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1. Introduction 
 

1.1 Breast cancer 

1.1.1 Tumour aetiology and development 

Breast cancer is the most frequent cancer and the second leading cause of cancer-related 

death in women1. Tumour cells derive from healthy body cells that have accumulated genetic 

and epigenetic changes during their life cycle. DNA mutations may derive from different 

sources such as oxidative damage, replication errors or the chromatin organisation. Loss of 

DNA repair genes and unsuccessful DNA repair further promote genome instability referring 

to a high frequency of mutations in different genes2. The inheritance of individual germ line 

mutations or a somatic mutation in a critical gene can act as a first hit that makes a cell 

susceptible to malignant growth during its lifetime. Inherited mutations predisposing for 

breast cancer include tumour suppressor genes such as breast cancer 1 and breast cancer 2 

(BRCA1 and BRCA2) as well as checkpoint kinase 2 (CHEK2) and tumour protein 53 (TP53) 

involved in cell cycle arrest, DNA repair or apoptosis. Due to the diploidy of the human 

genome, a first mutation leads to heterogeneous wildtype (WT) and mutant alleles. Further 

somatic mutations acquired in the homologous gene at a later time point can act as second 

hit. The consequence is loss of heterogeneity in certain gene clusters, which can result in 

malignancy3,4. Likewise, increased expression or activity of oncoproteins can contribute to 

carcinogenesis or promote characteristics of cancer cells5. 

Carcinogenesis of the breast gives rise to tumour cells with basal, basoluminal or luminal 

characteristics (figure 1.1). This is due to the morphological and functional variety of breast 

epithelial cells divided in the inner luminal, milk-secreting cell layer and the outer basal cell 

layer, whose contractility leads to milk ejection6. Breast cancer initially has been assigned 

according to histological morphology and grading. It is further classified based on the 

immunohistochemical expression status for oestrogen receptor (ER), progesterone receptor 

(PR) and human epidermal growth factor receptor 2 (HER2). Besides, defined intrinsic 

subtypes of breast cancer are involved in incidence, therapy response and survival7-11. 

Hormone receptor-positive tumours with luminal-enriched genes are divided in luminal A and 

luminal B subtypes, with the latter often associating with a positive HER2 status. Luminal 

breast cancers are additionally distinguished with regard to their Ki-67 index with low Ki-67 

expression in luminal A and high in luminal B tumours, respectively. The most reliable Ki-67 

cut-off to stratify patients is determined at 13.25% (section 1.1.5)12-14.  

Moreover, tumours with positive HER2 status but absent hormone receptor expression 

belong to the HER2-enriched breast cancer subtype6. Apocrine breast cancer is another rare 
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form of hormone-related breast tumours although no PR and an alternatively spliced and 

thereby truncated ER-36 are present. However, the most prominent characteristic of 

apocrine tumours is the positive androgen receptor (AR) status and many such tumours are 

enriched for HER2. The corresponding tumour cells show an apocrine phenotype with 

eosinophilic and granular cytoplasm as well as prominent nuclei and cell borders15-18. 

Generally, the AR is expressed in many breast tumours and thus cannot serve for subtype 

classification. Its expression levels correlate with HER2 amplification in ER-negative 

tumours. Besides, AR expression is a good prognostic marker in breast cancer and 

associates with more differentiated tumour cells. Nonetheless, a high AR to ER ratio can 

promote endocrine resistance via increased androgen-dependent growth during 

anti-oestrogen therapy19,20. 

 

Figure 1.1: Classification and therapy of breast cancer 

Different breast epithelial cell types give rise to morphologically distinguishable tumour phenotypes, 

which are further classified by different molecular properties. The latter, for example, are categorised 

by receptor expression and affect prognosis. Breast cancer subtype is also a major determinant of 

therapy
21,22

. Abbreviations: Human epidermal growth factor receptor 2, HER2; Hormone receptor, HR; 

Oestrogen receptor, ER; Progesterone receptor, PR.  

 

Breast tumours lacking ER, PR and HER2 are histologically defined as triple-negative breast 

cancer (TNBC). The majority of these tumours can be stratified to the basal-like molecular 

subtype. Besides poor prognosis, their characteristic is a high expression of cytokeratins 5 

and 6 as well as epidermal growth factor receptor (EGFR). Absence of these markers results 

in so-called “normal-like” tumours, as they share a similar profile to normal mammary stromal 

cells. In contrast to basal-like tumours, normal-like breast tumours have a much better 

prognosis and a bad response to neoadjuvant chemotherapy23-25.  



1 Introduction 

 

3 

According to the intrinsic subtypes, a microarray-based assay of 50 classifier genes (PAM50) 

allows for reliable prognosis and predictions on therapy response26. In concordance with the 

intrinsic subtypes, analysis of copy number alterations in breast cancer delivers ten 

integrative clusters to be differentiated. These clusters were established by selection of the 

1,000 genomic variants with highest impact on gene expression at their own genetic loci27,28. 

The ten groups are categorised in normal mammary gland (group I) and tumours with 

mesenchymal (group II), basal / myoepithelial (groups III - V), luminal (groups VI - VIII) or 

mixed (groups IX - X) characteristics29. 

 

1.1.2 Surgery and chemotherapy 

Different therapeutic approaches are used to treat patients suffering from breast cancer. 

Surgery to remove the tumour can be conducted in a breast-conserving manner or by 

mastectomy. Sequential chemotherapy and radiotherapy are started soon after surgery with 

chemotherapy usually prior to radiotherapy. Additionally, neoadjuvant chemotherapy is 

considered with the aim of tumour size reduction before surgery30,31. In 1958, the first 

chemotherapy trial was initiated using an alkylating agent. Due to the observed reduction of 

breast cancer recurrence, this success was followed by poly-chemotherapy regimens and 

recommendations on the use of chemotherapy for the majority of breast cancer patients. 

Today, however, there is evidence that many patients receive chemotherapy without 

additional benefit32. It is known, for instance, that patients with low absolute mortality risk also 

receive a low benefit from chemotherapy. Therefore, chemotherapy in breast cancer is 

indicated when its benefit outweighs the side effects, namely for patients suffering from 

HER2-positive, triple-negative or high-risk luminal B breast cancer. Especially younger 

patients under 50 years of age seem to benefit from chemotherapy. Current evidence-based 

recommendations for first-line chemotherapy include the use of at least an anthracycline and 

a taxane for 18 to 24 weeks31,33. Tumour cytotoxicity from anthracyclines results from DNA 

intercalation and inhibition of topoisomerase II activity34. Antineoplastic agents from this class 

of drugs include doxorubicin, which exhibits sustained cardiotoxicity and its later developed 

and less cardiotoxic epimer epirubicin. With regard to the naturally occuring taxanes, their 

first approved representative paclitaxel prevents depolymerisation of the mitotic spindle and 

results in cell cycle arrest32. 

 

1.1.3 Radiotherapy 

Radiotherapy of the surgical borders, the whole breast and axillary lymph nodes all show 

beneficial effects in the reduction of tumour recurrence and an increase in overall 
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survival35,36. In experimental setups, increasing doses of ionising radiation (IR) decrease 

single tumour cell survival, as measured by colony formation ability. In addition to the intrinsic 

radiosensitivity and reproductive ability of different cell types, plating efficiency and thus the 

fraction of cells that form colonies under specific growth conditions determine clonogenic 

survival after seeding of a cell suspension. In contrast to successful colony formation, 

irradiation can lead to the formation of giant cells. These are enlarged cells developed by 

growth while replication is inactivated. Furthermore, the formation of abortive colonies 

represent cells that divided several times before entry into mitosis-linked cell death, a 

process termed mitotic catastrophe37,38.  

IR causes DNA damage and thus stimulates DNA repair (figure 1.2). The high-energy 

particles used for IR induce direct damage at the helical backbone of the DNA by splitting 

chemical bonds. However, the major genetic damage is induced indirectly through the 

formation of reactive oxygen species (ROS). These are induced by the liberation of electrons 

through IR and thus the creation of highly reactive ions and ion pairs39. IR induces cell cycle 

arrest via tumour protein 53 (p53)40 and causes delayed cell cycle progression and 

mitosis41,42 attributable to cellular DNA repair processes. 1 Gy of IR causes approximately 

1,000 single-strand breaks and 35 double-strand breaks (DSBs). Although DSBs are the 

minor DNA lesions following IR, they are central for IR-induced toxicity, as the majority of 

DSBs are repaired by error-prone non-homologous end joining (NHEJ) in mammals. DNA 

lesions are detected by the DNA damage response, which stimulates cell cycle checkpoints 

to determine cell fate resulting in DNA repair or cell death. Proteins involved in the DNA 

damage response protect the lesions from DNA decay and undesired DNA repair while 

allowing chromatin relaxation and thus access for DNA repair proteins. One such protein is 

ataxia telangiectasia mutated (ATM) that phosphorylates a variety of proteins including p53 

and BRCA1 leading to the activation of cell cycle checkpoints and DNA repair. Another 

important target of ATM is the phosphorylation at serine 139 of the minor histone 2A.X 

variant (H2AX)43,44. H2AX is important for chromosomal stability, the recruitment of 

p53-binding protein 1 and BRCA1 and thus enables the assembly of DNA repair complexes 

at foci formed after exposure to IR45,46. For the initiation of NHEJ, the Ku complex forming as 

Ku70 / Ku80 heterodimer binds the DNA lesion. DNA-dependent protein kinase (DNA-PK) is 

recruited and phosphorylates different proteins such as the X-ray repair 

cross-complementing protein 4 (XRCC4), which is involved in the religation of DNA ends. In 

addition to NHEJ, DNA repair can be performed through homologous recombination in late 

S and G2 phases of the cell cycle. Homologous recombination employs the homologous 

sequence on the sister chromatid as template for DNA repair via formation of a so-called 

holliday junction44.  
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Figure 1.2: DNA damage and repair evoked by radiotherapy 

Radiotherapy induces DSB formation either directly by breaking bonds in the helical backbone or 

indirectly by the formation of ROS. ATM via phosphorylation stimulates radiation-induced cell cycle 

arrest and activates the DNA repair machinery, i.e. NHEJ or homologous recombination. Successful 

DNA repair promotes cellular survival, whereas cell cycle progression despite critical DNA damage 

results in cell death mainly by mitotic catastrophe. Abbreviations used: Double-strand break, DSB; 

Reactive oxygen species, ROS; Ataxia telangiectasia mutated, ATM; Non-homologous end joining, 

NHEJ; Tumour protein 53, p53; Minor histone 2A.X variant, H2AX; Breast cancer 1 gene, BRCA1; 

DNA-dependent protein kinase, DNA-PK; X-ray repair cross complementing protein 4, XRCC4. 

 

Conventional breast cancer radiotherapy regimes consist of a total dose of 50 Gy in 2 Gy 

fractions given for five consecutive days per week over a time period of 5 weeks31. In addition 

to these standard fractions used for external beam radiotherapy in patients, different 

treatment options have been tested to improve therapy outcome. The fractionation sensitivity 

is low for breast tumours, whereas it is high concerning late damage of normal tissue. 

Although fraction size is limited by the regenerative potential of healthy tissue affected by the 

irradiation process, different attempts to reduce the number of fractions have been made47. 

As a result, fewer fractions and thus so-called hypofractionation can be performed in a 

shorter time period showing at least the effectiveness as classic fractionation. 

Hypofractionation uses approximately 40 Gy in 15 to 16 fractions in 3 or up to 5 weeks 

depending on the individual breast cancer case31,48-50. Besides external beam radiotherapy, 

some patients may especially benefit from intraoperative radiotherapy51,52 or brachytherapy53. 

Moreover, a radiation boost to the tumour bed after fractionated whole-breast irradiation can 

improve local control albeit increasing the risk of fibrosis. In particular in patients > 60 years 

of age, the radiation boost should be avoided, whereas it might be of value in younger 

patients54,55. Although the irradiation dose is delivered at specific loci such as the borders 
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after surgery where potentially remaining tumour cells are expected, radiotherapy can also 

induce acute and long-term adverse effects. These include nausea and emesis56, as well as 

fatigue and breast pain57. Due to the usually applied external beam radiotherapy, skin 

alterations such as hyperpigmentation or fibrosis can occur58. Besides, incidental exposure of 

the heart increases the risk of ischaemic heart disease in an IR dose-dependent manner59. In 

rare events, radiotherapy can even cause the development of a second tumour60. As with 

other anti-cancer strategies, the benefit from irradiation generally outweighs the risk and 

impact of adverse effects. 

 

1.1.4 Endocrine therapy 

Oestrogens 

The primary oestrogens are oestrone (E1), 17-oestradiol (E2) and oestriol (E3). They are 

synthesised by the CYP19A1-representing aromatase enzyme, which uses C19 androgens 

as substrates (figure 1.3). Depending on their prosthetic groups, aromatase converts 

androstenedione, testosterone, 16-OH-androstenedione or foetal oestrogen in E1, E2, E3 or 

oestetrol (E4), respectively. In both males and females, aromatase expression occurs at 

tissue-specific rates with the gonads as the major source for sex hormones61. In 

pre-menopausal women, aromatase expression and thus oestrogen synthesis in the 

reproductive tract are regulated by the hypothalamic-pituitary-gonadal axis and its 

corresponding feedback systems. In this context, the hypothalamus represents the source for 

the secretion of gonadotropin-releasing hormone (GnRH), which binds its receptor at the 

pituitary. Pulsatile release of GnRH, for example, is evoked by ultradian rhythm and 

kisspeptin that is also produced in the hypothalamus62. GnRH stimulates the synthesis and 

secretion of follicle-stimulating hormone (FSH) and luteinising hormone (LH), the so-called 

gonadotropins, in the pituitary63-65. FSH binds its receptor, which stimulates the expression of 

aromatase in the granulosa cells of an ovarian follicle66. The hypothalamic-pituitary-gonadal 

axis has a major impact on the menstruation cycle. During menstruation, the endometrium is 

resolved in an inflammatory process. Comparably to a wound healing process, endometrium 

regeneration involves tissue formation, remodelling and angiogenesis. E2 is the main 

hormone to stimulate endometrial proliferation during the subsequent follicular phase. 

Aromatase expression and thus E2 synthesis predominantly occur in the granulosa cells of a 

developing follicle in the ovaries and, subsequently, in corpus luteum cells after ovulation. 

During the secretory phase following ovulation, the corpus luteum produces high amounts of 

progesterone, which induces endometrial differentiation. Regression of the corpus luteum in 

the late secretory phase degenerates the endometrium und thus initiates menstruation. In 
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women after menopause, adipose tissue becomes the main source for oestrogens61,67 and 

oestrogens are further expressed in breast tissue, adrenal glands and hepatocytes68. 

 

Figure 1.3: Oestrogen synthesis and activation of ER signalling 

Oestrogens are synthesised mainly via the hypothalamic-pituitary-gonadal axis in pre-menopausal 

women. This involves the hypothalamus-induced production of the gonadotropins FSH and LH in the 

pituitary to stimulate oestrogen production in target theca and granulosa cells of a growing ovarian 

follicle. Aromatase converts C19 androgens into the respective oestrogens and is also expressed in 

further cell types, e.g. breast cells or adipocytes, and thus enables oestrogen synthesis also in 

post-menopausal women and men. E2 represents the most potent ER agonist and modulates the 

gene expression signature and thereby contributes to oncogenic events. Abbreviations: 

Follicle-stimulating hormone, FSH; Luteinising hormone, LH; Cyclic adenosine monophosphate, 

cAMP; Oestrone, E1; 17-oestradiol, E2; Oestrogen receptor, ER; Oestrogen response element, ERE. 

Modified after Doshi et Agarwal, J Mildlife Health 2013
68

 and Patel et al., Biol Reprod 2015
69

. 

 

E2 is the most potent female oestrogen binding with high affinity and specificity to its 

receptor70. The ER exists as homodimer or heterodimer of its  and  subunits. High 

expression of ER- is found in uterus, ovary, breast, prostate, testis, epididymis and liver, 

whereas ER- expression also is high in ovary, prostate and testis as well as in bone marrow 

and the brain. As common for members of the nuclear receptor family, the structure of the 

ER includes two transactivation domains, ligand and DNA binding domains and a hinge 

region for receptor dimerisation. ER- and ER- show sequence homologies of 

approximately 60% in the ligand binding domain and 95% in the DNA binding domain. Upon 

oestrogen binding to the ER, a conformational change is induced with subsequent chaperone 

dissociation and dimerisation. Translocation of the ER in the nucleus allows binding to 

oestrogen-response elements (EREs) in a variety of genes. In addition, protein-protein 

interactions with other transcription factors allow for indirect DNA binding. Additionally, 

non-genomic signalling via second messengers is described in many tissues. Even 
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ligand-independent activation through other signalling pathways such as their activation by 

phosphorylation is described for the ER71-73.  

With further regard to ER subunits, especially ER- function is associated with breast cancer. 

The role of ER- is not understood well, partly due to the existence of different ER- 

isoforms. Besides the classic ER- and ER- isoforms, a G protein-coupled receptor 

responding to oestrogens (GPER) is described. In addition, two truncated ER- splice 

variants of 46 kDa and 36 kDa exist that, together with the full-length 66 kDa ER- protein, 

can translocate to the plasma membrane through palmitoylation to be associated with 

caveolin-1 allowing for rapid ER signalling74. Particularly in ER-positive breast tumours, ER 

signalling critically contributes to increased proliferation and decreased apoptosis75. In 1896 

already, George T. Beatson postulated the importance of the ovaries for controlling 

proliferation of epithelial tissue. Especially pre-menopausal women, in whom tumour removal 

often had shown no improve, benefitted from mammary tumour regression after 

ovariectomy76.  

Moreover, E2 metabolism is supposed to possess carcinogenic properties. Phase I oxidative 

metabolism may lead to ROS formation and unstable adenine and guanine DNA base 

adducts. Besides, hormone levels can act as risk factors for breast cancer development: An 

increased breast cancer risk in post-menopausal women is associated with elevated blood 

levels of E2, androstenedione or testosterone. Another risk factor for breast cancer 

represents obesity, as it is associated with increased aromatase-mediated E2 production in 

adipose tissue. With regard to progesterone, its serum levels do not associate with 

post-menopausal breast cancer risk, but are irreversibly associated with the risk of breast 

cancer development in pre-menopausal women75.  

 

Anti-oestrogens 

Due to the early observations on the contribution of oestrogens to the development of breast 

and other cancers, very high doses of synthetic oestrogens were initially applied to breast 

cancer patients in order to disturb oestrogen physiology. This approach turned out a first 

temporarily successful endocrine breast cancer therapy77. The pioneering drug to antagonise 

ER action in breast tumour cells is tamoxifen (TAM), although it was initially developed as 

potential contraceptive agent. In 1973, TAM marketing for breast cancer therapy started in 

the United Kingdom and it was approved by the Food and Drug Administration in 197778. 

Together with other therapeutic advances, breast cancer mortality has declined continuously 

since the 1970s. TAM treatment for 5 years has resulted in increased disease-free survival 

after surgery in ER-positive, node-negative patients with invasive breast cancer. Endocrine 

therapy employed for additional 5 years further improves cancer recurrence and overall 
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survival (OS). In ductal carcinoma in situ, endocrine therapy generally shows a minor benefit 

and is employed cautiously. For the prevention of breast cancer in women at increased risk, 

prophylactic TAM administration may be further beneficial79,80. As selective ER 

modulator (SERM), TAM inhibits ER signalling in the breast while acting as agonist in other 

tissues such as bone or uterus. In addition to its grand success as effective anti-cancer 

therapeutic, TAM protects breast cancer patients from osteoporosis 71, but it may enhance 

thromboembolism81 and increases the risk of endometrial cancer. However, the incidence of 

endometrial cancer development in breast cancer patients, even when treated with TAM, is 

very low82.  

The ER-inhibitory effects of TAM in the breast are attributable to its (Z) isomer (ICI-46474), 

which is simply referred to as TAM in this work83,84. With regard to its action, TAM is a 

pro-drug transformed into many metabolites by various cytochrome P450 (CYP) enzymes 

(figure 1.4). Amongst the direct conversion products of TAM are (Z)-4’-OH-TAM and 

TAM-N-oxide85. In different rat strains, application of TAM provokes liver tumours by the 

formation of hepatic DNA damaging adducts. These adducts do not accumulate with TAM 

administration over time and are also formed, to a lesser extent however, in the mouse liver. 

Mice do not develop such liver tumours upon TAM administration, which is probably due to 

metabolic differences and more rapid clearance of TAM as well as alterations in DNA repair. 

DNA adducts are especially formed via the TAM metabolite -OH-TAM, which is the major 

route of TAM metabolism in rats, but not in humans. In the rat, TAM-provoked induction of 

liver cancer is the result of relative high -hydroxylation combined with insufficient 

detoxification of the DNA86,87. The main conversion of TAM in human patients is 

N-demethylation (DM) primarily catalysed by CYP3A4 and CYP3A5. Thereby, DM-TAM 

reaches twofold higher plasma levels than the parent drug TAM. CYP2D6 activity turns 

DM-TAM into (Z)-4’-OH-DM-TAM or (Z)-endoxifen. (Z)-endoxifen together with 

(Z)-4-OH-TAM, which is directly metabolised from TAM by 4-hydroxylation through various 

CYP enzymes, represent the major active TAM metabolites. Both (Z)-4-OH-TAM and 

(Z)-endoxifen have a much higher ER binding affinity compared to TAM resulting in an 

increased anti-proliferative efficacy. Besides the corresponding (Z)-4-OH-TAM, 

(E)-4-OH-TAM exerts agonistic effects on the ER and may associate with TAM resistance. In 

this context, (E) and (Z) isomers of the TAM metabolites differ in their concentration, which is 

also influenced by the extent of glucuronation. Generally, (Z)-endoxifen reaches higher 

plasma concentrations compared to (Z)-4-OH-TAM. Therefore, (Z)-endoxifen is accepted the 

main effector of TAM therapy. Its concentration is strongly dependent on the CYP2D6 

metaboliser status of the patient, which may determine success of TAM therapy88-90. 
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Figure 1.4: Metabolism of TAM 

Tamoxifen (TAM) is a pro-drug extensively metabolised by phase I and II enzymes. Demethyl 

(DM)-TAM represents the main metabolic pathway in human patients and the ER antagonistic effects 

of TAM in the breast are primarily related to the (Z) isomers. The major active TAM metabolites to 

exert anti-tumour activity are (Z)-endoxifen and (Z)-4-OH-TAM (modified after Brauch et al., Clin Chem 

2009 and Mürdter et al., CPT 2011). 

 

 

In recent years, endocrine therapy in post-menopausal women has been recommended to 

include an aromatase inhibitor (AI) because of its superior effect and altered toxicity profile 

compared to TAM, which was investigated and confirmed in clinical trials. AIs include 

anastrozole, exemestane and letrozole. However, cardiovascular events91,92 and bone 

fractions are more frequent under AI therapy. The latter is explained by their mode of action 

to reduce the formation of endogenous E280,93. In pre-menopausal patients, an incomplete 

block of oestrogen synthesis provoked by AI application would induce gonadotropin release 

and thus stimulate aromatase to increase ovarian oestrogen synthesis. Therefore, AIs do not 

belong to the standard endocrine therapy in pre-menopausal women71. A switch to TAM after 
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prolonged AI therapy is possible, though. Accordingly, TAM pre-treated patients can switch 

to AI therapy when reaching menopause during endocrine therapy80. Exclusively in 

pre-menopausal patients, endogenous oestrogen levels can be depleted by the application of 

GnRH analogues. GnRH itself is secreted in a pulsatile manner and chronic administration of 

a GnRH analogue causes desensitisation of the GnRH receptor and thus diminished 

gonadotropin release resulting in decreased gonadal oestrogen synthesis93. 

Besides selective ER modulators and AIs, the selective ER degrader fulvestrant is in clinical 

practice since 2002 acting as a pure ER antagonist. It has shown at least the efficacy and 

tolerability as anastrozole in a first-line clinical trial. Initially, fulvestrant was introduced as 

second-line treatment after disease progression under TAM or AI therapy. Due to its positive 

evaluation, fulvestrant is also suggested as first-line therapeutic by now31,94. 

 

PR status 

The PR consists of the isoforms A and B derived from two differential promoters within the 

PR gene and it is expressed as homodimer or heterodimer of these two isoforms. PR-A is a 

truncated version of PR-B and is more often over-expressed in breast cancer. Besides, a 

high PR-A to PR-B ratio is associated with a poorer prognosis and a decreased response to 

hormone therapy. However, the role of the PR in breast cancer is generally not understood 

well so far. Studies with anti-progestins such as mifepristone reveal decreased cell 

proliferation at low concentrations, but show the opposite effect with increasing doses. Due 

to the activation of PR transcription by ER- signalling, PR expression may serve as 

indicator for ER- function74.  

 

AR status 

The AR is expressed in healthy tissues and in many breast tumours including most cases of 

ER-positive breast cancer, as described in section 1.1.1. Its presence can be associated with 

ameliorated prognosis and response to hormone therapy, plus its interaction with the ER 

modulates tumour progression. However, the role of the AR in breast cancer risk and 

progression generally depends on different factors such as tumour subtype and thus the 

presence of other steroid receptors74,95. 

 

HER2 status 

The HER2-encoding ERBB2 gene was simultaneously identified in several laboratories. 

HER2 consists of an extracellular domain, a transmembrane domain and an intracellular 

domain with tyrosine kinase activity. The frequent amplification of HER2 in breast cancer was 
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recognised and correlated with its impact on survival. In patients with HER2 amplification, 

relapse is more likely to occur and they have a shortened survival. Besides, the actual 

number of gene copies correlates with an exacerbated prognosis for the patient6,96. 

 

1.1.5 The Ki-67 proliferation marker in breast cancer 

The Ki-67 antigen was identified at Kiel University in Germany representing clone number 67 

on a 96-well plate tested for the development of a monoclonal antibody to detect 

proliferation. As proliferation marker, the Ki-67 protein can be detected during progression 

through the active phases of the cell cycle, whereas it is absent in G0 phase quiescent cells. 

Ki-67 expression increases with cell cycle progression and reaches its maximum in mitosis. 

Herein, Ki-67 expression is highest in metaphase, whereas its levels are decreasing during 

anaphase and telophase.  

Despite its established relevance as a marker for proliferation, physiological roles for the 

Ki-67 protein have remained elusive until recent years97,98. Moreover, its link to malignant cell 

proliferation is not without controversy. To provide an example, depletion of Ki-67 in HeLa 

cervical cancer and U2OS osteosarcoma cells has no effect on cell cycle kinetics99. In 

addition, Ki-67 absence has no impact on proliferation rates in DLD-1 colon and MCF-7 

breast cancer cells although decreasing clonogenic growth100. Contrary to these results, 

Ki-67 depletion in several non-cancerous human cell lines diminishes RNAs known to peak 

at G1/S transition and the entry of S phase. This effect is mediated by a functioning p21 cell 

cycle checkpoint induced by the reduced Ki-67 levels101. During mitosis, Ki-67 is known to be 

responsible for the maintenance of chromosome separation after nuclear disassembly as 

well as chromosome individualisation and condensation in the cytoplasm. It thus prevents the 

chromosomes from collapsing into a single chromatin mass and allows their motility. The 

Ki-67 protein has little secondary structure, it is highly positive charged and acts as 

surfactant at the phase boundary between chromosomes and cytoplasm. Furthermore, Ki-67 

allows access of the spindle microtubules to the chromosomes and Ki-67 depletion prolongs 

mitosis102. The Ki-67 protein promotes the recruitment of protein phosphatase 1 to 

anaphase chromosomes, which is a serine/threonine-specific phosphatase contributing to 

mitotic exit by resolving mitotic kinase activity. The  subunit of the enzyme is thought to be 

important for chromatin decondensation. Phosphorylated Ki-67 is a substrate for protein 

phosphatase 1103. In addition, the p150 N-terminal domain of the chromatin assembly 

factor 1 interacts with histones leading to Ki-67 accumulation in the perichromosomal layer 

during mitosis, formation of Ki-67 foci at heterochromatic satellite repeats after cytokinesis 

and in early G1 phase, as well as Ki-67 localisation to the perinuclear region during 

interphase104. 
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With regard to breast cancer, Ki-67 staining distinguishes the luminal A molecular breast 

cancer subtype from luminal B tumours. In terms of 10-year relapse-free survival (RFS) in 

general and under TAM treatment, patients with luminal A breast tumours show highest 

survival, followed by luminal B tumour patients and least survival is observed in 

HER2-positive breast cancer12,105. The Ki-67 index, measured as the portion of Ki-67-positive 

cells within a tumour, is frequently higher in pre-menopausal compared to post-menopausal 

tumours and positively associates with nodal status, tumour grade, HER2 over-expression 

and negative ER or PR status. Regarding breast cancer survival, high Ki-67 expression is a 

prognostic factor for both shorter disease-free survival and overall survival outcome106. 

Besides, Ki-67 expression can be higher in distant metastatic lesions compared to the 

primary tumour. Therefore, metastatic breast cancer patients with high proliferation status 

might especially benefit from chemotherapy compared to other therapies107. Regarding 

ER-positive breast cancer patients with Ki-67 ≥ 14%, adjuvant docetaxel chemotherapy 

shows a tendency of prolonging disease-free survival and overall survival. Conversely, 

patients with ER-positive disease and a Ki-67 index < 14% have no such advantage from 

taxane treatment108. In a recent study, a Ki-67 cut-off at 20% identifies patients to benefit 

most from neoadjuvant chemotherapy109. Although Ki-67 may represent a promising marker 

for breast cancer classification as well as prognosis and prediction of therapy response, its 

clinical use is limited so far. Inter-laboratory differences in Ki-67 staining intensity and 

frequency of labelled nuclei challenge the reproducibility of a not-yet uniformed Ki-67 cut-off 

and thus highlights the need for standardisation of Ki-67 detection110. However, the 

International Ki-67 in Breast Cancer Working Group made an attempt for developing staining 

and scoring protocols in order to be able to compare Ki-67 results and which may prove 

valuable in the future111,112. 

 

1.1.6 Gene expression tests to personalise medicine 

Different gene expression diagnostic tests based on breast cancer subtypes (section 1.1.1) 

are established for advanced tumour-specific treatment decisions and prognosis. As such, 

the MammaTyper® uses mRNA expression profiling of ER, PR, HER2 and Ki-67 from 

formalin-fixed and paraffin-embedded samples for molecular subtype classification of the 

tumour. This technique shows higher sensitivity and specificity compared to 

immunohistochemistry-based detection of theses markers and might serve as an 

amendment to routine diagnostics113,114. 

With regard to the PAM50 gene signature, the NanoString Prosigna™ assay detects mRNA 

levels for 46 of the original 50 PAM50 genes in formalin-fixed, paraffin-embedded tumour 

samples more precisely than polymerase chain reaction (PCR). Besides molecular subtype 
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classification, Prosigna™ determines a risk of recurrence score and predicts a 

tumour-specific benefit from endocrine therapy and chemotherapy115. Moreover, the 

MammaPrint® was developed as a gene expression profiling microarray that investigates the 

signature of 70 genes. From 25,000 genes tested in 98 tumour samples, these 70 genes 

represented the most accurate number of significant associates for disease outcome116,117. In 

one follow-up study, patients with early breast cancer and a high clinical risk were stratified 

by their genomic risk of breast cancer recurrence according to the test. 5-year distant 

metastasis-free survival was assessed in those patients with low genomic risk. Patients 

receiving chemotherapy only showed a random better outcome than patients without 

chemotherapy. Therefore, chemotherapy was proposed to be neglected in patients with low 

genomic risk despite their high clinical risk118. Initially, the Oncotype DX® test was designed 

for ER-positive and TAM-treated breast cancer with negative nodal status. It investigates 

mRNA expression of 16 cancer-related genes amended by 5 normalisation genes. A 

recurrence score to predict distant recurrence or even prospective mortality outcome can be 

calculated119,120. Independently from node status, it can predict whether a patient will benefit 

from chemotherapy prior to TAM121,122. As another test, the EndoPredict® investigates distant 

recurrence in early ER-positive, HER2-negative breast cancer patients treated with 

endocrine therapy. The EndoPredict® risk score investigates mRNA levels from eight 

cancer-related genes and three reference genes123. It is an independent prognostic marker 

after adjusting for ER and PR status, Ki-67 index, tumour size, grade, lymph node status and 

age also in node-positive breast cancer patients undergoing chemotherapy before endocrine 

therapy124. 

Several studies compared the gene expression tests described above, which vary in their 

methodology, use of gene signatures and inclusion of clinical parameters125. Dependent on 

the test, subtype classification, treatment recommendation and prognosis can differ126. As the 

tests have diverse approaches, none seems to be superior to another. However, the tests 

may provide different information with regard to individual patients127. For future directions, 

besides the analysis of the most frequently observed breast cancer predictors, the 

implementation of specific functional biomarkers may improve the value of such gene 

expression tests in terms of personalised medicine.  

 

1.2 K+ channels 

Ion channels are membrane-spanning proteins that allow flux of different ions such as 

sodium (Na+), potassium (K+), calcium (Ca2+) or chloride (Cl-) through the cellular 

membranes128. K+ channels constitute a big and topologically as well as functionally diverse 

group of ion channels. Their pore-forming α subunits are selective for K+ ions and their gating 
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mechanisms switch between open and closed conformations. K+ channels present with 2, 4, 

or 6 transmembrane (TM) segments. The members of the different groups are further divided 

in subtypes that interact with auxiliary subunits. Voltage-gated K+ (KV) channels, for example, 

belong to the 6 TM K+ channels. Their voltage sensor is located in the S4 segment containing 

positively charged residues. KV channels are activated by depolarising membrane potentials 

and therefore represent important contributors to cellular excitability and action potential 

duration. The group of 6 TM K+ channels further comprises Ca2+-activated K+ (KCa) channels, 

whose members are activated by different concentrations of intracellular Ca2+ [Ca2+]i. 

Two-pore domain K+ channels exist with 4 TM segments and sense the environmental 

conditions of a cell thereby contributing to background K+ currents and the resting membrane 

potential. Besides, inward-rectifying K+ (Kir) channels pass K+ ions more easily inward than 

out of the cell. Kir channels are 2 TM proteins and contribute to the adjustment of the resting 

membrane potential of hyperpolarised cells. Due to their high structural and functional 

diversity, K+ channels contribute to cardiac, neuronal and metabolic disorders and they also 

exert cancer-promoting activity129,130. 

Different types of K+ channel members reportedly contribute to cancer cell characteristics 

such as proliferation, migration, angiogenesis and apoptosis. Cell volume generally is 

determined by the Cl- gradient, but K+ fluxes are required for counteracting the ionic 

imbalance. Thereby, spatially-confined cell volume changes by K+ channels may support 

tumour or stroma cell migration, trigger apoptosis or cell division131. Generally, uncontrolled 

proliferation and thus tumour growth rely on aberrant progression through the cell cycle, 

which comprises a tightly controlled interaction of different cyclins and cyclin-dependent 

kinases. In contrast to a terminally differentiated or senescent cell, a transiently arrested cell 

can leave the resting G0 phase upon mitogenic stimulation and thus enter G1 phase. 

Retinoblastoma protein phosphorylation activates elongation factor 2 in order to induce 

genes involved in G1/S transition and DNA synthesis, which is accomplished in S phase. 

After successful DNA replication, the cell progresses via G2 phase into mitosis132. 

K+ channels participate in the membrane potential changes observed throughout the cell 

cycle and during the corresponding phase transitions. Hyperpolarisation induced by K+ efflux 

acts as driving force for Ca2+ entry into the cell133. Accordingly, MCF-7 breast tumour cells 

are hyperpolarised through G0 and G1 phases and during G1/S transition, which is 

accompanied by increased K+ permeability134. Moreover, aberrant expression or activity of 

many different K+ channels is described for various tumour entities. In general, K+ channels 

seem to modulate cancer driver genes and mutations to influence tumour progression. 

Moreover, K+ channels are expressed in tumour and stroma cells, but their exact functions 

concerning tumour to stroma cell communication in complex situations are not known135,136.  
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1.2.1 The KCa channel family 

One important feature of KCa channels is their dependence on [Ca2+]i, which is a second 

messenger involved in many cellular processes. Vice versa, activation of KCa channels 

increases the driving force for Ca2+ influx to modify the induction and the response to 

Ca2+-dependent signalling mechanisms within the tumour cell. One mechanism for the 

integration of Ca2+ signalling and KCa channel activity is the binding of calmodulin and 

down-stream activation of calmodulin-dependent kinases and calcineurin137. [Ca2+]i in resting 

cells lies at 100 nM, but entry of Ca2+ across the plasma membrane or from intracellular 

stores, such as the endoplasmic reticulum, the golgi apparatus or lysosomes, can increase 

[Ca2+]i to more than 1 µM. Ca2+ is needed for cell cycle progression and is also implicated in 

tumour cell proliferation. It is further important for immediate-early gene expression in early 

G1 phase and for the initiation of G1/S transition. Aberrant Ca2+-dependent signalling is 

frequently observed in cancer. Ca2+ can modulate oncogenic signalling like retinoblastoma 

inactivation by phosphorylation through direct interaction with ras signalling. Besides, [Ca2+]i 

oscillations are observed during G1/S and G2/M transitions. Ca2+ is also involved in signalling 

networks that control cellular survival and apoptosis. As an example, the flux of Ca2+ from the 

endoplasmic reticulum together with its accumulation in mitochondria is a potent cell death 

signal138. 

The KCa channel family includes big (BK), intermediate (IK) or small (SK) conductance 

channels of 100 to 300 pS, 20 to 80 pS or 5 to 20 pS, respectively139-141. SK1 - 3 channels 

and the IK channel open at low [Ca2+]i, whereas the BK channel primarily responds to voltage 

with [Ca2+]i  acting as amplifier137. So far, the oncogenic potential of BK channels is described 

in different tumours such as sarcoma or bone, brain, pancreas and breast cancer. The SK3 

channel is known to be involved in breast cancer as well, but also in melanoma and 

gastrointestinal malignancies. In addition to breast cancer, functions of the IK channel in 

prostate, brain and gastrointestinal tumours as well as melanoma are reported135.    

 

1.3 The BK channel 

1.3.1 Activation and structure of the BK channel pore-forming subunit 

The BK channel is also known as KCa1.1, Slo1, or Maxi-K channel because of its high 

K+ conductance128. Its gene, initially termed the slo gene, was discovered in drosophila 

melanogaster, in which mutation of the slowpoke locus abolishes BK channel-representing 

currents and immensely impairs flight ability142. Mouse and human homologues show more 

than 50% amino acid agreement compared to the drosophila slowpoke locus. By alternative 

splicing, multiple transcripts are generated from the BK channel-encoding KCNMA1 
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gene143,144. The BK channel protein derives from a single gene with 27 exons128. Different BK 

isoforms are known to be processed by alternative splicing, such as brain-specific isoforms145 

and the glioma BK146, the mitochondrial BK147, or by stress axis hormone regulation148,149. 

Splicing processes are observed at domain boundaries. Besides, constitutive exons, e.g. the 

pore-forming regions, are conserved between vertebrates and intervertebrates whereas this 

does not hold for alternatively spliced exons. 150. 

BK channels (figure 1.5) present as tetramers of their pore-forming  subunits151. Although 

the BK channel belongs to the 6 TM proteins, it contains an additional S0 transmembrane 

segment that renders the N terminus to the extracellular side. Segments S0 - S4 function as 

voltage sensor. Besides, the BK channel possesses a large C terminus that forms a gating 

ring structure for the binding of Ca2+. These Ca2+ sensors serve for the regulation of 

K+ conductance and thus are named RCK1 and RCK2, the latter which contains the 

Ca2+ bowl holding high Ca2+ affinity152-154. Therefore, activation of BK channels by Ca2+ 

occurs at the C terminus155. Maximum activation of BK channels involves both voltage and 

Ca2+. Nonetheless, the BK channel can be almost maximally activated by strong 

depolarisation alone156. Transition from closed to open state after sensing for voltage and 

Ca2+ is allosterically coupled. The BK channel can hereby occupy many different open and 

closed conformations and its activation by voltage and Ca2+ influence each other157,158. 

 

Figure 1.5: Structure of the BK channel complex 

The BK channel consists as complex of its pore-forming  subunit that interacts in a cell- and 

tissue-specific manner with auxiliary  and  subunits in order to modify its activity. BK- is a 6 TM 

protein with an additional S0 segment, whose activity depends on voltage and [Ca
2+

]i. In contrast, 

BK- and BK- subunits are proteins with 2 and 1 TM segments. Abbreviations: Voltage sensor 

domain, VSD; Pore-gate domain, PGD; Regulator of K
+
 conductance, RCK. 
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1.3.2 Modification of BK channel activity by its auxiliary subunits 

Despite the ubiquitous expression of the BK- pore-forming subunit, BK channels have 

tissue-specific electrophysiological properties. Besides, the expression of BK- and BK- 

accessory subunits and posttranslational modifications as well as alternative splicing of the 

BK- subunit gene allow for increased diversity. However, BK channel half-activation voltage 

requires membrane potentials > 100 mV in the absence of [Ca2+]i. Alternatively, the 

half-maximal effective Ca2+ concentration needed is ≥ 10 µM at resting conditions. Thus, the 

BK channel would hardly be active in non-excitable cells with a membrane potential ≤ -40 mV 

and [Ca2+]i ≤ 100 nM159. 

In this context, the first BK--modulating subunit was identified in bovine smooth muscle of 

the trachea and showed high affinity for the BK channel blocker charybdotoxin160. The 

subunit was termed BK-1 and its knockout (KO) in mice decreased BK channel Ca2+ 

sensitivity while increasing blood pressure161. Sequence alignment of BK-1 further allowed 

for the identification of BK-2, four differentially spliced BK-3 variants as well as BK-4. The 

BK- family members have a sequence similarity of 21 - 43% and present as membrane 

proteins with 2 TM domains (figure 1.5). The different BK- subunits are expressed in a 

tissue-dependent manner. BK-1 is found especially in smooth muscle but very weakly in 

brain and other tissues, whereas BK-2 gene expression is highest in ovary and weak in 

many other tissues. BK-3 expression is prominent in testis and additionally, it shows very 

little expression in other non-neuronal tissues. In contrast, BK-4 is strongly expressed in all 

neuronal tissues. Half-activation voltages of the BK channel at a 1 µM concentration of free 

Ca2+ are shifted by -26 mV and -51 mV for BK-1 and BK-2, respectively. These shifts 

towards more negative membrane potentials for activation are increased at higher 

concentrations of free Ca2+. For BK-4, the free Ca2+ concentration determines to which 

direction half-activation voltage is shifted. Co-expression of a particular BK-3 variant with 

BK- may determine its influence on BK channel activation albeit it seems the shift induced 

by BK-3 stays in the physiological range without affecting BK channel activation162,163. 

Concerning BK channel inhibition, the presence of the BK-4 extracellular loop irreversibly 

renders the BK channel complex resistant to charybdotoxin and iberiotoxin binding and 

action164.   

As the first member of a new class of BK channel subunits, high abundance of BK-1 was 

detected by a cDNA library screen in breast and prostate cancer cell lines. In contrast to the 

cancer cell lines tested, the non-tumourigenic MCF-10A epithelial cell line was negative for 

BK-1. Besides, BK-1 was identified in 26 out of 33 tested human breast tumour samples, 

but was also expressed in other cancers165. In LNCaP prostate cancer cells, the BK-1 
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subunit shifts the voltage dependence of BK channel activation to more negative potentials in 

a Ca2+-independent manner159,166. Regarding BK channel openers, BK-1 prevents BK 

activation by mallotoxin, but only has a small impact on the NS-1619 compound. Both 

substances open the BK channel by inducing a hyperpolarising shift167,168. Regarding the 

stoichiometry of 1 to , BK-1 opens the channel in an all-or-none fashion. In other words, 

there is no intermediate shift observed at low 1 to  ratios, a finding that is in clear contrast 

to the mode of BK channel activation in the presence of BK- subunits169. 

Four of these BK- subunits have been described in the past few years. They belong to the 

group of leucine-rich repeat-containing (LRRC) proteins and were identified as 35 kDa 

proteins named LRRC26 (BK-1), LRRC52 (BK-2), LRRC55 (BK-3), and LRRC38 

(BK-4)170. As first described for BK-1, the  subunits possess an amino-terminal signal 

peptide that is cleaved in the mature protein allowing for extracellular localisation of the 

following large LRR domain. The BK- subunits further present as single-span 

transmembrane proteins with a short intracellular C terminus159. Therefore, the BK- subunits 

differ structurally from the previously described BK- subunits (figure 1.5). However, BK- 

and - subunits share significant amino acid sequence identity of 30 to 40%. With regard to 

the modulation of BK channel activity, the BK- subunits induce a negative shift of BK- half 

maximal activation of about 140, 100, 50, and 20 mV for BK-1-4, respectively. With regard 

to terminology, the BK-1-4 subunits are sorted in a descending manner according to their 

impact on BK channel activation170. In addition, BK- subunits can be further distinguished by 

their tissue-specific expression pattern. The BK-1 subunit, for example, is detected in 

secretory epithelial cells such as lacrimal, parotid and submandibular glands as well as in the 

lactating mammary gland171. The BK-2 subunit is highly expressed in testis and skeletal 

muscle, albeit it is found in other tissues such as placenta and some glands to a much lower 

extent as well. In contrast, BK-3 expression is restricted to the nervous system. The BK-4 

subunit is abundant in skeletal muscle, adrenal gland and thymus, but it is also found in the 

nervous system170. 

