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Preface

As for the future, your task is not to foresee, but to enable it
Antoine de Saint-Exupery, 

“The Wisdom of the Sands”

One of the primary functions of the central nervous system is to make the body move.

Whenever we try to find a mating partner, hunt for food or avoid becoming it ourselves, we

need to move. No wonder then, that how does a voluntary movement emerge from brain

activity has been one of the most extensively studied problems in neuroscience. But, even

despite the research effort,  the exact mechanisms are still  far  from understood.  In my

dissertation  I  scrutinize  a  portion  of  the  complex  system responsible  for  transforming

thoughts into actions. Specifically, I focus on the interplay between the cognitive and the

motor  components  of  action  plans  and  their  representations  in  posterior  parietal  and

premotor cortex. In the first chapter I start by bringing up the psychological theories of how

are the mental representations related to motor actions. Next, I briefly review the current

state  of  knowledge  about  neural  correlates  of  action  planning  in  the  primate  brain.  I

concentrate on hand movements as they pose the major challenge in understanding the

motor system, being the most complex type of actions the human body is capable of. After

having built this general background, I present my own work, where I try to answer three

questions about parieto-frontal processing in action planning:

1) Does the brain visually simulate action effects in prior to action execution?

2) Are the reach trajectory plans organized along one, common neural pathway?

3) Are working memory processes modulated by effector preparation? 

In the final part of the dissertation I summarize my findings and briefly reflect upon the

tangled relationship between the ability to represent and realize ideas, and how it might

have shaped the evolution of other remarkable features of the human mind.
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Introduction: From intentions to actions

Predictive encoding of actions

It may appear, that the human motor system has evolved to foresee the future and act

upon it. Whenever we try to perform an action in the constantly changing environment,

we’re racing against time. Our bodies and senses seem too slow to win this race: the

several hundreds of milliseconds we need to react to a new event, may be a matter of life

and death. This makes the central nervous system compensate for this sluggishness and

act ahead so that the slow body catches up with the fast world. Therefore, the brain makes

predictions  that  guide  the  body to  move where  it  ought  to  be  before  the  senses can

perceive it. Whenever we intend to catch a ball or hit a moving prey, we predict where to

aim next, to catch up with the moving target. On the very basic level, these predictions

start  already in  the  retina,  where  laterally  spreading transients  allow to  quickly  detect

movements and form a simple, cellular-level prediction (Nijhavan and Wu, 2009). Further

evidence shows that such predictive coding occurs at various stages of processing within

perceptual domain (see e.g. den Ouden et al., 2012; Obleser, 2016). This way, the general

orientation of the central  nervous system towards representing the future seems to be

preserved  throughout  its  ascending  pathways  up  to  the  highest,  cortical  centers  of

perception. Once the information reaches there, the perceptual content needs, however, to

be translated into the respective motor programs, that would allow the body to act upon

the environment. This translation allows binding information between several perceptual

and motor modalities into  a common computational  framework,  even though the initial

information coding may be different between those modalities (as the cortical ensembles in

the primary visual cortex obviously encode different features than the ones in the primary

motor cortex). This binding process, called sensorimotor integration is the key problem to

solve by the nervous systems of virtually all animal species (Sperry, 1952). 
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It appears that the central nervous system’s ability to “foresee” the future should allow it to

effectively act upon these predictions and, moreover, to shape the environment to fulfill the

organism’s needs. This shaping has to start off by defining some specific desired state that

the action should lead to: an intention. The action, when performed, leads to a certain

consequence, which may be either just the final state, or the action itself  (as both can

differ,  see Study 2).  This consequence then is compared to the intention,  either using

external  sensory  feedback  or  by  internal  efference  copy loops,  allowing  for  correcting

potential errors (e.g. Sperry, 1950; Cisek, 2007). Thereby, one can define intentions as a

specific sort of predictions, that reflect an ultimate, desired effect of an action. If it wasn’t

for this prospectively defined intention to which the actual outcome can be compared to,

any action would have to be performed on trial-and-error basis, a very costly strategy.

As  described  by  Wolfgang  Koehler  in  his  classical  works  on  problem  solving  in

chimpanzees, such waste of energy is not the case indeed (Koehler, 1921). Koehler noted

that the way chimpanzees acted in order to get food indicated that they were led by some

idea of desired future state allowing them to creatively transform environment to match

that state, in a process he called insight. This observation was in strong opposition to its

contemporary  theories  of  learning,  especially  Thorndike’s  concept  of  instrumental

conditioning  which  assumed  trial-and-error  basis  in  learning  stimulus→outcome

associations  (Thorndike,  1911).  A  prospective  visualization  of  intention  is  crucial,  as

plethora of different means may be available to achieve the same goal, requiring a process

of selection and evaluation of their effectiveness. Some of these means may emerge in the

process of problem solving, like the insight studies of Koehler demonstrated, and usually

present a variety of parallel options to achieve the goal. Evaluation and selection of the

eventually applied action is encapsulated in a complex, multi-level process and will  be

briefly discussed later in this and the next chapters.
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Psychological foundations of action planning

The formation of the prospective action plans has been approached experimentally with a

variety of paradigms, with the most widely used ones being delayed response tasks. First

proposed by Rosenbaum (1980), these paradigms base all upon the common principle of

temporal separation between action cue (e.g. movement goal) and movement execution.

The time in between is a fundamental epoch, where brain activity should – in theory –

reflect the definition and the rehearsal of an action plan. First experiments by Rosenbaum

demonstrated, that such pre-planning of a response, allows a faster action (Rosenbaum,

1980; compare e.g.: Lindner at al., 2010). The question remains open, however, whether

this paradigm constitutes the only way to pinpoint the planning processes in the brain, as

some researchers were able to isolate planning activity immediately preceding actions with

no delay (Ames et al., 2014). I will return to this problem in Study 1.

The  delayed  response  paradigms  have  been  used  widely  to  disentangle  a  variety  of

processes that altogether constitute the umbrella term “action planning”, such as target

localization (Galetti et al., 1993), target selection (Cisek, 2007), effector selection (Leone

et al., 2014), applying motor context (Westendorff et al., 2010), or predictive encoding of

the expected consequences of an action (see Study 1).

This last element has been of particular importance for the general topic of my research

presented in this thesis and has been of interest to several different psychological theories

of sensorimotor binding. Two of them: the ideomotor theory and the theory of event coding

(the latter being an extension of the former) seem to provide an interesting conceptual

framework for the general problem of binding between intentions and actions leading to

them. Both extend the basic concepts of sensorimotor integration to encompass, much

more elusive,  cognitive processes mediating between sensory inputs and actions. The

ideomotor  theory bases upon a central  notion that  every (conscious)  action triggers a

related mental event (an idea) and vice versa: every thought leads to its related, either

– 10 –



proximate or distal  action (James, 1890; Hommel,  2001). For example, an intention to

open an application window on a computer screen is equivalent to preparing an action of

clicking a mouse button with the cursor pointing to a respective icon. And, conversely,

clicking the mouse button leads to an expectancy that it should be followed by a window

opening. One may suspect, just like Rosenbaum’s findings suggested, that having some

prior cognitive (sensory) representation of an action should necessarily shorten reaction

times needed to initiate that action. Similarly, matching sensory modalities between stimuli

and  actions  yield  shorter  reaction  times,  when  compared  to  unmatched  modalities

(Greenwald, 1970).  A more elusive concept implicated by the ideomotor theory says that

the action’s goal determines also the action itself by triggering cognitive operations that

may lead to obtaining this goal. Therefore, the ideomotor approach made the weight shift

from  the  behavioristic  dogma  of  externally-generated  and  passively-perceived  stimuli,

mechanistically  processed  by  stimuli-response  mappings,  to  the  internally  generated

cognitive  processes  that  determine  future  actions.  It  is  noteworthy,  that  the  theory  in

principle applies only to voluntary and conscious movements, and not to the many motor

reflexes  or  other  involuntary  movements  the  human body  is  capable  of  (Rosenbaum,

2009).  In  their  extensive  review  on  the  topic  Hommel  and  colleagues  (2001)  list

weaknesses  of  the  classical  variants  of  ideomotor  theory  and  its  limited  value  in

convincingly demonstrating the cognitive mechanisms responsible for mapping  intentions

to actions. For that reason he proposes an expanded variant, which he calls a theory of

event  coding  (TEC).  As  the  authors  phrase  it  themselves,  the  basic  concept  of  TEC

assumes “that perception, attention, intention, and action share, or operate on, a common

representational  domain” (Hommel et al.,  2001, p.  859).  This assumption speaks for a

common code in processing information between both perceptual  and motor domains,

although the TEC itself does not provide many hints on the actual neural implementation

for such “code” and Hommel et al.  do not dwell  into this problem. The TEC, however,
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notably proposes that binding of multimodal information relies on some common, abstract

frame (Prinz,  1990;  1997)  responsible  for   “distal  coding”,  which  can be mediated by

several different neural mechanisms (see e.g. Singer, 1994; Reichenbach et al.,  2014).

Furthermore, Hommel et al. (2001) propose an interesting distinction between an action’s

target and its goal, where the former can be viewed as a mere external sensory stimulus,

while  the  latter  as  an  internal  representation  of  the  action,  together  with  its  expected

(sensory)  consequences.  These  concepts  seem  somewhat  related  to  the  process  of

binding across different reference frames in which action features can be represented in,

as discussed extensively by e.g. Andersen and Buneo (2001) or by Medendorp (2008;

Beurze et al.,  2010) who also provide empirical  support  to their  view on how can the

common reference frame be realized in the brain. I will return to the problem of different

reference frames later, as it poses one of the most important challenges all approaches to

action  planning  must  face.  Apparently,  within  TEC,  the  common  coding  facilitates

exchange of information between perceptual  and motor modalities in order to optimize

their performance, and incomplete visual information may trigger a manual or other bodily

action such as changing viewing perspective in order to gather more information (Hommel

et  al.,  2001).  In  this  way,  the  TEC seems  to  take  into  account  the  older  theories  of

ecological perception, postulating that perceiving is not a passive process, but rather an

active one, where the organism interacts with the environment in order to explore it and

use its features in an optimized way (e.g. Gibson, 1979). 

Interacting with the environment relies foremost on recognizing the potential use of objects

(for which Gibson coined the term “affordances”), as well as recognizing consequences of

such use, like when holding a stick extends our reach range (compare: Maravita and Iriki,

2004). This in turn appears to require an ability to integrate the tool into the body’s own

actions,  as various tools  may require  different  motor  programs to  induce the same or

similar  effects  (c.f.  Umilta  et  al.,  2008).  This  specific  way  of  adapting  motor  plans  to
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subserve the desired visual consequences may be a more general, inherent feature of the

human motor system. Indeed, several  studies have consistently demonstrated that the

system aims at producing the consequences no matter of the means that lead to them

(Janczyk et al 2014; Shin et al. 2010; Kühn and Brass, 2010; Hommel, et al., 2001; Elsner

et  al.,  2002; Wolpert  and Ghahramani  2000;  Kuang and Gail,  2015).  In  Study 1 I  will

discuss this particular problem more extensively. 

The theories described above, despite providing a conceptual framework for explaining

certain behavioral  markers,  do not let  one delineate any physiological  basis for  action

planning.  In  the  next  chapters  I  will  traverse  from  the  vast  space  of  slightly  elusive

concepts  of  ideomotor  theories  to  the  somewhat  more  concrete  world  of  the  brain

functions. I will focus on the cortical motor planning areas, as their role is most relevant for

the current work. Moreover, I will discuss each area’s functions more specifically in the

relevant chapters describing my own studies on the parieto-frontal motor planning system.

The parieto-frontal “planning network”

Among  the  primate  brain  regions  considered  to  be  important  for  the  sensorimotor

integration, the key role has been attributed to the posterior parietal cortex (PPC). The

region’s placement between the visual and the sensorimotor areas of the cortex, allows it

to  both  receive  inputs  from  and  project  to  multiple  sensory,  motor  and  higher-order

processing areas (like prefrontal cortex). This anatomical clue has suggested that PPC

may be the site for sensorimotor integration in the brain, linking information from different

sensory modalities with respective actions. Moreover, lesions to the region result directly in

disorders of motor actions like optic ataxia (Hwang et al., 2012) or apraxia (Geschwind and

Damasio, 1985; Gross and Grossman, 2008). All this makes PPC a good counterpart for

the other motor planning areas located in the frontal lobe (like premotor or supplementary

motor cortex). These frontal regions have been demonstrated to play a crucial role in hand
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movement  planning  in  a  variety  of  domains,  ranging  from  representing  targets  hand

(Hocherman and Wise, 1991; Crammond and Kalaska, 1989; Messier and Kalaska, 2001)

to planning of complex actions (Hocherman and Wise, 1991; Umilta et al, 2008; Pearce

and Moran, 2012). The fact that many aspects of planning are shared between parietal

and frontal regions suggests a rather complex interplay between them.

The advent of brain imaging studies, allowing to record whole-brain activity has further

confirmed the common engagement of frontal and posterior parietal regions in planning of

motor actions (see Figure 1.1). It appears that the premotor and posterior parietal areas

form  a  very  ‘typical’  pattern  of  roughly  correlated  planning  activity  (for  this  reason

sometimes  called  frontoparietal  network).  More  specifically,  motor  planning  tasks

conducted  in  functional  magnetic  resonance  (fMRI)  usually  yield  and  elevated  signal

during the delay phase of a trial, as contrasted with baseline activity (compare to Connolly

et al., 2002, 2003; Gallivan et al., 2011; Lindner et al., 2010). Related signal patterns are

observed using other methods of measuring brain activity (not relying on blood flow), such

as magnetoencefalography where planning activity results in sustained desynchronisation

of low-frequency bands (see e.g. Medendorp et al., 2007) or increased single-cell activity

in non-human primates (NHP’s) (see e.g. Crammond and Kalaska, 1989; Kalaska and

Crammond, 1995; Batista and Andersen, 2001; Westendorff et al., 2010). This speaks for

consistency in the local increases of neural activity during movement preparation. Although

the activity patterns show an apparent correlation between the large-scale regions in a

huge  variety  of  tasks,  there  has  been  a  significant  amount  of  evidence  highlighting

differences between and within these regions (Gallivan and Culham, 2015; Cavina-Pratesi

et  al.,  2018).  Apparently,  the  “nodes”  of  the  alleged  parieto-frontal  network  differently

process the intention in order to realize it.  In  the next chapters I  will  review the most

important  findings  describing  functional  organization  of  motor  planning  in  the  parieto-

frontal network, highlighting differences and similarities between its main components.
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At this point it is worth to emphasize an inherent feature of all planning tasks, namely the

fact that each planned but deferred action has to be maintained in the working memory

until it’s executed. This correlation between the retrospective and prospective processes

engaged in action planning results in a large spatial overlap between the the parietal and

frontal  areas  engaged  in  motor  planning  and  working  memory  maintenance  (see  e.g.

Lindner et al., 2010; Eriksson et al., 2015; Gallivan & Culham, 2015), leaving open the

question about how do the two large cognitive building blocks of motor planning interact. I

will scrutinize this problem in Study 3.

Posterior parietal cortex

As I mentioned before, the associative role of PPC results from its anatomical organization

yielding connections to virtually all  other cortical areas (Johnson et al., 1996; Battaglia-

Mayer  et  al.,  2015).  This  means  that  its  engagement  in  planning  of  motor  actions  is

complex and thus hard to exhaustively describe. Nonetheless, decades of research on

PPC have yielded some principles of its functional anatomy.

- 15 -

Figure 1.1 Brain organisation of areas responsible for vision (blue), action planning
(red) and execution (green). From Lindner et al., 2008, with permission.



The PPC is located anterior to the occipital sulcus and posterior to the postcentral sulcus

and  is  divided  into  superior  and  inferior  portions  by  intraparietal  sulcus.  It  has  been

traditionally considered a part of the dorsal stream of processing visual information, whose

primary role  is to localize objects and perform actions to them (Ungerleider and Mishkin,

1982; Goodale and Milner, 1992). This “where” stream has therefore a primary importance

for  the  two  main  types  of  voluntary,  object-directed  movements  that  primates  (most

importantly  humans)  can  perform:  eye  movements  and  reaching/grasping.  The  hand

movements will  be in focus for the rest of my thesis, although many concepts may be

applicable to other types of actions (such as eye movements) as well. Most of the research

showing effector-related distinctions has been performed in macaque monkeys, trained to

perform either saccades or reaches in the aforementioned, “classical” delayed response

paradigms. Irrespective of the target locations, the neurons in lateral intraparietal cortex

respond more strongly, whenever saccade has to be planned (Platt and Glimcher, 1999)

and neurons in medial and medio-dorsal portion of the PPC encode rather reaches than

saccades  (Snyder  et  al.,  1997).  On  this  basis,  it  has  been  postulated  that  the  main

functional division of the posterior parietal cortex seems to adhere to this basic distinction

between planned movement types, with the medial bank of the intraparietal sulcus seems

to be devoted to planning and control of the hand and arm movements, and the lateral

bank to planning and control of the eye saccades (Andersen and Buneo, 2001). 

The direct translation of non-human primate (NHP) findings to humans seems to be limited

by the missing exact relationship between the monkey and human anatomy of the PPC.

There have been, however, successful attempts to draw similarities and delineate putative

cross-species homologues within this region (see e.g. Orban, 2016 for a recent review).

The most prominent finding seems to be the definition of a putative homologue of parietal

reach region (PRR) on the medial  bank of  the superior  parietal  lobule,  anterior to  the

parieto-occipital  sulcus (Connoly et  al.,  2003).  The divisions between parietal  eye and
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hand planning  regions seem to be less clear in humans than in NHP’s (Heed et al., 2011;

Gallivan et al.,  2011). Moreover, in both humans and NHP’s the prehension and finger

control are more clearly represented in the anterior parts of the intraparietal sulcus, than in

other  regions  of  the  PPC  (Cavina-Pratesi  et  al.,  2010;  2017).  This  cross-species

coherency in organization of parietal cortex speaks for the same principles in organization

governing the primate motor systems and will be important for the speculations I will allow

myself to draw in the last part of the thesis.

The  crucial  role  of  parietal  motor  planning  areas  seems  to  be  their  engagement  in

representing actions prospectively, rather than in terms of retrospective maintenance of

action plans (c.f. Lindner et al. 2010). It is natural to think that this function requires some

sort of mental simulation of the motor actions in prior to their execution and it has been

speculated, that one of the functions of the posterior parietal lobe is to provide neural basis

for such simulation. Neuroimaging studies have shown that posterior parietal lobe is one of

the key regions engaged in motor imagery, together with frontal motor areas (Stephan et

al.,  1995;  Aflalo  et  al.,  2015;  Klaes  et  al.,  2015;  Pilgram  et  al.,  2016).  The  parietal

involvement  in  the  motor  imagery  seems,  however,  crucial  for  the  process:  as

demonstrated by Sirigu et al. (1996), posterior parietal lesions lead directly to impairment

in motor imagery, whereas lesions in frontal motor areas do not. Moreover, later findings

point to that posterior parietal cortex stimulation is sufficient to evoke an internal feeling of

performing an action, even though no action is in fact performed (Desmurget et al., 2009).

Other findings show parietal cortex engagement in other imagined visuo-spatial actions

like mental rotations (Harris et al., 2000) or navigating a maze (Jerde et al., 2007).

Premotor cortex

In  contrast  to  the  posterior  parietal  cortex,  the  functional  anatomy  of  premotor  areas

seems to be generally less understood. The region overlaps with the Brodmann area 6,
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although the dorso-medial part of area 6 is defined as supplementary motor area (SMA).

The actual anatomical divisions present in the premotor cortex are far from being clearly

defined, although there is some evidence suggesting that the dorsal part of the region

represents more the proximal muscles of the arm (Scott et al., 1997; Davare et al., 2006,

the  ventral  part  –  the  distal  muscles  of  the  hand,  responsible  for  finger  control  and

prehension (Rizzolatti et al, 1996; Matelli and Lupino, 2001; Davare et al., 2006), and the

anterior  part  is  a  supposed  human  frontal  eye  field  (see  e.g.  Paus,  1996).  A newer,

prominent voice on the premotor functional organization comes from Graziano (2007a;

2007b), who suggests that, the effector representations in the premotor cortex are rather

functionally  than  anatomically  organized,  and  reflect  the  movements  to  be  performed,

rather than the body parts themselves, spreading across boundaries traditionally defined

by functional  anatomy of  frontal  motor  areas.  This  shows that  premotor  cortex role  in

action planning is not just to represent the effectors themselves. There seems to be a

widespread consensus that the actual functions of the region fall far beyond that.

The elusive role of supplementary motor area

The supplementary motor area (SMA) has been considered to play a supporting role in

action execution. Located on the medial bank of the BA 6, within the longitudinal fissure

and anterior from the motor cortex, the SMA it is well connected to the other sensorimotor

areas, including parietal cortex (Vergani et al., 2014; Battaglia-Mayer et al., 2015). It also

contains  a  rough  body  map  in  monkeys  (Woolsey  et  al.,  1958),  with  the  apparent

representations of body parts overlapping and yielding rather complex relationships (Mitz

and Wise, 1987; Luppino et al., 1991; Graziano and Aflalo, 2007a,b). The functional roles

of SMA seem to fall within an extensive range of the behavioral spectrum, ranging from

reach planning (Hocherman and Wise, 1991) to speech and language processing (Hertrich

et al., 2016). Cona and Semenza (2017) provide an extensive literature review on SMA
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role  in  cognitive  and  motor  functions,  where  they  point  out  that  the  most  universal

contribution of the region appears to be its general involvement in sequence processing.

This function seems to be of special importance for motor planning where the role for SMA

in organization of sequential actions has been repeatedly demonstrated (Shima and Tanji,

1998; Nakamura et al., 1998). The involvement of SMA in many distinct tasks seems to

suggest  that,  indeed,  its  engagement  in  behavioral  control  may be of  general  nature,

providing computations needed for different domains.

PPC and PM as complementary parts of one “planning system”

The roles for parietal and frontal areas representation of action plans (goals) seem to be

overlapping to a large extent. Yet, several different lines of research seem to point out that

the  roles  of  both  sub-systems  in  bridging  between  intentions  and  actions  are  indeed

complementary.  Very  notably,  electrophysiological  recordings  in  rhesus  monkeys  have

uncovered that  representations of reach targets do differ  significantly between the two

areas, signaling that they form a hierarchy in processing goals. As Crammond and Kalaska

demonstrated,  the  planning-related  neuronal  discharges  in  posterior  parietal  cortex

represent all potential target locations (Kalaska and Crammond, 1995), even if a no-go cue

eliminated them as targets. A similar finding was reported by Lindner et al. (2010), who

found that PPC encodes – apart from spatial locations to reach to – also the locations that

were to be avoided. Although the same is true for PMd, as soon as a location is no longer

expected  to  become  a  target  for  next  movement,  the  neurons  representing  it  stop

discharging (Cisek and Kalaska, 2002). On this basis, Cisek (2007) suggested a model for

action planning and selection (the so-called “affordance competition hypothesis”), where

potential  goal  representations  are  maintained  in  the  planning  areas  as  long  as

accumulation of information for selecting the actual goals is needed. Thereafter only the

representations of actions to be executed are promoted, with the irrelevant goals being
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suppressed  and  only  the  ultimate  goals  are  represented  in  the  PMd.  Cisek  further

hypothesized,  that  the  mechanisms  for  such  goal  selection  are  based  on  modulatory

projections from prefrontal cortex and basal ganglia, where processes like goal evaluation

take place. Cisek’s model may be a good approximation of the computational processing

that results in selection from among equivalent actions.

