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SUMMARY 

 

Coiled coils are ubiquitous structural units of proteins which fulfill a wide range of biological 

functions. They can serve as molecular spacers, oligomerization motifs, mechanical levers in 

membrane fusion, components of cytoskeleton, as well as facilitate ion transport and signal 

transduction. Canonical coiled coils are highly regular, left-handed supercoiled bundles of two 

or more α-helices, which follow a characteristic heptad repeat pattern. However, other 

periodicities engendering different supercoils are possible. Insertion of two (nonads) or six 

(hexads) residues in a regular heptad repeat increases the supercoil strain so far, that the helical 

structure locally breaks. In trimeric coiled coils, the single helices continue as short β-strands, 

and assemble as a triangular structural element called β-layer. A previous study showed that 

nonad repeats yield a new structure, the α/β coiled coil, with regularly alternating α- and β-

segments and only one backbone hydrogen bond per repeat in common with a heptad-repeat 

coiled coil. In this first project, I present the crystal structures of two hexad-repeat families. 

These minimalistic α/β coiled coils do not share any backbone hydrogen bond with a heptad-

repeat coiled coil. Furthermore, conversion of hexads to heptads by simple insertion of one 

residue per repeat leads to the formation of a canonical coiled coil. These results further support 

previous data showing that novel backbone structures are possible within the allowed regions 

of Ramachandran space with minor mutations to a canonical coiled coil. 

 

 In the second project, I investigate the structural and functional characteristics of the 

mempromCC family, a group of conserved integral membrane proteins in prokaryotes and 

mitochondria. They exhibit a characteristic head-neck-stalk-anchor architecture, where a 

membrane-anchored trimeric coiled-coil stalk projects the N-terminal head domains via a β-

layer neck. Humans express two mempromCC paralogs, MCUR1 and CCDC90B. Here, I 

present the crystal structure of the head domain of human CCDC90B and a full-length model 

of MCUR1. Cellular localization studies show that the prokaryotic and eukaryotic proteins 

localize to the cytoplasmic and inner mitochondrial membranes respectively, with an N-in C-

out orientation in both cases. Using human MCUR1, an essential regulator of Ca2+ uptake 

through the mitochondrial calcium uniporter (MCU), I study the role of individual domains 

and find that the head interacts directly with MCU. Upon Ca2+ binding, MCUR1 head domain 

is destabilized which then accelerates its conversion to β-amyloid fibrils. Furthermore, I find 
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that MCUR1 is processed in vivo and show that a major part of its N-terminal disordered region 

is cleaved. Both the full-length and processed forms of MCUR1 interact with MCU; however, 

it is still unclear if they are functionally equivalent. Finally, comparison of mempromCC 

homologs with unrelated prokaryotic proteins at the structural and sequence level identifies the 

head domain as the family defining element. 

 

 In the third project, I study the effect of frameshift resistant (FSR) repeat amplification 

on the structure and function of existing and novel proteins. This particular type of repetition 

comprising units of n∤3 base-pairs and lacking stop codons, encodes the same protein repeat of 

n residues in all three frames of equal sense. I focus on heptad FSR repeats which are 

significantly enriched and conform to coiled-coil periodicity. Through biophysical and 

biochemical methods, I show that these repeat insertions in proteins are mostly unstructured 

and have mainly deleterious effects. Using Microcystis aeruginosa, I investigate the in vivo 

expression of FSR repeat ORFs with proteome and transcriptome analyses and find that a 

number of them are transcribed, but undetectable at the protein level. From these results, it 

appears that FSR repeat amplification in bacterial genomes is a recent evolutionary event, 

whose products are initially unstructured and non-functional. Eventually they can obtain 

beneficial mutations to become more structured, giving rise to novel cellular functions. 
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ZUSAMMENFASSUNG 

Coiled-Coils sind ubiquitäre Proteinstruktur-Motive, welche verschiedenste biologische 

Funktionen erfüllen. Sie dienen als molekulare Abstandshalter und Oligomerisierungsmodule, 

erfüllen Hebelfunktion in Membranfusionsprozessen, stellen Komponenten des Zellskeletts 

dar und sind am Ionentransport und der Signalübertragung an Membranen beteiligt. 

Kanonische Coiled-Coils sind regelmäßige, linkshändig gedrehte spiralförmige Bündel von 

mindestens zwei α-Helices, deren Aminosäuresequenz ein typisches Heptaden-Muster 

aufweist. Neben diesem sich wiederholenden Muster von sieben Resten sind weitere 

Periodizitäten möglich, welche entsprechende Änderungen im Grad der Verdrehung der 

Helices aufweisen. Das Einfügen von zusätzlich zwei (Nonade) oder sechs (Hexade) 

Aminosäureresten in eine Heptade führt zur lokalen Überbeanspruchung der einzelnen Helices 

und letztlich zu ihrem Bruch. In trimeren Coiled-Coils werden die einzelnen Helices an der 

Insertionsstelle als kurze β-Stränge fortgesetzt und bilden ein dreieckförmiges Strukturelement, 

genannt β-layer. Vorherige Arbeiten zeigten, dass die repetitive Anordnung von Nonaden zur 

Ausbildung einer α/β-Coiled-Coil führt. Diese neuartige Struktur besteht aus alternierenden α- 

und β-Abschnitten und besitzt, im Gegensatz zu Heptaden, bei denen jede Aminosäure (i) eine 

solche Wasserstoffbrückenbindung mit dem vierten nachfolgenden Rest (i+4) ausbildet, je 

Wiederholungsmotiv nur noch eine Wasserstoffbrückenbindung im Backbone der 

Aminosäurekette. In diesem Projekt wurden die Kristallstrukturen zweier Motive, die repetitive 

β-layer im Hexaden-Abstand haben, gelöst. Diese zeigen minimalistische α/β-Coiled-Coils, die 

keine der genannten Wasserstoffbrückenbindung im Backbone der Aminosäurekette mehr 

aufweisen. Durch Einfügen von nur einer zusätzlichen Aminosäure wurden die Hexaden in 

Heptaden überführt und die α/β-Coiled-Coil in eine kanonische Coiled-Coil umgewandelt. 

Diese Ergebnisse zeigen, dass es möglich ist, durch die Einführung nur weniger Mutationen in 

das Heptaden-Muster einer Coiled-Coil neue Backbone-Strukturen, beschreibbar mit dem 

Ramachandran-Plot, zu generieren. 

 

Das zweite Projekt beschäftigt sich mit strukturellen und funktionellen Untersuchungen 

der mempromCC-Proteinfamilie mit Homologen in Prokaryoten und Mitochondrien. Die 

Mitglieder dieser Familie sind trimere integrale Membranproteine mit einer charakteristischen 

Domänenarchitektur, bestehend aus Kopf, Hals, Stiel und Membrananker. Die N-terminale 

Kopfdomäne ist über einen β-layer mit einer Coiled-Coil (Stiel) verbunden, welche wiederum 
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in den C-terminalen Membran-Anker mündet. Im Menschen gibt es mit MCUR1 und 

CCDC90B zwei Paraloge. In dieser Arbeit werden die Kristallstruktur der Kopfdomäne von 

CCDC90B und ein Homologiemodell des gesamten MCUR1-Proteins präsentiert. 

Durchgeführte Studien bestätigen die Lokalisation prokaryotischer und eukaryotischer 

Homologer an der inneren Cytoplasma-Membran bzw. der inneren mitochondrialen Membran, 

mit dem C-Terminus verankert in der Membran und dem Stiel-Kopf-Abschnitt im Cytoplasma 

bzw. der mitochondrialen Matrix. Eine funktionelle Analyse der einzelnen Domänen von 

MCUR1, einem essentiellen Regulator des mitochondrial calcium uniporter (MCU), zeigt, 

dass die Kopfdomäne sowohl die direkte Bindung an MCU vermittelt als auch Ca2+ bindet. 

Ca2+-Ionen destabilisieren die MCUR1-Kopfdomäne und fördern die Umwandlung α-helikaler 

Sekundärstruktur in β-amyloide Fibrillen. Weiterhin wird gezeigt, dass ein Großteil des laut 

Vorhersagen ungefalteten N-Terminus von MCUR1 in vivo durch zelluläre Proteasen 

abgespalten wird. Sowohl unprozessiertes als auch prozessiertes MCUR1 bindet an MCU. Es 

bleibt allerdings unklar, ob beide Formen auch funktionell äquivalent sind. Wie der Vergleich 

mit Strukturmodellen, die für bakterielle mempromCC- Vertreter erstellt wurden, zeigt, sind 

prokaryotische Homologe strukturell sehr ähnlich mit einer gewissen Variabilität in ihren 

Stieldomänen. Vergleichende Sequenz- und Strukturanalysen mit nicht verwandten Proteinen 

derselben Domänenarchitektur identifizieren die Kopfdomäne als das die mempromCC-

Familie definierende Element.  

 

Das dritte Projekt untersucht die Auswirkungen der Amplifikation sogenannter 

Frameshift-resistenter (FSR) Motive auf die Struktur und Funktion evolutionär konservierter 

als auch jüngerer Proteine. Dieser besondere Motiv-Typ umfasst repetitive Einheiten bestehend 

aus n Nukleotiden, die für keines der drei Stopp-Codons kodieren und wobei n nicht durch drei 

teilbar (n∤3) ist. Diese Repeats kodieren Aminosäuresequenz-Motive, die aus n Resten 

bestehen und sind in allen drei Leserahmen identisch. Mit Fokus auf repetitive FSR-Motive, 

die für Heptaden kodieren, sollte ein möglicher struktureller und damit evolutionärer Bezug zu 

Coiled-Coils untersucht werden. Mittels biophysikalischer und biochemischer Methoden 

wurde anhand natürlich vorkommender Beispiele gezeigt, dass die repetitive Insertion solcher 

Motive fast immer zur Zerstörung der nativen Struktur und Beeinträchtigung der Funktion der 

Proteine führt. Durchgeführte Transkriptom- und Proteom-Analysen zu Proteinen mit FSR-

Motiven in Microcystis aeruginosa zeigen, dass viele der Gene in vivo transkribiert werden, 

während die entsprechenden Proteine meist nicht nachweisbar sind. Diese Ergebnisse lassen 
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vermuten, dass es sich bei derartigen FSR-Repeat-Amplifikationen in bakteriellen Genomen 

sehr wahrscheinlich um jüngere evolutionäre Ereignisse handelt, die zu Strukturverlust und 

Funktionsbeeinträchtigung führen. Dennoch stellen sie möglicherweise einen der 

Ausgangspunkte für die Evolution von strukturell und funktionell neuartigen Proteinen dar. 
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CHAPTER 1 
 
Introduction to Coiled coils 
 

 

 

1.1 Brief History 

Coiled coils are highly versatile protein structural elements involved in numerous biological 

activities. The first structural investigations in coiled coils came from William Astbury, who 

obtained X-ray diffraction patterns for natural fibers such as wool (in native and denatured 

forms), as well as horns, tendons, hair, and porcupine quills. His work revealed three main 

diffraction patterns: an α-form shown by unstretched wool, a β-form from stretched wool and 

a γ-form corresponding to tendons (collagen). α-form, the most common diffraction pattern 

with strong meridional arcs at 5.15 Å and equatorial reflections at 10 Å and 27 Å, was generated 

by a group of proteins referred to as ‘k-m-e-f’ for keratin, myosin, epidermin and fibrinogen. 

By 1953, Linus Pauling and Francis Crick independently proposed the model of supercoiled 

helices for this group of proteins which we now refer to as coiled coils (Pauling et al., 1951; 

Pauling and Corey, 1953; Crick, 1952, 1953a, 1953b). While Pauling only considered 

backbone periodic configuration and envisaged a set of periodicities (4/1, 7/2, 11/3, 15/4) and 

stoichiometries for constituent helices, Crick provided the first fully parameterized model for 

the sequence periodicity of 7/2 (seven residues over two helical turns). He placed side-chain 

packing interactions at the core of his model recognizing that when α-helices are twisted around 

each other by 20˚, their side-chains would interlock systematically along the fiber with the 

same interactions repeated every 7 residues (or 2 helical turns). He referred to this regular side-

chain packing as “knobs-into-holes”, in which one knob from a helix packs into a hole formed 

by four side chains of the neighboring helix.  

 

1.2 Structure of canonical coiled coils 

Coiled coils are superhelical bundles composed of two or more α-helices, running in a parallel 

or anti-parallel direction. As proposed by Crick (Crick, 1953a, b), helices in a coiled coil 

interact via knobs-into-holes (KIH) arrangement of residue side-chains, which occupy 

equivalent positions along the bundle interface. This geometry contrasts with the more irregular 

ridges-into-grooves packing of regular α-helices in globular proteins, where a residue packs 
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above or beneath the equivalent residue from the opposite helix (Chothia et al., 1977). For this 

reason, KIH packing is sometimes referred to as ‘in-register’ and ridges-into-grooves as ‘out-

of-register’. Regular KIH packing requires periodically recurring residues along the interface. 

Coiled coils achieve this by giving a left-handed twist to right-handed α-helices, effectively 

reducing the periodicity from 3.63 residues per turn (r/t) of undistorted α-helices to 3.5 r/t which 

corresponds to seven residues repeating every two helical turns. The seven positions of a heptad 

repeat are labelled a-g, where a and d core positions are occupied by hydrophobic residues and 

the remaining solvent exposed positions (b, c, e, f and g) mostly by hydrophilic residues. This 

Crick model of a heptad repeat based coiled-coil is termed as “canonical”. Owing to the regular 

nature of coiled coils, their structures can be fully described by parametric equations. As a 

consequence, coiled coils have been exploited in protein design efforts, to understand the 

general relationship between sequence and structure.  

 

1.3 The GCN4 leucine zipper 

GCN4 (General Control Nonderepressible), a eukaryotic transcriptional activator protein, 

belongs to the bZIP (basic leucine zipper domain containing) family of proteins. It is 

responsible for the activation of more than 30 genes involved in amino acid biosynthesis under 

starvation conditions in yeast (Hope and Struhl, 1985; Arndt and Fink, 1986). GCN4 leucine 

zipper is one of the best studied coiled coil domains. It is a 31-residue parallel dimer, built of 

four complete heptad repeats (O’Shea et al., 1991; Landschulz et al., 1988). The d position of 

heptad repeats is primarily occupied by the leucine residue, hence the given name. GCN4 also 

features a conserved asparagine (N16) at one of the a positions which confers dimer specificity 

and forces zipper in a parallel orientation which promotes stability by self-complementary 

hydrogen bonding. Polar residues can be easily accommodated in a dimer as the core residue 

in position a is solvent accessible. In higher oligomeric forms such as trimers or tetramers, this 

position is buried deep in the core and therefore prefers hydrophobic residues.   

 

Harbury et al. in 1993 established rules governing the oligomerization specificity of 

GCN4 leucine zipper. In a dimeric parallel coiled-coil, as the Cα-Cβ bond vector of the residue 

in position a is parallel to the equivalent bond from the facing helix, it favors β-branched 

residues such as Ile, Val, and Thr; whereas in position d, it directly points into the core of the 

superhelix (perpendicular geometry) and prefers γ-branched residue leucine. For a parallel 

tetramer, core packing geometry is exactly reversed: a residue favors perpendicular and d 
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favors parallel packing. In a trimer, core packing angle is intermediate of that in the parallel 

and perpendicular arrangement; therefore it is called ‘acute’. Acute positions do not display 

any residue preferences. Since then, a number of studies have reported different structural 

forms brought about by minor changes in the sequence of GCN4-p1 leucine zipper. For 

example, mutation of N16 to a valine resulted in a mixture of stable dimers and trimers 

(Harbury et al., 1993; Knappenberger et al., 2002). In another study, replacing hydrophilic 

residues at both e and g positions (involved in salt-bridge interactions in the oligomeric state) 

with nonpolar alanines gave a soluble seven-helical coiled-coil bundle (Liu et al., 2006).  

  

I have employed this knowledge of oligomer preference of core residues of the GCN4 

leucine zipper and their high stability to express and purify difficult proteins. In the next 

chapters, I will discuss a number of cases where GCN4 variants have been fused to the proteins 

of interest for structural and biophysical characterization. A modified version of pASK-IBA 

expression vector was used to fuse N- or C-terminal (or both) of the protein of interest to 

stabilizing GCN4 adaptors in the correct heptad register (Hernandez-Alvarez et al., 2008). Prior 

information of the native coiled-coil oligomer state is helpful in selecting the appropriate GCN4 

variant. Such a system is especially useful for proper folding of protein domains flanked by 

coiled coils in their native context or coiled-coil domains that lack trigger sequences (see 

section 1.5) (Steinmetz et al., 1998; Kammerer et al., 1998) which would otherwise give an 

unfolded, insoluble product.  

 

1.4 Non-canonical coiled coils 

A significant proportion of naturally identified coiled coils deviate from the canonical heptad 

pattern, periodicity and core packing geometry as described by Crick. In this section, I describe 

the most commonly encountered non-canonical coiled coils – (i) non-heptad periodicities 

arising out of the insertion or deletion of one or more residues from a regular heptad repeat; 

(ii) bifaceted coiled coils harboring more than one hydrophobic interface; and (iii) polar 

residues occupying the canonical hydrophobic positions of the heptad repeat. 

 

1.4.1 Discontinuities 

Although coiled coils are fairly regular structures, discontinuities can arise from the insertion 

or deletion of residues in the heptad pattern (Lupas and Gruber, 2005). Such discontinuities 

can be structurally accommodated by perturbations in the packing of coiled coils. Insertion of 
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three and four residues, called stammers and stutters respectively (Brown et al., 1996), are close 

to the periodicity of an undistorted α-helix (3.63 r/t) which allows their accommodation within 

the helical structure. However, they tend to distort KIH core packing interactions. Stutters raise 

the local periodicity to 3.67 r/t resulting in local unwinding of the superhelix. Stammers have 

an opposite effect; they reduce the periodicity to 3.33 r/t, leading to an overwinding of 

constituent helices. Both insertions, however, have the same effect on core packing: they lead 

to a local adoption of x-da geometry. Stutters shift residues in position a towards the center of 

the core (x layer), while moving d outwards and e inwards (da layer) yielding an a-d-e core. 

Similarly, in stammers, counterclockwise drift (as seen from the N-terminus) results in d 

residues occupying the x layer position, and a and g residues forming the da layer, yielding an 

overall a-d-g core. In both cases, x layer residues point towards the coiled-coil axis while the 

da layer residues form a ring of interacting residues enclosing a central cavity. In this 

arrangement, KIH packing locally transforms to knobs-into-knobs interaction (Lupas and 

Gruber, 2005). 

 

Single insertions can also be delocalized over multiple heptads leading to higher coiled-

coil periodicities (e.g. (7+7+4)/5 = 18/5 or (7+7+7+4)/7 = 25/7), and multiple stutter and 

stammer insertions can also combine with a single heptad repeat (e.g. pentadecads (7+4+4)/4 

=15/4 or 3.75). Coiled coils can only assume a certain range of periodicities, which is limited 

by the supercoil strain tolerated by the constituent helices. The lower limit of this range is 

around 3.33, i.e. insertion of a stammer into a heptad repeat (10/3; 3.63-3.33 = 0.3 r/t less than 

an undistorted helix). From this, the estimated upper limit is around 3.9. Insertions of 1 residue 

can be either looped out of the α-helix (skip) resulting in the formation of a π-turn at the site of 

insertion or delocalized over multiple heptad repeats (Lupas and Gruber, 2005). Similarly, 

accommodation of 5 residue insertion by delocalization over multiple heptads results in 

periodicities that fall within the accessible range. The most demanding for a coiled-coil bundle 

are the insertions of 2 and 6 residues. In parallel trimeric coiled coils, they were shown to 

locally form short β-strands which rotate the path of each chain by 120˚ around the supercoil 

axis and associate to form a new structural element known as the β-layer (Hartmann et al., 

2016). Repetitive arrangement of β-layers generate a new fibrous structure called α/β coiled-

coil. In Chapter 2, I will undertake a detailed examination of the structural features and 

interaction networks formed by α/β coiled coils derived from tandem nonad (7+2) and hexad 

(7+6 or 7-1) discontinuities.  
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1.4.2 Bifaceted coiled coils 

For coiled coils, positions flanking the core residues equally influence the oligomerization state 

and helix orientation. In two and three-stranded coiled coils, positions e and g are mostly 

occupied by charged residues which shield the hydrophobic core and provide stabilizing 

interactions by forming salt-bridges. Inclusion of non-polar residues at either position results 

in a broader hydrophobic surface which favors the formation of tetramers over dimers or 

trimers. This broader interface can be pictured as having two seams of core residues, (g-d and 

d-a) or (d-a and a-e), with one common position (Walshaw et al., 2001; Walshaw and 

Woolfson, 2003; Woolfson et al., 2012). Known as Type I bifaceted coiled coils, their core 

geometry differs from canonical Type N interfaces. The axially symmetric packing causes the 

shared position to point directly towards the central axis (x geometry), while the other two 

positions point sideways enclosing a central cavity (da geometry). We have already discussed 

this packing geometry in section 1.4.1, for stutters and stammers. The advantage of combining 

x positions in one pair of diagonally opposite helices together with the da positions of others 

(or complementary x-da packing; Hulko et al., 2006) provides the preference for an anti-

parallel orientation. 

 

As the two hydrophobic seams move further apart, they prefer higher oligomeric states. 

Adjacent hydrophobic seams (g-d and a-e) or Type II interfaces, lead to the formation of 

pentamers, hexamers and heptamers (Thomson et al., 2014; Huang et al., 2014). Including a 

fifth residue results in two hydrophobic seams separated by an intervening residue (g–d and e–

b, separated by a; or c–g and a–e, separated by d). This arrangement, known as Type III 

bifaceted coiled coils, allows for the formation of even higher oligomers. The largest known 

protein under this category is a 12-helical anti-parallel barrel in the multidrug efflux pore 

protein TolC (Koronakis et al., 2000). Bifaceted helices can therefore, produce structures that 

range from α-helical fibers (or bundles), to tubes with large diameters and solvent-filled pores 

(Thomson et al., 2014), and to even fully open α-sheets (Egelman et al., 2015). 

 

1.4.3 Polar residues at core positions 

Core residues, a and d, of a regular heptad coiled coil are primarily occupied by hydrophobic 

residues, whose close packing interactions provide the energy required to distort α-helices. 

However, nearly 25% of coiled coil sequences were identified to contain polar residues at either 

position (Conway et al., 1991). Although thermodynamically disfavored, they seem to impart 
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structural specificity at the expense of reduced stability. An example is the GCN4 leucine 

zipper. Trimeric autotransporter adhesins (TAAs) also contain a high content of polar core 

residues, especially occupying position d of the heptad repeat (Hartmann et al., 2009). 

Asparagine is the most commonly identified residue. It results in the formation of a special 

motif namely N@d layers which can coordinate monovalent anions (iodide, chloride, bromide, 

nitrate) at the center. Consecutive insertion of N@d layers is found in many TAAs. In Chapter 

2 (section 2.2.1), we discuss the full-length structure of NadA5, a TAA found in Neisseria 

meningitidis (Malito et al., 2014). NadA5 shows two non-canonical coiled coil features: tandem 

insertions of 2 and 6 residues which result in repetitive β-layer formation (called α/β coiled-

coil), and the presence of multiple N@d layers which coordinate iodide ions. Insertion of N@d 

layers has been biochemically confirmed to reduce structural stability. GCN4 mutants with 

engineered N@d layers unfolded at much lower temperatures, and showed concentration-

dependent folding (Hartmann et al., 2009). Based on this property, it has been proposed that 

multiple N@d insertions maintain the coiled coils of TAAs in a natively unfolded, export-

competent state until complete autotransport has occurred through the bacterial outer 

membrane to avoid problems in proper folding and transport of long fibers. Apart from N@d, 

other widely represented polar motifs in TAAs and various homotrimeric coiled coils include 

SxxNTxx, NxxQDxx, QxxHxxx, QxxDxxx etc., where polar residues are seen to occupy both 

a and d positions. 

 

1.5 Folding and stability 

As a result of their regularly repeating interaction network, coiled coils are generally very stable 

proteins. The most stable coiled coil known to date is tetrabrachion, homotetrameric stalk 

domain of a surface-layer protein of Staphylothermus marinus. It can withstand heating up to 

130˚C in 6M guanidinium chloride, denaturing only in 70% sulfuric acid as a result of the 

hydrolysis of peptide bonds (Peters et al., 1995). Although this is exceptional, other known 

coiled coils also display high stability and resistance to chemical and thermal denaturation, for 

instance, the GCN4 leucine zipper and its variants. Primary factors that contribute to coiled-

coil stability include helical propensity, core hydrophobicity, tightness of the core packing and 

favorable ionic interactions that shield the core from solvent molecules (Lupas and Gruber, 

2005).  
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However, it is quite surprising that coiled coils are frequently predicted to be natively 

unstructured by various disorder prediction programs (Lupas et al., 2017). The reason lies in 

the highly repetitive, solvent-exposed structures of coiled coils; they have a low proportion of 

hydrophobic residues (required only at 2 positions out of 7) compared to globular proteins, and 

a reduced sequence complexity – both factors in common with the natively disordered proteins. 

A question arises – why have coiled coils evolved to resemble natively unstructured sequences? 

One possible explanation could be the need to ensure proper in-register folding of long fibers. 

For example, in a myosin rod that extends for nearly 1000 residues, packing interactions are 

the same along the entire length of the rod. If local interactions formed rapidly and randomly, 

they would trap the chains in a natively out-of-register conformation. To prevent this, 

specialized “trigger sequences” have evolved in coiled coils (Steinmetz et al., 1998; Kammerer 

et al., 1998; Steinmetz et al., 2007). They are short, autonomous folding units that serve as 

nucleation sites and guarantee an in-register assembly of constituent helices. While trigger 

sequences do not display any consensus sequence motif, they are characterized by short 

segments of high α-helical propensity which are capable of forming many interactions 

stabilizing the correct oligomeric form (Steinmetz et al., 1998). 

 

1.6 Functional roles of coiled coils 

Coiled coils are widespread structural elements found in nearly 10% of eukaryotic and up to 

5% of prokaryotic proteins (Walshaw and Woolfson, 2001; Liu and Rost, 2001). They fulfill a 

wide array of biological functions (Lupas, 1996; Truebestein and Leonard, 2016; Hartmann, 

2017). As coiled-coil fibers display high mechanical strength, they are found in hair, feathers, 

horns, and nails (Lupas and Gruber, 2005). In eukaryotes, they constitute the basic building 

blocks of intermediate filaments, which are the essential components of cytoskeleton and 

nucleoskeleton. Coiled-coil fibers are also frequently found on bacterial cell surfaces (e.g. 

flagellins, pilins and adhesins). As elongated structures, they can serve as molecular spacers 

projecting domains across large distances. An important role of coiled coils lies in their ability 

to mediate oligomerization, for example in transcription factors (leucine zippers), signaling 

molecules (G protein βγ), and molecular motors. In motor proteins, myosin and kinesin, 

extended coiled-coil domains contribute to cellular motility (Squire et al., 2017). They can 

function as levers in processes like vesicle tethering, membrane fusion and chromosome 

segregation (Matityahu and Onn, 2018; Witkos and Lowe, 2017). pH-dependent 

conformational change of an unstructured loop into a trimeric coiled coil was shown for 



32 

 

membrane fusion mediating influenza hemagglutinin (Carr and Kim, 1993; Bullough et al., 

1994), which projects the fusion peptide away from viral surface into the host membrane at a 

distance of 100Å.  

 

Coiled coils are also found as components of channels where they facilitate ion 

transport across membranes. A number of protein design efforts have focused in this direction; 

for example, design of Rocker, a zinc/H+ antiporter which is a homotetrameric, membrane-

embedded coiled-coil (Joh et al., 2014). Recent studies have also employed bifaceted coiled 

coils in designing soluble enzyme catalytic barrels. For example, a designed seven-helical 

barrel with a central Cys-His-Glu catalytic triad was capable of hydrolyzing p-nitrophenyl 

acetate with a significantly high catalytic rate (Burton et al., 2016). Finally, as components of 

cellular receptors, coiled coils can mediate signal transduction (Hulko et al., 2006; Ferris et al., 

2011; Gushchin and Gordeliy, 2018). Transmission of signals across membrane, for e.g. in the 

HAMP domain of two-component signal transduction receptors, utilizes the mechanism of 

axial helix rotation. Transition between canonical knobs-into-holes and complementary x-da 

packing (two isoenergetic states) upon ligand binding, drives the long-range signal 

transmission. In short, coiled coils are omnipresent structural elements. 
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CHAPTER 2 
 
Structural characterization of α/β coiled coils derived 
from hexad repeats 
 

 

 

 

 

 

 

 

The present chapter deals with a special type of coiled-coil discontinuity, namely the β-layer. 

As already discussed in Chapter 1, canonical coiled coils follow a heptad repeat pattern. 

Removal of one or more residues from a regular heptad repeat results in perturbation in the 

packing of coiled coils. Many naturally occurring coiled coils harbor such discontinuities. One 

such type of a discontinuity is the insertion of two or deletion of one residue, giving rise to a 

nonad or hexad repeat respectively. In a previous report from our group (Hartmann et al., 2016), 

it was shown that such perturbations in regular coiled coils overstrain the single helices. The 

increased conformational strain locally breaks the α-helices into short β-strands forming a 

triangular network of interaction known as the β-layer. These β-layers are also found arranged 

repetitively in long protein fibers, and form α/β coiled coils with regularly alternating α- and 

β-segments. An example of a fiber built from repetitive nonads with only one backbone 

hydrogen bond per repeat in common with a heptad-repeat coiled coil has been studied 

crystallographically. But we are still missing the structural information of repetitive hexad 

insertions in coiled-coil fibers. Here, we undertake the structural characterization of two 

prominently identified hexad repeat families: (i) KAD-VYT-LYT co-optimized module, and 

(ii) TAT repetitive module. We present the first examples of a novel coiled-coil backbone with 

β-layers in hexad spacing, which do not share any backbone hydrogen bond with a heptad 

coiled coil. Conversion of hexads to heptads by simple insertion of one residue per repeat leads 

to the formation of a canonical coiled coil. This work expands the repertoire of available 

structures and will be useful for structural prediction and protein design efforts in the future. 
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2.1 INTRODUCTION 

 

2.1.1 What is a β-layer? 

Coiled coils are among the best understood and widely present structural features in proteins 

whose backbone structures can be easily computed from parametric equations. They contain 

two or more α-helices wound around in a superhelical bundle. Primarily they follow a heptad 

repeat pattern hpphppp (hydrophobic, h and polar, p). Positions on the heptad repeat are 

generally denoted as abcdefg where hydrophobic residues a and d are involved in the knobs-

into-holes packing, forming the interaction core of this left-handed supercoiled bundle. 

Naturally occurring coiled coils frequently deviate from this standard model in periodicity, core 

packing and handedness (Lupas and Gruber, 2005). They can obtain discontinuities through 

insertions or deletions during the protein evolution process, resulting in varying degrees of 

perturbation in the packing of coiled-coil helices. As α-helices can tolerate a limited degree of 

supercoiling before they reach a breakpoint, only a range of periodicities is accessible while 

accommodating such insertions (Fig. 2.1). 

 

 

Figure 2.1: Periodicity plot for the insertion of 1-6 residues in a canonical heptad repeat. The figure has been 

reproduced from (Hartmann et al., 2016). Green area in the plot marks the estimated periodicities which can be 

accessed by α-helical coiled coils. The dotted line marks the periodicity of 3.63 residues per turn of unperturbed 

α-helix. Values higher than 3.63 result in right-handed supercoiling and lower values lead to left-handed 

supercoils. Consecutive insertions of 3 residues (stammers) and 4 residues (stutters) to a heptad are followed in 

blue and green lines respectively. The red lines follow the heptad periodicity and delocalization of 1 to 6 residues 

insertion over multiple heptad repeats. Intersection of the red lines from 1 and 5 residue insertion (delocalized 

over two heptads) with the green lines at 15/4 or 19/5 implies that these periodicities can also be brought about 

by consecutive insertion of stutters. Red dotted lines corresponding to the insertion of 2 and 6 residues requires 

a strong delocalization to reach the accessible periodicity green region. 
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As already described in detail in chapter 1, irregularities in a regular heptad coiled coil 

can be seen as insertion of one to six residues. The most commonly observed discontinuities 

are the insertion of 3 or 4 residues. Insertion of 4 residues, called a stutter, can be easily 

accommodated by slight underwinding of the helices. 11 residues are adjusted over 3 turns 

giving a periodicity of 3.67, which is very close to the periodicity of an undistorted α-helix 

(3.63). Therefore, hendecads are rather straight. Consecutive insertion of stutters increases the 

periodicity and thus the right-handedness of coiled coils. A pentadecad (periodicity 15/4 = 3.75 

residues/turn, 3.75-3.63 = 0.12) brought about by insertion of two stutters to a heptad, shows a 

similar degree of right-handedness as the left-handedness of a heptad repeat coiled coil (3.5-

3.63 = -0.13). Insertion of 3 residues, called stammer, results in overwinding of the left-handed 

supercoil and decrease in periodicity ((7+3)/3 = 3.33). From the solved crystal structures of 

stammer insertions in coiled coils, it could be seen that local overwinding was sufficient to 

strain the helices to form short 310-helical segments. Therefore, we assume that the value 3.33 

defines the lower limit of the range of periodicities accessible to α-helices. From this, we can 

estimate that the upper limit would be around 3.9, i.e. 0.3 residues per turn more than the 

periodicity of a perfectly straight helix (Hartmann et al., 2016). To date, the most extreme 

example of a right-hand supercoil occurs in YadA, where 19 residues are accommodated over 

5 turns leading to a local periodicity of 3.8 (Alvarez et al., 2010). Unlike stutters and stammers, 

insertion of 1 or 5 residues is more demanding on the coiled-coil bundle. They are found to be 

delocalized over two or more heptads, giving periodicities of 3.75 ((7+7+1)/4) and 3.8 

((7+7+5)/5). Insertion of 1 residue (skip residue) can also be alternatively accommodated by 

formation of a π-turn at the site of insertion without affecting the rest of coiled coil. 

 

While the above mentioned discontinuities can be easily accommodated within the 

coiled-coil structure, insertion of 2 (nonad) or 6 (hexad) residues locally overstrain the helical 

geometry. The periodicities resulting from the insertion of 2 ((7+2)/2 = 4.5; (7+2)/3 = 3.0) and 

6 (6/2 = 3.0; (7+6)/3 = 4.33; (7+6)/4 = 3.25) residues do not fall into the accessible range for 

α-helical coiled coils. The increased strain locally breaks the α-helices into short β-strands 

which associate to form a triangular structural element, named β-layer (Hartmann et al., 2016). 

The three β-strands rotate counter-clockwise by ~120˚ around the coiled-coil axis (as seen 

from the N-terminus) and continue as α-helices again, downstream of the neighboring helices. 

According to the coiled-coil nomenclature, positions on a nonad (7+2) can be described as a-

b-c-β1-β2-β3-e-f-g and for a hexad (7-1) as β1-β2-β3-e-f-g. This implies that the three residues 

forming β-strands always arrange themselves in the core d position. In the next sections, we 
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will look at the previously solved crystal structures of single nonad and hexad discontinuities 

and the first α/β coiled-coil fiber comprising of repetitive nonad β-layers in more detail 

(Hartmann et al., 2016). 

