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FCS Fetal calf serum 

FFU Fluorescence-forming unit 

g Gravitational acceleration (9,81m/s2) 
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M Mol 
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nm Nanometer 

nt Nucleotide 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 
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RSV Respiratory syncytial virus 
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TM Transmembrane domain 

TPB Tryptose phosphate broth 



Abbreviations  VII 

 

URTI Upper respiratory tract infection 

VE  german: “Vollentsalztes”, english “fully demineralized” 

VLBW Very low birth weight 

 



VIII  Contents 

 

Contents 

1. Introduction ................................................................................................................ 1 

1.1 Background ............................................................................................................... 1 

1.2 Respiratory syncytial virus (RSV) .......................................................................... 2 

1.2.1 The virion ................................................................................................................ 2 

1.2.2 Viral genome ........................................................................................................... 3 

1.2.3 Viral surface glycoproteins ...................................................................................... 4 

1.2.3.1 The attachment (G) protein ........................................................................... 4 

1.2.3.2 The small hydrophobic (SH) protein ............................................................. 5 

1.2.3.3 The fusion (F) glycoprotein ........................................................................... 6 

1.2.4 Neutralizing epitopes on the RSV fusion glycoprotein ........................................... 9 

1.2.5 Viral replication cycle ........................................................................................... 11 

1.3 Pathogenesis and disease burden .......................................................................... 13 

1.3.1. Viral tropism ......................................................................................................... 13 

1.3.2 The infant and the elderly as main target .............................................................. 14 

1.3.3 RSV pathology and its long-term sequel ............................................................... 15 

1.4 Therapy and antiviral drugs .................................................................................. 18 

1.4.1 Therapy options ..................................................................................................... 18 

1.4.2 Vaccines and small molecule antiviral drugs under development ........................ 18 

1.4.3 Passive immunization with palivizumab ............................................................... 20 

1.4.4 Palivizumab cost-benefit relation .......................................................................... 22 

1.4.5 Detection of palivizumab resistance-associated mutation ..................................... 23 

1.5 Marker transfer analysis........................................................................................ 24 



Contents  IX 

 

2.  Aim of the study ....................................................................................................... 26 

3.  Material and Methods ............................................................................................. 28 

3.1 Material ................................................................................................................... 28 

3.1.1 Patients .................................................................................................................. 28 

3.1.2 Cells ....................................................................................................................... 30 

3.1.3 BAC and plasmid .................................................................................................. 30 

3.1.4 Viruses ................................................................................................................... 31 

3.1.5 Bacteria .................................................................................................................. 31 

3.1.7 Reagents for cell culture ........................................................................................ 32 

3.1.8 Reagents for bacterial culture ................................................................................ 33 

3.1.9 Reagents for PCR and sequencing ........................................................................ 34 

3.1.10 Primers for mutagenesis and sequencing ............................................................ 35 

3.1.11 Reagents for gel electrophoresis .......................................................................... 39 

3.1.12 Reagents for transfection ..................................................................................... 40 

3.1.13 Reagents for immunofluorescence and flow cytometry ...................................... 40 

3.1.14 Consumables ........................................................................................................ 41 

3.1.15 Kits ...................................................................................................................... 42 

3.1.16 Small appliances .................................................................................................. 43 

3.1.17 Large equipment .................................................................................................. 43 

3.2 Methods ................................................................................................................... 44 

3.2.1 Cell culture ............................................................................................................ 44 

3.2.2 Generation of recombinant RSV mutants using en passant mutagenesis .............. 44 

3.2.2.1 Generation of PCR-products with defined point-mutations ........................ 45 

3.2.2.2 Gel electrophoresis ...................................................................................... 47 

3.2.2.3 Purification of PCR-products and DpnI digestion ...................................... 48 



X  Contents 

 

3.2.2.4 Generation of electrocompetent E.coli GS1783 for transformation and 

BAC-mutagenesis .................................................................................................... 49 

3.2.2.5 Removal of the positive selection marker ................................................... 52 

3.2.2.6 Extraction of BAC-DNA by mini-preparation ............................................ 54 

3.2.2.7 Control of successful mutagenesis by sequencing ...................................... 55 

3.2.2.8 Midi-preparation for transfection ................................................................ 55 

3.2.2.9 Transfection of the BAC-DNA into BSR T7/5 cells and virus growth ....... 56 

3.2.3 Phenotypic characterization of recombinant RSV mutants ................................... 58 

3.2.3.1 Determination of virus titer as fluorescence-forming units/ml (FFU/ml) ... 58 

3.2.3.2 Determination of virus titer as TCID50 by end-point dilution assay ........... 59 

3.2.3.3 Characterization of viral growth by multi-step growth curves .................... 60 

3.2.3.5 Characterization of viral growth by flow cytometry ................................... 61 

3.2.3.4 Phenotypic characterization of recombinant RSV by PRNA ...................... 65 

4 Results ......................................................................................................................... 69 

4.1 Generation of recombinant RSV with defined mutations .................................. 69 

4.1.1 Generation of PCR-products with defined point-mutations .................................. 69 

4.1.2 BAC-mutagenesis and sequencing of the respective regions on the fusion (F) gene

 ........................................................................................................................................ 71 

4.1.2.1 Generation of E.coli GS1783/pSynkRSV-l19F ........................................... 71 

4.1.2.2 BAC-mutagenesis of pSynkRSV-l19F with defined point mutation .......... 71 

4.1.3 Transfection of RSV BAC DNA into BSR T7/5 and recovery of recombinant RSV

 ........................................................................................................................................ 75 

4.2 Phenotypic characterization .................................................................................. 76 

4.2.1 Characterization of viral growth by multi-step growth curves .............................. 76 

4.2.3 Characterization of viral growth by flow cytometry ............................................. 81 



Contents  XI 

 

4.2.2 Characterization of palivizumab susceptibility by plaque-reduction neutralization 

assays (PRNA) ................................................................................................................ 86 

4.2.2.1 IC50 values (µg/ml) determined by PRNA .................................................. 86 

4.2.2.2 Test of a new overlay with colloidal microcrystalline cellulose (MCC)..... 91 

5 Discussion ................................................................................................................... 93 

5.1 Generation of mutated RSV by en passant mutagenesis .................................... 93 

5.2 Phenotypic characterization .................................................................................. 96 

5.2.1 Characterization of viral growth by multi-step growth curves .............................. 96 

5.2.1.1 Multi-step growth curves of RSV strain A2 and recombinant strain RSV 

A2-K-line19F .......................................................................................................... 97 

5.2.1.2 Multi-step growth curves of recombinant strains harboring mutations....... 98 

5.2.2 Phenotypic characterization of viral growth by flow cytometry ........................... 99 

5.2.3 Comparison between growth curves determining with end-point dilution assays 

and flow cytometry ....................................................................................................... 101 

5.2.4 Palivizumab susceptibility by plaque-reduction neutralization assays (PRNA) . 103 

6. Summary ................................................................................................................. 107 

7. Zusammenfassung .................................................................................................. 109 

8. References................................................................................................................ 111 

 

 

 





Introduction  1 

 

1. Introduction 

 

1.1 Background 

In 1956, respiratory syncytial virus (RSV) was recovered from “normal” chimpanzees 

during an outbreak of coryza (acute upper respiratory illness characterized by coughing, 

sneezing and mucopurulent nasal discharge) at the Walter Reed Army Institute of 

Research in Washington, D.C., and it was termed as chimpanzee coryza agent (Morris 

et al. 1956, Ellis 2013). In 1957, this agent was linked with a virus that was isolated 

from infants with respiratory illness in Johns Hopkins University Hospital in Baltimore, 

Maryland (Chanock and Finberg 1957, Chanock et al. 1957). Chanock et al. described 

the property of this virus to form syncytia in infected cell culture and thus the virus was 

renamed as respiratory syncytial virus (Chanock et al. 1962). A short time later, a 

formalin-inactivated (FI) RS vaccine was tested. Unfortunately, it not only failed to 

protect vaccinated infants and children against natural RSV infection, but also caused 

vaccine enhanced disease (Kapikian et al. 1969, Kim et al. 1969). In the clinical trial 

with infants, 80% (16/20) of the vaccinees required hospitalization and two of them 

died after getting naturally infected with RSV (Kim et al. 1969). After this notable 

vaccine failure in the 1960s, there is no licensed vaccine for RSV until now. In 1998, a 

RSV-neutralizing antibody, palivizumab (Synagis®) that targets the fusion protein F on 

the surface of the RSV virions, was approved for passive immunization in high-risk 

children (Romero 2003). Monthly administrations of palivizumab (15mg/kg) were 

shown to be able to reduce RSV associated hospitalizations by 55% (The IMpact-RSV 

Study Group 1998). However, this RSV immunoprophylaxis therapy is too expensive 

and  inconvenient for broader applications especially for low-income countries (Collins 

and Murphy 2007). As a result, palivizumab recommendations respecting cost-benefit 

are still under debate (Geskey et al. 2007, Olchanski et al. 2018). In addition, a range of 

resistance-associated mutations have already been identified and reported in several 

studies (Boivin et al. 2008, Bates et al. 2014). To date, RSV remains globally a serious 

pathogen that causes high mortality in children under 5 years with up to 118 000 

deaths/year (2015) (Shi et al. 2017). 
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1.2 Respiratory syncytial virus (RSV) 

The human respiratory syncytial virus (HRSV) was formerly a member of the subfamily 

Pneumovirinae within the family Paramyxoviridae. In 2016, this subfamily was then 

reclassified as the family Pneumoviridea with two genera, Metapneumovirus and 

Orthopneumovirus to which HRSV now belongs (Rima et al. 2017).  Other viruses in 

this genus are: bovine orthopneumovirus (BRSV) and murine pneumovirus (MPV).  

1.2.1 The virion 

Observing under electron microscopy, RS virions are heterogeneous in size and shape 

(Melero 2007). When produced in Vero cells, RSV particles consist of predominantly 

filamentous forms with lengths of up to 10µm, and round or kidney-shaped particles of 

150-250 nm in diameter (Bachi and Howe 1973). In cell culture, 95% of the progeny 

virus couldn’t bud fully and remains associated with the cell surface. Hence, while 

preparation of virus stocks, infected cells are typically subjected to freeze-thawing to 

release attached viruses (Collins et al. 2013). 

RSV particles are surrounded by a lipid bilayer, on which 3 structural proteins are 

presented: the attachment (G), the fusion (F) and the small hydrophobic (SH) 

glycoproteins (Figure 1).  The matrix (M) protein interacts on one hand with the 

envelope glycoproteins and on the other hand with the nucleocapsid (Ghildyal et al. 

2006). The virus nucleocapsid is found inside the virion and consists of the negative-

sense viral RNA, the nucleoprotein (N), the RNA-dependent RNA polymerase (L), the 

phosphoprotein (P) and  the transcription elongation factor  M2-1 (Melero 2007, Collins 

et al. 2013). There are 2 regulatory M2 proteins: M2-1, an antitermination protein and 

M2-2, a transcription/replication regulatory protein, both are encoded on the M2 gene 

(Griffiths et al. 2017). RSV encodes further 2 non-structural proteins, NS-1 and NS-2, 

which are involved in evasion of the innate immune response (Griffiths et al. 2017). 
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Figure 1: Human Respiratory Syncytial Virus genome and proteins. (a) Map of negative-sense RNA 

genome of strain RSV A2 with respective lengths of genes given as nucleotides (nt, upper row) and 

lengths of the primary, unmodified proteins given as amino acids (aa, lower row). (b) Illustration of RS 

virion and its proteins (modified from Taleb et al. 2018). 

 

 1.2.2 Viral genome 

RSV is an enveloped virus with non-segmented negative sense RNA that is made-up of  

approx. 15,200 nucleotides and encodes 11 proteins: 2 non-structural and 9 structural 

proteins (Taleb et al. 2018) (Figure 1). The genome has 10 genes arranged in the order 

3’-NS1-NS2-N-P-M-SH-G-F-M2-L. Each gene encodes a corresponding mRNA and 

each mRNA a single major protein except for M2, which encodes for both the M2-1 and 

M2-2 (Collins et al. 2013).  

The 3’ end of the genome represents the extragenic leader region that consists of 44 nt 

and the 5’ end the extragenic trailer region with 155-nt. The first 24-26 nt of the leader 

and trailer region are by 88% complementary (antiparallel), representing conserved 

promoter elements (Collins et al. 2013). Each gene begins with a highly conserved 9-nt 

gene-start (GS) and is terminated by a moderately conserved 12-14-nt gene-end (GE). 

From NS1 to M2, genes are separated by intergenic regions which differ in length. The  

GS sequence of L is located upstream the GE sequence of M2, thus between M2 and L 

there is no intergenic region (Collins et al. 2013). It is reported that recombinant RSV 

could tolerate intergenic region of up to 160 nt in length with minimal influence on gene 

expression and viral replication (Bukreyev et al. 2000). 
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RSV is classified in two subtypes, RSV A and B, which can co-circulate during annual 

RSV season and cause different disease severity (Vandini et al. 2017). Classification of 

these subtypes was previously based on antigenic reactivity to monoclonal antibodies 

(Anderson et al. 1985). Lately, the greatest inter-subgroup diversity was shown to be 

associated with variations in the attachment (G) glycoprotein with only 53% homology 

between subtypes A and B (Johnson et al. 1987). Thus nowadays, based on phylogenic 

analysis of the hypervariable region of the G protein, viral strains within each subgroup 

could be divided furthermore into clades, which were named from GA1 to GA5 for 

subtype A, and GB1 to GB4 for subtype B (Peret et al. 1998). Novel RSV genotype 

emerging expands the list of existing clades for both subgroups A and B (Eshaghi et al. 

2012, Schobel et al. 2016). Most recently, it is suspected that RSV serotype and 

genotype variability might have an influence on the clinical course of infection 

regarding pathogenesis, disease severity and host immune response (Melero and Moore 

2013, Vandini et al. 2017, Pangesti et al. 2018). 

1.2.3 Viral surface glycoproteins 

Since this work addresses newly identified mutations on the F gene, one of the three 

genes encoding the RSV viral surface glycoproteins. Thus, these proteins and their 

potential functions relating to RSV infection will be briefly described in this section.  

Among the structural proteins, 3 are present on the surface of the virus: the attachment 

(G) protein, the fusion (F) protein and the small hydrophobic (SH) protein, whereby F 

and G are the only two proteins that can elicit neutralizing antibodies (Sastre et al. 

2005). In contrast, SH is poorly immunogenic and did not elicit a significant 

neutralizing antibody response for protection upon natural infection (Connors et al. 

1991).   Surprisingly, unlike F, RSV SH and G proteins were shown to be not essential 

for viral replication in vitro (Karron et al. 1997). As shown, recombinant virus that has 

F as it only surface glycoprotein can still infect cells in culture (Techaarpornkul et al. 

2001, Techaarpornkul et al. 2002). 

1.2.3.1 The attachment (G) protein 

G is a large glycoprotein that is made of 289-299 amino acid (aa) depending on strains 

and is vastly glycosylated (Collins and Mottet 1992, McLellan et al. 2013). G is a type 
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II transmembrane protein that has a membrane anchor near to its N-terminus and an 

extracellular C-terminus (Collins et al. 2013). The extracellular extending ectodomain 

of G consist two large highly variable mucin-like domains flanking a central region that 

comprises of a highly conserved domain, a cysteine nose domain and a highly basic 

heparin-binding domain (McLellan et al. 2013). Several studies demonstrate that 

interactions between the viral surface proteins G and F with cell surface heparan sulfate 

proteoglycans (HSPGs) elicit attachment and binding of RSV to the cell membrane, and 

that peptides that bind HSPG could inhibit RSV infection (Hallak et al. 2000, Hallak et 

al. 2007, Donalisio et al. 2012). Furthermore, binding of G to the fractalkine (Fkn) 

receptor (CX3CR1) could facilitate RSV infection of cells and alter Fkn-mediated 

immune response associated with cell trafficking and cytokine and chemokine 

expression (Tripp et al. 2001). In addition, G is also produced as a secreted form that 

has been shown to interfere with antibody-mediated neutralization by acting as an 

antigen decoy for neutralizing antibody and thus helps RSV evade neutralization 

(Bukreyev et al. 2008). Several studies report about the immune modulation ability of G 

including mimicking the receptor for tumor necrosis factor alpha (TNF-α), interaction 

with DC-SIGN on human dendritic cells (DC) and inhibiting the production of 

inflammatory cytokines (Langedijk et al. 1998, Polack et al. 2005, Johnson et al. 2012). 

1.2.3.2 The small hydrophobic (SH) protein 

The small hydrophobic (SH) protein is 64-65 aa (depending on strains) transmembrane 

protein with an intracellular N-terminus and an extracellular C-terminus (Collins and 

Mottet 1993, McLellan et al. 2013). It exists several isoforms of SH but theirs 

significance is unclear (McLellan et al. 2013). Bukreyev reported that recombinant RSV 

that lacks SH gene could grow efficiently in vitro but attenuated in mice (Bukreyev et 

al. 1997). Several studies pointed to the function of SH as pentameric ion channels that 

probably act as viroporin and enhance membrane permeability in the host (Carter et al. 

2010, Gan et al. 2012). Furthermore, SH was also reported to inhibit TNF-α signaling 

and prevent infected cells from undergoing apoptosis (Fuentes et al. 2007).   
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1.2.3.3 The fusion (F) glycoprotein  

The fusion glycoprotein F is an important target for neutralizing antibodies and is highly 

conserved with only 25 aa differences in the F ectodomain of the two subgroups A and 

B (Graham et al. 2015) . RSV F protein belongs to the class I fusion protein. Three 

inactive precursors F0, each consists of 574 aa, assemble into a trimer. As passing 

through the Golgi apparat during the protein secretion pathway, the monomers are 

activated by furin-like host protease resulting in the F2, F1 subunits and a 27 aa peptide, 

of which the function is still unknown (Collins et al. 1984, Collins and Mottet 1991, 

Bolt et al. 2000). These two subunits F2 and F1 are covalently linked by two disulfide 

bonds between aa70 and aa212, and between aa37 and aa439 (Graham et al. 2015) 

(Figure 2). There are two N-linked glycans on F2 at aa27 and aa70, and only one on F1 

at aa500, which unlike others is required for an efficient syncytium formation (Zimmer 

et al. 2001).  

The functional F protein is present on the virion surface in two forms, a metastable pre-

fusion and a stable post-fusion conformation (Liljeroos et al. 2013, McLellan et al. 

2013). F Protein must remain in the metastable pre-fusion form to enable appropriate 

refolding into the stable post-fusion form during the membrane fusion process (Hicks et 

al. 2018).  It has been shown that this conformational change from the pre- to post-

fusion state is triggered by low-molarity buffer (e.g. 10 mM HEPES), heat and freeze-

thaw cycles (Gupta et al. 1996, Yunus et al. 2010, Chaiwatpongsakorn et al. 2011). 

Binding F in the pre-fusion conformation can interact with the refolding process and 

thus disrupt the membrane fusion and prevent virus entry (Rossey et al. 2018). 

McLellan’s group was the first group that was able to reveal the post-fusion structure of 

F by X-ray crystallography (McLellan et al. 2011, Swanson et al. 2011). The structure 

reveals that F2 and F1 subunits are deeply intertwined and all previously identified 

antigenic sites are present on the post-fusion conformation (McLellan 2015). Due to the 

energetically unstable property, the pre-F conformation is more difficult for structure 

determining. Fortunately, McLellan’s group again was able to reveal the X-ray 

structured of the pre-fusion conformation by prior stabilizing this metastable state with 

a pre-fusion specific antibody (McLellan et al. 2013). These structures disclosed that 

appx. 300 aa in the ectodomain are in similar positions in both pre- and post-fusion 
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conformation and the most dramatic rearrangements are located in the N- and the C-

terminus of the F1 subunit (McLellan 2015). 

In contrast to the F1 subunit that bears multiple antigenic site and thus is intensively 

investigated, the F2 subunit remains mostly uncharacterized but it has gained more and 

more attention from researchers in the last several years.  This subunit is believed to 

determine the species specificity of RSV infection, as it is shown that virus containing 

the F1 and G from BRSV with only F2 from HRSV could infected human cells and vice 

versa (Schlender et al. 2003).  Lawlor reported in 2013 about a single mutation at amino 

acid 66 within the F2 subunit, that was identified in a live attenuated vaccine strains, 

could alter virus growth and cell fusiogenicity in vitro (Lawlor et al. 2013). Recently, a 

comprehensive mutagenesis-based study of the heptad repeat C domain (aa 75-97) 

within F2 subunit revealed that this region plays an important role in membrane fusion 

by affecting the stability of the pre-fusion form (Bermingham et al. 2018). Newly, five 

residues in the apical loop (residues 62-75) of the F2 subunit were reported to be critical 

for the fusion activity (Hicks et al. 2018). 
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Figure 2: The fusion protein of RSV. (A) Primary structure of RSV F, before (upper) and after (lower) 

furin cleavage. The precursor F0 consists of following domains in the order: SP (signal peptide); F2 

subunit; p27 (peptide 27); FP (fusion peptide); HRA (heptad repeat A); an unnamed region containing 

several antigenic sites (complete or partial); HRB (heptad repeat B); TM (transmembrane domain); CT 

(cytoplasmic tail). The precursor is activated after furin cleavage at position 109 and 137 resulting in 

subunit F2 at N-terminus, F1 subunit at C-terminus as well as the separated peptide 27. These two subunits 

are linked by two disulfide bonds between aa70 and aa212, and between aa37 and aa439. (B) Illustration of 

the membrane fusion process and the conformational rearrangement of F protein from its pre- to post-

fusion constitution. In the pre-fusion form, the fusion peptides (dark grey sticks) are buried in the middle of 

the homotrimer protein. After triggering, refolding of HRA results in insertion of the fusion peptides into 

the host membrane. This constitution is called pre-hairpin intermediate. In the next refolding step, HRA 

and HRB are combined to form a stable 6-helix bundle (6HB) resulting in membrane fusion. The in purple 

indicated central region (F2 and part of F1) of F remains mostly unchanged during the refolding process. 

Adopted and modified from Rossey et al. 2018.  
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1.2.4 Neutralizing epitopes on the RSV fusion glycoprotein 

Several antigenic sites on pre- and post-F conformation were identified and 

characterized in the last three decades along with their significance on antibody 

responses and virus neutralizing activity. Of those, site Ø to V are depicted in Figure 3. 

Site I is a post-fusion specific epitope and antibodies that bind to this site have marginal 

effect in virus neutralization (Lopez et al. 1998, Widjaja et al. 2015). Antigenic site II 

(aa 254-277) and IV (aa 422-471) are major neutralizing epitopes that present on both 

pre- and post-fusion conformations of RSV F (McLellan 2015). Neutralizing antibodies 

that target these sites could neutralize infection and inhibit cell-cell fusion but do not 

inhibit virus attachment (Magro et al. 2010). However, it was shown that neutralizing 

antibodies that specifically target pre-fusion epitopes account the majority of 

neutralizing activity compared to those that target post-fusion epitopes (Magro et al. 

2012). Pre-fusion specific antibodies bind to regions at the N-terminus or C-terminus of 

the F1 subunit, that undergo dramatic conformational change at the fusion event 

(McLellan 2015). First pre-fusion specific antibodies were described by the Beaumont’s 

group in 2010 and their binding epitope was disclosed by McLellan and named as site Ø 

(zero) (Kwakkenbos et al. 2010, McLellan et al. 2013). The antigenic site Ø comprises 

an unstructured region in F2 and a region within the HRA in F1(McLellan 2015). 

Several pre-fusion specific antibodies that recognized multiple antigenic sites were 

identified (Flynn et al. 2016). For example, the human monoclonal antibody MPE8 

binds primarily to site III and parts of site II, IV and V; another human monoclonal 

antibody hRSV90 binds to sites II, V and Ø; or AM14 that was isolates from pool of 

immortalized human B cell interacts with site IV and V (Gilman et al. 2015, Rossey et 

al. 2018). More recently, further antigenic sites VI, VII and VIII were identified and 

described (Lopez et al. 1998, Wu et al. 2007, Mousa et al. 2016, Mousa et al. 2017). 
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Figure 4: RSV replication cycle in the cytoplasm. Transcription and replication of the viral genome 

take place in the cytoplasm and are conducted by the viral RNA polymerase L. Translation of viral 

mRNA is carried out by cellular ribosome. Upon translation, viral proteins are transport towards the 

apical plasma membrane, where RSV assembly and budding occur. Adopted and modified from Fearns 

and Deval 2016. 

  

Figure 3: Structure of pre-fusion (left) and post-fusion F (right). In each conformation, one protomer 

is depicted as ribbon and colored by sites. Shown are 6 antigenic sites Ø (red), I (blue), II (yellow), III 

(green), IV (magenta), V (orange) on the homotrimer (Rossey et al. 2018). 



Introduction  11 

 

1.2.5 Viral replication cycle 

The infection cycle is starting with attachment and binding of the virus to the host 

membrane, that are mediated by the RSV attachment G and fusion F protein (Collins et 

al. 2013). For the attachment and binding event, several cell receptor candidates have 

been described as potential targets for G including  heparin sulfate proteoglycans 

(HSPG) (Hallak et al. 2000, Donalisio et al. 2012), CX3 chemokine receptor 1 

(CX3CR1) (Tripp et al. 2001), annexin II (Malhotra et al. 2003). More recently, 

nucleolin and toll-like receptor 4 (TLR4) have been reported as a cellular receptor for F 

(Tayyari et al. 2011, Marr and Turvey 2012). After the attachment event, 

conformational rearrangement from the pre- into the post-fusion state of F is triggered, 

which leads to insertion of the fusion peptide into the host membrane. This state is 

called pre-hairpin intermediate (Rossey et al. 2018) (Figure 2). As the viral and host 

membrane are fused, the viral nucleocapsid is released into the cell cytoplasm and 

transcription of the viral genome is activated. The viral nucleocapsid consists of the 

viral RNA and the nucleoprotein N to form a left-handed helical structure (Bakker et al. 

2013), that further associates with  the RNA-dependent RNA polymerase complex 

formed by the polymerase (L), the phosphoprotein (P) and the transcription factor M2-1 

(Fearns and Deval 2016). Transcription of the negative-sense RNA into to mRNA as 

well as into a positive-sense RNA takes place in the cytoplasm and is conducted by the 

viral RNA polymerase L (Collins and Melero 2011). The full length anti-genome RNA 

acts as a template for further genome synthesis. Both newly synthetized genome and 

anti-genome become encapsidated and have been detected in virions (Collins et al. 

2013, Fearns and Deval 2016).  A set of mRNA is generated in a polar gradient with the 

most abundant mRNAs for the NS1 and NS2 and the lowest for the L protein. This 

occurs because some of the transcribing polymerase dissociate irreversibly from the 

genome at various gene junctions while others remain template bound and continue 

transcribing at the next GS signal (Fearns et al. 2002, Collins et al. 2013). Most 

recently, RNA synthesis is suggested to take place in so called inclusion bodies (IBs), 

that appear around the same time as the protein synthesis begins (6 hpi) (Lifland et al. 

2012, Collins et al. 2013). All components required for the viral RNA polymerase 

complex (genomic RSV-RNA, -N, -M2-1, -L and -P protein) are co-localized in IBs, 

whereby newly synthesized viral mRNA and the viral transcription anti-terminator M2-

1 were found in a sub-compartment, termed “IB-associated granules” (Garcia et al. 
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1993, Lifland et al. 2012, Rincheval et al. 2017). The balance between RNA 

transcription and replication seems to be regulated by the M2-2 protein (Bermingham 

and Collins 1999, Cheng et al. 2005). Translation of viral mRNA is carried out by 

cellular ribosome as it would translate host mRNA (Griffiths et al. 2017). Upon 

translation, viral protein trafficking and RSV assembly and budding occur in a poorly 

understood manner at the apical plasma membrane (Roberts et al. 1995, Zhang et al. 

2002). In absence of the viral matrix (M) protein, viral filaments do not form and M is 

found to be co-localized with IBs, thus M  was suggested to be important for trafficking 

of nucleocapsids from IBs to the cell surface (Ghildyal et al. 2002, Mitra et al. 2012, 

Shaikh and Crowe 2013). Most recently, the viral matrix (M) protein was shown to 

interact with a host protein, the cellular adaptor protein complex 3, which is also 

assumed as a critical interaction for trafficking (Ghildyal et al. 2006, Ward et al. 2017). 
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1.3 Pathogenesis and disease burden 

1.3.1. Viral tropism 

HRSV, BRSV and MPV infect human, bovine and murine in a species-specific manner 

(Rima et al. 2017, ICTV 2018). This makes development of a suitable animal model for 

HRSV to a challenge. Different animal models have been investigated to study the 

pathogenesis and immune responses to RSV infections (Sudo et al. 1999, Openshaw 

2013). Nevertheless, all reported animal models of human RSV are semi-permissive 

except for chimpanzee that develops upper respiratory infection most nearly an RSV 

infection in human (Prince et al. 1979, Collins et al. 2013). In older BALB/c mice, 

higher titer and larger volume inoculum are required for development of clinical 

manifestations of illness such as ruffled fur, reduced activity, weight loss, and 

infiltration of immune cells into the lung (Graham et al. 1988). Recently, a chimeric 

strain RSV A2-line19F was shown to recapitulate in mice key features of RSV 

pathogenesis with higher viral load, interleukin-13 (IL-13) induction, greater mucus 

induction and airway dysfunction (Moore et al. 2009, Hotard et al. 2012). In this 

chimeric strain, sequence for the fusion F protein originates form RSV Line 19, while 

other proteins from RSV A2. Both RSV A2 and Line 19 are human strains. Moore and 

his group developed subsequently a RSV recovery system based on a bacterial artificial 

chromosome (BAC) that encodes the anti-genomic DNA of this chimeric strain RSV 

A2-line19F and an additional fluorescence reporter gene mKate2, called RSV-BAC 

pSynkRSV-line19F. This is the first BAC-based reverse genetic system that stably 

enables mutagenesis and efficient recovery of recombinant RSV. This BAC plays an 

important role in this work to establish marker transfer analysis for newly detected 

mutations in the fusion (F) gene of RSV. 

In vivo, RSV replication is mainly limited in the apical ciliated epithelial cells and basal 

epithelial cells are spared from RSV infection (Roberts et al. 1995, Zhang et al. 2002, 

Collins et al. 2013). RSV antigens have also been detected in macrophages and 

circulating mononuclear leukocytes, but all of this evidence is thought not to be 

associated with replication or an extrapulmonary infection (Domurat et al. 1985, Franke 

et al. 1994, Collins et al. 2013). In context with severe RSV infection, a few studies 

reported systemic dissemination of RSV to the heart, liver and cerebral fluid which may 

associate with sudden infant death in some cases (Eisenhut 2006). Paradoxically, in 
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vitro, RSV could infect a wide variety of cell types derived from different tissues 

including Vero, HEp-2, HeLa, BHK-21, HFF etc. but with different efficiency.  

All these observations lead to the suggestion that there are factor that determine the 

tropism of the virus such as presence of receptors for viral attachment and entry, host 

structures that may be exploited by the virus for its replication, host dependent ability to 

counter antiviral response or other innate and immune defence mechanism (Collins et 

al. 2013). 

1.3.2 The infant and the elderly as main target  

In healthy patients, RSV infection are mild, self-limited and are treated in outpatient 

settings (Wright and Piedimonte 2011). Generally, RSV infects all age groups but 

patients at the age extremity are at higher risk for developing a severe RSV infection 

(Falsey et al. 2005, van Drunen Littel-van den Hurk and Watkiss 2012). Infants who at 

high-risk for severe RSV infection are those under 6 months of age, premature born, or 

those with bronchopulmonary dysplasia, congenital heart disease, immunodeficiency, 

cystic fibrosis and neuromuscular disease (Resch 2012). For this high-risk population, 

the mortality rates associated with RSV infection increase significantly from below 1% 

for the healthy children up to 37% depending on study reports and comorbidity 

(Welliver et al. 2010). This review summarized 36 studies and reported case fatality 

rates of 3.5%-23% for infants with chronic lung disease, 2-37% for infants with 

congenital heart disease and 0-6.1% for premature infants. A global observation in 2005 

estimated that children in developing countries are at higher risk for acute lower 

respiratory infection (ALRI) with >93% of all RSV-ALRI episodes and 99% of RSV-

ALRI mortality (Nair et al. 2010). More recently for 2015, 33.1 million episodes of 

RSV-ALRI with about 3.2 million hospital admissions were estimated in children 

younger than 5 years, of which the overall mortality could be as high as 118200 cases 

(Shi et al. 2017).  

Even in adults with high-risk cardiopulmonary diseases, the elderly and 

immunocompromised individuals, the impact of RSV are comparable to that of non-

pandemic influenza (Haber 2018). Since 1980s, the significance of RSV on morbidity 

and mortality for those over 65 years old has been recognized through several observed 

outbreaks (Morales et al. 1983, Sorvillo et al. 1984, Agius et al. 1990, Han et al. 1999). 
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More recent studies describe the clinical importance of RSV in older adults and 

emphasized the increasing global burden of RSV in developed nations with aging 

populations (Falsey et al. 2014, Branche and Falsey 2015). A study from Korea 

compared the risk of mortality associated with RSV and influenza infection in adults 

reported that adult patients were less likely diagnosed with RSV compared to influenza,  

but RSV infection showed significant higher risk of death compared to the seasonal 

influenza with a hazard ratio of 2.32 (RSV vs. influenza) (Kwon et al. 2017). 

Comorbidities such as COPD, hematological diseases and immunodeficiency are also a 

risk factor for RSV associated hospital stay and intensive care for adults (Khanna et al. 

2008, Mehta et al. 2013). As well as for the younger target of RSV, there is also a need 

for development of RSV prophylaxis, vaccine and treatment for adults  (Volling et al. 

2014). 

1.3.3 RSV pathology and its long-term sequel 

RSV is transmitted from person to person via droplet. After an incubation period from 

2-8 days, the virus spreads rapidly in the respiratory tract, where it preferably targets the 

apical ciliated epithelial cells. Binding and fusion between the virus and host membrane 

facilitating insertion of the viral nucleocapsid into the host cells are mediated by the 

surface glycoprotein G and F. Thereupon, the virus start to replicate in the host 

cytoplasm. Necrosis of the respiratory epithelial cells is caused by both viral 

cytotoxicity and host’s cytotoxic response (Schweitzer and Justice 2018). Shedding and 

sloughing of infected epithelial cells from upper to lower respiratory tract enable on one 

hand virus spread, on the other hand aggravate the infection with small airway 

obstruction. For neonates, obstruction of their small airway with mucus and cell debris 

is a major problem in RSV associated bronchiolitis (Ruckwardt et al. 2016). 

Observing an infection as interplaying between the virus, the host within a given 

environment, each of them has a special impact on the RSV pathogenesis and will be 

discussed briefly below.  

Several studies could verify the general expectation about a clearly correlation between 

disease severity and viral load (DeVincenzo et al. 2010, Utokaparch et al. 2011). RSV 

manipulates the cell cycle by arresting infected cells in G0/G1 or downgrading 

apoptosis, and thus makes them more favorable for virus production (Bitko et al. 2007, 
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Wu et al. 2011). Several mechanism facilitating RSV infection have been discussed : (1) 

location-related infectivity, (2) evasion of neutralizing antibody by conformational 

changes and (3) functional modification of the host immune responses (Taleb et al. 

2018). That RSV almost exclusively infects the superficial ciliated epithelial cells might 

protect the virus from getting in contact with dendritic cells (DC) and thus interrupts or 

delays the immune reaction (Taleb et al. 2018). Further observation pointed to the 

ability of RSV in inhibiting the trafficking of human DCs from the lung to the draining 

lymph nodes and preventing a robust T-cell response (Varga and Braciale 2013). 

