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Abstract 

The investigation of diseased brain is one of the major methods in cognitive 

neuroscience. This approach allows numerous insights both into human cognition and 

brain architecture. Most prominent is the method of lesion behaviour mapping, where 

inferences about functional brain architecture are drawn from focally lesioned brains. 

In the last 15 years, the state-of-the-art implementation of lesion behaviour mapping 

has been voxel-based lesion behaviour mapping, which is based on the framework of 

statistical parametric mapping. Recently, the validity of this method has been 

criticised and multivariate methods have been proposed to complement or even 

replace it. 

In my thesis, I aim to evaluate these different methodological approaches to 

lesion behaviour mapping and to provide guidelines on how lesion-brain inference 

should be drawn. In my first empirical work, I investigate the validity of voxel-based 

lesion behaviour mapping. It shows that previous studies overestimated biases 

inherent to the method, and that validity can be improved by the use of correction 

factors. The second empirical work deals with a recently developed method of 

multivariate lesion behaviour mapping. On the one hand, I clarify how this method 

can be used to obtain valid lesion-brain inference. On the other hand, I show that the 

method is not able to overcome all limitations of voxel-based lesion behaviour 

mapping. In my last work, I apply multivariate lesion behaviour mapping to 

investigate the neural correlates of higher motor cognition. This analysis is the first to 

identify a brain network to underlie apraxia, a disorder of higher motor cognition, 

which underlines the benefits of the new multivariate approach in brain networks. 
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1 Cognitive neuroscience and diseased brains 

The scientific aim of cognitive neuroscience is to understand how the human brain 

works. A major part of this is to map the anatomo-behavioural architecture of the 

brain, that is to find out which brain regions are responsible for a certain cognitive 

behaviour. Until the middle of the 20th century, the mapping of deceased brain has 

been the only available method in this field. The neural correlates of a cognitive 

function were inferred from patients with focal neurologic damage, who suffered from 

deficits in the cognitive function. 

In the last decades, new methods emerged. On the one hand, imaging 

techniques such as electro- or magnetoencephalography, positron emission 

tomography, and functional magnetic resonance imaging were established in the field. 

One important limitation of these imaging methods is that they might not only 

identify regions where activity is causal for a certain cognitive function, but also 

regions where activity is just correlative. On the other hand, non-invasive transcranial 

neurostimulation methods based on electric or magnetic stimulation of the brain came 

up. Latter methods allow drawing the conclusion if activity of certain brain regions is 

necessary for a cognitive function. Unfortunately, transcranial neurostimulation is 

limited to a few experimental protocols, to a few possible stimulation loci, and effects 

are often weak. Here, the mapping of diseased brains comes back into play. Brains 

with focal damage also offer the opportunity to study causality in brain-behaviour 

relations (Rorden & Karnath, 2004). This is the reason why the mapping of diseased 

brains is still an important method in cognitive neurosciences in the 21st century. 

The most common approach in mapping diseased brains involves the study of 

stroke patients, which was termed lesion behaviour mapping. My thesis deals with 

this method, and the greater goal of my work is to find the best way to perform lesion 

behaviour mapping. I investigate the validity of both established and novel methods in 

the field, I empirically define guidelines for novel methods, and I apply these methods 

to identify the networks underlying higher motor cognition. 

In the synopsis of my thesis, I first give an introduction into the methods of 

lesion behaviour mapping in chapter 2. I outline the method’s historical evolution and 

depict procedures that are prerequisites for state of the art lesion behaviour mapping. 

Last, I provide an overview of the methodological paradigm that dominated lesion 
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behaviour mapping in the last 15 years: voxel-based lesion behaviour mapping. In 

chapter 3, I characterise several challenges and limitations in the field of voxel-based 

lesion behaviour mapping. Chapter 4 outlines an approach that is suited to investigate 

the impact of these limitations on the validity of lesion behaviour mapping, and which 

I used to investigate the different methods. Chapter 5 overviews a new method in the 

field: multivariate lesion behaviour mapping. This method is thought to overcome 

several of the limitations mentioned in the chapter before. In chapter 6, I provide a 

short overview on the empirical works in my thesis. Finally, in chapter 7, I picture 

possible future research directions in lesion behaviour mapping. 

2 Lesion-deficit inference – from Paul Broca to statistical parametric 

mapping 

2.1 Early history 

Historically, studies on patients with brain damage were the first studies ever to 

investigate the functional anatomy of the brain. One of the most famous milestones in 

the field dates back to the middle of the 19th century (Broca, 1861). In 1861, the 

French physician and anatomist Paul Broca heard about Louis Victor Leborgne, who 

suffered from a loss of speech production. This patient was unable to speak any words 

other than the syllable “tan”. Broca showed that both Leborgne’s cognitive 

capabilities and his ability to understand speech were largely preserved. When 

Leborgne died, Broca performed an autopsy and found the left inferior frontal cortex 

to be damaged. Broca replicated this finding in several other patients with deficient 

speech production, but intact comprehension. A general conclusion of these findings 

was relevant in providing a paradigm for future research: cognitive functions are 

anatomically localised in the brain. 

For more than 100 years, the methodological approach used by Paul Broca - 

neurological single case studies with post mortem autopsy - was almost the only 

available method to investigate brain-function relationships. Some lesser known 

exceptions were the studies by Tatsuji Inouye (see Glickstein & Whitteridge, 1987) 

and by Gordon Holmes (Holmes & Lister, 1916). They studied patients with non-

lethal gunshot wounds to the brain in the russo-japanese war and the First World War. 

By examining entry and exit wounds in the skull, they were able to map the primary 

visual cortex with high precision. The most innovative aspect about these studies was 
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the examination of a group of patients. Still, single case studies were the standard in 

the field, because anatomical information was usually only obtainable post mortem. 

2.2 The advent of brain imaging and first lesion-behaviour mapping studies 

In 1971, the first in vivo X-ray computed tomography scan of a human brain was 

carried out. Scanning and data processing, however, still took several hours, and the 

final image consisted of only one single low-resolution slice. Two years later, 

application of nuclear magnetic resonance in image generation was first described 

(Lauterbur, 1973) and used to obtain in vivo images in living organisms (Lauterbur, 

1974). Based on these foundations, both X-ray computed tomography (CT) and 

magnetic resonance imaging (MRI) evolved at a tremendous pace into essential 

methods in many clinical fields, culminating in the Noble Prize awards of 1979 for 

Allan Cormack and Godfrey Hounsfield, and 2003 for Paul Lauterbur and Peter 

Mansfield. 

The development of these imaging methods was of outstanding relevance for 

the diagnosis and treatment of stroke. CT allows to differentiate between ischaemic 

and haemorrhagic stroke, which is of vital significance in thrombolysis therapy 

(Freeman & Aguilar, 2012). Moreover, a wide array of more specialised CT or MRI 

clinical imaging protocols emerged, which allow to visualise brain perfusion, vessels, 

and diffusion (Jäger, 2000). Most importantly for the field of lesion behaviour 

mapping, structural CT or MRI that visualises the extent of stroke became available. 

For the first time in history, researchers were able to localize structural brain damage 

after stroke in vivo. This allowed researchers to perform anatomo-behavioural studies 

more efficiently than ever before on groups rather than single patients. 

First anatomo-behavioural studies using these imaging methods qualitatively 

assessed brain damage. To do so, neuroradiologists – or other scientists with 

comparable expertise in brain anatomy and stroke imaging – visually inspected brain 

scans and assessed if certain areas were damaged. Alternatively, for a topographical 

approach, scientists manually transferred the lesion onto a template. In more detail, 

the lesion borders were drawn by hand on a schematic diagram of the brain, which 

could either be an over-simplified line drawing without any or only a few anatomical 

landmarks or any kind of brain template. Further analyses of these topographical data 

were performed qualitatively. For example, individual lesions were overlapped to 

identify brain areas that are often affected when a symptom is present. 
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This approach based on simple overlap topographies is however severely 

limited: brain regions often affected in patients with a symptom are not necessarily 

the neural correlates of the symptom, but instead areas that are simply more often 

affected in stroke in general (Rorden & Karnath, 2004). This issue can elegantly be 

visualised by computing a simple overlap of stroke patients in general, i.e. patients 

unselected for any symptom. In a study on 439 unselected acute right hemisphere 

stroke patients (Sperber & Karnath, 2016), we found overlap maxima in the centre of 

the territory of the middle cerebral artery, including Heschl’s gyrus, insula, and 

putamen. Overlap maxima are thus not specific in identifying a symptom’s neural 

correlates, but can originate from general stroke anatomy. The solution to this 

problem is the inclusion of control patients into the analysis (Rorden & Karnath, 

2004). Control patients are stroke patients that do not suffer from the investigated 

symptom. The underlying rationale is that stroke in all patients follows its typical 

anatomy, however, only in the group of patients with the symptom the neural 

correlates of the symptom are damaged. Anatomo-behavioural studies should thus 

compare both groups. So-called lesion subtraction analysis (Rorden & Karnath, 2004) 

has often been used in this context. This analysis method requires normalised lesion 

data (see below, chapter 2.3.2). The analysis is computed for each voxel (= volumetric 

pixel), i.e. for each 3D imaging point, individually. For each voxel, in both groups the 

proportion of patients with damage in this voxel is identified. The difference between 

both proportional values now can indicate if a voxel is part of a symptom’s neural 

substrate. E.g., if a voxel is damaged in 60% of patients with the symptom, but in 

15% of patients without the symptom (resulting in a difference of +45%), the voxel is 

assumed to be part of it. On the other hand, if a voxel is damaged in 60% of patients 

with the symptom, and also in 60% of patients without the symptom (resulting in a 

difference of 0%), the voxel is likely not neural substrate of the symptom. Latter 

example again illustrates how simple overlap analyses can be misleading, and why 

control patients are required in studies on patients with brain lesions.  

2.3 Voxel-wise Statistical Mapping  

Lesion subtraction analysis was an innovative method that lead to many new insights 

on brain architecture. Yet, it is only a qualitative approach. A more or less wide range 

of non-zero values is always present in a lesion subtraction analysis. Whether these 

values are just random stochastic fluctuations or indicative for an actual brain-
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behaviour relation, is not obvious. This problem was overcome by the implementation 

of voxel-wise statistical mapping into the field of lesion behaviour mapping. Before I 

discuss the principles of this method, I need to introduce some pre-requisites that are 

commonly used for this method. Raw brain imaging obtained by CT or MR is not 

directly usable in voxel-wise lesion behaviour mapping. First, lesioned areas in the 

brain have to be identified, and second, the images have to be warped into a common 

space. 

2.3.1 Lesion visualisation and delineation 

Identification of damaged brain tissue after stroke is not a trivial task (for reviews see 

Provenzale et al., 2003; Merino & Warach, 2010). A first major issue is that we need 

to find an imaging modality that can be used to identify structurally damaged tissue. 

Optimal solutions, however, vary as a function of time since stroke, ranging from 

hyper-acute (~ first 48 hours after stroke) and acute (first 2 weeks after stroke), to 

chronic stroke (>3 months after stroke). When a patient with acute neurological 

symptoms arrives on a stroke unit, acquisition of brain imaging is a first important 

step in stroke diagnosis. Non-contrast CT is very sensitive to haemorrhagic stroke 

even in the early acute stage of stroke. On the other hand, ischemic stroke – with 

about 80% of stroke patients the most common stroke aetiology – often cannot be 

identified with acute CT in hyper-acute stroke. Furthermore, CT can fail to identify 

smaller stroke. Similarly, MR imaging has some limitations in acute stroke. T1-

weighted MR imaging can achieve high imaging resolution, but it does not visualise 

acute structural damage at all. On the other hand, it is sensitive to chronic stroke. T2-

weighted imaging can visualise acute stroke with a resolution that is superior to CT. 

In the hyper-acute stage, diffusion-weighted MR imaging can visualise the core 

ischemic zone, where diffusion broke down due to structural damage. Diffusion-

weighted imaging, however, only provides low resolution, and can - to a minimal 

degree - be misleading about the extent of structural damage (Inoue et al., 2014a). 

The challenge of stroke visualisation is not solved just by choosing the right 

imaging modality at the right time. More fundamental concerns arise in the 

comparison of acute versus chronic damage. In acute stroke, deficits might not only 

arise from structural damage, but also from diaschisis (Carrera & Tononi, 2014; Silasi 

& Murphy, 2014) and temporary malperfusion (Karnath et al., 2005; Zopf et al., 2012; 

Sebastian et al., 2014). In the chronic stage, brain architecture might be altered due to 

neural plasticity, i.e., the brain’s ability to reorganize its anatomo-behavioural 
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architecture in reaction to brain damage (e.g., Chelette et al., 2013; Vaina et al., 2014; 

Veldema et al., 2017). This hampers the transfer of findings in a clinical study to 

general anatomy of the healthy brain. Furthermore, post-stroke atrophy of brain tissue 

can limit the usability of chronic imaging to visualise structurally damaged areas and 

spatial normalisation (see below, chapter 2.3.2.). The complicated topic of choosing a 

time point of stroke imaging and behavioural assessment for lesion behaviour 

mapping was already discussed by several studies, including an own review paper 

(Karnath & Rennig, 2017; Shahid et al., 2017; de Haan & Karnath, 2018; Sperber & 

Karnath, 2018). We can summarise here that lesion visualisation for lesion behaviour 

mapping is not a trivial task, and that no perfect solution exists. 

As soon as a neuroscientist has decided to choose a certain time point after 

stroke (i.e. acute vs. chronic stroke) for clinical imaging consistently across all 

subjects, the structural lesion can be visualised using clinical imaging as illustrated 

above. The next step is lesion delineation, where for each patient, each voxel is 

identified as either damaged or intact. This can be done either manually, or by 

different automatic or semi-automatic algorithms (e.g. Seghier et al., 2008; de Haan et 

al., 2015). The result of this procedure is a binary image, the so-called lesion map. 

2.3.2 Spatial normalisation 

Spatial normalisation replaces the former procedure of manually transferring a lesion 

onto a template (see above, chapter 2.2.). Lesion subtraction analyses and voxel-based 

statistical analyses work on both types of data. Yet, normalisation is preferred for 

being an objective method, that is independent of a researcher and his anatomical 

expertise. 

Lesion maps of different patients are not directly comparable. Brains have 

different shapes and sizes, and patients can lie at different positions in the scanner. 

Therefore, a voxel with the same coordinates in two different lesion maps in native 

space may belong to different brain regions. However, when comparing a voxel 

between two patients in an analysis, we would like both voxels to belong to the same 

structure, e.g. the tip of the middle temporal pole. The spatial correspondence of two 

lesion maps can be achieved by spatial normalisation into a common space. In this 

process, the individual brain scan is warped onto a template by using linear and non-

linear transformations. ‘Template’ here refers to a brain image averaged from multiple 

real brain images and set in a well-defined coordinate system. In normalisation, 

transformations are applied in a way that squared intensity differences between 
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individual brain and template are minimised. The odd intensity values in lesioned 

areas can be controlled for by different strategies (Brett et al., 2001; Nachev et al., 

2008). The resulting normalised brain image is roughly about the same size and shape 

in every subject, and set in a common coordinate system. The same transformation 

parameters are applied to the lesion map, which can now be used in a voxel-wise 

group analysis. 

2.3.3 Voxel-based lesion symptom mapping 

In spatially normalised lesion maps, a voxel coordinate is comparable between all 

subjects. This allows valid application of voxel-wise statistics. Voxel-wise mapping 

of statistical parameters was first applied on functional data obtained by either 

positron emission tomography or functional MR imaging (Friston et al., 1991; Friston 

et al., 1995). This framework, termed ‘statistical parametric mapping’, has been the 

leading analysis paradigm in the analysis of neuroimaging data for years. Its vast 

success is likely rooted in its simplicity: in a data sample of spatially normalised 

images, each voxel is analysed by any statistical parametric test. The resulting 

statistics are remapped into three-dimensional image space. Areas where many voxels 

show significant signal are interpreted as regionally specific effects. Although the 

general rationale to apply this framework to lesion analysis has been suggested in the 

mid-90s (Friston et al., 1995), it has been implemented for the first time only some 

years later in a landmark study by Bates et al. (2003). The method was termed ‘voxel-

based lesion symptom mapping’ (VLSM), and it was used to investigate stroke patient 

samples with continuous behavioural scores. Its exact implementation worked as 

following: for each voxel, the patient sample is divided into two groups – a group of 

patients with damage to this voxel, and a group of patients without damage to this 

voxel. The behavioural variable in both groups is now compared by an independent t-

test, ultimately producing a map of t-statistics. These can then be assessed for their 

significance. If a voxel yields a significant test, with more severe symptoms in the 

group of patients with damage in the voxel, then damage to the voxel is thought to 

underlie the symptom. A statistical map can then be interpreted in reference to a brain 

atlas in the same space (i.e. in the same coordinate system) in order to identify brain 

areas that are connected to the investigated symptom. 

The VLSM-framework is not restricted to the t-test, but can be used with other 

statistics, such as more complex general linear models, binomial, or non-parametric 

tests (e.g. Karnath et al., 2004; Rorden et al., 2007; Schwartz et al., 2012). General 
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linear models are flexible and can include further variables in order to control for 

covariates and more complex effects. If the behavioural variable is not continuous, but 

binary (e.g. symptom present/symptom absent), a binomial test such as the χ²-test can 

be applied. A significant extension of the VLSM was the addition of non-parametric 

tests (Rorden et al., 2007), because parametric tests like the t-test make requirements 

such as normal distribution of data and variance homogeneity, which are commonly 

violated in clinical data sets. Non-parametric mapping in lesion-behaviour mapping 

thus can provide higher statistical power.  

VLSM and its extensions have been the state-of-the-art method in lesion 

behaviour mapping since its first application, and they are used to gain insights into 

the functional architecture of the brain until today. In order to not confuse the reader 

with the terminology used by Bates et al. (2003), I will from now on use the term 

voxel-based lesion behaviour mapping (VLBM), which refers not only to the mass-

univariate t-test in VLSM (Bates et al., 2003), but to all mass-univariate voxel-wise 

lesion symptom mapping methods. This is also in line with the nomenclature in the 

empirical papers in my thesis. 

2.3.4 Voxel-based lesion behaviour mapping – a mass-univariate method 

My thesis investigated and applied methodological approaches that either extend or 

even replace VLBM in certain situations. In order to understand why this can improve 

our insights into brain architecture, we first need to focus on one aspect of VLBM: its 

mass-univariate character. 

Theoretically, a voxel-wise test can be a multivariate test in a way that it 

includes – besides voxel-wise lesion status and behavioural variable – a covariate or a 

second target variable. Most often, however, univariate tests like the t-test are used. 

For clarity in nomenclature, I will from now on only refer to univariate tests in the 

VLBM-framework. In a VLBM analysis, thousands of univariate statistical tests are 

computed. Therefore, this approach has been termed a ‘massively univariate’ or 

‘mass-univariate approach’. A central feature of a mass-univariate analysis is the 

statistical independence of tests. Each and every voxel is tested with a univariate 

statistical test that is independent of all other statistical tests. Imagine we are about to 

compute a VLBM analysis, and we pause the VLBM in the middle of the 

computations. Further imagine that in a brain region with a size of 1000 voxels, 999 

have already been tested, and all of them were significantly related to the tested 

symptom. Intuitively, we would deem it very likely that the 1000th voxel will also 
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contain significant signal. Still, VLBM will continue to test the 1000th voxel with 

another independent test, that is computed as if the 999 tests before never happened. 

We will further see that statistical independence leads to major limitations of the 

VLBM framework. 

3 Challenges and limitations of the mass-univariate approach 

The simplicity of the VLBM-framework is contrasted by complex challenges and 

limitations of the mass-univariate approach or even lesion behaviour mapping in 

general. In two review papers (Sperber & Karnath, 2018; Karnath et al., 2018), I 

provided comprehensive overviews on this topic. In my thesis, I want to focus in-

depth on five such challenges that are faced in mass-univariate lesion behaviour 

mapping. These are i) the multiple comparison problem, ii) limitations of voxel-wise 

statistical power, especially in rarely lesioned areas, iii) lesion size as a possible 

confounding factor, iv) the complexity of functional brain architecture (or functional 

dependence of voxels), and v) the complexity of lesion anatomy (or lesion-related 

dependence of voxels). 

