) frequency	frequent	
Twinning mode	lamellar parallel elongation, in part bended	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	tabular, prismatic [001], sub parallel radiating blade- to needle-like crystals. # (010)
Paragenesis	pyrargyrite, miargyrite, silver, other Ag-minerals
Diagnostic features	IR, #, paragenesis

Notes, drafts

trig. modification of $Ag_3SbS_3 = PYRARGYRITE$ (with more bluish CI).

449 Pyrostilpnite, stephanite – Wenzel mine (?), Schwarzwald, Germany

Pyrostilpnite (right side, grey) in contact with stephanite (left side, grey tint brown).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D126_24 Section: TÜ40

450 Pyrostilpnite – Wenzel mine (?), Schwarzwald, Germany

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D126_29 Section: TÜ40

As above, with crossed polars. Note weak greyish anisotropism beside light yellow-orange IR. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D126_30 Section: TÜ40

452 Pyrostilpnite – Wenzel mine (?), Schwarzwald, Germany

Fine lamellar twinning, in part bended.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D126_26 Section: TÜ40

Pyrrhotite (in German: Pyrrhotin, Magnetkies)

Mineral name: Pyrrhotite (po) **Formula:** $Fe_{1-x}S(x = 0.1 - 0.2)$ VHN: 260-410 Crystal System: mcl./hex.

Observations with one polar (AE Pol)						
R _(air) in %	(for 546 nm)	$R_{1}^{}/R_{o}^{} = 35 \text{ to } 37$	$R_2/R_{e'} = 40 \text{ to } 42$			
R _(oil) in %	(for 546 nm)	$R_{1}/R_{o} = 23 \text{ to } 24$	$R_2/R_{e'} = 27 \text{ to } 29$			
Colour impressio	on (in oil)	white tint yellow brown	cream rose	so called »tombak colour«		
BR ~ Rpl	(in oil)	distinct		A _{oil} = 18		

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars	
Anisotropism intensity/colour	distinct without colour	distinct with colour	
Colour: in 45° position	grey	greyish turquoise – greyish red brown	
in other positions		greyish brown – green	
Extinction position	greyish black		
Mode of extinction	incomplete		
Internal reflections colour			
(IR) frequency			
Twinning mode	translation twins, and due to inversion		
frequency	rare – frequent		

Further observations	
Form, habit, textures, cleavage	anhedral aggregates, distinct # after one direction; often as inclusion in pyrite, supergene bird eyes-formation (hypogene: → mt+py). EB of pn-»flames«
Paragenesis	py, mrc, cp, cub, mackinawite, pn, mt
Diagnostic features	CI not easy to describe (»tombak«), #, paragenesis, bird eyes-formation

Notes, drafts

»Fresh« troilite (FeS): more yellow brown, slightly higher R, but rapid tarnishing (hours!). Pyrrhotite grains are often (submicroscopic) lamellar intergrowths of two or more po-subtypes.

453 Pyrrhotite, ilm, rt, graphite – Rimella-Gula, Val Sessia, N-Italy

Late formation of pyrrhotite (brownish cream) replacing gangue minerals and older Fe-Ti-minerals (ilm→rt→ttn) and graphite (upper right part of photo). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D16_19 Section: AS135

454 Pyrrhotite, py, asp – Calamita, Elba, Italy

455 Pyrrhotite, py, mt – Kropfmühl, Passau, Germany

Typical alteration of pyrrhotite along cracks and cleavage planes leading to the formation of pyrite/marcasite (whitish yellow) plus Fe-sulfates (dark grey). So called »bird eyes structure«. Euhedral arsenopyrite (white) and recrystallized pyrite (yellowish white, lower part of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D14_11 Section: AS1054a

Beginning transformation/ oxidation of pyrrhotite (brownish grey) to pyrite (whitish yellow) plus magnetite (medium grey) following fractures in po. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D90_10 Section: AS1054a

456 Pyrrhotite, pn, py, ol – Kunzenbrühl, Urach volcanic field, SW-Germany

Sulfidic melt inclusions in olivine from nephelinitic rock. Former mss is decomposed into pyrrhotite plus pentlandite (as exsolution in po) and minor pyrite (light rim). Note the trail of secondary sulfide melt inclusions (below and right side of large inclusion). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D213_17 Section: Xeno6
Ρ

457 Pyrrhotite, pn – Victor South Mine, Kambalda, W-Australia

Different tarnishing effects of lamellar pyrrhotite with tiny pentlandites grains and flames at grain boundaries. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D188_24 Section: AS3614

458 Pyrrhotite, py – Mte. Frerone, Adamello, Italy

Pyrrhotite with bird-eyes structure and small newly formed pyrite crystals along crack within large bird-eye. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D206_25 Section: AS1056

459 Sph, po, gn, cp – Broken Hill, Australia

Tiny pyrrhotite exsolution bodies in sphalerite (resembling chalcopyrite disease!). One small veinlet of chalcopyrite (yellow), larger po grains and younger galena (greyish white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D92_28 Section: AS3622

460 Po, py, mrc, gn – Wilsbach, Münstertal, Schwarzwald, Germany

Pseudomorph of marcasite (nearly white), galena (greyish white between marcasite) and pyrite (whitish yellow) after large po (small lath as relict in pyrite). The perfect cleavage of former pyrrhotite is still visible giving directions to mrc formation. Galena is the youngest mineral. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D73_07 Section: B069a

461 Pyrrhotite, pn, cp, cub – Phalaborwa, RSA

Pyrrhotite (brown, left side of photo) intergrown with pentlandite (cream) and chalcopyrite (yellow) plus lamellar cubanite (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D201_19 Section: MT-33

462 Pyrrhotite, gn – Tsumeb, Namibia

Hexagonal pyrrhotite as relicts in monocline pyrrhotite (slightly higher reflectance), in contact with galena (light grey). Digital modified photo with enhanced image contrast. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D169_26 Section: AS2507

463 Troilite, iron, iron oxihydroxides – Meteorite Brahim (pallasite)

Troilite with some darker lamellae beside native iron (white) and iron oxihydroxides (shades of grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D148_23 Section: 9031055

464 Troilite, spl – Meteorite (unknown locality)

Large grain of troilite (with visible BR) beside spinel (grey).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D161_01 Section: Me2677

Quartz (in German: Quarz)

Mineral name: Quartz (qz) **Formula:** SiO₂ VHN: 725 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 4.6	R _e = 4.7	calculated from n
R _(oil) in %	(for 546 nm)	R _o = 0.1	R _e = 0.1	calculated from n
Colour impressio	on (in oil)	»black« (but light IR!)	»black« (but light IR!)	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	not visible
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	white – colourless	
(IR) frequency	predominant	
Twinning mode	none	
frequency		

Further observations	
Form, habit, textures, cleavage	granular to euhedral, usually with many fluid inclusions; no #
Paragenesis	barite, fluorite, and many more
Diagnostic features	low R, no BR, hardness, no #; many fluid inclusions

Notes, drafts

465 Quartz, limonite, rutile – Wasseralfingen, Aalen, SW-Germany

Oolitic iron ore with anhedral quartz clasts (note strong relief!) and limonitic ooids. Some ooids formed around cores of rutile (light grey, upper right part) or limonitic clays (medium grey stacks).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D62_32 Section: AS3597

466 Quartz, hematite – Mt. Mulga Barite mine, Olary Pr., S-Australia

Euhedral quartz crystals partly replaced by hematite (greyish white).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D01_26 Section: AS3523

467 Quartz, fluorite, cerussite, galena – Jenigi, Egypt

Fluorite (left side and lower part of photo) is overgrown by euhedral quartz crystals (slightly lighter). Replacement of galena (white) by cerussite (medium grey). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D134_16 Section: AS3140

468 Quartz, goethite – The Pinnacles, near Broken Hill, NSW, Australia

Goethite crosscutting (not replacing!) fractured quartz grains (grey to black with light IR). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D67_05 Section: AS3525

Rammelsbergite

Mineral name: Rammelsbergite (ram) **Formula:** NiAs₂ VHN: 630-760 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 56.8	R ₂ = 60.9	
R _(oil) in %	(for 546 nm)	R ₁ = 43.1	R ₂ = 48.1	
Colour impressio	n (in oil)	white, impure (rose)	white	
BR ~ Rpl	(in oil)	weak		A _{oil} = 11

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour	distinct with colour
Colour: in 45° position	greyish blue	greenish grey – blue – yellow brown
in other positions		colourful
Extinction position	impure grey	
Mode of extinction	not perfect, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic after more than o	ne direction; also simple twins
frequency	abundant; frequent	

Further observations	
Form, habit, textures, cleavage	often as interlocked grains (< 1mm); rare visible zoning (Ni – Co,Fe)
Paragenesis	Co-Ni-arsenides, bismuth
Diagnostic features	twinning, high R

Notes, drafts

Similar to PARARAMMELSBERGITE.

