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2.   Abstract  

Perceptual decision making is the process to translate sensory signals into 

meaningful behaviors yet also affected by internally-generated signals called internal 

states such as decision confidence, arousal, or mood. The present study aims to get 

insight into the role of some aspects of internal states during perceptual decision making. 

To this end we needed trained animals to perform a perceptual decision making task. We 

refined a traditional monkey-training procedure to facilitate this line of research with 

precise measurements of eye position. The eye data are important because they contain 

rich information about animals’ internal states. We demonstrated that some aspects of 

these internal states including their decision confidence during a perceptual decision 

making task can be inferred from their pupil size. We then used the pupil-inferred 

confidence to dissect model predictions about how sensory information is used to guide a 

choice. Finally, we systematically investigated the modulatory role of 5HT, which is 

linked to decision making and some internal states including mood, in visual processes in 

the primary visual cortex (V1) of awake macaques by performing extracellular recording 

with iontophoretic applications of serotonin and pH-matched NaCl. We found that 

serotonin decreased the gain of visual responses and the functional connectivity in awake 

macaque V1, suggesting the involvement of serotonin in state-dependent visual 

processes. Together, these results highlight the importance of studying internal states of 

trained macaques on a perceptual decision making task and the role of neuromodulators 

as the substrates of state-dependent visual processes during perceptual decision making. 
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3.   Synopsis. 

Animals translate sensory signals into behaviors. This ability is called perceptual 

decision making and essential for the survival of animals. Consider the situation where a 

monkey finds a berry which he has never tried. The berry may be tasty, but it could be 

poisonous. He needs to decide if he eats it or not by exploiting his sensory abilities to get 

evidence supporting either of the hypotheses. If he notices that the berry is like the one 

which he has enjoyed eating, he becomes confident that the berry is tasty and decides to 

eat it. If he is entirely uncertain whether the berry is good or bad, his decision is up to his 

mood. He may eat it to get at least something today or avoid the risk of the potential 

stomachache and keep looking for better ones. This illustrates not only the importance of 

perceptual decision making for animals but the non-negligible influence of animals’ 

internal states such as confidence and mood on their decisions. Although the effect of 

internal states on perceptual decision making used to be largely ignored for 

computational tractability of the problem, more and more scientists nowadays are 

investigating the importance of internal states on perceptual decision making from 

different perspectives (Najafi & Churchland, 2018).  

My doctoral studies used macaque monkeys to get insight into internal states 

during perceptual decision making from different perspectives. I used macaques because 

our understanding of perceptual decision making has greatly advanced from non-human 

primate studies (Shadlen & Kiani, 2013). The macaque is one of the best-established 

animal models to study visual and decision processes in the brain. Like humans, they 

have excellent vision and largely rely on visual information to guide behaviors. The 

common ancestor of humans and macaque monkeys existed 20-30 million years ago, 
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which is substantially longer after the 80-90 million years ago when our most recent 

common ancestor with mice existed (Janecka et al., 2007; Mitchell & Leopold, 2015). 

Therefore, it is expected that a number of brain structures and functions overlap between 

humans and macaques, especially for the visual system. Indeed, there is some evidence 

that macaques see things as humans do (Fize et al., 2011; Rajalingham et al., 2015). Like 

humans, they can also learn a task that even requires complex associative learning (e.g. 

Kira et al., 2015). Despite the long history of macaque studies, examining the importance 

of internal states during perceptual decision making with the macaques is still a 

challenge. Monkeys are non-verbal and generally requires long time of training to learn a 

decision-making task. In addition, methods to infer monkeys’ internal states have not 

been established.  

In the following synopsis, I mention how we can refine the traditional monkey-

training procedure to accelerate macaque studies on perceptual decision making tasks 

with precise measurements of eye position. Obtaining high-quality eye data is important; 

as the Japanese proverb goes, “Eyes are as eloquent as the tongue”. I briefly review 

studies showing that pupil diameter reflects subjects’ internal states. Based on these 

studies, I explain how we succeeded in inferring animals’ internal states such as 

motivation and confidence during a perceptual decision making task from monkeys’ 

pupil size. Here, I stress the importance of estimating internal states during perceptual 

decision making tasks by taking an example from our result in which pupil-inferred 

confidence can differentiate predictions of models about how sensory stimuli are used to 

guide a choice. Next, I introduce the idea that neuromodulators are well-suited to carry 

information about internal states and reflect it in the cortical computation (Dayan, 2012) 
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to highlight the necessity to study neuromodulators to get insight into the modulation of 

visual/cortical processing by internal states. I also review how the neuromodulators can 

connect the link between pupil size and internal state. Then I focused on serotonin (5HT), 

which is believed to regulate some aspects of internal states such as mood and play an 

important role in decision making faced with uncertainty. Here I stress the fact that even 

simple computational roles of 5HT on V1 tuning properties had not been systematically 

examined especially in awake animals. I summarize my third and fourth projects that 

investigated serotonergic modulations in spikes and local network state of awake 

macaque V1. Lastly in outlook, I describe the future study that should directly test the 

role of 5HT in state-dependent visual processes in V1 of macaques performing a spatial 

attention task.  

 

3.1.   Technical refinement for the study of perceptual decision tasks: Head-free training 

of macaques  

Obtaining behavioral and neural data from monkeys is a highly time-consuming 

process. First of all, naïve monkeys need to get used to a cage in a facility and laboratory 

members. Afterwards, monkeys need to be trained to get accommodated in a primate 

chair. Plus, since monkey experiments typically require precise measurements of their 

eye positions, the surgery to implant a head-post on monkeys’ skull is to be performed. 

This head-post physically connects monkeys’ head to a primate chair and limits unwanted 

head-movements of monkeys during tasks. This surgery is invasive, and it takes usually a 

few months for the head-post to be stabilized. After the head-post is stabilized on 

monkeys’ skull, monkeys are trained to be connected to a primate chair via the head-post. 
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It is not until monkeys allow researchers to head-fix them when behavioral training on a 

task can be initiated.   

To facilitate this traditional procedure, we designed a head-free training setup for 

macaques to be trained without head-posts even on a task requiring precise measurements 

of eye position. Unlike other head-free setups which require monkeys to be anesthetized 

during the development of the setup (Amemori et al., 2015; Drucker et al., 2015; 

Machado & Nelson, 2011; Fairhall et al., 2006; Slater et al., 2016), our setup can be made 

independently in a workshop without the presence of monkeys. Our setup is relatively 

easy to install on a standard primate chair and potentially adaptable for multiple 

monkeys. We trained one naïve monkey on tasks requiring precise measurements of eye 

position with this head-free setup. The monkey adapted to the setup quickly and learned 

the tasks. We confirmed that the obtained eye data are comparable to those from head-

restricted monkeys with respect to fixation precision, pupil size, and microsaccades. This 

is my first doctoral project (Kawaguchi et al., “Head-free training of macaques for tasks 

requiring precise measurements of eye position”).  

 

3.2.   Internal state during perceptual decision making 

Perceptual decisions have been found highly variable even in response to the 

identical stimuli (e.g. Renart & Machens, 2014; Wyart & Koechlin, 2016). One of the 

proposed sources of the variability is subjects’ internal state (Renart & Machens, 2014), 

which researchers often ignore for simplicity or computational tractability. Internal state 

is all sorts of internally-generated signals within subjects, which includes, for example, 

attention, motivation, confidence, or arousal. The prime reason why internal state tends to 
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be ignored is that it is literally internal within subjects and thus hardly observable from 

the outside. In addition, change in internal state often occurs even in the absence of 

subjects’ awareness; it is even unnoticed for the subjects themselves. This covert nature 

of internal state makes it difficult to study and therefore internal states during perceptual 

decision making are often ignored for simplicity.  

3.2.1.   Pupil size to infer internal state 

The observation of internal states is difficult from the outside as well as the inside 

yet possible. Researchers have leveraged the fact that change in internal states including 

arousal coincides with change in  pupil size, vasomotor regulation, and heart rate, likely 

through the autonomic nervous system (Mitz et al., 2017). Especially, pupil diameter has 

been one of the most popular measurements to estimate some aspects of internal states 

because the data can come with the measurements of eye position without additional 

setups. Human psychophysics with pupillometry have shown that pupil metrics reflect 

diverse internal states including motivation (Chiew & Braver, 2013; Hopstaken et al., 

2015) and confidence (Krishnamurthy et al., 2017; Lampert et al., 2015). Pupil metrics 

have been also shown to reflect learning (Eldar et al., 2013; Nassar et al., 2012; Van 

Slooten et al., 2018) and behavioral variability through change in decision bias (Urai et 

al., 2017; de Gee et al., 2014, 2017). 

In my second project, we used monkeys’ pupil size to infer some aspects of their 

internal states while they were performing a perceptual decision making task. Along with 

the abovementioned human studies, we found that monkeys’ pupil size reflects their 

motivation, confidence, learning, and psychophysical performance (Fig. 3-5: Kawaguchi 

et al., 2018). Our pupil metric was the pupil size averaged over the last 250 ms of the 
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total 1500 ms of stimulus presentation period. Notably, our task had much shorter inter-

trial intervals (ITIs; median was ~150 ms) than other macaque studies with pupillometry 

(Rudebeck et al., 2014; Ebitz & Platt, 2015; Suzuki et al., 2016; Mitz et al., 2017). It 

suggests that long ITIs (> 1000 ms) that have been thought to be necessary to stabilize the 

pupillary light reflex on a trial-by-trial basis (Mitz et al., 2017) may not always be 

necessary at least when monochromatic stimuli are used like in our task.  

3.2.2.   Internal state to constrain models of perceptual decision making 

Being able to infer internal states such as the decision confidence of animals 

during perceptual decision making has potentials to explain observations that have 

puzzled scientists. One such observation is so-called early psychophysical weighting. In a 

sequential-sampling perceptual decision making task where stimuli are sequentially 

presented for a fixed duration, the optimal strategy to maximize the percent correct is to 

integrate all the presented stimuli and make a choice. However, subjects typically rely 

more strongly on stimuli presented early rather than late within a trial. In other words, 

subjects tend to ignore stimuli presented towards the end of a trial. This early 

psychophysical weighting is a sub-optimal strategy from the perspective of maximizing 

sensory information, yet has been found in many (especially macaque) studies (e.g. Kiani 

et al., 2008; Neri and Levi, 2008; Nienborg and Cumming, 2009; Yates et al., 2017).  

Three classes of computational models predict the early psychophysical 

weighting: the integration-to-bound model (e.g. Radcliff & McKaan, 2008; Smith & 

Ratcliff 2004), models with attractor dynamics either within the decision area or due to 

feedback to sensory areas including the neural sampling-based probabilistic inference 

model (Haefner et al., 2016), and early sensory weighting model (Yates et al., 2017). 
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Although they all predict the early psychophysical weighting, they have completely 

different perspectives. The integration-to-bound model assumes decision bounds, which 

terminate evidence-integration processes even when the stimulus presentation is not 

finished. Therefore, on average across trials, the stimuli presented early are used more 

than the stimuli presented late to guide a choice. The neural sampling-based probabilistic 

inference model is one of attractor models and assumes top-down feedback mechanisms 

such that sensory neurons represent less and less sensory information towards the end of 

trials, thereby sensory weights are decreasing over time within trials. The early sensory 

weighting model is in contrast a strictly feedforward account, which predicts the early 

psychophysical weighting simply by inheriting the decay of sensory responses due to 

sensory adaptation within trials.  

In the second project, we leveraged the idea that confidence can be statistically 

defined in a perceptual decision making task (Hangya et al., 2016) and implemented 

decision confidence into all the three models. We found that it can differentiate model 

predictions about the early psychophysical weighting. To test it empirically, we split 

trials based on the pupil-inferred confidence and separately performed psychophysical 

reverse correlation analysis (Nienborg & Cumming, 2009) to estimate monkeys’ 

temporal weighting of the stimuli to guide a choice. Our model fitting as well as 

extensive parameter search showed that the integration-to-bound model accounted for the 

data the best (Fig. 7-8: Kawaguchi et al., 2018). Note that our results do not deny the 

validity of the alternative models. These alternative models can account for dynamics 

beyond the early psychophysical weighting such as the activity of sensory neurons. But 

‘hard’ decision bounds that terminate evidence accumulation processes seem necessary to 
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explain our data. This work exemplifies the importance of accessing internal states in 

non-human primate studies combined with computational modelling, which have greatly 

advanced our understanding of perceptual decision making (Shadlen & Kiani, 2013). 

This work was published in the Journal of neuroscience (Kawaguchi et al., 2018. 

“Differentiating between models of perceptual decision-making using pupil-size inferred 

confidence”). 

 

3.3.   Internal state and neuromodulators 

Internal states affect perceptual decision making. How internal states are 

mechanistically implemented in the brain is a critical question to get insight into the 

information processing in the brain. For example, if an animal encounters its predator, a 

neural circuit that detects fear has to send the information right away to all the relevant 

brain regions including sensory and decision areas so that the animal can prioritize its 

behavior to deal with the life-threatening situation. If there was a problem in the 

communication between brain regions, it would soon be eaten. To achieve such a 

communication, a neural circuit detecting change in internal states should have at least 

following three capacities (Dayan, 2012). First, it should have wide-range connections to 

the cortex including sensory and decision areas so that information can be rapidly 

distributed. Second, the signals from this neural circuit should be “tagged”, or at least 

unique enough for cortical neurons to be able to distinguish it from ongoing sensory 

inputs. Third, signals from this neural circuit should be able to alter ongoing 

computations in the cortex over flexible time-scales. The neuromodulatory systems, 

including acetylcholine (ACh), noradrenaline (NA), dopamine (DA), and serotonin 
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(5HT), appear to be an ideal candidate for such computational roles in the brain (Dayan, 

2012). These systems are based on distinct regions mainly in the brainstem and project to 

a wide range of the cortical areas. Furthermore, cortical neurons express specific 

receptors for neuromodulators, which makes the “tagging” possible because those 

receptors are stimulated when change in internal states occurs. Lastly, receptor-

expression patterns are different among neuronal types across brain regions. This 

suggests that a uniform input regarding change in internal states can be processed 

differently depending on computational roles of each neural circuit and brain region over 

flexible time-scales. Altogether, neuromodulators appear to be well-suited to perform the 

information processing about internal states in the brain.  

3.3.1.   Neuromodulators to connect internal state with pupil size 

In the section 3.2.1, I mentioned that pupil size reflects a variety of internal states. 

Given that the neuromodulatory systems are believed to control internal state (Dayan, 

2012), pupil size may be also controlled by neuromodulators. Although identifying causal 

influence of neuromodulators on pupil size is not straightforward, the idea that 

neuromodulators mechanically connect pupil size with internal states seems likely 

(Larsen & Waters, 2018). The activities of neurons (both spikes and LFPs) in the locus 

coeruleus (LC) were shown to reflect change in pupil diameter (Joshi et al., 2016). The 

same study showed that electrical microstimulation in the LC increases pupil diameter. 

The LC is the primary source of noradrenergic projections to cortex, therefore pupil-

linked modulations are often interpreted as actions of the noradrenergic activity in the 

brain (Aston-Jones & Cohen, 2005). However, DA (Colizoli et al., 2018) and ACh 

(Polack et al., 2013; Reimer et al., 2016) are also suggested to be involved in change in 



 

13 

 

pupil size. 5HT is not an exception; agonists of the 5HT1A receptor were shown to 

change pupil size in rodents, monkeys, and humans in a dose-dependent manner 

(Fanciullacci et al., 1995; Kotani et al., 2017; Szabadi, 2018; Yu et al., 2004). These 

results suggest that pupil size reflects activities of multiple neuromodulatory systems in 

the brain. 

Understanding how each neuromodulator contributes to change in pupil size is 

difficult because activities of these neuromodulators in the brain are correlated with one 

another. The involvement of the cholinergic activity in change in pupil size is relatively 

clear thanks to the existence of a direct pathway. The iris sphincter muscle, which 

controls the pupillary muscle, is controlled by cholinergic motoneurons in the Edinger-

Westphal (E-W) nucleus (Beatty & Lucero-Wagoner, 2000). As for NA, the correlation 

between the LC activity and pupil size has been observed across species (de Gee et al., 

2017; Joshi et al., 2016; Reimer et al., 2016). Whether there is a direct pathway between 

the noradrenergic system in the brain and pupil size is controversial, but indirect 

pathways seem to play an important role. For example, the LC projects to the basal 

forebrain (Jones, 2004), which is the primary source of cholinergic projections to cortex, 

such that the noradrenergic activity drives the cholinergic activity. The LC also projects 

to the superior colliculus, which projects to the E-W nucleus controlling pupil size (Wang 

& Munoz, 2015). The correlation between 5HT and pupil size is also likely to be 

mediated by an indirect pathway through the noradrenergic system because the activation 

of 5HT1A receptors triggers the release of NA, likely from the LC (Yu et al., 2004). 

These results support the idea that change in pupil size is influenced by the activity of 

neuromodulators especially ACh and NA, but likely also 5HT in the brain.  
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3.3.2.   Importance of serotonin in the brain and decision making 

5HT has diverse affective functions such as mood control, perception, and 

memory (Berger et al., 2009). The variety of serotonergic functions stem from the diverse 

serotonergic receptors. Currently 14 different 5HT receptors in 7 families have been 

found. Among the 7 families, the 5HT3 receptor is a ligand-gated ion channel and others 

are G-protein coupled receptors. The effect of each receptor type differs; the 5HT1 and 5 

receptors are inhibitory, and all the others are excitatory. These receptors have spatial 

preference of expression patterns with respect to both brain regions and synaptic 

localizations (Celada et al., 2013). In addition to the diverse receptor types, the 

serotonergic projections from the dorsal raphe nucleus (DRN) cover nearly the entire 

cortex. Interestingly, the serotonergic projections are more pronounced to the macaque 

primary visual and auditory cortices than those of DA and NA (Jacobs & Nienborg, 

2018). These findings suggest that 5HT in the brain is one of the cellular mechanisms 

underlying change in variety of internal states and state-dependent sensory processes in 

primary sensory areas. More recently, stimulating the DRN during behavioral tasks has 

revealed causal roles of serotonergic modulations in learning and decision making. These 

studies found functional roles of 5HT on trade-offs between immediate small reward and 

delayed large rewards (Correia et al., 2017; Fonseca et al., 2015; Miyazaki et al., 2014, 

2018; Xu et al., 2017), cognitive flexibility (Matias et al., 2017), and reinforcement 

learning (Iigaya et al., 2018). 
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3.3.2.1.   Serotonergic modulation of spiking activity in V1 

Although the serotonergic modulation linked to neurological disorders or decision 

making faced with uncertainty have been extensively studied, the basic role of 5HT on 

tuning properties in sensory areas was surprisingly little known especially in awake 

animals. The V1 of humans and non-human primates is a region where 5HT receptors are 

preferentially expressed (Watakabe et al., 2008; Shukla et al., 2014). Therefore, 5HT 

should have a modulatory function there. In the olfactory cortex of mice, 5HT decreases 

spontaneous activity but has no effect on sensory responses (Lottem et al., 2016). Are 

such serotonergic modulations also the case with the primate V1?  

To explore the role of 5HT on visual processes in primate V1, we performed 

extracellular recordings on V1 neurons of awake macaque monkeys on a standard 

fixation task while iontophoretically applying 5HT or pH-matched NaCl. We found that 

5HT predominantly decreased the gain of the visual responses. This uniform effect of 

serotonin is surprising given the diversity of its receptor types. The decrease in gain of 

visual responses were observed across all the tested stimulus dimensions (orientation, 

contrast, size, and spatial frequency). This effect was explained by a simple model with a 

linear shift in membrane potential or spiking threshold. We argued that 5HT affects state-

dependent visual processes by controlling the response gain of V1 neurons. This work 

was published in the Journal of neuroscience (Seillier*, Lorenz*, Kawaguchi et al., 2018. 

“Serotonin decreases the gain of visual responses in awake macaque V1”).  
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3.3.2.2.   Serotonergic modulation of local network state in V1 

The state-dependent visual process is not only signified by change in spiking 

activity but also accompanied by change in local network state inferred by the local field 

potential (LFP). For example, spatial attention decreases the LFP power especially in 

low-frequency range in macaque V1 (Chalk et al., 2010; Das & Ray, 2018; Spyropoulos 

et al., 2018). Stimulation of the basal forebrain, the primary source of cholinergic inputs 

to cortex, has been also shown to decrease the low-frequency LFP power in mouse V1 

(De Luna et al., 2017; Goard & Dan, 2009; Pinto et al., 2013). Although whether change 

in LFP power in V1 is meaningful for sensory coding or epiphenomenal of spiking 

activity is under debate, one hypothesis tells that desynchronized state, which is typically 

accompanied by decrease in low-frequency LFP power, favors reliable sensory 

representation, whereas synchronized state, which is typically accompanied by increase 

in low-frequency LFP power, is suited for reactivation of previous experience for 

learning and memory (Lee & Dan, 2012). Although 5HT was shown to decrease low-

frequency LFP power in the prefrontal cortex of rodents (Kjaerby et al., 2016; Puig et al., 

2010), whether 5HT favors which cortical state in macaque V1 had not been 

demonstrated.  

To examine the role of 5HT on local network state in awake macaque V1, I used 

the same dataset from the third project and analyzed LFPs as well as spikes. Consistent 

with the rodent studies, I found that 5HT decreased the low-frequency LFP power in 

macaque V1. Next, I computed the spike-triggered average LFP (stLFP) to capture the 

spike-LFP relationship (Ray, 2015) and found that 5HT decreased the amplitude of the 

stLFP. The stLFP represents cross-correlation between the response of a single neuron 
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and the mean synaptic activity of the population (Okun et al., 2010) and can be used to 

estimate the functional connectivity of a neuron with the local population (Nauhaus et al., 

2009; Okun et al., 2015). Hence the decrease in the amplitude of the stLFP by 5HT 

suggests that 5HT decreases the functional connectivity in V1. These results resemble 

previously reported effects of spatial attention in V1 (Chalk et al., 2010; Das & Ray, 

2018), which raises the possibility that 5HT is involved in the attentional modulation in 

visual processes in macaque V1.  

Based on our finding that 5HT decreases low-frequency LFP power in V1, I 

aimed to test the hypothesis that 5HT and ACh are two independent sources of the 

decrease in low-frequency rhythmic activity in cortex (Vanderwolf & Baker, 1986). 

Since ACh and 5HT were both suggested to desynchronize cortical state at least in 

rodents (Lee & Dan, 2012), asking whether activities of ACh and 5HT in visual areas of 

macaques are linked or not is important to elucidate the role of these neuromodulators in 

primate visual processes. To this end I leveraged the finding that pupil size reflects the 

cholinergic and noradrenergic activities in the brain (Reimer et al., 2016) and asked 

whether effects of 5HT and pupil metrics on low-frequency LFP power were 

independent. Note that although 5HT is thought to be one of the neuromodulators linked 

to change in pupil size (Yu et al., 2004), our manipulation of the serotonergic system was 

confined to V1 and not directly involved in any pathways suggested to changes in pupil 

size. I used generalized linear regression model to explain trial-by-trial low-frequency 

LFP power by linear combinations of pupil size (proxy of ACh; Reimer et al., 2016), 

pupil derivative (proxy of NA; Reimer et al., 2016), drug (0: baseline, 1: 5HT), and their 

interactions. I observed significant contributions of pupil size and drug to explain low-
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frequency LFP power. Along with the hypothesis, I found no significant contributions of 

interaction terms (Fig. 4 in the manuscript “Serotoninergic modulation of functional 

connectivity in awake macaque V1”). This result suggests that 5HT and ACh 

independently decreases low-frequency LFP power in awake macaque V1. This work is 

to be submitted (Kawaguchi*, Seillier* et al., 2018. “Serotoninergic modulation of 

functional connectivity in awake macaque V1”).  

 

3.4.   Summary and conclusion 

Perceptual decision making is not only influenced by sensory inputs but internal 

states such as motivation, confidence, and mood. To understand how the brain combines 

external sensory information with internal states to form a decision is a major goal in 

systems neuroscience. Although studies with macaque monkeys have greatly advanced 

our understanding of perceptual decision making, it has been difficult to use macaques to 

study internal states during perceptual decision making. First, it takes generally long time 

of training until monkeys understand the task structure. Second, methods to estimate 

monkeys’ internal states have not been established.  

The first project refined a traditional monkey-training procedure by designing a 

head-free training setup. This setup allows researchers to train monkeys even before the 

head-post implantation surgery and during a few months of the recovery period after it, 

thereby facilitating the monkey-training procedure. We trained a naïve monkey without 

the head-post in this setup. We showed that this head-free monkey can be trained on tasks 

requiring precise measurements of eye position. Importantly, the obtained eye data from 

this head-free monkey were comparable to head-fixed monkeys with respect to fixation 
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precision, pupil size, and microsaccades. This is important because eye data especially 

pupil size contain rich information about monkeys’ internal states.  

My second project overcame the difficulty to estimate some aspects of internal 

states of monkeys by using pupil size. Change in pupil size is believed to reflect activities 

of multiple neuromodulators in the brain and some aspects of internal states such as 

arousal. Human psychophysics with pupillometry revealed that pupil size reflects diverse 

behaviorally relevant internal states. Along with these studies, we succeeded in inferring 

monkeys’ internal states such as motivation and decision confidence by using monkeys’ 

pupil size during a perceptual decision making task. This project demonstrated the 

importance to estimate such forms of internal states of animals during perceptual decision 

making by showing that pupil-linked confidence can differentiate predictions of models 

about how sensory information is temporally weighted to guide a choice.  

Finally, we investigated the role of 5HT, which is one of the important 

neuromodulators linked to some aspects of internal states and decision making, in visual 

processes in V1. Primate V1 is one of the regions where serotonergic receptors are 

preferentially expressed. Given the ample evidence linking 5HT to internal states, 5HT is 

expected to play a role in state-dependent visual processes. However, even simple 

computational roles of 5HT in visual processes in V1 of awake animals were largely 

unknown. The third and fourth projects systematically investigated the serotonergic 

modulation of both spikes and LFPs in awake macaque V1. Our results showed that 5HT 

decreased the gain of V1 responses, the low-frequency LFP power, and functional 

connectivity in V1. These observations suggest that 5HT contributes to state-dependent 

visual processes in awake macaque V1.  
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Together, these four projects contribute to getting insight into internal states 

during perceptual decision making from different perspectives. The first and second 

projects overcame difficulties of studying internal states of macaque monkeys performing 

perceptual decision making tasks. The second project highlighted the importance of 

inferring internal states of macaque monkeys during a perceptual decision making task. 

The third and fourth projects showed that 5HT, a neuromodulator that is believed to be a 

substrate for some aspects of internal states and influence decisions, altered visual 

processing in awake macaque V1.  

 

3.5.   Outlook 

With these results in mind, a future study may directly address the role of 5HT in 

a spatial attention task. Spatial attention is typically accompanied by the increase in firing 

rate (Thiele & Bellgrove, 2018), which is opposite to the decrease in firing rate by 5HT 

(project 3). Spatial attention typically decreases low-frequency LFP power and the stLFP 

(Chalk et al., 2010), which is similar to the serotonergic modulation in LFPs (project 4). 

When comparing to the effect of spatial attention, 5HT modulates spikes and LFPs in 

opposite directions. This discrepancy in serotonergic modulations between spikes and 

LFPs can be clarified using macaque monkeys performing a spatial attention task while 

recording spikes and LFPs in V1 with the iontophoretic application of 5HT or pH-

matched NaCl. To this end I am currently training a monkey on a spatial attention task. In 

the spatial attention task, we instruct monkeys to pay attention covertly to one location 

and discriminate the presented stimulus. First of all, we should establish the well-known 

attentional modulations in V1 in the baseline condition without drugs: the increase in 
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firing rate and the decrease in low-frequency LFP power when the attend-in condition 

(attention locus is on the receptive field) is compared against the attend-out condition 

(attention locus is out of the receptive field). We should also control the effect of eye 

movements such as fixation precision and microsaccades (project 1) on those attentional 

modulations. Especially we may want to use the best-available technique to correctly 

detect microsaccades (e.g. Bellet et al., 2018) so that we can properly estimate their 

effects because a substantial involvement of microsaccades on attentional modulations 

was reported (Lowet et al., 2018). We should monitor pupil size of the animals during the 

task because it sensitively reflects animals’ internal states (project 2) and activities of 

neuromodulators especially ACh and NA (Reimer et al., 2016; Larsen & Waters, 2018).  

