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2.     List of abbreviations 
AA Arachidonic acid 

ACD Acid-citrate-dextrose 

ACEI Angiotensin converting enzyme inhibitor 

AMI Acute myocardial infarction 

ARB Angiotensin II receptor blocker 

ASA Acetylsalicylic acid 

AUC Area under the curve 

CABG Coronary artery bypass grafting 

CAD Coronary artery disease 

CCL CC chemokine ligand 

CD40 Cluster of differentiation 40 

CK-MB Creatine kinase MB isoenzyme 

COX Cyclooxygenase  

CRP C-reactive protein 

CXCL CXC chemokine ligand 

DAG Diacylglycerol 

DHA Docosahexaenoic acid 

ESI Electrospray-ionisation 

FA Fatty acid 

FDA Food and drug administration 

FDR False discovery rate 

g Gravity-force 

GC Gas chromatography 

GFR-MDRD Glomerular filtration rate (Modification of Diet in Renal 

Disease) 

GP Glycoprotein 

HDL High-density lipoprotein 

HDL-C High-density lipoprotein cholesterol 

HETE Hydroxyeicosatetraenoic acid 

HPLC High-performance liquid chromatography 

IR Infrared 
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LC Liquid chromatography 

LDL Low-density lipoprotein 

LOX Lipoxygenase 

Lp(a) Lipoprotein(a) 

LPA-R Lysophosphatidic receptor 

LVEF Left ventricular ejection fraction 

lysoPC Lysophosphatidylcholine 

lysoPE Lysophosphatidylethanolamine 

lysoPL Lysophospholipid 

MAPK Mitogen-activated protein kinase 

m/z Mass to charge ratio 

mo. Month 

MPO Myeloperoxidase 

MS Mass spectrometry 

NADP Nicotinamide adenine dinucleotide phosphate 

NMS Nanospray mass spectrometry 

no. Number 

non-HDL-C Non-high-density lipoprotein cholesterol 

NOS Nitric oxide synthase 

NOX NADPH oxidase 

OPLS-DA Orthogonal partial least squares discriminant analysis 

oxLDL Oxidized low-density lipoprotein 

PBS Phosphate buffered saline 

PC Phosphatidylcholin 

PCA Principal component analysis 

PCI  Percutaneous coronary intervention  

PCSK9 Proprotein convertase subtilisin/kexin type 9 

PDGF Platelet derived growth factor 

PE Phosphatidylethanolamine 

PECAM-1 Platelet endothelial cell adhesion molecule 1 

PG Prostaglandin 
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PI Phosphatidylinositide/phosphatidylinositol 

PKC Protein kinase C 

PL Phospholipid 

PLA2 Phospholipase A2 

PLS Partial least squares 

PPP Platelet poor plasma 

PRP Platelet rich plasma 

PS Phosphatidylserine 

psi Pound-force per square inch 

PUFA Polyunsaturated fatty acid 

QC Quality control 

QTOF Quadrupole time-of-flight 

RANTES Regulated on activation, normal T cell expressed and 

secreted 

ROS Reactive oxygen species 

rpm Revolutions per minute 

SAP Stable angina pectoris 

SM Sphingomyelin 

TG Triglyceride 

TGFb Transforming growth factor beta 1 

TLC Thin layer chromatography 

UHPLC Ultra-high performance liquid chromatography 

UV Ultraviolet 

V Volt 

VLDL Very low-density lipoprotein 

vWF  von Willebrand factor 

XO Xanthine oxidase 
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3.    Introduction 

3.1. Atherosclerosis 
 

Cardiovascular disease, especially atherosclerosis, is the leading cause of 

global death and premature disability in developed countries, accounting for 

more than 17.3 million deaths per year. The number is estimated to reach more 

than 23.6 million by 2030 (1). Atherosclerosis is a systemic disease induced by 

the accumulation of inflammatory cells in the intima layers of arteries (2). The 

pathogenesis of atherosclerosis is based on the building of atheromatous 

plaques in arteries, called atherogenesis. Depending on the damaged arteries 

atherosclerosis may manifest as a coronary artery disease, transient cerebral 

ischemia, renal artery stenosis, mesenteric ischemia or peripheral artery 

disease (3).  

3.1.1. Contribution of platelets to atheroprogression 
 

It has been proven that platelets not only take part in thromboembolic 

complications in advanced stages of atherosclerosis but also initiate the 

formation of atherosclerotic plaque and contribute to the development of the 

disease. There are two main mechanisms by which platelets contribute to the 

development of atherosclerotic lesions. Firstly, activated platelets adhere to the 

activated or inflamed endothelium based on a receptor/ligand interaction 

involving GP Ib/IX/V complex, vWF. Platelets can also interact with exposed 

subendothelial matrix components like collagen which leads to their activation 

(4,5). Platelets can also adhere to intact and/or inflamed endothelial monolayers 

and initiate endothelium activation. In vivo studies showed that platelet 

adherence to the endothelium of carotid arteries in apoE-deficient mice is 

initiated even without endothelial denudation or manifestation of atherosclerotic 

lesions (6). This interaction occurs in three steps: platelet tethering; platelet 

rolling ensured by selectin/endothelium communication, e. g. P-, E-selectins 

(4,7); and firm platelet adhesion ensured by integrins, e. g. GPIb, GPIIb-IIIa 

(these receptors contribute significantly to cell-cell interaction and platelet 
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aggregation) (5,8). These interactions result in receptor-specific activation 

signals in both platelets and endothelial cells.  

P-selectin contributes not only to platelet-endothelium communication, but its 

soluble form in plasma, generated by activated platelets and endothelial cells 

leads to a pro-coagulant state and contributes to the progression of 

atheromatous lesions (9). 

The second major mechanism attributing to atherogenesis is the production of 

pro-inflammatory chemokines by activated platelets (e. g. CCL3, RANTES 

(CCL5), CCL 7, CCL17, CXCL1, CXCL5, CXCL8 or CXCL12 as well as a 

precursor for CXCL7, such as β-thromboglobulin) and the inflamed 

endothelium. Their secretion is induced either by thrombin or by oxidized low-

density lipoproteins (oxLDL) which activate platelets. Chemokines induce pro-

inflammatory changes in endothelial and other inflammatory immune cells like 

monocytes, macrophages, lymphocytes; also promote the adhesion of platelet 

aggregates to the arterial wall. This, in turn, stimulates atherogenic monocyte 

recruitment and their subsequent differentiation into macrophages and foam 

cells (10,11). 

3.1.2. Development of atheromatous plaque 
 

Atherosclerotic plaques are defined as lipid-containing lesions on the intima of 

the wall of an artery. Hypercholesterolemia causes lipoprotein accumulation and 

binding to the extracellular matrix in the intima of the arteries which results in 

“fatty streaks” seen macroscopically (3). Plasma lipids, in particular native low-

density lipoproteins (LDL), are taken up by endothelial cells via LDL receptor-

mediated endocytosis (12). This facilitates oxidative modifications of 

lipoproteins whereby hydroperoxides, lysophospholipids, oxysterols, and 

aldehydic breakdown products of fatty acids and phospholipids are produced 

(3). OxLDL exhibit some new features compared to native LDL which enhances 

the proatherogenic process. Production of oxLDL and the chemoattractants, 

e.g. macrophage chemoattractant protein-1 produced by endothelial cells leads 

to an inflammatory response and triggers monocyte recruitment to 

subendothelial space (13). Certain cytokines (e. g. IL-1b, IFN- γ, tumor necrosis 
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factor a (TNF-a) induce the expression of leukocyte adhesion molecules on 

endothelial cells (13). These three pathways lead to monocyte accumulation in 

the arterial wall and their differentiation into macrophages.  

Once inhabiting the arterial intima monocyte-derived macrophages become 

able to express scavenger receptors for modified lipoproteins which lead to 

receptor-mediated endocytosis of modified lipoproteins and development of 

foam cells (14). Thus the “fatty streak”, a precursor of atherosclerotic plaque, is 

formed. 

The arterial lesion advances further as the smooth muscle cells proliferate and 

migrate into the intima the former being induced by transforming growth factor 

beta 1 (TGFb) which changes the contractile phenotype of the smooth muscle 

cells to a proliferative one (15). TGFb also markedly stimulates the smooth 

muscle cells to produce collagen 1 (16). The buildup of fibrous tissue leads to 

advancement and complication of atheromatous plaque. These processes are 

induced by various growth factors, e.g. platelet-derived growth factor (PDGF) or 

fibroblast growth factor, the production of which is driven by IL-1b or TNF-a 

(17). 

After the advanced plaque erodes and ruptures, platelets are activated and 

aggregate on the atherosclerotic plaque surface (18). Thrombotic occlusion of 

the artery leads to the manifestation of atherosclerosis with thrombo-ischemic 

events. 