3.1 The multiple comparison problem 

In a mass-univariate test, each voxel is tested independently with a statistical test. For 

interpretation of a test statistic, the corresponding α error probability can be 

computed. The α error probability indicates how likely it is to obtain a false positive 

result, i.e. a significant result when actually no true effect is present. In the context of 

a t-test, an α error would mean that the test suggests a difference of means between 

two groups, although there is no true difference. At which α error probability level (or 

α-level) statistics are performed has to be decided a priori. As there is no perfect α-

level defined by nature, scientists usually follow established conventions when 

choosing such level. In psychology, a commonly chosen α-level is p < 0.05, or p < 

5%. This means that if you perform 20 statistical tests on data that do not contain any 

signal (e.g. random noise), on average one of these statistical tests will yield a 

significant result. 

In order to decide if voxels in a VLBM analysis are significantly associated 

with a symptom, we also have to choose an α-level. Usually, α-levels such as p < 0.05 

or p < 0.01 are chosen. A major issue – termed the multiple comparison problem – 
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now arises, if we perform multiple tests at the same α-level. Imagine that we 

investigate 100000 voxels in a VLSM analysis at an α-level of p < 0.05. If there is 

actually no real connection between voxel-wise lesion damage and behavioural 

variable (i.e. no true positive signal), we will anyway obtain a significant signal in 5% 

of all statistical tests, resulting in 5000 voxels that are significantly associated with the 

symptom. With this problem in mind, we can easily dismiss the entire VLBM analysis 

as a null result if we only find 5000 significant voxels. The situation becomes much 

more difficult, if we find 9000 significant voxels. Likely, some true positive signal is 

present in the data. Still, many voxels will be false positives and you will not be able 

to distinguish which part of the signal are false or true positives. Luckily, there are 

solutions to the multiple comparison problem. 

The multiple comparison problem is not specific to VLBM or mass-univariate 

imaging analyses, but it is present whenever multiple statistical tests are performed 

simultaneously. Non-surprisingly, many scientists and statisticians implemented 

strategies to overcome the multiple comparison problem. A well-known, and easily 

applicable correction is the Bonferroni correction. If n tests are performed at a global 

α-level of p(global), each individual statistical test is performed with an α-level of 

p(individual) = p(global)/n. If a global α-level of p(global) < 0.05 is chosen, that 

means that the probability to obtain one or more false positives across all tests is only 

5%. While the Bonferroni correction very well corrects for false positive inflation in 

multiple tests, it is excessively conservative. In VLBM, where thousands of tests are 

computed, the α-level of an individual test will be vanishingly tiny, and likely no 

single test will ever yield a significant result. A less conservative solution to the 

multiple comparison problem is a correction by false discovery rate (FDR; Benjamini 

& Yekutieli, 2001). Contrary to Bonferroni correction, FDR does not intend to 

eliminate any false positive in the analysis. Instead, a researcher using FDR accepts a 

certain rate of false positive results in all positive results. If, for example, a FDR of q 

= 0.05 is chosen, this means that 5% of all positive findings are expected to be false 

positives. If we then find 9000 significant voxels after applying FDR, we know that 

about 450 voxels will be false positives. FDR thus offers a trade-off between the 

ability to find true signal and some false positive findings. To apply FDR on a set of 

statistical tests, only individual p-values are required, which makes FDR simple to 

compute. On the other hand, there are some drawbacks of FDR in the field of lesion 

behaviour mapping or in general (e.g. Mirman et al., 2018; Karnath et al., 2018). 
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Generally, FDR appears to be too lenient in several cases, but much more 

conservative if the true signal is only small. Yet, FDR is a popular correction method 

in VLBM, statistical parametric mapping, and multiple comparison situations in 

general. 

For statistical mapping, further correction methods based on permutation 

testing are available. Permutation testing is a flexible and powerful approach in 

statistical testing. Generally, established statistical tests such as the t-test can be 

replaced with a permutation test. In comparison with the t-test, permutation testing 

does not rely on distributional assumptions, but it requires larger computational 

power. Another benefit of permutation testing is that tests can perform exact, i.e. truly 

at an α-level of p, and not only asymptotically at p. Theoretically, all t-tests in a 

VLSM could be replaced by permutation tests. This would, however, not help us with 

the multiple comparison problem. Still, each voxel would be tested at an individual α-

level, and α errors would accumulate across the many performed tests. 

To solve the multiple comparison problem in VLBM with permutation tests, a 

more sophisticated approach has to be chosen (Nichols & Holmes, 2002; Nichols & 

Hayasaka, 2003). The permutation test somehow has to consider a variable that is 

derived not on voxel level, but that originates from the whole brain. One solution is to 

consider the maximum statistic. Like described above, e.g. t-tests are performed for 

each voxel individually on the real data. This will provide a statistical map of t-

statistics. Next, several thousands of permutations of the behavioural data are also 

analysed with VLSM. Each of these analyses on random data will provide a 

maximum t-statistic, i.e. the highest t-value found across the whole statistical map. 

This will tell us which maximum t-statistics can be expected by chance. At an α-level 

of p < 0.05, we can now identify the maximum t-statistic that is yielded while only 

5% of all analyses yield higher maximum statistics. Using this t-value, the original 

statistical map can be thresholded, and all voxels above this t-value are considered to 

be associated with the symptom. Another permutation approach in VLSM uses the 

maximum cluster size instead of maximum statistics. With an analogue approach, it is 

investigated what cluster sizes of significant voxels above an a priori α-level can be 

expected by chance. Then, in the VLSM on real data, all clusters are deemed 

significant that have a size that is larger than the threshold obtained in the permutation 

analysis. Permutation tests in VLSM are computationally demanding, and some 

drawbacks are known (Mirman et al., 2018). On the other hand, they are thought to 
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provide a more appropriate correction than the lenient FDR correction. 

3.2 Voxel-wise power and rarely lesioned brain voxels 

If statistical parametric mapping using the t-test is applied on functional data, each 

voxel can be tested with the same groups. E.g., if two conditions are compared voxel-

wise based on data of 30 subjects, each voxel will be subject to a t-test that compares 

30 data points versus 30 data points. This (purely fictional) example for functional 

data will appear different if we now instead look on lesion data in a VLSM. Here, 

groups are defined by who has a lesion in the voxel and who has no lesion there. 

Regions across the brain are differently susceptible to stroke, and voxel-wise lesion 

frequencies vary (Sperber & Karnath, 2016). Which patient groups are compared per 

voxel and size of the groups thus varies across the brain. Furthermore, lesions are rare 

in many brain areas. As a consequence, the group of patients with a lesion in a voxel 

is very small (up to non-existent) in many voxels. A two-samples t-test that compares 

a large group of patients without lesion in a voxel with a group of zero patients with a 

lesion cannot be computed. As soon as latter group includes at least one patient, a t-

test statistic can mathematically be computed, but it is still obvious non-sense. It 

becomes interesting as soon as we look at cases, where the lesion-group has two or 

more patients. It is difficult to define a cutoff at which a group is large enough to be 

validly tested with a t-test. A post-hoc voxel-wise power analysis can be helpful here 

(Kimberg et al., 2007). Such power analysis will also show that voxel-wise power 

considerably varies across voxels, and that power is lowest in areas that are rarely 

affected (Kimberg et al., 2007). 

In summary, we have the following problem in nearly all lesion data samples: 

for many voxels in the brain statistical power is too low for proper voxel-wise 

analysis, and in more extreme cases statistical tests might be either not be computable 

at all, or might provide odd results. In order to account for these problems, scientists 

apply a criterion for minimum lesion affection in a lesion analysis. This is often 

verbalised in a paper’s method section as following: ‘We only tested voxels with at 

least x lesions’ (see, e.g., Goldenberg and Randerath, 2015; Mirman et al., 2015; 

Tarhan et al., 2015; Timpert et al., 2015; Watson and Buxbaum, 2015). This simply 

excludes all these potentially problematic voxels from the analysis. In turn, VLBM 

analyses are never truly a whole brain analysis, what usually is not explicitly 

communicated in studies. 
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3.3 The effect of lesion size 

Lesion size is a major confounding factor in any anatomo-behavioural study that 

investigates brain damage. This is not limited to voxel-wise or mass univariate 

analyses. Most neurological symptoms correlate with lesion size. The reason is not 

that lesion size itself induces a symptom, but that larger lesions are more likely to 

affect a critical brain region. The resulting general problem can be grasped intuitively: 

imagine a researcher in the 19th century that aims to identify the neural correlates of a 

symptom. He is able to post-mortem dissect the brains of two patients with the 

symptom, and finds that one patient suffered from a full stroke of the middle cerebral 

artery territory, and the other suffered from a small stroke to the temporo-parietal 

junction. Obviously, investigation of latter patient with a smaller lesion tells us much 

more about the neural correlates of the symptom. Large lesions, on the other hand, do 

not provide us with spatially specific information. Unfortunately, there is even more 

to this problem in VLBM. Average size of a lesion in a voxel differs across the brain, 

i.e. there are regions that are on average affected more frequently by larger lesions 

than other regions. With lesion size being highly correlated with most behavioural 

variables, patients with more severe symptoms will also have larger lesions. Thus, a 

VLBM analysis might not only map the neural correlates of a symptom, but also 

regions that are typically affected by larger lesions. 

Several approaches exist to overcome this issue. First, one might restrict a 

lesion analysis to only small lesions (Price et al., 2017). While this strategy indeed 

controls for the issues with lesion size – and partially also for other issues outlined in 

chapter 3.5 – it only aggravates issues related to statistical power. When we only 

investigate smaller lesions, lesion frequencies per voxel will be lower, and problems 

related to statistical power, as described in chapter 3.2, will be more prominent. In 

addition, such strategy would require application of more stringent exclusion criteria. 

This might not be optimal, because clinical samples are already difficult to acquire 

with less strict exclusion criteria. Another approach is to control for the effect of 

lesion size in the lesion analysis. The most common approach here is to control the 

behavioural variable for variance explained by lesion size (Karnath et al., 2004; 

Schwartz et al., 2012). This can be done by regression methods that can identify the 

variance in the behavioural variable explained by lesion size. In the actual lesion 

behaviour mapping analysis, only the residuals of this regression, i.e. the variance not 

explained by lesion size, is mapped. 
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Such stringent control of lesion size should theoretically overcome the 

problems in VLBM mentioned above. Yet, the approach was seen as controversial. 

First, lesion size often highly correlates with behavioural symptoms. Therefore, the 

regression approach removes a lot of variance from the behavioural data. The 

remaining variance might then be too low to find positive signal in VLBM analysis. 

In other words, control for lesion size comes with decreased statistical power. A 

second problem was controversially discussed (Karnath & Smith, 2014; Nachev, 

2015; Xu et al., 2018). The average lesion size varies across the brain (see Sperber & 

Karnath, 2016), thus some brain areas are typically affected by larger than average 

lesions. If the neural correlates of a symptom are located in a brain area that is 

typically affected by larger lesions, then the control for lesion size might be unfairly 

penalised. It has been stated that this problem “will inevitably confound the 

anatomical inference” (Nachev, 2015). And indeed, looking at this problem from a 

more moderate and nuanced perspective, such biases are probable at least in some 

cases of VLBM analyses. If, however, such biases predominate, or if a control for 

lesion size does more good than harm, has never been investigated before. 

3.4 The complexity of functional brain architecture and the partial injury problem 

In the chapter above I elaborated on the mass-univariate nature of voxel-based lesion 

behaviour mapping and the independence of statistical tests. In two ways, the 

assumption of independence in VLBM seems to be unfitting to investigate the brain. 

The first is related to cognitive brain architecture. If we perform an independent 

statistical test on a single voxel – like in VLBM – we implicitly act as if damage to 

this single voxel was underlying the investigated symptom. However, lesions with the 

size of a single voxel (e.g. 1x1x1mm³) will most likely go clinically unnoticed. This 

will also happen in a voxel that was found to be associated with a symptom in a 

VLBM analysis. The reason is that the single voxel alone does not underlie the 

investigated cognitive function. Instead, neurons in many voxels have to work 

together to create the neural substrate of cognitive abilities. This could be a larger 

cluster of neurons that together form a brain region, or multiple brain regions in a 

brain network. In other words, neurons in a voxel work dependently with neurons in 

other voxels. 

The independence of tests in VLBM leads to the so-called ‘partial injury 

problem’ (Kinkingnéhun et al., 2007; Rorden et al., 2009). A cognitive module that is 
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larger than a voxel can be damaged only partially by a lesion, i.e. some voxels of this 

module can be damaged and some of them remain intact. In this situation the VLBM 

analysis will suffer from lower power, and the analysis might fail to identify the brain 

module/brain network in parts or in whole. For an in-depth explanation of the partial 

injury problem, I’d like to refer the reader to the introduction and figure 1 of the 

second project of my thesis, ‘An empirical evaluation of multivariate lesion behaviour 

mapping’. 

3.5 The complexity of lesion anatomy 

The second way in which the independence of voxel-wise statistical tests seems to be 

unfitting to investigate the brain is related to lesion anatomy. The cerebrum is 

supplied by three major brain arteries, the anterior, the middle, and the posterior 

cerebral artery. These arteries each supply a territory in the brain with only small 

overlap. These territories are located the same across humans with some variance (van 

der Zwan et al., 1993; Tatu et al., 2012; Neumann et al., 2016). Likewise, branches of 

these major arteries are – with few exceptions, especially for the anterior cerebral 

artery – located similarly across individuals. Thus, each branch of a major artery 

typically supplies a certain brain region. Further, branches of the brain arteries are 

differently susceptible to stroke, leading to typical locations of lesions (see Caviness 

et al., 2002; Sperber & Karnath, 2016). Therefore, both after ischemia and 

haemorrhage, brain lesions follow typical patterns along the vasculature. This fact is 

well illustrated by Lee at al., 2009, who show MR images of typical posterior cerebral 

artery stroke loci with reference to the occluded branches of the posterior cerebral 

artery. 

Following these typical patterns, lesions often damage voxels collaterally. In 

other words, damage to two voxels is not independent. But how does this affect the 

results of VLBM? Imagine that the neural correlates of a cognitive function are 

organised in a small brain area A. Placed next to this brain region A is another brain 

region B that is not related to the cognitive function. Further imagine that both areas 

are supplied by the same branch of a cerebral artery. Thus, whenever the branch is 

occluded in stroke, both brain regions will be affected at once. Therefore, if a post-

stroke cognitive symptom is present after damage to area A, area B will often be 

damaged as well. Likewise, if area B is damaged after stroke, most often area A will 

also be damaged, and the symptom is present. A VLBM analysis investigating the 
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symptom will now likely not only correctly identify area A as neural substrate of the 

function, but also area B. In this example, we see how the dependence of voxels in 

relation to stroke anatomy – from here one referred to as ‘anatomical dependence’ – 

can lead to wrong results in lesion behaviour mapping. 

4 Investigating the validity of lesion behaviour mapping methods 

In the previous chapter, I introduced a quintet of challenges and limitations present in 

mass-univariate lesion behaviour mapping. I discussed these points from a purely 

theoretical perspective, with some fictional examples. Such theoretical perspective, 

however, might not be sufficient in finding the optimal way to perform lesion 

behaviour mapping. While the multiple comparison problem does not leave much 

opportunity for objections, the other problems are more controversial. Especially for 

the last two issues – functional and anatomical dependence of voxels – there is a wide 

range of possible conclusions available. On the one extreme, we might now admit that 

some possible inaccuracies exist in lesion behaviour mapping, that we however deem 

to be too small or irrelevant when performing a study. On the other extreme, we might 

feel compelled to discard the mass-univariate entirely and abandon all findings of 

previous studies using this method (Mah et al., 2014; Nachev, 2015; Xu et al., 2018). 

In my opinion, these problems are too complex to solve them from a purely 

theoretical perspective. If we aim to find out if these issues considerably affect the 

validity of VLBM, or if we want to find out which strategy to investigate lesion-

behaviour inference is superior, we need some validation method. Unfortunately, it is 

not trivial to investigate the validity of lesion behaviour mapping. Ideally, the results 

of a lesion behaviour mapping analysis would be compared with some ground truth, 

i.e. a cognitive module that is anatomically well known and thus represents a gold 

standard. A valid analysis of the related cognitive function should then identify the 

ground truth. However, the knowledge we have of brain architecture is largely based 

on lesion behaviour mapping. Using our knowledge of the brain to define a ground 

truth thus is a circular error. In a review paper (Sperber & Karnath, 2018), I addressed 

this problem at greater length, and proposed several strategies to investigate the 

validity of lesion behaviour mapping methods. In my dissertation, one of these 

approaches plays the most important role: simulation studies.  
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4.1 A simulation approach to test the validity of lesion behaviour mapping 

We can investigate the validity of lesion behaviour mapping with simulations. These 

simulations require a sample of real lesions, which are processed into binary, 

normalised lesion maps. The behavioural scores required for lesion behaviour 

mapping, however, are no real data. Instead, these are simulated data. The central idea 

is that we arbitrarily choose the anatomical ground truth underlying a cognitive 

function. For example, we decide that the inferior parietal gyrus – as defined by any 

brain atlas – is the neural correlate of a fictional symptom. Next, we compute a score 

for the behavioural symptom for each lesion. For example, we could decide that each 

lesion that has at least 10% of all voxels in the inferior parietal gyrus damaged is 

associated with the presence of a binary symptom. If we instead desire a continuous 

variable, we could choose an algorithm that computes a behavioural score from a 

lesion’s damage to the inferior parietal gyrus. A simple, straight-forward algorithm is 

a linear relation between damage to the inferior parietal gyrus and the behavioural 

score. In its simplest version, the behavioural score is equivalent to the damage in the 

region. For example, a lesion that affects 25% of all voxels in the inferior parietal 

gyrus would be associated with a behavioural score of 25; the maximum obtainable 

score would then be 100, indicating maximal symptom severity. 

There are several advantages of simulation studies. First, and most 

importantly, we have exact knowledge about the ground truth, i.e. the anatomical 

correlates of a symptom. For this very reason, we can use simulations to validate 

lesion behaviour mapping. Second, an infinite amount of ground truth regions or 

simulation algorithms can be chosen. This allows us to perform large group studies 

with complex designs. Third, simulations provide us with a tool to investigate all the 

issues that I introduced in chapter 3. By using real lesions in simulations, we will 

likely find the usual effects of lesion size, and damage between voxels is dependent. 

Further, we can choose ground truths that consist of multiple regions, thus adding 

functional dependence between voxels. A major limitation of simulations is limited 

ecological validity – simulation algorithms are likely over-simplified, with real lesion-

behaviour relations being more complex in several aspects. Still, such simulations 

provide us with a powerful opportunity to validate lesion behaviour mapping. 

Consequently, several studies utilised simulation approaches to compare different 

approaches to lesion behaviour mapping (Rorden et al., 2009; Mah et al., 2014; Inoue 

et al., 2014b; Zhang et al., 2014; Pustina et al., 2018; DeMarco & Turkeltaub, 2018). 
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4.2 The independence of statistical tests in the mass univariate approach put on 

trial 

Some studies used simulations to investigate if functional or anatomical dependence 

between voxels affects lesion behaviour mapping. The first study came from the 

Nachev group (Mah et al., 2014), and was – so far – the most influential one. This 

study aimed to investigate if and how much VLBM is affected by functional or 

anatomical dependence. In a first experiment, they investigated simulations that were 

only based on damage to one single voxel. Thus, there was no functional dependence 

of voxels present, but due to the use of real lesions, anatomical dependence was. They 

found that maps of statistically significant voxels in a VLBM were not centred on the 

simulation’s ground truth voxel, but shifted by on average 16mm towards the centre 

of the vascular territory. In a second experiment, they investigated what happens if 

functional independence comes into play. They based simulations on two ground truth 

regions, in a way that damage to either region could lead to the simulated symptom. 

Doing so they showed that VLBM can yield results that can be grossly misplaced. 

The authors concluded that the only possible consequence was nothing less than the 

abandonment of mass-univariate lesion behaviour mapping in its entirety. The same 

position was hold in subsequent review papers by the Nachev group (Nachev, 2015; 

Xu et al., 2018). In parallel, the study by Inoue et al. (2014) investigated the same 

questions, with only slightly different simulations. Their findings mirrored the ones 

by Mah et al. (2014), thus strengthening their quality by a first replication. 

The issues with functional independence were further disseminated in the 

studies by Zhang et al. (2014) and Pustina et al. (2018). They also investigated 

simulation ground truths consisting of multiple regions, however with a more 

elaborated design. Both studies found that VLBM often fails to identify all ground 

truth regions, and instead only correctly identifies some of them. These findings are in 

line with the partial injury problem (see chapter 3.4). 