 

2.1.2 Single β-layer insertions 

During previous work in our group on trimeric autotransporter adhesins (TAA), the fibrous 

surface proteins of gram-negative bacteria, OMP100, a putative TAA from Actinobacillus 

actinomycetemcomitans, was found to contain an unusual insertion of 2 residues within the 

heptad repeats of its coiled-coil stalk (This work was done by Prof. Andrei Lupas, Dr. Marcus 

Hartmann and Dr. Birte Hernandez) (Hartmann et al., 2016). Extending the heptad to a nonad, 

insert IENKADKAD was natively inserted between non-canonical heptad repeats containing 

N@d motif (described in Sect. 1.4.3). The local overstrain generated by the insertion of two 

residues resulted in a sharp break at the three central residues KAD and a local departure from 

α-helical to β-strand character (Fig. 2.2). The three β-strands cross each other rotating in the 

counter-clockwise direction. We call this triangular plane formed by the three β-strands 

perpendicular to the central axis, the β-layer. The succeeding heptad coiled-coil continues 

downstream of the neighboring chain. The first three residues IEN occupy the a, b and c 

positions of the heptad repeat respectively. The central KAD residues, referred to as β1, β2 and 

β3, take the d position leading into e, f and g positions for the last three residues. Within the 

coiled-coil, β-layer is stabilized by backbone interactions between the c residue of N-terminal 

segment and the e residue of the C-terminal neighboring chain (Fig. 2.2C). β2 position is mostly 

occupied by a small hydrophobic residue, such as alanine or valine. In this case, the central 

alanine forms a backbone hydrogen bonding network with the corresponding alanines of the 

neighboring chains, stabilizing the β-layer (Fig. 2.2E). 

 

Using GCN4 leucine zipper as a model, the authors also showed that β-layers can be 

simply generated by insertion of 2 or 6 residues in a heptad coiled-coil (Hartmann et al., 2016). 

Two different sequence motifs: IENKADKAD from Actinobacillus OMP100 and 

MATKDDIAN from Thermus carboxydivorans Tcar0761, along with their derived hexad and 

heptad variants (IENKAD and IENKKAD; MATKDD) were fused between GCN4-N16V 

stabilizing adaptors. The structures of the resulting constructs uncovered rather unexpected 

details. Unlike the central KAD of IENKADKAD, both MAT and KDD in MATKDDIAN 

could form β-layers. MATKDD formed a true hexad with MAT occupying the β-layer position 
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and KDD completing the e, f and g positions of the heptad. The preceding residue for this 

hexad, leucine (g residue of the previous heptad) was rotated by ~15˚ outwards from the core 

of the bundle towards the c position, facilitating β-layer formation at the d position. In contrast, 

IENKAD hexad borrowed three residues from the C-terminal GCN4 to complete a nonad with 

the central residues forming the β-layer and a stutter accommodation in the next heptad of 

GCN4. We find that β-layers strictly dictate the next residue to occupy e position of the heptad 

repeat irrespective of a nonad or hexad insertion. 

 

 

Figure 2.2: Single nonad β-layer in Actinobacillus OMP100 stalk. (A) Structure of the Actinobacillus OMP100 

stalk aligned to its sequence and periodicity plot in (B). OMP100 trimer is colored by chain; GCN4 adaptors are 

in grey. Pink bar shows the area of a C-terminal stammer. The three β-layer residues highlighted by a grey bar 

fall in the β-region (red dots) of the Ramachandran plot (D). (C) Side and (E) top views showing the β-layer 

interaction network. (Reproduced from Hartmann et al., 2016) 

 

 Single β-layers are also found as connectors between the head and stalk domains of 

TAAs, which mediate smooth transition between larger diameter heads and smaller diameter 

stalks (Hartmann et al., 2012; Bassler et al., 2015). While β-layers are frequently identified 

capping either the N- or C-terminal end of coiled coils, they can also occur embedded within 

them. Systematic bioinformatic searches identified β-layers in various bacterial and phage 

fibrous proteins, some of them belonging to a family of prokaryotic endonucleases with PD-

(D/E)XK motif (DUF3782), and a family of membrane proteins conserved in prokaryotes and 

mitochondria annotated as DUF1640 (see Chapter 3 for detailed characterization) etc. All 

identified and solved β-layer containing proteins form homotrimeric bundles, with the 

exception of SLH domain, a monomer with pseudo-threefold symmetry. 
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2.1.3 The α/β coiled coil from repetitive nonads 

Repetitive arrangement of nonad insertions in coiled coils results in a fiber with alternating α- 

and β-elements. We refer to such fibers as α/β coiled coils. A protein from Thermosinus 

carboxydivorans, Tcar0761, contains 14 consecutive IANMATKDD repeats inserted between 

heptad segments. 4 nonad repeats including flanking heptads were cloned between GCN4-

N16V adaptors and crystal structure was determined for the first α/β coiled coil containing β-

layers in nonad spacing (Fig. 2.3). In the homotrimeric bundle, the central MAT residues of 

each nonad formed the alternating β-layers. We proposed that it should be possible to derive a 

minimalistic α/β coiled coil formed of hexads with three residues in the α-helical region and 

three in the β region of the Ramachandran plot. 

 

2.1.4 β-layers as capping structures 

β-Layers are frequently found capping the ends of coiled coils, stabilized by an extensive 

molecular interaction network. In the most common N-capping interaction network, the β3 

residue (mostly D, S, N or T) forms backbone hydrogen bond with the g residue (commonly 

D, E or Q) of the following α-helix, which coordinates back with its sidechain closing a ring of 

interaction. However, with conserved K as the β1 residue as seen in the stalks of TAAs or 

phage proteins, a C-capping interaction network is formed with the preceding helix. β-Layer 

insertions offer the advantage of increasing the resilience of fibers by tightly interweaving the 

monomeric chains. They further increase the structural and functional complexity of fibrous 

proteins supported by the high frequency of β-layer occurrence in bacterial and phage surface 

fibrous proteins (Hartmann et al., 2016). 

 



39 

 

 

Figure 2.3: The α/β coiled coil from nonad repeats. (Left) The insert fused between GCN4 adaptors is shown in 

red on the full sequence of Thermosinus Tcar0761. (Center) Structure of the four consecutive β-layers is shown 

enlarged. (Right) Top view of β-layers as seen from the N-terminus. They show 1, 2, 3 or all 4 β-layers as indicated 

by the arrows on the enlarged side-view. (from Hartmann et al., 2016) 
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2.2 RESULTS 

 

The primary objective of this study was to elucidate the structural characteristics of conserved 

tandem hexad insertions in coiled-coil proteins. Two of the most commonly found modules in 

bacterial and phage fibrous proteins are (i) (x)3KAD(x)3VYT(x)3LYT(x)3, a co-optimized 

module containing a small hydrophobic residue (mostly alanine) as the central residue in the 

first β-layer nonad and a large polar residue such as tyrosine in the successive hexads, (ii) 

(x)3TAT(x)3TAT(x)3 repetitive β-layers. In the next sections, I discuss important features of 

these two modules based on protein structures solved using X-ray crystallography. The 

modules have been named by the sequence motif of central three residues forming the β-layer. 

 

2.2.1 Structural characterization of the “KAD-VYT-LYT” hexad module 

In previous searches for proteins containing repetitive hexad insertions, we identified a highly 

conserved motif with the consensus sequence – LxxKADKxxVYTKxE – to occur in many 

bacterial ORFs and viral fibrous proteins, suggesting a co-optimized module (Hartmann et al., 

2016). Based on these data, we extended our searches and identified more of such motifs 

inserted one or multiple times in the coiled-coil stalk of uncharacterized bacterial proteins. 

Some examples of these sequences containing (x)3KAD(x)3VYT(x)3LYT(x)3 insertion are 

presented in Fig 2.4A. The first β-layer, annotated as a-b-c-β1-β2-β3-e-f-g, is always a nonad 

and starts at position a. The β1 residue, primarily occupied by a conserved lysine residue 

(KAD/KAN), forms a C-capping structure. The central β-layer residue, β2, features a 

conserved small hydrophobic residue, such as alanine or valine. Successive β-layers occur in 

hexad spacing with the following register β1-β2-β3-e-f-g. The first hexad is preceded by the 

last residues (e-f-g) of the previous nonad repeat. We find that β-layers always occur at the d 

position and follow either a c or g position. In hexads, the residue preceding β-layer occupies 

the g position of the previous repeat. It moves slightly outwards from the core towards the c 

position, thereby facilitating the formation of β-layer in the d position and yielding an overall 

register e-f-(g/c)-β1-β2-β3-e-f-g. The β1 position in hexads is always occupied by a hydro-

phobic residue (V or L) and the central core residue by a bulky residue such as tyrosine. Only 

one previously solved protein, a tail-fiber protein with hyaluronidase activity from 

Streptococcus pyogenes prophage SF370.1 (PDB code 2C3F) (Smith et al., 2005), contains the 

(x)3KAD(x)3VYT(x)3 conserved module. It contains four β-layers embedded in the coiled coil: 



41 

 

an N-terminal nonad, two central β-layers with the sequence LQQKADKETVYTKAE, and 

another one at the C-terminus. 

 

 

 

Figure 2.4: (A) Representative examples of identified sequences with KAD-VYT-LYT co-optimized module or a 

TAT repetitive module with assigned coiled-coil registers. (B) Annotated sequence of Magnetomorum sp. HK-1 

MHK_004959. 
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For structural characterization of repetitive β-layers in hexad spacing, we selected two 

sequences (highlighted in pink in Fig. 2.4A) from the hypothetical proteins MHK_004959 from 

Candidatus Magnetomorum sp. HK-1 (GenBank KPA14831.1) and OMM_04225 from 

Candidatus Magnetoglobus multicellularis str. Araruama (GenBank ETR68995.1). In the C-

terminal coiled-coil stalk of MHK_004959 protein, multiple KAD-VYT modules are inserted 

in a recurring fashion (Fig. 2.4B). Similar regular insertions can be observed in the N-terminal 

coiled-coil sequence of OMM_04225. Single modules from both proteins comprising three and 

four β-layers from Magnetomorum (referred further as Mmor) and Magnetoglobus (referred as 

Mglob) respectively were fused in between trimeric GCN4-pII adaptors for structural 

characterization. We included a short linker sequence GGSG in the designed construct in 

between the TEV protease site and the GCN4 adaptor, to ease the cleavage of N-terminal 

histidine tag. Small amount of proteins purified from the supernatant from overexpressing E. 

coli ArcticExpress cells, were sufficient to obtain well-diffracting crystals for Mmor and 

Mglob. 

 

 

 

Figure 2.5: Crystal structures for KAD-VYT-LYT family hexad motifs. Schematic diagram for the designed 

constructs is shown at the top. Hexad β-layer module was fused between N- and C-terminal GCN4-pII trimeric 

coiled coils. Solved crystal structures for Mmor (MHK_004959) and Mglob (OMM_04225) are shown as ribbon 

representation. β-Layers are highlighted in pink boxes with the corresponding sequences. Water molecules are 

shown as lightpurple spheres. 
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Crystal structure of Mmor, solved at a resolution of 1.5Å using GCN4-pII as a molecular 

replacement model, shows a parallel trimer with three β-layers formed between the flanking 

coiled coils (Fig. 2.5). As expected, residues KAN of the nonad sequence INLKANKAD form 

the first, canonical β-layer. A33, the central β-layer residue, forms characteristic backbone 

hydrogen bonding network with the corresponding alanines of neighboring chains (Fig. 2.6A).  

 

 

 

Figure 2.6: Crystal structure of Mmor β-layers. (Left) Structure of KAN-VYT-LYT β-layer insert of Mmor. Red, 

yellow and green are the three monomeric chains. Flanking grey residues are a part of GCN4 coiled-coil adaptor. 

The three β-layers are highlighted in pink and marked by letters A-C (from N-terminus). (Right) Top and side 

views of the three β-layers (A-C). Water molecules are shown as lightpurple spheres. Hydrogen bonds are shown 

as dotted lines. 

 



44 

 

The second and third β-layers of Mmor, arranged in a hexad spacing, are formed by the VYT 

and LYT residues respectively. These β-layers deviate from the canonical β-layer structure, 

with a largely increased diameter spanned by a water network in the core of trimer. In the 

second β-layer, backbone amide and carbonyl moieties of the central tyrosine residues (Y39) 

from the three chains coordinate three ordered water molecules in the center (Fig. 2.6B). The 

third β-layer, slightly wider than the second, is able to accommodate a tetrahedral water 

network (Fig. 2.6C). In contrast to the canonical β-layer, the central residue tyrosine of both β-

layers formed from hexads, is bent out of the core, pushing the β1 residue (V or L) into the 

core, thereby promoting the increased diameter of the second and third β-layers. 

 

The conserved β1 residue K32, in the first β-layer, is involved in forming a C-capping network 

with the preceding helix (Fig. 2.7A). Such an interaction network is only favored with lysines 

occupying the β1 position. In the Mmor structure, K32’ reaches across the trimeric core and 

coordinates the carbonyls of α1 (or a; I29) and β1 (K32) residues, and the sidechain of β3 

residue (N34), all from the neighboring chain (clockwise as seen from the N-terminus). K32 

amide also forms backbone hydrogen bond with I29 from the same chain. C-capping network 

is finally completed by the α3 residue (or c) L31 forming backbone hydrogen bond with e 

residue K35’’ of the neighboring chain (clockwise). The β3 residue N34, then forms an N-cap 

for the next β-layer, coordinating the backbone and sidechain of g residue D37.  

 

 

Figure 2.7: Interaction network of the KAN-VYT-VYT β-layer module of Mmor. (A) C-capping network formed 

by the first β-layer KAN lysine residue. (B) and (C) N-capping network formed by threonines of VYT (second β-

layer) and LYT (third β-layer) respectively. 

 

Looking at the interaction network established by tyrosine β-layers (Fig. 2.7B and 2.7C), two 

definite interactions are found: (i) hydrophobic residue in β1 position (V or L) forms backbone 
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hydrogen bond with e residue K of the previous layer (lysines found to be conserved), and (ii) 

β3 residue forms N-capping interaction network with the g residue. The main chain carbonyl 

of β3 coordinates the amide of g residue, which in turn forms hydrogen bonding with β3 amide 

through its sidechain, thereby completing a closed ring of interaction network. Additional 

bonds at the N-capping site of tyrosine β-layers are formed by the sidechain of β3 residue, 

threonine in both instances. 

 

To visualize the significance of conserved residues at the β1 and β2 positions of tyrosine β-

layers, we designed two Mmor mutants where we replaced either the β1 (V and L) or the β2 

(Y) residues for both hexad β-layers. Crystals for Mmor-mut1 diffracted well to a resolution of 

1.9Å. In the electron density map, while GCN4 chains could be fitted with confidence, no peaks 

were observed for the three β-layers highlighting the flexibility or disorder of these residues 

and suggesting that substitution of both tyrosines in the second and the third layers with 

alanines completely abolished β-layer formation. This confirms the significance of conserved 

tyrosines as the central residue in β-layers with hexad spacing. In contrast, for Mmor-mut2, 

with mutations of β1 residues V38 and L44 to alanines, β-layers identical to the native structure 

were formed (Fig. 2.8). This shows that both tyrosine β-layers can tolerate a smaller 

hydrophobic residue such as alanine at the β1 position without significant effects to the 

backbone geometry. Tyrosine residues in these layers are bent out of the core identical to those 

of native structure.  

 

The crystal structure of Mglob, featuring a canonical nonad β-layer formed by residues KAN 

and followed by three tyrosine β-layers, displays an identical parallel trimer with properly 

established β-layers between GCN4 coiled-coil adaptors. The interaction network formed by 

these layers is similar to that described for Mmor (Fig. 2.9). Due to poor diffraction quality of 

the crystals, the water network could not be solved for Mglob structure. In summary, our crystal 

structures of Mmor and Mglob present the first examples of a minimalistic α/β coiled coil built 

of tandem hexad repeats, with three residues present in the α region and three in the β region 

of the Ramachandran plot. The first nonad-based β-layer with conserved KAx motif favors a 

C-capping interaction network and the successive layers in hexad spacing favor an N-capping 

network. 
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Figure 2.8: Mutation of conserved hexad β-layer residues. Structural comparison of the second and third hexad 

β-layers of Mmor-wt and Mmor-mut2 constructs. In Mmor-mut2, both β1 residues Val (in A) and Leu (in B) have 

been replaced with Ala. 
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Figure 2.9: Crystal structure of Mglob hexad β-layers module fused between N- and C-terminal trimeric GCN4-

pII coiled-coil adaptors is shown on the left. Sequence of the insert is shown at the top with its coiled-coil register. 

The four β-layers (starting from the N-terminus) are marked by letters A-D, A is the canonical KAN β-layer and B 

to D are tyrosine β-layers. The right box diagrams display the top view of individual β-layers and the side-view 

of the stabilizing interaction network formed by each layer. 
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The trimeric autotransporter adhesin NadA5 from Neisseria meningitidis 

Another interesting example comprising the above described co-optimized hexad module 

(x)3KAD(x)3VYT(x)3VYT(x)3 is a trimeric autotransporter adhesin NadA. TAAs are a family 

of extracellular proteins in gram-negative bacteria that mediate attachment to and invasion of 

host cells (Cotter et al., 2005; Linke et al., 2006; Łyskowski et al., 2011). TAAs are obligate 

homotrimers. Their general domain architecture includes a C-terminal β-barrel integral 

membrane domain which anchors the proteins to outer membrane, an N-terminal signal peptide 

for export and a “passenger” domain. The passenger domain includes at least one head which 

is primarily responsible for host cell adhesion and a long coiled-coil stalk, variable in length, 

which acts as molecular spacer projecting the adhesive heads away from the bacterial surface. 

Multiple head and stalk domains can be repetitively arranged in different combinations 

generating the molecular diversity necessary to evade host cellular defenses (Reiss et al., 2004; 

Szczesny and Lupas, 2008). The head-stalk transition is mediated by a short, highly conserved 

neck, comprising a β-layer which functions as the adaptor connecting the larger diameter 

transversal heads to the smaller diameter coiled-coil stalks. At the C-terminus, four TM β-

strands from the three monomeric chains assemble into a 12-stranded β-barrel (Meng et al., 

2006). The membrane anchor is conserved in all TAAs, therefore it is considered as the family-

defining element (Hoiczyk et al., 2000). During the autotransport activity, after secretion of 

TAAs into the periplasmic space, initially the β-barrel assembles into the bacterial outer 

membrane forming the pore through which the three unstructured chains exit into the 

extracellular region (Szabady et al., 2005). After the export is complete, monomers properly 

fold into a long fiber with a short coiled-coil segment at the end of passenger domain occluding 

the pore domain.  

 

NadA5 is expressed in Neisseria meningitidis, a gram-negative encapsulated bacterium which 

causes severe sepsis and meningococcal meningitis. NadA5 (PDB code 4CJD) forms an 

elongated 320 Å long helical trimer (Malito et al., 2014). It features a unique coiled-coil head, 

interrupted by an insertion sequence (residues N49–G84) which assembles into protruding 

wing-like structures. The head coiled coil directly continues into the stalk. Whereas high-

resolution electron density was observed for the head and the N-terminal region of the stalk, 

the latter half of coiled-coil stalk which includes four β-layers - one independent nonad 

(residues I138-E146) flanked by heptad repeats and the other being the KAD-VYT-VYT 

optimized module (residues I161-E181), only discontinuous blobs with a three-fold symmetry 
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feature were observed. It was not possible to solve β-layers with the available data. Although 

one could clearly observe regions of helices, the peaks were broad and overlapping among the 

trimeric chains. This observation suggests a partially-unfolded, highly flexible region in the C-

terminal half of the coiled-coil stalk. As TAAs are modular in structure, we can build new 

models by sequence homology to existing solved domains. To visualize the complete protein 

structure, I have reconstructed an in silico model of full-length NadA5 using the program 

MODELLER (Sali et al., 1995) (Fig. 2.10). 

 

 

Figure 2.10: Model of NadA5. Full length model of trimeric autotransporter adhesin NadA5 from Neisseria 

meningitidis is shown, with the side and bottom views, and its sequence. The segment containing β-layers is 

enlarged.   
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2.2.2 Structural characterization of the “TAT” repetitive hexads module 

The second, not so frequently observed, repetitive hexad module is built of “TATKxx” 

residues. Previous attempts to obtain constructs by fusing similar MATKDD repeats between 

GCN4-N16V adaptors failed, as the recombinantly expressed protein turned out to be insoluble 

and not amenable to refolding (Hartmann et al., 2016). Screening for new proteins containing 

tandem hexads, we prominently found the TATK motif instead of MATK in coiled coils which 

led us to believe that the former could be more easily accommodated within β-layers in hexad 

spacing. As there are no structures of coiled-coil proteins with repetitive TATK insertions in 

the PDB, we selected a hypothetical protein UY81 from Candidatus Parcubacteria 

(Giovannonibacteria) (GenBank ID: KKW34673.1) for structural characterization. This 

protein contains four β-layers - two hexads (TATKAE and TATKKD) sandwiched between 

two nonads (FAETATKAE and IAGMATKHD) (Fig. 2.11A). These β-layers are flanked by 

canonical coiled-coil sequences.  

 

Full-length ParcuUY81 (ParcuUY81-fl) fused to an N-terminal 6xHis tag was recombinantly 

expressed in E. coli C41 (DE3) and purified as a soluble protein. Far-UV CD spectra showed 

that the protein adopts a primarily α-helical structure with characteristic minima at 208 nm and 

222 nm (Fig. 2.11C). Upon thermal melting, native ParcuUY81-fl unfolds in two-steps with 

inflection points at 57.5˚C and 81.5˚C. From analytical SEC, the calculated molecular mass 

corresponded to a trimer in solution. ParcuUY81-fl crystallized under multiple buffer screening 

conditions. However, the crystals, even after grid optimization, diffracted at best to a resolution 

of 3.6 Å.  

 

Subsequently, ParcuUY81-fl was subjected to limited proteolysis using trypsin (1:20). After 

one hour incubation at room temperature, cleaved fragments were separated by loading on a 

Superdex 75 gel filtration column. A stable fragment, ~ 1-2 kDa smaller in size than 

ParcuUY81-fl, was obtained (Fig. 2.11B). CD spectroscopy and thermal melting experiments 

on trypsin-cleaved fragment showed an identical spectra and two-state unfolding as the full-

length protein (Fig. 2.11D). Mass-spectrometric analysis confirmed that only 4-5 flexible 

residues at both N- and C-terminal ends were cleaved. Crystals obtained from trypsin-cleaved 

ParcuUY81-fl, containing residues 3-88 of native construct, diffracted to a higher resolution 

(~ 2.5 Å). 
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Figure 2.11 Biophysical characterization of ParcuUY81. (A) Sequence of ParcuUY81-fl. Residues in bold are the 

residues remaining after tryptic digestion. (B) ParcuUY81-fl and tryptic product run on an SDS-PAGE gel. Samples 

corresponding to marked lanes have been shown below. (C) and (D) CD and melting curves for ParcuUY81-fl and 

ParcuUY81-tryptic respectively. The inflection temperatures in the melting curve are marked with dotted lines. 

 

 

Initial attempts to solve the structure of ParcuUY81 using trimeric GCN4 as a molecular 

replacement model for native coiled coil failed. Heavy-atom soaking trials primarily resulted 

in the disruption of the crystal lattice, with the exception of cadmium and uranium salts. Initial 

observations from the self-rotation Patterson function hinted towards a tetrameric structure, 

which was contradictory to the expected trimer. All previously identified β-layer containing 

coiled coils assembled into trimeric bundles with the single β-strand of each monomer in a β-

layer rotating 120˚ around the coiled-coil axis before continuing into α-helices again. Such an 

arrangement of residues does not fit the tetrameric prediction. Next, we designed a control 

protein ParcuUY81-heptad, where all β-layer forming nonads and hexads were replaced by 

canonical heptad pattern either by deletion or insertion of residues (see Table 2.2). As expected, 

ParcuUY81-heptad formed a trimeric bundle in both solution and crystalline state (Fig.  2.12). 
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Figure 2.12: Sequence and structure of ParcuUY81-heptad, a designed control protein. Conversion of hexad 

repeats to heptads results in a canonical coiled coil. Bold letters indicate the sequence of the solved structure. 

 

 

Assuming the tetrameric configuration to be a crystallization artefact, we shortened the C-

terminal region by inserting a premature stop codon in the coiled-coil stalk to obtain 

ParcuUY811-70 (residues 1-70). The construct could be expressed as a soluble protein but 

similar to the previous constructs, the crystal structure of ParcuUY811-70 (data collected at a 

resolution of ~2.4Å) could not be solved by molecular replacement. Platinum-salts dissolved 

or fragmented the fragile ParcuUY811-70 crystals, and the stable crystal fragments diffracted 

poorly as well. Facing the difficulties to solve the native ParcuUY81 crystal structure, I 

designed an in silico model using MODELLER (Sali et al., 1995) using sequence homology to 

coiled-coil fragments in the sequence of ParcuUY81-heptad and to previously solved crystal 

structures containing nonad and hexad insertions in coiled-coil sequences. Molecular 

replacement trials with this model failed to replace a proper length of the protein. From these 

results, three reasons appear plausible: the crystal was formed by a proteolytically cleaved 

fragment, or the crystal lattice space group identified was incorrect, or ParcuUY81 is actually 

a tetramer and replacement by a trimeric model could not give the right structure solution. 

 

Crystal structure of ParcuUY81 with GCN4-N16V fusion 

Given the inability to solve the crystal structure of TATK β-layers in their native coiled-coil 

environment, we fused a segment (residues 18-54) of ParcuUY81-fl comprising the four 

predicted β-layers including their neighboring heptads in register between two GCN4-N16V 

adaptors, a variant of leucine zipper which forms a mixture of dimers and trimers in solution 

(Harbury et al., 1993). ParcuUY81-GCN4N16V was found to be well-expressed in the 

insoluble fraction. After purification under denaturing conditions, the protein was refolded and 

set-up for crystallization at 5 and 10 mg/ml. Crystals obtained under the condition 0.1 M 

sodium acetate (pH 4.6), 2 M sodium formate, diffracted to a maximum resolution of 2.75Å.  
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The crystal structure of ParcuUY81-GCN4, solved using GCN4-N16V as a molecular 

replacement model, shows a parallel trimeric bundle with β-layers formed at the junction of 

two coiled-coil adaptors (Fig. 2.13). All four β-layers appear canonical, with the central alanine 

residues forming characteristic inter-chain backbone hydrogen-bonding network. The N-

terminal GCN4 coiled coil directly proceeds into the first β-layer formed by a nonad sequence 

FAETATKAE, where TAT occupies the d position. 

 

 

Figure 2.13: Crystal structure and interaction network of ParcuUY81-GCN4. (Top) Structure of ParcuUY81 

tandem β-layers (colored) fused within GCN4-N16V adaptors (grey). Sequence of insert is shown above. The four 

β-layers (A-D) are highlighted with green bars. (Below) Top and side-views of individual β-layers (A-D). While top 

view displays the exact picture of each layer and relative rotation of three chains from A-D as viewed from the 

N-terminus, bottom side-view shows the interaction network formed by β-layer residues within the same 

(yellow) chain. Hydrogen bonds and salt-bridges are shown as dotted lines. 

 

As visualized from the crystal structure, phenylalanine (F29) residues from the three monomers 

form an asymmetric hydrophobic core (Fig. 2.13A). While two F29 residues point away from 

the core, the third residue directly points towards the center. Threonine (T32) in the β1 position 

forms polar interactions with the a residue F29 through its backbone NH and sidechain 
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hydroxyl groups. The typical C-capping interaction, as is seen for K in β1 of the KAD-VYT-

LYT module, is not formed with T in this position. The β3 residue T34 coordinates the 

backbone NH group of residue g (E37), thereby forming a stable N-cap for the following helix. 

Both E31 and E37 extend to form salt-bridge interactions with the conserved lysine residues 

(K35 and K41 respectively) of the neighboring chain (clockwise as seen from the N-terminus). 

 

For the successive hexad β-layer TATKAE, E37 occupying the g position of the previous layer 

slightly moves out of the core towards c position (g/c position), facilitating TAT (residues 38-

40) to occupy the regular d position (Fig. 2.13B). T38, in an identical fashion to the first β-

layer T32, coordinates the backbone carbonyl of β3 residue T34 with its NH and sidechain 

hydroxyl. Such an interaction network is repeated within the successive β-layers, wherein the 

first threonine (β1 residue) coordinates either the a position residue (in nonads) or the β3 

residue of the previous β-layer (in hexads) (Fig. 2.13C-D). β3 residue in all β-layers, in this 

particular case always T, forms N-capping interactions with the g residue (D or E), which 

further stabilizes the β-layer by forming salt-bridge interactions with the e residues (usually a 

conserved K or R) of the neighboring chain. 

 

NMR-spectroscopy for ParcuUY81 

It is well-known that coiled coils can attain non-physiological structures, which are separated 

by low-energy barriers on a flat energy landscape, when crystallized out of their native context 

(Lupas et al., 2017). Therefore, I was keen to solve the structure of ParcuUY81 TATK module 

flanked by its native coiled-coil sequence to confirm if the protein exists in a trimeric or 

tetrameric state in its physiological context. Ultimately, I resorted to solution NMR 

spectroscopy. Preliminary experiments collecting the 1D 1H spectrum showed good peak 

dispersion, consistent with a properly folded protein. Subsequently, 13C and 15N isotope-

labelled ParcuUY81-fl was used to acquire spectra for sequential assignment. ParcuUY81-fl 

purified from minimal media was largely present as soluble aggregates, with a small fraction 

eluting in the right molecular weight range. Although 15N-HSQC looked an ideal spectra with 

sharp signals, well-dispersed suggestive of well-folded oligomer, residues could not be 

definitely assigned. In future, other representative examples of the “TAT” conserved module 

should be tested to characterize such repetitive hexad insertions in coiled-coil proteins in their 

native environment. 
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All bioinformatics work was done by Prof. Andrei Lupas. The sequences used in this work for 

experimental study were identified or designed by Prof. Andrei Lupas. Dr. Birte Hernandez 

conceptualized the construct design within GCN4 coiled-coil adaptors. I carried out the 

molecular cloning, protein expression and purification for constructs expressed in LB or 

minimal media. Biophysical characterization of proteins using CD spectroscopy, thermal 

melting and limited proteolysis experiments were done by me. Crystallization screens were set-

up by Dr. Reinhard Albrecht and Kerstin Bär. Crystal structures were XDS processed and 

phased using molecular replacement by Dr. Marcus Hartmann. I then manually refined the 

crystal structures using COOT. For ParcuUY81-GCN4, I manually built the four central β-

layers and refined the crystal structure. NMR isotope-labelled sample was prepared by me and 

spectra measurements were done by Dr. Murray Coles. Finally, I designed the homology model 

of full-length NadA5 using previously solved crystal structure of its head domain (PDB 4CJD) 

using the program MODELLER. 
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2.4 DISCUSSION 

Canonical coiled-coil fibers built of heptad repeats are frequently interrupted by the insertion 

or deletion of one or more residues. These discontinuities can be accommodated by local 

distortion of α-helices, assuming a range of periodicities which is however limited by the strain 

imposed on the individual helices. Insertion of 2 and 6 residues are the most demanding for 

regular coiled-coil bundles. They overstrain the single helices to a break point, locally 

disrupting the α-helical structure and leading to the formation of short β-strands in trimeric 

coiled coils. These strands rotate the path of each chain by 120˚ counterclockwise around the 

coiled-coil axis, forming a triangular supersecondary structural element called the β-layer. This 

structure is stabilized by hydrogen bonds formed between the central residues of the three 

strands, usually a small hydrophobic residue. β-Layers derived from the insertion of 2 or 6 

residues are identical.  

 

Tandem insertion of β-layers into a regular fiber gives an α/β coiled coil with alternating α and 

β structural elements. While a former study solved the crystal structure of an α/β coiled coil 

built completely from repetitive nonad insertions (Hartmann et al., 2016), similar information 

was missing for tandem hexad discontinuities to complete the picture. In this work, I have 

structurally characterized two bioinformatically identified hexad elements – the KAD-VYT-

LYT co-optimized module and the repetitive TAT insertion module. The solved crystal 

structures show that repetitive hexad insertions form a minimalistic α/β coiled coil with three 

residues occupying the α and the next three β region of the Ramachandran plot and no backbone 

hydrogen bond in common with a heptad repeat coiled coil. Widely observed in bacterial and 

phage surface fibrous proteins, the first module KAD-VYT-LYT comprises a canonical nonad 

β-layer followed by one or more tyrosine β-layers in hexad spacing, which differ substantially 

from the former. Characterized by a large tyrosine residue occupying the central β-layer 

position, compared to a small hydrophobic residue (such as alanine or valine) in canonical β-

layers, hexad layers are much wider in diameter likely promoted by the bulky tyrosine residue 

which is bent out of the core. Mutation of tyrosine to alanine completely disrupted the 

formation of β-layer network, signifying the importance of a bulky sidechain residue occupying 

the central position in hexad β-layers. Apart from tyrosine, phenylalanine (F) and methionine 

(M) can also be found occupying this position. An extensive bonding network, characterized 

by a C-capping interaction network formed by the conserved β1 lysines of the first layer and 

the N-capping interactions established by the β3 threonines of successive hexad layers, allows 
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for a stable assembly of repetitive β-layers within regular coiled-coil fibers. The second type 

of hexads module built from repetitive TAT β-layers is seldom observed. In the solved crystal 

structure of a fragment of a hypothetical protein from Candidatus Parcubacterium, where two 

TAT hexads are sandwiched between nonad xxxTATxxx and xxxMATxxx β-layer elements, 

we see four canonical β-layers stabilized by backbone hydrogen bonds formed among the 

central alanine residues of the individual layers. While no C-capping interaction network was 

formed with threonine as the β1 residue in the first β-layer, the β3 threonines in all layers 

formed N-caps to the following α-helical segments of their respective chains. Each β1 threonine 

in hexad layers coordinates the β3 threonine of the previous β-layer with conserved backbone 

and sidechain interactions. The additional sidechain contacts made by threonines, which cannot 

be brought about by MATxxx hexad repeats, could explain the stable formation of TAT tandem 

hexad β-layers. 

 

The KAD-VYT-LYT co-optimized module, which is frequently observed in a recurring 

fashion in the stalks of trimeric autotransporter adhesins and other bacterial and viral surface 

proteins, can now be simply modelled for new proteins using our solved crystal structures as 

templates. Such β-layer recurrences in surface protein fibers led us to propose their 

involvement in providing resilience to environmental stress conditions by tight interleaving of 

the monomeric chains. By integrating β-stranded elements into long α-helical chains, they 

further provide structural and functional complexity. Many pathogenic bacteria and viruses use 

this simple mechanism of repetitively arranged complex modules in surface proteins to 

generate the molecular diversity in order to evade host immune responses. 

 

Summarizing the above results, it is clear that repetitive insertion of both nonad and hexad 

elements in a canonical coiled-coil fiber results in the formation of an α/β coiled coil. The data 

confirms that minor mutations such as simple insertion of two residues or deletion of one 

residue per repeat in a canonical coiled coil result in a novel backbone structures within the 

allowed regions of Ramachandran space.  
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2.5 METHODS 

 

2.5.1 Molecular cloning 

Unless otherwise mentioned, genes were commercially synthesized (Eurofins) with E. coli 

codon optimization.  

 

The construct Mglob encoding residues 244-274 of a hypothetical protein OMM_04225 from 

Candidatus Magnetoglobus multicellularis str. Araruama (GenBank ETR68995.1) was fused 

between two GCN4-pII coiled-coil fragments by cloning within the XbaI-HindIII sites of the 

pASK-IBA GCN4-pII plasmid. 

 

Construct Mmor containing residues 311-335 of a conserved hypothetical protein 

MHK_004959 from Candidatus Magnetomorum sp. HK-1 (GenBank KPA14831.1) was 

designed identical to Mglob with flanking trimeric GCN4-pII adaptors and cloned within the 

BamHI and HindIII sites of pASK-IBA GCN4-pII-Mglob plasmid. Mmor-mut1 and Mmor-

mut2 constructs were derived from site-directed mutagenesis using Mmor construct as the 

template. Mmor-mut1 features mutation of the two conserved tyrosine residues to alanines 

Y321A and Y327A. Mmor-mut2 has V320A and L326A mutations.  