Neutralizing antibodies are thought to be circumvented by the contemporary presence of 

both pre- and post-fusion conformation of F on the viral surface as well was by the 

existing of an antibody decoy, the secreted form of the G protein (Bukreyev et al. 2008, 

Liljeroos et al. 2013). Functional modifications of host immune response by RSV were 

reported. For example, NS1 and NS2 inhibit type I IFN signal transduction (Barik 

2013); interactions between RSV G and DC/L-SIGN diminish DC activation, and might 

limit induction of RSV-specific immunity (Johnson et al. 2012). 

At point of host, many factors could affect the severity of an RSV infection. Generally, 

an RSV infection are mild or moderate for healthy adults but it can become a severe life 

threatening infection for those at high-risk such as premature infants with 

bronchopulmonary dysplasia and the elderly with comorbidities or those with immune 

suppression (Falsey 2007). It has been reported that vitamin D deficiency in healthy 

neonates is associated with higher risk for RSV lower respiratory tract infection (LRTI) 

in the first year of life (Belderbos et al. 2011). Additionally, association between severe 

RSV infection in healthy infants and genetics polymorphisms of host that may alter the 

innate immune response in controlling RSV infection has been reported, but their 

statistical significance still remains unclear (Miyairi and DeVincenzo 2008).  

Several epidemiological factors that involve in the severity of a RSV infection have 

been identified including pollution (Karr et al. 2009, Evangelisti et al. 2015), expose to 

cigarette smoke (Bradley et al. 2005, Groskreutz et al. 2009), crowding and nutrition 

status of the child (Okiro et al. 2008), evidence of asthma in the mother (Weber et al. 

1999, Carroll et al. 2012) as well as low socioeconomic status and parental education 

(Sommer et al. 2011). In addition, a few studies reviewed the influence of climate 

parameters such as temperature and humidity on the RSV epidemic. It appears that low 
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temperature and low ambient relative humidity are the optimal condition for RSV 

transmission (Lapena et al. 2005, Noyola and Mandeville 2008, Zhang et al. 2013). 

Whereby, the low temperature might have a greater impact on the RSV incidence (du 

Prel et al. 2009, Sirimi et al. 2016). According to this observation, in Germany RSV 

infections occur in the winter months spanning from November to April (RSV season) 

(Tabatabai et al. 2014). 

Compared to other respiratory virus, RSV cause less cytopathic effects in vitro on 

human primary airway epithelial cell cultures (Zhang et al. 2002), but there is evidence 

for significant pathology in vivo. For example in hamster model, it was observed, that 

sloughing of RSV infected ciliated cell into the narrow–diameter bronchiolar airway 

lumens caused acute distal airway obstruction marked with accumulation of detached, 

pleomorphic epithelial cells (Liesman et al. 2014). This effect is believed to be 

associated with one of the two RSV nonstructural proteins, the NS-2 (Liesman et al. 

2014) and offer an explanation, how a less cytopathic virus like RSV can cause more 

severe lower respiratory tract infection (LRTI) than influenza virus LRTI (Welliver et 

al. 2008). In addition, airway obstruction during RSV infections is caused furthermore 

by DNA-rich viscous mucus and inflammatory cell debris (Johnson et al. 2007), 

whereby neutrophil contribute the highest number of infiltrated cells (̴ 80%) in the 

airway of pediatric patients with RSV–induced bronchiolitis (Geerdink et al. 2015). On 

one hand, neutrophils can limit the viral replication and viral spread; on the other hand 

neutrophilic inflammation might injure the lung and disrupt the delicate lung 

development in infancy with lasting consequence that might promote other chronic 

disease such as asthma (Geerdink et al. 2015). Inversely, RSV is also a major cause of 

exacerbation of chronic obstructive pulmonary disease (COPD) and asthma, but the 

mechanism is still unclear (Ramaswamy et al. 2009, Hewitt et al. 2016).  
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1.4 Therapy and antiviral drugs 

1.4.1 Therapy options 

Despites relentless effort to develop pharmacological therapies against RSV, the most 

effective therapy remains supportive care including fluid replacement, oxygen 

supplement, decongestant nose drops and ventilation support (Resch 2017). Currently, 

only two antivirals for RSV are available, palivizumab for prevention and ribavirin for 

treatment of an active RSV infection (Griffiths et al. 2017). The routine use of ribavirin, 

a broad antiviral synthetic nucleoside analogue, is controversial due to its high cost, 

difficulties in administration route, and the possibility to be a teratogen (Wright and 

Piedimonte 2011). In context of safe handling hazardous drugs, the hazard of aerosol 

ribavirin for health care workers caused by environmental exposure during therapy has 

been intensively investigated (Bradley et al. 1990, Linn et al. 1995). Considering drug 

safety and effectiveness, ribavirin is limitedly used in complicated cases such as in 

immunocompromised individuals in combination with intravenous immune globulin 

(Khanna et al. 2008, Wright and Piedimonte 2011, Turner et al. 2014).   

RespiGam (MedImmune Inc, Maryland) was an RSV immune globulin intravenous 

(RSV-IGIV) that contained high titres of human neutralizing antibody against RSV 

(Oertel 1996). This product was shown to be able to neutralize 62 different clinical RSV 

strains including both subgroups A and B in vitro (Tan 1998). However, its cost-

effective was only proved for infants at highest risk for severe RSV infection (Barton et 

al. 2001, Fuller and Del Mar 2006). Several years after the introduction of a higher 

potential (50x) monoclonal antibody, palivizumab, RespiGam was taken from the 

market (Turner et al. 2014). As there is still a lack in RSV therapy, further IGIV 

preparations (RI-001, RI-002) are still under developing for RSV prevention and 

treatment in primary immunodeficiency disease and other immune compromised 

populations (Wasserman et al. 2016, Wasserman et al. 2017). 

1.4.2 Vaccines and small molecule antiviral drugs under development 

Vast efforts have been putting in development of a vaccine for RSV but there is still no 

licensed vaccine to date. 18 vaccine candidates are now reaching clinical trials phase I-

III tested on 3 major target indications: pediatric, maternal and elderly (Mazur et al. 
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2018, PATH 2018). These candidates could be divided in 5 vaccine strategies: particle-

based, vector-based, protein subunit, live-attenuated/chimeric vaccines, and monoclonal 

antibodies. Among the 18 candidates, the RSV F nanoparticle vaccine from Novavax 

addressing maternal immunization, an option to increase maternal antibodies in infants, 

is the farthest (phase III) along in clinical development (Blanco et al. 2018, Mazur et al. 

2018). These promising new approaches in RSV vaccine development aroused 

optimism for new medication that helps to control and reduce the public health burden 

of RSV infection. 

Several small molecules are now also under clinical development for treatment of RSV 

infection. Two major drug classes are RNA polymerase and fusion inhibitor. Inhibiting 

the RNA polymerase is a good strategy to interrupt the virus replication cycle, since 

RSV belongs to the group of non-segmented, negative-sense RNA viruses and relies on 

its RNA-dependent RNA polymerase for transcription and replication of its genome 

(Fearns and Deval 2016).  ALS-8112 is a small molecule that was shown to be able to 

inhibit viral polymerase activity by the intracellular formation of its 5’-triphosphate 

metabolite working as a nucleoside analogue. However, ALS-8112 has a low oral 

bioavailability (Deval et al. 2015). To improve its pharmacokinetic properties, a 

prodrug was developed, ALS-8176 (Wang et al. 2015). This first-in-class nucleoside 

analog ALS-8176, or called lumicitabine, is now in phase II clinical trial for treatment 

of hospitalized RSV infected infants (Deval et al. 2015, ClinicalTrials.gov 2018c). 

Besides, several promising fusion inhibitors are developed and tested in clinical trials on 

both infants and adults. AK0529 is now in testing on infants between 1 months and 24 

months of age who are hospitalized due to RSV infection (ClinicalTrials.gov 2018b). 

Presatovir (previously GS-5806) was shown to be safe with proven antiviral efficacy in 

preclinical and clinical studies. However, this drug has a complex pharmacology as 

being a substrate of several efflux transporters such as P-glycoprotein, breast cancer 

resistance protein and as being a substrate of cytochrome P450 (Xin et al. 2018). Phase 

II study of JNJ-53718678 on healthy adult volunteers has also been completed with 

positive results and is now followed by phase II testing on non-hospitalized adults with 

RSV infection (Israel et al. 2016, Stevens et al. 2018, ClinicalTrials.gov 2018a). Note, 

emergence of resistant viruses against ALS 8112, ALS 8176, AK0529 and JNJ-
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53718678 were already detected during development (Fearns and Deval 2016, Roymans 

et al. 2017, McKimm-Breschkin et al. 2018). 

 

Table 1: Overview of RSV vaccines, monoclonal antibodies (mAbs) and small molecules. Listed 

examples are in clinical development.  

mAbs and vaccines 

• Particle-based: RSV F nanoparticle, bacterium-like particles (BLP) carrying F 

proteins 

• Vector-based: antigens expressed in attenuated modified vaccinia Ankara virus, 

adeno virus vectors 

• Protein subunit: pre-F subunit, extracellular domain of SH  

• Live-attenuated/chimeric vaccines: Attenuation via RSV genome modification 

e.g. ΔM2-2 or ΔNS2 deletion, HRSV N gene expressing Bacillus Calmette-

Guerin (BCG) vaccine 

• Monoclonal antibodies: MEDI8897 (nirsevimab) target antigenic site Ø on 

pre-F 

Small molecules 

• RNA polymerase inhibitor: ALS-8112, ALS-8176 (lumicitabine) 

• Fusion inhibitor: AK0529, GS-5806 (presatorvir), JNJ-53718678 

 

1.4.3 Passive immunization with palivizumab 

As mention above, only palivizumab (Synagis®, MedImmune Inc.), a monoclonal 

antibody against the RSV-F-protein, that has been approved since 1998 remains 

available for RSV prevention in high-risk infants (Turner et al. 2014). This antibody is 

by 95% comparable to any human antibody and only 5% of it originates from the mouse 

(Resch 2017). Palivizumab went through a 10-year period of developing an antibody 

that prevents cellular infection by preventing the viral membrane from fusion with the 

target cell and the virus cell-to-cell spread by syncytia formation. Since F-protein is 

essential for membrane fusion and well-conserved between subgroups A and B, it 

becomes the most suitable target for developing such an antibody. From an extensive 
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library of monoclonal antibodies against RSV, palivizumab was than selected as the one 

with the strongest binding affinity against the F-protein and most effective neutralizing 

activity (Young 2002). Palivizumab neutralized a broader panel of 57 RSV clinical 

isolates of both RSV A and B subtypes (Johnson et al. 1997). The mode of action of 

palivizumab wasn’t clear at the time. After a while, as its binding epitope, the antigenic 

site II, was identified and as the structure of pre- and post-fusion conformation of F 

were revealed, it appears that the neutralizing activity of palivizumab results from steric 

hindrance of the membrane fusion event (Rossey et al. 2018). Because the antigenic site 

II is present on both pre- and post-fusion F and remains largely intact after the 

conformational transition from pre- to post-fusion, it is per se not expected to prevent 

refolding of F (Rossey et al. 2018). 

Before 2014, most guidelines recommended palivizumab for preterm infants ≤32weeks 

gestational age (wGA), those under 35 weeks gestational ages with additional risk 

factors, and infants with congenital heart disease (Resch 2014). In 2014, the American 

Academy of Pediatrics (AAP) updated its guidance for management of RSV patients 

and narrowed the high-risk subpopulation of preterm infants to those ≤28 wGA (AAP 

2014, Olchanski et al. 2018). For the immune prophylaxis, palivizumab is given as 

monthly intramuscular injection at dose of 15mg/kg throughout the RSV season (4-5 

doses). With this application regime, palivizumab can reduce hospitalizations by 55% 

(10.6% placebo vs 4.8% palivizumab) (The IMpact-RSV Study Group 1998). In cotton 

rat, serum concentration of ≥ 40 µg/ml was linked with a significant reduction of RSV 

titer in the lung (99% reduction) and this concentration is well maintained in the 

majority of patient with the monthly dose of 15 mg/kg (Forbes et al. 2014). That 

palivizumab is needed to be administrated monthly is a consequence of a mean haft life 

of 20 days (Subramanian et al. 1998). Optimization of new F specific RSV-neutralizing 

monoclonal antibodies with better neutralizing capacity and extended half-live is now 

also one of the vaccine strategies that are followed by many researchers. For example, 

MEDI8897 is a monoclonal antibody that targets the pre-fusion of F. This antibody is 

reported to have a 50-fold higher neutralizing activity and 3-fold longer half-life than 

palivizumab (Zhu et al. 2017). There is also interesting achievement in developing an 

antiviral antibody for RSV treatment, which could directly administered to the site of 

infection via inhalation, e.g. ALX-0171 (Larios Mora et al. 2018) and F-VHH-4 
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(Rossey et al. 2017). ALX-0171 and F-VHH-4 are both single-domain antibodies that 

correspond to the variable region of a heavy chain of a camelid antibody (VHH). Due to 

their single-domain nature, these antibodies are very small and stable against physical 

stress during nebulization (Rossey et al. 2018). Local delivery at side of infection 

required lower dose compared systemic administration, even though it would ensure a 

more rapid onset of action with fewer potential side effects, which offers many 

advantage for treatment of lung diseases (Van Heeke et al. 2017). 

1.4.4 Palivizumab cost-benefit relation 

Since, palivizumab administration is weight dependent, the cost of immunoprophylaxis 

varies. A single course of palivizumab ranges from $1500-$4300 and calculating for a 

whole RSV season with 4-5 doses results in a cost of $6000-$20000 for a child 

(Olchanski et al. 2018). To optimize the cost-benefit ratio, it is indispensable to have a 

better understanding of the foundation epidemiology and outcomes associated with 

RSV diseases. The most important point seems to be the definition of correct subgroups 

of children who are at high-risk for RSV infection. This led to the consequence that the 

RSV patient management guidance of the American Academy of Pediatrics has been 

changed 4 times since the approval of palivizumab (1998). According to the most recent 

update in 2014, palivizumab is recommended for preterm infants with ≤28 weeks of 

gestation age (wGA) and those ≤12 months with chronic lung disease and/or with non-

cyanotic heart disease (Olchanski et al. 2018). In addition, palivizumab is also 

recommended for older children (12-24 months) with chronic lung disease who required 

medical therapy within 6 months of RSV season start (Olchanski et al. 2018). However, 

results from an Italian study pointed to a need of re-evaluation of this guidance relating 

to a conceivable palivizumab prophylaxis for the preterm subpopulation with ≥29 wGA 

(Capizzi et al. 2017). On the other hand, several studies showed that shorter application 

regimes with 3-4 doses could result in an adequate protection compared to a 5 doses 

regime, and thus they propose a shorter application regime along with a broader target 

indication (Gutfraind et al. 2015, Weinberger et al. 2015, Lavoie et al. 2016). It can be 

seen clearly that palivizumab recommendation is a still ongoing debate between 

different points of view from providers, payers and the child parents.  
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1.4.5 Detection of palivizumab resistance-associated mutation 

As the RNA-dependent RNA polymerase of RNA virus lacks proofreading-repair 

function, RSV is highly mutated (nucleotide substitution rate 10-3 to 10-4), which is also 

an advantage for the virus to adapt to selective pressure (Domingo et al. 1997, Zhao et 

al. 2004, Collins et al. 2013). Several antibodies resistance-conferring mutations have 

been identified in vitro, cotton rats and in vivo (Beeler and van Wyke Coelingh 1989, 

Crowe et al. 1998, Zhao et al. 2004, Zhu et al. 2011, Bates et al. 2013). These mutation 

are showed to be located with thin the palivizumab binding site between the amino acid 

positions 262-276 and with a frequency of 5% in children with breakthrough RSV 

infection during immunoprophylaxis therapy (Zhu et al. 2011, AAP 2014). However, 

these breakthrough RSV infections consisted of only RSV hospitalisations (1.4%) and 

outpatient medically attended lower respiratory tract infections (3.9%) (Carbonell-

Estrany et al. 2010). Following amino acid variations at positions 262, 268, 272, 275, 

276 were described associating with palivizumab resistance (Beeler and van Wyke 

Coelingh 1989, Zhu et al. 2011).  Another study determined higher occurrence 

frequency of resistance conferring mutations, namely 8.7% in palivizumab recipients 

(Papenburg et al. 2012). For the palivizumab naïve subjects, only a few studies report 

about the frequency of natural polymorphisms in the RSV F gene and in these, antigenic 

site II mutation conferring palivizumab resistance was reported to occur in a very low 

frequency <1% (Zhu et al. 2012). In addition, it was reported that these escape mutants 

initially do not grow in cell culture as isolate in the mixed population, but are selectable 

in the presence of palivizumab (Boivin et al. 2008, Zhu et al. 2011, Papenburg et al. 

2012). Furthermore, these escape mutant are variously impaired in their fitness and 

could even disappear from the mixed population after passaging (Zhao et al. 2004, Zhao 

et al. 2006). Thus, characterization of complete recombinant infectious virus is the only 

way to determine palivizumab susceptibility for these virus variants.  
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1.5 Marker transfer analysis 

As mentioned, RSV isolates with palivizumab resistance associated mutations do not 

grow in cell culture (Zhu et al. 2011). Hence, still unknown mutations have to be 

phenotypically characterized using recombinant technique, so called marker transfer 

analysis. In this method, the examined mutation is introduced into a genome of a drug 

sensitive parental strain. And subsequently, the complete recombinant infectious virus 

will be characterized concerning viral fitness and drug susceptibility.  

Despite the clinical significance of RSV, there aren’t many established platforms that 

allow stable and efficient mutagenesis of RSV genome. The first RSV revers genetic 

platform was established by Collins in 1995 (Collins et al. 1995, Collins et al. 1999). In 

this method, cDNA derived virus was recovered after co-transfection of cultured cells 

with a plasmid encoding the anti-genomic cDNA of RSV and four helper plasmids 

encoding the proteins of the nucleocapsid/polymerase complex, in particular N, P, M2-1 

and L (Collins et al. 1995). In this method, recovery of infectious virus is not very 

efficient due to the genetic instability of cDNA (Stobart et al. 2016). Another platform 

was established by Hotard in 2012 by using bacterial artificial chromosome (BAC) 

encoding the anti-genome of RSV A2-line19F under the control of a T7 promoter and 

four helper plasmids encoding the optimized sequence for N, P, M2-1 and L genes 

(Hotard et al. 2012). All 4 helper plasmid are also under control of T7 promoter. This 

platform enables efficient recombinant-mediated mutagenesis and cloning in bacteria. 

Chosen cell culture for transfection is a BHK-21 cell line, BSRT7/5, that stably 

expresses T7 RNA polymerase (Buchholz et al. 1999). The BAC contains furthermore a 

gene encoding a far-red fluorescence gene, mKate2, which enables continuous tracking 

of infection through fluorescence.  

BAC-mutagenesis is now widely used in molecular biology studies for variable 

approaches such as gene function examination, protein localization studies and genetic 

disease models. To facilitate these studies, various mutagenesis methods were 

developed. Among these, homologous recombination allows genetic engineering of 

large DNA even in the absence of restriction enzyme sites. These methods mostly 

exploit phage lambda-derived recombination system with three genes exo, beta and gam 

enzymes (Lai et al. 2015). In 2006, Tischer and colleagues developed a method called 
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“en passant” mutagenesis that enables a modification of BAC DNA without retention of 

any unintended sequence changes in the end product. In this method, BAC 

recombination is performed in an E.coli strain, GS1783, using Red-recombination 

system and a further enzymatic activity of the I-SceI endonuclease that is utilized not 

only for counterselection but also for generation of the substrate for the second Red 

recombination, by which the positive selection marker is scarless removed (Tischer et 

al. 2006) (detail will be described in 3.2.2). BAC-mutagenesis allows control of 

successful insertion by sequence analysis prior transfection of cell culture for virus 

recovery, and spared the time-consuming plaque purification of reconstituted viruses. 

To date, this reverse genetic platform for RSV is the unique one that offers versatile, 

stable and efficient for generation of recombinant RSV (Stobart and Moore 2014). As 

many small molecules and mAbs are now under development for RSV prophylaxis and 

treatment, a functional marker transfer analysis would be one of the required technics in 

the future for study of antiviral resistance emerging phenomena. 

 

Figure 5: Revers genetic platform for RSV comprises a RSV BAC and 4 helper plasmids encoding 

sequence optimized genes for the N, M2-1, P and L proteins, respectively (Stobart et al. 2016). 
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2.  Aim of the study 

Due to the clinical significance of RSV, a lot of effort has been put into development of 

new antiviral drugs including mAbs and small molecules. Many promising candidates 

are now in clinical trials testing in both infants and adults. The natural ability to elicit 

and tolerate spontaneous mutations of a RNA virus would allow RSV to generate 

escape mutants during antiviral therapy. To date, RSV therapy options still remains 

modest with only two licenced therapeutics: ribavirin and palivizumab. Therefore, the 

context of antiviral resistance associated mutations for RSV did and do not gain much 

interest. Discovery of new potential antiviral drugs is likewise accompanied with 

emerging of its escape mutants and this phenomenon is confirmed in the case of 

palivizumab, the mAbs used in RSV immunoprophylaxis, as well as in cases of 

investigated small molecules in clinical development including ALS 8112, ALS 8176, 

AK0529 and JNJ-53718678 (Table 1).  

In 2010, Adams et al. described mutation N276S in context of a RSV breakthrough in a 

child during palivizumab immunoprophylaxis therapy and thus suspected that this 

mutation is responsible for palivizumab resistance. Short after, Zhu et al. could deny 

this statement by phenotypical characterization of recombinant RSV harboring this 

mutation. Note, another mutation K272E which is clearly known to confer palivizumab 

resistance also was found in this isolate after several passages selecting with 

palivizumab. Hence, a valid marker transfer analysis that allows reliable phenotypical 

characterization of newly detected mutation associating with antiviral resistance is 

indispensable in such a case. This is also the main subject of this study to establish 

maker transfer analysis for antiviral resistance-conferring mutations in RSV, a field that 

is still only available to a limited extent.   

The instability nature of RNA virus makes this proposal to a challenging goal. This 

problem can be circumvented by using a bacterial artificial chromosome (BAC) RSV 

recovery platform (Hotard et al. 2012). On the other hand, at the Institute of Medical 

Virology in Tuebingen, there was a well-established mutagenesis technique applied for 

generation human cytomegalovirus (HCMV) mutants, namely “en passant” 

mutagenesis (Fischer et al. 2013). In this work, these two components should be 
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combined to establish marker transfer analysis for RSV. In the next step, reconstituted 

recombinant viruses would be phenotypic characterized regarding their fitness and 

antiviral susceptibility. Viral replication should be investigated using both multi-step 

growth curves and flow cytometry. Since, ribavirin is not the medication of first choice, 

proof of concept was firstly focused on palivizumab and mutations in F gene. 

In this project, identified mutations on F gene of eight RSV A infected patients, who 

were randomly chosen independently of their age and their palivizumab status, were 

introduced into RSV BAC pSynkRSV-l19F (BEI Resources Nr-36460), respectively. 

Recombinant viruses that rescued from RSV-BAC pSynkRSV-l19F harboring the 

mutations were characterized by their growth kinetics to investigate influence of the 

mutation on the virus replication. The parental sensitive strain (RSV A2-K-line19F) 

rescued directly from RSV BAC pSynkRSV-l19F, that does not harbor any mutation, 

served as the reference strain in all phenotypic assays. Virus growth was detected by 

both the virus titers in the supernatants by end-point dilution assays and the cell-to-cell 

viral spread by flow cytometry. Susceptibility against palivizumab was analysed by 

plaque-reduction neutralization assays (PRNA). Recombinant viruses with mutation 

K272E and N276S were additionally generated and characterized. These two strains 

served as resistance and sensitive control to confirm the functionality of the assays used 

for susceptibility testing. Furthermore, using the same test methods, phenotypic 

differences between strain RSV A2-K-line19F and strain A2 (a clinical strain purchased 

from ATCC® VR-1540P) should also be investigated. 
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3.  Material and Methods 

3.1 Material  

3.1.1 Patients 

All mutations in this work originated from patient samples that were diagnosed as RSV 

positive in the Institute of Medical Virology and Epidemiology of Viral Diseases of the 

University of Tuebingen. Since only a restricted number of RSV isolates was available, 

adult as well as paediatric viral isolates were included in this study. However, as for 

prove of principle and establishment of new methods, there was no need to distinguish 

between children and adults. 

Altogether there were 8 RSV A positive samples, from which virus was isolated, and 

subsequently the F protein gene was sequenced to look for mutations. These samples 

were randomly selected between 2008 and 2015. Three of these samples were from 

children under 2 years old, and five were from adults, among them three over the age of 

50 years. One of the children (RSV isolate V361) was in the Neonatology Unit 2 of the 

Tuebingen Hospital, where neonates are under monitored intensive care. One child was 

in the intensive care unit of the Pediatric Cardiology (RSV isolate V391), and one in the 

Neurodevelopmental Care Unit (RSV isolate P6510). Only in one of these samples, 

mutations in the F gen were detected (RSV isolate P6510 with mutations C21G and 

R49K). According to a retrospective interview with the family physician, the child did 

not receive a prophylaxis with Synagis® since the parents denied the prophylactic 

therapy recommended by the paediatric physician. In the adult group: two patients were 

diagnosed with bronchiectasis and recurrent respiratory infections, two were transplant 

patients and one was a multiple myeloma patient with bronchopneumonia. Three of 

these 8 patients were co-infected with bacteria or other viruses.   

The Department of Clinical Virology offers different validated methods for detection of 

viral infection. For detection of RSV, both a cell culture based protocol in combination 

with antigen detection and a PCR are available. Further details concerning clinical 

conditions and diagnostic results are listed in Table 2.    
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Table 2:  Collected patient samples in this study and their characteristics in clinical features and virological diagnostic. Laboratory methods for detection of 

RSV infection: Cytopathic effect (CPE) formation in cell culture with human foreskin fibroblasts (HFF) and/or African green monkey kidney cells (Vero) (a), 

immunochromatography- enzyme immunoassay (IC-EIA) (b), enzyme immunoassay (EIA) (c) and molecular diagnostic using polymerase chain reaction (PCR) (d).  

RSV 

Isolates 
Age Samples Clinical features Virological  Diagnostic 

New (non-

silence) 

mutations 

V361 3 m/o Oral throat wash 

Respiratory deterioration, oxygen 

desaturation, dyspnea, nosocomial 

infection 

RSV positive a,b - 

V391 
11 

m/o 

Tracheal 

secretion 
Rhabdomyosarcoma, RSV pneumonia 

RSV positive a.b, syncytia formation 

4 dpi 
- 

P6510 
19 

m/o 
Throat swab 

Aspiration pneumonia (RSV, E.coli, 

Pseudomonas) 
RSV positive d, Cp 10,97 

C21G (SP) 

R49K (F2) 

V144 74 y/o 
Tracheal 

secretion 

Bronchiectasis, resection of the left 

lung, pneumonia (RSV, Pseudomonas) 

RSV positive a,d, strongly marked 

syncytia formation 5dpi in Vero, Cp 

11.78 

A103P (F2) 

V349 62 y/o 
Tracheal 

secretion 

Multiple myeloma, general reactivation 

of Herpes virus, bronchopneumonia 

Co-infection: RSVa,d, HSVd, 

CMVd, EBVd. RSV A:  CPE 

formation 8dpi, Cp 12,89 

T100S (F2) 

A518V (F1) 

V907 47 y/o 
Bronchoalveolar 

lavage 
Bronchiectasis, recurrent infection 

RSV positive a,d, CPE in HFF und 

Vero 5dpi, Cp 19,33 
- 

V1312 55 y/o Oral throat wash Stem cell transplant patient RSV positive a,b, CPE detected 8dpi - 

V1772 37 y/o 
Bronchoalveolar 

lavage 

Transplant patient, aplasia after 

chemotherapy 

Co-infection CMVc,d and RSVa,b,d. 

RSV A: CPE formation 4dpi, Cp 

26,38 

C550Y (F1) 

Q34R (F2) 
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3.1.2 Cells 

Kidney cells of African green monkeys (Vero) were purchased from ATCC and used up 

to passage 100. 

BSR T7/5 cells were kindly provided by Prof. Conzelmann, Munich. BSR T7/5 is a 

baby hamster kidney (BHK) cell clone that continuously expresses T7 RNA polymerase 

under selection of Geneticin G418 (Buchholz et al. 1999). 

3.1.3 BAC and plasmid 

The RSV BAC rescue system containing the following bacterial artificial chromosome 

(BAC) and four helper plasmids were kindly provided by Biodefense and Emerging 

Infections Research Resources Repository (BEI Resources): pSynkRSV-l19F, pA2-

Lopt, pA2-Nopt, pA2-Popt, pA2-M2opt (Hotard et al. 2012). 

pSynkRSV-l19F (BEI Resources Nr-36460) is a BAC plasmid encoding RSV A2- 

line19F antigenomic DNA and an additional gene for the far-red fluorescent protein 

monomeric Katushka 2 (mKate2) that allows detection of infection through 

fluorescence. In this BAC, sequence for the F protein of strain A2 was substitute with 

that of Line 19 (Herlocher et al. 1999) while other proteins are identical to that of the 

RSV A2. The chosen genotype RSV A2-line19F was previously shown to be able to 

induce key features of RSV pathogenesis in mice (Moore et al. 2009).  

pA2-Lopt, pA2-Nopt, pA2-Popt, pA2-M2-1opt  (BEI Resources Nr- 36461, 36462, 

36463, 36464) are helper plasmids containing four sequence-optimized genes from RSV 

strain A2, respectively: large polymerase (L), nucleoprotein (N), phosphoprotein (P) 

and matrix 2-1 protein (M2-1). 

The RSV-BAC and helper plasmids contain the gene under control of a T7 promotor. 

For this study, these plasmids were propagated in One ShotTM TOP 10 Chemically 

Competent E.coli under antibiotic selection with ampicillin. Plasmid extraction was 

performed using NucleoBond®Xtra Midi Kit (Macherey-Nagel). 

In addition, plasmid pEP-kanS, that contains gene for I-SceI recognition site and the 

kanamycin-resistance gene (KanR) (Tischer et al. 2006), was used as template for 
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mutagenesis PCR. This plasmid was a gift from Nikolaus Osterrieder (Addgene plasmid 

# 41017)  

 

 

3.1.4 Viruses 

Respiratory syncytial virus strain A2 that was first isolated in 1961 from a sick infant 

with bronchiolitis and bronchopneumonia in Melbourne, Australia was purchased at 

ATCC (ATCC®VR-1540PTM). ATCC®VR-1540PTM is a purified virus from original 

isolate to remove contaminating adenovirus type 1(Lewis FA et al. 1961, Cameron et al. 

2003). 

RSV-VI-1447 is a RSV isolate, which was a gift from Ortwin Adams, Duesseldorf, 

Germany. He detected in this isolate mutation N276S and mutation K272E. These 

mutation serve as palivizumab sensitive and resistant control in this work. 

3.1.5 Bacteria 

One ShotTM TOP 10 Chemically Competent E.coli was purchased from Thermo Fisher 

(Catalog Nr: C404010) and was used for plasmid propagation. Transformation was 

performed according to recommended protocol from the manufacturer. 

Figure 6: Map of recombinant RSV-BAC pSynkRSV-l19F and plasmid pEPkan-S. In the RSV-BAC 

pSynkRSV-l19F, the gene encoding the red fluorescent protein mKate2 is located right after the RSV 

leader sequence and followed by genes encoding for the RSV proteins. The plasmid pEPkans- S is 

constructed to harbor the kanamycin resistance gene aphAI and the I-SceI restriction site (Tischer et al. 

2006, Hotard et al. 2012). 
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E.coli GS1783 was kindly provided by Gregory Smith (Northwestern University, 

Chicago) and was used as host cells for performing “en passant” mutagenesis, a two 

steps “scarless” recombination method. This E.coli strain contains in its genome the 

Red genes to enable homologous recombination. Expressing of Red proteins is 

controlled by a temperature-inducible promotor. A successful application of en passant 

mutagenesis requires furthermore a transient expression of the endonuclease I-SceI 

enzyme. Therefore a gene encoding for the I-SceI is also integrated in the genome of 

E.coli GS 1783 (Tischer et al. 2010).  

3.1.7 Reagents for cell culture 

Dulbecco’s Modified Eagle Medium (DMEM)  (Gibco) 

Glasgow  Minimum Essential Medium (GMEM) (Gibco) 

Fetal calf serum (FCS), heat inactivated 56°C, 1h (Gibco) 

Dulbecco’s phosphate buffered saline (DPBS) (Gibco) 

TrypLE Express (Gibco) 

Penicillin/streptomycin (Gibco) 

BambankerTM, Serum-Free Cell Freezing Medium (Nippon 

Genetics) 

Minimal Essential Medium (MEM) Amino (50x) (Gibco) 

Tryptose Phosphate Broth (TPB) (1x) (Gibco) 

GeneticinTM (G418 Sulfate) (50mg/ml) (Gibco) 

Trypan blue (Sigma) 

Methylcellulose (MC) (Sigma) 

Colloidal microcrystalline cellulose (435244) (colloidal MCC) (Aldrich) 

Formula of growth medium for maintenance of cell culture: 

For Vero cells: DMEM, 5% FCS, 1% penicillin/streptomycin 
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For BSR T7/5:  GMEM, 5% FCS, 0.5% penicillin/streptomycin, 2% MEM amino 

acid (50x), 1% tryptose phosphate broth, additionally with 1mg/ml 

geneticin every other passage 

2% MC stock:  5 g MC in 250 ml PBS, disperse slowly, stir for 1 h, autoclaved and 

rehydration by stirring for several hours 

3% colloidal MCC: 3g colloidal MCC in 90 ml ddH2O, disperse slowly, stir for 1h.

 Add 10 ml 10xPBS, autoclaved and rehydration by stirring for 1h.  

3.1.8 Reagents for bacterial culture  

Luria Broth (LB) medium  (Carl Roth) 

Luria Broth (LB) agar (Carl Roth) 

Super Optimal Broth with Catabolic repressor (SOC) medium (Carl Roth) 

Kanamycin (Genaxxon) 

Chloramphenicol (BIO101) 

Ampicillin (Sigma) 

Glycerol (AppliChem) 

L-(+)-Arabinose (Sigma) 

Ampuwa (Fresenius) 

Formula of medium for maintenance of bacteria culture 

LB medium:  25 g LB granulate in 1 liter fully demineralized (VE) water 

 pH 7.0± 0.2 

 Composition: Trypton  10g/l 

  Yeast extracts  5g/l 

  Natrium chloride 10g/l 

 

LB agar:  40 g LB granulate in 1 liter VE water, pH 7.0± 0.2 

 Composition: Trypton  10g/l 
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  Yeast extracts  5g/l 

 Natrium chloride 10g/l 

 Agar agar 15g/l 

Antibiotics stock solution and working solution 

Kanamycin: 50 mg/ml in ddH20 (aliquot storage at -20°C) 

 Working solution: 50 µg/ml ≙ 85.8 µM (1:1000 dilution) 

Chloramphenicol:  10 mg/ml in methanol (storage at -20°C) 

 Working solution: 25 µg/ml ≙ 77.4 µM (1:400 dilution) 

Ampicillin:  100mg/ml in ddH20 (aliquot storage at -20°C) 

  Working solution: 100 µg/ml ≙ 286.2 µM (1:1000 dilution) 

Glycerol stock for long-term storage of bacteria  

 700µl overnight culture 

 300µl glycerol 

3.1.9 Reagents for PCR and sequencing 

Pwo Master  (Roche) 

 Compositons:  25U Pwo Super Yiel DNA polymerase   

 4 mM MgCl2 

 1.6 mM dNTPs 

 ∑250µl 

Primer (50pm)  (Biomers) 

pEP-kanS (Addgene plasmid # 41017) (Addgene)  

ExactRun-DNA Polymerase (2U/µl) (Genaxxon)  

ExactRun buffer 5x (with MgCl2) (Genaxxon) 

Set of dATP, dCTP, dGTP, dTTP (each 400µl, 100 mM) (Promega)  

ddH20, BioScience grade water (Carl Roth) 
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DpnI 20000U/ml  (NEBiolabs) 

10x Cutsmart® buffer (NEBiolabs) 

3.1.10 Primers for mutagenesis and sequencing  

All by HPLC purified primers were ordered from Biomers (Ulm, Germany). In addition 

to a universal KAN reverse primer (a gift from Prof. Sinzger, Ulm) , for each mutation 

three specific primers were required to construct the suitable PCR fragments for en 

passant mutagenesis: a forward long, forward short and a reverse primer. How to 

construct these primers will be descried in 3.2.1.1. In Table 3 all used primers for en 

passant mutagenesis are listed, and in Table 4 primers for sequencing. Note, primers 1F, 

4F, 5F and 2R are taken from previous publication (Xia et al. 2014). 

