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Chapter I. Introduction 

‘The evolution of the human mind is primarily the evolution of its means of expression’, 

the French anthropologist André Leroi-Gourhan (1988, p. 262) concluded from his research on 

archeological artifacts. Leroi-Gourhan argued that the development of the human mind is closely 

related to the creation of symbol systems. Therefore, children spend their early years learning and 

practicing the use of linguistic and mathematical symbols. Nonetheless, as society changes, our 

means of expression continue to evolve. In the digital era, it has become essential to understand 

data quickly. The need to make data accessible to use led to the invention of data visualizations. In 

most cases, data is visualized as some type of graph (Friendly, 2008). Graphs represent our bank 

account balance, help us monitor our training progress, and display the weather forecast. Kosslyn 

(1989) defined graphs in his classic article ‘Understanding Charts and Graphs’ as representations 

with at least two scales with values associated with one another via a ‘paired with’ relation. Graphs 

represent greater quantities of the measured substance with more of some visual dimension (e.g., 

area, lines, diameter, angle, and color). Due to their abstract nature, understanding graphs is not 

trivial and can be viewed as a culture technique just like reading and operating with mathematical 

symbols, one that has to be taught, learned and practiced. 

Today, the presence of graphs continues to increase (Friendly, 2008), and is expanding to 

many life sectors, workspaces and scientific domains due to the development of information tech-

nology. Therefore, understanding graphs is relevant across school subjects and contributes to stu-

dents’ reading, mathematical and scientific competences. Accordingly, many large-scale studies 

assess students’ ability to understand graphs, for instance, as part of scientific literacy and mathe-

matics in TIMSS (Baumert, Bos, & Watermann, 1998) or reading, mathematical and science liter-

acy in PISA (OECD, 1999). These large-scale studies have shown that understanding graphs is a 

challenge for students. Strikingly, only 60 % of eight graders internationally can read a single value 

off of a line graph, and only 29 % can read an average off a graph (TIMSS 2011 Assessment, 2013). 

Both tasks represent the bare minimum of what students should be able to do. In light of these 

results, it is worthwhile to review the current state of research on how people understand graphs. 

In fact, there is already a considerable amount of research on graphs across disciplines like 

literacy research, science and mathematical education, cognitive psychology, and medical and busi-

ness decision-making. However, the research seems to be channeled into two distinct communities, 

the literacy and comprehension research communities. These research communities can be distin-

guished on the basis of their primary goals and research methods. On one side, literacy research 
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aims at modeling individuals’ competences to understand graphs. It investigates psychometric 

properties of tests, competence dimensions, item difficulty and factors influencing individuals’ 

competence to understand graphs. On the other side, comprehension research aims at understand-

ing how graph comprehension works. It investigates the effects of task, graph, content and individ-

ual characteristics and their interactions to explain the cognitive mechanisms underlying graph 

comprehension. Literacy research uses heterogeneous test items that simulate real-world problems, 

while comprehension research systematically manipulates task, graph, and content characteristics 

to enable inferences about cognitive mechanisms. Literacy research analyzes item responses from 

large heterogeneous samples to identify individual differences, whereas graph comprehension re-

search analyzes various data sources like think-aloud protocols, eye movements, response times or 

response accuracy in homogenous, comparatively small samples to identify general graph compre-

hension processes (see Table 1).  

Consequently, the strength of literacy research is its focus on realistic items and representa-

tive samples. Thus, literacy research addresses the question ‘who is able to perform what real-world 

tasks?’; however, literacy research provides few insights into how individuals master these tasks. 

The strength of comprehension research lies in inferences about general graph comprehension pro-

cesses. Therefore, comprehension research addresses the question of ‘how do individuals achieve 

graph comprehension?’; however, the tasks in graph comprehension research are often artificial. In 

short, literacy research describes the ability to understand graphs, and graph comprehension ex-

plains how individuals understand graphs. Importantly, these research communities do not contra-

dict, but rather complement each other. Therefore, this thesis attempts to combine literacy and 

graph comprehension research to understand ‘who understands what graphs and how does it work?’. 

The benefits of combining literacy and comprehension research are apparent. However, 

there are barriers to overcome before these two research communities can be integrated in a mean-

ingful way. Integration requires terms, theoretical models and statistical modeling approaches that 

both communities can agree upon. Therefore, the first section of the introduction discusses the 

terminology used by both research communities. The second and third sections presents the current 

state of both research communities. The fourth section introduces the process-oriented model of 

graphicacy (POMoG), which integrates findings from both communities. The fifth section develops 

research questions that emerge from the POMoG before finally discussing modeling approaches 

that address these research questions. The introduction is followed by three studies (Chapters II, 
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III, and IV) that address the research questions. Finally, the POMoG and the findings of the three 

studies will be discussed regarding their theoretical, methodological and practical implications.  

 

Table 1. Comparison of the literacy and comprehension research communities concerning proto-

typical research goals, stimuli, study designs, data sources, and statistical modeling approaches. 