 

Table 2.1: List of primers for PCR amplification 

Construct Primer 
Mmor-mut1 Y321A fw: 5’- CGAACAAAGCAGATGTGGCTACGAAAGACCAGTTATAC 

 Y321A rv: 5’- GTATAACTGGTCTTTCGTAGCCACATCTGCTTTGTTCG 

 Y327A fw: 5’- GGCTACGAAAGACCAGTTAGCCACCAAAACTGAGATTAACAGTCAA 

 Y327A rv: 5’- TTGACTGTTAATCTCAGTTTTGGTGGCTAACTGGTCTTTCGTAGCC 

  

Mmor-mut2 V320A fw: 5’- CAAAGCGAACAAAGCAGATGCGTATACGAAAGACCAGTTA 

 V320A rv: 5’- TAACTGGTCTTTCGTATACGCATCTGCTTTGTTCGCTTTG 

 L326A fw: 5’- GCATACACCAAAACTGAGATTAACAGT 

 L326A rv: 5’- CTGGTCTTTCGTATACGCATCTGC 

  

ParcuUY811-70 fw: 5’- TAAGTGGAATCCAAACTGGAC 

 rv: 5’-  ACCGATACGGTCCACTAAATC 

  

ParcuUY81-GCN4 fw: 5'- GACCATGGTCTCCACTGACAGCTACCAAAGCCGAAACTGC 

 rv: 5’- CCCAAGCTTCAGCTCGCACTAGAGACTTTCC 
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Table 2.2: Sequence of hexad repeat constructs 

Construct GenBankID Residues Sequence 

 
Mmor 

 
KPA14831.1 

 
311-335 

 

(6xHis-TEV)-GGSG-(GCN4-pII)N-INLKANKAD 

                             ---VYTKDQ 

                             ---LYTKTEINSQ-(GCN4-pII)C 

 

 
Mmor-mut1 

 
KPA14831.1 

 
311-335 

 

(6xHis-TEV)-GGSG-(GCN4-pII)N-INLKANKAD 

                             ---VATKDQ 

                             ---LATKTEINSQ-(GCN4-pII)C 

 

 
Mmor-mut2 

 
KPA14831.1 

 
311-335 

 

(6xHis-TEV)-GGSG-(GCN4-pII)N-INLKANKAD 

                             ---AYTKDQ 

                             ---AYTKTEINSQ-(GCN4-pII)C 

 

 
Mglob 

 
ETR68995.1 

 
244-274 

 

(6xHis-TEV)-GGSG-(GCN4-pII)N-ISQKANSQD 

                             ---VYNKTD 

                             ---LYPKTD 

                             ---LYTKTEMDTA-(GCN4-pII)C 

 

 
ParcuUY81-
GCN4 

 
KKW34673.1 

 
18-54 

 

(6xHis-TEV)-GGSG-(GCN4-N16V)N-FAETATKAE 

                             ---TATKAE 

                             ---TATKKD 

                             IAGMATKHD 

                             IAQLDKR-(GCN4-N16V)C 

 

 
ParcuUY81-fl 

 
KKW34673.1 

 
1-93 

 

(6xHis-TEV)- MKKPITLEKLVSMVAVG 

             FAETATKAE 

             ---TATKAE 

             ---TATKKD 

             IAGMATKHD 

             IAQLDKR 

             IDGLDKK 

             IADLVDR 

             IGRVESK 

             LDRALNKEVAAWKVSSAS 

 

 
ParcuUY811-70 

 
KKW34673.1 

 
1-70 

 

(6xHis-TEV)- MKKPITLEKLVSMVAVG 

             FAETATKAE 

             ---TATKAE 

             ---TATKKD 

             IAGMATKHD 

             IAQLDKR 

             IDGLDKK 

             IADLVDR 

             IG 

 

 
ParcuUY81-
heptad 

   

(6xHis-TEV)- MKKPITLEKLVSMVAVG 

             FAETKAE 

             TATIKAE 

             TATIKKD 

             IAGMKHD 

             IAQLDKR 

             IDGLDKK 

             IADLVDR 

             IGRVESK 

             LDRALNKEVAAWKVSSAS 
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ParcuUY81-fl, a hypothetical protein UY81_C0065G0003 from Candidatus Parcubacteria 

(Giovannonibacteria) GW2011_GWA2_53_7, and its control design ParcuUY81-heptad were 

gene synthesized and cloned into the NcoI and BamHI sites of pETHis1a expression vector 

(Bogomolovas et al., 2009) allowing for the expression of the construct with an N-terminal 

His6 tag and a TEV protease cleavage site. ParcuUY811-70 was amplified from ParcuUY81-fl 

by round-the-horn mutagenesis using phosphorylated primers. The resulting PCR product was 

ligated and selected after transformation to obtain the final clone. ParcuUY81-GCN4 was also 

derived from ParcuUY81 by PCR amplification of the residues 18-54 and cloned within the 

BsaI/HindIII of the pASK IBA2-HisTEV GCN4-N16V vector.  

 

2.5.2 Protein expression and Purification 

Constructs Mmor and Mglob were expressed in E. coli ArcticExpress (DE3) at 37˚C until 

O.D.600 of 0.8 and induced with 0.1 mM AHTC (anhydrotetracycline) at 12˚C for 24 hours. 

Mmor-mut1 and Mmor-mut2 were expressed in E. coli Top10. ParcuUY81-fl, ParcuUY81-

heptad, ParcuUY811-70 and Parcu-GCN4 were all expressed in E. coli C41 (DE3) strain. Cells 

were grown at 37˚C until O.D.600 = 0.5, and then induced with 0.5 mM IPTG (for ParcuUY81-

fl, ParcuUY81-heptad and ParcuUY811-70) or 0.1 mM AHTC (for ParcuUY81-GCN4). Finally, 

the cells were harvested by centrifugation after 4 hours.  

 

Proteins Mmor, Mglob, ParcuUY81-fl, ParcuUY81-heptad, ParcuUY811-70 and ParcuUY81-

GCN4 were purified from supernatant under native conditions. Cells were resuspended in lysis 

buffer (20 mM Tris (pH 7.5), 150 mM NaCl, 4 mM MgCl2, DnaseI and protease inhibitor 

cocktail) and lysed using sonication (50% duty cycle and output control 5). After 

centrifugation, the supernatant was loaded on Ni-NTA Agarose column pre-equilibrated with 

Buffer A (20 mM Tris (pH 7.5), 150 mM NaCl) and the bound proteins were eluted with 

increasing concentrations of imidazole. Eluted protein was dialyzed against Buffer A and 

subsequently digested with TEV protease (TEV protease: protein 1:20). The cleaved protein 

was reloaded on Ni-NTA and the flow-through was collected. Finally, the protein was 

subjected to gel filtration chromatography on Superdex 75. 

 

For Mmor-mut1 and Mmor-mut2, purification was performed under denaturing conditions. 

Cell lysate was dissolved in 6 M guanidine hydrochloride for 1 h at room temperature. The 

cleared supernatant was loaded on Ni-NTA Agarose column pre-equilibrated with Buffer A* 



61 

 

(20 mM Tris (pH 7.5), 300 mM NaCl and 6 M Gua.Cl) and eluted with imidazole. The collected 

protein was refolded by dialysis against Buffer A (20 mM Tris (pH 7.5), 150 mM NaCl) and 

processed to remove the N-terminal histidine tag by TEV proteolysis. 

 

For NMR analysis of ParcuUY81-fl, cells were grown at 37˚C in M9 minimal medium 

supplemented with 13C-glucose and 15N-ammonium chloride, until O.D.600 = 0.7-0.8. The cells 

were then induced with 1 mM isopropyl β-D-thiogalactoside (IPTG) at 20˚C and harvested by 

centrifugation after 18 hours. 13C and 15N-labelled ParcuUY81-fl was then purified under 

native conditions on a NiNTA affinity column and finally cleaned on a Superdex 75 size-

exclusion chromatography column to remove larger aggregates. 250 μl of the sample was 

mixed with 50 μl of D2O and filled in a Shigemi symmetrical NMR microtube (Product No. 

Z543349, Sigma Aldrich, Germany). 

 

2.5.3 Homology modelling 

The crystallographic structure of (residues A34-A137) was used together with Hia (PDB code 

3EMO) translocation pore domain, the nonad β-layer (PDB code 5APT: IENKADKAD fused 

between the GCN4 leucine zippers) and the hexad repetitive module KAD-VYT-VYT from 

Mmor structure (described in section 2.2.1) to build the model using MODELLER (Sali et al., 

1995). The missing stalk residues (138-220) were modelled using the solved N-terminal coiled-

coil (residues 27-137) of NadA5 as the template.  

 

2.5.4 Crystallization, data collection and structure determination 

Crystallization trials were set up in 96-well sitting-drop plates with drops consisting of 300 nl 

protein solution and 300 nl reservoir solution (RS), and reservoirs containing 50 μl RS. All 

crystals were cryo-protected, then loop mounted and flash-cooled in liquid nitrogen. Data were 

collected at 100 K and a wavelength of either 1.07 Å at beamline X10SA of the Swiss Light 

Source (Villigen, Switzerland), using a PILATUS 6M-F hybrid pixel detector (Dectris Ltd.). 

All data were indexed, integrated and scaled using XDS (Kabsch, 2010). Structures were 

solved by molecular replacement with MOLREP (Vagin and Teplyakov, 2000) They were 

finalized in cycles of manual modeling with Coot (Emsley and Cowtan, 2004), and refinement 

with REFMAC5 (Murshudov et al., 1999). This work was done together with Dr. Marcus 

Hartmann. The structures have not yet been submitted to the PDB. 
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Table 2.3: Crystallization and cryo conditions. 

Protein* Reservoir solution** Cryo solution** 

Mmor 0.1 M HEPES pH 7.5, 30% (w/v) PEG 300 Mother liquor 

Mmor-mut1 0.1 M tri-sodium citrate pH 5.5, 20% (w/v) PEG 3000 20% PEG 2000 

Mmor-mut2 0.1 M sodium citrate , 8% (w/v) PEG 8000 20% PEG 200 

Mglob Morpheus HT-96 screen, well D2*** Mother liquor 

ParcuUY81-fl 0.1 M SPG buffer pH 6, 25% (w/v) PEG 1500 10% glycerol 

ParcuUY81-Tryp 25% (w/v) PEG 2000 MME 20% PEG 400 

ParcuUY81-short 0.1 M Bis-Tris pH 6.5, 2 M (NH4)2SO4 25% glycerol 

ParcuUY81-heptad 0.2 M K2SO4, 20% (w/v) PEG 3350 20% glycerol 

ParcuUy81-GCN4 0.1 M sodium acetate (pH 4.6), 2 M sodium formate 30% glycerol 

 

*All protein samples were prepared in buffer containing 20 mM Tris, pH 7.6, and 150 mM NaCl. 

**The reservoir and cryo conditions are shown for the best diffracting crystals. 

*** Morpheus screen HT-96/ FX-96, Molecular Dimensions  
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CHAPTER 3 
 
Structural and functional characterization of MempromCC 
proteins – a new family of membrane proteins in 
prokaryotes and mitochondria 
 

 

 

 

 

 

In the previous chapter, we examined the structural features of β-layers in regular coiled coils. 

β-layers are found widely distributed in proteins ranging from phages and bacteria up to 

eukaryotes and display conserved characteristic sequence motifs. Probing new proteins 

containing β-layers, we identified a new family of integral membrane proteins displaying a 

head-neck-stalk-anchor architecture (Pfam domain annotation DUF1640), broadly distributed 

in prokaryotes and localized to the mitochondria of eukaryotes. We refer to this protein family 

as mempromCC, for membrane-attached proteins of prokaryotes and mitochondria containing 

coiled coils. Besides mostly uncharacterized proteins, DUF1640 includes prominent members, 

such as human MCUR1 (mitochondrial calcium uniporter regulator 1 or CCDC90A) and its 

paralog CCDC90B (coiled-coil domain containing protein 90B). MCUR1 is an essential 

regulator of Ca2+ uptake through the mitochondrial calcium uniporter (MCU) whereas 

CCDC90B does not demonstrate a similar effect. Furthermore, MCUR1 was found to regulate 

the calcium threshold in permeability transition. These mitochondrial Ca2+ modulations play a 

significant role in maintaining cellular bioenergetics, mediating cellular differentiation and 

initiation of programmed cell death pathways. In this chapter, we examine the structural and 

biophysical characteristics of human MCUR1 and CCDC90B, and the effects of divalent 

cations Ca2+ and Mg2+. We further investigate the interaction of human mempromCC paralogs 

with MCU and the permeability transition pore complex component Cyclophilin D. As MCU 

lacks homologs in bacteria, yeast and certain fungi lineages, we explore the possibly 

evolutionary conserved function(s) of mempromCC proteins in the second part of this chapter 

using the bacterium Caulobacter crescentus as a model organism. 
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3.1 INTRODUCTION 

 

3.1.1 The mempromCC protein family 

Automated and manual motif-based sequence searches in combination with secondary 

structure prediction were employed previously in our group to identify new β-layer containing 

proteins in non-redundant databases (Hartmann et al., 2016). Starting with a known β-layer 

sequence motif, a heterogeneous group of integral membrane proteins was found in prokaryotes 

and eukaryotes (Bioinformatics was done by Prof. Andrei Lupas and Ioanna Karamichali). The 

identified set of membrane proteins comprises in total 1085 proteins from 270 species from all 

the three domains and five viruses. Majority of the prokaryotic sequences belong to 

proteobacteria and a minor part are archaeal proteins. The viral homologs are found in 

bacteriophages and share a high sequence similarity. And all eukaryotic proteins are nuclear-

encoded with a mitochondrial target sequence. In contrast to the more diverse prokaryotic 

proteins, all identified eukaryotic proteins are annotated as DUF1640 homologs. 

 

Although highly diverse in sequence and length, all family members are characterized 

by a common head-neck-stalk-anchor (HNSA) architecture. A membrane anchored trimeric 

coiled-coil stalk projects an N-terminal helical head domain. The head-stalk junction is 

intermediated by the presence of one or multiple β-layer connectors. The sequences differ 

remarkably in size. The longest representatives, found in the fungal divisions Ascomycota and 

Basidiomycota, comprise up to 320 residues and the shortest example, from Xylella, consists 

of only 60 residues. The size of helical head domains varies between 40 and 220 residues. 

Similarly, the trimeric coiled-coil stalks of the proteins diverge highly in length and in their 

repeat patterns even between closely related species. Although we mostly identify left-handed 

supercoiled stalks built from canonical heptad repeats, segments indicative for a right-handed 

supercoil built from repeats of eleven or fifteen residues could also be seen.  

 

In order to analyze the phylogeny of the obtained sequences, collected sequences were 

clustered by pairwise sequence comparison of the head-neck region using CLANS (Frickey 

and Lupas, 2004) (Fig. 3.1). Nearly 70% of the identified proteins clustered within the central 

main group. This subcluster comprises many proteobacterial proteins belonging to α-, β-, γ- 

and δ-classes together with all eukaryotic homologs that specifically localize to the 

mitochondria. The remaining sequences form small peripheral groups. They exclusively 
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contain the prokaryotic proteins. Whereas the sequences in the central group display strong 

connections to each other, they show little or no connections to these peripheral prokaryotic 

groups. These few evolutionary connections exist between the proteobacterial sequences of the 

main cluster and the groups of Pseudomonas, Delftia and Chromatiales. Among the peripheral 

groups, only the proteobacterial clusters of Enterobacteriales and Pseudomonas, and the 

Aquificales group of Sulfurihydrogenibium and the archaeal Methanocaldococcus clusters are 

related to each other. 

 

 

Figure 3.1: Bioinformatic classification of mempromCC protein family. (A) Domain architecture of mempromCC 

homologs characterized by a head domain (green), one or multiple β-layer necks (red), a coiled-coil stalk (blue) 

and a transmembrane anchor (grey). (B) Cluster map of the head-neck segments of identified β-layer containing 

proteins generated using CLANS. Sequences are shown as circles and colored according to taxonomic 

classification as described below. Evolutionary related sequences are connected by grey lines based on BLAST 

score values. Triangles and squares highlight proteins of particular interest in the scope of this work. Stars 

indicate proteins with solved crystal structures. The central cluster represents the mempromCC family. 

Peripheral clusters are abbreviated as Achromobacter (AC), Chromatiales (CH), Candidatus liberibacter (CL), 

Campylobacter (CM), Delftia (DL), Desulfovibrio (DS), Enterobacteriales (EB), Flavobacteria (FL), Helicobacter 
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(HL), Methanocaldococcus (MT), Pseudomonas (PS), Sulfurihydrogenibium (SL), Sphingobacteria (SP), 

Thermoprotei (TH), and Xylella (XL). 

 

Multiple sequence alignment with Clustal Omega (Sievers et al., 2011) and secondary 

structure predictions using Quick2D (Zimmermann et al., 2017) of the head-neck region of 

sequences selected from the central main group (Fig. 3.2) reveal important information. The 

conserved head domain, chiefly 40-50 residues in length, is predicted to be helical. Some 

residues are conserved in nearly two-thirds of the sequences and include a conserved “FDT” 

(Phe-Asp-Thr) motif located close to the N-terminal region of the head. More distantly related 

proteins, including sequences from Pseudomonas and Chromatiales, lack this motif but have 

the same secondary structure prediction. The β-layer necks are characterized by the conserved 

sequence motif [aliphatic]–A–T–K–[polar]–[DE]. On the basis of evolutionary relationship 

established among the head-neck sequences, we classify the members of central cluster and 

peripheral groups of Pseudomonas, Delftia and Chromatiales as mempromCC (membrane-

attached proteins of prokaryotes and mitochondria containing coiled coils) family. Members of 

this family are obligate trimers displaying a head-neck-stalk-anchor architecture and comprise 

of a conserved α-helical head domain that is projected by a membrane-anchored long coiled-

coil stalk. The head-stalk junction is invariably mediated by one or multiple repetitively 

arranged β-layers, therefore clearly differentiating them from other protein families with 

similar domain architecture. 

 

While prokaryotes seem to possess only one homolog per organism, eukaryotes have 

at least two paralogous mempromCC proteins. These proteins, classified under DUF1640 

(Pfam annotation as domain of unknown function), are predominantly uncharacterized. 

DUF1640 represents an entirely helical domain of unknown function that is about 160 residues 

in length and encompasses the conserved head, neck, stalk and membrane anchor. Prokaryotic 

mempromCC homologs lack signal sequences as well as any N-terminal extensions which 

indicates their localization to the cytoplasmic membrane. On the other hand, eukaryotic 

mempromCC homologs are characterized by an N-terminal mitochondrial target signal (MTS). 

MTS is often succeeded by a non-conserved, variable length region which is predicted to be 

mostly disordered. 
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Figure 3.2: The head-neck segment of mempromCC family is evolutionarily conserved. Sequence alignment of 

head domain and the first β-layer neck of mempromCC homologs, along with two unrelated groups of 

Pseudomonas/Enterobacteriales and Crenarchaeota are shown. Secondary structure α-helix prediction is 

colored in pink with color intensity proportional to the prediction score. Conserved residues are marked in bold. 

Blue and black letters indicate residues conserved in at least two-thirds or half of the sequences respectively. 

Hydrophobic residues conserved in at least 50% of sequences are marked below with “h”. Species names are 

colored as in (Fig. 1B) and abbreviated as follows: HS1 (NP_068597.2, CCDC90B, Homo sapiens), HS2 

(NP_001026883.1, MCUR1, Homo sapiens), AT (NP_973473.1, Arabidopsis thaliana), CR (XP_001694431.1, Rat1, 

Chlamydomonas reinhardtii), RS (CCO26633.1, Rhizoctonia solani AG-1 IB), SC (Q05867.1, YL283, Saccharomyces 

cerevisiae S288c), SP (O14042.1 Schizosaccharomyces pombe 972h-), CC (YP_002517927.1, Caulobacter 

crescentus NA1000), CS (WP_018113394.1, Caulobacter sp. JGI 0001013-D04), CG (WP_006683118.1, 

Candidatus glomeribacter gigasporarum), HP (WP_021111668.1, Haemophilus parasuis), PC (AIC21840.1, 

Pseudomonas chlororaphis), EH (WP_029762635.1, Ectothiorhodospira haloalkaliphila), CE (ETX04478.1, 

Candidatus Entotheonella Sp. Tsy2), PS (WP_016781459.1, Pseudomonas fragi), JA (CDG82950.1, 

Janthinobacterium agaricidamnosum NBRC 102515 = DSM 9628 ), PA (WP_014605518.1, Pantoea ananatis), EC 

(WP_001737198.1, Escherichia coli), SE (WP_000890813.1, Salmonella enterica), MY (ZP_09704076.1, 

Metallosphaera yellowstonensis MK1), SA (WP_024084599.1, Sulfolobus acidocaldarius), TA (WP_020962471.1, 

Thermofilum adornatus), PF (WP_014025983.1, Pyrolobus fumarii), KC (WP_012309502.1, Kcr-0859, Candidatus 

Korarchaeum cryptofilum). 
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3.1.2 Human mempromCC proteins - MCUR1 and CCDC90B 

The only functionally studied members of the mempromCC family to this date, are the human 

paralogs MCUR1 and CCDC90B. A recent study on MCUR1 (mitochondrial calcium uniporter 

regulator 1) demonstrated its function as an essential regulator of mitochondrial calcium 

uniporter-mediated calcium uptake (Mallilankaraman et al., 2012a). It is a 40 kDa protein 

localized to the inner mitochondrial membrane (IMM). Identified in a directed human RNAi 

screen, knockdown of MCUR1 reduced the calcium uptake by energized mitochondria in intact 

and permeabilized HEK293 cells (Mallilankaraman et al., 2012a).  A similar effect on Ca2+ 

influx, however, was not observed with the knockdown of CCDC90B (Tomar et al., 2016). 

Various other studies have proposed different functions for MCUR1: as a cytochrome C 

oxidase assembly factor (Paupe et al., 2015) as well as a regulator of Ca2+ threshold for 

mitochondrial permeability transition (Chaudhuri et al., 2016). All functional studies are 

discussed in detail below. 

 

3.1.2.1 MCUR1 as a regulator of calcium uptake by MCU 

MCUR1 is ubiquitously expressed in all mammalian tissues. It was first identified in an RNAi 

screen of 45 mitochondrial membrane proteins to identify candidates that led to a significant 

reduction in mitochondrial calcium uptake (Mallilankaraman et al., 2012a). The mitochondrial 

calcium uptake occurs through a highly Ca2+-selective uniporter complex residing in the inner 

mitochondrial membrane that operates by the huge transmembrane potential generated across 

its IMM. Knockdown of MCUR1 led to a dramatic reduction (~85%) in the mitochondrial 

[Ca2+] without modifying the cytosolic Ca2+ content (Mallilankaraman et al., 2012a), which 

could be rescued by expressing RNAi insensitive MCUR1 cDNA. In further studies, MCUR1 

was shown to directly interact with the central pore-forming MCU protein and proposed to 

function as a scaffold factor for the complex (Lee et al., 2015; Tomar et al., 2016). BN-PAGE 

analysis showed that MCU oligomerizes in IMM in a complex with an apparent molecular 

weight of ~480 kDa (Baughman et al., 2011). Deletion of MCUR1 perturbed this higher-order 

complex assembly. Although there has been a considerable interest in the molecular structure 

and assembly of MCU complex in the last few years, the regulatory mechanism of calcium 

uptake by MCUR1 and CCDC90B are still not understood. 
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The MCU complex in mitochondria 

In the early 1960s, it was discovered that mitochondria isolated from cells accumulated large 

amounts of Ca2+ (Deluca et al., 1961; Vasington et al., 1962). A similar finding was reported 

later for the mitochondria of eukaryotic cells in vivo. Finally in 2011, after 50 years of extensive 

research in the field of mitochondrial calcium signaling, the central pore-forming protein of the 

MCU complex was identified (De Stefani et al., 2011; Baughman, Perocchi et al., 2011). 

Subsequently, other regulatory proteins were recognized. Human MCU complex, known to 

date, is made up of the following components – MCU (pore-forming subunit), MCUb (a 

dominant negative paralog of MCU), MICU1 and MICU2 (paralogous EF-hand Ca2+-binding 

gatekeeper proteins), EMRE (a metazoan specific single-pass transmembrane protein), and 

paralogs MCUR1 and CCDC90B.  

 

Mitochondrial calcium signaling is an essential process that regulates crucial cellular 

processes like bioenergetics, metabolism, cell differentiation, and cell death pathways. In the 

cell, mitochondria work as large capacity calcium buffers on the cytoplasmic face (Williams et 

al., 2013). The rapid compartmentalization of local calcium increases in cytosol through the 

uniporter and its efflux shapes the cellular calcium signals (Babcock et al., 1997; Putney Jr. 

and Thomas, 2006; Rizzuto et al., 2012). Mitochondria utilize these spatio-temporal patterns 

of Ca2+ signals to regulate diverse physiological processes and enzymatic activities (Iino, 

2010). For instance, entry of mitochondrial calcium signals the production of ATP to match 

the cytosolic energy requirements (Jouaville et al., 1999; Tarasov et al., 2012). 

 

Calcium uptake occurs at MAMs (Mitochondria-Associated Membranes) 

Calcium uptake through MCU is driven by the electrochemical gradient maintained across 

IMM. This gradient is generated by pumping of protons by the respiratory complexes towards 

the intermembrane space which results in the creation of a large transmembrane potential, Ψm, 

usually between -150 and -180 mV (Patergnani et al., 2011).  Substituting this value in the 

Nernst equation, 

Veq =  
RT

zF
ln

[Ca2+]o

[Ca2+]i
 

where Veq is the equilibrium potential, R is the universal gas constant (8.314 J K-1 mol-1), z is 

the valence of ionic species, F is the Faraday’s constant (96,485 C mol-1), translates into the 

equilibrium concentration gradient of ~106 for Ca2+. Under resting cellular conditions, cells 

maintain a low [Ca2+]cyt ~100 nM. If allowed to equilibrate freely, [Ca2+] in the matrix can 
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reach upto 100 mM which can depolarize the membranes completely. As these values are not 

observed experimentally, it shows that the uniporter is tightly regulated to allow a response 

only above a certain Ca2+ threshold concentration.   

 

 Ca2+ release from the major intracellular Ca2+-stores such as endo/sarcoplasmic 

reticulum (ER/SR [Ca2+] ~ 250-600 μM) increases the global cytosolic calcium levels from 

0.1 μM to only about 1-2 μM (Somlyo, 1984; de la Fuente et al., 2013). As MCU complex has 

a very low affinity for Ca2+ (Kd ~ 20-30 μM) (Kirichok et al., 2004) on the IMS side, this 

cytosolic increase is insufficient to illicit a stimulatory response. This apparent discrepancy 

between the low affinity of MCU, low global cytosolic levels of Ca2+ and the highly efficient 

calcium uptake in mitochondria led to the proposal of the “hotspot hypothesis” (Rizzuto et al., 

1993, 1998, 2004; Bononi et al., 2012). This hypothesis states that mitochondria preferentially 

accumulate calcium at regions of close apposition to the ER Ca2+-release sites where domains 

of high local [Ca2+] exist (Rizzuto et al., 1998; Patergnani 2011) (Fig. 3.3). Known as 

“Mitochondria-Associated Membranes” (MAMs), transient [Ca2+]cyt at these microdomains 

can reach > 10 μM. 

 
Figure 3.3: Mitochondria-Associated Membranes (MAMs) are regions of close apposition between ER and 

mitochondria. Local microdomains of high calcium concentration at these sites facilitate fast and efficient Ca2+ 

signal transmission. IP3R (inositol 1,4,5-triphosphate receptor); VDAC1 (voltage-dependent anion-selective 

channel protein 1); MCU (mitochondrial calcium uniporter); SERCA (sarco/endoplasmic reticulum Ca2+-ATPase); 

RyR (ryanodine receptor); Mfn1 and Mfn2 (mitofusins); Grp75 (glucose-regulated protein). Adapted from 

(Chernorudskiy et al., 2017). 
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Components of the MCU complex 

 

A. MCU – the central pore-forming protein 

Mitochondrial calcium uniporter (MCU) is the channel-forming and Ca2+-conducting subunit 

of MCU complex. It was identified in a screen searching for proteins related to MICU1, which 

was the first identified component of the MCU complex. Using a combination of whole-

genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide 

protein expression analysis, two independent groups identified MCU in silico in the MitoCarta 

database (an inventory of nuclear and mitochondrial DNA genes encoding proteins for 

mitochondrial localization) (Baughman, Perocchi et al., 2011; De Stefani et al., 2011). It was 

later experimentally verified by whole-mitoplast patch clamp electrophysiology measurement 

of calcium currents (Chaudhuri et al., 2013). In the cell, MCU works together with accessory 

proteins that tightly regulate the pore and influence Ca2+ influx. The MCU channel is 

ruthenium-red sensitive and residue S259 was identified to be essential for this sensitivity 

(Baughman et al., 2011). 

 

Homologs of MCU are present in all major branches of eukaryotes, found in all plants 

and metazoan, but absent in yeast and some fungi and protozoan lineages (Bick et al., 2012). 

MCU is ubiquitously expressed in mammals. It comprises of a globular soluble N-terminal 

domain, two conserved transmembrane helices TM1 and TM2 which are flanked by two coiled-

coil helices CC1 and CC2 (Fig. 3.4A). The N and C-terminal domains reside in the 

mitochondrial matrix and only a short linker (EYSWDIMEP), which features a conserved 

DIME motif and connects the two TM helices, faces the intermembrane space (Baughman et 

al., 2011; Oxenoid et al., 2016). Mutation of these negatively charged residues in the DIME 

motif abolished MCU activity (Baughman et al., 2011; De Stefani et al., 2011). 

 

Recently, four independent groups published the cryo-EM structures of MCU from 

different fungal species (Baradaran et al., 2018; Fan et al., 2018; Nguyen et al., 2018; Yoo et 

al., 2018). MCU assembles into a homotetrameric channel (Fig. 3.4B). The transmembrane 

helix TM2 forms the central hydrophilic core and continues into CC2 in the matrix. The N-

terminal domain of MCU is connected to TM1 via an elongated CC1 coiled-coil domain, which 

also acts as a stabilizing peripheral helix to the core bundle (Fig. 3.4C). The critical DxxE motif 
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lines the entrance of the pore on the IMS side with protruding carboxylate rings from D225 

and E228 forming the Ca2+ selectivity filter (Fig. 3.4D). 

  

 

Figure 3.4: Structure of pore-forming MCU protein. (A) Domain architecture of MCU. It consists of a 

mitochondrial target signal (MTS), N-terminal globular domain (NTD), two transmembrane helices (TM1 and 

TM2), and two coiled-coil helices (CC1 and CC2). The loop connecting TM1 and TM2 features a conserved DIME 

motif (B) Tetrameric structure of fungal MCU solved by cryo-EM (PDB 6dnf) (Baradaran et al., 2018). Individual 

chains are colored differently. CC2 and TM2 form the central pore, while CC1 and TM1 stabilize the core as 

peripheral helices. (C) MCU monomer colored by its domain organization. CC1 helix directly continues into TM1. 

(D) The two rings of negatively charged residues D225 and E228, part of the conserved DIME motif, act as the 

selectivity filter for Ca2+. Top view shows the interaction network of W224 and E228 with a central calcium ion 

(blue sphere). 

 

The structure of the N-terminal soluble domain of human MCU (residues 72-189) was 

solved by X-ray crystallography. It displays a β-grasp-like fold wherein two central helices, 

nearly perpendicular to each other, are sandwiched between 3-stranded β-sheets (Lee et al., 

2015; Lee et al., 2016). Deletion of MCU N-terminal domain severely abolished calcium 

uptake through the uniporter without affecting its oligomer assembly. Electrostatic surface 
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charge analysis identified two prominent acidic and two basic patches on the surface of MCU-

NTD which may facilitate higher-order assembly of the protein (Lee et al., 2016). Divalent 

cations Ca2+ and Mg2+ bind to the acidic surface of MCU-NTD with a near millimolar affinity 

(Lee et al., 2016). This binding translates into an auto-regulatory mechanism of MCU, 

conveying a negative feedback response to close the channel when exposed to prolonged high 

[Ca2+] at the immediate base of microdomains. It was also shown that MCU-NTD directly 

interacts with MCUR1, but how this interaction is mediated remains to be identified. 

 

B. MCUb – the dominant negative paralog of MCU 

MCUb (or CCDC109B), a paralog of MCU, shows 50% sequence similarity to MCU and 

shares the same protein structure and topology, comprising of 2 TM helices connected by a 

short loop facing IMS. This loop, however, bears a critical amino acid substitution E257V 

(VYSWDIMEP) that leads to a drastic change in the channel properties owing to one reduced 

negative charge. MCUb acts as dominant-negative form, and the insertion of one or more 

MCUb subunits in the uniporter channel was shown to reduce the Ca2+ influx. 

 

C. MICU1, MICU2 and MICU3 – the gatekeepers 

MICU1 (mitochondrial calcium uniporter 1) was the first MCU complex component to be 

identified using a comparative proteomics approach (Perocchi et al., 2010). It is an inter-

membrane space localized soluble protein that is approximated to the IMM by its association 

with the C-terminal polyaspartate tail of EMRE. It contains two-highly conserved predicted 

EF-hand Ca2+-binding domains (Perocchi et al., 2010; Csordás et al., 2013). The crystal 

structure of MICU1 in both apo and Ca2+-bound forms has been solved (Wang et al., 2014). 

Apo-MICU1 forms a hexamer. Upon Ca2+ binding, it undergoes a conformational change to 

form multiple oligomeric species which are then suspected to activate MCU.  

 

MCU and MICU1 proteins show the same evolutionary pattern of expression (Bick et 

al., 2012). MICU1 has two paralogous proteins: MICU2 and MICU3, sharing around 25% 

sequence identity to MICU1. While MICU2 is expressed ubiquitously in human tissues like 

MICU1, MICU3 is predominantly expressed in the central nervous system (CNS) (Plovanich 

et al., 2013). MICU2 forms an obligate dimer with MICU1 and is the dominant gatekeeper 

protein. While at low [Ca2+], both MICU1 and MICU2 exercise their tight regulation on the 

MCU activity; upon physiological stimulation, Ca2+ inhibits MICU2 and activates MICU1 
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allowing a prompt response to calcium accumulation in the matrix (Mallilankaraman et al., 

2012b; Patron et al., 2014). The rates of calcium entry show a sigmoidal behavior – slow at 

low [Ca2+] and exponential at higher [Ca2+] (>10 μM) (Rizzuto et al., 1998; Csordás et al., 

1999, 2010; Giacomello et al., 2010). 

 

Interaction studies reported that MCUR1 and MICU1 do not pull-down together 

(Mallilankaraman et al., 2012a). This could suggest that the two proteins do not exist in the 

MCU complex at one time. It leaves us with open questions – Do different pools of MCU 

complexes containing either of the two proteins - MCUR1 or MICU1 - exist? Does the cell 

require a certain fraction of the complexes without a gatekeeper protein at the resting cellular 

conditions? The answers still need to be investigated. 

  

D. EMRE – the scaffold factor 

EMRE (essential MCU regulator) was identified using a combination of SILAC and mass 

spectrometry-based proteomics approach (Sancak et al., 2013).  It is a 10 kDa single-pass 

transmembrane protein in IMM with a highly conserved aspartate-rich C-terminus. In the IMS, 

this acidic C-terminal tail strongly associates with the basic region of MICU1. EMRE also 

interacts with the TM1 helix of MCU protein with its single transmembrane helix. Therefore, 

it acts as a bridging subunit keeping the Ca2+-sensing gatekeeper MICU1/MICU2 complex 

attached to the functional MCU pore, just like a lid on the top of the channel (Tsai et al., 2016). 

