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Summary 

Summary 
Initial environmental and analytical data quality plays an important role in the cost-effective and successful 
cleanup of impacted soil and groundwater systems. In the absence of complete subsurface data, mathematical 
models are commonly developed to simplify complex dynamic interactions of natural processes. However, 
ecosystem functions are beset with high uncertainties that are too poorly understood to permit good modeling 
with a generalized numerical code. Due to sparse subsurface information and lack of flexibility, traditional 
methods of observation also lack sufficient uncertainty management characteristics. To capture significant 
contributors to data uncertainty and minimize faulty conclusions, an adaptive conceptual site model (CSM) 
approach of site investigation is therefore required to test hypotheses. The approach differs from the traditional 
methods in terms of the strategic work plan, targeted sampling, and the ability to minimize irrelevant field 
mobilizations. Under the framework of the CSM approach, carefully selected multimethods tend to iteratively 
leverage each other’s strengths. This dissertation examines the combined use of surface geophysical, direct push, 
and laboratory analytical tools in the evaluation of a subsurface CSM at the Wurmlingen study site (between 
Rottenburg am Neckar and Tübingen), southwest Germany. The general objective of this study was the 
assessment of the subsurface conditions in an attempt to quantify solute sources, fluxes, fate and transport at 
the nitrate plume scale. Geoelectrical resistivity measurements identified the presumable distribution of the 
subsurface structures and revealed a linearized anomalous low-resistivity feature aligned with the northwest – 
southeast trend of the investigated nitrate plume. Seismic refraction in conjunction with the direct push-based 
reverse vertical seismic profiling evaluated the subsurface structural integrity in relation to the bedrock structure. 
A channelized low P-wave velocity zone was detected and associated with the identified low-resistivity feature. 
Direct push-based soil electrical conductivity signatures and soil lithostratigraphy corroborated the channelized 
structure as an alluvium-bedrock interface capable of promoting groundwater exchange between the 
channelized deeper aquifer compartment and the surrounding shallower aquifer compartment. On the 
floodplain part of the study site, solute concentrations of groundwater samples collected using a direct push-
based multilevel sampling device revealed steep geochemical gradients indicating higher fluxes of solutes 
associated with the channelized structure, which appears to represent a preferential flow path and a potential 
chemical hotspot within the nitrate plume. Stables isotope ratios also indicated that the source of the nitrate 
transported from the land surface through recharging water into the aquifer has been biogeochemically 
transformed and distinctly partitioned into soil organic nitrogen in the shallower compartment and animal 
(manure)/septic waste in the deeper flow compartment. It is observed from the combined evaluation of the 
groundwater chemical and dual stable isotope data that a diffusion-limited hydrologic transport mechanism 
created by the channelized aquifer system coupled oxic nitrate removal process in the shallower compartment 
depleted in the dual isotopes of nitrate to nitrate source admixture and remineralization processes in the deeper 
channelized compartment enriched in the dual isotopes of nitrate. Nevertheless, I hypothesize that explicit 
consideration of the role played by microbes in cycling the nitrogen nutrients transferred to them will lead to a 
clearer understanding of these alternative nitrogen-cycling pathways. A key finding emerging from this study is 
that there is a major shift in the nitrogen-cycling routes commonly associated with the canonical theories of oxic 
nitrification and anoxic denitrification. Another major finding is that the geohydrology of the area exerted 
dominant control on the complex nitrogen biogeochemical transformation pathways. In particular, the 
observation of anoxic nitrification in the deeper aquifer compartment appealed to field evidence for the 
resolution of the occurrence of what Granger and Wankel (2016) (see Supplementary Information - S1) reported 
as the “freshwater conundrum.” The complexities in the identified hydrobiogeochemical pathways suggest that 
the understanding of nitrogen-cycling processes in aquifer systems is far from complete and requires further 
research. This study highlights the necessity of realistically acknowledging the high degree of aquifer physical 
and biogeochemical heterogeneity, as well as varying solute source origins in the CSM evaluation procedure. 
Logical incorporation of nitrogen-processing information into the resolution of aquifer structural conditions 
not only allows for a better definition of mobility, persistence and transformation pathways of nitrate and other 
dissolved constituents but also alleviates concerns regarding the transparency of decision-making. 
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Zusammenfassung 
Die Qualität der anfänglichen Umwelt- und Analysedaten spielt bei einer kostengeffizienten und erfolgreichen 
Sanierung verunreinigter Boden- und Grundwassersysteme eine wichtige Rolle. Sollten vollständige Daten zum 
Untergrund fehlen, werden im Allgemeinen mathematische Modelle zur Vereinfachung der komplexen 
dynamischen Wechselwirkungen entwickelt. Allerdings sind Ökosystemfunktionen mit einer Vielzahl von 
Unsicherheiten verbunden, die kaum verstanden werden, um mit verallgemeinerten Zahlen eine gute 
Modellbildung zu ermöglichen. Aufgrund spärlicher Informationen zum Untergrund und mangelnder 
Flexibilität verfügen traditionelle Beobachtungsmethoden auch nicht über ausreichende 
Unsicherheitsmanagementmerkmale. Um wesentliche, zur Datenunsicherheit beitragende Faktoren zu erfassen 
und fehlerhafte Schlussfolgerungen zu minimieren, ist für Standorterkundungen ein adaptiver, sprich 
anpassungsfähiger, konzeptioneller Standortmodell- (CSM) Ansatz erforderlich, um Hypothesen zu testen. Der 
Ansatz unterscheidet sich von den traditionellen Methoden im Hinblick auf den strategischen Arbeitsplan, die 
gezielte Beprobung und die Fähigkeit, irrelevante Feldmobilisierungen zu minimieren. Im Rahmen des CSM-
Ansatzes neigen sorgfältig ausgewählte Mehrfachmethoden dazu, iterativ jeweils von den Stärken des anderen 
zu profitieren. Bei dieser Dissertation wurde am Untersuchungsstandort Wurmlingen (zwischen Rottenburg am 
Neckar und Tübingen), im Südwesten Deutschlands, in der Auswertung eines konzeptionellen Untergrund-
Standortmodells (CSM), der kombinierte Einsatz von oberflächen-geophysikalischen, Direct-Push- und 
Laboranalysewerkzeugen untersucht. Das allgemeine Ziel dieser Studie bestand in der Beurteilung der 
Untergrundverhältnisse und dem Versuch, im Rahmen einer Nitrat-Schadstofffahne die Ursprünge gelöster 
Substanzen, Ströme, den Verbleib sowie den Transport zu quantifizieren. Geoelektrische 
Resistivitätsmessungen ermittelten die voraussichtliche Verteilung des Untergrundaufbaus und offenbarten bei 
der untersuchten Nitrat-Schadstofffahne eine von Nordwesten nach Südosten verlaufende, geringe linearisierte 
anomale Resistivität. Mittels Refraktionsseismik in Verbindung mit Direct-Push-basierten entgegengesetzten 
vertikalen seismischen Messungen wurde die strukturelle Integrität des Untergrunds in Bezug auf die Struktur 
des Grundgesteins untersucht. Es wurde eine kanalisierte geringe P-Wellengeschwindigkeitszone festgestellt und 
mit der ermittelten geringen Resistivität in Verbindung gesetzt. Die Direct-Push-basierten Signaturen der 
Leitfähigkeit des Bodens und die Boden-Litho-Stratigraphie bekräftigten die kanalisierte Struktur als eine 
Schwemmstoff-Grundgesteinsschnittstelle, die in der Lage war, einen Grundwasseraustausch zwischen der 
kanalisierten tieferen, grundwasserführenden Kammer und der umliegenden seichteren, grundwasserführenden 
Kammer zu fördern. Im Vorland des Untersuchungsstandortes offenbarten die löslichen Konzentrationen der, 
mit Hilfe eines Direct-Push-basierten mehrstufigen Probenahmegerätes gesammelten Grundwasserproben 
steile geochemische Gradienten, die in Verbindung mit der kanalisierten Struktur auf höhere Ströme gelöster 
Substanzen hinwiesen, was für einen bevorzugten Strömungsweg zu stehen scheint und einen potentiellen 
chemischen Hotspot innerhalb der Nitrat-Schadstofffahne. Stabile Isotopen-Verhältnisse wiesen auch darauf 
hin, dass die Quelle des Nitrats, das von der Landfläche über neuausgebildetes Wasser in die Grundwasserleiter 
befördert wird, bio-geochemisch umgewandelt und in der seichteren Bodenkammer deutlich in organischen 
Stickstoff sowie in der tieferen Strömungskammer in tierische (Gülle) /septische Abfallstoffe unterteilt wurde. 
Bei der kombinierten Auswertung der chemischen und zweifachen stabilen Isotopen-Daten des Grundwassers 
wurde festgestellt, dass ein diffusionslimitierter hydrologischer Transportmechanismus, der durch den, mit dem 
kanalisierten Grundwasserleitersystem gekoppelten oxischen Nitratabbauprozess in der seichteren Kammer 
geschaffen wurde, in der die zweifachen Nitratisotope zu Nitratbeimischungs- und Remineralisierungprozessen 
verbraucht wurden, in der tiefer kanalisierten Kammer in den zweifachen Nitratisotopen angereichert wurden. 
Nichtsdestotrotz gehe ich davon aus, dass eine explizite Berücksichtigung der Rolle, die Mikroben bei dem an 
sie übertragenen Stickstoffkreislauf haben, zu einem deutlicheren Verständnis dieser alternativen 
Stickstoffkreislaufpfade führen. Eine zentrale Erkenntnis aus dieser Studie besteht darin, dass es eine erhebliche 
Verschiebung bei den Stickstoffkreisläufen gibt, die im Allgemeinen mit den kanonischen Theorien der oxischen 
Nitrifikation und anoxischen Denitrifikation verbunden werden. Ein weiteres wesentliches Ergebnis besteht 
darin, dass die Geohydrologie des Gebietes die komplexen bio-geochemikalischen 
Stickstofftransformationspfade beherrschend kontrolliert hat. Insbesondere die Beobachtung der anoxischen 
Nitrifikation in der tieferen grundwasserführenden Kammer bietet den Nachweis für die Schlussfolgerung 
dessen, was Granger und Wankel (2016) als „Frischwasser-Rätsel“ beschrieben haben (siehe 
Zusatzinformationen - S1). Die Komplexität der festgestellten hydro-bio-geochemischen Pfade lässt vermuten, 
dass das Verständnis der Stickstoffkreislaufprozesse in den Grundwasserleitersystemen bei Weitem noch nicht 
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abgeschlossen ist und weiterer Forschung bedarf. Diese Studie zeigt die Notwendigkeit auf, im CSM-
Bewertungsverfahren realistisch den hohen Grad an physikalischer und bio-geochemischer Heterogenität der 
Grundwasserleiter als auch die unterschiedlichen Ursprünge gelöster Substanzquellen anzuerkennen. Die 
folgerichtige Einbindung der Informationen zur Stickstoffverarbeitung in die Schlussfolgerung über die 
strukturellen Wasserleiterbedingungen ermöglicht nicht nur eine bessere Bestimmung der Mobilität, 
Langlebigkeit und Transformationspfade von Nitrat und anderen gelösten Bestandteilen, sondern nimmt auch 
Bedenken bezüglich der Transparenz von Entscheidungsfindungen. 
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Chapter 1 
General introduction 

 

1.1 Background and scope of study 
 

Cost-effective, efficient, defensible, and successful cleanup of impacted soil and groundwater 

systems depends on the initial environmental and analytical data quality (Ritzi et al., 2004; Cypher and 

Lemke 2009). However, the limited data regarding subsurface conditions have failed to sufficiently 

capture all major contributors, representing data uncertainty. This has invariably hampered 

contaminated site assessment, environmental management, and remediation efficacy. Scale and 

heterogeneity have been identified as the major causes of data uncertainty (Engdahl et al., 2010; Dogan 

et al., 2011; Sudicky and Illman 2011; Gazoty et al., 2012; Berg and Illman 2013). On the one hand, 

upscaling or downscaling requires adequate understanding or good knowledge of processes occurring 

at the smaller or larger scales (Zyvoloski et al., 2003; Tetzlaff et al., 2010; Gentine et al., 2012; Chien 

and Mackay, 2013) in the natural system. The extrapolation of such understanding to a smaller or larger 

scale may require additional knowledge of small- or large-scale variability. If this need for additional 

knowledge is not recognized, then an implicit assumption of “scale invariance” is made, and if this 

assumption is false, the interpretation of measurements or model evaluation exercises and assumptions 

may be erroneous (Halm and Grathwohl, 2005). On the other hand, inability to quantify contaminant 

heterogeneity associated with the distribution of pollutant release and physical mechanisms that control 

their migration can also lead to major decision errors (Taylor et al., 2005; Ouellon et al., 2008; Li et al., 

2011; Tang et al., 2014; Han et al., 2014). Moreover, because the subsurface is not an ideal 

homogeneous and isotropic medium, inhomogeneities in the spatial distribution of geologic and 

hydrogeologic properties can alter the groundwater flow regime and, consequently, contaminant 

transport velocity (Bermejo et al., 1997). Deficient understanding of these conditions produces 

misleading pictures of contamination if data uncertainties are not controlled, unless the decision-maker 

develops and tests predictions and assumptions regarding where elevated chemical constituents of 

concern would be, if present (Crumbling, 2004). 

In the absence of extensive field data and observations regarding subsurface conditions, 

"verification" or "validation" of conceptual site models has been carried out by employing numerical 

modeling (Bain et al., 2000; Davies et al., 2004; Bredehoeft, 2005; Jankovic et al., 2006; Cirpka and 

Valocchi, 2007; Barazzuoli et al., 2008; Akber Hassan and Jiang, 2012). Although numerical models 

are able to represent processes that simplify the understanding of transient flow and transport in 

complex natural systems, they do not restore confidence in their results due to either possible 

uncertainties in the choice of model parameters and characteristics or sparsity of data, including a 

deficient account of the heterogeneity required to adequately initialize the model (Miles, 2007; Sousa 
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et al., 2012; Nordstrom, 2012; Tremblay et al., 2014). Where such knowledge of uncertainty is 

unavailable, environmental scientists and engineers are encouraged to develop and evaluate conceptual 

site models (CSMs) to facilitate the thought process regarding which actions to prioritize as part of a 

site characterization and modeling process (Nikolaidis and Shen, 2000). 

A CSM plays a major role in the development of hypotheses, identification of data gaps and 

management of uncertainty (Burger et al., 2006; Matott et al., 2009; Siontorou and Batzias, 2012; 

Greenberg et al., 2014). A well-developed CSM could also assist in the design of long-term solute 

concentration monitoring programs. A CSM as a planning tool is generally the result of the problem 

formulation phase (“conceptual exposure model”) of soil and groundwater risk assessment (Crumbling 

et al., 2001; Thornton and Wealthal, 2008). It characterizes the physical, chemical, and biological system 

existing at a site by determining CSM elements such as: (1) hypothesized sources of the release of 

constituents of concern, including the extent, location, concentrations and chemical form(s); (2) their 

pathways, including not just the physical pathways of migration that facilitate the transport of the 

constituents but also the biogeochemical transformation pathways; and (3) environmental receptors’ 

exposure to the constituents of concern, including understanding of the receptor location and site-

specific conditions. Investigators have demonstrated the importance of developing and evaluating 

CSMs in fate and transport, as well as in remediation programs, and the associated pitfalls (Mackay et 

al., 1996; Crumbling et al., 2003; Woll et al., 2003; Crumbling et al., 2004a; Almasri, 2007; Canter, 2008).  

This study emphasizes nitrogen processing in an alluvial aquifer. Nitrogen is a major 

constituent of the Earth's atmosphere and occurs in many different forms, such as elemental nitrogen, 

nitrate (NO3
-) and ammonia (NH3). Whereas ammonium (NH4

+, that is, the ionic form of NH3) is 

quickly absorbed by the rock matrix of the soil, NO3
- is not bound and can move with soil water and 

therefore has the potential to be lost through leaching from the soil zone into the aquifer system. 

Nitrate is highly bioavailable and is the dominant nitrogen component delivered to the aquatic systems. 

Increases in nitrogen inputs from geogenic/natural sources and/or fixation by nitrogen-fixing bacteria 

in soil and root nodules of leguminous plants (Holloway et al 1998; Lowe and Wallace 2001; Atkins 

and Jones 2010), nitrogen oxide emissions and atmospheric depositions (Murdoch and Stoddard, 1992) 

and land-use changes and other various forms of anthropogenic inputs (Galloway et al., 2008) have 

resulted in environmental problems, such as nitrogen saturation (Stoddard, 1994), eutrophication (Diaz 

and Rosenberg, 2008) and groundwater contamination (Spalding and Exner, 1993; Burow et al., 2010). 

Due to these increases in nitrogen inputs and their effects, there is growing interest in methods and 

processes that can remove the various forms of nitrogen from ecosystems (e.g., Stelzer and Bartsch, 

2012; Lansdown et al., 2012) through different scales of studies (e.g., network-scale and/or continental-

scale) (e.g., Alexander et al., 2009; Hall et al., 2009).  

Böhlke et al. (2006) highlighted the necessity to evaluate the physical and biogeochemical 

processes before the movement and fate of nitrogen compounds in contaminated or uncontaminated 

aquifers can be rationalized or predicted. It is well known that transformation, retention and removal 

processes of available nitrogen occur in upland soils (Seitzinger et al., 2006), riparian zones (Duff et 

al., 2008), hyporheic zones, where groundwater and surface water mix (Zarnetske et al., 2011), and the 

surface water of streams and rivers (Heffernan et al., 2010). However, compared to these other 

environments, such as surface soils, streams, rivers and the open ocean, much less is known about 

nitrogen processing in the terrestrial subsurface below the water table. According to Smith et al. (2006), 



3 

Chapter 1 

detailed studies on groundwater nitrification as a process are lacking. How the process interacts with 

the physical environment and biogeochemical turnover present in an aquifer to control the transport 

and attenuation of nitrogen is still open to further investigation. Most of the many barriers to accurate 

assessment of biogeochemical processes (a major control of dissolved oxygen and nitrogen 

concentrations and speciation) have been attributed to the inaccessibility of the subsurface and the 

spatiotemporal heterogeneity and deficient parameterization of the system's physical, chemical and 

biological processes. While representative cores can be difficult and expensive to obtain and may yield 

overestimates during laboratory-based bench-scale control rate studies (Chapelle et al., 1993), field 

tracer tests (Krueger et al., 1998) can also have shortcomings due to the slow nature of subsurface 

microbial processes, particularly in pristine environments, which can make the rates of activity difficult 

to measure (Ghiorse et al., 1988). Moreover, some tracers, such as NH4
+, are not transported 

conservatively.  

To evaluate the CSM of the subsurface in the context of nitrogen processing in an alluvial 

aquifer, the challenges lies in adequate representation of the nutrient’s sources and sinks, as well as 

identification of key interfaces/connectivity that influence the nutrient cycling within the aquifer 

system. The capability to resolve these challenges signals that there is a good understanding of how 

the system works, which can be translated into the following key questions: 

a) Through which hydrological pathways is the nutrient physically transported? 

b) What is the origin of the nitrogen nutrient, and where at the site are its source areas? 

c) What are the effects of the parent materials and development of the hydrologic pathways on 

the nitrogen nutrient cycling, and what biogeochemical processes are likely to occur? 

These key questions and unknowns to be investigated basically express and constitute the components 

of an initial CSM evaluated from the problem scoping process involving the site history review in terms 

of the existing information on the site boundary, historic and current site conditions, source release 

histories and potential chemical constituents of concern, area(s) of release, and site-specific and/or 

regional information (geology, hydrogeology, and hydrogeochemistry) to help identify surface and 

subsurface transport pathways (e.g., Ehrlich, 1988). 

Due to the invisibility of the subsurface, CSMs will always be evaluated based on assumptions 

and data interpretations. Because no single line of evidence can answer key CSM questions, attention 

is often turned to combining multiple lines of evidence from different testing and multiple investigation 

methodologies to balance the degree of uncertainty. However, conventional approaches to site 

characterization provide answers to the questions in disaggregated forms. This means that management 

decisions on the nitrogen nutrient sources and transport mechanisms could therefore prove more 

difficult. The CSM approach acknowledges the unique strengths of different methods of investigation. 

Organization of available evidence under the flexible and adaptive CSM approach is more reliable, 

resulting in a better understanding of the dynamic processes that characterize the nutrient cycling 

behavior. This is because the different investigation methods are most effective when combined. 

During the initial CSM testing and evaluation, any line of evidence that is challenged is iteratively 

upgraded using additional features from the newly acquired data. An updated CSM is then expected to 

have proved or disproved and/or filled data gaps from the initial or sketchy CSM. By being able to 

create a CSM, one can tell a “story” of a site in a format that is easy to read, see and understand, as 

well as identify uncertainties in the model that require further assessment. Thus, the CSM serves as a 
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risk communication tool for the public and for efficient environmental decision-making.  

To augment the framework of a CSM by describing a site, including its geology, hydrogeology 

and pathways of migration of NO3
- (and other groundwater solutes), sources of release, and fate 

mechanisms, this study evaluated data from complementary, corroboratory and confirmatory surface 

geophysical, direct push-based and laboratory analytical (chemical and stable isotope) methodologies. 

A literature review of the methods indicates that these methods have different strengths in relation to 

the aforementioned CSM questions. For instance, whereas surface geophysical techniques could 

potentially map large-scale physical heterogeneities as well as finer-scale structures (including potential 

hydrologic pathways), follow-up direct push investigations define the target features delineated by the 

surface geophysical studies in a much higher resolution. Because an individual approach is not 

sufficient to unambiguously identify and localize processes, the surface geophysical and direct push 

approaches are combined to leverage each other's strengths. Irrespective of the potential successes of 

the surface geophysical and direct push approaches in evaluating a subsurface CSM, one formidable 

challenge remains in the end: how to develop an understanding of, for example, nitrogen nutrient 

sources and the cycling, transport or fate of redox-active constituents and integrate such process 

knowledge into the subsurface model. This requires gaining detailed insight into the physical 

mechanisms and biogeochemical interactions from multilevel groundwater chemical and dual-stable 

isotope data measured and analyzed in the field or laboratory to complement the surface geophysical 

and direct push observations. The necessity for such further studies arises from the fact that several 

determinants obscure the reconstruction of the geochemical characteristics of solute sources. For 

instance, mixing processes, which are mostly localized at the interface between two distinct 

geohydrologic media, could have consequences for biogeochemical turnover of the solute. Mixing-

controlled biodegradation is frequently proven via numerical simulations and bench-scale laboratory 

experiments (Cirpka et al., 1999). Additionally, complex CSMs for reactive transport modeling have 

been appropriately defined and successfully developed at laboratory scale (Davies et al., 2004). The 

same cannot be said for CSM development at field scale. This is due in large part to conventional 

approaches for characterizing complex subsurface conditions, which are unable to adequately capture 

heterogeneous/preferential flow paths and the location of transition zones that control steep 

biogeochemical gradients. Hence, by evaluating closely spaced solute concentration data and stable 

isotope information across mixing interfaces defined by surface geophysical and direct push 

investigations, it is possible to develop an enhanced predictive and mechanistic understanding of 

nitrogen fate and transport in an aquifer system. This approach couples independent constraints of 

aquifer physical and biogeochemical heterogeneity and their impact on nitrogen sources, fate and 

transport while providing insight into uncertainties that mar the accurate depiction of field-scale CSMs. 
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1.2 Objectives 
 

This dissertation is based on a study with two major objectives: 

1. Use of surface geophysical measurements in combination with the direct push tools to 

evaluate subsurface structural variability in an attempt to gain knowledge of fluid and solute 

flow pathways; 

2. Determine, from field/laboratory chemical and multi (‘dual’)-stable isotopic 

measurements, the sources of solutes and associated nitrogen nutrient transformation 

pathways using aquifer groundwater collected based on a high-resolution direct push 

multilevel groundwater sampling technique. 

A case study is presented using the agriculturally impacted Wurmlingen study site where a 

plume of NO3
- was previously described in an alluvial aquifer setting (Schollenberger, 1998), thereby 

illustrating the potential benefit of utilizing the CSM approach for efficient subsurface characterization 

and evaluation. 

 

 

1.3 Dissertation outline 
 

This work is organized into five chapters. The first chapter addresses the general introduction 

of the study, scope of the study, and objectives and structure of the dissertation. In the second chapter, 

the motivation of the CSM approach is described. Chapter two also illustrates an observation-based 

CSM approach, including the target-oriented site characterization and laboratory analytical tools 

employed.  

The third chapter presents the application of surface geophysical and direct push investigation 

methods. This chapter is subdivided into two parts. (Part 3A) Description of the study site location, 

geohydrology and relevance. Part A of Chapter three also describes the study site-specific CSM and 

brief information regarding an earlier attempt at characterizing the NO3
- plume in question. (Part 3B) 

Combined interpretation of surface geophysical and direct push-based ground-truth data for the 

characterization of subsurface structural heterogeneity and geometry. In Part 3B, two-dimensional (2-

D) electrical resistivity imaging and refraction seismic tomography investigations of specific survey 

profiles were motivated by a large-scale preliminary field screening of the subsurface conditions based 

on Schlumberger resistivity depth sounding surveys. The field screening test provided a rough 

estimation of subsurface structural variations in terms of the apparent resistivity distribution and served 

as the basis for the development of further investigation methods. The 2-D electrical resistivity imaging 

results not only confirmed the interpretation of the vertical electrical sounding results but also helped 

overcome the limitations of the 1-D nature of the vertical electrical sounding surveys, which are based 

on the assumption of intra-stratigraphic homogeneity. Despite visually apparent discrimination of 

subsurface structures in terms of the resistivity variations, the electrical resistivity imaging results had 

difficulty resolving the aquifer substratum on the floodplain part of the study site, possibly due to the 

poor vertical resolution of the deeper subsurface. Direct push-based reverse vertical seismic profile 

data assisted in enhancing the credibility of the refraction seismic tomography result, which delineated 

the unresolved bedrock surface. The noninvasive surface geophysical tools preceded minimally 
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invasive direct push-based techniques and assisted in the selection of suitable locations for these 

intrusive investigations. Correlations between the surface geophysical response and the direct push-

based soil electrical conductivity and lithological logs were used to evaluate the reliability of the 

subsurface geometry and architectural pattern.  

Chapter four is particularly consequential in the assessment of changes in geochemical and 

stable isotopic tracers and footprints, which track water movement and fluxes in relation to the aquifer 

structural patterns interpreted in Part B of Chapter three. In addition, this chapter significantly 

improves the conceptual understanding of the hydrogeochemical evolution, origin and fate of solutes. 

Chemical data was used to assess the water-rock interactions and redox conditions with regards to the 

NO3
- dynamics. Dual stable isotopes were not only useful in determining groundwater recharge origin 

and solute sources but also valuable in evaluating the physical and biogeochemical processes that 

influence the fate of the NO3
-.  

Following this, Chapter five presents a general discussion, conclusions, and the scientific 

impact, as well as recommendations regarding future studies. 
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Chapter 2 
Observation-based conceptual site 

modeling and site investigation 

methodologies 

 
Chapter summary 
Although mathematical/ numerical modeling is able to simplify assumptions of 

transient flow and solute transport, due to sparsity of data and deficient understanding 

of all of the factors that influence the heterogeneity of complex environmental systems, 

it is unable to restore confidence in their results. Moreover, due to rigid workplans, 

spatially limited and invariably time-consuming and cost-intensive investigation 

strategies, conventional approaches developed independently of each other are also 

often unable to fill data gaps required to make predictions. This chapter discusses the 

need for an observation-based conceptual site modeling framework, including the work 

flow for selecting and employing target-oriented site characterization and laboratory 

analytical techniques. The target-oriented site investigation methodologies consist of 

multidisciplinary tools that are iteratively integrated to leverage each other's strength. 

Consequently, in particular, data acquired under the flexible and adaptive observation-

based conceptual site modeling framwork could restore reliability in mathematical 

modeling studies.  

 

2.1 Introduction 
 

Without an adequate identification of the physical and biogeochemical processes providing 

different end-member solute sources (i.e., natural and anthropogenic), the management practices for 

groundwater resources and other environmental media are fraught with uncertainties. To model these 

processes, many mathematical methods and numerical modeling approaches have emerged as powerful 

tools of great significance. In groundwater systems, for instance, such modeling methods are able to 

represent processes to simplify and approximate the present understanding of transient subsurface 

fluid flow in addition to solute fate and transport by integrating existing knowledge into a logical 

framework of rules, relationships and governing equations, each of which is solved through the use of 

numerical or analytical techniques (Christakos and Hristopulos, 1996; Rolle et al., 2011; Maier et al., 

2013). It is widely argued that developing a mathematical model is advantageous to developing an 

observational model; for example, experimentation within a real system is costly and time-consuming 

or even impossible, while mathematical model simulations are repeatable and can generate easy-to-
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interpret, quantitative results (Zeigler, 1976; Ziegler, 2006). Such results can then be generalized, 

thereby resulting in new models that can be subsequently validated for similar situations elsewhere 

(Kapur, 2015). However, the development of such models can be challenging, and the corresponding 

results often lack confidence due to an incomplete conceptual understanding (Oreskes and Belitz, 

2001; Hassan, 2004; Tetzlaff et al., 2008) and due to uncertainties associated with limited site-specific 

data on subsurface features and processes (Moradkhani, 2005). That is, any imprecision in the 

conceptual model rigorously influences the outcome of the mathematical model and its reliability. 

Additionally, the complex factors that govern the movement and behaviors of groundwater 

contaminants in natural settings for most environmental and ecosystem modeling studies are poorly 

understood (Ellsworth, 1996; Corwin, 1999). In this context, the sole reliance on mathematical 

modeling can be dangerous and would provide little to no contribution to the effective communication 

of impending environmental risks. 

Models have been termed “verified” or “validated” to prove that the accuracy and predictive 

capabilities of those mathematical models lie within the acceptable limits of error determined through 

tests independent of the calibration data. Nonetheless, Oreskes et al. (1994) suggested that models of 

natural systems cannot be verified/validated simply because a model could be calibrated regardless of 

whether an observation is poorly predicted, following which the cause of a natural process would not 

be properly known, and thus, the results cannot be regarded as the absolute truth. Thus, uncertainties 

are inevitable when creating a model (Konikow and Bredehoeft, 1992; Walker et al., 2003; Beven, 

2009). This usually leads one to question the effectiveness or usefulness of models for decision-making 

purposes. Conceptual uncertainties, which are uncertainties in the conceptualization of a model 

attributable to an inadequate representation of physical and biogeochemical processes, an incomplete 

understanding of the subsurface geological framework, and an inability to properly explain most 

available observations of state variables (Pathak et al., 2015), are often used to quantify the usefulness 

of a model. Further efforts to quantify and minimize such conceptual uncertainties have focused on 

the use of multiple models under different uncertainties (Li and Tsai, 2009; Troldborg et al., 2007). 

Some investigators (e.g., Neuman, 2003; Ye et al., 2005) employed a multi-model approach to 

demonstrate how well different models represent the behaviors of a system by believing that only one 

conceptual model for a particular site could lead to poorly informed decisions (Neuman and Wierenga, 

2003). To address such conceptual uncertainties, Bayesian model averaging (BMA) is commonly 

implemented (Rojas et al., 2008; Singh et al., 2010) to aggregate the outputs from competing models. 

In an integrated BMA framework, posterior model weights are obtained for a set of alternative (i.e., 

conceptual) models based on the relative ability of an individual model to reproduce the behavior of 

the system. Usually, these weights are determined by evaluating how well different models match the 

available data composed of predictive variables using Bayesian probability theory (Leube et al., 2012; 

Wöhling et al., 2015). Exemplarily, in an effort to detect initial groundwater contamination in a 3-D 

heterogeneous alluvial aquifer, Storck et al. (1997) present a Monte Carlo-based monitoring well 

network design optimization strategy. At an existing landfill site, the authors revealed the success of 

the method in determining whether the existing well network is suboptimal or optimal with respect to 

the considered objective. However, due to the assumption that goes into the building of a complex 

subsurface model, the authors did not fail to mention the need for siting larger number of wells in 

order to increase the expected contaminated volume of the detected plumes. Based on the notion that 
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it is difficult, if not impossible to obtain complete and detailed distribution of a heterogeneous 

subsurface domain in another example, Cadini et al. (2012) also applied a novel particle tracking scheme 

to estimate the extent and timing of solute transport through a preferential pathway. Although these 

approaches are famed for their abilities to produce models with respectable diagnostic and predictive 

capabilities, they still exhibit limitations insomuch that the assignment of the prior weights remains 

subjective even with the available data. This means that the credibility of the model structure depends 

entirely upon the degree of the measurement accuracy and the uncertainty associated with that accuracy 

(Thomsen et al., 2016). 

CSMs represented either pictorially or in written form are greatly helpful for identifying surface 

and subsurface transport pathways. The use of a CSM at contaminated sites is well-established (US 

EPA, 2002). The standard guide for establishing a CSM effectively illustrates how to overcome the 

challenge of data insufficiency based on the traditional use of field/laboratory methods and strategies 

(ASTM Standard E1689-95, 2014). Even though traditional observation techniques have embraced 

modernization, which has led to fast and inexpensive computing, the lack of flexibility and the 

uncertainty in the management characteristics associated with traditional approaches means that the 

acquired data (even if they possess high spatial and temporal resolutions) are not scaled relative to the 

strengths of those different techniques. When combined, such disparate datasets are unlikely to 

properly address the posed research questions. Thus, in conjunction with traditional CSM guidelines, 

fact modelers often base their decisions on the appropriateness of the available information and 

subjective judge the scale of the model, and thus, these modeling approaches remain flawed. A typical 

example of this situation was demonstrated by Hassan et al. (2002) and Hassan and Chapman (2006) 

as cited in Benning et al. (2009). In Amchitka Island’s subsurface, Hassan et al. (2002) used hydraulic 

conductivity, recharge, fracture porosity, dispersivity, and other heat driven flow uncertainties to 

develop a 2D radionuclide transport model. The study was aimed at determining travel times and 

potential seepage locations in an effort to improve risk assessment. On the incorporation of additional 

data from bathymetric and magnetotelluric (MT) survey results regarding the depth of the transition 

zones and effective porosities, Hassan and Chapman (2006) revised the 2002 statistical groundwater 

model and found that for all realizations, the travel times were greater than the 2,200 year modeled 

time scale. The main lesson from this illustration is that a model should not be justifiably modeled 

without complementary phenomenological experimentation. 

Much of the present-day discussion on the integration of data in environmental science has 

focused on the value of information analysis linked to specific problems; that is, the primary goal is to 

collect not only high-resolution data but also representative data and to interpret results appropriately 

given the questions being asked. Accordingly, this paper explores how an adaptive, observation-based 

CSM approach could be used to identify the key components of a CSM and the extent to which those 

components control the variables that could obscure the data interpretation and lead to faulty 

conclusions. This approach is not new or dissimilar to traditional approaches with regard to the 

applications of field and laboratory tools. Instead, the proposed approach is different from traditional 

methods because of its uncertainty management and improved decision-making characteristics, high-

resolution/targeted sampling approach, and time-/cost-efficient and flexible work plan, all of which 

result in a system based on feedback between the field/laboratory practices and the policies/objectives 

of the program. Under the observation-based CSM framework, the initial CSM is directly tested and 
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updated in an iterative manner based on field/laboratory evidence of confirmed observations from 

multidisciplinary investigation approaches. These observations fill existing data gaps without triggering 

irrelevant field mobilizations. In the wake of growing trends within modeling studies conducted on 

problems characterized by incomplete data, this approach encourages a procedure for an adequate 

conceptualization of the subsurface. This conceptualization should instead be considered a hypothesis 

against which the performance of a mathematical model can be tested and evaluated in accordance 

with protocols for effective modeling to avoid suspect rendering models and what Refsgaard and 

Hansen (2010) described as modeling nightmares. The emphasis on such a strategic observation-based 

conceptualization is to promote a continuous appreciation of the vital role played by observations in 

the formulation of models. According to Livingston et al. (2000), it is unfortunate that long-term, 

integrated, interdisciplinary research remains a scientific rarity today. The adopted approach is 

considered to be somewhat related to the "Triad" approach, which was carefully crafted and 

demonstrated in Crumbling et al. (2003), Crumbling et al. (2004a) and Crumbling et al. (2004b), and 

the ModelPROBE strategy (Kästner and Cassiani, 2009; French et al., 2014). 

 

 

2.2 Observation-based conceptual site model approach 
 

The modeling process required to sufficiently elaborate upon the CSM assumptions regarding 

the chemical constituents of interest and their pathways as well as the spatiotemporal distributions of 

receptors involves two main stages: (a) conceptualization, and (b) mathematical formalization (Carrera, 

1992; Jorgensen and Fath, 2011). Conceptualization (as illustrated in this study), which is the first stage 

of the modeling process, is arguably the most important step since it forms the foundation of the 

mathematical model and is consequently the basis for the generation of computer codes used for 

simulations (NRC, 2001). Efficient conceptualization allows for the distillation of a bewildering variety 

of emerging issues into a few essential core designs with easily understood features while accounting 

for the predominant processes occurring at varying scales of interest. With regard to limited site-

specific data and the need to ensure the reduction of uncertainties in modeling, risk assessments, 

predictions and remediation actions, it is therefore desirable to create a reliable CSM (i.e., a simplified 

approximation of the real system of interest) based on observations to operationally precede model 

building, even though the elements of observations and mathematical models are mutually supportive.  

The conceptualization stage illustrated in this study proceeds through three main steps: (1) the 

development of an initial CSM; (2) experimentation based on target-oriented site characterization and 

laboratory analyses; and (3) an evaluation of the observation outcome through collaborative data 

analyses (i.e., the confirmation/validation of a CSM). The role and approach of the observation-based 

conceptualization is illustrated in Figure 2.1.  

Given that every successful modeling process begins with some initial perception of a field 

problem (i.e., a perceived real system of interest) and that any model is an instrument designed for a 

specific purpose, it is necessary to explicitly define the objectives of the modeling endeavor to provide 

a guide for the type of model chosen. The degree and scale of the undertaken modeling complexities 

should be consistent with the complexities of the site, available data, and the problem being addressed 

or the questions to be resolved (Gerhard et al., 2014) within the limits of the study area. Thus, the first 
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step in the conceptualization stage is to develop the initial CSM, which constitutes the collection and 

assessment of uncertain (but testable) assumptions/hypotheses, algorithms (particularly when 

performing mathematical modeling) and relationships and the determination of whether the available 

data are sufficient to describe the real system under consideration. The initial CSM forms the basis 

upon which both mathematical modeling and observation acquisition can be performed. At this step, 

the conceptualization is typically highly subjective, and thus, the selection of the CSM features requires 

some level of creativity and selective perception. That is, contrasting opinions about the system under 

investigation, its environment and the different possible scenarios within the system could lead to 

drastically different versions of the model and consequently to different degrees of errors (Oreskes 

and Belitz, 2001). As noted earlier, this is usually the primary source of uncertainty when creating a 

CSM. Although subjectivity can greatly affect scientific interpretations, some researchers (e.g., Polson 

and Curtis, 2010; Bond et al., 2012) have argued that the existence of subjectivity in the formation of 

hypotheses does not necessarily imply a lack of scientific rigor and can also lead to the advancement 

of novel hypotheses. However, in an effective manner, a well-crafted initial CSM is expected to clearly 

propose salient questions and provide information about the expected size of the target(s) and the 

geometry of the investigation site as well as the surrounding ground conditions. The development of 

the initial CSM therefore constitutes an important aspect of the project planning and affects the 

successful completion of the experiment. From this perspective, beginning the evaluation of a CSM 

without prior knowledge of the initial CSM could be incredibly costly since it would inevitably result 

in the selection of the inappropriate equipment and techniques, and therefore, the evaluation process 

will be compromised (Crumbling et al., 2003).  
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Figure 2.1. Observation-based conceptual site modeling process. 

 

 

Following the final selection of the hypotheses, the second step is to conduct experiments 

through target-oriented site characterization and laboratory analyses. The advantage of the adopted 

approach is that the inferences and conclusions drawn from the perception of processes occurring at 

the specific site are derived directly from field and laboratory data and integrated as sub-models that 

address special stratigraphic, hydrogeological and geochemical questions at any stage during the 

modeling. The CSM is a multi-compartmental model in which the representative unit of a site (e.g., 

groundwater) can be associated with decision process models to handle these highly specialized 

questions (Jakubick and Kahnt, 2002). Hence, the iterative manner of establishing the compartments 

will help to better understand the geology and hydrogeology of the subsurface in addition to how they 

impact the groundwater flow conditions and solute fate. 

To assist with the observational studies, it is essential to perform a preliminary field screening 

and initial site characterization (which could consist of aerial or ground mapping/remote sensing 

exercises) to re-establish the limit of the search area(s) and to determine the specific hypotheses that 

form the basis of the investigation program before the application of detailed, follow-up measurement 

methods. The preliminary identification of the search area(s) can provide ample hints demonstrating 
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the feasibility of the project concept and the certain usage of follow-up confirmative and collaborative 

methods. The information flow during the target-oriented site characterization and laboratory analyses 

(Figure 2.1) employs the reasoning related to new observations and associated cause-and-effect 

phenomena to produce new updates to the CSM. Accordingly, evidence based on field and/or 

laboratory data can then be used to infer the sub-model characteristics and subsequently determine the 

next level, type and nature of additional data to be collected. These decisions are mostly aided by the 

ability to recognize typical patterns, following which the limitations related to the representativeness 

of the sampling results (that is, the data uncertainties) can be further evaluated and supported by newer 

data and observations while managing the decision-making uncertainties at an accepted level. The 

underlying rationale for this strategy is that a model that iteratively leverages and tightly couples data 

derived from the application of different types of site characterization and laboratory analytical 

techniques can be utilized with an increased level of confidence (ITRC, 2003; Crumbling et al., 2004a). 

In this way, data gaps can be systematically identified and filled; this represents the "uncertainty 

quantification" cycle shown in Figure 2.1. 

The third step is to collaboratively analyze the experiments or observation studies and the 

associated multiple lines of evidence that characterize the CSM compartments and then evaluate the 

interrelations between the heterogeneous results from various tests employed to investigate and 

confirm the existing or initial CSM. From an analysis of the experimental results, the previous 

hypotheses can be reformulated or discarded if they are not confirmed; moreover, the site investigation 

concept can be adapted (i.e., CSM revision and refinement). By traversing the CSM revision and 

refinement process, an effective cycle is initiated that engenders an improved CSM and a better 

understanding of the behaviors of the system under consideration. Philips (2001) describes a case study 

in which processes that were neglected in the initial CSM were later found to be of fundamental 

importance, leading to a substantial revision of the CSM. Philips (2001) also noted that such revisions 

are particularly expected in complex environments where often poorly understood physical, chemical, 

and biological processes interact. In the event that the hypothesis is confirmed, an observation 

outcome (that is, updated CSM) is produced.  

A discussion on mathematical conceptual site modeling (which literally follows the same 

principles as observation-based modeling) is beyond the scope of this study. However, once an 

accepted version of an observation-based model is reached such that only a single “valid” hypothesis 

remains (i.e., the hypothesis is well corroborated or the bias is confirmed with greater empirical 

meaning and understanding), the outcomes from the observation-based conceptualization can then be 

transformed into concise model features and parameters that are more directly useful for a comparison 

with the mathematical modeling simulation results (Thacker et al., 2004). Subsequently, the simulation 

outcome may be hopefully "validated" through a quantitative comparison if the agreement between 

the simulation outcome and the observation outcome is acceptable, thereby constituting the next real 

system of interest (Oreskes et al., 1994). At this point, it should be clear that the logical conclusions 

reached if the conceptualization process was successful are as valid and rigorous as the mathematical 

techniques employed. This is because the model results are a direct consequence of the hypotheses 

and concepts defined in the conceptualization phase (Torres and Santos, 2015). If the agreement is 

unacceptable, the model or the experiment (or both) can still be revised depending upon the judgment 

of the model developer and experimenter. As already shown (Figure 2.1), a revision to the experiment 
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will involve modifying the experimental test design, procedures, or measurements to better understand 

the behaviors of the investigated system or to improve the agreement with the simulation outcomes. 

A revision of the mathematical model will involve changes to the basic assumptions, structures, 

parameter estimates, boundary values, or initial conditions of the model to improve the final agreement 

with experimental outcomes. Nevertheless, it is crucial to emphasize that there is a lack of consensus 

on the definition of “validation” (NRC, 2001), and thus, whether a model can be validated remains the 

subject of debate. While certain authors (e.g., Konikow and Bredehoeft, 1992; Oreskes et al., 1994) 

have maintained that models cannot be validated because scientific hypotheses are fundamentally 

unprovable, a "well-corroborated/confirmed" CSM can merely be reduced to an "as-yet-not-refuted" 

CSM, and one cannot be entirely sure that the initial group of hypotheses is exhaustive. Meanwhile, 

other scientists (e.g., Jarvis and Larsson, 2001) argued that a “validated” model could be considered a 

model that is acceptable for its intended use.  

For the purpose of this discussion, I have focused our attention on an affirmative answer to 

the question "Are the conceptual models comprising resolved unknowns and associated supporting 

data adequate for achieving the stated purpose" and how that answer would help to formulate a 

confirmative observation rather than on whether a hypothesis implies that observable effects indicate 

either verification or validation. Based on the adaptive nature of the proposed observation-based CSM 

approach, the confirmation of observations constitutes the recognition that data are never complete 

(and that the model response is uncertain) with the intent that the observation responses will be closely 

interpreted, and those observations can then be employed to update the measurement programs 

iteratively, leading to substantial improvements in the modeling process (e.g., Marker, 2007; Kosso, 

2010). In this way, the burden on mathematical modelers to demonstrate the degree of reliability 

between their model and the real system of interest being represented is significantly minimized. Thus, 

the constructed models are able to elucidate discrepancies in the strength of evidence required to 

corroborate a hypothesis and identify the further needs of a study. 

 

 

2.3 Target-oriented site characterization and laboratory analyses 
 

As highlighted in the previous section, the purpose of the observation-based CSM approach 

(once the initial CSM has been developed) is also to provide an iterative strategy for site 

characterization endeavors and laboratory analyses with smart feedback loops between different 

activities. Figure 2.2 schematically shows how the observation-based CSM approach can be used to 

update a CSM by combining different site investigation methodologies (see the discussion below). 

Although the purpose of each independent method is to improve upon the initial CSM, noninvasive 

surface geophysical techniques typically pave the way for minimally invasive direct push probing 

systems and subsequent groundwater chemical and dual stable isotope analyses. In the workflow 

shown in Figure 2.2, surface geophysical techniques serve one major purpose, namely, to screen and 

identify target features for a site investigation prior to invasive/minimally invasive sampling techniques. 

Whereas surface geophysical and direct push techniques provide subsurface information regarding the 

structural conditions of aquifers, groundwater chemistry data combined with multi-stable isotopes 

analyses provide additional information about hydrogeochemical evolution processes and solute 
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source apportionments as well as inferences about the hydrological and biogeochemical processes 

influencing the behaviors of the solutes.  

 

 
Figure 2.2. Generalized workflow of the target-oriented site characterization and laboratory analysis approach used in the 
observation-based conceptual site modeling. 
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2.3.1 Noninvasive ground-based near-surface geophysical methods 

 

Here, it is remarked that although the geophysical measurement spectrum can be broken down 

into three major categories: airborne-, ground- and borehole-based, for the purposes of this 

documentation, emphasis is placed on the ground-based geophysical techniques (hereafter referred to 

as surface geophysical techniques - that is, observation of geophysical parameters as measured at the 

ground surface) for near-surface investigations/applications. Discussion on borehole-based 

geophysical techniques is reported under section 2.3.2, which treats direct push-based investigation 

tools. Also, some surface geophysical methods have been described as invasive (e.g., Parsekian et al., 

2015) because parts of the instrument sets are driven into the ground to create contacts for the 

generation of strong signals. Here however, surface geophysical measurements are described as 

noninvasive because I did not consider driving instrument sets only a few centimetres into the ground 

as far enough to designate them as invasive. 

Geophysical techniques have become increasingly important for developing conceptual models 

of subsurface processes and characterizing hydrogeological properties (Moysey et al., 2012). Given the 

need for reliable and site-specific boundary conditions during groundwater and contaminant transport 

modeling, relatively quick and noninvasive surface geophysical surveys can provide substantial 

information about subsurface hydrogeological conditions. Moreover, to account for the sparsity of 

data sets commonly associated with conventional site assessments, surface geophysical investigations 

(in addition to airborne/remote sensing techniques) can function as tools for conducting field 

reconnaissance surveys and can be performed faster than traditional drilling methods, which require 

the drilling of a large number of boreholes; thus, surface geophysical methods provide a greater spatial 

coverage (Maliva, 2016). Field reconnaissance surveys and preliminary field screening are performed 

immediately thereafter to investigate the site history and inform us about the required extent of the 

sampling density. Although airborne studies exhibit a major and undeniable advantage insomuch that 

they are vital in areas that are not accessible or at least difficult to access for ground surveying, ground 

investigations are highly preferable, particularly in relatively small areas or for problems of local interest 

with limited spatial extents that must be explored. By covering large subsurface regions in a relatively 

short time using surface geophysical reconnaissance (which may nevertheless yield results that are in 

one-dimension (1-D)), favorable areas of primary interest can be distinguished from those that appear 

unpromising with respect to groundwater flow- and solute transport-influencing features. Surface 

geophysical survey and reconnaissance methods are therefore useful for strategically placing wells, 

thereby enabling investigators to avoid relatively costly “trial-and-error drilling” techniques. Hence, it 

is advantageous to execute reconnaissance surface geophysical surveys not only to delineate subsurface 

structures and select sites for further detailed investigation but also to guide the optimum selection of 

suitable methods and instrumentation for detailed surveys. In most cases, detailed surface geophysical 

studies, which typically cover much smaller areas, may be performed to acquire 2-D and 3-D data along 

closely spaced profiles with dense measurements. It is highly essential that such detailed survey layouts 

be situated along straight lines with a significant coverage perpendicular to the strike of the investigated 

target feature. This underscores the need to first conduct a reconnaissance (i.e., quicker and more 

reliable) survey to delineate a target feature. Hence, it is highly important to account for issues of scale 

during geophysical field surveying to match the scale of variations in hydrogeological properties with 
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the geophysical response due to the shape, size and depth of the target feature. In particular, if the 

measurement scale is greater than the scale of variations in the 

hydrogeological/geochemical/geotechnical properties, the heterogeneities could be averaged out 

during data acquisition and processing, thereby obscuring the geophysical response from the 

investigated target feature. 

