
Protein Design and Structure Determination 

at High-Precision

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines 

Doktors der Naturwissenschaften 

(Dr. rer. nat.)

vorgelegt von

Mohammad ElGamacy

aus Kairo, Ägypten

Tübingen

2018





Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Eberhard Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 20.11.2018

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr. Andrei Lupas

2. Berichterstatter: Prof. Dr. Dirk Schwarzer

3. Berichterstatter: Dr. Arnout Voet



Advisor: Prof. Andrei Lupas Mohammad ElGamacy

Protein Design and Structure Determination at High-Precision

Abstract

Due to the complementarity of the protein design and folding problems, progress on either
front has consistently advanced the other. Although both problems remain major challenges,
computational protein design has benefited amply from protein structure prediction meth-
ods. Likewise, the fields of structure prediction and structural biology have widely adopted
techniques from the protein design field. The work I present here aims to put forward new
protein design as well as structure determination strategies with the objective of achieving
maximum precision. Both strategies capitalise on two posits: the first is that localising the
sampling problem allows for exhaustive and finer granularity solution searching, while the
second is that accelerated temporal dynamics can allow for directed and accurate exploration
of energy landscapes. In the presented protein design projects, the level of precision was eval-
uated by comparing the coordinates from the experimental structures of the designs to their
in silico models. Whereas in the structure determination projects, the precision was evalu-
ated by how well a determined structure ensemble reproduces various experimental observ-
ables.

Since all of the previous design work utilising conserved supersecondary structures has
aimed at constructing repeat proteins from amplifying a single fragment, my first project
aims at designing an asymmetric globular (i.e. non-repetitive) fold from two unrelated super-
secondary structures. I thereby conceive an interface-driven strategy aiming at constructing
a viable intramolecular interface across the participating supersecondary structures. I report
the successful design of the target fold that agrees with the experimental NMR structure at
atomic precision (backbone RMSD of 0.9 Å), where the designed protein was substantially
more stable than its closest natural counterpart.

Through the second project I aim to demonstrate the capacity of this interface-driven
strategy to tackle the more difficult problem of novel fold design. The computational de-
sign of novel folds persists as a profound challenge, as in this case the association between
structural and sequence features is absent a priori. This has kept most of the previous de-
sign efforts within the known fold space. I accordingly have expanded my interface-design
methods, with the goal of achieving efficient sampling at maximum topological control. As
a demonstration I conceive and design a novel corrugated protein architecture that does not
exist in nature. The resulting NMR and X-ray structures for two different designs agree with
the in silico models at atomic precision.

On the third project I develop a new generalised method for mapping protein conforma-
tional populations from NMR data by unravelling the distribution of states that underlie the
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experimentally acquired average quantities. The CoMAND method does not only provide
a quantitative mapping of the probabilities of the constituent microstates, but is also capa-
ble of extracting previously untapped structural information and solving structures de novo
from a single NOESY experiment. I further present a detailed protocol that produces highly
refined, dynamics-based ensembles without any recourse to heuristics or knowledge-based
scoring. Finally, I validate the method’s precision by using the refined ensemble to quantita-
tively predict NMR observables that are orthogonal to the NOESY data.
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Proteinstrukturdesign und Proteinstrukturvorhersage sind zwei zueinander komplemen-
täre Felder, deren Fortschritte sich stets gegenseitig voranbringen. Obwohl beide noch im-
mer große Herausforderungen darstellen, hat Proteindesign von vielen Methoden der rech-
nergestützten Proteinstrukturvorhersage profitiert. Umgekehrt haben die Strukturbiologie
und Strukturvorhersage viele Techniken aus dem Feld des Proteindesigns aufgegriffen. In
dieser Arbeit präsentiere ich neue Strategien für das Design und die Aufklärung von Protein-
strukturen, welche maximale Genauigkeit anstreben. Diese Strategien folgen zwei Prinzipien:
Erstens, dass eine verstärkte Betrachtung lokaler Lösungen eine vollständigere und feiner
aufgelöste Abdeckung des Suchraums erlaubt; und zweitens, dass zeitliche Simulation von
molekularer Dynamik eine genaue und zielgerichtete Abtastung der Energielandschaft er-
möglicht. In den hier beschriebenen Design-Projekten wurde die Genauigkeit der designten
Strukturen durch Vergleich mit deren experimentell bestimmten Koordinaten festgestellt. In
den Strukturbestimmungs-Projekten wurde die Genauigkeit hingegen daran gemessen, wie
gut ein experimentell bestimmtes Stukturensemble verschiedene experimentelle Beobachtun-
gen reproduziert.

Die meisten bisherigen Proteindesigns auf Basis konservierter Supersekundärstrukturen
sind repetetive Proteine die durch Wiederholung eines einzelnen Fragments erzeugt wurden.
Vor diesem Hintergrund zielt das erste Projekt dieser Dissertation darauf ab, eine asym-
metrische globuläre Struktur zu designen, die aus zwei unverwandten Supersekundärstruk-
turen zusammensetzt ist. Hierzu wurde eine Methode zur Konstruktion einer intramoleku-
laren Kontaktfläche entlang der beteiligten Supersekundärstrukturen entwickelt. Die damit
erfolgreich designte Proteinfaltung stimmt mit der experimentell bestimmten NMR-Struktur
mit atomarer Genauigkeit überein (RMSD 0.9 Å). Das designte Protein ist zudem maßge-
blich stabliler als die natürliche Struktur, die ihr am ähnlichsten ist.

Im zweiten Projekt dieser Disseratation veranschauliche ich die Leistungsfähigkeit dieser
Kontaktflächen-Strategie durch deren Anwendung auf das weitaus schwierigere Problem eine
neue Proteinfaltung zu designen. Dies stellt noch immer eine komplexe Herausforderung dar,
da bei neuartigen Faltungen keine a priori Information zur Beziehung zwischen Sequenz
und Struktur verfügbar ist; aus diesem Grund lagen bishere Designs zumeist innerhalb des
Raums bereits bekannter Faltungen. Entsprechend habe ich die Kontaktflächen-Methode er-
weitert, um effizient Strukturen zu samplen und gleichzeitig die maximale Kontrolle über die
Ziel-Sruktur zu behalten. Mit einer sich gegenläufig windenden Struktur ist mir das Design
einer Protein-Architektur gelungen, die nicht in der Natur vorkommt. Die entsprechenden
NMR- und Kristallstrukturen stimmen mit den designten Modell mit atomarer Genauigkeit
überein.

In dem dritten Projekt habe ich eine allgemeine Methode entwickelt, um Protein-Konformationen
anhand von NMR-Daten zu charakterisieren. Dabei wird die Verteilung der Konformations-
zustände errechnet, die den exprimentell bestimmten Daten zu Grunde liegen. Die CoMAND-
Methode ermöglicht nicht nur eine quantitative Zuweisung der Wahrscheinlichkeiten einzel-
ner Mikrozustände, sondern ermöglicht zuvor nicht auswertbare strukturelle Information zu
bestimmen und Strukturen mithilfe eines einzigen NOESY-Experiments zu lösen. Zudem
stelle ich ein detailliertes Protokoll zur Herstellung verfeinerter und dynamischer Struk-
turensembles vor, welches ohne Heuristik oder Vorkenntnissen von ähnlichen Strukturen
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auskommt. Die Genauigkeit dieser Methode wird bestimmt, indem das verfeinerte Ensemble
genutzt wird, um zu den NOESY-Daten orthogonale NMR-Beobachtungen vorherzusagen.
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1
Chapter 1: Introduction

Background

The deduction of the set of rules that governs protein sequence-structure relationship re-

mains a major challenge in the field of biochemistry. This challenge has been principally

categorised into two fundamental problems, depending on the mapping directionality; the

protein folding problem and the protein design problem. The folding problem represents

the sequence-to-structure mapping, where the sequence is predetermined and the structure

is unknown. Conversely, the design problem represents the structure-to-sequence mapping,

where the structural blueprint is defined and the sequence required to achieve that structure

is unknown. Although these problems are intimately related, there is no exact symmetry be-

tween them due to the degeneracy of the design problem; whereas the sequence of a folded

protein usually maps to a unique structure, a target structural template can map to many

sequences.
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The research presented here focuses on achieving efficient, high-accuracy approaches to

protein design. In particular, protein design poses a hyper-dimensional problem given the as-

sociated compositional and configurational degrees of freedom that must be enumerated and

evaluated in silico. In this work I evaluate alternative strategies to protein design, with the

aim of simplifying the sampling problem while relying on more rigorous scoring schemes. To

validate the resulting designs, structure determination is the major step. Here, objectivity

is a major consideration, given that the design itself constitutes an expectation bias. While

a quantitative measure of validation exists for X-ray crystallography (i.e. the R-factor), no

equivalent exists for NMR-based methods. For this reason, I also aimed at developing a so-

lution structure determination method that intrinsically quantifies the match between the

solved structure and the input spectra. Thus, throughout my research I have aimed at test-

ing the utility of strategies based on exhaustive localised sampling and accelerated temporal

dynamics to achieve high-precision design and structure determination outcomes.

This section proceeds to briefly lay out the advances and challenges in fields of protein

folding, protein design and protein dynamics from computational chemistry and structural

biology standpoints.

Protein folding

Folding mechanisms

Proteins are the main molecules responsible for information processing, catalysis and me-

chanical roles in living cells. While a protein is synthesised in the form of one-dimensional

peptide chain, for it to assume its biological roles, it mostly adopts a unique three-dimensional

native structure. Early protein refolding studies have led to the Thermodynamic Hypothe-

sis1, which postulates that under physiological conditions, the native structure is the unique,

kinetically accessible, and the most thermodynamically favoured configuration as dictated by

the protein’s sequence.

Four primary physical effects drive the folding of a linear protein chain into in a three-
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dimensional structure, overcoming the large loss of conformational entropy in the process2:

The first is hydrogen bonding, which is a directional, primarily - though not exclusively3 -

electrostatic interaction, which takes place between two electronegative atoms through an

interstitial hydrogen atom. The backbone hydrogen bonding patterns are particularly im-

portant for folding as they define secondary structure types. The second is the hydrophobic

effect, which is an entropic effect stemming from the cost of disruption of the dynamic hy-

drogen bonding of water by non-polar residues. The third is the Van der Waals force, which

results in weak and very short-ranged interactions of induced-dipole nature. The fourth is

electrostatic interaction, which occurs between formally or partially charged atoms, and can

have magnitudes heavily dependent on the chemical environment.

A newly synthesised protein chain has to navigate a very rugged potential energy land-

scape under the influence of these forces to reach its native state. Assuming a random search

of the configurational space, an average-sized protein would need billions of years to fold.

However folding kinetics studies show that most proteins fold within seconds and some on

even sub-millisecond timescales; this has been described as the Levinthal paradox4. This

faster than expected folding implies that proteins fold according to biased pathways, which

has led to the emergence of several hypotheses. For example, the nucleation-growth model

proposes the formation of an initial folding nucleus within a group of adjacent residues, fol-

lowed by the sequential folding of the rest of the protein. In contrast, the framework model

proposes that secondary structures form first and then dock against each other into the na-

tive tertiary structure, possibly by a diffusion–collision mechanism. Lastly, in the hydropho-

bic collapse model, hydrophobic residues collapse together into a molten globule that forms a

conformationally restricted intermediate state on the pathway to the native state5.

Several experimental techniques have been applied to monitor the folding process, however

the problem remains severely under-determined. Ideally, a structure determination technique

with sufficiently high sensitivity (i.e. signal magnitude per substance concentration) and

time-resolution (i.e. shutter speed) could provide a temporal monitoring of the folding pro-

cess under native conditions. Although this is far from practical using present technologies,

several spectroscopic techniques have been successfully deployed to monitor protein folding

events in nanosecond and sub-nanosecond regimes6. Methods like Fourier-transform infrared
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(FTIR), circular dichroism (CD), or fluorescence spectroscopy have particularly benefited

from ultra-fast conformational triggers such as pressure and temperature jumps7. The funda-

mental drawback is that these methods lack any spatial resolution, as the resulting spectra

describe the entire protein collectively, in addition to being ensemble averaged. To the end

of acquiring fragment-wise spatial resolution down to millisecond time-scales, the highest

possible sensitivity has been achieved through hydrogen-exchange mass spectrometry (HX-

MS)8.

A complementary approach would be computational; atomistic molecular dynamics (MD)

simulations have been able to recapitulate the folding of small-sized proteins to millisecond

spans, either through equilibrium MD9, or Markov state model (MSM) MD methods10. De-

spite having relied on purpose-built supercomputers, or large GPU clusters, respectively, the

accessible computing time constitutes the first major limitation. The second major limita-

tion stems from the accuracy of the force field itself, as errors build-up with the simulation

scale10. This is particularly the case for current force fields that employ parameters that

stay constant throughout the simulation, despite the drastic changes in chemical environ-

ment along the protein’s folding pathway.

Folding thermodynamics and kinetics

The thermal stability of the folded state (i.e. its folding thermodynamics) and how fast a

nascent peptide chain folds (i.e. its folding kinetics) are governed by the folding landscape.

This landscape can be described as an energy surface where the ordinate (the dependent

variable) is the potential energy of the system, and the remaining dimensions represent the

conformational degrees of freedom, perhaps also expressed by more abstract reaction coordi-

nates (e.g. topological descriptors like secondary structure content or number of native con-

tacts9). Defining every conformation as a microstate in a canonical ensemble, the probability

of occurrence P of the unique microstate si is defined by the Gibbs distribution as:

P (si) =
e−βE(si)

Zβ
(1.1)
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Where β = 1/kBT , kB is the Boltzmann’s constant, T is the temperature, E(si) is the

potential energy of the microstate si, and Zβ is the partition function that serves as the nor-

malisation constant over all of the possible microstates, whereby Zβ =
∑
j
e−βE(sj). This func-

tion enables the calculation of absolute free energies and the derivation of absolute entropy

as the densities of associated microstates11.

The thermodynamic stability of the folded state relates to its potential energy value and

its associated density of states. The kinetic stability of the folded state, on the other hand,

relates to the landscape ruggedness - e.g. the presence of kinetic traps that stabilise partially

or misfolded species - plus the steepness and breadth of paths to the global minimum. Prac-

tically, however, there is no experimental means of detecting and evaluating the probabilities

associated with exact microstates, hence a broader definition of configurations that encom-

pass closely related microstates (e.g. folded vs. unfolded, or monomer vs. dimer) becomes

useful. In a typical equilibrium unfolding experiment, for example, a macroscopic quantity

related to “foldedness” is measured (e.g. CD ellipticity or fluorescence). Here the main goal

is to determine the equilibrium constant of the unfolding reaction:

KU =
[PU ]

[PF ]
(1.2)

Where [PU ] and [PF ] are the concentrations of the folded and unfolded protein species,

respectively. The free energy of unfolding can then be evaluated according to Eq. 1.3, and a

small, single-domain protein would generally follow a first-order rate as in differential Eq. 1.4

:

∆GU = −RT lnKU (1.3)

dFU (t)

dt
= −kfFU (t) (1.4)
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Where ∆GU is the observed free energy of unfolding, R is the gas constant, and T is the

temperature. While FU (t) is the fraction of unfolded protein at time t, and kf is the effective

folding rate constant. Where the latter is related to the equilibrium constant KU through

the unfolding rate constant ku according to KU = ku
kf
.

Under folding conditions, however, the fraction of unfolded species is vanishingly small

and cannot be experimentally detected. Therefore, in equilibrium unfolding experiments

chemical denaturants or temperature are commonly used to favour the denatured species,

and the unfolding reaction is measured as a function of denaturant concentration or tem-

perature. Likewise, with folding kinetics experiments the protein is initially unfolded using

denaturants or high temperature, and rapid mixing or steep temperature drops are used

to instigate the folding process. The measured observable in these experiments, which can

be a single data point or a full spectrum, is at best an ensemble average in kinetics experi-

ments, or an ensemble and time average in equilibrium unfolding experiments. In addition

to averaging, the mathematical modelling over-reduces the vast underlying conformational

heterogeneity into a binary categorisation of fraction folded FF and fraction unfolded FU .

This demonstrates the fundamental lack of atomistic details on protein folding and unfolding

mechanisms. Perhaps the most data-intensive research on this front has been the develop-

ment of nanosecond-resolved 2D-FTIR12 and its combination with MSM-MD simulations.

This has so far only succeeded in providing semi-quantitative agreement between massively

parallel folding simulations and time resolved spectra13. The main challenge facing this ap-

proach is the computational cost associated with the deployment of more accurate force

fields that better account for bond stretches and their local electrostatic environments. To

date though, there is no model that can accurately predict the folding rate or folding free en-

ergy of a protein from its structure. Moreover, absolute free energy and entropy estimations

are impossible without accurately accounting for the partition function Zβ, which appears to

be practically impossible given the implied conformational degrees of freedom. This proves

to have far-reaching consequences for the protein design problem.
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The fold space

According to differing terminology, a fold (according to SCOP14) or a topology (according

to CATH15) can be defined as the three-dimensional arrangement of secondary structures

in space and their connection order in a protein domain. Under this definition, a pertinent

question is how many natural folds exist. There is an inherent difficulty in estimating this

number depending on how strictly or loosely a fold is defined, given the existence of some

continuity in the natural fold space16. Nevertheless, various estimates have placed this num-

ber between 1000 to 1000017. Although a very small figure relative to the number of theoret-

ically possible folds, these estimates of the number of unique natural folds are not expected

to grow significantly, despite the growing number of determined protein structures18.

The limited number of known natural folds has led to the assumption that nature has

historically sampled very narrow and clustered regions of fold space, presumably due to

parsimonious evolutionary mechanisms19. This has raised the question on how large the

“dark matter” (as Taylor calls it20) of the fold space may be; i.e. protein folds that are po-

tentially viable, but not yet sampled by nature. Predictive models have shown these novel

folds would massively outnumber the existing repertoire20. For example, the possibilities

for arranging secondary structures (that can be either an α-helix or a β-strand) in one di-

mensional space has the ordering complexity of 2nss , where nss is the number of secondary

structures. If these secondary structures are allowed to assume one of two orientations (only

up or down), these possibilities become 22(nss−1). Trying then to account for all of the pos-

sible ways these secondary structures can be connected by loops would mean a complexity

of (nss − 1)! × 22(nss−1). The vastness of this space encourages the idea that the accessible

fold space is more continuous than that presently observed21. The notion of tapping into

unexplored regions of fold space then becomes very appealing; it also provides the major mo-

tivation for computational protein design as a means of selectively determining a target fold

and constructing it de novo, ideally at atomic precision. This paves the way for generating

novel scaffolds that can support the design and engineering of functional proteins.
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Protein design

Computational protein design ultimately is aimed at finding the sequence that would

achieve the most negative free energy change upon folding into a predefined blueprint fold,

while also possessing the lowest possible configurational degeneracy (i.e. does not easily mis-

fold into undesired configurations). Even though a viable solution can be reached for the for-

mer (i.e. finding a solution through a fixed-backbone design), the latter is not guaranteed, as

the evaluation of the partition function is practically impossible for an average sized protein.

A straight forward in silico representation considers every constituting atom in the pro-

tein and its environment as an independent particle that is coupled by various forces to

other atoms. Modelling such systems falls into the class of N-body simulations, where N is

the number of atoms of the system. Given such a representation, the protein design problem

can be decomposed in to two problems: the sampling problem (enumerating possible con-

formers and sequences) and the scoring problem (evaluating them). The sampling problem

can be further decomposed into sequence sampling and conformer sampling, although that

distinction between sampling types may be dismissed in Monte Carlo methods.

The sampling problem

Monte Carlo (MC) sampling encompasses a group of sampling algorithms with stochastic

and statistical mechanical underpinnings. The most commonly used MC technique in protein

modelling is the Markov Chain Monte Carlo approach (MCMC), where conformational sam-

pling steps are performed in probabilistic, sequential moves. In MCMC, every conformation

is considered as a state, every state is randomly perturbed every trial move, and every such

trial move may be accepted or rejected. The central requirements for the validity of the sam-

pling are the phase space accessibility and the ergodicity requirement (Eq. 1.5), where the

relative probability of transition from an old state o to a new state n is equal to its relative

8



probability after a finite number of sampling steps:

Pacc(o→ n)

Pacc(n→ o)
=
PB(n)

PB(o)
(1.5)

Where Pacc(x) is the acceptance probability of state x, and PB(x) is the Boltzmann weight

of state x. This condition of detailed balance is necessary for an MCMC simulation to reach

equilibrium. The acceptance probability of a move is 100% if the new state is more probable

than the old state (i.e. PB(n) ≥ PB(o)), otherwise, the acceptance probability is the ratio
PB(n)
PB(o) , as in Eq. 1.6.

Pacc(o→ n) = min

{
1,
PB(n)

PB(o)

}
(1.6)

The main advantages of MC sampling include the possibility of making relatively large

conformational jumps, which allows it to explore larger phase spaces than MD. In protein

design applications, these conformational moves are commonly sampled from an empirical

probability distribution derived from a library of known structures. The discrete sampling

allows for trivial barrier crossing through arbitrary basin hopping to avoid entrapment. Also,

since the MC ensembles are atemporal, a differentiable potential is not necessary for scor-

ing, allowing for liberal scoring schemes that are often employed in protein design algorithms.

Finally, in the context of design, the nature of MC sampling allows for combining confor-

mational and sequence sampling in the same simulation, as the system is no longer strictly

physical. On the downside, optimising for a more likely state through MCMC totally dis-

misses the associated entropy and thus cannot yield a true energy estimate. In addition,

MCMC techniques cannot be practically deployed in explicit solvent without a steep drop

in performance, to account for to complicated solvent rearrangements associated with so-

lute moves22. Also, a key finding in the research represented here is that MCMC sampling

schemes also tend to under-sample large-scale backbone rearrangements in comparison with

MD.