In this setup we can directly ask how 5HT contributes to the attentional 

modulations in macaque V1 with respect to spikes and LFPs. A previous study reported 

that ACh enhanced the attentional modulation of firing rate in macaque V1 (Herrero et 

al., 2008). Given that 5HT decreases the gain of visual responses (project 3), the 

hypothesis is that 5HT decreases the attentional modulation of firing rate, as opposed to 

ACh. How the serotonergic modulation in LFPs interacts with the attentional modulation 

in LFPs remains to be seen. Our analysis using the same dataset as project 4 showed that 

pupil size and 5HT significantly affects low-frequency LFP power in V1, but these 

effects are independent of each other. This supports the hypothesis that ACh and 5HT are 

two independent sources to desynchronize cortical state (Vanderwolf & Baker, 1986; 

Harris & Thiele, 2011). If the attentional modulation in LFPs are also mediated by ACh, 

we expect that 5HT decreases low-frequency LFP power independently on top of the 

attentional modulation in LFPs. In addition, we can ask how change in pupil size, which 
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reflects internal states such as motivation and decision confidence during perceptual 

decision making (project 2), interacts with the effect of 5HT on the attentional 

modulations in macaque V1. This future project will advance our understanding of how 

external sensory information, internal states, and neuromodulators shape visual processes 

in V1 and influence perceptual decisions by exploring the link among pupil-inferred 

internal states, effects of 5HT on attentional modulations in V1, and perceptual decisions. 
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Highlights  36 

 We developed a head-free setup with measurements of eye position to train macaques 37 

without head-fixation  38 

 A monkey could move its head freely in the setup but needs to return its head in a stable 39 

position whenever it was seeking reward 40 

 Behaviors and eye data from the head-free monkey are comparable to head-fixed monkeys 41 

in a visual fixation and discrimination task. 42 

 This method may facilitate a non-human primate research requiring extensive training on 43 

animals with precise measurements of eye position 44 

 45 
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Abstract  59 

Background: Our understanding of the brain benefits from extensively trained macaques on 60 

tasks requiring precise measurements of eye position. Monkeys are typically trained with their 61 

heads fixed via surgically implanted head-posts to minimize noise of eye-data derived from 62 

head movements. Therefore, training cannot be initiated until the head-posts are stabilized on 63 

animals’ skull. 64 

New Method: To train monkeys without head-fixation, we used a reward spout mounted inside a 65 

horizontally tilted cup opening towards a monkey’s mouth. This setup can be built independently 66 

in a workshop, and easily connected to a standard primate chair. The animal in the setup can 67 

move its head freely, but the cup ensures that its head returns to a similar position whenever it 68 

is seeking reward so that a video eye-tracker can measure its eye position and pupil size.   69 

Results: A male monkey who was naïve to any behavioral training but being seated in a primate 70 

chair was trained with the head-free setup in a standard fixation task (46 sessions) and 71 

discrimination task (16 sessions). He adapted quickly to the head-free setup, and we were able 72 

to gradually increase the fixation duration per trial and decrease the fixation window with 73 

measurements of eye position. 74 

Comparison with Existing Method(s): The animal showed behaviors and eye data comparable to 75 

head-fixed animals. We also evaluated the head-free setup against the comprehensive criteria 76 

for non-invasive head-immobilization systems (Slater et al., 2016).    77 

Conclusions: The head-free setup enables researchers to train macaques without head-fixation 78 

on tasks requiring precise measurements of eye position. 79 

 80 

 81 

 82 

 83 

 84 

 85 
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1. Introduction 86 

Neuroscience studies with trained awake macaque monkeys have greatly advanced our 87 

understanding of the brain. Animals in such studies are trained extensively prior to data 88 

acquisition, and many tasks require tight control of the animals’ eye movements. For precise 89 

measurements of eye position the animals’ heads are typically fixed mechanically to a primate 90 

chair using surgically implanted head-posts mounted to the animal’s skull (Adams et al., 2007; 91 

Betelak et al., 2001; Mountcastle et al., 1975). The head-post implantation surgery is invasive 92 

yet widely considered to be necessary for neural recordings as well as measurements of eye 93 

position. It takes normally a few months for the head-posts to be stabilized on the animals’ skull. 94 

Until this recovery period is over, training animals cannot be initiated. 95 

A head-free training of macaques without head-fixation is therefore highly desired because not 96 

only it is non-invasive, but monkeys can be trained on tasks even before the head-post surgery. 97 

Such an option can accelerate research requiring extensive training of animals. Although it is 98 

challenging to limit animals’ head-movement adequately for eye data without head-fixation, 99 

several studies succeeded to develop non-invasive head-immobilization systems with 100 

measurements of eye position (Amemori et al., 2015; Drucker et al., 2015; Machado & Nelson, 101 

2011; Fairhall et al., 2006; Slater et al., 2016). To limit animals’ head-movement, a two-piece 102 

plastic head mold and a bar clamp holder (Amemori et al., 2015) or masks or helmets covering 103 

the entire face or head of animals (Drucker et al., 2015; Machado & Nelson, 2011; Fairhall et al., 104 

2006; Slater et al., 2016) were employed, and showed noteworthy results in tandem with other 105 

techniques (neural recordings; Amemori et al., 2015; Drucker et al., 2015, transcranial magnetic 106 

stimulation; Drucker et al., 2015, eye tracking; Amemori et al., 2015; Druker et al., 2015; Fairhall 107 

et al., 2006; Slater et al., 2016; magnetic resonance imaging; Slater et al., 2016). Some studies 108 

computed the cost of their systems and showed that labs could benefit from installing such non-109 

invasive head-immobilization systems (Drucker et al., 2015; Slater et al., 2016). Although these 110 

studies should be encouraged considering ethical perspectives (e.g. The 3Rs; Russell & Burch, 111 

1959), these systems may be still too complex to be widely used (e.g. requiring sedation during 112 

making head-immobilization systems; Amemori et al., 2015; Drucker et al., 2015; Machado & 113 

Nelson, 2011; Fairhall et al., 2006; Slater et al., 2016).  114 

To contribute to these lines of studies and accelerate procedures of neuroscience research 115 

using awake macaque monkeys, we developed a simple non-invasive setup for precise 116 

measurements of eye position in a head-free animal. We used a reward spout mounted inside a 117 
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horizontally tilted cup opening towards the animal’s mouth. Although the animal could move its 118 

head freely, the cup ensured that the animal’s head returned to a similar position whenever it 119 

was seeking rewards, reducing variability in its head position. Presumably due to the component 120 

of voluntary engagement, habituation took only 4 sessions. We monitored the animal’s eye 121 

position using a video eye-tracker (Eyelink 1000, SR Research Ltd.) and trained the animal on a 122 

standard visual fixation task (46 sessions) and orientation discrimination task (16 sessions). 123 

Whereas studies with non-invasive head-immobilization often report results only from an 124 

example session, we reported results of key experimental parameters, behaviors, and eye data 125 

from all the 62 sessions to highlight that head-free animals can be trained on tasks requiring 126 

precise measurements of eye position. The setup can be built independently in a workshop 127 

without the presence of animals. Since it can be easily combined with existing standard primate 128 

chairs and potentially shared by different animals, its installation is relatively easy and can be 129 

widely used. 130 

 131 

2. Methods 132 

2.1. Subject 133 

This study was approved by the local authority (Regierungspraesidium Tübingen), and all the 134 

procedures were in accordance with its guideline for animal experiments. We collected data 135 

from one head-free male rhesus monkey (Macaca mulatta; 12kg) performing a standard visual 136 

fixation task and a discrimination task. This monkey did not have an implanted head post and 137 

was naïve to any behavioral training in a laboratory setup but being seated in a standard 138 

primate chair. After the animal was trained with the head-free setup on the tasks, the head-post 139 

implantation surgery was performed under general anesthesia. Fixation precision (see 2.6.2) 140 

was compared in the same animal with or without head-fixation.  141 

 142 

2.2. Head-free setup 143 

We trained a rhesus monkey without the head-fixation on a visual fixation and a discrimination 144 

task. The animal was positioned in a primate chair and viewed the monitor located in a fixed 145 

distance. We used a reward spout mounted inside a horizontally tilted cup opening (Fig. 1a). On 146 

the base of the cup, there is a small hole from which the metal reward tube, supplying fluid 147 
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reward, comes out by approximately 1cm towards the inner space of the spout. The cup facing 148 

down the ground is largely open to remove the remaining fluid reward such that the animal 149 

could not get remaining reward in following incomplete trials. Whenever the animal was seeking 150 

reward, he needed to poke his mouth inside the cup. That reinforced the animal to return his 151 

head in a stable position in the primate chair. Whenever the animal wanted to abort a trial, he 152 

was able to move his head around freely. Before each day’s experiment, the head-free system 153 

was mounted in front of the animal’s mouth by using the bar-clamp holders connecting the 154 

system and the primate chair (Fig. 1c). Since the video-based eye-tracker was positioned 155 

between the monitor and the animal, we positioned the cup such that the animal’s pupil was 156 

successfully detected by the infrared camera when the animal viewed the monitor. We also 157 

ensured that the connection between the head-free system and the primate chair was tight 158 

enough such that the animal could not move the cup around by using his mouth. The cup was 159 

made of hard plastic and not breakable by the animal’s bites.  We used an operant conditioning 160 

for the animal to get used to the setup until he learned to get a reward by poking into the cup. It 161 

took only 4 sessions before starting the fixation task, suggesting that the animal quickly adapted 162 

himself to this head-free setup.  163 

 164 

2.3. Behavioral tasks 165 

After the monkey was habituated to the head-free setup, we started to train him on a standard 166 

visual fixation task. We then trained him to make a saccade to the target dot when the fixation 167 

dot was off (4 sessions). Thereafter we trained him on an orientation discrimination task. We 168 

report results from the 46 consecutive sessions for the visual fixation task and the 16 169 

consecutive sessions for the orientation discrimination task. In the both cases, the first session 170 

was the first day for the monkey to experience the task. 171 

2.3.1 Visual fixation task 172 

We trained the monkey to fixate at a dot in the center of the monitor. The monkey was rewarded 173 

(with water or juice) after maintaining fixation for certain fixation duration within a small fixation 174 

window around the dot. Once the monitored eye position was out of the fixation window, the trial 175 

was aborted. We increased the fixation duration up to 2 sec per trial and decreased the fixation 176 

window over the course of training. In our head-free condition, the monkey reached the 2000ms 177 

fixation at session 6. This was much earlier than our other two monkeys with head-fixation (took 178 
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13 and 28 sessions each), suggesting that the head-free setup might facilitate the animals’ task 179 

engagement. We started to present a visual stimulus peripherally after session 7. The stimuli 180 

were circular drifting sinusoidal luminance gratings similar to (Seillier et al., 2017). We were able 181 

to use the fixation window smaller than 1.7o x 1.7o after session 8.  182 

2.3.2. Orientation discrimination task  183 

After the monkey learned to maintain a stable fixation, we trained the animal on a two-alternate 184 

forced-choice (2AFC) visual discrimination task in which the monkey discriminated orientation of 185 

the visual stimuli and indicated his choice via saccade. Trials started upon fixation. The dynamic 186 

visual stimuli, in which the Gabor grating changed its orientation frame-by-frame, were 187 

presented peripherally for a fixed duration (1.5 sec in 2 sessions and 2 sec in 14 sessions). 188 

When the stimulus duration was 1.5 sec, the pre-stimulus duration of 0.5 sec was preceded 189 

such that the total fixation duration per trial was 2 sec. Two targets were also presented above 190 

and below the fixation dot simultaneously during the stimulus presentation period. One target 191 

contained Gabor grating with 100% of horizontal orientation, and the other contained Gabor 192 

grating with 100% of vertical orientation. The monkey was required to maintain fixation at the 193 

center dot of the monitor during the stimulus presentation period and make a saccade to one of 194 

the targets whose orientation was closer to that of the presented stimulus once the fixation dot 195 

was off. The target positions for the two types of the targets were randomized across trials to 196 

disentangle saccade direction and choice. For correct choices, the monkey got a fluid reward 197 

(water or juice). To discourage the animals from guessing in the discrimination task, the 198 

available reward size was increased based on their task performance. After three consecutive 199 

trials with correct choices, the available reward size was doubled compared to the original 200 

reward size. After four consecutive trials with correct choices, the available reward size was 201 

again doubled (quadruple compared to the original size) and remained at this size until the next 202 

error. After every error trial, the available reward size was reset to the original. For the analyses 203 

in Fig. 5b “large available reward” trials refer to both intermediate and large available reward 204 

trials collapsed to approximately equalize the number of trials to the small available reward trials.  205 

 206 

2.4. Visual stimuli 207 

Visual stimuli (luminance linearized) were back-projected on a screen by two projection design 208 

projectors (F21 DLP; 60Hz; 1920 x 1080 pixel resolution, 225 cd/m2 mean luminance) with the 209 
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viewing distance of 149 cm. Stimuli were generated with a custom written software using 210 

MATLAB (Mathworks, USA) based psychophysics toolbox (Brainard, 1997; Kleiner et al., 2007; 211 

Pelli, 1997).  212 

In the visual fixation task, we used sets of stimuli in our previous study (Seillier et al., 2017). The 213 

stimuli were circular drifting sinusoidal luminance gratings presented for 450 ms (temporal 214 

frequency typically 7 Hz). The direction (16 equally spaced values), the spatial frequency (8 215 

logarithmically spaced values from 0.125 to 16 cycles per degree), the contrast (typically seven 216 

logarithmically spaced values from 1.56 to 100%), or the size (typically 12 logarithmically 217 

spaced values from 0.3 to 8°) of the grating was pseudorandomly varied, randomly interleaved 218 

by blank stimuli, with all other parameters constant.  219 

In the orientation discrimination task, the stimuli were circular drifting sinusoidal luminance 220 

gratings. The orientation of the stimuli was changed randomly on each video-frame according to 221 

the probability mass distribution set for the stimulus. For the 0% signal stimulus the orientation 222 

was drawn from a uniform distribution (8 equally-spaced values between 22.5o and 180o). The 223 

monkeys were rewarded randomly on half of the trials on the 0% signal trials. These 0% signal 224 

trials were randomly interleaved with horizontal or vertical orientation signal trials. To introduce 225 

orientation signal in those trials, the probability of either horizontal or vertical orientation on each 226 

video frame during the stimulus presentation was increased. The range of signal strengths was 227 

adjusted between sessions to manipulate task difficulty and encourage performance at 228 

psychophysical threshold. Typical added signal values were 25%, 50% and 100%. 229 

 230 

2.5. Behavioral analysis 231 

We performed a survival analysis to summarize the effect of training on the animals’ fixating 232 

behavior. For the orientation discrimination task, we quantified the animals’ psychometric 233 

performance as a psychophysical threshold. All the fittings were performed using the Matlab 234 

fminsearch function. 235 

 236 

2.5.1 Training effect 237 

We used two statistical tests to examine whether there was an effect of training on a behavior. 238 

First, we computed the Spearman’s rank correlation between values in the behavior and the 239 

session numbers. Second, we split sessions into the first and second half and used the 240 

Wilcoxon rank sum test to quantify the difference in the behavior between the two periods.  241 
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2.5.2. Survival analysis on aborting trials 242 

To quantify the effect of training on the animal’s aborting trials by fixation breaks, survival 243 

analysis was performed using data of fixation durations from all the trials in each session. First, 244 

the maximum fixation duration in each session was split into 11 time bins with a uniform width. 245 

The survivor function was generated as the probability p that the animal kept fixation at the time 246 

bin t. The survivor function was fit with 1 - cumulative Weibull distribution by the least squared 247 

error: 248 

P(fixating at time bin 𝑡) = 𝑒−(𝑡/𝑎)𝑏
 

where a is the scale parameter and b is the shape parameter, which extend the exponential 249 

distribution in that there is no assumption of a constant hazard rate over time. To quantify a 250 

distribution of the animal’s fixation duration, we computed the median of the fitted Weibull 251 

distribution by𝑎(𝑙𝑛2)1 𝑏⁄ . 252 

2.5.3. Psychometric threshold 253 

The animals’ choice-behaviors in the discrimination task were summarized as a psychometric 254 

function by plotting the probability of ‘vertical’ choices as a function of the signed signal strength 255 

x and then fitted with a cumulative Gaussian function by maximum likelihood estimation: 256 

P(choose vertical target) =  
1

2
[1 + erf (

𝑥 −  𝜇

𝜎√2
)] 

where erf denotes the error function, and  μ and σ are mean and standard deviation of the fitted 257 

cumulative Gaussian distribution, respectively. The standard deviation σ was defined as the 258 

psychophysical threshold, which corresponds to the 84% correct level.  259 

 260 

2.6. Eye-data  261 

During the experiments, the animals’ eye position and pupil size were monocularly measured at 262 

500Hz using an infrared video-based eye tracker (Eyelink 1000, SR Research Ltd, Canada) with 263 

the pupil-CR (corneal-reflex) mode in head-referenced coordinates (HREF mode), and digitized 264 

and stored for the subsequent offline analysis using Matlab or Python3. The eye tracker was 265 

mounted in a fixed position on the primate chair to minimize variability in pupil size 266 

measurements between sessions. For each day’s experiment, we calibrated the video-based 267 

eye-tracker by applying a linear transformation to the raw eye-position signal. This calibration 268 
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procedure required the animal to fixate at 5 fixation dots sequentially appearing in different 269 

positions (selected from center, left top, right top, left bottom, or right bottom in a 3x3 grid) on 270 

the monitor. We applied a linear gain and offset adjustments to the analog output of the Host PC 271 

to transform the raw eye-position in the given arbitrary voltage values into pixels (deg; degree 272 

visual angle). Our eye-data analysis focused on the period of animals’ fixation in which the gaze 273 

angles were constant. The background of the display was at mid-gray levels throughout 274 

resulting in considerable illumination of the darkened experimental booths.  275 

2.6.1. Preprocessing of eye traces 276 

We transformed the eye position x to velocity v, which represented a moving average of 277 

velocities over 5 data samples (Engbert & Kliegel, 2003): 278 

vn =
xn+2 + xn+1 − xn−1 − xn−2

6Δt
 

where Δt is an inverse of sampling rate. Eye position values were reconstructed using the 279 

velocity values to suppress noise (Engbert & Mergenthaler, 2006): 280 

𝑥𝑛 = 𝑥0 + ∆𝑡 ∑ 𝑣𝑛

𝑛

𝑖=1

 

We used the reconstructed eye position for the following analysis. 281 

 282 

2.6.2. Fixation precision 283 

To quantify fixation quality of the head-free monkey, we computed variance of horizontal and 284 

vertical eye positions separately. In addition, we computed fixation precision in each session by 285 

means of fixation span: area around the mean eye-position during fixation, where the line of 286 

sight is found with a desired probability p (Cherici et al, 2012). We included completed trials 287 

where the animal fixated successfully for a fixed duration (typically 2 sec) in our analysis. In 288 

each trial, the eye-position during fixation was subtracted from its mean value to correct the 289 

possible calibration offset from the fixation dot. We then pooled the measured eye-position 290 

across all the completed trials in each session and estimated the 2D probability density function 291 

by making 2D histograms on a grid covering the entire area of fixation using the Matlab ndhist 292 
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function with the bin size of 1.2. Based on this probability density function, we found the region 293 

corresponding to the pth percentile of the distribution. In other words, we computed an area in 294 

which p% of the line of sight was found. The probability p was set to 0.75 along with the original 295 

study (Cherici et al, 2012). We used this fixation span as the animals’ fixation precision. The 296 

smaller value of the fixation precision indicates smaller variance of the distribution of the eye 297 

position, meaning more precise fixation. 298 

2.6.3. Pupil size 299 

Pupil size measured by the Eyelink was given as arbitrary voltage values with a particular 300 

dynamic range. We regarded values of pupil size beyond ±4.8 as the timing of blinks and 301 

replaced values 100ms before and after the timing with nans. Thereafter all the nans in the pupil 302 

size were linearly interpolated. Next, we applied the 2nd order band-pass Butterworth filter with 303 

the cutoff frequencies of 0.1 and 10 Hz (same as Urai et al., 2017). To compare pupil size 304 

across sessions, the band-passed pupil size was z-scored using the mean and standard 305 

deviation (SD) of the pupil size during the stimulus presentation period across all completed 306 

trials within each session. On average the pupil size time-course showed a sharp constriction 307 

after the stimulus onset followed by a slow dilation towards the stimulus offset (example in Fig. 308 

5a). Since the pupillary dynamic is relatively slow, the pupil size time-course was strongly 309 

affected by the stimulus duration. To compare the pupil dynamics across sessions with different 310 

stimulus durations (1.5 or 2 sec), we computed the pupil response from the averaged time-311 

series of pupil size: the maximum value during the dilation towards the stimulus offset – the 312 

minimum value during the constriction after the stimulus onset (Fig. 5a). To compare the 313 

difference in the pupil response between large and small available reward trials, we restricted 314 

our analysis to the 0% signal trials to exclude a potential effect of signal strength on pupil 315 

dynamics (Kawaguchi et al., 2018). 316 

 317 

2.6.4. Microsaccade detection 318 

We used a recently developed microsaccade detection algorithm using a convolutional neural 319 

network (U’n’Eye; https://github.com/berenslab/uneye; Bellet et al., 2018). We used pretrained 320 

weights obtained in the original study based on multiple datasets and detected microsaccades 321 

of the head-free animal during the stimulus presentation period. We examined whether detected 322 

microsaccades obeyed the “main sequence”: a linear relationship between saccadic peak 323 

velocity and amplitude (Zuber & Stark, 1965). 324 

https://github.com/berenslab/uneye
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3.  Results 325 

3.1 Head-free setup for macaques with measurements of eye position 326 

In a typical cognitive neuroscience research using macaques with measures of eye position, 327 

monkeys’ heads are typically mounted to primate chairs via head-posts surgically implanted on 328 

animals’ skull. The surgery for head-post implantation is invasive yet considered to be 329 

necessary to limit animals’ head movements for high quality eye data. One apparent downside 330 

with this procedure apart from its invasive aspect is that it takes normally a few months for 331 

head-posts to be stabilized on monkeys’ skulls and therefore training monkeys cannot be 332 

initiated until this stabilization period is over (Fig. 1a, gray line). Training macaques without 333 

head-fixation would accelerate such a procedure because animals can be trained before the 334 

head-post implant surgery as well as during the head-post stabilization period (Fig. 1a, red line). 335 

For some studies without neural recordings it may be possible to complete data collection 336 

without the invasive head-post implantation.  337 

To train macaques without head-fixation, we used a reward spout mounted inside a horizontally 338 

tilted cup opening towards the animal’s mouth (Fig. 1b). We used a naïve male animal without a 339 

head-post and any prior trainings but being seated in a standard primate chair. The animal was 340 

seated in a primate chair and trained via operant conditioning to stabilize his head in a fixed 341 

position to receive fluid rewards (Fig. 1c, left). The cup-like shape of the reward delivery system 342 

reduced variability in the head position. Although the animal could move his head freely, the 343 

system ensured that the animal’s head returned to a similar position whenever he was seeking 344 

rewards (Fig. 1c, right). Presumably due to the option for voluntary engagement, the animal 345 

adapted himself quickly to this setup. After 4 sessions of habituation to this setup we were able 346 

to start monitoring the animal’s eye position using a video eye-tracker (Eyelink 1000, SR 347 

Research Ltd.) during a standard visual fixation task. We used the pupil-CR (corneal-reflex) 348 

mode in head-referenced coordinates (HREF mode). Example measured eye traces and pupil 349 

size are shown in Fig. 1d. 350 

 351 
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 352 

Fig. 1. Head-free setup for macaques. a) Benefit of a head-free training. Monkeys are typically 353 

trained only after head-posts are surgically implanted and stabilized on animals’ skulls (gray) to 354 

limit animals’ head-movements for precise measurements of eye position. Training without 355 

head-fixation (red) can accelerate research. b) Schematic drawings of the ‘cup’. A reward spout 356 

is mounted inside the cup to provide animals with fluid reward. c) Photos showing the head-free 357 

setup with a monkey (left) and example scenes of training (right). Note that an animal can move 358 

its head freely, yet the cup ensures that the animal returns his head to a stable position 359 

whenever he is seeking reward. d) Eye (top: x; horizontal position, middle: y; vertical position) 360 

and pupil size (bottom) traces of the head-free animal in an example trial with 2-sec fixation. 361 

Eye data were obtained by a video-based eye-tracker with the pupil-CR (corneal-reflex) mode in 362 

head-referenced coordinates (HREF mode). 363 

 364 
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3.2. Training on a standard visual fixation task 365 

We trained the head-free animal on a standard visual fixation task (46 sessions; Fig. 2a). Initially 366 

we did not present any stimuli except for a fixation dot on the center of the screen. Based on the 367 

animal’s fixating behavior, we sought to increase fixation duration per trial required to get reward 368 

and decrease fixation window session-by-session (Fig. 2b, c). Within 6 sessions the animal was 369 

able to fixate for 2 sec per trial, which were substantially earlier than our other two monkeys with 370 

head-fixation via head-posts (13 and 28 sessions each). Presumably the option for voluntary 371 

engagement helped him to quickly learn the task. We presented visual stimuli that the animal 372 

was required to ignore on a peripheral location after session 7. In the head-free setup, the 373 

animal could abort a trial whenever he wanted by breaking fixation. That led to relatively high 374 

proportion of fixation breaks across sessions (Fig. 2d). We did not observe a systematic effect 375 

of training on the proportion of fixation breaks (Spearman’s rank correlation: r = -0.09, p = 0.53; 376 

Wilcoxson rank sum test: p = 0.38), presumably because we changed sets of experimental 377 

parameters across sessions: fixation duration per trial, fixation window, and new sets of visual 378 

stimuli. We observed the animal worked longer over the course of training especially in the early 379 

training period (Fig. 2e). We hypothesized that the animal fixated longer even within fixation-380 

break trials in later sessions. To test this hypothesis, we performed a survival analysis on 381 

fixation duration in all the trials including ones with fixation breaks in each session. The survivor 382 

function decreased as a function of time, as expected (examples in Fig. 2f left). Over the course 383 

of training across sessions, the median from fitted Weibull survivor functions tended to be on 384 

increase (Spearman’s rank correlation: r = 0.2, p = 0.18; Wilcoxson rank sum test: p < 0.05), 385 

suggesting that the animal tended to fixate longer in later sessions over the course of training 386 

(Fig. 2f right).  387 

 388 
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 389 

Fig. 2. Experimental parameters and the head-free animal’s behaviors on a visual fixation task. 390 

a) Fixation task. The head-free animal maintained fixation on the fixation dot. Visual stimuli were 391 

presented periphery after session 7. b) Fixation duration per trial required to get reward set by 392 

experimenters. It took the head-free animal 6 sessions to reach 2 sec of fixation duration per 393 

trial. c) Same as b) but for area of fixation window. d) Proportion of trials with fixation break. e) 394 

Working duration of the animal per session (min). f) (Left) Survivor functions and their fits for 395 

fixation breaks in the three example sessions. (Right) The median of the survivor function. 396 

Overall the animal fixated longer in later sessions. 397 

 398 

Importantly for this head-free setup, we observed that the quality of the head-free animal’s 399 

visual fixation quantified as variance of eye position (Fig. 3a) and fixation span (Cherici et al., 400 

2012; Fig. 3b) improved over the course of training (Spearman’s rank correlation: r = -0.59, p < 401 

10-4; Wilcoxson rank sum test: p < 10-2; Fig. 3b). We did not observe statistically significant 402 

difference in variance between horizontal (x) and vertical (y) eye position (p = 0.26, t = 1.13; 403 

paired t-test), suggesting that the animal’s pupil margin was not systematically occluded (Choe 404 

et al., 2016). The head-free animal’s fixation precision went steadily under 0.7 (deg2) after 13 405 

sessions. The median fixation precision from all the sessions in the fixation task was 0.33 (deg2). 406 

This was comparable to the median fixation precision (0.28 deg2) from the same animal but with 407 

head-fixation in later sessions (the first 46 sessions with head-fixation via the head-post). This 408 

suggests that animals can be trained to yield high quality eye data with this head-free setup. 409 
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 410 

Fig. 3. Quality of fixation during the fixation task. a) Variance of x (horizontal; green) and y 411 

(vertical; purple) position of the eye. Data points are horizontally jittered for visualization 412 

purpose. b) Fixation precision defined as fixation span (Cherici et al., 2012) in each session. 4 413 

example 2D distributions of eye position are shown. Distributions are normalized by their peak 414 

value for visualization purpose. Note binary logarithmic scale of y-axis. 415 

 416 

3.3. Training on an orientation discrimination task 417 

After training the head-free animal on the visual fixation task, we trained him to make a saccade 418 

to a target dot presented peripherally when the fixation dot was off (4 sessions). Thereafter we 419 

started to train him on an orientation discrimination task (16 sessions; Fig. 4a). 2 sessions were 420 

with 0.5 sec of pre-stimulus duration and 1.5 sec of stimulus presentation, and 14 sessions were 421 

2 sec of stimulus presentation right after the fixation onset. In the both cases the total fixation 422 

duration per trial was 2 sec. The animal indicated his choice via a saccade to one of the two 423 

targets. The video-based eye-tracker successfully captured his choice saccades (examples 424 

from 4 sessions; Fig. 4b). We quantified the animals’ psychometric performance as a 425 

psychometric threshold and found it on decrease over the course of training (Spearman’s rank 426 

correlation: r = -0.84, p < 10-4; Wilcoxson rank sum test: p < 0.05; Fig. 4c). This shows that we 427 

were indeed able to train the head-free animal on a task requiring precise measurements of eye 428 

position.  429 
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 430 

Fig. 4. The head-free animal’s behaviors on an orientation discrimination task. a) Orientation 431 

discrimination task. The animal initiated a trial upon fixation. Visual stimulus and two targets 432 

were shown for 1.5 or 2 sec (2 and 14 sessions, respectively. 0.5 sec pre-stimulus duration was 433 

preceded when the stimulus duration was 1.5 sec). Once the fixation dot was off, the animal 434 

made a saccade to one of the targets. Available reward size was increased when the number of 435 

previous consecutive correct trials was > 2. Otherwise the available reward was reset to be an 436 

original value. b) Example saccades the animal made to indicate the choice from 4 sessions. 437 

Starting points of saccades are in red. End points are in black. Red and gray squares are 438 

fixation window and target window, respectively. c) Psychometric performance. Psychophysical 439 

thresholds decreased as a function of sessions, indicating improving psychophysical 440 

performance. Example psychometric functions were shown from 4 sessions.  441 

 442 

We looked into the quality of the measured pupil size data with the head-free setup. Pupil size 443 

or diameter during fixation in isoluminant environment has been extensively used to infer 444 

subjects’ arousal-linked internal state (Ebitz and Platt, 2015; Kawaguchi et al., 2018; Mitz et al., 445 

2017; Rudebeck et al., 2014; Suzuki et al., 2016). To examine the quality of the pupil size data 446 

with the head-free setup, we sought to find widely-known modulation in pupil size by available 447 

reward size (Baruni et al., 2015; Varazzani et al., 2015). In the orientation discrimination task 448 
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trial-by-trial available reward size was determined based on the animal’s previous consecutive 449 

correct trials and hence predictable. We computed pupil response from the average pupil size 450 

time-course in the 0% signal trials (Fig. 5a) separately for trials with small and large available 451 

reward size. Along with the previous studies, we found that the head-free animal’s pupil 452 

response was significantly larger in large available reward trials than small available reward 453 

trials (n = 16 sessions, p < 0.01; Wilcoxon signed rank test; Fig. 5b). Our results suggest that 454 

pupillary research with macaques can be performed with the head-free setup. 455 

 456 

 457 

Fig. 5. Pupil size. a) Pupil response. Pupil response was defined as the difference between the 458 

minimum value during the initial sharp constriction and the maximum value during the dilation 459 

towards the stimulus offset in the average time-course of pupil size, shown for example session 460 

8. b) Modulation in pupil response by available reward size. Pupil response in large available 461 

reward trials was larger than that in small available reward trials (n = 16 sessions, p < 0.01; 462 

Wilcoxon sign rank test). 463 

 464 

Another important index of eye data during fixation is microsaccade. Microsaccade has been 465 

shown to be linked with sensory, motor, and cognitive processes (Chen et al., 2013, 2015; 466 

Hafed et al., 2011, 2013; Herrington et al., 2009; Lowet et al., 2018; Mcfarland et al., 2016). 467 

Therefore, accurate detection of microsaccade is desired for such a research. To see whether 468 

we could detect reasonable microsaccades of the head-free animal during fixation, we used a 469 

recently developed algorithm using a convolutional neural network (U’n’Eye; Bellet et al., 2018) 470 

with pretained weights based on multiple datasets. We found that the deep neural network 471 

successfully detected microsaccades (eye traces from two example trials in Fig. 6a). The rate of 472 

detected microsaccade was plausible, and its variance across sessions was small (1.14 ± 0.20 473 

s-1; mean ± SD). Finally we examined the “main sequence”: a linear relationship between peak 474 
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velocity and amplitude in microsaccades (Zuber & Stark, 1965). We confirmed a positive 475 

correlation between amplitude and peak velocity in detected microsaccades (Pearson 476 

correlation: r = 0.56, p < 10-9, n = 44,124 microsaccades from 16 sessions; Fig. 6b). Therefore, 477 

microsaccade can be reasonably detected in the head-free setup. 478 

 479 

 480 

Fig. 6. Detected microsaccade by a convolutional neural network (Bellet et al., 2018). a) 481 

Detected microsaccades in eye traces from two example trials. b) Main sequence analysis. 482 

Among detected 44,124 microsaccades from 16 sessions movement amplitude and peak 483 

velocity were positively correlated (Pearson correlation: r = 0.56, p < 10-9). 484 