Different geophysical methods depend upon considerably different geophysical properties 

(e.g., electrical resistivity, seismic velocities, density, susceptibility, potential differences, and 

permittivity; Knödel et al., 2007). These different geophysical properties are obviously sensitive to 

changes in hydrogeological/geochemical/geotechnical parameters such as the mineral matrix, fluid 

content, porosity, permeability, degree of water saturation, water salinity, volumetric clay content, 

cation exchange capacity, pore water temperature and total dissolved solids (Lagmanson, 2005; Loke 

et al., 2013). Thus, in addition to the measurement scale, obtaining a recognizable geophysical response 

from a target structure depends upon whether its geophysical properties contrast sufficiently with those 

of the surrounding matrix and the characteristics of the overburden. Moreover, an adequate analysis 

and evaluation of the acquired surface geophysical data requires the professional experience of the 

users and their appreciation of the emerging significance and applicability of the methodology to the 

evaluation of different problems. Nonetheless, the problem of non-uniqueness is often encountered 

during the interpretation of surface geophysical data, thereby requiring the combination of different 

methods to effectively process the subsurface information. Regardless of the geophysical tools chosen, 

the most comprehensive data sets are collected through the collaborative interpretation of different 

physical properties through a combination of various geophysical techniques. The general intent is to 

ensure that each method leverages the strengths of the other techniques while enhancing the overall 

quality of the CSM. No single geophysical tool can satisfactorily deliver the desired information, since 

different geophysical methods are sensitive to different physical properties of an anomalous target and 

its surrounding materials. Hence, an integrated interpretation strategy is necessary for reliably capturing 

common target anomalies, controlling the interpretation, refining the CSM and reducing the associated 

ambiguities (Chandra, 2015). Of course, there are an ever-expanding number of geophysical techniques 

suitable for various near-surface primary and secondary applications. The literature provides a well-

documented and comprehensive discussion of the background information regarding the near-surface 

applications of surface geophysical techniques and their modes of operation for environmental and 

engineering issues (e.g., Telford et al., 1990; Butler, 2005; Burger et al., 2006; Knödel et al., 2007; 

Reynolds, 2011; Milsom and Eriksen, 2011; Parsekian et al., 2015). It is commonly acknowledged that 

CSMs can greatly vary from one site to another. Thus, following concerns regarding the instrument 

availability and the expertise of an investigator, the rationale for selecting the most appropriate 

geophysical tools is dependent upon site-specific considerations such as the existing knowledge of the 

investigated problem and the hydrogeological site conditions. In relation to the scale and the boundary 

conditions of the target, such conditions make it possible to acquire the most valuable information on 

the subsurface conditions (McLachlan et al., 2017).  

Surface electrical resistivity (that is, reciprocal of conductivity) methods are sensitive to changes 

in texture, mineralogy and water saturation. The surveying approach is concerned with observing earth 

resistance by measuring the potential field set up on passing electric current between specific surface 

locations (Habberjam, 1979). Computing advances and the user-friendly nature of field resistivity 
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systems (particularly multielectrode electrical resistivity imaging systems in 2-D or 3-D) have launched 

them as a standard investigatory and commercially-available tool to measure lateral and vertical 

variations in the subsurface resistivity, yielding interpretable information about subsurface conditions. 

Electrical resistivity imaging has proved successful in the evaluation of geohydrologic and geochemical 

CSMs relevant to the management of environmental issues. Notable environmental applications of the 

technique include mapping of contaminant plumes from urban sites (see Vaudelet et al. 2011), 

searching for and localizing sources of leachate leaking from landfills (see Reynolds, 2011) and their 

effect on the environment as well as detecting landfill boundaries and hidden buried valley aquifer 

systems that compromise the interpretation of groundwater chemical information (Kirsch et al., 2006). 

High-resolution time-lapse information assessed from electrical resistivity imaging systems has 

widened its scope of application with regards to monitoring changes in geophysical geoelectrical 

resistivity properties. Together with the demerits of the conventional 1-D resistivity depth sounding 

technique, which is that individual resistivity depth sounding data do not take lateral changes in the 

subsurface resistivity field into account, it is generally thought that the dense sampling of the subsurface 

by the “faster” 2-D resistivity imaging technique is far better. However, as already discussed in relation 

to site reconnaissance, except in urban areas, conventional 1-D resistivity soundings can be very useful 

and employed in the early survey phases as a reconnaissance field survey tool for rapidly covering large 

survey areas and identifying anomalous regions before a 2-D or 3-D resistivity modeling focused on 

the identified anomalous regions are undertaken to gain a better understanding of the subsurface. 

Although the resistivity technique works very well and has been more extensively described and applied 

compared to other surface geophysical techniques, the exact definition of the geometry of a target 

structure may not be ascertained by the resistivity technique alone. This is due to inherent overburden 

conductance, equivalence and suppression constraints and variables that cause non-uniqueness in 

interpretation and decreased depth resolution of subsurface features. Thus, the support of 

complementary surface geophysical techniques is highly necessary in situations that vitiate geoelectrical 

resistivity measurements and interpretation. 

If an electrically conductive feature is very distinct, intense and homogeneous with 

characteristic physical properties of its own, for instance, the velocity of seismic waves propagated 

through such a zone/feature can be generally reduced in comparison to the velocity of surrounding 

less conductive materials. Therefore, it is possible to map such a feature of interest by seismic methods. 

Seismic methods, which can be subdivided into reflection, refraction or surface wave methods 

generate/record wave fields on geophone and rely on the fact that the travel times of seismic waves 

can be used to infer the mechanical properties of the subsurface in the form of velocities contrasts and 

attenuation of seismic waves in different rock and sediment units. In each method, major wave types 

are considered. For example, compressional / P-wave velocities are estimated from refraction seismic 

surveys. Also, reflected seismic energy can be used to detect velocity changes at sharp boundaries and 

delineate density contrasts, whereas velocity of shear/surface waves that bends through velocity 

gradients, and waves that propagate along the surface (‘ground roll’) are estimated from the surface 

wave method (Parsekian et al., 2015). Detailed description and distinction of these methods, including 

the mode of data acquisition, analysis and interpretation of results can also be found in Socco and 

Strobbia (2004) and Rabbel (2010).  

For near-surface applications, refraction seismic is particularly useful. Refraction seismic 
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method is able to yield near-accurate information about lithological boundaries including the bedrock 

configuration and depths of the subsurface geologic units. Due to both the intrinsic limits of resolution 

of refraction images and the overlap in velocity between sedimentary rocks with high initial porosity 

(such as alluvial deposits), Parsekian et al. (2015) stated however, that refraction seismic does a 

relatively poor job of identifying lithological boundaries in sedimentary units. Also, because it is time-

consuming to conduct refraction seismic surveys, applying the method requires much better planning, 

and specific skills in data processing and interpretation. Such planning may include earlier 

reconnaissance phases and resistivity imaging surveys (as described previously) to estimate adequate 

coverage of a target feature. Thus, like other geophysical methods, an understanding of the volume of 

the investigated feature (lateral and horizontal extent and thickness) is necessary for appropriate design 

and implementation of the refraction seismic surveys. In a nutshell, and depending on the site-specific 

conditions, a combination of resistivity and refraction seismic surveys, focusing particularly on a 

common anomaly that was identified from an initial/reconnaissance surveys is highly recommended.  

 

 

2.3.2 Minimally-invasive direct push-based investigation techniques 

 

Although surface geophysical measurements help to fill information gaps in the lateral and 

vertical directions, particularly between boreholes, their vertical resolution decreases with the depth 

for physical reasons (Dietrich and Leven, 2009). Moreover, geophysical methods indirectly measure 

the distribution of subsurface properties (e.g., Parsekian et al., 2015) and therefore require direct 

confirmation. Direct push technology (DPT) (e.g., Dietrich and Leven, 2009) is invaluable for 

performing direct site investigations and for overcoming the limitations of surface geophysical 

measurements.  

DPT employs direct push (DP) machines (e.g., Geoprobe®) to push tools and sensors attached 

to the end of a probe (i.e., a steel rod) into the ground, creating a path for the tools without drilling 

(http://geoprobe.com/direct-push-technology). DP machines rely on a small amount of static (i.e., 

vehicle) weight combined with percussion to serve as the energy source to push the tool string into the 

ground. With a broad range of available sensors and probes at its disposal, DPT is much more 

promising for effective and rapid sampling/imaging and data collection from unconsolidated 

sediments at depths of typically less than 30 m below the ground surface than the conventional drilling 

approach. The sediment properties (e.g., grain size and stiffness), however, may vary with the 

investigation depth. Despite the fact that both conventional and DP methods provide point 

investigation data, DPT has comparative advantages over traditional drilling methods in terms of its 

measurement speed, time/cost effectiveness, field accessibility, and onsite decision-making ability 

(Leven et al., 2011).  

As a minimally invasive sampling procedure, DPT minimizes the disruption of near-surface 

sediment structures and anoxic microsites, leading to the preservation of the natural hydrological flow 

path through the aquifer. Testing with the DPT not only results in good sampling results but also a 

high reproducibility of the measurement of small-scale variabilities. Recent developments in DPT have 

also led to the successful deployment of multi-parameter probes. Through continuous/discontinuous 

measurements, the devices (i.e., sensors, filter or samplers) used for the acquisition of soil, soil gas, and 

groundwater samples as well as for direct imaging and logging help provide high-resolution subsurface 
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geophysical, hydraulic/lithological, geochemical, and geotechnical information (Leven et al., 2011). 

The operation of DP machines may also provide an avenue for the deployment of external tools and 

gadgets that are not readily attachable to probe tools. 

DPT is being increasingly utilized during the installation of observation wells (either temporary 

or permanent). Such wells are intended for numerous applications, such as electrical conductivity (EC) 

and resistivity logging and cone penetrometer testing for hydrostratigraphic profiling and estimating 

geotechnical properties, aquifer hydraulic conductivity profiling, pumping tests and slug testing, aquifer 

biogeochemical heterogeneity definitions through direct hydrogeochemical imaging and multilevel 

groundwater sampling (followed by laboratory assays), in situ soil color logging, and vertical seismic 

profiling (both conventional and reverse), to better understand the rock/sediment properties. Among 

these many applications, tracer testing is increasingly being used for aquifer characterization and 

geotechnical investigation programs. In several occasions, these DP tools may be combined, making it 

possible to confidently match changes in the investigated parameters to changes in the subsurface 

conditions.  

DP-based activities commonly result in the acquisition of high-resolution vertical profiles of 

the investigated parameters. Unfortunately, just as the results of surface geophysical measurements can 

be marred by a poor vertical resolution, DP-based data acquired along 1-D vertical profiles also exhibit 

shortcomings and problems. As mentioned previously, DP-based data suffer the same fate as 

conventional drilling data; that is, important information is lacking in the lateral directions between 1-

D vertical profiles/boreholes. The combination of surface geophysical measurements and DP 

investigations is useful for imaging in greater detail and verifying obscure, complex subsurface 

structures. In particular, such a combination of methods (both qualitatively and quantitatively) offers 

immense opportunities to explore scale issues in subsurface heterogeneities critical for the 

understanding of solute fate and transport processes. Moreover, by combining surface geophysical 

measurements with DPT-based information, the dominant obstacles in the installation of new wells 

(i.e., knowing the exact conditions of the subsurface and finding the most suitable locations for new 

wells) are avoided. This is because surface geophysical measurements can guide the selection of optimal 

locations for the installation of wells. Consequently, the presence of strategically placed wells presents 

a unique opportunity to gauge formation depths accurately, abate the occurrence of subsurface 

attenuation, and evaluate a target feature more closely with different parameter measurements. 

Moreover, since it is more goal-oriented, this approach also drastically reduces the cost of installing 

new wells. In addition, DPT can offer great opportunities for tomographic measurements and 

representations in both 2-D and 3-D, thereby addressing vertical and lateral resolution issues resulting 

from the independent application of either surface geophysical measurements or DP surveys based on 

1-D vertical profiling. A wealth of literature is available regarding the applications of DPT to 

environmental and geotechnical engineering issues (Schulmeister et al., 2003; Sellwood et al., 2005; 

Wilson et al., 2005; Paasche et al., 2009; Schütze et al., 2012; Vienken et al., 2012). 
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2.3.3 Groundwater chemistry and multi (‘dual’)-stable isotope assays – tools for 

fingerprinting solute sources and bioavailability assessments 

 

Over the last 30 years, the term bioavailability, which has long been used in pharmacology, 

toxicology and agricultural sciences, has gained substantial traction in environmental science 

disciplines. This is primarily due to a growing awareness of the varying degrees to which soils and 

sediments bind various chemicals, thereby altering their availabilities to other environmental media 

(e.g., water, soil, and air) and living organisms (microbes, plants, invertebrates, wildlife, and humans), 

and the understanding that such processes are crucial for effective risk assessment and remediation 

activities (NRC, 2003). Although the characteristic hallmark of bioavailability research is to provide 

clearly articulated and well-justified risk assessment and management decisions so that they can be 

readily understood by nonprofessionals, the ambiguous definition of bioavailability resulting from 

numerous complex issues, including a deficient understanding of bioavailability and the difficulty 

associated with measuring relevant environmental and human health indicators of bioavailability, has 

limited its application (Ehlers and Luthy, 2003; Naidu et al., 2015; Ortega-Calvo et al., 2015). In this 

discussion, the concept of bioavailability is considered in terms of biodegradation (i.e., the extent to 

which a contaminant is available for biological conversion), which is a function of the biological system, 

the physical and chemical properties of the contaminant and the environmental factors (Maier, 2000). 

Although the consideration of processes affecting transformation pathways that drive nutrient 

bioavailability should represent an integral component of the risk assessment and management of a 

contaminated site during a CSM evaluation, such considerations are often neglected in standard CSM 

guides due to a perceived greater burden of proof for incorporating bioavailability into decision-making 

endeavors (NRC, 2003; Sorell and McEvoy, 2013).  

Groundwater chemical approaches conventionally measure the concentrations of the chemical 

constituents of interest in groundwater monitoring wells or piezometers positioned along specific flow 

paths to predict the attenuation of those concentrations. Knowledge of the groundwater chemistry, 

which can be applied to better understand water quality problems such as groundwater potability and 

applicability for different purposes, is directly affected by the concentrations and speciation of various 

chemicals. Additionally, such knowledge of the groundwater chemistry can be used to trace fluxes 

across water reservoirs throughout the hydrological cycle. However, even though the water chemistry 

is routinely measured during regional monitoring studies to identify the zones in need of remedial 

action, the monitoring of solute concentration trends alone is insufficient for tracking the solute 

sources of origin. A common technique used to assess the impacts of a particular chemical constituent 

within pore water is to theoretically match the dissolved solute concentration levels to a certain quality 

reference and toxicity assessment criteria; however, such measurements do not translate to information 

about the site-specific bioavailability of that particular chemical constituent. Furthermore, although 

solute concentration gradients can provide clues for the kinetics and thermodynamic driving forces of 

reactions, it is not always sufficient to simply characterize a site by analyzing the concentrations of 

chemical compounds because they can be biologically transformed (i.e., biotransformation). 

Biotransformation that is controlled both by the biochemical activities of microorganisms that recycle 

the chemical compounds and by the mass transfer of those chemical compounds to the 

microorganisms (Bosma et al., 1997) can limit the bioavailability. Thus, the bioavailability of a particular 
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chemical constituent is tightly linked to its origins and its utilization by microorganisms, and it is not 

readily reflected in the aquifer groundwater chemical composition, which is easily altered and 

controlled by physical-chemical processes such as advection/diffusion, sorption/desorption, and 

oxidation/reduction (including cation exchanges with aquifer solids) (Shen et al., 2015).  

Compound-specific stable isotope analysis has become an increasingly important quantifying 

tool for a straightforward assessment of pollutant biodegradation. Biodegradation results in shifts in 

the stable isotope ratios of contaminants. In particular, patterns in stable isotope signatures can be 

used to infer microbial activities along biogeochemical gradients (i.e., over spatiotemporal scales). 

Stable isotopes have been proven to be a transformative tool in the environmental sciences and 

beyond, as they have been utilized to promote studies ranging from biogeochemical cycling across 

scales, ecological food web and resource partitioning, and microbial nutrients and forensics (Whitman 

and Lehmann, 2015). Nonetheless, in the context of contaminant biodegradation in the field, an 

assessment of the bioavailability using an individual stable isotope system may lead to an inconclusive, 

unrepresentative and problematic interpretation as well as an underestimation of the biodegradation 

processes. This difficulty stems from a deficient understanding of the mass transfer limitations and an 

overlap of coupled processes due to isotopic fractionation. In the worst-case scenario, a discrepancy 

in the estimation of biodegradation processes between other available methods (e.g., chemical and 

toxicity testing) and stable isotope fractionation may highlight the relevance of considering mass 

transfer limitations in the unmasking of information hidden within the stable isotopic labeling 

technique. Accordingly, compared with the use of individual stable isotopes of an element, an 

evaluation of the simultaneous fractionation of two elements (i.e., 2-D or dual isotope approaches) can 

assist with the better recovery of mechanistic information regarding how isotope fractionation varies 

in the presence of mass transfer, biogeochemical transformations or limited bioavailability (Elsner, 

2010). In general, the use of a greater quantity of isotopes is better. This is because multi-isotope studies 

have better chances of answering the posed questions. Under aquifer (i.e., field) conditions, the limiting 

factors of the bioavailability are influenced by the geometry (i.e., size and shape) of the system. This 

geometry governs the movement of microbes and the steepness of the redox and microbiological 

gradients; moreover, the system geometry ultimately drives the rate of diffusive transfer and the 

desorption mechanism of high-affinity chemical uptake in the presence of electron acceptors/donors 

and the capability of the microbes to impact the availability of chemical compounds (Thullner et al., 

2013). Consequently, the system being modeled must be effectively characterized using site 

investigations tools such as surface geophysical techniques and DPT as described in the previous 

sections in order for groundwater chemistry and multi-isotope methods (the best results are achieved 

when the two approaches are combined) to be reliably applied to uncouple complex reactive transport 

processes (Barth et al., 2005) and interpreted as tools for an assessment of the bioavailability. 

 

 

2.3.4 Interdisciplinary considerations 

 

It is thought that because sediment texture, mineralogy and mineralogy, which influence 

geophysical attributes, play a crucial role in controlling biogeochemical processes, geophysical surveys 

could assist in the development of biogeochemical models (Lendvay et al., 1998; Binley et al., 2015). 
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Atekwana and Atekwana (2010) showed that some physical, chemical, and/or biogeochemical 

transformations may generate geophysical signals. The potential of geophysical techniques to map hot 

spots of biogeochemical activity has also been demonstrated (e.g., Wainwright et al., 2016). However, 

the capability of the geophysical techniques to image complex biogeochemical interactions at the field 

scale remains limited. Because of the dynamic coupling of hydrologic and biogeochemical processes, a 

present and significant challenge for geophysical techniques is posed by their inability to sense, isolate 

the effect of these coupled processes and quantify their contributions to changes in geophysical 

signatures (which vary over a wide range of spatiotemporal scales) (Atekwana and Atekwana, 2010). 

Advances in geophysical technologies, nevertheless continue to improve the way and manner in which 

these challenges are being addressed.  

In the context of predicting the fate of aquifer groundwater solutes and their bioavailability 

(section 2.3.3), the methods of surface geophysics and DPT previously described in sections 2.3.1 and 

2.3.2, respectively are applied under the framework of the developed CSM approach to guide the 

selection of factors that adequately define subsurface geohydrologic conditions wherein 

biogeochemical processes could be interpreted. By acknowledging the contrasting dynamics of the 

different processes that account for the heterogeneity of source areas and different flow pathways, the 

interpretative limitations associated with the traditional approach of constructing a subsurface CSM 

can be avoided. This is best achieved by following the proposed adaptive observation-based CSM 

approach, which integrates the understanding of many disciplines, including geology, microbiology, 

hydrogeology, geophysics, and the chemistry of solute fate and transport. In spite of individual 

disciplinary uncertainties, these iteratively combined multidisciplinary tools uniquely provide a certain 

degree of flexibility and reliability for the subsurface representation of contamination and the complex 

behaviors of dissolved constituents. In this way, an adaptive observation-based CSM that more 

holistically accounts for a wide range of different physical, chemical and biological processes will 

improve the predictive powers of mathematical/numerical modeling methods. 
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Chapter 3 
Application of surface geophysics and 

ancillary direct push methods in the 

investigation of subsurface structures 

 
Chapter summary 
Chapter three describes the structural variability of the subsurface based on the 

developed CSM framework in Chapter two, using the Wurmlingen study site as a case 

example. This chapter is subdivided into two parts (A and B): 

 Part 3A describes the study site and the relevance of an alluvial aquifer study in 

understanding dissolved solute/nutrient processing. The initial CSM that 

embodies the investigated shallow groundwater nitrate source hypotheses is also 

contained in this Part A. 

 Following the development of the initial CSM, Part 3B employs surface 

geophysical tools and ground-truthing direct push data to identify subsurface 

structures and aquifer compartments as critical hydrologic features that may 

control nutrient cycling.  
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Part 3A – Field site descriptions 
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3.1 Introduction 
 

Following the development of the observation-based conceptual site modeling framework in 

Chapter two, I will now introduce the Step I of Figure 2.1, which articulates the problems with 

perception to be addressed. Components of this study's research problem include the following: 

1) Description of the study site's location, review of site’s geohydrology, and relevance of 

performing the study within the alluvial valley aquifer (section 3.2); 

2) Description of the initial CSM based on the regional distribution of nitrate concentrations, 

which includes identification of uncertain but testable hypotheses (section 3.3); and 

3) Traditional attempt at evaluating the nitrate plume, its boundary and dominating processes 

(section 3.4) 

By emphasizing N processing in an alluvial aquifer, I examine the physical (hydrological), 

chemical and biological controls on N cycling. Such a study could have implications on the sustainable 

N management and water resources protection. 

 

 

3.2 Study location, geohydrology, and relevance 
 

Situated in southwest Germany (in the region of Baden-Württemberg), approximately 5 km 

from Rottenburg am Neckar in the southwest, 7 km from Tübingen in the east-northeast, the 

Wurmlingen study site (Figures 3.1 and 3.2) lies between 48.498o and 48.503o north latitude and 

between 8.968o and 8.974o east longitude, covering about 0.273 km2. The area is a relatively flat plain 

to undulating uphill. On the hill slope are wine farms and cover trees. The plain is also covered by 

farmland segmented and partitioned into squares and rectangles for growing crops, and feed. The 

regional geology of the study area is typical of the sedimentary rock formations of the Triassic, 

southwest Germany (e.g., Ziegler 1990; Kozur and Bachmann, 2005; Palermo et al 2010; Beyer, 2015). 

The surficial geology of the area is generally regarded as the spatially-distributed Neckar valley 

young Terrace sediments. The uppermost layer of the valley sediments (that is, the floodplain 

sediments, which cover the gravel body) typically consist of alluvial silty clay materials with a thickness 

of ~ 3 m and an organic topsoil thickness of up to 0.5 m on average (inclusive). Below this unit is an 

unsaturated sand and gravel layer with a thickness of ~ 2.5 - 3 m (Kostic and Aigner, 2007). Below this 

layer, is the local aquifer - generally referred to as the Quaternary sand and gravel unit. Sands, which 

primarily constitute the matrix between the gravels, were mainly derived from the Triassic sandstones 

(Kleinert, 1976; Kostic and Aigner, 2007). As a part of the study site, Figure 3.1 also shows an inferred 

border zone between Lettenkeuper (Ku) and Gipskeuper (km1) below the gravel fillings of the Neckar 

valley. On a local scale, groundwater is thought to flow predominantly northwest (NW) - southeast 

(SE) into stream(s), which ultimately join the Neckar river, located approximately 2.5 km from the 

study site (Figure 3.1). 

 



27 

Chapter 3 

 
Figure 3.1. (a) Regional geological map of the Neckar valley between Tübingen and Rottenburg: (1) – (7) Pre-quartenary basement (bedrock) – (1) Upper 
Muschelkalk (mo), (2) Lettenkeuper (ku), (3) Gipskeuper (km1), (4) Border zone, ku/km1 below the gravel fillings of the Neckar valley, (5) Upper Middle 
Keuper (km2 – km5), and Lias (L), (6) Heavily fractured, (7) Disruption (certain/assumed); (8) – (14) Quartenary – (8) High-lying old Terrace gravels of River 
Neckar, (9) Lower Terrace, (10) Loess, (11) Debris/hillside waste: fluvial relocated weathered loam and solifluction soils of Keuper over gravels, (12) Alluvial 
fan of secondary creeks, (13) Calc-sinter, (14) Younger floodplain (mostly covered by haugh sediments) (After Hahn and Schädel, 1973; Kleinert, 1976). (b) 
A geologic cross section showing the schematic interpretation of the rock/sediment layers along traverse line A – A′ shown in Figure 3.1(a). 

 



28 

Chapter 3 

 
Figure 3.2. Regional distribution of the nitrate concentrations showing the location of the Wurmlingen study site (between Rottenburg am Neckar and 
Tübingen), southwest Germany. The selected section of the studied nitrate plume is also shown as a small black rectangle. The map shows lateral extension 
of an elevated nitrate concentration zone with a plume-like structure that appears to originate from the Wurmlingen settlement and trends northwest (NW) - 
southeast (SE) (Schollenberger, 1998). Note the sparse coverage of the groundwater sample wells represented as black stars from the previous work by 
Schollenberger (1998), indicating high uncertainty in the physical context upon which the chemical data should be interpreted. Four new direct push multilevel 
groundwater sampling wells sited close to/within the indicated plume are also shown as yellow stars. 
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Owing to the hydrological importance attached to the groundwater within alluvial valley 

aquifer (e.g., Bowling et al., 2005; Baillieux et al., 2014; Lamontagne et al., 2015; Käser and 

Hunkeler, 2016), this site may be of considerable research value. In particular, the distribution of 

the alluvial aquifer sediments influences the variability of hydraulic functions that limit the 

deliverability of water to wells, biogeochemical activities and solute mobilization processes (e.g., 

Andriashek and Atkinson, 2007; Rayner and Rosenthal, 2008). However, the contributory role of 

alluvial aquifer systems remains unclear. Schollenberger (1998) made an effort to use 

hydrogeochemical and hydrogeological data to study chemical composition and dynamics of 

groundwater in the Neckar River valley. A plume-like zone of high NO3
- concentration trending in 

the NW - SE direction around the Wurmlinen study site (see Figure 3.2) was identified in the work 

of Schollenberger (1998). Of relevance is the extent to which the existence of preferential 

flowpaths, which influence the rate of water-related solute transport and residence times, exerts 

dominant hydrologic controls on water chemistry and isotope patterns and imparts solute 

attenuation mechanisms within the aquifer system (e.g., Krzeminska et al., 2014; Bethune et al., 

2015). Adequate evaluation of hydraulic and geologic heterogeneities such as preferential flow 

zones is one major drawback in hydrogeology which however is necessary for efficient site 

characterization and reliable planning of site remediation. Although the shallow groundwater at the 

study site is not exploited for drinking purposes, incorporation of hydrologic flowpath dynamics is 

critical to the understanding of the transport of point and nonpoint source pollutants (Peters, 1994) 

and in producing reliable chemical models (Robson et al, 1992). Insights gained through the 

incorporation of flowpath information in the interpretation of chemical and isotope data can be 

transferred to a wide spectrum of hydrologic systems.  

 

 

3.3 Description of the initial conceptual site model 
 

Along the larger stretch of the Upper Neckar river valley between Rottenburg and 

Tübingen, in the region of Baden-Wurttemberg, southwest Germany a water balance and chemistry 

study focusing on the nature and the renewal of groundwater has been conducted (Kleinert, 1976). 

This study laid the framework for a critical understanding of the groundwater chemical 

characteristics. Over the course of time, it seemed appropriate to edit the hydrogeology of the area. 

This was due to a number of expected modifications resulting from changes in the groundwater 

regime, shifts in the boundary of land affected by high sulfate and NO3
- concentration levels, and 

changes in groundwater recharge rate, and among other things, given a variety of threats to the 

groundwater and partly competing ideas about the future land use. As a follow-up study, the work 

of Schollenberger (1998) was intended to provide additional information on the chemical 

composition and flow dynamics of the gravel (“kies”) aquifer groundwater based on the 

conventional drilling, and sampling approach. Pertinent findings reported by Schollenberger (1998) 

around the Wurmlingen settlement (toward the northwestern portion of the Upper Neckar valley) 

as addressed in this study are as follows. There is a strong influx of the sulfate-dominated 

groundwater from the so-called Gipskeuper (“Gypsum Keuper”) into the groundwater from the 

northern border of the Upper Neckar Valley and the presence of the groundwater chloride and 

NO3
- is predominantly anthropogenic. Emanating from the Wurmlingen settlement area is a NO3

- 

plume structure with concentration reaching 70 mg/L and trends northwest – southeast (Figure 

3.2). 
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According to Schollenberger (1998), the NO3
- plume is the resultant effect of land use 

practices (primarily agricultural) (Kanz, 1977). Schollenberger (1998) postulated that 80 - 95 % of 

the NO3
- originate from nitrogen (N) fertilizer in the form of NH4

+. However, considering that the 

groundwater NO3
- plume can be consistent with a localized source of NO3

- controlled by the local 

hydraulic gradient (Hinkle, et al., 2007) and based on informal face-to-face communication with 

older farmers, an emerging perception is that a hypothetical landfill site (HLS) situated toward the 

Wurmlingen settlement (possibly around the Festplatz arena) may have contributed to the elevated 

concentration of NO3
-. 

I thought that if the application of N fertilizer in the form of NH4
+ on the agricultural soil 

was responsible for the elevated NO3
-, there should have been a more diffuse or widespread 

distribution of the NO3
- in the so-called heterogeneous aquifer system rather than a structurally-

controlled plume. Otherwise, the source of the NO3
- may be from a point source such as the 

hypothetical landfill site. On a second thought, the zone of elevated NO3
- may have been caused 

by the presence of an unknown preferential flow structure into which the solutes composed of 

either of the two/both sources of NO3
- emptied themselves and from which the groundwater 

samples may have been collected by the previous study described. Thus, given the disparity in the 

understanding of the NO3
- sources and the influence of subsurface hydrologic system, it was 

necessary to track the sources of the nitrogen loading to the aquifer. There were also concerns 

about the hotspot of the NO3
- plume, where reaction rates are expected to be disproportionately 

higher than the surrounding aquifer matrix (e.g., Morse et al., 2014).  

Based on the groundwater monitoring programme by the State Institute for Environment, 

Measurements and Nature Conservation Baden-Württemberg (LUBW, 2015), groundwater NO3
- 

concentration levels in the region of Baden-Wurttemberg are on a consistent and gradual decline 

(Figure 3.3) driven, in part, by the sustainable nitrogen management in the region. Given that the 

concentration levels of the studied NO3
- plume as at 1998 (based on Schollenberger, 1998) is way 

above the warning value stipulated in Figure 3.3, another interesting question is whether NO3
- still 

persists in the aquifer and how the ubiquity of the NO3
- presence and its behavior at different 

depths in the aquifer is influenced by the subsurface geohydrology. Soluble NO3
- can be mobile in 

groundwater with abundant dissolved oxygen, but may be lost through different biogeochemical 

transformation pathways under distinct conditions. Also, given the gypsiferous carbonate 

environmental geochemistry of the study area and the thermodynamic considerations that 

microbial NO3
- reduction is energetically more favorable than sulfate (SO4

2-) reduction (Lovley and 

Chapelle, 1995; He et al., 2010); there is a strong need to understand the extent of nitrogen 

biodegradation by microbial communities in the aquifer with some degree of certainty. Thus, for 

such an aquifer system, investigating the biogeochemical conditions in the light decreasing (or 

increasing) chemical constituents are a useful measure of their mobility and persistence (e.g., 

McMahon, 2001; Böhlke et al., 2002) and attenuation mechanisms of the loaded anthropogenic 

nitrogen (e.g., Nakaya et al., 2007; Ibrahim et al., 2010). In addition, to what extent that the fate of 

NO3
- is controlled by the distribution of subsurface aquifer structure remains poorly studied. 

Although in previous hydrogeological studies, the occurrence of buried channel features was 

defined in different parts of the regional alluvial-valley system by independent methods like 

refraction seismic (mentioned in Kleinert, 1976), the existence of such an alluvial architecture is 

unknown in the vicinity of the NO3
- plume around the Wurmlingen study site. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4092371/#B50
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Figure 3.3. Medium-term trends of mean nitrate concentrations for the overall measuring network observed 
annually in autumn - Inside and outside water protection areas in the region of Baden-Württemberg (LUBW, 
2015). 

 

The descriptions given above constitute the initial view of the study site, which I used as 

the working hypotheses for the purpose of arriving at the conclusions drawn in this study. These 

initial working hypotheses constitute the unknowns and unanswered questions with regards to 

nitrogen processing in the alluvial aquifer system and will be checked against the collaborative 

analyzes of the observed data characteristics in order to establish whether the proposed sources of 

NO3
- are in tune with the real (experimentally-determined) sources of NO3

-. Other hypotheses 

worth considering regarding the origin of the groundwater NO3
- plume are as follows. The general 

strike direction of the Mesozoic layers in the area is toward the Neckar valley, and an intrusion of 

sulfate-rich water found at the northern boundary of the Neckar valley aquifer indicates that the 

southernmost part of the Ammer valley (adjacent to the Neckar valley) infiltrates into the Neckar 

valley aquifer (Cirpka et al., 2017); by implication, the groundwater NO3
- may also originate from 

the hillslopes via the fractured bedrock (P. Grathwohl, personal communication, June 2018). 

Similarly, Kortunov et al. (2016) advanced that agricultural NO3
- applied to the Neckar valley soils 

does not reach the groundwater and that the groundwater NO3
- in the Neckar valley aquifer may 

have largely emanated from NO3
- applied to the hillslopes underlain by fractured oxidized mudrock 

transported to an unknown extent by groundwater recharge in the Ammer valley.  This hypothesis 

is also predicated on the assumption that both Ammer and Neckar floodplains contain Holocene 

sediments relatively high in organic carbon that potentially reduced agricultural NO3
-. However, 

my opinion in this present study is that opportunity should also be given to hydrologic leaching 

and infiltration of NO3
- as a potential physical pathway for the introduction  of NO3

- into Neckar 

valley aquifer from the agricultural soils in the Neckar valley. Overall, in this present study, I placed 
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emphasis on a section of the investigated NO3
- plume (see Figure 3.2) in the Neckar valley, hoping 

to define patterns and provide new opportunities to explore the poorly-understood hypotheses in 

relation to the origin of the NO3
- plume and physical (hydrological) and biogeochemical factors 

controlling the concentration distribution of the NO3
- solute. 

 

 

3.4 Earlier attempt at the nitrate plume characterization 
 

Earlier in this study, before the application of the observation-based CSM approach 

presented in Chapter two, new multilevel groundwater samples were collected at four selected 

points (see Figure 3.2) adjudged to manifestly conform to the statistical assumption of a high-NO3
- 

population target using a high-resolution DP multilevel sampling technique. The multilevel 

sampling technique was a step ahead of the conventional and solute concentration-averaging 

drilling technique by Schollenberger (1998), which does not clearly recognize or account for aquifer 

heterogeneity. However, the chemical data analysis results in terms of the major ions (Table A1) 

were uniformly distributed across depth profiles and did not signal the possibility of having 

delineated an anomalous "high hit" region within the plume. In this situation, given the sparse 

distribution of the sampling points it is most likely that the physical reality of the subsurface in 

relation to the distribution of the NO3
- violates the model assumptions of spatial statistics. This 

means that the distribution of the new groundwater sampling locations did not form a pattern in 

space that could be linked to the NO3
- plume. Thus, the sample representativeness was highly 

uncertain; that is, mismatches between the scale of decision making and the scale of 

sampling/analysis was certainly not addressed (e.g., Crumbling et al., 2004b). As a consequence, 

the targeted NO3
- plume is poorly defined. It was soon realized that characterizing the subsurface 

structural pattern and the hydrological system (including their geometry and potential pathway of 

flow) associated with the distribution of the groundwater solutes (Marker, 2007) would require a 

much more densely deployed sampling plan. Because time-constraints and high cost associated 

with populating the study site with substantial multilevel well placements grossly defeat the purpose 

of developing a smart CSM, the CSM evaluation exercise was started off using a preliminary field 

screening test followed by detailed subsurface imaging based on noninvasive surface geophysical 

characterization and by DP investigations to offer rapid insight into the subsurface physical context 

in which the distribution of groundwater solutes should be assessed (see Part B of this Chapter 

three for details). Figure 3.4 shows locations of the surface geophysical measurements and DP 

investigations discussed in this dissertation text. 
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Figure 3.4. Site-specific map of the Wurmlingen study site (a) showing the locations of some of the surface 
geophysical techniques and direct push investigation methods discussed in the dissertation texts within the 
region of Baden-Wurttemberg, southwest Germany (b). Outline of the distribution of the preliminary 
Schlumberger resistivity depth sounding survey locations is shown in (c). (d) Cross section showing 
coincident surface geophysical and direct push methods described under the combined interpretation 
strategy in section 3.7.6. 
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Part 3B – Combined and strategic interpretation of surface 

geophysical imaging and direct push-based ground-truthing 

data for the characterization of subsurface structural 

heterogeneity and geometry 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

Chapter 3 

 
 

3.5 Introduction 
 

Now that the initial CSM has been developed, I will now describe the variability in 

subsurface structures using surface geophysical and direct push investigations. This refers to the 

Step II and some parts of Step III of Figure 2.1, as well as Part I of Figure 2.2. 

In developing conceptual groundwater flow and solute transport models, adequate 

description of the variability in the spatial coverage and thickness of subsurface internal structures 

as well as the geometry of the soil-bedrock boundary is required (e.g., Dagan et al., 1989; Gupta et 

al., 2012). Studies indicate that subsurface geologic and hydraulic heterogeneities could exist in 

various discrete forms such as fractures, faults, dykes, buried channels or lenses (e.g., Neumann, 

2005; Grapes et al., 2006). Their occurrence however may not be easily discernible from surface 

expressions (e.g., Hou and Mauger, 2005; Jiang et al., 2014). Whereas straightforward 

approximation of groundwater flows is possible once hydraulic head data become available, 

Mohamed et al. (2015) noted that this is not always the case with the structures given their 

heterogeneities in hydraulic properties (e.g., porosity and permeability) and the expectation of fluid 

flow along preferred pathways. Gish et al. (2002), Anderson and McCray (2011), and Tremblay et 

al. (2014) also concluded that subsurface structural heterogeneity not only controls the physical 

transport of contaminants or groundwater solution contents but also influences chemical fluxes 

and reactions. Hubbard et al. (2001) highlighted the importance and control of physical 

heterogeneity of aquifer sediments (including hydrogeological and chemical heterogeneity) on field-

scale bacterial transport. However, the subsurface is rarely mapped to a sufficient detail to capture 

the spatial distribution of subsurface matrix and associated complex groundwater flow pathways 

and interactions (e.g., Robinson et al., 2009; Kalbus et al., 2009; Power, 2014; Bethune et al., 2015). 

Thus, there is need to characterize the distribution of subsurface structures to elucidate information 

about physical controls on the internal hydrological processes and complex pathways of flow 

(Zheng and Gorelick, 2003; Ronayne et al., 2008; Händel and Dietrich, 2012).  

The main obstacle to the achievement of this goal is linked to the fact that subsurface 

hydraulic and geologic properties tends to be quantified at spatially limited borehole and well 

geological log scales that is, in 1-D profiles (from millimeter to meter scale, (Krásný, 2002; 

Burkholder et al., 2008)) using the classical drilling, sampling and hydraulic testing techniques. 

Anderson (2007) highlighted that the estimation of subsurface hydraulic properties directly from 

small-scale measurements is one of the critical unresolved problems in groundwater hydrology (see 

also Chen et al., 2010). Apart from the associated cost, refusal depth limitations, and localized 

nature of these measurements, borehole-based sampling can lead to disturbance induced to samples 

(Vignoli et al., 2012). Additionally, the quality of geologic logs and their ability to resolve fine-scale 

features varies greatly with the sampling technology (Schulmeister et al., 2003). Given the scale 

variant nature, the spatio-temporal heterogeneity associated with the subsurface combined with 

high degree of equivalence in inverse hydraulic modeling, Crook et al. (2008) suggest that localized 

measurements cannot provide the required data density to adequately characterize large 

uncertainties in the continuity of the heterogeneous subsurface structures.  

de Marsily et al. (2005) noted that subsurface imaging can assist in the description of a 

heterogeneous system. Rubin and Hubbard (2005) in several illustrations exemplified how 

geophysical imaging methods can be used to remotely examine subsurface heterogeneity and 

prediction of flow. Although most quantitative hydrogeophysical imaging studies have been 

demonstrated at the local scale (~ 10 m), where the scale disparity between direct/wellbore and 
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indirect/geophysical measurements is often not sufficient, the relatively quick and noninvasive 

surface geophysical tools have shown obvious potentials in the characterization of subsurface 

heterogeneities over scales relevant to the management of contaminant plumes and water resources 

(Koch et al., 2009; Ward et al., 2014; Mendes et al., 2014) than has hitherto been the case in 

conventional drilling. Surface geophysical techniques can also be an effective tool for reducing the 

number of drilling positions during geological and hydrogeological studies (Balia et al., 2003; 

Watson et al., 2005).  

Different geophysical tools depend on different physical principles or processes, differ in 

scales of investigation, and tend to be sensitive and limited to certain intervals of interest and 

changes in the properties of rocks, soils, sediments, and pore fluids within it in the context of their 

imaging capacity. These key considerations, can be reconciled in a complementary geophysical 

methods combination or integration (that is, in a quantitative-based joint inversion process and/or 

qualitative combined interpretation strategy) allowing for a more focused probing of the collocated 

or coincident subsurface zone. The central goal is to provide a reliable picture of the subsurface. 

Studies have shown the usefulness of simultaneous and complementary combination of several 

independent geophysical observations when investigating a hydrological question (Gallardo and 

Meju, 2003; Falgàs et al., 2011; Leibundgut and Seibert, 2011; Moorkamp et al., 2013; Hausmann 

et al., 2013; Gabàs et al., 2014). If the different methods provide seemingly comparable results, 

more general conclusions can be drawn leading to reduced uncertainties. Yet still, because the 

inherent degree of uncertainty resulting from differences in properties and scales between different 

geophysical data and the problem of ambiguity due to the way that these data are processed by 

different software packages, cannot be easily circumvented (Kearey et al., 2002), successful 

interpretation of geophysical data and the development of site-specific relationships remains 

undermined. Thus, rather than just using geophysical methods in the one-time contribution for 

usual site characterization, surface geophysical measurements can be correlated with high 

resolution ground-truth imaging and sampling data derived from the DPT. Interestingly, the DPT 

has become a widely used and attractive alternative to the conventional drilling methods (see 

Dietrich and Leven, 2009). DPT allows for a cost-effective, rapid imaging, sampling and data 

collection from unconsolidated sediments or soils. Even though surface geophysical methods 

indirectly complement direct measurement, such direct observations as that from DPT are 

encouraged and used to calibrate geophysical approximations of structures and processes. 

I present the fundamental role of two surface geophysical methods, namely 2-D electrical 

resistivity imaging and refraction seismic tomography in evaluating a northwest (NW) - southeast 

(SE) trending near-surface feature of low apparent resistivity identified from a prior wide area 

investigation based on Schlumberger resistivity depth sounding surveys (see section 3.6). This 

feature was delineated at a section of the Wurmlingen study site (Figure 3.2), where higher levels 

nitrate in an alluvial aquifer was identified (Schollenberger, 1998). How the feature relates to 

structural controls on the NO3
- concentration distributions is unaddressed. Because resistivity 

sections from unconstrained inversion suffer from the inherent low vertical resolution and the 

depth to features of interest may be uncertain, if evaluated with care alongside seismic data, which 

detect with a better resolution, the geometry of bedrock depth, a reasonable amount of confidence 

can be injected into the interpretation process. By co-rendering the electrical resistivity and 

refraction seismic tomography results, the correlation between seismic velocity structures and 

resistivity variations has been used to draw inferences on the structure of the subsurface (Meju et 

al., 2003). However, the underlying question remains: what is the cause of the resistivity variations 
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and the implication of the delineated subsurface structures? A comparison of the interpreted 

geophysical data (that is, observed variations in seismic and resistivity attributes) and ground truth 

information from the DP-based investigations could therefore inject greater confidence in the 

results of the geophysical studies and reveal underlying aquifer structures that influence fluid 

properties and the dynamic behavior of processes occurring within the aquifer system.  

The primary and immediate goals of this study were to: (1) characterize the main features 

of the near-surface structure such as the presence of and depth to bedrock as well as the lateral and 

spatial extent of the alluvial-aquifer sediments. (2) demonstrate how complementary usage of the 

surface geophysical and DP-based data can systematically leverage the effectiveness and strength 

of each method in providing the spatial coverage and resolution required to image subsurface 

properties and processes. These serve to improve the conceptual understanding of the subsurface 

architectural patterns. With such knowledge of structural controls, fluxes, exchange and interaction 

of solutes and gases at critical ecohydrological compartments can be quantified. 

 

 

3.6 Initial spatially dense coverage of the subsurface region by 

resistivity depth soundings 
 

Here, an initial spatially dense coverage of the subsurface region was made by resistivity 

depth soundings. As earlier noted, such surface geophysical measurements offer greater 

measurement support volume advantage over many traditional subsurface observational 

approaches (e.g., drilling techniques). In particular, the use of the resistivity depth soundings is 

illustrated here as an interesting reconnaissance surface geophysical tool because it will be highly 

cost-intensive and time-inefficient to obtain enough data density required to investigate a section 

of the NO3
- plume using the preliminary direct push multilevel groundwater sampling highlighted 

in Section 3.4. Most importantly, an approach to define presumable nature of the subsurface 

conditions was required to faster target-oriented site characterization process. 

It is highlighted in section 3.4 that scaling up the limited volume of hydrogeochemical data 

from the multilevel groundwater sampling to understand the processes that govern the evolution 

of the NO3
- plume could be statistically biased. Nonetheless, based on the average major chemistry 

analysis, the groundwater electrical conductivity was found to be more sensitive to the sulfate ion, 

which, among other major ions is approximately 50 percent of the groundwater electrical 

conductivity (Figure 3.5). Thus, by assuming that the sulfate - saturated aquifer system with uniform 

porosity (e.g., Archie, 1942) has considerable and geoelectrically-mappable ionic strength, I elected 

to use or try out the resistivity method as a suitable geophysical tool to distinguish contrasting 

subsurface features (e.g., Nyquist et al., 2008; Jiang et al., 2014). The NO3
- level was too low to 

induce measurable response from the resistivity instruments. Granted that, I also expect that the 

ability of the resistivity mapping exercise to localize the distribution of the subsurface structures in 

relation to the groundwater ionic strength associated with the sulfate concentration levels would 

ultimately influence the understanding of the origin and behavior of NO3
- solute. This is because 

in principle the terminal steps of anaerobic microbial sulfate removal would be expected to take 

place sequentially after NO3
- removal, unless there are other potential electron acceptors such as 

iron and manganese (Whitmire and Hamilton, 2005). Evidently, therefore, there are linkages 

between the sulfur and nitrogen cycles such that the amount of sulfate produced varies relative to 
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the NO3
- removed from diverse set of freshwater environments (Burgin et al., 2007). 

 

 

 

 

 
Figure 3.5. Percentage contribution of the major ions to the groundwater electrical conductivity. Average 
concentrations of the major ions from the four new multilevel groundwater sampling locations shown in 
Figure 3.2 have been used in this computation. 
 

3.6.1 VES data acquisition, processing and inversion 

 

27 ground-based resistivity depth soundings (that is, vertical electrical sounding, VES) were 

acquired based on the traditional four-electrode Schlumberger configurations (Hermana, 2001). 

Because lateral heterogeneities are well emphasized, the Schlumberger array is preferred. Under the 

framework of the developed CSM approach, the VES surveys constitute a preliminary field 

screening test aimed at providing a rough estimation of the presumable distribution of subsurface 

geoelectrical target structures with a more detailed data coverage over larger areas in a short period 

of time than would have been accomplished by siting multilevel sampling wells across the site. 