469 Rammelsbergite, nk, sk – Nentershausen, Richelsdorfer Gebirge, Germany

Rammelsbergite (ram; weak BR due to fine polysynthetic twinning) and skutterudite (sk) around older nickeline (orange). Rim of younger nickeline followed by outer rim of rammelsbergite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D142_07 Section: AS163

470 Rammelsbergite, nk, sk – Nentershausen, Richelsdorfer Gebirge, Germany

As above, with crossed polars (Not precisely crossed!). Here rammelsbergite shows greenish blue colours, whereas nickeline is turquoise.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D142_09 Section: AS163

471 Rammelsbergite – Nieder-Beerbach, Odenwald, Germany

Characteristic lamellar twinning of rammelsbergite and anisotropism colours of brown and blue. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D44_17 Section: AS1573

472 Rammelsbergite, skutterudite – Nieder-Beerbach, Odenwald, Germany

Spherical aggregates of rammelsbergite (vivid colours; twins) in skutterudite (dark). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D44_24 Section: AS1573

Ramsdellite

Mineral name: Ramsdellite **Formula:** γ-MnO₂ VHN: ~ 100-1200* Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	$R_1 \sim 40$	R ₂ ~ 22	estimated
R _(oil) in %	(for 546 nm)	R ₁ ~ 25	R ₂ ~ 9	estimated
Colour impressio	n (in oil)	greyish white	grey tint olive	
BR ~ Rpl	(in oil)	very strong		A _{oil} = 94

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour tint
Colour: in 45° position	white tint yellow	white tint yellow – white tint rose
in other positions	near ext.: violet tint	violet tint
Extinction position	greyish black	
Mode of extinction	not perfect, rare undulatory	
Internal reflections colour	red	
(IR) frequency	very rare	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	many crevasses, often replaced by pyrolusite
Paragenesis	pyrolusite, manganomelane, manganite, nsutite
Diagnostic features	paragenesis, BR, AExPol with violet tint

Notes, drafts

R distinct lower than R of (similar) PYROLUSITE.

* VHN strongly depends on orientation, polishing and type of aggregate!

473 Ramsdellite, pyrolusite – Mistake mine, Arizona, USA

Replacement of pyrolusite (whitish yellow) by ramsdellite (medium grey, R_{max}). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_17 Section: AS132

474 Ramsdellite, pyrolusite – Mistake mine, Arizona, USA

As above, 90° rotated. Ramsdellite now dark with R_{min}.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_16 Section: AS132

475 Ramsdellite, pyrolusite, manganomelane – Mistake mine, Arizona, USA

Pyrolusite, ramsdellite (medium grey), and newly formed manganomelane fibres (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_18 Section: AS132

476 Ramsdellite, pyrolusite – Mistake mine, Arizona, USA

Strong contrast of reflectance between pyrolusite (whitish yellow) and ramsdellite (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D13_19 Section: AS132

Realgar

Mineral name: Realgar (rlg) **Formula:** As₄S₄

VHN: 50-60 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 19(*)	R _c = 21(*)	
R _(oil) in %	(for 546 nm)	$R_a = 6.4(*)$	$R_{c} = 8(*)$	
Colour impressio	n (in oil)	grey (tint red)	grey (tint blue)	
BR > Rpl	(in oil)	distinct		$A_{oil} = 22$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	masked by IR – not visible	masked by IR – not visible
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	yellow-red	
(IR) frequency	abundant	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	granular aggr., crusts, and euhedral; replaced by and oriented inter- growths with orpiment
Paragenesis	orpiment, arsenic, stibnite, marcasite, asp, lorandite, tennantite, loellingite
Diagnostic features	paragenesis, IR

Notes, drafts

(*) R calculated from n_a and n_c (2.538, and 2.704, resp.)

477 Realgar, arsenic – Michael im Weiler, Schwarzwald, Germany

Massive realgar beside native arsenic (in part strongly tarnished).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D125 16 Section: BW102

478 Realgar, arsenic – Michael im Weiler, Schwarzwald, Germany

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D125_17 Section: BW102

Realgar pseudomorph after native arsenic.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D194_26 Section: AS108

480 Realgar, arsenic – Allchar, S-Macedonia

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D100_03 Section: AS108

Rutile

Mineral name: Rutile (rt) **Formula:** TiO₂ VHN: 900-980 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 19.7	R _{e'} = 23.1	
R _(oil) in %	(for 546 nm)	R _o = 6.9	R _{e'} = 9.3	
Colour impressio	n (in oil)	grey	light grey (tint blue)	
BR ~ Rpl	(in oil)	strong	A _{oil} = 29	

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak without colour	distinct without colour
Colour: in 45° position	grey	grey – grey
in other positions		
Extinction position	often masked by IR	
Mode of extinction	straight	
Internal reflections colour	white (Fe-poor) – yellow orange – b	prown red (Fe-rich)
(IR) frequency	abundant – common – occasional	
Twinning mode	polysynthetic after more than 1 direction; and coarse	
frequency	common	

Further observations	
Form, habit, textures, cleavage	often anhedral crystals; as fine-grained product of ilmenite alteration (»leucoxene«); mt/ilm decomposition → hematite + rutile (blitz-texture)
Paragenesis	ilm, hm, ttn, garnet, biotite, amphibole
Diagnostic features	BR, twinning; anatase has R _{min} c-axis

Notes, drafts

Rutile is (meta-)stable at nearly all p/T-conditions! In contrast to ANATASE, rutile has strong BR and $\rm R_{e} > R_{o} \rightarrow R_{max} \mid \mid c.$

481 Rutile, ilm, ttn, po – Rimella-Gula, Val Sessia, Italy

Rutile (grey, with lamellar twinning) is replacing older ilmenite (brownish grey); titanite (dark grey) between ilm and rt; younger pyrrhotite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D16_23 Section: AS135

482 Rutile, hm, ilm – Radium Hill, Olary, S-Australia

Mixture of rutile (medium grey) and hematite-ilmenite (brown grains - BR! - with light grey exsolution bodies of hematite). Central rutile grain shows red internal reflection. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D01_30 Section: AS3519

483 Rutile, ilm, anatase – Neils Valley, Jos Plateau, Nigeria

Ilmenite (brownish grey) cross-cutting rutile (upper and lower part of photo). Ilmenite is transformed into a mixture of fine-grained rutile, anatase, and goethite (so called "leucoxene"). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D23_19 Section: AS134

484 Rutile, ilm – Neils Valley, Jos Plateau, Nigeria

Rutile with small twins (N-S, grey – light grey) and exsolution lamellae of ilmenite (E-W and N-S, brownish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D23_25 Section: AS134

Safflorite

Mineral name: Safflorite **Formula:** (Co,Ni,Fe)As₂

VHN: 790-880 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 54.1	R ₂ = 54.6	
R _(oil) in %	(for 546 nm)	R ₁ = 39.6	R ₂ = 40.2	
Colour impressio	on (in oil)	white tint yellow	white tint blue	
BR < Rpl	(in oil)	weak		A _{oil} = 1.5

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour tint	distinct with colour
Colour: in 45° position	grey tint yellow	greyish yellow – greyish blue
in other positions	grey tint blue or brown	blue, orange brown
Extinction position	greyish black	
Mode of extinction	not perfect, patchy	
Internal reflections colour		
(IR) frequency		
Twinning mode	needle-like, very often as star-like triplets	
frequency	abundant	

Further observations	
Form, habit, textures, cleavage	needle-like, prismatic, diamond-shaped, very often flame-like zoning; # distinct {100}
Paragenesis	Co-Ni-arsenides, bismuth
Diagnostic features	star-like triplets, flame-like zoning (AExPol)

Notes, drafts

The safflorite-structure stabilisation always requires the incorporation of Ni and Fe. Pure $CoAs_2$ is clinosafflorite (mcl., R_{oii} : 39-41 %; A_{oii} : 4.8). Similar to LOELLINGITE and ARSENOPYRITE.

485 Safflorite, bismuth, sk – Boulder from the Dom-Insel, Wrocław, Poland

Typical star-like triplets of safflorite. Native bismuth (light cream with pores) in skutterudite (upper left part of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D86_12 Section: AS3515

486 Safflorite – Mackenheim, Odenwald, Germany

Star-like twinned safflorite with distinct refection pleochroism; small inclusion of bismuth in safflorite (left side).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D147_01 Section: CHe5

487 Safflorite, calcite – Mackenheim, Odenwald, Germany

Triplets of safflorite under not perfect crossed polars showing yellow brown and blue AExPol and faint flame-like zoning. Matrix: calcite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D146_26 Section: CHe23

488 Safflorite, skutterudite – Boussmasse, Bou Azzer, Morocco

Flame-like zoning in safflorite (bluish and yellow brown) partly replaced by skutterudite. Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D89_26 Section: AS3571

Scheelite

Mineral name: Scheelite (sch) **Formula:** CaWO₄ VHN: ~ 400 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in % (for 546 nm)	R _o = 9.8	R _{e'} = 10.1		
R _(oil) in % (for 546 nm)	R _o = 1.4	R _{e'} = 1.5		
Colour impression (in oil)	grey	grey		
BR Rpl (in oil)	not visible		$A_{oil} = 0$	

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible (IR)	not visible (IR)
Colour: in 45° position	masked by IR	masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	white – colourless – yellow	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations

Form, habit, textures, cleavage	replaces wolframite (and vice versa), anhedral grains; good # {111}
Paragenesis	wolframite, asp, po, bismuth, molybdenite, Mn-oxides
Diagnostic features	paragenesis, UV-active

Notes, drafts

»gangue mineral optic«, thus often overlooked!