 485 

In conclusion, our results suggest that with this head-free setup, macaques can be trained on 486 

tasks requiring precise measurements of eye position.  487 

 488 

4. Discussion 489 

The head-free setup described here is, to our best knowledge, the simplest non-invasive 490 

approach to train macaque monkeys without head-fixation. Since sedation is not required during 491 

building the setup, it can be built independently in a workshop without the presence of monkeys. 492 

Potentially a single setup can be shared by different animals. In addition, it can be easily 493 

connected to a standard primate chair using bar-clamp holders (Fig. 1c). The cup-like structure 494 

of the setup allowed a monkey to move its head freely but reinforced its head to return to a 495 

stable position whenever the animal was seeking reward, which reduced variability in head-496 

movements during tasks. We tested this head-free setup with a male rhesus monkey who was 497 

without a head-post and naïve to any behavioral trainings except for being seated in a standard 498 

primate chair. Presumably since animals could engage in a task voluntarily, the animal adapted 499 
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himself quickly to the setup (4 habituation sessions). The animal reached 2 sec of fixation per 500 

trail within 6 sessions (Fig. 2b), which was substantially earlier than two other in-house animals 501 

with head-posts (13 and 28 sessions each). We were able to use the fixation window smaller 502 

than 1.7o x 1.7o after session 8 (Fig. 2c) because the quality of visual fixation improved over the 503 

course of training (Fig. 3). After training on the fixation task, we were able to train the animal on 504 

an orientation discrimination task in which the animal indicated his choice via saccade (Fig. 4). 505 

We observed well-known properties of pupil size (Fig. 5) and microsaccade (Fig. 6). These 506 

results demonstrated that the head-free setup can be used to train animals with precise 507 

measurements of eye position. 508 

We review the head-free setup against the eight criteria of non-invasive head-immobilization 509 

systems (Slater et al., 2016).  510 

1) Customisable: the head-free setup can be individually customized for each animal simply by 511 

changing the diameter of the cup. The use of the same setup for different animals is potentially 512 

possible.  513 

2) Access: the setup ensures access for visual stimulus presentation as well as the reward 514 

delivery. Auditory stimulation should be also possible given that animal’s ears are not covered.  515 

3) Minimising pressure points: after training we typically noticed marks on the animal’s face 516 

along with the edge of the cup, which were caused by pressure of the animal’s poking into the 517 

cup. The pressure can be reduced by increasing the distance in the reward tube inside the cup 518 

such that the animal can reach the reward drop without poking too strongly.  519 

4) Comparisons to implanted head posts: the animal reached 2 sec of fixation per trail within 6 520 

sessions (Fig. 2b), which was substantially earlier than other two in-house animals with head-521 

posts (13 and 28 sessions, respectively). The quality of visual fixation of the head-free animal 522 

(median fixation precision = 0.33 deg2; Fig. 3) was comparable to that of the same animal with 523 

head-fixation via the head-post in later sessions (median fixation precision = 0.28 deg2). 524 

Therefore, we were able to train the head-free animal on a discrimination task requiring saccade 525 

(Fig. 4) and observed well-known properties of pupil size (Fig. 5) and microsaccade (Fig. 6) 526 

found in head-fixed animals in the previous studies. 527 
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5) Minimise distress: the head-free setup allowed the animal to engage on the task voluntary, 528 

and whenever the animal wanted to abort trials, he moved his head around or tried to move the 529 

cup with his month. Such behaviors were typically observed towards the end of the session. 530 

6) Adaptable: the head-free setup can be easily mounted on a standard primate chair and 531 

therefore can be adapted by different labs. Since the setup allows animals to move heads freely, 532 

it is not suitable for neural recordings and imaging techniques. For those purposes other non-533 

invasive approaches may be considered (neural recordings; Amemori et al., 2015; Drucker et al., 534 

2015, transcranial magnetic stimulation; Drucker et al., 2015; electroencephalogram; Itoh et al., 535 

2015, positron emission topography; Howell et al., 2001, magnetic resonance imaging; 536 

Srihasam et al., 2010; Hadj-Bouziane et al., 2014; Slater et al., 2016). 537 

7) Voluntary engagement: the head-free setup allows totally voluntary engagement; an animal 538 

can move its head freely and poke inside the cup only when it was seeking reward.  539 

8) Animal size: the head-free monkey in this study was 12 kg and relatively large as a macaque 540 

monkey. Since the setup does not cover animals’ face or head like masks or helmets used in 541 

previous studies (Drucker et al., 2015; Machado & Nelson, 2011; Fairhall et al., 2006; Slater et 542 

al., 2016), the setup is presumably more invariant to animals’ size. Animals with substantially 543 

heavier or lighter weight can be adapted to the setup by changing the size of the cup. 544 

Although the head-free setup may not be versatile enough to be used in tandem with neural 545 

recordings or imaging techniques, it allows researchers to train animals with precise 546 

measurements of eye position before the head-post surgery. For some studies concerning eye 547 

data but without neural recordings or imaging techniques, it may be possible to finish data 548 

collection with this setup and without the head-post surgery. We believe that the head-free 549 

setup has a potential to accelerate research requiring extensive animal training on tasks 550 

requiring precise measurements of eye position. 551 

 552 

5. Conclusions 553 

We developed a head-free setup, which allowed researchers to train a macaque monkey with 554 

measurements of eye position without head-fixation. This setup can be built independently in a 555 

workshop without the presence of monkeys and easily integrated to a standard primate chair. 556 

We were able to train a monkey without a head-post on a visual fixation task and discrimination 557 
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task with this setup. The animal showed behaviors and eye data comparable to head-fixed 558 

animals. Therefore, the head-free setup has a potential to accelerate research requiring 559 

extensive animal training on tasks with precise measurements of eye position by allowing 560 

training to start before the head-post surgery. 561 

 562 
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Differentiating between Models of Perceptual Decision
Making Using Pupil Size Inferred Confidence
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During perceptual decisions, subjects often rely more strongly on early, rather than late, sensory evidence, even in tasks when both are
equally informative about the correct decision. This early psychophysical weighting has been explained by an integration-to-bound
decision process, in which the stimulus is ignored after the accumulated evidence reaches a certain bound, or confidence level. Here, we
derive predictions about how the average temporal weighting of the evidence depends on a subject’s decision confidence in this model. To
test these predictions empirically, we devised a method to infer decision confidence from pupil size in 2 male monkeys performing a
disparity discrimination task. Our animals’ data confirmed the integration-to-bound predictions, with different internal decision bounds
and different levels of correlation between pupil size and decision confidence accounting for differences between animals. However, the
data were less compatible with two alternative accounts for early psychophysical weighting: attractor dynamics either within the decision
area or due to feedback to sensory areas, or a feedforward account due to neuronal response adaptation. This approach also opens the
door to using confidence more broadly when studying the neural basis of decision making.

Key words: confidence; integration-to-bound; macaque; perceptual decision making; psychophysical reverse correlation; pupillometry

Introduction
During perceptual discrimination tasks, subjects often rely more
strongly on early, rather than late, sensory evidence, even when
both are equally informative about the correct decision (e.g.,

Kiani et al., 2008; Neri and Levi, 2008; Nienborg and Cumming,
2009; Yates et al., 2017). But some studies in rodents and humans
reported uniform weighting of the stimulus throughout the trial
(Brunton et al., 2013; Raposo et al., 2014; Drugowitsch et al.,
2016). From the perspective of maximizing the sensory informa-
tion and hence performance, such early weighting is nonoptimal.
Understanding this behavior may shed light on how the activity,
or the read-out of sensory neurons limits our perceptual abilities,
a major goal of contemporary neuroscience (e.g., Pitkow et al.,
2015; Cumming and Nienborg, 2016; Clery et al., 2017). The
classical explanation for such early psychophysical weighting is
that it reflects an integration-to-bound decision process in which
sensory evidence is ignored once an internal decision bound is
reached (Kiani et al., 2008). For simple perceptual discrimination
tasks, decision confidence can be defined statistically (Hangya et
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Significance Statement

An animal’s ability to adjust decisions based on its level of confidence, sometimes referred to as “metacognition,” has generated
substantial interest in neuroscience. Here, we show how measurements of pupil diameter in macaques can be used to infer their
confidence. This technique opens the door to more neurophysiological studies of confidence because it eliminates the need for
training on behavioral paradigms to evaluate confidence. We then use this technique to test predictions from competing expla-
nations of why subjects in perceptual decision making often rely more strongly on early evidence: the way in which the strength of
this effect should depend on a subject’s decision confidence. We find that a bounded decision formation process best explains our
empirical data.
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al., 2016), and hence also measured for such a model. Here, we
derived new predictions of this model for how the temporal
weighting of sensory evidence should vary as a function of
decision confidence on individual trials. These revealed char-
acteristic differences in the temporal weighting for high- and
low-confidence trials, depending on the decision bound. We then
sought to test these predictions in macaques performing a fixed
duration visual discrimination task while also estimating the an-
imal’s subjective decision confidence.

Measuring decision confidence psychophysically is relatively
difficult, particularly in animals, and increases the complexity of
a task (e.g., for post-decision wagering) (Kiani and Shadlen, 2009;
Komura et al., 2013), hence requiring additional training. To
avoid these difficulties, we devised a metric based on the mon-
keys’ pupil size. Combining this metric for decision confidence
with psychophysical reverse correlation (Neri et al., 1999; Nien-
borg and Cumming, 2007, 2009) allowed us to quantify the ani-
mals’ psychophysical weighting strategy for different levels of
inferred decision confidence, and test our model predictions. The
animals showed clear early psychophysical weighting on average.
But separating this analysis by inferred decision confidence re-
vealed that early psychophysical weighting was largely restricted
to high-confidence trials. Indeed, on low inferred confidence tri-
als, the animals weighted the stimulus relatively uniformly or even
slightly more toward the end of the trial. Such behavior matched
the predictions of the integration-to-bound model. Furthermore,
the differences between both animals could be accounted for by the
model by differences in its only two free parameters: internal deci-
sion bound as well as the level of uncertainty in our inference of
decision confidence.

The animals’ behavior was not as well explained by two alter-
native accounts of early psychophysical weighting. The first alter-
native account are models in which the decision stage provides
self-reinforcing feedback to the sensory neurons (Wimmer et al.,
2015), as suggested for example, for probabilistic inference
(Haefner et al., 2016) or by attractor dynamics within the deci-
sion making area (Wang, 2002; Wong et al., 2007). The second,
recent alternative proposal is that the early weighting simply re-
flects the feedforward effect of the dynamics (gain control or
adaptation) of the activity of the sensory neurons (Yates et al.,
2017). Although each of these alternatives predicts the early
weighting, we were unable to fully capture the animals’ data with
the temporal weighting predictions of these models when sepa-
rating trials by decision confidence.

Together, our data suggest that the animals rely on a bounded
decision formation process. In this model, evidence at the end of
the trial is only ignored once a certain level of decision confidence
is reached, thereby reducing the impact on performance. More-
over, this combination of techniques provides a novel tool for
a more fine-grained dissection of an animal’s psychophysical
behavior.

Materials and Methods
Animal preparation and surgery. All experimental protocols were ap-
proved by the local authorities (Regierungspräsidium Tübingen). Two
adult male rhesus monkeys (Macaca mulatta), Animal A (7 kg; 11 years
old) and Animal B (8 kg; 11 years old), housed in pairs, participated in the
experiments. The animals were surgically implanted with a titanium
headpost under general anesthesia using aseptic techniques as described
previously (Seillier et al., 2017).

Visual discrimination task. The animals were trained to perform a two
choice disparity discrimination task (see Fig. 2a). The animals initiated
trials with the visual fixation on a small white fixation spot (size: 0.08°–

0.12°) located on the center of the screen. After the animals maintained
fixation for 500 ms, a visual stimulus was presented (median eccentricity
for Animal A: 5.3°; range 3.0°-9.0°, median eccentricity for Animal B:
3.0°, range 2.3°–5.0°) for 1500 ms. After that two choice targets, each
consisting of a symbol representing either a near or a far choice and
whose positions were randomized between trials, appeared above and
below the fixation spot. Once the fixation spot disappeared, the animals
were allowed to make a choice via saccade to one of these targets. The
animals received a liquid reward for correct choices. Randomizing target
positions allowed us to disentangle saccade direction and choice.

Visual stimuli. Visual stimuli (luminance linearized) were back-
projected on a screen using a DLP LED Propixx projector (ViewPixx; run
at 100 Hz 1920 � 1080 pixel resolution, 30 cd/m 2 mean luminance) and
an active circular polarizer (Depth Q; 200 Hz) for Animal B (viewing
distance 97.5 cm), or two projection design projectors (F21 DLP; 60 Hz
1920 � 1080 pixel resolution, 225 cd/m 2 mean luminance, and a viewing
distance of 149 cm) and passive linear polarizing filters for Animal A. The
animals viewed the screen through passive circular (Animal A) or linear
(Animal B), respectively, polarizing filter. Stimuli were generated with
custom written software using MATLAB (The MathWorks) and the psy-
chophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

The stimuli were circular dynamic random dot stereograms, which
consisted of equal numbers of white and black dots, similar to those
previously used (Nienborg and Cumming, 2009). Each random dot
stereogram had a disparity-varying circular center (3° diameter) sur-
rounded by an annulus (1° wide) shown at 0° disparity. On each video-
frame, all center dots had the same disparity whose value was changed
randomly on each video-frame according to the probability mass distri-
bution set for the stimulus. For the 0% signal stimulus, the disparity was
drawn from a uniform distribution (typically 11 values in 0.05° incre-
ments from �0.25° to 0.25°). The monkeys were rewarded randomly on
half of the trials on 0% signal trials. These 0% signal trials were randomly
interleaved with near disparity or far disparity signal trials. For each
session, one near and one far disparity value was used to introduce dis-
parity signal by increasing the probability of this disparity on each video-
frame during the stimulus presentation on this trial. The range of signal
strengths was adjusted between sessions to manipulate task difficulty and
encourage performance at psychophysical threshold. Typical added sig-
nal values were 3%, 6%, 12%, 25%, and 50%.

The choice target symbols were random dot stereograms very similar
to 100% signal stimuli, except that their diameter was smaller (2.2°).

To allow for constant mean luminance across the screen, equal num-
bers of black and white dots were used for the stimulus and the target
symbols. Because we used a white fixation dot, systematic differences in
fixation precision could, in principle, influence our findings. If this were
the case, a black fixation marker should give the opposite results. We
therefore also conducted control experiments using a black fixation
marker, which yielded very similar results, indicating that systematic
differences in fixation precision are insufficient to explain our findings.

Reward size. To discourage the animals from guessing, the available
reward size was increased based on their task performance. After 3 con-
secutive trials with correct choices, the available reward size was doubled
compared with the original reward size. After 4 consecutive trials with
correct choices, the available reward size was again doubled (quadruple
compared with the original size) and remained at this size until the next
error. After every error trial, the available reward size was reset to the
original. For the analyses in Figure 5, “large available reward” trials refer
to both intermediate and large available reward trials collapsed.

Pupil data acquisition and analysis. During the experiments, the ani-
mals’ eye positions and pupil size were measured at 500 Hz using an
infrared video-based eye tracker (Eyelink 1000, SR Research), digitized
and stored for the subsequent offline analysis. The eye tracker was
mounted in a fixed position on the primate chair to minimize variability
in pupil size measurements between sessions. Our pupil analysis focused
on the period of animals’ fixation in which the gaze angles were constant.
The background of the display was at mid-gray levels throughout, result-
ing in considerable illumination of the darkened experimental booths.
To nonetheless exclude the possibility that our results were substantially
affected by the dark adaptation of the pupils after the animals entered the
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experimental booths, we performed control analyses for which we ex-
cluded the initial 20 min of each experimental session, to allow for dark
adaptation of the pupil (Hansen and Fulton, 1986), with very similar
results (data not shown).

Only successfully completed trials (correct and error trials) were in-
cluded for the analysis. During preprocessing, we first downsampled the
pupil size data such that the sampling rate matched the refresh rates of
our screens (60 Hz for Animal A, 100 Hz for Animal B), effectively
low-pass filtering the data. We next high-pass filtered the data by sub-
tracting on each trial the mean pupil size of the preceding 10 and follow-
ing 10 trials (excluding the value of the current trial). This analysis
removed linear trends on the pupil size within a session and was omitted
for the analysis of pupil size changes throughout a session (see Fig. 3a).
This analysis yielded qualitatively similar results to bandpass filtering
(e.g., de Gee et al., 2014; Urai et al., 2017) the pupil size data. Finally,
pupil size measurements were z-scored using the mean and SD during
the stimulus presentation period across all trials.

When comparing pupil size across conditions, we aimed to minimize
any mean difference of pupil size between conditions at stimulus onset.
To do so, we computed a baseline pupil size, which was defined as the
average pupil size in the epoch 200 ms before stimulus onset, and itera-
tively excluded trials in which the baseline value deviated most from the
condition with the higher number of trials until the absolute mean dif-
ference of the z score of the baseline pupil size was �0.05. This procedure
successfully made the baseline pupil size statistically indistinguishable
across conditions with a small loss of trials in each session (for details, see
Inclusion criteria).

Psychometric threshold. The animals’ choice-behaviors were summa-
rized as a psychometric function by plotting the percentage of “far”
choices as a function of the signed disparity signals and then fitted with a
cumulative Gaussian function using maximum likelihood estimation
(see Fig. 2b). The SD of the cumulative Gaussian fit was defined as the
psychophysical threshold and corresponds to the 84% correct level. The
mean of the cumulative Gaussian quantified the subject’s bias.

Psychophysical kernel. Psychophysical kernels were computed to quan-
tify how the animals used the stimulus for their choices (Nienborg and
Cumming, 2009, 2007). Only 0% signal trials were used for this analysis.
First, the stimulus was converted into an n � m matrix (n, number of
discrete disparity values used for the stimulus; m, number of trials) that
contained the number of video-frames on which each disparity was pre-
sented per trial. Next, the trials were divided into “far” choice and “near”
choice trials. The time-averaged psychophysical kernel was then com-
puted as the difference between the mean matrix for “near” choice trials
and that for “far” choice trials. We also computed a time-resolved psy-
chophysical kernel as the psychophysical kernels for four nonoverlap-
ping consecutive time bins (each of 375 ms duration) during the stimulus
presentation period. Kernels were averaged across sessions, weighted by
the number of trials in that session. The amplitude of the psychophysical
kernels (PKAs) over time was calculated as the inner product between the
time-averaged psychophysical kernel and the psychophysical kernel for
each time bin. Kernel amplitudes separated by inferred decision confi-
dence were then normalized by the maximum of the psychophysical
kernel averaged across both conditions such that the relative differences
between conditions remained. The SE of the amplitude was calculated by
bootstrapping (1000 repeats). We also verified that our results were qual-
itatively similar when psychophysical kernels were computed using lo-
gistic regression (compare Yates et al., 2017).

Operationalizing decision confidence. When viewed from a statistical
perspective, decision confidence can be linked to several behavioral met-
rics, such as accuracy, discriminability, and choices on error or correct
trials (Hangya et al., 2016) (see Fig. 5b). Here, we simulated an observer’s
decision variables on each trial analogously to Urai et al. (2017). The
decision variable (d) was drawn from a normal distribution whose mean
depended on the signed signal strength (with negative and positive signal
reflecting near and far stimuli, respectively) and the SD on the observer’s
internal noise (22.8% signal, the median of the animals’ psychophysical
thresholds). The sign of the d determined the choice on each trial. As-
suming a category boundary c � 0 (no bias), trial-by-trial confidence
(the distance between the decision variable and the category boundary)

was transformed into an average across trials percent correct (Lak et al.,
2014) as follows:

confidence �
1

n�i�1

n
f ��di � c��

where f is the cumulative density function of the normal distribution as
follows:

f(x) �
1

2�1 � erf� x

��2�� � 100%

To simulate the relationship between accuracy and confidence, we gen-
erated the d for 10 8 trials, binned these based on the level of confidence
(20 bins), and computed the accuracy for each bin. To examine the
relationship between confidence and psychophysical performance, we
performed a median split of the trials based on confidence and measured
the psychometric function for high- and low-confidence trials. Finally,
we calculated the mean confidence as a function of signal strength sepa-
rately for correct and error trials.

Perceptual decision models. To compare the animals’ psychophysical
kernels to different decision strategies, we simulated different perceptual
decision models and calculated psychophysical kernels for the model
data. For all simulations, only 0% signal trials were used, and the model
“decision confidence” was defined as �decision variable� at the end of each
trial, unless stated otherwise. PKAs were then computed separately for
high- and low-confidence trials, after a median split based on this metric
for decision confidence. To account for the imperfect relationship be-
tween pupil size and decision confidence, we allowed for noise (“confi-
dence noise,” Gaussian additive noise �N(0, � 2), where � was scaled by
the SD of the noise-free distribution of the confidence values) when
assigning trials into the high- or low-confidence groups and fitting the
model PKAs separated by confidence to the animals’ data (compare re-
sults in Fig. 7). For this fitting procedure, we minimized the mean
squared error using MATLAB fminsearchbnd. To compare the model
performance, we used the Akaike Information Criterion (AIC) and nor-
malized mean squared error (where the difference between model pre-
diction and data point is divided by the SE of the respective data point).

Integration-to-bound model. In this model, the decision variable (d) is
computed as the integrated time-varying difference of the population
response of two pools of sensory neurons. For the disparity discrimina-
tion task, these would consist of one pool preferring near disparities, the
other preferring far disparities. We computed the time-varying popula-
tion response as the dot product between the time-varying stimulus
(analogous to that used in the experiments) and an idealized version of
the animals’ time-averaged psychophysical kernel. On each trial, once the
decision variable reached a decision bound (at decision time, t) (Mazurek
et al., 2003; Kiani et al., 2008), the decision variable was fixed at that value
(absorbing bound) until the end of the trial. The choice of the model was
based on sign (d) at the end of the trial. We used two approaches to derive
decision confidence for this model. First, it was defined as �d� at the end of
the trial. This approach ignores the decision time. This model had one
free parameter (the height of the decision bound), which we varied to
best account for the time courses of the PKAs for low- and high-
confidence trials. In this model, all trials in which the decision bound was
reached are assigned the same confidence. Second, we also generated
predictions for the proposal that subjective confidence is higher for those
trials in which the bound is reached earlier (Kiani and Shadlen, 2009;
Kiani et al., 2014). Because our analysis only relied on the rank order of
the trials based on confidence, our results are independent of how exactly
this time is converted into confidence.

Neural sampling-based probabilistic inference model. We used the
model by Haefner et al. (2016), implemented for an orientation discrim-
ination task. In this model, the decision is based on a belief over the
correct decision (posterior probability over the correct decision), which
is updated throughout each trial. The decision confidence was computed
as �posterior probability �0.5�, which effectively reflects the distance of
the posterior to the category boundary. To approximate the time course
of the PKA for high- and low-confidence trials, we varied the strength of
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the feedback in the model, the contrast of the orientation-selective com-
ponent of the stimulus and the trial duration. The parameters used to
generate the sampling model predictions were the same as in the original
paper (� � 2, 	 � 3, 
 � 0.08, ns � 20; stimulus contrast on each
individual frame � 10) (Haefner et al., 2016) and only differed in the
number of sensory neurons (nx � 256, ng � 64) to reduce computation
time. The decreasing PKA in this model is the result of a feedback loop
between the decision making area and the sensory representation.

Evidence accumulation toy-model (idealized attractor model). To be able
to systematically explore the predictions of attractor-based models for
confidence-specific PKAs, we devised two simple abstract models. In the
first, the decision variable dt at time t is defined as follows:

dt � dt�1�1 � �� � �t

where �t is the sensory evidence at time t, and � is an acceleration pa-
rameter of the accumulation process (compare Brunton et al., 2013). For
� � 0, the model performs perfect integration. For � � 0, it is a leaky
integrator; and for � 	 0, the model implements a confirmation bias or
attractor. In the second model, a variant of the previous one, the accel-
eration parameter � depends on a sigmoidal function of d such that
instead:

dt � dt�1 � � tanh(dt�1) � �t

For � 	 0, the behavior of the dt can then be described by an attractor
with a double-well energy landscape in which the minimum of each well
corresponds to the choice attractors (compare Wimmer et al., 2015), a
behavior also observed for the sampling model by Haefner et al. (2016).

Early sensory weighting model after Yates et al. (2017). We simulated
psychophysical model decisions based on sensory responses of a linear-
nonlinear model. The linear stage consisted of two temporal filters (k,
one for contrast, one for disparity) as follows:

k�t� � e�t/
�1 � e�t/
� � at � b,

where 0 � t � tmax, a � 0, b � 0, 
 � 0.

The time-varying disparity stimulus and the stimulus contrast were each
convolved with the temporal filter, and their sum (x(t)) was exponenti-
ated to generate spike rates as follows:

	�t� � ex�t�

The model parameters a, b, tmax, 
 as well as the relative weights of the
disparity and contrast kernels were chosen such that the dynamics of
the output of the linear-nonlinear model approximately matched that of
the average peristimulus time histogram neurons in area MT (Yates et al.,
2017, their Fig. 3b). Starting from these initial values we then varied these
model parameters to explore a range of adaptation levels as shown in Fig.
8). To simulate the decision process, we used two of these MT responses
but with opposite tuning, and computed the decision variable (d(t)) as
the integral of the difference of these time-varying MT responses. The
decision on each trial was based on sign (d(t)) at the end of the trial, and
decision confidence defined as �d� at the end of the trial.

We further explored an extension of this model to additionally ac-
count for the temporal autocorrelation of the spiking response, also after
Yates et al. (2017). This variant was identical to the first, except that (1)
we generated spikes based on the spike rates using a Poisson process; and
(2) we included a spike history term such that:

	�t� � e� x�t�
h�r�t�1��

where h (“history filter,” as in Yates et al., 2017, their Supplementary
Math Note Fig. 1c) is the postspike weight that integrates the neuron’s
own spiking history (r(t�1)). This extension yielded similar results to the
version without spike history (data not shown).

Inclusion criteria. Data from a total of 436 sessions (300 and 136 ses-
sions from Animal A and B, respectively) were included. Trials with
fixation errors were excluded, thereby reducing the number of included
trials from 874,641 to 590,050 successfully completed trials (Animal A:
409,597 trials; Animal B: 180,453 trials). Additionally, to ensure that the

differences in pupil size modulation across conditions were not simply a
consequence of systematic differences in the baseline pupil size across
conditions, we equalized baseline pupil size between conditions by iter-
atively removing trials until the mean difference of the z-scored baseline
pupil size values between conditions was �0.05. This baseline equaliza-
tion was done separately for the following conditions. (1) To explore the
effect of signal strength (see Fig. 3c), signal trials were divided into easy
(�50% signal) and hard (	0% and �10% signal) trials, and the baseline
equalized between these conditions, thereby removing 2457 trials from
Animal A and 409 trials from Animal B. (2) To compute PKAs (see Figs.
2c, 7), and to explore the effect of available reward size on pupil size
modulation (see Fig. 3b), only no-signal (0% signal) trials were used. To
avoid that our metric used to infer decision confidence (mean pupil size
during the last 250 ms before stimulus) and the pupil size modulation for
available reward size merely reflected differences in baseline pupil size
across conditions, we first separated trials into two groups: small and
large (including both intermediate and large) available reward trials.
Within each reward-size group, we divided trials according to our pupil
size metric (median split) into two subgroups and equalized baseline
across these subgroups. In a second step, we equalized baseline across the
two reward-size groups. This two step procedure removed 7237 trials
from Animal A and 2478 trials from Animal B. Additionally, we only
included sessions in which the trials per session remaining after baseline
correction exceeded 600, and in which each experimental condition had
at least 10 trials. For each session, three psychometric functions were
computed (one using all the completed trials, one each including only
trials for which the available reward size was large or small, respectively).
We fitted cumulative Gaussians to each of these psychometric functions,
and only sessions for which each of these fits explained 	90% of the
variance were included. This selection resulted in 213 sessions from An-
imal A (312,998 trials) and 84 sessions from Animal B (122,897 trials)
that were included for analysis. For our analyses based on inferred
decision confidence (see Figs. 5, 7), we only used the last 40 sessions
for Animal B after sufficient learning (compare Fig. 4). In control
analyses, we verified that all our results were similar when instead no
inclusion criteria were applied and all 590,050 successfully completed
trials used.

Data and code availability. The code to reproduce the figures is avail-
able online at https://github.com/NienborgLab/Kawaguchi_et_al_2018,
and the data at https://figshare.com/articles/Kawaguchi_et_al_2018/
7076621.

Experimental design and statistical analyses. Two macaque monkeys
(both male) were used in this study, reflecting the typical sample size of
psychophysical or electrophysiological studies involving macaque
monkeys. The statistical analyses for the results are presented in Figures
3–7.

Results
Integration-to-bound models predict characteristic differences
in temporal sensory weighting when separating trials by decision
confidence
Subjects during psychophysical discrimination tasks often give
more weight to the early than late part of the stimulus presenta-
tion, even in tasks when both are equally informative about the
correct answer (Kiani et al., 2008; Nienborg and Cumming, 2009;
Yates et al., 2017). We refer to this behavior as early psychophys-
ical weighting, and the standard computational account is that it
reflects an integration-to-bound decision process (Kiani et al.,
2008). In brief, this explanation suggests that subjects accumulate
sensory evidence only up to a predefined bound, not only in
reaction time tasks but also in tasks when the stimulus duration is
fixed by the experimenter, and when a complete accumulation of
evidence over the course of the entire trial would be optimal. As a
result, sensory evidence is ignored after the internal bound is
reached on a given trial and, together with a variable time at
which this bound is reached, on average across trials, early evi-
dence is weighted more strongly than evidence presented late in a
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trial. If this explanation for the observed early weighting is cor-
rect, then across trials in which the decision variable never
reaches the bound, all evidence would be weighted equally, re-
gardless of when it was presented during the trial.