 Literacy research  Comprehension research 

Research 

goal 

 

 

Describe individuals’ ability to understand 

graphs: Test construction and competence 

modeling (dimensionality, item difficulty, 

and influencing factors) 

Explain underlying graph comprehension 

processes: Effects of task, graph, content, 

individual characteristics and their interac-

tions, as well as process measures 

Stimuli Test items that simulate real-world prob-

lems 

Experimental conditions that manipulate 

task, graph, and content characteristics  

Study  

designs 

Large-scale assessment studies with repre-

sentative samples 

Experimental designs with process 

measures with homogeneous samples 

Data sources Item responses, test scores, and demo-

graphic variables  

Response times, response accuracy, eye-

tracking metrics, and think-aloud protocols  

Statistical 

modeling  

approaches 

Factor analysis (incl. IRT), Structural 

equation models, Regressions 

Analysis of Variance, Analysis of Covari-

ance, Qualitative analysis  
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 Terminology across research disciplines 

Many terms have been used to describe individuals’ ability to understand graphs, due to the 

presence of graphs in different research disciplines. Only terms describing cognitive achievement 

dispositions that explicitly involve the comprehension of graphs1 were considered here. The most 

frequent terms will be listed and discussed in order to identify commonalities and hone in on a 

conclusive definition. 

The most frequently used terms to describe individuals’ ability to understand graphically 

presented information are graphicacy (Åberg-Bengtsson & Ottosson, 2006; Lowrie, Diezmann, & 

Logan, 2012), graphical literacy (Galesic & Garcia-Retamero, 2011), graphing ability (Berg & 

Phillips, 1994; McKenzie & Padilla, 1986), graph sense (Friel, Curcio, & Bright, 2001), represen-

tational competence (Brenner, Herman, Ho, & Zimmer, 1999; Kohl & Finkelstein, 2005; Kozma 

& Russell, 1997; Stieff, Hegarty, & Deslongchamps, 2011), and representational fluency (Bieda & 

Nathan, 2009; Hill, Sharma, O'Byrne, & Airey, 2014). Table 2 provides an overview of constructs, 

definitions, target groups, representations, and authors. 

The terms graphical literacy and graphicacy are used in the context of literacy research. 

Åberg‐Bengtsson and Ottosson (2006) argue that “being ‘graphicate’ is equal in status to being 

literate and numerate”. They focus on individuals’ ability to perform practical tasks which are 

likely to occur in everyday life. Galesic and Garcia-Retamero (2011) focused on graphs about 

health risks. Graphical literacy and graphicacy involve being able to extract information displayed 

in a graph and interpret it on the basis of a common knowledge context. In contrast, graph sense 

focuses more on the ‘pure’ extraction of information from graphs and a general understanding of 

coordinate systems and the apposed-position language. For Friel et al. (2001), graph sense can be 

understood as analogous to number sense (Sowder, 1992 as cited by Friel et al. 2001) and symbol 

sense (Fey, 1990, as cited by Friel et al. 2001).  

However, graphical literacy, graphicacy, and graph sense focus on the ability to understand 

graphs independent of any specific content domain. 

                                                 

 

1 Constructs like ‘visualizer’ and ‘visual literacy’ as well as ‘representational preference’ are 

excluded because the first two refer to visual information more generally and the last refers to 

choice rather than performance. 
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In contrast, representational competences, representational fluency and graphing ability 

focuses on individuals’ ability to use graphs and other representations in conjunction with mathe-

matical concepts or domain knowledge in the sciences. A critical aspect of these terms is that cer-

tain phenomena in mathematics and science can be displayed using different representational 

forms: for instance, population dynamics can be represented using time-persistent, time-implicate, 

and time-singular representations (Ainsworth & VanLabeke, 2004); molecular modeling as models, 

general equations, numerical equations, and graphs (Stieff et al., 2011); physics problems as words, 

graphs and equations (Hill et al., 2014). Kozma and Russell (1997) provide a frequently cited def-

inition of representational competence (Brenner et al., 1999; Kohl & Finkelstein, 2005; Stieff et al., 

2011). For them, representational competence is the set of skills for constructing, interpreting, 

transforming and coordinating domain-specific external representations for learning and problem-

solving. Hill et al. (2014) use the term representational fluency and McKenzie and Padilla (1986) 

the term graphing abilities to describe constructs very similar to representational competence. Es-

sentially, representational competence are its associated terms focus on understanding the specific 

content of a graph.  

In sum, what all these terms have in common is that they describe individuals’ ability to 

understand representations of data. However, the terms graphicacy, graphical literacy, and graph 

sense focus on individuals’ ability to understand graphs independent of a specific content domain. 

In contrast, representational competence, representational fluency, and graphing ability focuses on 

individuals’ ability to understand graphs and other representations in a specific content domain. 

Importantly, graphicacy is not content domain free; in principle, graphs representing real-world 

problems have a content domain. However, the content domain is not as critical for graphicacy as 

it is for representational competences. Furthermore, the terms related to representational compe-

tences involve a greater variety of operations, such as creating representations and transforming 

one representation into another, whereas as the terms around graphicacy instead focus on the inter-

pretation of graphs.  

The term graphicacy will be used in the following sections because this thesis examines 

individuals’ ability to understand graphs independent of any specific content domain. Notably, 

Åberg‐Bengtsson and Ottosson’s (2006) argument that being ‘graphicate’ is equal in status to being 

‘literate’ and ‘numerate’ is rather misleading, because understanding graphs in real-world settings 

obviously relies on mathematical and reading skills in many cases. Therefore, graphicacy is instead 

a subset of existing literacy constructs, such as mathematical literacy and reading literacy, rather 
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than an independent and novel construct. Nonetheless, it has already been pointed out that focusing 

on this sub-set is worthwhile. Subsequently, graphicacy is defined as the ability to understand 

graphs independently of specific content domains. A graphicate individual is able to understand the 

graphical language and content of a graph.  