 

Table 3: Primers used for en passant mutagenesis 

Mutation Codon change Sequence 5’→3’ 

C21G TGC→GGT forward long:  

A GCA AAT GCA ATT ACC ACA ATC CTC GCT 

GCA GTC ACA TTT GGT TTT GCT TCT AGT 

CAA AAC ATaggatgacgacgataagtaggg 

forward short: 

AGCAAATGCAATTACCACAA 

reverse: 

A TTG ATA AAA TTC TTC AGT GAT GTT TTG 

ACT AGA AGC AAA ACC AAA TGT GAC TGC 

AGC GAG GAcaaccaattaaccaattctgattag 

Q34R CAA→CGA forward long: 

TGC TTT GCT TCT AGT CAA AAC ATC ACT 

GAA GAA TTT TAT CGA TCA ACA TGC AGT 

GCA GTT Aaggatgacgacgataagtaggg 

forward short: 

TGC TTT GCT TCT AGT CAA AA 

reverse: 

AGC ACT AAG ATA GCC TTT GCT AAC TGC 

ACT GCA TGT TGA TCG ATA AAA TTC TTC 

AGT GAT G caaccaattaaccaattctgattag 
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R49K AGA→AAA forward long: 

ACA TGC AGT GCA GTT AGC AAA GGC TAT 

CTT AGT GCT CTA AAA ACT GGT TGG TAT 

ACT AGT Gaggatgacgacgataagtaggg 

forward short: 

ACA TGC AGT GCA GTT AGC AA 

reverse: 

ACT TAA TTC TAT AGT TAT AAC ACT AGT 

ATA CCA ACC AGT TTT TAG AGC ACT AAG 

ATA GCC Tcaaccaattaaccaattctgattag 

T100S ACA→TCA forward long: 

T AAA AAT GCT GTA ACA GAA TTG CAG TTG 

CTC ATG CAA AGC TCA CCA GCA GCA AAC 

AAT CGAaggatgacgacgataagtaggg 

forward short: 

T AAA AAT GCT GTA ACA GAA T 

reverse: 

CT TGG TAG TTC TCT TCT GGC TCG ATT GTT 

TGC TGC TGG TGA GCT TTG CAT GAG CAA 

CTG CA caaccaattaaccaattctgattag 

A103P GCA→CCT forward long: 

T GTA ACA GAA TTG CAG TTG CTC ATG CAA 

AGC ACA CCA GCA CCT AAC AAT CGA GCC 

AGA AGA GA aggatgacgacgataagtaggg 

forward short: 

T GTA ACA GAA TTG CAG TTG C  

reverse: 

A ATT CAT AAA CCT TGG TAG TTC TCT TCT 

GGC TCG ATT GTT AGG TGC TGG TGT GCT 

TTG CAT GAcaaccaattaaccaattctgattag  
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C550Y TGT→TAC forward long: 

A ATA TTG TTA TCA TTA ATT GCT GTT GGA 

CTG CTC CTA TAC TAC AAG GCC AGA AGC 

ACA CCA ATaggatgacgacgataagtaggg 

forward short: 

A ATA TTG TTA TCA TTA ATT G 

reverse: 

G TTG ATC CTT GCT TAG TGT GAT TGG TGT 

GCT TCT GGC CTT GTA GTA TAG GAG CAG 

TCC AAC AGcaaccaattaaccaattctgattag 

A518V GCT→GIT forward long: 

TTT ATT CGT AAA TCC GAT GAA TTA TTA 

CAT AAT GTA AAT GTT GGT AAA TCA ACC 

ACA AAT Aaggatgacgacgataagtaggg 

forward short: 

TTT ATT CGT AAA TCC GAT GA 

reverse: 

AAT TAT AGT AGT TAT CAT GAT ATT TGT 

GGT TGA TTT ACC AAC ATT TAC ATT ATG 

TAA TAA Tcaaccaattaaccaattctgattag 

K272E 

(positive 

control) 

AAG→GAG forward long: 

G TCA TTA ATC AAT GAT ATG CCT ATA ACA 

AAT GAT CAG AAA GAG TTA ATG TCC AAC 

AAT GTT CAaggatgacgacgataagtaggg 

forward short: 

G TCA TTA ATC AAT GAT ATG C 

reverse: 

A ACT TTG CTG TCT AAC TAT TTG AAC ATT 

GTT GGA CAT TAA CTC TTT CTG ATC ATT 

TGT TAT AGcaaccaattaaccaattctgattag 
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N276S 

(negative 

control) 

AAC→AGC forward long: 

T GAT ATG CCT ATA ACA AAT GAT CAG AAA 

AAG TTA ATG TCC AGC AAT GTT CAA ATA 

GTT AGA CAaggatgacgacgataagtaggg 

forward short: 

T GAT ATG CCT ATA ACA AAT G 

reverse: 

A CAT GAT AGA GTA ACT TTG CTG TCT AAC 

TAT TTG AAC ATT GCT GGA CAT TAA CTT 

TTT CTG ATcaaccaattaaccaattctgattag 

universal KAN reverse caaccaattaaccaattctga 
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Table 4: Primers used for sequencing of RSV-BAC and recombinant virus. Annealing positions of 

these primers are shown in Appendix 1. 

Primer Sequence 5’→ 3’ 

1F (forward) GGGGCAAATAACAATGGAGTT (Xia et al. 2014) 

4F(forward) CAGCAAAGTGTTAGACCTCAA (Xia et al. 2014) 

5F(forward) TCAAAAACAGATGTAAGC (Xia et al. 2014) 

190R(reverse) CTGGTTAAGACACTAACTCC 

2R(reverse) CATTGTAAGAACATGATTAGGTGCT (Xia et al. 2014) 

 

3.1.11 Reagents for gel electrophoresis 

Rotiphorese ® 10x TBE Buffer (Carl Roth) 

 Composition: 1.0 M Tris-Borate  

  20 mM EDTA  

  in distilled, deionized water pH 8.3  

SeaKemLE agarose  (Lonza) 

Midori Green Advance (Biozym) 

100 bp Ladder (1,0 µg/ml) (Invitrogen) 

Gel loading dye, purple (6x) (NEB biolabs) 

Formula and working solution 

1x TBE buffer: 1:10 dilution of 10x TBE buffer with VE water 

Agarose gel 1%: 0.5 g SeaKemLE agarose, ad 50 ml 1x TBE buffer 

  Add 2µl Midori Green after boiling 

100 bp Ladder 1:4 dilution with BioScience Grade water 

Gel loading  10 µl DNA  

  2µl Gel loading dye 
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3.1.12 Reagents for transfection 

LipofectaminTM 2000 Transfection Reagent (1mg/ml) (Invitrogen) 

Opti-MEM Reduced Serum Medium (Gibco) 

pA2-Lopt helper plasmid (100µg/ml)  (Bei Resources) 

pA2-Nopt helper plasmid (100µg/ml) (Bei Resources) 

pA2-Popt helper plasmid (100µg/ml) (Bei Resources) 

pA2-M2-1opt helper plasmid (100µg/ml) (Bei Resources) 

3.1.13 Reagents for immunofluorescence and flow cytometry 

10x Phosphate buffered saline (PBS) pH 7.2 (Gibco) 

Paraformaldehyde (PFA) (Merck) 

Acetone  (Applichem) 

Dimethylsulfoxid (DMSO) (Applichem) 

Fluorescein diacetate (FDA) (Sigma) 

Primary antibody (Merck) 

-Mouse anti-RSV fusion protein monoclonal antibody MAB8599, 

clone 131-2A (1mg/ml) 

-Mouse anti-RSV nucleoprotein monoclonal antibody MAB858-3, 

clone 130/12H (1mg/ml) 

Secondary anibody (Dianova) 

 -Cy3-labeled goat-anti-mouse antibody 

Formula of stock solution and working solution 

1x PBS buffer   50 ml 10x PBS buffer 

   450 ml aqua bidest 

   2,5 ml FCS (0,5%) sterile filtrated 

Primary antibody  1:1500 dilution in 1x PBS buffer 
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Secondary antibody  1:300 dilution in 1x PBS buffer 

Acetone 80 %  400 ml Acetone 

   100 ml aqua bidest 

4% PFA solution  10g PFA 

   Ad 250 ml 1x PBS buffer 

 Heat in water bath at 50°C until completely dissolved 

storage at -20°C 

   Working solution: 1:2 dilution in PBS (2% PFA) 

FDA stock  1mg/ml FDA solution in DMSO  

   Storage at -20°C 

   Working solution 4:10000 dilution in 1x PBS (0,4µl in 1 ml) 

3.1.14 Consumables 

2mm electroporation cuvettes (Biozym) 

5 ml polystyrene round-bottom tubes (Falcon) 

6-well plates (Greiner) 

24-well plates (Greiner) 

96-well plates (Greiner) 

Cell culture flasks 25 cm2 (Greiner) 

Cell culture flasks 75 cm2 (Greiner) 

Cell culture flasks 175 cm2 (Greiner) 

Cryotubes 2 ml (Greiner) 

Drigalski spatula (neoLab) 

EASYstrainer® 40µm (Greiner) 

EASYstrainer® 70µm (Greiner) 

EASYstrainer® 100µm (Greiner) 
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Falcon tubes 15 ml (Falcon) 

Falcon tubes 50ml (Falcon) 

TipOne® pipet tips with filter 10/20 µl (Starlab) 

TipOne® pipet tips with filter 100 µl (Starlab) 

TipOne® pipet tips with filter 1000 µl (Starlab) 

PCR reaction tubes 0.2 ml (Sarstedt) 

PCR reaction tubes 0.5 ml (Sarstedt) 

Petri dish (Multimed Biotech) 

Reaction tubes 1.5 ml (Eppendorf) 

Reaction tubes 2 ml (Eppendorf) 

Syringe 5 ml (Becton-Dickinson) 

Syringe 50 ml (Becton-Dickinson) 

Millex sterile filters 0.22 µm (Merck) 

Minisart sterile filters 0.45 µm (Satorius) 

Stripettes 5 ml (Costar) 

Stripettes 10 ml (Costar) 

Stripettes 25 ml (Costar) 

UVette® 220 nm-1600 nm (Eppendorf) 

3.1.15 Kits 

NucleoSpin Gel and PCR cleanup (Macherey-Nagel) 

NucleoSpin Plasmid (Macherey-Nagel) 

NucleoBond Xtra Midi (Macherey-Nagel) 

QIAamp Viral RNA Mini kit (Qiagen) 

Transcriptor First Strand cDNA Synthesis Kit (Roche) 
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3.1.16 Small appliances 

Gel electrophoresis chamber (Hybaid) 

Heating block (Heidolph) 

Microwave oven (AEG) 

Photometer (Eppendorf) 

Thermomixer 5436, comfort (Eppendorf) 

Vortex (Heidelph) 

3.1.17 Large equipment 

Axiovert200 fluorescence microscope  (Zeiss) 

Centrifuges: 

 -Eppendorf 5415D (Eppendorf) 

 -Eppendorf 5417R (Eppendorf) 

 -Megafuge 10R (Heraeus) 

 -Rotina 48R (Hettich) 

Lamina flow (BDK) 

CO2-incubator (Labotech, Heraeus) 

Axiovert 25 microscope (Zeiss) 

Electroporator (Biorad) 

Peltier Thermal Cycle 200 (MJ Research) 

Shaker (B. Braun 

  Biotech Intern.) 

UV-transluminator (Bachofer) 

Water bath (GFL) 

FACSCalibur (Becton-Dickinson) 
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3.2 Methods 

3.2.1 Cell culture 

African green monkey cells (Vero) that were used for all experiments involving 

respiratory syncytial virus were maintained in DMEM supplemented with 5% fetal calf 

serum (FCS) and 1% penicillin/streptomycin (P/S). Medium was renewed every 4 days 

and cells were splitted in ratio 1:6 after 7-10 days, when the monolayer became 

confluent. Cells were subcultivated as following procedure. After discarding the 

exhausted culture medium, the cell monolayer was briefly rinsed with DPBS and the 

appropriated amount of TrypLE Express was added to flask and incubated for 5 min 

(Table 5). The same amount of complete growth medium was added and cells were 

aspirated by gently pipetting. The appropriated aliquots of the cell suspension were 

transferred to new culture flask and filled to required volume with fresh growth medium 

(Table 5). 

Table 5: Cell culture 

 25 cm2 flask 75cm2 flask 175 cm2 flask 

TrypLE express 1 ml 3ml 7 ml 

Total volume of growth medium 5 ml 15 ml 20 ml 

BSR T7/5 cells are baby hamster kidney 21 (BHK-21) cells that constitutively express 

T7 RNA polymerase. This cell line was used for transfection of RSV-BAC DNA, and 

was cultured in GMEM supplemented with 5% fetal calf serum (FCS), 0.5% 

penicillin/streptomycin (P/S), 2% MEM amino acid and 1% tryptose phosphate broth. 

BSR T7/5 cells were subcultivated in ratio 1:3 once a week and growth medium was 

renewed after 3-4 days. Subcultivation was analogously to the described procedure for 

Vero. In addition, the growth medium was supplemented with 1 mg/ml Geneticin each 

other passage to maintain the expression of T7 polymerase. 

3.2.2 Generation of recombinant RSV mutants using en passant mutagenesis 

En passant mutagenesis is a recombination technique that was established by Tischer 

and his research group (Tischer et al. 2006, Tischer et al. 2010). This method consists of 
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two successive homologous recombination steps. In the first one, PCR product 

containing the viral target point mutation, the I-SceI recognition site, the positive 

selection marker and the required length of homologous sequences is introduced into 

the target gene. Recombination has been mediated by Red proteins. The positive 

selection marker contributes to distinguish bacteria in which the recombination with 

BAC has been successful. Subsequently, the I-SceI recognition site together with the 

gene for the positive selection marker will be removed. As result, the introduced point 

mutation is the only modification left in the target sequence. Following, this method 

will be described in details. 

3.2.2.1 Generation of PCR-products with defined point-mutations 

The first step in en passant mutagenesis was the amplification of positive selection 

marker KanR from the plasmid pEPkan-S. Furthermore, the resulted PCR-product had 

to contain following components. In particular, the I-SceI recognition site followed by 

the kanamycin-resistance gene was flanked in both directions upstream and downstream 

by homologous sequences harboring the new sequence of mutation (Figure 7). Thus, 

constructing appropriate primers for mutagenesis PCR played an important role. The 

forward long primer started at its 5’end with 2 homologous segments (I and II), each 

app. 20 bp in length, followed by sequence of the target mutation (red mark) and the 

third homologous segment (III). At its 3’end was the annealing sequence to the 

selection marker cassette. As using plasmid pEPkan-S to amplify the kanamycin-

resistance gene, the 3’ end of the forward long primer was represent by the sequence 5’-

aggatgacgacgataagtaggg-3’, in which part of the I-SceI recognition site was 

implemented (marked in bold) (Tischer et al. 2006). The reverse primer containing the 

reverse complement sequence of the target gene with the modified nucleotide was 

constructed in the same way, and had in its 3’end the sequence 5’-

caaccaattaaccaattctgattag-3’. The revers and forward long primers were both 

approximately 80 bp in length. The forward short primer had the identical sequence to 

the first homologous block (I) of the forward long primer. The universal KAN reverse 

primer contained reverse complement sequence to the kanamycin-resistance gene on 

plasmid pEPkan-S and was 21 bp long. All constructed primers are listed in 3.1.10, 

Table 3. 
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Figure 7: Construction of PCR fragments for en passant mutagenesis and illustration of required 

primer sequence for PCR. Each colors block (black, blue, green, orange) represents a homologous 

segment on the target gene and is app. 20 bp in length. The red mark stays for the to be introduced 

mutation. 

Kan-R II         III         IV 

 primer 
forward long

 

primer 
forward short

 primer 
reverse

 

5‘ 3‘ 

primer 
universal KAN reverse

 

PCR product 

1.PCR 

2.PCR 

I           II         III 

I-SceI 

Appropriate PCR fragments for en passant mutagenesis were obtained after two 

successive PCRs. For the first PCR, only the forward long and the universal KAN 

revers primers were used, and for the second the forward short and the reverse primers. 

Purified product of the first PCR served as template for the second one. Components 

and their amounts used for mutagenesis PCR are listed in Table 6.  

 

 

 

 

 

Table 6: Mutagenesis PCR reaction components 

1. PCR 2. PCR 

  Components Volume Components Volume 

Primer forward long (50pm) 0,5 µl Primer forward short (50pm) 1 µl 

Primer uni. KAN reverse (50pm) 0,5 µl Primer reverse (50pm) 1µl 

Pwo Master (2x concentrated) 25 µl Pwo Master (2x concentrated) 50 µl 

pEPkan-S (1ng/µl) 0,5 µl Purified 1. PCR product 1 µl 

ddH20 23,5 µl ddH20 47 µl 

Total 50 µl Total 100 µl 

Purified and eluate in ddH20 25 µl Purified and eluate in ddH20 50 µl 
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The thermal cycle for mutagenesis PCR contains two successive cycling phases with 

different annealing temperatures. In the first cycling phase, primers were allowed to 

bind template DNA at 51°C and in the second at 60°C. The first phase was programmed 

to run for 9 cycles and the second one for 24 cycles. Details of the PCR thermal cycler 

are shown in Table 7.  

 

Table 7: PCR condition (Thermal cycler) 

Cycle step Temperature Time Cycle 

Initial denaturation 95°C 5 min 1 

Denaturation 95°C 45 s 

9 Annealing 51°C 2 min 

Elongation 68°C 2 min 

Denaturation 95°C 45s 

24 Annealing 60°C 2 min 

Elongation 68°C 2 min 

Final elongation 68°C 10 min 1 

 

3.2.2.2 Gel electrophoresis 

Success of mutagenesis PCR was than checked by gel electrophoresis on 1% Agarose-

gels. 0,5g of Agarose were suspended in 50 ml 1x TBE buffer and boiled in a 

microwave until completely dissolved. After supplement of 2 µl Midori Green, the 

solution was allowed for gelation at room temperature in a suitable gel-chamber. Before 

loading onto the agarose-gel, 10µl of the PCR product were mixed with 2 µl of the 

loading dye. Lengths of PCR products were compared with a 100 bp DNA ladder, 

which was treated in the same way with loading dye and loaded on the first lane of each 

gel. Gel electrophoresis was run at 100 Volt and for 30 to 45 min. 
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Table 8:  DpnI digestion 

3.2.2.3 Purification of PCR-products and DpnI digestion 

After each PCR, the reaction mixtures were purified using the kit “NucleoSpin Gel and 

PCR clean up” by Macherey-Nagel. In brief, PCR products were allowed to react with a 

double amount of binding buffer. Subsequently, the mixture was loaded onto the 

NucleoSpin column, and centrifuged at 11000 rpm for 1 min. This was followed by a 

wash with 600 µl washing buffer, and centrifuged at 11000 rpm for 1 min. Silica-

membrane was then dried by a centrifugation at 11000 rpm for 2 min. Instead of NE 

buffer as recommended by Macherey-Nagel, PCR products were eluted in ddH20 (Table 

6) and stored at 4°C until further use.  

In addition to a standard clean-up, the end PCR 

products need to be digested by DpnI to remove the 

pEPkan-S plasmid before transformation. Because 

of encoding of the kanamycin-resistance gene, this 

plasmid was used as template in the first 

mutagenesis PCR for amplification of the positive 

selection marker, the kanamycin resistance gene 

KanR. Presence of this plasmid as contamination in bacterial cells will lead to an 

unintended expression of kanamycin-resistance gene and yield a false positive selection 

of bacterial colony with the correct incorporated PCR-products. Hence, this template 

plasmid needs to be completely clarified out of the PCR-product bevor electroporation. 

DpnI is a methylation-sensitive restriction enzyme, which digests only methylated DNA 

(Figure 8). As a consequence, only the template DNA is cleaved and the PCR products 

remained unaffected. 

DpnI digestion was performed in a total volume of 50 

µl (Table 8) and incubated at 37°C for 2-2,5h. 

Afterwards, the digested mixture was purified using 

the kit “NucleoSpin Gel and PCR clean up” and eluted 

in 15 µl ddH2O. If transformation into E.coli GS1783 

would be performed on the same day, this product 

would be stored on ice, otherwise at 4°C. 

Components Volume 

PCR product 40µl 

10x Cutsmart buffer NEB 5 µl 

DpnI 3 µl 

ddH2O 2 µl 

Total 50 µl 

Figure 8: Recognition site of DpnI 

restriction enzyme. Picture taken from 

the NEB website 
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3.2.2.4 Generation of electrocompetent E.coli GS1783 for transformation and 

BAC-mutagenesis 

To enable RSV-BAC-mutagenesis within E.coli GS1783, the RSV-BAC had to be 

transformed firstly into E.coli GS1783. This resulted in the E.coli GS 1783/pSynkRSV-

l19F strain, that gained the chloramphenicol resistance phenotype caused by newly 

harbored BAC. Transformation was performed by electroporation as described below. 

3.2.2.4.1 Generation of E.coli GS 1783/pSynkRSV-l19F 

An overnight culture of E.coli GS1783 was prepared a day before performing 

electroporation by inoculating a small amount of the bacteria glycerol stock in 10 ml 

LB- medium. On the day of experiment, 1 ml of the overnight culture was reinoculated 

in 50 ml LB-medium and grown at 32°C, 200 rpm for 3h. The suspension was than 

cooled down on ice for at least 20 min. In the following steps, the bacteria were kept 

preferably cooled on ice. Likewise, all consumables e.g. pipets, electroporation cuvettes, 

and all reagents e.g. ddH20 (Ampuwa), PCR products were pre-cooled on ice. After 

chilling, bacteria were pelleted by centrifugation at 4000 rpm, 4°C for 10 min. The 

supernatant was discarded and the pellet was resuspended in the residual liquid by 

shaking the falcon in an ice-cold water bath before adding ddH20 to a total volume of 50 

ml. Bacteria were then again pelleted by centrifugation at 4000 rpm, 4°C for 5 min. This 

washing step was repeated for at least three times to remove as much as possible salt 

left-over from the growth medium to prevent an electrical “bang” during 

electroporation. After discarding of the supernatant in the last washing step, the bacteria 

were resuspended in the remaining water and keep cold on ice. These bacteria became 

electrocompetent after this preparation procedure and were ready for electroporation. 

A mixture of 2µl pSynkRSV-l19F plasmid DNA and 100 µl bacteria was then 

transferred into a chilled 2 mm electroporation cuvette and immediately electroporated 

according to a pre-set protocol of Bio-Rad for E.coli with 2500 V, 25 µF and 200Ω. 

Straightway after pulsing, 1 ml 32°C pre-warmed SOC-medium was added to the 

bacteria, mixed by pipetting up and down once. The mixture was transfer to a 1.5 ml 

Eppendorf tube and shaken at 32°C, 200 rpm for 2 h. In this time, the chloramphenicol 

resistance gene on plasmid pSynkRSV-l19F is expressed and allowed growth of 
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successfully transformed E.coli GS1783/pSynkRSV-l19F on agar plate in the presence 

of chloramphenicol (25µg/ml). After 2h incubation, the bacteria were pelleted at 6000 x 

g for 30 s, 800µl of the supernatant were discarded. Pellet was then resuspended in the 

residual growth medium and plated on 2 LB-agar plates with 25µg/ml chloramphenicol, 

each with 100 µl of the bacteria suspension. These plates were than incubated overnight 

at 32°C. Success of transformation of pSynkRSV-l19F into E.coli GS1783 was checked 

additionally by PCR and sequencing. Several glycerol stocks of this E.coli GS 

1783/pSynkRSV-l19F strain were aliquoted and stored at -80°C. 

3.2.2.4.2 BAC-mutagenesis: Generation of E.coli GS 1783/pSynkRSV-l19F with 

defined point mutation 

PCR products were than electroporated into E.coli GS1783/pSynkRSV-l19F for 

mutagenesis. Preparation of electrocompetent E.coli GS1783/pSynkRSV-l19F for 

transformation was performed with the same procedures as describe above, with 

following changes.  

-E.coli GS 1783/pSynkRSV-l19F was grown in presence of 25 µg/ml chloramphenicol: 

overnight culture was prepared in 10 ml LB- medium with 25 µl chloramphenicol stock 

solution and likewise, on the next day in 50 ml LB-medium with 125 µl 

chloramphenicol stock solution. 

- After the 3h incubation time on the next morning, the flask was transferred to a pre-

heated water bath at 42°C, and shaken for exactly 15 min. In this time, expression of the 

Red recombinase proteins for homologous recombination is induced. 

- For electroporation, 5µl of purified PCR-product were mixed with 100 µl of 

electrocompetent bacteria. As transformation of PCR-product into E.coli 

GS1783/pSynkRSV-l19F happened, the PCR-products were incorporated in to the 

plasmid pSynkRSV-l19F through homologous recombination carried out by the 

previously induced Red proteins (Figure 9). By means of the expression of the 

kanamycin-resistance gene encoded on the PCR-product, the bacteria became resistant 

to kanamycin. Thus, selection of successful transformed bacteria now took place on LB-

agar plates containing both chloramphenicol and kanamycin. Therefore, after 2 h 

incubation following electroporation the bacteria were pelleted, 800 µl of supernatant 

were discarded. Bacteria were resuspended and plated on 2 LB-agar plates with 
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25µg/ml chloramphenicol and 50 µg/ml kanamycin, each with 100 µl of the bacteria 

suspension and incubated overnight at 32°C.  

 

RSV target gene 

Red recombination, 

induced at 42°C 

 

Chloramphenicol- 

resistance gene 

I-SceI 

RSV-BAC pSynkRSV-l19F  

Kan-R II         III         IV I           II         III 

Kan-R II         III         IV 5

‘ 
3

‘ 

I           II         III 

I-SceI 

I           II         III          IV 

RSV-BAC pSynkRSV-l19F  

Chloramphenicol- 

resistance gene 

PCR product 

Figure 9: First recombination step in en passant mutagenesis. Expression of Red proteins was 

induced in water bath at 42°C for 15 min. By means of electroporation, the PCR-products were 

transferred into E.coli GS1783/pSynRSV-l19F.  Afterwards, a homologous recombination between the 

PCR-products and RSV target gene were mediated by the transient expressed Red proteins. As result, 

the PCR-product with its kanamycin-resistance gene was incorporated into the RSV-BAC and E.coli 

GS1783/pSynRSV-l119F became resistant to kanamycin. 
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3.2.2.5 Removal of the positive selection marker 

In the second recombination of en passant mutagenesis, the positive selection marker 

cassette would be removed completely. Three to four colonies of E.coli with the 

mutated BAC were selected and inoculated respectively in 1 ml LB-medium with 2.5 µl 

chloramphenicol stock solution overnight at 32°C, 200 rpm. On the next day, 100 µl of 

each overnight culture were transferred into 2 ml LB-medium containing 5 µl 

chloramphenicol stock solution and incubated for 2 h. Afterwards,  2 ml pre-warmed 

LB-medium containing 2% arabinose 

and 5 µl chloramphenicol were added  

into the bacteria culture and 

incubated for another 1 hour. By 

supplement the growth medium with 

arabinose, the expression of I-SceI enzyme will be induced. The gene encoding for the 

I-SceI enzyme is already integrated in the genome of E.coli GS1783 and its expression 

is controlled by an arabinose-induced promotor. The endonuclease I-SceI bound and 

cleaved at its recognition site on the previously constructed PCR segment that was now 

incorporated in the RSV-BAC. By this restriction, the RSV- BAC was linearized 

(Figure 11). I-SceI recognition site (Figure 10) on the PCR-product is the unique one in 

this system. After 1h incubation period, bacteria cultures were moved to a 42°C pre-

heated water bath and shake at 100 rpm for 30 min. During this time, expression of Red 

recombinase proteins were induced and it led to the second homologous recombination, 

which was mediated between the identical sequence segments II and III on both ends of 

the linearized RSV-BAC. In that way, the RSV-BAC is recirculated, and the point 

mutation remained as the only modification on the RSV-BAC. After induction at 42°C, 

bacteria cultured were shaken again at 32°C, 200 rpm for further 2 h. Then, 0.5 µl of 

bacteria culture were diluted in 5 ml LB-medium, and 100 µl from this suspension was 

plated on a freshly prepared LB-agar plate supplemented with 1% arabinose and 25 

µg/ml chloramphenicol. Plates were incubated overnight at 32°C.  

 

5’…TAGGGATAA▼CAGGGTAAT…3‘ 

3‘…ATCCC ▲TAT TGTCCCATTA…5‘ 

Figure 10: I-SceI recognition site. 
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Figure 11: The second homologous recombination in en passant mutagenesis. In this step the 

selection marker was removed completely, leaving the point mutation as the only modification on the 

RSV-BAC pSynKRSV-l19F. Expression of the I-SceI endonuclease was induced by adding arabinose 

into the growth medium. RSV-BAC was than cleaved by the I-SceI with in its recognition site on the 

PCR fragment that was incorporated into the RSV-BAC previously. Thereby, the RSV-BAC was 

linearized. As expression of Red-proteins had been induced at 42°C, the second homologous 

recombination was mediated between the both ends of the linearized BAC, in position of the segment II 

and III. Thus, the RSV-BAC was recirculated while all foreign sequences were removed and the point 

mutation remained as the only modification. 

RSV-BAC pSynkRSV-l19F  
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On the following day, negative selection was performed in order to distinguish bacteria 

colonies, in which the kanamycin-resistance gene had been removed successfully. 

Therefore, 12 colonies of E.coli were randomly chosen, and resuspended in 20 µl LB-

medium, respectively. Each 10 µl of the suspension were dripped on a LB-agar plate 

containing chloramphenicol (25 µg/ml) and on a LB-agar plate containing both 

chloramphenicol (25 µg/ml) and kanamycin (50µg/ml). These colonies were each 

identified to enable selection. Colonies with successful removal of the kanamycin 

cassette were these, that were growing in the presence of chloramphenicol and not of 

kanamycin. Both plates were incubated at 32°C overnight and evaluated on the next 

day. 

3.2.2.6 Extraction of BAC-DNA by mini-preparation 

To ensure the successful mutagenesis of the RSV-BAC, sequencing of the segment of 

interest on the F-gene of RSV-BAC was executed.  Therefore, a mini-preparation was 

performed to extract RSV-BAC DNA. Used was the “NucleoSpin Plasmid” kit by 

Macherey-Nagel according to its recommended protocol for isolation of low-copy 

plasmids. In brief, several kanamycin-sensitive colonies were picked and inoculated 

respectively in 5 ml LB-medium supplemented with 12.5 µl chloramphenicol stock 

solution, shaken overnight at 32 °C, 200 rpm. On the next morning, the saturated 

bacteria cultures were pelleted at 4000 x g for 10 min. As much as possible of liquid of 

the supernatant was discarded. The pellet was completely resuspended in 500 µl buffer 

A1 (resuspension buffer supplemented with RNase A). 500µl buffer A2 (lysis buffer) 

were added to the reaction mixture and gently mixed by inverting the tube 6-8 times. 

After incubation period of 5 min, 600 µl buffer A3 (neutralization buffer) were added to 

stop the cell lysis reaction and gently mixed again by inverting to tube 6-8 times. Lysate 

was then clarified by centrifugation for 10 min at 11,000 x g. To allow DNA bind to the 

silica-membrane of the NucleoSpin® Plasmid Column, the supernatant was loaded step-

by-step onto the column and centrifuged for 1 min at 11,000 x g. Flow-through was 

discarded and column was washed with 600 µl buffer A4 (supplemented with ethanol) 

by centrifugation for 1 min at 11,000 x g. Flow-through was discarded again and the 

silica membrane was dried by centrifugation for 2 min at 11,000 x g. The bound DNA 

were eluted in 50 µl ddH20 for 2 min at 70°C and followed by a centrifugation for 1 min 

at 11,000 x g. Isolated DNA was stored at 4°C until further use. 
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3.2.2.7 Control of successful mutagenesis by sequencing 

From the isolated DNA by the mini-preparation, the region of interest on the F gen on 

the RSV-BAC was amplified and sequenced in order to verify the success of the 

mutagenesis. The component for PCR and thermal cycle conditions are shown in Table 

9.  After the amplification, PCR products were purified using the kit “NucleoSpin Gel 

and PCR clean up”, eluted in 50 µl ddH20 and checked on a 1% agarose gel.  

Concentration of the purified PCR product had to be adjusted to 20 - 80 ng/µl for 

sequencing. Subsequently, 5 µl of the adjusted PCR product and 5 µl of a suitable 

primer (5 pmol/µl) were mixed in a 1.5 ml tube and sent to the company GATC Biotech 

(Konstanz, Germany) for sequencing. Quality service chosen from GATC: Sanger 

sequencing- LIGHTRUN tube. 

 

Table 9: Used components for PCR and thermal cycle conditions.  PCR was performed in a total 

volume of 50 µl. 

 

3.2.2.8 Midi-preparation for transfection 

As the mutagenesis had been checked by sequencing, a midi-preparation was performed 

to isolate a sufficient amount of BAC-DNA for transfection into BSR T7/5 cells. 

Isolation was performed with the kit “NucleoBond Xtra Midi” by Macherey-Nagel 

according to the protocol high-copy plasmid purification. Therefore, the appropriate 

Component Volume Thermal cycle conditions 

5x ExactRun buffer 10 µl Cycle step Temp Time Cycles 

dNTP’s each 25 mM 0,5 µl Initial denaturation 98°C 30 s 1 

ddH2O 33 µl Denaturation 98°C 7s 

35 Primer forward 0,5 µl Annealing 52°C 30 s 

Primer reverse 0,5 µl Extension 72°C 1 min 

ExactRun Polymerase 0,5 µl Final extension 72°C 10 min 1 

Template DNA 5 µl Cool down 20°C 1 min 1 

Total 50 µl     
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bacteria colony was inoculated in 100 ml LB-medium supplemented with 250 µl 

chloramphenicol stock solution overnight at 32°C, 200 rpm. From this overnight 

culture, 1 ml glycerol stock was prepared and frozen at -80°C for long-term storage. 

