
Tree-Structured Problems and
Parallel Computation

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inf. Michael Ludwig
aus Ludwigsburg

Tübingen
2018

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 4.10.2018

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Klaus-Jörn Lange

2. Berichterstatter: Dr. Andreas Krebs

i

Zusammenfassung (Abstract in German)

Turing-Maschinen sind das klassische Beschreibungsmittel für Wortsprachen und

werden daher auch benützt, um Komplexitätsklassen zu definieren. Dies geschieht

zum Beispiel durch das Einschränken des Platz- oder Zeitaufwandes der Berech-

nung zur Lösung eines Problems. Für sehr niedrige Komplexität wie etwa sublin-

eare Laufzeit, werden Schaltkreise verwendet. Schaltkreise können auf natürliche

Art Komplexitäten wie etwa logarithmische Laufzeit modellieren. Ebenso können

sie als eine Art paralleles Rechenmodell gesehen werden. Eine wichtige parallele

Komplexitätsklasse ist NC1. Sie wird beschrieben durch Boolesche Schaltkreise

logarithmischer Tiefe und beschränktem Eingangsgrad der Gatter.

Eine initiale Beobachtung, die die vorliegende Arbeit motiviert, ist, dass viele

schwere Probleme in NC1 eine ähnliche Struktur haben und auf ähnliche Art

und Weise gelöst werden. Das Auswertungsproblem für Boolesche Formeln ist

eines der repräsentativsten Probleme aus dieser Klasse: Gegeben ist hier eine

aussagenlogische Formel samt Belegung für die Variablen; gefragt ist, ob sie zu wahr

oder zu falsch auswertet. Dieses Problem wird in NC1 gelöst durch den Algorithmus

von Buss. Auf ähnliche Art können arithmetische Formeln in #NC1 ausgewertet

oder das Wortproblem für Visibly-Pushdown-Sprachen gelöst werden. Zu besagter

Klasse an Problemen gehört auch Courcelles Theorem, welches Berechnungen in

Baumautomaten involviert. Zu bemerken ist, dass alle angesprochenen Probleme

gemeinsam haben, dass sie aus Instanzen bestehen, die baumartig sind. Formeln

sind Bäume, Visibly-Pushdown-Sprachen enthalten als Wörter kodierte Bäume und

Courcelles Theorem betrachtet Graphen mit beschränkter Baumweite, d.h. Graphen,

die sich als Baum darstellen lassen. Insbesondere Letzteres ist ein Schema, das

häufiger auftritt. Zum Beispiel gibt es NP-vollständige Graphprobleme wie das

Finden von Hamilton-Kreisen, welches unter beschränkter Baumweite in P fällt.

Neuere Analysen konnten diese Schranke weiter zu SAC1 verbessern, was eine

parallele Komplexitätsklasse ist.

Die angesprochenen Probleme kommen aus unterschiedlichen Bereichen und haben

individuelle Lösungen. Hauptthese dieser Arbeit ist, dass sich diese Vielfalt verein-

heitlichen lässt. Es wird ein generisches Lösungskonzept vorgestellt, welches darauf

beruht, dass sich die Probleme auf ein Termevaluierungsproblem reduzieren lassen.

Kernstück ist daher ein Termevaluierungsalgorithmus, der unabhängig von der

Algebra, über welche der Term evaluiert werden soll, ist.

Resultat ist, dass eine Vielzahl, darunter die oben angesprochenen Probleme, sich

auf analoge Art lösen lassen, und dass sich ebenso leicht neue Resultate zeigen lassen.

Diese Menge an Resultaten hätte sich ohne den vereinheitlichten Lösungsansatz

nicht innerhalb des Rahmens einer Arbeit wie der vorliegenden zeigen lassen.

ii

Der entwickelte Lösungsansatz führt stets zu Schaltkreisfamilien polylogarithmischer

Tiefe. Es wird jedoch auch die Frage behandelt, wie mächtig Schaltkreisfamilien

konstanter Tiefe noch bezüglich Termevaluierung sind. Die Klasse AC0 ist hierfür

ein natürlicher Kandidat; sie entspricht der Menge der Sprachen, die durch Logik

erster Ordung beschreibbar sind. Um dieses Problem anzugehen, wird zunächst das

Termevaluierungsproblem über endlichen Algebren betrachtet. Dieses wiederum

lässt sich in das Wortproblem von Visibly-Pushdown-Sprachen einbetten. Daher

handelt dieser Teil der Arbeit vornehmlich von der Beschreibbarkeit von Visibly-

Pushdown-Sprachen in Logik erster Ordnung. Hierbei treten ungelöste Probleme

zu Tage, welche ein Indiz dafür sind, wie schlecht die Komplexität konstanter Tiefe

bisher noch verstanden ist, und das, trotz des Resultats von Furst, Saxe und Sipser,

bzw. H̊astads.

Die bis jetzt beschrieben Inhalte sind Teil einer kontinuierlichen Entwicklung. Es

gibt jedoch ein Thema in dieser Arbeit, das orthogonal dazu ist: Automaten und im

speziellen Cost-Register-Automaten. Zum einen sind, wie oben angedeutet, Auto-

maten Beispiele für Anwendungen des hier entwickelten generischen Lösungsansatzes.

Zum anderen können sie selbst zur Beschreibung von Termevaluierungsproblemen

dienen; so können Visibly-Pushdown-Automaten Termevaluierung über endlichen

Algebren ausführen. Um über endliche Algebren hinauszugehen, benötigen die

Automaten mehr Speicher. Visibly-Pushdown-Automaten haben einen Keller, der

genau dafür geeignet ist, die Baumstruktur einer Eingabeformel zu verifizieren. Für

nichtendliche Algebren eignet sich ein Modell, welches hier vorgestellt werden soll.

Es kombiniert Visibly-Pushdown-Automaten mit Cost-Register-Automaten. Ein

Cost-Register-Automat ist ein endlicher Automat, welcher mit zusätzlichen Registern

ausgestattet ist. Die Register können Werte einer Algebra speichern und werden

in jedem Schritt in Abhängigkeit des Eingabezeichens und des Zustandes aktual-

isiert. Dieser Einwegdatenfluss von Zuständen zu Registern sorgt dafür, dass dieses

Modell nicht nur entscheidbar bleibt, sondern, in Abhängigkeit der Algebra, auch

niedrige Komplexität hat. Das neue Modell der Cost-Register-Visibly-Pushdown-

Automaten kann nun Terme evaluieren. Es werden grundlegende Eigenschaften

gezeigt, einschließlich Komplexitätsaussagen.

iii

Acknowledgements

First and foremost, my thank goes out to my advisors Klaus-Jörn Lange and Andreas

Krebs. I greatly appreciate the freedom and trust I enjoyed. I also want to thank

Nutan Limaye who, beside my advisors, is my main collaborator, and helped me to

shape some of the main ideas in this work. Also, she has been a wonderful host on

my three research visits to the Indian Institute of Technology in Mumbai. I thank

Volker Diekert who guided my first steps in theoretical computer science.

I thank Hanspeter Hägele for his intensive investment in proofreading this thesis to

fix linguistic shortcomings. Two other linguistic talents who helped me with some

sections are Anne Bernhardt and Maria Panter.

Moreover, I thank all the nice people I got to know over the last years while

I was teaching and doing research at the University of Tübingen; especially the

(former) members of the TI department should be mentioned (ordered alphabeti-

cally): Michaël Cadilhac, Silke Czarnetzki, Olga Dorzweiler, Demen Güler, Renate

Hallmayer, Klaus Reinhardt, Sebastian Schöner, Ingo Skupin, Thomas Stüber, and

Petra Wolf.

Lastly, I also thank my parents, Manfred and Waltraud Ludwig, and all my friends.

Contents

1 Introduction 1

1.1 Outline . 1

1.2 Background . 4

1.3 Main Contributions . 11

1.4 About This Thesis . 15

I Modeling 19

2 Structures 21

2.1 Basic Notation . 21

2.2 Structures . 22

2.3 Graphs . 23

2.4 DAGs, Forests and Trees . 25

2.5 Words . 29

2.6 Nested and Well-Matched Words 30

2.7 Conclusion . 32

3 Algebras 35

3.1 Universal Algebras . 35

3.2 Terms . 38

3.3 Homomorphisms . 41

vi Contents

3.4 Semigroups and Semirings . 43

3.5 Conclusion . 44

4 Recognition by Algebras 47

4.1 Regular Word Languages . 49

4.2 Regular Tree Languages . 50

4.2.1 Extend Algebras . 50

4.2.2 Forest Algebras . 52

4.3 Regular Languages of Nested and Well-Matched Words 57

4.4 Conclusion . 59

5 Logic 61

5.1 Logic on Words . 63

5.2 Logic on Trees . 64

5.3 Logic on Graphs . 64

5.4 Logic on Nested Words . 65

5.5 Conclusion . 65

6 Automata 67

6.1 Word Automata . 68

6.1.1 Finite Automata . 68

6.1.2 Pushdown Automata . 69

6.1.3 Turing Machines and Complexity 71

6.2 Finite Tree Automata . 71

6.3 Finite Nested Word Automata . 73

6.4 Visibly Pushdown Automata . 74

6.5 Within Visibly Pushdown Languages 77

6.5.1 Very Visibly Pushdown Languages 77

6.5.2 Visibly Counter Languages 80

6.5.3 Intersection Problems . 80

6.6 Conclusion . 83

Contents vii

7 Quantitative Automata 85

7.1 Counting . 85

7.2 Weighted Automata . 86

7.3 Cost Functions and Cost Register Automata 86

7.3.1 Cost Register Automata for Finite Words 87

7.3.2 Cost Functions as Wreath Products 94

7.3.3 Cost Register Automata for Well-matched Words 96

7.4 Conclusion . 102

8 Circuits 107

8.1 Boolean Circuits . 109

8.2 Arithmetic Circuits . 111

8.3 Generalized Circuits . 111

8.4 Conclusion . 112

II Evaluation Complexity 115

9 General Evaluation Complexity 117

9.1 Representing Terms . 119

9.2 Dividing Terms . 120

9.3 The Evaluation Algorithm . 126

9.3.1 Evaluating the M-Interval 128

9.3.2 Evaluating the N -Interval 130

9.3.3 Evaluating the L-Interval 133

9.3.4 Evaluating the R-Interval 134

9.4 Complexity and Correctness: Proof of Theorem 75 135

9.5 Conclusion . 136

10 Applications of Evaluation 139

10.1 The Boolean Formula Value Problem and Finite Algebras 143

10.2 Evaluating Arithmetic Terms and Distributive Algebras 143

10.3 Automata . 145

viii Contents

10.3.1 Language Recognizing Automata 145

10.3.2 Weighted Automata . 148

10.3.3 Cost Register Automata . 150

10.4 Circuits of Bounded Tree-Width . 155

10.5 Courcelle’s Theorem . 158

10.6 NP-Complete Problems Parameterized by NLC-Width 161

10.7 Conclusion . 170

11 Evaluation in Low Complexity 173

11.1 From Evaluation to Visibly Pushdown Languages - The Scenario of

Low Complexity Evaluation . 173

11.2 First-Order Definability of Visibly Pushdown Languages 175

11.2.1 Parsing the Tree Structure 175

11.2.2 Evaluating the Parsed Tree 186

11.2.3 Decidability . 190

11.3 Visibly Counter Languages . 191

11.4 An Open Problem . 193

11.5 First-Order Definability of Nested Word Languages 196

11.6 First-Order Definability of Tree Languages 198

11.7 Application . 200

11.7.1 Term Evaluation Over Finite Algebras 200

11.7.2 Dense Completeness . 200

11.8 Conclusion . 203

12 Conclusion 207

Bibliography 211

List of Figures 223

List of Symbols and Notation 225

Index 231

Chapter 1

Introduction

In the first section, which for the most part should also be accessible to the non-

theoretician, we give a rather informal overview of this thesis. After, we detail how

this work is structured and motivated.

1.1 Outline

Computer science deals with the systematics behind the representation, storage, and

manipulation of information in theory and practice. The field emerged from two

different directions: On the one hand, we have engineering, which deals with building

hard- and software with an aim for being used in production. Scientific knowledge

is predominantly obtained here by empirical methods and experimentation. On the

other hand, there is the direction that originated in mathematics where results are

gathered by mathematical proofs. While both directions are complementary and as

such have different scopes, theoretical computer science (TCS), the field this work is

located in, is one of the descendants of only the latter. The results achieved in TCS

are usually rather weak and very hard to obtain, but at the same time they, like

any other mathematical result, are timeless and have universal validity.

Algorithms is a subfield of TCS that represents a close link to practice. In it,

one tries to obtain formal procedures to solve computational problems within some

computational model. For this work it is important to note that this not only includes

classical imperative programming, but all ways to formally describe a computation

procedure. The power and limitations of computational models themselves are

being analyzed in complexity theory. The powers of computational models are

organized in complexity classes. Some of the best known examples are P and NP.

2 Introduction

The class P contains all problems that are solvable by a deterministic computer in

polynomial time, whereas the superclass NP also contains problems that are solvable

in polynomial time using non-determinism. The problems in P are often considered

efficiently solvable, while NP is regarded as a class that contains problems that

cannot be efficiently solved in general; we only know deterministic algorithms that

are exponential in their runtime. Although, it should be mentioned that in practice

the problems in NP can often be solved reasonably well by using approximations

or heuristics, which work on most inputs. As of now, the status of the P
?
= NP

problem is unknown.

Within the class P there exists a subclass called NC for which it is unknown

whether it is a proper subset of P, or not. Intuitively speaking, this class contains

all problems that can be efficiently parallelized. Such problems need polylogarithmic

time to solve, given sufficiently many processors. In this work, we will consider

such parallelizable problems. More precisely, most of this work will, in one way

or another, revolve around the class NC1 which, in contrast to NC, only allows

logarithmic time.

The parallel complexity classes are actually circuit complexity classes. A Boolean

circuit consists of Boolean gates and wires between the gates and works in the

expected way. The interpretations of parallel computers and circuits are equivalent.

Here, the depth of circuits corresponds to the time a parallel algorithm needs. In

NC1 there are all problems that can be solved using circuits of logarithmic depth,

or, if seen from the perspective of parallel computation, all problems that can be

solved in logarithmic time.

The class NC1 is of interest since many natural problems are located here and

many of them are NC1-hard, which means that they are indeed at the tight upper

end of this complexity class. The first key observation constituting the research

done in this thesis is the following:

Many problems in NC1 have an underlying tree-like structure.

Let us make this rather heuristic statement more concrete. Whenever we say a

problem has an underlying tree-like structure we mean that the language or function

in question takes inputs that are a tree or forest, or at least are highly hierarchical.

There are problems that naturally have a tree structure like solving the word problem

for tree languages. But also, if we consider problems for general graphs and then

restrict them to trees or tree-like graphs, we often arrive at the NC1-bound or

something similar. Examples include Courcelle’s Theorem and NP-complete graph

problems restricted to such classes of graphs. Here, tree-like graphs means graphs of

bounded tree- or clique-width.

Outline 3

Now, the second key observation is that many NC1 problems not only have an

underlying tree-like structure, but also:

The NC1-algorithms1 to solve those problems are often very similar

conceptionally and are based on the same ideas and principles.

So, this set the goal to find a unified approach that generalizes as many results as

possible.

When we say a problem has a tree-like structure, by that we mean that the inputs

we consider represent trees in some way. These trees have some semantic on which

the computation that is performed depends. Terms and algebras capture these

semantics. Terms are trees where each node is assigned some operation of the

algebra, so there is a very close relationship. This is the third key insight:

Most problems that have an underlying tree-like structure can be

reduced to a term evaluation problem.

This means that if we have the means to evaluate terms over some algebra, we can

also find a solution for all problems that can be reduced to this term evaluation.

Hence, in this work we develop a term evaluation framework, which is independent

of the algebra, and we show how to use it for deriving upper bounds: We show how

to use it in general and also give examples in terms of specific problems.

Besides showing upper bounds for general term evaluation, we will also investigate

the evaluation capabilities of complexity classes weaker than NC1. In particular

we look into the question of how much evaluation is possible in constant depth

circuits. Although this question is natural in itself, we can give another motivating

perspective:

Many NC1-problems we consider originate in more complex problems; NP-hard

problems, for example. These problems became parallelizable by enforcing tree-like

inputs. We can now ask for other classes how we have to restrict the inputs in

order to reduce the complexity to the language in question. Since enforcing tree-like

inputs corresponds to logarithmic depth, we continue by considering constant depth,

i.e. AC0. Since AC0 is a subset of NC1 we need a stronger restriction.

The property we use has many characterizations and expresses that the input not

only is a tree, but that these trees also have to have a limited branching complexity.

One of these characterizations lies in assuming a bounded Horton-Strahler number.

If one considers the spectrum between complete binary trees and degenerated trees,

which are basically lists, a bounded Horton-Strahler number forces the trees to be

1As we already mentioned, algorithms can be implemented in various computational models.
Here, NC1-algorithm means a circuit family or, equivalently, an alternating Turing machine.

4 Introduction

more similar to a list. Summarizing, while a problem in general might be in NP, the

problem bounded to tree-like inputs could be in logarithmic depth and the problem

bounded to tree-like inputs with limited branching complexity in constant depth.

A final aspect are automata. On the one hand they serve as application examples:

Using our term evaluation algorithm we can solve the word problem for certain kinds

of automata in NC1. On the other hand the automata we consider can capture

evaluation problems themselves and are closely related to algebra, so they serve as a

tool, especially for the AC0 bounds.

In summary, this work consists of the following two parts. Both partly contain

original content as well as pre-known content. The preliminaries to understand

the main benefits of this work are mostly taken care of in Part I, whereas Part II

contains the bulk of the main results and should be considered the more important

part.

• Part I: Modeling

– A framework to formulate the term evaluation problems in, which mostly

consists of algebra.

– The machinery in which we implement the algorithms, which consists of

a generalized version of circuits and logic.

– Different automaton models.

• Part II: Evaluation

– The general algorithm for term evaluation.

– Applications to tree-structured problems.

– Algorithms for the evaluation of terms that have a limited branching

complexity.

In the next sections we give a more in-depth overview of the contents of this work.

1.2 Background

In this section we observe how the results in different areas were obtained, how

they are related, and how they are relevant. There are four major blocks we

consider: Evaluation problems, automata related problems, problems parameterized

by tree-width, and low complexity. All four represent a distinct line of research.

The way this section is arranged aligns with the order of the chapters in the second

part.

Background 5

Evaluation Problems

The satisfiability problem (SAT) can be considered the initial NP-complete problem

[Coo71]. For this problem we are given a propositional formula containing variables.

Then however, the question arises whether there exists a valuation for the variables

such that the formula evaluates to true. To solve the problem, the NP-algorithm

first guesses the valuation of the variables using non-determinism and then checks

whether the formula evaluates to true. We are interested in the last step, which is

called the Boolean formula value problem (BFVP). Of course, this check can be

done in NP, but could a lower complexity be sufficient? This question has received

a lot of research, which continued to lower the upper bound. The endpoint of this

trend was [Bus87] in which Buss showed that the BFVP is in NC1. The proof

for this result involves sophisticated game arguments and reasoning over the input

formula, although in a follow-up paper, an alternative simplified proof was presented

[Bus93].

At this point it is important to note that formulas are basically labeled ranked trees.

A tree can be represented as a word that is a parenthesized expression. Checking

whether an input formula codes a valid tree at all is a problem in TC0. This problem

can be easily reduced to the word problem of the Dyck language.

As a result of the progression of the upper bound research for the BFVP, the

complexity of evaluating arithmetic formulas has also been considered. Evaluating

terms over the natural numbers together with addition and multiplication is a

problem in #NC1 [BCGR92]. The proof of this built upon [Bus87].

The main idea for evaluating Boolean formulas is to employ a divide and conquer

algorithm. For example, to evaluate a given input formula, we would evaluate certain

subintervals of the input parallely and then use those recursive results to compute

the overall output. As a schematic example, consider Figure 1.1. Here, we have

a term that is a balanced tree. One could recursively evaluate the left and right

subtree of the root and then obtain the overall result, but in general, we do not

know in advance how the input will be structured. It could also be a degenerated

tree like in Figure 1.2. In this case if we split the formula in half, the left part would

be a subformula, but the right part would not be a proper formula any more. The

main idea in [Bus87] is to evaluate in parallel the left part and the right part as

well, but the right part has to be evaluated twice: Once with the gap filled by true

and once filled by false; see Figure 1.3.

For the case of arithmetic formulas this approach does not work any more since we

would need to evaluate the right part for the infinite number of possible outcomes

of the left part. The idea to solve this problem is presented in [BCGR92]. In it

the authors observe that the right part is a term with a hole and this as a whole

evaluates to a function N → N that is of the very simple form x 7→ ax + b. It is

6 Introduction

~

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
left recursion right recursion

d1 d2

d1 ~ d2

Figure 1.1: Terms are trees; the figure indicates a balanced tree, which resembles
how the term is composed. For a recursive evaluation approach it is a sensible initial
idea to make a split in the middle to recursively evaluate the left and the right
subtrees of the root generating the results d1 and d2, and then using these results to
obtain the overall result as d1 ~ d2.

. .
.

. .
.

?d

Figure 1.2: In contrast to the situation seen in figure 1.1, the approach of splitting the
term in the middle is not as straight forward this time where the tree is degenerated.

Background 7

· · ·

· · ·

d1 ∈ B

· · ·

· · ·

d2 ∈ B

⊥

· · ·

d3 ∈ B

>

d2 → ¬d1 ∧ d3 → d1

Figure 1.3: When evaluating a Boolean formula recursively one can split the term
and evaluate the left part. The recursion over the right part is done twice; once for
⊥ and once for > as substitutes for the left part. The three results are then being
combined.

8 Introduction

· · ·

d ∈ N

· · ·

f : N→ N

f(d)

Figure 1.4: Arithmetic formulas can be recursively evaluated as shown in the figure.
The key here is that f is of the simple form. This form, as it will turn out later, is
x 7→ ax+ b. Thus, the evaluation of the right part will in fact provide the values
a and b. Then f(d) = ad+ b. This idea we will, as one of our main contributions,
generalize to arbitrary algebras.

shown that it is, in fact, possible to compute a and b. Afterwards, the evaluation of

the left part is inserted for x and we get the overall result; see Figure 1.4.

A thorough understanding of this idea is important for the comprehension of the

main result in which we will take this idea and develop it further, so it is not only

applicable in specific situations like evaluating terms over the natural numbers.

Automata Related Problems

Automata theory is the second line of research we consider. Some results in this area

are based on findings described previously. In particular, the complexity of the word

problem for certain automata will be considered. The standard example to begin

with are the regular languages, which are in NC1. The construction used to show

this is based on the fact that regular languages are recognized by homomorphisms

and finite monoids. Checking whether a word is a member of some regular language

is equivalent to multiplying elements in a finite monoid. Associativity is the property

which, in this case, makes the problem very easy since since the computation does

not have to deal with hierarchical inputs.

A generalization of the regular word languages are the so-called visibly pushdown

languages (VPLs) [AM04] introduced by Alur and Madhusudan using visibly push-

down automata (VPAs). They already existed under the name of input-driven

pushdown languages [Meh80] as introduced by Mehlhorn. In [Dym88], Dymond built

on the core algorithm for the BFVP and adapted it to visibly pushdown languages.

Background 9

This was a first indication that the result of Buss has potential that goes well beyond

evaluating formulas itself.

Visibly pushdown languages are equivalent to regular nested word languages [AM09]

which are languages over words that are equipped with a nesting relation in addition

to the position order relation. Also, regular forest languages are isomorphic to

visibly pushdown languages2. From that perspective it is easy to see that evaluating

terms over any finite algebra is nothing else than computations of ranked tree

automata. Hence, the evaluation of terms over finite algebras can be reduced to

visibly pushdown automata computations - a fact, which will be used later.

All three automata types we mentioned have a word problem that is in NC1. It

is interesting to compare this fact to the situation for regular languages. Basically,

this tells us that associativity is not needed to keep the complexity in NC1. Or, to

put it differently: The input may be truly hierarchical as opposed to the case of

regular languages whose elements represent lists, i.e. degenerated trees.

The result of Dymond [Dym88] for the Boolean case has been extended even further:

The complexity of counting accepting computations in non-deterministic visibly

pushdown automata is in #NC1 [KLM12] which comes as no surprise. The proof

built on Dymond’s proof strategy, but it became increasingly complicated.

Generalizing finite automata to tree inputs is one way to go beyond classical word

language setting. Another way to go beyond lies in going over to functions. We

can associate languages with their characteristic functions that map to {0, 1}. One

can now come up with automata models that represent more complex functions, i.e.

functions that map to larger sets, like N. Relevant for this work are the following

three variants:

• Counting. If we take a non-deterministic automaton, we can assign each input

word the corresponding number of how many accepting computations there

are.

• Weighted automata. These are based on a semiring (R;⊕,⊗) and a non-

deterministic automata. Each transition is assigned some weight. All weights

along a run are being aggregated by ⊕. Then the obtained values for all runs

are being aggregated by ⊗, which then becomes the output.

• Cost register automata. This type of automaton is based on deterministic

finite automata and is equipped with registers over some algebra. The registers

can be updated in each step according to the state. The output is the final

value computed.

2That is, if we neglect internal letters.

10 Introduction

Especially the last model is very interesting as it is powerful but still tame enough

to be analyzed.

Problems Parameterized by Tree-width

Results about formula evaluation and, continued by, complexity results about

automata are one line of research that can be traced back to the algorithm of Buss.

However, there exist many other results that show upper bounds in terms of parallel

complexity for problems that, in some sense, are also tree-like.

One major class of this kind of problems consists of graph problems that drop in

complexity if the input graph is known to be tree-like. In our case tree-like can

mean either that the tree-width or the clique-width of the input graph is bounded.

In both cases the input graph can be represented as a term whose evaluation is the

original graph. Many problems become easier if we assume a bounded width. The

prime example is the Theorem of Courcelle [Cou90]. It states that checking whether

an input graph of some fixed tree-width is a model for a fixed MSO formula, can be

done in linear time. The result consists of two steps: Decomposing the input graph,

which yields a term, and then checking whether the term satisfies the formula. For

the second step, which is the one we are interested in, the formula is transformed

into a tree automaton. The first step also received research [EJT10] which led to

the complexity of finding the decomposition being reduced to logspace. The second

step is of complexity NC1 which is what we would expect [EJT12].

Another example are NP-complete graph problems. One of which is the problem of

finding Hamiltonian cycles in graphs. In [Wan94] Wanke showed that this problem

is in P if bounded clique-width is assumed. It is also possible for this problem to be

brought down to SAC1 [BDG15]. Another graph problem that behaves this way is

the one concerned with finding maximal cuts.

Both for Courcelle’s Theorem and the mentioned graph problems one can also

consider counting versions leading to the respecting counting complexities.

A third problem of this kind was recently investigated in [JS14] whose results state

that a Boolean circuit family of polynomial size can be balanced if the graphs of the

circuits have a bounded tree-width. This means that if a problem has a polynomial

size circuit family of bounded tree-width, the problem is already in NC1.

As one can see, there are ample problems whose results do not rely on the Buss

algorithm, but rather go their own ways.

Main Contributions 11

Low Complexity

We already mentioned the regular languages, which are contained in the class NC1.

A natural follow-up question to ask is which regular languages are contained in

certain subclasses of NC1. One instance would be asking for the regular languages

that are in AC0, that is constant depth circuits, or, equivalently that are definable

in first-order logic using arbitrary numerical predicates. The motivation of this

problem actually is similar to a case we already considered: We have asked how

we have to restrict input graphs for an MSO formula such that the model checking

problem can be solved parallely. For an NC1 problem the question we can ask is

how we have to restrict the problem further in order to get to constant depth. In

the case of regular languages this has been carried out already and as a result there

is a decidable algebraic characterization of the regular languages that are first-order

definable [BCST92]. Here, we are in the situation of even being able to decide when

a regular language is in AC0 or not. This is due to the fact that the parity language

is not in AC0 [FSS84, H̊as87] which is one of the strongest complexity theoretic

results we have. Beyond regular word languages, little is known in this direction.

1.3 Main Contributions

The historic background we have laid out in the previous section served to motivate

the topic of this thesis. Notice that we listed several problems and their complexities

that get an input that is in some way tree-shaped; either by actually being a tree or

by graphs of bounded width, or by formulas. All those complexity results concern

upper bounds in terms of parallel complexity classes and their proof strategies also

follow the same ideas. Here, the wheel has been invented several times.

Our goal is to present a framework that unifies all mentioned results. Our framework

centers around term evaluation over arbitrary algebras. This is because of the

observation that all mentioned problems are reducible to a term evaluation problem

and still we are lacking such a general term evaluation algorithm. Accordingly the

first main aspect of this work is:

Term Evaluation Over Arbitrary Algebras

We already outlined the evaluation algorithms for Boolean and arithmetic formulas.

Now, we take this further to arbitrary algebras. It needs to be stressed that we do

not assume any property for the algebra. For example, neither associativity, nor

distributivity must hold. The algebras may have any number of operations of any

finite arity. Also, the finiteness of the domain is not required. As a consequence

the complexity result is formulated in dependence of the algebra: The complexity

12 Introduction

of evaluating a term over an arbitrary algebra A is F(A)-NC1, where F(A) is an

algebra based on A and F(A)-NC1 is represented by logarithmically deep circuits

that, in a nutshell, have oracle gates that are operations of F(A).

The key to obtain this result lies in generalizing the idea of arithmetic formula

evaluation as outlined before. Here, the formula is split and the left and the right

part are evaluated in parallel, however, the right part does not evaluate to a number

but to a function. Now, in the case of arbitrary algebras F(A) captures precisely the

functions we get when making such a split; it contains, in addition to the domain

and operations of A, all the functions that might occur.

The deeper details of the algorithm we will present are a bit technical, but the

overall structure is easy to grasp and we claim that our direct construction is

more accessible than the rather indirect approaches of Buss et al. in [Bus87] and

[BCGR92].

After we have established this main tool, we will show how to apply it in or-

der to obtain upper bounds. We also demonstrate that this has several concrete

applications:

Application of the Term Evaluation Algorithm

We want to solve problems, which means showing upper bounds. For us the main

premise is that there are many relevant problems that can be reduced to a term

evaluation problem. Hence, we will present a template to obtain actual upper

bounds. Note that the complexity F(A)-NC1 we obtained in the main algorithm is

somewhat artificial and it is unclear how it relates to the usual complexity classes.

Our template consists of first reducing the problem to an evaluation problem, placing

it in F(A)-NC1, and then relating F(A)-NC1 to known classes.

We then will proceed to show several upper bounds using the template and algorithm.

In the previous section we introduced the problems already.

• Evaluating Boolean formulas. This application is trivial for us. We claim that

we can reproduce the original results of Buss [Bus87]. We also obtain the

folklore result that evaluating terms over finite algebras is in NC1.

• Evaluating arithmetic formulas. This easy application reproduces the result of

Buss et al. [BCGR92]. We also derive that, in general, evaluating terms over

a distributive algebra A is in A-NC1.

• Automata. We consider a variety of different problems for different automata

models. The are either based on words or trees whereas the word automata

comes in the shape of visibly pushdown automata. There is also the distinction

Main Contributions 13

between Boolean automata that compute a single output bit and more general

models such as weighted and cost register ones.

Depending on the model, the different problems we look at include the word

problem, the uniform word problem in which the automaton is part of the

input, and counting.

• Circuits of bounded tree-width. We show that Boolean circuit families of

polynomial size and bounded tree-width collapse from P to NC1.

• Courcelle’s Theorem. Here, we consider the part of the problem where the

input graph is already decomposed and obtain the NC1 bound. We also

reproduce a counting variant where the MSO formula has a free second-order

variable and we count how many valuations there are such that the graph

satisfies the formula.

• NP-complete problems parameterized by NLC-width. Wanke showed that

finding Hamiltonian cycles and maximal cuts in graphs is in P if bounded

width is assumed [Wan94]. In [BDG15] the bound for the Hamiltonian cycle

problem was reduced to SAC1 and also counting the number of cycles was

considered resulting in the complexity #SAC1. We reproduce this result and

also show the analogue result for the maximal cut problem.

One big part in the applications have been automata. They actually play such a

significant role that they deserve to be called a major aspect themselves. Besides

being important examples for applications, they can also to be considered objects

that evaluate terms. Especially the newly introduced cost register VPAs implement

this. On the other hand, the Boolean VPAs give rise to an algebraic treatment of

tree languages and hence evaluation, especially in the low complexity case.

Automata for Expressing Languages and Functions and Algebraic Char-

acterizations

For one, we survey known automata models. Besides those that are based on

ordinary finite word automata, all transcend them by considering tree-like inputs.

This includes nested word automata, visibly pushdown automata and actual tree

automata. There is a great variety of different models and many interconnections.

Besides the Boolean models, we also examine counting, weighted models and cost

register models. The latter we merged with visibly pushdown automata to get a

model that can handle tree-shaped inputs and perform arithmetic operations on it.

Aside from the treatment of automata themselves we also consider the closely

related subject of algebra. Algebra plays two roles in this work. First, evaluation

14 Introduction

problems are based on algebras. Second, we use algebras to capture computations,

which is done by syntactic algebras. We develop an algebraic framework to capture

visibly pushdown languages and other tree-structured language classes. For forest

languages there already exist the forest algebras by Bojańczyk and Walukiewicz

[BW08] which we embed into our algebraic framework. In particular we present

extend algebras which are a meaningful alternative to forest algebras.

We also present a characterization of functions implemented by finite cost register

automata in terms of a wreath product. This product underpins the fact that

the states of such an automaton direct the register updates. This one-way flow of

information is what makes the model tame and is exactly what the wreath product

expresses.

Finally, we consider evaluation in low complexity. This leads to a combination of

all previous parts. Instead of asking directly for evaluation in low complexity, we ask

which VPLs are in constant depth. One can also look at this from the perspective

of, for example, graph problems like Courcelle’s Theorem. The property that brings

down the complexity to logarithmic depth is bounded clique-width. Now, we ask:

What property do we have to postulate to bring down the complexity to constant

depth.

Evaluation in Constant Depth

A pattern we observed is that problems drop to logarithmic depth if tree-shaped

inputs are assumed. Now, we ask the question how problems have to be restricted in

order to let the complexity drop to constant depth. In general, we are interested in

evaluation problems. Since we cannot provide an exhaustive result as in Chapter 9,

we only consider finite algebras in this part. Evaluation problems over finite algebras

can be embedded into VPLs. Also, the constant depth class we are interested in

is AC0 which equals first-order logic over arbitrary numerical predicates. What

we do, instead of asking what we can evaluate within AC0, is posing the question

which VPLs are first-order definable. This has the benefit of being linked to another

successful line of research for which we hope that many results carry over. VPLs

generalize regular languages for which a characterization of the ones that are first-

order definable already exists: Regular languages that are first-order definable are

precisely those that have a quasiaperiodic syntactic homomorphism. We try to

generalize this to VPLs.

We are able to split the process of solving the word problem of VPLs into two parts.

The first part addresses the complexity of the tree that the words in the language

represent. Here, a tree of low complexity could be one that degenerated into a

list, whereas a balanced binary tree is very complex. We capture this complexity

formally and connect this notion to already known tree properties. Besides this

About This Thesis 15

tree property, the second part captures the analogue to quasiaperiodicity in the

case of regular word languages. Unfortunately we do not get a tight result. The

second part is tame, but it is very hard to determine which tree shapes can be

analyzed by first-order formulas. This is embodied by an open question we pose

that can be stated very succinctly: Is the language generated by the grammar rules

S → aSbc|acSb|ε first-order definable? We conjecture that it is not and that proving

it could yield deep insights into AC0 since up to now the only tool we have to show

that a language is not in AC0 is the proof for the parity language [FSS84, H̊as87].

Up until now we only considered the question of which languages are expressible in

first-order logic with arbitrary numerical predicates. It will turn out that the major

challenge is to define a matching predicate within the logic. It is natural to ask now

what happens if we artificially add this predicate to the logic. Hence, we investigate

more settings than the one only using arbitrary numerical predicates.

1.4 About This Thesis

Structure

This thesis is split into a Part I and a Part II. The first part is called Modeling and

deals with representing languages, functions, and structures, whereas the second

part, Evaluation Complexity, uses the objects defined in the first part to formulate

the main complexity results.

Thereby, the first part contains all the preliminaries to understand the main

results, but it goes beyond just providing basic definitions. In several places existing

notions have been extended significantly. This is especially true for chapters on

algebra and automata but also for circuits. Moreover, results on these new objects

are presented.

The second part has three chapters, which represent the main contribution

chapters. Chapter 9 contains the general term evaluation algorithm and Chapter

10 the application framework and many concrete applications. Chapter 11 then

considers low complexity evaluation. Note that this covers three of the four main

items mentioned in the previous section, whereas the item addressing automata lies

orthoganal to the other topics and appears throughout the thesis: Chapters 6, 7,

and 11, as well as Section 10.3, represent this aspect in particular.

Figure 1.5 shows a summary over the chapters in this thesis.

We already discussed the structure of this thesis with respect to its scientific content.

It is divided into two parts, each consisting of a number of chapters. Importantly,

16 Introduction

Introduction (1)

Part I

Model

Theory
(2,5)

Algebra

(3,4)

Automata

Theory
(6,7)

Complexity

Theory
(8)

Part II

General Evaluation (9)

Applications (10)

Low Complexity

Evaluation (11)

Conclusion (12)

Figure 1.5: The thesis consists of two parts whereas the individual topics of Part
II depend on the whole of Part I. Part I covers four research areas, which are
represented by seven chapters.

each chapter has a conclusion section. The conclusion sections all follow the same

format consisting of:

• Summary

• Contributions

• Sources and Related Work

• Further Research

We do this because each chapter represents a part of this work in its own right.

Hence, there is no chapter that only serves as providing preliminaries. Furthermore,

much of what could be considered preliminaries is actually generalized from the

standard. For example, instead of ordinary algebras, we consider many-sorted

families of algebras. The consequence is that there is no obvious line between

original and previously known content. The conclusion sections for each chapter

tries to clarify what is new and what is already known. Here, new can mean that

something was introduced in a paper, which I have co-authored or that it never

appeared in any paper before.

About This Thesis 17

Contributed Papers

Up to the date of this writing I have published the following papers3:

[KLL17a] A Unified Method for Placing Problems in Polylogarithmic Depth.

Andreas Krebs, Nutan Limaye, Michael Ludwig, FSTTCS 2017

[KLL17b] A Unified Method for Placing Problems in Polylogarithmic Depth.

Andreas Krebs, Nutan Limaye, Michael Ludwig. ECCC 2017

[DFKL16] Positive and negative proofs for circuits and branching programs.

Olga Dorzweiler, Thomas Flamm, Andreas Krebs, Michael Ludwig. TCS 2017

[KLL16] Cost Register Automata for Nested Words. Andreas Krebs, Nutan

Limaye, Michael Ludwig. COCOON 2016

[KLL15a] On Distinguishing NC1 and NL. Andreas Krebs, Klaus-Jörn Lange,

Michael Ludwig. DLT 2015

[CKLP15] A Circuit Complexity Approach to Transductions. Michaël Cadilhac,

Andreas Krebs, Michael Ludwig, Charles Paperman. MFCS 2015

[HKLL15] Visibly Counter Languages and the Structure of NC1. Michael Hahn,

Andreas Krebs, Klaus-Jörn Lange, Michael Ludwig. MFCS 2015

[KLL15b] Visibly Counter Languages and Constant Depth Circuits. Andreas

Krebs, Klaus-Jörn Lange, Michael Ludwig. STACS 2015

[KLL14] Visibly Counter Languages and Constant Depth Circuits. Andreas

Krebs, Klaus-Jörn Lange, Michael Ludwig. ECCC 2014

[DFKL14] Positive and Negative Proofs for Circuits and Branching Programs.

Olga Dorzweiler, Thomas Flamm, Andreas Krebs, Michael Ludwig. DCFS

2014

This thesis contains contents of these papers to a varying degree. The papers

[DFKL16, CKLP15, HKLL15, DFKL14] do not appear at all. The paper [KLL15b,

KLL14] is the origin of Chapter 11, however, the research on that topic has advanced

to a point that the result of the paper is a mere corollary of what is presented

here, which is covered in Section 11.3. The papers [KLL15a, HKLL15] build on

[KLL15b, KLL14], however, [HKLL15] does not get picked up here and [KLL15a]

has one result that is the topic of Section 11.7.2. The paper [KLL16] was a prequel

of [KLL17a, KLL17b]; the complete paper got incorporated. It appears in Chapter 7

3Papers are ordered chronologically and authors alphabetically.

18 Introduction

and Section 10.3. The paper [KLL17a, KLL17b] then generalized the result greatly to

the large set of applications already mentioned. This paper is the main foundation

of this thesis and contents of it appear throughout it. In particular Chapter 9

originates in it: To a large extend it is adapted more or less word by word. To a

lesser extend this also holds for parts of Chapter 10. Contrary to the case of the

other papers that were incorporated in this work, it would have been awkward to

rewrite Chapter 9 for the sole purpose of not repeating the exact same words.

It is worth pointing out how the thread throughout this thesis came together.

Chapter 11 has its roots in [KLL15b, KLL14]. This was an early paper going into

this research topic and was actually not related to evaluation in any way; it was

purely concerned with the problem of first-order definability of visibly pushdown

models. Later, seemingly unrelated papers [KLL16] and [KLL17a, KLL17b] initiated

a new direction. It emerged afterwards that [KLL15b, KLL14] can be considered a

paper about low complexity evaluation over finite algebras. This is the interpretation

used here.

Part I

Modeling

Chapter 2

Structures

Before proceeding to the actual content of this chapter, some mathematical notation

that holds for throughout the thesis has to be fixed.

2.1 Basic Notation

Although the reader is assumed to be familiar with set theory, we fix some notation

here. Let X be a set, then |X| denotes the cardinality of X, that is the number of

elements in X.

The powerset of X is the set of all subsets of X and is denoted by 2X or P(X).

By X × Y we denote the Cartesian product. It contains pairs (x, y), where x ∈ X
and y ∈ Y . Most of the time, but not always, we use the Cartesian product in its

associative version, i.e. for another set Z we get (X × Y) × Z = X × (Y × Z) =

X×Y ×Z. Therefore, for ((x, y), z) ∈ (X×Y)×Z we may say ((x, y), z) = (x, y, z).

We call this flattening. It is clear from the context whether a Cartesian product is

to be understood as flattened or not, i.e. as associative or not.

The set {0, 1, 2, 3, . . .} is called the natural numbers and denoted as N. For i ≤ j

we denote an interval {i, . . . , j} as [i, j]. Further, we define [n] as [1, n]. The set of

integers we denote as Z. There is also the set B = {⊥,>} where ⊥ is the Boolean

value for false and > the Boolean value for true. Depending on the context we may

also use 0 and 1 for false and true. The symbols Q addresses the rational numbers.

For n,m ∈ N the set Xn is the associative Cartesian product X× . . .×X consisting

of n-tuples, which we also call vectors or words - depending on the context. By X∗

we denote the set
⋃
n∈NX

n. We then can define (Xn)m, which is a tuple of tuples.

22 Structures

One can interpret this nonassociatively as matrices and write Xn×m instead, which

is the set of n×m-matrices over X.

A relation ∼ over a set X is a subset of X ×X. It is called an equivalence relation

if it is reflexive, symmetric, and transitive. We write x ∼ y if x, y ∈ X are in relation.

In case of an equivalence relation, the equivalence class an element x ∈ X belongs

to is denoted by [x]∼. The set of equivalence classes induces a partition of X. The

set of equivalence classes is addressed by X/∼ = {[x]∼ | x ∈ X}. This set is also

called a quotient of X.

For a linear order (I;≤) by (Xi)i∈I we denote a family that is the sequence of Xi

for all i ∈ I ordered by ≤. Usually, we have the case that I = N.

A subset f ⊆ X × Y is called a (partial) function or a map if for all x ∈ X there

exists at most one y ∈ Y such that (x, y) ∈ f . Then we also write f(x) = y or

x 7→ y and f : X → Y to indicate that the function maps from X to Y . A function

g : X ′ → Y ′ is the extension of a function f : X → Y if X ⊆ X ′, Y ⊆ Y ′ and f ⊆ g.

If for all x ∈ X there exists exactly one y ∈ Y such that (x, y) ∈ f , we call f

a total function. Note that functions of higher arity come into being by choosing

X to be a Cartesian product. The set of all functions of the form X → Y is

denoted as Y X . Given two functions f : X → Y and g : Y → Z, by g ◦ f we denote

the composition of f and g, which is defined as {(x, z) ∈ X × Z | g(f(x)) = z}.
For a function f : X → X and i ∈ N we may write f i to express i compositions

of f . For a function f : X → Y the inverse function f−1 : Y → 2X is defined as

{(y, X̃) ∈ Y × 2X | X̃ = {x | f(x) = y}}. A function can be injective or surjective.

If it is both, it is bijective. If f is injective, we may assume that the inverse function

is a (partial) function Y → X. If f is surjective, then f−1 is total.

Structure preserving mappings between algebraic objects, e.g. like groups, are called

homomorphisms; exact definitions are provided later. Injective homomorphisms are

called monomorphisms, surjective homomorphisms are called epimorphisms, and

bijective homomorphisms are called isomorphisms. A homomorphism X → X is

called an monomorphism and bijective monomorphisms are called automorphisms.

We use the Landau symbol O, where O(f) contains all functions that do not grow

faster as f , neglecting constant factors.

2.2 Structures

We are interested in computations whereas a computation usually needs an input

and a computing device. In this chapter we look at inputs in a very general way. An

input is a structured piece of information. For example, the input could be a word,

Graphs 23

which is a linear order on some pieces of information. Other important examples

are graphs and trees.

All these different kinds of inputs can be summarized by the notion of structures.

Structures are important subjects in the study of model theory. Structures are

basically collections of relations. This is a more general notion compared to algebras

where the relations are functions. We will cover algebras later. Although they are

structures, we use them in a totally different way.

We loosely use the notation of the book [Alm94].

Definition 1 (Structure). A structure is a pair (D;R) where D is a set and R =

(Ri)i∈[r] is a family of r relations over D, so Ri ⊆ Dα(i), where α(i) is the arity of

Ri.

It is also possible to allow for more than one domain set, i.e. to consider many-

sorted structures. In the context of input structures we have no requirement for this

feature, however, the algebras we define later incorporate it.

Each structure has a signature. A signature captures the format of a structure.

Later when we introduce logic we need this notion in order to ensure compatibility

of structures and logic formulas.

Definition 2 (Signature of a structure). A signature, usually denoted as σ, is

an element of N∗. Given a structure S = (D;R) with relations R = (Ri)i∈[r], the

signature of S is defined as σ(S) = (α(i))i∈[r].

We see that a signature just captures the arities of the relations. Note that later

we distinguish between signatures for different objects like structures and algebras

because the arity of a function is one lower than the arity of it if interpreted as a

relation.

Also notice that we did not require any properties for the domain. It could be

infinite, which is an important case for many applications, however, we focus on

finite input structures only.

In the following we consider typical examples for classes of structures. They all

belong to distinct areas with unique notation and conventions. We try to unify all

under the umbrella of structures while at the same time keeping the usual notation

and conventions.

2.3 Graphs

Graphs come in different shapes. Basically, they consist of a set and a binary relation

on this set.

24 Structures

Definition 3 (Graph). A structure with the signature (2) is called a (directed) graph.

For a graph G we write (V ;E), where E ⊆ V × V . If E is symmetric, then G is

called undirected.

A graph consists of nodes or, synonymously, vertices. They are connected by edges.

Edges may have a direction. If they do, we say the graph is directed. In this case the

edges are a binary relation between nodes as indicated by the definition. Undirected

graphs can be modeled by enforcing the edge relation to be symmetric. If we do not

want hooks in the graph, we also require antireflexivity. In the case of undirected

graphs it is also common to define the edge set E as a set of sets of vertices of size

two: E ⊆
(
V
2

)
.

Given a graph G, by V (G) we address the set of vertices of G and by E(G) the set

of edges. The empty graph we shortly denote by ∅.

A graph with a maximal set of edges is called complete or a clique. A complete

graph of n vertices is denoted by Kn. A graph without edges is called independent.

A graph G is called k-partite if V (G) is the disjoint union of k partitions and there

are no edges within a partition. If there are two sets making up the graph, we call

it bipartite. A maximal bipartite graph where the two sets have size m and n, we

address by Km,n. A star is a bipartite graph of the form K1,n.

Given two graphs G1 and G2, then G1 ∪G2 := (V (G1) ∪ V (G2);E(G1) ∪ E(G2))

and G1 ∩ G2 := (V (G1) ∩ V (G2);E(G1) ∩ E(G2)). Further, given a graph G, the

complement G contains exactly the edges that G does not have. For two graphs G1

and G2, G1 ⊆ G2 holds if V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2).

For a graph G = (V,E), a subset V ′ ⊆ V , and a subset E ′ ⊆ E ∩ V ′ × V ′ we

call (V ′, E ′) a subgraph of G. The graph G[V ′] is called the induced subgraph, which

has V ′ as vertex set and all edges of G that run inside V ′. Given G, if we replace

an edge (u, v) ∈ E by two new edges (u, v′) and (v′, v) and add v′ as a new node

to the vertex set, we call the resulting graph a subdivision of G. Subdivisions of

subdivisions of G are also subdivisions. If a graph G contains a subgraph S that is

a subdivision of a graph M , then we call M a minor of G.

For a vertex v of some undirected graph, by d(v) we denote the degree of v, which

is the number of vertices u such that there is an edge from u to v. Here, we also say

that v is a neighbor of u. In a directed graph a vertex v has an in-degree and an

out-degree and the degree is the sum of in- and out-degree.

In a graph G, a path is a non-repeating sequence of neighboring vertices. A path

where we allow for the first vertex to be equal to the last one is called a cycle.

A graph in which for all vertices u 6= v there exists a path from u to v is called

connected. If in a graph G there exists a cycle containing all vertices of G, then the

cycle as well as the graph are called Hamiltonian.

DAGs, Forests and Trees 25

In many applications it is desirable to enrich graphs with more properties. If we

regard graphs as structures that means introducing more relations next to the edge

relation. For example, we may want to assign symbols to vertices. The relation

capturing this is a subset of V × Σ where Σ is a set of symbols.

Often, we enforce that this new relation, in fact, is a map V → Σ. However, it is

convenient to represent this by using |Σ| unary relations, i.e. the family (Qa)a∈Σ and

hence we get the structure (V ;E, (Qa)a∈Σ). Even more restrictive than assigning

unique symbols is the notion of coloring. Here, we refer to the symbols as colors.

Usually, if we have k colors, we set |Σ| = [k] and impose some condition on the

coloring. A common one is requiring adjacent nodes to have different colors, but

others exist as well depending on the application.

Another way to enrich graphs lies in embedding more precomputed information

like the transitive closure of E. When we turn to logic this becomes important.

2.4 DAGs, Forests and Trees

An important type of graphs are directed acyclic graphs (DAGs). In these, one can

define a notion of up and down, i.e. a partial order. DAGs will come up later again

in the definition of circuits. Continuing further we arrive at the notions of forests

and trees. We only consider finite forests and trees here.

There is a certain diversity when it comes to forests. The first version is the case

where a forest is a special kind of undirected graph.

Definition 4 (Undirected forest and undirected tree). An undirected graph in which

there exists at most one path between all pairs of vertices is called an undirected

forest. An undirected graph in which there exists exactly exactly one path between

all pairs of vertices is called an undirected tree.

Equivalently, we can say that such a forest is a tree if it is connected. Usually one

assigns a certain node in the graph the role of being the root node. In the undirected

case, every node can act as a root node. In the course of this work it will always

be either clear or unimportant which node should be considered the root, so we do

not introduce an explicit notation. In contrast, in the directed case the root node is

fixed.

Definition 5 (Directed forest and directed tree). Given an undirected tree T =

(V ;E), let r ∈ V be some node in T and let d(r, v) be the length of the path from

r to a node v ∈ V . Then (V ;E ∩ {(v1, v2) | d(r, v1) < d(r, v2)}) is a directed tree.

Directed forests are unions of directed trees.

26 Structures

In both the directed and undirected case, forests are unions of trees. In a directed

forest, nodes of in-degree 0 are the root nodes. There is an isomorphism between

directed trees and undirected trees that have a designated root node. The same then

holds for forests, hence we will not strictly distinguish between both cases. Nodes

of out-degree 0 are called leaves. The depth of a (directed) tree is the length of the

longest path from the root to a leaf. The depth of a forest is the depth of its deepest

tree. We call the members of a set of trees balanced if they satisfy that all leaves are

of depth O(log |V |). If a (directed) forest or tree has an edge (u, v) ∈ E, then u is

the parent of V and v is a child of u. The children of a node are called siblings. By

looking at the transitive closure of parents we get the set of ancestors which in turn

defines an ancestor relation. It is the transitive closure of the edge set E.

The next concept is labeling. As for graphs in general, we can assign nodes a label.

For a tree (V ;E), let Σ, which is also called alphabet, be a set of labels. Then a

labeling is a total map l : V → Σ. The labeled forest or tree can be denoted as

(V ;E, l). For l we can also use the notation as introduced for general graphs and

use a predicate Qa for each letter.

Continuing, a forest can be ranked or unranked.

Definition 6 (Ranked labeled forest). Given a labeled forest (V ;E, l), it is called

ranked if there exists a map r : Σ→ N such that for all v ∈ V , r(l(v)) is the number

of children of v. The pair (Σ, r) is called the ranked alphabet.

This definition implies an assignment of degree to label, since all nodes of the same

label have the same degree. The notion of a ranked forest can also be applied to

forests that are not labeled. We can regard these as ones in which all inner nodes

have the same label. Hence all these nodes need to have the same degree.

Definition 7 (Ranked forest). A forest (V ;E) is called ranked if all non-leaf nodes

have the same degree.

For example, if in a ranked forest inner nodes have the degree two, it is called

binary. Forests that are not ranked are called unranked, meaning that they are not

necessarily ranked.

A ranked tree is called complete if all leaves are at the same depth.

Finally, there is a distinction of whether siblings have an order or not. In the way

we defined forests and trees as graphs having certain properties, there is no order.

The set of children of a node is simply a set. If we want to have a sibling order, we

need to add it to the model. Where in a forest F = (V ;E) the set E resembles a

kind of vertical order, a sibling order would be a horizontal one. So, given F , let

S ⊆ V × V be an order relation that is total whenever it is restricted to a sibling

set. Then an ordered forest can be denoted as (V ;E, S).

DAGs, Forests and Trees 27

If we put some of the definitions together, we get trees that are directed, ranked,

labeled, and ordered. Assume that (V ;E) is the directed graph, (Σ, r) the ranked

alphabet, l : V → Σ the labeling function, and S the sibling order. We could denote

such a tree as (V ;E, l, S), however most of the time we will not be that explicit.

These kinds of trees will re-appear later in the form of terms. This is hinted by

the fact that such trees can be easily denoted as terms. If a tree t has a root

that is labeled a and has the subtrees t1, . . . , tr(a), then we can denote the tree as

φ(t) = a(φ(t1), . . . , φ(tr(a))), where φ gives us the translation. For leaves we get

0-ary function symbols. In the case of binary trees, the term notation can be made

in-order instead of pre-order.

Similar to the previous case, the unranked variant is also relevant. Here, we can

denote forests using an additional operation symbol that works as a horizontal

concatenation of trees. This operation + will be the topic of a later chapter. Here,

we can already borrow it for notational purposes: If a tree t has a root labeled a,

but is not ranked then we do not know the number of children. Since we are in the

ordered case, the children can be regarded as a forest, or rather as a word of trees.

Let f be this forest and t1, . . . , tn be the trees that make up f . Then we may write

f = t1 + . . .+ tn and t = a(t1 + . . .+ tn).

DAGs occupy the space between trees and general graphs, but there are other

notions, which also fit here. They all have the benefit of providing us with additional

structure of the graph, which will help to solve problems more efficiently.

Graphs that are not trees can look quite like trees from a distance, which means

that if you look closely, substructures may exist in a graph that are not a tree, but

if the graph is abstracted away from those local substructures, what is left is a tree.