3.1.3. Platelet and lipoprotein interplay 
 

Dysregulation in plasma lipoproteins is one of the most firmly established risk 

factors for atherosclerosis, most important ones being elevated LDL, very low-

density lipoprotein (VLDL) and triglyceride (TG) levels or decreased high-

density lipoprotein (HDL) levels as detected conventionally in plasma. In 

patients with hypercholesterolemia, platelets exhibit an increased activity and 

are hypersensitive to agonists, change their membrane phospholipid and cell 

lipid composition, as a consequence of platelet-lipid interaction (19).  
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Previously it has been shown that presence of oxLDL in the surrounding 

microenvironment of platelets enhances their aggregation. This response is 

substantiated by NADPH oxidase (NOX2)-derived reactive oxygen species 

(ROS) through a scavenger receptor CD36/protein kinase C (PKC) mediated 

pathway. Generation of ROS promote platelet hyperactivity in the means of 

modulating cGMP signaling (20). Activated platelet derived ROS potentiates 

oxidation of LDL to more atherogenic oxLDL in the external microenvironment 

(19). Recently it has also been shown that both LDL and oxLDL can trigger 

generation of mitochondrial superoxide and ROS generation in platelets which 

further propagates intraplatelet oxidative and peroxidative modifications to 

lipids, besides prompting their functional responses (21). 

Altered platelet functions are associated with LDL, VLDL, and especially oxLDL, 

which all contain apoprotein B-100 and are atherogenic lipoproteins. LDL 

stimulate platelets through a single receptor for lipoproteins called ApoE-R2’ 

(22–24). After binding LDL through ApoE-R2’ several intracellular cascades in 

platelets are initiated (Figure 1): 

- p38MAPK (mitogen-activated protein kinase) pathway activates 

phospholipase A2 (PLA2) which leads to enhanced production of 

prostaglandin endoperoxides by cyclooxygenase 1 (COX1) and 

thromboxane A2 by thromboxane synthase (Tx synthase). 

- PECAM-1 (platelet endothelial cell adhesion molecule 1) pathway inhibits 

the functions of the p38MAPK. 

- A third route leads to activation of focal adhesion kinase (FAK) which 

integrates different signaling pathways. 

- A fourth route leads to activation of a small GTPase Rap1b which 

stimulates activation of the integrin aIIbb3 on the platelet surface to 

support fibrinogen binding and platelet aggregation (24). 
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HDL is a heterogeneous lipoprotein and there exist two HDL subclasses (HDL2 

and HDL3). HDL2 fraction exhibits antiatherogenic effects by inhibiting platelet 

functions (thrombin-induced platelet aggregation, platelet shape change, Ca2+ 

mobilization, inositol phospholipids production, and reduction of NA-synthase 

expression induced by oxLDL) (25).  

As already mentioned above modified LDL uptake through scavenger receptors 

in macrophages leads to foam cell formation. Previous studies have shown that 

platelets also exhibit the ability to express scavenger receptors. 

Figure 1. Platelet activation by native LDL. Binding to ApoE-R2’ signals to p38MAPK, FAL and GTPase 

Rap 1b. Activation of cPLA2 leads to arachidonate release from membrane PL. Arachidonate is converted 

into endoperoxides by COX1 and the latter to TxA2 by Tx synthase. TxA2 acts synergistically with platelet 

agonists (ADP, thrombin, collagen). Integrin aIIbb3 is activated and binds soluble fibrinogen. Platelet 

aggregation is initiated. PECAM1 pathway inhibits the signaling through p38MAPK (modified from 24). 
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- Class B scavenger receptor CD36 which binds to oxLDL is found on 

resting and activated platelets (26). 

- Class E scavenger receptor lipoxygenase-1 (LOX-1) was detected only 

on activated platelets and also exhibits affinity to oxLDL (27). 

- Class B scavenger receptor B1 binds the anti-atherogenic HDL and is 

inversely associated with cholesteryl ester content of platelets (28). 

Scavenger receptors also serve in platelet recognition by macrophages which 

then phagocyte platelets and accumulate their lipids resulting in foam cell 

formation (29). 

OxLDL enhances the above mentioned four intraplatelet pathways even 

stronger than naive LDL as oxLDL can affect platelets not only through the 

usual ApoE-R2’ receptors but also through scavenger receptors – CD36 and 

lysophosphatidic receptors (LPA-R) (24). 

Platelets also contribute to the progression of atheromatous plaques by being 

able to oxidize LDL extracellularly by producing ROS in their immediate 

microenvironment (19). 

3.2. Lipids 

Lipids are small hydrophobic or amphipathic molecules which originate entirely 

or in part by carbanion-based condensation of thioesters (fatty acyls, 

glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, and 

polyketides) and/or by carbonation-based condensation of isoprene units 

(prenol lipids and sterol lipids) (30). In 2005 the International Lipid Classification 

and Nomenclature Committee developed a comprehensive lipid classification 

which organized lipids into eight categories based on biochemical and chemical 

principles: fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, 

saccharolipids, polyketides (generated by condensation of ketoacyl subunits); 

and sterol lipids and prenol lipids (generated by condensation of isoprene 

subunits) (Table 1) (31).  
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Table 1. Current lipid classification (modified from 31).  

Category Structures in database 
Fatty acyls 2678 

Glycerolipids 3009 

Glycerophospholipids 1970 

Sphingolipids 620 

Sterol lipids 1744 

Prenol lipids 610 

Saccharolipids 11 

Polyketides 32 

 

The total number of lipid molecular species is determined by intrinsic possible 

covalent moieties and molecular variants that result from enzymatic or non-

enzymatic oxidation, nitrosylation, and other environmental factors (32). 

Lipids are either produced endogenously or incorporated into cells from dietary 

sources (33). Lipids possess a variety of functions which include storing energy, 

acting as structural components of cell membranes, and serving as second 

messengers of signal transduction (34).  

3.2.1. Phospholipids and glycerophospholipids in platelets 
 

The main structural lipids in platelets as in all mammalian cells are 

phospholipids. They consist of hydrophobic fatty acid oriented to the core of 

membrane and a polar headgroup facing the aqueous phase. Phospholipids 

serve as substrates for certain active species, including 1,2-diacylglycerol 

(DAG), fatty acids (FA), eicosanoids/prostaglandins (PG), 

phosphatidylinositides (PI), lysophospholipids (lysoPL), and lysophosphatidic 

acid. Indirect oxidation of PLs by LOX and cyclooxygenases (COX) leads to the 

formation of PL-esterified eicosanoids and PG. Lipid rafts containing certain 

amounts of sphingomyelins and free cholesterol are located in platelet plasma 

membranes. Platelets also contain neutral lipids, including 1,2-diacylglycerol, 

triglycerides and cholesterol esters (33). 
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The most abundant phospholipids in platelets are phosphatidylcholine (PC) 

(40%) and phosphatidylethanolamine (PE) (28%). Sphingomyelin (SM) and 

phosphatidylserine (PS) are less abundant (18% and 10% of total 

phospholipids). PE and PS face the cytosol and are used for intracellular 

signaling whereas PC and SM are distributed on the outer layer of the cell 

membrane. PS is externalized during platelet stimulation leading to 

procoagulant activity (33). Normally this PL asymmetry is ensured by ATP-

dependent enzyme flippase which keeps the PS internally in the plasma 

membrane of the platelet. An opposing enzyme scramblase initiates a 

substantial bidirectional trans-bilayer movement of PE as well as PS in 

thrombin-stimulated or apoptotic platelets (35,36). The externalized PS creates 

a negatively-charged pro-coagulant surface which enables calcium ions to form 

bridges with certain domains of coagulation factors. Factor Xa-Va complex 

enhances the activation of the prothrombinase complex and thrombin 

production from prothrombin is initiated (37). 

Impaired calcium-dependent surface exposure of PS on platelets and other 

cells as well as or deficiency of scramblase result in Scott syndrome, a 

congenital bleeding disorder. According to the latest research, a defective 

transmembrane protein anoctamin-6 also known as a calcium-dependent ion 

channel for chloride ions and cations was reported to be resulting in the 

phenotype of Scott syndrome platelets (38). 

3.2.2. Oxidized phospholipids 
 

Phospholipid-bound polyunsaturated fatty acids (PUFA) are the main target for 

non-enzymatic or enzymatic oxidation during which several biologically active 

products, such as unesterified oxidized fatty acids (e.g., hydroperoxides and 

isoprostanes) and lysoPL are generated. Non-enzymatic oxidation of PL-

esterified PUFA is induced by nonradical ROS (singlet oxygen), or by free 

radicals. The latter originate from non-enzymatic oxidation in the environment 

(e.g. air-pollution, radiation), or from endogenous oxidation, mediated by 

various enzymes, such as NOX, myeloperoxidase (MPO), nitric oxide synthase 

(NOS), xanthine oxidase (XO), or respiratory chain in mitochondria. The 
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produced peroxyl radical intermediates are further converted into different 

products through various subsequent reactions, e.g. oxidation, cyclization, 

fragmentation, oxygen atom transfer. (39) 

Enzymatic oxidation of PL-PUFA is only available by 12/15 lipoxygenases which 

insert dioxygen directly producing hydroperoxides (39). To date, three main 

families of oxidized PL have been described, two from 12-LOX (10 total lipids) 

and four families of sixteen esterified PG generated via COX-1 (total 26 lipids).  

 

Phospholipid oxidation was thought to be an accidental consequence of tissue 

damaging inflammation although it was recently proved to be a regulated 

receptor/agonist dependent process during activation of platelets (e. g. with 

thrombin, collagen or Ca2+ ionophore) (40).  