Basically, for a resistivity survey, a voltmeter, an ammeter, a battery or other power supply source(s) 

and four metal stakes are used (Figure 3.6). The VES resistivity surveys were conducted using a 

Syscal-R1 resistivity meter (IRIS Instruments, France) at a section of the study site where I expected 

highest NO3
- concentrations based on Schollenberger (1998) (Figure 3.2). The outer two current 

electrodes (A and B) are used as current (source) to inject current (I) into the subsurface while the 

inner two electrodes are used as potential electrodes (M and N) to measure the voltage (electric 

potential difference, VMN). For each sounding, the current electrodes position is moved outwards 

by the same distance from the centre of the profile in order to increase the depth of penetration of 

the sounding, taken as AB/2. The AB/2 values in meters used include 1.5, 2.5, 4, 6, 8, 10, 12, 15, 

20, 25, 25, 30, 40, 60 with a corresponding MN values of 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,10,1,10,10,10. 

Overlap measurements were taken with every change in MN spacing and the MN distance was 

increased to improve the signal strength in the resistivity measurements with increased AB spacing 

and to ensure a potential difference large enough to be measured with accuracy. For Schlumberger 

sounding, Keller and Frischknecht (1966) have shown that it is desirable to keep the apparent 

resistivity within an error limit of 5 %, translated as measurements taken with MN/2 ≤ 0.435 AB/2.  
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The resulting apparent resistivity can be estimated as: 

ΜΝV
ρ = K

Ι
a            (3.1) 

For the Schlumberger array sounding, 

         
   

    
        (3.2), 

 

is the geometric factor that will acquire a particular ρa value for a given electrode spacing. Thus, the 

ρa value depends on the apparent resistance (V/I) according to the Ohm’s law and the K values. 

The employed resistivity meter had the internal capacity to calculate the geometric factors and 

outputting the apparent resistivity parameter. 

 

 

 

 
Figure 3.6. Typical four surface electrodes configuration in linear resistivity surveys. Equipotential and 
current flow lines are shown. The A and B electrodes inject a current into the ground whereas the M and N 
electrodes measure the difference in voltage across the earth. X represents apparent resistivity measurement 
location. 
 

Two common aspects of data processing, analysis and interpretation (that is, qualitative and 

quantitative) were considered. First, by quantitative interpretation of the electrical resistivity 

soundings, I used an automatic, iterative procedure to invert the observed data into 1-D layered 

earth models. In this study, the inversion process was carried out using Interpex IX1Dv2 program. 

Forward modeling and the automated inversion processes produced best fit curves and parameters 

that best explained the observed data based on the modeler’s best judgement. Typically, if the 

discrepancies in the curve-fitting error (that is, an estimation of the difference between the 
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measured and calculated apparent resistivity) are large, it is required that the structure of the 

inversion is re-modified until the root mean square error (RMS) drops below 10%. Unreliable depth 

models may be obtained. However, by incorporating auxiliary information such as depth to the 

water table from nearby/adjacent wells into the inversion procedure, it was possible to construct 

estimate of subsurface geologic structures with good confidence. Depths to the water table 

obtained from previously drilled wells at the site ranged between 5.08 and 5.95 m. Thus, for 

quantitative interpretation of the VES data, it is convenient to conduct a VES survey near a known 

stratigraphic column for better calibration of the acquired data (e.g., López Loera et al., 2015) and 

to confirm that the solution of the final forward model agrees with known geologic information. 

Second, by qualitative interpretation, visual analysis of apparent resistivity maps (popularly called 

isoresistivity maps) constructed from the measured/raw apparent resistivity data help to decipher 

areas of different subsurface resistivities. At a given measurement station, measured apparent 

resistivity data sample volume located beneath the station at a depth level equal to the array spacing 

(AB/2). The distribution of apparent resistivity data is a useful concept for initial quick scan 

interpretation and quality checks in the field, because it represents the resistivity properties of the 

subsurface better than the raw data (e.g., van der Kruk et al., 2000).  

 

3.6.2 Interpretation and discussion of the VES results 

 

Figure 3.7 (a, b and c) shows typical Schlumberger resistivity depth sounding curves at the 

study site. Most of the sounding curves are typical of type K (ρ1 < ρ2 > ρ3) and of type A (ρ1 < ρ2 

< ρ3). The shapes of the curve of apparent resistivity versus electrode spacing potentially reflect 

subsurface heterogeneity and the vertical resistivity contrasts at boundaries. For instance, it is 

shown at VES-8 (type A curve), that there is a progressive increase in the apparent resistivities with 

the electrode spacing. This indicates that there is hardly a conductive discontinuity in the current 

flow path. Conversely, VES-9 and VES-13 with type K curve show that deeper in the subsurface 

the current approaches a potential conductor, resulting in a decrease in the apparent resistivity 

function. Nevertheless, it is clear that the range of apparent resistivity values at the VES-13 location 

is larger than those at the VES-9 location. On the apparent resistivity maps that will be shown later, 

there is confirmation that the VES-9 survey center invariably located within or near a conductive 

anomaly compared to the VES-13 survey center. The presence of such a conductive feature may 

be helpful in the approximation of the position and the size of the lateral heterogeneity along a 

given profile. Although VES-13 appear similar to VES-9 in terms of type K curve, a remarkable 

difference between the two VES curves can be observed from the nature of the shifts in the 

overlapping segments of the apparent resistivity curves between AB/2 values of 20 and 30 m. The 

degree of the shifts without a “tie” shows extent of the local lateral heterogeneities that exist near 

the potential electrodes. Figure 3.7a shows that there is no significant discrepancy between the 

theoretical sounding curve and the field data whereas Figure 3.7b also did not show significant 

discrepancy between theoretical sounding curve and the field data except at the overlapping 

segments wherein the curves do not tie-in. On the contrary, Figure 3.7c showed noticeable 

discrepancies between the theoretical and field curves. It can also be seen that the extent of the 

shifts at the overlapping segments in Figure 3.7c is more pronounced than in Figure 3.7b. Possible 

causes of such discrepancies include the presence of features not receptive to interpretation as 

horizontal layers, cultural effects from buried structures such as drainage ditches, pipes, and current 
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leakage from the resistivity equipment, among others factors that may result in resistivity contrasts 

between layers in the stratified earth.  

 

 
Figure 3.7. 1-D inversion of apparent resistivity data for: (a) VES-8, (b) VES-13, and (c) VES-9. Modeled 
typical VES type curves of the study site are shown on the left hand pane whereas inverted 1-D layered 
models are shown on the right hand pane (solid red color). Estimated smooth model (solid green color) and 
equivalent models (broken lines) are also shown on the right hand pane. As indicated on the model VES 
curves, the relationship between the observed and calculated apparent resistivity data portray the level of 
subsurface heterogeneity. It can also be imagined that the greater the heterogeneity, the greater the shift in 
the overlapping segment observed on the curves. 

 

The interpretation models of VES-8, VES-13, and VES-9 consist of 1-D horizontal layers 

derived from the quantitative interpretation technique. The resistivity of the first layer was as low 

as 12 Ωm, 40 Ωm and 30 Ωm for VES-8, VES-13 and VES-9 with thicknesses of circa 2.95 m, 1.8 

m and 1.75 m, respectively. VES-8 curve type shows only two interpretable layers. The second 

layer of VES-8 reaches a resistivity value of 200 Ωm. In VES-13 and VES-9, the depths to the 

second layer are 5.5 and 5.2 m, respectively. These values correspond to the average groundwater 

level at that part of the site. The characteristic difference in the inverted 1-D resistivity models 

between VES-13 and VES-9 lies in the number of layers. VES-13 has three interpretable layers 
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while VES-9 has four layers. The resistivity of the second layer for VES-13 and VES-9 was found 

to be around 600 Ωm. The higher resistivity second layer of VES-13 is overlain a 95 Ωm lower 

resistivity third layer. Comparatively, in VES-9, the higher resistivity second layer is overlain a third 

layer with a much lower resistivity value of 7 Ωm. Also, the third layer in VES-9 is overlain the 

fourth layer characterized by a resistivity of ~ 250 Ωm.  

Benson et al. (1997) highlighted that interpreted resistivities should provide a much more 

accurate picture of resistivity as a function of depth compared to representing apparent resistivity 

values as isoresistivity maps from most studies have shown (Foster et al., 1987; Burger, 2006). 

According to Benson et al. (1997), this is because apparent resistivity values collected in the field 

are affected by the thickness and fluid content of each of the subsurface layers. Nonetheless, 

because modeling errors in conventional 1-D resistivity soundings result when representing the 

true resistivity and/or thickness of the interpreted layer (Loke, 2001), it is difficult to proceed from 

surface observations to derive an unambiguous spatial continuity in the subsurface resistivity 

distribution. Thus, at the stage of the 1-D resistivity soundings, one of the best approaches is to 

interpolate the acquired apparent resistivity sounding data.  

Isoresistivity maps for electrode spacings equal to 4 m, 20 m, 40 m and 60 m (Figure 3.8; 

see Table A2 for the VES survey location coordinates and the complete apparent resistivity data 

for electrode spacings 1.5, 2.5, 4, 6, 8, 10, 12, 15, 20, 25, 30, 40, and 60 m) were generated using 

block kriging with a linear variogram model. Using the Schlumberger electrode configuration, Roy 

and Apparao (1971) computed depth of investigation ranges from 0.125 of the maximum electrode 

spacing (AB, that is, the distance between the current electrodes) to a limit of 0.29AB (Apparao 

and Rao, 1974; Szalai et al., 2009). Thus, the range of depths of investigation for the isoresistivity 

maps are 1 – 2.32 m, 5 – 11.6 m, 10 – 23.2 m and 15 – 34.8 m for electrode spacings equal to 4 m, 

20 m, 40 m and 60 m at the various resistivity sounding station centers. Apart of the survey 

arrangement, the investigation depths depend on the resistance of the subsurface materials to allow 

current pass through it. Figure 3.8a illustrates a northeast – southwest trending low apparent 

resistivity pattern at AB/2 equals 4m. Subtly, the pattern of apparent resistivity variations at this 

electrode spacing bulges out and follows closely the surface topography contours. This pattern is 

also interpreted to be broadly similar to the near-surface structures at that depth. Figure 3.8b 

reveals, however, that at AB/2 of 20 m, nearly half of the study site toward the hillslope up North 

is covered with lower apparent resistivity materials compared to relatively higher apparent resistivity 

materials on the floodplain area down South. The pattern of the isoresistivity map in Figure 3.8c is 

remarkably different from those of Figures 3.8a and 3.8b. Compared to Figure 3.8b, Figure 3.8c 

shows that the low apparent resistivity feature on northeastern part of the map cleared up and was 

replaced by a relatively higher resistivity feature. It was also observed that the low apparent 

resistivity feature from the northwestern part of the area extended almost linearly to the 

southeastern part. The apparent resistivity map shown in Figure 3.8d further depicted a linearized 

and well-defined anomalous low apparent resistivity zone. The anomaly is also a NW – SE trending 

feature defined by a 70 – 90 Ωm contour. Immediate vicinity around the delineated feature, 

however, remained characterized by higher resistivities of > 90 to <145 Ωm. As earlier noted, the 

location of VES-9 near/ within the linearized low apparent resistivity feature indicate that the 

feature could be responsible for the degree of shifts observed on the depth sounding curves (see 

Figures 3.4 and 3.8). 
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Figure 3.8. (a), (b), (c) and (d) Apparent resistivity distribution maps of the subsurface at electrode spacings 
of 4m, 20m, 40m, and 60 m, respectively. Also superimposed on the map are surface elevation contours in 
metres and the confirmatory electrical resistivity imaging (ERI) profiles. Data points used for the 
construction of the maps are also shown as solid red circles. 

 

Although the most likely conclusion is that the investigated NO3
- plume (Figure 3.2) is 

controlled by the delineated NW – SE trending low apparent resistivity feature (Figure 3.8d), there 

was no readily available subsurface geological information to the explain the anomaly. 

Interpretation that rests rather on the distribution of apparent resistivities rely on the fact that 

recognized signatures might reveal complex and substantial resistivity structures, which endure 

regardless of the interpretation purposes. The only danger in such an approach is that an observer 

may postulate the likely nature of a target, while in actuality his proposal may not be in existence. 

For instance, based on the assumption made during the selection of the resistivity mapping tool, it 

might be tempting to hypothesize that the anomalous low apparent resistivity feature relates to the 

presence of a local groundwater system, with sufficiently higher groundwater electrical conductivity 

influenced by the sulfate concentration compared to the surrounding environment. However, it is 

also worth acknowledging that resistivity anomalies can be driven by variations in grain size, 
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mineralogy, and water saturation. Thus, because of insufficient data, it was quite premature to make 

conclusions on the cause of the low apparent resistivity anomaly. 

 

3.7 Surface geophysical 2-D imaging surveys and direct push 

investigations along transects 
 

To reduce the inherent degree of non-uniqueness and ambiguity in the interpretation 

process of the VES data (see section 3.6) and to avoid misrepresentation of subsurface geologic 

anomalies (e.g., Polson and Curtis, 2010; Knight et al., 2012), I decided to confirm the existence of 

the delineated apparent resistivity features (e.g., Hodlur and Dhakate, 2010; Zarroca et al., 2011) 

by conducting further investigations. It was borne in mind that the identified low apparent 

resistivity anomaly (Figure 3.8d) serves particularly as a target feature. Also, constraining 

geophysical interpretations of the feature with other geological and hydrogeological information 

help build more robust subsurface conceptual models (e.g., Ryan et al., 2013). Standard surface 

geophysical 2-D imaging methods (two-dimensional (2-D) electrical resistivity imaging (ERI) and 

refraction seismic tomography (RST)) were employed along transects to gain more reliable 

information on the distribution of subsurface structures than the 1-D sounding and lateral mapping 

techniques. At strategic locations selected on the basis of the surface geophysical investigations, 

information from DP investigations such as reverse vertical seismic profiling (RVSP), soil electrical 

conductivity (EC) logging and lithological soil sampling (SS) were used to ground-truth the surface 

geophysical results. The locations of these techniques are shown in Figures 3.4 and 3.8 

 

3.7.1 2-D electrical resistivity imaging (ERI) 

 

As a consequence of the marked trends on the apparent resistivity distribution maps (Figure 

3.8), electrical methods (in particular, resistivity tools) are adjudged suitable to detect, localize and 

characterize the distribution of the subsurface structures at the study site in terms of the resistivity 

variations.  

The tomographic variants of the electrical method (e.g., electrical resistivity imaging, ERI) 

have become the most universally applicable. 1-D methods such as the vertical electrical soundings 

(VESs) presented in section 3.6 are based on the assumption of horizontally homogeneous 

subsurface conditions (that is, intra-stratigraphic homogeneity) (Khalil and Santos, 2013). Given 

that lateral variations along the survey line can affect results significantly and individual anomalies 

will not show explicitly in the results, ERI help surmount the difficulty of the VES data in resolving 

more subtle, complex and/or small-scale features. Interpreting heterogeneous subsurface 

conditions using 2-D inversion schemes provides more accurate subsurface resistivity models 

(Daily et al., 2004; Zarroca et al., 2011). 
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Figure 3.9. Sequence of measurements for creating a 2-D resistivity pseudo-section based on Wenner array. 

Wenner array makes use of equally spaced electrodes at a specific data acquisition level. 

 

Nevertheless, in the same way as the VES, during ERI surveys, the spatial variation of 

electrical resistivity is estimated using four electrodes. Any combination of the electrodes can be 

used for current injection and voltage measurements to obtain resistance values, which when 

multiplied together with the appropriate geometric factor (a function of distance between the four 

electrodes) permits the determination of the so-called apparent resistivity. Multiple single apparent 

resistivity measurements with different electrode spacings and midpoints can then be acquired as 

tomographic data. Thus, the pseudosection, which represents the distribution of apparent 

resistivity measurements taken from electrodes arranged along a survey line form the basis of the 

tomographic investigations (Tassone et al., 2010). Because this approach is time consuming and 

require more field personnel, the ERI is usually implemented using an array of electrodes (that is, 

based on the multi-electrode resistivity imaging system), which combines aspects of both sounding 

and profiling to provide 2-D images of the heterogeneous subsurface structures (Figure 3.9).  

 

 

3.7.1.1 ERI data acquisition, processing and inversion 

 

In this study, ERI data were acquired using a RESECS multi-electrode device (Geoserve, 

Germany) along three survey profiles (ERI1, ERI2, and ERI3), aligned across the identified low 

apparent resistivity feature (Figure 3.8). Toward the Wurmlingen settlement (Northwest) and the 

hillslope environment (up North) of the study area, ERI1 is aligned SW – NE while on the 

floodplain area, ERI2 and ERI3 are aligned parallel to each in the N – S direction. Wenner-alpha 

array/electrode configuration was adopted due to inherent advantages of good signal-to-noise ratio 

(Revil et al., 2005) and good resolution of horizontal layers, however has moderate rating for the 
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resolution of steeply deeping structures (Wyatt et al., 1996). I used 192 electrodes between the 

current and voltage electrodes for each profile at 1 m spacing for ERI1 and ERI2 and at 1.5 m 

spacing for ERI3. A total of 4365, 3339, and 4830 measurements with initial maximum depths of 

investigation of 17.8, 16.1, and 38 m, respectively were generated for ERI1, ERI2, and ERI3, 

assuming theoretical relationships between electrode spacing and geometry for ideal homogeneous 

subsurface conditions (e.g., Loke, 2001). Although, ideally, the resulting apparent resistivity image 

or map would be a good first approximation to the actual subsurface resistivity, requiring no 

assumption about the nature of the subsurface in advance (Caldwell and Bibby, 1998), 

interpretations made only from the raw unprocessed resistivity field data (pseudosection) can be 

challenging. Therefore, potentially more reliable information can be obtained from data processing, 

and subsequently, the processed is then subjected to inversion. Rather than the apparent resistivity 

presented in the pseudosection format, inversion procedure accounts for variables such as the 

arrays and suggests true resistivity values. 

Apart from taking care of inherent subsurface characteristics such as layers of loose 

boulders and air voids that can cause misfit points, ERI data processing would generally involve 

editing according to some criteria such as determining which minimum voltage/current levels are 

physically realistic, identifying noise (usually due to high contact resistance between the electrode 

and earth) and deleting data points due to poorly coupled/malfunctioning electrodes. Data error 

and voltage error estimated using default values of 3% noise and a voltage of error of 0.1 mV were 

used to account for the variable quality of the individual data. Such steps help to reduce error in 

the final tomogram.  

Just as in every geophysical modeling process, ambiguity of different models/solutions that 

satisfy a single data is a looming problem. That is, a model (𝑚) is sought for, that explains the 

measured/observed data (𝑑) to a certain degree by minimizing error (𝑒) = 𝑑 − 𝑓(𝑚) (that is, 

producing acceptable misfit) in a least square series – where 𝑓(𝑚) is the model response (Günther 

et al., 2006). Thus, the main objective of the modeling process is to minimize a weighted data misfit. 

Inversion algorithms are generally used to model the acquired ERI data by converting field-

measured (observed) apparent resistivity data to calculated (predicted) apparent resistivity data. 

Misfits – deviations from the model’s solution at individual data points can be calculated as (Greer 

et al., 2017): 

 

Misfit =
, ,

,

i i

i


observed predicted

predicted

d d

d
        (3.3) 

In this study, the inversion procedure was implemented in DC2DInvRes based on a Gauss-

Newton type minimization with a smoothness-constrained explicit regularization as described by 

Günther et al. (2006). During the nonlinear iterative resistivity data inversion process, the 

DC2DInvRes software compares the resulting predicted data from a forward model to the 

observed data and iteratively varies the inverse model resistivities to decrease the misfit between 

the model result and the measured data. The inversion process solves an optimization problem in 

order to obtain an optimal model. Objective function () of a mathematical programme is used by 

the optimization procedure to measure the size of the model and to select better model over poorer 

model.  consists of an error-weighted data misfit (𝑑) plus the model roughness/norm (𝑚) 

weighted by the regularization/tuning/Tikhonov parameter () as expressed in Eqn (3.4): 
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where 𝑁𝑑 is the number of measurements, 𝑑𝑝𝑟𝑒𝑑 is the predicted data, 𝑑𝑜𝑏𝑠is the measured data, 

and 𝜀𝑖 is the standard deviation of the measured data. 𝑑 measures the minimized discrepancy 

between predicted and observed data according to a certain norm, that is, the - Norm2
 (or least 

least square – that is the sum of the weighted squared data errors for the entire survey): 
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where Wi is the weight factor assigned to each data point via the data weighting matrix, a function 

of assumed data error (Binley et al., 1995). 

𝑚 contains information that characterize the model’s closeness to a reference model, and 

the amount of structure in the spatial direction. With basically an unkown value when the inversion 

begins,  would serve the purpose of controlling the relative importance attached to obtaining a 

small misfit and reducing the value of the model norm. 

The error-weighted Chi-squared fit/statistic (2) and the root mean square (RMS) error 

are also available to measure data fit during the iterative inversion procedure. 2is related to 𝑑 as, 
2 ( 1)  d dN           (3.7) 

Under the assumption of a Gaussian distribution of data errors, the smoothness-constrained 

inversion finds the smoothest model whose response fits the data to the a-priori 2 as the 

convergence criterion. In general, 2 = 1 means a perfect fit, good convergence to the solution, 

and indicates that the data are appropriately weighted (Holbrook et al., 2014) given the actual noise 

and data noise is normally distributed (Johnson et al., 2012). The RMS error corresponds to the 

difference between the measured and calculated apparent resistivity, in percent, given by 
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As another suitable parameter for measuring the goodness of the fit, RMS error evaluates the spatial 

variability of the electrical resistivity. A large RMS indicates that the electrical resistivity is highly 

variable. This could indicate the presence of several abnormal data points. Possible solution is to 

delete the abnormal data points and restart the inversion process so as to achieve model 

convergence.  

The roughness of the models was tuned using the smoothness constraints of 2nd order due 

to its usefulness in delineating boundaries of small bodies such as the linearized low apparent 

resistivity feature idenitified in Figure 3.8d. Because the smoothness model constraint can result in 

slower convergence, significant improvement in the convergence speed was ensured (in 
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combination with line search and global regularization). To account for significant outliers in the 

ERI data that often lead to poor data fits; robust modeling, an 1 Norm minimization scheme 

based on iteratively reweighted least squares ( see Günther et al., 2006) was selected. Because the

1 Norm adds a penalty function that minimizes the absolute deviation (residual) between observed 

and theoretical response, it effectively downgrades the role of outliers in the measurements. On 

the other hand, - Norm2
 may not work in the presence of outliers. This is because the square of 

the deviation between the theoretical and observed response would weigh disproportionately on 

the penalty function. As a result, the outcome of the inversion using the - Norm2
 biases towards 

the outliers. Even though the outliers may present themselves as noise in any conductive feature, 

they are difficult to identify. Therefore, choosing the more appropriate penalty function is an 

important recommendation irrespective of one’s preconception about the geometry of a 

conductive structure. It was however, highly dignifying to have initially observed and assessed the 

systematic outliers in the data given that one can easily loose resolution. Ideally, resulting misfit 

plots should represent uncorrelated random distributions. But when robust modeling results in low 

resolution, some systematic layering might show on the plot hinting that some information still 

remain. In this regard, the vertical weight (z-weight) of 1 was set to improve interpretations related 

to the layering associated with vertical contrast in the misfit function. Overall,  played a key role 

in controlling the strengths of the smoothness. Trial-and-error approach was used to select a 

fitting, starting with a higher value. For the data from the three ERI profiles,  = 10 was selected 

during the full inversion process for keeping the  2 value within a reasonable limit. At a very large 

2, the error estimates were also increased to keep the  2 within limit. 

 

3.7.1.2 Interpretation of the ERI results 

 

Figure 3.10 (a, b and c) shows that the forward response of the inverted models fit well 

with the observed data, except at few spots that have low data coverage. The RMS data misfit 

values of 8.06, 3.54, and 4.47 % were obtained for the smoothness-constraint inversion aborted 

with the 2 values of 1.60, 0.08, and 0.46 for the final ERI1, ERI2, and ERI3 resistivity models, 

respectively. The recorded RMS misfit values represent the expectations on data quality and the 

number of observations as well as the number of parameters to which the model is constrained. 

According to Brody et al. (2015), while an RMS error value of < 5 % is ideal for processing, RMS 

values of < 10 are generally deemed acceptable. Also in Figure 3.10, the low-certainty inversion 

region is shown as the completely blanked out region whereas high-certainty region is imaged 

without shading. This follows the inversion sensitivity coverage, a measure of the model cell 

resolution. Overall, these indicators evaluate the robustness of the ERI survey results. 
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Figure 3.10. Measured data, calculated data and data misfit between the observed and predicted data for (a) 
ERI1, (b)ERI2, and (c) ERI3. The predicted data appear reasonably consistent with the observed data except 
at areas of low data coverage. 

 

Figure 3.11 (a, b and c) shows the inverted resistivity models (ERI1, ERI2 and ERI3) of 

the measured apparent resistivity data. ERI results reveal strong variations in the resistivity values 

along the profiles. ERI1 profile (Figure 3.11a) displays two distinct zones: a 5 to 7 m thick layer of 

low resistivity, which was quickly identified as alluvium sediments, overlain well-defined and 

potentially high resistivity bedrock. Within the alluvium, patches of relatively higher resistivity 

features near the surface could indicate the presence of distinctly coarser-grained sediments 

compared to other finer-grained sediments. Although the alluvium-bedrock boundary appears 

nearly horizontal, it is apparent that the alluvium thickness is lower and the bedrock shallows 
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toward the higher elevation zone on the left (SW) than to the right (NE). Also, along horizontal 

distance between 20 and 45 m, the bedrock seems to be deeply scoured.  

 

 
Figure 3.11. Electrical resistivity tomography models for the Wenner electrode configuration along (a) ERI1, 
(b) ERI2 and (c) ERI3 profiles. Dashed black lines are resistivity interfaces that demarcate zones identified 
in the subsurface. Respective locations from where the ground-truthing data (DP-based soil EC logging and 
lithologic sampling (SS)) were acquired are also shown.  

 

In contrast to ERI1(Figure 3.11a), both ERI2 (Figure 3.11b) and ERI3 (Figure 3.11c) 

delineated three main resistivity zones. The uppermost zone A near the surface is characterized by 

an electrically conductive layer. Below zone A lies a relatively high resistivity zone B. Zone B 

appears to enclose a confined low resistivity zone ('LRZ') C. The low resistivity zone C spans from 

the horizontal distance of ~30 to 90 m along the ERI2 survey line and from ~ 90 to 160 m along 

the ERI3 survey line. Noticeably in ERI2, there is no clear presence of a resistive bedrock feature 

underneath ‘LRZ’ C like that highlighted along ERI1 profile. The implication is that the clarity of 

such bedrock interface along ERI2 profile is simply not within the model region of inversion. 

Along ERI3 profile, a potential bedrock feature underlain the ‘LRZ’ C is present but inconspicuous. 
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Comparing the ERI2 and ERI3 profiles results, it is possible that longer ERI3 profile would have 

imaged deep-seated bedrock features better. Also, the closeness of the ERI1 profile to the hillslope 

and the depositional sequence of sediments in the area (that is, shallower transition from alluvium 

to the bedrock) would have facilitated the easy imaging of the alluvium-bedrock interface unlike in 

ERI2 and ERI3 profiles on the floodplain - farther away from the hillslope.  

Overall, as expected of the ERI results, the smeared boundaries between the 'LRZ' C and 

the surrounding high resistivity zones can also result from ambiguities and non-uniqueness 

problems inherent in the geoelectrical methods (e.g., Hoffmann and Dietrich, 2004). The 

regularization constraints introduced to address problems of ill-posed, non-unique solutions by 

minimizing the roughness of an image (in particular, resistivity inversion routine) often smooth out 

fine-scale geophysical structures (e.g., Tarantola, 2005; Binley et al., 2015), unequivocally resulting 

in the difficulty to demarcate the bedrock features (Hirsch et al., 2008; Hsu et al., 2010). The 

observed poor resolution in depth is also probably controlled by the high resistivity zone B, which 

may have restricted deeper penetration of the injected current. Thus, just as with geophysical 

techniques, the resulting resistivity models are not unambiguously dependent on data quality, 

measurement geometry and the choice of inversion parameters (Hauck et al., 2007).  

Prominent feature on the ERI2 and ER3 models is the presence of the confined ‘LRZ’C. 

Here, connecting the ‘LRZ’C feature on ERI2 and ERI3 profiles with the feature identified 

between the horizontal distance of 20 and 45 m on ERI1, it seems clear that the ERI results 

confirmed the pronounced and linearized low apparent resistivity feature at electrode spacing 

equals 60 m (Figure 3.8d). Although the electrical resistivity method appears to have successfully 

and independently mapped the distribution of subsurface resistivities, which could relate to the 

variability and dynamics of subsurface hydrological structures (e.g., Parsekian et al., 2015), 

interpretations of the bedrock structure (particularly on the floodplain area) suggest the need for 

combined, more elucidatory and complementary interpretations with other geophysical tools. 

 

3.7.2 2-D refraction seismic tomography (RST) 

 

In a bid to detect a bedrock surface, which may have been less confidently-resolved by the 

ERI data due to the problem of decreased resolution with depth, I also conducted a refraction 

seismic survey aimed at delineating subsurface layers of differing velocities. In refraction seismic 

studies, the depth of sediment/alluvium between the water table and basement, which is necessary 

for a successful water-table estimation, may hinder precise determination of the alluvium-bedrock 

interface. This problem is often encountered in deeper alluvium-bedrock interface. Hence, 

factoring in such a scenario is always advised when planning refraction seismic surveys. In this 

study’s refraction seismic survey setup, the transect length, and orientation (e.g. Haeni, 1988), was 

aligned to cross the identified low resistivity target structure along ERI3 survey profile (Figure 3.8d) 

in a manner that ensured good coverage and to minimize the influence of one of the common 

problems of refraction seismic just highlighted.  
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3.7.2.1 Refraction seismic data acquisition 

 

The refraction seismic method involves transmitting seismic energy into the ground and 

recording the arrival of the direct and refracted compressional-waves (P-waves) at preset distances 

along the ground surface (Figure 3.12). The refraction seismic data were acquired using a 24-

channel Geometrics Geode Seismic Recorder and 14 Hz P-wave geophones. The energy source 

was provided by the equivalent of 7.5 kg sledgehammer striking stainless steel plate. Geophones 

were laid out and buried in a way to improve energy coupling over a distance of 95 m from position 

70 to 165 m along the ERI3 survey line. The geophone spacing was 1m and a total of 20 shots 

were fired at 5 m spacing between the two ends (inclusive) during the survey. The data were 

sampled at 62.5 µs interval using a recording length of 0.25 s, a low cut filter of 15 Hz to take out 

low frequency noise and a notch filter equal to 50 Hz to handle any powerline-related noise 

frequency. To enhance the P-wave arrivals (onset of the signal) during picking, the signals were 

processed minimally using only a 50-100-300-500 Hz bandpass filter to remove low frequency 

cultural noise (e.g., Zollo et al., 2003). Typically, the data were of good quality and clear P-wave 

arrivals can be identified for picking, as an example shot gather in Figure 3.13 illustrates.  

 

 
Figure 3.12. A typical three-layer field refraction seismic geometry and layout. Surface refraction seismic ray 
paths are also shown. 

 

3.7.2.2 Travel times and pick uncertainty 

 

The P-wave first arrivals were picked manually with the Reflexw, version 7.5 software 

(Sandmeier, 2012). The accuracy of the refraction seismic interpretation methods and final solution 

depends on using consistent first break arrival times. Picking individual traveltimes can be time-
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consuming, and prone to error even with relatively simple, high-quality data (Biondi, 2007). 

Therefore, assigning prior uncertainties to the first arrival picks is necessary, especially when inverse 

modeling to avoid over- or under-fitting the data (Zelt, 1999). To estimate pick uncertainties, 

certain guidelines have been issued: uncertainties are often assigned qualitatively by inspection, 

taking into account the data’s S/N ratio and frequency content (Zelt and Forsyth, 1994), time 

difference of reciprocal times (that is, travel time reciprocity) (Zelt et al., 2006) or where two 

profiles intercept (Park et al., 2007), and by estimating picking uncertainties as part of an automated 

picking routine (Toomey et al, 1994). In this study, the approach of repeated picking was applied 

to obtain a number of arrival time values for each trace (e.g., Bauer et al., 2010). By repeated 

traveltime determination, mispicks are not used as single data values in the inversion but are 

statistically averaged. Individual data errors can be derived directly from the picking process 

without statistical assumptions and used for data weighting in the tomographic inversion.  

 

 
Figure 3.13. Example of shot gather from the surface refraction seismic surveys recorded at shot location 
(a) 90 m, and (b) 145 m along the ERI3 survey line. Picked first arrivals are also shown. The arrow pointing 
down shows the shot location on the ground surface. 

 

The average traveltime, it  determined for each trace (i) from a number of picks Ni with 

traveltimes ikt can be expressed as: 
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where Ni is basically 5 – 10 (that is, I picked the onset of each trace randomly about 5 - 10 times). 

The standard deviation, 𝑆𝑖 accounted for the relatively small number of values per trace, and was 

used to provide unbiased parameter estimation for pick uncertainty as: 
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Figure 3.14 (a and b) shows an overview of all and reduced average traveltime values, 

respectively as a function of the source and receiver locations. As noted by Bauer et al. (2010), the 

plot with reduction velocity of 4000 m/s reflect the variations of the traveltime function along the 

profile for specific offsets and related penetration depths. The standard deviation calculated from 

repeated determination of the first arrival travel times are also shown as a function of source and 

receiver locations in Figure 3.14c. Shown in Figure 3.14d (that is, the distribution of the standard 

deviation in a histogram), it was observed that about ninety-two percent of the travel times were 

picked with standard errors 0.19 - 0.665 ms. This value approximates a quarter period 

corresponding to the dominant frequency of the filtered data, which is roughly 376 - 1315 Hz.  

 

 
Figure 3.14. First arrival travel times: (a) Unreduced, and (b) Reduced with a 4000 m/s reduction velocity 
as a function of the source and receiver location. (c) Standard deviation of first arrival times determined 
from repeated picking (varying between 5 and 10 times) as a function of the source and receiver location. 
(d) Histogram of the travel time standard deviation presented in Figure 3.14c. 
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According to Zelt et al. (2006), a rule of thumb for picking accuracy is that an arrival can be 

identified at best to within one-quarter of the dominant period because if two waves arrive within 

this interval, they will add constructively and cannot be distinguished from one another. To weight 

the traveltime data during the tomographic inversion, picks were assigned an uncertainty in the 

range 0.19 – 0.665 ms.  

 

3.7.2.3 Estimation of layer velocities based on delay time analysis 

 

Raypath propagation of seismic waves is definitely influenced by the initial model of the P-

wave velocities and associated gradients. Thus, incorporating preconceived structures and layer 

velocities in the initial model not required for model parameterization may diminish the overall 

credibility of the final objective travel time tomographic model (Zelt and Forsyth, 1994). These are 

subjective choices that can be largely addressed by estimating the minimum model structure 

required by the least subjective portion of the traveltime data thereby guaranteeing a higher degree 

of certainty and differentiation from a structure that is merely consistent with the data. Travel times 

of first arrivals can be analyzed individually for various shot gathers to derive a number of 1-D 

velocity-depth profiles along a refraction seismic survey profile (Sain and Kaila, 1996; Vijaya Rao 

et al., 2007). Subsequently, the 1-D models are assembled to obtain the gross subsurface structure 

representing the pseudo 2-D velocity model that is used as a starting model for 2-D travel time 

tomographic inversion (Lanz et al., 1998). However, the approach of using 1-D reference models 

may not clearly capture low velocity structures or those features that are important to geological 

interpretation. In this sense, refraction seismic interpretation techniques usually based on simple 

planar geologic layered models commonly restricted to two or three layers, may be of limited use 

for heterogeneous subsurface structural conditions. Like the ERI technique, RST inversion 

schemes can be employed for reliable 2D interpretations. The RST assessment is not intended to 

supersede the minimum-structure models. This is because the minimum-structure model is 

typically better resolved and more interpretable except in very complex cases. Moreover, the travel 

times tomographic approach does not make limiting assumptions, but provides only a smoothed 

version of the minimum-structure models (Watson et al., 2005). In this study, I used the 

conventional approach based on the delay time interpretation technique, wherein simplifying 

assumptions, such as constant velocity, lateral homogeneity within layers, or strictly increasing layer 

velocities with depth were made to approximate the minimum-structure model of the subsurface. 

The aim was to determine a simple, but representative subsurface structure that predicts the 

observed travel time data as accurately as possible without biasing the results during subsequent 2-

D traveltime tomography. Delay time is the time taken by a pulse to travel upward and downward 

a layer. If the delay time beneath a geophone is known, then the depth to the refractor interface 

can be estimated. The delay time interpretation method can be very effective in mapping non-

planar/irregular velocity interfaces.  

Assuming that the depths at the shot point and detector are not equal, because of either 

surface elevation changes or dip changes (and the errors resulting from neglecting dips are 

negligible for dips of up to 10o, and also not serious for dips as great as 25o), the travel time (t) for 

a pulse from the shot to any detector beyond the critical distance for a three-layer case is given by 
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where 𝑥 is the horizontal distance from the shot point to the detector, V1  is the velocity of the first 

layer, V2 is the velocity of the second layer, V3 is the velocity of the third layer (refracting bedrock) 

and 𝑖  is the critical angle of incidence (𝑠𝑖𝑛𝑖23 = 𝑉2/𝑉3; 𝑠𝑖𝑛𝑖13 = 𝑉1/𝑉3), 𝑍𝑠  and 𝑍𝑑 are the depths 

below the shot point and detector, respectively measured normally to the refracting interface. Eqn 

(3.11) can be re-written as: 
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The latter two terms of Eqn (3.12) are the sum of the delay times terminating at the shot point and 

any detector respectively for layers 1 and 2. At zero offset (𝑥 = 0), the expression is identical to the 

intercept time. Palmer (1981) defined the delay time as the “generalized half-intercept time” if the 

shot depths (≤ 0.5 m) are negligible. This is to say that the delay time interpretation method 

involves partitioning intercept times into shot and receiver delay times (Barry, 1967). According to 

Lawton (1989), however, this is easily accomplished for reciprocal records but is more difficult if 

only end-on records are available. As shown in Eqns (3.11) and (3.12), the sum of the delay times 

for the shot and any detector for the first and second layers can be determined by subtracting 𝑥/𝑉3 

from the detector arrival times of critically refracted arrivals. Because the delay time for the shot 

point remains constant for any spread, any variations in the delay time for detectors are 

proportional to variations in depths to the refractors beneath those detectors. The depth beneath 

the detector to the top of the refractor can then be calculated as:  
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where 𝑍1 and 𝑍2 represent the thicknesses of the first and second layers. ∆𝑇1 and ∆𝑇13 represent 

the 1st layer and combined layers 1 and 2 delay times, respectively. The second layer delay times 

(∆𝑇2) as shown in Eqn (3.14) is calculated by subtracting ∆𝑇1 from ∆𝑇13. 

 

From the set of travel time picks, five shots (Figure 3.15a) were selected for applying the 

delay-time method as described by Pakiser and Black (1957), Redpath (1973), and Dentith and 

Mudge (2014). The following describe the steps taken in the delay time interpretation method (by 

graphical analysis): 

1 Cautiously delineate arrival times that belong to refractions from the same layer following 

change in slope at the crossover point and assign various layer velocities (Figure 3.15a). 

The intermediate shots at positions 90, 115, and 145 m have been included to enable proper 

resolution of the near-surface layers. The resulting apparent velocity from this procedure 

indicate that there is a three-layer case: a first layer with a velocity of 556 to 705 m/s, a 

second layer with a velocity of 1571 to 2187 m/s, and the last third layer (bedrock) with a 

velocity that lies between 2444 and 4248 m/s. I computed the harmonic means of shots 
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for the first and second layers on both the northern (N) and southern (S) halves of the 

survey line and averaged the values for those layers. The computational process for the 

harmonic mean (HM) values is illustrated below: 
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The average velocity values of the first and second layers were found to be 596, and 1757 

m/s, respectively;  

 

2 Estimate the true velocity of the refracting horizon (𝑉3) that is, the third layer velocity using 

the travel time difference method. This is determined using differences in critically refracted 

arrival times from end-shots. As shown in Figure 3.15b, both arrivals, which must be 

refracted from the same layer, were added to the added arbitrary Y-axis line of 70. The 

resulting velocity value of 2477 m/s defines the velocity function, which comprises a line 

whose slope is 2/𝑉3. Changes in slope might be indicative of lateral changes in velocity, in 

which case a series of straight-line segments may be fitted to the data.  The calculated 𝑉3 

velocity value of 2601 m/s was found to be in reasonable agreement within the range of 

the nominal velocities of 2444 and 4248 m/s estimated in Figure 3.15a.  

 

3 Calculate the delay times. For the three-layer case considered, I computed the delay times 

for layer 1 (∆𝑇1), and layer 2 (∆𝑇2 = ∆𝑇13 − ∆𝑇1). For the end-shots (Figure 3.15b), the 

intercept times (𝑇𝑖𝑛𝑡2) emanating from the second layer were halved to represent ∆T1. Half 

intercept times are also available at the intermediate shot positions 90, 115, and 145 m. The 

delay times at the remaining receiver/geophone stations, were obtained by interpolating 

between the half-intercept times. From the travel time curves for opposite ends of a 

reversed spread (Figure 3.15b), a line is drawn through the origin whose slope is equal to 

the known velocity of the refractor (𝑉3) determined using the approach described in step 

2. The ∆𝑇13 values (Figure 3.15c) are then determined by scaling the time difference 

between each arrival time (beyond the critical distance) and the corresponding position on 

the sloping line. This is equivalent to subtracting 𝑥/𝑉3 from the recorded detector arrival 

times and halving the results. Also, according to Eqns (3.11) and (3.12), the intercept times 

emanating from the third layer (𝑇𝑖𝑛𝑡3) is sum of the delay times at the shot and detector 

combined for layers 1 and 2. The observed vertical offset in the two delay time curves, 

shows that the depth to the refracting horizon is greater at Shot 1 than at Shot 2 up to the 

horizontal distance of 144 m and vice-versa.  
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Figure 3.15. Delay time analysis for a three layer case. (a) Selected travel time plots used for identifying 
subsurface layers by apparent velocities (and changing slopes) and determining intercept times for the first 

layer. (b) Computation of the third layer velocity (𝑉3) by travel time difference method and estimation of 
the intercept times layers 1 and 2 (combined) (c) Combined intercept times for each detector beyond the 
critical distance. (d) Delay times in (c) adjusted vertically for the best fit. 

 

 

 

4 Adjust the computed total delay times (∆𝑇13), which is the half-intercept times (𝑇𝑖𝑛𝑡3) from 

opposite ends vertically for the best fit (Figure 3.15d) using the difference between the 

times for the overlapping zones and average of the difference for the non-overlapping 
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zones. 

 

5 Based on the estimated delay times, compute the layer thicknesses, 𝑍1 and 𝑍2, using Eqns 

(3.13) and (3.14). 

 

 
Figure 3.16. (a) Resulting interpretation of the time-distance graph of Figure 3.15. The interpreted refraction 
seismic cross section indicates the presence of a depression on the surface of the seismically-determined 
bedrock. (b) Initial model for the tomographic inversion of P-wave travel times. North and South refer to 
the spatial orientation of the survey section along the ERI3 survey line. The closed red circles are surface 
refraction seismic and downhole reverse vertical seismic profile shot points. The closed blue circles 
represent the surface refraction seismic receivers while the inverted black triangles are the reverse vertical 
seismic profile receivers. The red horizontal line indicates the groundwater table. 

 

 

3.7.2.4 Model parameterization for refraction seismic tomography 

 

Figure 3.16a shows the interpreted subsurface velocity cross-section model from the 

observed travel times based on the delay time analysis. From Figure 3.16a, the 2-D starting velocity 

model (Figure 4.16b) for the travel time tomography was parameterized. This initial 2-D velocity 

model represents a velocity field with values on discrete mesh of grids or cells. The model spans 

95 m horizontally, from 70 m to 165 m along the ERI3 survey line and 18 m vertically, from 0 to 

18 m (elevation above mean sea level was attached to these depths ranges), creating a 96 by 19 grid 

nodes for the forward step and a 95 by 18 grid of 1710 cells for the inversion. Because the ray 

density and number of crossing rays generally decrease with increasing depth (e.g., Lanz et al., 1998; 
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Krautblatter and Draebing, 2014), to account for the resulting decreases of resolution with depth 

during the inversion, it was also appropriate to increase model cell size with depth as shown in the 

initial model. In this sense, I used a uniform-grid model of relatively small cells and larger model 

cells in the shallow and deeper regions of the model, respectively for the forward travel time 

calculations and inversion. 

Several inversion routines for the seismic travel time tomography have been developed, 

many of which have become commercially available over time. Sheehan et al. (2003) evaluated a 

number of the refraction tomography codes for near-surface applications. For the travel times 

tomographic inversion, I employed a MATLAB-based isotropic finite-difference travel time 

inversion program (Paasche et al., 2008). This inversion program uses a damping and a smoothness 

constraint based on ray tracing algorithm. Horizontal smoothness constraints of 100 evaluated how 

similar the neighboring raypaths are, in the horizontal direction while a high damping constraint of 

10,000 ensured that the model remain unchanged by suppressing fluctuating high or low values in 

the model. I assumed that the contact between the first layer and the second layer represents the 

unsaturated layer and the saturated zone boundary. Thus, I allowed sharp velocity contrast in the 

inversion by disabling vertical smoothness constraints at a depth of 6 m below the ground surface. 

The idea behind the refraction seismic travel times tomographic inversion is that the velocity values 

on the grids or cells that will best fit the observed travel times will be sought after. In the process, 

the discretized initial velocity model is modified through an iterative process to yield smoothed 

model with the minimum amount of required structure that fit the observed data adequately. The 

trial- and-error process of forward modeling was used to compute the model travel times for all 

traced raypaths based on the initial constraining estimates of the near-surface velocity model. Just 

as in every geophysical modeling process, the inverse modeling then compares the computed 

(synthetic) travel times to the measured (observed) ones and the difference (travel time residual) 

applied for velocity corrections and ultimately used to produce an updated velocity model. A total 

of 1919 averaged P-wave travel time data for each trace picked, were inverted to retrieve the final 

P-wave velocity of the investigated subsurface.  

 

3.7.2.5 Interpretation of the RST results 

 

Four iterations in total, reduced the RMS of the travel time residual (Figure 3.17) from 1.53 

to around 1.26 ms for the final surface refraction seismic tomography (RST) model. At 95 % 

confidence interval, my picks uncertainty ranges lie within this travel time residual. Figure 3.18a 

shows the final P-wave velocity model. Unlike ERI results, the computed standardized coverage 

for the RST is either 0 or 1 depending on whether a ray crosses a model cell or not. Here, the 

blanked region without ray crossing is represented by 0 whereas the regions with ray crossing are 

represented by 1. The P-wave velocities in the model increase gradationally with depth from  250 

m/s to about 700 m/s near the surface (depths 0 - 3.5 m). Higher P-wave velocity values (up to 

950 m/s) are observed in the lower zone from depths 3.5 to 5.75 m. This range of velocities (250 

– 950 m/s) is compatible with the expected P-wave velocity values in the heterogeneous 

unsaturated sediments (e.g., Knight and Endres, 2005). The inversion results showed that at 

position x = ~ 90 – 160 m and y = ~6 – 12 m, the subsurface takes a concave up/trough-like 

shape. This deeper trough-like structure appears to be filled with sediment materials that exhibit 

lower P-wave velocities in the range of 1500 to 2000 m/s compared to the base and flanks with 
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higher P-wave velocities. This range of P-wave velocity values is consistent with typical seismic 

velocities of floodplain alluvium (e.g., Brody et al., 2015). The observed trough-like low P-wave 

velocity structure within the middle portion of the profile suggests the existence of a strong velocity 

gradient. The low P-wave velocity structure is followed by a visible transition into a higher velocity 

layer (over 2500 m/s) that runs underneath the low P-wave velocity structure and to the both sides 

of the structure.  

 

 

 
Figure 3.17. Root-mean-square (RMS) error as a function of the number of iterations of the inversion 

algorithm. The three curves signify inversions for the refraction seismic (RS), RS plus observed reverse 

vertical seismic profile (RVSP) travel times, and RS plus corrected RVSP travel times. 

 

Displayed in Figure 3.18b, the spatial distribution of the color-coded travel time residual 

values (that is, observed travel times minus calculated travel times) as a function of the source-

receiver offsets provides an indication of how well the travel time inversion predicted the observed 

travel times. In general, smaller and uncorrelated travel time residuals show that the assumption on 

the linear approximation of the relationship between the velocity model and the travel times is not 

violated during the inversion process. Negative residuals represent fast travel times whereas 

positive residuals represent slow travel times. There appear to be some inversion resolution 

problems at some source-receiver positions (see small arrow indications in Figure 3.18a). The ray 

coverage (Figure 3.18c) measured the hit count and angular coverage of all traversing raypaths. By 

examining the raypaths, information about regions of accuracy in the model is evaluated. The 

introduction of the localized channel feature in the initial model has been recognized by some 

studies (e.g., Lanz et al., 1998) to contradict the assumption of continuous constant layers. In this 

regard, it is proposed that there may be absence of rays passing through certain parts of the final 

models thereby exacerbating the problems of using RST to study such features. This is also because; 

the presence of such a feature may likely hinder the passage of refracted seismic energy into the 

bedrock and back to the detectors on the ground surface in measurable amounts. However, this 

may not always apply and was not the case in this study wherein ray coverage through the 
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channelized zone was quite dense. This indicates that the refraction seismic survey coverage of the 

area of interest was reasonably enough and practical. The observation of dense ray coverage 

demonstrates that the subsurface velocity model is likely well-constrained against diffuse raypaths 

which could suggest that the model is less well determined. 