489 Scheelite, wolframite – Vignola-Falensina, Val Sugana, Trento, Italy

Large crystal of wolframite (medium grey) partly replaced by scheelite (left and lower side of photo; dark grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D64_07 Section: AS3583

490 Scheelite, wolframite, gn – Vignola-Falensina, Val Sugana, Trento, Italy

Replacement of wolframite crystals (light grey) by scheelite (medium grey). Younger veinlet of galena (white).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D64_01 Section: AS3583

491 Scheelite, braunite – Silberbrünnle, Gengenbach, Schwarzwald, Germany

Small inclusions of anhedral to elongated scheelite (dark grey) in braunite (medium grey). Obj.: 20 × oil Polars: ||Pol Photo width: 0.7 mm Photo No.: D149_05 Section: AS3337

492 Scheelite, wf, hm – Eggberg, Bad Säckingen, Schwarzwald, Germany

Large crystal of wolframite (medium grey) partly replaced by scheelite (dark grey) plus hematite (nearly white). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D196_05 Section: AS8413

Siderite

Mineral name: Siderite (sid) Formula: FeCO₃ VHN: ~ 190 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 9.3	R _e = 5.5	calculated from n
R _(oil) in %	(for 546 nm)	R _o = 1.1	$R_{e} = 0.1$	calculated from n
Colour impression	(in oil)	grey	black	
BR > Rpl	(in oil)	extremely strong		A _{oil} = 166

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong without colour	strong without colour
Colour: in 45° position	light grey	light grey
in other positions	predominant IR	predominant IR
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	white – yellow brown	
(IR) frequency	predominant	
Twinning mode	polysynthetic	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	typical rhombohedral habit; often altered to Fe-oxihydroxides (limonite) along cleavage planes; perfect #
Paragenesis	goethite, hematite, other carbonates
Diagnostic features	#, paragenesis

Notes, drafts

Carbonate with strongest BR!

493 Siderite, hematite – Mamatwan mine, Kuruman, RSA

Idioblastic siderite crystals (medium grey) with iron silicates, quartz, and hematite (whitish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D17_15 Section: M4

494 Siderite, pyrite – Wasseralfingen, Aalen, Germany

Siderite-rich layer with framboidal pyrite plus goethite; rounded quartz grains in the upper part.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D79_13 Section: Aa26

495 Siderite, limonite – Feld »Ludwig«, Hundsdorf, Kellerwald, Germany

Lenticular siderites rimmed and replaced by limonite (light grey). Milky quartz in upper and lower part of photo. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D96_11 Section: AS165

496 Siderite, limonite – Feld »Ludwig«, Hundsdorf, Kellerwald, Germany

Alteration of siderite (very strong BR!) along cleavage planes by limonite. Quartz in upper left and right part of photo. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D96_10 Section: AS165

Silver (in German: ged. Silber)

Mineral name: Silver Formula: Ag VHN: 60-70 Crystal System: cub.

Observations with one polar (AE Pol)							
R _(air) in %	(for 546 nm)	with 0.9 % S	b: R = 93	with 4 % S	b: R = 86		
R _(oil) in %	(for 546 nm)	П	R = 91	11	R= 81		
Colour impressio	n (in oil)	white		white		tarnishing!	
BR Rpl	(in oil)					$A_{oil} = 0$	

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	anisotropism due to scratches anisotropism due to scratch	
Colour: in 45° position	many light scratches (»Kratzeranisotropie«)	homogeneous light grey with many scratches
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	dendritic aggregates, skeletal crystals, cubes; fine-grained aggregates
Paragenesis	acanthite, fahlore, cp, allargentum, Co-minerals
Diagnostic features	very high R, rapid tarnishing, many scratches, poor polishing

Notes, drafts

Rapid tarnishing (to yellow, reddish, brown)!

497 Silver, safflorite – Nieder-Beerbach, Odenwald, Germany

Silver (white) in sponge-like intergrowth with safflorite (greyish white with Rpl). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D145_07 Section: CHe 26a

498 Silver, safflorite – Nieder-Beerbach, Odenwald, Germany

Skeletal silver as linear array of silver cubes (white) with interconnecting tiny silver veinlets in safflorite (whitish grey).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D146_12 Section: CHe26b

499 Silver, akanthite, sphalerite – Imiter, Morocco

Silver (white) overgrowing and replacing argentite (medium grey). Both replaced by sphalerite (dark grey, bottom of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D181_20 Section: IM1308

500 Silver, argentite, galena, asp – Imiter, Morocco

Anhedral silver (nearly white) replacing arsenopyrite (dull greyish yellow relicts) and argentite (dark greenish grey). Galena (grey, left side of photo) is replaced by argentite (darker greenish grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D177_22 Section: IM1308

Skutterudite

<u>S</u>

Mineral name: Skutterudite – Ni-Skutterrudite (sk) Formula: (Co,Ni,Fe)As₃ VHN: 600-900 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	R = 54 to 56		
R _(oil) in % (for 546 nm)	R = 39 to 41		
Colour impression (in oil)	white tint cream		
BR Rpl (in oil)	A _{oil} = 0		

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	isotropic, some with weak anisotropism
Colour: in 45° position	greyish black	medium grey
in other positions	occasionally greyish AExPol	
Extinction position	black	
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	often euhedral with fine zoning (varying Co-Ni-Fe); occasionally cracks due to breakdown of High-T-solid solution. Alteration zones are strongly anisotropic!
Paragenesis	nickeline, bismuth, pararammelsbergite, and many more
Diagnostic features	very fine zoning, habit

Notes, drafts

No As-deficiency (Schumer et al. (2017): AM102, 205-209). Zoned skutterudites formerly named »Speiskobalt«. Solid solutions forming large XX with very fine, delicate zoning (differences in hardness, selective replacement).

Ferroskutterudite (with 5-8 wt. % Fe): R_{air} = 57 % (SPIRIDONOV & GRITSENKO (2007), New Data on Minerals. Moscow, 42, 16-27).

501 Skutterudite, cobaltite, Bi, safflorite – Schneeberg, Saxony, Germany

Cubic crystal of skutterudite with cross-like inclusion of cobaltite plus bismuth. Safflorite crusts on bismuth. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D82_02 Section: AS1762

502 Skutterudite – Mackenheim, Odenwald, Germany

Zoned skutterudite crystals with selective zonal alteration features.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D147_10 Section: CHe4

503 Skutterudite, bismuth – Neuglück, Wittichen, Schwarzwald, Germany

Zoned skutterudite with inclusion of bismuth (note cracks around bismuth). Digital modified photo with enhanced image contrast! Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D31_27 Section: TÜ9

504 Skutterudite, cb, qz – Bauhaus near Nentershausen, Richelsdorf, Germany

Sharp selective replacement of zoned skutterudite by gangue minerals (carbonate, quartz).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D144_21 Section: AS162

Sphalerite (in German: Sphalerit, Zinkblende)

Mineral name: Sphalerite (sph) Formula: (Zn,Fe)S VHN: 200-220 Crystal System: cub.

Observations with one polar (AE || Pol) (for 546 nm) 17.0 R_(air) in % (for 546 nm) with 13 % Fe: 5.4 % with 2.6 % Cd: 4.7 % R_(oil) in % 5.0 **Colour impression** (in oil) grey BR Rpl (in oil) --- $A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity	/colour	homogeneous dark	homogeneous dark
Colour: in 45° p	osition	black or masked by IR	black or masked by IR
in other po	ositions		
Extinction position			
Mode of extinction			
Internal reflections	colour	 white – yellow green – red brown – dark brown (with increasing Fe-content) 	
(IR) free	quency	abundant – common – occasional – rare	
Twinning	mode	polysynthetic twinning (rarely observable on the basis of R/IR)	
fre	quency	common	

Further observations	
Form, habit, textures, cleavage	often in anhedral aggregates; chalcopyrite inclusions (chalcopyrite-di- sease); EB of stannite, pyrrhotite, cubanite.
Paragenesis	gn, cp, po, py, stannite, marcasite, wurtzite
Diagnostic features	chalcopyrite-disease, paragenesis

Notes, drafts

R depends on Fe-content (Fe-poor sphalerite has lower R and more light IR).

FeS-content of sphalerite can be used as geobarometer but only in paragenesis (!) with pyrrhotite + pyrite.

CHALCOPYRITE-DISEASE: Tiny inclusion of cp in sph (due to an infiltration of Cu-fluids in Fe-bearing sphalerite).

SCHALENBLENDE: see under WURTZITE.

