
An Algorithm to Build a Multi-Genome Reference
and its Application

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Seyedeh Leily Rabbani

aus Mashhad, Iran

Tübingen
2018

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualikation: 04.10.2018
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Detlef Weigel
2. Berichterstatter: Prof. Dr. Michael Kaufmann

Acknowledgement

Firstly, I would like to thank my supervisor Prof. Dr. Detlef
Weigel, Director at the Max Planck Institute for Developmental
Biology. Without his steadfast support and insight this project
would not have come to such a fruitful conclusion.

I would also like to acknowledge my external supervisor Prof.
Dr. Michael Kaufmann of the Department of Computer Science
at the University of Tübingen for his support during the years
of my PhD. He was always on hand to offer invaluable advice
and guidance. Thanks are also due to Prof. Dr. Kay Nieselt
and Prof. Dr. Stephan Ossowski for their gracious acceptance
of their role as thesis defence committee members.

I would also like to give special thanks to Jonas Müller. Without
his help it would have been extremely difficult to overcome those
unforeseen challenges which arose along the way. Special thanks
are also due to Dr. Jörg Hagmann who was not only a valued
colleague but also a great friend.

Moreover, I would like to thank Dr. Rebecca Schwab for be-
ing a constant light that guided me through the course of my
PhD.

Special mention should also be given to Hülya Wicher for her
skill navigating the labyrinthine bureaucracy and speeding me

1

2

on my way.

I would also like to express my appreciation to Dr. Ilja Bezrukov
for helping me in hard times, and all the other members of Weigel
world for making my life full of joy and fun during my time in
Tübingen.

Finally, I would like to acknowledge Dr. Barbara Hummel for her
precious help in translating the abstract into German, my par-
ents, my sister and my brother who have provided me with moral
support throughout the difficult times, Simon Rapple for never
leaving me alone in the most arduous of times and my friends
Maryam, Kasra, Sofia, Maria, Sandra, Nicolas, Jorge, Stefan,
Farshad, Shervin, Reza, Vahid, Pari and Moji who proved there
is no border for friendship and were always there for me without
question or hesitation.

Zusammenfassung

Das Erbgut eines Organismus ist in seiner DNA-Sequenz gespe-
ichert. DNA-Sequenzierung versucht, Stücke dieser Informa-
tion zu lesen, die anschließend zusammengesetzt werden, um
vollständige DNA-Komplemente zu generieren. In den letzten
zwanzig Jahren wurden in diesen Technologien erstaunliche Fort-
schritte erzielt. Diese fortschrittlichen Methoden haben zu einer
enormen Mengen an Sequenzdaten mit extremer Diversität gefüh-
rt und haben die Resequenzierung eines ganzen Genoms ermöglic-
ht. Daher zielen viele groß angelegte Genomprojekte darauf
ab, diese Daten zu untersuchen und Tausende, wenn nicht noch
mehr, ähnlicher Genome gleichzeitig zu analysieren. Herkömmli-
cherweise wurde dieser Vergleich durch das Vergleichen einiger
weniger ähnlicher Genome durchgeführt, wobei eines als Referenz
für alle diente und dem direkten Vergleich mit anderen Genomen
vorausging. Der Vergleich der großen Menge an erzeugten Daten
mit nur einem einzigen Referenzgenom ignoriert jedoch einen rel-
evanten Teil der verfügbaren Diversität.
Um die Einschränkungen zu überwinden, die sich aus der Ver-
wendung eines einzelnen Referenzgenoms ergeben, wird in dies-
er Arbeit eine Methode vorgeschlagen, die einen Vergleich mit
mehreren qualitativ hochwertigen Referenzgenomen gleichzeitig
ermöglicht. Zu diesem Zweck wurde ein Algorithmus entwick-
elt, der einen Graph als Multi-Genom-Referenz erstellt, um den
Referenzbias zu entfernen und die Downstream-Analyse zu vere-
infachen.

3

4

Einzelne spezifische Markov-Kettenmodelle wurden auf allen un-
tersuchten Genomsequenzen sowie ihrer berechneten lokalen paar-
weisen Alignments trainiert. Dies ermöglicht dem Algorithmus,
die Struktur der Daten zu erfassen und Genome, die eine Reihe
von Unterschieden aufweisen können, zu vergleichen. Eines der
Ziele des Algorithmus ist es, ähnliche Regionen innerhalb sowie
zwischen DNA-Sequenzen zu clustern und für jedes Cluster einen
Repräsentanten zurückzugeben. Diese Repräsentanten werden
später als Knoten im Graphen verwendet. Die Verwendung des
Repräsentanten eines jeden Clusters anstelle aller Mitglieder eines
Clusters entfernt unwesentliche Variationen durch Zusammen-
fassung der orthologen1 und paralogen2 Regionen, wodurch die
Darstellung mehrerer Genome vereinfacht und eine merkliche
Menge an Speicherplatz gespart wird Der erstellte Graph stellt
alle Daten dar, indem die Shannon-Informationen minimiert wer-
den. Daher muss kein enziger Parameter angepasst werden. Um
die Leistung der trainierten Markov-Kettenmodelle zu evaluieren,
wurde außerdem ein Werkzeug entwickelt um DNA-Sequenzen zu
komprimieren. Es schätzt die Menge an geteilten Informationen
zwischen Genomen und ermöglicht einen globalen Genomvergle-
ich.
DNA-Sequenzierungstechnologien erzeugen fragmentierte Seque-
nzen, sogenannte Sequenzierreads, mit unterschiedlichen Längen.
Diese Sequenzierreads werden dann zusammengefügt, um ein
Genom zu generieren. Während es mit ausreichenden Reads
möglich ist, ganze Genome de novo zu assemblieren, ermöglicht
die Verfügbarkeit von genügend ähnlichen Genomen die Genom-
zusammensetzung durch Mappen gegen eine Referenz. Moderne
Technologien sind nicht in der Lage, relativ lange Fragmente,
die lange Sequenzreads genannt werden, mit geringen Kosten
herzustellen. Ich gehe davon aus, dass in Zukunft, selbst mit sehr

1Regionen mit einer gemeinsamen Abstammung als Ergebnis eines Spezi-
ationsereignisses.

2Regionen mit einer gemeinsamen Abstammung als Ergebnis eines Du-
plizierungsereignisses.

5

billigen langen Reads, nicht jedes Genom de novo zusammenge-
setzt wird, sobald genügend gut zusammengesetzte Genome zur
Verfügung stehen. Um Unterschiede zu verfügbaren Genomen
zu identifizieren, sollten lange Reads mit einem Genomgraphen
als Referenz verglichen werden. Obwohl sich mehrere Studien
auf das Erstellen solcher Graphen konzentriert haben, ist das
Mapping gegen einen Graphen und das Finden einer optimalen
Übereinstimmung zwischen einem Pfad in einem Graphen und
einem Sequenzierread immer noch eine Herausforderung. Daher
habe ich auch einen Mapping-Algorithmus entwickelt, um den
Pfad in einem Graphen zu suchen, der am besten zu einer Se-
quenz passt. Die vorgeschlagene Methode ist unabhängig von der
Länge eines Sequenzierreads. Es berücksichtigt sehr ähnliche Re-
gionen zwischen einem Sequenzierread und einem Genomgraphen
und verwendet sie als Seeds. Indem die Pfade zwischen den Seeds
durchlaufen werden, wird ein Alignment-Graph erzeugt und der
Pfad in diesem Graphen mit der größten Übereinstimmung mit
dem Read wird als Mapping-Ergebnis gewählt. Um diesen Weg
zu finden, werden Markov-Kettenmodelle auf den Sequenzinhal-
ten des Genomgraphen, der Reads sowie der Seeds trainiert.
Die Modellparameter werden dann angewendet, um die Pfade in
dem Alignmentgraphen zu gewichten. Die vorgeschlagenen Algo-
rithmen liefern bei relativ kleinen Datensätzen effektive Ergeb-
nisse und halten die Option für zukünftige Verbesserungen offen.
In den nächsten Kapiteln wird das Ergebnis des Algorithmus
angwandt auf mehrere E.coli - und Hefe-Genome sowie auf ein
Chromosom des A.-thaliana-Genoms vorgestellt.
Ich glaube, dass die vorgestellten Algorithmen einen Fortschritt
in der Analyse der Sequenzdaten darstellen und jenen Wissensch-
aftlern einen Weg aufzeigen werden, die daran interessiert sind,
eine Datenstruktur aufzubauen, die mehrere Genome zusammen
darstellt.

6

Abstract

The genetic material of an organism is stored in its DNA se-
quence. DNA sequencing technologies attempt to read pieces of
this information that are subsequently put together to regenerate
complete DNA complements. Astonishing advances have been
made in these technologies over the last twenty years. These ad-
vanced methods have resulted in vast quantities of sequence data
with extreme diversity and have made resequencing of an entire
genome possible. Therefore, many large-scale genome projects
now aim to mine this data and analyse thousands, if not more,
similar genomes together. Conventionally, this comparison has
been done by comparing a few similar geno-mes whereby one
served as a reference for all, preceding direct comparisons of other
genomes. However, comparing a large number of generated data
against only a single reference genome misses a relevant portion
of available diversity.
To overcome the limits imposed by using a single reference geno-
me, in this dissertation a method is proposed that allows a com-
parison against several high-quality reference genomes simulta-
neously. To this end, an algorithm has been developed that
creates a graph as a multi-genome reference to remove the ref-
erence bias and to simplify downstream analysis.
Individual specific Markov chain models are used to train over
the entire set of genome sequences studied as well as its obtained
local pairwise alignments. It enables the algorithm to capture
the structure of data and to compare genomes with a range of

7

8

differences together. One of the goals of the algorithm is clus-
tering similar regions within and between DNA sequences and
returning a representative for each cluster. These representatives
are used later as vertices on the graph. Using the representative
of each cluster rather than all its members results in removing
unremarkable variations by collapsing the orthologous3 and par-
alogous4 regions, thus simplifying the representation of several
genomes and saving a noticeable amount of memory storage. The
built graph represents all the data by minimizing the Shannon
information. Therefore, there is no need to adjust any arbitrary
parameter. Furthermore, to evaluate the performance of the
trained Markov chain models, a DNA sequence compression tool
has been developed. It estimates the amount of shared informa-
tion between genomes and allows for global genome comparison.
DNA sequencing technologies generate fragmented sequences,
called sequencing reads, with different lengths. The sequenc-
ing reads are then assembled together to regenerate a genome.
While with sufficient reads it is possible to de novo assemble
entire genomes, the availability of sufficient similar genomes en-
ables genome assembly by mapping against a reference. Modern
technologies are incapable of producing relatively long fragments,
called long sequencing reads, with a low cost. I anticipate that
in the future, even with very cheap long reads, not every genome
will be assembled de novo once enough numbers of well assem-
bled genomes are available. To identify differences from available
assemblies long reads should be mapped against a genome graph
as a reference. Although several studies have focused on creat-
ing such graphs, mapping against a graph and finding an optimal
match between a path on a graph and a sequencing read is still a
challenge. Therefore, I have also designed a mapping algorithm
to search for the path on the graph that fits a sequencing read
the best. The proposed method is independent of the length

3Regions with shared ancestry as a result of a speciation event.
4Regions with shared ancestry as a result of a duplication event.

9

of sequencing reads. It takes highly similar regions between a
read and a genome graph into account and uses them as seeds.
By traversing the paths between seeds, an alignment graph is
generated and a path with the greatest fit to the read on this
graph is chosen as the mapping result. To find this path, Markov
chain models are trained on the sequence content of the genome
graph, reads and seeds. The model parameters are then applied
to weigh the paths on the alignment graph.
The proposed algorithms return effective results on relatively
small data sets and keep the option for future improvement
open. During the next chapters the result obtained from run-
ning the algorithm over several E.coli genomes, Yeast genomes
and chromosome one of A.thaliana genomes will be presented. I
believe that the introduced algorithms will offer a step forward
in analysing the sequence data and will illuminate a path for
those scientists with an interest in building a data structure to
represent multiple genomes together.

10

Contents

1 Introduction 13
1.1 Genomes . 13
1.2 Genome Sequencing 14

1.2.1 Technologies and Challenges 14
1.3 Reference Genome 15

1.3.1 History 15
1.3.2 Graphs in Genome Analysis 18
1.3.3 Graph-based References 23
1.3.4 General Terminology 27

1.4 Mapping Reads Against a Reference 32
1.4.1 General Terminology 34

2 Multi-genome Reference 35
2.1 Contribution . 36
2.2 Method . 36

2.2.1 Input data 36
2.2.2 Training Models 38
2.2.3 Homology Filtering 42
2.2.4 Creating Independency 43
2.2.5 Clustering 46
2.2.6 Adding Non-clustered Regions 47
2.2.7 Merging Centres 48
2.2.8 Multi-genome Reference 50
2.2.9 Compression 52

11

12 Contents

2.2.10 Decompression 54
2.3 Result . 54
2.4 Discussion . 60

3 Mapping Sequencing Reads on a Graph 61
3.1 Contribution . 61
3.2 Method . 62

3.2.1 Input Data 62
3.2.2 Training Markov Chain Models 64
3.2.3 Mapping the reads 65
3.2.4 Output 71

3.3 Result . 71
3.4 Discussion . 73

4 Conclusion 75

Appendices 79

A Data 81

Chapter 1

Introduction

1.1 Genomes

Genomes are the full set of genetic information of an individ-
ual that has been inherited from both parents. They contain
both coding regions (genes) and non-coding regions. Each or-
ganism may have several chromosomes that carry its genome.
Chromosomes consist of a long Deoxyribonucleic Acid (DNA)
string. Each cell has a full set of the genetic information that
is mostly saved in the cell nucleus (or nucleoid for Prokaryotes).
A small part of it is saved in mitochondria (and chloroplasts in
plants). Genes mostly encode proteins that determine an organ-
ism’s functions. Thus, the difference between genomes (different
genotypes) can change the level of gene expression as well as
protein structures, and thereby affect their functions as well as
the organism’s phenotype.
Genetic variation within species makes each individual different
from the others. Different phenotypes and genotypes can be ex-
plained by studying their genetic variations. Variation can occur
in the form of a single different nucleotide (SNP) or several ones,
deletions of one or several nucleotides, insertion of nucleotides or
even rearrangements.

13

14 Chapter 1. Introduction

1.2 Genome Sequencing

During the last two decades several DNA sequencing technologies
have been introduced that facilitated the study of genome vari-
ations. Variations can be detected either by comparing several
full length assembled genomes against each other, or by align-
ing sequence fragments (sequencing reads) against one or several
reference genomes.

