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1 Summary 
 

Secondary growth or the increase in girth of plant organs is a primordial developmental process in 

seed plants as vascular expansion limits the transport of water and solute and provides mechanical 

support for the plant. Secondary growth involves the vascular cambium which is a cylindrical 

meristematic tissue producing inwards the xylem and outwards the phloem. It leads to thickening 

of plant organs and formation of secondary xylem or wood. Wood is the principal sink for excess 

atmospheric CO2 and fundamental source of natural renewable energy. Arabidopsis hypocotyl 

provides a good model to study secondary growth where two phases can be distinguished: an early 

phase in which xylem and phloem are produced at roughly the same rate, followed by a later phase 

of xylem expansion, in which xylem is produced at higher rate accompanied by fiber 

differentiation. Gibberellin (GA) triggers the shift between the two phases upon flowering, it moves 

from the shoot apex to the hypocotyl where it induces locally the degradation of DELLA proteins 

which are known to act as repressors of secondary growth. Although secondary growth is crucial 

for the plant and environment, it is surprising that little is known about the molecular mechanisms 

underlying it. In this study, we found that among the DELLA gene family REPRESSOR OF ga1-3 

(RGA) and GA INSENSITIVE (GAI) mediate most of the GA related secondary growth, with a more 

pronounced role of RGA as repressor. The role of RGA and GAI seems to be conserved across 

ecotypes, which greatly differ in xylem occupancy.  

We identified novel regulators of secondary growth through evaluating DELLA known interactors 

as well as analyzing the transcriptome related to RGA upon transition to the xylem expansion 

phase. We found that AUXIN RESPONSIVE FACTOR (ARF6), ARF7 and ARF8 act as positive 

regulators of xylem expansion and fiber differentiation whereas type-B ARABIDOPSIS 

RESPONSE REGULATORS (ARR1) and ARR2, CORONATINE-INSENSITIVE 1 (COI1) and 

TRANSCRIPTION FACTOR MYC2 (MYC2) activate phloem proliferation with a specific role for 

ARR1 and ARR2 in repressing fiber differentiation in the hypocotyl. Our genetic interaction 

analyses indicate that DELLA sequesters the identified ARF’s and possibly 

BREVIPEDICELLUS/KNAT1/ (BP/KNAT1) during the early phase. During the second phase 

ARF6, ARF7, ARF8 and probably BP are released from DELLA repression. We also showed that 

BP expression does not depend on ARF6 and ARF8 in the hypocotyl, instead our data indicate a 
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possible interaction between BP and ARF’s to regulate cambium activity. We performed RNA seq 

experiments in order to gain more insights into the regulatory network related to the positive 

regulation of xylem expansion mediated by ARF6 and ARF8, we identified several candidates 

involved in xylem development. Apart from the DELLA mediated control of secondary growth; 

we also identified a specific role for Jasmonate in promoting fiber formation, in the xylem and 

ectopically in the phloem, without altering the Xylem/Total area (X/A) ratio. 

Taken together, our findings shed light on a complex hormone cross-talk between GA, Auxin, 

Cytockinin and Jasmonate where DELLA function as central hub regulating xylem expansion and 

fiber differentiation. 
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2 Zusammenfassung  
 

Sekundäres Dickenwachstum ist ein grundlegender Entwicklungsprozess in Samenpflanzen, da die 

Entwicklung des vaskuklären Gewebes den Transport von Wasser als auch löslichen Nährstoffen 

steuert, und den Pflanzen zusätzlich mechanische Stützkraft verleiht. Das vaskuläre Kambium, ein 

zylinderförmiges, meristematisches Gewebe, ist am sekundären Dickenwachstum beteiligt. Es 

produziert nach innen Xylem- und nach außen Phloemgewebe, was zu einer Verdickung der 

Pflanzenorgane führt. Zudem wird sekundäres Xylem oder Holz gebildet. Holz ist Hauptspeicher 

für atmosphärisches CO2 und eine der Hautquellen zur Gewinnung erneuerbarer Energien. Im 

Hypokotyl von Arabidopsis thaliana lassen sich zwei Phasen des sekundären Dickenwachstums 

unterscheiden, was Arabidopsis zu einem geeigneten Modell für das Studium des selbigen macht. 

In der frühen Phase des Dickenwachstums werden Xylem und Phloem zu gleichen Anteilen 

gebildet, wohingegen in der späteren Wachstumsphase sich das Xylem, begleitet von Faserbildung, 

vergrößert. Der Übergang von der frühen in die späte Entwicklungsphase wird bei Blühbeginn 

durch Gibberellinsäure (GA) ausgelöst. GA wandert von der Spitze des Sprosses zum Hypokotyl, 

wo sie lokal den Abbau von DELLA Proteinen induziert, welche wiederrum als Repressoren des 

sekundären Dickenwachstums bekannt sind. 

Trotz der hohen Relevanz von sekundärem Dickenwachstum für Pflanze und Umwelt, ist 

überraschenderweise wenig über die zu Grunde liegenden Regulationsmechanismen bekannt. In 

dieser Forschungsarbeit haben wir herausgefunden, dass ein Großteil des GA-abhängigen 

Dickenwachstums innerhalb der DELLA-Genfamilie durch REPRESSOR OF ga1-3 (RGA) und 

GA INSENSITIVE (GAI) vermittelt wird, wobei RGA vornehmlich als Repressor agiert. Die Rolle 

von RGA und GAI scheint zudem innerhalb verschiedener Ökotypen, die sich in ihrem 

Xylemvorkommen unterscheiden, konserviert zu sein. 

Durch die Auswertung von bekannten Della-Interaktoren sowie Transkriptomanalysen zu RGA im 

Übergang zur Xylemausdehnung, war es möglich neue Regulatoren des sekundären 

Dickenwachstums zu identifizieren. AUXIN RESPONSIVE FACTOR (ARF) 6, ARF7 und ARF8 

agieren als positive Regulatoren in der Xylemausdehnung und Faserdifferenzierung, wohingegen 

Typ-B ARABIDOPSIS RESPONSE REGULATORS (ARR) 1 und ARR2, CORONATINE-

INSENSITIVE 1 (COI1) und TRANSCRIPTION FACTOR MYC2 (MYC2) die Phloem Proliferation 

aktivieren. Durch die Hemmung der Faserdifferenzierung im Hypokotyl spielen ARR1 und ARR2 
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hierbei eine spezifische Rolle. Unsere genetischen Interaktionsanalysen lassen darauf schließen, 

dass DELLA die identifizierten ARFs und wahrscheinlich auch 

BREVIPEDICELLUS/KNAT1/ (BP/KNAT1) während der frühen Phase sequestriert. 

Während der zweiten Phase werden ARF6, ARF7, ARF8 und wahrscheinlich auch BP von der 

DELLA Repression freigegeben. Wir konnten ebenfalls zeigen, dass die Expression von BP im 

Hypokotyl nicht ARF6 und ARF8 abhängig ist. Unsere Daten lassen jedoch vermuten, dass eine 

mögliche Interaktion zwischen BP und ARFs zur Regulation der Kambiumaktivität beiträgt. Um 

mehr Einblick in die Maschinerie zu erhalten, welche die ARF6- und ARF8-abhängige 

Xylemausdehnung positiv reguliert, haben wir RNA sequenziert und konnten hierdurch einige 

Kandidatengene für die Xylementwicklung identifizieren. Unabhängig von der DELLA-

gesteuerten Kontrolle des sekundären Dickenwachstums konnte auch eine spezifische Rolle für 

Jasmonate in der Förderung der Faserdifferenzierung im Xylem und ektopisch im Phloem 

nachgewiesen werden, wobei der Xylem/Gesamtfläche-Anteil gleich bleibt. 

Zusammengefasst bringen unsere Ergebnisse Licht in das Dunkel des komplexen hormonellen 

Zusammenspiels zwischen GA, Auxin, Cytokinin und Jasmonat, in dem DELLA als zentraler 

Knotenpunkt bezüglich der Regulation der Xylemausdehnung sowie der Faserdifferenzierung 

agiert. 
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3 Introduction  

3.1 Secondary growth and wood formation in plants 

Evolution of life on earth witnessed a marking event, the looming of the plant vascular system, 

allowing long distance transport of water and nutrients and enabling plants to increase in size and 

invade more land. The plant vascular system consists of xylem and phloem (Ye, 2002). Xylem 

conducts water and solutes, acquired by the roots, up to the shoots, in addition to its important role 

as structural support. Whereas phloem, transports the products of photosynthesis, from source 

tissues to sink tissues (Dinneny and Yanofsky, 2004). As plant vasculature size and shape are key 

factors limiting plant growth, another important invention in evolution, is the increase in girth of 

plant organs or secondary growth, restricted to seed plants in extant taxa (Ragni and Greb, 2017). 

Secondary growth results in the thickening of plant organs and formation of secondary xylem 

(Wood), the main source of natural renewable energy (Plomion et al., 2001). Wood biosynthesis 

follows five major steps, starting from cell division, cell expansion, cell wall thickening 

(biosynthesis and deposition of cellulose, hemicellulose, lignin, and cell wall proteins), 

programmed cell death, and heartwood (HW) formation (Chaffey, 1999, Plomion et al., 2001). 

Secondary growth is orchestrated by the vascular cambium, a meristematic tissue that lies between 

the xylem and phloem. In a thickening stem both radial and periclinal divisions occur within the 

cambium. Cells produced by periclinal divisions mature into phloem on the outside and xylem 

(wood) on the inside. With a higher division rate for xylem mother cells comparing to phloem 

mother cells, explaining the disproportion existing between phloem and xylem tissues (Murmanis, 

1970, Elo et al., 2009). The cambial zone has few cell layers. Consisting of elongated and highly 

vacuolated cells with a thin cell wall. Two cell types are present, short radial initials and elongated 

fusiform initials, they divide respectively into rays conducting nutrients between phloem and xylem 

radially, and through periclinal divisions to produce secondary vascular tissues: xylem elements 

towards the center or pith consisting mainly of tracheids (in gymnosperms), vessel elements, vessel 

associated cells, axial parenchyma and fibers (in dicotyledons). Phloem cells towards the periphery, 

consisting of sieve tubes, companion cells, axial parenchyma, and fibers. To maintain the vascular 

cambium, the two types of initials are produced continuously, fusiform initials are produced by 

anticlinal (radial) divisions of the mother cells, subsequently, new ray initials are issued. (Plomion 

et al., 2001) 
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The phellogen or cork cambium is another lateral meristem that contributes to secondary growth. 

It produces inwards the phelloderm cells and outwards the phellem cells (cork) (Esau, 1977). 

Thereby forming the so-called periderm surrounding the vascular cylinder and protecting the plant 

against biotic and abiotic stresses during secondary growth (Lulai and Freeman, 2001, Groh et al., 

2002, Lendzian, 2006). 

3.2 The Arabidopsis hypocotyl as a model to study secondary growth 

Several studies suggest that Arabidopsis is a good model to study secondary development and wood 

production (Chaffey et al., 2002, Sibout et al., 2008b, Zhang et al., 2011), as it has been shown 

that key regulators are conserved between herbaceous and woody plants. For example, in both 

Arabidopsis and Populus, ectopic expression of VASCULAR-RELATED NAC-DOMAIN 6 ( VND6 

) and VND7 promotes xylem vessel differentiation (Kubo et al., 2005), while HD- ZIP Class III 

transcription factors control cambium establishment and xylem formation (Zhong and Ye, 1999, 

Carlsbecker et al., 2010b, Robischon et al., 2011).  

In Arabidopsis, secondary growth occurs in roots, hypocotyls and stems. A key advantage on 

working on the hypocotyl is that radial growth is not masked by ongoing elongation as the 

hypocotyl stops to elongate few days after germination (Chaffey et al., 2002, Sibout et al., 2008b, 

Ragni and Hardtke, 2014). In addition, extensive amounts of secondary xylem fibers and vessel 

elements are produced, having structural and ultra-structural characteristics similar to those found 

in an angiosperm tree (Chaffey et al., 2002). The cambium comprises uniseriate rays suggesting 

the presence of fusiform initials and ray initials similarly to trees (Mazur and Kurczynska, 2012). 

Based on the morphology of the vasculature tissues and their production rate, two phases of 

hypocotyl secondary growth can be distinguished: an early phase in which xylem and phloem are 

produced at roughly the same rate, followed by a later phase of xylem expansion, in which xylem 

is produced at higher rate and accompanied by fiber differentiation. The shift between the two 

phases is triggered by flowering (Figure 1) (Sibout et al., 2008b), which is a general requirement 

for hypocotyl xylem expansion in herbaceous annual plants with rosette habitus (Ragni et al., 

2011). 

However, analyses of flowering mutants showed that flower specification and bolting are not 

necessary for xylem expansion, the transition is actually mediated by the GA flow coming from 

the shoot triggering xylem expansion in the hypocotyl upon flowering (Ragni et al. 2011). 
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Taken together, these observations render the Arabidopsis hypocotyl a very attractive model to 

study secondary growth. 

 

Fig. 1 Secondary growth dynamics in Arabidopsis hypocotyl. Adapted from (Sibout et al., 

2008b) 

3.3 Secondary growth and cambium regultaion 

3.3.1 Regulation through peptides and receptors 

Several Leucine-rich repeat receptor-like kinases (LRR-RLKs) especially CLV1-like LRR-RLKs 

have an important role regulating cambium activity, the well conserved CLE41-PXY/TDR loop is 

a very known example, in principle PXY/TDR receptor binds The CLV3/EMBRYO 

SURROUNDING REGION (CLE) related peptide CLE41 ligand and activates downstream 

WUSCHEL-RELATED HOMEOBOX 4 (WOX4) and WOX14 genes (Hirakawa et al., 2010, Morita 

et al., 2016). CLE41 peptide and its close redundant homologue CLE44, are expressed in the 

phloem and move to the cambium where they are perceived by PXY/TDR receptors. WOX4 and 

WOX14 are expressed in the cambium domain, they physically interact with transcriptional 

regulators belonging to the HAIRY MERISTEM family, regulating stem cell proliferation 

(Hirakawa et al., 2010, Suer et al., 2011, Etchells et al., 2013, Zhou et al., 2014).  

Fl
o
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MORE LATERAL GROWTH 1 (MOL1) is also a CLV1-like LRR-RLKs receptor, it is expressed 

in a different domain comparing to the PXY/TDR, in the cambial distal part towards the phloem, 

repressing cambium activity via a yet unknown mechanism. 

Other LRR-RLKs receptors non clustered in the CLV1 subgroup regulate cambium activity as well. 

For instance, REDUCED IN LATERAL GROWTH1 (RUL1) is known to promote cambium activity 

(Agusti et al., 2011b), PXY-CORRELATED1 (PXC1) positively regulates secondary cell wall 

formation in xylem fibers (Wang et al., 2013) and ERECTA (ER) and ER-LIKE1 (ERL1) repress 

xylem production, as in er erl1 double mutants, xylem production and fiber formation is strongly 

increased in the hypocotyl (Ikematsu et al., 2017). 

3.3.2 Hormonal regulation 

Auxin has a positive effect on cambial activity (Snow, 1935), it is also required to maintain cambial 

identity in pine (Savidge, 1983), Auxin transport through certain auxin efflux carriers (PINs) and 

ATP-binding cassette transporters (ABCs) plays also an important role in promoting cambium 

activity and secondary growth (Agusti et al., 2011a, Kaneda et al., 2011, Bennett et al., 2016). The 

transcription factor WUSCHEL-RELATED HOMEOBOX 4 (WOX4) promoting cambium 

proliferation, has been placed downstream of the Auxin signaling pathway (Suer et al., 2011). In a 

recent study, the AUXIN RESPONSE FACTOR (ARF5) which has a negative effect on cambium 

activity has been suggested to mainly promote the transition of cambium stem cells to xylem cells 

by directly activating xylem-related genes and by repressing WOX4, this doesn’t exclude Other 

ARFs from being involved in activating WOX4 at the same time. ARF3 and ARF4 however, are 

positive regulators of cambium independently from WOX4 (Brackmann et al., 2018). A direct 

regulator of MP has recently emerged, BIN2-LIKE 1 (BIL1), which is a member of the Glycogen 

synthase kinase 3 (GSK3) family. BIL1 enhances the negative effect of MP on vascular 

development via its direct phosphorylation, this suppresses cytokinin responses by inducing the A-

type Arabidopsis response regulators (ARRs) which function as negative regulators of Cytokinin 

signaling. BIL1 is in turn inhibited by PXY (Han et al., 2018). 

Despite the evidences for a role of Strigolactones SLs in regulating cambium downstream of auxin 

signaling (Agusti et al., 2011a). Also the fact that Thermospermine (Tspm) a recently discovered 

signaling molecule controlling xylem differentiation (Milhinhos et al., 2013) is subject to an auxin-

responsive transcription factor MONOPTEROS (MP) as well as its direct target gene ATHB8 

encoding for an HD-Zip III transcription factor (Baima et al., 2014). The molecular cascade from 
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auxin perception, all the way down to the actual cambial control in the context of secondary growth 

is poorly enlightened.  

Cytokinins (CK), also have a positive role on secondary growth via regulating cambial activity, in 

fact Arabidopsis and poplar impaired in CK biosynthesis (mutant in isopentenyltransferase genes) 

showed a dramatic reduction of secondary growth (Matsumoto-Kitano et al., 2008), consistently, 

overexpressing one of isopentenyltransferase genes in poplar increased the number of cambial cells 

and the total biomass (Immanen et al., 2016). Furthermore, overexpressing a CK catabolic enzyme 

reducing CK levels resulted in down-regulation of the transcription factor AINTEGUMENTA and 

the cell cycle regulator CYCLIN D3 (CYCD3), two cambium regulators promoting secondary 

growth and increasing cambium cell number. Whereas CK application increase their expression 

(Randall et al., 2015). 

Brassinosteroids (BR) appear also have a positive role on secondary growth and cambium activity, 

for instance xylem differentiation was repressed in xylogenic Zinnia elegans cell cultures upon 

application of the BR biosynthesis inhibitor (unicazol)(Yamamoto et al., 1997). Consistently trans-

differentiation of Zinnia mesophyll cells into tracheary elements was accompanied by 

accumulation of   BR biosynthesis genes (Yamamoto et al., 2007). Moreover, the xylem to phloem 

ratio in the stem vascular bundles show significant reduction in Arabidopsis BR signaling and 

biosynthesis mutants (Cano-Delgado et al., 2004). Suggesting a conserved role of BR among 

species. Additionally, BR cross-talk with other pathways in controlling xylem differentiation has 

been proposed. In fact, The BR responsive factor BRI1-EMS suppressor 1 (BES1) was recently 

found to be a target of the PXY/TDR signaling network, through GLYCOGEN SYNTHASE KINASE 

3(GSK3)-like kinases and the BRASSINOSTEROID-INSENSITIVE 2 (BIN2)(Kondo et al., 2014).  

Jasmonate also promote cambium proliferation and secondary growth, as the positive mediators of 

JA signalling Coronatine-insensitive 1 COI1 and Transcription factor MYC2 (MYC2) promote 

secondary growth in Arabidopsis stem whereas JASMONATE ZIM-DOMAIN (JAZ7) and JAZ10 

repress it (Sehr et al., 2010). Additionally, jasmonate biosynthesis/signaling genes are up-regulated 

in the perennial and woody soc1 ful double mutant (Melzer et al., 2008, Davin et al., 2016). Most 

recently, it has been shown that in response to blue light, MYC2 and MYC4 directly bind to the 

NST1 promoter, thus fine-tuning its transcriptional programing for secondary cell wall thickening 

formation in Arabidopsis fiber cells (Zhang et al., 2018). 
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Last but not least, Gibberellins (GA) have been shown to promote secondary growth both in trees 

and Arabidopsis, mutants overproducing GA and GA treated plants showed enhanced fiber 

elongation and overall secondary growth in trees (Digby and Wareing, 1966, Eriksson et al., 

2000b).  Whereas in Arabidopsis GA is able to promote wood formation through enhancing polar 

transport of auxin and fiber elongation in the developing xylem (Björklund et al., 2007, Mauriat 

and Moritz, 2009).  

GA is involved in promoting xylem expansion and fiber differentiation through the degradation of 

DELLA proteins upon flowering in Arabidopsis hypocotyl, in fact in della quadruple mutant, 

xylem expansion is significantly increased comparing to the wild type at flowering, consistently 

ectopic expression of dominant DELLA dramatically suppressed xylem expansion (Ragni et al., 

2011). 

The competency to respond to GA depend on the homeobox transcription factor 

BREVIPEDICELLUS/KNAT1 (BP) (Ikematsu et al., 2017). BP positively regulates cambium 

maintenance and fiber formation in the root and hypocotyl (Liebsch et al., 2014, Woerlen et al., 

2017). The fiber phenotype in the hypocotyls of bp mutant can be attributed to the decreased 

expression levels of NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) 

and NST3, key regulators of the formation of secondary walls in woody tissues of Arabidopsis 

thaliana (Mitsuda et al., 2007). Furthermore GA signaling induces expression of NST1 and NST3 

to trigger fiber differentiation in the hypocotyl (Ikematsu et al., 2017). 

3.4 DELLA mode of action:  

The DELLA proteins act downstream of the receptor GIBBERELLIN-INSENSITIVE DWARF1 

(GID1) upon GA perception to modulate various aspects of growth and development in plants 

(Thomas and Sun, 2004, Griffiths et al., 2006, Nakajima et al., 2006). There are five members of 

the DELLA gene family in Arabidopsis: REPRESSOROFga1-3(RGA), GA-INSENSITIVE (GAI), 

RGA-LIKE1 (RGL1), RGL2, and RGL3. Characterization of mutant combinations of null alleles in 

each DELLA gene demonstrates the overlapping and distinct functions of these genes in plant 

development (Dill and Sun, 2001, Cao et al., 2005). DELLA can interact with many TFs belonging 

to diverse families and regulate various transcriptional networks, suggesting their role as central 

signaling hubs connecting different signaling cascades (Claeys et al., 2014, Marin-de la Rosa et 
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al., 2014). Based on experimental evidences reviewed through various molecular genetic studies, 

DELLAs regulate gene expression through various mechanisms: DELLA can Sequester DNA-

binding transcription factors that induce or repress target genes bHLH transcription factors of the 

PIF family, BES1 and BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factors, 

ETHYLENE-INSENSITIVE3 (EIN3), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 

(SPL9) and other SPLs, ALCATRAZ (ALC)). DELLA can interact with negative transcriptional 

regulators, therefore releasing certain transcriptional regulators from being repressed, (DELLA 

interaction with JAZ releasing MYC2 transcriptional activity). DELLA can be present in 

transcriptional complexes; this is suggested by chromatin immunoprecipitation studies. BOI RING 

finger proteins might act through this mechanism. Additionally, the ability of DELLA to interact 

with DNA-binding transcription factors might be modulated through its interactors 

(SCARECROW-LIKE 3 (SCL3) and INDETERMINATE DOMAIN 1 (IDD1) might affect 

DELLA ability to bind PHYTOCHROME INTERACTING FACTORS PIFs and others) (Locascio 

et al., 2013). Recent studies revealed the existence of other regulatory mechanisms underlying 

DELLA-regulated plant growth and development processes (Fukazawa et al., 2014, Yoshida et al., 

2014). For example, DELLAs function as a transcriptional coactivator through interaction with 

other transcription factor(s): type-B ARRs and DELLAs jointly promote transcription of the target 

genes (Marin-de la Rosa et al., 2015). The most recently discovered layer of DELLLA action mode, 

suggests that DELLAs may also act as co-repressors to suppress gene transcription by interacting 

with a negative transcription factor, DELLAs binding to FLOWERING LOCUS C (FLC) enhances 

transcriptional repression of FLC on FLOWERING LOCUS T (FT) and SUPPRESSOR OF 

OVEREXPRESSION OF CO 1 (SOC1) genes (Li et al., 2016).  

3.4 DELLA cross-talk with Auxin, Cytockinin and Jasmonate: 

The GA signaling pathway can be modulated by other hormones such as auxins, cytokinins or 

ethylene (Jasinski et al., 2005, Frigerio et al., 2006), placing it as central regulator in plant growth 

and development (Claeys et al., 2014).  

This cross-talk can be mediated through DELLA. In fact a recent study by (Oh et al., 2014) show 

that RGA and GAI inhibit AUXIN RESPONSE FACTOR (ARF6), ARF7 and ARF8 from binding 

to target genes in vivo. In fact DELLA physically interact with ARF’s in the context of hypocotyl 

cell elongation, particularly RGA and GAI interact with ARFs activators (ARF6, ARF7 and 

ARF8), but not the repressor ARF1 (Oh et al., 2014). ARF6 and ARF8 are also known to negatively 
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regulate hypocotyl elongation (Tian et al., 2004). In addition, ARF6 and ARF8, are positive 

regulators of adventitious rooting (emerging from the hypocotyl) (Wu et al., 2006, Gutierrez et al., 

2009, Gutierrez et al., 2012).  

Additionally, DELLA proteins interact with type-B Arabidopsis response regulators: (ARR1, 

ARR2 and ARR14). Particularly GAI and RGA enhance the transactivation ability of ARR1 in 

vivo and ARR1 mediates the presence of RGA at target downstream promoters. ARR1 and DELLA 

act as transcriptional co-regulators in Arabidopsis (Marin-de la Rosa et al., 2015).  

DELLA competitive binding to JAZ1 prevents MYC2-JAZ1 interaction, thus enabling MYC2 to 

regulate its target set of genes (Hou et al., 2010). But most importantly MYC2 is able to directly 

interact with DELLA Proteins in the context of Sesquiterpene Synthase Gene Expression 

Regulation (Hong et al., 2012). 

 

4 Aim of the thesis 

The occurrence of secondary growth or the increase in girth of plant organs, is a crucial point that 

marked the evolution of plants on earth. It is restricted to seed plants in extant taxa (Ragni and 

Greb, 2017). It largely relies on the interdependent processes of cell proliferation, expansion and 

differentiation originated in the meristem (Scheres, 2007). Meristems provide a protected 

microenvironment necessary to keep stem cell population sheltered from differentiation signals, 

while being central control regions for growth and development, receiving, integrating, responding 

to and broadcasting growth regulating signals (Grieneisen et al., 2007, Petersson et al., 2009, Hohm 

et al., 2010, Uyttewaal et al., 2010, Zhao et al., 2010). 

Secondary gorwth results in the thickening of plant organs and formation of secondary xylem or 

Wood: principal sink for carbon and fundamental source of natural renewable energy (Plomion et 

al., 2001). Despite the crucial importance of such a developmental process in the plant, it is 

surprising that very little is known about the molecular mechanisms underlying secondary growth. 

The use of Arabidopsis hypocotyl as model to study secondary growth facilitated many aspects and 

created new possibilities toward its understanding. Morphology studies of the vascular tissues and 

its dynamics revealed two phases of secondary growth in Arabidopsis. A first phase where xylem 

and phloem are produced with the same rate, and a second phase where xylem is produced in a 

higher rate comparing to the phloem, the second phase is called xylem expansion phase. Although 
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the shift between the two phases is marked by flowering. The shift to the xylem expansion phase 

is mediated by GA signaling which leads to DELLA degradation. The DELLA gene family in 

Arabidopsis comprise five members: RGA, GAI, RGL1, RGL2, and RGL3.  

The aim of this thesis was first to study the spatio-temporal activity of DELLA genes individually. 

We also aimed to determine their distinct functions during different phases of hypocotyl secondary 

growth.  

We focused on understanding the molecular mechanisms through which DELLA act to mediate 

the shift to the xylem expansion phase. As DELLAs are known to act via transcriptional complexes, 

we opted to identify the transcriptional regulators involved with DELLA on regulating secondary 

growth, the nature of their interaction with DELLA. 

We next determined single and combined effects of the identified DELLA downstream interactors 

on secondary growth.  

We then addressed the question, whether the identified DELLA downstream factors interact 

amongst each other to regulate secondary growth. 

We also analyzed the transcriptome profile caused by inactivation of DELLA downstream 

interactors in order to identify their downstream target genes. 