To sum up, some studies have shown that the assumption of independence in 

mass-univariate lesion behaviour mapping indeed leads to errors. This was found to 

be the case for both functional and anatomical independence of voxels. Although I do 

not fully agree with the rigorous criticism expressed by Nachev and colleagues, I 

think that these issues in VLBM are a clear limitation. From personal experience, I 

especially see problems in identifying brain networks, which is hampered by the 

partial injury problem. As examples where this issue is highly relevant, I see apraxia 
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of pantomime (see the third project in my thesis, ‘The network underlying human 

higher-order motor control: Insights from machine learning-based lesion-behaviour 

mapping’) or spatial neglect (see Karnath & Rorden, 2012). For both symptoms, 

VLBM studies found markedly heterogeneous results. As outlined in my review 

(Sperber & Karnath, 2018), this heterogeneity might have originated from the partial 

injury problem. VLBM analyses might have identified only parts of the underlying 

brain networks, and the parts found in each study might have varied due to random 

sampling effects or due to smaller methodological differences. 

5 Multivariate lesion behaviour mapping 

The findings by Mah et al. (2014) lead to vigorous discussions on the validity of 

mass-univariate lesion behaviour mapping, and the flames were fanned by a parallel 

development: the advent of multivariate lesion behaviour mapping (MLBM). 

The central idea behind MLBM is to compute (statistical) models not for each 

voxel individually, but for multiple voxels or regions at once. Theoretically, any 

multivariate statistical method that can model a dependent variable (in VLBM: the 

behavioural score) based on multiple independent variables (in VLBM: voxel-wise 

lesion status) could be considered here. Methods such as multiple regression or n-way 

ANOVAs (for n ≥ 2), however, are limited in lesion behaviour mapping, as they are 

not suited to compute models based on enormous numbers of independent variables. 

Such methods are especially problematic if the number of observations (i.e. the 

number of subjects) is smaller than the number of independent variables. Thus, 

previous implementations of MLBM utilised more complex ways to model data. Such 

can be machine learning algorithms such as a support vector machine (SVM). SVMs 

model a binary variable based on a large number of variables (for more information 

see Vapnik, 1995; Hastie et al., 2008). As machine learning algorithms play an 

important role in my thesis, we require some technical terms: the dependent variables 

in machine learning are often referred to as input variables or features. The predicted 

variable, or target variable, can be a binary or a continuous variable. When the target 

variable is binary (e.g. symptoms present vs. symptom not present), the algorithms are 

used to perform a classification. When it is continuous, the algorithms are used to 

perform a regression. 

The first study that performed MLBM used a SVM to classify the presence of 
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spatial neglect (Smith et al., 2013). Aim of the study was to find a SVM that can 

classify patients only by using anatomical data. Such SVM model could provide new 

insights into lesion-deficit inference. As features, Smith et al. computed the 

proportion of damage to a priori chosen regions of interest. These regions of interest 

were taken from brain atlases. In so-called cross-validation, the performance of SVMs 

was assessed. It was investigated if combinations of either two or three features (i.e. 

damage to two or three regions of interest) provide better models than SVMs using 

less features, that is either one or two regions. This strategy points at a major 

challenge: the relevance of a single feature in SVM is difficult to access. A viable 

strategy is to compute a SVM on a set of features, and then remove one feature. If 

model performance significantly decreases, the one feature was important. The 

problem in MLBM is that with many features, like dozens of regions of interest or 

even thousands of voxels, the amount of possible feature combinations explodes. 

Therefore, the study by Smith et al. was restricted to a maximum of three features. 

All in all, there are several disadvantages to this approach. First, it is limited to 

a priori chosen regions of interest. Second, although strictly speaking being 

multivariate, the approach is limited to a small number of features. Third, being a 

classification, the full variance of continuously measured behaviour cannot be 

investigated. These problems are shared with another multivariate approach based on 

game theory (Toba et al., 2017). 

The next study that used MLBM was the study by Mah et al. (2014), who did 

not only identify problems with VLBM (see chapters 3.4 and 3.5), but additionally 

suggested that MLBM might be the only way to obtain valid lesion-brain inference. 

However, they also faced the challenge of interpreting the relevance of features in 

SVM. They performed a SVM on voxel level. To do so, they included the damage 

status of each voxel (damaged vs. not damaged) as features. With such large amount 

of features, a direct comparison between SVM models is not an option. Instead, they 

assessed the feature weights. In a SVM, each single feature is weighted in order to 

generate the model. This feature weighting is not informative on its own, and it does 

not tell us if a feature significantly contributes to a model. However, feature weights 

can be ranked. Mah et al. aimed to directly compare VLBM with MLBM. In the 

VLBM, they found a certain amount of significant voxels. Then, in the SVM, they 

selected the same amount of voxels, and chose the voxels that had the highest feature 

weight. This approach allowed a limited comparison of univariate versus multivariate 
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lesion analysis, yet it is not a practically usable approach. Importantly, Mah et al. 

postulated that MLBM is able to overcome the problems related to both functional 

and anatomical dependence of voxels. Their simulations, however, only pointed at 

better performance of MLBM in regard to functional dependence (see chapter 3.4), 

but not anatomical dependence (see chapter 3.5). Still, the authors heavily emphasized 

the importance of MLBM to overcome the problems related to anatomical 

dependence, and maintained this position in two review papers (Nachev, 2015; Xu et 

al., 2018). 

Only shortly after the study by Mah et al. (2014), Zhang et al. (2014) 

published the next study that implemented MLBM. This study finally was able to 

overcome the problem with interpreting features. As in the MLBM approach by Mah 

et al., Zhang et al. included information from individual voxels as features. Instead of 

a SVM, they employed a support vector regression (SVR). This is an algorithm that 

extents SVM so that continuous target variables can be included. The major 

innovation was a permutation approach to test the contribution of each voxel to the 

SVR model. As in Mah et al., the model was computed and feature weights were 

assessed. Next, the same procedure was performed for a large amount of random 

permutations of the behavioural data. Latter analyses shows what feature weights can 

be expected with random data. Like commonly done in permutation testing, statistical 

thresholds can be inferred from these analyses to assess statistical significance of 

feature weights in the analysis of real data. The resulting topography is a voxel-wise 

map of statistical significance. 

This approach, termed support vector regression based lesion symptom 

mapping (SVR-LSM), has several advantages. First, it is able to model continuous 

target variables. Second, it includes individual voxels as features, and thus it does not 

depend on the quality of any a priori parcellation of the brain. Furthermore, the 

modelling process can include an immense amount of voxels, even up to a whole 

brain analysis. Last but not least, the method underwent an elaborated validation by 

simulations. These simulations have shown that SVR-LSM outperforms VLBM in 

identifying complex functional modules like brain networks. In other words, SVR-

LSM is able to capture the functional dependence of voxels. Likely due to these 

benefits, SVR-LSM was quickly adopted in the field (Mirman et al., 2015b; Fama et 

al., 2017; Griffis et al., 2017; Ghaleh et al., 2018; DeMarco & Turkeltaub, 2018), and 

I adopted this method while working on my thesis to investigate the neural correlates 
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of spatial neglect (Wiesen et al., submitted), the line bisection error, and apraxia. The 

latter is part of the present thesis. 

Note that in recent years, more attempts to establish multivariate lesion-brain 

inference were made (e.g. Yourganov et al., 2015; Toba et al., 2017; Pustina et al., 

2018). These approaches were not investigated or used in my thesis. Therefore, I will 

not further discuss them. This shall not hide the fact these methods also have potential 

to complement lesion-deficit inference. 

6 Empirical research questions in my thesis 

6.1 Impact of correction factors in human brain lesion-behavior inference 

The first empirical work takes a second look at the validity of VLBM. It closely 

follows the work by Mah et al. (2014), who found systematic errors in VLBM due to 

functional and anatomical dependence of voxels. In my work, I challenge the severe 

criticism on VLBM by putting a focus on two correction factors in VLBM: correction 

for lesion size and restriction of the analysis to voxels with sufficient power. Both 

factors were neglected in the study by Mah et al. Using simulations, my study shows 

that this has inflated errors in VLBM, and that correction for lesion size is generally 

beneficial in VLBM. 

 

6.2 An empirical evaluation of multivariate lesion behaviour mapping 

The second empirical work examines the SVR-LSM approach. Although previous 

studies have shown the superiority of SVR-LSM in detecting functionally dependent 

brain modules, many open questions remained. A major theoretically relevant 

question is, if SVR-LSM not only captures functional dependence between voxels, 

but also anatomical dependence. Several authors advertised multivariate lesion 

behaviour mapping as only valid way to analyse lesion-deficit inference because it 

captures the anatomical dependence of voxels. However, it was never properly 

investigated before if MLBM indeed is able to do so. In my thesis, I use simulations 

to show that this in fact not the case – SVR-LSM still suffers from systematic biases 

due to lesion anatomy. Furthermore, I investigate the practically relevant questions if 

SVR-LSM requires a correction for multiple comparisons, and what sample sizes are 

required in SVR-LSM. 
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6.3 The network underlying human higher-order motor control: Insights from 

machine learning-based lesion-behaviour mapping 

The third empirical work finally applies SVR-LSM to investigate the neural correlates 

of real behaviour. Here, I investigate the apraxia of pantomime. Previous studies 

investigated apraxia with VLBM, and their results were heterogeneous. A possible 

explanation might be that the actual neural correlates of apraxia are a complex brain 

network, where VLBM is limited due to the partial injury problem. In my thesis, I 

showed that SVR-LSM identifies multiple brain regions to underlie apraxia. All these 

brain regions were found by previous VLBM studies, but often in isolation. This 

suggests that SVR-LSM is a valuable tool when brain functions organised in networks 

are investigated. 

7 Future challenges and research directions in lesion behaviour 

mapping 

A large amount of methodological innovations in the field of lesion-deficit inference 

came up in the last years. Besides MLBM, several methods based on magnetic 

resonance imaging also allow insights into lesion-deficit inference. Among those are 

fMRI, resting-state fMRI, diffusion tensor imaging, and perfusion imaging. In a 

review paper, I discussed how these methods can be used in neurological patients to 

investigate the functional anatomy of the brain (Karnath et al., 2018). For new 

research directions in the near future, it suggests itself to utilise these methods to 

study brain anatomy. Currently, I apply MLBM to gain new insights into the neural 

correlates of several neurological deficits. Furthermore, I would like to deepen the 

understanding of anatomical networks underlying praxis skills by using diffusion 

tensor imaging. I believe this method is better suited to identify involved white matter 

tracts than lesion behaviour mapping methods. In this case, lesion behaviour mapping 

and fibre tracking nicely complement each other. 

Additionally, there are major challenges that require methodological 

refinement. These methodologically oriented research directions also logically follow 

the works in my thesis: the optimisation of MLBM and its clinical application. 

7.1 Optimisation of (multivariate) lesion behaviour mapping 

With the help of the simulation approach, it was shown that MLBM is superior to 

VLBM in some regards. Still, MLBM is far from being perfect. One main problem is 
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that hyperparameter optimisation in SVR-LSM should not solely aim at maximising 

model fit. Rather, a trade-off between model fit and parameter generalisability should 

be aimed at (Rasmussen et al., 2012; Zhang et al., 2014). Unfortunately, clear 

guidelines on hyperparameter optimisation in SVR-LSM are not existent. Another 

main problem is the power to detect positive signal. The study on MLBM in apraxia 

in my thesis, but also several previous studies of other authors using SVR-LSM found 

only weak signal. Here, like for VLBM (Rorden et al., 2009), strategies to improve 

statistical power are required. In addition, the problem with anatomical dependence 

still exists. I believe that there is no way to remove this bias entirely. Yet, some ways 

exist that might reduce it, and future studies should investigate their potential. 

The SVR-LSM approach is not the only method in MLBM. Other methods 

based on game theory (Toba et al., 2017) or sparse canonical correlations (Pustina et 

al., 2018) were recently developed. Especially the latter was thoroughly evaluated and 

promises high potential in lesion behaviour mapping. Nobody yet compared all these 

MLBM methods, and it is not known which of these methods is least susceptible to 

biases due to anatomy, which is best suited to identify brain networks, and which is 

most valid with smaller sample sizes. 

 

7.2 Translational utilisation of lesion behaviour mapping 

I am deeply interested in understanding the brain, and lesion-deficit inference plays a 

role in doing so. However, sometimes I ask myself what my work in basic research is 

good for, and why society should fund my research. Even worse, family or friends 

might want to know what purpose my research has. Luckily, there are potential 

clinical applications of lesion behaviour mapping. 

In MLBM, machine learning algorithms are used to model behavioural scores. 

How well the algorithms can predict the behavioural score from anatomical data only 

plays a minor role here. Prediction of scores, however, bears translational 

applicability when we find algorithms that can predict chronic behaviour based on 

acute brain imaging. Such algorithms could predict, e.g., the upper limb motor 

impairment six months after stroke based on brain imaging acquired two days after 

stroke onset. If such algorithms work with high prediction accuracy, we could provide 

important information for planning patient care and guide rehabilitation. If such 

algorithms point at high potential for recovery, rehabilitation efforts could be 
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increased, or otherwise, with no potential for recovery, compensation strategies could 

be trained.  

Some prediction algorithms already were established recently (Rondina et al., 

2016). There are, however, several challenges left unsolved. In the moment, I work on 

prediction algorithms for motor impairments. A study by Rondina et al. (2016) 

suggested that feature selection is a major factor for well-performing algorithms. 

Here, approaches adopted from MLBM could provide means to perform feature 

selection in a data-driven way. 

Another is to find out what further variables – besides voxel-wise damage – 

underlie pathological behaviour. In MLBM, we only want to investigate the role of 

voxel-wise damage in the modelling process, and maximisation of prediction 

accuracy is not an aim. However, for translational use, the algorithms are supposed to 

be maximised for prediction. As factors such as age, pre-stroke cognitive status, co-

morbidity, education and so on might play a role in inducing a symptom, we need find 

out which additional variables have to be included into the models for a good 

prediction. 
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Abstract 

Statistical voxel-based lesion-behavior mapping (VLBM) in neurological patients 

with brain lesions is frequently used to examine the relationship between structure and 

function of the healthy human brain. Only recently, two simulation studies noted 

reduced anatomical validity of this method, observing the results of VLBM to be 

systematically misplaced by about 16 mm. However, both simulation studies differed 

from VLBM analyses of real data in that they lacked the proper use of two correction 

factors: lesion size and ‘sufficient lesion affection’. In simulation experiments on a 

sample of 274 real stroke patients we found that the use of these two correction 

factors reduced misplacement markedly compared to uncorrected VLBM. Apparently, 

the misplacement is due to physiological effects of brain lesion anatomy. Voxel-wise 

topographies of collateral damage in the real data were generated and used to compute 

a metric for the inter-voxel relation of brain damage. ‘Anatomical bias’ vectors that 

were solely calculated from these inter-voxel relations in the patients’ real anatomical 

data, successfully predicted the VLBM misplacement. The latter has the potential to 

help in the development of new VLBM methods that provide even higher anatomical 

validity than currently available by the proper use of correction factors. 
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Introduction 

To identify critical brain regions representing cognitive functions in the human brain 

early neuroscience had to rely on posthumous autopsy of individual brain damage 

(Broca, 1861; Wernicke, 1874). Today, modern imaging methods in combination with 

new statistical procedures allow to infer lesion-behaviour relationship at a group level. 

Voxel-based lesion-behavior mapping (VLBM) techniques with either parametric 

(Bates et al., 2003) or non-parametric (Rorden et al., 2007) statistics is frequently 

used for this purpose (overview cf. Table 1 in Karnath & Rennig, 2016). The central 

aspect of this inferential method is the attempt to control for regions that are not 

critical for the behavioral deficit under consideration; i.e. they aim to rule out regions 

of the brain that are simply vulnerable to damage and thus commonly damaged in 

stroke patients. The statistical procedure allowed numerous new insights and replaced 

the simple lesion overlap strategy, which included marked anatomical biases (cf. 

Rorden & Karnath, 2004). 

One technical assumption of the VLBM method is statistical independence of 

all voxels, i.e. that the lesion status of a voxel is treated independently of the lesion 

status of adjacent voxels. In reality, however, the anatomy of stroke follows typical 

patterns that are defined by the vascular trees (Phan et al., 2005; Lee et al.,2009; 

Sperber & Karnath, 2015). Two recent studies thus have assessed the localization 

accuracy of the VLBM method (Inoue et al., 2014; Mah et al., 2014). Both studies 

used a simulation approach based on large neurological patient samples with brain 

damage. They observed a bias within the lesion-deficit maps, displacing inferred 

critical regions from their true anatomical locations by about 16 mm towards areas of 

greater general lesion affection. Mah et al. (2014) speculated that “the pattern of 

mislocalization across the brain will depend on the complex interaction between the 

multivariate lesion distribution and brain functional architecture“. They suggested to 

use novel machine learning techniques – such as multivariate pattern analysis (Smith 

et al., 2013; Mah et al., 2014; Zhang et al., 2014) – that employ high-dimensional 

inference to accurately describe the true locus. Multivariate pattern analysis indeed 

appears to be an enrichment of modern lesion analysis to train and then test predictive 

models based on the pattern of damage to multiple regions (Karnath & Smith, 2014). 

However, this does not necessarily need to rule out the value of VLBM for certain 

scientific approaches per se.  
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In fact, the two previous simulation studies (Inoue et al., 2014; Mah et al., 

2014) computed the VLBM analyses without the proper use of two commonly used 

correction factors, which might have led to underestimation of anatomical accuracy. 

Despite of the very large sample size included by Mah et al. (2014) the authors did 

not control for lesion size. However, for most behavioral deficits lesion size − 

independent from lesion location − is the best predictor for severity of the behavioral 

deficit; larger lesions are more likely to affect critical anatomical structures (Karnath 

et al., 2004). If a sufficiently large dataset is available, VLBM studies of real data sets 

thus control this effect, typically by regressing out lesion size from the behavioral 

scores. The simulation study by Inuoe et al. (2014) indeed corrected for lesion size. 

Surprisingly, they found VLBM with a correction for lesion size to produce a larger 

bias than without correction. However, the study by Inuoe et al. (2014) was based on 

a lesion sample very different from the typical stroke samples used in VLBM studies 

of real data sets. The authors did not only include patients with stroke but also with 

other etiologies, such as e.g. encephalitis or surgical resections. It appears as if the 

proportion of non-stroke patients was very high in that the lesion overlay with frontal 

and fronto-temporal maxima markedly differed from the typical topography of 

unselected strokes with a maximum of overlap in the center of the territory of the 

middle cerebral artery (Phan et al., 2005; Mah et al., 2014; Sperber & Karnath, 2015). 

Thus, it remains to be tested in which way a VLBM study based on only stroke 

etiology is modified by a correction for lesion size. 

A further discrepancy between the simulation study by Inuoe et al. (2014) and 

VLBM studies of real data sets is that the latter typically restrict statistical analysis to 

voxels that are affected by a certain proportion of lesions. This restriction to only 

voxels with ‘sufficient lesion affection’ prevents that results are biased by brain 

regions that are only rarely affected by stroke and thus do not carry sufficient 

information. In contrast to this common practice, the simulation study by Inuoe et al. 

(2014) did not control for this factor. In the study of Mah et al. (2014), ‘sufficient 

lesion affection’ was controlled with a criterion of n = 4, equivalent to 0.7% of the 

total sample. Real VLBM studies usually apply such correction in the range of 5 ≤ n ≤ 

10, equivalent to roughly 5%-10% of the whole sample (e.g. Goldenberg & 

Randerath, 2015; Mirman et al., 2015a; Tarhan et al., 2015; Timpert et al., 2015; 

Watson & Buxbaum, 2015). 
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Taken together, it remains an open question whether or not a VLBM bias 

occurs under the proper control for lesion size and for ‘sufficient lesion affection’ in a 

stroke patient sample. If indeed a considerable misplacement remains, it would be 

interesting to find out the origin of this bias. Mah et al. (2014) speculated that such 

bias might originate from systematic ‘parasitic’ voxel-voxel relations of collateral 

brain damage in the general anatomy of stroke and the lesion-deficit relation itself, 

which inevitably stays a black box in real settings. To clarify this question, we aimed 

to quantify the inter-voxel relations and experimentally test if these alone are able to 

predict the size of possible VLBM misplacement. 