1.2.1 Technologies and Challenges

A pioneering technology that helped scientists in this matter was
Sanger sequencing [55]. The main shortcoming of the Sanger
technology was its sequencing price. It was relatively costly, for
example the first A.thaliana was sequenced with this technol-
ogy for about 70 million U.S. dollars. Moreover, the length of
the read fragments sequenced with this technology are relatively
short and even these days the length of the sequencing reads
which can be investigated by this technology are not more than
1kb. On top of that, only a few sequencing reads can be obtained
at a time using the Sanger technology.
The more recent sequencing technologies were introduced over
a decade ago. They have reduced the time and the cost of se-
quencing DNA sequences drastically. As opposed to the Sanger
sequencing technique, these technologies are capable of process-
ing a large number of DNA molecules in parallel and they became
known as Next Generation Sequencing (NGS) technologies [19].
One commonly available approach in the market was introduced
by Illumina. All the Illumina platforms produce a vast amount
of sequenced data, however the read length is shorter than se-
quences which are produced by the Sanger technique. The short
length of the sequencing reads cause difficulties in assembling
genomes especially when the sequence has a high number of re-
arrangement segments. To overcome the issue of short reads,
some technologies such as SMRT sequencing and MinION have

1.3. Reference Genome 15

been recently introduced to produce long sequencing reads. Long
reads allow for the resolution of large structural features [19] and
aid in finding structural variations and long repetitive regions.
Although, these long-read technologies provide a large amount of
sequenced data, their output has a high error rate. On one hand
the high error rate of their outputs reveals the importance of ap-
plying a reference in assembling new genomes and on the other
hand, having an extensive amount of data with a high level of
diversity suggests that the reference needs to contain more infor-
mation than only a single genome. In fact, the issue to address
would be identifying variants based on comparing sequencing
reads against several reference genomes.

1.3 Reference Genome

Reference genomes are ideally a single well assembled genome
that is used as a coordinate system in studying the genomes of
a species. They can be applied as a guide in assembling closely
related genomes or detecting the variation between genomes of
individuals.

1.3.1 History

Sequencing a genome from its sequencing reads can be done de
novo where overlapping reads build the largest possible frag-
ments of a genome known as a contig. This method is mainly ap-
plied when a reference genome is not provided. Another method
used in sequencing a genome is mapping reads against the pro-
vided reference genome(s). A genome can then be resequenced
after the mapping process. The first human reference genome
was built with the Sanger sequencing technique in 2001 [26]. It
was the largest genome to be extensively sequenced up to that
point, twenty five times as large as any previously sequenced
genome and eight times as large as the sum of all such genomes
[26]. Afterwards, the attempt to make the full length genomes

16 Chapter 1. Introduction

of other organisms with similar genome size began. In spite of
the achievement, sequencing remained very time consuming and
very costly. In a decade the number of sequenced genomes have
increased exponentially and modern technologies have reduced
the time and the cost of sequencing drastically. For example,
between 2001 and 2017, both the time and cost of sequencing
a human genome have fallen in tandem with each other with
the former decreasing from 14 days to about 26 hours and the
latter decreasing from 100 million U.S. dollars to 1000 U.S. dol-
lars [65]. The decrease in cost and the time of sequencing resulted
in obtaining many genomes of a multitude of species. The large
number of generated genome sequences imposed a need for more
advanced tools to mine and extract the information.
Using a single genome as the only reference imposes a bias in
studying the variation between multiple genomes since each base
of them is compared with only a single nucleotide on the refer-
ence. Since it is easier to map reference-like sequences than vari-
ant sequences, the variants can either be mapped on the wrong
position or stay unmapped. This will then lead to a false vari-
ant call. Having a large number of genomes already sequenced
suggests an alternative for a single reference genome. A replace-
ment for it would use several reference genomes at the same
time. It will aid in removing the bias against a single genome
and increase the ability of detecting variations. Several stud-
ies (e.g. [23], [56], [31], [40] and [41]) have been done to address
this problem. One way to deal with this issue is by using a
single reference, containing chromosome length sequences and
contigs, as the core of a new reference and attach the variations
to this collection of sequences. As an example, in [23] a reference
multi-genome is proposed which has been made by appending the
variations from a set of genomes at the end of a single reference
genome. Although the output reference multi-genome remains
linear, it contains the information about the variations too and
tackles the genomic variation observed at every position. Figure
1.1 taken from [23] shows a multi-genome reference and how it

1.3. Reference Genome 17

has been built.

(A) (B)

Figure 1.1: (A) Three genomes were superimposed, SNPs have been en-
coded with IUPAC characters (M,K) and finally indels have formed a bub-
ble with 3 branches. (B) multi-genome reference have been built over the
mentioned 3 genomes by considering one of the branches as the primary
branch and appending the 2 others at the end of the reference. Each ap-
pended branch is padded at both ends with the bases surrounding the bub-
ble. The length of the padding is a parameter that depends on the expected
read length, which in this example is set to 4. [23]

An alternative approach would be creating a graph structure to
present the variations in the format of different branches. One
of the pioneering studies has been done by [56] where they have
introduced the GenomeMapper, a tool to map sequencing reads
against several genomes simultaneously. Their algorithm indexes
the conserved and diverged regions. Identical regions are shown
once while the diverged regions are shown as branches. This
method provides us with more information than only a single
reference, but at the end only a single genome is chosen as the
best match for a sequence read. Thus, it is not able to detect se-
quences which are closer to the combination of several references.
Figure 1.2 taken from [56] presents the graph generated by this
method. Comparing this figure with the figure 1.1 reveals the
differences between linear and non-linear references. The latter
study is one of many genome studies where a graph is used to
facilitate the analysis. Several of them will be described in the
next section.

18 Chapter 1. Introduction

Figure 1.2: GenomeMapper’s graph structure, (a) Orthologous sequences
in four divergent genomes with shared fragment at their beginning and their
end. (b) Graph structure created by the sequences in (a), with k-mer length
7, and maximal block length of 10 [56]

1.3.2 Graphs in Genome Analysis

Definition

In mathematical terminology, a graph is defined as an ordered
pair G(V,E) where V is a set of vertices (or nodes) and E is
a set of edges. For each v1, v2 ∈ V , v1 is connected to v2 by
an edge e ∈ E if and only if there is a relation between them.
A graph may carry some distinctions in addition to the above
definition if necessary. For instance, it can be uni- or bi-directed
when the direction of the relation matters. It might have cy-
cles or being acyclic, have weighted edges or weighted vertices to
present costs, lengths, sizes etc. Handling all these possibilities
made graphs a useful tool in modelling data and representing the
relations in a system. As a consequence, it has been widely used
in different fields of study such as transportation, computer sci-
ence, studying molecules, sociology, linguistics, biology, studying

1.3. Reference Genome 19

Figure 1.3: String graph. Coloured tick arrows represent repetitive regions
on the genome and the numbers on the graph give the number of copies for
each repeat.

protein networks and analysing genomes.

Variations

The concept of the string graph has been presented in [38]. It at-
tempts to portray all that can be deduced with regards to a DNA
sequence from a collection of shotgun sequencing reads acquired
from it. The algorithm is a direct follow up of the unitig concept
of the Celera assembler which was introduced by the same author
in 1995 [37] and revolutionised genome assembly. The vertices
on the string graph are fragments of sequences. The vertices are
connected by edges so as to present their order on the genome.
Figure 1.3 utilised from [38] shows the structure of such a graph.

Another type of graph which has been frequently used in study-
ing genomes is the de Bruijn graph [9]. In a de Bruijn graph,
vertices are sequences of symbols of length k and two vertices are
connected by an edge if they have an overlap of length k − 1. A
generalization of the de Bruijn graph was later introduced in [50]
to handle imperfect reads. This generalized graph is called A-
Bruijn graph which is defined on an arbitrary set of alignments
(A). Figure 1.4, taken from [50], shows its construction steps.

20 Chapter 1. Introduction

Figure 1.4: Construction of a A-Bruijn graph
(A) Construction of the A-graph from the sequence...at...act...acat by ap-
plying three pairwise alignments (B) a − t versus act, (C) act versus acat,
and (D) a − t versus acat. (D) The A-graph consists of the eight nodes
plus the seven thick, black edges created from the alignments; the coloured
edges are shown to indicate the relation of the nodes to the sequence, but
they are not part of the A-graph. (E) Each of these alignments serves as
“gluing instructions” that transform the sequence into the A-Bruijn graph
on four vertices; the coloured edges are in the A-Bruijn graph, although the
colouring itself is not. [50]

Recently, the concept of the cactus graph which was first defined
by [20] has been adapted by [46] for genome comparison. Like
A-Bruijn graphs, the introduced Cactus graph by [46] is able to
detect repeats, rearrangements and duplications, however on top
of that, it can visualise the common substructures between sev-
eral genomes as two-dimensional alignments and nets (see [46]).
Nets will then be used as vertices on a Cactus graph. Figure 1.5,
taken from [46], represents its general schema.

1.3. Reference Genome 21

Figure 1.5: Cactus graph

Application

Graphs have been extensively applied in studying genomes. A
very common application is in assembling genomes. In several
studies, such as [51], [68], [60] and [4], a graph has been intro-
duced to solve the assembling issue. In [51], using de Bruijn
graphs, an algorithm for assembling DNA fragments was pro-
posed (EULER). The approach was based on finding an Eulerian
path1 on a de Bruijn graph to avoid the drawback of traditional
overlap based methods such as [37], [6] and [24]. For the first
time, the algorithm was not looking for the overlapped pieces of
reads to assemble them, hence it could unmask the repeated re-
gions and use them to improve the quality of assembling. Later
on, Velvet [68] was proposed as a series of algorithms to assemble
genomes by taking advantge of de Bruijn graphs. As opposed to
the EULER assembler, in Velvet vertices of the graph are not cre-
ated by reads but they are only fragments of length k and reads
are mapped on them through the existing paths. The choice of k

1Eulerian path is a path on the graph which visits each and every edge
of a graph only once.

22 Chapter 1. Introduction

has a large affect on the assembly graph. Small k-mers result in
shorter contigs with lots of connections, while large k-mers can
result in longer contigs with fewer connections. [66] Thus, the
choice of k is ultimately dependent on the genome in use. In a
more recent study by [4], using a generalized de Bruijn graph (A-
Bruijn graph) which has been introduced in [50], an assembler
(SPAdes) has been introduced to generate assemblies of bacterial
genomes from single-cell sequencing as well as conventional data
sets. Original SPAdes came with the proviso that it might not
work for larger genomes.
However, in [60] the idea of applying the FM index 2 in assem-
bling genomes has been introduced. As a result of the algorithm,
an assembly string graph is produced relatively faster than with
the previous methods.
Graphs have been applied multiple times in aligning several se-
quences and creating multiple sequence alignments such as in
[54], [69] and [47]. The concept of A-Bruijn graph which has
been introduced in [50], is applied in [54] and alignments were
represented as weighted directed graphs. As opposed to the lin-
ear aligner, the approach presented in [54] gives the user the op-
portunity of detecting duplications and recombinations. In [69],
however, an Eulerian path approach has been presented to cre-
ate local multiple sequence alignments. The proposed program
enables the handling of a large number of sequences due to its
low complexity and it is powerful in detecting conserved regions,
thus returning accurate alignments. In [47] however, the cac-
tucs graph as it is introduced in [46] has been used in aligning
multiple genome sequences. Using Cactus graphs allows for the
creation of a hierarchical tree structure. A multiple sequence
alignment embedded within a Cactus graph can therefore be hi-
erarchically subdivided into a tree of related but independent
subproblems [47]. This method allows for efficient storage and

2A sub-string index system based on the Burrows-Wheeler transform [7]
which has been created by [15].

1.3. Reference Genome 23

random access, decomposition of a multiple sequence alignment
into independent subproblems and revealing the general sub-
structure of an alignment.
On top of the above cases, as it has been mentioned earlier in
this section, graphs have also been used as a substitute for linear
references in helping with detecting variations which is the main
interest of this dissertation.

1.3.3 Graph-based References

One of the pioneering studies is the Genome Mapper proposed
in [56], where a graph has been introduced as a reference to find
the best match of seeds from a novel genome. In this study,
an algorithm has been proposed to map short reads simultane-
ously against several reference genomes rather than only a sin-
gle reference. The method is based on indexing the conserved
and diverged regions of different references. An index graph is
then created where the vertices represent the indexed regions and
edges represent the occurrence of two regions, one after the other.
After mapping short reads over the graph one of the references
is chosen as the best match for the mapped reads. Although
this method provides us with more information than mapping
against a single reference, it is not able to detect the genome
which could be closer to a collage of several references. Later on
in [31] an algorithm has been introduced to solve the same issue
as in [56]. By taking advantage of the de Bruijn graphs, they
have proposed the de Bruijn Graph-based Aligner (deBGA) to
solve the problem of aligning sequence reads to multiple refer-
ence genomes using the seed and extension algorithm. deBGA
is relatively fast and it is sensitive in detecting the repeats with
a high accuracy.
Genome graphs were not only used for mapping reads, but in
many cases they have been used in representing the variation
between several references. In [34] a compressed de Bruijn graph
has been constructed from multiple references directly, without

24 Chapter 1. Introduction

constructing its corresponding uncompressed de Bruijn graph.
This graph has been used as a pan-genome3 to present the vari-
ation among population and aid in analysing genomes of multi-
ple individuals together. In several studies such as [40] and [41],
bidirected graphs were used to cope with the structure of double
stranded DNA. Using a bidirected graph makes the presentation
of both forward and reverse strand possible. In both [40] and [41],
sequence graphs have been generated where vertices are labelled
segments of DNA sequences. In [40] a pan-genome reference was
introduced. This pan-genome has been built, after detecting ho-
mologous blocks on several reference genomes, by ordering and
orienting them in a way that maximizes its agreement with the
original references. The graph was then used as reference for a
population to detect the variation or read mapping. In [41] how-
ever, a generalization of the Positional Burrows-Wheeler Trans-
form (see [12]) to genome graphs is presented (gPBWT). The
created graph is a collapsed representation of a set of genomes
which was then used to efficiently query subhaplotype4 matches.
In this method, a bidirected genome graph has been built from
the reference genome by adding alternative alleles to it, each in-
put haplotype is then presented as a walk on the graph. Similar
to the latter, in [32], positional markers have been used to en-
code the genetic variation within a Burrows-Wheeler Transform.
Using this, a compact representation of the genomes of a pop-
ulation has been built (PRG). The goal of the study is to find
the closest mixture of available genomes to the genome under
analysis. Given the sites where alternative genomes differ from
the reference genome, PRG graph is built as an acyclic, directed
graph (see the figure 1.6 (A) adopted from [32]). The graph
is linearised (Linear PRG) by encoding the variations from the
reference genome and adding them to the current reference (see

3Pan-genomes contain a core genome along with a collection of variation
between several sequenced genomes of a species.