Ultimately, we aimed to shed more light on the networks controlling xylem expansion and fiber 

differentiation in the context of DELLA mediated hormonal cross-talk, and to further explain 

secondary growth phenotypes before and after flowering, paving the road for future researches 

using our model as a fulcrum. 
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Summary 

            Secondary growth is a crucial developmental process that occurs in seed plants. It 

results in the thickening of plant organs and formation of secondary xylem or wood: which 

represent the principal sink for carbon assimilation and a fundamental source of natural 

renewable energy. Two phases mark secondary growth in Arabidopsis thaliana hypocotyls: 

a first phase in which xylem and phloem are produced at the same rate and a second phase 

referred to as xylem expansion in which xylem production is accelerated and xylem fibers 

are formed. Upon flowering Gibberellins (GA) triggers the xylem expansion phase, locally 

inducing DELLA degradation. Despite its crucial importance, it is surprising that little is 

known about the molecular mechanisms underlying GA mediated secondary growth.  

 In this study, we found that REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE 

(GAI) are the main DELLAs regulating xylem expansion, with a greater contribution for 

RGA. This role seems to be conserved across ecotypes, which greatly differ in xylem 

expansion and secondary growth such as Col and Ler. We also identified a novel role for 

AUXIN RESPONSIVE FACTOR (ARF6) and ARF8 as positive regulators of xylem 

expansion. RGA and GAI expression pattern overlaps in the phloem with its known 

interactors ARF6 and ARF8 during secondary growth, and arf6 arf8 mutants are 

characterized by enhanced phloem production. Our genetic analyses suggest that ARFs are 

downstream DELLA in regulating xylem expansion. Moreover, ARF6 and ARF8 promote 

cambium formation together with BREVIPEDICELLUS/KNAT1/ (BP/KNAT1). Overall, our 

results shed light on a pivotal hormone cross-talk between GA and Auxin in the context of 

plant secondary growth. 

 

Keywords: Phloem Xylem Cambium secondary growth, auxin Gibberellin 
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Introduction: 

 Secondary growth, the increase in girth of plant organ largely contributed to the success of 

land plants and continuously produces xylem tissue (wood), which in perennial dicotyledons 

represents the principal form of biomass accumulation (Demura and Ye, 2010, Spicer and Groover, 

2010). The vasculature not only contribute to the transport of assimilate, ions, water and signaling 

molecules but it confers mechanical strength. Secondary growth is mainly driven by the vascular 

cambium, a post-embryonic meristem, which divides in a strictly bifacial manner, producing xylem 

inward and phloem outward (Ragni and Greb, 2018). 

 Several studies suggest that Arabidopsis is a good model to study secondary development 

and wood production (Chaffey et al., 2002, Ragni and Hardtke, 2014), as it has been shown that 

key regulators are conserved between herbaceous and woody plants. For instance, in both 

Arabidopsis and poplar, ectopic expression of VASCULAR-RELATED NAC-DOMAIN 6 

(VND6) and VND7 promotes xylem vessel differentiation (Kubo et al., 2005), while HD- ZIP 

Class III transcription factors control cambium establishment and xylem formation in both species 

(Carlsbecker et al., 2010a, Du et al., 2011, Robischon et al., 2011). In Arabidopsis, secondary 

growth occurs in roots, hypocotyls and stems. Moreover, studying the Arabidopsis hypocotyl offers 

a key advantage as radial growth is not masked by ongoing elongation (Chaffey et al., 2002, Ragni 

and Hardtke, 2014). In addition, extensive amounts of secondary xylem fibers and vessel elements 

are produced in the hypocotyl, with structural and ultra-structural characteristics similar to those 

found in an angiosperm tree (Chaffey et al., 2002).  

 Based on the morphology of the vascular tissues and their production rate, two phases of 

hypocotyl secondary growth can be distinguished in Arabidopsis: an early phase in which xylem 

and phloem are produced at roughly the same rate, followed by a later phase of so call “xylem 

expansion”, in which xylem is produced at higher rate and fibers differentiate. The shift between 

the two phases is triggered by flowering (Sibout et al., 2008a), which is a general condition for 

hypocotyl xylem expansion in herbaceous annual plants with rosette habitus (Ragni et al., 2011). 

However, neither bolting nor flower specification are necessary for this developmental transition 

(Ragni et al., 2011). Grafting experiments suggested the presence of a mobile signal which at 

flowering is translocated from the shoot to the hypocotyl to induce xylem expansion (Sibout et al., 

2008a). Our recent findings revealed that Gibberellins (GAs) might act as the mobile cue, and that 
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GA signaling promote locally xylem occupancy and fiber production.  In fact, xylem expansion is 

enhanced in della quadruple mutant (in which GA signaling is constitutively on), whereas the 

induction of a dominant version of DELLA (which cannot be degraded by GA) abolished xylem 

expansion (Ragni et al., 2011). 

 DELLA proteins are conserved components of the GA signaling pathway acting 

immediately downstream of the GA receptor, regulating a plethora of developmental processes, 

(Locascio et al., 2013, Colebrook et al., 2014, Davière and Achard, 2016). In Arabidopsis, the 

DELLA gene family comprises five members: REPRESSOR OF ga1-3 (RGA), GA-INSENSITIVE 

(GAI), RGA-LIKE1 (RGL1), RGL2, and RGL3. They control gene expression through at least three 

mechanisms: 1) sequestering transcription factors 2) and negative regulators/repressors thereby 

repressing and activating the repression of certain genes 3) participating in transcriptional 

complexes (Locascio et al., 2013). Consistently they have been shown to interact with several 

transcription factor families (Marin-de la Rosa et al., 2014). For instance, RGA interacts with ARFs 

activators (ARF6, ARF7 and ARF8), but not the repressor ARF1 to regulate hypocotyl elongation 

(Oh et al., 2014).  

 However, DELLA interacting proteins and their mode of action during secondary growth 

are largely unknown.  In this work we investigated the GA signaling downstream factors, which 

regulate hypocotyl xylem expansion. We reveal that ARF6 and ARF8 two bona fide RGA 

interaction proteins promote xylem expansion, repressing phloem proliferation. In addition, we 

show that ARF6 and ARF8 might regulate cambium activity as their inactivation enhanced the 

cambial defect of  brevipedicellus/ knat1 mutant. 

Results: 

GA signaling controls hypocotyl secondary growth, mostly through RGA and GAI, in Ler 

and Col-0 ecotypes. 

 We previously showed that della quadruple mutants are characterized by an increased 

xylem expansion and fiber production (Ragni et al., 2011), however, the specific effect of each 

DELLA during secondary growth, is yet to be determined. To address this question, we first 

analyzed della single knock-out mutants. Only rga mutants showed a mild increase of xylem 

occupancy (Figure S1a,b). As RGA has been shown to work together with GAI in several 

developmental processes such as stem elongation (Dill and Sun, 2001, Cheng et al., 2004), we then 
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investigated the rga-24- gai-t6 double mutants. rga-24 gai-t6 mutants showed a strong increase in 

xylem occupancy and fiber formation (Figure S1c, d), whereas knocking out all DELLAs (dellako) 

it only slightly enhanced the rga gai phenotype, suggesting that RGA and GAI are the major 

regulators of xylem expansion (Figure  S1c, d). 

 It has been recently shown that rga gai double mutant in Col background (rga-28 gai-td1) 

is entirely male sterile, whereas the equivalent double mutant in Ler background is fertile and this 

is not due to the inactivation of ERECTA (Plackett et al., 2014). As Ler and Col differs in secondary 

growth morphodynamics with Col displaying more overall secondary growth and Ler more xylem 

expansion, we wonder weather, della mutants have the same vascular phenotype in both ecotypes 

(Ragni et al., 2011, Sankar et al., 2014). The rga-24 gai-t6 mutants, showed enhanced xylem to 

phloem ratio (xylem occupancy) and fiber production when compared to its WT counterpart Ler 

(Figure 1a, b). Likewise the rga-28 gai-td1 double mutant plants show the same increase in xylem 

occupancy and fiber production when compared to Col. However, the absolute values reflect the 

differences between the two backgrounds (Ler 35% vs. Col 15%) with rga-24 gai-t6  having 50% 

xylem occupancy compared to 30% for rga-28 gai-td1 (Figure 1a, b). Interestingly, the triple 

mutant rga-28 gai-td1 er-105 was undistinguishable from the rga-28 gai-td1 double mutant in term 

of xylem expansion (Figure 1a, b). This is consistent with previous results, which showed that the 

loss of function of ERECTA in Col background does not explain the differences in secondary 

growth between the two ecotypes (Ikematsu et al., 2017) (Figure 1a, b) 

 To corroborate our results we compared GAI:gaiD-GR and RGA:rgaD-GR dominant lines, 

in the two ecotypes. To this extent, the original GAI:gaiD-GR and RGA:rgaD-GR Ler lines have 

been backcrossed 6 times to Col background. Induction, upon flowering, of a DELLA version that 

cannot be degraded in presence of GA resulted in reduced xylem occupancy (40% less) and 

abolishes fiber formation in both accessions (Figure 1c, d and S2). Interestingly, we also observed 

ectopic cell divisions at the phloem poles of the Col induced plants. This phenotype was not 

observed in the Ler lines, probably due to the reduced phloem proliferation that is characteristic of 

the Ler ecotype (Sankar et al., 2014) (Figure 1c and S2). 

 To conclude, our data suggest that RGA and GAI are the major DELLA regulating xylem 

expansion and display similar phenotype in both Ler and Col background, thus to unravel the 
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downstream factors of GA signaling in the context of secondary growth only the rga-28 gai-td1 

will be used for subsequent experiments.   

 

Fig. 1 GA signalling controls hypocotyl secondary growth, mostly through RGA and GAI, in 

Ler and Col ecotypes. 
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(a) Plastic cross-sections stained with toluidine blue of 10 day-after-flowering (daf) hypocotyls 

showing xylem expansion in rga-24-gai-t6 (in Ler background), in rga-28 gai-td1 (Col 

background) in er-105 and rga-28 gai-td1 er-105 (Col background). (b) Quantification of Xylem 

Area/Total area in the experiment illustrated by representative pictures in (a). (c) Plastic cross-

sections stained with toluidine blue of 15daf hypocotyls of rga:rgaD-GR and gai:gaiD-GR in Col-

0 showing ectopic cell divisions in the phloem (Blue arrow) in dex treated transgenic plants. Black 

bars = 100μm, double head red arrow: Xylem. (d) Quantification of Xylem Area/Total area ratio 

in hypocotyls of 15 daf Mock and dex treated plants carrying the constructs: rga:rgaD-GR and 

gai:gaiD-GR both in Col-0 and Ler backgrounds.  (b, d) Box plots: the dark line in the middle of 

the boxes is the median, the T-bars that extend from the boxes (whiskers) include 95% of the data.  

Letters in the boxplots indicate statistical groups, one-way ANOVA with post hoc Bonferroni was 

used determine the groups for (b) n >10) and Student’s or Welch t-test for (d) (red asterisk: P < 

0.05, n=11-16). Grey boxes: (Col-0 background); white boxes (Col background). Black bar 

=100μm, double head red arrow: xylem and blue arrow: ectopic divisions in the phloem. 

 

ARF6, ARF7 and ARF8 expression pattern overlaps with RGA and GAI during hypocotyl 

secondary growth.  

 

 As Auxin is well known to control vascular patterning and xylem differentiation during 

thorough development (Ragni and Greb, 2018) and RGA modulates the activity of ARF6, ARF7 

and ARF8 during hypocotyl elongation (Oh et al., 2014), we wonder whether ARF6 and ARF8 

regulate also secondary growth. To investigate whether DELLA proteins regulate xylem expansion 

through the interaction with ARFs, we checked if their expression patterns overlap during 

secondary growth. For this purpose we generated promoter reporters of RGA and GAI, as our 

genetic analyses point out they are the main DELLA controlling xylem expansion. RGA and GAI 

are broadly expressed during primary and early secondary growth in the hypocotyl (ref) (Figure 

S3a).  During secondary growth, RGA and GAI expression get progressively restricted to the 

phloem and just before flowering time RGA and GAI were mainly expressed at the phloem poles. 

At 10 day-after-flowering during xylem expansion RGA and GAI were still expressed albeit at 

lower levels (Figure 2a, b). ARF6, ARF7 and ARF8 expression were also detected in the phloem 

elements before flowering, however ARF6 and ARF7 expression was broader and encompassed the 

cambium and the cambium and differentiating xylem respectively (Figure 2c, d, e). To summarize, 

RGA and GAI expression overlaps in the phloem with ARF6, ARF7 and ARF8, suggesting that they 

may interact also during secondary growth. 
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Fig. 2 ARF6 and ARF8 expression pattern overlaps with RGA and GAI during hypocotyl 

secondary growth. 

(a) RGA:NLS-GFP-GUS and RGA:GUS. (b) GAI:NLS-GFP-GUS and GAI:GUS (c) ARF6:NLS-

3xGFP and ARF6:GUS (d) ARF8:NLS-3xGFP and ARF8:GUS. (a-d) Hypocotyl vibratome cross-

sections at 0, 8 and 20 day-after-flowering. Left and middle panels: Confocal images of section 

cleared with ClearSee and stained with Calcofluor-White showing GFP signal in the nuclei (red 
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arrows). Right panels: GUS vibratome sections stained with Phloroglucinol. White bar = 20 μm 

and black bar =100μm. 

ARF6, ARF8 and to a lesser extent ARF7 promotes xylem expansion, repressing phloem 

proliferation. 

 To further investigate the ARF-DELLA interaction during secondary growth, we 

investigated whether arf mutants displayed altered xylem expansion. arf7/nph4 mutants are 

characterized by reduced overall secondary growth but did not show any xylem expansion 

phenotype (Ragni et al., 2011). arf6 (arf6-1 and arf6-2) and arf8 (arf8-2 and arf8-3) single mutants 

show a slight but significant inhibition of xylem expansion and less fibers compared to the Col-0 

background (Fig 3 a, b and S3c), whereas the arf6 arf8 double mutant displayed a dramatic decrease 

in xylem occupancy, absence of fiber accumulation until very late stages of plant growth (40 days 

after flowering in our growth conditions) (Figure 3a,-d). Interestingly in the double mutants, we 

observed an increase in number of phloem poles and ectopic cell divisions at phloem poles (Figure 

3e and S4d-e) reminiscent on what happen when GA signaling is blocked in Col background 

(Figure 1c). We confirmed that this vascular phenotype is due to the inactivation of ARF6 and 

ARF8 taking advantage of the fact that the expression of ARF6 and ARF8 is tightly regulated by 

miR167a (Wu et al., 2006, Gutierrez et al., 2009). In fact, we could observe ectopic cell divisions 

in the phloem of F1 plants, in which we ectopically express miR167a (UAS::miR167a x 

RPS5a::GAL4) (Figure S3e). 

 We next wonder about the temporal aspects of the arf6 arf8 phenotype, if RGA sequesters 

ARFs during secondary growth, we expected that arf6 arf8 mutants display a secondary growth 

phenotype only after flowering (when DELLA proteins are degraded to trigger xylem expansion). 

Consistently with our idea, at flowering time (arf6 arf8 double mutants flowers on the same days 

in long day conditions) arf6 arf8 hypocotyls were undistinguishable from WT plants (Figure S4a, 

b). After flowering, in arf6 arf8 we did not observe the characteristic increase of xylem occupancy 

of WT plants that is visible from 10 daf, in contrast we observed that total hypocotyl area was 

bigger in arf6 arf8 double mutants, mainly due to an in increase in phloem proliferation. Another 

striking phenotype of the arf6 arf8 hypocotyl is the presence of phloem fibers at plant senescence, 

which are normally absent in Col (Figure S3d).  

 As also ARF7 is expressed at the phloem poles and it interacts with RGA, we investigated 

if ARF7 can promote xylem expansion in the absence of ARF6 and ARF8. The inactivation of 

ARF7 in arf6 arf8 background resulted in further reduction of xylem occupancy (Figure S4f) 
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whereas the ectopic cell divisions phenotype at the phloem was not enhanced (Figure 3f and S4g), 

suggesting only a minor role for ARF7 during xylem expansion. 

 

Fig. 3 ARF6, ARF8 and to a lesser extent ARF7 promotes xylem expansion, repressing 

phloem proliferation. 
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 (a) Plastic hypocotyl cross-sections stained with 0.1 % toluidine blue of 10 day-after-flowering 

(daf), showing reduced xylem expansion in arf6, arf8 and arf6 arf8 double mutant. (b) 

Phloroglucinol stained vibratome sections of 40 daf hypocotyl, showing reduced fibers formation 

in in arf6, arf8 and arf6 arf8 double mutant. (c) Quantification of the Xylem Area /Total area ratio 

in the experiment illustrated by representative pictures in (a). (d) Quantification of Fiber 

Area/Xylem Area ratio in the experiment illustrated by representative pictures in (b). (c-d) Box 

plots: the dark line in the middle of the boxes is the median, the T-bars that extend from the boxes 

(whiskers) include 95% of the data. Letters in the boxplots indicate statistical groups (one-way 

ANOVA post hoc Bonferroni for (c) n= 9-17, and post hoc Tamhane  for (d) n=2-18). (e) 

Magnifications of (a) in the phloem regions. In arf6 arf8 double mutants ectopic cell division in 

the phloem (blue arrow) are visible.  (f) Plastic hypocotyl cross-sections stained with toluidine blue 

of 10 day-after-flowering, showing reduced xylem expansion and ectopic cell division in the 

phloem in arf6, arf8 double and arf6 nph4/arf7arf8 triple mutants. Black bars= 100μm, double 

head red arrow: xylem, double head black arrow: xylem fibers. Blue arrow: ectopic divisions in the 

phloem. 

ARF6, ARF7 and ARF8 act mainly downstream GA signaling to control xylem expansion. 

 To better understand the role of ARF6, ARF8, downstream GA, we analyzed the GA 

response of arf6 arf8 double and arf6 nph4 ar8 triple mutants. Thus, WT and mutants plants were 

treated with GA at flowering time and examined at 20 daf.  GA treatment, as previously shown, 

enhanced fibers production and xylem occupancy in WT (Ragni et al., 2011) (Figure 4). Notably, 

arf6 arf8 was still partially able to respond to GA as indicated by the production of fibers and 

higher xylem to total area ratio, however to a lesser extent than WT plants (Figure 4 ).  The triple 

mutant nph4-1 arf6-2 arf8-3 was even less responsive to GA treatment, as fiber accumulation was 

abolished in the majority of the plants (Figure 4a,c).   

 To further enforce our results we analyzed the genetic interaction between rga gai and arf6 

arf8 mutants. As both rga gai and arf6 arf8 double mutants are sterile (Nagpal et al., 2005, Plackett 

et al., 2014) and we suspected that the quadruple mutant is gametophytic lethal, we characterized 

af6 arf8 rga and arf6 arf8 rga gai./+ plants. Consistently with the previous experiment, the 

inactivation of RGA in ar6 arf8 slightly increased xylem occupancy but did not rescue the fiber 

phenotype (Figure S5). The arf6 arf8 rga gai/+ showed a similar phenotype to rga arf6 arf8 triple 

mutants (Figure S5).  Over all these results confirm that ARF6 and ARF8 are downstream of DELLA 

in regulating xylem expansion. The partial restoration of the arf6 arf8 phenotype caused by 

DELLA inactivation and or GA treatment could be explained by the fact that ARF7 is still active 

in arf6 arf8 mutant and that the ARFs might not be the only DELLA interacting protein controlling 

xylem expansion. 
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Fig. 4 ARF6, ARF7 and ARF8 act mainly downstream GA signalling to control xylem 

expansion. 

 (a) Plastic hypocotyl cross-sections stained with toluidine blue of 10 day-after-flowering, showing 

xylem expansion in Col-0, arf6 arf8 and arf6 nph4/arf7 arf8 plants treated with Mock or 10μM 

GA solution. (b) Quantification of xylem/Total area ratio in the experiment illustrated by 

representative examples in (a). (b) Quantification of the Xylem Area /Total area ratio in the 

experiment illustrated by representative pictures in (a). Quantification of Fiber Area/Xylem Area 

ratio in the experiment illustrated by representative pictures in (a). (b-c) Box plots: the dark line in 

the middle of the boxes is the median, the T-bars that extend from the boxes (whiskers) include 

95% of the data. The T-bars that extend from the boxes (whiskers) are expected to include 95% of 

the data.   Letters in the boxplots indicate statistical groups (one-way ANOVA post hoc Tamhane, 

n =4–13). Black bar =100μm, double head red arrow: xylem, double head black arrow: fibers. 
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 BP inactivation completely abolishes xylem formation and secondary growth in arf6 arf8, 

whereas it does not fully suppresses fiber formation in rga gai mutants. 

 ARF6 and ARF8 have been shown to repress class 1 KNOX genes, such as BP/KNAT1 and 

STM during flower development (Tabata et al., 2010). Interestingly, in the root and hypocotyl BP 

positively regulates cambium maintenance and fiber formation (Liebsch et al., 2014, Woerlen et 

al., 2017). Moreover, the lack of fibers in bp-9 mutants is not restored by GA application, 

suggesting that BP might work down stream DELLA to promote fiber formation (Ikematsu et al., 

2017). However, the bp-1 allele in Ler ecotype could still respond to GA and it show a less severe 

phenotype in term of fibers (Figure S6a) suggesting a more complex scenario. Thus, to clarify the 

role of BP downstream DELLA we generated the rga-28 gai-td1 bp-9 triple mutants. The 

inactivation of RGA and GAI partially rescued the height defects of bp mutants but not the 

branching phenotype (Figure S6b-c). When we examined cross-sections of hypocotyls from 

senescence plants, we could observe that no fibers were formed in bp mutants, whereas fiber 

formation was partially restored in the rga-28 gai-td1 bp-9 suggesting that BP is not strictly 

required for fiber formation but it plays a major role in response to GA especially in Col 

background. 

  We then investigated the interaction of ARF6 ARF8 with BP during xylem expansion. We 

first checked whether BP is mis-expressed in arf6 arf8 mutants. Overall BP expression was not 

altered in the hypocotyl of arf6 arf8 mutants (Fig S5d). We next compared arf6-2 arf8-3 bp-9 triple 

mutants with bp-9 and arf6-2 arf8-3 mutants during hypocotyl secondary growth. As previously 

reported, bp-9 mutants are characterized by lack of fibers and reduced diameter (Liebsch et al., 

2014). The inactivation of BP in arf6 arf8 mutants suppressed the phloem cell divisions and larger 

area phenotypes. In contrast, xylem occupancy was further reduced when compared to bp single 

mutant and arf6 arf8 double mutants. Moreover, in arf6 arf8 bp triple mutants the morphology of 

the cambium and phloem cells was altered: cells in the cambial/phloem area were rounder and less 

differentiated, indicating that ARF6 and ARF8 may also control cambium proliferation together 

with BP. 
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Fig. 5 BP inactivation completely abolishes xylem formation and secondary growth in arf6 

arf8, whereas it does not suppress fibers formation in rga gai mutants.  

Plastic hypocotyl cross-sections stained with toluidine blue of 25 day-after-flowering, showing 

xylem in Col-0, bp, arf6 arf8 and the triple ar6 arf8 bp mutant. In arf6 arf8 bp muatnts cell in the 

cambium/phloem region are not differentiated (green arrow). (b) Quantification of the Xylem Area 

/Total area ratio in the experiment illustrated by representative pictures in (a). (c) Quantification of 

the total area in the experiment illustrated by representative pictures s in (a). (b-c) Box plots: the 

dark line in the middle of the boxes represents the median, the T-bars that extend from the boxes 

(whiskers) include 95% of the data.   Letters in the boxplots indicate statistical groups (one-way 

ANOVA post hoc Tamhane n= 12–23). Black bar =100μm, double head red arrow: xylem, double 

head black arrow: fibers, double head yellow arrow: cambium. 
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arf6 arf8 transcriptome reveals a major re-programming during xylem expansion. 

 To gather more insights on the regulatory network underlying ARF6 and ARF8 during 

xylem expansion we performed an RNAseq  on hypocotyls of WT and arf6 arf8 plants. We chose 

two time points that reflect the progression of xylem expansion and the differences between WT 

and arf6 arf8 mutants. 5daf marks the beginning of xylem expansion and precedes the phenotypic 

difference between arf6 arf8, whereas 15daf represents fiber initiation and the divergence between 

WT and arf6 arf8 mutants (Figure S3c, d, e).       

 Consistently, when we compared the WT transcriptome at the two developmental stages 

we observed a major transcriptional re-programming (1574 genes were up-regulated and 1106 were 

downregulated in WT 15daf compared to WT 5daf).   Also in arf6 arf8 double mutants many genes 

were differentially expressed (617 genes were downregulated at 5daf, 1122 were downregulated at 

15daf, 680 were upregulated at 5daf and 805 were upregulated at 15daf) and a set of genes were 

misregulated at both developmental stages (249 downregulated and 123 genes) (File S1).  

 Around 1/3 (428/1122) of the genes that were down regulated in in arf6 arf8 double mutants 

at 15daf were normally upregulated in WT during xylem expansion, confirming a major but not 

exclusive role of ARF6 and ARF8 during xylem expansion. Gene ontology analyses on this set of 

gene revealed enrichment in cell wall processes such as: cell wall biogenesis, cell wall organization, 

xylan biosynthetic process. Consistently, among them we found the three cellulose synthase 

(CeSA4; CeSA7/ IRX3 and CeSA8/ IRX1) involved in secondary cell wall, many peroxidases and 

laccase. Moreover, several TFs such as WRK12, MYB46, MYB103, MYB85,and SECONDARY 

WALL-ASSOCIATED NAC DOMAIN PROTEIN 2 (SND2) , which regulate xylem differentiation 

(Yang and Wang, 2016) were also  repressed in arf6 arf8 mutants. The absence of xylem fibers in 

the hypocotyl of arf6 arf8 double mutants could be attributed to the down-regulation of the two 

key fiber promoting transcription factors NAC SECONDARY WALL THICKENING PROMOTING 

FACTOR1 (NST1) and NST3 (Mitsuda et al., 2007) (Figure 6d), whereas the presence of phloem 

fibers might be explain by the specific downregulation in arf6 arf8 of GH3.6 which conjugate JA 

in a storable inactive form (Gutierrez et al., 2012).  

Among the upregulated genes in arf6 arf8, we found GA catabolic genes such as GA2OX2, 

GA2OX7 and GA20OX1, TFs such as ERF1 and ERF10 and the peptide CLAVATA3/ESR-

RELATED 3 (CLE3) and CLE6. 
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Fig. 6 arf6 arf8 transcriptome reveals a major re-programming during xylem expansion. 

(a) Venn diagram showing the genes that are upregulated in arf6 arf8 compared to WT at 5day 

after flowering (daf) (yellow), in arf6 arf8 compared to WT at 15 daf (blue), in WT at 15daf 

compared to WT at 5daf and in arf6 arf8 15daf compared to arf6 arf8 5daf (green). (b) Venn 

diagram showing the genes that are downregulated in arf6 arf8 compared to WT at 5daf (yellow), 

in arf6 arf8 compared to WT at 15 daf (blue), in WT at 15daf compared to WT at 5daf and in arf6 
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arf8 15daf compared to arf6 arf8 5daf (green). (c) Gene ontology of the genes that are 

downregulated in arf6 arf8 at compared to WT at 15 daf and are upregulated in WT 15 daf 

compared to WT 5daf . (d) Q-PCR showing relative expressions, confirming that NST1 and NST3 

are down regulated in arf6 arf8 double mutants. 

 

Discussion: 

 GA influences many aspects of plant growth and development from germination to 

senescence, including several developmental transitions. In addition, the GA signaling pathway is 

modulated by other hormones such as auxin, cytokinins or ethylene (Jasinski et al., 2005, Frigerio 

et al., 2006, Achard et al., 2007, Weiss and Ori, 2007), placing it as major regulator of plant growth 

and development (Claeys et al., 2014). GA signaling acts primarily through DELLAs induced 

degradation. DELLA proteins function mainly in protein complexes, positively or negatively 

modulating transcription (Locascio et al., 2013). DELLA proteins interact with many TFs 

belonging to diverse families, suggesting a role as central signaling hubs connecting different 

signaling cascades (Claeys et al., 2014, Colebrook et al., 2014, Marin-de la Rosa et al., 2014). 