 

Methods 

Patients with acute first unilateral, right hemispheric stroke admitted to the Centre of 

Neurology at the University of Tübingen were recruited. Patients with diffuse, 

bilateral, or cerebellar lesions, with tumors, marked anatomical distortion due to 

intracerebral hemorrhage, or patients without obvious lesion in MRI or spiral CT were 

excluded. A sample of 274 patients (mean age = 61.2 years; SD = 13.5) was recruited. 

Of these patients 233 had an infarct and 41 a hemorrhage. Patients or their relatives 

gave informed consent to participate in our study, which was performed according to 

the ethical standards laid down in the 1964 Declaration of Helsinki. 

Brain lesions were demonstrated by MRI in 144 cases and by spiral CT in 130 

cases. On average, imaging was acquired 4.5 days (SD = 7.4 days) after stroke onset. 

Binary lesion maps were created by manual delineation of lesion boundaries on axial 

slices of the patient’s individual scan using MRIcron 

(www.mccauslandcenter.sc.edu/mricro/mricron). For patients who underwent MR 

scanning, diffusion-weighted imaging (DWI) in the hyper acute stage until 48 hours 

after stroke onset and T2-weighted fluid attenuated inversion recovery (FLAIR) 

imaging in later stages after stroke onset were used to delineate the lesions. If 

available, these scans were co-registered with a high-resolution T1-weighted structural 

scan using SPM8 (www.fil.ion.ucl.ac.uk/spm). Brain scans were warped into MNI 

space with 1x1x1 mm³ resolution by using SPM8 spatial normalization algorithms 

and the Clinical Toolbox (Rorden et al., 2012), which provides age-specific templates 

both for MRI and CT scan normalization. Delineation of lesion borders and quality of 

normalization were verified by consensus of two experienced investigators. 
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Experiment 1: The spatial bias of VLBM in a realistic analysis setting 

To investigate the performance of VLBM, two previous studies (Inuoe et al., 2014; 

Mah et al., 2014) used simulated ‘behavioral’ scores instead of the patients’ real 

behavior to avoid circular reasoning. A priori, a so called ‘truth model’ which was 

thought to be the neural substrate of the simulated behavior was selected. The ‘truth 

model’ was defined by a brain region taken from a brain atlas (Inoue et al., 2014; Mah 

et al., 2014) or was even as simple as a single voxel (Mah et al., 2014). Subsequently, 

an algorithm to compute continuous simulated ‘behavioral’ scores from damage to the 

truth model brain regions was implemented. Based on this algorithm ‘behavioral’ 

scores were calculated as a function of damage to these brain regions. As a final step, 

these truth model brain regions were compared to the voxel-wise, three-dimensional 

statistical map that was obtained in a VLBM analysis. The present experiment used a 

simulation procedure analogous to these previous simulation procedures. The aim was 

to test the impact of additional control for lesion size and for ‘sufficient lesion 

affection’. 

 

Simulation of ‘behavioral’ scores 

To define our truth model, we chose the Automatic Anatomic Labelling atlas (AAL) 

(Tzourio-Mazoyer et al., 2002) distributed with MRIcron, providing 45 right 

hemisphere cortical and subcortical regions. Since the AAL atlas is slightly larger 

(few voxels at the borders) than the templates used for normalization, overlaying 

voxels were manually removed from the AAL. In line with the two previous 

simulation studies (Inoue et al., 2014; Mah et al., 2014), we chose a simple algorithm 

to compute continuous simulated scores from damage to the truth model. This 

strategy appears convincing since (a) no realistic mathematic model of lesion-score 

relationship exists and (b) a simple simulation model should be affected by a bias 

genuine to VLBM the same way as a complex model. The simplest model to compute 

continuous scores based on damage to brain areas is a linear model, i.e. a model that 

computes ‘behavioral’ scores s as a linear function of the proportion of the damage to 

a truth model area x: . 

The ‘behavioral’ scores were set between 0 (no deficit) and 100 (maximal 

deficit). For example, a patient without any damage to a given area received a 

simulated ‘behavioral’ score of 0 and a patient with 27% damage of all voxels in this 

area received a score of 27. For each of the 45 AAL regions we performed three 
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simulation runs, each with randomly drawn samples of 100 lesions, resulting in 135 

simulations per condition. Limiting sample size to 100 lesions allowed us to draw 

conclusions for real VLBM settings. The simulation was implemented using custom 

scripts in MATLAB 2009 and the ‘Tools for NIFTI and ANALYZE image’ toolkit 

(http://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-

analyze-image). 

 

Comparison of the statistical VLBM map and truth model 

In order to reduce computational demands, we chose a mass-univariate t-test with 

false discovery rate (FDR) correction, implemented in Nii-Stat software 

(www.nitrc.org/projects/niistat/). This test is commonly used in modern VLBM 

studies and requires only minimal computational power. All statistical analyses were 

tested for a p = .05 level. One of our hypotheses was that limiting the analysis to only 

voxels with sufficient ‘general lesion affection’ should improve the performance of 

VLBM. In accordance with a widely accepted criterion, we defined the threshold for 

‘sufficient affection’ as 5% of the whole sample. We contrasted the effect of data 

restriction to voxels with ‘sufficient affection’ to the procedure without this restriction 

by setting Nii-Stat to only test voxels at least damaged in n = 5 patients (equal to 5%) 

versus to test all voxels at least damaged in n = 1 patient. In particular, the latter 

condition has been used in the simulation study by Inuoe et al. (2014). However, if 

voxels with less than 5% lesion affection were still included in our simulation as a 

part of truth model brain regions − while excluding the same from the analysis − this 

would a priori cause inability of any lesion analysis method to identify the truth 

model. Therefore, we not only applied the 5%-criterion in the analysis as a correction 

factor, but we also introduced a further condition were we applied the 5%-criterion in 

the analysis as well as the simulation. For this condition, we simulated scores based 

on an alternative set of truth model brain regions that only covered aforementioned 

voxels. In detail, we created a modified version of the AAL by simply removing all 

voxels that did not fulfill the 5%-criterion. Seven regions were eliminated completely 

(supplementary motor area, medial superior frontal gyrus, orbital part of middle 

frontal gyrus, anterior cingulum, middle cingulum, posterior cingulum, paracentral 

lobule). This modified AAL offered a second, alternative set of truth models that 

considered ‘sufficient lesion affection’ already in the simulation. 

Our second hypothesis was that controlling for lesion size improves VLBM 
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performance. We thus carried out a VLBM analysis on each subsample once without 

controlling for lesion size and once with controlling for lesion size. To implement a 

control for lesion size we used the built-in default procedure of Nii-Stat: before the 

mass-univariate test is computed, lesion size is linearly regressed on the behavioral 

scores. Following this regression, we used the residuals for the actual VLBM analysis. 

As dependent variables we included the same measurement of spatial 

misplacement defined by the centers of mass of truth model and statistical map as 

used in the two previous simulation studies by Mah et al. (2014) and Inoue et al. 

(2014). In detail, for each simulation step an a priori truth model region and a 

statistical map were available. For both these three-dimensional binary images the 

centre of mass was calculated and the Euclidean distance was measured. Additionally, 

we calculated ‘sensitivity’ (true positive rate: hits/(hits+false negatives)) and 

‘precision’ (positive predictive value: hits/(hits+false positives)). The advantage of 

these parameters is that they do not rely on correct rejections, as these might be 

inflated due to the size of the image bounding box. In fact, the study by Inoue et al. 

(2014) found this parameter to be close to ceiling level across all groups. 

 

Results 

The sample of 274 lesions covered nearly the total right hemisphere and 770556 

voxels were damaged in at least one patient (Fig. 1A). A majority of lesions lay in the 

territory of the middle cerebral artery with a centre of affection around putamen and 

insula. The topography closely resembled the one on stroke patients provided in the 

supplementary material in Mah et al. (2014). Of these 770556 voxels 81.4% were 

covered by at least 5% of all lesions (equivalent to 14 lesions) (Fig. 1B). Our two 

hypotheses were tested in a 3x2 design, with factors ‘control for sufficient lesion 

affection’ (not controlled with n = 1 criterion; controlled in the analysis only with n = 

5 criterion; controlled in analysis and simulation with n = 5 criterion) and ‘control for 

lesion size’ (controlled; not controlled). Over 97% of all VLBM analyses yielded 

significant results and were included into the final analysis. As both factors were only 

partially paired, a repeated measure ANOVA could not be computed. Therefore, as 

often done in this situation (e.g., Samawi & Vogel, 2013), we here calculated and 

report results of an independent ANOVA. 
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Figure 1: Topography of brain lesions 

Lesion topography for all 274 patients with (A) continuous color scaling and (B) with 

an alternative step-wise color scaling to show all voxels that were damaged in at least 

x % of all patients. Numbers above the slices indicate z-coordinate in MNI space. 

 

In addition, we performed a repeated measures ANOVA only using available paired 

data; all significant results of the repeated measures ANOVA turned out to be 

significant again and thus are not reported here. In case of significant effects, 

Bonferroni-corrected post-hoc tests were calculated. Averaged over all groups, the 

misplacement was 18.6 mm (SD = 11.3 mm). The ANOVA revealed that 

misplacement was affected by ‘control for sufficient lesion affection’ (F(2,739) = 

14.02; p < .001) and ‘control for lesion size’ (F(1,739) = 88.73; p < .001) (Fig. 2A). 

Both factors did not interact (F(2,739) = 1.55; p = .21). Post-hoc tests showed that 

misplacement was lower if VLBM analyses were controlled for lesion size and for 

‘sufficient lesion affection’ both in the analysis and simulation. Under these 

conditions, misplacement was reduced to 11.5 mm (SD = 6.3 mm). Sensitivity was 

generally high (Sens. = .73; SD = .33) (Fig. 2B). Factor ‘control for sufficient lesion 

affection’ had a significant impact on sensitivity (F(2,739) = 130.88; p< .001) with 

the n = 5 criterion in both simulation and analysis outperforming the other groups. 

Factor ‘control for lesion size’ neither affected sensitivity as a main effect (F(1,739) = 

1.21; p = .27) nor in an interaction with ‘control for sufficient lesion affection’ 

(F(2,739) = 0.67; p = .51). ‘Precision’ was generally very low (prec. = 0.12; SD = 
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.11) and was affected both by ‘control for lesion size’ (F(1,739) = 186.84; p < .001) 

and ‘control for sufficient lesion affection’ (F(2,739) = 8.09; p < .001) (Fig. 2C). 

Again, the interaction was not significant (F(2,739) = 0.73; p = .48). ‘Control for 

lesion size’ improved ‘precision’; post-hoc tests revealed that ‘control for sufficient 

lesion affection’ with the n = 5 criterion in both simulation and analysis was inferior 

to the general n = 1 criterion. These two groups did not significantly differ from the 

condition with the n = 5 criterion in the analysis only. 

The simulated behavioral scores correlated with lesion size both in the 

condition with the full AAL simulation (average correlation r = .43; SD = .21) and 

with the modified AAL simulation (for ‘sufficient lesion affection’; average 

correlation r =.47; SD = .22). This is in the range of behavior-lesion size correlations 

in real patient data, that may range from low, non-significant correlations to high 

correlations of r = .7 (e.g., Kertesz & Ferro, 1984; Brott et al., 1988; Wittmann et al., 

2004). The average peak t-values of statistical maps were t = 8.51 (SD = 0.72) for all 

simulations and t = 7.99 (SD = 0.62) for simulations both controlled for lesion size 

and ‘sufficient lesion affection’ (see Fig. 3 for example t-maps). Thus, our simulation-

based peak t-values were in the high upper range of peak t-values in real VLBM 

studies (e.g., Verdon et al., 2010).  

 

Discussion  

Simulation experiment 1 revealed that misplacement of VLBM results can be 

minimized by the use of lesion size as a covariate and the exclusion of voxels with 

low lesion affection. Under these conditions, the misplacement could be reduced by 

48% compared to uncorrected VSLM, adding up to only 11.5 mm (Fig. 2a). The 

following experiment should clarify whether this bias is due to natural stroke anatomy 

determined by the vascular architecture and systematically biased inter-voxel relations 

of collateral damage, i.e. if it represents an ‘anatomical bias’.  
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Figure 2: Effects of factors ‘control for lesion size’ and ‘control for sufficient 

lesion affection’ in VLBM analysis 

Results of the 3x2 ANOVA conducted in experiment 1 addressing the effects of 

factors ‘control for lesion size’ and ‘control for sufficient lesion affection’ in VLBM 

for (A) misplacement, (B) sensitivity, and (C) precision. Error bars represent standard 
deviation. Asterisks indicate significance in post-hoc tests on the effects of ‘sufficient 

lesion affection’ control (*p < .05, ***p < .001). 
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Figure 3: Example t-maps 

For three regions of interest example t-maps from experiment 1 are shown. All maps 

originate from the condition with both control for lesion size and ‘control for 

sufficient lesion affection’ in simulation and analysis. (A) three regions of interest 

taken from the AAL atlas: insula (blue), middle temporal gyrus (purple), and inferior 

frontal gyrus, triangular (red) (B) VLBM results for the insula with t(max) = 7.35 (C) 
VLBM results for the middle temporal gyrus with t(max) = 7.91 (D) VLBM results 

for the inferior frontal gyrus, triangular with t(max) = 8.04. Color coding in B-D 

indicate t-values thresholded to only show voxels with significant t-values p < .05. 
Numbers above the slices indicate z-coordinate in MNI space. 

 

 

Experiment 2: Effects of stroke anatomy on VLBM 

Mah et al. (2014) computed voxel-wise VLBM misplacement vectors, i.e. vectors 

based on the misplacement of statistical VLBM results compared to a truth model 

region/voxel, indicating that such results were systematically biased. In contrast, we 

here aimed to calculate voxel-wise vectors based on the patients’ anatomical data, i.e. 

on the data before any statistical analyses were applied. Therefore, we generated 

voxel-wise topographies of collateral damage in the real data and used them to 

compute a metric for the inter-voxel relation of brain damage. If indeed inter-voxel 

relations should be the cause for the misplacement in lesion mapping, the VLBM-

misplacement vectors observed by Mah et al. (2014) should be reliably predictable by 

our ‘anatomical bias’ vectors based on anatomy.  

 

A voxel-wise vector for ‘anatomical bias’ 

For each simulation run, first a voxel (‘truth model voxel’) was chosen. To define the 

target point of an anatomical bias vector, i.e. a centre of anatomical affection, we 

identified all lesions that included this truth model voxel to create a ‘voxel overlay’ 
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(Fig. 4A). This topography already offers information on the anatomy of stroke that 

affects the truth model voxel. However, it neglects lesions that do not include the truth 

model voxel. Therefore, we calculated an element-wise division of the voxel overlay 

divided by the overlay of the whole 274 patient sample (Fig. 1A) to produce 

topographies of inter-voxel relation. This results in a single topography for each 

chosen truth voxel individually (Fig. 4B). The values in this topography indicate how 

many lesions that lie in any voxel also include the truth voxel. The proportional 

values vary between 0 (0% of all lesions in this voxels also contain the truth model 

voxel) and 1 (100% of all lesions in this voxel also contain the truth model voxel). For 

example, if in the topography for a certain truth model voxel any voxel contains the 

value 0.27, this means that 27% of all lesions in this voxel also damaged the truth 

model voxel. To prevent a high impact of voxels that are generally rarely affected by 

stroke and to stay close to the study by Mah et al. (2014), we limited this analysis to 

voxels that were damaged in at least 4 patients. The centre of mass of this topography 

was identified (Fig. 4B) and used to define a vector of ‘anatomical bias’ (purple 

vector in Fig. 4D). Due to high computational demands, this analysis was not carried 

out for the whole brain, but for 100 randomly chosen voxels. 

 

A voxel-wise vector for misplacement 

The creation of a voxel-wise VLBM misplacement vector was implemented 

analogous to the study by Mah et al. (2014). Given a truth model voxel, a binary 

‘behavioral’ score was simulated. If the lesion of a patient also included damage to 

the truth model voxel, the patient received a behavioral score of ‘1’ (present deficit); 

else he received a ‘0’ (no deficit). These ‘behavioral’ scores were used in a lesion 

analysis on the whole 274 patients data sample in Nii-Stat, using the Liebermeister 

test (Rorden et al., 2007) and FDR correction. Only voxels damaged in at least 4 

patients were investigated. This analysis of simulation data yielded a binary statistical 

map for each truth model voxel (Fig. 4C). The misplacement was defined as the 

vector from the truth model voxel to the centre of mass of this statistical map (green 

vector in Fig. 4D). 
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Figure 4: Example for the computation of voxel-wise anatomical bias and VLBM 

misplacement 

For one exemplary truth model voxel (MNI coordinates x=47, y=24, z=20), the 

procedures in experiment 2 are illustrated. (A) All lesions that include the chosen 

truth model voxel (blue cross) are identified to create a ‘voxel overlay’. (B) For each 

voxel damaged in at least 4 patients the ‘voxel overlay’ is element-wisely divided by 

the total overlay of all 274 patients (see Fig. 1A) to produce a topography of inter-

voxel relation. The centre of mass of the resulting topography (purple circle) offers a 

voxel-wise centre of anatomical affection. (C) The truth model voxel is used to 
simulate a binary ‘behavioral’ deficit. A lesion analysis computes a statistical map 

(red area) and the centre of mass of this map (green triangle) provides the centre of 

VLBM results. (D) The previously defined coordinates and the truth model voxel 

(blue) are used to define a vector of ‘anatomical bias’ (purple arrow) and a vector of 

misplacement (green arrow). All illustrations are shown on slice z=20. Note that for 

the present figure the resulting centers are projected back to same z-slice for 
illustration purposes. 

 

 

Results 

The 100 randomly chosen voxels were damaged in at least 13 and maximally 96 of all 

274 patients (mean = 32.7; SD = 18.1). For each of these voxels we calculated the 

VLBM misplacement vectors (Fig. 5A) and anatomical misplacement vectors (Fig. 

5B). On average the anatomical misplacement vector was 25.7 mm (SD = 7.7mm) 

long. By using a FDR correction at p = .05, the average VLBM misplacement vector 

for the same voxels was 18.3 mm (SD = 6.1 mm) long and thus significantly smaller 

than the anatomical misplacement vectors (t(99) = 16,66; p< .001). As the length of 

the VLBM misplacement vectors depended solely on false alarms – and thus on how 

conservative a test is – we ran a second simulation on the same voxels, but with a 

FDR correction at p = .01. For this more conservative test, the misplacement was 16.3 

mm (SD = 5.5 mm) and significantly lower than with the less conservative test (t(99) 

= 15,98; p < .001). The length of vectors for VLBM misplacement and for anatomical 

bias correlated highly both for FDR correction at p = .05 (Pearson´s R = .82; p < .001) 
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and p = .01 (R = .76; p < .001). To measure directional similarity, we computed the 

cosine similarity that ranges between 1 if two vectors have the same direction and -1 

if they point into the opposite direction. If two vectors are exactly orthogonal, cosine 

similarity is 0. Cosine similarity was cos(θ) = .91 (SD = 0.12) for p = .05 and cos(θ) = 

.88 (SD = 0.15) for p = .01. Thus, although anatomical vectors were significantly 

larger than misplacement vectors, both sets of vectors appeared to be highly similar.  

 

 [Figure 5 near here] 

Figure 5: Vector maps for ‘anatomical bias’, VLBM misplacement, and 

corrected VLBM misplacement 

The vector graphics visualize the results of experiment 2 exemplarily for slice z=17. 

(A) Vector map for the misplacement of statistical VLBM results at p=.05. (B) Vector 

map for ‘anatomical bias’. Voxel-wise vectors here were based on the inter-voxel 

relation in the anatomical data, i.e. on the data before any statistical analyses were 

applied. (C) Vector map for ‘corrected misplacement vectors’ using the minimization 

factor k=0.6495. For illustration purposes, the length of the vectors does not show the 
real vector length, but is scaled using the same factor in all graphics. Color-coding 

indicates the length of the vectors in mm. 

 

Considering the similarity of the vectors and the assumption, that an ‘anatomical bias’ 

is the reason for a VLBM misplacement, one should be able to predict VLBM 

misplacement with the ‘anatomical bias’ and thus correct the VLBM misplacement. 