Reference frames

One of the main problems in translation of intentions to action are different neural codes

between modalities. The problem has been first described by Head and Holmes (1911)

who proposed that the brain possibly contains a single representation of the body allowing

to combine information originating in different sensory and motor modalities. As already

mentioned before, multi-modal transformations needed to translate the code of perception

and,  even more  elusive,  internal  representations of  intentions into  a  specific  series  of

motor commands, pose an understandably difficult challenge for an exhaustive theory of

motor planning. Even a rather simple problem of target localization requires a strict cross-

modal coherence, as coordinate frames used to guide a hand to an object are substantially

different from those needed to saccade to the same point in space. As the main role of

posterior parietal cortex is to localize a target and plan a movement to it, the problem

seems to be of high importance. Contrary to the intuitive notion, that posterior parietal

cortex, as a high-level sensorimotor area may represent just a general frame of reference

for  all  effectors,  the  evidence  shows  that  this  is  not  the  case.  Experimental  data

demonstrate  that,  in  PPC,  actions  are  represented  in  body,  head,  hand  and  eye

coordinates  (and  their  appropriate  combination,  e.g.  through  “gain  field”  modulation)

(Snyder et al., 1998; Xing and Andersen, 2000; Andersen and Buneo, 2001). This speaks

for multiplicity of reference frames in action representation, but does not solve the main

problem  of  how  are  these  different  reference  frames  combined  into  a  coherent
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representation  of  actions  in  space.  Andersen and  Buneo (2001)  suggest  a  somewhat

radical  answer:  actions  are  subject  to  binding  into  one,  common  reference  frame,  a

retinotopic (visual) one. This view seems to provide an inspiring conceptual model for the

representation of action intentions on the highest level in a sensory, visual space. Further

exploring this idea human fMRI findings of Heed et al. (2010) show that reference frames

seem  to  shift  from  the  eye-  to  body-centered  coordinates,  whereas  the  former  are

represented more prominently  in  the parietal,  and the latter  in  the frontal  motor areas

related to motor execution. Another study from the same group suggests, moreover, that

the effector-based reference frames are rather loose, and the organization of the posterior

parietal  cortex  seems  to  be  functional  (Heed  et  al.,  2013),  possibly  reflecting  the

translational  nature  of  the  region  in  organizing  complex  motor  programs.  Interestingly,

Graziano and Aflalo (2007a; 2007b) draw a similar view of the frontal motor areas, where

effector representations (and thus their reference frames) are seemingly organized in a

much more complex manner than traditionally considered. Dating back to the XIX century

works of Frisch and Hitzig (1870) and Ferrier (1874) who made first discoveries on the

motor representations of limb movement pattens in the dog’s cortex, the organization of

the motor areas may seem to be subject to complex patternisation involving movements of

different  complexity.  Graziano and  Aflalo  propose,  that  the  cortical  organisation  in  the

frontal motor areas should be described in terms of specific movement intentions, less the

body parts  engaged.  In  other words,  the actual  cortical  representations of  movements

spread across the, traditionally defined, discrete “fields” in order to reflect the complexity of

motor repertoire.

Tools and their incorporation into action plans

Humans count among the very narrow range of species able to use (and make!) tools (for

a review on tool use within the animal kingdom (see: Seed and Byrne, 2010). This rare
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ability has to be reflected in the organization of our motor system: reaching for an object

with a hand certainly requires a different set  of  motor programs than the same action

performed with a stick. Although the action target remains the same, the ways to achieve it

have to change dramatically. It appears, that the motor system copes with this need for

changes in motor programs by adjusting the natural movements of the body to ensure the

desired performance of the tool. As already mentioned, the multi-modal areas within the

PPC can temporarily modify their representations of the body, allowing to incorporate a

tool into the motor repertoire (Iriki et al., 1996, Marawita and Iriki, 2004). It appears then,

that the way tools are represented can be guided by the same principles that govern the

rest  of  the motor  actions.  The universal  reference frame for  representing actions may

subserve this function by maintaining a high-level representations of goals, independent of

the means to achieve them. It seems to be the case indeed: monkey electrophysiological

studies show that premotor area F5 neurons code the perceptually-defined goal, no matter

of the actual motor programs engaged in action (Rizzolatti et al. 1988; Umilta et al., 2008).

This putatively reflects the fact that some neurons in area F5 seem to encode actions in

the visual, not the motor, reference frame (Mushiake et al., 1997). Similarly, the medial

posterior  parietal  cortex  function  does  not  seem to  be  influenced  by  the  actual  hand

dynamics  required  for  a  movement,  but  rather  processes more the  visual  (intentional)

aspects  of  it,  while  the  dorsal  premotor  areas  seemingly  represents  the  dynamics

(Kalaska, 1989). More recent human fMRI works suggest further that the fronto-parietal

cortical regions mediating tool use may form a complex system, where tools modulates

activity  in  some regions,  while  other  areas  maintain  hand-related  plans  without  being

affected  by  the  actual  effector  in  use  (Gallivan  et  al.,  2013).  This  shows  that  tool

representations do not  get  incorporated (or  embodied)  in  a  strict  sense and the CNS

maintains an internal distinction between the bodily, naturally controlled, and “temporary”,

artificial effectors.
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Tools of the future - motor neuroprosthetics

The relationship between natural and artificial effectors has become of special importance

in recent  decades,  mainly  due to  the development of  neurally-guided prostheses.  The

simplest devices base on reading out the efferent peripheral nerve signals which poses an

obvious problem as they require  intact  spinal  and corticospinal  tracts.  More advanced

interfaces, relying on intracortically implanted electrodes, were from the beginning (Fetz,

1969) placed mainly in the primary motor cortex (Lebedev and Nicolelis, 2006; Moxon and

Fofani, 2015) and therefore relied on signals related to lower-level motor programs which,

as pointed out by Andersen and Buneo (2002), may limit their use for guiding prostheses

not resembling human effectors and – importantly – affect the use of feedback signals for

on-line  movement  error  monitoring.  Although it  is  worth  noting,  that  some closed-loop

motor  neural  prostheses  have  successfully  been  used  to  incorporate  artificial  tactile

feedback through microstimulation delivered to someatosensory cortex (c.f., O’Doherty et

al.,  2009;  2011),  it  remains  an  open  question,  whether  these  approaches  suffice  for

correcting motor errors in more complex actions, and whether signals from motor cortex

provide sufficient  control  over  the  interfaces that  do not  resemble the human body.  It

appears,  that  readouts  from  higher-level  motor  planning  areas,  representing  action

intentions, could present a substantial solution to this problem. The prostheses driven by

signals  from  parietal  planning  areas  have  been  developed  only  very  recently,  first  in

monkeys (Hauschild et al., 2012) and next in humans (Aflalo et al., 2015; Klaes et al.,

2015), opening up a new possibility to leverage operation of brain-machine interfaces by

providing a source of signals not directly depending on effector-specific motor programs.

This advancement seems to  open up a great  opportunity  in  creating novel,  multi-level

control system for neural prosthetics.

One of the main future challenges in the field would lie in the tighter embedding of  actions
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offered by prostheses into the natural motor repertoire. We may speculate, that neural

processes similar to the ones responsible for incorporation of tools into the body schema

may also govern the embodiment of prostheses or other artificial body partsj (Ehrsson et

al., 2005; 2007; Limanowski and Blankenburg, 2016). As has recently been demonstrated,

the degree of such embodiment may be somewhat limited, resulting in worse performance

of artificial vs. natural limbs (Gouzien et al., 2017). One may wonder therefore, how deeply

the embodiment processes for artificial effectors mimic the representations of  natural body

parts, and whether the limited incorporation may actually be a feature of the  motor system

allowing it  to use different  effectors for  the same purpose.  In  any case,  for  the future

development of neural prostheses and other neurally-guided devices driven by the high-

level signals from areas representing motor intentions (c.f. Aflalo et al., 2015; Klaes et al.,

2015),  embodiment  may  be  one  of  the  key  problems  to  solve.  In  order  to  ensure

effectiveness  of  actions  using  artificial  effectors,  understanding  the  complex  interplay

between the intentions and  physical components of movement will be necessary.

Summary

The behavioral  and neural  data together  demonstrate that  the central  nervous system

realizes action intentions via a complex machinery operating at very different levels of

processing, ranging from abstract goal representations to most detailed motor programs.

This  complexity  in  organization  likely  reflects  the  behavioral  flexibility  in  adapting  to

environment,  often providing a variety  of  ways for achieving the same goal.  Thus,  the

motor  system seems to  operate  according  to  the  main  rule:  define  goals as abstract,

sensory representations and then realize them by adapting motor programs to produce the

desired sensory consequences. It appears that these abstract sensory representations of

actions occur first in posterior parietal cortex, and then frontal motor areas design more

detailed plans, more closely related to the motor output. Yet, albeit tempting, this model is

not  as  clear,  as  it  could  appear.  The  presence  of  neurons  encoding  sensory
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representations  of  actions  in  premotor  cortex,  raises  questions  about  whether  these

representations  are  indeed  formed  only  in  posterior  parietal  cortex.  Moreover,  the

aforementioned  disparity  between  PPC  and  PMd  in  representing  action  goals,  yields

suspicion  that  these  regions  may  form  complimentary  subsystems,  and  contain

substantially  different  action  plans that  are  utilized depending on situational  demands.

Finally the apparent prospective information coding in the posterior parietal cortex raises

concerns  about  the  nature  of  its  involvement  in  processing  retrospective,  mnemonic

information. These problems can be summarized by the following questions:

1) Does the brain visually simulate action effects in prior to action execution?

2) Are hand reaching plans organized along one, common neural pathway?

3) Do the prepared motor actions affect related working memory processing?

In the next chapters I will try to provide answers to these problems, and put them in a more

general model of action planning that emerges from both the studies described above and

my own work. I present three own studies where I used the benefits of human functional

magnetic resonance imaging (fMRI) to provde new insights into how do frontal and parietal

areas interact in processing action intentions and transforming them into movements. In

Study  1  I  show,  that  visual  intentions  are  an  early  component  of  the  motor  planning

processes,  and  that  the  accompanying  motor  programs  sub-serve  the  function  of

producing  the  visualized  intentions.  In  particular,  my  findings  demonstrate  that  visual

consequences of movement are represented in both posterior parietal and dorsal premotor

cortex in the early planning activity. This finding leads to the conclusion that the sensory

representations of movement consequences are transferred down to the premotor cortex,

even though some previous evidence suggested this doesn’t need to be the case. In Study

2, I scrutinize how planning of reach trajectories differs from merely representing reach

targets. I show that the trajectory representations change dramatically across the parietal

and dorsal premotor areas, with the former representing only simple reach paths aimed at
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a goal,  while the latter – also represent  complex paths the hand has to follow.  These

results demonstrate an apparent processing hierarchy between parietal and frontal areas

in reach planning. In Study 3 I ask whether the retrospectively maintained working memory

information is affected by the motor context in which this information is going to be used. I

demonstrate that the effector-specific motor preparation does indeed influence the working

memory activity in posterior parietal cortex, shedding a new light on the interplay between

retrospective  and  prospective  processes  in  action  preparation.  Finally,  in  General

Discussion I briefly draw general conclusions based on the results of both my own studies

and  the  research  discussed  above.  Furthermore,  I  present  my  own view on  how the

ideomotor cognitive architecture could could have led to the emergence of the unique mind

of anatomically modern humans.
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Study 1. How will it look like? Human posterior parietal and dorsal premotor cortex

encode the visual properties of an upcoming action

INTRODUCTION

Reaches are realized through complex movements of individual joints. Despite that fact

hand  trajectories  do  look  surprisingly  straight  and  have  simple  (single  peak)  velocity

profiles.  This holds true even if  the contributing joints  move in a much more complex

manner  (Morasso, 1981). Observations like this suggest that the central nervous system

adapts motor plans to produce desired visuospatial  properties of  movements.  In fact,

Wolpert  and  colleagues  (1995)  confirmed  that  notion  by  an  experiment,  in  which  a

mismatch  between  the  actual  hand  position  and  the  visual  feedback  thereof  was

manipulated. Despite this mismatch subjects reached along visually straight trajectories.

Similarly, related work by Mechsner and others (2001) revealed that subjects automatically

preferred  movements  that  led  to  visually  symmetrical  action-effects,  even if  the  actual

actions  needed  to  generate  these  effects  were  not  symmetrical.  This  suggests  that

movement plans aim at producing desired sensory outcomes and that these outcomes

have to be represented before the movement plans are ultimately formed (Janczyk et al

2014; Kunde, 2003; Shin et al. 2010; Kühn and Brass, 2010; Hommel, et al., 2001; Elsner

et al., 2002; Wolpert and Ghahramani 2000). If this view is true, one should also be able to

delineate a neural substrate that contains a prospective representation of these sensory

consequences as part of an action plan. Kühn and colleagues (2011) provided a valuable

piece of evidence to support this hypothesis, demonstrating that preparing hand vs. face

actions also increases activity in visual areas related to the perception of body parts vs.

faces, respectively (compare also to: Kühn et al., 2010). However, evidence that would

demonstrate such prospective representation of sensory outcomes (or visual imagery) in

the sensorimotor areas engaged in planning such actions in the first place is scarce. 

One candidate  brain  area  that  could  sub-serve  such  function  in  humans is  the

- 27 -



posterior parietal cortex (PPC) as it plays a crucial role in forming movement intentions

(Desmurget et al., 2009) and visual motor-imagery (Crammond, 1997; Sirigu et al., 1996).

In particular the medial portion of human PPC has been considered a main substrate for

reach planning (e.g. Lindner et al., 2010), possibly constituting the human homologue of

macaque parietal  reach region (PRR) (Connoly et  al.,  2003).  Importantly,  PRR and its

putative human homologue thereby represent reach targets and effectors in a common

visual reference frame (Andersen and Buneo, 2002; Buneo et al., 2002; Heed et al., 2011;

Medendorp et al., 2008). In addition, other studies suggest that PPC/PRR processes also

more detailed aspects of upcoming movement, such as trajectory information (Hauschild

et al., 2012; Torres et al., 2013, Aflalo et al., 2015). Unfortunately, however, these studies

did not specify whether or not the trajectory is represented in a visual frame of reference.

Most direct evidence for a role of  PPC in the prospective coding of expected sensory

consequences during action planning comes from a recent electrophysiological study in

monkeys  by  Kuang  et  al.  (2015).  They  combined  anti-reach  and  prism  adaptation

paradigms in order to tease apart the motor and the visual properties of a reach. By using

reversing prisms they were able to separate the visually perceived target location from the

physical  reach  endpoint.  Moreover,  by  using  anti-reaches  they  also  could  separate

retrospective  representations  of  the  visible  target  cue  from prospective  planning.  This

manipulation  allowed  them  to  demonstrate,  in  one  monkey,  that  at  least  some  PPC

neurons do encode the predicted visual properties of an upcoming reach during planning.

It is still an open question whether such coding might be also present in human PPC and,

moreover, whether such visual representations may also exist in other regions of the brain,

as for instance in premotor cortex.

 The latter is an obvious question as dorsal premotor cortex (PMd) has been shown

to closely work together with PPC in several aspects of action planning, execution and

monitoring (Desmurget and Sirigu, 2009; Hoshi and Tanji, 2000; Westendorff et al., 2010;

– 28 –



- 29 -

Figure 2.1. Experimental Tasks.
Schematic trial timelines showing each combination of task (DM, PPM) and movement gain (“small
step”, “big step”).



Lindner et al., 2010) Moreover, as demonstrated already, PMd prospectively encodes not

only hand-target vectors in visual coordinates (Pesaran et al., 2006; Ochiai et al., 2002)

but also any initial direction of movement to circumvent obstacles while reaching (Pearce

and Moran, 2012). These findings yield some resemblance to the described functions of

the posterior parietal cortex in representing movements. The similar properties of PPC and

PMd suggest that during reach planning both areas could initially represent visual action-

consequences  (i.e.  desired  reach  trajectory)  and  that  the  motor  programs required  to

produce these desired consequences are adapted later in the processing stream. Here we

attempted to investigate the relationship between the visual consequences of an action

and their  underlying motor  plans.  To address this  question we performed a functional

magnetic resonance imaging (fMRI) study in which human subjects performed an action

planning experiment. In this experiment subjects were required to plan and execute “virtual

reaches” by moving a button-controlled cursor on a response-grid. In half  of the trials,

subjects carried out a delayed response task (Rosenbaum, 1980): they were instructed to

remember a target location presented during the initial cue epoch and plan a movement

towards it. Then, after an intervening delay epoch from which on the target was no longer

present, they had to execute the pre-planned movement during a movement epoch. In

these trials, it was crucial to plan a movement prior to the movement epoch, hence we

named  this  task  “pre-planned  movement  task”  (PPM).  In  the  other  half  of  the  trials,

subjects were told to ignore the initial cue and to instead wait until the movement epoch of

that trial when they had to move the cursor to a new, visually instructed target location,

randomly placed on the response grid. The latter task was named “direct movement task”

(DM) and differed from the PPM in that both movement planning and execution took place

in  the  experimentally  defined  movement  epoch  (Ames  et  al.,  2014),  while  in  PPM a

movement could be already prepared during the delay epoch.  In  both tasks, we used

relatively short delays between initial cue- and movement epochs (e.g. compare to Lindner
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et al., 2010) in order to minimize a potential influence of higher cognitive (e.g. mnemonic)

strategies  on  movement  planning.  Furthermore,  subjects  were  instructed  to  maintain

central gaze fixation throughout the whole trial. This should help us to avoid, potentially

confounding, eye-movement related brain activity.

To  be  able  to  disentangle  the  visual  consequences  from the  motor  components  of  a

planned movement, we manipulated the gain of the visual cursor in both tasks. Namely,
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Figure 2.2. Behavioral Performance.
Average manual and oculomotor performance in PPM and DM trials. Error bars denote
standard deviations.  A Manual reaction times in PPM trials were significantly shorter
than in DM trials, indicating that planning resulted in a reaction time benefit in PPM. B
Hit  rates did not  differ significantly between PPM and DM, nor between movement
gains, implying balanced movement difficulty. C Movement durations were on average
significantly longer in “big-step” trials than in “small-step” trials, regardless of task. This
difference was explained by the longer movement animation of the visual end-effector
in  “big-step”  trials  (see  “Study  1  –  Materials  and  methods”)  D The  frequency  of
fixational saccades during delay and movement epochs did not differ between PPM
and DM and also did not vary with gain context. In the cue epoch there were significant
effects of “movement gain” and “gain”x”task” interaction.



after each single button press, the cursor could perform either a "small step" (i.e. jump to

the next  intersection of the response grid) or a "big step" movement (i.e.  jump to  the

second-next intersection). Information about which movement gain was actually applied in

a given trial was indicated to participants during the cue epoch of the trial (see Figure 2.1)

and they needed to incorporate this information into their motor plan in order to perform

accurately within the time limit of the movement epoch. 

In all conditions we only cued target locations that could be reached by either one, two or

four  button-presses,  allowing  us  to  investigate  brain  activity  as  a  function  of  motor

sequence length. In addition, by also changing the movement gain ("big" or "small" step)

for each given sequence length, we could keep a sequence's motor demands constant

while, at the same time, varying its visual consequences. 

We expected to reveal a representation of motor sequence length in both human

PRR/PPC and PMd during movement planning and execution, a representation that we

and others have already described previously (see e.g.: Haslinger et al., 2002; Lindner et

al.,  2010).  More  importantly,  since  previous  fMRI  studies  revealed  that  the  blood

oxygenation  level  dependent  (BOLD)  signal  amplitude  correlates  positively  with  the

amount of (anticipated) visual motion (Lindner et al., 2006; also compare Schubotz and

von Cramon, 2002), we hypothesized that if the visual consequences of a movement are

indeed defined during the planning of that movement in PRR/PPC or PMd, then the brain

activity in these areas should reflect these visual aspects. Specifically, the "big-step" motor

sequences  should  on  average  produce  stronger  planning-related  BOLD  signal  as

compared to the "small-step" sequences, due to an overall larger amount of “predicted”

visual motion. 
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RESULTS

Behavioral performance

We controlled several behavioral variables relevant for the interpretation of our fMRI data

(Figure 2.2).  Specifically,  to  demonstrate  that  subjects  prepared their  movement  plans

prior to the movement epoch in PPM trials,  we analyzed subjects’ reaction times (see

“Study  1  -  Materials  and  Methods”  for  details).  Reaction  times  in  PPM  trials  were

contrasted to those revealed in DM trials, as in the latter trials planning could take place

only in  the movement  epoch (i.e.  after  the target  had been presented)  allowing us to

estimate  the  reaction  time  benefit  through  pre-planning  (c.f.  Rosenbaum  1980).  As

expected,  manual  reaction  times  were  on  average  significantly  shorter  in  pre-planned

movement  trials  (PPM)  than  in  direct  movement  trials  (DM)  (2x2  repeated  measures

ANOVA, main effect “Task” (PPM vs. DM): p<0.001; main effect “Movement gain” (“small-

step” vs. “big-step”): p>0.05, n.s.; interaction: p>0.05, n.s.) (Figure 2.2A).

Hit  rates  were  constant  across  both  tasks  and  movement  types  (2x2  repeated

measures ANOVA, main effect “Task”: p>0.05, n.s.; main effect “Movement gain”: p>0.05,

n.s.; interaction: p>0.05, n.s.), indicating that movement difficulty across conditions was

balanced (Figure 2.2B). 

Average movement durations showed an expected effect for the factor “movement

gain” (i.e. “big-step” sequences produced significantly longer durations because of the way

the cursor movement was animated (see ”Experimental Design” for details), but no “task”

and  interaction  effects  were  present  (2x2  repeated  measures  ANOVA,  main  effect

“Movement  gain”:  p<0.001;  main  effect  “Task”:  p>0.05,  n.s.;  interaction:  p>0.0.5,  n.s)

(Figure 2.2C).An eye movement data analysis yielded no significant difference between

both tasks and movement types with respect to the number of fixational saccades during

delay and movement epochs (2x2 repeated measures ANOVA, main effect “Movement

gain”: p>0.05, n.s.; main effect “Task”: p>0.05, n.s.; interaction: p>0.05, n.s) (Figure 2.2D).
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This ensured that fMRI activity in these epochs was not differentially influenced by varying

oculomotor  behavior  across  conditions.  The saccade rates  were,  however  significantly

different across conditions in the cue phase, as an ANOVA revealed a significant main

effect  of  “Movement  gain”  (F=5.056,  df=11,  p=0.046) and  a  “Task”x”Movement  gain”

interaction (F=11.694, df=11, p=0.006). As we will discuss later in the text, these effects

cannot explain the reported fMRI results.