In contrast to MC, MD aims to deterministically solve an N-body problem. The meaning

9



of deterministic here is that the underlying equations of motion can be integrated (forwards

and backwards); accurately predicting the system’s future state, given its present state. The

ultimate goal of MD is to faithfully simulate the time evolution of a system, thus creating a

temporal ensemble according to a predefined thermodynamic state. For example an isobaric-

isothermal state, would imply that the macroscopic temperature and pressure are fixed. The

premise of MD is that every particle (i.e. atom) possesses six degrees of freedom (rotational

and translational) and its motion is modelled as a function of time under a potential V . The

starting point for a simulation is a set of initial coordinates and velocities for every atom.

The initial velocities are typically generated by a single thermal perturbation by assigning

randomly distributed velocities (which can also be predefined), while correcting for zero net

momentum. The force vectors - and hence the acceleration vectors - are calculated from the

potential function at every time step, as shown in Equation 1.7. This differentiation step

obligates that all of the components of potential V be differentiable.

Fi = −∇iV = −dV
dri

= mi
d2ri
dt2

(1.7)

Where Fi is the force acting at atom i, solving for the potential energy’s gradient ∇iV ,

with respect to the atomic position vector ri, and atomic mass mi at time t.

Once initial coordinate, velocity, and acceleration vector sets are known, numerical inte-

gration of the equations of motion can performed. The system should time-evolve faithfully

provided that the integrator preserves the conservation of energy and momentum. Different

integration methods vary in computational efficiency and precision. For example, Equations

1.8 and 1.9 show how the leap-frog algorithm updates the velocities and coordinates every

time step δt.

vi

(
t+

1

2
δt

)
= vi

(
t− 1

2
δt

)
+ ai(t)δt (1.8)
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ri(t+ δt) = ri(t) + vi

(
t+

1

2
δt

)
δt (1.9)

Where vi(t) is the velocity vector for atom i at time t, ai(t) is its corresponding the accel-

eration vector, and ri(t) is the corresponding position vector. The leap-frog algorithm begins

by solving for the next velocity midway between two time steps; vi
(
t + 1

2δt

)
, then, the co-

ordinates are updated for the next time step; ri(t + δt). Because of this inter-step leap of

velocity over the position, solving for the velocity at vi(t) can be achieved through the aver-

age: 1
2

[
vi

(
t− 1

2δt

)
+ vi

(
t+ 1

2δt

)]
.

The goal of MD simulations is to uncover the microstates underlying a macroscopic ob-

servable. Thus, MD is based on the assumption that, given sufficient temporal sampling, the

time-averaged properties of a system are equivalent to the ensemble-averaged properties and

can accordingly reproduce macroscopic observables. Time scales accessible through equilib-

rium MD simulations, however, are extremely short - even when carried out under purely

molecular mechanical potentials that largely dismiss electronic arrangements and electron

dynamics. Even then, to date, only sub-millisecond time scales have been achieved in explicit

solvent10. This expensive sampling, explicitly accounting for the time functions in molecular

systems, is the cost that comes with the higher accuracy that MD offers. Several successful

acceleration techniques, such as non-equilibrium and steered MD (SMD), are widely used for

atomistic MD to enhance the sampling efficiency and reproduce observables at much lighter

computational footprints. These include methods like replica exchange23, MSM10, umbrella

sampling24 and adaptive tempering25.

Since atomically-resolved forces constitute a central quantity in MD calculation cycles,

external forces can be modelled and exerted to accelerate configurational transitions that

are otherwise inaccessible on natural time scales. So-called Steering can thus follow very ad-

vanced and adaptive schemes, where the system’s condition is reassessed and the externally

applied force vectors are adjusted on-the-fly through a programmatic framework. I demon-

strate here that this external interference offers an invaluable tool for focally accelerating

localised conformational events without disturbing the rest of the system and with no need
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for applying restraints. This locally enhanced sampling benefits greatly from space reduction

strategies, like fragment-based design and decomposing the sampling into separate successive

problems (e.g. core-directed vs. loop-directed sampling).

The scoring problem

Proteins at physiological conditions constitute condensed phase regimes where the mechan-

ics are non-relativistic and primarily classical in nature (i.e. The particles move at speeds

much slower than 108 m/s, with masses effectively larger than 10−27 kg). Of course the clas-

sical mechanics assumption is only valid on the condition that no chemical bond creation or

destruction is taking place. This allows for modelling such systems using a purely Newto-

nian description of the involved atoms motions, with disregard to the electronic structures of

these atoms.

Since MC methods are based on sampling moves through randomised trials, they do not

rely on computing forces. This lends their scoring functions to account for “energy” terms

that do not have to be differentiable (i.e. they need not be smooth functions). Given the

MC framework, these would not represent true energies anyway, which allows a more liberal

interpretation of the energy terms included and their derivation origin. In practice, MC tra-

jectories are aimed at optimising for the best scoring sequence-conformer combination, where

the state-associated score is directly considered as “energy”. For example, the Rosetta MC

scoring function combines a set of scoring terms Eterm and their respective tunable weights

wterm
26 as follows:

Etot = wattrEattr + wrepErep + wsolEsol + welecEelec + whbondEhbond

+wpaappEpaapp + wramaErama + wdunEdun + wrefEref + wproEpro + wdslfEdslf

(1.10)

Where the total energy score Etot is a weighted mixture of: A Lennard-Jones attractive

component Eattr, a Lennard-Jones repulsive component Erep, a Lazaridis-Karplus implicit
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solvation energy term Esol, a short-ranged knowledge-based electrostatic term Eelec, a sta-

tistical, orientation dependent hydrogen bonding term Ehbond, a PDB-derived amino acid

probability score given its backbone dihedrals Epaapp, a PDB-derived Ramachandran prob-

ability Erama, a Dunbrack-library probability of side chain rotamer Edun, a proline ring clo-

sure score Epro and a disulfide bond geometry score Edslf .

In contrast, the notion of “energy” in MD is more formal and not readily obtainable from

the sampled states. Broadly, free energy methods in MD can be categorised into two main

categories: density-of-states methods or work-based methods. Density-of-states methods are

aimed at evaluating the ensemble weights among states within a small region of the phase

space, in which the states are mutually accessible to each other. Work-based methods are

based on a free energy perturbation that evaluates the work along the path between two

states27. As described in the sampling section, MD routines need to evaluate the potential

energy at every time step to be able to derive the forces. The potential energy function (of-

ten referred to as “force field” or “potential”) relies on parametrisable models of inter-atomic

interactions, which can be of a pair-wise nature (i.e. two-body) or higher order. For example,

the CHARMM force field derives its parameters from quantum mechanical (QM) calcula-

tions that are often validated against experimental data. According to CHARMM3628, the
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potential energy Vtot is as follows:

Vtot =
∑
bonds

kbond(r − ro)
2

+
∑
angles

kangle(θ − θo)
2

+
∑

Urey−Bradley
kUB(u− uo)

2

+
∑

impropers

kimproper(ω − ωo)
2

+
∑

dihedrals

kdihedral[1 + cos(nϕ+ δ)]

+
∑

CMAPs

4∑
i=1

4∑
j=1

cij

(
ϕ− ϕL
∆ϕ

)i−1(ψ − ψL
∆ψ

)j−1

+
∑
LJ

γij

[(
Rmin,ij
rij

)12

− 2

(
Rmin,ij
rij

)6]
+

∑
electrostatic

qiqj
4πϵorij

(1.11)

Where the first four terms are single-welled harmonic potentials with force constants

kterm, and equilibrium values: ro for bond lengths, θo for three bonded atoms angles, uo for

1-3 bonded atom distance (for UB cross-term that corrects for angle bending), and ωo for

improper dihedral (out-of-plane) angle. The fifth term describes a 4-body torsion angle po-

tential with force constant kdihedral, periodicity n, phase shift δ, calculated at torsion ϕ. The

CMAP term provides a corrective cross-term for the backbone (ϕ, ψ) dihedrals, where the

input is a relative free energy grid derived from QM-level potential of mean force (PMF) cal-

culations, resolved at (∆ϕ,∆ψ) steps. The term is a bicubic interpolation function of the in-

put grid (where cij are the precomputable interpolation coefficients for a given map), which

is a smooth differentiable function with continuous second derivatives across the boundaries.

The Lennard-Jones term approximates the London dispersion forces where γij is the well

depth for atom pair (i, j), rij is the atom pair distance, and Rmin,ij is the distance between

the same atom pair corresponding to the minimum of the well. Finally, the electrostatic in-

teraction can be described by a Coulombic term between a pair of atomic charges (qi, qj),
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separated by distance rij , at a dielectric constant ϵo. Practically though, this last term is

poorly scalable and very expensive to compute directly, as the potential decays slowly with

distance (i.e. 1/r for Coloumb’s vs. 1/r6 for LJ), so its long-range component is computed

through more efficient methods (e.g. Particle Mesh Ewald), which reduce its complexity

from O(N2) to O(NlogN).

Previous work has investigated the utility of temporal, density-of-states approach in the

context of protein design (the VALOCIDY method)29. The VALOCIDY approach is aimed

at the estimation of absolute free energies from unperturbed ensembles, and only attempted

a temperature elevation scheme to traverse energy barriers. Although the approach shows

good convergence behaviour, it only reached that after microsecond-scale simulations and

only for seven-residue-long peptides. Given the intractability of global density-of-states meth-

ods in the context of design problems (where the protein size is much larger than a few

amino acids), decomposing the problem and evaluating relative free energies across pre-

defined state transitions would provide an appealing proposition. Throughout the work I

present here, I attempt to test the utility of work-based methods in protein design for esti-

mating relative free energies in silico, and thus address the scoring problem in a tractable

and convergent manner. To implement this successfully, the search space must be effectively

simplified and reduced, which emphasises the necessity for reducing the sampling spaces and

simplifying our objective optimisation functions (as described above). Free energy perturba-

tion methods and perturb-probe schemes in particular, were tested for the ability to capture

the intermediate state energetics, and hopefully, achieve more accurate free energy estima-

tions. Such intermediate states may be easily dismissed by density-of-states methods (due to

the obligate under-sampling at average-sized proteins) or by end-state methods (due to the

assumption of a linear transition between initial and final states).

Protein dynamics

Early studies on enzymatic catalysis30 hypothesised the necessity of template flexibility

to account for the the underlying reaction specificity. This started the historical debate be-

tween the conformational selection31 and the induced fit 32 models of dynamic recognition
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mechanisms, and motivated a broad range of dynamics studies. Various classes of techniques

have been used to query dynamic properties of proteins, like deuterium exchange, IR spec-

troscopy, fluorescence spectroscopy and Raman spectroscopy33. However, none of these tech-

niques could specifically map the probed dynamical properties at atomic resolution. The

exclusive capacity of nuclear magnetic resonance spectroscopy (NMR) to acquire atomically-

mapped, dynamics-related observables for proteins in solution has placed it front and centre

in the protein dynamics field.

The simplest 1D NMR spectrum presents readily obtained experimental observables that

can directly report on protein dynamics. The three fundamental quantities obtainable from

such spectra are peak intensity I (i.e. peak integral), absolute resonance frequency v (which

can also be represented as a relative chemical shift δ; δ = v
γBo

), and linewidth λ (i.e. peak

width at half hight). In modern FT-NMR, data is collected within mid-millisecond time

frames during the detection time of an experiment. This data comes in the form of a time

function of the detected signal intensity I(t), and is Fourier-transformed into the frequency

domain (that can be represented in absolute Hz units or relative ppm units), in which the

spectrum appears as a function of frequency I(v) (or I(δ)).

Figure 1.1 illustrates the possible spectral scenarios for a given magnetically active nucleus

undergoing chemical exchange; i.e. dynamically transitioning between two states with dis-

tinct chemical environments, and thus appearing at two different chemical shifts chemical

shifts (i.e. frequencies). States A and B are connected through rate constants kA and kB,

an exchange rate constant kex = kA + kB, and possess relative probabilities of PA and PB.

Here, v (or δ) reports on the chemical environment change between the exchanging species,

λ reports on their interconversion rates (i.e. kinetics), and (v) reports on their relative prob-

abilities (i.e. thermodynamics) in the frequency domain.

A range of other dynamical quantities can be derived from simple NMR experiments at

different time scales. For example, the magnitudes of the principal magnetisation vectors

along the z-axis (i.e. polarisation along the constant field Bo direction) and along the rotat-

ing frame of reference x′y′ plane (i.e. coherence). The decay of these two vectors to their

equilibrium values (i.e. the recovery of net polarisation along z and the loss of coherence
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around x′y′, yield The corresponding T1 and T2 relaxation time constants. These are readily

obtainable through standard relaxation experiments, and these time constants are used to

derive a generalised order parameter S2 for individual bond vectors according to:

S2 =
T−1
2 − T−1

1

T−1
2R − T−1

1R

(1.12)

Where TiR is the respective time constant denoting the rigid tumbling limit value34. S2

yields information on the local disorder and can be directly converted into conformational

entropy values through a Boltzmann factor upon a perturbation. It was also shown that for

proteins where Λ > 1 an experimental PMF can be established as function of temperature

(Eq. 1.13)35; i.e. localised energy change can be mapped.

Λ =
∆ln(1− S2)

∆lnT
(1.13)

Advanced pulse sequences can further serve to extract information from otherwise obfus-

cated observables as with the cases of intermediate and fast exchange regimes in Figure 1.1.

Specialised pulse sequences like CPMG and rotating frame relaxation dispersion36 have suc-

ceeded in decomposing the apparent exchange rates in the intermediate and fast exchange

regimes through refocusing the exchange-based broadening and thus allowing for evaluating

the underlying exchange rates.

Although the above are just a few examples of many acquirable NMR observables on pro-

tein dynamics, the information acquired through NMR does not explicitly involve structural

coordinates. In combination with the fairly long evolution, detection, and relaxation delays,

and the obligate ensemble averaging, there are still fundamental limitations to the utility of

this information. That necessitates the close association of NMR and molecular dynamics

studies to attempt to solve for causality of events, internal correlations, and mechanistic in-

terpretation of the dynamic events. My conformational mapping research presented below

capitalises on major advances recently achieved in both fields (NMR and MD) to extract
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new information and enable more accurate solution structure determination.

Figure 1.1: The three limits of chemical exchange regimes and the associated effects on
three main NMR observables. Intensity I(v), resonant frequency v and linewidth lambda
report on the kinetics and thermodynamics of chemical exchange between two species.
The slow, intermediate and fast exchange rates represent the three limiting cases for the
exchange rate constant kex. Reproduced with permission from Fig. 3 in Ref.36. Source:
Elsevier
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Research focus

The fundamental and conceptual overlaps between the design and folding problems have

started to trickle down to technical and methodical levels during the past two decades. Thanks

primarily to the huge leaps in accessible computing power and advancements in sampling

and scoring methods. This progress has effectively blurred the lines between the topics of

protein design and structure prediction problems37. This has also driven the recruitment

and repurposing of robust protein design algorithms towards solving structure determina-

tion problems, spanning the fields of NMR38, X-ray crystallography39 and cryo-electron mi-

croscopy40.

Throughout my research I aim to present novel design and structure determination strate-

gies that emphasise the roles of protein dynamics on both fronts. I provide a strong case

for exhaustive, localised sampling schemes in combination with temporal, dynamics-based

evaluation schemes as common bases for both high-precision protein design and structure

determination.

Asymmetric globular domain design

Many natural protein structures show tandem repetition of supersecondary structural

units. That detectable homology is often preserved among their constituent fragments and

has suggested amplification as a powerful, parsimonious means for fold evolution41. Such

repeat proteins have a special status as protein folding model systems, owing to their low-

dimensional folding landscapes42. The simplicity and supersecondary structural modularity

of repeat proteins have inspired numerous successful protein design studies that recombine

conserved supersecondary structures43. To this end, sequence profile-based consensus design

combined with computational design has proven a robust means for generating thermody-

namically superior proteins with novel sequences44.

In contrast to previous studies that deployed motif-based design to construct repeat pro-

teins, this design study is aimed at designing a non-repetitive globular fold from two con-
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served supersecondary structures. Since in repeat proteins the folding enthalpy is provided

by an interface that is amplified multiple times, their folding stability is directly proportional

to the number of interface repetitions. Their folding free energies start to become negative

mostly after 2 or more interfaces are formed45. Therefore the challenge for an asymmetric,

non-repetitive fragment recombination lies in that the intra-molecular interface between

these two fragments is almost the sole source of folding enthalpy. Here, I tried to overcome

this by building on two principles. The first is that consensus and consequently conserved

sequences tend to average out kinetic traps and improve folding stability46 (Fig. 1.2). The

second is that even if the supersecondary structural building blocks used cannot fold on their

on, they still possess residual folding information. This should allow me to focus computa-

tional sampling on only the inter-fragment interface, perform such sampling at high granu-

larity, and deploy more expensive scoring routines, as the available computing power is redi-

rected to a small portion of the protein.

My goal here was to design a novel dRP lyase domain from two conserved supersecondary

structures, namely, an αα-hairpin and a helix-hairpin-helix motif (HhH-motif). This was

motivated by the observation that two or more evolutionarily conserved supersecondary

structures cannot be detected to coexist in a single domain47, this in spite of the ubiquitous

natural repetition of these individual supersecondary structures in many folds. The TPR-

like αα-hairpin and HhH-motif combination thus provides an attractive goal, given their

widespread occurrence in numerous natural folds. The design objectives were to achieve a

compact, single-domain protein that possesses no full-length homology to any existing pro-

tein, yet optimally, more stable than its closest structurally similar counterpart, the human

dRP lyase domain.

It is worth emphasising here that the reliance on ever smaller fragments in a fragment-

based design framework allows stricter control of the target topology. It is also a very effec-

tive strategy in bringing together fragments with structural oddities that are otherwise diffi-

cult to sample de novo48. Here I describe my interface-driven computational design strategy

and the experimental evaluation (biophysical characterisation and structure determination)

of the designs resulting from the scheme described in Figure 1.3.
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Figure 1.2: Sequence averaging is associated with energy landscape averaging. The
average of five hypothetical folding landscapes for five homologous sequences levels out
kinetic traps and relatively broadens the minimum basin. Reproduced with permission
from Fig. 2 in Ref.46. Source: Oxford University Press
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Figure 1.3: The design of a globular asymmetric domain from heterologous fragment
recombination. A) The definition of a target backbone blueprint based on the fold of
the human dRP lyase. B) Structural fragments are chosen from a pool of conserved se-
quences on a geometric basis, and deliberately adopted from unrelated sources. C) De-
sign process aimed at constructing a novel hydrophobic core at the interface of arbitrary
juxtaposed fragments.

In the first chapter, I describe my design pipeline in detail, and proceed to report my ex-

perimental characterisation results for four different designs.

Design of a novel protein architecture

Designing proteins with tailored structural features like internal orientations, pockets,

curved surfaces, or grooves is still a challenging task. The most demanding form of such ma-

nipulations is the design of proteins with novel folds, ultimately at atomic precision. This is

particularly difficult as the biophysical properties of the target fold are not known a priori

and no sequence profile exists to describe its features. Therefore, most computational de-

sign efforts so far have been directed towards creating novel proteins recapitulating existing

folds. Moreover, the difficulty of this challenge (if difficulty is defined by the computational

power required per successful design) is highly non-uniform. This is due to several complicat-

ing factors such as the protein size, the size-scalability of the design algorithms, the involved

structural motifs, and even the optimal folding landscape of the target blueprint itself (e.g.

excessive internal symmetries can cause obligate kinetic frustration49).

To date, two successful attempts that used different computational strategies to generate

novel folds have been reported. The first used iterative rounds of global Monte Carlo sam-

pling and ab initio structure prediction to optimise the sequence and rotamers starting from

an initial backbone blueprint50. The second utilised overlapping helical stretches as junction

points to transition between natural fragments48. While the first strategy offers strict con-

trol over target topology (assuming no topological drift across iterations), the en masse MC
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sampling strategy is not size-scalable and does not guarantee convergence, even for small-

sized proteins. The second strategy, on the other hand, while deploying a size-scalable sam-

pling with tractable convergence, does not possess control over the resulting topology, as

the latter is strictly contingent on the chance of finding viable interfaces across the available

fragments.

Here I aim to lay out a strategy centred upon the design of novel intra-molecular inter-

faces that enables the construction of a target fold from a set of starting fragments with

an arbitrary orientation. In addition to its generality, this strategy effectively reduces the

amount of computational sampling necessary to achieve an optimal sequence, without com-

promising the level of topological control. The fragment-based approach applied here pre-

serves block-wise, linear size-scalability and focused sampling, which improves convergence

properties. On the other hand, the de novo design of loops and arbitrarily oriented interfaces

guarantees the enforced topology (Fig 1.4). This strategy should be applicable to starting

fragments of any size (i.e. motifs or domains), or composition (i.e. designed or natural),

which should be particularly useful for incorporation of functional but energetically per-

turbed motifs or structural oddities that are otherwise difficult to sample51.

I provide an example by aiming at designing a novel corrugated protein architecture that

does not exist in nature. The solenoid architecture is defined by a uniform connectivity

across its repeat units and thus winds into a continuous superhelix. The implied single loop

and interface types and obligate, uniform handedness per repeat is commensurate with a

sawtooth wave (Fig. 1.5A). This inspired me to try to double this level of topological com-

plexity, through doubling the waveform phase span; reversing the polarity periodically lead

to a triangle waveform. Figure 1.5B shows the conceived corrugated architecture, that im-

plies two interface types and two loop types, resulting in a bi-handed repeat. This novel fold

would be satisfied upon the adjoining of simpler building blocks (up-down four-helix-bundles)

into a new single domain; achieving the target fold.