 

Table 2. Frequent terms describing the ability to understand graphs across research disciplines, 

with associated focus, relevant groups, representations and authors. 

Construct Focus  Group Representation Example authors 

     

Graphical lit-

eracy 

Real-life problem 

solving and deci-

sion making 

Adults & 

secondary 

education 

Bar, pie and line 

graphs 

Galesic, & Garcia-Retamero 

(2011) 

 

Graph sense  Mathematical 

problem solving  

Primary & 

secondary 

education 

Bar, pie, line 

graphs, scatter 

plots 

Friel et al. (2001) 

Graphicacy Mathematical 

problem solving 

Secondary 

education 

Bar, line and picto 

graphs 

Lowrie et al. (2012) 

Åberg-Bengtsson & Ottosson 

(2006) 

Graphing 

ability  

Utilizing graphs 

in science  

Higher ed-

ucation 

Graphs, tables, de-

scriptions 

McKenzie & Padilla (1986) 

Representa-

tional com-

petence 

Working with 

domain-specific 

representations  

Secondary 

education 

Notations, graphs, 

equations, func-

tions, tables  

Kozma & Russell (1997); 

Stieff et al. (2011);  

Brenner et al. (1999) 

Representa-

tional flu-

ency 

Problem-solving 

in the sciences 

Higher  

education 

 Hill et al. (2014);  

Bieda & Nathan (2009) 
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 Modeling graphicacy as a competence 

This section addresses literacy research on graphs. Literacy research aims to model graph-

icacy as a competence. Therefore, in this section, the concept of ‘competence’, competence frame-

works and competence modeling are introduced before reviewing the literature on graphicacy.  

Competence is a popular concept in the cognitive, social and educational sciences. The 

keyword competence is contained in 14% of all publications in educational research and also occurs 

in many other scientific disciplines such as psychology, management, science education, health, 

economics, sociology and business2. As a result, the term ‘competence’ has many definitions and 

meanings. This thesis refers to competences in a pragmatic-functionalist sense, and specifically as 

a ‘cognitive achievement disposition, that is functional with regard to situations and demands in a 

certain domain’ (Prenzel, Gogolin, & Krüger, 2008, p. 14). Because competencies are situation- 

and domain-specific, the first step in modeling a competence is to develop a framework defining 

the domain of that competence. For instance, the competence framework for the Trends in Interna-

tional Mathematics and Science Study (TIMSS) defines mathematics as a combination of content 

(e.g., numbers, data, geometry) and cognitive domains (i.e., knowing, applying, and reasoning). 

The mathematics test in TIMSS contains items that meet the criteria of the competence framework. 

Items are sub-tasks of a test which test takers can answer correctly or incorrectly. A competence 

model - in the sense it is used here - is a statistical model that describes a competence based on test 

takers’ responses to the items. Ideally, the competence model will be a parsimonious description of 

all responses. A competence model can be used to evaluate the validity and reliability of the asso-

ciated test, as well as dimensionality and factors related to item difficulty. Of these, dimensionality 

and item difficulty are the most interesting from a substantive research perspective.  

Statistically speaking, a dimension in a competence model is the conceptual equivalent of 

a ‘factor’ in a factor analysis. A dimension or factor is an unobserved latent variable that explains 

the joint variation in multiple item responses. Dimensionality determines what degree of differen-

tiation is needed to describe the competence. In the case of graphicacy, it is only appropriate to say 

‘people can be more or less proficient in understanding graphs’ if the competence model is one 

dimensional. Multiple dimensions imply that people have strengths and weaknesses. Therefore, it 

                                                 

 

2 Status 10/07/2018 Web of Science 
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is necessary to specify people’s competence on each competence dimension: for instance, ‘people 

can be more or less proficient at reading points and interpreting trends’. In a multi-dimensional 

competence, reading points and interpreting trends would be two different aspects, meaning that 

being good at reading points does not mean one is necessarily good at interpreting trends as well.  

Item difficulty is the probability of achieving a correct response at a given level of compe-

tence. Item difficulty can be influenced by item characteristics, e.g., graph complexity or task de-

mands. Knowing which characteristics make items difficult is important for interpreting test results. 

Finally, the last aspect competence modeling investigates is what individual characteristics influ-

ence the competence. These correlations with other constructs are important for construct validity. 

For instance, graphicacy should correlate with reading comprehension; however, a very high cor-

relation could imply that it is not necessary to assess graphicacy in addition to reading comprehen-

sion.  

In sum, competence modeling has two crucial steps: first, developing a competence frame-

work that defines the competence, and second, finding a parsimonious competence model that de-

scribes the dimensionality and factors related to item difficulty. Notably, the competence model is 

often expected to mirror the competence framework. However, the congruence between framework 

and model can be studied empirically. In the existing literature, three studies actually investigate 

the congruence between framework and model (Lachmayer, 2008; Nitsch & Bruder, 2014; Nitz, 

Ainsworth, Nerdel, & Prechtl, 2014; Ullrich et al., 2012), three studies focus on the framework and 

use a one dimensional competence model by default (Curcio, 1987; Hill et al., 2014; McKenzie & 

Padilla, 1986; Lai et al., 2016), and two studies specify competence models on the basis of test data 

without previously defining a competence framework (Åberg-Bengtsson, 1999; Åberg-Bengtsson 

& Ottosson, 2006). Therefore, competence frameworks and competence models for graphicacy are 

reviewed separately in the following sections.   