It turned out that for computational purposes such graphs often behave as well as

actual trees. This notion of abstraction goes under the name of tree-decomposition.

Definition 8 (Graph of tree-width k and tree-decomposition). Given a graph

G = (V ;E) then (T, τ) is called a tree-decomposition of G if T is a tree and

τ : V (T)→ 2V is a map for which the following conditions hold:

• For each v ∈ V there exists b ∈ V (T) such that v ∈ τ(b).

• For each (u, v) ∈ E there exists b ∈ V (T) such that {u, v} ⊆ τ(b).

• If there is a path from r ∈ V (T) to s ∈ V (T), then for all nodes t ∈ V (T) on

the path holds that τ−1(r) ∩ τ−1(s) ⊆ τ−1(t)

The elements of V (T) are called bags. The size of the largest bag minus one is the

width of the decomposition width(T, τ). The minimal width of all decompositions of

G is called the tree-width of G, which we denote as width(G).

28 Structures

Note that we define the width as the size of the largest bag minus one. That is

because this way we get a tree-width of one for trees. A set G of trees is said to have

bounded tree-width if there exists k ∈ N such that all graphs of G have a tree-width

that does not exceed k.

Apart from tree-decomposition and width there exist two more general width

concepts: Clique-width [CO00] and NLC-width [Wan94]. If a set of graphs has

bounded tree-width, then it also has bounded clique-width. A set of graphs has

bounded clique-width if and only if it has bounded NLC-width [CO00]. For those

reasons the notions of bounded clique-width and bounded NLC-width are equivalent.

In both cases a decomposition of a graph G is a term which, if evaluated, generates

G. In the decompositions colorings are used. The minimal number of colors required

then is the width.

Definition 9 (Graph of NLC-width k and NLC-decomposition). Graphs of NLC-

width k are defined inductively:

• Colored graphs of a single node are graphs of NLC-width k.

• Given a graph (V ;E, l) of NLC-width k and a map l′ : [k]→ [k] then (V ;E, l′◦l)
has also NLC-width k.

• Given two disjoint graphs G1 = (V1;E1, l1) and G2 = (V2;E2, l2) of NLC-width

k and a set S ⊆ [k]× [k], then G1 ×S G2 has also width k, where G1 ×S G2 is

defined as (V1 ∪ V2;E1 ∪ E2 ∪ E ′, l′),

E ′ = {{v1, v2} | ∃(i, j) ∈ S : v1 ∈ l−1
1 (i) ∧ v2 ∈ l−1

2 (j)},

l′(v) = l1(v) if v ∈ V1, and l′(v) = l2(v) if v ∈ V2.

An NLC-decomposition of a graph G is a term made up of the previous operations

that evaluates to G.

Definition 10 (Graph of clique-width k and clique-decomposition). Graphs of

clique-width k are defined inductively:

• Colored graphs of a single node are graphs of clique-width k.

• Given two disjoint graphs G1 = (V1;E1, l1) and G2 = (V2;E2, l2) of clique-

width k then G1 ∪ G2 has also clique-width k where G1 ∪ G2 = (V (G1) ∪
V (G2);E(G1) ∪ E(G2), l1 ∪ l2), i.e. l(v) = l1(v) if v ∈ V (G1) as well as

l(v) = l2(v) if v ∈ V (G2).

• Given a graph (V ;E, l) of clique-width k and two colors a, b ∈ [k], then la→b(V)

is defined as la→b(v) = l(v) if l(v) 6= a and la→b(v) = b else. Now, (V ;E, la→b)

has also clique-width k.

Words 29

• Given a graph (V ;E, l) of clique-width k and two colors a, b ∈ [k], then the

edge set Ea,b is defined as E ∪ {{u, v} | l(u) = a, l(v) = b, u 6= v}. Then

(V ;Ea,b, l) is also a graph of clique-width k.

A clique-decomposition of a graph G is a term made up of the previous operations

that evaluates to G.

2.5 Words

Words are trees, trees are graphs, and graphs are structures. A word corresponds

to a degenerated tree, which is a list. Hence, we can regard the base set of

words as numbers, for which the order predicate < exists. Together with a set of

symbols assigned to the positions this yields that a word of length n is a structure

([n];<, (Qa)a∈Σ). Notice that < is actually the transitive closure of a local comparison

predicate +1. An equivalent way to conceptualize words is as maps of the form

[n] → Σ. Infinite words we get through N → Σ. Most commonly, a word w is

seen just as a sequence written as w = w1w2 . . . wn, which is short for the tuple

(w1, w2, . . . , wn). Usually, we require Σ to be finite and non-empty. If that is the

case, we call Σ an alphabet and its elements letters.

Concatenation is a binary operation taking two values x and y where the result is

the tuple (x, y). We usually write xy instead. Also, if x = x1x2 and y = y1y2 are

also already words, we do not consider xy to be a word of words, but xy = x1x2y1y2,

i.e. concatenation is associative. That way each word can be decomposed until we

reach non-decomposable elements, which are the letters.

Given an alphabet Σ, by Σ∗ we denote the set of all finite words we can make up

of letters in Σ. The empty word is denoted by ε and contained in Σ∗. Note that Σ∗

together with concatenation is a free monoid, where ε is the neutral element.

The empty word has length 0. A letter considered as a word has length 1. Given a

word w = uv, by |w| we denote the length of w, which is defined as |w| = |u|+ |v|.
By Σn we denote all words of length n. Given a word w ∈ Σ∗ and X ⊆ Σ, by |w|X
we denote the number of letters in w in X. For a ∈ Σ, we set |w|a = |w|{a}. Also,

for i ∈ [n], by w(i) we address the i-th letter of the word. For convenience we also

write wi sometimes. Given a word w ∈ Σ∗, then u ∈ Σ∗ is called a prefix of w if

there exists v ∈ Σ∗ such that uv = w. Similarly, if v exists so that vu = w then u is

a suffix of w. If u is a the prefix of a suffix of w, then w is called a factor or infix of

w.

As for graphs and trees we again have the means to enrich the structure representing

a word. One example that we will cover in the next section, is, where a word actually

has a tree structure hidden within it. By exposing this tree structure many problems

30 Structures

become tractable in contrast to the general case, which we may call the context-free

case.

There are different kinds of additional predicates we can add to the pure word

model. One kind consists of numerical predicates. In general, a numerical predicate

can be purely defined through the domain. An example is the < predicate over

[n] as well as the ternary relations + or ×. Here, for example, (i, j, k) ∈ + if

i+ j = k. The predicates (Qa)a∈Σ, which assign the letters, are not numerical. They

introduce additional information. One can see the presence of numerical predicates

as precomputed information obtained purely by the domain. In the next section we

consider a setting of words enriched by a certain non-numerical predicate.

2.6 Nested and Well-Matched Words

There are many approaches to bring together trees and words. This is desired

as some computational models take words as inputs, where at the same time the

input is supposed to resemble a tree. We focus on one particular approach that

was conceived of in the context of visibly pushdown languages. The model has two

equivalent incarnations: Nested words and well-matched words. A nested word is a

word with an additional binary relation , so w = ([n];<, (Qa)a∈Σ,) that satisfies

the following:

• i j implies i < j.

• i j, i′ j′, and i < i′ imply that j′ < j or j < i′.

Also, we require that each position is in relation with at most one other posi-

tion. That means that this indeed is a nesting without crossings and we call a

matching predicate.

A closely related model are well-matched words. Here, we partition the input

alphabet Σ into three sets Σcall, Σret, and Σint and write Σ̂ = (Σcall,Σret,Σint); Σ̂

is called a visible alphabet. These sets contain call, return, and internal letters.

Whenever we work with well-matched words, the partition of the alphabet is fixed.

Now, w is a well-matched word if either it is empty, consists only of internal letters

or it is of the form w1aw2bw3, where a ∈ Σcall, b ∈ Σret, and w1, w2, w3 are again

well-matched words.

Thus, a well-matched word is just an ordinary word ([n];<, (Qa)a∈Σ) that satisfies

an additional property with respect to Σ̂.

Nested and Well-Matched Words 31

The function ∆: Σ̂∗ → Z assigns words their height, which is the number of call

letters minus the number of return letters: w 7→ |w|Σcall
− |w|Σret . For a word w, we

call the sequence

∆(ε),∆(w1),∆(w1w2), . . . ,∆(w1 . . . wi), . . . ,∆(w)

the height profile of w.

There is an isomorphism between nested words and well-matched words. Given

some nested word over Σ, we can build a corresponding well-matched word over

(Σcall,Σret,Σint), where the three parts are copies of Σ. If in the nested word the

letter in some position i is not part of a matching, we declare it to belong to Σint

in the well-matched word. If it is part of a matching i j, then we declare it to

belong to Σcall. Finally, if j i is the case, it belongs to Σret. On the other hand, if

we are given a well-matched word, we can compute the matching predicate. Doing

so makes it obvious that can be interpreted as making the matching information

directly available in contrast to well-matched words.

There exists also an isomorphism between unranked forests and nested words if we

assume that all positions are part of a matching, which is equivalent to Σint = ∅ if

seen from the perspective of well-matched words. This is a weak restriction since

internal letters can be simulated by pairs of call and return letters. If we have a tree

t = a(f) that has a root labeled a and a forest f = t1 + . . .+ tk as children, then

we define the nested word nw(t) = anw(f)a where the first and the last positions

match and nw(f) = nw(t1) . . . nw(tk). Note that for a leaf we get nw(a()) = aa.

Conversely, given a nested word over alphabet Σ, we can define a forest over Σ2

that resembles the nested word. Since there is an isomorphism between nested and

well-matched words, we may write wm(t) to get the well-matched word for some tree,

forest, or nested word t. To get the forest from nested or well-matched words, we

write forest(·). By WM(Σ̂) we denote the set of well-matched words with respect to

Σ̂. These two sets and the set of unranked forests are related in the way described.

Since both versions are isomorphic, we will use them interchangeably. However,

notice that nested words possess more directly accessible information than well-

matched words. In well-matched words some computation is needed to obtain the

corresponding matching predicate. At the same time the way from nested words

to well-matched words does not need actual computation. As we will see, this has

consequences like the existence of a finite automaton model for nested words whereas

well-matched words need a pushdown automaton model.

The model we described so far can be extended. Given Σ and a partition

(Σcall,Σret,Σint) then only some words of Σ∗ are well-matched words, so WM(Σ̂) ⊆ Σ∗.

What meaning can we assign the other words? A word baba ∈ Σ∗ for a ∈ Σcall

and b ∈ Σret has a matching in the second and third position, but the first and

32 Structures

last positions are unmatched. We do not call baba well-matched, but we do call

it matched in the context of a partition (Σcall,Σret,Σint). We can now just allow

for unmatched positions and consider those positions pending matchings. The

correspondence in terms of nested words can be made available by introducing a

symbol ∞. The word baba becomes a structure of domain {1, 2, 3, 4} and we have

2 3, but further we get −∞ 1 and 4 ∞. The symbols ∞ and −∞ are

not part of the domain, so we introduce unary relations −∞ and ∞. Such

structures we call weakly nested words. Besides different expressibility this model

behaves differently in certain situations. For the most part we will stick to nested

words and well-matched words as they offer nicer presentation, all expressibility we

need, as well as the isomorphism to unranked forests. Note that in the literature

both versions occur.

2.7 Conclusion

Summary

We introduced basic notation for the chapters ahead. Besides arranging the content

we mainly gave a representation of well-established concepts. One reoccurring

challenge lies in the fact that this work spans over many fields all having their unique

and sometimes mutually exclusive notation.

In particular we looked at structures. Graphs, forests, trees, and words are special

cases, which we also covered. Between graphs and trees there is some middle-ground

in terms of decompositions.

Finally, we arrived at words. They are degenerated trees and at the base of

computational complexity. Words are what we use as inputs and complexity is

measured in the length of the input. To bridge words and trees we also looked into

nested words and well-matched words.

Contributions

In this section we did not define any new objects or obtain new results, so the

contribution lies in the presentation of what is already known.

Sources and Related Work

All objects we handle can be interpreted as structures; hence model theory is at

the base. See e.g. the book of Ebbinghaus and Flum [EF95] for an introduction in

Conclusion 33

finite model theory. Structures and algebras are closely related on the surface, but

we use them in very different ways. An introduction to this area is, among others,

the book of Almeida [Alm94]. Algebras will be covered in the next chapter.

Another special case of structures are graphs. A comprehensive treatment of graph

theory can be found in the book of Diestel [Die12].

To link trees and graphs we looked at two kinds of decompositions: Tree-

decompositions [Hal76] and clique-decompositions [CO00]. These decompositions

can be used to assign a width to a graph. There also exists a decomposition

variant that is equivalent to clique-width if bounded width is considered, which is

NLC-width [Wan94]. A set of graphs has bounded clique-width if and only if it has

bounded NLC-width [CO00]. There is a large body of research concerning those

decomposition and width notions.

For word structures there are many sources for basics on words and word languages,

for example the books of Hopcroft and Ullman[HU79] and Straubing [Str94]. Nested

words and well-matched words were introduced by Alur and Madhusudan in [AM04,

AKMV05, AM09]. They are rooted in visibly pushdown languages as introduced by

Mehlhorn [Meh80] and popularized by Alur and Madhusudan [AM04].

Further Research

With regards to the way the different width concepts will be used later, it would be

interesting and beneficial to lower the upper bound of deciding bounded clique-width

or NLC-width. Up to now the upper bound is P and a desirable bound would be

NC.

Chapter 3

Algebras

In the previous chapter we considered structures, which were motivated as a way to

model data and inputs. Now, we need the means to do computations on inputs. To

achieve this we introduce universal algebras (algebras for short) and then continue by

covering terms, which can be evaluated over algebras, and homomorphisms, which

are mappings between algebras.

3.1 Universal Algebras

An algebra itself happens to be a special kind of structure, however, algebras are

used in a very different manner.

Definition 11 (Universal algebra). A universal algebra is a structure where each

relation is a total function. The functions of an algebra are called operations. If not

all functions are total, it is called a partial algebra.

An algebra often has a domain, which can be regarded as containing structures of

some kind. The operations of an algebra then can be used to combine and modify

structures. An example is the free monoid whose domain contains words and its

operation combines them.

In this setting, a signature of an algebra holds the arities of the operations of the

algebra. For some algebra A, its signature is σ(A) ∈ N∗. Note that there this is a

difference compared to structures: The arity of a function is one less compared to

its arity if interpreted as a relation; e.g. a constant function has arity 0, but if, in

contrast, regarded as a relation it has arity 1.

36 Algebras

There are situations where it is useful to have more than one domain set. This

stems from the idea that elements belong to some type and operations may be

sensitive to that type. Although multiple domain sets could be made into one by

building the Cartesian product or a union, this approach is cumbersome, unnatural

and usually leads to partial algebras. To that end we define many-sorted signatures

and many-sorted algebras.

Definition 12 (Many-sorted signature). Let S ∈ N be a number of sorts. A

many-sorted signature σ of k operations is an element of ([S]∗ × [S])k.

A (many-sorted) signature is a k-tuple of pairs σ = ((w1, a1), . . . , (wk, ak)). The

i-th pair (wi, ai) of the tuple codes the in- and outputs of the i-th operation. The

first element wi of the pair is a word. If this word has length l = |wi|, the i-th

operation has arity l. The letters of such a word indicates the sorts of the inputs of

an operation. The letter ai specifies the output type. We use the following notation:

• Inσ(i) addresses the word wi. Also, Inσ(i, j) is the j-th letter of Inσ(i).

• Arσ(i) addresses the arity |wi|.

• Outσ(i) addresses the letter ai.

• σ(i) addresses (wi, ai).

In all notation defined we also allow for using an operation ~ instead of i, so e.g.

σ(~) is the tuple (w, a) that corresponds to the i-th operation ~ of some algebra.

Single sorted signatures embed into this more general setting. In this case the

words are unary and the only information left is the length of a word, which gives

us the arity of an operation.

Definition 13 (Many-sorted universal algebra). Given a many-sorted signature σ

with S sorts, a many-sorted universal algebra of signature σ is a tuple A = (D;O)

where:

• D = (Di)i∈[S] is the domain set of S sorts. We call the sets Di subdomains.

• O = (~i)i∈[|σ|] are the operations with

~i : DInσ(i,1) × . . .× DInσ(i,Arσ(i)) → DOutσ(i).

Sometimes by abuse of notation we will use D as if it was the union of all subdomains

and also for convenience if A is an algebra, we will use A as if it was the domain set

itself.

Universal Algebras 37

An algebra A is said to be finitely generated if there exists a finite subset G of

the domain D such that all other values of D can be obtained using the operations

of the algebra and constants in G, written as 〈G〉 = A. All algebras covered here

are finitely generated. Also, we assume that all algebras A have a set of constant

operations that generate A. For example, we define the algebra of natural numbers

with addition and multiplication as (N; +,×, 0, 1) since 〈0, 1〉 = N.

By writing 〈G〉 we generate all terms using the constants in G, which then evaluate

to some value. Whether one should include the empty term or not is an issue. Hence,

to make things easy, we disallow empty terms. If we still want an element in the

domain that acts as the empty term, we include an additional constant operation

explicitly. Usually, what is desired is not the empty term itself, but a neutral element,

like in the case of monoids. Also, this makes sense because e.g. it is not directly

clear what sort the empty term has.

Note that we do not allow finitary operations. Finitary operations would be

practical in some cases, however, in other situations they lead to more complexity.

It is possible to simulate finitary operations by using families of algebras. By doing

so, we also have more control over the actual arity used and this concept fits well

with families of circuits we will introduce later.

Definition 14 (Family of algebras). A family of algebras is defined as (An)n∈N,

where

Ai = ((D1)p1(i), . . . , (DS)pS(i);~i1, . . . ,~
i
k)

and for j ∈ [S], pj is some polynomial. Similarly, we define ~ij through signatures

and require:

• Outσ(A1)(j) = Outσ(Ai)(j) for all j ∈ [k] and i ∈ N.

• There exists a polynomial p such that for all i ∈ N and all j ∈ [k] it holds that

Arσ(Ai)(j) ≤ p(i).

Given a family of algebras A, we can naturally define a family of signatures

σ(A) = (σ(An))n∈N.

Example 15. We look at some algebras:

• Consider the rational numbers with multiplication, division, addition and

subtraction. This does not form an algebra directly because division is a partial

function. Hence, either we need one domain Q and one domain Q \ {0}
together with some additional operations, or we use one domain Q∪{⊥} where

⊥ stands for an undefined value due to a division by 0.

• The positive rationals without subtraction form a valid algebra (Q+; +,×,÷, 1).

38 Algebras

• The natural numbers together with the operations addition and multiplication

form an algebra (N; +,×, 0, 1). Finitary versions of + and × can be simulated

with a family of algebras (N; +n,×n, 0, 1)n∈N where +n and ×n take n naturals

as input.

• Natural numbers can be represented as binary words, i.e. there is an iso-

morphism between N and B∗. The algebra (B∗; +B,×B, 0, 1) has two binary

operations, which add or multiply two binary words representing integers. The

result is the sum or product without leading 0-s. Later it will be helpful if we fix

the length of the binary inputs. We then get a family (Bn; +B
n,×B

n, 0
n, 0n−11)n∈N

where within one member of the family the length is fixed to n. To account for

large values, all results are taken modulo 2n.

3.2 Terms

Terms (or, equivalently, expressions) are labeled and ranked trees that we can build

from a signature. It can be regarded as a syntactic object to which we can assign

meaning through an algebra of the same signature. For instance for the signature

σ = (2, 2, 0, 0) we can build a term t = (((∗4 ∗1 ∗4) ∗2 ∗3) ∗1 ∗4), where ∗i is an

abstract placeholders for operations. If we encounter a term, which we see in

context of a concrete algebra, we write ~i, which is the i-th operation of the algebra.

Now, consider the algebra (N; +,×, 0, 1) that has signature σ. We can evaluate

t over (N; +,×, 0, 1), which yields the value 1. One can now also write the term

directly by using the operations, which leads to the representation (((1 + 1)× 0) + 1)

for t. Evaluated over (B;∨,∧,⊥,>), we get > and the term can be written as

(((> ∨>) ∧ ⊥) ∨ >). Note that terms are trees and the way we write them is just

one of many to represent the tree. Therefore, it does not matter whether we use

infix or postfix notation for that matter.

We not only consider terms that are purely composed out of operations, in which

the leaves are 0-ary operations, but also terms with variables. We allow for a number

of variables, which each may occur several times within a term. For example, if

we look at terms with variables over the algebra (B;∧,∨,¬,⊥,>), we can ask for

valuations of the variables such that the term evaluates to >. This problem is known

as the NP-complete SAT problem [Coo71].

Definition 16 (Term). Given a signature σ of S sorts and a number of variables n

together with a map ξ : [n]→ [S] called a signature of the variables, then a (σ, ξ)-term

is a labeled ranked ordered tree where (V ;E) is the graph of the tree, the labeling is

l : V → {∗1, . . . , ∗|σ|} ∪ {�1, . . . ,�n}, and the following hold:

Terms 39

• If a node is labeled ∗i, its rank is Arσ(∗i) and if it is labeled �i, its rank is 0,

i.e. it is a leaf.

• We say v ∈ V has sort Outσ(l(v)) if l(v) = ∗i and otherwise it has sort ξ(i) if

l(v) = �i.

• We require that if vj is the j-th child of v, this implies that Outσ(l(vj)) =

Inσ(l(v), j).

The set of (σ, ξ)-terms of variable signature ξ is denoted by Tξ(σ) and for s ∈ [S]

the subset of all terms whose root has sort s is denoted by Tξs(σ). If for the number

of variables n = 0 holds, we speak of σ-terms and for the sets of such terms we write

Ts(σ) and T(σ). The set of terms having arbitrary variables of consistent types is

denoted by T∗s(σ).

In the single-sorted case, Ts(σ) collapses to T(σ) and ξ : [n]→ [1] can be regarded

as just the number n, so we may write Tn(σ). We also allow to write TX(σ) for

some set X by assuming a bijection between [n] and X.

A term in which for i ∈ [n] the variable �i appears at most once is called linear.

Note that T(σ) ⊆ Tξ(σ) and also note that variables can be interpreted as constant

operations if considered over a more complicated algebra as well. We will go deeper

into this later.

A (σ, ξ)-term we denote like trees as t(x1, . . . , xn). It is no coincidence that we

chose as the way of denoting terms the same as the one we introduced for trees;

terms are trees after all. In this notation, t is a tree which has n leaves x1, . . . , xn.

A special case of terms with variables are contexts where we have one variable for

every sort, i.e. n = S. However, a context must only contain one variable at most.

Definition 17 (Context). A (σ, ξ)-term is called a σ-context if ξ : S → S with

x 7→ x and if there exists only one node labeled �i for some i ∈ [n]. This node is

also called hole. The set of σ-contexts is denoted as C(σ). The set of contexts that

only have a hole of sort s is denoted as Cs(σ). Contexts that evaluate to some sort

s′ are denoted as Cs′(σ).

We will later come back to the notion of contexts.

For an operation ~ we defined σ(~), which holds the information of the input and

output types. We also have ξ, which is the signature of the variables. In an analogous

manner we can define σ(t(x1, . . . , xn)) ∈ [S]n × [S] for some t(x1, . . . , xn) ∈ Tξ(σ).

A substitution for a sort i ∈ [n] is a function Tξ(σ) × Tξi (σ) → Tξ(σ),

which takes terms t(x1, . . . , xn) and t′(x1, . . . , xn) and replaces each oc-

currence of �i in t(x1, . . . , xn) by t′(x1, . . . , xn). The result we denote as

40 Algebras

t(x1, . . . , xn)[xi/t
′(x1, . . . , xn)], which is again a term t′′(x1, . . . , xn) of the same sort

as t.

Here, we introduced terms as trees; they can be thought of as inductively defined

objects: Constants are terms and everything that is a term can be combined with

other terms resulting in a term. So, actually, an operation ∗i takes terms and results

in a term. This again forms an algebra:

Definition 18 (Term algebra). Given a signature σ of S sorts, the term algebra

T (σ) is defined as
(
T(σ); (∗i)i∈[S]

)
where ∗i(t1, . . . , tArσ(i)) is the tree whose root is

labeled ∗i and the children are t1, . . . , tArσ(i), providing that the result is a valid term.

We defined terms relative to some signature. A term can then be evaluated over

algebras of the same signature. Here, each symbol ∗i in the term is interpreted as

the i-th operation ~i of the algebra we evaluate in.

To also cover terms with variables, we need variable valuations to be able to

evaluate such terms. A variable valuation is a map ν : [n]→ D.

Definition 19 (Evaluation of terms). Given is an algebra A =
(
(Di)i∈[S], (~i)i∈[|σ|]

)
of signature σ and S sorts, a term t ∈ Tξ(σ) where ξ : [n] → [S] is the variable

signature, and variable valuation map ν : [n] → D respecting ξ. The evaluation

function evalνA : Tξ(σ)→ D is defined inductively:

• If t is of the form ∗i, then Arσ(i) = 0 and we set evalνA(t) = ~i.

• If t is of the form �i, then we set evalνA(t) = ν(i).

• If t is of the form ∗i(t1, . . . , tj) for terms t1, . . . , tj, then evalνA(t) =

~i(evalνA(t1), . . . , evalνA(tj)).

For terms without variables, evalA is defined as eval∅A.

Note that a term t over σ evaluated over T (σ) is again t. Also note that in order

to get a non-empty term algebra T (σ(A)), it is necessary that A contains 0-ary

operations, as we argued before by requiring a generating set to be present as

constants. We see that every element that is generated by the generators has a term

using the generators as constants.

Of course, we can also define evaluation for (σ, ξ)-terms without an valuation of

the variables. A term with n variables then evaluates not to an element of D but to

a function Dn → D.

Homomorphisms 41

3.3 Homomorphisms

A homomorphism is a mapping between algebras that preserves structure, i.e.

homomorphisms are distributive over the algebra operations.

We define homomorphisms in a very general way as maps between arbitrary

many-sorted algebras. The notion to be found in [Alm94] for example, utilizes the

restriction that homomorphisms only map between single-sorted algebras of the

same signature. In that setting the i-th operation of an algebra is mapped onto the

i-th of another, but since we map between arbitrary algebras we relax this restriction

and allow an operation to be mapped onto a term with variables that has the same

signature as the operation.

Definition 20 (Generalized homomorphism). Given two many-sorted algebras A =

(D;O) and B = (E;P) of S, respectively S ′, sorts, as well as a map α : O → T∗(σ(B))

such that there exists a unique map β : [S]→ [S ′] with σ(α(~)) = β(σ(~)) for all

~ ∈ O. Then α∗ : T(σ(A))→ T(σ(B)) is defined as follows: If d, d1, . . . , dArσ(~) ∈ D
with d = ~(d1, . . . , dArσ(~)), then

α∗(d) = α(~)(α∗(d1), . . . , α∗(dArσ(~))).

We set φ : D → E for d ∈ D to be φ(evalA(t)) = evalB(α
∗(t)) if α∗ satisfies that

φ(evalA(t)) = φ(evalA(t′)) for all t, t′ ∈ T(σ(A)) with evalA(t) = evalA(t′). The

mapping φ then is called a generalized homomorphism.

The previous definition allows images of α to be non-linear terms. Usually, we

only consider generalized homomorphisms where the images of α are linear terms

unless stated otherwise. For mappings between algebras we also like to write A → B,

where, in fact, it is a mapping between domains, of course.

The classical notion of homomorphisms is a special case of the generalized homo-

morphisms we defined. In it, one assumes that source and target of the mapping

have the same signature.

Definition 21 (Homomorphism). For two algebras A and B of the same signature,

a generalized homomorphism φ : A → B that is defined through α : O → T(σ) is a

homomorphism if α restricted on non-constant operations is the identity map, i.e. α

maps the i-th operation of A to the i-th operation of B.

As an example, consider the case of free monoids. Let φ : A∗ → A∗ be a ho-

momorphism. A free monoid has a binary operation that is concatenation and a

homomorphism does not change that: φ(u · v) = φ(u)φ(·)φ(v) = φ(u) ·φ(v). Further,

we may assign arbitrary terms to constant operations, or in this case more precisely,

words. So, we could have a 7→ abc for a, b, c ∈ A. In fact, it is known that e.g. in

42 Algebras

the special case of semigroups a homomorphism is determined by its images of the

generating elements of the semigroup. In our case of generalized homomorphisms it is

determined by α, that is the image of all operations. The group case embeds through

the fact that the generating elements should be present as constant operations.

From now on we will also not strictly distinguish between generalized homomor-

phisms and homomorphisms as it is usually clear from the context.

We say an algebra A divides B if there exists a subalgebra B′ of B and an epimor-

phism φ : B′ � A; we write A ≺ B. Given homomorphisms φ and ψ then ψ is said

to factor through φ if there exists a homomorphism θ such that θ ◦ φ = ψ.

Given a single-sorted algebra A = (D;O), a congruence relation ∼ on A is an

equivalence relation on D satisfying that for all ~ ∈ O of arity k and xi ∼ yi for

xi, yi ∈ D and i ∈ [k], holds that ~(x1, . . . , xk) ∼ ~(y1, . . . , yk). Such a relation

induces as natural homomorphism π∼ : D→ D/∼ with x 7→ [x]∼. Also, we can define

O/∼ from O. For ~ ∈ O there is ~∼ ∈ O/∼ such that ~∼(π∼(x1), . . . , i(xn)) =

π∼(y) if ~(x1, . . . , xn) = y. The induced algebra A/∼ = (D/∼;O/∼) is called the

quotient algebra. The concept of congruences carries over to the many-sorted case.

Given a many-sorted algebra A = (D;O), a congruence relation ∼ ⊆ Ds × Ds on

A is an equivalence relation on one of the subdomains of D that has to satisfy

that if x ∼ y implies that for all terms t ∈ Ts(σ(A)) that have subterm t′ with

evalsA(t′) = x it holds that evalsA(t) ∼ evalsA(t[t′/t′′]) where t′′ is some term with

evalsA(t′′) = y. Given a congruence on Ds, we can define a quotient algebra A/∼.

Here, the s-th subdomain becomes Ds/∼s. However, we also have to build quotients

in other subdomains as well. Given ∼s we define ∼i for all i ∈ [S]. For x, y ∈ Di

we let x ∼i y if for all terms t ∈ T (σ(A))s that have subterm t′ with evaliA(t′) = x

it holds that evalsA(t) ∼ evalsA(t[t′/t′′]) where t′′ is some term with evaliA(t′′) = y.

The quotient algebra A/∼ now is ((D1/∼1, . . . ,DS/∼S);O′), where O′ contains

quotients of the functions in O as defined for the single-sorted case. The natural

homomorphism π∼ is also defined similarly as in the single-sorted case.

We defined a homomorphism based on a congruence. The converse is also possible:

Given a homomorphism φ : A → B, the kernel is

ker(φ) = {(a, b) ∈ D× D | φ(a) = φ(b)},

where D is the domain of A.

Proposition 22. Kernels of homomorphisms are congruence relations.

Proof. Given a homomorphism φ : A → B between two many-sorted algebras, the

kernel ker(φ) has to satisfy that (evalsA(t), evalsA(t[t′/t′′])) ∈ ker(φ) where t, t′, t′′ ∈
T(σ(A)), t′ is a subterm of t and (evalsA(t′), evalsA(t′′)) ∈ ker(φ). Observe now that

Semigroups and Semirings 43

φ(t) = φ(t[t′/t′′]), i.e. t and t[t′/t′′] are in relation, so the condition for a congruence

relation is satisfied.

Theorem 23 (Homomorphism Theorem for many-sorted algebras). Given a homo-

morphism φ : A → B. Then there exists exactly one homomorphism ψ : A/ker(φ)→
B such that φ = ψ ◦ πker(φ) where πker(φ) : A → A/ker(φ). Also, if φ is an epimor-

phism, then ψ is an isomorphism.

Proof. Let pa be some element in the non-empty set π−1
ker(φ)(a) for a ∈ A/ker(φ). We

choose ψ : A/ker(φ)→ B as a 7→ φ(pa). Since φ(x) = ψ(πker(φ)(x)) must hold, clearly

ψ is unique. Also, observe that ψ is a homomorphism. If ψ is an epimorphism,

ψ−1(x) 6= ∅ for x ∈ B. For a 6= b we have that ψ(a) 6= ψ(b) since otherwise

(pa, pb) ∈ ker(φ), which is a contradiction that shows isomorphism.

An important notion is freeness. The name stems from the intuition that an algebra

is free of nontrivial equations. In a commutative group, for example, the equation

xy = yx holds. We do not define equations formally here since this is out of scope.

A standard way to define freeness is to say that a free algebra contains all terms,

so we just consider the term algebras T (σ) as the free algebra with respect to a

signature σ.

Freeness also exists for special kinds of algebras like monoids, groups, or even

commutative groups. Those examples are clearly not free algebras, but they are free

with respect to some variety.

Finally, we want to argue that the framework of many-sorted algebras and gen-

eralized homomorphisms that we laid out behaves as well as the classical notions.

In the course of this work it will become apparent that these generalized objects

indeed are useful and even necessary for certain applications.

3.4 Semigroups and Semirings

Previously, we considered algebras in a very general sense. Classical algebra, however,

focuses on certain classes of algebras like groups or rings. This setting can, of course,

be embedded in the framework we laid out before, however, this leads to some

uncommon notation due to the generality we provided. When we deal with well-

known objects like groups etc., we will use the common notation. For example, a

group is noted as (G; ·) whereas in our framework, the generators should be present

as constant operations and the inversion as a unary operation.

First, we look at algebras having · as their single binary operation. Depending on

properties of this operation we give these algebras different names. Such an algebra

is called a magma if the operation is total, i.e. for all x, y ∈ D the product x · y is

44 Algebras

defined. An element e ∈ D is called neutral if for all x ∈ D holds that x ·e = e ·x = x.

A magma with neutral element is called unital magma. A magma that is associative

is called semigroup, i.e. for all x, y, z ∈ D holds that (x · y) · z = x · (y · z). Terms

over semigroups are trees, but because of associativity, we may drop the parentheses

and hence get just a sequence. We also drop the · and just write xy for the product.

A semigroup with a neutral element is called a monoid. A monoid in which each

element has an inverse is called a group, i.e. for all x ∈ D there exists x−1 ∈ D such

that xx−1 = x−1x = e. A group that is commutative is called an Abelian group,

i.e. for all x, y ∈ D holds that xy = yx. An element x ∈ D is called idempotent if

xx = x.

Semigroups and monoids only differ in the presence of a neutral element. In

application settings like ours, most authors decide to either go with monoids or

with semigroups. For example, if a semigroup is used to recognize a language, then

the empty word has to be left out if the semigroup is not a monoid. In this work

we will mostly use monoids. A monoid M is called free over A if there exists a

map ι : A ↪→ M such that for all monoids N and maps f : A → N there exists

precisely one homomorphism φ such that φ|A ◦ ι = f . It is then equivalent to A∗,

which contains all sequences of elements in A including the empty one, so every free

monoid is isomorphic to a monoid A∗. The elements of A∗ can be regarded word

structures. Further, monoid homomorphisms are already defined by the image of A.

We call an element x absorbing or a zero if for all y ∈ D holds that yx = xy = x.

A zero is always unique. We call an element x ∈ D nilpotent if there exists a number

n ∈ N such that xn = 0 and x is called aperiodic if there exists a n ∈ N such that

xn = xn+1. A semigroup is called aperiodic if all its elements are aperiodic. This is

equivalent to saying that there is no subset of the semigroup that is a non-trivial

group. A monoid homomorphism φ : A∗ → S is called quasiaperiodic if for all t ∈ N
the image φ(At) does not have subsets that are non-trivial groups.

A semiring (R; +, ·) is an algebra having two binary operations such that (R; +) is a

commutative monoid, (R; ·) is a monoid, and distributivity holds, i.e. (a+b)c = ac+bc

as well as c(a+ b) = ca+ cb. If in addition (R; +) is a group, (R; +, ·) is a ring.

3.5 Conclusion

Summary

In this chapter we introduced the basic notions of algebra. The term algebra is very

generic and used in many different ways throughout the literature. Here, we built

upon the framework of universal algebras where a domain and functions over this

domains are given. First, we defined many-sorted algebras as a way to have a clean

Conclusion 45

distinction between different kinds of data and thereby bypass partial algebras. We

also considered families of algebras.

After introducing basic algebra definitions, we continued with the concept of terms,

which are trees that capture calculations within an algebra.

We then examined (generalized) homomorphisms. Again, we defined objects that

are more general as usual. Still, one can consider them as being quite natural, and

we will see that they are indeed needed later. We do not know of any publications

containing this concept. We showed some results that are known from group theory

and the theory of universal algebras, most importantly a generalized version of the

Homomorphism Theorem.

Finally, we considered classical algebra objects like groups and rings in the context

of our framework.

Contributions

We provided very general definitions of objects that usually occur in more specialized

versions. We exhibited a framework consisting of families of many-sorted algebras,

fitting congruence relations, generalized homomorphisms and a Homomorphism

Theorem.

In [KLL17a, KLL17b] we already gave early versions of the definitions but enhanced

some of them.

Sources and Related Work

We used the book of Almeida [Alm94] as a foundation and generalized notions from

there. Related notions of many-sorted algebras can be found in [Cou90, Wir90,

EM85], however while employing infinitely many sorts and infinite signatures.

There are different related theories. One of them is category theory itself, as well as

an approach in which categories themselves act as a substitute for algebras [Til87].

Another related area could be type theory. For both category and type theory we

did not dwell into research of finding similarities but suspect that both could be

alternative frameworks to formulate results in. For this work the usage of algebras

emerged naturally. Although not explicitly named as such, forest algebras [BW08],

which we will cover in the next chapter, are an example of many-sorted algebras

that we use extensively in this work.

46 Algebras

Further Research

We performed first steps in showing the utility of this very general set of definitions.

They could have more applications and they themselves can be researched more

Chapter 4

Recognition by Algebras

In this and the following chapters we consider recognition of languages. We have

two ways to look at what languages are. On the one hand, a language is a subset

of some (free) algebra. On the other hand it is a set of structures that share the

same signature and maybe also other properties. A finite word, for example, can be

interpreted as an element of a free monoid or as a structure whose domain consists of

the word positions. In this chapter we examine recognition by algebra, so we regard

languages as subsets of algebras. However, there is a one-to-one correspondence

between the two perspectives.

Language recognition by algebras is best known in the form of monoids recognizing

word languages. Here, a language L is a subset of Σ∗, i.e. a subset of the free

monoid, and a monoid M recognizes a language L if there exists a homomorphism

φ : Σ∗ →M such that L = φ−1(φ(L)). In this case, intuitively speaking, the monoid

M captures all the relevant information of L, or one could say that L, which in

general is an infinite subset of an infinite monoid Σ∗, can be represented by φ(L) as

a subset of M . If M is finite, we have a true compressed representation. In the case

that M is finite, L is, in fact, regular.

We now want to take this mechanism and generalize it to arbitrary algebras.

Definition 24 (Recognition by algebras). Given the possibly many-sorted algebras

A = (D;O) and B = (E;P), a language L ⊆ D of a single sort and a homomorphism

φ : A → B, then L is recognized by B and φ if φ−1(φ(L)) = L.

An equivalent notion lies in saying that there is a subset X of B such that

φ−1(X) = L. That means we find a corresponding set of L in B, so L is embedded

in B. Note that A does not have to be free. Recognition is a concept that can be

applied to arbitrary algebras and subsets.

48 Recognition by Algebras

If we stay within the interpretation of recognition as a way to represent a language

in a compressed way, a natural question comes up that asks how to find the smallest

algebra that recognizes a language. In the world of finite words and monoids, this

smallest algebra is the syntactic monoid. The syntactic monoid is given through

a syntactic congruence. We want such a mechanism for general algebras. Given

a language that is a subset of an algebra A, we are interested in the smallest

recognizing algebra of the same signature. The recognizing homomorphism in this

case should be not be generalized. Similar to the word case we define a syntactic

congruence, which generalizes the one for words. Recall that the evaluation of a

context is a function.

Definition 25 (Syntactic congruence). Given is an algebra A = (D;O) of S sorts

as well as a language L ⊆ Ds for some s ∈ [S]. For r ∈ [S], two elements u, v ∈ Dr

are syntactically congruent if for all contexts c ∈ Cr
s(σ) holds that

evalA(c)(u) ∈ L ⇔ evalA(c)(v) ∈ L.

We write u ∼L v.

The congruence ∼L is precisely the coarsest congruence on A such that x ∈ L and

y 6∈ L implies that x 6∼L y. We call Synt(L) = A/∼L the syntactic algebra of L and

ηL : A → A/∼L we call the syntactic homomorphism for which x 7→ [x]∼L . This is

precisely the natural homomorphism π∼L .

Proposition 26. Given an algebra A and a language L in A, then L is recognized

by Synt(L) and ηL.

Proof. Let X = ηL(L). Clearly, we have L ⊆ η−1
L (X). To show that the statement

holds we only need to show L ⊇ η−1
L (X). So, suppose there exists x 6∈ L and y ∈ L

such that ηL(x) = ηL(y) ∈ X. This implies x ∼L y, which is a contradiction.

Proposition 27. Given an algebra A, a language L in A, and an algebra B that

recognizes L, then Synt(L) divides B.

Proof. Let L be recognized by a homomorphism φ : A → B. The algebra φ(A) = B′
is a subalgebra of B. To prove that the statement holds we have to construct an

epimorphism ψ : B′ � Synt(L). All elements of B′ are of the form φ(a) for some

a ∈ A. Now, we choose ψ as φ(a) 7→ ηL(a). This is unambiguous since φ(a) = φ(b)

implies that a ∼L b due to recognition, and so ηL(a) = ηL(b). Surjectivity of ψ also

follows.

Considering the previous proof, note that if φ is a non-generalized homomorphism,

so is ψ.

Regular Word Languages 49

The previous proposition tells us that the syntactic algebra is unique and the

smallest recognizing algebra. Hence, syntactic algebras are useful objects to define

and decide properties of languages.

In the setting of languages of finite words, the notion of regular languages has

several equivalent characterizations. The original definition was based on regular

expressions. The notion of regularity for the more general framework is based on

algebra.

Definition 28 (Regularity). A language is called regular if its syntactic algebra is

finite.

Thus, whenever we speak of regularity it has to be related to an algebra. For

example, a language of well-matched words can be regular with regard to a certain

algebra fitted to tree-like structures that we will cover later, however, it is then not

necessarily regular with regard to monoids.

4.1 Regular Word Languages

In the word case, as already outlined, the concept of syntactic algebra translates to

the classical notion of syntactic monoid. The syntactic congruence is described by

the following statement: x, y ∈ Σ∗ then x ∼L y is true if for all u, v ∈ Σ∗ holds that

uxv ∈ L⇔ uyv ∈ L.

Following our regularity definition, word languages that have a finite syntactic

monoid are the regular languages. Regular languages that have an aperiodic syntactic

monoid we call aperiodic. Regular languages that have a quasiaperiodic syntactic

homomorphism we call quasiaperiodic. The aperiodic languages coincide with the

star-free languages. These are languages we get through star-free expression [Sch65].

General regular expressions yield the regular languages as a whole.

Note that non-regular languages have an infinite syntactic monoid, and so the

algebraic framework becomes less useful. For example, even the rather simple

language of palindromes has the largest possible syntactic monoid Σ∗. However,

there are algebraic approaches to non-regular languages. In the case of non-regular

word languages, for example, there is the concept of typed monoids [BKR11].

Another possibility that works for a certain superset of the regular languages will

be introduced later.

50 Recognition by Algebras

4.2 Regular Tree Languages

In a first simple special case, we can consider binary trees. Consider the free

magma generated by a single element. Terms over such an algebra are just binary

trees. The key here is the non-associativity of the operation, which preserves the

tree represented by the term. Hence, magmas can be used for recognizing sets of

unlabeled binary trees and finite magmas can recognize regular sets of binary trees.

For ranked tree languages in general we need algebras with operations for each

letter. Through a ranked alphabet (Σ, r) we define the signature σ = (r(a))a∈Σ.

The free algebra of trees over (Σ, r) is T (σ) and we write T (Σ, r). Note that there

must exist letters a with r(a) = 0 to be assigned to the leaves. This leads to the

observation that single-sorted term algebras are the same as the free algebras for

ranked tree languages. The notions like recognition and regularity follow from the

general definitions.

For unranked trees things become more complicated. The children of a node form

a word that consists of trees, or equivalently, nodes have a single child, which is a

forest; we will employ the latter view. This forest may or may not be ordered. Notice

that we focus on ordered forests and that the unordered case can be embedded via

commutativity of the algebra we are about to define.

For a different perspective, consider unranked trees as binary trees: If a node

has a number of children, they all can be combined via some binary associative

operation. So, to algebraically capture what we described, we need an algebra that

has a monoidal, i.e. associative, operation, which allows for concatenating forests.

This enables us to assign nodes an unbounded number of child trees.

To derive more natural concepts we actually will consider forest languages instead

of tree languages. Moreover, we have to make a design decision: In contrast to the

ranked case, a letter does not tell us the number of children of a node, so a node

labeled some letter a could be a leaf or an inner node. Inner nodes translate to unary

operations in the algebra that take the word of child trees. Leaves could now be

modeled through 0-ary operations or we just treat them as inner nodes but have to

give them empty forests as children. The first option basically leads to us assigning

leaves letters from a separate alphabet. Both versions are ultimately equivalent.

The literature is not consistent about which way to use [BW08, BSW12]. We will

use the version using empty forests as leaves.

4.2.1 Extend Algebras

There are many reasons why it is desirable to have a recognition mechanism for

unranked forest languages. The first one that is presented uses so-called extend

Regular Tree Languages 51

algebras. As we already pointed out, a node can have an ordered sequence of

children and these children in turn are trees. Hence, we can interpret the children as

a forest. This forest is then subject to some unary operation that makes the trees

of the forest children of a common root node. We want to call such an operation

extend operation. Besides, we need an associative binary operation to compose

sequences of forests and a constant for the empty forest. This is in line with the

way we denote unranked trees. For example, if a tree has a root labeled a then the

children are are sequence of trees that are a forest: f = t1 + . . .+ tn. The following

algebra will incorporate +, as well as an operation for a(·), which is one of the

mentioned extend operations. Extend algebras have a close connection to forest

algebras, which we cover subsequently. After giving the definitions, we will also go

into more contextual detail.

Definition 29 (Free extend algebra). The free extend algebra for unranked forests

over an alphabet Σ is defined as the term algebra T (2, 1|Σ|, 0)/∼, where ∼ is the

congruence that makes + associative and 0 neutral. It is denoted as EA(Σ), the

domain of this algebra as H(Σ), and the operations as +,4a for all a ∈ Σ, and 0.

Hence,

EA(Σ) = (H(Σ); +, (4a)a∈Σ, 0).

The monoid (H(Σ); +, 0) is free with a neutral element 0 and called horizontal

monoid. For a ∈ Σ the operation 4a is called an extend operation.

Note that we defined an unranked labeled forest as a structure (V ;E, (Qa)a∈Σ).

The set of such structures is isomorphic to H(Σ). So, a forest language F is a subset

of H(Σ). This in turn gives us the syntactic congruence for languages and hence a

syntactic extend algebra which we denote as as Synt(F). For its horizontal monoid

we write HF .

Example 30. Consider some languages and their representations:

• The language of binary trees over a unary alphabet {a} can be recognized by

magmas, as we already indicated. If we want to recognize it with an extend

algebra, we do so by a homomorphism EA({a})→ (M ; +,4a, 0). The monoid

(M ; +, 0) with M = {0,m,mm,⊥} being commutative and defined by the

equation m3 = ⊥ for ⊥ being the absorbing element. Further, 4a(⊥) =

4a(0) = 4a(m) = ⊥, and 4a(mm) = 0.

• Consider the forest language F over Σ that consists of forests that only contain

trees of size one, omitting the empty forest, which is a child of these single

nodes. Such a language resembles a word language LF ⊆ Σ∗. When Synt(LF) =

(M ; +, 0) then the syntactic extend algebra of F is (M ; +, E, 0) where E are

the extend operations. It follows that by using generalized homomorphisms

52 Recognition by Algebras

we can recognize word languages by extend algebras. This can be achieved

by mapping the concatenation of the monoid of the word side to + on the

extend algebra side, as well as mapping letters to trees of size one that have the

according label. This mapping is almost trivial, however this homomorphism is

generalized since the signatures of domain and image differ.

• The language that contains forests that consist solely of linear trees is the next

example. Here, an element has the form (4∗(0))∗ = (4∗(0)) + . . .+ (4∗(0)).

Note that we used the Kleene star ∗ for different operations. The inner star

in (4∗(0))∗ indicates an arbitrary number of applications of 4 operations

whereas the outer star refers to the + operation. So, through the subexpression

4∗(0) = 4(4(. . . (4(0)))) we get linear trees.

• Generalized homomorphisms are useful to express certain mappings. For

example, consider the language L = {4a,4b}∗(0). It consists of vertical lists

arbitrarily labeled by a and b. Now, let φ : EA(Σ)→ EA(Σ) be a homomorphism

with 4a 7→ 4a and 4b 7→ t where t is a context with t(x) = 4b(x) +4a(0).

It equips every node labeled b a sibling labeled a.

We saw examples using generalized homomorphisms. They are indeed required for

many natural mappings. For example, if we want to map forests over some alphabet

into a different alphabet, this already needs generalized homomorphisms when using

extend algebras, since letters come into being through unary operations and not

0-ary ones. In fact, non-generalized homomorphisms can only alter the leaves of the

forest.

As we saw, generalized homomorphisms can also be used to recognize forest

languages using algebras of a different signature. For example, the set of all

forests can be recognized by the trivial monoid. However, allowing for generalized

homomorphisms does not mess up our regularity definition. If an unranked tree

language is recognized by a finite algebra via some generalized homomorphism, then

its syntactic monoid is finite.

4.2.2 Forest Algebras

Extend algebras are designed for unranked forests. There exists another class of

algebras for exactly that purpose, which are the forest algebras [BW08]. Forest

algebras are closely related to extend algebras. A forest algebra has two domains H

and V . The domain H is the same as the domain in the extend algebra and V is

the set generated by the extend operations. Both form a monoid. The monoid H

corresponds to forests, which we can concatenate. In V we have contexts instead.

The operation concatenates contexts vertically, i.e. the vertical concatenation of

Regular Tree Languages 53

two contexts is obtained by replacing the variable in the context with the other

context. This way V can be considered a subset of HH . The monoid H is called the

horizontal monoid and V the vertical monoid. The benefit of having the vertical

monoid present is that we can try to retrieve properties from it that are not directly

apparent in the extend operations.

Definition 31 (Free forest algebra). The free forest algebra for unranked forests

over an alphabet Σ is defined as the two-sorted term algebra

T ((11, 1), (12, 2), (21, 2), (22, 2), (21, 1), (2)|Σ|, (1), (2))/∼,

which we denote as FA(Σ), which in turn is denoted as

(H(Σ), V (Σ); +,+′,+′′, ·, ·′, (4a)a∈Σ, 0, 1).

The relation ∼ is the congruence that resembles the following equations, where

h, h1, h2 ∈ H(Σ) and v, v1, v2 ∈ V (Σ):

• The operation + is associative and 0 is neutral, i.e. (H(Σ); +, 0) is a monoid.

• The operation · is associative and 1 is neutral, i.e. (V (Σ), ·, 1) is a monoid.

• (h1 + h2) +′ v = h1 +′ (h2 +′ v)

• (v +′′ h1) +′′ h2 = v +′′ (h1 + h2)

• (h1 +′ v) +′′ h2 = h1 +′ (v +′′ h2)

• (v1 · v2) ·′ h = v1 ·′ (v2 ·′ h)

The monoid (H(Σ),+, 0) is called the horizontal monoid and (V (Σ), ·, 1) the vertical

monoid.

The operation + concatenates two forests, while +′ and +′′ concatenate a forest

and a context, which results in a context. The operation · concatenates contexts

vertically and ·′ inserts a forest into the hole of a context resulting into a forest. From

now on we will not distinguish between +, +′, and +′′ when writing down a forest.

Furthermore, we will drop · and ·′ in the notation. Through associativity we can also

drop some parentheses. So, for example, we may write v1(h1 + h2) + v2 ∈ V (Σ) and

even FA(Σ) = (H(Σ), V (Σ); +, ·, (4a)a∈Σ, 0, 1). Also, pay attention to the extend

operations 4a. For all practical purposes they are the same as in extend algebras,

but formally in forest algebras they are not unary operations over the horizontal

domain but constants from the vertical domain. So, technically we cannot write

4a(h) for h ∈ H(Σ). However, we still do so and keep in mind that the correct way

for writing this would be 4a ·′ h.

54 Recognition by Algebras

Note that a few design choices were made. The operation ·′ is considered an action

in the original paper. Also, they do not have +′ and +′′ there, but rather have

two operations, each taking a forest and append a hole to the left, or to the right

respectively. As already mentioned, whether or not leaves have a separate alphabet

is also an issue. In the different papers [BW08] and [BSW12] we find different

versions. The properties we packed into ∼ can be found in the original definitions

in a different presentation.

It is not a coincidence that the domain of the extend algebra has the same name

as the first subdomain of the forest algebra. As we will see, the horizontal monoid

is actually identical for extend and forest algebras, so both contain labeled finite

unranked forests of the form (V ;E, (Qa)a∈Σ). In the case of forest algebras, we

additionally have the vertical monoid consisting of contexts. However, a forest

language F still is just a subset of the horizontal monoid.

That way we get the syntactic congruence for languages and hence a

syntactic forest algebra. We write Synt(F) and it is clear from the context

whether we mean forest or extend algebras. In correspondence to extend algebras

the horizontal monoid is denoted by HF . The vertical monoid is denoted by VF .

For an alphabet Σ there exists a meaningful bijection between the horizontal

monoids of EA(Σ) and FA(Σ), which we could regard as an isomorphism. First,

every term of the free algebra EA(Σ) can be found again in FA(Σ). We see this by

induction over terms. The operation + translates to + again. In the case of the

unary operation 4a we have a term of the form 4a(f). This translates to 4a ·′ f ′,
where now 4a is a constant operation and f ′ is the result of the translation of f ,

which we get by induction. Finally, the constant 0 stays 0. For the converse, notice

that FA(Σ) possesses several operations: +, +′, +′′, ·, ·′, 4a, 0, and 1. Terms can

have quite different shapes while still being equivalent in the free forest algebra

due to the properties we enforced in the definition, but these enable us to convert

terms into a form, which is close to the corresponding term for the extend algebra.

To do so we get rid of +′, +′′, ·, and 1. Whenever a term contains one of the

mentioned binary operations, the result is a context, which has to be filled in later.

This delayed filling-in we now remove. Consider a term t, which has a subterm

f +′ c. Now, observe that this subterm is a context again and the forest we insert

into the context can be found as a different subterm in t. Let t′ be this subterm.

Now, c has necessarily at least one leaf labeled by 1 and exactly one of these is the

place where t′ gets inserted. Thus, we replace this leaf and insert t′ at this place

directly. Since now certain subterms turn from context to forest, we may have to

change +′ or +′′ to +, or · to ·′. The original occurrence of t′ is deleted as well as

an operation ·′, which was responsible for inserting t′. We now eliminated +′ and

perform a similar procedure for +′′ and · and repeat until all are eliminated. The

result then also does not have leaves labeled 1 any more. The procedure can also be

Regular Tree Languages 55

seen as a reparenthesising procedure, which maintains correct operation symbols.

For example, for h ∈ H(Σ) the forest ((h +′ 4a) · 4a) ·′ 0 can be also written as

h+ (4a ·′ (4a ·′ 0)).

This construction shows that the horizontal monoids of free extend algebras EA(Σ)

and free forest algebras FA(Σ) indeed coincide. This also translates to quotients of

algebras. Also, note that the horizontal monoid of a free forest algebra FA(Σ), in

fact, is of the form T(σ) and the vertical monoid of the form C(σ) for an appropriate

signature σ.

Lemma 32. For an alphabet Σ the free extend algebra EA(Σ) and the free forest

algebra FA(Σ) have the same horizontal monoid H(Σ). A congruence ∼ on H(Σ) in

EA(Σ) is also a congruence in FA(Σ) and vice versa, hence the algebras EA(Σ)/∼
and FA(Σ)/∼ have the same horizontal monoid.