Therefore, we computed the position vector of the VLBM centre of mass and 

subtracted the ‘anatomical bias’ vector, i.e. we corrected the VLBM centre by the 

information provided from inter-voxel relation of brain damage in the anatomical 

data. The distance between the truth model voxel and this new corrected centre of 
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VLBM results was expressed as ‘corrected misplacement vectors’. On average the 

corrected misplacement vector was 11.2 mm (SD = 3.2 mm) long for p = .05 and 13.1 

mm (SD = 4.0 mm) long for p = .01. Given the different sets of misplacement vectors 

for varying p-levels and the larger vectors for anatomical misplacement, we expected 

lower ‘corrected misplacement vectors’ for more optimal correction with vectors 

individualized for the chosen p-level. Therefore, for both p-levels, we looked at every 

pair of misplacement vector  and anatomical bias vector  and searched via 

minimization function for a factor k for which the corrected misplacement 

 was minimal. For a significance level of p = .05, the corrected 

misplacement was minimized by an average factor of k = 0.6495. This minimization 

factor was applied to the ‘corrected misplacement vectors’ (Fig. 5C). On average, 

these ‘corrected misplacement vectors’ had a length of 6.8 mm (SD = 2.9 mm), which 

was a significant improvement compared to the uncorrected misplacement (t(99) = 

19,48; p< .001). For a significance level of p = .01 we found k = 0.5655 to be the 

average optimal factor that significantly reduced uncorrected misplacement to 7.0 mm 

(SD = 3.0 mm) (t(99) = 17,38; p< .001. Cosine similarity between the original 

misplacement vector and this corrected misplacement vector was cos(θ) = .34 (SD = 

0.42) for p = .05 and cos(θ) = .40 (SD = 0.41) for p = .01. 

 

Discussion 

Experiment 2 tested if VLBM misplacement can be predicted by its underlying stroke 

anatomy. In fact, we revealed that the ‘anatomical bias’ based on the inter-voxel 

relation affected the VLBM results. In other words, measurable aspects of stroke 

anatomy indeed appear to be the source of VLBM misplacement. The VLBM-

misplacement vectors observed by Mah et al. (2014) thus can be reliably predicted by 

our ‘anatomical bias’ vectors based on anatomy. 

 

General discussion 

The concept of a correction for lesion size by linear regression has recently been 

criticized on a theoretical level (Nachev, 2015): as lesion size varies with anatomical 

location, it was argued that the correction would confound the anatomical interference 

and could even amplify the misplacement of VLBM results. In contrast to this 

assumption, we here observed in a large sample of stroke patients that lesion size in 

fact has a significant impact on VLBM accuracy. A closer look at the inter-voxel 
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relation explains this effect: larger lesions inflate the number of ‘parasitic’ inter-voxel 

relations over long distance (see Fig. 4A/4B) and thus enlarge the bias in VLBM. 

Beyond, the present simulation demonstrated that the VLBM misplacement is reduced 

by controlling for rarely affected brain areas (‘control for sufficient lesion affection’). 

In combination, the use of factors ‘correction for lesion size’ and ‘sufficient lesion 

affection’ markedly reduced the misplacement of VLBM results compared to 

uncorrected VSLM. The two variables reduced VLBM misplacement in an additive 

manner, i.e. both correction factors independently improved VLBM accuracy. 

The correction factors ‘lesion size’ and ‘sufficient lesion affection’ also 

increased variables ‘sensitivity’ and ‘precision’. Variable ‘sensitivity’ was very high 

in general, thus the actual anatomical correlate of a simulated behavior was correctly 

identified together with a high number of false alarms that were spatially oriented in 

the direction of the misplacement. The operationalisation of ‘misplacement’ used in 

the present as well as the two previous simulation studies (Inuoe et al., 2014; Mah et 

al., 2014) thus could be criticized, as the simple Euclidean distance between two 

centers of mass omits such information and can result from an infinite number of 

different configurations that can differ in sensitivity, precision etc. This problem is 

underlined by the fact that many VLBM studies provided results that were not located 

primarily in subcortical structures but rather at cortical grey matter regions (e.g., 

Karnath et al., 2004; Kalénine et al., 2010; Karnath et al., 2011; Manuel et al., 2013; 

Mirman et al., 2015), although a pure misplacement effect should shift cortical 

structures towards the centre of the vascular territories. 

Although the control for ‘sufficient lesion affection’ improved performance of 

VLBM analyses, it is important to note that this method at the same time limits 

VLBM analyses. In the literature, VLBM studies usually provide a simple overlay 

topography of all lesions and display results on a template for the whole brain. The 

fact that such studies actually did not test parts of the brain is often not referred to 

explicitly. However, VLBM analyses self-evidently do not provide any information 

about brain areas that are not tested, i.e. that fall below the criterion for ‘sufficient 

lesion affection’. Therefore, we included the non-realistic experimental condition with 

control for ‘sufficient lesion affection’ in analysis and simulation into experiment 1. 

This condition simulated behavioral scores only based on areas that were above the 

criterion for ‘sufficient lesion affection’. With this condition, experiment 1 has shown 

that control for ‘sufficient lesion affection’ improves performance of VLBM within 



55 

 

the area of tested voxels. At the same time, the condition with control for ‘sufficient 

lesion affection in the analysis only’ has shown that this correction also impairs 

VLBM if related to the whole brain. While misplacement was not significantly 

affected, sensitivity was decreased. This is not surprising, as positive signals could not 

be identified in voxels that were not tested and misses thus were inflated. To 

conclude, limiting VLBM for ‘sufficient lesion affection’ trades in spatial extent of 

the analysis (i.e. less voxels are tested) for a more valid VLBM performance in voxels 

that are tested. This conclusion can be transferred to real VLBM studies. Contrary to 

the present condition with ‘sufficient lesion affection in simulation and analysis’, in 

real VLBM studies brain regions relevant to behavior might also lie in brain areas that 

are not tested, i.e. that are removed from the analysis due to correction for ‘sufficient 

lesion affection’. Such areas thus should be considered as a black box that still could 

contribute to behavior. Following this principle, the condition with 'sufficient lesion 

affection in simulation and analysis' in our present study is transferrable to real 

VLBM studies. 

The misplacement of statistical VLBM maps apparently is due to 

physiological effects of brain lesion anatomy. Lesion anatomy here includes the 

lesion-deficit relationship as well as the inter-voxel relation. While the lesion-deficit 

relationship describes the relationship between the lesion of a certain region and its 

behavioral consequences, inter-voxel relation is the voxel-wise topographies of 

collateral damage. In a simple simulation setting that was comparable to the simple 

simulation settings in the two previous studies (Inuoe et al., 2014; Mah et al., 2014), 

we successfully corrected the VLBM misplacement by ‘anatomical bias’ vectors, 

solely calculated from inter-voxel relations in the patients’ real anatomical data. 

However, in the present as well as in the two previous simulation studies (Inuoe et al., 

2014; Mah et al., 2014) the lesion-deficit relationship only played an intermediate role 

as it was used to compute simulated ‘behavioral’ scores – based on a stroke anatomy 

with systematically biased inter-voxel relations. A systematic bias in the lesion-deficit 

relationship itself (e.g., higher impact of subcortical voxels inside a single truth model 

region on simulated behavioral scores) was not introduced. Thus, the biased inter-

voxel relation alone was the reason for VLBM misplacement. Furthermore, 

magnitude of VLBM misplacement was affected by the VLBM’s p-level, however the 

correlation between misplacement and ‘anatomical bias’ was high in both tested p-

values. 
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In VLBM studies of real data sets it is unlikely that systematically biased 

lesion-deficit relations itself generally contribute to the VLBM misplacement. The 

black box of lesion-deficit relations rather plays a mediating role, as it determines the 

severity of a deficit based on lesions that suffer from biased inter-voxel relations.  

Given that the inter-voxel relation data is the main source of VLBM misplacement, 

magnitude and direction of VLBM misplacement could be estimated and new 

correction algorithms that even further improve validity of VLBM results are 

imaginable. A possibility for such prospective correction could be an anatomical 

parcellation atlas that incorporates the anatomy of stroke and the underlying inter-

voxel relation – at the cost of data resolution compared to a voxel-wise analysis. Also, 

the development of retrospective correction algorithms is imaginable. By using a valid 

anatomical reference sample such algorithms could be applied post-hoc on previous 

VLBM studies. As experiment 2 was based on a simple simulation model and 

‘anatomical bias’ depended on VLSM parameters, more complex algorithms will be 

required for such purpose. Possible candidates for such corrections that are able to 

identify spurious results vs. true results are, e.g., voxel-wise vectorial algorithms or a 

seed-based approach that directly uses the inter-voxel relations (analogous to, e.g., 

resting state analyses [Fox & Raichle, 2009]). 

To conclude, the misplacement bias in VLBM results is in fact much smaller if 

appropriate correction factors are used. Although such correction might be biased by 

the variability of lesion size across the brain (Nachev, 2015), positive effects 

obviously prevail. The misplacement appears to be due to physiological effects of 

brain lesion anatomy. The latter has the potential to help in the development of new 

VLBM methods providing even higher validity than currently available by the proper 

use of correction factors. 



57 

 

Acknowledgements 

This work was supported by the Deutsche Forschungsgemeinschaft (KA 1258/23-1). 

Christoph Sperber was supported by the Friedrich Naumann Foundation. The authors 

would like to thank David V. Smith for his valuable and stimulating comments on the 

manuscript. We also thank the staff of the Division of Neuropsychology at Tübingen 

University who helped to collect and pre-process the imaging data; in particular, 

Bianca de Haan, Johannes Rennig, Urszula Mihulowicz, Julia Suchan, and Dongyun 

Li. 



58 

 

References 

Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF 

(2003): Voxel-based lesion-symptom mapping. Nat. Neurosci. 6:448–50. 

Broca P (1861): Remarques sur le siège de la faculté du langage articulé, suivies 

d’une observation d’aphémie (perte de la parole). Bulletin de la Société 

Anatomique 6: 330–57. 

Brott T, Marler JR, Olinger CP, Adams HP, Tomsick T, Barsan WG, Biller J, Eberle 

R, Hertzberg V, Walker M (1989): Measurements of acute cerebral infarction: 

lesion size by computed tomography. Stroke 20(7):871-5. 

Fox MD, Raichle ME (2007): Spontaneous fluctuations in brain activity observed 

with functional magnetic resonance imaging. Nat Rev Neurosci. 8:700–711.  

Goldenberg G, Randerath J (2015): Shared neural substrates of apraxia and aphasia. 

Neuropsychologia  75:40–49. 

Inoue K, Madhyastha T, Rudrauf D, Mehta S, Grabowski T (2014): What affects 

detectability of lesion–deficit relationships in lesion studies? NeuroImage Clin. 

6:388–397.  

Kalénine S, Buxbaum LJ, Coslett HB (2010): Critical brain regions for action 

recognition: Lesion symptom mapping in left hemisphere stroke. Brain 

133:3269–3280.  

Karnath H-O, Fruhmann Berger M, Küker W, Rorden C (2004): The anatomy of 

spatial neglect based on voxelwise statistical analysis: a study of 140 patients. 

Cereb. Cortex 14:1164–72. 

Karnath H-O, Rennig J, Johannsen L, Rorden C (2011): The anatomy underlying 

acute versus chronic spatial neglect: a longitudinal study. Brain 134:903–12. 

Karnath H-O, Smith DV (2014): The next step in modern brain lesion analysis: 

multivariate pattern analysis. Brain 137:2405–7. 

Karnath, H-O, Rennig, J (2016): Investigating structure and function in the healthy 

human brain: validity of acute versus chronic lesion-symptom mapping. Brain 

Struct Funct. doi:10.1007/s00429-016-1325-7 

Kertesz A., Ferro JM (1984): Lesion size and location in ideomotor apraxia. Brain 10, 

921–33. 

Lee E, Kang D-W, Kwon SU, Kim JS (2009): Posterior cerebral artery infarction: 

diffusion-weighted MRI analysis of 205 patients. Cerebrovasc. Dis. 28:298–

305. 

Mah Y-H, Husain M, Rees G, Nachev P (2014): Human brain lesion-deficit inference 

remapped. Brain 137, 2522-31. 



59 

 

Manuel AL, Radman N, Mesot D, Chouiter L, Clarke S, Annoni J-M, Spierer L 

(2013): Inter- and intrahemispheric dissociations in ideomotor apraxia: a large-

scale lesion-symptom mapping study in subacute brain-damaged patients. 

Cereb. Cortex 23:2781–9. 

Mirman D, Chen Q, Zhang Y, Wang Z, Faseyitan OK, Coslett HB, Schwartz MF 

(2015):  Neural organization of spoken language revealed by lesion–symptom 

mapping. Nat. Commun. 6:6762. 

Nachev P (2015): The first step in modern lesion-deficit analysis. Brain 138:e354.  

Phan TG, Donnan G a, Wright PM, Reutens DC (2005): A digital map of middle 

cerebral artery infarcts associated with middle cerebral artery trunk and branch 

occlusion. Stroke 36:986–91. 

Rorden C, Karnath H-O (2004): Using human brain lesions to infer function: a relic 

from a past era in the fMRI age? Nat. Rev. Neurosci. 5:813–9. 

Rorden C, Karnath H-O, Bonilha L (2007): Improving lesion-symptom mapping. J. 

Cogn. Neurosci. 19:1081–8. 

Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath HO (2012): Age-specific CT 

and MRI templates for spatial normalization. Neuroimage 61:957–965. 

Samawi, H. M., & Vogel, R (2013):  Notes on two sample tests for partially correlated 

(paired) data. Journal of Applied Statistics 41(1), 109–117.  

Smith D V, Clithero JA, Rorden C, Karnath H-O (2013): Decoding the anatomical 

network of spatial attention. Proc. Natl. Acad. Sci. 110:1518–23. 

Sperber C, Karnath H-O (2015): Topography of acute stroke in a sample of 439 right 

brain damaged patients. NeuroImage Clin. 10:124–128. 

Tarhan LY, Watson CE, Buxbaum LJ (2015): Shared and Distinct Neuroanatomic 

Regions Critical for Tool-related Action Production and Recognition: Evidence 

from 131 Left-hemisphere Stroke Patients. J. Cogn. Neurosci. 27:2491–511. 

Timpert DC, Weiss PH, Vossel S, Dovern A, Fink GR (2015): Apraxia and spatial 

inattention dissociate in left hemisphere stroke. Cortex 71:349–358. 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, 

Mazoyer B, Joliot M (2002): Automated anatomical labeling of activations in 

SPM using a macroscopic anatomical parcellation of the MNI MRI single-

subject brain. Neuroimage 15:273–289. 

Verdon V, Schwartz S, Lovblad KO, Hauert CA, & Vuilleumier P (2010): 

Neuroanatomy of hemispatial neglect and its functional components: a study 

using voxel-based lesion-symptom mapping. Brain. 133, 880–94. 

Watson CE, Buxbaum LJ (2015): A distributed network critical for selecting among 

tool-directed actions. Cortex. 65:65–82. 



60 

 

Wernicke C (1874): Der aphasische Symptomencomplex. Breslau: Cohn und Weigart. 

Wittmann M, Burtscher A, Fries W, von Steinbüchel N (2004): Effects of brain-lesion 

size and location on temporal-order judgment. Neuroreport 15(15):2401-2405. 

Zhang Y, Kimberg DY, Coslett HB, Schwartz MF, Wang Z (2014): Multivariate 

lesion-symptom mapping using support vector regression. Hum. Brain Mapp. 

5876:5861–5876. 



61 

 

 



62 

 

An empirical evaluation of multivariate lesion behaviour mapping 

Christoph Sperber1, Daniel Wiesen1, & Hans-Otto Karnath1,2 

 

1Centre of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical 

Brain Research, University of Tübingen, Tübingen, Germany 

2 Department of Psychology, University of South Carolina, Columbia, USA 

 

 

Abstract 

Multivariate lesion behaviour mapping based on machine learning algorithms has 

recently been suggested to complement the methods of anatomo-behavioural 

approaches in cognitive neuroscience. Several studies applied and validated support 

vector regression-based lesion symptom mapping (SVR-LSM) to map anatomo-

behavioural relations. However, this promising method, as well as the multivariate 

approach per se, still bears many open questions. By using large lesion samples in 

three simulation experiments, the present study empirically tested the validity of 

several methodological aspects. We found that i) correction for multiple comparisons 

is required in the current implementation of SVR-LSM, ii) that sample sizes of at least 

100 to 120 subjects are required to model voxel-wise lesion location in SVR-LSM, 

and iii) that SVR-LSM is susceptible to misplacement of statistical topographies 

along the brain’s vasculature to a similar extent as mass-univariate analyses. 
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1 Introduction 

Studies on patients with focal brain lesions are a main source of our knowledge on the 

anatomo-behavioural architecture of the brain (Rorden & Karnath, 2004). For 

statistical analysis of lesion anatomy, different approaches of voxel-based lesion 

behaviour mapping (VLBM) have been implemented (Bates et al., 2003; Rorden et 

al., 2007). The main idea behind VLBM is to test each brain voxel individually if 

damage to the voxel is associated with a certain behavioural measure. As this is 

performed by computing a univariate test at each voxel, VLBM has also been termed 

a ‘mass-univariate’ approach. 

While over a hundred studies have utilised VLBM so far (see Karnath & 

Rennig, 2017), the mass-univariate approach − like all modern neuroimaging 

techniques − has limitations (Karnath et al., 2018). The central problem of mass-

univariate analyses is the fact that multiple univariate tests are per se independent. 

The assumption of independence, however, does not appear to be appropriate in 

investigating lesion-deficit relations. First, brain functions are not organised in single 

voxels, but in larger anatomical modules or networks. Second, stroke lesions do not 

damage the brain in a voxel-wise, independent manner, but – due to vasculature – 

systematically with typical patterns of collateral damage. 

Previous studies have addressed these issues empirically. Simulation studies 

have shown that VLBM might fail to identify cognitive modules organised in a 

network (Mah et al., 2014; Zhang et al., 2014; Pustina et al., 2018). The underlying 

problem has been termed the ‘partial injury problem’ (Kinkingnéhun et al., 2007; 

Rorden et al., 2009; but see also Pustina et al (2018) for possible issues besides the 

‘partial injury problem’). This problem appears in VLBM if a cognitive module is 

only partially injured by lesions, e.g. if only parts of a brain network are damaged. 

Statistical power can then be reduced, and VLBM might fail to identify the cognitive 

module in parts or in whole (see Fig. 1 for an illustration).  

Other simulation studies have identified a misplacement of VLBM results 

towards the centres of the arterial territories (Inoue et al., 2014; Mah et al., 2014). 

This bias originates from systematic collateral damage between voxels, i.e. from high 

correlation/dependence of lesion status between voxels (Sperber & Karnath, 2017). 
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Figure 1: The ‘partial injury problem’ 

Illustration of the ‘partial injury problem’ in mass-univariate lesion behaviour 
mapping. (A) A simple fictional brain network consisting of two nodes. Damage to 

either node causes the same symptom X, while only damage to area A induces 

symptom Y. (B) A stroke sample of three patients. Note that the neural correlates of 

symptom X are partially injured in patients 1&2 (C) Mass-univariate lesion 

behaviour mapping of symptom Y shown for two example voxels. Following the 

mass-univariate VLBM approach, for each voxel patients with damage to this voxel 

(Group 1) are statistically tested against patients without damage to this voxel (Group 

2). Voxels are considered to be associated with a symptom if Group 1 is significantly 

associated with a more severe symptom. For symptom Y, where damage to the brain 
module is either complete or not present at all, VLBM results will be correct. (D) 

Mass-univariate lesion behaviour mapping of symptom X. Here, statistical power is 
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decreased because patients with present symptoms due to lesions in other voxels (red 
circle) serve as counter-examples. This can reduce the ability of mass-univariate 

analyses to correctly identify brain networks or large neuroanatomical modules in a 

whole. 

 

To overcome these issues of mass-univariate analyses, multivariate lesion behaviour 

mapping (MLBM) has been suggested (Smith et al., 2013; Mah et al., 2014; Zhang et 

al., 2014; review in Karnath et al., 2018). In MLBM, behaviour is modelled in one 

single model based on the lesion status of multiple voxels or regions of interest. This 

can be achieved by using machine learning algorithms such as support vector 

machines, including support vector regression (SVR; Vapnik, 1995). Several 

simulation studies have shown that MLBM is indeed superior to VLBM in detecting 

brain networks (Mah et al., 2014; Zhang et al., 2014; Pustina et al., 2018). 