Homologs of EMRE are not found in any plants, protozoa or fungi, highlighting that it is a 

metazoan innovation (Sancak et al., 2013). Human MCU cannot form functional channels in 

the absence of EMRE (Kovács-Bogdán et al., 2014). MCUR1 could also pull-down EMRE 

(Tomar et al., 2016), but which domain of MCUR1 is involved in the interaction to the N-

terminus of EMRE is not known.  

 

The assembly of MCU channels is regulated by the proteolytic activity of m-AAA 

proteases. Expression of EMRE, the bridging subunit in MCU-MICU1 assembly, in excess can 

result in the assembly of incomplete uniporter sub-complexes MCU-EMRE and EMRE-

MICU1. This leads to the accumulation of constitutively active MCU-EMRE channels, a 

condition that has been identified to lead to a muscular disorder in humans (Tsai et al., 2017). 

m-AAA proteases AFG3L2 and SPG7 were found to be involved in EMRE turnover, rapidly 

degrading any non-assembled EMRE using the energy from ATP hydrolysis. This guarantees 
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the proper assembly of fully functional MCU channels, preventing Ca2+ leakage into the 

mitochondria thereby regulating Ca2+ homeostasis.  

 

 3.1.2.2 MCUR1 as a cytochrome c oxidase (COX) assembly factor 

A 2015 study reported that MCUR1 plays a role in COX assembly and does not directly 

regulate MCU activity (Paupe et al., 2015). Knockdown of MCUR1 (by siRNA and lentiviral 

mediated shRNA) in fibroblasts resulted in a COX IV assembly defect, which was found to be 

responsible for the decreased mitochondrial membrane potential and indirectly to the reduced 

calcium current. Steady state levels of COXI and COXII, components of COX IV complex, 

were significantly reduced in MCUR1 KD cells whereas other subunits remained unaffected. 

As COXI and COXII are the earliest subunits to enter into the complex IV assembly pathway, 

the instability of these newly synthesized components suggested that MCUR1 might function 

in chaperoning COXI and COXII into an early COX complex (Paupe et al., 2015). These data 

imply that MCUR1 is likely involved in incorporation or maturation of these subunits, or plays 

a role in addition of prosthetic factors necessary to stabilize the COX assembly intermediate. 

 

The authors further studied the COX assembly defect in budding yeast. As the yeast 

species lack MCU orthologs, presence of MCUR1 and CCDC90B homologs in yeast suggests 

a function unrelated to mitochondrial calcium uptake. Deletion of fmp32 (an ortholog of 

CCDC90B in Saccharomyces cerevisiae) resulted in a growth defect on non-fermentable 

carbon source (glycerol) which substantially increased when grown at higher temperature 

(36˚C compared to 28˚C), indicating a COX defect and reduced OXPHOS activity. The authors 

concluded that the abrogation of Ca2+ uptake in MCUR1 deficient cells could likely be a 

secondary effect due to reduced ΔΨm as a result of COX assembly defect.  

 

Direct MCU-mediated Ca2+ currents recorded by patch clamp electrophysiology of 

isolated mitoplasts, however, did not support the above claim that reduction of mitochondrial 

membrane potential is exclusively responsible for reduced Ca2+ uptake (Vais et al., 2015). 

Stable knockdown of MCUR1 (by ~75%) reduced the Ca2+ currents through the uniporter by 

~65% which could be rescued by expression of shRNAi-insensitive MCUR1. This confirmed 

the finding that MCUR1 is a direct regulator of calcium uptake by MCU. 
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3.1.2.3 MCUR1 as a regulator of Ca2+ threshold for mitochondrial permeability transition  

Calcium entry is crucial for ATP production and cell survival. But excessive calcium uptake 

can trigger the cell’s apoptotic process. Overload of calcium in mitochondria leads to the 

opening of permeability transition pore (PTP) with the disruption of membrane potential 

resulting in the loss of solutes (<1.5 kDa). This osmotic imbalance swells up and disrupts the 

mitochondria releasing cytochrome c, which in turn activates pro-apoptotic factors. 

 

In 2016, a study identified that Drosophila MPT response is resistant to calcium 

overload which translates into improved cell survival (Chaudhuri et al., 2016). By comparing 

the differential behavior of PTP opening in Drosophila and humans, they found that MCUR1 

conferred the permeability transition sensitive to electrophoretic Ca2+ uptake in human cells. 

As MCUR1 has no homolog in Drosophila genome, similar sensitivity could be induced in 

Drosophila cells with the expression of human MCUR1. Clearly, MCUR1 is not essential for 

regulating mitochondrial calcium transport in all species, since Drosophila cells display an 

intact Ca2+ uptake despite lacking MCUR1 homolog. 

 

Originally identified by Haworth and Hunter (1979), PTP is a large conductance 

channel in the inner mitochondrial membrane. Although the molecular identity of MPT is 

controversial, key components include Cyclophilin D (CypD), TSPO, ADP/ATP translocase, 

F1-F0-ATP synthase and spastic paraplegia 7 (SPG7). Cyclophilin D is an important and the 

only confirmed regulator of MPTP. Full length human MCUR1 was found to interact with 

CypD in addition to MCU (Chaudhuri et al., 2016). It was proposed that MCUR1 could act as 

a bridging subunit between MCU and CypD, where approximation of the two complex subunits 

exposes the Ca2+ sensor in PTP to a region of higher local [Ca2+] near the matrix face of the 

uniporter pore (Chaudhuri et al., 2016).  

 

3.1.3 Pathophysiological implications of the MCU complex 

As we know, mitochondrial calcium buffering plays a critical role in the regulation of cellular 

metabolism, ATP production and cell survival (Bonora et al., 2012; Giorgi et al., 2012). During 

mitochondrial Ca2+ overload, cells are subjected to apoptotic/necrotic cell death pathways (De 

Stefani et al., 2011). Several oncogenes and tumor suppressors modulate the mitochondrial 

calcium signals to exert their anti/pro-apoptotic activities. One example is the regulation of 

MCU expression by miRNA miR-25 (Marchi et al., 2013). miR-25 can reduce the calcium 
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uptake through specific down-regulation of MCU, providing resistance against Ca2+-induced 

apoptosis. miR-25 is found to be upregulated in a variety of human cancers, including prostrate 

and colon carcinomas. Other pathophysiological effects result from the mutation of one or more 

components of the human MCU complex. Homozygous loss-of-function mutation of MICU1 

has been associated with proximal myopathy, learning difficulties and a progressive 

extrapyramidal movement disorder, stressing the requirement of a proper MCU gating (Logan 

et al., 2014). 

 

3.1.4 Aims of the study 

The primary objective of this study is the structural, biophysical and functional characterization 

of eukaryotic and bacterial proteins of the mempromCC family. Using a combination of X-ray 

crystallography and NMR solution spectroscopy, I aim to solve the structures of human 

paralogs MCUR1 and CCDC90B, and bacterial homologs from Caulobacter species. 

Subsequently, I probe the cellular localization of mempromCC proteins. For functional 

characterization, I use human MCUR1, which has been identified to be an essential regulator 

of calcium uptake through the mitochondrial calcium uniporter, as a model protein. I 

investigate the molecular interaction between MCUR1 and MCU and identify the domain(s) 

involved in this interaction. Furthermore to elucidate the regulatory function of MCUR1 on 

Ca2+ influx, I analyze its structure and biophysical properties, as well as its molecular 

interaction with MCU, in dependence of the divalent cations Ca2+ and Mg2+. Later, I investigate 

MCUR1 interaction with cyclophilin D, an essential component of the mitochondrial 

permeability transition complex involved in initiating programmed cell death pathway. As 

MCU lacks homologs in bacteria, yeast and certain fungi lineages, in the second part of the 

study, I explore the function of prokaryotic mempromCC homologs using the bacterium 

Caulobacter crescentus as a model organism. 
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3.2 RESULTS 

 

3.2.1 The human mempromCC proteins – MCUR1 and CCDC90B 

 

3.2.1.1 Bioinformatics sequence analyses 

Human cells express two mempromCC homologs: CCDC90A (or MCUR1 for Mitochondrial 

Calcium Uniporter Regulator 1) and CCDC90B. The two proteins share a high sequence 

similarity of 72% (sequence identity of 53%), featuring an N-terminal mitochondrial target 

signal (MTS), a conserved head, one β-layer (neck) connecting the head and the long coiled-

coil stalk (124 residues) which is finally followed by a transmembrane helix at the C-terminus 

(Pfam domain annotation DUF1640). The head domain is predicted to be made of two α-helices 

connected by a short loop. One prominent conserved “FDT” (Phe-Asp-Thr) motif is identified 

at the N-terminus of the head domain. The coiled-coil stalks of MCUR1 and CCDC90B are 

identical in length and share the same repeat periodicities. However, MCUR1, in contrast, 

harbors an additional N-terminal domain comprised of nearly 100 residues. Secondary 

structure estimation using Quick2D (Zimmermann et al., 2017) predicts minor secondary 

structure propensity in this region. Furthermore, it is predicted to be disordered in consensus 

by multiple predictors: PONDR VL-XT, PONDR VSL2b, PrDOS, PV2, and Espritz-N (data 

collected from D2P2 database) (Oates et al., 2013). The predicted disordered region 

encompasses this additional N-terminal region (Fig. 3.5A). Interestingly, PONDR VL-XT 

identifies some probability of order within this disordered segment (Fig. 3.5B). This usually 

indicates the presence of one or more small regions with a tendency for disorder-to-order 

transition upon some environmental change, such as binding to an interacting partner. A similar 

analysis of this region using the program ANCHOR (Dosztányi et al., 2009) also identified a 

Molecular Recognition Feature (MoRF) within residues 67-76 (corresponding sequence 

“SPLLLLLLVP”) of MCUR1. Such regions potentially serve as the initial binding sites for 

molecular recognition and undergo disorder-to-order transitions upon binding to proteins or 

ligands. Previous immunoprecipitation studies have identified that both MCU (mitochondrial 

calcium uniporter) (Lee et al., 2015; Tomar et al., 2016) and PPIF (peptidyl-prolyl-isomerase 

F or cyclophilin D) (Chaudhuri et al., 2016) can bind to MCUR1. I suspect that these interaction 

partners or some other unidentified factors can mediate this disorder-to-order transition of the 

long disordered chain of MCUR1 upon binding under certain conditions in the mitochondria. 
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Quite interestingly, I found that this disordered region is highly conserved among mammals, 

but differs significantly from the yeast, fungi and plant proteins. 

 

 
Figure 3.5: Disorder prediction in human MCUR1. (A) Comparative MCUR1 native disorder prediction using 

multiple predictors: Espritz-D, Espritz-X (green), Espritz-N (blue), IUPred-L (magenta), IUPred-S (brown), PV2 

(yellow), PrDOS (dark blue), VSL2b (purple) and VLXT (olive green). The pre-computed data was collected from 

Database of Disordered Protein Predictions (D2P2) (Oates et al., 2013). DUF1640 Pfam domain predicted in the 

C-terminal region of MCUR1 which comprises the conserved head, neck and coiled-coil stalk. The predicted 

disordered region with 50% agreement among the predictors is marked in green. Predicted molecular 

recognition features (MoRF regions) and putative phosphorylation sites are marked below. (B) Disorder 

prediction in MCUR1 by PONDR VL-XT. Scores above the threshold score of 0.5 indicate disordered region. Black 

horizontal bar shows the region with a high-propensity to undergo disorder-to-order transition. 
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3.2.1.2 Crystal structure of human mempromCC protein CCDC90B 

To realize our primary objective of structural characterization of the conserved head domain 

of mempromCC family including the β-layer neck, we selected homologs ranging from 

bacteria, yeasts to human. I initially focused on human paralogous proteins MCUR1 and 

CCDC90B. As it was notoriously difficult to purify sufficient amounts of soluble protein, I 

designed multiple constructs of the head-neck segments, variable in length and type of fusion, 

and tested their expression in various E. coli strains. Finally, I succeeded to solubly express 

CCDC90B43-125, a fragment comprising the head-neck segment and the first 21 residues of the 

coiled-coil stalk, in E. coli ArcticExpress (DE3). The coiled-coil fragment of the construct was 

fused in-register to a GCN4-N16V adaptor, which forms a mixture of dimers and trimers in 

solution (Harbury et al., 1993). In the past, our lab have frequently used such in-register fusions 

of GCN4 variants to stabilize coiled-coil fragments for structural characterization (Deiss et al., 

2014; Hernandez Alvarez et al., 2008). 

 

Far-UV CD spectroscopy showed that CCDC90B43-125-GCN4-N16V adopts a primarily α-

helical structure with characteristic spectral minima at 208 nm and 220 nm (Fig. 3.6A). Upon 

thermal melting, the two domains of the fusion protein unfold independently in two steps.  

CCDC90B43-125 fragment melts apparently with a melting temperature Tm of 71˚C, whereas 

unfolding of GCN4-N16V is known to take place at higher temperatures with a melting 

temperature Tm >95˚C (Knappenberger et al., 2002).  

 

 

Figure 3.6: Biophysical characterization of CCDC90B43-125-GCN4 N16V. (A) Melting curve of CCDC90B43-125-GCN4 

N16V monitored at 220 nm using far-UV CD spectroscopy. The CCDC90B43-125 fragment unfolds with a melting 

temperature Tm of 71˚C, Thermal unfolding of the GCN4 N16V segment is Tm > 95˚C and not visible in the applied 

temperature range. The inlet shows a single far-UV CD spectrum. (B) SEC-MALS data of CCDC90B43-125-GCN4 

N16V in 20 mM Tris pH 7.5, 150 mM NaCl. The calculated molecular mass corresponding to a trimer is indicated. 



81 

 

The trimeric oligomerization state of the protein was verified by SEC-MALS. Loaded on an 

HPLC column (AdvanceBio SEC 130Å, Agilent Technologies), the protein eluted as a single 

major peak with an apparent molecular weight of 41.5 kDa, which is equivalent to three times 

the theoretical molecular mass of 13.5 kDa (Fig. 3.6B). 

 

For the obtained crystals, we collected a dataset to a resolution of 2.1 Å which we could solve 

via molecular replacement using trimeric coiled-coil segments as search models (work done by 

Dr. Marcus Hartmann). Crystal structure of CCDC90B43-125 fused to GCN4-N16V shows an 

elongated parallel trimer and displays a head-neck-stalk architecture with a primarily α-helical 

head, one β-layer neck connecting the N-terminal helix of the head to the coiled-coil stalk (Fig. 

3.7B). The solved structure starts at residue D62, part of the conserved FDT motif, at the 

beginning of the head domain. The first 19 residues of CCDC90B, corresponding to residues 

43–61, are not resolved in the electron density. This can be attributed to the flexibility of the 

N-terminal region in crystallographic state, as the SDS-PAGE analysis of crystals show 

integrity of the protein. Helices α1 (residues 62-72) and α2 (residues 77-101) of the head 

domain are spaced by a short loop four residues in length. Overall, the head domain is 

structurally divided in two parts: an N-terminal six-helix bundle that extends into a trimeric 

coiled-coil segment, which then directly connects to the β-layer neck. In the antiparallel six-

helix bundle, α1-helices fold back and pack against the two α2-helices of the same and one 

neighboring chain. 

 

Loop L1 features a conserved hydrophobic residue phenylalanine (F75) which is positioned 

like a cap on top of the head shielding the hydrophobic core of the helix bundle (Fig. 3.7C). In 

other eukaryotic and proteobacterial mempromCC homologs, this position is occupied by a 

large hydrophobic residue, most commonly phenylalanine, leucine or methionine. F75 is 

preceded by glycine and both residues are conserved in more than 50% of mempromCC 

homologs. At the transition from loop L1 to α2, the structure is stabilized by a closed network 

of intra- and inter-chain hydrogen bonds formed by residue Q79 with the backbone amide and 

carboxyl moieties of neighboring residues D76 and G74 respectively (Fig. 3.7C). 

 

The C-terminal part of the α2-helices of each chain (residues 87-101), which is not in contact 

with the α1-helices, is composed of 15 residues and accommodated as a pentadecad over four 

helical turns in a right-handed coiled coil. The β-layer neck comprises the first three residues 

of the motif MVTQAQ (residues 102-107) with the central β-layer residue V103 forming the 
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inter-chain backbone hydrogen bonds and coordinating a water molecule in the center (Fig. 

3.7D). The β-layer is followed by a segment of the natural stalk comprising of a hendecad and 

a heptad, which shows a transition from a slightly right-handed to a left-handed coiled coil and 

merges continuously into the GCN4-N16V adaptor. 

 

 

 

Figure 3.7: Crystal structure of human CCDC90B. (A) Domain organization of CCDC90B (NP_068597.2) and 

CCDC90B43-125-GCN4 N16V fusion construct. Single domains include mitochondrial target signal (MTS), 

disordered region (DR), head domain (head), coiled-coil stalk (stalk) and a transmembrane helix (TM). -layer 

neck is shown in red. Residue range is indicated at the top. (B) Cartoon representation of the crystal structure 

of CCDC90B43-125-GCN4 N16V. Structure starts at residue D62. Domains are colored according to the schematic 

representation in (A), with head domain (helices 1 and 2 connected by a loop L1) in green, -layer neck in 

red, native stalk (helix 3) in blue and GCN4-N16V adaptor in grey. Monomers are colored in different shades. 

(C) Detailed top view of the head domain showing conserved F75 along with stabilizing closed interaction 

network formed by residues G74, D76 and Q79. (D) Close-up of β-layer neck, highlighting the hydrogen bonding 

network involving central -layer residues (V103) and a water molecule. 
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3.2.1.3 Structural characterization of MCUR1 

Human paralogs CCDC90B and MCUR1 show a high sequence similarity of 72% in the 

sequences covering the head, stalk and membrane anchor domains. Individual domains of the 

paralogs are identical in length, with the stalks even sharing the same repeat pattern (Fig. 3.9A). 

As already mentioned in Sect. 3.2.1.1, the N-terminal extensions preceding the head domains 

differ remarkably in length and sequence, representing the most distinctive feature of the 

paralogs (Fig. 3.9A). Based on secondary structure prediction, they comprise of about 60 

residues in CCDC90B and 160 residues in MCUR1, which includes a mitochondrial signal 

peptide followed by an intrinsically disordered segment. 

 

For structural characterization of MCUR1, I designed multiple expression constructs 

comprised of the conserved head domain, but excluding the N-terminal disordered region. 

Similar to CCDC90B, the obtained MCUR1 constructs were either expressed at low levels or 

impaired in solubility. A fusion construct 

of MCUR1160-230 with GCN4-N16V, 

analogous to the successfully utilized 

CCDC90B43-125 construct, was found to be 

well-expressed in the insoluble fraction, 

but not amenable to refolding. The same 

fragment lacking a C-terminal fusion, 

MCUR1160-230 (Fig. 3.9A), could be 

refolded successfully in physiological 

buffer, but did not yield any diffracting 

crystals. 

 

Given the lack of diffracting crystals, we 

conducted preliminary experiments to 

assess the suitability of MCUR1160-230 for 

solution NMR spectroscopy. At first 

glance, the 1D 1H spectrum showed 

adequate dispersion and diffusion 

coefficients consistent with an oligomer, 

most likely the expected trimer. We then 

       Figure 3.8: NMR 1D 1H spectrum of MCUR1160-230. 

       Assigned residues are labelled.                                                                                       
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prepared isotope-labelled samples and acquired spectra for sequential assignment. In the 15N-

HSQC, a stretch of residues corresponding to the core of the head domain (C173-S190) showed 

sharp signals with good dispersion, indicative of folded environment and protection of  amide 

protons from solvent (Fig. 3.8). Other residues were both much broader with low dispersion, 

could not be definitively assigned or were not observed. Under these circumstances, it was not 

possible to proceed to a high-resolution structure. 

 

3.2.1.4 Homology model of MCUR1 

Facing the difficulties of structural characterization, I designed a homology model of MCUR1 

with MODELLER (Sali et al., 1995) using CCDC90B43-125 crystal structure as the template. 

Lacking the flexible N-terminal extension preceding the head, the MCUR1 model mirrors 

CCDC90B in length as well as in domain architecture (Fig. 3.9B). The electrostatic surface 

charge distribution of both paralogous proteins show significant differences in their head 

domains. CCDC90B43-125 surface displays a prominent acidic patch localized at the loop of the 

head α-hairpin with residues D69, E71, D76 and E81 contributing the bulk of negative charge. 

(Fig. 3.9E). While the corresponding glutamate residues E176 and E186 in wild-type MCUR1 

are conserved, the equivalent aspartates have been replaced by hydrophobic residues L174 and 

A181 which therefore projects the top of head as apparently neutral (Fig. 3.9D). The small 

negative patches in MCUR1 are contributed primarily by α1-helix residues E176 and D177 of 

each monomer.  

 

3.2.1.5 In vitro Ca2+ binding to MCUR1 and CCDC90B 

Given the regulatory function of MCUR1 in mitochondrial Ca2+ transport, I suspected that this 

surface-charge polarity may contribute to potential Ca2+ binding. Therefore, I tested the effect 

of Ca2+ on oligomer formation and stability by SEC-MALS. MCUR1160-230 eluted as a single 

peak of a calculated molecular mass of 22.6 kDa, corresponding to a trimer in solution 

(theoretical mass of monomer is 8.32 kDa) (Fig. 3.10A). Only a minor fraction was present as 

aggregate in the void volume. So both, MCUR1 and CCDC90B, exist as trimers in solution. 

Addition of 5 mM Ca2+ did not have any visible effect on oligomerization of MCUR1 or 

CCDC90B as the proteins eluted at the same molecular weight.  

 



85 

 

 

Figure 3.9: Structural model of human MCUR1. (A) Comparative scheme showing the domain organization of 

human paralogs CCDC90B and MCUR1. MCUR1160-230 fragment used for biophysical characterization is indicated. 

(B) Homology model of MCUR1 spanning the head-neck-stalk region. The N-terminal disordered region is 

marked as dotted lines. MCUR1 is C-terminally anchored to the inner mitochondrial membrane (IMM) by a TM 

helix (not shown) and projects into the matrix. (C) Electrostatic surface charge distribution of MCUR1. Gradient 

is marked from acidic (red), through neutral (white) to basic (blue). (D) and (E) Top view of the head domains of 

MCUR1 and CCDC90B respectively, showing charge distribution. Negatively charged residues are labelled. 

 



86 

 

I then utilized Microscale Thermophoresis (MST) to examine any structural changes in 

MCUR1160-230 and CCDC90B43-125 in response to CaCl2 titration. MCUR1160-230 and 

CCDC90B43-125 (with and w/o C-terminal GCN4 fusion) were fluorescently labelled with red-

NHS Alexa Fluor 647 dye by covalent crosslinking to primary amines. Labelled-proteins were 

titrated with CaCl2 in the 1 μM – 40 mM concentration range. Whereas both CCDC90B 

constructs do not show any appreciable binding to Ca2+, the curve monitored for MCUR1160-

230 clearly showed Ca2+ binding (Fig. 3.10B). Next, I determined the affinity constants of the 

MCUR1 head for Ca2+ and Mg2+ with Kd ~ 0.6 mM for CaCl2 and ~ 5.0 mM for MgCl2 (Fig. 

3.10C). This indicates that Ca2+ specifically binds to MCUR1 head domain with a nearly 10-

fold higher affinity compared to Mg2+. At concentrations higher than 5 mM CaCl2, MCUR1 

tends to precipitate slightly. This effect was, however, observed to be less pronounced in the 

presence of Mg2+. 

 

 

Figure 3.10: Low-affinity Ca2+ binding to MCUR1. (A) SEC-MALS plot and calculated molecular mass of MCUR1160-

230 in the presence of 1 mM EGTA (red) and 5 mM CaCl2 (purple). (B) and (C) MST titration curves for Ca2+ and 

Mg2+ binding to MCUR1160-230 (dark and light blue) and CCDC90B43-125 (dark and light orange) used to determine 

the dissociation constants (Kd). Data points are mean of three replicates, shown with standard error.  
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3.2.1.6 The head domain of MCUR1, but not CCDC90B, can form β-amyloid fibrils 

Next, I assessed the effect of Ca2+ on the secondary structure and stability of MCUR1 using 

far-UV CD spectroscopy. MCUR1160-230 displayed a typical α-helical spectra with 

characteristic minima at 208 nm and 220 nm (Fig. 3.12A). Upon heating, the protein unfolds 

with a melting temperature Tm of 71˚C (Fig. 3.12B). In contrast to CCDC90B43-125 (Fig. 3.13), 

single CD spectra of MCUR1160-230 monitored at increasing temperatures show that thermal 

unfolding of α-helical structure was accompanied by irreversible formation of soluble β-like 

structure, which becomes visible as an emerging sharp signal at 216 nm, typical for β-amyloid 

formation (Fig. 3.14). At this point, I suspected that the translucent gel-like precipitates formed 

by incubating protein at room temperature over the course of time or during protein 

concentration could be amyloid fibrils. 

 

What are β-amyloid fibers? 

The term “amyloid” refers to aggregates of proteins arranged in a fibrillar form. They are 

characterized by the formation of long unbranched fibers, in which multiple parallel β-stranded 

chains of that protein arrange in an orientation perpendicular to the fiber axis. Amyloids have 

been associated with more than 50 human diseases and neurodegenerative disorders such as 

Alzheimer’s, Parkinson’s, Diabetes mellitus type 2, Huntington’s disease, Creutzfeldt-Jakob 

disease (CJD), and Rheumatoid arthritis (Knowles et al., 2014). 

 

 

Figure 3.11: Characteristics of cross-β amyloid fibrils. Schematic representation of the cross-β structure of 

amyloid fibrils. Characteristic X-ray diffraction arcs seen at 4.8 Å and 10 Å corresponding to the interstrand and 

intersheet spacing respectively. Reproduced from Dharmadana et al., 2017. 
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β-Amyloids have a distinctive cross-β structure. The “gold standard” test to verify the cross-β 

quaternary structure is X-ray diffraction pattern of the amyloid fibrils. Two characteristic 

diffraction reflection arcs at 4.8 Å and ~10 Å, corresponding to the inter-strand and sheet 

stacking distances respectively, are observed for well-oriented fibrils (else they blur into 

circular rings) (Fig. 3.11). The neighboring chains pack tightly, thereby excluding water from 

the core. Opposing strands are slightly offset from each other which allows their side-chains to 

interdigitate and create a zipper interface. 

 

3.2.1.7 Effect of Ca2+ on MCUR1 amyloid fibril formation 

Examining the effect of Ca2+ addition on the formation of β-amyloid-like fibrils, we recorded 

single CD spectra and melting curves at 208/216/220/224 nm with 1 mM and 5 mM CaCl2 

concentrations (Fig. 3.12A). While Ca2+ does not affect the α-helical secondary structure of 

MCUR1160-230, it strongly impairs its thermal stability (Fig. 3.12B). The melting temperature 

Tm of ~71˚C measured in Ca2+-free buffer is remarkably reduced to ~50˚C and ~43˚C in the 

presence of 1 mM and 5 mM CaCl2, respectively. White precipitates, composed of high 

molecular weight β-fibrillar aggregates, were seen after complete heat denaturation in direct 

proportion to the amount of calcium added. This explains the end low β-signal at 216 nm (Fig. 

3.12C). This effect could be reversed upon addition of the Ca2+ chelator EGTA. At 

concentrations higher than 5 mM CaCl2, MCUR1 starts to aggregate and fall out of the solution. 

To check if it was a specific effect of Ca2+, we performed CD measurements in the presence of 

Mg2+. We obtained a near identical end result of thermal denaturation. With 5 mM MgCl2, 

MCUR1160-230 melts with a Tm of ~44˚C identical to Ca2+ addition. Both CCDC90B43-125 (with 

and w/o GCN4 fusion) constructs, however, denature to form random coil structure with no 

change observed even upon adding Ca2+ (Fig. 3.13). 

 

The nature of β-amyloid fibrils formed by MCUR1160-230 was further analyzed by transmission 

electron microscopy (TEM). 120 μM protein in physiological pH buffer (20 mM Tris pH 7.6, 

150 mM NaCl, 1 mM TCEP) was incubated at 25˚C for 24 hours with or without the addition 

of Ca2+. As observed by visual inspection, cloudy aggregates formed in the presence of Ca2+ 

within 3 hours of incubation, whereas no precipitates were visible in the Ca2+-free samples 

even after 24 hours. TEM micrographs of MCUR1160-230 fibrils show the presence of primarily 

short individual protofibrils in protein samples with no addition or addition of 1 mM EGTA 

(Fig. 3.14).  
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Figure 3.12: MCUR1 is destabilized upon divalent cation binding. (A) Far-UV CD spectra of MCUR1160-230 at 20˚C 

in the presence of EGTA, MgCl2 and CaCl2 at indicated concentrations. For the yellow curve (1 mM CaCl2 + 1 mM 

EGTA), CaCl2 was added to the sample and chelated by addition of equal molar amounts of EGTA immediately 

before measurement. (B) Thermal melting curves for MCUR1160-230 in the presence of EGTA, MgCl2 or CaCl2 at 

216 nm (inset) and 208 nm. Respective concentrations and the color code are as in panel (A). Calculated melting 

temperatures (Tm) are indicated. (C) Single far-UV CD spectra of MCUR1160-230 showing loss of -helical structure 

upon heating measured at different temperatures in the presence of 1 mM EGTA, 5 mM CaCl2 and 5 mM MgCl2. 
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Figure 3.13: Secondary structure analysis of CCDC90B43-125-GCN4 N16V and CCDC90B43-125. (A) Domain organi-

zation of CCDC90B with residue range marked at the top. (B) and (C) Far-UV spectra of CCDC90B43-125-GCN4 

N16V, and (E) and (F) of CCDC90B43-125 in the absence (1 mM EGTA) or presence of Ca2+ (5 mM CaCl2) recorded 

at 20˚C and 95˚C. Panels (D) and (G) show melting curves of CCDC90B43-125-GCN4 N16V and CCDC90B43-125, 

respectively, recorded for each in the presence of 1 mM EGTA and 5 mM CaCl2. Calculated melting temperatures 

(Tm) for each condition are indicated. 
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In sample containing 1 mM Ca2+, already after 24 hours, we observed long extended curvilinear 

protofibrillar structures which started to transform into mature amyloid fibrils in 5 mM Ca2+ 

sample. Such a pronounced effect was not observed with Mg2+. Thus, presence of calcium 

specifically seems to accelerate the process of fibrillar formation for MCUR1160-230. Similar 

effect of Ca2+ has been previously reported for amyloid β-peptide (Aβ) involved in the toxic 

plaque formation in Alzheimer’s disease (Isaacs et al., 2006). Our results show that increase in 

temperature or addition of Ca2+ accelerates the destabilization of MCUR1160-230 which then 

assists the fast kinetics of early fibril formation. 

 

 

Figure 3.14: TEM micrographs showing β-amyloid fibril formation of MCUR1160-230 in the presence of 1 mM 

EGTA, 1 mM and 5 mM CaCl2, and 5 mM MgCl2 after incubation for 24 hours at 25˚C. Scale bar is 100 nm (for 

inset, scale bar is 500 nm). 

 

Many studies have reported that the protein sequence influences the formation of amyloid 

fibrils. In the partially unfolded state, a certain stretch of MCUR1 may possess β-formation 

propensity. Analyses of aggregation and amyloid propensity using multiple computational 

prediction tools, such as Amylpred2, TANGO, and ZipperDB (Fernandez-Escamilla et al., 

2004; Tsolis et al., 2013), identified a common amyloidogenic hotspot in the α2-helix of the 
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MCUR1 head domain (residues 184-196). Figure 3.15 plots beta-aggregation score generated 

by TANGO for MCUR1160-230 and CCDC90B55-125 residues. The equivalent residues in 

CCDC90B head region, with slightly dissimilar sequence, show significantly lower β-

aggregation propensities. These primary structural differences can be useful in understanding 

sequence-amyloid relationships in the future. 

 

 

Figure 3.15: Prediction of aggregation and amyloid propensity of MCUR1. The prediction tool TANGO was used 

to analyze the β-aggregation propensity of MCUR1160-230 (solid line) and CCDC90B55-125 (dotted line). The diagram 

shows the calculated TANGO scores for each protein fragment plotted against the residue numbers. The upper 

panel aligns the identified amylogenic hotspot of MCUR1 with the corresponding region of CCDC90B in relation 

to secondary structure prediction data. 

 

In a representative model of MCUR1 amyloid fibrils generated from ZipperDB (Fig. 3.16), we 

can visualize the tight packing of the hydrophobic side-chains of anti-parallel sheets creating a 

zipper-like interface, excluding the water molecules from the core. 
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Figure 3.16: Structural model of β-amyloid formation in MCUR1. (A) side-view and (B) top-view cartoon 

representation of highest scoring β-fibrillation propensity hexad sequence A185-S190 in MCUR1 head domain. 

Calculations and model were generated using ZipperDB. 

 

3.2.1.8 Does MCUR1 directly interact with MCU-NTD?  

MCUR1 essentially regulates mitochondrial Ca2+ uptake upon interaction with MCU 

(Mallilankaraman et al., 2012a). Several studies mapping the binding region between both 

proteins identified MCUR1 to bind to the N-terminal domain of MCU (Lee et al., 2015; Tomar 

et al., 2016). However, there was discrepancy among the previous studies with regard to the 

MCUR1 domain(s) involved in this interaction. As we had much better knowledge of domain 

boundaries now, we addressed the question to identify the domain(s) of MCUR1 which 

mediates its binding to MCU (Fig. 3.17) (work done together with Dr. Birte Hernandez). We 

first identified the potential region involved with an immunoprecipitation experiment and later 

confirmed the same with an in vitro binding test using MST. 

 

 

Figure 3.17: MCU complex representation. Components of the mitochondrial calcium uniporter (MCU) and the 

permeability transition pore (MPTP) complexes are shown with their submitochondrial localization and 

orientation. We aim to investigate the proposed interaction between the N-terminal domain of MCU with 

MCUR1, and MCUR1 with Cyclophilin D.  
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Co-immunoprecipitation of MCU with MCUR1 

Considering the domain organization based on the structure of MCUR1, we designed variants 

with substitution and/or deletion of single/multiple domains including the N-terminal 

disordered region, the head, the β-layer neck and the stalk (Fig.  3.18A). 

 

FLAG-tagged MCUR1 variants were co-expressed with full-length HA-tagged MCU in 

HEK293 cells, co-immunoprecipitated using anti-FLAG magnetic beads and subsequently 

analyzed on a western blot (Fig. 3.18B). As expected, full-length MCUR1 was able to pull-

down MCU. Deletion of six residues “MVTKMQ” (residues 207-212) involved in the β-layer 

formation (MCUR1-Δβ) displayed no significant effect on the binding of MCUR1 to MCU. 

This indicates dispensability of the β-layer neck for interaction with the uniporter. Similarly, 

for MCUR1-GCN4pII, where 91 residues of the stalk (residues 231-321) were replaced by 

thirteen heptads derived from the sequence of trimeric GCN4pII variant (Harbury et al., 1993), 

no significant reduction in MCU binding was observed. However, deletion of almost the entire 

coiled-coil stalk (MCUR1-Δstalk, corresponding to residues 224-321) not only decreased the 

protein stability as seen from lower expression levels, but also clearly reduced MCU binding. 

We can safely conclude here that MCUR1 stalk length and stability, and not the primary coiled-

coil sequence, are critical for interaction. 