 GA has a positive role in secondary growth, the increase in girth of plant organs, promoting 

wood formation and cambial activity (Eriksson et al., 2000a, Björklund et al., 2007).  In 

Arabidopsis, based on the growth rates and cell types two phases of secondary growth can be 

distinguished. A first phase in which xylem and phloem are produced at the same rate and second 

phase the so-called xylem expansion in which xylem production is accelerated and xylem fiber 

differentiates (Ragni et al., 2011). The transition between these two phases involves a major 

transcriptional reprogramming and it is triggered by the GA dependent degradation of DELLA 

proteins, which occurs upon flowering in the hypocotyl. In fact, mis-expression of a DELLA 

protein that cannot be degraded by GA completely abolished xylem expansion (Ragni et al., 

2011)(this study). 

 In this study, we further investigated the signaling cascade of DELLA proteins during 

secondary growth. In Arabidopsis the DELLA gene family comprises 5 members and analyses of 

single della mutants and higher order mutants pointed out that RGA and GAI are the major 

contributors as only rga single mutant showed enhanced xylem occupancy and rga gai double 

mutants displayed a stronger phenotype similar to the della quintuple mutants. The role of RGA 
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and GAI in secondary growth seems to be conserved across ecotypes, which differs in secondary 

growth dynamics and displays different GA responses. Col ecotype is characterized by increased 

overall secondary growth and reduced xylem occupancy, when compared to Ler (Ragni et al., 2011, 

Sankar et al., 2014). Interestingly, the difference in secondary growth dynamics between the two 

ecotypes is not due to the inactivation of ERECTA of the Ler background, which confers the stunted 

and compact inflorescence typical of Ler (Ikematsu et al., 2017). rga gai mutants in both ecotypes 

displayed enhanced xylem expansion when compared to their relative WT ecotypes, whereas rga 

gai double mutant displayed higher xylem expansion in Ler  background compared to Col. 

Consistently,  rga gai and the rga gai er in Col background were undistinguishable. Altogether 

these results suggest that a xylem promoting factor present in Ler acts in a GA independent pathway 

to promote xylem expansion. In accord, we observed ectopic phloem proliferation only when we 

blocked GA response in Col background. A similar scenario has been observed in the context of 

flower fertility: a stamen elongation regulator, which is not ERECTA, promotes stamen elongation 

independently of DELLA in Ler background (Plackett et al., 2014). 

 As DELLA proteins have been shown to interact with more than 15 different families of 

transcription factors, we aimed to elucidate the DELLA interacting partners controlling secondary 

growth (Marin-de la Rosa et al., 2014). Among more than 60 interacting TFs, ARF6 and ARF8 

caught our interests as they are expressed also during secondary growth and their expression pattern 

overlaps with RGA and GAI in the phloem. Knocking out ARF6 and ARF8 abolishes xylem 

expansion as fibers do not differentiate in the hypocotyls of arf6 arf8 and phloem proliferation is 

not repressed.  This is reflected in the transcriptome of arf6 arf8 double mutants in which many, 

secondary cell wall biosynthesis enzymes and several transcription factors regulating xylem 

differentiation such as NST1, NST3, SND2, SND3, MYB46 and MYB83, are downregulated. In 

agreement with a specific role during xylem expansion arf6 arf8 double mutants do not shown any 

secondary growth phenotype before flowering. Interestingly, the double mutant arf6 arf8 has twice 

the number of phloem poles than wild-type plants and the phloem tissue is characterized by ectopic 

cell divisions and by the presence of fibers. Phloem fiber formation can be triggered by exogenous 

jasmonic acid (JA) application (Behr et al., 2018) and arf6 arf8 was shown to accumulate more 

bioactive JA during adventitious root formation, due to the downregulation of the JA conjugating 

enzymes (Gutierrez et al., 2009). Interestingly, the same GH3 enzymes were down regulated in our 
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arf6 arf8 transcriptomic data, suggesting that phloem fiber formation in arf6 arf8 is triggered by 

JA accumulation in the phloem. 

 The inactivation of ARF7/NPH4, which is closely related to ARF6 and ARF8, and it has 

been shown to physically interact with RGA (Oh et al., 2014), does not affect xylem expansion 

even thought the arf7/nph4 mutant is characterized by reduced over all secondary (Ragni et al., 

2011) (this study). arf6 nph4/arf7 arf8 triple mutant displayed a slightly reduced xylem occupancy 

when compared to arf6 arf8 suggesting only a minor role for ARF7 in xylem expansion. To further 

confirm the interaction between DELLA and ARFs and its significance in controlling GA mediated 

xylem expansion, we proved that GA responses are attenuated in arf6 arf8 double mutants and are 

even more drastically repressed in arf6 nph4/arf7 arf8 triple mutants. This was achieved by 

exogenous GA application and by inactivating RGA and GAI in arf6 arf8 background.  In arf6 arf8 

rga gai/+ mutants fiber formation was not completely suppressed, suggesting that the ARFs are 

not the only DELLA downstream factors controlling secondary growth. 

 A promising candidate is the homeobox gene BP/KNAT1, which regulates cambium 

activity and xylem fiber production. In fact bp mutant in Col ecotype does not produce fiber even 

when treated with GA (Ikematsu et al., 2017), whereas in Ler background GA response is 

attenuated. Moreover, in rga gai bp triple mutants fiber production is severely reduced, thus 

indicating that also BP works downstream DELLA mainly controlling fiber formation. 

Interestingly, during flower development it has been shown that ARF6 and ARF8 repress the 

expression of BP and that the inactivation of BP can partially restore the arf6 arf8 flower 

phenotypes (Tabata et al., 2010) however, in accord with other studies showing that BP has 

different functions in above and underground (root/hypocotyl) organs (Mele et al., 2003, Liebsch 

et al., 2014, Woerlen et al., 2017), this was not the case during hypocotyl secondary growth. arf6 

arf8 bp triple mutants showed even reduced xylem expansion compared to arf6 arf8 and altered 

cell morphology in the cambium and differentiating phloem pointing out that they may act in 

parallel pathway. The remarkable cambium defects, in the arf6 arf8 bp triple mutants suggest that 

ARF6 and ARF8 may play a role in cambium maintenance. The fact that arf6 arf8 double mutant 

do not show reduced overall secondary growth as bp mutant and that arf6 arf7 arf8 triple mutants 

displayed a mild reduction suggest that also other ARFs maybe involved.  
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 In conclusion, we propose a model that could explain the GA triggered shift to xylem 

expansion phase during secondary growth in Arabidopsis hypocotyl. Before flowering, ARF6, 

ARF7, ARF8 and probably other activators of xylem expansion and fiber differentiation such as BP 

are sequestered by DELLA proteins, thus blocking their activity. After flowering when bio-active 

GA are higher (Talon et al., 1991, Ragni et al., 2011), DELLA proteins are degraded and the ARFs 

and other possible activators are released and starts xylem expansion (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 Proposed model on GA mediated secondary growth control and crosstalk with 

Auxin. Hypothesized links are illustrated with dashed lines. Red arrows represent protein-protein 

interactions. The lines and arrows illustrate interactions. Compare text for details. 
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Experimental procedure: 

Plant material and growth 

The majority of the lines used are in Col-0 background unless otherwise specified in the text/figure. 

All plants used for confocal microscopy are in Col-0 background, grown in vitro in continuous 

light. . For all the other experiments, plants were grown in soil in long day conditions (16 hours 

light versus 8 hours dark) and the sampling time is stated in the text/figure. nph4-1, arf6-2, arf8-3, 

arf6-2 nph4-1 arf8-3/+, lines carrying pRPS5a::GAL4 and pUAS::MIR167 and the F1 issued from 

the cross between them were kindly provided by Jason Reed (University of North Carolina, USA) 

and described in (Nagpal et al., 2005) (Stowe-Evans et al., 1998), arf8-7 (Gutierrez et al., 2009) 

lines expressing promARF6:GUS, promARF8:GUS (Nagpal et al., 2005, Wu et al., 2006) were 

kindly sent to us by Catherine Bellini (Umeå university, Sweden). The double rga-24 gai-t6 was a 

gift from Markus Schmid (Umeå university, Sweden). The dellako (Feng et al., 2008), er-105 

(Torii et al., 1996), rga-28, gai-td1 and the double rga-28 gai-td1 (Plackett et al., 2014) are from 

S.Thomas, bp-9 (Pautot et al., 2001), SUC2:GUS (Schulze et al., 2003), BP:GUS (Pautot et al., 

2001) are from V.Pautot (INRA Versailles), RGA:rgaD-GR, GAI:gaiD-GR, rga-24, gai-t6 were 

previously described in (Ragni et al., 2011) ARF6::NLS-3xGFP (N67078), ARF7::NLS-3xGFP 

(N67080), ARF8::NLS-3xGFP (N67082) arf6-1(N24606) and arf8-2(N24608) (Okushima et al., 

2005) were ordered from NASC. RGA:rgaD-GR, GAI:gaiD-GR in Col-0 background were 

obtained by backcrossing 6 times the original lines to Col-0. arf6-1 arf8-2/+, SUC2:GUS arf6-2 

arf8-3/+, bp-9 arf6-2 arf8-3/+, BP:GUS arf6-2 arf8-3/+, arf6-2 rga-28 gai-td1/+ arf8-3/+ were 

generated by crossing and genotyping, arf6-1 arf8-2, SUC2:GUS arf6-2 arf8-3, bp-9 arf6-2 arf8-

3, BP:GUS arf6-2 arf8-3, arf6-2 arf8-3 rga-28 and arf6-2 arf8-3 rga-28 gai-td1/+ were obtained 

by genotyping. Primers for genotyping are listed in table S1. 

 

GA and Dexamethasone Treatment 

Induction of soil grown RGA:rgaD-GR, or GAI:gaiD-GR plants in Ler or Col-0 background was 

achieved by watering with a 10 μM dexamethasone solution three times per week until hypocotyl 

sampling. For GA and dex on soil treatments, plants were watered from flowering on, with a 100 
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μM GA3/ 10 μM  dex or mock solution at similar frequency three times per week until hypocotyl 

sampling according to the experiment. 

Molecular Cloning 

The RGA promoter was amplified with the primers: A-pRGA F 

(AACAGGTCTCAACCTTATAACCTCATCCATCTATAG) and Br-pRGA R 

(AACAGGTCTCATGTTTCAGTACGCCGCCGTCGAGAG). The BsaI site inside the pRGA 

promoter was removed by overlapping PCRs  and cloned in pGG-A0. The GAI promoter was 

amplified with the primers: A-pGAI F 

(AACAGGTCTCAACCTTGGGACCACAGTCTAAATGGCGT) and Br-pGAI R 

(AACAGGTCTCATGTTGGTTGGTTTTTTTTCAGAGATGGA) and cloned in pGG-A0. The 

promoters were assembly in pZ03 with the available published modules to obtain RGA:NLS-

GFP-GUS and GAI: NLS-GFP-GUS by Green Gate technologies (Lampropoulos et al., 2013). 

qPCR and RNA seq. 

RNA was extracted form 20 hypocotyls for each genotype from plant grown on soil using the  

Universal RNA Purification Kit (Roboklon) according to the manufacturer protocol.  C-DNA was 

synthetized using AMV Reverse Transcriptases (Roboklon) according to manufacturer protocol. 

qPCR was performed using MESA blue (Eurogentec) in a CFX96 Real-TimeSystem machine (BIO-

RAD). Primers used for qPCR are listed in table S2.  The relative expression was calculated using 

qPCR miner (http://ewindup.info/miner/) (Zhao and Fernald, 2005) normalizing the sample against 

the expression of EF1. qPCR experiment were repeated at least 2 times. For RNA-seq, RNA was 

extracted from hypocotyls  (three biological replicates for each genotype at each time point) using 

the kit: Universal RNA Purification Kit (Roboklon) and RNA quality was checked at the 

Bioanalyzer.  Libraries were prepared using the TruSeq RNA Library Prep Kit (Illuimina) 

according to manufacturer protocol.  Sequencing was performed pair ended using an Illumina 

Hiseq3000.  Reads were aligned against the Arabidopsis genome (version TAIR10) using Tophat 

v2 (http://ccb.jhu.edu/software/tophat). After alignment, one biological replicate for each sample 

was discarded due to high percent multiple alignment.  Read counting was done using the R 

package: Rsubread (Liao et al., 2013) and differentially expressed gene were calculated using R 

package: DESeq2 (Love et al., 2014). Gene ontology was performed using GOrilla  (http://cbl-

gorilla.cs.technion.ac.il/). Venn diagrams were made using the R package: VennDiagram. 

http://cbl-gorilla.cs.technion.ac.il/
http://cbl-gorilla.cs.technion.ac.il/
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Histology and stainings 

GUS essay was performed according to the protocol described in (Beisson et al., 2007). Vibratome 

sections (50–80 μm) were obtained via a Leica VT-1000 vibratome, from hypocotyls embedded in 

6% agarose block, slices were collected in water in microscope slides, stained and/or imaged. For 

Phloroglucinol staining, a ready solution (VWR, 26337.180) was applied directly to the section. 

Images were taken with a Zeiss Axio M2 imager microscope. Plastic hypocotyl cross-sections (5 

μm) were obtained as described in (Barbier de Reuille & Ragni, 2017) and stained with 0.1 % 

toluidine blue.  

For sections of fluorescent lines the ClearSee protocol described in (Ursache et al., 2018) was 

applied. Briefly, the hypocotyls were first fixed in a 4% PFA solution with 0.01% Triton for 1 hour. 

and then  embedded in 5% Agarose for vibratome cutting. Vibratome sections are then directly 

collected in 1x PBS solution. After incubation, the 1x PBS solution is removed and replaced by 

ClearSee solution. The sections are subsequently kept at room temperature in ClearSee solution for 

at least 1 to 2 days. Finally is the samples are incubated for 20 min at RT in 0,05 % Calcofluor 

White then washed and mounted on a slides in ClearSee solution (Kurihara et al., 2015).  

Images acquisition 

A Zeiss Axio M2 imager microscope or a Zeiss Axiophot microscope was used to take images at 

different magnifications of vibratome sections (50–80 μm) as well as 5 μm sections obtained from 

plastic embedded hypocotyls as previously described by (de Reuille and Ragni, 2017) and stained 

with 0.1% toluidine blue solution. Pictures of vibratome sections of fluorescent lines were acquired 

using the Zeiss LSM880 confocal microscope. GFP ex. 488 em. 490-520. Calcofluor White ex 404 

em: 430-450. 

Image analyses and statistical analyses 

The total hypocotyl cross section area, the xylem area and the fiber area were analyzed using 

ImageJ software as previously described (Sibout et al., 2008b). Statistical analyses were performed 

using IBM SPSS Statistics version 24-25 (IBM). We first tested all datasets for homogeneity of 

variances using Levene's Test of Equality of Variances. For multiple comparison, we calculated 



39 
 

the significant differences between each dataset using One way ANOVA with Tamhane’s post hoc 

(equal variance not assumed) or a Bonferroni correction (equal variance assumed). For comparing 

two groups,  we used Welch’s t-test (not homogenous variance) or a Student’s t-test (homogeneous 

variance). The significance threshold was set to p-value < 0.05.   
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Fig. S1 RGA and GAI are the main DELLA regulators of secondary growth.  
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(a) Plastic hypocotyl cross-sections stained with toluidine blue of 10 day-after-flowering, showing 

xylem in della single mutants: rga-28, gai-td1, rgl1-2, rgl2-1 and rgl3-3. (b) Quantification of the 

Xylem Area /Total area ratio in the experiment illustrated by representative pictures in (a). (c) 

Plastic cross-sections stained with toluidine blue of 8 day-after-flowering, showing xylem 

expansion in different combination of della mutants: rga-24, gai-t6, rga-24 gai-t6 and della ko. (d) 

Quantification of the Xylem Area /Total area ratio in the experiment illustrated by representative 

pictures in (c). (c) Plastic cross-sections stained with toluidine blue of 15 day-after-flowering, 

showing xylem expansion in Mock and Dex treated transgenic plants of rga:rgaD-GR and gai:gaiD-

GR (in Ler background). (b,d)  Box plots: the dark line in the middle of the boxes represents the 

median, the T-bars that extend from the boxes (whiskers) include 95% of the data.   Letters in the 

boxplots indicate statistical groups (One way ANOVA, post hoc Bonferroni for (b) n = 10–12 and 

post hoc Bonferroni for (d) n=20). Black bar =100μm, double head red arrow: xylem. 

 

 

Fig S2 RGA and GAI dominant negative lines repress xylem expansion in both Col and Ler 

ecotypes. 

Plastic hypocotyl cross-sections stained with toluidine blue of 15 day-after-flowering, showing 

xylem expansion in Mock and Dexamethasone (dex) treated transgenic plants of rga:rgaD-GR and 

gai:gaiD-GR (in Ler  and Col background). Black bar =100μm, double head red arrow: xylem. 
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Fig S3 The phloem poles are the sites of DELLA and ARF expression and ectopic cell division in 

arf6 arf8 mutant.  

(a) Plastic hypocotyl cross-sections of RGA:GUS and GAI:GUS at 16 days after germination. (b) 

Vibratome hypocotyl cross-sections of ARF7:NLS-GFP-GUS respectively at 0 and 8 day-after-

flowering (daf). (c) Quantification of Xylem/Total area ratio in Col, arf6-1, arf6-2, arf8-2, arf8-3, 

arf6-1 arf8-2 and arf6-2 arf8-3. (d) Hypocotyl vibratome sections stained with phloroglucinol 

showing phloem fibers in arf6 arf8 double mutants (black arrows; 60daf). (e) Plastic hypocotyl 

cross-section of SUC2:GUS and arf6-2 arf8-3 SUC2:GUS at 20 daf. Quantification of the number 

of phloem poles in Col, arf6, arf8 and arf6 arf8 at 10 daf. (f) Toluidine blue stained hypocotyl 

sections of 10 daf RPS5A:GAL4, UAS:MIR167a and F1 (RPS5A:GAL4 x UAS:MIR167a) . Box 
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plot: the dark line in the middle of the boxes represents the median, the T-bars that extend from the 

boxes (whiskers) include 95% of the data.   Letters in the boxplots indicate statistical groups (One 

way ANOVA, post hoc Bonferroni for (c) n = 8-16 and post hoc Bonferroni for (e) n=6) White 

bars = 20 μm, black bar =100μm. Red arrow: GFP signal in the phloem. Blue arrow: ectopic 

divisions in the phloem. 

 

Fig. S4 Secondary growth dynamics in arf mutants. 
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 (a) Plastic hypocotyl cross-sections stained with toluidine blue of flowering plants showing xylem 

expansion in Col-0 and arf6-2 arf8-3. (b) Quantification of the Xylem Area /Total area ratio in the 

experiment illustrated by representative pictures in (a), Student´s Test (n=6-8). (c) Plastic 

hypocotyl cross-sections stained with toluidine blue showing xylem expansion in Col and arf6-2 

arf8-3 at 5, 15, 30 day-after-flowering (daf). (d) Quantification of the Total area in the experiment 

illustrated by representative examples in (c). (e) Quantification of Xylem/Total area ratio in the 

experiment illustrated by representative pictures in (c).  Quantification of Xylem/Total area ratio 

in the experiment illustrated by representative pictures in (g).  (d-f) Box plots: the dark line in the 

middle of the boxes represents the median, the T-bars that extend from the boxes (whiskers) include 

95% of the data.   Letters in the boxplots indicate statistical groups (One way ANOVA, post hoc 

Tamhane for (d) n=10-14, post hoc Bonferroni for (e) n =10-14 and post hoc Tamhane for (f) n=8-

11). (g) Plastic hypocotyl cross-sections stained with toluidine blue showing the ectopic phloem 

cell division phenotype in arf6-2 arf8-3 and arf6-2 nph4-1 arf8-3 at 10 daf. Black bar =100μm, 

double head red arrow: xylem, double head black arrow: fibers. Blue arrow: ectopic divisions in 

the phloem. 
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Fig. S5 Genetic interaction between ARFs and DELLA in the regulation of secondary growth. 
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 (a) Plastic hypocotyl cross-sections stained with toluidine blue showing xylem expansion in Col 

arf6 arf8, rga gai/+ arf6 arf8 rga and arf6 arf8 rga gai/+ at day-after- flowering ((b) Quantification 

of Xylem/Total area ratio in the experiment illustrated by representative pictures in (a). (c) 

Quantification of Fiber area/Xylem area ratio in the experiment illustrated by representative 

examples in (a). Box plots: the dark line in the middle of the boxes represents the median, the T-

bars that extend from the boxes (whiskers) include 95% of the data.  Student’s or Welch t-test (red 

asterisk: P < 0.05, n=3-12). Black bar =100μm, double head red arrow: xylem, double head black 

arrow: fibers. 
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Fig. S6 Genetic interaction between DELLAs and BP. 

a) Plastic hypocotyl cross-sections stained with toluidine blue showing xylem expansion in Ler and 

Bp-1 mutants treated with mock or GA at 8 day-after- flowering (daf). (b,c) Quantification of stem 

height, rosette paraclades in Col, bp-9, rga-28 gai-td1, rga-28 gai-td1 bp-9 at plant senescence. (d) 
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Plastic hypocotyl cross-sections stained with toluidine blue showing xylem expansion in in Col, 

bp-9, rga-28 gai-td1, rga-28 gai-td1 bp-9 at plant senescence.  (e) Quantification of Xylem/Total 

area ratio in the experiment illustrated by representative pictures in (d). (f) Quantification of Fiber 

area/Xylem area ratio in the experiment illustrated by representative examples in (d). (g) q-PCR 

showing relative expression of BP (normalized to EF1) in Col and arf6 arf8 double mutants at 

20daf.  Box plots: the dark line in the middle of the boxes represents the median, the T-bars that 

extend from the boxes (whiskers) include 95% of the data.   Letters in the boxplots indicate 

statistical groups (One way ANOVA, post hoc Bonferroni for (b) n=20, post hoc Tamhane for (c) 

n=20, post hoc Bonferroni for (e) n = 7-9 and post hoc Tamhane for (f), n = 7-9). Black bar =100μm, 

double head red arrow: xylem, double head black arrow: fibers. 
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Table S1 Primers used for genotyping. 

Allele WT/mut primer name sequence 

rga-28 

WT 

RGA genoF CGATTGTCCAACCACGGG 

RGAR_201 CAGCTAAGCATCCGATTTGC 

mut 

rga28-244 ATGGCGGAGGTTGCTTTGAAACTCGAACA 

Ds3-2 CCGGTATATCCCGTTT TCG 

gai-td1 

WT 

GAI_TDNA_LP3 CGGTAACGGCATGGATGAG 

GAI_TDNA_RP AGCTTCGGCGAAGTAAGTAGC 

mut 

GAI_TDNA_RP AGCTTCGGCGAAGTAAGTAGC 

LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 

rgl1-1 

WT 

RGL1 1670F AAGCTAGCTCGAAACCCCAAAT 

RGL1 2295R CCACAGAGCGCGTAGAGGATAAC 

mut 

RGL1 1670F AAGCTAGCTCGAAACCCCAAAT 

DS5-P1 CATGGGCTGGGCCTCAGTG 

rgl2-1 

WT 

RGL2 856F GCTGGTGAAACGCGTGGGAACA 

RGL2 1883R ACGCCGAGGTTGTGATGAGTG 

mut 

RGL2 856F GCTGGTGAAACGCGTGGGAACA 

DS5-3 CGGTCGGTACGGGATTTTCC 

arf6-1 

WT 

arf6-2 R CCAAGGGTCATCGCCGAGGAGAAGAACGTC 

arf6-2 F GACGAATCTACTGCAGGAG 

mut 

arf6-2 F GACGAATCTACTGCAGGAG 

LBb1.3 ATTTTGCCGATTTCGGAAC 

arf6-2 

WT 

arf6-2 R CCAAGGGTCATCGCCGAGGAGAAGAACGTC 

arf6-2 F GACGAATCTACTGCAGGAG 

mut 

arf6-2 F GACGAATCTACTGCAGGAG 

JMLB GGCAATCAGCTGTTGCCCGTCTCACTGGTG 

arf8-2 

WT 

arf8-3 R CCATGGGTCATCACCAAGGAGAAGAATATC 

arf8-7 F CAGGGCTAGCCAATCTGAGTTTGTGATACA 

mut 

arf8-7 F CAGGGCTAGCCAATCTGAGTTTGTGATACA 

LB3 TAGCATCTGAATTTCATAACCAATCTCGATACAC 

arf8-3 

WT 

arf8-7 F CAGGGCTAGCCAATCTGAGTTTGTGATACA 

arf8-7 R GACCACTTCCCAAATCACCCCTTCCATCTG 

mut 

arf8-7 R GACCACTTCCCAAATCACCCCTTCCATCTG 

JMLB GGCAATCAGCTGTTGCCCGTCTCACTGGTG 

arf8-7 

WT 

ARF8-7genoF TAAACTTCCATTCAACATCATGGA 

ARF8-7genoR AGTCGAGTTGTTTACTTTCCACAG 

mut 

ARF8-7genoR AGTCGAGTTGTTTACTTTCCACAG 

8474 ATAATAACGCTGCGGACATCTACATTTT 

nph4-1 WT nph4-1geno_F TCCTGCTGAGTTTGTGGTTCCTT 
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nph4-1geno_R GGGGCTTGCTGATTCTGTTTGTTA 

mut 

nph4-1geno_R GGGGCTTGCTGATTCTGTTTGTTA 

LBb1.3 ATTTTGCCGATTTCGGAAC 

bp-9 

WT 

BP-14 TGTTAAGGGTTAGAACACCATG 

BP-3 GACAACAGCACCACTCCTCAAA 

mut 

BP-3 GACAACAGCACCACTCCTCAAA 

dspm1 CTTATTTCAGTAAGAGTGTGGGGTTTTGG 

 

 

Table S2 Primers used for qPCR. 

Genes Primer  Sequence 

EF1 EF1a.F  TGGTGACGCTGGTATGGTTA 

EF1a.R  TCCTTCTTGTCCACGCTCTT 

KNAT1/BP KNAT1qPCR_F TCCCATTCACATCCTCAACA 

KNAT1qPCR_R CCCCTCCGCTGTTATTCTCT 

NST3 NST3 F qPCR TGCATGAGTATCGCCTCGAC 

NST3 R qPCR CCCTTCTCTTCCTCCGTGTC 

NST1 NST1 F qPCR GCTCCTCACGGCCAAAAATC 

NST1 R qPCR CTCCGACGGGACTGTTTAGG 
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Summary 

            Secondary growth occurs throughout the development of seed plants. It results in the 

increase in girth of plant structures accompanied by the formation of wood: The most 

important natural source of renewable energy and major sink for excess atmospheric CO2. 

Secondary growth in Arabidopsis thaliana hypocotyls is marked by two phases: A first phase 

characterized by the same production rate for xylem versus phloem and a second phase or 

xylem expansion phase characterized by accelerated xylem expansion. The shift between the 

two phases is triggered upon flowering by GA, which moves from the shoot to the hypocotyl 

where it locally induces DELLA degradation. It is surprising that the molecular mechanisms 

underlying such a developmental process are still poorly investigated.  

            In this study, we identified DELLA interacting factors controlling xylem expansion 

by analyzing the transcriptome related to REPRESSOR OF ga1-3 (RGA) upon flowering. 

We identified a novel role for type-B ARABIDOPSIS RESPONSE REGULATORS (ARR1) and 

ARR2 as negative regulators of fiber differentiation. We also identified a positive role in 

regulating phloem proliferation for CORONATINE INSENSITIVE 1 COI1 and 

TRANSCRIPTION FACTOR MYC2 (MYC2) as well as ARR1 and ARR2. Our results also 

indicate a specific role for JA on secondary growth as it only promotes xylem fiber and 

phloem fiber formation and does not alter the X/A ratio or the total area. Overall, our results 

suggest a central hormone cross-talk coordinated by DELLA between GA, Cytockinin and 

Jasmonate in the context of plant secondary growth. 

 

Keywords: Phloem Xylem secondary growth, Cytokinin Jasmonate Gibberellin. 
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Introduction: 

            Vascular expansion is achieved via secondary growth, it is an important factor limiting 

plant growth as water and solute are constantly transported through vascular tissues, it also confers 

mechanical strength to the plant. In dicotyledons, secondary growth results in the thickening of 

plant organs and the continuous production of xylem tissue (wood), the principal form of biomass 

(Demura and Ye, 2010, Spicer and Groover, 2010). Secondary growth is achieved via the vascular 

cambium, a meristematic tissue that lies between the xylem and phloem. In a thickening stem both 

radial and periclinal divisions occur within the cambium. Cells produced by periclinal divisions 

mature into phloem on the outside and xylem (wood) on the inside (Murmanis, 1971, Elo et al., 

2009).  