4Haplotype refers to a collection of alleles which are all inherited from a
single parent.

1.3. Reference Genome 25

figure 1.6 (B) adopted from [32]).

(A) PRG graph

(B) Linear PRG

Figure 1.6: Population Reference Genome

To prove the ability of genome graphs in identifying new varia-
tions, in [42] genome graphs have been studied as an alternative
for linear references to improve the ability of identifying varia-
tions and discarding the allele bias introduced by a single refer-
ence. They attempted to prove that adding the variants to the
reference will improve the genome inferences. To reach this goal,
several experiments have been done where in each of them, a
method for graph construction has been used and the utility of
each graph in read mapping and variant calling has been tested.
On top of the above research, in some other studies such as [11]
and [49], the main focus is defining sites on a graph and call-
ing variants at the created sites. By combining several genomes
and a collection of variations, a population graph has been in-
troduced in [11] to aid in characterization of the MHC region
with high sequence diversity. The method has been shown to
improve the genome inference of a highly diverse region on the
human genome (MHC) and identify the regions where the cur-

26 Chapter 1. Introduction

rent references are incomplete. Ultrabubble has been defined
in [49] as a generalization of Superbubble for bidirected graphs.
Superbubble has been introduced in [45] as a motif to describe
the sites on directed graphs. Superbubbles and Ultrabubbles are
acyclic, directed subgraphs which are connected to the rest of
the graph with only a node and there is only a single node on
these motifs where an edge emerges out of them (a sink node).
These motifs can be generated when new variations are added
to the graph and they can pinpoint the relationships involving
structural variants. Thus, they can be used as sites for variant
calling.
In this dissertation, I am introducing an algorithm to overcome
the limit imposed by using a single reference genome, I am de-
veloping a method that allows simultaneous comparison against
multiple high-quality reference genomes. To this end, I am propos-
ing an algorithm that creates a string graph, introduced in [38],
as a multi-genome reference. It removes the bias against a single-
genome reference and simplifies downstream analysis. To reduce
the size and complexity of the reference, highly similar ortholo-
gous and paralogous regions are collapsed while more substan-
tial differences are retained. This is in fact the major advantage
of this method compared to the other existing approaches. As
opposed to the mentioned methods, it generates clusters of ho-
mologous regions and facilitates the downstream analysis. More-
over, applying Shannon information (1.3.4) as the cost function5

makes the algorithm independent of arbitrary parameters to ad-
just.
Furthermore, I developed a genome compression tool to evaluate
the performance of the model. This compression tool can also be
used for global genome comparison. In the next section, I briefly
describe the algorithms I have used in building such a graph.

5The cost function is a function we desire to minimize in order to achieve
the optimal solution. This concept will be discussed in more detail in 2.2.2.

1.3. Reference Genome 27

1.3.4 General Terminology

Pairwise Alignment

Pairwise alignments are used to present the similarity of two
pieces of biological sequences. The captured similarity may re-
veal some common characteristics of sequences such as homol-
ogous regions. To make the decision about the resemblance of
two pieces of sequences, a scoring system is used. A common
scoring system in creating alignments is a substitution matrix.
Each member of a substitution matrix presents the probability of
changing a nucletide (or an amino acid) to another nucleotide (or
amino acid). BLOSUM [21] and PAM [8] are two known sub-
stitution matrices. Alignments can be created by aligning the
full length sequences against each other (Global alignments) or
only against the best local matches which can be found between
sequences (Local alignments). A popular global alignment algo-
rithm is the Needleman–Wunsch algorithm [39] where a dynamic
programming approach is used to build a global alignment. This
method is described in more detail later on in this chapter. How-
ever, a known local alignment algorithm is the Smith–Waterman
algorithm [62]. Similar to the Needleman–Wunsch algorithm, the
Smith–Waterman algorithm is also a dynamic programming al-
gorithm, however it only captures optimal local alignments.
In this dissertation, local pairwise alignments are used as the
first step to acquire the similarity of DNA sequences. In most
of the experiment cases I have used a software called LAST [25]
to create the local pairwise alignments, however my program is
independent of the choice of aligner.

Markov Chain Model

In this work, Markov chain models are trained in order to mine
the characteristics of sequence data. Markov chain models are
based on the Markov property which is a known property in

28 Chapter 1. Introduction

statistics and probability theory and is formulated as follows.

P (X|Xn, ..., X0) = P (X|Xn)

It shows that given the present event, Xn, the probability of the
future event is not dependent on the past events, X0, ..., Xn−1.
Markov chain models present a general form of probabilistic
models for sequences. They can reveal some internal charac-
teristic of the sequence since the probability of each character
on a sequence is dependent on its previous characters. A classi-
cal Markov chain model can be graphically shown as a collection
of states [13] and the probability of a transition from state j to
j + 1 is obtained by

P (xj+1|xj)

Figure 1.7 adapted from [13] shows different states and tran-
sitions of a Markov chain on a DNA sequence. Markov chain

Figure 1.7: General overview of a Markov chain for DNA in its
most simplified form

models can have different ‘orders’. Orders specify the number
of predecessor states which should be memorized by the model.

1.3. Reference Genome 29

The classical one as it is shown above has the order 1. However,
one has to keep in mind that the model complexity increases ex-
ponentially by increasing the orders.
Here, multiple Markov chain models with several orders are train-
ed to get the property of both DNA sequences and created pair-
wise alignments.

Information Theory

The concept of information theory has been introduced in a
ground-breaking paper by Shannon [58], in the case of communi-
cation over a noisy channel, where he quantified the ‘information’
for the first time. This theory has since been widely used in dif-
ferent fields of studies such as data compression. Information
theory and quantifying the information is based on probability
theory. One important concept introduced in information theory
is ‘entropy’. In [58], entropy has been defined as

H = −
∑

j

pj log2(pj)

Where H is the probability mass function and pj is the proba-
bility of j happening. The introduced algorithm in this study
is based on minimizing the amount of information and Shannon
information is used as the cost function (More details can be
found in 2.2.2).

Affinity Propagation Clustering Algorithm

The well-known k− centre clustering algorithm [33] is based on
an initial set of k randomly chosen data points. It runs many
times to find the best initial set. Thus, it works well only when
k is small enough and the chance of reaching a good initial set
is high. On the other hand, a different approach was proposed
by [17], called Affinity Propagation Clustering, where all the
data points are initially considered as a potential centre. This

30 Chapter 1. Introduction

algorithm has been devised to cluster data points by passing
messages between them. It clusters similar points together and
returns a subset of representatives from the input data. To this
end, similarity between pairs of data points are measured, then
messages are sent between them until a high quality set of simi-
lar points (a cluster) emerges. In [17], the introduced algorithm
has been applied on a broad range of data to prove the low error
rate of the method.
Here, I use this algorithm to find clusters of similar segments of
DNA sequences, using the model parameters as a metric to mea-
sure the similarity between sequences. This method is chosen
over the k − centre clustering algorithm for the following rea-
sons. Firstly, because there is no need to set an initial number of
clusters, secondly, the method guarantees the best solution and
finally, it depicts a centre for each cluster.

k-edge-connected Graph

A connected graph is called k-edge-connected, if it stays con-
nected after removing 0 to k − 1 edges. Figure 1.8 shows a
3-edge-connected graph.

Figure 1.8: 3-edge-connected graph

In this dissertation, this concept is used to present the strongly
overlapped pairwise alignments. k = 2 is chosen to present the
alignments which are overlapped with at least 2 other align-
ments.

1.3. Reference Genome 31

Suffix Tree

This data structure was first introduced in [64]. A suffix tree
presents all the suffixes of a string of characters. Figure 1.9 [14]
shows a suffix tree with all the suffixes of string S = 121112212221.
Suffix trees have been widely used in computational biology for

Figure 1.9: Suffix tree of string S = 121112212221

pattern matching, site recognition, making alignments etc. [3].
Here, I am using this tree structure to connect clusters’ repre-
sentatives if they happen frequently in the same order. For this
purpose, strings of representatives’ indices are generated and a
suffix tree will be built over them including all the suffixes of
available strings.

Arithmetic Encoding

Arithmetic encoding is an encoding technique which is used in
lossless compression of a string by specifying a certain number
of bits to each character on the string. It specifies more bits for
the rare characters and fewer bits for the more frequent ones.
The optimal number of bits for each character is calculated as
−log2(Pc) where Pc is the probability of the character c happen-
ing. These probabilities are considered as binary intervals during
the encoding procedure. Going through the string, in each step

32 Chapter 1. Introduction

the probability interval of the current character is chosen from
the interval of the previous character until the end of the string
is reached. As soon as the end of the string is reached, a value
from the last interval is chosen to present the string. The en-
coded string can then be decoded by reading the binary interval
of each character back.
Having the information obtained from the created graph, arith-
metic encoding is used in this dissertation to compress the entire
input sequences.
As has already been mentioned, mapping sequence reads can be
considered as an application for a genome graph. Thus, an al-
gorithm to map reads against the graph will also be proposed
in this dissertation to handle mapping long reads against the
generated graph.

1.4 Mapping Reads Against a Reference

Genome mappers were primarily built to map reads on a linear
reference genome in order to determine where a new genome dif-
fers from an existing reference genome. A very well-known tool
which has been implemented for this purpose is the Burrow-
Wheeler Alignment (BWA) tool [27]. It has been designed to
efficiently align short sequencing reads against a reference se-
quence, allowing mismatches and gaps. The method is based on
the Burrow-Wheeler Transform (BWT) and backward searches
for inexact matching.
As has been mentioned in the previous section, mapping sequenc-
ing reads is an occasion where graphs have been used in analysing
NGS data and [56] has been named as one of the pioneering
studies where a graph data structure has been used for mapping
sequencing reads. Recently, with the rise of new sequencing tech-
nologies other studies have also focused on solving the mapping
issue and tried to resolve the problem of mapping reads against a
genome graph. As an example, the concept of reference structure

1.4. Mapping Reads Against a Reference 33

has been introduced in [48] as a collection of references, presented
as a string graph, and a mapping scheme for each position on a
string. Since different mapping approaches may lead to different
mapping outcomes, this study proposes a solution to deal with
the lack of standard mapping. Moreover, by using a graph as a
reference it aids in handling more variation. The method pro-
vides a unique mapping result for a string. Later in [43], Context
Schemes is introduced as a method for mapping reads of various
lengths over different type of references, including a graph, un-
ambiguously. Context Schemes only returns results when there
is a unique best mapping, with this criterion uniformly defined
for all reference bases [43]. To be able to map long reads as well
as to detect the known variation among a population, a read
mapper is proposed in [53] (VITRAM) which takes the length
of sequencing reads and type of references into account. The al-
gorithm is based on Min-Hashing the sub-strings of length q of
several references. These sub-strings have been created for each
window on a reference. Window length is slightly larger than
the length of sequence reads. In some cases the obtained results
from this method shows the higher precision for VITRAM than
BWA.
To help in assembling genomes by mapping reads against a graph
a heuristic algorithm has been presented in [28] to map sequenc-
ing reads over different paths of a de Bruijn graph. The pipeline
is able to efficiently map millions of reads per CPU hour on a de
Bruijn graph.
To allow for mapping reads directly on a directed cyclic graph, an
alignment algorithm (V-ALIGN) has been proposed in [63] which
aligns the input sequences directly without creating acyclic di-
rected subgraphs.
Here, a mapping method is proposed for mapping long sequenc-
ing reads against a genome graph by looking for a path on a
graph as the best match to a read. The following section intro-
duces some algorithms which have been applied for the mapping
pipeline.

34 Chapter 1. Introduction

1.4.1 General Terminology

Needleman-Wunsch Algorithm

This method has already been mentioned in 1.3.4 as an algorithm
to create global pairwise alignments. The Needleman-Wunsch
algorithm [39] is a dynamic programming method to compare
biological sequences. It maximizes the similarity between input
sequences using a given similarity matrix.
In this study this algorithm is used to build pairwise alignments
between a part of a read and a vertex on a graph. The model pa-
rameters are used to present the similarities between sequences.

Dijkstra Algorithm

The Dijkstra algorithm is used in the proposed pipeline of this
study to help in finding the best path on the reference graph
that fits a read. This algorithm was first proposed by Dijkstra
[10] to find the shortest path between two nodes on a graph.
The performance cost of the original algorithm is O(|V |2) where
|V | is the number of nodes. However, using this idea, several
optimizations have later been proposed to improve the Dijkstra
algorithm performance. One of the optimizations that is used
in this thesis utilises a ‘Fibonacci heap’ [16] instead of a queue.
Using a Fibonacci heap as a priority queue decreases the running
time of the Dijkstra algorithm to O(|E|+ |V | log |V |) where |E|
is the number of edges. A Fibonacci heap is a collection of heap
ordered trees where a child node key value is always bigger than
or equal to its parent key value and the root of the tree has the
lowest key value. The Fibonacci heap supports arbitrary deletion
from an n-item heap in O(log n) amortized time and all other
standard heap operations in O(1) amortized time [16].

Chapter 2

Multi-genome Reference

In this chapter, a method is proposed to create a directed graph
which can be used as a multi-genome reference. The graph
presents a simplified representation of several full length genomes
by collapsing similar regions of them. To this end, Shannon in-
formation is used as the cost function and all the similar regions
which are typically orthologous, that is, recently diverged re-
gions, and more rarely paralogous, more diverged, regions, be-
tween and within genomes are then detected and clustered to-
gether. Only the representative member of each cluster is then
used as a vertex on the graph. Two vertices are connected by
an edge when they occur one after the other on at least one of
the input genomes. Figure 2.1 illustrates the general schema of
the algorithm. For simplicity, five short sequences were chosen
to reveal all the steps of the algorithm.
The designed tool to build such a genome graph is described in
the following sections of this chapter.
The software has been written in C++ and is available at https:
//github.com/LeilyR/Multi-genome-Reference.git.

35

36 Chapter 2. Multi-genome Reference

2.1 Contribution

The Algorithm presented in this chapter has been designed by
Jonas Müller and I. He also provided assistance in writing some
part of the code.