Arachidonic acid (AA) is one of the sources for a family of six 12-

hydroxyeicosatetraenoic acid (12-HETE) containing PL, comprising four PE and 

two PC (40). In vitro, HETE-PL, found in physiological amounts in liposomes, 

significantly enhance tissue factor-dependent thrombin generation in plasma 

and therefore exhibit a pro-coagulant function (40).  

Oxidation of DHA (docosahexaenoic acid)-containing PL in thrombin-activated 

platelets by 12-LOX results in production of four PE (18:0p/14-HDOHE-PE, 

18:0a/14-HDOHE-PE, 16:0a/14-HDOHE-PE and 16:0p/14-HDOHE-PE) and 

HOO 

Enzymatic oxidation 
LOX 12/15 

ROS initiated 
oxidation 

ROS producing 
enzymes (MPO, XO, 

NOS, NOX etc.) 

Non-enzymatic sources of 
ROS (air pollution, UV 

radiation, smoking) 

•OO 

Peroxyl radical 

Hydroxiperoxide 

Figure 2. Phospholipid oxidation via enzymatic or non-enzymatic oxidation, producing various oxidized 
lipid species (modified from 39). 
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one unidentified species at mass to charge ratio (m/z) 818.6. These PE were 

only observed in activated platelets and supposedly exhibit antiplatelet activity 

by antagonizing the HETE-PL actions although the hypothesis is still being 

tested (41). 

Free radical-induced oxidation of 1-palmityl-2-arachidonyl-sn-glycero-3-

phosphocholine (PAPC) generates various polyunsaturated phospholipid 

peroxyl radicals which are transformed into oxidized phospholipids after 

undergoing cyclisation and fragmentation reactions. These oxPLs promote 

adhesion of monocytes to endothelium which is a similar property to that of low-

density lipoproteins minimally modified by mild oxidation (MM-LDL) (42).  

 

Figure 3. Overview of products of lipid oxidative fragmentation. Oxidative cleavage of PAPC generates 
POVPC. Similarly oxidation of PLPC generates PONPC (42). 

 

1-palmityl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (POVPC) increases 

monocyte binding to endothelial cells whereas 1-palmityl-2-(5-glutaryl)-sn-

glycero-3-phosphocholine (PGPC) induces both monocyte and neutrophil 

binding by promoted E-selectin and vascular cell adhesion molecule (VCAM) 1 

expression. POVPC can be converted into PGPC under prolonged oxidative 

conditions whereas the biological activities of PGPC overtake those of POVPC 

(42). Moreover, PGPC promotes monocyte maturation and uptake of oxLDL 

whereby foam cells are formed. Both POVPC and PGPC induce apoptosis by 

increased expression of caspase. Increased apoptosis of macrophages as well 
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as the proliferation of smooth muscle cells (induced by POVPC) lead to 

progression of atherosclerosis.  

3.2.3. Sphingophospholipids (SP) and ceramides 
 

SPs together with glycerophospholipids and sterols are one of the most 

important cell membrane lipids. Sphingolipids consist of a sphingoid long chain 

base (normally sphingosine, sphinganine or phytosphingosine) and FA attached 

to it. The simplest of SP is ceramide which takes part in cell signaling and acts 

as a precursor of more complex SP (43). SP act as constituents of cell 

membranes which protect them against harmful environmental factors. SP also 

function as intracellular signaling messengers (33,43).  

Most abundant ceramides in human plasma are C24:0 and C24:1 and their 

concentration was showed to positively correlate with concentrations of total 

cholesterol (TC) and TG. Therefore ceramides might be potential risk factors at 

early stages of atherosclerosis (44). Certain ceramides were significantly 

associated with mortality from CVD and could improve the predictive potential of 

GRACE and Marschner scores. Furthermore, research suggests that ceramides 

of different chain-length have a different effect on atherosclerosis development. 

E.g. long-chain species (d18:1/16:0 and d18:1/18:0) were observed to be more 

harmful than very-long-chain (d18:1/24:0) species (45). 

Sphingosine-1-phosphate is generated after sphingosine is phosphorylated by 

sphingosine kinases and released from the granules during platelet activation 

(33). S1P regulates cell proliferation and migration, immune regulation, vascular 

development, brain inflammation and has shown to exhibit a role in 

thrombopoiesis (33,46). Activated platelets release huge amounts of S1P during 

blood clotting (47). It was also shown that intracellular and extracellular pools of 

S1P exist. The extracellular S1P is a platelet activator which induces platelet 

shape changes and platelet aggregation (48).  
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3.2.4. Lysophospholipids (lysoPL) and lysophosphatidic acid (LPA) 

LysoPL and LPA are generated from membrane phospholipids and 

sphingolipids (SL) by phospholipases, e.g. PLA2. They act as extracellular 

mediators by activating G-protein coupled receptors (GPCR) and regulate 

diverse cellular responses (49). Lysophosphatydilcholine (lysoPC) activates 

endothelial cells and recruits phagocytic cells during apoptosis (50). It is also a 

major component of oxLDL and contributes to its atherogenic effects (51). 

Activated platelets produce various lysoPL because of actions of PLA2 (52). 

The oxidation products of PLA2 become substrates for a higher demand of 

energy in activated platelets which links the lipid oxidation with energetic 

processes in mitochondria. Fatty acids and various eicosanoids, generated via 

PLA2, are acutely used as a source for mitochondrial beta-oxidation generating 

energy supplies needed for keeping the asymmetry of the plasma membrane, 

assuring the production of oxidized PL in activated platelets etc. (53). 

3.3. Lipidomics 

Lipidomics is one of the branches of metabolomics, analyzing different lipid 

species and their multiple functions in the living system (54). 

In general analysis of lipids consists of three main steps: 

- Preparation and extraction of lipids from biological materials e.g. 

serum/plasma, cellular extracts; 

- Lipid fragmentation by the means of enzymatic or non-enzymatic 

reactions and subsequent analysis of the fragmentation products; 

- Analysis of prepared, non-fragmented lipids by means of elementary 

analysis, UV- and IR-spectroscopy, mass spectrometry (MS) or NMS-

spectrometry (34). 

Traditional techniques for studying lipids include thin layer chromatography 

(TLC), gas chromatography/mass spectrometry (GC/MS), and high-

performance liquid chromatography (HPLC) coupled to radioactive, ultraviolet or 

fluorescence detection (33). 
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The major disadvantages of older approaches over liquid chromatography-mass 

spectrometry (LC/MS) are (i) low sensitivity and selectivity (TLC, HPLC), (ii) 

time-consuming derivatization methods (e.g. for GC/MS), and (iii) health issues 

associated with the usage of radioisotopes (33). These disadvantages 

subsequently led to the development of more sophisticated techniques with 

higher sensitivity and specificity, leading to better qualitative and quantitative 

accuracy of results.  

Lipidomics investigations use the two major methods, which include a highly 

sensitive and quantitative liquid chromatography-tandem mass spectrometry 

(LC/MS/MS), and “shotgun” lipidomics approach, based on direct infusion of 

complex mixtures into a spectrometer without former separation, which detects 

only the most abundant species (32). 

A newer quantitative approach is a combination of LC with a high-resolution 

MS/MS on rapid scanning Fourier transform (FT) or Time-of-flight (ToF) 

instruments, termed multidimensional MS (MDMS). In Fourier transform mass 

spectrometry, mass is measured by detecting the image current generated by 

ions in a magnetic field. ToF machines calculate mass based on the time (m/z 

ratio) it takes for molecules in an electric field to reach a detector at a certain 

distance. It takes longer for heavier molecules to reach the detector (55). 

Lipidomics approach is fundamental for understanding of lipid biology. It can 

also be applied in the clinical setting. Certain novel lipids can help detect 

cardiovascular diseases in early stages by the means of potential lipids being 

used as biomarkers with high-risk assessment values of prognostic impact. 

Moreover, it can aid in deciphering new targets for therapeutic interventions 

(53).  

3.4. Lipids in human blood stream 

Cholesterol is the main sterol of all higher animals, found in body tissues, 

especially the brain and spinal cord, and is a major constituent of animal fats 

and oils. Cholesterol is transported in the blood as particles containing both lipid 

and proteins – lipoproteins. Three major classes of lipoproteins are found in the 

plasma of a fasting individual: LDL, VLDL and HDL cholesterols. LDL is the 
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major carrier for cholesterol. It contains a single apolipoprotein, namely apoB-

100 (24,56). LDL cholesterol is the main atherogenic cholesterol and is directly 

associated with cardiovascular disease (57,58). Therefore LDL cholesterol is 

the primary target of cholesterol-lowering therapies as well as a marker for the 

efficacy of the initiated treatment. In contrast, HDL exhibits an anti-atherogenic 

effect.     

In order to estimate cardiovascular risk using various scores (e. g. Framingham 

risk calculator, ESC SCORE, PROCAM) baseline lipid profile of TC, TGs, HDL 

and LDL cholesterols is determined in fasting plasma. In patients with 

hypertriglyceridemia values of lipids may be inaccurate leading to 

underestimation of actual lipid status (59). That is why additional plasma lipid 

markers may be considered, e. g. lipoprotein A, apoB:apoA1 ratio or nonHDL-

C:HDL-C ratio.  