            Arabidopsis is a valid model to study secondary growth, with several key advantages 

(Chaffey et al., 2002, Sibout et al., 2008b), in fact the main players affecting secondary growth 

remain the same between herbaceous and woody plants. For instance, VASCULAR-RELATED 

NAC-DOMAIN6 (VND6) and VND7 work as transcription switches for metaxylem and protoxylem 

vessel formation, both in Arabidopsis and Populus (Kubo et al., 2005),  

Additionally WUSCHEL HOMEOBOX RELATED 4 (WOX4) a conserved transcription factor 

among seed plants acting downstream of the CLE41/PXY signaling pathway and controlling the 

procambium cells formation (Hirakawa et al., 2010, Suer et al., 2011), has most likely a conserved 

role in vascular meristems maintenance among seed plants (Nardmann and Werr, 2013).  

Another key advantage rendering the hypocotyl a suitable model for studying secondary growth, 

is the possibility to study and observe radial growth separately from elongation, as hypocotyl 

primary growth stops few days after germination, but most importantly the hypocotyl produces 

fibers and vessels with the same structural characteristics as an angiosperm tree.   

Secondary growth in the hypocotyl is characterized by two major phases: the first phase, before 

flowering, where phloem and xylem are generated in the same rate resulting in a xylem to total 

area ratio close to one. The second phase starts upon flowering, it is called the xylem expansion 

phase, resulting in a much higher xylem to total area ratio (Sibout et al., 2008b). This 

developmental transition is mediated by Gibberellins. In fact, upon flowering, GA signaling acts 

locally in the hypocotyl via DELLA protein degradation to trigger xylem expansion (Ragni et al., 

2011).  
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            The positive role of GA seems to be conserved across species as it promotes secondary 

growth both in trees and Arabidopsis, for instance, GA treated trees and mutants overproducing 

GA, exhibited increased overall secondary growth as well as fiber elongation (Digby and Wareing, 

1966, Eriksson et al., 2000b). In poplar stem, GA promotes wood formation through increasing 

auxin polar transport and enhancing fiber elongation in the developing xylem (Björklund et al., 

2007, Mauriat and Moritz, 2009). Whereas in Arabidopsis, GA predominantly promote secondary 

growth through DELLA degradation, there are five members in Arabidopsis: REPRESSOROFga1-

3(RGA), GA-INSENSITIVE (GAI), RGA-LIKE1 (RGL1), RGL2, and RGL3, in fact in della 

quadruple mutant, xylem expansion was significantly increased as compared with the wild type 

Ler at flowering, consistently ectopic expression of dominant DELLA dramatically suppressed 

xylem expansion (Ragni et al., 2011). Nevertheless, the mechanism through which DELLA 

regulate secondary growth and its interacting partners is yet to be identified. 

            Cytokinins (CK) also largely contribute to the control of secondary growth; promoting it 

through regulating cambial activity, in fact, secondary growth is severely reduced in Arabidopsis 

CK deficient mutants as illustrated by the lack of cambium accompanied by a drastic reduction in 

radial growth in ipt1;3;5;7 biosynthesis mutant (Matsumoto-Kitano et al., 2008). Accordantly, 

enhancing CK biosynthesis in poplar resulted in the increase of the number of cambial cells and 

the total biomass (Immanen et al., 2016). Additionally, two transcription factors promoting 

secondary growth and increasing cambium cell number: the Arabidopsis regulatory gene 

AINTEGUMENATA (ANT) and the cell cycle regulator CYCLIN D3 (CYCD3), are downregulated 

in plants overexpressing CK catabolic enzyme genes. Whereas exogenous CK application increase 

their expression (Randall et al., 2015). 

Type B response regulators are transcription factors that act as positive regulators in the two-

component cytokinin signaling pathway, they play key roles in Cytokinin signaling and 

development in Arabidopsis (Argyros et al., 2008). Cytockinin regulates a broad spectrum of 

downstream responses through the phosphorelay cascade culminating in the transcriptional 

regulation by type-B ARABIDOPSIS RESPONSE REGULATORS (type-B ARR’s). Notably, 

ARR1 among other type B regulators, has been identified as a central regulator of Cytokinin 

signaling and development in Arabidopsis. It has been shown that ARR1 and DELLA act as 

transcriptional co-regulators in Arabidopsis, in a larger perspective, type-B ARRs and DELLAs 
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are known to jointly promote transcription of a wide array of target genes (Marin-de la Rosa et al., 

2015). 

            Jasmonate, is another positive regulator of cambium proliferation and secondary growth, in 

fact, Coronatine-insensitive 1 (COI1) and Transcription factor MYC2 (MYC2), two positive 

mediators of JA signaling were identified as promoting secondary growth in the Arabidopsis stem 

whereas JASMONATE ZIM-DOMAIN (JAZ10) and JAZ7  function as repressors of secondary 

growth in the stem (Sehr et al., 2010). Furthermore, transcriptome analysis revealed upregulation 

of jasmonate biosynthesis/signaling genes in the perennial and woody soc1 ful double mutant 

(Melzer et al., 2008, Davin et al., 2016). 

Importantly, MYC2-JAZ1 interaction is prevented by DELLA competitive binding to JAZ1, thus 

enabling MYC2 to regulate its target set of genes (Hou et al., 2010). But most importantly MYC2 

is able to directly interact with DELLA Proteins in the context of Sesquiterpene Synthase Gene 

Expression Regulation (Hong et al., 2012) 

            DELLA proteins are known to be repressors of secondary growth. But, what are the 

downstream factors affected by DELLA, and how does GA cross-talk with other hormones to 

orchestrate secondary growth is still largely unknown. To answer this question we analyzed the 

transcriptome of RGA::rgad-GR line conditionally expressing a dominant version of DELLA that 

cannot be degraded in the presence of GA. Our results suggest a cross-talk between GA, Cytokinin 

and Jasmonate in the context of secondary growth regulation. We revealed that ARR1 and ARR2 

repress fiber differentiation and promote phloem proliferation whereas COI1 and MYC2 are only 

involved in promoting phloem proliferation in Arabidopsis hypocotyl.  

Results: 

Transcripome analysis revealed a cross-talking hub tuned by DELLA, controlling secondary 

growth. 

            The central role of DELLA in xylem expansion and fiber accumulation has been previously 

documented; DELLA proteins are regarded as repressors of secondary growth, in fact della 

quadruple mutants where GA signaling is constitutively on, showed enhanced xylem expansion 

and fiber production in Arabidopsis (Ragni et al., 2011). Consistently, upon Dexamethasone 

activation of RGA::rgad-GR and GAI::gaid-GR lines, a severe decrease in hypocotyl xylem 
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expansion and total absence of fiber was observed, with a larger effect on the RGA::rgad-GR line 

(Ragni et al., 2011). 

As DELLA is known to work in transcriptional complexes affecting gene expression, we wondered 

about DELLA downstream targets responsible about such a phenotype, to this end, we used DEX 

inducible RGA:rgaD-GR line (in Ler) to perform RNA sequencing. 

We optimized DEX treatment as it can not be classically performed by immerging the plant in 

1/2MS liquid due to the age of the plant but only 2/3 of the root were submerged by 1/2 MS liquid. 

We opted for time points shortly upon flowering as we are interested in factors directly affected by 

DELLA at the beginning of xylem expansion phase. We found that 3h is sufficient to induce 

differential expression of the DELLA known target genes SCL3, GA20ox and GA3ox, thus we 

opted for this time point (Figure 1a).  

            Stringent statistical analysis of the transcriptome data revealed major differential 

expression of genes classified in (Figure 1b) with the upregulation of 146 genes comprising CK 

related genes. Among which, CYTOKININ RESPONSE FACTOR 1 (CRF1), some MYB 

transcription factors as well as genes involved in GA biosynthesis. Whereas 209 genes were 

downregulated, among them, Jasmonate related genes such as JASMONATE ZIM-DOMAIN (JAZ7) 

and JAZ10, genes belonging to BHLH family and several NAC transcription factors such as NAC 

SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1). This is consistent with the 

phenotype caused by DELLA insensitive mutations as NST1 acts as a key regulator of secondary 

wall thickenings in interfascicular fibers and secondary xylem, except for vascular vessels, 

affecting formation of cells destined to be woody tissues. (Mitsuda et al., 2007), NST1 

downregulation upon 3 hours of Dexamethasone treatment suggest that it might be a direct target 

of DELLA. We confirmed the RNA sequencing results by qPCR in another independent 

experiment, the same differential expression was observed for the set of genes we tested (Figure 

S1a,b) 

We assayed knock out mutants at 10 days after flowering of the most prominent genes comparing 

to Col-0. We didn’t observe any secondary growth alteration via inactivation of METACASPASE 

7 (MC7), CRF1, ETHYLENE RESPONSE FACTOR (ERF10), JAZ7 and JAZ10 (Figure S1d). This 

is probably due to redundancy among members of the gene family each of them belong to. 
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Fig. 1 RGA transcriptome reveals a hormonal cross-talk upon xylem expansion. 
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 (a) Q-PCR showing relative expressions, confirming that GA20ox, GA3ox and SCL3 are up-

regulated in the hypocotyls of RGA:rgaD-GR transgenic plants upon 3 hours Dexamethasone 

treatment. (b) Classification of the up-regulated vs down-regulated genes according to Cellular 

component, molecular function and biological process. The red line represents +/-1 log2-fold 

change threshold. 

 

ARR1 and ARR2 repress fiber differentiation and promote phloem proliferation in 

Arabidoposis hypocotyl. 

            RNA seq revealed altered expression of cytockinin related genes upon Dexamethasone 

treatment. Notably, CRF’s, which are known to affect the development of both the root and the 

shoot, functioning as positive regulators of root growth and partially acting by the regulation of the 

RAM size. CRF1 was remarkably up-regulated upon DEX treatment suggesting its link with 

DELLA signaling in regulating secondary growth. crf1 mutants have been reported to function as 

negative regulator of rosette size, as illustrated by the phenotype of its over-expressor line (Raines 

et al., 2016). Subsequently, we analyzed crf1 mutant plants, they showed no difference comparing 

to Col-0 in terms of secondary growth, this is not surprising since CRFs play redundant roles as 

positive regulators of root growth (Raines et al., 2016). We then decided to analyze mutants in 

typeB ARRs since they control the expression of CRFs, as illustrated by the compromise in CRF 

genes expression in arr1arr12 mutant indicating that the type-B ARRs control their cytokinin 

related regulation (Rashotte et al., 2006). We chose to further analyze ARR1 and ARR2 as they 

belong to the sub-family 1 mediating most of Cytokinin responses (Hill et al., 2013), but most of 

all because they have been reported to jointly promote the transcription of a wide range of target 

genes together with DELLA proteins, hence mediating the cross-talk between the two major 

hormones.  

As a result, ARR1 doesn’t seem to alter the xylem occupancy (X/A ratio), instead it has a positive 

effect on the overall hypocotyl total area as provided by our data on arr1 mutant, ARR2 has a mild 

positve effect on xylem occupancy as shown by arr2 mutant (Figure 2a,c). The increase in X/A 

ratio in arr1 arr2 seem to be due to attenuated phloem proliferation in the double mutant rather 

than enhanced xylem production (Figure S2a,b), ARR1 and ARR2 seem to act redundantly as 

negative regulators of fiber differentiation and positive regulators of phloem proliferation. This is 

supported by the phenotype of the double mutant arr1 arr2 as it showed significantly higher X/A 

and F/X ratio comparing to Col-0 (Figure 2b,d). 
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Fig. 2 ARR1 and ARR2 promote phloem proliferation and repress fiber differentiation.  
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(a) Plastic hypocotyl cross-sections stained with 0.1 % toluidine blue of 10 day-after-flowering 

(daf), showing reduced phloem proliferation in arr1, arr2 and arr1 arr2 double mutant. (b) 

Phloroglucinol stained vibratome sections of 20 daf hypocotyl, showing enhanced fiber formation 

in in arr1 arr2 double mutant (c) Quantification of the Xylem Area /Total area ratio in the 

experiment illustrated by representative pictures in (a). (d) Quantification of Fiber Area/Xylem 

Area ratio in the experiment illustrated by representative pictures in (b). (c-d) Box plots: the dark 

line in the middle of the boxes is the median, the T-bars that extend from the boxes (whiskers) 

include 95% of the data. Letters in the boxplots indicate statistical groups, one-way ANOVA (post 

hoc Tamhane was used determine the groups in (c) sample size n =13-20, post hoc Bonferroni for 

(d) n=11-19). Black bars= 100μm. Double head black arrows=Fiber. 

COI1 and MYC2 positively regulate phloem proliferation in the Arabidopsis hypocotyl. 

            The role of jasmonate in regulating secondary growth has been described previously in 

Arabidopsis (Sehr et al., 2010). In fact, JA application has a positive effect on cambium activity 

and JA signaling contributes to stem cambium regulation. In more details, JAZ10, MYC2, COI1, 

and less effectively JAZ7, have been identified as cambium regulators in Arabidopsis stem: analysis 

of IC interfascicular cambium dynamics revealed that acropetal progression is enhanced in jaz10-

1, jaz10-2 and jaz7-1 whereas coi1-1 and myc2-3 mutants showed the opposite phenotype (Sehr et 

al., 2010). Our sequencing results revealed several jasmonate related genes, the most prominent 

among them are JAZ7 and JAZ10, both of them were downregulated upon dexamethasone 

treatment. By analyzing JAZ7 and JAZ10 single mutants no secondary growth phenotype was 

observed comparing to the wild type Col-0 in the hypocotyl, unlike their previously described role 

in the stem, this can be explained by the spatial specificity of these JAZ factors (Chini et al., 2007, 

Browse, 2009). Thus, we decided to check the coi1-1 and myc2-3 mutants where JA signaling is 

impaired (no JA response genes are activated). We observed a reduction in the total area of coi1-1 

and myc2-3 at 10 daf, resulting in a higher xylem occupancy (X/A ratio), but less overall secondary 

growth (Figure 3a,b,d). The reduction in xylem occupancy is rather attributed to attenuated phloem 

proliferation as the xylem area was unchanged in coi1, myc2 mutants comparing to the WT (Figure 

3b,c,d). Our observations in the hypocotyl are consistent with the positive role attributed to COI1 

and MYC2 regulating secondary growth in the stem (Sehr et al., 2010). As a conclusion, COI1 and 

MYC2 positively regulate overall secondary growth in the hypocotyl. 

            To further understand JA mediated secondary growth, we opted for JA treatment for 20 

days upon flowering, our preliminary results showed that the total area and the xylem expansion 

were not altered whereas significant amounts of fiber was accumulated in the xylem of treated 

plants comparing to mock (Figure S3a,b,c). Additionally, all treated plants (including Col-0, arf6 
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arf8 and rga gai) showed ectopic phloem fiber formation (Figure S3a). (For details about arf6 arf8 

see previous chapter). 

 

 

Fig. 3 COI1 and MYC2 promote phloem proliferation.  

(a) Plastic hypocotyl cross-sections stained with 0.1 % toluidine blue of 10 day-after-flowering 

(daf), showing reduced phloem proliferation in coi1-1, myc2-3. (b) Quantification of the Xylem 
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Total area in the experiment illustrated by representative pictures in (a). (c)Quantification of the 

Xylem area in the experiment illustrated by representative pictures in (a). (d) Quantification of the 

Xylem Area /Total area ratio in the experiment illustrated by representative pictures in (a). (b-c-d) 

Box plots: the dark line in the middle of the boxes is the median, the T-bars that extend from the 

boxes (whiskers) include 95% of the data. Letters in the boxplots indicate statistical groups, one-

way ANOVA (post hoc Bonferroni was used determine the groups in (b,c and d) sample size n 

=15-20). Black bars= 100μm. 

 

Discussion: 

            GA regulates various aspects of plant growth and development, it mediates its response 

through the degradation of DELLAs. The DELLA proteins can interact with many TFs belonging 

to a wide array of families, they function mainly in protein complexes repressing or activating 

downstream responses (Locascio et al., 2013), thus playing the role of central signaling hubs 

connecting different signaling cascades (Claeys et al., 2014, Marin-de la Rosa et al., 2014). In 

addition, other hormones such as auxins, cytokinins and ethylene can modulate the GA pathway 

(Jasinski et al., 2005, Frigerio et al., 2006, Achard et al., 2007, Claeys et al., 2014, Marin-de la 

Rosa et al., 2014). 

 GA also controls secondary growth in trees and Arabidopsis, in fact, recent findings 

revealed a central role of DELLA proteins in controlling xylem expansion and fiber differentiation 

in Arabidopsis hypocotyl. GA moves from the shoot apex to the hypocotyl where it triggers 

DELLA degradation upon flowering which leads to the shift from the first phase to the second 

phase of secondary growth also called xylem expansion phase. The latter phase is characterized by 

higher production of xylem comparing to phloem leading to the increase of xylem occupancy and 

fiber differentiation in the hypocotyl (Ragni et al., 2011). DELLA proteins have highly redundant 

functions (Cao et al., 2005), but RGA seems to have a greater impact on secondary growth 

comparing to GAI. In fact, impairing GA signaling in transgenic plants carrying a functional 

truncated version of DELLA (insensitive to GA mediated degradation) resulted in a dramatic 

decrease in hypocotyl xylem expansion and total lack of fiber, with a larger effect for the RGA 

comparing to GAI lines (Ragni et al., 2011).  

            In this study we revealed transcriptome changes related to DELLA at the beginning of the 

xylem expansion phase. For this purpose we used the line conditionally expressing the dominant 

RGA form. Analysis of the transcriptome data revealed up-regulation of Cytockinin signaling 

related genes coupled by the down-regulation of Jasmonate signaling genes. These data suggest a 
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complex cross-talk between GA, Cytockinin and Jasmonate, in controlling early stages of the 

xylem expansion phase.   

            Among the Cytockinin signaling related genes CRF1 was remarkably up regulated. CRF1 

functions as negative regulator of rosette size and belongs to CRF gene family known to affect 

meristem size (Raines et al., 2016). By analyzing crf1 mutant plants, no difference in secondary 

growth was observed comparing to the WT, this can be explained by redundancy among CRFs 

(Raines et al., 2016). This prompted us to study their up-stream regulators, the type-B ARRs which 

control cytokinin related regulation of the CRF gene family (Rashotte et al., 2006). We chose to 

further investigate ARR1 and ARR2 as they belong to the sub-family 1 of type B-ARRs mediating 

most of Cytokinin responses (Hill et al., 2013), but mostly because ARR1 is known to mediate the 

presence of DELLA at target promoters and jointly promote the transcription of a wide range of 

target genes together with DELLA proteins (Marin-de la Rosa et al., 2015). Our results, indicate 

that ARR1 has a positive effect on the overall hypocotyl total area whereas ARR2 has a mild 

negative effect on xylem occupancy due to attenuated phloem proliferation. ARR1 and ARR2 seem 

to act redundantly as positive regulators of phloem proliferation and negatively regulate fiber 

differentiation.  

            We also revealed another crosstalk between GA and JA, several jasmonate related signaling 

genes were downregulated among which JAZ7 and JAZ10. These two genes have been previously 

assigned negative roles in controlling secondary growth in the Arabidopsis stem (Sehr et al., 2010). 

We wondered about their role in regulating secondary growth in the hypocotyl. Our results 

indicated that jaz7-1 and jaz10-1 are indistinguishable from the WT at 10 daf. The fact that JAZ7 

and JAZ10 do not affect secondary growth the way it does in stem can be explained by the spatial 

specificity of JAZ factors (Chini et al., 2007, Browse, 2009). We then decided to investigate 

mutants impaired in JA signaling perception. Our results pointed out a positive role in controlling 

overall hypocotyl secondary growth for both COI1 and MYC2 precisely in phloem proliferation, 

consistently with the positive role attributed to them in controlling secondary growth in 

Arabidopsis stem (Sehr et al., 2010).  

            We then investigated the effect of constitutive JA response by applying JA for 20 days upon 

flowering. Our results suggest a specific role for Jasmonate on secondary growth, since it only 

promotes xylem fiber and phloem fiber formation and does not alter the X/A ratio or the total area 
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in Col-0, rga gai and arf6 arf8 (mentioned earlier in draft manuscript 1). The specific role of JA in 

phloem fiber formation is probably mediated through JAZ protein degradation. However which 

JAZ(s) are responsible for the fiber phenotype in the hypocotyl remains unraveled. DELLA can 

sequester JAZ1 enabling MYC2 to regulate its target set of genes (Hou et al., 2010). Conversely, 

DELLA can also sequester MYC2 allowing regulation of gene expression in the context of 

Sesquiterpene Synthase (Hong et al., 2012). Our results are in the favor of a scenario in which 

DELLA interact with JAZ protein before flowering resulting in xylem expansion and fiber 

formation repression, as JA application enhances fiber formation probably through JAZ protein 

degradation. However, what are the JAZ(s) interactors? Whether DELLA interacts with MYC2 to 

activate phloem proliferation before flowering in the hypocotyl is yet to be determined.  

            To conclude, we propose a model (Figure 4) that could partially explain the shift to xylem 

expansion phase during secondary growth in Arabidopsis hypocotyl. Before flowering, ARR1, 

ARR2 and probably other phloem proliferation activators and fiber formation repressors interact 

with DELLA proteins resulting in phloem proliferation and repression of fiber formation since 

DELLA proteins accumulate in the hypocotyl due to low concentration of bio-active GA before 

flowering. Whereas after flowering, it is possible that ARR1, ARR2 and DELLA are no longer 

interacting to maintain phloem proliferation in the hypocotyl. This can be due to higher bio-active 

GA concentrations leading to DELLA degradation (Talon et al., 1991), particularly in the 

Arabidopsis hypocotyl where GA can move through the plant from the shoot apex to the hypocotyl 

triggering the shift to the xylem expansion phase (Ragni et al., 2011). 
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Fig.4 Proposed model on GA mediated secondary growth control and crosstalk with 

Cytokinin and Jasmonate. Hypothesized links are illustrated with dashed lines. Red arrows 

represent protein-protein interactions. The lines and arrows illustrate interactions. Compare text for 

details. 
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Experimental procedure: 

Plant material and growth 

The majority of the lines used are in Col-0 background unless otherwise specified in the text/figure. 

Plants used for RNAseq experiment were grown in vitro in continuous light until sampling. For all 

the other experiments, plants were grown in soil in long day conditions (16 hours light versus 8 

hours dark) and the sampling time is stated in the text/figure. arr1-4, arr2-4 and the double mutant 

arr1-4 arr2-4 were kindly provided by Klaus Harter (ZMBP), RGA:rgaD-GR was previously 

described in (Ragni et al., 2011), coi1-1 was described in (Xie et al., 1998). myc2-3 (salk_061267), 

jaz10-1 (sail_92_D08), jaz7-1 (WixcDsLox7M11) and the following lines were ordered from 

NASC: crf1 (N686553), mc7 (N506679), erf10 (N799828). Primers for genotyping are listed in 

table S1. 

Dexamethasone and JA Treatment 

Induction of in-vitro grown RGA:rgaD-GR plants was achieved by submerging square plates 

vertically in liquid 10 μM dexamethasone (dex) ½ Murashige and Skoog solution with 2/3 of the 

root covered with ½ MS solution, for 3 hours upon flowering. For JA on soil treatments, plants 

were watered from flowering on, with a 100 μM JA or mock solution at similar frequency three 

times per week until hypocotyl sampling according to the experiment. 

qPCR and RNA seq. 

RNA extraction was performed using the  Universal RNA Purification Kit (Roboklon) according 

to the manufacturer protocol.  C-DNA was synthetized using AMV Reverse Transcriptases 

(Roboklon) according to manufacturer protocol. qPCR was performed using MESA blue 

(Eurogentec) in a CFX96 Real-TimeSystem machine (BIO-RAD). Primers used for qPCR are listed 

in table S2. The relative expression was calculated using qPCR miner (http://ewindup.info/miner/) 

(Zhao and Fernald, 2005) normalizing the sample against the expression of EF1. qPCR experiment 

were repeated at least 2 times. RNA was extracted form 120 hypocotyls at flowering from plants 

grown in-vitro for each treatment (Mock/DEX). 3 biological replicates were used for RNA-seq, 

quality was checked at the Bioanalyzer.  Libraries were prepared using the TruSeq RNA Library 

Prep Kit (Illuimina) according to manufacturer protocol.  Sequencing was performed pair ended 

using an Illumina Hiseq3000.  Reads were aligned against the Arabidopsis genome (version 
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TAIR10) using Tophat v2 (http://ccb.jhu.edu/software/tophat).  Read counting was done using the 

R package: Rsubread (Liao et al., 2013) and differentially expressed gene were calculated using R 

package: DESeq2 (Love et al., 2014). Gene ontology was performed using GOrilla  (http://cbl-

gorilla.cs.technion.ac.il/).  

Histology and stainings 

Vibratome sections (50–80 μm) were obtained via a Leica VT-1000 vibratome, from hypocotyls 

embedded in 6% agarose block, slices were collected in water in microscope slides, stained and/or 

imaged. For Phloroglucinol staining, a ready solution (VWR, 26337.180) was applied directly to 

the section. Images were taken with a Zeiss Axio M2 imager microscope. Plastic hypocotyl cross-

sections (5 μm) were obtained as described in (Barbier de Reuille & Ragni, 2017) and stained with 

0.1 % toluidine blue. 

Images acquisition 

A Zeiss Axio M2 imager microscope or a Zeiss Axiophot microscope was used to take images at 

different magnifications of vibratome sections (50–80 μm) as well as 5 μm sections obtained from 

plastic embedded hypocotyls as previously described by (de Reuille and Ragni, 2017) and stained 

with 0.1% toluidine blue solution. 

Image analyses and statistical analyses 

The total hypocotyl cross section area, the xylem area and the fiber area were analyzed using 

ImageJ software as previously described (Sibout et al., 2008b). Statistical analyses were performed 

using IBM SPSS Statistics version 24-25 (IBM). We first tested all datasets for homogeneity of 

variances using Levene's Test of Equality of Variances. For multiple comparison, we calculated 

the significant differences between each dataset using One way ANOVA with Tamhane’s post hoc 

(equal variance not assumed) or a Bonferroni correction (equal variance assumed). For comparing 

two groups we used Welch’s t-test (not homogenous variance) or a Student’s t-test (homogeneous 

variance). The significance threshold was set to p-value < 0.05.   

 

 

http://cbl-gorilla.cs.technion.ac.il/
http://cbl-gorilla.cs.technion.ac.il/
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Supporting Information 

 

                

 

 

Fig. S1 qPCR confirmation of genes differentially expressed in RNAseq and phenotypic 

characherization. 
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 (a,b,c) Q-PCR showing relative expressions, confirming that MC7 (AT1G79310), MYB29 

(AT5G07690), MYB113 (AT1G66370), JAZ7 (AT2G34600) and NST1 (AT2G46770) are 

downregulated (a) whereas SCL3 (AT1G50420) and MYB90 (AT1G66390) are upregulated (b) in 

the hypocotyls of RGA:rgaD-GR transgenic plants upon 3 hours Dexamethasone treatment, 

confirming the RNAseq data but not for NAP (AT1G69490) (c) as it remained unchanged. (d) 

Quantification of the Xylem Total area of 10 day-after-flowering (daf) hypocotyls, showing no 

significant difference between Col-0, erf10, crf1, mc7, jaz7-1 and jaz10-1. Box plots: the dark line 

in the middle of the boxes is the median, the T-bars that extend from the boxes (whiskers) include 

95% of the data. Letters in the boxplots indicate statistical groups, one-way ANOVA (post hoc 

Bonferroni was used) sample size n =15-20). 

 

Fig. S2 Quantification of total and xylem area in arr1, arr2 and arr1 arr2 mutants.  

(a,b) Quantification of the Xylem and Total area in the experiment illustrated by representative 

pictures in (Figure 2a,b). Box plots: the dark line in the middle of the boxes is the median, the T-

bars that extend from the boxes (whiskers) include 95% of the data. Letters in the boxplots indicate 

statistical groups, one-way ANOVA (post hoc Bonferroni was used determine the groups in (a) 
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sample size n =13-20, post hoc Bonferroni for for the total area and Tamhane for the xylem area 

were used to determine the groups in (b) n=11-19). Black bars= 100μm. 