I.2.1 Competence frameworks of graphicacy  

This section reviews the graphicacy frameworks proposed by various researchers. Graph-

icacy frameworks define which task demands a graphicate person should be able to master. Most 

frameworks focus on graph interpretation; however, some additionally include graph construction 

and the integration of or translations to other representations and graphs. Furthermore, the frame-

works have different content domains, such as science or decision making, depending on the re-

search discipline from which they stem.  
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Lachmayer (2008) proposed a comprehensive framework for graph competences in the con-

text of biology for ninth and tenth graders. The authors’ framework has three main components: 

information extraction from graphs, graph construction, and integration. Each component has sub-

tasks. Information extraction includes identification and graph reading. The first component, iden-

tification, refers to the ability to understand how the graph displays data and does not require the 

interpretation of the data itself. Graph reading is the ability to interpret the data itself. Graph reading 

includes four complexity levels: reading single values, reading a comparison or trend, reading mul-

tiple comparisons or trends, and reading beyond the data, which includes extrapolation and making 

predictions based on the data. The second component is graph construction and includes the con-

struction of a graph frame and entering data. Construction of a graph frame is the ability to construct 

a graph structure that matches the variables to be depicted. Entering data encompasses three com-

plexity levels, namely the ability to enter single data points, trends and multiple trends into a graph 

frame. The third component, integration, requires integrating information from graphs and other 

information sources, such as text and equations. Ullrich et al. (2012) focused specifically on the 

integration component for fifth to eighth graders in biology and geography. Similarly to Lach-

mayer’s information extraction component, Ullrich et al. (2012) included three complexity levels: 

mapping single data points, mapping simple relations, and mapping complex relations. 

Lai et al. (2016) proposed a framework including the three components of graph compre-

hension, critique and construction in science for fifth to eighth graders. The first of these, graph 

comprehension, includes locating the coordinates of a point and identifying relative highs; inter-

preting general relationships; describing shapes, trends, and noise in the depicted graphs; and inte-

grating graphs with science ideas. Second, graph critique requires students to give alternative in-

terpretations of graphs. The third element refers to the construction of graphs from tables and sci-

ence concepts. 

 Nitz et al. (2014) proposed a framework for representational competence in biology. Their 

framework includes describing scientific concepts; generating and selecting a representation; iden-

tifying, describing and analysing features of representations; and making connections across dif-

ferent representations and explaining the relationships between them (Kozma & Russell, 2005).  

McKenzie and Padilla (1986) proposed a framework for the Test of Graphing in Science 

(TOGS) for seventh to 12th graders. They defined eight different cognitive operations involving 

line graphs and scatterplots. These task demands are as follows: 1. selecting an appropriate scale 

and set of axes (given a description of an investigation), 2. Selecting a graph to display data (given 
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a description of an investigation), 3. Selecting corresponding values for Y (or X) (given the oppos-

ing value), 4. Selecting an appropriate description of the relationship (given a graphed relationship), 

5. Identifying graphs with appropriately assigned variables (given a series of graphs), 6. Identifying 

trends displayed in a set of data (given a graph), 7. Locating corresponding points on a graph (given 

coordinates), 8. Generalizing the interrelationship between two graphs (given two graphs) 

Nitsch & Bruder (2014) propose a framework for students’ ability to translate between rep-

resentations of functions, including graphs, for ninth to tenth graders. The authors’ framework in-

cludes translating between four types of representations (i.e. graph, numerical table, algebraic equa-

tion, and situation description) in both directions. However, they included on three translations that 

involve graphs: translating between graphs and algebraic equations, between graphs and numerical 

tables, and between graphs and situational descriptions. 

Leinhardt, Zaslavsky, and Stein (1990) proposed a framework for the comprehension of 

functions with graphs within mathematics education by defining common misconceptions: confus-

ing the slope and the height, confusing an interval and a point, considering a graph to be a picture, 

and conceiving of a graph as made up of discrete points.  

However, Friel et al. (2001) focused more on the development of the skills needed to inter-

pret graphs as mathematical constructs. They distinguished between three main components of 

graphicacy, progressing from local to global features of a graph: (a) reading information directly 

from a graph; (b) manipulating the information read from a graph by making comparisons and 

performing computations; and (c) generalizing, predicting, or identifying trends by relating the 

information in the graph to the situational context.   

For Curcio (1987), graphicacy involves line, bar, and circle graphs, as well as pictographs. 

Students need to be able to read the data, title, and axis labels, as well as use their mathematical 

competence to make extensions, predictions, and inferences. Hill et al. (2014) proposed a similar 

framework for college physics education. The physics problems they discuss include questions that 

involve various combinations of graphs, verbal descriptions and equations. 

I.2.2 Competence models of graphicacy 

A competence model describes the empirical structure of a competence. This section de-

scribes the dimensionality and item difficulty of competence models of graphicacy in relation to 

their respective competence frameworks. Competence frameworks define multiple components of 

graphicacy. However, competence models examine which components actually need to be distin-

guished. For instance, Lachmayer (2008) compare the fit of eight hypothetical competence models 
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to test results for N = 289 students (G9: n = 134, G10: n = 155).  The eight models varied in 

granularity. The model that distinguished between five components - identification, graph reading, 

constructing a graph frame, entering data, and integration - had the best fit. This five-dimensional 

model had slightly better fit than a three-dimensional competence model distinguishing between 

information extraction, information construction, and integration. This implies that identification, 

graph reading, constructing a graph frame, entering data, and integration all require different 

competencies.  