Planning activity encodes visual properties of upcoming movement

For studying planning-related brain activity we decided for region of interest (ROI)-based

approach to focus on the areas that were previously demonstrated to contain  prospective

representations of motor sequences (Lindner et al. 2010) and these motor representations

we assumed likely to be modulated by expected visual properties of actions. First,  we

performed a whole-brain analysis in single subjects to  define for each subject the brain

areas that exhibited significant modulation of planning activity by motor sequence length

during the delay epoch of PPM trials (see “Study 1 - Materials and methods” for details;

also compare: Lindner et al. 2010). The following regions exhibited such modulation of
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Figure 2.3. Areas of planning-related fMRI activity representing motor sequence length
in an exemplary subject. The statistical parametric map is thresholded at p<0.05, fwe
corrected  for  multiple  comparisons  (see  ”Study  1  -  materials  and  methods”  for  a
detailed description of the roi selection criteria).



planning activity in all subjects: superior parietal lobule (SPL, bilateral), dorsal premotor

cortex (PMd, bilateral) and anterior intraparietal  sulcus (aIPS, left)  (Figure 2.3).  On the

basis of previous research (Lindner et al., 2010) we assumed that such activation pattern

is characteristic for areas contributing to the prospective planning of goal-directed motor

sequences and that – in a second step – we could test whether activity in these ROIs is

modulated  by  movement  gain.  In  addition,  we  included  dorsolateral  prefrontal  cortex

(DLPFC, left), the hand area of left and right primary motor cortex (M1) and area V1 as

additional control ROIs. It is worth to note, that our functional ROI selection criterion was

independent  to  the  tested  hypothesis  and  thus  allowed  us  to  avoid  circularity  in

subsequent analyses.

ANOVAs performed on  the  activity  estimates  (i.e.  the  normalized  beta  weights)

extracted from these ROIs for the movement phase revealed a significantly stronger BOLD

signal in DM than in PPM in several areas, namely left and right SPL, left and right PMd,

and M1 (Figure 2.4). We consider these task-related changes an indicator for planning
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Figure 2.4. BOLD activity in all ROIs during the movement epoch. Signal increases in
DM  with  respect  to  PPM  reflect  planning  processes  (compare  main  text).  Signal
differences between “big-step” and “small-step” trials in left and right SPL and in right
PMd refer to an influence of (planned) visual movement distance. All values represent
averages calculated across subjects’ mean activity +/- SEM.



processes in DM: any pre-planning during the delay would strongly reduce the cognitive

load needed to plan and execute actions in the movement phase of PPM. On the other

hand, planning was still needed during the movement phase in DM, thus elevating related

BOLD signal amplitudes in DM as compared to PPM.

Most  importantly,  in both medial  PPC and PMd putative planning activity  in  the

movement phase of  DM was additionally  modulated by movement gain:  the “big-step”

motor sequences elicited on average significantly higher BOLD signal amplitudes than did

the  “small-step”  sequences  in  left  and  right  SPL and  right  PMd,  as  indicated  by  the

significant  interaction  of  the  factors  “Task”  and  “Movement  gain”  (Figure  2.4).  This

indicates  that  the  visual  aspects  of  upcoming  movements  were  represented  in  these

regions. It is noteworthy that there was also a trend for this effect in left PMd (p=0.088),

implying a bilateral representation of the visual movement consequences in that area as

well. A similar trend was also observed in left aIPS (p=0.09).

No such movement gain-related pattern was present in the movement epoch of PPM in

these (and all  other) ROIs, indicating that it is not the visual motion  per se  that would

explain the signal differences between “big step” and “small step” movements (Figure 2.4).

We neither did observe a gain-related modulation of brain activity in the movement epoch

of  DM in  primary  motor  cortex  nor  in  dorsolateral  prefrontal  (Figure  2.6).  Area  M1 is

primarily engaged in preparation and execution of motor programs (see eg. Hocherman

and Wise, 1991), and, at least to our knowledge, there is no evidence that it could process

any visual information about the upcoming action. The dorsolateral prefrontal cortex, in

turn,  has been demonstrated  as  being  engaged in  retrospective  mnemonic  processes

rather than in prospective planning (e.g. compare Lindner et al. 2010). Therefore the lack

of signal modulation due to movement gain in these particular ROIs is in line with our main

hypothesis (see discussion).

It is also worth to note that both in PMd (in PPM and DM trials) and PPC (in DM
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trials)  visual modulation of planning activity was easier to observe on the ipsilateral but not

the  contralateral  side  (with  respect  to  the  effector).  This  suggests  that  ipsilateral

representations  of  movement  may  organize  information  more  in  terms of  the  abstract

(visual) motor plan, whereas the contralateral representations might process information in

a way that more directly refers to effector's motor action.  While we cannot reliably test this

hypothesis  on  the  basis  of  the  current  dataset,  it  seems at  least  to  be  supported  by

findings of  Krasovsky et  al.  (2014)  who also  reported  that  representations  of  sensory

action-outcomes are rather ipsi-, than contralaterally organized.

Comparisons  of  activity  estimates  for  the  delay  epoch  did  neither  reveal  any

significant  gain-related  differences  in  any  of  our  planning  ROIs  nor  any  differences

between movement tasks, i.e. PPM vs. DM (see Figure 2.6). 

The lack of a difference between PPM and DM during the delay, which contrasts previous

studies (e.g. Lindner et al. 2010), could result from the comparatively short delay epochs in

our  study.  This  suggests  that  such short  delays apparently  not  allow a full  separation

between the cue- and delay-related BOLD-signals and can be also susceptible to any
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Figure 2.5. BOLD activity at early planning stages. Cue epoch of PPM and movement
epoch of DM are grouped together as “planning” conditions. The Task(T) x Gain(G) x
Epoch(E) interaction demonstrates presence of visual consequences representation in
the  left  and  right  posterior  parietal  cortex  (SPL).  A  significance-nearing  trend  is
present also in the right PMd. The additional table contains interaction effects for all
the  depicted  ROIs.  Task  x  Epoch  interaction  demonstrates  a  significantly  higher
activity in the Cue epoch of the PPM trials and Movement epoch of DM trials, likely
reflecting initial planning processes in these epochs/conditions.



instruction-independent default planning (Snyder et al., 2006) in response to the irrelevant

target cues that were presented during the cue epoch of DM trials. Irrespective of these

clear limitations of our design with short delays, the difference in movement gain could still

be  reflected  by  sustained BOLD-signals  in  the  delay  phase of  PPM. In  our  view,  our

inability to observe such effect demonstrates one potential weakness of using the classical

delayed response paradigm in fMRI research, namely its limited capacity to capture brain

responses related to rapid, early planning processes. This speculation is supported by

aforementioned findings of Kuang et al. (2015) who demonstrated, that the relative amount

of visual  planning neurons is significantly higher early during the planning stage of an

action and is becoming less pronounced later during the delay, in the sustained neural

response. 

Differences between tasks were, however, present in control ROIs: Interestingly, activity in

the  left  motor  cortex  was  significantly  stronger  in  the  PPM  than  in  DM  (p=0.0027),

apparently reflecting unspecific effector preparation processes. This is confirmed by the

lack of such modulation on the ipsilateral side (see Supplementary Figure 2.7). Likewise,

in DLPFC there was a significant influence of task, namely a stronger activity in PPM as

compared to DM too. This area might be engaged in mnemonic aspects of motor planning

(e.g.  a  retrospective  representation  of  the  movement  target),  as  was  suggested  by

previous findings of Lindner and colleagues (2010).

The lack of a gain effect in activity of planning ROIs during the delay epoch in PPM

trials prompted us to look more closely at early planning activity in these  trials. For this

purpose, we estimated an alternative GLM in which we now also focused on gain-related

changes during the cue epoch (as compared to the response epoch). This is because

early planning processes might be already reflected in the integrated BOLD-signal during

the cue-epoch. Furthermore we wanted to contrast such early planning in PPM during the

cue epoch with early planning in DM during the movement epoch. Therefore we ran a
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three-way  repeated  measures  2x2x2  ANOVA with  the  factors  “Task”  (PPM  and  DM),

“Movement  Gain”  (“small-”  and  “big-step”)  and  “Epoch”  (“Cue”  and  “Movement”).  We

assumed that the visual effect (“big-step” > “small-step”) should be visible in the cue epoch

of  PPM and  in  the  movement  epoch  in  DM,  as  would  be  confirmed  by  a  three-way

interaction of the three factors (Figure 2.5). Indeed, this analysis uncovered that the early

planning response in left and right SPL do show the expected effect of visual movement

properties as dependent on task and trial epoch (Left SPL: F=5.469, df=11, p=0.0393; right

SPL: F=10.946, df=11, p=0.0070). In right PMd we revealed a clear trend for the same

effect  (F=4.476,  df=11,  p=0.0580).  The  gain  effect  was  however  absent  in  left  PMd

(F=0.249, df= 11, p=0.6273). 

DISCUSSION

Prospective representation of visual movement consequences

Our experiment represents an alternative approach for  studying planning-related fMRI-

activity  of  the human brain.  Instead of only focusing on delay-related planning activity

between instructive cue and action initiation (e.g. compare Lindner, 2010), we chose to

compare movement sequences that had been already pre-planned (PPM) to those that

required planning directly before execution (DM) (compare Ames et al., 2014). 

Using this approach, we were able to exhibit increases of fMRI-activity during the

movement epoch in DM as opposed to PPM trials. We observed such increase in planning

ROIs,  which had been independently identified by exhibiting motor  preparatory activity

during the instructed delay in PPM trials. Moreover, we observed an additional modulation

of DM activity by the visual consequences of a movement in the same ROIs. Activity was

the stronger the more visual motion the same movement sequences produced due to the

gain manipulation. This effect was apparent in areas previously demonstrated to contain

prospective representations of action plans (PPC and PMd; see: Lindner et al. 2010). Yet,
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it  was absent both in primary motor cortex and in DLPFC,  which has previously been

demonstrated  to  mainly  maintain  a  retrospective  memory  of  visual  movement  targets

(Lindner et al., 2010) . The modulation of planning activity by movement gain was present

also in early cue-related brain responses but not during the delay period. This suggests

that target localization for movement and characterizing a movement plan in terms of a

visual movement consequence, is a transient process, occurring at the earliest stages of

motor planning.

Our results are consistent with the idea that motor planning activity in PPC and PMd

initially represents the visual consequences of an upcoming movement while the required

motor  program  needed  to  realize  such  visual  action  plans  arises  at  later  stages  of

sensorimotor  processing  and  it  seems  likely  that  exclusively  this  motor  program  is

maintained in memory until it's ultimately put into action.

Alternative paradigms for dissociating vision and manual action

Apart  from  the  gain  manipulation  that  was  applied  in  our  study,  other  experimental

paradigms have been used to alter the interrelation between hand movements and visual

information.  These  paradigms could  potentially  provide  us  with  additional  clues  about

whether the visual consequences of manual actions are embedded in an action plan. One

such paradigm is the so-called anti-reach task in which subjects need to perform reaches

towards a  location opposite  to  a pre-cued visual  target  location  (Crammond,  Kalaska,

1994; Westendorff et al. 2010). While this task clearly allows distinguishing activity related

to the direction of a visual target vs. activity related to the direction of movement, it cannot

discern whether any movement-related activity would refer to the visual or to the bodily

direction  of  movement  as  both  are  identical.  Another  class  of  paradigms  that  seems

related engages inverting prisms (Helmholtz, 1909; Clower 1996). The use of prisms can

clearly  help  to  dissociate  bodily  motion  from  its  visual  consequences  (e.g.  through
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inverting prisms). Yet, when monitoring brain activity during such paradigms particular care

has to be taken to disentangle whether activity truly reflects the visual consequences of

movement  rather  than  any  visual  stimulus  itself  (or  the  memory  thereof),  as  visual

movement- and target- direction are identical. So far there is only one  electrophysiological

study on action planning in monkeys that has engaged both paradigms and that therefore

could account for the aforementioned limitations (Kuang et al., 2015; for details see “Study

1 - Introduction”). In our own human fMRI experiment the visual movement consequences

and the location of the visual goal were also tightly coupled, but our specific experimental

findings still allowed us teasing apart these factors as will be discussed in the following

paragraph. 

Potential limitations of interpretation

Before answering what action components determined the gain-related modulation of the

BOLD signal in the early planning activity, some potential confounding factors need to be

considered.

In our eye movement analysis we revealed a significant influence of experimental

condition on saccadic frequency but during the cue phase, only. Here, saccades were

most frequent in the “small-step” DM condition. However, when assuming that saccade

rates are positively correlated with the amplitude of the BOLD response (see eg. Kimmig

et  al.,  2001)  this  saccade effect  can hardly  account  for  the pattern of  gain-dependent

planning activity  in PPC and PMd during the cue phase,  namely the change in PPM-

related  activity  (compare  Figure  2.3D  and  Figure  2.5).  Moreover,  as  there  was  no

difference in saccade rates in the movement phase, saccadic eye movements also cannot

explain the gain-related modulation of planning activity in DM during this task epoch.

Another factor deals with the problem of dissociating visual target cue eccentricity

from movement distance. As it may be argued, the more eccentric the visual cues, the
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more activity they can evoke, due to the repeatedly demonstrated over-representation of

visual periphery in the parietal cortex (e.g.: Colby et al., 1988; Baizer et al., 1991; Motter

and Mountcastle, 1981). In our present research target eccentricity itself was inevitably

correlated with the length of the visual trajectory of the end-effector (i.e. the placement of

targets in the “big-step” conditions was more eccentric than in the “small-step” conditions).

Therefore the increase in BOLD-signal that we observed in the early planning could have

equally likely reflected any of these aspects. We argue, however, that this effect should

then be also visible in the cue phase of the DM trials, and, potentially, in the primary visual

cortex. Both were clearly not the case. Hence the eccentricity of the visual target cue is

unlikely to explain the observed result.

Movement  duration  can be considered yet  another  potential  confounding factor.

Movements towards more visually distant  locations lead to  longer  lasting sensorimotor

representations, which in turn may lead to higher BOLD activity (due to the long time

constant of the BOLD-signal such change in motor duration will  foremost surface as a

change in signal amplitude). In our current study, however, this should again affect not only

signal  amplitudes during the movement epoch of the DM, but also those of the PPM.

Moreover, duration-related signal changes should be visible also in primary motor cortex.

Yet, such effect is lacking as well. Finally, movement durations cannot explain the gain

effect we see in the CUE phase of the PPM trials. It thus seems plausible to conclude that

the  observed  BOLD-signal  modulation  during  the  cue  epoch  in  PPM  and  during  the

movement epoch in DM does solely reflect visual differences in the planned movement.

Finally,  was  the  gain-related  modulation  of  the  BOLD-signal  in  DM  related  to

movement planning or due to movement execution? The lack of gain-related BOLD signal

modulation  during  the  movement  epoch  of  PPM  trials  suggests  that  the  observed

modulation in DM is rather related to planning differences between “big-step” and “small-

step”  conditions  (present  in  DM)  than  to  any  immediate  sensory  or  somatosensory
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feedback about the target or the actual movement (present both in DM and PPM).

For the above reasons we believe that that the gain-related modulation of BOLD-

responses in PPC and PMd, occurring during the movement epoch of the direct movement

condition and during the cue epoch of the pre-planning condition, is best explained by

early planning processes, reflecting the visual consequences of upcoming movement. 

Visual action planning in PPC and PMd and its putative implications

The presence of a visual modulation of planning activity in human PPC and PMd is well in

line  with  the  known  properties  of  both  areas,  as  has  been  laid  out  in  detail  in  the

introduction. More generally, it supports the view that the visual movement consequences

are a superordinated kinematic component of movement planning, determining the choice

of appropriate dynamics in order to move the effector along the desired visual trajectory

(Wolpert, 1995; Morasso, 1981). 

The representation of visual consequences of a planned action was more robust in

PPC than in PMd. If we assume a processing hierarchy between these areas, our findings

suggest that PPC delineates a rather general and abstract action plan in visual terms,

which is subsequently translated into more specific motor programs by PMd (Desmurget

and Sirigu, 2009; Kalaska and Crammond, 1995; Cisek and Kalaska, 2002; also compare

Westendorff et al., 2010). Such high-level visual representation of an intended movement’s

consequences seems to be important for planning, namely to assess a desired trajectory

through visual simulation. This is of particular importance, e.g. when movements need to

avoid obstacles and an appropriate trajectory has to be planned upfront. Moreover, it can

serve as a stable reference for planning whenever effector efficiency is altered (i.e. due to

fatigue or injury). This of course means that the desired visual trajectory, as defined in

parietal and premotor cortex, also requires an appropriate adaptation of motor programs

that considers the current efficacy of the motor system. The latter is possibly realized via
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reciprocal  cerebro-cerebellar  connections  and  without  involvement  of  awareness

(Blakemore and Sirigu 2003). Planning of motor actions, which builds on a simulation of

the visual consequences they produce, is supposedly also one of the vital components of

effector selection, and tool use. Actions engaging   different end-effectors such as one’s

bare hand or a tool obviously require different motor programs, even if the goals to be

achieved are the same. To optimally select between these different motor programs, as

might  become necessary  in  certain  situations,  we  need  a  predictive  representation  of

actions’ outcomes to avoid acting on a trial  and error basis.  A plan representing these

sensory outcomes, as supposedly implemented by PPC and PMd, would perhaps fulfill

such prerequisite and allow modifying the natural motor repertoire by incorporating the

available  end-effectors  (e.g.  tools  or  even  computer  interfaces)  to  achieve  a  desired

sensory  outcome.  Such  flexibility  in  planning  would  then  broaden  the  spectrum  of

potentially available goals and actions (Gallivan et al., 2013; Haruno et al., 2001; Iriki et al.,

1996; Maravita and Iriki, 2004) permitting a more efficient selection of both.

Finally,  it  could  be  further  speculated  that  a  representation  of  the  visual

consequences  of  planned  actions  in  PPC  and  PMd  also  underlies  our  capacity  to

distinguish  self-  from externally-  produced visual  events  (e.g.  compare  Synofzik  et  al.

2006). While this distinction has been mainly thought to be drawn from a comparison of an

efference-copy based prediction of the visual consequences of self-action with the actual

visual afference (Sommer and Wurtz, 2002), others suggest that this capacity may likewise

refer to a comparison between  desired and  actual visual action outcomes (Bahcall and

Kowler 1999; Synofzik et al. 2006).

Certainly, the exact role of PPC and PMd in these abovementioned functions remains to

be determined.  Yet,  it  is  important  to  stress that a seemingly simple principle,  i.e.  the

planning of action based on desired visual consequences, could have implications for a

wide variety of functions extending beyond the motor domain.

– 44 –



Conclusions 

Our  findings  suggest  that  early  planning  activity  in  human  posterior  parietal  cortex

represents the visual consequences of planned actions independent of the actual motor

programs required to realize these plans. Moreover, we found similar activity in human

dorsal  premotor  cortex,  suggesting  that  the  two  brain  regions  may  collaborate  in

representing  a  visually  defined  action  plans  and,  potentially,  in  translating  them  into

appropriate  motor  commands.  At  this  stage  we  may  speculate  that  posterior  parietal

cortex, a region bridging between visual and motor areas might serve as the main driving

force  of  this  fronto-parietal  planning system,  utilizing  information  from both  sources in

order to create an effective movement plan.
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Figure 2.6. BOLD activity in all ROIs during the delay epoch. Sustained activity was present
in all ROIs. Signal increases in PPM with respect to DM in M1 could relate to unspecific
motor preparation. All values represent averages calculated across subjects’ mean activity
+/- SEM.
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Figure 2.7. Delay (A) and movement epoch (B) betas extracted from primary visual and
right primary motor areas. The V1 activity shows a weak trend related to movement gain
in the movement epoch of  DM trials.  C)  Control  ROI betas extracted in the cue and
movement phases, used to capture early planning activity. All values represent averages
calculated across subjects’ mean activity +/- SEM.



Study 2. When the path is the goal. Distinct representations of reach trajectory

plans in human frontal and posterior parietal cortex

INTRODUCTION

Goal-directed  eye  saccades  and  hand  reaches  share  many  commonalities.  Both

movement types are prepared based on target and effector representations in a visual

(retinal) reference frame and even the neural correlates responsible for their programming

do partially overlap (Andersen and Buneo, 2002). According to a well-established view, the

motor plans for saccades are thereby defined by coding a difference vector between the

current position of the eye and the desired saccade endpoint (Bruce and Golberg 1984;

1985; Zee et al. 1976; Hallet and Livingstone, 1976). As there are no objects in the eye

socket that would interfere with the rotation of the eyeball, such simple planning scheme

seems optimal for its purpose. In many cases hand movements are executed in a similar

point-to-point  fashion,  such  as  when  catching  a  ball  or  swatting  a  fly.  In  these  latter

situations  the  hand  movement  could  likewise  be  determined  by  a  difference  vector

between target and hand (Beurze et al., 2010). Yet, such method would not always suffice:

imagine you'd like to reach for your pen, but a mug of coffee sits right between the pen and

the hand. In such situation your eye could still saccade straight towards the pen while any

hand movement aimed just at the endpoint (the pen) would cause your hand to bump into

the  mug  with  severe  consequences.  Therefore,  to  allow  the  hand  to  circumvent  the

obstacle, an appropriate reach trajectory needs to be programmed. It seems likely, that

such ability to precisely plan hand trajectories is not only required to avoid obstacles, but it

perhaps does also underlie our ability to perform the endless variety of highly-complex and

skillful movements such as drawing or handwriting.

Electrophysiological research in monkeys has yielded some important clues about

where  and  how  the  planning  of  reach  trajectories  could  be  realized  by  the  brain.  A

- 47 -



prominent  candidate  for  reach trajectory planning is  dorsal  premotor  cortex  (PMd),  as

neurons in this brain area are not merely interested in target location or the hand-target

difference vector but do represent information relevant for trajectory coding. For instance,

in the presence of obstacles PMd does not only code movement plans towards the target

location itself  but it  also represents the initial  direction of movement that is needed to

circumvent  any obstacle  (Pearce and Moran,  2012) .  Moreover,  Hocherman and Wise

(1991) have demonstrated, that some neurons in macaque premotor cortex (as well as
– 48 –

Figure 3.1: A) MRI-compatible virtual reality reach setup. B) Timeline of the delayed reach
task (DRT) and the control task (CT) of Experiment 1. Subjects were supposed to reach
the target (filled large circle) by moving their finger from the starting position (filled small
circle) either clockwise or counter-clockwise, as was specified by the white arrow cue.
These cues were shown in the CUE period of both conditions but were relevant only in the
DRT. In the CT all cues were irrelevant and the ultimate movement was instructed by a
new set  of  cues  presented  during  the  REACH phase.  Colored  dashed  lines  illustrate
putative reach trajectories  in  both  tasks.  Additional   masks presented after  CUE and
REACH screens are not shown (see “Study 2 – Materials and Methods” for details). The
objects are plotted not to scale.  C) Planning Activity.  Inflated cortical  surface with an
overlay of the statistical contrast of delay-related planning activity (DRT>CT) obtained
from 12 subjects in Experiment 1 (p<0.001, uncorrected; t-value>4.0). Labels identify
regions of interest that were included in our ROI analyses. Major anatomical landmarks
are labeled in addition. D) Timeline of an exemplary delayed reach (DRT) and control trial
(CT) in Experiment 2 (see text and compare to B for details).



primary motor cortex and supplementary motor area) exhibit firing patterns that correlate

with  the  curvature  of  the  trajectory  of  an  upcoming  reach.  Premotor  coding  of  reach

curvature may – along with the coding of initial movement direction - support the ability to

circumvent  obstacle.  In accordance with this interpretation,  ablation of premotor cortex

disables monkeys' ability to avoid obstacles and they instead attempt to reach directly

towards the  target  (Moll  and Kuyspers,  1977).  This  latter  experiment  not  only  directly

supports a role of PMd in trajectory planning. It also highlights that planning of straight,

direct reaches is still  preserved despite PMd lesions and hence such vector-like reach

planning must be maintained by other brain regions. 