The remained bacteria were then pelleted at 4°C, 4000 x g for 15 min. The supernatant 

was discarded completely. The pellet was resuspended in 8 ml of the resuspension 

buffer RES supplemented with RNase A. In a following step, bacteria were lysed with 8 

ml of the lysis buffer LYS for 5 min. During that time, the tube was gently mixed by 

inverting 5 times and the NucleoBond® Xtra column was equilibrated by wetting the 

column filter with 12 ml of equilibration buffer EQU. The lysis reaction was then 

stopped with 8 ml neutralization buffer NEU. Next, the lysate was load onto the column 

through the equilibrated filter, step-by-step. The filter held back the precipitate to 

prevent the column from clogging. To wash the remaining lysate out of the filter and 

enrich the DNA concentration, 5 ml of buffer EQU were applied carefully to the funnel 

shaped rim of the filter. Column filter was than discarded and column was washed with 

8 ml buffer WASH. Plasmid DNA were then eluted with 5 ml elution buffer ELU and 

collected in a 15 ml falcon. 3.5 ml room-temperature (RT) isopropanol were added to 

precipitate the eluted plasmid DNA and the mixture was centrifuged at RT, 4000 x g for 

30 min. Supernatant was discarded and 2 ml of RT 70% ethanol were added to the pellet 

and centrifuged at RT, 4000 x g for 15 min. Ethanol was removed and pellet was dried 

at RT for 5-10 min. Subsequently, the DNA pellet was dissolved in 100 µl ddH20 and 

stored at 4°C. Concentration of DNA was determined by photometry. 

3.2.2.9 Transfection of the BAC-DNA into BSR T7/5 cells and virus growth 

Usually on the next day of midi-preparation, transfection was performed using the 

transfection reagent Lipofectamin® 2000. The following protocol were adapted from 

Hotard et al. 2012 and partially modified.  

A day prior transfection, 4.5x104 BSR T7/5 cells/well were seeded on a 6-well plate and 

incubated at 37°C, 5% CO2. For each RSV mutant, transfection was performed in 

duplicate. The following given amount is for one reaction.  4.5 µl of the Lipofectamine 

reagent were diluted with 250 ml Opti-MEM and incubated at RT for 5 min. In a 1.5 ml 

Eppendorf tube, 0.8 µg of RSV-BAC plasmid DNA and 0.4 µg of each helper plasmids 

in particular pA2-Lopt, pA2-Nopt, pA2-Popt and pA2-M2-1opt, were gently mixed 
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together and filled up to a total volume of 250 µl with Opti-MEM. 250 µl of the 

Lipofectamine dilution and 250 µl of plasmid DNA solution were combined and gently 

mixed. This transfection mixture was than incubated at RT for 20 min to allow the 

formation of DNA-cationic lipid complex. During this time, growth medium for BSR 

T7/5 cells were renewed with 2 ml of GMEM (supplemented with 5%FCS, 0.5 % P/S, 

2% MEM amino acid, and 1% TPB). 500 µl of the transfection complex was dripped 

slowly to the well and plate was incubated at RT on a rocker set at low speed. After an 

incubation time of 2 h, 500 µl of GMEM was added to the well and plate was incubated 

at 37°C, 5% CO2 to the next day. On the next day, transfection mixture was aspirated 

from the well, and replaced with 2 ml fresh GMEM. Tissue culture plate was then 

incubated at 37°C, 5% CO2. Growth medium was renewed again on the next day, and 

on the third day cells from both transfection reactions were subcultivated into a 75 cm2 

flask. Growth medium were renewed every other days and culture was sub-passed at 

ratio 1:3 if necessary. Rescue of RSV can be monitored by fluorescent signal of the 

mKate2 protein, which gene is encoded in the RSV-BAC. As 100% of the monolayer 

was infected, the supernatant was collected in a tube. Incompletely budded virions were 

released from cell membrane by one freeze and thaw cycle of the cells layer. After 

thawing, the virus supernatant was used again to aspirate cells from the bottom of the 

flask and to collect the released virions. Subsequently, this suspension was centrifuged  

at 1700 rpm for 5 min to remove cell debris. The clarified supernatant was used to infect 

Vero cells for further virus propagation. Usually after further 2 to 3 passages, Vero cells 

were completely infected and the virus supernatant could be harvested in the same 

manner. Virus supernatant was aliquoted and frozen at -80°C for further experiments. In 

order to check for the presence of the desired mutation and absence of any unintended 

base changes emerged during the whole procedures, viral RNA was isolated from 140µl 

of supernatant using the “QIAamp Viral RNA Mini kit” and subsequently reverse 

transcribed into cDNA  by the “Transcriptor First Strand cDNA Synthesis” Kit (Roche). 

Following, the F gene on cDNA was amplified and sequenced as describe above in 

section 3.2.2.7. 
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3.2.3 Phenotypic characterization of recombinant RSV mutants 

In this work, the recombinant RSVs were characterized concerning their growth kinetics 

and their susceptibility to palivizumab. For these assays, the virus titer in the 

supernatant had to be determined previously. 

3.2.3.1 Determination of virus titer as fluorescence-forming units/ml (FFU/ml) 

One day prior the examination, 2x104 Vero cells/well were seeded on a 96-well plate in 

a volume of 100 µl/well and incubated at 37°C, 5% CO2 overnight to enable a confluent 

growth of cells on the bottom of the wells.  For the assay, one virus aliquot was thawed 

at RT and a 10-fold serial dilution of the virus supernatant ranging from 10-1 to 10-6 was 

prepared with DMEM. 100 µl of each dilution were inoculated onto the Vero cells 

monolayer and incubated at 37°C, 5% CO2 for 20-24 hours. For each dilution, 8 

replicate test units were performed. After the incubation period, evaluation could be 

done directly by counting the fluorescence-forming units (FFU), or for later evaluation 

the cells could be fixed with 2% paraformaldehyde at 37°C for 10 min. For accuracy, 

only dilution that exhibited 10-100 FFU/well was counted. The calculation can be 

explained by the following example demonstrated in Figure 12. For example, at dilution 

10-4, each test well had an average of 23 FFU in 100 µl, or it means 230 FFU in 1 ml. 

And the titer of the virus stock is therefore 230x104 FFU/ml or 2.3x106 FFU/ml.  

Because of the encoded fluorescence protein mKate2 on the RSV-BAC pSynkRSV-

l19F, infection caused by virus rescued from this plasmid can be monitored directly 

after the inoculation period. But for the clinical strain RSV A2 that did not contained a 

tagged fluorescent gene in its genome, a staining to visualize viral protein had to be 

performed prior evaluation. Therefore, cells were fixed and permeabilized with 100 µl 

80% acetone for 5 min at RT and washed subsequently twice with 100 µl PBS. 

Immunofluorescent staining of RSV-proteins was performed by incubation the tissue 

culture with 100 µl primary antibody (either with monoclonal IgG mouse antibody 

against RSV fusion protein or RSV nucleoprotein, dilution 1:1500 in PBS) for 2h at 

37°C, 5%CO2, or overnight at 4°C. This was followed by two washing steps, each with 

100 µl PBS. The primary antibody was then allowed to react with 100 µl of the 

secondary antibody (Cy3-labeled goat-anti-mouse, dilution 1:300 in PBS) for 2h at 
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37°C, 5% CO2. Following, the cells were washed twice with 100 µl PBS, and then wells 

were filled with 200 µl PBS and stored in the dark at 4°C. 

 

Figure 12: Illustration of plating an assay to determine virus titer as florescent-forming unit and as 

TCID50. Each well was inoculated with 100 µl of the virus dilution. For the virus supernatant 1, virus titer 

as FFU/ml were determined 1 day after inoculation by counting the fluorescent foci in the virus dilution 

that exhibited 10-100 FFU per well. An average of all 8 replicate test units was calculated, for this 

example: in dilution 10-4 there was 23 FFU/100µl, is therefore 2.3x106 FFU/ml. For the virus supernatant 

2, virus titer as log TCID50/ml was determined by searching for positive fluorescent signal from the 

highest dilution giving 100% CPE (+) to the last one giving no CPE (-) and calculated as writing in the 

figure above.  

 

3.2.3.2 Determination of virus titer as TCID50 by end-point dilution assay 

Another method to determine the virus titer that also used in this work was an end-point 

dilution assay, which was performed in the same way as described above for FFU-assay 

but differed in the evaluation and interpretation. Instead of counting fluorescent foci, a 

well was evaluated as positive, if in this well fluorescence from any single infected cells 

could be detected, and otherwise as negative. TCID50, the 50% tissue culture infective 

dose, was than calculated with the following formula according to the Spearman (1908) 

Kärber (1931) method (Hierholzer and Killington 1996). 

𝐻𝑖𝑔ℎ𝑒𝑠𝑡 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑔𝑖𝑣𝑖𝑛𝑔 100% 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑤𝑒𝑙𝑙𝑠 +
1

2
                       

−
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑢𝑛𝑖𝑡 𝑤𝑖𝑡ℎ 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛
 

Dil. Pos. 
Cum. 

Pos. 

10-2 8/8 8/8 

10-3 5/8 13/8 

10-4 3/8 16/8 

Calculation of TCID50 

Highest dilution giving 100% CPE 

+1/2-
total number of test units showing CPE

number of test units per dilution 
 

= -2+1/2 -16/8 = -3.5 TCID50  

or 103.5TCID50 in 100 µl, equal 
to 104,5 TICD50/ml or 
logTCID50/ml = 4,5 
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An example is demonstrated in Figure 12. In this assay, 8 replicated test units were 

performed per dilution. The highest dilution with all positive wells were 10-2 and there 

were 16 positive microcultures with infections ranging from 10-2 to 10-4, which is the 

last dilution where positive wells could be detected. As result,  

= -2+1/2 -16/8= -3.5 TCID50  

or 103.5TCID50 in 100 µl volume. 

Therefore, the virus titer can be expressed as 104,5 TICD50/ml or logTCID50/ml =4,5 

End-point dilution assay was used to determine titer of virus supernatant collected from 

growth assays. 

3.2.3.3 Characterization of viral growth by multi-step growth curves  

Growth assays were performed to compare growth kinetics between the recombinant 

RSV mutants and its parental strain RSV A2-K-line19F as well as with the clinical 

strain RSV A2. As RSV infection can spread very rapidly and the cell monolayers can 

be destructed within several days, multi-step growth assays at MOI 0.1 were performed 

to enable monitoring the virus growth within 6 days without massive cell destruction. 

For the assay, 3x105 Vero/well were seeded on 6-well plates a day prior experiment to 

ensure adhesion of the cells to the bottom of the wells. To infect 3x105 cells at MOI 0.1, 

3x104 FFU were needed. Therefore, frozen aliquots of virus supernatant were thawed 

and diluted to 3x104 FFU/ml. Each well was then inoculated with 1 ml of the virus 

dilution and incubated for 4h at 37°C, 5% CO2. Additionally, 1 ml of the virus input 

was retained and frozen at -80°C. After the incubation time, virus supernatant was 

removed, of which 1 ml was aliquoted and stored at -80°C.This served as sample for 

day 0. Wells were refilled with 2 ml growth medium/well. Virus growth was monitored 

for 6 days. For each day, approx. 1 ml virus supernatant was taken from a well and 

stored at -80°C. On the first day, samples were taken at 2 different time points and from 

the 2nd to the 6th day once a day. Each growth assay was performed in triplicate. 

Subsequently, log TCID50/ml values of the collected virus supernatants were determined 

by end-point dilution assay as described above and plotted against the time. 
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3.2.3.5 Characterization of viral growth by flow cytometry 

Viral growth was additionally characterized by flow cytometry due to the fact that only 

5% of the progeny virus are fully budded and 95% of those remain associated with the 

host cell membrane (Collins et al. 2013). Furthermore, interactions between RSV and 

cellular actin as well as filopodia formation facilitate virus cell-to-cell spread (Ulloa et 

al. 1998, Mehedi et al. 2016, Mehedi et al. 2017). Hence, monitoring of only the virus 

titer in the supernatant is not sufficient to capture the whole growth kinetics for RSV. 

For this reason, an assay to measure how virus spreads in the cellular monolayer using 

flow cytometry was established.  

3.2.3.5.1 Preparation of cell cultures for flow cytometry 

To perform this assay, 1.5 x 105 Vero cells/well were seeded on a 6-well plate one day 

prior to the experiment to ensure the adherence of the cells on the bottom of the wells. 

Analogous to assays with multi-step growth curves, infections were monitored once a 

day for 6 days and for each RSV mutant three experiments were performed. On the 

following day, cells were infected with 1 ml viral supernatant at MOI 0.5. After 20 

hours, supernatants were aspirated and replaced with 2 ml of fresh medium. The first 

measurement was performed at 20-24 hpi. Therefore, medium was aspirated, and cells 

were washed with 1 ml DPBS. Next, 500 µl of TrypLE Express were added to each well 

and incubated for 5 min at RT.  The dissociation reaction was stopped with 500 µl of 

DMEM and cells were detached from the bottom of well by pipetting up and down. 

Cells were subsequently washed by centrifugation at 500 x rcf for 5 min and 

resuspended in 1ml PBS. To distinguish viable from dead cells, the cell suspensions 

were incubated in 2 ml PBS containing 0.8 µl fluorescein diacetate (FDA) stock 

solution (0.4 µg/ml) for 30 min at 37°C. Cells were than washed by centrifugation at 

500 x rcf for 5 min and resuspended in 800 µl PBS. Thereafter, flow cytometry was 

performed with a FACS Calibur flow cytometer. Fluorescent signals were detected by 

using the green channel FL1 using bandpass filter 530/30 nm (excited by blue laser 488 

nm) and using the red channel FL4  with bandpass filter 661/16 nm (excited by red 

diode laser ̴ 635 nm). FACS was automatically stopped as 1x104 viable cells passed 

through the detector. A negative control was prepared in parallel and treated in the same 

way. This negative control was used to set the photomultiplier (PMT) voltage in FL1. In 

contrast, PMT voltage in FL 4 was held constant. 
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FDA is a non-fluorescent molecule that is hydrolysed by the cell-permanent esterase to 

the green fluorescent fluorescein in living cell. The two acetyl groups on the xanthene 

backbone render the dye not only a non-fluorescent character but also a freely passive 

diffusion through a phospholipid bilayer possible (Boyd et al. 2008). Once hydrolysed 

in aqueous medium, due to a charged groups – the carbolic acid groups- in the 

fluorescein, this molecule cannot cross the plasma membrane anymore (Hong et al. 

2013). By interacting with the intact cell membrane, this fluorescent product can be 

retained within the cell up to 2 h (Thermo Fisher, Figure 13). Thus, FDA can be used as 

viability probe to measure both enzymatic activity and cell-membrane integrity. 

Fluorescein has an excitation maximum at 494 nm and an emission maximum at 521 

nm (Figure 14), so its fluorescence can be detected by the green channel of FACS 

Calibur. 

The RSV-BAC harbors a gene encoding a far-red fluorescent protein - mKate2 - that 

enables a tracking of infection by fluorescence. mKate2 is the next generation of the 

reported far-red fluorescent protein mKate (Shcherbo et al. 2007, Shcherbo et al. 2009). 

mKate2 has an excitation maximum at 588 nm and an emission maximum at 635 nm, 

and is almost 3-fold brighter than its prototype and is 10-fold brighter than mPlum 

(Shcherbo et al. 2009). Due to the high-brightness, this protein is detectable with the red 

channel of FACS Calibur, although it is excited by the red diode at  ̴635 nm, a 

suboptimal excitation wavelength (Figure 14). Furthermore, the emission spectrum of 

fluorescein overlaps the excitation spectrum of mKate2, which means that this 

fluorochrome pair fluorescein/mKate2 could function as a tandem dyes and fluorescein 

emission can strengthen the excitation of mKate2. 
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Figure 14: Excitation/emission spectra of fluorescein and mKate2. Fluorescein has an excitation 

maximum at 494 nm and an emission maximum at 521 nm. mKate2 has an excitation maximum at 

588 nm and an emission maximum at 635 nm. The double-head arrows (green and red) indicate the 

wavelength characteristic of the bandpass filters in FL1 and FL4 of FACS Calibur (Evrogen and 

Thermo Fischer Fluorescence SpectraViewer, modified) 

Figure 13: Mode of action and retention characteristic of fluorescein. Chemical structure FDA 

(A), chemical structure fluorescein (B), illustration of the chemical reaction in the cell (C), retention 

characteristic of fluorescein measured by flow cytometry (D) (modified figure from Hong et al. 2013 

and from Thermo Fisher) 
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3.2.3.5.2 Evaluation of FACS data 

Cells that were analysed by FACS as described above could be classified in 3 

populations while plotting against signals for fluorescein and for mKate2: (1) UL: 

viable un-infected cells; (2) UR: viable infected cells; and (3) LL+LR: dead cells with 

low esterase activity or without cell-membrane integrity (Figure 15).  Negative controls 

were prepared and measured to define the borders that distinguished infected from un-

infected cells by the transmitted signal of mKate2, as well as living from dead cells by 

the signal for fluorescein (Figure 15, B). Cell death in un-infected samples were also 

analysed.  The infection rate was defined as the proportion of all infected cells in the 

population and calculated as sum of UR+LL+LR. This is based on the observation that 

cell death was negligible in the un-infected controls, and was clearly higher in the 

infected samples. Furthermore, dead cells in all infected samples still exhibited slight 

signal for mKate2, whose intensity was stronger than that from uninfected cells but 

weaker that that from infected cells. Cell death and infection rates of each strain were 

than calculated as average of 3 independent experiments and were plotted against the 

time. 

 

 

 

 

 

  

Figure 15: Gating strategy for flow cytometry. R1 was set while analysing the data to separate cells 

from debris by FCS signal. The cell population in R1 was then separated by their signal for fluorescein and 

for mKate2. Cells with positive signal for fluorescein are viable, and cells with positive signal for mKate2 

are infected. Negative controls were used to set quadrants that delimit viable un-infected (UL) from 

infected (UR) cells as well as viable (UL+UR) from dead (LL+LR) cells.  

A            B                       C 
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3.2.3.4 Phenotypic characterization of recombinant RSV by PRNA 

One important objective of phenotypic characterization of recombinant virus is their 

susceptibility again antivirals. Within the framework of this study, recombinant RSV 

mutants were tested against palivizumab. For this purpose, plaque-reduction 

neutralization assays (PRNA) were performed. 

3.2.3.4.1 Performing plaque-reduction neutralization assays (PRNA) 

One day prior experiment, 2 x 104 Vero cells/well were seeded on a 96-well plate to 

ensure that cells could growth to confluence on the bottom of the wells. On the day of 

experiment, seven 4-fold serial dilutions of palivizumab starting from 8 µg/ml were 

prepared. A virus stock was thawed at RT and diluted to 2000 FFU/ml. For 

neutralization, virus dilutions and antiviral solutions were mixed together in a ratio of 

1:1 and incubated at 37°C, 5% CO2 for 1 h.  Resulting from this, the end concentrations 

of antiviral and of virus were reduced by half, in particular, the virus titer was 1000 

FFU/ml and 4 µg/ml was the highest concentration in the 4-fold serial dilution of the 

drug. More details are illustrated in Figure 16. Additionally, an un-neutralized control 

was prepared and treated in the same way but with DMEM instead of the drug dilution 

(Figure 17). Later on, counted plaque numbers in this dilution were normalized to 100% 

in the analysis. Afterwards, growth medium was aspirated and 100 µl of the by 

palivizumab neutralized RSV  as well as the un-neutralized RSV was added to the cell 

monolayers and centrifuged at 1200 rpm, 37°C for 30 min. Plating is illustrated in 

Figure 17. Subsequently, plate was incubated at 37°C, 5% CO2 for further 1.5 h. In the 

mean time, the overlay medium was prepared by mixing 2% methylcellulose (MC) in 

PBS with DMEM (5% FCS, 1% P/S) in ratio 1:1 and pre-warmed at 37°C. After the 

incubation period, 100 µl of the overlay medium were added to test wells and incubated 

for 4 days, at 37°C and 5%CO2. During the incubation time, care was taken not to 

disturb the plate to prevent forming of uneven plaques. For each RSV strain, 4 PRNAs 

were performed and each as quadruplicate, with an exception that the un-neutralized 

control was performed in octuplicate for the purpose of a better normalization. 

Additionally to each test, a cell control and a virus control (w/o methylcellulose) were 

also prepared. 
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Figure 16: Preparation of palivizumab-RSV dilution for plaque-reduction neutralization assay. 

Viruses were neutralized at different drug concentration for 1h at 37°C, 5%CO2. After the overall 

infection time of 2h, overlay medium containing 1% methylcellulose was added to testwells and plate 

was incubated for 4 days at 37°C, 5%CO2. Evaluation was performed by counting the plaque number 

and subsequent, the IC50 values for each strain were calculated using the curve fitting program of 

GraphPad Prism 7.03. 

 

Figure 17: Illustration of 

sampling a plate for PRNA. For 

each drug dilution, test was 

performed in quadruplicate. Except 

for the un-neutralized control (w/o 

palivizumab), the test was 

performed with 8 replicas. The virus 

control was incubated in absence of 

methyl cellulose to visualize its 

direct effect on the spread of 

infection.  
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4 days later, plates were evaluated by counting the number of plaques in each well or 

fixed with 100 µl of 2%PFA for 10 min at 37°C for later evaluation. A plaque was 

defined as an assembly of at least 10 infected Vero cells. For the clinical strain RSV A2, 

viral proteins were visualized prior evaluation by immunofluorescence as described 

above in 3.2.3.1. IC50, the concentration at which 50% of infection was inhibited, was 

determined using curve fitting program of GraphPad Prism 7.03. Note, for the RSV 

resistance control strain K272E, an additional 10-fold serial dilution of palivizumab was 

performed, that ranged from 10 mg/ml to 1 µg/ml (neutralizing concentration from 5 

mg/ml to 0.5 µg/ml). 

3.2.3.4.2 Test of a new overlay with colloidal microcrystalline cellulose 

Since RSV progeny is released into the supernatant and new virions can infect 

surrounding uninfected cells and additionally cause undesired plaques, which bias the 

evaluation. Use of a high-viscosity overlay medium containing such as agarose or 

methylcellulose (MC) can restrict the spread of new progeny viruses to neighbouring 

uninfected cells. However, applying of media containing agarose or methylcellulose in 

96-well culture plates is discouraging due to the high viscosity of the solution. A new 

low-viscosity overlay for viral plaque assays with Avicel RC/CL® was already 

described elsewhere (Matrosovich et al. 2006). Avicel RC/CL is originally a product 

brand of FMC Corporation and there are 4 types of Avicel RC/CL: RC-501, RC-581, 

RC-591 and CL-661 (Dell and Colliopoulus 2001). Avicel RC/CL mixtures are blends 

of microcrystalline cellulose (MCC) and sodium carboxymethylcellulose  (NaCMC)  at 

different ratio, whereby the fraction of NaCMC ranges from 7.1 to 18.8 % (Dell and 

Colliopoulus 2001, Signet Chemical Corporation 2018).  A similar product to Avicel 

CL-661 (11.3-18.8 % NaCMC) is the colloidal microcrystalline cellulose of Sigma-

Aldrich supplement with 10.0-20.0% NaCMC as stabilizer (435244 Aldrich). Like 

Avicel CL-661, this excipient also forms thixotropic gels and has a good thermal 

stability (Sigma-Alrich 2018). Thixotropic is a time dependent behaviour of an 

isothermal system in which the apparent viscosity decrease under mechanical stress, 

followed by a gradual recovery when the stress is removed (Hahn et al. 1959). Hence, a 

thermostable thixotropic overlay media is very attractive for experimenter, as it is easy 

in handling (mixing and pipetting) and likewise the virus spread can be controlled 

during the incubation time as the liquid becomes more viscosity while resting. For this 
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reason, the colloidal microcrystalline cellulose blend of Sigma-Aldrich is a promising 

candidate for replacement of methylcellulose in the overlay medium for PRNA. And 

this is to be investigated with a small test in this study.  

Therefore, 2x104 Vero/well that were seeded in a 96-well plate the day before, were 

infected with approx. 100 FFU/well in a volume of 100 µl. Subsequently, the plate was 

centrifuged at 1200 x g for 30 min and incubated at 37°C, 5 % CO2 for further 1.5 h. In 

the meantime, overlay media with following concentration of supplement were prepared 

by mixing the stock solutions (colloidal MCC 3% and MC 2%) with DMEM:  

- Colloidal MCC 1%, 2%, 3% 

- MC 1%  

All media were pre-warmed at 37°C. After the incubation period, 100 µl of each overlay 

media were given directly into the well without aspirating the virus supernatant. This 

results following concentration in the end volume:  

- Colloidal MCC 0.5%, 1% and 1.5%  

- MC 0.5% 

On the 4th of incubation at 37°C, 5% CO2, supernatant was discarded, and cells were 

washed twice with 100 µl RT PBS. Following, formed plaques were evaluated under 

fluorescence microscopy.  
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4 Results 

4.1 Generation of recombinant RSV with defined mutations 

In this study, the following F gene mutations were identified from clinical isolates and 

phenotypically characterized concerning viral growth and susceptibility to palivizumab: 

C21G, Q34R, R49K, T100S, A103P, A518V, C550Y, and 3 mutation combinations 

C21G/R49K, Q34R/C550Y and T100S/A518V. Additionally, mutation K272E and 

N276S were also investigated. They served as palivizumab resistant and sensitive 

control, respectively. Mutation K272E locates within the binding epitope of 

palivizumab on the fusion glycoprotein F, the antigenic site A. This amino acid change 

was previously showed to confer stable resistance to palivizumab (Adams et al. 2010, 

Zhu et al. 2011, Zhu et al. 2012). Mutation N276S was firstly proposed to be 

responsible for a RSV breakthrough in a child  under palivizumab prophylaxis by 

Adams et al. 2010, which was then well discussed and denied by further researchers 

(Zhu et al. 2011, Papenburg et al. 2012, Zhu et al. 2012, Yasui et al. 2016). Including 

the parental reference strain RSV A2-K-line19F that directly rescued from RSV-BAC 

pSynkRSV-l19F, the palivizumab resistant (K272E) and sensitive control (N276S) 

strain, there were in total 13 recombinant RSV variants, which were generated and 

characterized in this study. Furthermore, phenotype of the clinical strain RSV A2 

(ATCC®VR-1540PTM) was also examined using the same methods.  

4.1.1 Generation of PCR-products with defined point-mutations 

Mutagenesis PCR were performed as described in 3.2.2.1 and PCR-products were than 

separated on 1% agarose gel in order to control the success of amplifications (Figure 

18). All PCR-products were approximately 1120 bp in length, of which the longest 

section was the positive selection marker, the kanamycin resistance gene KanR with 

995 bp. This segment was flanked in both down- and upstream directions with 

homologous sequences (each 61-63 bp) (reference gene: RSV line 19) harboring the 

new nucleotide sequence (Figure 7). This resulted in that all PCR fragments were about 

1120 bp in length. Lengths of all PCR fragments are listed in Table 10. 
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Mutation Length [bp] 

C21G 1121 

Q34R 1117 

R49K 1117 

T100S 1117 

A103P 1121 

A518V 1117 

C550Y 1121 

K272E (resistant control) 1121 

N276S (sensitive control) 1121 

 

Table 10: Lengths of all mutagenesis PCR-fragments. 

The longest section in all PCR-fragments was the positive 

selection marker (995 bp)  that was amplified from 

plasmid pEPkan-S (lengths of fragments were calculated 

with SerialCloner)  

 

Figure 18: Separation of mutagenesis 

PCR-products on 1% agarose gel. PCRs 

for mutation K272E and N276S are shown. 

The extra band (̴210 bp) is suggested to be 

primer dimer.  
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4.1.2 BAC-mutagenesis and sequencing of the respective regions on the fusion (F) 

gene 

En passant mutagenesis requires that the PCR-product and the RSV-BAC pSynkRSV-

l19F (Hotard et al. 2012) are both present within E.coli GS1783 strain. Thus, the BAC 

DNA was previously transformed into E.coli GS1783 to generate E.coli 

GS1783/pSynkRSV-l19F strain. 

4.1.2.1 Generation of E.coli GS1783/pSynkRSV-l19F 

E.coli GS1783 were prepared for electroporation by cool washing and chilling on ice. 

Subsequently, pSynkRSV-l19F BAC DNA was transformed into E.coli GS1783 by 

electroporation. Bacteria were then plated onto LB-agar plates containing 

chloramphenicol. After an incubation period of 24h, bacterial growth in the presence of 

chloramphenicol indicated that transformation of the BAC DNA into E.coli GS1783 

was successful. Results were additionally verified by sequencing. Several glycerol 

stocks of E.coli GS1783/pSynkRSV-l19F were prepared and stored at -80°C. 

4.1.2.2 BAC-mutagenesis of pSynkRSV-l19F with defined point mutation 

Recombinant RSV-BACs with defined mutations were generated by en passant 

mutagenesis in E.coli GS1783/pSynkRSV-l19F. Each PCR product was respectively 

transformed into the E.coli GS1783/pSynkRSV-l19F by electroporation. The first 

recombination that was induced at 42°C resulted in the integration of the whole PCR-

fragments into the RSV BAC pSynkRSV-l19F. Bacteria, in which the first 

recombination had been successful, exhibited resistance to chloramphenicol and 

kanamycin, and their colonies became visible on LB-agar plate after an incubation time 

of 24 h. This could be achieved for all 9 single mutations: C21G, Q34R, R49K, T100S, 

A103P, K272E, N276S, A518V, and C550Y. The second recombination was to remove 

the positive selection marker, the kanamycin resistance gene KanR. For each mutation, 

this step was performed with 2-4 bacterial colonies. Negative selection for loss of the 

KanR gene was conducted by comparing bacterial growth in the presence of either 

chloramphenicol or both chloramphenicol and kanamycin. Bacteria that solely grew in 

the presence of chloramphenicol but absence of kanamycin might contain the correct 

mutated RSV BAC from which the KanR gene was successfully removed. Sequencing 
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of the respective regions on F gene was performed to verify the success of BAC 

mutagenesis. Again, this was successfully performed for all 9 single mutations C21G, 

Q34R, R49K, T100S, A103P, K272E, N276S, A518V, and C550Y. Note, for each 

mutation 4-6 kanamycin sensitive bacterial colonies were selected for sequencing. 

Interestingly, some of them contained the sequence of the parental strain without the 

desired mutation. Recombinant RSV BAC with double mutations was generated by 

successive introduction of each mutation into the BAC. Again, this was attained for all 

3 double mutations: C21R/R49K, Q34R/C550Y and T100S/A518V. Relevant 

sequences containing the mutations are shown in Figure 19 (for single mutations) and 

Figure 20 (for double mutations).   
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C21G 

 

Q34R 

 

R49K 

 

aca  ttt  tgc  ttt  gct ....ttt  tat   caa   tca  aca ...gct  cta   aga   act  ggt 

 T    F    C    F    A       F    Y     Q     S    T      A    L     R     T    G       

T100S 

 

A103P 

 

K272E 

 

caa  agc   aca   cca   gca .........    gca  aac  aat ....cag  aaa  aag   tta  atg 

 Q    S     T     P     A                A    N    N       Q    K    K     L    M 

N276S 

 

A518V C550Y 

 

..... tcc  aac  aat  gtt ... gta  aat  gct   ggt  aaa .....cta tac  tgt  aag  gcc 

       S    N    N    V       V    N    A     G    K       L   Y    C    K    A 

 

Figure 19: Sequence analysis after BAC-mutagenesis. Mutagenesis was successful conducted for all 9 

single mutations C21G, Q34R, R49K, T100S, A103P, K272E, N276S, A518V, and C550Y. 

Chromatogram depicted regions of interest with new nucleotides. In grey: sequence of the parental strain 

pSynkRSV-l19F, yellow marked: target codon, orange box: the mutated codon with base substitutions.  
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C21G 

 

R49K 

 

...aca  ttt   tgc   ttt  gct  tct  ..........gct  cta   aga   act   ggt  tgg ... 

     T    F     C     F    A    S              A    L     R     T     G    W 

Q34R 

 

C550Y 

 

......ttt  tat   caa   tca  aca  tgc   ...... cta  tac  tgt  aag  gcc  aga ... 

       F    Y     Q     S    T    C            L    Y    C    K    A    R    

T100S 

 

A518V 

 

 ...caa  agc  aca   cca  gca  ................. gta  aat   gct   ggt  aaa..... 

     Q    S    T     P    A                    V    N     A     G    K 

 

Figure 20: Sequence analysis after BAC-mutagenesis. Mutagenesis was successful for all 3 double 

mutations C21R/R49K, Q34R/C550Y and T100S/A518V. Chromatogram depicted regions of interest 

containing new nucleotides. In grey: sequence of the parental strain pSynkRSV-l19F, yellow marked: 

target codon, orange box: the mutated codon with base substitutions. 
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4.1.3 Transfection of RSV BAC DNA into BSR T7/5 and recovery of recombinant 

RSV 

After verifying that the desired mutation had been successfully introduced into the RSV 

BAC pSynkRSV-l19F, recombinant BAC-DNA was isolated from bacteria by midi-

preparation and its transfection into BSR T7/5 was usually performed on the following 

day as described in 3.2.2.9. Was the transfection successful, red fluorescence that 

indicated the recovery of recombinant RSV could be detected already 2 days after 

transfection and plaque were visible after 5 days (Figure 21). A plaque was defined as 

an assembly of at least 10 infected cells. Red fluorescence signalled expression of the 

mKate2 protein (Shcherbo et al. 2009), which is encoded on the BAC pSynkRSV-l19F 

(Hotard et al. 2012). Transfection of only RSV BAC DNA without helper plasmids 

resulted in no virus recovery. After 2-3 passages in BSRT7/5 cells, viral supernatant 

was harvested and enriched by one freeze-thaw cycle of the cell monolayer. Part of this 

supernatant was then used to infect Vero cells for further virus propagation. On Vero 

cells, it usually took further 3-4 passages until the cell monolayer got 100% infected. 

Note, one freeze-thaw cycle (̴5 min at -80°C) was indispensable to enrich the virus titer 

to a sufficient amount for infectious assays. In addition, the genome of the unmutated 

BAC pSynkRSV-l19F was also transfected into BSR T7/5 cells to reconstitute the 

parental viral strain that served as the reference strain in all phenotypic characterization 

assays. Transfection and virus propagation could be attained for all 13 recombinant 

RSV strains. 

 

 

Figure 21:  Reconstitution of recombinant RSV after transfection of BAC DNA into BSR T7/5. 

Fluorescence signal was already detectable on the 2nd day post transfection. Shown is CPE that was 

observed at the 5th day post transfection. 
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4.2 Phenotypic characterization  

In this part of the study, recombinant RSV variants that recovered from RSV-BAC 

pSynkRSV-l19F/MUT were characterized by their growth kinetics and palivizumab 

susceptibility. The parental strain RSV A2-K-line19F that rescued from the unmutated 

BAC pSynkRSV-l19F served in all assays as the reference strain. Furthermore, 

differences between this parental strain and the clinical strain RSV A2 (ATCC® VR-

1540P) were also investigated for a better understanding about the phenotype of this 

strain. 

4.2.1 Characterization of viral growth by multi-step growth curves 

To investigate the influence of the introduced mutations on the virus replication, multi-

step growth assays were performed for each RSV variants as described in 3.2.3.3. For 

this assay, Vero cells were infected with RSV at MOI 0.1. Virus supernatants were then 

collected throughout 6 days, stored at -80°C and subsequently the logTCID50/ml values 

of all supernatants were determined according to the Spearman Kärber method as 

described in 3.2.3.2. Each growth assay was performed as triplicate. The results are 

displayed below in different ways to enable the best interpretation of the data. The mean 

values of the virus titers are listed in Table 11. The same data were illustrated as a 

gradient heat map in Figure 22. Growth curves with means and SD are plotted against 

the time in Figure 23.  