Ullrich et al. (2012) compared a one-dimensional model of integration and a three-dimen-

sional model distinguishing between mapping single data points, mapping simple relations, and 

mapping complex relations using test results from N = 1060 students from grades five to eight. The 

one-dimensional competence model had the best fit. This indicated that the three types of mapping 

complexity require the same ‘integration’ competence. 

Nitsch & Bruder (2014) found on the basis of data from 645 ninth and tenth graders that 

each type of translation between different representations of functions requires a specific compe-

tence (e.g., graph to description, table to graph). They compared the fit of a one-dimensional com-

petence model for ‘general comprehension of functions’, a three-dimensional model for ‘compre-

hension of representation forms’ (e.g., graph, table and description), and a five-dimensional model 

of ‘comprehension of translations’ (e.g., graph to description). They found that students vary not 

only in their general comprehension of functions and their ‘comprehension of forms of representa-

tion’, but also in their ability to perform different types of translations. This shows that competences 

are not just specific to forms of representation, they are even specific to certain cognitive opera-

tions. 

Åberg-Bengtsson (1999) analyzed a subset of the Swedish Scholastic Aptitude Test (Swe-

SAT) involving the reading and interpretation of quantitative data. Åberg-Bengtsson performed a 

confirmatory factor analysis on 20 DTM items using data from 14,463 students from the same 

cohort. The result was a three-factor model with general, mathematical-quantitative and complex-

ity competence competents. Åberg-Bengtsson and Ottosson followed-up on this work in 2006 by 

trying to distinguish among different factors underlying students' performance on a self-designed 

instrument for measuring graphicacy in a sample of 363 students between 15-16 years old from 

five schools. Again, the authors found three dimensions: a general graphicacy, an end-of-test and a 

narrative component. The narrative competent encompassed items with open-ended questions. In-

terestingly, the type of graph displayed (e.g., pie chart, line graph) and the complexity of the item 
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(e.g., reading a single value, multiple choice) were not separable components. Åberg-Bengtsson’s 

work shows that graphicacy tasks involving mathematical operations require a competence that 

needs to be distinguished from ‘general’ graphicacy.  

Item difficulty. Item difficulty was not a primary goal in most of the studies reviewed here. 

However, Lachmayer (2008) found that complexity level (reading a single value, reading a com-

parison or a trend, reading multiple comparisons, reading beyond the data) explained item difficulty 

for the graph reading component. Furthermore, integration items were more difficult on average 

than identification and construction items. Ullrich et al.’s (2012) findings provide further support 

for the influence of complexity level in the context of integration. Earlier, it was emphasized how 

important it is to know which item characteristics make items difficult; however, too little work 

has been conducted in this area to give a comprehensive review. 

I.2.3 Influencing factors 

Content (domain) knowledge. Roth and Bowen (2001) argued that familiarity with the con-

tent of graphs is important for graphical competencies. Nitz et al. (2014) found that content domain 

knowledge and representational competence have a medium to large correlation. The authors argue 

that representational competence and content knowledge are ‘interactively’ related, but still empir-

ically distinguishable. In line with Kozma and Russell (2005), Nitz et al. (2014) found that content 

knowledge improves faster than representational competence over the course of a teaching unit in 

a sample of N = 1253 students.  

Reading and mathematical achievement. Curcio (1987) investigated how reading achieve-

ment (measured with the SRA Reading inventory), mathematics achievement (measured with the 

SRA mathematical inventory) and prior knowledge of the topic, the mathematical content and the 

graphical format predict graph comprehension with a sample of fourth (n = 204) and seventh grad-

ers (n = 185). The prior knowledge inventory covered items about the topic, mathematical content 

and the graphical form. Even when controlling for reading and mathematical achievement, the dif-

ferent prior knowledge components still correlated with graph comprehension. Prior knowledge of 

mathematical content had the highest correlation (r = .34 in grade seven and r = .38 in grade 

four). Interestingly, prior knowledge of the graphical format was only correlated with graph com-

prehension among the 4th graders. This may suggest that prior knowledge of the graphical format 

only influences graph comprehension when graphs are quite new in the curriculum. A regression 
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analysis with all of the aforementioned variables revealed that mathematical and reading achieve-

ment are the best predictors of graph comprehension, whereas knowledge of the graphical format 

contributes little to prediction.  

 Åberg-Bengtsson and Ottosson (2006) found medium latent correlations between graphic-

acy and general academic achievement (r = .48), mathematical achievement (r = .58), and language 

achievement (r = .47). Galesic and Garcia-Retamero (2011) found correlations between graphical 

literacy and numerical literacy of r =.47 in a German sample and r =.50 in the US sample. These 

correlations show that the ability to understand graphs is related but not identical to general, math-

ematical and language achievement. 

General cognitive abilities. Additionally, there is evidence that quantitative graph reading 

is associated with general cognitive abilities. For instance, Berg and Phillips (1994) found that 

performance in quantitative graph reading was positively associated with logical thinking and pro-

portional reasoning in a sample of seventh, ninth, and eleventh graders. Moreover, Padilla, McKen-

zie and Shaw (1986) observed that interpreting line graphs was associated with abstract-reasoning 

abilities in a sample of 119 seventh, ninth, and eleventh grades. 