Reach-related areas within the posterior parietal cortex (PPC), namely the parietal

reach  region  (PRR)  in  the  medial  wall  of  the  posterior  intraparietal  sulcus  (IPS)  of

macaque monkeys and its functional human homologue in neighboring parts of superior

parietal  lobule  (SPL),  are  likely  substrates  that  could  subserve  vector-like,  straight

reaching. In fact,  monkey PRR and human SPL have been demonstrated to represent

reaches in  terms of  hand-target  difference vectors  (Beurze et  al.,  2010;  Buneo et  al.,

2002),  i.e.  in  an  optimal  format  for  coding  straight  reach  paths.  Several

electrophysiological studies demonstrated that these reach planning regions in PPC may

also  contain  trajectory-related  information  beyond  vector  coding.  Note,  however,  that

unlike to the work on PMd, most of these studies focused on neural activity during reach

execution(Aflalo et al., 2015; Mulliken et al., 2008a; Mulliken et al., 2008b; Hauschild et al.,

2012)  but  not  on planning.  A notable exception is  the study of  Torres and colleagues

(2013), who utilized a simplified obstacle avoidance task. They demonstrated that single

cells in monkey PRR modulated their activity prior to the reach whenever a barrier blocked

the direct reach path. It was unclear, however, whether the modulation observed in this

study truly  reflected initial  reach direction or,  alternatively,  strategical  chances in  initial

hand posture present  during the planning stage. Taken together,  previous research on
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reach planning in monkey posterior parietal cortex has highlighted its role in the vector-like

coding of  reach movements.  It  is  unclear,  however,  whether  it  also  contributes  to  the

planning of complex trajectories. 

Here we tried to reveal how trajectory information is represented prior to movement

execution in reach-related areas of the human brain, namely areas SPL and PMd. We

intended to examine how trajectory representations change when a movement plan could

theoretically be constructed by just defining a vector between the initial hand position and

a target as compared to situations when these difference vectors are identical but the

movement paths vary. Based on previous research we expected to reveal representations

of trajectory plans in human SPL (Mulliken et al., 2008a; 2008b; Hauschild et al., 2012;

Torrees et al., 2013; Kadmon-Harpaz et al., 2015) and PMd (Hocherman and Wise, 1991;

Kadmon-Harpaz et al., 2015; Pearce and Moran, 2012) and, possibly, in primary motor

cortex (Hocherman and Wise, 1991; Philip et al., 2013)  as well as supplementary motor

area (Hocherman and Wise,  1991;  Kadmon-Harpaz et  al.,  2015).  On the basis  of  the

abovementioned research, we assumed that  the trajectory representations in SPL and

PMd would likely differ depending on the type of the movement required. Specifically, we

hypothesized that while PMd should contribute to the preparation of complex trajectories,

SPL would be exclusively engaged in planning straight and direct paths.

RESULTS

To address  our  hypotheses,  we  conducted two human functional  magnetic  resonance

imaging  (fMRI)  experiments  where  subjects  had  to  plan  and  execute  finger  reaches

towards visually cued targets.  Two groups of twelve and seven volunteers took part  in

Experiments  1  and  2,  respectively.  All  of  them were  right  handed,  had  no  history  of

neurological disease and had normal or corrected to normal vision. All volunteers gave

their  written  informed  consent  according  to  the  Declaration  of  Helsinki  prior  to  the
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experiment, and the study was approved by the local ethics committee. In Experiment 1

we varied the length of complex (curved) reach trajectories while keeping the hand-target

vector constant across conditions. This experiment mimicked situations that enforce the

programming of detailed trajectories (like during obstacle avoidance). In Experiment 2 we

varied the distance to  the target,  and thus the length of  the hand-target  vector,  while

instructing subjects to perform simple, straight reaches towards it.  We expected that if

neural  representations  of  reach  trajectories  are  represented  prior  to  movement,  the

increasingly larger neural populations should be recruited to represent certain trajectory

properties  subject  to  scaling  (i.e.  length  or  complexity)  and the  average BOLD signal

amplitudes extracted from a given region should increase with these properties as they

scale up (Üstün, 2016). 

For  the  purpose  of  our  experiments,  we  constructed  a  virtual-reality  reach

environment,  consisting  of  an  MR-compatible  resistive  touchscreen  panel  and  a  rear

projection display system allowing subjects to receive visual feedback about their reaching

finger position in approximate spatio-temporal  correspondence with the true movement

(Figure 3.1A). Subjects were positioned with their head tilted forward inside the head coil

to  allow them to  naturally  look  in  the  direction  matching  their  fingertip  position  albeit

without a direct vision of their hand.

4.2.1 Experiment 1 - planning circular reaches

The first experiment (Figure 3.1B) consisted of a circular reaching paradigm comprising of

two task variants: the first variant was a delayed reach task (DRT), which was used to

trace reach-trajectory-related activity during planning and execution. The participants were

required to remember an initially cued target location (“CUE”-phase),  and then, after a

delay (“DELAY”-phase), a “go” cue appeared that prompted the participants to move their

finger to the now invisible target location (“REACH”-phase). The DRT was contrasted with
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a second task, namely a control task (CT), in which subjects' goal was to ignore the initial

spatial cue and, after a delay, to move to a visible target presented at a new location. The

key  difference  between  both  tasks  was  that  in  the  DRT,  the  subjects  had  to  plan  a

movement  well  before  its  execution (during  the delay epoch),  whereas in  the  CT,  the

movement was only planned after the “go” cue appeared, namely when the actual target

was presented. The key idea is that during the delay period of the DRT one can assess

planning activity in the absence of the varying sensory cues and before a movement is

being executed. By contrasting the respective activity estimates in the DRT with the CT

one can further control for processes common to both tasks such as task-unspecific motor
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Figure  3.2.  Movement  performance  in  Experiment  1.  A and  B)  Exemplary  reach
trajectories  from  a  single  subject  (left  panels)  and  the  respective  speed  profiles
throughout the REACH phase (right panels) for both a “NEAR” (F) and a “FAR” (G)
condition are depicted.  C-G) The individual panels show our estimates of behavioral
performance as a function of   “TASK” and “DISTANCE” and report  the influence of
these factors on the respective estimates  as well as their interaction, as was assessed
by two-way repeated measures ANOVAs (n.s. not significant; * p<0.05; ** p<0.01; ***
p<0.001). C) Reaction times were significantly shorter in DRT than in CT. D) Movement
durations were significantly longer in DRT than in CT and for “FAR” trajectories than
“NEAR”. E) Error sizes were constant across all conditions. F) Maximal speeds were
higher for “FAR” reaches. G) Average frequencies of fixational saccades in CUE an
DELAY epochs of respective conditions. Saccades were less frequent in CT “FAR” than
in all other conditions. Error bars represent SEM. See text for detailed statistics. 



preparation (e.g. compare Lindner et al., 2010).

In both tasks the finger starting location was the topmost position between two large

circles  indicating  the circular  movement  space.  The current  location of  the  finger  was

indicated by a small dot visible during the CUE and the REACH phase only. An arrow cue

indicated either a clockwise (right pointing arrow) or a counter-clockwise movement (left

pointing arrow) towards the target cue. Accordingly, reaches needed to be executed along

a circular path of varying distance (see Figure 3.1B; also compare Figure 3.2 A and B).

This allowed us to capture trajectory-related information and to isolate it from information

related to a hand-target vector and an eye-target vector, which both were (on average)

kept  constant  in  this  task.  Moreover,  this  procedure  ensured  that  the  target  and  any

retrospective memory thereof would be the same across conditions while reach distance

(and complexity) and any related prospective processes engaged in reach planning would

vary. In the CT the initial cues were irrelevant and the circular movement was specified by

independently selected directional and target cues displayed during the movement epoch

(Fig. 3.1B).

As a first step, we analyzed subjects’ behavior in Experiment 1 in terms of subjects’

reaction times as well as the duration, speed, endpoint error of movement and frequency

of residual saccades. In brief, 2x2 (repeated measures) ANOVAs with the factors TASK

and  DISTANCE  were  performed  on  subjects’  average  behavioral  estimates.  The

respective statistical analysis of subjects’ reaction times (Figure 3.2 C) yielded significantly

shorter reaction times in the DRT condition than in the control  condition (Rosenbaum,

1980), indicating that the movements were actually pre-planned in the DRT (factor TASK:

df=11, F=6.8,  p=0.024, eta2
G=0.0207;  all  other effects were not significant:  DISTANCE:

df=11,  F=2.5,  p=0.140,  eta2
G=0.0287;  TASK*DISTANCE:  df=11,  F=1.5,  p=0.252,

eta2
G=0.0041). Movement durations were significantly longer in DRT (TASK: df=11, F=27.7

p=0.0003, eta2
G=0.235) and for longer trajectories (DISTANCE: df=11, F=701.4, p<0.0001,
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eta2
G=0.908).  It  is  noteworthy that the latter effect was driven by much larger duration

differences (see Figure 3.2 D). There was no interaction between the two main factors

(TASK*DISTANCE: df=11, F=1.7, p=0.21, eta2
G=0.014). Endpoint error (see Figure 3.2 E)

was constant  across  tasks  and distances  (TASK:  df=11,  F=2.4,  p=0.148,  eta2
G=0.050;

DISTANCE:  df=11,  F=3.5,  p=0.087,  eta2
G=0.062;  TASK*DISTANCE:  df=11,  F=3.1,

p=0.104, eta2
G=0.023). Maximal movement speed (Fig. 3.2F) did not differ across tasks

(TASK: df=11, F=0.14, p=0.72, eta2
G=0.001). It was however higher for longer trajectories

(DISTANCE:  df=11,  F=57.87,  p=0.00005,  eta2
G=0.589).  The  interaction  effect  was  not

significant (TASK*DISTANCE: df=11, F=2.71, p=0.13, eta2
G=0.037). Finally, the frequency

of saccades (Fig. 3.2 G) was indistinguishable between DRT and CT in the CUE phase
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Figure 3.3. ROI timecourses extracted from PMd (A & C) and SPL (B & D), comparing the
fMRI-signal  in  the  delayed  reach  task  of  Experiments  1  and  2  (A &  B  vs.  C  &  D,
respectively).  Cyan-shaded  areas  represent  time  epochs  during  which  paired  t-test
comparisons  of  signal  amplitudes  between  “NEAR”  and  “FAR”  reaches  revealed
statistically significant differences (p<0.05) for at least three neighboring time-points. Such
differences were considered indicative of an influence of trajectory. PMd shows different
planning-related signal amplitudes in both experiments (leftward part of the panels A and
C, aligned to CUE onset). SPL shows trajectory planning signal modulation in Experiment
2 only (D). PMd shows significant modulation in the reach phase in both experiments (A
and C,  right  panels,  aligned  to  REACH onset),  whereas  SPL shows such  statistically
significant difference only in Experiment 2 (D) although a hint of the same effect might be
present in Experiment 1 as well (B). Dotted gray boxes indicate late delay phase, in which
activity merely represents planning but no longer CUE-related activity. This period was also
used for a subsequent statistical comparison between PMd and SPL.
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Figure 3.4.  Timecourses of fMRI signals extracted from ROIs in the delayed reach (A) and control
tasks (B) in Experiment 1. Left panels are aligned to CUE onset while right panels are aligned to
REACH onset. Cyan-shaded areas represent time epochs during which paired t-test comparisons of
signal amplitudes between “NEAR” and “FAR” reaches revealed statistically significant differences at
p<0.05 for at least three neighboring time-points. Such differences were considered indicative of an
influence of  trajectory.  In the DRT both PMd and M1 showed transient  trajectory  representation
during the planning stage (leftward part of the panels, aligned to CUE phase onset). PMd, M1, SMA,
mIPS, aIPS and V1 showed differences between the two types of trajectories during the reach stage
(rightward part of the panels, aligned to REACH phase onset).  B) No ROI shows planning-related
differences in the CT. As in the DRT, PMd, SMA and M1 exhibit execution-related differences. 



(TASK:  df=9,  F=0.14,  p=0.72,  eta2
G=0.00061;  DISTANCE:  df=9,  F=0.23,  p=0.64,

eta2
G=0.00169; TASK*DISTANCE: df=9, F=1.85, p=0.21, eta2

G=0.01130), and was lower

for CT “FAR” reaches than in all other conditions in the DELAY phase (TASK: df=9, F=2.8,

p=0.127, eta2
G=0.010; DISTANCE: df=9, F=6.1, p=0.035, eta2

G=0.039; TASK*DISTANCE:

df=9, F=7.2, p=0.025, eta2
G=0.021). Most importantly, the saccade rates in both CUE and

DELAY phase of DRT did not differ for our trajectory manipulation (“NEAR” vs. “FAR”). 

Subjects’  task-related  brain  activity  was  assessed  with  fMRI.  Experiments  were

performed  in  a  3T  Siemens  Trio  scanner.  Functional  imaging  was  done  using  EPI

sequences with 2s temporal resolution and 3x3x4 mm voxel size. Functional data were

analyzed  using  SPM8 and  were  modeled  using  a  general  linear  model,  in  which  we

included the following regressors of interest: the main epochs of a trial (“CUE”, “DELAY”,

“REACH”) were modeled separately for each experimental task (DRT vs. CT) and for each

trajectory length (“NEAR” vs. “FAR”). In order to assess correlates of trajectory planning in

SPL and PMd we chose a region of interest- (ROI-) based approach. In the first step we

delineated a set  of  brain  regions recruited in movement planning by contrasting delay

epochs of DRT and CT. This was done by contrasting activity estimates during the delay

epochs of DRT vs. CT both within the group and within in each individual. Single subjects

statistical contrasts combined with anatomical criteria were used to adjust the ultimate ROI

selection in order to account for inter-individual differences in functional brain organization

(see “Study 2 – Materials and methods” for details).

Figures 4.1C and 4.7 depict the resulting statistical parametric map of the group

analysis, exhibiting planning regions. These figures focus on our main ROIs, namely PMd

and  SPL,  defined  on  the  basis  of  previous  research  consistently  demonstrating  their

involvement  in  reach  trajectory  coding  (see  introduction  of  Study  2).  For  the  sake  of

completeness we included other areas engaged in hand movement planning: intraparietal

sulcus (IPS) and supplementary motor area (SMA). We considered these latter areas as
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complementary planning ROIs. In addition we included primary motor cortex (M1) due to

its  potential  engagement  in  trajectory  representation  (compare  Hocherman  and  Wise,

1991), as well as primary visual cortex (V1), which served as a control ROI allowing us to

monitor task-unspecific brain activity reflecting visual stimulation during all  trial  phases.

From every ROI we next extracted timecourses of BOLD-signal change throughout a trial

at 1s temporal resolution. Within each individual we then separately averaged timecourses

for each experimental condition. Statistical comparisons were performed across subjects’

average  timecourses  and  between  experimental  conditions.  Activity-timecourses  were

compared for trajectories of varying length/complexity and separately for each condition.

Specifically,  we  engaged  a  time-resolved  analysis  by  recruiting  multiple  paired  t-tests

performed separately  for  each  time point.  We decided  for  the  ROI-based time-course

analysis to be able to scrutinize the dynamics of activity changes in planning areas as we

expected those to potentially reflect  trajectory plan representations. Similar to previous

research (Gallivan et  al.,  2011),  the activity  maps in  our  subjects were clearly  contra-

lateralized with respect to the reaching hand (see Figure 3.1C). Accordingly, we focused in

our analyses only on these left-hemispheric areas.

Figure 3.3 A & B show respective timecourses (averaged across all subjects) that

were obtained during the DRT task for both main ROIs (A: PMd; B: SPL). The leftward part

of  each panel  depicts  the  timecourses aligned to  CUE onset  while  the  rightward  part

represents the same timecourses but aligned to the onset of the REACH-phase. Note that

we assume a typical delay in time to peak of the event-related haemodynamic response in

the  human  brain  (DeYoe  et  al.,  1994;  Handwerker  et  al.  2004),  amounting  to  to  5-6

seconds. Changes in planning activity in the absence of any residual CUE-related activity

can be directly inspected during the late DELAY-phase (the last 4s of the delay period,

indicated by dashed boxes in Figures 4.3, 4.4 and 4.5), when all  the activity related to

visual target and cue processing is absent (compare to V1 activity in Figure 3.4) and when
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activity is not yet affected by movement execution. During this time period we observed a

significant increase in BOLD activity during planning of longer/more complex trajectories in

PMd (Figure 3.3A; cyan shaded area). Note that this difference emerged already early

after cue presentation and already then might have reflect a trajectory-related difference in

planning at  early  stages.  However,  as  was pointed  out  before,  additional  CUE-related

modulations of the fMRI-signal can – even if unlikely – not be completely ruled out. Finally,

the  difference  between  conditions  was  also  present  during  the  REACH-phase.  Note,

however, during this period signal modulations are contaminated by systematic differences

between  conditions  such  as  movement  duration  or  speed  (compare  the  results  of

behavioral analyses) and the related differences in visual movement feedback. In contrast

to  PMd, trajectory-related signal  modulation was virtually  absent  in SPL (Figure 3.3B).

Finally, we did not observe any trajectory-related variation of BOLD-signals in the DELAY

phase of the control task in neither of our main ROIs (Figure 3.4B). Also in the REACH-

phase PMd exhibited a significantly higher signal amplitude during FAR as opposed to

NEAR reaches (Figure 3.4B). As was mentioned before for the DRT, this activity pattern is

likely accounted for by the systematic differences in movement execution and movement

feedback.

In  none  of  our  additional  ROIs  we  could  reveal  a  significant  signal-difference

between NEAR and FAR during the late DELAY-phase. It is noteworthy, however, that in

M1 we also observed a significant effect of trajectory but only early during the DELAY-

phase (Figure 3.4A). Finally, like for PMd we observed an effect of reach trajectory during

reach execution in V1, M1, SMA, mIPS and aIPS (rightward panels of Figure 3.4A). In all

cases  activity  was  higher  for  the  more  complex/longer  trajectory.  Note,  however,  the

presence  of  these  effects  is  not  necessarily  related  to  planning.  It  might  be  rather

explained by the systematic differences in movement and - as is clearly indicated by V1

activity - by the respective amount of visual motion that we provided as feedback about
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subjects’ movements. As was true for PMd and SPL, we did not see any trajectory-related

variation of BOLD-signals in the DELAY-phase of the control task in either of the additional

ROIs, but only during the REACH-phase (Figure 3.4B). 

In summary, the results of Experiment 1 are consistent with the idea that PMd – and

potentially also M1 – represent plans for upcoming reach trajectories: Planning activity

reflected  differences  in  the  length  of  curved  trajectories  despite  the  initial  hand-target

difference  vectors  were  identical  across  trials.  In  the  next  experiment  we’ll  compare

planning activity from the same ROIs to a situation in which movements were directed

straight towards a target and, thus, could – at least potentially – be defined by a hand-
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Figure 3.5. Movement performance in Experiment 2.  A & B) Exemplary reach trajectories of a
single subject (left panels) and the respective speed profiles (right panels) for both a “NEAR” (A)
and  a  “FAR”  (B)  condition.  C-G)  The  individual  panels  show  our  estimates  of  behavioral
performance as a function of  “TASK” and “DISTANCE” and report the influence of these factors
on the respective estimates as well as their interaction, as was assessed by two-way repeated
measures ANOVAs. Error bars represent SEM. C) Reaction times were significantly shorter in
DRT than in  CT.  D)  Movement  durations  were  significantly  longer  for  “FAR”  trajectories than
“NEAR”. E) Error sizes were larger for DRT. F) Maximal speeds were higher for “FAR” reaches.
See main text for detailed statistics. G) Average frequencies of fixational saccades in CUE an
DELAY epochs  of  CT  and  DRT.  The  rates  of  fixational  saccades  were  constant  across  all
conditions.



target  difference  vector.  In  other  words,  there  would  be  no explicit  need  to  represent

trajectories during movement planning.

Experiment 2 – planning straight reaches 

In the second experiment the overall design was similar to the one used in Experiment 1 in

that  we contrasted a delayed reach planning task with  a direct  reach task.  This  time,

however, we used a simple center-out reaching task (compare Figure 3.1D). Such task

should allow us to see whether the potential trajectory-related scaling of the BOLD-signal

would be seen in brain activity even if  a given reach trajectory could be defined by a

simple difference vector between target and hand, as such vector-based programming has

been suggested at least  by behavioral findings (see Todorov and Jordan, 2002; Hoff and

Arbib, 1993; Ijspeert et al. 2003 but compare Wong et al., 2016). We manipulated reach

amplitude by positioning the targets at two different distances and at randomly chosen

radial  positions in the upper-right quadrant of the visual field (see Figure 3.5A & B for

examples).  The  idea  behind  this  manipulation  was  to  additionally  uncover  potential

trajectory representations for simple, straight reach plans,  while the planning of longer

trajectories should result in higher BOLD signal amplitudes (see introduction of Study 1).

Similar to Experiment 1, reaction times (Figure 3.5C) were significantly shorter in the DRT

(“TASK”: df=6, F=7.8, p=0.031, eta2
G=0.0039) suggesting that subjects preplanned their

movements in this condition. The other effects were not significant (“DISTANCE”: df=6,

F=1.2, p=0.322, eta2
G=0.1786; “DISTANCE*TASK”: df=6, F=1.9, p=0.220, eta2

G=0.0073).

As in Experiment 1, movement durations (Fig. 3.3D) were significantly longer for longer

trajectories (“DISTANCE”: df=6, F=42.8374, p=0.00061, eta2
G=0.45535). All other effects

were  not  significant  (“TASK”:  df=6,  F=0.5772,  p=0.47619,  eta2
G=0.00360;

“DISTANCE*TASK”: df=6, F=0.0014, p=0.97177, eta2
G=0.00001). The endpoint error sizes

(Fig  3E)  were  significantly  higher  in  the  DRT  (“TASK”:df=6,  F=34.17,  p=0.0011,
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Figure 3.6. Timecourses of fMRI signals extracted from ROIs in the delayed reach and control
tasks in Experiment 2.  Left  panels are aligned to CUE onset while right  panels are aligned to
REACH onset. Cyan-shaded areas represent time epochs during which paired t-test comparisons
of  signal  amplitudes  between  “NEAR”  and  “FAR”  reaches  revealed  statistically  significant
differences at p<0.05 for at least three neighboring time-points. A) PMd, SPL, SMA and aIPS show
significant  signal  differences  during  the  planning  epoch  in  DRT.  All  areas  except  V1  show
differences  during  the  reach  epoch..  B)  In  the  control  task,  no  ROI  showed  planning-related
differences. Both SMA and M1 exhibited differences during the reach stage.



eta2
G=0.6545). This difference likely resulted from lower precision of memory- vs. visually-

guided reaches. Most important for our study, both the factor distance and its interaction

with  task  were  not  significant  (“DISTANCE”:  df=6,  F=0.20,  p=0.6735,  eta2
G=0.0045;

“DISTANCE*TASK”: df=6, F=0.13, p=0.7326, eta2
G=0.0045). Maximal speeds (Fig. 3.3F)

were significantly higher for longer trajectories (“DISTANCE”: df=6, F=77.86, p=0.00012,

eta2
G=0.26356). All other effects were not significant (“TASK”: df=6, F=0.20, p=0.67151,

eta2
G=0.00043;  “DISTANCE*TASK”:  df=6,  F=0.47,  p=0.51874,  eta2

G=0.0014).  Finally,

saccade frequencies (Fig.  3.3G) were not  different  across conditions both in  the CUE

(“TASK”:  df=4,  F=1.1,  p=0.358,  eta2
G=0.043;  “DISTANCE”:  df=4,  F=4.8,  p=0.093,

eta2
G=0.090; “DISTANCE*TASK”: df=4, F=4.1, p=0.114, eta2

G=0.112) and in the DELAY

phase (“TASK”: df=4, F=0.91, p=0.39, eta2
G=0.0041; “DISTANCE”: df=4, F=0.51, p=0.51,

eta2
G=0.0034; “DISTANCE*TASK”: df=4, F=1.50, p=0.29, eta2

G=0.0048).