 

Fig. S3 JA promotes phloem fiber formation without altering X/A ratio.  
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(a) Plastic hypocotyl cross-sections stained with 0.1 % toluidine blue of col-0, arf6-2 arf8-3 and 

rga-28 gai-td1 mutants treated with mock or JA at 20 day-after- flowering (daf), showing ectopic 

fiber formation in the phloem of JA treated plants (Red arrows). (b) Quantification of the 

Xylem/Total area in the experiment illustrated by representative pictures in (a). (c)Quantification 

of the Fiber/Xylem area in the experiment illustrated by representative pictures in (a). (b,c) Box 

plots: the dark line in the middle of the boxes is the median, the T-bars that extend from the boxes 

(whiskers) include 95% of the data. Student’s or Welch t-test (red asterisk: P < 0.05, sample size 

n>10). Black bars= 100μm. (Preliminary data= Experiment done only ones) 

 

 

Table S1 Primers used for genotyping. 

arr1 F geno GAAGAACAAACATGGATTCGATATAGTA 

arr1 R geno CCGTCATAAACGAGTTGTTAAGATTG 

ARR2-4 geno RP TTGCTGATGTTCTTGTTGTGC 

ARR2-4 geno LP TCTGTTGAATTGCATCAGCAG   

jaz10-1 LP CTTCTCGAGAAAACGTTGCAG 

jaz10-1 RP TCACATGAGAAATCAGAATCCG 

Jaz7-1 LP GGTACACCGCGGATTAAAATC 

Jaz7-1 RP ACCCATTTTAGGAGACCGTTG 

myc2-3 LP CTCGAGCTGGTTCTTGATTTG 

myc2-3 RP TGGTTTTTCTTGGTTTCGATG 

ERF10 LPgeno CGCAATAACTTCAGGCAGATC 

ERF10 RPgeno GGTATACATTTTATTGGCGCG   

MC7 LPgeno GGTAAAGTGAACCTGCTGTCG   

MC7 RPgeno AATTGGATTCAAGTCGGAAGG   
 

 

 

 

 

 

 



76 
 

Table S2 Primers used for qPCR. 

EF1a.F  TGGTGACGCTGGTATGGTTA   

EF1a.R  TCCTTCTTGTCCACGCTCTT   

AtGA3ox1 F2 qPCR AAGGTTTCACCATCACTGGC   

AtGA3ox1 R2 q PCR CGGGTAGTGATTTAGCTGGAG   

GA20ox2F qPCR TCCAACGATAATAGTGGCT   

GA20ox2R qPCR TTGGCATGGAGGATAATGA   

SCL3-5RQ ATTATGCGATGTTGCAGG   

SCL3-3RQ ATTACACCCACACCAGAC   

MYB29 F qPCR AGAAAGGAGCATGGACTGCC   

MYB29 R qPCR GCGAGAAGCGTGTAGCATGA   

MYB90 qPCR F AGCCATCTCAATGGTCTGCC   

MYB90 qPCR R GTCGCTTCAGGAACAATCGC   

MYB113 F qPCR GGTCTCAATCGGTGCCGAAA   

MYB113 R qPCR TCCGACCAGGCAATCTACCA   

NAP F qPCR AAACCATGCCCTGTCTCCAT   

NAP R qPCR TTGAACCGCTGTGAATGGCT   

ERF10 F qPCR AGGAAGTGAGTGACAAGGGC   

ERF10 R qPCR TTATGGCAGCGGAGTCGTAG   

MC7  F qPCR CGGAAACAGGGGAAGAGGAT   

MC7  R qPCR CTCGATTTGGCTTCGTCGTG    
JAZ7 F qPCR CGACTTGGAACTTCGCCTTC   

JAZ7 R qPCR GCGTTAGCCTCAAGATGGGT   

NST3 F qPCR TGCATGAGTATCGCCTCGAC   

NST3 R qPCR CCCTTCTCTTCCTCCGTGTC   

NST1 F qPCR GCTCCTCACGGCCAAAAATC   

NST1 R qPCR CTCCGACGGGACTGTTTAGG   
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6 Discussion 
 

Bioactive gibberellins (GAs) control a wide range of processes during plant development, 

including seed germination, leaf expansion, stem and root elongation, flowering time, flower and 

fruit development (Fleet and Sun, 2005). GA signaling is mainly perceived through DELLA 

induced degradation. DELLAs regulate gene expression through various mechanisms, among 

which: Sequestration of DNA-binding transcription factors that induce or repress the target genes, 

interaction with negative regulators thereby relieving the repression of certain genes, DELLA can 

also be present in transcriptional complexes. Additionally, other interactors can modulate the 

ability of DELLAs to interact with DNA-binding transcription factors (Locascio et al., 2013). 

DELLAs can also function as transcriptional coactivator by jointly promoting transcription of 

target genes (Marin-de la Rosa et al., 2015). Most recently, it has been suggested that DELLAs 

may act as co-repressors to suppress gene transcription by interacting with a negative transcription 

factor (Li et al., 2016). As detailed above, DELLA proteins can interact with many TFs belonging 

to diverse families, regulating various transcriptional networks suggesting their role as central 

signaling hubs connecting different signaling cascades. (Claeys et al., 2014, Marin-de la Rosa et 

al., 2014). In addition, other hormones such as auxins, cytokinins or ethylene can modulate the GA 

signaling pathway (Jasinski et al., 2005, Frigerio et al., 2006, Achard et al., 2007), placing it as 

major regulator in plant growth and development (Claeys et al., 2014). 

GA positively regulate secondary growth by promoting wood formation and cambial activity in 

trees (Digby and Wareing, 1966, Eriksson et al., 2000b). Secondary growth involves the vascular 

cambium, a meristematic tissue that produces xylem inwards and phloem outwards (Murmanis, 

1970, Elo et al., 2009). In Arabidopsis, secondary growth can be divided into two major phases 

based on morphology studies and growth rates of vascular tissues. The shift from the first phase to 

the second phase of secondary growth or xylem expansion phase is predominantly mediated 

through GA signaling. Upon flowering, secondary growth in the hypocotyl is accompanied by a 

major transcriptional reprograming following GA mediated DELLA degradation. The xylem is 

produced in a higher proportion whereas the phloem proliferation is attenuated leading to higher 

xylem occupancy (xylem/total area). Xylem fiber also differentiate in the hypocotyl during the 

xylem expansion phase following DELLA signaling, this is illustrated by GA treatment and 

mutants in which GA signaling is constitutively on. Conversely, the induction of dominant DELLA 

(insensitive to GA mediated degradation) resulted in a dramatic decrease in hypocotyl xylem 
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expansion and total lack of fiber (Ragni et al., 2011) (this study). Secondary growth parameters 

such as the overall hypocotyl total area and the xylem occupancy also depend on the ecotype, for 

example xylem occupancy is much higher in Ler comparing to Col-0 or Kz accessions (Ragni et 

al., 2011). 

In this study, we aimed at getting more insights on the role of DELLA dependent GA signaling 

during secondary growth. We demonstrated that among the five DELLA gene members, secondary 

growth is mostly affected by RGA and GAI with a higher impact for RGA. Despite the huge 

difference in secondary growth that exist between col and Ler, with Ler having a higher X/A ratio 

comparing to Col  (Ragni et al., 2011). The role of RGA and GAI in secondary growth seems to be 

conserved across ecotypes, as the double inactivation of RGA and GAI confer the same increase 

in xylem occupancy in Col and Ler ecotypes. Interestingly, the difference between Col and Ler in 

secondary growth is not due to ERECTA gene inactivation in Ler background  (Ikematsu et al., 

2017) (This study). ERECTA doesn’t seem neither to act in a GA dependent manner as suggested 

by the fact that rga gai and the rga gai er were undistinguishable in Col background.  

In order to understand the molecular mechanisms of DELLA action and its specificity during 

secondary growth, we aimed at finding DELLA interacting factors accompanying the shift to the 

xylem expansion phase. To this end, we first characterized published DELLA interacting partners 

that are known to be expressed in the hypocotyl and involved in hypocotyl growth regulation, such 

as ARF6, ARF7 and ARF8 (Oh et al., 2014). Consistently, we showed that expression of ARF6, 

ARF7 and ARF8 in the hypocotyl during secondary growth overlaps with that of RGA and GAI. 

We also discovered a novel role for ARF6, ARF7 and ARF8 as xylem expansion promoting factors.  

The identified ARF’s seem to act redundantly on regulating xylem expansion and fiber formation, 

in fact arf7 mutants are characterized by decreased overall secondary growth, whereas arf6 and 

arf8 single mutants showed a slight but significant reduction in X/A ratio. These ARF’s are more 

luckily promoting xylem expansion after flowering as we first showed that the double mutant arf6 

arf8 is identical to the WT before the shift to the xylem expansion phase, also arf6 arf8 keeps a 

low xylem/total area ratio after flowering coupled by absence of fiber in the xylem. In fact, 

knocking out ARF6 and ARF8, prevents the shift to the xylem expansion phase, as a result, 

hypocotyls of arf6 arf8 develop a bigger total area (starting from 5 days after flowering) due to 

continued phloem proliferation, which usually decrease in favor of xylem expansion in the WT. 

Another interesting feature is that the double mutant arf6 arf8 has twice the number of phloem 

poles than wild-type counterparts at 10 days after flowering. It is possible that ARF6 and ARF8 
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regulate the vascular cambium activity and program it to produce less phloem, as it has been 

reported that other ARFs are capable of regulating the vascular cambium activity (Brackmann et 

al., 2018). In addition to the aberrant phloem production, the phloem tissue of arf6 arf8 hypocotyls 

is characterized by ectopic cell division in the phloem poles. Interestingly the sites of ectopic cell 

division can differentiate fiber at very late stages after flowering (40 daf in our conditions). This 

could be explained by the fact that arf6 arf8 accumulate more bioactive JA compared to the WT. 

As it has been shown that ARF6 and ARF8 genes positively regulate the expression of the auxin 

responsive genes GH3.3, GH3.5 and GH3.6 which increases JA conjugation, consequently 

reducing free JA levels (Gutierrez et al., 2012). Consistently, the positive role of JA in promoting 

the differentiation of phloem fiber has been most recently revealed in Hemp (Behr et al., 2018) but 

also in Arabidopsis (This study). The transcriptome profile of arf6 arf8 explains its phenotype, in 

fact several key factors regulating xylem differentiation such as NST1, NST3, SND2, SND3, 

MYB46 and MYB83 as well as the same GH3 genes conjugating JA were down-regulated. 

To better understand the nature of interaction between DELLA and ARFs during secondary growth, 

we checked if enhancing GA response in arf6 arf8 background has any effect after flowering where 

supposedly the plant shifts to xylem expansion. To this end, we checked the effect of total 

inactivation of DELLA in arf6 arf8 background. Either by GA treatment upon flowering or by 

mutating RGA and/or GAI in arf6 arf8 mutant background. In both cases, the plants seem to be less 

responsive to GA by slightly expanding the xylem and differentiating fiber. Which is not the case 

for the WT, that exhibited full response to GA enhancement. Both GA treated WT plants and the 

double mutants rga gai are characterized by tremendous xylem expansion and fiber differentiation 

after flowering. The fact that arf6 arf8 is partially responding to GA imply the presence of other 

downstream secondary growth activators that may be released in the total absence of DELLA. 

ARF7 is another ARF activator that is phylogenetically closer to ARF6 and ARF8 than ARF5/MP, 

it is also known to interact with DELLA (Oh et al., 2014). To check if ARF7 is another GA 

downstream activator of secondary growth we first investigated the triple mutant arf6 nph4/arf7 

ar8 which showed and even lower X/A ratio comparing to arf6 arf8, but also luck of fiber 

differentiation and ectopic phloem cell division. We then investigated the GA responsiveness of 

the triple mutant arf6 arf7 arf8, comparing to arf6 arf8 and the WT by treating the plants with GA 

for 20 days upon flowering. As we expected, the triple mutant was even less responsive to GA 

treatment in terms of xylem expansion and fiber differentiation comparing to the double. 
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Given the previous findings, one possible explanation of arf6 arf8 phenotype (absence of fiber and 

reduced xylem occupancy) is that from flowering on, ARF7 and probably other positive 

regulator(s) of xylem expansion and fiber accumulation are sequestered by the remaining un-

degraded DELLA proteins in the hypocotyl of the double mutant arf6 arf8. 

As discussed above, our results suggest the existence of downstream activator(s) other than ARF6 

ARF7 and ARF8 since the triple arf6 arf7 arf8 is still capable to confer a very mild response to 

GA. We explored BP/KNAT1 as it acts as xylem expansion and fiber differentiation activator 

downstream of the GA signaling pathway, as illustrated by the decrease in xylem expansion and 

absence of fiber in bp mutant hypocotyls at 21 dag upon GA treatment (Ikematsu et al., 2017).  

We then wondered if enhancing GA response in bp mutant render it capable to differentiate xylem 

fiber in the hypocotyls at very late stages after flowering. To this end, we generated the triple 

mutant rga gai bp in Col-0 background. At senescence, the hypocotyls of rga gai bp showed mild 

fiber differentiation, which is not the case for bp. Our results suggest that fiber differentiation is 

not exclusively mediated through BP, We generated the triple mutant arf6 arf8 bp, as we wanted 

to investigate the effect of mutating three major xylem expansion and fiber formation activators.  

The phenotype of the triple arf6 arf8 bp is characterized by absolute cambium defect resulting in a 

dramatically tiny plant with a hypocotyl total area 1/tenth of the WT after flowering. We also 

demonstrated that BP expression does not change in arf6 arf8 hypocotyls after flowering. 

Additionally, expression levels of the key regulators of secondary walls or fiber formation in 

woody tissues of Arabidopsis thaliana, NST1 and NST3, are decreased both in bp and arf6 arf8 

mutants explaining absence of fiber in their hypocotyls until very late developmental stages. Taking 

into account the previous findings, we suppose that ARF6, ARF8 and BP are capable to jointly co-

regulate cambium activity.  

In the other hand, we analyzed the transcriptome data related to RGA upon flowering as we 

demonstrated that RGA has a greater impact comparing to other DELLAs, RNA sequencing 

revealed many genes with significantly altered expression patterns. Notably, Cytokinin related 

genes were up-regulated, Jasmonate related genes were downregulated and GA biosynthesis genes 

such as GA3ox and GA20ox were up-regulated as a response to trigger the degradation of the 

induced dominant RGA.  

Among the Cytokinin signaling related genes, CRF1 which belong to CYTOKININ RESPONSE 

FACTOR (CRF) gene family involved in regulating meristem size (Raines et al., 2016), is known 

to negatively regulate Arabidopsis rosette size. By analyzing crf1 mutant plants no difference with 
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the WT was detected in secondary growth. Redundancy among members of the CRF gene family 

(Raines et al., 2016) can explain the crf1 result. This led us to investigate the upstream regulators 

of CRF gene family which are type-B ARRs (Rashotte et al., 2006). ARR1 and ARR2 caught our 

interest as they are known to physically interact with DELLA and jointly promote transcription of 

a wide set of target genes (Marin-de la Rosa et al., 2015), but also because they belong to the type 

B-ARRs sub-family 1 mediating most of Cytokinin responses (Hill et al., 2013).  

Our results suggest a novel role for ARR1 as positive regulator of overall hypocotyl secondary 

growth as shown by reduced total area of arr1 mutants, we also identified a positive role for ARR2 

in promoting phloem proliferation. Overall, ARR1 and ARR2 seem to act redundantly as positive 

regulators of phloem proliferation and negatively regulate fiber differentiation. 

Our RNA sequencing data highlighted another crosstalk between GA and JA, among the Jasmonate 

related signaling genes JAZ7 and JAZ10 were remarkably downregulated. This is not consistent 

with the fact that JAZ10 and to a lesser extent JAZ7 have negative effects on secondary growth in 

the Arabidopsis stem (Sehr et al., 2010). As DELLA has been reported to interact with JAZ (Hou 

et al., 2010), a possible speculation is that upon DELLA dominant induction, JAZ proteins are 

somehow stabilized leading to downregulation of their own expression as a feedback loop.  

Unlike the stem, JAZ7 and JAZ10 do not seem to affect secondary growth in the hypocotyl as 

suggested by our results, jaz7-1 as well as jaz10-1 are indistinguishable from the WT at 10 daf. 

This can be explained by spatial specificity among JAZ proteins (Chini et al., 2007, Browse, 2009). 

We then wondered about the effect of impairing JA perception on hypocotyl secondary growth by 

analyzing coi1-1 and myc2-3 mutants. Our results indicated that both COI1 and MYC2 have 

positive roles in phloem proliferation in the hypocotyl thus positively regulating overall secondary 

growth, consistently with the positive role attributed to COI1 and MYC2 in controlling secondary 

growth in Arabidopsis stem (Sehr et al., 2010).  

To complete the picture, we investigated the effect of constitutive JA response by applying JA for 

20 days upon flowering on WT, arf6 arf8 and rga gai mutants. Our preliminary results suggest a 

specific role for Jasmonate on secondary growth, since it only promotes xylem fiber and phloem 

fiber formation and does not alter the X/A ratio or the total area of the treated plants. The ectopic 

formation of fiber in the phloem tissue resulting from JA application has been previously observed 

in other species such as conifers (Hudgins et al., 2004) and cannabis  (Behr et al., 2018), suggesting 

that this role is preserved among plant species. The specific role of JA in Arabidopsis phloem fiber 
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formation is probably mediated through JAZ protein degradation. Therefore, it is worth to check 

the phenotype of JAZ single and multiple mutants to reveal which JAZ(s) are responsible for the 

fiber phenotype in the hypocotyl. 

DELLA protein was reported to regulate JA signaling via competitive binding to JAZ(s) enabling 

MYC2 to regulate its target set of genes (Hou et al., 2010). Conversely, DELLA regulate expression 

of Sesquiterpene Synthase genes through interacting with MYC2 (Hong et al., 2012). Our results 

suggest a scenario in which DELLA and JAZ proteins interact before flowering resulting in fiber 

formation repression. However, what are the JAZ(s) interactors? Whether DELLA interacts with 

MYC2 to activate phloem proliferation before flowering in the hypocotyl is yet to be determined.  

To conclude, we propose a model that could explain the shift to xylem expansion phase during 

secondary growth (Figure 2).  

Before flowering, DELLA proteins sequester ARF6, ARF7, ARF8 and probably other xylem 

expansion activators such as BP. Additionally, DELLA might interact with ARR1 and ARR2 to 

maintain phloem proliferation and repress fiber formation. This can explain the secondary growth 

phenotype before flowering as DELLA accumulates in the hypocotyl due to low concentration of 

bio-active GA. After flowering, ARF6, ARF7, ARF8 and probably other xylem expansion 

activators such as BP are released from DELLA repression in the hypocotyl triggering xylem 

expansion and fiber differentiation. whereas ARR1 and ARR2 are unable to interact with DELLA 

due to higher bio-active GA concentrations leading to DELLA degradation (Talon et al., 1991). 

Particularly in the hypocotyl where GA can move through the plant from the shoot apex to the 

hypocotyl upon flowering to locally trigger DELLA degradation (Ragni et al., 2011).  
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Fig. 2 Proposed model on GA mediated secondary growth control and crosstalk with Auxin, 

Cytokinin and Jasmonate. Hypothesized links are illustrated with dashed lines. Red arrows 

represent protein-protein interactions. The lines and arrows illustrate interactions. Compare text for 

details. 
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Abstract

Secondary growth occurs in dicotyledons and gymnosperms, and results in an increased girth of plant organs. It 
is driven primarily by the vascular cambium, which produces thousands of cells throughout the life of several plant 
species. For instance, even in the small herbaceous model plant Arabidopsis, manual quantification of this mas-
sive process is impractical. Here, we provide a comprehensive overview of current methods used to measure radial 
growth. We discuss the issues and problematics related to its quantification. We highlight recent advances and tools 
developed for automated cellular phenotyping and its future applications.

Key words: Arabidopsis, automated cellular phenotyping, machine learning, quantitative histology, secondary growth.

Introduction

Secondary growth, the radial thickening of plant organs, is 
a large-scale process: thousands of cells are produced by the 
vascular cambium throughout the life of most woody dicot-
yledonous plants and gymnosperms (Spicer and Groover, 
2010; Ragni and Hardtke, 2014; Zhang et al., 2014). It occurs 
in the root, hypocotyl and stem of the herbaceous model spe-
cies Arabidopsis thaliana (Arabidopsis). However, even in this 
relatively small model plant, soon after secondary growth 
begins, cell abundance is too large to perform manual quanti-
fications effectively (Sankar et al., 2014).

Vascular anatomical disposition differs throughout the 
plant kingdom, depending on the species, the organ consid-
ered, and even the developmental stage. For instance, during 
secondary growth in Arabidopsis, the root and hypocotyl 
rearrange their vasculature from a diarch symmetry (with 
two opposite initial phloem and xylem poles) to a fully radial 
symmetry (with a ring of cambial cells that produces inward 
daughter cells, which will differentiate into xylem and out-
ward daughter cells that will develop into phloem) (Esau, 

1977; Dolan and Roberts, 1995; Chaffey et al., 2002; Ragni 
and Hardtke, 2014). In contrast, in the stem, secondary 
growth arises with the formation of the fascicular cambia in 
the 7–8 collateral bundles and later with the formation of an 
interfascicular cambium, which connects the bundles (Esau, 
1977; Altamura et al., 2001; Ragni and Hardtke, 2014).

Another lateral meristem that contributes to the increase 
in girth of plant organs is the cork cambium or phellogen. 
It produces the phelloderm on the inner side and the cork or 
phellem tissues on the outer side. In many plant species, cork 
cells develop into suberized dead cells at maturity. Together 
with the phellogen, the phelloderm and phellem form the 
periderm (Esau, 1977). The periderm replaces the epidermis 
in stems, branches, and roots of most dicotyledons, and gym-
nosperms once the latter can no longer accommodate radial 
growth. The periderm acts as a protective barrier against 
biotic and abiotic stress (Pereira, 2011). Furthermore, the 
parenchymatic components of the phelloderm fulfill a func-
tion in storing starch (Esau, 1977).

© The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. 
For permissions, please email: journals.permissions@oup.com

Journal of Experimental Botany, Vol. 68, No. 1 pp. 89–95, 2017
doi:10.1093/jxb/erw450 Advance Access publication 12 December 2016

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article-abstract/68/1/89/2670568 by U

niversitaetsbibliothek user on 22 O
ctober 2018

mailto:laura.ragni@zmbp.uni-tuebingen.de?subject=


The periderm can be studied in the root and hypocotyl 
of  Arabidopsis (Dolan and Roberts, 1995; Chaffey et  al., 
2002). Working with the Arabidopsis hypocotyl offers sev-
eral advantages because radial growth progression can be 
easily followed over time (as elongation and secondary 
growth are uncoupled) and the disposition of  the vascu-
lature is reminiscent of  trees. Together these features make 
the Arabidopsis hypocotyl a good model to study sec-
ondary growth (Chaffey et  al., 2002; Ragni and Hardtke, 
2014). Briefly, hypocotyl secondary growth can be divided 
into two phases based on cell morphology and prolifera-
tion rate: an early phase in which xylem mainly comprises 
water-conducting cells and parenchyma, and a later phase 
of  so-called xylem expansion in which xylem occupancy 
is increased and fibers differentiate (Chaffey et  al., 2002; 
Sibout et al., 2008).

Many factors controlling vascular secondary growth have 
been identified (see the following reviews for more detail: 
Furuta et  al., 2014; Zhang et  al., 2014; Jouannet et  al., 
2015; De Rybel et al., 2016). However, not all the players are 
known, and the spatio-temporal regulation of radial growth 
is far from being understood. In this review, we will provide 
an overview of the issues posed by secondary growth quanti-
fication. Moreover, we will present approaches and tools that 
have the potential to advance the field.

Current approaches for the quantification 
of secondary growth

In tree species, overall secondary growth is traditionally quan-
tified as stem diameter at reference internode positions, while 
more accurate analyses are achieved by measuring tissue 
widths, number of cells per tissue files, distances between tis-
sues (i.e. distance from the outer bark to the pith), or a com-
bination of these measurements (such as the ratio between 
the width of the wood and the stem radius) (Nieminen et al., 
2008; Etchells et  al., 2015; Miguel et  al., 2016). Similarly, 
in the model plant Arabidopsis, overall secondary growth 
is quantified as diameter or the area of the different organs 
(the stem, the root, and the hypocotyl) (Altamura et al., 2001; 
Chaffey et al., 2002).

More specific parameters can be used to quantify 
Arabidopsis stem radial growth as the number of cells per 
vascular bundle, the tangential over radial ratio of vascu-
lar bundles, the lateral extension of the tissue produced by 
the interfascicular cambium, and the acropetal progression 
of interfascicular cambium initiation along the stem (Sehr 
et al., 2010; Agusti et al., 2011a, b; Etchells et al., 2012, 2013) 
(Fig.  1A). For the Arabidopsis hypocotyl and root, valid 
alternatives to diameter length are the xylem over total area 
ratio (xylem occupancy) (Fig. 1B) or the xylem over phloem 
area ratio (Sibout et al., 2008). More insights on xylem com-
position can be obtained by macerating woody samples 
to estimate the relative number of different cell types and 
their characteristics, such as shape and size (Franklin, 1945; 
Chaffey et al., 2002; Muñiz et al., 2008; Ragni et al., 2011) 
or by measuring the so-called ‘xylem 1’ (vessels and paren-
chyma) and ‘xylem 2’ (fibers and vessels) (Fig. 1C) (Chaffey 
et al., 2002; Liebsch et al., 2014).

Challenges of secondary growth 
quantification

Many of the previously mentioned approaches only coarsely 
describe radial growth and do not capture its complexity at the 
morphological and temporal level. For instance, a reduction 
of hypocotyl area does not always reflect an overall reduction 
in cell proliferation. It could be due to small changes in cell 
sizes that cannot be easily detected by eye, or by an increased/
decreased proliferation rate in one specific tissue. Along the 
same lines, both the presence of larger xylem vessels and 
more cell divisions could account for higher xylem occupancy 
in the hypocotyl radial section (Sankar et al., 2014; Lehmann 
and Hardtke, 2016). To be able to account for these growth 
patterns, it is necessary to track and quantify growth at a cel-
lular level (Sankar et al., 2014).

However, manual quantification of secondary growth 
morphodynamics is impractical even in the tiny Arabidopsis 
plant, as there are >15 000 cell files in a mature hypocotyl. 
Moreover, the quantification of vascular morphodynamics is 
hampered not only by the scale of the process but also by 
the inaccessibility of certain tissues due to their deep location 

Fig. 1. Examples of secondary growth quantification. Cross-sections of plastic-embedded Arabidopsis: (A) Col-0 stem, 0.5 cm from the base of a 
9-week-old plant; (B) Col-0 hypocotyl at 12 d after flowering. X/A, ratio between the xylem area and the total area; ICD, interfascicular cambium-derived 
tissue; * vascular bundle. (C) Vibratome section of Arabidopsis hypocotyl (Col-0, 15 d after flowering) stained with phluoroglucinol (in red) showing how 
‘xylem 1’ (X1) and ‘xylem 2’ (X2) are measured. Scale bar=200 μm.
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such as the xylem. Consequently, live imaging is challenging, 
and the majority of the measurements are achieved on cross-
sections of embedded fixed samples. Thus, temporal resolu-
tion is also limited by sample preparation.

A further aspect to consider is that severe defects in radial 
growth often coincide with decreased plant viability. This ren-
ders the isolation of such plants challenging and the interpre-
tation of those results even more difficult, as it is arduous to 
distinguish the direct contribution to secondary growth from 
pleiotropic effects. Thus, many studies rely on weak alleles 
or partially redundant contexts, in which plant fitness is not 
affected and phenotypes are mild. Therefore, quantification 
of secondary growth will benefit from novel tools for auto-
mated cellular phenotyping (Sankar et  al., 2014; Lehmann 
and Hardtke, 2016).