I.2.4 Summary 

A number of authors have proposed frameworks for graphicacy. These frameworks fre-

quently distinguish between graph interpretation, graph construction and integration (Lachmayer, 

2008; Lai et al., 2016; Leinhardt et al., 1990; Nitsch & Bruder, 2014). Within graph interpretation, 

researchers distinguish between different levels of complexity: reading single points, trends and 

complex relations (Lachmayer, 2008; Lai et al., 2016; Ullrich et al., 2012), as well as making gen-

eralizations and predictions (Lachmayer, 2008; Leinhardt et al., 1990). Additionally, there is a dis-

tinction between researchers focusing on individuals’ abilities to understand the graph itself (von 

Kotzebue & Nerdel, 2015; McKenzie & Padilla, 1986) vs. what the graph represents (scientific 

phenomena: Lai et al., 2016, risk in medical contexts: Galesic, & Garcia-Retamero, 2011; biologi-

cal phenomena: Lachmayer, 2008; functions: Leinhardt et al., 1990; phenomena in geography, bi-

ology and math: Åberg-Bengtsson & Ottosson, 2006). 

Studies have shown that the distinction between interpretations, construction, and integra-

tion is in fact supported by competence dimensions from test results (Lachmayer, 2008; Nitsch & 

Bruder, 2014). This implies that the interpretation and construction of graphs and the integration 

of information from graphs and other sources require different competencies. In contrast, item 

characteristics such as graph type (i.e., bar and line graphs; Åberg-Bengtsson & Ottosson, 2006) 
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and the complexity level of graph interpretation are not distinct competence dimensions (Lach-

mayer, 2008; Ullrich et al., 2012). Therefore, solving graphicacy tasks related to different types of 

graphs and making interpretations at different complexity levels require the same competence, even 

though more complex interpretation tasks are more difficult (Lachmayer, 2008). 

Furthermore, graphicacy is related to domain knowledge (Nitz et al., 2014), reading and 

mathematical performance (Åberg-Bengtsson & Ottosson, 2006; Curcio, 1987; Galesic & Garcia-

Retamero, 2011), and general cognitive abilities (e.g., Berg & Phillips, 1994). However, the pure 

association between graphicacy and content knowledge and reading and mathematical performance 

is difficult to ascertain, because the graphicacy tests used in previous studies have required test 

takers to apply content knowledge, read texts, conduct calculations, and/or apply mathematical 

concepts. It is unclear whether the influence of reading and mathematical performance on graphic-

acy is attributable to common cognitive mechanisms or simply to the reading and calculations re-

quired in graphicacy tests. Interestingly, Nitz et al. (2014) fond that representational competences 

develop as a result of domain knowledge rather than vice versa. This indicates that graphicacy in 

science is the end stage of scientific literacy rather than a prerequisite. 

In sum, graphicacy frameworks predominantly agree on the task demands for graphicacy, 

and competence dimensions can be distinguished on the basis of operations, i.e. interpretation, 

construction, and integration. Therefore, it may be advisable to focus on the most researched task 

demands, namely interpreting graphs and integrating graphs and other information sources. Fur-

thermore, whether one focuses on understanding the graph itself or the content of the graph makes 

a difference. The research reviewed in this section defines graphicacy and examines its compo-

nents. However, it does not explain how graph comprehension works, which instead falls under the 

purview of graph comprehension research. Therefore, the next section will review research on 

graph comprehension to explore underlying graph comprehension processes. 
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 Graph comprehension as a process 

Graphicacy research aims to describe individuals’ ability to understand graphs via construc-

tion tests and by modeling graphicacy as a competence. Now research from the comprehension 

research community will be discussed. Graph comprehension research aims at explaining underly-

ing comprehension processes by investigating the effect of task, graph, content, and individual 

characteristics and their interactions, as well as process measures. The two research communities 

are connected because graphicacy is the ability to understand graphs. In other words, one could say 

that graphicacy is the individual disposition for graph comprehension. The core assumption of 

graph comprehension is that comprehension processes take place in order to construct internal rep-

resentations. These comprehension processes are influenced by individual characteristics (e.g., do-

main content knowledge or visual-spatial abilities) and stimulus characteristics (e.g., graph, task, 

and content). In the following sections, two models on graph comprehension will be reviewed: the 

Model of Display Comprehension (Shah, Freedman, & Vekiri, 2005) and the Componential Model 

of Human Interaction with Graphs (Gillan & Lewis, 1994; Gillan, 2009). The Model of Display 

Comprehension and Model of Human Interaction with Graphs address graph comprehension with 

different levels of granularity. Shah et al. (2005) focus on conceptual comprehension processes 

involving domain knowledge and graph schemata, while Gillan and Lewis (1994) focus on the 

more perceptual side of graph comprehension, such as visual, visual imagery and mental processes. 

The models do not contradict, but complement each other. Therefore, the two models will be de-

scribed individually first and then combined.  

I.3.1 The Model of Display Comprehension (Shah, Freedman, & Vekiri, 2005) 

The Model of Display Comprehension (Shah et al., 2005) is an adaptation of Pinker (1990). 