 

MCUR1-ΔDR lacking the disordered region (residues 43-159) was also expressed at low 

levels, but co-precipitated equivalent amounts of MCU. In contrast, MCUR1-ΔDR-Head, 

lacking the disordered region together with the conserved head domain, shows complete 

abrogation of binding to MCU, inferring that the head domain together with the preceding 

disordered region is necessary for binding of MCUR1 to MCU. A former study reported that 

CCDC90B could also be immunoprecipitated with MCU, but unlike MCUR1, it does not 

modulate the activity of the uniporter (Tomar et al., 2016). To identify if any difference exists 

in the binding of the head region of MCUR1 and CCDC90B to MCU, we substituted the 

conserved head in full-length MCUR1 construct with the corresponding region from 

paralogous CCDC90B. MCUR1-90Bhead also binds to MCU but with a lower affinity than 

full-length MCUR1. 
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Figure 3.18: MCUR1 head domain directly interacts with N-terminal domain of MCU. (A) Schematic 

representation of MCUR1 constructs used for pull-down assay. (B) Co-immunoprecipitation (Co-IP) of MCU-HA 

with MCUR1-FLAG variants using anti-FLAG antibody. Input and IP samples were analyzed by western blotting 

using anti-FLAG and anti-HA antibodies. 

 

In vitro binding assay using MST 

Based on our finding that the head domains of both paralogs mediate binding to MCU, the 

binding affinities of MCUR1 and CCDC90B heads were estimated in vitro using MST. 

MCUR1 has been identified to interact with the N-terminal soluble domain of MCU. Therefore, 

for the in vitro binding study, I expressed MCU75-233 (residues 75-233) comprising the N-

terminal domain of MCU including the succeeding CC1 coiled-coil domain (Fig. 3.19A). 

MCU75-233 was expressed in inclusion bodies, so the protein was purified under denaturing 

conditions and refolded as described previously, in buffer containing 20 mM Tris (pH 8.8), 150 

mM NaCl, 1 mM DTT (Lee et al., 2016). The purified protein was well-folded and displayed 

an α-helix/β-strand mix spectrum in far-UV CD spectroscopic analysis (Fig. 3.19C). From 
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SDS-PAGE, we observed that MCU75-233 exists as a ladder of monomer and stable higher-order 

oligomers, present in an equilibrium state (Fig. 3.19B). It shifts towards forming higher order 

oligomers upon incubation with [Ca2+] ≥ 0.5mM as visualized on BN-PAGE (Fig. 3.19D). This 

was rather surprising as Ca2+ was shown to destabilize the N-terminal domain of MCU and to 

promote its disassembly previously (Lee et al., 2016). However, it must be noted that the 

construct used in this study additionally includes CC1, implicating this domain to mediate 

Ca2+-dependent oligomerization. 

 

 

 

Figure 3.19: Oligomer formation of MCU75-233. (A) Domain organization of human MCU (NP_612366.1) 

comprising of a mitochondrial target signal (MTS), an N-terminal soluble matrix domain (NTD), two 

transmembrane helices (TM1 and TM2), and two coiled-coil domains (CC1 and CC2). As indicated, MCU75-233 

includes residues 75-192 of the NTD succeeded by the CC1 domain. (B) SDS-PAGE analysis of MCU75-233, which 

was purified under denaturing conditions and refolded. The protein forms a protein ladder of stable oligomers 

representing monomers, dimers, trimers, tetramers etc. according to their molecular weight in the gel. (C) Far-

UV CD spectrum of MCU75-233 measured at 20˚C. (D) Blue-native PAGE analysis of oligomer and aggregate 

formation of MCU75-233 in dependence of increasing concentrations of CaCl2. Aggregation was observed to start 

at concentrations of > 3 mM CaCl2. 

 

In MST experiments, fluorescence-labelled MCU75-233 was titrated against MCUR1160-230 and 

CCDC90B43-125. The dissociation constants of MCU binding to the head domains of MCUR1 

and CCDC90B were estimated to be 12.71 ± 3.51 μM and 58.70 ± 1.58 μM respectively (Fig. 

3.20A), which corroborates our pull-down result showing that MCUR1 binds with a 

comparatively higher affinity to MCU. Addition of 0.1 mM CaCl2 decreased the Kd of MCUR1 

binding to 7.49 ± 1.59 μM which did not change appreciably at 1 mM CaCl2 (7.76 ± 1.55 μM) 
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(Fig. 3.20B). At higher [Ca2+], both MCUR1 and MCU purified proteins are prone to higher 

order oligomer formation and subsequent aggregation as seen from MST and SDS-PAGE, 

therefore measurements were unfeasible. 

 

 

Figure 3.20: In vitro MCU binding to MCUR1 and CCDC90B. (A) MST measurement for MCUR1160-230 (blue) and 

CCDC90B43-125 (red) binding to fluorescence-labelled MCU75-233. (B) MST experiment analyzing the effect of Ca2+ 

on MCUR1160-230 binding to MCU75-233. Titration curves for absence (blue) and presence of 0.1 mM (dark green) 

and 1 mM (light green) CaCl2 are shown with calculated dissociation constants. In (A) and (B) Data points are 

mean of three measurements. 

 

3.2.1.9 Subcellular localization of human MCUR1 and CCDC90B 

Human mempromCC paralogs are nuclear-encoded and contain a predicted N-terminal 

mitochondrial target signal (MTS), therefore, the proteins are transported from the cytosol to 

mitochondria. Most transmembrane prediction programs (TMHMM, Phobius, HMMTOP) 

detect only one C-terminal TM region. However, a study in 2012 by Madesh and colleagues 

(Mallilankaraman et al., 2012a) claimed the presence of a second TM in the low complexity 
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disordered region close to the N-terminus of the MTS processed MCUR1. Analyzing the 

membrane insertion of full-length MCUR1 by performing a proteinase-K treatment of the 

mitoplasts, they identified a 6 kDa fragment which likely corresponds to residues at the N-

terminus protruding on the IMS side. To confirm the presence of a second N-terminal TM 

helix, I decided to localize full-length MCUR1 and a C-terminal TM helix truncation variant 

MCUR1ΔTM (residues 1 - 331) (Fig. 3.21). 

 

Mitochondria were isolated from HEK293 cells transfected with C-terminal FLAG-tagged 

MCUR1 full-length or MCUR1ΔTM and sub-fractionated into OMM, IMM and matrix 

components. In agreement with previous findings (Mallilankaraman et al., 2012a), we 

confirmed that full-length MCUR1 together with its processed fractions localized exclusively 

to IMM. Surprisingly, the C-terminal truncation variant MCUR1ΔTM still partly localized to 

the IMM. Although from this result, it cannot be yet concluded if MCUR1 indeed features a 

second TM helix closer to the N-terminus, the obtained results are in contrast to our assumption 

that MCUR1 is anchored to the IMM exclusively by its C-terminal TM helix.  

 

 

Figure 3.21: Subcellular localization of human MCUR1 and CCDC90B. HEK293 cells overexpressing MCUR1-

FLAG, CCDC90B-V5 (‘fl’ indicates full-length proteins) and their C-terminal truncation variants MCUR1ΔTM-FLAG 

and CCDC90BΔTM-FLAG were subfractionated into cytoplasm, total mitochondria, OMM (outer mitochondrial 

membrane), IMM (inner mitochondrial membrane) and matrix components, and analyzed by Western blot using 

anti-FLAG (1:2000) or anti-V5 (1:1000) antibodies. 
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As a control, we decided to test CCDC90B in the same experimental setup. From sequence 

analysis, we know that CCDC90B harbors only one C-terminal TM helix and lacks the putative 

disordered region. Similar to MCUR1, we transfected C-terminally V5-tagged full-length 

CCDC90B and FLAG-tagged CCDC90BΔTM (residues 1-227) in HEK293 cells, isolated 

mitochondria followed by sub-fractionation. A completely different localization pattern for 

full-length CCDC90B was seen compared to MCUR1 (Fig. 3.21). MTS-processed CCDC90B 

was present in two different pools – one in cytosol and the other localized to IMM (V5 tag was 

cleaved off during fractionation but is seen in IMM fraction); CCDC90BΔTM was not 

expressed. Future experiments are necessary to analyze the observed differences in the 

expression pattern of both paralogs in more detail. 

 

3.2.1.10 MCUR1 is proteolytically processed in human mitochondria 

Analyzing our co-immunoprecipitation and cellular localization results, we observed 

proteolytically cleaved fractions of MCUR1 identical to previous reports (Chaudhuri et al., 

2016; Tomar et al., 2016). To narrow down the region underlying proteolytic cleavage, we 

expressed MCUR1-FLAG in HEK293 cells and precipitated three prominent protein fragments 

using anti-FLAG antibody which were separated by SDS-PAGE and digested with trypsin (Fig. 

3.22). Analysis of the tryptic peptides by mass spectrometry identified the two larger bands 

with an apparent molecular weight of 41 kDa and 37 kDa respectively as full-length MCUR1 

with uncleaved and cleaved mitochondrial targeting signal peptide. For the smallest, most 

prominent band at around 25 kDa, no peptides corresponding to the N-terminal 140 residues 

of MCUR1 were found, suggesting proteolytic processing of a major part of the disordered 

region.  

 

Is this proteolysis mediated by Cyclophilin D? 

Cyclophilin D (CypD), or peptidyl-prolyl cis-trans isomerase F (PPIF), is an essential 

component of the mitochondrial permeability transition pore complex (see section 3.1.2.3) 

(Schinzel et al., 2005). In a previous report, full-length human MCUR1 was shown to 

immunoprecipitate matrix-localized CypD in addition to MCU, implicating that MCUR1 could 

act as bridging unit between MCU and MPTP complexes by sensing local Ca2+ elevations 

(Chaudhuri et al., 2016).  
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Figure 3.22: Mass spectrometric analysis of MCUR1 fragments. (A) Lysate of HEK293 cells, transiently 

transfected with wild-type MCUR1-FLAG, was subjected to immunoprecipitation using anti-FLAG antibody. A 

small sample was analyzed by western blotting using anti-FLAG antibody. The remaining sample was separated 

by SDS PAGE and stained with Coomassie Brilliant Blue. Comparing western blot signals and protein bands of 

the stained SDS gel, the corresponding regions containing differentially processed fragments of MCUR1-FLAG 

were cut from the gel (#1, #2 and #3) and analyzed by mass spectroscopy. (B) The table summarizes the 

sequence, residue numbers and intensity values determined by mass spectrometry for three most N-terminal 

fragments identified from each gel slice. (C) Schematic presentation of identified peptides in relation to the 

domain architecture of MCUR1. 

 

 

By catalyzing the cis-trans isomerization of proline imidic peptide bonds, PPIases accelerate 

protein folding, assist in proteolysis and post-translational modifications. Therefore, we 

suspected that one possible function of CypD could be to assist MCUR1 N-terminal cleavage, 

by allowing accessibility for a proteolytic attack. Structural insights into CypD reveal the 

presence of two conserved pockets which contribute to substrate selectivity and enzymatic 

catalysis (Davis et al., 2010). S1, the proline interaction pocket, acts as the docking surface for 

target proline, and S2, a deep scaffold binding pocket where disparate sidechain residues can 

bind, accommodates the successive residue (Fig. 3.23). Human MCUR1 disordered region 

(residues 42-159) contains 12 prolines. So, we designed 12 MCUR1 variants with single 

prolines mutated to alanine residues, and checked their expression profiles (Fig 3.24A; all data 

not shown) (Dr. Birte Hernandez and Dr. Claire Bedez, personal communication). Initial 
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expression tests identified mutant MCUR1-P85A to undergo incomplete proteolysis, showing 

that a large fraction still retained the complete disordered N-terminal region in comparison to 

other mutants. Sequence alignment of mammalian MCUR1 orthologs shows Pro85 to be 

conserved among species, further pointing to a possible significance of CypD in proteolytic 

regulation. 

 

 

Figure 3.23: Structure and mechanism of action of cyclophilin D. (A) Cyclophilin D, or peptidyl-prolyl cis-trans 

isomerase F (PPIF), catalyzes the isomerization of proline peptide bonds. (B) Structure of human cyclophilin D 

bound to its inhibitor molecule Cyclosporin A. (C) The macrocyclic ring of Cyclosporin A mimics the placement 

of substrate molecule in cyclophilin D active site cavity. S1 pocket binds target proline and S2, a considerably 

broad pocket binds to the next residue. A small hydrophobic residue (as Ala) is preferred preceding proline, but 

successive residue shows no specificity. 

 

Does MCUR1 head domain bind to Cyclophilin D? 

As a next step, we tested in vitro binding of MCUR1 head domain to CypD using MST. CypD 

(Δ1-43 K133I) was expressed in E. coli BL21 (DE3) cells and purified as described in 

(Valasani et al., 2014). Estimated by SEC-MALS, CypD (Δ1-43 K133I) exists as a monomer 

in solution. Alexa Fluor-647 fluorescence-labelled CypD was titrated against MCUR1160-230 

and CCDC90B43-125. Compared to MCU, CypD bound weakly to the head domains of 

MCUR1160-230 and CCDC90B43-125 with dissociation constants of 72.94 ± 1.5 μM and 204.84 

± 1.28 μM respectively (Fig. 3.24B). This suggests that residues from the intrinsically 

disordered region of MCUR1 might also be involved in binding. This suggestion is supported 
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by the finding that only full-length MCUR1 and not the 25 kDa proteolytically cleaved 

fragment lacking the disordered residues, could be immunoprecipitated with CypD (Chaudhuri 

et al., 2016).  

 

 

Figure 3.24: MCUR1 proteolysis and binding to Cyclophilin D. (A) MCUR1-FLAG with proline mutations to 

alanine (residue number marked at top) expressed in HEK293 cells analyzed on a western blot with anti-FLAG 

antibody. (B) MST measurement for MCUR1160-230 (blue) and CCDC90B43-125 (green) binding to Cyclophilin D. Data 

points are average of three measurements. Calculated dissociation constants Kd are shown. 
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3.2.2 Prokaryotic mempromCC proteins – structural and functional studies 

As mempromCC homologs were identified only in pathogenic strains of E. coli and S. 

typhimurium and other species which we cannot culture in our laboratory, we selected 

Caulobacter crescentus for structural and functional studies. Caulobacter species cluster 

together with the metazoan homologs within the central group of the CLANS map generated 

from the head-neck segments from a heterogeneous group of membrane-anchored proteins 

sharing common domain architecture (Fig. 1). Proteobacterial mempromCC proteins share 

high sequence similarity in their head domains with their eukaryotic counterparts. They only 

differ in terms of an absent signal peptide, and the variability in sequence, length and 

periodicity of their coiled-coil stalks. Their head domains start nearly at the conserved FDT 

motif. All prokaryotic homologs are presently annotated as hypothetical proteins. As bacterial 

species lack MCU homologs, the presence of mempromCC proteins hints at other cellular 

function(s). 

 

3.2.2.1 Structural characterization of Caulobacter mempromCC homologs 

MempromCC proteins from two Caulobacter species: WP_047412812 from C. sp. OV484 

(referred as MpcC-OV484) and WP_029916579 from C. sp. UNC358MFTsu5 (referred as 

MpcC-UNC) were selected for structural characterization. Complete length of proteins 

including the head, neck(s) and stalk, and excluding the transmembrane region were fused to 

an N-terminal histidine tag and purified under native conditions from E. coli C41 (DE3) 

overexpressing cells. A major fraction of the purified proteins tended to form aggregates. While 

MpcC-OV484 did not crystallize, MpcC-UNC crystallized as thin plates which diffracted at 

best to 3.1 Å. Attempts to refine the crystals using grid-screen optimization failed to produce 

good quality crystals. Subsequently, I tried to solve the structure with NMR spectroscopy. 

MpcC-UNC was an interesting choice, as the protein featured “TATK” β-layer in hexad 

spacing, similar to those described in Chapter 2. In MpcC-UNC, TATKAD is sandwiched 

within two nonad β-layers ISGLATKAD and LANMATKAD. MpcC-UNC purified from 

isotope-labelled minimal-medium eluted as three major peaks from Superdex 75. While peak 

1 and peak 2 were high molecular weight aggregates, the minor fraction peak 3 constituted the 

properly assembled oligomer, which was confirmed from 1D 1H spectra. In preliminary 

experiments, peak 3 displayed a well-dispersed 15N-HSQC spectrum, however, the inability to 

purify sufficient amounts of well-folded protein hampered further progress. 
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Due to the difficulty in obtaining well-diffracting crystals, homology models of bacterial 

mempromCC proteins from Caulobacter species: C. crescentus NA1000 (YP_002517927) and 

C. sp. JGI 0001013-D04 (WP_018113394) (Fig. 3.25) were designed using CCDC90B43-125 

crystal structure as a template (work done by Ioanna Karamachali). The models clearly display 

the natural variability of the stalk domains in prokaryotes in terms of length and the number of 

β-layers. Showing identical head-neck segments, the stalk of Caulobacter sp. JGI 0001013-

D04, which contains eight successive β-layer necks, is with a length approximately 10 nm 

longer than the Caulobacter crescentus NA1000 protein. 

 

3.2.2.2 Structural characterization of archaeal Kcr-0859 showing mempromCC-related 

domain architecture 

We further investigated the molecular structure of proteins from peripheral prokaryotic clusters 

that share the helical domain architecture, but not sequence homology with members of the 

mempromCC family. The crystal structure of Kcr-0859 (WP_012309502), a crenarchaeal 

protein of unknown function from Candidatus Korarchaeum cryptofilum was solved (Dr. Birte 

Hernandez, Dr. Marcus Hartmann, personal communcation). Kcr-0859-ΔTM (residues 1-136) 

lacking the C-terminal membrane anchor was recombinantly expressed in E. coli C41 strain in 

M9 minimal media supplemented with selenomethionine (SeMet). Crystals were obtained 

under three conditions and the structure was solved at a resolution of 2.5Å via SAD phasing. 

 

In agreement with our expectation, the Kcr-0859ΔTM structure shows an elongated parallel 

trimer comprising of a helical head domain, which is connected via a β-layer neck to a coiled-

coil stalk (Fig. 3.25A). Each monomer of the head bundle consists of three short helices (α1, 

α2, α3), which are connected by short turns and arranged perpendicular to each other. Within 

the trimer, helices are packed in parallel with helix α2 of each monomer accommodated 

between α1’ and α3’’ of the other chains. The central axis of the head domain is kinked by 40 

degrees relative to the coiled-coil axis of the adjacent stalk. This kinked arrangement is likely 

a result of crystal packing constraints, but is also indicative of a certain degree of flexibility of 

the neck region, as reported for β-layer-mediated transitions in DALL domains of TAAs 

(Hartmann et al., 2012; Koiwai et al., 2016). Formed by the first three residues of the motif 

MATKED, the β-layer directly succeeds the α3 helices and forms the characteristic inter-chain 

hydrogen bonds between the central alanine residues. 
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Following the neck, the structure shows 76 residues of the 96-residue cytosolic part of the 

coiled-coil stalk. This whole region does not possess noticeable supercoiling over large extents, 

as anticipated from its annotation, which indicated an overall sequence periodicity of 3.64 

residues per turn, only marginally different from 3.63 r/t expected for an undistorted α-helix. 

Towards its C-terminal end, the stalk contains two YxD motifs, both of which are resolved in 

the structure. These polar motifs are commonly found in right-handed coiled coils, where they 

convey structural specificity and stability by forming inter-chain hydrogen bonds between the 

hydroxyl groups of the tyrosines and the carboxyl groups of the aspartates (Alvarez et al., 

2010). 

 

Figure 3.25: Structure of prokaryotic mempromCC homologs. (A) Homology models of Caulobacter crescentus 

NA1000, Caulobacter sp. JGI 00010113-D04, and crystal structure of Kcr-0859: head domain (green), β-layer neck 

(red) and stalk (blue). Approximate length is calculated. (B) Comparison of head domains of human CCDC90B 

and K. cryptofilum Kcr-0859. One chain is colored in green, other two chains are in grey. Helices (α1, α2 and α3) 

are marked for one chain. (C) Amino acid sequence of Kcr-0859. Residues are colored according to their domain 

affiliation. Polar YxD motifs are underlined. 
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3.2.2.3 Subcellular localization and orientation of mempromCC in bacteria 

 

MempromCC localizes to the cytoplasmic membrane in bacteria with an N-in C-out topology 

Secondary structure prediction of mempromCC proteins in bacteria predicts one 

transmembrane (TM) domain at the C-terminus but no signal sequence at the N-terminus for 

export across lipid bilayer indicating that mempromCC proteins very likely anchor to the inner 

cell membrane. We experimentally analyzed the cellular localization of mempromCC homolog 

CCNA_02554 (YP_002517927) from C. crescentus NA1000, thereafter referred to as MpcC, 

using electron microscopy and subcellular fractionation.  

 

To determine the intracellular localization by EM, we designed an N-terminal HA-MpcC 

fusion construct in a xylose-inducible high-copy plasmid pBXMCS4 and utilized the leaky 

expression to ensure that low amounts of the fusion protein are expressed in the cells. Cryo-

sections of HA-MpcC expressing Caulobacter cells were stained with polyclonal anti-HA 

antibody, followed by immunogold labelled secondary antibody and analyzed by transmission 

electron microscopy (work done by Dr. Juthaporn Sangwallek). We observed an accumulation 

of electron-dense particles in close proximity to the inner side of cytoplasmic membrane (Fig. 

3.26A), supporting our assumption that mempromCC protein is C-terminally anchored to the 

bacterial cytoplasmic membrane projecting the HA-tagged head into cytoplasm. 

 

This result was confirmed by subcellular fractionation of Caulobacter cells expressing wild-

type MpcC into membrane and soluble parts. The inner and outer membranes were separated 

using selective detergent solubilization (using 2% Triton X-100) of the IM. The resulting 

fractions were probed by Western blotting with antisera for MpcC, inner membrane protein 

TimA, and outer membrane protein CpaC.  The control proteins TimA and CpaC are most 

abundant in the expected fractions. We clearly observe that mempromCC is enriched in the 

inner membrane fraction (Fig. 3.26B).  

 

I then investigated the membrane topology of mempromCC using Proteinase K treatment. 

MpcC was fused to an N-terminal HA and C-terminal 3x-FLAG tag in a high-copy plasmid 

pBXMCS4. Cells were treated with lysozyme shortly to disrupt outer cell membrane and 

incubated with Proteinase K for 30 min at room temperature followed by subcellular 

fractionation. Fractionated spheroblasts were analyzed by western blotting using anti-HA and 
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anti-FLAG antibodies (Fig. 3.26C). In control sample, full-length HA-MpcC-FLAG3 and a 

proteolytic fragment (~1 kDa smaller, equivalent to one FLAG epitope) are detected by both 

antibodies, implying an intact N-terminus but apparent degradation at the C-terminus. For 

Proteinase K treated samples, I observed an additional band detected by anti-HA, but not with 

anti-FLAG antibody.  

 

  

Figure 3.26: Subcellular localization of prokaryotic mempromCC homologs. (A) TEM micrograph showing MpcC 

localization in Caulobacter cells. (B) Subcellular fractionation of C. crescentus NA1000 cells expressing HA-MpcC. 

Whole cell lysate (lysate), outer membrane (OM), inner membrane (IM) and cytosol fractions were analyzed on 

western blot against anti-MpcC, anti-CpaC (OM control) and anti-TimA (IM control) antisera. (C) Proteinase-K 

treatment of C. crescentus NA1000 cells expressing HA-MpcC-FLAG3. Fractionation samples were analyzed on 

western blot using anti-HA and anti-FLAG antibodies. 
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This fragment of the smallest size has all three C-terminal FLAG-epitopes cleaved by Proteinase 

K. The incomplete digestion, as observed for other proteolytic fragments, can be explained to 

be a result of close proximity of (FLAG)3-tag to the membrane surface preventing accessibility 

to the protease. Thus, both EM and subcellular fractionation methods confirm that mempromCC 

proteins in bacteria are localized to the cytoplasmic membrane with the coiled-coil stalk 

projecting the head in the cytoplasm. 

 

3.2.2.4 Functional characterization of mempromCC proteins in C. crescentus NA1000 

 

Pull-down to identify interaction partners 

To identify MpcC (CCNA_02554) binding partners in C. crescentus NA1000, I performed a 

pull-down experiment using soluble MpcC variants as bait. Two different constructs – MpcC1-

85 (residues 1-85) and MpcC1-60 (residues 1-60) – with different coiled-coil stalk lengths and 

lacking the transmembrane anchor were fused to 3x-FLAG at the C-terminus (Fig. 3.27A). 

GCN4-pII-(FLAG)3 was used as the negative control. All constructs were recombinantly 

expressed in E. coli BL21 (DE3), purified from supernatant and used at a concentration of 1.5 

mg/ml in the pull-down experiment. Bait proteins attached to the anti-FLAG M2 magnetic 

beads (Sigma) fished out the interacting partners from the Caulobacter crescentus NA1000 

lysate. The collected eluates were dimethyl labelled for comparative proteomic analysis, 

digested with trypsin and subjected to mass-spectrometric analysis.  

 

From the statistically significant set of bound peptides identified in pairwise sample 

comparison of MpcC1-85, MpcC1-60 and control group, only FtsZ (a protein involved in cell 

division) was identified to be significantly enriched (Fig.  3.27B). A previous study identified 

FtsZ to be a substrate of ClpA protease (Williams et al., 2014), which is located just upstream 

of the MpcC gene. To confirm the interaction between full-length MpcC1-85 and FtsZ, I 

conducted a co-immunoprecipitation experiment using – (i) C. crescentus co-expressing 

MpcC1-85-FLAG on pBXMCS4 and genomic integrated mCherry-FtsZ or (ii) using soluble 

full-length MpcC1-85-FLAG bound to magnetic beads and incubated with lysate of cells 

expressing genomic integrated mCherry-FtsZ. The eluted samples were analyzed by western 

blot using anti-FLAG and anti-mCherry antibodies (Fig. 3.27C). In both cases, mempromCC 

MpcC1-85 failed to immunoprecipitate FtsZ. 
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Figure 3.27: Pull-down to identify MpcC interacting partners. (A) Designed constructs C-terminal FLAG-tagged 

MpcC1-85 and MpcC1-60, without C-terminal membrane domain, were purified as soluble proteins. GCN4-pII was 

used as the control protein. (B) Abundance of MS identified proteins compared in MpcC1-85 and control sample. 

FtsZ (pink dot) was the only significant hit. Proteins with statistical significance (p < 0.05) have been marked as 

red dots. (C) Co-immunoprecipitation study of MpcC-FLAG and mCherry-FtsZ. 

 

 

Parallel studies to identify proteins interacting with mempromCC in C. crescentus NA1000 

using bacterial-2-hybrid system also failed to establish definite binding partners (Dr. Juthaporn 

Sangwallek, personal communication). First data from ongoing work studying a mempromCC 

deletion mutant at the transcriptomic and proteomic level are more promising to reveal the 

function of these proteins in prokaryotic systems.  
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3.3 CONTRIBUTIONS TO THIS WORK 

All bioinformatics work including identification of mempromCC proteins, phylogenetic 

analysis using CLANS and multiple sequence alignment was carried out by Prof. Andrei Lupas 

and Ioanna Karamichali. Proteins used for experimental study were selected by Prof. Andrei 

Lupas. 

 

Human MempromCC project 

 Molecular cloning of human CCDC90B43-125-GCN4, MCUR1160-230 and MCU75-233, followed 

by protein expression, protein purification (under native or denaturing conditions) and 

biophysical characterization (SEC-MALS, CD spectroscopy and thermal melting 

experiments) was carried out by me.  

 Crystallization screens were set-up by Dr. Reinhard Albrecht and Kerstin Bär. Crystal 

structure of CCDC90B43-125-GCN4 was solved by Dr. Marcus Hartmann. I manually refined 

the structure using COOT.  

 I designed the MCUR1 full-length homology model with the program MODELLER using 

the crystal structure of CCDC90B. NMR isotope-labelled sample was prepared by me; spectra 

measurements and residue assignments were done by Dr. Murray Coles. 

 I studied the effect of Ca2+/Mg2+ on CCDC90B and MCUR1 using SEC-MALS, CD 

spectroscopy and microscale thermophoresis (including preparing fluorescent-labelled 

samples, in vitro binding studies and analysis), and prepared the amyloid fibril samples for 

electron microscopy imaging. EM was done by Dr. Katharina Hipp.  

 For pull-down studies of MCU with MCUR1, I contributed to the construct designs. Cloning 

and pull-down experiments were carried out by Kerstin Bär, Silvia Deiss and Dr. Birte 

Hernandez. In vitro binding study for MCU and MCUR1/CCDC90B using MST was done 

by me.  

 I carried out the pull-down for MCUR1-FLAG expressed in HEK293 cells for MS analysis 

of proteolysis products. 

 For cellular localization of human MCUR1 and CCDC90B, Dr. Birte Hernandez transfected 

and cultured HEK293 cells. I performed the mitochondrial isolation and subfractionation, 

followed by Western blot analysis for all constructs. 

 CyclophilinD was expressed and purified by Kerstin Bär. Using this, I performed MST 

experiments to study binding of CypD with MCUR1/CCDC90B. 7 out of 12 MCUR1 proline 

mutants (PA) were cloned by Kerstin. I analyzed their cellular expression by western blot. 
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Bacterial MempromCC project 

 Molecular cloning, protein expression and purification for two Caulobacter proteins MpcC-

UNC and MpcC-OV484 were carried out by me. NMR spectroscopy measurements were 

done by Dr. Murray Coles and Manish Chaubey. 

 The homology models of Caulobacter proteins were designed by Ioanna Karamichali. The 

structural characterization of archaeal mempromCC protein was carried out by Dr. Birte 

Hernandez and Dr. Marcus Hartmann. 

 I carried out the cellular localization and Proteinase K topology experiments for Caulobacter 

MpcC. EM sample was prepared by Dr. Juthaporn Sangwallek. 

 I performed the pull-down experiments using soluble and plasmid-expressed mempromCC 

proteins to identify their interaction partners in Caulobacter crescentus NA1000 by MS and 

western blot. 
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3.4 DISCUSSION 

 

3.4.1 MempromCC are obligate trimers with a head-neck-stalk-anchor architecture 

The mempromCC family contains mostly uncharacterized homologous coiled-coil containing 

membrane proteins conserved in prokaryotes and eukaryotic mitochondria. All mempromCC 

homologs are predominantly helical and comprise of an N-terminal head domain projected by 

a C-terminal membrane-anchored coiled-coil stalk. The head domains are evolutionary 

conserved in sequence and structure, posing the unique features of mempromCC family and 

clearly demarcating it from other families. The head-stalk transition is invariably mediated by 

one or more β-layer necks. The stalk domains of prokaryotic mempromCC homologs are more 

diverse in sequence and length than their eukaryotic counterparts. Structural models of 

Caulobacter proteins give a clear impression of the diversity of prokaryotic stalk domains in 

terms of length and number of -layer necks. 

 

3.4.2 Eukaryotic mempromCC proteins localize to IMM and prokaryotic homologs to the 

cytoplasmic membrane, with an N-in C-out topology 

Majority of the eukaryotic homologs contain a predicted mitochondrial target sequence. From 

the submitochondrial fractionation technique, I confirmed the inner mitochondrial membrane 

localization of human MCUR1, in agreement with previous reports (Mallilankaraman et al., 

2012a; Paupe et al., 2015; Chaudhuri et al., 2016). While MCUR1 is exclusively localized to 

IMM, results show that CCDC90B localizes partly to both cytoplasm and IMM. Previous 

electrophysiology experiments have shown that only MCUR1 is involved in the regulation of 

Ca2+ uptake through MCU. Overexpression of MCUR1 increases the Ca2+ current through the 

uniporter channel, whereas CCDC90B overexpression or knockdown does not modulate this 

influx. Although its function remains presently unknown, mitochondrial CCDC90B has been 

shown to exist in a complex with MCU and MCUR1. The second fraction of CCDC90B which 

localizes to cytoplasm, may have a completely different function from cellular calcium uptake. 

It could be the evolutionary conserved function of the mempromCC family, shared with 

bacterial and yeast species which do not possess MCU homologs. 

 

In addition to the conserved C-terminal transmembrane helix, a 2012 study (Mallilankaraman 

et al., 2012a) claimed the presence of a second TM in the low complexity disordered region of 

MCUR1 close to the N-terminus. To verify this, I tested the cellular localization of its C-
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terminal truncation variant MCUR1ΔTM and found that it localizes partly to IMM. Possible 

reasons may include that it strongly tethers to an interaction partner in the IMM and therefore 

evades the high pH carbonate extraction into the soluble matrix component. Therefore, future 

experiments are warranted to confirm the presence of a second N-terminal TM. A major 

fraction of MCUR1ΔTM, however, was observed to be present in cytosol. This could arise 

from the translocation problem of truncation variant across mitochondrial membrane. Closer 

observation also showed that MCUR1ΔTM was more susceptible to proteolysis compared to 

the full-length MCUR1. 

 

Prokaryotic mempromCC proteins lack any signal peptide preceding their head domains. From 

electron microscopy and subcellular fractionation experiments in Caulobacter crescentus 

NA1000, I confirmed that prokaryotic homologs are anchored to the cytoplasmic membrane 

via their C-terminal transmembrane helices with an N-in C-out topology, i.e. they project their 

heads into the cytoplasm. 

 

3.4.3 Eukaryotic mempromCC proteins have diverse N-terminal disordered extensions 

Whereas prokaryotes encode only one mempromCC homolog per organism, most eukaryotes 

express at least two paralogous proteins which primarily differ in their N-terminal sequence 

extensions preceding the conserved head domain. Human MCUR1, in contrast to CCDC90B, 

contains an additional 100 residues. Highly variable in sequence and length, these extensions 

are predicted to be natively disordered, which are not necessarily “unstructured”, i.e. devoid of 

any secondary structural features. Computational algorithms such as PONDR VL-XT and 

ANCHOR identified short segments, known as Molecular Recognition Features (MoRFs), 

within these disordered regions (Dosztanyi et al., 2009; van der Lee et al., 2014). These 

segments act as nucleation sites for folding as they display a high propensity to undergo 

disorder-to-order transition in response to environmental changes such as binding to an 

interaction partner or post-translational modifications. This diversity in N-terminal extensions 

among eukaryotic paralogous proteins may point to differences in their cellular functions. 

 

3.4.4 Structure of the conserved head domain of human CCDC90B and MCUR1 

The head domain of CCDC90B belongs to the biggest subgroup comprising more than two-

thirds of the head sequences identified in this study, including all from eukaryotes and many 

from proteobacteria. Crystal structure shows that the protein forms a parallel homotrimer. Its 
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head domain is formed of a six-helical antiparallel bundle that connects to the coiled-coil stalk 

via a β-layer neck. This six helix bundle is assembled by the 1-helices packing against the 

trimeric bundle formed by the 2-helices of the each chain. As the two paralogs share high 

sequence similarity, I reconstructed a full-length homology model for the conserved head-

neck-stalk domains of MCUR1 using CCDC90B crystal structure as the template. The 

intrinsically disordered region of MCUR1 can be envisaged as a highly flexible unstructured 

N-terminal extension. The coiled-coil stalk of MCUR1 acts as a molecular spacer in IMM and 

projects the head domain at a distance of 23 nm into the matrix. 

 

3.4.5 MCUR1 head domain is destabilized by Ca2+ binding which accelerates its conversion 

to β-amyloid fibrils 

Despite their structural similarity, head domains of MCUR1 and CCDC90B clearly differ in 

their surface charge distribution and biophysical properties. Binding of Ca2+ or Mg2+ to 

MCUR1 head domain significantly impaired its thermal stability. Interestingly, the thermal 

unfolding process of MCUR1, and not CCDC90B, was accompanied by the formation of -

amyloid fibrils. The destabilization caused by the addition of Ca2+ further accelerated the 

fibrillar formation. A similar effect of Ca2+ on β-fibril formation has been previously reported 

for amyloid β-peptide (Aβ) and α-synuclein involved in the toxic plaque formation in 

Alzheimer’s disease and Parkinson’s disease respectively (Isaacs et al., 2006; Han et al., 2018). 