I propose the following scheme:

1. Fragment picking, arbitrary docking and conformational refinement.

24



Figure 1.4: The interface-driven design strategy can efficiently yield proteins with
novel topologies. The three-step design process follows the main stages of: A) Selection
of the participating fragments according to the geometric criteria of choice. B) Arbitrary
docking of the two fragments and constrained refinement of the defined poses. C) Design
of an inter-fragment de novo interface. D) Design of a loop that bridges the fragments
across the interface.
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Figure 1.5: A corrugated repeat entails double the topological complexity of a solenoid
repeat. A) Natural solenoids encompass single interface and loop types, uniform hand-
edness, and net writhe that is analogous to a sawtooth waveform. B) In contrast, a tri-
angle waveform is twice as complex (with double the phase span). The latter waveform
models into a corrugated repeat that encompasses two loop and two interface types, no
net writhe, and a bi-handed form.
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• The three designs were attempted based on diverse building blocks, where two

were adopted from natural helical bundles, and the third from a previously com-

putationally designed bundle. This was done to demonstrate the method’s ro-

bustness, regardless of the source of the blocks.

• Only geometric terms were used to select bundle regularity and self-compatibility

in the context of the complex repeat. The fragments then underwent constrained

flexible docking with their translated images so as to minimise bend, twist and

curvature at the designed interface.

2. Combined design and geometric filtering.

• I describe a design protocol that comprises cycles of softened-repulsion sequence

sampling, side-chain sampling, backbone optimisation, docking and global confor-

mational refinement. This was interlaced with geometric filtering using an analyt-

ically derived metric that can detect packing irregularities.

• This metric has was intended to detect over- or under-packing in the averaged

atomic environment. These irregularities in the atomic pair correlation function

have been successful in discriminating high-resolution structures from poorly re-

fined ones, and robust from poor designs.

3. Unidimensional PMF-based interface ranking.

• I then deploy an adaptive potential of mean force (PMF) scheme with the aim

of calculating a variable-velocity, variable-force dissociation work function. Such

a PMF scheme, upon sufficient sampling, should account for the system’s inter-

mediate states and transient configurational changes along the reaction coordi-

nate of protomers dissociation. Therefore the simulation was calibrated for the

best correlation of affinities with experimental data at the fastest possible pulling

velocity against a protein-protein affinity benchmark. This was used to rank in-

terfaces based upon a more expensive and accurate estimation of their formation

free energies.

4. Compatible loop retrieval and design.
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• I then developed a fast, geometric search routine that applies a vectorial descrip-

tion for protein fragments across a gapped sequence sliding window. The aim of

this was to seek initial loop structures in the PDB with similar landing sites to

the termini of the designed fragments.

• These starting loop configurations are grafted across the corresponding designed

interfaces and put through a design protocol for extensive sequence and rotamer

sampling. This search-graft-design scheme greatly simplifies the backbone config-

urational sampling required during the design scheme, as it provides potentially

viable initial loop configurations that can be optimised into their structural con-

text.

5. Rotational Force Dissipation (RFD).

• I here again conceived and implemented an accelerated sampling scheme where I

titrate a ramp of crankshaft torque along the centre-most peptide bond in the de-

signed loop, and evaluate the resulting kinetic perturbation from that force. This

scheme was also validated against an internally compiled dataset of structured vs.

random-sequence loops.

• The least kinetically responsive loops in this perturb-probe scheme were chosen

for experimental evaluation.

In the second chapter, I describe my design strategy in detail, and report my biophysical

and structural results for three different design that have been experimentally evaluated.

Elucidating protein conformational landscapes in solution

For proteins to act as active effectors, they must possess complex dynamic landscapes that

are at least bistable, as functions like catalysis, signal transduction or transport necessitate

the protein molecule to partition between at least two different configurations. This moti-

vates a structural description commensurate with the underlying complex dynamical proper-

ties; a description that does not just aim at generating an ensemble representation, but also
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reconciles the macroscopic experimental observables with the statistical mechanical features

of the underlying system.

Among the main drawbacks of current protein structure determination methods is that

they either yield unrealistically static or unrealistically averaged models of the protein molecule.

In case of protein crystallography, although sub-atomic resolutions are practically attainable,

cryo-crystallography acquires data in an environment of heavily depressed atomic displace-

ments52. While NMR offers the advantage of acquiring data from a thermalised, solution-

state environment, the method’s sensitivity and acquisition shutter speed only result in data

that describe time and ensemble averages of the underlying protein dynamics53. Moreover,

the current paradigm of solving protein NMR structures primarily relies on querying the

binary information of whether an inter-atomic contact exists at a particular chemical shift

from NOESY spectra, which largely dismisses the spectral complexity and information con-

tent, and entirely ignores the negative information conveyed by peak absence. These ex-

tracted contacts are then deployed as restraints in simulations with the goal of minimising

restraint violations simultaneously across all restraints; achieving coordinates ensembles clos-

est to the average54. Such an over-restrained description effectively veils the underlying mi-

crostate distributions and their associated covariances.

My goal through this work was to accurately and comprehensively query the configura-

tional distributions underlying the acquired average quantities. Although the problem of

structural determination in general is under-determined, the reliance on constraints can ren-

der it tractable. Unlike other structure determination approaches that routinely deploy bioin-

formatic biases and heuristic methods, this work was aimed at solely deploying unbiased

mathematical and physical constraints to render the structure determination problem solv-

able. The solution sought in this work aimed at solving protein solution structures while un-

ravelling the averaged NOESY spectral data to solve the microstate probability distribution

function. The reliance on the nature and merits of the CNH-NOESY experiment allows for

generating spectra clear of many experimental artefacts and features that would otherwise

complicate the accuracy of back-calculating 1H-edited NOESY spectra. Once the theoretical

back-calculation of a spectroscopic quantity can describe the experimentally acquired data

down to the noise level, a direct mapping can be established between the spectral space and
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the conformational space.

This direct mapping between the spectral and their associated conformational spaces can

pave way for quantitative approaches to solution structure determination, validation and

refinement. Here I aimed to capitalise on this mapping capacity to develop a new approach

to solve protein solution structure and describe its dynamics through a scheme we now call

CoMAND (for Conformational Mapping via Analytical NOESY Decomposition). Figure 1.6

describes the main structure and dynamics elucidation scheme of the CoMAND approach.

I have defined my objectives and their assumptions sequentially as follows:

1. Spectral decomposition using an accurate theoretical feature set.

• I commence by the assumption that every amino acid in the protein assumes one

or more conformations in solution, and hence, a NOESY experimental spectrum

of that residue is a linear combination of one or more spectral components. Each

of these spectral components corresponds to a unique conformation.

• I seek the back-calculation of theoretical spectra that describe every conformer

individually. In this step, it is affordable to perform systematic localised sam-

pling of tripeptide or even pentapeptides along a sliding sequence window of the

protein. At this stage the angular step size can be varied for the (ϕi, ψi−1, χi,1, χi,2)

conformational degrees of freedom, as shown in Figure 1.7A (ψi−1 is referred to

here as υi). This shifted-Ramachandran space of (ϕi, υi) captures more of the

variation in peak intensities observed for the amide proton of residue i than the

conventional Ramachandran space.

• The back-calculation is performed using a existing software, SHINE (Simulation

of Hetero-Indirect NOESY Experiments), which is a heteronuclear adaptation

of the original SPIRIT software55. The back-calculated spectra of the systemat-

ically sampled conformers are used to construct a matrix W . Figure 1.7B shows

an overlapping plot of all spectra (vectors) within the matrix of L67 of human

ubiquitin (hUb). These represent the NOE contacts between the residue’s amide
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Figure 1.6: The general scheme of the CoMAND method. The protocol starts by the
acquisition of a single 3D 13C-HSQC-NOESY-13N-HSQC experiment, from which spec-
tral strips are extracted, each containing contacts to one backbone amide proton. The
second step is to conduct the signal decomposition calculations using theoretical spectra
that represent systematically sampled local conformers around the target proton. These
matrices can be either computed on-the-fly or recovered from a precomputed database
(with constant experimental parameters). Dotted boxes represent routine tasks carried
out on every structure determination project. The third step entails the generation
of local backbone potential energy surface grids that describe the relative free energy
change associated with every (ϕi, ψi−1) combination at every residue. The latter energy
maps are then embedded into a classical force field (CHARMM3628 was the force field of
choice here), where there smooth splines will serve as fold-guiding potentials. The fourth
step is running accelerated molecular dynamics simulations (AMD) to build initial mod-
els that are purely based on physical restraints and experimentally-derived conforma-
tional distributions. The penultimate stage aims at generating highly refined ensembles
that best explain the experimental spectra through performing equilibrium molecular dy-
namics (MD) simulations and subsequent frame selection. Finally, I attempt to validate
the high-resolution ensembles by demonstrating their accuracy in explaining unrelated
experimental data to that used in structure elucidation. Dashed boxes represent tasks
that do not need to be carried out routinely. For example, theoretical spectra for fixed
length peptide stretches of all possible sequences can be precomputed and stored as fea-
ture set matrices for reuse in every new project. Orthogonal validation of the method
presented here on the other hand, once established for a set of benchmark test-cases,
does not have to be carried out for every new project.
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proton and all of the locally proximal carbon-bound protons within the conforma-

tionally sampled peptide.

• As it can be shown that matrix W , even if square, can never be non-singular,

I formulate a solution that aims to maximise uniqueness. Eventually, I tackle

special test-cases to robustly demonstrate the solution uniqueness.

• I then perform positive matrix factorisation of the experimental spectrum by the

theoretical spectra, in order to solve for the combination of theoretical spectra

and their relative weights vector (h) that best explains the mixture underlying

the experimental spectrum. This should give accurate starting information on

the local conformational preferences across the protein. For example, Figure 1.7C

shows the corresponding factorisation result for hUb L67, where the recovered

theoretical spectrum can explain the experimental spectrum down to a level close

to the noise level.

2. Generate an experimentally derived, residue-wise, potential energy surface.

• If this factorisation is conducted on a relative basis, it can offer the relative prob-

ability of every conformer to contribute to the observed ensemble. Therefore a

multidimensional probability distribution the full conformational space can be

derived.

• I then convert this probability landscape, through a Boltzmann factor, into a

residue-wise relative free energy landscape. Figure 1.7D shows the corresponding

hUb L67 conformational energy map across the (ϕi, υi) space, compared against

a high-resolution crystallographic value. In addition to yielding the right con-

former as the global minimum, the full map should supply an amount of informa-

tion that cannot be generated by any other structure determination method.

3. Construct bespoke force fields.

• Since these energy maps can form the basis for initial model building, I sought

to encode them into a classical mechanics force field that can later guide fold-

ing simulations for initial model building. The resulting supplemented force field

would be bespoke on a residue-by-residue and protein-by-protein basis.
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• The CHARMM36 force field is particularly suited for this since it already pro-

vides corrective backbone cross terms (CMAPs), that are derived from QM-level

PMF simulations. This CMAP term was replaced by a bespoke residue CMAP,

wherever an experimental NOESY spectrum was available for that residue.

4. Develop accelerated simulations for initial model building.

• I then describe a guided-swarm accelerated scheme that combines the concepts

of replica exchange and simulated annealing, with the goal of overcoming the

extreme landscape ruggedness faced upon folding an entire protein. I call this

purpose-built scheme SARS for Simulated Annealing Replica Seilschaft, owing to

its rope team-like behaviour in exploring the potential energy landscape.

• I demonstrate that this routine, with the help of the guiding energy maps, can

successfully fold a linear peptide chain into a structural model that is a good

starting point for generating refined ensembles.

5. Build highly refined ensemble.

• Once an initial model is available, I equilibrate it, and run long, unbiased, canon-

ical ensemble simulations. These would routinely generate tens of thousands

of frames that represent microstates in thermal equilibrium. These trajectories

would constitute the pool of microstates from which the final ensemble would be

compiled by picking only a subset of few frames.

• To avoid overfitting, a small number of frames corresponding to the experimen-

tal data signal-to-noise ratio should be finally selected to represent the solution

ensemble. Assuming the canonical ensemble pool is k-frame-large, selecting the

lowest R-factor subset of n members implies an
(
n
k

)
computational complexity. I

attempt to evaluate the convergence and performance of several approximations,

that compile the lowest R-factor ensemble in an acceptable execution time. This

is a form of collective optimisation, where all of the residue R-factors are con-

sidered in average, with the aim of minimising across the whole protein. Figure

1.7E shows the corresponding selected ensemble at L67 of hUb.
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6. Validate the refined ensembles.

• After an ensemble is compiled on the basis of minimising the disagreement be-

tween its average back-calculated spectra and the experimental NOESY spec-

tra, its accuracy can be judged through using it to back-calculate other experi-

mental quantities that are not derived from NOESY data; i.e. to carry out true

prospective validation. Given that hUb has long served as a model system for

NMR studies, extensive solution NMR datasets are available for this purpose.

• I evaluate how can the compiled ensemble compares, in terms of correlation co-

efficients with experimental values, to the most accurate previously published

ensembles with respect to reproducing the N-H bond order parameter S2
NH, the

HNHα scalar coupling constants 3JHNHα , and residual dipolar coupling constants

(RDCs).

7. Decompose overlapped spectra.

• Overlapped resonances in the 15N and 1H dimensions result in unsolvable cases

of overlapped NOESY spectra (i.e. unassignable cross-peaks). This would con-

stitute a particularly challenging test-case for the factorisation proposition delin-

eated above. Here, I demonstrate that a standard two-component factorisation

by a concatenated feature set matrix (i.e. (Wi|Wj), for overlapped residues i and

j) can trivially yield the correct conformers solutions.

• I apply this to nine different residues from two different proteins and even demon-

strate that the recovered initial solutions may still be used to generate secondary

conformational distribution maps. While this may initially lose the long-range

contact information as degenerate noise, once an initial model is built, this infor-

mation can be still recovered within the folded model context.

In the third chapter, I describe the method development research in detail, and move on

to carry out the structure determination and refinement results for five different proteins of

diverse topologies from different structure biology projects in our institute. Special emphasis

is paid to the de novo human ubiquitin ensemble given this proteins benchmark status in the

field.
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Figure 1.7: Illustration of the key steps along the CoMAND scheme. A) The sampled
conformational degrees of freedom (ϕi, υi, χi,1, χi,2) for sequence position i (where υi)
is ψi−1). These rotamers were systematically sampled within a tripeptide fragment for
every residue along the protein sequence. B) An overlay plot of the normalised back-
calculated intensity against the 13C chemical shift dimension for all the sampled con-
formers spectra for hUb L67, with a designation of the source for every cross-peak. C) A
plot of the experimental spectrum, the recovered spectrum from the positive matrix fac-
torisation, residual intensity across them, and the R-factor for hUb L67. D) The de novo
generated conformational relative free energy map to the best two-component solution
for the same residue. The white diamond shows the high-residue crystal structure (ϕi, υi)
value (PDB: 1UBQ). E) A stick representation of the conformational preferences of the
same residue in the final ensemble.
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Chapter 2: Asymmetric Protein Design from

Conserved Supersecondary Structures

Status: Under review
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Computational design with supersecondary structures as building blocks has 
proven effective in the construction of new proteins with controlled geometries. So 
far, this approach has primarily exploited amplification, effectively harnessing the 
internal folding propensity of self-compatible fragments to achieve sufficient enthalpy 
for folding. Here we exploit an interface-driven strategy to depart from the repeat 
design realm, constructing an asymmetric, globular domain from heterologous 
supersecondary structures. We report the successful design of a dRP lyase domain 
fold, which agrees with the experimental NMR structure at atomic accuracy (backbone 
RMSD of 0.94 Å). Our results show that the residual folding information within 
conserved fragments, combined with efficient interface-directed sampling, can 
effectively yield globular proteins with novel sequences and biophysical properties.    
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1. Introduction 

Many proteins domains show clear internal symmetries in their structure and 
sequence, suggesting they have evolved by amplification of subdomain-sized fragments. 
Such re-use of small, self-compatible structural motifs provides an efficient means of 
evolving folds via a few tandem repetition steps. Repetition on the sequence level introduces 
obligate symmetries on the structural level, manifesting as pure rotational symmetries for 
closed toroids, such as TIM-barrels and β-propellers, or in combination with translational 
symmetries for open-ended solenoids, such as TPR and armadillo repeats (Söding and 
Lupas, 2003). This evolutionary mechanism has inspired numerous research efforts aimed at 
designing proteins from conserved supersecondary structures, thus generating novel 
sequences with new properties, while maintaining the parent topology (Höcker, 2014). 

To date, protein design efforts have been centred on this paradigm of repetition, 
effectively extracting the conserved sequence determinants that underlie fragment self-
compatibility. These minimal patterns of intramolecular interactions can then be further 
optimised through energy-based scoring functions to reach more stable, idealised forms 
(Parmeggiani and Huang, 2017; Parmeggiani et al., 2015). While constituting a robust means 
for consensus design, the power of this approach fundamentally rests on the amplification of 
the folding enthalpies: by a factor of  in case of closed toroids, and by a factor of  in 
open-ended solenoids, where  is the number of repeats. The free energy of interaction 
between repeats has been well established as the dominant term in folding thermodynamics 
for a wide range of such folds, and has been accurately recapitulated by a 1D nearest-
neighbour model (Kajander et al., 2005; Kloss et al., 2008). However, this dominance and 
the existence of multiple similar interfaces can lead to design failures via unintended 
associations, manifesting themselves as oligomeric self-assemblies, structural plasticity and 
domain swapping (Parmeggiani and Huang, 2017; Voet et al., 2014).  

In this work, we aim to depart from the repetition paradigm by designing a globular 
domain from two unrelated supersecondary structures, which excludes any element of 
symmetry from the design. This constraint of asymmetry eliminates the reliance on self-
compatibility of the motifs, as it implies that a single interface between the two constituent 
fragments will be the sole enthalpic driving force for folding. Our strategy is based on two 
assumptions. The first is that the sequences of subdomain-sized fragments still retain a 
fraction of the information required for spontaneous folding, even though they may not 
possess sufficient internal interactions to do so. Such information content increases toward 
the centre of sequence clusters built from homologous proteins, and thus favours the choice 
of the best-conserved building blocks (Porebski and Buckle, 2016; Wheeler et al., 2016). The 
second assumption is that the sampling problem can be simplified by restricting sequence 
optimisation to just the inter-motif interface. This enables the computational sequence and 
conformer sampling to be conducted at a very fine granularity, but also introduces minimal 
disruption of the structurally important features of the motifs. 

Our target fold is the dRP lyase domain of the human DNA polymerase beta, which 
consists of a helical hairpin motif (αα-hairpin) and a helix-hairpin-helix (HhH) motif (figure 1). 
Of the two, only the HhH-motif is widespread across many protein families (Alva et al., 2015). 
Our goal was therefore to replace the αα-hairpin, which is restricted to the dRP lyase family, 
with a ubiquitous αα-hairpin conserved across different families. Here we show that this 
approach can yield a more stable version of the fold, with modest sequence perturbation and 
a design precision at the atomic level.  
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2. Materials and Methods 
 

2.1. Computational design  

As a starting point, an HhH-motif was obtained from the dRP lyase domain of human 
polymerase beta (PDB: 4KLI). A diverse set of starting αα-hairpins belonging to the a.118 
fold of the SCOPe database was docked against this to best align to the full dRP lyase 
domain. Since mutagenesis was restricted to the αα-hairpin, the variable sequence positions 
were restricted to the new interface, and sampled amino acid types were defined by the 
fragment’s sequence profile and the position’s solvent exposure. The close-vicinity sequence 
profile of the αα-hairpins was constructed by running the fragments’ sequences through 
BLAST+ (Camacho et al., 2009) against the nr database, keeping those above 60% identity 
to the query, and then clustering (Li and Godzik, 2006) them at 95% identity. PSSMs were 
constructed using PSI-BLAST (Schäffer et al., 2001) and a lower log-odds threshold of 0.0 
was used to build the sequence sampling restraints for Rosetta, which were appended with 
extra polar or apolar amino acid identities, depending on the expected amino acid solvent 
exposure. 

The sequence and conformer sampling for the design of the new interface was 
performed via RosettaScripts (Fleishman et al., 2011). The protocol comprised a single 
generic Monte Carlo loop of 6 cycles, optimising for the energy per residue using the 
talaris2013 scoring function (Leaver-Fay et al., 2013), further filtering of decoys was done 
using the packstat score (Sheffler and Baker, 2009). Each cycle executed a routine 
comprising soft-repulsion sequence sampling, backbone optimisation (Smith and Kortemme, 
2008), and FastRelax conformational refinement (Tyka et al., 2011). The output was filtered 
through an accelerated steered molecular dynamics routine that aims at approximately 
assessing the potential of mean force (PMF) of unbinding across the designed interface. The 
free energy of unbinding ( ) was evaluated as  where  and  are 
the pulling force and velocity vector at time  and the constant pulling velocity (where 

), respectively. All decoys were aligned against a reference orientation of the HhH-
motif, while the other motif was pulled along a single dimension through a stiff spring to 
achieve a constant-velocity, variable-force steering setup that yields the free energy profile 
along the unbinding path. The protein was modelled using the CHARMM36 force field (Best 
et al., 2012), the simulations were performed in explicit solvent (TIP3P water model) and 
0.15 M sodium chloride as NPT ensembles at 310 K and 1 atmosphere using a Langevin 
thermostat and a Langevin barostat as implemented in the NAMD engine (Phillips et al., 
2005). Particle Mesh Ewald electrostatics grid of 1 Å was used with a long-range cutoff set at 
12 Å (switching at 10 Å) and a timestep of 2 fs. The reference pulling velocity ( ) was 
calibrated to 2 Å/ns with a spring constant ( ) of 50 kcal·mol-1·Å-2 where the applied force 
(  was computed as  (  being the position vector   of the 
steered atom group and  being the pulling direction vector). The systems underwent 2000 
steps of conjugate gradient minimisation before random initialisation of atom velocities and 
force application on the backbone carbonyl carbon atoms within 10 angstroms the motif 
centre-of-mass. The calculated work was used to rank designs for the next stage.  