 

1.3.3 Pharmacological BK channel blockade 

As described for other ion channels, BK´s unitary conductance is reduced in the presence of 

extracellular and intracellular protons other than K+. Intracellular proton block depends on 

proton concentration, voltage and the intracellular K+ concentration. Intracellular H+, for 

instance, competitively inhibits the BK channel. Under physiological conditions, however, this 

block can be neglected172,173. Further, BK channel activity is antagonised by the broad 

K+ channel inhibitor tetraethylammonium151. For the group of peptide toxins, charybdotoxin 
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was the first available potent BK blocker although interacting with SK and KV channels as 

well. In contrast, BK channel inhibition by iberiotoxin was found to be specific174. 

Interestingly, charybdotoxin binding to the BK channel can be prohibited in the presence of 

other non-peptide BK channel inhibitors, or enhanced as with the fungal toxin paxilline175. 

More recent experimental approaches utilise paxilline for BK channel inhibition. Paxilline 

efficiently and specifically blocks the BK at low nanomolar concentrations by stabilisation of 

the closed state while lacking effects on open BK channels. Onset and recovery of the BK 

channel block by paxilline is in the range of minutes in electrophysiological attempts, 

depending on the washout176,177. Paxilline was isolated as tremorgenic agent and its effect is 

dependent on the presence of the BK-4 subunit, whose co-expression with BK- was tested 

next to BK-1178. 

 

1.3.4 Role of the BK channel complex in cancer 

The contribution of BK channels to tumour cell proliferation is described for different tumour 

entities including prostate166,179, cervix and ovarian cancer180,181. BK channel activity is also 

found in glioblastoma182,183, in which a glioma-specific and pro-proliferative BK splice variant 

is expressed146,184, and in the aggressive and therapy-resistant glioblastoma stem-like 

cells185. Besides, BK channels seem to enhance migration of glioma cells, which links 

different levels of BK activity and status to the response to radiation therapy186.  

With regard to breast cancer, KCNMA1 gene amplification can be found, which is associated 

with high tumour grade and stage, proliferation and a poor prognosis187. Besides, KCNMA1 

gene expression is higher in metastasising human breast cancer cells and especially those 

from brain metastases, which also reveal higher BK channel-mediated migration and 

invasiveness188,189. An early study determined a possible role for the BK channel in MCF-7 

cell proliferation indicating that cell cycle-dependent BK channel expression is peaking in late 

G1 phase, although BK channel blockade had no significant impact on tumour cell 

proliferation. Apparently, serum-containing proteins or other compounds had an impact on 

BK or the effect of BK inhibitors on the channel190. Later studies from the same group 

revealed G0/G1 cell cycle accumulation as well as reduced cyclin D1 and cyclin-dependent 

kinase 4 expression levels resulting in a suppression of proliferation in MCF-7 cells after 

BK channel mRNA knockdown. In contrast, BK channel depletion in the non-cancerous 

MCF-10A normal breast cell line did not alter the behaviour of these cells. Further, functional 

co-localisation of the BK channel and the second messenger inositol 1,4,5-trisphosphate in 

cholesterol-rich domains such as lipid rafts was observed in MCF-7 cells. In this context, 

adenosine triphosphate (ATP) application to the MCF-7 cells induced Ca2+ release from 
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intracellular stores via type 3 inositol 1,4,5-trisphosphate receptors leading to BK channel 

activation and hyperpolarisation191. 

Proliferation-stimulating effects of BK are also dependent on the cholesterol content of the 

plasma membrane and the localisation of the channel to caveolin-1-enriched lipid rafts in 

melanoma. Accordingly, BK release from these lipid rafts by cholesterol depletion of the 

plasma membrane augments channel activity192. With regard to further 

membrane-associated proteins, HER2 signalling activates the glioma BK channel with 

involvement of changes in [Ca2+]i
193. In contrast, the HER2 status has not generally proven 

an indicator for the proliferation response to the BK channel inhibitor iberiotoxin tested in 

three different breast cancer cell lines194. In addition, BK channel activation by a broad range 

of molecules is shown for different tumour types, such as somatostatin in pituitary tumour 

cells195 or prostaglandin E2 in osteosarcoma196. Moreover, stromal cell-derived factor 1- 

induces pituitary adenocarcinoma cell proliferation197 and glioblastoma cell migration186 by 

BK channel activation. 

 

1.3.5 Interaction of anti-/hormones with the BK channel 

Cis unsaturated fatty acids are described for their potential to activate BK channels without 

change in the fluidity of the cellular membrane, whereas the respective trans isoforms show 

no effect198. Moreover, E2 by endothelium-dependent mechanisms, but also by targeting the 

smooth muscle cell BK channel may promote vasodilation199,200. Along these lines, the 

activation of smooth muscle BK channel complexes by E2 requires the BK-1 subunit, 

whereas the E2 stereoisomer 17-oestradiol has only modest effects on BK channel 

activation. In addition, E2-mediated BK activation stimulates MCF-7 breast cancer cell 

proliferation and that can be mimicked with E2 bound to bovine serum albumin (BSA), to 

prohibit E2 from membrane penetration and thus activation of the intracellularly-located 

ER201,202. A stoichiometry of at least two BK-1 subunits per BK channel was calculated to be 

necessary to mediate BK channel activation by E2, as shown in human embryonic kidney 

cells203. 

Interestingly, BK-modulating effects of anti-hormones have also been reported. This was first 

described for TAM and its membrane-impermeable form ethylbromide TAM by inducing an 

increased channel open probability in the presence of BK-1 in smooth muscle cells204,205. 

The mechanism was confirmed by studies in human embryonic kidney cells transfected with 

an expression construct containing BK- and BK-1. Here, the channel gating effects were 

dependent on the TAM concentration with a half-maximal effective concentration of 

0.2 µM206. The BK channel-stimulating effects of TAM are confirmed in MCF-7 cells, in which 
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BK activation promotes cell proliferation207. Besides TAM, the pure anti-oestrogen fulvestrant 

also activates smooth muscle BK channels in a non-genomic manner. In contrast, fulvestrant 

administration to coronary endothelial cells decreases the BK channel current in a 

concentration-dependent mode. These opposing effects may be attributed to cell type and 

the BK- and BK- subunit profile, which have not been studied in this report. Yet others 

observed lower BK channel activity at higher µM concentrations of fulvestrant in smooth 

muscle as well208,209. 

So far, the available evidence indicates that the intensively studied BK-1 subunit is involved 

in BK channel activation by E2 and anti-hormones. BK-1 and E2 interaction sites are 

different from the sites of protein-protein interaction between BK-1 and BK-. In comparison 

to KV channels and other KCa channels, BK channels have an additional S0 segment 

(mentioned in section 1.3.1) that locates the N terminus to the extracellular side. This 

S0 segment is necessary for BK channel function210,211. As shown for BK-1 and -4, the 

interaction of BK- with these auxiliary subunits is closely related to the S0 segment212,213. 

Moreover, it is established that the assembly of different BK channel subunits orchestrate 

steroid hormone sensitivity of the channel. As an example provided in human embryonic 

kidney cells, BK-2 mediates BK channel activation by the stress-related adrenal androgen 

dehydroepiandrosterone and to a minor extent by corticosterone, E2 and testosterone. In 

comparison, the BK-4 subunit mediates BK´s response to corticosterone, but also other sex 

and stress steroids. However, the steroid precursor cholesterol does not significantly affect 

BK channel activation via BK-2, BK-4 or BK- alone214. Whether and which other BK- or 

the newer BK- subunits would mimic or modulate these effects in other settings is not 

described in detail and thus needs further elucidation. To conclude, an ambivalent either 

anti-proliferative effect via the ER or pro-proliferative effect via BK channel activation may be 

observed for TAM therapy and at least partly also for the administration of fulvestrant with 

regard to breast cancer. 

Besides modulation of BK channel activity, reports from different groups suggest a 

modulation of BK channel expression after E2 administration. This may, at least in part, be 

attributable to the presence of ERs. In smooth muscle cells, an E2-mediated increase of 

BK channel activity can be further augmented by enhanced ER- expression, but is 

abrogated after ER- knockdown215. In experiments using a GnRH-secreting neuronal cell 

line treated with E2 for 3 d, ER- but not ER-α knockdown decreases the BK-representing 

K+ current. Moreover, E2 treatment increases BK- and BK-4 mRNAs, but not those of 

BK-1 or BK-2 expressed in the particular cell line as well216. Work in the mouse N2a and 

the human SK-N-SH neuroblastoma cell lines reveals an E2-mediated increase of mRNA 
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expression for all BK channel subunits investigated. The effects were dependent on ER- but 

not ER- expression. Additionally, BK- expression levels positively associate with 

E2 concentrations administered217. In a rat in vivo study, the influence of ovariectomy and E2 

replacement on BK-α expression was further analysed. Protein but not mRNA levels were 

1.5 fold higher in ovariectomised compared to sham-operated Sprague-Dawley rats. 

Similarly, E2 replacement after ovariectomy restored BK- levels, whereas no effects on 

other BK channel subunits were observed218. 

Rapid actions induced by the interaction of different growth factors with the BK channel are 

well established today. For most work, oestrogens exert a BK channel-stimulatory effect, but 

some few articles describe an inhibitory mode of oestrogen action on BK channels or even 

BK channel downregulation by oestrogens. These opposing effects seem independent from 

oestrogen dose, but may depend on the cell type investigated. Besides BK, other 

K+ channels like Kv channels, but also Ca2+ channels, Na+ channels such as the sequence 

like a Ca2+-activated K+ channel (Slack), Cl- channels as well as ligand-gated channels 

respond to hormones by activation219-221.  

 

1.3.6 BK channel-mediated tumour cell migration and survival after IR 

Radiation-induced tumour cell migration involving Ca2+/calmodulin-dependent protein kinase 

(CaMK) II and stromal cell-derived factor 1- seem to require functional BK, whereas 

clonogenic survival after IR is not dependent on its presence. IR induces an increase in the 

open probability of BK channels without affecting the number of plasma membrane 

BK channels186,222. In contrast to these findings, studies in rat aortic smooth muscle cells 

reveal a decrease in Kcnma1 and Kcnmb1 mRNA expression levels induced by IR, as 

measured after 9 and 30 d. However, the major K+ outward current in these cells can be 

attributed to the BK channel. As a consequence, a decrease in the K+ outward current after 

IR as well as insensitivity to paxilline application were reported and the mechanism 

suggested involved protein kinase C223,224. 

  

1.4 The IK channel 

1.4.1 Structure of the IK channel 

The IK channel, named Gardos after its Hungarian discoverer, was detected in erythrocytes 

in 1958. It was described for the contribution to erythrocyte ion homeostasis by 

Ca2+-dependent K+ permeability225. In 1997, the KCNN4 gene coding for the IK channel was 
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identified by sequence alignment226,227. Later, it was confirmed that IK and Gardos represent 

the same channel, which is also described as KCa3.1 or SK4 channel228,229. 

The IK channel pore-forming  subunits are proteins with 6 TM segments and a loop 

between S5 and S6 with four of the subunits forming the actual channel (figure 1.6). 

IK channels are insensitive to voltage, but they are activated by increasing levels of 

[Ca2+]i
129,137. Ca2+-mediated IK channel activation involves the constitutive binding of 

calmodulin to the cytosolic C terminus of each of the four pore-forming IK channel subunits. 

Free Ca2+ is tightly regulated in the cell and binding to its primary intracellular receptor 

calmodulin stimulates conformational rearrangement and gating with regard to the 

IK channel230,231. Generally, calmodulin is involved in pleiotropic physiological processes 

within the cell as evident by its many binding proteins to regulate protein 

(de)/phosphorylation in particular via CaMK and calcineurin, but also gene expression, 

proliferation and cytoskeleton dynamics232,233. Interestingly, signalling via the CaMK family 

leads to a feedback mechanism to stimulate IK channel expression234. 

 

Figure 1.6: Structure of the IK channel 

The IK channel forms as tetramer of its pore-forming α subunits, which are 6 TM-spanning proteins. 

Activation of the IK channel occurs by an increase in [Ca
2+

]i and interaction with constitutively-bound 

calmodulin, which results in K
+
 efflux and down-stream signalling events. 

 

1.4.2 Pharmacological IK channel modulation 

Pharmacological blockade of the IK channel can be achieved with the widely used 

clotrimazole. Its application results in reduced growth of lung and colon carcinoma as well as 

melanoma cell lines226,235. Due to the interaction of clotrimazole with CYP enzymes, its 

analogue triarylmethane-34 (TRAM-34) was developed to block the IK channel with higher 

potency and selectivity without significant CYP enzyme interaction236. However, more recent 

studies report some CYP enzyme interactions for TRAM-34, albeit with lower potency237,238. 

TRAM-34 has already proven efficient for blocking IK in vivo with a lack of toxicity in 

mice236,239. A potent and selective alternative to TRAM-34 is senicapoc. It was investigated in 

clinical trials and reached phase III for its therapeutic potency in sickle cell anaemia. 

Senicapoc is well tolerated and shows no dose-limiting toxicities. Further, it leads to 
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improved laboratory parameters such as an increased haematocrit and a reduction in 

circulating reticulocyte numbers and erythrocytes with high density in sickle cell disease. 

With regard to sickle cell-related painful crises, senicapoc failed to reduce the number of 

events compared to placebo, however240-242. In addition to IK inhibitors, various IK activators 

are available for experimental purposes with the frequently employed 

1-Ethylbenzimidazolinone (1-EBIO)243. 

 

1.4.3 Roles of the IK channel in cancer 

Increased IK channel expression and cancer-promoting characteristics are described for 

different tumour entities during the past years and as such, IK seems to be an important 

contributor to the proliferative behaviour of pancreatic carcinoma244 and chronic 

lymphoblastic leukaemia cells245. In colon cancer cells, the IK channel-mediated proliferation 

is sensitive to TRAM-34, which induces a G2/M arrest and phosphorylation of 

cyclin-dependent kinase 1246. Besides, IK expression promotes epithelial-mesenchymal 

transition and downregulation of E-cadherin, which is associated with cancer formation by 

loss of cell to cell interactions and cell polarity subsequently increasing invasiveness247. 

TRAM-34 treatment decreased the proliferation of hepatocellular carcinoma cells potentially 

by reducing the expression levels of ER-α and nuclear factor -light-chain-enhancer of 

activated B cells248. Additionally, an anti-apoptotic effect of IK channel activity is observed in 

head and neck squamous cell carcinoma cells249. The IK channel further contributes to 

growth and metastasis in angiosarcoma250 and non-small cell lung carcinoma cells251 and its 

high expression in clear cell renal carcinoma is an indicator for an elevated metastatic 

potential and a poor survival252. IK activity also stimulates migration of melanoma cells253 and 

motility of glioblastoma-derived cancer stem cells254. Moreover, IK channels are upregulated 

in glioblastoma stem-like cells, which represent an extremely invasive and therapy-resistant 

subpopulation of glioblastoma cells255. With regard to gynaecological cancers and IK channel 

inhibition, endometrial cancer cells accumulate in G0 and G1 phases of the cell cycle256,257 

and cervix cancer cells proliferate less258. In addition, IK expression levels seem to be 

associated with ovarian cancer recurrence in patients259. 

In breast cancer, IK channel expression is regulated in a cell cycle-dependent manner with 

highest mRNA levels in late G1 phase. IK activation by Ca2+ leads to hyperpolarisation of the 

cellular membrane potential, which in terms of an underlying mechanism may drive G1/S 

transition and MCF-7 cell proliferation260,261. Accordingly, redistribution of cells through the 

division cycle after IK channel inhibition in other solid cancer cell lines leads to an increase in 

G1 as well as a concomitant reduction of S and G2/M. In addition, cell cycle regulators such 

as cyclin D and cyclin-dependent kinases 1 and 4 as well as retinoblastoma phosphorylation 
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are decreased while cyclin-dependent kinase inhibitor 1B expression levels are increased 

due to IK channel blockade. The G1 arrest is accompanied by a decline in DNA 

synthesis235,262. Interestingly, prolactin, a lactation-causing hormone associated with breast 

cancer risk, stimulated MCF-7 cell proliferation in an IK-dependent manner263. In the 

triple-negative MDA-MB-231 breast cancer cell line, IK elicits pro-proliferative and 

anti-apoptotic responses as well as migration and epithelial-mesenchymal transition264. In 

breast cancer patients, IK channel expression correlates with tumour grade265. In addition, 

the KCNN4 gene was identified as part of a neural progenitor-like stem cell signature found 

in basal breast cancer266.  

 

1.4.4 IK channel expression in stromal cell types 

Regarding the important interaction between tumour cells and their surrounding stroma, it is 

interesting to note that IK channel expression has been identified in different stromal cell 

types (figure 1.7). Adipose tissue as a major endocrine organ, for example, is the main 

extra-gonadal oestrogen source, which is attributed to the expression of aromatase found in 

pre-adipocytes but not in mature adipocytes267,268. The IK channel is functionally expressed in 

pre-adipocytes and may contribute to their proliferative bahviours269. In line, the expression of 

IK channels in fibroblasts, which increases by stimulation with basic fibroblast growth factor, 

promotes proliferation while diminishing differentiation processes270. Fibroblast-derived 

factors as well as extracellular matrix that produces the structural framework, contribute to a 

range of tumour-related characteristics such as growth, metastasis and angiogenesis271. In 

this regard, it seems also worth mentioning that IK in synovial fibroblasts was shown to 

modulate the expression of interleukin (Il)-6 and Il-8, monocyte chemotactic protein 1 as well 

as matrix metalloproteinase-3272. So far, no direct link exists for a role of IK for tumour 

growth-related angiogenesis, which constitutes an important event in cancer progression. 

Nevertheless, the contribution of IK channels to endothelial cell proliferation is established 

with IK expression mediated by growth factors such as vascular endothelial growth factor273.  

The most prominent stroma cell type with regard to IK channel expression and function are 

cells of the immune system. IK expression is confirmed in T and B cells274,275, natural killer 

cells276, macrophages277 as well as dendritic cells278, granulocytes279 and mast cells280. In 

tumour biology, paradoxically, immune cell infiltration enables tumour-promoting 

inflammation while tumour cell destruction due to immune recognition is avoided281-283. 

Cytokines released by tumour-associated macrophages are known to promote cancer 

progression and metastasis. Il-6 and Il-8 release as well as IK channel expression are 

elevated in tumour-associated macrophages when co-cultured with colorectal cancer cells. 

Thereby stimulated colorectal cancer invasiveness can be abolished by the IK inhibitor 
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TRAM-34284. In glioblastoma, anti-inflammatory and tumour-promoting microglia exhibit high 

IK channel expression. TRAM-34 administration polarises these brain-resident macrophages 

into pro-inflammatory anti-tumour microglia285. In addition, a pro-tumourigenic role of IK is 

also described for the regulation of natural killer cells276. Moreover, chronic lymphocytic 

leukaemia cells, which proliferate in lymphoid organs, show a high Ki-67 status associated 

with high IK expression. In contrast, most chronic lymphocytic leukaemia cells in the 

peripheral blood hold a cell cycle-arrested status and a low Ki-67 index as well as low levels 

of IK channel expression245. 

 

Figure 1.7: Role of the IK channel in tumour and stroma cell types 

IK channel expression and activity is described for various cell types of different origin such as 

fibroblasts, cells from blood vessels, adipocytes and immune cells. The signalling network between 

IK-positive breast tumour cells and IK-positive cells contributing to the tumour microenvironment 

remains largely elusive. Modulation of IK channels in these different cells that constitute a tumour, for 

example by IK inhibition with TRAM-34 or senicapoc, may affect proliferation, migration and 

chemotaxis resulting in altered tumour progression and therapy response. 
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1.4.5 IK as modifier of radiation therapy 

The response of various cancer cell lines to chemotherapeutic agents that interfere with DNA 

is modulated by the IK channel. In epidermoid cancer, for example, IK´s presence 

contributes to treatment sensitivity with the DNA crosslinking drug cisplatin. Interestingly, the 

observed reduction in cell viability induced by cisplatin treatment was counteracted with IK 

inhibition, whereas IK activation ameliorated the therapeutic effect of cisplatin. Accordingly, 

IK expression levels in cisplatin-resistant cancer cells are strongly decreased as compared to 

cisplatin-sensitive cancer cells286. Among other mechanisms, IK channels may contribute to 

cisplatin uptake as shown for colorectal cancer models287. Temozolomide, a DNA 

methylating drug, in combination with the IK inhibitor TRAM-34 exert synergistic effects in 

malignant glioma to reduce migration and invasion, clonogenic capability as well as 

proliferation while enhancing apoptotic cell death. These in vitro effects are confirmed in a 

glioma-bearing mouse model, in which in particular the combination of temozolomide plus 

TRAM-34, but also temozolomide or TRAM-34 alone, significantly reduces tumour volume by 

apoptosis288. Further electrophysiological studies indicate a direct interaction of 

temozolomide with the IK channel289.    

In addition to the DNA-interfering mode of action described for different chemotherapeutics, 

the primary effect of radiotherapy is the induction of DNA damage290. There is much 

evidence for IK channels to control different steps of the tumour cell response to 

radiotherapy. As such, IK activity is increased after irradiation in different cell lines, which is 

usually attributed to the IR-induced increase in [Ca2+]i
291,292. ROS formation induced by 

irradiation reportedly provokes such [Ca2+]i oscillations and thereby enhances IK channel 

activity293. Experimental irradiation of glioblastoma cells with five fractions of 2 Gy, a regimen 

comparable to the conventional fractionation scheme applied in glioma patients, upregulates 

IK mRNA expression and channel activity. In addition, repair processes after irradiation 

depend on energy needed for e.g. DNA decondensation. Tumour cells utilise glycolysis and 

thus especially consume glucose for fuelling, as first described by Otto Warburg294,295. In this 

context, K+ efflux may provide the driving force for the uptake of glucose by tumour cells via 

Na+-coupled glucose transporters291. In addition, IK channel inhibition disrupts the assembly 

of hexokinase II in the mitochondrial membrane, which is involved in glycolysis for the 

conversion of glucose to glucose-6-phosphate thereby contributing to ATP production262. As 

a possible consequence, TRAM-34 treatment increases residual H2AX foci 24 h after 

irradiation and thus associates with a reduced DNA repair capacity of T98G glioblastoma 

cells296. Further, irradiation of these cells causes a G2/M arrest, which relies on functional IK. 

In the absence of IK channels, cell cycle checkpoint dysfunction allows for entry of the cells 

into mitosis despite IR-provoked DNA damage and thus results in mitotic catastrophe291. In 

line, TRAM-34 treatment reduces clonogenic survival of glioblastoma cells after irradiation 
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with 2 Gy in a colony formation assay296. The radiosensitising effect after IK inhibition is also 

confirmed by the use of clotrimazole in U-87 MG glioblastoma cells262.  
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2. Aims and objectives 

 

Molecular classification and therapy progress have reduced mortality from breast cancer in 

the past decades. Due to the high breast cancer incidence in women, there is still need for 

new diagnostic markers, predictors and druggable targets1. Aberrant expression and activity 

of ion channels have been recognised for a range of cancer entities and different lines of 

evidence suggest BK and IK K+ channels to associate with breast cancer131,135. Therefore, 

the overall goal of this work was to study endogenous BK and IK channels and their 

contribution to breast cancer development, disease progression as well as their utility for 

therapeutic interventions. 

For this purpose, the spontaneous and allotransplant MMTV-PyMTtg/+ WT, BK KO and IK KO 

mouse models were employed as well as ex vivo analyses in primary breast tumour cells 

derived thereof. Further, the clinical relevance of BK and IK in human breast cancer was 

tested by the impact of genetic variants on breast cancer development, mRNA expression 

status and effect on breast cancer survival together with in vitro proliferation experiments in 

human breast cancer cell lines.   

With regard to the BK channel, it consists as a complex of its pore-forming  subunit together 

with auxiliary  and  subunits, which are expressed in a tissue- and tumour cell-specific 

manner229. Hence, the project aimed at identifying the roles of these different BK channel 

subunits in breast cancer as well as their impact on the proliferative behaviour of the tumour 

cells. For the IK channel, such accessory subunits that modulate its pore-forming  subunit 

have not been identified. However, IK channel expression is high in various cell types that 

constitute the immune system297. Therefore, the potential tumour-modulatory role of IK in 

cells of the tumour microenvironment, in addition to breast tumour cell-specific IK channels, 

was of particular interest. 

Finally, the putative interaction of BK and IK channels with established breast cancer 

therapies was studied in vitro and in vivo. BK channels may serve numerous cancer cell 

behaviours including the response to growth factors and anti-/hormones207, hence breast 

cancer cell proliferation and tumour growth were assessed with regard to BK channel status. 

Based on the promising results for IK and BK as novel targets to overcome radioresistance in 

glioma, it is hypothesised that their status may also predict the response to radiotherapy in 

breast cancer cells and in breast cancer cell-derived transplant models186,296.  
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3. Material 

3.1 Equipment 

Name Article, Manufacturer 

Analytical scales BP 2100 S, Sartorius 

 VWR-124, Sartorius 

Animal scales JOSHS MR1 (893), SSR-Produkt 

Autoclave VX-55, Systec 

 VX-120, Systec 

Calliper 30087-00, Fine Science Tools 

Centrifuge 5415 D, Eppendorf 

 5417 R, Eppendorf 

 Multifuge X1R, Heraeus 

Cryostat Microm HM 560, Thermo Scientific 

Electrophoresis chamber MSMAXI, Biozym 

Fluorescence microscope BX51, Olympus 

Freezer Hera freeze, Heraeus 

 Comfort, Liebherr 

 FORMA 90 Series, Thermo Scientific 

Freezing container Mr. Frosty, Nalgene 

Fridge BluPerformance, Liebherr 

Gel detection BioDocAnalyze, Biometra 

Heating block Thermomixer compact, Eppendorf 

Heating lamp 88258, Medisana 

Heating pad 76084, TRIXIE 

Histoscanner Pannoramic Desk, 3DHISTECH 

Ice machine AF 103, Scotsman 

Incubator CB150, Binder 

 APT.Line, Binder 

 BBD 6220, Heraeus 

Isoflurane vaporiser 19.1, Drägerwerk 

Lab oven FD 115, Binder 

Linear accelerator 6 MV  SL15, Philips 

Magnetic heating plate IKAMAG RCT, IKA Labortechnik 

 IKA-COMBIMAG RCT, IKA Labortechnik 

Microscope Wilovert S, Hund Wetzlar 

 DM IL LED, Leica 

 Axiovert 200M, Zeiss 

Microwave MW9675, Severin 

Nanophotometer P330, Implen 

PCR cycler CFX Connect, BioRad 

 Mastercycler, Eppendorf 

pH electrode Blue Line, Schott 

Pipettes Research, Eppendorf 
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 Pipetman, Gilson 

 Discovery Comfort, HTL 

Pipettor Pipetboy acu, Integra Biosciences 

 Accu-jet pro, Brand 

Power supply current / voltage Standard Power Pack P25, Biometra 

Tissue homogeniser Ultra-Turrax T8, IKA Labortechnik 

Security cabinet 2.12.925, Düperthal Sicherheitstechnik 

 G90, Düperthal Sicherheitstechnik 

Shaker Duomax 1030, Heidolph 

Sterile work bench Herasafe, Heraeus 

 Safe 2020, Thermo Scientific 

Ultrapure water treatment plant Biocel, Millipore 

Vacuum pump KNF Laborport, Neuberger 

Vortexer Vortex Genie 2, Bender & Hobein 

Water bath SW-20C, Julabo 

 TW20, Julabo 

xCELLigence RTCA DP, ACEA Biosciences 

 

3.2 Softwares and online tools 

Software Purpose of use Manufacturer 

Acrobat Reader PDF reader Adobe 

AnalySIS 3.2 Fluorescence microscope Olympus 

Axio Vision Rel 4.8 Microscope Zeiss 

BioDocAnalyze Gel detection Biometra 

CFX Manager qRT-PCR Bio-Rad 

CorelDraw® Graphics Suite X8 Illustrations Corel 

GraphPad Prism 6 Statistics GraphPad 

ImageJ 1.42q Cell counter National Institutes of Health 

Microsoft Office Data, text Microsoft 

RTCA xCELLigence ACEA Biosciences 

SigmaPlot 2001 Survival curve creator Systat 

 

Online tool Purpose of use 

BCAC SNP data retrieval 

BLAST Sequence alignment 

Ensembl Gene information 

Genevar SNP-Protein interaction 

HaploReg SNP-Protein interaction 

KM plotter Survival plotter 
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NCBI Literature search 

 SNP information 

Primer3 Primer design 

SNAP SNP linkage 

SNiPA SNP-Protein interaction 

TCGA mRNA expression analysis 

 

3.3 General laboratory items and solutions 

Product 
 

Reference number Manufacturer 

Aluminium foil  2596.1 Carl Roth 

Beaker glass 100 ml 2110624 Schott 

Centrifuge tube 15 ml  430766 Corning 

 50 ml 430291 Corning 

  430897 Corning 

Cryo tube 1.8 ml 368632 Thermo Scientific 

DEPC-H2O  T143 Carl Roth 

dH2O   Biocel, Millipore 

Filter tip 10 µl 765288 Greiner Bio-One 

 20 µl 774288 Greiner Bio-One 

 200 µl 739288 Greiner Bio-One 

 1,000 µl 740288 Greiner Bio-One 

Glass bottle 500 ml 21801445 Schott 

 2 l 21801635 Schott 

PBS  14190169 Thermo Fisher 

Reaction tube 0.2 ml 72.737 Sarstedt 

 0.5 ml 0030124537 Eppendorf 

 1.5 ml 72.706 Sarstedt 

 2 ml 72.695.500 Sarstedt 

Scalpel no. 21  02.001.30.021 Feather 

Tip 10 µl 70.1116 Sarstedt 

 200 µl 70.760.012 Sarstedt 

 1,000 µl 70.762.010 Sarstedt 

 2 ml 4486 Corning 

 5 ml 4487 Corning 

 10 ml 4488 Corning 

 25 ml 4489 Corning 

 50 ml 4490 Corning 

Tissue wipes  05511 Carl Roth 

Weighing pan 41  41  8 mm 1878.2 Carl Roth 

 89  89  25 mm 1884.1 Carl Roth 
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Weighing paper 90  115 mm MN226 Macherey-Nagel 

 

3.4 Mouse lines and models 

3.4.1 Mouse models 

Mouse strain Genetic nomenclature Origin 

FVB/N FVB/NCrl Charles River 

MMTV-PyMTtg/+ FVB/N-Tg(MMTV-PyVT)634Mul/J The Jackson Laboratory 

BK Kcnma1tmRuth/RuLu Prof. Peter Ruth, 

  University of Tübingen 

IK Kcnn4tm1.1Jele/RuLu Prof. Peter Ruth, 

  University of Tübingen 

 

3.4.2 Genotyping  

Biopsy, DNA isolation and sequence amplification 

Product Reference number Manufacturer 

Ear clip pliers 73855000 Hauptner-Herberholz 

Ear clips 73850100 Hauptner-Herberholz 

Ear hole punch 3104605 Zoonlab 

DMSO D 8418 Sigma-Aldrich 

Forceps mini straight 11200-12 Fine Science Tools 

KAPA genotyping kit 07-KK5621-01 Peqlab 

 

DNA isolation mix  

dH2O 88 µl 

1 U/µl KAPA Express Extract Enzyme 2 µl 

10x KAPA Express Extract Buffer 10 µl 

 

PCR mix MMTV-PyMT BK IK 

dH2O 7.5 µl 9 µl 10.75 µl 

2x KAPA2G Fast (HotStart)  12.5 µl 12.5 µl 12.5 µl 

Genotyping Mix with dye    

Primer F1 1 µl 1 µl 0.5 µl 

Primer R1 1 µl 1 µl 0.5 µl 

Primer F2 1 µl 1 µl 0.5 µl 

Primer R2 1 µl - - 

DMSO 1 µl 0.5 µl 0.25 µl 
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Gel electrophoresis 

Product Reference number Manufacturer 

2-Log DNA Ladder N3200S New England Biolabs 

Agarose M3044.0500 Genaxxon 

Boric acid 6943.3 Carl Roth 

Bromphenol blue 15375 Serva 

Ethidium bromide E1510 Carl Roth 

EDTA 8043.2 Carl Roth 

Ficoll® 400 CN90.3 Carl Roth 

Tris 5429.2 Carl Roth 

Xylene cyanol X4126 Sigma-Aldrich 

 

0.5 M EDTA pH 8.0    Xylene cyanol solution  

EDTA 186.1 g   Xylene cyanol 100 mg 

dH2O add to 1,000 ml   dH2O 2 ml 

 pH adjustment with NaOH    ultrasound bath for 15 min 

 

 
   

  

10x TBE buffer    Bromphenol blue solution 

Tris 108 g   Bromphenol blue 110 mg 

Boric acid 55 g   dH2O 2 ml 

0.5 M EDTA pH 8.0 40 ml    

dH2O add to 1,000 ml     

 1x TBE buffer: 1:10 dilution in dH2O     

 

6x gel loading dye  

Ficoll® 400 9 g 

0.5 M EDTA pH 8.0 12 ml 

10x TBE buffer 30 ml 

dH2O add to 47 ml 

Bromphenol blue solution 1.35 ml 

Xylene cyanol solution 1.5 ml 

 mix ficoll® 400, EDTA, 10x TBE on a magnetic heating plate at 60°C for 1 h 

 fill up to 47 ml with dH2O 

 add bromphenol blue solution and xylene cyanol solution 

 

Agarose gel 2% 3%   2-Log DNA Ladder  

Agarose 6 g 9 g   2-Log DNA Ladder 20 µl 

Ethidium bromide 30 µl 30 µl   6x gel loading dye 40 µl 

1x TBE buffer 300 ml 300 ml   dH2O 180 µl 
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3.4.3 In vivo experiments 

Instrument Manufacturer 

Cannula Becton Dickinson 

 Becton Dickinson 

 Becton Dickinson 

Clamp Fine Science Tools 

Forceps Fine Science Tools 

 Fine Science Tools 

 Fine Science Tools 

Halsted-mosquito haemostat Fine Science Tools 

Scissors Fine Science Tools 

 Fine Science Tools 

Suture Johnson & Johnson 

 Johnson & Johnson 

Syringe Becton Dickinson 

 Braun 

Trocar Innovative Research of America 

 

Product Reference number Manufacturer 

Ampuwa® PZN 07610894 Fresenius Kabi 

Bepanthen® eye and nose balm PZN 01578681 Bayer 

Capillary 1 mm diameter 612-2804 VWR 

Rimadyl® 256692 Zoetis 

Cotton swab PZN 01525319 Dr. JUNGHANS 

Drape sheet 2775021 Hartmann 

Isoflurane 1214 CP Pharma 

Ketamine PZN 7538837 Inresa 

Novaminsulfon PZN 07387887  1A Pharma 

NaCl solution PZN 02159621 Fresenius Kabi 

Octenisept® PZN 04830483 Schülke & Mayr 

0.5 mg/60 d placebo SC-111 Innovative Research of America 

0.5 mg/60 d TAM SE-361 Innovative Research of America 

5 mg/60 d placebo SC-111 Innovative Research of America 

5 mg/60 d TAM SE-361 Innovative Research of America 

0.3 ml K2E 16.444.100 Sarstedt 

1.3 ml K3E 41.1395.005 Sarstedt 

Xylazine PZN 10124944 Bernburg 

Petri dish 82.1473.001 Sarstedt 
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Anaesthesia  

Ketamine 50 mg/ml 2 ml 

Xylazine 20 mg/ml 0.5 ml 

NaCl solution 0.9% 7.5 ml 

 ketamine 100 mg/kg BW 

 xylazine 10 mg/kg BW 

 

Novaminsulfon solution    Rimadyl solution  

Novaminsulfon (500 mg/ml) 1 ml   Rimadyl® (50 mg/ml) 50 µl 

Ampuwa® 9 ml   NaCl solution 0.9% 950 µl 

 200 mg/kg BW     5 mg/kg BW  

 

3.5 Cell culture 

3.5.1 General material 

Product 
 

Reference number Manufacturer 

Cell dishes patch-clamp 353001 Corning 

 grid pattern 81166 ibidi 

 55 cm² 430167 Corning 

Cell flask 25 cm² 430639 Corning 

 75 cm² 430641 Corning 

 175 cm² 431080 Corning 

Chamber slide 8-well PCA 94.6140.802 Sarstedt 

 12-well glass 81201 ibidi 

 8-well grid pattern 80826-G500 ibidi 

Cell strainer 40 µm  431750 Corning 

Collagenase D  11088866001 Roche 

DMEM + phenol red 42430082 Thermo Fisher 

 - phenol red 21063045 Thermo Fisher 

DMSO Hybri-Max®  D2650 Sigma-Aldrich 

Ethanol (100%)  32205 Sigma-Aldrich 

Ethanol (99%)  ETO-5000-99-1 SAV Liquid Production 

FCS  10270106 Thermo Fisher 

Glass capillary  4522.1 Carl Roth 

Haemocytometer  PDHC-N01 Merck Millipore 

IMEM + phenol red A1048901 Thermo Fisher 

 - phenol red A1048801 Thermo Fisher 

L-15 + phenol red 11415056 Thermo Fisher 

 - phenol red 21083027 Thermo Fisher 

Penicillin/streptomycin  15140122 Thermo Fisher 

Sodium pyruvate  11360039 Thermo Fisher 
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10x trypsin  15400054 Thermo Fisher 

6-well plate  353224 Corning 

 

Collagenase medium    1x trypsin  

Collagenase D 10 mg   10x trypsin 1 ml 

IMEM + phenol red 10 ml   PBS 9 ml 

 

Cell culture medium 

Cell type 

IMEM 

MMTV-PyMT 

DMEM 

MCF-7 

L-15 

MDA-MB-157, MDA-MB-453 

Medium 475 ml 500 ml 500 ml 

Phenol red + + + 

FCS 25 ml 55 ml 55 ml 

Penicillin/streptomycin 5 ml 5 ml 5 ml 

100x sodium pyruvate - 55 µl - 

 for CCS medium, FCS is substituted with CCS 

 

Serum starvation medium 

Cell type 

IMEM 

MMTV-PyMTtg/+ 

DMEM 

MCF-7 

L-15 

MDA-MB-157, MDA-MB-453 

Medium 500 ml 500 ml 500 ml 

Phenol red - - - 

Serum - - - 

Penicillin/streptomycin 5 ml 5 ml 5 ml 

100x sodium pyruvate - 55 µl - 

 

Cryo medium  

DMSO Hybri-Max® 20% 

Cell culture medium 80% 

 

3.5.2 Human breast cancer cell lines 

Cell line Origin 

MCF-7 AG Prof. Dr. Brauch, IKP Stuttgart 

MDA-MB-157 AG Prof. Dr. Brauch, IKP Stuttgart 

MDA-MB-453 AG Prof. Dr. Brauch, IKP Stuttgart 

 

3.5.3 In vitro assays 

Product Reference number Manufacturer 

Acetic acid 20104.298 VWR 

dH2O 3175.1 Carl Roth 
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Brilliant Blue R B0149-25G Sigma-Aldrich 

CCS - AG Brauch, IKP Stuttgart 

CIM plate 16 2801038 ACEA Biosciences 

DharmaFECT 1 T-2001-02 Dharmacon 

DharmaFECT 2 T-2002-02 Dharmacon 

E2 E2758-250MG Sigma-Aldrich 

E2-BSA E5630-5MG Sigma-Aldrich 

(Z)-endoxifen - AG Prof. Dr. Brauch, IKP Stuttgart 

Formaldehyde 37% 104003 Merck 

Fulvestrant I4409-25MG Sigma-Aldrich 

Methanol 20847.307 VWR 

(Z)-4-OH-TAM H7904-5MG Sigma-Aldrich 

PBS tablets 003002 Thermo Fisher 

Progesterone P8783-1G Sigma-Aldrich 

5x siRNA buffer B-002000-UB-100 Dharmacon 

TAM - AG Prof. Dr. Brauch, IKP Stuttgart 

Testosterone T1500-1G Sigma-Aldrich 

TRAM-34 - JProf. Dr. Pierre Koch, 

  University of Tübingen 

 

5 mM TRAM-34    PBS non-sterile  

TRAM-34 17.242 mg   PBS tablets 1 

Ethanol (100%) 10 ml   dH2O 100 ml 

 1 ml aliquots stored at -20°C     

 

3.7% formaldehyde    70% ethanol  

37% formaldehyde 100 ml   Ethanol (99%) 700 ml 

PBS non-sterile 900 ml   dH2O 300 ml 

 

0.05% Coomassie  

Acetic acid 37.5 ml 

Brilliant blue R 0.25 g 

Methanol 100 ml 

dH2O 362.5 ml 

 coomassie solution can be recycled for the next use 

 

Anti-/hormone stock Molecular weight Stock concentration Solvent 

E2 272.38 g/mol 1 mM DMSO 

E2-BSA ~ 30 mol E2/mol BSA  10 µM PBS 

 (BSA 66,000 g/mol)   
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(Z)-endoxifen 373.50 g/mol 1 mM DMSO 

Fulvestrant 606.77 g/mol 1 mM DMSO 

Progesterone 314.46 g/mol 1 mM DMSO 

(Z)-4-OHT 387.52 g/mol 1 mM DMSO 

TAM 371.52 g/mol 1 mM DMSO 

Testosterone 288.42 g/mol 1 mM DMSO 

 

Proliferation experiments 

TRAM-34 dilution TRAM-34 stock Ethanol (100%) FCS medium 

10 µM 0.2% (5 mM) - 99.8% 

1 µM 10% (10 µM) 0.2% 89.8% 

0.1 µM 10% (1 µM) 0.2% 89.8% 

Ctrl - 0.2% 99.8% 

 

Hormone dilution Hormone stock DMSO  CCS medium 

1,000 nM 0.1% (1 mM) 0.1% E2-BSA 99.8% 

  -                     E2, progesterone, 99.9% 

   testosterone  

10 nM 1% (1,000 nM) 0.1%  98.9% 

1 nM 10% (10 nM) 0.1%  89.9% 

0.1 nM 10% (1 nM) 0.1%  89.9% 

0.01 nM 10% (0.1 nM) 0.1%  89.9% 

Ctrl - 0.1%  99.9% 

 

Anti-hormone dilution Anti-hormone stock DMSO CCS medium 

1,000 nM 0.1% (1 mM) - 99.9% 

100 nM 10% (1,000 nM) 0.1% 89.9% 

10 nM 10% (100 nM) 0.1% 89.9% 

1 nM 10% (10 nM) 0.1% 89.9% 

Ctrl - 0.1% 99.9% 

 

Migration assay 

TAM dilution TAM stock DMSO CCS medium 

1,000 nM 10.5 µl (1 mM) - add to 10.5 ml 

10 nM 100 µl (1,000 nM) 10 µl 9.89 ml 

Ctrl - 10 µl 9.99 ml 

 each 25 cm² flask obtained 5 ml pre-incubation medium 
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Chamber TAM dilution TAM stock DMSO CCS medium 

Lower      

(160 µl 5% medium) 1,000 nM 1 µl (1 mM) - 999 µl 

 10 nM 15 µl (1,000 nM) 1.5 µl 1,483.5 µl 

 ctrl - 1.5 µl 1,498.5 µl 

Upper     

(100 µl 5% medium) 2 µM 1 µl (1 mM) - 499 µl 

 20 nM 10 µl (2,000 nM) 2 µl 988 µl 

 ctrl - 2 µl 998 µl 

Cell suspension     

(100 µl 0% medium) all - - 100 µl/80,000 cells 

 

Clonogenic survival experiments 

TAM dilution TAM stock DMSO CCS medium 

100 µM 10% (1 mM) - 90% 

1 µM 1% (100 µM) 10% 89% 

Ctrl - 10% 90% 

 50 µl of each dilution was added to 4,950 µl CCS medium in the 25 cm² flask 

 