Interestingly, for simple perceptual discrimination tasks, de-
cision confidence can be defined statistically (Hangya et al., 2016)
and directly linked to the decision variable. In an integration-to-
bound model, it simply reflects the distance of the decision vari-
able to the category boundary. Here, we exploited this link and
systematically explored how the temporal weighting of the sen-
sory stimulus should depend on decision confidence according to
the integration-to-bound model. To do so, we categorized trials
into high- or low-confidence trials (median split) and measured
the temporal weighting of the sensory evidence as the PKA over
time (see Materials and Methods) for each category. We com-
pared these for high-confidence trials, low-confidence trials, and
across all trials while systematically varying the decision bound of
the model (Fig. 1). As expected, we found that the average PKA
decreases more steeply if the decision bound is lower (Fig. 1a– e,
black lines), indicating that the decision bound was reached ear-
lier on average, and therefore the sensory evidence ignored from
an earlier point in the trial. It is also intuitive that the PKA was
typically larger for high- compared with low-confidence trials,
reflecting the stronger sensory evidence, and hence confidence,
on those trials. If the decision bound is low, the decision bound is
reached on a large proportion of trials, and the assigned decision
confidence identical. These trials are therefore randomly assigned
to the high- and low-confidence category, resulting in the simi-
larity of the PKAs (Fig. 1a). However, an interesting, nontrivial
characteristic emerges for intermediate values of the decision
bound (Fig. 1b,c). Relatively strong evidence early during the trial
led to high-confidence and early reaching of the decision bound-
ary, resulting in the pronounced decrease of the PKA for high-
confidence trials. But for low-confidence trials, the PKA not only
showed no decrease but an increase over time (Fig. 1b– d). As a
result, the PKAs for high- and low-confidence trials crossed and
the PKA for low-confidence trials exceeded that for high-
confidence trials at the end of the stimulus presentation. Over a
range of values of the decision bound, the difference between the
PKA for high- and low-confidence trials was therefore negative
(Fig. 1f). This characteristic behavior was even more pronounced
when we defined decision confidence not only based on evidence
but also decision time, as previously suggested (Kiani and
Shadlen, 2009; Kiani et al., 2014) (compare Fig. 1g–l). A two race
extension of the bounded integration model as used in van den
Berg et al. (2016) produced similar results. Because our analysis
depended only on the rank order of the decision confidence,
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Figure 1. Integration-to-bound models predict characteristic differences in temporal sen-
sory weighting for high- and low-confidence trials. a– e, The PKA is plotted over time for
integration-to-bound models with different decision bounds. PKAs for low confidence, high
confidence, and averaged across all trials are shown in green, yellow, and black, respectively,
and normalized by the peak of the average psychophysical kernel. For intermediate levels of the
decision bound, the PKAs cross such that the PKA for low-confidence trials exceeds that for
high-confidence trials at the end of the stimulus presentation. The value of the decision bound
is marked in each panel. f, PKAt_last is plotted for high (yellow) and low (green) confidence trials.
The difference, �PKAt_last, depends characteristically on the level of the decision bound in the
model and the stimulus strength. The decision bound is normalized by the SD of the sensory
variability. The relationship between �PKAt_last and the value of the decision bound therefore
holds generally across tasks with different stimulus variability. g–l, Same as a–f, but for an
integration-to-bound model in which decision confidence is based on both decision time and
evidence. Because our analysis only relied on the rank order of the decision confidence, the
results are independent of the relative weight of these influences on decision confidence.
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Figure 2. Task and early psychophysical weighting behavior. a, Two choice disparity discrimination task. After the animals maintained fixation for 0.5 s, the stimulus was shown for 1.5 s. The
animals had to decide whether the stimulus was “far” or “near” by making a saccade to one of two targets after the stimulus offset and received a liquid reward for correct choices. b, Average
psychophysical performance of Animal A (left) and Animal B (right) across all sessions, each fitted with a cumulative Gaussian function. The average psychophysical thresholds are 23% signal and
45% signal for Animal A and Animal B, respectively. c, The time course of the PKA (normalized) shows that the animals weight the stimulus more strongly early during the trial. Data were obtained
from 0% signal trials and collapsed across animals (A: 55,570 trials in 213 sessions; B: 20,394 trials in 84 sessions). Error bars indicate SEM derived by resampling.
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these results hold generally, regardless of the relative weighting of
time and evidence for decision confidence (see Materials and
Methods). After sorting zero-signal trials by decision variable, the
PKA cannot easily be interpreted as a weight on the stimulus. For
instance, the temporal weights on any one trial are always a non-
zero constant starting at the beginning of the trial, and zero after
some point. As a result, the averaged weights across all trials must
be decreasing. The fact that the PKA may be increasing is the

result of sorting the trials by confidence which separates the stim-
ulus distributions between the high-and the low-signal trials.
Equally, the more pronounced early difference in PKAs for low-
decision bounds (compare Fig. 1a with Fig. 1g) reflects the fact
that, when decision confidence is based on both time and evi-
dence, trials with stronger early sensory evidence, and hence early
decision times, are assigned to the high-confidence category.
Nonetheless, these simulations reveal characteristic predictions
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(by ANOVA in a, two sample t tests in b, c). a, Mean pupil size for five equally sized bins throughout each experimental session. Only small available reward 0% signal trials are used. Pupil size
decreases throughout the session as expected for decreasing motivation (Monkey A: 6987 trials from 213 sessions; Monkey B: 2571 trials from 84 sessions). b, Average time courses of pupil size on
0% signal trials that followed a correct trial for large (red), intermediate (purple), and small (blue) available reward trials (Monkey A: 18,700 small available reward trials, 5468 intermediate available
reward trials, and 13,035 large available reward trials from 213 sessions; Monkey B: 6897 small available reward trials, 2011 intermediate available reward trials, and 4843 large available reward
trials from 84 sessions). c, Average time courses of pupil size on hard (�10%, excluding 0% signal, green) and easy (�50% signal, yellow) trials. Only trials with small available reward that followed
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large available reward trials were significantly smaller than in small available reward trials (Monkey A: n � 213, p � 10 �22; Monkey B: n � 84, p � 0.01). e, Average pupil size during the 250 ms
before the stimulus offset was significantly larger compared with small available reward trials (Monkey A: n � 213, p � 10 �31; Monkey B: n � 84, p � 10 �19, all paired t tests). f– h, Control
sessions for which a black fixation marker was used were included when the number of trials exceeded 600 and the number of trials in each condition per session was at least 10 (9 and 12 sessions,
for Animal A and Animal B, respectively). f–h, Colors same as in a–c. f, Monkey A: 139 trials in each time bin from 9 sessions; Monkey B: 221 trials in each time bin from 12 sessions. g, Monkey A:
411 small available reward trials, 102 intermediate available reward trials, and 403 large available reward trials from 9 sessions; Monkey B: 558 small available reward trials, 198 intermediate
available reward trials, and 407 large available reward trials from 12 sessions. The pupil size averaged over 250 ms before stimulus offset of the stimulus presentation tended to be larger compared
with small available reward trials ( p � 0.12 for Animal A, p � 0.01 for Animal B, paired t tests). h, Monkey A: 775 hard trials and 465 easy trials from 9 sessions; Monkey B: 1347 hard trials and 1169
easy trials from 12 sessions. Similar to our results for white fixation markers, the pupil size averaged over the last 250 ms before stimulus offset on easy trials (yellow) significantly exceeded that for
hard trials ( p � 10 �4 for Animal A and Animal B, respectively). Data are mean � SEM.
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about how a particular statistic (the psychophysical kernel as
measured by taking the difference between the choice-triggered
averages) should vary as a function of confidence for a bounded
decision formation process. We therefore next aimed to test these
predictions in monkeys performing a visual discrimination task
for which early psychophysical weighting was previously re-
ported (Nienborg and Cumming, 2009).

The animals exhibit early psychophysical weighting behavior
in this task
Two macaque monkeys performed a coarse disparity discrimina-
tion task (Fig. 2a), similar to that described previously (Nienborg
and Cumming, 2009). The animals initiated each trial by fixating
on a small fixation marker; and after a delay of 500 ms, a dynamic
random dot stimulus was presented for a fixed duration of 1500
ms. The stimulus was a circular random dot pattern defining a
central disk and a surrounding annulus. The animals’ task was to
determine whether the disparity-varying center was either pro-
truding (“near”) or receding (“far”) relative to the surrounding
annulus. Following the stimulus presentations, two choice targets
appeared above and below the fixation point: one symbolizing a
“near” choice, the other a “far” choice. Importantly, the positions
of the choice targets were randomized between trials such that the
animals’ choices were independent of their saccade direction.
While the animals performed this task, we measured their eye
positions and pupil size.

Our animals performed the task well (Fig. 2b). Similar to pre-
vious findings (e.g., Kiani et al., 2008; Nienborg and Cumming,
2009; Yates et al., 2017), the animals relied more strongly on the
stimulus early than late during the stimulus presentation. We

quantified this as a decrease in the PKA (see Materials and Meth-
ods) throughout the stimulus presentation (Fig. 2c). To test the
model predictions separated by decision confidence in the ani-
mals’ data, we therefore sought to devise an approach to infer the
animals’ decision confidence from pupil size measurements in
this task.

Pupil size is systematically associated with experimental
covariates, consistent with pupil-linked changes in arousal
Pupil size has been linked to a subject’s arousal in both humans
(Bradley et al., 2008) and monkeys (Rudebeck et al., 2014; Ebitz
and Platt, 2015; Suzuki et al., 2016; Mitz et al., 2017). Our animals
performed a substantial number of trials in each session (mean;
Animal A: 828; Animal B: 1067). We therefore wondered whether
a signature of their decreasing motivation with increased satia-
tion during the behavioral session could be found in the animals’
pupil sizes. To this end, we split the trials of each session into five
equally sized bins (quintiles) and computed the average pupil size
aligned on stimulus onset (Fig. 3a). For these averages, only 0%
signal trials on which the available reward size was small (see
Materials and Methods) were used. Moreover, to allow for the
detection of slow trends throughout the session, the pupil size
data were not high-pass filtered for this analysis. We found that,
in both animals, pupil size systematically decreased throughout
the session, as expected for a decrease in arousal with decreased
motivation or task engagement with progressive satiation.

We next explored the effect of varying the available reward size
in a predictable way (see Materials and Methods). Consistent
with previous results (Cicmil et al., 2015), the animals’ psycho-
physical performance on large available reward trials exceeded
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that on small available reward trials (Fig. 3d). When averaging the
time course of the pupil size for 0% signal trials separated by
available reward size, we found that pupil size for large available
reward trials increased progressively compared with that on small
available reward trials (Fig. 3b). The animals were rewarded after
correct choices following the stimulus presentation. The time
course of this pupil size modulation with available reward size is
therefore consistent with modulation related to the animals’ ex-
pectation of the reward toward the end of the trial. Indeed, the
difference in mean pupil with available reward size over the last

250 ms of the stimulus presentation was highly statistically reli-
able (Fig. 3e), similar to previous findings (Baruni et al., 2015).

Previous studies that revealed arousal linked pupil size mod-
ulation typically used long intertrial intervals (ITIs) lasting sev-
eral seconds (Rudebeck et al., 2014; Ebitz and Platt, 2015; Suzuki
et al., 2016; Mitz et al., 2017), which were deemed necessary to
stabilize pupil size before stimulus or trial onset. Conversely, our
task allowed for short ITIs (Animal A: 65– 4772 ms, median: 136
ms; Animal B: 115–3933, median: 146 ms) to yield a large number
of trials per session. Nonetheless, the above analyses revealed
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robust signatures of pupil size modulation with experimental
manipulations of arousal also for this task.

Given the relatively short ITIs and the sluggishness of the
pupil response, we performed a number of control analyses to
verify that these results did not merely reflect effects from the
preceding trials. First, we equalized the baseline pupil size before
stimulus onset across conditions (see Materials and Methods).
Second, we explored the effect of the preceding saccade direction,
ITI, and the mean pupil size during the last 250 ms of the stimulus
presentation on the preceding trial. While there was no system-
atic effect difference in pupil size as a function of the saccade
direction on the preceding trial (p � 0.75 and p � 0.92 for Mon-
key A and Monkey B, respectively), there was a systematic corre-
lation between ITI and mean pupil size in 1 animal (p � 0.50 and
p � 0.002, for Monkey A and Monkey B, respectively), and be-
tween the mean pupil size on the preceding and current trial in
both animals (p � 10�6 and p � 10�7, for Monkey A and Mon-
key B, respectively; for the distribution of Spearman’s correlation
coefficients across sessions). We therefore performed additional
analyses to verify that the effects of available reward size and task
difficulty were found, even when ITI or mean pupil size on the
preceding trial was matched. To this end, we divided trials into
five groups of similar average ITI or mean pupil size on the pre-
ceding trial each and repeated the analysis (Fig. 3b,c) for each of
these quintiles and found that the main characteristics in pupil
size modulation were robust.

Previous work in humans found that pupil size increased with
task difficulty, which is thought to reflect changes in arousal re-
lated to “cognitive load” or “mental effort” (Hess and Polt, 1964;
Kahneman and Beatty, 1966; Alnæs et al., 2014). To explore
whether such a signature was evident for our task, we divided our
data into easy (�50% signal) and hard trials (�10% signal, ex-
cluding 0% signal trials) (Fig. 3c). To remove effects of available
reward size, this analysis was restricted to small available reward
trials. Consistent with the expected modulation for cognitive
load, pupil size in hard trials weakly exceeded that for easy trials in
the initial period of the stimulus presentation (before �750 ms
after stimulus onset). However, the more pronounced modula-
tion with task difficulty occurred in the opposite direction toward
the end of the trial.

Remarkably, plotting this modulation across training sessions
revealed that this late modulation only emerged once the animals
knew the task well (Fig. 4a) and was correlated with task perfor-
mance (Fig. 4b). This late modulation appears to reflect the ani-
mals’ expectation to receive a reward based on their knowledge of
the probability of being correct given the stimulus difficulty. It
might thus be interpretable as a modulation based on the ani-
mal’s confidence to make the correct decision. We will show next
that this modulation indeed exhibits established key signatures
(Hangya et al., 2016; Urai et al., 2017) of decision confidence,
supporting this interpretation.

Pupil size in this task can be used to infer the animal’s
decision confidence
For a two-alternative sensory discrimination task analogous to
the one used here, decision confidence is monotonically related
to the distance to a category boundary (Kepecs et al., 2008;
Hangya et al., 2016), that is, the integrated sensory evidence, as
schematically shown in Figure 5a. From a statistical perspective,
decision confidence in such discrimination tasks should be sys-
tematically associated with evidence discriminability, accuracy,
and choice outcome (model predictions in Fig. 5b). Empirically,
we found that mean pupil size during the 250 ms before stimulus

offset showed the three characteristics of statistical decision con-
fidence keeping reward size constant (Fig. 5c): we restricted these
analyses to small available reward trials to eliminate the effect of
available reward size. The findings were qualitatively the same
when only analyzing large available reward trials (Fig. 5d). First,
in both animals, pupil size was correlated with performance ac-
curacy (Fig. 5c,d, left column; p � 10�4 and p � 0.01 for Animal
A and B, respectively, Spearman’s rank correlation). Second,
when separating trials based on pupil size (median split), the
animals showed better discrimination performance for trials on
which pupil size was larger, as expected for improved evidence
discrimination with higher decision confidence (Hangya et al.,
2016) (Fig. 5c,d, middle column; p � 10�3 and p � 0.014 for
Animal A and B, respectively, by resampling). Third, as pre-
dicted, when separating correct and error trials, decision confi-
dence increased on correct and decreased on error trials (Fig.
5c,d, right column; p � 10�5 and p � 0.01 for Animal A and p �
0.001 and p � 0.05 for Animal B in Fig. 5c and Fig. 5d, respec-
tively; Spearman’s rank correlation with the model predictions in
Fig. 5b). Interestingly, we also observe a slight increase in pupil
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size with signal strength for higher signal strengths in Animal B.
Such a pattern is expected if decision confidence is informed not
only by the strength of the sensory evidence, as described above,
but also by decision time as observed in human observers (Kiani
et al., 2014; see also Adler and Ma, 2017) for how increasing
confidence ratings may actually be compatible with Bayesian
confidence. Indeed, fits of the model by Kiani et al. (2014) corre-
lated well with the data (p � 10�4 and p � 0.01 for Animal A, and
p � 10�6 and p � 0.01 for Animal B in Fig. 5c and Fig. 5d,
respectively; Spearman’s rank correlation).

To explore when within the trial pupil size could be used to
infer decision confidence, we systematically repeated the sta-
tistical analyses in Figures 3c and 5 when varying the time
within the trial and the duration over which pupil size was
averaged (Fig. 6). The results show that pupil size toward the
end of the trial over a range of analysis windows could be used
to infer decision confidence.

Because we used a white fixation marker, our results with
pupil size measurements might in principle have been affected by
the animals’ fixation precision. To control for this potential con-
found, we therefore performed a number of control sessions in
which, instead of a white fixation dot, we used a black fixation
marker. If our results were mostly driven by differences in lumi-
nance resulting from differences in fixation precision across con-

ditions, the modulation with our experimental covariates should
reverse. However, our results were robust when, instead of a
white fixation marker, we used a black fixation marker (Fig. 3f– h).
Together, these analyses support our conclusion that mean pupil
size at the end of the stimulus presentation can be used to infer
the animals’ decision confidence.

The animals’ data separated by inferred decision confidence
support the predictions of the integration-to-bound model
Having established the relationship between pupil size and deci-
sion confidence in our task, we now use it to test the confidence-
related predictions of the integration-to-bound model using our
data. To do so, we computed the animals’ psychophysical kernels
separately after categorizing high- or low-inferred decision con-
fidence trials (median split based on the pupil size metric). For
inferred high-confidence trials, we observed a decrease in PKA
for both monkeys (Fig. 7a– d). In contrast, for inferred low-
confidence trials, the PKA either stayed relatively constant
throughout the trial (Monkey B, Fig. 7a– d, bottom row), or first
increased and then decreased (Monkey A, Fig. 7a– d, top row).
Furthermore, the PKA at the end of low-confidence trials was
approximately equal (Monkey B) or higher (Monkey A) than the
PKA for high-confidence trials. We then fit the two variants of the
integration-to-bound model (compare Fig. 1) while allowing for
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noise in our assignment of trials as high versus low confidence (to
account for the imperfect relationship between pupil size and
decision confidence) before computing the models’ PKAs for
high- and low-confidence trials (Fig. 7a,b). Importantly, the
data for both monkeys best agree with the predictions of an
integration-to-bound model when subjective confidence is based
on both evidence and time (Kiani et al., 2014) (Fig. 7b,e,f) with
the difference between the 2 animals explainable by slightly dif-
fering internal integration bounds (compare Fig. 1i and Fig. 1j),
as well as different levels of noise to infer decision confidence
(Table 1). Interestingly, the noise to infer decision confidence is
lower for Animal A, which is plausible given this animal’s more
extensive learning of the task (compare Fig. 4).

We next wondered whether the data were also explainable by
two alternative accounts of the early psychophysical weighting:
(1) models with attractor dynamics resulting from recurrent
feedback; or (2) a purely feedforward account that includes
adaptation.

To test the first alternative account, we implemented a model
(Haefner et al., 2016) in which the decrease of the PKA results
from self-reinforcing feedback from decision neurons to sensory
neurons. Because of its recurrent connectivity, this model exhib-
its attractor dynamics, in which early evidence is effectively
weighted more strongly than evidence presented late in the trial.
Other recurrent models of perceptual decision making, whether
across cortical hierarchies (Wimmer et al., 2015), or proposing
attractor dynamics within the decision area itself (Wang, 2002;
Wong et al., 2007), share this attractor behavior. In these models,
the behavior of the decision variable after stimulus onset can be
described by a double-well energy landscape, where the mini-
mum of each well corresponds to a choice attractor (compare
Wimmer et al., 2015, their Fig. 2d, inset). As a result, the effect of
early evidence on the decision variable will be amplified by the
subsequent pull exerted by whatever attractor toward which the
early evidence had pushed the decision variable. While this be-
havior resembles that of the integration-to-bound model, it dif-
fers in its predictions when separating trials according to
confidence (Fig. 7c). Analogous to our fits of the integration-to-
bound models, we included a noise parameter to allow for an
imperfect assignment of trials to the high- or low-confidence
group when fitting this model to the monkeys’ data. These fits
were worse than those for the integration-to-bound models (Fig.
7c,e,f). Specifically, we were unable to identify model parameters
for which the kernel amplitude in low-confidence trials exceeded
that for high-confidence trials at the end of the stimulus presen-
tation (Fig. 8a). To convince ourselves that an attractor dynamic
by itself is indeed unable to account for our data, we confirmed
this finding for two idealized attractor models in which attractor
strength and hence slope of the PKA were determined by a single
parameter (similar to the integration-to-bound model; Fig. 8b,c).
As for the neural sampling-based probabilistic inference model,
varying this parameter did not yield kernels for which the kernel
amplitude in low-confidence trials exceeded that for high-
confidence trials at the end of the stimulus presentation. Indeed,
in the absence of confidence noise, the only way to achieve a
similar late-trial PKA for high and low confidence was to
strengthen the attractor dynamics in one of the models to a de-
gree that made the late-trial PKA close to zero, in contradiction to
the data (Fig. 8c).

Finally, we tested the behavior of two versions of an early
sensory weighting model after Yates et al. (2017, their Figs. 4a,
6a), in which the decrease in PKA results from adaptation of
the sensory responses in a purely feedforward way. The model

generates choices based on the integrated inputs of stimulus-
selective sensory neurons, whose response decreases over the
time of the stimulus presentation. Such decrease in response
amplitude after response onset is typically observed for sen-
sory neurons and may reflect a gain control mechanism or
stimulus-dependent adaptation. As expected, we found a de-
creasing PKA across all trials. But like for the attractor-based
models investigated above, and unlike for our data, the ampli-
tude of the high-confidence PKA was consistently larger than

Table 1. Model parameters used in each figurea

Parameter Value

Integration-to-bound model (Figs. 1, 9) Range (0, 20)
Decision bound

Integration-to-bound model (Fig. 7a,b)
Decision bound 8.24 (Fig. 7a, Animal A)

8.67 (Fig. 7a, Animal B)
8.77 (Fig. 7b, Animal A)
8.67 (Fig. 7b, Animal B)

Confidence noise (�) 0.02 (Fig. 7a, Animal A)
1.49 (Fig. 7a, Animal B)
1.36 (Fig. 7b, Animal A)
2.08 (Fig. 7b, Animal B)

Neural sampling-based probabilistic
inference model (Fig. 7c)

Trial duration 15 (Fig. 7c, Animal A) (a.u.)
25 (Fig. 7c, Animal B) (a.u.)

Confidence noise (�) 2.53 (Fig. 7c, Animal A)
2.41 (Fig. 7c, Animal B)

Neural sampling-based probabilistic
inference model (Fig. 7c, 8a)

� 2
	 3

 0.08
nx 256
ng 64
ns 20
Stimulus contrast 10

Evidence-accumulation toy model (Fig. 8b,c)
� Range (0.04, 0.4) (Fig. 8b)

Range (0.01, 0.1) (Fig. 8c)
Trial duration Range (20, 1000) (a.u.)

Early sensory weighting model (Fig. 7d)
tmax 411 ms (Fig. 7d, Animal A)

415 ms (Fig. 7d, Animal B)

 26.7 ms (Fig. 7d, Animal A)

28.9 ms (Fig. 7d, Animal B)
a 0.493 (Fig. 7d, Animal A; for stimulus kernel)

0.584 (Fig. 7d, Animal B; for stimulus kernel)
0 (for contrast kernel)

b �0.0135 (Fig. 7d, Animal A)
�0.0160 (Fig. 7d, Animal B)

Weight of contrast kernel relative
to stimulus kernel

1.08 (Fig. 7d, Animal A)

0.78 (Fig. 7d, Animal B)
Confidence noise (�) 2.77 (Fig. 7d, Animal A)

2.98 (Fig. 7d, Animal B)
Early sensory weighting model (Fig. 8d)

tmax Range (100, 500) (ms)

 Range (10, 100) (ms)
a Range (0, 1.37) (for stimulus kernel),

0 (for contrast kernel)
b Range (�0.0375, 0)

Weight of contrast kernel relative
to stimulus kernel

Range (0, 3)

aFor parameter description, see Materials and Methods., a.u., Arbitrary units.
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the low-confidence PKA (Fig. 7d). As for the previous model
fits, we additionally included a noise parameter to allow for an
imperfect assignment of trials into the high- and low-
confidence groups. This pattern remained unchanged over a

wide range of model parameters that yielded plausible sensory
responses (compare Fig. 8d).

Together, these results indicate that, while each of these mod-
els could account for early psychophysical weighting, a decision
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Figure 8. Exploring the parameter space of the models. Quantifying the PKA in the last time bin (PKAt_last) for high- and low-confidence trials. Insets, PKAs separated by confidence (colors as in
Figs. 1, 7) predicted by each model. Values for Animal A and B are included for comparison. a, Exploring parameters of the neural sampling-based probabilistic inference model (Haefner et al., 2016).
Model parameters were chosen such that the average PKA decreased. We then explored PKAt_last when systematically increasing the trial duration. While systematically decreasing with trial
duration, for high-confidence trials, PKAt_last,high_confidence 	 PKAt_last,low_confidence across all parameters. b, Simplified model of evidence accumulation with confirmation bias (sigmoidal
acceleration; see Materials and Methods), mimicking the behavior of a or of a choice attractor (Wimmer et al., 2015) and a bimodal distribution of the decision variable late in the trial (double-well
energy landscape). Similar to a, PKAt_last,high_confidence 	 PKAt_last,low_confidence. Moreover, �PKAt_last decreases with trial duration and with increasing the confirmation bias (parametrized by
acceleration parameter �) but consistently remains positive, contrasting with the monkeys’ data. c, Simplified model of evidence accumulation with confirmation bias (linear acceleration; see
Materials and Methods) but a consistently unimodal distribution of the decision variable, in contrast to Wimmer et al. (2015) and Wong et al. (2007). When increasing � PKAt_last approaches 0 for
both high- and low-confidence trials, in contradiction with the animals’ data. d, Exploring parameters of the early sensory weighting model after Yates et al. (2017). We systematically changed the
relative weights and the width of the stimulus and contrast kernel (parameters a, b, tmax, 
), thereby varying the degree and time course of the adaptation. The level of adaptation was evaluated
in response to the preferred stimulus and quantified as the response at the end of the stimulus presentation relative to the peak response. Negative values for adaptation correspond to adaptation
below baseline. Vertical dashed line indicates the degree of adaptation observed by Yates et al. (2017) for MT neurons. Only simulations for which a decrease in the overall kernel amplitude over time
is observed, and for which the PKA in high-confidence trials exceeds that for low-confidence trials in the first time bin were included. We plot�PKAt_last (color code as defined in b, right) as a function
of the degree of adaptation (abscissa) and the neuron’s correlation with the choice of the model (choice correlation, quantified as defined by Pitkow et al., 2015). Choice correlation was evaluated
for the entire trial (left) and the first (middle) and last (right) time bin. We found that �PKAt_last � 0 (blue data points) only for sensory responses that were otherwise inconsistent with empirical
data (i.e., suppression of the sensory response below baseline or negative correlation with choice early during the trial; compare middle panel).
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bound was necessary to account for the monkeys’ behavioral
differences with inferred decision confidence.

Given the importance of a decision bound to account for the
data, we explored the cost of a decision bound on performance in
our task (Fig. 9). The psychophysical performance is shown for
models with different decision bounds and best in the absence of
a decision bound, as expected (Fig. 9a, red curve). The cost on
performance (percent correct) resulting from the decision bound
is depicted in Figure 9b. The vertical red bar marks the range of
the animals’ decision bounds obtained from the model fitting
(compare Fig. 7a,b). The performance for this value has reached
asymptotic values (exceeding 95% maximal performance), sug-
gesting that the cost on performance for the animals is small (see
Discussion).

Discussion
The frequently observed (Kiani et al., 2008; Neri and Levi, 2008;
Nienborg and Cumming, 2009; Yates et al., 2017) early weighting
of sensory evidence in perceptual decision making tasks has clas-
sically been explained to reflect an integration-to-bound decision
process (Mazurek et al., 2003; Kiani et al., 2008). Here, we first
derived decision confidence-specific predictions for this account.
Second, to test these predictions, we devised a metric based on
pupil size that allowed us to estimate 2 macaques’ subjective de-
cision confidence on individual trials without the use of a wager-
ing paradigm. Finally, we compared our confidence-specific data
with two alternative accounts of early weighting (attractor dy-
namics and response adaptation) and found that neither of those
models could explain our data. This combined approach pro-
vided new insights into the animals’ decision formation process.
It revealed that the frequently observed (Kiani et al., 2008; Neri
and Levi, 2008; Nienborg and Cumming, 2009; Yates et al., 2017)
early weighting of the sensory evidence was largely restricted to
high-confidence trials, approximately consistent with findings in
humans (Zylberberg et al., 2012), and that the shape of the PKA
confirmed our predictions based on the integration-to-bound
model. Indeed, the match between data and model was best when
we incorporated a recent proposal about how subjective confi-
dence was not just based on the strength of the presented evi-
dence, but also integration time (Kiani et al., 2014). Moreover,
our data could not be fully explained by other computational
accounts for early psychophysical weighting, such as sensory ad-
aptation (Yates et al., 2017) or models of perceptual decision

making with recurrent processing (Wong et al., 2007; Wimmer et
al., 2015; Haefner et al., 2016). We note that our findings do not
preclude the contribution of these alternative models. However,
our results highlight that none of these accounts is sufficient to
explain the data by itself and that a decision rule that implements
an early stopping of the evidence integration process appears
necessary.

Our analysis of pupil size showed that, even without the sta-
bilizing effect of long ITIs, pupil size was reliably correlated with
experimental covariates and could be used to infer the animal’s
decision confidence. The correlation of pupil size with decision
confidence is similar to that in a recent psychophysical study in
humans (Krishnamurthy et al., 2017) that queried decision con-
fidence directly. As we did here, this study found a positive cor-
relation between subjects’ pupil size before they made their
judgment and their reported decision confidence. Previous work
inferring an animal’s decision confidence typically relied on be-
havioral measurements, such as postdecision wagering (Kiani
and Shadlen, 2009; Komura et al., 2013) and the time an animal is
willing to wait for a reward (Lak et al., 2014), which increases the
complexity of the behavioral paradigm and hence the required
training of the animals. To our knowledge, the present study is
the first to relate pupil size measurements in animals to decision
confidence. Such a pupil size-based metric opens up studies of
decision making in animals to include decision confidence with-
out increasing the complexity of the behavioral paradigm.

In our task, the animals were rewarded on each trial directly
after making their choice. Consistent with modulation of pupil-
linked arousal due to reward expectation (Baruni et al., 2015;
Varazzani et al., 2015), pupil size was progressively larger toward
the end of the trial when the (known) available reward was large
compared with when it was small (compare Fig. 3b). Such
reward-based interpretation of the pupil size modulation associ-
ated with decision confidence may explain our findings here and
those of Krishnamurthy et al. (2017), which contrasts with stud-
ies associating increases in pupil size with uncertainty (e.g., Sat-
terthwaite et al., 2007; Nassar et al., 2012; Lempert et al., 2015; de
Berker et al., 2016; Urai et al., 2017). Specifically, a recent study
(Urai et al., 2017) observed the opposite relationship between
inferred decision confidence and pupil size, measured after the
subject’s perceptual report: larger pupil size after the subject’s
report, and before receiving feedback, was associated with higher
decision uncertainty. Access to information (e.g., whether or not
a choice is correct) can be rewarding by itself (Behrens et al., 2007;
Bromberg-Martin and Hikosaka, 2009). It may therefore be that,
in Urai et al. (2017), the reward was such access to information
(i.e., the feedback on each trial). When the confidence about the
correct choice is low, the information is more valuable, hence
resulting in the observed negative correlation with pupil size.
Alternatively, this discrepancy may also reflect methodological
differences, such as the time interval used for the analysis (before
or after the choice was made) (but see also Lempert et al., 2015).
More generally, these findings underscore the importance to con-
sider a subject’s motivational context when interpreting pupil
size modulation.