We will next consider task-related changes of brain activity in our main and in the

complimentary  planning-related  ROIs.  Note  that  we  used  a  similar  procedure  for  ROI

selection to the one used in Experiment 1. The actual brain regions selected for further

ROI analyses were practically the same as in Experiment 1 (see Figure 3.7, compare also

Supplement 2 for further details on ROI selection). 

The BOLD signals in these ROIs during the reach phase of the DRT were quite

similar  to  those  observed  in  Experiment  1:  longer  trajectories  yielded  larger  signal

amplitudes in PMd, SPL aIPS, mIPS, SMA and M1 (see Figure 3.3C&D and Figure 3.6A,

rightward part of panels). More importantly, for our main ROIs the planning-related BOLD

signals extracted during the late DELAY phase of the DRT were markedly higher for longer

trajectories not only in PMd but this time in the SPL too (Figure 3.3 C & D; compare time

period indicated by the dashed box in  the leftward part  of  each panel).  Higher  delay-

related  BOLD  signals  for  longer  trajectories  were  also  observed  in  two  of  our

complimentary ROIs: SMA and aIPS (Figure 3.6A). No planning-related signal modulation
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was observed in M1 or in any other additional ROI. In the control task, no ROI showed any

trajectory-related activity during the DELAY phase (Figure 3.6B). Only during the REACH

phase, M1 and SMA exhibited a modulation of the BOLD-signal as a function of trajectory

(Figure 3.6B). This resembled their respective signal changes during the REACH phase in

DRT (Figure 3.6A) and likely can be attributed to the systematic differences in movement

execution (also compare Experiment 1). The lack of similar V1 modulation likely results

from the much lower amount of visual motion as shown by the smaller movement duration

differences between trajectories (Fig. 3.4D).

Contrasting Planning activity (in SPL and PMd) across Experiments

Finally, to directly test for the difference in the activation pattern in our main ROIs, SPL and

PMd, across the two experiments, we performed an additional mixed model ANOVA with

the factors “Experiment”, “DISTANCE” and “ROI”, comparing the activity estimates of the

late delay phase of the DRT trials. These estimates captured the average activity during

the last four seconds of the DELAY phase (see dashed boxes in Figure 3.3). The analysis

revealed  a  significant  three-way  interaction  (F=7,  df=17,  p=0.17,  eta2
G=0.03),  further

confirming that SPL and PMd exhibited diametrically distinct patterns of planning activity in

both tasks, namely a (stronger) contribution of PMd to the planning of complex trajectories

in  the  DRT  of  Experiment  1,  while  both  areas  represented  the  straight,  vector-like

movement trajectories in the DRT of Experiment 2. 

In order to further scrutinize the apparent differences in activations between the

PMd and SPL across experiments, we calculated Bayes factors for each of these ROIs in

both  experiments  (see  “Materials  and  methods”  for  details).  The  use  of  conventional

statistics  reduced our  ability  to  control  for  type II  errors  as strictly  as  for  type-I-errors

(Jeffreys, 1961),  and, in consequence, did not allow us to quantify whether the differences

between ROIs highlighted by ANOVA may have overlooked the actual signal similarities in
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Experiment  1,  potentially  resulting  in  type  II  error.  To  account  for  this  limitation,  we

additionally  calculated  Bayes  factors  to  determine  for  each  experiment  whether  the

planning activity estimates  of our primary ROIs during the late delay (dashed boxes in Fig.

3.3) are the same for trials with different trajectory length (null hypothesis) or whether they

are different  (alternative hypothesis).  A Bayes factor  value below 0.33 provides strong

evidence for a lack of signal differences while values above 10 indicate strong evidence in

favor of  signal  differences between NEAR and FAR conditions (Jeffreys, 1961).  Bayes

factors  for  Experiment  1  equaled  to  60.79  for  PMd  and  0.22  for  SPL.  This  result  is

consistent with a role of PMd in planning complex reach trajectories of varying length.

Moreover, Bayes factors further show that planning activity in SPL  did not differ for curved

trajectories  that  varied  in  length  and  complexity  but  aimed  at  identical  targets.  In

Experiment  2 the Bayes factors were 10.34 for  PMd and 201.29 for  SPL. The strong

evidence in favor of signal differences parallels previous statistical analyses and shows

trajectory representations in both main ROIs during straight reach planning.

DISCUSSION 

In Experiment 1 we showed that different reach trajectories for targets kept at the same

visual locations produce differential planning responses in dorsal premotor cortex but not

in SPL. Experiment 2 allowed us to further demonstrate that trajectories are represented in

PMd  even  if  reaches  could,  at  least  in  principle,  be  coded  by  a  simple  hand-target

difference vector. Moreover, we show that the activity was modulated by the trajectory of

straight  reaches  in  the  medial  portion  of  SPL.  Comparing  the  results  from these  two

experiments,  we  may  note  that  while  PMd  contains  representations  of  trajectories

irrespective  of  their  complexity,  SPL  (and  perhaps  also  supplementary  motor  area)

primarily encode trajectory plans for simple reaches directed straight towards a target. 

Note  that  we  ensured  the  reported  differences  could  not  be  accounted  for  by
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subjects’  residual  eye  movements  (Fig.  3.2G & 3.4G).  Moreover,  constant  error  rates

across conditions, as were present in both experiments (Fig. 3.2E & 3.4E), suggest that

the different planning-related signals did not simply result from increasing task difficulty,

but  rather  reflected  parameters  of  planned  trajectories.  The  particular  design  of

Experiment 2 further ensured that such differences in task difficulty between “NEAR” and

“FAR” should not arise in the first place (compare “Study 2 – Materials and methods” in

appendix).  Finally,  in  Experiment  1  we  instructed  the  same  target  locations  (across

conditions) while varying the way to the target (i.e. the trajectory). This allowed us not only

to keep initial eccentricity/direction of target location balanced across conditions but this

also  guaranteed  that  any  attention  towards  the  target  locations  (or  cues),  or  any

retrospective  memory  thereof,  would  likewise  be  identical  across  tasks.  Hence,  the

reported differences in brain activation should exclusively relate to the process of planning

different reach trajectories.

Alternative views on reach trajectory planning

Does reaching always require planning of trajectory? One alternative possibility, suggested

by prior literature, is that a reach is initially defined by a vector pointing either towards the

final target location or, alternatively, towards the initial direction of movement (Pearce and

Moran,  2012).  Then,  during  reach  execution,  the  hand  would  be  guided  on-line  by  a

feedback-based control system (todorov and Jordan, 2002; Hoff and Arbib, 1993), allowing

even for guiding more complex reach shapes (Ijspeert et al, 2002). This way, only the first

desired state (goal) and not the whole trajectory would need to be planned in advance. As

an alternative to the above, it may be hypothesized that the reach trajectory is constructed

and represented as a whole at the initial stages of reach planning (Üstün, 2016) and only

then, this initial plan is being converted to respective motor commands during movement

execution  while  likewise  allowing  for  on-line  corrections  for  potential  movement
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inaccuracies.  As  mentioned  in  the  introduction,  most  previous  research  on  trajectory

coding concentrated on the movement execution stage, albeit with some exceptions which

(also) focused on reach planning. On the basis of the results provided by these studies,

however, one could not determine whether the changes in planning activity reflect any

global trajectory parameter such as the overall  movement path. Conversely, they could

also represent only initial components of trajectory like the initial hand posture (Torres et

al., 2013)   or the initial movement direction enforced by additional cues, e.g. obstacles

(Hocherman and Wise, 1991; Pearce and Moran, 2012). These latter studies, in which

representations  of  such  specific  parameters  were  reported,  the  remaining  parts  of

movement planning and execution could still  be guided by the aforementioned on-line

control system. 

In fact, findings of Pearce and Moran (2012) are compatible with this notion, as in

their  study the population activity in PMd seemingly encodes the initial  direction of an

upcoming movement regardless of the target position, although one cannot infer anything

about representation of the remaining parts of trajectory. Hence, the currently available

physiological data leave it open whether or not there is an explicit neural coding of global

trajectory parameters during reach planning. Our results, in turn, seem to support the idea

that PMd does code global trajectory parameters prior to a movement. We exhibited a

modulation of the averaged BOLD response during planning of varying reach trajectories

even if  target  and initial  movement directions were constant.  PMd activity  represented

trajectory information not  only when the situation required the precise programming of

more  complex  movement  path  (Experiment  1),  but  even  if  planned  trajectories  were

straight and direct (Experiment 2).  This highlights a vital  and general  role of  premotor

cortex in trajectory planning. 
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Limitations of the study

Given the nature of our experimental design and of our recording methods, however, we

cannot  further  detail  the  precise  global  trajectory  parameters  underlying  the  signal

changes that we revealed. Yet, as we have already argued above, it  is at least highly

unlikely  that  the  observed  signal  differences  can  be  explained  by  specific  spatial

parameters  such  as  initial  difference  vector  or  obstacle  location  (also  compare  our

discussion in the next paragraph). Due to the relatively coarse spatial resolution of our

BOLD signal recordings (see “Study 2 – Materials and Methods”), the activity estimates

averaged within the regions-of-interest covered large neural populations. This approach

allowed us to avoid the problem of measuring only specific correlates of trajectory (such as

initial direction), but, in turn, does not allow us to attribute the changes in planning activity

to any of the specific kinematic parameters correlated to the trajectory length, such as

reach durations, numbers of intermediate segments/points or exact path shapes (compare

Üstün, 2016). These detailed properties of trajectory planning have to be addressed using

more sensitive methods. Our findings also leave open the question about the actual local

topographic distribution of trajectory coding neural populations within the ROIs. The earlier

electrophysiological findings of Messier and Kalaska (2000), who reported that individual

PMd neurons code both reach amplitude and direction, may present important hints to

address this issue.

Superior parietal lobule encodes straight reach paths

Similar to PMd, superior parietal lobule activity increased during the planning of straight,

direct reaches towards more eccentric targets in Experiment 2. Different to PMd, however,

SPL planning  activity  did  not  differentiate  between  the  more  complex  trajectories  of

Experiment 1, where the hand- and eye-to-target initial difference vectors were kept equal

regardless of trajectory. These results are consistent with the notion that SPL could chiefly
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represent  straight  reach  plans.  One  might  further  ask  whether  SPL thereby  encoded

indeed an initial difference vector (similar to saccades) or the straight trajectory defined

along such vector, as the two features were inherently correlated in Experiment 2. As is

suggested by anatomical studies, SPL (and other parietal  regions) has a relative over-

representation of the visual periphery as compared to visual areas (see Colby et al., 1988;

Baizer et al., 1991; Motter and Mountcastle, 1981; but compare Ben Hamed et al., 2001).

The  mere  coding  of  the  difference  vector  could,  accordingly,  recruit  larger  neural

populations representing more peripheral targets, and potentially lead to an increase in the

total BOLD signal for more eccentric target locations in Experiment 2. However, as was

demonstrated by Kimmig et al.  (2001) in their study on saccades, the coding of larger

difference  vectors  (or  rather  topological  coding  of  more  eccentric  target  locations)

themselves is not sufficient to modulate the amplitude of the BOLD signal in the way we

observed  here,  as  it  probably  does  not  need  recruiting  increasingly  larger  neural

populations the longer the vector. The same argument likewise accounts for movement

durations as the larger saccade amplitude, the longer its duration. Clearly,  the cortical

planning of reaches and saccades is distinct, yet it shares several common principles. It is

hard to see why the chosen target distances and movement durations alone should lead to

gross  amplitude  differences  in  the  BOLD  response,  especially  given  the  fact  that

comparable parameters did not lead to BOLD signal differences in a saccade planning

task.  Adding  to  this,  even  though  some   data  suggest  existence  of  a  relative  over-

representation of the periphery, there is still an absolute over-representation of the central

visual  field  in  posterior  parietal  cortex  (Ben  Hamed et  al.  2001),  predicting  a  weaker

representation of more peripheral  locations. For these various reasons we propose an

alternative explanation of our results. In our view, the observed increase in SPL activity for

more eccentric reaches in Experiment 2 is consistent with the idea that this region’s role is

to  localize  the  target  and,  moreover,  to  initially  represent  a  “simple”  trajectory  aimed
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directly at the target (e.g. through interpolated intermediate points, see: Üstün, 2016). It

well might be that such direct and straight trajectory representation is encoded by neural

populations  in  SPL by  default  and  no  matter  what  sort  of  movement  path  is  actually

required  in  a  given context.  This,  in  turn,  could  explain  why monkeys  with  lesions of

premotor cortex and intact posterior parietal cortex cannot plan complex hand trajectories

that would allow to effectively avoid obstacles. Instead, these monkeys still try to reach

straight towards targets and bump into obstacles (Moll and Kuyspers, 1977). Moreover,

recent findings showed that PPC inactivation in monkeys impairs their  ability  to  reach

along straight paths and the reaches become significantly curved (Battaglia-Mayer et al.,

2012). Such automatic planning of simplified, straight trajectories by SPL could be useful in

various everyday situations and crucial whenever a rapid response is required (e.g. when

swatting  a  fly).  We admit,  however,  that  there  may still  exist  differences between the

straight  movements  executed in  this  experiment  and certain  other  fast,  reflexive  hand

movements performed in more natural settings, where adhering to the flat surface of a

touch-panel is not required.

Potential interactions between PPC and PMd in reach path planning

Given the obvious difference in movement plan representation between PMd and SPL, as

was described here, one could conceive a hierarchical model in which an initial trajectory

plan is formed in SPL based on the difference vector pointing directly towards the target

location. As information transfer from posterior parietal cortex to M1 is faster than to PMd

(Innocenti  et  al.,  2014),  the  simple  movement  plan  may  be quickly  put  into  action.  If

required,  this  initial  plan  is  “overwritten”  by  other  frontal  areas  (such  as  PMd),  which

possibly consider additional spatial constraints that would interfere with execution of the

reach along the initially defined,  direct path -  like information about obstacle locations

(Torres et al., 2013; Pearce and Moran, 2014; Lindner et al., 2010). PMd might incorporate
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such additional information to construct a global (potentially more complex) trajectory plan,

which is passed on to areas responsible for its further processing and execution (like M1).

In fact, as we already described above, lesions to premotor cortex of macaque monkeys

make them unable to avoid obstacles or, alternatively, to update their initial motor plan

(Moll  and Kuyspers, 1977). In addition, PMd has been shown to highlight those motor

plans  that  are  actually  selected  for  execution,  rather  than merely  representing  all  the

possible plans. This does further imply a role of PMd in forming the ultimate trajectory

(Kalaska and Crammond, 1995; Cisek e al. 2002). It is worth to note, that several authors

postulated that PMd may additionally play a governing role in the sensorimotor system,

modifying motor plans as required by given context (Westendorff et al., 2010; Archambault

et  al.,  2011).  Such detailed hierarchy amongst  the cortical  areas engaged in  planning

reach trajectories could not be assessed on the basis of our experiments. The nature of

the BOLD signal would not allow us distinguishing incoming neural signals from local ones

(Logothetis et  al.  2001) -  a distinction which is critically needed to establish hierarchy.

Moreover, such distinction is perhaps particularly challenging when considering posterior

parietal  and premotor  areas that  are  linked by  single-synapse pathways (Pandya and

Kuyspers, 1969; Jones and Powell, 1970; Kurata, 1991; Johnson et al., 1996; Bataglia-

Mayer et al., 2003). To further detail how exactly trajectory information is represented and

transferred throughout the network of areas engaged in sensorimotor processing, causal

methods could be utilized in the future to disrupt information flow between specific regions.

Possible involvement of other areas in trajectory planning 

In accordance with earlier studies, we did observe trajectory information encoded in M1

activity during movement execution (Hocherman and Wise, 1991; Kadmon-Harpaz et al,

2014; Hatsopoulos et al., 2007). The results revealed in Experiment 1 further suggest that

M1  might  encode  trajectory  information  already  at  the  very  early  stages  of  planning
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reaches along complex paths. In Experiment 2 we did not observe any M1 modulation of

this kind, while in this experiment trajectories did not differ with respect to their complexity.

The  overall  findings  suggest  that  only  trajectories  of  greater  complexity  may  require

engagement of M1 well before movement execution. 

Another interesting finding is the involvement of supplementary motor area in the

planning of  straight  but  not  of  circular  movements  (see “Supplementary results”).  This

result parallels earlier findings of Hocherman and Wise (1991) who also reported more

SMA neurons involved in coding straight than curved reach paths, as evident from the

number of neurons responding to either of those. Hence, similar to SPL, SMA seems to be

more involved in coding direct, straight trajectories. Yet, it still remains to be determined

what  exact  role  the  SMA plays  in  this  process  and  whether  our  observation  can  be

confirmed.

Concluding remarks

Our  study  suggests  that  global  trajectory  information  is  represented  in  premotor  and

posterior parietal areas of the human brain well before movement execution. Moreover, we

reveal differences in the representation of planned reach trajectories across these areas.

Specifically,  premotor  cortex  can  seemingly  encode  complex  reach  trajectories  while

posterior parietal cortex (and possibly supplementary motor area) rather represent plans

for  movement along a simplified,  straight  and direct  path.  Such a parallel  and distinct

representation of two fundamentally different types of trajectory plans would clearly ask for

a meaningful functional interpretation. It is conceivable that emergence of two disparate

reach planning subsystems is desirable from an ecological point of view by offering a high

degree of flexibility in adjusting hand movement control to situational demands. This way a

parietal  subsystem could allow to  rapidly  reach straight  towards an object,  whereas a

frontal subsystem would take over whenever movements have to be performed with more

finesse and when moving along the right path is an integral part of the motor goal.
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Supplementary results

While the qualitative assessment of the signal patterns in our additional ROIs suggested at

first, that the SMA and aIPS encode the movement plans in similar way as the SPL does.

To test this, we performed an additional analysis of variance comparing the PMd activity

against SMA, aIPS and mIPS. The three-way interaction effect was present only in SMA

activity (df=17, F=9.25, p=0.007, eta2
G=0.02) but not in any of the intraparietal ROIs (mIPS:

df=17, F=2.24, p=0.15, eta2
G=0.003; aIPS: df=17, F=2.42, p=0.14, eta2

G=0.009). Those, in

turn  showed  a  significant  main  effect  of  distance  (mIPS:  df=17,  F=9.34,  p=0.007,

eta2
G=0.01; aIPS: df: 17, F=10.45, p=0.005, eta2

G=0.12). 

In the next step, similar to comparing activity across experiments between PMd and SPL,

we additionally calculated Bayes factors for SMA, aIPS and mIPS to assess presence of

trajectory representations in these ROIs across experiments. For Experiment 1, the Bayes

factors were: SMA: 0.4; aIPS: 0.34; mIPS: 0.34. This showed no evidence for engagement

of any of these areas in complex trajectories planning. Bayes factors for Experiment 2

were: SMA: 32.13; aIPS: 65.62; mIPS: 4.10. The results for SMA were in agreement with

the t-test and ANOVA analyses and showed strong evidence for engagement of SMA in

planing of  straight,  but  not  curved trajectories.  The apparent  representation of  straight

trajectories in aIPS was confirmed by Bayesian analysis, showing strong evidence in favor

of aIPS representing the straight reach trajectories. Apparently, however, the fact that the

additional ANOVAs in both IPS regions did not reveal a significantly differential  pattern

across  experiments  as  it  did  in  our  other  ROIs,  suggests  that  IPS  representation  of

trajectories plans was rather similar across tasks. We suspect that this may have likely

resulted from the specific setting of our reaching task, relying on flexion of fingers and wrist

muscles critically involved in prehension, and other precise hand movements. On the basis

of other lines of research, we may speculate that the actual role for IPS subregions here

was to represent the oncoming hand movement in terms of the general finger motion-

related processes, less the actual  trajectory (Culham et al.,  2006;  Schaffelhoffer  et  al,

2015; Jeannerod et al., 1995; Fogassi and Lupino, 2005; Fogassi et al., 2001).
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Figure 3.7. Comparison of planning regions recruited by our two experiments in a representative
subject (DRT>CT; the overlaid maps of activity were thresholded at p<0.05, FWE-corrected for
multiple  comparisons).  Red  and  green  shaded  regions  denote  clusters  of  planning  activity
specific  to  the  delay  phase  of  Experiments  1  and  2,  respectively.  Yellow  shaded  regions
represents  areas  active  in  both  experiments.  Blue  crosshairs  indicate  centers  of  clusters
selected for subsequent ROI analyses (compare “Study 1 – Materials and methods”).



Study 3. Future of the past: evidence for effector-dependent modulation of working

memory activity in posterior parietal cortex

INTRODUCTION

Working memory is  the key cognitive process allowing an organism to  link  previously

encountered information to a future action. As much as it’s  popular,  the term “working

memory”  (WM)  has  been  not  clearly  defined  and  its  detailed  brain  mechanisms  and

cognitive components remain somewhat elusive (for reviews see e.g. D’Esposito & Postle,

2015; Eriksson et al., 2015). One of the traditional views on working memory architecture

bases upon Baddeley and Hitch (1974) concept of separate storages modules, assuming

that  mnemonic  information  is  maintained  with  respect  to  its  sensory  modality  within

specialized  modules  (e.g.  visuomotor  sketchpad).  Recently,  brain  imaging  studies,

supported this view, showing that processing of different mnemonic content engages its

respective domain-specific cortical areas, such as fusiform face area for faces (Ranganath

et  al.,  2004)  or  visual  cortex for other visual  forms (Harrison & Tong,  2009;  see also:

Wager  &  Smith,  2003).  It  has  been  suggested  that  domain  separation  in  cortical

topography may be also reflected in behavioral performance, as different WM “storages”

seemingly possess independent processing capacities, see e.g. Myerson et al. (1999) who

demonstrated that verbal and spatial memory domains yield independent memory spans in

subjects tested (compare also: Logie, 1990).

The classical concept of separate memory processing modules relates to the retrospective

aspect  of  memory,  focusing  on  the  nature  of  the  information  stored.  However,  as

information is always learned to be used for future actions, whether in laboratory setting or

real life, it can be hypothesised that the way mnemonic information is processed does not

build solely upon the exact type of information, but also to ensure its efficient use in a

given context. For example, the probability that we'll have to use visuo-spatial information
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for motor actions (e.g. making a reach) is usually much higher than that for using this

information for a verbal recall. One may suspect that working memory processing can at

least  partly  build  upon  a  relevant  action  by  which  the  information  is  likely  to  be

used/reproduced,  either  due  to  different  rehearsal  or  to  action-specific  preparatory

processes.