TRAM-34 dilution TRAM-34 stock Ethanol FCS medium 

200 µM TRAM-34 4 µl (5 mM) - 96 µl 

10 µM TRAM-34 60 µl (200 µM) - 1,140 µl 

200 µM ethanol - 4 µl (100%) 96 µl 

Ctrl - 60 µl (200 µM) 1,140 µl 

 

H2AX DNA damage experiments 

TAM dilution TAM stock DMSO CCS medium 

11 µM 1.1% (1 mM) - 98.9% 

110 nM 1% (11 µM) 1.1% 97.9% 

Ctrl - 1.1% 98.9% 

 20 µl of each dilution was added to 200 µl CCS medium in the 12-well chamber 

 

TRAM-34 dilution TRAM-34 stock Ethanol FCS medium 

200 µM TRAM-34 1 µl (5 mM) - 24 µl 

10 µM TRAM-34 15 µl (200 µM) - 285 µl 

200 µM ethanol - 1 µl (100%) 24 µl 

Ctrl - 15 µl (200 µM) 285 µl 
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siRNA experiments 

1x siRNA buffer    20 µM siRNA stock  

5x siRNA buffer 20%   1x siRNA buffer 250 µl 

DEPC-H2O 80%   siRNA pellet 5 nmol 

     storage of 10 - 20 µl aliquots at -20°C 

 

3.6 RNA studies 

Product Reference number Manufacturer 

Chloroform 372978 Sigma-Aldrich 

DNAse I recombinant 04716728001 Roche 

Ethanol (100%) 32205 Sigma-Aldrich 

iScript cDNA synthesis mix 1708891 Bio-Rad 

Isopropanol 6752.3 Carl Roth 

Low molecular weight DNA ladder N3233S New England Biolabs 

Low Multiwell 96-well plate MLL9601 Bio-Rad 

Microseal ‘B’ adhesive seals MSB1001 Bio-Rad 

NucleoSpin® RNA isolation kit 740955.250 MACHEREY-NAGEL 

peqGOLD RNA pure 30-1010-88 VWR 

SsoAdvanced™ Universal SYBR® Green 1725274 Bio-Rad 

Supermix (2x)   

 

RNA isolation 75% ethanol  

Ethanol 100% 75% 

DEPC-H2O 25% 

 

cDNA synthesis mix +RT -RT 

5x iScript 4 µl 4 µl 

Reverse transcriptase 1 µl - 

DEPC-H2O 10 µl 11 µl 

RNA 5 µl 5 µl 

 DEPC-H2O was replaced by RNA in siRNA experiments to 

employ 15 µl of RNA  

 

Primer DEPC-H2O addition Concentration 

Stock according to manufacturer 100 pmol/µl 

Dilution 98% 2 pmol/µl 
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qPCR mastermix  

SsoAdvanced™ Universal SYBR® Green  7.5 µl 

Supermix (2x)  

Primers (2 pmol/µl) 2.25 µl 

cDNA 3 µl 

 

3.7 Histology 

Product Reference number Manufacturer 

ABC-AP kit AK 5000 Vector laboratories 

Ammonia solution (32%) P093.2 Carl Roth 

AP substrate 10279 Vector laboratories 

Aquatex mounting medium 363123S VWR 

Blades for cryostat use MX35 Thermo Scientific 

Bouin´s solution (0.5%) HT10132-1L Sigma-Aldrich 

Bovine serum albumin 8076.2 Carl Roth 

Cover slip LH26.1 Carl Roth 

DePeX mounting medium 361254D VWR 

Ethanol (100%) K928.4 Carl Roth 

Eosin-G solution X883.1 Carl Roth 

Forceps 07.60.04 Medicon 

 11009-13 Fine Science Tools 

Glycine 3908.3 Carl Roth 

Haematoxylin solution X903.2 Carl Roth 

Hydrogen peroxide (30%) 8070.4 Carl Roth 

Hydrophobic barrier pen H-4000 Vector Laboratories 

Levamisole SP-500 Vector Laboratories 

L-Lysine x 1 H2O 420751 Carl Roth 

Nail varnish 01 Absolute pure, Essence 

Neg-50™ 6506 Thermo Fisher  

Normal donkey serum 017-000-121 Dianova 

Normal goat serum S-1000 Linaris 

Paraformaldehyde (PFA) 0335.2 Carl Roth 

D-saccharose 4621.2 Carl Roth 

Slides Superfrost J1800AMNZ Menzel 

Staining system TX88.1 Carl Roth 

Toluene 7115.1 Carl Roth 

Tris 5429.2 Carl Roth 

TritonX100 3051.2 Carl Roth 

Tween® 20 9127.1 Carl Roth 

Vectashield H-1200 Vector Laboratories 
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Immunoglobulins Reference number Manufacturer 

AlexaFluor® 488 anti-CD45 103121 BioLegend 

AlexaFluor® 488 rat IgG2b 400625 BioLegend 

Alexa Fluor® 555 donkey anti-rabbit A31572 Thermo Fisher 

Alexa Fluor® 555 goat anti-mouse A21127 Thermo Fisher 

Biotinylated goat anti-rabbit BA-1000 LINARIS 

Anti-H2AX (Ser139) 613402 BioLegend 

Anti-ER- (MC-20) sc-542 Santa Cruz Biotechnology 

Anti-Ki-67 (D3B5) 9129S Cell Signaling Technology 

Normal mouse IgG NI03-100UG Merck 

Normal rabbit IgG NI01-100UG Merck 

 

4% PFA  

PFA 20 g 

PBS 500 ml 

 add PFA to PBS in a bottle together with a stirrer and solve at 

60°C on a magnetic heating plate  

 2% PFA: 1:1 dilution of 4% PFA and PBS 

 

Sucrose solution D-saccharose / PBS 

5% 0.5 g/10 ml 

10% 1 g/10 ml 

20% 2 g/10 ml 

 

Normal donkey serum (NDS)  

NDS lyophilisate 

dH2O 10 ml 

Final concentration 60 mg/ml = 100% serum 

 add dH2O to NDS, 1 ml aliquots stored at -20°C 

 

0.3% TritonX100   

TritonX100 1.5 ml 

PBS add to 500 ml 

 storage at 4°C  

 0.1% TritonX100: 1:3 dilution of 0.3% TritonX100 in PBS 

 

Tissue blocking solution  

BSA 1 g 

Glycine 0.2 g 

Lysine 0.2 g 

0.3% TritonX100 in PBS add to 100 ml 
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 10 ml aliquots stored at -20°C 

 addition of NDS or NGS to final concentration of 10% blocking 

solution before use 

 

100 mM Tris-HCl  

Tris 12.114 g 

dH2O add to 1,000 ml 

0.1% Tween® 20  

 solve Tris in water 

 adjust pH to 8.2 with HCl 

 add Tween® 20 

 

1% H2O2    10% cell blocking solution 

30% H2O2 333 µl   NDS / NGS 10% 

PBS 10 ml   PBS 90% 

 

0.001% Tween® 20    ABC reagent 

Tween® 20 5 µl   Reagent A 1 drop 

PBS 500 ml   Reagent B 1 drop 

 storage at 4°C    PBS 5 ml 

 

AP substrate     

Reagent 1 2 drops     

Reagent 2 2 drops     

Reagent 3 2 drops     

Levamisole 2 drops     

100 mM Tris-HCl 5 ml     
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4. Methods 

4.1 Animal work 

4.1.1 Mouse strains 

FVB 

The Friend leukaemia Virus B-susceptible (FVB/N) mouse strain was established at the 

National Institute of Health (United States of America) as an outbred colony of Swiss mice in 

1933. It represents a widely-used mouse strain for transgenic analyses due to a high 

biological reproducibility, large litter sizes as well as prominent pronuclei detectable in 

fertilized eggs. Its proneness to cancer per se is emphasised by its terminology, but also 

according to chemically-induced skin tumours, mammary hyperplasia and tumours in 

different organs and especially the lungs298-300. In addition, FVB/N mice are known for their 

aggressive behaviour and their abnormal circadian rhythm with increased activity during the 

light cycle301. 

 

MMTV-PyMTtg/+ 

For spontaneous breast tumour development, the MMTV-PyMTtg/+ mouse model was 

studied. In this model, expression of the middle T antigen from polyomavirus (PyMT) is under 

the control of the mouse mammary tumour virus (MMTV) long terminal repeat302. MMTV itself 

is a weak oncogenic retrovirus to cause especially breast tumours in mice when transmitted 

by lactation through an infected mother. The use of MMTV to induce mammary tumours is 

thus limited. Its oncogenic function derives from insertional mutagenesis or transcription 

activation of oncogenes in close vicinity and includes the activation of developmental 

signalling pathways such as Wnt303-305. Activation of the MMTV promoter relies on steroid 

hormone binding to the hormone response element region found in the long terminal 

repeat306-308. Yet, it is not fully elucidated whether MMTV is able to induce breast cancer in 

humans309. The murine polyomavirus can stimulate carcinogenesis in different cell types 

thereby leading to the formation of a variety of tumours. Polyomavirus replication and 

infection is suggested to depend on cell proliferation, as mammary gland, skin and bone are 

majorly prone in adult mice. Three oncoproteins with big, middle and small size, respectively, 

were initially extracted from tumour-bearing animals. All three promote virus replication and 

cellular transformation with middle T antigen representing the most important contributor to 

tumourigenesis. It interacts with different signalling pathways such as mitogen-activated 

protein kinase and phosphatidylinositol 3-kinase310,311. MMTV-PyMTtg/+ malignancy is 

characterised by ER and PR expression in early stages and a decline or absence towards 

late carcinoma. In contrast, HER2 expression together with the cyclin D1 cell cycle marker 
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increases with disease progression312. MMTV-PyMTtg/+ tumour latency is strain-specific with 

an aggressive mode in FVB/N mice showing an early tumour onset at approximately 53 d of 

age302,313,314. In this work, MMTV-PyMTtg/+ mice with the respective BK or IK KO, as 

described below, were assessed in comparison to litter-matched MMTV-PyMTtg/+ mice with 

WT status for BK and IK. 

 

BK KO 

Mice lacking the pore exon that also encodes a part of the S6 of BK- subunit (BK KO) were 

available from earlier studies315. Both, a model for constitutive (L1) as well as a Cre 

recombinase-mediated conditional (L2) BK KO were initially established on a hybrid 

129/Sv x C57Bl/6 background316. Through repeated mating, backcrossing of the BK L2 allele 

on FVB/N background was achieved within this work (supplement 9.1). 

 

IK KO 

A constitutive IK KO mouse strain was generated previously. IK KO mice were bred and 

maintained on the hybrid 129/Sv x C57Bl/6 background317 and backcrossed to the FVB/N 

background to generate a breast cancer-pone model utilising the MMTV-PyMTtg/+ mouse 

strain315. 

 

4.1.2 Animal housing and breeding 

All animal experiments were approved by the local Ethics Committee for Animal Research at 

the Regierungspräsidium Tübingen. The mice were kept in an open specific-pathogen-free 

animal house with a 12 h light/dark cycle and access to water and food ad libitum. Mice were 

housed, depending on their weight, in groups of 2 - 3 animals in makrolon type II cages or up 

to 8 animals in makrolon type III cages. For backcrossing the BK L2 allele-carrying mouse 

strain to the FVB/N background, one female was kept in a makrolon type II cage together 

with one male, which was removed before the delivery of pubs after approximately 21 d of 

pregnancy. For all other breeding schemes, two females were kept in a cage together with 

one male. The male mouse was either permanently kept in the breeding cage or it was 

removed before the delivery of pubs in order to avoid immediate further breeding. In general, 

mice selected for breeding were at least four weeks (females) and up to one year (males) 

old. Pubs were separated from their mothers according to gender at an age of 21 d.  
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4.1.3 Mouse labelling and genotyping 

Identification of the BK L2 allele during backcrossing occurred through ear clipping whereas 

all other mice were marked according to a common ear punch scheme (figure 4.1). For the 

latter, each mouse got up to three punches including one round punch serving as biopsy for 

genotyping. Other punches were half-round in order to limit the trauma area. Biopsy tissue 

from ear-clipped mice was obtained from approximately 1 mm of tail that was cut with 

scissors. The biopsies were collected in 1.5 ml tubes and stored at 4°C overnight or at -20°C 

for several days. 

Genotyping of all biopsies was carried out with the KAPA genotyping kit. For DNA isolation, a 

mastermix was prepared with 2 µl of 1 U/µl KAPA express extract enzyme, 10 µl 10x KAPA 

express extract buffer and 88 µl dH2O per sample. The tissues were lysed on a thermomixer 

at 75°C and 500 rounds per minute (rpm) for 10 min. Afterwards, the KAPA express extract 

enzyme was heat-inactivated at 95°C and 500 rpm for 5 min. In the next step, DNA was 

amplified by preparation of a mastermix (section 3.4.2 and supplement 9.1) with the KAPA2G 

fast genotyping mix containing DNA polymerase, deoxyribose nucleoside triphosphates 

(dNTPs), MgCl2, buffer, stabilisers and two inert dyes that served for loading in the 

subsequent gel electrophoresis. At 94°C, the DNA polymerase was heat-activated (hot start) 

for 3 min. Then, 30 amplification cycles were run each starting with 94°C for 30 s to separate 

the DNA in single strands. Annealing temperature for MMTV-PyMTtg/+ genotyping was 64°C 

for 30 s, for BK genotyping 54°C for 30 s, and for IK genotyping 58°C for 15 s. Elongation 

took place at 72°C carried out for 30 s in MMTV-PyMTtg/+ and BK samples and for 15 s in IK 

samples. After termination of the last cycle, elongation was prolonged for another 5 min at 

72°C before the peltier element of the thermocycler cooled down to a holding temperature 

of 10°C. 

By the use of gel electrophoresis, the amplified DNA sequences were separated according to 

their size. For the preparation of a 2% agarose gel, 6 g agarose and 300 ml TBE buffer were 

heated in a 500 ml glass bottle in the microwave until the agarose was completely solved. 

The gel was cooled down on a magnetic heating plate with a stirrer before 30 µl 

ethidium bromide was added. The gel was poured in a gel chamber prepared with combs 

and further cooled down until it was solid. The combs were removed and 12 µl 2-Log DNA 

ladder in loading dye or 25 µl per sample were loaded into the wells. The DNA was run on 

the gel at 80 mV for approximately 15 min until the samples were completely moved out of 

the wells. Then, the gel was run at 120 mV for about 1 h. Finally, the gel was placed under 

ultraviolet light to detect the DNA bands. In comparison with the known band sizes of the 

2-Log DNA ladder, bands of expected base pair (bp) length could be confirmed in the 

samples and thus mouse genotype was determined: 556 bp and 200 bp for PyMTtg/+, BK L1, 
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WT and L2 showed 132, 466 and 577 bp, respectively, whereas IK WT and L1 presented 

with 264 and 507 bp (figure 4.1). 

 

Figure 4.1: Ear punch scheme and a representative result of the genotyping assay 

Biopsies for genotyping were obtained from ear, except for the BK L2 backcrossing where pubs were 

identified by ear clips in combination with tail tip biopsy. (A) The ear hole punch was used to mark 

each mouse with up to three punches. The first punch served as genotyping material, whereas 

following punches were made at the edges of the mouse ear to avoid additional trauma area. 

Accordingly, mice were identified with numbers between 1 and 100. (B) After DNA isolation and 

amplification, gel electrophoresis was run for genotyping. The different primer pairs used for 

genotyping (supplement 9.1) allowed amplification of gene-specific sequences. These sequences 

were separated via gel electrophoresis and the bands appearing allowed determining the genotype of 

the according mouse. The size of the respective bands were 556 bp and 200 bp for PyMT
tg/+

; 132, 466 

and 577 bp for BK L1, WT and BK L2; 264 and 507 bp for IK WT and L1. Negative controls for the 

PCR-based genotyping did not show bands (data not shown). 

 

4.1.4 Spontaneous tumour development in MMTV-PyMTtg/+ WT, BK KO and IK KO 

mice 

Male MMTV-PyMTtg/+ mice were imported from The Jackson Laboratory and were mated with 

female BKL1/+ or IKL1/+ (KCa
L1/+) mice. Male offspring with the MMTV-PyMTtg/+ KCa

L1/+ genotype 

were again mated with female KCa
L1/+ mice to generate offspring used for experimental 

purposes (figure 4.2). Mice with IK KO or MMTV-PyMTtg/+ genotype were born at the 

expected Mendelian ratio of 1:4. However, BK KO mice were born at a ratio of 1:7, which 

emphasises the importance of the BK channel in early developmental processes. BK- or 

IK-deficient tumour-developing female mice were utilised for experiments in comparison to 

the respective WT littermates (MMTV-PyMTtg/+ KCa
+/+). Palpation of the breasts for potential 

tumour development started at an age of 6 weeks and was conducted once a week. Once 

established, tumour growth was monitored with a digital calliper until 15 mm diameter and 

BW was observed with animal scales twice a week. 
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Figure 4.2: Breeding scheme of MMTV-PyMT
tg/+

 WT and KCa KO mice 

(A) Male MMTV-PyMT
tg/+

 mice were mated with KCa
L1/+ 

female mice. (B) These crossings produced 

male offspring carrying MMTV-PyMT
tg/+

 x KCa
L1/+

, which were mated again with KCa
L1/+ 

females. 

(C+D) Female MMTV-PyMT
tg/+

 x KCa
+/+

 and MMTV-PyMT
tg/+

 x KCa
 L1/L1

 offspring were used for 

subsequent analyses, (C) i.e. spontaneous tumour development. Tumour cell cultures derived from 

these spontaneous tumour-developing MMTV-PyMT
tg/+

 mice of the various genotypes were 

characterised in vitro (see 4.2) and used for (D) allotransplantations in KCa
+/+

 or KCa
L1/L1 

mice. 

 

4.1.5 Allotransplantation of MMTV-PyMTtg/+ WT, BK KO and IK KO cells 

An orthotopic allotransplant model was established for investigating the growth of 

MMTV-PyMTtg/+ WT, BK KO and IK KO cells in female FVB/N recipients. In order to 

investigate a putative environmental influence on tumour development and growth in the 

BK KO or IK KO model, these mice were transplanted with MMTV-PyMTtg/+ WT cells. In 

general, recipient mice were 12 week old at the time point of tumour cell inoculation. For 

endocrine (section 4.1.6) and radiation (section 4.1.7) therapy, FVB/N mice were purchased 

from Charles River Laboratories at an age of 11 weeks to allow for a one week recovery from 

their travel before the start of surgical interventions. 

MMTV-PyMTtg/+ WT, BK KO or IK KO cells were inoculated in the fourth right mammary 

gland. The tumour cells were obtained from the spontaneous tumour-developing 
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MMTV-PyMTtg/+ WT, BK KO or IK KO mice and were maintained in culture for 6 to 12 

passages before transplantation, as described in section 4.2.2. Cells were detached from the 

bottom of 75 cm² cell flasks with trypsin. A solution of 106 cells in 50 µl PBS was prepared in 

1.8 ml cryo tubes. For tumour cell transplantations, each mouse was anaesthetised with 

100 µg/g BW of ketamine and 10 µg/g BW of xylazine by intraperitoneal (i.p.) injection using 

a 27G cannula. Then, recipient mice were placed on the back at a heating pad and treated 

with bepanthen® eye and noise balm for prohibition of eye drying during surgery. After 

disinfection with 70% ethanol, the fur between the fourth mammary gland and the ventral 

midline was carefully removed with a scalpel. Afterwards, the mouse was covered with a 

drape sheet leaving out the operation area. An approximate 10 mm caudocranial cut 

between the nipple and the ventral midline permitted access to the transplantation site. The 

mammary fat pad was gently lifted up and fixed with a halsted-mosquito haemostat. The cell 

suspension was pipetted up and down three times using a 200 µl pipette and then taken up 

in a 1 ml syringe attached to a 30G cannula. 106 cells were injected as 50 µl suspension in 

PBS into the fat pad of the 4th mammary gland. Finally, the mammary fat pad was retracted 

and the wound was closed with a 6-0 suture in three stiches and disinfected with octenisept®. 

For post-operative pain relief, the mouse obtained a subcutaneous (s.c.) injection with 

200 µg/g BW of novaminsulfon and was set back in the cage warmed with a heating lamp for 

the first 2 h after surgery. Palpation of tumour development and measurement of tumour size 

with a digital calliper started one week after surgery and was conducted three times a week. 

In order to assess the role of BK and IK in breast cancer cells for tumour formation and 

growth in vivo, MMTV-PyMTtg/+ WT, BK KO and IK KO mice were monitored until tumours 

were grown to a size of 15 mm diameter.  

     

4.1.6 Ovariectomy and TAM pellet implantation 

To test for the influence of BK channels in endocrine therapy, tumour progression in 

response to TAM was investigated. For this purpose, MMTV-PyMTtg/+ WT or BK KO cells 

were orthotopically transplanted in FVB/N mice, as described in section 4.1.5, and grown to a 

volume of approximately 62.5 mm³. Then, the ovaries were removed to avoided disturbances 

by natural menstrual cycle-induced changes of endogenous E2 levels. This allowed 

standardised experimental conditions and was of further clinical relevance due to the 

post-menopausal state of the majority of breast cancer patients. One week after ovariectomy, 

a TAM or placebo pellet was implanted. TAM therapy lasted for the maximum pellet release 

time of 60 d or until abortion criteria were reached (table 4.1). In a first set of experiments, 

0.5 and 5 mg per 60 d releasing TAM pellets were used in order to get an impression of the 

blood accumulation of TAM and its major metabolites in the murine organism. These mice 
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were not allotransplanted with tumour cells, but blood was collected at the 7, 14 and 21 d 

time points after pellet implantation.  

For ovariectomy, mice were anaesthetised with a 0.9% NaCl solution containing 

100 µg/g BW ketamine and 10 µg/g BW xylazine by i.p. injection with a 27G cannula. 

Bepanthen® eye balm was applied on the open eyes. For post-operative pain management, 

5 mg/kg BW rimadyl® in 0.9% NaCl solution was administered by s.c. injection. The operation 

area was disinfected with 70% ethanol and a scalpel was used to shave a 1.5 cm2 area at 

the central back. Then, the operation area was disinfected with octenisept® and a drape 

sheet covered the mouse except for the operation area. The skin was gently stretched with 

forceps and a cut of approximately 10 mm was made with scissors along the dorsal midline 

and separated from the underlying peritoneum by dull preparation. Each 5 mm laterally of the 

midline, another cut was gently made to access the abdomen and each respective ovary via 

the dorsal route. Carefully, the ovary-enveloping fat tissue was lifted with forceps. The ovary 

was identified and ligated from the uterus with a 7-0 silk suture. Then, the ovary including the 

associated fat tissue was cut and removed before the uterus was put back into the abdomen. 

The skin was closed with a 6-0 suture in three stiches and disinfected with octenisept®. 

Another 5 mg/kg BW rimadyl® in 0.9% NaCl solution was administered by s.c. injection. 

Post-operatively, the mouse was warmed with a heating lamp during the first 2 h post 

operation. On the day after surgery, the mouse received another 5 mg/kg BW rimadyl® in 

0.9% NaCl solution by s.c. injection for pain relief 318. 

To study the response of the BK-negative or -positive tumours to TAM therapy, a 3 mm-sized 

TAM or placebo pellet was used. It continuously released the active substance over a time 

period of 60 d and thereby avoided stress by otherwise repeated handling of the animal. The 

right lateral side of the neck was chosen as implantation site due to maximum space 

availability between skin and muscle. For pellet implantation, the mouse was anaesthetised 

as described previously. The skin was lifted and a trocar was used to insert the pellet 

approximately 2 cm apart via a small puncture. A 6-0 suture closed the skin in two stiches. In 

the end, the area was disinfected with octenisept®. Blood collection for measurement of TAM 

and metabolite levels was conducted with alternating collections from the right and left 

eyes 7, 14 and 21 d after pellet implantation. For this purpose, the mouse was shortly 

anaesthetised with isoflurane. Jugular veins were stowed by gripping the neck of the animal 

with one hand. With a carefully rotating move, a capillary was gently pressed against the 

retrobulbary vein plexus with the other hand. At each time point, approximately 100 µl blood 

was collected with a pipette using a 200 µl filter tip and transferred in a microvette. The blood 

volume withdrawn was substituted with isotonic NaCl solution previously warmed to body 

temperature. The microvette was centrifuged at 2,000 rcf for 5 min. Plasma was collected in 
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0.5 ml tubes and stored at -20°C until analysed in cooperation with Dr. Thomas Mürdter 

(AG Prof. Dr. Brauch, IKP Stuttgart) via HPLC. Levels of TAM and its main metabolites were 

measured in comparison to a patient standard, which determined the lower level of 

quantification. 

For growth experiments of MMTV-PyMTtg/+ WT and BK KO tumours under TAM therapy, the 

selected endpoint was an eightfold-increased tumour volume as compared to the size of the 

tumour on the day of pellet implantation. 

 

4.1.7 Fractionated radiotherapy of MMTV-PyMTtg/+ WT or IK KO tumours in vivo 

MMTV-PyMTtg/+ WT or IK KO cell-transplanted mice (section 4.1.5) were subjected to a 

radiotherapy regime starting at a tumour volume of approximately 62.5 mm³. The aim of this 

approach was to assess potential BK- and IK-dependent effects on radiation dose-dependent 

tumour regression and regrowth after radiotherapy. Tumour growth was monitored until the 

tumour reached an eightfold higher tumour volume, which is equivalent to duplication of 

diameter, compared to the first day of irradiation. Irradiation occurred under isoflurane 

anaesthesia, as shown in figure 4.3. For this purpose, a 2.5% isoflurane-oxygen mixture was 

introduced in a transparent plastic box, in which the mice were put beforehand. Once the 

mice were anaesthetised, the inhalative anaesthesia was connected to the irradiation desk 

and the mice were moved to the irradiation device with the nose of each mouse directed to 

the isoflurane opening. The irradiation device had space to irradiate up to ten mice at once; 

irradiation groups in this work comprised 1 to 5 mice per procedure. The tumour was gently 

pulled aside and fixed with a plastic strap. The system was closed with a clear plastic upper 

shell and the isoflurane / oxygen mixture was reduced to 0.8%. In order to irradiate the 

tumour only, a lead block shielded the body of each mouse. In addition, a lead satellite with 

spare holes for the location of the tumour protected the animals during radiotherapy. Proper 

height and localisation of the mice for delivery of irradiation was checked with the help of a 

laser beam. The whole procedure took about 5 min. 0 Gy control tumour-carrying mice were 

also put under anaesthesia, but received no irradiation. Radiation of the tumours was carried 

out with a 6 MV photon linear accelerator319,320. The procedure was repeated daily for in total 

five consecutive days. In the weeks following irradiation, BW was observed twice a week and 

the tumour volume was measured three times a week until an eightfold increased tumour 

volume, according to the tumour volume at the start of radiotherapy, or other abortion criteria 

were reached.     
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Figure 4.3: Radiation therapy setup and regime of mice with MMTV-PyMT
tg/+

 WT and IK KO 

tumours 

Mice received radiotherapy at a target tumour volume of 62.5 mm³. Irradiation was applied for five 

consecutive days at different dosage, which occurred under isoflurane anaesthesia. (A + B) For the 

delivery of IR, anaesthetised mice were placed in the mouse irradiation device and shielded with lead 

blocks. (C) The irradiation device was located under the linear accelerator containing an additional 

lead satellite with spare holes (not shown) for IR delivery.  

 

4.1.8 Health monitoring, scarification and organ isolation 

Tumour size measured in two dimensions with a digital calliper was translated into tumour 

volume with the following formula: (length  width²) / 2. For the various tumour models and 

treatment groups, different end points were set, as described in sections 4.1.4 - 4.1.7, 

respectively. Besides, general abortion criteria included in the score sheet (table 4.1) served 

for keeping mice in good general conditions during the experiments. If a mouse scored 8 or 
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more in sum, it had to be sacrificed. For this purpose, mice were weighed twice a week and 

regularly checked for their health condition.   

Table 4.1: Abortion criteria for in vivo experiments 

Experiments with tumour-bearing mice of both spontaneous and orthotopic transplant models were 

carried out with respect to the below-listed abortion criteria. Tumour size and appearance as well as 

shape, weight, behaviour, movement and respiration of each mouse were regularly controlled 

according to the score sheet. 
 

Parameter Measure Score 

Tumour size ≥ 13.5 mm diameter 

≥ 15 mm diameter 

≥ 1,350 mm³ 

≥ 1,650 mm³ 

4 

8 

4 

8 

Tumour appearance not ulcerated 

reddish 

subsided, almost ulcerated 

ulcerated / bloody 

0 

1 

4 

8 

Animal shape normal 

ruffled fur 

curved position 

emaciated, pale, subsided flanks 

0 

2 

2 

3 

Animal weight* 

 

decline of 5% 

decline of 10% 

decline of 15% 

2 

4 

8 

Animal behaviour normal 

indifferent, isolated 

apathetic 

automutilation 

0 

2 

4 

8 

Animal movement normal 

careful, no climbing 

insecure 

0 

2 

4 

Animal respiration increased frequency 2 

* according to weight at experimental start and compared to weight of age-, gender- and strain-

matched mice 

 

For sacrification, CO2 was added slowly to the cage of the animal until unconsciousness was 

followed by death of the mouse. This was verified by termination of breathing as well as eye 

lid and limb reflexes. Neck fracture was induced through pressure on the neck of the mouse 

and simultaneous tail stretching.      

The sacrificed mouse was fixed on the back and the abdomen was opened with forceps and 

scissors. The following organs were collected from 3 months old FVB/N mice as mRNA and 

protein controls: Full brain, cerebellum, kidney, liver, ovary, testis, thymus, spleen and 

uterus. Tumour pieces from spontaneous tumour-bearing MMTV-PyMTtg/+ WT, BK KO and 

IK KO mice were either stored at -80°C for mRNA or protein extractions or were fixed in 

10 ml 4% PFA in PBS in a 15 ml centrifuge tube for subsequent analysis by 
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immunohistochemistry. Another tumour piece was used for the establishment of a primary 

tumour cell culture (section 4.2.1). From MMTV-PyMTtg/+ WT, BK KO and IK KO tumour 

cell-transplanted mice, harvested tumours were used as RNA samples and for 

immunohistochemistry. In addition, metastasis was studied in the lungs, as this represents a 

frequent site of metastases in the MMTV-PyMTtg/+ model. For this purpose, the right lung was 

incubated in Bouin´s solution for 3 d before the number of macroscopically visible 

metastases was counted. The left lung was fixed in 10 ml of 4% PFA in PBS in a 15 ml 

centrifuge tube for the detection of micrometastases by haematoxylin/eosin staining. Blood 

was collected by cardiac puncture with a 20G syringe after thorax opening with scissors. The 

blood was collected with a pipette, centrifuged for 10 min at 2,000 rcf, and stored at -80°C. 

For determination of TAM accumulation in the first 3 weeks after pellet implantation, blood 

was collected weekly (section 4.1.6). In addition, the uterus was extracted from all ± TAM 

pellet-implanted mice and weighed in order to assess the amount of endometrial hyperplasia, 

a well-known endocrine side effect of TAM. 

 

4.2 Cell culture 

4.2.1 Establishment of MMTV-PyMTtg/+-derived primary cell cultures 

Tumour pieces from MMTV-PyMTtg/+ WT, BK KO and IK KO mice were used for the 

establishment of primary cell cultures. After isolation of the whole tumour and extraction of a 

large tumour piece, the latter was kept in a 50 ml tube filled with 10 ml cell culture medium. In 

the sterile hood, tumour and cell culture medium were transferred in a 55 cm² cell dish. 

Forceps and a scalpel were used to mince the tumour piece. The resulting smaller tumour 

pieces were transferred in a 15 ml tube containing 10 mg collagenase D in 10 ml IMEM. 

Digestion with collagenase took place in a 37°C water bath for 11 min with the tube inverted 

once every min. Then, tumour pieces were mechanically separated by pipetting up and down 

with a 10 ml first and then a 5 ml pipette each for several times. The tumour cell suspension 

and remaining tumour pieces were filtered through a 40 µm mesh size nylon cell strainer. 

The flow-through was centrifuged at 1,000 rpm for 5 min. After careful removal of the 

supernatant with a 10 ml pipette, the pellet was loosened by rubbing several times against 

the grids of the sterile hood. A 55 cm² cell dish was filled with 10 ml cell culture medium from 

which 1 ml was taken three times to resuspend the tumour cells and to transfer them in a 

55 cm² cell dish. Tumour pieces remaining after collagenase digestion underwent a second 

collagenase digestion and were seeded in another 55 cm² cell dish after filtration and 

centrifugation. Tumour pieces that still remained after the procedure were used as explant 

culture in 10 ml cell culture medium in a 55 cm² cell dish. Medium was changed the following 

day before media changes started twice a week.  
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4.2.2 Cultivation and passage of tumour cells 

Cell culture work was conducted in a sterile hood. Media, PBS and trypsin were pre-heated 

to 37°C in a water bath before use. Murine tumour cells were cultured in IMEM 

supplemented with 5% foetal calf serum (FCS) and 1% penicillin/streptomycin. Human 

MCF-7 cells were kept in 10% FCS and 1% penicillin/streptomycin-containing DMEM. 

MMTV-PyMTtg/+ WT, BK KO and IK KO cells as well as MCF-7 cells were cultured in an 

incubator with 37°C, 95% humidity and 5% CO2. Cultivation of MDA-MB-157 and 

MDA-MB-453 cells occurred in L-15 media supplemented with 10% FCS and 

1% penicillin/streptomycin. These cells were kept in a 37°C incubator with 95% humidity and 

atmospheric air. Media was changed three times a week for MCF-7 and twice a week for all 

other breast tumour cell cultures.  

Charcoal-stripped serum (CCS) was manufactured and supplied by Werner Schroth 

(AG Prof. Dr. Brauch, IKP Stuttgart). For the production of CCS from FCS, a 500 ml bottle of 

37°C pre-heated FCS was supplemented with sulfatase for a final concentration of 2 U/ml 

sulfatase in FCS and incubated at 37°C for 2 h. In the meantime, 50 ml tubes were filled with 

10 ml charcoal solution and centrifuged at 3,000 rpm for 10 min. The supernatant was 

aspirated. Half of the tubes were stored at 4°C and the other tubes were filled up to 50 ml 

with the sulfatase-treated FCS. The tubes were kept in a 56°C water bath for 30 min while 

gently shaking. Next, the tubes were cooled on ice for 5 - 10 min before a centrifugation step 

at 3,000 rpm for 15 min. Then, the supernatant was transferred to the charcoal-containing 

pellet stored at 4°C previously. Once again, the tubes were put in a 56°C water bath for 

30 min and gently shook before cooling on ice and a centrifugation step at 3,000 rpm and 

15 min. Finally, the supernatant was passed through a 0.2 µm filter and the CCS aliquots 

were stored at -20°C until further use.      

 

4.2.3 Splitting and cryo conservation of tumour cells 

During establishment of the primary murine tumour cell lines, purification was necessary by 

elimination of co-existing fibroblasts with trypsin. For this purpose, cells were washed twice 

with PBS and incubated in trypsin for 0.5 - 3 min at room temperature. The incubation time 

was dependent on the individual degree of cell culture adhesion to the cell flask or dish and 

was repetitively tested. As fibroblasts presented with lower adhesion to the cell flask 

compared to the tumour cells, continuous observation under the microscope and cautious 

tapping allowed the detachment of fibroblasts first while the tumour cells still adhered to the 

bottom of the cell flask. The fibroblast-containing trypsin solution was aspirated and the 

trypsin-induced cell detachment was stopped with cell culture media. After a wash with PBS, 

cells were supplied with cell culture media for further cultivation.  
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For cell harvesting, the cell monolayer was washed twice with PBS and incubated in trypsin 

in the incubator for 5 min. Then, cell detachment was enforced by tapping against the cell 

flask and it was confirmed with a glance through the microscope. The tumour cell-containing 

trypsin solution was washed to one corner of the flask with cell culture media and collected in 

a 15 ml or 50 ml centrifuge tube depending on the sample volume. Centrifugation at 

1,000 rpm for 3 - 5 min resulted in the cell pellet placed at the bottom of the centrifuge tube. 

The supernatant was aspirated with a glass capillary before the cell pellet was separated 

mechanically and the tumour cells were resuspended in cell culture media. For further 

cultivation, tumour cells were passaged 1:2 for MDA-MB-157 cells, 1:3 for murine tumour 

cells and MDA-MB-453 cells as well as approximately 1:8 for MCF-7 cells. Counting of cells 

was performed by a disposable plastic haemocytometer loaded with 10 µl of the cell 

suspension. Within this chamber, the four quadrants at the outer corners were counted and 

the mean cell number was calculated. The mean represented the cell concentration in 0.1 µl 

cell suspension. Cells were cultured in different volumes according to the size of plates and 

dishes (table 4.2). 

Table 4.2: Cell flask and dish sizes 

Tumour cells were plated according to the number of available tumour cells after passaging and 

depending on the anticipated experimental procedure. Due to their different size, appropriate volumes 

of solutions were administered to flasks and dishes. 
 

Flask or dish Media [ml] Trypsin [ml] 

25 cm² cell flask 5 1 

55 cm² cell dish 10 2 

75 cm² cell flask 15 3 

175 cm² cell flask 20 5 

 

For cryo preservation, a cell suspension of 5 million cells in 0.5 ml cell culture medium was 

pipetted per 1.8 ml cryo tube. Then, 0.5 ml of 20% DMSO in cell culture medium was added 

to each cryo tube in order to avoid crystallising of water and thus harming of the cells during 

freezing and thawing. The cells were frozen at -80°C in a freezing container for the first 24 h. 

Isopropanol contained in the freezing container slowed down cooling to 1°C per min. For 

thawing of cells from cryo conservation at -80°C, a cryo tube was put in the 37°C water bath 

for 3 min. Then, the cell suspension was transferred in a 15 ml centrifugation tube with 9 ml 

cell culture medium. After centrifugation at 1,000 rpm for 3 min and supernatant removal, the 

cells were seeded in a 25 cm2 flask. Medium was changed after 1 d.   
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4.2.4 In vitro tumour cell growth assays 

Proliferation assays were performed upon serum starvation, which was carried out by two 

PBS washing steps before incubation of the cells in phenol red-free and serum-free cell 

culture medium. Starvation in phenol red-free medium was performed for 3 d in order to 

equalise experimental start conditions and to avoid a potential hormonal influence by phenol 

red with the anti-/hormone treatment321,322. At the end of serum starvation, cells were 

expected in G0 and G1 phases of the cell cycle323,324. 

 

Transfection with siRNA 

The siRNA approach was used to study the role of BK-α and BK-γ1 subunits in 

MMTV-PyMTtg/+-derived mouse tumour cells and in MDA-MB-453 human breast cancer cells. 

For resuspension of the siRNA in siRNA buffer, the tubes containing 5 nmol siRNA 

(supplement 9.1) were briefly centrifuged for collection of the siRNA as pellet at the bottom. 

20 µM stock solutions were obtained by addition of 250 µl 1x siRNA buffer. After 30 min at a 

mixer, small volumes of 10 - 20 µl aliquots were stored at -20°C in order to avoid repeated 

freeze-thaw cycles. In all proliferation experiments conducted, cells were seeded and 

allowed to adhere overnight. Transfection occurred in two steps: First, 3 d transfection in cell 

culture medium without serum (serum starvation) followed by 3 d transfection in cell culture 

medium supplemented with FCS (serum restimulation). Serum starvation in the first 3 d 

prevented excessive growth and maintained controlled experimental conditions. For the 

transfection process, solutions of 100 nM siRNA in 0.2 µl transfection reagent per 100 µl 

media (DharmaFECT 1 for MMTV-PyMTtg/+ WT and BK KO cells, DharmaFECT2 for 

MDA-MB-453 cells) achieved best transfection efficacies in combination with low toxicity 

(data not shown). Aliquots for the different siRNAs were thawed and measured as 1 µl 

samples with the nanophotometer. Here, a concentration of 13.3 ng/µl was equivalent to 

1 µM siRNA. 5 µM siRNA was prepared as solution in 1x siRNA buffer and incubated for 

5 min. In parallel, the transfection reagent was diluted in IMEM or L-15, respectively, and 

aliquoted in tubes according to the number of experimental conditions. After 5 min 

incubation, each siRNA solution was transferred to a pre-arranged tube with transfection 

reagent and incubated for 20 min. In between, cells were washed twice with PBS. For serum 

starvation, IMEM or L-15 medium was added to the tube containing siRNA and transfection 

reagent for concentrations of 100 nM siRNA in 0.2 µl transfection reagent per 100 µl media. 

For serum restimulation, IMEM or L-15 medium were supplemented with FCS for a final 

serum concentration of 5% for MMTV-PyMTtg/+ cells and 10% for MDA-MB-453 cells. Then, 

the transfection medium was pipetted to the cells and incubated for 3 d. At the end of each 

experiment, mRNA was isolated to assess the amount of target gene depletion and thus 

guarantee successful knockdown. Due to the experimental design in small slides and plates, 
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only a low amount of mRNA was expected after isolation. In order to maximise the yield, the 

mRNA was isolated with the Machery-Nagel RNA isolation kit containing different column 

and centrifugation steps, which is further described in section 4.3.1. 

 

Grid slides and dishes 

For proliferation analysis of siRNA-treated cells, 8-well slides containing a grid pattern at the 

bottom to allow for cell tracking (figure 4.4 A) were utilised. A mastermix containing 

10,000 MMTV-PyMTtg/+ WT or BK KO cells per 300 µl IMEM (without phenol red) + 5% FCS, 

or 10,000 MDA-MB-453 cells per 300 µl L-15 (without phenol red)  + 10% FCS was pipetted 

in duplicate in each well of the grid slide. After serum withdrawal in combination with siRNA 

transfection, a photo of the four centred quadrants of each well was taken with a 

10x objective magnification at an inverted transmitted-light microscope. Then, the cells were 

transfected with siRNA in serum-containing medium. Photos were taken every 24 h for in 

total 72 h.       

 

Figure 4.4: Slides and dishes with grid pattern for proliferation experiments 

Tracking of tumour cells occurred in grid pattern-based (A) slides and (B) dishes. Using the 10x 

magnification of the microscope, four adjacent quadrants were photographed at 0 h and 72 h, as well 

as for 24 h and 48 h in selected experiments, for monitoring cell numbers by counting.   
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Investigations on tumour cell proliferation over a time frame of 72 h were performed in grid 

dishes (figure 4.4 B). 80,000 MMTV-PyMTtg/+ WT, BK KO or IK KO cells, 30,000 MCF-7, 

20,000 MDA-MB-157 or 80,000 MDA-MB-453 cells were seeded per dish and condition and 

were allowed to adhere for 24 h followed by serum starvation for 72 h. Before the end of 

serum starvation, selected grid areas of each dish were photographed with the microscope. 

Afterwards, re-stimulation occurred according to the treatment groups of the various 

experiments. For investigations of different TRAM-34 concentrations on the growth of 

MMTV-PyMTtg/+ WT and IK KO cells, cells were monitored every 24 h for totally 72 h. In 

experiments investigating the role of selected anti-/hormones on proliferation, monitoring was 

restricted to 0 h and 72 h due to light sensitivity of the selected substances.  

 

Ki-67 proliferation marker status 

Genotype-specific differences in MMTV-PyMTtg/+ WT, BK KO and IK KO tumour cell Ki-67 

status were assessed by seeding 80,000, 50,000 or 30,000 cells of each genotype in 200 µl 

cell culture medium into the wells of 12-well chamber slides. After 24, 48 or 72 h, 

respectively, cells were fixed in 250 µl of 70% ethanol.  

Ki-67 expression after serum and anti-/hormone treatment was conducted by seeding 50,000 

MMTV-PyMTtg/+ WT or BK KO cells, 10,000 MCF-7 cells, 10,000 MDA-MB-157 cells or 

30,000 MDA-MB-453 cells in 400 µl cell culture medium per well of 8-well chamber slides. 

After 24 h of adhesion, cells were starved from serum in 400 µl media containing 

penicillin/streptomycin for 72 h, as described in section 4.2.3. Afterwards, the different wells 

were restimulated with selected concentrations of anti-/hormones in 400 µl CCS-containing 

cell culture media for 24 h. Finally, cells were fixed in 400 µl 70% ethanol.  

Ki-67 immunofluorescence of siRNA-treated cells was carried out in 8-well chambers. For 

this purpose, cell suspensions of 20,000 MMTV-PyMTtg/+ WT or BK KO cells per 400 µl 

IMEM (without phenol red) containing 5% FCS, or 20,000 MDA-MB-453 cells per 600 µl L-15 

(without phenol red)  with 10% FCS were prepared as mastermix and pipetted in the various 

wells of the chambers. As described in section 4.2.3., transfections in serum-free medium 

and restimulation in serum-containing media were conducted each for 72 h before the cells 

were fixed in 70% ethanol. Each experiment was prepared in duplicate, as one replicate 

served for RNA isolation and measurement of knockdown efficacy while the other replicate 

was used for anti-Ki-67 immunofluorescence.  