Proof. We already argued that EA(Σ) and FA(Σ) have the same horizontal monoid

H(Σ). Let now ∼ be an equivalence relation on H(Σ). If it is a congruence in

EA(Σ), then it is also one in FA(Σ): For u, v, w, x ∈ H(Σ) we have u+ v ∼ w + x if

u ∼ w and v ∼ x, which translates directly to FA(Σ). Also, 4a(u) ∼ 4a(v) if u ∼ v,

which translates to 4a(1) ·′ u ∼ 4a(1) ·′ v if u ∼ v. The converse follows similarly.

The lemma tells us that both free extend and free forest algebras contain the same

structures and also that the syntactic objects are equivalent. Actually, for any given

extend algebra there exists a unique corresponding forest algebra and vice versa.

The corresponding forest algebras have the same horizontal monoid and the unary

operations 4a of the extend algebra coincide with the constant operations 4a in

the forest algebra. In this case there is an isomorphism between both.

The previous considerations underline the fact that the difference between an

extend and a forest algebra can be interpreted as a precomputation. A forest

algebra contains information about the vertical behavior more explicitly than the

extend algebra, as V (Σ) is just the set of contexts we can generate through the 4a

operations.

In [BW08] the forest algebra framework was laid out, which also included homo-

morphisms. The authors defined a forest algebra homomorphism to actually consist

of two homomorphisms: One for the horizontal and one for the vertical monoid.

This notion coincides with our notion of non-generalized homomorphisms.

Now consider the case of homomorphisms for extend and forest algebras. In a

forest algebra, a non-generalized homomorphism may map each 4a to an arbitrary

element of the vertical monoid in the target forest algebra. In an extend algebra,

however, 4a is a unary operation. If we wanted to achieve the equivalent as in the

56 Recognition by Algebras

forest algebra case, we need a homomorphism, which assigns 4a a context, but as

this is a generalized homomorphism, it means that forest algebra homomorphisms

translate to generalized homomorphisms between extend algebras.

For the following proposition recall that we defined a homomorphism to be a

mapping from the domain of one algebra to the domain of another. Whether it is

generalized or not depends on how this mapping can be achieved using α, which

assigns terms terms to operations. So, if we have forest algebras F1 and F2 and

corresponding extend algebras E1 and E2, then a homomorphism φ from F1 to F2

maps forests as well as contexts. If we restrict φ on forests, we get a map from E1

and E2. The following proposition now shows that this map indeed is a generalized

homomorphism.

Proposition 33. Let F1 and F2 be forest algebras, E1 and E2 be the corresponding

extend algebras, and H be the horizontal monoid of F1 and E1. For a non-generalized

homomorphism φ between F1 and F2, there exists a generalized homomorphism φ

between E1 and E2 with φ(h) = ψ(h) for h ∈ H.

Proof. Suppose that F1 and F2 have the same signature σ. The signature could only

differ because of different alphabet sizes, so we assume the alphabets to be equal.

We know that F1 and E1 as well as F2 and E2 have the same horizontal monoids.

Based on this fact we may assume that any term for F1 is also isomorphic to a term

for E1, i.e. it uses only + and ·′ as binary operations and 4a as constants. Since

φ is not generalized, + and ·′ get mapped onto + and ·′ in F2. The constants 4a,

however, get replaced by a context c. We can translate this now into a generalized

homomorphism between E1 and E2 that realizes the same map between the horizontal

monoids. Here, + is again mapped onto +, but the unary operation 4a of E1 gets

mapped onto c, which is a term with a variable, which has the same signature as

4a. This is a generalized homomorphism and the mapping realized is preserved.

Example 34. Some simple cases for properties of forest algebras are the following:

• Given a forest language F , we can ask complexity questions. For example: Has

the language a FO[<] formula? This is a formula using first-order quantification

and an ancestor predicate <. By the connection between aperiodic monoids and

logic we know from the word case, it is easy to see that a necessary condition

for F to be in FO[<] is that the horizontal and the vertical monoid of the

syntactic forest algebra need to be aperiodic.

• Again, given a forest language F , we can ask whether it is regular in the word

sense, which means asking whether wm(F) is a regular language. Using a

pumping argument one can see that, if F contains arbitrarily deep trees, wm(F)

Regular Languages of Nested and Well-Matched Words 57

is not regular. On the other hand, if F has a bound on the tree depth, wm(F)

is regular, since we can count to a constant in the states of a finite automaton.

Bounded depth can be decided using the syntactic forest algebra. First, V has

to be nilpotent. Further, let ⊥ be the null element of V , then the sufficient

condition is that ⊥(0) is not in the accepting set.

• If we continue the previous example and check for nilpotency, but this time in

H instead of V , we get the property that captures bounded rank of nodes in

the trees.

• We say that a forest algebra is distributive if c(h1 + h2) = ch1 + ch2 holds for

c ∈ V and h1, h2 ∈ H. A forest algebra that is distributive has the property

that it cannot distinguish between forests that have the same path language,

whereas the path language of a forest is the set of words that can be read from

roots to leaves. Actually, this set is ordered. If H is commutative, this order

no longer exists.

• The yield of a forest is the word language that is obtained by an in-order

traversal of all leaves. Yields of regular tree languages are precisely the context-

free word languages. One can observe now that, if H is commutative, so is the

yield language.

4.3 Regular Languages of Nested and Well-

Matched Words

In the second chapter we discussed the nested and well-matched word structures,

and saw how closely related they are to each other and to unranked labeled forests.

The goal of this section is to define algebras for nested and well-matched word

languages. To that end we will use what we have established for unranked forest

languages.

First, however, we have to take care of an issue: Well-matched words may have

internal letters. Equivalently, nested words may have positions that are not part of

a matching. Both do not have a natural resemblance in unranked trees. There are

different ways to evade this problem. One option is just allowing internal letters to

appear in the corresponding forest, but then it must be ensured that only leaves are

labeled with these letters. This can be troublesome when we want to come up with a

free algebra. To solve that, one could introduce new 0-ary operations to the algebra,

which correspond to the internal letters. We could also just disallow internal letters

and simulate them by a pair of call and return letters. This mapping, however,

changes the length of the word and it is not a length-multiplying homomorphism,

which may cause problems in some areas.

58 Recognition by Algebras

To begin with, we execute the following under the assumption that there are no

internal letters present, or, equivalently, that all positions are matched.

Given a nested word w over Σ, forest(w) gives us the corresponding forest over Σ2.

We use Σ2 since a pair of letters that is in matching positions ends up in a single

node. Now, the free algebras EA(Σ2) and FA(Σ2) can be utilized as the free algebras

for nested words over Σ. If L is a nested word language, forest(L) gives us the

corresponding forest language and the syntactic extend or forest algebra of forest(L)

is now also the syntactic algebra of L. We may regard the horizontal monoid of the

free algebra as a set of nested words. The vertical monoid of the free forest algebra

contains all contexts and in the case of nested words it consists of nested words that

have some marked position, telling that after this position another nested word may

be inserted. Two contexts can be concatenated by inserting one into the hole of

another. The horizontal monoid of the syntactic forest algebra of language of nested

words L is Hforest(L), but for simplicity we just write HL. Similarly, we write VL.

Well-matched words can be treated similarly. If Σ̂ = (Σcall,Σret, ∅) is the alphabet

for the well-matched words, we get forests over Σcall×Σret. In this case, a context is

a pair of words (u, v) such that uv is well-matched. For a language L of well-matched

words we write HL and VL to address its horizontal and vertical monoids.

Now back to the issue of internal letters. The algebra EA(Σcall × Σret) =

(H; +, (4a)a∈Σcall×Σret , 0) is the free extend algebra for well-matched words over Σ̂ =

(Σcall,Σret, ∅). For Σ̂ = (Σcall,Σret,Σint) we can define (H; +, (4a)a∈Σcall×Σret , 0, (�a)a∈Σint
),

where �a is a 0-ary operation for all a ∈ Σint. In the case of forest algebras we can

do the same. Hence, we define EA(Σ̂) to be the modified extend algebra we just

constructed and FA(Σ̂) to be the corresponding modified forest algebra. That means

that WM(Σ̂) can be considered the horizontal monoid of the free forest algebra. All

theory we developed for extend and forest algebras follows immediately.

A language of nested words is called regular if its syntactic extend algebra is finite.

A language of well-matched words is also called regular if its syntactic extend algebra

is finite. In this case we call it a visibly pushdown language (VPL) based on visibly

pushdown automata, which we will cover later.

In [AKMV05] a congruence ≡L for well-matched words that characterizes the VPLs

has been investigated. It is basically a modified syntactic congruence. For a language

of well-matched words L, the well-matched words x and y are in relation x ≡L y
if and only if for all words u, v ∈ Σ∗ holds that uxv ∈ L ⇔ uyv ∈ L. The paper

states that ≡L has finite index if and only if L is a VPL. What the paper omits

to say is that WM(Σ̂)/≡L forms a monoid with concatenation and [ε]≡L as neutral

element. However, this monoid is not a recognizing object, of course, since finite

monoids can only recognize regular word languages. Nevertheless, it turns out that

this monoid is precisely the horizontal monoid of the syntactic forest algebra. To see

Conclusion 59

that, consider u, v ∈ Σ∗ as used in the definition of ≡L. If we add the requirement

that uv ∈WM(Σ̂), the congruence does not change. So, (u, v) is a context and ≡L
coincides with ∼L.

As mentioned before, typed monoids are an approach to capture non-regular word

languages algebraically. We do not know whether VPLs in general can be captured

by typed monoids, but for certain subsets this might be possible.

4.4 Conclusion

Summary

Initially, we defined what languages are. There are different kinds of languages; we

considered languages of words, trees, and well-matched words. In that, languages are

subsets of algebras. In this chapter we looked into representing languages by algebras

that might be smaller than the original algebra of which the language is a subset

of. This representation is called recognition. In the case of words the recognition

framework is well-established and classically uses monoids. Languages that can be

recognized by a finite algebra we call regular. To obtain regularity notions for forest

languages we introduced algebras that fit this case. First, we considered extend

algebras. An extend algebra is similar to a monoid that is augmented with a number

of unary operations that we call extend operations. After we established the whole

recognition framework we related extend algebras to forest algebras. Forest algebras

can be obtained from extend algebras. They have an additional domain, which

captures the closure of the extend operations. This domain is called the vertical

monoid while the first domain is common to the domain of the corresponding extend

algebra, which we call the horizontal monoid. This shows that both objects are

in a one-to-one correspondence. We also related the homomorphisms accordingly:

Forest algebra homomorphisms translate to generalized homomorphisms for extend

algebras.

Extend and forest algebras can be used for forest language recognition but also for

languages of nested and well-matched words.

Contributions

We introduced recognition is a very general sense in which known recognition schemes

embed. Our framework entails syntactic congruences, homomorphisms and syntactic

algebras themselves. In our treatment of forest language recognition we introduced

forest algebras as emerging from extend algebras. Extend algebras are a new concept.

Especially the correspondence for forest algebra homomorphisms and generalized

60 Recognition by Algebras

homomorphisms on the extend algebra side underpins the utility of the notion of

generalized homomorphisms.

Also, we connected the algebra framework for forest languages to languages of

well-matched words, for which only the insufficient congruence by Alur et al. was

known [AKMV05].

Sources and Related Work

The recognition framework for words is ubiquitous formal language theory. Literature

is split in those contributions working with semigroups and those working with

monoids. We chose to join the monoid side. Among the many books and papers

surveying the topic we refer to [HU79, Str94].

The algebraic treatment of forest languages is much younger. Here, we relied on

the work of Bojańczyk and Walukiewicz [BW08] which introduced forest algebras.

There are also other attempts for an algebraic treatment. For example, Alur et al.

[AKMV05] showed a congruence for VPLs. This congruence constitutes a monoid

which, as it turns out, coincides with the horizontal monoid. However, this object is

too weak for recognition purposes.

Examples for the application of forest algebras can be found in [BW08, BSW12,

Str13, KS15].

Further Research

Forest algebras are already in use and proved to be useful. Hence, there should be

potential for extend algebras as well. It depends on the application whether extend

or forest algebras are more handy. One example where extend algebras could be

preferred is the modern equational approach to language and complexity theoretic

questions like in [CK16, BCGK17, GKP14].

Chapter 5

Logic

After algebra, logic is the second recognition mechanism we consider. Logic formulas

typically operate on structures instead of elements of a free algebra. The study of

logic in combination with different kinds of structures is called model theory. In

logic we build formulas that may utilize relations given in the structure. Further,

there is quantification over the domain of the structure. By applying the semantics

of the formulas we can decide whether some structure S is a model for some formula

φ, which we denote as S |= φ. When we relate formulas and structures, it is always

clear from the context what kind of structures we address, indicating whether we

consider words trees, etc. The set of all structures that satisfy a formula φ is denoted

as L(φ) = {S | S |= φ}, which is then a set of words, trees, etc. Therefore, S |= φ if

and only if S ∈ L(φ).

For S |= φ to hold it is necessary that both S and φ follow the same format, which

means they have the same signature. It is straightforward to define a logic framework

for the many-sorted case, but we refrain from that as we would not make use of it.

So, signatures are elements of N∗ that only assign arities to relations.

Definition 35 (Monadic second-order formula (MSO)). Given a signature σ ∈ Nk

for k ∈ N, let V1 and V2 be finite sets, where V1 contains first-order variables and

V2 second-order variables. Then an MSO formula is defined as follows:

• Ri(x1, . . . , xArσ(i))) is an MSO formula with free variables V1 = {x1, . . . , xArσ(i))}
and V2 = ∅.

• X(x) is an MSO formula with free variables V1 = {x} and V2 = {X}.

• If φ is an MSO formula with free variables V1 and V2, then ¬φ is an MSO

formula with free variables V1 and V2.

62 Logic

• If φ is an MSO formula with free variables V1 and V2 and ψ is an MSO formula

with free variables V ′1 and V ′2, then φ ∧ ψ as well as φ ∨ ψ are MSO formulas

with free variables V1 ∪ V ′1 and V2 ∪ V ′2.

• If φ is an MSO formula with free variables V1 and V2, then ∃xφ as well as

∀xφ are MSO formulas with free variables V1 \ {x} and V2.

• If φ is an MSO formula with free variables V1 and V2, then ∃Xφ as well as

∀Xφ are MSO formulas with free variables V1 and V2 \ {X}.

• Formulas with V1 = ∅ and V2 = ∅ are called closed.

Small variable letters indicate first-order variables. Capitalized variable letters

indicate monadic second-order variables.

Note that predicates are the atomic formulas. We do not write all predicates

exactly the way they were given in the definition. For example, for the comparison

predicate, we like to write as x < y instead of <(x, y).

To define the semantics we fix some structure S = (D;O) that has the same

signature as an MSO formula we define the semantic for. Let now ν1 : V1 → D be a

valuation of the variable set V1 and let ν2 : V2 → 2D be a valuation for the variable

set V2. By νx 7→d1 we denote the valuation we get if in ν1 the value ν1(x) is set to d,

νX 7→d2 is defined similarly. Now, if φ and φ′ are formulas with free variable sets V1

and V2 and V ′1 and V ′2 respectively, we define the semantic for the different cases:

• S |=ν1,ν2 Ri(x1, . . . , xArσ(i))) if (ν1(x1), . . . , ν1(xArσ(i)))) ∈ Ri for Ri ∈ O being

the i-th relation of S.

• S |=ν1,ν2 X(x) if ν1(x) ∈ ν2(X).

• S |=ν1,ν2 ¬φ if S 6|=ν1,ν2 φ

• S |=ν1∪ν′1,ν2∪ν′2 φ ∧ φ′ if S |=ν1,ν2 φ and S |=ν′1,ν
′
2 φ′.

• S |=ν1,ν2 ∃xφ if there exists some d ∈ D such that S |=νx 7→d1 ,ν2 φ.

• S |=ν1,ν2 ∃Xφ if there exists some d ∈ 2D such that S |=ν1,νX 7→d2 φ.

• If φ it is closed and S |=∅,∅ φ, we write S |= φ.

In the word case we can, for example, have structures of the form ([n];<, (Qa)a∈Σ).

This one has a signature of (2, 1|Σ|). Every formula of the same signature fits such

a word. Also, when writing a formula down, for readability, we directly use the

predicate names from the structure like x < y or Qa(x).

Logic on Words 63

Besides existential and all quantification there also exist other quantifiers like

modulo and majority quantifiers. Introducing a first-order quantifier MODk for

k ∈ N, we assign it the following semantic, which makes the quantification true if

there are a multiple of k many valuations.

• S |=ν1,ν2 MODkxψ if |{d ∈ D | S |=νx 7→d1 ,ν2 ψ}| ≡ 0 (mod k).

A first-order quantifier MAJ for majority is satisfied if the majority of all valuations

of the variable satisfy.

• S |=ν1,ν2 MAJxψ if

|{d ∈ D | S |=νx 7→d1 ,ν2 ψ}| > |{d ∈ D | S 6|=νx 7→d1 ,ν2 ψ}|.

The set of first-order definable structures we denote as FO and the MSO definable

ones as MSO. It is also common to note the predicates used, e.g. FO[<], however,

it is always assumed that the Qa predicates are accessible without mentioning

them explicitly. The type of quantification we allow is, for example, denoted as

FO + MOD[<] or MAJ[<]. The established notation conventions, however, are not

always consistent, so we will later define the logic classes individually.

Substitution is a useful tool in logic. If we define a formula φ with two free first-

order variables, we may use φ in other formulas as if it was a predicate. For example,

consider the formula ¬y < x. It has two free variables and we may use it as a

predicate ≤. Substitutions can be also seen as a kind of reduction or transduction.

For example, we may have a procedure where as a first step the input is preprocessed.

An example, as we will see, lies in computing the matching predicate for well-matched

words. This may lead to an output that is the input enhanced by some additional

information in the form of a larger alphabet. Now, the formula for the second step

may access this larger alphabet and the querying predicates Qa actually have to be

replaced by formulas for the first step.

5.1 Logic on Words

A word is a structure of the form ([n];<, (Qa)a∈Σ), however, it may also have

additional predicates, especially numerical predicates like the binary successor

predicate +1 and a ternary + predicate, which is used in the form x + y = z. In

the word case MSO[+1] equals MSO[<]. In a very strict sense, this statement is

syntactically incorrect since both sets contain different kinds of structures. However,

one can define the < predicate in MSO[+1]. That means that if we have a language

64 Logic

L ∈ MSO[<] of words ([n];<, (Qa)a∈Σ), we can substitute < by an MSO construction.

So, the equivalent words ([n]; +1, (Qa)a∈Σ) form a language L′, which then is in

MSO[+1]. That is why we simply speak of MSO.

The MSO definable languages are precisely the regular languages [Bü60].

The set FO[arb] consists of all languages that we get through arbitrary numerical

predicates. The set FO[Reg] = FO[<,≡] equals MSO[+1] ∩ FO[arb]. So, FO[Reg]

captures exactly the regular languages in FO[arb]. This is also characterized by

quasiaperiodicity of the syntactic homomorphism [BCST92].

Another subset is FO[<], which corresponds to aperiodic syntactic monoids and

star-free expressions [MP71, Sch65].

5.2 Logic on Trees

In the case of trees one has to distinguish the different kinds. We will not cover the

ranked case. In the unranked case we defined regularity as those forest languages

that are recognized by finite forest algebras. So, here we have an ancestor relation,

or equivalently, a vertical order and a horizontal order. Note that an ancestor

relation is equivalent to the transitive closure of the edge set of the underlying graph.

Like in the word case where we can simulate < by +1 in the MSO case, the same

construction can be used to simulate the ancestor relation by the edge relation.

Now, by MSO formulas over labeled unranked ordered forests we get the regular

sets [TW68, Don70].

A special case is the unordered one. If we consider labeled unranked forest

languages accepted by finite forest algebras with commutative horizontal monoid,

we get languages that are captured by MSO formulas that only utilize an ancestor

relation.

As a natural restriction the first-order fragments are of great interest. In the word

case we have a decidable characterization in terms of aperiodicity and quasiaperiod-

icity. In the tree case we are missing that and instead have a major open problem

here.

5.3 Logic on Graphs

In graphs we are mostly interested in MSO definable sets due to the Theorem of

Courcelle [Cou90].

Logic on Nested Words 65

Theorem 36 (Courcelle). Let Gk be the set of graphs of tree-width k for some k ∈ N
and let φ be some MSO formula. Then it is decidable in linear time whether for

some G ∈ Gk it holds that G |= φ.

In [EJT10] this result has been improved to logarithmic space. We will come back

to Courcelle’s Theorem later. This theorem is considered to be very important as

many graph problems can be expressed by an MSO formula.

5.4 Logic on Nested Words

A nested word has the form ([n];<, (Qa)a∈Σ,) where is a nesting relation. MSO

formulas over nested words are like formulas over ordinary words but may use
also. Of course, the languages recognized by such MSO formulas are the regular

ones with respect to nested words.

The difficulty of finding a decidability result for first-order definability is inherited

from the unranked tree case.

In the well-matched word case we have just ordinary words of the form

([n];<, (Qa)a∈Σ). If we want to capture VPLs by MSO, we have to add as a

matching relation [AM04]. To decide which VPLs are first-order definable is a

subject of chapter 11 where an important issue is how to define in first-order

logic.

While the logic for nested words involves a matching predicate, which is part of the

nested word itself, there exists a relationship to context-free languages. If we relax

the fixed matching predicate, and instead allow it to be existentially quantified within

the formula, we get the context-free languages. Formally, for every context-free

language L there exists a formula ∃ φ that models L, where φ is a first-order

formula using [LST94]. This result fits the observation that the context-free

languages are yields of regular tree languages. The yield throws away the tree

structure and if one wants to derive a formula for such a language, the tree structure

has to be guessed, which is what the existential quantification over the matching

predicate is doing.

5.5 Conclusion

Summary

We introduced MSO logic for arbitrary signatures and looked at the set of inputs

we are interested in, that is words, trees, and nested words.

66 Logic

Contributions

This chapter only serves to provide notation and state some classical results.

Sources and Related Work

Surveys on the topic include [Str94, CDG+07, Tho97, EF95].

Further Research

An obvious mission for the future would be characterizing logic fragments using the

algebraic objects defined in the previous chapter.

Chapter 6

Automata

Automata come in different shapes. Finite automata and Turing machines are

classical examples for automata that read finite words. The output is then one bit

most of the time, telling whether the input is accepted or rejected. However, it is

also possible to consider automata that output more information.

Recall that there are the interpretations of inputs as either being structures, or as

elements of a free algebra otherwise. In the context of automata we use the structure

view although they are also very close to algebra. Automata can not only be built

around words but also around other structures like trees. Infinite input structures

are also possible but not covered here.

In general, an automaton works by generating a run on the input. Then there

is either a condition identifying accepting runs or, more generally, a procedure to

compute the output value from the runs.

For each input model, one can examine the corresponding finite automaton model.

In this context finite means that the storage is finite and implemented by the states.

These automata models usually correspond to regular language classes. If we equip

automata with additional storage like counters, stacks, or tapes, we get larger classes.

Here, we have also to pay attention to the input structure. For example, the set of

regular nested word languages is accepted by finite nested word automata. On the

other hand, if we consider the isomorphic regular languages of well-matched words,

a finite word automaton is too weak; we need a pushdown automaton model for this

class of languages.

In this chapter we will look at word-, tree-, and nested word automata. In most

cases we will, for the most part, focus on finite automata, with the most notable

exception of visibly pushdown automata. We will regard accepting automata and

68 Automata

automata that compute more information than the acceptance bit. In the case of

a single bit output, we say the automaton recognizes or accepts a language; in the

more general case we say it implements a function.

Automata can be used to define complexity classes by restricting resources like

time and space. Further, we can use them to get formal languages classes, which

is done by restricting their functionality, which leads to the Chomsky hierarchy.

Grammars are also closely related, but we will omit introducing them formally.

6.1 Word Automata

6.1.1 Finite Automata

Finite word automata belong to the most basic automata models. They have

only constant storage, which is given through the states and no additional storage

mechanism. A finite automaton steps through the input word from start to end and

changes its state in each step accordingly. If a so-called final state is reached after

the word is read, the word is accepted. Finite automata can be deterministic (DFA)

and non-deterministic (NFA).

Definition 37 (Finite automaton (on words)). A (non-deterministic) finite au-

tomaton M is a tuple (Q, I, F,Σ, δ) where:

• Q is the finite set of states.

• I ⊆ Q is the set of initial states.

• F ⊆ Q is the set of final states.

• Σ is the alphabet.

• δ ⊆ Q× Σ×Q is the transition relation.

An automaton is called deterministic if |I| = 1 and the relation δ is a total function

Q× Σ→ Q.

In the deterministic case we usually write qI for the initial state instead of {qI}.
Moreover, in the non-deterministic case we may consider the transition relation δ to

be a function Q× Σ→ 2Q.

Given an automaton M and a word w ∈ Σ, M induces a set of runs on w. A

run is a word ρ ∈ Q|w|+1. It has to satisfy that ρ1 ∈ I and for all 1 ≤ i ≤ |w| that

Word Automata 69

ρi+1 ∈ δ(ρi, wi). We call a run accepting if ρ|w|+1 ∈ F . If a word w generates an

accepting run, we say the automaton accepts or recognizes w. We write w |=M and

L(M) = {w ∈ Σ∗ | w |=M}.

In the deterministic case there is always exactly one run on each input.

Finite automata recognize the regular languages, for which we already showed

characterizations in terms of finite syntactic monoids and MSO logic. Note that

finite automata can be determinized. Also, deterministic automata can be minimized

and then be used to compute the syntactic monoid: It is isomorphic to the transition

monoid of the minimal automaton.

6.1.2 Pushdown Automata

In the Chomsky hierarchy, above the regular languages are the context-free languages

(CFL). CFLs are the languages generated by context-free grammars and they coincide

with those that are accepted by pushdown automata. A pushdown automaton (PDA)

is a finite automaton enhanced by a pushdown storage. Usually, PDAs are defined

to be accepting through emptiness of the stack. However, the model that accepts

through final states is equivalent.

Definition 38 (Pushdown automaton). A non-deterministic pushdown automaton

M is a tuple (Q, I,Σ,Γ,⊥, δ) where:

• Q is the finite set of states.

• I ⊆ Q is the set of initial states.

• Σ is the input alphabet.

• Γ is the pushdown alphabet.

• ⊥ ∈ Γ is the bottom-of-stack symbol.

• δ ⊆ Q× Σ ∪ {ε} × Γ×Q× Γ∗ is the finite transition relation.

If we want to define deterministic PDAs (DPDA), we have to resort to acceptance

through final states because otherwise we do not get a meaningful model. We call a

PDA or DPDA realtime if it does not perform ε-moves.

A configuration of a PDAM is a tuple c ∈ Q×Σ∗×Γ∗. The first component is the

state the machine is in, the second is the word that is left to read and the third is

the stack content. For two configurations c = (q, w, γ) and c′ = (q′, w′, γ′) we write

c→M c′ if there exists (q, a, γ1, q
′, g) ∈ δ such that w = aw′ and γ′ = gγ2 . . . γ|γ|. A

70 Automata

sequence of configurations that satisfies →M is called a run. Now, the language

accepted by M if there exists an accepting run, i.e.

L(M) = {w ∈ Σ∗ | (q, w,⊥)→∗M (q′, ε, ε), q ∈ I, q′ ∈ Q}.

Note that we allowed ε-moves here.

The languages accepted by PDAs are the context-free languages. CFLs are not

closed under complementation and intersection, however, they are closed under

union, homomorphisms and inverse homomorphisms. Emptiness is decidable and

equivalence and universality are undecidable. Also, deterministic PDAs are strictly

weaker than non-deterministic PDAs. Given a CFL L, we call L a linear language if

there exists a PDA that, on each input of L, works in a way that no symbol ever

gets pushed onto the stack after the first time an element has been popped off.

There is a relationship between regular tree languages and CFLs: The yield of a

regular tree language is context-free and every CFL can be represented as a yield

of a regular tree language. This relationship should, however, not suggest that the

CFLs are the best fit for a counterpart of regular tree languages in the word domain.

While building the yield we actually throw away the tree structure. This shows

again in solving the word problem for CFLs where we have to reconstruct a parse

tree. In contrast, when solving the word problem for regular tree languages, we have

the full tree as input. Hence, the word problem for regular forest languages might

have a lower complexity.

Counter automata are special PDAs and form a subset of the CFLs. We only

consider the realtime version.

Definition 39 (Counter automaton). A non-deterministic one-counter automaton

(NOCA) M with threshold k is a tuple (Q, I, F,Σ, δ1, . . . , δk) where:

• Q is the finite set of states.

• I ⊆ Q is the set of initial states.

• F ⊆ Q is the set of final states.

• Σ is the input alphabet.

• For all h ∈ [k], δh ⊆ Q× Σ×Q× Z is the finite transition relation for height

h.

There also exist deterministic one-counter automata (DOCA).

A configuration of such an automaton consists of the state and the value of the

counter. The counter, as we define it now, holds values of N, i.e. does not become

Finite Tree Automata 71

negative. Negative numbers, however, can be modeled easily by storing the sign in

the states. A counter automatonM and a word w ∈ Σ∗ now induce a set of runs. A

run ρ is an element of (Q×N)∗. It has to satisfy that ρ1 = (q, 0) where q ∈ I and that

for ρi = (q1,m) and ρi+1 = (q2, n) holds that (q2, n−m) ∈ δmin(k,m)(q1, wi). A run is

accepting if its last position contains a final state. A word is accepted if it induces

an accepting run where we again write w |=M and L(M) = {w ∈ Σ∗ | w |=M}.

For our purposes it is sufficient to only consider counter automata that in each

step alter the counter value at most by 1. Examples for counter languages are the

following: {anbn | n ∈ N}∗, {anbanc | n ∈ N}∗, or {anban | n ∈ N}∗.

6.1.3 Turing Machines and Complexity

Turing machines are the most general devices to accept decidable languages. They

have a finite state control and a tape as a storage. By restricting time or space

consumption of machines measured in the input length, we get complexity classes.

Important ones are PSPACE, NP, P, NL, and L; we assume the reader to be

acquainted with basic complexity theory. Later we will also be interested in lower

complexity classes, however, we will use circuits to capture those classes.

6.2 Finite Tree Automata

Finite tree automata generalize finite word automata and function in a very analogue

way. An input tree generates a run that is now a tree that is structurally equivalent

to the input tree. There are, however, two versions of tree automata, namely bottom-

up (BUTA) and top-down (TDTA) tree automata. In TDTAs, the root is assigned

some initial state and leaves correspond to final states whereas in BUTAs the order is

reversed. We further distinguish between determinism and non-determinism as well

as the ranked and unranked case. For BUTAs, determinism and non-determinism

have equivalent power and for unranked trees only the BUTA model makes sense.

Because of these facts, and the fact that deterministic TDTAs are weaker, we mainly

focus on BUTAs.

Definition 40 (Bottom-up tree automaton for ranked trees). A non-deterministic

bottom-up tree automatonM of rank r : Σ→ N is a tuple (Q, I, F,Σ, (δa)a∈Σ), where:

• Q is the finite set of states.

• F ⊆ Q is the set of final states.

• Σ is the input alphabet.

72 Automata

• δa ⊆ Qr(a) ×Q is the transition relation for a ∈ Σ.

Given a tree t over the ranked alphabet (Σ, r) we define a run ρ as a tree over the

ranked alphabet (Σ×Q, r ◦ π1), which is structurally equivalent to t, but the labels

are complemented by a component that holds the state. Meanwhile, the rank is only

be sensible to the first component. Consider an inner node v in ρ with children v1

to vr(a) where a is the letter of v. If q is the state of v and q1, . . . , qr(a) are the states

of v1, . . . , vr(a), then it must hold that (q1, . . . qr(a), q) ∈ δa. Note that in the case of

leaves we assign the state δa() ∈ Q where a is the letter of a leaf, so r(a) = 0. This

is the reason why there are no explicit initial states. If this condition holds in every

state, then ρ is indeed a run. A run is accepting if the state of the root is in F .

Evaluating terms over finite single-sorted algebras is equivalent to computations

of deterministic BUTA for ranked trees. Given a signature σ ∈ N∗, let Σ =

{~1, . . . ,~|σ|} and r(~i) = σ(i). Consider a term t ∈ T(σ) now that we want to

evaluate over an algebra A = (D;~1, . . . ,~|σ|), note that t is also a tree of rank

r. We define a deterministic BUTA having D as the state set and δ~i = ~i and

obviously, the state the automaton computes in the end for the root is the evaluation

of the term t. Taking it one step further, if A is recognizing some language, there

is an accepting subset of D. If we choose this accepting set as the final set of the

automaton, we can see that the languages accepted by BUTAs over ranked trees

coincide with languages recognized by finite single-sorted algebras.

In the unranked case, nodes in trees may have an arbitrary number of children. In

this case we only consider the deterministic version. Actually we get an automaton

model that accepts forests, however, we still call it a tree automaton.

Definition 41 (Deterministic bottom-up tree automaton for unranked trees). An

unranked bottom-up tree automaton M is a tuple (Q, qI , F,Σ, δV , δH), where:

• Q is the finite set of states.

• qI ∈ Q is the initial state.

• F ⊆ Q is the set of final states.

• Σ is the input alphabet.

• δV : Q× Σ→ Q is the vertical transition relation.

• δH : Q × Q → Q is the horizontal transition relation. In particular it is the

associative operation of a monoid (Q; δH , qI) whose neutral element is qI .

A BUTA has two transition functions. One that collects the states of all children

of some parent into a single state. For this to be well-defined we need associativity.

Finite Nested Word Automata 73

We also need a neutral element for the leaves. This makes the horizontal transition

relation a monoid. Further, the vertical transition relation takes the label of the

recent node and the collected state and then outputs a state for the recent node.

Formally, the semantic is again defined by a run ρ of M on the input tree t, which

is structurally equivalent to t but this time over Q as the alphabet. A leaf in ρ is

labeled by δV (qI , a) where a is the letter of the corresponding leaf in t. A general

node v in ρ with children v1 to vn labeled q1 to qn is labeled by δ(q, a) where q is the

product δH(q1, . . . , qn) in the monoid (Q; δH , qI). A run is accepting if the root of ρ

has a label q ∈ F . In case of an input forest, the automaton accepts if the product

of all root labels of the trees is in F .

BUTAs accept precisely the languages recognized by finite forest algebras [BW08].

6.3 Finite Nested Word Automata

Recall that nested words are words augmented with an additional matching infor-

mation. The appropriate automaton model for these words should make use of the

nesting without the need of a storage. This is achieved by having the automaton

not reading the word from left to right but by reading the word guided by the

matching. In finite automata for ordinary words, each step a letter is read and the

state computed in the previous step is used to obtain the new state. In the case of

nested word automata, we may not only access the state but also states computed

after the matching position.

Definition 42 (Finite nested word automaton). A non-deterministic finite nested

word automaton M is a tuple (Q, I, F,Σ, δ, δ), where:

• Q is the finite set of states.

• I ⊆ Q is the set of initial states.

• F ⊆ Q is the set of final states.

• Σ is the input alphabet.

• δ ⊆ Q× Σ×Q is the transition relation.

• δ ⊆ Q×Σ×Q×Q is the transition relation of positions being the right part

of a matching.

Such an automaton works just like a classical word automaton with the exception

of positions i for which there exists a position j such that j i. In this situation,

74 Automata

δ is used. It makes use of the state computed in position j + 1. A deterministic

version has transition functions δ : Q× Σ→ Q and δ : Q× Σ×Q→ Q.

Formally, given a nested word w with a matching predicate as input, the

automaton M induces a run ρ, which is an element of Q|w|+1. A run satisfies

ρ1 ∈ I. Also, if for i ∈ [|w|] there does no j exist for which j i, we have that

ρi+1 ∈ δ(ρi, wi). Else, if such a j exists, we have that ρi+1 ∈ δ(ρi, ρj+1, wi). We use

j + 1 instead of j because we want to use the state that already has seen the letter

in position j. A run is accepting if the last position contains an accepting state.

Then we write (w,) |=M and L(M) is the set of all nested words accepted by

M.

Weakly nested words allow for positions that are part of a matching where the

matching position is not part of the word. A finite nested word automaton can

handle these by simply ignoring ∞ and −∞ .

Proposition 43. Finite nested word automata accept precisely the regular nested

word languages.

We delay showing this proposition until the next section because we will pair it

with the analogue statement for visibly pushdown automata.

6.4 Visibly Pushdown Automata

Nested words and well-matched words are equivalent models, differing in the fact

that nested words have additional explicit matching information. Well-matched

words are just ordinary words with special semantics. Therefore, the matching

information is present in a more indirect way. That is why we do not have a finite

automaton model for well-matched words, in contrast to nested words. Here, we need

pushdown automata. In fact, a restricted version of pushdown automata sufficient

to capture all regular sets of well-matched words. If we strictly define it as a PDA,

we have the requirement that the kind of input letter already determines how the

stack is accessed:

• For a call letter, one symbol is pushed.

• For a return letter one symbol is popped.

• For an internal letter, the stack is not accessed at all.

However, to get a more convenient model we give a new definition that does not

use the definition of PDAs. Note that there is no bottom-of-stack symbol since we

do not want the automaton to be able to read a return letter after a well-matched

Visibly Pushdown Automata 75

word is read. The automaton still has a way to remember when the stack is empty:

By pushing an annotated symbol first and then maintaining this information.

Definition 44 (Visibly pushdown automaton). A non-deterministic visibly push-

down automaton (VPA) M is a tuple (Q, I, F, Σ̂,Γ, δcall, δret, δint), where:

• Q is the finite set of states.

• I ⊆ Q is the set of initial states.

• F ⊆ Q is the set of final states.

• Σ̂ = (Σcall,Σret,Σint) is the visible input alphabet.

• Γ is the pushdown alphabet.

• δcall ⊆ Q× Σcall ×Q× Γ is the transition relation for call letters.

• δret ⊆ Q× Σret × Γ×Q is the transition relation for return letters.

• δint ⊆ Q× Σint ×Q is the transition relation for internal letters.

Note that the nondeterministic transition relations can be also read, for example,

as δcall : Q × Σcall → 2Q×Γ. In the case of deterministic automata, the image is a

set, which always has size one. Since such a relation is a function, we may write it

equivalently as δcall : Q× Σcall → Q× Γ.

Such an automaton is called visibly because the input letter always indicates what

happens on the stack. Languages accepted by VPAs are the visibly pushdown

languages VPL.

Given a well-matched input word w ∈WM(Σ̂) and a VPA M, a run ρ is a word

in (Q× Γ∗)|w|+1 where ρ1 = (q, ε) and q ∈ I. Further, if wi ∈ Σcall, then ρi = (q, γ)

and ρi+1 = (q′, aγ) where (q′, a) ∈ δcall(q, wi). If wi ∈ Σret, then ρi = (q, aγ) and

ρi+1 = (q′, γ) where q′ ∈ δret(q, wi, a). Finally, if wi ∈ Σint, then ρi = (q, γ) and

ρi+1 = (q′, γ) where q′ ∈ δint(q, wi). A run is accepting if the last position is of

the form (q, ε) for q ∈ F ; we write w |=M and L(M) ⊆ WM(Σ̂) is the set of all

accepted well-matched words.

VPAs can be determinized [AM04]. The result of the determinization procedure

can serve as a useful normal form. A sketch of this construction is as follows. First,

note that the powerset construction alone does not work. As a state set for the

deterministic machine we choose Q′ = 2Q×Q for Q being the state set of the original

automaton. The main idea is the following: When reading an input word w, let

q ∈ Q′ be a state that is reached after reading the first k letters. Now, q holds the

information for each pair of states (q1, q2) ∈ Q× Q whether q1
u→ q2 exists where

76 Automata

u is the maximal well-matched suffix of w1 . . . wk. To maintain this information

we choose the stack alphabet to be Γ′ = Q′ × Σcall. When reading a call letter we

store it onto the stack together with the recent state. After reading a call letter,

the maximal well-matched word that comes before is ε, because well-matched words

never end in call letters. So, we jump into a state that represents the identity

map. When a return letter is read, we have all the information present to maintain

the semantic of the state. Let the well-matched word be uavb for u and v being

well-matched, a ∈ Σcall, and b ∈ Σret. Now, if the automaton is about to read b it is

in a state that holds the information for v. Through the stack it has access to the

state that holds the information for u. The letter a is also present. So, the state for

uavb can be computed.

Proposition 45. VPAs recognize precisely the visibly pushdown languages.

Proof. Given a language L accepted by a determinized VPA, we define a finite

extend algebra that recognizes L. First, consider δret ⊆ Q×Σret× Γ×Q. Following

the determinization construction we can actually see δret as being of the form

δret ⊆ Q × Σcall × Q × Σret → Q. Recall that the states of Q are sets of pairs of

states of the original automaton. So, for δret we have (q, a, q′, b) 7→ q ◦ fa,b(q′). We

see that Q together with ◦ forms a monoid. This is the base for the finite extend

algebra. So, we choose Q to be the domain and ◦ to be the binary operation, i.e. Q

is the horizontal monoid. Further, for all (a, b) ∈ Σcall × Σret the function 4a,b is a

unary operation in the algebra. Internal letters can be treated in the obvious way

resulting in another set of 0-ary operations �c. Correctness of the construction can

be seen by induction over the structure of well-matched words.

For the reverse direction, suppose a language of well-matched words L for which

the syntactic extend algebra Synt(L) = (H; +, (4a,b)a∈Σcall,b∈Σret , 0, (�c)c∈Σint
) is

finite. The automaton we construct has H as a state set. We define δret to be

(q, a, q′, b) 7→ q + 4a,b(q
′). Also, we define δint as (q, c) 7→ q + �c. Finally, δcall

stays as described in the determinization procedure. Again, correctness follows by

induction.

Proposition 43 follows from the previous proof since nested word automata and

VPAs are equivalent. Also, the determinization procedure can be applied with

minimal alternation to nested word automata, leading to a very similar direct proof.

This leads a normal form for nested word automata.

Matched words, in contrast to well-matched ones, relax the condition that every

call letter needs a matching return letter. We defined VPAs to be only accepting

well-matched words. Originally, VPAs were defined for this more relaxed version.

However, then we would not get the correspondence to algebra as we did before.

Besides that, everything can be generalized to the matched case.

Within Visibly Pushdown Languages 77

At this point we survey basic properties of the class of VPLs [AM04]. First, when

Σ̂ is fixed, VPLs are closed under intersection, union, concatenation, and Kleene

star. They are also closed under complementation against WM(Σ̂) but not against

Σ∗. Closure under homomorphisms is given only for those that are compatible

with visibility. For example, let L be a VPL over Σ̂ = ({a}, {b}, ∅) and φ be a

homomorphism φ. If it holds that ∆(φ(a)) ≥ 0 and ∆(φ(a)) = −∆(φ(b)) where the

height profiles of φ(a) and φ(a) do not go below 0, then φ(L) is also a VPL.

The situation for decidability is also pleasant: Given VPAs M1 and M2, it is

decidable whether L(M1) = L(M2), L(M1) ⊆ L(M2), as well as L(M1) = ∅. The

decidability results and closure properties demonstrate that VPLs might offer a

better trade-off between those properties and expressibility than CFLs. They behave

much tamer, similar to the regular word languages, which comes as no surprise. So,

they are a much more meaningful counterpart than the CFLs.

6.5 Within Visibly Pushdown Languages

Visibly pushdown languages have sparked great interest as they bring the world of

trees and words together. They provide a good tradeoff between expressibility on

the one hand and closure and decidabilities on the other hand. There are also close

relations to terms and term evaluation. Soon after their discovery a line of research

emerged that tried to generalize results known for regular word languages to visibly

pushdown languages. Often, this is successful, but sometimes it is not. In those

cases it is beneficial to approximate results by showing them for subclasses of VPLs.

We will consider some subclasses and also look at an interesting open problem.

6.5.1 Very Visibly Pushdown Languages

The first subclass of the visibly pushdown languages are the very visibly pushdown languages1.

A VPA decides depending on the input letter whether a symbol is pushed onto or

popped off the stack. In the very visibly case, if a call letter is read, also the symbol

that is pushed is already determined by the letter read. We generalize this model

slightly by allowing the automaton to know the stack height up to some threshold

k, similarly as it is the case for counter automata.

Definition 46 (Very visibly pushdown automaton with threshold k (k-VVPA)). A

non-deterministic very visibly pushdown automaton M with threshold k is a tuple

(Q, I, F, Σ̂,Γ, δcall, δret, δint), where:

1This naming might seem awkward, but it was chosen to be consistent with the pre-existing
name of visibly pushdown language

78 Automata

• Q is the finite set of states.

• I ⊆ Q is the set of initial states.

• F ⊆ Q is the set of final states.

• Σ̂ = (Σcall,Σret,Σint) is the visible input alphabet.

• Γ is the pushdown alphabet.

• δicall ⊆ Q × Σcall × Q × Γ is the transition relation for call letters and i ∈
{0, . . . , k}. We also require that for all q1, q

′
1, q2, q

′
2 ∈ Q, a1, a2 ∈ Σcall, and

γ1, γ2 ∈ Γ with (q1, a1, q
′
1, γ1) ∈ δicall and (q2, a2, q

′
2, γ2) ∈ δicall holds that a1 =

a2 ⇒ γ1 = γ2.

• δiret ⊆ Q × Σret × Γ × Q is the transition relation for return letters and

i ∈ {0, . . . , k}.

• δiint ⊆ Q × Σint × Q is the transition relation for internal letters and i ∈
{0, . . . , k}.

The semantics here are very similar to the one for VPAs. The only difference is

that if in a configuration the stack has height α, the transition relations δ
max(α,k)
call ,

δ
max(α,k)
ret , and δ

max(α,k)
int are used. A k-VVPA is a VVPA with threshold k and by

a k-VVPL denote a language accepted by some k-VVPA. By VVPL we address a

k-VVPL for some k ∈ N.

It is easy to see that every language accepted by some k-VVPA is also accepted by

a VPA. In order to see this, one can build a VPA M′ based on some k-VVPA M
that maintains the stack height up to k in the stack content; if M has Γ as stack

alphabet, M′ will have Γ× {0, . . . , k} as stack alphabet.

In k-VVPAs it is possible to assume that Γ = Σcall, where, every time some a ∈ Σcall

is read, a is pushed onto the stack. That way the maximal information is stored.

An example of a language that is a VPL but not a k-VVPL is

{ambnaobocbm−n | m,n, o ∈ N, m ≥ n}

for Σcall = {a}, Σret = {b}, and Σint = {c}. The idea is that an automaton reading

the word has to remember when the prefix ambn is read, since that is the height

where on the matching side the letter c has to be present. A k-VVPA cannot store

this information onto the stack and is, therefore, left with its states. By using a

pumping argument, one can see that this information cannot be maintained through

reading the factor aobo.

Within Visibly Pushdown Languages 79

We can see how the threshold works by modifying the previous example. The

language

Li = {ambnaobocbm−n | m,n, o ∈ N, 0 ≤ m− n < i}

is accepted by an i-VVPA but not by an (i− 1)-VVPA.

Another example for a language that can be recognized by VVPAs is the Dyck

language Dp ⊆ {a1, . . . , ap, b1, . . . , bp}∗ where the letters ai are call and bi are return

letters for i ∈ [p]. For i = 1, the set Di is just the set of well-matched words over

two letters. In general, Di is the set of well-matched words for which it holds that

each position with letter ai matches a position with letter bi. So, Dp can be regarded

as the set of all well parenthesized expressions using p pairs of parentheses. The

Dyck language is recognized by a VVPA for any number of parentheses.

A basic property of VVPAs is captured by the following proposition:

Proposition 47. Very visibly pushdown automata can be determinized.

Proof. Let τk : Σ̂ → (Σcall ∪ Σret × Σcall ∪ Σint) × [k] be a transduction that

takes a well-matched word and labels each letter its height up to k and

each return letter its matching call letter. An example for this would be

τ1(a1a2a1bbb) = (a1, 0)(a2, 1)(a1, 1)(b, a1, 1)(b, a2, 1)(b, a1, 0) where a1, a2 ∈ Σcall and

b ∈ Σret. For each VVPA M = (Q, I, F, Σ̂,Γ, δcall, δret, δint) there exists an NFA

M = (Q, I, F, (Σcall ∪ Σret × Σcall ∪ Σint)× [k], δ) with:

• For a ∈ Σcall it holds (q, (a, i), q′) ∈ δ if there exists γ such that (q, a, q′, γ) ∈
δicall.

• For b ∈ Σret and a ∈ Σcall it holds (q, (b, a, i), q′) ∈ δ if there exists γ such that

(q, b, γ, q′) ∈ δiret and γ is the letter that is pushed if a is read.

• For c ∈ Σint it holds that (q, (c, i), q′) ∈ δ if (q, c, q′) ∈ δiint.

NowM accepts a word w if and only if M accepts τ(w). The automaton M can be

determinized. Subsequently, we can do the reverse construction and obtain a VVPA

from the DFA, which then in turn is deterministic. In other words: VVPAs can be

determinized by the powerset construction.

Finally, consider the example language L ⊆ {a1, a2, b, c1, c2} where Σcall = {a1, a2},
Σret = {b}, and Σint = {c1, c2}, which is defined through the following grammar rules

S → a1Sbc1 | a2Sbc2 | ε. This language clearly is recognized by a VVPA. Whenever

it reads some b, it receives the information from the stack whether the next symbol

has to be c1 or c2. Now, look at the reversal LR of L where call letters become

return letters and vice versa. There is no VVPA for LR since it has no way of storing

whether it read a c1 or c2 on some stack height because these letters are internal.

80 Automata

So, on the matching side the information to decide between b1 and b2 is not present,

and therefore VVPLs are not closed under reversal.

6.5.2 Visibly Counter Languages

By restricting the automaton model even further, we move from VVPAs to visibly

counter automata (VCA). They also have a height test up to some threshold, which

is similar to NOCAs and DOCAs. This model appears in [BLS06, KLL15b, HKLL15,

KLL15a].

Definition 48 (Visibly Counter Automaton). A k-VCA is a k-VVPA for which

the stack alphabet Γ has cardinality one.

In the case of k-VCAs, the definition of the transition relations can be collapsed to

δicall ⊆ Q×Σcall ×Q, δiret ⊆ Q×Σret ×Q, and δiint ⊆ Q×Σint ×Q, and so it can be

even further collapsed to δi : Q× Σ×Q.

An equivalent definition would be to impose a visibility restriction onto NOCAs.

The set of languages accepted by k-VCAs is k-VCL and VCL is the union over all

k ∈ N.

The proof of Proposition 47 also works for VCAs:

Proposition 49. Visibly counter automata can be determinized.

A prime example for a language that is a VCL is D1. Further, Di is not a VCL for

i > 1. For some k the language {anbn−kam−kbm | n,m > k} has a k + 1-VCA but

no k-VCA.

Proposition 50. The visibly counter languages are closed under reversal.

Proof. When performing the construction of the proof of Proposition 47. One can

modify the resulting automaton M such that it accepts the reverse. The result can

be translated back into a VCA.

6.5.3 Intersection Problems

As already indicated, VPLs can be used to express term evaluation over finite algebras.

This motivates some questions, amongst others: If X is some low complexity class,

what is VPL ∩ X. In the last chapter we go more into the details of this aspect.

However, for now, we investigate a closely related question, which in its most general

form asks for decidability of the following: Given two VPLs L1 and L2, does a

Within Visibly Pushdown Languages 81

regular language R exist, such that L1 = L2 ∩R. This problem has been proven to

be undecidable [Kop16].

However, there are interesting special cases, where we get decidability or we do not

know about decidability. These special cases may have practical applications.

To that end we refine our notion of matching. In general, a call letter matches

a return letter. A restriction is present in the Dyck languages in which each open

parenthesis has exactly one matching closing one. We can take this even further and

define a bipartite graph G = (Σcall ∪ Σret;E) over the partition sets Σcall and Σret.

If there is an edge (a, b) ∈ E, it means that we allow that a position with an a may

match a position with a letter b. In this case we call G a matching graph. Given a

matching graph G, we call a word w strongly well-matched with respect to G if all

its matchings respect G. The set of all strongly well-matched words with respect

to G is denoted as SWM(G). One can observe now, for example, that Dk equals

SWM(G) for G = (Σcall ∪Σret;E), where (ai, bj) ∈ E if and only if i = j. The set of

all well-matched words we get by taking the maximal matching graph and denote

this set by WM.

We can ask the following question: Given some VPL L, is it a regular restriction

of the set of strongly well-matched words? In other words: Answering this question

may have applications, for example, in parsing XML. An XML document is a

strongly well-matched word in which many opening parentheses have one closing

one if one takes parameters into account. If one abstracts those away, an XML

document becomes a subset of a Dyck language. Now, suppose we know that we

have a language at hand, that is the intersection of a regular language and a strongly

well-matched set. In this case we can split the parsing. Under the premise that

the input word is valid, i.e. is strongly well-matched, checking validity is nothing

different than solving a word problem for a regular language and this is a problem

for which a rich set of tools already exists.

This problem is still open, but attempts have been made. In [BLS06] a partial

solution can be found for the problem of deciding whether some VPL L is the

regular restriction of the set of well matched words, i.e. does a regular language

R exist, such that L = R ∩WM. The result is obtained in two steps. First, it is

decided whether for L there exists some k such that L is recognized by some k-VCA.

The second step is deciding whether k can be reduced. If k can be reduced to 0,

the answer is yes: A language is accepted by some 0-VCA if and only if it is the

intersection of a regular language and WM. In a 0-VCA, there is no hight test that

impacts the states. So, the transitions the automatons perform are just those of a

finite automaton. The counter only enforces that the input is well-matched.

Now, consider the problem of deciding whether a VPL L is of the form L =

R∩SWM(G) for a regular language R and a matching graph G. It is not difficult to

82 Automata

find G. First, there exists a unique minimal G with respect to the number of edges.

It should contain exactly those matchings that occur in some word in L. Hence,

we may just search for the smallest G and try to find a fitting R. There are only

2|Σcall|·|Σret| different matching graphs, which is finite. Since inclusion is decidable for

VPLs, we can check L ⊆ SWM(G) for all G and then choose the smallest one.

Finding R is harder and we do not have a solution for this problem yet. However,

one could try top mimic the proof strategy of [BLS06]. Instead of finding a k-VCA

and then a 0-VCA, one could try to find a k-VVPA and then a 0-VVPA. If we

have a 0-VVPA, we still need to check whether L is actually a regular restriction of

SWM(G).

For a certain special case, checking whether a 0-VVPA accepts a language that

is a regular restriction of SWM(G) is actually already doable. If G is a matching

graph in which every return letter has at most one matching call letter, then, if the

language being a subset of SWM(G) is accepted by some 0-VVPA, it is already a

regular restriction. The idea is that storing content on the stack does not provide

any additional information for the time the matching return letter is read, since

the call letter is already determined by the return letter. So, we can distill a finite

automaton out of the 0-VVPA the same way as in the case of 0-VCA by simply

ignoring the stack.

Now, suppose we have a matching in which each call letter has at most one matching

return letter. This case can be handled by first building an automaton for the reverse

language. If the language is a regular restriction, then there exists a 0-VVPA for

the reverse language. After that step we can distill the finite automaton and again

do a reversal to obtain the original language again.

Next steps could be to look at more complicated matchings until we obtain a

method that works for all matching graphs. Of course, the step of converting VPAs

to 0-VVPAs in the first place is also still open. This problem could be tackled using

determinized VPAs. These are already very close to VVPAs in that only in certain

situations they store more information than the call letter they just read to the

stack.

The problem of deciding regular restrictions is related to questions we address

in the final chapter where we analyze which VPLs are in certain low complexity

classes. Knowing about decidability of the problem might help to solve problems over

there. In particular a variant would be interesting where we do not ask for a regular

language R such that L = R ∩ SWM(G) but for an aperiodic or quasiaperiodic

regular language R.