Moreover, pupil size modulation by cognitive factors has been
linked to a number of neural circuits mirroring the complexity of
the signal. These include the locus coeruleus noradrenergic sys-
tem (Aston-Jones and Cohen, 2005; Joshi et al., 2016), a brain-
wide neuromodulatory system involved in arousal, the inferior
and superior colliculi, which mediate a subject’s orienting re-
sponse to salient stimuli (Wang et al., 2012; Wang and Munoz,
2015), but the dopaminergic system has also been implicated
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(Lak et al., 2017; Colizoli et al., 2018), and there is evidence for an
association with cholinergic modulation (Polack et al., 2013; Re-
imer et al., 2016), which is also linked to attention.

The emergence of a reliable signature of decision confidence
required that the animals performed the task well (compare Fig.
4). We propose two possible, not mutually exclusive, accounts for
this. First, in line with the notion that the observed pupil size
modulation linked to decision confidence is driven in part by
reward expectation, it may reflect the animal’s improved knowl-
edge of the timing of the task and hence the anticipation of the
reward. Second, it may reflect the fact that to engage the pupil-
linked arousal circuitry a certain threshold of decision confidence
needs to be exceeded. Such an interpretation would mean that,
once the signature of decision confidence emerges, a higher level
of decision confidence is reached at least on some trials.

Our animals’ psychophysical behavior separated by inferred
decision confidence was well described by a bounded accumula-
tion decision process. These results imply that in a subset of trials
sensory evidence was ignored after a certain level of decision
confidence had been gained. We find that, in our task, across all
difficulty levels, the loss in performance is small for the bounds
required to explain our data (Fig. 9). Because the overall loss will
differ between different experiments, it might explain some of the
differences seen in the temporal profile of PKAs across studies
(e.g., Kiani et al., 2008; Neri and Levi, 2008; Nienborg and Cum-
ming, 2009; Wyart et al., 2012; Brunton et al., 2013; Drugowitsch
et al., 2016; Yates et al., 2017).

References
Adler WT, Ma WJ (2017) Limitations of proposed signatures of Bayesian

confidence. bioRxiv. Advance online publication. Retrieved from Nov.
13, 2017. doi:10.1101/218222.

Alnæs D, Sneve MH, Espeseth T, Endestad T, van de Pavert SH, Laeng B
(2014) Pupil size signals mental effort deployed during multiple object
tracking and predicts brain activity in the dorsal attention network and
the locus coeruleus. J Vis 14:1. CrossRef Medline

Aston-Jones G, Cohen JD (2005) Adaptive gain and the role of the locus
coeruleus-norepinephrine system in optimal performance. J Comp Neu-
rol 493:99 –110. CrossRef Medline

Baruni JK, Lau B, Salzman CD (2015) Reward expectation differentially
modulates attentional behavior and activity in visual area V4. Nat Neu-
rosci 18:1656 –1663. CrossRef Medline

Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning
the value of information in an uncertain world. Nat Neurosci 10:1214 –
1221. CrossRef Medline

Bradley MM, Miccoli L, Escrig MA, Lang PJ (2008) The pupil as a measure
of emotional arousal and autonomic activation. Psychophysiology 45:
602– 607. CrossRef Medline

Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433– 436.
CrossRef Medline

Bromberg-Martin ES, Hikosaka O (2009) Midbrain dopamine neurons sig-
nal preference for advance information about upcoming rewards. Neu-
ron 63:119 –126. CrossRef Medline

Brunton BW, Botvinick MM, Brody CD (2013) Rats and humans can opti-
mally accumulate evidence for decision making. Science 340:95–98.
CrossRef Medline

Cicmil N, Cumming BG, Parker AJ, Krug K (2015) Reward modulates the
effect of visual cortical microstimulation on perceptual decisions. Elife
4:e07832. CrossRef Medline

Clery S, Cumming BG, Nienborg H (2017) Decision related activity in ma-
caque V2 for fine disparity discrimination is not compatible with optimal
linear read-out. J Neurosci 37:715–725. CrossRef Medline

Colizoli O, de Gee JW, Urai A, Donner TH (2018) Task-evoked pupil re-
sponses reflect internal belief states. bioRxiv. Advance online publiaction.
Retrieved from March 3, 2018. https://doi.org/10.1101/275776.

Cumming BG, Nienborg H (2016) Feedforward and feedback sources of
choice probability in neural population responses. Curr Opin Neurobiol
37:126 –132. CrossRef Medline

de Berker AO, Rutledge RB, Mathys C, Marshall L, Cross GF, Dolan RJ,
Bestmann S (2016) Computations of uncertainty mediate acute stress
responses in humans. Nat Commun 7:10996. CrossRef Medline

de Gee JW, Knapen T, Donner TH (2014) Decision related pupil dilation
reflects upcoming choice and individual bias. Proc Natl Acad Sci U S A
111:E618 –E625. CrossRef Medline

Drugowitsch J, Wyart V, Devauchelle AD, Koechlin E (2016) Computa-
tional precision of mental inference as critical source of human choice
suboptimality. Neuron 92:1398 –1411. CrossRef Medline

Ebitz RB, Platt ML (2015) Neuronal activity in primate dorsal anterior cin-
gulate cortex signals task conflict and predicts adjustments in pupil-
linked arousal. Neuron 85:628 – 640. CrossRef Medline

Haefner RM, Berkes P, Fiser J (2016) Perceptual decision making as proba-
bilistic inference by neural sampling. Neuron 90:649 – 660. CrossRef
Medline

Hangya B, Sanders JI, Kepecs A (2016) A mathematical framework for sta-
tistical decision confidence. Neural Comput 28:1840 –1858. CrossRef
Medline

Hansen RM, Fulton AB (1986) Pupillary changes during dark adaptation in
human infants. Invest Ophthalmol Vis Sci 27:1726 –1729. Medline

Hess EH, Polt JM (1964) Pupil size in relation to mental activity during
simple problem-solving. Science 143:1190 –1192. CrossRef Medline

Joshi S, Li Y, Kalwani RM, Gold JI (2016) Relationships between pupil di-
ameter and neuronal activity in the locus coeruleus, colliculi, and cingu-
late cortex. Neuron 89:221–234. CrossRef Medline

Kahneman D, Beatty J (1966) Pupil diameter and load on memory. Science
154:1583–1585. CrossRef Medline

Kepecs A, Uchida N, Zariwala HA, Mainen ZF (2008) Neural correlates,
computation and behavioural impact of decision confidence. Nature 455:
227–231. CrossRef Medline

Kiani R, Shadlen MN (2009) Representation of confidence associated with a
decision by neurons in the parietal cortex. Science 324:759 –764. CrossRef
Medline

Kiani R, Hanks TD, Shadlen MN (2008) Bounded integration in parietal
cortex underlies decisions even when viewing duration is dictated by the
environment. J Neurosci 28:3017–3029. CrossRef Medline

Kiani R, Corthell L, Shadlen MN (2014) Choice certainty is informed
by both evidence and decision time. Neuron 84:1329 –1342. CrossRef
Medline

Kleiner M, Brainard DH, Pelli DG, Ingling A, Murray R, & Broussard C.
(2007) What’s new in Psychtoolbox-3? Perception 36:1–16.

Komura Y, Nikkuni A, Hirashima N, Uetake T, Miyamoto A (2013) Re-
sponses of pulvinar neurons reflect a subject’s confidence in visual cate-
gorization. Nat Neurosci 16:749 –755. CrossRef Medline

Krishnamurthy K, Nassar MR, Sarode S, Gold JI (2017) Arousal-related ad-
justments of perceptual biases optimize perception in dynamic environ-
ments. Nat Hum Behav 1:0107. CrossRef Medline

Lak A, Costa GM, Romberg E, Koulakov AA, Mainen ZF, Kepecs A (2014)
Orbitofrontal cortex is required for optimal waiting based on decision
confidence. Neuron 84:190 –201. CrossRef Medline

Lak A, Nomoto K, Keramati M, Sakagami M, Kepecs A (2017) Midbrain
dopamine neurons signal belief in choice accuracy during a perceptual
decision. Curr Biol 27:821– 832. CrossRef Medline

Lempert KM, Chen YL, Fleming SM (2015) Relating pupil dilation and
metacognitive confidence during auditory decision making. PLoS One
10:e0126588. CrossRef Medline

Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural
integrators in perceptual decision making. Cereb Cortex 13:1257–1269.
CrossRef Medline

Mitz AR, Chacko RV, Putnam PT, Rudebeck PH, Murray EA (2017) Using
pupil size and heart rate to infer affective states during behavioral neuro-
physiology and neuropsychology experiments. J Neurosci Methods 279:
1–12. CrossRef Medline

Nassar MR, Rumsey KM, Wilson RC, Parikh K, Heasly B, Gold JI (2012)
Rational regulation of learning dynamics by pupil-linked arousal systems.
Nat Neurosci 15:1040 –1046. CrossRef Medline

Neri P, Levi D (2008) Temporal dynamics of directional selectivity in hu-
man vision. J Vis 8:22 1–11. CrossRef Medline

Neri P, Parker AJ, Blakemore C (1999) Probing the human stereoscopic
system with reverse correlation. Nature 401:695– 698. CrossRef Medline

Nienborg H, Cumming BG (2007) Psychophysically measured task strategy

Kawaguchi et al. • Models of Perceptual Decision Making Using Pupil Size Inferred Confidence J. Neurosci., October 10, 2018 • 38(41):8874 – 8888 • 8887

http://dx.doi.org/10.1167/14.4.1
http://www.ncbi.nlm.nih.gov/pubmed/24692319
http://dx.doi.org/10.1002/cne.20723
http://www.ncbi.nlm.nih.gov/pubmed/16254995
http://dx.doi.org/10.1038/nn.4141
http://www.ncbi.nlm.nih.gov/pubmed/26479590
http://dx.doi.org/10.1038/nn1954
http://www.ncbi.nlm.nih.gov/pubmed/17676057
http://dx.doi.org/10.1111/j.1469-8986.2008.00654.x
http://www.ncbi.nlm.nih.gov/pubmed/18282202
http://dx.doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
http://dx.doi.org/10.1016/j.neuron.2009.06.009
http://www.ncbi.nlm.nih.gov/pubmed/19607797
http://dx.doi.org/10.1126/science.1233912
http://www.ncbi.nlm.nih.gov/pubmed/23559254
http://dx.doi.org/10.7554/eLife.07832
http://www.ncbi.nlm.nih.gov/pubmed/26402458
http://dx.doi.org/10.1523/JNEUROSCI.2445-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/28100751
http://dx.doi.org/10.1016/j.conb.2016.01.009
http://www.ncbi.nlm.nih.gov/pubmed/26922005
http://dx.doi.org/10.1038/ncomms10996
http://www.ncbi.nlm.nih.gov/pubmed/27020312
http://dx.doi.org/10.1073/pnas.1317557111
http://www.ncbi.nlm.nih.gov/pubmed/24449874
http://dx.doi.org/10.1016/j.neuron.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27916454
http://dx.doi.org/10.1016/j.neuron.2014.12.053
http://www.ncbi.nlm.nih.gov/pubmed/25654259
http://dx.doi.org/10.1016/j.neuron.2016.03.020
http://www.ncbi.nlm.nih.gov/pubmed/27146267
http://dx.doi.org/10.1162/NECO_a_00864
http://www.ncbi.nlm.nih.gov/pubmed/27391683
http://www.ncbi.nlm.nih.gov/pubmed/3793401
http://dx.doi.org/10.1126/science.143.3611.1190
http://www.ncbi.nlm.nih.gov/pubmed/17833905
http://dx.doi.org/10.1016/j.neuron.2015.11.028
http://www.ncbi.nlm.nih.gov/pubmed/26711118
http://dx.doi.org/10.1126/science.154.3756.1583
http://www.ncbi.nlm.nih.gov/pubmed/5924930
http://dx.doi.org/10.1038/nature07200
http://www.ncbi.nlm.nih.gov/pubmed/18690210
http://dx.doi.org/10.1126/science.1169405
http://www.ncbi.nlm.nih.gov/pubmed/19423820
http://dx.doi.org/10.1523/JNEUROSCI.4761-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18354005
http://dx.doi.org/10.1016/j.neuron.2014.12.015
http://www.ncbi.nlm.nih.gov/pubmed/25521381
http://dx.doi.org/10.1038/nn.3393
http://www.ncbi.nlm.nih.gov/pubmed/23666179
http://dx.doi.org/10.1038/s41562-017-0107
http://www.ncbi.nlm.nih.gov/pubmed/29034334
http://dx.doi.org/10.1016/j.neuron.2014.08.039
http://www.ncbi.nlm.nih.gov/pubmed/25242219
http://dx.doi.org/10.1016/j.cub.2017.02.026
http://www.ncbi.nlm.nih.gov/pubmed/28285994
http://dx.doi.org/10.1371/journal.pone.0126588
http://www.ncbi.nlm.nih.gov/pubmed/25950839
http://dx.doi.org/10.1093/cercor/bhg097
http://www.ncbi.nlm.nih.gov/pubmed/14576217
http://dx.doi.org/10.1016/j.jneumeth.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28089759
http://dx.doi.org/10.1038/nn.3130
http://www.ncbi.nlm.nih.gov/pubmed/22660479
http://dx.doi.org/10.1167/8.1.22
http://www.ncbi.nlm.nih.gov/pubmed/18318625
http://dx.doi.org/10.1038/44409
http://www.ncbi.nlm.nih.gov/pubmed/10537107


for disparity discrimination is reflected in V2 neurons. Nat Neurosci 10:
1608 –1614. CrossRef Medline

Nienborg H, Cumming BG (2009) Decision related activity in sensory neu-
rons reflects more than a neuron’s causal effect. Nature 459:89 –92.
CrossRef Medline

Pelli DG (1997) The VideoToolbox software for visual psychophysics:
transforming numbers into movies. Spat Vis 10:437– 442. CrossRef
Medline

Pitkow X, Liu S, Angelaki DE, DeAngelis GC, Pouget A (2015) How can
single sensory neurons predict behavior? Neuron 87:411– 423. CrossRef
Medline

Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain
state-dependent gain modulation in visual cortex. Nat Neurosci 16:1331–
1339. CrossRef Medline

Raposo D, Kaufman MT, Churchland AK (2014) A category-free neural
population supports evolving demands during decision making. Nat
Neurosci 17:1784 –1792. CrossRef Medline

Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q, McCormick DA,
Tolias AS (2016) Pupil fluctuations track rapid changes in adrenergic
and cholinergic activity in cortex. Nat Commun 7:13289. CrossRef
Medline

Rudebeck PH, Putnam PT, Daniels TE, Yang T, Mitz AR, Rhodes SE, Murray
EA (2014) A role for primate subgenual cingulate cortex in sustaining
autonomic arousal. Proc Natl Acad Sci U S A 111:5391–5396. CrossRef
Medline

Satterthwaite TD, Green L, Myerson J, Parker J, Ramaratnam M, Buckner RL
(2007) Dissociable but inter-related systems of cognitive control and re-
ward during decision making: evidence from pupillometry and event-
related fMRI. Neuroimage 37:1017–1031. CrossRef Medline

Seillier L, Lorenz C, Kawaguchi K, Ott T, Nieder A, Pourriahi P, Nienborg H
(2017) Serotonin decreases the gain of visual responses in awake ma-
caque V1. J Neurosci 37:11390 –11405. CrossRef Medline

Suzuki TW, Kunimatsu J, Tanaka M (2016) Correlation between pupil size

and subjective passage of time in non-Human primates. J Neurosci 36:
11331–11337. CrossRef Medline

Urai AE, Braun A, Donner TH (2017) Pupil-linked arousal is driven by
decision uncertainty and alters serial choice bias. Nat Commun 8:14637.
CrossRef Medline

van den Berg R, Anandalingam K, Zylberberg A, Kiani R, Shadlen MN, Wol-
pert DM (2016) A common mechanism underlies changes of mind
about decisions and confidence. Elife 5:e12192. CrossRef Medline

Varazzani C, San-Galli A, Gilardeau S, Bouret S (2015) Noradrenaline and
dopamine neurons in the reward/effort trade-off: a direct electrophysio-
logical comparison in behaving monkeys. J Neurosci 35:7866 –7877.
CrossRef Medline

Wang CA, Munoz DP (2015) A circuit for pupil orienting responses: impli-
cations for cognitive modulation of pupil size. Curr Opin Neurobiol 33:
134 –140. CrossRef Medline

Wang CA, Boehnke SE, White BJ, Munoz DP (2012) Microstimulation of
the monkey superior colliculus induces pupil dilation without evoking
saccades. J Neurosci 32:3629 –3636. CrossRef Medline

Wang XJ (2002) Probabilistic decision making by slow reverberation in cor-
tical circuits. Neuron 36:955–968. CrossRef Medline

Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, de la Rocha J (2015)
Sensory integration dynamics in a hierarchical network explains choice
probabilities in cortical area MT. Nat Commun 6:6177. CrossRef Medline

Wong KF, Huk AC, Shadlen MN, Wang XJ (2007) Neural circuit dynamics
underlying accumulation of time-varying evidence during perceptual de-
cision making. Front Comput Neurosci 1:6. CrossRef Medline

Wyart V, de Gardelle V, Scholl J, Summerfield C (2012) Rhythmic fluctua-
tions in evidence accumulation during decision making in the human
brain. Neuron 76:847– 858. CrossRef Medline

Yates JL, Park IM, Katz LN, Pillow JW, Huk AC (2017) Functional dissec-
tion of signal and noise in MT and LIP during decision making. Nat
Neurosci 20:1285–1292. CrossRef Medline

Zylberberg A, Barttfeld P, Sigman M (2012) The construction of confidence
in a perceptual decision. Front Integr Neurosci 6:79. CrossRef Medline

8888 • J. Neurosci., October 10, 2018 • 38(41):8874 – 8888 Kawaguchi et al. • Models of Perceptual Decision Making Using Pupil Size Inferred Confidence

http://dx.doi.org/10.1038/nn1991
http://www.ncbi.nlm.nih.gov/pubmed/17965712
http://dx.doi.org/10.1038/nature07821
http://www.ncbi.nlm.nih.gov/pubmed/19270683
http://dx.doi.org/10.1163/156856897X00366
http://www.ncbi.nlm.nih.gov/pubmed/9176953
http://dx.doi.org/10.1016/j.neuron.2015.06.033
http://www.ncbi.nlm.nih.gov/pubmed/26182422
http://dx.doi.org/10.1038/nn.3464
http://www.ncbi.nlm.nih.gov/pubmed/23872595
http://dx.doi.org/10.1038/nn.3865
http://www.ncbi.nlm.nih.gov/pubmed/25383902
http://dx.doi.org/10.1038/ncomms13289
http://www.ncbi.nlm.nih.gov/pubmed/27824036
http://dx.doi.org/10.1073/pnas.1317695111
http://www.ncbi.nlm.nih.gov/pubmed/24706828
http://dx.doi.org/10.1016/j.neuroimage.2007.04.066
http://www.ncbi.nlm.nih.gov/pubmed/17632014
http://dx.doi.org/10.1523/JNEUROSCI.1339-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29042433
http://dx.doi.org/10.1523/JNEUROSCI.2533-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27807173
http://dx.doi.org/10.1038/ncomms14637
http://www.ncbi.nlm.nih.gov/pubmed/28256514
http://dx.doi.org/10.7554/eLife.12192
http://www.ncbi.nlm.nih.gov/pubmed/26829590
http://dx.doi.org/10.1523/JNEUROSCI.0454-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/25995472
http://dx.doi.org/10.1016/j.conb.2015.03.018
http://www.ncbi.nlm.nih.gov/pubmed/25863645
http://dx.doi.org/10.1523/JNEUROSCI.5512-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22423086
http://dx.doi.org/10.1016/S0896-6273(02)01092-9
http://www.ncbi.nlm.nih.gov/pubmed/12467598
http://dx.doi.org/10.1038/ncomms7177
http://www.ncbi.nlm.nih.gov/pubmed/25649611
http://dx.doi.org/10.3389/neuro.10.006.2007
http://www.ncbi.nlm.nih.gov/pubmed/18946528
http://dx.doi.org/10.1016/j.neuron.2012.09.015
http://www.ncbi.nlm.nih.gov/pubmed/23177968
http://dx.doi.org/10.1038/nn.4611
http://www.ncbi.nlm.nih.gov/pubmed/28758998
http://dx.doi.org/10.3389/fnint.2012.00079
http://www.ncbi.nlm.nih.gov/pubmed/23049504


Systems/Circuits

Serotonin Decreases the Gain of Visual Responses in Awake
Macaque V1
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and X Hendrikje Nienborg1

1Werner Reichardt Centre for Integrative Neuroscience and 2Department of Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076
Tübingen, Germany

Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic
cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation
has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals.
We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male
macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly
multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin
neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus
(“noise-correlation”). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs
quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity.
Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal’s
behavioral or motivational context, complementing other known state-dependent gain-control mechanisms.

Key words: awake macaque; extracellular recordings; gain modulation; iontophoresis; serotonin; striate cortex

Introduction
Perceptually guided behavior depends on context. Such context
includes an animal’s prior experience or knowledge of the envi-
ronment and task, and its behavioral and motivational state

(Harris and Thiele, 2011). The context dependence of percep-
tually driven behavior relies, in part, on the context-depen-
dent neuromodulation of sensory processing (Hurley et al.,
2004; Harris and Thiele, 2011). One mode of such neuromodu-
lation involves subcortical nuclei that have widespread projec-
tions throughout the brain (Jacobs and Azmitia, 1992). These are
ideally suited to modulate processing in extended networks
according to changing behavioral–motivational conditions
(Dayan, 2012).

One important neuromodulatory system is the serotonin sys-
tem. Serotonin [5-hydroxytryptamine (5-HT)] in the brain has
been implicated in a variety of affective, cognitive, and sensori-
motor functions, but identifying an account of its computational
role even for the intensely studied links to reward signaling has
proved challenging (Ranade et al., 2014; Dayan and Huys, 2015).
Similarly, the reported effects of serotonin on sensory processing
have been heterogeneous (Waterhouse et al., 1990; Hurley et al.,
2004; Petzold et al., 2009; Watakabe et al., 2009; Lottem et al.,
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Significance Statement

Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless,
surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation
of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the
gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple com-
putational function of serotonin for state-dependent sensory processing, depending on the animal’s affective or motivational state.
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2016) and a simple computational account remains elusive. For
example, in the primary visual cortex (V1) of anesthetized ani-
mals’ bidirectional modulation of the responses (Watakabe et al.,
2009) and variable effects on receptive field properties have been
observed (Waterhouse et al., 1990; Hurley et al., 2004; Bachatene
et al., 2013). However, despite this multitude of effects on sensory
processing, the serotonergic effects on perceptually driven be-
havior have been surprisingly uniform and consistent with a
decreased perceptual response (Davis et al., 1980; Dugué et al.,
2014). Potential reasons for these apparent differences are that
cortical neuronal modulation in some studies was examined us-
ing receptor-selective rather than the endogenous ligand (Wat-
akabe et al., 2009), and these studies were all performed using
anesthetized animals. Under anesthesia, substantial fluctuations
in brain state that affect responses in the primary sensory cortex
have been observed (Ecker et al., 2014). Moreover, anesthesia,
such as isofluorane, can directly influence the activity of seroto-
nergic neurons (Johansen et al., 2015). It may therefore be that in
awake animals, where the serotonergic system may be in a more
controlled state, a less diverse modulation would be seen.

We therefore set out to characterize the modulatory effect of
serotonin on sensory processing in the awake animal. To this end,
we focused on the macaque V1. The macaque V1 receives exten-
sive projections from the dorsal and medial raphe nuclei, the
major source of serotonin in the brain. Serotonergic input pro-
jections are most pronounced in the input layers of V1 (de Lima
et al., 1988). This pattern is approximately mirrored by the lam-
inar profile of the expression of serotonin receptors in V1 (Wat-
akabe et al., 2009). From a functional perspective, such a bias
toward the input layers would be expected, for example, for a
mechanism involved in adjusting the gain of the sensory input, as
previously suggested (Hurley et al., 2004; Disney et al., 2007).
Here, we leveraged the extensive knowledge of the spatiotemporal
tuning properties in V1 to quantify the serotonergic modulation on
visual processing in awake monkeys along several stimulus dimensions.

Serotonergic neurons are thought to convey a variety of signals
on different time scales, as found, for example, for their phasic versus
tonic response components (Ranade and Mainen, 2009; Cohen et
al., 2015; Fonseca et al., 2015; Hayashi et al., 2015; Correia et al.,
2017), versus long-term (days) effects of phasic activation (Cor-
reia et al., 2017). In this study we focused on time scales that are
consistent with the tonic component of the response by ionto-
phoretically applying serotonin in the minute range time scale.

We find that across the population of neurons in V1 and
across different stimulus dimensions, the serotonergic modula-
tion is surprisingly simple: serotonin predominantly decreases
the gain of the visual responses, with little change to the tuning
properties. A simple additive change to a threshold-linear spiking
nonlinearity can account for the observed modulation. Gain
modulation is an important computation to change response
levels without affecting tuning (Atallah et al., 2012). It has been
implicated in the modulation by cognitive states, such as atten-
tion (McAdams and Maunsell, 1999), and is subject to cholin-
ergic modulation at the cortical input (Disney et al., 2007). Our
results show that serotonin is well suited to control the response
gain of neurons in V1, potentially complementing these known
gain control mechanisms.

Materials and Methods
Animals. Two adult male rhesus monkeys (Macaca mulatta; M, 8 kg, 11
years old; K, 12 kg, 7 years old; housed in pairs) participated in the
experiments. Using aseptic techniques, the monkeys were implanted
with a titanium head-post and titanium chambers over the operculum

of V1 under general anesthesia. All experimental procedures followed
guidelines for animal experimentation and were approved by the local
authorities, the Regierungspräsidium Tübingen, Germany.

Electrophysiological recordings and iontophoresis. We recorded extracel-
lular single-unit activity in V1 while the animals performed a 2 s fixation
task (fixation within 0.75° of a small 0.1° fixation dot on the center of the
screen) for fluid rewards while we presented stimuli in the receptive field
of the recorded unit. The positions of both eyes were recorded at 500 Hz
using an infrared optical recording system (Eyelink 1000, SR Research).
Experimental control and stimulus presentation was done using custom-
written software in Matlab modified after Eastman and Huk (2012) using
the psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al.,
2007).

Recordings and iontophoresis were done using custom-made tungsten-
in-glass electrodes flanked by two pipettes as described previously (Thiele
et al., 2006; Jacob et al., 2013). This electrode pipette was mounted inside
a guide tube and inserted transdurally without a dura-piercing guide tube
using a custom-made electric microdrive. Iontophoretic application was
controlled by an MVCS iontophoresis system (NPI Electronic). Neuro-
nal signals were amplified, digitized, and filtered (250 Hz to 5 kHz) with
the Ripple Grapevine System (Ripple). Spike sorting was performed off-
line using the Plexon Offline Sorter. Spike clusters were computed based
on a variety of features, including principal components, energy, peak,
trough, and spike amplitude. Single-unit clusters were identified using
the features that provided the best separation. Spike isolation was quan-
tified by computing the isolation distance and L ratio (Schmitzer-
Torbert et al., 2005). For 763 of 780 (98%) included experimental blocks,
the isolation distance was �20 and the L ratio �0.1. For the remaining 17
(2%) experimental blocks that did not meet these criteria, unit isolation
was verified by visual inspection. One barrel of the electrode pipette was
filled with serotonin hydrochloride (Sigma-Aldrich; 10 mM in double-
distilled water; pH 3.5–3.8), the other with pH-matched saline (NaCl;
0.9%). The electrodes typically had impedances between 0.3 and 1.6 M�
(measured at 1 kHz) and tip sizes of 10 –15 �m. The ejection current
ranged between 2 and 50 nA (median, 10 nA) for serotonin and between
5 and 20 nA (median, 11 nA) for saline. To better quantify effects on the
neuronal tuning properties, we aimed for relatively small modulatory
effects. The values of the ejection currents used were therefore toward the
lower end of the range of values previously used in the macaque cortex
(Williams et al., 2002). In a subset of experiments, we used different
ejection currents across blocks to examine the dose dependence of the
effect (Fig. 1B). We typically used ejection currents less than or equal to
the value for which the serotonergic modulation seemed to asymptote
(Fig. 1B), which we observed at values between 20 and 30 nA, and this
limited range of currents may have contributed to the homogeneity of
our results. The retention current was �8 nA to prevent leakage from the
drug barrels during the control conditions. The pipette resistance ranged
from 10 to 150 M�, as was used previously (Ott et al., 2014). To mini-
mize long-term effects of serotonin (Maya Vetencourt et al., 2008; Cor-
reia et al., 2017), we avoided recording from nearby locations in V1 in
consecutive recording sessions.

For each unit we initially quantified the center of the receptive field
from receptive-field profiles along a horizontal and vertical axis as de-
scribed previously (Nienborg et al., 2004) by presenting an elongated
rectangular grating (height, 3–5°; width, 0.2°) at different horizontal or
vertical positions across the receptive field and its immediate surround-
ings. Subsequent stimuli were centered on the receptive field at a median
eccentricity of 3.6° (range, 1.6 to 6.4°). We initially measured neuronal
tuning curves without applying serotonin or saline to establish the base-
line using the retention current. We then started to apply serotonin or
saline using the ejection current in blocks and then remeasured a tuning
curve during the application (note that our analyses of the time course of
the response modulation across trials averaged over all experiments did
not reveal a systematic difference between the baseline, saline control,
and serotonin experiments, suggesting that the lead time of the serotonin
application of several seconds was, on average, sufficient). Following the
application of the drug, we remeasured the tuning in subsequent blocks
using the retention current to obtain the recovery of the response if it was
possible to maintain unit isolation. Thus, if it was possible to maintain unit
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Figure 1. Iontophoretic application of serotonin leads mainly to a gain decrease. A, Schematic of the experimental setup. While the monkey performed a fixation task, grating stimuli were
presented in a neuron’s receptive field (RF) during blockwise iontophoretic application of serotonin (5HT; red) or pH-matched saline (NaCl; black). B, Dose dependence of the serotonergic
modulation. The relative firing rate is plotted as a function of the applied iontophoretic current range of 90 serotonin blocks from n � 36 units. Each unit is shown only once per bin. The green line
represents the geometric mean � SEM. C, Modulation for the subset of units for which the duration of unit isolation allowed for a full sequence of baseline, drug application, and recovery. Note that
for four units for which tuning for �1 stimulus dimensions was tested, only the first comparison is included. The median of the average firing rate decreased from 27 to 24 spikes/s for serotonin but
not for saline application [20 spikes/s for the baseline, 21spikes/s for saline application; p � 0.03, n5-HT � 32, nNaCl � 23; 11 of 32 (34%) of units were significantly suppressed, 2 of 32 (6%) were
significantly enhanced for serotonin application; 1 of 23 (4%) was significantly enhanced and suppressed for saline application]. D–G, Orientation, spatial frequency, contrast, and size were varied
in blocks, and results are shown in the first, second, third, and last column, respectively. D, Example tuning curves are shown for the baseline condition (red solid line, filled symbols) or the application
of serotonin (dotted line, open symbols). Note the decrease in the response amplitude during the application of serotonin. No such change is observed during control experiments when saline is
applied instead: the open and closed black symbols largely overlap. E, The mean firing rate (average across the tuning curves as in D, including the blank response) for the baseline condition is
compared with that for application of serotonin (red) or saline (black). Note the systematic decrease of the response for serotonin but not for the application (Figure legend continues.)
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isolation and keep the monkey working, each block of drug application was
followed by �1 block of recovery before the next application of the drug.
Full recovery was evaluated by observation during recording but verified
statistically off-line: the responses to each stimulus parameter were
z-scored to remove the stimulus-driven variability of the response, and
the z scores for the baseline and recovery block were then required to be
statistically indistinguishable ( p � 0.05, Wilcoxon rank-sum test). The
median time to achieve full recovery [possible for n � 90 serotonin
experiments for which the inclusion criteria (see below) were met; this
value includes multiple experiments per unit, e.g., for our dose–response
measurements; Fig. 1B] after the serotonin application was 32 s (range,
15 to 1171 s). Note that these values reflect the upper bound of the times
to full recovery since we occasionally inserted wait times of variable du-
ration after the serotonin application experiment to ensure full recov-
ery while keeping the animal motivated to perform additional trials
afterward.