505 Sphalerite I + II, cp – Elisabeth mine, Pfunderer Berg, Tyrol, Italy

Aggregate of sphalerite I (grey) with »chalcopyrite disease« (left side of photo). Note the central part of sphalerite with no chalcopyrite inclusions and slightly lower reflectance (= Fe-poor sphalerite II). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D46_28 Section: AS3576

506 Sphalerite I + II, cp – Elisabeth mine, Pfunderer Berg, Tyrol, Italy

As above, with crossed polars. The central part with sphalerite II shows lighter and much more internal reflections (due to Fe-poor composition) than the surrounding sphalerite I with few brown IR.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D46_27 Section: AS3576

507 Sphalerite, gn, cp – Rammelsberg, Harz, Germany

Typical fine-grained ore from Rammelsberg with galena (nearly white), chalcopyrite (yellow) and sphalerite (grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D37_25 Section: AS3507

508 Sphalerite, fahlore, py – Fort Steel Mining Distr., B. C., Canada

Lamellar twinning of sphalerite! Visible only due to differences in polishing hardness and slightly inclined (!) mounting of the polished section. Small vein of fahlore (greenish grey), one pyrite. Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D09_06 Section: AS1744

509 Sphalerite, carbonate – Dörrenzimmern, S-Schwarzwald, Germany

Poikiloblast of sphalerite in matrix of fine-grained carbona-te.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D80_04 Section: DK II 47

510 Sphalerite, py – Jachimov (Joachimsthal), Czech Republic

Compact aggregate of zoned sphalerite grains with dark cores and slightly lighter rims; pyrite (whitish yellow). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D156_24 Section: AS3629

511 Sphalerite, gn, carbonate – Tara mine, Navan, Ireland

Fine-grained rounded aggregates of sphalerite (medium grey) rimmed by galena (white) in groundmass of carbonates (dark grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D83_18 Section: AS3596

512 Sphalerite, gn, carbonate – Tara mine, Navan, Ireland

As above, with crossed polars. Note light yellow to colourless internal reflections of sphalerite due to the very low iron content. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D83_17 Section: AS3596

513 Sphalerite, wurtzite, jordanite – Michael im Weiler, Schwarzwald, Germany

Schalenblende: Rhythmic collomorph texture of sphalerite/wurtzite aggregate. In one band a co-precipitation of jordanite (light grey) occurred. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D169_03 Section: BW95

514 Sphalerite, wurtzite, jordanite – Michael im Weiler, Schwarzwald, Germany

As above, with crossed polars. Light bands of wurtzite with white-yellow IR and dark bands of sphalerite. Distinct anisotropism of jordanite crystals.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D169_02 Section: BW95

515 Sphalerite, wurtzite, jordanite – Michael im Weiler, Schwarzwald, Germany

Schalenblende: Banded aggregate of sphalerite (red bands: < 1 wt. % Fe) and wurtzite (white bands: < 0.1 wt. % Fe). Minor jordanite (black).

< 0.1 wt. % Fe). Sectior e (black). smitted and

Combined transmitted and reflected light under crossed polars!

Polars: × Pol Photo width: 5 mm Photo No.: D175_06 Section: BW95

Obj.: 2.5 ×

516 Sphalerite, quartz – Michael im Weiler, Schwarzwald, Germany

Complex banding of schalenblende with co-precipitation of euhedral, zoned quartz crystals. Obj.: 10 × Polars: × Pol Photo width: 1.4 mm Photo No.: D168_31 Section: BW95

Spinel

Mineral name: Spinel s. l. (spl) **Formula:** (Fe,Mg)(Al,Fe,Cr)₂O₄ VHN: 860-1700 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	7 to 10	depending on composition	
R _(oil) in %	(for 546 nm)	0.4 to 3	spinel s.s.: 0.4 %	
Colour impressio	n (in oil)	dark grey		
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour		homogeneous dark	
Colour: in 45° pos	ition	black or masked by IR	
in other posit	ions		
Extinction position			
Mode of extinction			
Internal reflections co	olour	colourless to greenish, rarely brow	nish
(IR) freque	ency	abundant	
Twinning n	node		
frequ	ency		

Further observations	
Form, habit, textures, cleavage	euhedral or idioblastic aggregates, often fractured by cataclasis; as EB in mt, or rimmed by mt.
Paragenesis	magnetite, ilmenite, corundum
Diagnostic features	paragenesis, IR, no #, hardness, R similar to R of gangue minerals

Notes, drafts

Cr-rich spinel: see CHROMITE Hercynite FeAl_2O_4 Spinel s.s. MgAl $_2\text{O}_4$

517 Spinel, mt, perovskite – Gutenberger Steige, Urach, B.-W., Germany

Kind of symplectitic spinel with Al-rich core (medium grey) and Fe-rich rim (Ti-mt). Groundmass with Ti-magnetite (in part with spinel core) and perovskite (light grey, left side of photo). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D134_26 Section: AS3291

518 Spinel, mt, olivine, cpx – Bölle (Kunzenbrühl), Urach, B.-W., Germany

519 Spinel, magnetite, ilmenite – Krzemianka, Suwalki-Intrusion, Poland

Right crystal: Euhedral crystal of spinel (Mg-Al(-Cr) spinel) almost entirely enclosed in olivine (light grey due to internal reflections). Left crystal: Spinel with reaction rim of magnetite between olivine (some fractures, right side) and pyroxene (darker grey, upper left side).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D56_13 Section: Xeno6

Reaction zone between ilmenite (upper part) and Ti-magnetite (lower part). Ilmenite contains tiny spinels I (dark grey) in the outer zone and larger spinel II crystals (in part with magnetite relicts) in the inner subzone. Ti-magnetite with exsolution bodies of lamellar ilmenite and lensoid spinels. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_14 Section: AS198

520 Spinel, pentlandite, cp – McLeay mine, Kambalda, Australia

Zoned euhedral crystals of spinel with magnetite-rich rim, in part surrounded by pentlandite with minor chalcopyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D210_08 Section: S-LSU207_1

Spionkopite

Mineral name: Spionkopite **Formula:** Cu₃₉S₂₈ VHN: 120-160 Crystal System: hex.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 18.6 (15.5*)	R _{e'} = 27.1 (20.6*)	
R _(oil) in %	(for 546 nm)	R _o = 6.1	R _{e'} = 12.3	
Colour impressio	on (in oil)	blue	grey blue	
BR > Rpl	(in oil)	strong – distinct		A _{oil} = 68

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	strong with colour	very strong with colour
Colour: in 45° position	n light orange yellow	orange – orange
in other position	5	
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colou	r	
(IR) frequency		
Twinning mode	e translation twins	
frequency	common	

Further observations	
Form, habit, textures, cleavage	small platy- and tabular crystals; lamellae replacement product of chalcocites
Paragenesis	chalcocite, covellite, djurleite, chalcopyrite, tennantite, magnetite, Co-pentlandite
Diagnostic features	CI, AE Pol , no violet tint like yarrowite

Notes, drafts

»BLAUBLEIBENDER COVELLIN« is SPIONKOPITE or YARROWITE, or both.

BR is less strong compared to yarrowite!

* R after GOBLE (1980), Can. Mineral., 18, 511-518.

521 Spionkopite, cv, cp – Frankenberg, Hesse, Germany

Spionkopite (R_{min} dark blue without violet tint) and distinct cleavage, surrounded and replaced by covellite (red violet).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D95_27 Section: AS3554

522 Spionkopite, cv, cp – Frankenberg, Hesse, Germany

As above, now 90° rotated. Now spionkopite with R_{max} (note the only distinct BR in contrast to the strong BR of yarrowite).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D95_28 Section: AS3554

523 Spionkopite, cv, cp – Frankenberg, Hesse, Germany

Spionkopite (R_{min} dark blue without violet tint) and distinct cleavage, surrounded and replaced by covellite (red violet). Relicts of chalcopyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D95_19 Section: AS3554

524 Spionkopite, cv, cp – Frankenberg, Hesse, Germany

As above, 90° rotated (R_{max} of spionkopite now medium blue).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D95_20 Section: AS3554

Stannite (in German: Stannit, Zinnkies)

Mineral name: Stannite **Formula:** α -Cu₂FeSnS₄ VHN: 210-270 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 27.7	R ₂ = 28.4	$R_2 \sim R_o$
R _(oil) in %	(for 546 nm)	R ₁ = 13.4	R ₂ = 14.0	
Colour impressio	n (in oil)	brownish olive	grey tint green	
BR < Rpl	(in oil)	distinct		A _{oil} = 8

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	weak with colour	weak with colour
Colour: in 45° position	violet blue	bluish violet – violet blue
in other positions	violet	violet
Extinction position	greyish black	
Mode of extinction	not perfect	
Internal reflections colour		
(IR) frequency		
Twinning mode	very fine polysynthetic twinning (microcline-like); coarse twins	
frequency	often; rare	

Further observations	
Form, habit, textures, cleavage	nearly never euhedral; inclusions of sph and/or cp (tiny grains) due to exsolution
Paragenesis	cp, cas, sph, asp, py, fahlore, bismuth, bismuthinite,
Diagnostic features	CI, microcline-like twinning, EB of cp

Notes, drafts

Nearly always excess content of $CuFeS_2$ and ZnS (be aware of nano-inclusions!). H-temperature Cu_2FeSnS_4 = isostannite (*stannite II* of Ramdohr) was synthetized by FRANZ (1971) und WANG (1982) between 420-500° C (but may be ferrokesterite due to the structural similarity). The observed polysynthetic twinning of stannite could be an inversion twinning(?). See BONAZZI ET AL. (2003), Can Min, 41, 639-647. See also: KESTERITE (Cu_2ZnSnS_4)

525 Stannite, cp, cas – Cornwall, England

Equigranular aggregate of stannite (various grey tones) with chalcopyrite exsolution bodies. Three rounded cassiterite grains in stannite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D09_18 Section: AS1020

526 Stannite, cp, cas – Cornwall, England

As above, with crossed polars. Typical violet blue anisotropism colours. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D09_21 Section: AS1020

527 Stannite, cp, py – Neves-Corvo, Portugal

Stannite (medium grey) replacing chalcopyrite (whitish yellow), and pyrite (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D149_07 Section: AS2174

528 Stannite, cp, py – Neves-Corvo, Portugal

As above, with crossed polars. Note: bluish AExPol. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D149_08 Section: AS2174

Stannoidite

Mineral name: Stannoidite **Formula:** Cu₈(Fe,Zn)₃Sn₂S₁₂ VHN: 180-270 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 23.7	R ₂ = 27.3	
R _(oil) in %	(for 546 nm)	R ₁ = 11.3	R ₂ = 13.6	
Colour impressio	n (in oil)	orange brown	yellow brown	(salmon brown)
BR ~ Rpl	(in oil)	distinct		A _{oil} = 19

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour	distinct with colour
Colour: in 45° position	greyish orange – greyish yellow	orange – greyish yellow
in other positions		
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour		
(IR) frequency		
Twinning mode	polysynthetic after 2 directions (similar to cp; Cornwall sample)	
frequency	?	