Clearly, the slight difference in the sequences of human MCUR1 and CCDC90B dictates the 

inability of the latter to form amyloid fibers. Comparative sequence analysis with multiple 

computational tools such as Amylpred2, TANGO, and ZipperDB identified a common 

amyloidogenic hotspot in the conserved head region of MCUR1 (residues 184-196 

corresponding to α2-helix in the structure) which is slightly mutated in CCDC90B. 

 

While the pathophysiological relevance of human MCUR1 amyloid formation is not known at 

present, multiple studies have shown that mitochondria exposed to amyloid fibrils exhibit 

calcium dysregulation. Small protein aggregates formed at the earlier stages constitute the toxic 

form of amyloids. These aggregates have the ability to integrate into the lipid bilayer and form 

ion channels. Indiscriminate leakage of ions across these channels in the inner mitochondrial 

membrane disrupts the calcium homeostasis, which ultimately signals the opening of the 

permeability transition pore and cellular death.  
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In vitro studies show that MCUR1 head can bind to Ca2+ in the upper micromolar range and 

with a lower affinity to Mg2+ in the single-digit millimolar range, with no effect on its 

oligomeric state. CCDC90B, on the other hand, does not show any appreciable binding to both 

divalent cations. While global free [Ca2+] in the matrix would never reach millimolar levels, 

diffusion theory predicts that [Ca2+] can reach as high as 0.1 mM at the microdomains of Ca2+ 

exit (at a distance of ~10 nm from the pore) (Tadross et al., 2013). Considering the spatial 

proximity of MCUR1 to the calcium-releasing side of the uniporter channel, a functional 

relevance of Ca2+ binding in the regulation of MCUR1 stability and activity in vivo seems 

plausible, similar to MCU. As present experiments were performed with a single domain 

separated from its natural context, it remains unclear whether Ca2+ exerts the same effects on 

MCUR1 secondary structure in the matrix. Future studies will be required to map potential 

Ca2+ binding sites on the MCUR1 head domain and to assess their significance for MCUR1 

stability and activity in vivo. 

 

3.4.6 MCUR1 head domain interacts with the N-terminal domain of MCU 

Although the prokaryotic mempromCC proteins have not been functionally characterized so 

far, studies on human paralogs MCUR1 and CCDC90B have identified their essential role in 

various cellular processes. Human MCUR1 functions as a scaffold factor required for the 

proper assembly of multi-protein complexes in the inner mitochondrial membrane, including 

the mitochondrial calcium uniporter (MCU) and the cytochrome c oxidase (COX) complexes 

(Mallilankaraman et al., 2012a; Paupe et al., 2015; Tomar et al., 2016). As a component of 

MCU complex, the function of MCUR1 has been extensively studied. Paralogs MCUR1 and 

CCDC90B interact with each other, and also with essential components of the MCU channel 

complex, including the Ca2+-selective channel subunit MCU and the regulatory single-pass 

transmembrane protein EMRE. Although interacting with the same proteins, paralogs differ in 

their biological activities: only MCUR1, but not CCDC90B, was shown to be essential for 

active MCU complex formation and cellular Ca2+ uptake (Chaudhuri et al., 2016; Mallilan-

karaman et al., 2012; Tomar et al., 2016). 

 

Based on these studies, we used MCUR1 as a model to examine the functional significance of 

the individual domains of mempromCC homologs. Previous attempts to map the region of 

MCUR1 interacting with MCU were performed with constructs designed on the basis of 

secondary structure prediction. Furthermore, there was discrepancy among the identified 
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regions ranging from the conserved head domain to the coiled-coil stalk (Tomar et al., 2016; 

Chaudhuri et al., 2016). With a better understanding of the domain boundaries now, we identify 

here that the conserved head domain is indispensable for mediating MCU-MCUR1 interaction. 

Previous studies reported that MCU could immunoprecipitate both MCUR1 and CCDC90B 

(Tomar et al., 2016; Chaudhuri et al., 2016). We showed here that the head domains of both 

paralogs are interchangeable for MCU binding in pull-down experiments. In vitro binding 

experiments confirmed that MCU directly interacts via its N-terminal domain with the head 

domains of MCUR1 and CCDC90B, with a five-fold higher affinity for MCUR1. This 

observation together with the finding that CCDC90B, in contrast to MCUR1, does not 

modulate mitochondrial Ca2+ uptake (Tomar et al., 2016) supports our assumption that both 

paralogs fulfill different cellular functions. It is likely that the N-terminal disordered region 

present only in MCUR1 plays a critical role. Importance of this disordered region at present 

remains unclear from our experiments as a variant lacking this segment is strongly impaired in 

stability. The stalk domain which can be simply replaced by a non-related coiled-coil of similar 

length serves essentially as a projector of the head. Complete deletion of the stalk strongly 

reduces binding to MCU, suggesting the stalk length to be a critical factor in facilitating the 

interaction by bridging defined distances. Addition of Ca2+ did not appreciably affect the MCU-

MCUR1 interaction. 

 

3.4.7 MCUR1 is proteolytically processed in human mitochondria 

In agreement with previous studies (Tomar et al., 2016; Chaudhuri et al., 2016), we observed 

two processed forms of MCUR1 – a full-length variant with cleaved mitochondrial target signal 

and a second smaller fragment where a major part of the disordered residues are missing. As 

the two processed elements retain the conserved head domain, it explains the observation that 

both of these forms can interact with MCU (Tomar et al., 2016). However, so far it is unclear 

if they are functionally equivalent or possess different biological activities. It is conceivable 

that MCUR1 activity is proteolytically regulated, similar to other known proteins such as 

dynamin-like GTPase OPA1, a key regulator of mitochondrial dynamics, and the Parkinson 

disease related Ser/Thr kinase PINK1 (Ali and McStay, 2018; Greene et al., 2012; MacVicar 

and Langer, 2016). Moreover, a recent study showed that mAAA proteases AFG3L2 and SPG7 

strictly regulate the level of non-assembled EMRE for the proper assembly of MCU complex 

(Tsai et al., 2017). This supports the idea that MCU complex assembly and activation are likely 

proteolytically regulated. 
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MCUR1 was also shown to interact with Cyclophilin D (CypD), an essential component of the 

permeability transition pore complex. As CypD is known to assist proteolytic activities by the 

cis-trans isomerization of proline peptide bonds, we probed its involvement in MCUR1 N-

terminal cleavage. Initial expression tests of MCUR1 single-proline mutants identified a 

conserved proline (Pro85) mutant to be resistant to complete proteolysis, which clearly 

highlights the possible function of CypD in MCUR1 proteolytic regulation. Further in vitro 

studies found a weak binding affinity of CypD to MCUR1 head domain in the absence of its 

N-terminal disordered region. In future, studies should aim to confirm the MCUR1 residues 

involved in its interaction with CypD, identify the mitochondrial proteases which regulate 

MCUR1 proteolysis and its physiological importance on Ca2+ uptake regulatory activity. 

 

3.4.8 Cellular function of prokaryotic mempromCC homologs 

Prokaryotic species lack MCU orthologs; therefore, the presence of mempromCC homologs 

suggests a cellular function different from mitochondrial calcium uptake regulation. To identify 

the interacting partners of mempromCC in vivo, I carried out a pull-down assay using soluble 

MpcC from Caulobacter crescentus NA1000 as the bait protein and identified a cell-division 

protein FtsZ as the only significant hit in mass spectrometric analysis. In subsequent pull-down 

studies using C. crescentus cell lysate expressing genomic integrated FtsZ-mCherry and 

analysis by western blot, MpcC failed to pull-down FtsZ. Possible reasons could be that the 

large C-terminal mCherry tag in FtsZ interfered in its interaction with MpcC in vitro, or it could 

also be a false-positive hit. Future experiments should test for in vitro interaction with purified 

FtsZ attached to a smaller (His)6 or HA tag. A parallel study to identify mempromCC 

interaction partners using bacterial-2-hybrid system identified mostly false-negatives (Dr. 

Juthaporn Sangwallek, personal communication), as the overexpressed protein could not 

properly integrate into the membrane and accumulated in the cell as inclusion bodies. As a 

result, MpcC non-specifically interacted with other cellular proteins. Our present work to 

identify mempromCC binding partners by in vivo cross-linking, together with studies on the 

mempromCC deletion mutant at the transcriptome and proteome level will hopefully reveal the 

function of these proteins in prokaryotic systems in the future. 

 

In conclusion, the mempromCC family proteins share the same domain architecture, but, based 

on their sequence diversity, they are likely to participate in different cellular processes. Data 
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suggests that they fulfil their functions generally via their head domains, which are projected 

by the membrane-anchored coiled-coil stalk and constitute the family-defining element. 

 

 

3.5 METHODS 

 

3.5.1 Molecular Cloning 

For recombinant expression of proteins in E. coli, the corresponding DNA fragments were 

codon optimized and custom synthesized by gene synthesis. Fragments encoding MCU75-233 

(NP_612366), MCUR1160-230 (NP_001026883), CCDC90B43-125 (NP_068597), CCDC90B43-

125-GCN4 N16V were cloned in pETHis_1a (G. Stier, EMBL Heidelberg) for overexpression 

with an N-terminal 6xHis-tag cleavable by TEV protease. DNA fragments encoding tagged 

variants of MpcC (CCNA_02554, YP_002517927), were synthesized by gene synthesis and 

cloned in pBXMCS4 (Thanbichler et al., 2007). For expression of HA-MpcC-(FLAG)3 and 

HA-MpcC, the plasmids were transformed in C. crescentus NA1000 by electroporation (Ely, 

1991). For transient expression in HEK293 cells, DNA fragments encoding MCU-HA (full 

length MCU with C-terminal HA-tag), FLAG-MCUR1 (full-length MCUR1 with N-terminal 

FLAG-tag) and MCUR1 variants fused to an N-terminal FLAG-tag were synthesized by gene 

synthesis and cloned in vector pCDNA3.1. The MCUR1-Δβ construct lacks residues 207-212, 

encoding the β-layer neck motif MVTKMQ. In MCUR1-GCN4pII, the fragment 231-321 was 

replaced by same number of residues of sequence (MKQIEDKIEEILSKIYHIENE-

IARIKKL)3-MKQIEDK derived from the trimeric GCN4pII variant (Harbury et al., 1993). 

Residues 224-321, 43-159 and 43-233 were deleted in constructs MCUR1-Δstalk, MCUR1-

ΔDR and MCUR1-ΔDR-Head, respectively. In MCUR1-Head90B, fragment spanning 

residues 162-234 of MCUR1 was replaced by residues 45-129 of the head region of CCDC90B. 

 

3.5.2 Protein expression and purification 

Recombinant MCU75-233 was expressed in E. coli C41 strain. CCDC90B43-125-GCN4 N16V, 

CCDC90B43-125 and MCUR1160-230 were expressed in E. coli ArcticExpress (DE3) cells. E. coli 

strains were grown in Luria broth (LB) supplemented with kanamycin at 37˚C for C41 and 

ArcticExpress (DE3). Protein expression was induced with 1 mM isopropyl β-D-

thiogalactoside (IPTG) at an optical density of OD600 = 0.5. Following incubation for 4 h at 

37˚C for E. coli C41 and 24 h at 12˚C for ArcticExpress (DE3), cells were harvested by 

centrifugation. The cell pellet was resuspended in lysis buffer containing 20 mM Tris, pH 7.5, 
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150 mM NaCl, 4 mM MgCl2, DNaseI, 1 mM PMSF and cOmplete EDTA-free Protease 

Inhibitor Cocktail (Roche), and subsequently lysed by sonication.  

 

CCDC90B43-125-GCN4 N16V and CCDC90B43-125 were purified under native conditions. 

Following centrifugation of cell lysate to remove cell debris, supernatant was loaded on a Ni-

NTA Agarose column pre-equilibrated with Buffer A (20 mM Tris, pH 7.6, 150 mM NaCl). 

Bound proteins were eluted with a two-step gradient including a step of 5% buffer B followed 

by linear gradient of 5-100% buffer B (20 mM Tris, pH 7.6, 300 mM NaCl, 0.5 M imidazole). 

Protein containing fractions were dialyzed against Buffer A and incubated with TEV protease 

for His-tag cleavage. Cleaved protein was separated from 6xHis-tagged TEV protease and 

proteolytic fragments by re-loading the sample on Ni-NTA. Fractions containing the cleaved 

protein were pooled and purified to homogeneity by gel filtration on Superdex 75. 

 

MCU75-233 and MCUR1160-230 were purified under denaturing conditions. Cell lysate was stirred 

in 6M guanidine hydrochloride (Gua-HCl) at room temperature for 1 h. Following centri-

fugation, the supernatant was loaded on Ni-NTA Agarose column equilibrated with 20 mM 

Tris, pH 8.0, 300 mM NaCl, 6 M Gua-HCl, and bound proteins were eluted with a linear 

gradient of 0-0.5 M imidazole in the same buffer. MCUR1160-230 and MCU75-233 were refolded 

by dialysis against buffer containing 20 mM Tris, pH 7.6, 150 mM NaCl and 1 mM DTT. 

Following cleavage by TEV protease, the protein was purified to homogeneity performing a 

second Ni-NTA column followed by gel filtration on Superdex 75, as described above. 

 

For structural characterization of MCUR1160-230 by NMR, E. coli C41 cells were grown in M9 

minimal medium supplemented with 13C-glucose and 15N-ammonium chloride. Protein 

expression was induced at OD600 = 0.6 with 1 mM IPTG. Following incubation at 20˚C for 18 

h, the cells were harvested by centrifugation. Protein purification was performed under 

denaturing conditions as described above. 

 

3.5.3 CD spectroscopy 

Circular dichroism (CD) spectra were recorded using a Jasco J-810 spectropolarimeter 

equipped with a JASCO-423S Peltier Controller. CD measurements were performed at a 

protein concentration of 0.5 mg/ml for MCUR1160-230, and 0.2 mg/ml for CCDC90B43-125-

GCN4 N16V and CCDC90B43-125 in 10 mM Tris, pH 7.5, 20 mM NaCl buffer using a cuvette 
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with a path length of 1 mm. Single CD spectra were recorded at a speed of 100 nm/min with a 

data pitch of 0.5 and a response time of 1s. Each spectrum represents the average of five scans 

corrected by the signal of buffer scan. Thermal melting curves were recorded by monitoring 

ellipticity at indicated wavelengths (208 nm, 216 nm, 220 nm or 224 nm) in a temperature 

range from 10-95˚C applying a ramp of 0.5˚C/min. Blank correction, smoothing of data, and 

calculation of molecular ellipticities and melting temperatures were performed using Spectra 

Manager Software (JASCO). 

 

3.5.4 Microscale Thermophoresis (MST) 

MST binding experiment was carried out by titrating dilution series of ligand against a 

fluorescently labelled biomolecule. 100 μl of 20 μM protein sample in 20 mM HEPES pH 7.6, 

150 mM NaCl buffer was mixed with Alexa Fluor 647 red-NHS amine-reactive dye dissolved 

in 100 μl DMSO (430 μM). Reaction was carried out in the dark for 1 h. In the meantime, 

buffer exchange column (NanoTemper Gravity Flow Column B) was equilibrated with MST 

buffer (50 mM Tris, pH 7.6, 150 mM NaCl and 0.05% Tween-20). 200 μl of reaction mixture 

followed by 300 μl of MST buffer was applied to the equilibrated column, finally eluted with 

600 μl of MST buffer and stored at -80 ˚C as 10 μl aliquots. Concentration of the labelled 

protein used for MST experiment was optimized to get initial fluorescence counts in the range 

400-1000 units. 16 serial dilutions of non-fluorescent ligand were prepared in MST buffer and 

mixed with the labelled partner in 1:1 ratio. Tubes were incubated for 15 min, centrifuged at 

13000 rpm for 10 min to remove aggregates and filled in Monolith NT ‘Premium coated’ 

capillaries. The experiment was carried out on MicroScale Thermophoresis instrument 

Monolith NT.115 (NanoTemper Technologies) with in-built MO.Control software. Analysis 

of data was done using MO.Affinity Analysis software. 

 

3.5.5 SEC-MALS  

Size Exclusion Chromatography and Multi Angle Light Scattering (SEC-MALS) experiments 

were performed to calculate the absolute molecular mass of proteins and their oligomeric states 

in solution using a 1260 Infinity II HPLC (Agilent) coupled to a miniDawn TREOS and Optilab 

T-rEX refractive index detector (Wyatt Technologies). Proteins were applied at a concentration 

of 5 mg/ml on an AdvanceBio SEC 130 Å (for MCUR1) or AdvanceBio SEC 300 Å (for 

CCDC90B) column equilibrated with 20 mM Tris, pH 7.5, 150 mM NaCl and 0.2% NaN3 and 

separated at a flow-rate of 0.5 ml/min at 18˚C. For MCUR1160-230 analyses, 1 mM TCEP was 
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added to the buffer. Data analysis and molecular mass calculation was performed using 

ASTRA software package (Wyatt Technologies).  

 

3.5.6 Mammalian cell culture and transfection 

HEK293 cells were cultivated in DMEM containing 10% FBS and 2 mM glutamine. Cells were 

transiently transfected with pCDNA3.1 plasmid encoding MCU-HA and MCUR1-FLAG 

variants using Lipofectamine 2000 according to the manufacturer’s protocol (Thermo Fisher 

Scientific).  

 

3.5.7 Immunoprecipitation 

HEK293 cells were harvested 20-24 h post-transfection and washed twice with ice-cold PBS. 

The cell pellet was resuspended in lysis buffer containing 20 mM HEPES, pH 7.3, 150 mM 

NaCl, 10 mM KCl, 1% Nonidet P-40, 8% glycerol, 1 mM PMSF and cOmplete EDTA-free 

Protease Inhibitor Cocktail (Roche) and incubated for 10 min on ice. Following sonication, cell 

debris were harvested in a microcentrifuge at 13,000 rpm. The soluble fraction was incubated 

with Anti-FLAG M2 Magnetic Beads for 2 h at 4 °C. The beads were collected and washed 

three times in lysis buffer using a magnetic separator. Proteins bound to beads were eluted in 

0.1 M glycine, pH 3.0 for 5 min at room temperature. Following addition of 1 M Tris, pH 8.5 

for neutralization of samples, beads were separated. The protein-containing supernatants were 

concentrated using Amicon Ultra 0.5 ml 3K centrifugal filters, separated on a NuPAGE 4-12% 

Bis-Tris Protein Gel and blotted. Membranes were probed with anti-FLAG antibody (F7425, 

SIGMA) and anti-HA antibody (H6908, SIGMA), both produced in rabbit. 

 

3.5.8 Mitochondria isolation and subfractionation 

Cells were harvested 20 hours after transfection at 500 × g for 4 min at 4˚C and washed in ice-

cold PBS. Total mitochondria was isolated using the Mitochondrial Isolation Kit for Cultured 

Cells (Thermo Fisher). 800 μl of Reagent A was added to the harvested cells and vortexed at 

medium speed. To this, 10 μl of Reagent B was added. The sample was incubated on ice for 5 

min with vortexing at maximum speed every minute. Afterwards, 800 μl of Reagent C was 

added and components mixed by inverting the tube several times. After centrifugation at 700 

× g for 10 min to remove cellular debris, supernatant was transferred to a new tube and spun 

down at 12,000 × g for 15 min. The pellet contained isolated mitochondria and the supernatant 

was the cytosolic fraction. 100 μl of supernatant was precipitated using ice-cold acetone 
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overnight at -80˚C, washed with ice-cold 70% ethanol, dried and dissolved in 50 μl of 1x 

NuPAGE Sample Buffer (Thermo Fisher Scientific). Mitochondrial pellet was washed once in 

500 μl Reagent C and collected by centrifugation at 12,000 × g for 20 min. One tube containing 

the mitochondria was dissolved in 50 μl of 1x NuPAGE Sample Buffer for SDS-PAGE. The 

second was fractionated into OMM (outer mitochondrial membrane), IMM (inner 

mitochondrial membrane), and the matrix. 

 

Mitochondrial pellet was resuspended in 800 μl of hypotonic shock buffer (5 mM sucrose, 5 

mM HEPES, pH 7.2 with KOH and 1 mM EGTA) and subjected to osmotic shock for 10 min. 

200 μl of high salt storage buffer (750 mM KCl, 100 mM HEPES, pH 7.2 with KOH and 2.5 

mM EGTA) was added. Mitoplasts were sedimented by centrifugation at 20,000 × g for 20 

min. Supernatant containing OMM and IMS proteins was collected and precipitated using ice-

cold acetone.  

 

Proteins of IMM and matrix were separated using the alkaline carbonate extraction method. 

Mitoplasts were resuspended in 500 μl carbonate extraction buffer (120 mM Na2CO3, pH 11.5 

with NaOH) and incubated at 4˚C for 2 hrs. Sample was ultracentrifuged in Beckmann table 

top ultracentrifuge TLA 100.3 rotor at 110,000 × g for 2 hrs. The supernatant contains proteins 

extracted by carbonate, while the membrane pellet retains integral inner membrane proteins. 

All the samples were analyzed by western blot using anti-FLAG (1:2000) or anti-V5 (1:1000) 

antibodies, both produced in rabbit. 

 

3.5.9 Subcellular fractionation of C. crescentus NA1000 

C. crescentus NA1000 cells expressing tagged MpcC were grown in PYE medium to an OD660 

of 0.8 and fractionated as described previously with slight modifications (Anwari, 2012). Pellet 

from 5 ml culture was resuspended in 280 μl of ice-cold spheroplasting buffer (10 mM Tris, 

pH 7.5, 0.75 M sucrose). Lysozyme was added to a final concentration of 100 μg/ml and cells 

were incubated on ice for 2 min. Following addition of cOmplete EDTA-free Protease Inhibitor 

Cocktail (Roche), 25 μg/ml DNaseI and 10 mM MgCl2, two volumes of ice-cold lysis buffer 

(1.5 mM EDTA, pH 7.5) was added slowly to the cells with constant mixing. Cell lysis was 

completed using glass beads and unbroken cells were removed by two centrifugation steps at 

4000 rpm for 10 min. Performing ultracentrifugation at 50,000 rpm for 2 hrs at 4 ˚C using a 
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TL100.3 rotor, the supernatant containing the soluble fraction (periplasm and cytoplasm) was 

separated from the crude membrane fraction present in the pellet.  

 

Cell membranes were fractionated according to (Thein et al., 2010). The inner membrane 

fraction was solubilized by resuspension of the membrane pellet in solubilization buffer 

containing 50 mM Tris, pH 8.0, 2% (w/v) Triton X-100, 10 mM MgCl2, and finally separated 

from the outer membrane fraction by centrifugation at 50,000 rpm for 2 h at 4 ˚C. The outer 

membrane pellet was washed in solubilization buffer followed by water and finally dissolved 

in Laemmli sample buffer. Proteins of the soluble and inner membrane fractions were 

precipitated with ice-cold acetone and solubilized in Laemmli sample buffer. Samples were 

analyzed by SDS-PAGE and western blotting using polyclonal anti-MpcC (1:1000), anti-TimA 

(1:2000), and anti-CpaC (1:1000, L. Shapiro, Stanford) antisera. 

 

3.5.10 Proteinase K assay 

C. crescentus NA1000 cells expressing HA-MpcC-(FLAG)3 were grown in PYE medium to 

an OD660 = 0.8. Spheroblasts were prepared as described above. Following lysozyme 

incubation, Proteinase K was added to the cell suspension at a concentration of 100 μg/ml. 

Following incubation on ice for 30 min, Proteinase K was inactivated with addition of 10 mM 

PMSF. Spheroblasts were fractionated as described and analyzed on a Western blot using rabbit 

anti-FLAG antibody (F7425, SIGMA) and anti-HA antibody (H6908, SIGMA). 

 

3.5.11 Electron microscopy 

For visualization of protein localization by Electron Microscopy (EM), C. crescentus NA1000 

strain expressing HA-MpcC was cultivated in M2G medium to exponential phase. Protein 

expression was induced upon addition of 0.3% (w/v) xylose and cells were harvested 2 hrs after 

induction. Cells were washed twice in PBS and fixed in 0.1 M phosphate buffer, pH 7.4, 

containing 2% paraformaldehyde and 0.05% glutaraldehyde for 2 hrs at room temperature. 

After washing twice in 0.1% glycine, samples were fixed and prepared for cryosectioning as 

described (Tokuyasu, 1973). Pellets were mixed with 10% warm gelatin and solidified on ice. 

Cut into blocks of about 1 mm3, the solid mixtures were cryoprotected in 2.3 M sucrose at 4˚C 

overnight. The infiltrated blocks were frozen on cryosectioning stubs in liquid nitrogen and 

sections of 55–70 nm were cut using a Leica Ultracut UCT microtome equipped with a Reichert 

FCS cryo attachment. After retrieval with a 1:1 mixture of 2% methyl-cellulose and 2.3 M 
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sucrose, the cryosections were placed on carbon/pioloform-coated EM support grids and 

floated upside down in PBS at 40˚C. For immunogold labeling, sections were incubated with 

rabbit anti-HA antibody (Clontech), followed by incubation with secondary goat anti-rabbit 

IgG-ultra small gold antibody (Aurion). The sections, contrasted in methyl cellulose/uranyl 

acetate, were analyzed on a FEI Tecnai G2 Spirit TEM (FEI, Hillsboro, Oregon, USA) 

operating at 120 kV. Images were taken with a Gatan Ultrascan 4000 (Pleasanton, CA, USA) 

camera at maximum resolution using manufacturer’s software.  

 

5 μl of MCUR1 fibril samples were directly applied to carbon/pioloform-coated EM support 

grids at a concentration of 50 μg/ml (in buffer containing 20 mM Tris, pH 7.5, 150 mM NaCl 

and 1 mM TCEP), washed with water and coated with 1% uranyl acetate. After drying, grids 

were imaged as described. 

 

3.5.12 NMR spectroscopy 

All spectra were recorded on Bruker AVIII-600 and AVIII-800 spectrometers. 15N HSQC 

spectra were acquired over a temperature range from 298 K to 313 K. Diffusion ordered 

spectroscopy (DOSY) experiments were acquired to assess the translational diffusion times 

and obtain estimates of the effective molecular weight. Choosing the lower temperature, 

standard triple resonance experiments were acquired to perform backbone sequential 

assignment and 3D TOCSY spectra for sidechain assignment. This work was done by Dr. 

Murray Coles. 

 

3.5.13 Crystallization and structure determination  

Crystallization trials were set up in 96-well sitting-drop plates with drops consisting of 300 nl 

protein solution and 300 nl reservoir solution (RS), and reservoirs containing 50 μl RS. Crystals 

of selenomethionine-labeled Kcr-0859ΔTM were obtained with a RS containing 100 mM 

sodium cacodylate, pH 6.5, 30% (v/v) MPD and 5% (w/v) PEG 2000. Crystals of CCDC90B43-

125-GCN4N16V were obtained using the Morpheus HT-96 screen (Molecular Dimensions), well 

F2. Prior to mounting, crystals of Kcr-0859ΔTM were transferred into a droplet of RS 

supplemented with 20% (v/v) glycerol for cryo-protection. All crystals were loop mounted and 

flash-cooled in liquid nitrogen. Data were collected at 100 K and a wavelength of either 1.07 

Å (CCDC90B43-125-GCN4N16V) or 0.979 Å at the Selenium K-edge (Kcr-0859ΔTM) at 

beamline X10SA of the Swiss Light Source (Villigen, Switzerland), using a PILATUS 6M-F 



125 

 

hybrid pixel detector (Dectris Ltd.). All data were indexed, integrated and scaled using XDS 

(Kabsch, 2010), with the statistics given in Table 3.1.  

 

For the phasing of the Selenomethionine-labeled Kcr-0859ΔTM, we employed SHELXD 

(Sheldrick, 2008) for heavy atom location, locating six selenium sites in the asymmetric unit. 

After phasing and density modification with SHELXE, one Kcr-0859ΔTM trimer could be 

traced with Buccaneer (Cowtan, 2006). The structure of CCDC90B43-125-GCN4N16V was solved 

by molecular replacement with MOLREP (Vagin and Teplyakov, 2000), using trimeric coiled-

coil fragments of PDB entry 5APQ search models. The structure was completed using 

Buccaneer. Both structures were finalized in cycles of manual modeling with Coot (Emsley 

and Cowtan, 2004), and refinement with REFMAC5 (Murshudov et al., 1999). Refinement 

statistics are given in Table 3.1, together with PDB accession codes. This work was done 

together with Dr. Marcus Hartmann. 

 

3.5.14 Homology modelling 

The comparative homology model of MCUR1 (residues 167-336) was generated with Modeller 

(Sali et al., 1995) using CCDC90B43-125 crystal structure as the template for head-neck segment. 

The backbone of coiled-coil stalk was built using fragments of identical periodicities from 

previously solved crystal structures. 
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Table 3.1: Data collection and refinement statistics 

 Kcr-0859ΔTM 
 

CCDC90B43-125-GCN4N16V 

Wavelength (Å) 0.979 1.07 

Space group P21212 P21212 

Cell dimensions (Å) a=197.5, b=48.9, c=51.1 a=36.0, b=298.2, c=29.3 

Monomers / ASU 3 3 

Resolution range data 

collection (Å) 

39.3 - 2.19 

(2.32 – 2.19) 

37.3 - 2.10 

(2.23 – 2.10) 

Completeness (%) 99.0 (95.7) 99.8 (98.8) 

Redundancy 3.40 (3.27) 6.27 (6.46) 

I/σ(I) 9.23 (1.74) 13.4 (1.89) 

Rmerge (%) 8.6 (58.5) 8.9 (86.7) 

CC(1/2) 99.8 (79.8) 99.9 (83.5) 

Resolution range 

refinement (Å) 

39.3 - 2.19 

(2.25 – 2.19) 

37.3 - 2.10 

(2.15 - 2.10) 

Rcryst (%) 24.3 (31.7) 23.1 (38.6) 

Rfree (%) 27.3 (33.3) 25.7 (40.7) 

RMSD Bond angles / lengths 1.04 / 0.0065 1.34 / 0.012 

Ramachandran statistics (%) 100 / 0 / 0 97.8 / 2.2 / 0 

PDB accession 

Code 
6H9L 6H9M 
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CHAPTER 4 
 
Investigating frameshift-resistant repeat amplification 
in functional proteins 
 

 

 

 

 

 

 

 

Repetition is an important mechanism of gene evolution, producing proteins whose repeating 

units span all levels of complexity, from single residues to whole domains. In this chapter, we 

focus on a special type of repetition in protein evolution, the frameshift resistant repeats (FSR), 

which are simply generated by the repetition of n base-pairs, where n is not divisible by 3 and 

does not contain any stop codons. Repetitions of this type encode the same protein repeat of n 

residues in all three frames of equal sense. FSR repetition is common in many genomes across 

all branches of life. Among bacteria, they are found to be significantly enriched in 

cyanobacteria as well as opportunistic and pathogenic organisms. They are found both within 

existing genes, where they appear to be mostly unstructured and deleterious, and as new ORFs. 

While most of the latter seem to be purged quickly, some have clearly survived purifying 

selection and have become real genes encoding new proteins. Here, we examine the effects of 

frameshift resistant repeat amplification on the structure and function of existing and new 

proteins in bacteria. Through bioinformatic sequence analysis, we have selected a set of 

candidate FSR repeat containing proteins from two cyanobacterial species Microcystis 

aeruginosa and Moorea producens, both abundant in FSR repeat containing ORFs, for a 

structural and functional study. The FSR repeats in these proteins are found to be either inserted 

within a functional protein domain or replacing a part of it. Alongside, we characterize their 

non-FSR parent homologs for a comparative study. Finally, we check for the expression of 

FSR repeat containing ORFs in different bacterial species by transcriptome and proteome 

analysis.  
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4.1 INTRODUCTION 

 

4.1.1 Defining tandem repeats 

Tandem repeats (TRs) are nucleotide sequence units that are consecutively repeated two or 

more times in a DNA. They are often referred to as “satellite DNA”, and are abundant in both 

coding and intergenic regions. TRs are usually classified on the basis of unit length into three 

subcategories – microsatellites, minisatellites and satellite DNA. Microsatellites, also called 

simple sequence repeats (SSRs), contain a unit length between 1-10 nucleotides. Minisatellites 

have a unit length between 10-100 bp and have been successfully employed as markers for 

genetic profiling. TRs with even longer unit lengths of ~100-1000 bp are termed as satellite 

DNA. On the basis of sequence conservation, TRs can also be classified as perfect or 

imperfect/degenerated repeats (Zhou et al., 2014).  

 

Whereas TRs are mostly found in non-coding regions, recent evidence suggests their 

sizeable presence in protein coding sequences. For instance, repetitive elements are present in 

nearly 17% of genes in the human genome (Gemayel et al., 2010; Jansen et al., 2012). 

Prokaryotic genomes also possess around 10% repetitive regions (van Belkum et al., 1998), 

which is a significant fraction considering their small sizes. Translation of TRs in coding 

regions results in amino acid tandem repeats, which organize as repetitive structural elements 

in proteins (e.g. leucine rich repeats, ankyrin repeats, coiled coils etc.). Tri- and hexa-nucleotide 

(or a multiple of 3) TRs have been specifically enriched as a result of the selection pressure to 

maintain the downstream region in frame. Although previously discarded as non-functional 

junk DNA, recent studies have highlighted the important role played by repeat duplication in 

genomes. Studies on human genome have shown that some TRs are hypermutable, i.e. prone 

to increase or decrease of TR copy number as a result of strand-slippage replication and 

recombination events, and therefore the cause of diseases such as fragile X syndrome (CGG 

trinucleotide repeats in 5’ UTR of FMR1), Huntington’s disease (polyQ expansion in exon 1 

of IT-15 gene) and spinobulbar muscular atrophy (polyQ expansion in AR gene) (Hannan, 

2010). In bacteria, TR variations drive the rapid adaptation strategies which can range from 

evading host cellular immune response, tissue tropism and environmental stress tolerance 

(Gemayel et al., 2010, 2012; Zhou et al., 2014). While most of the repeat insertion events are 

deleterious, some with positive selection may eventually give rise to new proteins with unique 

functional properties.    
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4.1.2 Frameshift resistant tandem repeats 

Frameshift resistant (FSR) repeats are a special subset of TRs, wherein the repetition of a 

certain unit of nucleotides results in the repeat of the same unit of amino acids in all three 

frames of equal sense. First reported by S. Ohno in the early 1980s, FSR repeat phenomena is 

a byproduct of the repeat unit having any length that is not a multiple of three and whose tandem 

repetition does not contain any stop codons (Ohno, 1983, 1984a, b). The inherent advantage of 

FSR repeats lies in their imperviousness to random base substitutions, insertions and deletions; 

hence the given name. As tandem FSR units are translated to identical polypeptides in all three 

frames, any mutation that is not a multiple of 3 can only cause a local perturbation with the 

original periodicity resuming thereafter. Even acquisition of internal stop codons by such 

random mutations can only silence one reading frame. Fig. 4.1A shows the schematic 

representation of FSR repeats. An example illustrates how the repetition of a four nucleotide 

sequence TTTA gives a repeat of FIYL residues in all three reading frames (Fig. 4.1B). For 

certain FSR repeats, the repeating unit encodes a palindromic sequence (Fig. 4.1C), which 

eventually translates into the same amino acid sequence in all six reading frames. Sequence 

conservation at both the DNA and protein levels points out that this repetition is a very recent 

evolutionary event. 

 

 

 

Figure 4.1: Schematic representation of Frameshift resistant (FSR) repeats. (A) Frameshift resistant repeats 

follow the basic rule: a repeat of n nucleotides translates to a repeat of n amino acids given that n is not divisible 

by 3. (B) Tandem repetition of 4 nt FSR sequence TTTA gives a repeat of 4 aa FIYL in all three frames of equal 

sense. (C) A palindromic FSR repeat sequence GAATATTC gives the same polypeptide sequence in all six frames. 