Finally, it is important to emphasize that secondary growth 
studies in Arabidopsis should be normalized to the develop-
mental stage rather than to absolute age, as flowering greatly 
influences secondary growth progression. For instance, it trig-
gers xylem expansion and fiber formation in the root and in 
the hypocotyl (Sibout et al., 2008; Ragni et al., 2011; Ragni 
and Hardtke, 2014).

Quantitative histology

In the last few years, the increasing volume of genotyp-
ing data, generated using low-cost sequencing technology, 
has shifted attention from more efficient genotyping to 
more automated and precise phenotyping. However, while 
high-throughput plant phenotyping is well developed for 
laboratory and field experiments in model and crop plants, 
automated cellular phenotyping is still a novel field and it 
has only recently been applied to secondary growth (Sankar 
et al., 2014; Hall et al., 2016; Lehmann and Hardtke, 2016). 
Sankar et al. (2014) define ‘quantitative histology’ as an auto-
mated identification/quantification of cell types and cellular 
morphological descriptors in a tissue.

Several pipelines, such as RootScan, RootAnalyzer, PHIV-
RootCell, and the method of Montengro-Johnson and col-
leagues exist for the characterization and quantification of 
primary root growth (Burton et al., 2012; Chopin et al., 2015; 
Lartaud et al., 2015; Montenegro-Johnson et al., 2015). These 
tools were developed to classify rice, wheat, and Arabidopsis 
roots, respectively. To ensure a high quality classification, 
these methods exploit a priori knowledge of root architecture 
(Burton et al., 2012; Chopin et al., 2015; Lartaud et al., 2015; 
Montenegro-Johnson et al., 2015). This renders their usage 

very specific and not easy to adapt to other species or organs. 
More recently, two methods for automating cell extraction, 
quantitative shape analysis and cell type classification (in any 
2D tissue of interest), were developed independently (Sankar 
et al., 2014; Hall et al., 2016). Relying on generic machine 
learning (ML) methods, these protocols can be generalized 
and applied to tissues other than those used in the respective 
studies. For this reason, these methods can really form the 
basis of the so-called ‘quantitative histology’.

In more detail, both approaches rely on similar methodol-
ogy, splitting the task into four steps: (i) image acquisition; 
(ii) image pre-processing; (iii) image segmentation and fea-
ture extraction; and (iv) cell type classification (Sankar et al., 
2014; Hall et al., 2016) (Table 1; Fig. 2).

Image acquisition is one of the most critical steps, and its 
importance has often been underestimated. The quality and 
the nature of the pictures acquired greatly influence the ease 
with which the other steps in the pipeline can be performed 
(i.e. images that are suited for segmentation required less 
pre-processing). A related point is the standardization of the 
image acquisition process among experiments; parameters 
will not change if  the images are acquired in the same way and 
in the same conditions, allowing large-scale samples. Due to 
the fact that live imaging of thick organs, such as the hypoco-
tyl during secondary growth, is still impossible with conven-
tional microscopy, both methods rely on grayscale images 
of cross-sections of fixed samples. Thus, an additional step 
of sample preparation is required. The approach of Sankar 
et al. (2014) uses high-resolution images of plastic-embedded 
sections of fixed material, acquired using the tiling/stitching 
function of a microscope with a motorized stage (Fig. 2A). 
In contrast, Hall and colleagues use laser scanning confocal 
images of vibratome sections in which cell borders were out-
lined by fluorescent staining of the cell wall (Hall et al., 2016). 
Both strategies have advantages and disadvantages. Sample 
preparation for the first approach is easier at young develop-
mental stages, and image resolution is higher, whereas the seg-
mentation/pre-processing processes are slightly more difficult 
compared with confocal images (confocal images have less 
background and shadows). Moreover, only the procedure of 
Hall and colleagues allows the measurement of an additional 
fluorescent signal. A minor limitation of both protocols and 
still a general issue of secondary growth quantification is that 
radial growth is normally measured in cross-sections, and 
thus only in 2D (Lehmann and Hardtke, 2016).

After acquisition, the pre-processing transforms the images 
to improve the segmentation. This step is tightly linked to the 

Table 1. Key steps of ‘quantitative histology’ methods for secondary growth

Step Description Sankar et al. (2014)  Hall et al. (2016)

0 Sample preparation Microtome sections Plastic-embedded tissue Vibratome sections Calcofluor white staining
1 Image acquisition Light microscopy Stitching/tiling Laser confocal microscopy
2 Image pre-processing Gamma contrast Gaussian blur Gaussian blur
3 Segmentation and features extraction Watershed algorithm Morphometric features Watershed algorithm Morphometric features Fluorescence signal 

intensity
4 Cell type classification Machine learning (SVM) Machine learning (random Forest)
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imaging method and to the segmentation algorithm used. 
Both methods apply a series of filters to remove or reduce 
noise and reinforce the contrast. For instance, Sankar et al. 
(2014) use a Gaussian blur to filter out high-frequency noise, 
followed by a gamma adjustment to improve the general con-
trast of the image, while Hall et al. (2016) use only a blur for 
denoizing.

The segmentation is the process in which objects (in our 
case cells) are identified and extracted from the background 
and from each other. More precisely, a label is assigned to 
every pixel of the image, and pixels with the same label share 
certain characteristics (i.e. belong to the same cell). The two 
approaches rely on a common algorithm for the segmenta-
tion of grayscale images: the watershed algorithm (Fig. 2B) 
(Vincent and Soille, 1991; Yoo et al., 2002; Barbier de Reuille 
et al., 2005, 2015; Pound et al., 2012). Briefly, the watershed 
algorithm is based on the geographical concept of the water-
shed and catchment basin. In geography, a catchment basin is 
a region of a map in which water flows into the same lake or 
basin, while the watersheds are the limits at which water would 
enter different catchment basins. An image can be seen as a 
topographical surface where high pixel intensity corresponds 
to ‘high’ regions and low pixel intensity refers to ‘low’ regions; 
thus we can apply the same geographical definitions to this 
virtual map. For instance, if  the cell wall is brighter than the 

cell content, we can identify cells as catchment basins for the 
segmentation process (Fig. 2B) (Vincent and Soille, 1991).

The accuracy of the segmentation is critical, as mis-seg-
mented cells are likely to be wrongly classified. After the 
segmentation, cellular features/descriptors such as cell area, 
cell perimeter, position of the cell, and cell eccentricity are 
computed for every cell. The computation of the features 
is achieved using conceptually similar toolboxes (Pau et al., 
2010) (http://www.diplib.org/main). Moreover, the incline 
angle—the angle formed by the major axis of the cell with the 
radius of the sample—is calculated in both protocols (Sankar 
et al., 2014; Hall et al., 2016). In addition, Hall et al. (2016) 
measured cell lumen area, and the cell wall area.

Cell type classification is achieved through an ML approach 
(Fig. 2C). The basic principle of ML is to teach computers to: (i) 
analyze existing data effectively; (ii) extract underlying similarity/
differences; and (iii) generate a classifier/pattern to apply to new 
data (Bastanlar and Ozuysal, 2014; Ma et al., 2014; Libbrecht 
and Noble, 2015; Angermueller et al., 2016; Singh et al., 2016). 
The first step is the creation of a training set, a set of images that 
is used to learn the model, in which the cell types of interest are 
manually labeled. The second step is the choice of the features 
that better describe each class of cells. Then, different algorithms 
for supervised classification can be used to create the classifier. 
Sankar and colleagues used a Support Vectors Machine (SVM) 

Fig. 2. Example of the ‘quantitative histology’ approach. In (A–C) the same Arabidopsis hypocotyl section (Col-0 21 d after germination) is presented. 
(A) Row image, red box magnification showing details of the xylem, blue box magnification showing details of phloem. (B) Image after pre-processing 
and segmentation with a watershed algorithm; each color basin represents one cell. (C) Labeled image using a machine learning (ML) approach. Every 
color represents a cell type: yellow, xylem vessels (Xv); cyan, cambium (Cb); magenta, phloem elements (Phe); green, xylem parenchyma (Xp); blue, 
phloem parenchyma (Php); brown, periderm (Pe). (D) Rose diagram of the incline angles of the xylem vessels measured in (C). For instance, a value of 0 
represents radial/anticlinal orientation, and a value of π/2 represents orthoradial/periclinal orientation. (E) Rose diagram of the incline angles of the cambial 
cells measured in (C). (F) Average of some features [eccentricity (Ec), area, perimeter (Per)] and cell numbers (n Cell) for each cell type measured in (C). 
Scale bar=100 μm.
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algorithm, whereas Hall and colleagues reported to have better 
performances using a random Forest algorithm (please refer to 
the followingreviews for a comprehensive overview on ML algo-
rithms: Bastanlar and Ozuysal, 2014; Ma et al., 2014; Libbrecht 
and Noble, 2015; Angermueller et al., 2016; Singh et al., 2016). 
Then, the classifier performances are tested against the so-called 
test set, a fraction of the training set, until they are satisfactory 
(several rounds of optimization may be necessary). Finally, the 
classifier is used to label cells (identify the different cell types) on 
a running set (a set of segmented images that was not manually 
labeled) (Fig. 2C). Sankar and colleagues also proposed an auto-
mated filter to correct mislabeled cells. Indeed, they reported 
that at later developmental stages, in some cases xylem identity 
was assigned to phloem parenchymatic cells. In such cases an 
automated quality check, based on manually created masks of 
the total area and of the xylem area, was implemented and used 
(Sankar et al., 2014).

In summary, the final output of the two approaches regard-
ing identification of the cell type is rather comparable as both 
methods allow the quantification of similar features and cell 
types with accuracy >85% (Fig. 2F). However, the choice of 
the method should be dictated by the research focus/inter-
ests. For instance, we recommend the method of Hall and 
colleagues to study problems related to cell wall integrity, 
whereas we suggest the method of Sankar et al. for temporal 
analyses (developmental series with several time points).

Current and futures applications of 
‘quantitative histology’

A proof of concept of ‘quantitative histology’ approaches is 
the detailed characterization of two Arabidopsis accessions 
that display differences in secondary growth progression: Ler 
and Col-0 (Ragni et  al., 2011). The characterization of the 
morphodynamics between Ler and Col-0 revealed that overall 
secondary growth is more prominent in Col-0, whereas xylem 
occupancy is higher in Ler. This is not primarily due to cell size, 
although xylem cells in Ler are slightly bigger, but rather due to 
a decrease in phloem proliferation in Ler (Sankar et al., 2014). 
Another remarkable observation is that the spatio-temporal 
dynamics of the incline angles reflect the different phases of 
secondary growth of the Arabidopsis hypocotyl. For instance, 
at young stages (15 d), the inclines are uniformly distributed. 
At ~20 d, xylem cells are radial and cambial cells orthoradial, 
and the overall distribution starts to be bi-modal (Fig. 2D, E) 
(Sankar et al., 2014). In addition, this type of analysis pointed 
out some unexpected findings such as that the cambium pro-
duces more overall phloem than xylem, even though xylem 
occupancy is increasing during plant development, and that the 
enhanced xylem occupancy in Ler is not due to an increase of 
xylem cell numbers but mainly due to a decrease in phloem area.

Hall et al. (2016) validated their approach characterizing 
knotted1-like 1 (knat1)/brevipedicellus (bp) loss-of-function 
mutants. The knat1 mutant is suitable for a test as it exhibits 
reduced fiber cell number, combined with a decrease in xylem 
vessel area and altered cell wall deposition (Liebsch et  al., 
2014). In addition, they quantified xylan abundance across 

different cell types, coupling the intensity of a fluorescent 
signal (immunostaining of the xylan) with the cell type clas-
sification and the morphometric data. Other components of 
the cell walls (such as cellulose, lignin, and callose), which can 
be visualized by immunolabeling techniques, could be easily 
measured together with the cell morphological descriptors, 
paving the way for the analyses of the chemical composition 
of the cell wall with spatial resolution (Hall et al., 2016).

Another future application is to combine the automated 
cellular phenotyping with genome-wide association studies 
(GWAS). Strikingly, natural variation is still a largely untapped 
resource for the study of secondary growth. However, a 
large degree of variability in radial growth-related traits was 
observed in the hypocotyl of a small collection of Arabidopsis 
accessions, confirming the potential of this approach (Sibout 
et al., 2008; Ragni et al., 2011). Another aspect of secondary 
growth that can be further explored with more accurate pheno-
typing techniques is how secondary growth is modulated dur-
ing changes of environmental conditioned and abiotic stresses.

So far, Sankar et  al. (2014) and Hall et  al. (2016) have 
tested their approaches only in the Arabidopsis hypoco-
tyls. However, we expect to see the ‘quantitative histology’ 
approaches exploited in other plant species (tomato, pop-
lar, etc.), as they are quite versatile and easy to adapt. For 
instance, we foresee minor tuning of  the segmentation and 
machine learning parameters for the application to other 
organisms (as long as the images can be easily segmented). 
In addition, Hall et  al. (2016) provide their method as a 
MATLAB package, with a graphical interface, and thus it 
does not require any coding by the user. Along the same 
lines, the ‘quantitative histology’ approach by Sankar 
et  al. (2014) was recently implemented in the open source 
platform LithoGraphX [www.lithographx.org; a fork of 
MorphoGraphX (Barbier de Reuille et al., 2015)] to render it 
accessible to biologists. Other advantages of  the implementa-
tion on this platform are: (i) the reduced computational time 
for the segmentation process; (ii) the possibility to use several 
types of  images as input (laser confocal images, grayscale 
images, and color images) and several pre-processing tools; 
and (iii) the choice between the two ML algorithms (Barbier 
de Reuille and Ragni, 2017). Moreover, in LithoGraphX 
it is possible to perform the Hall et  al. approach or other 
protocols, as LithoGraphX was initially developed for the 
analyses of  confocal images and offers a variety of  tools for 
measuring fluorescent signal intensity.

A possible future implementation is to add tissue-specific fea-
tures to improve cell type classification of problematic tissues. 
For instance, phloem companion cells and sieve elements are 
difficult to distinguish from one another (Sankar et al., 2014). 
In fact the morphology of these cell types is nearly identical, 
which hampers the ML recognition process. Adding tissue-spe-
cific features such as the number of neighboring cells, cell wall 
thickness, or a particular stain should resolve this problem.

Conclusions and perspectives

In summary, it is fair to conclude that secondary growth char-
acterization will benefit from precise quantification at the 
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cellular level. ‘Quantitative histology’ paves the way towards 
the study of secondary growth with good spatio-temporal 
resolution: it facilitates the measurement of complex traits 
and mild phenotypes. We foresee that automated cellular phe-
notyping will boost natural variation studies and will soon be 
applied to other species.

To date, the rate-limiting step of ‘quantitative histology’ 
methods is sample preparation/image acquisition. This is 
especially true for secondary growth studies where sam-
ple preparation is laborious and not yet automatized. Any 
improvements in this direction will contribute to render 
the ‘quantitative histology’ approaches routine protocols. 
A major breakthrough will be to image live secondary growth 
progression. This will open the door to the study of second-
ary growth in 3D and 4D.
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Summary

� During secondary growth in most eudicots and gymnosperms, the periderm replaces the

epidermis as the frontier tissue protecting the vasculature from biotic and abiotic stresses.

Despite its importance, the mechanisms underlying periderm establishment and formation are

largely unknown.
� The herbaceous Arabidopsis thaliana undergoes secondary growth, including periderm for-

mation in the root and hypocotyl. Thus, we focused on these two organs to establish a frame-

work to study periderm development in a model organism.
� We identified a set of characteristic developmental stages describing periderm growth from

the first cell division in the pericycle to the shedding of the cortex and epidermis. We highlight

that two independent mechanisms are involved in the loosening of the outer tissues as the

endodermis undergoes programmed cell death, whereas the epidermis and the cortex are

abscised. Moreover, the phellem of Arabidopsis, as in trees, is suberized, lignified and peels

off. In addition, putative regulators from oak and potato are also expressed in the Arabidopsis

periderm.
� Collectively, the periderm of Arabidopsis shares many characteristics/features of woody

and tuberous periderms, rendering Arabidopsis thaliana an attractive model for cork biology.

Introduction

Secondary growth, the increase in girth of plant organs, is not
only a prerequisite for efficient long-distance transport of water,
solutes and photo-assimilates but also shapes the plant body in
response to an ever-changing environment. In fact, the emer-
gence of radial thickening contributed to the striking success of
vascular plants during evolution (Spicer & Groover, 2010).
Moreover, wood represents the major source of biomass accumu-
lation in perennial dicotyledons and gymnosperms (Demura &
Ye, 2010). The post-embryonic meristem that drives this process
is the vascular cambium. The vascular cambium consists of a ring
of undifferentiated meristematic cells that upon division differen-
tiate into xylem (wood) and phloem (bast). Another lateral meris-
tem that contributes to radial thickening and to the protection of
the vascular cylinder is the phellogen, also known as cork cam-
bium. The phellogen divides in a strictly bidirectional manner,
producing inward the phelloderm and outward the phellem
(cork). These three tissues, phellogen, phelloderm and phellem,
are collectively referred to as periderm (Fig. 1a).

The periderm is a frontier tissue and its main function is to
protect the plant against biotic and abiotic stress, similar to the
epidermis during primary development. In particular, it effec-
tively restricts: gas exchange, water loss and pathogen attack
(Lulai & Freeman, 2001; Groh et al., 2002; Lendzian, 2006).

Most woody eudicots and gymnosperms form a periderm in the
root and the stem, and likewise, underground stems such as potato
tubers form an extensive periderm. In the stem of most trees, the
first phellogen is formed in the sub-epidermal layer, but in certain
species it arises from the epidermis or the phloem. By contrast, in
most roots the periderm derives from the pericycle (Esau, 1977).
The number of cell layers comprising the periderm varies among
species. Usually only one to two layers of phelloderm cell are pre-
sent in the periderm, whereas several cell layers of phellem differ-
entiate (Esau, 1977; Pereira, 2007). In trees, the phellogen can
remain active for several years and/or it can be replaced each year
by a new phellogen (Esau, 1977; Pereira, 2007). The phellogen of
cork oak, for example, is functional for many years and remains
viable throughout the life of a tree, although its activity decreases
with age (Waisel, 1995; Pereira, 2007). Furthermore, phellogen
activity in trees undergoes seasonal changes and it fluctuates with
climatic variations (Waisel, 1995; Caritat et al., 2000; Pereira,
2007). For instance, cold spells and drought cause a decrease in
phellogen activity, whereas periods of warm weather result in high
activity (Waisel, 1995; Caritat et al., 2000; Pereira, 2007). A
‘wound’ periderm develops close to damaged or necrotic tissue
after mechanical injury (e.g. shedding of branches and leaves)
(Tucker, 1975; Thomson et al., 1995; Oven et al., 1999;
Neubauer et al., 2012; Khanal et al., 2013) or pathogen infection
(Lulai & Corsini, 1998; Thangavel et al., 2016).
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To fulfill its barrier role, specialized macromolecules such as
suberin are the major components of the phellem cell wall
(Pereira, 1988). The chemical and physical properties of phellem
have been extensively studied in potato and cork oak, due to the
economic importance of improving potato conservation
(Neubauer et al., 2013) and of phellem as a material for wine bot-
tle corks and building/insulating. Suberin extracted from the
phellem also has industrial applications (Silva et al., 2005) such
as the production of hybrid co-polymers (e.g. polyurethanes)
(Cordeiro et al., 1999), thermoset resins (Torron et al., 2014)
and high-resistance fibers (de Geus et al., 2010). Suberin is a
complex glycerol-based heteropolymer, comprising aliphatic and
phenolic fractions and often noncovalently associated waxes (re-
viewed by Vishwanath et al., 2015). The amount/composition of
phellem suberin and waxes varies among species and throughout
development; for example, in cork oak it can reach up to 40% of
the dry weight (Pereira, 1988; Pinto et al., 2009; Kosma et al.,
2015). Lignin is also deposited in the cell wall of the phellem,
but it displays a different monolignol composition compared to

wood (Marques & Pereira, 2013; Fagerstedt et al., 2015;
Lourenco et al., 2016).

Potato has proven to be a good model to study suberin biosyn-
thesis and periderm water permeability, as periderm can be easily
isolated from the tuber in sufficient amounts for chemical analy-
ses. Furthermore, it is possible to measure peridermal transpira-
tion rates (Schreiber et al., 2005). In fact, reverse genetic studies
indicate that a reduction of ferulic acid in the potato periderm
results in an increased water permeability and defective periderm
maturation (Serra et al., 2010). Reducing aliphatic suberin con-
tents results in similar phenotypes, suggesting that both suberin
composition and quantity are important for water barrier func-
tion (Serra et al., 2009a,b, 2010). Suberin biosynthesis genes have
been extensively characterized also in Arabidopsis, with particular
regard to the chemical composition of the whole root, the endo-
dermis and the seed coat (Beisson et al., 2007; Hofer et al., 2008;
Compagnon et al., 2009; Molina et al., 2009; Domergue et al.,
2010; Kosma et al., 2012). Furthermore, it has been shown that
ALIPHATIC SUBERIN FERULOYL TRANSFERASE (ASFT )
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Fig. 1 The six stages of periderm
development in the Arabidopsis thaliana
hypocotyl. (a) Illustration of the periderm,
which comprises the phellem/cork, the
phellogen/cork cambium and the
phelloderm. (b–i) Plastic cross-sections of
Col-0 hypocotyls, grown in soil under long
day (LD) conditions at different time points:
(b) 4 d after sowing (das), (c) 8 das, (d)
11 das, (e) 13 das, (f) 16 das, (g) 18 das,
(h) 21 das and (i) 27 das. (b) STAGE 0, the
stage before the pericycle starts to divide.
(c) STAGE 1, the pericycle divides anticlinally
and endodermal cells become flatter.
(d) vSTAGE 2 is characterized by four to six
endodermal cells and by periclinal division in
the pericycle, which we refer to as phellogen.
(e) STAGE 3: only two endodermal cells in
correspondence of the xylem poles subsist.
(f) STAGE 4A is characterized by a lack of
endodermis and by the differentiation of the
first phellem cells. (g) STAGE 4b lacks the
inner cortex and exhibits a ring of phellem
cells. (h) During STAGE 5, the cortex and the
epidermis break and become detached
(white arrow). (i) At STAGE6 the periderm is
the outside tissue that protects the
vasculature. (j) Quantification of cell number
in the epidermis (Ep), outer cortex (Oc), inner
cortex (Ic), endodermis (En) and pericycle/
periderm (Pe) at different time points (mean
cell number� 2 SE). Blue squares,
endodermal cells; red dots, pericycle/
periderm; black dots, phellem cells; red
brackets, periderm. Bars, 20 lm.
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and FATTY ACYL-COA REDUCTASES 1 (FAR1), FAR4 and
FAR5 are expressed in the phellem of roots (Molina et al., 2009;
Vishwanath et al., 2013). However, the suberin lamella in the
periderm is not disturbed in asft mutants (Molina et al., 2009)

Despite the huge progress in understanding the molecular
mechanisms underlying cambium and vascular development,
very few regulators controlling phellogen establishment and activ-
ity have been identified. As far as we know, only the transcription
factor (TF) SHORT-ROOT-like 2B (PttSHRL2B) has been
shown to regulate phellogen activity in poplar (Miguel et al.,
2016), whereas it has been suggested that the TF QsMYB1
(ortholog of Arabidopsis MYB84) coordinates phellogen action
in response to drought and heat (Almeida et al., 2013a,b). One
possible explanation for this lack of knowledge is that periderm
has been mainly studied in nonmodel/amenable species. In con-
trast to periderm development, our current understanding of the
basic mechanisms of cambium activity in woody species is mainly
derived from pioneering works in Arabidopsis. In fact, this herba-
ceous eudicot model plant undergoes secondary growth in the
stem, root and hypocotyl and shares common regulatory
networks with woody species (reviewed by Barra-Jimenez &
Ragni, 2017). The most striking example is the regulatory
module involving the receptor-like kinases PHLOEM
INTERCALATED WITH XYLEM/TDIF RECEPTOR (PXY/
TDR), the small peptide CLV3/EMBRYO SURROUNDING
REGION 41/44 (CLE41/CLE44) and the TF WUSCHEL
HOMEOBOX 4 (WOX4), which controls cambium prolifera-
tion in several species including poplar (Etchells et al., 2015;
Hirakawa & Bowman, 2015; Kucukoglu et al., 2017).

Here, we propose a framework to study periderm growth in
Arabidopsis thaliana. We provide a suite of tools to study perid-
erm development, including tissue-specific reporters. In particu-
lar, we define distinct stages of periderm growth, considering
periderm ontogenesis and the fate of the surrounding tissues. We
thus show that periderm growth is tightly connected to the devel-
opment of the outside tissues and particularly to endodermal pro-
grammed cell death (PCD). Finally, we highlight that the
Arabidopsis periderm displays characteristics similar to those of a
woody eudicot periderm, and that putative regulators are con-
served among species. These results are setting the stage for mech-
anistic insights into periderm growth.

Materials and Methods

Plant material and growth

All lines used are in A. thaliana Col-0 background unless other-
wise specified. All plants used for confocal microscopy were
grown in vitro on ½ MS 1% sugar plates under continuous
light, unless it is otherwise specified. For the other experiments,
light and growing conditions are stated in the text/figure.
GPAT5:mCITRINE-SYP122 (Barberon et al., 2016), UBQ10:
eYFP-NPSN12 (W131Y) (Geldner et al., 2009), ASFT:NLS-
GFP-GUS, GPAT5:NLS-GFP-GUS, KCR1:NLS-GFP-GUS,
RALPH(CYP86B1):NLS-GFP-GUS, FAR4:NLS-GFP-GUS,
HORST:NLS-GFP-GUS, DAISY:NLS-GFP-GUS (Naseer et al.,

2012) and CASP1:CASP1-mCherry (Vermeer et al., 2014) were
gifts from N. Geldner (University of Lausanne, Switzerland).
ESB1:ESB1-mCherry was kindly provided by D. Salt
(University of Aberdeen, UK) and is described by Hosmani
et al. (2013). FAR1:GUS, FAR5:GUS were described by
Domergue et al. (2010) and kindly provided by F. Domergue
(CNRS, FR). PASPA3:H2A-GFP, Rxml:H2A-GFP, SCPL48:
H2A-GFP, DPM4:H2A-GFP, EXI1:H2A-GFP were gifts from
M. Nowack (VIB, Belgium) and are described by Fendrych
et al. (2014; Olvera-Carrillo et al., 2015). The soc1 ful1 mutants
were described by Melzer et al. (2008). SCR:H2B-2xmCherry
(N2106153) was obtained from the NASC and is described by
Marques-Bueno et al. (2016). The CASP2:NLS-GFP-GUS was
obtained by the NASC (N69050) and described by Liberman
et al. (2015).

Histology and staining

Thin plastic sections were obtained as described by Barbier de
Reuille & Ragni (2017) and stained with 0.1% toluidine blue
and imaged with a Zeiss Axio M2 imager microscope or a
Zeiss Axiophot microscope. Vibratome sections (50–80 lm)
were obtained, embedding the hypocotyl and/or the root in
6% agarose block, and then cut with a Leica VT-1000
vibratome and collected/visualized in water. For suberin stain-
ing, Fluorol yellow 088 (FY) (sc-215052; Santa Cruz, CA,
USA) staining was performed as described by Naseer et al.
(2012). For lignin staining, 0.5% Basic Fuchsin (Sigma) aque-
ous solution was applied to the root or hypocotyl for 5 min,
and samples were then rinsed and mounted in 10% glycerol.
Phloroglucinol staining was performed applying a ready solu-
tion (26337.180; VWR, Radnor, PA, USA) directly to the
vibratome section. For pectin staining, ruthenium red (R2751;
Sigma), 0.01% aqueous solution was applied to fresh
vibratome sections for 4 min, and sections were then rinsed
and mounted in 10% glycerol. Clearing, before autofluores-
cence detection of the casparian strips, was performed as
described by Naseer et al. (2012). GUS assays were performed
as described by Beisson et al. (2007).