Potential markers may be distinct ceramide species which showed to predict 

cardiovascular death significantly better, compared to the currently used lipid 

markers (45). Moreover, some ceramide species not only were significantly 

associated with mortality in CAD but also were superior in predicting mortality in 

CAD to currently used standard LDL-C measurement (60). Further studies 

identified lysoPC and SM associated with CAD. LPC16∶0 or LPC20∶4 were 

associated with a decreased risk of developing CVD over the 12-year follow-up 

period whereas SM38∶2 was associated with increased odds of future CVD 

(61). 

Another factor promoting research of novel non-invasive atherosclerosis 

biomarkers is disease detection at its earliest. Establishing new atherosclerosis 

markers may as well lead to the development of novel treatment options. 

Recent studies identified six classes of ceramide synthases which might 

potentially be novel therapeutic targets in the diseases in which the ceramide 

acyl chain length is altered (62). The novel PCSK-9 inhibitors which are already 

applied in clinical practice were shown to decrease the plasma levels not only of 

LDL-C but also of CVD associated ceramides (60).  
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3.5. Lipid biomarkers in the context of CAD 

TC and LDL-C are proven independent CVD risk factors and have been 

established as lipid biomarkers for estimating the risk of CVD as well as 

following the clinical course of the disease (63). At last but not the least they are 

the main therapeutic targets of the current lipid-lowering therapy.  

HDL-C is an anti-atherogenic LPL as it is able to remove cholesterol from cells, 

inhibit LDL-C oxidation and exhibits anti-inflammatory features (64). Low HDL-C 

level is independently associated with higher CVD risk (65).  

Hypertriglyceridemia is also an independent CVD risk biomarker although its 

association with CVD is weaker than that of LDL-C (66). 

Total amounts of cholesterol in LDL, intermediate-density lipoprotein, remnant, 

and VLDL, comprise another calculated parameter called a non-high-density 

lipoprotein cholesterol (non-HDL-C). This combination of all the pro-atherogenic 

lipids can estimate CVD risk even more accurately than LDL-C (67).   

Several other biomarkers are gaining its way into clinical practice. Apoprotein B 

(apoB) is the main apoprotein of atherogenic lipoproteins. Higher plasma levels 

of apoB are also associated with a higher CVD risk (65). Lipoprotein(a) [Lp(a)] 

constitutes of an LDL attached to an additional protein called apolipoprotein(a). 

High levels of Lp(a) are associated with increased risk of CVD (65).  

3.6. Current lipid-lowering therapies   

Statins are inhibitors of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 

(HMG-CoA reductase), a rate-limiting enzyme in cholesterol synthesis. 

Decreased hepatic cholesterol concentrations lead to up-regulated synthesis of 

LDL receptors so that the clearance of LDL-C from the blood into hepatic cells 

increases and the pro-atherogenic LDL-C levels in the blood are reduced. (56) 

Lowering LDL-C levels in patients with ACS showed significantly lower mortality 

rates in the PROVE-IT clinical trial (68). Nevertheless, statins exhibit a variety of 

pleiotropic functions such as anti-inflammatory effects, mediated by both direct 

(modulation of the immune-response) and indirect (inhibition of platelet 

functions) mechanisms (69).  
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Another LDL-C lowering agent is ezetimibe – one of the agent of azetidinone 

cholesterol absorption inhibitors (56). Ezetimibe used in combination with a 

statin showed to significantly lower LDL-C levels and improve cardiovascular 

outcomes in ACS patients (70). 

Fibrates are fibric acid derivatives which reduce VLDL secretion from 

hepatocytes. Fibrates reduce levels of circulating VLDL, therefore lowering TAG 

levels with a modest (approximately 10%) reduction in LDL-C (56).  

Cholestyramine is one of the bile acid sequestrants which also lowers the levels 

of LDL-C. Binding the bile acids enhances their synthesis in liver from 

cholesterol which causes clearance and reduction of the levels of LDL-C from 

the circulation (71). 

Nicotinic acid raises HDL-C and reduces LDL-C levels. Nicotinic acid also 

uniquely lowers Lp(a) levels (72). 

The most novel lipid-lowering agents are monoclonal antibodies inhibiting the 

proprotein convertase subtilisin/kexin type 9 (PCSK9), which is involved in the 

degradation of LDL receptors in the liver. Inhibition of PCSK9 results in 

increased numbers of LDL receptors and enhanced hepatic LDL clearance (73).  

One of the PCSK9 inhibitors, evolocumab, was showed to significantly reduce 

LDL-C levels and the risk for cardiovascular events, in combination with 

standard therapy (statin), as compared with standard therapy (statin) alone. 

Levels of the Lp(a) could also be significantly reduced (74).  

Moreover, loss-of-function mutations in PCSK9 resulted in reduced plasma 

LDL-C levels.  Inhibiting the PCSK9 synthesis by a small interfering RNA (ALN-

PCS) showed a mean 40% reduction of LDL-C compared to placebo (75). 

Clinical application of the new approach by means of RNA interference needs to 

be further investigated. 

3.7. Current guidelines on lipid-lowering therapies 

The guidelines on cardiovascular disease prevention used in the clinical 

practice focus mainly on a statin-based primary or secondary prevention. The 

most recent guidelines from 2016 published by the European Society of 
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Cardiology (ESC) or the guideline from 2013 from the American Heart 

Association (AHA) both recommend estimating the 10-year risk of a first fatal 

atherosclerotic event, either using the European SCORE (Systemic Coronary 

Risk Estimation) system or the American 10-year ASCVD (atherosclerotic 

cardiovascular disease) risk calculator. After determining the estimated 10-year 

risk patients are categorized in different groups (low, moderate, high, very high) 

depending on the estimated CVD risk, based upon which different dosages of 

statins are prescribed. The European guidelines focus on reaching a certain 

LDL-C level under the statin-therapy. On the contrary, the American guideline 

does not suggest an absolute target level of LDL-C and recommends initiating a 

certain intensity statin-treatment to reduce the LDL-C levels by ≥50 % or 30–50 

% in high or moderate risk patients (65,76). Ezetimibe is recommended as a 

supplement to the statin-therapy when the levels of LDL-C cannot be reduced 

under the highest-dose statin monotherapy. Fibrates are also combined with 

statins, especially in cases of severe hypertriglyceridemia (65). PCSK9 

inhibitors are still gaining their way into guidelines on CVD prevention as the 

impact of PCSK9 inhibitors on cardiovascular outcomes is still being 

investigated and the first results have been recently published. Additional 

indications for a therapy with PCSK9 inhibitors include familial 

hypercholesterolemias whereas only in combination with other lipid-lowering 

agents.  

3.8. Aims of the study 

After reviewing the literature on the lipid biology, platelet and lipid interactions 

as well as the pathogenesis of atherosclerosis the following aims of this study 

where formulated: 

1. Demonstrate the effect of oxLDL on platelet aggregation 

2. Examine the platelet lipidome in healthy subjects compared to STEMI 

and SAP patients 

3. Extract the most significantly abundant lipid species in platelets of SAP 

and STEMI patients 
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4.    Materials and methods 
 

4.1. Materials 

4.1.1. Chemicals 
Chemical Source 

1-heptadecenoyl-2-

eicosatetraenoyl-sn-glycero-3-

phosphocholine (PC (17:0/20:4)) 

Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA) 

1-heptadecenoyl-sn-glycero-3-

phosphocholine (LysoPC 17:1) 

Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA) 

1-Palmitoyl-2-(5-oxovaleroyl)-sn-

glycero-3-phosphocholine (POVPC) 

Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA) 

1-palmitoyl-2-(9-oxononanoyl)-sn-

glycero-3-phosphocholine (PONPC) 

Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA) 

1-palmitoyl-2-azelaoyl-sn-glycero-3-

phosphocholine (PAzPC) 

Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA) 

1-palmitoyl-2-glutaryl-sn-glycero-3-

phosphocholine (PGPC) 

Avanti Polar Lipids, Inc. (Alabaster, AL, 

USA) 

Acetonitrile  Sigma-Aldrich Chemie GmbH, 

München, Germany 

Ammonium acetate Sigma-Aldrich Chemie GmbH, 

München, Germany 

Citric acid Sigma-Aldrich Chemie GmbH, 

München, Germany 

D-(+)-Glucose Sigma-Aldrich Chemie GmbH, 

München, Germany 

Ethanol, 75% Carl Roth, Karlsruhe, Germany 

Hydrochloride acid  Carl Roth, Karlsruhe, Germany 

Isopropanol Carl Roth, Karlsruhe, Germany 

Magnesium chloride hexahydrate Merck KGaA, Darmstadt, Germany 

Potassium chloride Carl Roth, Karlsruhe, Germany 

Potassium dihydrogen phosphate Merck KGaA, Darmstadt, Germany 
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Sodium chloride BioChemica AppliChem GmbH, Darmstadt, 

Germany 

Sodium hydrogen carbonate Merck KGaA, Darmstadt, Germany 

tri-Sodium citrate dihydrate Merck KGaA, Darmstadt, Germany 

Trizma® base Sigma-Aldrich Chemie GmbH, 

München, Germany 

 