Stimuli. Visual stimuli were back-projected on a screen using DLP
LED Propixx projector (1920 � 1080 pixels resolution; 30 cd/m 2 mean
luminance; linearized gray values; run at 100 Hz/eye, combined with an
active circular polarizer, DepthQ, run at 200 Hz) at a distance of 98 cm in
front of the animals. The animals viewed the screen through passive
circular polarizing filters monocularly or binocularly. Visual stimuli were
generated in Matlab (Mathworks) using the Psychophysics toolbox (Brain-
ard, 1997; Pelli, 1997; Kleiner et al., 2007).

Stimuli were circular drifting sinusoidal luminance gratings centered
on and slightly exceeding a neuron’s receptive field and presented for 450
ms (temporal frequency typically 7 Hz) binocularly or monocularly to
the preferred eye. For each experimental block, either the direction (16
equally spaced values), the spatial frequency [eight logarithmically
spaced values from 0.125 to 16 cycles per degree (cpd)], the contrast
(typically seven logarithmically spaced values from 1.56 to 100%), or the
size (typically 12 logarithmically spaced values from 0.3 to 8°) of the
grating was pseudorandomly varied, randomly interleaved by blank
stimuli, with all other parameters constant at approximately the pre-
ferred value for each unit. Within each experimental block each stimulus
was typically presented 8 –10 times.

For the subspace reverse correlation, we briefly flashed sinusoidal lumi-
nance gratings (flash duration typically 10 ms; 100% contrast; preferred
spatial frequency; presented binocularly or monocularly to the preferred
eye) that randomly varied in orientation (eight equally spaced values) and
spatial phase (equally spaced values), randomly interleaved by blank stimuli
(also 10 ms duration, presented with equal probability as each orientation).

Data analysis. All analyses were done in Matlab (Mathworks). For
experiments using drifting gratings, we computed the mean firing rate
during the 450 ms stimulus presentation. To obtain orientation tuning
curves, we averaged the responses for directions 180° apart. Tuning
curves were computed as the mean firing rate as a function of orientation,
spatial frequency, contrast, and size, respectively, and fit with standard
descriptive functions.

Orientation tuning curves were fit with Gaussian functions for which
all parameters were constrained to values �0. To avoid an overestima-
tion of the amplitude resulting from placing the preferred orientation
between two sparsely measured values, we further restricted the ampli-
tude to be smaller than twice the peak value of the tuning curve.

Spatial frequency tuning curves were also fit with Gaussian functions,
either in linear or logarithmic units, whichever resulted in better fits.

Contrast tuning curves were fit with the Naka–Rushton function (Al-
brecht and Hamilton, 1982): R(c) � Rmax c n/(c50

n 	 c n ) 	 Roffset, where
c is the stimulus contrast, c50 is the semisaturation contrast, and n is the
exponent influencing the shape of the curve. All parameters were re-
stricted to values �0, and additionally Rmax 	 Roffset could not exceed the
peak response of the tuning curve to ensure that fits reached saturation
within the contrast range of 0 to 100%. For the model comparison in
Figure 6, we first fit the Naka–Rushton function to the baseline condi-
tion. In a second step, to account for the serotonin-induced modulation
of the response, we allowed one parameter of this fit to the baseline to
change: Rmax for the response-gain model, or c50 for the contrast-gain
model (Williford and Maunsell, 2006).

Size tuning curves were fit with a ratio-of-Gaussians function (Ca-
vanaugh et al., 2002). All parameters had to be positive, and the width of
the center Gaussian had to be less than or equal to that of the surround
Gaussian function. The preferred size was defined as the smallest size that
evoked 98% of the maximal response based on the fitted data (Nienborg
et al., 2013). The suppression index was computed as the difference
between the neuron’s maximum response and the response to the max-
imum size, divided by the maximum response. Goodness of fit was quan-
tified as variance explained and all fits had to explain �70% of the
variance.

For a subset of units we also measured temporal frequency tuning with
stimulus presentations of 2 s each. We used these longer stimulus pre-
sentations to quantify the selectivity to spatial phase for each unit as the
f1/f 0 ratio (Skottun et al., 1991) measured at the preferred temporal
frequency of that unit, where f1 corresponds to the amplitude of response
modulation at the stimulus temporal frequency and f 0 to the mean firing
rate. For these analyses, eye movements within the fixation window were
not factored out, which may have contributed to the modest phase selec-
tivity across the population.

Orientation selectivity was quantified using the circular variance
(Ringach et al., 2002). Direction selectivity was computed as a simple
contrast metric (r��r��180)/(r� 	 r��180), where r� and r��180 corre-
spond to the response at the neuron’s preferred direction � and that at
180° away from preferred, respectively.

Receptive field size was quantified as the mean of the equivalent widths
(w; Bracewell, 1986) in both the vertical and horizontal directions: If A is
the area under the horizontal or vertical receptive field profile, and h is
the peak response of the receptive field profile, then w � A/h. The median
equivalent width was 0.56° (range, 0.25 to 1.34°).

To evaluate significant response modulation during the serotonin or
saline condition, we z-transformed the mean response for each stimulus
condition and compared the z scores across all stimuli between the sero-
tonin or saline condition and the baseline condition using Wilcoxon
rank-sum test (two-sided, 5% significance threshold).

For the experiments with flashed gratings, we quantified the tuning
curves using reverse correlation subspace analysis (Ringach et al., 1997).
We smoothed the stimulus-triggered spike-density function (SDF) using
a 4 ms boxcar. The SDFs were used to compute the mean number of
spikes elicited by each frame to yield “orientation subspace maps,” anal-
ogous to an approach described previously in the disparity domain
(Nienborg and Cumming, 2009). SEs were estimated based on boot-
strapping (1000 resamples). To estimate the dynamics of the orientation-
selective component of the response, we first computed the SD across the
SDFs for each orientation. Response latencies were defined as the first
point in time after frame onset for which the SD exceeded the half-height
between the baseline variability and peak deviation (Lee et al., 2007). The
baseline variability was computed as the average of the first 20 ms after
frame onset. For inclusion of latency estimates, the orientation-selective
response component had to exceed four times the baseline variability.
Additionally, latencies were restricted to 25–100 ms after frame onset. To

4

(Figure legend continued.) of saline. The size of the change in firing rate induced by serotonin or
saline, respectively, differs statistically (for orientation: p � 10 �5; for spatial frequency: p �
10 �3; for contrast: p � 10 �3; for size: p � 0.001; all Wilcoxon ranked-sum tests). F, To
quantify the size of the additive and multiplicative component of the change in the response
(normalized to the peak response in the baseline condition), we performed linear (type II)
regression on the tuning curves [baseline condition plotted on the abscissa against application
of serotonin (red) or saline (black) on the ordinate]. The slope reflects the multiplicative change
(relative gain) and the intercept the additive change. G, For each cell, we compared the relative
gain and the normalized additive change (normalized by the peak response in the baseline
condition). Note that for all stimulus dimensions, the relative gain after applying serotonin is
significantly smaller than in the control condition (for orientation: p � 10 �5, n � 71 for
serotonin; n � 21 for saline; for spatial frequency: p � 10 �3; n � 37 for serotonin; n � 10 for
saline; for contrast: p � 10 �4; n � 100 for serotonin; n � 30 for saline; for size: p � 0.003;
n � 33 for serotonin; n � 20 for saline; all Wilcoxon ranked-sum tests). Circles and squares
correspond to data from monkey M and K, respectively. Filled symbols represent units with
significant mean response modulation ( p � 0.05, Wilcoxon ranked-sum test). *: �0.05;
**:�0.005; ***:�5*10 �4
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ensure that changes in latency could not be explained by differences in
the response variability between conditions, we estimated the depen-
dence of the latency estimate on baseline variability by randomly sub-
sampling the data in the baseline condition and computing latency for
the subsampled data. The change in latency was then predicted from the
change in baseline variability using linear regression, and the actually
measured latency was corrected by the predicted change (see Fig. 5D).
For comparison, we also quantified response latency using maximum
likelihood estimation to identify the critical change point of the dynamics
of the response (Friedman and Priebe, 1998). This approach assumes one
Poisson process for the baseline response and one for the stimulus-
evoked component of the response, and we required significantly differ-
ent Poisson processes for inclusion. This analysis yielded similar results.

Analysis of fixational eye movements. To examine potential effects on
fixational eye movements, we explored the fixation precision as well as
the amplitude and frequency of microsaccades. Microsaccades within the
fixation window were identified as defined previously (Nienborg and
Cumming, 2006, 2014; Clery et al., 2017). Fixation precision was defined
by Cherici et al. (2012) as the area around the mean gaze position that
encompassed the 75 th percentile of the gaze positions.

Noise correlations. Stimulus-independent covariability [“noise correla-
tions,” (Cohen and Kohn, 2011)] was calculated between the single-unit
activity and the simultaneously measured multiunit activity recorded from
the same electrode. Note that since this approach overestimates the ab-
solute value of noise correlation (Ecker et al., 2010), we only explored the
changes in noise correlation with serotonin, not the absolute value. To
reduce the effect of slow fluctuations on nonstationarities (Ecker et al.,
2014; Goris et al., 2014; Rabinowitz et al., 2015) resulting from the onset
of the serotonin application, we removed the initial 20 stimulus presen-
tations of each experimental block for this analysis. Responses for each
stimulus condition were first z-scored, and noise correlations computed
as the Pearson correlation coefficient of the z scores for single-unit and
multiunit activity across all trials. Noise correlations have typically been
found to depend on the neuronal spike rate (Cohen and Kohn, 2011). We
estimated this dependence in our dataset for the baseline condition by
linear regression and corrected the noise correlation by that predicted
from the change in firing rate.

Fano factor. For each stimulus condition, we computed the Fano factor
as the ratio between the variance and the mean response for each stimu-
lus for each experimental block, excluding the initial 20 stimulus presen-
tations to reduce variability from potential nonstationarities due to onset
of serotonin. The average of the Fano factors for each stimulus was then
calculated as the Fano factor for that unit.

Membrane potential-based model. The responses of the membrane
potential-based model were explored for the stimulus used for orienta-
tion subspace mapping described earlier. The membrane potential was
orientation selective and the selectivity described by a Gaussian function
[amplitude, 20 mV; similar to empirically observed values (Priebe and
Ferster, 2008)]. The width of the Gaussian function describing the ori-
entation selectivity of the membrane potential (SD ranged from 10 to
40°) was chosen such that the bandwidth of the orientation subspace
maps was within the range of those of the neuronal data in the baseline
condition. The time-varying stimulus (a sequence of oriented gratings
each flashed for 10 ms) induced fluctuations in membrane potential
Vm(t) that were convolved by a temporal kernel that consisted of a Gauss-
ian temporal filter (chosen to be within the range of the neuronal data:
SD, 6 ms; mean, 57 ms after stimulus onset to account for the lag of the
response). Spike rates [k(t)] were derived from the following threshold-
linear function:

k
t� � � c � 
Vm
t� � Vthresh� if Vm
t� � Vthresh

0 otherwise

where Vm(t) denotes the membrane potential at time t, Vthresh is the
spiking threshold, and c is a scalar value set to 15, approximating the
value previously obtained for the cat striate cortex (Carandini, 2004).
The spiking rate was converted to Poisson spike events, which were an-
alyzed like the neuronal data.

The serotonergic modulation was imitated by a subtractive shift in the
membrane potential (equivalent to changing Vthresh). We explored shifts

over a range of 1 to 8 mV, similar to empirically observed changes in
membrane potential in response to serotonin (Ko et al., 2016). We ad-
justed the number of stimulus repetitions to obtain a comparable level of
baseline variability for the baseline and serotonin condition.

Inclusion criteria. For each unit, we required a minimum response to
the neuron’s preferred stimulus of 10 spikes/s, a minimum of four pre-
sentations per stimulus condition (except for the noise correlation and
Fano factor analysis, where �8 presentations per stimulus condition
were required), and that the neuron showed selectivity for the respective
stimulus dimension (orientation, spatial frequency, contrast, size; eval-
uated by an ANOVA at a significance threshold of p � 0.01). To be
included in the comparison of additive and multiplicative changes (Figs.
1, 2, 5), the type-II regression had to account for �70% of the variance.

Results
Two macaque monkeys performed a standard fixation task while
we recorded the activity of single units in their V1 during block-
wise iontophoretic application of serotonin (Fig. 1A). We exam-
ined the effect of serotonin on the visual responses to drifting
gratings that varied systematically in orientation, spatial fre-
quency, contrast, or size, and to briefly flashed gratings of varying
orientation (see Materials and Methods). We recorded a total of
265 single units in macaque V1 (118 from monkey M, and 147
from monkey K). To be included for further analysis, we required
a minimum response to the neuron’s preferred stimulus of 10
spikes/s, �4 presentations per stimulus condition, and that the
neuron showed selectivity for the respective stimulus dimension
as evaluated by an ANOVA at a significance threshold of p � 0.01.
These criteria were passed by 229 units (108 for monkey M; 121
for monkey K). Of these, 206 (100 for monkey M; 106 for monkey
K) were recorded with serotonin application and 65 (39 for mon-
key M; 26 for monkey K) with pH-matched saline (NaCl) appli-
cation as control experiments (thus, in a subset of 42 units, we
were able to measure responses for both serotonin and saline
application in consecutive blocks; moreover, whenever possible,
experiments along several stimulus dimensions were done on the
same unit in consecutive blocks).

Serotonin predominantly decreases the responses in V1 by
multiplicative changes of the tuning curves
The most salient consequence of the serotonin application was a
substantial decrease in the visual responses. This effect was evi-
dent for the tuning curves for orientation, spatial frequency, con-
trast, and size, respectively, in four example neurons (Fig. 1D, red
symbols). We found that these response changes could not be
explained by the iontophoretic current application: control ex-
periments with pH-matched saline (NaCl) did not result in such
modulation of the neuronal responses (Fig. 1D, black symbols).
Indeed, across the population, the mean firing rate in response to
gratings of different orientations decreased for the serotonin con-
dition (the median decrease was from 18 to 10 spikes/s) but not
for the saline application (median values, 14 and 15 spikes/s,
respectively), and the changes differed significantly between con-
ditions [Fig. 1E; p � 10�5, n5-HT � 76, nNaCl � 21; monkey M:
p � 10�3, n5-HT � 45, nNaCl � 11; monkey K: p � 10�3, n5-HT �
31, nNaCl � 10; significant modulation for serotonin: 51 of 76
units (67%) were suppressed; 4 of 76 units (5%) were enhanced;
significant modulation for saline: 4 of 21 units (19%) were sup-
pressed; 3 of 21 units (14%) were enhanced]. These results were
similar for gratings of varying spatial frequency, contrast, and size
(Fig. 1E). For spatial frequency, the median average firing rate for
serotonin decreased from 15 to 12 spikes/s and remained con-
stant at 11 spikes/s for saline application [p � 10�3, n5-HT � 37,
nNaCl � 10; monkey M: p � 0.41, n5-HT � 11, nNaCl � 2; monkey
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K: p � 0.001, n5-HT � 26, nNaCl � 8; significant modulation for
serotonin: 24 of 37 units (65%) were suppressed, 2 of 37 units
(5%) were enhanced; significant modulation for saline: 1 of 10
units (10%) was suppressed]. For contrast tuning, the median
firing rate decreased from 26 to 19 spikes/s for serotonin [the
respective values for saline application were 23 and 22 spikes/s;
p � 10�3, n5-HT � 101, nNaCl � 30; monkey M: p � 0.04, n5-HT �
66, nNaCl � 15; monkey K: p � 0.004, n5-HT � 35, nNaCl � 15;
significant modulation for serotonin: 58 of 101 units (57%) were
suppressed, 8 of 101 (8%) units were enhanced; significant mod-
ulation for saline: 4 of 30 (13%) were suppressed]. Similarly, the
mean firing rate decreased for the size tuning curves [29 to 25
spikes/s for serotonin; constant at 18 spikes/s for saline, p �
0.001, n5-HT � 35, nNaCl � 22; monkey M: p � 0.65, n5-HT � 14,
nNaCl � 6; monkey K: p � 10�4, n5-HT � 21, nNaCl � 16; all
Wilcoxon rank-sum tests; significant modulation for serotonin:
19 of 35 (54%) were suppressed, 5 of 35 (14%) were enhanced;
significant modulation for saline: 2 of 22 (9%) were suppressed, 5
of 22 (23%) were enhanced].

In a subset of experiments, unit isolation was maintained and
the animal worked for sufficiently long for a full sequence of
baseline, drug application, and recovery. The results for this sub-
set of experiments are shown in Figure 1C (same format as Fig.
1E), also supporting the significant decrease in firing when
serotonin was applied. The proportion of units for which full,
statistically defined (see Materials and Methods), recovery was

achieved was relatively small mainly because of sessions in which
the monkeys were not motivated to continue to work or the unit
isolation was lost. However, this relatively small proportion does
not affect the interpretation of the main results of this paper,
which relies on a comparison of the serotonergic modulation
with that for pH-matched saline, and this comparison was robust
when restricting the data to the subset of units with full recovery
and saline control experiments (Fig. 1C). To additionally verify
that a lack of recovery for some serotonin experiments did not
impact the saline control experiments, we also performed two
additional analyses. First, we compared the serotonergic modu-
lation with that for saline for units for which only one substance
(either serotonin or saline) per unit was applied. Second, we com-
pared the serotonergic modulation for units with full recovery
with the subset of the same dataset for which we also applied
saline. For both analyses, we found a significant difference be-
tween the modulation for serotonin and that for saline (compar-
ison across units: p � 10�7, n5-HT � 53, nNaCl � 23 and
comparison for units with full recovery: p � 0.04, n5-HT � 32,
nNaCl � 11, respectively; note that for each unit only the first
experiment per condition was included; Wilcoxon rank-sum
tests). Moreover, our analysis of the responses to the interleaved
blank stimuli revealed that the change in firing was not limited to
the stimulus-driven response, but also observed in response to
the blank stimuli (Fig. 2B).
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For the example tuning curves (Fig. 1D) serotonin seems to
primarily scale down the tuning curve, indicative of a gain de-
crease (multiplicative effect). We then quantified across the pop-
ulation whether the effect of serotonin was primarily additive or
multiplicative. To do so, we compared the tuning curves with and
without serotonin application, fit by type-II regression (Fig. 1F).
The slope and intercept of the regression line reflect the multipli-
cative (relative gain) and additive change. When comparing these
values for each unit across the population, we found that the
changes in the tuning curve were primarily accounted for by a
gain decrease for each type of tuning curve. For orientation tun-
ing curves, the median gain decreased to 74% after serotonin
application, in contrast to saline (median relative gain for saline:
103%; p � 10�5, n5-HT � 71, nNaCl � 21; monkey M: p � 0.01,
n5-HT � 43, nNaCl � 11; monkey K: p � 10�4, n5-HT � 28, nNaCl �
10; Fig. 1G). Similarly, for spatial frequency, the gain reduced on
average to 77% for serotonin (median relative gain for saline:
103%; p � 10�3, n5-HT � 37, nNaCl � 10; monkey M: p � 0.23,
n5-HT � 11, nNaCl � 2; monkey K: p � 10�3, n5-HT � 26, nNaCl �
8). For contrast tuning, the gain decreased on average to 78% for
serotonin (for saline the median relative gain was 99%; p � 10�4,
n5-HT � 100, nNaCl � 30; monkey M: p � 0.01, n5-HT � 66, nNaCl �
15; monkey K: p � 10�4, n5-HT � 34, nNaCl � 15). As for the other
stimulus dimensions, the median gain for size tuning was a de-
crease (to 85%) for serotonin while for saline the median relative
gain was unchanged at 100% (p � 0.003, n5-HT � 33, nNaCl � 20;
monkey M: p � 0.78, n5-HT � 13, nNaCl � 5; monkey K: p � 10�3,
n5-HT � 20, nNaCl � 15; all comparisons Wilcoxon rank-sum
tests). The normalized additive suppressive effect differed signif-
icantly from 0 for the serotonin but not for the saline conditions
for orientation, spatial frequency, and contrast (for orientation:
�0.02 for serotonin, p � 10�3, n � 76; 0.01 for saline, p � 0.96,
n � 21; for spatial frequency: median normalized additive change
for serotonin was �0.02, p � 0.01, n � 37; change for saline was
0.00, p � 0.56, n � 10; for contrast the median normalized addi-
tive change for serotonin was �0.02, p � 10�3, n � 100 and 0.00
for saline, p � 0.45, n � 30; for size: the corresponding changes
were �0.01 for serotonin, p � 0.62, n � 33, and 0.01 for saline,
p � 0.26, n � 20; Wilcoxon signed-rank test) but given the vari-
ability in the control condition, the additive suppression for se-
rotonin did not significantly exceed that for the control condition
(for orientation: p � 0.12, n5-HT � 71, nNaCl � 21; for spatial
frequency: p � 0.29, n5-HT � 37, nNaCl � 10; for contrast: p �
0.21, n5-HT � 100, nNaCl � 30; for size: p � 0.20, n5-HT � 33, nNaCl �

20; Wilcoxon rank-sum test). Moreover, the absence of an addi-
tive suppressive effect seemed to at least partially result from the
“iceberg effect” (Carandini and Ferster, 2000): as a consequence
of the spiking nonlinearity, spike rates are restricted to values �0
such that subtractive changes are limited by the minimum re-
sponse of the tuning curve. In support of this, we found a signif-
icant correlation between the size of the normalized additive
change and the minimum response of the tuning curve for the
baseline condition (r � �0.41, p � 10�8, n5-HT � 198; Spear-
man’s rank correlation; for this comparison we combined data
for different stimulus dimensions but included only one data
point per unit; data not shown). To verify that the observed gain
decrease was not merely a consequence of the iceberg effect, we
repeated the regression analysis after removing all data for which
the responses were 0. In the subset of units for which the regres-
sion fits to the reduced dataset met the inclusion criteria (see
Materials and Methods), we also found a significant gain decrease
(Fig. 2A). Together, the additive and multiplicative changes pro-
vided an excellent fit to the data. Indeed, this simple linear model
accounted for 90% of the variance (averaged across all regression
fits for serotonin in Fig. 1G; note that the quality of the fits was
similar for the saline controls: 92%). These results suggest that a
simple linear transformation, predominantly multiplicative, can
account for the serotonergic modulation of visual responses
along several visual dimensions.

Given that serotonin receptors are differentially expressed
across layers and on different cell types in the macaque V1
(Watakabe et al., 2009) the overall homogeneity of the effect is
surprising. We therefore wondered whether the serotonergic
modulation was systematically related to parameters that have
been reported to vary to a certain degree with layer, such as re-
ceptive field size, orientation, direction, and spatial-phase selec-
tivity (Ringach et al., 2002; Gur et al., 2005). To test this, we
compared each of these parameters with the strength of seroto-
nergic modulation (Fig. 3). Our analyses revealed no correlation
of the serotonergic modulation with these parameters (r � 0.08,
p � 0.28, n � 185 for equivalent width; r � 0.05, p � 0.72, n � 56
for f1/f0 ratio; r � 0.03, p � 0.77, n � 75 for direction tuning
index; r � �0.06, p � 0.62, n � 76 for circular variance; Spear-
man’s rank correlation with serotonergic modulation ratio for each).
Moreover, we did not observe a systematic difference in the seroto-
nergic modulation for narrow spiking compared with broad spiking
(defined by a spike waveform width of �200 or �200 �s, respec-
tively) units (p � 0.49; n � 206; Wilcoxon rank-sum test). Together,
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these analyses suggest that the observed serotonergic modulation
was not restricted to a particular cell type or layer.

Serotonin leaves visual tuning properties largely unchanged
We next wondered whether the serotonin application addition-
ally resulted in a systematic modulation of the visual encoding
properties along one of the visual stimulus dimensions we ex-
plored. To this end we fit descriptive functions (see Materials and
Methods) to the tuning curves and examined the effect of sero-
tonin parametrized by these fits. For orientation tuning, the se-
rotonergic modulation changed neither the preferred orientation
(Fig. 4A, top; p � 0.29, n5-HT � 71; monkey M: p � 0.34, n5-HT �
41; monkey K: p � 0.63, n5-HT � 30) nor the orientation band-
width (Fig. 4A, bottom; p � 0.05, n5-HT � 71; monkey M: p �
0.18, n5-HT � 41; monkey K: p � 0.23, n5-HT � 30; Wilcoxon
paired sign-rank tests; note that the slight decrease in bandwidth
did not significantly differ from the saline condition, p � 0.24,
nNaCl � 21). Similarly, serotonin did not alter the preferred spa-
tial frequency (Fig. 4B, top; p � 0.50, n5-HT � 37; monkey M: p �
0.32, n5-HT � 11; monkey K: p � 0.12, n5-HT � 26) or spatial
frequency bandwidth of the recorded neurons (Fig. 4B, bottom;
p � 0.11, n5-HT � 37; monkey M: p � 0.97, n5-HT � 11; monkey
K: p � 0.11, n5-HT � 26; Wilcoxon paired sign-rank tests). How-
ever, the amplitude of the fits was significantly reduced for both

orientation (p � 10�4, n5-HT � 71, nNaCl � 21; monkey M: p �
0.01, n5-HT � 41, nNaCl � 11; monkey K: p � 0.01, n5-HT � 30,
nNaCl � 10) and spatial frequency (p � 0.01, n5-HT � 37, nNaCl �
10; monkey M: p � 0.41, n5-HT � 11, nNaCl � 2; monkey K: p �
0.01, n5-HT � 26, nNaCl � 8; all Wilcoxon sign-rank tests), as
expected given the observed reduction in gain. Also as expected
from the reduction in gain, we observed a significant reduction in
Rmax for contrast tuning (Fig. 4C, bottom; p � 10�4, n5-HT � 99,
nNaCl � 28; monkey M: p � 0.01, n5-HT � 66, nNaCl � 14; monkey
K: p � 10�3, n5-HT � 33, nNaCl � 14; Wilcoxon sign-rank test).
Conversely, the sensitivity for changes in contrast (i.e., the steep-
ness of the tuning curve parametrized by the exponent n in the
Naka–Rushton function; see Materials and Methods), did not
change (p � 0.15, n � 99; monkey M: p � 0.43, n � 66; monkey
K: p � 0.19, n � 33; Wilcoxon paired sign-rank test; data not
shown). Interestingly, we also found that the contrast that yielded
half the maximum response (c50) was slightly increased. We note
that this trend did not reach statistical significance in the popu-
lation and was only significant in one of the animals (p � 0.06,
n5-HT � 99; monkey M: p � 0.01, n5-HT � 66; monkey K: p �
0.56, n5-HT � 33). Nonetheless, this trend raises the question
whether serotonin engages a similar mechanism as contrast gain
control, which we will address in more detail below.
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Finally, we examined whether serotonin had a systematic ef-
fect on receptive field size, as suggested by previous work in anes-
thetized rats (Waterhouse et al., 1990). To address this question,
we first compared the stimulus size for which the visual response
was maximal (“preferred size”) with and without application of
serotonin. In contrast to the previous suggestion, we found no
systematic change in the preferred size of the neurons (Fig. 4D,
top; p � 0.70, n5-HT � 32; monkey M: p � 0.41, n5-HT � 12;
monkey K: p � 0.30, n5-HT � 20; Wilcoxon paired sign-rank
tests). To explore the effect of center surround interactions, we
also examined the degree to which the visual responses to large
stimuli decreased the visual stimuli compared with stimuli of a
neuron’s preferred size (“suppression index”). Similar to the re-
sults for preferred size, we found no significant effect of serotonin
on the neurons’ surround suppression quantified by the suppres-
sion index (Fig. 4D, bottom; p � 0.54, n5-HT � 32; monkey M:
p � 0.38, n5-HT � 12; monkey K: p � 0.74, n5-HT � 20; Wilcoxon
paired signed-rank tests).

Together these analyses corroborate our finding that the ob-
served serotonergic modulation is dominated by a multiplicative
change and modest additive change of the visual responses. Be-
yond that, serotonin leaves the receptive field properties largely
unchanged.

Serotonin weakly increases the latency of the orientation
selective response
We next wondered whether serotonin influenced the dynamics of
the visual response, since previous work reported serotonergic
influences on the dynamics of subcortical auditory processing in
bats (Hurley and Pollak, 2005). To address this question, we used
orientation subspace reverse correlation (Ringach et al., 1997), an
approach that allows for detailed quantification of the dynamics
of the orientation-selective response. The stimulus consisted of a
random sequence of gratings of the same spatial frequency but
different spatial phases and orientations, updated every 10 ms
(see Materials and Methods). Figure 5A shows the average SDFs
for each orientation for one example neuron for the baseline
(top) and serotonin (bottom) blocks. We extracted tuning curves
(“orientation subspace maps”) from these SDFs (Nienborg and
Cumming, 2009; Fig. 5B) and quantified the changes in tuning
as additive and multiplicative changes using type-II regression.
Similar to the results for drifting gratings, we found a significant
decrease in the mean response (Fig. 5F; p � 10�4, n5-HT � 47,
nNaCl � 11; monkey M: p � 0.08, n5-HT � 34, nNaCl � 3; monkey
K: p � 10�3, n5-HT � 13, nNaCl � 8) that was largely explained by
multiplicative changes in the tuning curves (Fig. 5G; relative gain:
p � 0.007, n5-HT � 40, nNaCl � 5; monkey M: p � 0.06, n5-HT � 31,
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nNaCl � 3; monkey K: p � 0.15, n5-HT � 9, nNaCl � 2; additive
chane: p � 0.99, n5-HT � 40, nNaCl � 5; monkey M: p � 0.86,
n5-HT � 31, nNaCl � 3; monkey K: p � 0.44, n5-HT � 9, nNaCl � 2).
To explore the dynamics of the orientation-selective response, we
computed the SD across the SDFs over time (Fig. 5C). For the
example cell, we find that the response latency for the orientation-
selective component of the response is slightly longer after sero-
tonin application (Fig. 5A,C). Importantly, our control analysis
(Fig. 5D,E; see Materials and Methods) reveals that this effect
cannot be explained by the decreased signal-to-noise ratio owing
to the reduced spike rate in the serotonin condition. Indeed,
across the population, we observed a small but consistent and
statistically significant increase in response latency (Fig. 5H; p �
10�3, n5-HT � 45; monkey M: p � 0.01, n5-HT � 33; monkey K:
p � 0.02, n5-HT � 12), which was correlated with the size of the
serotonergic modulation in firing rate (Fig. 5I; r � �0.51, p �
10�3, n5-HT � 45; monkey M: r � �0.56, p � 10�3, n5-HT � 33;
monkey K: r � �0.20, p � 0.54, n5-HT � 12).