The final stage was to conduct the Rosetta ab initio structure prediction calculations 
at full-atom detail (Raman et al., 2009). This was performed for 30 different designs, from 
which the top four were chosen as the most well funnelled folding trajectories (Table 1, 
Figure 2).     
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2.2. Expression and purification 

The genes were acquired from Eurofin Genomics, cloned into pETHIS-a using NcoI 
and XhoI cloning sites and in-frame with an N-terminal hexaHis-tag and a TEV cleavage site, 
while harbouring a kanamycin resistance gene as a selection marker. The plasmids were 
used to transform chemically competent E. coli BL21(DE3) by means of heat-shock. The 
expression procedure entailed growing of the cells in LB medium and inducing with IPTG at 
OD600 of 0.5~1 with overnight expression at 25 °C. For expression of labelled protein, a 
preculture in LB medium was grown, cells collected, washed twice in PBS buffer, and 
resuspended in M9 minimal medium (240 mM Na2HPO4, 110 mM KH2PO4, 43 mM NaCl),  
supplemented with 10 μM FeSO4, 0.4 μM H3BO3, 10 nM CuSO4, 10 nM ZnSO4, 80 nM 
MnCl2, 30 nM CoCl2 and 38 μM kanamycin sulfate, to an OD600 of 0.5~1. After 40 minutes of 
incubation at 25 °C, 2.0 gm 15N-labelled ammonium chloride (Sigma-Aldrich cat.nr. 299251) 
and 6.25 gm 13C D-glucose (Cambridge Isotope Laboratories, Inc. cat.nr. CLM-1396) were 
added in a 2.5 L culture. After another 40 minutes IPTG was added to 1 mM final 
concentration for overnight expression. Cells were collected by centrifugation at 5,000 g for 
15 minutes, lysed by a Branson Sonifier S-250 (Fisher Scientific) in hypotonic 50 mM Tris-
HCl buffer supplemented with one tablet of the cOmplete protease cocktail  (Sigma-Aldrich 
cat.nr. 4693159001) and 3 mg of lyophilised DNase I (5200 U/mg; Applichem cat.nr. A3778). 
The insoluble fraction was pelleted by 25,000 g centrifugation for 50 minutes, and the soluble 
fraction was filtered (0.45 μm filter pore size) and directly applied to a Ni-NTA column. A 5 
mL HisTrapFF immobilised nickel column (GE Healthcare Life Sciences cat.nr. 17-5255-01) 
was used for this purpose, washed consecutively by 30 mL 150 mM NaCl, 30 mM Tris buffer 
(pH 8.5) at 0, 30 and 60 mM imidazole. Fractions were collected by a gradient elution at > 60 
mM imidazole. The eluate was concentrated using 3 kDa MWCO centrifugal filters (Merck 
Millipore cat.nr. UFC901024) and loaded onto an equilibrated Superdex 75 gel filtration 
column (GE Healthcare Life Sciences cat.nr. 17517401). The gel filtration buffer used was 
always 100 mM sodium phosphate buffer (for NMR and CD transparency) composed to a pH 
of 8.0. An ÄktaFPLC system (GE Healthcare Life Sciences) was used for all chromatography 
runs.    

2.3. Biophysical characterisation  

The analytical gel filtration experiments were all done on a Superdex 75 10/300 GL 
(GE Healthcare Life Sciences cat.nr 17517501), and the collected fractions from the eluate 
were used directly for CD or NMR measurements. 1H NMR spectra were collected on Bruker 
AVIII-800 or Bruker AVIII-600 spectrometers. CD spectra were recorded on a Jasco J-810 
spectrometer, with a spectral scan window of 200-240 nm, with a sweep delta of 0.1 nm 
while averaging over 5 scans. Melting curves were measured from 20 to 100 °C, recording 
the ellipticity at 222 nm every 0.5 °C, while heating at a 1 °C/min rate. 

2.4. NMR structure determination  

All spectra were recorded at 313 K on Bruker AVIII-600 and AVIII-800 spectrometers. 
Backbone sequential and aliphatic sidechain assignments were completed using standard 
triple resonance experiments, while aromatic assignments were made by linking aromatic 
spin systems to the respective C H2 protons in a 2D-NOESY spectrum. Distance data were 
derived from a set of five 3D-NOESY spectra, including the heteronuclear edited NNH-, 
CCH-, and CNH-NOESY spectra (Dierks et al., 1999) in addition to conventional 15N- and 
13C-HSQC-NOESY spectra. A 12C-filtered 2D-NOESY spectrum was recorded for the 
observation of contacts to aromatic groups. Backbone dihedral angle restraints were derived 
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using the TALOS-N server (Cornilescu et al., 1999). Sidechain rotamers were assessed 
using an HNHB experiment. Hydrogen bond restraints were applied for amide protons that 
were protected from solvent exchange and where acceptors were consistently identified in 
preliminary calculations. These were applied in the simulated annealing calculations as 
pseudo-covalent bonds. 

Refinement was carried out by comparing experimental and back-calculated NOESY 
spectra using in-house software. 1D strips were back calculated for the amide protons of all 
ordered atoms, plus selected sidechain groups. These were compared to the experimental 
spectra, yielding backbone and sidechain dihedral angles. As the intensities of intra-residue 
and sequential NOESY cross peaks are evaluated in this process, only medium and long-
range contacts were further considered as distance restraints. Structures were calculated 
with XPLOR (NIH version 2.9.4) using standard protocols with modifications for the inclusion 
of hydrogen bonds as pseudo-covalent bonds. Non-bonded parameters were updated to 
match those used in the MOLPROBITY structure quality evaluation suite (Chen et al., 2010; 
Davis et al., 2007). For the final ensemble, 50 structures were calculated and 21 chosen on 
the basis of lowest restraint violations. An average structure was calculated and regularized 
to give a structure representative of the ensemble. Details of the input data and the final 
ensemble are given in Table 2. The coordinates for the structure were deposited into the 
Protein Data Bank with accession: 6H5H. 

 

3. Results 
 

3.1. Novel dRP lyase-like domain assembly  

Apurinic/apyrimidinic (AP) sites, in addition to being a form of DNA damage, 
constitute a major intermediate product along base excision repair pathways. The repair of 
these sites is performed via 5’ incision, deoxyribophosphate (dRP) excision, DNA extension, 
and ligation. Polymerase beta participates in one such pathway by conducting the DNA 
extension, through a typical arrangement of finger, palm and thumb domains that are 
collectively responsible for the DNA polymerase activity. Additionally, the polymerase 
possesses an 8 kDa N-terminal domain capable of carrying out the dRP excision step; the 
dRP lyase domain (Matsumoto and Kim, 1995). This domain is comprised of an αα-motif and 
an HhH-motif, and mutational analysis has identified two essential residues for the dRP lyase 
acitivity: K72 and Y39. The actual catalytic role as the Schiff base mediating the β-elimination 
reaction was shown to be played by K72 (on the HhH-motif), while Y39 (on the αα-hairpin) 
structurally stacks against the AP site (Matsumoto et al., 1998). Here we sought to 
reconstruct the dRP domain by combining this ancestral HhH-motif with a heterologous 
ancestral αα-hairpin obtained from a TPR-like fold. The main goal of the design process was 
to obtain a new hydrophobic core at the interface between these motifs (Figure 1C). This was 
performed with the additional constraint of keeping the HhH-motif, which harbours the 
catalytic centre, compositionally fixed, in order to enable future mechanistic and functional 
work. 

3.2. Computational cross-fragment interface design  

To keep the HhH-motif constant, we performed one-against-many docking; a single 
HhH-motif against a set of ancestral TPR-like αα-hairpins. The docking stage aims at 
conformationally refining the initial models under an RMSD constraint to the target topology, 
with the reference being the human dRP lyase domain. In order to avoid sequence 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

deviations far from the starting fragments, mutational sampling bias was imposed towards 
the existing sequence diversity within the close-vicinity profiles of the αα-hairpin. This was 
done by building and extracting the information from position-specific scoring matrices 
(PSSMs). While sampling for the HhH-motif was restricted to conformational refinement, 
sequence sampling and conformational sampling were conducted on the αα-hairpin to 
minimise the inter-motif interaction energy. The main sampling routine thus comprised a 
combination of sequence sampling, sidechain rotamer sampling, backbone refinement, and 
rigid-body docking, which were performed with an initially softened steric repulsion term. The 
generated decoys were filtered progressively, with each stage involving more 
computationally intensive criteria. At first, these iterations were filtered by measures of 
atomic packing quality and total energy. Secondly - with the goal of more accurately 
estimating the interaction free energy of the designed interfaces - potential-of-mean-force 
calculations were conducted through constant-velocity, variable-force steered molecular 
dynamics (SMD) simulations (Materials and Methods). The interaction free energy was 
calculated from the velocity-scaled integral of the force as a function of time, and was used to 
rank the candidates accepted for the next stage. The final filtering stage was conducted 
through template-free structure prediction of the designed sequences using Rosetta ab initio 
folding simulations. The aim was to select the designs for which the predicted decoys with 
the lowest energy score have the lowest backbone RMSD from the design coordinates. 
Thirty candidates have undergone such sampling, and the top four designs with the most 
funnel-shaped folding landscapes were finally chosen for experimental evaluation (Figure 2, 
sequences in Table 1). 

3.3. Biophysical properties 

All of the four selected designs were expressed and soluble in Escherichia coli to 
varying extents. Two were successfully purified in large quantities and appeared to be 
monomeric. The fourth design (polb4) appeared to be stably folded and purely monomeric, 
as evidenced by analytical size-exclusion chromatography (Figure 3A). Circular Dichroism 
(CD) experiments and 1D NMR spectra showed polb4 to be of a strongly alpha helical 
character (Figure 3B) and to possess good NMR dispersion. Thermal unfolding experiments 
of polb4 resulted in a single-phase equilibrium unfolding transition at 72 °C (Figure 3C), 
which is conducive of a stable single domain behaviour. The van't Hoff fit for polb4 (Figure 
3D) indicated an unfolding free energy of 34.8 kJ/mol (at 20 °C), with an underlying enthalpy 
change of 231.1 kJ/mol and an entropy change of 0.7 kJ/mol·K, assuming a two-state model. 
We have also compared the folding stability of the designed domain against the wild type 
domain with the added C-terminal sequence: KLRKLEKIRQDDTSSSINFLT, which is the 
extra C-terminal sequence included in the PMF simulations. The results showed a melting 
transition for the wild type at 46 °C compared to 77.8 °C for the design. Moreover, at the 
same concentration, the design shows more than twice the ellipticity of the wild type (Figure 
4).  The low entropy value, combined with the high free energy of unfolding for polb4, is 
indicative of very favourable thermodynamics for polb4. Given its high expression level, 1D 
1H spectral dispersion and its apparent monomeric status, we sought to solve the structure of 
polb4 using NMR spectroscopy. 

3.4. Solution structure of polb4 

 The compiled NMR ensemble consisted of 20 frames and was very focused, with a 
backbone RMSD from the average structure stood at 0.28 ±0.08 Å. This conformational 
homogeneity was matched to atomic agreement between the experimental structure 
ensemble and the designed coordinates, where the average backbone RMSD between the 
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ensemble and the design was 0.94 Å (Figure 5A). Most of that deviation stems from the 
slight departure of the experimental structure’s C-terminal helix in comparison to the design. 
The design appears to be more densely packed, which may be expected, as we compare the 
thermalised solution structure to the energy minimised design coordinates. Inspecting the 
side chain rotameric accuracy at the interface shows that 14 out of 16 side chain rotamers 
were correctly predicted by the design model, with an average all-atom RMSD distance of 
1.4 Å between the structure and the design (Figure 5B).   

 

4. Discussion 

A significant level of internal redundancy has been shown to exist across natural 
proteins, where similar subdomain-sized fragments are scattered across different folds (Alva 
et al., 2015; Söding and Lupas, 2003). The detectable homology among some of these 
fragments has led to the proposal that illegitimate recombination of DNA fragments encoding 
them represents a parsimonious mechanism of fold evolution. The natural re-use of such 
conserved motifs within different structural contexts suggests their potential robustness as 
building blocks that are optimized for folding. Several previous protein design studies have 
successfully utilised such supersecondary structures to build scaffolds with diversified 
biophysical properties (Höcker, 2014), however, they were all exploiting repetition (on the 
structure or sequence level), yielding pseudo-symmetric repeat proteins with sizes that are 
multiples of their unique constituting fragments. This repetition easily amplifies the folding 
enthalpies arising from inter-fragment contacts, rendering these designs more attainable.  

Here we progress to construct an asymmetric fold with a single inter-fragment 
interface, consisting of two heterologous supersecondary structures. Whereas the HhH-motif 
has homologues across a wide range of protein families, the αα-hairpin of dRP lyase is 
limited to this family. This prompted us to study whether the latter could be replaced by an 
αα-hairpin that is equally wide-spread across numerous protein families, based on the 
premise that highly conserved sequences have more residual folding information, and thus 
are more robust to sequence optimisation in different contexts (Porebski and Buckle, 2016; 
Wheeler et al., 2016). Since this was an effort to replace one fragment by another, we limited 
the sequence design to the inbound fragment, while keeping the rest of the domain constant.       

Such non-repetitive configurations pose a significant challenge, as the sampled 
folding enthalpies stem only from a single inter-fragment interface. This represents a shallow 
potential energy basin compared to repetitive architectures. It has been previously shown 
that computationally designing large interface surface areas and incorporation of large, 
flexible side chain residues across protein-protein interfaces becomes prohibitive due to the 
associated breadth of sampling (Stranges and Kuhlman, 2013). We therefore propose that, 
despite the shallowness of the basins involved, small interfaces nevertheless provide a 
narrow search space that allows for extensive rotameric sampling at a fine granularity, and 
that more accurate estimations of their binding free energies can improve the design success 
rate. The advantage brought by such rigorous sampling not only averts the poor packing 
obtained from coarse-grained rotameric sampling, but also greatly enhances the design 
precision, as emphasized by the highly accurate prediction of rotameric states achieved in 
our design. 
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Tables 

Table 1. Experimentally tested design sequences and their starting fragments 

 

 

  
  

 
polb1         TLNGVIKNMLVEEAKLAEQAERYDDMAVAMKAVTVIAKYPHKIKSGAEAKKLPGVGTKIAEKIDEFLATG 
frag1(2o02)   ----MDKNELVQKAKLAEQAERYDDMAACMKSVTEQG--------------------------------- 
                  : ** **::**************..**:**   
 
 
polb2         TLNGAIATMLAELARYAFNNQWWDLSVQEAIAAKVLAKYPHKIKSGAEAKKLPGVGTKIAEKIDEFLATG 
frag2(1QSA)   ---SKSKTEQAQLARYAFNNQWWDLSVQATIAGKLWD--------------------------------- 
                 .   *  *:**************** :**.*:                           
                         
 
polb3         TLNAFVASMLVEIANALRRVGDERDATTYLIAACKVGKYPHKIKSGAEAKKLPGVGTKIAEKIDEFLATG 
frag3(1wy6)   ---EVSASILVAIANALRRVGDERDATTLLIEACKKG--------------------------------- 
                    **:** **************** ** *** *                        
 
 
polb4         TLNGALVNMLKEEGNKALSVGNIDDALQYYAAAITLDKYPHKIKSGAEAKKLPGVGTKIAEKIDEFLATG 
frag4(1elw)   ----EQVNELKEKGNKALSVGNIDDALQCYSEAIKLD--------------------------------- 
                    ** ***:*************** *: **.**                        
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Table 2.  Solution structure statistics 

 SA <SA>r 

Restraint Violations1 

Distance restraints (Å) 

All (139) 0.008  0.001 0.006 

Medium range (9) 0.016  0.001 0.015 

Long range (79) 0.009  0.001 0.006 

H-bond (51) 0.000  0.000 0.000 

Persistent viol. thres.2 0.038 - 

Dihedral restraints (°) 

All (181) 0.14  0.006 0.14 

Persistent viol. thres.2 0.65 - 

H-bond restraints3 

Distance (Å) (51) 2.07  0.11 2.02  0.03  

Antecedent angle (°) 15.2  5.4 16.2  4.3 

Covalent Geometry 

Bonds (Å  10-3) 2.05  0.03 1.90 

Angles (°) 0.56  0.01 0.56  

Impropers (°) 1.53  0.03 1.52 

Structure Quality Indicators4 

Ramachandran Map (%) 100.0 / 0.0 / 0.0 100.0 / 0.0 / 0.0 

Atomic R.M.S.D (Å)5 

 

 Backbone Heavy Atom All Heavy Atom 

SA vs <SA> 0.28  0.08 0.80  0.09 

SA vs <SA>r 0.42  0.14 1.06  0.09 

<SA> vs <SA>r 0.32 0.82 
 

1 Violations are expressed as RMSD  SD unless otherwise stated. Numbers in brackets indicate the 
number of restraints of each type. 

2 Persistent violations are defined as those occurring in at least 75% of all structures. The thresholds 
at which no persistent violations occur are tabulated. 

3 Hydrogen bonds were treated as pseudo-covalent bonds. Deviations are expressed as the average 
distance/average deviation from linearity for restrained hydrogen bonds. 

4 Defined as the percentage of residues in the favored/allowed/outlier regions of the Ramachandran 
map as determined by MOLPROBITY (Chen et al., 2010; Davis et al., 2007). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5 Structures are labeled as follows: SA, the final set of 21 simulated annealing structures; <SA>, the 
mean structure calculated by averaging the coordinates of SA structures after fitting over secondary 
structure elements; <SA>r, the structure obtained by regularizing the mean structure under 
experimental restraints. RMSD values were obtained based on superimpositions over ordered residue 
(defined as E1-G71). 
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Figures 

Figure 1. Stages of asymmetric globular protein design from conserved supersecondary 
structures through an interface-driven strategy. The top-left pane shows our initial target fold, 
which is of a human DNA polymerase beta dRP lyase domain. The top-right pane shows the 
first stage of diverse fragment selection, where we select motifs from heterologous and 
unrelated domains. This is followed by an arbitrary rigid-body optimisation and 
conformational refinement that precedes the total interface design procedure (bottom-left 
pane). The bottom-right pane shows the final output design coordinates (polb4).   

Figure 2. Experimentally tested design coordinates and their Rosetta ab initio folding 
funnels. Top pane shows a cartoon representation of the designs of polb1, polb2, polb3 and 
polb4. Bottom pane shows the corresponding Rosetta ab initio folding predictions scores (in 
Rosetta energy units) against the root mean square deviation from the design backbone 
coordinates.  

Figure 3. The hydrodynamic and thermodynamic properties of polb4. (A) Size exclusion 
chromatography shows polb4 to be almost exclusively monomeric. Gray line shows 
hydrodynamic markers designating (1) Elution void volume, and globular proteins of 
molecular weights: (2) 75 kDa, (3) 29 kDa, and (4) 13.7 kDa. Solid line shows polb4 elution 
peak, which corresponds to its expected monomeric state. (B) Circular dichroism spectrum 
polb4 showing an ellipticity pattern of a majorly helical protein. (C) Equilibrium melting curve 
as a function of ellipiticity at 222 nm, with melting transition inflection at 72 °C. (D) The van't 
Hoff fit explains the unfolding transition well and estimates a unfolding free energy change of 
34.8 kJ/mol at 20 °C (unfolding enthalpy and entropy changes are shown for the linear fit). 

Figure 4. Polb4 is significantly more stable than the wild type. (A) Melting curve for the 
wildtype dRP lyase domain with the C-terminal extension KLRKLEKIRQDDTSSSINFLT. The 
inset CD spectrum shows a weak helical signal, with melting transition inflection at 46 °C. (B) 
Melting curve for the corresponding polb4 construct, with melting inflection at 77.8 °C, and 
much stronger helical character (inset). 

Figure 5. NMR structure of polb4 and the conformational precision of its design coordinates. 
(A) The experimental NMR structure ensemble (purple ribbons; Protein Data Bank 
accession: 6H5H) and the design coordinates (orange cartoon). The overlay shows the 
highly focused structure of NMR ensemble with a backbone RMSD of 0.28 Å from the 
average structure, while the average RMSD distance of ensemble from the design was 0.94 
Å. (B) The designed side chain rotamers at the interface match the experimental structure 
very well; 14 out of 16 rotamers were correctly predicted by the design model. 
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ABSTRACT: Designing proteins with novel folds remains a
major challenge, as the biophysical properties of the target
fold are not known a priori and no sequence profile exists to
describe its features. Therefore, most computational design
efforts so far have been directed toward creating proteins that
recapitulate existing folds. Here we present a strategy centered
upon the design of novel intramolecular interfaces that
enables the construction of a target fold from a set of starting
fragments. This strategy effectively reduces the amount of
computational sampling necessary to achieve an optimal
sequence, without compromising the level of topological
control. The solenoid architecture has been a target of
extensive protein design efforts, as it provides a highly modular platform of low topological complexity. However, none of the
previous efforts have attempted to depart from the natural form, which is characterized by a uniformly handed superhelical
architecture. Here we aimed to design a more complex platform, abolishing the superhelicity by introducing internally
alternating handedness, resulting in a novel, corrugated architecture. We employed our interface-driven strategy, designing three
proteins and confirming the design by solving the structure of two examples.