4.1.2. Solutions/buffers 
Solution Components 

6 mM hydrochloride acid  

ACD buffer 7 mM citric acid 

22 mM tri-Sodium citrate dihydrate 

25 mM glucose 

6 mM hydrochloride acid 

JNL buffer JNL A 5 ml 

JNL B 5 ml 

JNL D 5 ml 

JNL E 0,5 ml 

ACD pH 7,2 

Distilled water 

JNL A  60 mM glucose 

Distilled water 

JNL B 1,3 M sodium chloride 

90 mM sodium hydrogen carbonate 

100 mM tri-Sodium citrate dihydrate 

100 mM Trizma® base 

30 mM potassium chloride 

Distilled water 

JNL D 8,1 mM potassium dihydrogen 

phosphate 

Distilled water 

JNL E 90 mM magnesium chloride 



 27 

hexahydrate 

 
4.1.3. Laboratory materials 

Material Source 

10 ml pipette Corning Incorporated, NY, USA 

15 ml Falcon tube Greiner Bio One, Frickenhausen, 

Germany 

20 ml syringe B. Braun, Melsungen, Germany 

50 ml Falcon tube Greiner Bio One, Frickenhausen, 

Germany 

Eppendorf Safe-Lock Tubes 1.5 ml Eppendorf AG, Hamburg, Germany 

Pasteur pipette RatioLab GmbH, Dreieich, Germany 

 

4.1.4. Devices 
Product name Source 

Agilent 1290 UHPLC instrument Agilent Technologies, Waldbronn, 

Germany 

Eppendorf centrifuge 5417 Eppendorf AG, Hamburg, Germany 

Hettich® ROTANTA 460/460R 

centrifuge 

Andreas Hettich GmbH & Co.KG, 

Tuttlingen, Germany 

Multiplate® Analyzer Roche Deutschland Holding GmbH 

Phenomenex Kinetex C8 column Phenomenex, Inc., CA, USA 

PIPETBOY acu 2 INTEGRA Biosciences AG 

Sciex TripleTOF 5600+ hybrid mass 

spectrometer 

Agilent Technologies, Waldbronn, 

Germany 

Sysmex KX-21N™ Automated 

Hematology Analyzer 

Sysmex Deutschland GmbH, 

Nordertstedt, Germany 

Tisch-pH/Ionen-Messgerät 

SevenCompactTM S220, pH-Meter 

SevenCompactTM S220-basic 

Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany 

Ultra-sonication bath BANDELIN electronic GmbH & Co. 

KG, Berlin, Germany 
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Vortex mixer IKA Labortechnik, Staufen, Germany 

 

4.2. Methods  

4.2.1. Study design 
 

HYPOTHESIS  

Role of platelets for lipid changes in CAD 

STUDY DESIGN 

Experimental prospective study in patients with 
and without CAD (270/2011 BO2) 

Literature review 

Lipidomics in clinical 
context of CAD 

STEMI SAP Healthy 

Sample collection and preparation 

Figure 4. Hypothesis and patient selection. 
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4.2.2. oxLDL effect on platelet aggregation 

In order to test the hypothesis that platelet aggregation is enhanced by oxidized 

lipids, which plays a crucial role in the development of atherosclerosis, effect of 

oxLDL on platelet aggregation was examined. Peripheral blood was collected 

from 7 healthy subjects in hirudin anticoagulant. 270 µl of whole blood was 

incubated with oxLDL (1 mg/ml). In another setting 30 µl of phosphate buffered 

saline (PBS) Ca2+ was added to 270 µl of blood as a control set. Blood samples 

were incubated in room temperature for 30 minutes and afterwards analyzed 

with Multiplate® analyzer. The aggregation was induced with ADP (6,5 µM). 

The aggregation curves were registered for 6 minutes. Platelet aggregation data 

were represented as area under the curve (AUC). 

 
 

 

Platelet isolation 

Lipid extraction 

UHPLC-ESI-QTOF-MS/MS 

Blood samples from healthy subjects and 
patients with SAP and STEMI 

Identification of significant lipids in 
SAP and STEMI 

Data interpretation 

Sample preparation 
and analysis 

Figure 5. Sample acquisition and workflow. 
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4.2.3. Study population 
 

Blood samples from patients presenting with a STEMI (n=13) were collected in 

less than two hours after onset of symptoms before the percutaneous coronary 

intervention (PCI). Patients with stable angina pectoris (SAP) (n=10) were also 

included in the study. 10 healthy subjects served as a control group to compare 

all the data with STEMI and SAP patients. Blood samples from SAP patients 

were collected before the PCI during the admission at the hospital. All patients 

were admitted to the Department of Cardiology at the University Clinic of 

Tübingen, Germany. The study was approved by the institutional ethics 

committee (270/2011BO2) and complies with the declaration of Helsinki and 

good clinical practice guidelines. All subjects gave written informed consent.  

STEMI was diagnosed by a rise and/or fall of cardiac troponin and symptoms of 

ischemia, and/or typical changes in electrocardiogram, and/or signs of new 

ischemia in cardiac imaging, and/or an intracoronary thrombus detected by 

coronary angiography (2). Stable coronary artery disease was characterized by 

transient chest pain (angina pectoris) episodes caused by reversible ischemia 

or hypoxia in myocardium, occurring under physical or emotional stress (74). 

Healthy volunteers presented with no obvious symptoms of disease and were 

free of medication at the time of donating blood (n=10, age (mean ± SD) 30 ± 7 

years). 

4.2.4. Platelet isolation 
 

40 ml of whole blood was collected into two 20 ml syringes each filled with 3 ml 

ACD anticoagulant and distributed into four 15 ml Falcon tubes afterward. The 

blood was centrifuged at 200 x g for 10 minutes with no brakes applied, at room 

temperature. The upper two thirds of platelet rich plasma (PRP) were 

transferred into a 50 ml Falcon tube containing Thyroid buffer (composition) pH 

6.4 using a Pasteur pipette. The PRP samples were centrifuged at 150 x g for 7 

minutes with brake level 2 under maximum speed at room temperature to 

separate platelets. The centrifuged platelet pellet was transferred into a 50 ml 

Falcon tube using a Pasteur pipette and resuspended in 500 μl of acidic 
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ethanol. Resting platelet suspension (1 ml) containing 300x103/μl platelets was 

transferred into a 1.5 ml Eppendorf tube, which was placed in an ultra-

sonication water bath with ice for cooling for 20 minutes. After the ultra-

sonication, the platelet suspension was placed on a vortex mixer for 10 s and 

then centrifuged at 2100 rpm for 5 minutes under 4°C. 500 μl of the platelet 

supernatant were transferred into an Eppendorf tube and stored at -20°C 

temperature. 

Measurements described further on (4.2.5. – 4.2.8.) were performed in 

cooperation with Prof. Dr. Michael Lämmerhofer and Jörg Schlotterbeck 

(Institute of Pharmaceutical Sciences, Universität Tübingen, Auf der 

Morgenstelle 8, 72076 Tübingen, Germany). Data analysis was done by Prof. 

Dr. Michael Lämmerhofer, Jörg Schlotterbeck and Dr. Madhumita Chatterjee 

(Department of Cardiology and Cardiovascular Sciences, Internal Medicine III, 

Universitätsklinikum Tübingen). 

4.2.5. Lipid extraction  
 

Supernatants after such extraction were dried under a gentle stream of nitrogen 

and reconstituted in 500µL of methanol. Samples were centrifuged, and the 

supernatant was carefully removed without disturbing the pellet. The entire 

sample preparation was carried out under light protection. The collected 

supernatants were spiked with internal standards (LPC(17:1), PC(17:0/20:4)) at 

a final concentration of 40 ng/mL and subjected to UHPLC-ESI-QTOF-MS/MS 

analysis (21). 

4.2.6. UHPLC-ESI-QTOF-MS/MS  
 

LC-MS/MS analysis of the lipid extract was carried out on an Agilent 1290 

UHPLC instrument hyphenated to a Sciex TripleTOF 5600+ hybrid mass 

spectrometer. A Phenomenex Kinetex C8 column (150 x 2.1 mm; 2.6 µm) was 

used for chromatography. Solvents were aqueous 10 mM ammonium acetate 

(A) and a mixture of acetonitrile, isopropanol and water (55:40:5 v/v) containing 

10 mM ammonium acetate (B). The gradient was 10% B to 40% B in 2 minutes 

and 100% B in 20 minutes followed by a cleaning step of 10 minutes 100% B 
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and 2 minutes equilibration with 10% B at a flow rate of 400µL/min and 50°C 

oven temperature. Injection volume was 2µL.  

The MS platform was operated in ESI positive mode at 5000V and 500°C. 

Nebulizer, heater and curtain gas were used at 50, 40, 30 psi respectively. 

Declustering potential was set to 100 V. Data-independent MS/MS acquisition 

was carried out using SWATH 2.0 covering a range of 30-1000 m/z with 

optimized Q1 windows using a quality control (QC) sample and swathTUNER. 

31 SWATH windows were used with a minimum size of 5Da in high sensitivity 

mode.  

The collision energy was 35V for each window. Data processing was done with 

commercial software PeakView, MasterView and MarkerView (Sciex) and freely 

available MS-DIAL5. 