Confocal microscopy

All confocal images where acquired as whole-mounts unless spec-
ified in the figure legend that vibratome sections were used.
Images were acquired with a Leica SP8 with resonant scan or
with a Zeiss LSM880 microscope. For FY, green fluorescent pro-
tein (GFP) and fluorescein diacetate (FDA): excitation wave-
length (ex.) 488 nm; emission (em.) 490–510 nm for yellow
fluorescent protein (YFP) and mCitrine: ex. 514 nm; em. 520–
540 nm; for propidium iodide (PI), mCherry and Basic Fuchsin:
ex. 561 nm; em. 570–630 nm; for phellem autofluorescence: ex.
405 nm; em. 420–500 nm or ex. 405 nm; em. 420–460 nm if
combined with GFP or YFP; for phelloderm autofluorescence:
ex. 561 nm; em. 576–625 nm. Three-dimensional reconstruc-
tions and Ortho Views of a Z-stack were obtained using the ZEN

BLACK PRO software.
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Image analyses and statistical analyses

The number of cells in the different tissues was quantified using
the plug-in CELL COUNTER of FIJI (Schindelin et al., 2012), and
cell eccentricity was measured using LITHOGRAPHX (www.lithogra
phx.org) and according to the protocol described by Barbier de
Reuille & Ragni (2017). To measure the length of root covered by
phellem, whole roots were mounted in water on a microscope
slide. Using light microscopy, the point closest to the root tip,
where phellem cells begin to be the outside tissue, was marked on
the coverslip. The whole root was then traced on the coverslip and
the coverslips were subsequently scanned. Phellem length and root
length were then measured with the software FIJI (Schindelin
et al., 2012). The ratio of phellem length : root length was calcu-
lated from at least 15 roots per time point and plant line. To quan-
tify phellem and endodermis cell length and area, Z-stacks of the
reporter line GPAT5:mCITRINE-SYP122 were used. Images were
exported with the Ortho View function from the ZEN BLACK PRO

software and measured with FIJI (Schindelin et al., 2012). More
than 50 cells from at least three independent roots were measured
per time point and/or root part. At least three independent experi-
ments were performed and the graphs of one representative experi-
ment each are presented. Statistical analyses were performed using
IBM SPSS Statistics version 24. We first tested all datasets for
homogeneity of variances using Levene’s Test of Equality of Vari-
ances. We calculated the significant differences between two
datasets using a Welch’s t-test (not homogenous variance) or a
Student’s t-test (homogeneous variance). The significance thresh-
old was set to P < 0.05 (shown by a red asterisk in the figures).

Molecular cloning

The MYB84 and the ANAC78 promoters were amplified from
genomic DNA with the primers: A-pMYB84F (AACAGGTCT
CAACCTCGTGGACTTGGACTTGTTTA) Br-pMYB84R
(AACAGGTCTCATGTTACTTGTACTCCTAGTGAAGTC
TTG) and A-pANAC78F (AACAGGTCTCAACCTGATCAT
TTCAAAGGCATTGTGT) Br-pANAC78R (AACAGGTCTC
ATGTTCAATCGGTGAAAACCAGAACTTG), respectively,
and cloned into pGG-A0 using the GreenGate technology (Lam-
propoulos et al., 2013). The b-glucuronidase coding sequence
was recloned into pGG-D0. To obtain the lines MYB84:NLS-
GFP-GUS, MYB84:NLS-3xGFP and ANAC78:NLS-GFP-GUS,
the final GreenGate reaction was performed including some of
the published and publicly available modules: NLS, 3XGFP and
GFP (Lampropoulos et al., 2013).

Results

Periderm is formed in the root and in the hypocotyl of
Arabidopsis thaliana under various environmental condi-
tions

To set up a framework to study periderm development, we first
investigated in which organs/conditions a periderm is established
in Arabidopsis. In Arabidopsis plants that had undergone

extensive secondary growth, the hypocotyl was fully covered by
the phellem (Supporting Information Fig. S1a), whereas in
mature primary root, the periderm covered the uppermost part
spanning c. 20–30% of the root length (Fig. S1b,c). Likewise, a
periderm surrounded the oldest part of lateral roots (Fig. S1d).
Although most gymnosperms and eudicots produce a periderm
in the stem, no periderm has been reported in the Arabidopsis
stem (Altamura et al., 2001; Agusti et al., 2011; Mazur & Kur-
czynska, 2012). Consistently, a periderm was not observed at the
base of the stem of 12-wk-old plants of commonly used Ara-
bidopsis strains such as Col-0, Ler and Ws (Fig. S1e–h). No peri-
derm was detected in the stem of the 24-wk-old soc1 ful1 double
mutant (grown under long day (LD) conditions), which is char-
acterized by extended secondary growth and life span (Fig. S1j–l)
(Melzer et al., 2008; Davin et al., 2016). Because the periderm is
not present in the Arabidopsis stem, we continued periderm char-
acterization focusing on the root and hypocotyl.

We analyzed whether periderm development is influenced by
photoperiods or growing conditions in the Arabidopsis root and
hypocotyl. Plants grown in vitro (on medium supplemented with
(Fig. S2a) or without (Fig. S2b) sugar) in soil (Fig. S2c,d) and
under several light conditions (continuous light (CL) (Fig. S2a,b,e),
LD (Fig. S2c,f) or short day (SD) conditions (Fig. S2d)) pro-
duced a periderm. In general, periderm development reflected
plant growth progression: for instance, a periderm was estab-
lished earlier in plants grown in CL than in LD conditions and
in media supplemented with sugar than in media without sugar
(Fig. S2). In Arabidopsis, flowering has a major influence on sec-
ondary growth progression, as it triggers the ‘xylem expansion’
phase (xylary fiber production and higher xylem-to-phloem ratio)
(Sibout et al., 2008). Therefore, we analyzed the temporal rela-
tionship between xylem expansion and periderm growth. Under
all tested conditions, the periderm was differentiated before flow-
ering occurred and thus establishment of the periderm precedes
xylem expansion (Fig. S2g).

Periderm formation follows a predetermined pattern, which
can be summarized by six distinct stages

Periderm development in the hypocotyl and in the root was tem-
porally separated, formation occurring much more slowly in the
hypocotyl than in the root (Figs 1, S1b,c). As a result, in an 8-d-
old plant, the hypocotyl displayed no phellem (Fig. 1c), whereas
in the mature part of the primary root (close to the hypocotyl–
root junction) some phellem cells were present (Fig. S1b,c).
Moreover, as a root represents a gradient of secondary growth,
periderm development can be followed along the same root
(Fig. 2a), whereas in the hypocotyl it can be analyzed only over
time series with plants in different developmental stages (Fig. 1).
In both organs the periderm arises from the pericycle – an inner
tissue – surrounded by three to four cell layers and it becomes the
external tissue once it is fully differentiated. We therefore charac-
terized periderm growth throughout development, considering
the fate of the surrounding tissues.

We were able to identify six characteristic stages of periderm
development in the hypocotyl and we found that the duration of
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each stage was influenced by the growing conditions (Fig. S3a–h).
STAGE 0 was designated as the stage before the first division in
the pericycle (after hypocotyl elongation occurred). Here, the vas-
culature was already arranged with a central metaxylem and two
phloem poles. The pericycle comprised c. 13–14 cells and it was
surrounded by eight endodermal, approximately eight inner cor-
tex, c. 14 outer cortex and c. 33–34 epidermis cells. In the
hypocotyl, this stage was present for instance in 3- to 6-d-old
plants grown in LD conditions (Fig. 1b,j). In the course of
STAGE 1, the pericycle starts to divide (Fig. 1c,j). The first anti-
clinal divisions occurred at the xylem pole pericycle cells
(Fig. S3i). Shortly thereafter, the divisions expanded to the rest of

the pericycle cells. Simultaneously, the endodermal cells became
flatter, as shown by a decrease in their eccentricity (Figs 1c, S3j).
We defined STAGE 2 as the stage marked by a reduction in the
number of endodermal cells (the endodermis comprises four to
six cells) as well as by pericycle proliferation (Fig. 1d,j). In more
detail, the endodermal cells located at the sites of the phloem
poles were missing. The pericycle began to divide periclinally and
thus, in some regions, it was possible to distinguish two layers of
cells, which hereafter we refer to as phellogen. We classified a
periderm to be in STAGE 3 when only one/two endodermal cells
located at the xylem poles were still present and the periderm
comprised at least two layers of cells. Interestingly, the number of
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Fig. 2 Periderm development in the Arabidopsis thaliana root. (a) Illustration of an Arabidopsis root showing the positions corresponding to the different
stages. (b–g) Cross-sections of 14-d-old roots (plastic embedding) at different positions of the root corresponding to STAGES 0–6. (b) STAGE 0: the stage
before the pericycle starts to divide. (c) STAGE 1: the pericycle divides anticlinally. (d) STAGE 2 is characterized by a reduction in endodermal cells and
pericycle proliferation. (e) STAGE 3/4: the cortex and the epidermis break and the periderm is the outmost tissue, whereas some endodermal cells are still
present on the opposite side. (f) STAGE 5: the endodermis is no longer present and a ring of phellem cells is visible. (g) STAGE 6: the periderm is the outside
tissue. Ep, epidermis; Co, cortex; blue squares, endodermal cells; red dots, pericycle/phellogen cells; black dots, phellem cells; red brackets, periderm. The
yellow arrow indicates the absence of an endodermal cell, the red arrow points toward the remaining endodermal cells and the white arrow shows the
emerging phellem. (h) Quantification of the cell number in different tissues (epidermis, cortex, endodermis and pericycle) at different periderm stages
(0–2). Cross-sections of plants from independent experiments were measured (n = 33 STAGE 0; n = 52 STAGE 1; and n = 31 STAGE 2; error bars are � 2
SE). (i, j) Ortho View of Z-stacks of SCR:NLS-2xmCherry W131Y roots at the positions corresponding to (i) STAGE 2 and (j) STAGE 3/4. For each stage, the
same cross-section is shown, with the corresponding longitudinal section on endodermal cells (left) and periderm cells (right). (k, l) Ortho View of Z-stacks
ofMYB84:NLS-GFP-GUSW131Y roots at the positions corresponding to (k) STAGE 3/4 and (l) STAGE 5. Bars, 20 lm.
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cortical cells and of epidermal cells did not vary (Fig. 1e,j).
STAGE 4 was characterized by the absence of the endodermis
and the differentiation of first phellem cells from the phellogen.
This stage can be divided in two sub-stages: in STAGE 4A, the
inner cortex started to disappear from the phloem poles (in the
majority of cases; Fig. S3k) and only a few phellem cells are dif-
ferentiated (Fig. 1f), whereas in STAGE 4B, the inner cortex is
missing and a ring of phellem cells starts to be visible (phellem
cells are larger and rounder than phellogen cells) (Fig. 1g). At
STAGE 5, the epidermis and the outer cortex broke on one side
and progressively became detached from the periderm (Fig. 1h).
Breaking of the cortex and of the epidermis occurred at random
positions (Fig. S3l). Finally, STAGE 6 corresponded to a mature
periderm in which the epidermis and the cortex were completely
detached, and the periderm was the outer tissue protecting the
vasculature (Fig. 1i). In a mature periderm we were able to distin-
guish four to five cell layers comprising the phellem, the phel-
logen and the phelloderm.

In roots, periderm development mainly followed the same
stages defined for the hypocotyl, although we observed some dif-
ferences possibly due to the distinct anatomy of the two organs
(root at STAGE 0: one cell layer of cortex, hypocotyl at STAGE
0: two cell layers). In fact, the epidermis and the cortex broke and
were shed earlier in development of the root. The exact position
of each stage within the root and the length of the root corre-
sponding to each stage vary with the age of the plant and the
growing conditions (Figs S1b,c, S2e,f).

In roots, STAGE 0 occurred in the region with emerged and
elongated lateral roots directly above the lateral root initiation
zone (Fig. 2a,b). Similar to the hypocotyl, the vasculature of this
region was already arranged with a central xylem axis and two
phloem poles. In this part of the root, the pericycle was sur-
rounded by the endodermis (approximately eight cells), the cor-
tex (12–14 cells) and the epidermis (c. 23 cells) (Fig. 2b,h). In the
region above STAGE 0, the pericycle began to divide at the
xylem poles (STAGE 1) (Figs 2c, S3m). STAGE 2 is character-
ized by the loss of one to two endodermal cells at the phloem
poles (in most cases) (Figs 2d, S4n) and by the first periclinal
division in the pericycle, which from now can be termed phel-
logen (Fig. 2d).

In contrast to the hypocotyl, in the root we defined only one
large stage, STAGE 3/4, as the events defining stage 3 and 4 can-
not be precisely distinguished and often occur coincidentally and
stochastically. During STAGE 3/4, the pericycle divided pericli-
nally, while the number of endodermal cells decreased. The cor-
tex and the epidermis broke primarily at the site where the
endodermal cells disappeared and, at this location, phellem cells
began to be visible (Fig. 2e). At STAGE 5, the periderm was fully
differentiated and the phellem was the main external tissue, still
partially covered with patches of epidermis and cortex (Fig. 2f).
Finally, at STAGE 6 the epidermis and the cortex were com-
pletely shed and the periderm comprised three to four cell layers
(Fig. 2g). Overall, periderm formation in lateral roots occurs sim-
ilarly to the main root (Figs S1d, S4a–c).

To corroborate the histological analyses we visualized the most
distinctive stages by live imaging. We followed endodermis fate

using the marker SCR:H2B-2xmCherry (Di Laurenzio et al.,
1996; Marques-Bueno et al., 2016) and tracked periderm growth
in MYB84:NLS-3xGFP roots (MYB84 is the Arabidopsis
ortholog of QSMYB1). Given that PI does not normally pene-
trate the endodermis, both reporters were crossed to the ubiqui-
tously expressed plasma membrane marker line W131Y (UBQ10:
eYFP-NPSN12) to outline the different cell types (Geldner et al.,
2009; Alassimone et al., 2010). We clearly observed areas of the
root where the SCR expression domain was interrupted by cells
with periderm morphology (Fig. 2i,j) and regions where the peri-
derm marker MYB84 was flanked by endodermal cells (Fig. 2k),
validating our histological analyses. Consistently, in the upper
part of the root we could no longer identify endodermal cells
(Fig. 2l).

Based solely on morphology and size, phelloderm cells can be
difficult to differentiate from phloem parenchyma cells. To
address this issue, several staining methods that label phelloderm
cells in other species were tested in Arabidopsis. Classical tolu-
idine blue staining, which has been useful in helping to distin-
guish the three periderm tissues in potato (Sabba & Lulai, 2005),
stained uniformly the periderm of Arabidopsis (Fig. S4d). How-
ever, a thicker cell wall between two cell layers was visible and
may represent the boundary between the periderm and the
phloem (Fig. S4e,f). To confirm this, we checked whether we
could observe a different degree of esterification of pectins, which
is used to distinguish the phelloderm in potato (Sabba & Lulai,
2002), at the presumptive boundary line. In root vibratome sec-
tions stained with ruthenium red, a pale red staining was visible
in the cell layer below the phellem, whereas it was stronger at the
presumptive boundary, supporting our hypothesis (Fig. S4g).
These data also fit with the autofluorescence pattern in the red
spectrum (ex. 561 nm, em. 570–630 nm), which in roots from
15-d-old plants grown under continuous light showed a strong
intracellular autofluorescence mainly in the presumptive phello-
derm (Fig. S4h). Together, these results suggested that one layer
of phelloderm cells is formed in Arabidopsis, which can be con-
firmed by the development of tissue-specific markers and/or
clonal analyses in the future.

Cortex and epidermis are abscised while endodermis
undergoes PCD during periderm growth

We showed that the tissues that surround the periderm are pro-
gressively lost following a predefined pattern, so we next investi-
gated the mechanisms underlying this process. In particular, we
investigated whether it involves abscission (shedding of plant
organs or parts that are no longer necessary), PCD or if the cells
simply collapse.

We first studied how the epidermis and the cortex are progres-
sively removed. The breaking of the cortex and epidermis was
not an artifact of the embedding methods as we were able to
observe it during live cell imaging (Fig. 3a–f). Along a mature
root, we observed isolated areas in which the cortex and the epi-
dermis broke and the phellem became the external tissue, fol-
lowed by a zone where the phellem was the outer tissue with
stretches of cortex and epidermis still attached (Fig. 3a,b).
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Moreover, most of the epidermal and cortex cells that still sur-
round the periderm after the first break are still alive, as seen by
PI and FDA staining (Fig. 3g,h). In fact, PI stains the nuclei of
dead cells, whereas FDA becomes fluorescent when cleaved by
esterases inside living cells. These results indicate that the epider-
mis and the cortex are abscised and do not undergo PCD.

We next characterized the course/fate of endodermal cells
during periderm growth and assessed the viability of endoder-
mal cells during root development. It was previously shown
that 20 min of incubation is sufficient for FDA uptake into
the endodermis and stele of the root differentiation zone (Bar-
beron et al., 2016). This was also the case in older root in the
regions where lateral roots are emerged and elongated (Figs 4h,
S4i). At early STAGE 2, PI was detected in a few nuclei of
the endodermis in which FDA was excluded, while the neigh-
boring endodermal cells showed only FDA in the nuclei
(Fig. 4a). To better visualize dying vs alive endodermal cells,
we repeated the PI staining using the endodermis reporter
CASP2:NLS-GFP-GUS (CASPARIAN STRIP DOMAIN
PROTEIN 2) (Roppolo et al., 2011). We observed PI staining
in the nuclei of endodermal cells, which were flanked by endo-
dermal cells expressing the CASP2 reporter, confirming our
previous results (Fig. 4b). Furthermore, we analyzed the expres-
sion of a set of genes whose expression has been associated
with developmental PCD (Fendrych et al., 2014; Olvera-
Carrillo et al., 2015). The PCD markers RIBONUCLEASE 3
(RNS3), EXITUS 1 (EXI1) and DOMAIN OF UNKNOWN
FUNCTION679 MEMBRANE PROTEIN 4 (DMP4) were
broadly expressed in the endodermis from STAGE 1 onwards
(as long as the endodermis is present) in both root and
hypocotyl and only in the inner cortex of the hypocotyl during
STAGE 4 (Figs 4c–e, S4j–l, S5a–f). In summary, these data

indicate that the endodermis and the inner cortex (in the
hypocotyl) undergo PCD.

Next, we investigated whether the endodermis alters its chemi-
cal/physical properties before PCD. The two major features of a
mature endodermis are casparian strips (CSs) and suberin lamel-
lae. We first analyzed the expression of the CS markers ESB1:
ESB1-mCherry (ENHANCED SUBERIN1) and CASP1:CASP1-
mcherry during root development. Both proteins are required for
proper CS assembly and accumulate at the plasma membrane
domain underlying the CS (casparian strip membrane domain
CSD) in the root differentiation zone (Roppolo et al., 2011;
Hosmani et al., 2013). A similar pattern was observed for the
endodermis in the region of the main root where lateral roots
were already emergent and elongated (Figs 4h, S4m,n). Similarly
ESB1 still accumulated at the CSD in mature endodermis (re-
gion of the root that precedes endodermis PCD; Fig. 4h)
(Fig. S4o), whereas CASP1 in the mature endodermis was no
longer localized to the CSD (Fig. S4p), suggesting that CSs are
maintained throughout endodermis development. To confirm
that CSs are not degraded before endodermis PCD, we verified
whether the typical autofluorescence pattern of CSs (Alassimone
et al., 2010) (Fig. 4f) was present in the mature endodermis
(Fig. 4g). No difference in the pattern of autofluorescence of the
CSs was observed, suggesting that CSs are still present when the
endodermis undergoes PCD. The mature endodermis is a highly
suberized tissue, and the amount of suberin is modified accord-
ing to nutrient availability (Barberon et al., 2016) and in
response to hormones. For instance, sulfur and potassium defi-
ciency enhances suberization, whereas iron, magnesium and zinc
starvation promotes suberin degradation and reduces the expres-
sion of suberin biosynthesis genes (Barberon et al., 2016).
Because suberin accumulation in the endodermis is a dynamic
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Fig. 3 The epidermis and cortex of Arabidopsis root and hypocotyl are abscised together. (a–d) 3D reconstructions of a Z-stack GPAT5:NLS-GFP-GUS and
propidium iodide (PI), 13-d-old root. (b) GPAT5:mCITRINE-SYP122 and PI, 13-d-old root. (c) GPAT5:NLS-GFP-GUS and PI, 25-d-old hypocotyl.
(d) GPAT5:mCITRINE-SYP122 and PI, 25-d-old hypocotyl. (e) Cross-section (Ortho View of a Z-stack) of (a). (f) Cross-section (Ortho View of a Z-stack) of
(b). The cortex and the epidermis become detached in some areas of the root and the hypocotyl. Phellem cells (orange arrow), expressing the suberin
biosynthesis gene GPAT5, are the outer tissue in certain regions, whereas the flanking areas remain covered by the epidermis and the cortex (red arrow).
(g) Cross-section (Ortho View of a Z-stack) of a 17-d-old root, W131Y and PI. (h) Cross-section (Ortho View of a Z-stack) of a 17-d-old root stained with
fluorescein diacetate (FDA) and PI. (g, h) Most epidermis and cortex cells are still alive before detachment. Dead cells (white arrow) do not express the
W131Y marker (g) and do not show FDA signal (h, green) but are still stained by PI. Bars: (a–f) 50 lm; (g, h) 20 lm. Ep, epidermis; Co, cortex.
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process, we investigated whether suberin content varies before
endodermis PCD. For this, we analyzed FY staining along the
root, from the region of emergence of the lateral roots to where
the endodermis undergoes PCD. A small decrease in suberin
deposition was observed in the uppermost part of the endodermis
(Fig. 4i,j). Consistently, a decrease in the expression of the
suberin biosynthesis reporter GPAT5:mCITRINE-SYP122 was
detected in the mature endodermis, suggesting that endodermal
PCD is promoted by a reduction of suberin (Fig. 4k,l). We also
observed that endodermal cells are shorter in the more mature
part of the root. A complication here is that suberin biosynthesis
genes are expressed in both cell types, and thus the two cell types

are difficult to distinguish at the endodermis–phellem transition
zone. Therefore, we confirm a reduction in endodermal cell
length before PCD, quantifying cell length in cells expressing
both the endodermal marker SCR:H2B-2xmCherry and the
GPAT5:mCITRINE-SYP122 (Fig. 4m).

The phellem of Arabidopsis thaliana is suberized, lignified
and partially composed of dead cells

One of the essential characteristics of phellem is the high degree
of suberization, and consequently many suberin biosynthesis
genes are expressed in the phellem of cork oak as well as the root
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Fig. 4 The endodermis of Arabidopsis undergoes programmed cell death (PCD). (a) Cross and longitudinal sections (Ortho View of a Z-stack) of a 13-d-old
root stained with fluorescein diacetate (FDA) and propidium iodide (PI) in early STAGE 2. The endodermis is undergoing PCD, as shown by PI staining of
the nuclei (white arrow) and absence of FDA in the endodermis. (b) CASP2:NLS-GFP-GUSW131Y. Cross and longitudinal section (Ortho View of a
Z-stack) of a 13-d-old root stained with PI. (c) RNS3:H2A-GFP W131Y. (d) EXI1:H2A-GFP W131Y. (e) DPM4:H2A-GFPW131Y. (c–e) Developmental
PCD markers are expressed in the endodermis before PCD (red arrows indicate GFP signal in the nuclei of endodermal cells). Cross-sections (Ortho View of
a Z-stack) of 14-d-old roots in STAGE 1. (f, g) Autofluorescence of the casparian strips (CSs) in the region of the endodermis where lateral roots emerge
and become elongated (f; EndoA) and in the region before PCD (g; EndoB). (h) Scheme of an Arabidopsis root showing the positions along the root where
the images where acquired. (i, j) Relative intensity of fluorol yellow (FY) staining in the region of the endodermis where lateral roots emerge and become
elongated (i; EndoA) and in the region before PCD (j; EndoB) of a 14-d-old root, showing a reduction of suberin in the more mature part. (k, l) GPAT5:
mCITRINE-SYP122 SCR:NLS-2xmCherry of 12-d-old roots in the region where lateral roots emerge (k; EndoA) and in the region before PCD (l; EndoB).
(m) Quantification of endodermal cell length of 12-d-old roots. Welch’s t-test (red asterisk: P ≤ 0.001; n = 97–39). Box plot: the dark line in the middle of
the boxes is the median, the bottom and top of the boxes indicate the 25th and 75th percentiles, whiskers (T-bars) are within 1.5 times the interquartile
range, the empty dots are outliers and the black stars are extreme outliers. Bars: (a–g) 20 lm; (h–l) 50 lm.
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and the hypocotyl of Arabidopsis (Molina et al., 2009; Kosma
et al., 2012; Vishwanath et al., 2013) (this work) (Figs 3a–d, S6).
FY staining decorated the outside surface of phellem cells in both
roots (Fig. 5a) and hypocotyls (Fig. S7a,b). However, suberin is
not the only polymer present in the phellem, as lignin impreg-
nates the phellem of trees (Marques & Pereira, 2013; Fagerstedt
et al., 2015; Lourenco et al., 2016).

To investigate whether the phellem of Arabidopsis comprises
lignin, we stained phellem cells with Basic fuchsin and Phloroglu-
cinol. These two stains revealed the presence of lignin in the
phellem and the lignin deposition patterns partially matched the
suberin impregnation (Figs 5b,c, S7c–e,g,i). Phellem cells were
characterized by a strong extracellular autofluorescence in the
blue–green spectrum (ex. 405 nm and em. 425–500 nm) that
coincided with the lignin/suberin deposition pattern (Figs 5d,
S7d,f–i). This particular chemical composition renders the
phellem an impermeable barrier because dyes such as PI were
unable to enter the phellem tissue (Fig. 3e,f). Given that the outer
phellem cell layers die and peel off in woody species, we investi-
gated whether it also occurs in Arabidopsis. Indeed, the develop-
mental PCD marker genes RNS3, EXI1 and DPM4 were also
expressed in phellem cells (Fig. 5e–g). Moreover, the aspartic

protease PASPA3 and SERINE CARBOXY- PEPTIDASE-
LIKE48 (SCPL48) genes were expressed in phellem, as well
(Fig. 5h,i). Phellem cell viability was then analyzed by FDA/PI
staining, and indicated that most phellem cells were alive as
shown by the FDA fluorescence (Fig. 5j). However, we observed
a few cells where FDA was excluded while PI stained the nuclei.
These cells were larger, suggesting that morphological changes
might anticipate phellem cell death (Fig. 5j). Thus, phellem cell
size was investigated in more detail. Although phellem cell length
was fairly homogeneous (Fig. S7j), when we quantified phellem
length in the uppermost region of the root of 12- and 17-d-old
plants, we observed a reduction of phellem cell length with age
(Fig. 6a–c,e). Consistently, we detected a reduction in cell length
when we compared the lower and upper part of the phellem
(Fig. 6a,c,d,f). By contrast, phellem cell area was more heteroge-
neous with most cells having an area of 200–300 lm2 and few
cells with an area larger than 500 lm2 (Fig. S7j). Moreover, the
number of cells with a ‘large’ area increased with periderm devel-
opment (Fig. 6g,h). As both cell length and cell area vary during
phellem maturation, we estimated the volume. Although phellem
cell volume was highly variable (Fig. 6i,j) we observed that cells
with an area of > 500 lm2 were associated with a large volume
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Fig. 5 Chemical composition and morphology of the phellem in the Arabidopsis root. (a) The phellem is suberized as shown by fluorol yellow (FY) staining
of the uppermost part of a 17-d-old root (3D reconstruction of a Z-stack). (b) Vibratome section of the uppermost part of a 20-d-old root stained with
Phloroglucinol (lignin staining). The black arrow indicates lignin staining of phellem cells. (c) The phellem contains lignin as shown by Basic Fuchsin staining
of the uppermost part of a 17-d-old root (3D reconstruction of a Z-stack). (d) Autofluorescence (excitation wavelength (ex.) 405 nm; emission (em.) 420–
500 nm) of phellem cell of the uppermost part of a 17-d-old root (3D reconstruction of a Z-stack). (e–i) Developmental PCD markers are expressed in
phellem cells (red arrows indicate GFP signal in the nuclei of phellem cells). Cross-sections (Ortho View of a Z-stack) of the phellem region of 12-d-old
roots. (e) RNS3:H2A-GFP W131Y. (f) EXI1:H2A-GFP W131Y. (g) DPM4:H2A-GFP W131Y. (h) SCPL48:H2A-GFP W131Y. (i) PASPA3:H2A-GFP W131Y.
(j) Phellem cells die (white arrow) and peel off, as shown by fluorescein diacetate (FDA) and propidium iodide (PI) staining in the uppermost part of a 14-d-
old root (Ortho View of a Z-stack). Yellow arrow indicates a large living phellem cell. Bars: (a, c, d) 50 lm; (b) 100 lm; (e–j) 20 lm.
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and with the most mature part of the phellem, suggesting that an
increase in volume preceded phellem death (Fig. 6i,j).