KEYWORDS: alternating handedness, novel fold, protein design, protein structure, repeat protein

Computational design has thus far been very successful in
diversifying the geometries and sequences of existing

folds. This has been largely assisted by the presence of one or
more starting structures for redesigning a particular fold, and
the associated data that underpin its sequence determinants. In
contrast, designing novel folds with a predetermined backbone
blueprint, while offering a vast new range of designable folds,
renders the gross sequence and rotamer sampling problem
intractable. A fragment-based approach can greatly reduce this
search space, as starting building blocks already carry intrinsic
folding information. In addition to maintaining control over
the level of adherence to a target fold, this approach also offers
the possibility of coarse-graining the assembly problem by
choice of the building block sizes. The latter may range from
secondary structural elements to large subdomain or domain-
sized fragments.1 This effectively decomposes the problem into
searching for optimal interfragment interfaces and loops. This
promises to focus the available computing resources on
accurately and exhaustively exploring restricted spaces, instead
of sparsely exploring much larger ones. Here we demonstrate
the capacity of this interface-driven approach as an efficient
means for novel fold design.
For many years repeat proteinsin particular solenoids

have been a central topic of protein design. Unlike globular
proteins, their low contact order and compositional uniformity

have made them excellent platforms for investigating sequence-
structure relationships and dissecting the energetics of protein
folding.2 They have also served a wide range of applications as
antibody-like tailored synthetic binding proteins selected from
libraries, and some have even progressed to late-stage clinical
trials.3 Because of their favorable biophysical properties, they
have also been developed into crystallization chaperones.4

Initially, design efforts on solenoids were aimed at generating
more robust variants through sequence idealization.5 More
recently, the vast potential of solenoid proteins as tunable
scaffolds has motivated computational design aimed at
expanding the available repertoire of solenoid configurations
with atomic accuracy.6 These controlled geometries have
included previously unobserved forms. However, despite this
considerable success, to date the general solenoid architecture
has not been altered. Here we aim to move beyond the
solenoid, exploiting an incremental increase in the topological
complexity to create a corrugated arrangement so far not
observed in nature.
Solenoid proteins are characterized by a uniform con-

nectivity between repeat units and thus wind into a continuous

Received: May 28, 2018
Published: August 27, 2018

Research Article

pubs.acs.org/synthbioCite This: ACS Synth. Biol. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acssynbio.8b00224
ACS Synth. Biol. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

M
PI

 F
U

R
 E

N
T

W
IC

K
L

U
N

G
SB

IO
L

O
G

IE
 o

n 
Se

pt
em

be
r 

6,
 2

01
8 

at
 0

7:
37

:0
6 

(U
T

C
).

 
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

 

pubs.acs.org/synthbio
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.8b00224
http://dx.doi.org/10.1021/acssynbio.8b00224


superhelix.7 This implies a single interunit junction type
(defined as an interface and a connecting loop), where the
units are bound to possess the same handedness. A waveform
description of this periodic fold can be made by plotting the
change in dihedral angle around the superhelical axis versus
sequence position, which takes the form of a sawtooth wave
(Figure 1A and Figure S9). The next step in complexity
involves the alternating use of two junction types with opposite
handedness; under the waveform description this topology
adopts the form of a triangle wave (Figure 1B and Figure S9).
Such a bihanded topology can be obtained by doubling the size
of the building block and introducing a new junction of the
opposite handedness to that of the starting block. In contrast
to solenoids, the alternating handedness eliminates super-
coiling. Here we have taken this approach to construct the
corrugated target architecture, using an interface-driven design
strategy that builds upon existing, simpler structural blocks and
minimizes the amount of sampling required to achieve a target
fold.

■ RESULTS AND DISCUSSION

Design Strategy. To construct the target topology, two
unique helical hairpins, two unique interfaces, and two unique
loops are required. The use of an up−down four-helix-bundle
as a starting point provides two hairpins, a single interface and
a single loop. The design of a second interface with the
translated image of the bundle and of a second connecting
loop is then sufficient to complete the target fold (Figure 1C).
For this purpose, we employ a two-stage strategy: The first
aimed at designing an intramolecular interface between two

arbitrarily posed building blocks. This arbitrary docking step is
only constrained by N- to C-terminal distance between the two
blocks, a distance that can be defined by the allowed loop
length. The second stage is aimed at contructing a loop across
this interface.
We began by compiling a set of four-helix-bundles from the

Protein Data Bank (PDB) that satisfied a set of geometric
criteria defining regularity, bundle height range, and internal
hairpin similarity. Initial poses were built between the bundle
backbones and their translation images. The relative
orientations were made to minimize the twist and curvature
at the connecting interface along the central axis. This step was
followed by the main sampling routine, where a combination
of sequence sampling, side chain rotamer sampling, backbone
refinement, and rigid-body docking were performed with an
initially softened steric repulsion term. For efficient sampling,
different iterations of the main Monte Carlo sampling loops
were interlaced with a geometric filter. The latter being aimed
at eliminating solutions with poor residue packing quality,
before further rounds of design are resumed. The sequence
sampling was restricted to the interface positions, while
conformational refinement was performed globally (Materials
and Methods, Figure S1). With the goal of further filtering the
generated decoys by estimating the interaction free energy of
the designed interfaces, more expensive potential-of-mean-
force calculations were conducted through variable-velocity,
variable-force steered molecular dynamics (SMD) simulations.
The interaction free energy between the building blocks was
calculated from the convolution of the velocity and force
functions, and was used to rank the candidates accepted for the

Figure 1. Solenoid repeat, corrugated repeat and design strategy. (A) Natural solenoids have repeats with a single junction type (blue circle) and a
uniform handedness; they can thus be described by a sawtooth wave. The wave represents the torsion angle along the superhelical axis between the
first and the nth residue. (B) A corrugated fold, represented by a triangle wave, would entail bihanded repeats, and thus require two junction types;
Figure S9 shows actual values for idealized templates. (C) A two-stage strategy of interface design and loop construction; Geo: geometric filtering
calculations, PMF: Potential of mean force energy calculations, RFD: Rotational force dissipation simulations. The target fold is built from a four-
helix-bundle (orange) and its translational symmetry image (purple); top panel. The interface was then spanned by a grafted loop (purple); bottom
panel.
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loop design stage. The described simulation setup applies a
more adaptive pulling scheme of a previous constant-velocity
setup that we have previously benchmarked against a subset of
a protein−protein affinity data set8 (Materials and Methods).
This accelerated form of free energy estimation method has
been shown to be particularly suited for protomers that do not
undergo major conformational changes upon unbinding,9

which was assumed here given the nature of our building
blocks.
The next stage was to construct the loop that connects the

newly designed interface. For this we searched the PDB for
loop configurations that could serve as initial templates. The
search routine scanned structures with a gapped sliding
window, based on a generic description of the geometry
defined by the ending and starting segments of adjacent repeat
units (Figure S2). This description was obtained using the
dihedrals profile, the axial vectors of the relevant segments and
their orientations (Materials and Methods). The grafted loops
were then subjected to combined sequence and conformer
sampling, and all resulting loop compositions were evaluated
using an accelerated molecular dynamics scheme. The routine
applies a linear ramp of rotational force across the peptide
bond at the center of the loop in a crankshaft fashion. This
linear force titration, results in a nonlinear rotational response.

the resulting nonlinear rotational kinetic energy is evaluated
across the simulation time. The loop compositions that
required the highest force magnitudes to induce rotational
motion were selected for experimental evaluation (Materials
and Methods, Figure S3).

Choice of Building Blocks. Three starting template
bundles were adopted from three different natural proteins,
to evaluate the generality of the approach and the choice of
purely geometric criteria for template inclusion. The first
design, BRIC1 (for Bihanded Repeat with Internal Corruga-
tion), was constructed from a template bundle from the CheA
histidine phosphotransfer domain (PDB: 1I5N);10 the second,
BRIC2, from the DRNN four-helix-bundle, which had
previously undergone a total computational redesign of its
hydrophobic core (PDB: 2LCH);11 and the third, BRIC3,
from a focal adhesion targeting domain (PDB: 3B71).12 While
one 2LCH is a monomeric solution structure, 1I5N and 3B71
do not possess any crystallographic arrangement similar to that
proposed in Figure 1C. In the design process, BRIC1
underwent 12 mutations on the N-terminal face of the
designed interface and 13 on the C-terminal face. BRIC2
underwent 12 mutations on the N-terminal face and 12
mutations on the C-terminal face; in addition to 2 mutations in
the core of each bundle. BRIC3 underwent 20 mutations on

Figure 2. All three designs were folded. The first column shows the designed models as cartoon representation. The second column shows the
respective CD spectra of the designs. The third column shows the melting curves of the designs, where BRIC1 and BRIC3 exhibit monophasic
unfolding, while BRIC2 does not thermally unfold below 100 °C.
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the N-terminal face and 17 mutations on the C-terminal face.
Structure-based sequence alignments of the designs to their
respective starting templates are shown in Table S1. The
interface for BRIC1 was bridged by a 5-residue-loop, for
BRIC2 by a 7-residue-loop, and for BRIC3 by a 6-residue-loop
containing a disulfide bridge. For each of the designs, we
explored experimentally the minimal form consisting of two
repeat units. For BRIC1, we retained the native C-terminal
helix of the phosphotransfer domain as a C-terminal capping
helix.
Biophysical Characterization. We expressed the proteins

in Escherichia coli and purified them using immobilized metal
ion affinity chromatography (Materials and Methods). All
three were primarily monomeric by analytical size-exclusion
chromatography, although they all showed pH-dependent
oligomerization. Their well-dispersed 1D NMR spectra were
consistent with folded proteins (Figures S6 and S7) and their
circular dichroism (CD) spectra with predominantly helical
secondary structure (Figure 2). In thermal unfolding experi-
ments, BRIC1 and BRIC3 showed single-phase equilibrium
unfolding at 86 and 67 °C, respectively, while BRIC2 did not
exhibit any melting transition. The monophasic melting
transition of BRIC1 corresponds to that of a single, compact
domain. This emphasizes the success of our interface design, as
it implies that the enthalpy of the designed junction matches
that of the native one. The three constructs underwent
crystallization screening and only BRIC1 readily yielded
diffracting crystals, BRIC2 was fused to a crystallization
chaperone, while BRIC3 did not express in sufficient yield in
M9 minimal medium or in fusion with the crystallization
chaperone
Crystal Structure of BRIC1. Crystallization screens

yielded well-diffracting BRIC1 crystals, for which we obtained
data to 2.5 Å resolution in space group C2. The crystals
contained one BRIC1 monomer in the asymmetric unit, which
was unambiguously located in a molecular replacement trial
searching with the full design model, in the first attempt and
with high contrast. However, after initial refinement, it became
apparent that the connectivity between the two four-helical
halves of the protein differed from the design. Clear electron

density showed the linker in an extended conformation,
resulting from a domain-swapped dimeric assembly. In this
assembly, two elongated BRIC1 protomers, related by the
crystallographic 2-fold symmetry, are associated in an
antiparallel fashion, such that the N-terminal four-helix bundle
of one protomer interfaces with the C-terminal bundle of the
other protomer, and vice versa (Figure 3 and Table S2). Given
that BRIC1 also shows a minor dimeric form in solution
(Figure S4), it appears that this form was selectively
crystallized. As a result, the inter-repeat interface has entirely
retained the designed interface features. This had a swapped
backbone RMSD to the design of 1.82 Å (all-atom RMSD was
2.1 Å) across the entire structure, excluding the loop.

NMR Structure of BRIC1. To address the nature of the
monomeric form of BRIC1, we prepared isotope labeled
samples for solution NMR. Diffusion coefficients measured on
freshly prepared samples were consistent with the designed
monomer (Figure S5). However, dimeric and higher
oligomeric forms accumulated over time, impacting on the
quality of spectra. This feature, combined with the ambiguity
intrinsic to repeat sequences, precluded full resonance
assignment and thus high-resolution structure determination.
We therefore adopted a strategy aimed at creating a low-
resolution model, using a sample selectively 13C-labeled on
methionine methyl groups to define interhelical contacts
(Materials and Methods). An initial observation was the
similarity of chemical shifts between the repeats, indicating that
both adopt very similar structures. Interhelical contacts then
defined intra- and inter-repeat junctions very similar to those
observed in the crystal, with the C-terminal repeat identified by
contacts to the unambiguously assigned C-terminal capping
helix. The compiled data were sufficient to define the
monomer structure, using the domain-swapped crystallo-
graphic protomer as a starting point (Figure 3B and Table
S3). The calculated monomer ensemble agrees well with the
design, with an average backbone RMSD of 1.8 Å (all-atom
RMSD ranged from 2.5 to 2.9 Å, excluding the capping helix).

Crystal Structure of BRIC2. In contrast to BRIC1, BRIC2
did not yield well-diffracting crystals in the first attempt. For
this reason, a rigid shared helix fusion to DARPin D12

Figure 3. Experimental structures of BRIC1 and BRIC2 confirm the design. (A) The crystal structure of the 3D domain-swapped dimer, with
individual protomers (colored by sequence position from cyan to blue) superimposed on the design (yellow). (B) The low-resolution NMR model
of the BRIC1 monomer superimposed on the design (colors as in panel A). (C) The crystal structure of BRIC2 (blue) superimposed on the design
(orange).
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(designed ankyrin repeat protein D12) was constructed.
DARPin D12 had been previously identified as well-
crystallizing under many different conditions and thus serving
as a crystallization chaperone when rigidly fused to other
repeat proteins.4a An N-terminal fusion of the DARPin was
built in silico and both the shared helix and residues within 5 Å
proximity were sequence-optimized using Rosetta f ixed back-
bone design, as previously described.4a Crystals appeared after
25 days, diffracted to 3.0 Å resolution and the data were
integrated in space group P1. For the molecular replacement, a
model of the DARPin was used as a search model and the
design models of BRIC2 were manually fitted into the density
(refinement statistics are provided in Table S4). Out of the
four molecules of the asymmetric unit, chain B and D looked
as designed and a slight bend of the shared helix was observed
for chains A and C, due to crystal forces (Figure S8). Clear
electron density was visible for the whole BRIC2 domain and
the designed loop, connecting the two repeats, could be built.
In comparison to BRIC1, BRIC2 was monomeric and no
domain swap was observed in all of the four chains, proving the
successful interface design between the two helical bundles
(Figure 3C). The overall backbone RMSD ranged from 2.27 to
3.0 Å (all-atom RMSD ranged from 2.8 to 3.4 Å), and

confirmed both the design and the potential of DARPin D12 as
a crystallization chaperone.

Architectural Uniqueness and Interface Design
Precision. To contrast the BRIC architecture to the nearest
existing folds, we conducted structure searches against the
entire PDB using PDBeFOLD13 and DALI,14 and the ECOD
database15 using TM-align.16 No folds were found that
structurally align along the full length of our designed
structures. Any similarity detected was largely localized to a
four-helix-bundle substructure. PDBeFOLD did not recover
any significantly related hits, while the best TM-align hits had
TM-scores <0.55 and did not share significant similarity with
our BRICs. For the DALI searches we selected three structures
based on their alignment lengths and secondary structures
arrangements. Figure 4A shows the structures and idealized
topologies of these hits contrasted against the BRIC topology.
Two of these hits (3D19 and 4AKK) were topologically similar
to each other, but with opposite chain paths. These were
composed of two uniformly handed four-helix-bundles with N-
and C-termini abutting each other at the connecting interface;
a close-ended configuration that results from the parallel
orientation of the helical hairpins to the main axis. The third
hit (3AY5) consisted of two dissociated antiparallel helical
domains, with one being a right-handed, side-connected

Figure 4. Architectural uniqueness and interface accuracy of the BRIC designs. (A) A comparison between the idealized BRIC architecture and the
closest architectures through structural similarity searches. The structures are colored by chain path from blue to yellow. (B) Polar and Cartesian
disparity between the designs and experimental structures of BRIC1 and BRIC2. The top panel shows the angular deviation from design values for
the tilt (θ), bend (β) and curvature (κ) across the designed interface in green, teal and cyan, respectively. Each dot represents either an NMR
model or one of the asymmetric unit chains (the single chain of the BRIC1 crystal structure is represented by orange crosses). The bottom panel
shows the CAPRI evaluation criteria (Lrms, Irms and fnat) for the designed interfaces (defined in the Materials and Methods). The red, green and
blue dashed horizontal lines mark the high, medium and acceptable ranks, respectively. Error bars represent the standard error across asymmetric
unit chains of NMR models (some error bars are within the dot diameter).
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bundle, and the other a left-handed, diagonally connected
bundle.
To evaluate the interface design precision, we measured the

polar and Cartesian error across the interface (Figure 4B). The
polar deviations of the interface between designs and
experimental structures were defined in terms of tilt (θ),
bend (β) and curvature (κ). Polar deviations in BRIC1 were
lower in the solution structure than in the crystal structure,
with the highest deviation in the κ dimension. BRIC2,
however, exhibited a larger range of deviations between the
asymmetric unit protomers, particularly, along the β and κ
dimensions. As these large interprotomer deviations would
potentially build-up in a multirepeat scenario, we carried out
molecular dynamics simulations for a five-bundle-repeat model
of BRIC2. The deviations in the solvated simulations were of
smaller magnitude, averaging below 8.0°, 6.6° and 3.0° for |θ|,
|β| and |κ|, respectively, at the four designed interfaces. We
therefore expect most of these deviations to stem from the
crystal packing. For estimating the Cartesian precision at the
interface, we calculated the evaluation criteria used in the
CAPRI interaction prediction competition: Lrms, Irms and f nat.

17

The three structures ranked medium on the Lrms score. The
BRIC1 solution structure ranked medium on the Irms score,
while the two crystal structures ranked acceptable. All three
structures ranked high on the f nat score. In spite of the
asymmetric nature of the two-sided interface design, the
intramolecular four-helix-bundle backbone RMSD was minor;
0.8 Å within design and 1.1 Å within structure for BRIC1, and
0.9 Å within design and 1.3 Å within structure for BRIC2. The
design vs structure values were 0.6 Å for both respective
bundles of BRIC1, and 1.2 and 1.3 Å for the first and second
bundles of BRIC2, which affirms the rigid incorporation of the
building blocks.

■ CONCLUSIONS
At the frontier of protein design is the aim to provide new
scaffolds for functionalization, this potential has made repeat
architectures attractive design targets. Internal cross-align-
ments in our experimental structures show that minimal
structural perturbation has been introduced to the starting
building blocks, leading to the possibility of constructing
longer repeats. With this architecture, the large-sized building
blocks can harbor functional features from selected parent
blocks, or afford more extensive engineering owing to their
expanded substructural diversity, as compared to repeats with
smaller building blocks.
Protein design efforts have so far been biased toward

assembling idealized secondary structure elements. As such
they do not reflect natural proteins, where structural
deformities are common and often associated with functional
motifs. The difficulty of sampling such deformities is an
inherent barrier to the designability of these motifs.18 A
successful design strategy that sidesteps this problem, and even
creates new topologies, has been to combine natural
substructures by directly using structurally similar fragments
as overlapping connectors.19 This, however, does not allow
strict control of target topologies, since it is contingent upon
the existence of overlaps that yield viable intramolecular
interfaces. In contrast to this connectivity-driven approach, we
introduce an interface-driven approach that is capable of
delivering novel topologies from an arbitrary arrangement of
building blocks. Moreover, this strategy employs sequence and
conformational sampling focused only on the junctions

between building blocks, and separates interface optimization
from loop design, thus adding to the overall efficiency.