Further observations	
Form, habit, textures, cleavage	as EB in stannite or vice versa; reaction rim between cp and stannite
Paragenesis	kesterite, stannite, cp, bn, cas, mawsonite, chalcocite, tnt, asp, gn, enargite
Diagnostic features	Cl, BR, paragenesis; similar to bornite (but stronger BR, AExPol)

Notes, drafts

CI compared with KESTERITE (Cu₂ZnSnS₄) is more orange; also stronger AExPol.

529 Stannoidite, asp – St. Michaels Mount, Cornwall, England

Stannoidite (brown) between cataclastic arsenopyrites.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D155_18 Section: AS3627

Stannoidite (brown) surrounded and partly replaced by stannite (greenish grey); arsenopyrite.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D155_16 Section: AS3627

531 Stannoidite, stannite, asp – St. Michaels Mount, Cornwall, England

Stannoidite (brown) with tiny exsolution lamellae of stannite (not visible in photo); arsenopyrite (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_19 Section: AS3627

532 Stannoidite, stannite, asp – St. Michaels Mount, Cornwall, England

As above, with crossed polars. Note polysynthetic twinning of stannoidite (centre of photo) and very fine lamellae of stannite (NE-SW, dark grey).

Digitally edited contrast and brightness.

Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D155_21 Section: AS3627

Stibnite (in German: Stibnit, Antimonit)

Mineral name: Stibnite (stbn) Formula: Sb₂S₃ VHN: 70-80 (on (010)) Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _a = 42.2	R _b = 31.1	$R_{c} = 48.1$
R _(oil) in %	(for 546 nm)	R _a = 26.8	R _b = 16.1	R _c = 33.4
Colour impressio	on (in oil)	grey white	grey tint olive brown	pure white
BR ~ Rpl	(in oil)	extremely strong		A _{oil} = 75

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotro	oism intensity/colour	strong without colour	very strong with colour tint
Colour:	in 45° position	white	white tint blue – white tint rose
	in other positions	rose brown, grey blue	brown, grey blue
Extinctio	n position	black	
Mode of	extinction	perfect, undulatory	
Internal	reflections colour		
(IR)	frequency		
Twinning	mode	spindle-shaped (lancet-shaped) deformation twins, and crumpled lamellae	
	frequency	rare – common	

Further observations

Form, habit, textures, cleavage	fibrous, acicular to tabular XX, also equigranular; in oxidation zones replacement by Sb-oxihydroxides; # {010} perfect
Paragenesis	cinnabar, metacinnabar, asp, gold, fahlore, As-minerals
Diagnostic features	BR, AExPol, translation twins, low hardness, paragenesis, #

Notes, drafts

 $\rm R_{_{2}}$ is higher and more white compared to $\rm R_{_{2}}$ of similar BOULANGERITE.

533 Stibnite – Pribram, Czech Republic

Strong bireflection of stibnite with bended deformation twins.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_30 Section: AS1003

534 Stibnite, py – Schweizergrund near Sulzburg, Schwarzwald, Germany

Acicular to tufted crystals of stibnite in paragenesis with pyrite.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D33_24 Section: Metz357

535 Stibnite, cinnabar – Çirakman tepe, Ladik, Turkey

Equigranular aggregate of stibnite (with strong BR) and cinnabar (medium grey with many scratches). One small crystal of arsenopyrite (white, lower left part). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_25 Section: AS155

536 Stibnite, cinnabar, asp – Çirakman tepe, Ladik, Turkey

Typical alteration of stibnite grains parallel cleavage plans to secondary Sb-minerals (dark grey). Few cinnabar grains (medium grey) and cluster of arsenopyrite, partly euhedral diamond-shaped. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D32_27 Section: AS155
Teallite

Mineral name: Teallite **Formula:** PbSnS₂

VHN: 60-120 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 42.5	R ₂ = 44.0	
R _(oil) in %	(for 546 nm)	R ₁ = 28.0	R ₂ = 29.1	
Colour impressio	on (in oil)	greyish white tint yellow	cream white	
BR ~ Rpl	(in oil)	weak		$A_{oil} = 4$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour	strong with colour
Colour: in 45° position	greyish olive – grey tint blue	grey – greyish blue
in other positions	greyish violet near isotropic sec.	violet, olive
Extinction position	greyish black	
Mode of extinction	not perfect, straight elongation, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	complex, and after (001), polysynthetic translations after (001)	
frequency	occasional	

Further observations	
Form, habit, textures, cleavage	tabular XX (001), granular, radial aggregates, decomposition into gn + cas; # (001).
Paragenesis	galena, cassiterite, wurtzite, sphalerite, pyrite
Diagnostic features	paragenesis, texture

Notes, drafts

Isotropic section perpendicular to (001), i. e. in sections with #-planes.

537 Teallite, gn, cas, wurtzite – Potosi, Bolivia

Large lath of teallite (lower left side) in part replaced by intimate mixture of galena (white) and cassiterite (dark grey). Upper part of photo wurtzite with pyrite.

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D109_04 Section: AS1024

538 Teallite, gn, cas – Potosi, Bolivia

Large lath of twinned teallite (centre) in part replaced by intimate mixture of galena (white) and cassiterite (nearly black). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D109_05 Section: AS1024

539 Teallite, gn, cas – Potosi, Bolivia

Intimate mixture of galena (white) and cassiterite (nearly black) surrounded by large crystal teallite (note bireflectance). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D109_09 Section: AS1024

540 Teallite, gn, cas – Potosi, Bolivia

As above, with crossed polars, showing distinct anisotropism of teallite, and light yellow internal reflections of cassiterite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D109_11 Section: AS1024

Tenorite (Melanocite)

Mineral name: Tenorite (Melanocite) Formula: CuO VHN: 190-130 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 20.4	R ₂ = 27.5	
R _(oil) in %	(for 546 nm)	R ₁ = 7.6	R ₂ = 13.1	
Colour impression	on (in oil)	brownish grey	cream grey	
BR ~ Rpl	(in oil)	extremely strong		A _{oil} = 53

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong with colour tint	strong with colour tint
Colour: in 45° position	yellow white	white yellow – bluish white
in other positions		
Extinction position	grey black, many scratches	
Mode of extinction	not perfect, uneven	
Internal reflections colour	brown	
(IR) frequency	very rare (in samples from Vesuv)	
Twinning mode	polysynthetic after more than one direction (elongation)	
frequency	common	

Further observations	
Form, habit, textures, cleavage	spherical, fibrous, botryoidal, skeletal, often fine-grained; replaces cuprite {111} of cuprite
Paragenesis	cuprite, copper, chrysocolla, malachite, goethite, paramelanocite, delafossite
Diagnostic foaturos	

Notes, drafts

In comparison to delafossite poor # and less yellow in oil. Paramelanocite: tetragonal modification of CuO (with lower R, many scratches).

541 Tenorite, cuprite – Locality unknown

Secondary formation of tenorite (brownish grey) along the cleavage planes of cuprite (medium grey). Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D85_04 Section: AS3548

542 Tenorite, cuprite – Locality unknown

As above, with oil immersion objective. Note strong BR of tenorite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D05_27 Section: AS114

543 Tenorite, cuprite – Locality unknown

As above, with crossed polars. Note the strong anisotropism of tenorite and red IR of cuprite. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D85_11 Section: AS3548

544 Tenorite, cuprite – Locality unknown

Botryoidal aggregates of tenorite beside cuprite. Tiny inclusions of native copper (orange) in cuprite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D43_31 Section: AS3547

Tetradymite

Mineral name: Tetradymite **Formula:** Bi₂Te₂S VHN: 30-45 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 60.5	R _{e'} = 54.8	
R _(oil) in %	(for 546 nm)	R _o = 47.7	R _{e'} = 40.7	
Colour impressio	n (in oil)	white tint yellow	white	
BR > Rpl	(in oil)	distinct		A _{oil} = 16

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	distinct with colour tint	distinct with colour tint
Colour: in 45° position	grey (tint brownish yellow)	bluish grey – greyish yellow
in other positions		brownish yellow
Extinction position	greyish black	
Mode of extinction	straight, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	lamellar twinning	
frequency	rare	

Further observations	
Form, habit, textures, cleavage	tabular and needle-like XX, also granular; # (0001)
Paragenesis	bismuthinite, emplectite, bismuth, fahlore
Diagnostic features	paragenesis

Notes, drafts

545 Tetradymite, bismuthinite – Stuhlskopf, Schwarzwald, Germany

Laths of tetradymite (nearly white) enclosed by bismuthinite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7mm Photo No.: D182_13 Section: Kind11

546 Tetradymite, bismuthinite – Stuhlskopf, Schwarzwald, Germany

As above, with crossed polars. Grey tint brownish yellow anisotropism colours. Strong anisotropism of bismuthinite.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D182_14 Section: Kind11

547 Tetradymite, bismuthinite – Stuhlskopf, Schwarzwald, Germany

As above, now with (not exactly) crossed polars, resulting in more vivid anisotropism colours (bluish grey to greyish yellow). Obj.: 20 × oil Polars: × Pol (~) Photo width: 0.7 mm Photo No.: D182_15 Section: Kind11

548 Tetradymite, emplectite, fahlore – Stuhlskopf, Schwarzwald, Germany

Myrmekitic intergrowth of tetradymite (white) with emplectite (beige olive), rimmed by fahlore. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D182_17 Section: Kind11

Thorianite

Mineral name: Thorianite **Formula:** (Th,U)O₂

VHN: ~ 1100-1280 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	13 (to 16)		
R _(oil) in % (for 546 nm)	3		
Colour impression (in oil)	dark grey		
BR Rpl (in oil)		$A_{oil} = 0$	

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	
Colour: in 45° position	black	
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	rare	
(IR) frequency	red brown to yellow brown	
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	often in euhedral cubic crystals; rounded grains in placer, often zoned; cleavage {100}+{111}
Paragenesis	mt, ilm, cas, uraninite, sulfides
Diagnostic features	habit, paragenesis

Notes, drafts

R varies with U- and Ce-content.