Conservation of periderm regulators in Arabidopsis
thaliana

The periderm of Arabidopsis seems to share features with the
phellem of trees, but it is not known if this conservation
persists at the molecular level. Very few regulators of periderm
growth have been identified so far, and no specific expression
data for the phellogen and phelloderm exists. Nevertheless, sev-
eral transcriptome datasets noted the importance of some TF
families such as the MYBs and the NACs in phellem (Soler
et al., 2007, 2011; Ginzberg et al., 2009; Rains et al., 2017;
Vulavala et al., 2017). For instance, in cork oak, QsMYB1/
MYB84/RAX3 is expressed in the phellem and expression

responds to drought and heat stress (Almeida et al., 2013b).
Moreover, the expression of these genes is enriched in the
phellem of poplar (Rains et al., 2017).

We analyzed the expression of MYB84/RAX3 and ANAC78
throughout the Arabidopsis periderm. MYB84/RAX3 was
expressed in the whole periderm circumference (Figs 2k,l, 7a,d)
whereas ANAC78 was expressed in the periderm and in the
phloem of the hypocotyl and root (Fig. 7b,e). The suberin/wax
biosynthesis genes GPAT5, KCR1, HORST, DAISY, RALPH and
ASFT, which are expressed in the phellem of oak, potato and
poplar (Soler et al., 2007, 2011; Serra et al., 2009a,b, 2010; Rains
et al., 2017), were expressed in the Arabidopsis phellem in both
root and hypocotyl (Molina et al., 2009) (Figs 7c,f–l, S6a,e).
Thus, it seems that a certain degree of conservation exists between
Arabidopsis and other species.

(d)(b) (c)

(e)

* *

G
PA

T5
:m

C
itr

in
e-

SY
P1

22
12

d 
ph

el
le

m
 u

pp
er

 re
g.

G
PA

T5
:m

C
itr

in
e-

SY
P1

22
17

d 
ph

el
le

m
 u

pp
er

 re
g.

G
PA

T5
:m

C
itr

in
e-

SY
P1

22
17

d 
ph

el
le

m
 lo

w
er

 re
g.

(f) (g)

*

(h) (i) (j)

*

(a)}

Ph
el

le
m

Lower

Upper

hypo.

Fig. 6 Phellem cell morphology in Arabidopsis root. (a) Scheme of a root showing the upper and the lower phellem regions. (b–d) 3D reconstructions of
Z-stacks of GPAT5:mCITRINE-SYP122 roots. GPAT5:mCITRINE-SYP122 is used to visualize phellem cells. Phellem cells at different developmental stages
showing how phellem cell length decreases with age. (b) Upper region of the phellem of a 12-d-old root. (c) Upper region of the phellem of a 17-d-old
root. (d) Lower region of the phellem of a 17-d-old root. (e) Quantification of phellem cell length measured in the upper region of the phellem of 12- and
17-d-old roots, showing that phellem length decreased during development. Welch’s t-test (red asterisk: P ≤ 0.001; n = 69–125). (f) Quantification of
phellem cell length measured in the upper and lower region of the phellem of 17-d-old roots, showing that phellem cell length decreases with age. Welch’s
t-test (red asterisk: P ≤ 0.001; n = 89–125). (g) Quantification of phellem cell area measured in the upper region of the phellem of 12- and 17-d-old roots,
showing that the number of phellem cells of large area increases during development. Student’s t-test (red asterisk: P = 0.012; n = 69–125). (h)
Quantification of the phellem cell area measured in the upper and lower region of the phellem of 17-d-old roots, showing that the number of phellem cells
of large area increases during development. Student’s t-test (red asterisk: P = 0.001; n = 89–125). (e–h) Box plots: the dark line in the middle of the boxes is
the median, the bottom and top of the box indicates the 25th and 75th percentiles, whiskers (T-bars) are within 1.5 times the interquartile range, the empty
dots are outliers and the black stars are extreme outliers. (i, j) Plots of phellem cell volume vs phellem cell area. Bars, 50 lm.
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Discussion

Periderm development in Arabidopsis thaliana root and
hypocotyl

In this study, we set up a means to study periderm biology in
Arabidopsis thaliana, providing a suite of tools and a detailed
characterization of periderm growth in the form of identifiable
stages. It was previously reported that a periderm is established in
the root and in the hypocotyl of Arabidopsis. Consistently, we
show that the stems of the most commonly used Arabidopsis
strains lack a periderm. In addition, enhanced longevity and sec-
ondary growth do not trigger periderm formation in the stem of
soc1 ful1 plants grown in standard growing conditions, indicating
that the epidermis in stems can adapt to a large amount of radial
expansion. However, we cannot rule out that in extreme growing
conditions or in other strains, which push the life span of
Arabidopsis even further, a periderm could be produced in the
stem.

In Arabidopsis hypocotyl and root, periderm growth is not a
minor localized process, as the periderm covers one-third of the

length of a mature primary root, the uppermost part of lateral
roots and the whole hypocotyl of a flowering plant. Periderm
growth occurs under different photoperiods and growing condi-
tions and it mainly follows plant growth progression, in the sense
that it is formed earlier in plants in which growth is accelerated.
This combination of features makes Arabidopsis a robust model
to study the molecular mechanisms of phellogen establishment
and maintenance. In both root and hypocotyl, the periderm
arises from an inner tissue to become an external barrier, which
can be considered to be a complex process. For a better under-
standing of this process, we visualized periderm growth and
defined a set of six stages that cover several intermediate steps
from the onset of pericycle divisions that establish the meristem-
atic phellogen to phellem maturation. These stages will help to
compare periderm growth in different genetic backgrounds,
paving the way for understanding the periderm regulatory
network.

In woody species, phellem cells are characterized by lignin in
addition to a higher content of suberin and undergo a maturation
process that leads to death and peeling off. The presence of
lignin, suberin and associated waxes in the phellem gives the
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Fig. 7 Periderm-associated gene expression
in Arabidopsis. (a–c, g–i) Plastic cross-
sections of GUS staining of 17- to 19-d-old
hypocotyls (STAGE 4). (d–f, j–l) Cross and
longitudinal sections (Ortho View of a Z-
stack) of 12- to 15-d-old roots (STAGE 5/6).
(d, e) TheMYB84 and the ANAC78 reporters
lines were crossed to the W131Y line, to
outline all cells. (f, j–l) Autofluorescence
(excitation wavelength (ex.) 405 nm,
emission (em.) 420–460 nm) is used to
visualize the phellem. (a, d)MYB84 is
specifically expressed in the periderm of the
hypocotyl (a) and the root (d). (b, e)
ANAC78 is expressed in the phellem and the
phloem of the hypocotyl (b) and the root (e).
(c, f) HORST is expressed in the phellem of
the hypocotyl (c) and the root (f). (g, j) KCR1
is expressed in the phellem of the hypocotyl
(g) and the root (j). (h, k) DAISY is expressed
in the phellem of the hypocotyl (h) and the
root (k). (i, l) RALPH is expressed in the
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(d–f, j–l) 50 lm; (a–c, g–i) 100 lm.
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periderm barrier properties. It offers protection against pathogens
(Lulai & Corsini, 1998; Thangavel et al., 2016) and it reduces
water and solute losses (Beisson et al., 2007). For instance, a
somaclonal variant of potato resistant to pathogenic Streptomyces
is characterized by an increased number of phellem cell layers
and suberin deposition (Thangavel et al., 2016).

As in trees, in Arabidopsis, the phellem is highly suberized
and many of the genes coding for suberin biosynthesis enzymes
are expressed in this tissue (Molina et al., 2009; Vishwanath
et al., 2013) (this work) and therefore can be used as reporters
for the phellem. Similarly, we show that Arabidopsis phellem
is also lignified and it undergoes a maturation process that
results in an increase of cell volume and ultimately in cell
death, keeping a constant number of phellem cell layers. In
summary, Arabidopsis can be used in pioneering works to
study phellem biology in response to biotic and abiotic stresses
for breeding programs.

Only a few transcription factors are known to regulate phel-
logen and phellem production in trees. Remarkably they are also
expressed in Arabidopsis, suggesting a conserved gene core that
controls periderm growth. Among them, QsMYB1/MYB84/
RAX3 is upregulated in the phellem of cork oak upon heat and
drought stress (Almeida et al., 2013b) and it also accumulates in
the poplar phellem (Rains et al., 2017). In Arabidopsis, it was
previously reported that MYB84/RAX3 regulates axillary meris-
tem formation together with its closest homologs MYB37/RAX1
andMYB38/RAX2 (Muller et al., 2006) and it may control lateral
root formation (Feng et al., 2004). The specific expression pat-
tern and conservation among species renders MYB84/RAX3 a
good marker to study periderm development and it will be inter-
esting to further study its function in the Arabidopsis root.

PCD shapes periderm growth

Many plant developmental programs, for example xylem vessel
and anther differentiation, involve a step of PCD (Olvera-
Carrillo et al., 2015). Here, we reveal that PCD is a crucial event
during periderm development. As the periderm arises from the
pericycle to become the outer protective barrier, the epidermis,
the cortex and the endodermis have to accommodate periderm
growth and are finally removed. This process follows a predeter-
mined pattern and includes two independent mechanisms: PCD
and abscission.

In the root, the endodermis undergoes PCD, whereas the epi-
dermis and the cortex break and are abscised from the periderm.
Consistently a set of genes, identified as developmental PCD
markers (Olvera-Carrillo et al., 2015), were expressed exclusively
in the endodermis and the phellem (which is also dying) and the
epidermis and cortex were still alive when they become detached
from the periderm. Endodermal PCD is a gradual event as it does
not occur in all endodermal cells at the same time and it is pre-
ceded by a reduction in cell length and suberin deposition.
Remarkably, in the hypocotyl both the endodermis and the inner
cortex undergo PCD sequentially, whereas the outer cortex and
the epidermis are detached. PCD starts in the endodermal cells
located at the phloem poles, it expands to the neighboring

endodermal cells, it then occurs in the endodermal cells at the
xylem poles and finally it reaches the inner cortex. These succes-
sive steps suggest a complex mechanism of regulation and com-
munication between tissues. Mechanical tensions may play a key
role, as suggested by the elliptical shapes of the hypocotyl. In fact,
the phloem poles (where PCD starts) can be considered as the
foci of the ellipse. Future studies directed to the alteration of the
physical/chemical properties of the cell walls of the outer tissues
may highlight the mechanical regulation of this process. More-
over, the cortex in the hypocotyl represents the ideal cell type to
study this communication aspect because the two cell layers of
the same tissue (same cell identity) share different fates: the inner
cortex undergoes PCD while the outer cortex is abscised.

Acknowledgements

L.R. is indebted to the Baden-W€urttemberg Stiftung for financial
support of this research project by the Elite program for Postdocs.
This work was supported by the DFG (grant RA-2590/1-1). We
thank Marja Timmermans for critical reading of the manuscript.

Author contributions

A.W. and L.R. designed the research; A.W., D.R., A.B-J., S.M.,
K.S., M.B.T. and L.R. performed the experiments; A.W., A.B-J.
and L.R. analyzed and discussed the data; L.R. wrote the paper
with the help of A.W. and A.B-J.

ORCID

Azahara Barra-Jimenez X http://orcid.org/0000-0002-4676-
2436
Laura Ragni X http://orcid.org/0000-0002-3651-8966

References

Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. 2011.

Characterization of transcriptome remodeling during cambium formation

identifiesMOL1 and RUL1 as opposing regulators of secondary growth. PLoS
Genetics 7: e1001312.

Alassimone J, Naseer S, Geldner N. 2010. A developmental framework for

endodermal differentiation and polarity. Proceedings of the National Academy of
Sciences, USA 107: 5214–5219.

Almeida T, Menendez E, Capote T, Ribeiro T, Santos C, Goncalves S. 2013a.

Molecular characterization of Quercus suberMYB1, a transcription factor up-

regulated in cork tissues. Journal of Plant Physiology 170: 172–178.
Almeida T, Pinto G, Correia B, Santos C, Goncalves S. 2013b. QsMYB1
expression is modulated in response to heat and drought stresses and during plant

recovery in Quercus suber. Plant Physiology and Biochemistry 73: 274–281.
Altamura MM, Possenti M, Matteucci A, Baima S, Ruberti I, Morelli G. 2001.

Development of the vascular system in the inflorescence stem of Arabidopsis.
New Phytologist 151: 381–389.

Barberon M, Vermeer JE, De Bellis D, Wang P, Naseer S, Andersen TG,

Humbel BM, Nawrath C, Takano J, Salt DE et al. 2016. Adaptation of root
function by nutrient-induced plasticity of endodermal differentiation. Cell 164:
447–459.

Barbier de Reuille P, Ragni L. 2017. Vascular morphodynamics during

secondary growth.Methods in Molecular Biology 1544: 103–125.

� 2018 The Authors

New Phytologist� 2018 New Phytologist Trust
New Phytologist (2018) 219: 216–229

www.newphytologist.com

New
Phytologist Research 227

http://orcid.org/0000-0002-4676-2436
http://orcid.org/0000-0002-4676-2436
http://orcid.org/0000-0002-4676-2436
http://orcid.org/0000-0002-3651-8966
http://orcid.org/0000-0002-3651-8966
http://orcid.org/0000-0002-3651-8966


Barra-Jimenez A, Ragni L. 2017. Secondary development in the stem: when

Arabidopsis and trees are closer than it seems. Current Opinion in Plant Biology
35: 145–151.

Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB. 2007. The

acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and

root of Arabidopsis. Plant Cell 19: 351–368.
Caritat A, Guti�errez E, Molinas M. 2000. Influence of weather on cork-ring

width. Tree Physiology 20: 893–900.
Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L,

Franke R, Pinot F. 2009. CYP86B1 is required for very long chain omega-

hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed

suberin polyester. Plant Physiology 150: 1831–1843.
Cordeiro N, Belgacem MN, Gandini A, Pascoal Neto C. 1999. Urethanes and

polyurethanes from suberin 2: synthesis and characterization. Industrial Crops
and Products 10: 1–10.

Davin N, Edger PP, Hefer CA, Mizrachi E, Schuetz M, Smets E, Myburg AA,

Douglas CJ, Schranz ME, Lens F. 2016. Functional network analysis of genes

differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.
Plant Journal 86: 376–390.

Demura T, Ye Z-H. 2010. Regulation of plant biomass production. Current
Opinion in Plant Biology 13: 298–303.

Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour

G, Hahn MG, Feldmann KA, Benfey PN. 1996. The SCARECROW gene

regulates an asymmetric cell division that is essential for generating the radial

organization of the Arabidopsis root. Cell 86: 423–433.
Domergue F, Vishwanath SJ, Joub�es J, Ono J, Lee JA, Bourdon M, Alhattab R,

Lowe C, Pascal S, Lessire R et al. 2010. Three Arabidopsis fatty acyl-
coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary

fatty alcohols associated with suberin deposition. Plant Physiology 153: 1539–
1554.

Esau K. 1977. Anatomy of seed plants. New York, NY, USA: John Wiley & Sons.

Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR. 2015.Wood

formation in trees is increased by manipulating PXY-regulated cell division.

Current Biology 25: 1050–1055.
Fagerstedt KV, Saranpaa P, Tapanila T, Immanen J, Serra JA, Nieminen K.

2015. Determining the composition of lignins in different tissues of silver

birch. Plants 4: 183–195.
Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans

M, Karimi M, Lippens S, Guerin CJ, Krebs M, Schumacher K et al. 2014.
Programmed cell death controlled by ANAC033/SOMBRERO determines

root cap organ size in Arabidopsis. Current Biology 24: 931–940.
Feng C, Andreasson E, Maslak A, Mock HP, Mattsson O, Mundy J. 2004.

Arabidopsis MYB68 in development and responses to environmental cues.

Plant Science 167: 1099–1107.
Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J.

2009. Rapid, combinatorial analysis of membrane compartments in intact

plants with a multicolor marker set. Plant Journal 59: 169–178.
de Geus M, van der Meulen I, Goderis B, van Hecke K, Dorschu M, van der

Werff H, Koning CE, Heise A. 2010. Performance polymers from renewable

monomers: high molecular weight poly(pentadecalactone) for fiber

applications. Polymer Chemistry 1: 525.
Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong

W, Fogelman E. 2009. Transcriptomic profiling of heat-stress response in

potato periderm. Journal of Experimental Botany 60: 4411–4421.
Groh B, Hubner C, Lendzian KJ. 2002.Water and oxygen permeance of phellems

isolated from trees: the role of waxes and lenticels. Planta 215: 794–801.
Hirakawa Y, Bowman JL. 2015. A role of TDIF peptide signaling in vascular cell

differentiation is conserved among euphyllophytes. Frontiers in Plant Science 6:
1048.

Hofer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R. 2008. The

Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-

hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental
Botany 59: 2347–2360.

Hosmani PS, Kamiya T, Danku J, Naseer S, Geldner N, Guerinot ML, Salt DE.

2013. Dirigent domain-containing protein is part of the machinery required

for formation of the lignin-based Casparian strip in the root. Proceedings of the
National Academy of Sciences, USA 110: 14498–14503.

Khanal BP, Grimm E, Knoche M. 2013. Russeting in apple and pear: a plastic

periderm replaces a stiff cuticle. AoB Plants 5: pls048.
Kosma DK, Molina I, Ohlrogge JB, Pollard M. 2012. Identification of an

Arabidopsis fatty alcohol:caffeoyl-coenzyme A acyltransferase required for the

synthesis of alkyl hydroxycinnamates in root waxes. Plant Physiology 160: 237–
248.

Kosma DK, Rice A, Pollard M. 2015. Analysis of aliphatic waxes associated with

root periderm or exodermis from eleven plant species. Phytochemistry 117:
351–362.

Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017.WUSCHEL-
RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division

activity and secondary growth in Populus trees. New Phytologist 215: 642–657.
Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J.

2013. GreenGate – a novel, versatile, and efficient cloning system for plant

transgenesis. PLoS ONE 8: e83043.

Lendzian KJ. 2006. Survival strategies of plants during secondary growth: barrier

properties of phellems and lenticels towards water, oxygen, and carbon dioxide.

Journal of Experimental Botany 57: 2535–2546.
Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN. 2015.

MYB36 regulates the transition from proliferation to differentiation in the

Arabidopsis root. Proceedings of the National Academy of Sciences, USA 112:

12099–12104.

Lourenco A, Rencoret J, Chemetova C, Gominho J, Gutierrez A, Del Rio

JC, Pereira H. 2016. Lignin composition and structure differs between

xylem, phloem and phellem in Quercus suber L. Frontiers in Plant Science
7: 1612.

Lulai EC, Corsini DL. 1998. Differential deposition of suberin phenolic and

aliphatic domains and their roles in resistance to infection during potato tuber

(Solanum tuberosum L.) wound-healing. Physiological and Molecular Plant
Pathology 53: 209–222.

Lulai EC, Freeman TP. 2001. The importance of phellogen cells and their

structural characteristics in susceptibility and resistance to excoriation in

immature and mature potato tuber (Solanum tuberosum L.) periderm. Annals of
Botany 88: 555–561.

Marques AV, Pereira H. 2013. Lignin monomeric composition of corks from the

barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–
GC–MS/FID. Journal of Analytical and Applied Pyrolysis 100: 88–94.

Marques-Bueno MDM, Morao AK, Cayrel A, Platre MP, Barberon M,

Caillieux E, Colot V, Jaillais Y, Roudier F, Vert G. 2016. A versatile Multisite

Gateway-compatible promoter and transgenic line collection for cell type-

specific functional genomics in Arabidopsis. Plant Journal 85: 320–333.
Mazur E, Kurczynska E. 2012. Rays, intrusive growth, and storied cambium in

the inflorescence stems of Arabidopsis thaliana (L.) Heynh. Protoplasma 249:
217–220.

Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. 2008.

Flowering-time genes modulate meristem determinacy and growth form in

Arabidopsis thaliana. Nature Genetics 40: 1489–1492.
Miguel A, Milhinhos A, Novak O, Jones B, Miguel CM. 2016. The SHORT-

ROOT-like gene PtSHR2B is involved in Populus phellogen activity. Journal of
Experimental Botany 67: 1545–1555.

Molina I, Li-Beisson Y, Beisson F, Ohlrogge JB, Pollard M. 2009. Identification

of an Arabidopsis feruloyl-coenzyme a transferase required for suberin

synthesis. Plant Physiology 151: 1317–1328.
Muller D, Schmitz G, Theres K. 2006. Blind homologous R2R3 Myb genes
control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:
586–597.

Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N. 2012. Casparian

strip diffusion barrier in Arabidopsis is made of a lignin polymer without

suberin. Proceedings of the National Academy of Sciences, USA 109: 10101–
10106.

Neubauer JD, Lulai EC, Thompson AL, Suttle JC, Bolton MD. 2012.

Wounding coordinately induces cell wall protein, cell cycle and pectin methyl

esterase genes involved in tuber closing layer and wound periderm

development. Journal of Plant Physiology 169: 586–595.
Neubauer JD, Lulai EC, Thompson AL, Suttle JC, Bolton MD, Campbell LG.

2013.Molecular and cytological aspects of native periderm maturation in

potato tubers. Journal of Plant Physiology 170: 413–423.

New Phytologist (2018) 219: 216–229 � 2018 The Authors

New Phytologist� 2018 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist228



Olvera-Carrillo Y, Van Bel M, Van Hautegem T, Fendrych M, Huysmans M,

Simaskova M, van Durme M, Buscaill P, Rivas S, Coll NS et al. 2015. A
conserved core of programmed cell death indicator genes discriminates

developmentally and environmentally induced programmed cell death in

plants. Plant Physiology 169: 2684–2699.
Oven P, Torelli N, Shortle WC, Zupan�ci�c M. 1999. The formation of a ligno-

suberised layer and necrophylactic periderm in beech bark (Fagus sylvatica L.).
Flora 194: 137–144.

Pereira H. 1988. Chemical composition and variability of cork from Quercus
suber L.Wood Science and Technology 22: 211–218.

Pereira H. 2007. Cork biology production and uses. Amsterdam, the Netherlands:

Elsevier.

Pinto PCRO, Sousa AF, Silvestre AJD,Neto CP, Gandini A, EckermanC,Holmbom

B. 2009.Quercus suber andBetula pendula outer barks as renewable sources of
oleochemicals: a comparative study. Industrial Crops and Products 29: 126–132.

Rains MK, Gardiyehewa de Silva ND, Molina I. 2017. Reconstructing the

suberin pathway in poplar by chemical and transcriptomic analysis of bark

tissues. Tree Physiology 1: 1–22.
Roppolo D, De Rybel B, Denervaud Tendon V, Pfister A, Alassimone J,

Vermeer JE, Yamazaki M, Stierhof YD, Beeckman T, Geldner N. 2011. A

novel protein family mediates Casparian strip formation in the endodermis.

Nature 473: 380–383.
Sabba RP, Lulai EC. 2002.Histological analysis of the maturation of native and

wound periderm in potato (Solanum tuberosum L.) tuber. Annals of Botany 90:
1–10.

Sabba RP, Lulai EC. 2005. Immunocytological analysis of potato tuber periderm

and changes in pectin and extensin epitopes associated with periderm maturation.

Journal of the American Society for Horticultural Science 130: 936–942.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,

Preibisch S, Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source

platform for biological-image analysis. Nature Methods 9: 676–682.
Schreiber L, Franke R, Hartmann K. 2005.Wax and suberin development of

native and wound periderm of potato (Solanum tuberosum L.) and its relation

to peridermal transpiration. Planta 220: 520–530.
Serra O, Hohn C, Franke R, Prat S, Molinas M, Figueras M. 2010. A feruloyl

transferase involved in the biosynthesis of suberin and suberin-associated wax is

required for maturation and sealing properties of potato periderm. Plant
Journal 62: 277–290.

Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras

M. 2009a. Silencing of StKCS6 in potato periderm leads to reduced chain

lengths of suberin and wax compounds and increased peridermal transpiration.

Journal of Experimental Botany 60: 697–707.
Serra O, Soler M, Hohn C, Sauveplane V, Pinot F, Franke R, Schreiber L, Prat

S, Molinas M, Figueras M. 2009b. CYP86A33-targeted gene silencing in
potato tuber alters suberin composition, distorts suberin lamellae, and impairs

the periderm’s water barrier function. Plant Physiology 149: 1050–1060.
Sibout R, Plantegenet S, Hardtke CS. 2008. Flowering as a condition for xylem

expansion in Arabidopsis hypocotyl and root. Current Biology 18: 458–463.
Silva S, Sabino M, Fernandes E, Correlo V, Boesel L, Reis R. 2005. Cork:

properties, capabilities and applications. International Materials Reviews 50:
345–365.

Soler M, Serra O, Fluch S, Molinas M, Figueras M. 2011. A potato skin SSH

library yields new candidate genes for suberin biosynthesis and periderm

formation. Planta 233: 933–945.
Soler M, Serra O, Molinas M, Huguet G, Fluch S, Figueras M. 2007. A

Genomic approach to suberin biosynthesis and cork differentiation. Plant
Physiology 144: 419–431.

Spicer R, Groover A. 2010. Evolution of development of vascular cambia and

secondary growth. New Phytologist 186: 577–592.
Thangavel T, Tegg RS, Wilson CR. 2016. Toughing it out – disease-resistant
potato mutants have enhanced tuber skin defenses. Phytopathology 106: 474–483.

Thomson N, Evert RF, Kelman A. 1995.Wound healing in whole potato tubers:

a cytochemical, fluorescence, and ultrastructural analysis of cut and bruise

wounds. Canadian Journal of Botany 73: 1436–1450.
Torron S, Semlitsch S, Martinelle M, Johansson M. 2014. Polymer thermosets

from multifunctional polyester resins based on renewable monomers.

Macromolecular Chemistry and Physics 215: 2198–2206.
Tucker SC. 1975.Wound regeneration in the lamina of magnoliaceous leaves.

Canadian Journal of Botany 53: 1352–1364.
Vermeer JE, von Wangenheim D, Barberon M, Lee Y, Stelzer EH, Maizel A,

Geldner N. 2014. A spatial accommodation by neighboring cells is required for

organ initiation in Arabidopsis. Science 343: 178–183.
Vishwanath SJ, Delude C, Domergue F, Rowland O. 2015. Suberin:

biosynthesis, regulation, and polymer assembly of a protective extracellular

barrier. Plant Cell Reports 34: 573–586.
Vishwanath SJ, Kosma DK, Pulsifer IP, Scandola S, Pascal S, Joubes J,

Dittrich-Domergue F, Lessire R, Rowland O, Domergue F. 2013. Suberin-

associated fatty alcohols in Arabidopsis: distributions in roots and

contributions to seed coat barrier properties. Plant Physiology 163: 1118–
1132.

Vulavala VKR, Fogelman E, Rozental L, Faigenboim A, Tanami Z, Shoseyov O,

Ginzberg I. 2017. Identification of genes related to skin development in

potato. Plant Molecular Biology 94: 481–494.
Waisel Y. 1995. Developmental and functional aspects of the periderm. In: Iqbal

M, ed. The cambial derivatives. Stuttgart, Germany: Gebruder Borntraeger

Verlagsbuchhandlung, 293–315.

Supporting Information

Additional Supporting Information may be found online in the
Supporting Information tab for this article:

Fig. S1 Periderm formation in Arabidopsis.

Fig. S2 Periderm establishment in the hypocotyl and in the root
grown under different conditions.

Fig. S3 Stages of periderm development in the hypocotyl of
plants grown under different conditions.

Fig. S4 Periderm formation in lateral roots, phelloderm stainings
and programmed cell death in the root endodermis.

Fig. S5 Programmed cell death in the hypocotyl during periderm
growth.

Fig. S6 Several suberin biosynthesis genes are expressed in the
phellem.

Fig. S7 Chemical composition of hypocotyl phellem cells.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.

� 2018 The Authors

New Phytologist� 2018 New Phytologist Trust
New Phytologist (2018) 219: 216–229

www.newphytologist.com

New
Phytologist Research 229