 

 
Figure 3.18. Surface refraction seismic tomography results. (a) Final 2-D velocity model obtained from the 
inversion of the surface refraction travel times along a segment of the ERI3 survey line. The areas with 
empty information represent the cover zones with ray coverage < 0. Distinct P-wave velocity interfaces are 
shown as the dashed blue lines. (b) The travel time residuals presented as 2-D functions of the source and 
receiver locations. (c) Ray diagram for the surface seismic refraction profile. The ray coverage density 
appears to be relatively high even in the channelized zone. In general, low ray coverage would indicate 
reduced resolution and reliability possibly resulting in a poorly-constrained model.  

 

3.7.3 Evaluation of the RST results based on the reverse vertical seismic 

profiling concept 

 

The emergence of the reverse vertical seismic profiling (RVSP) technique, in which energy 

sources are placed along the borehole and the receivers laid at intervals at the ground surface using 

various acquisition technologies has become widely accepted as a seismic methodology based on 

the accessibility of a borehole. It is a useful tool for reservoir/aquifer delineation, producing high 

resolution images over relatively small zones of illumination. The RVSP configuration is considered 

to be quite similar to the conventional VSP geometry in terms of the ray paths travelled, but the 

orientation of the receivers and the sources are reversed (Chen et al., 1990). However, at the heart 

of the RVSP concept lays some key strengths and advantages over the conventional VSP surveys 

(wherein energy sources are generated at the ground surface and receivers/detectors placed at 

intervals along the borehole). For instance, compared to the conventional VSP, the RVSP gives 

relatively better coupling/resolution and can solve a major noise problem in seismic studies. Also, 

the placement of seismic energy sources in wellbores overcomes the logistical limitations of the 

multiple surface energy sources needed in some VSP surveys, thereby minimizing cost (Shehab et 

al., 2008). Furthermore, in contrast to the surface refraction seismic method in which the near 

surface materials’ attenuation properties changes the character of the seismic wave that passes 

through the subsurface, leading to non-elastic deformation, velocity dispersion and absorption and 
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greatly decreased resolution of the travel time data, there is less attenuation associated with the 

RVSP due to the shorter ray path from source to receiver. Therefore, modeling the first arrival data 

of the surface refraction seismic based on travel time fits alone may not provide a complete set of 

solution without quantifying the uncertainties of the estimated model parameters. In particular, 

variations in vertical velocities from the RVSP survey provide information on the existence of a 

low-velocity layer. To ensure a reliable reconstruction of the near-surface P-wave velocity 

variations, structural redefinition of the starting velocity model and evaluate the performance of 

refraction seismic tomographic modeling, travel time data from the RVSP survey were 

incorporated.  

 

 
Figure 3.19. (a) Typical screen point (SP) 16 sampler (https://geoprobe.com/sp16-groundwater-sampler). 
(b) Steps in driving in the groundwater sampling device to the desired depth for acquiring the reverse vertical 
seismic profiling data using the direct push technology (e.g., Paasche et al., 2009; see dissertation text in 
Chapter four (section 4.2 for a detailed description of the multilevel groundwater sampling technique).  

 

3.7.3.1 RVSP data acquisition 

 

The applicability of the RVSP was initially limited as source power placed along boreholes 

can get the borehole damaged. However, advances in the usage of different near surface RVSP 

data acquisition approaches have bettered the employability of the method. As one of the ways of 

getting around this limitation, Dietrich and Leven (2009) suggest the use of the DPT to perform 

RVSP measurements. Based on this approach, a high-voltage (> 4 kV) seismic sparker source was 

used in combination with the DPT (Figure 3.19). To deploy the sparker source, a Geoprobe® DP 

machine was used to drive a groundwater sampling system with a screen length of 0.5 m to a total 

depth of 9.55 m in the saturated zone (see section 4.2 for a more detailed description of the 

multilevel groundwater sampling approach). At this total depth position, sufficient seismic signals 

were generated for stacking by firing a 3-string of shots using the sparker source inserted into the 

borehole within a zone screened for groundwater sampling. The sparker source power is triggered 
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from the remote unit of an electric surge generator. The downward radiation caused by the sparker 

is steered by its electrode housing. The collapsing bubbles produce broadband (50 Hz – 4 kHz) 

pulse that penetrates the subsurface. Once the original string of shots had been fired, an extra 

charge was prepared and fired at the next retracted depth. The reader is also referred to Paasche et 

al. (2009) for a comprehensive detail about this tool. In this study, shots were fired at a total of 19 

source locations as the rod string was retracted at 0.20 m intervals (from depth 6.05 to 9.25 m) and 

at 0.15 intervals (from depth 9.25 to 9.55 m) up to a depth of not less than 30 cm below the 

groundwater level. Taking RVSP shots substantially within the saturated zone ensures that high 

resolution direct arrivals are recorded. The same acquisition system as for the hammer source-

based surface refraction seismic was used to record the RVSP data. The shot location was on the 

horizontal distance 126 m along the ERI3 survey line (Figures 3.4d and 3.16). Twenty-four P-wave 

geophones were laid north-south on a spacing of 1m apart with twelve geophones on the either 

side of the shot location. The two closest geophones on the either side of the shot location were 

located 0.5 m each from the shot location. Each shot produced a 24 trace record. For these records, 

trace 1 is the most northerly receiver, trace 24 the southernmost.  

 

3.7.3.2 Picking of the RVSP arrival times and tomographic inversions 

 

The onset of the direct arriving energy was clear for picking (Figures 3.20) and required 

minimal processing. For the purpose of velocity determinations, only the pre-processing steps of 

gathering to common receiver domain and first break picking were applied to the shot gather. I 

used the Geogiga VSP 8.3 – vertical seismic profiling software (www.geogiga.com/en/vsp.php) to 

sort the plotted raw data into common receiver gathers, apply 50 ms automatic gain control (AGC), 

and to pick the direct arrival times (Table A3). The common receiver grouping was intended to 

strengthen the signal and minimize random noise. Ground roll noise caused by the source support 

equipment is noted to be randomized in common-receiver gathers (Krasovec, 2001).  

 

 
Figure 3.20. Shot gathers of reverse vertical seismic profiling along ERI3 survey line at the shot depths of 

6.05 and 9.55, respectively. 

 

Using the RVSP direct arrival times differences between source locations at different 

depths, velocity variations with depth can be determined. The resolution of the vertical velocity 
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structure increases with decreasing RVSP source location spacings in the borehole. However, 

source location-to-location interval velocities can become increasingly sensitive to arrival time 

picking errors as source location spacing decreases (Lizarralde and Swift, 1999; Moret et al., 2004). 

To provide more travel time information, through the upper layers, delineate abrupt and lateral 

velocity changes away from the well, a reverse multi-offset VSP travel time tomography was 

designed. This approach is better appreciated than the conventional uphole survey analysis in which 

only picks from near-offset are directly applied in the estimation of velocities. Because only one 

well was used in this study (see Figure 3.16), a major setback of this approach is that in certain 

velocity fields (far from the well), some of the cells are not crossed by raypaths. Hence, velocity 

information obtained in those cells may not be reliable. To solve this problem, studies have 

employed crosshole and multi-well reversed multi-offset VSP travel time tomography (Clement et 

al., 1999; Dietrich and Tronicke, 2009). In this study, however the aim was to test the sensitivity of 

the travel times and to evaluate how reasonably-consistent the subsurface velocity estimates and 

variations from the surface refraction seismic first arrival picks are. 

To parameterize the starting model for the combined refraction seismic and DP downhole 

shots travel time tomography, I estimated the weathered and subweathered layer velocities from 

the RVSP data for comparison to existing layer velocity information from refraction seismic. Here, 

the weathered zone velocities represent the velocities above the water table while the subweathered 

layer velocities represent the zone below the water table. From the plot of the shot depth versus 

observed direct arrival time for various offset receivers (Figure 3.21), the interval velocities were 

determined as the inverse of the slope of the graph. Just as in the refraction seismic, the calculated 

velocities represent only apparent velocities and not the true velocities of the subsurface. This is 

because for some recorded distances from the well/shot location and the depths, most energy does 

not propagate vertically. The straight-ray path approximation neglects the effects of refraction at 

interface. For example, at the water table, where high velocity contrast between the saturated and 

unsaturated zones is expected, ray paths originating at DP shot locations in the aquifer are refracted 

strongly and cross to the unsaturated zone almost vertically (Paasche et al., 2009). Schuster et al. 

(1988) noted that at offset/depth ratio greater than zero but less than one, straight-ray geometry is 

a valid assumption. Parry and Lawton (1994) also observed that at shot depths greater than 5 m at 

2 m offset, the straight-ray assumption becomes invalid. Beyond this offset, times can be 

compensated for, by reducing the recorded or picked travel times by the factor cos θ; where θ is 

the angle between the well and a straight line drawn from shot to receiver. This correction factor 

represents the ratio of the shot depth to the slant distance from the shot depth to the receiver. 

Figure 3.21 also shows the plot of the shot depth versus corrected direct arrival times for the 

various offset receivers and the associated interval velocities. It is clear from Figure 3.21 that there 

is little appreciable time compensation for shot depths greater than 6.55 m at 2.5 m offset or less. 

Such existing differences between the observed and corrected RVSP travel times were exploited to 

quantify the uncertainty in the travel time data used for the surface RST. 
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Figure 3.21. (a) Time/depth plots for receivers (represented as G) at various offsets (= offset location) from 
the shot location on the surface. Data points represented as closed black circles are the observed travel times 
while the closed red triangles represent the corrected travel times assuming a straight ray path. The interval 
velocities obtained as the inverse slope of the shot depth/direct arrival plot are shown on both sides of the 
observed and corrected travel times. 
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For the RVSP travel time tomography, the initial model presented in Figure 3.16 was 

retained. Because the measured static groundwater level was in the same range as the depth to the 

first layer, the vertical smoothness constraints from the RST was retained as well. Also, I did not 

alter the smoothness and damping constraints used for the RST. The observed and calculated travel 

times from the downhole shots were added separately into two files containing the surface 

refraction seismic travel times and then inverted in the same manner as the RST. 

 

 
Figure 3.22. (a) and (b) Travel time residues on the incorporation of the observed and corrected RVSP travel 
times, respectively during the travel time tomographic inversion. (c) and (d) Ray diagrams on the 
incorporation of the observed and corrected RVSP travel times, respectively. (e) and (f) Subsurface velocity 
models produced from the travel time tomographic inversion on the incorporation of the observed and 
corrected RVSP travel times, respectively.  

 

3.7.3.3 Interpretation of the combined RVSP and RST results 

 

Plot of the travel time residuals in relation to the source-receiver pair (Figure 3.22a) from 

the combined tomographic inversion of the surface refraction seismic and observed RVSP travel 

time data indicate that the larger travel time residuals from the RST inversion (Figure 3.18a) 

significantly reduced to near zero around the RVSP shot depths. In contrast, the combined 

refraction seismic and corrected RVSP travel time inversion (Figure 3.22b) indicate small travel 

time residuals for receiver offsets close to the shot location whereas large residuals were observed 
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for receiver offsets away from the shot location. Unlike the tomographic inversion performed with 

the observed RVSP travel times (Figure 3.22a), which closely resembles the RST (Figure 3.22a), it 

is clear from the travel time residuals (Figure 3.22b) that the introduction of the corrected RVSP 

travel times effected remarkable changes across the source-receiver domain. Comparison between 

Figure 3.22 (c and d) is an indication of larger ray density for the observed travel times and smaller 

ray density for the corrected travel times around shot location. As explained earlier, large ray 

densities imply well-constrained model parameters at the grid cells and vice-versa.  

Furthermore, the comparison of the P-wave velocity tomograms (Figures 3.22e and 3.22f) 

re-echoes that the surface RST inversion seems well-constrained with the observed RVSP 

traveltimes compared to the tomographic inversion performed with the corrected RVSP 

traveltimes. Although the incorporation of the corrected RVSP travel times showed a relatively 

denser ray coverage within the channelized low P-wave velocity structure than when the observed 

RVSP travel times are incorporated into the inversion process, the smaller ray density around the 

shot location (Figure 3.22d) indicated that significant velocity anomaly (Figures 3.22f) is associated 

with the corrected RVSP travel times. This is also reflected in the RMS error values (Figures 3.17) 

for the combined RST and corrected RVSP travel times inversion, which resulted in misfits that 

are a lot larger than those of the RST and RST plus observed RVSP travel times. Basically, these 

illustrations are aligned with the study’s aim of performing the RVSP. The purpose of acquiring 

the RVSP data was to evaluate the performance of the refraction tomography inversion using the 

observed and corrected RVSP travel times to image the sensitivities and residuals for each 

inversion. In general, I demonstrate that combining surface refraction seismic with borehole 

shots/surface receivers spreads can result in a better resolution of the lateral variations in the 

subsurface P-wave velocities.  

 

3.7.4 Soil electrical conductivity logging and lithological sampling 

 

The DP electrical conductivity (EC) logging tool (Figure 3.23) was employed for the 

calculation of subsurface apparent EC. Compared to other EC logging methods (e.g., Keys, 1989), 

the DP EC logging does not require pre-existing wells or borehole. Without compromise 

originating from drilling mud, borehole fluids of phenomenally high ionic conductivity or changes 

in borehole diameter (Schulmeister et al., 2003), the DP EC logging tool provides a high-resolution 

segregation of fine-grained sediments of high EC values from low EC dry sands or gravels. 

Mixtures of fine-, medium-, and coarse-grained sediments can also be interpreted from the EC log 

signatures. Basically, the main rational behind this is that every soil conducts electricity differently 

and depends on the primary factors of soil type such as grain size, mineralogy and pore fluid. 

During the DP EC logging, a sensor/EC log probe attached to the end of a steel pipe is driven 

into the subsurface using a hydraulically driven percussion probing machine. The sensor 

configuration consists of a four-electrode Wenner array with an inner-electrode spacing of 0.025 

m. The small electrode spacing allows the sensor to resolve thin units (Beck et al., 2000). As the 

EC probe is advanced into the subsurface, EC is calculated from the current applied to the two 

outer electrodes and the voltage measured across the two inner electrodes to produce a log of EC 

versus depth. The signals from both the conductivity probe and string pot (which measures the 

depth and the speed of advancement of the probe) are carried to the instrumentation box by a cord 

set. A field laptop connected to the instrumentation box and the Direct Image software provides 
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a real time display of the conductivity signal, probe depth, and speed of advancement are tracked 

by a spring pot mounted on the mast of the DP unit as logging is conducted.  

 

 
Figure 3.23. Example soil electrical conductivity logging using the direct push tool. 

 

In comparison to conventional drilling, DP soil sampling techniques are less laborious, 

guarantee quicker setup time, and generate less drill cuttings. Two categories of DP samplers are 

distinguishable for soil lithological sampling (US EPA, 2002): (1) open barrel, and (2) closed barrel 

(piston) samplers. The open barrel samplers remain open as they are pushed to the target depth 

while the closed barrel samplers remain closed until reaching the target depth. Also, the rod systems 

exist in two forms, namely: (1) single tube, and (2) dual tube. Although these two rod systems can 

be used in several of the same environments, they have varying degrees of strengths and 

shortcomings. As the name sounds, whereas the single tube rod system uses a single string of rod 

to connect the sampling tool to the rig, the double tube system makes use of two sections (an outer 

tube, or casing and a separate inner rod attached to the sampler for sample recovery and insertion). 

Unlike in the single tube system, the outer tube in the dual tube system provides stabilization and 

a sealed hole from which soil samples may be recovered without the threat of cross contamination 

and collapse. Typically, these devices make it possible for continuous or discrete soil sampling to 

be conducted with ease. For more detailed comparison of the sampling tools, rod systems, their 

merits and demerits as well as the overview of the DP-based soil sampling systems 

(http://geoprobe.com/soil-sampling-overview), readers are also referred to Dietrich and Leven 

(2009), Zschornack and Leven (2012), and Haussmann et al. (2013). The dual tube rod system was 

used to perform the soil sampling. Before embarking on this operation, the soil sampling system 
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components (that is, the tool string) (Figure 3.24a) were properly assembled. As shown in Figure 

3.24b, the following summarize the steps taken in deploying the tool string: (i) Position the DP 

machine well enough for drive the tools string into the ground surface to fill inner liner with soil; 

(ii) Adjust the DP machine hammer to have access to the top of the sample. Remove the drive cap 

and thread an additional light-weight center rod onto the centre string with an adjustable rod clamp 

in position to keep the center rods from falling when they are removed. Retrieve the sample with 

the inner rod string. At this point, the filled liner and the liner retainer can be removed from the 

Sample Sheath. The liner is also is covered with a pair Vinyl end caps and labeled for subsequent 

analysis and description of the subsurface lithology; (iii) For consecutive sampling or filling of the 

liner with soil, a new liner and additional lengths of inner rod and outer casing (clean sample sheath) 

are added to tool string; (iv) Advance the tool string down the previously opened hole to the top 

of the next sampling interval; (v) Again, retrieve the sample with inner rod string as demonstrated 

in step (ii). This process is repeated until the desired sampling depth is reached. When the last 

sample has been retrieved, the outer casing is removed and bottom-up grouting can be performed.  

 

 
Figure 3.24. A typical DP tool string (a) for soil sampling (b). 

 

The DP EC logging was conducted at seventeen (17) locations (see Table A4 for the 

location coordinates of the EC logging). However, for the purpose of ground-truthing and 

“calibrating” the results of the surface geophysical measurements along transects, only EC logs 

from thirteen (13) locations are discussed in the dissertation text (see Figure 3.4). A total of four 

(4) DP-based soil sampling was conducted at the site (see also Table A4 and Figure 3.4 for the soil 

sampling locations) mainly along the ERI3 survey line. Although the DP EC logs are used to infer 

lithologic variations and characterize subsurface geological structures, the relevance of the 

information obtained from the DP EC logs can be strengthened by comparing the EC logs with 
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the lithologic data from the soil sampling. Figure 3.25 shows an example of such comparison. The 

soil samples were visually described and classified in terms of the observable change in lithology 

(and texture). Six unconsolidated materials were defined: clay, gravelly sandy clay, gravelly clayey 

sand, silty sand, sand with gravel, clayey sand and classified into three main units: (1) Alluvial silty 

clay, (2) Unsaturated sand and gravel, and (3) Quaternary aquifer. 

 

 
Figure 3.25. Comparison of the DP EC log data to the soil lithologic log data along the ERI3 survey line. 

 

Higher EC values in the uppermost 3 m of the profiles were interpreted to represent the 

alluvial silty-clay materials with an organic top. Abrupt decrease in the EC between ~3 and 5.91 m 

is expected in the case of absence of electrically conductive materials, such as unsaturated sand 

and/or gravel layers. Below this horizon is a further increase in the EC values with a coarsening-

upward sediment sequence. Distinctively, coarser-grained (homogeneous) sediments (consisting of 

majorly sand and gravel) immediately below the groundwater table are distinguishable from the 

deeper finer-grained (highly heterogeneous) sediments (little  quantity of sand and silt with majorly 

clay/mud-rich materials). The horizon also corresponds to the saturated Quaternary aquifer zone. 

The groundwater level stood at ~ 5.38 – 5.91 m and separates the unsaturated layer from the 

saturated zone. Notable features on EC logs also include the relatively higher EC spikes, which 

might be indicative of thin lithological intervals with higher proportions of finer-grained sediments. 
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The competent bedrock was determined by the length of the DP EC log probe pushed until it 

reached refusal. However, caution guided mistaking cobbles for bedrock. Soil samples were 

collected up to the depths of 8.44 m, 10.54 m, 11.76 m and 8.42 m for the locations labeled as 

SS13, SS15A, SS15B, and SS17, respectively. Remarkably, the estimated depths to bedrock were up 

to 3 m deeper for the middle part of the ERI3 survey line than the depth to bedrock of adjoining 

areas. Although there is an inferred border zone between Lettenkeuper and Gipskeuper within the 

study area (Figure 3.1), the bedrock referred to, on the floodplain is inferred and not categorically 

Lettenkeuper or Gipskeuper except toward the hillslopes where the bedrock is noticebly made of 

Gipskeuper. Because I do not want to be speculative on whether the bedrock is of Lettenkeuper 

or Gipskeuper, further studies on the bedrock geology, particularly those on the classification of 

rocks and their formation are highly recommended. 

 

3.7.5 Correlation of the interpreted DP EC logs along the ERI transects 

 

The application of the high-resolution DP EC imaging and soil lithologic sampling tools 

was not only for providing first stratigraphy-based indication of boundaries of subsurface lithologic 

structures (e.g., Weaver and Wilson, 2000; Wilson et al., 2005) which can greatly enhance 

investigation decisions and the conceptual model of a site (e.g., Griesemer, 2001), but also for 

subsequent corroboration of the surface geophysical data. Interpretive subsurface geologic model 

cross sections were produced from correlating the EC logs along ERI1, ERI2 and ERI3 survey 

lines (Figure 3.26). The EC log signatures along ERI1 in general exhibited irregular trends 

describing high variability in the alluvial silty clay lithologies. Here, intervals of higher EC values 

are interpreted to be closely related to the clayey components whereas the lower EC values relate 

to the silty materials. Nonetheless, at the EC4 location, a coarsening upward lithologic sequence 

was observed on the EC log signature. The upper parts appear to contain more of silty sand 

materials and clayey materials at the lower parts. Correlating this information with the resistivity 

cross section in Figure 3.11a, it is not surprising that a relatively higher resistivity feature was 

observed at the upper parts of the ERI1 model between the horizontal distance of 60 and 180 m. 

Although the high resistivity bedrock feature in Figure 3.11a shallows toward the higher elevation 

region in the northwest, the EC log probe at the EC3 and EC5 locations appear to have detected 

a deeper competent bedrock structure. The geostratigraphic cross sections along the ERI2 and 

ERI3 survey lines (Figure 3.26 (c and d)) on the floodplain valley were characteristically different 

from that along the ERI1 survey line near the hillslope. Unlike the stratigraphic cross-section 

described along ERI1 profile with two distinct layers (consisting of the alluvium overlain the 

competent bedrock), the subsurface stratigraphy along ERI2 and ERI3 profiles shows three 

successive layers overlain the inferred bedrock consisting of alluvial silty clay, unsaturated sand and 

gravel layer and the Quaternary aquifer. The Quaternary aquifer system on the floodplain valley 

(interpreted along ERI2 and ERI3) coarsens predominantly upward. Accordingly, two 

compartments of the aquifer are identifiable as highlighted in Figures 3.25 and 3.26 (c and d).  
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Figure 3.26. A simplified, interpretive subsurface geologic model of the site on lines of cross- section: (a) 
along ERI1, (b) along ERI2 and (c) along ERI3 profiles. The interpretation given here is that the ERI1 
profile toward the hillslope area has geostratigraphic units that are distinctively different from ERI2 and 
ERI3 located on the floodplain area. On the floodplain area, the Quaternary aquifer is shown to be 
partitioned into coarser-grained shallower and finer-grained deeper compartments. 

 

 

 



74 

Chapter 3 

 
 

3.7.6 Combined interpretation of coincident RST (plus RVSP) and ERI 

profiles with DP soil EC- and litho-logs 

 

In order to interpret fairly, the conceptual model of the subsurface, the reliability of the 

detected low resistivity feature and the channelized near-surface low P-wave velocity structure was 

checked by comparing the interfaces of the geophysical imaging results with the structural and 

lithologic information estimated from the DP-based EC- and litho-logs along the ERI3 survey 

profile. From the combined information (Figure 3.27), it is observed that although the 2-D 

resistivity imaging result supplied useful information on the overall distribution of the subsurface 

resistivity structure, it was particularly weak at defining deeper lithological boundaries. In contrast, 

the sharp changes/increases in the P-wave velocities allows for the different layer boundaries to be 

delineated. Comparison of the resistivity imaging and the refraction seismic tomography inversion 

results suggests that the channelized low P-wave velocity structure correlates the confined low 

resistivity zone identified along the ERI3 survey line. It is most likely that the channel-like bedrock 

feature detected using the RST represents the almost elusive bedrock structure in the ERI3 result. 

Thus, the RST was helpful in reducing of the uncertainty associated with estimating the alluvium-

bedrock interface on the floodplain area.  

The collocation of the low resistivity feature with the channelized low P-wave velocity zone 

also lend credence to the hypothesis that porosity/saturated water content may be a key 

determinant in evaluating the P-wave seismic velocity-resistivity relation (Mazac et al.,1988; Marion 

et al., 1992; Meju et al., 2003). From laboratory measurements on cores, Mazac et al. (1988) 

observed that resistivity decreases with increasing saturated permeability. Based on the works of 

Marion et al. (1992) and Meju et al. (2003), it is also shown that increases in water saturation would 

theoretically decrease and increase seismic velocities in clay and in sand, respectively illustrating 

corresponding interparticle stresses in these media (Shen et al., 2016). In this respect, the 

integration of in-situ measurements of porosity/saturated water content into a jointly inverted P-

wave seismic velocity-resistivity relation obtained from surface geophysical measurements could 

be considered as an important topic for further research. The channelized structure was not 

immediately evident from inspection of the area's relatively flat surface topography and has not 

been documented by previous investigations in the study area. Using self-potential signatures 

combined with electrical resistivity profiles and borehole data, Revil et al. (2005) also detected the 

presence of such channel-like subsurface structure (however of high resistivity) at a Méjanes site, 

South-East of France. Based on the channelized geometry of the feature, the authors indicated that 

the channelized feature reflects area of relatively strong hydraulic transmissivities. Overall, given 

the geometry of the detected bedrock surface and the thickness of the deposited sediments assessed 

from the surface geophysical measurements and DP-based ground-truthing techniques, it is also 

interpreted here that the linearized low resistivity feature and low P-wave velocity structure may 

not be unconnected to a relic stream channel that has become buried over time and may 

preferentially influence groundwater flow and solute transport . Detailed studies regarding the 

extent of the structure beyond the present study site boundary on the floodplain valley are also 

recommended. 
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Figure 3.27. Comparison between interfaces based on ERI (a), and RST (b) along the ERI3 survey line and 
the interpretation of the geostratigraphic units with the DP EC- and litho-log data (c). Subsurface P-wave 
velocity and resistivity models produce images with distinct areas of sensitivity. In conjunction with the 
geostratigraphic information from the DP EC- and litho-logs, a coincident portion of the surface 
geophysical data has been interpreted as an indicator of similar subsurface feature. 
 

3.8 Discussion and conclusions 
 

At the Wurmlingen site (between Rottenburg am Neckar and Tübingen), southwest 

Germany, there exist a NO3
- plume defined by a sparsely distributed groundwater sampling 
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stations. This created a considerable gap in the understanding of how hydrological processes and 

distribution of subsurface structures control groundwater flow and NO3
- concentration variations. 

To avoid missing a significant physical migration pathway that can induce biogeochemical nitrogen 

fluxes within the studied alluvial aquifer system, I acquired complementary surface geophysical 

data, including ERI and RST, which were later ground-truthed by the DP-based RVSP, soil EC 

logging and sampling to explore the distribution of an anomalous low subsurface apparent 

resistivity structure preliminarily delineated using the Schlumberger array-based resistivity depth 

sounding surveys. The linearized low apparent resistivity feature was found to be aligned with the 

investigated NO3
- plume. The most important point outlined in this study is that the scale of all 

geohydrologic investigations is of utmost importance and data should be acquired with high spatial 

density over large areas to strengthen the working hypothesis used as the basis for combined 

consideration of data sets from different investigation methods. In this study, wider coverage 

apparent resistivity data obtained using Schlumberger vertical electrical sounding of geoelectrical 

resistivity method opened up the possibility for the application of the above-mentioned combined 

methods. 

The ERI results confirmed the distribution of the subsurface apparent resistivity 

distribution from large-scale preliminary field screening test (based on the VES surveys) but were 

weak at resolving the deeper subsurface stratigraphy of the area. In particular, detecting the 

potential bedrock surface on the floodplain area was not possible with the ERI tool. Inversions of 

the surface refraction seismic travel times (with the RVSP travel times) seem to have resolved a 

channelized low P-wave velocity feature–high P-wave velocity competent bedrock boundary that 

appears to have eluded detection by the geoelectrical resistivity imaging surveys. The surface 

geophysical results were helpful in ultimately guiding the selection of the locations for DP soil EC 

logging and lithological sampling used to ground-truth the geophysical data. DP-based soil EC- 

and lithologic-logs evaluated the subsurface internal structures and important information about 

the site’s stratigraphy. A combined interpretation of the surface geophysical results and the DP-

based ground-truth data indicate that the low resistivity feature aligned with the investigated nitrate 

plume coincided with the channelized low P-wave velocity structure. Given the orientation of the 

bedrock structure in relation to the NO3
- plume, it is suggested here that groundwater flow and 

solute transport in the area may be largely controlled by the configuration of the aquifer bedrock 

topography. The uncovered anomalous subsurface channel structure is a new, unequivocal pattern 

at the study site that calls into questions the control of the NO3
- plume only by the local hydraulic 

gradients associated with the local flows in the commonly described sand and gravel aquifer in the 

Neckar valley.  

This approach of gathering a large amount of information about aquifer structural 

heterogeneity and geometry relevant to geohydrologic investigations was successful. The use of 

this strategy for making decisions on groundwater vulnerability and how the structure/geometry 

of an aquifer system influences the migration/transport pathways of recalcitrant chemical 

constituents of concern is highly recommended. 

Against the success of this strategy, it may be argued that investigations involving the 

collection of such a large amount of geophysical information are time-consuming and cost-

intensive. However, studies as the one highlighted above, wherein iterative investigations involve 

the employment of methods that leverage each other’s strength are way better than the 

conventional approaches to large scale site assessments in relation to subsurface contamination 

characterization and management. Executing surface geophysical investigations with spatially 
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denser data coverage is more economically advantageous than siting few unsuccessful boreholes 

(Christensen and Sorensen, 1998), especially in highly heterogeneous aquifer systems. When the 

cost of not having acquired surface geophysical studies is reviewed, it becomes very clear that the 

conventional (drilling) approaches would hardly succeed (cost- and time-effectively) without 

surface geophysical survey(s) (reconnaissance and along transects). Because no single technique 

can confidently resolve the heterogeneity of subsurface features, a strategy such as that illustrated 

in this study, which could iteratively combine confirming observations from different methods 

presents a cost- and time-saving alternative. 

Despite the progress made in understanding the physical heterogeneity of complex aquifer 

systems by the highlighted studies, attempts to detect and predict processes that moderate the 

relation between the structural and sediment heterogeneity, the development of pore water flows, 

and overall controls on fluid and solute fluxes remain a challenge. Channelized/buried valley 

aquifer structures such as that delineated in this study can be associated with mixing interfaces. 

Geochemical reactions in mixing zones that serve as factors of effective mass flux estimation and 

solute fate and transport are often unaccounted for. The existence of such mixing interface has 

been noted to influence changes in water chemistry and deepening in the level of the oxidation-

reduction (redox) front, formed when oxidizing groundwater penetrates into the reduced 

sediments (Kirsch et al., 2006). In particular, the presence of muddy/clayey (finer-grained 

heterogeneous) deeper aquifer compartment may be hypothesized to provide adequate stagnant 

zone wherein denitrifiers could have enough time to drastically reduce NO3
-. However, to provide 

a detailed understanding of the internal aquifer structures and decipher the invisible subsurface 

flow patterns as well as links to dynamic processes governing aquifer system’s behavior for 

improving predictive physically-based groundwater hydrology models, further studies would 

require the examination of a suite of geochemical and isotopic tracers in groundwater. Results of 

such studies could shed more light on the essence of adequate subsurface structural 

characterization, which is critical for a correct observation of mixing processes, and aquifer water-

rock interactions. In particular, I hypothesize that the interface between the two aquifer 

compartments inferred in this study may be useful to those interested in monitoring reactive 

processes, mechanisms of nitrogen nutrient exchanges and biogeochemical transformations at 

these mixing transition zones.  
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Chapter 4 
Use of depth-specific chemical and multi 

(‘dual’)-stable isotope analyses to 

constrain an alluvial aquifer groundwater 

recharge origin, sulfate and nitrate fate 

 
Chapter summary 
In this chapter, chemical and multi (‘dual’)-stable isotope data were used to evaluate 

the origin of the alluvial aquifer recharge as well as the fate of the groundwater 

sulfate and nitrate. Emphasis is also placed on representative groundwater 

sampling, which involves understanding the subsurface structures and flow path as 

defined in Chapter three and from which part of the aquifer system to collect 

groundwater samples in order to foster reliable interpretation of the 

hydrogeochemical evolution, and evaluate nitrate source 

hypotheses/biotransformation processes. It was also necessary to perform depth-

specific groundwater sampling in order to capture the physical (hydrological) and 

biogeochemical heterogeneity that characterize different aquifer zones. 

 

4.1 Introduction 
 

With a view to determining how subsurface features, described in Chapter three, 

particularly in the aquifer system govern net NO3
- fate and solute concentrations, depth-specific 

analysis of groundwater chemical and stable isotope data was performed. This refers to the Step II 

and some parts of Step III of Figure 2.1 and Part II of Figure 2.2. 

It is essential to understand and evaluate the origin of the groundwater recharge and the 

fate of groundwater solutes in order to provide insights into contaminants that might enter the 

aquifer with the recharge water and potentially reach groundwater wells as well as quantify the 

natural and anthropogenic factors influencing the groundwater solutes (e.g., Eberts et al., 2013; 

Miao et al., 2013; Murgulet and Tick, 2013). Such an understanding and evaluations may be 

enhanced by the use of geochemical and stable isotope approaches. The interest in 

hydrogeochemistry stems from the fact that ions leached from different anthropogenic sources 

may impact groundwater quality and increase solute concentrations above natural background 

levels. Moreover, with hydrogeochemical analysis, more light can be shed on the groundwater 

geochemistry as a function of the mineral contents of the aquifer rock through which it flows and 

anthropogenic influences, controlled by the regulatory mechanisms of weathering, precipitation, 

dissolution, ion-exchange, evaporation and contact time with the host rock (Schwartz and Zhang, 
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2003; Van der Weijden and Pacheco, 2006; Elango and Kannan, 2007; Jiang et al., 2009; Ma et al., 

2011; Valle et al., 2014; Devic et al., 2014; Ma et al., 2014). However, adequate understanding of 

these regulatory mechanisms is limited. In addition, classical chemical data do not guarantee 

unambiguously the contribution of different solute sources and the biogeochemical 

transformations that the solutes have undergone. To offer considerable elucidations, stable isotopic 

tools have also become invaluable in identifying sources of groundwater recharge, sulfate and 

nitrate as well as associated transformation processes in both shallow and deep groundwater 

systems (Ofterdinger et al., 2004; Blasch and Bryson, 2007; Kendall et al., 2007; Wankel et al., 2009; 

Mattern et al., 2011; Liu and Yamanaka, 2012; Wong et al., 2014; Samborska et al., 2013; Zhang et 

al., 2015; Filippini et al., 2015).  

The basic idea behind the use of stable isotopes is that every time a chemical constituent 

of concern transforms from one end-member source to the other, the processes and reactions that 

characterize the diagnostic shifts (that is, the so-called kinetic reaction) in isotopic composition is 

unidirectional, and occurs in quite reliably predictable pattern (not random). This is also because 

biological fractionation tends to use lighter isotopes preferentially as it takes less energy leaving 

behind heavier isotopes, making it easier to estimate the occurrence of the processes and their 

reaction rates. Remarkably, independent or individual isotope data also do not always permit 

conclusive establishment of solute sources and their fate, except on local scales wherein 

groundwater can be directly tied to specific events and land use types. The major issue here appears 

to be the overlapping isotope signatures and biological fractionation processes that modify the 

isotope ratios (Lohse et al., 2009). Thus, dual isotopic techniques are often used to provide 

distinctive means for testing hypothesis about pathways of biogeochemical cycling. The dual 

isotope procedure takes advantage of the fact that compounds consist of several elements, many 

of which can be easily analyzed for their isotopic ratios (Hosono et al., 2013), and when used as a 

dual-isotope reflects and tracks isotopic changes associated with kinetic fractionation events. The 

novel procedure of measuring the dual isotopic composition (e.g., an isotope of an element and its 

oxygen isotope counterpart) has expanded the use of isotopic techniques in tracing different solute 

(for example, NO3
-) sources and transformations (e.g., Casciotti et al.,2002; Ohte et al., 2004; Elliott 

et al., 2009). Such a combination of oxygen and nitrogen isotope of NO3
- can help distinguish 

atmospheric and synthetic fertilizer sources from organic fertilizer and septic sources (Kendall et 

al., 1998). Also, attenuation calculations show that where input of oxygen isotope-enriched 

atmospheric NO3
- is negligible (Parfitt et al., 2006), the advantage of incorporating oxygen isotope 

of NO3
- is that it is less impacted by source mixing than its nitrogen isotope associate (Barnes and 

Raymond, 2010). Hence, dual-isotopes not only act as fingerprints of solute origins, but also as 

inference about solute biogeochemical transformations. Although coupling oxygen isotopes of the 

analyzed individual elements in dual mode helps to better identify solute sources as well as constrain 

and distinguish processes overprinting each other, wide variations in the isotopic composition of 

the sources, mixing, and biological cycling still greatly obscure these values. Using multi-isotopic 

species offer opportunity to explore a wide range of possibilities for reaching conclusions about 

solute fate mechanisms due to changes in isotopic compositions (Wells et al., 2016). The more 

isotopes the better the chances of confronting questions with suitable answers.  

Even though this study places emphasis on the use of chemical and stable isotopes in 

groundwater systems, how and where samples to be analyzed are collected is equally very 

important. This includes knowing which part of the groundwater system to sample from and the 

appropriate sampling protocol, which is essential for collecting representative water samples for 
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elemental composition and stable isotope assays. Thus, data quality is more than just chemical and 

stable isotope analyses. A perfect groundwater chemistry and stable isotope analyses with non-

representative sample(s) equals “bad data”. For these reasons, it is expected in this study that 

chemical data and a good knowledge of the investigated groundwater system combined with multi 

("dual")-isotopic" compositions should be able to provide a much more comprehensive 

interpretation of processes affecting the fate and transport of the groundwater solutes in aquifers 

(Mengis et al., 1999; Dogramaci et al., 2012; Kim et al., 2014; Gurumurthy et al., 2015). In particular, 

just as flow paths drive changes in solute chemistry, reduction-oxidation (redox) chemical reactions 

have a strong effect on isotope fractionations so that chemical and hydrologic data are useful and 

necessary complementary elements for a credible interpretation of stable isotope data in relation to 

solute fate and transport mechanisms (Griffiths et al., 2016).  

The technique of depth-specific/multilevel sampling (MLS) of groundwater based on the 

DPT (Dietrich and Leven, 2009) has become a widely-accepted and alternative means of collecting 

groundwater samples with a clear advantage over the traditional drilling approach. Smith et al. 

(1991) illustrate how a conventional groundwater sampling approach could not clarify 

biogeochemical processes related to nitrogen nutrient cycling in an aquifer system and how a 

subsequent MLS technique was able to realize the existence of informative steep vertical 

geochemical gradients in a contaminant plume. It also allows for flexibility in sampling, fine spatial 

resolution of chemical and isotope tracer heterogeneity, and generally lower cost (Einarson and 

Cherry, 2002; Amos and Blowes, 2008). By targeting and focusing on a known or defined 

subsurface hydrologic system, a substantial minimization in the interpretive uncertainty associated 

with quantifying the origin and processes of groundwater solute and recharge can be guaranteed. 

Such knowledge of the existence of defined flowpaths can provide a valuable parameterization tool 

for biogeochemical modeling. 

The goal of this study was to build upon previous investigations by providing new 

information on the following: (1) enhanced conceptual understanding of hydrogeochemical 

evolution, and (2) processes that control groundwater recharge, sulfate and nitrate concentrations 

within an alluvial aquifer. It is posited here that such studies will contribute to a better groundwater 

quality assessment and a more effective implementation of environmental management measures. 

 

4.2 Multilevel sampling of groundwater 
 

As an integral part of determining the overall hydrogeological condition of a site, a DP-

based MLS of groundwater was operated in order to provide a clearer picture of the distribution 

of the groundwater solutes (e.g., Lane, 2012). The adopted MLS approach was designed to 

overcome the inability of the traditional long-screen wells to resolve biogeochemical heterogeneity 

(Topinkova et al., 2007), the limited sampling depths shortcomings of MLS short-screen wells such 

as nested piezometers and cluster wells (Einarson, 2006) and to reveal the complexities of plume 

behaviour. It is particularly useful in aquifers where knowledge on vertical mixing is limited and 

steep gradients in chemical concentrations and isotopic signatures are expected (Cozzarelli et al., 

1999; Schulmeister et al., 2004; Winderl et al., 2008; Ducommun et al., 2013). Typically, numerical 

modeling and laboratory experiments are often performed to identify and validate the driving force 

of mixing of reactants (Prommer et al., 2006; Olsson and Grathwohl, 2007). Nowadays, the hidden 

dynamics of mixing-controlled biogeochemical process have become glaring via high-resolution 
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depth-specific sampling of groundwater in well-characterized aquifer systems (Anneser, 2008).  

 

 
Figure 4.1. Wurmlingen study site, showing the targeted multilevel groundwater sampling locations (Gw8, 
Gw11, Gw13, Gw15, Gw17) and the outline of a buried channel structure inferred as a hydraulically 
transmissive zone from the combined surface geophysical and direct push investigations. Also 
superimposed on the map is the groundwater table elevation at an interval of 0.85 m and brown-colored 
outline of a hypothetical landfill site (HLS). The red arrow points northwest to the Wurmlingen settlement. 
 

 

The specific locations for the MLS are based on the findings from the combined 

interpretation of the surface geophysical studies and the DP investigations presented in Chapter 

three. Shown in Figure 4.1, the previous study inferred a hydraulically transmissive zone because 

of the discrete nature of the buried channel structure compared to the surrounding environment. 

As interpreted in Chapter three, the structure could have an overarching control on groundwater 

flow and solute transport. Groundwater table elevation measured after seventeen (17) prior DP-

based soil electrical conductivity logging show that the transmission of fluid by the channelized 

feature could follow the local hydraulic gradient. Nevertheless, it is also possible from the 

distribution of the groundwater table elevation contours that the channel structure may serve not 
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only as a flow convergence zone, but also as a flow divergence zone. The sampling depths and 

design was carefully set on the basis of the location of the detected channelized structure to ensure 

that if the feature is a flow path that it is possible to predict the geochemical and isotopic responses 

fairly correctly. The deepest parts of the aquifer are within the channel structure. Consequently, the 

base of the aquifer structure controlled the maximum depth of the multilevel groundwater sampling 

– that is, wells Gw8, and Gw15 located within the channel feature were relatively deeper than wells 

Gw13, Gw17, and Gw11 located in the areas surrounding the channel feature. Remarkably, two 

distinct aquifer compartments consisting of shallower coarser-grained and deeper finer-grained 

were interpreted from the performed DP-based soil electrical conductivity logging and lithological 

sampling (see Chapter three, sections 3.74, 3.75, and 3.7.6 ). As this study also sought to investigate, 

it is conceptualized that the interface that connects the compartments could have implications as a 

critical hotspot for changes in physical or biogeochemical properties of solutes (Krause et al., 2017).  

During groundwater sampling (Dehnert et al., 2010), the DP machine is used to drive an 

assembly of screen point 16 (SP16) sampler of ~ 0.5 m in length within a sealed , steel sheath 

(Figure 3.19a to the desired total sampling depth (Figure 3.19b(i)). The sampler assembly is 

advanced with Geoprobe rods that are added incrementally. Extension rods with a screen push 

adapter added incrementally and carefully are lowered inside the probe rod until the adapter 

contacts the bottom of the screen (Figure 3.19b(ii)). Some reasonable length of the extension rod 

is allowed to protrude from the probe rod for easy retraction of the tool string while physically 

holding the screen in place. The screen starts to dangle inside the sheath once the extension rod is 

given a slight knock to dislodge the expendable point (Figure 3.19b(iii)). Typically, the screen sheath 

forms a mechanical annular seal above the screen interval. At the point of raising the hammer and 

tool string, the screen head will contact the necked portion of the sampler sheath and the extension 

rods will rise with the probe rods. Thus, as the protective outer rod is retracted, the screen is 

exposed allowing groundwater inflow into the sampler chamber under the hydraulic head condition 

that exists at that depth. Upon removing the top extension rod and top probe rod and then finally, 

extracting all extension rods, groundwater samples were collected. Or as demonstrated in section 

3.7.3.1, the seismic sparker source or some other external devices can be deployed into the hole 

for the measurement of desired parameters. The sampler is afterward retracted upward to the next 

sampling depth.  

Prior to water sampling, up to twelve liters of water were evacuated from each sampling 

port using a peristaltic pump based on standard procedures and established protocols (e.g., 

Barcelona et al., 1985). Parallel measurements of the temperature (Temp.), pH, groundwater 

electrical conductivity (EC), oxidation-reduction (redox)/electrode potentials (Eh), and dissolved 

oxygen (DO) were made using electrodes (WTW, Weilheim, Germany) while water was being 

pumped through flow cell chamber to minimize atmospheric interactions. Table 4.1 shows method 

of preservation of the groundwater samples collected in the field for laboratory chemical and stable 

isotope analyses and laboratories where the analyses were carried out.  
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Table 4.1. *Summary of preservation methods of the groundwater samples used for the analysis of 

hydrogeochemical and dual stable isotopic constituents. 

Hydrogeochemical and dual stable isotopic constituents Method of preservation 
+NO3

-, NO2
-, NH4

+, SO4
2-, Cl- -40 ml glass bottle with cap; filtered 

 -Storage condition: at about 4oC  

-No preservatives 
+Ca2+, Mg2+, Na+, K+, Mn2+ -50 ml white plastic bottle; filtered 

 -Storage condition: at room 

temperature 

 -2-3 drops (0.5 ml) 65 % Suprapur® 

Nitric Acid (HNO3)  
+Fe2+ -40 ml brown glass bottle with cap; 

filtered 

 -Storage condition: normal cooling 

temperature 

 -3 drops of 3M 30 % Suprapur® 

Hydrochloric Acid (HCl) 
+DOC -100 ml schott brown glass 

 -Room temperature storage is enough 

 No preservatves 
++HCO3

- -500 ml glass bottles- air tight; 

unfiltered 

 -Storage condition: normal cooling 

temperature is alright, but not 

absolutely necessary 
+++Dual isotopes of NO3

- (δ15N-NO3
- and δ18O-NO3

-) and 

water isotopes (δ2H and δ18O) 

-60 ml HDPE plastic bottles; filtering 

is important 

 - From 3 to 5°C (ice packed during 

longer transportation to avoid 

microbial denitrification) 

-No preservatives 
+++Dual isotopes of SO4

2-( δ34S-SO4
2- and δ18O-SO4

2-) -250 ml HDPE plastic bottles; filtering 

not necessary 

 -Storage condition: at room 

temperature, although not necessary  

 -Zinc Acetate (for potential 

stabilization of hydrogen sulfide, H2S) 

*The chemical and dual stable isotopic analyses of the groundwater samples were performed at the 
laboratories of the +Analytical Chemistry Department (UFZ - Helmholtz Centre for Environmental 
Research, Germany), ++Centre for Applied Geosciences (Eberhard Karls Universität Tübingen, Germany), 
and +++Catchment Hydrology Department (UFZ - Helmholtz Centre for Environmental Research, 
Germany). 

 

4.3 Laboratory (chemical and stable isotopic) analyses 
 

At the Analytical Chemistry Department (Helmholtz Centre for Environmental Research - 

UFZ, Leipzig Germany), hydrogeochemical constituents such as calcium (Ca2+), magnesium 
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(Mg2+), sodium (Na+), potassium (K+), and manganese (Mn2+) were determined by atomic emission 

spectroscopy with inductively coupled plasma (ICP-AES) (Spectro Ciros CCD, Spectro Analytical 

Instruments) (e.g., Martin et al., 1994). Nitrate (NO3
-), nitrite (NO2

-) ammonium (NH4
+), and 

ferrous iron (Fe2+) were determined by the photometric method (Gallery Plus, Thermo Fisher 

Scientific) (e.g., Rastetter et al., 2015). Sulfate (SO4
2-), and chloride (Cl-) were determined using ion 

chromatography (DX 500, Thermo Fisher Scientific) (e.g., Jackson, 2004). DOC contents were 

analyzed by the difference method with a total organic C/total N analyzer (multi N/C® 3100, 

Analytik Jena AG, Thuringia, Germany) (Yan et al., 2017). Analysis for HCO3
- by titration was 

performed at the Centre for Applied Geosciences (Eberhard Karls University of Tübingen, 

Germany) - the procedure involves adding four drops of methyl orange to 100 mL of the 

groundwater sample being analyzed, if the pH is < 8.5 and titrating against 0.1 mol/L hydrochloric 

acid (HCl) until the color changes from yellow to pink.. The choice of the selected analytes is 

predicated upon the general field conditions based on the results of the site history investigations 

(Kleinert, 1976; Schollenberger, 1998).  