Figure 2.1: General overview of the algorithm
Step one: pairwise alignments are detected. Step two: Alignments are
divided into non-overlapped segments. Step three: Related sequences are
grouped into different clusters. Step four: centres of clusters are taken to
be vertices of the graph.

2.2 Method

2.2.1 Input data

Preparing input files

To start working with this tool, input data should be saved in the
accepted format for the program. The first step is creating a sin-
gle FASTA file containing all the input genomes, and assigning a
unique accession name to each of the genomes. The FASTA file
format is a text based format to show DNA or protein sequences
which was first introduced in [30]. Running the corresponding

2.2. Method 37

command merges several FASTA files including different genome
sequences into a single FASTA file and assigns a unique accession
name to each of the input genomes. The original files names are
chosen as the accession name of each input sequence. Accession
names are then added at the beginning of their corresponding
sequences’ names. Knowing the accession names later aids in
training accession specific models to optimally detect the char-
acteristic of each genome.
As has already been mentioned, the program looks for similar
regions on sequences and collapses them into a cluster. Thus,
having the prepared FASTA file, all the similar regions between
each two genomes and within a genome need to be detected.
For that purpose, local pairwise alignments are generated. The
program can read a Multiple Alignment Format [1] (MAF) file
containing the alignments’ information. Although the choice of
the aligner is at the discretion of the user, in my experiments I
mainly used LAST [25]. A MAF file includes all pairwise align-
ments needed as an input for running the tool along with the
prepared FASTA file including all the genome sequences.

Reading input files

The FASTA file is read, and the name, accession and content of
each sequence are saved in different data structures and an index
is given to each of the genomes as an ID.
Afterwards, the MAF file is read and its information is saved for
further usage. Each pairwise alignment is considered as an object
for the alignment class where each object is constructed by its
references’ ID, coordinates and the encoded content on each of
the references. To encode the content, each base is encoded by 3
bits (A→ 000, C → 100, T → 010, G→ 110, other letters→
001, . or − → 101). Reading the input data, several Markov
chain models are trained over both genome sequences and the
alignments to mine for their hidden characteristics.

38 Chapter 2. Multi-genome Reference

2.2.2 Training Models

Markov chain models are widely used in the literature for seg-
menting genomic data ([67], [61], [22], [5] etc.). Here, a model
has been designed which dynamically looks for the best order of
a Markov chain model for each occurring base on a genome and
each occurring modification between two genomes on a pairwise
alignment.

On genome sequences

A maximum order (Smax = 5) is defined for training Markov
chain models over DNA sequences, so the order cannot exceed
Smax. On each sequence several models are trained to get the
best order of the model (between 1 and Smax) for each base
on a sequence. As previously stated, the method is based on
minimizing Shannon information, therefore the cost of creating
a base on a sequence is defined as

Cb = −log2(P (b|B))

where P (b|B) is the probability of base b occurring in a genome
after a given context B. B is a string of previous bases on the
genome with the length equal to the order of the model. The
best order of a model is when this cost value is the lowest. The
cost of creating a genome is then defined as

CG =
∑

b∈G
Cb

Where Cb is the cost of any base (b) on the genome (G).
While training the models on sequences, model parameters in-
cluding a flag for visiting each sequence and the probability of
each base occurring after a context of length Smax for that se-
quence is computed. This information is then written on a binary
file. These parameters are later used in arithmetically decoding
the entire input genome data.

2.2. Method 39

To look for the best order, a list of all possible words of a given
length l from 5 letters (A,C, T,G and N) are created where l
varies between 1 and Smax. They are saved on the format of a
tree where the child node contexts are always 1 base longer than
their parent nodes. By walking over each genome sequence and
reading the occurring words, the probability of each base hap-
pening after any observed word is computed and the best one
is chosen. For each genome sequence, the probability of all 5
bases after each word of length Smax is saved on the previously
mentioned binary file as sequential intervals to be later used for
arithmetically decoding the input genomes. Figure 2.2(A) shows
how the model works for a certain order and how the cost values
are calculated.

(A) Model on a genome (B) Model on an alignment

ACGTGCATGCCATACGTAATCGTCCAATATGC
Order = 2

ACGTGCATGCCATACGTAATCGTCC-ATATGC
ACG -GCATGCCATAGGTAATCGTCCAATAAGC

seq1
seq2

Order = 2 Order = 1

CostG|AT = −log2(P (G|AT)) Costdel|M3T = −log2(P (del|M3T))

CostSeq =
∑

costb,∀b ∈ Seq Mod1to2 =
∑

costmod12, ∀mod12 ∈ Pal

Figure 2.2: Simple illustration of how the models are trained
Red circles are presenting the current position, where the model is trained.
The base in green circle is presenting the current base, where the modifica-
tion between two sequences of the pairwise alignment is read.

On pairwise sequence alignments

Similar to what has been done for the input genomes, several
Markov chain models are trained over pairwise sequence align-
ments. However, on the alignments we are dealing with modifica-
tions between two references, therefore there are more letters in
the set of this alphabet than only 5 letters in the case of genomes
in order to generate words from them. Thus, increasing the order
of a model in this case can then lead to a very complex model.

40 Chapter 2. Multi-genome Reference

To avoid this, maximum order Almax = 2 is defined to generate
modification patterns between genomes. All the modifications
are encoded, and the encoded form of them are used to present
the words.
To encode the patterns, each inserted and each modified base be-
tween two references of an alignment are encoded as an integer
(5 integers for each case). However, deletions and matches be-
tween two references are binary encoded based on their lengths.
A maximum length is defined for deleted bases (2maxdel) as well
as matches (2maxmatch). They were chosen in a way so as to be
able to handle the pairwise alignments generated by an aligner.
Since, on average, it is expected to see longer matches than dele-
tions the chosen maximum length for matches is larger than the
one that is set for deletion. Example 1 shows how deletions and
matches are encoded.

Example 1 Assume maxmatch = 4 and also assume that there
is a match of length 10 between 2 references of an alignment.
This match is binary encoded as 23∗21 and the powers of two will
be used to present the match. However, if there will be a match
of length 18 (> 24) it should be broken to a match of length 16
and a match of length 2 to avoid exceeding the maxmatch for the
powers of 2. Each of the generated shorter matches then will be
binary encoded.

The encoded patterns are used as letters to create the words of
different length between 1 and Almax. Similar to the case of
training models over genome sequences, a tree structure is used
to detect the best level of models for each modification pattern.
Figure 2.2(B) shows an example of how the models are trained.
Walking over an alignment from beginning to end, the probabil-
ity of a change happening after a word of a certain length along
with the last occurred nucleotide base on that reference is com-
puted. In fact, the cost of visiting a modification between two

2.2. Method 41

references on an alignment is calculated as

Cm = −log2(P (m|M))

where P (m|M) is the probability of the modification m happen-
ing between two references of an alignment, when context M is
given. Context M is a word with a length between 1 and Almax

which was then extended by a single base that occurred immedi-
ately after this word. Since the model dynamically searches for
the best order, the length of M is chosen in a way to make Cm

the smallest.
At the end, two modification costs are defined for each align-
ment. Each of them presents the cost of changing one reference
to the other to generate a pairwise alignment. Modification pat-
terns which are observed after the words of length Almax, as
well as their costs, are written on the same mentioned binary
output file. Modification costs of each of these patterns between
each two accessions are saved as non overlapping intervals. On
top of that, flags are assigned to present the occurrence of an
alignment between two accessions. This information needs to
be written on the same file so it can be used later for decoding
genome sequences. Knowing these patterns and their cost gives
us the opportunity of building an alignment when only the in-
formation of one of the references is given. One reference of an
alignment is generated de novo. The second reference can be
inferred by modifying the first.
After calculating the cost values, two modification costs are as-
signed for each alignment (M1to2,M2to1) which are the sum of
the cost of all the occurring changes. On top of that, gain val-
ues are computed to present the value of each alignment. They
reveal how much one gains by using the information of only one
reference and creating the other one based on that. These values
are obtained as follows

G1 = C2 −M1to2

G2 = C1 −M2to1 (2.1)

42 Chapter 2. Multi-genome Reference

To reduce the amount of information, the cost of observing an
alignment between each pair of accessions is calculated and align-
ments with the average gain value less than this cost will get
discarded at this step.

2.2.3 Homology Filtering

The main bottle neck in this method is eliminating the redun-
dant regions from different alignments to avoid analysing each
region on an input genome more than once. This step can aid
in solving this issue by reducing the search space. Filtering is
done by reweighing the alignments in a way that potential ho-
mologous regions may get a higher weight and are more likely to
be chosen as well as be kept for the next step. This step can be
considered as an optional step to decrease the running time by
reducing the size of the data that feeds into the next step and it
is highly recommended for the extremely redundant input data.
To this end, all the remaining alignments from the previous step
are reweighed and a new weight is assigned for each of them.
They are then evaluated based on this new weight rather than
their average gain value. As it is mentioned above, by computing
the new weight, we are seeking to increase the value of potential
homologous regions. Keeping these sequence segments as valu-
able (informative) parts of sequences and discarding the parts
with a low weight will result in reducing the Shannon informa-
tion.
For each alignment the program searches for the number of input
sequences that confirm this alignment. The more such sequences,
the higher the alignment’s weight becomes. This is done in three
steps. First, the highly overlapped alignments with the current
alignment are found. Second, they are checked for a shared refer-
ence. Finally, the number of such shared references are counted
and the gain value of the current alignment is updated based on
this number. Figure 2.3 illustrates the above steps. Formula 2.2
presents reweighing computation where Gain1 and Gain2 are

2.2. Method 43

the gain values obtained from training models and NumSeq is
the number of sequences which confirm the current alignment.

AverageOldGain = (Gain1 + Gain2)/2,

UpdatedGain = AverageOldGain ∗ (1 + NumSeq/2). (2.2)

Alignments will then be sorted by their updated weight in a
descending manner and only the first fraction of them with the
higher weight are chosen to go to the next step.

G3

G2

G1

Figure 2.3: Searching for homologous regions

G1, G2 and G3 are three input genomes. The blue alignment is highly
overlapped with the pink and the green alignments. That these re-
gions are typically contiguous in a genome is confirmed by the coloured
region on G3.

2.2.4 Creating Independency

Since partial redundancy between alignments results in analysing
a single piece of sequence more than once, they are detected
and eliminated after training the models. To this end, over-
lapped alignments are cut into shorter, non-overlapped pieces.
One main obstacle in cutting alignments into shorter segments
is that redundancy may get propagated between many align-
ments. Therefore, cutting overlap amidst two alignments can
force multiple cuts in several other alignments at the same time
and increase the complexity of the program exponentially.
To solve this issue, cutting is done recursively. At the first step,

44 Chapter 2. Multi-genome Reference

an initial level of redundancy (R%) is chosen. Although R can be
varied, in our experiments we always set it to a number greater
than or equal to 90, to capture as much redundancy as possible.
All the alignments which are partially overlapped more than R%
are detected and the overlaps between them are shown as edges
on a graph where nodes are indices of the corresponding align-
ments. Going through all the alignments, the number of edges on
the graph grow, and at the end the 2-edge connected sub-graphs
of the graph are kept. Nodes (alignments) on these sub-graphs
are cut into non-overlapped pieces and are saved into a container
along with the alignments which were on the graph but were not
part of any 2-edge connected sub-graph. Figure 2.4 illustrates
this step.

A group of Alignments with
R% redundancy

Choose 2-edge-connected sub-graphs

Make an overlap graph

Cut them to non
overlapped pieces

Keep them in the
“pool” container

Keep them in the
“pool” container A 2-edge-connected subgraph

Figure 2.4: Cutting partially overlapped alignments with the overlap rate
above R%

For the rest of the alignments, those with an overlap rate less
than R%, go for the next step, and the same procedure will be
repeated after decrementing R by 5. The obtained result from
each step is saved on the same data container. Cutting is stopped
when R is no longer above 50. All the alignments which are ob-

2.2. Method 45

tained from the recursive steps, are partitioned into groups of
non-redundant alignments, therefore there is partial redundancy
only within a partition but not between them. Partitioning aids
in the analysis of several groups of alignments in parallel as well
as minimizing the search space for the next step. On each par-
tition, overlapped sites are detected and alignments are broken
into smaller pieces from the two sides of the overlapped regions.
To cut the alignments, first the split points on each reference of
an alignment are detected and the gain values of the alignments
after cutting are computed. If the values are larger than the
base cost (the cost of making an alignment between two acces-
sions) the current alignment will be cut from the detected split
points otherwise cutting gets terminated. In fact, the cutting is
stopped only when the resulted alignments become too short to
be informative.
To cut the long alignments with many split points, all the above
recursions still would not be sufficient to get the result in a
reasonable time frame, so to make it more optimized in each
of the above steps, if the number of redundant alignments are
more than a fixed set number (Maxcut), they are partitioned
into groups of alignments with less than or equal to Maxcut

alignments in each group. The cutting step is then done on
each of these groups separately. Finally, all the alignments ob-
tained from cutting members of each group are then split into
fully non-overlapped pieces, considering all the possible cutting
points between them.
Once the partial redundancies are fully eliminated, related seg-
ments of sequences are grouped together in a way that there is
no redundancy between different groups. However, alignments
in a group share a full length sequence. The content of each
group will then be checked for the level of similarities between
its contents. Figure 2.5 shows these groups of related alignments.

46 Chapter 2. Multi-genome Reference

CAAGCTTA

AGGAAGATC

AGATGCTGT

TATGCAGTAT

AGCAGTAAT

Seq0

Seq1

Seq2

Seq3

Seq4

AAGCT
AAGAT

Seq0Seq1

AGGAAG
AG - ATG

Seq1Seq2

ATGCTGT
ATGCAGT

Seq2
Seq3

ATGCAGT A - TSeq3
A-GCAGT AATSeq4

AAG CT
AAG AT
ATG
ATG
A-G

AGG
AG- CTGT

CAGT
CAGT

A-T
AAT

Seq0
Seq1
Seq2
Seq3
Seq4

Figure 2.5: Removing redundancy, preparing groups of fully overlapped
alignmnets

2.2.5 Clustering

To measure the amount of similarity within a group of related se-
quences obtained from cutting partially overlapped alignments,
the program uses the Affinity propagation (AFP) clustering al-
gorithm [17] to cluster similar pieces together. Running the clus-
tering algorithm over independent groups of sequences prevents
assigning a single piece of sequence more than once to several
clusters, neither as a centre of a cluster nor as a member of it.
Moreover, it allows for parallel analysis between different groups
of related sequences.
The AFP clustering algorithm looks for the similarity between
each two pieces of sequences by searching for the modification
costs computed after training the models. Clusters are found by
applying the formula 2.3 which takes the cost of creating each
piece of sequence as well as the cost of modifying it to any other
sequence into account. By finding the minimum value of 2.3, a
representative (center) is assigned to each group of similar se-
quences.