From each genotype and treatment condition, four sections were taken with the fluorescence 

microscope in order to evaluate Ki-67 status. For this purpose, the numbers of nuclei and 
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Ki-67-positive cells in each section were counted and thus the fraction of Ki-67-positive cells 

was calculated.  

 

4.2.5 Clonogenic survival assay after IR 

The potential radiosensitising effect of BK and IK channels was investigated after seeding 

5 ml cell suspensions of 600,000 MMTV-PyMTtg/+ WT, BK KO or IK KO cells in 25 cm² cell 

flasks to allow for adherence and growth for 3 d. Then, the cells were irradiated in 2 Gy 

fractions in the various flasks using total radiation doses of 0, 2, 4 or 6 Gy. In order to 

investigate a potential modulation of survival after irradiation by co-treatment with 10 or 

1,000 nM TAM, 600,000 WT or BK KO cells were seeded in 25 cm² cell flasks in 4.95 ml cell 

culture medium containing CCS instead of FCS. After 3 d of adhesion and growth in the 

flasks, the cells were treated with either 10 or 1,000 nM TAM or vehicle alone. Approximately 

60 min later, the flasks were irradiated with 0 or 2 Gy.  

In order to perform the delayed plating colony formation assays, cells were allowed to 

regenerate from irradiation for 24 h before detachment from the flask with trypsin. 3,500 cells 

were seeded in 3 ml cell culture medium per well of 6-well plates. Each experiment was 

conducted with six technical replicates. The 6-well plates were kept in an incubator for the 

following 14 d in order to allow surviving cells to form colonies containing at least 50 cells. 

Eventually, cell culture medium was removed from the 6-well plates. Cells were fixed with 

2 ml 3.7% formaldehyde in PBS for 10 min. The formaldehyde solution was replaced with 

70% ethanol for 10 min. Then, the ethanol solution was discarded as well and the wells were 

washed with dH2O twice shortly. Afterwards, cells were stained with 0.05% coomassie 

solution for 10 min, depending on its freshness, until staining of the cells was 

macroscopically visible. The coomassie solution was recycled and the wells were washed 

again with dH2O twice shortly. Then, the 6-well plates were air-dried and the colonies in each 

well could be counted by use of the 5x magnification of the microscope (figure 4.5). 
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Figure 4.5: Colony formation after application of IR 

Representative coomassie solution-stained colonies formed in 6-well plates 14 d after irradiation with 

0, 2, 4, or 6 Gy. (A) After IR exposure, cells adhered to the 6-well plate but were growth-arrested and 

died by different mechanisms. (B) Cells undergoing mitotic catastrophe managed to accomplish 

several cell cycle divisions before the colony of cells stopped growing. (C) Successfully surviving cells 

formed colonies containing at least 50 cells. 

 

4.2.6 DNA damage assessment by H2AX status 

Detection of DNA damage repair after irradiation was investigated by seeding 200 µl 

suspensions of 50,000 MMTV-PyMTtg/+ WT, BK KO or IK KO cells in 12-well chambers to 

culture for 3 d. In an additional setup, the IK inhibitor TRAM-34 was employed in 

MMTV-PyMTtg/+ WT cells where the cells were cultured in 190 µl cell culture medium and 

treated with 10 µl TRAM-34 or ethanol 1 h before IR. Irradiation was generally performed in 

2 Gy fractions to final dosages of 0, 2, 4 and 6 Gy. To analyse the effect of 10 or 1,000 nM 

TAM treatment on H2AX expression after irradiation, cells were grown in CCS-containing 

cell culture medium for 3 d. 1 h prior to irradiation with 0 or 2 Gy, cells were treated with 

either 10 or 1,000 nM TAM or its solvent. Four sections were taken for each genotype and 

treatment condition, from which H2AX foci numbers per cell were determined. 

 

4.2.7 xCELLigence-based tumour cell migration after TAM treatment 

Metastases and in particular brain metastasis are the main cause of breast cancer mortality 

in patients325-327. At the same time, TAM is well accepted for its anti-proliferative but also 

anti-migrative properties in breast and other cancers328-330. Interestingly, several hints exist 

for a pro-migrative effect of TAM, which is independent from the nuclear ER, but seems to 

rely on non-genomic GPER signalling331,332 that is also proposed to modulate BK channel 

activity333,334. Therefore, migration of MMTV-PyMTtg/+ WT and BK KO cells was assessed 

with the xCELLigence system (figure 4.6) in the presence of 10 or 1,000 nM TAM. The CIM 

plates used for the assay were composed of an upper chamber with 16 wells for tumour cell 

application and a membrane with pores on its bottom. The upper chamber could be put on 

top of the lower chamber containing another corresponding 16 wells. Cells seeded in the 

upper chamber migrated to the lower chamber along a 2.5 - 5% CCS gradient through the 

microporous membrane below with microelectrodes sensing adhesion and thus impedance 

evoked by the cells.  
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Figure 4.6: Migration assay in the xCELLigence system 

An upper chamber and a lower chamber separated by a membrane with pores served as migration 

axis along a CCS gradient. MMTV-PyMT
tg/+

 WT and BK KO cells were added in the upper chamber at 

a final concentration of 80,000 cells per 200 µl and migration was measured as impedance with the 

microelectrodes at the bottom of the pore membrane during 8 h after seeding. 

 

For the experiment, 1.5 million MMTV-PyMTtg/+ WT and BK KO cells were plated in cell 

culture medium in 25 cm2 cell flasks overnight. The next day, cells were serum-starved for 

72 h. Then, the cells were pre-incubated with TAM or vehicle in CCS-containing cell culture 

medium for 24 h. The lower chamber of the CIM plate was filled with 160 µl of 

5% CCS-containing IMEM and TAM or vehicle. During this procedure, air bubbles were 

avoided, as they would disturb cell migration to the lower chamber. The upper chamber was 

prepared with 100 µl serum-free IMEM ± TAM in twice the concentration of the experimental 

setup. The plate was equilibrated in the incubator during preparation of the tumour cells. For 

this purpose, the MMTV-PyMTtg/+ WT and BK KO cells were detached from their flasks with 

trypsin and counted. In this experiment, the trypsin reaction was not stopped with 

serum-containing cell culture medium but it was diluted in PBS in order to prevent 

serum-evoked migration effects. The cell suspension was centrifuged a second time and 

resuspended in IMEM to a concentration of 80,000 cells/100 µl. The CIM plate was calibrated 

before 100 µl cell suspension was added to the wells of the upper chamber for a total volume 

of 200 µl. After a time frame of 15 min to allow cells to settle down, the CIM plate was placed 

in the xCELLigence machine that was located in a separate incubator. The migration assay 

was run for 8 h because longer time periods would potentially disturb experimental outcomes 

due to changes in cell size and morphology after adhesion as well as increasing cell 

numbers because of proliferation. Electrode impedance served for measurement of migration 

and was recorded as cell index representing a dimensionless parameter. Cell index 

represented cell number and viability, morphology and adhesion degree335.  
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4.3 RNA analytics 

Tumour or organ pieces were dissected as described (section 4.1.8) and collected in 1.8 ml 

cryo tubes and frozen in dry ice followed by storage at -80°C until further analysis.  

 

4.3.1 RNA isolation from tumour tissues and cells 

RNA was extracted with peqGOLD RNAPureTM containing phenol and guanidinium 

thiocyanate. For RNA isolation from tissue samples, peqGOLD RNAPureTM was added to 

2 ml tubes with 1 ml per 100 mg tissue or at least 500 µl was used for samples of lower 

weight. The samples were homogenised with an ultra-turrax and centrifuged at 12,000 rcf 

and 4°C for 10 min. For the isolation of RNA from cells in a 55 cm² cell dish, cells were 

washed twice with PBS. 1 ml peqGOLD RNAPureTM was added to the cells and pipetted up 

and down several times and transferred to a 1.5 ml tube. The samples were centrifuged at 

13,000 rpm and 4°C for 10 min.  

The supernatants were transferred to new 2 ml tubes for tissues and 1.5 ml tubes for cells. 

These tubes contained chloroform at 20% v/v as compared to the sample volume. After an 

immediate vortexing step, 5 min incubation followed on ice for tissues and at room 

temperature for cells. After centrifugation at 13,000 rpm and 4°C for 5 min, the upper phase 

was pipetted in a new 2 ml tube for tissues or 1.5 ml tube for cells. Isopropanol at 70% v/v as 

compared to the sample volume was added to the tube and incubated at 4°C overnight. The 

next day, samples were centrifuged at 13,000 rpm and 4°C for 10 min. Subsequently, two 

washing steps were carried out as follows: The supernatant was removed and 800 µl 

75% ethanol was added to the samples before centrifugation at 13,000 rpm and 4°C for 

5 min and the procedure was repeated once. Finally, the supernatant was removed and the 

tubes contained a pellet at the bottom to be dried for 20 - 30 min. 53 µl DEPC-H2O was 

added to the tubes and mixed on a thermomixer at 500 rpm and 56°C for 10 min. During this 

time, the tubes were flipped every 2 min.   

In order to use equal mRNA amounts for cDNA synthesis in the different experiments, mRNA 

concentration as well as impurities caused by DNA and protein in the sample were measured 

with a nanophotometer using 1 µl sample each for three measurements. Afterwards, traces 

of genomic DNA in the samples were digested by addition of 6 µl DEPC-H2O and 5 µl DNAse 

followed by incubation on a thermomixer at 500 rpm and 37°C for 30min. The DNAse was 

heat-inactivated at 500 rpm at 80°C for 5 min. Finally, RNA concentrations were adjusted 

with DEPC-H2O addition to 0.1 µg/µl. Samples were stored at -20°C until further use.  
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The experimental approaches using siRNA were conducted in a small format using lower cell 

numbers and sample sizes than necessary for the isolation of total or mRNA with the 

above-described protocol. Therefore, the Machery-Nagel RNA isolation kit (see section 3.6), 

an efficient, reproducible and high-yielding method for isolation of RNA was applied. For the 

kit-based RNA isolation, medium was removed from the cells and they were lysed with 2 µl 

β-mercaptoethanol in 200 µl RA1 buffer. Filtration through a NucleoSpin® filter placed in a 

2 ml collection tube at 11,000 rcf for 1 min reduced viscosity and cleared the lysate. 350 µl of 

70% ethanol was added to the lysate-containing collection tube and shortly vortexed. The 

lysate was loaded to a NucleoSpin® RNA column placed in a new 2 ml collection tube and 

centrifuged at 11,000 rcf for 30 s. The RNA was thus bound to the column. The column was 

placed in a new 2 ml collection tube and 350 µl membrane desalting buffer was added to the 

column. After centrifugation at 11,000 rcf for 1 min, the DNA was digested. The mastermix 

for DNA digestion contained 10 µl reconstituted rDNAse in 90 µl reaction buffer for rDNAse 

per sample. 95 µl of the mastermix was pipetted directly on the centre of the silica 

membrane, which was located at the bottom of the column, and incubated for 15 min. 

rDNAse was inactivated with 200 µl RAW2 buffer at 11,000 rcf for 30 s. Then, the column 

was placed in a new 2 ml collection tube. For washing, 600 µl ethanol-containing RA3 buffer 

was used for the next centrifugation step at 11,000 rcf for 30 s. The flow-through was 

discarded and the collection tube was placed back to the column. Another washing step with 

250 µl RA3 buffer occurred at 11,000 rcf for 2 min in order to completely dry the membrane. 

Next, the column was placed into a 1.5 ml tube and the RNA was eluted with dH2O, while 

volumes were adjusted according to experimental setups (section 4.2.4), at 11,000 rcf for 

1 min.  

 

4.3.2 Reverse transcriptase-based cDNA synthesis 

The cDNA synthesis mix with reverse transcriptase (RT) was employed for each RNA 

sample to create a cDNA sample for further analysis. Volumes used are shown in table 4.3. 

The mastermix containing RT (+RT) was prepared of RT, DEPC-H2O and the 5x iScript 

reaction mix containing dNTPs, oligo deoxythymidines and random hexamer primers as well 

as buffer components. For negative control, a mastermix without RT (-RT) was prepared with 

RT substituted by DEPC-H2O. The mastermix was provided in a 0.5 ml tube and the eluted 

RNA was added. As RNA concentrations and volumes were lower in samples from siRNA 

experiments, the whole RNA yield per sample was used for cDNA synthesis. DEPC-H2O was 

omitted except for its use as RT substitute, and the total volume of the cDNA mastermix was 

adjusted. In the thermal cycler, the lid was pre-heated to 105°C to avoid condensation. In a 

first step, samples were heated to 25°C for 5 min to allow for primer annealing. Then, reverse 
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transcription was conducted at 42°C for 30 min before the RT was heat-inactivated at 85°C 

for 5 min. After cooling down to 4°C, DEPC-H2O was added for sample dilution. 

Table 4.3: Composition of the cDNA synthesis mastermix 

The cDNA synthesis mastermix constituted different amounts of RT, DEPC-H2O and 5x iScript 

Reaction Mix as well as different amounts of RNA. After PCR termination, DEPC-H2O was added to 

increase the amount of cDNA sample for subsequent conductance of quantitative real-time 

PCR (qRT-PCR). All listed volumes present in µl.   
 

Approach RT 

 

DEPC-H2O  5x iScript 

Reaction Mix  

RNA  Final addition of 

DEPC-H2O 

Peqgold + 1 10 4 5 180 

- - 5.5 2 2.5 90 

Murine siRNA       

Grid slides + 2 20 8 10 - 

- - 5.5 2 2.5 - 

Ki-67 + 2 - 8 30 70 

- - 0.67 2.67 10 23.33 

Human siRNA 

 

      

Grid slides + 2.25 - 9 33.75 - 

- - 0.75 3 11.25 - 

Ki-67 + 2.25 - 9 33.75 - 

- - 0.75 3 11.25 - 

 

4.3.3 Primer design and qRT-PCR analysis of mRNA expression levels 

For the design of target-specific primers, a preferably intron-spanning template sequence 

was identified. Therefore, the different coding isoforms of the target gene were compared for 

the target species on the ensemble website336. A sequence common for the isoforms of 

interest was selected (supplement 9.1) and introduced in the primer3.ut primer design 

website337,338. Criteria for primer selection were 80 - 120 bp length and 58 - 64°C melting 

temperature. After confirmation that the primer pairs were applicable to all coding isoforms, a 

blast search was conducted to proof target specificity and restriction to the gene of 

interest339. Primer lyophilisates were solved in DEPC-H2O to a concentration of 100 pmol/µl. 

Amplification of target sequences with qRT-PCR allowed conclusions on the relative target 

gene expression compared to Actb/ACTB encoding the murine/human β-actin, which was 

chosen as reference gene. A mastermix with 2.25 µl of each forward and reverse primers for 

the specific gene target as well as 7.5 µl SsoAdvanced™ Universal SYBR® Green 

Supermix (2x) was prepared. The SsoAdvanced™ Universal SYBR® Green Supermix (2x) 
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contained an antibody-mediated hot-start Sso7d-fusion polymerase, dNTPs, MgCl2, 

stabilisers, enhancers, SYBR® Green I dye and passive reference dyes. 12 µl mastermix was 

pipetted in each of the scheduled wells of a 96-well plate before addition of 3 µl cDNA. For 

polymerase activation and DNA denaturation, the PCR machine was heated to 95°C for 

2 min followed by 40 rounds of amplification: Each cycle started with cDNA denaturation at 

95°C for 5 s. Then, annealing, extension and plate read occurred at 58°C for 20 s. After the 

last cycle, the machine hold 58°C for additional 5 s before it heated up to 95°C for separating 

the double strands of the last round. Finally, the melting curve was created and temperature 

dropped to 0.5°C. 

After qRT-PCR, the correct product size of the amplified cDNA sequence was verified with a 

3% agarose gel electrophoresis for establishment of new primer sequences. Due to the small 

band sizes expected in this assay, 12 µl of Low Molecular Weight DNA Ladder was used as 

reference. The samples were supplied with loading dye and a total amount of 15 µl was 

pipetted in each pocket of the gel. Gel electrophoresis and detection were conducted as 

described in section 4.1.3. 

 

4.4 Histology 

Whole tumours or organs were fixed in 15 ml tubes containing 10 ml 4% PFA for at least 3 h. 

Afterwards, PFA was discarded and the samples were washed twice with 10 ml PBS on a 

shaker for 5 min. The PBS was replaced with 10 ml of an increasing sucrose concentration 

gradient with 5% for 30 min, 10% overnight and 20% for 24 h, each prepared freshly in PBS. 

For sectioning, the samples were conserved in Neg-50™ frozen section medium in an 

aluminium foil pocket. All samples were kept at -80°C for at least 24 h and maintained on ice 

before cutting. Tissue blocks were generally cut to 10 µm sections, except for lungs that were 

cut to 30 µm sections. Temperatures of sample and cutting knife were -18°C and -21°C, 

respectively. In order to guarantee equal staining conditions across different genotypes and 

treatments, such samples were matched together on slides for direct comparison.  

 

4.4.1 Fixation in Bouin´s solution for the detection of macrometastases 

The right lung was incubated in Bouin´s solution for 3 d in order to visualise lung metastases 

macroscopically. Bouin´s solution contained 9% formaldehyde, 5% acetic acid and 

0.9% picric acid. This led to fixation of the lung tissue and improved macroscopic detection 

and counting of metastases (figure 4.7).  
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Figure 4.7: Representative fixation in Bouin´s solution for lung metastasis 

Lungs of MMTV-PyMT
tg/+

 WT and BK KO tumour-bearing mice were dissected and fixed in Bouin´s 

solution in order to detect macroscopically visible lung metastasis. Compared to healthy lungs (left), 

tumour metastases (right) presented as bright dots of smaller or larger size, respectively. In the 

example, these are highlighted by red arrows. 

 

4.4.2 Haematoxylin/eosin staining for the detection of micrometastases 

For the detection of micrometastases (figure 4.8), the left lung was dissected and sectioned, 

as described in section 4.1.9. Staining was performed in a glass tray with the slides 

positioned in an upright position. The slides were dehydrated and rehydrated in an ethanol 

gradient of 50, 70, 90, 100, 90, 70 and 50% each for 2 min. Three short washing steps in 

dH2O were followed by haematoxylin staining for 5 s. Two further short washing steps were 

conducted in tap water. Next, the slides were incubated in 0.1% ammonia solution for 30 s 

before another 5 min washing step in tap water. Then, the slides were incubated in eosin-G 

solution for 10 min and were washed shortly for five times in tap water. Tap water was 

utilised for haematoxylin/eosin to induce intensive staining that was evoked by its ion 

content340. At the end, the sections were dehydrated with 80% ethanol for 2 min, followed by 

100% ethanol for 3 min and toluene for 5 min. Finally, the slides were covered with a drop of 

DePeX and a glass cover slip.   

 

Figure 4.8: Representative haematoxylin/eosin staining of lung metastases 

Lungs were dissected and processed as described (section 4.1.8) and finally stained with 

haematoxylin/eosin after scarification of MMTV-PyMT
tg/+

 WT and BK KO tumour-bearing mice. 

Micrometastases were counted and compared between genotypes in the spontaneous and 

allotransplant breast cancer models (figure 5.1 and figure 5.4).  
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4.4.3 Anti-ER- alkaline phosphatase staining 

MMTV-PyMTtg/+ WT, BK KO and IK KO sections and uterus sections (positive control) were 

encircled with a hydrophobic barrier pen and fixed in 4% PFA for 15 min. After a short wash 

and three washes for 5 min with PBS, the tissues were incubated in 1% H2O2 for 10 min. 

Consecutive washing steps of tissue sections were carried out as follows: Once shortly with 

PBS, 5 min with PBS, 5 min with 0.001% Tween® 20, 5 min with PBS. Alternatively, 170,000 

MMTV-PyMTtg/+ WT, BK KO and IK KO cells or 120,000 MCF-7 cells (positive control) were 

grown in 8-well chambers for 24 h followed by fixation in 2% PFA for 10 min, three washing 

steps with PBS and permeabilisation in 0.1% TritonX100 for 15 min. After fixation and 

permeabilisation, blocking of unspecific binding sites in tissue sections and cells occurred 

with 10% NGS in blocking solution (tissue) or PBS (cells) for 1 h. Then, the solutions were 

discarded and samples were incubated in 1.5% NGS in blocking solution (tissue) or PBS 

(cells) as negative control or amended with rabbit IgG or primary antibody at 4°C overnight 

(table 4.4). After washing, samples were incubated in the secondary antibody in 1.5% NGS 

in blocking solution (tissue) or PBS (cells) for 1 h in the dark. Samples were washed, 

incubated in 30 min pre-incubated ABC-AP reagent for 30 min in the dark, washed again and 

incubated in AP substrate solution for 10 min (tissue) or 8.5 min (cells) in the dark. The 

reaction was stopped once shortly and for 5 min in tap water (tissue) or by tap water followed 

by dH2O before the plastic chamber was removed (cells). Finally, each slide was covered 

with aquatex permanent mounting medium and a cover slip. 

 

4.4.4 Anti-Ki-67, anti-CD45 and anti-H2AX immunofluorescence 

Tissue sections were encircled with a hydrophobic barrier pen and cell experiments were 

prepared as described in sections 4.2.4 and 4.2.6. All anti-Ki-67 and anti-H2AX stainings 

were fixed with 70% ice-cold ethanol for 10 min (tissue) or with 70% ethanol at -20°C for at 

least 10 min or up to several days (cells). In addition, cells to be stained against Ki-67 were 

permeabilised with TritonX100 for 15 min after washing and tissue sections for anti-CD45 

immunofluorescence were incubated in 1% H2O2 for 10 min. Generally, cells for staining 

against H2AX or Ki-67 underwent two or three short washing steps with PBS, respectively, 

whereas tissue sections were washed three times with PBS for 5 min. For background 

reduction in the anti-Ki-67 immunofluorescence of tissue sections, washing after incubation 

with the 1st and 2nd antibodies comprised 5 min in PBS, 5 min in 0.001% Tween® 20 and 

another 5 min in PBS. Following fixation, permeabilisation and washing of the different 

experimental setups, epitopes were blocked against unspecific binding with 10% NDS 

(anti-Ki-67, anti-CD45) or NGS (anti-H2AX) normal serum in blocking solution (tissue) or 

PBS (cells) for 1 h. After removal of the respective solutions, samples were incubated in 
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1.5% normal serum in blocking solution (tissue) or PBS (cells) (negative control) amended by 

IgG or 1st antibody for 2 h (table 4.4). Washing of the samples was followed by incubation in 

the 2nd antibody in 1.5% normal serum in blocking solution (tissue) or PBS (cells) for 1 h, 

except for the anti-CD45 staining whose 1st antibody was directly tagged to the fluorophore. 

The washing procedure was repeated and, in cell experiments, the chamber was removed 

from the underlying slide. Nuclei were counter-stained and mounted with the DAPI-containing 

vectashield solution. The slides were covered with a cover slip and nail varnish avoided 

leakage of vectashield at the edges. 

Table 4.4: Overview on stainings against ER-, Ki-67, C45 and H2AX 
MMTV-PyMt

tg/+
 WT, BK KO and IK KO tumour sections and primary cell cultures were employed for 

the staining approaches against, ER-, Ki-67, CD45 and H2AX. These stainings required different 

concentrations of primary antibody, IgG control and secondary antibody. 

 Staining Sample 1st antibody IgG 2nd antibody 

anti-ER- tissue 1:150 1:75 1:200 

  normal rabbit IgG biotinylated  

   goat anti-rabbit 

cells 1:300 1:150 1:200 

   normal rabbit IgG biotinylated  

    goat anti-rabbit 

anti-Ki-67 tissue 1:400 1:174 1:200 

  normal rabbit IgG Alexa Fluor® 555  

   donkey anti-rabbit 

cells 1:1,000 1:435 1:800 

   normal rabbit IgG Alexa Fluor® 555  

    donkey anti-rabbit 

anti-CD45 tissue 1:200 1:200 - 

   AlexaFluor® 488 rat IgG2b - 

anti-H2AX cells 1:500 1:100 1:800 

   normal mouse IgG Alexa Fluor® 555  

    goat anti-mouse 

 

4.5 In silico analyses 

4.5.1 TCGA mRNA expression analyses and association with survival 

The Cancer Genome Atlas (TCGA) (https://xena.ucsc.edu/welcome-to-ucsc-xena/) 

IlluminaHiSeq Breast cancer data set was used to investigate KCa mRNA expression in 
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n = 1,095 breast cancer biopsies in comparison to n = 113 biopsies derived from healthy 

parts of the breast341. Besides, stratification by age, PAM50 classification, ER/PR status, 

tumour stage or menopause was performed to investigate a potential bias of the data due to 

the influence of any of these factors. Besides, OS was investigated after stratification for 

KCNMA1 or KCNN4 mRNA expression levels.      

 

4.5.2 KM plotter mRNA expression association with survival  

The Kaplan Meier (KM) plotter (http://kmplot.com/analysis/) was employed to investigate the 

association of gene expression with survival. The breast cancer mRNA data set contained in 

total n = 3,955 samples for relapse-free survival, n = 1,747 for distant metastasis-free 

survival, n = 1,402 for overall survival, and n = 414 for post-progression survival. Numbers 

dropped with subtype analysis, e.g. ER / PR / HER2 status, and selection of a distinct patient 

cohort, i.e. untreated, endocrine therapy, chemotherapy342. For the analysis, samples were 

stratified according to high or low mRNA expression levels of the desired gene and the 

KM plotter analysed survival parameters. Investigations included KCa channel genes coding 

for different subunits as well as proteins binding to regions of selected single nucleotide 

polymorphisms (SNPs).   

 

4.5.3 BCAC breast cancer risk analysis of genetic variants 

KCA SNP data collected in the Breast Cancer Association Consortium (BCAC), which forms 

part of the Collaborative Gene-Environment Study (COGS) focussing on breast as well as 

ovarian and prostate cancer, was received via an ongoing collaboration with Prof. Dr. Brauch 

(IKP, Stuttgart) for subsequent breast cancer risk analysis. The approximately 

211,000 genetic variants were analysed on the iCOGS custom genotyping array from 

Illumina. These SNPs had been selected according to promising findings of previously 

published genome-wide and candidate gene association studies. With respect to the size of 

the human genome and the limited size of a gene array, imputation of SNPs in linkage 

disequilibrium to the measured SNPs on the iCOGS array and due to hereditary linkage 

multiplied the number of genetic variants to be investigated for risk and survival studies343-345. 

As an up-dated chip configured by Illumina and additionally covering lung and colon cancer, 

the OncoArray was developed to be used in further studies. It contains approximately 

533,000 genetic variants346,347. 

In order to assess putative associations of KCa SNPs and breast cancer, the chromosomal 

location of each of the corresponding genes was checked in version GRCh37.p13 of the 

human genome assembly using NCBI PubMed gene search348,349. Risk data of the requested 

http://kmplot.com/analysis/
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chromosomal regions representing KCa channel genes was accessed from the BCAC. 

Ablebits Duplicate Remover was used for data processing in Excel. For each SNP found in 

the selected chromosomal regions, information regarding SNP number and position, 

reference and effect allele as well as p-value and odds ratio (OR) for the overall and the risk 

for ER-positive or ER-negative tumours were considered. Minor allele frequency (MAF) 

according to the 1,000 Genomes Project, variant type, i.e. SNP, deletion or insertion, and 

exonic or intronic location were extracted from the SNP database website350. With the SNAP 

online tool, pairwise linkage disequilibrium was calculated in the CEU European population 

panel351,352. HaploReg version 3 was employed for the detection of protein binding to the 

distinct SNP region, effects on regulatory motifs, and expression quantitative trait loci 

(eQTLs)353. Results were confirmed with the SNiPA354 and Genevar355 web-based tools. For 

each protein found to be associated with the SNP region of interest, its influence on breast 

cancer survival was investigated with the KM plotter. Besides, a literature search intended to 

get insight into putative functions of the protein in cancer and its potential interaction with the 

particular gene. 

 

4.6 Statistics 

Statistical analyses were carried out with GraphPad Prism for Windows version 6.01. Results 

are presented as means ± standard error of the mean (SEM). Significance threshold was set 

to  = 0.05. Statistical significance between selected groups are highlighted with asterisks, 

number signs and section signs with */#/§ for p < 0.05, **/##/§§ for p < 0.01 or ***/###/§§§ for 

p < 0.001. Non-significant statistical outcomes and comparisons that were neglected for 

statistical consideration are not marked separately.   

For the following experiments in the MMTV-PyMTtg/+ model, a common MMTV-PyMT 

transgene-positive KCa WT served as control for both BK KO and IK KO experiments: 

Genotype-specific characterisation by KCa mRNA expression, ER and HER2 analysis and 

CD45 immune cell infiltration; Proliferation assessment regarding Ki-67 status and growth 

differences of orthotopically transplanted murine tumour cells; in vitro radiation experiments.  

If not otherwise stated, all experiments were carried out at room temperature.  
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5. Results 

5.1 The BK channel in breast cancer development and survival 

Gene amplification and over-expression of the BK channel are frequently observed in 

cancers of the breast and also bone, brain, ovary and prostate. In MCF-7 breast tumour 

cells, BK channel expression occurs in a cell cycle-dependent manner and its inhibition in 

different human breast cancer cell lines results in a diminished proliferation response190,356. 

Besides, BK expression in human cancers positively correlates with high Ki-67 index and 

tumour stage187.  

 

5.1.1 BK channels in MMTV-PyMTtg/+-positive spontaneous murine breast cancer 

The impact of BK channel status on breast cancer development and survival was 

investigated in the spontaneous breast cancer-prone MMTV-PyMTtg/+ model302,311. 

MMTV-PyMTtg/+ WT and global BK KO mice were generated as described (section 4.1.4). In 

the BK KO genotype, hazard ratios (HR) were significantly lower for tumour-free survival 

(TFS) (figure 5.1 A) and OS (figure 5.1 B) with 0.35 (confidence interval (CI) 0.14 - 0.41) and 

0.38 (CI 0.18 - 0.64), respectively. As TFS and OS were significantly prolonged in 

MMTV-PyMTtg/+ BK KO mice compared to their WT littermates, it indicates that endogenous 

BK channels promote breast tumourigenesis and cancer progression. Tumour cell 

metastasis to the lungs after fixation in Bouin´s solution revealed no significant difference 

between genotypes (2.40 ± 1.17 macrometastases per WT lung and 4.75 ± 1.89 

macrometastases per BK KO lung) (figure 5.1 C). However, haematoxylin/eosin staining of 

lung sections showed a significant higher number of micrometastases in MMTV-PyMTtg/+ 

BK KO samples compared to WT samples (1.50 ± 0.47 micrometastases per WT lung and 

9.50 ± 3.22 micrometastases per BK KO lung). Of note, lungs were isolated as soon as the 

experimental mice reached the pre-defined abortion criteria (section 4.1.8) and due to the 

significantly different OS also at different ages for both genotypes. In addition, BW prior to 

and during tumour progression was significantly lower in MMTV-PyMTtg/+ BK KO mice than in 

MMTV-PyMTtg/+ WT mice, which is in line with recent findings that BW gain depends on 

functional BK channels in adipocytes357 (section 9.3). 
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Figure 5.1: Spontaneous tumour development in MMTV-PyMT
tg/+

 WT and BK KO mice 

MMTV-PyMT
tg/+

 BK KO mice and their WT littermates were studied for tumour onset and progression 

using Kaplan-Meier estimates. (A) TFS (n = 35 for WT, n = 16 for BK KO) and (B) OS (n = 34 for WT, 

n = 8 for BK KO) were significantly prolonged in log-rank tests of MMTV-PyMT
tg/+

 mice lacking BK 

(TFS ***p = 0.0004 and OS **p = 0.009). (C) Macroscopic metastases were identified in the right lung 

preserved by Bouin´s fixative (n = 10 for WT and n = 4 for BK KO). The number of lung metastases did 

not differ significantly between genotypes (Mann-Whitney test). (D) To assess micrometastases in the 

left lung (n = 12 for WT and n = 6 for BK KO), tissue sections were stained with haematoxylin/eosin 

(M. Sc. thesis by Alice Dragoi). Results revealed a significant higher number of micrometastases in the 

BK KO compared to the WT genotype (Mann-Whitney test *p < 0.05). (A - D) Presented are means 

± SEM. Abbreviations: Tumour-free survival, TFS; Overall survival, OS.  

 

The MMTV-PyMTtg/+ model is described to develop tumours with positive ER and HER2 

status in mice. During the course of disease, HER2 expression is known to increase, 

whereas ER status seems to decline depending on the substrains generated by repetitive 

breeding of commercially available founders312. In order to investigate these widely-used 

breast tumour markers in the MMTV-PyMTtg/+ model with regard to BK channel status, 

biopsies from both genotypes were assessed. Esr1, Esr2 and Erbb2 mRNA expression 

encoding ER-, ER- and HER2 were detectable in a qRT-PCR analysis, but this approach 

did not reveal any genotype-dependent differences (figure 5.2 A). In addition, ER-α protein 

expression could be detected in both MMTV-PyMTtg/+ WT and BK KO tissues (figure 5.2 B), 

which was confirmed in primary cell cultures derived from these tumours (figures 5.2 C + D).  
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Figure 5.2: ER and HER2 expression in MMTV-PyMT
tg/+

 WT and BK KO tumours and 

tumour-derived cells in vitro 

(A) Expression of the ER-, ER- and HER2-encoding Esr1, Esr2 and Erbb2 mRNAs was measured 

with qRT-PCR and related to Actb mRNA expression coding for -actin. Tissue samples and (B) cells 

derived from the MMTV-PyMT
tg/+

 model expressed both Esr1 and Esr2 mRNAs and comparably 

higher levels of Erbb2. Tumour markers did not differ between genotypes albeit expression levels 

were higher in cells as compared to tissue samples. (A + B) Plotted are means ± SEM for n = 3 

experiments, which were tested by two-way repeated measures ANOVA and Sidak´s test. (C) The 

positive ER- status was confirmed at the protein level in tumour tissue and (D) cells derived from the 

MMTV-PyMT
tg/+

 model. 

 

With regard to tumour onset, the role of the immune system is to detect and degrade cells 

with foreign or aberrant structures, such as infective agents but also malignant cells. 

Therefore, only tumour cells that manage to avoid immune detection can establish as 

tumour. Even more, a modulated immune response induced by established tumours can 

promote their own growth and cancer progression282. For this purpose, immune cell 

infiltration was monitored in MMTV-PyMTtg/+ WT and BK KO tumours and surrounding stroma 

by utilising the CD45 pan leukocyte marker. CD45 expression is a reliable marker found in all 

nucleated cells of the haematopoietic system and their precursors358. As an abundantly 

expressed glycoprotein with receptor type protein tyrosine phosphatase function in immune 

cells, CD45 is important for signalling and activation and thus proper immune cell actions358-

360. CD45-positive cells were detected by immunofluorescence in MMTV-PyMTtg/+ tumours of 

both genotypes with similar frequencies (11.9 ± 2.3 for WT and 8.3 ± 2.8 for BK KO) (figure 
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5.3 A). In the stroma, the presence of CD45-positive cells was higher in general; however, 

overall numbers were still comparable between genotypes (26.5 ± 2.7 for WT and 17.5 ± 9.3 

for BK KO) (figure 5.3 B).  

 

Figure 5.3: CD45-positive immune cell infiltration in MMTV-PyMT
tg/+

 WT and BK KO tumours 

Immune cells were detected by immunofluorescence using the CD45 pan leukocyte marker. 

CD45-positive cells occurred in BK-positive and -negative (A) tumour-surrounding stroma and to a 

minor extent (B) within the tumours with no differences between both genotypes, as calculated by 

unpaired t-test and Mann-Whitney test, respectively. Shown are means ± SEM for n = 5 experiments. 

 

5.1.2 BK channels and tumour growth in MMTV-PyMTtg/+ orthotopic breast cancer 

transplants 

Tumour cells isolated from MMTV-PyMTtg/+ WT and BK KO tumours were established as 

primary cell cultures, as described in section 4.2.1. In order to assess in how far a breast 

tumour-promoting role of the BK channel originates from the tumour tissue or the stroma, an 

orthotopic breast cancer transplant model was utilised (section 4.1.5). Herein, 

MMTV-PyMTtg/+ WT cells were transplanted in WT and BK KO mice, and MMTV-PyMTtg/+ 

BK KO cells were transplanted in WT mice. The recipient mice received the tumour cells at 

an age of 12 weeks in order to ensure transplantation in mature breasts (figure 5.4 A). 

Compared to TFS of MMTV-PyMTtg/+ WT cell-transplanted WT mice (10.4 ± 1.5 d), TFS was 

increased with MMTV-PyMTtg/+ BK KO cells transplanted in WT mice (22.9 ± 5.9 d, 
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HR = 0.35 (CI 0.06 - 0.63)) and it was decreased with MMTV-PyMTtg/+ WT cells transplanted 

in BK KO mice (7.0 ± 0.5 d, HR = 2.48 (CI 1.88 - 19.06)) (figure 5.4 B). In contrast, OS did 

not differ between groups, but showed a tendency towards increased survival of 

MMTV-PyMTtg/+ BK KO cells growing in WT recipients (62 ± 15 d), whereas OS of 

MMTV-PyMTtg/+ WT cells transplanted into BK KO mice did not differ significantly (52 ± 3 d) 

compared to MMTV-PyMTtg/+ WT cells grown in WT mice (52 ± 6 d) (figure 5.4 C). Moreover, 

tumour volume increase (figure 5.4 D) as well as macroscopic lung metastasis (0.33 ± 0.21, 

0.43 ± 0.30 and 0.14 ± 0.14 metastases/lung for MMTV-PyMTtg/+ WT cells in WT mice, 

MMTV-PyMTtg/+ BK KO cells in WT mice and MMTV-PyMTtg/+ WT cells in BK KO mice) were 

not altered between groups (figure 5.4 E).  

 
Figure 5.4: Tumour formation and progression after orthotopic allotransplantation of primary 

MMTV-PyMT
tg/+

 WT and BK KO cells 

Genotype-dependent differences in tumour formation and breast cancer progression were studied in 

WT and BK KO recipients receiving either MMTV-PyMT
tg/+

 WT or BK KO cells as indicated. 

(A) Tumour cells of both genotypes were transplanted in the fourth right mammary gland of WT or 

BK KO mice. (B) Monitoring of tumour onset revealed a shorter log-rank tumour-free survival (TFS) 

fraction of MMTV-PyMT
tg/+

 WT cells transplanted into BK KO mice and an increased log-rank TFS 

fraction after MMTV-PyMT
tg/+

 BK KO cell transplantation into WT mice, as compared to the 
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transplantation of MMTV-PyMT
tg/+

 WT cells into WT recipients. (C) Log-rank overall survival (OS) did 

not differ between test groups. (D) After the first palpation of a forming tumour, tumour growth was 

monitored three times a week with a digital calliper. This analysis did not reveal a significant difference 

in tumour volume increase between the test groups (two-way ANOVA with Tukey´s test). (E) Lung 

metastasis, as counted macroscopically after fixation in Bouin´s solution, was generally low and not 

different between groups (Kruskal-Wallis test with Dunn´s post hoc test). (A - E) n = 7 experiments 

were carried out with *p < 0.05. (D + E) show means ± SEM. 

 

Haematoxylin/eosin-visualised micrometastases were not observed in the allotransplant 

model (data not shown). In addition, the infiltration and occurrence of CD45-positive cells in 

MMTV-PyMTtg/+ WT tumours and their stroma were observed in the WT or BK KO recipient 

mice with no differences between genotypes (data not shown). qRT-PCR analysis for 

established tumour markers as well as K+ channels related to BK showed increased Esr1 

and Kcnmb4 mRNA levels in MMTV-PyMTtg/+ BK KO compared to MMTV-PyMTtg/+ WT 

tumours grown in WT mice (supplemental figure 9.4).  

 

5.1.3 BK channel subunits in human breast cancer development and survival 

Hence, it was hypothesised that the BK and its assembly with different of the 1-4 and 1-4 

subunits (section 1.3.2) may also represent a predictive marker for the development and 

survival of human breast cancer. With regard to the BK channel, the following SNPs were 

used from the BCAC iCOGS array (section 4.5.3) and imputation using linked SNPs: 

KCNMA1 (n = 4,014), KCNMB1 (n = 96), KCNMB2 (n = 1,731), KCNMB3 (n = 204), 

KCNMB4 (n = 396), LRRC26 (n = 6), LRRC38 (n = 272), LRRC52 (n = 131) and LRRC55 

(n = 51). As shown in figure 5.5, nine of these KCNMB4 SNPs were the most interesting 

candidates to significantly associate with breast cancer increasing overall risk (OR 1.06) and 

in particular risk for developing an ER-positive tumour (OR 1.07), but not an ER-negative 

tumour. In this context, however, neither the KCNMB4 nor any of the other 

BK channel-encoding genes contained an oestrogen response element (ERE) (data not 

shown). The MAFs of these SNPs in the population were 7 or 19% (figure 5.5 A)347. They 

were located in intron 1-2 and intron 2-3 of the KCNMB4 gene found on chromosome 

12336,361 (figure 5.5 B). Except for rs66985177 that was independent from the other SNPs, 

linkage was 87 - 100% between all other SNPs (figure 5.5 C). Modelling protein binding 

(section 4.5.3) delivered no results for most SNPs except for CCAAT/Enhancer Binding 

Protein- in rs61929945 (data not shown). 
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Figure 5.5: Association of KCNMB4 SNPs with modified breast cancer risk in the BCAC dataset 

Genetic variants located in genes that encode the different BK channel subunits were analysed for 

their association with breast cancer risk. Nine KCNMB4 SNPS were most interesting for the 

modification of breast cancer risk due to their impact on ORs and low p-values. (A) These SNPs had 

MAFs of 7 or 19% in the population. All SNPs were found to increase breast cancer risk in general and 

particularly risk for the development of ER-positive tumours with ORs of 1.06 or 1.07, respectively
347

. 

(B) The SNPs were located in introns 1-2 and 2-3 of the KCNMB4 gene. (C) Linkage analysis 

revealed linkage disequilibrium values of up to 100% between all SNPs, except for rs66985177 that 

showed no linkage to any of the other SNPs. Abbreviations: Minor allele frequency, MAF; Odds ratio, 

OR; Single nucleotide polymorphism, SNP. 

 

In order to better elucidate a potential clinical importance of BK channel status, data derived 

from TCGA (section 4.5.1)362 and the KM plotter (section 4.5.2)363 were used to analyse the 

influence of KCNMA1 mRNA expression levels on OS of breast cancer patients. Patients 

were stratified according to KCNMA1 mRNA expression levels in tumour tissue. Strikingly, 

the two web tools showed opposing results: Low KCNMA1 mRNA expression in TCGA with 
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HR = 6.89, whereas high KCNMA1 mRNA expression in the KM plotter with HR = 0.58 

served as an indicator for prolonged OS (figure 5.6 A + B).  

 

Figure 5.6: OS from breast cancer depends on KCNMA1 mRNA expression levels 

Overall survival (OS) time of patients suffering from breast cancer was analysed by stratification of the 

patients in two groups according to tumour KCNMA1 expression levels. (A) TCGA estimator (n = 604 

with high and n = 345 with low KCNMA1 mRNA expression) revealed a significant prolonged survival 

of patients with low KCNMA1 mRNA expression. (B) In contrast, the KM plotter dataset (n = 596 with 

high and n = 281 with low KCNMA1 mRNA expression), which had a longer follow-up time, showed 

the contrary result. Here, high KCNMA1 mRNA expression was in support of a prolonged OS time. 

Log-rank tests were performed with **p < 0.01 or ***p < 0.001. 

 

5.1.4 Expression of BK channel subunits in normal and tumour breast tissue of 

human patients and cell lines 

For a better understanding of tumour-specific roles for the different BK channel subunits 

described thus far, mRNA expression levels were assessed in healthy breast and breast 

tumour samples derived from TCGA (section 4.5.1). Gene expression analysis by TCGA had 

been performed by RNA sequencing to deliver the target genes in fragments as part of the 

whole, with sample frequencies depending on the length of the individual transcripts. 

Therefore, fragments per kilobase of transcript per million mapped reads (FPKM) were used 

as measure of mRNA expression, which considered the different transcript lengths of the 

target mRNAs361,364.  