Data quality was evaluated by a QC sample which was embedded throughout 

the analysis batch consisting of 44 injections in total with 11 injections of the QC 

sample (3 x before analysis of the first sample, 3 x after the last sample and the 

other injections of the QC sample distributed within the sample sequence after 

every 5th injection of a sample). It is a commonly accepted quality attribute for 

untargeted profiling methods in lipidomics and metabolomics if the QC samples 

injected across the entire sequence are closely grouped together and largely 

superimposed upon each other in the score plot of multivariate statistical 

procedures like PCA, PLS or OPLS-DA. In the present study, the detected 

molecular features (ca. 7,500 in the QC sample in the positive mode) were 

subjected to MS-DIAL for peak finding, LOWESS normalization and 

identification via spectral matching. Logarithmic transformation to the base e 

and autoscaling was done with MarkerView software. Subsequently, these 

responses were subjected to supervised principal component analysis-

discriminant analysis (PCA-DA). The results are illustrated in Figure 7 which 

clearly documents a clustering of the distinct sample classes (QC, healthy 

control R, STEMI and SAP) and most importantly the QC samples are totally 

superimposed upon each other meaning that the assay has been robust and 

thus the results have been highly consistent throughout the analysis batch. This 
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documents the stable performance of the LC-MS assay during the analysis 

sequence and high precision of retention times, mass accuracies, and 

responses throughout the assay. CV values of retention time and intensity of 

the internal standards were 0.4 % and 12 % for LPC(17:1) and 0.2 % and 10 % 

for PC(17:0/20:4) respectively. These data clearly document the reliability of the 

measurements (21). 

4.2.7. Data analysis  
 

From thousands of molecular features detected by UHPLC-ESI-QTOF-MS/MS, 

distinct marker lipids from healthy and CAD patients were extracted by t-tests 

and volcano plots after structural annotation by MS-DIAL and LipidBlast 

database search. Annotated lipids with P-value ≤0.05 in the comparison 

between CAD (STEMI or SAP) and the healthy group were used to construct a 

heat map (Figure 8) in order to visualize the differences in lipid abundances 

among the distinct groups. Of the 3054 molecular features extracted from 

ESI(+) mode data, 695 molecular features exhibited significantly different 

abundance in lipid extracts of healthy and STEMI platelets. 172 of them could 

be identified by manual revision of spectrometric data in MS-DIAL and 

LipidBlast database as shown in the heat map (Figure 8) indicating different 

lipid classes. Free radical–induced oxidative cleavage of 1-palmityl-2-

arachidonyl-sn-glycero-3-phosphocholine (PAPC) generates POVPC that is 

further oxidized to PGPC. POVPC is the aldehydic fragmentation product from 

PAPC, while PGPC is the carboxylic acid product following further oxidation. 

Oxidative cleavage of 1-palmityl-2-linoleyl-sn-glygero-3-phosphocholine (PLPC) 

generates PONPC that is further oxidized to PAzPC. For these oxidized lipids, 

standards were available, and their structures could, therefore, be manually 

annotated to their respective peaks in the chromatograms (21).  

4.2.8. Statistical analysis  
 

Samples for the lipidomics study comprised lipid extracts from healthy controls 

(n=10), SAP (n=10) and STEMI (n=13) patients. Raw data from the UHPLC-

ESI-QTOF-MS/MS analysis (Sciex wiff files) were imported into MS-DIAL and 
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pre-processed before statistical analysis (peak alignment, noise filtering, 

LOWESS normalization, structure annotation). In compliance with FDA 

guidelines on bioanalytical method validation, the intra-assay precision of raw 

signal intensities was < 15%, as estimated by internal standards as surrogate 

variables. Limits of detection are substance-dependent and typically in the low 

ng/ml-range. Preprocessed data (normalized peak areas) were exported from 

MS-DIAL and used for univariate and multivariate statistical analysis. 

Normalized peak areas were log-transformed and subjected to unpaired 

Student t-test to identify peaks varying significantly (p ≤0.05) between distinct 

groups. Only molecular features with p ≤0.05 (uncorrected) were then further 

processed and considered as putative biomarkers of potential interest. 

Responses for these lipids are presented as a heat map (Figure 8). To account 

for the problem of multiple hypotheses testing a false discovery rate (FDR) 

controlling procedure was further adopted to correct significance levels for FDR 

≤5% according to Benjamini and Hochberg. Multivariate statistical data analysis 

was performed using MarkerView (Sciex). Normalized peak areas were log-

transformed and autoscaled before they were subjected to principal component 

analysis–discriminant analysis (PCA-DA) (21).  
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5.    Results  
 

5.1. Baseline characteristics of the patient cohort 

Characteristics STEMI (n=13) SAP (n=10) 

Male 11 (84.6%) 8 (80%) 

Female 2 (15.4%) 2 (20%) 

Age (mean ± SD) 71.5 (± 11.8) 64.8 (±13.7) 

BMI (mean ± SD) 25.23 (±2.59) 29.23 (±4.1) 

CVRF 

Arterial Hypertension 11 (84.6%) 8 (80.0%) 

Hyperlipidemia 5 (38.5%) 3 (30.0%) 

Diabetes mellitus 3 (23.1%) 3 (30.0%) 

Smoking 2 (15.4%) 3 (30.0%) 

Ex/Smoking (>6 mo.) 1 (7.7%) 2 (20.0%) 

Atrial fibrillation 1 (7.7%) 1 (10.0%) 

Positive family history 2 (15.4%) 1 (10.0%) 

Obesity 1 (7.7%) 3 (30.0%) 

LV Function (%) (Mean ± SD) 48.08 (±10.71) 54.80 (±8.26) 

LVEF normal 3 (23.08%) 7 (70.0%) 

LVEF mild impairment 5 (38.46%) 2 (20.0%) 

LVEF moderate impairment 3 (23.08%) 0 (00.0%) 

LVEF severe impairment 2 (15.38%) 1 (10.0%) 

Chronic kidney disease 1 (7.7%) 2 (20.0%) 

Renal function (GFR) (Mean ± SD) 80.87 (±26.84) 77.51 (±17.95) 

Medication on admission 

Acetylsalicylic acid 2 (15.4%) 5 (50.0%)  

Clopidogrel 0 (00.0%) 2 (20.0%) 

Prasugrel 0 (00.0%) 1 (10.0%) 

Ticagrelor 0 (00.0%) 1 (10.0%) 

Oral anticoagulants 0 (00.0%) 2 (20.0%) 

Angiotensin-converting enzyme 1 (7.7%) 5 (50.0%)  
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inhibitors 

Angiotensin II receptor antagonists 2 (15.4%) 1 (10.0%) 

Aldosterone antagonists 0 (0.00%) 1 (10.0%) 

Diuretics 1 (7.7%) 5 (50.0%) 

Calcium channel antagonists 2 (15.4%) 3 (30.0%) 

Beta-blockers 3 (23.1%) 8 (80.0%) 

Statins 1 (7.7%) 6 (60.0%) 

Laboratory parameters 

Troponin I sensitive 19,96 (±25,10) not measured 

CK-MB 737,54 (±751,87) 119,30 (±83,29) 

Platelet count 261,69 (±61,60) 197,0 (±66,12) 

Cholesterol 169,00 (±37,02) 164,88 (±35,96) 

LDL-cholesterol 106,86 (±39,10) 101,0 (±32,61) 

HDL-cholesterol 39,29 (±21,20) 43,77 (±8,93) 

Triglycerides 123,10 (±70,70) 155,5 (±51,73) 

C-Reactive protein  2,40 (±3,12) 0,64 (±0,91) 

Leukocyte count 11260,0 (±3955,66) 7483,33 (±2049,3) 

Creatinine 0,96 (±0,31) 0,96 (±0,27) 

Hemoglobin 12,74 (±2,34) 13,69 (±1,96) 

INR 1,14 (±0,21) 1,23 (±0,59) 

PTT 67,46 (±50,36) 37,0 (±38,87) 

Bilirubin 0,73 (±0,39) 0,70 (±0,38) 

Glucose 160,0 (±110,8) 116,0 (±34,66)  

GOT 104,57 (±108,86) 26,88 (±6,71) 

GPT 32,38 (±18,73) 26,33 (±11,15) 

LDH 308,23 (±164,12) 203,22 (±37,91) 

 

5.2. oxLDL influenced platelet aggregation response to ADP 

In order to test the effect of oxidized lipids on platelet reactivity blood samples 

from 7 healthy subjects were examined. Platelet aggregation was induced with 

ADP in two settings – untreated whole blood vs. whole blood treated with 
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oxLDL. Measurements could show that oxLDL enhanced platelet aggregation 

(Figure 6). The average AUC in whole blood incubated with oxLDL was higher 

than in untreated whole blood samples. 

 

Figure 6. Platelet aggregation in whole blood (untreated vs. oxLDL), p=0,0156 (*, p<0,05).  

 

5.3. Lipid profile of circulating platelets  

To characterize the lipid profile of circulating platelets in STEMI and SAP 

groups blood samples were analyzed by lipidomics profiling using liquid 

chromatography hyphenated to high-resolution mass spectrometry (UHPLC-

ESI-QTOF-MS/MS) using data-independent acquisition with SWATH (77,78). 

The following measurements were performed by Prof. Michael Lämmerhofer 

and Jörg Schlotterbeck (Institute of Pharmaceutical Sciences, Universität 

Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany).  