Conclusion 83

6.6 Conclusion

Summary

After covering algebra and logic for capturing languages we considered automata

in this chapter. We looked at versions for finite words, ranked trees, and forests

first and presented the typical finite automaton models. Later, nested words and

their finite automaton model were covered. Nested words are in correspondence to

well-matched words, but the corresponding automaton model needs storage, which

leads to visibly pushdown automata - a well behaving special kind of pushdown

automaton.

VPAs being well-behaved means that many desirable properties of finite word

automata are inherited. We are interested in finding more of these good properties.

This is not always easy, so we defined intermediate classes between the VPLs and

the regular languages. First, very visibly pushdown languages are recognized by

very visibly pushdown automata, which are VPA that have the property that the

call letter read determines the letter pushed onto the stack. A further restriction

is to make the pushdown storage a counter. We then arrive at the visibly counter

languages.

For the different automaton models we showed regularity in the sense that the

languages recognized coincide with those recognized by finite algebras. One approach

that we did not pursue is to capture VVPLs and VCLs by typed monoids.

In the end we looked at intersection problems and pointed out some first steps to

solve them.

Contributions

In this chapter we chiefly surveyed existing concepts. However, we introduced one

that is new: Very visibly pushdown automata are a natural intermediate model

between VCAs and VPAs. This could be used to lift the proof strategy from [BLS06]

to the case of strongly well-matched words. We laid out how such a proof could

work.

Sources and Related Work

For basics on automata theory for we refer to [Str94, HU79, Tho97]. In addition,

for tree automata see [CDG+07].

84 Automata

VPAs and nested word automata appeared together as two sides of the same

coin and were introduced by Alur and Madhusudan [AM04, AM09]. VPA had an

incarnation before under the name of input-driven automata introduced by Mehlhorn

[Meh80]. Most recent research, however, can be traced back to the paper of Alur

and Madhusudan.

VCAs first appeared as a tool in [BLS06] for showing decidability of regularity

questions. This is the kind of questions we addressed in the last section of this

chapter. Recently it has been shown [Kop16] that the more general problem of

deciding whether some VPL is the regular restriction of another VPL is not decidable.

VPAs are an attempt for a better tradeoff than pure PDAs. Litte expressibility

is sacrificed while many good properties emerge. We want to mention another

possibility, the so-called height deterministic automata [NS07, LMM09].

Further Research

The intersection problems we covered yield the most obvious thread for further

research in this chapter. One could take up the proof strategy we outlined, which is

rooted in [BLS06].

Chapter 7

Quantitative Automata

Up to this point we have mainly spoken about languages, which are either understood

as a set of structures or as a subset of some free algebra.

A language L ⊆ D can be interpreted as a map D → {0, 1} where D is the set

of all structures or the domain of a free algebra. This map is the characteristic

function of L. One major aspect of this work is to go beyond languages. That is,

we not only consider problems that have a yes/no answer but problems where some

richer output is desired. A prime example is to extend the characteristic function

to D → N. The natural numbers as a target data type will appear in many places

throughout this work. The following section as an example for this case.

7.1 Counting

We already discussed ordinary Boolean automata in the previous chapter. These

automata can be called Boolean since they basically compute a single output

bit. While maintaining the syntax of the different automata models, one can

assign a generalized semantic, which in turn yields more information than just

one bit indicating acceptance or rejection. We can assign a function D → N to

non-deterministic machines that assigns each input the number of accepting runs.

Therefore, the image of the function is 0 if the input is rejected and positive if it is

accepted. This shows that the Boolean case embeds into this setting, which we call

counting. In principle we can apply this to any nondeterministic automaton. For

deterministic and unambiguous automata the counting function and the characteristic

function coincide.

86 Quantitative Automata

When considering Turing machines and complexity, we obtain counting complex-

ity classes by taking the set of counting functions corresponding to some non-

deterministic complexity class. The set #P contains all functions f : Σ∗ → N for

which a non-deterministic poly-time Turing machine exists which, on input w, has

f(w) accepting computations. The same way we define #L.

For other classes, we borrow the #-notation and write, e.g., #NFA or #VPA for

the sets of functions we get through counting accepting runs in NFAs or VPAs.

7.2 Weighted Automata

Counting in automata can be considered as extracting information about how the

automaton works. If we want to implement functions that occur in application, we

need to go beyond that and enhance our automaton model. Weighted automata

are an active field of research that deals with non-deterministic automata that are

equipped with a semiring (R; +,×). Each transition rule of the non-deterministic

automaton is assigned an element of R. The automaton can then be assigned a

function D → R in the following way: For each run, the weights that occur on its

transitions are multiplied. That way we get one value for each run. These values

are then being summed up. This sum is the output. Due to distributivity we can

also view the problem from a different angle. Rather than the set of runs, consider

the execution tree. The set of maximal paths in the execution tree yields the set

of runs. Now, we evaluate this tree under the semiring as follows: A vertical step

corresponds to multiplying the assigned value. We do this for all children of a node.

Then all these values are being added, which is the horizontal operation.

It is easy to see how counting as defined previously embeds into the weighted

framework: Take the semiring (N; +,×) and assign each transition the value 1. Then

counting is achieved.

The idea of weighted automata, as we outlined above, is directly applicable to finite

word automata. There exists a sizable body of work that considers other automata

models under the weighted framework, like weighted tree automata and weighted

visibly pushdown automata. We omit going into detail since we will cover an even

more general framework in the following section.

7.3 Cost Functions and Cost Register Automata

A rather recent generalization of weighted automata are cost register automata

(CRA). A CRA for finite words is an ordinary deterministic automaton equipped

with a set of registers. The register automaton is a classical model, which is Turing

Cost Functions and Cost Register Automata 87

complete. CRAs, however, are less general. In a CRA, the behavior of the states,

i.e. the state transitions and register actions are totally data independent. That

means that the same action is performed, no matter what values the registers hold.

In particular, there is no 0-test. This restriction makes this model tractable while

still having a significant expressibility - a situation that also occurs in the visibly

pushdown model. Later we will bring these two models together.

More formally, a CRA is based on some algebra A = (D;O) and, in the case of

words, it implements a function Σ∗ → D or in general a function D → D. Note that

in contrast to the weighted case, A does not have to be a semiring. In fact, A can

be totally arbitrary. Further, a weighted automaton uses non-determinism to involve

both operations of the semiring. CRAs on the other hand are deterministic. For

every transition rule and register there exists a term that recombines old register

values to obtain the new one.

No matter whether we consider words or other models, basically a CRA has a finite

set of registers X and initial values for each register. When the input is read, each

register value is updated according to state and letter read. In the end a final cost

function is applied to recombine the register values to the single output value. For

many considerations, it is beneficial to separate the actions of the transitions and

the actual values. If we remove the initial value and the final cost function, we can

regard a CRA as a device assigning each word of Σ∗ a function DX → DX . Here, a

map X → D is a valuation of the registers. This function again is composed of the

functions each transition is assigned. Later, we will discuss this more thoroughly,

but for now keep both views in mind.

The cost register models we define are always based on a single-sorted algebra. We

do this solely because of succinctness. The cost register framework works just as

well with many-sorted algebras. In this setting each register is assigned a sort.

In the following section we survey CRAs on words, which is the first kind of cost

register machine introduced in the literature. We will use it as a blueprint for other

kinds of cost register machines.

Also note that the complexity of CRAs is a major topic of interest, however, we

delay complexity questions until Part II of this work.

7.3.1 Cost Register Automata for Finite Words

Initially the goal was to design an automaton models that models a function assigning

each element of Σ∗ a value. The value and the computations are based on some

single-sorted algebra that is fixed for the automaton. The automaton has a set of

registers that are updated according to the state and the letter read. The register

updates the automaton performs can be captured by the following algebra:

88 Quantitative Automata

Definition 51 (Register algebra). Given a single-sorted signature σ and a finite

set of registers X, the register algebra is defined as RX
σ =

(
(TX(σ))X ;�

)
. The

domain consists of functions X → TX(σ). The images of the functions consist of

terms with variables of X. These terms can be interpreted as functions of the form

(TX(σ))X → TX(σ). The operation � is then defined following this interpretation

as (a� b)(x) = (b(x))(a) for a, b ∈ TX(σ))X and x ∈ X.

The operation �, which we defined in the algebra, models substitution of terms

with variables. A term t of TX(σ) represents also a function that takes a function

f : X → TX(σ) and then each variable x ∈ X in t by f(x). The definition of �
models this substitution. For the product (a � b)(x) = (b(x))(a) where x ∈ X,

we first consider b(x), where b : X → TX(σ) assigns each register a term. Then

b(x) ∈ TX(σ), but we can also interpret b(x) as a map (TX(σ))X → TX(σ) by the

interpretation described above. As b(x) is such a map, we may insert a into it, and

thus have (b(x))(a) ∈ TX(σ), hence x 7→ (b(x))(a) is a function X → TX(σ).

Definition 52 (Cost register automaton for words (CRA)). A cost register au-

tomaton M over a single-sorted algebra A = (D;O) of signature σ is a tuple

(Q, qI ,Σ, δ,X, ν0, ρ, µ), where:

• Q is the finite set of states.

• qI ∈ Q is the initial state.

• Σ is the alphabet.

• δ : Q× Σ→ Q is the transition function.

• X is the finite set of registers.

• ν0 : X → D is the initial register valuation.

• ρ : Q× Σ→ RX
σ is the register update function.

• µ : Q→ TX(σ) is the final cost function.

A CRA M implements a function

FA(M) : Σ∗ → D.

Let q0 . . . q|w| ∈ Q∗ be the run of M on an input w ∈ Σ∗ where q0 = qI is the initial

state. We assign each step a valuation of the registers. The initial valuation is

ν0 : X → D. Now, we assume νi−1 is already computed, then

νi(x) = eval
νi−1

A (ρ(qi−1, wi)(x)).

Cost Functions and Cost Register Automata 89

After w is read we arrive at a valuation ν|w|. The final output then is

FA(M)(w) = eval
ν|w|
A (µ(q|w|)).

We defined the semantics in such a way that values of A are computed in each

step, which involves evaluation in each step, but it is also possible to have another

order where an evaluation over the target algebra only occurs once at the end. A

CRA can be regarded as a device that generates a term. This term is evaluated over

an algebra with given initial values. The term a CRA M generates is FT (σ(A))(M)

if we choose the initial valuation as the identity function. Then we get

FA(M)(w) = evalν0
A (FT (σ(A))(M)(w)).

The function FT (σ(A))(M) in turn can be obtained by the register algebra. The run

r ∈ Q∗ induced by the input word w ∈ Σ∗ and the input itself lead to a sequence of

register updates ρi = ρ(ri, wi). Now, (FT (σ(A))(M)(w) = (
⊙

i∈[|w|] ρi) � µ(qfinal) is

the term the automaton computes.

Important examples for CRAs are those over (N; +) or (N; +,×)1. We may also

use a free monoid as an algebra and by doing so get transducer-like automata.

One motivation for CRAs has been the need to obtain a model that generalizes

weighted automata, which CRAs indeed do [ADD+11]. There is also a tight relation

to counting. For this statement we allow NFAs to have ε-transitions. This is

useful for capturing the initial values, especially if the input is the empty word.

Alternatively we could have restricted all initial values of the CRA to zero.

Note that automata using the algebra (N; +) may still contain multiplication in

their register update terms, that is multiplication with a constant. The reason is

that such multiplications can be replaced by a term of a fixed length only using

addition.

Theorem 53. The set of functions in #NFA coincides with functions implemented

by CRAs over (N; +).

Proof. This proof is related to a proof in [ADD+11]. First, we show that each

function in #NFA is in implemented by a CRA over (N; +). Given an NFA M , we

construct a CRA N such that it implements the counting function of M . This CRA

has only one state and one register for every state in M . Let δ be the transition

function of M , then the register update function ρ of N is defined as follows: Let

z be the single state of N , a ∈ Σ and q be a register, which is also a state of M .

Then ρ(z, a, q) is the term that sums up all registers/states q′ with q ∈ δ(q′, a). The

1Note that in order to stay consistent with canonical notation, we omit mentioning the constant
operations in the notation.

90 Quantitative Automata

initial register valuation assigns all initial states the value 1 and all other states the

value 0. The final cost function sums up all registers that are final states of M .

For the reverse we show that each function implemented by a CRA over (N; +)

is in #NFA. Given a CRA N we construct the NFA M . Let Q be the state set of

N and X the set of registers. Initially, M will have the state set Q ∪Q×X. The

number of paths reaching a state (q, x) in M will be the same as the register value

of x.

In a state q we get to q′ by reading the letter a and the register value for x is set

to v1x1 + v2x2 + . . .+ vkxk + c, then in M for all i ∈ [k] we insert vi copies of the

transition ((q, xi), a, (q
′, x)). We also insert c copies of the transition (q, a, (q′, x)).

Since δ is not a multiset, formally we have to implement the multiple copies of a

transition by splitting it and inserting a new state in the middle. One of the two

transitions is labeled ε.

We described how the transitions inside Q×X work, but there is also the state set

Q. This set is included to model the final cost function. In every state the automaton

has the chance to non-deterministically jump from a state (q, x) to a state q′ through

reading a if δ(q, a) = q′, depending on µ(q′). For example, if µ(q) = x1 + x2 + c,

then (q, x1)
a→ q′ and (q, x2)

a→ q′. If c 6= 0, we insert a construction that generates

c additional accepting runs.

The initial costs ν0 can be modeled with the help of a construction of ε-transitions.

Closure properties examined in [ADD+11] included reversal. The closure for an

if-then-else function was shown as well: For a regular language L and functions

f1, f2 the if-then-else function is given as

w 7→

{
f1(w) if w ∈ L
f2(w) if w 6∈ L

.

Finally, a regular look-ahead was considered, which allows a CRA to update the

registers also depending on the membership to some regular language of the rest of

the input word.

As a decidability result, the paper [ADD+11] included finding a minimum. That is,

e.g. given a CRA over the natural numbers and addition, finding the smallest output

value that can be generated. Also, for certain algebras, it is decidable whether two

CRAs are equivalent. Another problem is dominance: Given two machines, will the

first machine always generate a greater value than the second one? The authors

also considered searching for a given value, so for a value d of the algebra, the task

would be to find out whether there is an input word for which the output is d.

Cost Functions and Cost Register Automata 91

We want to add another decidability problem to this list, which is boundedness. Can

the output value be bound by a constant for a given a CRA? This formulation assumes

an order on the algebra values, but we can formulate the problem equivalently in the

following way: Does the realized function have a finite image? That is, given a CRA

M, is |F (M)(Σ∗)| ∈ N? The boundedness property becomes especially interesting

if one is to extend the CRA model to infinite inputs like ω-words. An example for

such a decidability result is the following:

Theorem 54. Given a CRA M over the algebra A = (N; +,×), it is decidable

whether FA(M) is bounded.

Proof. Let Σ≤n be the set of words up to length n. Consider the image FA(M)(Σ≤n)

now where n = |Q| is the set of states. It contains all values obtainable through

words that are bound in length by the number of states. All longer words in

Σ∗ \ Σ≤n induce a run on M that has a loop. Now, if we compare FA(M)(Σ≤n)

and FA(M)(Σ≤2n), we get two possibilities: Either both sets are equal; in this case

FA(M)(Σ≤n) = FA(M)(Σ≤in) for all i ∈ N, hence FA(M)(Σ∗) is finite, and thus

FA(M) is bounded; or the sets are not equal, which means that there exists a loop

letting the image grow, hence FA(M) is not bounded.

If a CRA over an algebra A recognizes a bounded cost function, we can find an

equivalent CRA over a finite algebra.

Boundedness is a property that, in a way, limits the complexity of the algebra

computations a CRA performs. If a cost function of some CRA is bounded, it

potentially has positive implications for the complexity upper bounds. Boundedness,

however, is a very strong restriction. There are weaker restrictions that, for example,

filter out bad examples like the following:

Example 55. Consider a CRA over the algebra (N; +,×, 0, 1) with one state and

one register over a one-letter alphabet that has a register update rule that implements

the mapping x 7→ x× x. If the initial value is 2, the realized function is w 7→ 22|w|.

So, the result needs an exponential number of bits to be represented, which results in

a high complexity bound.

To filter out examples like the one above the following restriction is sufficient.

For that we first have to extend the definition of linear terms to sets of terms. A

linear term set is a set of linear terms in which each variable appears at most in one

term in the set.

Definition 56 (Copylessness for CRAs (CCRAs)). A CRA with state set Q, register

set X and register update function ρ is called copyless if the set {ρ(q, a)(x) | x ∈ X}
is a linear term set for each q ∈ Q, a ∈ Σ.

92 Quantitative Automata

The copylessness restriction is a syntactical one and enforces that the computed

term has linear size, i.e. |V (FT (σ(A))(M)(w))| ∈ O(|w|), whereM is the CRA; recall

that a term is a tree, i.e. a graph, and V (G) addresses the vertex set of a graph G.

Many interesting cases of cost function examples happen to be copyless.

CCRAs have the disadvantage that it lacks certain properties. For example, its

functions are not closed under reversal [ADD+11, MR15].

With regard to complexity, copylessness solves the problem that arose in the

previous example. In actuality this is stricter than it has to be. A first thing one

can do is to change the property to be semantical. That means we only require the

term to stay linear. This poses a contrast to copylessness, which also dictates how

this goal is achieved; this is similar to determinism and unambiguity for automata.

Furthermore, we may even allow polynomial size instead of linear. Put together we

gain the following property.

Definition 57 (Polynomially bounded cost function). The cost function rec-

ognized by some CRA M over an algebra A is called polynomially bounded if

|V (FT (σ(A))(M)(w))| ∈ O(p(|w|)) for some polynomial p.

IfM recognizes a polynomially bounded cost function, we also callM polynomially

bounded. If the polynomial has degree one, we call both the cost function and M
linearly bounded. We directly get the following relationship:

Lemma 58. Cost functions recognized by CCRAs are linearly bounded.

Notice that there are indeed CRAs that recognize a cost function that is polynomi-

ally bounded but not linearly bounded:

Example 59. Consider a CRA over the alphabet {a} and algebra (N; +) with one

state and two registers x and y. We update x by increasing its value in every step by

one. The register y is updated by adding the value in x to the old value: x+ y. As

initial values of both registers we choose 0 and x+ y is the final output. As a result,

this automaton implements the function an 7→ n2+n
2

. Written as a term, the result is

1 + 1 + . . .+ 1︸ ︷︷ ︸
n2+n

2
times

,

which is a term of quadratic size.

The output number in the previous example needs a logarithmic number of bits to

be represented. Even cost functions that are not polynomially bounded may have

an image that only needs a polynomial number of bits.

Finally, we ask the question whether linear boundedness and copylessness actually

coincides. Of course, CRAs that are not copyless but recognize a linearly bounded

Cost Functions and Cost Register Automata 93

function exist, however, this does not mean that there is no CCRA for such a

function.

Theorem 60. The set of cost functions recognized by CCRAs and the set of cost

functions recognized by linearly bounded CRAs, coincide.

Proof. We already noted that CCRAs recognize linearly bounded functions, so we

only have to show the reverse.

Assume some CRA M over an algebra A that recognizes a linearly bounded

function. Let c ∈ N be a constant for which |V (Fτ(σ(A))(M)(w))| ≤ c|w| for inputs

w ∈ Σ∗. Now, M could contain register updates that make it not copyless, i.e. for

a state q, a letter a, and a register x there exist registers x1 and x2 such that both

ρ(q, a)(x1) and ρ(q, a)(x2) are terms that contain x. We will show a procedure to

get rid of such situations. From now on let q, a, x, x1, and x2 be fixed as described.

If such a copy situation occurs, the problem arises later on when both x1 and x2

contribute to the final result term. It is particularly problematic if this happens too

often. If x holds a term of linear size, the automaton may only make a constant

number of copies contributing to the result; otherwise the result does not stay linear

in size.

To resolve said copy situations we first modify the automaton as follows. Let ≈ be

the equivalence relation on the stats such that q1 ≈ q2 if q1 and q2 are in the same

strongly connected component (SCC), i.e. if there is a word w1 for which q1
w1→ q2

and a word w2 for which q2
w2→ q1. If we generalize the transition relation δ to the

equivalence classes defined by ≈, we get a DAG. We may assume that this DAG is

actually a tree. This can be achieved by duplicating states if necessary.

The first case we look at are SCCs that consist solely of a state q that causes a

copy. Let q be such as described above, then we can resolve this copy by duplicating

the set of registers. We maintain the set of additional registers like the original ones

until the copy in state q occurs at which point we use the original version of x in

ρ(q, a)(x1) and the additional version of x in ρ(q, a)(x2).

Now, consider a SCC that contains more than one state. In every state q of the

SCC every register x could be bounded or not, which means that there exists a finite

set of terms V such that for all w ∈ Σ∗ with qI
w→ q it can be guaranteed that after

w is read x holds a term in V . If q is a copy state as described, we can resolve the

copy tracking the value in x through the states and then directly inserting the right

value in ρ(q, a)(x1) and ρ(q, a)(x2); x in this case is not used in these two updates

any more.

Finally, we are in the situation that copies only occur in SCCs of size greater one

and on registers that by hold terms of linear size. Since the state is in a SCC, it is

not possible that we make copies of such a register during every run through the

94 Quantitative Automata

loop and then use all copies for the overall result; in this case the resulting term

would have at least quadratic size. This means that, if such a copy occurs, only one

of the copies can actually end up being part of the overall output.

Let Xq ⊆ 2X such that a set of registers is an element of Xq if from state q it is

possible that all of them contribute to the overall result. In contrast, if two registers

can never contribute to the overall result simultaneously, then there is no subset in

Xq that contains both.

Note that if x ≈ y, then Xx and Xy are equal, disregarding renaming. One can

even modify the automaton in a way such that Xx = Xy holds. In the automaton

we now replace the register set X by |Xq| many copies. For states that come before

the SCC [q]≈ every duplicate is updated like in the original automaton. This may

involve adding some more duplicates of registers to enable the maintenance of the

register in question. In the SCC, however, every duplicate is associated with one

element of Xq and only those registers are being updated. This is also true for all

states that come ofter [q]≈.

Now, the state q does not make copies any more. If there was a copy, a set of

registers in Xq would exist in which this copy occurs and all of them would contribute

to the overall result. This can happen every time q is reached. We also know that

the register in question is not bounded. This means that the overall result would

have quadratic size, which is a contradiction.

If we perform the previous construction for all SCCs and register updates, we arrive

at a copyless CRAs.

Note that in the previous proof the blow-up to simulate a linearly bounded CRA

by a copyless one is quite large. It remains an open question whether this blow-up

is necessary. If it is, linearly bounded CRAs can act as a more succinct model

compared to CCRAs.

7.3.2 Cost Functions as Wreath Products

As we already pointed out, the main characteristic of CRAs is that they perform

register updates data-independently. If we look at the semantics, we see that the

computation result is obtained by first computing the run through the states and

then using this run to compute a term whose evaluation over the given algebra is

the output. This two-step computation can be characterized in different ways, one

of which is to look at it as a transduction that first computes the run. The initial

work on CRAs also stated a definition based on transducers.

Cost Functions and Cost Register Automata 95

There, however, is an equivalent algebraic view, which we want to explore. Recall

that the syntactic monoid of a regular language is isomorphic to the transformation

monoid of the minimal DFA recognizing the language. In the case of CRAs we do

not have final states or a language, but we can still can consider the transformation

monoid. Computing the run is equal to computing the image of the natural

homomorphism for all prefixes. These values direct how the term is assembled. This

mechanism is precisely captured by the wreath product.

The wreath product is usually used in terms of semigroups as a way to construct

semidirect products. Given two semigoups (S;⊗S) and (T ;⊗T), the wreath product

S o T is defined as (ST × T ;⊗). Its operation is defined as (f1, t2)⊗ (f2, t2) = (f1⊗S
(t1(f2)), t1⊗T t2), where ⊗S is lifted to functions T → S by (f⊗S g)(t) = f(t)⊗S g(t).

Also, there is an action of T on ST : For t, t′ ∈ T and f : T → S we define t(f) as

t(f)(t′) = f(tt′).

For the following results we need a wreath product that goes beyond semigroups,

that is a wreath product between a register algebra and a semigroup. If we have

an arbitrary single-sorted algebra A and a semigroup T , then to define A o T we

can proceed as in the case of semigroups; we only have to define what f1 ⊗A f2

is for f1, f2 : T → A, i.e. we just have to specify which operation of A we choose

for ⊗A. In the case of A being a register algebra, we choose �, which leads to

(f1, t1)⊗ (f2, t2) = (f1 � (t1(f2)), t1t2).

Recall that the function FA(M) associated to a CRAM is composed of aggregating

the register updates, inserting the initial values, applying the final cost function and

finally evaluating the resulting term over A. The last three steps will not be our focus

now. We want a wreath product characterization for CRAs that captures how the

states and registers interact. To that end we define the function F ′σ(M) : Σ∗ → RX
σ

in the following way: F ′σ(M)(ε) is the identity and for w ∈ Σ∗,

F ′σ(M)(w1 . . . wi−1wi) = F ′σ(M)(w1 . . . wi−1)� ρ(δ∗(qI , w1 . . . wi−1), wi).

This function tells us which terms are stored in each register after some input is

read. It is straightforward to see that

FA(M)(w) = evalν0
A (F ′σ(M)(w)� µ(δ∗(qI , w))).

The actual computation is therefore captured in F ′.

Theorem 61. For a fixed signature σ and a register set X it holds that for each

CRA M there exists a finite monoid M and a homomorphism

φ : Σ∗ → RX
σ oM

96 Quantitative Automata

such that

F ′σ(M)(w) = π1(φ(w))(1M).

The reverse also holds, i.e. for each finite monoid M and homomorphism φ : Σ∗ →
RX
σ oM there exists a CRA M as described such that the equality holds.

Proof. We begin with a CRA M. As the monoid M we choose the transition

monoid defined by the transition function of M, so M is a subset of QQ for Q

being the state set of M. For the transition monoid M , η : Σ∗ → M is the

natural homomorphism. We define the homomorphism φ as φ(a) = (f, η(a)) with

f : M → RX
σ defined as f(m) = ρ(q, a) for all m ∈M ⊆ QQ with m(qI) = q. By an

induction over the input word w the correctness of this construction can be verified.

If w = a ∈ Σ, then π1(φ(w))(1M) = ρ(qI , a). For w = ua we inductively assume that

π1(φ(u))(η(x)) is equal to F ′σ(M)(u). We now have π1(φ(w))(1M), which is equal

to (π1(φ(u))� η(u)π1(φ(a)))(1M). This again is π1(φ(u))(1M)� π1(φ(a))(η(u)) =

F ′σ(M)(u) � ρ(q, a) where η(u)(qI) = q. In turn this equals the desired value

F ′σ(M)(ua).

For the reverse, a monoid M and homomorphism φ are given. We construct a

CRA M: We let M be the state set of M and define the transition function as

δ(m, a) = mπ2(φ(a)). The initial state is 1M . The initial costs ν0 and the final

cost function µ may be arbitrary as they are not part of the property we want to

fulfill. For the register update function ρ we choose ρ(m, a) = π1(φ(a))(m). Again,

correctness can be verified by induction.

The copylessness property is also captured algebraically and is a straight forward

equivalent of the CRA version. The following result can be obtained using the

previous proof fitted to the copyless case:

Theorem 62. For a fixed signature σ and a register set X it holds that for each

CCRA M there exists a finite monoid M and a homomorphism φ : Σ∗ → RX
σ oM

such that

F ′σ(M)(w) = π1(φ(w))(1M)

and {φ(a)(m)(x) | x ∈ X} is a linear term set for all a ∈ Σ and m ∈M . The reverse

also holds, i.e. for each finite monoid M and homomorphism φ : Σ∗ → RX
σ oM there

exists a CCRA M as described such that the equality holds.

7.3.3 Cost Register Automata for Well-matched Words

A natural continuation of the previous models can be achieved by going beyond

words. In the context of this work, natural candidates would be ranked and unranked

Cost Functions and Cost Register Automata 97

trees, nested words and well-matched words. Since all models are very closely related

we will not exercise a full framework description for all of them. Instead we follow

[KLL16] and only cover the well-matched word case in formal detail.

In the word case an automaton receives register values from the previous step and

calculates new values depending on the state. Well-matched words resemble trees,

and therefore we have both a horizontal and a vertical dimension. This leads to the

following idea for cost register VPAs, which has commonalities with determinized

VPAs: The register values in some position have a scope that is the largest well-

matched factor that precedes the position. Let w1 and w2 be two well-matched

words and f1 : X → TX(σ) and f2 : X → TX(σ) be the two valuations corresponding

to w1 and w2. Then we get the valuation for w1w2 by concatenating f1 and f2 just

as in the word case. This describes the horizontal component. For the vertical

component, we have to state how awb is computed for a ∈ Σcall, b ∈ Σret and w

being well-matched, where inductively we already have the valuation f for w. If we

regard this situation algebraically, we have w and apply a unary extend operation

to it. So, what we do is assigning a term to each extend operation, i.e. each pair of

Σcall × Σret. These terms must contain variables that take the result of w as well

as variables for the valuation that comes before awb. This step is performed when

the return letter b is read. Equivalently we can think of these automata as ones

that store register values onto the stack. That way they become accessible again

when the matching return letter is read. This idea is implemented by the following

definition:

Definition 63 (Cost register VPA (CVPA)). A cost register visibly pushdown

automaton M over a single-sorted algebra A = (D;O) of signature σ is a tuple

(Q, qI , Σ̂,Γ, δcall, δret, δint, X, ν0, ρcall, ρret, ρint, µ),

where:

• Q is the finite set of states.

• qI ∈ Q is the initial state.

• Σ̂ = (Σcall,Σret,Σint) is the visible input alphabet.

• Γ is the pushdown alphabet.

• δcall : Q× Σcall → Q× Γ is the transition function for call letters.

• δret : Q× Σret × Γ→ Q is the transition function for return letters.

• δint : Q× Σint → Q is the transition function for internal letters.

• X is the finite set of registers.

98 Quantitative Automata

• ν0 : X → D is the initial register valuation.

• ρcall : Q× Σcall → (TX(σ))X is the register update function for call letters.

• ρret : Q×Σret×Γ→ (TX∪Xmatch(σ))X is the register update function for return

letters where Xmatch is a copy of X. The copy of x ∈ X is xmatch.

• ρint : Q× Σint → (TX(σ))X is the register update function for internal letters.

• µ : Q→ TX(σ) is the final cost function.

By ρ we address the union of ρcall, ρret, and ρint.

A CVPA M implements a function FA(M) : WM(Σ̂) → D. Let q0 . . . q|w| ∈ Q∗
be the run of M on an input w ∈ Σ∗ where q0 = qI is the initial state and let

γ0 . . . γ|w| ∈ Γ∗ be a word defined by the property that γi is the letter that is on top

of the stack if w1 . . . wi is read. We assign each step a valuation of the registers. The

initial valuation is ν0 : X → D. Assuming νj is already computed for all 1 ≤ j < i,

then νi(x) is defined depending on wi.

• If wi is a call or an internal letter, then νi(x) = eval
νi−1

A (ρ(qi−1, wi)(x)).

• If wi is a return letter, then let j be the matching position of i and

νi(x) = eval
νi−1,νj−1

A (ρret(qi−1, wi, γi)(x)). Note that ρret(qi−1, wi, γi)(x) ∈
TX∪Xmatch(σ(A)), which means that this term has two sets of variables X and

Xmatch. The registers of X we replace by the values in νi−1 and the registers

of Xmatch by the values in νj−1.

After w is read we arrive at a valuation ν|w|. The final output FA(M)(w) is

eval
ν|w|
A (µ(q|w|)).

Like for CRAs we give a definition for copyless machines. Here, in addition to the

ordinary copylessness requirement introduced for CRAs, we essentially have to pay

attention to return letters because in the case of copyless CVPA we may also access

register values from the matching position, which may result in using register values

more than once. Again, another perspective is to regard at the automaton as one

that, when reading a call letter, may either use a value in the next step or store it

onto the stack.

Definition 64 (Copyless CVPA (CCVPA)). A CVPA with state set Q, register set

X and register update functions ρcall, ρret, and ρint is called copyless if the following

sets are linear term sets:

• {ρint(q, c)(x) | x ∈ X} for all q ∈ Q and c ∈ Σret.

Cost Functions and Cost Register Automata 99

• {ρ′ret(q, b, γ)(x) | x ∈ X} for all q ∈ Q, γ ∈ Γ, and c ∈ Σret. Hereby ρret

stripped of variables in the terms that access register values from the matching

position is defined as ρ′ret.

• {ρcall(q1, a)(x) | x ∈ X}∪{ρ′′ret(q2, b, γ)(x) | x ∈ X} for all q1, q2 ∈ Q, a ∈ Σcall,

b ∈ Σret and δcall(q1, b) = (q′, γ) for some q′ ∈ Q. Here, ρ′′ret is defined as ρret

being stripped of variables in the terms that access register values from the

previous position.

Note that ρ′ret and ρ′′ret are not tightly defined; one possibility is to replace the

variables of X, or Xmatch respectively, by some constant.

For the previous definition it is helpful to think of automata for which π2 ◦ δcall is

injective, i.e. γ determines a and q1. Then γ also determines where a register value

may be used: On the next or on the matching position.

The definition of boundedness directly carries over to the cost functions of CVPAs.

Also for specific algebras, deciding this property can be easy; e.g. Theorem 54

directly carries over directly. The definition of polynomial boundedness carries over

to CVPAs as well. Again, CCVPAs are a special case of polynomially bounded

CVPAs. Further, notice that CVPAs, of course, generalize both VPAs and CRAs.

Theorem 65. The set of cost functions recognized by CCVPAs and the set of cost

functions recognized by CVPAs that are linearly bounded, coincide.

Proof. This result can be proved in a similar way as Theorem 60. Where in the CRA

case a copy situation involves a register x that is used in ρ(q, a)(x1) and ρ(q, a)(x2)

we have to consider two possibilities for VPAs: x may be used more than once in

register updates for the next position or, additionally, for the matching position.

We again define an equivalence relation in the states and perform the analogous

modifications. Two states q1 and q2 are in relation q1 ≈ q2 if it is possible to alternate

between q1 and q2 arbitrarily often, i.e. for each n ∈ N there exists a word that

induces a run that is in Q∗(q1Q
∗q2Q

∗)n.

As in the proof of Theorem 60 we first consider equivalence classes of single states.

If a copy is made in one of them, we fix this occurrence by duplicating the register

set.

Also, similar to the proof of Theorem 60, we consider registers with respect to a

equivalence class that is bounded. Again, we use the states to track the values and

insert them directly in the update function.

Finally, we consider Xq ⊆ 2X for the class [q]≈ and perform the same construction

as in the proof of Theorem 60. By the same argument we maintain correctness.

100 Quantitative Automata

One motivation for scrutinizing cost register machines is that they are term-

generating devices, but they are also term-evaluating devices if the algebra is not

free. This is indicated by the following example. In it, we show that there exists a

CVPA that reads a word, which codes an arithmetic formula and has its evaluation

as the output. This classical problem is known to be GapNC1-hard for the chosen

algebra.

Example 66. Arithmetic formulas over (Z; +,×, 0, 1) can be evaluated by a CVPA

over the same algebra. We code the terms as words in the usual way using parentheses.

For the rest of the example we assume for convenience that the formulas are maximally

parenthesized, i.e. we have (1 + (1 + 1)) instead of (1 + 1 + 1). We can understand

words that are formulas as well-matched words over the alphabet {−1, 1, [,],+,×},
where [is a push letter,] a pop letter, and −1, 1,+, and × are internal letters. We

use [and] instead of (and) for better readability.

We now give a formal description of a CVPA

M = (Q, qI , Σ̂,Γ, δcall, δret, δint, X, ν0, ρcall, ρret, ρint, µ)

evaluating formulas. The states are Q = {qI , q+, q×} and as the stack alphabet we

introduce the symbols P , T and I, which are used to indicate on which state the push

happened. The transition function is as follows:

• Transitions from qI : δcall(qI , [) = (qI , I), δint(qI , 1) = δint(qI ,−1) =

δret(qI ,], I) = δret(qI ,], P) = δret(qI ,], T) = qI , δint(qI ,+) = q+,

δint(qI ,×) = q×.

• Transitions from q+: δcall(q+, [) = (qI , P), δint(q+, 1) = δint(q+,−1) = qI .

• Transitions from q×: δcall(q×, [) = (qI , T), δint(q×, 1) = δint(q×,−1) = qI .

There is only one variable x ∈ X. The initial value for x is 0, so ν0(x) =

0. The register update function can be described as follows: ρcall(qI , [)(x) = 0,

ρint(qI , 1)(x) = 1, ρint(qI ,−1)(x) = −1, ρint(qI ,+)(x) = ρint(qI ,×)(x) = x and

ρret(qI ,], I)(x) = x, ρret(qI ,], P)(x) = x+xmatch and ρret(qI ,], T, x) = x×xmatch. The

other states are as follows: ρcall(q+, [)(x) = ρcall(q×, [)(x) = 0, ρint(q+, 1)(x) = x+ 1,

ρint(q+,−1)(x) = x + (−1), ρint(q×, 1)(x) = x × 1, ρint(q×,−1)(x) = x × (−1).

Finally, we let µ(qI) = x.

We see that the construction in the example actually leads to a copyless CVPA. As

a result we can observe that CCVPAs over (Z; +,×, 0, 1) recognize GapNC1-hard

functions. The construction actually works for every algebra, so the evaluation

function evalA can be represented by CCVPAs. It is not surprising that the automata

Cost Functions and Cost Register Automata 101

for this are copyless, or, equivalently, linearly bounded. The automaton reads the

input term as a word and after reading, this term is held in the register x.

Similarly to CRAs, we will show that CVPAs indeed generalize counting and the

weighted automaton model. Unfortunately we do not get a tight correspondence for

counting as in the CRA case.

Theorem 67. Functions in #VPA can be implemented as CVPAs over (N; +,×).

Proof. We combine the ideas of the proof of Theorem 53 with the determinization

procedure of VPAs. As mentioned before, the result of a determinization can serve

as a normal form.

Given a non-deterministic VPA M with the transition relation δ, we construct a

CVPA N that extends the normal form of the determinized automaton to natural

numbers. The determinized automaton has a state set 2Q×Q but what we actually

need to store is the number of runs, so the information is an element in NQ×Q.

To maintain this information we cannot use the states, but we may use |Q × Q|
registers.

The only thing we have to do now is to shift from specifying the transition function

of the determinized VPA, as it is done in the determinization algorithm, to specifying

the register update function in a similar way. The underlying automaton of N can

be fixed by altering it in such a way that it only stores the call letters read onto

the stack. The states are uninteresting as we outsource the computation to the

registers, so we only have the initial state qI . The register update function is defined

as follows:

• If N reads a call letter a, all registers (p, p) are set to 1, hence

ρcall(qI , a)((p, p)) = 1 and ρcall(qI , a)((p, q)) = 0 for p 6= q.

• If N reads an internal letter c, then ρint(qI , c)((p, q)) =
∑

q′∈δ(q,c)(p, q
′).

• If N reads a return letter b and a is the matching call letter then a is now

on top of the stack. Then ρret(qI , b, a)((p, q)) =
∑

r∈Q(p, r)match ×
∑

A(p′, q′),

where A is the set of state pairs (p′, q′) that satisfy that there exists γ ∈ Γ

such that (p′, γ) ∈ δ(r, a) and q ∈ δ(q′, b, γ).

Let F be the set of final states of M . Then we set µ(qI) =
∑

q∈I,f∈F (q, f).

Correctness can be verified easily by an induction over the structure of the input.

If w is a well-matched input word, then our construction is also correct for awb,

where a is a call and b a return letter. Moreover, if our construction is correct on

two well-matched w1 and w2, then it is also correct on w1w2 and aw1b.

102 Quantitative Automata

Theorem 68. The set of functions realized by weighted VPAs over a semiring

R = (D; +,×) can be implemented by CVPAs over R.

Proof. This proof follows the same lines as the previous one and use the idea of

determinized VPAs. We again have a register set Q×Q. In an input position each

register (q, q′) stores the product over paths from q to q′ for the largest preceding

well-matched factor. As in the previous proof, this information can be maintained

in each transition step.

7.4 Conclusion

Summary

In this chapter we moved beyond language recognition. Instead of only computing one

output bit, we output richer information, a natural number, for example. The first

two examples were counting accepting computations in non-deterministic machines

and weighted automata. Both, as we have shown, are generalized by the more recent

model of cost register automata. We considered cost register automata for words as

well as for well-matched words.

The cost register framework is of special interest within the present work, whose

main theme is term evaluation. Cost register automata can either be seen as term

generating or as term evaluating devices. For example, given an arbitrary algebra A,

the evaluation function evalA can be implemented by CVPAs over A if we assume

the terms to be appropriately represented by a parenthesized word. Naturally, we

are also interested in the complexity of different cost register models although that

is the topic of a later chapter.

Since the cost register framework deserves attention in its own right, we initiated

research on some structural properties. We showed an algebraic representation of

cost functions over words in terms of a wreath product.

To chart the set of cost functions, we also looked at ways to restrict them, the first

restriction being the copylessness restriction. While being useful, it turned out that

there might be better choices; some being more and some being less restrictive. We

proposed the less restrictive property of polynomial boundedness, which has the

potential to be beneficial in complexity considerations.

Conclusion 103

Contributions

In [KLL16] we introduced CVPAs and researched basic properties like closure

properties, copylessness, and complexity. The connection to counting was also

drawn. In [KLL17a, KLL17b] we revisited the complexity problems.

In addition to the contents of those papers there is more new content. The wreath

product representation of functions recognized by CRAs is one. It underlines the

central property that makes CRAs tame, which is the one-way flow of information

from the states to the register actions.

Also, we generalized the notion of copylessness, which was introduced to obtain

a well behaving model. Functions of non-copyless machines might have images of

exponential size, which is not desirable for different reasons, complexity reasons

being one of them. Copylessness forces the image to be linear in size. Based on this

observation we introduced polynomially bounded functions and automata (CRAs

and CVPAs) and showed that linearly bounded functions coincide with functions of

copyless machines.

Sources and Related Work

Counting is predominantly present in complexity theory. Counting in NFAs has

connections to branching programs [CMTV98]. Counting in VPAs has first been

considered in [KLM12].

We only briefly touched on the topic of weighted automata as they are a preliminary

model for cost register automata. There is a huge body of research for various

different variants of this automaton model; see e.g. the survey [GM18].

The cost function framework originates in [ADD+13] as regular cost functions.

This work also contains copylessness. Based on this work [AM15] and [AKM17]

investigated complexity-related questions for CRA. Complexity questions for CVPAs

have been addressed in [KLL16] and [KLL17a, KLL17b]. Equipping VPAs with

cost registers was done in [KLL16]. There has also been an approach to extend

CRAs by non-determinism [CKL15]. The setting of ranked trees was analyzed

in [CL10] and [BCK+14] and a connection to ω-words has been drawn in [CF16].

Logic and algebra-based characterizations of regular cost functions can be found

in [Col13, Col17, Col09]. It is worth noting that in these works cost functions are

abstracted by a relation that preserves boundedness but forgets concrete values. In

[MR16, MR15] a subset of copyless cost functions was proposed, which is supposed

to have nicer properties as well as a natural logic characterization.

104 Quantitative Automata

Further Research

Cost register automata are an active field of research. In the scope of this chapter

we were only able to scratch the surface of the topic. There are many different

directions to look into next:

• We only defined CVPAs, but it is, of course, also possible to define cost register

variants for nested word automata or unranked tree automata as well. It

would be nice to see that these two and CVPAs indeed capture functions that

correspond tightly to those of CVPAs. This could be achieved by showing

that there exist equivalent wreath product characterizations for all of them.

We also expect that properties like copylessness and polynomial boundedness

carry over.

• It would be interesting to see what can be achieved by using the wreath

product representation. One question could be, what impact the monoid in

the product has. For instance, what do we know if it is aperiodic? Also, we

only considered the wreath product for CRAs; it should be possible to come up

with a wreath product of a register algebra and a forest algebra that captures

CVPA functions.

• On the other hand, the wreath product characterization can serve as a starting

point to come up with a natural generalization of CRAs that should still be

tame. Up until now the wreath product is built between a register algebra

R and a finite monoid M . The finite monoid dictates what happens in the

registers. We could now add another layer of registers R′, possibly over a

different algebra that is directed by R. For that to be tame, R should be

partitioned into a finite set of equivalence classes, possibly just by a finite

congruence relation. Maybe typed algebras [BKR11] could also be applied

there. Of course, we do not need to stop here; an arbitrary number of register

layers would be possible. The tameness stems from the fact that the flow of

information only goes from top to bottom and from the past to the future.

• Related to the previous question is whether there exists something like a

syntactic algebra to recognize cost functions. This probably needs a notion of

minimality of CRAs.

• The initial paper [ADD+11] that introduced CRAs showed closure under

regular look-ahead. That means that if a CRA knows whether the rest of

the word belongs to some regular set it does not become more powerful.

Algebraically, regular look-ahead could be modeled by generalizing the wreath

product characterization to a block product.

Conclusion 105

• Polynomial boundedness seems to be a promising property. As we will show

later, this property behaves well with respect to complexity. It would be worth

investigating what other applications there are for this notion.

• In general it is undecidable whether a CRA or CVPA is bounded. Polynomial

boundedness on the other hand could be decidable; at least if the degree of

the polynomial is given. If we had that, we could get a way to decide whether

a CRA can be made copyless.

• Every CRA that is copyless is automatically linearly bounded, but it could

be possible to have a much smaller automaton for the same function, which

is allowed to be not copyless. Hence, an analysis of the blow-up would be

another research target.

• There should be many applications for CVPAs in practice. Potentially, appli-

cations that involve CRAs can profit from CVPAs. In particular in the area

of verification and model checking applications can be seen on the horizon.

• There exists another kind of quantitative automaton model, that is automata

over infinite alphabets. There are different models, but one recent example

could be integrated into the cost register framework seamlessly: In [DA14]

symbolic visibly pushdown automata have been introduced. Here, each input

comes from an infinite domain like N; the states are being updated depending

on an equivalence relation over N of finite index. The mentioned idea of an

iteration of wreath products already incorporates a similar idea.

Chapter 8

Circuits

As the final computational model we scrutinize circuits. As mentioned before, they

are an important modeling tool in low complexity contexts in contrast to Turing

machines for higher complexity. A circuit uses wires and gates to compute some

value from inputs that are fed by input gates. In that they are very similar to

terms. Terms, as we defined them, are trees that can be evaluated over some algebra.

Circuits generalize terms with variables in the sense that they do not have to be a

tree but just a DAG. So, one could first define circuits and then terms as a special

kind of circuit.

In the classical setting, circuits are Boolean, which means they get Boolean values as

inputs, the wires transport Boolean values and the gates perform Boolean operations

like conjunction or negation. The output then is also a Boolean value. There are also

arithmetic circuits, which work with natural numbers or integers, which is a more

general model than Boolean circuits. We, however, need even more generality and

define circuits in a way that we can utilize any many-sorted algebra as an underlying

algebra.

Later we will need circuits that are Boolean, but also allow for computations in

some algebra A. Such a circuit then has wires that transport Boolean values and

wires that transport values from A. Both kinds of values interact via multiplexer

gates. As we will see later, this interaction is implemented by composing the algebra

A with the Boolean algebra B into a new algebra. So, we will just consider circuits

of many-sorted signatures and later plug in such a composed algebra.

Definition 69 (Many-sorted circuit). Given a signature σ of S sorts, then a many-

sorted circuit over signature σ, n inputs and m outputs is a tuple

C = (V,E,Order,Gatetype,Outputgates),

108 Circuits

where:

• (V ;E) is a directed acyclic graph. Elements of V we call gates and elements

of E we call wires.

• Order : E ↪→ N is an injective map giving an order on the edges.

• Gatetype : V → [|σ|]∪{x1, . . . , xn} assigns a position of the signature or makes

it an input gate, where {x1, . . . , xn} are symbols for the n inputs.

• Outputgates : {y1, . . . , ym} → V promotes gates to output gates.

Further the following must hold:

• If some v ∈ V has in-degree 0, then Gatetype(v) ∈ {x1, . . . , xn} or

Arσ(Gatetype(v)) = 0.

• If some v ∈ V has in-degree greater 0, then the in-degree is Arσ(Gatetype(v)).

• For all v ∈ V , let v1, . . . vArσ(Gatetype(v)) be the input gates for v such that

Order((vi, v)) ≤ Order((vj, v)) if and only if i ≤ j. Then Outσ(Gatetype(vi)) =

Inσ(Gatetype(v), i). By InC ⊆ [S]n we denote a word that holds the sorts of

the input gates: If vi is an input gate, then InC(j) = Inσ(Gatetype(vi)) where

Gatetype(vi) = xj. Similarly, OutC ⊆ [S]m stores the sorts of the output gates.

By Circσ,n,m we denote the set of circuits over σ of n inputs and m outputs.

Just like terms, circuits are based on some signature. Given a valuation for the

input gates and an algebra to be interpreted over, we can evaluate a circuit:

Definition 70 (Evaluation of many-sorted circuits). Given a signature σ of S sorts,

an algebra A = (D;O) of signature σ with D = (Di)i∈[S] and O = (~i)i∈[k], the

evaluation map evalA : Circσ,0,m → Dm is defined on circuits without inputs. For a

gate v in a circuit C ∈ Circσ,0,m, by S(v) we denote the subcircuit of C that consists

of all gates from which v is reachable. Let v1, . . . vArσ(Gatetype(v)) be the predecessors

of v ordered by the wire order. Then

evalA(S(v)) = ~Gatetype(v)(evalA(S(v1)), . . . , evalA(S(vArσ(Gatetype(v))))).

Let y1, . . . ym be the output gates, then

evalA(C) = (evalA(S(y1)), . . . , evalA(S(ym))).

Given a circuit C and a fitting input word w ∈ Dn, we let evalA : Circσ,n,m×Dn → Dm

with evalA(C,w) = evalA(Cw), where Cw is the circuit C in which the input gates

are replaced by constant operations according to w.

Boolean Circuits 109

Note that according to this definition, inputs can only be values that appear as

constant operations in the algebra. When required we relax this and allow arbitrary

input values of the domain without running into any trouble.

One circuit of Circσ,n,m represents a function Dn → Dm for an algebra domain D.

In the case of language recognition we have D = B and m = 1, but note that one

circuit only accepts inputs of a fixed length. For arbitrary inputs we need families

of circuits (Cn)n∈N where Cn is a circuit of n inputs. The function one circuit C

implements over some algebra A of the same signature we address by FA(C) that is

defined as w 7→ evalA(C,w) for w ∈ Bn. If C = (Cn)n∈N is a family of circuits, we

can extend FA(C) and set w 7→ evalA(C|w|, w). The same goes for the case that A
is a family of algebras. Then the family of algebras and the family of circuits have

to have the same family of signatures and we set FA(C) as w 7→ evalA|w|(C|w|, w).

In the case of language recognition we also write L(C) to address the recognized

language if the algebra is clear from the context.

Families of circuits in general are very powerful. A family containing only trivial

circuits may recognize a unary encoding of the halting problem. This is undesired,

so one restricts families by the constraint that there is a way to compute the circuit

for input length n within some complexity bound. This is called uniformity. See e.g.

[Str94] or [Vol99] for basics in circuit complexity.

8.1 Boolean Circuits

When speaking about Boolean circuits we mean circuits that are evaluated over an

algebra with domain B. First, notice that we are not restricted to B as the input

alphabet. An alphabet of k letters can be implemented by assigning each input

position k input gates. The i-th input gate of word position j is assigned 1 if and

only if the j-th letter of the input word is the i-th letter. From now on we just

assume B as being the input alphabet.

We mainly consider three kinds of gates in the Boolean case: Boolean operations,

modulo gates and threshold gates. Besides the type of gates used, the size, depth,

and the fan-in of gates are measures we use to define complexity classes.

The class NCi consists of all languages that are recognized by a family of circuits

that have polynomial size, O(logi n) depth and that are interpreted over the algebra

(B;∧,∨,¬,⊥,>). Note that ∧ and ¬ already form a base, so we may also use other

Boolean operations as they can be simulated. Gates in such circuits have a fan-in of

at most two.

The class NC1 is a very prominent one and also plays a special role in the present

work. It is known that for instance regular languages and even visibly pushdown

110 Circuits

languages can be recognized by NC1 circuit families. We will derive those results

ourself in the course of this work. The class NC0 carries also relevance as the

smallest useful complexity class we consider. In this case an output bit can be

computed by a constant-size circuit.

A very important property to keep in mind is that NC1 circuits can be transformed

into trees. It is unknown whether this is possible in NCi for i > 1.

If we allow for unbounded fan-in for ∧ and ∨ gates, we get the ACi classes.

Formally we introduce a family of algebras where for each input length n we have

the operations ∧n : Bn → B and ∨n : Bn → B. By using those, we can simulate gates

of unbounded but polynomial fan-in. If we only allow the disjunction gates to have

unbounded fan-in, then we get the SACi classes. It holds that NCi ⊆ SACi ⊆ ACi.

The classes AC0 and SAC1 will become important later: The class AC0 contains

the star-free languages as well as the quasiaperiodic languages and SAC1 the CFLs.

Modulo gates are also used in circuit complexity. Modulo gates can test whether the

number of wires feeding into it that hold the value> is a multiple of k. Circuit families

that we evaluate over the family of algebras with the members (B;∧n,∨n,¬,≡kn) for

n ∈ N are the same as AC0 but include modulo gates. This class we call ACCi
k. If

we allow for arbitrary modulo gates, we get ACCi.

Finally, threshold gates are gates of unbounded fan-in that output true if sufficiently

many inputs are true, which usually means half of the inputs. The resulting class is

TC0.

We set NC =
⋃
i∈N NCi and the classes AC, ACC, SAC and TC are similarly

defined. All these sets are equal. We get the following relation among the classes we

are most interested in:

AC0 (ACC0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ SAC1 ⊆ NC ⊆ P

There are close relationships between logic and circuit complexity. For now we want

to point out two: First, AC0 captures exactly the languages recognized by first-order

formulas over words using arbitrary numerical predicates, i.e. AC0 = FO[arb], and

second TC0 translates to majority logic. Both show that the gates used by the

circuit correspond to the quantification used on the logic side.

In the world of circuit complexity there are almost only open questions with one

remarkable exception: The parity language is not in AC0 and thereby separating

AC0 from ACC0. However, as we will see in the end of this work, the understanding

of the relationship of AC0 and larger classes appears not to go beyond this separating

result.

Arithmetic Circuits 111

8.2 Arithmetic Circuits

If we consider NC1, we see that we do not need negation gates to get the full

expressibility since they can be pushed to the input gates using DeMorgan’s law.

Now, (B;∨,∧,⊥,>) and (N; +,×, 0, 1) have the same signature. If we evaluate NC1

circuits over (N; +,×, 0, 1), we get a so-called arithmetic circuit and in this case the

class #NC1. We can do the same with other classes like ACi, NCi, and SACi,

and then get #ACi, #NCi, and #SACi. Another version of arithmetic circuits is

based on integers rather than on naturals. Then the resulting classes are GapACi,

GapNCi, and GapSACi.

Another perspective on arithmetic circuits is to regard them as counting circuits.

We already discussed counting in the case of automata. In circuits the equivalent

of an accepting computation in automata is a proof tree. Consider a NC1 circuit

that accepts a certain input. Assume this circuit to be a tree. We can find minimal

subcircuits containing the output gate that still evaluate to true. It turns out that

this notion truly captures counting: There are classes that have both circuit and

automata characterizations and both lead to the same set of functions in terms of

counting. Also, counting and arithmetic circuits are equivalent.

One can relate sets of functions of the form Σ∗ → N to languages. This can be

applied to the previously defined circuit complexity classes; for instance the problem

whether NC1 = #NC1 is still open.

8.3 Generalized Circuits

The way we defined circuits allows us go beyond Boolean and arithmetic circuits.

We can combine any circuit and algebra of the same signature. However, later we

will need a Boolean circuit enriched by some algebra. In the case of arithmetic

circuits it was sufficient to use addition and multiplication gates since it is possible

to simulate a Boolean algebra with it. In general, this is not the case.

The way we approach this is to define algebras that are made of several other

algebras. The base is the Boolean algebra B = (B;∧,∨,¬,⊥,>). The algebras we

append will interact via multiplexer operations.