130 

 

Even though this idea was proposed more than three decades ago, no systematic study has been 

conducted to understand the FSR repeat occurrence in genomes. Briefly encountered while 

analyzing Nematostella vectensis (a small sea anemone) protein coding sequences, a previous 

study reported that 18% (or 806 TRs) of all the identified tandem repetitive elements are FSR 

repeats (Naamati et al., 2009). In collaboration with Mateusz Korycinski, we have undertaken 

a detailed study to investigate the abundance, characteristic features and structural and 

functional implications of FSR tandem repeats in proteins across organisms.  

 

4.1.3 Mechanisms of tandem repeat instability 

Tandem repeats are hypermutable; in humans, microsatellites mutate at a rate of 10-3 to 10-4 

per locus per cellular generation (Weber and Wong, 1993) as compared to the mutability rate 

of 10-8 per generation for single nucleotide substitutions (Drake et al., 1998). TR polymorph-

isms are primarily the result of addition or deletion of repeating units, instead of nucleotide 

substitutions. Two major mechanisms have been proposed to explain TR instability: strand-

slippage replication and unequal recombination (Levinson and Gutman, 1987; Pâques et al., 

1998; Bichara et al., 2006).  

 

In the strand-slippage replication (or DNA slippage or slipped-strand mispairing) 

model, mispairing occurs between the template and nascent strands. The newly synthesized 

strand detaches from the template and reattaches at another position, resulting in the formation 

of an unpaired repeats hairpin structure either on the nascent or the template strand. As DNA 

replication proceeds on this structure, it leads to TR expansion or contraction. When the bulge 

is present on the template strand, it will result in TR unit loss in the newly synthesized DNA. 

In the vice-versa scenario, TR expansion occurs. As a third mechanism, TRs may alter the 

location of Okazaki initiation which then influences the formation of hairpins and leads to an 

asymmetric sequence replication (Pearson et al., 2005). The rate of TR gain/loss may also 

depend on the relative position of TR i.e. either on the leading or the lagging strand, due to 

different fork stalling effects during replication (Kang et al., 1995; Aguilera et al., 2013). More 

complex models even include DNA double-strand break repair mechanism. For stalled 

replication machinery at the repeats, breaks can be repaired by single-strand annealing to 

homologous TRs on either the same strand (TR loss) or on the other strand (TR gain). 
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Apart from strand-slippage replication, recombination events (including unequal 

crossovers and gene conversion) are another mechanism to explain TR instability. During 

homologous recombination, ssDNA anneals to the neighboring intact sister chromatid as a 

template for repair; however, it may be shifted by one or multiple TR units. While several 

studies suggest that strand-slippage replication is generally associated with microsatellite (1-

10 bp) instability and recombination events dominate minisatellite (10-100 bp) instability, the 

underlying precise molecular mechanisms remain unclear.  

 

A number of factors influence TR instability and variability. Prominent among them 

are: (i) number of repeat units; the greater the number, the higher the TR instability, (ii) length 

of the repeat unit and (iii) repeat purity; the longer and purer repeating unit has a higher 

mutation frequency. Legendre et al. (2007) reported that the presence of a single repeat 

impurity in a pure polyGT tract increased its stability by five-fold. Base composition, or GC 

content, is also an important factor in determining TR stability (Gragg et al., 2002). Various 

cellular processes such as high transcription rates and external factors such as environmental 

stresses can also enhance repeat mutability (Wierdl et al., 1996; Rosenberg, 2001; Schmidt and 

Mitter, 2004; Mittelman et al., 2010).  

 

4.1.4 Functional impact of tandem repeats 

Variable TRs can influence gene expression and function depending on their genomic 

localization either in non-coding or coding regions. A number of recent studies have suggested 

that repeat variation in promoter and cis-regulatory elements could be an evolutionary 

conserved mechanism of regulating gene expression. One frequently observed method is the 

alteration in number of transcription factor binding sites. Two prominent examples of this 

mechanism are: (i) TAAA repeat number variation in Neisseria meningitidis nadA promoter 

element influences gene expression of NadA adhesin protein (Martin et al., 2005), and (ii) 

variable TCC repeats in human EGFR promoter region alter the number of Sp1 (transcriptional 

regulator) binding sites (Johnson et al., 1988). Variable TRs can also affect the spacing between 

critical promoter elements. Furthermore, tandem repeated tracts in human promoter regions 

were found to inhibit nucleosome formation promoting open chromatin structures which 

clearly affect gene transcription (Vinces et al., 2009). Another interesting study reported that 

variable TRs in intronic regions can regulate gene expression through alternative mRNA 

splicing (Shang et al., 2011). 
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Intragenic tandem repeats are highly enriched in proteins associated with cellular 

signaling, communication and cell-surface localization, and underrepresented in proteins 

associated with cellular metabolism and bioenergetics. Minisatellite abundance in cell surface 

genes (LPS, adhesins, pili, and fimbriae) is found to be evolutionarily conserved from bacteria 

to humans, whose polymorphisms in fact generate functional diversity (Legendre et al., 2007). 

For example, S. cerevisiae FLO1 gene, encoding a cell-surface adhesin, contains tandem 

repeated units of approximate length 100 bp. Phenotypic studies identified a positive 

correlation between FLO1 TR repeat length and the adhesion intensity (Verstrepen et al., 

2005). Similarly, TR enrichment in S. cerevisiae FLO11 gene increases the buoyancy of yeast 

strains. FLO11, also encoding an adhesin, is involved in biofilm formation. Glycosylation of 

its Ser/Thr-rich TRs renders the cell wall hydrophobic giving a floating biofilm phenotype 

(Fidalgo et al., 2006).  

 

Variable intragenic TRs can even mediate phase variation, a strategy particularly 

employed by pathogenic bacteria to evade host defense mechanism. For example, modulations 

in the CTCTT pentanucleotide repeat (also Frameshift resistant) at the 5’ end of the coding 

region of surface membrane proteins in N. gonorrhoeae can lead to proper (ON state) or 

improper (OFF state) translation of proteins (Stern et al., 1986). Switching between these two 

states during infection generates the population phenotypic variability that allows certain 

individuals to survive host immune response. TRs can form extended structures in proteins 

such as in keratins, collagens, anti-freeze proteins, spider silk and the FG-rich proteins of the 

nuclear pore. Trinucleotide polyQ repeats are involved in neurodegenerative disorders in 

humans; longer TRs correlate with an early disease onset and severe symptoms (Gatchel and 

Zoghbi, 2005). Intragenic TRs have also been implicated in generating natural variation such 

as circadian clock tuning in fruit flies (Johnsen et al., 2007) and skeletal morphology in animals 

(Fondon and Garner, 2004). These studies clearly point out that abundance of TRs in functional 

protein-coding regions can be involved in beneficial roles. In this study, I intend to focus only 

on ORFs encoding intragenic frameshift resistant micro and minisatellite repeats. 
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4.1.5 Aims of this study 

The primary objective of this study was to understand the structure and role of tandem FSR 

repeats in protein evolution. For this, I selected a set of FSR repeat containing proteins for 

structural, biophysical and functional characterization. For a comparative functional analysis, 

I simultaneously expressed and characterized their non-FSR parent homologs, which share 

high sequence identity at both the protein and DNA level and can be found in the same or a 

closely related strain. Next, I aimed to experimentally verify the expression of FSR repeat 

containing proteins in vivo using whole-cell transcriptome and proteome analysis. With the 

above experimental strategies in mind, I intended to address the following questions: Are FSR 

repeat containing proteins expressed in organisms? How do the proteins structurally 

accommodate FSR repeat insertions and domain replacements? Do these events affect protein 

stability and function compared to non-FSR parent homologs? What is the general role of FSR 

repetitions in protein evolution? 
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4.2 RESULTS 

 

4.2.1 Expression and characterization of frameshift resistant (FSR) repeat containing 

proteins and their non-FSR homologs 

An extensive bioinformatic search was carried out to identify and collect sequences containing 

FSR repetitive elements in model organisms covering all phylogenetic groups including 1430 

bacteria and archaea, 67 animals, 29 plants and 260 fungal species (work done by Mateusz 

Korycinski). FSR repeats were found in all kingdoms of life and no correlation was observed 

between proteome size and the number of ORFs containing FSR repeats. However, a few 

organisms such as Nematostella vectensis, Microcystis aeruginosa, and Burkholderia 

pseudomallei displayed a significant enrichment of FSR elements compared to other species, 

with over 100 FSR repeat containing ORFs per genome. Primarily, these repeats are short 

microsatellites ranging from 4 to 8 nucleotides, with an overrepresentation of 7 nt periodicity. 

Regarding their specific localization within ORFs, no clear preference was observed. They 

could occupy any position starting from the 5’ to the 3’ end of an ORF. Whereas the majority 

of FSR repeats span only 10% or less of the total gene length, a few examples were found to 

be completely built of such repetitive elements. 

 

In order to understand the effect of FSR repeat amplification on the structure and function of 

existing and new proteins, we characterized a few representative examples. Proteins listed in 

Table 4.1 were selected for structural and functional characterization. Three different 

categories of FSR repeats were classified in proteins: (i) FSR repeats found to be inserted 

within a functional protein domain (e.g. NADH dehydrogenase) or between two domains in a 

multi-domain protein (e.g. S/T kinase), (ii) FSR tandem repeat sequences replacing a part of 

functional protein domains, usually the C-terminal region (e.g. restriction endonuclease-like 

and HIRAN domain proteins) and (iii) FSR repeat duplications constituting an entire new ORF. 

For most FSR repeat proteins, closest non-FSR orthologs/paralogs were also characterized for 

a comparative study. The strategy for selection of most proteins was simply based on the 

presence of existing well-defined assays which can be utilized to verify their residual activity. 
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 Reference ID Name Organism  

 

Frameshift repeats as domain insertions 

1. EGJ33944.1 serine/threonine protein kinase/putative ATPase Moorea producens 3L FSR 

2. WP_008190547.1 NADH dehydrogenase Moorea producens 3L FSR 

3. WP_017715270.1 nitroreductase family protein Oscillatoria sp. PCC 10802 non-FSR 

 

Frameshift repeats as domain insertions 

4.  WP_012265514/ 

BAG02178.1.1 

Uma2 family endonuclease MAE_23560 Microcystis aeruginosa NIES-843 FSR 

5. EPF16067.1 hypothetical protein MAESPC_05199 Microcystis aeruginosa SPC777 non-FSR 

6. EGJ29873.1 HIRAN domain protein LYNGBM3L_59020 Moorea producens 3L FSR 

7. EGJ29882.1 HIRAN domain protein LYNGBM3L_59090 Moorea producens 3L non-FSR 

 

Frameshift Repeats spanning whole domains 

8.  EGJ30341.1 hypothetical protein LYNGBM3L_51520 Moorea producens 3L FSR 

9. ADI66200.1 hypothetical protein Aazo_5130 Nostoc azollae 0708 FSR 

 

Table 4.1: List of FSR repeat containing sequences selected for structural and functional characterization 
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Peptide 

name 

Protein Organism Peptide sequence Crystallization trial Secondary structure in CD 

LSVISYQ MAE_23560 

(BAG02178.1.1) 

Microcystis aeruginosa 

NIES-843 

KSVISYQ 

LSVISYQ 

LSDVSFK 

LKLF 

8mg/ml in 25% 

Acetonitrile; no crystals 

appeared β-character in 

10% acetonitrile, but did 

not unfold 

RTYV 

 

  (RTYV)8 

 

No crystals unstructured in CD; slight 

induction of alpha by 

addition of 20% TFE 

ASRIAHR YP_991638.1 Burkholderia mallei 

SAVP1 

ASVHAHR 

-(ASRIAHR)4 

crystals diffract at best to 

8Å 

unstructured in CD 

 

VTSHKSQ YP_034083.1 Bartonella henselae str. 

Houston-1 

(VTSHKSQ)5 No crystals unstructured in CD 

 

TSNIKHQ WP_053093658.1 Proteus mirabilis 646-

PMIR 

KQ-(TSNIKHQ)5 No crystals unstructured in CD 

 

 

Table 4.2: List of FSR repeat peptides set-up for crystallization
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Appropriate synthetic genes for selected proteins were cloned in vectors allowing for 

overexpression of recombinant protein with an N-terminal His-tag or with a solubility 

enhancing SUMO fusion domain. Proteins were expressed using E. coli C41 (DE3) or E. coli 

ArcticExpress (DE3) cells, where the latter expresses cold-adapted chaperones which assist in 

protein folding at low temperatures. The proteins were purified optionally under native or 

denaturing conditions with nickel affinity chromatography. After refolding, proteins were 

cleaved with TEV- or SUMO-proteases and set up for crystallization. Refolding conditions 

included variation of buffer components, pH, salt concentration, temperature, surfactants or 

non-detergent sulfobetaines, etc. Detailed studies of candidate FSR and their non-FSR parent 

homologs (see Table 4.1) are described below. 

 

4.2.1.1 FSR repeats inserted between functional protein domains 

 

1. NADH dehydrogenase (Moorea producens 3L) 

The flavoprotein NADH dehydrogenase (WP_008190547) from cyanobacterium Moorea 

producens 3L belongs to the Nitro-FMN-reductase superfamily. Proteins of this family are 

usually found to be homodimers and catalyse the reduction of nitrogen containing compounds 

using NAD(P)H as an electron donor in an obligatory two-electron transfer utilizing FMN or 

FAD as a cofactor. M. producens NADH dehydrogenase features a 32 residue insertion (Fig. 

4.2A), derived from the combination of two tandem repeats each of a 25 bp FSR repeat 

(“tgggggaaaccacggcagtcgctca”) and a 19 bp FSR repeat (“cccaagaccgcgctgcctc”), in the 

extended surface loop covering the cofactor binding site. The total length of insert (96 bp), 

being a multiple of 3, precludes a frameshift mutation for the C-terminal part of the functional 

domain. For this protein, the closest sequence homolog found using a BLAST search (at the 

time of conceptualization) is a nitroreductase family protein present in Oscillatoria sp. PCC 

10802. Both proteins share 67% amino acid sequence identity. Recent genome annotation 

efforts have also identified a nitroreductase in Moorea producens, which shares 80% sequence 

identity to its FSR homolog. Both non-FSR nitroreductase homologs completely lack the FSR 

repeat insertion, while the flanking amino acids are nearly identical. It is interesting to note 

here that we did not find any other close relatives of M. producens NADH dehydrogenase 

which contain FSR repeat insertion. Bioinformatics search for 25 bp and 19 bp FSR 

minisatellites in M. producens identified a hypothetical protein (WP_008184368) which 

contains a tandem of 25 bp, 19 bp and 17 bp repeats constituting the major chunk of its ORF. 
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As identical domain boundary (25 bp to 19 bp transition) was observed in NADH 

dehydrogenase, it can be postulated that this FSR insertion could have occurred by 

recombination or retrotransposition activity. 

 

For structural characterization, both the FSR (M. producens 3L) protein and its non-FSR 

counterpart (Oscillatoria sp. PCC 10802) were recombinantly expressed in E. coli. The non-

FSR nitroreductase purified as a yellow-coloured soluble protein with bound flavin cofactor. 

Far-UV CD spectroscopy shows that it primarily adopts an α-helical secondary structure with 

characteristic minima at 208 nm and 222 nm, and melts cooperatively in a single step at 

approximately 69˚C. (Fig 4.2D) The non-FSR protein crystallized as yellow cuboids which 

diffracted to a resolution of 1.2 Å. Its structure was solved by molecular replacement using the 

crystal structure of a putative nitroreductase from Exiguobacterium sibiricum (PDB 3GE6). 

The protein forms a homodimer, with two such dimers occupying the asymmetric unit cell of 

the crystal (Fig. 4.2B). Each monomer is bound to an FMN cofactor molecule, with the loop 

(the one where insertion occurred in FSR homolog) covering the FMN binding site. Only K199 

and R204 residues of this loop, located C-terminal to the site of FSR insertion (marked with 

arrow in Fig. 4.2C), are involved in coordinating FMN.  

 

In contrast to the well-expressed, soluble non-FSR nitroreductase, FSR repeat containing 

protein was primarily expressed in inclusion bodies from which it was impossible to obtain 

folded soluble material for further biophysical or structural characterization. Repeated attempts 

to refold the protein with varying buffer conditions proved to be futile. It has been previously 

shown that FMN binding in the pocket of NADH dehydrogenases can initiate the proper 

folding process. Therefore, we tested if the protein could be refolded upon the addition of flavin 

cofactors FMN or FAD. On-column refolding in the presence of excess amount of flavin 

cofactors eluted only unfolded polypeptide as confirmed by secondary structure estimation 

using circular dichroism spectroscopy.  

 

As a next step to gauge the effect of tandem frameshift resistant repeat insertion in the cofactor 

binding site, we deleted the FSR repeat from M. producens NADH dehydrogenase. The result 

was a stable, yellow-coloured flavin-bound protein. The purified deletion variant was α-helical 

as seen from far-UV CD spectra and did not completely melt even upto 95˚C (Fig. 4E).  
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Figure 4.2: FSR repeat insertion in NADH dehydrogenase. (A) Sequence comparison of FSR and non-FSR 

nitroreductases from Moorea producens 3L (WP_008190547) and Oscillatoria sp. PCC10802 (WP_017715270) 

respectively, at the site of repeat insertion. (B) Crystal structure of O. sp. PCC10802 nitroreductase homodimer 

bound to FMN cofactor molecules. Individual chains are coloured in blue and orange. Black arrows point at the 

site of FSR repeat insertion. (C) Enlarged view of the surface covering the cofactor binding site. Hydrogen bond 

interactions are shown for FMN molecule. Small red spheres are water molecules. (D) and (E) CD and melting 

curves for O. sp. PCC10802 nitroreductase and M. producens NADH dehydrogenase ΔFSR respectively. Red line 

shows the best fit smooth curve. 
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This result suggests that the 32 residue FSR insert in the loop inhibited the binding of flavin 

cofactor molecule and proper folding of NADH dehydrogenase, resulting in the localization of 

the expressed unfolded polypeptide in inclusion bodies. Our assumption was further confirmed 

by insertion of the exact FSR repeat sequence in the non-FSR Oscillatoria sp. homolog 

followed by tests for stability of the protein in solution. As expected, most of the protein ended 

up in inclusion bodies with no possible recovery of well-folded functional protein. The above 

results clearly show that FSR repeat insertion in M. producens NADH dehydrogenase resulted 

in a non-functional variant. 

 

2. Serine/threonine protein kinase /putative ATPase (Moorea producens 3L) 

A second interesting candidate is a 239 kDa single-chain multi-domain serine/threonine protein 

kinase signal transduction protein LYNGBM3L_20360 (EGJ33944.1) from M. producens 3L. 

Seven repeats of FSR heptad sequence “QSAISNQ” have been inserted between the AAA+ 

ATPase and TPR domains of this multi-domain protein. Similarly to dehydrogenase, 147 bp 

(multiple of 3) insertion in this kinase prevents frameshift mutation in the translation of 

essential C-terminal functional domains. Whereas homologs are found broadly distributed in 

other cyanobacteria, this FSR insertion is unique to Moorea. As the heptamer FSR sequence is 

strongly predicted to form a coiled coil, the underlying question here is: Do the tandem repeats 

of this insert possess the ability to assemble into a folded coiled-coil domain and if so, does it 

lead to a change in the oligomeric state of this multi-domain protein?  

 

To answer the above questions, we aimed at the structural and biophysical characterization of 

the FSR insert. I fused the seven heptad repeats of FSR insert in between stabilizing GCN4-

N16V coiled-coil adaptors. To address the two possible heptad registers of the FSR insert, I 

designed two different constructs: QSAISNQ with Q occupying the a and I at the d position of 

the heptad repeat, and ISNQQSA with I and Q at a and d positions respectively. Both constructs 

were recombinantly expressed in E. coli C41 cells, purified under denaturing conditions and 

refolded. Whereas the QSAISNQ construct could be refolded in the presence of high salt buffer 

(20 mM Tris, pH 7.6 and 500 mM NaCl), the other construct ISNQQSA could not be refolded 

to yield a stable protein indicating the former to present the right coiled-coil register. QSAISNQ 

purified protein displayed a typical α-helical spectra (Fig. 4.3). Upon thermal melting, the 

protein showed a gradual decline in the CD ellipticity with residual α-helical character even at 

95˚C, likely originating from the GCN4 adaptors which have a melting point higher than 95˚C. 
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The observed decrease in α-helical signal clearly corresponds to the unfolding of central FSR 

insert.  

 

 

 

Figure 4.3: Characterization of S/T kinase FSR repeat insert. (Top) Schematic representation of the designed 

construct. Seven tandem repeats of the sequence QSAISNQ were fused between two GCN4-N16V coiled-coil 

adaptors. (Middle) Far-UV CD and melting curves. (Bottom) Proteinase K limited proteolysis of the refolded 

protein at different Prot. K concentrations C1 and C2 for increasing time intervals (C1 = 100 μg/ml, C2 = 300 

μg/ml). SDS-PAGE and Western blot analyses of the purified protein denatured in 6M guanidinium chloride. (+ve 

control is a random purified protein containing an N-terminal His tag). 

 

Proteinase K limited proteolysis experiment also confirmed that the insert was folded, as the 

protein was resistant to complete digestion even after 30 min of incubation. Furthermore, we 

observed on SDS-PAGE that the protein formed a stable oligomer which did not dissociate 

even in the presence of 6M guanidinium chloride. Finally, we set-up the protein for 

crystallization at different concentrations in the range of 1-10 mg/ml; however, we could not 

obtain any diffracting crystals. Our results suggest that the heptanucleotide FSR tandem repeat 

insertion in the multi-domain signal transduction protein is likely to assemble as a folded coiled 

coil. 
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4.2.1.2 FSR repeats replacing part of a functional protein domain 

 

1. Restriction endonuclease-like hypothetical MAE_23560 (M. aeruginosa NIES-843) 

Among the identified FSR repeat-containing sequences, we frequently found examples where 

FSR tandem repeats replaced a part of functional protein domain. One such example is a 

putative Uma2 family restriction endonuclease MAE_23560 present in a cyanobacterium 

Microcystis aeruginosa NIES-843. Members of this endonuclease family, generally annotated 

as hypothetical proteins, have greatly expanded in a number of cyanobacterial species. A non-

FSR homolog of MAE_23560 with near sequence identity at the amino acid as well as DNA 

level, MAESPC_05199, exists in a closely related strain M. aeruginosa SPC777. Two full 

repeats of LSVISYQ replace the C-terminal residues of the endonuclease in MAE_23560. This 

FSR insert, also follows the coiled-coil heptad pattern where leucine and isoleucine occupy the 

a and d positions respectively. Other strains of M. aeruginosa, PCC 9809 and PCC 9432 and 

M. panniformis FACHB-1757 share this truncated ortholog. The FSR insertion LSVISYQ in 

all these strains occurred at the same hotspot, but the total repeat length slightly varies.  

 

The closest structural homolog for MAE_23560, sharing 54% sequence identity, is a putative 

nuclease (PDB 3OT2) from Anabaena variabilis ATCC 29413 belonging to the DUF820 

protein family. Visualizing its crystal structure, we observed that FSR repeat in MAE_23560 

replaces the long helix in the fold (yellow α-helix in Fig. 4.4A) with truncation of the long C-

terminal chain (towards red). We proposed that LSVISYQ repeat could form an α-helical coiled 

coil and stabilize the truncated construct. For structural characterization, the two proteins 

MAE_23560 (FSR) and MAESPC_05199 (non-FSR) were recombinantly expressed as 

SUMO-fusions in various E. coli strains. In contrast to its soluble, well-folded non-FSR 

ortholog, protein MAE_23560 was very difficult to handle. Although I could once obtain a 

small amount of soluble protein (Fig. 4.4B), it was not reproducible. Far-UV CD analysis of 

the purified SUMO-cleaved FSR protein showed a mixture of α-helical and β-strand character, 

which unfolded at temperatures > 80˚C (Fig. 4.4C).  
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Figure 4.4: Biophysical characterization of SUMO-MAE_23560. (A) Closest structural homolog of MAE_23560 – 

a putative nuclease belonging to DUF820 (Ava_3926) from Anabaena variabilis ATCC 29413 (PDB ID 3OT2). FSR 

tandem repeat LSVISYQ in MAE_23560 replaces the corresponding C-terminal region (coloured yellow-to-red) 

that forms the dimer interface. (B) SDS-PAGE analysis of Ulp proteolysed SUMO-MAE_23560. (C) CD and melting 

curves for MAE_23560. 

 

 

2. HIRAN domain protein LYNGNBM3L_59020 (Moorea producens 3L) 

A similar example of a FSR repeat replacing part of a functional domain belongs to Moorea 

producens 3L. The parent non-FSR homolog consists of an N-terminal segment of a HipA 

domain fused C-terminally to a HIRAN domain. While HIRAN domain is involved in 

recognizing features associated with DNA damage or stalled replication forks (Iyer et al., 2006; 

Chavez et al., 2018), HipA which possesses a serine/threonine kinase-like fold is proposed to 

affect translation by phosphorylating EF-Tu thereby promoting cell persistence (Schumacher 

et al., 2009). A copy of this protein, containing a FSR replacement, is present in the same 

organism ~  10kb upstream (both on the minus strand) of the non-FSR paralog. Tandem 

repetition of heptad FSR repeat LSAISYQ with a helical secondary structure propensity 

replaces the last β-strand of DNA-binding HIRAN domain (PDB 3K2Y); this would correlate 

into a fold change. We find that the FSR repeat LS(A/V)ISYQ which represents one of the 

most prominently identified frameshift resistant insertion sequence in cyanobacterial species 

conforms well to a heptad coiled-coil repeat pattern. An identical result was seen here during 
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protein expression as for the previous case: while parent non-FSR homolog was soluble, well-

folded and crystallizable, FSR paralog was primarily expressed in inclusion bodies from which 

stable folded product could not be recovered. It seems likely that FSR insertion in the M. 

producens 3L HIRAN domain protein strongly affects the folding of the protein thereby 

disrupting its function. 

 

4.2.1.3 FSR repeats spanning whole protein domain 

Among the collected set of FSR sequences, we identified ORFs encoding hypothetical proteins 

which were totally composed of frameshift resistant tandem repeats. Two examples (see Table 

4.1) from Moorea producens 3L and Nostoc azollae 0708 were selected for structural and 

biophysical studies. While SUMO-fusions of these proteins were slightly soluble, they co-

purified with a large number of non-specifically bound proteins. Even a combination of IMAC, 

ion-exchange chromatography, HIC, SEC, affi-chromatography (Blue, Red) could not yield 

pure protein. These results suggest that the purified products were primarily unfolded with a 

high tendency for aggregation (work done together with Kerstin Bär).  

 

4.2.2 Crystallizing FSR repeat peptides  

As a next step, we obtained chemically-synthesized peptides (GeneCust, Luxembourg) for a 

few FSR repeat sequences, which were mostly heptad repeat based in conformity with the 

periodic coiled-coil pattern, and set them up for crystallization. The detailed list of these 

peptides can be found in Table 4.2. For most peptides, either we did not obtain any crystals or 

only poorly diffracting crystals. 

 

It is interesting to note here that some of the FSR peptides, e.g. QSAISNQ, LSVISYQ, 

ASRIAHR and TSNIKHQ, encode a special heptad repeat pattern a(b’)-b(a’)-c(g’)-d(f’)-e(e’)-

f(d’)-g(c’) with two hydrophobic seams offset by 1 residue. Such coiled-coil helices with 

broader interfaces are called “bifaceted” and have been described in detail in Chapter 1 

(Walshaw et al., 2001; Lupas and Bassler, 2017; Woolfson et al., 2017). Three possible 

bifaceted coiled coils are denoted as Type I (seams share a common residue), Type II (adjacent 

seams) and Type III (seams separated by one residue). Our selected FSR repeats fall in the 

Type III category. As a consequence of wide angular separation of the seams, bifaceted helices 

can produce structures ranging from large diameter closed tubes (or α-cylinders) to fully open 

α-sheets.  
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4.2.3 Proteome analysis to detect FSR repeat proteins 

Are FSR proteins expressed in vivo? To answer this question, we conducted a total protein 

analysis for three different organisms showing a high incidence of FSR repeat proteins: 

Microcystis aeruginosa NIES-843, Burkholderia thailandensis E264 and Yersinia 

pseudotuberculosis YPIII. M. aeruginosa NIES-843 genome features more than 100 ORFs 

containing FSR repeat sequences, while other two have over 50. As we described in the 

previous sections, FSR repeat containing proteins are highly enriched in Moorea producens 

3L, some of which we selected for structural and functional characterization. This organism 

would have been an ideal candidate for proteome analysis, but unfortunately we could not 

access this cyanobacterial strain from the isolators. 

 

Mass spectrometric (MS) analyses of the isolated proteome of all three organisms identified 

two categories of FSR containing proteins: (i) FSR repeats located near the N-terminus of the 

protein, which contained an alternate start codon downstream of the repeat sequence, and (ii) 

C-terminal FSR repeats in proteins, whose non-FSR homologs exist in the same organism. As 

MS analyses did not identify any peptides covering the FSR repeat sequences, it was impossible 

to draw any conclusions regarding their expression in these organisms. 

 

Assuming that the reason for non-identification of FSR repeat peptides is the low expression 

level of these proteins, we decided to enrich FSR proteins prior to MS analysis. We synthesized 

an antibody against a synthetic FSR peptide (LSVISYQ)3 (Davids Biotechnologies, Germany) 

and used it to immunoprecipitate and enrich LSVISYQ repeat containing sequences and its 

slight variants from M. aeruginosa strains NIES-843 (15) and NIES-44 (35). (Based on 

database searches, strains NIES-843 and NIES-44 are predicted to contain 15 and 35 ORFs 

encoding LSVISYQ repeat sequences respectively) The affinity-purified antibody was coupled 

to HiTrap NHS-activated HP-column (GE Healthcare) and incubated with total cell lysate (Fig. 

4.5). After washing residual substrate, bound proteins were eluted from the column at low pH 

using glycine buffer (pH 2.5-3.0) and quickly neutralized by Tris buffer (pH 8.5). Low pH 

assists in protein unfolding, thereby lowering the protein interaction between antibody chains 

and bound specific proteins. MS analysis of eluate from both samples containing enriched FSR 

repeat proteins again did not identify any peptides covering LSVISYQ. 
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Figure 4.5: Covalent immobilization chemistry of purified antibody to the NHS-activated sepharose HP-column 

(GE Healthcare). Prepared beads were incubated with cell lysate to enrich LSVISYQ epitope proteins. 

 

4.2.3 Transcriptome analysis for M. aeruginosa strains NIES-843 and NIES-44 

In order to characterize the FSR repeat containing sequences at the transcriptional level, I 

initially selected only one ORF for mRNA detection – the restriction-endonuclease like protein 

domain MAE_23560 from M. aeruginosa NIES-843. As a first step, total RNA was isolated 

from the harvested cyanobacterial cells using TRIzol-chloroform/isopropanol method. The 

quality of isolated RNA was determined by agarose gel electrophoresis. Subsequently, the 

sample was depleted of any genomic DNA contamination, and reverse transcribed to obtain 

cDNA which was finally utilized for Real-Time PCR analysis using SYBR Green fluorescent 

dye. During DNA replication in PCR cycles, the dye integrates into the double-stranded DNA 

and an increase in fluorescence signal over time can be monitored. Using two sets of primer 

pairs, one covering the N-terminal region (P3/P4) and the second one spanning the C-terminal 

FSR repeat region (P1/P2) of the transcribed gene, we confirmed specific amplification of 

MAE_23560 cDNA (Fig. 4.6). The negative controls were clean, implying that the sample had 

no genomic DNA contamination. This result clearly confirms the expression of MAE_23560 

at the mRNA level. 

 

Later together with Dr. Birte Hernandez, we carried out a whole cell transcriptome analysis to 

identify all transcribed FSR repeat containing ORFs in M. aeruginosa strains NIES-843 and 

NIES-44. Total mRNA (which is usually less than 8% of total RNA) was enriched and reverse 

transcribed. After mRNA quality control, DNA library was prepared and sequenced on MiSeq 

Illumina sequencing platform. Data processing and analysis was done by Max Collenberg 

(Department 6, Max Planck Institute for Developmental Biology). 
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Figure 4.6: RT-PCR analysis for MAE_23560. (Top) Schematic representation of the M. aeruginosa MAE_23560 

ORF. Start (green arrow) and stop (asterisk) sites are marked. Designed primer pairs (P3/P4 for the N-terminal 

region; P1/P2 for the C-terminal region which spans the FSR repeats) for cDNA PCR amplification are shown. 

(Bottom left) Total isolated RNA analyzed on 2% agarose gel confirms a high-quality, non-degraded RNA. (Bottom 

middle and right) Agarose gel analysis of PCR-amplified MAE_23560 cDNA using the two primer pairs. 