ArgminE(
∑

i∈E
Ci +

∑

j∈E,j 6=i

Mij). (2.3)

2.2. Method 47

E in 2.3 represents a group of related sequences, Ci is the cost
of creating sequence i and Mij is the cost of modifying sequence
i to sequence j. Applying formula 2.3 may result in several clus-
ters for any group of related sequences.
The advantages of using AFP algorithm over k −mean cluster-
ing algorithms is that there is no need for initializing the desired
number of clusters, in fact the algorithm itself returns the best
number of clusters by finding the Argmin in formula 2.3.
Clustering sequences aids in detecting potential homologous (or-
thologous) regions. Knowing the centre of a cluster as a repre-
sentative for a group of homologous regions helps in simplifying
the presentation of input genomes. Having a single sequence as
a representative for a group of similar sequences, there will be no
need for keeping all the members of a cluster but rather only its
representative and its modification patterns to each of the mem-
bers. This will result in removing the non-significant variations
and therefore simplifies genotyping and saves memory space.

2.2.6 Adding Non-clustered Regions

After the clustering step, a list of centres as well as their positions
on a genome is created for each input genome. Knowing which
positions on a genome are in one of the built clusters, the rest of
the genome are considered as ‘non− clustered’ regions. To keep
the information of every single position on the genome, while
building the genome graph, each non − clustered region is also
considered as a cluster with only a single piece of sequence as its
centre (the representative piece). These centre-only clusters are
then added to the same list of centres of input genomes along
with their positions. This way, there will a representative for
each region on a genome. If non − clustered regions have the
exact same content, they are clustered together and form a single
cluster with a size bigger than one. So far, the regions which are
not identical but similar enough to be clustered together have
not been collapsed into a single cluster. However, this can be

48 Chapter 2. Multi-genome Reference

computed later using the costs obtained from the models. This
will be an improvement for the graph construction and will lead
to further minimization of information.

2.2.7 Merging Centres

Since the proposed method in this dissertation is based on re-
ducing the amount of Shannon information, several centres can
be merged into a single longer centre (long−center), if it results
in reducing the amount of information. It can happen when a
series of centres occur frequently on several input genomes one
after the other in the same order. To check for such a situa-
tion, the gain of using a long − center instead of several centres
separately is calculated as follows:

Glong = N(add0 + ...+addn)− (N ∗addnew +add0 + ...+addn) (2.4)

where N is the number of times that centres 0 to n happened
after each other in the same order and add0, ..., addn are their
addressing values. In case of concatenation, each of the cen-
tres is addressed only once and after that each time only the
long − center will be addressed. Thus, merging will result in
reducing the information if Glong is bigger than 0. This makes
sense only when a cluster contains more sequences than a single
centre. Therefore small clusters with the size equal to one are
ignored in this step.
A maximum (Maxdist) is set for the allowed distance between
the two closest centres on a genome. By walking over each of the
input genomes, centres which are closer than Maxdist to their
next neighbour are chosen and form a string. The length of the
string increases until a distance longer than Maxdist is visited.
Since the direction of each centre on a genome matters, centres
are indexed on each genome considering their direction. If a
centre occurs on a forward strand the index will be a positive
integer, otherwise it will be a negative integer. Figure 2.6 shows
the construction of such strings.

2.2. Method 49

Genome1 +2 +3 +4 +5

> Maxdist

Genome1 -2 -3 +5

> Maxdist

+6

String1 = +2 + 3 + 4 String2 = −2 − 3

String3 = +5 + 6

Figure 2.6: Creating strings as potential long − centers

After creating such strings from all the input genomes, a suf-
fix tree is built including all the suffixes of these strings. By
traversing the tree the number of visits for each branch is com-
puted. These numbers show how many times each potential
long − center has happened on input genomes. The gain values
are then computed using the formula 2.4 and the long − center
with the highest gain value is chosen. Afterwards, the suffix tree
will be updated using the index of this long − center instead
of the indices of its corresponding centres. Gains are computed
and the long − center with the highest gain value is then cho-
sen. The same procedure is repeated until there will be no more
long − center with the positive gain value. Long − centers are
then added to the list of centres for each input genome along
with their position on that genome. Using the long − centers,
the alignments between each centre and its members are also up-
dated. These alignments may contain long gaps to compensate
for the distance between original centres that the long − center
is made of.
This step can be considered as an optional step, users can de-
cide to build the graph with or without long − centers. Making
long− centres may result in a more simplified data structure to
present several genomes, however, it may decrease the mapping
precision. Thus, it is considered as an application dependent
step.

50 Chapter 2. Multi-genome Reference

2.2.8 Multi-genome Reference

Now we have all the information necessary to build a graph as
a Multi-genome reference. The proposed graph is nothing else
but a presentation of ordered lists of centres, including non −
clustered regions and long − centers, of all the input genomes.
Graph G(V,E) is built where V is a set of centre indices which are
used as vertices on G and E is a set of edges showing the order of
centres on each of the input sequences. Figure 2.7 shows a graph-
ical illustration of G made of two input genomes. The directions
of the arrows determine the direction of DNA strands. On the
figure ‘−’ presents reverse and ‘+’ presents forwards strands.
The centres that are shown by dotted lines are non− clustered
regions. Two identical non− clustered regions are on Genome1
and Genome2 thus they are clustered and form a single cluster
(index = 9).

Genome1

Genome2

+2 +3 +4 +5

-2 -3 +5 +6

2

3

4 5

6

+7 +8 +9 +10

+12 +9 +13

+11

7
8

9

10 11

12

13

Figure 2.7: Multi-genome reference

To visualise the graph, the program offers a variety of outputs
which can be chosen by users. An adjacency list is generated
which presents the order of centres on each of the genomes. A
DOT1 [59] representation of the graph is then built which in-
cludes all these adjacencies. On this graph, each centre is pre-
sented with its index as an integer number bigger than or equal

1A descriptive language to present graphs

2.2. Method 51

to 1. The direction of the connection between vertices is deter-
mined by a ‘+’ or ‘−’ symbol that is added to the index number.
They show the presence of the centres on the forward or the
reverse strand respectively. Figure 2.8 shows part of the DOT
graph for the graph shown in Figure 2.7.

/Graph referenceGraph {
7+ -> 2+ ;
2+ -> 8+ ;
8+ -> 3+ ;
3+ -> 9+ ;
12+ -> 2-;
-2 -> 9+ ;
9+ -> 3- ;
...

}

Figure 2.8: An example of a DOT graph

To have access to the content of centres and their coordinates,
a FASTA [30] file can be produced that contains the content of
each centre. The name of the sequences in this FASTA file are
indices of the centres. Along with this file an additional file in
the form of a plain text file is produced which includes the coor-
dinates of all the centres. Figure 2.9 shows part of the FASTA
and the text file which was created for the graph shown in Figure
2.7. Each line on the created plain text file contains the infor-
mation of a centre separated by ‘:’. The first part is the index of
the centre, the second part is the name of the input genome this
centre was chosen from and the next two parts are the position
of the centre on the input genome and the length of it.
Graphical Fragment Assembly (GFA) format has been proposed
by [2] for representation of DNA sequence assembly graphs. Since
then, it has been used by different tools to demonstrate the util-
ity of genome graphs for a variety of purposes such as SNP call-
ing, mapping and so on. To make the output of our algorithm
compatible for other tools, a GFA file is created to reveal the
structure of the built Multi-genome reference graph. This GFA
file contains the index of each vertex and its content, the edge

52 Chapter 2. Multi-genome Reference

>2
ACTCGTGGGCAATCGTAAC
>3
AATTCGTGAACATGCCATAAA
>4
AAACCTTTACATGGGCGCGAGTC
>5
CTGCGTGCATATAAGGCTGATGCAA

2:Genome1:10:19
3:Genome1:36:21
4:Genome1:64:23
5:Genome2:85:25

Figure 2.9: The left column shows a few lines of a FASTA file which
includes centres’ content and the right column shows its joint text file with
centres’ coordinates on the input genomes.

between each two vertices and a path for each input genome that
represents all the centres on that genome in the order of occur-
rence. In the next chapter, I present the usage of this output for
mapping sequence reads against the implemented graph.
Last but not least, the program has the ability of presenting the
clusters in a MAF format and shows the content of each clus-
ter as a multi-sequences alignment with the centre of the cluster
being the first sequence on an alignment.

2.2.9 Compression

As has been mentioned before, the model parameters were al-
ready written on a binary file. This information includes:
1. The cost of visiting each modification between two accessions
after a pattern of length Almax.
2. The cost of observing a base on an accession after a string of
length Smax.
3. Flags to demonstrate the positions where an alignment starts
or ends on input genomes.
4. Flags to present reaching the end of a sequence and reaching
the end of an accession.
In this step, the entire input sequences are arithmetically en-
coded using this information and the created graph.
First, all the centres need to be arithmetically encoded base by
base. To this end, centres of clusters with at least one non-centre

2.2. Method 53

member are weighed by counting the number of the members in
their clusters. Weights are then used to assign a unique flag that
represents each of these centres. For each centre, after writing
its corresponding flag on the mentioned binary file, all its bases
are arithmetically encoded. Centres are read base by base and
the cost of creating each base obtained from the model is used to
encode that base. The encoded centres are written in the same
binary file.
Afterwards, the list of centres on each genome is used to detect
the positions on the genome that fell into a cluster. By walk-
ing through a genome from the beginning to the end, each base
is arithmetically encoded using the cost of creating it (obtained
from the model) if the region is not in any of the weighed clusters.
As soon as such a position is reached the set flag from the model
that shows the presence of an alignment between two sequences,
as well as the unique flag of the corresponding cluster, are en-
coded. Then all the modification patterns between the centre of
the cluster and the current region on the genome are encoded
using the computed modification costs from the model. At the
end, the set flag for visiting the last position on an alignment
is encoded. If the next position is again in a cluster the same
procedure is repeated, otherwise the bases are encoded until the
next such position or end of the sequence is reached. By reaching
the end of a sequence and end of an accession their flags are also
encoded. All the encoded values are written on the same file.
Comparing the size of the obtained file after encoding all the
input sequences with size of the input FASTA file reveals the
compression rate. This rate shows how good the model fits the
data (see section 2.3 for the experimental results). If the pat-
terns were captured well the rate should be high. Moreover, the
obtained compression rate can be used as a metric to measure
the distance between input genomes. The higher the rate, the
more similar the input genomes are.

54 Chapter 2. Multi-genome Reference

2.2.10 Decompression

To retrieve the input genomes, all the sequences can be decoded
without losing any information. The encoded file obtained at the
end of the previous step is the only requirement to decode all the
genomes losslessly. By reading the file all the written parameters
of the model are retrieved. Having this information, the encoded
sequences are decoded. First, all the encoded centres are decoded
and then all the genome sequences are decoded knowing all the
flags, costs and content of centres.

2.3 Result

To assess the performance of the algorithm several data sets were
chosen as input to run the program on and to study the re-
sult obtained from them. The pilot experiment was done on
E.coli genomes with the length of about 5Mb per genome. Sev-
eral input data were defined having a different number of E.coli
genomes. The result from running the program on them has
given an estimate of the performance of the method as well as
its complexity. Input files were created with 2, 4, 8 and 16 E.coli
genomes with the size of 10, 140, 102 bases (10Mb), 19, 456, 051
bases (20Mb), 39, 923, 568 (40Mb) and 80, 686, 085 bases (80Mb)
respectively. For each of them a MAF file has been generated
presenting all the local pairwise alignments between and within
the input genomes. LAST [25] has been used for this purpose
with its default setup. Table 2.1 presents the number of align-
ments and their average length in each case.
To check for the complexity of the method the relation between
time and the number of alignments, normalized by their average
length, were computed. Figure 2.10 demonstrates this relation.
A jump is observed in Figure 2.10 (A) between the input with 4
and 8 genomes. The jump might be a result of the lack of simi-
larity in the input with only two genomes. As it is shown in 2.1,
the number of obtained alignments between 2 E.coli genomes is

2.3. Result 55

Input
Total number of

alignments

Between genomes

alignments

Average length

(base)

2 E.coli

genomes
38, 155 17, 722 793

4 E.coli

genomes
111, 200 82, 068 952

8 E.coli

genomes
247, 660 223, 282 1, 500

16 E.coli

genomes
536, 637 520, 865 2, 514

Table 2.1: Number of pairwise alignments, number of between genomes
alignments and the average length of alignments for each of 4 different input
data sets.

significantly lower than the other cases. Figure 2.10 (B) shows
the same relation after omitting the corresponding point for the
experiment with 2 E.coli genomes. The blue lines show the y = x
line and the green curve presents y = x2 and the black line shows
the y = 11 ∗ x line.
For each input, the size of the built graphs were compared after
running the program with and without generating long−centers.
Table 2.2 shows the number of vertices and edges for each ex-
periment. Despite a slight increase in the number of vertices
by creating the long − centers, the number of edges dropped
significantly. This reduction in the number of edges results in
simplifying the representation of input genomes.
To look for the simplicity of the data structure presented by the
proposed method in this dissertation, the size of the built graph
with this method has been compared to the graphs made by other
tools. The variation graph (V g) [18] and the REV EAL [29] pro-
gram were run to build a graph on the input FASTA file with
two E.coli genomes. The number of vertices and edges of the
built graph by each of them is shown in Table 2.3. Compari-
son between these numbers and what has been shown in Table

56 Chapter 2. Multi-genome Reference

(A) (B)

50 100 150 200

0
50

0
10

00
15

00
20

00

alignments

tim
e

120 140 160 180 200

0
50

0
10

00
15

00
20

00

alignments

tim
e

Figure 2.10: Relation between running time (minutes) and the number
of input alignments normalized by their average length (number of align-
ments/average length) is shown in red. Blue line is y = x, green curve is
y = x2 and black line is y = 11 ∗ x.