Following conclusions could be visualized from the data. In all cases, extracellular 

release of virus progeny could already be detected 1 day after infection. There were 

clearly differences in the virus titers between the first (̴20 hpi) and the second sampling 

(̴26 hpi) on the first day of infection. Thereafter, virus progenies kept accumulating in 

the supernatant and the virus titers increased continuously until days 3, thereupon a 

plateau was reached. In most of the cases, the highest virus titers within plateaus were 

on days 4-5 (8/14 cases, 57.1%). 3/14 (21.4%) reached the highest titers on day 3rd and 

3/14 (21.4%) on day 6th. The highest virus titers could be maintained for 1-2 days and 

afterwards, it decreased and increased slightly again. In general, the growth curves 

showed insignificant variations among all tested strains and even between the single and 

the double mutations harboring RSV strains.  
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The presence of an additional gene may result in a delay of viral growth and a decrease 

of virus yield in vitro and as well as a reduction of plaque diameter (Bukreyev et al. 

1996). Although the growth curve for the RSV strain A2 started with a lower virus titer 

compared to the reference strain RSV A2-K-line19F (or RSV-BAC ref), but this strain 

yielded higher virus titers from the 2nd day on, and reached a higher plateau on the 3rd 

day, 24 h earlier than the RSV-BAC ref strain. Both strains reached their plateaus on 

day 3-4 and showed a slight decrease of the virus titers on day 5-6. However, these 

differences were not significant. Indeed, the RSV-BAC ref that contained an additional 

gene mKate2 as an infection reporter gene grew by tendency more slowly and yielded a 

slightly lower titer, but these discrepancies were not significant when the standard 

deviations of the measurements were taken into account. 

Virus recovered from RSV-BAC pSynkRSV-l19F/T100S and RSV-BAC pSynkRSV-

l19F/K272E reached slightly lower plateau concentrations in comparison to others, 

despite both showed higher virus titers at the day of inoculation, day 0. The same 

observation held true for the double mutations harboring strain RSV A2-K-

line19F/T100S/A518V (or RSV-BAC T100S/A518V). However, this strain was 

inoculated at a lower MOI. RSV A2-K-line19F/A518V showed stable growth kinetics 

during the whole test period of 6 days. This strain was inoculated at a moderate MOI 

and the virus titer started increasing from the 1st day on without any drop and reached 

the overall highest titer (6.8 logTCID50/ml) on the 6th day. The same statement held true 

for strain RSV A2-K-line19F/A103P, which reached a lower final titer of 6.3 

logTCID50/ml on the 6th day. Calculated values for the growth curve of RSV A2-K-

line19F/C21G/R49K strain showed remarkable variations within replicate 

measurements as well as high standard deviations compared to that of other strains.  
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Figure 22: Growth assays depicted as gradient heat map. The numeric data from Table 11 are 

transformed into a gradient heat map. The lowest value is represented in white and the highest value in 

dark blue. For all RSV strains, viral growth reached there plateaus after 3-4 days of. Small fluctuations in 

the virus titers could be observed during the plateau periods.  
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Table 11: Growth analysis of all RSV variants. The virus supernatants from infected Vero cells were 

collected throughout 6 days, twice on the first day, and once on 2nd to 6th days. The virus titers of these 

supernatants were calculated according to the Spearman Kärber method and mean values are shown 

below (logTCID50/ml). For each viral strain, 3 experiments were performed. The first highest peak in 

each growth curve is marked with dark grey. 

Viruses d0 d11 d12 d2 d3 d4 d5 d6 

RSV A2 2.9 2.7 3.3 4.7 6.4 6.3 5.8 5.3 

RSV A2-K-line19F 3.6 2.8 3.1 4.3 5.5 6.1 5.0 5.4 

RSV A2-K-line19F/C21G 3.6 1.6 2.8 4.3 5.2 6.4 4.9 5.5 

RSV A2-K-line19F/Q34R 3.0 1.9 2.3 3.5 4.4 5.4 5.9 5.8 

RSV A2-K-line19F/R49K 3.9 2.6 2.9 3.6 4.9 5.5 5.1 6.4 

RSV A2-K-line19F/T100S 4.1 2.2 3.1 3.9 5.1 5.0 4.9 5.2 

RSV A2-K-line19F/A103P 3.7 1.9 2.9 3.9 4.7 5.7 5.8 6.3 

RSV A2-K-line19F/K272E  4.3 2.6 3.4 3.4 4.7 4.8 4.9 4.5 

RSV A2-K-line19F/N276S  4.1 2.5 2.8 4.2 4.8 5.5 6.2 6.2 

RSV A2-K-line19F/A518V 3.7 2.5 3.7 4.8 5.9 6.3 6.7 6.8 

RSV A2-K-line19F/C550Y 3.5 2.4 3.0 4.3 6.3 6.2 5.7 5.8 

RSV A2-K-line19F/C21G/R49K 3.5 2.5 3.3 5.1 5.2 6.3 6.6 6.8 

RSV A2-K-line19F/Q34R/C550Y 3.9 2.5 4.0 4.2 5.1 6.0 5.1 5.4 

RSV A2-K-line19F/T100S/A518V 2.8 2.2 2.3 3.1 4.5 4.8 4.7 4.5 

. 
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Figure 23: Multi-step growth curves. Vero cells were infected with different RSV strains at MOI 0.1, respectively. Virus supernatants were collected for 6 

days and virus titers given as log TCID50/ml (mean± SD) were calculated according to the Spearman Kärber method and plotted against the time. RSV A2 and 

RSV A2-K-line19F (or RSV-BAC ref) showed no significant discrepancies in their replications. RSV A2-K-line19F/K272E (or RSV-BAC K272E) yielded 

lower virus titers in plateau compared to the parental reference strain. Within the group of single mutations, there were no significant differences in the viral 

growth kinetics, which were comparable with that of the parental reference strain RSV-BAC ref. Within the group of strains with double mutations, the RSV-

BAC T100/A518V reached slightly lower virus titer in plateau compared to others.  
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4.2.3 Characterization of viral growth by flow cytometry 

This test was set-up to investigate the viral growth via spread of infection in the cell 

monolayer. Therefore, Vero cells were infected with RSV at MOI 0.5 and flow 

cytometry was performed over 6 days as described in 3.2.3.5.  

Mock samples were prepared and treated in the same way to determine the fraction of 

dead cells in the cellular monolayer (Table 12). In the mock control, cell viability was 

well maintained during the first three days. Thereafter, cells became less viable. The 

overall highest cell death fraction observed in 6 experiments was 4.53%, which was 

measured on the 5th day of experiment E. Means of all 6 replicas (A-F) indicated that 

only a small fraction of cells died under these experimental conditions, in particular 

2.5% was the highest mean value. Thus, remarkably higher cell death rates under the 

same experimental conditions would be linked with effects resulted from infections with 

the examined RSV strains, in a direct or indirect manner. 

 

Table 12: Cell death in uninfected samples. Uninfected controls were prepared and treated in the same 

way as the infected samples. For this purpose, 6 experiments were prepared (named A - F). 

Day 
Cell death in the uninfected control (%) 

A B C D E F Mean 

1 0,34 0,71 0,33 0,8 0,83 0,22 0,54 

2 0,35 0,23 0,32 0,8 1,48 1,86 0,84 

3 0,39 0,26 1,42 1,37 1,15 1,28 0,98 

4 0,49 0,85 0,57 2,3 1,05 3,1 1,39 

5 2,03 0,85 2,6 4,01 4,53 0,96 2,50 

6 1,68 2,19 2,55 1,24 2,03 1,59 1,88 

 

An example of the kinetics of an RSV infection in Vero cells is shown in Figure 24. The 

UL quadrant depicts healthy uninfected cells, the UR viable infected cells. The LL+LR 

quadrants represent cells with low esterase activity or without cell-membrane integrity 

(indicated by the amount of intracellular fluorescein). Cells in LL+LR quadrants are 

considered as dead in this assay, as they showed fewer signals for the intracellular 

fluorescein. In all assays, the infected cell population grew within the first days of 

infection, and then decreased in line with the increasing dead cell population in the 

lower quadrants. For the infected samples, the fractions of dead cells were calculated by 
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adding the percentage in the LL and LR quadrants (dead cells = LL+LR) (Table 13). 

Compared to the uninfected control, the numbers of dead cells in infected samples were 

much higher and they were captured on the border between the LL and LR quadrant 

(Figure 24), which distinguished positive from negative signal of mKate2, a protein that 

indicates infection. Thus, it could be assumed that cell viability was somehow affected 

by an RSV infection. The infection rate describes the fraction of infected cells in a 

population that is at risk. To get this value, the cell fractions in UR, LL and LR 

quadrants were added together (infection rate = UR+LL+LR). For each RSV variant, 3 

independent experiments were performed and results are listed in Table 13 and 

illustrated in Figure 24.  

For 3 RSV strains, there were more infected cells on the first day of infection. These 3 

strains are RSV A2-K-line19F (or RSV-BAC ref), RSV A2-K-line19F/R49K and RSV 

A2-K-line19F/C21G/R49K. Within these 3 strains, spread of infection proceeded with 

the same kinetics. Other strains in contrast showed small variations in their growth 

while starting with the same infection rate on the 1st day: A103P, Q34R/C550Y, 

T100S/A518V, Q34R, K272E, and A518V. The given order starts with the strain that 

spreads fastest and ends with the strains that spreads slowest. For all tested strains, it 

could be concluded that the infection spread from cell to cell with the same tendency, 

and that there were no significant differences between single and double mutations 

harboring strains. These results reflected outcomes of the multi-step growth assays. 

In general, it could be observed that despite infection, Vero cells remained viable within 

the first 3-4 days after infection. The fractions of dead cells on the 6th day were 

associated with the initial infection rates on the 1st day. Samples, that showed higher 

infection rates at the beginning, exhibited higher cell death. RSV A2-K-line19F/R49K 

was an exception. This strain showed a lower death rate at day 5 and 6 compared to the 

reference strain RSV A2-K-line19F, although both showed the same behaviour in the 

courses of infection. Interestingly, this effect became less relevant as the mutation C21G 

get involved in, strain RSV A2-K-line19F/C21G/R49K. Note, these 3 strains showed 

the same progress of infection that began with a higher infection rates on the 1st day 

compared to other strains. 
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Figure 24: Results of a test for RSV A2-K-line19F. Vero cells were infected with RSV at MOI 0.5 and monitored for 6 days. Cell viability was measured by 

means of fluorescein and infection was traced with the on the RSV-BAC encoded mKate2 protein. The infected population grew within the first days of infection 

and shrank subsequently with the increasing of the less viable cell population which is presented in the lower quadrants. This kinetics was observed in all 

experiments. 
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Table 13: Cell deaths (%) and infection rates (%) within 6 days after infection.  Average percentages of the dead cell populations and the infection rates for all 

recombinant RSV variants were calculated from 3 independent experiments. The infection rates were calculated as sum of the population in the UR and the LL+LR 

quadrants, and the cell death as sum of LL+LR. 

               

 WT C21G Q34R R49K T100S A103P K272E 

Day death inf. rate death inf. rate death inf. rate death inf. rate death inf. rate death inf. rate death inf. rate 

1 1.06 29.99 0.63 14.48 1.15 13.45 3.63 38.25 2.07 14.84 2.25 14.94 0.80 10.69 

2 2.60 86.27 1.63 53.98 1.01 40.83 8.16 85.12 4.81 53.47 8.29 47.93 0.85 32.90 

3 5.97 98.57 4.31 89.46 1.99 70.95 6.30 97.78 2.46 86.72 3.51 80.11 1.40 64.21 

4 22.05 98.06 6.03 98.41 7.01 89.30 11.77 99.22 3.40 96.71 5.24 95.21 5.80 82.43 

5 44.93 96.28 14.77 99.14 9.19 93.12 23.50 99.45 7.18 98.61 11.99 97.95 7.04 90.77 

6 62.55 91.67 35.26 99.72 17.10 97.54 35.01 99.68 15.32 99.18 25.64 99.32 16.31 96.68 

               

               

 N276S A518V C550Y C21G/R49K Q34R/C550Y T100S/A518V   
Day death inf. rate death inf. rate death inf. rate death inf. rate death inf. rate death inf. rate   

1 1.05 18.06 2.21 11.47 1.67 17.42 3.58 33.45 0.79 10.91 0.58 13.26   
2 1.80 58.02 3.05 32.29 2.31 57.16 3.22 80.38 0.87 42.10 0.93 41.01   
3 1.03 88.90 1.40 60.88 3.04 91.10 7.30 96.36 2.55 76.40 3.95 75.37   
4 2.94 97.78 2.54 77.99 6.21 98.87 19.78 98.15 6.56 92.09 3.60 90.11   
5 6.11 99.43 5.79 87.64 15.62 99.76 30.49 98.00 9.52 96.46 5.49 96.56   
6 19.16 99.74 13.93 94.81 37.17 99.87 50.81 97.64 23.07 99.03 16.25 99.03   
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  Figure 25: Infection rate and cell death in viral growth assays measured by flow cytometry. 

Solid lines illustrate infection rates, and dashed lines cell death, * represents the uninfected 

control. All recombinant RSV strains showed the same tendency in the course of infection with 

small variations in strains with following mutations: A103P, Q34R/C550Y, T100S/A518V, Q34R, 

K272E, and A518V. Note, these strains started with a similar infection rate on the 1st day. There is 

a correlation between the fractions of cell death (dashed lines) and the infection rate (solid lines). 

Despite infection, Vero cells remained viable for at least 3 days after infection. In the lower plot, 

strain with the mutation R49K showed a remarkable lower cell death compared to the reference 

strain RSV A2-K-line19F (RSV-BAC ref). This effect was minimized if both mutation C21G and 

R49K were present in the virus. 
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4.2.2 Characterization of palivizumab susceptibility by plaque-reduction 

neutralization assays (PRNA) 

4.2.2.1 IC50 values (µg/ml) determined by PRNA 

To investigate whether examined mutations on the F protein alters the susceptibility of 

the mutant variants to neutralization by palivizumab, plaque-reduction neutralization 

assays were performed as described in 3.2.3.4. Therefore, approx. 100 FFU RSV were 

neutralized for 1 hour by a 4-fold serial dilution of palivizumab ranging from 4 µg/ml to 

0.98 ng/ml. Neutralized viruses were then used to infect Vero cells and incubated for 4 

days at 37°C, 5% CO2. Un-neutralized virus dilution was also prepared and treated in 

the same way. After 4 days of infection, plaque numbers were counted and analysed 

using the normalized curve fitting program of GraphPad Prism 7.03. In most of the 

cases, infecting the cell monolayer at this virus concentration resulted in 60-170 

plaques/well in the un-neutralized control. To construct the normalized curve, the 

average plaque number in the un-neutralized control was defined as 100%. In the 

highest palivizumab concentration 4µg/ml, infection was completely inhibited and no 

plaque was formed, which was also defined as 0%. As these two baselines were defined, 

all other values were then recalculated and expressed as percentages. The program used 

these points to construct the normalized sigmoidal dose-response curve and calculated 

the IC50 value, the concentration by which 50% of the plaques numbers were inhibited 

(Figure 26). For each RSV variant, 4 PRNAs were performed. Each PRNA was 

performed in multiplicity (8 replicas for the un-neutralized control and 4 replicas for 

each drug dilution) to compensate methodical errors of biological test system (Figure 

17). All IC50 values are listed in Table 14. Significant test was performed by one-way 

ANOVA multiple comparisons test of GraphPad Prism 7.03 (Table 15, Figure 27). 

Following findings could be obtained from the data. Virus recovered from the RSV-

BAC pSynkRSV-l19F (RSV-BAC ref: 0.035 ± 0.0138 µg/ml) had a remarkable lower 

IC50 compared to the clinical strain RSV A2 (0.12 ± 0.0179 µg/ml; 3.4x higher). RSV 

rescued from pSynkRSV-l19F is a chimeric strain that harbors the F protein from the 

RSV Line 19 while other proteins are identical to those of the RSV A2. RSV Line 19 

was first isolated and identified from an infant with respiratory illness at the University 

of Michigan (Herlocher et al. 1999). RSV strain A2 and Line 19 are in the same 

subgroup A but induced different pulmonary pathology and immune responses (Lukacs 
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et al. 2006).  Differences between the F proteins of RSV A2 and Line 19 could lead to 

changes in its binding interaction with palivizumab and this will be discussed in detail 

in section 5.2.  

For the resistant control strain RSV A2-K-line19F/K272E, an additional assay with 

higher drug concentrations (10-fold serial dilution ranging 5 mg/ml to 0.5 µg/ml) was 

performed with the aims to titrate the IC50 value for this strain. However, as the 

mutation is located within the binding epitope of palivizumab, this strain with the 

mutation K272E escaped completely from neutralization and even test series at the 

highest concentration of palivizumab 5 mg/ml showed no differences compared to the 

un-neutralized control. The sensitive control strain RSV A2-K-line19F/N276S exhibited 

a similar result compared to the reference strain with an IC50 value of 0.048 ± 

0.0108 µg/ml. It means that the sensitive and the resistant recombinant RSV, both 

rescued from RSV-BAC pSynkRSV-l19F/MUT, retrieved its susceptibility phenotype 

as in the normal RS virus. Hence, the examined BAC-based RSV rescue system and the 

established PRNA are suitable for phenotypic characterization of mutations in the F 

gene concerning antiviral susceptibility to palivizumab. 

Evaluating all IC50 values obtained from PRNAs by one-way ANOVA multiple 

comparison test of GraphPad Prism 7.03 delivered following results. IC50 values of 

virus rescued from the RSV-BAC harboring following single mutations C21G, Q34R, 

T100S, A518V, C550Y and the double mutation T100S/A518V coincided with that of 

the reference strain and variations are insignificant. Therefore, these mutations could be 

considered as having no effect on the susceptibility of the virus against palivizumab. In 

contrast, virus with following mutations exhibited significant higher IC50 values than 

the RSV-BAC ref strain (Table 14, Figure 26, 27): R49K (2.3-fold), A103P (2.2-fold), 

Q34R/C550Y (1.86 fold) and C21G/R49K (2.8 fold). Moreover, all double mutations 

resulted in slightly higher IC50 values than the reference strain (Figure 26).  
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Figure 26: Determination of IC50 values by plaque-reduction neutralization assays. Neutralizations were performed with a 4-fold serial dilution of 

palivizumab for 1h. After 4 days of incubation, plaque numbers were counted. Normalized dose-response curves were constructed and analysed using 

the curve fitting program of GraphPad Prism 7.03. 100% were defined as the number of plaques that were formed in the absence of palivizumab. For all 

viral strains (except the resistant control strain K272E), infection was completely inhibited by the highest palivizumab concentration (4 µg/ml), which 

was normalized to 0% in the evaluation. 
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Table 14: IC50[µg/ml] of all examined RSV variants for palivizumab. For each mutation, 4 PRNA were performed. IC50 values with significant differences from the 

RSV-BAC ref are written in bold. Statistics was performed by GraphPad Prism 7.03. 

IC50 [µg/ml] 
RSV A2 

RSV-BAC 
ref 

RSV-BAC 
C21G 

RSV-BAC 
Q34R 

RSV-BAC 
R49K 

RSV-BAC 
T100S 

RSV-BAC 
A103P 

RSV-BAC 
N276S 

RSV-BAC 
A518V 

Assay 1 0.133 0.028 0.028 0.023 0.094 0.037 0.066 0.046 0.036 

Assay 2 0.133 0.026 0.018 0.036 0.087 0.026 0.085 0.036 0.033 

Assay 3 0.119 0.056 0.023 0.034 0.081 0.040 0.099 0.062 0.046 

Assay 4 0.095 0.033 0.021 0.032 0.066 0.031 0.059 0.049 0.043 

Mean 0.120 0.035 0.023 0.031 0.082 0.033 0.077 0.048 0.040 

Std. Deviation 0.0179 0.0138 0.0041 0.0059 0.0120 0.0060 0.0182 0.0108 0.0063 

Std. Error of Mean 0.0090 0.0069 0.0020 0.0029 0.0060 0.0030 0.0091 0.0054 0.0032 

Lower 95% CI of 
mean 0.091 0.014 0.016 0.022 0.063 0.024 0.048 0.031 0.030 

Upper 95% CI of 
mean 0.149 0.057 0.029 0.041 0.101 0.043 0.106 0.065 0.050 

          

IC50 [µg/ml] RSV-BAC 
C550Y 

RSV-BAC 
C21G/R49K 

RSV-BAC 
Q34R/C550Y 

RSV -BAC 
T100S/A518V      

Assay 1 0.009 0.112 0.065 0.047      
Assay 2 0.028 0.108 0.056 0.060      
Assay 3 0.021 0.088 0.067 0.049      

Assay 4 0.026 0.086 0.070 0.055      

Mean 0.021 0.098 0.065 0.053      
Std. Deviation 0.0085 0.0131 0.0058 0.0058      
Std. Error of Mean 0.0042 0.0065 0.0029 0.0029      
Lower 95% CI of 
mean 0.007 0.078 0.055 0.043      
Upper 95% CI of 
mean 0.034 0.119 0.074 0.062      
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Table 15: One-way ANOVA multiple comparisons test. RSV rescued from RSV-BAC pSynkRSV-

l19F served as the reference strain, to which other strains were compared. Test was performed by 

GraphPad Prism 7.03 (ns: not significant) 

RSV-BAC ref vs. 
Mean 

Diff. 
95,00% CI of diff. Significant? Summary P Value 

RSV A2 -0.08453 -0.1069 to -0.06218 Yes **** 0.0001 

RSV-BAC C21G 0.01291 -0.009444 to 0.03526 No ns 0.5229 

RSV-BAC Q34R 0.004115 -0.01824 to 0.02647 No ns 0.9992 

RSV-BAC R49K -0.04647 -0.06882 to -0.02412 Yes **** 0.0001 

RSV-BAC T100S 0.00207 -0.02028 to 0.02442 No ns 0.9996 

RSV-BAC A103P -0.04197 -0.06432 to -0.01961 Yes **** 0.0001 

RSV-BAC N276S -0.01272 -0.03507 to 0.009632 No ns 0.5400 

RSV-BAC A518V -0.004233 -0.02658 to 0.01812 No ns 0.9991 

RSV-BAC C550Y 0.01461 -0.00774 to 0.03696 No ns 0.3775 

RSV-BAC C21G/R49K -0.06303 -0.08538 to -0.04068 Yes **** 0.0001 

RSV-BAC Q34R/C550Y -0.02924 -0.05159 to -0.006886 Yes ** 0.0049 

RSV -BAC T100S/A518V -0.01707 -0.03942 to 0.005279 No ns 0.2166 

 

 

Figure 27: IC50[µg/ml] for palivizumab (mean±SD). Multiple comparisons between the RSV-BAC 

ref strain and other viral strains were performed by one-way ANOVA test of GraphPad Prism 7.03. (* P 

≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001) 
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4.2.2.2 Test of a new overlay with colloidal microcrystalline cellulose (MCC) 

To investigate whether colloidal microcrystalline cellulose (MCC),  a product of Sigma-

Aldrich, is suitable for replacement of methylcellulose (MC) in the overlay medium 

used in PRNA, several media containing different concentrations of the colloidal MCC 

were tested as described in 3.2.3.4. Compared to MC that forms a high viscosity clear 

gel, colloidal MCC disperses in water and forms a low viscosity opaque gel. This 

property of colloidal MCC is a big advantage and could be used to simplify the 

preparation procedure of PRNA. After an incubation period of 4 days, plaques were 

evaluated under fluorescence microscope, whereby shape and size were the main 

parameters under study. Thanks to the translucent property of MC gel, examined 

microcultures could be directly microscoped while overlay media supplemented with 

colloidal MCC had to be removed and washed with PBS prior evaluation due to its 

milky appearance (Figure 28, upper section C, D, E).  

Colloidal MCC is not toxic for the cells. Anny influences of colloidal MCC on cell 

proliferation and cell morphology were not visible under microscopy. For a complete 

removal of the overlay media containing colloidal MCC, the cell monolayer should be 

washed twice. Again, a plaque is defined as an assembly of at least 10 infected cells. In 

Figure 28, picture A depicted how plaques developed in the absence of a thickening 

agent and in B in the presence of 0.5% MC. In A, big and uneven plaques that melted in 

each other were observed. With 0.5% MC, plaques were formed more even with sharper 

border and were well distinguished from each other. Even though, some thin spines 

adjacent to plaques remained visible. C, D and E showed how plaques were formed in 

the presence of 0.5, 1 and 1.5% of colloidal MCC. In the presence of colloidal MCC, 

plaques were formed more isolated from its neighbours in comparison to A. With an 

increasing of the colloidal MCC concentration, a better plaque separation could be 

obtained (from C to E). By contrast with B, form and size of plaques in C, D and E were 

more variable and they carried more spines.  
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Figure 28: Test of different overlay media for plaque-reduction neutralization assay. 

Appearances of different overlay media are depicted in the upper section of the figure. Methyl 

cellulose formed a clear viscosity gel while colloidal microcrystalline cellulose (MCC) formed an 

opaque gel.  Size and form of plaques developing in different media are pictured in the lower section.  
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5 Discussion 

5.1 Generation of mutated RSV by en passant mutagenesis 

During the viral replication cycle, mutations occur spontaneously and lead to 

development of viral quasispecies, a collection of mutants with closely related viral 

genome underwent a continuous process of genetic variation (Domingo et al. 2012). 

Competition and selection of the fittest variants in a given environment establish quasi-

equilibrium of the variant proportions (Andino and Domingo 2015). In the presence of 

antiviral drugs, mutants with mutations that confer replication advantages overcome the 

selection process and become major in the mixed virus population. However, not every 

mutation does really confer drug-resistance or have an impact on the viral fitness, so 

called polymorphism. And sometimes, several mutations are required to contribute the 

virus replication advantages. The mistaken interpretation of mutation N276S in F gene 

in context with palivizumab resistance in the past is a meaningful lesson (Adams et al. 

2010). Hence, newly detected mutations are needed to be examined by phenotypic 

characterization and reliable genotypic methods of which there is still a lack for RSV. 

In this work, en passant mutagenesis (Tischer et al. 2006) was applied to generate 

mutated RSV, a method that allows for modification of the virus genome without 

retention of any unwanted sequences in the original  BAC DNA. Thus, phenotypic 

alteration of the mutated virus could be than interpreted as effects elicited by the 

investigated mutations. The virus genome used in this work is derived from a chimeric 

strain RSV A2-K-line19F, and maintained in BAC pSynkRSV-l19F, that encodes 

furthermore a far-red fluorescence protein allowing tracking of infection through 

fluorescence, mKate2 (Hotard et al. 2012). BAC DNA can be well maintained and 

efficiently modified in bacterial cells with higher recombination frequency than in 

eukaryotic cells.  Nowadays, several recombination systems in E.coli are established for 

simple and straightforward manipulation of BAC such as the case of E.coli GS1783. 

This strain possessed chromosomally both an I-SceI cassette and a defective λ prophage 

that supplies function for protection and recombination of the electroporated linear 

DNA in the bacterial cell (Yu et al. 2000). This prophage encodes following 

recombination enzymes Exo, Beta and Gam. Prophage expression is tightly controlled 
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by a temperature –dependent repressor and hence the recombination functions can be 

transiently supplied by a short temperature shift of the culture to 42°C (Yu et al. 2000). 

Introduction of nucleotide change into the BAC genome proceeds in two independent 

recombination events. The first homologous recombination facilitates insertion of the 

PCR-product containing the positive selection marker with the adjacent I-SceI 

restriction site and short-sequence duplication (Figure 9). In the second recombination, 

all foreign sequences were removed living the introduced mutation as the only 

modification in the virus genome, which represent a high advantage of this technique 

over former methods by which a short foreign sequence remains in the end product. 

Maintaining the virus genome as BAC construct allows sequence analysis of the end 

product to verify the presence of the investigated mutations as well as the absence of 

any unwanted mutation prior transfection and thus supersedes the time-consuming 

plaque purification. Furthermore, recombinant virus with replication disadvantages 

would able to propagate in such a system which would not happen in a mixed virus 

population with constant selective pressure during passages.  

While establishing en passant mutagenesis on RSV BAC pSynkRSV-l19F, 12 mutated 

RSV strains were generated, 9 of them contain single mutations and 3 double mutations 

in the RSV F gene, namely C21G, Q34R, R49K, T100S, A103P, K272E, N276S, 

A518V, C550Y, C21G/R49K, Q34R/C550Y, T100S/A518V. These F-gene mutations 

were identified in clinical isolates of infants and transplant patients with respiratory 

infection by RSV. After both homologous recombination events, sequence analysis was 

performed for several bacterial colonies of each mutation to check for the presence of 

the desired mutation. Interestingly, not all BAC showed the expected chromatogram 

with the desired mutation. Some harbored the parental genotype after the second 

recombination event. This could be explained with existing of probably by-products 

resulted from partial incorporations of the PCR-product into the RSV BAC in the first 

recombination (Figure 29). On one hand, the PCR-product has to contain several 

homologous segments to enable two independent recombination events. On the other 

hand, these segments increased the possibility of unwanted recombination resulting in 

other by-products, which remains unrecognized during the positive and negative 

selection. In these by-products, mutation is represented either downstream or upstream 

of the positive selection marker. Note, correctly integrated product should harbor the 

mutation in both directions (Figure 9). Enter these by-products the second 
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recombination event, both parental and correct mutated genotype could be formed 

(Figure 30). Emerging possibility of by-products is suggested to depend on the bond 

enthalpy of the homologous sequences, which is oblique to the given nature of the 

parental genome, the location of interest and is limitedly modified by length variation.   

 

 

Figure 29: Possibility of by-products after the first recombination. Presence of long and different 

homologous sequences in the PCR-products can lead to inadequate recombination resulting in emerging 

of by-products. These by-products contain the desired mutation only on one side of the positive selection 

marker. Correctly recombined products harbor the desired mutation both on downstream and upstream 

direction of the positive selection marker (see Figure 9). 

 

Figure 30: Possible end-products resulted from the second recombination within the by-products. 

Enter the by-products the second recombination event, both correct mutant and parental genotype could 

be formed.  
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5.2 Phenotypic characterization 

5.2.1 Characterization of viral growth by multi-step growth curves  

Growth curves display the virus titers in the supernatants throughout a defined period of 

time, in this work 6 days. Upon infection, the cells enter an eclipse state, where the 

infection cycle has already started but no infectious particle is detectable in the 

supernatant (Flint et al. 2009). The eclipse period of RSV is 12h after infection (Levine 

et al. 1977), beyond which infectious particles are released into the medium. In this 

work, the first samples were taken on the next day, after approx. 20h of infection, when 

the eclipse period is past and infectious particle releasing already started. Thereupon, 

the growth curves showed a continuous arising of the virus titers until reaching the 

plateau concentration of  ̴106 TCID50/ml after 3-4 days of infection, when an 

equilibrium between releasing of new infectious particles and loss of  infectivity of old 

virus particles is restored. It was also observed that the cell monolayer was 100% 

infected as the plateau was reached. Results from end-point dilution assays indicated 

that virus titers in the supernatant varied in some cases strongly between replicated 

measurements. This can be explained by a notable feature of RSV, that the virus is very 

unstable. The infectivity of RSV particle depends strongly on the maintenance of the 

meta-stable pre-fusion F conformation, which is affected by molarity of the medium, 

temperature and freezer-thawing. Furthermore, particles grown in vitro are mostly large 

filaments, and thus are morphologically unstable in handling after freeze-thawing and 

mixing (Collins et al. 2013). However, throughout the cycle, over 90% of the progeny 

virus remains associated with plasma membrane and only a few is ever released (Levine 

et al. 1977). But RSV is relatively non-lytic in most cell types and persistent infection 

was shown to be easily established for different tissue cultures (Schwarze et al. 2004). 

Thus, it is possible to obtain supernatants with high virus titer ( ̴106 TCID50/ml) as 

viable infected cells keep shedding infectious particles. The curves of a multistep 

growth curves depend on the capacity of the cell to produce new virus and how the 

infection spreads to uninfected cells. Infection spread could be facilitated in 3 different 

ways: (1) fusion of infected and neighbouring uninfected cells; (2) membrane associated 

virus could be transferred to neighbouring uninfected cells; (3) progeny virions infected 

further uninfected cells. Mutations on F protein could alter spread of the viral infection 

and thus affect growth of virus. 
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5.2.1.1 Multi-step growth curves of RSV strain A2 and recombinant strain RSV 

A2-K-line19F 

Beside recombinant strains, growth curves and palivizumab susceptibility were also 

determined for the clinical strain RSV A2 (ATCC® VR-1540P) that was first isolated 

from lower respiratory tract of an infant with bronchiolitis and bronchopneumonia in 

Melbourne, Australia 1961. The parental recombinant strain derived from BAC 

pSynkRSV-l19F is a chimeric strain that contains a far-red fluorescence reporter gene 

mKate2, and encodes the fusion protein F of strain RSV-line19 while other protein of 

strain RSV A2. The resulted strain is called RSV A2-K-line19F. Different genotype 

possibly results in different phenotype (Vandini et al. 2017). Thus, phenotypic 

comparison between these two strains, RSV A2 and RSV A2-K-line19F, is necessary 

for a better understanding of investigated recombinant strains. 

The F protein of RSV line 19 differs from that of RSV A2 in 14 amino acids (Moore et 

al. 2009) resulting in a variation of 2.4% in a total length of 574 aa. This chimeric strain 

was brought into being for displaying better pathogenesis features in mice compensating 

the fact that mice model are only semi-permissive for HRSV. Recombinant RSV 

rescued from BAC pSynkRSV-l19F contains an additional gene encoding for the 

fluorescence protein mKate2, which is 711bp long (Hotard et al. 2012). Previous study 

demonstrated that RSV genome could tolerate a foreign gene with up to 762 nucleotides 

in length. However, this resulted in a 10% decrease of plaque diameter, delay of viral 

growth and 20-fold decrease of virus yield in vitro (Bukreyev et al. 1996). The first 

impairment, namely smaller plaque diameter, could be qualitatively verified in this 

study. Likewise, growth curve comparison also showed a delay of ̴24h in reaching the 

highest virus titer for strain RSV A2-K-line19F. However, a lower virus yield could not 

be verified with the results of this study, which was already demonstrated by the former 

group (Hotard et al. 2012).  
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5.2.1.2 Multi-step growth curves of recombinant strains harboring mutations 

Comparing all 12 mutated strains with the parental strain, 3 strains gain the most 

attention for yielding a lower virus titer in the plateau phase. These strains harbor 

following mutation: T100S, K272E, T100S/A518V (Figure 22, 23), of which mutation 

K272E, the palivizumab resistant control, was additionally characterized and was not 

found in the patient isolates of the Institute for Medical Virology of Tuebingen. 

Mutation K272E was shown to confer palivizumab resistance both in vitro and in vivo 

and is associated with an impaired viral fitness in cell culture (Zhu et al. 2011). Thus, it 

is not unexpected that recombinant RSV harboring this mutation is restricted in viral 

growth. However, for this finding there is no explanation until now. This amino acid 

position is located within the antigenic site II on F protein. Site II is well conserved 

between strains and even its tertiary conformation is mostly similar in pre- and post-

fusion conformations (Zhu et al. 2012, Rossey et al. 2018). F is indispensable for virus 

attachment and entry, the first step in the infection cycle.  Along with it, both pre- and 

post-fusion states are presented on the viral surface. It should also be emphasized that 

only pre-fusion conformation is able to trigger membrane fusion. Hence, the role of 

presenting post-F on the viral surface is an interesting question. All these facts lead to 

the hypothesis that this conserved region might have an important role for recognition 

of host structures that facilitate virus attachment or involving in the activation of 

refolding of pre-F for the fusion event and thus mutations in this site result in an 

impaired viral fitness. The former hypothesis was denied by Magro et al. in 2010 by 

measuring the amount of neutralized virus bound to cells and comparing with the 

unneutralized probes (Magro et al. 2010). The later remains an interesting research 

topic, since which factors trigger refolding of pre-F is still unknown up to now. 