Definition 71 (Multiplexer operation). Given a set X, the ternary multiplexer

operation is defined as mpX : B×X ×X → X with

(b, x, y) 7→

{
x if b = ⊥
y else

.

112 Circuits

This gives us the means to define compositions of algebras.

Definition 72 (Composition of algebras). Given n possibly many-sorted algebras

A(i) = (D(i);O(i)) for i ∈ [n], the composition (A(i), . . . ,A(n))B of these algebras

is the algebra

(B,D(1), . . . ,D(n);∧,∨,¬,⊥,>,mpD(1), . . . ,mpD(n), O(1), . . . , O(n)).

The previous definition also naturally carries over to families of algebras. We

presume composition to be associative, which means that, for example, we see

((A1,A2)B,A3)B as (A1,A2,A3)B although these two are formally not identical.

Note that (A)B is not the same as A.

Now, we can define classes similar to e.g. NCi that are enriched by some algebra.

Intuitively, the Boolean part is directing the non-Boolean part via multiplexer gates.

Definition 73 (A-NCi, A-NCi
D). For a many-sorted algebra A = (D;O) and

subdomain D of A, the set A-NCi
D contains all functions F(A)B(C), where C is a

family of circuits having the same family of signatures as (A)B that contains circuits

of polynomial size, depth O(logi n), inputs of D and one output of a subdomain of

A. For the special case of Boolean inputs we set A-NCi = A-NCi
B.

Notice that, for example, we have (N; +,×, 0, 1)-NC1 = #NC1.

8.4 Conclusion

Summary

Following the gist of the previous chapters, we gave very general definitions for

circuits. We use circuits to model functions based on some signature. In that they

generalize terms. Given a fitting algebra and an input, a circuit can be evaluated.

We embedded Boolean and arithmetic circuits into this set of definitions. We also

defined circuits that combine Boolean circuits and arbitrary algebras by multiplexer

gates.

Contributions

The level of generality we offer is non-standard. The generalized circuits are new;

they are tailored to our later needs. Early versions of our definitions can be found

in [KLL17a, KLL17b].

Conclusion 113

Sources and Related Work

An overview of circuit complexity can be found in [Vol99]. Arithmetic circuits and

counting complexity classes were surveyed in [All04].

Further Research

It would be interesting whether there are more classical classes that could be captured

by generalized circuits, i.e. by Boolean circuits augmented with an additional algebra

via multiplexer gates. It is worthwhile to investigate relationships to more classical

complexity classes.

Part II

Evaluation Complexity

Chapter 9

General Evaluation Complexity

In this chapter we consider the general problem of evaluating terms over an arbitrary

algebra A. There is no actual restriction on the algebras but for the construction

itself that we will present we presume the algebra to be single-sorted as well as

consisting only of constant and binary operations. These restrictions help to keep

the presentation concise and it is easy to see that the construction also works for

cases lacking these restrictions.

As a result of our construction we get a circuit family that is an enriched NC1

circuit family, which means that we need to give the circuit the ability to make

computations within A. In fact, we need a bit more than the original algebra A.

The following algebra precisely captures the operations we need to make our circuit

construction work:

Definition 74 (Functional algebra). Given is an algebra A = (D;B,Z) over a

single-sorted signature σ, where B contains the binary operations and Z the 0-ary

operations. The functional algebra is defined as

F(A) = (D, D̃;B,Z, B̃, ◦,�, id),

where D̃ ⊆ DD and the additional operations are as follows:

• ◦ : D̃× D̃→ D̃ is the functional composition.

• � : D̃× D→ D is the substitution, i.e. f � c = f(c).

• id ∈ D̃ is the identity map, which is a constant operation.

• For each binary operation ~ : D × D → D in B there exists an operation

~̃ : D̃× D→ D̃ in B̃, which is defined as (f~̃c)(x) = f(x)~ c.

118 General Evaluation Complexity

Now, D̃ is the set of functions generated by those operations.

This is a two-sorted algebra which, in addition to the domains and operations of

A, contains another domain, which consists of functions. These functions can be

thought of as linear functions.

Given a term t over A, moving to F(A) enables us to obtain more ways to generate

t. For example, if we have a term t = (((. . . (a~ a) . . .)~ a)~ a) that has the shape

of a list, we can also represent t as an equivalent term t′ = t1� t2 where the first half

of t is a context t1 and t2 is the second half. Note that t′ only has half the depth of

t.

One can also see that the functional algebra shares great similarity to forest algebras.

The domain D can be regarded as the horizontal monoid and D̃ as the vertical one.

The operation ◦ in F(A) corresponds to · in forest algebras and � to ·′. Further, id

corresponds to 1. A main difference is that forest algebras are designed for unranked

forests whereas the functional algebras are designed for ranked algebras. That is

why the + operation in forest algebras can be found more indirectly in functional

algebras. The functional algebras fit precisely the purpose we will use it for whereas

forest algebras would be unnecessarily powerful here.

Notice that for binary operations ~ : D×D→ D we introduced a functional version

~̃ : D̃ × D → D̃ but no symmetrical version D × D̃ → D. It turns out that in our

construction we only need the version defined because of the normal form of terms

we will choose. If desired, the definition of functional algebra can be easily extended

to arbitrary arities. In this case exactly one of the inputs is a function. Also, we

omitted unary operations since they can be simulated by a binary one that ignores

one of the inputs. Without losing generality, we will only consider algebras that

have only 0-ary and binary operations.

Given A, the algebra F(A) consists of two domains. One could also consider a

similar definition where F(A) only has the domain D̃ as A can be embedded through

letting the elements of D be constant functions. This would lead to a partial algebra.

There would be no conceptual problem utilizing this view, but for clarity we do not

do it.

If we want to reason about the complexity of term evaluation, we have to address

how a term is given as an input for an algorithm. Recall that, given a signature

σ, a term t of T(σ) can be represented as a word over the alphabet consisting of

parentheses and operation symbols. There is an isomorphism between terms and

word representations of terms. Thus, in the following we will simply treat terms as

words.

Our main evaluation theorem is the following:

Representing Terms 119

Theorem 75. Given a possibly many-sorted algebra A = (D;O) of signature σ and

domain D, the evaluation function evalA : T(σ) → D is in DLOGTIME-uniform

F(A)-NC1.

Note that the input is Boolean but the output is an algebra element. Also, we

allowed the algebra to be many-sorted. For the evaluation algorithm it is convenient

to assume D to be the union of subdomains. So, rather than a many-sorted algebra,

we would consider a single-sorted partial algebra whereas the partiality of the algebra

never plays a role in the constructions since for all well-formed inputs, that is inputs

having the right signature, all computations we perform are defined. The union

approach works if the subdomains D1, . . . ,DS are disjoint. Since this may not be

given under all circumstances, we choose the following union
⋃
i∈[S] Di×{i}. Without

going into details, we claim that building these cross products does not increase any

complexity.

We get a log-depth construction on the expense that we need more complicated

algebra computations. A different tradeoff is a naive linear time evaluation where

only computations in the original algebra occur.

Notice that the theorem and its proof are independent of the actual algebra A and

thereby strictly syntactical. Later we will consider applications that make use of

concrete algebras. Also, it is then when we relate an abstract complexity class like

F(A)-NC1 to ordinary classes known from complexity theory.

9.1 Representing Terms

As mentioned before, we assume all operations used in terms to be either constant or

binary. Operations that are ternary or of even higher arity can be split into several

binary operations. A construction for this makes use of additional sorts without

introducing additional complexity. This can be interpreted as a way of Currying.

Terms written like (φ~ ψ), where φ and ψ are also terms, are infix representations.

Instead of infix representations, we can also consider postfix representations. If φ′

and ψ′ are the equivalent postfix representations for φ and ψ as infix representations,

then φ′ψ′~ is the postfix equivalent of (φ~ ψ). Note that conveniently we do not

need parentheses any more.

We will make use of the following normal form.

Definition 76 (Postfix normal form). A postfix term is in postfix normal form

(PNF) if for all subterms φψ~, φ, and ψ holds that |φ| ≥ |ψ|.

In order to convert any term into PNF we need to take care of possible non-

commutative operations. To that end we presume all algebras to have symmetric

120 General Evaluation Complexity

~

~

~

A

B
CD

Figure 9.1: The figure shows a PNF term T with the first three left-most operation
symbols from the top pointed out. The term T is of the form DC ~B ~A~, where
A, B, C, and D are again terms. Note that |A| ≤ |DC ~ B ~ |, |B| ≤ DC~, and
|C| ≤ |D|. The dashed lines indicate where the term can be split such that the left
part corresponds to a closed term. e.g. the middle line gives us the prefix DC~,
which is again a valid term. What is left on the right side are open terms.

variants of operations, e.g. for an operation ~ we assume there exists an operation

~′ in the algebra such that x~ y = y ~′ x.

From now on we focus on PNF terms without always explicitly calling it PNF. For

the algorithm we put emphasis on the fact that terms are trees coded as words. As

of now, we want to distinguish between open and closed terms. The terms defined

so far are called closed in opposition to open terms:

Definition 77 (Open term). We call a word T an open term if there exists a closed

non-empty term T ′ such that T ′T is a closed term (in PNF).

So, open terms are suffixes of closed terms. If we think about the tree that a term

represents, then taking a suffix, which is an open term, corresponds to chopping

off one of the left-most subtrees; see Figure 9.1. Also, we can concatenate open

subterms within a term and obtain an open term again. An open term concatenated

with a closed term results again in a closed term. In fact, open terms correspond

to contexts C(σ(A)). At this point we get a connection to the functional algebra

F(A) whose second domain are the contexts. So, while closed terms evaluate over

A, open terms evaluate over F(A).

9.2 Dividing Terms

As we already mentioned, F(A) gives us the means to evaluate a term in more

numerous ways, i.e. more numerous ways to split a term so that we can assign

meaning to the resulting parts. The main algorithm for term evaluation will work

Dividing Terms 121

in a recursive manner, which has to carefully decide how to split terms. The main

challenge to design a recursive algorithm in NC1 lies in the fact that we can basically

only do static recursion on the input, but the input structure is unknown beforehand.

The circuit that implements the recursion has to be some fixed tree where the input

may represent any tree, e.g. a balanced tree or a degenerated tree, i.e. a list. A way

how to split terms for the recursions is the topic of this section.

We begin with some notation. Given a term T of length n, then for 1 ≤ i ≤ j ≤ n

we write i <T j if in the tree j there is an ancestor of i. For convenience, by [i, j]

we ambiguously mean the interval {i, . . . , j} as well the factor Ti . . . Tj and it will

always be clear from the context what we mean. If i <T j and [i, j] is a term, then

we write i /T j.

For the following, let T be a closed PNF term. It ranges from 1 to n. We want

to evaluate subintervals [l, r]. The size of the interval is s = r − l + 1. Such an

interval has a middle position. Depending on whether s is even or odd we could

define a middle by rounding up or down, but actually we need to be flexible about

that and take the middle position as a parameter. So, we are given not only l and

r, but also a position m, which is the middle position; it can be bl + s
2
c or dl + s

2
e.

The two interval borders we will use for the recursion intervals are l′ = bl + s
3
c and

r′ = dl + 2s
3
e. This divides the interval [l, r] into thirds. We not only consider the

three thirds individually, but also the first two thirds as well as the second two

thirds together. These five intervals will be our recursion intervals. Based on these

static intervals we define some dynamic intervals, i.e. intervals depending on the

input. The key later is that these dynamic intervals always lie in one of the five

intervals defined previously.

Definition 78 (M, N , L, R, O). Given [l, r] we define the following subintervals

in case they exist; otherwise we define them to be empty:

• The largest closed or open subterm in [l, r] that contains m, which is denoted

as M(l,m, r) = [M1(l,m, r),M2(l,m, r)].

• The subinterval in [l, r] that begins with

max{p | l ≤ p ≤ m ∧ l − 1 <T p− 1 ∧ l − 1 6<T p}

and ends with the largest position q ∈ [m, r] such that [p, q] is an open term.

This interval is denoted as N (l,m, r) = [N 1(l,m, r),N 2(l,m, r)]. The idea

here is that, in contrast toM(l,m, r), which has maximal spread to the left and

to the right, N (l,m, r) has maximal spread to the right and minimal spread to

the left.

122 General Evaluation Complexity

• The largest open subterm in [l, r] that precedes M(l,m, r). This interval

is denoted as L(l,m, r) = [L1(l,m, r),L2(l,m, r)]. It is L2(l,m, r) + 1 =

M1(l,m, r).

• The largest open subterm in [l, r] that follows [M1(l,m, r),M2(l,m, r) +

1]. This interval is denoted as R(l,m, r) = [R1(l,m, r),R2(l,m, r)]. It is

R1(l,m, r)−2 =M2(l,m, r) and M2(l,m, r) + 1 is a binary operation symbol.

We denote the set containing its position by O(l,m, r) = {M2(l,m, r) + 1}.

Clearly, the interval is given by (l,m, r), we drop it in the notation and simply

write M, N , L, R, and O.

An M-interval could be an open or a closed term. An N -interval by definition

always is an open term since later we only need the open ones. The L-interval is

also defined to be open, however, even if we allowed it to be closed, it would still

be always open because it is shorter than M∪N , and so cannot be the complete

second operand of the operation in O. In the case of R we again are only interested

in open terms due to the way we use it. Figure 9.2 shows the intervals defined and

how they are applied.

The intervals might be empty, however, importantly, they are unambiguous, which

is immediately clear for all except for M. This can be seen by maximality and the

following lemma:

Lemma 79. Given the intervals [p1, q1] ⊆ [l, r] and [p2, q2] ⊆ [l, r], which address

closed or open terms, and with the condition that [p1, q1] ∩ [p2, q2] 6= ∅ then [p1, q1] ∪
[p2, q2] is also a closed or open term.

Proof. Suppose that p1 < p2 ≤ q1 < q2 because otherwise the statement is trivial.

The interval [p2, q2] has to be an open term since otherwise p1 6<T q1. So, as p2 <T q1

holds we have that [p2, q1] is an open term, and so [p1, p2− 1] is also a term; it could

be open or closed. By combining all parts, we obtain that [p1, q2] is a term and it is

closed or open depending whether [p1, q1] is closed or open.

The next lemma shows that M and N fit together seamlessly.

Lemma 80. It holds M2 = N 2 and M2(l, l′, r′ − 1) + 1 = N 1(l′ + 1, r′, r).

Proof. For the first statement note that N ⊆M and hence N 2 ≤M2, which follows

from the previous lemma. Now assume that N 2 is strictly smaller than M2. Let

p be the position for which [p,N 2] is closed. If p ∈ M, then we find q ∈ M and

q ≥ N 2 such that [p, q] is an open term. But then [N 2 + 1, q] is also an open term,

and so is N ∪ [N 2 + 1, q]. Hence, the maximality of N 2 is violated again. If p 6∈ M,

Dividing Terms 123

.l l′ m r′ r

M(l, l′, r′ − 1)
M(l′ + 1,m, r′ − 1)

M(l′ + 1, r′, r)
N (l′ + 1, r′, r)

L R

Figure 9.2: The figure shows how a recursion interval is subdivided into smaller
recursion intervals. In this case the subdivision for computing M(l,m, r) is shown.
The five intervals recursively yield six values, which may be used to be combined in
order to get the evaluation of the M(l,m, r)-interval.

then [M1,N 1 − 1] is an open term, and so is [M1,N 2]. But then also [N 1,M2] is

an open term and again the maximality of N 2 is violated.

For the second statement, first notice thatM(l, l′, r′− 1)∪N (l′+ 1, r′, r) is indeed

an interval, i.e. [M2(l, l′, r′ − 1) + 1,N 1(l′ + 1, r′, r) − 1] is empty. We get this

through the maximality ofM2(l, l′, r′− 1). AlsoM(l, l′, r′− 1)∪N (l′ + 1, r′, r) is a

closed or open term, depending on whether M(l, l′, r′ − 1) is closed or open. If not

empty, the intersection M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) has to be an open term and

hence N1(l′ + 1, r′, r) was not chosen maximal.

The key lemmas that later constitute the recursive evaluation algorithm are the

following ones. They show how to actually compose a term by subterms coming

from static subintervals. First, we see how to obtain the M-interval recursively.

Lemma 81. Given a term T and subinterval [l, r] with middle m, M equals one of

the following intervals:

1. M(l, l′, r′ − 1)

2. M(l′ + 1, r′, r)

3. M(l′ + 1,m, r′ − 1)

4. M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r)

5. L(l,m, r) ∪M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) ∪R(l,m, r)

Further the sets involved in the unions of case 4 and 5 are disjoint.

Proof. If M is entirely contained in [l, r′ − 1], [l′ + 1, r] or [l′ + 1, r′ − 1], then it

coincides with one of the first three cases.

124 General Evaluation Complexity

.l l′ m r′ r

E D C B A

Figure 9.3: In case five for M as shown in Lemma 81, the interval is subdivided
into five parts. We see that DC is a closed term where D = M(l, l′, r′ − 1) and
C = N (l′ + 1, r′, r). Further, B = O(l,m, r) consists of a single position, which is
an operation symbol and A = R(l,m, r) and E = L(l,m, r) are open terms.

If the term stretches from the first third to the last third, it is not entirely contained

in one of the thirds. Let A be M(l, l′, r′ − 1) ∪ N (l′ + 1, r′, r). By Lemma 80 we

know this interval is a disjoint union. Further, A is a closed or open term contained

in M that contains m. If A =M, we are done as case 4 holds.

The interval M(l, l′, r′ − 1) is open if and only if A is open, but then M1 =

M1(l, l′, r′ − 1) due to the minimality of M1(l, l′, r′ − 1). Similarly, it holds that

M2 = N 2(l′ + 1, r′, r). So, we get A =M and case 4 holds.

Now, suppose that A is a closed term. The term A is part of a larger and possibly

open term. It has either the form AB~ or BA~ where B is a closed term. If

AB~ is the case, then ~ lies outside [l, r] and case 4 holds which we again get by a

maximality argument. If BA~ is the case, then O(l,m, r) addresses the operation

~. Let B′ be the largest suffix of B that is an open term and a subset of [l, r].

Note that B′ is a proper suffix because |B| ≥ |A| and |A| is more than one third of

r − l + 1. The interval L coincides with B′.

The subterm B′A~ = L(l,m, r) ∪M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) can

be followed by an open term and we get an open term again if we unite those.

The maximal one in [l, r] is addressed by R(l,m, r). Notice that L(l,m, r) and

R(l,m, r) might be empty. This concludes the fifth case.

Figures 9.3 and 9.4 show how the interval is subdivided in case five.

In a very similar way we can treat N .

Lemma 82. Given a term T and subinterval [l, r] with middle m, N equals one of

the following intervals:

1. N (l, l′, r′ − 1)

2. N (l′ + 1, r′, r)

3. N (l′ + 1,m, r′ − 1)

4. N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r)

Dividing Terms 125

B

ACDE

Figure 9.4: A graphical representation of case five for M; see Lemma 81 and also
Figure 9.3. Note that A, C, and E represent open terms and D a closed one. The
term DCB then is open again.

5. N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) ∪R(l,m, r)

Further the sets involved in the unions of case 4 and 5 are disjoint.

Proof. This proof is similar to the previous one, only case five slightly differs. Again,

either the interval is completely contained in one of the three subintervals for which

we fall back to N (l, l′, r′ − 1), N (l′ + 1, r′, r), or N (l′ + 1,m, r′ − 1) respectively.

Otherwise let A = N (l, l′, r′ − 1) ∪ N (l′ + 1, r′, r), similar to the previous proof.

Notice that by Lemma 80 we obtain N (l, l′, r′ − 1) ∪ N (l′ + 1, r′, r) is a disjoint

union and an interval. Following the line of the previous proof, if we are in the

AB~ situation, then case 4 holds as ~ is outside of [l, r]. In case of BA~, B is not

part of N due to the maximality of N 1. If A is closed, we can insert ~ by O(l,m, r)

and obtain an open term. Open terms following O(l,m, r) can be appended and are

addressed by R(l,m, r).

This is possible since M2 = N 2, which we know from Lemma 80.

The intervals M and N are built around the property of containing a middle

position m. The intervals L and R are different: They can lie arbitrarily within

[l, l′ − 1], or [r′ + 1, r] respectively, and we initially do know nothing about the

location of the middle positions. Our goal is to reduce L and R to some M(l̄, m̄, r̄)

where we find l̄, m̄, and r̄ using a binary search.

Lemma 83. Given a term T and subinterval [l, r] with middle m then for L there

exists an interval [l̄, r̄] ⊆ [l, l′ − 1] with middle m̄ that can be found by binary search

such that L =M(l̄, m̄, r̄).

126 General Evaluation Complexity

Proof. By definition the interval L lies left to M∪N . The set M∪N is a closed

term andM∪N ∪O is an open one by the definition of L. We then want to address

the largest term in [l, l′ − 1] that comes before M. We can use M(l̄, m̄, r̄) for this.

The inclusion L ⊆ M(l̄, m̄, r̄) is clear from the maximality of M(l̄, m̄, r̄). On the

other hand, the converse direction is also true since any position to the right of L is

rooted after l′.

Now, we can use the binary search inside [l, l′ − 1]: Start with this interval and

then recursively do the following: If m̄ is the middle position of the current interval

[l̄, r̄] then continue with:

• Search in the left half [l̄, m̄− 1] if L is entirely left of m̄.

• Search in the right half [m̄+ 1, r̄] if L is entirely right of m̄ .

• L =M(l̄, m̄, r̄) if L contains m̄, hence we may stop.

Lemma 84. Given a term T and subinterval [l, r] with middle m then for R there

exists an interval [l̄, r̄] ⊆ [r′ + 1, r] with middle m̄ that can be found by binary search

such that R =M(l̄, m̄, r̄).

Proof. This proof is similar to the previous one. First, note that R ⊆ M(l̄, m̄, r̄)

and R2 =M2(l̄, m̄, r̄) because of maximality. Moreover, R is an open term. Now,

if M(l̄, m̄, r̄) is a strict superset it must contain the operation set O(l,m, r). Inside

[r′ + 1, r] both descendants stay open, so there is no open term in [r′ + 1, r] that

contains O(l,m, r).

The binary search is the same as in the previous proof.

9.3 The Evaluation Algorithm

The algorithm we present is based on a recursion leading to a parallel algorithm,

which we present in form of a circuit construction. Lemmas 81, 82, 83, and 84

directly suggest how the recursive evaluation will work: To evaluate an interval we

compute smaller fixed subintervals and then use the results to obtain the overall

result. The functional algebra F(A) then allows us to combine the recursively

obtained values.

In particular we need the following parts:

• Conversion of the term into PNF.

The Evaluation Algorithm 127

• Decision procedures determining for given intervals which case holds. By ’case’

we mean the ones from Lemma 81 and 82.

• The actual evaluation using the PNF and the computed cases.

The first step is the PNF conversion, which can be found in [Bus87]. The conversion

is of complexity TC0. The resulting term is T .

For the evaluation we need to implement circuits that on a given interval [l, r]

evaluate the intervals M, N , L, and R. In the case of M, we need to distinguish

whether an open or a closed term is evaluated. In the first case the output is a value

of the domain D and in the second it is a function of D̃. In the other cases the result

is always a function. These are the names of the evaluation circuits:

• Evalclosed(M(l,m, r))

• Eval(M(l,m, r))

• Eval(N (l,m, r))

• Eval(L(l,m, r), l̄, m̄, r̄)

• Eval(R(l,m, r), l̄, m̄, r̄)

The variables l̄, m̄, r̄ exist to serve the binary search as mentioned in Lemma 83

and 84.

These circuits all work in a similar way: Depending on the structure of the term

one of a number of cases holds, which determines how the output value is composed

from the recursion results. So, the recursion results are combined for each of the

cases and these combination results are then fed into a multiplexer-gate, which

chooses the right output.

The circuits determining the cases are:

• Case(M(l,m, r))

• Case(N (l,m, r))

• Case(L(l,m, r), l̄, m̄, r̄)

• Case(R(l,m, r), l̄, m̄, r̄)

In the end, Evalclosed(M(1, bn/2c, n)) is the circuit evaluating the whole term. For

all recursive definitions of circuits, assume some look-up table construction if the

interval becomes smaller than some constant. Also, if an open interval is evaluated

and it happens to be empty, the identity function is returned as a result.

128 General Evaluation Complexity

9.3.1 Evaluating the M-Interval

This part is based on Lemma 81. Consider its five cases:

1. M =M(l, l′, r′ − 1)

2. M =M(l′ + 1, r′, r)

3. M =M(l′ + 1,m, r′ − 1)

4. M =M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r)

5. M = L(l,m, r) ∪M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) ∪R(l,m, r)

The circuit Case(M(l,m, r)) determines which case holds for given l, m and r.

It actually has five output bits - one for each case. The circuit for the i-th output

bit is Casei(M(l,m, r)). Instead of actually stating a circuit we specify MAJ[<]

formulas for each output. This is sufficient since MAJ[<] is contained in TC0 which

in turn is a subset of NC1. Also note that /T is also expressible in MAJ[<] logic

[Bus87].

Case1(M(l,m, r)) = ∃x m ≤ x < r′ ∧ (∃y l ≤ y < l′ ∧ y /T x)

∧ ∀x r′ ≤ x ≤ r ⇒ ¬(∃y l ≤ y < m ∧ y /T x)

Case2(M(l,m, r)) = ∃x r′ ≤ x ≤ r ∧ (∃y l′ < y ≤ m ∧ y /T x)

∧ ∀x r′ ≤ x ≤ r ⇒ ¬(∃y l ≤ y ≤ l′ ∧ y /T x)

Case3(M(l,m, r)) = ∃x m ≤ x < r′ ∧ (∃y l′ < y ≤ m ∧ y /T x)

∧ ∀x r′ ≤ x ≤ r ⇒ ¬(∃y l ≤ y ≤ m ∧ y /T x)

∧ ∀x m ≤ x < r′ ⇒ ¬(∃y l ≤ y ≤ l′ ∧ y /T x)

Case4(M(l,m, r)) = ∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z l′ ≤ z < r′ ∧ y /T z ∧ z + 1 /T x

The Evaluation Algorithm 129

Case5(M(l,m, r)) = ∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z∃u∃v y /T v ∧ v + 1 /T z

∧ z + 1 /T u ∧ u+ 2 /T x

∧ v + 1 /T u+ 1

Now that we have the means of deciding the case of Lemma 81 for a given interval,

we can actually evaluate the interval. We receive the evaluation results recursively

for the intervals M(l, l′, r′ − 1), M(l′ + 1, r′, r), M(l′ + 1,m, r′ − 1), N (l′ + 1, r′, r),

L(l,m, r), and R(l,m, r). By combining these we are able to obtain the output

value.

• In cases one to three the combination is trivial as we only pass a recursively

computed value.

• In case four, for the output of Evalclosed(M(l,m, r)) we use a functional

application gate (�) which gets the results from Evalclosed(M(l, l′, r′ − 1))

and Eval(N (l′ + 1, r′, r)). For the output of Eval(M(l,m, r)) we use a

composition gate (◦) which gets the outputs of Eval(M(l, l′, r′ − 1)) and

Eval(N (l′ + 1, r′, r)).

• Case five is composed as

L(l,m, r) ∪M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) ∪R(l,m, r).

The subinterval M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) is a term and can be obtained

just like in case four. For interval M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r)

we use that result and feed it together with an identity function into a ~̃-gate

if O(l,m, r) points to a symbol ~. Then we take this value and the result of

Eval(R(l,m, r)) and feed it into a composition gate, which then yields the

value for M(l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) ∪R(l,m, r). Finally, we

take this value and compose it with the result of Eval(L(l,m, r)) to get the

value for the whole interval; see Figure 9.5.

In case five we need a multiplexer construction to select the right operation ~, i.e.

we do the construction for all possible operations and then select the right one using

the multiplexer, which is directed by the following:

130 General Evaluation Complexity

.l l′ m r′ r
Eval(M(l, l′, r′ − 1))

Eval(N (l′ + 1, r′, r))

Eval(L) Eval(R)

�id

~̃

◦

◦

outputE
v
a
l
(M

(l
,m

,r
))

,
ca

se
fi
ve

Figure 9.5: The dashed box represents the subcircuit of Eval(M(l,m, r)), which
performs the combination in case five. Note that the box ~̃ corresponds to the
operation symbol ~ in position B in figures 9.3 and 9.4. This box actually is not a
single gate but also a construction, which is shown in Figure 9.6.

Operation~(M(l,m, r)) = ∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z∃u∃v y /T v ∧ v + 1 /T z

∧ z + 1 /T u ∧ u+ 2 /T x

∧ v + 1 /T u+ 1

∧ Q~(u+ 1)

This is the same as the formula for Case5(M(l,m, r)) but it also checks whether

~ is in the position contained in O(l,m, r); see Figure 9.6.

Finally, as we have these five possible combinations we use a multiplexer gate and

the results of Casei(M(l,m, r)) to select the right one as output; see Figure 9.7.

9.3.2 Evaluating the N -Interval

The evaluation of the N -intervals is very similar to the one previously described for

M. First, we only evaluate open terms in this case. One difference is that we need

to have adjusted circuits Case(N (l,m, r)) computing the case:

The Evaluation Algorithm 131

id

~̃1 ~̃2 ~̃k-1 ~̃k

multiplexer

.

output

Operation(M(l,m, r)) �

O
p
.(
M

(l
,
m
,
r
))

Figure 9.6: In case five of the computation of Eval(M(l,m, r), the operation has
to be computed and used. Figure 9.5 shows where the operation circuit shown here
has to be inserted.

.l l′ m r′ r

Eval(M(l, l′, r′ − 1))
Eval(M(. . .))

Eval(M(l′ + 1, r′, r))
Eval(N (l′ + 1, r′, r))

Eval(L) Eval(R)

◦ case five

multiplexer

E
v
a
l
(M

(l
,m

,r
))

C
as

e(
M

(l
,m

,r
))

output

Figure 9.7: Construction for the Eval(M(l,m, r)) circuit. It consists of five recursive
calls, a circuit for determining the case and a subcircuit performing the combination
for case five as shown in Figure 9.5.

132 General Evaluation Complexity

Case1(N (l,m, r)) = ∃y l ≤ y ≤ l′ ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x m ≤ x < r′ ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

Case2(N (l,m, r)) = ∃y l′ < y ≤ m ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x r′ ≤ x < r ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

Case3(N (l,m, r)) = ∃y l′ < y ≤ m ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x m ≤ x < r′ ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

Case4(N (l,m, r)) = ∃y l ≤ y ≤ l′ ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x r′ ≤ x < r ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

∧ ∃w l′ ≤ w < r′ ∧ y /T w ∧ w + 1 /T x

Case5(N (l,m, r)) = ∃y l ≤ y ≤ l′ ∧ l − 1 <T y − 1 ∧ ¬(l − 1 ≤T y)

∧ ∀u (l ≤ u ≤ m ∧ l − 1 <T u− 1 ∧ ¬(l − 1 ≤T u))⇒ u ≤ y

∧ ∃x r′ ≤ x < r ∧ y /T x
∧ ∀v x < v ≤ r ⇒ ¬(y /T v)

∧ ∃w∃z l′ ≤ w < r′ ∧ y /T w ∧ w + 1 /T z ∧ z + 2 /T x

Now by applying Lemma 82, we can build Eval(N (l,m, r)). Consider the cases:

The Evaluation Algorithm 133

1. N = N (l, l′, r′ − 1)

2. N = N (l′ + 1, r′, r)

3. N = N (l′ + 1,m, r′ − 1)

4. N = N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r)

5. N = N (l, l′, r′ − 1) ∪N (l′ + 1, r′, r) ∪ O(l,m, r) ∪R(l,m, r)

The construction for Eval(N (l,m, r)) is similar to the one for Eval(M(l,m, r))

with the exception that we use the appropriate recursive calls and do not use the

R-interval. Also, of course, we use Case(N (l,m, r)) instead of Case(M(l,m, r)).

9.3.3 Evaluating the L-Interval

The key idea of evaluating an interval in our algorithm is that we evaluate the

largest subterm in the interval that contains the middle. If we want to evaluate an

L-interval, we face the problem that it may lie arbitrarily within the considered

interval such that is does not contain the middle. So, the idea is that we perform a

binary search in order to find a interval whose middle is part of L; see Lemma 83.

Our search interval will be [l̄, r̄] with middle m̄. We then distinguish three cases:

1. m̄ ∈ L

2. L ⊆ [l̄, m̄− 1]

3. L ⊆ [m̄+ 1, r̄]

In the first case we can fall back to Eval(M(l̄, m̄, r̄)). In the second we recurse

using

Eval(L(l,m, r), (l̄, l̄ + m̄− 1)/2, m̄− 1)

and in the third case we use

Eval(L(l,m, r), (m̄+ 1, (r̄ + m̄+ 1)/2, r̄).

So, we have three recursive calls, which we feed into a multiplexer gate. The

multiplexer gate is directed by Case(L(l,m, r), l̄, m̄, r̄), which decides which of the

tree cases hold:

134 General Evaluation Complexity

Case1(L(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ y ≤ m̄ ≤ v

=∃x r′ < x ≤ r ∧ ∃y l ≤ y < l′ ∧ y /T x
∧ ∀u∀v x ≤ u ∧ (x < u ∨ v < y)⇒ ¬(v /T u)

∧ ∃z∃u∃v y /T v ∧ v + 1 /T z

∧ z + 1 /T u ∧ u+ 2 /T x

∧ v + 1 /T u+ 1

∧ y ≤ m̄ ≤ v

Case2(L(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ y ≤ v < m̄

Case3(L(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ m̄ < y ≤ v

9.3.4 Evaluating the R-Interval

Evaluating an R-interval is again very similar to L. For Eval(R(l,m, r), l̄, m̄, r̄)

we use the same multiplexer construction for the binary search as in

Eval(L(l,m, r), l̄, m̄, r̄) and only have to adjust the case computation:

Case1(R(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ u+ 2 ≤ m̄ ≤ x

Case2(R(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ u+ 2 ≤ x ≤ m̄

Case3(R(l,m, r), l̄, m̄, r̄) = Case5(M(l,m, r)) ∧ m̄ ≤ u+ 2 ≤ x

Complexity and Correctness: Proof of Theorem 75 135

9.4 Complexity and Correctness: Proof of Theo-

rem 75

The correctness of our construction follows from the lemmas of Section 9.2 since we

only directly implemented those.

Our circuit construction uses the kind of gates, which we may use for F(A)-NC1

circuits. We used multiplexer gates of three respectively five inputs instead of two,

which can be implemented easily.

The construction also stays in logarithmic depth with regard to the input length:

The PNF conversion is computable in the bounds of TC0. The same is true for

the case computations. The evaluation circuits entail the case circuits as well as

recursive calls. In every call the range becomes smaller by at least a factor of 2/3,

so the depth is logarithmic.

Analyzing the size of our construction, we see that we use a polynomial number

of circuits, which originate in MAJ[<] formulas, which each result in polynomial

size circuits. Each recursive evaluation circuit covers a certain subinterval and since

there is only a quadratic number of subintervals, we get the polynomial bound for

the whole construction.

Lastly, we indicate DLOGTIME-uniformity. As it is usually done, we have to

show how to assign addresses to gates and then state FO[<,+,×] formulas, which

take such addresses and tell what function some gate is assigned as well as how

the gates are wired. Consider a circuit Eval(M(l,m, r)). It consists of several

recursively defined subcircuits and a fixed number of extra gates to combine the

results of the subcircuits, which we call the combination gates of Eval(M(l,m, r)).

An addressing scheme can look like this: We assign each Eval(M(l,m, r)) circuit a

word w and for the six subcircuits we assign words w000, w001, w010, w011, w100,

and w101. We address the finitely many gates we use for combining the recursively

obtained values, which are left by w$x where x is a unique word for each occurring

gate. One can easily see that this scheme can be applied for all kinds of circuits we

defined.

Now, it is easy to come up with a FO[<,+,×] formula that assigns each gate its

type. On an input w$x it only takes a look-up to which kind of gate x corresponds.

The wiring between gates can also be expressed: For a pair of combination gates

of some Eval(M(l,m, r)), the task is again just a look-up in a table. If we have a

pair such that one is the output of a recursion, we can also model this by looking

at the last letter of w in the address w$x. In the case of small intervals r − l, the

computation Eval(M(l,m, r)) becomes a look-up table, which accesses input gates,

136 General Evaluation Complexity

which we can also model. The output gate is a gate with an address of the form $x

for an appropriate x.

Note that we also have circuits like Case(M(l,m, r)), which are given in terms of

MAJ[<] formulas. By [BL06] we know that these are also in DLOGTIME-uniform

NC1.

9.5 Conclusion

Summary

This chapter was purely dedicated to the parallel evaluation algorithm. First,

we defined the functional algebra F(A) based on an algebra A, which captures

precisely what is needed for parallel computation: There is a linear time algorithm

for evaluation, which uses the operations of A, but if one wants to parallelize, the

cost of having the more complex algebra F(A) has to be paid. Therefore, our main

result is an F(A)-NC1 upper bound for evaluation. The proof is a direct circuit

construction, which is defined recursively.

Contributions

The content of this chapter has been already published in [KLL17a, KLL17b]. In its

generality it is entirely new, however, it draws from the algorithm of Buss [Bus87]

and its subsequent version [BCGR92]. Our result extends to arbitrary algebras and

its proof is somewhat different. While it is still locally quite technical, the overall

proof structure is simple, especially compared to Buss’s approach. An important

tool to formulate and prove the main result is the functional algebra F(A), which

captures precisely what is needed to make the tradeoff from linear time to logarithmic

depth.

Sources and Related Work

Our algorithm for the term evaluation problem fits in the long chain of contributions

dedicated to the term evaluation problem. The origins can be vaguely traced back

to the investigation about upper bounds for the Boolean formula value problem. In

[Lyn77], Lynch studied it first and achieved a log-space upper bound. Subsequently

Cook conjectured that this bound is tight [Coo85] which, as we know today, it is not

(unless log space equals log depth). Earlier, a way to deal with formulas that are

very deep trees was investigated by Spira [Spi71]: By a quadratic increase in size

Conclusion 137

one can balance a Boolean formula. Brent built upon this work [Bre74]. Going from

balancing to obtaining an NC (in fact, NC1, i.e. log-depth) upper bound is not

difficult. It is known that if the transformation can be done in NC1, the evaluation

is in NC1.

Cook and Gupta [Gup85] as well as Ramachandran [Ram86] were the next in line

who showed thatO(log n log log n) deep circuits suffice for evaluating formulas. Based

on [Gup85], Buss showed an ALOGTIME bound [Bus87] which equals logarithmic

depth [Ruz81] and is known to be tight. His proof utilized a sophisticated two-player

pebbling game.

From there on the research proceeded in the direction of broadening the scope of

the result. This continued research is always rooted in the work of [Gup85] and

[Bus87]. Many other interesting works have contributed to this rich line of research,

each solving the term evaluation problem over a specific algebra [Meh80], [Dym88],

[KLM10], [KLL16].

It should be pointed out that the PNF normal form we defined originates also in

[Bus87] where it is called PLOF. Also, we are aware of a simplified version [Bus93]

of [Bus87] which directly operates on the infix notation instead of the normal form,

however, we found the normal-form to be more convenient.

There already exists follow-up work based on the findings of this chapter [GL17]

which gives an alternate proof, but is more geared towards term balancing. This,

however, is merely a different perspective on the same matter. The paper also makes

use of parts of the machinery we presented, most notably the functional algebra

F(A).

Further Research

First, one could do a more detailed analysis of our construction. Then, improvements

could be done in terms of simplifying the construction or reducing the complexity,

for example, by lowering the degree of the polynomial of the size bound. One could

also try to obtain lower bounds.

Chapter 10

Applications of Evaluation

In the previous chapter we saw that a term can be evaluated over some algebra

A in F(A)-NC1. This is a rather unusual complexity class that suits to the

evaluation problem, yet it is not immediately clear how F(A)-NC1 relates to

classical complexity classes. This is a problem we tackle in this chapter. Moreover,

the evaluation problem is just one example amongst others, however, it is a very

useful one since many problems that have a parallel algorithm can be reduced to

an evaluation problem. This already outlines the plan for upcoming sections: We

offer a framework that yields upper bounds for certain problems in terms of parallel

computation. The steps, which we will go into more detail in a moment, are roughly

the following: First, reduce the problem in question to an evaluation problem over

an algebra A. Second, embed F(A) in an appropriate algebra B such that we can

perform the third step, which is showing the actual upper bound for B-NC1, which

is done by analyzing the complexity of the operations.

To make this formally precise we have to pay attention to some circumstances. First

of all, the input is always Boolean, i.e. a word over some alphabet Σ. In general, a

problem is a function Σ∗ → D. The word problem, for example, embeds via D = B.

We reduce the problem to term evaluation over an algebra A = (D;O) and hence

the F(A)-NC1-circuit we get through Theorem 75, really outputs a D-value and

not one that is necessarily a natural number or Boolean.

To ease the following constructions, note that it does not add complexity if we

allow the input to be evaluated over some family of algebras instead of only one

algebra. If we modify Theorem 75, we get:

Theorem 85. Given an algebra A, which may be a family of possibly many-sorted

algebras A = (An)n∈N with An = (D(n);O(n)), where all An have the same signature

140 Applications of Evaluation

σ, then the evaluation function evalA : T(σ)→
⋃
n∈N D(n) is in DLOGTIME-uniform

F(A)-NC1.

We evaluate over a family of algebras, which means that an input of length n

is evaluated over An. The domain of An is D(n), which may consist of several

subdomains. The input terms are all of the same signature hence we impose the

same signature on the algebras An. The evaluation function evalA naturally extends

to families of algebras, and so does F(A). If A = (An)n∈N is a family of algebras,

F(A) is the family (F(An))n∈N.

Now suppose we showed that some problem is in F(A)-NC1. For the embedding

step of F(A) we use the notion of divisibility. We have to find some family of algebras

B = (Bn)n∈N such that F(An) � Bn. By definition, there exists an epimorphism

φ′n : Bn → F(An). Now, by Theorem 23 there exists an isomorphism φn between

F(An) and Bn/ker(φ′n).

If we have found a family of algebras B as described, we may reduce the problem

to B/ker(φ)-NC1, but usually, we choose B in a way such that showing an upper

bound is easy. Also, we do not care if B is a little bit too big. So, we actually go

with B-NC1. If the evaluation of the input term t is d ∈ D, then the B-NC1 circuit

will output a representative of the set φ′−1
|t| (d). This output also may be represented

differently than d. For example, while d is some natural number, the output of

the B-NC1 circuit could be the binary representation of d with some leading zeros.

Hence, in this example φ′−1
|t| (d) might be the set of binary representations of d with

an arbitrary number of leading zeros.

The previous example motivates introducing the notion of coding since this is

what actually happens: We have some algebra and code the values e.g. in binary.

For n = |t|, the inverse homomorphism φ′−1
n : Dn → 2Bn is close to what we want

to consider a coding: An algebra value is assigned a set of valid representations.

When doing the actual constructions, it usually does not matter which of the many

representations we choose, so we let a coding cn be a map F(An)→ Bn such that

cn(d) ∈ φ′n(d). The map cn is a monomorphism. A coding c for the whole problem

then is a family c = (cn)n∈N. Later, rather than defining B and then c, we will only

define the coding of the operations or the coding of the domains since usually one

already defines the other. If, for example, we have a coding for the operations, then

we may choose B as just the image

c(A) = (c(D1), . . . , c(DS);~c1, . . . ,~
c
k).

Note that c being a generalized homomorphism assigns each operation in A a term

over B. The functions these terms represent become the operations of c(A). Note

that c(A) might be smaller than B which, however, is no problem in the applications

since c(A)-NC1 ⊆ B-NC1.

141

Now, we have the c(F(A))-NC1-circuit, which is evaluating the terms. These

circuits usually are Boolean or arithmetic ones. The algebra c(F(A)) has the

subdomains c(D) and c(D̃). If c was chosen well, we may proceed with showing the

upper bound. The c(F(A))-NC1-circuit internally makes computations involving

the operations of c(F(A)). Suppose we want to show an upper bound in terms of

NCi, the goal is now to simulate the operations by constructions using Boolean

wires and gates of bounded fan-in. In general, if the operations are in NCi then the

overall problem is in NCi+1. If the operations are in ACi, then the overall problem

is in ACi+1. If the operations are in #NCi
N, then the overall problem is in #NCi+1.

Along the same lines we obtain the cases for SACi and Gap-classes.

In summary, the previous considerations led to the following template for proving

upper bounds. Note that we allow for unary operations here even though Theorem

75 and the definition of F(A) only allow for either 0-ary or binary ones. Unary

operations, however, may be simulated through binary ones. So, if ~ : D→ D, we

let ~̃ : D̃→ D̃ be defined in the obvious way.

1. Find an algebra A and reduce the problem P : Σ∗ → D to a term evaluation

problem over A; for convenience A might be a family. That means, for example,

if we want a many-one reduction we have to find a map f : Σ∗ → T(σ(A))

such that P = evalA ◦ f . Other reduction types may also be used, of course.

2. Find a coding c for F(A) such that we can find meaningful complexity

upper bounds for the operations in c(F(A)). In our applications this means

that c(F(A)) has domains that are vectors, matrices and cross-products over

either B, N, or Z. These can be represented just as sequences of bits or

numbers. This leads to Boolean or arithmetic circuits.

3. Analyze the complexity of the operations used in c(F(A))-NC1. We

then get the according complexity for P provided that the complexity of the

reduction step does not dominate the overall complexity. As a summary, recall

that for A = (D;B,Z) we have F(A) = (D, D̃;B,Z, B̃, ◦,�, id), so we have

to analyze the operations of

c(F(A)) = (c(D), c(D̃);Bc, Zc, B̃c, ◦c,�c, idc) :

• The non-constant operations of A: For each ~ ∈ B we have to analyze

~c : c(D)× c(D)→ c(D).

• The functional versions of the non-constant operations of A. So, for each

~ ∈ B we have to analyze

~̃
c
: c(D̃)× c(D)→ c(D).

142 Applications of Evaluation

This also contains the unary operations, which can be simulated by binary

ones.

• To spare us the hassle of expressing unary operations through binary

ones way we include unary operations explicitly in this list:

~c : c(D)→ c(D)

as a member of Bc and

~̃
c
: c(D̃)→ c(D̃)

as a member of B̃c.

• The functional composition of F(A):

◦c : c(D̃)× c(D̃)→ c(D̃).

• The substitution operation of F(A):

�c : c(D̃)× c(D)→ c(D).

The algebra also has 0-ary operations, but for these there is no complexity to

analyze.

Multiplexer operations are not part of the algebra, but come into play in the

construction of the c(F(A))-NC1 circuits. Usually, their complexity analysis

is trivial:

• Multiplexer operations for all subdomains X of c(F(A)):

mpX : B×X ×X → X

These operations are used in the c(F(A))-NC1 circuit as black boxes. In this

third step we have to come up with an efficient implementation of all these

operations in order to derive a good overall upper bound. The depth increases

by a logarithmic factor when comparing the complexity of the functions

and the overall circuit. So, if, say, all the functions are in #NC1
D, then

c(F(A)) ⊆ #NC2.

There is also another interpretation of the template, in particular of the second

and third step. The first step provides us with a F(A)-NC1 bound. In the resulting

circuits there are wires and gates that process algebra values. Now, the second step

of the template is replacing the wires and the third step is replacing the algebra

gates by actual constructions.

The Boolean Formula Value Problem and Finite Algebras 143

If an operation ~i is not commutative, we actually have also a symmetric variant

present as enforced by the PNF definition. In the complexity analysis we can omit

those operations because we can use the same algorithm for those variants by just

switching the two inputs.

In the upcoming applications we will strictly follow the template. Without explicitly

mentioning it, all upper bounds we show are meant in terms of DLOGTIME-uniform

circuits.

10.1 The Boolean Formula Value Problem and

Finite Algebras

The Boolean formula value problem (BFVP) is the problem of evaluating Boolean

formulas. That is evaluating terms over the algebra B = (B;∧∨,¬,⊥,>).

Theorem 86 ([Bus87]). The Boolean formula value problem is in NC1.

Proof. 1. step. We do not need a reduction, since the problem directly is a

evaluation problem over the algebra B

2. step. Consider the algebra F(B) = (B, B̃;∧,∨,¬,⊥, ∧̃, ∨̃, ¬̃, ◦,�, id). Here,

B̃ = BB has four elements. We choose some coding c with c(B) = B and c(BB) = B2.

The coding for the operations follows.

3. step. Consider the algebra c(F(B)). The operations of the subalgebra c(B) = B
can be implemented directly by single gates. The other operations need constant size

circuits, i.e. NC0. The same is true for multiplexer gates. Hence c(F(B))-NC1 ⊆
NC1.

In the previous proof we used that the algebra is finite. If it is finite, we only need

constant size circuits to implement the operations. Thus, we may state a general

theorem, which is folklore:

Theorem 87. If A is a finite algebra, then evaluating terms over A is in NC1.

10.2 Evaluating Arithmetic Terms and Distribu-

tive Algebras

We consider evaluating terms over N = (N; +,×, 0, 1) and Z = (Z; +,×, 0, 1).

Theorem 88 ([BCGR92]). Evaluating terms over N is in #NC1.

144 Applications of Evaluation

Proof. 1. step. The problem is directly a term evaluation problem, hence no

reduction is needed and we stick to the algebra N .

2. step. Consider the algebra

F(N) = (N, Ñ; +,×, 0, 1, +̃, ×̃, ◦,�, id).

Here, we have Ñ ⊆ NN. The functions in Ñ are of the form x 7→ ax + b for some

a, b ∈ N. We choose a coding c such that c(N) = N and c(Ñ) = N2 and begin with

the identity function x 7→ 1x+ 0, which is clearly of this form. It has to be shown

that the operations of F(N) leave functions in this form.

• ◦c: Given some functions f(x) = afx+ bf and g(x) = agx+ bg, then f ◦ g is

also of the desired form: x 7→ afagx+ afbg + bf . So, c(f ◦ g) = c(f) ◦c c(g) =

(af , bf) ◦c (ag, bg) = (afag, afbg + bf).

• +̃
c
: Consider c(f+̃e) for f ∈ NN and e ∈ N. Now, c(f)+̃

c
c(e) = (a, b)+̃

c
e =

(a, b+ e) where f(x) = ax+ b.

• ×̃c: Consider c(f×̃e) for f ∈ NN and e ∈ N. Now, c(f)×̃cc(e) = (a, b)×̃ce =

(a× e, b× e) where f(x) = ax+ b.

This shows that c is indeed a valid coding.

3. step. We now have an upper bound of c(F(N))-NC1. As all operations

use constantly many inputs of natural numbers, there exist arithmetic circuit

implementations for all operations. Further, all Boolean gates and multiplexer gates

can be simulated by arithmetic circuit constructions, so all operations are in #NC0
N.

Hence, we get c(F(N))-NC1 ⊆ #NC1.

The same construction carries over to integers:

Theorem 89. Evaluating terms over Z is in GapNC1.

In the previous proof we used distributivity of + and ×, which allows us to

represent functions by two values. We can generalize this idea. We call an algebra

A = (D;~1, . . . ,~k) distributive if i < j implies

(d1 ~j d2)~i d3 = (d1 ~i d3)~j (d2 ~i d3),

where we assume without loss of generality that the operations are in an order

fulfilling the equation. If that is the case, we find a representation of D̃ as c(D̃) = Dk

because we can choose the maps as x 7→ (. . . ((x~1 d1)~2 d2) . . .~k dk. No matter

what operations we perform now, we can rearrange the resulting term again in this

form. So, computing those functions is not harder than the original algebra, which

gives us a modified version of Theorem 75:

Automata 145

Theorem 90. Evaluating terms over a distributive algebra A is in A-NC1.

10.3 Automata

In the first part of this work we introduced a host of different automaton models.

Now, it is time to analyze their complexity. For ordinary automata this means

analyzing the complexity of the word problem. For other kinds it means analyzing

the complexity of the functions the automaton implements.

We will not show the complexity for every single automaton model explicitly. For

example, as we saw before, ranked tree automata do nothing else than evaluate a

term over a finite algebra. Also, there are the nested word automata: We leave them

out in favor of visibly pushdown automata, since they are so closely related. The

problems for unranked tree automata can be reduced to the equivalent problems for

VPAs.

10.3.1 Language Recognizing Automata

We show complexity bounds for word problems of automata. There are actually two

versions of the word problem we may consider. Classically, we fix an automaton M
as ask for the complexity of determining whether M accepts an input. Addition-

ally, there is also the uniform word problem in which also M is part of the input.

Naturally, the complexity of the uniform word problem is as least as high as the

complexity of the word problem.

We will generalize the word problem by looking at the counting problem:

Theorem 91. Given a non-deterministic VPA M and a well-matched word w ∈
WM(Σ̂) as inputs, then computing the number of accepting runs of M on w is in

#SAC1

Proof. 1.step. We assume that the automaton has a state set [n] where n is the

input length. Choosing so is no restriction. A well-matched word can be considered

to be a linearization of a tree or a term. So, what we will do is to interpret the input

word as a term over a family of algebras (An)n∈N with

An = (N[n]×[n];~, (⊗a,b)a∈Σcall,b∈Σret , (†e)e∈Σint∪{ε}),

whose operations will be defined in a moment. Given a well-matched input word

w, we construct a term t(w). If the input w is either the empty word or a internal

letter, then the corresponding term is t(w) = †w. If w = w1w2 where w1, w2 are

146 Applications of Evaluation

well matched, then t(w) = t(w1) ~ t(w2). If w = aw′b where a ∈ Σcall, b ∈ Σret,

and w′ is well-matched, then t(w) = ⊗a,bt(w). The elements of the domain N[n]×[n]

then assign each pair of states q1, q2 the number of runs from q1 to q2 there are by

passing through the corresponding well-matched word. The definition of the algebra

operations in particular is as follows:

• †ε is a 0-ary operation, hence an element of the domain, which is a function

[n]× [n]→ N. We define it as (q, q′) 7→ 1 if and only if q = q′ and (q, q′) 7→ 0

otherwise.

• †e for e ∈ Σint is defined as (q, q′) 7→ 1 if q′ ∈ δint(q, e) and (q, q′) 7→ 0 otherwise.

• ~ is a binary operation and α ~ β is defined as (α ~ β)(q, q′) =∑
r∈[n] α(x, r)β(r, y).

• ⊗a,b is unary and (⊗a,bα)(q, q′) is defined as the sum of all α(p, p′) for which

there exists γ ∈ Γ such that (p, γ) ∈ δcall(q, a) and q′ ∈ δret(p
′, b, γ).

If we evaluate the term over this algebra, we get the number of runs of M on w.

2. step. The algebra F(An) has a subdomain, which consists of maps of the form

N[n]×[n] → N[n]×[n]. Potentially, the set of such maps is too large, but actually they

are made up in a regular manner. The idea for a function [n]× [n]→ N was to store

how many paths there are between a pair of states for a given well-matched word.

For functions N[n]×[n] → N[n]×[n] there is a similar picture: Given a well-matched

word uv where u and v do not necessarily have to be well-matched, i.e. (u, v) is a

context, then a function f ∈ D̃ is storing how many ways there are for given states

q1, q2, q3, q4 from q1 to q2 via u and from q3 to q4 via v. If we consider f(d) where d is

a function d : [n]× [n]→ N, then d fills in the transitions from q2 to q3. If d resulted

from evaluating a well matched word w, then f(d) is the evaluation corresponding

to w1ww2.

The idea for the following coding c is that we we have to store natural numbers for

these four-tuples of states. We set

c
(
N[n]×[n]

)
= Nn×n

and

c

((
N[n]×[n]

)N[n]×[n]
)

= (Nn×n)n×n.

To assign a semantic to these matrices we define �c first:

• �c: Given c(f) ∈ (Nn×n)n×n and c(d) ∈ Nn×n we define the matrix c(f(d)) =

c(f � d) = c(f)�c c(d) = A. For a matrix like A ∈ Nn×n we write A(q1, q2) to

Automata 147

address the entry, which corresponds to the pair q1, q2. If we are given a matrix

like c(f), we write c(f)(q1, q2) to address the matrix corresponding to q1, q2

and we set c(f)(q1, q2)(q3, q4) = c(f)(q1, q2, q3, q4). Now, A(q1, q2) is defined as∑
q3,q4∈[n]

(c(f)(q1, q2, q3, q4)) (c(d)(q3, q4)) .