I checked the analytical data quality of the major ions by comparing the sum of the 

equivalents of the cations with the sum of the equivalents of the anions (Hounslow 1995). The 

considered ions include: major cations - Ca2+, Mg2+, Na+, and K+ and anions - NO3
-, HCO3

-, SO4
2-

, and Cl-. Freeze and Cherry (1979), the percent charge-balance error (CBE) is calculated as:  

 

% 100%
cations anions

CBE x
cations anions






 
 

         (4.1) 

 

As shown in Figure 4.2, ionic balance values in this study ranged from -10.4 to 2.6 %. A positive 

result means that both an excess cations or insufficient anion exists, and a negative result means 

the opposite. For a freshwater system, ionic balance is assumed to be good if it is within the range 

of ± 10 % (Rice et al., 2012). Charge-balance error values beyond this limit could be an indication 

of error resulting from unaccounted analyte(s). 

Stable isotope analyses were also performed at the Catchment Hydrology Department 

(UFZ, Halle, Germany). The dual stable isotopes of water (18O-H2O, 2H-H2O) were analyzed by 

laser-based analyzer (L1102-I, Picarro Inc.) with a measurement precision of 1.0 and 0.3 ‰ for 

deuterium (δ2H) and oxygen (δ18O), respectively. Isotopic composition of sulfate (34S-SO4
2-, 18O-

SO4
2-) was determined by elemental analyzer (continuous flow flash combustion technique) 

coupled with an isotope-ratio mass spectrometer (delta S, ThermoFinnigan, Bremen, Germany) 

after the conversion of BaSO4 and Ag2S to gaseous SO2 with an analytical error of better than ±0.3 

‰. Dual nitrate isotopes (18O-NO3
-, 15N-NO3

-) were assayed by a mass spectrometer DELTA 

V Plus in combination with a GasBench II from Thermo Scientific. NO3
- isotopic signatures were 

measured with the denitrifier method by using bacteria strains of Pseudomonas chlororaphis (ATCC 

#13985) after Sigman et al. (2001) and Casciotti et al. (2002). The analytical precisions for the 

nitrogen (N) and oxygen (O) isotope measurements of NO3
- are 0.4 and 1.6 ‰, respectively. For 

calibration, international standards (USGS32, USGS34, USGS35 and IAEA NO3) were used. 

Unlike N2, which requires avoidance of atmospheric contact, the advantage of analyzing NO3
- is 

that its stability is maintained against chemical or biological degradation where samples cannot be 

analyzed immediately after collection (Mariotti et al., 1988). 
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Figure 4.2. Charge balance error (CBE) based on the concept that all ions in water are charge-balanced. 

 

All stable isotope analysis data are reported in standard delta (δ) notation as the relative 
abundance in a per mil (‰) basis, defined as: 

 
 

𝛿(‰) = [(
R𝑆

R𝑅
) − 1]  𝑥 103         (4.2) 

where R is the isotopic ratio of abundance of the heavy isotope to abundance of the light isotope 

of a sample (RS) and a reference (RR) material (for example, 15N values are reported with respect 

to standard atmospheric (AIR) nitrogen, N2 for the nitrogen isotopes, 18O values are reported 

with respected to Vienna-Standard Mean Ocean Water, V-SMOW, whereas 34S values are 
reported with respect to Vienna-Canyon Diablo Troilite, V-CDT). 

Analysis of the groundwater chemistry and isotopic data was useful in identifying flow and 

solute transport mechanisms in the aquifer. These groundwater sampling and laboratory (chemical 

and stable isotopic) analyses were a strategic attempt to provide additional confirmation constraints 

for evaluating the geochemical conditions and sources of groundwater solutes and to understand 

the consequences of the aquifer heterogeneity on biogeochemical processes. Specifically, the 

relevance of the stable isotope study is that, though a large proportion of the total mass/or 

concentration of solutes in the aquifer depletes over time and distance from the source, the stable 

isotope ratio of the residual material, closely resembles the ratio in the original material (Komor 

and Anderson,1993).  
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4.4 Results and discussion 
 

The analyzed hydrogeochemical parameters and dual stable isotopic signatures are 

summarized in Table 4.2. Tables A6 and A7 provide detailed hydrogeochemical and dual (stable) 

isotope data of the sampled groundwater including parameters such as NH4
+, Fe2+, NO2

- and DOC 

that registered some concentration levels below the detection limit. 

 

4.4.1 Major ion hydrogeochemical evolution mechanisms and anthropogenic 

influence 

 

Figure 4.3 shows boxplots that summarize the measured major ion hydrogeochemical 

constituents including physical parameters. The recorded groundwater temperature ranges from 

13.7 to 20.4°C (M=17.00, MD=16.9, SD=1.50, CV=8.75 %). Average daily temperature values of 

26°C, 27°C, and 27°C were also noted for the sampling periods of 2, 3 and 4 June 2015, 

respectively. The sampled shallow groundwater is characterized by relatively/near neutral pH 

values, ranging from 6.72 to 7.2 (M=6.98, MD=37.9, SD=0.11, CV=1.56 %). The range of pH 

values appears reasonably optimum for maintaining reactions such as conventional nitrification 

and denitrification. Based on this study, mineralization of the groundwater samples did not show 

wide variations, with the groundwater EC ranging from 2330 to 2670 µS/cm (M = 2439.63, 

MD=2450, SD = 71.63, CV = 2.95 %). The Eh ranged from -109.6 to 117.1 mV (M = 42.20, 

MD=37.9, SD = 47.60, CV = 112.86 %). Traditionally, as Eh increases, the solution becomes 

more oxidizing. Hence, geochemists often measure Eh based on thermodynamic considerations 

for different reactions. However, a meaningful redox measurement can be derived if and only if 

(see Rose and Long, 1988) (1) chemical and electrochemical equilibriums exist within the solution 

and (2) all the redox reactions between the redox couples occur reversibly. These conditions are 

rarely met because of the irreversibility of biologically mediated redox reactions. For these reasons, 

measuring DO as an important component of water-quality monitoring and assessment studies is 

considered more reliable. Nevertheless, the existence of a good correlation between the recorded 

DO and Eh values (Figure 4.4) suggests reasonable predictability for the redox potential based on 

the DO concentration levels, which ranged from 0.14 to 4.07 mg/L (M = 1.80, MD=1.62, 

SD = 1.06, CV = 58.70 %).  
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Figure 4.3. Boxplots of groundwater electrical conductivity (EC), temperature, electrode potential, pH, 
dissolved oxygen, and major ion concentrations (sulfate, bicarbonate, calcium, magnesium, sodium, 
potassium, nitrate, and chloride). The median (middle quartile) is denoted by the vertical line that divides 
the rectangular box into two parts. Start and end of the rectangle represents the lower and upper quartiles, 
respectively. Start of the left whisker and end of the right whisker represents the lowest and highest values 
that are not outliers. Solid black circles show outliers outside 10th and 90th percentiles. 
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Table 4.2.*Summary of the hydrogeochemical and dual isotope data, with basic statistics. Note: n = number of samples, M = mean, MD= median, SD = standard 

deviation, Min = minimum, Max = maximum, CV = coefficient of variation 

 

Parameters N M MD SD Min Max CV(%) 

Temp. 27 17.00 16.9 1.50 13.7 20.4 8.75 

pH 27 6.98 7 0.11 6.72 7.2 1.56 

EC 27 2439.63 2450 71.98 2330 2670 2.95 

Eh 27 42.20 37.9 47.60 -109.6 117.1 112.86 

DO 27 1.81 1.62 1.06 0.14 4.07 58.70 

Ca2+ 27 569.60 571 38.10 482 626 6.70 

Mg2+ 27 71.20 66.3 11.20 59.4 110 15.71 

Na+ 27 10.80 11 0.80 9.3 12.3 7.29 

K+ 27 7.90 8.3 3.20 3.3 13.8 40.02 

SO4
2- 27 1333.60 1317 64.20 1235 1509 4.81 

HCO3
- 27 404.06 408.21 15.67 353.59 431.09 3.88 

NO3
- 27 19.90 16.9 9.50 12 42.8 47.45 

Cl- 27 20.20 18.8 4.50 15.8 33.4 22.09 

Mn2+ 27 0.074 0.057 0.056 0.011 0.198 75.93 
18O-H2O 25 -8.50 -8.50 0.10 -8.7 -8.3 -1.18 
2H-H2O 25 -62.00 -62.1 0.38 -62.5 -61.3 -0.62 

d-excess 25 6.00 6.06 0.65 4.60 7.10 10.77 
34S-SO4

2- 25 15.90 16.06 0.34 15.2 16.3 2.15 
18O-SO4

2- 25 13.30 13.4 0.31 12.8 14.0 2.33 
15N-NO3

- 25 10.10 8.0 3.64 6.4 17.9 36.07 
18O-NO3

- 25 7.20 4.8 4.09 2.4 15.0 57.11 

  

*See Tables A6 and A7 for detailed hydrogeochemical and dual (stable) isotope data 
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Figure 4.4. Relationship between redox potential (Eh) and dissolved oxygen (DO) concentrations.  

 

To distinguish relevant hydrogeochemical processes under varying influencing conditions 

(natural and anthropogenic), I evaluated the relationships between some hydrogeochemical 

variables. In the first instance, this study shows that Ca2+ (M=569.60, MD=571, SD=38.1, 

CV=6.69 %), Mg2+ (M = 71.2, MD=66.3, SD = 11.2, CV = 15.71 %), Na+ (M = 10.80, MD=11, 

SD = 0.80, CV = 7.29 %), K+ (M = 7.90, MD=8.3, SD = 3.20, CV = 40.02 %), SO4
2- 

(M = 1333.60, MD=1317, SD = 64.20, CV = 4.81 %), HCO3
- (M = 404.06, MD=408.21, 

SD = 15.67, CV = 3.88 %), NO3
- (M = 19.90, MD=16.9, SD = 9.50, CV = 47.45 %), Cl- 

(M = 20.20, MD=18.8, SD = 4.50, CV = 22.09  %) are the principal dissolved constituents, and 

constitute up to 80 % of the groundwater total dissolved solids, TDS (mg/L) ≈ 0.7 groundwater 

EC (µS/cm) (Walton, 1989). Using the Gibbs diagram/scheme (Figure 4.5; Gibbs, 1970), I 

identified the processes controlling the geochemical evolution of the groundwater. The scheme, 

which illustrates three natural mechanisms: water-rock interactions, evaporation, and atmospheric 

precipitation plots the ratios of Na+/(Na+ + Ca2+) and Cl-/(Cl- + HCO3
-) against TDS. Based on 

the scheme, I found that all the groundwater samples fell in a clustered form near the rock 

dominance area, but not without some evaporative effects, indicating that the shallow groundwater 

chemistry comprises waters having as their dominant source of dissolved solids, the rocks of the 

area.  
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Figure 4.5. Gibbs diagram plot of the total dissolved solids (TDS) as a function of the ratio of anion Cl-/Cl-

+HCO3
- and cation Na+/Ca2++Na+. It shows the processes controlling the chemistry of the groundwater 

samples (After Gibbs, 1970). 

 

Examining the mixing model (Figure 4.6) as proposed by Gaillardet et al. (1999), I also 

found that carbonate rock weathering contributed majorly to the groundwater chemical 

composition. However, the anion sequence: SO4
2- > HCO3

- > NO3
- > Cl- and the tendency for 

adsorption amongst the major cations: (strongly adsorbed) Ca2+ > Mg2+ > Na+ > K+ (weakly 

adsorbed) resulted in a calcium sulfate (CaSO4) water type, typical of gypsum-rich groundwater 

(classification based on the Piper (1944) trilinear diagram plot (Figure 4.7), Morris et al., 1983). It 

is possible that the gypsum formed on the carbonate, just as the Ca2+ required to form the gypsum 

may have originated from the carbonate. In other words, the CaSO4 water type would have evolved 

from the calcium bicarbonate (CaHCO3) water type. Therefore, the dissolution of the carbonate 

and the gypsum characterized the chemical composition of the groundwater.  
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Figure 4.6. HCO3

-/Na+ versus Ca2+/Na+. End members of carbonates, silicates and evaporates are from 
Gaillardet et al. (1999). 
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Figure 4.7. Piper trilinear diagram showing the hydrogeochemical facies for the groundwater of the study 
area. 

 

Moreover, the near-equal distribution of the groundwater samples on both sides of the 1:1 

correlation line between HCO3
- + SO4

2- and Ca2+ + Mg2+ (𝑟2 = 0.16; Figure 4.8) indicate that both 

reverse and ion exchange processes dominated the reaction. The shifting of the data points to the 

right (excess HCO3
- + SO4

2-) and to the left (excess Ca2+ + Mg2+) indicates ionic and reverse 

exchange processes, respectively. As a result of these reactions, Ca2+ resulting from the dissolution 

of the carbonate matrix of the host aquifer would have entered the groundwater and may be 

subsequently exchanged for Mg2+ from post-depositional replacement of calcite by dolomite 

(CaMg(CO3)2) (that is, Mg2+ for Ca2+ exchange by Mg-rich pore waters).  

To understand the extent of Mg2+ and Ca2+ substitutions in the reaction, I made a scatter 

plot (Figure 4.9) of Ca2+ against SO4
2- (𝑟2 = 0.19), Mg2+ against SO4

2- (𝑟2 = 0.05), Ca2+ against 

HCO3
- (𝑟2 = 0.09), Mg2+ against HCO3

- (𝑟2 = 0.23), which indicates a weak association between 

the cations (Ca2+, Mg2+) and anions (SO4
2-, HCO3

-). The lack of significant correlation between Na+, 

and the major ions (not shown except with NO3
-, which is discussed further below) could mean 

that most of the Na+ may have been depleted from the mainly gypsiferous carbonate aquifer. Na+, 



93 

Chapter 4 

 

 

which in natural waters originates from the dissolution of feldspathic minerals, is not only one of 

the most mobile of the common cations but also has low affinity for soil exchange sites (Weil and 

Brady, 2017). Unlike Na+, K+ is relatively resistant to weathering. Illustrating the uptake and release 

of K+, a moderately positive correlation (𝑟2 = 0.53) was observed between Ca2+ and K+ while a 

weakly negative correlation (𝑟2 = 0.11) was observed between Mg2+ and K+ (Figure 4.10).  

 

 

 
Figure 4.8. Plot of the relation between Ca2+ + Mg2+ and HCO3

- + SO4
2-. (e) Plots of HCO3

- and SO4
2- 

versus Ca2+ and Mg2+. 
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Figure 4.9. Plots of HCO3

- and SO4
2- versus Ca2+ and Mg2+. 
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Figure 4.10. Plots of K+ versus Ca2+ and Mg2+. 

 

Presently measured groundwater NO3
- concentrations were below the EU Drinking Water 

Directives guide level of 50 mg/L as NO3
- with respect to the quality of water intended for human 

consumption (OJEC, 2015). Although having NO3
- concentrations below or at set maximum 

contaminant level is not generally an adult public-health threat, NO3
- in drinking water can cause 

low oxygen levels in the blood, which is a potentially fatal condition for infants (Spalding and 

Exner, 1993; Gasperikova et al., 2012). In pristine aquifers, Cl- concentrations are usually lower 

than 10 mg/L and sometimes less than 2 mg/L (Chapman, 1992). However, this study shows 

higher Cl- concentrations.  
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Figure 4.11. (a) and (b) Distribution of the chloro-alkaline indices (CAI-1 and CAI-2) (After Schoeller, 1967). 

(c) Na+/Cl- and (d) K+/Cl- ratios within the aquifer. 

 

To further constrain the processes of water-rock interactions from the geochemical 

indicators point of view, I examined the degree of ion exchange (a geochemical modifier associated 

with transport and reactivity of solute process) that also depends on various lithological contents 

(e.g., clay content), and environmental (e.g., pH, solute composition) factors (Vengosh, 2003)). In 

this sense, I quantified the chloro-alkaline indices according to Schoeller (1967): (a) CAI-1= [Cl-- 

(Na+ + K+)]/Cl- and (b) CAI-2 = [Cl-- (Na+ + K+)]/(SO4
2- + HCO3

- + CO3
2- + NO3

-). All values 

used in the computation of the chloro-alkaline indices are expressed in meq/L. As shown in Figure 

4.11 (a and b), I found the range of values of -0.5 – 0.34 and -0.007 – 0.009 for CAI-1 and CAI-2, 

respectively. A negative CAI-1 or CAI-2 signifies that ion exchange takes place between Ca2+ or 

Mg2+ in the groundwater and Na+ or K+ adsorbed in the aquifer medium, while a positive CAI-1 

or CAI-2 indicates that ion-exchange takes place between Na+ or K+ in the groundwater and Ca2+ 

or Mg2+ adsorbed in the aquifer medium. I also used the Na+/Cl- ratio (Figure 4.11c) to indicate 

the efficacy of the base-exchange reactions (Vengosh and Keren, 1996). As most soils have limited 
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anion exchange capacity and given that Cl- is usually considered conservative in the environment 

(Neal and Kirschner, 2000), major changes in the Na+/Cl- ratios can be linked to cation-exchange 

reactions. Basically, the trend in the Na+/Cl- ratios is conceptualized as follows. Initially, as the 

dissolved Na+ is sequestered at the exchange site, the resulting Na+/Cl- ratios is less than 1. The 

continued increase in the concentration of dissolved Na+ implies exceedance of the cation-

exchange capacity such that little or no Na+ removal by adsorption takes place and the ratios 

approaches a value of 1 (Long et al., 2015). Also, the ratios often increase to levels well above one 

as Na+ is released from the exchange sites due to flushing. Werner and diPretoro (2006) observe 

that as Na+ is depleted from the exchange sites, the ratios return to 1 with the soil approaching 

equilibrium with literally no more Na+-containing water. The consequence of the highlighted 

scenarios is that the Na+/Cl- ratios could mirror the solute concentration histories and response to 

supplying sources, environmental conditions, and nature of flow pathways and storage capacity of 

the containing-media. Similarly in Figure 4.11d, the K+/Cl- ratios was used to indicate the ability of 

the clay minerals to absorb K+. Böhlke (2002) noted that low K+/Cl- ratios less than unity 

potentially indicate the absorption of K+ onto clay minerals. Overall reduction in the groundwater 

K+/Cl- ratios may be caused by sorption by clays (Oren et al., 2004).  

From Figure 4.12, it is shown that two groups of groundwater samples (A and B) exist. 

Group A samples are mostly associated with higher NO3
- concentrations (range: 29.1 – 49.8 mg/L), 

whereas group B samples are associated lower NO3
- concentrations (range: 12 – 19.2 mg/L). The 

existence of these groups may be reflective of the effect of two distinct biogeochemical 

heterogeneities influencing groundwater NO3
- in the sampled aquifer zones.  From the lower NO3

- 

concentrations of group B samples, some within the range of 10 – 15 mg/L, it might be suggested 

that the groundwater NO3
- is of natural/geogenic origin. Heaton (1986) noted that groundwater 

NO3
- concentrations > 5 mg/L generally show contamination by animal wastes, fertilizers and/or 

effluents. Kohn et al. (2016) also presumed the impact of agricultural activities on high 

concentrations of NO3
- (i.e., > 13 mg/L) and/or Cl- (i.e., > 20 mg/L). Moreover, because Cl- is 

also not considered a major component of the area's environmental geochemistry, the relationship 

between NO3
- and Cl- concentrations exhibiting a good and positive correlation (Figure 4.12a, 𝑟2 =

0.84), suggests that much of the NO3
- and Cl- are probably transported from a common 

anthropogenic source/activities (e.g., Murgulet and Tick, 2013), rather than originating from the 

dissolution of the gypsiferous carbonate rock of the area (e.g., Wendland et al., 2005; Wendland et 

al., 2008). Cl- can be used as a natural tracer of manure in agricultural settings. Unlike manure 

nutrients, Cl- is neither consumed by plants nor impacted by physical, chemical and microbiological 

reactions. Thus, tracking the relationship between Cl- and NO3
- seems to be an interesting approach 

to assessing whether NO3
- was anthropogenically introduced into the groundwater. Numerous 

studies have  also suggested that such a strong positive correlation between NO3
- and Cl- could be 

an evidence of predominantly faecal- and/or waste water-derived NO3
- influence (e.g., Chapman, 

1992; Barrett and Howard, 2002; Murgulet and Tick, 2013; Dzakpasu et al., 2014). Previously in 

the study area (Schollenberger, 1998), it was assumed that 80 - 95 % of the plume of NO3
- in the 

groundwater can be linked to N fertilizer application in the form of NH4
+ (diffuse N source). There 

is also an assumption that a hypothetical landfill site (potential point source; see Figure 4.1) would 

have contributed to the investigated groundwater NO3
- plume.  
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Figure 4.12. (a) Relationship between NO3

- and Cl- concentrations. (b) Plot of Na+ versus NO3
-. (c) Plot of 

Cl- versus K+. (d) Plot of K+ versus NO3
-. Groups A and B groundwater samples are shown to be associated 

with NO3
- end-member groups. 

 

In an aquifer impacted by a landfill, typical major cations may include Ca2+ , Mg2+, Na+ and 

K+) (Deutsch and Siegel, 1997; Christensen et al., 2001). However, as previously explained, it is 

obvious in this study that concentration values of Ca2+, Mg2+ are most representative of the area’s 

natural environmental geochemistry (that is, gypsiferous carbonate rock system). Ranjbar and Jalali 

(2012) reported that farm animal wastes and septic tank effluents for instance are typically enriched 

in Cl-, Na+, and K+ among many other contaminants which are released by decomposing organic 

matter (Minet et al., 2017). Even though Na+ is not as mobile as NO3
-, Minet et al. (2017) 

demonstrated that as one of the most mobile of the common cations, Na+ adsorption should be 

further reduced as the sorption sites within the plumes of contamination become saturated. 

Consequently, it is expected that Na+ concentrations should be elevated (in particular, in the deeper 

parts of the aquifer – mostly group A samples) and deemed indicative of point source of N-rich 

organic effluents relative to the shallower parts of the aquifer – mostly group B samples. Na+ 

concentrations did not vary widely across the aquifer (Table 4.2). The weak correlation observed 

between Na+ and NO3
- (Figure 4.12b) points to little or no impact of point sources associated with 

NO3
- groundwater loading. Nonetheless, it is worth noting that for the Na+ concentration values 
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to be used as an indicator of contamination by organic wastes, it behooves investigators to 

determine if the wastes (in septic tanks and landfills) contain Na+-enriched components (e.g., 

human salty diets, water softeners and certain detergents, etc).  

Although K+ can be contained in diffusely applied synthetic N-P-K, KNO3 and/or non-N 

fertilizers (e.g., potash (KCl)) as well as animal/human wastes (Maule and Fonstad, 2000), the 

relationships between Cl- and K+ and NO3
- and K+ (Figure 4.12 (c and d)) for the two groups of 

groundwater samples distinctly varied. The nature of the observed correlation between Cl- and K+ 

and NO3
- and K+ (Figure 4.12(c and d)) suggest that the dynamics of groundwater in the aquifer 

can be relatively deciphered. In the sedimentary environments, K+ can also be released 

predominantly from the chemical weathering of K+-containing primary minerals. These minerals 

weather more slowly than those containing Ca2+, Mg2+, Na+ during water-rock interaction (Berner 

and Berner, 1996). In this regard also, K+ has been considered one of the hydrogeochemical 

indicators to estimate groundwater residence time in carbonate aquifers (Lalbat et al., 2007). Thus, 

it is anticipated that K+ concentrations would increase as the residence time increases and vice-

versa. Based on this, it is provisionally interpreted that in group A groundwater samples wherein 

K+ decreased with increase in NO3
- could be related to zones of shorter groundwater residence 

times whereas in group B groundwater samples wherein K+ increased with increase in NO3
- 

(however, less than the NO3
- concentration levels of group A groundwater samples) were 

associated with zones of longer groundwater residence times. In tandem with this interpretation, 

some investigators (e.g., Zarnetske et al., 2011; Briggs et al., 2013) have demonstrated that a net 

nitrification environment would have short residence times while a net denitrification environment 

would have long residence times. This may be the reason why the Group A samples appear to have 

higher NO3
- concentrations than Group B samples. Perhaps the channelized aquifer structure from 

which the Group A samples were collected, played a crucial role in the distribution of the NO3
- 

concentration levels. Although these inferences imply that the shallower group B groundwater 

samples would be more associated with denitrified groundwaters compared to the group A samples 

from within the channelized deeper parts of the aquifer, the effect of groundwater residence times 

on the groundwater NO3
- at the study site needs further investigations. These attempts to identify 

specific contributory source of the groundwater NO3
- are useful, however, they are not definitive 

enough with the present set of hydrogeochemical data. Thus, as discussed in the subsequent 

sections, further efforts were made to reduce uncertainties over source apportionment and fate of 

NO3
- using complementary studies. 

 

4.4.2 Sulfate sources using 34S-SO4
2- and 18O-SO4

2- 

 

I used the dual isotopic composition of SO4
2- (18O and 34S) to distinguish groundwater 

SO4
2- sources and to ascertain the contributory cause of these sources in the groundwater. This is 

based on the concept that the SO4
2--derived from different sources usually has distinct 18O and 

34S values (e.g., Onac et al., 2011). This approach has been also applied in inferring processes (e.g., 

mixing or bacteria SO4
2- reduction) that affect the concentrations and/or isotopic compositions of 

SO4
2- (e.g., Miao et al., 2013). The studied groundwater samples (Table 4.2 and Table A7) have 34S-

SO4
2- values ranging from 15.2 to 16.3 ‰ (M = 15.9, MD=16.06, SD = 0.342, CV = 2.15 %) and 

18O-SO4
2- values ranging from 12.8 to 14.0 ‰ (M = 13.3, MD=13.40, SD = 0.310, CV = 2.33 %). 
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The cross plot of the 34S-SO4
2- and 18O-SO4

2- values (Figure 4.13) shows isotopic composition 

values clustered in one region, indicating that the groundwater SO4
2- emanated from a common 

source. I used a three end-member mixing model defined by Samborska et al. (2013) to interpret 

the isotopic measurements of SO4
2- dissolved in the groundwater (Graf et al., 1994; Phillips and 

Gregg, 2003; Moore and Semmens, 2008; Samborska and Halas, 2010). The model is based on 

estimates of average, lower and upper confidence interval for the fraction of each source of SO4
2- 

ion in the groundwater on the recharge areas of the Triassic carbonate formation. The considered 

sources of SO4
2- characterized by its own range and distribution of 34S-SO4

2- and 18O-SO4
2- are 

as follows: (1) sulfide(S) as a result of sulfide mineral oxidation; (2) SO4
2- originating from 

atmospheric precipitation/recharge water, and (3) SO4
2- from the dissolution of gypsum. Figure 

4.13 shows that the groundwater samples are mainly plotted toward the vertexes corresponding to 

the mean isotopic composition influenced by the gypsum source. The enrichment in the measured 

34S-SO4
2- and 18O-SO4

2- did not reflect fractionation due to bacterial SO4
2- reduction or signatures 

of isotopic sources influenced by precipitation/recharge water (Mongelli et al., 2013).  

 

 

 
Figure 4.13. Plot of 34S-SO4

2- and 18O-SO4
2- (closely clustered blue circles). Typical ranges of 34S-SO4

2- 

versus 18O-SO4
2- values for different sources of SO4

2- are taken from Graf et al. (1994), Pauwels et al. 
(2010), Samborska et al. (2013) and Miao et al. (2013). 
 

Overall, the groundwater samples plotted in the evaporitic sulfate field as shown in Clark 

and Fritz (1997). In this field, the sampled groundwater is characterized by isotope values consistent 

with the Keuper (e.g., Krouse and Grinenko, 1991). Prior investigations also have reported a similar 

range of 34S-SO4
2- and 18O-SO4

2- values for the SO4
2- evaporites such as gypsum (e.g., Krouse and 

Mayer, 2000; Knöller et al., 2005; Samborska et al., 2013). Based on an interpretation framework 

provided by Pauwels et al. (2010), the groundwater samples are mainly classified into the domain 

of modern shallow groundwaters, particularly NO3
--contaminated groundwater (that is, NO3

- > 

5mg/L) with 34S-SO4
2- values ranging from +8 to +16 ‰ and not in the denitrified modern 
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groundwaters domain, where autotrophic denitrification is assumed (that is, in groundwaters 

influenced by S dissolution with lower isotopic ratios down to – 10 ‰ for 34SSO4
2- (Aquilina et 

al., 2015). Further evaluations in the next sections are expected to inject a new perspective into this 

observation with regards to the fate of NO3
-. 

 

4.4.3 Refined understanding of the NO3
- sources 

 

Based on the plot of the N and O isotopes of NO3
- (Figure 4.14), the dual isotopic 

composition of NO3
- (18O, 15N) shows that 64 % of the 25 groundwater samples considered 

(Table 4.2 and Table A7) with 15N-NO3
- values ranging from +6.7 to 8.1 ‰ and 18O-NO3

- values 

ranging from +3.4 to 4.6 ‰ plotted in the area of overlap between soil organic N and animal waste 

(manure) and sewage plus septic waste, respectively. The groundwater samples were mainly 

collected from the shallower compartment of the aquifer. Given the presented values of 15N-NO3
- 

and 18O-NO3
-, it can be assumed that this signature was most representative of NO3

- derived from 

organic N in the soil (Silva et al., 2000; Kendall et al., 2007). However, Fang et al. (2015) noted that 

15N of soil-extracted NO3
- was generally negative in surface soils, being much lower (by 6 to 13.4 

‰) than the 15N of soil organic N, which ranged from 0 to 7.5 ‰. Böhlke et al. (2002) and Böhlke 

(2002) observed that anomalously low 15N values of around 0±1 ‰ in groundwater NO3
- from 

some agricultural sites in the US have been interpreted as a result of mineralization, nitrification, 

and recharge. If true, this would imply that denitrification could be responsible for the recorded 

15N-NO3
- values ranging from +6.7 to 8.1 ‰. However, animal manure have commonly exhibited 

15N values of + 6 ‰ on the land surface.  

 

 
Figure 4.14. Dual NO3

- isotope plot showing ranges of 15N-NO3
- and 18O-NO3

- values in permil (‰) 
characteristic with NO3

- from soil organic N and animal (manure)/septic sewage sources (after Kendall, 
1998). 
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The remaining 36 % of the groundwater samples from the deeper section of the aquifer 

was characterized by values ranging from +10.6 to +17.9 ‰ and from + 5.8 to + 15.0 ‰ for 15N-

NO3
- and 18O-NO3

-, respectively. The elevated 15N-NO3
- and 18O-NO3

- values compared to 

those of the shallower groundwater samples are consistent with signatures of NO3
- likely derived 

from animal waste (manure) and sewage plus septic waste (Canter, 1997; Kendall et al., 2007). 

However, the overlapping dual NO3
- isotope signature range for animal waste (manure) and sewage 

plus septic waste does not permit precise quantification of the contribution of these sources to 

NO3
- in the groundwater (Burns et al., 2009). Also, this could probably result from wide variations 

in the isotopic composition of sources, mixing and biological cycling. Studies have reported that 

the average 15N-NO3
- value from landfill leachates would fall between the average for animal-

septic wastes and the average from natural soil NO3
- (Wolterink et al., 1979; Cravotta, 1995). Taking 

together with the consideration that the major ion geochemical data did not indicate clear evidence 

that the NO3
- emanated from a landfill in a point source form, establishing the existence of the 

proposed hypothetical landfill site is difficult.  

Specifically, the nature of landfill leachates depends on the type of waste deposed of at the 

site, landfilling technique used, the waste degradability and their stage of degradation (Maximova 

and Koumanova, 2006) as well as of environment geochemistry and climate. Presently, there is no 

information that directly probes the content of the feature suspected to be a landfill site. In other 

words, discerning the content of the suspected landfill feature would be a topic of great research 

concern. During one of the conducted field campaigns however, I witnessed the fertigation of the 

agricultural soil with liquid manure. Based on the results presented in section 4.4.2, the infiltrating 

rainwater would have facilitated the leaching of the produced NO3
- into the Quaternary aquifer 

system. Under this scenario, it could be that the most likely NO3
- source in the groundwater is the 

liquid manure, but the dilemma admittedly faced is distinguishing between animal manure and 

septic wastes in the deeper compartment of the aquifer. Obviously, given the characteristics of 

septic and animal manure wastes (Fleming and Ford, 2002) in terms of potentially being a point 

source (e.g., septic systems) or diffuse source (animal manure) and their microbiological 

characteristics, there is no scientific basis for classifying them into the same category as displayed 

in Figure 4.14.  

Where a point source of NO3
-, for example the hypothetical landfill site occurs in a 

heterogeneous aquifer environment with a transmissive preferential flow path as it is being 

considered in this present study; it is hardly distinguished from a diffuse source as in the case of 

the application liquid animal manure. This is because the existence of such a flow path would mean 

that all infiltrating fluids and solutes (irrespective of point or diffuse source) can be entrained into 

the deeper aquifer compartment, making it difficult to discriminate between a point and a diffuse 

N-source. Nevertherless, as higlighligted in this study's outlook in Chapter five, an approach for 

distinguishing between landfill, sewage, animal manure using a variety of other chemical, 

microbiology and stable isotope indicators is recommended combined with probing the content of 

the study site environment where the hypothetical landfill site is suspected. 

From the distribution of the plotted data, I found no readily available hint for direct input 

of synthetic NO3
- fertilizer or NO3

- from atmospheric deposition (Kendall and Aravena, 2000; 

Vitòria et al., 2004). This is due to the fact that synthetic fertilizer applied as NO3
- and NO3

- from 

atmospheric deposition would typically have a higher 18O values of 19 to 25 ‰ and more than 30 

‰, respectively (Mayer et al., 2001; Mengis et al., 2001). However, observation of the impact of the 

greater 18O values from the synthetic NO3
- in the groundwater would normally not be expected 
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due to immobilization-mineralization cycles in the soil. This is also because during immobilization 

processes, the three O atoms of the NO3
- are removed and hence, NO3

- from atmospheric 

deposition or synthetic NO3
- fertilizers loses its original 18O signature. Fertilizer applied as NO3

- 

would be taken up by plants or microbes (assimilation), transformed to organic N (immobilization), 

then returned to the soil followed by eventual reoxidization to NO3
-(nitrification). With these 

processes, the resulting 18O values would be different from those of the initial applied NO3
- and 

could have 18O values close to those of the applied reduced N that were nitrified in the soil zone 

(that is, through oxidation of the mineralized organic N). In effect, the residence time of the applied 

synthetic NO3
- fertilizer in the soil-plant zone are always helpful in explaining the difference in the 

isotopic signatures of NO3
- fertilizer which leached soon after application from that taken up by 

the plant and later returned to the soil (Panno et al. 2006). The lithological characters of the 

unsaturated zone and operating environmental factors in such an agricultural setting as illustrated 

in this study could also to act as a buffer with various N transformation processes modifying the 

original chemical composition of infiltrating organic wastes, be it animal manure, wastewater or 

landfill leachates (Krapac et al., 2002; Hao and Chang, 2003). Overall, considering the range of the 

15N-NO3
- isotopic values (that is, relatively higher than those of the reduced N fertilizer), Aravena 

et al. (1993) and Mengis et al. (2001) suggested that the shallower groundwater samples may have 

been so affected by the above-mentioned processes.  

The slope of 1.09 obtained for the denitrification trend line exceeded those often reported 

for groundwater between 0.5 and 0.8 (Granger and Wankel, 2016). This shows that the partitioning 

of the groundwater NO3
- sources into the two aquifer compartments results from complex 

processes that cannot just be explained by denitrification processes alone. As explained in section 

4.4.7, mixing can be a counfounding factor in the observed slope of the denitrification trend line. 

Because mixing of NO3
- sources alone cannot account for the range of isotopic values, it appears 

that denitrification has played an important role. Tracing the denitrification line (Figure 4.14) back 

to its interception as suggested by Panno et al. (2006). shows that the two distinct groundwater 

NO3
- sources partitioned into the shallower and deeper aquifer compartments originated from the 

same reduced nitrogen fertilizer. The following sections further highlight the various mechanisms 

responsible for the partitioning of the NO3
- sources in the shallower and deeper aquifer 

compartments.  

4.4.4 Groundwater recharge origin based on 2H-H2O and 18O-H2O  

 

Isotopic enrichments of 18O and 2H in groundwater relative to the mean ocean water are 

determined and correlated with natural meteoric water derived from precipitation (Epstein and 

Mayeda, 1953; Craig, 1961; Kendall and Caldwell, 1998). This is essentially true, if the stable isotope 

ratios (18O/16O and 2H/1H) are considered homogeneous on a regional and time scale provided 

evaporation- and condensation-influencing processes are kept to a minimum (Clark and Fritz, 

1997). As constituents of a water molecule, 2H-H2O and 18O-H2O can serve specifically, as 

natural and environmental tracers for tracking the sources of groundwater recharge (Guay and 

Eastoe, 2007). Because the relationship between 2H-H2O and 18O-H2O arises from fractionation 

during condensation from the vapor mass and the evolution of the 18O and 2H composition of 

meteoric waters begins with evaporation from the oceans, the plotting of 2H-H2O against 18O-
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H2O also opens up the possibility to visualize important groundwater recharge processes (Souchez 

and Lorrain, 2006). 

 

 
Figure 4.15. Representative 2H - 18O pairs from studied aquifer groundwater showing their relation to the 
global and local meteoric water lines. The vertical and horizontal error bars represent the measurement 

uncertainties of 2H (1.0 ‰ ) and 18O (0.3 ‰ ), respectively. 

 

As shown in Table 4.2 and Table A7, the isotopic ratios in the groundwater of the 

investigated aquifer system ranges from – 8.7 to – 8.3 ‰ (M = -8.5, MD=-8.50, SD = 0.10, CV = 

- 1.18 %) for 18O-H2O and from – 62.5 to – 61.3 ‰ (M = -62.0, MD=-62.1,  SD = 0.38, CV = - 

0.62 %) for 2H-H2O. As shown in Figure 4.15, the fact that the groundwater 2H-H2O and 18O-

H2O values did not vary widely and clustered on the local meteoric water line (LMWL): 2H = 

7.6*18O + 2.5 (r2 = 0.99; n = 12) indicates that the groundwater recharge originates from local 

modern meteoric water source. The LMWL data represents water isotopic compositions of mean 

monthly precipitation (data acquired between January and December 2012) from an IAEA’s Global 

Network of Isotopes in Precipitation (GNIP) monitoring station at Stuttgart (Germany) (Stumpp 

et al., 2014). The reason for the strong linear correlation in the LMWL data is due to the 

fractionation of isotopes during evaporation-condensation processes resulting in differential 

increase in 2H-H2O and 18O-H2O values (Gourcy et al., 2005). Contrarily, a noticeable positive 

but weak correlation (Figure 4.15b) between the groundwater 2H-H2O and 18O-H2O values: 2H 

= 2.3*18O – 42.4 (r2 = 0.36; n = 25) was observed. The weak correlation is also reflected in the 

large spread and variability of the measurement precision from the groundwater 2H-H2O and 

18O-H2O values, which however does not invalidate the data. Although identification of the 

uncertainty source is beyond the scope of the present study, the observed trend of 2H-H2O and 

18O-H2O signatures would not exclude the impact of transport processes created by the aquifer 

heterogeneity (e.g., Hendry et al., 2016) or water-rock interactions (Savard et al., 2010). More 

importantly, apart from the unexplainable groundwater sample Gw8-6 with the 2H-H2O and 18O-

H2O of -61.5 ‰ and -8.3 ‰, we observe systematic distinction in the stable water isotopes with 

relation to the identified shallower and deeper groundwater samples (based on the dual-NO3
- 

isotope approach, see Figure 4.14). 
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The groundwater samples plot below the global meteoric water line (GMWL): 2H = 

8*18O + 10 (Craig, 1961), suggesting a more humid moisture source. The slope of the LMWL is 

7.6, which is close to that of the GMWL with a slope of 8. First, this shows that the LWML data 

set may be considered representative of the mesoscale processes and combined effects of relative 

humidity, evaporation, storm source and enrichment or depletion on originating precipitation and 

averages inter-annual and intra-annual variability between 2H-H2O and 18O-H2O values within 

the region (Ingraham, 1998; Rugel et al., 2016). Second, the slope of the LMWL shifting away a bit 

from that of the GMWL is an indication that the LMWL sample was affected by evaporation that 

occurred after condensation. Similarly, the much lower slope and intercept of the groundwater 

2H-H2O and 18O-H2O regression line indicate the effects of evaporative enrichment on the 

groundwaters as a whole. 

The deuterium excess (d-excess) information, calculated after (Dansgaard, 1964) with d-

excess = 2H - 8*18O was examined as an indirect measure of the extent of the evaporation impact 

(Gonfiantini, 1986) influenced mainly by relative humidity (Jouzel et al., 1982) and temperature 

(Johnsen et al., 1989) in the moisture’s source area. Lower values support the assumption of 

increasing evaporation (Liotta et al., 2006; Murad and Mirghni, 2012). The calculated mean d-excess 

values averaged 6.0 ‰ (ranging from 4.6 ‰ and 7.0 ‰) and 5.6 ‰ (ranging from 2.72 ‰ and 9.93 

‰) for the groundwater and the LMWL data, respectively, lower than that of the global 

precipitation (+10 ‰), further indicate that partial evaporation of the recharging groundwater 

occurred. In general, the shallow aquifer groundwater NO3
- is most likely a result of infiltrating 

rainwater, that is, evaporation of rain water prior to recharge (Clark and Fritz, 1997,Petrides et al., 

2006; Guay et al., 2006; Pastén-Zapata et al., 2014).  

Although there was no supporting age measurement data and water isotopes do not provide 

age information of the sampled groundwater, 18O abundances have been used to distinguish 

between Holocene and Pleistocene ground waters (Deak and Coplen, 1996). On this note, I show 

that the 18O values of the sampled groundwater are all more positive than - 9.9 ‰ indicating that 

the infiltrating rainwater represents a modern recharge after the late Pleistocene (Skelton et al., 

2014).  

 

4.4.5 NO3
- dynamics in relation to aquifer heterogeneity, conservative and 

redox-sensitive constituents 

 

The complexity of the groundwater NO3
- fate and transport reflects the variability of the 

prevailing geologic conditions, subsurface hydrologic regimes and biogeochemical processes 

(Denver et al., 2014), which ultimately combine to control NO3
- attenuation in the saturated zone 

(Rivett et al., 2008). The fate of groundwater NO3
- is intimately linked to the redox conditions 

(Aravena and Mayer, 2010). According to Barlow and Kröger (2014), flowpaths drive chemical 

transport. The assumption that NO3
- reduction does not occur often in the oxic zone between the 

bottom of the root zone and the redox interface and that all NO3
- passing below this interface is 

immediately reduced, makes NO3
- reduction in the subsurface only dependent on the flowpaths 

and the location of the redox interface (Refsgaard et al., 2014). However, this assumption of redox 

stratification in terms of anoxic denitrification is only basic, simplistic, and relatively well-

understood and may not hold sway in capturing complex network of redox dependent metabolic 
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pathways and factors that potentially define the spatial and temporal variability of the NO3
- sources 

and frequent mixing of groundwater of different origins (Vrzel et al., 2016; Briand et al., 2017). 

This is because when driven by diffusion of solutes (Canfield et al., 2005; Kessler et al., 2013), the 

interpretation of redox processes can become more complicated. The absence or presence of the 

groundwater EC, DO, NO3
-/Cl-, NO3

-, Mn2+, Fe2+, SO4
2-, NH4

+, and HCO3
- was used to 

characterize the heterogeneity of the aquifer system, redox conditions and demonstrate NO3
- 

attenuation capacity. 

I observed that the vertical profiles of the groundwater EC and SO4
2-concentrations show 

near uniform distribution (Figure 4.16 (a and b)). Even though groundwater EC can be a natural 

tracer of pathways of physical mechanisms and biogeochemical fluxes (Garner and Mahler, 2007), 

from the homogeneous distribution of the groundwater EC and SO4
2- concentrations across the 

entire depth intervals, it seems likely that the delineated channelized low resistivity feature was 

unconnected to a zone of higher groundwater EC sensitive to the SO4
2- as initially hypothesized in 

Chapter three. Hence, the groundwater EC differences were not a good candidate for explaining 

the development of the observed low resistivity zone. This also indicates the DP EC logs (see 

Chapter three – Sections 3.7.4, 3.7.5, and 3.7.6) within the aquifer are reflective of conductivity 

differences produced by the aquifer lithologic variations. Furthermore, I observed steep vertical 

gradients for the DO and NO3
- concentrations (Figure 4.16c) noticeably, for the deeper wells at 

sites Gw8 and Gw15. I found that the low DO values appear to correlate the high NO3
- values in 

most cases. Such steep geochemical gradients indicate the existence of aerobic-anaerobic transition 

interface as mixing-controlled biogeochemical hotspots for enhanced microbial activities. The 

observed presence of steep geochemical gradients and correlations also re-emphasize the need for 

multilevel groundwater sampling and monitoring on a vertical axis in order to properly identify 

chemical heterogeneities, and microbiological processes.  

Quantifying the relationships between the nature of flow and the heterogeneities in the 

different parts of the aquifer with physical methods can be challenging (Macpherson and 

Townsend, 2002), given the invisible nature of subsurface flow patterns. However, it has been 

demonstrated that one can track water movement and solute mixing patterns from the chemical 

and isotopic tracer that they carry (Kirchner et al., 2000). In this regard, the patterns and extent of 

vertical variations recognized in the water chemistry (Figure 4.16) within the aquifer may have been 

informed by the varying degrees of heterogeneity in the aquifer matrix composition, mineral 

dissolution/precipitation, ion exchange, sorption, and flow dynamics, which invariably influence 

redox adjustments. For instance, because within the redox ladder, the consumption or respiration 

of the NO3
- oxygen or NO3

- reduction by microbial populations enhanced by organic loading would 

proceed that of the SO4
2-, it is most likely that the presence of NO3

- inhibited the activities of the 

SO4
2--reducing bacteria, particularly in the deeper parts of the aquifer leading to a homogeneous 

SO4
2- concentration levels (Churchill and Elmer, 1999). One would have also expected a correlation 

of low DO with low NO3
- to indicate the presence of canonical denitrification. However, the 

reverse was the case in this study wherein the NO3
- dynamics show an inverse relation with the 

DO concentrations (Figure 4.16c), re-affirming complex nitrogen turnover.  
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Figure 4.16. Vertical profiles of groundwater EC values (a), and SO4

2- concentration levels (b). (c) Vertical 
profiles of dissolved oxygen, nitrate and nitrate-to-chloride ratios. The shallower and deeper aquifer 
groundwater samples are separated by the dashed line based on dual isotopic ratios of nitrate presented in 
Figure 4.14.  

 

Based on the threshold given by Burow et al. (2010), a reducing condition with DO 

concentrations less than 0.5 mg/L can be expected to favor denitrification mechanisms. Against 

this threshold/scheme, some other studies (Barkle et al. 2007; Stenger et al., 2008; Weymann et al., 

2008; Burbery et al., 2013; Clague et al., 2013) considered DO concentrations below 2 mg/L to be 

conducive for redox-related processes such as complete denitrification. Although these schemes 

agree that DO must be closer to zero before denitrification can be effective, up till now, the level 

of DO at which denitrification begins remains elusive. Also, given that NO3
- is plainly not a useful 
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indicator of reducing groundwaters, the role of traditional denitrification should be reconsidered. 

Considering the distribution of the DO and NO3
- in relation to the channelized deeper parts of the 

aquifer, this work suggests that the pattern of groundwater flow may provide answers as to why 

there was no significant NO3
- removal in the low DO environment. The vertical concentration 

profiles of the solutes in the aquifer indicate that hydrologic processes in the shallower 

compartments of the aquifer may be different from those in the deeper compartments of the 

aquifer. This further confirms the the critical role of complex biogeochemical processes in shaping 

the observed uniform vertical profiles of the groundwater EC and SO4
2- concentrations and steep 

concentration gradients in DO and NO3
-. 

 

 

Figure 4.17. A plot of Fe2+ versus Mn2+ concentrations. Red and black notations indicate shallower and 

deeper groundwater samples, respectively. 

 

A methodology for identifying the processes controlling the concentrations of the NO3
- in 

the investigated aquifer can be based on the NO3
-/Cl- levels (Figure 4.16c). Altman and Parizek 

(1995) and Koba et al. (1997) noted that the ratio of NO3
- to Cl- can be effective in separating the 

effects of mixing and chemical processes. The rationale behind the application of the NO3
- to Cl- 

ratio method stems from the fact that Cl- is a conservative/passive/nonreactive element, largely 

indifferent to physical, chemical and microbial mechanisms occurring in the groundwater (Altman 

and Parizek, 1995; Kirchner, 2003; Dzakpasu et al., 2014). Although NO3
- is also a chemically 

conservative tracer, unlike Cl-, NO3
- can be microbially degraded (Hill et al., 1998; Curie et al., 2009; 

Kirchner et al., 2010). Therefore, considering that Cl- is not a significant component of the 

surrounding geologic formation and may have been introduced to the aquifer system from the same 

land surface as NO3
-, a change of Cl- relative to the NO3

- can be used to indicate NO3
- addition or 

removal in the aquifer system. The increasing NO3
-/Cl- ratios with NO3

- concentrations (Figure 

4.16c) in the deeper compartment of the aquifer indicates the addition and mixing of the NO3
- 

species in the groundwater along the flow path relative to the low NO3
-/Cl- ratios which support 

that NO3
--consuming process was probably occurring in the shallower parts of the aquifer (Schilling 

et al., 2006; Fenton et al., 2009). Low concentration values of NH4
+ sometimes below the detection 
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limit (Table A6), however, does not indicate dissimilatory NO3
- reduction either.  