Recombinant strains harboring the single mutation T100S and the double mutations 

T100S/A518V also presented a slightly restricted viral growth compared to the parental 

strain (Figure 22 & 23). Interestingly, the effect resulted from the double mutations 

T100S/A518V was more remarkable. Since both strains contained mutation T100S and 

strain that harbored exclusively mutation A518V grew normally in cell culture, 

mutation T100S might be responsible for the slight retention of viral growth in vitro and 

an additional mutation possibly strengthen this effect. After translation, the F precursor 

(F0) needs to be activated by furin-like host protease to become the fully functional 
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mature F (Bolt et al. 2000). F0 is cleaved at 2 furin cleavage sites (FCS) at aa 109 (FCS-

2) and 136 (FCS-1) (Zimmer et al. 2001). Mutants, in whom the proteolytic processing 

at FCS-2 is abolished, replicate in cell culture with reduced cytopathic effect and lower 

viral titer (Zimmer et al. 2002). In addition, Tian et al. established a FurinDB database 

and described 126 furin cleavage sites, which are recorded as a 20-residue motif (Tian 

2009, Tian et al. 2011). It means that the amino acid at position 100 is found in the 20-

residue motif of FCS-2. According to this database, T100 is located outside the binding 

core pocket of furin but within a flexible polar region, that might interact with the polar 

surface of furin and facilitate binding of the core region (Tian 2009). Hence, to some 

extent, this can explain how the mutation T100S causes a slight restriction of viral 

growth as observed in the growth curve. However, due to the relatively high standard 

deviation, these differences are considered as statistically insignificant. Note again, 

K272E was described by several researchers to clearly cause restriction in viral growth 

but according to results from this study, it caused a reduction but in an insignificant 

level. This might be an effect resulted from the recombinant virus genome and should 

be kept in mind while interpreting these outcomes. 

5.2.2 Phenotypic characterization of viral growth by flow cytometry 

Viral growth curves deliver knowledge about the number of infectious particles in the 

supernatant. As mentioned above, 90-95% of the progeny RS virus remains associated 

with the cell membrane. This means that only 5-10% of the progeny virus are visible 

through growth curves. Membrane associated virus could be delivered to uninfected 

neighbouring cells and facilitate cell fusion as well as spread of infection, a feature that 

is characteristic for RSV. To obtain a better understanding relating the kinetics of viral 

growth, a test using flow cytometry was established to evaluate the infected cell cultures 

throughout 6 days. 

The data were evaluated by 2 parameters: (1) the infection rate (%), and (2) cell death 

(%). The course of infection rates described the increasing of the infected population in 

the cell culture for 6 days. Throughout the test period, a new cell population emerged, 

that exhibited lower signal intensity for intracellular fluorescein and mKate2. 

Fluorescein, a product from hydrolysing of fluorescein diacetate by the cellular esterase, 

is a probe for cell viability and membrane integrity. The protein mKate2 is expressed in 

infected cells and indicates an infection with recombinant RSV. This “new” population 
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was classified as “dead cells” because of their clearly lower signal for the viability and 

infection probes (fluorescein and mKate2). However, RSV infections are mostly non-

lytic and RSV was described to be able to suppress cell cycle at G0/G1 as well as 

apoptosis. This property is preferable to produce new infectious particles. Such 

knowledge does not explain the emergence of this population in flow cytometry. The 

membrane of infected cells is widely covered by budding virus, and easily gets damage 

during the preparation procedures for the assays (e.g. pipetting, centrifugation, and 

vortex). Membrane damage leads to out flux of both fluorescein and mKate2 resulting 

in lower fluorescence of these two markers in the “dead” cell population. Hence, in this 

study, cell death is a consequence of membrane leakage and might be associated with 

the portion of membrane associated virus.  

Results from this assay revealed that all investigated recombinant strains spread 

similarly in the cell monolayer. On one hand, results for some strains showed a wide 

distribution within repeated measurements, which were performed independently 

(especially, strains with mutation K272E and A518V). On the other hand, a gradient 

variation could be observed among following strains harboring mutation A103P, 

Q34R/C550Y, T100S/A518V, Q34R, K272E, and A518V, all of which interestingly 

started from a comparable infection rate (̴15%) on the 1st after infection (Figure 25). The 

order is given from the fastest (A103P) to the lowest spreading strains (A518V). Since, 

mutation C550Y alone showed no alteration in both assays (multi-step growth curve 

and flow cytometry), it could be considered that the observed effect in the double 

mutations harboring strain Q34R/C550Y was caused by the mutation Q34R. According 

to these results, mutation K272E and double mutations T100S/A518V resulted in a 

delay of infection spread, which confirms findings of the multi-step growth curves (see 

5.2.1.2). Furthermore, this gradient variation might disclose that these mutations 

possibly have an impact on the kinetics of infection spread but in framework of this 

study, it does not allow a closer interpretation relating their significance.  

As mentioned above, cell death in the growth assays measured by flow cytometry is 

assumed to be associated with membrane instability. For most of the cases, infected 

cells remained viable within the first 3-4 days upon infection. Afterwards, their 

membrane became more and more unstable and caused cell death during the test 

procedure. The results displayed a relationship between rates of infection and cell death.  
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Viral strains that spread more slowly also caused a lower cell death or resulted in less 

damage on the host membrane. This correlation is easily comprehensible. The highest 

cell deaths were observed from 3 following strains given in descending order: the 

parental reference strain, strain with mutation C21G/R49K, and strain with mutation 

R49K (Figure 25). Paradoxically, the infection courses measured with these strains are 

the same. It could be thus interpreted that strain with mutation R49K possibly caused 

less membrane instability compared to the parental strain and strain containing the 

double mutations C21G/R49K. However, to causally explain this phenomenon, further 

experiments are required and the test should be optimized for better standardization. 

5.2.3 Comparison between growth curves determining with end-point dilution 

assays and flow cytometry 

For both growth assays determined with end-point dilution assays and flow cytometry, 

all variations between the mutated strains and the parental reference strain could be 

considered statistically insignificant due to relatively high deviations. To compensate 

random errors, each experiment was performed in triplicate. The means described the 

tendency and the standard deviations realized the variation of the data set. 

F is essential for membrane fusion, which enables the virus to release its nucleocapsid 

into the cell cytoplasm, where the viral replication takes place. Flow cytometry detects 

the expression of mKate2 gene and the cell membrane integrity during the infection. 

According to the gene order in the viral genome, mKate2 is the first gene which is 

transcribed by the viral polymerase and thus indicates an early response signal to 

infection. End-point dilution assays detect the amount of infectious particles in the 

supernatant. In both, the highest viral titers or infection rate of 90-100% were obtained 

for most tested strains after 4-5 days of infection. It seems that the plateaus of viral titers 

were reached as infection is detected in 90-100% of the cells. Results of both assays 

indicated that mutation K272E and T100S/A518V possibly caused impairment in viral 

growth. Especially for the later, the effect was more clearly when both mutations T100S 

and A518V were present in the virus. Discordant results were observed for following 

mutant viruses: A103P, Q34R, and A518V. Recombinant virus harboring these 

mutations respectively showed a delay in spread of infection, while the viral titer 

resulted from these strains were comparable to the parental strains. Unfortunately, flow 
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cytometry results for strain A518V displayed an unusual high standard deviation and 

thus it is not further discussed here until additional tests are performed.  

These two assays ascertained viral growth at different points within the replication cycle 

(Figure 31). While end-point dilution assays quantitatively examine the amount of the 

infectious particle in the supernatants and indirectly impart knowledge about the viral 

replication, flow cytometry detects how effective the infection is transmitted and spread 

within the cell monolayer and provide valuable hints about the effect of the mutated 

protein. And it seems that flow cytometry also detects minimal effects, which do not 

manifest in the multi-step growth curves. Hence, these results are not contradictory. 

They capture the same aim from different perspectives and deliver different insights. 

Thus it can be suggested that, mutation A103P and Q34R might result in changes in 

function of F protein and this needs to be verified by other experiment settings.  

Of the mutations described here, the most interesting are those that may influence the 

function of F: Q34R, R49K, T100S and A103P. They are all located on the F2 subunit 

of F. This subunit is recently believed to be essential for the viral fusion event and 

determines the species specificity of RSV infection (Schlender et al. 2003). Most recent 

studies suggest the function of F2 in stabilization of pre-F or in in triggering and/or 

refolding of F (Bermingham et al. 2018, Hicks et al. 2018). In 2013, a mutation in 

amino acid position 66 was reported to be able to alter virus growth and cell 

fusiogenicity in vitro (Lawlor et al. 2013). Thus, despite the effects resulted from Q34R, 

R49K, T100S, A103P were not significant in this study, these mutations should be 

further investigated in other experiment settings that allow a better evaluation relating 

their functions on F. 
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Figure 31: Detection of viral fitness at different points within the viral life cycle. Two assays were 

established for evaluation of viral growth. The amount of infectious particles in the medium was detected 

by end-point dilution assays and data were present as growth curves.  Infected cells expressed the 

fluorescent protein mKate2, whose signal was detected by flow cytometry and illustrated as courses of 

infection rates. mKate2 is the first protein that is expressed after infection. A cell viability and membrane 

integrity probe (FDA→fluorescein) was added to the flow cytometry samples. Restricted fluorescein 

signal indicated cell death which was assumed to be associated with the cell membrane instability resulted 

from incompletely budding virus. 

 

5.2.4 Palivizumab susceptibility by plaque-reduction neutralization assays (PRNA) 

Palivizumab susceptibility of investigated RSV strains was determined by plaque-

reduction neutralization assays. Therefore, virus was neutralized using different 

palivizumab concentrations prior infection of cell microcultures. After an incubation 

period of 4 days, the plaque numbers resulting from different neutralization 

concentrations were counted and IC50 values were calculated using the curve fitting 

program of GraphPad. IC50 is the concentration that inhibits 50% plaque formation 

compared to the unneutralized probe. Plaque reduction assay is a widely used method to 

determine drug sensitivity. However intra-assay and inter-assay precision and accuracy 

are known problems. Test results depend on many critical parameters such as the 

amount of virus, duration of neutralizing, days of cell seeding prior infection, the 

amount of methylcellulose used in the overlay medium, and time of incubation. Range 

of the tested drug dilution is also critical to enable the software performing its 

algorithm. Hence, PRNA was optimized for better standardization prior 
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implementation. Random error was minimized and accuracy of the results was 

improved by multiple replicas. For each viral strain, 4 PRNAs were performed. In each 

assay, 4 microcultures were prepared for each palivizumab dilution and for the 

unneutralized control the double amounts of replicas were performed for a better 

precision. The best fit value of IC50 is determined only when the plateau levels of 100% 

and 0% are well defined. If those plateaus are very uncertain, the same applies to the 

resulted IC50 values. This also leads to the requirement that the serial drug dilutions 

have to cover these two plateau levels in every assay. If not, out comes have to be 

interpreted with caution. This requirement was fulfilled in each assay and all calculated 

standard deviations were in an acceptable range. 

That recombinant RSV strains with mutation R49K and C21G/R49K resulted in similar 

IC50 values in PRNA also lends reliability to the established PRNA. C21G is a mutation 

that is located in the signal peptide, a domain that is no longer present in the mature 

fusion protein F. Hence, on the viral surface presented F containing the mutation R49K 

and C21G/R49K are identical and these mutants are expected to be similarly susceptible 

to palivizumab, which was confirmed by the results of this study. Therefore, it can be 

concluded that the established PRNA is stable and valid.  

Among all tested virus variants, strains with mutation R49K (0.063-0.101 µg/ml) and 

A103P (0.048-0.106 µg/ml) exhibited remarkable higher IC50 values (>2-fold) 

compared to others including the reference strain RSV A2-K-line19F (0.014-0.057 

µg/ml). However, the effect is not as high as that caused by mutation K272E in the 

resistance control strain. K272E is located within the binding epitope of palivizumab 

and cause completely resistant to palivizumab even at 5 mg/ml. These results verified 

other findings up to now that mutations outside the palivizumab binding epitope do not 

confer the virus resistance to this drug. Even though, significant higher IC50 values for 

strain RSV A2-K-line19F/R49K and RSV A2-K-line19F/A103P shouldn’t be 

overlooked. As discussed above in 5.2.3, these mutations are located in the F2 subunit 

of F and caused changes in spread of infection detected by flow cytometry. In addition, 

they also affect neutralization of palivizumab. It means that even mutations outside the 

palivizumab epitope are able to alter the susceptibility of the virus against this antibody. 

Neutralization by antibody depends on the binding affinity between the antibody and its 

epitope (antigenic site II) on the target structure as well as epitope accessibility. That 



Discussion  105 

 

 

R49 and A103 are located near to the antigenic site II in the tertiary structure of the 

protein strengthens this hypothesis (Figure 32). 

Within strains containing double mutations, the largest effect was observed with 

mutation Q34R/C550Y. Again, this difference was not comparable with that from 

K272E. However, strain that respectively contains mutation Q34R or C550Y were as 

susceptible as the reference strain. This leads to the suggestion that accumulation of 

trivial mutations or polymorphisms might also affect the drug susceptibility, even when 

these are located outside the binding epitope of palivizumab. This explains why the IC50 

value of the recombinant RSV-K-line19F differs much from that of strain RSV A2.  F is 

a protein which undergoes a dramatic conformational transformation to display its 

function. Thus mutations that affect this process might also alter the conformation of the 

palivizumab binding epitope or its accessibility which lead to changes in palivizumab 

susceptibility. 

In this study, a new thickening agent combined of microcrystalline cellulose and sodium 

carboxymethylcellulose (MCC) was tested for used in PRNA. MCC was examined in 3 

concentrations: 0.5, 1 and 1.5% and compared to 0.5% of methylcellulose (MC). The 

result suggested that this cellulose blend is suitable for replacement of methylcellulose, 

which up to now was added to the overlay media to enhance the viscosity. MCC 

disperses in water to a milky fluid with lower viscosity compared to MC that forms a 

high-viscosity clear gel in PBS.  Results indicated that supplement with 1.5% MCC was 

appropriate to separate plaques for assay evaluation.  
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Figure 32: Structure of pre-F homotrimer, pre-F protomer and locations of identified mutations 

on the F2 subunit in a pre-F protomer. F1 subunit is displayed in red and F2 in blue. A: pre-F 

homotrimer, B: a pre-F protomer and C: amino acid positions where mutations were identified on F2 are 

shown as spheres; the antigenic site II is colored in pink. A and B: Cite images created with the PDB ID 

(4MMR) and associated publication, NGL Viewer (Rose et al. 2018) and RCSB PDB. 

http://www.rcsb.org/3d-view/4MMR 20.09.208. C: Image created with the educational version of 

PyMOL and PDB ID: 4MMR 

 

http://www.rcsb.org/pages/policies#References
http://www.rcsb.org/3d-view/4MMR%2020.09.208
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6. Summary 

Globally, respiratory syncytial virus (RSV) is a serious pathogen with high clinical 

significance especially for children under 5 years, the elderly and immunocompromise 

individuals. There are two licenced therapeutics against this pathogen: ribavirin and 

palivizumab. Ribavirin is administered for treatment of an active infection. But it is not 

recommended for routine treatment because of side effects and of a potential teratogen. 

Palivizumab is a monoclonal antibody that targets the fusion F protein on the RS viral 

surface and is used for prophylactic treatment of severe RSV infection in high-risk 

infants, the population that showed the most cost-benefit ratio in epidemiological 

studies.  Another antibody derived from palivizumab is motavizumab that showed 

greater neutralizing activity in both vitro and in vivo. However, in clinical trials, 

motavizumab was shown to be non-inferior to palivizumab but with a higher potential 

for hypersensitivity reactions, and thus did not get approved by the FDA. Additionally, 

many promising antiviral candidates are now in clinical trials tested in both infants and 

adults. Already during the development of palivizumab, several resistance associated 

mutations have been identified and the same holds true for new antivirals under 

development.  

Marker transfer analysis is a method that allows reliable characterization of newly 

detected mutation with unknown phenotype, a field that is now available just to a 

limited extent. This work engaged itself with the establishment of maker transfer 

analysis for RSV and standardization of in vitro assays for characterization of newly 

identified mutations on the RSV F gene respecting its influence on viral replication and 

palivizumab susceptibility. In this work, nine single mutations were characterized: 

C21G, Q34R, R49K, T100S, A103P, K272E, N276S, A518V, C550Y. Among which, 

mutation K272E and N276S were previously identified and characterized and served in 

this work as palivizumab resistance and sensitive control, respectively. Furthermore, the 

following combinations of mutations C21G/R49K, Q34R/C550Y and T100S/A518V 

were characterized. Investigated mutations were introduced into the bacterial artificial 

chromosome (BAC) pSynkRSV-l19F (BEI Resources Nr-36460) (Hottard et al. 2012) 

using “en passant” mutagenesis (Tischer et al. 2006). Viral growth was examined by 

growth curves using end-point dilution assays to titrate the virus titers in the 



108  Summary 

 

 

supernatants. Additionally, kinetics of infection spread within the cell monolayer was  

determined by flow cytometry. Palivizumab susceptibility was examined in vitro by 

plaque- reduction neutralization assays (PRNA).  

Respecting viral fitness, all investigated mutations resulted in no significance influence 

on viral growth analysed by end-point dilution assays and flow cytometry. Concerning 

palivizumab susceptibility, all investigated mutation did not lead to a complete loss of 

effectiveness of palivizumab compared to mutation K272E (Zhu et al. 2011). This 

mutation is located within the palivizumab binding epitope and contributes to the stable 

resistance of the RSV to palivizumab. However, some mutants exhibit significant higher 

IC50 values compared to that of the parental reference strain RSV A2-K-line19F that 

directly rescued from BAC pSynkRSV-l19F harboring no mutation. IC50 is the drug 

concentration that could inhibit 50% of viral growth or plaque formation. Mutations 

R49K and A103P resulted in IC50 values, that were higher than 2 fold of the value for 

the parental strain. Interestingly, these mutations are located outside the palivizumab 

binding site. RSV variants with mutation Q34R or C550Y were similarly susceptible to 

palivizumab as the parental strain. Remarkably, mutants that contained both mutations 

Q34R and C550Y showed significant higher IC50 value compared to the reference 

strain. These results emphasize following hypothesis: (1) Even mutations outside the 

palivizumab binding epitope might alter susceptibility of the viral against the antibody; 

(2) accumulation of trivial mutations might impact the viral phenotype and thus 

mutation should be characterized in the context of the whole genetic background. In 

addition, a new thickening agent, colloidal micro crystalline cellulose was tested for 

replacement of methylcellulose in the overlay medium used in PRNA. A concentration 

of 1.5% colloidal micro crystalline cellulose was showed to be sufficient for used in 

PRNA. 
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7. Zusammenfassung 

Das Respiratorische Synzytial Virus (RSV) ist weltweit ein bedeutendes Pathogen mit 

hoher klinischer Bedeutung für Kinder unter 5 Jahren, ältere Menschen und 

immungeschwächte Individuen. Es gibt zwei zugelassene Medikamente für RSV: 

Ribavirin und Palivizumab. Ribavirin wird angewandt zur Behandlung einer aktiven 

RSV Infektion. Wegen seiner Nebenwirkungen und eines möglichen teratogenen 

Effektes ist es nicht empfohlen für eine routinemäßige längere Anwendung. 

Palivizumab ist ein monoklonaler Antikörper, der das Fusion F Protein auf der 

Oberfläche des RS Virus bindet. Wegen  der  Kosten-Nutzen Bewertung wird es zur 

Prävention nur bei Hochrisikokindern eingesetzt. Motavizumab ist ein von Palivizumab 

abgeleitet Antikörper, welcher eine bessere Neutralisation-Aktivität in-vitro so wie in-

vivo aufweist.  In klinische Studien konnte  Motavizumab eine Nicht-Unterlegenheit 

darlegen aber leider mit einer höheren Überempfindlichkeit, weshalb es von der FDA 

nicht zugelassen ist (Carbonell-Estrany et al. 2010). Viele versprechende antivirale 

Medikamente in der Entwicklung werden in klinischen Studien getestet. Verschiedene 

Palivizumab Resistenz-assoziierte Mutationen wurden bereits während der Entwicklung 

identifiziert. Das gleiche gilt auch für die neuen antiviralen Substanzen, welche 

momentan in der Entwicklung sind.  

Marker Transfer Analysen erlauben eine zuverlässige Charakterisierung von neu 

detektierten Mutationen, deren Phänotypen noch unbekannt sind. Diese Arbeit 

fokussiert sich auf die Etablierung von Marker Transfer Analysen für RSV und auf die 

Standardisierung von in-vitro Assays, die zur Charakterisierung von neu identifizierten 

Mutationen in dem RSV F Gen dienen. Mutationen wurden bezüglich deren Einfluss 

auf die virale Replikation und Palivizumab Suszeptibilität untersucht. Analysiert 

wurden neun einzelne Mutationen: C21G, Q34R, R49K, T100S, A103P, K272E, 

N276S, A518V, C550Y. Die Mutationen K272E und N276S waren bereits 

charakterisiert und dienten in dieser Arbeit als Kontrollen (Zhu et al. 2011, Zhu et al. 

2012). Zusätzlich wurden auch folgenden Kombinationen von Mutationen 

charakterisiert: C21G/R49K, Q34R/C550Y und T100S/A518V. Die zu untersuchende 

Mutationen wurden einzeln in bacterial artificial chromosome (BAC) pSynkRSV-l19F 

(BEI Resources Nr-36460) (Hottard et al. 2012) mit Hilfe der “en passant” Mutagenese 
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(Tischer et al. 2006) eingeführt. Für alle Mutanten wurden Wachstumskurven mit Hilfe 

von end-point dilution assays ermittelt. Die Kinetik der Infektion innerhalb des 

Zellmonolayers wurde mit Durchflusszytometrie bestimmt. Palivizumab Suszeptibilität 

wurde in-vitro mit Plaque-Reduktion Neutralisation Assays (PRNA) ermittelt.  

Keine der untersuchten Mutationen zeigte einen Einfluss auf das Wachstumsverhalten 

der rekombinanten RS-Viren. Auch führte keine der getesteten Mutationen oder 

Kombinationen zu einen kompletten Wirkverlust gegenüber Palivizumab im Vergleich 

zur Mutation K272E, die einen kompletten Aktivitätsverlust verursacht (Zhu et al. 

2011). Diese Mutation liegt im Bindungs-Epitop für Palivizumab und trägt zu einer 

Palivizumab Resistenz bei. Einige Mutationen zeigten signifikant höher IC50 Werte im 

Vergleich zu dem Referenzstamm RSV A2-K-line19F, das aus dem Wildtyp BAC 

pSynkRSV-l19F hergestellt wurde. IC50 ist die Wirkstoffkonzentration, bei der 50% des 

Viruswachstums bzw. der  Plaquebildung gehemmt wurde. Die Mutationen R49K und 

A103P verursachten signifikant höher IC50 Werte als der des Referenzstamms (höher als 

2-fach). Diese beiden Mutationen liegen interessanterweise außerhalb der Palivizumab 

Bindungsstelle. Rekombinante RS-Viren, die entweder die Mutation Q34R oder C550Y 

tragen, sind vergleichbar sensitiv gegenüber Palivizumab wie der Referenzstamm. 

Rekombinante RS-Viren, die sowohl die Mutation Q34R als auch C550Y haben, waren 

wiederum deutlich weniger sensibel gegenüber Palivizumab. Diese Erfahrungen führten 

zu folgenden Hypothesen:  (1) die Palivizumab Suszeptibilität wird nicht nur von 

Mutationen in der Epitopregion beeinflusst; (2)  Akkumulationen von stillen 

Mutationen können den viralen Phänotyp verändern, weshalb Mutationen in gesamten 

genetische Hintergrund betrachtet werden sollten. Darüber hinaus wurde ein neues 

Überschichtungsmittel, kolloidale mikrokristalline Cellulose, getestet, um die 

Methylcellulose in dem Overlay Medium für Plaque-Reduktion Neutralisation Assays 

zu ersetzen. Es konnte gezeigt werden, dass eine Konzentration von 1,5% der 

kolloidalen mikrokristallinen Cellulose optimal für die Anwendung in Plaque-

Reduktion Neutralisation Assays war.  

 

 



References  111 

 

 

8. References 

AAP (2014). "Updated guidance for palivizumab prophylaxis among infants and young 

children at increased risk of hospitalization for respiratory syncytial virus infection." 

Pediatrics 134(2): e620-638. 

Adams, O.; Bonzel, L.; Kovacevic, A.; Mayatepek, E.; Hoehn, T. and Vogel, M. 

(2010). "Palivizumab-resistant human respiratory syncytial virus infection in infancy." 

Clin Infect Dis 51(2): 185-188. 

Agius, G.; Dindinaud, G.; Biggar, R.J.; Peyre, R.; Vaillant, V.; Ranger, S.; Poupet, 

J.Y.; Cisse, M.F. and Castets, M. (1990). "An epidemic of respiratory syncytial virus in 

elderly people: clinical and serological findings." J Med Virol 30(2): 117-127. 

Anderson, L.J.; Hierholzer, J.C.; Tsou, C.; Hendry, R.M.; Fernie, B.F.; Stone, Y. 

and McIntosh, K. (1985). "Antigenic characterization of respiratory syncytial virus 

strains with monoclonal antibodies." J Infect Dis 151(4): 626-633. 

Andino, R. and Domingo, E. (2015). "Viral quasispecies." Virology 479-480: 46-51. 

Bachi, T. and Howe, C. (1973). "Morphogenesis and ultrastructure of respiratory 

syncytial virus." J Virol 12(5): 1173-1180. 

Bakker, S.E.; Duquerroy, S.; Galloux, M.; Loney, C.; Conner, E.; Eleouet, J.F.; Rey, 

F.A. and Bhella, D. (2013). "The respiratory syncytial virus nucleoprotein-RNA 

complex forms a left-handed helical nucleocapsid." J Gen Virol 94(Pt 8): 1734-1738. 

Barik, S. (2013). "Respiratory syncytial virus mechanisms to interfere with type 1 

interferons." Curr Top Microbiol Immunol 372: 173-191. 

Barton, L.L.; Grant, K.L. and Lemen, R.J. (2001). "Respiratory syncytial virus 

immune globulin: decisions and costs." Pediatr Pulmonol 32(1): 20-28. 

Bates, J.T.; Keefer, C.J.; Slaughter, J.C.; Kulp, D.W.; Schief, W.R. and Crowe, J.E., 

Jr. (2014). "Escape from neutralization by the respiratory syncytial virus-specific 

neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding 

to the fusion protein." Virology 454-455: 139-144. 

Bates, J.T.; Keefer, C.J.; Utley, T.J.; Correia, B.E.; Schief, W.R. and Crowe, J.E., 

Jr. (2013). "Reversion of somatic mutations of the respiratory syncytial virus-specific 

human monoclonal antibody Fab19 reveal a direct relationship between association rate 

and neutralizing potency." J Immunol 190(7): 3732-3739. 

Beeler, J.A. and van Wyke Coelingh, K. (1989). "Neutralization epitopes of the F 

glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function." J 

Virol 63(7): 2941-2950. 

Belderbos, M.E.; Houben, M.L.; Wilbrink, B.; Lentjes, E.; Bloemen, E.M.; Kimpen, 

J.L.; Rovers, M. and Bont, L. (2011). "Cord blood vitamin D deficiency is associated 

with respiratory syncytial virus bronchiolitis." Pediatrics 127(6): e1513-1520. 

Bermingham, A. and Collins, P.L. (1999). "The M2-2 protein of human respiratory 

syncytial virus is a regulatory factor involved in the balance between RNA replication 

and transcription." Proc Natl Acad Sci U S A 96(20): 11259-11264. 



112  References 

 

 

Bermingham, I.M.; Chappell, K.J.; Watterson, D. and Young, P.R. (2018). "The 

Heptad Repeat C Domain of the Respiratory Syncytial Virus Fusion Protein Plays a Key 

Role in Membrane Fusion." J Virol 92(4). 

Bitko, V.; Shulyayeva, O.; Mazumder, B.; Musiyenko, A.; Ramaswamy, M.; Look, 

D.C. and Barik, S. (2007). "Nonstructural proteins of respiratory syncytial virus 

suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent 

mechanism and facilitate virus growth." J Virol 81(4): 1786-1795. 

Blanco, J.C.G.; Pletneva, L.M.; McGinnes-Cullen, L.; Otoa, R.O.; Patel, M.C.; 

Fernando, L.R.; Boukhvalova, M.S. and Morrison, T.G. (2018). "Efficacy of a 

respiratory syncytial virus vaccine candidate in a maternal immunization model." Nat 

Commun 9(1): 1904. 

Boivin, G.; Caouette, G.; Frenette, L.; Carbonneau, J.; Ouakki, M. and De Serres, 

G. (2008). "Human respiratory syncytial virus and other viral infections in infants 

receiving palivizumab." J Clin Virol 42(1): 52-57. 

Bolt, G.; Pedersen, L.O. and Birkeslund, H.H. (2000). "Cleavage of the respiratory 

syncytial virus fusion protein is required for its surface expression: role of furin." Virus 

Res 68(1): 25-33. 

Boyd, V.; Cholewa, O.M. and Papas, K.K. (2008). "Limitations in the Use of 

Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid 

Stains for Viability Measurements of Isolated Islets of Langerhans." Curr Trends 

Biotechnol Pharm 2(2): 66-84. 

Bradley, J.P.; Bacharier, L.B.; Bonfiglio, J.; Schechtman, K.B.; Strunk, R.; Storch, 

G. and Castro, M. (2005). "Severity of respiratory syncytial virus bronchiolitis is 

affected by cigarette smoke exposure and atopy." Pediatrics 115(1): e7-14. 

Bradley, J.S.; Connor, J.D.; Compogiannis, L.S. and Eiger, L.L. (1990). "Exposure of 

health care workers to ribavirin during therapy for respiratory syncytial virus infections." 

Antimicrob Agents Chemother 34(4): 668-670. 

Branche, A.R. and Falsey, A.R. (2015). "Respiratory syncytial virus infection in older 

adults: an under-recognized problem." Drugs Aging 32(4): 261-269. 

Buchholz, U.J.; Finke, S. and Conzelmann, K.K. (1999). "Generation of bovine 

respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus 

replication in tissue culture, and the human RSV leader region acts as a functional BRSV 

genome promoter." J Virol 73(1): 251-259. 

Bukreyev, A.; Camargo, E. and Collins, P.L. (1996). "Recovery of infectious 

respiratory syncytial virus expressing an additional, foreign gene." J Virol 70(10): 6634-

6641. 

Bukreyev, A.; Murphy, B.R. and Collins, P.L. (2000). "Respiratory syncytial virus can 

tolerate an intergenic sequence of at least 160 nucleotides with little effect on 

transcription or replication in vitro and in vivo." J Virol 74(23): 11017-11026. 

Bukreyev, A.; Whitehead, S.S.; Murphy, B.R. and Collins, P.L. (1997). "Recombinant 

respiratory syncytial virus from which the entire SH gene has been deleted grows 

efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of 

the mouse." J Virol 71(12): 8973-8982. 



References  113 

 

 

Bukreyev, A.; Yang, L.; Fricke, J.; Cheng, L.; Ward, J.M.; Murphy, B.R. and 

Collins, P.L. (2008). "The secreted form of respiratory syncytial virus G glycoprotein 

helps the virus evade antibody-mediated restriction of replication by acting as an antigen 

decoy and through effects on Fc receptor-bearing leukocytes." J Virol 82(24): 12191-

12204. 

Cameron, R.; Buck, C.; Merrill, D. and Luttick, A. (2003). "Identification of 

contaminating adenovirus type 1 in the ATCC reference strain of respiratory syncytial 

virus A2 (VR-1302)." Virus Res 92(2): 151-156. 

Capizzi, A.; Silvestri, M.; Orsi, A.; Cutrera, R.; Rossi, G.A. and Sacco, O. (2017). 

"The impact of the recent AAP changes in palivizumab authorization on RSV-induced 

bronchiolitis severity and incidence." Ital J Pediatr 43(1): 71. 

Carbonell-Estrany, X.; Simoes, E.A.; Dagan, R.; Hall, C.B.; Harris, B.; Hultquist, 

M.; Connor, E.M. and Losonsky, G.A. (2010). "Motavizumab for prophylaxis of 

respiratory syncytial virus in high-risk children: a noninferiority trial." Pediatrics 125(1): 

e35-51. 

Carroll, K.N.; Gebretsadik, T.; Minton, P.; Woodward, K.; Liu, Z.; Miller, E.K.; 

Williams, J.V.; Dupont, W.D. and Hartert, T.V. (2012). "Influence of maternal asthma 

on the cause and severity of infant acute respiratory tract infections." J Allergy Clin 

Immunol 129(5): 1236-1242. 

Carter, S.D.; Dent, K.C.; Atkins, E.; Foster, T.L.; Verow, M.; Gorny, P.; Harris, 

M.; Hiscox, J.A.; Ranson, N.A.; Griffin, S. and Barr, J.N. (2010). "Direct 

visualization of the small hydrophobic protein of human respiratory syncytial virus 

reveals the structural basis for membrane permeability." FEBS Lett 584(13): 2786-2790. 

Chaiwatpongsakorn, S.; Epand, R.F.; Collins, P.L.; Epand, R.M. and Peeples, M.E. 

(2011). "Soluble respiratory syncytial virus fusion protein in the fully cleaved, 

pretriggered state is triggered by exposure to low-molarity buffer." J Virol 85(8): 3968-

3977. 

Chanock, R. and Finberg, L. (1957). "Recovery from infants with respiratory illness of 

a virus related to chimpanzee coryza agent (CCA). II. Epidemiologic aspects of infection 

in infants and young children." Am J Hyg 66(3): 291-300. 

Chanock, R.; Roizman, B. and Myers, R. (1957). "Recovery from infants with 

respiratory illness of a virus related to chimpanzee coryza agent (CCA). I. Isolation, 

properties and characterization." Am J Hyg 66(3): 281-290. 

Chanock, R.M.; Parrott, R.H.; Vargosko, A.J.; Kapikian, A.Z.; Knight, V. and 

Johnson, K.M. (1962). "Acute respiratory diseases of viral etiology. IV. Respiratory 

syncytial virus." Am J Public Health Nations Health 52: 918-925. 

Cheng, X.; Park, H.; Zhou, H. and Jin, H. (2005). "Overexpression of the M2-2 

protein of respiratory syncytial virus inhibits viral replication." J Virol 79(22): 13943-

13952. 

ClinicalTrials.gov (2018a). "A Study to Explore the Antiviral Activity, Clinical 

Outcomes, Safety, Tolerability, and Pharmacokinetics of JNJ-53718678 at Two Dose 

Levels in Non-Hospitalized Adult Participants Infected With Respiratory Syncytial 

Virus." Retrieved 09 aug 2018, from 

https://clinicaltrials.gov/ct2/show/NCT03379675?recrs=abdfgh&cond=RSV&rank=37. 



114  References 

 

 

ClinicalTrials.gov (2018b). "Viral Inhibition in Children for Treatment of RSV 

(VICTOR)." Retrieved 09 Aug 2018, 2018, from 

https://clinicaltrials.gov/ct2/show/NCT02654171. 

ClinicalTrials.gov (2018c). "A Long-term Follow-up Study to Evaluate the Impact of 

Lumicitabine on the Incidence of Asthma and/or Wheezing in Infants and Children With 

a History of Respiratory Syncytial Virus Infection." Retrieved 09 aug, 2018, from 

https://clinicaltrials.gov/ct2/show/NCT03332459?recrs=abdf&cond=RSV&rank=28. 

Collins, P.; Fearns, R. and Graham, B.S. (2013). Respiratory Syncytial Virus: 

Virology, Reverse Genetics, and Pathogenesis of Disease. Challenges and Opportunities 

for Respiratory Syncytial Virus Vaccines. Anderson, L. J. and Graham, B. S. 