549 Thorianite, baddeleyite, cp – 2. Lift, PMC mine, Phalaborwa, RSA

Small thorianite crystal (left side of photo) in carbonatite, together with baddeleyite (centre, grey), and chalcopyrite (yellow).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D188_09 Section: 61

550 Thorianite, mt, cp – 2. Lift, PMC mine, Phalaborwa, RSA

Thorianite cubes (medium grey) beside prismatic baddeleyite (brownish grey, upper left part of photo), and chalcopyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D188_10 Section: 61

551 Thorianite, baddeleyite, mt – Phalaborwa, RSA

Euhedral thorianite with small baddeleyite crystals (slightly higher R), both surrounded by magnetite (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D201_12 Section: Albaradio

552 Thorianite, mt – 2. Lift, PMC mine, Phalaborwa, RSA

Thorianite cube (medium grey) partly enclosed by magnetite (light grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D188_11 Section: 61

Titanite

Mineral name: Titanite (ttn) **Formula:** CaTi[O|SiO₄] VHN: 700-850 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 9.5	R ₂ = 11.0	
R _(oil) in %	(for 546 nm)	R ₁ = 1.3	R ₂ = 2.0	
Colour impressio	on (in oil)	black (but IR!)	greyish black (IR!)	
BR > Rpl	(in oil)	strong		A _{oil} = 42

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	strong without colour	strong without colour
Colour: in 45° position	grey, masked by IR	grey – grey, masked by IR
in other positions		
Extinction position	masked by IR	
Mode of extinction		
Internal reflections colour	white – yellow – brown (Fe-rich)	
(IR) frequency	abundant – common	
Twinning mode	polysynthetic after one direction	
frequency	rare	

Further observations	
Form, habit, textures, cleavage	lens- or diamond-shaped grains, replaces ilmenite and rutile; often within biotite or amphiboles/pyroxenes. Good cleavage {110}
Paragenesis	ilmenite, rutile, anatase
Diagnostic features	paragenesis, habit

Notes, drafts

Similar to CASSITERITE (which is more often twinned).

553 Titanite – Selberg, Quiddelbach, Hocheifel, Germany

Euhedral crystals of titanite in nephelinite. Large titanite shows lamellar twinning with displaced lamellae on the right side of the crystal.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D07_01 Section: AS1136

554 Titanite, rt, ilm, po – Rimella-Gula, Val Sessia, Italy

Titanite (grey, maximum reflectance R₂) as replacement product of rutile (lighter grey, twins), which replaces older ilmenite (brownish grey, twins); replacement by younger pyrrhotite (light cream).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D16_21 Section: AS135

555 Titanite, rutile – Yudnamutana Gorge, N. Flinders Range, Australia

Large titanite crystal partly replaced by rutile (light grey) along cleavage planes. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D71_14 Section: JH60

556 Titanite, mt, ilmenohematite, po – Drachenfels, south of Bonn, Germany

Diamond-shaped grains of titanite (some with inclusions of pyrrhotite) around magnetite with ilmenohematite (light to medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D206_15 Section: AS1128

Tourmaline (in German: Turmalin)

Mineral name: Tourmaline (tur) **Formula:** $NaFe_3(Al,Fe)_6[(OH)_4(BO_3)_3Si_6O_{18}]$ VHN: ~ 1000 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 5.9	R _e = 6.3	calculated from n
R _(oil) in %	(for 546 nm)	R _o = 0.2	R _e = 0.3	
Colour impressio	on (in oil)	greyish black	greyish black	with IR colours!
BR ~ Rpl	(in oil)	weak/not visible		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colo	ur very weak	weak
Colour: in 45° positi	in general masked by IR	
in other positio	ns	
Extinction position	often masked by IR	
Mode of extinction	straight	
Internal reflections colo	ur from white over yellow, rose, blu often zoned	e, green to greyish black;
(IR) frequen	Sy abundant	
Twinning mo	de simple	
frequen	cy rare	

Further observations	
Form, habit, textures, cleavage	needle-like and prismatic XX with triangular head sections, colour zoning; no #, but cracks (0001)
Paragenesis	cassiterite, wolframite, asp, qz
Diagnostic features	habit, paragenesis, zoning

Notes, drafts

557 Tourmaline, sch, hm – Eggberg, Bad Säckingen, Schwarzwald, Germany

Two tourmaline crystals (nearly black) cut parallel and \perp to the c-axis in fine-grained groundmass of scheelite (reddish grey) and hematite (nearly white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D196_12 Section: AS270

558 Tourmaline, hematite – Eggberg, Bad Säckingen, Schwarzwald, Germany

Broken crystals of dark tourmaline enclosed and replaced by hematite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D196_13 Section: AS270

559 Tourmaline, kesterite, quartz – St. Michaels Mount, Cornwall, England

Corroded prisms of transparent tourmaline with visible interference colours in quartz groundmass; lower left: kesterite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_26 Section: AS3627

560 Tourmaline, quartz – St. Michaels Mount, Cornwall, England

Two reddish brown tourmalines crystals with colour zoning in quartz groundmass. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D155_30 Section: AS3627

Ullmannite

Mineral name: Ullmannite Formula: NiSbS VHN: ~ 460-560 Crystal System: tric., ps.cub.

Observations with one polar (AE Pol)		
R _(air) in % (for 546 nm)	47.3	
R _(oil) in % (for 546 nm)	32.8	
Colour impression (in oil)	white tint blue	
BR Rpl (in oil)		$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour		rarely very weak anisotropic	
Colour: in 45° pos	ition	greyish	
in other posi	tions		
Extinction position		black	
Mode of extinction			
Internal reflections c	olour		
(IR) frequ	ency		
Twinning r	node		
frequ	ency		

Further observations	
Form, habit, textures, cleavage	euhedral XX (cubes), occasional with zoning (Co, Fe, Bi, As). # {100} with (rare) triangular pits (less often than in gersdorffite).
Paragenesis	breithauptite, cp, gn, gold
Diagnostic features	CI, paragenesis

Notes, drafts

Rare mineral. Often as solid solution with GERSDORFFITE.

561 Ullmannite, tetrahedrite – Salchendorf, Siegerland, Germany

Large crystal of ullmannite with replacement by tetrahedrite along cleavage planes. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D134_06 Section: AS2878

562 Ullmannite, td, Bi, bismuthinite, nk – Salchendorf, Siegerland, Germany

Cataclastic ullmannite with tetrahedrite (greenish grey), bismuth \rightarrow bismuthinite, and tiny nickeline.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D134_05 Section: AS2878

563 Ullmannite-Gersdorffite-ss – Grube Silberquelle, Siegerland, Germany

Different tarnishing effects of zoned ullmannite-gersdorffite solid solution.

Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D149_02 Section: AS1757

564 Pyrite, ullmannite, tetrahedrite – Locality unknown

Anhedral pyrite (yellowish white) enclosed by euhedral ullmannite (white). Tiny cubes of ullmannite in gangue minerals beside larger tetrahedrite (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D148_25 Section: AS1007

Vaesite

Mineral name: Vaesite Formula: NiS₂ VHN: ~ 800 Crystal System: cub.

Observations with one polar (AE Pol)			
R _(air) in % (for 546 nm)	31.8		
R _(oil) in % (for 546 nm)	17.4		
Colour impression (in oil)	brownish grey		
BR Rpl (in oil)		$A_{oil} = 0$	

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colou	r homogeneous dark	homogeneous dark
Colour: in 45° position	n black	black
in other position	5	
Extinction position		
Mode of extinction		
Internal reflections colou	r	
(IR) frequency	·	
Twinning mod	2	
frequenc	/	

Further observations	
Form, habit, textures, cleavage	replacing nickeline and Ni-skutterudite, zoning may occur (Ni-Fe)
Paragenesis	nickeline, Ni-skutterudite, millerite, other Ni-As-S minerals
Diagnostic features	paragenesis

Notes, drafts

Bravoite (Ni-Pyrite, (Ni,Fe)S₂) R = >32/>18.

565 Vaesite, nickeline – Nentershausen, Hesse, Germany

Strong replacement of nickeline (yellow orange) by vaesite (medium grey) parallel the cleavage planes.