While it seems that MLBM is able to overcome the partial injury problem, it 

has not been investigated yet, how much MLBM is susceptible to misplacement due 

to collateral damage between voxels. A recent study found that misplacement in 

multivariate analyses is low compared to some VLBM approaches (Pustina et al., 

2018). However, it was not investigated if the remaining misplacement occurs 

spatially random or if it still occurs systematically along the brain’s vasculature. 

Another open question concerns the sample sizes required for MLBM. 

Multivariate models naturally contain a large number of variables. Therefore, MLBM 

might require much larger sample sizes for parameter estimation than VLBM. A 

recent study investigated the performance of VLBM and MLBM at different sample 

sizes, and MLBM was found to be equal or even superior to VLBM also with smaller 

sample sizes (Pustina et al., 2018). But still, it is not known how many subjects are 

required to obtain a ‘good’ multivariate model. 

A third issue of discussion relates to the way statistical inference is computed 

in MLBM. Until now, the most often used multivariate method is based on support 

vector regression (SVR-LSM; Zhang et al., 2014, Mirman et al., 2015b; Fama et al., 

2017; Griffis et al., 2017; Ghaleh et al., 2018; Wiesen et al., submitted). SVR-LSM 

has several advantages over other multivariate methods: the analysis can be 

performed voxel-wise on a whole brain-level, and continuous behavioural variables 

can be modelled. The groundwork of these advantages was a novel way to determine 

voxel-wise statistical significance. In short, SVR generates a β-parameter for each 

input variable (i.e. for each voxel in SVR-LSM). Contribution of β-parameters to the 
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multivariate model is then statistically tested by permutation testing (Zhang et al., 

2014). However, there is a dissent on the practically highly relevant question if 

correction for multiple comparisons as an additional step in SVR-LSM is required. 

Fama et al. (2017) argued that “because SVR-LSM considers all voxels 

simultaneously in a single regression model, correction for multiple comparisons is 

not required”. Further, Gaonkar et al., (2013) postulated that the “interdependence [of 

the parameters in a SVR model] has the potential to alleviate multiple comparisons 

problems” when used to assess voxel-wise significance in multivariate imaging 

analyses. On the other hand, other studies performed SVR-LSM but corrected for 

multiple comparisons (Griffis et al., 2017; Ghaleh et al., 2018). 

The present paper aimed to scrutinise the SVR-LSM method and answer the 

questions outlined above by empirical means. By using simulations, we investigated 

three questions: i) Is a correction for multiple comparisons required in SVR-LSM? ii) 

What sample size is required in MLBM? iii) Does MLBM suffer from a 

misplacement of results towards the centres of the brain’s vascular territories? 

 

2 General Methods 

Imaging data of patients with first acute unilateral right stroke admitted to the Centre 

of Neurology at Tübingen University Hospital were used. Only patients with a clearly 

demarcated, non-diffuse lesion visible in structural imaging were included. Patients or 

their relatives consented to the scientific use of their data. The study has been 

performed in accordance with the ethical standards laid down in the 1964 Declaration 

of Helsinki. 

Structural brain images acquired as part of clinical protocols by either CT or 

MRI were used for lesion mapping. If both imaging modalities were available, MRI 

was preferred. In patients where MR scans were available, we used diffusion-

weighted imaging (DWI) if the images were acquired within 48 h after stroke onset or 

T2-weighted fluid attenuated inversion recovery (FLAIR) images for later scans. 

Lesions were manually delineated on transversal slices of the individual scan using 

MRIcron (www.mccauslandcenter.sc.edu/mricro/mricron). Scans were then warped to 

1x1x1mm³ MNI space (Collins et al., 1994) using SPM8 (www.fil.ion.ucl.ac.uk/spm) 

and Clinical Toolbox (Rorden et al., 2012). 

Multivariate lesion behaviour mapping by SVR was performed using 

MATLAB 2017b, libSVM (Chang and Lin, 2011), and a publicly available collection 
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of scripts for SVR-LSM from the study by Zhang et al. (2014). Lesion maps and 

behavioural data were processed to fit the input data structure of libSVM and an 

epsilon-SVR with radial basis function kernel was computed. The resulting β-

parameters were then remapped into three-dimensional MNI space. Voxel-wise 

statistical significance level in this parameter map was determined by permutation 

testing. Using this approach, data are permuted several thousands of times and the 

resulting pseudo-behaviour data are used to generate SVR-β-maps. Finally, voxel-

wise significance is determined by comparison of pseudo-behaviour β-maps and the 

β-map obtained from real behavioural data. In the present study 1000 permutations 

were used. Zhang and co-workers have also shown that a control for the effect of 

lesion size is required in SVR-LSM. Therefore, the binary lesion images were first 

vectorised and normalised to have a unit norm, which serves as a direct total lesion 

volume control (dTLVC). Derivation of statistical maps via permutation testing, 

kernel choice, pre-processing of behavioural variables via normalisation, back-

projection of data into three-dimensional space, and control of lesion size were 

performed with scripting provided by Zhang et al. (2014). We consistently set 

hyperparameters C = 30 and γ = 4, which have proven to perform well in a previous 

study (Wiesen et al., submitted). Note that hyperparameter selection via cross 

validation is an important step in SVR-LSM, and has potential to maximize model 

quality. However, its computational demands are high, and no clear criteria are 

available for parameter choice yet (see Zhang et al., 2014). All further analyses were 

performed using MATLAB and SPSS 19; all statistical tests were computed at p < 

.05. Voxel-based lesion behaviour mapping was performed using NiiStat 

(https://www.nitrc.org/plugins/mwiki/index.php/niistat:MainPage). 

 

3 Experiment 1: Correction for multiple comparisons 

3.1 Methods 

Experiment 1 aimed to clarify if a correction for multiple comparisons is required in 

SVR-LSM as implemented by Zhang et al (2014). Therefore, we evaluated false 

positive rates in lesion-behaviour samples without any actual underlying positive 

signal. To obtain such samples, we utilised a sample of 203 right brain damaged 

patients with normalised lesion maps recruited in a recent study by Wiesen et al. 

(submitted). Wiesen and co-workers found large significant clusters to underlie spatial 

neglect, using SVR-LSM both with and without correction for multiple comparisons 
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via false discovery rate (FDR). In the present study, we permuted 20 times a 

continuous measure of spatial neglect behaviour (Rorden & Karnath, 2010) in this 

sample of 203 right brain damaged patients. The resulting samples thus did not 

contain any true signal. Note that we also wanted to exclude the possibility that 

control for lesion size affects the amount of false alarms. Therefore, SVR-LSM was 

performed with these 20 samples both with and without correction for lesion size (see 

above section ‘2 Methods’: ‘direct total lesion volume control’). Only voxels 

damaged in at least 10 patients were included in the modelling process. Dependent 

variable was the rate of voxels with false positive signal at p-levels .05 and .01. 

 

3.2 Results 

The analyses were performed for 349512 voxels. A large amount of false positive 

findings was observed in all conditions. If statistical significance is determined for 

each voxel independently – and independent of the fact that only a single multivariate 

model is computed – each analysis should yield p*349512 false positive voxels. Two-

tailed one-sample t-tests showed that the number of false positive voxels did neither 

significantly differ from these expected values for statistical parameter thresholding at 

p < .05 (for both t-tests p > .95; see Fig. 2) nor at p < .01 (for both t-tests p > .32). 

Also, paired t-tests did not find any difference between false positive rates in analyses 

with versus analyses without control for lesion size (both p > .98). Moreover, 

applying FDR correction with q = .05 to the results, none of the 40 performed 

analyses (20 with and 20 without control for lesion size) yielded positive results. 

 

3.3 Discussion 

At a p-level of p<.05, we found that 5% out of all tested voxels contained false 

positive signal (and correspondingly 1% of all voxels at p<.01). This was not affected 

by direct total lesion volume control. The current implementation of SVR-LSM thus 

poses the same challenge as VLBM: analyses find large amounts of false positive 

signal, and statistical maps have to be controlled for multiple comparisons. Note that 

this conclusion could also have been made by examining the underlying algorithms 

used in SVR-LSM. SVR includes a large amount of variables (here: voxels) into a 

single model. 
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Figure 2: False positive rates in SVR-LSM 

False positive rates of SVR-LSM in 20 simulation data sets that contain no true 
positive signal. Results are shown for multivariate lesion behaviour mapping with 

permutation-based statistical thresholding of parameter maps (see Zhang et al., 2014) 

at p < .05 and p < .01, and both with and without control for lesion size (CLS). Dotted 

lines indicate expected amount of false positives if statistical significance is indeed 

determined for each voxel independently; bold bars indicate mean values. 

 

Generally, a comparison between two SVR models does not require a correction for 

multiple comparisons, although many variables are included in both models. 

However, permutation testing assesses statistical significance for each voxel 

individually. Therefore, the correction for multiple comparisons is required. From 

such theoretical perspective, the present empirical investigation is tautological. On the 

other hand, given the dissent in the field (see above section ‘1 Introduction’), the 

empirical approach employed in the present study provides a clear answer. 

 

4 Experiment 2: Sample size required for multivariate models 

4.1 Methods 

Experiment 2 investigated what sample size is required to perform valid SVR-LSM. 

Six samples with simulated ‘behavioural’ data based on damage to either single or 

multiple areas were investigated. To obtain simulated data, 283 real normalised lesion 

maps of patients with right hemisphere damage were used. Most patients of this 

sample were also part of a recent simulation study (Sperber & Karnath, 2017). As 
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ground truth, regions in the Automatic Anatomic Labeling (AAL) atlas (Tzourio-

Mazoyer et al., 2002) were chosen. Patients’ individual ‘behavioural’ scores were 

then computed as a linear function of the individual lesion’s damage to the atlas 

region. This was a continuous score that ranged from 0 (no damage to the region) to 1 

(damage to 100% of all voxels in the atlas region). For multi-region models, the score 

was computed based on the region with most damage. Following simulation regions 

were chosen: i) insula ii) middle frontal gyrus iii) inferior parietal lobule iv) inferior 

frontal gyrus triangular + supramarginal gyrus v) caudatum + middle temporal gyrus 

vi) inferior frontal gyrus triangular + supramarginal gyrus + middle temporal gyrus. 

Different sample sizes up to 140 patients were investigated in steps of 20, i.e. 

seven different sample sizes (20, 40, 60, 80, 100, 120, 140), and it was investigated 

what sample size is required to obtain a valid SVR model. This leads to the non-trivial 

question how to assess if a multivariate model is good. The model should fit the data; 

however, a good fit does not imply that a model is good, as it can suffer from over-

fitting. Rather, a good model should also provide high generalisability. Therefore, we 

primarily assessed the correspondence of SVR-LSM maps, i.e. the final permutation-

thresholded β-maps, and the reproducibility of SVR model β-parameters (see 

Rasmussen et al., 2012) between distinct samples at different sample sizes. Further, 

we assessed the prediction accuracy via cross-validation. To investigate model 

performance at sample size of n lesions, 2*n lesions were randomly drawn and 

assigned to two exclusively disjunct samples of n lesions each. For all analyses in 

Experiment 2, only voxels damaged in at least 10 patients in the 2*n sample were 

tested. This ensured that two paired analyses were always based on the same voxels. 

Next, a SVR was computed to model behavioural scores based on the status of all 

voxels. From the SVR models and corresponding β-maps, reproducibility of β-maps 

and prediction accuracy were assessed. To obtain the variable ‘reproducibility of β-

maps’, the correlation between β-parameters in both β-maps was computed. Note that 

β-weights of individual voxels only provide limited interpretability, as they only 

indirectly relate to the behavioural scores. Yet, reproducibility of β-weights can be 

interpreted in the context of generalisability with caution (as, e.g., in Rasmussen et al., 

2012; Zhang et al., 2014), especially as all comparisons in the present study were 

based on the same behavioural variable and the same hyperparameters. Second, 

‘prediction accuracy’ was assessed by applying the model obtained in the first sample 

for a prediction in the second sample. Then, the correlation between predicted and 
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true behavioural values was computed. The procedure of drawing 2*n lesions and 

randomly assigning them to two equally large groups was repeated 50 times for each 

data point. The correspondence of actual SVR-LSM maps (i.e. the final p-maps 

obtained from β-maps via permutation testing) was assessed by also drawing 2*n 

lesions and computing SVR-LSM maps independently for both samples. Then, 

correspondence of both maps was assessed by i) comparing both FDR-corrected, 

thresholded maps and computing the Dice Index, which provides a measure of 

similarity of two binary spatial images between 0 (no spatial overlap) to 1 (maximal 

spatial overlap), and ii) assessing ‘reproducibility of p-maps’ by computing the 

correlation between p-values in both maps. In order to save computational resources, 

the latter procedure was repeated five times for each data point. 

 

4.2 Results 

Plotting the data course of the investigated variables across sample sizes (Fig. 3) 

revealed several noticeable features: first, the data course of the variables qualitatively 

differed between reproducibility of both β- and p-maps and Dice index on the one 

hand and prediction accuracy on the other hand. Independent t-tests (see 

supplementary) revealed that reproducibility of β-maps significantly increased for all 

variables with each increase in sample size, except for the step from 80 to 100 patients 

in the simulation based on the inferior frontal gyrus. Increment-wise improvements, 

however, decreased rapidly with increments for larger sample sizes, and the plotted 

curves suggest that model performance asymptotically approaches a limiting value. 

Non-surprisingly, Dice indices and reproducibility of p-maps qualitatively followed a 

similar trend. In contrast, prediction accuracy was not significantly improved by 

increases in sample size above 100 subjects, while for some simulation regions 

prediction accuracy already peaked with sample sizes of 40 subjects. Second, standard 

deviations of reproducibility and prediction accuracy descriptively decreased rapidly 

with increasing sample sizes. Third, among simulations based on single regions 

(insula, middle frontal gyrus, and inferior parietal lobule), model performance 

differed across most data points. Independent t-tests (see supplementary material) 

confirmed that regarding reproducibility of β-maps, for all sample sizes, SVR 

performed best for simulations on the insula, and worst for simulations on the middle 

frontal gyrus. 
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Figure 3: Model performance across different sample sizes 

(A) Dice indices (left panel) and its standard deviation (right panel) at different 

sample sizes. Note that each data point here is based on only 5 iterations. Therefore, 

standard deviations are larger than for variables in panels C&D. (B) Reproducibility 

of p-maps and its standard deviation at different sample sizes. Each data point is 

based on 5 iterations of the experimental procedure. (C) Reproducibility of β-maps 

and its standard deviation at different sample sizes. Each data point is based on 50 

iterations of the experimental procedure. All 20-subject increments except for one 

(see text) were connected to significant increases in reproducibility according to 

independent sample t-tests. (D) Prediction accuracy and its standard deviation at 

different sample sizes. Each data point is based on 50 iterations of the experimental 

procedure. For the left panel of Fig 3C asterisks indicate significant changes for a 20-

subject increment. 

 

4.3 Discussion 

Improvements in the reproducibility of β-maps across all sample sizes were found, 

while small samples appeared to profit the most from increases in size. Increases in 

size based on already large samples were still significant; however, they only 

provided smaller benefits. A very similar trend was observed for Dice indices and 

reproducibility of p-maps. On the other hand, prediction accuracy was relatively 

stable across sample sizes and did not further improve by increases in sample size 

above 100 subjects. To conclude, MLBM by SVR-LSM seems to require large 

samples to provide a model that maximizes the use of anatomical information for 

parameter estimation. Optimal sample sizes appear to be larger than 140 subjects, 

whereas one can doubt the usefulness of increases beyond ~ 100 to 120 subjects; 

nominal gains in reproducibility beyond these sizes are very small. However, if SVR 

is not used for a parametrical mapping as in SVR-LSM, but for prediction of clinical 

outcome, performance already peaks with smaller sample sizes with about 40 to 100 

subjects. Furthermore, with larger sample sizes standard deviations were low for both 

reproducibility and prediction accuracy, suggesting that model performance is quite 

stable for defined sample sizes. In other words, given a certain (larger) sample size, 

model parameters were equally good (or bad) across iterations. 
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5 Experiment 3: Spatial bias of statistical results 

5.1 Methods 

Experiment 3 aimed to clarify if MLBM was suffering from a misplacement of results 

towards the centres of the arterial territories. We thus largely copied the simulation 

approach to investigate misplacement of topographical results in VLBM that was used 

by two previous studies (Mah et al., 2014; Sperber & Karnath, 2017). Since such a 

simulation approach is based on highly artificial simulations, it is not perfectly 

transferable to real data. Yet, its simplicity fits well empirical questions that aim to 

assess general principles in lesion behaviour mapping (for further discussion see Mah 

et al., 2014). As both previous studies using this simulation approach clearly 

visualised misplacement on axial MNI slice z = 17, we limited the analysis to this 

slice. Simulations were run using a real right hemisphere lesion sample of 283 

patients. In short, 464 equally distributed voxels on slice z = 17 were selected. For 

each voxel and patient, it was determined if the lesion includes the voxel. Contrary to 

previous studies, however, simulated ‘behavioural’ scores were not binary, but 

continuous to allow application of support vector regression. To do so, random 

normally distributed values were drawn. If a lesion included the simulation voxel, 

values were drawn from a distribution with μ = 1.4 and σ = 0.4, else from a 

distribution with μ = 0.4 and σ = 0.4. Any resulting negative scores were set to zero. 

Resulting ‘behavioural’ data of 464 simulations were then used in VLBM and 

SVR-LSM. Only voxels damaged in at least 5 patients were considered, and all 

resulting topographies were corrected for multiple comparisons by FDR correction at 

p < .05. Misplacement was then defined as a vector ranging from the voxel the 

simulation was based on to the centre of mass of the thresholded, binary statistical 

topography. As correction for lesion size is a crucial factor in anatomical 

misplacement (Sperber & Karnath, 2017), VLBM and SVR-LSM were performed 

with two different strategies to control for lesion size. First, SVR-LSM was performed 

using dTLVC (Zhang et al., 2014); second, we applied an approach that controls 

lesion size via regression both on the behavioural variable and the anatomical data 

(deMarco & Turkeltaub, 2018). To perform the latter type of correction, we integrated 

publicly available MATLAB scripts by deMarco & Turkeltaub 

(https://github.com/atdemarco/svrlsmgui) into our custom-modified scripts by Zhang 

et al. (2014). 
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5.2 Results 

For mass-univariate voxel-based lesion behaviour mapping, a misplacement of 

topographical results by 13.5 mm (SD = 5.8 mm; median = 13.5 mm) for analyses 

without control for lesion size, and by 8.7mm (SD = 4.4 mm; median = 8.2 mm) for 

analyses with control for lesion size by nuisance regression was found. As shown in a 

previous study (Sperber & Karnath, 2017), control for lesion size significantly 

reduced misplacement (t(887) = 13.89, p < .001). Further, a vector visualisation (Fig. 

4 A and B) revealed that misplacement was systematically oriented towards the 

centres of the middle and posterior arterial territories. These findings thus replicated 

previous studies that investigated misplacement of topographical results in VLBM 

(Mah et al., 2014; Sperber & Karnath, 2017). Peak Z-standardised statistics in the 

statistical topographies were Z = 8.2 (SD = 0.7) for VLBM without control for lesion 

size and Z = 7.7 (SD = 0.7) for VLBM with control for lesion size. 

SVR-LSM topographies with control for lesion size by dTLVC were 

misplaced by 11.4 mm (SD = 5.0 mm; median = 11.0 mm). This misplacement was 

smaller than in VLBM without control for lesion size (t(828) = 5.54, p < .001), but 

larger than misplacement in VLBM with control for lesion size (t(815) = 8.17, p < 

.001). SVR-LSM with control for lesion size by regression both on anatomy and 

behaviour was misplaced by 12.5 mm (SD = 7.7 mm; median = 11.2 mm), which was 

larger than SVR-LSM with control for lesion size by dTLVC (t(841) = 2.35; p < .05), 

but still smaller than uncorrected VLBM (t(913) = 2.26; p < .05). Visual inspection of 

the data revealed that this difference originated from few outliers; the median 

misplacement obtained from both methods was roughly the same.  