If  this  view was true,  working  memory  functions should  be affected by  specific  motor

“context” in terms of its use, i.e. by the relevant effector (motor modality). Indeed, several

lines of research have demonstrated that the type of effector used has an influence on

subject performance in working memory experimental tasks, in particular where manual

responses were employed (Hale et al. 1996; Lawrence et al. 2001). Apparently, this results

in task difficulty being artificially higher for certain groups, such as older adults, only due to

the effector used to respond, affecting the measured working memory performance. As

demonstrated  by  Emery  et  al.  (2006),  the  working  memory  tasks  employing  verbal

responses do not seem to elicit any age-related decrease in performance, as opposed to

tasks where the response requires pressing buttons on a keypad. These findings may

trigger questions of how do the motor components necessary for retrieval influence the

working memory maintenance processes.

Conceptually speaking, an interplay between the mnemonic and the motor components of

working  memory  tasks  seems  to  be  especially  likely  given  the  major  spatial  overlap

between the areas engaged in working memory and the ones controlling motor planning,

mostly in frontal and parietal lobes (see e.g. Lindner et al., 2010; Eriksson et al., 2015;

Gallivan  &  Culham,  2015).  This  likely  reflects  the  fact  that  both  prospective  and

retrospective processes are tightly inter-related: every action planning experimental task,

apart  from prospective  components  like  goal  or  action  representation,  must  contain  a

retrospective component  (i.e.  an instruction or  target  cue).  And conversely,  as already

discussed above, a typical working memory task contains also a prospective component
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(i.e. a potential use for the memorized information). In most experimental settings the latter

is represented by the task instructing volunteer to respond in a specific way. It  is then

conceivable,  that  activity  of  the  brain  areas  typically  highlighted  in  working  memory

research  (assumed  to  process  information  retrospectively)  can  also  represent  the

prospective processes, such as preparing an effector for an upcoming answer. Yet, to our

best knowledge, to date none of neuroimaging works addressed this particular problem.

Here, we scrutinized the potential relation between retrospective memory and prospective

motor  preparation  processes,  by  asking  whether  in  a  spatial  working  memory  task,

memory-related fMRI activity is modulated by the effector used to respond. We expected,

that in a WM task the BOLD signals representing working memory maintenance will be

influenced  by  effector  modality,  potentially  resulting  in  different  amplitude  of  signal  in
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Figure 4.1. Timelines of example working memory task (M2ST) and control task (CT) trials. Each
trial started with a color cue and an icon symbolizing the current task and response modality,
respectively. After displaying a memory or a control cue the delay began, after which the test set
appeared. A green “go” cue indicated response onsets. Please note that the visual mask screens
were removed from the timeline for clarity. See text for further details.



respective areas due to  them representing different  levels  of  congruency between the

material to be memorized and the effector. Specifically, we expected the  hand effector to

have impact on activity in parietal areas, demonstrated to carry prospective information for

manual actions in visuospatial planning tasks (see e.g. Lindner et al., 2010) as well as

retrospective visuospatial working memory content (see e.g. Pisella et al., 2004).

RESULTS

Experimental tasks

Our experiment  was comprised of  two basic  paradigms: a working memory,  match-to-

sample task (M2ST) and a control task (CT). The first one was a classical working memory

paradigm with delayed response, where subjects were required to remember a pattern of

circles on the screen and then after a delay indicate whether the pattern has changed or

not (“same” vs. “different”). Crucially, we instructed the subjects before each trial to answer

either  manually  (by button pressing)  or  verbally  (compare:  Figure 4.1;  see “Study 3 –

materials and methods” for details) to manipulate effector-specific processes. The choice

of such spatial  memory task additionally allowed us to avoid sequential  item ordering,

which could lead to different strategies of encoding and recall. In the control task (CT) we

manipulated a similar effector instruction, but the subjects’ role was simply to judge the

visual symmetry of circles presented on the screen (“symmetric” vs. “asymmetric”). This

allowed us to assess activity related to task-unspecific preparation of an effector (Snyder

et  al.,  2006).  Thirteen  volunteers  took  part  in  the  experiment.  All  of  them were  right

handed, had no history of neurological disease and had normal or corrected to normal

vision (see “Study 3 – Materials and methods” for details). All volunteers gave their written

informed consent according to the Declaration of Helsinki prior to the experiment, and the

study  was  approved  by  the  local  ethics  committee.  All  the  behavioral  analyses  were

performed using R (R Foundation for Scientific Computing). All the fMRI analyses were
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performed  using  SPM8  (Wellcome  Center  for  Neuroimaging),  R  and  custom  Matlab

(MathWorks) routines.

Behavioral performance

We  analyzed  the  behavioral  performance  using  a  2x2x2  ANOVA  with  the  factors

“task”x”modality”x”load”. Analyses of hit rates performed across all conditions revealed a

significantly higher accuracy in the control  task as compared to the memory task (see

Figure 4.2; main effect of task: df=12, F=23, p=0.0004, eta2
G=0.075). There was also a

statistical trend suggesting that higher memory load in the M2ST could lead to decreased

task performance (task x load: df=12, F=3.5, p=0.0853, eta2
G=0.016). All other effects were

not significant (load: df=12, F=0.63, p=0.44, eta2
G=0.003; modality: df=12, F=1.1, p=0.32,

eta2
G=0.03; modality x task: df=12, F=0.21, p=0.65, eta2

G=0.003; modality x load:  df=12,

F=0, p=1, eta2
G<0.001; task x load x modality: df=12, F=0.064, p=0.8, eta2

G<0.001).

Whole brain activity

Figure  4.3  shows  a  representative  subject  (A)  and  group-level  maps  (B)  of  activity

increases during the delay phase in the M2ST as compared to CT. The M2ST resulted in

higher activity in a number of fronto-parietal areas typical for working memory and action

planning tasks.  These areas were:  superior  parietal  lobule (SPL),  anterior  intraparietal
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Figure 4.2. Average manual and verbal performance in PPM and DM trials. Error bars denote

standard deviations. Hit rates differed significantly between M2ST and CT, but not between loads

or effector modalities.



sulcus (aIPS), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), dorsolateral

prefrontal cortex (DLFPC) and supplementary motor area (SMA). Moreover, we included

hand (M1h) and mouth (M1m) representations in the left primary motor cortex as control

areas.  All  these  areas  were  treated  as  regions-of-interest  (ROIs)  in  the  subsequent

analyses (see also “Study 3 - Materials and Methods” for further details). 
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Figure 4.3. Areas of working-memory-related activity defined by M2ST>CT delay contrast. A) An

exemplary subject’s MW activity maps. B) Group-level activity maps resulting from a random-

effects analysis in SPM. White lines denote major anatomical landmarks.



Region-of-interest results

From the aforementioned ROIs we extracted group-averaged beta weights which were

then analyzed using 2x2 ANOVA (with factors “Modality” and “Load”) in the M2ST and a

paired t-test in CT (for factor “Modality”). Figure 4.4 shows the mean signal amplitudes in

the delay epoch of the M2ST task. Figure 4.5 depicts the mean BOLD-signal timecourses

extracted from respective ROIs in the M2ST and CT. The analyses of variance performed
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Figure 4.4. BOLD activity in all ROIs during the memory epoch. Blue and green colors  denote
verbal  and manual response modalities,  respectively.  Brighter shades refer to higher  memory
loads. Signal differences between “verbal” and “manual” trials in left SPL and in left aIPS refer to
an influence of prepared hand response. The right SPL and DLFPC show an increased signal
reflecting higher memory loads. See main text for detailed statistics. All values represent averages
calculated across subjects’ mean activity +/- SEM.



on  the  memory-related  signals  for  M2ST  trials  showed,  that  the  modality-dependent

changes in activity were present in the posterior parietal areas SPL and aIPS in the left

hemisphere, with both regions showing higher activity for “hand”, as compared to “mouth”

trials  (SPL:  main  effect  of  “Modality”,  df=12,  F=5.42,  p=0.038,  eta2
G=0.05;  aIPS:  main

effect of “Modality”, df=12, F=5.8, p=0.034, eta2
G=0.03). This effect was not present in the

contralateral counterparts of these areas. Noteworthy, a trend for the same effect was also

present in the left  M1 hand area (df=12, F=4.71, p=0.051, eta2
G=0.06). In addition, we

observed a significantly higher activity for higher WM load in right-hemispheric areas: SPL,

aIPS and DLPFC (SPL, main effect of “Load”, df=12, F=5.99, p=0.031, eta2
G=0.09; aIPS:
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Figure  4.5.  Timecourses  od  BOLD  activity  during  M2ST  trials,  divided  across  response

modalities  and memory loads. Vertical  bars denote onsets of  delay and test  set  epochs. All

values represent averages calculated across subjects’ mean activity +/- SEM.



main effect of “Load”, df=12, F=6.3, p=0.027, eta2
G=0.04; DLPFC: main effect of “Load”,

df=12, F=4.48, p=0.037, eta2
G=0.064). We did not see an effect of “Modality” neither in

M1h nor in M1m. In none of the areas we observed a significant interaction effect between

“load” and “modality”  (TABLE 5.1).  We did not see the effect of “modality”  in any ROI

during the delay phase of the control task (TABLE 5.2, Figure 4.6). 

DISCUSSION

In our study we observed changes in the gross amount of the working-memory-related

BOLD signal in posterior parietal regions being influenced by the effector used for subjects’

subsequent behavioral answer. This effect was not present in the control task, hence is not

merely  attributable to  unspecific effector  preparation.  The major implication from these

results is of practical nature: task-related brain activity in working memory studies may be

affected in the parietal regions by the effector used for providing a response. How is it
– 82 –

Figure 4.6. BOLD activity in all ROIs during the delay epoch of the control task. Yellow and red
colors  denote  verbal  and  manual  response modalities,  respectively.  No differences  between
preparatory signals related to response modalities were observed in any of the ROIs. All values
represent averages calculated across subjects’ mean activity +/- SEM.



possible, however, that the effector influences the working memory representations?

As the effector modality-specific processes were present already during the delay, we can

speculate, that they were specific to the memory maintenance, and not recall processes.

This may also shed a new light on results reported by Emery et al. (2006) who observed a

WM performance deficit in older adults who were required to perform manual responses in

a working memory task, as compared to verbal responses. One could question whether in

that research the apparent deficit was caused by the older adults’ lower ability to use more

complex  manual  response  interfaces  (such  as  button  boxes),  or  to  altered  motor

preparation processes related to such responses. As in our own research we observed

increased brain activity in the areas responsible for manual action planning specifically for

the manual response trials, we can lend support for the latter notion: response preparation

remains tightly linked to the working memory processing. Therefore, the way that parietal

system processes the mnemonic content appears to be influenced by the future use of the

information.  Can  one  determine  however,  that  the  observed  pattern  of  activity  indeed

reflects the prospective processes of the task? The answer may be partially suggested by

previous research from Manelis and Reder, who showed that frontal and parietal areas

activity is modulated by anticipated difficulty in the n-back task (Manelis & Reder, 2015). In

another study, Lindner and colleagues (2010), demonstrated the prospective (preparatory)

role  of  parietal  cortex  in  manual  tasks.  In  that  study,  the  PPC activity,  in  a  task  that

required both prospective and retrospective processing, appeared to be driven mainly by

the preparatory processes, less by retrospective ones. In turn, the dorsolateral prefrontal

cortex activity exhibited involvement in working memory maintenance, regardless of the

prospective components. This confirmed the notion raised by multiple other researchers,

suggesting that prefrontal cortex plays the leading role in organizing the working memory

rehearsal in the other areas (see e.g.: Fuster, 2009; Eriksson et al., 2015; D’Esposito &

Postle,  2015),  with  its  own activity  arranged along a posterior-to-anterior  gradient,  the
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more abstract the level of processing is required (Badre & D’Esposito, 2007). This abstract

processing  remains  in  stark  contrast  to  the  role  of  posterior  regions  (i.e.  the  parietal

cortex), where the WM content appears to be processed in more tight relation to future

actions.  We  ourselves  did  observe  that  memory  load  modulates  the  activity  in  the

dorsolateral prefrontal cortex, suggesting regulatory role of that region. Moreover, the fact

that the load effect was also present in right IPS and SPL indicates that DLPFC might

effectively modulate the function of the parietal regions in order to cope with the increased

memory demand (see: Raabe et al., 2013; compare: Hoeller-Wallscheid et al., 2017).

Potential limitations and future directions

In this experiment we report higher involvement of posterior parietal cortex in representing

spatial  items  in  a  working  memory  task  when  they  sub-serve  the  generation  of  an

upcoming  manual  (rather  than  verbal)  behavioral  response.  The  main  explanatory

limitation of our study lies, apparently, in the congruency between the visuospatial memory

and the manual response modality, as the regions of posterior parietal cortex where we

observed the effect of hand response preparation, are also crucially involved in processing

spatial WM content (Pisella et al., 2004; Hamidi et al., 2008; Lindner et al., 2010). On the

basis of our current data we can not predict whether a similar pattern of parietal activity

increase like the one reported here for  manual  responses could be observed also for

different memory modalities, e.g. verbal content. It appears possible, that the patterns of

activity could then shift towards areas representing the response effector more congruent

with the memory content,  such as Broca area for verbal  items.  To scrutinize the links

between working memory and response preparation in other content modalities than the

ones presented here, more research is necessary. 

Our results suggested, that the BOLD activity underlying working memory tasks is affected

by the way a task-response is given. This effect was prominent in posterior parietal cortex,

repeatedly demonstrated to be involved in prospective processing of actions. Whether the
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parietal cortex is bridging retrospectively processed mnemonic content with its future use,

and how exactly parietal function is modulated by inputs coming from the frontal cortex,

remains to be answered. The influence of a motor-preparatory component on the activity

traditionally attributed to working memory maintenance sheds a new light on the actual

structure of the working memory network and its links to other brain systems engaged in

goal-directed  actions,  yet  portrays  the  working  memory  as  the  key  pivot  bridging  the

sensory past with the motor future.
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Table 5.1

ANOVA results for mean delay-related betas extracted from each individual ROI, comparing “modality” and 

“load” main effects and their interactions in the match-to-sample task (M2ST).
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ROI Effect DFn DFd F p p<.05 ges

SPL l

load 1 12 3.35 0.092 0.05
modality 1 12 5.42 0.038 * 0.05
load:modality 1 12 0.36 0.561 0.00

SPL r

load 1 12 5.9876 0.031 * 0.09
modality 1 12 2.4913 0.14 0.02
load:modality 1 12 0.0042 0.949 0.00

PMd l

load 1 12 1.11 0.31 0.02
modality 1 12 3.12 0.1 0.05
load:modality 1 12 0.62 0.45 0.00

PMd r

load 1 12 0.24 0.632 0.00
modality 1 12 4.71 0.051 0.06
load:modality 1 12 0.29 0.6 0.00

M1h l

load 1 12 1.7 0.22 0.02
modality 1 12 1.2 0.3 0.02
load:modality 1 12 1 0.33 0.01

DLPFC l

load 1 12 5.48 0.037 * 0.06
modality 1 12 0.95 0.348 0.02
load:modality 1 12 0.56 0.47 0.00

DLPFC r
load 1 12 1.11 0.313 0.01
modality 1 12 0.61 0.451 0.00
load:modality 1 12 3.76 0.076 0.02

SMA

load 1 12 1.11 0.313 0.0085
modality 1 12 0.61 0.451 0.0048
load:modality 1 12 3.76 0.076 0.0168

antIPS l
load 1 12 1.8 0.206 0.01
modality 1 12 5.8 0.034 * 0.04
load:modality 1 12 2.2 0.167 0.01

antIPS r

load 1 12 6.3 0.027 * 0.04
modality 1 12 3.2 0.098 0.01
load:modality 1 12 3.7 0.078 0.01

PMv l
load 1 12 1.2 0.3 0.01
modality 1 12 1.7 0.22 0.01
load:modality 1 12 2.6 0.13 0.01

PMv r

load 1 12 3.168 0.1 0.03
modality 1 12 0.018 0.9 0.00
load:modality 1 12 0.365 0.56 0.00

M1m
load 1 12 0.24 0.63 0.0031
modality 1 12 0.64 0.44 0.0122
load:modality 1 12 1.33 0.27 0.0036



Table 5.2

T-test results for each individual ROI, comparing mean delay-related betas for “hand” and “verbal” modalities 

in individual ROIs in the control task (CT).
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ROI df t p

SPL l 12 -0.071 0.945

SPL r 12 0.612 0.552

PMd l 12 -0.277 0.786

PMd r 12 0.858 0.407

M1h l 12 1.017 0.329

DLPFC l 12 -0.204 0.841

DLPFC r 12 0.103 0.920

SMA 12 0.714 0.489

antIPS l 12 0.661 0.521

antIPS r 12 1.551 0.147

PMv l 12 -0.150 0.883

PMv r 12 0.267 0.794

M1m l 12 1.297 0.219



General Discussion: Intentions embodied

Parieto-frontal stream for processing intentions

In the three studies described in the previous chapters I demonstrated different processes

that bind action intentions to the motor outcome. In the first experiment I outlined the role

for visual simulation of the movement consequences and the relationship between this

simulation  and  the  respective  motor  programs.  My  findings  suggests  that  the

representations  of  visual  action  consequences  are  embedded  in  the  early  stage  of

planning activity, and that these early representations are present both in parietal and in

dorsal  premotor  cortex.  The parietal  cortex seemed to be,  however,  more prominently

engaged  in  representing  sensory  action  consequences  than  its  premotor  counterpart.

Next, I showed that action plans differ between parietal and frontal motor control areas

with respect  to  reach planning strategies.  Importantly,  I  uncovered that  while  posterior

parietal  cortex  holds  vector-based,  simple  reach  plans,  premotor  cortex  is  capable  of

representing reaches following complex paths. Apparently, the latter capability allows for

sophisticated  hand  movements,  extending  beyond  simple,  reflex-like  ones.  In  the  last

study, I  was able to demonstrate the role  of  parietal  areas in  translating retrospective

mnemonic information into a future-oriented motor plan. In particular, I showed, that brain

activity putatively reflecting mnemonic rehearsal in the parietal areas is influenced by the

effector that will be used for responding in the working memory task. This finding suggests,

that the intentional aspect modulates all levels of cognitive processing.

Taken together, these three studies demonstrate that posterior parietal cortex represents

various prospective aspects related to upcoming actions, ranging from representing the

expected  actions’ consequences  to  maintaining  the  mnemonic  content  in  an  effector-

optimized form. Interestingly, the representation of the visual consequences of an action

seems to be duplicated across PPC and PMd which raises a further question about the

mechanisms underlying this redundancy. This gets at least partially answer in Study 1,
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showing,  that  PPC and PMd show dramatically  different  representations  of  goals  and

actions leading to them, whenever the two become detached. Posterior parietal  cortex

represents  the action’s  target,  while  the  premotor  cortex  seems then to  represent  the

actual  plan  of  movement  that  will  be  executed.  This  corroborates  suggestions  from

numerous  previous  studies  on  motor  planning,  demonstrating  that  the  frontal  motor

planning areas do represent more physical aspects of an action, while the parietal cortex

contains  a  more  abstract,  idealized  representation  of  goals  and  intentions.  It  seems

therefore that the path between perception and action is composed of complex, multi-level

transformations, functionally distributed across the parietal and frontal motor areas. Based

on the empirical findings, we can dare to delineate a general view on this cascade of

information  flow,  where  the  initial  intention,  building  upon  visuospatial  information,  is

prospectively defined in posterior parietal cortex (as shown in Study 1). This intention can

be subject to modulation by the current state of the body, such as presence of tools that

may  extend  the  reach  range  (Maravita  and  Iriki,  2004),  or  the  current  motor  context

(Westendorff  et  al.,  2010)  that  may  change  the  sensory  outcome  of  a  given  motor
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Figure  5.1.  Suggested  functional  division  and  hypothetical  scheme  of  primary
information flow between PPC, PM and DLPFC, based on three experiments described
in previous chapters.



program, such as turning the steering wheel leads to different  outcome while driving a car

forward vs. in reverse. On the basis of expected outcomes, the final action plan has to be

first selected from among the range of viable alternatives (c.f. Cisek, 2007; Lindner, 2008

or Gallivan, 2017) and only then the selected plan is translated into appropriate motor

commands. Representing alternative action plans appears to be the basis for ensuring

flexibility of behavior in response to varying environmental demands and allows for mental

evaluation of a plan before trying it out. The ability to mentally represent intentions prior to

realizing them seems to be a pivotal  property of  the human motor system. It  ensures

choosing  optimal  action  plans,  allows  for  manipulating  physical  objects  within  one’s

imagination and, furthermore, the use of tools extending the set of available actions. We

-90- 

Figure 5.2 Representative forms of visual art of Homo sapiens. (Upper- and middle left):
rock paintings dated ca.  5000-3000 BC near Hassi  Laouinate,  Western Sahara.  (Upper
right): A horse painting from Lascaux Cave, ca. 17000 BC, France. Photo: public domain.
(Lower  left):  a  carving  depicting  an  antelope  (dating  unknown)  near  Smara,  Western
Sahara.  (Lower  right):  Michaelangelo’s  La  Pietà,  Vatican  City,  Rome.  Photo:  Stanislav
Traykov, Wikimedia Commons.



can suspect that although such ability is not unique to our own species, its impact on the

human mind extends far beyond the domain of motor control. I will conclude this work by

drafting a slightly provocative hypothesis on how did the neural architecture of the human

motor system lay the groundwork for the modern human mind.

Making ideas come true – the evolution of actions, the evolution of mind 

I  will  start this last  part of my thesis by noting that we, humans, are the only species

capable  of  creating  art  representing  external  objects.  Even  our  closest  cousins  –

chimpanzees can, at best, splash and smear paint on the canvas, without being able to

give it any aesthetic form. Any anecdotal reports about elephant “paintings” remain just an

effect of brutally enforced reflexes, without the elephant conceptualizing the overall picture

it is supposed to “paint”, but rather trying to avoid punishment administered by its captors

(English et al., 2014). All other frequently called forms of “animal art”, such as bowerbird

courtship rituals, especially its amazing skills in ornamenting nests, remain an example of

stereotyped behavior. Even if one argues for a creative element in these behaviors, such

creativity is limited to fluctuations modifying the basic form, making it bigger or fancier,

rather than aimed at any kind of original creation, completely distinct from the exemplar. In

brief: no other species than humans possesses the ability to create art, especially in its

visual,  figurative  forms.  Now,  could  this  uniquely  human  trait  build  on  the  ability  to

reproduce the contents of  imagination,  as offered by our  motor  system? According  to

Mithen’s  (1994;  1996)  theory  of  cognitive  evolution,  the  minds  of  our  early  human

ancestors were composed of several independent modules, evolving at relatively different

paces in different hominin species. Therefore, the archaic humans, such as Neanderthals,

may had possessed a “swiss-knife” of mind, where the modules performed each their own

functions with limited transfer between them. Mithen uses a metaphor of a chapel with all

aisles  tightly  separated with  walls.  Although the  Neanderthal  mind was possibly  more

oriented towards visuospatial operations (Gregory et al., 2017), it lacked extended social
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capacities, which is considered the leading cause that influenced the easiness by which

Chatelperronian (late Neanderthal) culture was subdued by the spreading Homo sapiens.

But what was the basis for this alleged the social inferiority of Neanderthals responsible for

their eventual demise in confrontation with much more numerous and advanced cousins?