Obj.: 20× oil Polars: || Pol Photo width: 0.7 mm Photo No.: D142_26 Section: AS164

566 Vaesite, nickeline – Nentershausen, Hesse, Germany

Vaesite pseudomorph after nickeline.

Obj.: 20× oil Polars: || Pol Photo width: 0.7 mm Photo No.: D142_19 Section: AS164

567 Vaesite, nickeline – Nentershausen, Hesse, Germany

Alteration of nickeline (yellow orange) by vaesite (brownish grey), plus veinlet and small rims of younger NiAs-phase (whitish grey). Obj.: 20× oil Polars: || Pol Photo width: 0.7 mm Photo No.: D142_18 Section: AS164

568 Vaesite, nickeline – Nentershausen, Hesse, Germany

As photo above.

Obj.: 20× oil Polars: || Pol Photo width: 0.7 mm Photo No.: D142_16 Section: AS164

Valleriite

Mineral name: Valleriite **Formula:** (Fe,Cu)₄S₄* 3(Mg,Al)(OH)₂ VHN: ~ 30 Crystal System: tric., ps. hex..

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 20.5	R ₂ = 10.3	
R _(oil) in %	(for 546 nm)	R ₁ = 10.7	R ₂ = 1.6	
Colour impression	on (in oil)	greyish yellow	grey (tint violet)	
BR ~ Rpl	(in oil)	extremely strong		A _{oil} = 147

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	extremely strong with colour tint	extremely strong with colour tint
Colour: in 45° position	white yellow	white yellow – white yellow
in other positions		
Extinction position	black	
Mode of extinction	straight, perfect, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	deformation twins	
frequency	abundant	

Further observations	
Form, habit, textures, cleavage	thin tabular flakes, spherulitic aggregates; replaces spinel, forsterite and bornite; perfect # {0001}
Paragenesis	cp, chr, mt, pn, po, bn, sperrylite
Diagnostic features	extreme BR and AExPol

Notes, drafts

Very similar to graphite (which $\rm R_{e^{i}}$ is slightly darker and $\rm R_{_{0}}$ is less yellow).

569 Valleriite, bornite, mt – Phalaborwa, RSA

Plates of valleriite (yellowish grey to dark grey, strong BR) and bornite (orange brown), both replacing magnetite (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D09_15 Section: AS1817

570 Valleriite, bornite, mt – Phalaborwa, RSA

As above, with crossed polars. Note the extremely strong anisotropism. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D09_16 Section: AS1817

571 Valleriite, graphite, forsterite, carb – Kropfmühl, Passau, Germany

Fine lamellae of valleriite (yellowish grey, lower and left part of photo) as replacement product around serpentinized forsterite (crystal relict with strong relief) in carbonate groundmass (note bireflection!). One large flake of very similar graphite (right part, G) in contact to valleriite. Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D14_04 Section: AS1054a

572 Valleriite, graphite, po – Kropfmühl, Passau, Germany

Replacement of pyrrhotite (cream) by valleriite (yellowish grey to dark grey). Note the two large graphite flakes (horizontal tabular crystals, here with R_o; less yellow than valleriite) in main mass of valleriite. Forsterite (black) in lower right side of photo. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D215_16 Section: AS1054a

Violarite

Mineral name: Violarite **Formula:** FeNi₂S₄ VHN: 240-370 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in % (fe	or 546 nm)	45.3		
R _(oil) in % (fe	or 546 nm)	32.5		
Colour impression	(in oil)	white cream	against pn: tint rose/violet	
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	black
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	commonly replacing pentlandite (partly pseudomorph), scarred-cra- cked; alteration product of pn, po and millerite
Paragenesis	pn, po, millerite
Diagnostic features	in association with other Ni-minerals

Notes, drafts

573 Violarite, po, cp – Sohland a. d. Spree, Germany

Violarite pseudomorph (centre) after euhedral pentlandite crystals. Pyrrhotite and chalcopyrite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D26_20 Section: AS3500

574 Violarite, pn, po, cp – Sohland a. d. Spree, Germany

Violarite completely replacing granular pentlandite, whereas flame-like pentlandite in pyrrhotite (centre of photo) is nearly unaltered. Some chalcopyrite (partly tarnished).

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D26_22 Section: AS3500

575 Violarite, cp, pn – Rote Wand, Bivio, Switzerland

Violarite (#, greyish white) with few relicts of pentlandite (higher reflectance, cream) replaced by chalcopyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D54_30 Section: WP_P05

576 Violarite, py, pn, – Horbach, Schwarzwald, Germany

Replacement of pentlandite (light cream) by violarite (greyish), surrounded by pyrite and marcasite (pseudmorph after pyrrhotite). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D169_20 Section: AS3197

Wittichenite

Mineral name: Wittichenite **Formula:** Cu₃BiS₃ VHN: 170-190 Crystal System: o'rh.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 33.3	R ₂ = 35.5	
R _(oil) in %	(for 546 nm)	R ₁ = 18.5	R ₂ = 20.3	
Colour impressio	on (in oil)	impure grey (tint blue)	impure grey (tint brown)	
BR ~ Rpl	(in oil)	weak		A _{oil} = 9

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very weak with colour tint	weak with colour tint
Colour: in 45° position	dark bluish grey	light grey – greyish brown
in other positions		grey rose
Extinction position	black	
Mode of extinction	straight	
Internal reflections colour		
(IR) frequency		
Twinning mode		
frequency		

Further observations	
Form, habit, textures, cleavage	granular; prismatic crystals are rare (no needles), replacing emplecti- te; no #!
Paragenesis	emplectite, cuprobismutite, bismuth, tennantite, aikinite, cp, bornite
Diagnostic features	usually the darkest sulfosalt in the paragenesis

Notes, drafts

See CRIDDLE & STANLEY (1997): Mineral. Mag., 43, 109-113.

577 Wittichenite, emplectite, aikinite, bismuth – Wittichen, Schwarzwald

Emplectite (grey tint olive) with small aikinite needles (PbCuBiS₃, light grey) is replaced by wittichenite (medium grey) and bismuth (whitish); small chalcopyrites on the right side. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D158_10 Section: TÜ7

578 Wittichenite, emplectite, aikinite, bismuth – Wittichen, Schwarzwald

As above, with crossed polars. Weak anisotropism of wittichenite in light greyish brown colours. Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D158_11 Section: TÜ7

579 Wittichenite, emplectite – Daniel im Gallenbach, Wittichen, Schwarzwald

Two needles of emplectite (light grey) in wittichenite.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D141_16 Section: TM112

580 Wittichenite, emplectite – Daniel im Gallenbach, Wittichen, Schwarzwald

As above, but 90° rotated. Now the two needles of emplectite show only little difference to wittichenite $(R_{empl} \sim R_{witt} = 22 \text{ vs. } 20 \text{ \%}).$ Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D141_17 Section: TM112

Wolframite

Mineral name: Wolframite (wf) **Formula:** (Fe,Mn)WO₄ VHN: 320-290 Crystal System: mcl.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R ₁ = 15.2	R ₂ = 16.3	
R _(oil) in %	(for 546 nm)	R ₁ = 4.1	R ₂ = 4.8	
Colour impressio	on (in oil)	grey tint brown	grey tint yellow olive	
BR ~ Rpl	(in oil)	distinct		A _{oil} = 16

Observations with crossed polars (AExPol in oil)

		Precisely crossed polars	Not precisely crossed polars
Anisotropism intensit	ty/colour	weak with colour tint	weak without colour
Colour: in 45°	position	greyish olive	grey – grey
in other	positions		
Extinction position		black	
Mode of extinction		perfect, distinctly inclined	
Internal reflections	Internal reflections colour deep red (Mn-rich) to yellow brown (Fe-rich)		(Fe-rich)
(IR) fr	requency	abundant to common	
Twinning	mode	simple + coarse (100), never lame	ellar
f	requency	abundant	

Further observations

Form, habit, textures, cleavage	mainly as large tabular (100), lens-shaped XX with characteristic cross-fractures. # (010) perfect, replacements by scheelite
Paragenesis	scheelite, cas, qz, siderite
Diagnostic features	large XX with cross-fractures, inclined extinction, paragenesis

Notes, drafts

Similar to COLUMBITE. Fe-rich wolframite: Ferberite; Mn-rich: Huebnerite.

581 Wolframite – Neudorf, Harz, Germany

Large wolframite crystals (perfect cleavage || (010)).

Obj.: 5 × Polars: || Pol Photo width: 2.8 mm Photo No.: D09_02 Section: AS1564

582 Wolframite, scheelite, gn – Vignola-Falensina, Val Sugana, Trentino, Italy

Broken euhedral plates of wolframite (light grey) partly replaced by scheelite (medium grey), and galena (white, triangular pits).