In order to compare directionality of vectors between conditions, cosine 

similarity was assessed. In a comparison of two groups of vectors, average cosine 

similarity will be 1 if all vector pairs show the same directionality, and 0 if 

directionality between vector pairs is entirely random. Cosine similarity of 

misplacement vectors in VLBM without control for lesion size and SVR-LSM with 

control for lesion size by dTLVC was 0.80 (SD = 0.29), which was significantly 

larger than zero (t(378) = 54.29, p < .001). For SVR-LSM with control for lesion size 

by regression and VLBM without control for lesion size, cosine similarity was 0.78 

(SD = 0.32), which was also larger than zero (t(378) = 48.31; p < .001. Thus, 

directionality of misplacement vectors in the univariate and the mass-univariate 

analyses were similar. Correspondingly, the vector visualisation of misplacement in 
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SVR-LSM (Fig. 4C) also appeared to follow the vasculature. 

 

Figure 4: Misplacement of topographical results in VLBM and SVR-LSM 

Vector maps for spatial misplacement in VLBM and SVR-LSM. Each vector shows 

the misplacement ranging from the ‘ground truth’ voxel to the centre of mass of the 

binary topographical map. All results are based on analyses controlled with FDR 

correction at p < .05. All analyses were limited to MNI slice z = 17. (A) Vector map 

for voxel-based lesion behaviour mapping. (B) Vector map for voxel-based lesion 

behaviour mapping with control for lesion size (CLS) via nuisance regression. (C) 

Vector map for multivariate lesion behaviour mapping using support vector 

regression, including a control for lesion size via dTLVC as suggested by Zhang et al. 

(2014). 

 

5.3 Discussion 

The centres of mass of statistical topographies in SVR-LSM were misplaced in a 

similar spatial direction as in VLBM; they were oriented towards the centres of the 

middle and posterior arterial territories. The magnitude of this replacement was 

between the magnitude of misplacement in VLBM without and VLBM with control 

for lesion size. Thus, SVR-LSM is not less susceptible to misplacement compared to 

VLBM. Different approaches to control for lesion size – by using dTLVC (Zhang et 

al., 2014) or via regression both on the behavioural variable and the anatomical data 

(deMarco & Turkeltaub, 2018) − did not eliminate the misplacement in SVR-LSM. 

To conclude, multivariate analysis in lesion behaviour mapping does not per se 
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account for the complexity of lesion anatomy, and inter-voxel correlations can 

negatively affect results. 

 

6 General Discussion 

Recently, we outlined that the validity of lesion behaviour mapping methods can be 

tested empirically with different approaches (Sperber & Karnath, 2018). In the present 

study, we did so with SVR-LSM, a novel promising method with the potential to 

overcome some of the shortcomings of mass-univariate lesion behaviour mapping. 

We found that i) correction for multiple comparisons is required in SVR-LSM, ii) that 

sample sizes above ~ 100 to 120 subjects are required to model voxel-wise lesion 

location in the context of SVR-LSM, and iii) that SVR-LSM is susceptible to 

misplacement of statistical topographies along the vasculature in the same way as 

mass-univariate analyses. 

Our results resolve the controversy on multiple comparisons in SVR-LSM 

(Zhang et al., 2014; Mirman et al., 2015; Fama et al., 2017; Griffis et al., 2017). They 

show that SVR-LSM requires a correction for multiple comparisons. This can be a 

correction by false discovery rate (FDR; Benjamini & Yekutieli, 2001) as carried out 

in the present study. However, future empirical studies are required to find the best 

solution to the multiple comparisons problem in SVR-LSM. For univariate analyses, 

several alternative solutions to the multiple comparison problem have been proposed 

(e.g., Nichols & Hayasaka, 2003; Rorden et al, 2007; Karnath et al., 2018; Mirman et 

al., 2018). Correction by FDR is easy to apply and computationally fast, and therefore 

well fits in a large scale simulation study. However, it has several shortcomings, e.g. 

if samples are of small size or only contain low signal (Karnath et al., 2018; Mirman 

et al., 2018). Note that for a proper application of FDR on single real behavioural data 

sets, larger numbers of permutations should be used than in the present study. The 

present approach simply has given way to computational limitations.  

The present findings further give an answer to the question whether valid 

parameter estimation for multivariate analyses generally requires large data sets. 

Some researchers postulated that multivariate lesion behaviour mapping depends on 

large-scale multi-centre studies, which are able to provide such large samples (Mah et 

al., 2014; Xu et al., 2018). Findings in the present study partially support this 

assumption. Multivariate modelling based on voxel-wise lesion information in SVR 

consistently improved its generalisability with increases in sample size even up to 140 
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subjects. On the other hand, improvements beyond ~100 subjects were very small and 

appeared to approach a limiting value. This closely resembles findings on multivariate 

modelling of fMRI data (Churchill et al., 2014). The authors also observed that 

increases in sample size led to a plateau in regards to prediction accuracy already with 

small samples, while reproducibility of model parameters improved if already large 

samples were increased. Under the perspective of practicability, our data suggest that 

sample sizes of about 100 to 120 patients appear to be a good trade-off between 

model quality and feasibility regarding data input. It is of practical relevance to find 

out exactly how many patients are required to map a certain function. Cross 

validation, which is anyway required for hyper-parameter optimisation in SVR-LSM 

(see Zhang et al., 2014), can provide insights into model quality, however only 

smaller sub-samples of the total sample can be compared. Thus, with some 

limitations, cross validation could indicate if a sample was adequate in the modelling 

process. 

However, caution should be advised if real symptoms are investigated. For 

real behavioural variables, using an adequate sample size for SVR-LSM would not 

imply that correlations close to r = 1.0 should be expected. First, anatomical 

information in real symptoms (compared to the present simulation samples) can vary. 

Critical brain regions can be organised with different complexity, as spatial 

normalisation of brain scans is noisy, or as inter-individual differences in brain 

anatomy exists. Second, a multitude of factors besides structural lesion information 

can affect post-stroke behaviour, such as age, inter-individual anatomical differences, 

time post stroke, or pre-stroke cognitive status (for review Price et al., 2017). 

Therefore, model generalisability of a SVR β-map can only be as good as behaviour 

can be explained by structural lesion information, e.g. voxel-wise lesion status. This 

makes it difficult to evaluate model performance. For example, imagine a SVR model 

based on a real data sample. If this model offers a cross-validation reproducibility of r 

= 0.4, one can hardly tell if this model already optimally includes anatomical voxel-

wise information. Furthermore, differences in model performance across single-region 

simulations observed in the present study point at a role of lesion coverage. For 

simulations based on regions with higher lesion coverage (cf. Sperber & Karnath, 

2016), experiment 2 has shown that models with higher lesion coverage perform 

better. Thus, SVR-LSM might not perform equally well for all regions, with worse 

performance if critical brain regions are covered by fewer lesions. Therefore, 
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researchers that apply SVR-LSM should take care that their sample contains a 

considerable amount of cases in the pathological range, i.e. cases in which the critical 

brain region is damaged. Alternatively, investigation of behaviour that is only rarely 

pathological will require larger samples. Future studies on large samples of real data 

are required for further insights into optimal sample sizes in MLBM. Given that real 

data are more complex than simulated data, the present study provides a lower 

boundary for required sample sizes. Requirements for real data samples might be 

larger. Such future studies could also compare different approaches of MLBM in 

respect to required sample sizes (e.g. Yourganov et al., 2015; Pustina et al., 2018). 

Experiment 2 in the present study only investigated SVR-LSM and should not be 

generalised to MLBM in general. 

In the discussion of spatial misplacement inherent to mass-univariate analyses 

(Mah et al., 2014), it was noted that the main reason to use multivariate instead of 

mass-univariate analyses was the complex architecture of lesions which leads to the 

misplacement of statistical results (Nachev, 2015; Xu et al., 2018). In contrast, the 

present study suggests that multivariate lesion behaviour mapping is susceptible to 

misplacement of statistical topographies to the same extent as mass-univariate VLSM 

analyses. A simple thought experiment illustrates why these findings in fact are not 

surprising: Imagine a sample of 100 lesions that is used in a lesion behaviour mapping 

study. As commonly found in lesion samples, many voxel pairs are damaged in 

exactly the same lesions, so-called ‘unique patches‘ (Pustina et al., 2018). In other 

words, there are many voxel pairs for which typical lesion anatomy leads to a perfect 

inter-voxel correlation of damage. Further imagine that for one of these perfectly 

correlated voxel pairs, one voxel belongs to a cognitive module which induces a 

cognitive symptom when damaged, and the other voxel does not belong to the 

cognitive module. In this case, we do not see any possibility that a lesion analysis - be 

it univariate or multivariate - could correctly identify only one voxel to belong to the 

cognitive module, but not the other without using any a priori information. As the 

present study suggests, this problem persists for multivariate analyses even if inter-

voxel correlations are not perfect, but still high. 

The problem of misplacement will not be alleviated by analysing data on 

region level rather than on voxel level, as suggested by Nachev (2015). Lesional 

damage between neighbouring regions will likely correlate, and results will also be 

misplaced. Nevertheless, the remaining misplacement bias in MLBM results − as well 
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as in VLSM results – does not reach such levels as originally assumed in the study by 

Mah et al. (2014). Moreover, the quantification of misplacement as implemented in 

both the present and previous studies has limitations (cf. Sperber & Karnath, 2017; 

Pustina et al., 2018). First, a simple vector based on the centre of mass of a 

topographical map omits a lot of information contained in three-dimensional 

topographies (see Sperber & Karnath [2017] and Pustina et al. [2018] for more 

elaborated approaches based on more complex simulations). Second, such vectors can 

only point towards subcortical regions, and not towards areas outside the brain. In 

other words, the direction of possible biases is already predefined. This limitation 

might account for parts of the misplacement. However, misplacement vectors also 

clearly follow the arterial territories (see, e.g., Fig. 2 of the present article, or Mah et 

al. [2014]), what indicates that lesion anatomy is a central factor in the generation of 

the misplacement. Another, more general limitation is the ecological validity of 

simulation studies. While simulations provide a powerful tool to test the validity of 

lesion-behaviour mapping methods (Sperber & Karnath, in press; Xu et al., 2018), it 

is not known how well findings in simulations can be transferred to analyses in real 

data. In the present and in a previous study (Sperber & Karnath, 2017), we found peak 

statistics in VLBM to be very high compared to lesion studies on real data. This hints 

at an over-proportionally high underlying positive signal, which was present although 

we introduced random noise in experiment 3. The high signal, in turn, leads to more 

positive findings in any lesion analysis. Likely, this will induce an overestimation of 

misplacement in an analysis where all positive findings – except for one voxel – are 

false alarms. Indeed, misplacement in a simulation study has also been found to vary 

between p-levels of VLBM (Sperber & Karnath, 2017), with lower misplacement for 

more conservative p-levels, i.e. less false alarms. To conclude, as in the two previous 

studies using the same ‘artificial’ simulation approach (Mah et al., 2014; Sperber & 

Karnath, 2017), the present experiment 3 does not show that SVR-LSM topographies 

based on real data are misplaced by exactly ‘x’ mm (11.4mm in the present 

experiment), but rather that lesion anatomy generally is a biasing factor in SVR-LSM, 

similar as in VLBM. 

The present study also bears implications for translational uses of multivariate 

modelling based on structural lesion data. As we discussed elsewhere (Karnath et al., 

2018), these methods have potential to be used in long-term prediction of post-stroke 

outcome, e.g. in guiding rehabilitation measures. A recent study has shown that 
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prediction of hemiparesis based on structural imaging can be performed with high 

accuracy using voxel-wise lesion information (Rondina et al., 2016). Experiment 2 in 

the present study contributes by showing that multivariate models maximize the use 

of structural lesion data already with small samples. Prediction accuracy was already 

relatively high even with our smallest investigated sample size of 20 patients, and did 

hardly improve with further increases beyond 40 to 80 subjects. However, contrary to 

SVR-LSM, the ultimate aim of prediction algorithms is to maximize prediction 

accuracy. Therefore, profound knowledge of non-anatomical variables that affect 

post-stroke behaviour is required (for review Price et al., 2017). Such variables can 

easily be included into SVR. However, it is not known yet if this requires larger 

sample sizes. Further, strategies for anatomical feature selection could improve 

prediction accuracies (see, e.g., Rondina et al., 2016). Importantly, when only 

prediction of behaviour is desired, both the multiple comparison problem (experiment 

1) and anatomical biases (experiment 3) are not relevant. 

To conclude, the present study could clarify some of the open and, in part, 

controversially debated questions related to SVR-LSM. Multivariate lesion behaviour 

mapping does not appear to resolve all methodological issues in the field of lesion-

behaviour inference. Nevertheless, this new and promising approach to lesion analysis 

appears to supplement traditional mass-univariate analysis methods, in particular if 

larger patient samples are accessible. 
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Abstract 

Neurological patients with apraxia of pantomime provide us with a unique 

opportunity to study the neural correlates of high-order motor function. Previous 

studies using lesion-behaviour mapping methods led to inconsistent anatomical 

results, reporting various lesion locations to induce this symptom. We hypothesised 

that the inconsistencies might arise from limitations of mass-univariate lesion-

behaviour mapping approaches if our ability to pantomime the use of objects is 

organised in a brain network. Thus, we here investigated apraxia of pantomime by 

using multivariate lesion behaviour mapping based on support vector regression in a 

sample of 130 left-hemisphere stroke patients. Indeed, this method identified a 

common network to underlie high-order motor control, including the inferior parietal 

lobule, posterior parts of superior and middle temporal cortex, insula, as well as a 

periventricular frontal white matter bottleneck, adjacent to inferior frontal gyrus. 

Further, long association fibres were affected, such as the superior longitudinal 

fascicle, inferior occipito-frontal fascicle, and superior occipito-frontal fascicle. The 

resulting topography integrates findings of different previous studies. The findings 

thus not only underline the benefits of multivariate lesion-behaviour mapping in brain 

networks, but also pacify a longstanding discussion on the anatomy of human higher-

order motor control. 
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Introduction 

Following brain damage primarily of the left hemisphere, patients can suffer from 

high-order motor disorders, not caused by primary motor or sensory deficits (Heilman 

& Rothi, 1993). These disorders are summarised under the umbrella term ‘apraxia’ 

(Wheaton & Hallett, 2007; Goldenberg, 2011) and can include, for example, our 

ability to imitate or execute gestures (De Renzi et al., 1980; Goldenberg, 1996; 

Rumiati et al., 2009; Mengotti et al., 2015), to perform motor imagery (Ochipa et al., 

1997; Buxbaum et al., 2005), or to mechanically reason (Goldenberg & Hagmann, 

1998; Baumard et al., 2014). A prominent disorder in this field is apraxia of 

pantomime (hereinafter simply referred to as ‘apraxia’) in which patients fail to 

pantomime the use of a common tool as if they hold the tool in hand, while they are 

typically able to use the real tool with less or no errors (De Renzi et al., 1982; 

Goldenberg & Hagmann, 1998; Wada et al., 1999; Lausberg et al., 2003; Goldenberg 

et al., 2004; Laimgruber et al., 2005; Sperber et al., 2018). 

Multiple studies investigated neurological patients to uncover the neural 

correlates of apraxia (for a review see Niessen et al., 2014). Their results, however, 

were inconsistent. Most frequently, apraxia was associated with lesions to the inferior 

parietal lobe or adjacent parietal regions (Halsband et al., 2001; Buxbaum et al., 2003, 

2005; Weiss et al., 2008; Hoeren et al., 2014; Goldenberg & Randerath, 2015). On the 

other hand, several studies found lesions in the inferior frontal gyrus to induce apraxia 

(Goldenberg et al., 2007; Manuel et al., 2013; Weiss et al., 2016). Besides, regions 

such as the insula (Goldenberg et al., 2007; Hermsdörfer et al., 2013; Hoeren et al., 

2014), premotor and precentral areas (Weiss et al., 2016), and the middle temporal 

gyrus (Manuel et al., 2013) were also reported to be critical. Interestingly, results in 

most studies were limited to only a few of these areas.  

There are many possible methodological reasons for these inconsistencies (for 

a review see Sperber & Karnath, in press). A potential source for heterogeneous 

results could be the general analysis approach of the above mentioned studies. While 

they used different analysis techniques – such as voxel-based lesion behaviour 

mapping (VLBM; Manuel et al., 2013; Hoeren et al., 2014; Goldenberg & Randerath, 

2015; Weiss et al., 2016), subtraction plots (Goldenberg et al., 2007; Weiss et al., 

2008; Hermsdörfer et al., 2013), or region-of-interest analyses (Halsband et al., 2001) 

– all studies followed a univariate approach. Univariate methods such as mass-

univariate VLBM, however, can fail to identify neural correlates of pathological 
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behaviour if behaviour is organised in larger modules or networks (Rorden et al., 

2009; Mah et al., 2014; Zhang et al., 2014). The previous anatomo-behavioural 

studies on apraxia thus might have been unable to gain full insight to the neural 

correlates of human higher-order motor control, and instead only identified single 

components of a possible network. 

In recent years, multivariate lesion-behaviour mapping methods based on 

machine learning have been developed (Smith et al., 2013; Mah et al., 2014; Zhang et 

al., 2014; Yourganov et al., 2015). Multivariate lesion-behaviour mapping methods 

can include multiple variables – e.g., the lesion status of multiple voxels or regions of 

interest – into one single model. Simulation studies have revealed that such methods 

perform better than traditional VLBM tools if damage to multiple brain regions can 

induce a particular symptom (Mah et al., 2014; Zhang et al., 2014; Pustina et al., in 

press). Thus, in theory, multivariate analyses might resolve the inconsistencies in the 

field of apraxia if our assumption on a possible network underlying 

neuropsychological deficits in human higher-order motor control is correct. To test 

our hypothesis, we reanalysed a large sample of left hemisphere stroke patients using 

a multivariate lesion behaviour mapping method. 

 

Methods 

Subjects 

We retrospectively analysed data of 130 left brain damaged patients (mean age = 56.5 

± 12.3 years; range 26-83) that had been admitted to the Neuropsychological 

Department of the Bogenhausen Hospital in Munich (for demographic and clinical 

data see Table 1). The patients were investigated in two previous studies (Goldenberg 

et al., 2007; Goldenberg & Randerath, 2015). All patients had a first ever left 

hemisphere stroke at least three weeks before the examination. Neuropsychological 

examination and imaging were part of clinical protocols at the Bogenhausen Hospital. 

Patients consented to the scientific re-use of their data; the study has been performed 

in accordance with the ethical standards laid down in the 1964 Declaration of 

Helsinki. 
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 Pantomime normal Pantomime defective 

Age (years) 55.4 (11.4) 57.7 (13.1) 

Ischemia/haemorrhage 54/14 49/13 

Lesion size (mm³) 79.2 (58.4) 111.1 (71.2) 

Time since lesion (weeks) 14.2 (18.6) 14.9 (17.9) 

Aphasia classification 6 none/ 12 global/ 9 

broca/ 16 wernicke/ 10 

amnestic/ 15 other 

0 none/ 27 global/ 4 

broca/ 12 wernicke/ 8 

amnestic/ 11 other 

Hemiparesis present (%) 44.1 61.3 

Imitation finger (test score) 17.8 (2.9) 14.6 (4.4) 

Imitation finger defective (%) 32.4 59.7 

Imitation hand (test score) 16.8 (3.8) 14.4 (4.6) 

Imitation hand defective (%) 44.9 67.7 

Pantomime (test score) 49.2 (3.0) 29.6 (10.6) 

 

Table 1: Demographic and clinical data 

Demographic and clinical data of all 130 patients. Pantomime was tested using a 20-

item test (Goldenberg et al., 2003, 2007); imitation of hand and finger gestures was 

assessed using a 10-item test each (Goldenberg, 1996). Patients were considered to 

have defective pantomime when they scored below a cutoff of 45 points. This cutoff 

was defined with a sample of 49 healthy control subjects (Goldenberg et al., 2007). 
Maximum score obtainable in the pantomime task was 55 points (cutoff < 45) and 20 

points in the imitation tasks (finger posture imitation cutoff < 17; hand posture 

imitation cutoff < 18). Aphasia was classified according to the Aachen Aphasia Test. 

Numbers in parentheses indicate standard deviations. 

 

Neuropsychological examination 

Pantomime of tool use was assessed with a 20-item test (Goldenberg et al., 2003, 

2007). Patients were asked to imitate the use of common tools as if they hold the 

actual tool in hand. For each item the examiner named an action and the 

corresponding tool and simultaneously showed a picture of the object (e.g., ‘How do 

you brush your teeth with a tooth brush?’ while showing a picture of a tooth brush). 