 

 

The list of all identified transcripts for both M. aeruginosa strains along with their FSR repeat 

DNA/amino acid sequence and a relative transcriptional value is given in Table 4.3 and Table 

4.4. While most of the identified transcripts encode hypothetical proteins, we identified among 

others a few functionally characterized proteins containing FSR repeats such as hemolysin 

secretion protein, a penicillin-binding protein, GP63-like surface protein, DNA gyrase subunit 

A, FdxN element excision controlling factor protein-like, phosphorglucomutase and 

dihydrofolate synthase. It is interesting to note that DNA gyrase subunit A containing the same 

FSR repeat insertions “GDRRQET” and “PHTPHPT” at identical locations in protein, was 

identified to be expressed in both M. aeruginosa NIES-843 and NIES-44 strains, albeit at a low 

level. We even detected transcripts of MAE_23560, the restriction endonuclease-like 

hypothetical protein containing the LSVISYQ repetition, which we had previously confirmed 

by qRT-PCR analysis. 
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Table 4.3: Identified FSR transcripts in Microcystis aeruginosa NIES-843 

Gene ID Protein name 

 

Repeat sequence (unit length) Rel. 

value 
BAG00445 MAE_06230 TGGGGAGG/ LPHFPTSP (8) 

GTGGGGT/ PHTPHPT (7) 

23.19 

BAG00766 Unknown ACCCCAC/ VGCGVWG (7) 3413.02 

BAG01160 MAE_13380 CAGGAGA/ QETGDRR (7) 

CCCCACA/ PHTPHPT (7) 

55.88 

BAG01427 MAE_16050 CCCTTATCAAGGGGGATCCCCCCGCCTATCGGCACCC/  

PYQGGSPRLSAPPLSRGIPPPIGTPLIKGDPPAYRH (37) 

5840.04 

BAG01492 MAE_16700 (A/C)TTCCCCA/ WGIGELGN or WGSGEVGK (8) 

GGGTGATAGGGTTTTG/ HHPITPKPYHPKTLSP (16) 

74.58 

BAG01820 MAE_19980 TCCCCACT/ SPLPHFPT (8) 47.68 

BAG01932 Unknown CTTCCCCA/ LPHFPTSP (8) 731.75 

BAG02178 MAE_23560 ATCAGTT/ LSVISYQ (7) 114.38 

BAG02224 MAE_24020 AGGAGTC/ RSQESGV (7) 

CCCCACA/ PHTPHPT (7) 

CCCACTT/ PTSHFPL (7) 

CCCCACTT/ PHFPTSPL (8) 

44.51 

BAG02505 MAE_26830 GGGTGT(A/G)/ PTPHTPH (7) 

GGGGAAGT/ TSPLPHFP (8) 

CTGTCTC/ QETGDRR (7) 

14.51 

BAG03192 MAE_33700 CTGATAA/ LSVISYQ (7) 339.59 

BAG03436 MAE_36140 ACACCCT/ TPYTLHP (7) 

CACACCC/ HTPHPTP (7) 

361.26 

BAG03731 penicillin-

binding protein 

AGGAGAC/ RRQETGD (7) 

CCCCA(C/A)T(A/C)/ PHYPTSPT (8) 

CCCCACTTCCCTTT/ PHFPFPTSLSPLPF (14) 

74.79 

BAG04476 MAE_46540 (C/G)GGGTGTT/ RVLGCSGV (8) 

CCCCACTT/ PHFPTSPL (8) 

865.29 

BAG04618 GP63-like 

protein 

TGGGGTG/ HPTPHTP (7) 

TCCTGA(A/C)/ FRIQDSG or VRSQESG (7) 

27.98 

BAG05059 putative 

transposase 

ImeAB' protein 

CCCA(T)CAC/ PTPHTPH or VWGVGCG (7) 154.36 

BAG05134 MAE_53120 GGGGTGT/ TPHTPHP (7) 

CTGACTCCTGAATA/ YSGVSIQESVFRSQ (14) 

56.94 

BAG05278 hemolysin 

secretion protein 

ACCCCAC/ TPHPTPH (7) 398.51 
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Table 4.3 continued 

Gene ID Protein name 

 

Repeat sequence (unit length) Rel. 

value 

BAG05441 FdxN element 

excision 

controlling factor 

protein like 

AGATAAC/ VICYLLS (7) 6.85 

BAG05611 MAE_57890 TTATCAG/ LSVISYQ (7) 6462.11 

BAG05787 MAE_59650 GTGGGG(T/A)(A)/ TPHPTPH (7) 

CTCCTGA/ SGVRSQE (7) 

CTCCCGAATACTGA/ SVFGSQYSGVSIRE (14) 

39.02 

BAG05811 DNA gyrase 

subunit A 

GGGTGTG/ HTPHPTP or GCGVWGV (7) 

CTGTCTC/ ETGDRRQ (7) 

41.36 

BAG05861 Unknown ACCCCAC/ VGCGVWG or TPHPTPH (7) 1498.50 

 

 

Table 4.4: Identified FSR transcripts in Microcystis aeruginosa NIES-44 

Gene ID Protein name 

 
Repeat sequence (unit length) Rel. 

value 

GAL91980 haloacid 

dehalogenase/epoxide 

hydrolase family 

AGGCAAA/ FAFCLLP (7) 

AGGCAAT/ IAYCLLP (7) 

25.62 

GAL93050 Phosphoglucomutase AGGAGAC/ RRQETGD (7) 

AGGAGTC/ RSQESGV (7) 

AGTATTC/ SIQYSVF (7) 

83.55 

GAL93477 putative holliday 

junction resolvase 

YggF 

TGTCTCC/ GDRRQET (7) 

CGTCTCC/ GDGRRET (7) 

123.27 

GAL93975 N44_02555 TGGGGTG/ HPTPHTP (7) 

AACTGAT/ LSVISYQ (7) 

1442.31 

GAL94435 N44_03015 CGTAGGGATGATTC/ ESSLRNHPYGIIPT (14) 206.19 

GAL94705 DNA gyrase subunit A CCCCACA/ PHTPHPT (7) 

GACAGAG/ GDRRQET (7) 

12.45 

GAL95418 dihydrofolate synthase GTGGGGT/ TPHPTPH or VGCGVWG (7) 0.82 

GAL95552 probable membrane 

protein NMA1128 

CTGATAA/ LSVISYQ (7) 396.70 
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4.3 CONTRIBUTIONS TO THIS WORK 

 All bioinformatics work was carried out by Prof. Andrei Lupas and Mateusz Korycinski. 

Sequences used for structural and functional characterization were selected by Prof. Andrei 

Lupas.  

 I carried out the molecular cloning, protein expression, purification (under native or 

denaturing conditions), refolding, biophysical characterization (CD spectroscopy, thermal 

melting curves) and limited proteolysis experiments for all constructs.  

 Crystal screens were set-up by Dr. Reinhard Albrecht and Kerstin Bär. The crystal structure 

for nitroreductase from Oscillatoria sp. PCC10802 was initially phased by Dr. Marcus 

Hartmann. I carried out the manual refinement using COOT and REFMAC5, and a second 

round of molecular replacement to identify and solve all four chains in the asymmetric unit 

cell.  

 I prepared the total protein samples for Microcystis aeruginosa NIES-843, Burkholderia 

thailandensis E264 and Yersinia pseudotuberculosis YPIII for MS analysis. Analysis of the 

identified peptides was done by Mateusz Korycinski against his FSR protein database. 

 I carried out the immunoprecipitation of FSR proteins from M. aeruginosa NIES-843 and 

M. aeruginosa NIES-44 strains using antibody ordered against LSVISYQ peptide. Both 

cyanobacterial strains were cultured by me. 

 Total RNA isolation, cDNA synthesis and qRT-PCR for M. aeruginosa NIES-843 ORF 

MAE_23560 was carried out by me. Whole cell transcriptome preparation was carried out 

by Dr. Birte Hernandez, and data analyzed by Max Collenberg (Department 6, Max Planck 

Institute for Developmental Biology). 
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4.4 DISCUSSION 

 

In this chapter, I have presented my work on the frameshift resistant repeats in proteins. This 

special phenomena occurs when repetition of a DNA motif, whose repeat unit length is not a 

multiple of 3, gives the same amino acid repeat of identical unit length in all three frames of 

equal sense. FSR repeats are impervious to random base mutations. Insertions or deletions, 

which are not a multiple of 3, usually translate into frameshift mutation for the C-terminal 

region of expressed proteins. On the contrary, pure FSR tandem repeats display only local 

sequence perturbations, with the original repeat sequence and periodicity resuming shortly 

afterwards. Comprehensive bioinformatic sequence analysis identified that FSR repetition is a 

common and widespread phenomena across all phylogenetic groups, ranging in repeat unit 

length from 4 bp microsatellites to, in rare cases, extending over a hundred base-pairs. This 

project focused only on FSR repeats of short unit length occurring in bacteria. Such FSR repeats 

were found to be specifically enriched in a few bacterial species, especially some cyanobacteria 

including Microcystis aeruginosa and Moorea producens, and various opportunistic and 

pathogenic bacteria such as Burkholderia pseudomallei, Yersinia pseudotuberculosis, 

Salmonella typhimurium, and other enterobacteria.  

 

While a number of previous reports have highlighted the phenomena and high frequency of 

short DNA tandem repeat insertions in cyanobacteria, none of them have structurally and 

biochemically characterized the resulting protein products. An example of FSR repeat protein 

is pyruvate:flavodoxin oxidoreductase NifJ required for nitrogen fixation in cyanobacteria. 

NifJ catalyzes the transfer of electrons from pyruvate to flavodoxin, which then reduces 

nitrogenase. Nostoc sp. 7120 nifJ gene contains a heptanucleotide FSR sequence CCCCAGT 

tandemly repeated within its ORF (Bauer et al., 1993). It results in the insertion of 12 aa 

sequence (peptide repeat PQSPVPS) within its functional protein domain (mol. wt. 132 kDa) 

without any frameshift mutation occurring in its C-terminal region. The crystal structure of its 

closest structural homolog, the pyruvate:ferrodoxin oxidoreductase (PDB 6CIN) (Chen et al., 

2018), shows that this insertion occurred in a surface loop of domain II which forms part of the 

dimer interface. Other closely related cyanobacterial strains of Nostoc sp. 7120 contain similar 

insertions at the same site within their nifJ genes, but they slightly differ in their size and 

sequence. Interestingly, nifJ was identified in a heterocyst-specific cDNA library, confirming 

the read-out of this gene under nitrogen-limited growth conditions. This poses interesting 
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questions: Is this FSR repeat containing protein expressed and functional? How does the 

protein accommodate this insertion structurally? Is the protein function and stability affected 

compared to its parent non-FSR homolog? If answer to the first question is no, then another 

question arises: What role do such repetitions play in protein evolution and why have they been 

evolutionarily conserved for so long?  

 

To answer these questions, I carried out the structural and biochemical characterization of a 

few selected FSR repeat containing proteins from the two different cyanobacterial species: 

Moorea producens 3L and Microcystis aeruginosa NIES-843. The FSR repeats were classified 

in three main categories – as insertions in functional protein domains, domain replacements or 

repeats constituting entire new ORFs. Special emphasis was placed on heptad FSR repeat 

sequences which displayed high coiled-coil forming probabilities; most frequent among them 

being LSAISYQ, LSVISYQ, QSAISNQ, ASRIAHR, VTSHKSQ, and TSNIKHQ. Alongside, 

I expressed and characterized the closest sequence non-FSR parent homologs of selected FSR 

repeat proteins. The results of in vitro protein characterization studies suggest that FSR repeats 

in proteins are mostly unstructured. While parent non-FSR homologous proteins were properly 

folded and stable in solution, FSR repeat proteins were insoluble after expression. Attempts to 

refold these proteins under various buffer conditions failed to yield stable folded products. 

Therefore, it appears that FSR repeats are rather deleterious at first, affecting overall protein 

folding and function. 

 

M. producens NADH dehydrogenase features a combination of 25 bp and 19 bp FSR repeat 

insertion in a surface loop which covers the FMN binding site. Deletion of this repeat insert, 

thereby making it identical to its non-FSR parent homolog, resulted in a yellow-colored, flavin-

bound, well-folded domain. On the opposite, insertion of this FSR repeat sequence in the parent 

protein gave an unfolded, insoluble protein product which could not be rescued by refolding in 

the presence of flavins. The results inarguably suggest that the 32 aa FSR insertion could not 

be accommodated within the present surface loop as it would be conceivable by formation of 

a novel local secondary structure or a simple extrusion. It rather affected the structure of the 

cofactor binding pocket and the overall protein fold resulting in the loss of protein function. 

Unsurprisingly, as NADH dehydrogenase represents an essential component of the oxidative 

phosphorylation pathway, a non-FSR homolog exists in the same organism. For a second 

protein, the serine/threonine protein kinase/putative ATPase, FSR insertion occurs between 

two domains of this multi-domain signal transduction protein. Seven tandem repeats of the 
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central heptamer FSR insertion, QSAISNQ, were fused between stabilizing GCN4-N16V 

coiled-coil adaptors. Both protein unfolding and limited proteolysis experiments revealed that 

the central insert formed a well-folded core. As the refolded protein was somewhat unstable 

and tended to aggregate into higher molecular mass complexes, it was difficult to establish the 

native oligomeric state of this heptad repeat. However, I could clearly observe stable oligomers 

formed even under denaturing conditions. We observed that most of these frequently identified 

heptad FSR repeats comprise broad hydrophobic interfaces as in bifaceted coiled coils; 

suggesting that they can assemble into higher oligomeric α-helical barrels.  

 

Other FSR candidates, including a putative restriction endonuclease and a HIRAN domain 

protein contain heptad FSR repeats which replace a part of their C-terminal DNA binding 

domains. In both cases, FSR repeat proteins were expressed in the insoluble fraction, in contrast 

to their parent homologs. Similarly, de novo proteins generated by FSR repeat duplication were 

found to be mostly unstructured. From whole cell transcriptome analysis for M. aeruginosa, it 

was clear that FSR repeat proteins, including novel ORFs, are certainly transcribed. However, 

at the proteome level, we could not detect any in vivo FSR repeat peptides. This suggests that 

they are either expressed at low levels or only under certain environmental conditions, which 

is difficult to ascertain at present. 

 

In the cyanobacterial transcriptome analysis, FSR repeat length of 7 and 8 bp was seen 

predominantly with a few ORFs even containing their multiples i.e. 14 and 16 bp. As heptamer 

TRs are overrepresented in many prokaryotes (Mrázek et al., 2007; Zhou et al., 2014); it has 

been hypothesized that 7bp length of the repeat unit corresponds to the size of DNA segment 

that interacts with DNA polymerase active site, thereby facilitating replication slippage. For 

one hypothetical protein, MAE_16050, encoding mRNA had the longest FSR repeat run of 37 

bp length. For this highly transcribed ORF, the FSR sequence repeated almost 7 times 

constitutes nearly the entire length of the gene. The most frequently observed FSR repeat 

sequences included (repeat unit length in brackets): PHTPHPT (7), QETGDRR (7), 

VGCGVWG (7), LSVISYQ (7), VICYLLS (7), WGSGEVGK (8), and their slight variants, 

with a number of ORFs possessing more than one repeat type. As tandem repetition of only 

particular heptanucleotide sequences (GC rich) is significantly enriched, it suggests that DNA 

replication slippage is not random but a highly sequence specific mechanism. The results 

further show that Microcystis strains frequently reutilize the same repeat sequences within their 
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genome, unlike the sea anemone N. vectensis, where majority of the tandem repeat sequences 

are utilized only once (Naamati et al., 2009). 

 

In summary, our data suggest that FSR repeat amplification in bacterial genomes is a rather 

recent evolutionary event. Occurrence of similar repetitions across different bacterial genomes 

and the presence of orthologous protein-coding genes with similar FSR repeat elements suggest 

that at least a small fraction has survived purifying selection. In agreement with a previously 

proposed ‘grow slow and moult’ model of de novo protein emergence (Bornberg-Bauer et al., 

2015), it appears that FSR repetition starts by extending an open reading frame or generating 

novel protein-coding genes whose products are initially unstructured and non-globular, with 

the potential to non-specifically interact with other cellular components. Over evolutionary 

time-scales, some of these genes may acquire beneficial mutations and the encoded proteins 

become more structured, thereby assuming novel functions, which might be important in 

adaptation to host-specific ecological niches. 
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4.5 METHODS 

 

4.5.1 Molecular cloning 

For recombinant expression of proteins in E. coli, DNA fragments were codon optimized and 

custom synthesized by gene synthesis (Eurofins). Full-length sequences for MAE_23560 

(WP_012265514), MAESPC_05199 (EPF16067), LYNGBM3L_59020 (EGJ29873), 

LYNGBM3L_59090 (EGJ29882), LYNGBM3L_51520 (EGJ30341), Aazo_5130 

(ADI66200), Oscillatoria sp. PCC10802 nitroreductase (WP_017715270) and Moorea 

producens 3L NADH dehydrogenase (WP_008190547) were cloned in pETHis_1a (G. Stier, 

EMBL Heidelberg) using NcoI/BamHI restriction sites for overexpression with an N-terminal 

6xHis-tag (cleavable by TEV protease) and in pET28b-SUMO between AgeI/HindIII sites for 

overexpression with an N-terminal 6x-His-SUMO tag (cleavable by Ulp protease). The 

fragment corresponding to residues 711-759 of M. producens S/T protein kinase (EGJ33944) 

fused to N and C-terminal GCN4-N16V adaptors was cloned in pASK-IBA vector between 

Eco31I restriction sites. This construct contains a non-cleavable C-terminal 6x-His tag. 

 

4.5.2 Protein expression and purification 

The plasmids were transformed into E. coli strains BL21 (DE3), C41 (DE3) or ArcticExpress 

(DE3). Cells were grown in LB medium containing kanamycin (50 μg ml-1) at 37˚C until OD600 

= 0.6-0.8 and induced with 0.5-1 mM IPTG. Following incubation for 4 h at 37˚C for E. coli 

BL21 and C41 strains and for 24 h at 12˚C for ArcticExpress, cells were harvested by 

centrifugation. The cell pellets were resuspended in lysis buffer containing 20 mM Tris, pH 

7.6, 150 mM NaCl, 4 mM MgCl2, DNaseI (RNase-free), 1 mM PMSF and cOmplete EDTA-

free Protease Inhibitor Cocktail (Roche), and subsequently lysed by sonication on a Branson 

Sonifier 250/Microtip 5 at output control 5 and 50% duty cycle. 

 

SUMO-fused Oscillatoria sp. PCC10802 nitroreductase and LYNGBM3L_59090 constructs 

were purified under native conditions. Following centrifugation of the cell lysate to remove 

cell debris, the supernatant was loaded on a Ni-NTA Agarose column pre-equilibrated with 

buffer A (20 mM Tris, pH 7.6, 150 mM NaCl). Bound proteins were eluted with a two-step 

gradient including a step of 5% buffer B (20 mM Tris, pH 7.6, 500 mM NaCl, 0.5 M imidazole) 

followed by linear gradient of 5-100% buffer B. Protein containing fractions were dialyzed 

against buffer A and incubated with Ulp protease for His-SUMO-tag cleavage. Cleaved protein 
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was collected by re-loading the sample on Ni-NTA. Fractions containing the cleaved protein 

were pooled and purified to homogeneity by gel filtration on Superdex 200. Other constructs 

were purified under denaturing conditions. Cell lysate was stirred in 6 M guanidinium 

hydrochloride (Gua-HCl) at room temperature for 1 h. Following centrifugation, supernatant 

was loaded onto Ni-NTA Agarose column equilibrated with 20 mM Tris, pH 8.0, 300 mM 

NaCl, 6 M Gua-HCl. Bound proteins were eluted with a linear gradient of 0-0.5 M imidazole 

in the same buffer. Purified proteins were refolded by dialysis against different buffers varying 

in their composition, pH, salt concentration etc. 

 

4.5.3 CD spectroscopy 

Circular dichroism (CD) spectra were recorded on a Jasco J-810 spectropolarimeter equipped 

with a JASCO-423S Peltier Controller. CD measurements were performed using a cuvette with 

a path length of 1 mm. Single CD spectra were recorded at a speed of 100 nm/min with a data 

pitch of 0.5 and a response time of 1s. Each spectrum represents the average of five scans 

corrected by the signal of buffer scan. Thermal melting curves were recorded by monitoring 

ellipticity at indicated wavelengths with a temperature range of 10-95˚C, applying a ramp of 

0.5˚C/min. Blank correction, data smoothing, and calculation of molar ellipticities and melting 

temperatures was performed using Spectra Manager Software (JASCO). 

 

4.5.4 Crystallization, data collection and structure determination 

Crystallization trials were set up in 96-well sitting-drop plates with drops consisting of 300 nl 

protein solution and 300 nl reservoir solution (RS), and reservoirs containing 50 μl RS. All 

crystals were cryoprotected, loop mounted and flash-cooled in liquid nitrogen. Best crystals for 

Oscillatoria sp. PCC10802 nitroreductase were obtained under the condition 0.1 M MES pH 

6.5, 30% (w/v) PEG4000 and soaked in 5% PEG200 before harvesting. Data were collected at 

100 K and a wavelength of either 1.07 Å at beamline X10SA of the Swiss Light Source 

(Villigen, Switzerland), using a PILATUS 6M-F hybrid pixel detector (Dectris Ltd.). Data was 

indexed, integrated and scaled using XDS (Kabsch, 2010). The structure was solved by 

molecular replacement with MOLREP (Vagin and Teplyakov, 2000), using PDB entry 3GE6 

as the search model. After manual modeling of Chain A with Coot (Emsley and Cowtan, 2004) 

and refinement with REFMAC5 (Murshudov et al., 1999), other chains in the asymmetric unit 

cell were replaced by molecular replacement with Chain A.  
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4.5.5 Culturing Microcystis aeruginosa cells 

The cyanobacterial cultures Microcystis aeruginosa NIES-843 and NIES-44 were obtained 

from the National Institute for Environmental Sciences, Japan. Conditions for culturing are 

followed according to the guidelines of authors. The composition of media can be found in 

Appendix III. Cell density was measured at 750 nm. 

Microcystis aeruginosa NIES-843 (isolated from Lake Kasumigaura freshwater by Shigeto 

Otsuka, 1997): MA liquid medium, 25˚C, light intensity 10-20 µmol photons/m2/s, Light/Dark 

cycle: 10L: 14D (Otsuka et al., 2001) 

Microcystis aeruginosa NIES-44 (isolated from Lake Kasumigaura freshwater by Makoto M. 

Watanabe, 1974): CB liquid medium, 25˚C, light intensity 20-30 µmol photons/m2/s, 

Light/Dark cycle: 10L: 14D, unicellular, 6μm- 8μm cell size. (Ichimura et al., 1971) 

 

4.5.6 Proteome analysis 

Microcystis aeruginosa NIES-843, Burkholderia thailandensis E264 and Yersinia 

pseudotuberculosis YPIII were cultivated to late logarithmic phase and harvested. Cell pellets 

were resuspended in SDS protein extraction buffer (4% (w/v) SDS, 5 mM glycerol-2-

phosphate, 5 mM sodium fluoride, 5 mM sodium orthovanadate, 10 mM EDTA in 100 mM 

Tris/HCl pH 8.0). The samples were incubated at 95˚C for 10 min, vortexed every 2-3 min and 

later chilled on ice. Cells were lysed using sonication, two rounds for 30 seconds on a Branson 

Sonifier 250/Microtip 5 at output control 4 and 40% duty cycle. Samples were incubated with 

10 mM DTT at room temperature for 45 min to reduce disulfide bonds and later in 5.5 mM 

IAA at room temperature in dark for 45 min to alkylate the reduced cysteine disulfide bonds. 

Cell extracts were centrifuged at 13,000 rpm for 5 min and the supernatants collected. Total 

protein was precipitated by mixing with 8 sample volume ice-cold acetone and 1 sample 

volume ice-cold methanol and kept at -80˚C overnight. Protein precipitates were washed 

several times with 5 ml ice-cold 80% acetone and centrifuged at 1,000 rpm for 5min at 4˚C. 

The pellets were air dried and rehydrated in urea buffer (6 M Urea, 2 M thiourea in 100 mM 

Tris/HCl pH 7.5) before analyzing in MS. 

 

4.5.7 Immunoprecipitation by coupling antibody to NHS-activated HP column 

HiTrap NHS-activated HP 1 ml column (GE healthcare) coupled to the antibody was prepared 

according to the instructions provided by the supplier. Affinity-purified antibody was obtained 

against the synthetic peptide “(LSVISYQ)3” (Davids Biotechnologie, Germany). The antibody 
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was exchanged into the coupling buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 8.3) by buffer 

exchange using a PD-10 column and concentrated to 2 mg/ml. Column was washed with 3×2 

ml 1 mM HCl and incubated with 1 ml antibody solution for 1 h at room temperature. 

Afterwards, non-specifically bound ligand and uncoupled excess active groups in the column 

were deactivated by washing the column multiple times with Buffer A (0.5 M ethanolamine, 

0.5 M NaCl, pH 8.3) and Buffer B (0.1 M sodium acetate, 0.5 M NaCl, pH 4). Finally the 

column was charged with washing buffer (50 mM Tris pH 7.5, 150 mM NaCl, protease 

inhibitor, 1 mM PMSF). Simultaneously, cell lysates from M. aeruginosa strains NIES-843 

and NIES-44 were prepared. Harvested cells were resuspended in 1 ml of the extraction buffer 

(25 mM HEPES pH 7.3, 130 mM NaCl, 10 mM KCl, 4 mM MgCl2, 0.5% NP-40 supplemented 

with protease inhibitor cocktail plus 1 mM PMSF) and lysed using a combination of freeze-

thaw (3 rounds liquid N2/70˚C) and sonication (3 times, 30 seconds on a Branson Sonifier 

250/Microtip 5 at output control 4 and 40% duty cycle). The antibody-coupled columns were 

injected with cyanobacterial cell lysates and incubated for 4 hrs in cold. Subsequently the 

columns were washed thrice with washing buffer and eluted with 2×1 ml of 0.1 M glycine-HCl 

(pH 2.4) , which was neutralized later with 1 M Tris (pH 8.5). The eluted proteins were then 

subjected to mass spectrometric analysis.  

 

4.5.8 Total RNA isolation 

Total RNA was isolated using TRIzol Max Bacterial RNA Isolation Kit (Ambion, Life 

Technologies). 100 μl Microcystis aeruginosa NIES-843 wet cell pellet was resuspended in 

100 μl of preheated Max Bacterial Enhancement Reagent and incubated at 95˚C for 4 min. To 

this, 500 μl of TRIzol Reagent was mixed. Additional freeze/thaw cycles (freeze in liquid 

nitrogen, then thaw at 70˚C) were carried out to complete the cell lysis. This was followed by 

phase separation to isolate total RNA. 200 μl of ice-cold chloroform was added to the total cell 

lysate, mixed vigorously and centrifuged at 12,000×g for 15 min at 4˚C. The mixture separated 

into a lower red phenol-chloroform phase and an upper RNA containing aqueous phase. The 

aqueous phase was gently transferred to a new tube and mixed with 0.5 ml of cold isopropanol 

to precipitate RNA. After 10 min incubation at room temperature, the tubes were centrifuged 

at 15,000×g for 10 min at 4˚C. RNA pellet was washed once in 75% ethanol, air-dried and 

finally resuspended in 50 μl of RNase-free water supplemented with 0.5 μl Ribolock RNase 

Inhibitor before freezing at -80˚C. RNA quality and quantity was calculated from absorbance 
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at 260 nm and 280 nm on a Nanodrop spectrophotometer. For pure, non-degraded RNA 

samples, the value A260/A280 should be around 2.0-2.2. 

 

4.5.9 cDNA preparation 

2 μl DNase-I (RNase free) was added to the isolated RNA and incubated at 37˚C for 2 hrs to 

deplete the sample of genomic DNA contamination. After heat inactivation of DNase-I at 75˚C 

for 10 min, 4 μl SuperScipt VILO Master Mix (contains SuperScript™ III RT, RNaseOUT™ 

Recombinant Ribonuclease Inhibitor, a proprietary helper protein, random primers, MgCl2 and 

dNTPs) was added to upto 2.5 μg RNA in a 20 μl total reaction volume, gently mixed and 

incubated at 25˚C for 10 min, followed by 42˚C for 1 h and then 85˚C for 5 min to terminate 

the reaction. A negative RT control for qPCR experiment was processed simultaneously, 

containing equal amounts of RNA but heat-inactivated VILO reverse transcriptase. Finally 1 

μl of RNase A and 1 μl of RNase H were added to both reaction tubes and incubated at 37˚C 

for 1-2 hrs to degrade RNA.  

 

4.5.10 qRT-PCR 

The obtained cDNA was used in a 20 μl PCR reaction mixture containing 2 μl of RT reaction 

(cDNA), 1 μl (0.3 μmol) each of forward and reverse primer, 6 μl sterile water and 10 μl SYBR 

Green PCR Master Mix (Thermo Fisher). The qRT-PCR experiment was carried out in a 

Toptical theremocycler (Analytik Jena), and the program set-up and data analysis performed 

with the qPCRsoft3.1 software. The PCR cycle was: 1 cycle at 95˚C for 10 min, and 40 cycles 

of [denaturation at 95˚C for 20s, annealing at 58˚C for 30s, and extension at 72˚C for 1 min]. 

Blue channel fluorescence signal was recorded during the extension step, with excitation at 470 

nm and detection at 520 nm. At the end, DNA melting curves were recorded in the temperature 

range 60-95˚C with a heating rate of 5˚C/s. No-cDNA template control (NTC) and no-RT 

sample (NRT) were used as negative controls for qRT-PCR.  

 

4.5.11 Transcriptome analysis 

Total RNA was isolated using a combination of TRIzol reagent and Direct-Zol RNA Mini-

Prep Plus kit. The upper colorless aqueous phase containing RNA (see sect. 4.4.8) was trans-

ferred to Zymo-Spin IIICG Column2 and centrifuged. The column was washed twice each with 

Direct-zol RNA PreWash and RNA Wash buffers. Then, 80 μl of DNase/RNase-free water was 

added directly to the column matrix and eluted in an RNase-free Eppendorf. 1.5 μl of RiboLock 
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RNase Inhibitor was added to the isolated RNA. To deplete any genomic DNA contamination, 

the total isolated RNA was treated with 10 μl DNaseI (Zymo Research) for 1 h at room 

temperature. The sample was purified and concentrated using a ZYMO Research RNA Clean 

& Concentrator RCC-5 kit. Before storing at -80˚C, eluted total RNA was again supplemented 

with 0.75 μl of RiboLock RNase Inhibitor. Final amount of isolated RNA was estimated to be 

~ 1 μg. 

 

Subsequently, rRNA was depleted from the total RNA with Ribo-Zero rRNA removal kit. RNA 

quality and quantity were checked on a Bioanalyzer using RNA Pico Chip. This was followed 

by cDNA library preparation using TruSeq RNA Sample Preparation v2 kit (Illumina). 5 μl of 

mRNA at a concentration of 10-15 ng/μl was used for library preparation and final quality 

control was done using a DNA 1000 Chip on Bioanalyzer. After sequencing on the Illumina 

MiSeq V3 platform, data processing and analysis was carried out by Max Collenberg. 
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Appendix I 

 

 

 

Organisms and strains 

 

Strain Description/Genotype Source 

Bacteria 

E. coli TOP10 F- mcrA Δ( mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

Δ lacX74 recA1 araD139 

Δ( araleu)7697 galU galK rpsL (StrR) endA1 nupG 

Invitrogen 

E. coli XL-1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F´ proAB lacIq Z∆M15 Tn10 (Tetr )] 

Agilent 

E.coli BL21 ( DE3) F– ompT gal dcm lon hsdSB(rB
–mB

–) λ(DE3 

[lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λ
S) 

Agilent 

E. coli BL21-Gold 

(DE3) 

B F– ompT hsdS(rB – mB – ) dcm+ Tetr gal λ(DE3) 

endA The 

Agilent 

E. coli C41 (DE3) F– ompT gal dcm hsdSB(rB- mB-)(DE3) Lucigen 

E. coli Arctic 

Express (DE3) 

B F– ompT hsdS(rB – mB – ) dcm+ Tetr gal λ(DE3) 

endA Hte [cpn10 cpn60 Gentr ] 

Agilent 
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Appendix II 

 

 

Plasmids used in this study 

 

Vector Application/ 

Description 

Cloning sites Antibiotic 

Resistance 

Source/ 

Reference 

 

pET28b C-ter 6x-His tag NcoI/XhoI Kanamycin Novagen 

pETHis1a N-ter 6x-His tag NcoI/BamHI Kanamycin Bogomolovas et al., 2009 

pETHis1a-NdeI N-ter 6x-His tag NdeI/BamHI Kanamycin (derived from pETHis1a) 

pET28b- 

SUMO 

N-ter 6x-His-

SUMO tag 

AgeI/HindIII Kanamycin (inserted SUMO3 in 

NdeI/BamHI of pET28b) 

pASK-IBA2 C-ter strep tag XbaI/HindIII Ampicillin IBA Lifesciences 

pASK-IBA2- 

HisTEV  

GCN4-pII 

N-ter 6x-His-

TEV-GCN4-pII 

C-ter GCN4-pII 

BsaI  (derived from  

pASK-IBA2) 

pASK-IBA2-

HisTEV 

GCN4-N16V 

N-ter 6x-His-

TEV-GCN4N16V 

C-ter GCN4N16V 

BsaI/HindIII Ampicillin (derived from  

pASK-IBA2) 

pBXMCS4 High-copy;  

xylose-inducible; 

C. crescentus 

NdeI/XbaI Gentamycin Thanbichler et al., 2007 

pCDNA3.1 Mammalian gene 

expression 

HindIII/AgeI Neomycin/ 

Ampicillin 

Invitrogen 
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Appendix III 
 

 

Media composition 

Name Composition (per L) Organism 

LB 10 g BD Bactotryptone 

5 g BD Bactoyeast extract 

5 g NaCl, pH 7.0 with NaOH 

15 g agar for plates 

 

E. coli 

M9 8.5 g Na2HPO4.2H2O 

3.0 g KH2PO4 

1.0 g NH4Cl (or 15NH4Cl) 

0.5 g NaCl 

4.0 g glucose (or 13C-glucose) 

0.1 mM CaCl2 

2.0 mM MgSO4 

 

E. coli 

PYE 2 g Bactopeptone 

1 g Yeast extract 

0.2 g MgSO4.7H2O 

 

Caulobacter crescentus 

NA1000 

MA 5 mg Ca(NO3)2.4H2O 

10 mg KNO3  

5 mg NaNO3  

4 mg Na2SO4  

5 mg MgCl2 · 6H2O  

10 mg β–Na2glycerophosphate.5H2O 

0.5 mg Na2EDTA.2H2O  

0.05 mg FeCl3.6H2O  

0.5 mg MnCl2.4H2O  

0.05 mg ZnCl2  

0.5 mg CoCl2.6H2O  

0.08 mg Na2MoO4.2H2O  

2 mg H3BO3  

50 mg Bicine  

100 mL Distilled water  

pH 8.6 

 

Microcystis aeruginosa 

NIES-843 
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Media composition (continued) 

Name Composition (per L) Organism 

CB 15 mg Ca(NO3)2.4H2O 

10 mg KNO3  

4 mg MgSO4.7H2O 

5 mg β–Na2glycerophosphate.5H2O 

0.01 μg Vitamin B12 

0.01 μg Biotin 

1 μg Thiamine HCl 

0.3 mg Na2EDTA.2H2O  

0.05 mg FeCl3.6H2O  

0.01 mg MnCl2.4H2O  

0.03 mg ZnCl2  

0.001 mg CoCl2.6H2O  

0.0008 mg Na2MoO4.2H2O  

50 mg Bicine  

100 mL Distilled water  

pH 9.0 

 

Microcystis aeruginosa 

NIES-44 
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Appendix IV 

 

 

SUPPLEMENTARY METHODS 

 

Preparation of chemically competent Escherichia coli  

100 ml LB media containing the appropriate resistance gene antibiotic was inoculated with 5 

ml overnight bacterial pre-culture and incubated at 37˚C, 180 rpm until OD600 nm of 0.4-0.6 was 

reached. Bacterial growth and cell density was monitored with Genesys 10S UV-Vis 

spectrophotometer (Thermo Scientific). Cells were harvested by centrifugation at 4000 rpm for 

5 min at 4˚C, washed once in ice-cold 0.1 M CaCl2, and incubated overnight on ice. Afterwards 

cells were centrifuged and gently resuspended in fresh 0.1 M CaCl2 supplemented with 10% 

glycerol. 100 μl aliquots were flash frozen in liquid nitrogen and stored at -80˚C. 

 

Transformation of competent Escherichia coli cells 

100-300 ng of plasmid DNA was added to 100 μl of competent cells and incubated on ice for 

10 min. Cells were heat shocked for 90 s at 42˚C and again kept on ice for 2 min. 1 ml of warm 

LB was added and the cells were incubated at 37˚C for 1 h to express the antibiotic resistance 

gene. Afterwards, cells were harvested at 4000 rpm for 5 min, plated onto selection media 

plates and incubated overnight at 37˚C. Positive colonies were tested by plasmid DNA 

sequencing using appropriate forward and reverse primers. 

 

Preparation of electrocompetent Caulobacter crescentus cells 

100 ml PYE media containing 0.5 μg/ml gentamycin was inoculated with 5 ml overnight pre-

culture and incubated at 30˚C, 180 rpm until OD660 nm of 0.4-0.6 was reached. After cooling on 

ice, cells were harvested by centrifugation at 4000 rpm for 10 min at 4˚C. The pellet was 

washed twice in ice-cold water, and once in ice-cold 10% glycerol. Finally, the cells were 

resuspended in 10% glycerol to a final concentration of 1011 cells/ml. The cell suspension was 

kept on ice for 30-60 mins, and later 50 μl aliquots were flash frozen in liquid nitrogen and 

stored at -80˚C. 
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Electroporation of electrocompetent Caulobacter crescentus cells 

50 ng of plasmid was added to 50 μl of C. crescentus electrocompetent cells and mixed by 

gentle tapping. Cells were subjected to an electric pulse on a Bio-Rad GenePulser with the 

following settings: 25 μF, 2.5 kV, 400 Ω. The typical time constant is ~ 9.1 ms. Immediately, 

950 μl of PYE media was added to the cuvette, mixed gently and transferred to a new 

Eppendorf tube. The cells were incubated at 30˚C, 200 rpm, for 2 hrs, later harvested by 

centrifugation at 4000 rpm for 5 min and spread on selective media plates. 
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