The lipid profiles of 13 STEMI and 10 SAP patients were compared to 10 

healthy controls. 

The initial UHPLC-ESI-QTOF-MS/MS analysis detected over 7500 of molecular 

features in the samples of the healthy and CAD subjects (21). 
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The data was normalized and aligned as well as subsequently subjected to 

principal component analysis (PCA-DA). The score plot clearly illustrates how 

samples of the healthy controls (n=10), SAP (n=10) and STEMI (n=13) patients 

with similar lipid profiles are clustered closely together. The same plot also 

depicts how platelet lipid profiles differ in healthy subjects compared to CAD 

patients as well as among the SAP and STEMI patients (Figure 7) (21).  

Figure 7. Samples of healthy, SAP and STEMI patients clustering in different groups depending on 
lipid profile (21). In cooperation with Prof. Michael Lämmerhofer and Jörg Schlotterbeck.  

 

Out of more than 7500 primary molecular species distinct lipids were further 

extracted by t-tests and volcano plots which led to reduced number of molecular 

features which significantly differed in abundance among the three target 

groups (21). 

Out of 664 molecular features exhibiting significantly different abundance in lipid 

extracts of healthy and CAD platelets, 172 of them were identified by manual 

revision of spectrometric data in MS-DIAL and LipidBlast tandem mass 

spectrometry databases for lipid identification. Database search revealed 172 

known molecular structures with p-values ≤0.05 which were eventually 

classified according to the lipid class they belong to. The following heat map 

presents the significantly different expression of separate lipid classes among 



 39 

STEMI, SAP and healthy subject groups (Figure 8) red color meaning the 

highest abundance and blue depicting the low abundant species (21). 

 
Figure 8. Heat map representing abundance of different lipid classes in healthy, SAP and ACS 
(STEMI) patients (21). TG – triglyceride, SM – sphingomyelin, PE – phosphatidylethanolamine, PC – 
phosphatidylcholine, MG – monoglyceride, DG – diglyceride, CER – ceramide, CE – cholesteryl 
ester. In cooperation with Prof. Michael Lämmerhofer and Jörg Schlotterbeck. 

 

Significantly higher levels of triglycerides (TG), phosphatidylcholin (PC), 

diacylglycerols (DG), monoacylglycerols (MG), plasmenyl-PCs (p-PC), 

sphingomyelin (SM) and ceramides (CE) were found in SAP patients as 

compared to healthy subjects (21). 

Abundance of distinct lipid metabolites – oxPLs, ceramides, cholesteryl-esters 

was further compared between healthy, SAP and STEMI subgroups. However, 

oxPLs are not contained in LipidBlast database and were therefore not 

annotated by MS-DIAL. For some specific oxidized lipids, standards were 

available, and their structures could therefore be manually annotated to their 

respective peaks in the chromatograms. Several oxPLs e.g. POVPC 

(m/z=594.3766), PGPC (m/z=610.3715), PONPC (m/z=650.4392) and PAzPC 
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(m/z=666.4341) were detected in the samples of the subgroups. They were 

elevated in SAP and were significantly increased in STEMI patients when 

compared to healthy subjects (Figure 9) (21). 

 

 
Figure 9. Expression of POVPC, PGPC, PONPC and PAzPC in the samples of the subgroups (21). In 
cooperation with Prof. Michael Lämmerhofer and Jörg Schlotterbeck.  

 

The same tendency was observed among other oxidized lipid metabolites. 

Several lysoPCs (18:1, 18:2, 22:6) were found to be elevated in SAP and 

STEMI patients compared to healthy controls (21). 

Cholesteryl esters (CE) (18:1, 18:2, 20:4, 20:5, and 22:6) levels were also 

significantly elevated in SAP and STEMI patients compared to healthy controls 

(21). 

Ceramide levels in platelets of SAP patients showed a different tendency in 

abundancy. Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0) and 

Cer(d18:1/24:1) plasma levels were significantly downregulated in SAP 

compared to healthy controls. The levels of particular ceramides showed a 

significant downregulation between the subgroups. Cer 41:4;(d17:0/24:4) and 

Cer 42:5;(d18:1(4E)/24:4) were significantly downregulated in platelets from 

STEMI patients when compared to SAP (21). 
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6.    Discussion 
 

CVD is the major cause of worldwide mortality expected to reach the rate of 

23.6 million deaths per year by 2030 (1). The major cause accounting for 

cardiovascular mortality is CAD resulting in AMI and exerting its lethal 

complications. The reason for ischemic events of the large arteries is 

atherosclerosis, the pathophysiological mechanism of which lies in a systemic 

inflammatory state caused by circulatory platelet hyper-reactiveness and 

monocyte/macrophage and leucocyte accumulation in the intima of arteries. 

Hyperlipidemia is one of the factors contributing to systemic inflammation and 

the pathogenesis of atherosclerosis and is, therefore, one of the prominent 

cardiovascular risk factors. Another important factor is platelets and especially 

platelet-lipid interactions leading to enhanced thrombus formation on 

atherosclerotic lesions which exert in ischemic events (AMI, stroke etc.). 

Incubating whole blood from healthy subjects with oxLDL showed an enhanced 

platelet aggregation response (Figure 6). Therefore lipid oxidation products are 

also important contributors to the development of atherosclerosis. 

Lipids can contribute to platelet activation and ROS play a crucial role in this 

process along with other regulatory parameters which trigger the aggregation 

cascade (20). ROS production from phospholipids can be initiated not only by 

external triggers (e.g. UV radiation, smoking) but also be enzyme-induced 

during platelet aggregation. (39) Activation of platelets by different agonists also 

leads to the generation of a variety of intracellular lipid signaling intermediates 

and second messengers which contribute to platelet activation (21). Many lipid 

metabolites generated in the arachidonic acid pathway e.g. thromboxane, 

leukotrienes, oxPL can influence platelet activation acting as autocrine agonists 

or boost thromboinflammatory processes acting as paracrine inducers. Current 

experimental findings showing the synergistic effect of oxLDL on ADP induced 

platelet aggregation was one of the main reasons to further investigate other 

intraplatelet lipid metabolites which might influence platelet hyperreactivity in 

CAD patients and thereby contribute to atheroprogression. Moreover, a further 

aim was to compare the platelet lipid profiles between the healthy controls and 
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the subgroups of CAD, including the stable disease (SAP) and its advanced 

stage (STEMI).  

For the purpose of the study liquid chromatography hyphenated to high-

resolution mass spectrometry (UHPLC-ESI-QTOF-MS/MS) was applied. This is 

currently one of the leading lipid profiling method in lipidomics research 

providing highly sensitive and quantitative results. After global lipid profiling, 

specific lipid targets were investigated. 

The final cohort for lipidomics included 13 STEMI and 10 SAP patients which 

platelet lipid profiles were compared to 10 healthy controls. This study was one 

of the first ones to investigate lipid profile in the platelets in the clinical context. 

The study showed significant changes in platelet lipid profiles among healthy 

subjects and CAD patients (21). Platelets of SAP and STEMI patients showed 

higher abundance of various lipids and their metabolites compared to healthy 

subjects (21). As already discussed changes in the platelet lipid profile of CAD 

patients could arise from oxidative/peroxidative and differential enzymatic lipid 

metabolism which is reflective of the activation state of platelets and may 

constitute a driving mechanism of atherosclerosis. Atherogenic lipid metabolites 

enhance the inflammation in the intima layers of arteries and interact with 

platelets leading to their hyperreactivity both of which contribute to plaque 

building and their instability.  

Significant differences in platelet lipid profiles were also observed among the 

subgroups of CAD. Platelets of STEMI patients showed higher levels of most 

lipid metabolites compared to SAP patients (21). This confirms that AMI is the 

state of the most active platelet and lipid interaction where inflammatory and 

oxidation processes are the most active leading to the production and higher 

levels of oxidized lipid metabolites.  

Overall, the study identified 172 lipid species which were significantly more 

abundant in platelets of CAD patients compared to platelets of healthy 

individuals. Lipid species belonging to the main lipid classes including 

triglycerides (TG), phospholipids (PC), diacylglycerols (DG), monoacylglycerols 

(MG), plasmenyl-PC (p-PC), and sphingomyelin (SM) were detected. (21) 
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Ceramides were recently confirmed to be significant predictors of CVD, 

independent of currently used lipid markers (45). 

Another important aspect of the study was the platelet oxPL profile in CAD 

patients (21). Oxidized lipid metabolites, generated by ROS-mediated platelet 

oxidative conversion, including oxPL, lysoPC and CE, were found to be 

expressed in significantly higher amounts in platelets of CAD patients as 

compared to healthy controls. As already discussed POVPC or PGPC promote 

adhesion of monocytes to endothelium, oxLDL uptake, and formation of foam 

cells as well as apoptosis of macrophages and proliferation of smooth muscle 

cells. LysoPC are nonetheless responsible for the development of and were 

proven to independently predict the risk of CVD (79). This confirms the 

significance of inflammation and oxidative stress being as one of the primary 

factors in the pathogenesis of atherosclerosis (80). PL oxidation products 

accumulate in plasma, atheromatous plaques and are essential constituents of 

lipoproteins. Detection of oxPL in platelets suggests that platelets could be 

considered as an important source of oxPL.  