As it has been speculated (Bettinger, 1991; Harari, 2011), the ability of Homo sapiens to

form  large  social  groups  has  been  mediated  by  our  ability  to  employ  symbols  and

ideologies,  for  which  the  works  of  art  are  a  mean  of  expression.  As  Mithen  further

hypothesises, the evolutionary leap of our own species has taken place thanks to the

emergence of language, which broke through the metaphoric walls of the primitive mind’s

chapel  and  allowed  conceptually  linking  the  information  stored  in  the  –  previously

separated – modules of the mind (Mithen, 1994; 1996; see also: Arbib, 2005; 2009). On

the other hand, several hints suggest that early forms of symbolic thinking and language

were already present in pre-Neanderthal hominins, such as Homo naledi (de Waal, 2015)

and other varieties of Homo erectus, whose endeavours like ocean sailing imply that they

needed to possess primitive language for coordinated group actions (Everett, 2017; 2018).

Interestingly,  the  ability  to  use  tools  has  been  suggested  to  underlie  development  of

symbolic  thinking,  as  tools  can  be  processed  as  early  precursor  of  symbols  –  forms

evoking semantic associations (i.e. affordances), yet physically distinct from their direct

purpose  (Everett,  2017).  No  matter  when  exactly  did  hominins  develop  the  ability  to

express the symbols and communicate them, such communication could develop only

thanks  to  the  appropriate  means  of  expressing  symbols  and  ideas.  While  speech  is

certainly a key prerequisite, it allows only for communication within groups of limited size,

where personal interactions are possible and frequent. Where this is not the case (for

example in large, sparse or nomadic populations), or where oral communication does not

allow for  expressing more complex  ideas like religious/mystic  symbols,  other  forms of

expressions are needed.  These are visual  arts and – more recently -  writing,  the two

byproducts  of  motor  system’s  ability  to  shape  the  environment  according  to  a  pre-
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visualised intention (see Study 1). Both have enabled humans to universally communicate

rules, myths, beliefs and stories, the key components of the human culture. It appears that

these forms of expression draw heavily from the existing brain wiring allowing for manual

actions. Apparently, the process of visualising an action plan and moving a hand in order

to match it, made a good basis for skills like painting or toolmaking, and on this basis even

much more sophisticated processes could build. The areas of human posterior parietal

cortex responsible for combining representations from different sensori-motor domains,

allowed for creating completely novel visual forms or combining old ones (Wynn, Coolidge

and Bright, 2009). It is conceivable, and has been repeatedly suggested (see e.g. Wynn,

Coolidge and Bright 2009), that object representations in parietal areas are modulated by

prefrontal  abstract-thinking functions with such modulations allowing further to attribute

meanings  to  objects  and  recombine  them in  novel  ways.  This  possibility  is  reflected

already in the earliest examples of human art, with notable example of the Löwenmensch,

a  prehistoric  figurine  combining  both  human and animal-like  properties.  Such unusual

combination  of  visual  forms  indicates  that  imagination  and  abstract  thinking  of  the

prehistoric sculptor had to enable them to mentally combine the body of an animal with

that of a man in order to create the hybrid form, possibly symbolizing some mysterious

belief. This differs from merely representing external objects and shows that the creator

combined their available imaginations of a lion and a man to give them a new, abstract

meaning.  History  of  writing  reflects  a  similar  process  in  which  pictorial  forms  were

gradually replaced by more abstract ones, allowing texts to contain abstract and complex

concepts. These examples clearly demonstrate that human expression of ideas crucially

depends on symbolic and abstract thinking. But, in addition, we learn that the cognitive

ability to represent ideas and concepts would be nearly useless if there were no means of

expressing them. There would be no Venus of Hohle Fels if  its unknown sculptor was

unable  to  envision  what  he  was  to  carve,  and,  conversely,  there  would  be  no  cave

paintings of Lascaux without the elaborate neural machinery that allowed the painter to
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skillfully  move  the  hand  in  order  to  reproduce  the  content  of  their  imagination.  The

uniquely human forms of artistic expression built upon how the motor system evolved and

how it allows us to transfer the visualized intentions into the physical world, be it through

reaching for an apple or painting a horse on a cave wall. This ability to materialize the

content  of  imagination  has  gradually  evolved  from  creating  very  simple  forms  to

astonishingly complex ones, from the primitive rock carvings to La Pieta. Apparently, to a

large extent we owe this progression to the organisation of the primate motor system.

Thanks to the way this complex neural machinery has evolved, we possess a stable basis

for the crucial trait that made us, humans, so unique: the ability to express, share and

immortalize ideas.
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APPENDIX 

Study 1 – materials and methods

Subjects. 14 healthy subjects (8 females) participated in the study. All of them had normal

or  corrected to  normal  vision.  All  except  one subject  were right-handed.  The subjects

provided informed consent in accordance with the Declaration of Helsinki  and with the

guidelines of the local ethical committee, and were reimbursed for their participation. Two

of  the  subjects  were  excluded  from  the  final  sample  (see  “Behavioral  performance

analysis” for details).

General task design. To study planning-related brain activity we conducted a functional

magnetic resonance imaging (fMRI) study, in which human subjects performed an action

planning experiment  (Figure 2.1).  During this  experiment  subjects needed to  plan and

execute “virtual reaches” by moving a button-controlled cursor on a response-grid. In half

of the trials, subjects carried out a delayed response task (Rosenbaum, 1980): they were

instructed to remember a target location presented during the initial cue epoch and plan a

movement towards it. Then, after an intervening delay epoch during which the target was

no longer present, they had to execute the pre-planned movement during a movement

epoch. In these trials, it was necessary to plan a movement prior to the movement epoch,

hence we named this task “pre-planned movement task” (PPM). In the other half of the

trials, subjects were told to ignore the initial cue and instead to wait until the movement

epoch of that trial. Then they had to move the cursor to a new, visually instructed target

location,  randomly  placed  on  the  response  grid.  The  latter  task  was  named  “direct

movement task” (DM) and differed from the PPM in that both movement planning and

execution took place directly during the movement epoch. Contrasting both types of trials

allowed us to access brain processes related to  movement planning.  First,  comparing

delay-related  brain  activity  in  PPM vs.  DM should  allow one to  isolate  activity  due to

movement  pre-planning  in  PPM  (Rosenbaum,  1980;  Lindner  et  al.,  2010).  Second,

contrasting the estimates of brain activity during the movement epoch for DM vs. PPM
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should  exhibit  activity  related  to  initial,  fast  planning  processes  that  still  need  to  be

accomplished in DM but that are already completed in PPM (c.f. Ames et al., 2014). 

To further address whether any of the planning activity revealed would reflect the desired

visual properties of a planned movement independent from the motor components of that

movement, we additionally manipulated the visual movement gain of the cursor in both

tasks. This meant that after each single button press, the cursor could perform either a

"small  step"  (i.e.  jump  to  the  next  intersection  of  the  response  grid)  or  a  "big  step"

movement (i.e. jump to the next, and then to the second-next intersection). Targets were

positioned in such a way that they required sequences of 1, 2 or 4 button presses to be

reached, in each of the “gain” conditions. By changing the movement gain ("big" or "small"

step)  for  each given movement  sequence length,  we could  keep a  sequence's  motor

demands  constant  while  at  the  same  time  vary  its  visual  consequences  (the  visual

distance of the movement). This was meant to allow us capturing planning activity that

would specifically co-vary with the amount of upcoming visual motion. Since the number of

trials with each sequence length was balanced, the only difference between the "big" and

"small  step”  conditions  in  each  task  was  the  amount  of  visual  motion  the  sequences

produced.

Information about which movement gain was actually applied in a given trial was

shown to participants during the cue epoch of the trial (see Figure 2.1) and they needed to

incorporate this information into their motor plan in order to perform accurately within the

time limit of the movement epoch. For every participant, color cues indicating conditions

were the same. 

Using our approach we expected to reveal a representation of the upcoming motor

sequence  during  movement  planning  in  PPM,  a  representation  that  we  have  already

described previously for both PPC and PMd (Lindner et al., 2010). Areas that would exhibit

such a prospective representation of the motor plan (and hence not just a retrospective

memory of the target) were considered in a subsequent region of interest (ROI) analysis
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(see below), in order to reveal whether their planning activity contains information about

the  visual consequences of an upcoming movement (i.e., it should represent the “visual

way to the goal” in addition to the motor sequence). Previous fMRI findings revealed,  the

amplitude of the blood oxygenation level dependent (BOLD) signal correlates positively

with  the  amount  of  (anticipated)  visual  motion  (Lindner  et  al.,  2006).  Therefore  we

hypothesized that if the visual consequences of a planned movement are indeed defined

in PPC or PMd, the brain activity in these areas should reflect these visual aspects of the

movement.  Specifically,  the  "big-step"  motor  sequences  should  on  average  produce

stronger planning-related BOLD signals as compared to the "small-step" sequences, due

to an overall larger amount of expected visual motion.

Stimulus  presentation. Stimuli  were  presented  using  Cogent  Graphics  Toolbox

(Laboratory  of  Neurobiology  at  the  Wellcome  Department  of  Imaging  Neuroscience

London, UK) running on a WindowsTM -based PC and delivered to the subject using a LCD

projector (1024x768 pixels, 60Hz refresh rate), a translucent screen and a set of mirrors

attached to the head coil of the MRI scanner.

Each trial started with a baseline epoch (13500, 15000 or 16500ms), which required the

subject to fixate their  gaze upon the centrally positioned fixation cross (1.1 deg visual

angle). The fixation cross remained visible for the whole time course of a trial and subjects

were  instructed  to  fixate  it  at  all  times.  This  should  help  us  to  avoid,  potentially

confounding, eye-movement related brain activity. After the baseline epoch ended, the cue

screen was presented for  a  fixed time of  1000 ms.  The cue screen consisted  of  the

movement space grid (9x9 squares, see Figure 3,1; size of each square was approx. 1.7

deg) and an empty square representing target  location (approx. 1.7 deg).  The fixation

cross was replaced by a color cue, that indicated both the movement gain (“big-step” vs.

“small-step” movement) and the task (PPM or DM). Subsequently the scene was masked

for 1000ms to prevent afterimages of the visual targets and then the delay epoch began.

The delay epoch was of variable length (4500, 6000 and 7500ms). These delay times
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chosen were much shorter than those used in previous studies of our group (e.g. compare

Lindner et al., 2010). We did this to reduce subjects ability to use retrospective mnemonic

strategies and from engaging in task-unrelated cognitive activities (such as any sort of

mind-wandering) during the delay epoch. Subsequently, the response grid was presented,

and subjects were supposed to execute the movement to the remembered target location

in  case  of  PPM  or  to  a  filled  square  (1.1  deg),  indicating  the  actual  target  in  DM.

Specifically, subjects used a response pad (see Figure 2.1) held in their right hand in order

to  move  a  button-controlled  square  cursor  to  the  designated  target  area.  The  cursor

moved in the direction that corresponded to the button pressed (either left, right, up or

down),  skipping between intersections along the vertical  or horizontal  lines of the grid,

respectively. Depending on the movement gain, a single press of the button could either

lead  to  a  “small-step”  movement  of  the  cursor  (so  that  the  cursor  moved  from  one

intersection on the grid to the next) or a “big-step” (in this case the cursor jumped twice in

the same direction, with a 100ms time delay between successive cursor steps). Time for

completing the motor response was limited to 3000ms. After the time limit was reached,

the  screen was  masked  again,  and the  next  trial  began  after  an  inter-trial  interval  of

2000ms.

Subjects  practiced  the  task  before  scanning  until  they  reported  satisfactory

performance. During scanning subjects performed 36 trials for each of our four conditions

in total. These trials were acquired during three experimental blocks, each consisting of 48

trials. The conditions were randomized within a block.

Oculomotor behavioral  control.  Eye movements were monitored at 50Hz sampling rate

with  an  infrared  operated,  MR-compatible  eye  tracking  camera  (SensoMotoric

Instruments)  and  the  ViewPoint  software  (Arrington  Research).  All  eye  movement

analyses were performed off-line using custom routines written in Matlab (MathWorks). In

brief, eye position samples were filtered using a second-order 10 Hz digital low-pass filter.

Saccades were detected using an absolute velocity threshold (20 degrees per second).
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Since our experiment required subjects to maintain fixation on the central fixation

point,  we excluded 2 of our 14 participants who did not comply to this instruction and

frequently performed large saccades (amplitude > 3 degrees visual angle away from the

fixation point in more than 20% of the trials). In both excluded subjects, this behavior was

equal to gaze shifts towards the target location in the cue epoch, or towards the moving

cursor during the movement epoch of a trial, or towards both.

Manual performance analysis.  Manual  performance was assessed in terms of hit  rate,

movement durations and reaction times. Those trials were classified as hits, in which the

cursor was positioned over the correct target location at the end of the movement epoch.

Movement duration captured the time from the first button press until the cursor reached

its  final  position.  Reaction time was defined as the  interval  between the  onset  of  the

movement epoch and the time at which the first button in a sequence was pressed. 

All behavioral data were analyzed statistically using 2x2 repeated measures ANOVA with

factors “task” and “movement gain”.

fMRI acquisition and SPM analysis. MRI images were acquired on a 3T Siemens TRIO

scanner  using  a  twelve-channel  head  coil  (Siemens,  Ellwangen,  Germany).  For  each

subject,  we  obtained  a  T1-weighted  magnetization-prepared  rapid-acquisition  gradient

echo (MPRAGE) anatomical scan of the whole brain (176 slices, slice thickness: 1 mm,

gap: 0 mm, in-plane voxel size: 1 x 1 mm, repetition time: 2300 ms, echo time: 2.92 ms,

field  of  view:  256 x256,  resolution:  256 x 256)  as well  as T2*-weighted gradient-echo

planar imaging scans (EPI): slice thickness: 3.2 mm + 0.8 mm gap; in-plane voxel size: 3 x

3 mm; repetition time: 2000 ms; echo time: 30 ms; flip angle: 90°; field of view: 192 x 192

mm;  resolution:  64  x  64  voxels;  32  axial  slices.  Overall,  we  obtained  2100  EPIs  per

subject, which were collected during the three consecutive runs of about 20 min length

each.  A single  EPI  volume  completely  covered  the  cerebral  cortex  as  well  as  most

subcortical structures. Only the most inferior aspects of the cerebellum were not covered

in several of our subjects.
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Functional  data were analyzed using SPM8  (Wellcome Department of  Cognitive

Neurology, London, UK). In every subject, functional images were spatially aligned to the

first volume in a series, and then coregistered to the T1 image.   After that, a non-linear

normalization  of  the  structural  image to  a  T1  template  in  MNI  space  was performed.

Parameters obtained with this normalization were then applied to all functional images. In

the  last  step  of  data  preprocessing,  we  smoothened  all  the  functional  images  with  a

Gaussian filter of 8 mm x 8 mm x 8 mm FWHM.

In subject-specific fMRI analyses we specified two general linear models for each

individual. The first model included all the four conditions (“task” x “movement gain”) and

for  each condition  we modeled trial  epochs (cue+mask,  delay,  response)  as  separate

regressors.  Cue  was  modeled  as  a  single  regressor,  regardless  of  the  condition.

Sequence  length  was  modeled  as  a  linear  parametric  modulator,  thus  capturing  any

relative difference in  BOLD-signal  amplitudes related to  the number of  button presses

required to reach targets at different distances. This parametric modulator was included

separately  for  all  conditions  and  for  both  delay  and  movement  epoch.  Head  motion

parameters were included in the model as six independent regressors (x, y, z translation

and  x,  y,  z  rotation).  Inter-trial  intervals,  as  well  as  fixation  epochs  weren't  modeled

explicitly and thus served as an implicit baseline. 

The second GLM was constructed in order to obtain reliable cue-related betas for

each of the experimental conditions (see “results”). To this end we modeled cue epoch the

same  way  as  other  epoch  regressors,  namely  defining  “task”  and  “movement  gain”

separately. The other regressors we modeled as described above.

ROI  analysis.  For  each  subject  we  identified  a  set  of  regions  that  contribute  to  the

prospective planning of motor sequences (Figure 2.2). We decided   for this region-of-

interest (ROI) approach in order to avoid inter-individual variation in functional anatomy

and specifically look at planning related activity in the relevant areas. Towards this end we

first  calculated  the  statistical  parametric  map capturing  areas  that  show  a  parametric
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modulation  of  their  BOLD  activity by  the  planned  number  of  button  presses  (motor

sequence length) during the delay epoch of “pre-planning” trials in each individual. Based

on coordinates of movement sequence planning regions that were described by Lindner et

al. (2010), we selected our ROIs by looking for areas showing a statistically significant

linear increase in BOLD intensity during the delay phase of PPM trials within a search

radius of 20mm around the respective coordinates (p<0.05, FWE-corrected for multiple

comparisons within the search volume). These areas were: left and right superior parietal

lobule (SPL), left and right dorsal premotor cortex (PMd) and anterior intraparietal sulcus

(aIPS). Since for the left aIPS we were only able to identify these areas in 9 out of 12

subjects, we applied a more liberal threshold (p<0.001 uncorrected) in the remaining 3

subjects to provide a more representative sample. In addition to these planning ROIs we

included several control  ROIs: (i)  The hand representation in the left  and right primary

motor  cortex (M1) was identified based on anatomical  criteria  (Yousry et  al.,  1997)  to

control  for  motor  response-related  activity  and for  effector  preparation.(ii)  DLPFC was

mapped according to the same criteria as described for our planning ROIS. As for aIPS, a

more liberal threshold (p<0.001 uncorrected) was applied in three subjects. In only one

subject we were not able to reliably localize DLPFC using the latter criterion. Data from

that subject's DLPFC were therefore extracted using group-based coordinates. (iii) Finally,

we additionally included area V1 as a control ROI in order to capture activity reflecting

visual input stemming from the target cue or the cursor movement. We we are not aware

of any findings showing its specific engagement in reach planning.

As  our  functional  ROI  definition  did  not  differentiate  between  “movement  gain”

conditions  (i.e.  maps  were  calculated  for  both  “small-step”  and  “big-step”  movements

taken together), the ROI selection was not biased in favor of our hypothesis (i.e. stronger

planning activity in “big-step” conditions). In the next step, for each of our ROIs and in

each of our subjects, we extracted the normalized mean beta weights of our main GLM

regressors from a 3mm radius sphere created around the ROIs center coordinate, each
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single ROI  consisting of  7  voxels  in  total.  The extracted betas of  the  first  GLM were

analyzed  separately  for  the  delay  and  the  movement  epoch  using  a  2x2  repeated

measures ANOVA with the factors "task" and "movement gain". The GLM was analyzed

using the added additional factor (“epoch”) in a 2x2x2 repeated measures ANOVA.
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Study 2 – materials and methods

Participants 

Twelve healthy, right-handed participants (11 females) in the age range of 20-32 years

(mean age 25 years), participated in Experiment 1. Seven healthy, right-handed volunteers

(6 females, age range 20-31 years, mean age 25 years) took part in Experiment 2. Out of

these, five subjects had also participated in Experiment 1 (two of them had completed

Experiment  2  first).  The  over-representation  of  female  subjects  in  both  experiments

resulted  from spatial  constraints  given  our  setup  (especially  touchscreen  size  and  its

position, see Figure 3.1A), which required particularly slim subjects. 

The number of participants was guided by a power analysis (power=0.80; alpha=0.05) that

was  informed  by  the  descriptive  statistics  of  a  timecourse  analysis  on  a  previously

published,  similar  fMRI dataset.  In that study,  planning activity  varied as a function of

movement sequence length (Lindner et al. 2010)  . For the power analysis we considered

the within-subject activity difference during the late delay period (last 4 sec) in left PMd,

namely  for  a  delayed  response  task  that  required  the  planning  of  a  less  complex  (2

targets) vs. a more complex (4 targets) movement sequence. This analysis suggested a

sample size of 11 subjects (two-tailed tests). For Experiment 2 we relaxed this criterion

(one-tailed tests), as we had a directional hypothesis (the stronger the activity the more

complex trajectory planning). Note that here we measured each experimental condition 20

times per individual, while the study that informed our power analyses only comprised of 9

repetitions per condition.

MR-compatible reach setup

We realized our experiments in a custom made MRI-compatible virtual reality reach setup,

in which we could record 2D movements of subjects’ right index finger and could provide

subjects a virtual visual representation of their finger on a stimulus screen (see Figure

3.1A). Specifically, visual stimuli were projected via an LCD projector onto a translucent
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screen,  mounted directly  behind the head coil  of  the scanner  (1024x768 pixels;  60Hz

refresh rate). Subjects viewed the stimulus screen via a mirror, positioned in front of the

participant. Viewing distance was approximately 82cm and roughly matched the distance

from participants’ eyes to the touchscreen. To track subjects’ finger movements we used a

MRI-compatible motion capture system, utilizing a resistive touchscreen panel from MAG

(www.magconcept.com), mounted on a plastic board. This touchscreen-board was placed

on  top  of  a  plastic  rack  onto  which  the  stimulus-mirror,  a  camera  for  eye  movement

recordings  and  the  display  screen  were  mounted  in  addition.  Limited  by  the  spatial

constraints  of  the  scanner  environment,  we  always  tried  to  approximate  a  parallel

alignment  between the  touchscreen and the  display  to  guarantee approximate  spatio-

temporal correspondence between measured finger position and visual feedback thereof.

Subjects were positioned with their head tilted forward inside the scanner head coil, so

that they could directly look towards their pointing finger. Ultimately, direct vision of the

hand was blocked by both the mirror and additional masks and subjects had to rely on the

virtual visual feedback about their finger position instead. All reaches were performed in

darkness and the  only  visual  information provided was the  one projected through the

display system.  In order to minimize potential disturbances of the magnetic field by hand

and arm movements we stabilized each subject's  arm, elbow and shoulder  with  foam

cushions and adhesive tape, so that only wrist and finger movements were made possible.

To minimize movement friction we had subjects wear a cotton glove on their reaching

hand. 

Each of our experiments was preceded by a training session during which the subjects

familiarized themselves with the tasks demands. All subjects were additionally required to

practice the experiment for a minimum of 10 minutes inside the scanner once the MRI

setup had been completed.

Eye recordings 

Eye  fixation  was  monitored  at  50Hz  sampling  rate  with  an  MR-compatible  combined
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camera and infra-red illumination system (MRC Systems) using the ViewPoint software

(Arrington  Research).  Due  to  technical  difficulties  of  recording  eye  movements  in  the

experimental environment (extensive video capture noise, too long setup time) we were

only  able  to  perform  systematic  eye-recording  analyses  in  10  out  of  12  subjects  in

Experiment 1 and in 5 out of 7 subjects in Experiment 2. All eye movement analyses were

performed  off-line  using  custom routines  written  in  Matlab  (MathWorks).  In  brief,  eye

position samples were filtered using a second-order 10Hz digital low-pass filter. Saccades

were detected using an absolute velocity threshold (20 degrees per second), and blinks

were defined as gaps in the eye position records caused by eyelid closure. Time periods

with  blinks  were  excluded  from  subsequent  analysis.  We  instructed  the  subjects  to

continuously fixate on the central spot. While our subjects fulfilled this requirement in the

majority of trials, we still assessed the frequency of residual saccades (amplitudes ≥ 1 deg

visual angle) on a trial by trial basis and compared saccade frequencies in the CUE and in

the  DELAY  epoch  across  conditions  to  control  for  potential  eye  movement-related

confounds.