Both healthy and tumour tissues included samples that expressed KCNMA1, KCNMB1, 

KCNMB2, KCNMB3, KCNMB4, LRRC26 and LRRC55 mRNA. LRRC52 mRNA was absent 

in healthy and tumour tissues, whereas LRRC38 mRNA was not available (n.a.). A significant 

downregulation of KCNMB1 (statistical rank 13,090 in healthy and rank 9,838 in tumour 

tissue) and KCNMB2 (rank 4,605 in healthy and rank 2,117 in tumour tissue) as well as a 

significant upregulation of LRRC26 (rank 6,319 in healthy and rank 8,125 in tumour tissue) 
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was detected (figure 5.7). Therefore, the composition and the interplay of the BK- 

pore-forming subunit and its auxiliary BK- and BK- subunits may determine the overall 

oncogenic effect of the BK channel in breast cancer. 

 

Figure 5.7: BK mRNA expression of normal and tumour breast tissue in TCGA 

KCa mRNA expression levels were compared between breast cancer biopsies (n = 1,095) and biopsies 

obtained from healthy parts of the patient´s breasts (n = 113). Analysis of breast cancer samples and 

reference samples revealed decreased KCNMB1 and KCNMB2 as well as increased LRRC26 mRNA 

expression levels in breast cancer samples compared to healthy samples. Data for LRRC38 mRNA 

expression was not available (n.a.) and LRRC52 mRNA was not expressed. mRNA expression levels 

obtained by quantitative sequencing, measured as fragments per kilobase of transcript per million 

mapped reads (FPKM), were not dependent on age, PAM50 classification, ER or PR status, tumour 

stage or menopausal status. Box plots show means ± SEM with ***p < 0.001 in Kruskal-Wallis test 

with Dunn´s post hoc analysis. 

 

Besides in silico analyses, the KCa mRNA composition of 15 human normal breast and breast 

cancer cell lines with different ER, PR and HER2 status was experimentally investigated by 

Dr. Werner Schroth (AG Prof. Dr. Brauch, IKP Stuttgart) using TaqMan analysis in order to 

clarify the roles of these channels and their subunits in breast cancer. 11 out of 15 cell lines 

were positive for BK--encoding KCNMA1 mRNA. Many of the cell lines also expressed 

KCNMB3, KCNMB4 and LRRC26 mRNAs, but also KCNMB1, LRRC38, LRRC55 and 

KCNN1-4 mRNAs were detected. None of the selected cell lines expressed KCNMB2 

mRNA, a subunit that is usually identified in pancreas, kidney, chromaffin cells and brain, nor 

the testis-specific LRRC52170,365. Interestingly, KCNMA1 and LRRC26 mRNA expression 

levels were highest in the MDA-MB-453 cell line. In comparison to BK, mRNA expression 

levels of SK1 - 4 were less prominent in the cell lines analysed (figure 5.8).  
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Figure 5.8: KCa mRNA expression in human normal and tumour breast cell lines 

The KCa expression profile was generated in 14 human breast cancer cell lines plus the 

non-tumourigenic MCF-10A epithelial cell line. The cell lines tested were chosen independently from 

their ER, PR and HER2 status. Most cell lines, including MCF-10A, expressed KCNMA1 encoding 

BK-. A majority was also positive for KCNMB3, KCNMB4 and LRRC26, whereas KCNMB1, LRRC38, 

LRRC55 as well as KCNN1 - 4. KCNMB2 and LRRC52 were less frequent or not detected in any of 

the breast cell lines. From the cell lines investigated, MDA-MB-453 turned out an interesting candidate 

for subsequent analyses due to its high KCNMA1 and LRRC26 mRNA expression levels. The 

well-studied MCF-7 cell line with its moderate KCNMA1 and LRRC26 mRNA levels as well as the 

MDA-MB-157 cell line, due to its positive LRRC26 mRNA status while lacking KCNMA1, were further 

selected for further analysis (sections 5.2.2 and 5.2.3). 

 

5.1.5 BK subunit mRNA profile of MMTV-PyMTtg/+ tumour-derived tissue sections and 

cells 

The expression of the different KCa channel members was also measured in the spontaneous 

MMTV-PyMTtg/+ model. For both tissue sections (figure 5.9 A) and tumour cells (figure 5.9 B), 

BK--encoding Kcnma1 mRNA was detected in the WT but not in the BK KO genotype. 

Furthermore, both MMTV-PyMTtg/+ WT and BK KO samples expressed Kcnmb1, Kcnmb4, 

Lrrc26, Kcnn1, Kcnn2 and Kcnn4 coding for BK-1, BK-4, BK-1, SK1, SK2 and IK protein. 

In tumour cells, Lrrc26 and Kcnn4 (0.003 and 0.019 ± 0.001 for WT, 0.011 and 0.036 ± 0.001 

for BK KO) were upregulated in the BK KO genotype (figure 5.9 B). In MMTV-PyMTtg/+ WT 

and BK KO tissue sections, but not in breast tumour-derived cells maintained in vitro, 

Kcnmb2 and Kcnn3 mRNAs, coding for BK-2 and SK3, were identified (figure 5.9 A). 
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Kcnmb3, Lrrc38, Lrrc52 and Lrrc55 mRNAs, encoding BK-3, BK-4, BK-2 and BK-3, were 

not detected (n.d.) in tissues or cells.   

 

Figure 5.9: KCa mRNA expression in MMTV-PyMT
tg/+

 WT and BK KO tissues and cells  

KCa mRNA levels normalised to the amount of Actb mRNA were measured with qRT-PCR in 

MMTV-PyMT
tg/+

 WT and BK KO samples. (A) Kcnma1 mRNA was detectable in MMTV-PyMT
tg/+

 WT 

but not in MMTV-PyMT
tg/+

 BK KO tissue samples. With regard to the described BK- accessory 

subunits, Kcnmb1, Kcnmb2, Kcnmb4 and Lrrc26 mRNAs, were measured. None of the other 

BK channel-encoding mRNAs, namely Kcnmb3, Lrrc38, Lrrc52 and Lrrc55, were detected (n.d.). 

Further, both genotypes showed mRNA expression for all members that could be attributed to the SK 

family of channels, i.e. Kcnn1, Kcnn2, Kcnn3 and Kcnn4. (B) MMTV-PyMT
tg/+

 WT and BK KO cells 

showed a similar expression pattern when compared to tissues meaning Kcnma1 mRNA was present 

in WT only, whereas Kcnmb1, Kcnmb4, Lrrc26, Kcnn1, Kcnn2 as well as Kcnn4 mRNAs were 

expressed in both genotypes. Besides, Kcnmb3, Lrrc38, Lrrc52 and Lrrc55 mRNAs were neither 

detectable in MMTV-PyMT
tg/+

 cells. However, unlike tissue mRNA expression, Kcnmb2 and Kcnn3 

mRNAs were not found in cells derived from the MMTV-PyMT
tg/+

 mouse model. (A + B) Plotted are 

means ± SEM of n = 3 experiments with ***p < 0.001 in two-way repeated measures ANOVA and 

Sidak´s test.      

 

5.1.6 BK- and BK-1 control murine and human breast tumour cell proliferation 

Proliferation status of tissue sections and cells derived from spontaneously developed 

MMTV-PyMTtg/+ WT and BK KO tumours was assessed by Ki-67 (sections 4.2.4 and 4.4.4). 

In contrast to negative control (ctrl) and IgG isotype ctrl, MMTV-PyMTtg/+ WT tissues stained 
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positive for Ki-67, whereas MMTV-PyMTtg/+ BK KO tissues were much less abundant for 

Ki-67 (figure 5.10 A and supplemental figure 9.4). Moreover, the fraction of Ki-67-positive 

cells was higher in MMTV-PyMTtg/+ WT (60.1 ± 5.1, 66.2 ± 6.0 or 74.3 ± 4.0%) than in 

MMTV-PyMTtg/+ BK KO (39.2 ± 1.8, 42.3 ± 1.9 or 40.0 ± 2.8%) cells, when the tumour cells 

were restimulated with serum-containing media for 24, 48 or 72 h following 72 h of serum 

starvation (figure 5.10 B). Importantly, the BK KO genotype did not interfere with Mki67 gene 

expression encoding Ki-67 in both MMTV-PyMTtg/+ WT and BK KO tissues and cells 

(supplemental figure 9.5). 

 

Figure 5.10: Ki-67 expression in MMTV-PyMT
tg/+

 WT and BK KO tumours 

Proliferation was assessed in tissue sections and cultured primary cells derived from MMTV-PyMT
tg/+

 

WT and BK KO tumours. (A) Ki-67-positive cells were more frequently detected in MMTV-PyMT
tg/+

 WT 

in comparison to the BK-negative tumour tissue (n = 4). (B) The fraction of Ki-67-positive cells was 

studied in cultured MMTV-PyMT
tg/+

 WT and BK KO cells after serum starvation for 72 h and 

restimulation with serum-containing medium for 24, 48 or 72 h, respectively. Again, absence of BK 

resulted in a decreased Ki-67-positive fraction as compared to MMTV-PyMT
tg/+

 WT cells. Bar graphs 

show means ± SEM of n = 6 experiments with **p < 0.01 and ***p < 0.001 in a one-way ANOVA with 

Bonferroni correction. 

 

In general, BK channel activity is strongly voltage-dependent and can be further increased by 

[Ca2+]i. Non-excitable cells such as epithelial-derived breast tumour cells possess only low 

negative membrane potentials366,367. However, accessory BK channel subunits and 

especially BK-1 can shift BK channel open probability towards more negative membrane 

potentials. The BK-1 subunit thus seemed an interesting candidate to study for its impact on 

tumour cell proliferation in the presence and absence of BK-170. Therefore, Lrrc26 coding for 

BK-1 was silenced with siRNA in MMTV-PyMTtg/+ WT and BK KO cells (siLrrc26). 

Knockdown efficacy (supplemental figure 9.6) and proliferation were studied and related to a 

non-targeting siRNA (siNT) ctrl. A possible effect of siNT treatment was assessed by parallel 

analysis of ctrl samples, which were treated as all other experimental groups except for the 

siRNA. To control for off-target effects of the knockdown, siRNA directed against 
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glyceraldehyde-3-phosphate dehydrogenase (siGapdh) complemented the experimental 

setup (see section 4.2.4).  

The relative proliferation rate of MMTV-PyMTtg/+ WT and BK KO cells in the different 

treatment groups was monitored in grid slides 0, 24, 48 and 72 h after restimulation. siNT 

and ctrl conditions did not differ with respect to normalised proliferation rate within genotype. 

At 48 and 72 h, however, the relative proliferation rate was significantly lower in 

MMTV-PyMTtg/+ BK KO ctrl (1.47 ± 0.19 and 2.10 ± 0.23 fold) and siNT-treated cells (1.46 

± 0.19 and 1.91 ± 0.12 fold) than in MMTV-PyMTtg/+ WT siNT-treated cells (2.44 ± 0.45 and 

3.87 ± 0.85 fold). The decreased proliferation rate evoked by BK- genetic ablation confirms 

previous cell behaviour analyses in the MMTV-PyMTtg/+ model315. The BK--dependent 

proliferation phenotype was mimicked by knockdown of Lrrc26 in MMTV-PyMTtg/+ WT cells at 

48 and 72 h (1.30 ± 0.31 and 1.78 ± 0.39 fold, respectively) as compared to the siNT-treated 

condition. Importantly, the proliferation rate according to siNT or siLrrc26 treatment did not 

differ in the BK KO genotype suggesting that Lrrc26 modulates cell division via BK- (figure 

5.11 A). Moreover, Lrrc26 mRNA expression did not significantly differ between ctrl and siNT 

in both genotypes (data not shown). The proliferation effects observed in the grid slides could 

be confirmed with regard to Ki-67 status. Ki-67 index after siNT treatment did not significantly 

differ from ctrl in both genotypes (77.0 ± 2.3% for ctrl and 67.6 ± 3.5% for siNT in WT, 46.8 

± 2.7% for ctrl and 43.8 ± 4.3% for siNT in BK KO). Compared to MMTV-PyMTtg/+ WT siNT, 

MMTV-PyMTtg/+ BK KO ctrl and siNT-treated cells revealed a lower Ki-67 index. Importantly, 

the number of Ki-67-positive cells after siLrrc26 treatment in MMTV-PyMTtg/+ WT cells was 

significantly decreased (46.0 ± 6.5%) compared to siNT treatment. Interestingly, the Ki-67 

index in the WT and BK KO genotypes after siLrrc26 treatment did not significantly differ 

from each other and overall levels were comparable to MMTV-PyMTtg/+ BK KO ctrl and siNT 

(figure 5.11 B). Potential off-target effects of Lrrc26 knockdown on the expression levels of all 

other BK subunits known so far were analysed by qRT-PCR. Compared to the siNT group, 

Kcnmb4 was significantly upregulated in siLrrc26-treated MMTV-PyMTtg/+ WT cells (2.38 

± 0.44 fold) while Kcnmb1 mRNA expression was unaltered (1.15 ± 0.44 fold) (figure 5.11 C). 

With regard to the other BK channel subunits, namely Kcnmb2, Kcnmb3, Lrrc38, Lrrc52 and 

Lrrc55, mRNA expression was not induced by any of the siRNA treatment conditions in both 

genotypes. Within genotype, Lrrc26 mRNA expression was not significantly different in ctrl 

and siNT-treated MMTV-PyMTtg/+ WT and BK KO cells (data not shown).  
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Figure 5.11: Proliferation of MMTV-PyMT
tg/+

 WT and BK KO cells treated with Lrrc26 siRNA 

The BK-1 subunit transcript was knocked down with siRNA specifically targeting Lrrc26 (siLrrc26) in 

MMTV-PyMT
tg/+

 WT and BK KO cells. Cultured tumour cells were transfected with siRNA during 72 h 

of serum starvation and the procedure was repeated for the 72 h period of restimulation with 

serum-supplemented medium. Proliferation of MMTV-PyMT
tg/+

 WT and BK KO cells treated with siNT 

was used as reference. (A) The proliferation rate was studied in 8-well grid chamber slides 24, 48 and 

72 h post restimulation and related to 0 h with each of the four time points in the diagram 

interconnected with lines. Proliferation of siNT-treated cells of both genotypes did not differ to their 

corresponding ctrl. However, the proliferation rate of MMTV-PyMT
tg/+

 WT, but not that of BK KO cells 

was decreased by siLrrc26 (two-way ANOVA with Sidak´s test). (B) The Ki-67 index after siRNA 

treatment was analysed 72 h after restimulation of cells grown in 8-well chamber slides in the 

presence or absence of siRNA. siNT treatment did not alter Ki-67 index when compared to ctrl 

treatment in both genotypes. siLrrc26 reduced the fraction of Ki-67-positive MMTV-PyMT
tg/+

 WT cells 

to BK KO levels (by two-way repeated measures ANOVA and Tukey´s test). (C) Potential effects of 

siLrrc26 on the expression of representative BK subunit mRNAs were investigated in MMTV-PyMT
tg/+

 

WT and BK KO cells. Per genotype, 50,000 cells were seeded in each well of a 24-well plate in 

duplicate and treated as described above. Subsequent RNA analyses were performed 72 h after 

restimulation. Kcnmb4 mRNA was upregulated in siLrrc26-treated MMTV-PyMT
tg/+

 WT cells, whereas 

Kcnmb1 mRNA expression was not altered (Wilcoxon signed-rank tests). (A - C) Presented are means 

± SEM. *p < 0.05, **p < 0.01 and ***p < 0.001 refer to 0 h MMTV-PyMT
tg/+

 WT cells treated with siNT 

or were drawn between groups as indicated in n = 5 experiments. 

 

In order to confirm these results and to examine the translational potential, the human 

MDA-MB-453 cell line was studied, which expresses high levels of BK- and BK-1 mRNAs. 
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To test if BK- and BK-1 mRNAs, namely KCNMA1 and LRRC26, are crucial for the 

proliferative behaviour of MDA-MB-453 cells, the subunits were knocked down with siRNA 

(siKCNMA1 and siLRRC26). The experiment was conducted as described in section 4.2.4 

including ctrl, siNT and GAPDH siRNA (siGAPDH). Knockdown efficacies are shown in 

supplemental figure 9.7.  

 

Figure 5.12: Proliferation response of MDA-MB-453 cells to siRNA-mediated depletion of 

KCNMA1 or LRRC26 

KCNMA1 and LRRC26 knockdown experiments confirmed that the highly expressed BK- and BK-1 

subunits are required for MDA-MB-453 cell proliferation. (A + B) siKCNMA1 or siLRRC26 significantly 

decreased proliferation rates (two-way repeated measures ANOVA and Tukey´s test) and Ki-67 index 

(one-way ANOVA with Holm-Sidak test) as compared to siNT after 72 h (n = 5). (C) mRNAs isolated 

from (A + B) were pooled to investigate potential compensatory effects due to silencing of KCNMA1, 

LRRC26 or the positive reference GAPDH. KCNMA1 was upregulated in LRRC26-depleted cells 

(two-way repeated measures ANOVA with Dunnett´s test). *p < 0.05, **p < 0.01 and ***p < 0.001 refer 

to siNT treatment (A + B) at 0 h or (C) at 72 h or were drawn between groups as indicated. 

 

The grid-based proliferation experiments revealed no difference between ctrl and siNT, 

whereas siKCNMA1 and siLRRC26 treatments resulted in significantly reduced proliferation 

rates. 72 h post restimulation, the relative proliferation rate in siKCNMA1- and 
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siLRRC26-treated MDA-MB-453 cells was similar (1.18 ± 0.10 fold and 1.18 ± 0.12 fold) and 

significantly lower compared to siNT treatment (1.69 ± 0.32 fold). Identical proliferation rates 

of siKCNMA1- and siLRRC26-depleted cells imply that BK- and BK-1 subunits are 

essential in order to ensure proper BK channel function in the MDA-MB-453 cell line (figure 

5.12 A). The Ki-67 index was investigated to provide additional information about the 

siKCNMA1- and siLRRC26-mediated effects on cell division in MDA-MB-453 cells. Similar 

fractions of Ki-67 were observed in ctrl (58.2 ± 5.1%) and siNT (56.3 ± 2.6%) groups, 

whereas Ki-67-positive MDA-MB-453 cells were reduced by siKCNMA1 (32.0 ± 3.8%) or 

siLRRC26 (31.7 ± 1.5%) (figure 5.12 B). KCNMA1, LRRC26 and GAPDH mRNA expression 

levels were examined at 72 h in grid slide and Ki-67 siRNA experiments. As expected, 

KCNMA1, LRRC26 and GAPDH mRNA expression was significantly downregulated after 

application of the respective siRNAs. Moreover, LRRC26 mRNA was significantly 

upregulated (1.19 ± 0.09 fold) in siKCNMA1-treated MDA-MB-453 cells compared to siNT 

(figure 5.12 C). 

 

5.2 Anti-/oestrogens and BK channels in breast cancer 

The tumour-promoting role of BK could be confirmed in the MMTV-PyMTtg/+ mouse model 

(figure 5.1 and figure 5.4) and in primary cells derived thereof (figure 5.11) as well as in 

human MDA-MB-453 breast tumour cells (figure 5.12). However, the mechanism of BK 

channel contribution to breast tumour cell proliferation remained unclear so far. Previous 

work suggests that selected hormones and anti-oestrogens at different concentrations 

control BK and thereby modulate breast cancer proliferation202,207,220. The herein performed 

SNP analysis in the BCAC dataset pointed into the same direction suggesting KCNMB4 

gene association with breast cancer increasing overall risk (OR 1.06) and ER-positive tumour 

risk (OR 1.07) (figure 5.5). In the following series of experiments, the interplay between ER 

status, ER-modulating agents and hormones as well as the BK channel complex was 

investigated with regard to the proliferative behaviour of MMTV-PyMTtg/+ WT and BK KO cells 

as well as in selected human breast cancer cell lines, namely MDA-MB-453, MCF-7 and 

MDA-MB-157 cells. 

 

5.2.1 Serum content as determinant of breast tumour cell proliferation via the BK 

In the MMTV-PyMTtg/+ model, proliferation of WT and BK KO cells in grid dishes was 

monitored 0, 24, 48 and 72 h after serum starvation and restimulation with 5% CCS or 

5% FCS supplemented to the cell culture medium as well as in the absence of serum to 

resemble a prolonged period of serum starvation. As expected, the relative proliferation rate 
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was highest in FCS-stimulated MMTV-PyMTtg/+ WT cells (1.00 ± 0.09, 1.87 ± 0.19, 3.78 

± 0.55 and 6.41 ± 1.06 fold for 0, 24, 48 and 72 h). For comparison, a significantly lower 

relative proliferation rate during the time course was seen in CCS (1.00 ± 0.13, 1.62 ± 0.12, 

2.17 ± 0.22 and 2.85 ± 0.51 fold for 0, 24, 48 and 72 h) and no serum-treated (1.00 ± 0.18, 

0.84 ± 0.06, 0.76 ± 0.05 and 0.73 ± 0.07 fold for 0, 24, 48 and 72 h) MMTV-PyMTtg/+ WT 

cells, but also in MMTV-PyMTtg/+ BK KO cells treated with FCS (1.00 ± 0.09, 1.55 ± 0.10, 

2.39 ± 0.23 and 3.41 ± 0.44 fold for 0, 24, 48 and 72 h), CCS (1.00 ± 0.08, 1.60 ± 0.09, 

2.07 ± 0.19 and 2.32 ± 0.37 fold for 0, 24, 48 and 72 h) or no serum (1.00 ± 0.16, 0.92 

± 0.06, 0.80 ± 0.06 and 0.72 ± 0.06 fold for 0, 24, 48 and 72 h) (figure 5.13 A).  

 

Figure 5.13: Serum-derived growth factors modify MMTV-PyMT
tg/+

 WT and BK KO cell 

proliferation 

MMTV-PyMT
tg/+

 WT and BK KO cells were seeded in grid dishes or 8-well chamber slides. After 24 h 

of adhesion, cells were starved from serum for 72 h before restimulated with medium supplemented 

with either 5% FCS, 5% CCS or without serum. (A) During proliferation induced by restimulation, cell 

numbers were determined as described (figure 4.4) in grid dishes at 0, 24, 48 and 72 h as shown by 

squares and interconnected lines (n = 7, *p < 0.05, **p < 0.01 and ***p < 0.001 indicate significant 

difference compared to MMTV-PyMT
tg/+

 WT FCS at the respective time points). (B) Ki-67 index was 

assessed 72 h after restimulation (n = 6, *p < 0.05, **/##p < 0.01 and ***p < 0.001 show significant 

difference compared to FCS treatment of MMTV-PyMT
tg/+

 WT or BK KO cells, respectively). 
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(A + B) Both approaches revealed a higher proliferation status in MMTV-PyMT
tg/+

 WT and lower levels 

in MMTV-PyMT
tg/+

 BK KO cells treated with FCS. Cells growing in CCS-supplemented medium 

proliferated moderately and, importantly, genotype-dependent growth differences were abolished in 

the presence of CCS. In the absence of serum, progressive cell depletion was observed in the grid 

dishes in both genotypes, whereas a low fraction of cells was still Ki-67-positive probably representing 

cells arrested in G1. Presented are means ± SEM and statistics were performed with two-way 

repeated measures ANOVA and Tukey´s test for the relative proliferation rate and Ki-67 index and 

with a one-way ANOVA with Tukey´s test for ∆ Ki-67. 

 

The Ki-67 index was also highest MMTV-PyMTtg/+ WT cells treated with FCS (71.1 ± 5.7%). 

A significantly lower Ki-67 index was found after 72 h of CCS treatment (57.3 ± 3.9%) or 

without serum (42.9 ± 2.9%) in the WT genotype, but also in MMTV-PyMTtg/+ BK KO cells 

treated with FCS (52.8 ± 3.2%). In comparison with MMTV-PyMTtg/+ BK KO cells treated with 

FCS, these treated with CCS (49.9 ± 3.8%) showed no significant different Ki-67 index, but 

did those treated without serum (37.3 ± 2.8%). Importantly, the calculated difference between 

MMTV-PyMTtg/+ WT and BK KO cells with respect to the Ki-67 fraction (∆ Ki-67) was high in 

FCS (18.3 ± 4.2%) and much lower in CCS (7.5 ± 5.9%) and serum-free (5.6 ± 4.4%) 

conditions, but it was no significantly different between treatments (figure 5.13 B). This 

suggests the growth factor content in the serum as determinant of proliferation in a BK 

channel-dependent manner.  

 

5.2.2 Influence of BK channel status on hormone-stimulated breast cancer cell 

proliferation 

To clarify the interplay between breast cancer-associated hormones, BK status and 

proliferation, E2 and E2-BSA representing an E2 membrane-impermeable form bound to 

BSA, as well as progesterone and testosterone prepared at different concentrations were 

applied in CCS-containing media to serum-starved MMTV-PyMTtg/+ WT and BK KO cells in 

grid dishes for 72 h comparing the different treatments to the CCS ctrl. As in previous 

experiments, FCS caused a significantly increased proliferation rate in MMTV-PyMTtg/+ WT 

(2.20 ± 0.19 fold) as compared to BK KO cells (1.37 ± 0.16 fold). Accordingly, in the WT 

genotype, the physiological 0.1 nM concentration of E2 (1.39 ± 0.09 fold) and E2-BSA 

(1.44 ± 0.07 fold) as well as all testosterone concentrations tested (1.63 ± 0.11, 1.53 ± 0.14, 

1.48 ± 0.10 and 1.50 ± 0.07 fold for 0.01, 0.1, 1 and 10 nM) significantly increased the 

relative proliferation rate. In contrast, none of these treatment conditions enhanced 

proliferation of BK-negative breast tumour cells (figure 5.14 A). These results were 

emphasised with regard to the Ki-67 status of MMTV-PyMTtg/+ WT and BK KO cells. In detail, 

a significantly increased Ki-67 index was detected in MMTV-PyMTtg/+ WT cells treated with 

FCS (1.29 ± 0.06 fold), 10 nM E2 (1.35 ± 0.06 fold) and 0.1 nM E2-BSA (1.30 ± 0.10 fold). 
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Compared to the BK KO genotype, MMTV-PyMTtg/+ WT cells showed an increased Ki-67 

index with 0.1 nM E2-BSA, 0.1 and 10 nM testosterone (figure 5.14 B). 

 

Figure 5.14: MMTV-PyMT
tg/+

 WT and BK KO cell proliferation in response to growth factors 

MMTV-PyMT
tg/+

 WT and BK KO cells were seeded at a density of 80,000 in grid dishes as well as 

50,000 in 8-well chamber slides. After 24 h, tumour cells were serum-starved for 72 h and then were 

restimulated for 72 h with different growth factor concentrations, as compared to ctrl treatment with 

CCS only. (A) The relative proliferation rate was assessed by the number of tumour cells after 72 h 

compared to initial cell numbers (n = 7). FCS treatment induced a significant increase of proliferation 

in both genotypes. The effect was significantly higher in MMTV-PyMT
tg/+

 WT than in BK KO cells. 

Moreover, low concentrations of E2, its membrane-impermeable form E2-BSA, progesterone and 

testosterone stimulated proliferation of MMTV-PyMT
tg/+

 WT cells, whereas BK-negative breast tumour 

cells did not respond to any of these treatments. (B) The results obtained in grid proliferation 

experiments were confirmed or at least showed similar tendencies with regard to Ki-67 index in 

MMTV-PyMT
tg/+

 WT compared to BK KO cells (n = 6). (A + B) Means ± SEM are presented with 

*/#/§p < 0.05, **/##p < 0.01, ***/###p < 0.001 show significant differences as indicated, according to 

MMTV-PyMT
tg/+

 WT or MMTV-PyMT
tg/+

 BK KO ctrl, respectively, in two-way ANOVA with Sidak´s test.       

 

To corroborate these findings and to further test the relevance of BK’s role for 

hormone-stimulated proliferation, several human breast cancer cell lines were analysed. In 

order to avoid or minimise hormone signalling via ERs, the ER-negative MDA-MB-453 

apocrine breast cancer cell line, which expresses high BK- and BK-1 levels, was studied 

for their response to a panel of sex hormones. As negative ctrl, the 
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ER-negative, BK--negative albeit BK-1-positive MDA-MB-157 triple-negative cell line was 

included in the analysis, whereas the ER-, BK-- and BK-1-positive MCF-7 luminal cell line 

served as well-characterised positive reference for hormone-stimulated proliferation in breast 

cancer202,368-370 (figure 5.15 A).  

Stimulation with CCS-containing media for 72 h after serum withdrawal served as ctrl. In grid 

experiments, proliferation rates were lower in the absence of serum in all three cell lines 

(0.52 ± 0.08, 0.19 ± 0.01 and 0.60 ± 0.06 fold for MDA-MB-453, MCF-7 and MDA-MB-157 

cells). On the contrary, FCS increased MDA-MB-453 (1.39 ± 0.05 fold) and MCF-7 (1.47 

± 0.05 fold) cell proliferation, whereas the proliferation rate of MDA-MB-157 cells was not 

affected (0.98 ± 0.05 fold). Albeit MDA-MB-453 cells were ER-negative, grid experiments 

revealed significantly increased proliferation rates when treated with the different E2 

concentrations (1.51 ± 0.07, 1.35 ± 0.02 and 1.44 ± 0.12 fold for 0.1, 1 and 10 nM). This was 

similar to E2 treatment of ER-positive MCF-7 cells (1.26 ± 0.05, 1.30 ± 0.10 and 1.42 ± 0.01 

fold for 0.1, 1 and 10 nM), whereas the ER- and BK--negative MDA-MB-157 cell line did not 

respond to any of the E2 concentrations tested. Regarding testosterone, the positive AR 

status with high expression levels in MDA-MB-453371-373 and lower ones in MCF-7368,374,375 but 

only one study with evidence for AR expression in MDA-MB-157376 cells must be considered. 

MDA-MB-453 (1.57 ± 0.12, 1.39 ± 0.10, 1.42 ± 0.17 and 1.48 ± 0.06 fold for 0.1, 1 and 

10 nM) and MCF-7 (1.25 ± 0.09, 1.18 ± 0.06, 1.23 ± 0.05 and 1.32 ± 0.02 fold for 0.1, 1 and 

10 nM) cell proliferation was significantly increased at different testosterone concentrations 

tested without effect in MDA-MB-157 cells (figure 5.15 B). The Ki-67 index in ctrl conditions 

was different for the three cell lines with 62.0 ± 1.6, 93.6 ± 1.6 and 83.8 ± 1.5% for 

MDA-MB-453, MCF-7 and MDA-MB-157 cells, respectively. Therefore, absolute percentages 

of Ki-67-positive cells were plotted. In MDA-MB-453 cells, FCS (81.5 ± 3.8%) as well as 0.01 

and 1 nM testosterone (77.2 ± 3.2 and 78.4 ± 2.9%) significantly increased the Ki-67 index. 

As MCF-7 cells showed already a very high basal Ki-67 index, the different treatments had 

no additive effect. Again, none of the treatments altered the Ki-67 status of the ER- and 

BK--negative MDA-MB-157 cell line (figure 5.15 C). 
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Figure 5.15: Growth factor-stimulated proliferation of human breast cancer cells 

80,000 MDA-MB-453, 30,000 MCF-7 and 20,000 MDA-MB-157 cells per grid dish as well as 30,000 

MDA-MB-453, 10,000 MCF-7 and 10,000 MDA-MB-157 cells in 8-well chamber slides were treated as 

described in previous figure 5.14. (A) Morphology of the three cell lines was different, as observed 

24 h after seeding. (B + C) Grid proliferation rate (two-way ANOVA with Sidak´s test) and Ki-67 index 

(one-way repeated measures ANOVA with Dunnett´s tests for each cell line) were assessed in these 

cell lines. Serum deprivation for 72 h decreased cell numbers in all three selected human breast 

cancer cell lines compared to ctrl. In contrast, FCS but also various E2 and testosterone treatments for 

72 h enhanced proliferation of the ER-negative and BK- and -1-positive MDA-MB-453 as well as the 

ER-, BK- and -1-positive MCF-7 cells, however not in ER- and BK--negative but BK-1-positive 

MDA-MB-157 cells. Shown are means ± SEM for n = 5 experiments. */#/§p < 0.05, **/##p < 0.01 or 

***/###p < 0.001 show significant differences to MDA-MB-453, MCF-7 or MDA-MB-157, respectively.  

 

5.2.3 Effects of anti-hormones and BK status on breast cancer cell proliferation 

The available evidence suggests that besides growth factors including selected hormones, 

also anti-hormones and in particular anti-oestrogens can stimulate BK channel activity207,220. 

Hence, the effects of different concentrations of the pro-drug TAM and its active metabolites 
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(Z)-4-OH-TAM and (Z)-endoxifen as well as the pure anti-oestrogen fulvestrant were studied 

with regard to proliferation of MMTV-PyMTtg/+ WT and BK KO cells and human MDA-MB-453, 

MCF-7 and MDA-MB-157 cells. 

Experimental setups and readouts were similar to previous approaches (figure 5.14 and 

figure 5.15), hence MMTV-PyMTtg/+ WT and BK KO cells were stimulated with 

anti-oestrogens in grid dishes for 72 h. Concentrations of 1, 10, 100 and up to 1,000 nM of 

TAM (0.72 ± 0.06, 0.75 ± 0.05, 0.72 ± 0.06 and 0.72 ± 0.05 fold), (Z)-4-OH-TAM (0.79 ± 0.05, 

0.72 ± 0.03, 0.75 ± 0.06 and 0.76 ± 0.07 fold), (Z)-endoxifen (0.80 ± 0.05, 0.84 ± 0.03, 0.80 

± 0.04 and 0.73 ± 0.05 fold) and fulvestrant (0.85 ± 0.04, 0.72 ± 0.05, 0.75 ± 0.06 and 0.67 

± 0.04 fold) all showed either tendencies or significances towards decreased proliferation in 

MMTV-PyMTtg/+ BK KO cells. This could be confirmed with 1,000 nM TAM (0.79 ± 0.04 fold), 

(Z)-4-OH-TAM (0.79 ± 0.04 fold) and (Z)-endoxifen (0.77 ± 0.04 fold) as well as 1, 10, 100 

and 1,000 nM fulvestrant (0.89 ± 0.06, 0.79 ± 0.04, 0.81 ± 0.04 and 0.74 ± 0.02 fold) in 

MMTV-PyMTtg/+ WT cells. However, the relative proliferation rate was strongly dependent on 

the test dose in the WT genotype. The 10 nM concentration of TAM (1.26 ± 0.07 fold) or 

(Z)-endoxifen (1.23 ± 0.05 fold) significantly stimulated rather than inhibited proliferation and 

10 nM (Z)-4-OH-TAM (1.13 ± 0.03 fold) also showed a clear tendency towards increased 

proliferation in MMTV-PyMTtg/+ WT cells, suggesting anti-hormone-induced and BK-mediated 

proliferation. In addition, the anti-proliferative effect of 1 and 100 nM TAM (1.07 ± 0.08 and 

1.03 ± 0.07 fold), (Z)-4-OH-TAM (0.98 ± 0.04 and 0.90 ± 0.06 fold) and (Z)-endoxifen (1.00 

± 0.09 and 0.98 ± 0.03 fold) was diminished or absent in MMTV-PyMTtg/+ WT cells. 

Moreover, proliferation responses reached statistical significance between WT and BK KO 

gentoypes for 1, 10 and 100 nM TAM, 10 nM (Z)-4-OH-TAM and 10 nM (Z)-endoxifen (figure 

5.16 A).  

Regarding the Ki-67 status of anti-oestrogen-treated MMTV-PyMTtg/+ WT and BK KO cells, 

effects were comparable to the results in the grid experiments. Albeit not reaching 

significance in most test conditions, 1, 10, 100 and 1,000 nM of TAM (0.87 ± 0.05, 0.84 

± 0.05, 0.86 ± 0.04 and 0.80 ± 0.05 fold), (Z)-4-OH-TAM (0.95 ± 0.06, 0.79 ± 0.07, 0.83 

± 0.06 and 0.82 ± 0.07 fold), (Z)-endoxifen (0.82 ± 0.05, 0.72 ± 0.09, 0.80 ± 0.06 and 0.80 

± 0.05 fold) or fulvestrant (0.89 ± 0.05, 0.74 ± 0.09, 0.77 ± 0.04 and 0.78 ± 0.05 fold) 

treatments in the BK KO genotype showed decreased relative Ki-67 levels. In the WT 

genotype, 1, 10, 100 and 1,000 nM TAM (1.06 ± 0.07, 1.18 ± 0.01, 1.03 ± 0.03 and 0.86 

± 0.07 fold), (Z)-4-OH-TAM (0.98 ± 0.06, 1.34 ± 0.13, 1.02 ± 0.07 and 0.85 ± 0.07 fold), 

(Z)-endoxifen (1.07 ± 0.05, 1.35 ± 0.13, 0.87 ± 0.07 and 0.90 ± 0.13 fold) and fulvestrant 

(0.83 ± 0.04, 0.83 ± 0.10, 0.88 ± 0.04 and 0.62 ± 0.10 fold) confirmed the effects measured in 
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grid dishes. Also Ki-67 status did significantly differ between genotypes at 10 nM TAM, 

(Z)-4-OH-TAM or (Z)-endoxifen (figure 5.16 B).     

 

Figure 5.16: MMTV-PyMT
tg/+

 WT and BK KO cell proliferation in response to anti-oestrogens 

MMTV-PyMT
tg/+

 WT and BK KO cells were treated with selected anti-oestrogens for (A) grid 

proliferation experiments and (B) Ki-67 index. The pro-drug TAM together with its active metabolites 

(Z)-4-OH-TAM and (Z)-endoxifen as well as fulvestrant decreased MMTV-PyMT
tg/+

 BK KO cell 

proliferation in at least partly dose-dependent manner. MMTV-PyMT
tg/+

 WT cells, on the contrary, 

differentially responded to the anti-oestrogen treatments with high concentrations also eliciting a 

negative impact on proliferation. Low concentrations of TAM and its metabolites increased rather than 

decreased proliferation of MMTV-PyMT
tg/+

 cells in the presence of BK, though. Two-way ANOVA with 

Sidak´s test was performed for grid experiments (n = 7) and Ki-67 index (n = 6). Shown are means 

± SEM with #/§p < 0.05, **/##/§§p < 0.01, ***/§§§p < 0.001 highlighting significant differences as 

indicated, according to MMTV-PyMT
tg/+

 WT ctrl or according to MMTV-PyMT
tg/+

 BK KO ctrl, 

respectively. 
 

Anti-oestrogen treatments were also applied to human MDA-MB-453, MCF-7 and 

MDA-MB-157 cells growing in grid dishes. The ER-negative MDA-MB-453 cell line that 

showed high BK- and BK-1 mRNA expression responded to all treatment conditions with a 

tendency or significance increased relative proliferation rate: 1, 10, 100 or 1,000 nM of TAM 

(1.28 ± 0.05, 1.40 ± 0.10, 1.40 ± 0.06 and 1.37 ± 0.09 fold), (Z)-4-OH-TAM (1.34 ± 0.07, 

1.39 ± 0.05, 1.33 ± 0.03 and 1.23 ± 0.04 fold), (Z)-endoxifen (1.37 ± 0.07, 1.30 ± 0.11, 1.29 

± 0.07 and 1.28 ± 0.06 fold) or fulvestrant (1.24 ± 0.07, 1.29 ± 0.07, 1.30 ± 0.08 and 1.24 
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± 0.07 fold). In contrast, the ER-negative MDA-MB-157 cell line lacking BK- did not respond 

to any treatment albeit BK-1 mRNA was expressed at low levels (figure 5.8): 1, 10, 100 or 

1,000 nM of TAM (0.97 ± 0.11, 0.97 ± 0.10, 1.02 ± 0.10 and 0.93 ± 0.07 fold), (Z)-4-OH-TAM 

(0.97 ± 0.06, 0.95 ± 0.03, 0.94 ± 0.05 and 1.04 ± 0.04 fold), (Z)-endoxifen (1.01 ± 0.05, 

0.98 ± 0.06, 1.01 ± 0.05 and 0.99 ± 0.05 fold) or fulvestrant (0.97 ± 0.06, 0.92 ± 0.05, 1.06 

± 0.09 and 0.98 ± 0.08 fold). The ER-positive, BK- and BK-1-positive MCF-7 cell line 

differentially proliferated in dependence on anti-oestrogen concentrations: 1 and 10 nM TAM 

(1.17 ± 0.02 and 1.20 ± 0.03 fold), (Z)-4-OH-TAM (1.21 ± 0.04 and 1.34 ± 0.04 fold), 

(Z)-endoxifen (1.25 ± 0.03 and 1.33 ± 0.04 fold) and even the pure anti-oestrogen fulvestrant 

(1.20 ± 0.05 and 1.24 ± 0.04 fold) increased proliferation and thus lacked their desired 

anti-proliferative effect. Only high concentrations such as 100 and 1,000 nM of 

(Z)-4-OH-TAM (0.74 ± 0.08 and 0.61 ± 0.05 fold), (Z)-endoxifen (0.75 ± 0.06 and 0.64 ± 0.06 

fold) and fulvestrant (0.73 ± 0.08 and 0.53 ± 0.05 fold) were sufficient to inhibit proliferation in 

comparison to ctrl. In contrast, TAM (0.98 ± 0.08 and 0.98 ± 0.10 fold) had no effect at these 

concentrations (figure 5.17 A).  

Again, the grid-based proliferation assay was supplemented by investigating the Ki-67 index 

after 72 h of anti-oestrogen treatment for each of the three human cell lines. In MDA-MB-453 

cells, the Ki-67 index was higher in all treatment conditions compared to ctrl (62.0 ± 1.6%):  

1, 10, 100 or 1,000 nM TAM (78.0 ± 3.9, 78.8 ± 3.3, 73.6 ± 4.0 and 70.8 ± 2.1%), 

(Z)-4-OH-TAM (75.9 ± 2.4, 76.9 ± 2.2, 75.5 ± 3.7 and 71.8 ± 2.5%), (Z)-endoxifen (70.3 ± 2.5, 

78.8 ± 4.5, 72.7 ± 2.4 and 75.2 ± 4.4%) and fulvestrant (77.9 ± 3.4, 70.7 ± 2.2, 77.8 ± 4.1 and 

77.1 ± 3.0%). In MCF-7 cells and compared to ctrl conditions (93.6 ± 1.6), the different 

treatments showed no effect on Ki-67 index after 1, 10, 100 or 1,000 nM TAM application 

(96.6 ± 1.5, 97.0 ± 0.8, 96.0 ± 0.8 and 97.2 ± 0.8%) and only tendencies towards decreased 

Ki-67 levels for (Z)-4-OH-TAM (93.9 ± 2.3, 94.1 ± 1.3, 91.2 ± 2.1 and 92. 6 ± 3.1%), 

(Z)-endoxifen (90.5 ± 3.9, 95.7 ± 1.7, 89.5 ± 2.3 and 86.9 ± 2.5%) and fulvestrant (89.9 ± 2.3, 

87.6 ± 3.1, 85.7 ± 2.6 and 83. 6 ± 1.4%) treatment. Apparently, in MCF-7 cells, only high 

anti-oestrogen concentrations had an impact on the pace of proliferation, which was 

assessed by the grid-based assay. In contrast, the Ki-67 marker, which serves as indicator of 

cells in the active phases of the cell cycle97, seems less affected by the anti-oestrogen 

treatments in MCF-7 cells. In the MDA-MB-157 cell line, 1, 10, 100 and 1,000 nM TAM (83.8 

± 2.7, 80.9 ± 1.9, 82.8 ± 4.3 and 81.9 ± 2.1%), (Z)-4-OH-TAM (81.5 ± 1.3, 78.9 ± 1.6, 81.0 

± 3.7 and 80.3 ± 2.5%), (Z)-endoxifen (84.1 ± 2.2, 83.9 ± 1.4, 87.6 ± 4.3 and 80.0 ± 2.2%) or 

fulvestrant (80.0 ± 1.1, 80.8 ± 3.4, 82.4 ± 4.8 and 83.9 ± 2.1%) again did not differ from ctrl 

(83.8 ± 1.5%) (figure 5.17 B).   
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Figure 5.17: Effect of anti-oestrogens on proliferation of human breast cancer cells 

The selected human breast cancer cell lines were seeded as described in figure 5.15 and treated with 

anti-oestrogens for (A) grid proliferation experiments rate (two-way ANOVA with Sidak´s test) and 

(B) Ki-67 index (one-way repeated measures ANOVA with Dunnett´s tests for each cell line). The 

ER-negative and BK-- and 1-positive MDA-MB-453 cell line responded to anti-oestrogen treatments 

in a pro-proliferative manner, whereas no effect to any of the selected substances and concentrations 

was observed for the ER- and BK--negative but BK-1-positive MDA-MB-157 cell line. For the ER-, 

BK-- and -1-positive MCF-7 cells, either increased proliferation tendencies or significant effects were 

detected in response to low concentrations of the different anti-oestrogens. At higher concentrations, 

(Z)-4-OH-TAM, (Z)-endoxifen and fulvestrant diminished MCF-7 cell proliferation, as reported by 

others
377-379

. Plots show means ± SEM for n = 5 experiments. */#p < 0.05, **/##p < 0.01 and 

###p < 0.001 show significant differences to MDA-MB-453 or MCF-7, whereas no statistically 

significant effects of the treatments were observed in MDA-MB-157 cells. 