■ MATERIALS AND METHODS
Computational Design. The interface sequence design

stage was performed in multiple consecutive rounds filtering
the top 10−20 candidates from each round and feeding them
as input to the next. Each round was performed using a
RosettaScripts20 protocol comprising two generic Monte Carlo
loops separated by packstat21 and total energy (talaris2013
scoring function22) filters. Each loop executed a protocol
comprising soft-repulsion sequence sampling, backbone
optimization,23 docking and conformational refinement.
Between the consecutive rounds, under- or overpacking was
evaluated by calculating the average deviation from high-
resolution structures packing density probability. The last
round’s output was filtered through an accelerated SMD
routine that aims at approximately assessing the potential of
mean force of unbinding across the designed interface. The
free energy of unbinding (W) was evaluated asWto→te = ∫ to

te v(t)
F(t)dt where F(t) and v(t) are the pulling force and velocity
vectors at time t, respectively. One partner was fixed and
aligned against a reference orientation while the other was
pulled along a single dimension through a loose spring to
achieve a variable-velocity, variable-force SMD setup that
yields the free energy profile along the unbinding path. The
protein was modeled using the CHARMM36 force field,24

where the simulations were performed in explicit solvent
(TIP3P water model) and 0.15 M sodium chloride as NPT
ensembles at 310 K and 1 atm using a Langevin thermostat and
a Langevin barostat as implemented in the NAMD engine.25

Particle Mesh Ewald electrostatics grid of 1 Å resolution was
used with a long-range cutoff set at 12 Å (switching at 10 Å)
and a time step of 2 fs. The reference pulling velocity (vref) was
calibrated to 2.5 Å/ns with a spring constant (k) of 20 kcal·
mol−1·Å−2 where the applied force (F(t)) was computed asÄ

Ç
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2−∇ [ − − · ] (rt being the position vector of

the steered atom group and n being the pulling direction
vector). The systems underwent 2000 steps of conjugate
gradient minimization before random atom velocities initializa-
tion and force application on the backbone carbonyl carbon
atoms. The calculated work was used to rank designs for the
next stage.
The loop design stage begins with a structural search using a

gapped sliding window across the whole PDB, where the
landing sites are defined by two N-to-C vectors and a single
(φ, ψ) array. Given the latter representation, every subject
landing site was compared to the query geometry by means of
dihedral profiles similarity, landing sites lengths similarity and
landing sites relative orientation similarity. Loop lengths of 4
and up to 8 were searched for, with landing sites of lengths
ranging from 4 to 8 residues. The best matches according to
the previous metrics were then grafted onto the top ranking
interface designs and subjected to loop mutagenesis using a
Rosetta script that performs sequence sampling, backrub
refinement, and side chain refinement in a Monte Carlo
looper. The designed loops were evaluated by applying
reciprocating crankshaft force across the peptide bond at the
center of the loop with a reciprocation frequency of 20 fs−1. A
60 ps span of equilibration was followed by equal torques
applied to the peptide bond hydrogen and oxygen atoms
around the peptide bond axis, starting by an angular
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acceleration of 2 rad·ps−2. The latter rotational acceleration
was incrementally ramped up every 40 fs by a value of 2 rad·
ps−2 using the updated atomic positions every 20 fs so as not to
apply any forces against the peptide axis itself. The simulation
was performed in triplicates in durations of 300 ps with similar
system setup parameters to the SMD described above. The
distributions of the loop atoms root-mean-squared-fluctuation
and rotational kinetic energy were assessed to choose the
designs of the lowest mean and standard deviation of these
variables. The top designs at this point were directly taken to
the laboratory.
Expression and Purification. The genes were acquired

from Synbio Technologies, already cloned into pET-28a(+)
using NcoI and NdeI cloning sites and in-frame with an N-
terminal hexaHis-tag and a thrombin cleavage site, while
harboring a kanamycin resistance gene as a selection marker.
The plasmids were used to transform chemically competent
E. coli BL21(DE3) by means of heat-shock. The expression
procedure entailed growing of the cells in LB medium and
inducing with IPTG at OD600 of 0.5−1 with overnight
expression at 25 °C. For expression of labeled protein, a
preculture in LB medium was grown, cells collected, and
resuspended in M9 minimal medium (240 mM Na2HPO4, 110
mM KH2PO4, 43 mM NaCl), supplemented with 10 μM
FeSO4, 0.4 μM H3BO3, 10 nM CuSO4, 10 nM ZnSO4, 80 nM
MnCl2, 30 nM CoCl2 and 38 μM kanamycin sulfate, to an
OD600 of 0.5−1. After 40 min of incubation at 25 °C, 2.0 g
15N-labeled ammonium chloride (Sigma-Aldrich cat. no.
299251) and 6.25 g 13C D-glucose (Cambridge Isotope
Laboratories, Inc. cat. no. CLM-1396) were added, or 100
mg methyl-13C L-methionine (Sigma-Aldrich cat. no. 299146)
in case of selective labeling in a 2.5 L culture. After another 40
min IPTG was added to 1 mM final concentration for
overnight expression. Cells were collected by centrifugation at
5000g for 15 min, lysed by a Branson Sonifier S-250 (Fisher
Scientific) in hypotonic 50 mM Tris-HCl buffer supplemented
with one tablet of the complete protease cocktail (Sigma-
Aldrich cat. no. 4693159001) and 3 mg of lyophilized DNase I
(5200 U/mg; Applichem cat. no. A3778). The insoluble
fraction was pelleted by 25 000g centrifugation for 50 min, and
the soluble fraction was filtered (0.45 μm filter pore size) and
directly applied to a Ni-NTA column. A 5 mL HisTrapFF
immobilized nickel column (GE Healthcare Life Sciences cat.
no. 17−5255−01) was used for this purpose, washed
consecutively by 30 mL 150 mM NaCl, 30 mM Tris buffer
(pH 8.5) at 0, 30, and 60 mM imidazole. Fractions were
collected by a gradient elution at >60 mM imidazole. The
eluate was concentrated using 10 kDa MWCO centrifugal
filters (Merck Millipore cat. no. UFC901024) and loaded onto
an equilibrated Superdex 75 gel filtration column (GE
Healthcare Life Sciences cat. no. 17517401). The gel filtration
buffer used was always 100 mM sodium phosphate buffer (for
NMR and CD transparency) composed to the target pH,
where BRIC1 was eluted in pH 8.5, while BRIC2 and BRIC3
at pH 5.5. An ÄktaFPLC system (GE Healthcare Life
Sciences) was used for all chromatography runs.
For the D12-BRIC2 chimera, the shared helix between D12

and BRIC2 was introduced by assembly PCR and the resulting
fragment was cloned into a pQE30LIC_3C (Qiagen) based
plasmid via BamHI and HindIII restriction sites. Chemo-
competent BL21DE3 cells were transformed with the plasmid
and the protein was expressed in autoinduction medium at 25
°C for 16 h.26 Cells were resuspended in 50 mM Tris/HCl pH

8, 500 mM NaCl, 20 mM imidazole and lysed via sonication.
Insoluble material was spun down by centrifugation for 30 min
at 30 000g and the supernatant was loaded on 5 mL NiNTA
resin, equilibrated with resuspension buffer. The column was
washed with 25 mL resuspension buffer and protein was eluted
with 15 mL resuspension buffer containing 250 mM imidazole.
The elution fraction was dialyzed overnight against 50 mM
Tris/HCl pH8, 300 mM NaCl and the N-terminal 10xHis-tag
was removed by cleavage with 3C-protease (2% w/w).
Following a second NiNTA step to remove the protease and
the His-tag, the protein solution was concentrated to 5 mL and
further purified by gel filtration on an S200 16/600 column
(GE healthcare) equilibrated with 10 mM Tris/HCl pH 8, 100
mM NaCl.

Biophysical Characterization. The analytical gel filtration
experiments were all done on a Superdex 200 10/300 GL (GE
Healthcare Life Sciences cat. no. 17517501), and the collected
fractions from the eluate were used for CD or NMR
measurements directly after. 1H NMR spectra were collected
on a Bruker AVIII-800. NMR diffusion ordered spectroscopy
experiments were performed on a Bruker AVIII-600 using the
relevant functionality in the TopSpin software, running the
analysis over multiple aliphatic proton peaks. The structure-
based prediction of the diffusion coefficient was done using the
HYDROpro software,27 setting the corresponding temperature
to 310 K and viscosity to 0.007 P. CD spectra were recorded
on a Jasco J-810 spectrometer, with a spectral scan window of
200−240 nm, with a sweep delta of 0.1 nm while averaging
over 5 scans. Melting curves were measured from 20 to 100
°C, recording the ellipticity at 222 nm every 0.5 °C, while
heating at a 1 °C/min rate.

X-ray Crystallography. For BRIC1 crystallization, the
protein was concentrated to 13 mg/mL in 25 mM Tris buffer,
pH 8.5, 150 mM NaCl. The D12-BRIC2 fusion was
concentrated to 40 mg/mL in 10 mM Tris buffer, pH 8, 100
mM NaCl. Sitting-drop vapor diffusion crystallization trials
were performed in 96-well format, equilibrating drops
containing 300 nL of protein solution and 300 nL of reservoir
solution against 50 μL of reservoir solution. For D12-BRIC2,
the drop size was 150 nL + 150 nL and the reservoir contained
75 μL of mother liquor. Best diffracting crystals were obtained
with a reservoir solution containing 20% v/v PEG 500 MME,
10% w/v PEG 20 000, 30 mM MgCl2, 30 mM CaCl2 and 100
mM Tris-BICINE pH 8.5, loop-mounted, and flash-frozen in
liquid nitrogen. For D12-BRIC2, an initial hit was found in 0.2
M (NH4)2SO4, 25% w/v PEG 3350 and 100 mM Bis-Tris pH
5.5. A fine screen with two perpendicular gradients of the PEG
concentration and the pH was set up to yield diffracting
crystals, which were flash-frozen in mother liquor containing
20% v/v ethylene glycol. Data were collected at beamline
X10SA at the Swiss Light Source, at 100 K with an X-ray
wavelength of 1 Å and a PILATUS 6M-F detector (Dectris)
for BRIC1 or an EIGER 16 M X detector (Dectris) for D12-
BRIC2. Data for BRIC1 were indexed, integrated and scaled to
a resolution of 2.5 Å in space group C2, using XDS.28 For D12-
BRIC2, two crystals were indexed and integrated in space
group P1. After merging the two data sets, the data were scaled
to 3 Å. According to the unit cell dimensions, one BRIC1
monomer was expected in the asymmetric unit with a solvent
content of 50%. Molecular replacement was carried out using
MOLREP,29 using the designed coordinates as a search model.
A unique solution was found in the first attempt with high
contrast. After rigid-body refinement with Refmac5,30 a
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different conformation of the designed connecting loop
became apparent and was manually rebuilt in Coot.31 The
structure was completed and finalized in cycles of manual
modeling in Coot and refinement with BUSTER or PHENIX-
refine.32 Data processing and refinement statistics are
summarized in Tables S2 and S4.
NMR Structure Determination. Spectra were recorded at

310 K on Bruker AVIII-600 and AVIII-800 spectrometers.
Backbone sequential assignments were made using standard
triple-resonance experiments and by tracing strong NOESY
contacts between sequential amide protons in helical segments.
Aliphatic side chain assignments were completed with
TOCSY-based experiments, while partial aromatic assignments
were made by linking aromatic spin systems to unambiguously
assigned aliphatic groups in NOESY spectra. The oligomeric
purity of samples was checked with diffusion-ordered (DOSY)
spectra. These confirmed that fresh samples used in diffusion
experiments were predominantly monomeric.
To identify interhelical contacts, we exploited the uneven

distribution of methionine residues observed in the dimeric
crystal structure. The 16 methionine residues in this structure
fall into three broad clusters, one within each repeat and a third
at the inter-repeat interface. To assign these we produced a
sample selectively 13C-labeled on methionine methyl groups on
a 12C, 15N-labeled background. Members of each cluster could
be identified by contacts between the labeled methyl groups in
a 3D CCH-NOESY experiment.33 Contacts to unambiguously
assigned protons in a 13C-HSQC-NOESY spectrum then
allowed the assignment of all members within each cluster.
Thus, assigned, these methyl groups were effective probes of
the interhelical interfaces providing 34 long-range distance
restraints. These were applied, in simulated annealing
calculations, together with other unambiguously assigned
contacts and TALOS-based dihedral restraints. A summary
of the input data and final structure statistics is given in
Supplementary Table S3.
Structures were calculated with XPLOR-NIH (version 2.9.4)

using a monomer extracted from the domain-swapped dimer as
a starting structure; i.e., an open structure with no interunit
interface. Simulated annealing runs were first aimed at closing
this interface by treating the four-helix bundles as pseudorigid
bodies. The resulting set of 50 structures defined an interface
very similar to that observed in the crystal structure.
Refinement was performed using atomistic molecular dynamics
computations in isothermal−isobaric ensembles to accom-
modate large conformational changes, where the overall
explicit solvent simulations setup was similar to that described
above. A total of 135 ns were collected while deploying the
NMR-derived dihedral and distance restraints using the
harmonic restraint terms ktorsion(θt − θref)

2 and kdistance(xt −
xref)

2, respectively. Here ktorsion and kdistance are the dihedral and
distance spring constants (set at 1 and 0.1, respectively), θt is
the φ or ψ angle at time t, xt is the atom pair distance at time t,
while θref and xref are the NMR-derived values. Fifty frames
from these runs were picked on the basis of agreement with
distance restraints and minimized under restraints in XPLOR-
NIH to regularize covalent geometry. The final ensemble
consisted of 26 structures chosen on the basis of lowest
restraint violations.
Structural Analysis. Searching among existing structures

for similar folds was performed using three different methods.
The PDBeFOLD13 and DALI14 servers were used to search
against the entire PDB for similar existing folds to the

experimental structures of BRIC1 and BRIC2. The resulting
hits were sorted by their alignment lengths, and manually
inspected the top 100 hits for similar topologies. Additionally,
the ECOD database15 (ECOD40 subset) was searched using
TM-align16 for the same purpose. Only hits with TM-score
equal or above 0.5 were manually inspected for potential
similarity.
Polar precision at the designed interface was assessed by

calculating the deviation between the designs and experimental
structures for three quantities; the tilt (θ), bend (β) and
curvature (κ) across the designed interface. The three
quantities are supposed to represent the plane-projected
angular change between the two helical hairpins across the
designed interface, along the three mutually orthogonal planes.
The assessment of the designed interface accuracy in Cartesian
and qualitative terms was done using the CAPRI interface
criteria: Lrms, Irms and f nat.

17 The Lrms represents the backbone
RMSD of the protein unit downstream of the designed
interface, after structurally aligning the pair by their upstream
units. The Irms was calculated as the backbone RMSD between
the residues at the designed interface (defined by a distance
cutoff of 10 Å). The f nat represents the number of contacts
common across the designed interface between the design and
experimental structure, divided by the total number of contacts
in the experimental structure. A contact is defined by the
existence of any interatomic distance within 5 Å between two
residues across either side of the interface (the designed loop
residues were not considered).
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Figure	 S1.	 Interface	 design	 scheme.	 The	 con-
formational	refinement	steps	consist	of	a	FastRe-
lax	 mover	 (repacking	 only	 in	 2	 rounds),	 a	
Backrub	 mover,	 and	 a	 DockingProtocol	 mover	
(repacking	 only	 with	 local	 refinement	 using	
soft_rep	 scoring,	 with	 a	 maximum	 rigid	 body	
perturbation	of	3	Å	and	2°	per	round).	The	mu-
tagenesis	 step	 comprised	 three	 consecutive	 Re-
packMinimize	 movers	 (initially	 with	 soft_rep	
scoring	 and	 no	 backbone	 refinement,	 and	 later	
using	 talaris13	 scoring	 and	 performing	 back-
bone	 refinement)	 and	 a	 BackrubDD	mover.	 The	
GenericMonteCarlo	 mover	 was	 run	 for	 5	 loops	
and	 all	 of	 the	 output	 decoys	 were	 filtered	 geo-
metrically	and	the	top	few	were	reused	as	inter-
face	 design	 input.	 After	 4	 rounds	 for	 BRIC1,	 5	
rounds	 for	 BRIC2	 and	 7	 rounds	 for	 BRIC3,	 the	
decoys	 generated	 were	 evaluated	 by	 the	 PMF	
simulations,	where	the	ones	exhibiting	the	high-
est	 dissociation	work	were	 chosen	 for	 loop	 de-
sign.	

 



 

  

 
 

Figure	 S2.	 Loop	 grafting	 step.	 Initial	 loop	 compositions	were	 fetched	 from	 natural	 structures	 using	 an	
alignment-free	 geometric	matching	method	 that	 compares	 the	 landing	 site	 vectors	 and	 their	 associated	
backbone	dihedrals	profile	(The	green	stretches	of	the	design	interface	represent	the	landing	sites).	

 

 

 

 

Figure	S3.	The	rotational	perturbation	axis	was	
taken	 to	be	 the	peptide	bond	axis,	which	would	
force	dihedral	 sampling	by	diagonal	 traversal	of	
the	 shifted-Ramachandran	 space	 (i.e.	 the	
(𝝍𝒊$𝟏, 𝝓𝒊)-space),	 which	 was	 performed	 while	
monitoring	 the	 instantaneous	 kinetic	 energy	
response.



 

 

Figure	S4.	Analytical	gel	filtration	of	BRIC1	showing	a	major	monomeric	species	and	a	minor	dimeric	spe-
cies,	using		GE	SuperdexTM	75	10/300.	

 

Figure	S5.	Designed	coordinates	best	explain	the	diffusion-ordered	spectroscopy	experiments	on	BRIC1.	
Different	 colours	 designate	 data	 collected	 for	 eight	 different	 aliphatic	 proton	 peaks,	 where	 the	 legend	
shows	the	average	and	standard	deviation	values	of	the	diffusion	coefficient.	The	predicted	translational	
diffusion	coefficient	value	using	the	designed	coordinates	at	the	same	temperature	was	1.32×10-10,	while	
that	of	the	swapped	dimeric	and	the	swapped	monomeric	forms	were		6.81×10-11		and	1.18×10-10,	respec-
tively.



 

 

Figure	S6.	1D	1H	NMR	spectrum	of	BRIC2.	The	panes	show	dispersions	along	the	full	and	the	amide	spec-
tral	ranges,	respectively.	



 

 

Figure	S7.	1D	1H	NMR	spectrum	of	BRIC3.	The	panes	show	dispersions	along	the	full	and	the	amide	spec-
tral	ranges,	respectively.	



 

 

 
 

Figure	S8.	The	asymmetric	unit	of	the	D12-BRIC2	fusion	crystal	structure.	Different	colours	show	the	four	
chains	in	the	asymmetric	unit	from	two	different	views.	



 

 

Figure	 S9.	 Superhelical	 axis	 torsion	 waveforms	 of	α/α-solenoid	 vs.	 corrugated	 fold.	 The	α/α-solenoid	
shows	a	clear	saw-tooth	pattern	as	compared	to	the	triangle-wave	pattern	emergent	from	the	more	com-
plex	corrugated	topology.	The	corrugated	topology	waveform	exhibits	double	the	phase-cycle	of	the	equiv-
alent	 solenoid	 illustrating	 the	 complexity	 increment.	 Both	 waveforms	 are	 distorted	 by	 high-frequency	
interference	from	the	local	α-helical	pattern.	



 

Table	 S1.	 Sequences	 of	 the	 final	 design	 constructs	 aligned	 structurally	 against	 their	 respective	 starting	
templates,	with	the	highlight	and	underline	designating	the	designed	loop	and	C-terminal	cap,	respectively.	
 
BRIC1           FYQTFFDEADELLADMEQHLLDLVPESPDAEQLNAIFRAAHSIKGGAGTFGFTMLQYAVE 
1i5n_tmplt      FYQTFFDEADELLADMEQHLLDLVPESPDAEQLNAIFRAAHSIKGGAGTFGFTILQETTH 
                *****************************************************:** :.. 
 
BRIC1           LMENMLDFARRGEMQLNTDIINLFLELKDLMQRMLDYYKKPQPCFYQAFFDMADVMLKVM 
1i5n_tmplt      LMENLLDEARRGEMQLNTDIINLFLETKDIMQEQLDAYK-----FYQTFFDEADELLADM 
                ****:** ****************** **:**. ** **     ***:*** ** :*  * 
 
BRIC1           EQLLKLLVPESPDAAMLNAIFRAAHFIKGAAGTFGFTILQETTHLMENLLDEARRGEMQL 
1i5n_tmplt      EQHLLDLVPESPDAEQLNAIFRAAHSIKGGAGTFGFTILQETTHLMENLLDEARRGEMQL 
                ** *  ********  ********* ***.****************************** 
 
BRIC1           NTDIINLFLETKDIMQEQLDAYKNSEEPDAASFEYICNALRQLALEA 
1i5n_tmplt      NTDIINLFLETKDIMQEQLDAYKNSEEPDAASFEYICNALRQLALEA 
                *********************************************** 
BRIC2           YIKKVVDELKELIQNVNDDIKEVEKNPEDMEYWNKIYRLVHTMKEITETMGFSPVALVLE 
2lch_tmplt      YIKKVTDELKELIQNVNDDIKEVEKNPEDMEYWNKIYRLVHTMKEITETMGFSSVAKVLH 
                *****.*********************************************** ** **. 
 
BRIC2           AIMMLVKLMLNSEIKITSDLIDAVKKMLDMVTRLLDLMVDPNLNEEQYIKMVVDALKILI 
2lch_tmplt      TIMNLVDKMLNSEIKITSDLIDKVKKKLDMVTRELDKKVS-------YIKKVTDELKELI 
                :** **. ************** *** ****** **  *        *** *.* ** ** 
 
BRIC2           EAVNVLIKMVEKNPEDMEFWNLIYRLVHVMKEVTETMGFSSVAKVLHTIMNLVDKMLNSE 
2lch_tmplt      QNVNDDIKEVEKNPEDMEYWNKIYRLVHTMKEITETMGFSSVAKVLHTIMNLVDKMLNSE 
                : **  ** *********:** ******.***:*************************** 
 
BRIC2           IKITSDLIDKVKKKLDMVTRELDKMVS 
2lch_tmplt      IKITSDLIDKVKKKLDMVTRELDKKVS 
                ************************ ** 
BRIC3           DKVYENVTGLVKAVIEMSSKIQPAPPEEYVPMVKEVGLALRTLLATVDETIPLLPASTHR 
3b71_tmplt      DKVYENVTGLVKAVIEMSSKIQPAPPEEYVPMVKEVGLALRTLLATVDETIPLLPASTHR 
                ************************************************************ 
 
BRIC3           AIELMQELLNIALQLLEIAMKLAQQYVMTSAQQEHKKMMLMAAQVLAEIAKFLLDCITSP 
3b71_tmplt      EIEMAQKLLNSDLGELINKMKLAQQYVMTSLQQEYKKQMLTAAHALAVDAKNLLD----- 
                 **: *:***  *  *   *********** ***:** ** **:.**  ** ***      
 
BRIC3           CVVYAAVQILVKFVEFMSKFIQPAPPELYVAMVKAVGKALRVLLAIVDMTIPLLPASTHR 
3b71_tmplt      -KVYENVTGLVKAVIEMSSKIQPAPPEEYVPMVKEVGLALRTLLATVDETIPLLPASTHR 
                  **  *  *** *  **. ******* ** *** ** ***.*** ** *********** 
 
BRIC3           EIEMAQKLLNSDLGELINKMKLAQQYVMTSLQQEYKKQMLTAAHALAVDAKNLLDVIDQ 
3b71_tmplt      EIEMAQKLLNSDLGELINKMKLAQQYVMTSLQQEYKKQMLTAAHALAVDAKNLLDVIDQ 
                *********************************************************** 



 

 

Table S2. Crystallographic structure statistics for BRIC1 

Data collection 

Space group C2 

Cell dimensions 

a, b, c (Å) 

α, β, γ (°) 

 

113.66, 41.95, 58.26 

90.0, 90.46, 90.0 

Resolution (Å) 40.84 – 2.50 (2.65 – 2.50)a 

Rmerge 0.067 (0.787) 

<I>/<s(I)> 12.1 (1.67) 

Completeness (%) 99.7 (98.8) 

Redundancy 6.55 (6.16) 

Refinement 

Resolution (Å) 40.8 – 2.50 (2.79 – 2.50) 

No. reflections 9739 (2721) 

Rwork / Rfree (%) 22.9 / 27.9 (24.9 / 30.2) 

No. atoms 1791 

Protein 1791 

<B-factors> (Å2) 116.0 

Protein 116.0 

RMS deviations  

Bond lengths (Å) 0.010 

Bond angles (°) 1.03 

 
aValues in parentheses are for highest-resolution shell.