Collins, P.L.; Camargo, E. and Hill, M.G. (1999). "Support plasmids and support 

proteins required for recovery of recombinant respiratory syncytial virus." Virology 

259(2): 251-255. 

Collins, P.L.; Hill, M.G.; Camargo, E.; Grosfeld, H.; Chanock, R.M. and Murphy, 

B.R. (1995). "Production of infectious human respiratory syncytial virus from cloned 

cDNA confirms an essential role for the transcription elongation factor from the 5' 

proximal open reading frame of the M2 mRNA in gene expression and provides a 

capability for vaccine development." Proc Natl Acad Sci U S A 92(25): 11563-11567. 

Collins, P.L.; Huang, Y.T. and Wertz, G.W. (1984). "Nucleotide sequence of the gene 

encoding the fusion (F) glycoprotein of human respiratory syncytial virus." Proc Natl 

Acad Sci U S A 81(24): 7683-7687. 

Collins, P.L. and Melero, J.A. (2011). "Progress in understanding and controlling 

respiratory syncytial virus: still crazy after all these years." Virus Res 162(1-2): 80-99. 

Collins, P.L. and Mottet, G. (1991). "Post-translational processing and oligomerization 

of the fusion glycoprotein of human respiratory syncytial virus." J Gen Virol 72 ( Pt 12): 

3095-3101. 

Collins, P.L. and Mottet, G. (1992). "Oligomerization and post-translational processing 

of glycoprotein G of human respiratory syncytial virus: altered O-glycosylation in the 

presence of brefeldin A." J Gen Virol 73 ( Pt 4): 849-863. 

Collins, P.L. and Mottet, G. (1993). "Membrane orientation and oligomerization of the 

small hydrophobic protein of human respiratory syncytial virus." J Gen Virol 74 ( Pt 7): 

1445-1450. 

Collins, P.L. and Murphy, B.R. (2007). Respiratory Syncytial Virus. Perspectives in 

Medical Virology. Cane, P. Amsterdam, Elsevier Science. 1st ed: 233-277. 

Connors, M.; Collins, P.L.; Firestone, C.Y. and Murphy, B.R. (1991). "Respiratory 

syncytial virus (RSV) F, G, M2 (22K), and N proteins each induce resistance to RSV 

challenge, but resistance induced by M2 and N proteins is relatively short-lived." J Virol 

65(3): 1634-1637. 

Crowe, J.E.; Firestone, C.Y.; Crim, R.; Beeler, J.A.; Coelingh, K.L.; Barbas, C.F.; 

Burton, D.R.; Chanock, R.M. and Murphy, B.R. (1998). "Monoclonal antibody-

resistant mutants selected with a respiratory syncytial virus-neutralizing human antibody 

fab fragment (Fab 19) define a unique epitope on the fusion (F) glycoprotein." Virology 

252(2): 373-375. 



References  115 

 

 

Dell, S.M. and Colliopoulus, J.A. (2001). Section 14 Avicel RC/CL, Microcrystalline 

Cellulose and Carboxymethylcellulose Sodium, NF, BP, FMC Corporation. 

Deval, J.; Hong, J.; Wang, G.; Taylor, J.; Smith, L.K.; Fung, A.; Stevens, S.K.; Liu, 

H.; Jin, Z.; Dyatkina, N.; Prhavc, M.; Stoycheva, A.D.; Serebryany, V.; Liu, J.; 

Smith, D.B.; Tam, Y.; Zhang, Q.; Moore, M.L.; Fearns, R.; Chanda, S.M.; Blatt, 

L.M.; Symons, J.A. and Beigelman, L. (2015). "Molecular Basis for the Selective 

Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2'-Fluoro-4'-

Chloromethyl-Cytidine Triphosphate." PLoS Pathog 11(6): e1004995. 

DeVincenzo, J.P.; Wilkinson, T.; Vaishnaw, A.; Cehelsky, J.; Meyers, R.; Nochur, 

S.; Harrison, L.; Meeking, P.; Mann, A.; Moane, E.; Oxford, J.; Pareek, R.; Moore, 

R.; Walsh, E.; Studholme, R.; Dorsett, P.; Alvarez, R. and Lambkin-Williams, R. 

(2010). "Viral load drives disease in humans experimentally infected with respiratory 

syncytial virus." Am J Respir Crit Care Med 182(10): 1305-1314. 

Domingo, E.; Menendez-Arias, L. and Holland, J.J. (1997). "RNA virus fitness." Rev 

Med Virol 7(2): 87-96. 

Domingo, E.; Sheldon, J. and Perales, C. (2012). "Viral quasispecies evolution." 

Microbiol Mol Biol Rev 76(2): 159-216. 

Domurat, F.; Roberts, N.J., Jr.; Walsh, E.E. and Dagan, R. (1985). "Respiratory 

syncytial virus infection of human mononuclear leukocytes in vitro and in vivo." J Infect 

Dis 152(5): 895-902. 

Donalisio, M.; Rusnati, M.; Cagno, V.; Civra, A.; Bugatti, A.; Giuliani, A.; Pirri, G.; 

Volante, M.; Papotti, M.; Landolfo, S. and Lembo, D. (2012). "Inhibition of human 

respiratory syncytial virus infectivity by a dendrimeric heparan sulfate-binding peptide." 

Antimicrob Agents Chemother 56(10): 5278-5288. 

du Prel, J.B.; Puppe, W.; Grondahl, B.; Knuf, M.; Weigl, J.A.; Schaaff, F. and 

Schmitt, H.J. (2009). "Are meteorological parameters associated with acute respiratory 

tract infections?" Clin Infect Dis 49(6): 861-868. 

Eisenhut, M. (2006). "Extrapulmonary manifestations of severe RSV bronchiolitis." 

Lancet 368(9540): 988. 

Ellis, J.A. (2013). Bovine Respiratory Syncytial Virus. Mononegaviruses of Veterinary 

Importance. Munir, M., CABI International. 1: 170-184. 

Eshaghi, A.; Duvvuri, V.R.; Lai, R.; Nadarajah, J.T.; Li, A.; Patel, S.N.; Low, D.E. 

and Gubbay, J.B. (2012). "Genetic variability of human respiratory syncytial virus A 

strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication." 

PLoS One 7(3): e32807. 

Evangelisti, M.; Cangiano, G.; Nenna, R.; Nicolai, A.; Frassanito, A.; Papasso, S.; 

Alessandroni, C.; Di Mario, C.; Zambonini, V.; Di Mattia, G.; Moretto, C. and 

Midulla, F. (2015). "Air pollution and bronchiolitis from 2004 to 2014 in Rome." 

European Respiratory Journal 46(suppl 59). 

Falsey, A.R. (2007). "Respiratory syncytial virus infection in adults." Semin Respir Crit 

Care Med 28(2): 171-181. 

Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C. and Walsh, E.E. (2005). 

"Respiratory syncytial virus infection in elderly and high-risk adults." N Engl J Med 

352(17): 1749-1759. 



116  References 

 

 

Falsey, A.R.; McElhaney, J.E.; Beran, J.; van Essen, G.A.; Duval, X.; Esen, M.; 

Galtier, F.; Gervais, P.; Hwang, S.J.; Kremsner, P.; Launay, O.; Leroux-Roels, G.; 

McNeil, S.A.; Nowakowski, A.; Richardus, J.H.; Ruiz-Palacios, G.; St Rose, S.; 

Devaster, J.M.; Oostvogels, L.; Durviaux, S. and Taylor, S. (2014). "Respiratory 

syncytial virus and other respiratory viral infections in older adults with moderate to 

severe influenza-like illness." J Infect Dis 209(12): 1873-1881. 

Fearns, R. and Deval, J. (2016). "New antiviral approaches for respiratory syncytial 

virus and other mononegaviruses: Inhibiting the RNA polymerase." Antiviral Res 134: 

63-76. 

Fearns, R.; Peeples, M.E. and Collins, P.L. (2002). "Mapping the transcription and 

replication promoters of respiratory syncytial virus." J Virol 76(4): 1663-1672. 

Fischer, L.; Laib Sampaio, K.; Jahn, G.; Hamprecht, K. and Gohring, K. (2013). 

"Generation and characterization of a GCV resistant HCMV UL97-mutation and a drug 

sensitive UL54-mutation." Antiviral Res 100(3): 575-577. 

Flint, S.J.; Enquist, L.W.; Racaniello, V.R. and Skalka, A.M. (2009). Principles of 

Virology : Molecular Biology. Washington, UNITED STATES, ASM Press. 

Flynn, J.A.; Durr, E.; Swoyer, R.; Cejas, P.J.; Horton, M.S.; Galli, J.D.; Cosmi, 

S.A.; Espeseth, A.S.; Bett, A.J. and Zhang, L. (2016). "Stability Characterization of a 

Vaccine Antigen Based on the Respiratory Syncytial Virus Fusion Glycoprotein." PLoS 

One 11(10): e0164789. 

Forbes, M.L.; Kumar, V.R.; Yogev, R.; Wu, X.; Robbie, G.J. and Ambrose, C.S. 

(2014). "Serum palivizumab level is associated with decreased severity of respiratory 

syncytial virus disease in high-risk infants." Hum Vaccin Immunother 10(10): 2789-

2794. 

Franke, G.; Freihorst, J.; Steinmuller, C.; Verhagen, W.; Hockertz, S. and 

Lohmann-Matthes, M.L. (1994). "Interaction of alveolar macrophages and respiratory 

syncytial virus." J Immunol Methods 174(1-2): 173-184. 

Fuentes, S.; Tran, K.C.; Luthra, P.; Teng, M.N. and He, B. (2007). "Function of the 

respiratory syncytial virus small hydrophobic protein." J Virol 81(15): 8361-8366. 

Fuller, H. and Del Mar, C. (2006). "Immunoglobulin treatment for respiratory syncytial 

virus infection." Cochrane Database Syst Rev(4): CD004883. 

Gan, S.W.; Tan, E.; Lin, X.; Yu, D.; Wang, J.; Tan, G.M.; Vararattanavech, A.; 

Yeo, C.Y.; Soon, C.H.; Soong, T.W.; Pervushin, K. and Torres, J. (2012). "The small 

hydrophobic protein of the human respiratory syncytial virus forms pentameric ion 

channels." J Biol Chem 287(29): 24671-24689. 

Garcia, J.; Garcia-Barreno, B.; Vivo, A. and Melero, J.A. (1993). "Cytoplasmic 

inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in 

transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K 

protein." Virology 195(1): 243-247. 

Geerdink, R.J.; Pillay, J.; Meyaard, L. and Bont, L. (2015). "Neutrophils in 

respiratory syncytial virus infection: A target for asthma prevention." J Allergy Clin 

Immunol 136(4): 838-847. 



References  117 

 

 

Geskey, J.M.; Thomas, N.J. and Brummel, G.L. (2007). "Palivizumab: a review of its 

use in the protection of high risk infants against respiratory syncytial virus (RSV)." 

Biologics: Target and Therapy 1: 33-43. 

Ghildyal, R.; Ho, A. and Jans, D.A. (2006). "Central role of the respiratory syncytial 

virus matrix protein in infection." FEMS Microbiol Rev 30(5): 692-705. 

Ghildyal, R.; Mills, J.; Murray, M.; Vardaxis, N. and Meanger, J. (2002). 

"Respiratory syncytial virus matrix protein associates with nucleocapsids in infected 

cells." J Gen Virol 83(Pt 4): 753-757. 

Gilman, M.S.; Moin, S.M.; Mas, V.; Chen, M.; Patel, N.K.; Kramer, K.; Zhu, Q.; 

Kabeche, S.C.; Kumar, A.; Palomo, C.; Beaumont, T.; Baxa, U.; Ulbrandt, N.D.; 

Melero, J.A.; Graham, B.S. and McLellan, J.S. (2015). "Characterization of a 

Prefusion-Specific Antibody That Recognizes a Quaternary, Cleavage-Dependent 

Epitope on the RSV Fusion Glycoprotein." PLoS Pathog 11(7): e1005035. 

Graham, B.S.; Modjarrad, K. and McLellan, J.S. (2015). "Novel antigens for RSV 

vaccines." Curr Opin Immunol 35: 30-38. 

Graham, B.S.; Perkins, M.D.; Wright, P.F. and Karzon, D.T. (1988). "Primary 

respiratory syncytial virus infection in mice." J Med Virol 26(2): 153-162. 

Griffiths, C.; Drews, S.J. and Marchant, D.J. (2017). "Respiratory Syncytial Virus: 

Infection, Detection, and New Options for Prevention and Treatment." Clin Microbiol 

Rev 30(1): 277-319. 

Groskreutz, D.J.; Monick, M.M.; Babor, E.C.; Nyunoya, T.; Varga, S.M.; Look, 

D.C. and Hunninghake, G.W. (2009). "Cigarette smoke alters respiratory syncytial 

virus-induced apoptosis and replication." Am J Respir Cell Mol Biol 41(2): 189-198. 

Gupta, C.K.; Leszczynski, J.; Gupta, R.K. and Siber, G.R. (1996). "Stabilization of 

respiratory syncytial virus (RSV) against thermal inactivation and freeze-thaw cycles for 

development and control of RSV vaccines and immune globulin." Vaccine 14(15): 1417-

1420. 

Gutfraind, A.; Galvani, A.P. and Meyers, L.A. (2015). "Efficacy and optimization of 

palivizumab injection regimens against respiratory syncytial virus infection." JAMA 

Pediatr 169(4): 341-348. 

Haber, N. (2018). "Respiratory syncytial virus infection in elderly adults." Med Mal 

Infect 48(6): 377-382. 

Hahn, S.J.; Ree, T. and Eyring, H. (1959). "Flow Mechanism of Thixotropic 

Substances." Industrial & Engineering Chemistry 51(7): 856-857. 

Hallak, L.K.; Kwilas, S.A. and Peeples, M.E. (2007). "Interaction between respiratory 

syncytial virus and glycosaminoglycans, including heparan sulfate." Methods Mol Biol 

379: 15-34. 

Hallak, L.K.; Spillmann, D.; Collins, P.L. and Peeples, M.E. (2000). 

"Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection." J 

Virol 74(22): 10508-10513. 

Han, L.L.; Alexander, J.P. and Anderson, L.J. (1999). "Respiratory syncytial virus 

pneumonia among the elderly: an assessment of disease burden." J Infect Dis 179(1): 25-

30. 



118  References 

 

 

Herlocher, M.L.; Ewasyshyn, M.; Sambhara, S.; Gharaee-Kermani, M.; Cho, D.; 

Lai, J.; Klein, M. and Maassab, H.F. (1999). "Immunological properties of plaque 

purified strains of live attenuated respiratory syncytial virus (RSV) for human vaccine." 

Vaccine 17(2): 172-181. 

Hewitt, R.; Farne, H.; Ritchie, A.; Luke, E.; Johnston, S.L. and Mallia, P. (2016). 

"The role of viral infections in exacerbations of chronic obstructive pulmonary disease 

and asthma." Ther Adv Respir Dis 10(2): 158-174. 

Hicks, S.N.; Chaiwatpongsakorn, S.; Costello, H.M.; McLellan, J.S.; Ray, W. and 

Peeples, M.E. (2018). "Five Residues in the Apical Loop of the Respiratory Syncytial 

Virus Fusion Protein F2 Subunit Are Critical for Its Fusion Activity." J Virol 92(15). 

Hierholzer, J.C. and Killington, R.A. (1996). Virus isolation and quantification. 

Virology Methods Manual, Academic Press. Ltd: 37. 

Hong, D.; Lee, G.; Jung, N.C. and Jeon, M. (2013). "Fast automated yeast cell 

counting algorithm using bright-field and fluorescence microscopic images." Biol Proced 

Online 15(1): 13. 

Hotard, A.L.; Shaikh, F.Y.; Lee, S.; Yan, D.; Teng, M.N.; Plemper, R.K.; Crowe, 

J.E., Jr. and Moore, M.L. (2012). "A stabilized respiratory syncytial virus reverse 

genetics system amenable to recombination-mediated mutagenesis." Virology 434(1): 

129-136. 

ICTV (2018). "Genus: Orthopneumovirus." Retrieved 05 July 2018, 2018, from 

https://talk.ictvonline.org/ictv-reports/ictv_online_report/negative-sense-rna-

viruses/mononegavirales/w/pneumoviridae/738/genus-orthopneumovirus. 

Israel, S.; Rusch, S.; DeVincenzo, J.; Boyers, A.; Fok-Seang, J.; Huntjens, D.; 

Lounis, N.; Mariёn, K.; Stevens, M. and Verloes, R. (2016). "Effect of Oral JNJ-

53718678 (JNJ-678) on Disease Severity in Healthy Adult Volunteers Experimentally 

Inoculated With Live Respiratory Syncytial Virus (RSV): A Placebo-Controlled 

Challenge Study." Open Forum Infectious Diseases 3(suppl_1): 650-650. 

Johnson, J.E.; Gonzales, R.A.; Olson, S.J.; Wright, P.F. and Graham, B.S. (2007). 

"The histopathology of fatal untreated human respiratory syncytial virus infection." Mod 

Pathol 20(1): 108-119. 

Johnson, P.R.; Spriggs, M.K.; Olmsted, R.A. and Collins, P.L. (1987). "The G 

glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive 

sequence divergence between antigenically related proteins." Proc Natl Acad Sci U S A 

84(16): 5625-5629. 

Johnson, S.; Oliver, C.; Prince, G.A.; Hemming, V.G.; Pfarr, D.S.; Wang, S.C.; 

Dormitzer, M.; O'Grady, J.; Koenig, S.; Tamura, J.K.; Woods, R.; Bansal, G.; 

Couchenour, D.; Tsao, E.; Hall, W.C. and Young, J.F. (1997). "Development of a 

humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity 

against respiratory syncytial virus." J Infect Dis 176(5): 1215-1224. 

Johnson, T.R.; McLellan, J.S. and Graham, B.S. (2012). "Respiratory syncytial virus 

glycoprotein G interacts with DC-SIGN and L-SIGN to activate ERK1 and ERK2." J 

Virol 86(3): 1339-1347. 

Kapikian, A.Z.; Mitchell, R.H.; Chanock, R.M.; Shvedoff, R.A. and Stewart, C.E. 

(1969). "An epidemiologic study of altered clinical reactivity to respiratory syncytial 



References  119 

 

 

(RS) virus infection in children previously vaccinated with an inactivated RS virus 

vaccine." Am J Epidemiol 89(4): 405-421. 

Karr, C.J.; Rudra, C.B.; Miller, K.A.; Gould, T.R.; Larson, T.; Sathyanarayana, S. 

and Koenig, J.Q. (2009). "Infant exposure to fine particulate matter and traffic and risk 

of hospitalization for RSV bronchiolitis in a region with lower ambient air pollution." 

Environ Res 109(3): 321-327. 

Karron, R.A.; Buonagurio, D.A.; Georgiu, A.F.; Whitehead, S.S.; Adamus, J.E.; 

Clements-Mann, M.L.; Harris, D.O.; Randolph, V.B.; Udem, S.A.; Murphy, B.R. 

and Sidhu, M.S. (1997). "Respiratory syncytial virus (RSV) SH and G proteins are not 

essential for viral replication in vitro: clinical evaluation and molecular characterization 

of a cold-passaged, attenuated RSV subgroup B mutant." Proc Natl Acad Sci U S A 

94(25): 13961-13966. 

Khanna, N.; Widmer, A.F.; Decker, M.; Steffen, I.; Halter, J.; Heim, D.; Weisser, 

M.; Gratwohl, A.; Fluckiger, U. and Hirsch, H.H. (2008). "Respiratory syncytial virus 

infection in patients with hematological diseases: single-center study and review of the 

literature." Clin Infect Dis 46(3): 402-412. 

Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K. and 

Parrott, R.H. (1969). "Respiratory syncytial virus disease in infants despite prior 

administration of antigenic inactivated vaccine." Am J Epidemiol 89(4): 422-434. 

Kwakkenbos, M.J.; Diehl, S.A.; Yasuda, E.; Bakker, A.Q.; van Geelen, C.M.; 

Lukens, M.V.; van Bleek, G.M.; Widjojoatmodjo, M.N.; Bogers, W.M.; Mei, H.; 

Radbruch, A.; Scheeren, F.A.; Spits, H. and Beaumont, T. (2010). "Generation of 

stable monoclonal antibody-producing B cell receptor-positive human memory B cells by 

genetic programming." Nat Med 16(1): 123-128. 

Kwon, Y.S.; Park, S.H.; Kim, M.A.; Kim, H.J.; Park, J.S.; Lee, M.Y.; Lee, C.W.; 

Dauti, S. and Choi, W.I. (2017). "Risk of mortality associated with respiratory syncytial 

virus and influenza infection in adults." BMC Infect Dis 17(1): 785. 

Lai, C.; Fischer, T. and Munroe, E. (2015). "Homologous recombination using 

bacterial artificial chromosomes." Cold Spring Harb Protoc 2015(2): 180-190. 

Langedijk, J.P.; de Groot, B.L.; Berendsen, H.J. and van Oirschot, J.T. (1998). 

"Structural homology of the central conserved region of the attachment protein G of 

respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor 

receptor." Virology 243(2): 293-302. 

Lapena, S.; Robles, M.B.; Castanon, L.; Martinez, J.P.; Reguero, S.; Alonso, M.P. 

and Fernandez, I. (2005). "Climatic factors and lower respiratory tract infection due to 

respiratory syncytial virus in hospitalised infants in northern Spain." Eur J Epidemiol 

20(3): 271-276. 

Larios Mora, A.; Detalle, L.; Gallup, J.M.; Van Geelen, A.; Stohr, T.; Duprez, L. 

and Ackermann, M.R. (2018). "Delivery of ALX-0171 by inhalation greatly reduces 

respiratory syncytial virus disease in newborn lambs." MAbs 10(5): 778-795. 

Lavoie, P.M.; Solimano, A.; Taylor, R.; Kwan, E.; Claydon, J.; Turvey, S.E. and 

Marr, N. (2016). "Outcomes of Respiratory Syncytial Virus Immunoprophylaxis in 

Infants Using an Abbreviated Dosing Regimen of Palivizumab." JAMA Pediatr 170(2): 

174-176. 



120  References 

 

 

Lawlor, H.A.; Schickli, J.H. and Tang, R.S. (2013). "A single amino acid in the F2 

subunit of respiratory syncytial virus fusion protein alters growth and fusogenicity." J 

Gen Virol 94(Pt 12): 2627-2635. 

Levine, S.; Peeples, M. and Hamilton, R. (1977). "Effect of respiratory syncytial virus 

infection of HeLa-cell macromolecular synthesis." J Gen Virol 37(1): 53-63. 

Lewis FA et al. (1961). " A syncytial virus associated with epidemic disease of the lower 

respiratory tract in infants and young children." Med. J. Aust. 2: 932-933. 

Liesman, R.M.; Buchholz, U.J.; Luongo, C.L.; Yang, L.; Proia, A.D.; DeVincenzo, 

J.P.; Collins, P.L. and Pickles, R.J. (2014). "RSV-encoded NS2 promotes epithelial cell 

shedding and distal airway obstruction." J Clin Invest 124(5): 2219-2233. 

Lifland, A.W.; Jung, J.; Alonas, E.; Zurla, C.; Crowe, J.E., Jr. and Santangelo, P.J. 

(2012). "Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize 

the innate immune response mediated by MDA5 and MAVS." J Virol 86(15): 8245-8258. 

Liljeroos, L.; Krzyzaniak, M.A.; Helenius, A. and Butcher, S.J. (2013). "Architecture 

of respiratory syncytial virus revealed by electron cryotomography." Proc Natl Acad Sci 

U S A 110(27): 11133-11138. 

Linn, W.S.; Gong, H., Jr.; Anderson, K.R.; Clark, K.W. and Shamoo, D.A. (1995). 

"Exposures of health-care workers to ribavirin aerosol: a pharmacokinetic study." Arch 

Environ Health 50(6): 445-451. 

Lopez, J.A.; Bustos, R.; Orvell, C.; Berois, M.; Arbiza, J.; Garcia-Barreno, B. and 

Melero, J.A. (1998). "Antigenic structure of human respiratory syncytial virus fusion 

glycoprotein." J Virol 72(8): 6922-6928. 

Lukacs, N.W.; Moore, M.L.; Rudd, B.D.; Berlin, A.A.; Collins, R.D.; Olson, S.J.; 

Ho, S.B. and Peebles, R.S., Jr. (2006). "Differential immune responses and pulmonary 

pathophysiology are induced by two different strains of respiratory syncytial virus." Am J 

Pathol 169(3): 977-986. 

Magro, M.; Andreu, D.; Gomez-Puertas, P.; Melero, J.A. and Palomo, C. (2010). 

"Neutralization of human respiratory syncytial virus infectivity by antibodies and low-

molecular-weight compounds targeted against the fusion glycoprotein." J Virol 84(16): 

7970-7982. 

Magro, M.; Mas, V.; Chappell, K.; Vazquez, M.; Cano, O.; Luque, D.; Terron, 

M.C.; Melero, J.A. and Palomo, C. (2012). "Neutralizing antibodies against the 

preactive form of respiratory syncytial virus fusion protein offer unique possibilities for 

clinical intervention." Proc Natl Acad Sci U S A 109(8): 3089-3094. 

Malhotra, R.; Ward, M.; Bright, H.; Priest, R.; Foster, M.R.; Hurle, M.; Blair, E. 

and Bird, M. (2003). "Isolation and characterisation of potential respiratory syncytial 

virus receptor(s) on epithelial cells." Microbes Infect 5(2): 123-133. 

Marr, N. and Turvey, S.E. (2012). "Role of human TLR4 in respiratory syncytial virus-

induced NF-kappaB activation, viral entry and replication." Innate Immun 18(6): 856-

865. 

Matrosovich, M.; Matrosovich, T.; Garten, W. and Klenk, H.D. (2006). "New low-

viscosity overlay medium for viral plaque assays." Virol J 3: 63. 



References  121 

 

 

Mazur, N.I.; Higgins, D.; Nunes, M.C.; Melero, J.A.; Langedijk, A.C.; Horsley, N.; 

Buchholz, U.J.; Openshaw, P.J.; McLellan, J.S.; Englund, J.A.; Mejias, A.; Karron, 

R.A.; Simoes, E.A.; Knezevic, I.; Ramilo, O.; Piedra, P.A.; Chu, H.Y.; Falsey, A.R.; 

Nair, H.; Kragten-Tabatabaie, L.; Greenough, A.; Baraldi, E.; Papadopoulos, N.G.; 

Vekemans, J.; Polack, F.P.; Powell, M.; Satav, A.; Walsh, E.E.; Stein, R.T.; 

Graham, B.S.; Bont, L.J. and Respiratory Syncytial Virus Network, F. (2018). "The 

respiratory syncytial virus vaccine landscape: lessons from the graveyard and promising 

candidates." Lancet Infect Dis. 

McKimm-Breschkin, J.L.; Jiang, S.; Hui, D.S.; Beigel, J.H.; Govorkova, E.A. and 

Lee, N. (2018). "Prevention and treatment of respiratory viral infections: Presentations on 

antivirals, traditional therapies and host-directed interventions at the 5th ISIRV Antiviral 

Group conference." Antiviral Res 149: 118-142. 

McLellan, J.S. (2015). "Neutralizing epitopes on the respiratory syncytial virus fusion 

glycoprotein." Curr Opin Virol 11: 70-75. 

McLellan, J.S.; Chen, M.; Leung, S.; Graepel, K.W.; Du, X.; Yang, Y.; Zhou, T.; 

Baxa, U.; Yasuda, E.; Beaumont, T.; Kumar, A.; Modjarrad, K.; Zheng, Z.; Zhao, 

M.; Xia, N.; Kwong, P.D. and Graham, B.S. (2013). "Structure of RSV fusion 

glycoprotein trimer bound to a prefusion-specific neutralizing antibody." Science 

340(6136): 1113-1117. 

McLellan, J.S.; Ray, W.C. and Peeples, M.E. (2013). "Structure and function of 

respiratory syncytial virus surface glycoproteins." Curr Top Microbiol Immunol 372: 83-

104. 

McLellan, J.S.; Yang, Y.; Graham, B.S. and Kwong, P.D. (2011). "Structure of 

respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals 

preservation of neutralizing epitopes." J Virol 85(15): 7788-7796. 

Mehedi, M.; Collins, P.L. and Buchholz, U.J. (2017). "A novel host factor for human 

respiratory syncytial virus." Commun Integr Biol 10(3): e1319025. 

Mehedi, M.; McCarty, T.; Martin, S.E.; Le Nouen, C.; Buehler, E.; Chen, Y.C.; 

Smelkinson, M.; Ganesan, S.; Fischer, E.R.; Brock, L.G.; Liang, B.; Munir, S.; 

Collins, P.L. and Buchholz, U.J. (2016). "Actin-Related Protein 2 (ARP2) and Virus-

Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread." PLoS Pathog 

12(12): e1006062. 

Mehta, J.; Walsh, E.E.; Mahadevia, P.J. and Falsey, A.R. (2013). "Risk factors for 

respiratory syncytial virus illness among patients with chronic obstructive pulmonary 

disease." COPD 10(3): 293-299. 

Melero, J.A. (2007). Molecular Biology of Human Respiratory Syncytial Virus. 

Respiratory Syncytial Virus. Cane, P., Elsevier. 14: 1-42. 

Melero, J.A. and Moore, M.L. (2013). "Influence of respiratory syncytial virus strain 

differences on pathogenesis and immunity." Curr Top Microbiol Immunol 372: 59-82. 

Mitra, R.; Baviskar, P.; Duncan-Decocq, R.R.; Patel, D. and Oomens, A.G. (2012). 

"The human respiratory syncytial virus matrix protein is required for maturation of viral 

filaments." J Virol 86(8): 4432-4443. 

Miyairi, I. and DeVincenzo, J.P. (2008). "Human genetic factors and respiratory 

syncytial virus disease severity." Clin Microbiol Rev 21(4): 686-703. 



122  References 

 

 

Moore, M.L.; Chi, M.H.; Luongo, C.; Lukacs, N.W.; Polosukhin, V.V.; Huckabee, 

M.M.; Newcomb, D.C.; Buchholz, U.J.; Crowe, J.E., Jr.; Goleniewska, K.; Williams, 

J.V.; Collins, P.L. and Peebles, R.S., Jr. (2009). "A chimeric A2 strain of respiratory 

syncytial virus (RSV) with the fusion protein of RSV strain line 19 exhibits enhanced 

viral load, mucus, and airway dysfunction." J Virol 83(9): 4185-4194. 

Morales, F.; Calder, M.A.; Inglis, J.M.; Murdoch, P.S. and Williamson, J. (1983). "A 

study of respiratory infections in the elderly to assess the role of respiratory syncytial 

virus." J Infect 7(3): 236-247. 

Morris, J.A.; Blount, R.E. and Savage, R.E. (1956). "Recovery of Cytopathogenic 

Agent from Chimpanzees with Goryza." Experimental Biology and Medicine 92(3): 544-

549. 

Mousa, J.J.; Kose, N.; Matta, P.; Gilchuk, P. and Crowe, J.E., Jr. (2017). "A novel 

pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus 

fusion protein." Nat Microbiol 2: 16271. 

Mousa, J.J.; Sauer, M.F.; Sevy, A.M.; Finn, J.A.; Bates, J.T.; Alvarado, G.; King, 

H.G.; Loerinc, L.B.; Fong, R.H.; Doranz, B.J.; Correia, B.E.; Kalyuzhniy, O.; Wen, 

X.; Jardetzky, T.S.; Schief, W.R.; Ohi, M.D.; Meiler, J. and Crowe, J.E., Jr. (2016). 

"Structural basis for nonneutralizing antibody competition at antigenic site II of the 

respiratory syncytial virus fusion protein." Proc Natl Acad Sci U S A 113(44): E6849-

e6858. 

Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; 

O'Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; Chandran, A.; Theodoratou, E.; 

Sutanto, A.; Sedyaningsih, E.R.; Ngama, M.; Munywoki, P.K.; Kartasasmita, C.; 

Simoes, E.A.; Rudan, I.; Weber, M.W. and Campbell, H. (2010). "Global burden of 

acute lower respiratory infections due to respiratory syncytial virus in young children: a 

systematic review and meta-analysis." Lancet 375(9725): 1545-1555. 

Noyola, D.E. and Mandeville, P.B. (2008). "Effect of climatological factors on 

respiratory syncytial virus epidemics." Epidemiol Infect 136(10): 1328-1332. 

Oertel, M.D. (1996). "RespiGam: an RSV immune globulin." Pediatr Nurs 22(6): 525-

528. 

Okiro, E.A.; Ngama, M.; Bett, A.; Cane, P.A.; Medley, G.F. and James Nokes, D. 

(2008). "Factors associated with increased risk of progression to respiratory syncytial 

virus-associated pneumonia in young Kenyan children." Trop Med Int Health 13(7): 914-

926. 

Olchanski, N.; Hansen, R.N.; Pope, E.; D'Cruz, B.; Fergie, J.; Goldstein, M.; Krilov, 

L.R.; McLaurin, K.K.; Nabrit-Stephens, B.; Oster, G.; Schaecher, K.; Shaya, F.T.; 

Neumann, P.J. and Sullivan, S.D. (2018). "Palivizumab Prophylaxis for Respiratory 

Syncytial Virus: Examining the Evidence Around Value." Open Forum Infect Dis 5(3): 

ofy031. 

Openshaw, P.J. (2013). "The mouse model of respiratory syncytial virus disease." Curr 

Top Microbiol Immunol 372: 359-369. 

Pangesti, K.N.A.; Abd El Ghany, M.; Walsh, M.G.; Kesson, A.M. and Hill-

Cawthorne, G.A. (2018). "Molecular epidemiology of respiratory syncytial virus." Rev 

Med Virol 28(2). 



References  123 

 

 

Papenburg, J.; Carbonneau, J.; Hamelin, M.E.; Isabel, S.; Bouhy, X.; Ohoumanne, 

N.; Dery, P.; Paes, B.A.; Corbeil, J.; Bergeron, M.G.; De Serres, G. and Boivin, G. 

(2012). "Molecular evolution of respiratory syncytial virus fusion gene, Canada, 2006-

2010." Emerg Infect Dis 18(1): 120-124. 

PATH (2018). "RSV Vaccine and mAb Snapshot." Retrieved 03 Aug. 2018, 2018, from 

https://vaccineresources.org/details.php?i=1562. 

Peret, T.C.; Hall, C.B.; Schnabel, K.C.; Golub, J.A. and Anderson, L.J. (1998). 

"Circulation patterns of genetically distinct group A and B strains of human respiratory 

syncytial virus in a community." J Gen Virol 79 ( Pt 9): 2221-2229. 

Polack, F.P.; Irusta, P.M.; Hoffman, S.J.; Schiatti, M.P.; Melendi, G.A.; Delgado, 

M.F.; Laham, F.R.; Thumar, B.; Hendry, R.M.; Melero, J.A.; Karron, R.A.; 

Collins, P.L. and Kleeberger, S.R. (2005). "The cysteine-rich region of respiratory 

syncytial virus attachment protein inhibits innate immunity elicited by the virus and 

endotoxin." Proc Natl Acad Sci U S A 102(25): 8996-9001. 

Prince, G.A.; Horswood, R.L.; Berndt, J.; Suffin, S.C. and Chanock, R.M. (1979). 

"Respiratory syncytial virus infection in inbred mice." Infect Immun 26(2): 764-766. 

Ramaswamy, M.; Groskreutz, D.J. and Look, D.C. (2009). "Recognizing the 

importance of respiratory syncytial virus in chronic obstructive pulmonary disease." 