Obj.: 10 × Polars: || Pol Photo width: 1.4 mm Photo No.: D64_01 Section: AS3583

583 Wolframite – Vignola-Falensina, Val Sugana, Trentino, Italy

Aggregate of wolframite crystals showing distinct bireflection in oil.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D64_06 Section: AS3583

584 Wolframite, sph, scheelite – Vignola-Falensina, Val Sugana, Trentino, Italy

Tabular wolframite (left side, R_{max}, grey tint yellow olive) with sphalerite (right side, pure grey), and scheelite (small elongated grain between wolframite and sph, darker grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D64_03 Section: AS3583

Wuestite

Mineral name: Wuestite (wus) Formula: (Fe,Mg)_{1-x}0 VHN: ~ 530 Crystal System: cub.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	18.5		
R _(oil) in %	(for 546 nm)	7.0	slightly less than mt	
Colour impressio	n (in oil)	grey tint green		
BR Rpl	(in oil)			$A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	homogeneous dark	homogeneous dark
Colour: in 45° position	black	
in other positions		
Extinction position		
Mode of extinction		
Internal reflections colour	·	
(IR) frequency		
Twinning mode	·	
frequency		

Further observations	
Form, habit, textures, cleavage	often intergrown with magnetite, zoning (Mg-Fe); as EB in artificial mt
Paragenesis	iron, mt, fayalite
Diagnostic features	paragenesis with magnetite and iron

Notes, drafts

Typically found in artificial products (slags), T < 570° C \rightarrow Fe + Fe₃O₄. Similar to MAGNETITE. Rare in natural occurrences.

585 Wuestite, iron – Weil im Schönbuch, N of Tübingen, SW-Germany

Artificial iron slag with skeletal wuestite (grey tint green) and small grain of iron (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D85_23 Section: AS3512

586 Wuestite, mt, iron – Locality unknown

Slag with tiny magnetites (slightly more bright, grey) and larger grains of wuestite (grey tint olive); few iron grains (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D22_11 Section: ExIII/30

587 Wuestite, mt – Medieval slag, Schalkstetten, N of Ulm, Germany

Skeletal aggregates of magnetite (medium grey, lower left part of photo) with rims of hematite, and skeletal wuestite (grey tint olive). Obj.: 20 × oil Polars: || Pol Photo width: 0.4 mm Photo No.: D110_22 Section: AS3513

588 Wuestite, iron – Medieval slag, Schalkstetten, N of Ulm, Germany

Artificial iron slag with wuestite (grey) and iron (white) in silicate groundmass. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D224_02 Section: AS3513

Wurtzite

Mineral name: Wurtzite (wur) **Formula:** ZnS or ZnS_{1-x} (*) VHN: 150-260 Crystal System: hex.

Observations with one polar (AE || Pol) $R_{(air)}$ in % (for 546 nm) 18 to 19 $R_{(oil)}$ in % (for 546 nm) 5 to 6 Colour impression (in oil) grey (tint blue) BR Rpl (in oil) not visible $A_{oil} = 0$

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	masked by internal reflections	
Colour: in 45° position	not visible; rarely greyish	
in other positions		
Extinction position	not visible	
Mode of extinction		
Internal reflections colour	yellow to dark brown	
(IR) frequency	predominant	
Twinning mode		
frequency	(in contrast to sphalerite)	

Further observations	
Form, habit, textures, cleavage	radial fibrous aggr. in concentric shells (»Schalenblende«), tabular, dendritic, zoning; replaces galena, teallite, carbonates; occasionally # (0001)
Paragenesis	sph, py, mrc, gn
Diagnostic features	form, #, very similar to sphalerite (but no twins)!

Notes, drafts

»SCHALENBLENDE«: Rhythmic banded aggregate of fine-grained SPHALERITE and wurtzite. (*) see FLEET (2006), Rev. Mineral. Geochem., 61, 365-419.

589 Wurtzite, arsenic – Michael im Weiler, near Lahr, Schwarzwald, Germany

Radial aggregates of needle-like crystals of wurtzite (medium grey) intergrown with arsenic (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D112_20 Section: L-4

As above, with crossed polars. Yellow brown to red internal reflections of wurtzite.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D112_19 Section: L-4

591 Wurtzite, py – Potosi, Bolivia

Ophitic network of wurtzite platelets (medium grey with some yellow brown IR) and pyrite. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D109_06 Section: AS1024

592 Wurtzite, py – Potosi, Bolivia

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D109_07 Section: AS1024

Yarrowite

Mineral name: Yarrowite **Formula:** Cu_{1.12}S (Cu₉S₈) VHN: 95-100 Crystal System: trig.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 10.2 (12.1*)	R _{e'} = 25.3 (20.6*)	
R _(oil) in %	(for 546 nm)	R _o = 1.8	R _{e'} = 11.1	
Colour impressio	on (in oil)	blue tint violet	light blue	
BR > Rpl	(in oil)	extremely strong		A _{oil} = 143

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	very strong with colour	very strong with colour
Colour: in 45° position	orange	light orange
in other positions		
Extinction position	black	
Mode of extinction	perfect, undulatory	
Internal reflections colour		
(IR) frequency		
Twinning mode	translation twins, kink banding	
frequency	common	

Further observations	
Form, habit, textures, cleavage	platy tabular; perfect # {0001}
Paragenesis	anilite, djurleite, spionkopite, covellite, Cu-sulfides
Diagnostic features	stronger BR and AExPol than spionkopite, lower R with tint violet

Notes, drafts

»BLAUBLEIBENDER COVELLITE« after FLEET (2006), Rev. Mineral. Geoch., 61, p. 385. Stability T < 157° C. Similar to SPIONKOPITE.

*: different R after GOBLE (1980), Can. Mineral., 18, 511-518.

593 Yarrowite, mt, py, cp - Rhum, Scotland

Yarrowite (light blue, with R_{max}) with magnetite (grey), chalcopyrite (white yellow), and pyrite (white). Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_17 Section: AS1818

594 Yarrowite, mt, py, cp – Rhum, Scotland

As above, 90° rotated. $\rm R_{min}$ of yarrowite now dark blue with faint violet tint.

Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D25_16 Section: AS1818

595 Yarrowite, cp – Frankenberg, Hesse, Germany

Yarrowite (different shades of blue) replaces chalcopyrite (light yellow) pseudomorph after plant structure. Obj.: 20 × oil Polars: || Pol Photo width: 0.7 mm Photo No.: D148_13 Section: AS3554

596 Yarrowite, cp – Frankenberg, Hesse, Germany

As above, with crossed polars.

Obj.: 20 × oil Polars: × Pol Photo width: 0.7 mm Photo No.: D148_14 Section: AS3554

Zircon (in German: Zirkon)

Mineral name: Zircon (zrn) **Formula:** ZrSiO₄ VHN: ~ 1600 Crystal System: tetr.

Observations with one polar (AE Pol)				
R _(air) in %	(for 546 nm)	R _o = 10.0	$R_{e}^{} = 10.9$	calculated from n
R _(oil) in %	(for 546 nm)	R _o = 1.4	R _e = 1.8	calculated from n
Colour impressio	n (in oil)	grey	grey	
BR ~ Rpl	(in oil)	very weak (masked by IR)		A _{oil} = 25

Observations with crossed polars (AExPol in oil)

	Precisely crossed polars	Not precisely crossed polars
Anisotropism intensity/colour	not visible	not visible
Colour: in 45° position	masked by IR	
in other positions		
Extinction position	masked by IR	
Mode of extinction	masked by IR	
Internal reflections colour	colourless to light brown	
(IR) frequency	predominant	
Twinning mode		
frequency		

Further observations

Form, habit, textures, cleavage	grains in older rocks show prominent zoning, and radioactive blasting cracks in the rim due to U- and Th-rich cores; columnar to rounded isolated grains.
Paragenesis	placer minerals, other silicate minerals
Diagnostic features	habit, zoning, hardness, cracks, high VHN

Notes, drafts

R similar to CASSITERITE, TITANITE, SCHEELITE, but higher than monazite and xenotime.

 $\rm R_{_e}\,||$ elongation

597 Zircon, ilm, mt, rt, hm – Åmli, S-Norway

Zircon crystal (central right part) with tiny inclusion of sulfide, attached on large magnetite grain with ilmenite lamellae (sandwich-type, partly replaced by fine-grained mixture of rutile and hematite). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D179_28 Section: AS173

598 Zircon, ilm, rt, hm – Åmli, S-Norway

Oval-shaped inclusion of zircon (medium grey) inclusion in ilmenite (with hematite and rutile). Radial cracks in the surrounding ilmenite as radioactive effect of the U/Th content in the zircon. Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D179_29 Section: AS173

599 Zircon, biotite, rt – Oberröthenbach, Schwarzwald, Germany

Zoned zircon (light grey) in larger biotite with tiny inclusions of rutile (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D104_30 Section: IR21a

600 Zircon, rutile – Clara mine, Oberwolfach, Schwarzwald, Germany

Two zoned euhedral zircon crystals (nearly transparent) beside numerous rutile grains (medium grey). Obj.: 20 × oil Polars: || Pol Photo width: 0.5 mm Photo No.: D58_22 Section: ASClara2.2

GUIDE FOR THE MICROSCOPICAL IDENTIFICATION OF ORE AND GANGUE MINERALS

Reflected-light microscopy is an essential method in earth and materials sciences for the observation of opaque minerals in rocks, metallic ores, coals, and of synthetic phases in slags, cements, metalls/alloys and coal.

In contrast to other analytic investigations, ore microscopy does not only allow for the identification of many minerals but also enables the user to characterise their intergrowths and fabrics, resulting in the interpretation of their genesis and of the subsequent transformation processes, like alteration, replacement, exsolution and deformation.

This guide is intended to serve as an introduction and helpful resource for geosciences students and professionals in the industry for identifying important opaque minerals and some synthetic phases. It includes the optical properties of 130 ore and gangue minerals as well as at least four photomicrographs of their typical appearances, textures, and assemblages