2.2 clearly demonstrate the simplification which has been made
by our method in building a data structure to represent several
genomes.
To appraise the capability of the algorithm in handling larger
and more complex genomes, the next experiments have been de-
signed on S.cerevisiae genomes with the length of about 12Mb
per genome, and several chromosome number one of A.thaliana
with the length of 30Mb per chromosome respectively.
In the first experiment a FASTA file containing four S.cerevisiae
genomes has been used as input and the pairwise alignments were
gained after running LAST on it. To avoid receiving alignments
with a very low quality, the scoring option of LAST has been set
to −e120. The size of the genomes in this input FASTA file is
46, 150, 487 bases (46Mb) and the number of obtained alignments
is 501, 018 with the average length of 275, 830 bases. Comparing
these numbers with those observed in the previous experiment
shows a substantial increase in the number and the length of

2.3. Result 57

Input Vertices Edges
Vertices

(with long-center)

Edges

(with long-center)

2 E.coli

genomes
1, 719 2, 484 1, 728 1, 962

4 E.coli

genomes
2, 259 3, 372 2, 465 2, 755

8 E.coli

genomes
5, 656 8, 782 6, 303 6, 609

16 E.coli

genomes
11, 557 20, 826 12, 947 17, 127

Table 2.2: Graph size on E.coli genomes: number of edges and vertices
after running the program with and without merging centres to long −
centers

Input
Vertices

(Vg)

Edges

(Vg)

Vertices

(REVEAL)

Edges

(REVEAL)

2 E.coli genomes 415, 701 374, 468 91, 296 121, 798

Table 2.3: Size of the created graphs by Vg and REVEAL on 2 E.coli
Genomes

the alignments as a result of increasing the size of the genome.
Having obtained both MAF and FASTA files, the program was
run with the option of not generating long− centers. The same
setup for LAST has been used to create pairwise alignments on
three chromosome number one of A.thaliana. The total length of
the genomes in this input FASTA file is 89, 515, 425 bases (89Mb)
and the number of generated pairwise alignments is 621, 355 with
the average length of 1, 619 bases. As in the previous case, the
program was run without considering the long − centers. The
computer that has been used to run the program on the last two
experiments is an AMD Opteron(tm) machine with the CPU size
of 2.4GHz. and 350G of RAM. The number of vertices and edges
on the built Multi-genome reference graph for each of the above

58 Chapter 2. Multi-genome Reference

experiments are shown in the Table 2.4.

Input Vertices Edges

4 S.cerevisiae genomes 16, 313 23, 658
3 chr.1 of A.thaliana 10, 061 15, 534

Table 2.4: The number of vertices and edges on the Multi-genome refer-
ence graph

After running the program, the size of the encoded file obtained
from each of the experiments was compared to the size of the
original input FASTA file, this comparison revealed a high com-
pression rate for all the cases. The compression rates gained from
my algorithm were also compared with the compression rates ac-
quired from the bzip2 [57] as a general data compressor and the
MFcompress [52] as a genome specific compression tool. The
performance of my tool is up to 8 fold better than gzip. Table
2.5 presents these values. All the mentioned values from my al-
gorithm in this table were obtained after running the program
without considering the long−centers. Since the bzip2 algorithm
is a general data compression and does not take the sequence
characteristics into account, therefore as a result the same rate
is observed for almost all the cases (about 2 bit/base). Reach-
ing a compression rate close to what has been generated from
a cutting edge genome compression tool (MFcompress) reveals
the power of our trained models in capturing the pattern on the
sequences and alignments by taking the input genomes’ intrinsic
characteristics into account. In fact in the case of A.thaliana my
algorithm performed even better than MFcompress which could
be a result of better capturing the patterns after training the
model on a larger set of data.
The information about the data which has been used for all the
above experiments can be found in Appendix A.

2.3. Result 59

Input
Binary file

(size in byte)

Comp.Rate

(my tool)

Comp.Rate

(bzip2)

Comp.Rate

(MFcompress)

2 E.coli

genomes
1, 604, 355 1.25 2.3 1.35

4 E.coli

genomes
2, 317, 902 0.93 2.3 0.83

8 E.coli

genomes
4, 411, 419 0.87 2.3 0.65

16 E.coli

genomes
9, 263, 262 0.91 2.3 0.52

4 S.cerevisiae

genomes
5, 089, 735 0.83 2.3 0.81

3 chr.1 of

A.thaliana
10, 455, 467 0.93 2.12 1.12

Table 2.5: Comparison between the compression rates (bit/base) obtained
from our algorithm, bzip2 and MFcompress. The rates obtained from our
algorithm were computed after running the program without looking for
long − centers

60 Chapter 2. Multi-genome Reference

2.4 Discussion

The proposed algorithm presents a robust representation of the
input genome data by minimizing the Shannon information with-
out the need of adjusting any arbitrary parameters. Comparing
its output with the graphs generated from the other tools proves
the simplicity of this representation. It can easily be seen in Ta-
ble 2.3 where two other software generated a rather large graph
while representing the same set of data. Another advantage of
this method over the other programs is the return of clusters
of sequences while generating the graph which can be used for
within and between cluster analysis and aid in genotyping. Last
but not least, my proposed method returns a compressed form
of the entire genome sequences. The obtained compression rate
can then be used as a metric to measure the similarity of several
genomes. The more similar the genomes are the higher the com-
pression rate becomes. However, on top of all the advantages my
method has, the only drawback of the method is the expensive
step of cutting partially overlapped alignments which leads to
increasing the running time (2.10). To solve this issue a recur-
sive cutting step has been proposed to decrease the complexity
of the cutting step by reducing the number of alignments needed
to be cut in each step.

Chapter 3

Mapping Sequencing Reads on a Graph

A challenge in having a graph as a multli-genome reference is
mapping sequencing reads against it. Almost all the existing
mapping methods are applied to acyclic graphs and many of the
approaches are not able to handle long reads. Here a method
is presented to map reads against a genome graph with no re-
striction on the type of the graph (cyclic or acyclic) and no limit
on the length of the sequencing reads. It is able to look for
variations between several genomes and the sequencing reads si-
multaneously. For each sequencing read the proposed algorithm
looks for the best path on the graph and returns a patchwork of
several genomes which fits the reads the best. Figure 3.1 presents
its schema. All the steps will be described in detail in the fol-
lowing sections.
The software has been written in C++ and is available at https:
//github.com/LeilyR/Mapping.git.

3.1 Contribution

Jonas Müller and Marion Dubarry assisted in designing the al-
gorithm presented in this chapter.

61

62 Chapter 3. Mapping Sequencing Reads on a Graph

Genome Graph

N
W

N
W

N
W

N
W

START
END

N
W

N
W

N
W

N
W

NW: needleman_wunsch

Long Read

Max distance

Max distance
Max distance

Figure 3.1: Alignments between a sequencing read and the graph are
found, coloured parenthesis show the aligned regions. The read is parti-
tioned into groups of alignments in a way that distance between each two
groups of alignment is larger than a set maximum distance. Each group of
alignments is processed separately and the best path on the graph which
fits this part of the read is found. To find the best path, a weighted graph is
built with vertices being alignments and edges being their order. Using the
Needlemann-Wunsch algorithm, pairwise alignments are generated between
the non-aligned regions on the read and non-aligned regions on the graph
which occurred between two alignments. Finally, the shortest path is found
on this graph.

3.2 Method

3.2.1 Input Data

To run the algorithm, a DOT graph or a GFA (Graphical Frag-
ment Assembly Format [2]) graph is needed as an input along
with a FASTA file, including the sequence content of vertices on
the graph and the reads. Furthermore, a MAF file is required
containing all the pairwise alignments between sequencing reads
and the vertices on the graph.

3.2. Method 63

Prepare input data

Similar to the previous chapter, accession specific Markov chain
models train on the input data, thus the input FASTA file, in-
cluding both reads and the graph information, needs to contain
a unique accession ID. To prepare the required input data, first a
unique accession ID is assigned to all the vertices from the graph
and another ID is assigned to all the sequencing reads. Acces-
sions are added at the beginning of the sequences’ name in the
prepared FASTA file which is later used as an input for running
the program.
To generate a MAF file, including all the local pairwise align-
ments, any pairwise aligner algorithm can be used. However,
one has to keep in mind that the name of sequences while gen-
erating the alignments should be the same as their name in the
prepared FASTA file in the previous step. To reach this compat-
ibility, two FASTA files, one including the reads and the other
including only the graph vertices, should be created with the
same assigned accession IDs. During the next steps, the recog-
nised similar regions by the aligner are used to look for the best
matches between the graph and each of the reads.

Read input data

Both FASTA and MAF files including all the sequences’ content
and all the alignments between them are then read by the pro-
gram. The same pairwise alignment class as in previous chap-
ter (2.2.1) is used to save the alignments information. As has
been mentioned before, each alignment is distinguished by its
sequences name, contents, and positions on the references. De-
spite using the same class to read the alignments, in this case
alignments are always saved in a way that the forward strand
of reads are seen. On top of that, several data containers will
be filled in with the information obtained from the FASTA file

64 Chapter 3. Mapping Sequencing Reads on a Graph

including the name, accession and content of sequences (both
reads and vertices).
Afterwards, the given GFA or the DOT graph is read and a list
of adjacencies will be saved. The direction of each pair of adja-
cent vertices are determined by the + or − read from the DOT
or GFA file. The directions are taken into account while making
the list of adjacencies. An integer index is assigned to each ver-
tex. The vertices with the reverse direction will get an index of
less than zero while a positive integer is assigned to the vertices
with the forward direction.

3.2.2 Training Markov Chain Models

The similar model class as in section 2.2.2 is used here with a
small alteration while training over the alignments. In the map-
ping case there are always two accessions, one belongs to the
vertices of the reference graph and the other belongs to all the
sequencing reads. So, the Markov chain models with different
orders are first trained over all the sequences of these two acces-
sions where each vertex as well as each read is considered a single
sequence. The best order is chosen for each seen pattern of each
accession. Afterwards, several models with different orders are
dynamically trained over the alignments between vertices and
reads. For each occurring modification between two sequences
of a pairwise alignment the best order of the model is chosen
which makes the cost of modifying a sequence to the other one
the smallest. Then, for each alignment the cost of creating a
sequence as well as modifying it to another one are computed
and the gain values are calculated using these costs. Although
the models are used to score the quality of mapping, the num-
bers of matches should be taken into account. However, on the
other hand in this case models are trained over relatively short
sequences, therefore some of the match cases may not be ob-
served during the training. This will result in receiving a large
cost value for visiting them even if they are what one expects

3.2. Method 65

to see and cause an error in detecting the best vertex for some
part of a read. There is a higher chance for this issue to hap-
pen if the length of the vertices are as short as a few nucleotide
bases or in an extreme case a single base. To solve this issue, the
formula to compute the cost of modifying sequences to one an-
other is altered to take the number of matches into account. In
fact, each modification cost of an alignment is divided by T ∗M
where T is an adjustable positive integer and M is the number
of matches which have been seen on that alignment. The gain
values are then calculated as in formula 2.1 and alignments with
the positive average gain are kept for the next step.

3.2.3 Mapping the reads

To map reads against the graph, the best path on the graph that
matches each read should be found. The following work-flow is
repeated on each read after training the models. The next steps
can be done in parallel for several reads at the same time.
For each read, a list of all the alignments between the read and
the reference graph is made and they are ordered by their posi-
tion on that read. Afterwards, they are grouped together as long
as each alignment is overlapped with its neighbouring alignment
on the read. Therefore, there will be overlap only within a group
of alignments but not between them. These non-overlapped
groups are then ordered by their position on the read and are
checked for their distance to their neighbouring groups. If the
distance between them on the read is less than a set maximum
distance (Maxdist), they will be collapsed into a single group.
The rationale behind the Maxdist is in fact to not get lost on
the reference graph since this number is used in the next step to
choose a sub-graph close to an alignment to look for the paths
on it. At the end, a single best path will be found for each of
these groups of alignments. The following steps will be repeated
for each of the above groups.

66 Chapter 3. Mapping Sequencing Reads on a Graph

Making an alignment graph

Here an alignment graph Gal(V,E) is built where V is a set of
vertices and E is a set of edges. Every v ∈ V is an alignment in-
dex and every e ∈ E represents the order of two adjacent vertices.
Occurring alignments are ordered by their starting position on
the read. The algorithm starts from the first alignment in each
group, meaning the one which started before all the other align-
ments on the read. It then proceeds alignment by alignment
until the last alignment of the group is visited. For each align-
ment, all the alignments which have their starting position on
the read after it, but have no overlap with it on the read and
are not further than the Maxdist to it, are saved as the set of
successor alignments for the current one. If the successors set
is not empty, a sub-graph of the reference graph including the
current alignment is generated.
Detecting the sub-graph is done by using the Breadth-first search
algorithm [36]. Searching on the reference graph is started from
the current vertex as the source node and it continues until the
distance between the visiting node and the source node exceeds
the Maxdist. This part of the graph is chosen as the desired
sub-graph. All the found successive alignments are checked for
containing a part of a vertex from this sub-graph. Figure 3.2
(A) illustrates the above procedure. If there are such successor
pairwise alignments, the shortest path on the reference graph
to reach each of them is found. For this purpose, the Dijkstra
algorithm with Fibonacci heaps [35], as priority queues, is used
to find the best connection between the current alignment and
each of its neighbours. To generate a connected path between
two alignments, three cases are taken into account. Firstly, if the
neighbouring alignments do not share a vertex with the current
one (figure 3.3, Case I). Secondly, if they share the vertex on the
forward direction (figure 3.3, Case II) and finally if they share
one on the reverse direction (figure 3.3, Case III). The remaining
sequences between two alignments both on the reference graph

3.2. Method 67

(A)

Sequencing ReadA B C D

Maxdist

A

Maxdist

Sub-graph of the Reference graph

B
D

C

(B)

A
NW

NW NW

B C

NW
NW D

Figure 3.2: (A) Successor alignments and the built sub-graph for the
pairwise alignment A, (B) Generated alignment graph after finding the
best path to each of A successors. Alignments which were indexed by
’NW’ were built using the Needleman-Wunsch algorithm to fill in the
gap between existing pairwise alignments

A B

A

B

Read

Case I

A B

B

Read

Case II

A

A B

AB

Read

Case III

Graph Graph

Graph

... ...

...

...
...

...

...

Figure 3.3: Case I: The successor alignment (B) is not sharing a graph
vertex with the current alignment (A).Case II: Two alignments share a ver-
tex on a graph on the forward direction. Case III: They are sharing a vertex
but on the reverse direction.