Current guidelines to CVD prevention are based on LDL-C lowering therapies 

as LDL has been proven to be an independent CVD risk factor. Statins and 

some novel agents, e. g. ezetimibe or PCSK9 inhibitors mainly lower the levels 

of LDL-C exhibiting little effect on VLDL, chylomicrons or Lp(a) etc. This study 

detected various lipid entities which are associated with CAD and are 

significantly more abundant in SAP and STEMI patients (21). The detected lipid 

metabolites may be used as novel CVD markers in the clinical practice next to 

the already established ones (TC, TAG, LDL, HDL etc.). This opens new 

possibilities in detecting high-risk CAD patients earlier and improving the 

prevention of CVD and its lethal complications. Novel lipid metabolites may also 

be used as substrate for developing new lipid-lowering therapies in 

atherosclerosis. 
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7.    Conclusion 
 

Atherosclerosis is a systemic inflammatory disease caused by 

monocyte/macrophage and leucocyte accumulation in the intima of arteries, 

leading to the formation of atheromatous plaques. This can subsequently result 

in plaque rupture and thrombotic occlusion of arteries, manifesting in various 

ischemic events (myocardial infarction, cerebral stroke, mesenteric ischemia 

etc.). Platelets contribute to the development of atherosclerosis by the means of 

aggregation, activation of endothelium, production of inflammatory cytokines, 

and thrombus formation upon plaque rupture.  

Lipids, especially oxidized lipid metabolites, also play a crucial role in the 

building of atheromatous plaques. Of crucial importance in the pathogenesis of 

atherosclerosis is the lipid-platelet interplay as oxidized lipids exhibit a 

characteristic feature to activate and enhance the functions of platelets. 

Platelets are therefore able to endocytose lipids and generate its atherogenic 

oxidation products.  

Therefore, hyperlipidaemia is one of the main cardiovascular risk factors. The 

main atherogenic lipoprotein in human bloodstream is LDL-C and is the major 

target of cholesterol-lowering therapy. On the other hand, the number of 

potential novel lipid biomarkers may grow as oxidation processes in the 

development of atherosclerosis generate a variety of oxidized lipid metabolites 

which are currently under investigation. Phospholipid oxidation can be either 

induced enzymatically or non-enzymatically. The former oxidation is initiated by 

different LOX or COX whereas the latter one by ROS. Enzymatic PL-oxidation 

creates an enormous variety of new species of oxPLs which exhibit atherogenic 

features and contribute to the pathogenesis of CAD. E.g. 12-HETE containing 

oxPLs are known for initiating or triggering pro-coagulant functions. Another 

group of PAPC-derived oxPLs (e. g. POVPC or PGPC) promotes adhesion of 

monocytes to endothelium, oxLDL uptake, and formation of foam cells as well 

as apoptosis of macrophages and proliferation of smooth muscle cells. Another 

PAPC-oxidation product PEIPC exhibits the latter functions even more potently. 

Therefore, these oxidized lipid metabolites may serve as novel laboratory 
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markers and help diagnose hyperlipidemic states earlier especially in stratifying 

high risk patients and initiating an appropriate therapeutic strategy for 

prevention of CVD.   

The findings of the current study suggest that the platelet lipid profile differs 

substantially among the healthy subjects and CAD patients. The abundance of 

detected oxidized lipid metabolites was found to be increased in acute stages of 

CAD, i.e. STEMI. The conventional concept of LDL-C being the most important 

factor in the pathogenesis of atherosclerosis might be challenged as these 

novel lipid metabolites also enhance atherosclerosis. Therefore, the detected 

metabolites may be gradually introduced as novel biomarkers to the 

conventional ones (TC, LDL-C etc.) into clinical practices and could improve the 

primary and secondary prevention of CVD. These oxidized lipid metabolites 

may also become novel therapeutic targets. Moreover, the findings of the study 

bring a better understanding of the platelet-related pathomechanisms of 

atherosclerosis. Finally, these findings contribute to the current knowledge of 

lipid metabolism and associated pathophysiology.  
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8.    Deutsche Zusammenfassung 
 

Kardiovaskuläre Erkrankungen sind eine der Hauptursachen für Mortalität in der 

industrialisierten Welt und werden bis zum Jahr 2030 für 23,6 Millionen der 

Todesfälle weltweit verantwortlich sein (1). Der akute Myokardinfarkt (AMI) und 

die damit einhergehenden Komplikationen stellen die schwerste Manifestation 

einer koronaren Herzerkrankung (KHK) und somit eine der häufigsten 

Todesursachen weltweit dar. Zur Entstehung von ischämischen Ereignissen wie 

z. B. AMI trägt die Atherosklerose maßgeblich bei. Hyperlipidämie ist ein 

entscheidender Faktor, der zur systemischen Inflammation und Pathogenese 

der Atherosklerose führt, und stellt somit einen kardiovaskulären Risikofaktor 

mit größter klinischer Bedeutung dar.   

Ziel dieser Studie war die Identifizierung des thrombozytären Lipidprofils in 

gesunden Probanden sowie Patienten mit einer KHK.  Darüber hinaus wurde 

das thrombozytäre Lipidprofil zwischen den gesunden Probanden, Patienten mit 

stabiler Angina pectoris (SAP) und ST-Hebungsinfarkt (STEMI) verglichen.  

Das Thrombozytenlipidrofil wurde bei 13 STEMI-Patienten, 10 SAP-Patienten 

und 10 gesunden Probanden mittels einer Flüssigkeitschromatographie und 

einer gekoppelten high-resolution Massenspektrometrie (UHPLC-ESI-QTOF-

MS/MS) untersucht und verglichen. 

Die Analyse der Hauptkomponenten zeigte eine signifikante Verteilung der 

Thrombozytenlipidprofile in den zwei Gruppen, welche gesunde Probanden und 

Patienten mit einer KHK darstellen (Abbildung 7). Zudem wurden signifikante 

Unterschiede zwischen den Myokardinfarktpatienten und SAP-Patienten 

beobachtet. Somit wurden die größten Mengen der unterschiedlichen Lipide 

und Lipidmetabolite in der akutesten Phase der KHK, das heißt in STEMI-

Patienten, nachgewiesen und zeigten somit einen signifikanten Unterschied im 

Vergleich mit SAP-Patienten und gesunden Probanden.  

Insgesamt konnten 664 Molekulareinheiten beobachtet werden, welche 

signifikante Mengenunterschiede zwischen den KHK-Patienten und gesunden 

Probanden zeigten. 172 Molekulareinheiten konnten manuell identifiziert 
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werden und zeigten die gleiche Tendenz bezüglich des spezifischen 

Vorkommens. Die Ergebnisse sind in einer Heatmap dargestellt und zeigen, 

dass gewisse Lipide in Patienten mit einer KHK, im Vergleich mit den gesunden 

Probanden, vermehrt (p>0,05) ausgeschüttet werden (Abbildung 8). Die 

identifizierten Lipidklassen stellten in erster Linie Triglyzeride, Phospholipide, 

Diacylglycerine, Monoacylglycerine, plasmenyl-Phosphatidylcholine, 

Sphingomyeline und Ceramide dar.  

Ein anderer wichtiger Aspekt dieser Studie war die Identifizierung des Profils 

der oxidierten Phospholipide in Thrombozyten von KHK-Patienten. Oxidierte 

Lipidenmetabolite, einschließlich oxidierter Phospholipide, 

Lysophosphatidylcholine und Ceramide, wurden in signifikant größeren Mengen 

in KHK-Patienten im Vergleich mit den gesunden Probanden sezerniert. Dies 

bestätigt die Signifikanz der entzündlichen und oxidativen Prozesse in der 

Pathogenese der Arteriosklerose (80). Phospholipidenoxidationsprodukte 

kummulieren sich in Plasma, atheromatösen Plaques und sind 

Grundbestandtteile der Lipoproteine. Somit sind die Thrombozyten 

wahrscheinlich eine der wichtigsten Quelle oxidierter Phospholipide im 

Kreislauf.  

Zusammen mit Lipoproteinen können die oxidierten Phospholipide, 

Lysophosphatidylcholine und Ceramide somit als wichtige kardiovaskuläre 

Risikofaktoren betrachtet werden. Ceramide, die reichlich in KHK-Patienten 

ausgeschüttet werden wurden vor kurzem als signifikante Prädiktoren 

kardiovaskulärer Erkrankungen bezeichnet, unabhängig von aktuellen 

Lipidmarkern (45). Lysophosphatidylcholine beschleunigen die Entwicklung 

kardiovaskulärer Erkrankungen und können somit als unabhängige Prädiktoren 

angesehen werden (79). Die oben genannten Lipidmetabolite könnten eventuell 

als neue Biomarker im klinischen Alltag angewendet werden, um die Patienten 

mit hohem kardiovaskulärem Risiko zu identifizieren. Zudem könnten diese 

Lipidmetabolite zur Erfindung neuer Medikamente zur Lipidsenkung im Blut und 

somit zur kardiovaskulären Prävention angewendet werden. Die Studie trägt 

den aktuellen Kenntnissen in der Forschung der Atherosklerose bei und 
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vertiefet das Verstehen der pathophysiologischen Mechanismen in der 

Atherosklerose.  
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