Apart from N losses through ammonia volatilization from agricultural lands, it is possible 

that most of the NH4
+ would have been oxidized to NO3

- (mostly at soil-plant system) which 

eventually leached into the aquifer. Datry et al. (2004) explained that nitrification and subsequently 

denitrification as illustrated in a number of infiltration basins may have influenced the low values 

of NH4
+ through the oxidation of the NH4

+ produced from the microbial degradation of organic 

matter. NH4
+ in an anaerobic aquifer system is more difficult to remove than the metals, because 

it strongly hold onto clay mineral exchange sites (Deutsch and Siegel, 1997). However, considering 

the environmental geochemistry of the study site, it would not be surprising to expect increased 

efficiency in the removal of NH4
+, given the competition for the exchange sites from a divalent 

cation such as Ca2+ and/or Mg2+.  

 

 
Figure 4.18. Relationship between NO3

- and (a) Mn2+, (b) SO4
2-. 

 

Mn2+ and Fe2+concentrations were generally low (Figure 4.17, Table A6) with Mn2+ 

concentrations (Table 4.2) ranging from 0.011 to 0.198 mg/L and Fe2+concentrations ranging from 

< 0.04 (below detection limit) to 1.86 mg/L. However, unlike the Fe2+concentrations, there is a 

remarkable separation of the Mn2+concentrations in the shallower and deeper aquifer 

compartments. While it is understandable that the high and near-uniform groundwater SO4
2- 

concentrations (Figure 4.16b) is primarily due to the presence of gypsum in the area’s 

environmental geochemistry, the observed concentrations of the Mn2+, Fe2+ and SO4
2-constituents 

may not be unconnected to the critical influence of the redox reactions in the aquifer system 

invariably controlled by the pattern of fluid flow/solute transport, motivating further assessment 

of the NO3
- concentration trends in relation to the Mn2+, Fe2+ and SO4

2-constituents.  
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I evaluated the relationship between Mn2+ and NO3
- concentrations to evaluate the evidence 

of potential anoxic nitrification by reduction of Mn-oxide that results from the oxidation of 

ammonia by Mn-oxide (e.g., Aller et al., 1998; Hulth et al., 1999; Mortimer et al., 2004). This belief 

goes against the conventional association of Mn-oxide reduction with the zone of NO3
- reduction 

under anoxbic conditions. That is, when conditions are anoxic, Mn2+ is formed and released 

according to the standard view (Sarmiento and Gruber, 2006). These conditions and viewpoint, as 

noted by Stumm and Morgan (1996), Carlson et al. (1997), Bratina et al. (1998), and Homoncik et 

al. (2010), tend to follow denitrification in the sequence of redox reactions. Although Mn2+ 

concentrations were generally low in this study (Table 1), Figure 4.18a shows the strong positive 

correlation between NO3
- and Mn2+ in the deeper compartment of the aquifer. This correlation 

simply indicates that where NO3
- and Mn2+ concentrations are correspondingly high, the redox 

conditions are not favorable to denitrification (Kingsbury, 2003). Such correlations suggesting 

anoxic NO3
- production during Mn-oxide reduction were also emphasized by Hulth et al. (1999) 

as an indication of simultaneous occurrences of nitrification and denitrification at the expense of 

NH4
+. Taken in conjunction with previous explanations, anoxic nitrification may also explain why 

I observed depleted NH4
+ concentrations. An insignificant correlation between NO3

- and Mn2+ 

was also observed in the shallower compartment of the aquifer (Figure 4.18a). This further shows 

that even if traditional microbial denitrification played a critical role, the occurrence of the process 

in the presence of oxygen probably provided evidence for aerobic denitrification. 

Three possible explanations for the observed low Fe2+ concentrations (especially for the 

aquifer zones with below detection limit Fe2+ concentrations) are: (1) Fe-bearing minerals was less 

abundant in the gypsiferous carbonate alluvial aquifer (e.g., Kunkel et al., 2004), (2) groundwater 

NO3
- acted as a redox buffer, preventing the reduction of Fe-oxides, if present in the aquifer 

(Smolders et al., 2010), and (3) because microbial ferric iron (Fe(III)) reduction depends upon the 

groundwater pH, it is possible that the Fe-reducing bacteria respired SO4
2- as an alternative electron 

acceptor in the studied near-neutral pH groundwater. Particularly in the case of more acidic 

groundwater and presence of electron donor, Fe (and Mn)-oxides will dissolve more readily. In this 

regard, even though limestone, dolomite, and Mn-carbonate are notable Mn sources and by 

implication, Mn would have resulted from the studied gypsiferous carbonate rock system, the near-

neutral pH of the sampled groundwater may have also been responsible for the observed low Mn2+ 

concentrations. With respect to the the third possible explanation, Flynn et al. (2014) show how 

Fe-reducing bacteria can switch to sulfur reduction as their main energy source in an alkaline 

environment (Friedrich and Finster, 2014). According to Ledin and Pedersen (1996), microbial 

SO4
2- reduction, a process that is affected little by changes in pH (Flynn et al., 2014) is the main 

source of dissolved sulfide in the subsurface. Jakobsen and Postma (1999) also indicate that Fe(III) 

reduction and SO4
2- reduction co-occur frequently in the subsurface (Flynn et al., 2014). At such 

recorded low concentration levels of Fe2+ and under the groundwater pH range of 6.72 to 7.2 

(especially in a situation where DOC does not seem to be labile as an electron donor – see section 

4.48, Figure 4.23), it is possible that Fe-reducing bacteria would depend on the activity of SO4
2--

reducing bacteria (Flynn et al., 2013). That being noted, evaluation of sulfur-driven 

chemoautotrophic denitrification, wherein for instance NO3
- reduction is coupled to SO4

2- 

production is also necessary. The correlation between NO3
- and SO4

2- for the deeper aquifer 

compartment groundwater samples portrayed insignificant relationships (Figure 4.18b). Given the 

clear evidence of NO3
- production in the deeper aquifer compartment and that NO3

- reduction is 

thermodynamically and energetically more favorable than SO4
2- reduction (Whitmire and Hamilton, 



111 

Chapter 4 

 

 

2005), I explain that the reason for the observed relation in the deeper aquifer compartment is 

simply because the oxygen atoms of the NO3
- were yet to be depleted to a level that permits SO4

2- 

reduction. Conversely, a strong inverse relation was observed between SO4
2- and NO3

- 

concentrations in the shallower aquifer compartment (Figure 4.18b), wherein NO3
- concentrations 

decreased with increase in SO4
2- concentrations. Such a relation is commonly taken as evidence that 

reduced sulfur supports denitrification (i.e., autotrophic denitrification) (e.g., Hayakawa et al., 

2013). Nevertheless, it has been demonstrated by several studies that nitrite (an intermediate during 

NO3
- reduction) can be toxic/inhibitory to microbial SO4

2- reduction (e.g., Schramm et al., 1999; 

Callbeck et al., 2013; Wu et al., 2018). The underlying chemolithotrophic metabolism supposes that 

the addition of NO3
- can stimulate heterotrophic denitrifiers that outcompetes SO4

2--reducing 

bacteria for energy sources (Hubert and Voordouw, 2007) such that NO3
--reducing, sulfide 

oxidizing bacteria is coupled to the oxidation of sulfide supplied by SO4
2--reducing bacteria, 

resulting in the production of intermediate elemental sulfur or certain amount of SO4
2- relative to 

the NO3
- removal (Schulz and Jorgensen, 2001; Burgin et al., 2007). Greene et al. (2003) also 

observed that inhibition of SO4
2--reducing bacteria by NO3

--reducing, sulfide oxidizing bacteria is 

caused by 60 % of nitrite produced per NO3
- reduced. Hence, measurements of nitrite 

concentrations and its isotopic composition would be an important activity in further studies. 

Overall, considering the little or no major changes in the SO4
2- concentration, I cannot confidently 

argue for the dominance of autotrophic denitrification over heterotrophic denitrification until 

further data such as that in section 4.4.6 are evaluated. Also, given such inference as simultaneous 

occurrence of heterotrophic and autotrophic denitrification (Kadlec and Wallace, 2008), an 

interesting question begging for answers would therefore be, can aerobic denitrifiers proposed 

overall in this study as heterotrophic denitrifiers function as both heterotrophic and autotrophic 

denitrifers, and if not, how can the major pathway be identified? 

 

4.4.6 Distinguishing between autotrophic and heterotrophic denitrification 

 

Because solute concentration data alone as presented here is limited to decipher the 

underlying mechanisms for the occurrence of oxic lower NO3
- and anoxic higher NO3

- in the 

shallower and deeper parts of the aquifer, respectively, use was made of the stable isotope methods. 

I applied the isotopic signature of NO3
- (15N) and SO4

2- (34S) to understand if the metabolic 

pathways have been partitioned into autotrophic or heterotrophic denitrification. The fitted trend 

lines (see Aravena and Robertson, 1998; Hosono et al., 2014; Abbott et al., 2016) in the plot of 

15N-NO3
- against 34S-SO4

2- (Figure 4.19) agrees to the fact that heterotrophic denitrification 

occurs in the aquifer system. If autotrophic denitrification were to be dominant, then 34S-SO4
2- 

would have declined with increasing 15N-NO3
-. This also confirms the discussion throughout the 

previous sections that autotrophic denitrification may be unlikely or at least not dominating. 

Bacterial SO4
2- and NO3

- removal would preferentially utilize the lighter isotopes of sulfur and 

nitrogen resulting in the observed enrichment of the heavier isotopes in the shallower 

compartment. The recorded isotope signatures and associated fractionations are nonetheless 

dependent on the extent of the reduction/removal, and prevailing conditions. The significance of 

this line of evidence is that instead of wasting effort hypothetically modeling a system as being 

either autotrophic or heterotrophic and both, one can confidently rule out and ignore the 

occurrence of autotrophic denitrification. Apart from saving time in the modeling process, this 
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would allow focused and more reliable simulation of N biogeochemical processes. 

 

 
Figure 4.19. Relationship between 15N-NO3

- and 34S-SO4
2- in the groundwater samples from the study 

area. 
 

4.4.7 Biogeochemical processes controlling NO3
- fate by paired 15N-NO3

- and 

18O-NO3
- 

 

The analysis of the paired stable isotopes of NO3
- and the slopes of the dual NO3

- isotope 

plot can be used to quantify reaction processes and mechanisms (e.g., Böttcher et al., 1990; Einsiedl 

and Mayer, 2006; Wassenaar et al., 2006; Sacchi et al., 2013) responsible for the observed 

distribution of NO3
- in the aerobic shallower and anaerobic deeper aquifer compartments  

Unitless kinetic fractionation factor α𝑝/𝑠 that describes the extent of unidirectional 

isotopic fractionation and reaction between the substrate (reactant), S (heavier) and biologically 

mediated product, P (lighter) (that is, the fractionation of the product relative to the substrate) can 

be represented as  

 

 α𝑝/𝑠 =
R𝑝𝑖

R𝑠
=

δ𝑝𝑖+1

δ𝑠+1
          (4.3) 

where R𝑝𝑖 and R𝑠 are the 15N/14N ratios of the instantaneous product which appears in an infinitely 

short time and substrate at the same time. The equation on the extreme right shows the expression 

of the fractionation factor in terms of isotope ratios in the δ notation on a logarithmic scale.  

α𝑝/𝑠 relates to the isotope enrichment factor, ε𝑝/𝑠 on the ‰ scale (as the fractionation 

factor generally differs by less than 5 % from unity (Mariotti et al., 1981) by: 
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α𝑝/𝑠 = 1 + 10−3ε𝑝/𝑠          (4.4) 

 

ε𝑝/𝑠 can also be represented as: 

 

ε𝑝/𝑠 = 103
(

1−β
β

)          (4.5) 

 

where 𝛽 = α𝑠/𝑝 = 1 α𝑠/𝑝⁄ , the kinetic isotope effect (inverse of fractionation factor) is the ratio 

of the rate constants of the light isotope to the heavy isotope representing the fractionation of the 

substrate relative to the product. 

If α𝑝/𝑠 < 1, then ε𝑝/𝑠 will be negative and the product will be isotopically depleted relative 

to the substrate and vice-versa. The more negative the ε𝑝/𝑠 , the larger the isotopic fractionation. 

Basically, if ε𝑝/𝑠 is small relative to 1000 ( i.e., ε𝑝/𝑠 ≪ 1000 ‰), Mariotti et al. (1981) also 

approximated ε𝑝/𝑠 by the difference between the isotopic composition of the reactant and its 

instantaneous product (ε𝑝/𝑠 ≅ δ𝑝𝑖 − δ𝑠). So, an instantaneous product with a particular amount of 

enrichment will be approximately that amount of enrichment lower than that of the reactant.  

Initially, the concentration and isotopic composition of the substrate is almost constant as 

shown by: 

 

ε𝑝/𝑠 ≅ δ𝑝𝑖 − δ𝑠 (t = 0 )          (4.6) 

 

Eqn (4.6), however, does not hold when substantial amount of substrate is consumed 

during the reaction. After more rigorous derivation and integration, Mariotti et al. (1981) clearly 

linked concentration to the isotopic ratios in the unreacted residual solute, classically termed 

“Rayleigh” equation (Rayleigh distillation model), which can be used to quantitatively describe the 

isotope effects (that is, the extent of deviation from perfect chemical equivalence) imparted on the 

solute during microbial solute concentrations reduction/transformations: 

 

(α
𝑝/𝑠

− 1) ln [
𝐶𝑜

𝐶𝑜
] = ln [

10−3𝛿𝑡+1

10−3𝛿𝑜+1
]        (4.7) 

 

and/or as its linear approximation: 

 

𝛿𝑡~𝛿𝑜 + 𝜀 × ln 𝑓,           (4.8)

   

where 𝛿𝑡 and 𝛿𝑜 are the total measured and initial relative 𝛿 units in the investigated substrate (that 

is, NO3
-), 𝐶𝑡 and 𝐶𝑜 are the total measured and initial substrate concentration. 𝑓 equals 𝐶𝑡 𝐶𝑜⁄   

denotes the fraction of unreacted/remaining residual substrate (e.g., NO3
-). 

The simplified form of the classical Rayleigh equation (Mariotti et al., 1981; Kendall, 1998) 

for independent O and N system of the residual NO3
- can be expressed as follows: 

 

𝛿𝑡
15𝑁 = 𝛿𝑜

15𝑁 + 𝜀𝑁
15  ln [

𝑁𝑂3
−

𝑡

𝑁𝑂3
−

𝑖

]        (4.9) 

𝛿𝑡
18𝑂 = 𝛿𝑜

18𝑂 + 𝜀𝑂
18 ln [

𝑁𝑂3
−

𝑡

𝑁𝑂3
−

𝑖

]        (4.10) 



114 

Chapter 4 

 

 

 

𝜀𝑁
15  and 𝜀𝑂

18  for N and O isotopes in NO3
- are respectively expressed as: 

 

𝜀𝑁
15 = 103 (

1−𝛽𝑁

𝛽𝑁
) and 𝜀𝑂

18 = 103 (
1−𝛽𝑂

𝛽𝑂
)      (4.11) 

 

𝛽𝑁 = 𝑘14/𝑘15 and 𝛽𝑂 = 𝑘16/𝑘18 values of ~1.030 and 1.015 have been reported in laboratory 

column experiments using isolated NO3
- reductases (Olleros, 1983 and Amberger and Schmidt 

1987 as cited in Chen and MacQuarrie, 2005). Using Eqn (4.11), enrichment factors of 𝜀𝑁
15 =

−29.13 ‰  and 𝜀𝑂
18 = −14.78 ‰  can be calculated 𝑘14 and 𝑘15 are rate constants of the 

reaction for 𝑁 −14  and 𝑁 −15 containing reactants, repectively.𝑘16 and 𝑘18 are rate constants of 

the reaction for 𝑂 −16  and 𝑂 −18 containing reactants, repectively.  

By solving for (𝑁𝑂3
−

𝑡
/𝑁𝑂3

−
𝑖
), Eqns (4.9) and (4.10) can be distilled into the following 

analytical relationships between δ15N and δ18O of the residual NO3
-: 

 

𝛿𝑡
18𝑂 = 𝑎 + 𝑏𝛿𝑡

15𝑁          (4.12) 

 

where a and b are 

 

𝑎 = 𝛿𝑜
18𝑂 −

𝜀𝑂
18

𝜀𝑁
15 𝛿𝑜

15𝑁         (4.13) 

𝑏 =
𝜀𝑂

18

𝜀𝑁
15            (4.14) 

 

The straight line relationship between δ15N and δ18O (Eqn (4.12)) has been observed in the 

laboratory and field investigations as an indication of denitrification processes. The slope b (Eqn 

(4.14)) referred to as the fractionation ratio (Böttcher et al., 1990) is dependent on the enrichment 

factors, 𝜀𝑁
15  and 𝜀𝑂

18  for N and O isotopes in NO3
-, respectively; meaning that the slope 𝑏 is 

controlled by the denitrification reaction rate constants 𝑘14, 𝑘15, 𝑘16, and 𝑘18. Unlike well-defined 

laboratory column experiments that can provide a constant initial substrate concentration (Co), the 

problem in evaluating the classical Rayleigh equation with respect to field data lies in determining 

actual specific initial concentration values. Fukada et al. (2003) however, demonstrate that δ15N and 

δ18O values of the residual NO3
- plotted against ln([𝑁𝑂3

−]) can approximate the linear derivation 

of the Rayleigh equation with slopes of 𝜀𝑁
15  and 𝜀𝑂

18 , respectively. 

Traditionally, the identical enrichment, progressive increase and close coupling of δ15N-

NO3
- and δ18O-NO3

- values (Figure 4.14) are expected to show the occurrence of microbial 

denitrification. However, a closer examination of the relationship between the 15N-NO3
- values 

and NO3
- concentrations (Figure 4.20a) reveals a trend of hyperbolic increase in 15N-NO3

- with 

decreasing NO3
- concentration values. This pattern does not support the presence of the 

conventional denitrification process, wherein the 15N-NO3
- values should increase exponentially 

with decreasing NO3
- concentrations under anaerobic conditions. In this scenario, the microbial 

denitrification reaction alone cannot clearly explain the partitioning of the NO3
- sources in the two 

identified compartments of the aquifer. Following Mayer et al. (2002), such a 2nd degree 

polynomial relation (r2=0.81) showing increase in the 15N-NO3
- values with increase in the NO3

- 
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concentrations is indicative of N cycling processes associated with admixtures of NO3
- of sewage 

or manure sources. Because denitrification can significantly complicate the interpretation of two 

NO3
- sources using 15N-NO3

- signatures and based on the Rayleigh fractionation model (Mariotti 

et al., 1981; Mariotti et al., 1988) can also display similar curvilinear relationship between 15N-NO3
- 

and NO3
- concentration values as mixing (Figure 4.20b), exercise of caution is often advised when 

interpreting mixing lines (Kendall et al., 2007). A diagnostic test of whether the 15N-NO3
- values 

can be explained by mixing can be made by plots of 15N-NO3
- against the natural log of 

concentration (ln NO3
-) and against the inverse of concentration (1/NO3

-). As illustrated in this 

study, the curve and not the straight lines (Figure 4.20c), and the straight line and the not curves 

(Figure 4.20d) for the described data confirms that the curves on the plot of 15N-NO3
- against 

NO3
- results from mixing-controlled N cycling processes. Nevertheless, however indicative the 

plots may be, the uniqueness of the presented information lies in the overall positive correlations 

between 15N-NO3
- and NO3

-/or ln NO3
- in contrast to the negative correlation trends commonly 

expected for anoxic denitrification. This observation of mixing-controlled N turnover is a complete 

opposite of conventional denitrification-controlled N turnover presented in Mariotti et al. (1988). 

Because the locations of the sampling ports within the aquifer are known, it seems reasonable to 

suggest that the shallower groundwaters descended into the deeper compartments of the aquifer 

via vertical migration and that the deeper aquifer structures potentially channeled lateral fluid flow 

and solute transport. Rafter et al. (2013) noted that if mixing is the dominant process, the 15N 

values of the sinking N should reflect the original sources of the N. In this sense, even though the 

contribution of the soil organic N resulting either from plant root decomposition or from direct 

uptake in the soil microbial community cannot be dismissed entirely, the deeper groundwater with 

increasing 15N-NO3
- values from +10.6 to +17.9 ‰ that reflect animal manure/septic sewage 

sources is more likely to have been significantly transformed during recharge, leaving the shallower 

groundwater with 15N-NO3
- values that reflect soil organic N sources. This result also suggests 

that although the shallower and deeper aquifer compartments seem connected by diffusion-

controlled mixing, they are also hydrobiogeochemically distinct. This also means that distinct redox 

condition-controlling geohydrology and niches for a wider variety of microbial communities and 

their functional diversity variously accounted for the observed solute concentration trends and N 

stable isotope systematics in the two aquifer compartments. Although the role of diffusion-related 

isotope fractionation as a potential confounder in field-scale applications of N stable isotopes is 

obvious from the above discussion and across the reviewed literature, it is not yet clear how the 

introduction of low NO3
- and low dual-NO3

- isotopes from the higher-DO-concentration 

shallower aquifer compartment into the lower-DO-concentration deeper aquifer compartment 

would suddenly result in a progressive increase in NO3
- concentrations and dual-NO3

- isotope 

signatures. In the following section, I further explore the use of NO3
- dual isotope analysis for 

estimating the extent of N isotopic fractionation and the possible reasons for the observed NO3
- 

concentrations and dual-NO3
- isotope signatures in the shallower and deeper aquifer 

compartments.  
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Figure 4.20. (a) Curves on a plot 15N-NO3

- against NO3
- exhibiting best-fit polynomial regression trend (r2 

= 0.81) of increasing 15N-NO3
- with increasing NO3

- concentrations, suggesting a scenario of admixture 

of two NO3
- sources (Mayer et al., 2002) and a typical conventional denitrification trend of increasing 15N-

NO3
- with decreasing NO3

- concentrations in a system with a single source of NO3
-. (b) Curves on a plot of 

15N-NO3
- against NO3

- showing curvilinear relationships for the data understudy and Rayleigh-based 
model of denitrification with two enrichment factors indicating denitrification (exponential) can be confused 
with mixing (hyperbolic), if the distinction between the two processes was to be based simply on the face 

value of curves. (c) Plot of 15N-NO3
- against ln NO3

-, where mixing yields a curve and different 

denitrification enrichment factors yield straight lines. (d) Plot of 15N-NO3
- against 1/NO3

-, where mixing 
yields a straight line and different denitrification enrichment factors yield curves. 
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Figure 4.21. (a) Conceptual model of the subsurface showing how the aquifer geometry/heterogeneity and 
conditions influences nitrogen cycling pathway on physical (hydrological) transport. (b) The Shark Fin 

pattern of the NO3
- concentrations and 15N of the residual NO3

- composition shows typical gradients 
within an anoxic environment wherein conventional denitrification occurs without the dominance of 
diffusion-limited transfer of NO3

- across such interface explain in (c). (c) Increase of NO3
- concentrations 

and 15N of the residual NO3
- composition with depth (and occurrence of steep biogeochemical gradient), 

indicating masking of the denitrification signal due to diffusion-controlled transport/admixture of NO3
- 

sources from the oxic shallower compartment across a transition interface into the less oxic deeper 
compartment. It is noteworthy to acknowledge that the strengths of the developed gradient in the anoxic 
zone would also be dependent on the advective flow velocity. 

 

 

In the conceptual model showing aquifer interfaces (Figure 4.21a), it is explained that the 

evidence for conventional denitrification indicating a decrease in NO3
- with an increase in 15N of 

residual NO3
- would have been supported if the system is not diffusion-limiting (Figure 4.21b). In 
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this study however, it is interpreted that the two distinct aquifer compartments: coarser-grained 

shallower and finer-grained deeper compartments created the distinct geohydrology that resulted 

in the observed steep geochemical gradients (Figure 4.16c) and possibly drove diffusion-controlled 

transport and admixture of solutes from the aerobic shallower to the anaerobic deeper 

compartment leading to the interpreted higher 15N of residual NO3
- signatures accompanied by 

higher NO3
- concentrations in the lower DO zone (Figure 4.21a). This is because denitrification 

occurs within the same phase wherein NO3
- is present (Figure 4.21b) unlike in the diffusion-

controlled transport/mixing scenario between two compartments of the aquifer system separated 

by a transition interface (Figure 4.21c).  

The question however is how diffusion limitation on simultaneous admixture effect would 

result in the occurrence of higher NO3
- in the anaerobic deeper compartments of the aquifer and 

lower NO3
- in the aerobic shallower compartments of the aquifer. To provide complementary and 

more convincing evidence for the occurrence of N biogeochemical processes, I estimated the 

fractionation ratios of O to N in NO3
- ( 𝜀𝑂

18 : 𝜀𝑁
15 ) ( see Eqn (4.3) – (4.12) and Figure 4.22) (dual 

nitrate isotopic approach).  

Figure 4.22 indicates enrichment factors of 3.02 ‰ and -1.09 ‰ for the N and O isotopes, 

respectively in the shallower compartment whereas enrichment factors of 3.90 ‰ and 4.64 ‰ for 

N and O isotopes, respectively were obtained for groundwater samples from the deeper 

compartment. These calculated enrichment factors are not within the range for N and O isotopes 

reported for conventional/riparian denitrification, when it implies reduction of NO3
- during 

convective transfer through reducing environments: 𝜀𝑁
15  = -40 to -5 ‰ (Kendall, 1998; Sebilo et 

al., 2003) and 𝜀𝑂
18  =-18.3 to -8.0 ‰ (Böttcher et al., 1990; Fukada et al., 2003). This study’s 

enrichment factors re-affirm that NO3
- diffusion through the aerobic shallower-anaerobic deeper 

transition interface limited the rate of complex biogeochemical processes (e.g., Semaoune et al., 

2012). The established concentration gradient is interpreted to cause molecular diffusion of NO3
- 

from the coarser-grained shallower aquifer compartment towards finer-grained deeper aquifer 

compartment which act as a NO3
- sink. According to Mariotti et al. (1988), this molecular diffusion 

process can explain why the recorded enrichment factors is lower than the magnitude of isotopic 

effect/apparent isotopic fractionation associated with conventional denitrification. Mariotti et al. 

(1988) further noted the possibility that both diffusion and denitrification acting simultaneously 

could lower isotope effect associated denitrification and diffusion of NO3
- toward the sink also left 

with small (null) isotope effect.  

For the shallower aquifer groundwater samples (Figure 4.22 (a and b)), the O:N ratio for 

isotopic discrimination ( 𝜀𝑂
18 : 𝜀𝑁

15 ) of 0.36 estimated indicates the potentials of NO3
- 

consumption by denitrification and coupling of N and O isotopic fractionation. This estimated 

𝜀𝑂
18 : 𝜀𝑁

15  value is within the 𝜀𝑂
18 : 𝜀𝑁

15  range of 0.33 obtained during laboratory experiments 

(Knöller et al., 2011) to 0.47 (Böttcher et al., 1990; Wexler et al., 2014) and 0.72 (Fukada et al., 

2003; Wexler et al., 2014) in field studies for denitrification processes in terrestrial environments. 

Given that anammox has similar kinetic stable isotope fractionation pattern as denitrification, 

Granger and Wankel (2016) have also suggested that anammox may emerge as a compelling 

candidate to explain the 𝜀𝑂
18 : 𝜀𝑁

15  trend (< 1) in freshwater systems. This is also due to the 

potential co-occurrence of anammox with denitrification of NO3
- produced by nitrite oxidizing 

bacteria. In this present study however, whether anammox bacteria exist and has a role in N cycling 

is unknown and remains speculative. Overall, for higher DO/lower NO3
- to have existed in the 
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shallower compartment, it means that there is a favorable anaerobic microsite of an otherwise 

aerobic media for the microbial degradation of the leached NO3
-. Also, the recorded depleted 𝛿15𝑁 

and 𝛿18𝑂 of the residual NO3
- signatures suggest this extent of isotopic fractionation and the 

possibility that NO3
- removal may not have proceeded to completion. 

 

 
Figure 4.22. (a) and (b) Cross-plots of δ15N-NO3

- and δ18O-NO3
- values, respectively, versus the natural log 

of the NO3
- concentrations (in mg/L) for the shallower groundwater samples, resulting in a 𝜀𝑂

18 : 𝜀𝑁
15  ratio 

of 0.36. (c) and (d) Cross-plots of the δ15N-NO3
- and δ18O-NO3

- values, respectively, versus the natural log 

of the NO3
- concentrations (in mg/L) for the deeper groundwater samples, resulting in a 𝜀𝑂

18 : 𝜀𝑁
15  ratio 

of 1.19. The term 𝜀, which approximates the slopes in the various plots, represents the enrichment factors 
(positive or negative) for N and O in NO3

-. The spread of the analytical precision (vertical error bars) is 

noticeably larger for δ18O (1.6 ‰) than for δ15N (0.4 ‰), especially in shallower aquifer groundwater. The 
analytical uncertainties were predefined; duplicate measurements were repeated when their standard 

deviation exceeded the quality control precision, so the error bars’ greater variability for δ18O than for δ15N 

could have arisen from the complexity of the biological and abiotic processes in the aquifer compartments 
and their potential effect on recorded isotope signatures in the two aquifer compartments. 
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For the deeper aquifer groundwaters (Figure 4.22 (c and d)), the 𝜀𝑂
18 : 𝜀𝑁

15 of 1.19 was 

obtained. A theoretical constant 𝜀𝑂
18 : 𝜀𝑁

15 of 0.5 (Lehmann et al., 2003) and 1 (Casciotti et al., 2002; 

Granger et al., 2008) indicating coupling of O and N in residual NO3
- are well-validated in the 

literature as a diagnostic tool to identify denitrification processes in groundwater and marine 

systems, respectively. A high fractionation ratio of not just close to 1 but more than 1, has been 

suggested as a yardstick for measuring the likelihood of emergence of N biogeochemical processes 

in marine and freshwater systems. Granger and Wankel (2016) suggest that 𝜀𝑂
18 : 𝜀𝑁

15 trends above 

the nominal value of 1 have an intrinsically greater likelihood of emerging in marine systems, 

whereas 𝜀𝑂
18 : 𝜀𝑁

15 trends below 1 are more likely for freshwater systems. The authors were 

however unable to reconcile the divergent interpretations of NO3
- isotope systematics between 

marine and freshwater ecosystems and suggested the need to bridge the gap in both systems. In 

other words, together with gypsiferous carbonate environment geochemistry, the investigated 

Wurmlingen field site aquifer with 𝜀𝑂
18 : 𝜀𝑁

15  ratio of 0.36 and 1.19 in the shallower and deeper 

compartments, respectively might provide a useful atural laboratory for refining N cycling 

understanding in groundwater and other ecosystems. Contrary to freshwater environments (in 

particular, aquifer systems), marine systems are relatively well characterized with respect to the dual-

NO3
- isotope systematics. For instance, deviation in the 𝜀𝑂

18 : 𝜀𝑁
15  trends above 1 in marine 

ecosystem have been associated with partial association of NO3
-, remineralization or un-modeled 

biogeochemical processes. Although 𝜀𝑂
18 : 𝜀𝑁

15  varies between less 0.5 and 1 (and commonly 

between 0.96 and 1.09) as reported for laboratory experiments with pure denitrifying cultures 

(Karsh et al., 2012; Wunderlich et al., 2013), the reason for a  𝜀𝑂
18 : 𝜀𝑁 15  trend that reaches or 

exceeds 1 between cultures and aquifer (field) conditions remains poorly understood and has been 

referred to as the freshwater conundrum (Granger et al., 2008; Dähnke and Thamdrup, 2013; 

Granger and Wankel, 2016). Discussed further below, I tie findings of different studies to the 

probable reason why the 𝜀𝑂
18 : 𝜀𝑁

15  of 1.19 observed in the deeper compartment of the investigated 

aquifer system would have deviated from the widely described 𝜀𝑂
18 : 𝜀𝑁

15 of 0.5 for denitrification 

in terrestrial field studies. 

Granger et al. (2004) and Wankel et al. (2007) hypothesized that if NO3
- is being regenerated 

within the mixed layer, then there should be a manifestation of a deviation from the expected 

𝜀𝑂
18 : 𝜀𝑁

15 of 1 for NO3
- reduction in marine environments. On inferring riverine N processing, 

Cohen et al. (2012) suggest that 𝜀𝑂
18 : 𝜀𝑁

15 of more than 1 or indistinguishable from 1 that do not 

conform to the predicted 1:2 relationship should be plausibly explained as an evidence of 

decoupling between δ18O and δ15N of the residual NO3
-. Gaye et al. (2013) explained that 

remineralization and nitrification of nitrite in low-oxygen zones can lead to the decoupling of δ18O 

and δ15N of the residual NO3
- resulting in 𝜀𝑂

18 : 𝜀𝑁
15 trend exceeding 1. Rohde et al. (2015) also 

demonstrated that a decoupling of the δ18O and δ15N of the residual NO3
- relationship is expected 

if nitrification occur concomitantly with NO3
- reduction. Frey et al. (2014) observed that a slope 

factor higher than that of denitrification (~0.5 – for freshwater or 1 – for marine) might reflect the 

impact of simultaneous nitrification and denitrification of NO3
-. At best, the lack of such 

decoupling should indicate the absence of significant nitrification. These previous observations 

mirror the results of this present study. Model exercise by Granger and Wankel (2016) 

demonstrates that anoxic NO3
- production by anammox also cannot, by itself, explain the 

𝜀𝑂
18 : 𝜀𝑁

15  trajectories exceeding 1, not only in marine systems but also in freshwater systems, 
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where this tenet has been largely overlooked. The reason given is that nitrite reoxidation to the 

NO3
- pool would far exceed stoichiometric and biochemical limitations of anammox even if 

anammox is assumed to account for 100% of N2 production. Based on these reviews, we believe 

the groundwater samples collected from the deeper aquifer compartment have undergone an 

anoxic nitrification process. Considering also that a negative correlation between groundwater 

NH4
+ and NO3

- under anoxic conditions has been linked to the occurrence of DNRA (Jahangir et 

al., 2012), the low measured NH4
+ concentrations may suggest that N as NH4

+ was not conserved. 

Nevertheless, apart from N losses through ammonia volatilization from agricultural land such as 

the one at the Wurmlingen study site and possible oxidation of most of the NH4
+ to NO3

- (which 

eventually leached into the aquifer) at the soil-plant zone and the expectation of increased efficiency 

in the removal of NH4
+ given the competition for the exchange sites from divalent cations such as 

Ca2+ and/or Mg2+ in the gypsiferous carbonate environmental geochemistry of the study site, it 

might also be possible that any conserved N was oxidized back to NO3
-; thus, further studies on 

the occurrence DNRA bacteria are warranted. Additionally, for now, I will stick with the term 

'anoxic nitrification' until proven otherwise. 

 

4.4.8 Hypothesis and explanation of aerobic denitrification 

 

Contrary to conventional observations that denitrification requires completely anoxic 

conditions because the presence of oxygen as an energetically favorable terminal electron acceptor 

inhibits the activities of NO3
--reducing enzymes, findings from a number of studies now show that 

denitrification can also occur in anaerobic microsites within aerated sediments (frequently termed 

“aerobic denitrification”) (Robertson and Kuenen, 1984). The explanation for this hypothesis is 

that even though the microenvironment of the denitrifiers is depleted of oxygen, resulting in NO3
- 

utilization by the cells, considerable amounts of oxygen in the medium remain measurable. It is 

now also clear that there are widespread microorganisms that vary in their sensitivities to oxygen 

(Lloyd, 1993). Some denitrifiers contain a specific periplasmatic nitrate reductase that is seemingly 

tolerant to high oxygen concentrations (see Rivett et al., 2008 and references within) – these 

organisms are true ‘aerobic denitrifiers’. Granger et al. (2008) also determined the N- and O-isotope 

fractionation of NO3
- reduction by an organism that contained a periplasmatic nitrate reductase (R. 

sphaeroides). As noted by Bernat and Wojnowska-Baryla (2007), most aerobic denitrifiers are 

heterotrophic organisms and are widespread in the environment. This also means that carbon 

supply is a major parameter limiting NO3
- removal. However, even though a greater number of the 

groundwater samples contained relatively high dissolved organic carbon (DOC) (range: <1 – 12.43 

mg/L, Table A6), the statistically insignificant random relationships between the DOC content and 

DO concentrations (see section 4.4.9, Figure 4.23), implies that much of the measured DOC in the 

aquifer is less bioavailable and likely to be the remnant of substantial microbial cycling (Chapelle et 

al., 2012) or the capacity of silicate minerals (if applicable) present in aquifer materials to adsorb 

absorb DOC, removing it from the dissolved phase (Jardine et al., 2006). Bernat and Wojnowska-

Baryla (2007) demonstrated that intracellular accumulated bacterial storage compounds expressed 

as poly (-β-hydroxybutyrate) PHB can be used as electron donors, such that aerobic denitrification 

may still proceed where fluctuating oxygen concentrations and reduced carbon (or ‘no external 

carbon source’) occur (Ji et al., 2015). Brigham et al. (2012) mostly noted that periplasmic nitrate 

reductase is among a group of genes induced during PHB production that remained induced during 
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PHB utilization. However, more insights into the kinetics and stoichiometry of such bacterial 

storage compound production and consumption is required. Thus, I suggest that the observed 

evidence of denitrification in the presence of oxygen within the shallower aquifer compartment 

may result from the adaptation of the denitrifiers to periodic hydrologically induced redox 

alternations. Using the relative changes in δ15N, NO3
- concentration, and water chemistry, Koba 

et al. (1997), as cited in Kendall (1998), conclude that intermittent denitrification can occur in 

anaerobic microsites in otherwise aerobic soils as the water table fluctuates in response to storm 

events and as pores become temporarily waterlogged. Under such a condition, residence times 

could also prove a useful indicator of denitrification extent. For instance, long residence times 

could indicate that denitrifiers had enough time to perform their catalytic activities.  

 

 

Figure 4.23. A plot of DO versus DOC concentrations. Red and black notations indicate shallower and 
deeper groundwater samples, respectively. 

 

Overall, together with the steep gradient in the groundwater chemical and N stable isotope 

stratification of the aquifer, it is difficult to distinguish the influence of the microsites on the 

distribution of the groundwater chemistry and N stable isotopes without accounting for the 

diffusion-controlled mechanism. For instance, the observed higher concentrations of DO in the 

shallower compartment indicate that an oxygen supply (via diffusion) that was slower than its 

consumption (via microbial aerobic respiration) may have given rise to the relatively oxygen-

depleted deeper aquifer compartment. Conventional microbial denitrification of NO3
- to N2 (and 

also in the case of anammox) carries a high 15N-enrichment of > 10 ‰ (Godfrey and Glass, 2011) 

and large N isotope effects. My N isotope fractionation data, which appear to show much lower 

enrichment factors than that commonly predicted from conventional microbial denitrification, was 

quite important in the evaluation of the aerobic denitrification hypothesis. Therefore, we explain 

that the lower 15N-enrichment of 6.7 - 8.1 ‰ and the small isotopic fractionation attributed to 
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aerobic denitrification is due to oxidative processes involving both oxygen and NO3
- (Brandes and 

Devol, 1997) in the shallower aquifer compartment. 

 

4.4.9 Bioavailability of dissolved organic carbon as a function of dissolved 

oxygen 

 

Dissolved organic carbon (DOC) can be used as carbon substrate for microbial metabolism 

and for assessing the quality of chemical affinity in groundwater (Chapelle et al., 2012). In 

heterotrophic denitrification, for instance, the most important factor limiting NO3
- removal is the 

carbon supply (Rivett et al., 2008; Jahangir et al., 2012). DOC can be delivered to the groundwater 

environment from a wide range of different sources such as surface soils presumably derived from 

decaying plants (Lundquist et al., 1999), remnants of microbial cell material (Birdwell and Engle, 

2009) and mobilization/sequestration from aquifer sedimentary organic carbon (Chapelle et al., 

2012). Due to the complex mixture of organic materials from different sources and the role played 

by available micronutrients (Repert et al., 2006), changes in carbon bioavailability and chemical 

properties are not clear, however are necessary to provide greater insights into denitrification 

activity. DO, on the other hand, tend to be uniformly labile to microbes. Consequently, in Chapelle 

et al. (2012), it was demonstrated that DO versus DOC relationships may indicate bioavailability 

or non-bioavailability of the DOC. Whereas a statistically significant hyperbolic relationship with 

increasing DO as DOC decreases may suggest greater extent of reaction and high bioavailability of 

the DOC, a random scatter may imply relatively small reaction force and less bioavailable DOC. 

In this study (Figure 4.23), I show that the DO-DOC relationship for the groundwater samples 

from the shallower and deeper aquifer compartment is random and statistically insignificant, 

indicating the measured DOC was probably less bioavailable. 

 

4.4.10 Explanation of anoxic NO3
- production based on NO2

- data 

 

Incubation experiments with anoxic denitrifying aquatic sediments by Wunderlich et al. 

(2013) and lake research studies by Wenk et al. (2014) were performed in an attempt to provide a 

mechanistic explanation for the anoxic production of NO3
- and the freshwater conundrum 

phenomenon. Wunderlich et al. (2013) demonstrated that NO2
--oxidizing microorganisms 

catalyzed the incorporation of oxygen atoms from ambient water into NO3
- under anoxic 

conditions. The authors suggested that this process may distort the observed increase in the δ18O-

NO3
- values and likely explains the deviation of the observed 𝜀𝑂

18 : 𝜀𝑁
15  values associated with 

denitrification in terrestrial field studies from the values commonly observed in laboratory 

experiments using pure cultures. The inferred oxic denitrification in the shallower aquifer 

compartment is suggested to lead to an accumulation of NO2
- I suggest that the possible 

reoxidation of accumulated, diffusively transported nitrite occurs in the anoxic deeper aquifer 

compartment. This hypothesis was corroborated by the general consistency of the NO2
- maxima 

(Figure 4.24) over which NO3
- concentrations (Figure 4.16c) (which also positively correlate δ15N-

NO3
- signatures) showed corresponding increases and DO concentrations (Figure 4.16c) showed 

marked declines. Because NO2
- is unstable, its concentrations are usually much lower than NO3

- 
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concentrations. The presented data suggest that NO2
- functioned as an intermediate product of the 

oxidation pathways in the deeper aquifer compartment. Nevertheless, the oxidation of NO2
- to 

NO3
- tended to decrease and increase the δ15N values of residual NO3

- and NO2
-, respectively. 

Additionally, according to Buchwald et al. (2012), the incorporation of oxygen atoms from water 

during NO2
--water exchange is expected to further lower the δ18O value of the final NO3

-. Since 

the oxidation of NO2
- is a reversible process, the NO2

- oxidoreductase can be expected to reduce 

NO3
- to NO2

- in the absence of oxygen (Sundermeyer-Klinger et al., 1984; Bock and Wagner, 2013). 

Consequently, denitrifiers in the deeper compartment are likely simultaneously taking up 

regenerated NO3
-, resulting in the observed increases in δ15N-NO3

- and δ18O-NO3
- values. Thus, 

the relatively lower DO concentrations, higher NO3
- concentrations and higher δ15N-NO3

- and 

δ18O-NO3
- values do not exclude the co-occurrence of nitrification and denitrification in the deeper 

aquifer compartment. In line with the conclusions by Semaoune et al. (2012) that the isotopic 

fractionation affecting the isotopic signature of NO3
- is not affected by diffusive transport through 

soils and sediments or that diffusion-limited microbial denitrification below the well-mixed aerobic 

water-anaerobic sediment does not discriminate isotopically (Mayer et al., 2002; Sebilo et al., 2003), 

we report in this field-scale study that the role of diffusion is clear, from the potential transport of 

NO2
- from the oxic shallower aquifer compartment to the microbes that biologically turn it over 

(by reoxidation) in the anoxic deeper aquifer compartment, without which the positive correlation 

between δ15N-NO3
- and NO3

-, low enrichment factors (i.e., minimal N and O fractionation), and 

positive deviations in the 𝜀𝑂
 18 : 𝜀𝑁

15  trends above 1 would be inconceivable. Mayer et al. (2002) 

further highlighted that such relations are expected of in-stream denitrification, which is not a single 

source closed system process wherein partially denitrified NO3
- enter rivers from soils, aquifers, 

riparian and hyporheic zones. This is true also for the conceptual model of Wurmlingen the study 

site, wherein the deeper aquifer compartment function as a former stream channel receives partially 

denitrified N from the shallower and surrounding aquifer compartments. To the best of my 

knowledge, this is the first study to demonstrate the occurrence of anoxic nitrification in the 

groundwater system. Accordingly, the Wurmlingen study site may represent an interesting natural 

laboratory for probing and clarifying the understanding of discrepancies in N isotope 

biogeochemistry between freshwater and marine environments. Overall, under the investigated 

field (aquifer) conditions, the activities of physical transport and biogeochemical drivers in 

explaining the observed solute concentration and stable isotope distribution trends may not be 

mutually exclusive.  
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Figure 4.24. Vertical profile of NO2

- concentrations.  

 

4.4.11 Alternative explanations 

 

Based upon knowledge of the fractional isotopic contributions, 18O of NO3
- during 

complete nitrification is widely accepted to be derived from one-third of atmospheric oxygen 

(Kroopnick and Craig, 1972) and two-third of water oxygen (measured). As a result, it is expected 

that 18O of water and 18O of NO3
- should portray a positive correlations. The relationship 

between 18O of NO3
- and 18O of water was however generally weakly correlated (Figure 4.24a), 

which might suggest that there is a weak link to water as the potential source of oxygen in the NO3
-

: - negative relations in the shallower and positive relations in the deeper compartments of the 

aquifer however, express and re-affirm distinct occurrence of processes. Snider et al. (2010) 

concluded that the varying amount of abiotic exchange between nitrite and water is the reason why 

the 18O of microbial NO3
- cannot be successfully predicted. Furthermore, going by the results of 

earlier experiments, ammonia oxidizing microbial communities (Hollocher et al., 1981; Andersson 

and Hooper, 1983) and nitrite-oxidizing microbial communities (DiSpirito and Hooper, 1986) can 

grow separately while utilizing the first and second oxygen contributed by water under conditions 

wherein NO3
- is produced. Most recently, however, complete ammonia oxidizers (comammox) 

have been discovered in nitrite-oxidizing bacteria genus Nitrospira to singly convert ammonia to 

NO3
-. (Daims, et al., 2015; van Kessel et al., 2015; Kits et al., 2017; Wang et al., 2017). Altogether, 

it is suggested here that the extent to which variations in 18O of atmospheric oxygen and 18O of 

water would affect the 18O of NO3
- can be deciphered appropriately through the understanding 

of microbial community levels and should not be easily observable per se from the mere relation 

between 18O of NO3
- and 18O of water.  

Alternatively, the kinetics of oxygen incorporation suggests that HCO3
- would have played 

an inevitable role in water splitting reactions and as a chemical intermediate in oxygen evolution 

(for a historical survey, readers are referred to Stemler (2002) and reference therein for details on 
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this assertion). This concept originated from Metzner (1979) who reasoned that if oxygen 

developed directly from water, δ18O of the evolved oxygen could under no circumstances, be 

minutely greater than that of water in the medium. As a step to producing either oxygen or 

hydrogen peroxide, a single electron is extracted from water. However, a single electron could easily 

be extracted from HCO3
- to produce carbonic acid peroxide intermediate than from water 

molecules wherein a far more energy than is contained in a low energy photon (such as red light) 

would be required. A good correlation between HCO3
- and δ18O of the residual NO3

- (Figure 4.24b) 

confirm the role that the HCO3
- would have played in coupling oxic denitrification to anoxic 

nitrification from the shallower to the deeper compartments of the aquifer system. The partitioning 

role of HCO3
- (HCO3

- effect) in isotopic equilibrium with water is expected when δ18O of HCO3
- 

(not measured in this study, however, measurement is highly recommended) is slightly higher than 

that of water. A good positive correlation between δ18O of HCO3
- and δ18O of the residual NO3

- 

should be able to validate the described role of HCO3
-. Although this partitioning effect is well 

demonstrated in photosynthetic evolution of oxygen, so far, little to no attention has been paid to 

this area under N isotope biogeochemistry.  

 

 

Figure 4.25. Relation between: (a) 2H-H2O and 18O-NO3
- , (b) HCO3

- and 18O-NO3
-, and HCO3

- and 

NO3
-. 

 

Contrary to the explanation by Wunderlich et al. (2013) that incorporation of the oxygen-

atoms stemming from ambient water into NO3
- can occur even in the absence of external electron 

acceptors; it is observed in this study that HCO3
- would have provided the necessary structural and 

reproduction source for chemolithotrophic nitrifying bacteria. As an indicator of microbial 

metabolic pathways, how HCO3
- relates to nitrification and denitrification is well-established. 