This is the sum of the entries of the point-wise matrix multiplication of

c(f)(q1, q2) and c(d). Note that the coding of the identity map is c(id) = In×n,

where I is the identity map of size n times n.

• ◦c: Given c(f) and c(g) of (Nn×n)n×n, then

(c(f) ◦c c(g)) (q1, q2, q3, q4) =
∑

q5,q6∈[n]

(c(f)(q1, q2, q5, q6)) (c(g)(q5, q6, q3, q4)) .

• ~c: This is just the normal matrix multiplication.

• ⊗ca,b: Let the matrixMa,b ∈ (Nn×n)n×n be defined such thatMa,b(q1, q2, q3, q4) =

1 if there exists γ ∈ Γ with (q2, γ) ∈ δcall(q1, a) and q4 ∈ δret(q3, b, γ) and

otherwise Ma,b(q1, q2, q3, q4) = 0. Now, we set ⊗ca,bc(d) = Ma,b �c c(d).

• ⊗̃ca,b: This is similar to the previous case and we set ⊗̃ca,bc(f) = Ma,b ◦c c(f).

• ~̃c: We set c(f~̃d) = c(f)~̃
c
c(d) as

c(f~̃d)(q1, q2) =
∑
q3∈[n]

c(f)(q1, q3)c(d)(q3, q2)

where the summation is a point-wise matrix summation and the multiplication

is a scalar multiplication.

3. step. Up to now, we have reduced the problem in a way that we know it is in

c(F(A))-NC1. By considering the definition of the algebra operations above, one

can see that in all cases arithmetic circuits of constant depth suffice. In particular

we only use multiplication between two elements. The fan-in of addition gates is

n, which is the number of states of the automaton. Hence, we have a #SAC0
N

bound for the operations. This in turn yields the bound of #SAC1 for the actual

problem.

If we look at the previous proof, it is easy to see how transitioning from the counting

to the Boolean case effects the complexity. The following result for the uniform

word problem can be derived:

Theorem 92. The uniform word problem for non-deterministic VPAs is in SAC1.

148 Applications of Evaluation

On the other hand, if we stay in the counting case but fix the automaton, we get

the following:

Theorem 93 ([KLM12]). For a fixed non-deterministic VPA, counting the number

of accepting runs is in #NC1.

Finally, the classical word problem is obtained by considering the Boolean case and

fixing the automaton:

Theorem 94 ([Dym88]). For a fixed VPA, the word problem is in NC1.

The proof for the last theorem is immediate. To solve the word problem, we simply

have to evaluate the input within the syntactic forest algebra. This algebra is finite,

and so by Theorem 87 we get the NC1 bound.

10.3.2 Weighted Automata

Next, we show the complexity of wighted automata, in particular for weighted VPAs

(WVPAs). The result is independent of the underlying semiring.

Theorem 95. Functions implemented by WVPAs over a semiring R = (D;⊕,⊗)

are in R-NC1.

Proof. 1. step. In a WVPA, for all computations the sum of weights is obtained

by ⊕ and then these sums are then multiplied using ⊗. An approach of doing the

computation in that order is awkward since there can exist exponentially many runs.

However, since we have a semiring at hand we can use distributivity. Again, we

interpret the input word as a term over an appropriate algebra. Then we can assign

each well-matched factor w a value, which is a map Q×Q→ D where (q1, q2) 7→ d

represents what the weight is that is accumulated when going from q1 to q2 by

reading w. This idea is related to the to one for the construction for counting paths

in VPAs. Similarly, as the algebra we choose:

A =
(
DQ×Q;~, (}a,b)a∈Σcall,b∈Σret , (†e)e∈Σint∪{ε}

)
where

(f ~ f)(q1, q2) =
⊗
q∈Q

(f(q1, q)⊕ g(q, q2)) .

The operation †e is 0-ary. For †ε we define †ε(q, q′) to be 0 if q = q′ and 1 otherwise.

Further,

}a,b(f)(q1, q2) =
⊗

q′1,q
′
2∈Q,γ∈Γ

(weight(q1, q
′
1, a, γ)⊕ f(q′1, q

′
2)⊕ weight(q′2, q2, b, γ)) .

Automata 149

Here, weight : Q × Q × Σcall ∪ Σret × Γ → D assigns each transition its weight; if

a ∈ Σcall then γ ∈ Γ is the letter that is pushed onto stack and if b ∈ Σret it is the

one popped off stack.

A given well-matched input word w, results into the term t(w). If w = ε, then

t(w) = †ε and if w = c for c ∈ Σint, then t(w) = †c. For w = w1w2, where w1 and

w2 are also well-matched we have t(w) = t(w1) ~ t(w2). If w = aw′b for a ∈ Σcall

and b ∈ Σret, then t(w) = }a,b(t(w′)).

By induction one can see that the constructed term evaluates to the function that

represents the weight for each pair of states. By assuming that there exists one

initial and one final state, looking up at the pair of initial and final state we get the

final output.

2. and 3. step. The algebra F(A) has a domain DQ×Q and one that consist of

functions DQ×Q → DQ×Q. Similar to the proof of Theorem 91 and because R is

distributive, for n = |Q| the coded domains Dn×n and (Dn×n)n×n may be chosen.

These domains again equate to constant-sized lists of D-values. So, updating them

requires circuits of constant size using R-gates. The result is a R-NC1 circuit

family.

Based on the previous proof, one can obtain the result for the case that the

automaton is part of the input. Whereas n = |Q| has been fixed, we now assume n

to be the length of the input. We see that we need either ⊗-gates of unbounded

fan-in or a logarithmically deep construction of binary ⊗-gates. If we do the latter,

we get the following:

Theorem 96. Given a WVPA M and a word w ∈ WM(Σ̂) as input over a fixed

semiring R = (D;⊕,⊗), the problem of computing the output value of M on w is in

R-NC2.

Applied, we directly obtain:

Theorem 97. Functions implemented by WVPA over (N; +,×) are in #NC1 and

those over (Z,+,×) are in GapNC1.

A prime example for A in the context of weighted automata is (Z; +,min), hence:

Theorem 98. Functions implemented by WVPA over (Z; +,min) where the output

is coded binary are in SAC1.

Proof. By Theorem 95 we know that this problem is in (Z; +,min)-NC1. The

class SAC1 is an upper bound because addition and minimum can be computed in

Boolean circuits of constant-depth.

150 Applications of Evaluation

10.3.3 Cost Register Automata

General cost register automata are not always very accessible for complexity analysis,

so we will examine the restricted cases of copyless and polynomially bounded

automata first. After that we consider one example of a CVPA model that is not

restricted in that way. This model then has an algebra that makes it accessible

again.

The following theorem relates to a result of [AM15]. In this paper it is shown that

CCRA over free monoids have functions that can be computed in NC1. On the one

hand we generalize this result from CRA to CVPA as well es from copylessness to

polynomial boundedness. On the other hand, the bound is not as good. However,

later we show that at least for CCVPA we get the same bound.

Theorem 99. Functions implemented by polynomially bounded CVPAs over the

free monoid (Γ∗; ◦) are in TC1.

Proof. 1. step. Let w ∈ WM(Σ̂) be the input word. Like in Theorem 94, we

will interpret the word as a term. First, we annotate the states of the run of the

automaton M on w. Let r ∈ (Σ × Q)|w| be such that ri = (wi, q) where q is the

state the automaton is in after w1 . . . wi−1 is read. Note that computing r is possible

in NC1. Let X be the register set. We will show how F ′A(M)(w) : (Γ∗)X → (Γ∗)X

is computed from r. The image F ′A(M)(w), similarly as defined in Section 7.3.2,

captures the register update function associated to the well matched word w. Now,

FA(M)(w) = µ(q)(F ′A(M)(w)(ν0)) where q is the state the automaton is in after w

is read and ν0 is the initial valuation. For the upper bound we need to show the

complexity of computing F ′A(M)(w).

To compute F ′A(M)(w), like in Theorem 94, we consider the well-matched word r

to be a term t over the algebra (An)n∈N where

An =
((

(Γ∗)X
)(Γ∗)X

,~, (⊗(a,qa),(b,qb))a∈Σcall,b∈Σret,qa,qb∈Q, (†e,q)q∈Q,e∈Σint∪{ε}

)
.

The domain D = ((Γ∗)X)(Γ∗)X consists of functions that map valuations to valuations.

The operation ~ is the concatenation of such functions. The operation ⊗(a,qa),(b,qb)

is associated to the case (a, qa)r
′(b, qb) for r′ ∈ (Σ × Q)∗ being well-matched. Let

γ be the symbol that is pushed onto the stack if a is read while being in state qa.

Then γ will be the symbol that is on the top of the stack when qb is reached. Then

⊗(a,qa),(b,qb) is based on ρ(qb, b, γ).

The operation †ε,q is the identity function for all q ∈ Q. For c ∈ Σcall, †c,q ∈ D is

the register update function ρint(q, a).

Automata 151

2. step. The algebra F(A) has the domains D and

D̃ ⊆
(

((Γ∗)X)(Γ∗)X
)((Γ∗)X)(Γ∗)X

.

We will show that the elements of D are formed in such a way that they can be

represented as words that contain placeholders for the registers. Notice that the size

of the words in the registers is bounded by some polynomial p. So, for n being the

input length, we choose c(D) = ((Γ ∪X)p(n))X ; we simultaneously consider it as a

|X|-dimensional vector of words. For D̃ we observe the following: A context (u, v)

evaluates to a function of D̃ that takes a function of D, which in turn corresponds to

the evaluation of a well-matched word w. The evaluation of uwv is then obtained

by inserting the value and this result is a function of D corresponding. Now, this

can be also considered differently. Let ν be the valuation that is present directly

before uwv. The word u induces register updates that depend on ν, hence, if we

think in terms of the coded domain, u induces words (Γ ∪ x)∗ for all registers. To w

corresponds also such words and we can combine them and get words for uw. In v

we have access to the register valuations present after uw as well as intermediate

results from within u; since those again depend on ν we may replace them directly.

Hence, for every register, u induces a function that can be represented by a word

(Γ ∪X ∪X ′)∗, where X ′ is a copy of X. The function corresponding to uwv can be

obtained by beginning with the one for v and replacing the X ′ variables accordingly

by the result of uw. So, for c(D̃) we choose ((Γ ∪X)p(n))X × ((Γ ∪X ∪X ′)p(n))X .

By checking all operations of F(A), we see that this is actually a valid coding.

• ~c: The coded operation ~c takes two vectors of words c(d1) and c(d2) and

replaces every occurrence x ∈ X in a word of c(d2) by c(d1)(x).

• ⊗ca,qa,b,qb : Let γ be the symbol that is pushed in state qa if a is read. Now,

c(⊗a,qa,b,qb,γd) is a determined by the following substitutions. First, x ∈ X is

substituted in all words of c(d) by ρcall(qa, a)(x); let the result be e ∈ D. Then,

in ρret(qb, b, γ), every x ∈ X is substituted by e(x) and every xmatch ∈ Xmatch

is substituted by x. The result of this last substitution is c(f(d)).

• †ce,q: The coded version †ce,q is equal to ρ(q, e) and †cε is the identity: †cε(x) is

the word consisting of the single letter x.

• �c: We already indicated how this operation works. If we are given d ∈ D and

f ∈ D̃, then f � d = f(d). Now, c(f(d)) is obtained as follows: Substitute

the letters x ∈ X in c(d) by c(f)1(x); let the result be e and then substitute

variables x′ ∈ X ′ by e(x).

• ◦c: Given f, g ∈ D̃ we define c(f ◦ g) = c(f) ◦c c(g) as the pair where the first

component is c(g)1 in which every letter x ∈ X is substituted by c(f)1(x).

152 Applications of Evaluation

The second component is obtained by substituting every letter x ∈ X in c(g)2

by c(f)1(x); let the result be e. Then by substituting every letter x′ ∈ X ′ in

c(f)2 by e(x) we get the second component.

• ~̃c: Given a function f ∈ D̃ and some d ∈ D, we have c(f~̃d) = c(f)~̃
c
c(d),

which is again a pair in c(D̃). The first component is identical to c(f)1. The

second is obtained by replacing every x ∈ X in c(d) by c(f)2(x).

• ⊗̃ca,qa,b,qb : Given f ∈ D̃, we have c(⊗a,qa,b,qbf) = ⊗ca,qa,b,qbc(f). We can associate

to a, qa, b, qb, γ a function g of D̃ such that ⊗̃a,qa,b,qb(f) = g ◦ f .

3. step. All operations of the algebra c(F(A)) are based on substitutions in words.

This problem is equivalent to computing the image of a free monoid homomorphism.

It has been analyzed in [LM98] and hence we get a bound for the operations in

c(F(A)), which is TC0. Because of polynomial boundedness the construction keeps

polynomial size. This leads to the overall complexity of TC1.

The previous theorem can be used to obtain the following:

Theorem 100. Polynomially bounded functions implemented by CVPAs over an

algebra A are in F(A)-NC1 or TC1, depending on which is the larger class.

Proof. As the first step, we compute the image of the function over the term algebra

T (σ(A)) instead of A. In particular we do this by representing the terms as words.

The previous theorem provides us with a TC1 bound for this step. After, the

resulting term is evaluated using Theorem 75 which gives us the overall bound.

An application then is the case of the algebra (Z,×,+).

Corollary 101. Polynomially bounded functions implemented by CVPAs over the

algebra (Z,×,+) are in TC1.

The previous findings are significant, however, their scope is limited to polynomial

boundedness. If terms become too large, this approach does not work any more.

If, on the other hand, the used algebra ensures that the values can be represented

efficiently, we can go beyond the previous result. For example, a term 1 + 1 + . . .+ 1

can be represented using linearly many bits, even when it is exponentially long. The

next theorem is an example that exploits this observation.

Theorem 102 ([KLL16]). Functions realized by CVPAs over (Z,+) are in GapNC1.

Automata 153

Proof. 1. step. The first step is identical to the first step of Theorem 99 with the

only difference that we consider Z instead of Γ∗. So, in this case we have

An =
((

ZX
)ZX

,~, (⊗(a,qa),(b,qb))a∈Σcall,b∈Σret,qa,qb∈Q, (†e,q)q∈Q,e∈Σint∪{ε}

)
.

2. step. The algebra F(A) has the domains D and

D̃ ⊆
(

(ZX)Z
X
)(ZX)Z

X

.

We will show that the elements of D are formed in such a way that they can be

represented as m-dimensional matrices of integers, where m = |X|. Hence, the other

domain D̃ consists of matrix-manipulating functions. These functions are of the

form x 7→ AxB + C where A and B are matrices. So, we choose c(D) = Zm×m and

c(D̃) = Zm×m × Zm×m × Zm×m. By checking all operations of F(A), we show that

this is actually a coding.

• �c: Given d ∈ D and f ∈ D̃, then f � d = f(d). Now, c(f) is a map x 7→
AxB+C and c(d) is a matrix. Therefore, c(f)�c c(d) = c(f(d)) = Ac(d)B+C.

• ◦c: Given f, g ∈ D̃, then f is of the form x 7→ AfxBf +Cf and g is of the form

x 7→ AgxBg + Cg. Now, c(f ◦ g) = c(f) ◦c c(g) is the map x 7→ Af(AgxBg +

Cg)Bf+Cf = AfAgxBgBf+AfCgBf+Cf , so c(f◦g) = (AfAg, BgBf , AfCgBf+

Cf).

• ~c: The coded operation ~c takes two matrices and multiplies them.

• ⊗ca,qa,b,qb : This operation translates also into matrix multiplication. Let γ

be the symbol that is pushed in state qa if a is read. As by definition we

have that ⊗a,qa,b,qb,γf translates to ρcall(qa, a)} f } ρ1
ret(qb, b, γ) + ρ2

ret(qb, b, γ).

So, we define a matrix Mqa,a from ρ(qa, a) and matrices M1
qb,b,γ

and M2
qb,b,γ

from ρ1
ret(qb, b, γ) and ρ2

ret(qb, b, γ). Now, for d ∈ D, we have c(⊗a,qa,b,qb,γd) =

⊗ca,qa,b,qb,γc(d) = Mqa,ac(d)M1
qb,b,γ

+M2
qb,b,γ

.

• †ce,q: This constant operation is a matrix Me,q corresponding to ρ(q, e) and †cε
is the identity matrix.

• ~̃c: Given a function f ∈ D̃ and some d ∈ D, we have c(f~̃d) = c(f)~̃
c
c(d)

where ~̃
c

is again a multiplication: If c(f) is given as x 7→ AxB + C then

c(f)~̃
c
c(d) is x 7→ (AxB + C)c(D) = AxBc(D) + Cc(D), which is of the

desired form.

• ⊗̃ca,qa,b,qb : Given f ∈ D̃, we have c(⊗a,qa,b,qbf) = ⊗ca,qa,b,qbc(f). If c(f) is given

as x 7→ AxB+C, then ⊗ca,qa,b,qb,c(f) is x 7→Mqa,a(AxB+C)M1
qb,b,γ

+M2
qb,b,γ

=

Mqa,aAxBM
1
qb,b,γ

+Mqa,aCM
1
qb,b,γ

+M2
qb,b,γ

.

154 Applications of Evaluation

3. step. All operations of the algebra c(F(A)) are based on matrix operations

and the domains are based on matrices of fixed dimensions. Because of that and

since the matrices are of integer values, all operations of c(F(A)) are in GapNC0
Z.

This leads to the upper bound of GapNC1 for the problem in question.

Similar to the previous theorem, one can prove that the functions of CVPAs over

(N,+) are in #NC1.

In [AM15] the complexity of copyless CRAs over (Γ∗, ◦) has been determined to be

NC1. The problem of Theorem 99 generalized this by considering CVPAs instead

of CRAs and by relaxing copylessness to polynomial boundedness. Unfortunately

the complexity then rises to TC1 in our proof. What we still can do, however, is to

only focus on one generalization and determine the complexity of CCVPAs.

Theorem 103. Functions implemented by CCVPAs over the free monoid (Γ∗; ◦)
are in NC1.

Proof. By [AM15] we know that functions of CCRA over the free monoid are in

NC1. This result can be used to obtain the result for CCVPA: Based on a CCVPA

M, we define a CCRA M′. We also define a transduction τ : Σ∗ → Σ′∗ such that

F(Γ∗;◦)(M)(w) = F(Γ∗;◦)(M′)(τ(w)) for all w ∈ Σ∗. Since τ will be computable in

NC1, the result follows.

While reading a return letter a CCVPA may access register values form the matching

position, but recall that an equivalent view on the matter is to think of this as a

register value as being pushed onto the stack and later being popped off the stack

when the matching return letter is read. An important insight for the construction

is the fact that at any time during the computation, at most a constant number of

register values can be stored on the stack that end up as a part of the final output;

this constant is the number of registers. If there are more, then all but a constant

number of then could also be replaced by a constant expression, which could be

stored using the usual stack alphabet.

The main idea of τ is to make precomputations such that what is left, can be done

by a CCRA. First of all, each position having a return letter should be labeled the

stack symbol that is on the top of the stack when it is read. Secondly, we have to

resolve the storing of register values on the stack. For that we use the observation

form earlier and add registers for which instead of using the stack, the register

values get stored in these additional registers and maintained such that they can be

accessed in the matching return position. The transduction τ can label the word in

a way that M′ knows, when reading a return letter, where to find the appropriate

register value.

Now, τ can be computed in NC1 and computing the output of the CCRA is also

in NC1 which yields the overall complexity.

Circuits of Bounded Tree-Width 155

A simple consequence of the previous theorem is that computing (generalized) VPL-

homomorphisms, i.e. forest algebra homomorphisms applied on VPLs, is in NC1.

Such a homomorphism φ is determined by assigning every pair (a, b) ∈ Σcall ×Σret a

context (u, v) and assigning every c ∈ Σint a well-matched word. Then on input w,

φ(w) is computable in NC1. This is true because there exists a CCRA over the free

monoid to solve that problem.

Similarly to Theorem 100 we get the following:

Theorem 104. Functions implemented by CCVPAs over an algebra A are in

F(A)-NC1.

Corollary 105. Functions implemented by CCVPAs over the algebra (Z,×,+) are

in #NC1.

10.4 Circuits of Bounded Tree-Width

We apply the term evaluation algorithm to reprove a recent result about circuits of

bounded tree-width [JS14]. It states that Boolean circuit families of polynomial size

can be balanced to obtain logarithmically deep circuit families. We show a short

and generalized proof using term evaluation.

Whenever we speak of tree-decompositions and tree-width of a circuit we mean it

in correspondence to the graph of the circuit. The graph of a circuit satisfies some

desirable properties, e.g. it is a DAG, which has input and output gates. As a tool

we need to decompose the graphs of circuits in a way to preserve these properties

which leads to the following lemma.

Lemma 106. Given a graph G of a circuit C and a decomposition (T, τ) of G then

there exists a decomposition (T ′, τ ′) of C with width(T ′, τ ′) ∈ O(width(T, τ)) that

satisfies:

• The tree T ′ is binary.

• If u ∈ V (G) is a parent of v then let p, q ∈ V (T ′) be the bags closest to the

root satisfying u ∈ τ ′(p) and v ∈ τ ′(q). Then p is not closer to the root than q.

• For each input node v ∈ V (G) there exists a leaf l ∈ V (T ′) such that v ∈ τ ′−1(l).

• The output node of the circuit can be found in τ ′−1(r), where r is the root of

the tree.

156 Applications of Evaluation

Proof. We can assume the tree T ′ to be binary without increasing the width, because

for minimal decompositions the maximal rank of nodes is dependent on the width,

hence bounded and nodes with a rank greater than 2 can be resolved by a constant

size construction.

The second requirement can be achieved by labeling the nodes by u that are labeled

v and are closer to the root than all nodes labeled u.

The third requirement can be met by picking a node u labeled v and label the

shortest path from u to some leaf with v. The last requirement can be implemented

by labeling a path from a node labeled r to the root.

All modifications at most lead to a constant factor in the width.

Through the lemma we see that assuming the stated properties preserves the

boundedness of the tree-width. The proof idea for the following theorem is to

interpret the tree-decomposition as a term and evaluate it over a fitting algebra.

Consider a circuit Cn of n inputs over an algebra A = (D;O) and let G = (V,E)

be the graph of Cn. Let the tree-decomposition of minimal width be following the

previous lemma and assume the width to be w − 1. We define the algebra

A(Cn, w) =

(
D′; (~A,B,C)

A,B,C∈
(
V
w

), (†s)s∈S2w

)
where D′ = (D ∪ {⊥})2w, ~A,B,C is an operation D′ × D′ → D′, and †S is a constant

operation where S consists of all values of 0-ary operations of A and ⊥. Also let

A = {ag1 , . . . , agw}, B = {bh1 , . . . , bhw} and C = {ci1 , . . . , ciw}. We assume V = [|V |]
and agj < agj+1

for j ∈ [|V | − 1]. Similarly, we assume bhj < bhj+1
and cij < cij+1

.

Consider α ~A,B,C β = γ where α, β, γ ∈ D′. For a node agj ∈ A the elements αj
and αw+j correspond to the left and right parent of agj . The situation for B and

β, and respectively C and γ, is similar. The following rules define the operation

~A,B,C by specifying the result γ:

• For cil = agj , if γl 6= ⊥, then γl = αj and also if γw+l 6= ⊥ then γw+l = αw+j

• For cil = bhj , if γl 6= ⊥, then γl = βj and also if γw+l 6= ⊥ then γw+l = βw+j.

• If cil has the parents agj and bhk then γl = αj ~a αw+j and γw+l = βk ~b βw+k,

for ~a being the operation of the gate agj and ~b being the operation of the

gate bhk .

• If a position in γ is not yet defined by the previous cases, we set it to ⊥.

We only store inputs of gates. The overall output of a circuit, however, is not the

input of any gate but only the output of a certain gate. To make the actual output

Circuits of Bounded Tree-Width 157

value appear, we add a dummy gate, which receives the output value. From now on

we assume this construction to be present.

As the sets A,B and C are finite and there are only finitely many possibilities

of ways how the gates can be wired the consequence is that there is only a finite

number of operations, which is independent of the actual circuit. Hence, we write

A(w) while dropping the circuit in the notation.

Describing how to interpret the tree as a term is left. We begin with the decom-

position of width w − 1 satisfying the conditions of Lemma 106 and interpret it as

a term over the algebra A(w) where each node v is assigned the operation ~A,B,C
where C = τ(v) and B and C are the bags of the parents of v. So, every node in the

tree becomes a binary operation in the term. This is also true for the leaves in the

tree. To the left and to the right of the operations that correspond to a leaf there

must be constants present. Such a constant s is a vector that is ⊥ in all positions

but those corresponding to an input gate; here the right input value is present. This

then ends up being the operation †s.

The previous construction shows us that we can regard the tree-decomposition tree

as a term that is equivalent to the original circuit:

Lemma 107. Given a circuit Cn that has a tree-decomposition of with w − 1 that

satisfies the conditions of Lemma 106 and an input x ∈ Bn, then evalA(Cn, x) =

πi(evalA(w)(t)) where t is the term we get from the tree-decomposition as described

above and i is the position corresponding to the output gate in the result vector.

We now immediately get the following:

Theorem 108. For every family of circuits C of bounded tree-width w and poly-

nomial size over an algebra A there exists an equivalent F(A(w))-NC1 circuit

family.

Proof. First, we use the previous lemma to get a term out of the circuit. For each

input length there is one fixed term. We use the input to prepare the leaves of the

term accordingly. Then evaluating those terms is in F(A(w))-NC1. Finally, the

appropriate value of the result vector is the output.

The way we proved the previous theorem can be considered wasteful. For each

input length there is only one term to be evaluated since it originates in one circuit

for each input length, but we have the full evaluation machinery present which is

unnecessary: All the subcircuits described in the previous chapter that serve deciding

how to split the terms throughout the recursion could actually be precomputed and

replaced by these precomputed results. That way we have effectively performed a

balancing.

158 Applications of Evaluation

Thus, we may formulate the result also in the following way: Given a circuit Cn of

n inputs and tree-width w − 1 over an algebra A, there exists an equivalent circuit

Tn over F(A(w)) that is a balanced tree, i.e. evalA(Cn, x) = πi(evalA(Tn, x
′)) where

i is the position corresponding to the output gate in the result vector and x′ is the

input adapted to be fed into Tn.

The construction can be applied to Boolean circuits:

Theorem 109 ([JS14]). Languages accepted by families of Boolean circuits of

polynomial size and bounded tree-width are in NC1.

Proof. We may assume that all gates have a fan-in of at most two. Since F(A(w))

is finite, F(A(w))-NC1 ⊆ NC1 follows from Theorem 87 and 108.

10.5 Courcelle’s Theorem

Courcelle’s Theorem [Cou90] constituted a class of so-called meta theorems. It

makes a claim concerning the complexity of the word problem if a restriction in

the input set is imposed. In particular, given an MSO formula over graphs then

Courcelle’s Theorem states that it is decidable in linear time whether a graph is

a model for the formula if we only consider graphs of some bounded tree-width.

The generality of the theorem stems from the fact that many relevant problems are

expressible in MSO.

The algorithm entails to following steps. First, a tree-decomposition has to be

computed and secondly the formula has to be fitted to tree-decompositions. Checking

an MSO formula on trees is then in NC1. In [EJT10] the overall complexity was

improved to logarithmic space. In a follow-up paper [EJT12] the authors looked at

the second step more closely and analyzed the complexity under the assumption that

the tree-decomposition is already given. Besides confirming the NC1 bound in the

Boolean case they regarded as an arithmetic version: Given an MSO formula and a

free second-order variable X, how many valuations are there for X that satisfy the

formula? The upper bound they achieved is #NC1. We will re-prove this, however,

note that [EJT12] is embedded in the setting of finite model theory that is slightly

more general. To keep things simple, we restrict ourselves to ordinary graphs and

trees.

Theorem 110 ([EJT12]). For a fixed w ∈ N and an MSO formula φ with one

free second-order variable X, the problem of answering the following question is

in #NC1: Given a graph G as a tree-decomposition of width w − 1, how many

valuations ν : X → V (G) exist such that G |=ν φ?

Courcelle’s Theorem 159

Proof. 1. step. Consider the proof for Courcelle’s Theorem. Proving it takes the

following steps:

1. Compute the tree-decomposition of the input graph.

2. Compile the MSO formula into a new one that fits to tree-decompositions.

3. Check if the tree-decomposition is a model for the new MSO formula.

The first one we do not have to exercise since in our case the input already is a

decomposition. So, at the beginning we are interested in the second step. The

standard construction in [Cou90] results in the following: If φ(X) is an MSO

formula over graphs with free second-order variable X, the corresponding new

formula φ′(X1, . . . , Xw) over tree-decompositions has w free second-order variables.

There is a correspondence between subsets of V (G), i.e. valuations of X, and

valuations of X1, . . . , Xw: For each S ⊆ V (G) there exists exactly one corresponding

S ′1, . . . , S
′
w ⊆ V (T), i.e. G |= φ(S) if and only if T |= φ′(S ′1, . . . , S

′
w). Note

that valuations for S ′1, . . . , S
′
w must have a certain form, which is imposed by

the constriction of ψ′. Valuations that are not well-formed are dismissed by the

formula. By the reasoning above it follows that the number of valuations for X that

satisfy G |= φ(X) is equal to the number of valuations for X1, . . . , Xw that satisfy

T |= φ′(X1, . . . , Xw). Hence, we only have to show that we can count the number of

fulfilling valuations in the formula over the tree-decomposition.

In the following we assign formulas with free variables the semantics of accepting

V-structures. For V-structures of words we refer to [Str94]. In our case a V-structure

is a tree that is not only labeled with Σ but also with a bit telling whether a position

is in X or not; hence the alphabet then is Σ×{0, 1} or Σ×{0, 1}w if we have several

free variables respectively.

The idea then is that a formula with a free variable represents a language of

V-structures. Each input together with a valuation for the free variables translate to

one V-structure and each V-structure belongs to a tree that we get by stripping it of

the variable information. In the following we consider the language of V-structures.

Given a formula with a free variable and an input tree, we count how many V-

structures based on this tree fulfill the formula. This we will achieve using extend

algebras.

Let φ′(X1, . . . , Xw) be the MSO formula we get from φ(X) by the standard con-

struction of Courcelle. Let (H; +, 0H) be the horizontal monoid of the syntactic

extend algebra of the tree language defined by φ′(X1, . . . , Xw) interpreted over

V-structures as shown above. The algebra we will use for counting is

A = (NH ;~, (⊕a)a∈Σ, 0).

160 Applications of Evaluation

An element of the domain is a function H → N that holds the information of

how many possibilities there are to end up with some element of H, whereas the

multitude of possibilities arises through the different valuations of the free variable

that is coded into the word. So, if we interpret the input tree as a term over this

algebra, we get the number of valuations.

The operations of A are defined as follows:

• The constant operation 0: H → N is defined as

0(h) =

{
1 if h = 0H

0 else
.

• For f1, f2 ∈ NH , we let f1 ~ f2 = f with

f(h) =
∑

h1+h2=h

f1(h1)f1(h2).

• For f ∈ NH we let

⊕a(f)(h) =
∑

4a(h′)=h

f(h′),

where 4a is an extend operation of the extend algebra.

The algebra A has the same signature as the syntactic extend algebra, so we can

directly evaluate the term over A. As a result we get a map that tells us for each

element of H how many ways there are to obtain it. If we sum all values that

correspond to elements of the accepting subset of H, we have the final output.

2. step. The algebra F(A) has the domains D = NH and D̃ ⊆ (NH)N
H

. We code

c(NH) = Nn where n = |H|. Since we only use addition and multiplication the

consequence is that we can represent the elements of D̃ as functions of the form

x 7→ xA+ b where A is a matrix and b is a vector. Hence, c(D̃) = Nn×n × Nn. This

conforms with the operations of the algebra:

• The operations of A translate straight forward to the coded versions: ~c, ⊕ca
for a ∈ Σ, and 0c.

• ◦c: Given f, g ∈ D̃ with c(f) : x 7→ xA1 + b1 and c(g) : x 7→ xA2 + b2 we have

that c(f ◦g) = c(f)◦c c(g) is a map x 7→ (xA2 +b2)A1 +b1 = xA2A1 +b2A1 +b1,

so c(f) ◦c c(g) = (A2A1, b2A1 + b1).

• �c: Given a function f ∈ D̃ with c(f) : xA+ b and a vector c(d) ∈ Nn we have

c(f � d) = c(f(d)) = c(f)�c c(d) = x 7→ dA+ b.

NP-Complete Problems Parameterized by NLC-Width 161

• ~̃c: Given a function f ∈ D̃ with c(f) : xA+ b and a vector d ∈ Nn we have

that c(f~̃d) = c(f)~̃
c
c(d) is of the form x 7→ xAMd + bMd where Md is a

matrix where position (i, j) has value
∑

hi=hjh
dh where hi, hj ∈ H are the

elements corresponding to vector positions i and j and dh is the value of d

representing h.

• ⊕̃ca: Given a function f ∈ D̃ with c(f) : xA+ b we have that c(⊕af) = ⊕cac(f)

is the map x 7→ xAMa + bMa where Ma is a matrix where position (i, j) is

1 if ⊕a(hi) = hj where hi, hj ∈ H are the elements corresponding to vector

positions i and j. In all other positions Ma is 0.

3. step. All operations are performed on matrices and vectors of a fixed size

with natural values. Therefore, we can implement them in #NC0
N, which yields the

overall complexity of #NC1.

Since #NC1 is a subset of logarithmic space, a consequence is that MSO-counting

problems on bounded tree-width graphs are also in logarithmic space.

10.6 NP-Complete Problems Parameterized by

NLC-Width

In this section we look at two examples of Karp’s classical 21 NP-complete problems

[Kar72]:

• Finding maximal cuts in graphs

• Finding Hamiltonian circuits in graphs

Of course, since those problems are NP-complete we can hardly hope for finding

a parallel algorithm in general. However, by limiting to certain inputs, we can do

so indeed. We will focus on graphs of bounded NLC-width as a limitation. This is

equivalent to bounded clique-width and a generalization of bounded tree-width.

We will generalize the problems in that way that we count how many solutions

there are, i.e. how many maximal cuts or how many Hamiltonian circuits a graph

has.

We presume that the inputs are already decomposed graphs. The best known

upper bound for finding a decomposition in the case of bounded width is P [OS06].

Since we show lower complexity for solving the problems on the decompositions,

actually finding the decompositions is the computational bottle neck. If the inputs

162 Applications of Evaluation

get further restricted to bounded tree-width, then this is not the case any more

since a tree-decomposition can be found in logarithmic space [EJT10].

Both problems are very similar to prove and the proof idea originates in [Wan94].

There, a P bound for both is shown, which we improve to SAC1. In the counting

case we get #SAC1. For the problem of counting Hamiltonian cycles, this was

already discovered recently [BDG15].

Formally, the two problems are defined as follows:

Definition 111 (Maximal cuts in decomposed graphs). The input is an NLC-

decomposition of an undirected graph G = (V ;E) of width k. Now, let V1 ∪ V2 be

a partition of V , which we call a cut and let |{{e1, e2} ∈ E | e1 ∈ V1 ∧ e2 ∈ V2}|
the value of the cut. The output is the value of a maximal cut and in the counting

version also the number of those maximal cuts.

Definition 112 (Hamiltonian cycles in decomposed graphs). The input is an NLC-

decomposition of an undirected graph G = (V ;E) of width k. The output is one bit

indicating whether G has a Hamiltonian cycle. In the counting version the output is

the number of Hamiltonian cycles in G.

The proof idea in both cases is the same. The input is a decomposition, so it can

be considered to be a term that evaluates to the original graph. What we do now

is that we evaluate this term over a different algebra that is designed to capture

either cuts or cycles. Evaluating this algebra then solves the problem. This key idea

comes from [Wan94] which implements it for the Boolean case. Our contribution

lies in showing that this term can be evaluated in parallel, even for the counting

case, following the template we presented.

Recall that the definition of NLC-decomposition consisted of three rules. These

rules become the three operations of an algebra for building the graph of with k:(
D; (⊗l)l : [k]→[k], (~S)S⊆[k]×[k], (†i)i∈[k]

)
Here, let D be the set of all k-colored graphs, †i is a 0-ary operation, which is a

graph with a single node colored i, ⊗l : D → D recolors the graph according to l,

and ~S : D × D → D connects two graphs via S. In the following we will alter D
and change the semantic of the operations accordingly.

The notion of a singleton property of functions will be a useful tool in the following

proofs. First, consider the Boolean case, and thus functions that map sets to sets,

so f : 2X → 2X . We say that f has singleton property if f(X) =
⋃
x∈X f({x}). Note

that the set of functions 2X → 2X has a larger cardinality than the set of functions

that have singleton property. To store such a function, we only need to remember

f({x}) for all x ∈ X .

NP-Complete Problems Parameterized by NLC-Width 163

The singleton property can be generalized. Consider the set of functions of the

form NX → NX . Now, singleton property means that for φ : X → N we have

f(φ) =
∑
x∈X

φ(x)f(χ{x}).

Here, the sum and product is pointwise over the function. If a function satisfies this

property, it is already defined through its image of the singletons f(χ{x}).

It would be possible to generalize the singleton property even further to other rings

than (N; +,×).

Theorem 113. Counting the number of maximal cuts in graphs of bounded NLC-

width is in #SAC1.

Proof. 1. step. We are given the NLC-decomposition of a graph G, which is a

term over the algebra defined above. We look for maximal cuts, which are partitions

of V (G) into V1 and V2 as defined above.

We now define a different algebra that, if the term is evaluated over, yields the

desired value. Here, let X = [n]2k+1. In fact, we define a family of algebras (An)n∈N
with

An =
(
NX ; (⊗l)l : [k]→[k], (~S)S⊆[k]×[k], (†i)i∈[k]

)
,

where n is the number of nodes of G and k is the width. If we considered the

Boolean version of the problem, we would choose P (X) for the domain and then an

element is a set of vectors of the form (a1, . . . , ak, b1, . . . , bk, c). In NX however, we

store how ofter a tuple is presented instead.

The intuition behind the vectors this is that they correspond to all cuts V1 ∪ V2

such that each ai is the number of elements of V1 are labeled i, each bi the number

of elements of V2 that are labeled i, and c is the value of the cut .

We define the operations based on [Wan94] but incorporate the counting:

• An operation †i for i ∈ [k] is 0-ary and the characteristic function of the set

that contains one tuple corresponding to the graph having one node that is

colored i.

• For each total map l : [k]→ [k] we define the unary operation ⊗′l : [n]2k+1 →
[n]2k+1 with (a1, . . . , ak, b1, . . . , bk, c) 7→ (a′1, . . . , a

′
k, b
′
1, . . . , b

′
k, c) where a′i =∑

j∈l−1(i) aj and b′i =
∑

j∈l−1(i) bj . Then ⊗l : NX → NX is derived from ⊗′l. Let

f ∈ NX . Then for u ∈ [n]2k+1:

⊗l(f)(u) =
∑

u=⊗′l(v)

f(v).

164 Applications of Evaluation

• For each S ⊆ [k] × [k] we define the operation ~′S : [n]2k+1 × [n]2k+1 →
[n]2k+1. Let x = (a′1, . . . a

′
k, b
′
1, . . . b

′
k, c), y = (a′′1, . . . a

′′
k, b
′′
1, . . . b

′′
k, c) and x ~′S

y = (a1, . . . ak, b1, . . . bk, c). Then ai = a′i + a′′i and bi = b′i + b′′i . Further,

c = c′ + c′′ +
∑

(i,j∈S)

(
a′i · b′′j + b′i · a′′j

)
. Now, for u ∈ [n]2k+1:

(f ~S g)(u) =
∑

v1~′Sv2=u

f(v1)g(v2).

The evaluation of this term yields the desired value.

2. step. We first give a coding for An and then extend it to F(An). Consider the

domain D of A: It consists of functions of the form X → N. We can store them

explicitly as a table of natural numbers:

c(D) = Nn2k+1

Now, in F(An) we also have the subdomain D̃, which contains functions of the

form

NX → NX ,

or if we apply the previous coding this is equivalent to

Nn2k+1 → Nn2k+1

.

This set is uncountable, and thus too big to be coded, however, D̃ does not contain

all functions of that form, which enables us to code them. At this point the singleton

property comes into play. We will show that the functions possess it, and so it is

possible to store them by a finite set of natural numbers. To do so, we perform

a induction over the operations of the algebra, where the identity function is the

base case. It is
∑

x∈X d(x)id(χ{x}) =
∑

x∈X d(x)χ{x} = id(d), so id has singleton

property.

Now let f, g : NX → NX be some function with singleton property and d ∈ NX .

Then f ◦ g has it also:

(f ◦ g)(d) = f(g(d)) =f(
∑
x∈X

g(d(x)χ{x}))

=
∑
x∈X

f(g(d(x)χ{x}))

=
∑
x∈X

d(x)f(g(χ{x}))

=
∑
x∈X

d(x)(f ◦ g)(χ{x}).

NP-Complete Problems Parameterized by NLC-Width 165

Next we see that ⊗̃l(f) also has singleton property:

(⊗̃lf)(d) = ⊗lf(d) =⊗l
∑
x∈X

f(d(x)χ{x})

=
∑
x∈X

⊗lf(d(x)χ{x})

=
∑
x∈X

d(x)⊗l f(χ{x})

Let in addition e ∈ NX , then f~̃Se has also singleton property: Consider, how

(f~̃Se)(d) is computed:

(f~̃Se)(d) = f(d)~S e =
∑
x∈X

d(x)f(χ{x})~S e

The result is a function X → N. The function f(χ{x}) is also. From now on f(χ{x})

will be denoted as fx. So, we went from f : (X → N) → (X → N) to fx : X → N.

One can define an orthogonal function fx : X → N. By interpreting fx as a vector

and writing all fx one below another for all x ∈ X , we get a |X | × |X |-matrix. The

functions fx are the rows and fx we define to be the columns. By fxy we address

the entry of the matrix that is at the intersection of fx and fy. Observe that

(f~̃Se)(d)(a) for a ∈ X is:

(f~̃Se)(d)(u) =
∑

v1~′v2=u

∑
x∈X

d(x)f v1(x)e(v2)

Now, (f~̃Se) has again singleton property since we obtain the following func-

tions: (f~̃Se)x =
∑

v1~′v2=x f
v1e(v2) from which we can derive (f~̃Se)x, which is

(f~̃Se)(χ{x}). Hence, we get

(f~̃Se)(d) =
∑
x∈X

d(x)(f~̃Se)(χ{x})

Since in all cases the singleton property holds, we see that we only need to store

f(χ{x}) for all x to fully capture the function f . This can be stored as a matrix

N|X |,|X |. In particular:

166 Applications of Evaluation

c :
((

NX
)NX)→ N|X |,|X |

Following this, the coding for NX is then just a vector, which can be regarded as

a word over N. The coded operations also follow directly from the considerations

above.

3. step.

Now, the complexity of the operations is c(F(An)) is being analyzed:

• ⊗cl . This operation takes one value d, which is a function X → N coded as a

word of natural numbers. Then by looking at the definition of ⊗l we see that

each position of ⊗cl (d) can be computed by a single unbounded addition gate.

• ~cS. The implementation of this operation is similar to the previous one. Here,

we get two layers where the first consists of binary multiplication gates and

the second is a single unbounded addition gate.

• ⊗̃cl . We saw that the elements of D̃ have singleton property and that (⊗̃lf)(d) =

⊗lf(d) =
∑

x∈X d(x) ⊗l f(χ{x}). Thus, we use the construction for ⊗cl . We

then get a layer of ⊗cl circuits followed by a layer of binary multiplication gates

and finally a single addition gate.

• ~̃cS. Recall that an element of c(D̃) is a matrix. We showed (f~̃Se)(d)(u) =∑
v1~′v2=u

∑
x∈D d(x)f v1(x)e(v2), which basically tells us how to compute a

specific entry of the matrix that is identified by d and u. Again we see bounded

multiplication gates and unbounded summation gates are needed.

• ◦c. We are given two functions f and g that are coded as matrices. The

constructions above lead to the following way to compute the matrix for

the composition: Let
∑

x∈X g
x be the sum of the x-column in g. Then

(f ◦c g)xy = fxy
∑

x∈X g
x. Once more we use bounded multiplication gates and

unbounded summation gates.

• �c. Here, we are given a matrix and a vector. The result vector is the is the

sum over a pointwise vector multiplication: (f �c d)(x) =
∑

y∈X d(y)fxy .

All operations are in #SAC0
N, so the original problem is in #SAC1.

If in the proof above N is replaced by B, summation by disjunction, and product

by conjunction, we see that this corresponds to the Boolean version of the problem

and the resulting circuit becomes Boolean, hence:

NP-Complete Problems Parameterized by NLC-Width 167

Theorem 114. The maximal cut problem for graphs of bounded NLC-width is in

SAC1.

We continue with the result for counting Hamiltonian circuits whose proof is close

to the previous one.

Theorem 115 ([BDG15]). Counting the number of Hamiltonian circuits in graphs

of bounded NLC-width is in #SAC1.

Proof. 1. step. As in the case of the maximum cut problem, we are given a

tree-decomposition as a term and we assign an algebra to it such that the evaluation

yields the desired result. We use a similar algebra as for counting maximal cuts,

but this time we choose X = [n]k(k+1)/2 and adjust the operations accordingly. This

algebra is rooted in the construction for the Boolean version in [Wan94] where P(X)

is used as a domain. Instead of holding the information whether a tuple is in a set,

we count how often is has been occurring, so our domain is NX . Now, an element of

X corresponds to a subset of the edges covering the vertices. We can understand

this as a path coverage of V . There are many paths and each vertex is present in

exactly one. The information the tuple actually holds is how many such paths go

between two colors. See [Wan94] for further details. The domain we chose counts

how many such path coverings result in a certain tuple.

The operations of the algebra are defined as follows.

• The 0-ary operation †i is the characteristic function of the set containing the

single tuple corresponding to a graph with a single node colored i.

• For each total map l : [k]→ [k] there is a unary operation

⊗l : NX → NX

that is defined using a unary operation ⊗′ : X → X , which is defined next.

Here, we use the notation v(i,j) for v ∈ X and i, j ∈ [k], which addresses a

position in the vector v that is given by a bijection between the set of positions

in the vector k(k + 1)/2 and
(

[k]
2

)
. He have:

⊗′l(v)(i,j) =
∑
i=l(i′)

∑
j=l(j′)

v(i′,j′)

as defined in [Wan94]. Now,

⊗l(f)(u) =
∑

u=⊗′l(v)

f(v).

168 Applications of Evaluation

• For each S ⊆ [k]→ [k] there is an operation

~S : NX × NX → NX .

This operation is a counting version of the corresponding operation described

in [Wan94]. There, it is defined via a procedure, which generates new elements

based on present elements. In our case we additionally have to keep track of

the count of paths generating a certain element. Given two vectors v1, v2 ∈ X ,

a new set of vectors is generated. This is done by defining tuples (A,B,C),

the initial tuple being (v1, 0, v2). See [Wan94] for the detailed procedure.

We want to define (f ~S g)(v) for all v ∈ X and define a procedure, which

yields the value. First, assume the values (f ~S g)(v) to be 0 for all v. Then

for all v1, v2 ∈ X do the steps of [Wan94] for generating a new set of tuples.

In each step one new edge is drawn. That way, we get a DAG that originates

in (v1, 0, v2). Actually we are only interested in a spanning tree, which we

get by imposing an order of the elements of S we process. We assign each

triple (A,B,C) a number #(A,B,C). The initial triple (v1, 0, v2) is assigned

f(v1)g(v2). Suppose that we now get from triple (A,B,C) to (A′, B′, C ′) in one

step. Then #(A′, B′, C ′) = p ·#(A,B,C) where p is the number of possibilities

to draw an edge; p is fixed by (A,B,C). Each triple can be made into an

element v ∈ X as seen in [Wan94]. Let #(v, v1, v2) = #(A,B,C) where v1

and v2 are the origins of (A,B,C) and v is the vector we get from (A,B,C).

Now,

(f ~S g)(v) =
∑

v1,v2∈X

#(v, v1, v2).

In this sum, every summand has the factor f(v1)g(v2) since we can combine

every path covering in f , which leads to the tuple v1 with all of g, which leads

to v2. Then this is multiplied with the number of ways we can draw edges

between the two graphs.

For obtaining the Hamilton paths we have to give the last ~S operation (the root

of the term) a special treatment. We generate the triples and then, as described

in [Wan94], if the situation occurs that a triple (A,B,C) has A and C, which only

consist of 0 and B has exactly one value that is non-zero then, if S indicates that

we can close the loop, we have found a path. That means this would then result

in a triple all zero. Now, in our counting setting we sum over all those zero-triples

generated in that way, and so we get the final result.

2. step. This step is identical to the second step of the previous proof and hence

we use the same coding with the only difference that X is different. This, however,

does not impact the reasoning.

NP-Complete Problems Parameterized by NLC-Width 169

3. step. For this step we again refer to the previous proof. The complexity

analysis of ◦c and �c is the same. The same holds for ⊗c and hence ⊗̃c. Assuming

we have ~cS, ~̃
c

S follows also. Hence, we are left with ~cS.

We want to compute c(f)~cS c(g) = c(f ~S g) for f, g : [nk(k+1)/2]→ N. This is a

sequence of naturals and the position corresponding to v is

(f ~S g)(v) =
∑

v1,v2∈X

#(v, v1, v2).

So, given v, v1, v2 we basically have to compute #(v, v1, v2). Keep in mind how

we defined #(v, v1, v2) by constructing a tree of triples (A,B,C). This tree has at

most depth nk2. By adjusting the construction we can get a tree of depth k2 by

choosing the number edges for a certain pair of S in parallel. Instead of investing

one step in depth for every singe edge. All edges that correspond to one pair of S are

inserted at once. The corresponding number #(A,B,C) consists of factors f(v1),

g(v2) and ones we get for each edge in the tree. These factors can be hard-coded.

By then picking the right number we obtain #(v, v1, v2) and can do the summation∑
v1,v2∈X #(v, v1, v2). As the depth of the trees we construct is constant in n we

need only bounded fan-in multiplication gates. Further, we need an unbounded

addition gate. This gives us a #SAC0
N bound for ~cS.

All operations are in the bounds of #SAC0
N, so the original problem is in #SAC1.

For the same reasons we derived Theorem 114 from Theorem 113, we may formulate

a Boolean version based on the previous proof:

Theorem 116 ([Wan94]). The Hamiltonian circuit problem for graphs of bounded

NLC-width is in SAC1.

Up until now, we considered clique-width. This kind of width is computationally

harder than tree-width, i.e. finding a decomposition for clique-width has an upper

bound of polynomial time whereas in the case of tree-width we have logarithmic

space. Since the latter is a subset of SAC1, if we only regard bounded tree-width,

we may formulate the theorems of this sections is a way that does not require an

already decomposed graph as input.

170 Applications of Evaluation

10.7 Conclusion

Summary

We began by showing a structured approach for using the evaluation algorithm in

order to obtain upper bounds. This template then is applied to a wide range of

problems:

• The Boolean formula value problem and evaluating arithmetic formulas, as

well as evaluating over finite or distributive algebras in general.

• Problems for Boolean and quantitative automata.

• The complexity of languages recognized by circuits of polynomial size and

bounded tree-width.

• Courcelle’s Theorem.

• NP-complete problems under bounded clique-width.

This list of applications shows how widely applicable the template is. Also, all the

proofs are indeed very uniform.

Contributions

The template we formulated to obtain simple uniform proofs for upper bounds is

new. We already published an earlier version of it in [KLL17a, KLL17b], however,

the present version is been simplified considerably.

The list of applications intended to show the utility of the template consists of new

proofs of known results. Most of them we already included in [KLL17a, KLL17b].

The presentation in this thesis, however, is improved.

Besides, we not only re-proved known results but also enhanced existing ones.

Those instances are the following:

• Counting accepting runs in non-deterministic VPA when the automaton is

part of the input, i.e. the counting version of the uniform membership problem

for VPAs, is in #SAC1.

• Functions recognized by weighted VPA over a ring R are in R-NC1.

• Functions implemented by polynomially bounded CVPAs over the free monoid

are in TC1.

Conclusion 171

• Polynomially bounded functions of CVPAs over an algebra A are in

F(A)-NC1 ∪ TC1. In the case of A = (Z,×,+) we get an upper bound of

TC1.

• Functions of CVPAs over (Z,+) are in GapNC1.

• Functions of CCVPAs over the free monoid are in NC1 and for an algebra A
in general we get F(A)-NC1.

• Functions of CCVPA over (Z,×,+) are in #NC1.

• Circuit families of tree-width w over an arbitrary algebra A recognize functions

in F(A(w))-NC1.

• Counting the number of maximal cuts in graphs of bounded NLC-width is in

#SAC1.

In summary, the significance of the contributions becomes clear if one compares the

size of this chapter with the size of material needed to prove those results initially.

Sources and Related Work

The complexity of evaluating Boolean and arithmetic terms was analyzed by Buss

et al. in [Bus87, Bus93, BCGR92]. The complexity of VPAs was determined by

Dymond in [Dym88]. Word problems for tree automata were considered by Lohrey in

[Loh01]. He also looked at the uniform membership problem in which the automaton

is part of the input. We picked up the idea to examine this problem and applied it to

other automaton models as well. The complexity of counting accepting computations

in non-deterministic VPAs was analyzed in [KLM12] and the complexity of CRA

in [AM15, AKM17]. We introduced CVPAs in [KLL16]. This paper also contained

a first complexity analysis, however without having the framework, which was an

obstacle. The result about bounded tree-width circuits can be found in [JS14].

Courcelle’s Theorem [Cou90] initially only stated a linear time bound. In [EJT10]

and [EJT12] Elberfeld et al. improved on this. The NP problems we looked at

under bounded clique-width were initially placed in P by Wanke in [Wan94] and

in [BDG15] Balaji et al. improved the result for Hamiltonian cycles; they also

considered the counting variant of the problem.

Further Research

The main goal is clear: There should be many more cases where our framework

applies. As a rule of thumb, all problems that are in some way tree-structured

172 Applications of Evaluation

are worth to be looked at from the perspective of term evaluation. One big class

of such problems are graph problems under some bounded width assumption. If

such a problem is in P, there is a good chance that it can be placed in NC by our

approach.

All applications we considered led to an upper bound in terms of logarithmic depth.

It would be interesting to find an example for a problem that results in proper

polylogarithmic depth, e.g. NC2. Even an artificial example would be interesting.

Or, conversely, is there a deeper reason for the lack of such examples?

With regard to our list of applications we did not exhaust every single possibility;

there are still some cases left to prove that should be in reach:

• We have not examined the uniform membership problem for weighted and

cost register VPAs. Although routine, we did not fix the obvious variants of

our results for tree and nested word automata. Both could be addressed.

• It would be very interesting to see whether it is possible to enhance the TC1

bound for polynomially bounded CVPAs over free monoids. This in turn

would improve the bound for polynomially bounded CVPAs in general.

• For the circuit results we only looked at the Boolean case. In [JS14] also

arithmetic circuits were considered. In this case it was needed to force a

bound on the degree of represented polynomial. It should be possible to also

reprove this result. Further, this should apply to all algebras, hence one could

try to prove the upper bound F(A)-NC1 for those cases. Also, the question

remains whether the result can be lifted from bounded tree-width to bounded

clique-width.

• We reproved a simplified counting variant of [EJT12]. One could exercise this

in greater depth. Also, a variant where the MSO formula is part of the input

could be possible. A lift to bounded clique-width is of interest also.

Chapter 11

Evaluation in Low Complexity

In the beginning of the second part of this work we derived upper bounds for

evaluating terms over arbitrary algebras and indicated the relevance of the evaluation

problem as it is in the heart of many seemingly unrelated problems.