68 Chapter 3. Mapping Sequencing Reads on a Graph

and on the reads are detected and, using the Needleman-Wunsch
algorithm, corresponding alignments for these regions are gener-
ated. If two neighbouring alignments share a vertex there is no
need to look for the shortest path since there is only a single ex-
isting path between them. Thus, there is no need to use the Dijk-
stra algorithm and using the Needleman-Wunsch algorithm gen-
erates a single pairwise alignment to fill the gap in between the
two existing alignments. However, in cases where a vertex is not
shared more alignments may be produced where each contains
one vertex as a reference. The Needleman-Wunsch algorithm
is run considering the scores obtained from the trained Markov
chain models to capture the best possible pairwise alignment for
the non-aligned region between two pairwise alignments. The
modification cost of changing the reference vertex to its cor-
responding sequence segment on the read, obtained from the
Markov chain models, is used as the weight of the edge while
looking for the best path between alignments. By finding all
such paths for all the neighbouring alignments of the current
pairwise alignment, graph Gal is expanded. The located align-
ments on these paths are chosen as vertices on this graph and
their order on each path is shown by edges. Figure 3.2 (B) illus-
trates the generated alignment graph for the given sub-graph
in figure 3.2 (A). The built Gal is later used to identify the
best match between the reference graph and the read, thus it
is necessary to define two virtual Start and End vertices on it.
After checking all the successor alignments and expanding the
alignment graph Gal, the position of the current alignment on
the read is checked. If it is close enough to the beginning of
the read or the beginning of the group of alignments it belongs
to, it will be connected to the defined Start node. In fact, it
should be closer than Maxdist to the beginning of the read or
closer than Maxdist to be beginning of the group of alignments
it belongs to, minus half of the Maxdist, to avoid the overlap
between two subsequent groups of alignments. In other words,
the alignment in the later case should be closer than Maxdist to

3.2. Method 69

the M = Posfirst al −Maxdist/2, where Posfirst al is the posi-
tion of the first alignment of this group of alignments. To make
such a connection, the read content between position 0 or M
up to the current alignment position is aligned to a part of the
reference graph prior to the current vertex. To find the part of
the reference genome that this sequence is needed to be aligned
to, the Breadth-first search algorithm is used to detect the pre-
decessor vertices which are closer than Maxdist to the current
vertex. Paths on this sub-graph are aligned to the chosen piece
sequence of the read. These alignments are added as vertices to
Gal along with the corresponding edges which represents their
order. The Start vertex is connected to the first such alignment
on each path.
The position of the current alignment is not only checked for
its eligibility of being connected to the Start vertex but is also
checked for being eligible to be connected to the End vertex.
For this purpose, the last position of the alignment on the read
is checked for being closer than Maxdist to the end of the read
or being closer than Maxdist to the N = Poslast al + Maxdist.
The sequence content of this part of the read is then aligned to a
part of the reference graph which is just after the current vertex.
The same sub-graph as the one which has been used for creating
alignments between the current alignment and its neighbours is
also used here to generate pairwise alignments between each path
on it and the chosen part of the read. The generated alignments
are added as vertices to the Gal and their order of occurrence on
the paths is represented by the edges that connect them. The
last such alignment on each path is connected to the End vertex.
The above procedure is repeated for all the alignments in a group
and the graph Gal will be expanded. After visiting the last align-
ment of the group, Gal will no longer grow. Therefore, the best
match for this part of the read is detected in the form of a path
on the Gal graph.

70 Chapter 3. Mapping Sequencing Reads on a Graph

Finding the shortest path on the alignment graph

The best mapping result for each read is in fact a collection of
paths where each of them is a path with the lowest weight on one
of the built Gal graphs on the read. To find these paths, the Di-
jkstra algorithm is applied on each of the built alignment graphs.
The weight of each edge is the cost of modifying the vertex to the
read of the alignment that the edge enters to. This cost is com-
puted as one of the modification costs of the alignment employing
the parameters of the trained Markov chain model. Walking on
a Gal graph starts from the Start vertex and will end as soon
as the vertex End is reached. To detect a single path, in case of
having a graph with more than one component, expensive edges
with the weights higher than the highest available cost are gen-
erated to make a connection between the separated components
of this graph. The result will be a graph with only a single com-
ponent. For each vertex on the Gal graph, expensive edges are
connecting a vertex to its non-adjacent, non-overlapped vertices
which occurred after the current vertex, both on the read and
on the reference graph. To assign a high weight to each of these
edges, the number of bases between two alignments on the read
is calculated and a high weight is computed as follows:

Weight = (2.5 ∗Nbases + (Maxdist/2 ∗ 2.5) + C (3.1)

where Nbases is the number of bases between the two non-overlap-
ped alignments and C is a constant value. In my experiments C
has always been set to 1000 to guarantee that Weight is costlier
than any existing edge. The obtained weight from the formula
3.1 is then summed up with the modification cost of the entering
alignment (the alignment which an edge enters to).
The chosen path with the lowest weight represents the mapping
result for the part of a read which is covered by one of the align-
ments’ groups. On a read with more than one such group of
alignments, more than one of these paths are generated. Each of
these paths covers an independent region on the long sequencing

3.3. Result 71

read.

3.2.4 Output

Each obtained ’shortest path’ includes several pairwise align-
ments between a read and several vertices on the reference graph.
These pairwise alignments are then written on a MAF file or-
dered by their position of occurrence on a sequencing read.

3.3 Result

To check the accuracy of the proposed pipeline for mapping
reads, the designed algorithm has been tested with simulated
perfect reads. For the first experiment a reference graph was
generated over 5 E.coli genomes without considering the long−
centres. One of the input genomes has been chosen to simulate
sequencing reads. 155 perfect long reads with the equal length of
30, 030 bases have been simulated, the simulation has been done
by selecting regions of 30, 030 bases from a genome. LAST [25]
was used to detect the pairwise alignments between the reads
and the vertices on the graph. 23, 559 alignments were initially
created. However, after running the Markov chain models only
those with a high gain were kept as ’hits’. The mapping code
was run to find the best match for each of these reads. Since the
positions were known, the result was compared to ground truth,
defined as the number of bases mapped to their precise origin.
Running the mapping program took 11 minutes and 93.4% of
the bases were mapped to the correct position on the reference
graph while the rest were mapped elsewhere. Almost all these
mismapped bases were located at the beginning or at the end of
each read.
The next experiment was designed similarly over a different set
of data. In this case perfect reads were simulated with various
lengths between 102 and 15, 000 bases. Reads were all generated
from one the reference genomes which were used in making the

72 Chapter 3. Mapping Sequencing Reads on a Graph

graph. The graph was built over 4 different S.cerevisiae genomes.
The number of simulated reads in this case was 2, 586. As in
the previous experiment, LAST was applied to detect the pair-
wise alignments and it resulted in generating 54, 310 alignments.
Running the mapping program over all of the reads, including
the time needed for training the models, took 7 hours. Observing
the result, the error rate was calculated. As has been mentioned
for the the previous test run, all the bases were checked to ensure
that they were mapped to where they belonged to. In this ex-
periment only 3.94% of the bases mapped wrongly and the other
96.06% were mapped correctly.
To examine the ability of the pipeline in using the graphs gener-
ated by the other programs as a reference for mapping reads,
a graph was built over 3 assemblies of E.coli using the RE-
VEAL [29] tool. This tool generates a graph by looking for the
maximum exact matches between input genomes. Thus, there
are vertices with a very short length, sometimes as short as a sin-
gle nucleotide. The complexity of the graph is much higher, the
number of the paths to traverse is much bigger but the graph
has no cycle and the output is always an acyclic graph. The
same simulated perfect reads from the first experiment (155 reads
with the length equal to 30, 030 bases) were used here and were
mapped against the REVEAL [29] graph. Again LAST [25] was
used to help in detecting the hits. However, due to the larger
number of vertices the number of detected pairwise alignments is
almost doubled. 42, 863 alignments were initially detected which
were later filtered after running the models if they had a low av-
erage gain. The output was studied for the number of wrongly
mapped bases. The error rate was much lower than the previous
cases and only 0.014% of bases were mapped wrongly. However,
the running time was much higher for this test and on average
5 minutes, including the training time, were needed on the same
machine to map each read against the graph.
The pipeline was also tested by mapping a larger set of reads on
the graph created by the REVEAL [29] tool. The chromosome

3.4. Discussion 73

1 of two A.thaliana accessions were used as input to generate
the graph and perfect reads were simulated from one of them.
The number of reads was 451 and they all had a length equal
to 15, 000 bases. Again, a high accuracy was obtained and only
0.15% of bases were mapped wrongly.
After running the algorithm several times on perfect reads, it
was tested for handling error prone reads. For this purpose, er-
ror prone reads were simulated using the PBSIM [44] tool. The
tool simulates SMRT sequencing reads with various lengths. 375
reads with the total number of 1, 074, 816 bases has been gener-
ated from an E.coli assembly. The graph contains 3 assemblies
of E.coli, one of which is the one that sequencing reads were gen-
erated from, that has been made by the REVEAL tool. It has
then been used as the reference to map the simulated sequenc-
ing reads on it. Similar to the previous experiments, pairwise
alignments between these reads and the graph were discovered
using the LAST program. Running time on the simulated error
prone reads is faster than the perfect reads due to the significant
smaller number of hits. Only 4.4% of the bases were mapped on
a wrong vertex or a wrong base and more than 95% of the bases
were mapped correctly to where they belong to on the original
genome.

3.4 Discussion

The above experiments revealed that there is a trade off between
the running time and the mapping accuracy by choosing either
the graph proposed in the previous chapter of this dissertation
or the one which was generated by the REVEAL program. The
graph built by REVEAL branches into two vertices whenever a
single nucleotide mismatch occurs between two genomes as op-
posed to my proposed approach where the similar sequences were
kept as a cluster and only one of them is chosen as a vertex on
the graph which results in a more simplified graph with longer

74 Chapter 3. Mapping Sequencing Reads on a Graph

vertices. The shorter running time obtained by running the map-
ping pipeline over our proposed graph is a result of the simplified
structure of the input graph, however, it resulted in a slight drop
in accuracy (see section 3.3). Some improvements that would be
possible to apply in order to reduce the running time in the case
of complex graphs would entail changing the way ’hits’ are found
and so try to reduce the number of them by filtering for fewer
’hits’ with a much higher probability of being true matches. One
could also generate longer contigs rather than using each read by
looking for the overlap between them and then use these longer
pieces instead of every single read. This is possible since the
program has no limitation in accepting the long reads.
Last but not least, the time needed to train the model can be
saved by training the model only once over data that comes from
the sequencing machine and by using the same model parameters
as long as the same machine is used to generate the sequencing
reads.

Chapter 4

Conclusion

During the last two decades, the amount of generated genome
data has increased exponentially. It has resulted in a large col-
lection of assembled genomes with a high magnitude of diversity
within a species and presented scientists with the challenge of
finding a reliable way of studying the variations between them.
The classical approach to solving this problem has been to em-
ploy a single reference genome. However, using a single genome
as a reference imposes a bias since every base on any other se-
quence is compared with only a single base on the reference.
Therefore, it does not provide a robust way of capturing SNPs
or structural variations in the presence of a high level of diver-
sity. On the other hand, many genomes have already been com-
pletely sequenced, thus, shifting from a single reference genome
to a multi-genome reference will return a more robust way of
representing the hidden structure of the data and its variants,
as well as removing the bias against using only a single reference
genome.
As has been mentioned in chapter 1, several studies have already
been carried out which try to employ the information obtained
from more than a single genome on a reference, however apply-
ing several full length genomes in making such a data structure

75

76 Chapter 4. Conclusion

is still a challenge. To address this challenge, in this disser-
tation an algorithm was proposed to generate a data structure
that represents several full length genomes. Similar to a vari-
ety of other methods (see 1.3.2), here a genome graph has been
introduced. As opposed to previous methods, it contains the in-
formation obtained from all the genomes rather than a reference
genome supplemented by a collection of variations. The method
provides individual specific Markov chain models which allows
for analysing genomes with very different magnitudes of differ-
ence together and aids in capturing the hidden structure of each
input genome. An advantage of the proposed algorithm is that it
searches for the similar segments of sequences and clusters them
together. Clustering helps in studying repeated regions and sav-
ing memory storage by keeping less information. Moreover, it
enables us to perform both between and within cluster analysis.
Therefore, the algorithm can be easily applied in global genome
analyses.
To cluster the similar regions, different groups of independent
sequences are generated. Sequences of each group are related to
each other in a sense that each two of them belong to a pair-
wise alignment and they are independent from the sequences in
other groups in a sense that there is no overlap between their
sequences. Producing the independent groups in a way that has
been done in this study has a high cost and significantly in-
creases the running time of the program for large genomes. This
might be improved by filtering the input alignments or modifying
the algorithm for cutting the partially overlapped alignments. In
spite of the high cost of the algorithm in handling large genomes,
we believe that this will be a great leap forward in generating
such references in the near future.
The introduced algorithm in this research uses the information
obtained from the graph and the models’ parameters to com-
press the input data. Observing a high compression rate after
arithmetically encoding the input genomes proves the power of
applied models in capturing the structure of input genomes. The

77

proposed compression tool can be used as a metric to measure
the common information of individual genomes and shows their
distances.
Finally, since the decisions are always made in a manner that
minimizes Shannon information, the presented approach is a
non-parametric approach and as such does not rely on any arbi-
trary parameter choices.
In summary, as opposed to the previous algorithms, this algo-
rithm presents a way to analyse multiple full length genomes by
minimizing the Shannon information. Moreover, by employing
individual models, it helps in perfectly capturing the informa-
tion of their contents, and last but not least, clusters similar
segments of several genomes which aids in studying homologous
regions and simplifying downstream analysis. Despite the above
advantages, the algorithm has a high complexity in generating
independent pieces of sequence which can be altered to reduce
the time and the complexity of the algorithm in handling a higher
number genomes or larger genomes.
Developing such an algorithm assists us in finding matches for
longer reads on a graph as a reference. Finding the best match
for each sequencing read on the graph rather than a single ref-
erence will give us the opportunity of detecting more variations
and studying the genomes which are closer to a combination of
several genomes. To search for the best match between a graph
as a reference and a sequencing read, another algorithm has been
introduced in this dissertation. By traversing the graph the al-
gorithm finds the path that fits each read the best. First, highly
similar regions between vertices of the graph and the reads (hits)
are found, then the paths between each two such regions are
checked and the best one is chosen. To look for the best path,
several Markov chain models were trained prior to traversing the
graph. The models specify a cost for each modification between
a vertex and a read, these costs are used as weights for detecting
the best path. The algorithm returns a high accuracy in map-
ping reads, however, the size of the edges of a graph may affect

78 Chapter 4. Conclusion

its running time. To deal with that issue, generating longer con-
tigs from several sequencing reads and mapping them instead of
each single read and reducing the number of hits by looking only
for the best ones are recommended.