The picture was removed before the patient initiated the task. Patients with 

hemiparesis were instructed to use the left, ipsilesional hand to perform the task. To 

ensure that patients did understand the task, practice items were performed and 

patients that did not understand the task (e.g., when a patient drew the outlines of the 

tool on the table instead of performing pantomime) were excluded. For each of the 20 

items one point was scored for the correct grip and finger posture and a maximum of 

one to three points for aspects such as movement amplitude, trajectories, or hand 

position in relation to the own body. Maximum score was 55 points. The inter-rater 

reliability was previously found to be very satisfying both for the number of correct 
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features per item (kappa = 0.61) and for the total test score (kappa = 0.94; Goldenberg 

et al., 2003). Furthermore, all patients were tested for aphasia with the Aachen 

Aphasia Test (Huber et al., 1983) and for apractic deficits in imitation of postures 

with the fingers or the hand (Goldenberg, 1996). 

 

Imaging and lesion mapping 

Structural imaging was acquired either by MRI (n = 118) or CT (n = 12) on average 

14.6 weeks (SD 18.2) after stroke-onset. The interval between imaging and 

neuropsychological examination was maximally three weeks. Lesions were manually 

mapped on transversal slices of the T1-weighted ‘ch2’ template scan from the 

Montreal Neurological Institute using MRIcro software (Rorden & Brett, 2000; 

http://people.cas.sc.edu/rorden/mricro/index.html). The ‘ch2’ template is oriented to 

fit Talairach space (Talairach & Tournoux, 1998) and is distributed with the MRIcro 

software. Lesions were mapped on a fixed set of twelve slices with z-coordinates -40, 

-32, -24, -16, -8, 0, 8, 16, 24, 32, 40, and 50 by using the closest matching or identical 

transversal slice found in the imaging. A topography of all lesions is shown in Figure 

1A. To obtain an estimate for lesion size for the demographic data (Table 1) and the 

supplementary analysis, lesions were interpolated by converting each individual slice 

into a volume of 8mm thickness. 

 

Multivariate lesion behaviour mapping 

Multivariate lesion behaviour mapping (MLBM) was performed using support vector 

regression (SVR; Vapnik, 1995; Drucker et al., 1996), which is a multiple regression 

method based on machine learning. This method is an extension of support vector 

machines (Cortes and Vapnik, 1995). SVR is able to model continuous variables and 

has been successfully implemented in SVR-based lesion symptom mapping (SVR-

LSM) to map lesion-behaviour relationships with high resolution on a whole-brain 

voxel-level (Zhang et al., 2014; Mirman et al., 2015b; Fama et al., 2017; Griffis et al., 

2017). Further, SVR-LSM can be used with a control for the effect of lesion size by 

normalisation of each subject’s lesion data vector (Zhang et al., 2014). 
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Figure 1: Topography of brain lesions and hyper-parameter optimisation for the 

SVR-MLBM 

(A) Lesion topography of all 130 brain lesions with colour-coding that depicts the 

number of overlaying lesions per voxel. Only voxels affected in at least ten patients, 

i.e. voxels included in the multivariate analysis, are shown. Numbers above the slices 

indicate z-coordinates in MNI space. (B) Results of the hyper-parameter optimisation 
by grid search for C and γ. (B) Model Fit R and (C) reproducibility (see Rasmussen et 

al., 2012; Zhang et al., 2014) are plotted for the a priori set of chosen parameters. 

 

 

Most importantly, the MLBM method based on SVR was validated in a set of 

simulation studies for simple brain networks (Zhang et al., 2014). Thus, at least in 

such artificial situations, voxel-wise SVR was empirically proven to be able to 

identify critical brain regions assembled in networks. 

The analysis was performed with MATLAB 2016a and libSVM (Chang and 

Lin, 2011). We modified a publicly available collection of scripts 

(https://github.com/yongsheng-zhang/SVR-LSM) used in the study by Zhang et al. 

(2014) and adopted algorithms for control for lesion size and for the derivation of a 

topography from SVR parameters. The detailed methodological process and 

theoretical background is described in Zhang et al. (2014). In short, binary lesion 
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images were vectorised and then normalised to have a unit norm. This procedure 

provides a control for the effect of lesion size. Lesion data and behavioural data were 

then further processed to fit the required data format of the libSVM toolbox. Using 

default libSVM options, an epsilon-SVR with radial basis function kernel was 

performed. The β-parameters obtained from the SVR were then remapped onto a 

three-dimensional brain topography. To assess statistical significance, a permutation 

approach has been chosen. By randomisation of behavioural scores, a large number of 

SVR-β-maps were generated and voxel-wise significance of β-parameters could be 

derived. The topography was computed using permutation testing with 4000 

permutations at p < 0.05, and only voxels with at least ten lesions were tested. To 

obtain an optimal model, we performed an optimisation for hyper-parameters C and γ 

via grid search. The range of investigated parameters was chosen as in the study by 

Zhang et al. (2014): C = 1, 10, 20, 30, 40, 50, 60, 70, 80, and γ = 0.1, 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 15, 20, 25, 30. Using a five-fold cross-validation, we evaluated both model 

fit and reproducibility of each parameter set (see Rasmussen et al., 2012; Zhang et al., 

2014). Resulting topographies were interpreted according to the AAL atlas (Tzourio-

Mazoyer et al., 2002) for grey matter regions and to the probabilistic cytoarchitectonic 

fibre tract atlas (Bürgel et al., 2006) for white matter structures. For the white matter 

atlas, overlay of the thresholded statistical map with the probabilistic map at p ≥ 0.3 

was identified. 

 

Results  

The grid search showed that model fit and reproducibility generally were diametrical 

(Fig. 1B and C). The ideal model should provide high model fit while maximising 

reproducibility (Rasmussen et al., 2012). We chose C = 30 and γ = 4, as this set of 

hyper-parameters provided both a comparatively satisfying model fit (r = .24) and 

high reproducibility (reproducibility = .84). 

The permutation-thresholded topography (Fig. 2) revealed a network of left 

frontal, temporal, parietal, and subcortical regions underlying apraxia. Table 2 lists 

affected grey and white matter structures. Large areas of significant voxels were 

found in the inferior parietal lobule, including angular and supramarginal gyri. In the 

frontal lobe, we found the largest cluster in the periventricular white matter and a few 

significant voxels in the orbital part of the inferior frontal lobe. Furthermore, larger 

significant clusters were found in superior and middle temporal gyrus, insula, 
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precentral gyrus, caudatum, amygdala, and hippocampus. Significant clusters also 

included white matter structures, including superior longitudinal fascicle, inferior 

occipito-frontal fascicle, and superior occipito-frontal fascicle. 

 

 

 
 

Figure 2: Results of the multivariate lesion-behaviour mapping 

Permutation-thresholded β-map of SVR-MLBM on apraxia scores (p < 0.05), 
illustrating the anatomical regions significantly associated with apraxia of 

pantomime. Significance clusters were interpreted according to the AAL atlas 

(Tzourio-Mazoyer et al., 2002) for grey matter regions and to the probabilistic 
cytoarchitectonic fibre tract atlas (Bürgel et al., 2006) for white matter structures. 

Lower panels show three-dimensional renderings of the same map using the 3D-

interpolation algorithm provided by MRIcron 
(http://people.cas.sc.edu/rorden/mricron/index.html; 8mm search depth in the left 

panel and 16mm in the right). Abbreviations: SLF – superior longitudinal fascicle; 

SOF – superior occipitofrontal fascicle; IOF – inferior occipitofrontal fascicle. 
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Grey matter structure 
Percent 

affected 
White matter structure 

Percent 

affected 

Angular gyrus 43.5 Sup. longitudinal fasc. 48.5 

Amygdala 30.8 Inf. occ.-frontal fasc. 23.6 

Supramarginal gyrus 27.9 Sup. occ.-frontal fasc. 20.5 

Middle temporal pole 20.2 Corticospinal tract 18.8 

Inf. parietal lobe 13.7 Optic radiation 13.1 

Precentral gyrus 12.4 Uncinate fascicle 12.6 

Caudatum 11.8 Callosal body 10.0 

Middle occipital gyrus 10.5 Acoustic radiation 4.5 

Sup. temporal pole 10.5   

Hippocampus 8.4   

Middle temporal gyrus 7.2   

Supp. motor area 5.2   

Superior temporal gyrus 4.4   

Superior frontal lobe 4.0   

Insula 3.9   

Inf. frontal lobe/orbital 2.2   

Postcentral gyrus 2.2   

 

Table 2: Topological grey and white matter analysis  

Topological analysis of grey and white matter structures covered by the significant 

statistical map (see also Fig. 2). For grey matter structures, left hemispheric regions 

taken from the AAL Atlas (Tzourio-Mazoyer et al., 2002) with at least 2% affection 

are reported. For white matter structures, ROIs in the probabilistic histological atlas 

(Bürgel et al., 2006) were defined at a probability of p ≥ .3 to obtain binary maps. Of 

these binary maps, only left hemisphere parts were considered (MNI-coordinate x < 

91). Further, for both grey and white matter atlas ROIs only z-slices that were part of 
the statistical analysis were considered. 

 

The finding of the largest frontal cluster in the periventricular frontal white matter, but 

not in inferior frontal gyrus, was surprising given that several previous studies found 

that the inferior frontal gyrus was associated with apraxia. We therefore took a closer 

look at the frontal significant cluster. Recent studies discussed the role of 

periventricular frontal white matter lesions in aphasia and found that damage to a 

white matter bottleneck increased aphasic disturbances (Mirman et al., 2015a; Griffis 

et al., 2017). To find out if damage to this white matter bottleneck could also underlie 

apraxia, we compared the frontal cluster in our topography with an atlas-based 

reconstruction of the bottleneck. Analogue to previous studies (Mirman et al., 2015a; 

Griffis et al., 2017), the bottleneck was reconstructed using the ICBM DTI-81 atlas 

(Mori et al., 2008; Oishi et al., 2008). Probabilistic maps were thresholded at a 
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probability of p ≥ 0.3. Indeed, the cluster affected the white matter bottleneck, 

consisting of inferior occipito-frontal fascicle, uncinate fascicle, and thalamic 

projection fibres connected to inferior and middle frontal gyrus (Fig. 3). 

 

 

Figure 3: Frontal white matter bottleneck 

Significant cluster in frontal white matter in relation to frontal white matter fibres. 
Analogue to previous studies (Mirman et al., 2015a; Griffis et al., 2017), white matter 

fibre tracts were reconstructed using probabilistic maps taken from the ICBM DTI-81 

atlas (Mori et al., 2008; Oishi et al., 2008) and thresholded at p ≥ 0.3. (A) 3D-atlas 

reconstruction of relevant fibres consisting of inferior occipito-frontal fascicle (blue), 

uncinate fascicle (green), and thalamic projection fibres connected to inferior and 

middle frontal gyrus (cyan). (B) 2D-plot of the white matter bottleneck on MNI slice 
z = 0 and the significant cluster obtained in the MLBM analysis (red).  

 

Discussion 

In a large sample of 130 left brain damaged patients, we investigated apraxia of 

pantomime by using multivariate lesion behaviour mapping. A main advantage of 

MLBM is that the role of different brain regions can be investigated in combination. 

Indeed, we were able to confirm the hypothesis of a network underlying human high-

order motor control, including left frontal, temporal, parietal, and subcortical regions. 

Different parts of this network have been observed in previous studies in isolation. 

This has contributed to the inconsistent reports and conclusions on the neural 

representation of apraxia. In fact, the present multivariate analysis uncovered that 

these regions belong to a common network underlying high-order motor control. 

The most likely reason for the inability of previous mass-univariate 

approaches to identify the whole network could be the 'partial injury problem'. This is 

a methodological problem inherent to several lesion analysis methods including 
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VLBM (Rorden et al., 2009; for review Karnath et al., 2018). As example, imagine a 

simple brain network consisting of two distinct areas A and B. If damage to either 

area A or area B can induce the same symptom, patients showing the deficit may exist 

that have damage to area A, but not area B, and vice versa. Such patients will be used 

as counter examples in the voxel-wise statistical tests and statistical power to detect 

the neural correlates of the symptom is therefore reduced. Thus, given that a complex 

brain network underlies apraxia, mass-univariate methods can fail to identify the brain 

network in a whole. Previous mass-univariate studies therefore did not provide 

‘wrong’ results, but simply were unable to identify all critical brain regions involved 

at once. Hence, MLBM appears to be a beneficial innovation in research on 

distributed networks, including apraxia of pantomime. 

The SVR-LSM analysis did not associate apraxia with lesions to inferior 

frontal gyrus, but to adjacent white matter. At first glance, this result was surprising, 

because several previous studies found the inferior frontal gyrus itself to underlie 

apraxia (Goldenberg et al., 2007; Manuel et al., 2013; Weiss et al., 2016). A post-hoc 

analysis, however, shed further light on this finding. Recent studies discussed the role 

of periventricular frontal white matter lesions in aphasia and found that damage to a 

white matter bottleneck increased aphasic disturbances (Mirman et al., 2015a; Griffis 

et al., 2017). Apraxia is closely linked to aphasia (e.g., Kertesz & Hooper, 1982; 

Goldenberg & Randerath, 2015; Weiss et al., 2016) and, in fact, we found the same 

periventricular frontal white matter bottleneck affected in apraxia, consisting of 

inferior occipito-frontal fascicle, uncinate fascicle, and thalamic projection fibres 

connected to inferior and middle frontal gyrus. Interestingly, this periventricular 

bottleneck region was also included in previous studies that found the inferior frontal 

gyrus to underlie apraxia by using VLBM (Manuel et al., 2013) or subtraction 

analysis (Goldenberg et al., 2007). However, one VLBM study found only frontal 

cortical regions, but not white matter areas to underlie apraxia (Weiss et al., 2016). 

Furthermore, recent studies that associated aphasia with damage to white matter 

bottlenecks (Mirman et al., 2015a; Griffis et al., 2017) also identified a posterior 

periventricular white matter bottleneck. Large significant clusters in this area were 

also found by our study, which indicates that this bottleneck as well might play a role 

in apraxia. In general, the present analysis pointed out a prominent role of white 

matter damage in apraxia. Besides the white matter bottlenecks, several other white 

matter structures, including the superior longitudinal fascicle, the inferior occipito-
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frontal fascicle, and the superior occipito-frontal fascicle, were found significant. 

These white matter fibres constitute a perisylvan network that connects frontal, 

temporal, and parietal brain regions, and represent a crucial part of the human 

language network (Catani et al., 2005; Catani & Mesulam, 2008; Turken & Dronkers, 

2011). This once more underlines the close relation of language and praxis processes 

(e.g., Kertesz & Hooper, 1982; Goldenberg & Randerath, 2015; Weiss et al., 2016). 

 The role of white matter damage found in the present study is also in line with 

other previous studies. For example, Kertesz and Ferro (1984) reported that smaller 

lesions that induce apraxia are predominantly found in the periventricular white 

matter. Also, a combined fMRI-DTI study identified a fronto-temporo-parietal 

network to underlie the ability to pantomime, which includes frontal white matter 

fibres (Vry et al., 2013). The finding of a network underlying apraxia is convincing 

since the ability to pantomime object use is a complex task that requires a wide range 

of cognitive and motor abilities. Several cognitive models of praxis skills have been 

proposed in line with findings in apractic patients (e.g., Barbieri & de Renzi, 1988; 

Cubelli et al., 2000; Bartolo et al., 2003; Johnson-Frey, 2004; Frey, 2008; Jax et al., 

2014; Goldenberg, 2017). Although there is no consensus on the cognitive model 

underlying pantomime (Goldenberg, 2017), the different models generally assume 

paths along multiple cognitive processes that lie between phonological or visual 

analysis of the input stimuli (e.g., the word ‘tooth brush’ or a picture of a tooth brush) 

and the motor response. For example, the most classical cognitive model of apraxia 

assumes that gestures such as pantomime are conceptualised, converted into a motor 

programme, and then executed (e.g., Liepmann, 1908; Barbieri & De Renzi, 1988; Jax 

et al., 2014). Given such complex cognitive models, a disruption of different cognitive 

functions could induce deficits in pantomime. These deficits may also show different 

characteristics with differently affected cognitive subcomponents. Accordingly, errors 

in apraxia can qualitatively differ and dissociate (e.g., Buxbaum, 2001; Halsband et 

al., 2001; Goldenberg, 2011; Manuel et al., 2013). Thus, previous studies so far might 

have mapped different aspects of pathological behaviour functions at once. Indeed, it 

has been shown that the neural correlates of different apractic error types can 

dissociate (Manuel et al., 2013). 

The findings in the present study are not only able to reconcile several 

discrepancies within the lesion-behaviour mapping literature in apraxia, but also 

discrepancies between lesion-behaviour mapping studies and fMRI studies. As in 
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lesion studies, fMRI experiments that investigated pantomime also found several 

different left hemisphere regions to be involved (for reviews see Johnson-Frey, 2004; 

Lewis, 2006; Niessen et al., 2014; see also Lausberg et al., 2015; Vry et al., 2015; 

Martin et al., 2016; Chen et al., 2017). Parietal regions, including the intraparietal 

sulcus, inferior parietal lobe, and/or superior parietal lobe, were found activated in 

nearly all studies during pantomime (Niessen et al., 2014). Beyond, activation in 

middle and inferior frontal gyrus, inferior, middle and superior temporal lobe, inferior 

occipital gyrus, precentral gyrus, and insula were reported in some of these studies 

(Lewis, 2006; Niessen et al., 2014; Lausberg et al., 2015; Martin et al. 2016). The 

present finding suggesting a complex network to underlie higher-order motor control 

thus is in line with these observations derived from healthy subjects. 

Albeit the results of the present study resolve some of the inconsistencies in 

the field, open questions also remain. For example, the present analysis found critical 

voxels in hippocampus, amygdala, and the temporal pole. It is possible that this 

finding represents an artefact, as patients with damage to the hippocampus 

consistently show larger lesions that also affect temporal regions (cf. Goldenberg & 

Randerath, 2015). Indeed, in the present sample, lesions with high affection of the 

hippocampus or amygdala i) seemed to be very large and ii) regularly included other 

regions that were found to be critical for apraxia in the main analysis, including 

temporal regions, parietal regions, or white matter fibres (see supplementary data). 

Thus, it seems that multivariate analyses appear to be prone to errors if damage 

systematically co-occurs between two or more regions, i.e. if statistical independence 

of damage to voxels/brain regions is violated. A first study recently has investigated 

this issue (Pustina et al., in press). They found that multivariate analyses are superior 

to mass-univariate analyses with respect to this bias, but still not perfect (for further 

discussion Karnath et al., 2018). Another still debated issue in MLBM is correction 

for multiple comparisons (see e.g., Zhang et al., 2014; Mirman et al., 2015b; Fama et 

al., 2017). The initial modelling procedure in MLBM only computes a single SVR 

model, thus correction for multiple comparisons is not necessary. However, it is 

unclear if correction for multiple comparisons is necessary when the thresholded 

topography is derived from model parameters (Zhang et al., 2014). Some studies 

explicitly did not control for multiple comparisons (Zhang et al., 2014; Fama et al., 

2017), while others successfully used correction by false discovery rate (FDR; 

Mirman et al., 2015b; Griffis et al., 2017) or cluster-based permutation testing 
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(Mirman et al., 2015b). Both correction methods, however, have their flaws (see 

Mirman et al., in press for cluster-size permutation; see Karnath et al., 2018 for 

critical discussion of FDR correction). When FDR with q = .05 was used in the 

present analysis, no voxels survived correction. The low signal in our data might be 

related to generally low model fit (with high reproducibility on the hand; see 

Rasmussen et al., 2012 for discussion), or with on average large lesions in our sample 

combined with correction for lesion size. In general, the use of multivariate methods 

in lesion-behaviour mapping only emerged recently (Smith et al., 2013); the method 

thus still needs further elaboration and optimisation. Also, the question remains how 

the network underlying apraxia of pantomime is involved in other deficits of higher-

order motor skills, such as apraxia of imitation or apraxia of real tool use. The present 

study as well as a first study that investigated apraxia of imitation using a multivariate 

region-pair approach (Achilles et al., 2017) suggest that multivariate lesion-behaviour 

mapping may also be able to improve our understanding of these symptoms. It may 

deepen our knowledge on how brain regions in the network and their cognitive 

functions work together, and how the ability to pantomime relates to other higher-

order motor skills such as imitation of gestures or real tool use. This could allow us to 

take the next steps in understanding human motor cognition both from a 

neuroscientist’s and a clinician’s perspective. 
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