Now, besides upper bounds, it is interesting to ask a somewhat reversed question:

Given a complexity bound, how much can we still do within this bound with respect

to a problem? A prime example are the regular languages, which are in NC1. Then

we can ask which regular languages still belong to AC0. This question has a nice

algebraic answer on which we will build upon later. Another example we have

already seen as an application of evaluation: Finding Hamiltonian cycles in graphs

is NP-hard, yet in SAC1 it is still possible to find cycles in graphs of bounded

clique-width.

Now, we apply this to the evaluation problem itself and ask, how much evaluation

is still possible in certain low complexity bounds. The final part of this work reflects

ongoing work and, therefore, cannot give final answers. Also, we mostly focus on

the instance of AC0 as a first example for a low complexity bound.

11.1 From Evaluation to Visibly Pushdown Lan-

guages - The Scenario of Low Complexity

Evaluation

Theorem 87 states that evaluating terms over finite algebras is in NC1. This fact

serves as a starting point. Below NC1 we have TC0 and AC0. The TC0 ?
= NC1

174 Evaluation in Low Complexity

question is very interesting and involved. We focus on AC0 for now, which should be

an easier first target since AC0 is separated from NC1 [FSS84, H̊as87]. Further, we

also restrict ourselves to finite algebras for now. For infinite algebras things become

a bit fuzzy: For example, if we consider the integers with plus and multiplication,

we would assume that the resulting circuit is arithmetic, but [AAD00] states that

#AC0 is almost the same as TC0. So, the setting of infinite algebras quickly shifts

to a TC0 vs. NC1 question.

When looking at a complexity that low, the input format becomes an issue. Within

NC1, trees that are coded as words can be parsed easily. For example, the PNF

conversion was in TC0 and also the Dyck language, which codes trees in in-order

format is TC0. Below TC0 we cannot assume to actually be able to verify whether

an input represents a valid term, not to mention evaluating it.

There are infinitely many ways to represent a term as a word. Categorizing those

would be an interesting question by itself, but for now we want to keep things simple.

Evaluating terms over finite algebras can be reduced to computations of visibly

pushdown automata. In fact, visibly pushdown languages are even a generalization

since they represent unranked trees whereas evaluating terms over finite algebras

is equivalent to deciding ranked tree languages. The appeal of considering visibly

pushdown languages is the similarity to regular languages. Time and time again

it shows that both behave similarly. It is decidable whether a regular language is

in AC0 [BCST92]. We want to show how to lift this result to VPLs and thereby

harvest the rich toolkit developed for regular word languages.

To attack this problem, first note that AC0 equals first-order logic with arbitrary

numerical predicates. So, we will present most arguments in terms of logic as

this offers more structure than a monolithic circuit. This also enables us to draw

connections to related problems. After, we approximate the problem by considering

special cases of VPLs. In fact, for visibly counter languages we have a complete

picture with respect to complexity modulo open complexity questions.

Before we scrutinize the problem of deciding whether a VPL is first-order definable,

let us revisit the case for regular languages. Given a regular language L, we can use

its syntactic monoid Synt(L) to find out whether L is in FO[<]: L is in FO[<] if and

only if Synt(L) is aperiodic. However, there are regular languages in FO[arb] \FO[<]

that can also be captured. The language L is in FO[arb] if and only if its syntactic

homomorphism ηL is quasiaperiodic. This again translates to modulo predicates, so

FO[<,≡] = Reg ∩ FO[arb].

In the case of VPL ∩ FO[arb] we have similar goals. We seek an algebraic charac-

terization that is decidable. Also, we want to know a minimal set of predicates P ,

such that VPL ∩ FO[arb] ⊆ FO[P]. We conjecture that in this case FO[P] is FO[+].

The underlying reasons will become comprehensible later.

First-Order Definability of Visibly Pushdown Languages 175

Actually, investigating the VPLs in FO[arb] is just one perspective on first-order

logic. We will, for example, also look into the case FO[arb,] where in addition to

arbitrary numerical predicates also a matching predicate is present. However, this

is precisely first-order logic over nested words. By considering this case, we move

closer back to the tree case in which the tree structure is directly accessible.

If we ask for VPLs in FO[arb], a major problem is to define a matching predicate

within the logic. In FO[arb,] the matching predicate is built in, however, now it is

interesting to not consider the logic together with all arbitrary predicates. Therefore,

we will also consider FO[Reg,] and FO[<,].

11.2 First-Order Definability of Visibly Push-

down Languages

This section deals with the question which visibly pushdown languages are in AC0

and how to decide the membership. The key idea behind the proof scheme is to

split the VPL word problem into two parts. First, the input tree has to be parsed,

as it is only present implicitly via call and return letters. Secondly, the tree has to

be evaluated using the parsed tree.

11.2.1 Parsing the Tree Structure

Let us begin with a few examples. The language L = {anbn | n ∈ N} is in FO[arb],

which can be shown by a formula that figures out the middle position and then

checks that the first half consists of a’s and the second one of b’s. This formula

makes use of the + predicate. The language L∗ is also in FO[+]. Here, one can find a

formula that quantifies over all maximal factors of the form a∗b∗ that are a member

of L. The language L∗ is a way of extending L in a purely horizontal way, but we

can also extend it vertically and introduce branching. Consider a series of languages

Li for i ∈ N with L0 = {ε} and Li+1 = {anL1b
namLib

m | n,m ∈ N}. Now, Li is in

FO[+] for all i ∈ N but LN =
⋃
i∈N Li is not. The reason is that LN has a kind of

arbitrary nesting similar to the Dyck language. We will try to capture this property.

We propose two properties and conjecture that one of them is the right one.

Recall that we call a pair (u, v) a context if uv is well-matched. Also, recall that

∆(w) is the height of a well-matched word and that a word induces a height profile.

Definition 117 (Simple height behavior (SHB)). A VPL L has simple height

behavior if for all m ∈ VL that satisfy the two conditions

• The set {∆(u) | (u, v) ∈ η−1
L (m)} is infinite.

176 Evaluation in Low Complexity

• There exist h ∈ HL and m′ ∈ VL such that m′m(h) ∈ ηL(L).

it holds that for all contexts (u, v), (w, x) ∈ η−1
L (m) the following two conditions hold:

• |u| = |w| ⇔ ∆(u) = ∆(w)

• |v| = |x| ⇔ ∆(v) = ∆(x)

The condition saying that the set {∆(u) | (u, v) ∈ η−1
L (m)} has to be infinite,

filters out elements that rather can be regarded as being finite outliers that are not

vertically loopable and the condition m′m(h) ∈ ηL(L) ensures m to be productive.

This definition basically assigns each context an up and a down slope. So, if a VPL

L has SHB there exist unique rationals ∆↑m and ∆↓m such that for (u, v) ∈ η−1
L (m)

we unambiguously have ∆(u)
|u| = ∆↑m and ∆(v)

|v| = ∆↓m. The slope only holds for words

that correspond to a context. If we translate that back to automata, we loop trough

a state on the way up and simultaneously on the way down trough another state.

Then all words that correspond to a context that go through these up and down

loops have to have the same slope, but this now raises the question of what can

happen while being inside the loop. How much may we diverge from the actual

slope? So, if (u, v) is a context that goes through such a loop, we may ask, what are

the slopes of contexts like (u′, v′) where u′ is a prefix of u and v′ a suffix of v? It

turns out that they, of course, do not have to have the exact same slope, but they

may not diverge too far. This is captured by the following property, which by itself

is actually already equivalent to SHB.

Definition 118 (Bounded corridor). A VPL L has a bounded corridor if for all

m ∈ VL that satisfy the two conditions

• The set {∆(u) | (u, v) ∈ η−1
L (m)} is infinite.

• There exist h ∈ HL and m′ ∈ VL for which m′m(h) ∈ ηL(L).

it holds that for all contexts (u, v) ∈ η−1
L (m) the following two conditions are met:

• ∆(u′)− α ≤ ∆(u)
|u| · |u

′| ≤ ∆(u′) + α for all prefixes u′ of u.

• ∆(v′)− α ≤ ∆(v)
|v| · |v

′| ≤ ∆(v′) + α for all suffixes v′ if u.

Figure 11.1 indicates both the SHB property and the bounded corridor property.

The definition uses the slope ∆(u)
|u| . Then ∆(u)

|u| · |u
′| is the height of the prefix u′ that

it should have if it stayed exactly on the slope, but we allow a constant divergence

of α height steps up or down.

First-Order Definability of Visibly Pushdown Languages 177

m

m
+α

−α

u
u′

∆(u′)

∆↑m · |u′|

Figure 11.1: Definition 117 and 118 represent two equivalent properties that are
displayed here. Both definitions share the monoid element m. The figure shows the
left part of a context (u, v) ∈ η−1

L (m) that qualifies for the restrictions imposed by
the definitions. The rational number ∆↑m is the slope that can be extracted from
the SHB definition.

Lemma 119. The SHB property and the bounded corridor property are equivalent.

Proof. Let L be some VPL. If L does not have the bounded corridor property,

then for every α ∈ N we find (u, v) ∈ η−1
L (m) for some m ∈ VL following the

conditions imposed in Definition 118 such that there exists a prefix u′ of u for which

∆(u′) 6∈
[

∆(u)
|u| · |u

′| − α, ∆(u)
|u| · |u

′|+ α
]

or a suffix v′ of v with a similar property. We

exercise the proof only for the u case. Now, for every n ∈ N there exists α such

that u has a factor y that is well-matched and has a height profile that exceeds

n; let u = xyz. By using the context-free pumping lemma we see that there is a

partition of y into y = y1y2y3y4y5 for which y ∼L y1y
i
2y3y

i
4y5 for all i ∈ N. Now, we

have u ∼L xy1y
i
2y3y

i
4y5z where ∆(u) = ∆(xy1y

i
2y3y

i
4y5z) and see that both words

have a different length, so SHB is violated.

On the other hand, if L does not have SHB, we can show that L also does not

have the bounded corridor property. So, consider (u1, v1), (u2, v2) ∈ η−1
L (m) for some

m ∈ VL following the conditions imposed in Definition 118 such that u1 = u2 but

∆(u1) < ∆(u2). If such an m exists, we also find such an element that is idempotent.

We just presume now m to be idempotent. For each n ∈ N the contexts (u1u2)n and

(v2v1)n are in η−1
L (m). No matter how a corridor α ∈ N is chosen, we find an n ∈ N

such that un1u
n
2 does not stay within the α-corridor; we choose the prefix u1 to see

that. Note that
∆(un1u

n
2)

|un1un2 |
= ∆(u1u2)

|u1u2| and ∆(un1) = n∆(u1). So, we have to show that

∆(un1) 6∈
[

∆(u1u2)

|u1u2|
· |un1 | − α,

∆(u1u2)

|u1u2|
· |un1 |+ α

]
.

178 Evaluation in Low Complexity

In particular, we want to show that we can choose n such that we fall below the

lower border of the interval because we assumed ∆(u1) < ∆(u2). Thus, we have:

∆(un1) <
∆(u1u2)

|u1u2|
· |un1 | − α

⇔ α <n

(
∆(u1u2)

2
−∆(u1)

)
So, we find an n ∈ N if ∆(u1u2)

2
> ∆(u1), which is true.

Besides SHB there is another less restrictive property one can formulate that

captures good height behavior:

Definition 120 (Weak SHB property (WSHB)). A VPL L has weak SHB property if

there exists no word αzβ ∈ L with z = uvwxy such that v, x and z are well-matched,

not in Σ∗int, and z ∼L v ∼L x.

The name WSHB is justified by the following lemma:

Lemma 121. Given a VPL L, then if L has the SHB property, it also has the

WSHB property.

Proof. Suppose that L does not have WSHB. Then there exists a well-matched word

z = uvwxy with z ∼L v ∼L x. Observe that there exists m ∈ VL for which both

(uvw, y) and (uzvw, y) are in η−1
L (m). This means that ∆(uvw) = ∆(uzvw) but

|uvw| 6= |uzvw|, which violates the SHB property.

There is an equivalent characterization of WSHB, which is given in terms of a

graph property. Let F = (V ;E) be some forest and c : V → [k] be a coloring of F .

We call c a branch-free coloring of F if for all nodes x, y, z having the same color it

holds that if x is an ancestor of y and z then either y is an ancestor of z or z is an

ancestor of y.

The branch-free coloring number of a forest F is the smallest number k such that

there exists a branch-free coloring c : V → [k] for F . For a set of forests, the

branch-free coloring number is the maximum branch-free coloring number of its

forests. If it does not exist, we say it is bounded. The branch-free coloring number

of a VPL L is the branch-free coloring number of forest(L).

Lemma 122. A VPL L has WSHB if and only if it has a bounded branch-free

coloring number.

Proof. For each w ∈ L we consider forest(w). We assign the coloring

c : V (forest(w))→ [|HL|] and assume an isomorphism between HL and [|HL|]. We

First-Order Definability of Visibly Pushdown Languages 179

assign each node v in forest(w) the color ηL(t) where t is the maximal subtree that

has v as its root. If the forest has WSHB, this coloring is branch-free and since HL

is finite, the coloring is bounded.

On the other hand, if WSHB does not hold, there exists a word αzβ = αuvwxβ ∈ L
such that z ∼L u ∼L x. If z needs k colors to have a branch-free coloring, then

uzwzy = uuvwxywuvwxyy needs k + 1 colors. Hence, for all k ∈ N we find a word

in L that is not colorable using k colors.

For the property of having a bounded branch-free coloring number there again

exists another equivalent property:

Lemma 123. A tree T has branch-free coloring number k if and only if the depth

of the deepest complete binary tree that is a minor of T is k.

Proof. If T has a bounded branch-free coloring number k, then, as we show first,

the deepest complete binary that we find as a minor in an element of forest(L) has

depth k. To do so, we show that the complete binary tree of depth d needs at least

d colors to be colored branch-free. Say, we begin coloring at the root and we have d

colors to choose from. The color we used for the root may be used again in at most

one of the subtrees that are rooted in the children of the root. So, at the root level,

which we index by 0, we have one node with d colors to choose from. On the next

level we have one node with d and one with d− 1 colors to choose from – otherwise

we violate the coloring. From there on this coloring scheme repeats and in level 2

we have nodes with d, d− 1, and d− 2 colors to choose from. So, in general, in level

i we have at least one node that has at most d− i colors to choose from. In order

to color the whole graph, the number of colors has to be the depth of the graph. If

we now have a bounded coloring, then the depth of the deepest binary tree has to

be bounded as well.

Conversely, if we know that the largest complete binary tree minor has depth k, one

can construct a coloring using k colors. First, we show how to color a general binary

tree that does not contain a complete binary tree of depth k+ 1. We assign the root

some of the k colors. Let d1 and d2 be the depths of largest complete binary subtrees

contained in the left and right descendant subtrees of the root. We know that at

least one of d1 and d2 have to be smaller than k, otherwise the whole tree would

have a minor of depth k + 1. We choose one of the descendants of the root, which

may use all k colors, while the other may not use the color of the root. The choice

depends on d1 and d2: The descendant for which d1, or d2 respectively, is larger may

use k colors. If d1 = d2, the choice is arbitrary. We repeat this for all nodes top to

bottom and get a coloring for the whole binary tree. Now back to T , which might

not be binary. Here, we may have nodes that have only one descendant. In this case

180 Evaluation in Low Complexity

it receives the same color as the parent. If there are more than two descendants, we

treat all of them equally, except for the one with the largest minor.

From the previous lemma we immediately get the statement for VPLs:

Lemma 124. A VPL L has bounded branch-free coloring number if and only if

there exists k ∈ N such that the depth of the deepest complete binary tree that is a

minor of a forest in forest(L) is k.

There is yet another property that we may use to capture trees that have a limited

structural complexity, which can be found in terms of the Horton-Strahler numbers

[Cho95, Str52, Str57]. The property will turn out to be equivalent to WSHB. Hor-

ton–Strahler numbers are assigned to nodes of a forest by the following rules: All

leaves are assigned the number 1. The numbers for the other nodes are defined recur-

sively. Let v be a node, v1 to vn its descendants, and h1 to hn the Horton–Strahler

numbers for v1 to vn. Let i ∈ [n] be an index for which hi is maximal. If i is unique,

then the Horton–Strahler number of v is hi. If i is not unique, this means that there

exists j 6= i such that hj = hi. In this case the Horton–Strahler number of v is

hi + 1. The number of the root then is the number that we assign to the whole tree.

In a forest we take the maximum of all roots. It is known that this number then is

the same as the depth of the deepest complete binary tree we can find as a minor

[Neb00].

Ultimately, we want to define a matching predicate in the case we have SHB. We

know that then we also have WSHB, which is beneficial in the construction of the

predicate, but we need yet another equivalent property. To that end we define

cancel : WM(Σ̂)→WM(Σ̂) such that cancel(w) is the word one gets as result if all

maximal linear factors u of w, that is u ∈ (Σcall ∪ Σint)
∗(Σret ∪ Σint)

∗ ∩WM(Σ̂), are

replaced by a word c|u| where c is some internal letter.

Lemma 125. A VPL L has WSHB property if and only if it holds that

cancel|HL|(w) = Σ∗int for all w ∈ L.

Proof. To simplify things we translate the statement to forests. Then, for some

forest f , cancel(f) just deletes paths from leaves up to the first nodes that have

more than one descendant. This first node on the way up that has more than one

descendants then stays. Consider some node v in the forest with descendants v1

to vn. Analyzing how often we have to apply cancel until v is deleted, let d1 to dn
be the numbers we have to apply cancel such that v1 to vn are deleted. Assume

that d1 ≥ d2 ≥ . . . ≥ dn. If d1 > d2, then v disappears together with v1 since all the

siblings are already gone. If d1 = d2, then we need d1 + 1 applications of cancel.

What we described are precisely the Horton-Strahler numbers and we already

saw that WSHB equals to bounded Horton-Strahler numbers. We also saw the

First-Order Definability of Visibly Pushdown Languages 181

equivalence to bounded branch-free coloring and the proof of Lemma 122 gave a

construction using |HL| many colors.

In summary, given a VPL L, the following are equivalent:

• L has WSHB.

• L has a bounded branch-free coloring number.

• forest(L) does not have arbitrarily large complete binary trees as minors.

• forest(L) has a bound on its Horton-Strahler numbers.

• For all w ∈ L it holds that cancel|HL|(w) = Σ∗int.

The SHB property enables us to compute the structure of a well-matched input

word in FO[arb]. Of course, this cannot work for arbitrary inputs, but it is sufficient

to be able to compute the structure for words of the language in question. For words

that are not in the language we accept false negatives, i.e. the case that we cannot

affirm every matching. So, the next step we take is defining a matching predicate

 L relative to L, which gives us the matching for all words in the language L. Note

that L is actually not unique, since we do not care what is says to matching

positions within words outside the language.

Proposition 126. If a VPL L has SHB property, then there exists a FO[+] formula

 L with two free variables x and y such that the following hold:

• For w ∈ L holds that w |=x=i,y=j L if and only if i j in w.

• For w 6∈ L holds that w |=x=i,y=j L implies that i j in w.

Proof. We design the formula L that gives us the matching for words in the

language. It uses the fact that words in the languages have certain helpful properties

like the one shown in Lemma 125. For words outside the language the formula may

be lucky to still compute a matching if the word happens to have a height profile

that is not too complicated.

To define the predicate we will use the SHB property itself, the bounded corridor

property (Lemma 119) and the property of Lemma 125 which is implied by SHB.

Therefore, we will use the following constants, which exist due to SHB:

• c ∈ N: The corridor number, which is the maximum over all corridor sizes α

for all v ∈ VL; see Definition 118.

182 Evaluation in Low Complexity

• n↑v/d↑v ∈ Q: The rational number for v ∈ HL that is the unique slope of

the up-word meaning that it is the slope for the words x for which there

exists a word y such that (x, y) ∈ η−1
L (v). Similarly, n↓v/d

↓
v is the slope of the

down-words.

The definition of the predicate L follows the idea that is implied by Lemma 125.

It says that a word in the language has at most |HL| nestings of linear words. So,

we define a matching predicate Mi(x, y) that can handle up to i nestings, which

uses Mi−1(x, y). Here, Mi(x, y) tests whether there are two positions x′, y′ in the

word such that (wx . . . wx′−1, wy′+1 . . . wy) is a context. This context can be verified

because of bounded corridor and fixed slope. The word wx′ . . . wy′ is verified by calls

of Mi−1(x, y).

Formally this is expressed as:

Mi(x, y) = x < y ∧QΣcall
(x) ∧QΣret(y) ∧M ′

i(x+ 1, y − 1)

where M ′
i is again a formula with two free variables:

M ′
i(x, y) = ∃u∃v x ≤ u < v ≤ y ∧

∨
m∈VL

S↑,mc (x, u− 1, x) ∧ u− x mod d↑m = 0

∧S↓,mc (v + 1, y, v + 1) ∧ v − y mod d↓m = 0

∧d↑mn↓m(u− x) = d↓mn
↑
m(y − v)

∧∀u′ (QΣcall
(u′) ∧ u ≤ u′ < v)

→ ∃v′ QΣret(v
′) ∧ u′ < v′ ≤ v ∧Mi−1(u′, v′)

The recursive definition of the above formulas is initialized by the following formula

for the case i = 0:

M ′
0(x, y) = ∀z x ≤ z ≤ y → QΣint

(z)

We use M ′
i to actually find a context at the borders of the considered interval. If

we verify that the interval indeed is built in the desired way, we cannot be sure that

x and y are matching positions. For example, position x could carry an internal

symbol. To get an actual matching, Mi is used, which checks that the first position

contains a call letter and the last position contains a return letter. This also ensures

First-Order Definability of Visibly Pushdown Languages 183

that in every step from Mi to Mi+1 we can match at least one more height step.

This is needed since not all contexts have infinitely large height profiles, and thereby

the corresponding vertical monoid elements are allowed to not have a fixed slope or

bounded corridor, i.e. it is one of those elements of VL that are filtered out by the

precondition in definitions 117 and 118. So, these have to be computed height step

by height step. There may be at most |VL| of such height steps, otherwise we found

an element of VL that we might call loopable, i.e. an element m ∈ VL for which there

exists m′ ∈ VL such that mm′ = m where η−1
L (m′) contains a context (u, v) with

∆(u) > 0. We only choose contexts with a length that is a multiple of d↑m, or d↓m
respectively. This may lead to leftover height steps. We let

 L (x, y) = Mp(x, y).

Due to the previous considerations note that p needs one factor |VL| for each linear

factor canceling step and an additional factor |VL| for leftover height steps in between.

Finally, we multiply by 2 to cover the lowest |VL| height steps. So, we get

p = 2|VL|2.

In the definition of M ′
i we used S↑,mc (x, y, z) and S↓,mc (x, y, z). These predicates

serve to verify the slopes of the left and right part of a context of η−1
L (m). This is

done by using a similar idea as for Mi. Where Mi uses Mi−1 to be able to detect

one more nesting level, S↑,mi (x, y, z) makes use of S↑,mi−1 (x, y, z) to increase the size of

the corridor it can detect by one. Basically, S↑,mc (x, y, z) is very similar to a formula

one would construct for the language of (not necessarily well-matched) words that

have a height profile bounded by some constant. What the variable z is for will

become clear in a bit.

S↑,mi (x, y, z) =z ≤ x ≤ y ∧ ∀v x ≤ v ≤ y → P ↑,mint (z, v) ∨ ∃u x ≤ u ≤ y∧
S↑,mi−1 (u, v, z) ∨ S↑,mi−1 (v, u, z)

∨ (((P ↑,mcall (v, z) ∧ P ↑,mret (u, z)) ∨ (P ↑,mcall (u, z) ∧ P ↑,mret (v, z)))

∧ ((v < u ∧ S↑,mi−1 (v + 1, u− 1, z)) ∨ (v > u ∧ S↑,mi−1 (u+ 1, v − 1, z))))

The down version S↓,mi (x, y, z) of the previous predicate is similarly defined. The

following constructions are also only exercised for the up case since the down case is

symmetric.

184 Evaluation in Low Complexity

The objective of S↑,mi is to verify the slope, but we did this in the same way we

would check whether a word has a bounded height profile, which can be regarded

as the case of slope 0. This translation is achieved by the predicates P ↑,mcall , P ↑,mret ,

and P ↑,mint . The interval we want to check is divided into chunks of a fixed length.

Then the deviation from the true slope is measured and handed out. For example,

if m ∈ VL has an up slope of 1, the word aabaaabab gets collapsed to aaa or the

word bbbbaab becomes bbb. Since the corridor is bounded and 1 is the maximal slope,

this translation is possible. So, using P ↑,mcall , P ↑,mret in S↑,mi can be interpreted as a

transduction that filters out the deviation from the slope.

The size of the blocks we check is d↑m. The previous predicates carried the input

variable z. This variable holds the offset for the blocks.

Now w |=x=i,y=j P ↑,vcall(x, y) is defined by the property

∆
(
wj−(j−i mod d↑m) . . . wj−(j−i mod d↑m)+d↑m−1

)
> j − i mod d↑m.

Also, w |=x=i,y=j P ↑,vret (x, y) is defined by the property

−∆
(
wj−(j−i mod d↑m) . . . wj−(j−i mod d↑m)+d↑m−1

)
> j − i mod d↑m.

Finally, we define P ↑,vint (x, y) = ¬P ↑,vcall(x, y) ∧ ¬P ↑,vret (x, y).

Now that we defined L, recall our approach here: We split the membership

problem into two parts that consist of analyzing the tree structure and then using

the result to do the rest. Yet, one could interject that maybe there is a VPL that is

FO[arb]-definable, but L is not. This is actually not the case.

Lemma 127. If a VPL L is in FO[arb], then L is FO[arb]-definable.

Proof. We are given an FO[arb] formula φ for L. Note that L only contains well-

matched words. The predicate L with free variables x and y ought result to true

if x and y address a well-matched factor u of the input word w, which belongs to

L. Let ηL(u) = h, then there exists vh ∈ VL such that vh(h) is in the accepting

set of the forest algebra. Let X be a set of representatives of the sets η−1
L (vh) for

all h ∈ HL for which an vh ∈ L exists as described. Now, we may construct L

with two free variables x and y. It is a disjunction over all (u, v) ∈ X and tests for

ν1(x) = i, ν2(y) = j whether uwi . . . wjv |= φ for w being the input word. Now, if x

and y hold two matching positions, there exists (u, v) for which uwi . . . wjv ∈ L.

That the matching predicate is definable in first-order logic is, of course, not

sufficient for some VPL to be first-order definable. We will come back to that

First-Order Definability of Visibly Pushdown Languages 185

later, because for now we engage in the question of when L is definable in FO[arb].

Unfortunately we do not know whether SHB is the characterizing property. There

could be languages without SHB such that L is still definable. In the next

subsections we will take a closer look at this problem. At this point we stick to the

following conjecture saying that the languages we do not know the status of are not

FO[arb] definable:

Conjecture 128. For a VPL L the predicate L is definable in FO[arb] if and only

if L has the SHB property.

Combining this conjecture with Lemma 127 we get:

Corollary 129. If Conjecture 128 holds, then languages without SHB property are

not in FO[arb].

We also formulate a weaker conjecture for matching predicates that are in FO[arb].

It is implied by conjecture 128 since we know that if L has SHB property, the

matching predicate is in FO[+]:

Conjecture 130. Given a VPL L, if the predicate L is definable in FO[arb] then

it is already definable in FO[+].

For SHB we have the conjecture that languages that do not possess this property are

not first-order describable. For WSHB we, however, can show that it is a necessary

condition.

Proposition 131. Given a VPL L without WSHB property, then L is TC0-hard

and thereby not in FO[arb].

Proof. If L does not have the WSHB property, then there exists a word z = uvwxy

such that z ∼L v ∼L x as described in the definition and αzβ ∈ L for some context

(α, β). We may assume v = x. We will use this to construct a reduction from the

TC0-hard language Equality = {w ∈ {0, 1}∗ | |w|0 = |w|1} to L. To that end we

define a function f : {0, 1}∗ → Σ∗ with

f(s) = αuxφ(s)ψ(s)wxyβ

where φ and ψ are homomorphisms:

• φ : 0 7→ (wux)2|uxwy|+1

• φ : 1 7→ wux(uxw)2|wux|xy2|wux|

• ψ : 0, 1 7→ y|uxwy|+1

186 Evaluation in Low Complexity

Given a word s, let s̄ be the mirrored word in the sense that it is the image under

a homomorphism mapping 0 7→ 1 and 1 7→ 0. Now, we get the reduction as follows:

s ∈ Equality⇔ f(s) ∈ L ∧ f(s̄) ∈ L.

If a word does not have an equal number of 0’s and 1’s, then either ∆(f(s)) or

∆(f(s̄)) is negative and hence not in the language. If an equal number of 0’s and 1’s

is present, both heights are 0 and due to the constructions above, f(s) and f(s̄) are

both in L. This is because uxφ(s)ψ(s)wxy ∼L z. To see that, notice that ∆(φ(0)) =

∆(wu)(2|uxwy| + 1) and ∆(φ(1)) = ∆(wu), so ∆(φ(s)) = ∆(wu)(|uxwy| + 1)|s|
if and only if |s|0 = |s|1. Further, we have ∆(ψ(s)) = ∆(y)(|uxwy| + 1)|s|, which

equals −∆(φ(s)) if and only if |s|0 = |s|1. So, f(s) is well-matched if and only if

s ∈ Equality. It can also be verified that |φ(0)| = |φ(1)|, which then makes the

reduction computable in AC0.

Conjecture 132. Given a VPL L, if L is not in FO[arb], then L is TC0-hard.

Corollary 133. If a VPL L is in FO[arb], then it has WSHB property.

11.2.2 Evaluating the Parsed Tree

We want to derive a formula for the word problem of a VPL L and have already

defined a matching predicate L. To do so, we want to know what property is

sufficient to place L in FO[arb]. Recall that in the case of regular languages the

property is quasiaperiodicity of the syntactic homomorphism. This property we may

simply lift to the VPL case.

Definition 134 (Quasiaperiodicity of VPLs). Given a VPL L, we call L quasiape-

riodic if the following properties hold:

• For all m ∈ N the set ηL(WM(Σ̂) ∩ Σm), which is a subset of HL, does not

contain a nontrivial group.

• For all m,n ∈ N and all sets of contexts X = {(x, y) ∈ Σm × Σn | xy ∈
WM(Σ̂)} the set ηL(X), which is a subset of VL, does not contain a nontrivial

group.

Actually, the second condition in the definition implies the first one. One can see

this by considering the cases where m ∈ N, but n = 0. Then X consists of contexts

of the form (x, ε). Since ηL((x, ε)) ·′ ηL(ε) = ηL(x), the fact that ηL(X) does not

contain a nontrivial group is equivalent to the first condition. Hence, from now on,

if we want to show quasiaperiodicity, we only need to show the second condition. If

First-Order Definability of Visibly Pushdown Languages 187

we want to, however, use quasiaperiodicity in some construction, we may utilize the

first condition also.

Similarly to the regular case, we can show that without quasiaperiodicity, defin-

ability in first-order logic ceases.

At this point we can also define aperiodicity for VPLs: A VPL is aperiodic, if both

monoids HL and VL are aperiodic.

Proposition 135. A VPL L that is not quasiaperiodic is not in FO[arb].

Proof. We show that if L is not quasiaperiodic then we can reduce Modp = {w ∈
{0, 1}∗ | 0 ≡ |w0| (mod p)} to L for some prime p.

If there exists m,n ∈ N such that for X = {(x, y) ∈ Σm × Σn | xy ∈WM(Σ̂)} the

set ηL(X) contains a cyclic group Zp, then let (u, v), (u′, v′) ∈ X for which ηL(u, v)

is the neutral element 0 of Zp and ηL(u′, v′) is 1 in Zp. Let α, β, γ be words such that

αuβvγ ∈ L but αu′βv′γ 6∈ L. The function f is defined as w 7→ αφ(w)βψ(wR)γ

where wR is the reversed word of w. Further, φ is a homomorphism with 0 7→ u

and 1 7→ u′ and ψ is a homomorphism with 0 7→ v and 1 7→ v′. This mapping is an

AC0-reduction and yields Modp ≤ L.

Now, on the other hand, if L has a definable matching predicate L and is

quasiaperiodic, then we can show it to be in FO[arb]. Note that a definable matching

predicate implies at least WSHB, which tells us that the trees that the members of

L represent have a limit in the nesting complexity, as we saw in Lemma 125. This

lemma shows how to design a formula for the membership problem. The matching

predicate is used to detect maximal linear words within a word. These can be

evaluated within the vertical monoid, which is possible due to quasiaperiodicity.

After, all newly evaluated factors are then evaluated within the horizontal monoid,

which is also possible due to quasiaperiodicity. Lemma 125 tells us that we have to

repeat that a fixed number of times.

So, in the approach there is a fixed number of rounds in which maximal linear factors

are evaluated. This is achieved using a transduction. It evaluates linear factors and

replaces them by neutral letters while one letter is containing the evaluation result.

First, we show that a word that is partly evaluated is not harder to further evaluate

than the original word.

Let L be some VPL over Σ̂ = (Σcall,Σret,Σint). Then let L̄ be a VPL over the

visible alphabet (Σcall,Σret, HL). Let 0 ∈ HL be the neutral element. We begin with

the words of L and replace every internal letter c by ηL(c); let L′ be the set of these

words. Now, L̄ is defined as the closure of L′ under the following operation: Given

188 Evaluation in Low Complexity

a word w1w2w3 ∈ L̄, where w2 is well-matched and neither the last letter of w1 nor

the first letter of w3 are internal, then also

w10|w2|−i−1ηL(w2)0iw3 ∈ L̄

for all i ∈ [0, |w2| − 1], where for the new internal letters in HL we assume ηL to be

continued to be the identity function: ηL(c) = c for c ∈ HL.

Lemma 136. The VPLs L and L̄ are equivalent under FO[+] many-one reductions.

Proof. First, notice that L ≤ L̄ by the function described above, which replaces

each internal letter c by ηL(c). This reduction is in FO[+].

For the converse, we are given a word w ∈ L̄ and show that in FO[+] we can

substitute all 0∗HL0∗ blocks with well-matched words that evaluate to the nontrivial

element of the horizontal monoid.

We let f be the reduction with w ∈ L̄⇔ f(w) ∈ L.

Consider a maximal factor of the word that is an element of 0∗HL0∗ of length n. We

want a procedure that, on an input h ∈ HL of length n, outputs a word w of length

n such that ηL(w) = h. Note that the Parikh image of η−1
L (h) is semi-linear [Par66]

and if we are only interested in word lengths A we obtain A =
⋃
i∈[k] Ai, where

Ai = {aix+ bi | x ∈ N} for numbers ai, bi ∈ N. It is easy to see that each word of a

sufficient length in Ai then is of the form uvjwxjy for words u, v, w, x, y depending

on i and j ∈ N. Finding some i such that n ∈ Ai is in FO[+] and then generating

the word is also in FO[+]. Short words can be treated by using a look-up-table.

Proposition 137. A VPL L is in FO[arb] if and only if L is definable in FO[arb]

and L is quasiaperiodic. If L is in FO[arb], then it is already in FO[+, L].

Proof. We already saw in Lemma 127 and Proposition 135 that, if L is not in

FO[arb] or if L is not quasiaperiodic, then L is not in FO[arb]. So, for the converse

we are left showing an FO[+, L] formula for L.

To construct the formula for L we will use a few transductions that are FO[+]-

computable. They extend the idea of Lemma 136. Beginning in a word w ∈ L we

transform it in a way that in the end we get a word in 0∗HL0∗ where the single

position with a nontrivial horizontal monoid element holds the evaluation ηL(w).

Then checking whether this element is in ηL(L) is easy. Now, we have to show that

for words w ∈ L we indeed arrive at a word in 0∗HL0∗ using a fixed number of

transduction steps. If w is not in L, the procedure may break earlier such that we

do not get an evaluation of the word and hence cannot verify that it belongs to L.

So, for the rest assume that the input word is in L.

First-Order Definability of Visibly Pushdown Languages 189

Observe that HL has at most one absorbing element ⊥. Due to WSHB we know

that ⊥ cannot be in the accepting set. Otherwise η−1
L (⊥)WM(Σ̂) would be a subset

of L that does not have WSHB. So, there is no v ∈ VL such that v(⊥) is in the

accepting set.

Let k ∈ N be some constant, then for h ∈ HL with h 6= ⊥ then Y = η−1
L (h)∩∆k is

in FO[Reg], where ∆k is the set of all well-matched words that have a height profile

that does not exceed k. To show that, first note that L is regular since a finite

stack can be simulated by a finite automaton. Then, if the syntactic homomorphism

ηY : Σ∗ → Synt(Y) is not quasiaperiodic then ηL is also not quasiaperiodic: Consider

ηY (Σt) for t ∈ Σ and assume that x, y ∈ Σt forms a cyclic group generated by

ηY ({x, y}). If x and y are well-matched, then ηL is also not quasiaperiodic. The

same is true for the weaker property of ∆(x) = ∆(y) = 0. In this case we find a

factor in xyx that is well-matched and spans the group. We can relax the restriction

even more to ∆(x) = −∆(y), then the same still holds. If ∆(x) 6= −∆(y), we get a

contradiction since then we would find two syntactically equivalent words of different

heights.

Now, let

fk : WM(Σcall,Σret,Σint)→WM(Σcall,Σret, HL)

be a transduction that replaces the largest factors u ∈ ∆k by 0|u|−1ηL(u). These

factors can be found using k nested matching predicates L. That way the height

up to k can be verified. Also, by the previous argument, we see that fk is computable

in FO[Reg, L], which is a subset of FO[+, L].

The next transduction

g1 : WM(Σcall,Σret, HL)→WM(Σcall ×HL,Σret ×HL, HL)

rearranges factors that are already evaluated. Given w then g1(w) is as follows: If

there is a factor of the form a0ph0pa′ for a, a′ ∈ Σcall, then the last letter a′ gets

transformed and the factor becomes (a, x)0p+q+1(a′, h), where x depends on whether

a receives a transformation itself; by default it is x = 0. If there is a factor of the

form b0ph0qb′ for b, b′ ∈ Σret, then this gets transformed to (b, h)ep+q+1(b′, x). Finally,

if a0pheqb, then this becomes (a, x)0p+qh(b, x′) where again x and x′ depend on the

context of the factor. The idea is that if we have a matching between two positions

x and y having letters a and b, then this is a context ηL((a, b)), but this context

can actually be extended if a is directly preceded by some well-matched word w

and/or b is followed by some well-matched word w′. After the transformation we

have all the information present in positions x and y: (a, ηL(w)) is in position x and

(b, ηL(w′)) is in position y. Like fk, the function g1 does not make the evaluation

problem computationally harder; see Lemma 136. Since g1 just rearranges parts of

the word, we get a bound of FO[<, L].

190 Evaluation in Low Complexity

After g1 there is another transduction

g2 : WM(Σcall ×HL,Σret ×HL, HL)→WM({♦},Σcall ×HL × Σret ×HL, HL)

that, on a word w, is performing as follows: If two positions x and y are matched

and have the letters (a, h1) and (b, h2) for a ∈ Σcall, b ∈ Σret, and h1, h2 ∈ HL,

then in g2(w) position x will be ♦ and position y will be (a, h1, b, h2). Also, this

transduction is computable in FO[]. Now, let g = g2 ◦ g1.

Before we introduce the final transduction h, note that later we want to apply

all transductions multiple times. Therefore, from now on we presume them to be

extended to all input alphabets we used so far in the obvious way.

Given is a word w = ua′w1aw2bw3b
′v for uv, w1, w2, w3 being well-matched, a, a′

being call letters, and b, b′ being return letters. Suppose that after some computation

steps the letter b became (a, h1, b, h2). Now, it could be that h1 already holds the

value ηL(w1) and w1 is replaced by e|w1|. It could also be that w1 is not evaluated

yet; then h1 = e. Notice that w1 = ε is a possibility. Similar considerations hold for

h2 and w3. If both w1 and w3 are already evaluated and the evaluations are present

in h1 and h2, we call the letter (a, h1, b, h2) in this position finished.

There is a third transduction h that evaluates the largest linear factors in which all

return letters are finished. These factors can be found using the matching predicate.

The evaluation is basically evaluating a word over the vertical monoid VL. A letter

(a, h1, b, h2) is mapped onto the context h1 + ηL((a, b)) + h2. Due to the vertical

quasiaperiodicity condition, there is a FO[Reg] formula for that. The transduction

then replaces all positions that lie in an evaluated interval by e except the last

position, which is assigned the evaluation.

To evaluate the whole word the transduction (h ◦ g ◦ fk)|VL| is sufficient. We only

need |VL| rounds because the language has WSHB and for words in the language

Lemma 125 gives us this bound.

The transduction constructed as well as the check whether the final evaluation result

is part of the accepting set can be compiled into a single FO[+, L] formula.

Corollary 138. A VPL L is in FO[+] if it has SHB property and L is quasiaperiodic.

If conjecture 128 holds, the reverse is also true. In this case we have VPL∩FO[arb] ⊆
FO[+].

11.2.3 Decidability

All properties we considered are decidable. We assume a VPL is given as a VPA or

a finite forest algebra with recognizing homomorphism.

Proposition 139. Given a VPL L, it is decidable whether L has SHB.

Visibly Counter Languages 191

Proof. The SHB property imposes a condition on certain elements of VL. These

elements can be singled out easily. For each v of them we have to verify that the

slope is fixed, i.e. for (x, y) ∈ η−1
L (v), ∆(x)

|x| and ∆(y)
|y| are already determined by v.

We do this by testing all (x, y) ∈ η−1
L (v) with ∆(x) ≤ |VL|!.

Proposition 140. Given a VPL L, it is decidable whether L has WSHB.

Proof. If L does not have WSHB, then there exists a word w ∈ L such that forest(w)

contains a complete binary tree of depth |HL| as a minor. Also, if such a word does

not exist in L, then L does have WSHB. Let wh ∈WM(Σ̂) be some word of η−1
L (h)

for h ∈ HL and let cv be some context in η−1
L (v) for v ∈ VL. We build well-matched

words based in the complete binary tree of depth |HL|. Every leaf is assigned some

wh and every edge is assigned some vh. So, we get |HL|2
|HL| many possibilities for

assignments to the leaves and |VL|2
|HL|−1 possibilities for assignments to the edges.

One of the words we built is in L if and only if L does not have WSHB.

Since checking for aperiodicity in monoids is decidable we get the following:

Proposition 141. Given a VPL L, it is decidable whether L is aperiodic.

Proposition 142. Given a VPL L, it is decidable whether L is quasiaperiodic.

Proof. The quasiaperiodicity condition consist of a subcondition for HL and VL,

however the one for VL is already sufficient. The condition for HL is the same

as for the classical monoid case with the only difference that we only consider

well-matched words. So, we do the same as in this case and test ηL(Σm ∩WM(Σ̂))

for all m ∈ [|HL|!]. The second condition uses m and n and in this case we test all

combinations for m,n ∈ [|VL|!|HL|!].

Corollary 143. Assuming Conjecture 128 holds and given a VPL L, it is decidable

whether L is in FO[arb].

11.3 Visibly Counter Languages

For general visibly pushdown languages there are some tricky open questions that

hinder us to obtain a decidable characterization for first-order definability. However,

the special case of visibly counter languages is different. Here, we have a complete

picture without open questions. This is because of the following:

Proposition 144. If a VCL L does not have SHB property, then it is TC0-hard.

192 Evaluation in Low Complexity

Proof. Let M be a deterministic k-VCA for L and m ∈ VL be such that η−1
L (m) is a

witness for L not having SHB according to the definition. Now, there also exists an

idempotent m′ ∈ V for which η−1
L (m′) is also a witness. Using a pumping argument,

one can see that there exist states q↑, q↓ of M and (u, v), (u′, v′) ∈ η−1
L (m′) such that

q↑
u→ q↑, q↑

u′→ q↑, q↓
v→ q↓, and q↓

v′→ q↓ with |u| = |u′| but ∆(u) 6= ∆(u′).

Let αγ and β be well-matched words for which αuβvγ ∈ L and

qI
α→ q↑

u→ q↑
β→ q↓

v→ q↓
γ→ qf

for some final state qf .

Consider the following words:

• x = u−∆(v)

• y = u′−∆(v)

• z = v∆(u)+∆(u′)

We assume that −∆(z) > ∆(αβ), which can be achieved by powering. This is

equivalent to ∆(αβz) < 0. Observe now, for example, that αxyβzzγ ∈ L since

∆(xy) = −2∆(v)(∆(u) + (∆(u′))

= −2(∆(u) + ∆(u′))∆(v)

= −∆(zz).

The key idea is that there must be as many x’s and y’s in order to be able to form

a word in the language using z’s. This enables us to reduce the TC0-hard language

Equality to L. For the reduction we use a function f : w 7→ αφ(w)βψ(w)γ where

φ and ψ are homomorphisms with φ(0) = x, φ(1) = y and ψ(w) = z|w|. Since

|x| = |y|, this is a AC0-computable function.

For some word w ∈ {0, 1}∗, let w̄ be the image of w under the map that switches 0

and 1, i.e. 0 7→ 1 and 1 7→ 0. Now, we get

w ∈ Equality⇔ f(w) ∈ L ∧ f(w̄) ∈ L.

This is true since if w does not have the same number of 0’s and 1’s then either

∆(f(w)) or ∆(f(w̄)) is negative because ∆(αβz) < 0 and hence f(w) or f(w̄) is not

in L. If w has an equal number of 0’s and 1’s, then both f(w) or f(w̄) are in L.

Corollary 145. A VCL is in FO[arb] if and only if it is quasiaperiodic and has

SHB. All VCLs in FO[arb] are in FO[+]. Moreover, it is decidable whether a VCL is

in FO[+].

An Open Problem 193

11.4 An Open Problem

We saw two ways to capture the complexity of the height profile of words of a VPL.

First, we had SHB for which we were able to show that this property leads to a

first-order definable matching predicate L. We also showed that if a language

is first-order definable then L is also. So, if L is not first-order definable, L is

neither. We were unable to show that SHB is a necessary condition for first-order

definability. Besides SHB we considered WSHB for which the situation is reversed.

We were able to show that it is necessary, but sufficiency remains unknown.

For VCLs the situation turned out to be nicer: A VCL without SHB is not first-

order definable. For the general VPL case we try to map out the vicinity of this

open problem and connect the VPL and the VCL case.

Let, given a VPL L, L∆ be the set of height behaviors, i.e.

L∆ = {v ∈ N∗ | ∃w ∈ L : |w| = |v| ∧ vi = ∆(w1, . . . , wi)}.

The following lemma is immediate:

Lemma 146. Given two VPLs L and M , if L∆ = M∆, then L is also a matching

predicate for M .

If we combine the previous lemma with Lemma 127, we get the following.

Lemma 147. If for some VPL L the matching predicate L is not FO[arb]-definable,

then all languages M with L∆ = M∆ are not in FO[arb].

One of the simplest languages that is a VCL and not in FO[arb] because of lacking

the SHB property is

L1 = L(S → aSb|acSb|ε).

For all examples we present here we give the productions of a context-free grammar

where S is the initial non-terminal. One can also directly show that L1 is not in

FO[arb] by using a reduction of Equality which follows the idea of Proposition

131. Now, consider the language

L2 = L(S → aSb1|acSb2|ε).

Here, the return letters b1 and b2 carry the information whether or not the matching

position is followed by the letter c. For this language the reduction used for L1 fails.

However, by Lemma 147 we see that L2 also is not in FO[arb]. As a corollary we get:

Corollary 148. Given a VPL L for which there exists a VCL M with L∆ = M∆,

it is decidable whether L is in FO[arb].

194 Evaluation in Low Complexity

We conjecture that all VPLs that are in FO[arb] have a VCL with the same height

behavior. We suspect that the same holds for VPLs that have SHB. We have no

proof for neither, but also no counter example. We can at least bridge the gap a bit

by considering VVPLs:

Lemma 149. For every VPL L there exists a VVPL M such that L∆ = M∆.

Proof. Assume a VPAM for L that is determinized and has the state set Q. When

reading a call letter it stores it to the stack together with the present state. Storing

the state is what makesM not being very visibly. So, for M we enrich the alphabet

and let Σcall ×Q now be the set of call letters. We can now takeM and interpret it

as a VVPA accepting a language M as desired.

The consequence of the lemma is that the Corollaries 128, 130, and 132 can

be tightened to VVPLs: If we have characterized the VVPLs in FO[arb], the

characterization for VPLs follows. Also, note that it is actually sufficient to only

focus on linear languages.

A language for which there is no VCL with the same height behavior is

L3 = L(S → aSbc|acSb|ε).

We do not know whether it is in FO[arb]. This language has proven to be very

stubborn. The previous lemma implies that the VVPL

L4 = L(S → a1Sbc|a2cSb|ε)

poses an equally hard problem. One approach could be to try to show that every

VVPL in FO[arb] has a height behavior for which there exists a VCL in FO[arb] with

the same height behavior.

It is worth investigating L3 closer as this language seems to capture the quintessence

of the difficulty of the open problem of characterizing the VPLs in FO[arb]. This

language has the two rule right hand sides aSbc and acSb. Consider in addition the

symmetrical ones aSb and acSbc. For these four rules we find 24 languages; there are

four rules, which might be present in the grammar or not. The resulting languages

are sometimes hard and sometimes not. Table 11.1 subsumes all combinations.

In all but one of the cases, L3, we know the status of the language. Let us call

aSb and acSbc the symmetric, and aSbc and acSb the asymmetric rules. One can

observe: As soon as a symmetric and an asymmetric rule is mixed, the language

becomes TC0-hard, because the reduction based on the idea of Proposition 131

becomes possible. If there is no mix between the two, the language is in FO[arb],

except for the one case in line seven resulting in L3.

An Open Problem 195

aSb acSb aSbc acSbc ∈ FO[arb]?
1 × × × × X
2 × × × X X
3 × × X × X
4 × × X X ×
5 × X × × X
6 × X × X ×
7 × X X × ?
8 × X X X ×
9 X × × × X

10 X × × X X
11 X × X × ×
12 X × X X ×
13 X X × × ×
14 X X × X ×
15 X X X × ×
16 X X X X ×

Table 11.1: Summary of the 16 different languages we can get from the combination
of four rules of the form S → Line 7 corresponds to L3 and line 13 to L1.

To investigate L3 even further, consider the position in the word that marks the

turning point, i.e. the position of maximal height within the linear word. Actually,

there could be two such positions that are consecutive, but this is not relevant at this

point. For a word w ∈ L3, the turning point is in the interval [|w|
3
, 2|w|

3
] where an(bc)n

and (ac)nbn mark the two extreme choices. Now, we could consider a modification

of L3 where we artificially fix the turning point. If we fix it to, say, |w|
3

the language

becomes easy because it then is an(bc)n. The same is, of course, true for the other

border. On the other hand, if we fix it to |w|
2

then one can see that the language is

as hard as before. We also see that it does not have SHB in this case. In another

case we could fix it to be within an interval [|w|
3
, |w|

3
+ k] for some constant k. This is

again in FO[arb] and indeed has SHB, or equivalently, a bounded corridor of size k.

Due to [DLM07] we conjecture that a turning point restriction of [|w|
3
, |w|

3
+ log(|w|)]

is still in FO[arb] but this language is not a VPL. As one can see, there are different

angles of attack for this problem. For now, figuring out the status of L3 is the

next step. A solution should yield so much insight that it can be generalized to

the big problem for VPLs in general. Trying to use concepts like communication

complexity, or building on the approaches of [FSS84, H̊as87] that showed the lower

bound for the parity language, have not been successful yet. Whether it stays that

way remains to be seen.

196 Evaluation in Low Complexity

11.5 First-Order Definability of Nested Word

Languages

In the previous section we looked at the definability of languages of well-matched

words. A key step was to define a matching predicate in first-order logic, but we

can also consider the case where the full matching predicate is already present in

the logic. This actually is the case of nested words wherein we have the matching

predicate built into the structure where it may be accessed in logic. In the nested

word case there are no call and return letters, however, for simplicity, we will continue

where we have left off in the previous section by sticking with well-matched words

and then just add the matching predicate to the logic. This approach is not

restrictive. So, the questions we address in this section are which VPLs are in

FO[arb,], FO[Reg,], and FO[<,], for which we give partial answers.

First, we see that quasiaperiodicity still is a necessary condition.

Proposition 150. If a VPL L is in FO[arb,], then it is quasiaperiodic.

Proof. Suppose that L is not quasiaperiodic but in FO[arb,]. The fact that L is

not quasiaperiodic is either because the horizontal or the vertical condition of the

quasiaperiodicity condition is violated. It would be sufficient to only use the vertical

condition, however for comprehensibility we still start with the horizontal condition.

First case: The horizontal condition is violated. In this case there exists m ∈ N
such that ηL(WM(Σ̂) ∩ Σm) contains a non-trivial group. In particular we then find

a cyclic group Zp for some prime p. Let e be the neutral element of Zp and let d

be some other element. Then it holds that 〈d〉 = Zp. Let we and wd be words in

WM(Σ̂) ∩ Σm for which we ∈ η−1
L (e) and wd ∈ η−1

L (d).

Now let L′ = φ(Modp), where Modp = {w ∈ {0, 1}∗ | |w|1 mod p = 0} and φ is a

homomorphism with φ(0) = we and φ(1) = wd. Since L ∈ FO[arb,], so is L′. Yet,

L′ has SHB because of the bounded height profile, thus, we may replace by L,

which in turn is expressible by the + predicate. So, it can be concluded that L′

is in FO[arb]. However, it is immediate that Modp is AC0-reducible to L′, which

means that Modp is in FO[arb] = AC0 from which we know that this is not the

case [FSS84, H̊as87, Smo87], and thus leads to a contradiction.

In the horizontal case we reduced Modp to a regular word language, which we

derived from L and its horizontal monoid. In the vertical case we will do the same,

but the regular language has to be constructed differently. So, suppose that the

vertical quasiaperiodicity condition is violated. Again, we find a group Zp but this

time it is spanned by two contexts ce = (ue, ve) and cd = (ud, vd) with |ue| = |ud| = m

and |ve| = |vd| = n.

First-Order Definability of Nested Word Languages 197

We show that we can reduce Modp to L, which yields the desired contradiction.

for th reduction we choose the mapping f : w 7→ αφ(w)βψ(wR)γ where wR is the

reversal of w, and αγ and β are well-matched words such that αueβveγ ∈ L, but

αudβvdγ 6∈ L. Also, φ and ψ are homomorphisms where φ maps 0 7→ ue and 1 7→ ud,

and ψ maps 0 7→ ve and 1 7→ vd. Now, the image of f is always a well-matched word

and w ∈Modp if and only if f(w) ∈ L. The map f is computable in FO[+].

When characterizing the VPLs definable in first-order logic, we know that WSHB is

not a necessary condition if the full matching predicate is assumed. For example,

the Dyck language clearly is in FO[]. However, without WSHB we cannot apply

the technique used in the proof of Proposition 137, hence we need to require WSHB

in order to obtain the upper bound. We then directly get:

Proposition 151. Quasiaperiodic VPLs with WSHB are in FO[+,].

We suspect that it could be possible to tighten the upper bound to FO[Reg,],

however, this would need a different proof. Also, in general we conjecture that the

answer to the question of whether the following holds is true:

VPL ∩ FO[arb,]
?
= FO[Reg,].

To tackle this open problem one has to look at the WSHB definition. We see that

if a language L does not have the WSHB property then there exists an element

h ∈ HL that is a witness, i.e. η−1
L (h) contains words z, v, x such that z = uvwxy

for some well-matched words uy and w. Let us call such a witness element h

multi-nestable. It is those elements for which we have to find a solution. This is

a difficult open problem, but we can approximate and extend the approach of the

proof of Proposition 137. In Section 6.5.3 we looked into the problem of deciding

which VPLs are a intersection of a regular language with well-matched words or

strongly well-matched words. This can be applied here. If a VPL L is such that it

is quasiaperiodic and in which for all multi-nestable elements h ∈ HL it holds that

η−1
L (h) is the intersection of a quasiaperiodic regular word language with a strongly

well-matched set SWM(G), then L is in FO[+,]:

Lemma 152. A VPL L is in FO[+,] if L is quasiaperiodic and for every multi-

nestable element h ∈ HL holds that η−1
L (h) = R ∩ SWM(G) for some quasiaperiodic

regular language R and a matching graph G.