 

5.2.4 In vivo TAM therapy of MMTV-PyMTtg/+ WT and BK KO tumours 

TAM therapy has been successful in many breast cancer patients, although its use is limited 

by side effects, therapy failure and the development of therapy resistance1,21,380. Whether the 

BK channel status of breast tumours affects tumour growth in vivo has remained elusive so 

far. Therefore, a first translational approach aimed at dose-finding and at exploring the 

murine TAM metabolism followed by tumour growth monitoring in MMTV-PyMTtg/+ WT and 

BK KO after implantation of TAM and placebo pellets in mice. TAM metabolism (see figure 

1.4) in mice was studied by the use of 0.5 or 5 mg TAM or placebo pellets with a release time 
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of 60 d. At an age of 12 weeks, mice were ovariectomised. After one week of recovery, 

pellets were implanted subcutaneously at the lateral side of the neck. The continuous release 

of TAM or placebo, as guaranteed by the implanted pellet, avoided the necessity of repeated 

drug administration and the induction of peak concentrations after application. 7, 14 and 21 d 

post pellet implantation, retrobulbary plasma was collected (figure 5.18 A).  

HPLC analyses of TAM and its main metabolites were conducted by Dr. Thomas Mürdter 

(AG Prof. Dr. Brauch, IKP Stuttgart) after setting the lower level of quantification according to 

an in-house human patient reference. 0.5 mg/60 d placebo pellets revealed no TAM or any of 

the metabolites in the plasma samples except for some background concentrations of 

(E)-DM-TAM-4-O-Gluc at 7 and 21 d (figure 5.18 B). In 0.5 mg/60 d TAM pellet-implanted 

mice, moderate TAM concentrations (3.89 ± 1.23, 2.25 ± 0.22 and 1.89 ± 0.14 nM for 7, 14 

and 21 d) were measured as well as low concentrations of many of the tested metabolites 

including (Z)-4-OH-TAM (0.41 ± 0.15, 0.21 ± 0.02 and 0.16 ± 0.02 nM for 7, 14 and 21 d) and 

(Z)-endoxifen (0.14 ± 0.14 for 7 d) (figure 5.18 C). The 5 mg/60 d placebo pellet revealed 

only background levels for (Z)-DM-TAM-4-O-Gluc and (E)-DM-TAM-4-O-Gluc at 14 d post 

pellet implantation (figure 5.18 D), whereas TAM (6.92 ± 0.38, 6.93 ± 0.69 and 7.34 

± 0.97 nM) and many metabolites were detected in the plasma samples in 5 mg/60 d TAM 

pellets at 7, 14 and 21 d post implantation. Amongst these were the two major active TAM 

metabolites90,381, (Z)-4-OH-TAM (0.73 ± 0.05, 0.69 ± 0.13 and 0.61 ± 0.08 nM) and 

(Z)-endoxifen (0.23 ± 0.02, 0.21 ± 0.03 and 0.20 ± 0.01 nM) (figure 5.18 E).   

As in humans, none of the mouse plasma samples showed high -OH-TAM concentrations 

when compared to TAM metabolism in rats, which is known to render rats prone to the 

development of liver cancer86,87. During the time course of 21 d, TAM metabolite 

concentrations in plasma from the TAM pellet-implanted mice were stable with steady-state 

concentrations reached already after 7 d. In the 0.5 mg/60 d TAM group, the TAM 

concentration was significantly higher at 7 d compared to 14 d and 21 d. Besides, a 

significant difference existed in (Z)-TAM-4-O-Gluc concentrations between 7 d and 21 d in 

the 5 mg/60 d TAM group.  
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Figure 5.18: TAM metabolism after pellet implantation in mice 

(A) Mice were ovariectomised 7 d before implantation of placebo or TAM pellets with continuous 

release of 0.5 or 5 mg within 60 d. HPLC measurements of TAM and its metabolites was obtained 

from retrobulbary blood taken 7, 14 or 21 d after pellet implantation. (B) The lower level of 

quantification was set according to an in-house human patient reference. TAM and its metabolites 

were not detected in 0.5 mg/60 d placebo pellets. (C) TAM pellets with 0.5 mg/60 d release resulted in 

TAM accumulation and many known TAM metabolites in the plasma samples. Similar effects were 

seen with (D) placebo and (E) TAM pellets with 5 mg/60 d release, respectively, albeit overall 

metabolite levels were higher as compared to 0.5 mg/60 d TAM pellets. (B - E) Bar graphs show 

means ± SEM for mice implanted with low-dose or high-dose pellets of TAM (each n = 4) or placebo 

(each n = 2) and statistically tested with two-way repeated measures ANOVA and Tukey´s test. 

 

For further experiments, the 5 mg/60 d TAM and placebo pellets were chosen because TAM 

release dose of these pellets was comparable to 20-40 mg TAM per day in the human 

system when BW (25 g for mouse and 70 kg for woman) and the roughly 

sevenfold-increased metabolic rate of a mouse are considered appropriately382,383.  

To investigate the role of BK for tumour growth in 5 mg/60 d TAM-treated mice, 

MMTV-PyMTtg/+ WT and BK KO cells were orthotopically transplanted into FVB/N mice at an 

age of 12 weeks (section 4.1.5). Ovariectomy ensured equal conditions and avoidance of 

tumour growth disturbances by endogenous E2 and was conducted at a tumour volume of 

approximately 62.5 mm³ (section 4.1.6). The experiment was terminated at an 

eightfold-increased tumour volume compared to the day of pellet implantation (figure 5.19 A). 

At the end of the experiment, monitoring of uterus weight compared to total BW showed a 

significant increase in the TAM group (0.172 ± 0.109 and 0.207 ± 0.016%) compared to 

placebo (0.103 ± 0.017 and 0.082 ± 0.005%) for both WT and BK KO genotypes (figure 

5.19 B). Tumour growth and thus survival time between genotypes reached a significant 

different response in WT and BK KO genotypes according to TAM therapy. MMTV-PyMTtg/+ 

WT tumour growth under TAM treatment needed 90.5 ± 10.1% of the time to reach the 

experimental endpoint compared to placebo. In contrast, MMTV-PyMTtg/+ BK KO tumour 

growth was delayed under TAM treatment, as the eightfold-increased tumour volume was 

reached 1.78 ± 0.42 fold later than in the respective placebo treatment group (figure 5.19 C). 

qRT-PCR analysis of mRNA levels in tumour tissues at the end of the experiment revealed 

no statistically significant differences between genotypes and treatment groups for Esr1 or 

Esr2 as well as the accessory subunits expressed in the cells, i.e. Kcnmb1, Kcnmb4 and 

Lrrc26 (supplemental figure 9.8). Macroscopically visible lung metastasis was absent in 

MMTV-PyMTtg/+ BK KO tumour-bearing mice treated with placebo. In TAM-treated mice and 

in the MMTV-PyMTtg/+ WT tumour-bearing and placebo-treated mice, one lung metastasis 

was detected in 2-3 of the 9 mice investigated, but this differences between groups did not 

reach statistical significance (data not shown). Along the same line, TAM treatment had no 
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effect on the migratory capacity of MMTV-PyMTtg/+ WT and BK KO cells in vitro, which was 

investigated with the xCELLigence system (supplemental figure 9.9). 

 

Figure 5.19: Growth progression of MMTV-PyMT
tg/+

 WT and BK KO breast tumours ± TAM 

(A) Female FVB/N mice received MMTV-PyMT
tg/+

 WT or BK KO cells and were ovariectomised at a 

tumour volume (v) of approximately 62.5 mm³. 1 week after ovariectomy, mice were implanted TAM or 

placebo pellets with 5 mg/60 d release. Tumour growth was monitored three times per week with a 

digital calliper. Survival was defined as the time frame necessary to reach an eightfold-increased 

tumour volume compared to the initial tumour size at the day of pellet implantation. (B) Uterus weight 

was increased in TAM-implanted tumour-bearing mice of both genotypes, when related to whole BW 

(one-way ANOVA and Tukey´s test). (C) Relative survival was compared between genotypes with 

placebo set to a relative survival time = 1. The growth of MMTV-PyMT
tg/+

 WT tumours was not 

significantly affected by TAM even showing a tendency towards decreased survival under TAM 

therapy, whereas a significantly prolonged relative survival time was detected in MMTV-PyMT
tg/+

 

BK KO tumour-bearing mice (Mann-Whitney test). (B + C) n = 9 experiments were performed and 

plotted are means ± SEM with *p < 0.05 and **p < 0.01. 

 

5.2.5 Combined TAM and radiation therapy 

Breast cancer therapy often involves multiple approaches to reach maximum success. 

Hence, surgery, radiotherapy, chemotherapy and targeted therapies are used either in 

combination or sequentially. Therefore, the BK-dependent pro- and anti-proliferative effects 

of TAM were assessed during radiation therapy. TAM (10 or 1,000 nM) was applied to 

MMTV-PyMTtg/+ WT and BK KO cells 1 h prior to irradiation with 0 or 2 Gy. The BK KO 

genotype generally did not exhibit a radiosensitising effect when compared to WT cells 

(supplemental figure 9.10).  

Accordingly, clonogenic assays 24 h after TAM and IR revealed no significant differences in 

ctrl conditions between genotypes (0.73 ± 0.05 for WT and 0.64 ± 0.05 for BK KO). In the 

BK KO genotype, both low and high TAM concentrations increased clonogenic survival 

(0.78 ± 0.07 and 0.87 ± 0.09 for 10 and 1,000 nM TAM), presumably via an ER-mediated 
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stimulation of cell cycle arrest, as radiation-induced cell cycle arrest is important to allow for 

DNA repair38. The WT genotype revealed differential responses to IR with an increase of the 

cell survival fraction exposed to 1,000 nM TAM (0.57 ± 0.08) and a decrease in survival with 

10 nM TAM (0.90 ± 0.03) (figure 5.20 A). 

IR by inducing DNA damage results in mitotic catastrophe and cell death especially of cells 

with low DNA repair capacity such as tumour cells38,39,384 (section 1.1.3). Residual DNA 

damage 24 h post IR was detected by staining and counting H2AX foci. In the absence of 

BK, TAM did not alter H2AX numbers per cell and hence the DNA repair processes (1.49 

± 0.08, 1.28 ± 0.12 and 1.24 ± 0.14 for ctrl, 10 and 1,000 nM TAM). However, H2AX foci 

numbers were increased in 10 nM TAM-treated MMTV-PyMTtg/+ WT cells (2.15 ± 0.18 for 

10 nM TAM and 1.74 ± 0.14 for ctrl) (figure 5.20 B). Besides DNA repair, potential 

genotype-dependent differences in DNA damage induction by TAM was investigated by 

H2AX analysis 30 min and thus shortly after irradiation. The number of H2AX foci did not 

differ in the presence of TAM within each genotype, although the number of H2AX foci in 

MMTV-PyMTtg/+ WT cells was significantly higher after 1,000 nM TAM application than in the 

BK KO genotype (36.3 ± 5.1 versus 26.5 ± 4.7 DSBs per cell) (figure 5.20 C). 

 

Figure 5.20: Combined TAM and radiation therapy in MMTV-PyMT
tg/+

 WT and BK KO cells 

MMTV-PyMT
tg/+

 WT and BK KO cells were seeded with 600,000 cells per 25 cm² cell flask for 

clonogenic survival assays or with 50,000 cells in 12-well chamber slides for H2AX DNA damage 

assessment. After 72 h growth in 5% CCS-containing medium, stimulation with TAM at low 
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(10 nM) or high (1,000 nM) concentration occurred 1 h before irradiation with 0 or 2 Gy. Therefore, the 

putative pro- or anti-proliferative effects of different TAM concentrations were investigated in the 

BK-mediated response to IR. (A) Relative survival after 2 Gy was not different between genotypes in 

ctrl conditions (see also supplemental figure 9.10). TAM increased survival of MMTV-PyMT
tg/+

 BK KO 

cells at both concentrations and of 1,000 nM TAM-treated MMTV-PyMT
tg/+

 WT cells, which may be 

attributable to the anti-proliferative effect of TAM. Administration of 10 nM TAM to MMTV-PyMT
tg/+

 WT 

cells resulted in the opposite effect by reducing clonogenic survival thereby contributing to a 

genotype-dependent effect at this concentration. (B) 24 h after IR, residual DNA damage was elevated 

in 10 nM TAM-treated MMTV-PyMT
tg/+

 WT cells, which was not observed after treatment with 

1,000 nM TAM. In the BK KO genotype, residual H2AX foci numbers did not differ between 

treatments, but generally were lower compared to the WT genotype. (C) TAM treatment or genotype 

had no influence on DNA damage 30 min after IR, except for a significant genotype-dependent 

difference with 1,000 nM TAM. (D) Radiation-induced cell cycle arrest is necessary for DNA damage 

repair and survival (figure 1.2). The anti-proliferative effect of TAM and thus decreased residual DNA 

damage and increased survival was verified in MMTV-PyMT
tg/+

 BK KO cells at low and high TAM 

concentrations and in 1,000 nM TAM-treated MMTV-PyMT
tg/+

 WT cells. The opposite effect was 

observed in 10 nM TAM-treated MMTV-PyMT
tg/+

 WT cells, which may be attributable to a 

BK-dependent pro-proliferative effect of low-dose TAM. (A - C) Bar graphs present as means ± SEM 

of n = 5 experiments. Shown are relative effects of 2 Gy IR corrected for baseline (0 Gy) effects in the 

various treatments and genotypes. */#p < 0.05, **/§§p < 0.01 or ***p < 0.001 represent statistical 

outcome after two-way repeated measures ANOVA with Sidak´s test for the different experiments. 

 

To conclude, the anti-proliferative effect of TAM may lead to decreased residual DNA 

damage and increased clonogenic survival in the BK KO genotype and in 1,000 nM 

TAM-treated MMTV-PyMTtg/+ WT cells. In contrast, a BK-mediated pro-proliferative effect of 

10 nM low-dose TAM may be responsible for elevated residual DNA damage and lower 

clonogenic survival in BK-proficient tumour cells. The impact of these in vitro findings for 

combinational TAM and IR therapy with regard to BK status of breast cancer patients 

remains elusive (figure 5.20 D). 
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5.3 The IK channel in breast cancer development and survival 

5.3.1 Spontaneous breast cancer in MMTV-PyMTtg/+ WT and IK KO mice 

The IK channel is well described for its tumour-promoting properties (section 1.4.3) including 

cell cycle progression and proliferation in the ER-positive MCF-7 cell line260,261,263 as well as 

in basal-like MDA-MB-231 cells where IK also modulates apoptosis, migration and 

epithelial-mesenchymal transition264. IK contribution to Ca2+ signalling and proliferation has 

been confirmed in detail in a primary cell system derived from the MMTV-PyMTtg/+ mouse 

model385. Besides, IK channel expression is increased in human breast tumours and it 

correlates with tumour grade and metastasis265,386. 

In the spontaneous breast tumour-developing MMTV-PyMTtg/+ model, survival parameters 

were studied in the absence and the presence of IK. Statistics revealed no influence of 

IK channel status on TFS with a HR of 0.60 (CI 0.12 - 1.27) (figure 5.21 A). Also OS was not 

affected by IK status in the MMTV-PyMTtg/+ model with a HR of 1.77 (CI 0.78 - 8.18) (figure 

5.21 B). BW during tumour progression was neither different between genotypes (data not 

shown). These results were in line with previous investigations on spontaneous tumour 

development and progression in MMTV-PyMTtg/+ WT and IK KO mice385.  

 

Figure 5.21: Spontaneous tumourigenesis and progression of tumour growth in MMTV-PyMT
tg/+

 

WT and IK KO mice 

(A) Tumour-free survival (TFS) and (B) overall survival (OS) of MMTV-PyMT
tg/+

 mice lacking IK and 

their WT littermates were investigated. No statistically significant differences were detected between 

the two genotypes for TFS or OS with log-rank tests of each n = 6 experiments. 

 

In order to verify that IK did not alter tumour classification, the ER and HER2 status were 

determined in MMTV-PyMTtg/+ WT and IK KO tissue and primary cell cultures. Esr1, Esr2 and 

Erbb2 mRNAs coding for ER-, ER- and HER2 were present in tissues (figure 5.22 A) and 

cells (figure 5.22 B) from both MMTV-PyMTtg/+ WT and IK KO tumours. ER- expression was 

further confirmed on the protein level in tissues (figure 5.22 C) and cells (figure 5.22 D) of 

both genotypes. 
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Figure 5.22: Characterisation of MMTV-PyMT
tg/+

 WT and IK KO tissues and cells 

MMTV-PyMT
tg/+

 WT and IK KO (A) tumours and (B) cells were employed for qRT-PCR analysis of 

Esr1, Esr2 and Erbb2 mRNA expression coding for ER- and ER- as well as the HER2 protein. 

Differences between genotypes were not observed in n = 3 experiments, presented as means ± SEM, 

of a two-way repeated measures ANOVA and Sidak´s test. (C) Tissue sections and (D) cells of 

MMTV-PyMT
tg/+

 WT and IK KO genotype were also positive for ER- protein. 

 

Moreover, KCa mRNA expression status and levels were measured with qRT-PCR in 

MMTV-PyMTtg/+ WT and IK KO tumour tissues and cells. Tissue samples of both genotypes 

expressed Kcnma1, Kcnmb1, Kcnmb2, Kcnmb4, Lrrc26, Kcnn1, Kcnn2 and Kcnn3 mRNA 

coding for BK-, BK-1, BK-2, BK-4, BK-1 and SK1 - SK3 with similar abundances. As 

expected, Kcnn4 mRNA encoding the IK channel was detected in MMTV-PyMTtg/+ WT but 

not in IK KO tissue. Kcnmb3, Lrrc38, Lrrc52 and Lrrc55 mRNA expression coding for BK-3, 

BK-4, BK-2 and BK-3 was absent (figure 5.23 A). Tumour cells of both genotypes 

revealed a KCa mRNA expression pattern similar to tissue except for the expression status of 

Kcnmb2 and Kcnn3, which could not be confirmed in cells (figure 5.23 B).  
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Figure 5.23: KCa channel mRNA expression pattern of MMTV-PyMT
tg/+

 WT and IK KO tumours 

mRNA expression levels of the different KCa channels and subunits were measured with qRT-PCR in 

samples derived from the MMTV-PyMT
tg/+

 mouse model. (A) Tissues of both genotypes were positive 

for Kcnma1, Kcnmb1, Kcnmb2, Kcnmb4 and Lrrc26 as well as Kcnn1 - 3 mRNA. Kcnn4 mRNA was 

expressed in the WT, but was not detected (n.d.) in the IK KO genotype. (B) In primary cells of 

MMTV-PyMT
tg/+

 WT and IK KO genotypes, the mRNA pattern observed in tissue could be confirmed 

except for Kcnmb2 and Kcnn3 mRNA expression. Means ± SEM are shown for n = 3 experiments. 

***p < 0.001 was calculated with separate two-way repeated measures ANOVA and Sidak´s test for 

tissues and cells, respectively. 

 

5.3.2 Role of the IK channel in human breast cancer 

The possible contribution of IK channels to tumourigenesis was further considered with 

regard to the individual genomic risk of KCNN4 SNPs (n = 77) used from the BCAC (section 

4.5.3). The iCOGS array together with the imputation of SNPs delivered breast cancer-

associated variants with the eleven most interesting candidates modulating overall and ER-

positive, but not ER-negative tumour development. Of these SNPs, rs12609846, rs1685191 

and rs12463319 significantly decreased breast cancer risk (OR 0.94), whereas the remaining 

KCNN4 SNPs led to a significantly increased breast cancer risk (OR 1.05 or 1.06). 

Population frequencies of the SNPs varied with MAFs of 21 to 41% (figure 5.24 A)347. 

Interestingly, all SNPs were found in intron 1-2 of the KCNN4 gene containing in total nine 
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exons. Their intronic localisation may be a hint for up-stream regulatory functions336,361 (figure 

5.24 B). No ERE was detected in the KCNN4 gene (data not shown). Linkage disequilibrium 

was 62 - 100% between rs73048670, rs62116961, rs12609846, rs1685191, rs56681946, 

rs12463319, rs11879798 and rs11083720, except for lacking linkage between rs11879798 

and rs11083720. rs56344893, rs200380818 and rs34144623 were inherited independently 

from all other SNPs (figure 5.24 C).  

 

Figure 5.24: Breast cancer risk assessment of KCNN4 variants 

KCNN4 SNPs identified by the iCOGS array were analysed together with KCNN4 SNPs that were 

imputed due to their genetic linkage with other genes tested on the array. In addition to overall risk 

assessment in all tested specimen, breast cancer risk could be further stratified according to the 

development of an ER-positive or -negative tumour. Besides, KCNN4 risk SNPs were allocated for 
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their chromosomal position and tested for genetic linkage. (A) KCNN4 SNPs directly retrieved from the 

array were not found to significantly modify breast cancer risk (data not shown). Imputation of SNPs 

tested on the iCOGS array allowed the detection of eleven KCNN4 SNPs that altered overall and 

particularly ER-positive breast cancer risk. Frequencies of these SNPs in the population varied 

between 21 and 41%
347

. (B) These significant SNPs all were located in intron 1-2 of the KCNN4 gene. 

(C) Linkage amongst the SNPs was verified among eight of the eleven SNPs with variabilities between 

62 and 100%. In contrast, inheritance of rs56344893, rs200380818 and rs34144623 was independent 

from the other SNPs. Abbreviations: Minor allele frequency, MAF; Odds ratio, OR; Single nucleotide 

polymorphism, SNP. 

 

Among the experimental proteins binding to the distinct SNP regions, the most frequent 

candidate was Early B-cell factor 1 (EBF1). However, there was no significant Spearman 

correlation in EBF1 and KCNN4 mRNA expression levels according to breast cancer data 

from TCGA (data not shown). Nevertheless, EBF1 was related to several SNPs, 

i.e. rs73048670, rs12609846, rs56681946 and rs12463319. This association may reflect the 

participation of IK, which is well studied for its roles in immune cells, in B cell development 

and activity275,387, as EBF1 is important for proper maturation and function of B cells388,389. 

Interestingly, EBF1 is further shown to interact with ER-. The EBF1 binding motif is enriched 

at sites of ER- genomic binding and EBF1 together with E2 enhance ER- recruitment390. 

Moreover, the Ebf1 protein in mice is described to act as tumour suppressor with reduced 

Ebf1 levels leading to enhanced DNA damage. Ebf1 further contributes to the regulation of 

DNA repair due to its influence on DNA repair gene expression. In addition, the induction of 

DNA damage by IR was shown to decrease EBF1 mRNA expression of human cells. As a 

result, loss-of-function mutations in Ebf1 are associated with the development of 

leukaemia391-393. After stratification of EBF1 to its mRNA expression levels in breast cancer, 

the KM plotter revealed no influence on OS or distant metastasis-free survival. However, 

RFS differed according to EBF1 with high mRNA expression resulting in an increased RFS in 

general with p = 2.4  10-8 (HR 0.72 (0.64 - 0.81)) as well as ER-positive breast cancer with 

p = 8.3  10-7 (HR 0.71 (0.62 - 0.81)). Nonetheless, TAM treatment had no EBF1-dependent 

impact on RFS in ER-positive breast cancer (data not shown). 

In TCGA-derived data generated from established human breast tumours, KCNN1, KCNN2, 

KCNN3 and KCNN4 mRNA expression levels were further investigated in comparison to 

healthy breast tissues (section 4.5.1). mRNA expression for all four channels was present 

with no significant difference between healthy and tumour tissues (figure 5.25). 
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Figure 5.25: KCNN1 - 4 mRNA expression in healthy and tumour tissues derived from TCGA 

mRNA expression levels for the different SK1 - 3 (KCNN1, KCNN2, KCNN3) and IK (KCNN4) 

channel-encoding genes were extracted from TCGA database. No significant differences were found 

in fragments per kilobase of transcript per million mapped reads (FPKM) values, obtained by 

quantitative sequencing, in tumour tissues (n = 1,095) compared to healthy parts (n = 113) of the 

breast. Box plots show means ± SEM. 

 

Moreover, the influence of KCNN4 mRNA expression levels on OS outcome was studied in 

data obtained from TCGA (section 4.5.1) and the KM plotter (section 4.5.2). In TCGA, OS 

stratified by KCNN4 mRNA expression levels did not lead to a significant difference over the 

time course of less than 10 years (figure 5.26 A). In contrast, the KM plotter allowed a 

follow-up time of 25 years revealing that high KCNN4 mRNA levels significantly shortened 

OS with a HR of 1.37. Over this time range, patient numbers dropped more extremely in 

patients whose tumours had high (372, 254, 105, 23, 4, 1 and 0 patients for 0, 50, 100, 150, 

200, 250 and 300 months, respectively) compared to low (1,030, 829, 372, 106, 17, 2 and 

0 patients for 0, 50, 100, 150, 200, 250 and 300 months) KCNN4 mRNA expression levels 

(figure 5.26 B). 

 

Figure 5.26: Kaplan-Meier survival analysis of breast cancer patients stratified for tumour 

KCNN4 mRNA expression 

Data on overall survival (OS) was retrieved from open access databases, which compared survival of 

patients with low or high KCNN4 mRNA expression levels. (A) The available follow-up time in the 

TCGA dataset was less than 10 years and OS was similar between groups expressing either high or 
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low levels of KCNN4. (B) The KM plotter dataset allowed a follow-up time of 25 years during which a 

significantly decreased OS was associated with high KCNN4 mRNA expression levels. **p < 0.01 in 

log-rank test for n = 599 for high and n = 601 for low KCNN4 mRNA expression in TCGA and n = 372 

for high and n = 1,030 for low KCNN4 mRNA expression in the KM plotter. 

 

5.3.3 IK channel contribution to proliferation in the MMTV-PyMTtg/+ model   

The Ki-67 status was determined in tissue sections and primary cells derived from 

MMTV-PyMTtg/+ WT and IK KO tumours. Mki67 mRNA expression between genotypes did 

not differ in tissues (figure 5.27 A) but did in primary cell cultures (1.00 ± 0.03 in IK KO and 

2.41 ± 0.31 in WT) (figure 5.27 B). Tissue protein distribution was neither different between 

genotypes (figure 5.27 C). However, Ki-67 status in primary MMTV-PyMTtg/+ WT and IK KO 

cells revealed a significantly reduced fraction of proliferating cells in the IK KO genotype after 

restimulation with serum-containing medium with 62.5 ± 5.5, 66.5 ± 8.6 and 74.0 ± 5.6% WT 

and 39.8 ± 3.6, 35.3 ± 3.6 and 37.8 ± 2.1% IK KO proliferating cells at 24, 48 and 72 h (figure 

5.27 D). These results formed part of a recent publication385.  

 

Figure 5.27: Ki-67 proliferation status of MMTV-PyMT
tg/+ 

WT and IK KO tissues and cells 

Abundance of Ki-67-encoding mRNA was assessed in (A) tumour biopsies and (B) cells from 

spontaneously developed MMTV-PyMT
tg/+

 WT and IK KO tumours. No difference was detected in 

tumour biopsies, whereas Mki67 expression was significantly lower in IK KO cells. Ki-67 protein was 

investigated in MMTV-PyMT
tg/+

 WT and IK KO (C) tissue sections (n = 4) and (D) cells (n = 6) with 

again no difference in tumour tissue, but a lower Ki-67 index in primary cell cultures with IK KO as 

compared to WT genotype. (A, B, D) Presented are means ± SEM with *p < 0.05, **p < 0.01 and 
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***p < 0.001. Mki67 expression in tumour biopsies (n = 4 for WT and n = 3 for IK KO) and cells (n = 6 

for WT and n = 3 for IK KO) was assessed with unpaired t-tests and Ki-67 index of cells was analysed 

by one-way ANOVA and Bonferroni correction. 

 

To further elucidate the contribution of the IK channel to proliferation of tumour cells in the 

MMTV-PyMTtg/+ model, the IK inhibitor TRAM-34 was studied in grid dishes for a time course 

of 0, 24, 48 and 72 after serum restimulation of cells with WT (figure 5.28 A) or IK KO 

(figure 5.28 B) genotype.  

 
 

Figure 5.28: Proliferation of MMTV-PyMT
tg/+

 WT and IK KO cells treated with TRAM-34 

MMTV-PyMT
tg/+

 WT and IK KO cells were seeded in grid dishes and allowed to adhere for 24 h before 

serum withdrawal for 72 h. Restimulation with 0.1, 1, and 10 µM TRAM-34 or ethanol as solvent ctrl 

was carried out with serum-containing medium for 3 d. (A) The proliferation of MMTV-PyMT
tg/+

 WT 

cells was significantly decreased after 48 and 72 h of treatment with the different TRAM-34 

concentrations. (B) In contrast, TRAM-34 did not modulate proliferation of IK KO cells over the entire 

time course. Of note, relative proliferation rates in the absence of IK were in the range of 

(A) TRAM-34-treated MMTV-PyMT
tg/+

 WT cells. Means ± SEM of n = 5 experiments are plotted. 

**p < 0.01 and ***p < 0.001 of a two-way repeated measures ANOVA with Tukey´s test show 

significant difference according to the respective time point of ctrl treatment. 
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MMTV-PyMTtg/+ WT cells showed the highest relative proliferation rate in ctrl (1.75 ± 0.17, 

3.65 ± 0.25 and 5.83 ± 0.38 fold at 24, 48 and 72), whereas 0.1 µM (2.16 ± 0.24 and 3.52 

± 0.31 fold), 1 µM (2.65 ± 0.15 and 3.76 ± 0.28 fold) or 10 µM (2.30 ± 0.25 and 2.79 

± 0.27 fold) TRAM-34 significantly decreased proliferation in an IK-dependent manner at 

48 and 72 h (figure 5.26 A). Proliferation of MMTV-PyMTtg/+ IK KO cells showed no 

differences in ctrl (1.38 ± 0.09, 2.50 ± 0.23 and 3.47 ± 0.29 fold), 0.1 µM (1.35 ± 0.09, 2.29 

± 0.17 and 3.64 ± 0.63 fold), 1 µM (1.50 ± 0.15, 2.10 ± 0.29 and 3.11 ± 0.44 fold) and 10 µM 

(2.80 ± 0.40, 3.65 ± 0.69 and 3.89 ± 0.94 fold) TRAM-34 at 24, 48 and 72 h (figure 5.26 B). 

These in parts published experiments confirmed that TRAM-34-sensitive IK channels play an 

important role for the proliferation of MMTV-PyMTtg/+ cells in vitro385.     

 

5.4 IK channels and the tumour microenvironment 

5.4.1 Tumour immune cell status in the spontaneous MMTV-PyMTtg/+ model 

The IK channel is expressed in different cell types that constitute the tumour 

microenvironment and is especially described for its functions in both the innate and adaptive 

immune system (see section 1.4.4). Hence, IK channels were assessed for their contribution 

to an altered immune cell status of MMTV-PyMTtg/+-derived tumours. Immune cells were 

distinguished from other cell types by their positive CD45 status (section 4.4.4). Immune cell 

infiltration in tumour tissue was recognised for the WT (11.9 ± 2.3 CD45-positive cells per 

150 mm²), but was rare for the IK KO genotype (1.2 ± 0.5 CD45-positive cells per 150 mm²). 

Difference between MMTV-PyMTtg/+ WT and IK KO tumour infiltration by CD45-positive cells 

reached statistical significance (figure 5.29 A). Moreover, CD45-positive cells in the tumour 

stroma were highly abundant in MMTV-PyMTtg/+ WT (26.5 ± 2.7 CD45-positive cells per 

150 mm²) and uncommon in IK KO (3.4 ± 1.1 CD45-positive cells per 150 mm²) samples 

(figure 5.29 B) allowing the conclusion that IK in tumour cells and in immune cells is 

important for the phenotype of the MMTV-PyMTtg/+ model. Importantly, the interplay of IK in 

the different cell types could be one of the reasons for the apparent disparity between the 

in vivo and in vitro results. 
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Figure 5.29: Presence of CD45-positive cells in MMTV-PyMT
tg/+

 WT and IK KO tumours 

Immune cell infiltration in tumour tissue and the surrounding stroma was detected by 

immunofluorescence staining against the CD45 pan immune cell marker. The presence of 

CD45-positive cells was significantly lower in tissue sections of (A) tumours and (B) surrounding 

stroma from MMTV-PyMT
tg/+

 IK KO compared to WT samples. Shown are means ± SEM. Unpaired 

t-tests of n = 5 experiments revealed **p < 0.01 and ***p < 0.001 between genotypes. 

 

5.4.2 Role of the IK channel in the MMTV-PyMTtg/+ orthotopic transplant model 

To study the contribution of the IK channel to tumour growth in dependence on its stromal 

expression in vivo, orthotopic MMTV-PyMTtg/+ WT and IK KO cell transplantations were 

performed in the fourth right mammary gland of FVB/N mice (section 4.1.5). WT mice 

received MMTV-PyMTtg/+ WT or IK KO cells. In a reverse approach, MMTV-PyMTtg/+ WT cells 

were transplanted in IK KO mice. Log-rank tests revealed no differences regarding TFS of 

MMTV-PyMTtg/+ IK KO cells in WT mice (HR 1.16 (CI 0.43 - 3.52)) and MMTV-PyMTtg/+ WT 

cells in IK KO mice (HR 1.42 (CI 0.58 - 4.90)) in comparison with MMTV-PyMTtg/+ WT cells in 

WT mice (figure 5.30 A). In contrast, OS was significantly prolonged in MMTV-PyMTtg/+ 

IK KO cells implanted into WT mice (HR 0.35 (CI 0.06 - 0.63)) and MMTV-PyMTtg/+ WT cells 

implanted into IK KO mice (HR 0.33 (CI 0.05 - 0.59)) compared to MMTV-PyMTtg/+ WT cells 

implanted into WT mice with 74.0 ± 9.1, 67.4 ± 3.6 and 52.4 ± 5.6 d, respectively. The hereby 

presented findings suggest that a positive IK status in tumour cells especially, but also in 
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stromal cells, drive tumour progression (figure 5.30 B). Nevertheless, differences in tumour 

volume increase in the first 28 d after initial tumour palpation did not reach statistical 

significance between the groups (figure 5.30 C). In line with the results obtained in the 

spontaneous MMTV-PyMTtg/+ model, Esr1 and Esr2 mRNA expression was not significantly 

different in tumours obtained from the various groups (supplemental figure 9.11). 

Macroscopic lung metastases neither showed significant differences between groups (0.33 

± 0.21, 1.00 ± 0.32 and 0.33 ± 0.21 metastases/lung for MMTV-PyMTtg/+ WT cells in WT 

mice, MMTV-PyMTtg/+ IK KO cells in WT mice and MMTV-PyMTtg/+ WT cells in IK KO mice) 

(figure 5.30 D). 

Moreover, immune cell infiltration and the presence of immune cells in the stroma were 

assessed in WT and IK KO recipients with either MMTV-PyMTtg/+ WT or IK KO cells. 

CD45-positive cell numbers were analysed in MMTV-PyMTtg/+ WT tumours with anti-CD45 

staining performed by Alice Dragoi for her Master´s thesis project. Tumour immune cell 

infiltration was counted and revealed significantly lower numbers of CD45-positive cells in 

IK KO than in WT mice transplanted with MMTV-PyMTtg/+ WT cells (0.68 ± 0.31 versus 

2.62 ± 0.64 CD45-positive cells per 150 mm²) (figure 5.30 E). However, immune cell 

numbers in the stroma did not differ significantly (8.34 ± 4.13 or 7.93 ± 4.28 CD45-positive 

cells per 150 mm²) after transplantation of MMTV-PyMTtg/+ WT cells into WT or IK KO mice 

(figure 5.30 F). Of note, only the CD45 status of MMTV-PyMTtg/+ WT cells transplanted into 

WT and IK KO mice was considered. MMTV-PyMTtg/+ IK KO primary cell cultures were 

derived from different mice and may present with an altered immunogenic potential when 

transplanted into immunocompetent FVB/N recipients. 



5 Results 

116 

 

Figure 5.30: Tumour formation of MMTV-PyMT
tg/+

 WT and IK KO cells after allotransplantation 

Cells for transplantation derived from passages 6 to 12 of in vitro-propagated MMTV-PyMT
tg/+

 tumour 

cells. Orthotopic transplantation was performed into the fat pad of the fourth mammary gland of FVB/N 

mice. Transplantation of MMTV-PyMT
tg/+

 WT and IK KO cells in WT recipients allowed conclusions on 

the impact of the tumour cell IK channel for tumour induction and progression. Besides, the 

transplantation of MMTV-PyMT
tg/+

 WT cells in WT or IK KO recipients was employed to investigate the 

role of the environmental IK channel to modulate these processes. (A) Tumour-free survival (TFS) did 

not differ between the transplant groups (log-rank test). (B) Overall survival (OS) was prolonged by IK 

ablation either in the tumour cell itself or in the microenvironment (log-rank test). (C) Tumour volume 

increase (two-way ANOVA with Tukey´s test) and (D) lung metastasis (Kruskal-Wallis test and Dunn´s 

post hoc analysis) showed no significant differences between groups. (E) Immune cell infiltration in the 

tumour was assessed by the detection of CD45-positive cells and revealed lower levels when 
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MMTV-PyMT
tg/+

 WT cells were transplanted in IK KO recipients compared to WT recipients (unpaired 

t-test). (F) In contrast, no significant difference was observed with regard to CD45-positive cell 

numbers in the stroma of MMTV-PyMT
tg/+

 WT tumours formed in WT or IK KO recipients 

(Mann-Whitney test). Plots present means ± SEM of n = 7 experiments with *p < 0.05.  

 

5.5 Radiotherapy of IK-proficient and -deficient MMTV-PyMTtg/+ cells and 

orthotopic tumour transplants 

5.5.1 DNA repair and breast cancer cell survival after irradiation 

Radiotherapy was first performed in MMTV-PyMTtg/+ WT cells in the presence and absence 

of the IK inhibitor TRAM-34 as well as in IK KO cells. Clonogenic assays were carried out by 

seeding cells 24 h after 0, 2, 4 or 6 Gy IR in 6-well plates. Colony formation was studied after 

14 d by coomassie blue staining and colonies of at least 50 cells of size, representing original 

tumour cells that survived irradiation, were counted (see figure 4.5). Moreover, IR induces 

direct and indirect DNA damage with malignant cells possessing a lower DNA repair capacity 

and thus decreased survival due to apoptosis by mitotic catastrophe when compared to 

healthy cells38,39,384. To examine if IK channel function modulates DNA repair, H2AX foci as 

a measure of DNA damage were analysed. Previous work identified interplay between IK 

and IR-induced H2AX levels in glioblastoma296. 

IK channel inhibition was carried out by application of the IK channel inhibitor TRAM-34 in 

comparison to ctrl treatment of MMTV-PyMTtg/+ WT cells prior to IR. As shown in figure 5.31, 

colony formation assays were performed with clonogenic survival diminishing with increasing 

doses of IR. Survival fractions after 2, 4 and 6 Gy differed significantly or showed a tendency 

between ctrl (0.79 ± 0.03, 0.47 ± 0.06 and 0.20 ± 0.04) and TRAM-34 treatment (0.49 ± 0.05, 

0.28 ± 0.06 and 0.13 ± 0.03).  
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Figure 5.31: Influence of TRAM-34 treatment on survival of MMTV-PyMT
tg/+

 WT cells after IR 

After seeding, MMTV-PyMT
tg/+

 WT cells were allowed to adhere and grow for 72 h prior to stimulation 

of the cells with 10 µM TRAM-34 or ethanol (ctrl), which occurred 1 h before IR. 24 h after irradiation 

with 0, 2, 4 or 6 Gy, cells were allowed to adhere and form colonies in 6-well plates for 14 d. 

(A) Colony formation ability of TRAM-34-treated or ctrl cells after irradiation is shown in the 

representative images. (B) The survival curve after increasing doses of IR (left) and the corresponding 

bar graphs (right) showed diminished colony formation after TRAM-34 treatment as compared to ctrl. 

Results are shown as means ± SEM of n = 5 experiments with *p < 0.05 and ***p < 0.001 in a 

one-way ANOVA with Sidak´s test.  

 

In order to assess whether the decreased clonogenic survival after TRAM-34 treatment of 

the MMTV-PyMTtg/+ WT cells resulted from an impaired DNA repair capacity, H2AX foci 

(sections 1.1.3 and 4.4.4) were measured 30 min after IR for DNA damage induction and 

24 h after IR for DNA repair (figure 5.32 A). IR with 2 Gy highly upregulated H2AX foci 

numbers at 30 min with no differences in ctrl and TRAM-34 treatments (1.14 ± 0.08 versus 

30.30 ± 0.44 and 1.12 ± 0.04 versus 29.78 ± 0.21 H2AX foci/cell for 0 versus 2 Gy regarding 

ctrl and TRAM-34) (figure 5.32 B). However, residual H2AX foci 24 h after IR with 2, 4 and 

6 Gy and thus incomplete DNA repair, were significantly higher in TRAM-34-treated (1.59 

± 0.05, 2.74 ± 0.22 and 3.68 ± 0.31 H2AX foci/cell) than in ctrl-treated MMTV-PyMTtg/+ WT 

(1.31 ± 0.06, 2.15 ± 0.11 and 3.14 ± 0.36 H2AX foci/cell) cells (figure 5.32 C).    
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Figure 5.32: Effect of TRAM-34 treatment on MMTV-PyMT
tg/+

 WT cell DNA damage induction and 

repair by IR   

(A) MMTV-PyMT
tg/+

 WT cells were seeded in 12-well chamber slides for H2AX assay. After 72 h, 

cells were treated with 10 µM TRAM-34 or the solvent (ctrl) 1 h prior to irradiation with 0, 2, 4 or 6 Gy. 

30 min and 24 h after IR, respectively, cells were fixed to investigate DNA damage induction and 

repair. (B) H2AX foci induction 30 min after IR did not differ between ctrl and TRAM-34 treatments. 

(C) Residual H2AX foci 24 h after IR were significantly higher in TRAM-34-treated compared to 

ctrl-treated MMTV-PyMT
tg/+

 WT cells. n = 5 experiments were carried out as presented with means 

± SEM. *p < 0.05 and ***p < 0.001 show significant differences according to a two-way repeated 

measures ANOVA with Sidak´s multiple comparison test. 

 

To confirm these results, clonogenic survival together with analysis of residual H2AX foci 

after irradiation were assessed in MMTV-PyMTtg/+ WT and IK KO cells. Again, survival of 

MMTV-PyMTtg/+ WT cells decreased in a dose-dependent manner with 0.73 ± 0.04, 0.35 

± 0.02 and 0.13 ± 0.01 for 2, 4 and 6 Gy, respectively.  A much higher vulnerability to IR was 

observed in IK-deficient cells, which also responded with a dose-dependent but much 

steeper decline in survival (0.36 ± 0.03, 0.15 ± 0.02 and 0.06 ± 0.01 for 2, 4 and 6 Gy, 

respectively). Differences between genotypes were significant for 2 and 4 Gy. The low 

number of colonies formed with 6 Gy in both genotypes, compared to 0, 2 and 4 Gy, might 

explain why results for this IR dose lack significance (figure 5.33).  
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Figure 5.33: Clonogenic survival of MMTV-PyMT
tg/+

 WT and IK KO cells after IR 

To test for clonogenic survival after IR, MMTV-PyMT
tg/+

 WT and IK KO cells were plated in 6-well 

plates (n=6 technical replicates per experiment) 24 h after irradiation. Colony formation was studied 

after 14 d in fixed and coomassie blue-stained cultures. Survival of MMTV-PyMT
tg/+

 WT and IK KO 

cells after IR was measured as colonies with ≥ 50 cells. (A) Representative images show tumour cells 

from both genotypes irradiated with the different radiation doses. The density of colonies was lower in 

MMTV-PyMT
tg/+

 IK KO than in WT samples. (B) Colony formation ability, presented in the survival 

curve (left) and corresponding bar graphs (right), was significantly diminished in MMTV-PyMT
tg/+

 IK KO 

compared to WT cells after 2 and 4 Gy of IR. Means ± SEM of n = 9 experiments revealed **p < 0.01 

and ***p< 0.001 in a one-way ANOVA with Sidak´s post hoc test. 