Experiment 1 

The detailed paradigms of Experiment 1 are depicted in Figure 3.1B. Each trial started

with a 15s/16s fixation period (FIXATE), during which subjects were instructed to fixate a

centrally positioned fixation cross. In addition, subjects were required to perform “finger

fixation” by placing their right index finger on a tactile cue on the touchscreen. This tactile

cue also defined the starting position for reaching and it would corresponded to a location

at the topmost position between the circles marking the reaching space. Eye blinks were

allowed though discouraged during this  period.  Next,  a CUE screen appeared for  1.5

seconds,  indicating  the  experimental  condition  (a red  central  cue indicating  CT and a

green cue indicating DRT), a target location, reach direction (an arrow indicating clockwise

or counterclockwise direction), eye and finger fixation points and instructed reach space

boundaries (compare Fig. 3.1B). Both the starting location and all targets were positioned
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at  a  constant  radius  of  about  3deg  visual  angle  from  the  fixation  point.  We  used  a

predefined set of  four target  locations, placed in the upper-portion of the reach space

either at 10 o’clock (-60°), 10.30 o’clock (-40°), 1.30 o’clock (+40°) or 2 o’clock (+60°).

Note that the starting position corresponds to 0° (12 o’clock). This way, by manipulating

reach  direction  and  target  location,  we  could  alter  the  movement  trajectory,  without

affecting target eccentricity and, accordingly, the hand-target difference vector. In the DRT

condition subjects were required to remember the target location and to plan a movement

to it according to the arrow cue. Subjects were told to ignore target and arrow cues in the

CT condition, as the relevant cues would be delivered only later in the REACH phase. In

both conditions subjects were asked to maintain fixation and avoid blinking during this

CUE period.  Next,  we  presented  an  image  for  500ms,  which  was  made up  of  (400)

randomly positioned, black and white circles approximately the size of the cursor, to mask

any after-images of  the cues (not  shown in  Fig.  3.1B).  This  mask was followed by  a

DELAY period lasting 15s-16s. During the DELAY subjects were instructed to keep fixation

and, again,  blinking was allowed though discouraged during that  period.  Note that we

assume that correlates of goal-directed movement planning should be present during this

phase in DRT but not in CT. Finally, the response screen appeared for 3s signaling the

REACH phase. In the DRT subjects had to move their right index finger to the pre-cued

target location as fast and accurate as possible through a single, smooth movement of

their finger. In the CT subjects were presented a new target location and a new arrow cue,

and had to immediately perform a movement according to these cues. Once reaching the

instructed  goal,  subjects  had  to  stay  at  the  final  location  until  the  response  screen

disappeared.  Then,  a  blank  screen  appeared  for  4s  (not  shown  in  Figure  3.1B)  and

subjects had to return their finger to the tactile cue. They were also encouraged to blink

specifically during this period to reduce corneal drying in the face of prolonged periods of

fixation. Note that visual feedback about finger position was only provided during the CUE

and  REACH  phases  of  a  trial.  All  experimental  conditions  were  presented  randomly
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interleaved  and were  repeated  20 times  across  5  consecutive  scanning sessions per

subject.

Experiment 2 

The overall design of Experiment 2 was similar to Experiment 1 (compare Fig. 3.1D). Each

trial started with a 15-16 seconds fixation epoch. The points of fixation of eye and finger

overlapped spatially and corresponded to the center of the display. Then, a CUE screen

was displayed for 1.5s, with a task cue presented centrally at the fixation point (a red cue

indicating CT and a green cue indicating DRT), and a target cue in periphery at about

3.2deg or 7.2 deg visual angle for NEAR and FAR conditions, respectively. Target size in

NEAR conditions was 0.8 deg visual angle. To accommodate for an increase in movement

difficulty (ID) with increasing distance (D), we increased the size of the target (W) in the

FAR  conditions  according  to  Shannon's  formulation  of  Fitts'  Law  (MacKenzie,  2013),

expressed as: 

ID=log2 (D /W+1 )

In DRT trials, subjects were instructed to remember the target cue and plan a movement

to it, whereas in CT trials they were told to ignore the initial cue. The CUE screen was then

masked for 500ms and a DELAY period followed, lasting 15-16 seconds. Ultimately, the

REACH screen appeared for 3s and subjects had to move the cursor to the remembered

target location in DRT, or to the newly cued target location in CT. After the instructed target

location was reached they had to maintain their finger position at this location until the end

of this task period. Then the screen was blanked and subjects had to return to the starting

position. Subjects were required to perform straight movements, without lifting the finger

off the touchscreen and they were told to be “as fast and as accurate as possible”. Else

they did not receive any additional instructions on how to plan/perform their reaches, as

we did not want to bias their natural planning strategies. As in Experiment 1, we presented

all  experimental conditions randomly interleaved and repeated them 20 times across 5

consecutive scanning sessions per subject.
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Finger movement analysis 

Finger movement data were preprocessed using custom routines programmed in Matlab

(MathWorks) and analyzed statistically using R (R Foundation for Statistical Computing).

In  brief,  during preprocessing we applied a digital  low-pass filter  (1st-order Butterworth

filter; 6Hz cut-off frequency). Data were analyzed to provide estimates of reaction times,

movement accuracies, maximal velocities and movement durations. Reaction time was

operationalized as the temporal difference between the onset of the movement epoch and

the moment when finger velocity exceeded a threshold of 11mm/s. Movement error sizes

were  characterized  as  the  linear  distance  between  the  finger  endpoint  (calculated  as

average of the last five samples of the finger position during the REACH phase) and the

border of the target circle.

fMRI acquisition and analyses. 

MRI images were acquired using a 3T Siemens TRIO scanner using a twelve-channel

head coil (Siemens, Ellwangen, Germany). For each subject, we obtained a T1-weighted

magnetization-prepared rapid-acquisition gradient echo (MPRAGE) anatomical scan of the

whole brain (176 slices, slice thickness: 1 mm, gap: 0 mm, in-plane voxel size: 1 x 1 mm,

repetition time: 2300 ms, echo time: 2.92 ms, field of view: 256 x256, resolution: 256 x

256) as well as T2*-weighted gradient-echo planar imaging scans (EPI): slice thickness:

3.2 mm + 0.8 mm gap; in-plane voxel size: 3 x 3 mm; repetition time: 2000 ms; echo time:

30 ms; flip angle: 90°; field of view: 192 x 192 mm; resolution: 64 x 64 voxels; 32 axial

slices. Overall, we obtained 2050 EPIs per subject in Experiment 1, which were collected

during five consecutive runs. In Experiment 2 we collected again 2050 EPIs per subject

over five runs. A single EPI volume completely covered the cerebral cortex as well  as

subcortical structures, apart from the most inferior aspects of the cerebellum which were

not  covered  in  several  of  our  subjects.  Functional  data  were  processed  using  SPM8

(Wellcome Department of Cognitive Neurology, London, UK). In every subject, functional

images were spatially aligned to the first volume in a series, and then coregistered to the
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T1 image. After that, a non-linear normalization of the structural image to a template in

MNI  space  was  performed.  Parameters  from  normalization  were  then  applied  to  the

functional  images.  In  the  last  step  of  data  pre-processing,  we  smoothened  all  the

functional images with a Gaussian filter of 6mm x 6mm x 8mm FWHM.

In  subject-specific  fMRI  analyses  we  next  specified  a  GLM for  each  individual

including  our  four  experimental  conditions  (“task”  [DRT,  CT]  x  “movement  distance”

[“NEAR”,  “FAR”]).  Each  condition  was  modeled  separately  for  each  of  our  three  trial

epochs (CUE+MASK, DELAY, REACH). The regressor duration was defined according to

respective  epoch  duration.  The  regressors  were  convolved  with  the  canonical  HRF-

function  of  SPM8.  Head  motion  parameters  were  included  in  the  model  as  separate

regressors. Fixation epochs weren't explicitly modeled and served as an implicit baseline.

To consider each subject’s individual functional brain organization, we detected planning

areas significantly more active during the delay epoch in DRT than the respective epoch of

CT trials in each subject (for that step, single subject activity maps were thresholded at

p<0.001, uncorrected).

We additionally performed a group-level analysis to delineate the areas commonly

activated  by  reach  planning  in  our  experiments.  For  this  purpose  we  entered  the

respective (first level) contrast images in a second-level group analysis (one-tailed t test).

In  this  step,  we  used  a  minimal  cluster-size  criterion  (k>10  voxels)  and  a  statistical

threshold of p<0.001, uncorrected.

Region of Interest Analyses

We used the results of the group-level analysis and anatomical landmarks (see below) to

initially identify reach planning-related areas. Our ROI set consisted of two main areas: left

dorsal premotor cortex located at the posterior end of the superior frontal sulcus, anteriorly

to the hand area of M1 (PMd); the left posterior-medial portion of superior posterior lobule

(SPL; Conolly et al., 2003). The additional movement planning ROIs included were:  the left

anterior end of the intraparietal sulcus (aIPS); the left middle intraparietal sulcus (mIPS);

-109-



and left supplementary motor area (SMA). For each of these ROIs and for each individual

we next identified the coordinate of the voxel exhibiting the local maximum of the individual

subject  statistical  contrast  DRT>CT  that  was  closest  to  the  respective  ROI  group-

coordinate. In addition we anatomically identified the hand area of left primary motor cortex

(Yousry et al., 1997)  due to its potential engagement in reach planning (Hocherman and

Wise, 1991) as well as left primary visual cortex (V1). The latter area served as a control

for any activity related to visual stimulation, also because we are not aware of any findings

showing its specific engagement in reach planning or execution. To avoid biasing our ROI-

selection in individual subjects across both Experiments, as they were planning different

movement types in each (circular [Exp. 1]  vs.  straight [Exp. 2]),  in those subjects that

participated in both of our experiments, we used the ROI coordinates of Experiment 1 also

for Experiment 2 (5 out of  7 subjects, compare Figure 3.7). Please note that our ROI

definition meets the criteria described by Kriegeskorte et al. (2009) to avoid circularity in

data analysis.  For  ROI  analyses we always considered the average activity  of  voxels

within a 3mm radius around the ROI center coordinate. We decided for univariate signal

analyses, as it was sensitive enough to capture signal changes scaling up with trajectory

parameters in our ROIs. We consider this to be the most direct and reliable way to make

inferences about trajectory plan representations.

Time-resolved fMRI analysis

Using custom protocols written in Matlab (MathWorks) (compare ref. 33), we extracted and

analyzed  BOLD-signal  timecourses  for  each  of  our  ROIs.  Importantly,  we  separately

analyzed timecourses during the CUE and DELAY vs. the REACH epoch: timecourses for

the CUE and DELAY phase were aligned to the onset of the CUE, and normalized to the

baseline  defined  as  a  time  window of  -5s  to  -3s  preceding  CUE onset.  As  planning

processes are likely to take place beginning as early as the presentation of the target cue

we analyzed both trial epochs together. The signals for the REACH epoch were aligned to

the onset of the REACH phase and normalized to the same baseline period as above. The
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timecourses  were  filtered  with  a  digital  high-pass  filter  (128s  cutoff  frequency)  and

interpolated at 1s temporal resolution (given the temporal jitter in our design). 

To examine the effect of trajectory on the BOLD signal in each of the ROIs, we

performed  a  time-resolved  analysis  of  the  timecourses  with  respect  to  their  relative

amplitude over the principal trial epochs (CUE/DELAY and REACH) using paired t-tests

(compare “RESULTS” section).  Only the significant  differences spanning over  three or

more  consecutive  time  points  were  taken  into  consideration  and  we  limited  the

interpretation of results only to the late-delay phase of trials (see “RESULTS”) as the most

relevant. The additional comparison between the main ROIs was done with mixed-models

ANOVA in R. In order to additionally control for type-II-error usually harder to capture with

the classical statistics like ANOVA, we additionally calculated Bayes factors for our main

and selected additional ROIs, using the method described by Dienes (2011). These factors

allowed for comparing the hypotheses that planning signals are the same vs. different

during  late  delay  with  respect  to  the  trajectory  conditions  (NEAR  vs.  FAR)  in  each

experiment. In particular, we assumed the signal differences to be approaching 0, when

there is no difference between trajectory representations (null hypothesis), and diverging

from 0 if the trajectory signals are different (alternative hypothesis). Specifically, for every

ROI tested, we determined the Bayes factor based on subjects’ signal differences between

FAR and NEAR conditions during the late delay period in each experiment. The alternative

hypothesis  was  modeled  by  a  uniform  distribution  (>0  to  maximal  signal  difference

observed  within  individual  subjects  for  a  given  ROI).  Bayes  factors  above  10  were

considered as strong support for  the hypothesis that trajectory-related planning signals

differ,  while  values  below  0.33  indicate  strong  support  for  the  null  hypothesis  (no

trajectory-related signal differences). 
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Study 3 – materials and methods

Subjects.

Thirteen subjects (two males; eleven females; mean age: 25) participated in this study. All

of the participants had normal or corrected-to-normal visual acuity and were right-handed

according to the Edinburgh Handedness Inventory (Oldfield, 1971). None of them suffered

from chronic, neurological or psychiatric diseases and took any medication. All subjects

gave written consent  in  accordance with  the declaration of  Helsinki.  Furthermore,  this

experiment was approved by the local ethics committee. Subjects received 10 Euro per

hour for their participation.

Task.

We applied functional magnetic resonance imaging (fMRI) while our participants worked

on either a delayed match-to-sample task in which subjects had to memorize dot patterns

or a control task in which they had to judge if a given dot pattern is axially symmetrical

(Figure  4.1).  Each trial  started  with  a  baseline  period  (14,000 or  15,000ms)  in  which

subjects were asked to keep central fixation on a fixation cross. Then, a cue (1000ms)

indicated a) if the current trial was a memory trial (yellow square) or a control trial (blue

square) and b) if subjects would have to respond verbally (picture of a mouth) or manually

(picture  of  a  hand)  in  the  end  of  the  trial.  After  this  cue  period,  an  encoding  period

(3000ms) started in the memory trials in which subjects saw 18 small circles that were

arranged in a circle around the cue. Either two or six of these circles were marked and

their positions within the big circle served as the memory items that subjects had to keep

in memory during the subsequent delay period (14,000 or 15,000ms). Then, we either

presented the very same dot pattern of the encoding period or a different one (3000ms).

Subjects had to wait until they saw a green go-cue and had to indicate within 3000ms if

this dot pattern equaled the one of the encoding period or not by either saying ‘same’ or

‘different’, respectively in the verbal conditions or by pressing the right or left button of a

button box, respectively in the manual conditions. The control condition differed from the
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memory condition after the cue period insofar as a circle consisting of 18 unfilled circles

was solely presented around the cue so that subjects could not maintain any memory

content during the subsequent delay period (14,000 or 15,000 ms). Then, we presented a

circle of 18 small circles after the delay period. Again, either two or six of these circles

were filled. Subjects waited until the green “go” cue and indicated if this dot pattern was

axially  symmetrical  to  the vertical  middle line of  the big  circle  or  not  by either  saying

“same” or “different”, respectively, in the verbal conditions or by pressing the right or left

button of a button box in the manual conditions.

Our subjects worked on five consecutive blocks in which each of the 4 main conditions (2

modalities (verbal vs. manual) x 2 tasks (memory vs. control) was randomly presented

twice resulting in 20 repetitions of each modality condition.

Stimulus presentation.

We created the visual stimuli on a Windows based PC using MATLAB R2007b (The

MathWorks, Inc.) and Cogent Graphics developed by John Romaya at the LON at the

Wellcome Department of Imaging Neuroscience. They were projected onto a translucent

screen (size of the projected image: 28 deg x 37 deg visual angle; viewing distance: 92

cm) by means of a video projector (frame rate: 60 Hz; resolution: 1024 x 768 pixels). Our

participants watched the projected stimuli on the translucent screen being placed behind

them with the aid of a mirror that was mounted on the head coil.

We displayed the fixation cross of the baseline and delay phases in Arial font and a

2.44 degrees visual angle font size. The color cue square side was 2.44 deg. The modality

cue images were 1.95deg x 1.76deg. The spatial cues (dots) were placed at 4.9deg radius

from the central fixation point and were approximately 1 degree in diameter each. 

Data acquisition.

Eye tracking. Our subjects were supposed to maintain central fixation during the

whole trial besides the response phases to ensure that the fMRI activity that we analyzed

was not significantly influenced by eye movements. We recorded eye-movements with a
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MRI-compatible infrared eye-camera (SMI SensoMotoric Instruments) and the ViewPoint

Eye Tracker system (Arrington Research Inc.; sampling rate: 50 Hz) and performed on-line

visual  inspection  of  the  eye  image  to  ensure  that  subjects  adhered  to  the  fixation

instruction.

Hit rates. In the verbal conditions, we recorded our subjects answers with a MRI-

compatible  microphone  (Optoacoustics  Dual-Channel  Microphone,  Optoacoustics  Ltd.,

Israel; sampling rate: 8 kHz). The manual responses were recorded with a button box with

two buttons indicating either “same” (left button) or “different” (right button). All recordings

were  analyzed off-line  using  self-written  scripts  in  MATLAB R2007b (The  MathWorks,

Inc.).

fMRI data acquisition. We collected the MR images with a 3-Tesla MR-scanner Trio

gradient system and a twelve channel head coil (both: Siemens, Erlangen, Germany). A

T1-weighted  magnetization-prepared  rapid-acquisition  gradient  echo  (MP-RAGE)

structural scan of the whole brain was assessed from each subject (number of slices: 176,

slice thickness: 1mm, gap size: 0 mm, in-plane voxel size: 1 x 1 mm, TR: 2300 ms, TE:

2.92 ms, FOV: 256 x 256 mm, resolution: 256 x 256 voxels). Moreover, we acquired T2*-

weighted gradient-echo planar imaging (EPI) scans (slice thickness: 3.2 mm, gap size: 0.8

mm, in-plane voxel size: 3 x 3 mm, TR: 2000 ms, TE: 30 ms, flip angle: 90°, FOV: 192 x

192 mm, resolution: 64 x 64 voxels, 32 axial slices). 330 EPIs were collected from each

participant during five consecutive blocks of 11 minutes each. Cerebral cortex and most

sub-cortical structures were completely covered by the EPI-volume but we did not record

from the most posterior parts of the cerebellum in several of our subjects due to brain size.

Behavioral performance analysis.

We statistically analyzed our behavioral data using SPSS (IBM SPSS Statistics, version

22)  and R (R Foundation for  Statistical  Computing).  Furthermore,  functional  MRI data

were analyzed using SPM8 (Wellcome Department of Cognitive Neurology, London, UK)

and R (R Foundation for Statistical  Computing).  The group size was guided by power
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analyses performed on a similar, previously published fMRI dataset (Lindner et al. 2010),

comparing working memory and motor planning planning activity in the frontal and parietal

cortices. At preselected relevant parameters values (power of 0.80 and  alpha of 0.05) this

analysis suggested a sample size of 11 subjects (two-tailed tests). 

Hit rates. To investigate if the performance level was influenced by the modality, the task

and/ or the load level, we analyzed the percentage value of correct answers by means of a

three-way  repeated  measures  ANOVA with  the  factors  ‘modality’  (2  levels:  verbal  vs.

manual), ‘task’ (2 levels: memory vs. control), and ‘load’ (2 levels: 2 vs. 6).

fMRI data analysis. 

Pre-processing.  The  pre-processing  of  our  functional  images  was  done  in  SPM8

(Wellcome Department of Cognitive Neurology, London, UK). Separately for each subject,

we  realigned  all  functional  images  by  using  the  first  scan  of  the  first  session  as  a

reference. Then, we spatially coregistered the T1 anatomical image to the mean image of

the functional scans and normalized our subjects’ mean anatomical images to the SPM T1

template  in  MNI  space  (Montreal  Neurological  Institute).  The  resulting  normalization

parameters were also applied to all functional images for spatial normalization. Finally, all

functional images were smoothed by using a Gaussian filter (6 x 6 x 8 mm3 full-width at

half-maximum) and high-pass filtered (cutoff period: 100 ms).

First-level analysis

In the subject-level fMRI analysis we first specified a GLM for the M2ST with the eight

conditions  (task  x  response  type  x  load)  and  three  trial  epochs  (cue+mask,  delay,

response) modeled as separate regressors. Load was additionally modeled in the control

condition (defined as the number of symmetry test items visible in the response phase) but

wasn't  used  for  subsequent  analyses  as  not  relevant.  Head  motion  parameters  were

included in the model as six independent regressors (one for each specific head rotation

and translation). Fixation epochs weren't modeled directly and served in the model as an

implicit baseline. For each subject we calculated statistical parametric maps showing an
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effect of increase in BOLD signal by the working memory activity during the delay phase of

“working memory” trials, i.e. delay M2ST > delay CT.

Group-level analysis

Group-level activity maps were plotted on the basis of a 2nd level random-effects analysis

from the first level statistical parametric maps of activity related to the delay regressors in

the  CT and the  M2ST.  In  the latter  we additionally  examined contrasts  related  to  the

effector  modality  effect.  We  thresholded  statistical  parametric  maps  at  p<0.001,

uncorrected for multiple comparisons to ensure that our exploratory analysis of the whole

brain activity does not omit any substantial activity during the delay phase.. The resulting

parametric maps were then overlayed on the standard MNI T1 template image as provided

by SPM8 in order to anatomically define the regions of activity. Note that we used these

maps  only  for  visualization  and  aiding  in  selecting  group-based  coordinates  for

subsequent ROI selection in some individual subjects.

ROI analysis

We focused the analyses on comparing activity in specific cortical areas involved in our

working  memory  task.  For  the  analysis  of  signal  amplitudes,  we  selected  areas  that

showed statistically significant effect of increase in BOLD intensity during the delay phase

of working memory trials (as compared to control trials), reflecting the working memory

activity in single subjects. To these maps we applied a statistical significance threshold of

p<0.05, corrected for family-wise error. The maps were then overlaid on each subject's T1

images,  thus allowing precise  assessment  of  their  anatomical  location.  Whenever  this

threshold was too strict and did not yield any clusters of activation in a given subject, we

used group coordinates to define a ROI. As we did not differentiate between the “response

modality” at this stage (i.e. the maps were calculated for both modalities taken together),

such approach ensured that our region-of-interest (ROI) selection was not biased in favor

of our hypothesis (compare Kriegesorte, 2009). The ROIs were first defined as the local

maxima of  t  value  within  major  clusters  of  working  memory  related  BOLD activity.  In
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particular, these were: left and right superior parietal lobule (SPL), left  and right dorsal

premotor cortex (PMd), left and right dorsolateral prefrontal cortex (DLPFC), left nad right

ventral premotor cortex (PMv), and left and right anterior intraparietal sulcus (aIPS). To

complete our ROI set  and allow observing any task-unspecific effector preparation we

included anatomically defined functional representations of hand (Yousry et al., 1997) and

vocal organs (Simonyan and Horvitz, 2011) in the left primary motor cortex (labeled as

M1h and M1m, respectively).

In the next step, for each of ROIs in each of our subjects we extracted normalized, mean

beta weights  related  to  every regressor,  from a  4mm sphere around the ROIs  center

coordinate. For each ROI these beta weights were then statistically analyzed on the group

level, using a repeated measures 2x2 ANOVA model, with factors response type x load in

the M2ST. Moreover, we compared response type in the CT using a paired, two-tailed t-

test. In addition to the beta analysis, we extracted and plotted BOLD-signal timecourses

for each of our ROIs for all the conditions of interest, using custom protocols written in

Matlab.
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