The serotonin-induced changes differ quantitatively from
contrast gain, but are accounted for by a simple membrane
potential-based model
The main serotonin-dependent changes of the tuning curves (i.e.,
a largely divisive change in the response and a slight increase in
the response latency) are reminiscent of the divisive reduction
and phase delay when lowering contrast (Carandini et al., 1997),
which are accounted for by a model using divisive normalization
(Heeger, 1992; Carandini et al., 1997). We therefore wondered
whether the serotonin-induced changes mimic a reduction in
contrast, suggesting it may engage a mechanism similar to con-
trast normalization. To test this hypothesis, we therefore com-
pared the performance of two descriptive models, a contrast-gain
model and an activity-gain model (Fig. 6A). For the contrast-gain
model, the modulation by serotonin would only mimic a change
in contrast, resulting in a horizontal shift of the tuning curve (Fig.
6A, left). Conversely, for the activity-gain model, the modulation
by serotonin would result in a downscaling of the entire tuning
curve (Fig. 6A, right). While the contrast-gain model provided a

better fit to the data for a small number of cells in support of the
hypothesis that the modulation by serotonin engages a similar
mechanism as contrast, the activity-gain model performed sub-
stantially better in most cases (Fig. 6B; p � 10�6, n5-HT � 99;
monkey M: p � 0.01, n5-HT � 66; monkey K: p � 10�4, n5-HT �
33; Wilcoxon paired signed-rank test). This indicates that mod-
ulation by serotonin relies on a mechanism that differs from
contrast-gain control.

Finally we wondered whether a simple membrane potential-
based model could account for the divisive change in the re-
sponse and the slight increase in response latency. Specifically, we
explored whether a linear change at the level of the membrane
potential would suffice to account for the observed effects by
serotonin (Fig. 7). This membrane potential-based model con-
sisted of an orientation-selective response at the level of the mem-
brane potential followed by a temporal low-pass filter to fit the
orientation bandwidth and average latency of the neuronal re-
sponse to the stimulus used for orientation subspace reverse cor-
relation (see Materials and Methods; Fig. 7A). The time-varying
response of the membrane potential was then passed through a
threshold-linear spiking nonlinearity. To account for the effect of
serotonin, a subtractive shift was applied to the membrane po-
tential [Fig. 7A, Vm(t)], moving it further away from the spiking
threshold. Note that, while biophysically different, in our model
this shift is equivalent to increasing the spiking threshold (Vthresh)
of the spiking nonlinearity. We found that this shift could ac-
count for the observed changes in gain, the additive changes (Fig.
7D), as well as the small increase in latency (Fig. 7B,E). A simple
subtractive change of a threshold-linear spiking nonlinearity can
therefore capture the serotonin-induced modulation of the visual
responses.

Serotonin has no systematic effect on response variability
or covariability
Neuromodulators, such as acetylcholine, have been implicated in
affecting not only the magnitude (Disney et al., 2007) but also the
variability of sensory responses (Pinto et al., 2013), and it has
been hypothesized that serotonin mediates an additional, acetyl-
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choline-independent, mechanism of response desynchronization
(Harris and Thiele, 2011). To test for this possibility, we mea-
sured the stimulus-independent response covariability [“noise-
correlation” (Bair et al., 2001; Cohen and Kohn, 2011)] between
the single-unit and the multiunit activity recorded on the same
electrode. We note that measuring this correlation between
single-unit and multiunit activity recorded on the same electrode
has been shown to overestimate the absolute size of this correla-
tion (Ecker et al., 2010). Nonetheless, this approach allows us to
infer relative changes in noise correlation between the baseline
and the serotonin condition. To reduce the effect of nonstation-
arities resulting from the onset of the serotonin application on
noise correlations, we excluded the first 20 stimulus presenta-

tions of each experimental block for this analysis. Since fixational
eye movements can affect the variability and covariability of vi-
sual neurons, we explored whether these differed systematically
between the serotonin application and the saline controls. To this
end, we compared the fixation precision (Cherici et al., 2012) as
well as the frequency and amplitude of microsaccades within the
fixation window (Fig. 8). For none of these metrics differed the
modulation systematically between the serotonin and the saline
application. Finally, we corrected noise correlation by that pre-
dicted from the change in firing rate (see Materials and Methods).
In contrast to the hypothesis, we found no significant change in
noise correlations for the serotonin condition (Fig. 9B; for orien-
tation: p � 0.74, n5-HT � 63 for serotonin; for spatial frequency:
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n5-HT � 2 for serotonin; for contrast: p � 0.07, n5-HT � 45 for
serotonin; for size: p � 0.59, n5-HT � 15 for serotonin; all Wil-
coxon paired signed-rank test). We also did not observe a system-
atic relationship between the size of effect on firing rate and noise
correlation (Fig. 9D; for orientation: r � 0.07, p � 0.57, n5-HT �
63; for spatial frequency: n5-HT � 2; for contrast: r � �0.02, p �
0.88, n5-HT � 45; for size: r � �0.13, p � 0.66, n5-HT � 15; all
Spearman’s rank correlation). Finally, we also explored the effect
of serotonin on the variability of the sensory response, quantified
as Fano factor, and observed no systematic change in the two
conditions (Fig. 9A; for orientation: p � 0.77, n5-HT � 61; for
spatial frequency: n5-HT � 1; for contrast: p � 0.81, n5-HT � 42;
for size: p � 0.17, n5-HT � 11; all Wilcoxon paired signed-rank
tests). Moreover, the change in mean firing rate was not associ-
ated with a systematic change in Fano factor (Fig. 9C; for orien-
tation: r � �0.22, p � 0.08, n5-HT � 61; for spatial frequency:
n5-HT � 1; for contrast: r � �0.14, p � 0.38, n5-HT � 42; for size:
r � 0.19, p � 0. 58, n5-HT � 11; all Spearman’s rank correlation).
Additionally, there was no systematic change in the difference in
Fano factor in response to a neuron’s preferred stimulus com-
pared with that to a blank stimulus (Fig. 9E). Together, these
analyses indicate that the application of serotonin leaves the re-
sponse variability and covariability in macaque V1 largely un-
changed.

Discussion
Here we combined extracellular recordings and iontophoresis in
V1 of awake macaques to explore the modulatory effects of sero-
tonin on visual processing. We found that across a variety of
visual stimulus dimensions, the modulation by serotonin across
the neuronal population was surprisingly uniform and (1) was
dominated by a decrease in the neurons’ response gain, (2) showed a
slight slowing of the dynamics of the response, and (3) resulted in no
systematic change of the neuronal variability, covariability, or
stimulus selectivity. Our observed effects could be captured by a
descriptive model in which serotonin caused a simple additive
change at the level of the threshold-linear spiking nonlinearity.

A surprisingly uniform effect despite receptor and
cellular diversity
In this study, we focused on the serotonergic modulation in the
awake macaque of functional tuning properties along four well
characterized visual dimensions (orientation, spatial frequency,
contrast, and size) that are encoded by neurons in V1. We focused
on awake animals using the endogenous ligand while previous
work examined the modulation to receptor-specific ligands in the
striate cortex of anesthetized macaques and, in contrast with the
predominantly suppressive effect we found, observed variable
modulation (Watakabe et al., 2009). This apparent discrepancy
may in part reflect a net effect between facilitation and suppres-
sion mediated by different receptor classes all activated by sero-
tonin. Additionally, our recordings in the awake animal likely
mimimized fluctuations in brain state found under anesthesia
(Ecker et al., 2014) and avoided effects of anesthesia on seroto-
nergic neurons (Johansen et al., 2015). Moreover, the focus on
parametrized functional properties may have contributed to our
ability to identify an effect—a gain decrease—that is surprisingly
functionally uniform across the population and stimulus dimen-
sions. This effect dominated despite variability on a neuron-by-
neuron basis, which was also observed previously in anesthetized
animals (Waterhouse et al., 1990; Watakabe et al., 2009). In light
of the known diversity of receptor expression on different cell
types in the macaque V1 (Watakabe et al., 2009), this main ob-
served effect is likely mediated by different cellular or network
mechanisms. For example, in the input layers of V1, receptors
5-HT1B and 5-HT2A are expressed by the majority of excitatory
neurons, but not by GABAergic neurons, and are typically coex-
pressed by the same neurons in layer IVC (Watakabe et al., 2009).
The predominantly divisive effect of serotonin may therefore re-
sult from an interaction of the receptor activation in excitatory
neurons. A previous study applied a 5-HT1A agonist to layers IV
and V in V1 of anesthetized macaques and also observed a de-
crease of multiunit activity (Rauch et al., 2008). Given the lack of
5-HT1A-receptor expression in these layers in macaque V1
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(Watakabe et al., 2009), this decrease in activity may at least par-
tially reflect a cross-activation of the densely expressed 5-HT1B

receptors. This modulation was thought to be mediated by a
hyperpolarization of the membrane potential, analogous to the
membrane potential-based model we present here. Serotonin-
mediated hyperpolarization of the membrane potential was also
recently identified at the axon initial segment in auditory neurons
in gerbils (Ko et al., 2016). Conversely, in layer II, where the
receptors are expressed on a subset of both excitatory and inhib-
itory neurons, but typically not coexpressed (Watakabe et al.,
2009), the decrease in gain may reflect network interactions be-
tween inhibition and excitation. Different circuit elements may also
include vasoactive intestinal peptide-positive (VIP	) interneurons
that express the 5-HT3A receptor (Rudy et al., 2011), although in
the macaque V1 5-HT3A-receptor expression has only been ob-
served for layers 5/6 (Watakabe et al., 2009), while VIP	 in-
terneurons are most pronounced in layers 2/3 (Gabbott and
Bacon, 1997). The same functional computation— gain con-
trol—may therefore be implemented by different components of
the neuronal hardware within the same neuromodulator system
serotonin, at least on the time scale we examined.

Indeed, since we applied serotonin in blocks in the minute
time scale, the modulation likely mimics changes in the tonic

level of discharge of serotonergic neurons, implicated in signaling
the contextual valence on such slow time scales, and providing
different signals from the phasic responses (Cohen et al., 2015).
Interestingly, for short (�1 s) phasic serotonergic stimulation, a
divisive modulation was previously observed only for the spon-
taneous response, not the sensory-driven response, in the olfac-
tory bulb in anesthetized mice (Lottem et al., 2016), in contrast
with our findings. Conversely, a decrease in gain of the sensory
response in the mouse olfactory bulb was observed for sustained
(�30 s) serotonergic activation (Petzold et al., 2009), similar to
the modulation observed in this study.

Behaviorally, decreasing the gain of a sensory response can
contribute to a delay or reduction in the response to sensory
stimulation, as has been previously observed for a reduced startle
response in rats (Davis et al., 1980; Sipes and Geyer, 1994), or
reduced mechanosensory responsivity in mice (Dugué et al.,
2014). Although these behavioral findings have typically been
interpreted in the context of a serotonergic role for motor or
emotional processing (Crockett et al., 2009; Cools et al., 2011;
Correia et al., 2017), the observed decreased sensory gain suggests
at least partially a sensory involvement. It may also reflect a sensory
signature of how serotonin promotes waiting (Miyazaki et al., 2014;
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to be presented �4 times each for each unit.
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Ranade et al., 2014; Fonseca et al., 2015) by lowering the salience
of sensory input.

On this slow (minute) time scale, serotonin may be comple-
mentary to the action of cholinergic neuromodulation, which has
been found to increase the gain of the visual input in macaque V1
(Disney et al., 2007), and has been linked to mediating spatial
attention (Herrero et al., 2008). Notably, acetylcholine in ma-
caque V1 was found to substantially modulate the gain but not
the variability of the response (Herrero et al., 2008), a dissocia-
tion that is mirrored by our results here. It suggests that distinct
mechanisms are available to modulate the variability and level of
the sensory responses, although cognitive states, such as spatial at-
tention, typically affect both (Cohen and Maunsell, 2009; Mitchell et
al., 2009).

Potential implications for the serotonergic role in visual
hallucinations
An influential perspective of perception is that it reflects an infer-
ence process (Helmholtz, 1867; Gregory, 1980; Lee and Mum-
ford, 2003; Yuille and Kersten, 2006), in which internal beliefs
about the world are combined with the incoming sensory evi-
dence (Lee and Mumford, 2003; Yuille and Kersten, 2006).
Mounting physiological evidence suggests that some of this com-
bination of internal (“top-down”) and external sensory signals
occur already at the level of sensory neurons (Fiser et al., 2010;
Nienborg and Roelfsema, 2015; Cumming and Nienborg, 2016).
In this framework, psychiatric diseases such as schizophrenia
(Friston, 2005) are associated with an imbalance between inter-
nally generated (top-down) and externally driven feed-forward
signals. Hallucinations, for example, have been suggested to arise
from an imbalance toward internally generated over externally
driven sensory signals (Friston, 2005; Notredame et al., 2014;
Jardri et al., 2016; Schmack et al., 2017). Such an imbalance may
also explain, for example, visual hallucinations during visual im-
pairment (Charles Bonnet syndrome; Gold and Rabins, 1989),
when the feed-forward visual input is degraded. Similarly, de-
creasing the gain of the visual input could shift the balance to-
ward the internally generated signals, and thus result in visual
hallucinations. The decrease in gain by serotonin we found here
may therefore shed light onto the mechanism by which the visual
cortex is involved in hallucinations caused by serotonergic hallu-
cinogens (Bressloff et al., 2002; de Araujo et al., 2012; Kometer et
al., 2013; Carhart-Harris et al., 2016; Kometer and Vollenweider,
2016).

Conclusion
To our knowledge this is the first study to explore the role of
serotonergic modulation of neuronal activity in the sensory cor-
tex of awake animals. The modulatory effect we observed across
the population was surprisingly homogeneous—a simple de-
crease in the response gain of the neural activity. Such gain mod-
ulation is an important component of the cortical computation
(Salinas and Thier, 2000) that controls the responses without
changing the receptive field properties. It is therefore well suited
to modulate the responses according to the animal’s internal
state, e.g. influenced by the valence of the contextual environ-
ment (Cohen et al., 2015).

References
Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: con-

trast response function. J Neurophysiol 48:217–237. Medline
Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-

expressing interneurons linearly transform cortical responses to visual
stimuli. Neuron 73:159 –170. CrossRef Medline

Bachatene L, Bharmauria V, Cattan S, Molotchnikoff S (2013) Fluoxetine
and serotonin facilitate attractive-adaptation-induced orientation plas-
ticity in adult cat visual cortex. Eur J Neurosci 38:2065–2077. CrossRef
Medline

Bair W, Zohary E, Newsome WT (2001) Correlated firing in macaque visual
area MT: time scales and relationship to behavior. J Neurosci 21:1676 –
1697. Medline

Bracewell RN (1986) The Fourier transform and its applications. Singapore:
McGraw-Hill.

Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433– 436.
Medline

Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002)
What geometric visual hallucinations tell us about the visual cortex.
Neural Comput 14:473– 491. Medline

Carandini M (2004) Amplification of trial-to-trial response variability by
neurons in visual cortex. PLoS Biol 2:E264. CrossRef Medline

Carandini M, Ferster D (2000) Membrane potential and firing rate in cat
primary visual cortex. J Neurosci 20:470 – 484. Medline

Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization
in simple cells of the macaque primary visual cortex. J Neurosci 17:8621–
8644. Medline

Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W,
Murphy K, Tagliazucchi E, Schenberg EE, Nest T, Orban C, Leech R,
Williams LT, Williams TM, Bolstridge M, Sessa B, McGonigle J, Sereno
MI, Nichols D, Hellyer PJ, Hobden P, et al. (2016) Neural correlates of
the LSD experience revealed by multimodal neuroimaging. Proc Natl
Acad Sci U S A 113:4853– 4858. CrossRef Medline

Cavanaugh JR, Bair W, Movshon JA (2002) Nature and interaction of sig-
nals from the receptive field center and surround in macaque V1 neurons.
J Neurophysiol 88:2530 –2546. CrossRef Medline

Cherici C, Kuang X, Poletti M, Rucci M (2012) Precision of sustained fixa-
tion in trained and untrained observers. J Vis 12(6):pii:31. CrossRef
Medline

Clery S, Cumming BG, Nienborg H (2017) Decision-related activity in ma-
caque V2 for fine disparity discrimination is not compatible with optimal
linear read-out. J Neurosci 37:715–725. CrossRef Medline

Cohen JY, Amoroso MW, Uchida N (2015) Serotonergic neurons signal
reward and punishment on multiple timescales. Elife 4. CrossRef Medline

Cohen MR, Kohn A (2011) Measuring and interpreting neuronal correla-
tions. Nat Neurosci 14:811– 819. CrossRef Medline

Cohen MR, Maunsell JH (2009) Attention improves performance primarily
by reducing interneuronal correlations. Nat Neurosci 12:1594 –1600.
CrossRef Medline

Cools R, Nakamura K, Daw ND (2011) Serotonin and dopamine: unifying
affective, activational, and decision functions. Neuropsychopharmacol-
ogy 36:98 –113. CrossRef Medline

Correia PA, Lottem E, Banerjee D, Machado AS, Carey MR, Mainen ZF
(2017) Transient inhibition and long-term facilitation of locomotion by
phasic optogenetic activation of serotonin neurons. Elife 6:pii:e20975.
CrossRef Medline

Crockett MJ, Clark L, Robbins TW (2009) Reconciling the role of serotonin
in behavioral inhibition and aversion: acute tryptophan depletion abol-
ishes punishment-induced inhibition in humans. J Neurosci 29:11993–
11999. CrossRef Medline

Cumming BG, Nienborg H (2016) Feedforward and feedback sources of
choice probability in neural population responses. Curr Opin Neurobiol
37:126 –132. CrossRef Medline

Davis M, Strachan DI, Kass E (1980) Excitatory and inhibitory effects of
serotonin on sensorimotor reactivity measured with acoustic startle.
Science 209:521–523. CrossRef Medline

Dayan P (2012) Twenty-five lessons from computational neuromodula-
tion. Neuron 76:240 –256. CrossRef Medline

Dayan P, Huys Q (2015) Serotonin’s many meanings elude simple theories.
Elife 4. CrossRef Medline

de Araujo DB, Ribeiro S, Cecchi GA, Carvalho FM, Sanchez TA, Pinto JP, de
Martinis BS, Crippa JA, Hallak JE, Santos AC (2012) Seeing with the
eyes shut: neural basis of enhanced imagery following Ayahuasca inges-
tion. Hum Brain Mapp 33: 2550 –2560. CrossRef Medline

de Lima AD, Bloom FE, Morrison JH (1988) Synaptic organization of

Seillier, Lorenz et al. • Serotonin Decreases Gain of V1 Visual Responses J. Neurosci., November 22, 2017 • 37(47):11390 –11405 • 11403

http://www.ncbi.nlm.nih.gov/pubmed/7119846
http://dx.doi.org/10.1016/j.neuron.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22243754
http://dx.doi.org/10.1111/ejn.12206
http://www.ncbi.nlm.nih.gov/pubmed/23581614
http://www.ncbi.nlm.nih.gov/pubmed/11222658
http://www.ncbi.nlm.nih.gov/pubmed/9176952
http://www.ncbi.nlm.nih.gov/pubmed/11860679
http://dx.doi.org/10.1371/journal.pbio.0020264
http://www.ncbi.nlm.nih.gov/pubmed/15328535
http://www.ncbi.nlm.nih.gov/pubmed/10627623
http://www.ncbi.nlm.nih.gov/pubmed/9334433
http://dx.doi.org/10.1073/pnas.1518377113
http://www.ncbi.nlm.nih.gov/pubmed/27071089
http://dx.doi.org/10.1152/jn.00692.2001
http://www.ncbi.nlm.nih.gov/pubmed/12424292
http://dx.doi.org/10.1167/12.6.31
http://www.ncbi.nlm.nih.gov/pubmed/22728680
http://dx.doi.org/10.1523/JNEUROSCI.2445-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/28100751
http://dx.doi.org/10.7554/eLife.06346
http://www.ncbi.nlm.nih.gov/pubmed/25714923
http://dx.doi.org/10.1038/nn.2842
http://www.ncbi.nlm.nih.gov/pubmed/21709677
http://dx.doi.org/10.1038/nn.2439
http://www.ncbi.nlm.nih.gov/pubmed/19915566
http://dx.doi.org/10.1038/npp.2010.121
http://www.ncbi.nlm.nih.gov/pubmed/20736991
http://dx.doi.org/10.7554/eLife.20975
http://www.ncbi.nlm.nih.gov/pubmed/28193320
http://dx.doi.org/10.1523/JNEUROSCI.2513-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19776285
http://dx.doi.org/10.1016/j.conb.2016.01.009
http://www.ncbi.nlm.nih.gov/pubmed/26922005
http://dx.doi.org/10.1126/science.7394520
http://www.ncbi.nlm.nih.gov/pubmed/7394520
http://dx.doi.org/10.1016/j.neuron.2012.09.027
http://www.ncbi.nlm.nih.gov/pubmed/23040818
http://dx.doi.org/10.7554/eLife.07390
http://www.ncbi.nlm.nih.gov/pubmed/25853523
http://dx.doi.org/10.1002/hbm.21381
http://www.ncbi.nlm.nih.gov/pubmed/21922603


serotonin-immunoreactive fibers in primary visual cortex of the macaque
monkey. J Comp Neurol 274:280 –294. CrossRef Medline

Disney AA, Aoki C, Hawken MJ (2007) Gain modulation by nicotine in
macaque V1. Neuron 56:701–713. CrossRef Medline
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Abstract  24 

The responses of neurons in the primary visual cortex (V1) to identical stimuli depend on an 25 

animal’s cognitive or behavioral state. Such state-dependence has been shown to involve 26 

neuromodulators such as acetylcholine or noradrenaline. In contrast, the involvement of the 27 

neuromodulator serotonin (5HT), which has pronounced projections to the primary visual cortex, 28 

is remarkably understudied. We recently reported that iontophoretically applied serotonin 29 

decreases the spiking activity in V1 of awake macaques predominantly by lowering the 30 

response gain (Seillier et al., 2017). Here, we explore the role of serotonin on local network 31 

state in awake macaque V1 by examining the relationships between extracellular spiking activity 32 

and the membrane potential of the local population as inferred by the local field potential (LFP). 33 

To examine the extent to which a neuron’s response was coupled with the local ongoing activity 34 

we computed spike-triggered LFPs (stLFP). We found that during the 5HT application but not for 35 

pH-matched NaCl the amplitude of the stLFP was significantly decreased, resulting in a 36 

corresponding decrease in the power of the stLFP. The decrease in the stLFP amplitude was 37 

opposite to what is expected for decreasing firing rate by 5HT. It suggests that serotonin 38 

decouples responses of a neuron from the ongoing local network activity and thereby decreases 39 

the functional connectivity of the local population. Interestingly, this serotonergic effect is 40 

reminiscent of the decrease in the stLFP amplitude with spatial attention, raising the possibility 41 

of a serotonergic involvement in attentional modulation in visual responses.  42 

 43 

Significance statement  44 

Neural responses in the primary visual cortex are state-dependent and shown to be 45 

affected by neuromodulators such as acetylcholine. Although serotonin is involved in 46 

diverse cognitive and behavioral state in the brain, its role in visual processing is 47 

relatively unknown. We previously reported that serotonin decreases the gain of visual 48 

responses (Seillier et al., 2017). Here we analyzed local field potentials to study the role 49 

of 5HT in local network state and found evidence that serotonin decouples a neuron’s 50 

visual responses from the local ongoing network activity, thereby decreasing functional 51 

connectivity within V1. That serotonergic modulation resembled attentional modulation 52 

in visual cortices, suggesting a potential serotonergic involvement in attention.  53 

 54 
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Introduction  55 

Neurons in the primary visual cortex (V1) sensitively respond to several visual features such as 56 

orientation, motion direction, size, and binocular disparity of visual stimulus contours (Hubel & 57 

Wiesel, 1962; Priebe, 2016). Although V1 neurons are sensitive enough to exhibit a tuning 58 

curve, the tuning property is also influenced by internal state including arousal and attention 59 

(Fischer & Whitney, 2009; McAdams & Maunsell, 1999; Reimer et al., 2014; Sanayei et al., 60 

2015; Vinck et al., 2015). Neuromodulators such as acetylcholine (ACh) and serotonin (5HT) 61 

have been also shown to alter the tuning curve of V1 neurons (Disney et al., 2007; Seillier et al., 62 

2017; Watakabe et al., 2009; Zinke et al., 2006), raising the possibility that these 63 

neuromodulators are linked to state-dependent visual processes. In fact, acetylcholine was 64 

shown to affect attentional modulation in macaque V1 (Herrero et al., 2008). Despite 65 

pronounced serotonergic projections to V1 (Jacobs & Nienborg, 2018), a role of 5HT in state-66 

dependent visual processes in V1 is relatively unknown.  67 

State-dependent visual processes are not only accompanied by change in sensory coding but 68 

change in local network state inferred by the local field potential (LFP). For example, spatial 69 

attention was shown to decrease the LFP power especially in low-frequency range (Chalk et al., 70 

2010; Das & Ray, 2018; Spyropoulos et al., 2018). Stimulation of the basal forebrain, the 71 

primary source of cholinergic inputs to cortex, has been also shown to decrease in low-72 

frequency LFP power in mouse V1 (De Luna et al., 2017; Goard & Dan, 2009; Pinto et al., 2013). 73 

Although the computational role in the LFP power in sensory areas is under debate, the 74 

decrease in low-frequency LFP power is thought of a signature of desynchronized cortical state 75 

(Harris & Thiele, 2011), which is claimed to improve sensory coding and perceptual 76 

performance (Beaman et al., 2017; Pinto et al., 2013).  Therefore, the brain may benefit from 77 

the local network state associated with spatial attention and basal brain stimulation. Although 78 

5HT was also shown to decrease low-frequency LFP power in the prefrontal cortex of rodents 79 

(Kjaerby et al., 2016; Puig et al., 2010), whether this serotonergic modulation in LFPs is similar 80 

in macaque V1 was not demonstrated.  81 

To examine the role of 5HT on local network state in macaque V1, we recorded both single unit 82 

activity and LFPs in V1 while two macaque monkeys performed a fixation task and were 83 

presented with dynamic visual stimuli during blockwise iontophoretic application of 5HT or pH-84 

matched saline as control. Consistently with previous rodent studies, we found that serotonin 85 

decreased LFP power especially in low-frequency range also in awake macaque V1. To see 86 

whether serotonin affects spike-LFP relationships, we computed spike-triggered average LFP 87 
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(stLFP) and found that the amplitude of the stLFP was smaller in 5HT conditions than baseline. 88 

It suggests that 5HT decreases local functional connectivity (Nauhaus et al., 2009; Okun et al., 89 

2015). The observed serotonergic modulations in V1 resemble the results from macaque 90 

studies of spatial attention (Chalk et al., 2010) and mice studies with basal forebrain stimulation 91 

(De Luna et al., 2017; Goard & Dan, 2009; Pinto et al., 2013), suggesting that 5HT in addition to 92 

ACh contributes to state-dependent visual processes in V1. 93 

 94 

Materials & Methods 95 

Animals. Two adult male rhesus monkeys (Macaca mulatta); m (8 kg; 11 years) and k (12 kg; 7 96 

years), participated in the experiments. All experimental procedures were in accordance with 97 

the guidelines for animal experimentation and approved by the local authorities, the 98 

Regierungspräsidium Tübingen, Germany.  99 

Electrophysiological recordings and iontophoresis. Details in recordings with iontophoresis were 100 

previously reported (Seillier et al., 2017). Briefly, we recorded extracellular single-unit activity in 101 

V1 while the animals performed a 2 sec fixation task while we presented flash-grating stimuli in 102 

the receptive field of the recorded unit. For each unit we initially quantified the center of the 103 

receptive field from receptive field profiles along a horizontal and vertical axis as described 104 

previously (Nienborg et al., 2004) by presenting an elongated rectangular grating (height 3°-5°; 105 

width 0.2°) at different horizontal or vertical positions across the receptive field and its 106 

immediate surround. Subsequent stimuli were centered on the receptive field at a median 107 

eccentricity of 3.6° [range 1.6 to 6.4°].  108 

The positions of both eyes were recorded at 500 Hz using an infrared optical recording system 109 

(Eyelink 1000, SR Research Ltd). Experimental control and stimulus presentation were 110 

achieved using custom written software in MATLAB modified after (Eastman and Huk, 2012) 111 

using the psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).  112 

Recordings with iontophoresis were performed using custom-made tungsten-in-glass electrodes 113 

flanked by two pipettes as described previously (Thiele et al., 2006; Jacob et al., 2013). One 114 

barrel of the electrode-pipette was filled with serotonin hydrochloride (5HT; Sigma-Aldrich; 115 

10mM in double distilled water; pH=3.5-3.8), the other with pH-matched saline (NaCl; 0.9%). 116 

The electrodes typically had impedances between 0.3-1.6 MΩ (measured at 1 kHz) and tip 117 

sizes of 10-15 µm. The ejection current for serotonin (5HT) ranged between 2-50 nA (median = 118 

10nA) and 5-20nA (median = 11nA) for saline. The retention current was -8 nA to prevent 119 
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leakage from the drug barrels during the control conditions. The pipette resistance ranged from 120 

10-150 MΩ, as used previously (Ott et al., 2014). To minimize long-term effects of serotonin 121 

(Vetencourt et al., 2008; Correia et al., 2017) we avoided recording from nearby locations in V1 122 

in consecutive recording sessions. 123 

This electrode-pipette was mounted inside a guide tube and inserted transdurally without a 124 

dura-piercing guide tube using a custom-made electric microdrive. Iontophoretic application was 125 

controlled by an MVCS iontophoresis system (NPI electronics). To obtain multi-unit activity, 126 

neuronal signals were amplified, digitized and filtered (250 Hz to 5kHz) with the Ripple 127 

Grapevine System (Ripple LLC). Spike sorting was performed offline using the Plexon Offline 128 

Sorter. The local field potentials (LFPs) were recorded simultaneously on the same electrodes 129 

as the spikes. The LFP signals were digitized and sampled at 1 kHz after removing the 50Hz 130 

line noise with a notch filter and subsequent band-pass filtering (an eight-order high-pass 131 

Butterworth filter with a cutoff of 3Hz and a tenth-order low-pass Butterworth filter with a cutoff at 132 

90Hz, same as Nauhaus et al., 2009). We observed that this bandpass filtering effectively 133 

removed spike-related-transients in LFPs, which have been known to bias phase estimation of 134 

the spike-LFP coherence and often observed when spikes and LFPs are recorded from the 135 

same electrode (Das & Ray, 2018; Ray & Maunsell, 2011b; Ray, 2015). Lastly, LFPs were z-136 

scored within the same units. 137 

Stimuli. Visual stimuli were back-projected on a screen using DLP LED Propixx projector (1920 138 