 

In addition, H2AX foci were counted 30 min and 24 h after irradiation in order to analyse 

genotype-specific differences in irradiation-evoked DSB formation and remaining DNA 

damage after DNA repair (figure 5.34 A). Formation of H2AX foci was detected by 

immunofluorescence and firstly measured 30 min post IR. H2AX foci were strongly induced 

by 2 Gy with no differences between genotypes (1.20 ± 0.21 versus 30.27 ± 2.06 and 1.05 

± 0.16 versus 32.01 ± 1.82 H2AX foci/cell for 0 versus 2 Gy in WT and IK KO (figure 

5.34 B). Residual H2AX foci were counted 24 h after IR as a measure of remaining DSBs 

after DNA repair. With 0.76 ± 0.14 and 1.00 ± 0.19 H2AX foci/cell in MMTV-PyMTtg/+ WT 

and IK KO cells at 24 h, 0 Gy-irradiated cells did not differ in the number of H2AX foci, which 

were in the same range as at the 30 min time point. After 24 h and contrary to 30 min, 

however, 0 Gy IR induced a significant increase in H2AX foci numbers in the IK KO 

genotype, which surprisingly imply diminished DNA repair in this genotype at basal 
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conditions already. 24 h after IR, administration of 2, 4 and 6 Gy resulted in significantly 

increased residual H2AX foci numbers in MMTV-PyMTtg/+ IK KO (1.95 ± 0.26, 2.84 ± 0.32 

and 3.78 ± 0.27 H2AX foci/cell) compared to WT cells (1.41 ± 0.21, 2.08 ± 0.26 and 2.60 

± 0.25 H2AX foci/cell) (figure 5.34 C). Together, the impaired DNA repair capacity of 

MMTV-PyMTtg/+ IK KO cells might explain the decreased clonogenic survival of IK-deficient 

cells after irradiation. 

 
Figure 5.34: DNA damage induction and repair in MMTV-PyMT

tg/+
 WT and IK KO cells after IR 

(A) Representative images show the formation of H2AX foci 30 min upon irradiation with 2 Gy. The 

number of H2AX foci 24 h after irradiation was lower in MMTV-PyMT
tg/+

 WT compared to IK KO cells 

indicating that DNA repair processes are impaired. Nuclei were counter-stained with DAPI (blue) and 

H2AX foci present in the cell nuclei are visualised in yellow colour. Counting the number of nuclei and 

the total number of H2AX foci allowed determination of H2AX foci per cell.  (B) H2AX foci numbers 

did not differ between genotypes 30 min after IR. (C) 24 h post IR, residual H2AX foci numbers, a 

measure of incomplete DNA repair, were elevated with increasing doses of IR and particularly in the 

IK KO compared to the WT genotype. n = 7 experiments are presented as means ± SEM. **p < 0.01 

and ***p < 0.001 show significant differences between genotypes as calculated by two-way repeated 

measures ANOVA and Sidak´s test. 

 

5.5.2 Survival and growth of MMTV-PyMTtg/+ WT and IK KO tumours in mice after 

radiotherapy 

To test for the relevance of IK channels in the response to radiotherapy, IR was delivered to 

MMTV-PyMTtg/+ WT and IK KO tumours growing in FVB/N mice after orthotopic 

transplantation for five consecutive days (sections 4.1.5 and 4.1.7). An appropriate IR dose, 

which would lead to moderate tumour regression and allowing for regrowth, i.e. an 
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eightfold-increased tumour volume compared to the beginning of irradiation, was tested in 

MMTV-PyMTtg/+ WT tumours in advance. 2.5, 5 and 7 Gy per day significantly increased 

survival times as reflected by increased HRs of 0.24 (CI 0.02 - 0.29), 0.21 (CI 0.01 - 0.02) 

and 0.21 (CI 0.01 - 0.02) with p-values ≤ 0.0009, 0.0001 and 0.0001 compared to 0 Gy. 

Within the 7 Gy group, one animal had full tumour regression and showed no regrowth over 

the time course of 120 d after the start of irradiation (figure 5.35 A).  

The 2.5 Gy dose was used for irradiation of MMTV-PyMTtg/+ IK KO tumours, as the in vitro 

data implied a higher radiosensitivity after IK channel inhibition or ablation (figures 5.31 and 

5.33). 2.5 Gy in MMTV-PyMTtg/+ IK KO tumours induced improved survival with a HR of 0.31 

(CI 0.07 - 0.44) compared to 0 Gy (figure 5.35 B). Monitoring of tumour volumes after IR in 

both genotypes showed a more profound regression with increasing radiation doses (figure 

5.35 C). Accordingly, survival times were dose-dependent with 20.43 ± 2.30, 35.29 ± 2.43, 

48.29 ± 3.87 and 80.14 ± 10.77 d for 0, 2.5, 5 and 7 Gy in MMTV-PyMTtg/+ WT as well as 

34.86 ± 4.00 and 63.00 ± 9.62 d for 0 and 2.5 Gy in MMTV-PyMTtg/+ IK KO tumour-bearing 

mice. As a result, there was a significant increase in survival time of mice with 

2.5 Gy-irradiated MMTV-PyMTtg/+ IK KO tumours as well as 5 and 7 Gy-irradiated 

MMTV-PyMTtg/+ WT tumours compared to 0 Gy-irradiated MMTV-PyMTtg/+ WT tumours. 

Besides, MMTV-PyMTtg/+ IK KO tumour and therefore survival after 2.5 Gy was higher than 

after 0 Gy in IK KO tumours or MMTV-PyMTtg/+ WT tumours irradiated in 2.5 Gy doses (figure 

5.35 D).  

Analysis of tumour mRNA levels at the end of the experiment showed no significant 

difference for H2AX between genotypes and radiation doses. Also, Kcnn4 mRNA expression 

was not significantly in irradiated MMTV-PyMTtg/+ WT tumours, albeit it was absent in the 

IK KO as expected (supplemental figure 9.12). In addition, no significant difference in 

macroscopic lung metastasis was detected between mice with MMTV-PyMTtg/+ WT and 

IK KO tumours (data not shown). These results suggest a radiosensitising effect after 

interference with the IK channel to improve local tumour control. 
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Figure 5.35: Radiotherapy of MMTV-PyMT
tg/+

 WT and IK KO tumours in mice 

(A) FVB/N mice transplanted with MMTV-PyMT
tg/+

 WT or IK cells received localised radiotherapy at a 

tumour volume of about 62.5 mm³. Irradiation of the tumours occurred for five consecutive days at 

doses of 0, 2.5, 5 or 7 Gy, respectively. Tumour regression and regrowth were assessed until tumours 

reached an eightfold-increased tumour volume compared to the first day of irradiation (n = 7). (B) In 

comparison with 0 Gy, escalating doses of IR led to significantly improved overall survival of mice 

transplanted with MMTV-PyMT
tg/+

 WT or IK KO tumour cells in log-rank tests. (C) Tumour volumes 

decreased by IR in a dose-dependent manner (means ± SEM, two-way repeated measures ANOVA 

and Tukey´s test). (B + C) *p < 0.05, **p < 0.01 and ***p < 0.001 show significant differences to the 

respective 0 Gy genotype control. (D) Survival time was increased in 2.5 Gy-irradiated IK KO 
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compared to 0 Gy and 2.5 Gy WT and 0 Gy IK KO tumour-bearing mice. Each one mouse in IK KO 

2.5 Gy and WT 7 Gy showed complete response (CR). One-way ANOVA with Sidak´s post hoc test 

calculated *p < 0.05 as indicated in the figure or #p < 0.05 and ###p < 0.001 compared to 

0 Gy-irradiated MMTV-PyMT
tg/+

 WT tumour-bearing mice. 
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6. Discussion 

6.1 The BK channel contributes to breast tumourigenesis and cancer 

progression 

Ion channels are aberrantly expressed in cancer and they contribute to the characteristics of 

tumours from different entities including breast cancer131,135. In hormone-related cancers, the 

BK channel is known to promote the proliferation of breast, cervix, ovarian and prostate 

cancer cells179,180,187. By the use of different breast cancer cell lines and human patient data, 

BK contribution to cell cycle progression, high tumour stage and poor prognosis were 

confirmed187,191.  

 

6.1.1 BK KO modifies survival in spontaneous and engrafted MMTV-PyMTtg/+ murine 

breast cancer models 

In an earlier work, increased TFS without effect on OS was observed in the breast 

cancer-prone MMTV-PyMTtg/+ BK KO compared to WT mouse. Animal numbers in this study 

were low due to mating problems and generation of the KO genotype with n = 5 for TFS and 

n = 4 for OS315. Thus, a first aim of the present work was to repeat the respective 

experiments albeit with an increased number of mice. As a result, both TFS (n = 16 for 

BK KO genotype) and OS (n = 8 for BK KO genotype) were prolonged in the MMTV-PyMTtg/+ 

BK KO compared to the WT genotype (figure 5.1). Moreover, the transplantation of primary 

MMTV-PyMTtg/+ BK KO cells into WT recipients increased TFS (figure 5.4 B), but had no 

effect on OS (figure 5.4 C) when compared to MMTV-PyMTtg/+ WT tumours propagated in 

WT hosts. With regard to its physiological role, the BK channel is ubiquitously expressed in 

different tissues including smooth muscle, neurons and cochlear hair cells, contributing to 

many physiological functions such as vascular tonus, neuronal excitability and hearing394,395. 

Tumour formation and growth of primary MMTV-PyMTtg/+ cells generally depend on the 

tumour microenvironment. A modulatory effect of BK on TFS and OS seems also to stem 

from microenvironmental cells, as MMTV-PyMTtg/+ WT cells propagated in BK KO mice had 

shorter TFS but no difference with respect to OS when compared to their transplantation into 

WT mice (figure 5.4 B + C). Presently, it is unclear why BK-deficient tumour engraftments do 

not affect OS, whereas MMTV-PyMTtg/+ BK KO mice that spontaneously develop breast 

cancer show a prolonged OS time. Presumably, the generally faster tumour formation and 

progression in the transplant model, as reflected by a decreased observation period of the 

tumours until termination criteria are reached, may explain the difference compared to the 

spontaneous model. This higher aggressiveness of the transplant model may derive from 

selection pressure of tumour clones during primary tumour growth in the spontaneous model, 
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during the establishment of primary cell cultures together with their cultivation, and underlies 

the successful implantation in the recipient. Thus, in the transplant model, BK deficiency may 

be compensated in certain tumour clones with regard to tumour growth. 

Furthermore, BK in glioblastoma is described to promote metastasis. Glioblastoma cells 

express high levels of a glioma-specific BK splice variant, which seems to stimulate the 

migratory properties of this type of malignant tumour cells186,396. Therefore, metastasis to the 

lungs was also investigated with regard to BK channel status in the spontaneous 

MMTV-PyMTtg/+ breast cancer model. As counted from the right lung, there were no 

differences in macroscopically visible numbers of metastases (figure 5.1 C). However, 

micrometastases counted after haematoxylin/eosin staining in the left lung showed an 

increase in spontaneous MMTV-PyMTtg/+ BK KO compared to WT tumour-bearing mice 

(figure 5.1 D). This surprising result might be explained by the elevated overall observation 

time of the tumour-prone BK KO genotype. In the transplant model, macroscopic lung 

metastasis numbers did neither differ (figure 5.4 E) and micrometastasis detection by 

haematoxylin/eosin staining was absent (data not shown). For explanation and in contrast to 

subcutaneous MMTV-PyMTtg/+ cell injection as site of tumour cell transplantation, 

MMTV-PyMTtg/+ cells injected in the mammary pad and thus their site of origin express a 

differential gene pattern and can lose their metastatic potential397.  

 

6.1.2 Tumour KCNMA1 mRNA expression levels modulate human breast cancer 

outcome 

Molecular breast cancer subtypes can be distinguished according to the PAM50 

classification and they determine clinical characteristics and survival outcome according to 

gene expression patterns8,26,398. In order to test a potential influence of BK channel mRNA 

expression on OS, human patient samples stratified for BK channel mRNA expression levels 

were investigated. The data was collected as part of TCGA and the KM plotter. Strikingly, the 

two web tools delivered contrary results with high BK channel mRNA expression acting as 

modifier that decreased OS in TCGA but increased OS in the KM plotter (figure 5.6). To test 

for the contradictory OS outcomes derived from Kaplan Meier estimations in TCGA and the 

KM plotter, data collection and conductance of the survival analyses must be compared for 

differential technical approaches. For mRNA expression analyses, n = 1,200 samples for 

both KCNMA1 and KCNN4 were provided in TCGA, whereas only n = 626 samples for 

KCNMA1 but n = 1,402 samples for KCNN4 were available in the KM plotter. In TCGA, a 

sequencing library was created from total RNA and sequencing was carried out on an 

IlluminaHiSeq2000 microarray platform. In contrast, data in the KM plotter derived from 

publications that provided raw data and included clinical survival data, at least 30 patients in 
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the cohort and Affymetrix HG-U133A and HG-U133 Plus 2.0 microarrays. Follow-up time in 

the survival analyses was less than 9 years for TCGA and 25 years for the KM 

plotter342,399,400. In conclusion, TCGA may provide more reliable information with regard to 

survival outcome, but its use in the breast cancer data set is limited due to a relatively short 

follow-up time at the moment. 

 

6.1.3 The Ki-67 proliferation marker is decreased in MMTV-PyMTtg/+ BK KO tumours 

The Ki-67 protein is an established marker for proliferation. It is detectable through all active 

phases of the cell cycle while absent in quiescent cells97. Ki-67 expression in tissues and 

cells derived from MMTV-PyMTtg/+ WT and BK KO tumours served to further assess BK 

channel contribution to proliferation and thus tumour progression. The Ki-67 status of 

MMTV-PyMTtg/+ BK KO tissues and cells was lower than in the WT genotype (figure 5.10). 

These in vitro results confirmed the increased OS survival of the BK KO genotype in vivo and 

were in line with previous results on the role of the BK channel in breast cancer 

proliferation187,190.  

 

6.1.4 ER and HER2 expression in murine breast cancer as well as immune cell 

infiltration are not affected by BK status 

The most prominent biomarkers to define breast cancer subtypes are ER, PR and HER27. 

The ER forms a homodimer or heterodimer composed of  and  subunits and it is 

expressed in the majority of breast tumours. ER activation by oestrogens leads to receptor 

dimerisation and translocation in the nucleus where it binds EREs. Thereby, gene expression 

is regulated in favour of proliferation and anti-apoptosis with the ER- subunit dominating the 

oncogenic characteristics of the ER. Less is known about ER-, albeit it seems to possess 

counter-regulatory properties to ER-401,402. A positive ER status is often accompanied by PR 

expression because the latter is induced by ER signalling. PR signalling contributes to 

proliferation and thus represents a risk factor for breast cancer development. However, the 

presence of the PR is associated with an ameliorated prognosis in established breast cancer 

due to its context-dependent action, for example the interference with E2-induced and 

ER--mediated tumour cell growth403-406. HER2 overexpression is found in 20 - 30% of all 

breast tumours. It is associated with aggressive tumour characteristics and poor outcome, 

but anti-HER2 therapy in particular in combination with chemotherapy is quite 

successful96,407-409. 



6 Discussion 

128 

As breast cancer subtype is a predictor of recurrence and survival outcome13,410, 

classification of MMTV-PyMTtg/+ WT and BK KO tumours and differences between genotypes 

were studied. Tumour tissues and cells from both genotypes were positive for ER and HER2 

expression (figure 5.2). As further confirmation, expression patterns of BK channel subunits 

were detected in human breast cancer cell lines of different intrinsic subtypes and thus 

different hormone receptor and HER2 status (figure 5.8). In addition, the presence of immune 

cells in tumours and stroma was detected in both spontaneous and transplant 

MMTV-PyMTtg/+ WT and BK KO tumours with the pan leukocyte marker CD45. Immune cell 

infiltration in stroma and tumour tissue was not dependent on the BK status, hence identical 

in MMTV-PyMTtg/+ WT and BK KO samples (figures 5.3 and 5.4). Thus, BK genotype-specific 

effects on the interplay of these factors with tumourigenesis and tumour growth were 

excluded.    

 

6.2 BK channel accessory subunits are important determinants of 

breast cancer risk and progression 

The BK- pore-forming subunit is ubiquitously expressed and its activity is determined by 

both membrane potential and [Ca2+]i. The tissue-specific association of BK-α with accessory 

BK- and BK- subunits allows BK channel activity at decreased voltages and lower [Ca2+]i 

concentrations153,411. Therefore, it was speculated that BK channel activity and function in 

normal breast and breast cancer relies on the tissue- and cell type-specific expression of its 

subunits.     

 

6.2.1 SNPs in the KCNMB4 gene can increase breast cancer risk 

Gene expression is regulated by complex hierarchical signalling networks. Moreover, 

steady-state mRNA levels differ between individuals due to the impact of genetic variation, 

as can be found by the analysis of eQTLs412-414. In order to test for genetic variation in the 

genes associated with the BK channel complex and their impact on breast cancer risk, SNP 

data from the iCOGS array was used from the BCAC347. SNPs in the KCNMB4 gene were 

found that increased overall breast cancer risk and further were associated with the 

development of ER-positive tumours. Moreover, all SNPs were located in the first two introns 

of the KCNMB4 gene and thus may have upstream regulatory properties. In the context of 

KCNMB4 protein expression, BK-4 was reported to stimulate or inhibit BK channel activity 

in a Ca2+ concentration-dependent manner163,415. Further, BK-4 was shown to decrease 

sensitivity to BK-interacting agents such as the pharmacological inhibitors charybdotoxin and 

iberiotoxin164. Nevertheless, the functional significance of the KCNMB4 variants must be 
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further clarified. 8 of the 9 SNPs were in high linkage disequilibrium (figure 5.5). Thus, it 

would also be possible that these variants are inherited in linkage disequilibrium with various 

SNPs from other genes that functionally contribute to breast cancer development. In addition 

to breast cancer development, variants in BK channel genes potentially modulate therapy 

success and survival outcome in breast cancer416.  

 

6.2.2 BK channel subunits are differentially expressed in breast cancer subtypes 

BK subunit mRNA expression was further regarded in human healthy and breast tumour 

tissue data retrieved from TCGA. No differences were seen between the two groups with the 

presence of all subunits spread across the samples except for LRRC38 encoding BK-4, for 

which no data was available, and the testis-specific LRRC52 encoding the BK-2 subunit 

(figure 5.7). As the expression of different BK subunits may be very patient-specific including 

patients without any BK expression and as diverse subunits may potentially compensate for 

each other, individual differences might be masked by this approach.  

The KCa mRNA expression profile was analysed in a set of 15 human normal breast and 

breast cancer cell lines of different molecular subtypes and revealed a high frequency of 

KCNMA1, but also KCNMB3, KCNMB4 and LRRC26. Apart from LRRC26, mRNA 

expression of the other BK--encoding subunits, namely LRRC38, LRRC52 and LRRC55 

was rarely seen (figure 5.8). KCa mRNA expression analysis in MMTV-PyMTtg/+ WT and 

BK KO tumour tissues and cells confirmed the positive BK- status in the WT genotype on 

mRNA level while it was absent in the BK KO genotype. Besides, the qRT-PCR analysis 

revealed abundances of Lrrc26 as well as Kcnn4 mRNA in both genotypes with significantly 

increased amounts in BK KO cells (figure 5.9). Due to their tissue-specific expression, 

specific BK- and BK- subunits are present in breast cancer and enable oncogenic BK 

functions. In the case of breast cancer, especially BK-4 and BK-1 may represent novel 

modifiers and molecular targets for tumour formation and growth and in particular BK-1 was 

identified because of its abundance in breast and prostate cancer153,165.  

 

6.2.3 BK channel subunits stimulate proliferation of breast tumour cells 

Due to its high expression in breast tumour cells and in breast cancer in general165, the 

functional contribution of BK- and BK-1 to the proliferation of MMTV-PyMTtg/+ WT and 

BK KO mouse as well as of MDA-MB-453 human breast tumour cells was further tested by 

the use of siRNA. In line with decreased Ki-67 expression after BK- ablation (figure 5.10), 

siLrrc26 markedly attenuated the proliferation of MMTV-PyMTtg/+ WT cells to levels of 
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MMTV-PyMTtg/+ BK KO cells, in which the Lrrc26 depletion showed no additional and thus 

BK-α-independent effect. Furthermore, siLrrc26 led to increased Kcnmb4 mRNA levels in 

MMTV-PyMTtg/+ WT cells with no effect in the BK KO genotype (figure 5.11). In MDA-MB-453 

cells having very high mRNA expression levels for KCNMA1 and LRRC26, siKCNMA1 and 

siLRRC26 each diminished relative proliferation rates as compared to siNT-treated cells. In 

addition, the siKCNMA1-mediated depletion of BK- induced LRRC26 mRNA upregulation, 

which may point to a counter-regulatory effect due to a lack of BK activity (figure 5.12). In 

sum, BK-1 served as fundamental factor for proper BK function in terms of proliferation in 

the tested murine and human breast tumour cells. The downregulation of BK-1 decreased 

proliferation in dependence on the presence of BK-. In order to compensate for lacking or 

absent BK function, upregulation of other BK subunits that constitute the BK channel 

complex occurred. Hence, the different accessory subunits may, at least in part, have 

influence on each other’s expression. Questions rise to which extent the oncogenic potential 

of the BK channel relies on distinct BK- and BK- subunits and in how far their modulation is 

reversed by compensatory expression of other subunits.  

As BK- and BK- subunits are expressed in a tissue-specific manner, their targeting may 

represent a promising tool to modulate BK function in a more specific way with fewer side 

effects. As BK- is ubiquitously expressed and linked to important physiologic functions, 

pharmacological targeting in vivo gives rise to multiple problems. In this context, BK 

deficiency induces different conditions, e.g. cerebellar ataxia316, an increased blood pressure 

due to hyperaldosteronism417, progressive hearing loss418 or osteopenia419. With regard to 

cell types that constitute the tumour microenvironment, BK channel expression status affects 

maturation and insulin signalling in adipocytes357,420 and it responds to nitric oxide application 

in fibroblasts421. Furthermore, the BK channel modulates endothelial-dependent vasodilation 

as well as smooth muscle cells and thus the vascular tone422,423, but has no impact on 

endothelial cell proliferation and therefore angiogenesis424. In clinical trials, BK channel 

modulation was tested without satisfactory success so far. The number of candidates to 

enter clinical trials has been low, which can derive from lacking selectivity or potency and 

from toxicities. One small molecule BK activator reached phase III clinical trials investigating 

stroke, but failed because it showed no difference compared to placebo treatment425-427. 

 



6 Discussion 

 

131 

6.3 Interaction of BK with different growth factors and anti-/oestrogens 

promotes tumour cell proliferation and tumour growth 

6.3.1 Growth factors present in serum and selected hormones induce BK-dependent 

breast tumour cell proliferation in vitro 

The assembly of the BK channel complex acts as determinant of BK function and action. 

Nevertheless, the BK channel assembly does not represent a sufficient explanation for its 

mechanistic contribution to breast cancer. However, it is known that BK channel activity is 

not only dependent on the membrane potential, [Ca2+]i and accessory subunits. Rather, the 

BK channel responds to activation by ligands such as a diversity of growth factors and it may 

serve as transducer for extracellular stimuli220. Therefore, a first approach investigated the 

proliferation response of MMTV-PyMTtg/+ WT and BK KO cells to standard FCS-containing 

media in comparison to media supplemented with CCS or without serum. As expected, 

proliferation rates were higher in MMTV-PyMTtg/+ WT cells treated with FCS compared to the 

BK KO genotype and compared to CCS or serum-free treatments in both genotypes (figure 

5.13). BK channel activation by growth factors is rapid, as measured by electrophysiological 

approaches, thus suggesting direct effects on the BK channel with physiological but also 

pathophysiological consequences such as an increased proliferation of MCF-7 cells after 

stimulation also with a membrane-impermeable form of E2202.  

A complementary approach utilised MMTV-PyMTtg/+ WT and BK KO mouse as well as 

MDA-MB-453, MCF-7 and MDA-MB-157 human breast tumour cells, which were stimulated 

by different growth factors, i.e. E2, E2-BSA, progesterone or testosterone, in a range of 

physiological concentrations and up to 10 nM, the concentration with the putatively largest 

effect on BK channel activation202, in a logarithmic scale. Proliferation outcomes were 

primarily dependent on BK channel status and less on the hormone concentrations applied to 

the tumour cells (figures 5.14 and 5.15). Interestingly, however, E2 was previously shown to 

stimulate the mRNA expression of BK- and its accessory subunits via ER genomic 

signalling and it is known to promote the expression of distinct BK- isoforms through the 

regulation of alternative splicing217,428,429. To conclude, BK channel-positive tumours seem to 

benefit from extracellular circulating growth factors, which may stimulate proliferation of the 

corresponding tumour cells. Canonical BK channels are usually present at the plasma 

membrane. Besides, intracellular BK channels are found in different cell types, especially on 

the inner mitochondrial membrane and the outer membrane of the nucleus430,431. For 

signalling, especially the nucleus is an interesting target. Nuclear BK channels in 

hippocampal neurons are described to regulate nuclear Ca2+ concentration and signalling as 

well as to regulate transcription mediated by the cyclic adenosine monophosphate response 

element-binding protein432. As the non-membrane-permeable E2-BSA conjugate showed a 
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pro-proliferative effect in MMTV-PyMTtg/+ WT cells (figure 5.14), it was excluded that 

intracellular BK channels or ERs were involved. In addition, patch-clamp experiments 

revealed changes in BK K+ currents upon hormone applications201,202. 

Despite these promising results, also some opposing effects were described when 

comparing the work of different research groups using various cell types. BK channel 

activation and signalling by oestrogens may be cell type- and context-dependent. Besides, 

oestrogens may also stimulate other ion channels potentially superimposing the beneficial 

effects linked to the depletion of BK activity220. Therefore, a comparative study investigating 

different cell types, growth factors in different concentrations and a variety of functional 

assays, i.e. electrophysiology and proliferation, would allow for a better understanding of the 

integration of hormone-stimulated BK channel activation in breast cancer. 

 

6.3.2 Anti-hormones modulate proliferation of BK channel-positive breast tumour 

cells in a concentration-dependent manner 

The BK channel has also been described for its activation by different anti-hormones and 

may thus intervene with endocrine breast cancer therapy. Indeed, stimulation of the BK by 

TAM is a concentration-dependent process with maximum activation at 10 nM TAM inducing 

MCF-7 breast tumour cell proliferation207. In a comprehensive approach, MMTV-PyMTtg/+ WT 

and BK KO cells as well as MDA-MB-453, MCF-7 and MDA-MB-157 cells were exposed to 

1, 10, 100 or 1,000 nM TAM, (Z)-4-OH-TAM, (Z)-endoxifen or fulvestrant. At high 

concentrations (1,000 nM) the various drugs produced the clinically desired effect of lower 

proliferation in the ER-positive MMTV-PyMTtg/+ WT and BK KO as well as MCF-7 cells. In the 

BK--positive MMTV-PyMTtg/+ WT and MCF-7 cells, proliferation-stimulating rather than 

inhibitory effects were observed at lower doses of TAM (1 to 10 nM) in different experimental 

settings. In MMTV-PyMTtg/+ BK KO cells, all drugs tested showed an anti-proliferative 

tendency or no effect emphasising BK to be responsible for the pro-proliferative effect of 

anti-oestrogens. In line, the ER- and BK--negative as well as BK-1-positive MDA-MB-157 

cell line did not respond to any of these treatments, suggesting that BK-1 is not sufficient to 

promote either pro- or anti-proliferative effects of the anti-hormones. However, proliferation 

rates in ER-negative MDA-MB-453 cells, which express high levels of BK- and BK-1, were 

significantly enhanced by TAM and its metabolites (figures 5.16 and 5.17), hence, it was 

concluded that this occurred independently from genomic signalling controlled by the ER. 

Regarding hormone signalling via the ER, the classic ER- and ER- homodimer or 

heterodimer resides mainly in the nucleus and less in the cytoplasm even in absence of 

ligand binding, which leads to rearrangement of the ER pattern within the nucleus433. 
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Besides, the nuclear pore complex regulates shuttling of the ER between cytoplasm and 

nucleus. ER activation is involved in gene transcription with its role as transcription factor but 

also as coregulator by the interaction with other transcription factors434,435. Moreover, two 

ER- isoforms, namely ER36 and ER46 with molecular weights of 36 and 46 kDa were found 

to be associated with the membrane via palmitoylation. Adaptor and scaffolding proteins 

facilitate ER- membrane localisation and enable multi-protein signalling complexes. Both 

isoforms are E2-responsive and the presence of ER36 in breast cancer cells is independent 

from their nuclear ER status435-437. Therefore, ER- membrane localisation may also explain, 

at least partly, the pro-proliferative effects after E2 application in MMTV-PyMTtg/+ WT murine 

as well as MDA-MB-453 and MCF-7 human tumour cells. However, it is not a valid 

explanation for the pro-proliferative effect after anti-oestrogen application, as agonistic 

effects of the anti-oestrogens tested on mammary ER isoforms have not been described so 

far (figures 5.14 and 5.15). 

Besides ER36 and ER46, the GPER residing in the plasma membrane was identified in 

various cell types. In breast cancer cell lines, GPER expression is independent from ER 

status albeit interactions are described. In this context, GPER stimulation by E2 leads to 

breast cancer cell proliferation. E2-evoked and ER-independent non-genomic effects via 

GPERs occur in a rapid manner by interaction with signalling pathways. Not only E2, but also 

TAM and its metabolite (Z)-4-OH-TAM as well as fulvestrant show agonistic effects on the 

GPER. In addition, the GPER is associated with oestrogen-related diseases such as cancers 

of the reproductive system, obesity or osteoporosis438-442. This raises the question whether 

the pro-proliferative effect after application of hormones or anti-oestrogens in MMTV-PyMTtg/+ 

WT and BK KO mouse as well as the differential outcome in MDA-MB-453, MCF-7 and 

MDA-MB-157 human breast tumour cells (figures 5.14 - 5.17) may derive from interaction of 

the BK channel with the GPER. However, there exist conflicting results on the putative 

localisation and function of the GPER in the endoplasmic reticulum, the cytoplasm and 

nucleus, which needs to be clarified443. In the context of breast cancer, high cytoplasmic 

GPER expression is claimed to result in better survival outcome also in patients receiving 

endocrine therapy, and associates with low stage and luminal A or luminal B subtypes. On 

the contrary, nuclear GPER expression is an indicator for less differentiated and 

triple-negative breast cancer444,445. Another study compared membrane to total GPER 

expression. Opposite to total GPER, membrane GPER expression is an indicator for high 

histological grade and poor prognosis446. In line, GPER expression is associated with TAM 

resistance, which can be explained by the agonistic effect of TAM on the GPER as well as 

the consequent induction of aromatase expression445,447. Further, GPER expression in breast 

cancer-associated fibroblasts may modulate the migration and epithelial-mesenchymal 

transition in breast tumour cells448. Moreover, it was recently shown that activity of the 
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TREK-1 two-pore domain K+ channel is increased by GPER signalling after E2 stimulation, 

whereas E2 has no direct effect on TREK-1 activity449. GPER is also expressed in the 

MMTV-PyMTtg/+ model, in which it has no obvious impact on tumourigenesis, but contributes 

to tumour progression450. Therefore, future studies should investigate the potential interaction 

of BK channels and GPER at the membrane that may stimulate anti-/hormone-induced BK 

currents and downstream signalling202,207. 

Generally, interaction of membrane proteins and induction of signalling processes are 

enabled in lipid rafts, which are sphingolipid and cholesterol-enriched domains of the 

membrane. Caveolae are such tube-like invaginations, which are further characterised by the 

expression of caveolins-1 - 3 serving as scaffold proteins. In particular, caveolin-1 is 

described for its ambiguous function in cancer451,452. In breast cancer, caveolin-1 has a dual 

role as tumour suppressor and oncoprotein. Absence of caveolin-1 is associated with cellular 

transformation and proliferation. MMTV-PyMTtg/+ caveolin-1 KO mice show decreased TFS 

leading to a higher tumour burden453. Besides, the absence of caveolin-1 in tumour stroma 

correlates with tumour stage, recurrence and a decreased progression-free survival. In 

TAM-treated patients, it further predicts poor prognosis454. In advanced breast cancer, 

however, caveolin-1 overexpression is found and functions to promote proliferation in 

established tumour cells. Moreover, TAM application increases caveolin-1 expression, 

whereas this is repressed after acquisition of TAM resistance453,455. As scaffolding protein, 

caveolin-1 possesses versatile functions during tumourigenesis, tumour progression and 

TAM resistance. Deciphering its controversial effects and the direct interaction partners of 

caveolin-1 for the accomplishment of its different pro-oncogenic and tumour-suppressive 

functions would be beneficial for better comprehension and the development of intervention 

strategies456. Interestingly, TAM and its metabolites, E2 as well as cholesterol to a minor 

extent, decrease membrane fluidity in breast cancer cells. This effect is dose-dependent and 

observed at high doses in particular457-459. The BK channel is found in cholesterol-rich 

microdomains of the membrane from vascular endothelial cells, especially in caveolae where 

its activity is diminished by the interaction with caveolin-1460. In myometrial cells, the BK has 

been associated with caveolin-1, but also caveolin-2, however not with caveolin-3. Lipid raft 

disruption in these cells also increases BK channel activity461. 

In addition to its rationale for the therapy of especially ER-positive breast tumours, TAM 

shows anti-fungal and anti-viral actions and modulates natural killer cell cytotoxicity458,462-464. 

Strikingly, TAM application to ER-negative tumour cells is described to promote 

anti-proliferative and anti-migrative properties, apoptotic events as well as the reversion of 

epithelial-mesenchymal transition. Further, the oncolytic effect of TAM is not completely 

reversible by high-dose E2 administration. Regarding ER-independent actions of TAM, these 



6 Discussion 

 

135 

are accompanied by an increase in [Ca2+]i, which is associated with elevated levels of ROS 

and c-Jun N-terminal kinase activation. Interestingly, this may represent the underlying 

mechanism for an observed increase in proteasomal degradation and EGFR level reduction 

by TAM. Besides, TAM-evoked protein kinase C reduction may result from 

direct EGFR down-stream signalling via the phospholipase C-γ1/phosphatidylinositol 

4,5-bisphosphate/diacylglycerol pathway465-467. Whether BK channel activation by TAM is 

involved in these processes is unclear at present. 

To summarise this part, BK channel status served as determinant of anti-oestrogen-induced 

proliferation. This effect was not dependent on genomic ER signalling usually attenuating the 

proliferation response of breast tumour cells. It can thus be proposed that patients with BK 

channel-positive tumours may especially benefit from anti-oestrogen therapy when applied at 

sufficiently high concentrations reaching steady-state conditions early after the start of 

therapy in order to circumvent a potentially undesired pro-proliferative effect mediated by BK. 

On the other side, BK-positive tumour clones with declining ER status may benefit from 

continuous endocrine therapy through BK channel-mediated stimulation of proliferation. 

Therefore, BK channel-positive tumours may be more prone to develop anti-oestrogen 

resistance, as clones with low ER expression that form during disease progression would 

respond less to the beneficial effects of the endocrine therapy leading to their clonal 

expansion. As an example provided in the murine p53 null transplant model, ER-positive 

premalignant lesions develop to ER-positive or ER-negative tumours. Here, TAM 

administration reduces tumour incidence, delays tumour onset and leads to the formation of 

ER-negative tumours in particular. Whether the ER-negative tumours arising in this model 

form from previously ER-positive tumour cells or whether there is a direct selection towards 

ER-negative tumour cells remains elusive468.   

 

6.3.3 Efficacy of TAM therapy in vivo is decreased in breast tumours with positive BK 

channel status 

TAM is the pioneering drug used for endocrine intervention as part of breast cancer therapy. 

Before the approval of TAM, synthetic oestrogens at very high doses were applied to treat 

tumours of the breast. Due to the grand success of TAM, which was initially developed as 

contraceptive, it has been prescribed to many patients77,78,469. Nevertheless, TAM itself is a 

pro-drug with a diversity of metabolites including (Z)-4-OH-TAM and (Z)-endoxifen 

possessing much elevated affinities for binding the ER470. (Z)-endoxifen is accepted the main 

contributor to the anti-cancer effects of TAM therapy, because it reaches higher systemic 

levels compared to (Z)-4-OH-TAM albeit high inter-patient variability is observed that is 

influenced by CYP2D6 activity90,471-473. Due to the pro-proliferative effect of TAM and its 
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metabolites seen in BK channel-positive breast tumour cells (figures 5.16 and 5.17), the 

potential relevance of this interplay was further assessed in the MMTV-PyMTtg/+ model 

in vivo.  

First, TAM metabolism was determined in mice in order to compare to the well-studied 

metabolism in humans. In murine plasma, concentrations of TAM and its metabolites were 

dependent on the dose and thus lower in 0.5 mg/60 d than in 5 mg/60 d release pellets. 

Steady-state conditions were already reached at the first measurement time point at 7 d post 

pellet implantation. When comparing the main metabolites, TAM reached highest 

concentrations compared to (Z)-4-OH-TAM, which was higher than (Z)-endoxifen, while 

N-DM-TAM was below the lower limit of quantification in most samples (figure 5.18). These 

results are in line with previously published data in the mouse472. However, TAM is 

excessively metabolised to N-DM-TAM in the human system. Therefore, human plasma 

concentrations are even higher for N-DM-TAM than TAM and (Z)-endoxifen levels are higher 

than levels of (Z)-4-OH-TAM474,475. In addition, serum steady-state conditions of TAM in 

humans are only reached within a time frame of four weeks89. Besides, TAM and its 

metabolites accumulate especially in tumour tissue compared to plasma levels, but tissue 

concentrations diminish with circulating levels of E2476,477. Comparing murine CYP2D and 

human CYP2D6 activity, a similar expression pattern is confirmed in liver and kidney, but not 

in intestine and brain478. Although metabolite accumulation differs between the human and 

the murine system, experimental TAM therapy in the MMTV-PyMTtg/+ model is established. 

Dose and application frequency vary according to the application routes such as i.p.479,480 or 

s.c.481 injections, per oral gavage472,482 or subcutaneous pellet implants483-486.  

For investigating growth differences during TAM therapy according to BK channel status, the 

5 mg/60 d release pellet was chosen as clinically relevant dose. The use of drug pellets 

ensures continuous release without necessity of daily application and thus repeated handling 

and stress for the MMTV-PyMTtg/+ WT or BK KO tumour-bearing and ovariectomised mice. 

TAM successfully decreased tumour growth in MMTV-PyMTtg/+ BK KO mice. However, there 

was no significantly prolonged tumour growth detected with TAM in the WT genotype. 

Apparently, TAM therapy was less effective in the presence of BK in the MMTV-PyMTtg/+ 

mouse model (figure 5.19). Hints for growth-stimulatory effects at the beginning of TAM 

therapy are described in patients as well as in mice transplanted with MCF-7 cells487. Further, 

TAM induces an accelerated tumour onset in a mouse model of Brca1 mutation-related 

breast cancer488. With respect to MMTV-PyMTtg/+ mice, this model develops HER2- and 

ER-positive breast tumours with the latter declining in late stage carcinomas312. In 

MMTV-PyMTtg/+ explants grown in ovariectomised mice, the maintenance of low ER 

expression and experimentally dose-dependent E2-stimulated growth of tumours in vivo are 
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confirmed. However, it is known that high-dose application of E2 downregulates ER 

expression and thus can result in a loss of ER status and thereby leading to differential 

results. It is also important to note that the MMTV promoter possesses no ERE, thus it 

should not respond to E2 and ER-mediated signalling directly. However, MMTV promoter 

activity is controlled by other steroids such as progesterone and glucocorticoids489. Further, 

the interplay between ER and HER2 was investigated in human breast cancer cell lines with 

E2 but also TAM repressing HER2 transcription via their action on the ER490. In male FVB/N 

MMTV-PyMTtg/+ mice, TAM treatment reduces the number of mammary pads developing a 

tumour, but it has no impact on growth once a tumour is established. TAM also increases 

ER- expression in mammary gland tumours in male mice while ER- and HER2 are 

decreased479. In female FVB/N MMTV-PyMTtg/+ mice, TAM shows prolonged tumourigenesis 

also resulting in delayed progression as measured by tumour growth480. To some extent, 

other studies report the absence of ER in late-stage MMTV-PyMTtg/+ tumours with induction 

of high AR expression. However, the course of hormone receptor and HER2 expression 

during MMTV-PyMTtg/+ tumour progression is substrain-specific312,491. This can partly be 

explained by substrain-specific SNPs, which are already shown to determine the metastatic 

potential of the MMTV-PyMTtg/+ model492. In that context, a positive ER status in 

MMTV-PyMTtg/+ tumour tissues and cells utilised in this approach was confirmed and further 

emphasised by the use of littermate animals for the experimental purposes (section 4.1.4 

and figure 5.2). 

 

6.3.4 TAM modifies survival outcome of breast cancer cells after IR 

According to the German S3 guideline for breast cancer, endocrine therapy and radiotherapy 

can safely be delivered in a sequential or in a concurrent manner80,493,494. In one study, the 

combination of the AI anastrozole and radiotherapy shows a reduction in the 5-year 

ipsilateral breast tumour recurrence-free survival rate as compared to anastrozole alone. 

This effect could not be replicated when replacing anastrozole with TAM495. However, other 

studies describe an improved local control when radiotherapy is added to TAM treatment496-

498. In general, continuous TAM application to reach therapeutically-relevant high 

concentrations in the tumour tissue induces G1 cell cycle arrest of breast tumour cells, which 

may support their DNA repair capacity and thus survival499-501. Assuming that proliferation 

determines survival outcome after IR, the opposing pro-proliferative and anti-proliferative 

effects of either 10 or 1,000 nM TAM (see figure 5.16) need further consideration especially 

in BK channel-positive breast tumours. The experimental setup used was based on 

MMTV-PyMTtg/+ WT and BK KO cells stimulated with TAM prior to irradiation. Survival and 

residual H2AX foci numbers were dependent on treatment conditions with 1,000 nM TAM 
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resulting in a better outcome in both genotypes compared to ctrl. In contrast, 10 nM TAM 

decreased survival of MMTV-PyMTtg/+ WT cells, whereas the opposite was observed in 

MMTV-PyMTtg/+ BK KO cells (figure 5.20). Importantly, lack of BK did not alter radiosensitivity 

per se (supplemental figure 9.10). A possible explanation for these differential cell 

behaviours between genotypes and with regard to TAM concentration is the interplay 

between BK channel-stimulated and ER-prohibited proliferation, as cell cycle arrest is 

important to allow for DNA repair and to overcome mitotic catastrophe502.   

In one study from 1989, an increased radioresistance of MCF-7 cells treated with 

1,000 nM TAM was observed, which was confirmed in further in vitro studies503,504. On the 

contrary, other studies suggest an increased radiosensitivity of combined TAM and 

radiotherapy. In these studies, TAM was applied after IR only and actually did not test for 

concurrent TAM and radiotherapy505,506. Moreover, a beneficial radiosensitising effect of 

combined TAM and radiotherapy is also claimed in two rat models504. However, one of these 

two rat model tested for the tumourigenic potency of radiotherapy and thus TAM was applied 

only 14 or 15 d after IR507. The second rat model used the carcinogen 1-methyl-1-nitrosurea 

for induction of multiple ER-positive breast tumours, where 25 fractions of IR in combination 

with daily s.c. administration of 500 mg/kg BW TAM resulted in decreased tumour volumes, 

as also observed with IR or TAM alone. The suitability of this model is questionable, as the 

application of IR in this model is known to induce further carcinogenesis leading to the 

formation of additional tumours508. Compared to the daily standard application of 20 mg TAM 

for the therapy of breast cancer patients assuming an average BW of less than 70 kg, the 

TAM dose chosen in these rats was approximately 150 times higher and may therefore lack 

clinical relevance509,510. Besides, the liver carcinogenic effects of the TAM metabolite 

-OH-TAM, which extensively accumulates in rats but not in mice or humans, also limits the 

use of in vivo rat cancer models for the analysis of TAM-mediated effects86,87. Regarding 

clinical trials, only data from retrospective analyses of the combined effect of TAM and 

radiotherapy are available. So far, these reports do not find evidence for altered 

radioresistance when TAM application overlaps for at least two weeks with radiotherapy. 

With regard to toxicity, an increase in radiotherapy-induced lung and mammary fibrosis is 

observed with simultaneous TAM treatment, which is attributable to the release of 

pro-inflammatory cytokines by both therapies504. 

In view of BK as prognostic factor and predictor of therapy outcome, the frequency of BK 

expression in human breast tumours and thus the clinical importance of BK channels as 

breast cancer biomarker must be established. In this attempt, BK channel mRNA expression 

was screened and showed a positive status in most of the 15 human normal breast and 

breast cancer cell lines from different molecular subtypes (figure 5.8). However, the majority 
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of commercially available breast cancer cell lines were initially isolated from sites of 

metastasis instead of the primary tumour. Hence, the frequency of BK channel expression in 

the primary disease remains largely unclear and conclusions being drawn are further 

restricted by the fact that migration and thus metastasis of the tumour cells may be attributed 

to the tumour-promoting functions of the BK channel. With regard to highly invasive 

malignancies, BK contributes to radiation-induced migration in glioblastoma186,222. Also in 

breast cancer, BK channel inhibition by different penitrems decreases migratory and invasive 

properties of MDA-MB-231 cells511. 