 

		
Table	S3.		Solution	structure	statistics	for	BRIC1	

Restraint Violations1 

Inter-Helical Distance restraints (Å) 

All (39) 0.018 ± 0.003 

N-terminal interface (11)  

C-terminal interface (15)  

Designed interface (13)  

Dihedral restraints (°) 

All (314) 0.082 ± 0.014 

Covalent Geometry 

Bonds (Å ´ 10-3) 1.91 ± 0.04 

Angles (°) 0.54 ± 0.01 

Impropers (°) 0.88 ± 0.01 

Structure Quality Indicators2 

Ramachandran Map (%) 98.2 / 1.6 / 0.2 

Backbone Heavy Atom R.M.S.D (Å)3 

 

E vs <E> 0.84 ± 0.06 

E vs design 1.78 ± 0.11 

<E> vs design 1.57 

	

1 Violations are expressed as RMSD ± SD. The number of each restraint type is shown in brackets. 

2 Defined as the percentage of residues in the favored/allowed/outlier regions of the Ramachandran map as de-
termined by MOLPROBITY (http://molprobity.biochem.duke.edu). 

3 Structures are labeled as follows: E, the final ensemble of 26 structures; <E>, the mean structure calculated by 
averaging the coordinates of E structures after fitting over ordered residues. RMSD values are based on superim-
positions over ordered residues (defined as F1-L225)



 

  

Table	 S4.	 Crystallographic	 structure	 statistics	 for	 D12-
BRIC2*	

Data collection 

Space group P1 

Cell dimensions 

a, b, c (Å) 

α, β, γ (°) 

 

52.99, 63, 133.54 

97.991, 91.923, 110.815 

Resolution (Å) 49.33 – 3 (3.08 - 3.0) 

Rmerge 0.177 (1.308) 

<I>/<s(I)> 7.6 (2.15) 

Completeness (%) 99.0 (99.8) 

Redundancy 5.6 (5.8) 

Refinement 

Resolution (Å) 44.9 – 3 (3.0969 - 3.0) 

No. reflections 31544 (2901) 

Rwork / Rfree (%) 25.09 / 29.19 (35.56 / 35.97) 

No. atoms 11544 

Protein 11420 

Water 51 

Ligands 73 

<B-factors> (Å2) 97.91 

Protein 98.06 

RMS deviations 

Bond lengths (Å) 0.003 

Bond angles (°) 0.66 

Ramachandran plot  

Favoured 95.37 

Allowed 4.22 

Outliers 0.41 
 

aValues in parentheses are for highest-resolution shell. 

*Diffraction data from two crystals from the same drop were merged to improve completeness. 
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Summary 

The ability of proteins to adopt multiple conformational states is essential to their 

function and elucidating the details of such diversity under physiological conditions has 

been a major challenge. Here we present a generalized method for mapping protein 

population landscapes by NMR spectroscopy. Experimental NOESY spectra are directly 

compared to a set of expectation spectra back-calculated across an arbitrary 

conformational space. Signal decomposition of the experimental spectrum then directly 

yields the relative populations of local conformational microstates. In this way, averaged 

descriptions of conformation can be eliminated. As the method quantitatively compares 

experimental and expectation spectra, it inherently delivers an R-factor expressing how 

well structural models explain the input data. We demonstrate that our method extracts 

sufficient information from a single 3D NOESY experiment to perform initial model 

building, refinement and validation, thus offering a complete de novo structure 

determination protocol. 
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Introduction 

 In order to function, proteins must adopt a distinct three-dimensional fold. 

However, a vast range of protein functions, including catalysis, molecular recognition and 

allosteric signalling, also rely on their ability to adopt various local conformations within 

this structural scaffold. Understanding these processes therefore requires not only 

accurate descriptions of protein structures, but also their conformational diversity. NMR 

spectroscopy is uniquely placed to address these issues, offering atomic-resolution data 

on samples in native-like physical states. Time averaging of NMR parameters has long 

been exploited to localise and characterize the timescales of internal dynamics (1). 

However, the data is also ensemble-averaged over all molecules in the sample volume 

and should thus provide information on the nature and population of underlying 

conformational microstates. Accessing this data has long been a goal in NMR 

spectroscopy (2-5). 

Here we aim to elucidate the propensities of individual microstates by means of 

spectral decomposition. Systematic back-calculation of expectation spectra across a 

conformational space allows reconstruction of the experimental spectra. In NMR 

spectroscopy, the richest source of structural data are NOESY spectra, which report on 

inter-proton distances within a detection limit of 5 to 6 Å. Due to this short spatial range, 

a large fraction of NOESY intensity can be explained within short, linear sequence 

fragments. Each such fragment thus represents a sub-space that could be searched 

systematically to provide detailed information on local dihedral angles and their 

distributions. Moreover, comparison of the back-calculated and experimental data would 

provide a quantitative quality measure: an NMR R-factor. 

A difficulty in realising this approach lies in the nature of NOESY data itself. The 

information content of NOESY spectra is very unevenly distributed across the observed 

intensities, thus small, informative peaks can be overwhelmed by inaccuracies in back-

calculation and spectral artefacts. For this reason, quantitative comparison of back-

calculated and experimental spectra has been far less applicable in NMR structure 

determination than equivalent measures used in crystallography (6-8). Here we show that 

these obstacles can be largely averted in the 3D CNH-NOESY experiment (9). This is an 
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implementation of a 13C-HSQC-NOESY-15N-HSQC where the indirect proton dimension 

has been omitted, thus displaying contacts to backbone amide protons in a well-resolved 
13C dimension. It exploits the higher dispersion and more homogeneous effective 

linewidths of the heteronuclei, while suppressing water-exchange cross-peaks and 

obviating the need for stereospecific proton assignments. Crucially, it intrinsically lacks 

large, uninformative diagonal peaks and the associated baseline and truncation artefacts. 

Combined, these represent decisive advantages in the accuracy of back-calculation. 

In this work we demonstrate that a single 3D CNH-NOESY spectrum contains 

sufficient information to define population maps of local dihedral sub-spaces. Analytical 

decomposition expresses the experimental spectra as a linear combination of elements 

of a features set of back-calculated spectra. In this way, both the reliance on a 

knowledge-base and the interpretation of spectra in terms of peak or assignment lists 

can be eliminated. This conformational mapping provides highly detailed data for model 

building and refinement, with progress monitored by a quantitative R-factor. We validate 

this method against human Ubiquitin (hUb), widely considered the gold standard for 

NMR-based protein structure determination (5, 10-12). We further demonstrate the 

generality of the method by solving the structures of four example proteins. 

Results 

An R-factor from CNH-NOESY data 

We have adapted existing routines to back-calculate CNH-NOESY spectra, 

obtaining 1D 13C strips for each backbone amide proton. These are compared directly to 

equivalent strips extracted from the experimental 3D matrix. An R-factor expressing the 

discrepancy between experimental and expectation spectra is readily calculated as the 

fractional root mean squared residual (see Experimental Section). This R-factor is 

analogous to its crystallographic counterpart, except that it is calculated on a per-residue 

basis. Our back-calculation routines very accurately reproduce the intensities and line-

shapes of experimental CNH-NOESY data collected for hUb (Figure 1a). The back-

calculated spectra are also highly sensitive to backbone and sidechain dihedral angles 

(Figure 1b and Supplementary Figure S1), a prerequisite for conformational mapping. 
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NOESY intensities are time and ensemble averages over the conformational 

microstates sampled during the measurement. For this reason, R-factors improve with an 

accurate and comprehensive description of the ensemble. We demonstrate this for hUb 

using three reference ensembles that have been compiled according to different metrics. 

Two have been compiled to elucidate internal motions: the 2KOX ensemble using a large 

set of residual dipolar coupling (RDC) data (11), and the 2NR2 ensemble according to 

minimum under-restraining, minimum over-restraining criteria and including S2
NH order 

parameters derived from relaxation data (5). The third, 2MJB, provides a static control 

ensemble close to the average structure (12). High R-factors are obtained where these 

ensembles either over- or under-estimate the conformational diversity. Moreover, the 

use of a residue-wise R-factor in evaluating the ensemble can localize such diversity 

(Figure 1b). 

Mapping local conformational spaces 

For the CNH-NOESY, the vast majority of cross-peak intensity can be explained by 

intra-residue contacts and those to the immediately preceding residue. The R-factor for 

residue i is thus strongly dependent on conformation in a shifted Ramachandran space 

defined by the backbone dihedral angles yi-1 (here denoted ui) and fi. This is extended by 

including the relevant sidechain rotamers up to c1
i and c2

i, representing a periodic space 

within a dipeptide fragment that can be searched exhaustively (Figure 2a). The back-

calculated spectra for these systematically sampled conformers constitute a features set 

that can be used to decompose the experimental spectra (Figure 2b). Here we 

characterize the solution ensemble as a linear combination of elements of the features 

set, weighted by their respective populations. Calculating these weights is analogous to 

parts-based representation of complex spectral mixtures often encountered in other 

fields of spectroscopy (13). 

Decomposition of the experimental spectrum can be framed as a positive matrix 

factorisation problem (14). The features matrix is represented by W comprising back-

calculated spectra for l conformers, resolved to m points along the 13C dimension. A 

solution can thus be found for a vector of weights H in order to reconstruct the observed 

experimental spectrum V: 
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where n=1 if one spectrum is considered per residue. To map the energetic landscape of 

the conformational space, the yielded estimates of the population weights can in turn be 

expressed via a Boltzmann factor relative to a reference conformer (Materials and 

Methods). Examples of these conformational maps for hUb are shown in Figure 3. 

An inherent question in factorization methods is the uniqueness of the solution. 

Here uniqueness is limited by cross-peaks that cannot be explained within the dipeptide 

space, but overlap with peak positions in the features set. The larger the fraction of such 

contamination, the more difficult finding a unique solution becomes. Given the low 

intensity of potentially contaminating peaks and the high dispersion of the 13C 

dimension, the extent of contamination is usually minor. The extreme case of 

contamination is the coincidence of 15N-HSQC positions for two or more residues, 

resulting in overlap of the experimental strips. Such a situation can be solved by 

concatenation of the features sets of the overlapped residues and solving in a multiple-

dipeptide space. Figure 2c shows a typical example of this situation, where 

conformational maps have been obtained for two overlapped residues. 

Structure determination with conformational maps 

The conformational maps obtained from spectral decomposition provide rich 

information for structure determination. At the simplest level, global minima can provide 

local torsion angles sufficient for model building. These initial dihedrals constitute an 

agnostic starting point, as they are derived directly from the data without recourse to 

heuristics or conformational databases. A unique feature of this method is the 

deployment of R-factors as an objective convergence test that captures both local and 

long-range contacts. The latter can be isolated by examining the difference between R-

factors obtained for a linear peptide fragment and those from the full, folded model. We 

term this measure the fold factor (F), and it should be negative if the model explains 

long-range contacts well. Figure 4 shows that the average fold factor (Fmean) is a sensitive 

overall measure of correct folding, while the sequence profile can localize misfolded or 

poorly defined regions. Owing to this independent measure of convergence, any routine 

can be used to build initial models. Here we employ either a Rosetta-based protocol 

!	 ≈ $%,							! ∈ ℝ)*+×-,	$ ∈ ℝ)*+×.,	% ∈ ℝ)*.×- 1 
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(Materials and Methods) or a purpose-designed molecular dynamics routine: Simulated 

Annealing Replica Seilschaft (SARS) for initial model building (Materials and Methods). 

In order to construct high-resolution ensembles with accurate description of the 

underlying microstates, the experimental information contained in the conformational 

maps can be encoded in two possible representations. The first is a temporal equilibrium 

ensemble derived from molecular dynamics simulations. Here the conformer probability 

distribution is imposed via a grid-based dihedral energy correction term (15) (CMAP; 

Figure 3 and Materials and Methods). These override the standard force field CMAPs 

with bespoke ones on a per-residue basis, providing an experimentally augmented 

ensemble representation. The other is to aggregate a set of frames from a generalized 

ensemble using the standard force field, based on an R-factor selection criterion, 

providing a wider coverage of the phase space. 

We name this method of de novo structure determination CoMAND (for 

Conformational Mapping by Analytical NOESY Decomposition). In addition to hUb, we 

present examples for four structure determination projects from our Institute. U3Sfl (125 

amino-acids) is a protein designed as a chimera of sub-domain sized fragments, KH-S1 

(170 amino-acids) is a fusion construct of the KH and S1 domains of E. coli exosomal 

polynucleotide phosphorylase. MlbQ is a protein implicated in self-resistance to 

endogenous lantibiotics in actinomycetes (16). The final example, polb4, is a protein 

designed to reconstruct the polymerase beta N-terminal domain using two unrelated 

peptide fragments and is presented here as a de novo structure determination. 

For all five proteins, we first built starting models. For U3Sfl, KH-S1 and hUb, we 

extracted backbone dihedral angles from the factorization minima and used these for 

fragment picking in a Rosetta protocol (Materials and Methods). For MlbQ and polb4 we 

applied SARS, supplementing the CHARMM36 forcefield with bespoke conformational 

maps, starting from completely extended chains. For MlbQ, folding was accelerated by 

the addition of 10 unambiguous NOE distance restraints. We used the average R-factor 

across the full length of the protein as a criterion for selecting models, choosing a single 

Rosetta decoy or a single frame from the SARS runs. These models were very similar to 

respective reference structures (Figure 5). For U3Sfl this was a structure we had 

previously solved by manual analysis (RMSD over backbone atoms 1.98 Å). For KH-S1, 
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crystal structures are available for homologues of the individual domains (4AM3; 1.48 Å 

and 4NNG; 1.67 Å). For MlbQ, this was the published solution structure (2MVO; 1.92 Å). 

As no structure has previously been solved for polb4, we used the design target as a 

reference structure (RMSD over backbone atoms 1.48 Å). 

For refinement we conducted unrestrained molecular dynamics simulations in 

explicit solvent for microsecond timescales, seeded by the starting model. This was 

followed by a frame-picking procedure that employs a greedy optimizer to minimize the 

average R-factor across the ensemble. Given the wealth of structural and dynamics data 

available for hUb, we compiled such a refined ensemble and compared it to the 

reference ensembles (2KOX, 2MJB and 2NR2). The resulting ensemble of 20 conformers 

shows better correlation to experimental NH order parameters than the literature 

ensembles. It is also comparable in predicting experimental scalar couplings and RDCs to 

ensembles that have been built on one or more of these observables plus thousands of 

NOE restraints (Figure 6 and Supplement). This demonstrates the depth of the structural 

information captured when NOESY spectra are analysed holistically. 

Discussion  

NOESY spectra can be seen as an encoding of a proton-proton contact map with 

an approximate upper distance limit of 5 Å. If correctly decoded as a set of distance 

restraints, this information is sufficient to solve the structure with high accuracy and 

precision. However, crowded spectra and the consequent spectral overlap mean that the 

encoding is ambiguous. Spectral editing, for example via additional frequency 

dimensions, can only partially alleviate this problem, often at considerable cost in 

experiment time (17). The consequences of this ambiguity are not only that individual 

cross-peaks cannot be uniquely assigned – i.e. attributed to a specific proton-proton 

contact – but also that cross-peaks may comprise significant intensity from several 

contacts. Conventional NMR structure determination protocols interpret NOESY spectra 

through peak-picking, assignment and conversion into distance restraints under a 

paradigm of one peak; one assignment; one restraint. Even automated routines that 

specifically consider ambiguities will resolve to a single effective restraint per picked 

peak. This represents a compromise that is not justified by the underlying nature of the 

data, affecting either the accuracy or precision of distance estimates. In contrast, the 
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CoMAND method makes no interpretation of cross-peaks, and thus stands outside this 

conventional assignment paradigm. 

Given the ambiguity of NOESY data, the incorporation of unambiguous data from 

other sources is advantageous in NMR structure determination protocols. Particularly 

useful are data that define local dihedral angles (e.g. scalar couplings), as these are 

poorly defined by imprecise NOE-based distance estimates. Backbone dihedral angle 

predictions derived from chemical shift heuristics using the program TALOS are very 

widely used (18). For example, the CS-Rosetta approach exploits this data to build 

structural models within the Rosetta framework (19). In contrast to previous methods, we 

show that direct signal decomposition can yield backbone dihedrals unambiguously and 

without heuristics. Moreover, we demonstrate that the NOESY data can be leveraged to 

map the underlying conformational landscape in a systematic fashion. A further key 

advantage over existing methods is that the whole process of structure determination, 

including resonance assignment, model building, refinement and conformational mixture 

elucidation can be objectively assessed by the R-factor as a single metric. 

In recent years development of analysis methods in solution NMR of proteins has 

been driven by the need to make automation more reliable, while using less data and 

extending the range to larger proteins and more difficult cases, such as membrane 

proteins. CoMAND contributes to this effort in that it leverages a small set of spectra on 

a single sample into a high-resolution structure and is therefore applicable where protein 

concentration or stability are limiting. As the method involves minimum user 

intervention after the resonance assignment stage, it is also intrinsically suited to 

automation. However, the most unique feature of the method lies in the power to obtain 

accurate descriptions of protein conformational ensembles. We therefore anticipate that 

the method can be applied to studying ligand binding and allosteric processes, promising 

to elucidate subtle conformational changes in an unprecedented level of detail. 
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Materials and Methods 

NMR Spectroscopy 

Backbone and sidechain assignments for de novo structure determinations were 

obtained using standard triple resonance experiments. For human Ubiquitin literature 

values were used. Slight correction of 13C shifts against the respective CNH-NOESY 

spectra was necessary to account for calibration differences between spectrometers and 

spectrum types. 3D CNH-NOESY spectra were acquired at 800 MHz on a Bruker AvanceIII 

spectrometer equipped with room temperature probehead. Indirect 13C dimensions were 

typically acquired with ~100 time increments and processed with linear prediction and 

zero filling to 256 data points. The 13C sweep width was set to cover aliphatic carbon 

resonances; i.e. ~10-73 ppm, resulting in a resolution of ~30 Hz per point. At this 

resolution, 1JCC couplings are unresolved and the spectra were run in non-constant time 

mode. Broadband 13C pulses were used to excite aromatic resonances and these were 

folded into the aliphatic window without phase inversion.  

CNH-NOESY spectra were analysed by extracting one-dimensional 13C sub-spectra chosen 

from a search area centred on assigned 15N-HSQC positions (typically 1-3 points in each 

dimension). As these sub-spectra contain only cross-peaks to a specific amide proton, 

choosing the strip with highest integral maximises the signal-to-noise. Residues with 

overlapping search areas were examined separately. In most cases strips with acceptable 

separation of signals could be obtained. Where this was not possible the residues were 

flagged as overlapped and a joint strip constructed by summing those at the estimated 

maxima of the respective components. A set of strips well separated from assigned HSQC 

positions were averaged to define a global noise level for the spectrum. 

NOESY back-calculation 

In order to back-calculate 3D CNH-NOESY spectra we modified the program SPIRIT 
(20) by porting it to C++ and extending it to accommodate any combination of proton and 

heteronuclear dimensions. We name this program SHINE, for Simulation of Hetero-

Indirect NOESY Experiments. The calculations are based on a full relaxation matrix and 

thus account for spin diffusion in static structures. Internal motion of the protein is 

treated by ensemble averaging over n contributing microstates, effectively applying an n-
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state jump model of motion, where the life-time of a microstate is assumed to be long 

compared to the interconversion time. This does not account for true time-averaged 

phenomena, such as motion-mediated spin-diffusion, which are treated as negligible for 

the current application. Inputs for the calculations are a chemical shift list, a test 

structure and a set of simulation parameters. The latter are largely spectral details, such 

as spectrometer frequencies and sweep widths, which are extracted automatically from 

the corresponding experimental files (Bruker format), but also include an estimate of a 

global molecular correlation time. Resonances are modelled as gaussians, with 13C 

linewidths assigned on a class basis, taking into account unresolved 1JCC couplings. Here it 

should be noted that the short acquisition times in an indirect 13C dimension (<10 ms on 

an 800 MHz spectrometer) mean that effective lineshapes are largely governed by 

apodisation of the time domain. They are thus considerably more homogeneous than for 

a proton dimension. 

The computational demand of NOESY back-calculation depends on the number of 

protons in the relaxation network. For this reason, we employ sub-structures containing 

<150 atoms. These can be linear peptides or fragments of a folded structure. Linear 

peptides are typically tri- or penta-peptides where the test residue is in the second last 

position. Fragments are compiled at the residue level; residues are included in the sub-

structure if they contain a proton within a given radius (typically 5 Å) of a target residue 

proton. The output is a one-dimensional strip displaying contacts to a single backbone 

amide proton. In this mode, back-calculation typically takes less than 20 ms per 

conformer on a single processor core. The program also outputs a list of peak intensities 

that can be used to build multi-dimensional spectra suitable for viewing in SPARKY (21), 

with annotation of individual cross peaks. 

Calculation of features sets is performed for each residue for which an 

experimental spectrum is available. The starting structures are linear peptide fragments 

extracted from an arbitrary structural model. In the current work these were tripeptides 

centred on the test residue. For back-calculation of contacts to the amide proton of 

residue i this peptide is modified through a set of torsion angles in a shifted 

Ramachandran space: angles yi-1 (here denoted ui) and fi and up to two sidechain c 

angles. The backbone angles were searched at 10° granularity, while sidechain angles 
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sample all staggered rotamers. This results in a maximum of 11664 conformers. No 

checks for steric clashes are applied to test if a conformer is physically reasonable and 

bond lengths and angles remain constant throughout. An exception is for proline 

residues where the search space is restricted to a physically realistic range in fi. As 

proline residues lack an amide proton, their features sets are compiled by back-

calculation of the amide proton of the previous residue, which is the most sensitive 

reporter on the u angle of proline. The set of back-calculated spectra for each residue are 

stored as a single file. For residues flagged as overlapped, the features set files are 

concatenated to create a joint set. 