COPD 6(1): 64-75. 

Resch, B. (2012). "Burden of respiratory syncytial virus infection in young children." 

World J Clin Pediatr 1(3): 8-12. 

Resch, B. (2014). "Respiratory Syncytial Virus Infection in High-risk Infants - an Update 

on Palivizumab Prophylaxis." Open Microbiol J 8: 71-77. 

Resch, B. (2017). "Product review on the monoclonal antibody palivizumab for 

prevention of respiratory syncytial virus infection." Hum Vaccin Immunother 13(9): 

2138-2149. 

Rima, B.; Collins, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.A.; Lee, B.; 

Maisner, A.; Rota, P.; Wang, L. and Ictv Report, C. (2017). "ICTV Virus Taxonomy 

Profile: Pneumoviridae." J Gen Virol 98(12): 2912-2913. 

Rincheval, V.; Lelek, M.; Gault, E.; Bouillier, C.; Sitterlin, D.; Blouquit-Laye, S.; 

Galloux, M.; Zimmer, C.; Eleouet, J.F. and Rameix-Welti, M.A. (2017). "Functional 

organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial 

virus." Nat Commun 8(1): 563. 

Roberts, S.R.; Compans, R.W. and Wertz, G.W. (1995). "Respiratory syncytial virus 

matures at the apical surfaces of polarized epithelial cells." J Virol 69(4): 2667-2673. 

Romero, J.R. (2003). "Palivizumab prophylaxis of respiratory syncytial virus disease 

from 1998 to 2002: results from four years of palivizumab usage." Pediatr Infect Dis J 

22(2 Suppl): S46-54. 

Rose, A.S.; Bradley, A.R.; Valasatava, Y.; Duarte, J.M.; Prlić, A. and Rose, P.W. 

(2018). "NGL viewer: web-based molecular graphics for large complexes." 

Bioinformatics: bty419-bty419. 

Rossey, I.; Gilman, M.S.; Kabeche, S.C.; Sedeyn, K.; Wrapp, D.; Kanekiyo, M.; 

Chen, M.; Mas, V.; Spitaels, J.; Melero, J.A.; Graham, B.S.; Schepens, B.; 



124  References 

 

 

McLellan, J.S. and Saelens, X. (2017). "Potent single-domain antibodies that arrest 

respiratory syncytial virus fusion protein in its prefusion state." Nat Commun 8: 14158. 

Rossey, I.; McLellan, J.S.; Saelens, X. and Schepens, B. (2018). "Clinical Potential of 

Prefusion RSV F-specific Antibodies." Trends Microbiol 26(3): 209-219. 

Roymans, D.; Alnajjar, S.S.; Battles, M.B.; Sitthicharoenchai, P.; Furmanova-

Hollenstein, P.; Rigaux, P.; Berg, J.V.D.; Kwanten, L.; Ginderen, M.V.; Verheyen, 

N.; Vranckx, L.; Jaensch, S.; Arnoult, E.; Voorzaat, R.; Gallup, J.M.; Larios-Mora, 

A.; Crabbe, M.; Huntjens, D.; Raboisson, P.; Langedijk, J.P.; Ackermann, M.R.; 

McLellan, J.S.; Vendeville, S. and Koul, A. (2017). "Therapeutic efficacy of a 

respiratory syncytial virus fusion inhibitor." Nat Commun 8(1): 167. 

Ruckwardt, T.J.; Morabito, K.M. and Graham, B.S. (2016). "Determinants of early 

life immune responses to RSV infection." Curr Opin Virol 16: 151-157. 

Sastre, P.; Melero, J.A.; Garcia-Barreno, B. and Palomo, C. (2005). "Comparison of 

affinity chromatography and adsorption to vaccinia virus recombinant infected cells for 

depletion of antibodies directed against respiratory syncytial virus glycoproteins present 

in a human immunoglobulin preparation." J Med Virol 76(2): 248-255. 

Schlender, J.; Zimmer, G.; Herrler, G. and Conzelmann, K.K. (2003). "Respiratory 

syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the 

specificity of RSV infection." J Virol 77(8): 4609-4616. 

Schobel, S.A.; Stucker, K.M.; Moore, M.L.; Anderson, L.J.; Larkin, E.K.; Shankar, 

J.; Bera, J.; Puri, V.; Shilts, M.H.; Rosas-Salazar, C.; Halpin, R.A.; Fedorova, N.; 

Shrivastava, S.; Stockwell, T.B.; Peebles, R.S.; Hartert, T.V. and Das, S.R. (2016). 

"Respiratory Syncytial Virus whole-genome sequencing identifies convergent evolution 

of sequence duplication in the C-terminus of the G gene." Sci Rep 6: 26311. 

Schwarze, J.; O'Donnell, D.R.; Rohwedder, A. and Openshaw, P.J. (2004). "Latency 

and persistence of respiratory syncytial virus despite T cell immunity." Am J Respir Crit 

Care Med 169(7): 801-805. 

Schweitzer, J.W. and Justice, N.A. (2018). "Respiratory Syncytial Virus Infection 

(RSV)." from https://www.ncbi.nlm.nih.gov/books/NBK459215/. 

Shaikh, F.Y. and Crowe, J.E., Jr. (2013). "Molecular mechanisms driving respiratory 

syncytial virus assembly." Future Microbiol 8(1): 123-131. 

Shcherbo, D.; Merzlyak, E.M.; Chepurnykh, T.V.; Fradkov, A.F.; Ermakova, G.V.; 

Solovieva, E.A.; Lukyanov, K.A.; Bogdanova, E.A.; Zaraisky, A.G.; Lukyanov, S. 

and Chudakov, D.M. (2007). "Bright far-red fluorescent protein for whole-body 

imaging." Nat Methods 4(9): 741-746. 

Shcherbo, D.; Murphy, C.S.; Ermakova, G.V.; Solovieva, E.A.; Chepurnykh, T.V.; 

Shcheglov, A.S.; Verkhusha, V.V.; Pletnev, V.Z.; Hazelwood, K.L.; Roche, P.M.; 

Lukyanov, S.; Zaraisky, A.G.; Davidson, M.W. and Chudakov, D.M. (2009). "Far-

red fluorescent tags for protein imaging in living tissues." Biochem J 418(3): 567-574. 

Shi, T.; McAllister, D.A.; O'Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, 

B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; Alassani, I.; Ali, A.; Antonio, 

M.; Awasthi, S.; Awori, J.O.; Azziz-Baumgartner, E.; Baggett, H.C.; Baillie, V.L.; 

Balmaseda, A.; Barahona, A.; Basnet, S.; Bassat, Q.; Basualdo, W.; Bigogo, G.; 

Bont, L.; Breiman, R.F.; Brooks, W.A.; Broor, S.; Bruce, N.; Bruden, D.; Buchy, P.; 



References  125 

 

 

Campbell, S.; Carosone-Link, P.; Chadha, M.; Chipeta, J.; Chou, M.; Clara, W.; 

Cohen, C.; de Cuellar, E.; Dang, D.A.; Dash-Yandag, B.; Deloria-Knoll, M.; 

Dherani, M.; Eap, T.; Ebruke, B.E.; Echavarria, M.; de Freitas Lazaro Emediato, 

C.C.; Fasce, R.A.; Feikin, D.R.; Feng, L.; Gentile, A.; Gordon, A.; Goswami, D.; 

Goyet, S.; Groome, M.; Halasa, N.; Hirve, S.; Homaira, N.; Howie, S.R.C.; Jara, J.; 

Jroundi, I.; Kartasasmita, C.B.; Khuri-Bulos, N.; Kotloff, K.L.; Krishnan, A.; 

Libster, R.; Lopez, O.; Lucero, M.G.; Lucion, F.; Lupisan, S.P.; Marcone, D.N.; 

McCracken, J.P.; Mejia, M.; Moisi, J.C.; Montgomery, J.M.; Moore, D.P.; 

Moraleda, C.; Moyes, J.; Munywoki, P.; Mutyara, K.; Nicol, M.P.; Nokes, D.J.; 

Nymadawa, P.; da Costa Oliveira, M.T.; Oshitani, H.; Pandey, N.; Paranhos-

Baccala, G.; Phillips, L.N.; Picot, V.S.; Rahman, M.; Rakoto-Andrianarivelo, M.; 

Rasmussen, Z.A.; Rath, B.A.; Robinson, A.; Romero, C.; Russomando, G.; Salimi, 

V.; Sawatwong, P.; Scheltema, N.; Schweiger, B.; Scott, J.A.G.; Seidenberg, P.; 

Shen, K.; Singleton, R.; Sotomayor, V.; Strand, T.A.; Sutanto, A.; Sylla, M.; Tapia, 

M.D.; Thamthitiwat, S.; Thomas, E.D.; Tokarz, R.; Turner, C.; Venter, M.; 

Waicharoen, S.; Wang, J.; Watthanaworawit, W.; Yoshida, L.M.; Yu, H.; Zar, H.J.; 

Campbell, H.; Nair, H. and Network, R.S.V.G.E. (2017). "Global, regional, and 

national disease burden estimates of acute lower respiratory infections due to respiratory 

syncytial virus in young children in 2015: a systematic review and modelling study." 

Lancet 390(10098): 946-958. 

Sigma-Alrich (2018). "Cellulose colloidal, microcrystalline 435244." Retrieved 25 May, 

2018, from 

https://www.sigmaaldrich.com/catalog/product/aldrich/435244?lang=de&region=DE&gc

lid=EAIaIQobChMIxN-X1vag2wIVCZzVCh0TDAtHEAAYASAAEgIrePD_BwE. 

Signet Chemical Corporation (2018). "AVICEL RC / CL, Microcrystalline Cellulose 

and Carboxymethylcellulose Sodium USP/NF, EP, JPE ". Retrieved 24 May, 2018, from 

http://www.signetchem.com/product.aspx?prdid=7. 

Sirimi, N.; Miligkos, M.; Koutouzi, F.; Petridou, E.; Siahanidou, T. and Michos, A. 

(2016). "Respiratory syncytial virus activity and climate parameters during a 12-year 

period." J Med Virol 88(6): 931-937. 

Sommer, C.; Resch, B. and Simoes, E.A. (2011). "Risk factors for severe respiratory 

syncytial virus lower respiratory tract infection." Open Microbiol J 5: 144-154. 

Sorvillo, F.J.; Huie, S.F.; Strassburg, M.A.; Butsumyo, A.; Shandera, W.X. and 

Fannin, S.L. (1984). "An outbreak of respiratory syncytial virus pneumonia in a nursing 

home for the elderly." J Infect 9(3): 252-256. 

Stevens, M.; Rusch, S.; DeVincenzo, J.; Kim, Y.I.; Harrison, L.; Meals, E.A.; 

Boyers, A.; Fok-Seang, J.; Huntjens, D.; Lounis, N.; Mari, N.K.; Remmerie, B.; 

Roymans, D.; Koul, A. and Verloes, R. (2018). "Antiviral Activity of Oral JNJ-

53718678 in Healthy Adult Volunteers Challenged With Respiratory Syncytial Virus: A 

Placebo-Controlled Study." J Infect Dis 218(5): 748-756. 

Stobart, C.C.; Hotard, A.L.; Meng, J. and Moore, M.L. (2016). Reverse Genetics of 

Respiratory Syncytial Virus. Human Respiratory Syncytial Virus: Methods and Protocols. 

Tripp, R. A. and Jorquera, P. A. New York, NY, Springer New York: 141-153. 

Stobart, C.C. and Moore, M.L. (2014). "RNA virus reverse genetics and vaccine 

design." Viruses 6(7): 2531-2550. 



126  References 

 

 

Subramanian, K.N.; Weisman, L.E.; Rhodes, T.; Ariagno, R.; Sanchez, P.J.; 

Steichen, J.; Givner, L.B.; Jennings, T.L.; Top, F.H., Jr.; Carlin, D. and Connor, E. 

(1998). "Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to 

respiratory syncytial virus in premature infants and infants with bronchopulmonary 

dysplasia. MEDI-493 Study Group." Pediatr Infect Dis J 17(2): 110-115. 

Sudo, K.; Watanabe, W.; Mori, S.; Konno, K.; Shigeta, S. and Yokota, T. (1999). 

"Mouse model of respiratory syncytial virus infection to evaluate antiviral activity in 

vivo." Antivir Chem Chemother 10(3): 135-139. 

Swanson, K.A.; Settembre, E.C.; Shaw, C.A.; Dey, A.K.; Rappuoli, R.; Mandl, 

C.W.; Dormitzer, P.R. and Carfi, A. (2011). "Structural basis for immunization with 

postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high 

neutralizing antibody titers." Proc Natl Acad Sci U S A 108(23): 9619-9624. 

Tabatabai, J.; Prifert, C.; Pfeil, J.; Grulich-Henn, J. and Schnitzler, P. (2014). 

"Novel respiratory syncytial virus (RSV) genotype ON1 predominates in Germany during 

winter season 2012-13." PLoS One 9(10): e109191. 

Taleb, S.A.; Al Thani, A.A.; Al Ansari, K. and Yassine, H.M. (2018). "Human 

respiratory syncytial virus: pathogenesis, immune responses, and current vaccine 

approaches." Eur J Clin Microbiol Infect Dis. 

Tan, B.J. (1998). "Respiratory syncytial virus immune globulin intravenous." Paediatr 

Child Health 3(1): 11-14. 

Tayyari, F.; Marchant, D.; Moraes, T.J.; Duan, W.; Mastrangelo, P. and Hegele, 

R.G. (2011). "Identification of nucleolin as a cellular receptor for human respiratory 

syncytial virus." Nat Med 17(9): 1132-1135. 

Techaarpornkul, S.; Barretto, N. and Peeples, M.E. (2001). "Functional analysis of 

recombinant respiratory syncytial virus deletion mutants lacking the small hydrophobic 

and/or attachment glycoprotein gene." J Virol 75(15): 6825-6834. 

Techaarpornkul, S.; Collins, P.L. and Peeples, M.E. (2002). "Respiratory syncytial 

virus with the fusion protein as its only viral glycoprotein is less dependent on cellular 

glycosaminoglycans for attachment than complete virus." Virology 294(2): 296-304. 

The IMpact-RSV Study Group (1998). "Palivizumab, a humanized respiratory 

syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial 

virus infection in high-risk infants. The IMpact-RSV Study Group." Pediatrics 102(3 Pt 

1): 531-537. 

Tian, S. (2009). "A 20 Residues Motif Delineates the Furin Cleavage Site and its 

Physical Properties May Influence Viral Fusion." Biochemistry Insights 2: BCI.S2049. 

Tian, S.; Huang, Q.; Fang, Y. and Wu, J. (2011). "FurinDB: A database of 20-residue 

furin cleavage site motifs, substrates and their associated drugs." Int J Mol Sci 12(2): 

1060-1065. 

Tischer, B.K.; Smith, G.A. and Osterrieder, N. (2010). "En passant mutagenesis: a two 

step markerless red recombination system." Methods Mol Biol 634: 421-430. 

Tischer, B.K.; von Einem, J.; Kaufer, B. and Osterrieder, N. (2006). "Two-step red-

mediated recombination for versatile high-efficiency markerless DNA manipulation in 

Escherichia coli." Biotechniques 40(2): 191-197. 



References  127 

 

 

Tripp, R.A.; Jones, L.P.; Haynes, L.M.; Zheng, H.; Murphy, P.M. and Anderson, 

L.J. (2001). "CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein." 

Nat Immunol 2(8): 732-738. 

Turner, T.L.; Kopp, B.T.; Paul, G.; Landgrave, L.C.; Hayes, D., Jr. and Thompson, 

R. (2014). "Respiratory syncytial virus: current and emerging treatment options." 

Clinicoecon Outcomes Res 6: 217-225. 

Ulloa, L.; Serra, R.; Asenjo, A. and Villanueva, N. (1998). "Interactions between 

cellular actin and human respiratory syncytial virus (HRSV)." Virus Res 53(1): 13-25. 

Utokaparch, S.; Marchant, D.; Gosselink, J.V.; McDonough, J.E.; Thomas, E.E.; 

Hogg, J.C. and Hegele, R.G. (2011). "The relationship between respiratory viral loads 

and diagnosis in children presenting to a pediatric hospital emergency department." 

Pediatr Infect Dis J 30(2): e18-23. 

van Drunen Littel-van den Hurk, S. and Watkiss, E.R. (2012). "Pathogenesis of 

respiratory syncytial virus." Curr Opin Virol 2(3): 300-305. 

Van Heeke, G.; Allosery, K.; De Brabandere, V.; De Smedt, T.; Detalle, L. and de 

Fougerolles, A. (2017). "Nanobodies(R) as inhaled biotherapeutics for lung diseases." 

Pharmacol Ther 169: 47-56. 

Vandini, S.; Biagi, C. and Lanari, M. (2017). "Respiratory Syncytial Virus: The 

Influence of Serotype and Genotype Variability on Clinical Course of Infection." Int J 

Mol Sci 18(8). 

Varga, S.M. and Braciale, T.J. (2013). The Adaptive Immune Response to Respiratory 

Syncytial Virus. Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. 

Anderson, L. J. and Graham, B. S. 372: 155-172. 

Volling, C.; Hassan, K.; Mazzulli, T.; Green, K.; Al-Den, A.; Hunter, P.; Mangat, 

R.; Ng, J. and McGeer, A. (2014). "Respiratory syncytial virus infection-associated 

hospitalization in adults: a retrospective cohort study." BMC Infect Dis 14(1): 665. 

Wang, G.; Deval, J.; Hong, J.; Dyatkina, N.; Prhavc, M.; Taylor, J.; Fung, A.; Jin, 

Z.; Stevens, S.K.; Serebryany, V.; Liu, J.; Zhang, Q.; Tam, Y.; Chanda, S.M.; 

Smith, D.B.; Symons, J.A.; Blatt, L.M. and Beigelman, L. (2015). "Discovery of 4'-

chloromethyl-2'-deoxy-3',5'-di-O-isobutyryl-2'-fluorocytidine (ALS-8176), a first-in-class 

RSV polymerase inhibitor for treatment of human respiratory syncytial virus infection." J 

Med Chem 58(4): 1862-1878. 

Ward, C.; Maselko, M.; Lupfer, C.; Prescott, M. and Pastey, M.K. (2017). 

"Interaction of the Human Respiratory Syncytial Virus matrix protein with cellular 

adaptor protein complex 3 plays a critical role in trafficking." PLoS One 12(10): 

e0184629. 

Wasserman, R.L.; Greener, B.N. and Mond, J. (2017). "RI-002, an intravenous 

immunoglobulin containing high titer neutralizing antibody to RSV and other respiratory 

viruses for use in primary immunodeficiency disease and other immune compromised 

populations." Expert Rev Clin Immunol 13(12): 1107-1119. 

Wasserman, R.L.; Lumry, W.; Harris, J., 3rd; Levy, R.; Stein, M.; Forbes, L.; 

Cunningham-Rundles, C.; Melamed, I.; Kobayashi, A.L.; Du, W. and Kobayashi, R. 

(2016). "Efficacy, Safety, and Pharmacokinetics of a New 10 % Liquid Intravenous 

Immunoglobulin Containing High Titer Neutralizing Antibody to RSV and Other 



128  References 

 

 

Respiratory Viruses in Subjects with Primary Immunodeficiency Disease." J Clin 

Immunol 36(6): 590-599. 

Weber, M.W.; Milligan, P.; Hilton, S.; Lahai, G.; Whittle, H.; Mulholland, E.K. and 

Greenwood, B.M. (1999). "Risk factors for severe respiratory syncytial virus infection 

leading to hospital admission in children in the Western Region of The Gambia." Int J 

Epidemiol 28(1): 157-162. 

Weinberger, D.M.; Warren, J.L.; Steiner, C.A.; Charu, V.; Viboud, C. and Pitzer, 

V.E. (2015). "Reduced-Dose Schedule of Prophylaxis Based on Local Data Provides 

Near-Optimal Protection Against Respiratory Syncytial Virus." Clin Infect Dis 61(4): 

506-514. 

Welliver, R.C., Sr.; Checchia, P.A.; Bauman, J.H.; Fernandes, A.W.; Mahadevia, 

P.J. and Hall, C.B. (2010). "Fatality rates in published reports of RSV hospitalizations 

among high-risk and otherwise healthy children." Curr Med Res Opin 26(9): 2175-2181. 

Welliver, T.P.; Reed, J.L. and Welliver, R.C., Sr. (2008). "Respiratory syncytial virus 

and influenza virus infections: observations from tissues of fatal infant cases." Pediatr 

Infect Dis J 27(10 Suppl): S92-96. 

Widjaja, I.; Rigter, A.; Jacobino, S.; van Kuppeveld, F.J.; Leenhouts, K.; Palomo, 

C.; Melero, J.A.; Leusen, J.H.; Haijema, B.J.; Rottier, P.J. and de Haan, C.A. 

(2015). "Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad 

Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-

Like Characteristics." PLoS One 10(6): e0130829. 

Wright, M. and Piedimonte, G. (2011). "Respiratory syncytial virus prevention and 

therapy: past, present, and future." Pediatr Pulmonol 46(4): 324-347. 

Wu, S.J.; Schmidt, A.; Beil, E.J.; Day, N.D.; Branigan, P.J.; Liu, C.; Gutshall, L.L.; 

Palomo, C.; Furze, J.; Taylor, G.; Melero, J.A.; Tsui, P.; Del Vecchio, A.M. and 

Kruszynski, M. (2007). "Characterization of the epitope for anti-human respiratory 

syncytial virus F protein monoclonal antibody 101F using synthetic peptides and genetic 

approaches." J Gen Virol 88(Pt 10): 2719-2723. 

Wu, W.; Munday, D.C.; Howell, G.; Platt, G.; Barr, J.N. and Hiscox, J.A. (2011). 

"Characterization of the interaction between human respiratory syncytial virus and the 

cell cycle in continuous cell culture and primary human airway epithelial cells." J Virol 

85(19): 10300-10309. 

Xia, Q.; Zhou, L.; Peng, C.; Hao, R.; Ni, K.; Zang, N.; Ren, L.; Deng, Y.; Xie, X.; 

He, L.; Tian, D.; Wang, L.; Huang, A.; Zhao, Y.; Zhao, X.; Fu, Z.; Tu, W. and Liu, 

E. (2014). "Detection of respiratory syncytial virus fusion protein variants between 2009 

and 2012 in China." Arch Virol 159(5): 1089-1098. 

Xin, Y.; Weng, W.; Murray, B.P.; Eisenberg, E.J.; Chien, J.W.; Ling, J. and 

Silverman, J.A. (2018). "The Drug-Drug Interaction Profile of Presatovir." J Clin 

Pharmacol 58(6): 771-780. 

Yasui, Y.; Yamaji, Y.; Sawada, A.; Ito, T. and Nakayama, T. (2016). "Cell fusion 

assay by expression of respiratory syncytial virus (RSV) fusion protein to analyze the 

mutation of palivizumab-resistant strains." J Virol Methods 231: 48-55. 



References  129 

 

 

Young, J. (2002). "Development of a potent respiratory syncytial virus-specific 

monoclonal antibody for the prevention of serious lower respiratory tract disease in 

infants." Respir Med 96 Suppl B: S31-35. 

Yu, D.; Ellis, H.M.; Lee, E.C.; Jenkins, N.A.; Copeland, N.G. and Court, D.L. 

(2000). "An efficient recombination system for chromosome engineering in Escherichia 

coli." Proc Natl Acad Sci U S A 97(11): 5978-5983. 

Yunus, A.S.; Jackson, T.P.; Crisafi, K.; Burimski, I.; Kilgore, N.R.; Zoumplis, D.; 

Allaway, G.P.; Wild, C.T. and Salzwedel, K. (2010). "Elevated temperature triggers 

human respiratory syncytial virus F protein six-helix bundle formation." Virology 396(2): 

226-237. 

Zhang, L.; Peeples, M.E.; Boucher, R.C.; Collins, P.L. and Pickles, R.J. (2002). 

"Respiratory syncytial virus infection of human airway epithelial cells is polarized, 

specific to ciliated cells, and without obvious cytopathology." J Virol 76(11): 5654-5666. 

Zhang, X.L.; Shao, X.J.; Wang, J. and Guo, W.L. (2013). "Temporal characteristics of 

respiratory syncytial virus infection in children and its correlation with climatic factors at 

a public pediatric hospital in Suzhou." J Clin Virol 58(4): 666-670. 

Zhao, X.; Chen, F.P.; Megaw, A.G. and Sullender, W.M. (2004). "Variable resistance 

to palivizumab in cotton rats by respiratory syncytial virus mutants." J Infect Dis 190(11): 

1941-1946. 

Zhao, X.; Chen, F.P. and Sullender, W.M. (2004). "Respiratory syncytial virus escape 

mutant derived in vitro resists palivizumab prophylaxis in cotton rats." Virology 318(2): 

608-612. 

Zhao, X.; Liu, E.; Chen, F.P. and Sullender, W.M. (2006). "In vitro and in vivo fitness 

of respiratory syncytial virus monoclonal antibody escape mutants." J Virol 80(23): 

11651-11657. 

Zhu, Q.; McAuliffe, J.M.; Patel, N.K.; Palmer-Hill, F.J.; Yang, C.F.; Liang, B.; Su, 

L.; Zhu, W.; Wachter, L.; Wilson, S.; MacGill, R.S.; Krishnan, S.; McCarthy, M.P.; 

Losonsky, G.A. and Suzich, J.A. (2011). "Analysis of respiratory syncytial virus 

preclinical and clinical variants resistant to neutralization by monoclonal antibodies 

palivizumab and/or motavizumab." J Infect Dis 203(5): 674-682. 

Zhu, Q.; McLellan, J.S.; Kallewaard, N.L.; Ulbrandt, N.D.; Palaszynski, S.; Zhang, 

J.; Moldt, B.; Khan, A.; Svabek, C.; McAuliffe, J.M.; Wrapp, D.; Patel, N.K.; Cook, 

K.E.; Richter, B.W.M.; Ryan, P.C.; Yuan, A.Q. and Suzich, J.A. (2017). "A highly 

potent extended half-life antibody as a potential RSV vaccine surrogate for all infants." 

Sci Transl Med 9(388). 

Zhu, Q.; Patel, N.K.; McAuliffe, J.M.; Zhu, W.; Wachter, L.; McCarthy, M.P. and 

Suzich, J.A. (2012). "Natural polymorphisms and resistance-associated mutations in the 

fusion protein of respiratory syncytial virus (RSV): effects on RSV susceptibility to 

palivizumab." J Infect Dis 205(4): 635-638. 

Zimmer, G.; Budz, L. and Herrler, G. (2001). "Proteolytic activation of respiratory 

syncytial virus fusion protein. Cleavage at two furin consensus sequences." J Biol Chem 

276(34): 31642-31650. 

Zimmer, G.; Conzelmann, K.K. and Herrler, G. (2002). "Cleavage at the furin 

consensus sequence RAR/KR(109) and presence of the intervening peptide of the 



130  References 

 

 

respiratory syncytial virus fusion protein are dispensable for virus replication in cell 

culture." J Virol 76(18): 9218-9224. 

Zimmer, G.; Trotz, I. and Herrler, G. (2001). "N-glycans of F protein differentially 

affect fusion activity of human respiratory syncytial virus." J Virol 75(10): 4744-4751. 

 

  



Appendix  131 

 

 

Appendix 1: The F-sequence on the bacterial artificial chromosome pSynkRSV-l19F is 

depicted. All mutations that were characterized in this work are highlighted in yellow for 

those that were identified in clinical isolates and in pink for those that served as resistant and 

sensitive control. Primers used for sequencing are illustrated with black arrows. Since the 

annealing position of the reverse primer 2R is located downstream of the stop codon in F, this 

primer is not presented here.  
 

 

 

 

  Part of primer 1F       

atg gag ttg cca atc ctc aaa gca aat gca att acc aca atc ctc gct gca gtc aca ttt  < 60 

  M   E   L   P   I   L   K   A   N   A   I   T   T   I   L   A   A   V   T   F    20 

              10           20           30            40           50  

  C21G Q34R 

  tgc ttt gct tct agt caa aac atc act gaa gaa ttt tat caa tca aca tgc agt gca gtt  <120 

  C   F   A   S   S   Q   N   I   T   E   E   F   Y   Q   S   T   C   S   A   V    40 

              70           80           90            100          110   

    R49K 

  agc aaa ggc tat ctt agt gct cta aga act ggt tgg tat act agt gtt ata act ata gaa  <180 

  S   K   G   Y   L   S   A   L   R   T   G   W   Y   T   S   V   I   T   I   E    60 

              130          140          150           160          170   

   

  tta agt aat atc aag aaa aat aag tgt aat gga aca gat gct aag gta aaa ttg atg aaa  <240 

  L   S   N   I   K   K   N   K   C   N   G   T   D   A   K   V   K   L   M   K    80 

              190          200          210           220          230  

    T100S 

  caa gaa tta gat aaa tat aaa aat gct gta aca gaa ttg cag ttg ctc atg caa agc aca  <300 

  Q   E   L   D   K   Y   K   N   A   V   T   E   L   Q   L   L   M   Q   S   T     100 

              250          260          270           280          290  

    A103P 

  cca gca gca aac aat cga gcc aga aga gaa cta cca agg ttt atg aat tat aca ctc aac  <360 

  P   A   A   N   N   R   A   R   R   E   L   P   R   F   M   N   Y   T   L   N     120 

              310          320          330           340          350  

       

  aat acc aaa aaa acc aat gta aca tta agc aag aaa agg aaa aga aga ttt ctt ggt ttt  <420 

  N   T   K   K   T   N   V   T   L   S   K   K   R   K   R   R   F   L   G   F     140 

              370          380          390           400          410  

   

  ttg tta ggt gtt gga tct gca atc gcc agt ggc att gct gta tct aag gtc ctg cac tta  <480 

  L   L   G   V   G   S   A   I   A   S   G   I   A   V   S   K   V   L   H   L     160 

              430          440          450           460          470  

   

  gaa gga gaa gtg aac aag atc aaa agt gct cta cta tcc aca aac aag gcc gta gtc agc  <540 

  E   G   E   V   N   K   I   K   S   A   L   L   S   T   N   K   A   V   V   S     180 

              490          500          510           520          530  

                      primer 190R     primer 4F   

  tta tca aat gga gtt agt gtc tta acc agc aga gtg tta gac ctc aaa aac tat ata gat  <600 

  L   S   N   G   V   S   V   L   T   S   R   V   L   D   L   K   N   Y   I   D     200 

              550          560          570           580          590  

   

  aaa caa ttg tta cct att gtg aat aag caa agc tgc aga ata tca aat ata gaa act gtg  <660 

  K   Q   L   L   P   I   V   N   K   Q   S   C   R   I   S   N   I   E   T   V     220 

              610          620          630           640          650  

   

  ata gag ttc caa caa aag aac aac aga cta cta gag att acc agg gaa ttt agt gtt aat  <720 

  I   E   F   Q   Q   K   N   N   R   L   L   E   I   T   R   E   F   S   V   N     240 

              670          680          690           700          710  

   

  gca ggt gta act aca cct gta agc act tac atg tta act aat agt gaa tta ttg tca tta  <780 

  A   G   V   T   T   P   V   S   T   Y   M   L   T   N   S   E   L   L   S   L     260 

              730          740          750           760          770  
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 K272E N276S 

  atc aat gat atg cct ata aca aat gat cag aaa aag tta atg tcc aac aat gtt caa ata  <840 

  I   N   D   M   P   I   T   N   D   Q   K   K   L   M   S   N   N   V   Q   I     280 

              790          800          810           820          830  

   

  gtt aga cag caa agt tac tct atc atg tcc ata ata aaa gag gaa gtc tta gca tat gta  <900 

  V   R   Q   Q   S   Y   S   I   M   S   I   I   K   E   E   V   L   A   Y   V     300 

              850          860          870           880          890  

   

  gta caa tta cca cta tat ggt gtg ata gat aca cct tgt tgg aaa tta cac aca tcc cct  <960 

  V   Q   L   P   L   Y   G   V   I   D   T   P   C   W   K   L   H   T   S   P     320 

              910          920          930           940          950  

   

  cta tgt aca acc aac aca aaa gaa ggg tca aac atc tgt tta aca aga act gac aga gga  <1020 

  L   C   T   T   N   T   K   E   G   S   N   I   C   L   T   R   T   D   R   G     340 

              970          980          990           1000         1010  

 

  tgg tac tgt gac aat gca gga tca gta tct ttc ttc cca caa gct gaa aaa tgt aaa gtt  <1080 

  W   Y   C   D   N   A   G   S   V   S   F   F   P   Q   A   E   K   C   K   V     360 

              1030         1040         1050          1060         1070  

   

  caa tcg aat cga gta ttt tgt gac aca atg tac agt tta aca tta cca agt gaa gta aat  <1140 

  Q   S   N   R   V   F   C   D   T   M   Y   S   L   T   L   P   S   E   V   N     380 

              1090         1100         1110          1120         1130  

    primer 5F 

  ctc tgc aat gtt gac ata ttc aat ccc aaa tat gat tgt aaa att atg act tca aaa aca  <1200 

  L   C   N   V   D   I   F   N   P   K   Y   D   C   K   I   M   T   S   K   T     400 

              1150         1160         1170          1180         1190  

   

  gat gta agc agc tcc gtt atc aca tct cta gga gcc att gtg tca tgc tat ggc aaa act  <1260 

  D   V   S   S   S   V   I   T   S   L   G   A   I   V   S   C   Y   G   K   T     420 

              1210         1220         1230          1240         1250  

   

  aaa tgt aca gca tcc aat aaa aat cgt gga atc ata aag aca ttt tct aac ggg tgt gat  <1320 

  K   C   T   A   S   N   K   N   R   G   I   I   K   T   F   S   N   G   C   D     440 

              1270         1280         1290          1300         1310  

   

  tat gta tca aat aaa ggg gtg gac act gtg tct gta ggt aac aca tta tat tat gta aat  <1380 

  Y   V   S   N   K   G   V   D   T   V   S   V   G   N   T   L   Y   Y   V   N     460 

              1330         1340         1350          1360         1370  

   

  aag caa gaa ggc aaa agt ctc tat gta aaa ggt gaa cca ata ata aat ttc tat gac cca  <1440 

  K   Q   E   G   K   S   L   Y   V   K   G   E   P   I   I   N   F   Y   D   P     480 

              1390         1400         1410          1420         1430  

   

  tta gta ttc ccc tct gat gaa ttt gat gca tca ata tct caa gtc aat gag aag att aac  <1500 

  L   V   F   P   S   D   E   F   D   A   S   I   S   Q   V   N   E   K   I   N     500 

              1450         1460         1470          1480         1490  

    A518V 

  cag agt tta gca ttt att cgt aaa tcc gat gaa tta tta cat aat gta aat gct ggt aaa  <1560 

  Q   S   L   A   F   I   R   K   S   D   E   L   L   H   N   V   N   A   G   K     520 

              1510         1520         1530          1540         1550  

   

  tca acc aca aat atc atg ata act act ata att ata gtg att ata gta ata ttg tta tca  <1620 

  S   T   T   N   I   M   I   T   T   I   I   I   V   I   I   V   I   L   L   S    540 

              1570         1580         1590          1600         1610  

    C550Y 

  tta att gct gtt gga ctg ctc cta tac tgt aag gcc aga agc aca cca atc aca cta agc  <1680 

  L   I   A   V   G   L   L   L   Y   C   K   A   R   S   T   P   I   T   L   S    560 

              1630         1640         1650          1660         1670  

   

  aag gat caa ctg agt ggt ata aat aat att gca ttt agt aac tga  < 1725 

  K   D   Q   L   S   G   I   N   N   I   A   F   S   N   *    

              1690         1700         1710          1720   



 

 

 