 

6.4 The IK channel is implicated in breast cancer development and 

survival outcome 

6.4.1 KCNN4 SNPs modify human breast cancer risk and KCNN4 gene expression 

may determine survival outcome 

The clinical relevance of the IK channel was investigated with human breast cancer genetic 

data. BCAC analysis revealed eleven SNPs in the first intron of the KCNN4 gene, which 

were associated with an altered overall risk for breast cancer development and the risk to 

develop ER-positive tumours. Of special interest were three SNPs with high MAFs of 0.36 or 

0.41, namely rs12609846, rs1685191 and rs12463319, which decreased overall and 

ER-positive breast cancer risk to 0.94 or 0.93 with very low p-values (figure 5.24)347. Based 

on the TCGA dataset, mRNA expression for KCNN1 - 4 did not differ between established 

breast tumours and healthy breast tissue (figure 5.25). Stratification of breast cancer patients 

by KCNN4 mRNA expression levels revealed differential survival outcomes with high 

expression leading to decreased OS in the KM plotter. OS analysis in TCGA showed no 

influence of KCNN4 mRNA expression levels (figure 5.26). This might be explained by the 

shorter follow-up time in TCGA or differences in other experimental aspects such as sample 

numbers and microarray platforms, as already stated in section 6.1.2.  

 

6.4.2 Lack of IK does not alter TFS and OS in the spontaneous MMTV-PyMTtg/+ model, 

but contributes to proliferation in vitro 

In the spontaneous MMTV-cNeutg/+ murine breast cancer model, IK KO results in prolonged 

TFS and OS385. The characteristic of this model is the overexpression of cNeu, the rat 

homologue of human HER2. Due to the unactivated form of cNeu in the MMTV-cNeutg/+ 

model meaning intrinsic tyrosine kinase activity, but no activating mutations as are observed 

in human HER2-enriched breast cancer, tumours form with a long latency and resemble the 
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luminal B type29,512,513. In contrast to MMTV-cNeutg/+, no effects on TFS and OS are observed 

in the spontaneous MMTV-PyMTtg/+ mouse model385. In another attempt to investigate the 

role of IK channels for breast cancer induction and progression in vivo, no effects on TFS 

and OS were confirmed in the IK-deficient MMTV-PyMTtg/+ model (figure 5.21). The 

oncoprotein in the MMTV-PyMTtg/+ model is the polyoma middle T antigen and this mouse 

breast cancer model is characterised by the formation of multiple tumour foci312. Comparing 

the two models investigated, they differ in their aggressiveness and show strain-specific 

latencies. MMTV-cNeutg/+ mice on FVB/N background develop tumours at an average age of 

7 - 12 months, whereas the F1 generation of mixed FVB/N x C57Bl/6 MMTV-cNeutg/+ mice 

shows a TFS of > 18 months514,515. MMTV-PyMTtg/+ mice have an average TFS of 53 d on 

FVB/N background and 92 d on C57Bl/6 background302,313. Therefore, tumour induction is 

much faster in MMTV-PyMTtg/+ compared to MMTV-cNeutg/+ mice. However, all breast 

cancer-developing mice utilised in the presented analyses were on FVB/N background. 

Moreover, both MMTV-cNeutg/+ and MMTV-PyMTtg/+ mice develop luminal tumours with 

pulmonary metastasis. Besides, MMTV-cNeutg/+ and MMTV-PyMTtg/+ tumours cluster tightly 

in gene expression with luminal epithelial profiling. With regard to the ten subgroups of breast 

cancer, both mouse models cluster in group VI and thus luminal cell phenotype29,516-518. 

Therefore, it may be the fundamental aggressiveness of the MMTV-PyMTtg/+ model to mask 

moderate effects on survival outcome such as induced by IK channel ablation. 

Further, analysis of Ki-67 mRNA and protein expression revealed no difference between 

genotypes in tissue sections derived from such tumours. However, significant differences 

were obtained for isolated primary MMTV-PyMTtg/+ cells with decreased Ki-67 levels in the 

IK KO genotype (figure 5.27). Besides, proliferation assays were performed in grid dishes 

where MMTV-PyMTtg/+ IK KO cells had a significantly lower relative proliferation rate 

compared to WT. IK channel contribution to proliferation was additionally confirmed by the 

application of the IK inhibitor TRAM-34, which significantly decreased cell proliferation at any 

of the concentration tested in the presence of IK (figure 5.28). The lacking effect of the 

IK channel on tumour growth in vivo and Ki-67 status in situ compared to the decreased 

proliferation status after IK channel ablation or inhibition in vitro point to an altered 

proliferation response due to tumour cell cultivation or to microenvironmental cells and 

factors, which are absent in the established primary cell cultures. 

 

6.4.3 ER, HER2 and KCa molecular patterns are not dependent on IK channels  

For classification of MMTV-PyMTtg/+ WT and IK KO tumours, mRNA expression analyses of 

the genes coding for KCa channels, ERs and HER2 together with ER- protein staining were 

performed in MMTV-PyMTtg/+ tissues and cells from both genotypes. Genotype-dependent 
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alterations except for the expected absence of Kcnn4 mRNA in the IK KO genotype were not 

observed (figures 5.22 and 5.23). Apparently, alterations in breast cancer subtype or 

KCa mRNA expression are not responsible for the discrepant results in MMTV-PyMTtg/+ 

tissues and cells. 

 

6.4.4 Tumour infiltration of immune cells is determined by IK channel expression  

Despite advances in the exploration of its contribution to cancer, one prominent role of the IK 

is its expression and function in a diversity of cells constituting the immune system. These 

comprise T cells519,520 and B cells275,521, dendritic cells278,522, macrophages277,523, natural killer 

cells276, but also granulocytes279 and mast cells280,524. The IK channel is important for the 

activation of these immune cell subsets to fulfil their particular functions. The importance of 

the immune system to recognise malignant cells but also manipulation of immune cell 

functions by established tumours to promote their own growth are well described. This 

altered response of the immune system comprises decreased anti-tumour functions of 

immune cells, enhanced infiltration of suppressive immune cells and the modulation of 

immune cells to support tumour characteristics282,525. Immune cell presence in the stroma 

and the infiltration in tumours of spontaneously breast cancer-prone MMTV-PyMTtg/+ WT and 

IK KO mice were assessed by immunofluorescence stainings against the pan leukocyte 

marker CD45. Both stromal and tumour CD45-positive cell numbers were lower and thus 

immune cell homing to the tumour was significantly decreased in the IK KO genotype (figure 

5.29). The available evidence imply that IK KO mice have no modified immune cell counts 

per se and that the distribution of immune cell subsets neither is changed in the absence of 

IK. Nevertheless, not only the number of immune cells, but also their maturation and 

activation status determine the success of an immune response279,526. Due to the importance 

of the IK channel for proper function of the different immune cell subsets, immune cells with 

IK KO genotype may be more insufficiently targeted to the tumour site to interfere with both 

carcinogenesis and tumour progression. Cell surveillance by the immune system might be 

impaired in IK KO immune cells meaning a lower detection and elimination of aberrant cells. 

This would promote tumourigenesis and decrease TFS time in MMTV-PyMTtg/+ IK KO mice. 

Besides, IK KO immune cells may increase OS in the MMTV-PyMTtg/+ model by releasing 

different or altered portions of cytokines that are usually employed by the tumour to stimulate 

its progression.  

To test for IK-mediated functions in the tumour microenvironment of the MMTV-PyMTtg/+ 

breast cancer model, MMTV-PyMTtg/+ WT and IK KO cells were transplanted into WT 

recipient mice and MMTV-PyMTtg/+ WT cells were further transplanted into IK KO recipients. 

As a result, TFS did not significantly differ between groups (figure 5.30 A). As both 
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MMTV-PyMTtg/+ WT and IK KO cells were transplanted into WT recipients, IK channel status 

of tumour cells seemed to have no influence on initial tumour formation. Besides, 

MMTV-PyMTtg/+ WT cells did not reveal differential tumour formation in WT and IK KO mice 

suggesting microenvironmental IK channels are not important for early tumour formation. In 

this context, it is well accepted that mouse strain determines the aggressiveness of 

MMTV-PyMTtg/+ tumourigenesis, which can be attributed to immunosurveillance and 

immunoediting processes. Therefore, an intact immune system, as provided in the C57Bl/6 

strain, increases tumour latency. On the opposite, interference with the immune response in 

the FVB/N strain has no impact on MMTV-PyMTtg/+ tumour development527,528. Therefore, a 

potential immuno-oncological influence of the IK channel with regard to TFS may be masked 

on FVB/N strain background. In an earlier preliminary attempt, TFS was found significantly 

increased in MMTV-PyMTtg/+ IK KO than WT cell-engrafted WT mice. However, these 

observations were carried out with lower animal numbers and lack results on tumour 

progression and OS, as experiments were terminated already 60 d after tumour 

inoculation315,385. In the current approach, at least three different cell lines per genotype were 

employed for representative results also with regard to cell line-specific spontaneous tumour 

regression529-531. 

Contrary to TFS, OS was significantly prolonged in MMTV-PyMTtg/+ IK KO compared to WT 

tumours propagated in WT recipients (figure 5.30 B). MMTV-PyMTtg/+ IK KO cell proliferation 

was probably impaired by direct interference with cell cycle progression260,261. Regarding 

MMTV-PyMTtg/+ WT tumour growth in IK KO compared to WT recipients, the prolonged OS in 

IK KO recipients may be attributable to effects provoked by microenvironmental cells. As 

measured at the end of the experiment, CD45-positive cell numbers were significantly 

decreased in tumour tissue, but not in the stroma of MMTV-PyMTtg/+ IK KO compared to WT 

tumours (figure 5.30 E + F). In conclusion, low IK KO immune cell infiltration to the tumours 

may contribute, at least partly, to an increased OS outcome explained by lower 

tumour-promoting inflammation in such tumours282,525. Interestingly, IK channel functions in 

immune cells were already related to cancer-modulating effects. In chronic lymphocytic 

leukaemia cells, IK channel mRNA and protein expression associate with tumour cell 

proliferation, which can be prohibited by TRAM-34 application245. In addition, TRAM-34 

treatment in chronic myelogenous leukaemia leads to a better tumour growth control by 

inhibition of IK channels expressed on adherent natural killer cells276. Furthermore, T cell 

infiltration in tumour tissue of head and neck squamous cell carcinoma was described to be 

dependent on IK channels and to be modulated by adenosine accumulation in the tumour 

tissue532. Moreover, invasiveness of LoVo colon cancer cells correlates with IK channel 

expression in tumour-associated macrophages284. A similar effect is observed in glioma cells, 

which induce an anti-inflammatory phenotype in microglia, the brain-resident macrophages. 
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This diminishes glioma cell detection by the immune system and increases glioma 

malignancy. Besides, the anti-inflammatory state of the microglia is accompanied by 

abundant IK channel expression, whose targeting with TRAM-34 switches microglia back into 

their pro-inflammatory cytokine-releasing anti-tumour phenotype285,533,534. 

Albeit the modulation of immune cell functions represents its pioneering involvement, the 

IK channel is also present in other cells constituting the microenvironment. IK channel 

expression is confirmed in adipose precursor cells, although conflicting roles for down-stream 

signalling and proliferation in these cells are described so far269,535,536. With regard to breast 

cancer, adipose tissue is not only a site of energy storage, but also represents a major 

endocrine organ267,268. Moreover, many factors for the construction of the extracellular matrix, 

but also which promote different tumour characteristics such as growth, angiogenesis and 

metastasis, are produced by fibroblasts271. Basic fibroblast growth factor, but also 

transforming growth-factor-β upregulate the IK channel in fibroblasts, which promotes 

fibroblast proliferation and myogenesis270,273. With further regard to angiogenesis and 

vessel-constituting cell types, vascular smooth muscle cell proliferation mediated by 

platelet-derived growth factor is sensitive to TRAM-34 treatment537. Furthermore, a common 

feature of the tumour vasculature is excessive proliferation of endothelial cells5,282. 

Proliferation, but also migration of endothelial cells involves IK channel expression induced 

by different stimuli such as basic fibroblast growth factor, vascular endothelial growth factor 

or epidermal growth factor. This effect is confirmed by diminished angiogenesis in vivo after 

application of TRAM-34424,538. Therefore, it cannot be concluded that the putative 

microenvironmental effects on OS in the transplant model (figure 5.30 B) are solely 

dependent on IK channel-mediated modulation of the immune system. Rather, tumour 

progression apart from tumour cell characteristics may be the consequence of the interplay 

between different stromal cell types. 

 

6.5 IK contributes to breast tumour cell survival after radiotherapy 

6.5.1 The IK channel enhances DNA repair and breast tumour cell survival after IR 

The standard procedure in the therapy of non-advanced invasive breast cancer is the 

conduction of breast-conserving surgery followed by radiotherapy80. Altered [Ca2+]i 

mobilisation, signal transduction and DNA repair are detected in lymphocytes following 

IR539,540. Moreover, Ca2+ entry and down-stream activation of CaMK II in K562 leukaemia 

cells occurs via non-selective cation channels following IR. Inhibition of CaMK II is 

accompanied by a decrease in clonogenic survival after IR but not in ctrl541. Interestingly, IK 

activation by [Ca2+]i involves channel interaction with calmodulin leading to downstream 
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signalling via CaMK II230,234. In order to study the contribution of IK channels to clonogenic 

survival after IR in breast cancer, the putative radiosensitising role of the IK channel was 

tested in the MMTV-PyMTtg/+ model. Compared to MMTV-PyMTtg/+ WT cells, irradiation of 

MMTV-PyMTtg/+ IK KO cells or MMTV-PyMTtg/+ WT TRAM-34-treated cells led to decreased 

clonogenic cell survival and increased residual H2AX foci, a measure of DNA damage and 

thus a marker for decreased DNA repair (figures 5.31 - 5.34). These results confirm previous 

findings in glioblastoma, where the IK channel was inhibited by TRAM-34 or knocked down 

with short hairpin RNA prior to IR. In this study, radiation-induced IK activity was related to 

modified Ca2+ signalling, lower G2/M arrest, and increased residual H2AX foci resulting in 

diminished clonogenic survival. Further, TRAM-34 increased the radiosensitivity of an ectopic 

glioblastoma in vivo model296. 

IK channel participation in the radiation response may involve several mechanisms according 

to the 5Rs of radiotherapy, which comprise radiosensitivity, reassortment, repair, 

reoxygenation and repopulation542-544. Hereby, cell cycle arrest upon DNA damage induction 

by IR is essential for DNA repair in order to avoid mitotic catastrophe545. Cellular DNA repair 

capacity and therefore radiosensitivity depends on the cell cycle phase with high sensitivity in 

late G1 phase and mitosis, and lower sensitivity in S phase due to the overexpression of DNA 

repair enzymes39,542. Thus, IK channel ablation or inhibition may render cells more prone to 

die from irradiation due to an increased G1 arrest and a decreased G2/M arrest260,291. 

Additionally, it may be interesting to investigate whether the IK channel is involved in cell 

cycle reassortment of tumour cells after repeated irradiation542. Moreover, DNA repair is 

highly energy-consuming, thus energy crisis after IR is a common phenomenon and 

intracellular ATP concentrations drop following IR546. Tumour cells mainly use glucose for 

energy fuelling. They exert anaerobic glycolysis and lactic acid fermentation for energy 

supply rather than mitochondrial respiration, a phenomenon known as the Warburg effect. 

Glucose provides carbohydrates for acetyl-CoA synthesis, which is used for histone 

acetylation and DNA decondensation. High glucose uptake and availability in the cell, even 

against the chemical glucose gradient, is enabled by aberrant expression of Na+-coupled 

glucose cotransporters in many tumour cells. Hereby, Na+ influx can be facilitated by 

radiogenic K+ channel activation to hyperpolarise the plasma membrane291. Regarding 

hyperpolarisation, IK channels are involved in the secretion of Cl- ions in a Ca2+-dependent 

manner547-551. On the contrary, the inhibition of Cl- channels also affects IK channel activity552. 

With regard to tumour hypoxia and reoxygenation, H2O2 formation consequently to IR 

application leads to an increase in [Ca2+]i and thus IK channel activation291. In glioblastoma, 

IK channel upregulation is also observed in cancer stem cells545. Whether and in how far IK 

may contribute to repopulation, meaning a compensatory and accelerated tumour cell 

proliferation stimulated by releasing factors from dying cells, is not determined so far553. 
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6.5.2 The IK channel increases tumour progression after radiotherapy in vivo 

Irradiation of MMTV-PyMTtg/+ tumours formed after tumour cell transplantation into WT 

recipient mice increased survival time in a dose-dependent manner. The effect of IR was 

more prominent in MMTV-PyMTtg/+ IK KO tumours, which additionally showed a prolonged 

tumour growth per se (figure 5.35). To conclude, the IK channel is a potential target for dose 

reduction during radiotherapy. Its inhibition results in decreased numbers of surviving tumour 

cells and a delay of tumour regrowth and progression.  

A possible candidate to be investigated in this respect is senicapoc. This drug was first 

investigated in vitro to test for its inhibitory potential on IK and its efficacy in the prevention of 

red blood cell dehydration in sickle cell anaemia. These effects were confirmed in vivo after 

oral senicapoc administration in mice241. In addition to its efficacy, the safety of senicapoc in 

humans was tested up to phase III clinical trials. Senicapoc had a positive impact on 

haematocrit, haemoglobin and the number of sickled red blood cells, even so the trial was 

terminated early because the frequency of sickle cell painful crisis could not be reduced240,242. 

As an older IK channel inhibitor, clotrimazole is also safe for use in patients with mild adverse 

effects including dysuria and increased transaminase levels554. However, the use of 

clotrimazole to support radiotherapy is limited due to its low IK selectivity226,236. 
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7. Summary 

 

Breast cancer is the most frequent malignancy in women in the Western world. Despite 

advances in the pathophysiological understanding and different therapeutic approaches, 

breast cancer remains the second leading cause of cancer death in women1. In this context, 

tumour subtypes are principally distinguished according to the expression of ER, PR and 

HER2 as well as gene expression signatures such as PAM50. On this basis, response to 

therapy as well as prognosis are determined7,26. At the same time, new biomarkers for further 

tumour sub-classification are needed allowing for earlier and more efficient treatment 

strategies, as they are better tailored to the individual needs of each patient. As such, ion 

channels are often aberrantly expressed or active in different tumour entities and amongst 

them, K+ channels are the largest and most diverse group. BK and IK are associated with 

breast cancer and as such “oncochannels”, they contribute to the proliferation and migration 

of breast tumour cells131,135,137. Therefore, this work aimed at the identification of BK and IK 

channels as new classifiers in murine and human breast cancer. To further investigate the 

mechanisms underlying their pro-oncogenic effects, the assembly of the BK channel complex 

and the role of the microenvironmental IK channel were assessed among other features such 

as BK´s and IK´s role for tumour cell behaviours in the presence of established breast cancer 

therapies i.e. endocrine and radiation therapy (figure 7.1). 

Both channels were expressed in the MMTV-PyMTtg/+ murine breast cancer model and they 

contributed to tumour cell proliferation in vitro. In vivo, BK channel ablation was an overall 

determinant for an increased TFS and it also increased OS in the spontaneous 

MMTV-PyMTtg/+ model. In contrast, IK channel ablation had no influence on TFS, but caused 

an increase in OS after orthotopic allotransplantation of MMTV-PyMTtg/+ primary cell cultures. 

Interestingly, the BK channel exists as a complex of its pore-forming  subunit, which is 

complemented by the tissue-specific expression of four  and four  subunits. Amongst 

these, nine SNPs in the KCNMB4 gene encoding the BK-4 subunit were found from the 

BCAC consortium to increase overall and in particular ER-positive breast cancer risk347. 

Moreover, the BK-1 subunit was most abundantly expressed in the MMTV-PyMTtg/+ model, 

but also in MDA-MB-453 human breast cancer cells and, in both models, its mRNA 

knockdown depleted tumour cell proliferation rates to the same extent as a lack of the 

pore-forming BK- subunit. Importantly, the pro-proliferative effect of BK was attributed to 

growth factor stimulation and an ER-independent hormonal control of breast cancer. With 

regard to the IK channel gene, eleven SNPs were identified to modify overall and ER-positive 

breast cancer risk347. IK channel ablation impaired breast tumour cell proliferation and it 

seemed to affect the tumour microenvironment i.e. CD45-positive immune cell infiltration. 
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Accordingly, immune cell infiltration in MMTV-PyMTtg/+ tumour tissue was decreased in the 

absence of IK. 

Besides controlling breast cancer initiation and disease progression, BK and IK channels 

interfered with certain therapy regimens of breast cancer such as TAM therapy and 

radiotherapy. Although their initial purpose is the inhibition of the ER and thus to evoke a 

decrease in proliferation, anti-oestrogens in addition to serum growth factors stimulated 

proliferation in a BK channel-dependent manner in vitro. Intriguingly, MMTV-PyMTtg/+ WT 

tumours in vivo did not respond to TAM, whereas tumour progression in the BK KO genotype 

was significantly delayed suggesting that TAM-mediated BK activation contributed to tumour 

growth. Finally, low and high TAM concentrations interfered with DNA repair and survival 

outcome after IR in dependence on WT and BK KO genotypes with no differential outcome 

observed between genotypes with radiotherapy alone. In contrast, improved DNA repair and 

clonogenic survival after irradiation were observed in the presence of IK in MMTV-PyMTtg/+ 

tumour-derived cells in vitro supporting the higher susceptibility of IK-deficient tumours 

towards radiotherapy in the allotransplant model. 

 

Figure 7.1: Summary 

BK and IK channels contribute to breast tumour cell proliferation. The BK consists as a complex of its 

pore-forming  subunit and accessory 1 - 4 and 1 - 4 subunits that modulate channel activity in a 

tissue-specific manner. BK-4 SNPs can alter breast cancer risk
347

 and BK-1 is necessary for 

BK-mediated proliferation in vitro. Growth factors such as E2, but also anti-oestrogens such as the 

selective ER modulator TAM stimulate BK-mediated proliferation. Breast tumour and stromal cell IK 

channels promote proliferation and tumour growth. IK also seems to contribute to DNA repair and 
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survival processes after radiotherapy. Influence of other molecules or signalling pathways on these 

processes to modulate BK and IK activity, e.g. TRP or STIM/Orai and Ca
2+

 signalling, need further 

elucidation. Abbreviations: Big conductance for potassium, BK; Intermediate conductance for 

potassium, IK; Potassium ion, K
+
; Calcium ion, Ca

2+
; Single nucleotide polymorphism, SNP; Difference 

in membrane potential, ΔV; Transient receptor potential, TRP; Stromal interaction molecule, STIM; 

17-oestradiol, E2; Tamoxifen, TAM; Oestrogen receptor, ER; Cell cycle phases Gap, G / Synthesis, S 

/ Mitosis, M; Deoxyribonucleic acid, DNA. 
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8. Zusammenfassung 

 

Das Mammakarzinom hat die häufigste Inzidenz und die zweithöchste Mortalität unter den 

Krebsneuerkrankungen der Frau1. Trotz zunehmendem Verständnis pathophysiologischer 

Mechanismen und der Verfügbarkeit zielgerichteter Therapien limitieren unerwünschte 

Wirkungen, Therapieversagen sowie Resistenzentwicklungen die Lebensqualität sowie das 

Gesamtüberleben der betroffenen Patientinnen. Neben der Einteilung von Brusttumoren in 

molekulare Subgruppen, die unter anderem anhand des Status für ER, PR und HER2 sowie 

der Expression bestimmter Genexpressionsmuster erfolgt, bedarf es zusätzlicher 

funktionaler Biomarker zur Verbesserung von Diagnostik und Therapie7,26. Solche 

Zielstrukturen könnten Ionenkanäle und darunter insbesondere K+-Kanäle darstellen, deren 

veränderte Expression und Aktivität bereits in unterschiedlichen Tumorentitäten 

nachgewiesen wurde. Mitunter durch ihre Beiträge zu charakteristischen Merkmalen 

maligner Tumorzellen sind besonders die in dieser Arbeit untersuchten BK- und IK-Kanäle 

für die Entstehung und Metastasierung des Mammakarzinoms interessant131,135,137. 

Die vorliegenden Befunde implizieren, dass beide Kanäle im MMTV-PyMTtg/+-Mausmodell 

zur Proliferation der Brusttumorzellen beitragen. Der BK-KO-Genotyp verlängerte generell 

das tumorfreie Überleben, aber auch das Gesamtüberleben bei spontaner Tumorinduktion. 

Ein IK-KO-Genotyp in Tumorzellen oder Empfängertieren hingegen verlängerte 

insbesondere das Gesamtüberleben nach orthotoper Allotransplantation. Der BK-Kanal 

besteht als Komplex aus seiner porenbildenden -Untereinheit sowie je vier beschriebenen 

gewebsspezifisch exprimierten - und -Untereinheiten. Neun SNPs des für BK-4-

kodierenden KCNMB4-Gens erhöhten das Brustkrebsrisiko347 und die BK-1-Untereinheit 

war notwendig für die BK-Kanal-vermittelte proliferative Wirkung in vitro. Insbesondere 

Serum-enthaltene Wachstumsfaktoren und E2, jedoch auch Antiöstrogene stimulierten den 

BK-Kanal und förderten so die Tumorprogression in vitro sowie Therapieversagen unter 

TAM-Behandlung in vivo. Die IK-Kanal-vermittelte Wirkung beim Mammakarzinom obliegt 

nicht nur den Tumorzellen, sondern insbesondere auch seiner Bedeutung im angeborenen 

und erworbenen Immunsystem. Entsprechend war die Präsenz sowie die Infiltration von 

Immunzellen in MMTV-PyMTtg/+-Tumoren im IK-KO-Genotyp verringert. Mechanistisch 

bedürfen die Details der hier identifizierten IK-Expression in den CD45-positiven Zellen sowie 

deren Abundanz im IK-negativen Mammakarzinom weiterer Aufklärung. Die Bedeutung 

des IK-Kanalstatus wurde außerdem beim Erfolg der Strahlentherapie ersichtlich. Hier 

scheint die Aktivität des IK-Kanals für eine geordnete Reduktion des DNA-Schadens durch 

DNA-Reparaturprozesse sowie für das zelluläre Überleben essenziell zu sein. Der Übertrag 

dieser in vitro-Befunde auf das tumortragende Tiermodell bestätigte die radiosensitivierende 
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Wirkung der IK-Kanalablation durch ein verlängertes relatives Überleben. 

Zusammengenommen implizieren die vorliegenden Befunde, dass BK- und IK-Kanäle in vivo 

vielversprechende Kandidaten für die weitere prä-/klinische Überprüfung sind. Zielführend in 

Bezug auf eine Risikoreduktion für die Entstehung des Mammakarzinoms sowie 

dessen Therapie scheinen dabei sowohl pharmakologische Ansätze zur Modulation der 

Kanalaktivität von BK und IK als auch der mögliche Einfluss krankheitsassoziierter 

Genvarianten im Kontext bereits etablierter Behandlungsmethoden zu sein.   
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9. Supplement 

9.1 Primer sequences 

Genotyping 

Primers Nomenclature Sequence 5’ - 3’ Manufacturer 

BK F1 TGGTCTTCTTCATCCTCGGG Eurofins 

 F2 AAGGGCCATTTTGAAGACGTC  

 R1 CCAGCCACAGTGTTTGTTGG  

IK F1 TAAGTGCTTGCTGAGTCTGGA Eurofins 

 F2 CAGGAAGCACAGGCACTGC  

 R1 AGGAGAGTGACTGTAGGTGAG  

MMTV-PyMT F1 GGAAGCAAGTACTTCACAAGGG Eurofins 

 R1 GGAAAGTCACTAGGAGCAGGG  

 Fctrl CAAATGTTGCTTGTCTGGTG  

 Rctrl GTCAGTCGAGTGCACAGTTT  

 

siRNA 

siRNA Reference number Sequence 5’ - 3’ Manufacturer 

GAPDH D-001830-10-05 GUCAACGGAUUUGGUCGUA Dharmacon 

  CAACGGAUUUGGUCGUAUU  

  GACCUCAACUACAUGGUUU  

  UGGUUUACAUGUUCCAAUA  

Gapdh D-001830-20-05 GUGUGAACCACGAGAAAUA Dharmacon 

  GGAGAAACCUGCCAAGUAU  

  UCAAGAAGGUGGUGAAGCA  

  UGGUGAAGCAGGCAUCUGA  

KCNMA1 L-006267-00-0005 GACCUGAUCUUCUGCUUAA Dharmacon 

  GAUCCAAGAAGGUACUUUA  

  GAAUUUACCGGCUGAGAGA  

  UCGAAUAUCAUGAGAGUAA  

LRRC26 L-029447-01-0005 CGUCAACAAGCGACACAGA Dharmacon 

  GGGACCUGGCCGUGGUUUA  

  CACUCAGCCUGCAGGACAA  

  GCUGGAAGCACUGGCACCA  

Lrrc26 L-053374-01-0005 CGGCAAUCGAGGCGGGUUU Dharmacon 

  AGUCACUAGCAGCGCGAGA  

  CAAUAGACAAAACCCGAAA  

  CUGCAGGACAAUUCACUAC  

Non-targeting D-001810-10-05 UGGUUUACAUGUCGACUAA Dharmacon 

  UGGUUUACAUGUUGUGUGA  

  UGGUUUACAUGUUUUCUGA  
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  UGGUUUACAUGUUUUCCUA  

 

qRT-PCR 

Primers 
 

Sequence 5’ - 3’ Manufacturer 

ACTB F CCGTCTTCCCCTCCATCGT Eurofins 

 R GATGCCTCTCTTGCTCTGGG  

Actb F GACGGCCAGGTCATCACTAT Eurofins 

 R CCACAGGATTCCATACCCAAG  

Erbb2 F CCAATCTGCACCATCGACGT Eurofins 

 R TACCAACTCCCGGAATCTCG  

Esr1 F CCATGACCCTTCACACCAAAG Eurofins 

 R CCAGCTCGTTCCCTTGGAT  

Esr2 F TCCTTGGTGTGAAGCAAGATCA Eurofins 

 R CCGCCAAGCTTCCTCTTCAG  

GAPDH F CATGGCCTCCAAGGAGTAAG Eurofins 

 R GGTTGAGCACAGGGTACTTTA  

Gapdh F GGTGCTGAGTATGTCGTGGAG Eurofins 

 R CGGAGATGATGACCCTTTTG  

KCNMA1 F TGCCTTCGTGGTCTGTCCTTCC Eurofins 

 R CGCTTTCGGCTTCGGCTCTCT  

Kcnma1 F GACGCCTCTTCATGGTCTTC Eurofins 

 R TAGGAGCCCCCGTATTTCTT  

Kcnmb1 F GTACAACTGTGCTGCCCCTC Eurofins 

 R TCTTGCCCTCCAGCTCTTCC  

Kcnmb2 F GCCGGACCTCTTCATCTTACA Eurofins 

 R GTCCTCCCCAGCCTTCAGAG  

Kcnmb3 F GGACCACTGTGTTGAAGCCC Eurofins 

 R AAAGTCCAGCCCGTCATCCA  

Kcnmb4 F CGTGAACAACTCCGAGTCCA Eurofins 

 R GGGCGGGATATAGGAGCACT  

Kcnn1 F TGTACCACGCCCGAGAGATC Eurofins 

 R TCCAGCGAGATCAGGGACAC  

Kcnn2 F TCTCTCCACGATCATCCTGCT Eurofins 

 R CTGCTCCATTGTCCACCATGA  

Kcnn3 F CGCCTATCACACAAGGGAAGT Eurofins 

 R ACGCTCGTAGGTCATGGCTA  

Kcnn4 F ATGTGGGGCAAGATTGTCTG Eurofins 

 R GTGTTTCTCCGCCTTGTTGA  

LRRC26 F CCCTGACTGCCTTTTCCGAC Eurofins 

 R TGACGAGGAAGGAGGCCG  

Lrrc26 F GCCTACTGACAGCTTTTCCG Eurofins 

 R GGGGTCTAGCTGTCTCCTTAG  
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Lrrc38 F CGCTCACCTCTTCTCCTGGA Eurofins 

 R CCTCCATGGGCAGTGAACAC  

Lrrc52 F GTGGTGCTCCAGACTCTGTACCTA Eurofins 

 R CCGTACACGTGGCGTTCTGGGCAT  

Lrrc55 F AGCCCTTGCTGAAGTGGCTGCGGA Eurofins 

 R TTGAAGCTCTCTTCAGTGAGTGAA  

Mki67 F TGCCCGACCCTACAA Eurofins 

 R TGCTGCTTCTCCTTC  
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9.2 Backcrossing of the BK L2 allele to FVB/N background 

For the generation of tumour-bearing mice with breast tissue-specific BK ablation, BK L2 

allele-carrying mice on a hybrid 129/Sv x C57Bl/6 background 316 were used to establish a 

pre-mutant BK L2 strain on FVB/N background313. This was accomplished by crossing 

heterozygous BK L2-carrying mice with FVB/N WT mice for nine generations (figure 9.1). 

 

Figure 9.1: Establishment of the BK L2 mouse strain on FVB/N background 

For future studies on the breast tissue-specific role of the BK in vivo, the BK L2 allele was established 

on FVB/N background. (A) 129/Sv x C57Bl/6 mice carrying the BK L2 allele were mated with FVB/N 

mice. (B) The F1 offspring was further mated with FVB/N mice to reach F9. (C) The F9 offspring 

generation reached an estimated > 99.8% pure genetic FVB/N background, which allows investigation 

of cell type-specific functions of BK in murine breast cancer models upon targeting the pre-mutant BK 

L2/L2 alleles with Cre recombinase. 
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9.3 BW of spontaneous MMTV-PyMTtg/+ WT and BK KO mice 

 

Figure 9.2: BW of MMTV-PyMT
tg/+

 WT and BK KO mice during tumour progression 

Body weight (BW) was monitored in spontaneous MMTV-PyMT
tg/+

 WT and BK KO mice from the day 

of first positive tumour palpation and until overall survival was reached (figure 5.1). Plotted are means 

± SEM with overall **p < 0.01 in an unpaired t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 Supplement 

156 

9.4 ER and BK mRNA expression in allotransplanted MMTV-PyMTtg/+ WT 

and BK KO tumours 

 

Figure 9.3:  ER and BK mRNA expression profiles in transplanted MMTV-PyMT
tg/+

 WT and 
BK KO tumours 

MMTV-PyMT
tg/+

 WT and BK KO cells were engrafted to the fourth right mammary gland of WT and 

BK KO mice. At the end of the experiment, the tumour formed in each mouse was removed and RNA 

was isolated from a tumour piece. Subsequent analyses were performed by Alice Dragoi as part of her 

Master´s thesis project. (A + B) Esr1 and Esr2 mRNA, encoding the ER subunits  and , did not 

differ between groups, except for an increased Esr1 mRNA expression in MMTV-PyMT
tg/+

 BK KO 

compared to WT tumours propagated in WT recipients. (C - F) BK channel complex-encoding mRNAs 

that had been detected in the primary cell cultures (figure 5.9), i.e. Kcnma1, Kcnmb1, Kcnmb4 and 

Lrrc26, were further assessed. (C) BK--encoding Kcnma1 mRNA expression was confirmed in 

MMTV-PyMT
tg/+

 WT, but not detected (n.d.) in BK KO tumours. (D) Kcnmb1 representing BK-1 was 

detected in all groups at similar levels. (E) Interestingly, Kcnmb4 mRNA coding for BK-4 was 

upregulated in MMTV-PyMT
tg/+

 BK KO as compared to WT tumours engrafted in WT recipients. 

(F) Also BK-1-encoding Lrrc26 mRNA showed a tendency to be increased in MMTV-PyMT
tg/+

 BK KO 

tumours propagated in WT recipients, and was significantly increased in MMTV-PyMT
tg/+

 WT formed in 

BK KO recipients, as compared to MMTV-PyMT
tg/+

 WT tumours grown in WT recipients. Presented are 
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means ± SEM of n = 7 experiments with *p < 0.05 and **p < 0.01 as indicated by separate one-way 

ANOVAs with Dunnett´s test. 
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9.5 Ki-67 expression in MMTV-PyMTtg/+ WT and BK KO tumours 

 

 

Figure 9.4: Ki-67 expression in spontaneous MMTV-PyMT
tg/+

 WT and BK KO tumours 

Tissue sections from MMTV-PyMT
tg/+

 tumours showed a high portion of Ki-67-positive cells in the 

WT genotype, whereas Ki-67 status was much lower in the BK KO genotype. Representative results 

from n = 3 independent tumours per genotype are shown. 

 

 

 

Figure 9.5: Mki67 mRNA expression in spontaneous MMTV-PyMT
tg/+

 WT and BK KO tumours 

Mki67, the transcript coding for Ki-67 was measured with qRT-PCR in MMTV-PyMT
tg/+

 WT and BK KO 

tumour tissues and cells. No significant differences were observed in (A) tumours and (B) cells derived 

from MMTV-PyMT
tg/+

 WT and BK KO mice for n = 3 experiments in unpaired t-tests.  
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9.6 Knockdown efficacies in siRNA experiments 

 

Figure 9.6: Knockdown efficacies in murine siRNA experiments 
siRNA-mediated knockdown of Lrrc26 or Gapdh mRNA was analysed with qRT-PCR in 

MMTV-PyMT
tg/+

 WT and BK KO cell experiments of n = 5. Presented are means ± SEM with 

knockdown efficacies of (A) 82.2 ± 4.5% and 73.8 ± 16.4% as well as 81.3 ± 2.1% and 80.1 ± 9.8% for 

grid-based proliferation (figure 5.11 A), (B) 72.1 ± 7.5% and 89.6 ± 2.7% as well as 79.0 ± 3.5% and 

89.9 ± 2.1% for Ki-67 index (figure 5.11 B), (C) 83.7 ± 8.3% and 68.6 ± 19.7% as well as 79.0 ± 3.5% 

and 89.9 ± 2.1% for mRNA compensation attempts (figure 5.11 C) for siLrrc26 and siGapdh in WT as 

well as BK KO genotypes, respectively. 

 

 

 

Figure 9.7: Knockdown efficacies in human siRNA experiments 
The MDA-MB-453 breast tumour cell line was employed for targeting KCNMA1 and LRRC26 as well 

as the positive reference GAPDH with a siRNA. Knockdown efficacies for KCNMA1, LRRC26 and 

GAPDH were (A) 73.2 ± 4.3%, 81.1 ± 2.7% and 91.7 ± 2.2% for grid-based proliferation (figure 

5.12 A), (B) 76.3 ± 2.4%, 80.1 ± 3.3% and 92.4 ± 1.0% for Ki-67 index (figure 5.12 B) and (C) 74.8 

± 2.4%, 80.6 ± 2.0% and 92.1 ± 1.2% for mRNA compensation (figure 5.12 C), respectively. Bar 

graphs shown means ± SEM of n = 5 experiments (A + B), whose mRNA samples were pooled for 

analysis of (C).   
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9.7 Effect of TAM on ER and BK mRNA expression and migration in the 

MMTV-PyMTtg/+ WT and BK KO model 

 

Figure 9.8: ER and BK mRNA expression in MMTV-PyMT
tg/+

 WT and BK KO tumour 
engraftments after TAM therapy 
MMTV-PyMT

tg/+
 WT and BK tumours were inoculated into the mammary fat pad of the fourth right 

gland of WT mice treated with a 5 mg/60 d-releasing TAM or placebo pellet. RNA isolation and 

subsequent expression analyses were performed by Alice Dragoi from a piece of the tumour at the 

end of the experiment. (A + B) Esr1 and Esr2 mRNA expression was not significantly different 

between genotypes and treatments. However, Esr1 mRNA levels showed a tendency towards 

decreased levels under TAM therapy. (C) Kcnma1 mRNA was not detected (n.d.) in MMTV-PyMT
tg/+

 

BK KO tumours. Besides, Kcnma1 mRNA was significantly downregulated in MMTV-PyMT
tg/+

 WT 

tumours treated with TAM. (D - F) None of the tested BK channel accessory subunits, namely 

Kcnmb1, Kcnmb4 and Lrrc26 showed differential mRNA expression levels between genotypes or 

treatments. n = 4-5 experiments were performed with *p < 0.05 and ***p < 0.001 calculated by 

one-way ANOVA and Sidak´s test. 
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Figure 9.9: Effect of TAM on migration of MMTV-PyMT
tg/+

 WT and BK KO tumour cells 

MMTV-PyMT
tg/+

 WT and BK KO cells were seeded at a density of 1.5 million in 25 cm² cell flasks and 

allowed to adhere for 24 h before serum removal for 72 h. After pre-incubation with 10 or 1,000 nM 

TAM or DMSO used as vehicle, the cells were trypsinised and seeded in TAM or DMSO-containing 

16-well impedance plates to monitor cell migration in the xCELLigence system for 8 h (left). The area 

under the curve (AUC) of cell index was plotted for the entire time frame of 8 h (right). The experiment 

did not reach statistical significance, but showed a trend towards decreased migration in 

MMTV-PyMT
tg/+

 BK KO cells treated with TAM, whereas this was not observed in ctrl or in any 

treatment condition of the WT genotype. Means ± SEM are shown in the bar graphs of n = 8 

experiments analysed with two-way repeated measures ANOVA and Sidak´s multiple comparison test. 
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9.8 Influence of IR on MMTV-PyMTtg/+ WT and BK KO cell survival 

 

Figure 9.10: DNA repair and survival of MMTV-PyMT
tg/+

 WT and BK KO cells after irradiation 
MMTV-PyMT

tg/+
 WT and BK KO cells were seeded at a density of 600,000 cells per 25 cm² cell flask 

or 50,000 cells per well of a 12-well chamber slide. After 72 h, irradiation with 0, 2, 4 or 6 Gy was 

performed. (A) After 24 h of recovery from irradiation, MMTV-PyMT
tg/+

 WT and BK KO cells were 

trypsinised and seeded in 6-well plates at 3,500 cells/well with six technical replicates. 14 d later, cells 

were fixed and stained with coomassie blue and colonies with ≥ 50 cells were counted. No significant 

differences were observed between WT and BK KO genotypes (n = 9 in one-way ANOVA with Sidak´s 

test). (B) 30 min or (C) 24 h after irradiation, the numbers of H2AX foci as indicator of DNA damage 

were determined. Significant differences between genotypes were found with 2 Gy and 6 Gy after 

30 min and 24 h, respectively (n = 7 in two-way repeated measures ANOVA with Sidak´s test). Bar 

graphs show means ± SEM for with *p < 0.05 and ***p < 0.001. 
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9.9 ER, IK and H2AX mRNA expression in MMTV-PyMTtg/+ WT and IK KO 

tumours engraftments 

 

Figure 9.11: ER and IK mRNA expression in MMTV-PyMT
tg/+

 WT and IK KO tumour engraftments 
MMTV-PyMT

tg/+
 WT and IK KO cells were transplanted in WT and IK KO recipients. Tumour formation 

and progression were monitored and RNA was isolated from a tumour piece of each mouse after 

scarification as part of Alice Dragoi´s Master´s thesis project. (A + B) Esr1 and Esr2 mRNA expression 

did not significantly differ between groups. (C) Kcnn4 mRNA, encoding the IK channel, was not 

detected (n.d.) in MMTV-PyMT
tg/+

 IK KO tumours grown in WT mice, whereas it was detectable in 

MMTV-PyMT
tg/+

 WT tumours propagated in either WT or IK KO mice with no effect of the recipient´s 

genotype on the Kcnn4 level. n = 7 experiments were performed with **p < 0.01 indicating for a 

significant difference according to one-way ANOVA with Sidak´s test. 
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Figure 9.12: H2AX and IK mRNA expression in transplanted MMTV-PyMT
tg/+

 WT and IK KO 
tumours after radiotherapy 
MMTV-PyMT

tg/+
 WT and IK KO tumours propagated in WT recipients were irradiated for five 

consecutive days. Tumour regression and regrowth were assessed and RNA was isolated (performed 

by Alice Dragoi) from a tumour piece after termination of the experiment. (A) H2afx mRNA levels 

coding for the H2AX DNA damage marker were not significantly different between genotypes and 

radiation doses. (B) Kcnn4 mRNA expression was not detected (n.d.) in MMTV-PyMT
tg/+

 IK KO 

tumours, but did not differ between the different irradiation groups in the presence of IK. **p < 0.01 in 

one-way ANOVA and Sidak´s test indicates for a significant in n = 3 experiments. 
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