× 1080 pixels resolution; 30 cd/m2 mean luminance; linearized gray values; run at 100Hz/eye, 139 

combined with an active circular polarizer, DepthQ, run at 200Hz) at a distance of 98 cm in front 140 

of the animals. The animals viewed the screen through passive circular polarizing filters 141 

monocularly or binocularly. Visual stimuli were generated in MATLAB (Mathworks, USA) using 142 

the Psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).  143 

For this study, we focused on analyzing data from the experiments with flash gratings to ensure 144 

stable LFP signals lasting over 1 sec in each trial. Stimuli were circular drifting sinusoidal 145 

luminance gratings centered on and slightly exceeding a neuron’s receptive field and presented 146 

for 2000ms (temporal frequency typically 7 Hz). We briefly flashed sinusoidal luminance 147 

gratings (flash duration typically 10ms; 100% contrast; preferred spatial frequency; presented 148 

binocularly or monocularly to the preferred eye) that randomly varied in orientation (8 equally 149 

spaced values) and spatial phase (4 values), randomly interleaved by blank stimuli (also 10ms 150 

duration, presented with equal probability as each orientation).  151 
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Data analysis. All analyses were performed in MATLAB (Mathworks, USA). All the analysis 152 

described below used the analysis window of 800 – 2,000 ms after stimulus onset to ensure 153 

stable LFP signals in each trial. For the LFP analysis in the frequency domain, we limited our 154 

analysis to the frequency range below 48 Hz to minimize the effect of the notch filter (for 50Hz 155 

line noise removal) and widely reported contamination of firing rate on LFPs above 50 Hz (Ray 156 

& Maunsell, 2011a; Ray, 2015). 157 

Control for difference in the mean firing rates. We reported previously that 5HT decreased the 158 

firing rate of V1 neurons (Seillier et al., 2017). Therefore, it is conceivable that our findings in 159 

LFPs could be explained simply by the difference in the mean firing rate between baseline and 160 

5HT conditions. To account for the difference, we resampled and split trials in the baseline 161 

condition into the low firing rate (low FR) and the high firing rate (high FR) conditions until the 162 

ratio of the mean firing rate between conditions were smaller across populations in low FR/high 163 

FR (0.63) than 5HT/baseline (0.65). This procedure enabled us to identify the generic accounts 164 

of firing rate on LFPs within the same single-units. For the analysis to see the relationship 165 

between spikes and LFPs, we performed a so-called ‘thinning’ procedure; we randomly 166 

removed spikes from baseline conditions such that the difference in the mean firing rate 167 

between baseline and 5HT becomes near-zero (Gregoriou et al., 2009; Mitchell et al., 2009). 168 

Power spectral densities (PSDs). The multi-taper method was used to estimate the PSDs of 169 

LFPs during the analysis window (‘mtspecgramc.m’ in the Chronux toolbox with three tapers). 170 

This was done in every trial, and the estimated power spectrum was subsequently averaged 171 

across trials to yield a single PSD in each session.  172 

Spike-triggered average LFP. The LFP signal during the analysis window in each trial was 173 

subtracted from its mean such that the mean becomes zero. Next, ±100ms segments of the 174 

LFP centered at the timing of every spike were obtained. The spike-triggered average LFP 175 

(stLFP) was computed as the average of these LFP segments. The amplitude of the stLFP was 176 

computed as the difference between the maximum and the minimum of the stLFP (Fig. 3A). The 177 

short-time Fourier transform (‘spectrogram.m’ function) was used to obtain the power spectral 178 

densities (PSDs) of the stLFP.  179 

Spike-LFP coherence. Coherence between spike trains of the single-unit and the LFP signal 180 

and its phase were computed using the multi-taper method implemented in the Chronux toolbox 181 

with three tapers (‘coherencycpt.m’ function). This function computes the cross-spectrum 182 
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between LFPs and timing of spikes (SLFP, spikes) and the spectrum for LFPs (SLFP) and timing of 183 

spikes (Sspikes) such that the spike-LFP coherence c is computed in the following: 184 

𝑐 =  |
𝑆𝐿𝐹𝑃,   𝑠𝑝𝑖𝑘𝑒𝑠

√𝑆𝐿𝐹𝑃𝑆𝑠𝑝𝑖𝑘𝑒𝑠

| 

Since the spike-field coherence is inevitably biased by the firing rate (Lepage et al., 2011), we 185 

randomly removed spikes from the baseline condition such that difference in the mean firing 186 

rate between baseline and 5HT conditions becomes near-zero and non-significant (‘thinning’). 187 

We did not perform the thinning for the firing-rate control condition (low FR vs high FR) to 188 

observe generic accounts of firing rate for coherence estimation. 189 

Generalized linear regression model. We used a generalized linear regression model (GLM) to 190 

explain trial-by-trial low-frequency LFP power (< 10Hz) during the analysis window by linear 191 

combination of trial-by-trial pupil size, pupil derivative, drug, and interactions between pupil 192 

metrics and drug (pupil size x drug and pupil derivative x drug). The low-frequency LFP power 193 

was converted into the decibel scale by taking ten times its logarithm to base 10. The recorded 194 

raw pupil data were bandpass-filtered using a 0.01-10 Hz second-order Butterworth filter (Urai 195 

et al., 2017), down-sampled to match the monitor’s refresh rate, and z-scored within session 196 

(Kawaguchi et al., 2018). The included pupil size was the mean pupil size during the 1 sec 197 

towards the stimulus offset in each trial. The pupil derivative was the maximum value of 198 

PS(t+1)-PS(t) during the 1 sec towards the stimulus offset in each trial, where PS is pupil size 199 

time-course in each trial and t is time. The included predictor “drug” was binary (0: baseline, 1: 200 

drug application). The 3-fold cross-validation was used to train the model and test its 201 

performance using the Pearson correlation coefficient. Each predictor was included stepwise in 202 

the above order to quantify to which extent the predictor improves model performance (similar to 203 

Lueckmann et al., 2018).        204 

Statistical test. Wilcoxson signed-rank test was used to test the null hypothesis that two paired 205 

groups have the same mean-rank. Spearman rank correlation was used to compute a 206 

correlation coefficient r, which quantifies a monotonic relationship between two variables.  207 

Inclusion criteria. In total we recorded 70 single-units (monkey K: 13 with NaCl, 16 with 5HT; 208 

monkey M: 4 with NaCl, 37 with 5HT) from the flash-grating experiments. All the units were 209 

included for the analysis. 210 

 211 
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Results 212 

Two macaque monkeys performed a standard fixation task while we recorded the spiking 213 

activity of single units and LFPs simultaneously in V1 during blockwise iontophoretic application 214 

of NaCl or 5HT (Fig. 1A). Previously we showed that 5HT predominantly decreased the spiking 215 

activity of single units in V1 (Seillier et al., 2017; Fig. 1B; both monkeys: p5HT < 10-7, n5HT = 53, 216 

pNaCl = 0.21, nNaCl = 17; monkey K: p5HT < 10-3, n5HT = 16, pNaCl = 0.5, nNaCl = 13; monkey M: p5HT 217 

< 10-4, n5HT = 37, pNaCl = 0.25, nNaCl = 4). We reasoned that 5HT is well-suited to control the 218 

visual activity of V1 neurons depending on a behavioral or motivational context of animals, likely 219 

complementing the role of other neuromodulators such as acetylcholine (ACh). Here we 220 

investigated the role of 5HT in V1’s local network state which was shown to be altered by basal 221 

forebrain stimulation (De Luna et al., 2017; Goard & Dan, 2009; Pinto et al., 2013) and cognitive 222 

state including attention (Chalk et al., 2010; Das & Ray, 2018) and arousal (Reimer et al., 2014; 223 

Vinck et al., 2015). To ensure the stable LFP signal over 1 sec in each trial, we only used the 224 

data from the flash-grating experiments where a gabor grating was flashed for typically 10ms 225 

and repeated with different orientations for 2sec. The LFPs were first notch-filtered to remove 226 

50Hz line noise and subsequently band-pass filtered (3-90Hz; same as Nauhaus et al., 2009). 227 

Lastly the LFPs were z-scored within the same units for comparison across recording sessions. 228 

We analyzed the preprocessed LFPs between 0.8 sec after stimulus onset and stimulus offset 229 

(2 sec after stimulus onset). Since 5HT decreases firing rate of V1 neurons, there is inevitably a 230 

difference in the firing rate between baseline and 5HT conditions. To show that our findings on 231 

LFPs are not simply explained by the difference in firing rate, we performed two control analysis. 232 

First, we randomly removed spikes from baseline condition such that the difference becomes 233 

near 0 and non-significant (‘thinning’; Gregoriou et al., 2009; Mitchell et al., 2009). Second, we 234 

prepared low firing rate (low FR) and high firing rate (high FR) conditions by resampling and 235 

splitting trials from baseline condition until the ratio of the mean firing rate between the low FR 236 

and high FR conditions became smaller than that between baseline and 5HT conditions 237 

(5HT/baseline = 0.65, low FR/high FR = 0.63). We recorded total of 70 single units in macaque 238 

V1 (monkey K: 13 with NaCl, 16 with 5HT; monkey M: 4 with NaCl, 37 with 5HT). All the 239 

statistical tests used in this study were non-parametric. 240 

 241 

Serotonin decreases LFP power, especially in low-frequency range 242 

We used the multi-taper method implemented in the Chronux toolbox (Bokil et al., 2010) to 243 

compute the power of LFPs. To visually observe the effect of a drug on the power spectrum, the 244 

difference in average power spectrum densities (PSDs) between baseline and drug conditions 245 
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were computed across sessions (Fig. 2A, E). Compared to NaCl condition (Fig. 2A), 5HT 246 

seemed to decrease especially low-frequency LFP power (Fig. 2E). This observation is 247 

confirmed by the power spectrum analysis using the LFPs during the analysis window (0.8 – 2 248 

sec after the stimulus onset). We used this analysis window to ensure the LFP signals were 249 

stable without a stimulus-driven component (two examples shown in Fig. 1A right). As expected, 250 

no difference in LFP power was observed when NaCl was applied compared to baseline (Fig. 251 

2B, C; both monkeys: p = 0.94, n = 17; monkey K: p = 1, n = 13; monkey M: p = 1, n = 4). In 252 

contrast, application of 5HT decreased the LFP power especially in low-frequency range (Fig. 253 

2F, G; both monkeys: p < 10-7, n = 53; monkey K: p < 10-3, n = 16; monkey M: p < 10-4, n = 37). 254 

Although the effect size was small, the gamma LFP power was also significantly smaller in 5HT 255 

condition than baseline (Fig. 2H, NaCl: both monkeys: p < 10-5, n = 53; monkey K: p < 10-2, n = 256 

16; monkey M: p < 10-3, n = 37). Such modulation was not observed in baseline vs NaCl (Fig. 257 

2D, NaCl: both monkeys: p = 0.36, n = 17; monkey K: p = 0.11, n = 13; monkey M: p = 0.63, n = 258 

4).  259 

Our finding of the decrease in low-frequency LFP power is consistent with rodent studies 260 

showing that 5HT decreases low-frequency LFP power in the prefrontal cortex (Kjaerby et al., 261 

2016; Puig et al., 2010). Interestingly, in awake macaque V1, such decrease in the low-262 

frequency LFP power was observed when monkeys pay attention to the location within the 263 

receptive field (RF) of the recorded units (Chalk et al., 2010; Das & Ray, 2018; Spyropoulos et 264 

al., 2018). Therefore, it is conceivable that 5HT plays a role for attentional modulation in 265 

macaque V1. However, it is also possible that the decrease in the low-frequency LFP power by 266 

5HT is simply a byproduct of the decrease in the firing rate by 5HT (Fig. 1B), because change in 267 

broadband LFP power is positively correlated with spiking activity (Henrie & Shapley, 2005; 268 

Manning et al., 2009). To elucidate this possibility, we split baseline condition into low firing-rate 269 

(low FR) and high firing-rate (high FR) conditions such that the rate of the mean firing rate (low 270 

FR/high FR = 0.63) became slightly smaller than that between baseline and 5HT conditions 271 

(5HT/baseline = 0.65). This procedure mimics the effect of 5HT on spiking activity in the 272 

baseline condition to account for the generic effect of change in firing rate on LFPs within the 273 

same units. We then computed the LFP power in low and high FR conditions separately. The 274 

observed difference in PSD (Fig. 2I) and power spectrum (Fig. 2J) between low and high FR 275 

conditions were qualitatively different from those from baseline vs 5HT conditions. Indeed, we 276 

did not find significant difference in low-frequency LFP power (Fig. 2K; both monkeys: p = 0.56, 277 

n = 70; monkey K: p = 0.06, n = 29; monkey M: p = 0.27, n = 41), suggesting that the decrease 278 

in low-frequency LFP power by 5HT was not accounted for the decrease in firing rate by 5HT. In 279 
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contrast, we found that the gamma LFP power was significantly larger in high FR than small FR 280 

conditions (Fig. 2L; both monkeys: p < 10-3, n = 70; monkey K: p < 10-2, n = 29; monkey M: p < 281 

10-2, n = 41). This small yet significant positive correlation between the gamma LFP power and 282 

firing rate was consistent with previous studies (Ray et al., 2008; Ray & Maunsell, 2011a). 283 

Therefore, contrary to the decrease in low-frequency LFP power, the decrease in gamma LFP 284 

power by 5HT (Fig. 2H) could be accounted for by the decrease in firing rate by 5HT. we 285 

conclude that 5HT decreases the LFP power especially in low-frequency range, which might not 286 

be explained by the decrease in firing rate by 5HT.  287 

 288 

Serotonin decreases functional connectivity of V1 neurons 289 

To see if 5HT alters the relationship between spikes and LFPs, we computed the spike-290 

triggered average LFP (stLFP). The stLFP is thought to effectively exhibit spike locked 291 

components of LFPs, since LFPs are averaged across a number of spikes and thus non-spike 292 

locked components of LFPs are subject to be cancelled out (Ray, 2015). Especially, the stLFP 293 

has been used to estimate the degree to which the activity of the recorded neuron is correlated 294 

with the local network activity, termed as functional connectivity or population coupling 295 

(Nauhaus et al., 2009; Okun et al., 2015). Indeed, an intracellular recording using awake rats 296 

showed that the stLFP represents the cross-correlation between the membrane potential of the 297 

neuron and the LFP (Okun et al., 2010). To quantify the functional connectivity, we computed 298 

the stLFP amplitude as the maximum – minimum of the stLFP within -0.05 to 0.05 sec time 299 

window around spikes (example in Fig. 3A). We found that 5HT, not NaCl, significantly 300 

decreased the stLFP amplitude compared to baseline (Fig. 3B; both monkeys: p5HT < 10-2, n5HT 301 

= 53, pNaCl = 0.98, nNaCl = 17; monkey K: p5HT < 0.05, n5HT = 16, pNaCl = 0.68, nNaCl = 13; monkey 302 

M: p5HT < 0.05, n5HT = 37, pNaCl = 0.38, nNaCl = 4), suggesting that functional connectivity is 303 

decreased by 5HT. Another measure of functional connectivity is spike-LFP coherence (Bastos 304 

& Schoffelen, 2015). Since this measure is shown to be affected by firing rate, we performed 305 

‘thinning’ to match firing rate between baseline and drug and then computed spike-LFP 306 

coherence (Gregoriou et al., 2009; Mitchell et al., 2009). We found that the rate-adjusted spike-307 

LFP coherence in low-frequency range (< 10Hz) was smaller in 5HT but not NaCl condition than 308 

baseline (Fig. 3C; both monkeys: p5HT < 0.05, n5HT = 53, pNaCl = 0.69, nNaCl = 17; monkey K: p5HT 309 

< 0.05, n5HT = 16, pNaCl = 1, nNaCl = 13; monkey M: p5HT = 0.13, n5HT = 37, pNaCl = 0.88, nNaCl = 4). 310 

These two measures of functional connectivity were positively correlated in 5HT condition (both 311 

monkeys: r5HT = 0.66, p5HT < 10-6, n5HT = 53, rNaCl = 0.29, pNaCl = 0.25, nNaCl = 17; monkey K: r5HT 312 

= 0.76, p5HT < 10-2, n5HT = 16, rNaCl = 04, pNaCl = 0.18, nNaCl = 13; monkey M: r5HT = 0.63, p5HT < 313 
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10-4, n5HT = 35, rNaCl = -0.2, pNaCl = 0.92, nNaCl = 4). It suggests that these two measures reflect 314 

the common mechanism: likely serotonergic modulation in functional connectivity.  315 

Previous studies pointed out that the stLFP was influenced by the low-frequency oscillatory 316 

signals (Ray & Maunsell, 2011b; Ray, 2015). To address this issue, we computed correlation 317 

between change in the stLFP amplitude and the observed change in the low-frequency LFP 318 

power (Fig. 2G). In fact, we found significant positive correlation (Fig. 3D; both monkeys; r5HT = 319 

0.63, p5HT < 10-6, n5HT = 51, rNaCl = 0.29, pNaCl = 0.26, nNaCl = 17). This was driven by monkey M 320 

(r5HT = 0.82, p5HT < 10-9, n5HT = 37, rNaCl = 0.6, pNaCl = 0.42, nNaCl = 4) and not by monkey K (r5HT = 321 

0.03, p5HT = 0.89, n5HT = 16, rNaCl = 0.28, pNaCl = 0.35, nNaCl = 13). This suggests that at least for 322 

monkey M, the stLFP amplitude might be influenced by low-frequency rhythm. Fig. 3E-J shows 323 

the mean stLFP across units and its difference in PSD in each condition. We found little 324 

difference in the stLFP amplitude and its difference in PSD when NaCl was applied (Fig. 3E, F). 325 

In contrast, 5HT decreased the stLFP amplitude (Fig. 3G, H), which was accompanied by 326 

decrease in the stLFP power especially in low-frequency range after spike. Such modulation 327 

was not accounted for simply by the difference in firing rate. Rather, low FR was associated with 328 

larger stLFP amplitude than high FR (Fig. 5I, J). This is consistent with previous studies 329 

showing that stLFP amplitude is larger in spontaneous (no stimulus) period or when low-330 

intensity sensory stimulus is presented (Nauhaus et al., 2009; Ray et al., 2008; Ray & Maunsell, 331 

2011b). Therefore, the decrease in the stLFP amplitude by 5HT was opposite to what is 332 

expected based on the role of serotonin to decrease the spiking activity. This observation also 333 

supports our previous finding that the serotonergic modulation in V1 cannot be accounted for by 334 

a contrast-gain model (Seillier et al., 2017). Together, we conclude that 5HT decreases 335 

functional connectivity in awake macaque V1. 336 

 337 

Serotonergic modulation in low-frequency LFP power shows no interactions with the 338 

modulation by pupil-linked neuromodulators  339 

5HT is one of the neuromodulators reported to decrease low-frequency LFP power in cortex. 340 

Other neuromodulators including acetylcholine also desynchronize cortical state (Harris & Thiele, 341 

2011; Lee & Dan, 2012). Whether 5HT decreases low-frequency activity in cortex in tandem 342 

with ACh or not is an important question to elucidate the role of neuromodulators in cortical 343 

processes. Here we tried to test the hypothesis that 5HT and ACh independently decrease low-344 

frequency rhythmic activity in cortical areas (Harris & Thiele, 2011; Vanderwolf & Baker, 1986). 345 

To this end we leveraged the finding that pupil diameter is correlated with the cholinergic activity 346 

(Reimer et al., 2016). This finding allowed us to formulate the hypothesis; if 5HT and ACh acts 347 
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on low-frequency LFP power independently of each other, the decrease in low-frequency LFP 348 

power by 5HT must have no interactions with effects of pupil size. We used a generalized linear 349 

regression model to see whether including interaction terms (pupil size x drug) in the model 350 

improves the prediction of trial-by-trial low-frequency LFP power. If the hypothesis is true, we 351 

should not see significant interaction. We found that including pupil size improved model 352 

predictions in experiments with both NaCl and 5HT compared to when only mean low-frequency 353 

LFP power was used as the predictor (Fig. 4; pNaCl < 0.05, p5HT < 0.05), suggesting the 354 

modulatory role of pupil-linked neuromodulators including ACh. Consistent with our findings, 355 

including drug terms (0: baseline trials, 1: trials with drug application) also significantly improved 356 

model predictions only in experiments with 5HT (pNaCl = 0.17, p5HT < 10-7). However, we failed to 357 

find significant interaction between pupil size and drug (Fig. 4; ppupil size x 5HT = 0.56, ppupil derivative x 358 

5HT = 1). This result supports the hypothesis that the action of 5HT on low-frequency LFP power 359 

is independent of that of pupil-linked neuromodulators including ACh.  360 

 361 

Discussion  362 

We found that 5HT decreased LFP power especially in low-frequency range. To see whether 363 

5HT alters a relationship between spikes and LFPs, we computed the spike-triggered average 364 

LFP. We found that 5HT decreased the stLFP amplitude and spike-LFP coherence, suggesting 365 

that 5HT de-correlates response of a single neuron with local network activity and thereby 366 

decreases functional connectivity locally in V1. Our control analysis confirmed that all the above 367 

results were not simply accounted for by the decrease in firing rate by 5HT. 368 

 369 

Roles of neuromodulators on local network state 370 

Stimulation of the basal forebrain or cholinergic brainstem nuclei decreases low-frequency LFP 371 

power in cortex and is thought to desynchronize cortical state (Buzsaki et al., 1988; De Luna et 372 

al., 2017; Goard & Dan, 2009; Pinto et al., 2013). However, ACh may not be the only 373 

neuromodulator to do so. Other neuromodulators such as monoamines (5HT, noradrenaline, 374 

and dopamine) are also linked to cortical desynchronization (Harris & Thiele, 2011; Lee & Dan, 375 

2012), presumably counteracting cortical synchronization caused by shared inputs (Harris & 376 

Thiele, 2011). Indeed, stimulation to the dorsal raphe, which is the primary source of 377 

serotonergic innervation to the cortex, also decreases low-frequency LFP power in rats’ 378 

prefrontal cortex (Puig et al., 2010). We showed that the decrease in low-frequency LFP power 379 

by 5HT was also found in awake macaque V1. Our previous study (Seillier et al., 2017) argued 380 

that 5HT may control the response gain of V1 neurons potentially complementing the effect of 381 
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ACh. Complementary roles of these two neuromodulators may involve in each effect on local 382 

network state, too. One hypothesis is that 5HT and ACh decrease low-frequency LFP power 383 

independently (Vanderwolf et al., 1986). This is intuitive given that 5HT and ACh in cortex come 384 

from different sources and do not share receptors. Testing this hypothesis requires a future 385 

research examining the interaction between these two neuromodulators in cortex.  386 

 387 

Mechanisms of serotonergic modulations in spiking activity and local network state 388 

Do the serotonergic modulations in spiking activity and local network state stem from the same 389 

mechanism? We have to admit that our current research is not able to address this question, as 390 

we applied neither serotonergic agonist nor antagonist. Previous studies showed mixed results 391 

of the type of 5HT receptors decreasing the low-frequency LFP power. For example, a mice 392 

study showed that the decrease was mediated by the 5HT1B receptor (Kjaerby et al., 2016), 393 

whereas a rat study showed that it was mediated by the 5HT2A receptor (Puig et al., 2010). 394 

These two types of serotonergic receptors indeed exist in primate V1 (Watakabe et al., 2009; 395 

Shukla et al., 2014) and likely contribute to our observation in the LFPs. Since LFP can be used 396 

to predict subthreshold synaptic input to single neurons in visual cortex (Haider et al., 2016), the 397 

observed decrease in low-frequency LFP power by 5HT in macaque V1 may be mediated by 398 

the 5HT1B receptor that is preferentially expressed in pre-synapse (Boschert et al., 1994), 399 

whereas the decrease in spiking activity by 5HT may be mediated by the 5HT2A receptor that is 400 

shown to suppress the gain of visual response in a divisive manner (Azimi et al., 2018). 401 

Depending on the type of serotonergic receptors, hyperpolarization-activated cyclic nucleotide–402 

gated (HCN) channels may also play a role in the serotonergic modulations in spiking activity 403 

and LFP (Ko et al., 2017; Sinha & Narayanan, 2015). Although speculative, distinct cellular 404 

mechanisms may explain the similarity and difference between the observed serotonergic 405 

modulations and previously reported attentional modulations. Spatial attention is typically 406 

accompanied by increase in firing rate of V1 neurons responding to the attended stimuli (Motter 407 

et al., 1993; Roelfsema et al., 1998) and decrease in response latency (Sundberg et al., 2012), 408 

whereas 5HT decreases V1 responses (Seillier et al., 2017; Azimi et al., 2018) and increases 409 

response latency (Seillier et al., 2017). In contrast, similar to 5HT, spatial attention decreases 410 

low-frequency LFP power (Chalk et al., 2010; Das & Ray, 2018; Spyropoulos et al., 2018) and 411 

stLFP amplitude (Chalk et al., 2010). Like ACh, in which the muscarinic receptor but not the 412 

nicotinic receptor is involved in attentional modulation (Herrero et al., 2008), 5HT may contribute 413 

to state-dependent visual processes through different types of serotonergic receptors. 414 

 415 
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Serotonergic modulation on global and local functional connectivity 416 

We observed decrease in functional connectivity by 5HT within V1. Although whether such 417 

serotonergic modulation in functional connectivity holds true in other cortical areas cannot be 418 

elucidated from the current study, studies using resting-state functional magnetic resonance 419 

imaging (rs-fMRI) demonstrated that the increase level of 5HT by serotonin reuptake inhibitors 420 

(SSRIs) generally decreased functional connectivity throughout the whole brain (Klaassens et 421 

al., 2015; Schaefer et al., 2014). Therefore, it is predicted that the serotonergic modulation in 422 

functional connectivity within V1 may be generalized at least in other cortical areas that belong 423 

to networks where functional connectivity was shown to decrease by SSRIs (Klaassens et al., 424 

2015). This is conceivable given the widespread projections of serotonergic neurons (Jacobs & 425 

Azmitia, 1992). Whether the serotonergic modulation in global and local functional connectivity 426 

shares the same mechanism is potentially an important question to get better insight into the 427 

serotonergic system in the brain and its link to psychiatric disorders including depression.  428 

 429 

 430 
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 624 

Figure 1. Serotonin decreases firing rate in awake macaque V1. A, Schematic of the 625 

experimental setup. While the monkeys performed a fixation task for 2 sec per trial, random sequences of 626 

briefly (typically 10 ms) flashed gratings of different orientations were presented on the receptive field of 627 

recorded single-unit. There are two conditions: baseline (no drug application) and subsequent 628 

iontophoretic application of drug: serotonin (5HT) or pH-matched saline (NaCl). Spikes and LFPs were 629 

recorded simultaneously (right). B, 5HT predominantly decreases firing rate of V1 single-units (p5HT < 10
-7

, 630 

pNaCl = 0.21).  631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 
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 644 

Figure 2. Serotonin decreases LFP power, especially in low-frequency range. A, Difference 645 

in spectrogram between baseline and NaCl across sessions (17 units). B, Average power spectrum of 646 

LFP power (log-log scale) in baseline (black) and NaCl (red) conditions. LFP signals between 0.8 and 2 647 

sec after stimulus onset are used to avoid non-stationary component in the signal driven by stimulus 648 

onset. LFPs are z-scored across baseline and drug conditions, which yielded arbitrary unit. C, D, No 649 

significant difference in low-frequency LFP power (< 10Hz) and gamma LFP power (> 40Hz) between 650 

baseline and NaCl conditions (Wilcoxson signed-rank test). E, F, G, H, Same as A, B, C, D but comparing 651 

baseline and 5HT conditions (53 units). One outlier was omitted from G, H for visualization purpose. I, J, 652 

K, L, Same as A, B, C, D but comparing low firing rate and high firing rate conditions split from baseline 653 

(see methods; 70 units). Small yet significant increase in gamma LFP power by high firing rate is found as 654 

expected for known positive correlation between firing rate and gamma power (Ray et al., 2009). One 655 

outlier was omitted from K, L for visualization purpose. Shaded area represents SEM across sessions. 656 

  657 



22 
 

 658 

Figure 3. Serotonin decreases functional connectivity of V1 neurons.  A, Example spike-659 

triggered average LFP (stLFP) from monkey K. The stLFP amplitude is defined as the maximum – 660 

minimum of the stLFP between -0.05 and 0.05 sec relative to the timing of spikes. B, 5HT decreased the 661 

stLFP amplitude (p5HT < 10
-3

, pNaCl = 0.91), suggesting that 5HT decreases functional connectivity or 662 

population coupling (Nauhaus et al., 2009; Okun et al., 2015). C, Spike-LFP coherence, another measure 663 

of functional connectivity, is smaller in low-frequency range (<10Hz) with 5HT than baseline (p5HT < 0.05, 664 

pNaCl = 0.69). D, Difference in the stLFP amplitude between baseline and 5HT is significantly correlated 665 

with difference in the low-frequency LFP power (<10Hz; r5HT = 0.65, p5HT < 10
-6

, rNaCl = 0.19, pNaCl = 0.46). 666 

E, NaCl did not change the stLFP amplitude (left, p = 0.79) and power spectrogram (right). F, Same result 667 

as E was found in monkey M (p = 0.625). G, 5HT decreases the stLFP amplitude (left, p < 0.05) and LFP 668 

power after spikes, especially in a low-frequency range (right). H, Same result as G was found in monkey 669 
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M (p < 0.05). I, Low FR condition was associated with larger stLFP amplitude than high FR condition (left, 670 

p < 0.01), consistent with previous studies showing that spontaneous period or low-intensity sensory 671 

stimuli led to smaller stLFP amplitude (Nauhaus et al., 2009; Ray et al., 2008; Ray & Maunsell, 2011b). 672 

Around spikes especially low-frequency LFP power was larger in low FR than high FR (right). J, same 673 

result as I was found in monkey M (p < 0.01). 674 
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 704 

Figure 4. Serotonergic modulation in low-frequency LFP power shows no interactions 705 

with the modulation by pupil-linked neuromodulators.  Stepwise generalized linear regression 706 

models to analyze the contributing factors to low-frequency LFP. Pearson correlation coefficient was used 707 

to quantify how the inclusion of each predictor improved model performance. (Top) Pupil size significantly 708 

contributed to explaining low-frequency LFP power (p < 0.05), whereas NaCl did not (p = 0.17). (Bottom) 709 

Both pupil size and 5HT significantly contributed to explaining low-frequency LFP power (pupil size: p < 710 

0.05; 5HT: p < 10
-7

). Interactions between pupil metrics and 5HT did not significantly improve the 711 

prediction of low-frequency LFP power (pupil size x 5HT: p = 0.56; pupil derivative x 5HT; p = 1), 712 

suggesting that the effect of pupil metrics and 5HT were independent.   Wilcoxon signed rank test was 713 

used. P-values were corrected (Bonferroni). Error bars were ±1 SE.  714 