Appendices

79

Appendix A

Data

Data sets which were used to generate a multi-genome reference
over 2, 4, 8 and 16 strains of E.coli can be found here:

1- NCBI reference sequence NC 000913.3
(https://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3?report=fasta)
2- NCBI reference sequence: NC 002695.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_002695.1?report=fasta)
3- NCBI reference sequence: NC 010473.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_010473.1?report=fasta)
4- NCBI reference sequence: NC 012967.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_012967.1?report=fasta)
5- NCBI reference sequence: AE014075.1
(https://www.ncbi.nlm.nih.gov/nuccore/AE014075.1?report=fasta)
6- NCBI reference sequence: NC 004431.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_004431.1?report=fasta)
7- NCBI reference sequence: NC 007946.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_007946.1?report=fasta)
8- NCBI reference sequence: NC 008253.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_008253.1?report=fasta)
9- NCBI reference sequence: NC 011750.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_011750.1?report=fasta)
10- NCBI reference sequence: NC 011751.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_011751.1?report=fasta)

81

82 Appendix A. Data

11- NCBI reference sequence: NC 018658.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_018658.1?report=fasta)
12- NCBI reference sequence: NC 009800.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_009800.1?report=fasta)
13- NCBI reference sequence: NC 017634.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_017634.1?report=fasta)
14- NCBI reference sequence: AE005174.2
(https://www.ncbi.nlm.nih.gov/nuccore/AE005174.2?report=fasta)
15- NCBI reference sequence: NC 008563.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_008563.1?report=fasta)
16- NCBI reference sequence: NC 017633.1
(https://www.ncbi.nlm.nih.gov/nuccore/NC_017633.1?report=fasta)

Data sets which were used to generate a multi-genome refer-
ence over 4 S.cerevisiae strains can be found here:
https://www.yeastgenome.org/strain/AWRI1631

https://www.yeastgenome.org/strain/FL100

https://www.yeastgenome.org/strain/CLIB215

https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=AEWL01#contigs

A.thaliana Data:
Kubica, Bemm, Weigel, unpublished

Bibliography

[1] Multiple alignment format.
https://genome.ucsc.edu/FAQ/FAQformat.html#format5.

[2] A proposal of the graphical fragment assembly format, 2014.

[3] Srinivas Aluru. Handbook of computational molecular biology.
CRC Press, 2005.

[4] Anton Bankevich, Sergey Nurk, Dmitry Antipov, Alexey A Gure-
vich, Mikhail Dvorkin, Alexander S Kulikov, Valery M Lesin,
Sergey I Nikolenko, Son Pham, Andrey D Prjibelski, et al.
Spades: a new genome assembly algorithm and its applica-
tions to single-cell sequencing. Journal of computational biology,
19(5):455–477, 2012.

[5] Nayantara Bhatnagar, Pietro Caputo, Prasad Tetali, Eric
Vigoda, et al. Analysis of top-swap shuffling for genome rear-
rangements. The Annals of Applied Probability, 17(4):1424–1445,
2007.

[6] James K Bonfield, Kathryn F Smith, and Rodger Staden. A
new dna sequence assembly program. Nucleic acids research,
23(24):4992–4999, 1995.

[7] Michael Burrows and David J Wheeler. A block-sorting lossless
data compression algorithm. 1994.

[8] MO Dayhoff, RM Schwartz, and BC Orcutt. A model of evolu-
tionary change in proteins, atlas of protein sequence and struc-

83

84 Bibliography

ture 1978, vol. 5, suppl. Dayhoff, MO, National Biomedical Re-
search Foundation, Washington DC, 1978.

[9] FA de Bruijn. A combinatorial problem. 1946.

[10] Edsger W Dijkstra. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

[11] Alexander Dilthey, Charles Cox, Zamin Iqbal, Matthew R Nel-
son, and Gil McVean. Improved genome inference in the mhc
using a population reference graph. Nature genetics, 47(6):682–
688, 2015.

[12] Richard Durbin. Efficient haplotype matching and storage using
the positional burrows–wheeler transform (pbwt). Bioinformat-
ics, 30(9):1266–1272, 2014.

[13] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme
Mitchison. Biological sequence analysis: probabilistic models of
proteins and nucleic acids. Cambridge university press, 1998.

[14] Martin Farach. Optimal suffix tree construction with large alpha-
bets. In Foundations of Computer Science, 1997. Proceedings.,
38th Annual Symposium on, pages 137–143. IEEE, 1997.

[15] Paolo Ferragina and Giovanni Manzini. Opportunistic data
structures with applications. In Foundations of Computer Sci-
ence, 2000. Proceedings. 41st Annual Symposium on, pages 390–
398. IEEE, 2000.

[16] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps
and their uses in improved network optimization algorithms.
Journal of the ACM (JACM), 34(3):596–615, 1987.

[17] Brendan J Frey and Delbert Dueck. Clustering by passing mes-
sages between data points. science, 315(5814):972–976, 2007.

[18] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jor-
dan M Eizenga, Eric T Dawson, William Jones, Shilpa Garg,
Charles Markello, Michael F Lin, et al. Variation graph toolkit
improves read mapping by representing genetic variation in the
reference. Nature biotechnology, 2018.

Bibliography 85

[19] Sara Goodwin, John D McPherson, and W Richard McCombie.
Coming of age: ten years of next-generation sequencing tech-
nologies. Nature Reviews Genetics, 17(6):333–351, 2016.

[20] Frank Harary and George E Uhlenbeck. On the number of
husimi trees i. Proceedings of the National Academy of Sciences,
39(4):315–322, 1953.

[21] Steven Henikoff and Jorja G Henikoff. Amino acid substitu-
tion matrices from protein blocks. Proceedings of the National
Academy of Sciences, 89(22):10915–10919, 1992.

[22] Mark Howison, Felipe Zapata, Erika J Edwards, and Casey W
Dunn. Bayesian genome assembly and assessment by markov
chain monte carlo sampling. PloS one, 9(6):e99497, 2014.

[23] Lin Huang, Victoria Popic, and Serafim Batzoglou. Short
read alignment with populations of genomes. Bioinformatics,
29(13):i361–i370, 2013.

[24] Xiaoqiu Huang and Anup Madan. Cap3: A dna sequence assem-
bly program. Genome research, 9(9):868–877, 1999.

[25] Szymon M Kie lbasa, Raymond Wan, Kengo Sato, Paul Horton,
and Martin C Frith. Adaptive seeds tame genomic sequence
comparison. Genome research, 21(3):487–493, 2011.

[26] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum,
Michael C Zody, Jennifer Baldwin, Keri Devon, Ken Dewar,
Michael Doyle, William FitzHugh, et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001.

[27] Heng Li and Richard Durbin. Fast and accurate short read
alignment with burrows–wheeler transform. Bioinformatics,
25(14):1754–1760, 2009.

[28] Antoine Limasset, Bastien Cazaux, Eric Rivals, and Pierre Peter-
longo. Read mapping on de bruijn graphs. BMC bioinformatics,
17(1):237, 2016.

86 Bibliography

[29] Jasper Linthorst, Marc Hulsman, Henne Holstege, and Marcel
Reinders. Scalable multi whole-genome alignment using recur-
sive exact matching. bioRxiv, 2015. URL: https://github.com/
jasperlinthorst/REVEAL.

[30] David J Lipman and William R Pearson. Rapid and sensitive
protein similarity searches. Science, 227(4693):1435–1441, 1985.

[31] Bo Liu, Hongzhe Guo, Michael Brudno, and Yadong Wang. de-
bga: read alignment with de bruijn graph-based seed and exten-
sion. Bioinformatics, 32(21):3224–3232, 2016.

[32] Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin
Iqbal. A natural encoding of genetic variation in a burrows-
wheeler transform to enable mapping and genome inference. In
International Workshop on Algorithms in Bioinformatics, pages
222–233. Springer, 2016.

[33] James MacQueen et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA, 1967.

[34] Shoshana Marcus, Hayan Lee, and Michael C Schatz. Splitmem:
a graphical algorithm for pan-genome analysis with suffix skips.
Bioinformatics, 30(24):3476–3483, 2014.

[35] Robin Message. A simple c++ fibonacci heap implementation.
https://github.com/robinmessage/fibonacci.git.

[36] Edward F Moore. The shortest path through a maze. In Proc.
Int. Symp. Switching Theory, 1959, pages 285–292, 1959.

[37] Eugene W Myers. Toward simplifying and accurately formulating
fragment assembly. Journal of Computational Biology, 2(2):275–
290, 1995.

[38] Eugene W Myers. The fragment assembly string graph. Bioin-
formatics, 21(suppl 2):ii79–ii85, 2005.

Bibliography 87

[39] Saul B Needleman and Christian D Wunsch. A general method
applicable to the search for similarities in the amino acid se-
quence of two proteins. Journal of molecular biology, 48(3):443–
453, 1970.

[40] Ngan Nguyen, Glenn Hickey, Daniel R Zerbino, Brian Raney,
Dent Earl, Joel Armstrong, W James Kent, David Haussler, and
Benedict Paten. Building a pan-genome reference for a popula-
tion. Journal of Computational Biology, 22(5):387–401, 2015.

[41] Adam M Novak, Erik Garrison, and Benedict Paten. A graph
extension of the positional burrows-wheeler transform and its ap-
plications. In International Workshop on Algorithms in Bioin-
formatics, pages 246–256. Springer, 2016.

[42] Adam M Novak, Glenn Hickey, Erik Garrison, Sean Blum,
Abram Connelly, Alexander Dilthey, Jordan Eizenga, MA Saleh
Elmohamed, Sally Guthrie, André Kahles, et al. Genome graphs.
bioRxiv, page 101378, 2017.

[43] Adam M Novak, Yohei Rosen, David Haussler, and Bene-
dict Paten. Canonical, stable, general mapping using context
schemes. Bioinformatics, 31(22):3569–3576, 2015.

[44] Yukiteru Ono, Kiyoshi Asai, and Michiaki Hamada. Pb-
sim: Pacbio reads simulator—toward accurate genome assembly.
Bioinformatics, 29(1):119–121, 2012.

[45] Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Detect-
ing superbubbles in assembly graphs. In International Workshop
on Algorithms in Bioinformatics, pages 338–348. Springer, 2013.

[46] Benedict Paten, Mark Diekhans, Dent Earl, John St John, Jian
Ma, Bernard Suh, and David Haussler. Cactus graphs for genome
comparisons. Journal of Computational Biology, 18(3):469–481,
2011.

[47] Benedict Paten, Dent Earl, Ngan Nguyen, Mark Diekhans,
Daniel Zerbino, and David Haussler. Cactus: Algorithms
for genome multiple sequence alignment. Genome research,
21(9):1512–1528, 2011.

88 Bibliography

[48] Benedict Paten, Adam Novak, and David Haussler. Mapping to
a reference genome structure. arXiv preprint arXiv:1404.5010,
2014.

[49] Benedict Paten, Adam M Novak, Erik Garrison, and Glenn
Hickey. Superbubbles, ultrabubbles and cacti. In International
Conference on Research in Computational Molecular Biology,
pages 173–189. Springer, 2017.

[50] Paul A Pevzner, Haixu Tang, and Glenn Tesler. De novo re-
peat classification and fragment assembly. Genome research,
14(9):1786–1796, 2004.

[51] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An
eulerian path approach to dna fragment assembly. Proceedings
of the National Academy of Sciences, 98(17):9748–9753, 2001.

[52] Armando J Pinho and Diogo Pratas. Mfcompress: a compression
tool for fasta and multi-fasta data. Bioinformatics, 30(1):117–
118, 2013.

[53] Jens Quedenfeld and Sven Rahmann. Variant tolerant read map-
ping using min-hashing. arXiv preprint arXiv:1702.01703, 2017.

[54] Benjamin Raphael, Degui Zhi, Haixu Tang, and Pavel Pevzner.
A novel method for multiple alignment of sequences with re-
peated and shuffled elements. Genome Research, 14(11):2336–
2346, 2004.

[55] Frederick Sanger, Steven Nicklen, and Alan R Coulson. Dna
sequencing with chain-terminating inhibitors. Proceedings of the
national academy of sciences, 74(12):5463–5467, 1977.

[56] Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski,
Norman Warthmann, Sandra Gesing, Oliver Kohlbacher, and
Detlef Weigel. Simultaneous alignment of short reads against
multiple genomes. Genome biology, 10(9):R98, 2009.

[57] Julian Seward. bzip2 high-quality data compressor. http://

www.bzip.org.

Bibliography 89

[58] Claude E Shannon and Warren Weaver. The mathematical the-
ory of communication. 1948.

[59] Michele Simionato. An introduction to graphviz and dot.
2004. URL: http://www.linuxdevcenter.com/pub/a/linux/

2004/05/06/graphvizdot.html.

[60] Jared T Simpson and Richard Durbin. Efficient construction of
an assembly string graph using the fm-index. Bioinformatics,
26(12):i367–i373, 2010.

[61] Aaron D Skewes and Roy D Welch. A markovian analysis of
bacterial genome sequence constraints. PeerJ, 1:e127, 2013.

[62] Temple F Smith and Michael S Waterman. Identification of
common molecular subsequences. Journal of molecular biology,
147(1):195–197, 1981.

[63] Kavya Vaddadi, Naveen Sivadasan, Kshitij Tayal, and Rajgopal
Srinivasan. Sequence alignment on directed graphs. bioRxiv,
page 124941, 2017.

[64] Peter Weiner. Linear pattern matching algorithms. In Switch-
ing and Automata Theory, 1973. SWAT’08. IEEE Conference
Record of 14th Annual Symposium on, pages 1–11. IEEE, 1973.

[65] KA Wetterstrand. Data from the genome sequencing program
of the national human genome research institute. https://www.
genome.gov/sequencingcostsdata.

[66] Ryan Wick. Effect of kmer size. https://github.com/rrwick/

Bandage/wiki/Effect-of-kmer-size.

[67] Byung-Jun Yoon. Hidden markov models and their applications
in biological sequence analysis. Current genomics, 10(6):402–415,
2009.

[68] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de
novo short read assembly using de bruijn graphs. Genome re-
search, 18(5):821–829, 2008.

90 Bibliography

[69] Yu Zhang and Michael S Waterman. An eulerian path approach
to local multiple alignment for dna sequences. Proceedings of the
National Academy of Sciences of the United States of America,
102(5):1285–1290, 2005.