Shah et al. (2005) use the term ‘display comprehension’; however, since the authors predominantly 

refer to graphs, it is considered a graph comprehension model. In Pinker’s (1990) original model, 

he considered visual features of the display, gestalt processes, and the graph schema as factors that 

allow the user to extract conceptual information from a graph. This model of graph comprehension 

can be summarized in seven processing steps: (1) the user has a goal of extracting a specific piece 

of information; (2) the user looks at the graph, activating graph schema and gestalt processes; (3) 

the user encodes salient features of the graph on the basis of gestalt principles; (4) the user now 

knows which cognitive strategies to use; (5) the user then extracts goal-directed visual chunks; (6) 
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the user may compare these visual chunks; and (7) finally, the user extracts the relevant information 

to achieve the goal. 

Freedman and Shah (2002) further developed the model by differentiating the influence of 

prior knowledge. In their model, comprehension of graphs is influenced by knowledge and graph 

characteristics. The influence of knowledge on comprehension is considered a ‘top-down’ process, 

while the influence of graph characteristics is considered ‘bottom-up’. The model distinguishes 

between two types of knowledge, display (or more specifically graph) schemata and content 

knowledge, and two types of internal representations, the internal representation of the display and 

the internal representation of the referent (see Figure 1). Graph schemata are specific to a certain 

graph type and can be seen as an active, interrelated knowledge structure of what this graph type 

is for and how it is interpreted in general (Pinker, 1990). A graph schemata translates the infor-

mation found in the graph into conceptual information and directs the search for relevant pieces of 

information. Content knowledge is knowledge about what the graph represents and helps the 

viewer focus on relevant data and distinguish signals from noise. Content knowledge allows the 

view to draw inferences and learn from the graph. 

Shah et al. (2005) described multiple processing steps for graph comprehension. First, the 

viewer encodes the visual features of the external display by focusing their attention on visual 

features; this visual attention is guided by graph schemata and domain knowledge. The viewer then 

uses graph schemata to build an internal representation of the display. The viewer then makes in-

ferences using long-term knowledge and constructs an internal representation of the referent.  

Shah, Mayer, and Hegarty (1999) assume that these steps take place in an iterative con-

struction-integration process of graph comprehension, analogous to Kintsch’s (1988) construction-

integration model for text. As in Kintsch’s theory, Shah et al. (1999) assume visual chunking. Vis-

ual chunks can be automatically linked to a quantitative fact. This linking process is more likely to 

be successful when the quantitative information is directly available in the visual chunk. There can 

be two reasons why the quantitative information is not available in the visual chunk. First, the 

viewer might lack the knowledge of graphical conventions to link the visual chunk with the quan-

titative fact. Second, the visual chunk may not be directly linked to the quantitative fact. For in-

stance, the viewer may need to compare the mean height of multiple grouped bars. According to 

Shah et al. (1999), viewers are less likely to be successful when a complex inferential process is 

necessary to extract information. Because of visual chunking, Freedman and Shah (2002) stated 
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that ‘graphical displays are most useful when they make quantitative information perceptually ob-

vious’ (p.22). In other words, the way information is graphically displayed has to fit to the task. A 

good graph-task fit facilitates information extraction. However, in many cases graphs cannot be 

designed in a way that makes the quantitative information perceptually obvious, especially when 

the data and tasks are complex.  

Trickett and Trafton (2006) investigate how experts work on complex data visualizations. 

They analyzed experts’ think-aloud protocols of their work, finding that experts use spatial trans-

formations more frequently than any other cognitive strategy to conduct their work. The experts 

performed spatial transformations whenever information was not directly accessible (Trafton et al., 

2000). Spatial transformations are any manipulation of mental images, such as adding or deleting 

features, mentally rotating features, mentally moving features, animating a static image, making 

comparisons between features, and other mental operations that transform the spatial array of the 

graph from one state to another. Additionally, they found that experts use far more spatial pro-

cessing than novices (Trafton et al., 2000). 

 

Figure 1. Model of comprehension of visual displays by Shah et al., 2005, indicating the interac-

tion of bottom-up processes (solid arrows) and top-down processes (dashed arrows) in the con-

struction of a mental model of the referent. 

 

I.3.2 The Componential Model of Human Interaction with Graphs (Gillan & Lewis, 1994) 

The Componential Model of Human Interaction with Graphs (Gillan & Lewis, 1994; Gillan, 

2009) focuses more in detail on the manipulation, comparison and computation of information 

represented in graphs. Gillan and Lewis (1994) describe graph comprehension as a sequence of 

process components, such as searching for indicators, encoding indicators, performing arithmetic 

operations on the values, making spatial comparisons among indicators, and responding to the 

question. The model begins with a goal defined in relation to the viewer’s task (e.g., ‘compare the 
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mean points of A and B’). The combination of the task, graph, and viewer’s knowledge determines 

the sequence of the processing components that are then applied to meet the task demands. The 

model distinguishes three different types of process components involved in graph reading: arith-

metic, visual and visual imagery processes. Arithmetic processes involve operations such as the 

addition, subtraction, division, and multiplication of numbers. Arithmetic operations are performed 

mentally. Visual processes encompass visual search, spatial comparisons of height and length, en-

coding values, and determining spatial differences. In contrast to visual imagery process, visual 

processes are associated with actual viewing behavior. Visual imagery processes are manipulations 

of a visual mental image, similar to Trickett and Trafton’s (2006) spatial transformations (e.g., 

moving an image, rotation, competition, differentiation and selection of anchors). 