Whereas nitrification consumes HCO3
- alkalinity due to the production of hydrogen ions (that is, 

acidity) and uptake by nitrifiers (Belser, 1984), denitrification produces HCO3
- alkalinity. The 

production rate and magnitude, however, depend on the electron donor. Based on a model 

developed by Gujer and Jenkins (1975), about 8.64 mg/L of HCO3
- will be utilized for each mg/L 

of ammonia-nitrogen (NH3-N) oxidized. In juxtaposition to nitrification, denitrification has been 

shown to produce alkalinity to the theoretical ratio of 3.57 g CaCO3 per g of nitrate-nitrogen (NO3-

N) reduced to N2 (van Rijn et al., 2006). The observed decrease in HCO3
- concentrations with 

increase in NO3
- from the shallower to the deeper compartments of the aquifer (Figure 4.24c) 

support these previous studies and this study’s conclusion that denitrification predominates in the 

shallower compartment while nitrification predominates in the deeper compartment. Moreover, 

for such an aquifer system with closely located compartments, it is possible that HCO3
- alkalinity 

production during denitrification in the shallower compartment can be partly compensated by the 

consumption of the HCO3
- alkalinity during nitrification in the deeper compartment resulting in 
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the observed relatively stable pH (Shao et al., 2016). The combined results of this study also agree 

with those of Marchant et al. (2016) that nitrification would have fueled denitrification by providing 

an additional source of NO3
- and vice-versa and as such masks true N turnover in the aquifer 

system.  

 

4.5 Summary and conclusions 
 

Based on the combined evaluation of hydrogeochemical and multi-isotopic approach with 

an understanding of the subsurface flow system in an effort to enhance conceptual understanding 

of the hydrogeochemical evolution and processes that control groundwater recharge, SO4
2- and 

NO3
- within the aquifer, the following summarizes results from this study: 

1 Natural groundwater chemistry controlled by the gypsiferous carbonate rock environment 

interact with and responds to the anthropogenic N loading in the alluvial aquifer; 

2 Water isotopic composition (δ2H, δ18O) measured from the collected groundwater indicate 

that the NO3
- was transported from an anthropogenic source on the land surface through 

infiltrating rainwater with secondary effect of evaporation; 

3 Uniform distribution of the SO4
2- concentrations and the clustered isotopic composition of 

SO4
2- (δ34S, δ18O) confirm that the groundwater SO4

2- is mainly derived from a gypsum 

source; 

4 Observations based on 18O-NO3
- and 15N-NO3

- suggest that the shallower aquifer is 

dominated by groundwater NO3
- of soil organic N while the deeper aquifer groundwater 

NO3
- is reflective of animal manure/septic waste sources . Analysis of the two sources of 

NO3
- is an indication that one source (probably animal manure) was biogeochemically 

transformed and partitioned into the two compartments of the aquifer; 

5 Apart from source identification of the groundwater recharge, SO4
2- and NO3

-, the dual 

isotopic and the chemical data and ratios highlighted the potential linkage between the NO3
- 

variability and N transformation processes. I document that the dominance of diffusion-

controlled admixture of NO3
- to the deeper compartment of the aquifer system and NO3

- 

removal in the shallower compartment of the aquifer masked the conventional 

denitrification signal expected using chemical and isotope data. The existence of a transport 

limiting channel structure in the deeper compartment created a localized flow system, 

mixing interface and ultimately the geochemically and isotopically distinct conditions used 

to explain the occurrence of NO3
- removal in the anaerobic microsite of otherwise aerobic 

shallower compartment of the aquifer and anoxic nitrification in the deeper compartment. 

Nevertheless, the role of microbes is not to be dismissed in the explanation of the 

alternative nitrogen cycling pathways. 

In conclusion, the procedure involving the combined use of dual isotopic and chemical data 

provided elucidations on the origin of the groundwater solutes and susceptibility of the shallow 

groundwater flow system to the transformation of the NO3
-. Some uncertainties however remains 

that require attention to foster interpretation accuracy. For one, the flow and transport-limited 

interactions between the oxic low NO3
- shallower and anoxic high NO3

- deeper pore water did not 

conform to the basic assumptions of oxic nitrification and anoxic denitrification due to a complex 

subsurface hydrologic systems and biogeochemical exchanges. Although the emphasis of diffusion 

limitation mechanisms on N cycling and isotope fractionation (that is, shallower to deeper exchange 
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is controlled by diffusion) are major findings of this study, the observed indicators of coupled NO3
- 

removal and addition processes which relate closely to ecosystems (e.g., marine) other than 

terrestrial freshwater systems show the need for further scrutiny in the investigated aquifer systems 

and the other settings. Accordingly, to fully understand the factors governing the variability 

(spatiotemporal) in the geochemical and isotope trends and reveal the root cause of the differences 

between freshwater and laboratory/marine, more multidisciplinary environmental research on the 

potential role of subsurface hydrologic and biogeochemical drivers should also be explored. The 

studied Wurmlingen site would provide a characterized natural system for such a project. Overall, 

the conclusions reached here have implications on the effectiveness of processes that add or 

remove NO3
- along flow systems and how to manage nitrogen responsibly, especially those 

emanating from agricultural activities. 
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Chapter 5 
General discussion, conclusions and 

outlook 
 

Chapter summary 
This chapter summarizes the findings of this dissertation. The main contributions 

of the dissertation are as follows: 

1) The development of an observation-based conceptual site model (CSM) 

framework for improved and reliable understanding of subsurface structural 

controls on physical (hydrological) and biogeochemical processes 

influencing the behavior of N turnover in an alluvial aquifer was largely 

successful. The approach of the framework includes iteratively combining 

multidisciplinary field site characterization and laboratory analytical tools 

consisting of: (a) surface geophysical and direct push-based delineation of 

subsurface features and (b) the use of depth-specific chemical and 

multi(‘dual’)-stable isotope analyses to constrain the fate of the groundwater 

nitrate; 

2) Hypotheses on the origin of the groundwater NO3
- were evaluated. Deeper 

insight into the connectivity of identified shallower and deeper aquifer 

compartments proved helpful in understanding how the aquifer’s physical 

and biogeochemical parameterization partitioned NO3
- sources into the 

aquifer compartments. Such knowledge is critical to improving the 

management practices associated with efficient water resource protection. 

The summary of findings presented in this chapter is organized as follows: (i) 

General assessment of the applicability of the developed observation-based CSM 

framework, (ii) 3-D alluvial architecture – Implications for the study site’s 

geohydrology and N biogeochemistry, (iii) Synthesis of the NO3
- source hypotheses, 

(iv) Summary of the conclusions, (v) Scientific significance and impact, and (vi) 

Outlook. 
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5.1 Applicability of the developed observation-based CSM 

framework 
 

I proposed and developed an observation-based CSM framework for the large-scale 

investigation of groundwater contaminant plumes. The hallmarks of the framework include: 

formulation of clear and interesting questions regarding the contaminant plume in relation to the 

plume size and boundary, variability in the contaminant sources and heterogeneities in the physical 

and biogeochemical pathways and processes; collection of facts regarding the problems based on 

historical and current reconnaissance surveys; advancement of uncertain but testable 

hypotheses/possible explanations regarding the questions; and an adaptive experimentation 

procedure to test the hypotheses.  

The large-scale study arises in a successful site characterization using iterative combination 

of such multidisciplinary tools as surface geophysics, direct push technologies, hydrogeochemistry 

and stable isotope geochemistry. Such framework and approaches help to provide reliable 

subsurface CSM information, leading to improved mathematical model predictions for a 

contaminant plume source-pathway-receptor scenario. 

Specific results of a case study and application of the CSM framework are generally 

discussed in the following sections. 

 

 

5.2 3-D alluvial architecture – Implications for the study site’s 

geohydrology and N biogeochemistry 
 

Because of the potential development of a groundwater NO3
- plume in the investigated 

alluvial aquifer at the Wurmlingen study site, it was essential to define the groundwater flow and 

solute pathways by means of a 3-D arrangement of the alluvial deposits and the aquifer. This is 

justified by agricultural activities and the advanced existence of a hypothetical landfill site uphill of 

the study site as potential sources of the NO3
- plume observed in the groundwater by the previous 

study (Schollenberger, 1998). Figure 5.1 shows a simplified subsurface conceptual model of the 

study site representing the interpretation of crucial subsurface geological structures, aquifer 

connectivity and key hydrological and biogeochemical interfaces. The model was constructed using 

surface geophysical data, direct push (DP) investigations, and groundwater chemistry and stable 

isotope analysis discussed in chapters three and four. The developed conceptual, 3-D alluvial 

architecture model (Figure 5.1a) identified two forms of unconfined shallow aquifer systems: (1) 

one that occupies the first half of the study site up Northwest/toward the hillslope environment 

(up North), and (2) the other occupies the second half on the floodplain area. This distinction is 

very much visible from the area's subsurface resistivity variations, particularly as shown in Figure 

3.8b 

The unconsolidated sediments that make up the aquifer system (up North) are interpreted 

to consist of interbedded clayey and silty sediments deposited on the bedrock. Coarsening upward 
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sediments comprising the water-yielding parts of the aquifer system with two compartments on the 

floodplain are also shown to overlie the bedrock. The shallower aquifer compartment on the 

floodplain consists of homogeneous coarser-grained sediments, whereas the deeper aquifer 

compartment is dominated by heterogeneous finer-grained sediments (Figure 5.1b). Overlaying the 

aquifer is an unsaturated sand with a gravel layer covered by alluvial silty clay sediments. The 

interpretation given here is that the accumulated alluvium sediments would have resulted largely 

from debris erosion and transport from parent rock materials, such as Schilfsandstein, Bunte 

Mergel and Stubensandstein Formations as the hillslope up North typifies, as well as the widespread 

Gipskeuper. I also reveal that the geometry and the 3-D arrangement of the alluvial stratigraphy 

can give information about the nature of the sediment supply, processes of deposition and 

hydrologic regimes (that is, the sediment-transport processes) leading to the interpretation of the 

site history. It is reasonable to expect that the coarser-grained sediments, for instance, in the 

shallower aquifer compartment, would have been deposited in a high-energy environment because 

fast-flowing and agitated water (and possibly glacial meltwater) is able to carry large grain sizes. In 

a low-energy depositional environment, the converse would be the case, particularly for the finer-

grained sediments deposited in the deeper compartment within the channel structure. In Figure 

5.1a, I also show that the up Northwest/hillslope aquifer system is connected to the deeper aquifer 

compartment in the floodplain aquifer system by the indicated channel feature. Given the 

interpretation that the channel feature might represent a buried stream channel, it is also possible 

that the channel may trace the entrance into the apex of the debris-flow fan (see the geologic map 

in Figure 3.1). It is also not clear how the channel bedrock may be related to the inferred border 

zone between the Lettenkeuper and Gipskeuper Formations. Further studies beyond the present 

study site boundary can be elucidatory to this question. In this study, I demonstrated that the 

channel structure preferentially controlled the orientation of the groundwater NO3
- plume 

previously identified by Schollenberger (1998). There is an existing understanding that the high 

sulfate concentrations in the aquifer may have resulted from a fractured bedrock in relation to the 

Gipskeuper origin. Nevertheless, I speculate that the dissolution of gypsum in Keuper potentially 

deposited during the formation of the alluvial sediment cannot be totally ruled out in providing 

answers to the origin of the sulfate-saturated aquifer. Over a long-term period, agricultural 

management practices in conjunction with changing environmental and climatic conditions, as well 

as the residence time of fertilizer-derived nitrogen in agricultural soils leading to various nitrogen 

mineralization-immobilization cycles, can result in the uptake of approximately one-third of the 

nitrogen pool by the crops, with one-third leaching toward the hydrosphere and the remainder 

likely lost via gaseous emissions (Sebilo et al., 2013). However, there is also a 2-D cross-sectional 

numerical analysis of an Ammer valley-Wurmlinger Kapelle-Neckar valley water divide hypothesis, 

which advanced that, because both the Ammer and Neckar floodplains contain Holocene 

sediments that are relatively high in organic carbon, agricultural NO3
- is reduced therein and does 

not reach the groundwater (Kortunov et al., 2016), predicting that NO3
- in the Neckar valley aquifer 

may have largely emanated from NO3
- applied to the hillslopes underlain by fractured oxidized 

mudrock transported to an unknown extent by groundwater recharge in the Ammer valley. How 

the water divide hypothesis and the delineated groundwater NO3
- plume-controlling channel 

structure are connected remains to be further investigated. 

Going by the results of this study, it may be tempting to assert that the deeper parts of the 

aquifer, dominated by finer-grained sediments, lack the capacity to transmit fluid compared to the 

nearly homogeneous coarse-grained sediments at the shallower parts immediately below the water 
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table. Although there are presently no data regarding the permeability of the aquifer, high 

transmissivity of the heterogeneous finer-grained sediments within the channelized structure can 

be expected because of the apparently higher saturated thickness. Moreover, considering the 

geometry of the quantified subsurface structure, Rosenshein (1988) explained that, the more steeply 

sloping the channel side, the less likely it is that the permeability of that part of the channel will be 

decreased by fine-grained deposits. Additionally, from the elevation of the bedrock from the 

floodplain area toward the Wurmlingen settlement in the Northwest, I suggest that the bedrock 

channel plays a critical role in preferentially guiding deep groundwater flow from the hillslope 

environment to the wells sited deeper in the floodplain area. The groundwater table elevation 

measured in some DP wells tends to show that the advective fluid transport through the 

channelized feature could follow the local hydraulic gradient. The channel may also function as a 

zone for both convergent and divergent flows depending on how flows encounter the channel and 

the flow periods. Worthy of note, however, is that the distribution of the groundwater table may 

not be the best indicator of groundwater flow direction, especially in the case of vertical solute 

transport. Certainly, the directional orientation of the detected channel structure and internal 

subsurface architecture (especially the presence of a two-compartment aquifer on the floodplain) 

hold implications and promise for understanding a complex two-domain macropore/matrix model 

(e.g., Beven and Germann, 1982; Beven and Germann, 2013). In this context, the macropore 

indicates the depression within the bedrock that forms a preferential channel controlling flow 

through the deep groundwater system, whereas the matrix model represents the shallower 

compartment of the aquifer as demarcated on the floodplain area. Apart from the aquifer recharge 

via infiltration from the hillslope environment and potentially from the Ammer valley as 

hypothesized (Kortunov et al., 2016), the entire ground surface in the Neckar valley is available for 

the recharge of the aquifer in relation to the direct infiltration of rainwater. Here, it is hypothesized 

that water infiltrating through the channel entrance (from the hillslope environment) or 

simultaneously into the matrix and macropores within the floodplain area would, at later stages, all 

converge into the profile along the macropore system.  
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Figure 5.1. (a) Conceptual model of the Wurmlingen study site  (Neckar valley) showing subsurface 

interfaces/connecting features and geohydrologic zones. The red arrow points northwest in the direction 

of the Wurmlingen settlement whereas the yellow arrow points in the direction of the Ammer valley. Broken 

black line metaphorically divides the study site's aquifer into two halves (based on the isoresistivity map in 

Figure 3.8 b ): (1) first Northwest/toward the hillslope environment (up North), and (2) floodplain area. 

The outline of a linearized buried channel structure (the dashed red line) at the base of the aquifer delineated 

by combined interpretation of surface geophysical and direct push-based results is also shown. The 

channelized aquifer bedrock configuration is interpreted to follow the hydraulic head distribution (that is, 

the water table contours in meters, the blue line with elevation numbers) from the northwestern to the 

southeastern part of the study site. The channel structure also has the capability to function as both flow 

divergence and convergence zone. This study proposes that the channel feature traces a transmissive 

preferential flow pathway that is capable of inducing exchange of materials in the aquifer. The channelized 

aquifer is interpreted to entrain infiltrating fluids/solutes from point and nonpoint sources, and it connects 

the aquifer system towards the hillslope and northwest part of the area to that in the floodplain area. As 

shown in (b), however, on the floodplain area, a two-compartment aquifer system (coarser-grained aerobic 

shallower and finer-grained anaerobic deeper zones) provides an avenue for the interaction of microbial 

communities and rapid change in solute concentrations and stable-isotope compositions. Biogeochemical 

hotspots are commonly located in this unique environment. Driven by steep biogeochemical gradients, 

distinct geohydrologic and redox conditions promote diffusion-limited transport of oxygen/solute from the 

shallower to the deeper compartment. This study noted that oxic denitrification characterized the shallower 

aquifer compartment with an oxygen (O):nitrogen (N) fractionation ratio of 0.36. Nitrite inferred to have 

emanated from a coupled sulfate-reducing, nitrate-reducing, sulfide-oxidizing process is shown to have 

diffused into and reoxidized in an anoxic deeper compartment, resulting in an O:N fractionation ratio of 

1.19. Although water is the conclusive source of O in the production of nitrate, this study hypothesizes the 

role of bicarbonate as a chemical intermediate for oxygen evolution (see Stemler, 2002). 
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I also predict that performing hydraulic calculations in the understudied aquifer system 

would be complex due to the described level of geologic heterogeneities. For instance, it might be 

possible and easy to perform Darcian-based estimation of hydraulic functions in the more 

homogeneous coarser-grained shallower matrix flow system. However, incorporating the concept 

of preferential channeling as illustrated in this study means that an integrated strategy would be 

required to adequately describe variations in water flux and solute transport in the combined 

matrix-macropore-system. Also problematic is the doubt that may arise regarding the 

representativeness of hydraulic conductivity values in the macropore system dominated by 

heterogeneous finer-grained sediments. Due to the shortcomings associated with hydraulic 

estimations in fine-grained sediments, common scale-dependent hydraulic conductivity 

measurements using permeameter tests on small cores or even with double-ring infiltrometers may 

produce hydraulic conductivity estimates that do not match the exact flow behavior in the 

macropore system. In situ field tests involving classical aquifer testing (via pumping) and ‘slug’ tests 

of a reasonable duration are often recommended for extracting the average hydraulic conductivity 

used to make flow and transport predictions or build a model. However, these evaluations of the 

hydraulic conductivity values without recognizing the overall subsurface structural control on the 

spatial distribution of the hydraulic conductivities could lead to divergent and contradictory 

interpretations of transport processes acting at different scales (see de Marsily et al., 2005). This is 

often the reason why the use of transmissivity fields rather than permeability is preferred when 

describing the hydraulic functions around a macropore structure. Hence, there is no way to skip 

the necessity of mapping the aquifer structure and heterogeneities as a foundation for 

understanding contaminant transport and distribution patterns (Payne et al., 2008). In recognition 

of the fact that the concept of a homogeneous aquifer commonly applied in the water supply would 

not work for groundwater and solute transport problems, Charles V. Theis wrote in 1967 that: "I 

consider it certain that we need a new conceptual model, containing the known heterogeneities of natural aquifers, to 

explain the phenomenon of transport in groundwater." Tracer studies have become very successful in 

visualizing preferential pathways of infiltrating water through hydraulically transmissive zones and 

have provided some of the most convincing evidence of connectivity of a matrix-macropore 

system. However, all of these physical methods provide information most often in small scale, 

whereas hydrologists are mostly concerned about the hydrological importance of macropores in 

channeling aquifer water flows and pollutants at not just profile and plot scale but also hillslope 

and catchment scale. Moreover, attempts to upscale small-scale measurements could lead to the 

neglect of relevant large-scale local variabilities. This situation reemphasizes the necessity for 

matching the results of modeling studies with such field-scale observations as demonstrated in this 

report. In particular, the delineation of large-scale subsurface features can represent an important 

prerequisite for efficient tracer testing. 

The capability to relate changes in the depositional architecture to coupled geohydrology 

and aquifer N biogeochemical cycling is the hallmark of developing the 3-D alluvial architecture 

model shown in Figure 5.1. This is because N cycling processes, for instance, are strongly 

dependent on hydrological fluctuations and aerobic-anaerobic saturation conditions within the 

floodplain (e.g., Burt and Pinay, 2005; Claxton et al., 2003). Despite studies suggesting enzymatic 

irreversibility of NO3
- reduction in pure cultures of denitrifiers (Knöller et al., 2011; Dähnke and 

Thamdrup, 2016), one of the most interesting questions posed by this study is how the reversibility 

of reactions against the canonical assumption of anoxic nitrification and oxic denitrification in the 

aquifer could have maintained higher NO3
- in the anoxic deeper compartments and lower NO3

- in 
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the oxic shallower compartments as observed from depth-specific groundwater chemical and dual-

NO3
- isotope data (Figure 5.1b). A proposed answer was found rooted in the distinct solute 

transport regimes between the delineated shallower and deeper compartments of the aquifer in the 

floodplain area, which received leached NO3
- through infiltrating/recharging rainwater. The major 

differences in the two compartments would result primarily from the changes in the rates of 

concentration and adjustments due to competing redox reactions. Given the geometry of the 

investigated aquifer system, the transport of fluid and solute through the macropore domain from 

the hillslope environment can occur by convection that influences the advective (average linear) 

flow velocity in direct proportion to the local solute concentration. Nevertheless, chemical and 

stable isotope results also show that the steep solute concentration gradients due to the presence 

of the deeper ‘channelized’ aquifer drove downward diffusion-controlled admixture and invariably 

solute fluxes across the transition interface between the high-oxygen, high-energy depositional 

environment consisting of coarser-grained sediments in the shallower compartment of the aquifer 

and the low-oxygen, low-energy depositional environments consisting of fine-grained sediments 

within the channelized/deeper compartment of the aquifer system. Although diffusion can occur 

in the absence of groundwater flow velocities, any advective push within the channel structure may 

further determine how great and sharpened the concentration gradients become. 

Also aligned with other studies (Haggerty et al., 2004; Zhang et al., 2007; LaBolle et al., 

2008) regarding diffusion rate-limited mass transfer between the channelized principal flowpaths 

and juxtaposed slow-velocity regions, a process that is ubiquitous in groundwater systems and 

would have induced complex isotopic fractionations, this study also interprets that the higher 

isotopic enrichments and NO3
- concentrations in the anoxic deeper compartment of the aquifer 

were resultant effects of diffusive fractionation of solutes balanced by isotopic depletion and lower 

NO3
- concentrations in the anaerobic microsites of the aerobic shallower compartment of the 

aquifer contrasting isotopic enrichments conventionally associated with traditional biodegradation. 

Observed higher concentrations of DO in the shallower compartment relative to the deeper 

compartment indicate that slower oxygen supply into the deeper aquifer (via diffusion) than its 

consumption (via microbial aerobic respiration) gave rise to the relatively oxygen-depleted deeper 

aquifer compartment. The lower NO3
- concentration levels in the more oxic shallower 

compartment, relative to the higher NO3
- in the less oxic deeper compartment, means that 

anaerobic microsites in a supposedly better-aerated shallower media favored NO3
- removal, and 

the recorded dual-NO3
- isotope signature is a consequence of the rate of removal and prevailing 

hydrologic and biogeochemical conditions. Although it is widely recognized that slower flow 

processes and invariably longer residence times of water lend support for slow reaction and 

transformation processes carried out by facultative anaerobes, such as denitrifying bacteria and 

other strict anaerobes in contrast to faster flow processes with shorter residence time of water, this 

present study did not definitively evaluate the effect of residence times of water on the N 

biogeochemical dynamics, which however is an interesting topic for further investigations. 

Based on my observations, I also hypothesized that flow through the preferential flow 

structures that connect the up Northwest/up North hillslope aquifer system to the deeper aquifer 

compartment on the floodplain area would commonly favor denitrification due to the occurrence 

of reduction conditions. However, the diffusion-controlled mixing of NO3
- solute sources would 

result in the observed masked canonical denitrification in the compartments of the floodplain 

aquifer, whereby δ15N of the residual NO3
- showed a polynomial increase with NO3

- concentrations 

rather than increasing δ15N with decreasing NO3
-. The estimation of a small N isotope effect in the 
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shallower and deeper aquifer compartments compared to the large N isotope effect commonly 

associated with denitrification further buttresses the role played by diffusion transport processes in 

the investigated aquifer. Moreover, because denitrification occurs continuously in advection-

dominated systems in a single phase/homogeneous medium, the recognition that vertical mixing 

from the shallower to the deeper aquifer compartment has occurred provides an additional hint 

that advection (although present) would not be a dominant process. In this study, I also highlighted 

that the diffusion-controlled mixing promoted the occurrence of alternate N-cycling processes, 

such as oxic denitrification in the shallower aquifer closely coupled to and compensated by anoxic 

nitrification in the deeper aquifer. Oxic denitrification and anoxic nitrification as observed in the 

shallower and deeper compartments of the aquifer, respectively, are incomplete processes wherein 

nitrification fuels denitrification and vice versa. Thus, for the hint of denitrification to have existed 

in the oxic shallower compartment, it means that there exist certain species of denitrifiers that do 

not possess a complete pathway. Such denitrifiers would have produced the nitrite that was 

subsequently transported by diffusion into the deeper aquifer compartment for anoxic reoxidation 

to NO3
-. Incomplete nitrification in the anoxic deeper compartment would also mean that the 

regeneration of NO3
- was not efficient because of the slow response of nitrite-oxidizing bacteria to 

periodic aerobic/anoxic operation (Kornaros et al., 2010). Consistency in the increasing trend of 

nitrite, NO3
- and δ15N of the residual NO3

- from the shallower to deeper aquifer compartment 

support the interpretation of anoxic nitrification in the deeper aquifer compartment. Plainly, this 

study posits that the occurrence of oxic denitrification and anoxic nitrification in the shallower and 

deeper compartments, respectively, may simply be a consequence of oxygen sensitivity of the 

nitrite-reducing and –oxidizing bacteria. Thus, the nature and roles of microbes should be seriously 

taken into account to adequately understand the complexity of the nitrogen-cycling pathways. 

Acting as a chemical intermediate in the oxygen evolution process, I also inferred that HCO3
- would 

have played a vital role in the water splitting reaction, providing an alternative explanation to the 

proposed nitrite-water abiotic exchange reaction that impacted the δ18O of the residual NO3
- during 

the NO3
- regeneration process.  

Insightful information provided by this study on the floodplain area is that there exists a 

distinct hydrobiogeochemical interface that created a boundary between the aerobic shallower and 

anaerobic deeper aquifer compartments. The evidence for this is reflected in the observed steep 

chemical and isotopic gradients. Although interfaces: vadose zone/saturated zones, surface 

water/groundwater (hyporheic zone), and surface water/underlying sediment are often considered 

when evaluating dynamic zones of nutrient/oxygen fluxes that can drive biodegradation processes, 

the detected transition in redox conditions between the aerobic shallower and anaerobic deeper 

aquifer compartments have been interpreted to represent important biogeochemical hotspot for N 

processing. Certainly, without a realistic understanding of the implication of the subsurface 

conditions and their hydrologic system, such coupled N turnover as reported in this study would 

not have been known. In a nutshell, particularly in the floodplain part of the study site, even though 

I propose a dual-domain type of mass transfer between the shallower and deeper aquifer 

compartments, I also propose that the subsurface aquifer model conceptualized in this study (in 

the floodplain) be treated as an advection-diffusion-reaction system side-by-side with the dual-

domain transport behavior and metagenomics of microbes playing useful roles in the inferred 

alternative N cycling routes. 
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5.3 Synthesis of the NO3
- source hypotheses 

 

In dealing with the hypotheses on the proposed two sources of NO3
- at the study site, I 

have systematically analyzed the different lines of hints emanating from the employed testing 

methodologies and multimethod approach. Within the framework of the presented observation-

based conceptualization process, key questions that significantly influence the N origin, the form 

through which they influence the groundwater quality and are introduced into the environment, 

were addressed. Based on the accumulated hints, the diagnosis of the nitrate source origin 

hypotheses in relation to their support or rebuttal was synthesized. At the agriculturally impacted 

Wurmlingen study site, an NO3
- plume potentially following the area’s local hydraulic gradient in 

the NW – SE direction was thought to emanate from either a hypothetical landfill site, HLS (point 

source) or the application of reduced N (RN) fertilizer in the form of NH4
+ (diffuse source). 

Landfills as a common point source of N compounds would have potentially resulted in the 

formation of a plume and would be the case if the diffusely applied N fertilizer moved into a 

heterogeneous sand and gravel aquifer system. However, after evaluation of the subsurface 

conditions using surface geophysical and direct push investigations, a steep solute concentration 

distribution-influencing channelized aquifer structure was detected. Such a channelized bedrock 

structure would have entrained all infiltrating fluid (and solute) irrespective of its point or diffuse 

source origin. This first hint ruled out the possibility that the HLS alone would have formed the 

investigated NO3
- plume, emphasizing the importance of adequately mapping subsurface structural 

controls on groundwater flow and solute transport. Of course, there is a hypothesis that the NO3
- 

in the Neckar valley aquifer largely comes from fertilizer applied on the hillslopes underlain by 

fractured oxidized mudrock. As highlighted earlier, how the fractured oxidized mudrock is related 

to the channel structure inferred to be preferentially controlling the NO3
- plume will be a critical 

further investigation. 

Despite the fact that NH4
+ would remain an issue even after the organic strength of a landfill 

leachate has been significantly reduced by methanogenic bacteria because there is no degradation 

pathway for NH4
+ in anaerobic systems, the observation of low NH4

+ (sometimes below the 

detection limit) did not support the concept that a landfill would have impacted the groundwater 

both in the oxic shallower and less-oxic deeper aquifer compartment. Given the gypsiferous 

carbonate rock environment, it is anticipated that the abundance of the divalent cations (Ca2+ 

and/or Mg2+) and their competition for the exchange sites with NH4
+ would have increased 

efficiency in the removal of NH4
+; hence, the observed low NH4

+ concentration values. Although 

the circumstances that promote NO3
- biogeochemical processes may have been predicted for the 

investigated aquifer system in the floodplain area of the study site, there is presently limited 

groundwater biogeochemical data (in particular, groundwater NH4
+ concentration and DO 

conditions, which are critical for maintaining N turnover processes) near the assumed location of 

the HLS (that is, toward the up Northwest/up North hillslope environment).  

Complications arising from biogeochemical and mixing processes may blur effective 

identification of the NO3
- sources. To reduce the uncertainties over NO3

- source apportionment 

and fate within the aquifer, I made use of the dual-NO3
- isotope data. The shallower aquifer 

compartment was characterized by soil organic N, whereas the deeper aquifer compartment was 

characterized by the animal (manure) and septic system waste. Further evaluation of the 
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fractionation between the N and O isotopes of the residual NO3
-, and in relation to the mode of 

solute transport, indicate that, despite the partitioning of the NO3
- source into shallower and deeper 

compartments of the aquifer by distinct and complex hydrologic and biogeochemical processes, 

15N of the remineralized NO3
- in the deeper aquifer compartment reflected the animal 

(manure)/septic system waste NO3
- source. Tracing the denitrification line (Figure 4.14) backward 

also led to the interpretation that the soil organic N and the animal/septic waste would have 

originated from one source (RN fertilizer). It is possible that the RN may have resulted from liquid 

manure fertigation on the agricultural soil as observed during one of my field campaigns. However, 

that is not to say that the RN source of the groundwater NO3
- is a very recent occurrence. I consider 

the investigated NO3
- as a legacy resulting from decades of recharge of high NO3

-. Again, I am 

aware of an existing hypothesis (Kortunov et al., 2016) that, since both floodplains in the Ammer 

and Neckar valley contain Holocene sediments relatively high in organic carbon, agricultural NO3
- 

is reduced therein and does not reach the groundwater. Nevertheless, considering the residence 

and lag times of the fertilizer when applied and various impacting biogeochemical 

processes/mineralization and immobilization turnover of nitrogen at the soil-plant system, as well 

as varying environment/climatic conditions, leaching of produced NO3
- cannot be completely 

dismissed. The positive correlation between NO3
- and Cl- concentrations further indicates that the 

groundwater NO3
- was predominantly fecal- and/or wastewater-derived. Although the dual-NO3

- 

isotope and chemical analyses proved their mettle in N source apportionment, there was not 

enough clarity given that the average 15N of the residual NO3
- from the landfill leachates falls 

between the average for animal-septic wastes and the average from natural soil NO3
-.  

It is worth noting also that both landfill leachates and septic wastes can be classified into 

the N point source category, whereas the animal (manure) wastes are commonly diffuse in nature. 

Attempt to use the Na+ indicator to segregate between point and nonpoint sources of decomposing 

organic matter was also not very helpful. In this study, there was no significant relation between 

Na+ and NO3
- (see Figure 4.12b), which, according to Minet et al. (2017), could be due to there 

being minimal or no impact of point sources (that is, animal/human waste influence) on NO3
- 

groundwater loading. The rationale behind the use of the Na+ indicator as a chemical tracer of an 

organic matter-derived contaminant plume of the point source stems from the understanding that 

it is one of the most mobile of the common cations whose adsorption should be further reduced 

as the sorption sites within plumes of contamination become saturated. Nonetheless, proper use 

of Na+ as an indicator of the point source of organic matter relies on the enrichment of the 

decomposing organic matter in compounds that contain Na+. Because the nature and content of 

the suspected landfill whose leachate would depend on the type of waste disposed of and the waste 

degradability among other factors was not directly probed, this present study cannot definitively 

associate the groundwater NO3
- to a landfill site. In conjunction with the fact that there is no 

scientific basis for classifying both animal and septic system wastes into the same category as 

portrayed in Figure 4.14, a major conclusion reached is that fingerprinting of the groundwater NO3
- 

sources in terms of their landfill, septic system and animal manure origins will be an interesting 

topic for further research, as highlighted in section 5.6: "Enhanced understanding of the nitrate sources." 

Studies including but not limited to the following have demonstrated such future research needs: 

Widory et al., 2005; Xue et al., 2009; Kaushal et al., 2011; Fenech et al., 2012; Toledo-Hernandez 

et al., 2013; Vrzel et al., 2016; Briand et al., 2017. Most importantly, performing groundwater 

sampling from the upper half of the study site toward the hillslope environment (up North)/ 

Wurmlingen settlement (NW) would greatly enhance the prospect of determining the groundwater 
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NO3
- sources through the comparison of results from the two geohydrologically distinct regions of 

the study site. 

 

 

5.4 Summary of conclusions 
 

From the examined data, the following conclusions were reached in line with the questions 

highlighted in the introductory part of this work (see Chapter one). 

 

 Through which hydrologic pathway is the nitrogen nutrient physically transported? 

This study identified a channelized subsurface hydrologic/preferential flow pathway, which 

connects the two regions of the study site: (1) up Northwest/hillslope environment (up 

North), and (2) down South on the floodplain area. This identification was made possible 

by the wider coverage of the preliminary Schlumberger-based depth sounding surveys, 

which provided a rough screening and estimation of the subsurface structural conditions 

in terms of the resistivity variations. Isoresistivity maps, specifically at a depth level or 

electrode spacing of 60 m, showed a linearized low-apparent-resistivity feature aligned in 

the NW-SE direction of the investigated groundwater plume of nitrate. The existence of 

the low-apparent-resistivity feature was later confirmed by the 2-D electrical resistivity 

imaging results. The low-resistivity feature also correlated a trough-like low P-wave velocity 

structure delineated from refraction seismic (with DP-based reversed vertical seismic 

profile travel time) tomography. Corroboration of the trough-like low-resistivity and low-

velocity feature/anomaly by the DP soil EC and lithologic logging (that is, geostratigraphic 

profiling) indicated that the channelized feature marked the alluvium-bedrock interface. 

Further assessment of the feature and the heterogeneity of the aquifer using a chemical and 

stable isotope data set indicated that the aquifer system on the floodplain area is partitioned 

into two compartments. The shallower aquifer compartment (matrix structure) and deeper 

channelized compartment (macropore) displayed different hydrologic regimes 

characterized by distinct groundwater concentrations and dual-NO3
- isotope signatures. It 

was interpreted that the channelized hydrologic pathway could preferentially entrain 

fluid/solutes infiltrating into the aquifer and govern the mechanisms of the biogeochemical 

processes. The occurrence of steep biogeochemical gradients shows that the interface 

between the shallower and deeper compartments of the aquifer could represent a local hot 

spot where there are preferential exchange fluxes and biogeochemical cycling. 

 

 What is the origin of the nitrogen nutrient, and where at the site are its source areas? 

Comparatively, the oxidized form of N (that is, NO3
-) dominated the reduced form (that 

is, NH4
+) as measured in the aquifer groundwater. Using the dual-NO3

- isotope data, two 

sources of NO3
- are distinguishable in the shallower (that is, soil organic nitrogen source) 

and deeper (that is, animal manure and/or septic waste source) compartments of the aquifer 

on the floodplain area. However, following the denitrification trend line (Figure 4.14) back 

to its interception as suggested by Panno et al. (2006) shows that the two distinct 

groundwater NO3
- sources partitioned into the shallower and deeper aquifer compartments 

originated from the reduced nitrogen fertilizer. Attribution of the groundwater NO3
- to the 
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animal manure and/or septic waste sources was relatively concretized on the observation 

of liquid manure fertigation on the agricultural soil during one of my field campaigns. The 

perfect positive correlation between NO3
- and Cl- suggested that the NO3

- was fecal- and 

wastewater-derived. Groundwater isotope data showed minimal or no variation across the 

two compartments, indicating that the groundwater originated from the same source 

(infiltrating rainwater), which carried the anthropogenic NO3
- into the aquifer from the land 

surface. Controversy, however, ensued in the apportionment of N in relation to animal 

manure and septic system wastes given that there was no scientific basis for classifying them 

together as indicated by the form of chemical and stable isotopic indicators presented in 

this study. Apart from the fact that animal manure and septic wastes can be discriminated 

by different biogeochemical indicators, septic wastes are often termed point sources, 

whereas animal manure wastes are termed nonpoint sources. Distinguishing the sources as 

point or nonpoint was difficult in light of the presence of a channelized aquifer bedrock 

structure that is capable of channeling both point and nonpoint sources of NO3
- in 

infiltration. This present study could not associate the groundwater NO3
- with the 

hypothetical landfill site because there is presently no information regarding the content of 

wastes in the suspected landfill site (if such a site does exist at all). As noted earlier, 

separating animal manure, septic waste and landfill leachate in relation to the source of 

groundwater NO3
- would constitute an important research effort.  

 

 What is the effect of the parent materials and development of the hydrologic 

pathways on the N cycling, and what biogeochemical processes are likely to occur? 

Complex transport and fate mechanisms of coupled oxic NO3
- removal and anoxic 

nitrification characterize N biogeochemical transformation pathways in the alluvial aquifer 

system. This conclusion was reached based on the following observations. Lower NO3
—to-

Cl- ratios pointing to NO3
--removing processes in the aerobic shallower compartment of 

the aquifer relative to the higher NO3
—to-Cl- ratios pointing to mixing processes in the 

anaerobic deeper compartment contradicts the basic assumption of nitrification and 

denitrification reaction pathways and demonstrates the complexity of processes in the 

system. The positive correlation between Mn2+ and NO3
- inferred that it is possible for 

anoxic nitrification to occur in the deeper compartment of the aquifer. Additionally, the 

weakness in this relationship in the shallower compartment of the aquifer indicates that 

NO3
- removal may have taken place, but not completely. The strong negative correlation 

between SO4
2- and NO3

- in the shallower compartments suggests possible inhibition of the 

activities of sulfate-reducing bacteria through symbiotic oxidation of the resulting sulfide 

by nitrate-reducing, sulfide-oxidizing bacteria, leading to the production of a slightly 

elevated SO4
2- relative to the reduced NO3

-. This process has been observed to produce 

some amount of nitrite if there is no resistance from the nitrite reductase that is widely 

distributed in the sulfate-reducing bacteria (Greene et al., 2003). 

 

In the deeper aquifer compartment, there was no significant relationship between SO4
2- and NO3

- 

simply because the regenerated NO3
- is energetically a more favorable electron acceptor than SO4

2-

. Although biological denitrification is commonly indicated by a progressive enrichment and 

coupled increase in δ18O and δ15N of the residual NO3
- with a decline in NO3

- concentration, the 

observed 2nd-degree polynomial increase in the δ15N of the residual NO3
- with NO3

- concentration 
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suggests the admixture of groundwater NO3
- from the shallower compartment into the deeper 

compartment. Further discrimination of the N-processing pathways was based on the slope of the 

association between the δ18O and δ15N of the residual NO3
-. Whereas the δ18O vs. δ15N trajectory 

of 0.36 estimated from the shallower groundwater samples fell within the range of fractionation 

ratios reported for groundwater denitrification due to the coupling of the δ15N and δ18O of residual 

NO3
-, the trajectory of 1.19 estimated for the deeper groundwater samples is interpreted as evidence 

of anoxic nitrification processes due to the decoupling of the δ15N and δ18O of residual NO3
-. It is 

most likely that, as an incomplete process, denitrification in the anaerobic microsite of an aerobic 

shallower media produced the nitrite that diffused into the deeper aquifer compartment. 

Alternatively, this nitrite in question may to have emanated from the shallower aquifer 

compartment, wherein there is possible stimulation of nitrate-reducing, sulfide-oxidizing and 

heterotrophic  denitrifying bacteria. Although this present study explained the dominance of 

heterotrophic pathway over autotrophic pathway, the true nature of the microbial communities 

remains to be investigated.  The anoxic nitrification processes in the deeper aquifer compartment 

is also considered to be incomplete. This is because the elevation of the δ15N of residual NO3
- 

would have only occurred in the presence of denitrification, meaning that the nitrite-oxidizing 

bacteria would have responded to a periodic anaerobic/aerobic operation. The observation of NO2
- 

in the deeper aquifer compartment corroborate this hypothesis. Therefore, this study also suggests 

that nitrification and denitrification are tightly coupled in the aquifer system. The observation of a 

decrease in HCO3
- concentration with an increase in NO3

- further affirms the higher potential for 

NO3
- removal in the shallower compartment relative to nitrification in the deeper compartment. 

The evaluation of the relation between HCO3
- and the δ18O of residual NO3

- also shows that the 

incorporation of oxygen from water would not have merely occurred without something such as 

the HCO3
- effect besides water as the chemical intermediate source of evolved oxygen (see Metzner, 

1979; Stemler, 2002). The summary of the investigation on N turnover in the alluvial aquifer is that 

both physical (hydrology) and the nature of microbes and their ability to cycle N nutrient 

transferred to them variably distinctly in the shallower and deeper aquifer compartments. 

 

 

5.5 Scientific significance and impact 
 

The observation-based CSM framework approach developed demonstrates how to 

recognize complexities associated with a natural aquifer system riddled with uncertainties to foster 

effective groundwater flow, solute fate and transport modeling. The defined architecture and 

configuration of the investigated aquifer system made it possible to develop key understanding of 

the hydrologic flow system and biogeochemical processes. In general, evaluation of preferential 

flow pathways aids in the understanding of migration pathways of recalcitrant chemical constituents 

for efficient remediation processes. By analyzing the geologic history (e.g., stratigraphy, structures, 

and water-rock interactions), I was able to catch a glimpse of how the distribution of flow paths, 

electron donor availability or diffusion control the extent of N processes in an alluvial aquifer. 

Interpretation of the processes impacting the distribution of NO3
- concentrations would have been 

wrong and complicated had groundwater sampling been performed only from within the shallower 

compartment of the aquifer without the acknowledgement of the steep solute concentration and 

stable isotope gradient created due to the presence of a channelized deeper aquifer compartment. 
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I have also demonstrated in this study that it would have been difficult to determine the boundary 

and dominating processes around the investigated NO3
- plume by the traditional approach to site 

characterization alone. The channelized deeper flow system identified by employing the 

observation-based CSM framework resulted in the knowledge of the steep biogeochemical 

gradients that drove diffusive transport of solute and oxygen from the shallower into the deeper 

aquifer compartment. This made it possible to distinguish hydrobiogeochemical interactions and 

processes that may be taking place in the deeper compartment from those that are controlled 

instead by processes within the shallower aquifer compartment, as well as how the processes are 

connected to each other. Based on the study results, it was possible to infer how these processes 

impacted the original source of the N nutrient loaded into aquifer groundwater. The unraveling of 

the channel structure provided a new concept in the understanding of the N hydrobiogeochemical 

processes. In particular, the presence of the channelized aquifer structure provided opportunity for 

me to interprete in-stream denitrification (e.g., Mayer et al., 2002) hidden in the aquifer, wherein 

diffusion-controlled transport mechanism and admixture of NO3
- sources plays crucial role in 

determining the distribution of the NO3
- concentrations. 

This foundational information is useful for addressing one of the pressing water resource 

and environmental challenges, particularly in agricultural settings. In a bid to feed the burgeoning 

world population, agricultural activities have become the major sources of anthropogenic reactive 

N. However, rather than purely contributing to food production, deficient understanding of the N 

turnover has resulted in the loss of almost three quarters of agricultural N to water bodies and the 

atmosphere (Oita et al., 2016). Consequently, it has become increasingly imperative to manage and 

remove N input into the environment. Removal of a large chunk of N entering aquatic 

environments has been primarily attributed to a respiratory denitrification mechanism. However, 

alternative, microbially mediated N transformation processes have altered this basic assumption 

that oxic nitrification precedes anoxic denitrification. Most of what is known about these alternative 

NO3
- removal pathways is based on laboratory cultures, lakes, rivers, and coastal estuaries studies, 

with far less attention being paid to such pathways in the terrestrial subsurface below the water 

table. This has been primarily attributed to the lack of ease of access into complex subsurface 

systems and inadequate understanding of the systems’ physical and biogeochemical processes. It is 

even suggested that N transformation pathways operative in freshwater and marine ecosystems are 

fundamentally different. By developing a deeper understanding of N nutrient processing in the 

alluvial aquifer setting, this research work provides new knowledge and tools required to predict 

complex biogeochemical cycling, such as aerobic denitrification and anaerobic nitrification as 

observed in the shallower and deeper aquifer compartments, respectively.  

The recognition of NO3
- regeneration processes as reported for the anaerobic deeper 

compartment of the aquifer is crucial for reliable prediction of the long-term development of the 

NO3
- load of water resources. Aerobic denitrification as an incomplete NO3

- reduction process may 

result in the emission of undesirable nitrous oxide (a greenhouse gas that is over 300 times more 

potent than carbon dioxide). Moreover, anaerobic nitrification and aerobic denitrification are 

coupled nitrification-denitrification processes. The observation-based conceptual site model 

framework demonstrated in this study proved helpful because the identification of the degree to 

which nitrification and denitrification are coupled also influences how denitrification is modeled in 

natural and agricultural systems (Boyer et al., 2006). According to Seitzinger et al. (2006), “one 

might expect that models of systems with tightly coupled nitrification and denitrification would be 

strongly influenced by diffusive processes, whereas models of more loosely coupled systems would 



143 

Chapter 5 

 

 

be influenced primarily by advective (or other ecosystem or climatic) processes.” With these 

insights, the N budget from the mostly inaccessible and highly heterogeneous aquifer system can 

be accounted for as an aid to the development of strategies for effective management and control 

of N added via synthetic fertilizers, manures and slurries, while ensuring that complete NO3
- 

utilization is accomplished through the production of dinitrogen gas. The complexity of the N-

cycling pathways identified in this study reinforce the message that anaerobic denitrification alone 

should not be thought of as the primary mechanism responsible for NO3
- disappearance in aquifer 

systems (Lloyd, 1993). The results from this study suggest that the understanding of N 

biogeochemical processes is far from complete, a problem that is, as of now, unresolved and still 

largely open to discussion. Whereas N serves as a representative use case, the systematic CSM 

approach adopted in this study can be extended to bridge the mechanistic knowledge gap on the 

complex fate and transport of other chemical constituents of concern between experimentation 

and corresponding modeling studies, as well as their impact on human and environmental health. 

 

 

5.6 Outlook 
 

Although this study has evaluated a CSM by delineating the variability of the subsurface 

structures, vertical distribution of groundwater solutes, inferred potential hotspot and sources of a 

nitrate plume origin as well as identified N transformation pathways, key data gaps and uncertainties 

still remain, but they also open up some questions that point to new research directions. These 

knowledge gaps include but are not limited to the following. 

 

 

Expanded search for biogeochemical hotspots within the floodplain aquifer 

 I showed that the channelized part of the investigated aquifer system could represent a 

potential zone within the NO3
- plume where reaction rates of biogeochemical activity are 

disproportionately higher (that is, a hotspot) than those in the surrounding/upgradient 

aquifer matrix. However, there is still limited knowledge of the extent to which the NO3
- 

plume migrates laterally beyond the selected and studied section of the study site. Mapping 

biogeochemical hotspot zones in an ecosystem is not only important for contaminant 

management and remediation but also necessary as a fruitful direction of floodplain 

management research, especially for processes, such as denitrification, that rely 

simplistically on anoxic microsites and evaluation of multiple substrates, such as nitrate and 

bioavailable carbon. Developing an understanding of these zones can be quite challenging 

due to the spatiotemporal variability of complex linkages between hydrological dynamics 

and biogeochemical processes that govern flow and transport within a naturally 

heterogeneous environment. Advancing the developed CSM approach, which logically 

combines multidisciplinary geoscience tools, is one promising move toward better 

quantification of hotspot zones and associated hydrobiogeochemical exchanges. 

 

 

Enhanced understanding of the nitrate sources  

 Present data have increased the understanding of nitrogen nutrient sources and have 
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provided indications of their potential transformations in the aquifer on the floodplain part 

of the site. However, expanding the evaluated chemical and isotopic data beyond the 

present variables could improve the ability to substantiate a proposition of a potential 

landfill contributory source of the NO3
-. For example, iodine, the boron isotope ratio and 

Cl-/bromide ratios could be a useful proxy for the identification of NO3
- sources. 

Additionally, microbiological markers could be combined with the chemical and isotopic 

data to reveal major differences in organic contaminations between human and animal 

wastes. Certainly, such research effort should also include groundwater sampling on both 

the floodplain aquifer and the aquifer system towards the hypothetical landfill site (that is, 

up Northwest/hillslope environment). This will help in making adequate comparisons of 

how N processing in the inferred geohydrologically distinct aquifer influences the N 

source(s). 