Proof. First, we guess maximal well-matched factors and check whether they belong

to some η−1
L (h) for h being multi-nestable. These factors can be evaluated in

FO[Reg,]. We replace these evaluated factors by internal letters that yield the

198 Evaluation in Low Complexity

evaluation. Thereafter, we can apply the procedure of the proof of Proposition

137.

We do not know whether it is decidable if a VPL is the quasiaperiodic regular

restriction of a set of strongly well-matched words, however, we suspect so. A first

step would be to show decidability of the general nonquasiaperiodic case.

An example for a language in FO[Reg,] that is not captured by the property

used in Lemma 152 is the language L(S → aSbaSb|ε), which is represented through

the formula

∀x∃y x y∨y x∧∀x, y x y∧¬first(x)∧¬last(y)→ Qa(x−1)↔ Qa(y+ 1).

This can be regarded as a restriction of the Dyck language, which only contains

words that code a binary tree. So, this example does not have WSHB and is not a

regular restriction of the set of well-matched words. One could try to further extend

the property in order to capture such cases also.

Now that we have considered the languages in FO[Reg,] it is natural to look at

FO[<,]. Here, everything works out as expected. We replace quasiaperiodicity by

aperiodicity in all cases. We call a VPL aperiodic if both HL and VL are aperiodic.

The proof of Proposition 150 can be easily adapted to prove the following proposition:

Proposition 153. If a VPL L is in FO[<,], then it is aperiodic.

This time we conjecture that aperiodic VPLs with WSHB are in FO[<,].

Because of the open questions we encountered we cannot make a statement about

decidability. Of course, we suspect that it is decidable which VPLs are definable in

FO[arb,] but this question remains open relative to the other open questions.

11.6 First-Order Definability of Tree Languages

We looked at languages of well-matched words and languages of nested words. Now,

languages of actual trees are left which, as we saw, are equivalent to the mentioned

word models. We again ask the question of first-order decidability and try to

approach it from an angle originating in the previous results.

If asked for first-order definability of forest languages, traditionally one considers

an ancestor predicate ≺. So, if we want to know whether some forest language is in

FO[≺], we will refer to this predicate. This problem is well-known and notoriously

hard. We will relate this problem to the setting of words.

Recall that, given a forest language F , by wm(F) we denote the corresponding

VPL. Note that wm(F) does not use any internal letters. Both F and wm(F), by

First-Order Definability of Tree Languages 199

definition, have the same syntactic forest algebra. An immediate property is that

for a forest language F to be in FO[≺], the horizontal monoid has to be commutative.

Proposition 154. If a forest language F is in FO[≺], then wm(F) is in FO[<,].

Proof. Given is φ, which is an FO[≺] formula for F . An FO[<,] formula φWM for

wm(F) can be built inductively. Because of that, we also have to deal with formulas

with free variables. Also, if Σ is the alphabet for F , then (Σ↑,Σ↓, ∅) is the alphabet

for wm(F), where Σ↑ and Σ↓ are two copies of Σ such that if a ∈ Σ then there are

a↑ ∈ Σ↑ and a↓ ∈ Σ↓.

• If φ is of the form ∃xψ, then φWM = ∃x1∃x2 x1 x2 ∧ ψWM. So, the

constructed formula has twice as many variables as the original.

• If φ = ¬ψ then φWM = ¬ψWM.

• If φ = ψ1 ∧ ψ2 them φWM = ψ1
WM ∧ ψ2

WM.

• If φ = Qa(x) then φWM = Qa↑(x1) ∧Qa↓(x2).

• If φ = x ≺ y then φWM = y1 < x1 < x2 < y2.

For the ancestor predicate ≺, we can define an analogue on well-matched words.

Let . be a binary predicate that is defined as follows: x . y if and only if there

exists z with x z or z x and x < y < z or z < y < x. The predicate can be

expressed by ., but < not by ..

Since ≺ and . are equivalent, we get the following:

Proposition 155. A forest language F is in FO[≺] if and only if wm(F) is in

FO[.].

We have related the problem of deciding whether a forest language is first-order

definable to the problem of deciding whether a VPL is first-order definable. This

leads to the partial results we showed in the previous section. Conversely, the

open problems about VPLs are now also related to first-order definability of forest

languages. However, the problem we face in the case of forest languages might be

not as hard since we have commutativity.

200 Evaluation in Low Complexity

11.7 Application

The main motivation to look at first-order-definability of VPLs in such a depth was

the problem of evaluation of terms over finite algebras. There are, of course, the

open questions inherited from the VPLs and also it remains open how to incorporate

infinite algebras.

11.7.1 Term Evaluation Over Finite Algebras

If an arbitrary finite algebra is given, terms can be evaluated in NC1. If we want to

evaluate in AC0, it is necessary let go of arbitrary terms as inputs. Evaluation in

AC0 requires the input terms to have a bounded Horton-Strahler number, which is

the same as WSHB. Since we have still open questions with regard to which tree

shapes that actually can be evaluated in AC0, we do not know about a condition

that is sufficient and necessary, however, SHB is at least sufficient. Also necessary

for the evaluation problem to be in AC0 is quasiaperiodicity.

Note that terms are ranked trees. In the framework we laid out here we also

can treat unranked trees and hence evaluation of algebras with finitary operations

embeds naturally.

Also note that terms are trees that are encoded as words. We chose the well-

matched words, which represent an in-order representation. There exist different

word representations that could lead to different results.

11.7.2 Dense Completeness

This application is not related to evaluation but rather shows insights in relations

between complexity classes. This is a byproduct of Corollary 145 and Proposition

144 which we want to include here.

Dense completeness describes a strong relationship between a complexity class and

a formal language class. By formal language class we intuitively mean a class like

the regular or CFLs. We lack a formal definition of what a formal language class is,

but this is not necessarily a problem as we will see.

Definition 156 ([KL12]). A formal language class F is densely complete in a

complexity class C if

• F ⊆ C and

• for all languages C ∈ C there exists a language F ∈ F such that C ≤AC0 F

and F ≤AC0 C, where ≤AC0 indicates an AC0 many-one reduction.

Application 201

Of course, dense completeness can also be defined using other variants of reducibility

depending on the context. Dense completeness refines the notion of completeness. For

example, the regular languages are complete in NC1 because the regular languages

are contained in NC1 and there exists one regular language that is NC1-complete.

Dense completeness requires that we not only find a language in the formal language

class that is as hard as the hardest problem in the complexity class but that we find

an equally hard formal language for all less hard problems. The Theorem of Ladner

[Lad75, Vol90] tells us that complexity is a continuum: For two problems A ≤AC0 B,

we find a problem C for which A ≤AC0 C ≤AC0 B, assuming that A 6∈ AC0. In the

case of regular languages and NC1, it turned out that the regular languages fall into

discrete complexity levels and hence they are not densely complete in NC1 [KL12].

On the other hand there exist examples for dense completeness: For example, the

non-deterministic one-counter languages are densely complete in NL. In general,

all positive examples we know involve non-deterministic classes, which led to the

conjecture that deterministic classes do not have densely complete formal language

classes. If one showed that, for example, L does not have any densely complete

formal language classes, then NL and L would be separated. However, as we do

not have a formal definition of what a formal language class is, we cannot actually

argue over all formal language classes. However, we may fix one definition of formal

language class for each problem we want to tackle. For example, if we want to

show NL 6= L it is sufficient to find a definition that encloses the non-deterministic

one-counter languages and for which we can show that no such formal language

class is densely complete in L.

The previous proof strategies for these major open problems are, of course, very

optimistic. Currently we try to gather more and more positive and negative examples

for dense completeness. The regular languages are not densely complete in NC1, but

this does not mean that there is not a larger class in NC1 that actually is densely

complete. The visibly pushdown languages, for example, are a candidate for that

as they generalize the regular languages. Because of the open problems discussed

before, we cannot tackle this problem yet, but we can use visibly counter languages

and show that they, as we suspected, are also not densely complete in NC1.

Theorem 157. The visibly counter languages are not densely complete in NC1.

Proof. Assume that the VCLs are densely complete in NC1. Consider the case

where L ∈ NC1 is a language that is not in ACC0
2 \ AC0 but not ACC0

2-hard.

Such a language exists due to Ladner’s Theorem [Lad75, Vol90]. We may use a

NC1-complete regular language and Parity which is ACC0
2-complete. Ladners

Theorem now gives us a language in the middle as desired.

Now because we assumed dense completeness, there must exist a VCL V that is

equivalent to L via AC0 many-one reductions. We get the following cases:

202 Evaluation in Low Complexity

• V ∈ AC0. In this case, L is also in AC0, which is a contradiction.

• V 6∈ AC0. Note that we characterized the VCLs in AC0 by two properties,

which both have to be true for V to be in AC0. If one of both is violated, the

language is not in AC0:

– If V does not have SHB, it is TC0-hard (Proposition 144), and so is

L. However, by construction, L is not even ACC0
2-hard, which is a

contradiction.

– If V is not quasiaperiodic, V and L are hard for some ACC0
k. If k is

even, they are also hard for ACC0
2, which contradicts the construction

of L. If k is odd, we get ACC0
k ⊆ ACC0

2, which is a contradiction, also

[Smo87].

From the previous theorem we can also derive the version for regular languages,

because they are part of VCL.

Corollary 158 ([KL12]). The regular languages are not densely complete in NC1.

As a next step we may generalize to VPLs. Another way of generalization would be

to let go of visibility. We already know that non-deterministic one-counter languages

are densely complete in NL, but we do not know whether the deterministic version is

densely complete in L. If we look at the previous proof, we see what we could use to

achieve that result. If we could show that these deterministic counter languages that

are not in AC0 are either ACC0
k-hard or TC0-hard, we had the desired complexity

gap and could prove the result similarly. To show that, we would most certainly

first want to characterize the deterministic counter languages in AC0.

Characterizing the deterministic counter languages in AC0 will need different or

at least extended techniques. Meaningful examples for counter languages include

(anbanc)∗ and (anban)∗. Note that the first language is first-order definable whereas

the second is not. An approach to show AC0 membership for a deterministic counter

language could be to label the letters according to whether they increase or decrease

the counter; the result would be a VCL. In first example language this is easily

possible: All positions having the letter a become call letters if the next non-a letter

is b. If it is c, the letter becomes a return letter. In the second example this does not

work any more. One has to look at the entire word in order to assign the call and

return letters. We think that there is some locality property needed for a counter

language to be in AC0.

Conclusion 203

11.8 Conclusion

Summary

In the two previous chapters we considered evaluation in general, which led to

complexities in terms of logarithmic depth. It turned out that tree-shaped problems

are eligible for being addressed by our framework. For example, a general graph

problem drops to logarithmic depth in complexity when tree-likeness is assumed.

Now, in this final chapter we explored the lower ends of evaluation complexity. We

tried to capture properties that place an evaluation problem in constant depth.

This is just an iteration in the research on that topic, so we cannot give a full

characterization. The research done here is limited to evaluation over finite algebras,

which also helps to connect it to other research areas such as formal language theory.

In particular, instead of considering evaluation over finite algebras directly, we looked

at visibly pushdown languages, which even generalized the problem slightly. In

doing so, we are left with the question: Which VPLs are in constant depth. This

question is a straight generalization of the already solved variant of the question

concerning regular languages.

The basic variant of the problem in question asks for a characterization of VPLs in

AC0. Since AC0 equals FO[arb] we shifted to logic as it offers more structure. We

found out different properties that limit the complexity of the input trees: SHB and

WSHB. If SHB holds, a matching predicate is definable. If WSHB does not hold,

the language is TC0-hard. Unfortunately we were not able to close the gap between

SHB and WSHB. This problem we addressed individually. It turned out to be a

peculiar problem: There is a very simple language for which we do not know the

status of. To solve it we probably need insights being as deep as for solving the

parity problem.

The complexity of the input trees was complemented by a generalization of quasia-

periodicity to VPLs. If quasiaperiodicity and WSHB are given, as well as a matching

predicate, a first-order formula if definable.

For VPLs in general we have the mentioned gap, however, if we go over to VCLs,

we get a complete picture again, which strictly generalizes the results about regular

languages.

To approach the general result for VPLs we also looked at cases other than FO[arb].

For instance if we just add the non-numerical matching predicate to the logic we

basically are in the nested word case. We also built a relation to unranked tree

languages.

Finally, we covered some applications. Of course, evaluating finite algebra in itself

is one and can again be used for other problems. In the end we also considered

204 Evaluation in Low Complexity

the concept of dense completeness, which relates rather to the formal language

interpretation of our research. Here, we showed that VCLs are not densely complete

in NC1.

Contributions

Everything we presented in this chapter is new and parts have been published

previously [KLL15b, KLL15a]. In [KLL15b] the result about first-order-definability

of VCLs was obtained. Note that this result now is a mere corollary within a greater

framework. The proof in the paper is rather combinatorial while the approach in

the present work is more algebraic.

Also we contributed the dense completeness result for VCLs.

Sources and Related Work

In addition to the works introducing logic and automata models the most important

pillar this chapter stands on are the contributions about the relationship of regular

word languages and constant depth circuits. Those are the ones that characterize the

regular languages in AC0 by quasiaperiodicity. Consulate the conclusion sections of

the respective chapters for source details.

We published the results about VCLs in [KLL15b] and the dense completeness

result was part of [KLL15a]. The former recieved more attention resulting in a

follow-up paper [HKLL15] which related VCLs to classes within NC1 other than

AC0. Our dense completeness result on VCLs can be found in [KLL15a] while dense

completeness itself has been introduced in [KL12].

In [EJT12] Elberfeld et al. investigate Courcelle’s Theorem closer under the

assumption that input is an already decomposed tree. In general, checking whether

the decomposition satisfies the MSO formula is in NC1, but they also considered in

which cases this can be done in AC0. They show a property that is sufficient for

placing the problem in AC0. The property basically says that the graph has to be

star-like, which seems to be a special case of the SHB property.

Further Research

The goal is to obtain a complete description of evaluation capabilities in low com-

plexity. So, as a next step the mentioned open problem should be addressed. This

then solves the case of finite algebras. After, one can go after some infinite algebras.

On the other hand, one can look at other classes than AC0 by taking up the

investigations we initiated in [HKLL15]

Conclusion 205

We provided properties that are decidable, however, the exact complexity is not

yet determined. The complexity of computing the Horton-Strahler number of a tree

is a problem for which it would be also interesting to investigate upper bounds. One

could try to place it in NC1, maybe by using our evaluation framework.

Another aspect that deserves attention is the relationship of the properties developed

here to, say, the work of Elberfeld et al. [EJT12] and path width or tree depth.

One more research question would be, whether there is a connection between, say,

the SHB property and properties of syntactic algebras. This is of similar flavor as

the problem we already mentioned in the context of cost register automata where

we asked whether there is a connection between copylessness and the transformation

monoid. Also the reverse question is relevant: Suppose the horizontal or the vertical

monoid of the syntactic algebra is, say, aperiodic, what does this mean for the height

behavior of the language?

Chapter 12

Conclusion

In this thesis we provided material for the four central topics:

• A general term evaluation framework

• A template for applying this framework as well as a set of concrete applications

• Analysis of term evaluation capabilities of constant depth classes using VPLs.

• Automata theory related to term evaluation, in particular VPAs, CRAs and

the combination of both.

In summary, the most notable contributions are the following:

• Developing the machinery to formally express all results within the

same setting. This includes notions such as many-sorted families of algebras,

generalized homomorphisms, generalized and many-sorted circuits.

• Extend algebras and algebras for well-matched word languages. Ex-

tend algebras complement forest algebras well and both are suited for capturing

VPLs algebraically.

• Complementing the already known forest algebra with extend alge-

bras. We also showed how these algebras that are tailored to forest languages

can be used for languages for well-matched and nested words.

• Marrying VPAs and CRAs. We showed a model that incorporated a

visible stack and cost registers. This model is still tame while exhibiting

great and meaningful expressibility. For instance, it is sufficiently powerful to

perform term evaluation.

208 Conclusion

• Generalizing copylessness. CRAs and CVPAs can be restricted resulting in

copyless machines. This prevents unwanted generality by excluding functions

having outputs that need exponential size to represent. However, we discovered

that copylessness is unnecessary restrictive. Polynomial boundedness is a

probate alternative. Copylessness can be embedded as it coincides with linear

boundedness.

• Providing a general term evaluation algorithm. It works with any

algebra A and leads to a complexity of F(A)-NC1.

• Providing a template for using the term evaluation algorithm. It

may be used to obtain upper bounds for a wide variety of problems. We

reproved many known results within this uniform setting.

• Showing new results using the template as well as reproving old

ones. One major block of results consists of CVPAs, in particular polynomially

bounded ones. Others concern bounded width circuits and NP problems.

• Analyzing evaluation in constant depth by considering first-order

definability of VPLs. We greatly generalized the result that characterizes

the VCLs in AC0 and provided algebraic proofs. We showed necessary and

sufficient conditions for VPLs being in AC0, however, not a single condition

that is both. Therein we discovered the very interesting language L(S →
acSb | S → aSbc | ε) for which we do not know whether it is in AC0. This

language could be a starting point for research that lets us understand AC0

better.

We can draw a few conclusions. First, capturing VPLs algebraically seems promising.

Extend and forest algebras proved to be very useful. They complement each other

as both are useful in different situations.

Secondly: Our attempt to unify and simplify the large set of problems using term

evaluation was fruitful. When trying to obtain upper bounds for a problem that is

in some way tree-structured, it is a sensible approach to first consult the template

developed here. It might spare one from designing an involved proof. Third: From

a more practical perspective, a constant goal in automata theory is to come up

with models that have a good tradeoff between expressibility on the one hand

and complexity and closure properties on the other hand. CVPAs combine two

models with a good tradeoff into a new one. Polynomial boundedness extends

this good tradeoff whereas now copylessness has been the best we know. Finally:

Characterizing the VPLs in AC0 is a very hard problem. Solving it would involve

learning significant lessons about AC0.

In the future, research can go into different directions. Exploring more problems

that can be tackled using our template would be an obvious goal. There should

209

be many more problems that could be brought down from polynomial time into

parallel complexity. Also, analyzing and applying CVPAs seems promising. This

model has the potential to be relevant whenever either CRAs or VPAs already are.

Polynomial boundedness should be researched further as well. Lastly, figuring out

the complexity of the language L(S → acSb | S → aSbc | ε) would be insightful. A

solution should give us deeper insights in to AC0. We conjecture that a solution

can be generalized to the whole of all VPLs. However, it should be stressed that

this problem is a very hard one. For instance it would most probably provide a true

alternative proof for AC0 6= TC0.

Bibliography

[AAD00] Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0,

and Arithmetic Circuits. J. Comput. Syst. Sci., 60(2):395–421, 2000.

[ADD+11] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund

Raghothaman, and Yifei Yuan. Regular Functions, Cost Register Au-

tomata, and Generalized Min-Cost Problems. CoRR, abs/1111.0670,

2011.

[ADD+13] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund

Raghothaman, and Yifei Yuan. Regular Functions and Cost Regis-

ter Automata. In 28th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28,

2013, pages 13–22. IEEE Computer Society, 2013.

[AKM17] Eric Allender, Andreas Krebs, and Pierre McKenzie. Better Complexity

Bounds for Cost Register Machines. Electronic Colloquium on Compu-

tational Complexity (ECCC), 24:72, 2017.

[AKMV05] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan.

Congruences for Visibly Pushdown Languages. In Lúıs Caires,

Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti

Yung, editors, Automata, Languages and Programming, 32nd Interna-

tional Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005,

Proceedings, volume 3580 of Lecture Notes in Computer Science, pages

1102–1114. Springer, 2005.

[All04] Eric Allender. Arithmetic circuits and counting complexity classes. 2004.

[Alm94] J. Almeida. Finite Semigroups and Universal Algebra. Series in algebra.

World Scientific, 1994.

212 Bibliography

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In

László Babai, editor, Proceedings of the 36th Annual ACM Symposium

on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages

202–211. ACM, 2004.

[AM09] Rajeev Alur and P. Madhusudan. Adding nesting structure to words. J.

ACM, 56(3):16:1–16:43, 2009.

[AM15] Eric Allender and Ian Mertz. Complexity of Regular Functions. In

Adrian Horia Dediu, Enrico Formenti, Carlos Mart́ın-Vide, and Bianca

Truthe, editors, Language and Automata Theory and Applications - 9th

International Conference, LATA 2015, Nice, France, March 2-6, 2015,

Proceedings, volume 8977 of Lecture Notes in Computer Science, pages

449–460. Springer, 2015.

[BCGK17] Célia Borlido, Silke Czarnetzki, Mai Gehrke, and Andreas Krebs. Stone

Duality and the Substitution Principle. In Valentin Goranko and Mads

Dam, editors, 26th EACSL Annual Conference on Computer Science

Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82

of LIPIcs, pages 13:1–13:20. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2017.

[BCGR92] Samuel R. Buss, Stephen A. Cook, A. Gupta, and V. Ramachandran. An

Optimal Parallel Algorithm for Formula Evaluation. SIAM J. Comput.,

21(4):755–780, 1992.

[BCK+14] Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Pawel Parys,

and Michael Vanden Boom. Two-way cost automata and cost logics over

infinite trees. In Thomas A. Henzinger and Dale Miller, editors, Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer

Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-

posium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna,

Austria, July 14 - 18, 2014, pages 16:1–16:9. ACM, 2014.

[BCST92] David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and

Denis Thérien. Regular Languages in NC1. J. Comput. Syst. Sci.,

44(3):478–499, 1992.

[BDG15] Nikhil Balaji, Samir Datta, and Venkatesh Ganesan. Counting Euler

Tours in Undirected Bounded Treewidth Graphs. In Prahladh Har-

sha and G. Ramalingam, editors, 35th IARCS Annual Conference on

Foundation of Software Technology and Theoretical Computer Science,

FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45

of LIPIcs, pages 246–260. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2015.

Bibliography 213

[BKR11] Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Typed

Monoids - An Eilenberg-Like Theorem for Non Regular Languages. In

Franz Winkler, editor, Algebraic Informatics - 4th International Confer-

ence, CAI 2011, Linz, Austria, June 21-24, 2011. Proceedings, volume

6742 of Lecture Notes in Computer Science, pages 97–114. Springer,

2011.

[BL06] Christoph Behle and Klaus-Jörn Lange. FO[<]-Uniformity. In 21st

Annual IEEE Conference on Computational Complexity (CCC 2006),

16-20 July 2006, Prague, Czech Republic, pages 183–189. IEEE Computer

Society, 2006.

[BLS06] Vince Bárány, Christof Löding, and Olivier Serre. Regularity Problems

for Visibly Pushdown Languages. In Bruno Durand and Wolfgang

Thomas, editors, STACS 2006, 23rd Annual Symposium on Theoretical

Aspects of Computer Science, Marseille, France, February 23-25, 2006,

Proceedings, volume 3884 of Lecture Notes in Computer Science, pages

420–431. Springer, 2006.

[Bre74] Richard P. Brent. The Parallel Evaluation of General Arithmetic Ex-

pressions. J. ACM, 21(2):201–206, 1974.

[BSW12] Miko laj Bojańczyk, Howard Straubing, and Igor Walukiewicz. Wreath

Products of Forest Algebras, with Applications to Tree Logics. Logical

Methods in Computer Science, 8(3), 2012.

[Bus87] Samuel R. Buss. The Boolean Formula Value Problem Is in ALOGTIME.

In Proceedings of the 19th Annual ACM Symposium on Theory of

Computing, 1987, New York, New York, USA, pages 123–131, 1987.

[Bus93] Samuel R. Buss. Algorithms for boolean formula evaluation and for tree

contraction. In Arithmetic, Proof Theory and Computational Complexity,

pages 96–115. Oxford University Press, 1993.

[BW08] Miko laj Bojańczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum,

Erich Grädel, and Thomas Wilke, editors, Logic and Automata: History

and Perspectives [in Honor of Wolfgang Thomas]., volume 2 of Texts in

Logic and Games, pages 107–132. Amsterdam University Press, 2008.

[Bü60] J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata.

Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,

D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques

214 Bibliography

and Applications. Available on: http://www.grappa.univ-lille3.

fr/tata, 2007. release October, 12th 2007.

[CF16] Thomas Colcombet and Nathanaël Fijalkow. The Bridge Between Reg-

ular Cost Functions and Omega-Regular Languages. In Ioannis Chatzi-

giannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi,

editors, 43rd International Colloquium on Automata, Languages, and

Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55

of LIPIcs, pages 126:1–126:13. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2016.

[Cho95] Richard Chorley. Horton, R.E. 1945: Erosional development of streams

and their drainage basins: hydrophysical approach to quantitative mor-

phology. Bulletin of the Geological Society of America 56, 2 75-3 70.

Progress in Physical Geography, 19(4):533–554, 1995.

[CK16] Silke Czarnetzki and Andreas Krebs. Using Duality in Circuit Com-

plexity. In Adrian-Horia Dediu, Jan Janousek, Carlos Mart́ın-Vide,

and Bianca Truthe, editors, Language and Automata Theory and Ap-

plications - 10th International Conference, LATA 2016, Prague, Czech

Republic, March 14-18, 2016, Proceedings, volume 9618 of Lecture Notes

in Computer Science, pages 283–294. Springer, 2016.

[CKL15] Michaël Cadilhac, Andreas Krebs, and Nutan Limaye. Value Automata

with Filters. CoRR, abs/1510.02393, 2015.

[CKLP15] Michaël Cadilhac, Andreas Krebs, Michael Ludwig, and Charles Paper-

man. A Circuit Complexity Approach to Transductions. In Giuseppe F.

Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathe-

matical Foundations of Computer Science 2015 - 40th International

Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceed-

ings, Part I, volume 9234 of Lecture Notes in Computer Science, pages

141–153. Springer, 2015.

[CL10] Thomas Colcombet and Christof Löding. Regular Cost Functions over

Finite Trees. In Proceedings of the 25th Annual IEEE Symposium on

Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,

United Kingdom, pages 70–79. IEEE Computer Society, 2010.

[CMTV98] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer.

Nondeterministic NC1 Computation. J. Comput. Syst. Sci., 57(2):200–

212, 1998.

[CO00] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width

of graphs. Discrete Applied Mathematics, 101(1-3):77–114, 2000.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Bibliography 215

[Col09] Thomas Colcombet. The Theory of Stabilisation Monoids and Regular

Cost Functions. In Susanne Albers, Alberto Marchetti-Spaccamela,

Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors,

Automata, Languages and Programming, 36th Internatilonal Colloquium,

ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part II,

volume 5556, pages 139–150. Springer, 2009.

[Col13] Thomas Colcombet. Regular Cost Functions, Part I: Logic and Algebra

over Words. Logical Methods in Computer Science, 9(3), 2013.

[Col17] Thomas Colcombet. Logic and regular cost functions. In 32nd Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, June 20-23, 2017, pages 1–4. IEEE Computer Society,

2017.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In

Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors,

Proceedings of the 3rd Annual ACM Symposium on Theory of Computing,

May 3-5, 1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[Coo85] Stephen A. Cook. A Taxonomy of Problems with Fast Parallel Algo-

rithms. Information and Control, 64(1-3):2–21, 1985.

[Cou90] Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Rec-

ognizable Sets of Finite Graphs. Inf. Comput., 85(1):12–75, 1990.

[DA14] Loris D’Antoni and Rajeev Alur. Symbolic Visibly Pushdown Automata.

In Armin Biere and Roderick Bloem, editors, Computer Aided Verifica-

tion - 26th International Conference, CAV 2014, Held as Part of the

Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.

Proceedings, volume 8559 of Lecture Notes in Computer Science, pages

209–225. Springer, 2014.

[DFKL14] Olga Dorzweiler, Thomas Flamm, Andreas Krebs, and Michael Ludwig.

Positive and Negative Proofs for Circuits and Branching Programs.

In Descriptional Complexity of Formal Systems - 16th International

Workshop, DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings,

pages 270–281, 2014.

[DFKL16] Olga Dorzweiler, Thomas Flamm, Andreas Krebs, and Michael Ludwig.

Positive and negative proofs for circuits and branching programs. Theor.

Comput. Sci., 610:24–36, 2016.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate

texts in mathematics. Springer, 2012.

216 Bibliography

[DLM07] Arnaud Durand, Clemens Lautemann, and Malika More. A simple

proof of the polylog counting ability of first-order logic: guest column.

SIGACT News, 38(4):40–45, 2007.

[Don70] John Doner. Tree Acceptors and Some of Their Applications. J. Comput.

Syst. Sci., 4(5):406–451, 1970.

[Dym88] Patrick W. Dymond. Input-Driven Languages are in log n Depth. Inf.

Process. Lett., 26(5):247–250, 1988.

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspec-

tives in Mathematical Logic. Springer, 1995.

[EJT10] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace Versions

of the Theorems of Bodlaender and Courcelle. In 51th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2010, October

23-26, 2010, Las Vegas, Nevada, USA, pages 143–152. IEEE Computer

Society, 2010.

[EJT12] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic Meta

Theorems for Circuit Classes of Constant and Logarithmic Depth. In

Christoph Dürr and Thomas Wilke, editors, 29th International Sympo-

sium on Theoretical Aspects of Computer Science, STACS 2012, Febru-

ary 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages

66–77. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification

1: Equations und Initial Semantics, volume 6 of EATCS Monographs

on Theoretical Computer Science. Springer, 1985.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits,

and the Polynomial-Time Hierarchy. Mathematical Systems Theory,

17(1):13–27, 1984.

[GKP14] Mai Gehrke, Andreas Krebs, and Jean-Éric Pin. From Ultrafilters on

Words to the Expressive Power of a Fragment of Logic. In Descriptional

Complexity of Formal Systems - 16th International Workshop, DCFS

2014, Turku, Finland, August 5-8, 2014. Proceedings, pages 138–149,

2014.

[GL17] Moses Ganardi and Markus Lohrey. A universal tree balancing theorem.

CoRR, abs/1704.08705, 2017.

[GM18] Paul Gastin and Benjamin Monmege. A unifying survey on weighted log-

ics and weighted automata - Core weighted logic: minimal and versatile

Bibliography 217

specification of quantitative properties. Soft Comput., 22(4):1047–1065,

2018.

[Gup85] A. Gupta. A fast parallel algorithm for recognition of parenthesis

languages. Master’s thesis, 1985.

[Hal76] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1):171–186,

1976.

[H̊as87] Johan H̊astad. Computational Limitations of Small-depth Circuits. MIT

Press, Cambridge, MA, USA, 1987.

[HKLL15] Michael Hahn, Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig.

Visibly Counter Languages and the Structure of NC1. In Giuseppe F.

Italiano, Giovanni Pighizzini, and Donald Sannella, editors, Mathe-

matical Foundations of Computer Science 2015 - 40th International

Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceed-

ings, Part II, volume 9235 of Lecture Notes in Computer Science, pages

384–394. Springer, 2015.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages and Computation. Addison-Wesley, 1979.

[JS14] Maurice J. Jansen and Jayalal Sarma. Balancing Bounded Treewidth

Circuits. Theory Comput. Syst., 54(2):318–336, 2014.

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems. In

Raymond E. Miller and James W. Thatcher, editors, Proceedings of a

symposium on the Complexity of Computer Computations, held March

20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown

Heights, New York., The IBM Research Symposia Series, pages 85–103.

Plenum Press, New York, 1972.

[KL12] Andreas Krebs and Klaus-Jörn Lange. Dense Completeness. In Hsu-

Chun Yen and Oscar H. Ibarra, editors, Developments in Language

Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, Au-

gust 14-17, 2012. Proceedings, volume 7410 of Lecture Notes in Computer

Science, pages 178–189. Springer, 2012.

[KLL14] Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter

Languages and Constant Depth Circuits. Electronic Colloquium on

Computational Complexity (ECCC), 21:177, 2014.

[KLL15a] Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. On Distinguish-

ing NC1 and NL. In Igor Potapov, editor, Developments in Language

218 Bibliography

Theory - 19th International Conference, DLT 2015, Liverpool, UK, July

27-30, 2015, Proceedings., volume 9168 of Lecture Notes in Computer

Science, pages 340–351. Springer, 2015.

[KLL15b] Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig. Visibly Counter

Languages and Constant Depth Circuits. In Ernst W. Mayr and Nico-

las Ollinger, editors, 32nd International Symposium on Theoretical

Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garch-

ing, Germany, volume 30 of LIPIcs, pages 594–607. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2015.

[KLL16] Andreas Krebs, Nutan Limaye, and Michael Ludwig. Cost Register

Automata for Nested Words. In Thang N. Dinh and My T. Thai, edi-

tors, Computing and Combinatorics - 22nd International Conference,

COCOON 2016, Ho Chi Minh City, Vietnam, August 2-4, 2016, Pro-

ceedings, volume 9797 of Lecture Notes in Computer Science, pages

587–598. Springer, 2016.

[KLL17a] Andreas Krebs, Nutan Limaye, and Michael Ludwig. A Unified Method

for Placing Problems in Polylogarithmic Depth. In Satya V. Lokam and

R. Ramanujam, editors, 37th IARCS Annual Conference on Foundations

of Software Technology and Theoretical Computer Science, FSTTCS

2017, December 11-15, 2017, Kanpur, India, volume 93 of LIPIcs, pages

36:36–36:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[KLL17b] Andreas Krebs, Nutan Limaye, and Michael Ludwig. A Unified Method

for Placing Problems in Polylogarithmic Depth. Electronic Colloquium

on Computational Complexity (ECCC), 24:19, 2017.

[KLM10] Andreas Krebs, Nutan Limaye, and Meena Mahajan. Counting Paths in

VPA Is Complete for #NC1. In My T. Thai and Sartaj Sahni, editors,

Computing and Combinatorics, 16th Annual International Conference,

COCOON 2010, Nha Trang, Vietnam, July 19-21, 2010. Proceedings, vol-

ume 6196 of Lecture Notes in Computer Science, pages 44–53. Springer,

2010.

[KLM12] Andreas Krebs, Nutan Limaye, and Meena Mahajan. Counting Paths

in VPA Is Complete for #NC1. Algorithmica, 64(2):279–294, 2012.

[Kop16] Eryk Kopczynski. Invisible Pushdown Languages. In Martin Grohe,

Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

’16, New York, NY, USA, July 5-8, 2016, pages 867–872. ACM, 2016.

Bibliography 219

[KS15] Andreas Krebs and Howard Straubing. EF+EX Forest Algebras. In

Andreas Maletti, editor, Algebraic Informatics - 6th International Con-

ference, CAI 2015, Stuttgart, Germany, September 1-4, 2015. Proceed-

ings, volume 9270 of Lecture Notes in Computer Science, pages 128–139.

Springer, 2015.

[Lad75] Richard E. Ladner. On the Structure of Polynomial Time Reducibility.

J. ACM, 22(1):155–171, 1975.

[LM98] Klaus-Jörn Lange and Pierre McKenzie. On the Complexity of Free

Monoid Morphisms. In Kyung-Yong Chwa and Oscar H. Ibarra, editors,

Algorithms and Computation, 9th International Symposium, ISAAC

’98, Taejon, Korea, December 14-16, 1998, Proceedings, volume 1533 of

Lecture Notes in Computer Science, pages 247–256. Springer, 1998.

[LMM09] Nutan Limaye, Meena Mahajan, and Antoine Meyer. On the Complexity

of Membership and Counting in Height-Deterministic Pushdown Au-

tomata, journal=Journal of Automata, Languages and Combinatorics.

14(3/4):211–235, 2009.

[Loh01] Markus Lohrey. On the Parallel Complexity of Tree Automata. In

Aart Middeldorp, editor, Rewriting Techniques and Applications, 12th

International Conference, RTA 2001, Utrecht, The Netherlands, May

22-24, 2001, Proceedings, volume 2051 of Lecture Notes in Computer

Science, pages 201–215. Springer, 2001.

[LST94] Clemens Lautemann, Thomas Schwentick, and Denis Thérien. Logics

for context-free languages. In Leszek Pacholski and Jerzy Tiuryn, ed-

itors, Computer Science Logic, 8th International Workshop, CSL ’94,

Kazimierz, Poland, September 25-30, 1994, Selected Papers, volume 933

of Lecture Notes in Computer Science, pages 205–216. Springer, 1994.

[Lyn77] Nancy A. Lynch. Log Space Recognition and Translation of Parenthesis

Languages. J. ACM, 24(4):583–590, 1977.

[Meh80] Kurt Mehlhorn. Pebbling Moutain Ranges and its Application of DCFL-

Recognition. In J. W. de Bakker and Jan van Leeuwen, editors, Au-

tomata, Languages and Programming, 7th Colloquium, Noordweijkerhout,

The Netherland, July 14-18, 1980, Proceedings, volume 85 of Lecture

Notes in Computer Science, pages 422–435. Springer, 1980.

[MP71] Robert McNaughton and Seymour A. Papert. Counter-Free Automata

(M.I.T. Research Monograph No. 65). The MIT Press, 1971.

220 Bibliography

[MR15] Filip Mazowiecki and Cristian Riveros. Maximal Partition Logic: To-

wards a Logical Characterization of Copyless Cost Register Automata.

In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Com-

puter Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany,

volume 41 of LIPIcs, pages 144–159. Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2015.

[MR16] Filip Mazowiecki and Cristian Riveros. Copyless Cost-Register Au-

tomata: Structure, Expressiveness, and Closure Properties. In Nicolas

Ollinger and Heribert Vollmer, editors, 33rd Symposium on Theoreti-

cal Aspects of Computer Science, STACS 2016, February 17-20, 2016,

Orléans, France, volume 47 of LIPIcs, pages 53:1–53:13. Schloss Dagstuhl

- Leibniz-Zentrum fuer Informatik, 2016.

[Neb00] Markus E. Nebel. On the Horton-Strahler number for combinatorial

tries. RAIRO - Theoretical Informatics and Applications - Informatique

Théorique et Applications, 34(4):279–296, 2000.

[NS07] Dirk Nowotka and Jiŕı Srba. Height-Deterministic Pushdown Automata.

In Ludek Kucera and Antońın Kucera, editors, Mathematical Founda-

tions of Computer Science 2007, 32nd International Symposium, MFCS

2007, Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings,

volume 4708 of Lecture Notes in Computer Science, pages 125–134.

Springer, 2007.

[OS06] Sang-il Oum and Paul D. Seymour. Approximating clique-width and

branch-width. J. Comb. Theory, Ser. B, 96(4):514–528, 2006.

[Par66] Rohit Parikh. On Context-Free Languages. J. ACM, 13(4):570–581,

1966.

[Ram86] V. Ramachandran. Restructuring formula trees. Unpublished

manuscript, 1986.

[Ruz81] Walter L. Ruzzo. On Uniform Circuit Complexity. J. Comput. Syst.

Sci., 22(3):365–383, 1981.

[Sch65] Marcel Paul Schützenberger. On Finite Monoids Having Only Trivial

Subgroups. Information and Control, 8(2):190–194, 1965.

[Smo87] Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds

for Boolean Circuit Complexity. In Proceedings of the 19th Annual ACM

Symposium on Theory of Computing, 1987, New York, New York, USA,

pages 77–82, 1987.

Bibliography 221

[Spi71] P.M. Spira. On time hardware complexity tradeoffs for Boolean functions.

Proceedings of the Fourth Hawaii International Symposium on System

Sciences, pages 525–527, 1971.

[Str52] A. N. Strahler. Hypsometric Area-Altitude Analysis of Erosional To-

pography. Geological Society of America Bulletin, 63:1117, 1952.

[Str57] A. N. Strahler. Quantitative analysis of watershed geomorphology.

American Geophysical Union Transactions, 38(6):912–920, 1957.

[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Com-

plexity. Birkhäuser, Boston, 1994.

[Str13] Howard Straubing. New applications of the wreath product of forest

algebras. RAIRO - Theor. Inf. and Applic., 47(3):261–291, 2013.

[Tho97] Wolfgang Thomas. Languages, Automata, and Logic, pages 389–455.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[Til87] Bret Tilson. Categories as algebra: An essential ingredient in the theory

of monoids. 48:83–198, 09 1987.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized Finite Automata

Theory with an Application to a Decision Problem of Second-Order

Logic. Mathematical Systems Theory, 2(1):57–81, 1968.

[Vol90] Heribert Vollmer. The Gap-Language-Technique Revisited. In Egon

Börger, Hans Kleine Büning, Michael M. Richter, and Wolfgang

Schönfeld, editors, Computer Science Logic, 4th Workshop, CSL ’90,

Heidelberg, Germany, October 1-5, 1990, Proceedings, volume 533 of

Lecture Notes in Computer Science, pages 389–399. Springer, 1990.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform

Approach. Texts in Theoretical Computer Science. An EATCS Series.

Springer, 1999.

[Wan94] Egon Wanke. k-NLC Graphs and Polynomial Algorithms. Discrete

Applied Mathematics, 54(2-3):251–266, 1994.

[Wir90] Martin Wirsing. Algebraic specification. In Handbook of Theoretical

Computer Science, Volume B: Formal Models and Sematics (B), pages

675–788. 1990.

List of Figures

1.1 Evaluation of terms that are balanced trees 6

1.2 Terms that are degenerated trees 6

1.3 Recursive evaluation of Boolean formulas 7

1.4 Recursive evaluation of terms over arbitrary algebras 8

1.5 Chapter overview . 16

9.1 Splitting PNF terms . 120

9.2 Recursion scheme of the evaluation algorithm 123

9.3 Recursion intervals . 124

9.4 Recursion intervals in the tree . 125

9.5 Recursive evaluation procedure . 130

9.6 Recursive evaluation procedure, computation of the operation . . . 131

9.7 Overall recursive evaluation procedure 131

11.1 Simple height behavior and bounded corridor 177

List of Symbols and Notation

This list summarizes the notation that is defined throughout this work, as well as

letters that are commonly used in a certain role.

Numbers and sets

N the natural numbers

N the algebra of natural numbers: (N; +,×, 0, 1)

Z the integers

Z the algebra of integers: (Z; +,×, 0, 1)

B the set of truth values: {⊥,>}
B the two-element Boolean algebra: (B;∧,∨,⊥,>)

m, n, i, j natural numbers

[m,n] interval of natural numbers from m to n

[n] = [1, n]

2X power set of X; equivalent to P(X)

Xn set of sequences/words/tuples of elements of X of length n

X∗ set of sequences/words/tuples of elements of X of finite length

Xm×n set of m× n matrices over X

∼ relation

X/∼ quotient of X

[x]∼ equivalence class induced by ∼ that contains x

f : x 7→ y function f maps x to y; equivalent to f(x) = y and (x, y) ∈ f

226 List of Figures

Letters and words

Σ alphabet

w word

L language

ε the empty word

Σ̂ visible alphabet consisting of call letters Σcall, return letters

Σret, and internal letters Σret

a, b, c letters of Σcall, Σret, and Σint

∆ height function of the form Σ̂∗ → Z for well-matched words

 binary matching relation in nested and well-matched words

([n];<, (Qa)a∈Σ) word structure

([n];<, (Qa)a∈Σ,) nested word structure

w ∈ Σ∗ word as a sequence

w1w2 concatenation of words

wi letter in position i; equivalent to w(i)

|w| length of w

|w|X number of positions having a letter in X

|w|a = |w|{a}
nw maps well-matched words and forests onto the corresponding

nested word

forest maps nested and well-matched words onto the corresponding

forest

wm maps nested words and forests onto the corresponding well-

matched word

WM(Σ̂) set of well-matched words over Σ̂

Automata and circuits

A-NC1 complexity class defined by NC1 circuits that are augmented

by algebra A
mpX multiplexer over set X

evalA(C) evaluation function realized by circuit C over algebra A
L(X) language accepted by automaton or circuit X

RX
σ =

(
(TX(σ))X ;�

)
, which is the register algebra of registers X

and signature σ

List of Figures 227

ν0 : X → D initial register valuation in a CRA/CVPA

ρ : Q× Σ→ RX
σ register update function in a CRA

ρcall register update function for call letters in a CVPA of the form

Q× Σcall → (TX(σ))X

ρret register update function for return letters in a CVPA of the

form Q× Σret × Γ→ (TX∪Xmatch(σ))X

ρint register update function for internal letters in a CVPA of the

form Q× Σint → (TX(σ))X

µ : Q→ TX(σ) final cost function in a CRA/CVPA

FA(M) : Σ∗ → D function realized by a CRA/CVPA

Structures and graphs

(D;R) structure with domain D and family of relations R

σ single- or many-sorted signature

S sort

σ(S) signature of a structure S

G = (V ;E) graph

(V ;E, (Qa)a∈Σ) labeled graph; equivalent to (V ;E, l) for a labeling function

l : V → Σ

V set of vertices

V (G) vertex set of graph G

E set of edges

E(G) edge set of graph G

v vertex

e edge

d(v) degree of vertex v in a graph

t tree

f forest

(Σ, r) ranked alphabet where r : Σ→ N
t1 + . . .+ tn forest containing of n trees; + may be commutative

a(t1 + . . .+ tn) unranked labeled tree with a root labeled a; a acts as a unary

function

a(t1, . . . , tk) ranked labeled tree with a root labeled a; a acts as a k-ary

function

228 List of Figures

Algebras and homomorphisms

A = (D;O) single- or many-sorted algebra with domain D and family of opera-

tions O

F(A) = (D, D̃;B,Z, B̃, ◦,�, id); functional algebra of A, where D̃ ⊆ DD

id identity map

◦ composition of functions

� substitution in functions

σ(A) signature of an algebra A
([S]∗ × [S])k set of signatures of algebras of S sorts and k operations

~, ⊗, �, ⊕ operations

Inσ(i) input signature of the i’th operation

Inσ(i, j) sort of the j’th input of the i’th operation

Arσ(i) arity of the i’th operation

Outσ(i) sort of the image of the i’th operation

σ(i) signature of the i’th operation

σ(~) = σ(i) if ~ is the i’th operation

(An)n∈N family of algebras

φ, ψ homomorphisms

ker(φ) kernel of homomorphism φ

A ≺ B algebra A divides algebra B
π∼ natural homomorphism A → A/∼
A/∼ = (D/∼;O/∼) quotient of A under congruence ∼
∼L syntactic congruence

ηL = π∼L , which is the syntactic morphism of L

Synt(L) syntactic algebra of L

Terms and evaluation

t term

ξ : [n]→ [S] variable signature, which assigns each of the n variables a

sort

Tξs(σ) set of terms having variable signature ξ that evaluate to a

term of sort s

T∗s(σ) set of terms having arbitrary consistent variables that evaluate

to sort s

List of Figures 229

Cs(σ) set of contexts that evaluate to sort s

ν variable valuation of the form [n]→ D
evalνA : Tξ(σ)→ D evaluation function using variable valuation ν

evalA = eval∅A

i <T j in PNF term T , position i is a child of position j

i /T j in PNF term T , [i, j] is a term

Forest and extend algebras

F forest

EA(Σ) = (H(Σ); +, (4a)a∈Σ, 0)

FA(Σ) = (H(Σ), V (Σ); +,+′,+′′, ·, ·′, (4a)a∈Σ, 0, 1)

V vertical monoid

H horizontal monoid

h element of horizontal monoid

v element of vertical monoid

+ horizontal concatenation of forests

4a unary extend operation in extend algebra, or constant in forest algebra

respectively

Synt(F) syntactic extend/forest algebra

H(Σ) horizontal monoid of the free extend/forest algebra over Σ; contains all

forests

V (Σ) horizontal monoid of the free forest algebra over Σ; contains all contexts

HF horizontal monoid of the syntactic extend/forest algebra of F

VF vertical monoid of the syntactic forest algebra of F

Index

accepting run, 69

algebra, 35

composition, 112

distributive, 144

factor, 42

family, 37

finite, 143, 173, 200

free, 43

functional, 117, 139

many-sorted, 36

term algebra, 40

universal, 35

alphabet, 29

aperiodicity, 44, 49, 187, 191, 198

arithmetic formula, 5, 100, 143

automaton, 67, 145

counter, see also visibly counter au-

tomaton

finite, 68

pushdown, see pushdown automaton

tree, see tree automaton

Turing machine, 71

balanced tree, 5, 26, 121

BFVP, 5, 8, 143

binary tree, 26, 51, 180

Boolean formula value problem, 5, 143

bounded corridor, 176

branch-free coloring, 178

BUTA, see tree automaton

CCRA, see cost register automaton

CCVPA, see cost register automaton

CFL, see pushdown automaton

circuit, 107, 155

arithmetic, 111, 144, 155

Boolean, 109

constant depth, 110, 175

family, 109

generalized, 111, 139

many-sorted, 107, 118

clique-width, 28, 161

coloring, 25, 178

branch-free, 178

complete tree, 26

complexity class, 71

parallel, 109

concatenation, 29

congruence, 42

context, 39, 53, 120

copyless, 91, 154

cost register automaton, 91

visibly cost register automaton, 98

cost function, 86

linearly bounded, 92

polynomially bounded, 92

cost register automaton, 86, 101, 150

copyless, 96, 154

232 Index

linearly bounded, 92

on well-matched words, 96, 150

polynomially bounded, 92, 150

counter automaton, 70

counting, 85, 89, 101, 111, 148

Courcelle’s Theorem, 64, 158

CRA, see cost register automaton

CVPA, see visibly cost register automa-

ton

DAG, 25, 107, 155, 168

dense completeness, 200

DFA, see automaton

directed forest, 25

directed tree, 25

distributivity, 41, 57, 86, 143

division, 42, 48, 140

DOCA, see counter automaton

DPDA, see pushdown automaton

evaluation, 40, 117, 139, 157

algorithm, 126

arithmetic formula, 143

automaton, 102, 145, 173, 196

Boolean formula, 143

circuit, 108, 155

cost register automaton, 150

distributive algebra, 143, 145

finite algebra, 72, 143, 200

term, 40, 118

tree automaton, 198

weighted automaton, 148

expression, see term

extend algebra, 50, 56, 76, 159

free, 51

syntactic, 51

extend operation, 51

family of algebras, 37

forest, 25, 52

unranked, 26

forest algebra, 52, 118, 148, 184, 199

free, 53

syntactic, 54

forest language, 51, 199

formula, see also term

arithmetic, 143

Boolean, 143

free monoid, 29, 44

functional algebra, 117, 139

generalized circuit, 111, 139

generalized homomorphism, 41, 56

graph, 23, 64, 161

group, 44

Hamiltonian cycle, 24, 162

height profile, 31, 193

hole, see also context, 5, 39, 53, 120

homomorphism, 22, 41

generalized, 41, 56

homomorphism theorem, 43

kernel, 42

horizontal monoid, 51

Horton-Strahler number, 180

labeled forest, 26

labeled tree, 26

linear

term, 39

term set, 91

linear CFL, 70

logic, 61

first-order, 63, 175

monadic second order, 158

monadic second-order, 61

on graphs, 64, 158

magma, 44

many-sorted

algebra, 36

circuit, 107

signature, 36

matching, 32

strong, 81

matching graph, 81

Index 233

matching predicate, 30, 181

matrix, 22

maximal cut, 162

monadic second-order logic, 10, 61, 158,

204

monoid, 44

MSO, see monadic second-order logic

multiplexer, 111

nested word, see word

nested word automaton, 73, 196

NFA, see automaton

NLC-width, 13, 28, 161

NOCA, see counter automaton

numerical predicate, 11, 30, 63, 110, 174

open term, see also context, 120

path, 24

PDA, see pushdown automaton

PNF, 119, 143, 174

polynomially bounded, 92, 150

pushdown automaton, 69, 74, 110, 200

quantitative automaton, 85

quasiaperiodicity, 44, 186

quotient, 22, 42

ranked forest, 26

ranked tree, 26, 71

recognition, 47, 69

by algebras, 47

by automaton, 68

by circuits, 107

by logic, 61

register algebra, 88

register update function, 88

regular language, 49, 76

of nested words, 57

of trees, 50

of well-matched words, 57

of words, 49

ring, 44

run, 68

SAT, 5, 38

semigroup, 43

aperiodicity, 44, 191

quasiaperiodicity, 44, 191

semiring, 43, 148

SHB, see simple hight behavior

sibling order, 26

signature, 35

many-sorted, 36

structure, 23

variable, 38

simple height behavior, 175

singleton property, 162

strongly well-matched word, 81

structure, 21, 62

subdomain, 36

substitution, 39, 63, 88, 117

syntactic

algebra, 48

congruence, 48

extend algebra, 51, 76, 160

forest algebra, 54, 148, 199

homomorphism, 48, 174

monoid, 48, 69, 174

morphism, 48

TDTA, see tree automaton

term, 38, 119

algebra, 40

context, 39

evaluation, 40, 118

open, see context

postfix normal form, 119

tree, 25, 64

tree automaton, 71, 198

tree-width, 27, 155

Turing machine, 71

undirected forest, 25

undirected tree, 25

uniform word problem, 145

234 Index

universal algebra, see algebra

unranked forest, 26

unranked tree, 72

variable valuation, 40

VCA, see visibly counter automaton

VCL, see visibly counter automaton

vector, 21

vertical monoid, 53

very visibly pushdown automaton, 77, 82,

194

visible alphabet, 30

visibly cost register automaton, 97, 171

visibly counter automaton, 80, 191, 201

visibly pushdown automaton, 8, 13, 58,

74, 81, 97, 145, 150, 170, 194

VPA, see visibly pushdown

VPL, see visibly pushdown automaton

VVPA, see very visibly pushdown au-

tomaton

weighted automaton, 86, 102, 148

well-matched word

height behavior, 175

strongly well-matched, 81

word, 21, 29, 63

empty, 29

height, 31, 175

nested, 30, 74

nested word, 57, 65

well-matched, 30

well-matched word, 57, 96

wreath product, 94

WSHB, see simple hight behavior

WVPA, see weighted automaton

XML, 81

	Introduction
	Outline
	Background
	Main Contributions
	About This Thesis

	I Modeling
	Structures
	Basic Notation
	Structures
	Graphs
	DAGs, Forests and Trees
	Words
	Nested and Well-Matched Words
	Conclusion

	Algebras
	Universal Algebras
	Terms
	Homomorphisms
	Semigroups and Semirings
	Conclusion

	Recognition by Algebras
	Regular Word Languages
	Regular Tree Languages
	Extend Algebras
	Forest Algebras

	Regular Languages of Nested and Well-Matched Words
	Conclusion

	Logic
	Logic on Words
	Logic on Trees
	Logic on Graphs
	Logic on Nested Words
	Conclusion

	Automata
	Word Automata
	Finite Automata
	Pushdown Automata
	Turing Machines and Complexity

	Finite Tree Automata
	Finite Nested Word Automata
	Visibly Pushdown Automata
	Within Visibly Pushdown Languages
	Very Visibly Pushdown Languages
	Visibly Counter Languages
	Intersection Problems

	Conclusion

	Quantitative Automata
	Counting
	Weighted Automata
	Cost Functions and Cost Register Automata
	Cost Register Automata for Finite Words
	Cost Functions as Wreath Products
	Cost Register Automata for Well-matched Words

	Conclusion

	Circuits
	Boolean Circuits
	Arithmetic Circuits
	Generalized Circuits
	Conclusion

	II Evaluation Complexity
	General Evaluation Complexity
	Representing Terms
	Dividing Terms
	The Evaluation Algorithm
	Evaluating the M-Interval
	Evaluating the N-Interval
	Evaluating the L-Interval
	Evaluating the R-Interval

	Complexity and Correctness: Proof of Theorem 75
	Conclusion

	Applications of Evaluation
	The Boolean Formula Value Problem and Finite Algebras
	Evaluating Arithmetic Terms and Distributive Algebras
	Automata
	Language Recognizing Automata
	Weighted Automata
	Cost Register Automata

	Circuits of Bounded Tree-Width
	Courcelle's Theorem
	NP-Complete Problems Parameterized by NLC-Width
	Conclusion

	Evaluation in Low Complexity
	From Evaluation to Visibly Pushdown Languages - The Scenario of Low Complexity Evaluation
	First-Order Definability of Visibly Pushdown Languages
	Parsing the Tree Structure
	Evaluating the Parsed Tree
	Decidability

	Visibly Counter Languages
	An Open Problem
	First-Order Definability of Nested Word Languages
	First-Order Definability of Tree Languages
	Application
	Term Evaluation Over Finite Algebras
	Dense Completeness

	Conclusion

	Conclusion
	Bibliography
	List of Figures
	List of Symbols and Notation
	Index