Calculation of R-factors 

We define the R-factor as the relative RMS residual between an experimental 

spectrum and the expectation spectrum back-calculated from a structural model. The use 

of RMS is in analogy to the quality factor (Q-factor) calculated for residual dipolar 

coupling data (22). The use of RMS tends to emphasize large outliers relative to the R-

factor used in crystallography, which averages absolute differences between 

experimental and back-calculated structure factors. It also provides a convenient 

definition of the optimum scaling factor for the back-calculated spectrum scalc, which can 

be calculated as: 

 

where vexp and vcalc are the experimental and back-calculated spectral intensities vectors, 

respectively. The R-factor is then calculated as:  

 

 

The theoretical range of the metric is from 0 to 1, however the maximum value can only 

be reached if there is no correspondence between peaks in the experimental and 
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expectation spectra, in which case the scaling factor, scalc, will approach zero. The 

practical minimum value is limited by the RMS noise on a per-residue basis. 

Calculation of fold factors 

Back-calculation for a structure can be carried out either on a linear peptide or as 

a fragment of the full structure. The R-factor can therefore be calculated on either basis. 

Calculation for peptides cannot explain any peaks outside the linear context, whereas all 

peaks should be explained in a fragment. The difference between fragment and peptide 

R-factors therefore reports on the fraction of cross-peak intensity that can only be 

explained in the folded structure. Here we report this difference as a per-residue fold 

factor, F: 

 

where Ri
full is based on a fragment from the full model and Ri

penta is the penapeptide 

based R-factor for residue i.  As R-factors should decrease as more of the cross-peak 

intensity is explained, the fold factor will be consistently negative for well-folded 

structures. High positive values are indications of misfolding, while continuous stretches 

of values close to zero should only be seen for unstructured regions. 

Factorisation and CMAP construction 

The dipeptide conformational space was sampled according to the following 

granularity: Du = 10°, Df = 10° Dc1 = 120°, Dc2 = 120°. The experimental vector v 

consisted of m = 256 data points of the acquired CNH-NOESY strip (i.e. NOE intensities vs. 
13C chemical shift), while W contained all of the back-calculated spectra of the l 

conformers sampled. With the aim of solving for the positive factors vector h that 

weights each column of W to best explain v. The principal solution can be defined as: 

 

and h can be also derived directly once the Moore-Penrose pseudo-inverse of the back-

calculated spectra matrix, W+, is computed as: 
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 The uniqueness of the solution in positive matrix factorization is limited by the 

ranks of the component matrices with the upper bound of min(m,n) (23). Here, as rank(W) 

>> rank(v) = rank(v) = 1, the limiting factor is the rank of v. Thus a 2-conformer block-wise 

factorisation was sought, being closest to this limit. The 2-conformer solution is also 

computationally tractable for handling the fine degree of conformational sampling 

described above. This solution offers a recovered spectrum that has a higher or equal 

weight against any single-conformer solution. The former two-component weight href 

was used as the highest propensity reference state for estimating the relative normalised 

propensities of every other available conformer hi. A Boltzmann factor can be directly 

used to estimate the energy of every conformer according to: 

 

The above procedure was performed across the (u, f) planes at every (c1, c2) 

combination. And lowest R-factor yielding plane was the one embedded into the 

CHARMM36 force field to generate MD ensembles with experimentally derived 

backbone dihedrals energy surfaces. 

Model building using Rosetta 

The Rosetta software package (24) was used to build structural models using 

backbone dihedral restraints derived from conformational mapping (version 3.6). First, a 

Rosetta dihedral angle constraint file (.cst) was compiled. For each residue position i, a 

MultiConstraint field was written to comprise both dihedral angles ui and fi. When 

multiple dihedral angles were possible for one residue position, an AmbigousConstraint 

field was used to include all possibilities. The Rosetta fragment picking program 

fragment_picker (25) was used to select 3mer and 9mer fragments satisfying the dihedral 

restraints from the PDB database. The DihedralConstraintsScore weight used was 500 

and the minimum allowed 100. The SecondarySimilarity (weight 150, minimum 1.5) and 

RamaScore (weight 150, minimum 1.5) both used psipred. FragmentCrmsd was not used. 

Other fragment_picker parameters were defaults. The fragment database vall.jul19.2011 

was searched and 200 3mer and 200 9mer fragments were picked for each position in 

the protein. The Rosetta ab initio folding program AbinitioRelax was then used to fold the 
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target proteins using these picked fragments (flag file: -ex1, -ex2 -use_input_sc, -

flip_HNQ, -no_optH false, -silent_gz 1). Typically, 20,000 decoys were generated for each 

target protein. 

SARS simulations 

The SARS framework was designed to provide robust and efficient conformational 

sampling without relying on any bioinformatic data, with the only input being CNH-

NOESY-acquired dihedral preferences encoded as residue-wise biasing potentials into a 

standard atomistic force field. The sampling acceleration scheme is based on the 

assumption that the native structure lies at the global minimum of the potential energy 

surface that is led to by successively deeper local minima. The algorithm initiates multiple 

replicas from the same fully extended peptide chain starting system. It then combines 

alternating rounds of simulated annealing between two temperature baths with 

conjugate gradient minimisation. Each such round constitutes a search step in a 

collective swarming behaviour that guides the configuration exchange between replicas 

whenever a new minimum is reached. In this way, all of the high-energy replicas follow 

the lead of the lowest energy one. The implementation details and convergence 

properties of the SARS method will be detailed in a separate publication. 

Molecular dynamics of human ubiquitin 

An initial low-resolution model generated by ROSETTA from the CNH-NOESY-

acquired dihedral restraints was taken as the input coordinates for molecular dynamics 

simulations. The standard trajectories were acquired from 10 independent replicas 

conducted using the standard CHARMM36 force field (26). In contrast, the guided 

trajectories were acquired from 10 independent replicas where the systems were built 

using an augmented CHARMM36 with bespoke CMAP potentials. The CMAP potentials 

were directly constructed on a per-residue basis, in the shifted Ramachandran space (ui, 

fi) from the energy maps as described above. The energy maps where scaled by an 

arbitrary factor depending on restraint level required, and the standard CMAPs were 

adopted wherever a bespoke one was not available. These residues with unmodified 

cross-terms were M1, Q2, G10, P19, E24, I30, P37, P38, G53 and G76. 
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All of the simulations were performed in explicit TIP3P water as solvent, 

containing 9226 solvent molecules each, and neutralised by 0.15 M Sodium Chloride in a 

cubic periodic unit cell. Energy minimisation was performed through 5000 steps of 

conjugate gradient minimisation, which was followed by 30 ns of NPT equilibration. The 

time step was set to 2 fs and a Langevin Piston was set to 1 Atm at oscillation period of 

200 fs and damping period of 50 fs and a temperature of 298 K. A Langevin thermostat 

was accordingly set with damping coefficient of 1 ps-1. A nonbonded interactions 

distance cutoff was set to 12.0 Å at a switching distance of 10.0 Å with all nonbonded 

force and pair list evaluations were performed every timestep, and long-range 

electrostatics were computed using the Smooth Particle Mesh Ewald method (27) as 

implemented in the NAMD engine (28). Data was collected from the ensuing NVT 

trajectories, dumping coordinates every 5 ps for analysis. Frame picking was done from 

the 10 production trajectories of 30 ns each based on the standard force field that would 

represent a steady state canonical ensemble. 

Ensemble building 

To compile the final CoMAND ensemble for hUb, we performed frame picking 

from an equilibrium ensemble, such that the compiled conformers belong to microstates 

of minimal free energy and maximal entropy at the target temperature. This should 

provide more physically realistic final models compared to those collected from 

constrained tempering schemes with unrealistic Hamiltonians. To pick frames from the 

production trajectories we applied a greedy algorithm aimed at minimising the average 

R-factor for all residues where experimental CNH-NOESY strips were available. For 

consistency, residues lacking experimental strips (M1, Q2, G10, P19, E24, I30, P37, P38, 

G53, G76) were excluded from the following comparisons with other datasets. 

Validation versus NMR observables 

Expectation NMR observables, R-factors and fold-factors were calculated for the 

CoMAND and reference hUb ensembles. For uniformity, only the first 20 conformers 

from each ensemble were considered for the comparisons shown in the figures. 

For backbone amide order parameters, frames were aligned into a singular molecular 

frame of reference that best fits backbone atoms of residues 1 through 70. The order 
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parameter, S2
NH, was directly computed according to the method described by 

Nederveen and Bonvin (29) through the following equation: 

 

where µi is the normalised internuclear NH bond vector in the molecular frame of 

reference and á*ñ represents the ensemble-averaged value. Expectation HN-H� scalar 

coupling constants were calculated according to the following Karplus function: 

 

where q is the HN – N – Ca - Ha dihedral angle. These were compared to literature 

experimental values (30). Deviations from experimental residual dipolar couplings and an 

overall Q-factor for the CoMAND ensemble were calculated using the program PALES (31) 

using 996 backbone coupling published for 2MJB across four alignment media (12). 
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Data availability: Coordinates for the CoMAND ensemble for human ubiquitin have been 

deposited in the Protein Data Bank under the accession number (TBC).  

  

Supplementary Materials 

Fig. S1. CNH-NOESY based R-factors are highly sensitive to local conformation. 

Fig. S2. The CoMAND ensemble independently reproduces NMR observables. 

Fig. S3. Fold-factors identify well-folded models for hUb. 

Fig. S4. The CoMAND ensemble for human ubiquitin. 

Movie S1. The SARS folding trajectory of polb4. 
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Figures 

 

Fig. 1. NOESY back-calculation in the CoMAND method.  

(A) An example comparison demonstrating the quality of back-calculation of CNH-NOESY spectra. 

The experimental spectrum for L67 in human ubiquitin (hUb) is in blue and the recovered 

spectrum back-calculated by averaging across the 640 models of the 2KOX structure ensemble (11) 

is in green. The residual signal is in red (R-factor = 0.071). (B) R-factors plotted across the 

sequence for three literature ensembles. These ensembles have been compiled to emphasise 

different aspects of the hUb structure: 2KOX to elucidate internal motions (11), 2NR2 via a minimal 

under-restraining, minimal over-restraining procedure (5) and 2MJB to represent a static average 

pose (12). The average structures for all three ensembles are very similar and differences in R-

factors are therefore attributable to the different representations of conformational diversity 

(see Supplemental Figure S1 for specific examples). These are compared to the CoMAND 

ensemble (green line). 
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Fig. 2. Conformational mapping in the CoMAND method.  

(A) The definition of the conformational search space. Note that in the shifted Ramachandran 

space, ui is equivalent to y(i-1). (B) The features matrix for L67 in hUb shown as a stacked plot 

where each row is a spectrum back-calculated via systematic conformational sampling, resulting 

in periodic intensity patterns. The order of sampling, from fastest to slowest, is c2, c1, u, f with 

10° steps for backbone and 120° steps for sidechain angles. The intensity of each peak in the 

spectrum displays a different dependency on the dihedrals, underlining the power of the data to 

discriminate individual conformations. The projection of this plot – i.e. all members of the 

features set overlaid - is shown above with individual peaks assigned. (C) Decomposing 

overlapped spectra. The top panel shows all members of the concatenated features set for Q2 

(orange) and I30 (purple) in hUb. Two-component factorization successfully decomposes the 

completely overlapped experimental spectra, yielding the correct conformations of the 

respective residues (middle panel). 
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Fig. 3. Conformation maps from spectral decomposition.  

Conformational maps are shown for six examples residues representing different secondary 

structural contexts in hUb. They are expressed as heat maps of conformer free energy change, 

relative to a two-conformer global minimum reference state. For non-glycine residues, a two-

dimensional (u, f) slice through the full three- or four-dimensional map at the minimum c1/c2 

position is shown. The map for G35 displays typical pseudo-symmetry about the f=0 axis due to 

the achiral nature of glycine residues. In each map, the minima agree very well with the 

corresponding crystallographic conformations (1UBQ; white diamonds). 
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Fig. 4. The R-factor as an objective target function. 

(A) Fold factors plotted across the sequence for hUb. Fold factors (F) are calculated on a per-

residue basis as the difference between the R-factor calculated for a linear peptide and that 

calculated for the full structure. This isolates the component of the R-factor not explained by 

local contacts. Negative values indicate residues in well-folded environments. Values are shown 

for an initial folded model from Rosetta runs plus a Rosetta structure misfolded by a strand swap 

in the N-terminal a-hairpin. These are compared to a representative of the final CoMAND 

ensemble (green line). (B) Comparison of the average fold factor (Fmean) versus the Rosetta score 

(Rosetta Energy Units) as selection criteria for well-folded hUb models. Both measures are 

plotted against the RMSD to the reference structure (1UBQ) for the same set of 7215 Rosetta 

decoys with sub-zero score. Structures with low Fmean are consistently close to the reference 

structure. 
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Fig. 5. The CoMAND structure gallery. 

(A) The CoMAND structure gallery. Models (orange) are shown superimposed on their respective 

reference structures. For U3Sfl and MlbQ the reference structures are previously solved solution 

structures. For KH-S1, the KH domain reference structure is 4AM3 (light purple) and the S1 

domain reference structure is 4NNG (dark purple). The de novo structure determined for polb4 is 

compared to the design target. A single model from the refined CoMAND ensemble for hUb is 

shown in yellow and the reference structure (1UBQ) in blue (RMSD over backbone atoms 0.49 Å). 
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Fig. 6. Validation of CoMAND ensembles. 

(A) Evolution of the average sequence R-factor and fold factor along the first replica of the SARS 

folding trajectory of polb4. The lowest R-factor structure (time point of 6.4 ns) was chosen as a 

low-resolution model (See also Supplemental Movie S1) (B) The RMSD from the native fold along 

the trajectory of the same SARS folding simulation. Traces for all five replicates are shown, 

illustrating the convergence of the protocol. (C) The CoMAND ensemble independently 

reproduces NMR observables. The correlation between residual RDC values back-calculated from 

the CoMAND ensemble and experimental values in four different alignment media is shown (12). 

The Q-factor expressing the agreement between prediction and experiment for this data set is 

0.24. Similarly good agreement is obtained between back-calculated and experiment 3JHNHa 

coupling constants (correlation coefficient = 0.95; Supplementary Figure S2). RDC values report 

on the orientation of various bond vectors to an external molecular alignment medium and are 

thus sensitive to both local and global structure. 3JHNHa coupling constants report on local f 

angles. Neither parameter was used in compiling the CoMAND ensemble. d) Calculated S2
NH order 

parameter values across the sequence of hUb using the first 20 models of the 2MJB, 2KOX, 2NR2 

and CoMAND ensembles. The CoMAND ensemble best reproduces experimental values derived 

from NMR relaxation analysis (29) (correlation coefficient=0.82). Correlations for the reference 

ensembles are shown in Supplementary Figure S2). 
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Figure S1: CNH-NOESY based R-factors are highly sensitive to local conformation. 

(A) Plots are shown of R-factors versus composition for idealised two-state conformational 

mixtures. The upper plot shows linear mixtures between a-helical (u = -40°, f = -62°) and 310-

helical (u = -10°, f = -95°) conformations, modelling a conformational transition by helical 
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unwinding. Traces are shown for selected residues in helical regions of human Ubiquitin (hUb). 

Some residues are best explained by pure conformers, e.g. K27 and Q40, while others have R-

factor minima for mixtures. The lower panel models transition between the two most populated 

sidechain rotamers for leucine residues: mt (c1 = -60°, c2 = 180°) and tp (c1 = 180°, c2 = 60°). 

Traces are shown for all leucine residues in hUb for which data is available. Residues sampling 

multiple conformations are clearly identified. (B) Validating conformational mixtures in the 

CoMAND ensemble. The chemical shifts of leucine Cd1 and C�2 carbons are sensitive to the 

c2 rotamer due to a “g-gauche effect” (32). The difference in these shifts correlates with the 

proportion of trans rotamer in leucine residues and thus provides an independent estimate of 

the conformational mixtures described in the lower plot of panel A. The plots show the shift 

differences (Dd) versus the proportion of trans rotamer for the CoMAND and three reference 

ensembles for hUb. These ensembles have been compiled according to different metrics: 2KOX to 

elucidate internal motions, 2NR2 according to minimum under-restraining, minimum over-

restraining criteria and 2MJB, which represents a static structure close to the average structure 

and is therefore not expected to explain conformational diversity well. The CoMAND ensemble 

best explains the observed chemical shifts. The expected shift difference (solid line) is based on 

the equation derived by Mulder (32). (C). Literature ensembles for hUb over- and under-estimate 

conformational diversity. The panels on the left show the distribution of c1/c2 rotamers for K48 in 

hUb in the CoMAND and reference ensembles. For 2KOX only the first 20 models of the ensemble 

are shown for clarity. The panels on the right show the comparison between experimental 

spectra and spectra back-calculated over the whole ensemble. The R-factors for these 

comparisons demonstrate its sensitivity to accurate representation of conformational diversity. 
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Figure S2: The CoMAND ensemble independently reproduces NMR observables. 

Correlations are shown between experimental and back-calculated 3JHNHa coupling constants (12) 

and backbone S2
NH order parameters (29) for the CoMAND and reference ensembles. Note that the 

2MJB ensemble was refined against 3JHNHa couplings, while 2NR2 was refined against order 

parameters. 
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Figure S3: Fold-factors identify well-folded models for hUb. 

Correlations are shown between the average fold-factor (Fmean) and Rosetta Score (Rosetta 

Energy Units) for a set of 7215 decoys with sub-zero score calculated for hUb. Each point is 

coloured according to the RMSD to the reference crystal structure (1UBQ). Agreement between 

the two measures is a very good predictor of well-folded decoys. 

 

 

Figure S4: The CoMAND ensemble for human ubiquitin. 

The refined ensemble for hUb (20 models) is shown superimposed over backbone atoms. Helices 

are in blue and b-strands in orange. The backbone RMSD to the average structure for the 

ensemble is 0.64 Å. The ensemble has been compiled by frame-picking structures from an 

unrestrained molecular dynamics simulation employing a greedy algorithm to minimise the 

overall average R-factor. 
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Movie S1 

The SARS folding trajectory of polb4. The movie shows the time evolution of the communicating 

replica performing a seilschaft search for lower energy minima. The inset shows the backbone 

RMSD from the design as a function of time. 
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5
Conclusions

Success of protein design can be defined by atomic-level agreement between the design

model and determined structure. Although differing from case to case, success rates have

been consistently low. This can be attributed to deficient sampling due to the intractable

dimensionality of the search space and inaccurate scoring due to the simplistic bases of the

scoring routines. Through this research, I aimed to localise the search spaces, which both

allows exhaustive sampling to be carried out and more rigorous scoring schemes to evalu-

ate the sampled states. On the sampling side, I show that the step-wise interface-driven

approach utilising fragments drastically reduces the sampling required to reach a good so-

lution, while maintaining topological control. On the scoring side, the work-based PMF and

perturb-probe schemes had been tested for convergence against benchmarks before they were

deployed to filter the design candidates for experimental testing. Combined, these advanced

have allowed me to experimentally test a small number of designs and were reflected in very

high success rates. Likewise, performing localised systematic sampling of the conformational

space combined with analytical decomposition of the experimental NMR spectra could yield
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local free energy distribution maps for individual residues. This systematic factorisation not

only provided a means for building initial models de novo using a purpose-built accelerated

molecular dynamics routine (SARS), but also enables highly detailed refinement of the fi-

nal ensemble. In contrast to present NMR methods, the quantitative information extraction

from spectra allows for resolving overlapped spectra, explaining split-peaks, and accounting

for multi-stable conformational distributions.

The ultimate goal of protein design is creating novel proteins with bespoke functions. This

is a challenging goal given the extra level of complexity relative to the design of structure

alone. To this end, designing structures at atomic precision and high success rates, combined

with accurate description of protein conformational dynamics in solution, offers decisive ad-

vantages. Learning from that, I am currently applying such approaches to design functional

proteins, where the high success rate is already feeding into the discovery of highly active

molecules.
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List of abbreviations:

NMR Nuclear Magnetic Resonance

FTIR Fourier-transform Infrared Spectroscopy

CD Circular Dichroism

MD Molecular Dynamics

MSM Markov State Model

GPU Graphics Processing Unit

kB Boltzmann constant

Zβ Partition function

KU Unfolding equilibrium constant

R Gas constant

kf Folding rate constant

nss Number of secondary structural elements

T Temperature in Kelvins

SCOP Structural Classification Of Proteins database

CATH Class-Architecture-Topology-Homology classification database

MC Monte Carlo

MCMC Markov Chain Monte Carlo

∇f Gradient of function f with respect to 3D Cartesian position

δt Simulation time step

v Velocity vector

r Position vector
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kterm Force constant of the respective term

ϵo Permittivity of medium

q Atomic charge

ϕ Backbone phi dihedral angle

ψ Backbone psi dihedral angle

VALOCIDY Valuation of Local Configuration Integral with Dynamics

FT-NMR Fourier-transform Nuclear Magnetic Resonance

γ Nuclear gyromagnetic ratio

Bo Magnetic field strength in Hz

λ linewidth; full peak width at half maximum height

T1 Longitudinal relaxation time constant

T2 Transverse relaxation time constant

S2 Generalised order parameter

CPMG Carr-Purcell Meiboom-Gill relaxation dispersion pulse sequence

HhH helix-hairpin-helix

TPR Tetratricopeptide repeat

dRP deoxyribophosphate

PMF Potential of Mean Force

SMD Steered Molecular Dynamics

RFD Rotational Force Dissipation

PDB Protein Data Bank

NOESY Nuclear Overhauser Effect Spectroscopy
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CoMAND Conformational Mapping via Analytical NOESY Decomposition

CMAP Corrective backbone cross-term

SARS Simulated Annealing Replica Seilschaft

J Scalar coupling constant

RDC Residual Dipolar Coupling constant
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