 

 

Geophysical monitoring of the dynamics of aquifer groundwater mixing zones 

 I reported that the inferred subsurface preferential flow zone encourages the channelization 

of flow and physical mixing of water, solute reactions and mobilization processes. It was 

also highlighted that the development of higher solute fluxes associated with the 

channelized part of the aquifer could be water volume-dependent, given the configuration 

and geometry of the aquifer bedrock. Similar to many other ecohydrological interfaces, the 

identified mixing-controlling aerobic/anaerobic transition zone may provide information 

regarding transient/seasonal storage within the channelized aquifer. In particular, this 

encourages consideration of the channel water balance (e.g., Payn et al., 2009) when 

analyzing the dependence of the solute dynamics (that is, the addition and removal of 

channel solute loads) on the geochemical fate and transport or biological processes. Such a 

zone is critical for biogeochemical processing in terrestrial/aquatic ecosystems, and 

understanding it is fundamental to elucidating complex subsurface geohydrology. 

Additional studies using time-lapse monitoring for the detection of variations in fluid flow-

dependent geophysical attributes should be carried out to elucidate the intra-seasonal 

controls on the dynamics of the mixing zone. 

 

 

Coupled hydrological and biogeochemical processes controlling the nitrogen nutrient cycling 

 Although I identified that the aquifer is partitioned into two zones of distinct 

biogeochemical processing, understanding the link and interaction patterns of hydrological 

and biogeochemical processes controlling nitrogen nutrient cycling merits further scrutiny. 

To gain considerable insight into these processes, closely spaced multilevel monitoring 

wells should be strategically installed within these identified aquifer compartments for 

temporal and systematic analysis of N-cycling responses to precipitation patterns, water 

table dynamics, and isotopic and site-specific geochemical indicators. These measurements 

could reveal how the largely overlooked mechanisms of N removal and production are 

coupled to hydrological processes at event, seasonal, and inter-annual scales. Ultimately, 

such a work could enhance the development of a watershed-scale model of coupled 

hydrological and biogeochemical responses.  
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Microbial diversity within the alluvial aquifer system 

 Linking N dynamics with bacterial community levels has proved largely unsuccessful due 

to such reasons as the following: (1) the facultative nature of NO3
- reduction, which means 

that genes responsible for NO3
- reduction processes play only a minor role in determining 

the location of the bacteria that carries them, and (2) complexity of the media, so links 

between bacterial communities and environmental factors are not clearly defined. Although 

the aquifer system under study is now relatively well characterized, the existence of complex 

N-cycling pathways, such as coupled oxic nitrification-anoxic denitrification, as well as the 

speculation that an anammox and DNRA would have occurred or co-occurred with 

denitrification, allude to the fact that the understanding of N biogeochemical processes is 

far from complete. Because of the pivotal roles played by microbial activities in 

biogeochemical cycling of nutrients, additional studies involving the correlation of the 

diversity and abundance patterns of the microbial communities, as well as gene expression 

assays with the conservative and reactive chemical and isotopic tracers at spatiotemporal 

scales, would be of particular interest in confirming the existence of the pathways of NO3
- 

conversion interpreted in this study. 

 

 

Role of the HCO3
- effect in the evolution of the oxygen isotope abiotically exchanged between 

nitrite and water  

 Studies have suggested that the oxidation of ammonium/nitrification would result in a large 

amount of oxygen isotope exchange between nitrite and water (Buchwald et al., 2012). A 

large range of δ18O of the residual NO3
- predicted in the process has been attributed to the 

variations in the amount of exchange and kinetic isotopic fractionation expressed during 

ammonia oxidation and nitrite oxidation among the different bacterial communities 

(Buchwald and Casciotti, 2010). Although determining the oxygen isotopic exchange and 

fractionation during nitrification under natural environmental conditions is crucial to 

predicting the source of δ18O in NO3
- and its variation with water and atmospheric oxygen, 

it has been noted that this range of values lacks the predictive power required for the 

interpretation and modeling of NO3
- isotope distribution (Snider et al., 2010; Buchwald et 

al., 2012). Clearly, in this study, there is a weak relation between δ18O of water that is 

expected to contribute two-thirds of the required oxygen to the produced NO3
- and δ18O 

of the residual NO3
-. Apart from being a microbial indicator of N biogeochemical processes 

and considering the carbonate rock environment of the investigated site, this present study 

appears to show that, besides water (a well-known and conclusive source of oxygen), HCO3
- 

would have been an immediate source of the evolved oxygen by participating in the water-

splitting reaction. This phenomenon, known as the HCO3
- partitioning effect, results in 

oxygen evolution but has not been investigated in N isotope biogeochemical studies. On 

thermodynamic grounds, Metzner (1978) proposed that water entered the splitting reaction 

that would have carbon dioxide product continuously rehydrated in the form of HCO3
-, 

from which it is much easier to extract electrons than from water itself. Unlike the results 

presented in this study wherein the values of δ18O of water were far below those of the 

residual NO3
-, the argument put forward by Metzner et al. (1979) is that, if oxygen was 

developed directly from water, the δ18O of evolved oxygen could, under no circumstance, 
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be even minutely greater than that of the water in the medium (see Stemler, 2002). Put 

together with the significant relation observed between HCO3
- and (NO3

- and δ18O of NO3
-

), this study proposes to test whether the 18O enrichment is due to the HCO3
- or to isotopic 

exchange between the HCO3
- and water. Such information is essential for interpreting the 

factors impacting the δ18O of the regenerated NO3
- in the anaerobic deeper compartment 

of the alluvial aquifer. 

 

 

Aerobic denitrification and anaerobic nitrification as a function of residence time across a critical 

biogeochemical hotspot in a channelized floodplain aquifer 

 The classical description of nitrification and denitrification holds that the presence of 

oxygen is inhibitory. Although the use of NO3
- when oxygen is present is of no known 

advantage, simultaneous use of oxygen and NO3
- as terminal electron acceptors has now 

been found not to be precluded in many bacteria (Lloyd, 1993). Thus, the notion that 

denitrification is singularly an anaerobic process has been debunked in both theory and 

practice. Similarly, it has been found that nitrite-oxidizing bacteria are capable of promoting 

the incorporation of oxygen atoms from ambient water into dissolved NO3
- under anoxic 

conditions (Wunderlich et al., 2013), resulting in NO3
- regeneration. My hypothesis is that 

aerobic denitrification and anaerobic nitrification are incomplete processes that account for 

the reversibility of NO3
- consumption and production reaction in a complex natural setting, 

such as that identified in this study’s shallower and deeper compartments of the channelized 

floodplain aquifer. Although I used the chemical and dual stable isotope of NO3
- to advance 

the mechanistic process understanding of the N biogeochemical turnover, the fundamental 

open question is how the exchange between the shallower and deeper compartments 

through a transition interface that represents potential biogeochemical hotspots and hot 

moments is organized. Indeed, this is a valid question given that oxygen sensitivity of the 

microbial nitrification and denitrification depends on hydrologic forcing, which determines 

how the fluctuations in oxygen supply may occur on timescales. The impact of flow-

dependent residence time distributions on the dynamics of biogeochemical fluxes across 

ecohydrological interfaces has been identified by several studies (e.g., Zarnetske et al., 

2011). It is therefore considered important to test the hypothesis that complex 

biogeochemical reactions associated with N cycling, such as aerobic denitrification and 

anaerobic nitrification, are controlled by water residence times in the distinct compartments 

of the channelized floodplain aquifer. 

 

 

Modeling the relation between nitrate and seasonal redox dynamics  

 Following the identification of coupled oxic denitrification and anoxic nitrification 

processes in the shallower and deeper compartments of the aquifer, respectively, as 

alternatives to the traditional nitrification-denitrification process, the aquifer was adjudged 

to be a complex one. It is hypothesized that the complex distribution of the N-cycling 

pathways results from diffusion-controlled redox processes, which are controlled by the 

subsurface hydrologic conditions. In both oxic denitrification and anoxic denitrification 

processes, HCO3
- alkalinity appears to have a played vital role such that its accumulation 

during denitrification in the shallower compartment of the aquifer was probably 
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compensated by its consumption during nitrification in the deeper compartment of the 

aquifer. In particular, HCO3
- is a reliable indicator of microbial activities. Mn-oxide also 

appears to be coupled to anoxic nitrification. In this regard, it could be necessary to 

consider a reactive multicomponent transport modeling of the redox dynamics wherein the 

fate and mobility of NO3
- is simulated with Mn2+ and HCO3

- alkalinity as major uncertainty 

coupling and decoupling variables. Additionally, SO4
2- was found to have also played a role 

in the aquifer N-cycling processes. It would also be worthwhile to model the impact of 

anthropogenic NO3
- on S cycling and SO4

2- reactive transport.  
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Table A1. Preliminary major ion chemistry of groundwater samples collected depth-specifically between 17 and 18 June, 2014 in an attempt to discern the hotspot of the investigated nitrate plume before 
the implementation of the conceptual site model approach described in this study. See Figure 3.2 showing sampling locations on the map of the investigated study site. 

       
 
 Cations[mg/L] 

 
Anions [mg/L] 

Sample Date 
Sample 

ID  

Depth 
ranges 

below *WT 
Longitude  

[oE] 
Latitude 

[oE] 
Elevation 

[m] 
Groundwater 

EC [µS/m] 

 
Dissolved 

oxygen 
[mg/L] Ca2+  Mg2+  Na+  K+  SO4

2- 

 
HCO3

- 

NO3
- Cl- 

17/06/2014 Gw1-2 5.15-5.75 m 8.970277782 48.50037 337.323  2190 4.2 577  70  15  13  1253  391  22  30  

17/06/2014 Gw1-1 5.75 -6.35 m 8.970277782 48.50037 337.323 2130 4.6 567  71  16  15  1247  392  22  30  

17/06/2014 Gw2-3 6.15-6.75 m 8.972139661 48.49856 336.411 2200 5.2 576  76  13  15  1247  406  21  27  

17/06/2014 Gw2-2 6.81-7.41 m 8.972139661 48.49856 336.411 2200 5.4 590  78  13  16  1264  406  21  27  

17/06/2014 Gw2-1 7.42-8.02 m 8.972139661 48.49856 336.411 1902 5.1 464  92  15  24  1023  426  29  30  

18/06/2014 Gw3-4 5.30-5.90 m 8.976112928 48.49835 335.449 2520 5.7 594  74  19  3.8  1303  392  16  30  

18/06/2014 Gw3-3 5.90-6.50 m 8.976112928 48.49835 335.449 2520 5.3 590  76  21  4.7  1287  407  16  32  

18/06/2014 Gw3-2 6.45-7.05 m 8.976112928 48.49835 335.449 2440 4.4 547  80  21  5.9  1219  401  17  37  

18/06/2014 Gw3-1 7.05-7.65 m 8.976112928 48.49835 335.449 2440 4.2 556  82  20  6.1  1206  394  18  38  

18/06/2014 Gw4-3 5.95-6.55 m 8.976997533 48.49975 334.933 2320 4.8 520  77  13  21  1136  404  21  27  

18/06/2014 Gw4-2 6.56-7.16 m 8.976997533 48.49975 334.933 2100 4.3 531  77  13  20  1136  414  21  27  

18/06/2014 Gw4-1 7.12-7.72 m 8.976997533 48.49975 334.933 2310 5 501  77  13  21  1133  414  21  27  

*WT = water table 
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Table A2 Details of the Schlumberger vertical electrical sounding (VES) data acquisition parameters. 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.972759 48.50275 337.402 m 

Wurlingen, near 
Tübingen, southeast 

Germany 19.06.2014 

WUR-VES1 AB/2 MN Full Half Left Half Right 

1 1.5 1 35.3 24.7 10.7 

2 2.5 1 22.8 13.1 9.7 

3 4 1 28.8 15.4 13.4 

4 6 1 35.3 19.2 16 

5 8 1 22.6 11.7 10.7 

6 10 1 44.9 23.8 21.3 

7 12 1 48.7 25.5 22.9 

8 15 1 55.3 28.6 26 

9 20 1 65 34.4 30.6 

10 25 10 54.9 30.1 25.2 

11 25 1 71.5 38.2 33.7 

12 30 10 60.5 33.5 27 

13 40 10 72.3 41.8 30.2 

14 60 10 90.3 58.6 32.1 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

NE-SW 8.973738 48.50254 335.98 

Wurlingen, near 
Tübingen, southwest 

Germany 19.06.2014 

WUR-VES2 AB/2 MN Full Half Left Half Right 

1 1.5 1 99.1 59.8 38.2 

2 2.5 1 67.4 23.1 44.5 

3 4 1 86.8 43.1 44.2 

4 6 1 79.7 39.4 40.5 

5 8 1 74.8 36.9 38.3 

6 10 1 74.1 36.6 37.9 

7 12 1 75.4 37.8 38.5 

8 15 1 78.4 39.1 39.7 

9 20 1 85.6 43.4 42.1 

10 25 10 74.8 38.9 36.1 

11 25 1 94 47.6 47.1 

12 30 10 83.5 42.8 41 

13 40 10 101.3 56.2 58.8 

14 60 10 113.2 56.2 58.7 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   
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Table A2 cont’d…  

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.972668 48.50235 336.093 

Wurlingen, near 
Tübingen, southwest 

Germany 19.06.2014 

WUR-VES3 AB/2 MN Full Half Left Half Right 

1 1.5 1 87.3 64.5 23.1 

2 2.5 1 69.6 42.8 26.8 

3 4 1 59.4 31.5 27.9 

4 6 1 63.4 33.1 30.4 

5 8 1 70.3 36.4 33.9 

6 10 1 76.5 40.8 36 

7 12 1 80.1 42.6 37.4 

8 15 1 86.8 46.3 39.3 

9 20 1 98.2 50.5 46.3 

10 25 10 74.8 37.3 37.4 

11 25 1 109.3 54.3 49.9 

12 30 10 82.5 41.3 40.9 

13 40 10 97.2 48.6 47 

14 60 10 117.7 57.6 60 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

NE-SW 8.971333 48.50221 336.688 

Wurlingen, near 
Tübingen, southwest 

Germany 19.06.2014 

WUR-VES4 AB/2 MN Full Half Left Half Right 

1 1.5 1 41.3 25.8 15.6 

2 2.5 1 38.4 20.6 17.9 

3 4 1 38.4 19.9 18.6 

4 6 1 43.9 24.3 19.6 

5 8 1 45.6 25.3 20.5 

6 10 1 48.7 27.5 21.2 

7 12 1 51 29.2 21.9 

8 15 1 54.5 31.4 23.5 

9 20 1 58.5 33.4 25.4 

10 25 10 71.7 39.1 32.8 

11 25 1 64.1 38.1 126.6 

12 30 10 74.7 40.1 34.4 

13 40 10 82.7 46.6 36.5 

14 60 10 103.1 60.2 43.7 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

NE-SW 8.971243 48.50255 339.19 

Wurlingen, near 
Tübingen, southwest 

Germany 19.06.2014 

WUR-VES5 AB/2 MN Full Half Left Half Right 

1 1.5 1 28.3 18.7 9.6 

2 2.5 1 15.9 7.8 8.1 

3 4 1 16.6 8.8 7.8 

4 6 1 19.9 10.79 9.3 

5 8 1 23.9 12.7 11.3 

6 10 1 27.5 13.5 13.7 

7 12 1 32 15.8 16.6 

8 15 1 40.7 22.8 17.9 

9 20 1 50.7 16.1 22.1 

10 25 10 58.4 35.2 23.1 

11 25 1 61.9 34.8 29.4 

12 30 10 67.7 41.9 25.8 

13 40 10 84.7 57.2 28.5 

14 60 10 115.1 78.7 40.9 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

NE-SW 8.970604 48.50175 337.181 

Wurlingen, near 
Tübingen, southwest 

Germany 19.06.2014 

WUR-VES6 AB/2 MN Full Half Left Half Right 

1 1.5 1 48.7 21.8 26.9 

2 2.5 1 41.4 20 21.4 

3 4 1 46.2 21.2 25 

4 6 1 52.7 25 27.8 

5 8 1 56.4 28.9 27.6 

6 10 1 58.7 33.3 25.5 

7 12 1 62.4 37.9 24.3 

8 15 1 70.7 45.6 25 

9 20 1 73.6 53.4 21.7 

10 25 10 64.9 58.3 20.5 

11 25 1 75.1 58.9 14.9 

12 30 10 71.3 53.5 17.8 

13 40 10 78.2 74.4 3.5 

14 60 10 77.3 131.8 52.9 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.971074 48.50097 337.833 

Wurlingen, near 
Tübingen, southwest 

Germany 19.06.2014 

WUR-VES7 AB/2 MN Full Half Left Half Right 

1 1.5 1 22.4 12.8 9.6 

2 2.5 1 14.8 7 7.8 

3 4 1 20.1 9.9 10.8 

4 6 1 28.2 12.9 15.1 

5 8 1 34.2 15.7 19 

6 10 1 41.5 18.2 22.4 

7 12 1 45.5 18.3 25.2 

8 15 1 52.1 21.2 30.2 

9 20 1 63.8 28.3 30.2 

10 25 10 60.2 28.4 32.2 

11 25 1 68.6 30.4 38.9 

12 30 10 65.3 30.5 34.8 

13 40 10 73.4 33.4 41.7 

14 60 10 74.1 26.7 45.5 

Operators: Ahamefula Utom; Hao Li; Helko Kotas   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.973651 48.50085 336.61 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES8 AB/2 MN Full Half Left Half Right 

1 1.5 1 16.6 7.4 9.4 

2 2.5 1 19.5 8.9 10.6 

3 4 1 24.1 10.6 13.8 

4 6 1 33 14.1 18.9 

5 8 1 40.5 17 23.3 

6 10 1 48 20.7 27.3 

7 12 1 54.9 23.5 33.1 

8 15 1 64.7 27.1 36.5 

9 20 1 78.3 34.8 44.7 

10 25 10 80.3 38.9 44.4 

11 25 1 82.8 38 48.7 

12 30 10 92.7 44.6 48.7 

13 40 10 107.2 50.2 59 

14 60 10 115.4 52.7 67.3 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.973673 48.49994 336.19 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES9 AB/2 MN Full Half Left Half Right 

1 1.5 1 31 16.2 14.8 

2 2.5 1 39.8 20.9 19 

3 4 1 53.9 29.4 24.7 

4 6 1 76.7 42.4 34.4 

5 8 1 92.7 52.2 40.9 

6 10 1 103.8 57.7 46.5 

7 12 1 111.8 63.4 48.8 

8 15 1 119 67.3 52.1 

9 20 1 117 64.5 53 

10 25 10 94.7 51.8 42.9 

11 25 1 113.3 61.9 52.4 

12 30 10 89.6 50.4 39.5 

13 40 10 83.7 51 32.6 

14 60 10 80.2 52.2 28.3 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.973662 48.49938 336.194 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES10 AB/2 MN Full Half Left Half Right 

1 1.5 1 46.3 26.9 19.6 

2 2.5 1 55.7 28.8 26.9 

3 4 1 77.9 39.8 37.8 

4 6 1 106.9 54.2 52.3 

5 8 1 126.6 64.2 62.5 

6 10 1 143.2 70.8 72.9 

7 12 1 154.8 73.2 80.7 

8 15 1 159.4 76.9 84.9 

9 20 1 160.2 70.9 87.4 

10 25 10 102.9 45.7 56.9 

11 25 1 153.8 71.4 82.1 

12 30 10 102.9 45.7 56.9 

13 40 10 85.6 36.8 49.2 

14 60 10 85.7 38.9 50.8 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.973684 48.49873 336.225 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES11 AB/2 MN Full Half Left Half Right 

1 1.5 1 41.6 21.7 20.1 

2 2.5 1 48.1 24 24 

3 4 1 71.8 34.4 36.2 

4 6 1 101.7 47 54.4 

5 8 1 129.4 60.4 69.8 

6 10 1 146.8 68.1 78.5 

7 12 1 147.1 61.9 85 

8 15 1 162.2 74.9 89.4 

9 20 1 158 64.6 89.4 

10 25 10 127 65.3 64.1 

11 25 1 136.6 51 82 

12 30 10 118.9 62.1 57.5 

13 40 10 107.1 56.3 51.9 

14 60 10 97.1 55.4 42.5 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.973344 48.49846 335.839 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES12 AB/2 MN Full Half Left Half Right 

1 1.5 1 49.8 28.5 21.7 

2 2.5 1 59.5 31.8 28.4 

3 4 1 81.5 43.4 39 

4 6 1 113.1 58.5 55.8 

5 8 1 137.6 71.6 67.8 

6 10 1 158.1 82.5 77.9 

7 12 1 170.9 90 81.9 

8 15 1 184.2 96.7 89.4 

9 20 1 198.5 102.2 91.2 

10 25 10 194.3 85.5 77.7 

11 25 1 189 112 89.9 

12 30 10 154 81.3 74.1 

13 40 10 144.3 76.7 69.4 

14 60 10 132.2 78.3 54.2 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.972804 48.49848 335.871 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES13 AB/2 MN Full Half Left Half Right 

1 1.5 1 44 22 22.2 

2 2.5 1 52.5 25.8 27.1 

3 4 1 69.8 34.3 36 

4 6 1 99.5 46.5 53.8 

5 8 1 124.9 57 68.5 

6 10 1 143.9 65.6 79.7 

7 12 1 158.2 70.8 88.1 

8 15 1 170.9 73.8 99.1 

9 20 1 177.8 80.1 98.3 

10 25 10 160.7 74.4 87.2 

11 25 1 174.1 72.9 97.1 

12 30 10 149.1 70.7 79.5 

13 40 10 137.5 60.8 77.5 

14 60 10 127 43.6 83.6 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.972115 48.49851 336.602 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES14 AB/2 MN Full Half Left Half Right 

1 1.5 1 47.9 29.9 18.3 

2 2.5 1 58.4 32.5 26.4 

3 4 1 80.6 43.3 38 

4 6 1 111.5 59.1 53.2 

5 8 1 136.9 72.2 65.8 

6 10 1 158.5 81.4 79.2 

7 12 1 172.6 87.6 87 

8 15 1 187.9 93.5 96 

9 20 1 198.2 96.5 104 

10 25 10 165.2 79.8 86.7 

11 25 1 195 87.1 108.4 

12 30 10 165.4 78.1 89.8 

13 40 10 149.2 68.7 83.6 

14 60 10 133.4 67.1 68.6 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d…  

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.971354 48.49855 336.442 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES15 AB/2 MN Full Half Left Half Right 

1 1.5 1 49.65 28.9 17.2 

2 2.5 1 59.66 31.5 25.4 

3 4 1 83.59 42.2 37 

4 6 1 113.72 59 52 

5 8 1 138.17 72.1 64.8 

6 10 1 156.98 81.4 79.2 

7 12 1 170.77 87.6 87 

8 15 1 183.69 93.4 96.8 

9 20 1 190.23 96.2 103 

10 25 10 185.59 79.8 86.7 

11 25 1 180.53 87.1 99.4 

12 30 10 171.03 77.1 92.3 

13 40 10 149.81 67.5 82.6 

14 60 10 125.32 67.1 67.6 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

NW-SE 8.969164 48.49883 338.006 

Wurlingen, near 
Tübingen, southwest 

Germany 11.06.2014 

WUR-VES16 AB/2 MN Full Half Left Half Right 

1 1.5 1 42.4 16.5 24.8 

2 2.5 1 43 19.8 20.2 

3 4 1 65.3 34.1 36.7 

4 6 1 89.1 43.9 45.6 

5 8 1 109.5 58.2 51.9 

6 10 1 124.8 56.9 68.2 

7 12 1 135.2 62.1 72.9 

8 15 1 138.1 57.2 79.5 

9 20 1 131.5 63 76.1 

10 25 10 134.5 52.3 85.5 

11 25 1 156.3 49.3 102.1 

12 30 10 131.2 44.5 88.2 

13 40 10 127.3 33.6 92.2 

14 60 10 120.3 4.4 116 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

NW-SE 8.968802 48.49912 338.403 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES17 AB/2 MN Full Half Left Half Right 

1 1.5 1 29.5 18.3 11.3 

2 2.5 1 26.4 13.4 13.3 

3 4 1 38.3 18.8 19.9 

4 6 1 55.9 25.8 30 

5 8 1 69.4 31.7 38.1 

6 10 1 74.2 31.7 42.9 

7 12 1 79 34 45.7 

8 15 1 87.7 41.8 46.5 

9 20 1 99.2 58.1 44.9 

10 25 10 105.6 66.4 39.9 

11 25 1 104.8 64.1 36.8 

12 30 10 108.2 78.9 28.7 

13 40 10 104.9 102 3.6 

14 60 10 101.8 174.4 72.1 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.968464 48.49942 338.815 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES18 AB/2 MN Full Half Left Half Right 

1 1.5 1 95 34.9 60.2 

2 2.5 1 41.1 17.9 23 

3 4 1 31.9 14.4 17.8 

4 6 1 41 19.6 21.6 

5 8 1 51.3 25.8 26.5 

6 10 1 60.4 29.7 31.7 

7 12 1 66.2 32.2 34.4 

8 15 1 77.7 36.8 41 

9 20 1 86.4 41.8 48 

10 25 10 80.8 41.9 38.4 

11 25 1 101.4 40.2 52.5 

12 30 10 85.1 44.4 43.7 

13 40 10 82.8 41.3 38.1 

14 60 10 101.5 87 14 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

E-W 8.969431 48.49944 336.978 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES19 AB/2 MN Full Half Left Half Right 

1 1.5 1 26 11.6 15.3 

2 2.5 1 35.1 16.8 18.5 

3 4 1 50 25.5 25 

4 6 1 68.2 35.2 33.6 

5 8 1 82.2 42.7 40.2 

6 10 1 93.9 47.9 46.5 

7 12 1 103.5 52.4 52 

8 15 1 113.8 56.1 55.3 

9 20 1 122.8 60.5 61.8 

10 25 10 93.6 46.6 48.5 

11 25 1 128.6 64.2 67.3 

12 30 10 96.5 49.5 48.5 

13 40 10 101.3 53.4 43.9 

14 60 10 110.1 71.6 41.9 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.970349 48.50009 337.065 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES20 AB/2 MN Full Half Left Half Right 

1 1.5 1 46.1 14.3 18.8 

2 2.5 1 35.8 18.7 17.2 

3 4 1 45.9 26.4 19.9 

4 6 1 57.1 31 26.3 

5 8 1 66.2 34.8 32.2 

6 10 1 73.3 36.4 36.9 

7 12 1 81.3 40.3 41.3 

8 15 1 106.4 43.7 46.3 

9 20 1 103.8 54.1 51.8 

10 25 10 99.7 48.8 49.3 

11 25 1 113.8 58.6 53 

12 30 10 103.4 50.5 52.2 

13 40 10 108.3 54 54.3 

14 60 10 113.8 58.4 58.6 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.970376 48.4997 336.963 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES21 AB/2 MN Full Half Left Half Right 

1 1.5 1 42.9 19.9 23 

2 2.5 1 49.5 23.7 26.6 

3 4 1 61.1 29.5 32.2 

4 6 1 80 39.3 42.6 

5 8 1 93.2 45.6 49.4 

6 10 1 104.9 49.2 56.5 

7 12 1 115 57.5 59.6 

8 15 1 125.7 66.2 63.9 

9 20 1 142.2 74.6 64.7 

10 25 10 112.9 60.9 54.5 

11 25 1 148.6 81.6 58.7 

12 30 10 117.5 64 52.3 

13 40 10 114.5 68.7 49.3 

14 60 10 125.4 81.1 43.9 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.970359 48.49925 337.022 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES22 AB/2 MN Full Half Left Half Right 

1 1.5 1 46.4 21.8 24.8 

2 2.5 1 53.2 24 29.7 

3 4 1 69 33.9 35.4 

4 6 1 91.6 45.3 47.3 

5 8 1 111.2 54 58.6 

6 10 1 123.5 59.4 66.1 

7 12 1 127.4 63.4 65 

8 15 1 134 68.4 68.9 

9 20 1 140 62.4 76.5 

10 25 10 99.6 50.2 50.4 

11 25 1 132.9 55 72.2 

12 30 10 102.8 51.1 51.3 

13 40 10 102.9 52.8 49.8 

14 60 10 96 43.6 49.5 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.972013 48.50031 336.533 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES23 AB/2 MN Full Half Left Half Right 

1 1.5 1 100.7 34.7 65.8 

2 2.5 1 54 28.7 25.6 

3 4 1 63.4 32.3 31.5 

4 6 1 72.7 35.6 37.4 

5 8 1 80.7 38.4 42.9 

6 10 1 87.9 41.1 46 

7 12 1 88.1 40.5 47.8 

8 15 1 92.6 39.1 51.5 

9 20 1 88.2 37.5 51.1 

10 25 10 67 28.4 38.6 

11 25 1 87 31.5 53.7 

12 30 10 65.5 27.2 38 

13 40 10 65.7 30.7 37.1 

14 60 10 74.4 45.7 34.2 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.972105 48.49967 336.386 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES24 AB/2 MN Full Half Left Half Right 

1 1.5 1 71.3 37.8 33.8 

2 2.5 1 74.4 38.7 36 

3 4 1 86.3 43.5 43.5 

4 6 1 107.4 52.5 55.7 

5 8 1 125.8 60.5 66.5 

6 10 1 136 63.3 73 

7 12 1 139 63.7 75.5 

8 15 1 144.2 64.2 78.1 

9 20 1 139.6 55.4 84.8 

10 25 10 108.7 44.6 63.3 

11 25 1 136.3 54.7 83.7 

12 30 10 102.4 39.7 63.7 

13 40 10 100 32.9 67.9 

14 60 10 106.7 25.7 79.3 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.972131 48.49922 336.327 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES25 AB/2 MN Full Half Left Half Right 

1 1.5 1 50 32.3 17.7 

2 2.5 1 56.3 31.6 25.3 

3 4 1 60.8 33.7 27.7 

4 6 1 74.7 41.3 34.5 

5 8 1 92.2 48 44.3 

6 10 1 107.3 55.8 52 

7 12 1 114.2 58.2 55.9 

8 15 1 124.9 64.1 61.6 

9 20 1 131.3 68.3 65.9 

10 25 10 125.5 61.9 63.5 

11 25 1 134.7 59.1 69.9 

12 30 10 121.1 61.5 61.6 

13 40 10 115.8 60.4 57.3 

14 60 10 110.3 67.7 48.4 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   

 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.972146 48.49878 336.345 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES26 AB/2 MN Full Half Left Half Right 

1 1.5 1 65.2 33 32.4 

2 2.5 1 59.6 27 32.9 

3 4 1 71.5 35.7 36.2 

4 6 1 99.1 49.9 49.3 

5 8 1 122.4 62 60 

6 10 1 141.3 73.5 67.3 

7 12 1 151.8 76.8 75.3 

8 15 1 165.5 81 84.2 

9 20 1 173 83.5 88.6 

10 25 10 132.5 70.3 63 

11 25 1 180.1 72.8 93.5 

12 30 10 131.2 72.5 59.9 

13 40 10 119.2 52.5 66.3 

14 60 10 112.7 42.5 68.9 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A2 cont’d… 

VES Sounding 
Direction Longitude Latitude Elevation Location: Date: 

N-S 8.972163 48.49831 336.565 

Wurlingen, near 
Tübingen, southwest 

Germany 10.06.2014 

WUR-VES27 AB/2 MN Full Half Left Half Right 

1 1.5 1 71.7 37.6 34.1 

2 2.5 1 65.6 33.8 32.1 

3 4 1 86.1 43.6 42.5 

4 6 1 115 57 58.6 

5 8 1 141.9 69 73.3 

6 10 1 161.5 81 80.9 

7 12 1 179 86.8 94.8 

8 15 1 188 89.3 97.6 

9 20 1 179.4 79.1 98.3 

10 25 10 153.3 74.8 79.8 

11 25 1 190 80.1 104.2 

12 30 10 148.6 73 74.3 

13 40 10 134.4 69.4 72.7 

14 60 10 142.2 71.1 61.4 

Operators: Ahamefula Utom; Hao Li; Constantin Vogt   
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Table A3. Compressional wave traveltimes [s] from reverse vertical seismic profiling recordings (with surface receivers and downhole sources) 

Shot Depth ToG1 ToG2 ToG3 ToG4 ToG5 ToG6 ToG7 ToG8 ToG9 ToG10 ToG11 ToG12 

6.05 0.013813 0.013697 0.013115 0.012447 0.012388 0.01172 0.011167 0.010353 0.009509 0.009451 0.009335 0.009248 

6.25 0.013842 0.013733 0.013174 0.012476 0.012417 0.011778 0.011225 0.010382 0.009538 0.009597 0.009364 0.009319 

6.45 0.013871 0.013768 0.013203 0.012505 0.012447 0.011807 0.011254 0.010411 0.009568 0.009626 0.009393 0.009364 

6.65 0.013901 0.013804 0.013232 0.012534 0.012476 0.011836 0.011283 0.01044 0.009597 0.009655 0.009422 0.009408 

6.85 0.01393 0.013839 0.01329 0.012563 0.012505 0.011865 0.011341 0.010498 0.009626 0.009684 0.009451 0.009422 

7.05 0.013959 0.013875 0.013348 0.012621 0.012534 0.011894 0.011371 0.010556 0.009655 0.009713 0.009538 0.009495 

7.25 0.013988 0.01391 0.013406 0.01265 0.012563 0.011923 0.0114 0.010585 0.009684 0.009771 0.009568 0.009538 

7.45 0.014017 0.013946 0.013464 0.012679 0.012592 0.011981 0.011429 0.010614 0.009713 0.009858 0.009655 0.009611 

7.65 0.014075 0.013981 0.013523 0.012708 0.01265 0.012039 0.011545 0.010644 0.009771 0.009917 0.009713 0.009655 

7.85 0.014104 0.014017 0.013552 0.012737 0.012708 0.012068 0.011574 0.010731 0.0098 0.009975 0.009829 0.009713 

8.05 0.014133 0.014052 0.013581 0.012766 0.012766 0.012098 0.011632 0.010789 0.009946 0.01012 0.009917 0.009902 

8.25 0.014191 0.014088 0.013639 0.012795 0.012795 0.012185 0.01169 0.010934 0.010062 0.010295 0.010062 0.01003 

8.45 0.01425 0.014124 0.013813 0.012825 0.012883 0.012301 0.011894 0.011138 0.010265 0.010411 0.010236 0.010101 

8.65 0.014337 0.014159 0.013842 0.012854 0.012941 0.012388 0.011923 0.011196 0.010382 0.010527 0.010324 0.010172 

8.85 0.014395 0.014195 0.01393 0.012999 0.013144 0.012476 0.012156 0.011312 0.010527 0.010673 0.010527 0.010243 

9.05 0.01454 0.01423 0.013959 0.013028 0.013232 0.012534 0.012214 0.011458 0.010673 0.010818 0.010702 0.010314 

9.25 0.014569 0.014266 0.014017 0.013174 0.013261 0.012592 0.012243 0.011487 0.010702 0.010905 0.010731 0.010385 

9.4 0.014598 0.014301 0.014075 0.013203 0.01329 0.01265 0.012272 0.011516 0.01076 0.010876 0.01076 0.010456 

9.55 0.014628 0.014337 0.014104 0.013232 0.013319 0.012679 0.012301 0.011545 0.010789 0.010963 0.01076 0.010527 
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Table A3 cont’d… 

Shot Depth ToG13 ToG14 ToG15 ToG16 ToG17 ToG18 ToG19 ToG20 ToG21 ToG22 ToG23 ToG24 

6.05 0.008739 0.008753 0.009509 0.009917 0.010469 0.010673 0.010847 0.011603 0.011894 0.012068 0.012476 0.013493 

6.25 0.008802 0.008817 0.009538 0.009946 0.010527 0.010789 0.010905 0.01169 0.011952 0.012098 0.012534 0.013523 

6.45 0.008841 0.008881 0.009568 0.009975 0.010556 0.010847 0.010963 0.01172 0.011981 0.012127 0.012563 0.013552 

6.65 0.008884 0.008945 0.009626 0.010004 0.010585 0.010876 0.010992 0.011778 0.012039 0.012156 0.012577 0.013581 

6.85 0.008928 0.009009 0.009684 0.010033 0.010614 0.010905 0.011022 0.011807 0.012068 0.012185 0.012621 0.01361 

7.05 0.009 0.009073 0.009713 0.010091 0.010644 0.010934 0.011051 0.011836 0.012127 0.012214 0.01265 0.013639 

7.25 0.009073 0.009137 0.009771 0.010149 0.010673 0.010963 0.01108 0.011865 0.012156 0.012243 0.012679 0.013668 

7.45 0.009131 0.009201 0.009829 0.010178 0.010702 0.010992 0.011109 0.011923 0.012214 0.012272 0.012708 0.013697 

7.65 0.009204 0.009265 0.009858 0.010236 0.01076 0.011022 0.011138 0.011981 0.012272 0.012301 0.012737 0.013784 

7.85 0.009233 0.009329 0.009917 0.010324 0.010789 0.011051 0.011196 0.01201 0.012301 0.01233 0.012766 0.013813 

8.05 0.009291 0.009393 0.010004 0.010411 0.010876 0.011196 0.011312 0.012068 0.01233 0.012388 0.012795 0.013871 

8.25 0.009451 0.009538 0.010178 0.010527 0.01108 0.011341 0.011371 0.012156 0.012359 0.012447 0.012854 0.01393 

8.45 0.009524 0.009684 0.010411 0.010702 0.011225 0.011487 0.011545 0.01233 0.012505 0.012534 0.013028 0.014046 

8.65 0.009626 0.009771 0.010469 0.010818 0.011371 0.011574 0.011661 0.012388 0.012534 0.012592 0.013174 0.014133 

8.85 0.009742 0.009917 0.010585 0.010905 0.011429 0.01169 0.011778 0.012447 0.012621 0.01265 0.013203 0.01422 

9.05 0.009815 0.010033 0.01076 0.011051 0.011574 0.011778 0.011865 0.012592 0.012679 0.012825 0.013319 0.014337 

9.25 0.009887 0.010091 0.010847 0.01108 0.011632 0.011807 0.011894 0.012621 0.012766 0.012854 0.013377 0.014366 

9.4 0.00996 0.010149 0.010905 0.011138 0.011661 0.011836 0.011923 0.01265 0.012795 0.012883 0.013406 0.014395 

9.55 0.01012 0.010178 0.010934 0.011196 0.01169 0.011865 0.011952 0.012679 0.012825 0.012912 0.013464 0.014453 

 

 



204 

Appendices

  

 

 

 

Table A4. Direct push soil electrical conductivity logging and lithologic sampling location coordinates and surface elevation. 

Location ID Latitude (oN) Longitude (oE) Elevation (m, amsl) 

DP soil electrical conductivity logging location coordinate and surface elevation 

EC13 48.50037302 8.973722603 336.192 

EC14 48.49990188 8.973706079 336.152 

EC15 48.49969892 8.973700097 336.074 

EC16 48.49936183 8.973694135 336.137 

EC17 48.49899622 8.973691444 336.149 

EC7 48.50063366 8.971994154 336.69 

EC8 48.50050775 8.972001563 336.49 

EC9 48.49985342 8.972051112 336.562 

EC10 48.50028324 8.97201482 336.389 

EC11 48.49928883 8.97208616 336.403 

EC3 48.501896 8.970333 337.617 

EC4 48.50208487 8.971432416 336.467 

EC5 48.50196805 8.970751273 337.283 

EC6 48.50174 8.97372108 335.77 

EC18 48.49874 8.970403 336.442 

EC19 48.49970106 8.970375538 336.963 

EC20 48.49854608 8.971353929 336.442 

DP soil lithologic sampling location coordinate and surface elevation 

SS13 48.5004404 8.973725178 336.178 

SS15A 48.49993005 8.973704522 336.202 

SS15A 48.49955041 8.973697197 336.121 

SS17 48.49905233 8.973690772 336.17 

SS13 48.5004404 8.973725178 336.178 
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Table A5. Direct push multilevel groundwater sampling location coordinates and surface elevation. 

Location ID Latitude (oN) Longitude (oE) Elevation (m, amsl) 

Gw8 48.50040898 8.972007199 336.446 

Gw11 48.49928883 8.97208616 336.403 

Gw13 48.50037302 8.973722603 336.192 

Gw15 48.49969892 8.973700097 336.074 

Gw17 48.49883538 8.973687492 336.071 
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Table A6. Representative results of hydrogeochemical analysis on groundwater samples collected from the studied aquifer.  

Sample ID 
Depth ranges 
below *GS 

Temp 
[oC] 

pH 
[-] 

DO 
[mg/L] 

EC 
[µS/m] 

Eh 
[mv] 

Ca2+ 
[mg/L] 

Mg2+ 
[mg/L] 

Na+ 
[mg/L] 

K+ 
[mg/L] 

SO4
2-

[mg/L] 

 
 
 

HCO3
-

[mg/L] 
NO3

-

[mg/L] 

 
 
 

**NO2
-

[mg/L] 
Cl-

[mg/L] 
Mn2+ 

[mg/L] 
NH4

+ 

[mg/L] 
Fe2+ 

[mg/L] 

 
 
 

DOC 
[mg/L] 

Gw17-1 6.75-7.25 m 13.7 6.72 4.07 2340 114.9 566 64.9 11.6 11.6 1291 431.09 16.6 -0.02 19.2 0.057 0.06 0.05 5.09 

Gw17-2 6.5 -7.00 m 14.7 6.94 3.58 2390 117.1 535 59.4 11.2 11.2 1316 417.97 16.4 -0.02 18.8 0.038 <0.03 0.04 3.00 

Gw17-3 6.25-6.75 m 15.5 6.81 3.62 2370 105.1 542 66.3 11.4 11.7 1283 417.97 16.2 0.02 18.8 0.07 <0.03 <0.04 5.09 

Gw17-4 6.00-6.50 m 16.8 6.95 3.38 2370 98.6 532 65.7 11.1 11.1 1260 410.04 15.8 0.03 18.2 0.068 <0.03 <0.04 3.25 

Gw17-5 5.75-6.25 m 16.8 6.91 3.01 2390 97.4 547 65.2 10.5 10.8 1273 411.26 16.7 -0.02 18.4 0.044 0.03 <0.04 5.58 

Gw15-1 9.50-10.00 m 17.6 6.89 1.83 2670 9.8 516 61.9 9.92 4.85 1509 353.59 42.8 0.43 27.1 0.15 <0.03 0.08 <1,0 

Gw15-2 9.25-9.75 m 15.8 6.94 1.33 2470 2.1 596 82.1 10.9 5.88 1336 374.95 41.3 0.53 33.4 0.183 0.16 0.08 <1,0 

Gw15-3 8.75-9.25 m 15.2 7 0.14 2410 6.4 558 83.1 10.4 8.77 1317 389.29 37.3 0.48 26.5 0.198 0.06 <0.04 7.95 

Gw15-4 8.25-8.75 m 17.4 7 0.3 2400 5.2 547 83.4 10 8.3 1277 392.95 36.9 0.47 29.8 0.17 <0.03 0.25 4.74 

Gw15-5 7.75-8.25 m 16.9 7 0.43 2390 49.5 508 78.6 9.44 10.5 1235 398.75 29.1 0.38 23.9 0.092 0.03 0.14 3.27 

Gw15-6 7.25-7.75 m 19.4 7 1.28 2450 58.9 607 71 11.1 8.17 1379 408.82 16.9 
0.10 

19.6 0.161 <0.03 0.11 8.06 

Gw15-7 6.75-7.25 m 17.1 7.1 2.58 2470 37.9 616 63 10.7 4.52 1317 410.65 13 0.02 16.4 0.03 <0.03 0.19 8.30 

Gw15-8 6.25-6.75 m 16.9 6.94 2.6 2480 33.2 608 62.8 10 4.17 1373 403.63 13.3 -0.02 16.7 0.017 <0.03 0.21 5.03 

Gw15-9 5.75-6.25 m 16.6 6.98 2.5 2500 22.3 610 62.5 11 4.57 1391 408.21 13.5 -0.02 17.1 0.023 0.03 0.52 3.19 

Gw13-1 6.80-7.30 m 16.3 6.99 2.05 2500 51.7 615 63.1 11.8 4.48 1373 410.04 12.5 0.03 19.4 0.044 <0.03 0.1 3.12 

Gw13-2 6.30-6.80 m 17.2 6.88 1.9 2500 101.2 609 61.4 11.2 3.33 1399 417.36 12.4 -0.02 18.6 0.014 <0.03 0.06 2.84 

Gw13-3 5.80-6.30 m 17.7 6.8 1.82 2500 67.7 626 62.8 11.3 3.5 1366 412.48 12 -0.02 18.2 0.036 <0.03 0.24 <1,0 

Gw8-1 12.10-12.60 m 16.1 7 1.1 2490 -16.3 581 84.4 11.1 9.25 1407 404.54 19.4 0.11 18.8 0.09 0.05 0.51 4.30 

Gw8-2 9.90-10.40 m 17.2 7.2 1.42 2330 21.5 575 69.1 9.33 4.79 1308 403.93 15.5 0.05 16.4 0.036 0.03 1.86 12.4 

Gw8-3 9.10-9.60 m 20.4 7 0.16 2360 -109.6 482 110 12.2 11.5 1285 380.75 30.5 0.29 21.1 0.123 0.05 <0.04 8.38 

Gw8-4 8.60-9.10 m 18.8 7.02 1.18 2440 33.2 575 82.8 11.4 9.09 1305 395.09 16.7 0.09 17.6 0.066 <0.03 0.05 9.48 

Gw8-5 8.10-8.60 m 18.1 7.2 1.36 2450 29.6 545 78.5 11.3 9.09 1376 404.54 15 0.04 17.1 0.103 0.03 0.05 11.4 

Gw8-6 7.60-8.10 m 18.5 7.1 1.37 2460 34.9 571 75.1 10.1 7.67 1360 402.71 14.3 0.04 16.7 0.074 0.03 <0.04 8.42 

Gw8-7 7.10-7.60 m 15.6 7.1 1.62 2480 51.8 605 69.7 10.1 5.81 1370 403.32 13.5 0.02 16 0.049 <0.03 <0.04 11.2 

Gw8-8 6.10-6.60 m 16.5 7 1.69 2490 46.8 611 63.6 9.73 4.09 1413 410.04 12.7 -0.02 15.8 0.011 <0.03 0.24 3.15 

Gw11-1 6.00-6.50 m 18.9 7.05 1.33 2350 38.2 544 66.2 12.3 13.8 1239 415.83 19 -0.02 22.3 0.015 <0.03 <0.04 2.83 

Gw11-2 5.50-6.00 m 18.5 6.99 1.27 2420 29.7 553 67 10.8 11.6 1250 419.80 19.2 -0.02 22.4 0.029 <0.03 <0.04 8.19 

*GS = ground surface; ** The negative signs in the NO2
- values indicate those values that are below the detection limit of 0.02 mg/L as plotted in Figure 4.24 
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Table A7. Representative results of multi (‘dual’)-isotope data of collected groundwater samples. 

Sample ID δ18O-H2O δ2H-H2O d-excess δ34S-SO4
2- δ18O-SO4

2- δ15N-NO3
- δ18O-NO3

- 

Gw17-1 -8.7 -62.5 6.7 16.1 14.0 7.8 3.1 
Gw17-2 -8.6 -62.2 6.5 15.9 13.2 7.4 3.9 
Gw17-3 -8.7 -62.1 7.1 15.8 13.1 7.4 3.9 
Gw17-4 -8.6 -62.3 6.6 16.3 13.4 7.2 4.0 
Gw17-5 -8.5 -62.3 6.0 15.5 13.7 8.1 4.6 
Gw15-1 -8.6 -61.9 6.5 16.2 13.8 14.2 12.6 
Gw15-2 -8.5 -61.5 6.1 16.0 13.1 15.4 13.0 
Gw15-3 -8.4 -61.7 5.3 16.2 13.1 15.1 12.5 
Gw15-4 -8.5 -61.8 6.2 15.3 13.2 14.6 12.2 
Gw15-5 -8.4 -61.7 5.6 16.1 13.4 14.2 12.4 
Gw15-6 -8.5 -61.3 6.8 16.1 13.4 10.6 5.8 
Gw15-7 -8.5 -62.4 5.6 16.0 13.4 6.7 3.4 
Gw15-8 -8.5 -62.3 5.7 16.3 12.9 6.9 3.5 
Gw15-9 -8.5 -62.3 6.1 16.1 12.8 6.8 3.5 
Gw13-1 -8.6 -62.1 7.0 16.1 13.2 7.4 6.0 
Gw13-2 -8.6 -62.4 6.0 16.2 13.4 6.4 4.5 
Gw13-3 -8.6 -62.5 6.4 16.3 13.5 6.7 4.8 
Gw8-1 -8.5 -61.8 6.2 16.3 13.7 14.5 11.3 
Gw8-2 -8.5 -61.9 6.2 16.2 13.4 10.7 8.4 
Gw8-3 -8.3 -62.2 4.6 15.8 13.2 17.9 15.0 
Gw8-4 -8.4 -61.3 5.8 15.8 13.5 13.2 11.8 
Gw8-5 -8.4 -61.4 5.4 15.5 12.9 11.0 8.1 
Gw8-6 -8.3 -61.5 4.9 15.6 12.8 8.0 4.7 
Gw8-7 -8.4 -62.1 5.3 15.4 13.5 7.3 3.5 
Gw8-8 -8.4 -62.2 5.2 15.2 13.0 6.9 2.4 
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Figure A1. Direct push soil electrical conductivity (EC) logs and their location coordinate on the map across 

the study site. Locations of the vertical electrical sounding survey centres are also shown on the map and 

marked with the VES notation. 

 

 