These processing components are involved in solving graph reading tasks; however, the 

exact sequence of the processing components depends on the task, the graph and the reader’s 

knowledge. For instance, when the task is to find the mean of two bars in a bar graph with the 

labels A and B, a viewer typically first conducts a visual search for label A, then scans over to the 

Y-axis to encode the value of the bar labeled A. The viewer repeats these two steps for label B, 

retaining the encoded values in working memory. Then, after encoding both values, the viewer 

adds the values to determine the sum and divides by two to determine the mean. However, a viewer 

proficient in visual imagery processing might apply a different sequence of processing components. 

The alternative processing steps are conducting a visual search to estimate the midpoint of the tops 

of the bars, then scanning over to the y-axis to encode that value, which is the mean of the values. 

Gillan’s Componential Model of Human Interaction with Graphs is specifically tailored to 

graph comprehension tasks that involve arithmetic operations. However, the model also identifies 

processing components that are most likely involved in all graph comprehension tasks. Moreover, 

the model demonstrates that the exact sequence of processing components depends on the exact 

task, the graph, and individual characteristics. Therefore, it proposes a rationale for explaining in-

dividual differences in graph comprehension. 

I.3.3 Summary 

The preceding sections described the Model of Display Comprehension by Shah et al. 

(2005) and the Componential Model of Human Interaction with Graphs by Gillan and Lewis (1994). 

Both models describe process components of graph comprehension. Shah et al. (2005) focus of 

higher-order comprehension processes, such as the application of graph schemata (i.e., knowledge 

of the graph conventions) and domain knowledge and making inferences. They distinguish between 
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viewers’ internal representation of the display and internal representation of the referent. Graph 

schemata influence the construction of the internal representation of the graph, and domain 

knowledge influences the internal representation of the referent. Gillan and Lewis (1994) focus on 

the fine-grained process components involved in graph comprehension. They distinguish between 

visual processing, visual imagery processes and mental processes. Visual processing components 

such as visual search, encoding, mapping, and comparing are associated with viewing behavior. 

Visual imagery processes are manipulations of a mental image, such as moving elements mentally 

to compare them to others. Visual imagery processes need be applied whenever information is not 

directly displayed in a graph. Gillan and Lewis (1994) originally saw these processing components 

as aligned in a sequence; however, for more complex graph comprehension tasks these processing 

components could also be part of a recurring construction-integration cycle. Gillan (2009) pointed 

out that which processing components are applied and in what sequence depends on a combination 

of task, graph and most importantly individual characteristics. Gillan does not explicitly explain 

these individual characteristics; however, Shah et al. (2005) addressed individual characteristics by 

highlighting graph schemata and domain knowledge, both of which can change which processing 

components individuals apply. This is where the two models connect. Visual processes are applied 

to build the internal representation of the graph, whereas the visual and visual imagery processes 

are applied to build the internal representation of the referent. 

In any event, these models draw a detailed picture of how graph comprehension works. 

Now, how are graph comprehension processes related to frameworks and models of graphicacy? 

This question will be addressed in the following section, which integrates graphicacy and graph 

comprehension research to develop a process-oriented model of graphicacy.
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 A Process-Oriented Model of Graphicacy 

The Processes-Oriented Model of Graphicacy (POMoG) links graphicacy and graph com-

prehension research. On one hand, the POMoG acknowledges the task demands proposed by 

graphicacy frameworks, and the item difficulty and influencing factors from competence modeling. 

On the other hand, it also includes the comprehension processes underlying the construction of 

internal representations investigated in graph comprehension research. The POMoG has five core 

assumptions: (1) individual differences in graphicacy are manifested in differences in comprehen-

sion processing, (2) comprehension processes lead to the construction of internal representations, 

(3) an internal representation of the task, the graph, and the content is required to solve a task, (4) 

individual and task characteristics determine the process components of the comprehension pro-

cess, (5) process measures are indirect indicators of comprehension processes. Figure 2 displays 

the POMoG, which consists of four components: comprehension process, internal representations, 

individual characteristics and task characteristics. The following sections define the four compo-

nents of the POMoG (see Table 4 for an overview) and explain the model’s architecture (Figure 2). 

I.4.1 Model components 

Individual characteristics are individual dispositions that are stable in the medium term at 

least. Graph schemata, domain knowledge, mathematical knowledge, reading comprehension, and 

general cognitive abilities, as well as age, grade, and gender are all individual characteristics. Indi-

vidual characteristics influence comprehension processes and the construction of internal represen-

tations. 

 Comprehension processes describe what individuals do to construct internal representa-

tions. Comprehension processes include visual, visual imagery and mental processes, each of 

which consists of multiple process components. Visual processes are visual search, mapping, en-

coding, comparing and fluent reading. Visual processes are manifested in behavior, for instance in 

eye movements. Visual imagery process are mental manipulations of elements of the graph, for 

instance, using the mental image to compare the height of bars with different origins. Mental pro-

cesses include other manipulations of information, for instance, performing mathematical opera-

tions, making inferences, or integrating information. Both visual imagery and mental processes are 

necessary whenever one’s task goal requires information that is not directly displayed in the graph. 

In contrast to visual processes, visual imagery and mental processes are not directly manifested in 

a certain behavior (see Table 3).  
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Internal representations are mental states that allow individuals to answer graph compre-

hension tasks correctly. Graph comprehension requires three internal representations (IR). First, IR 

of the task i.e., understanding what the task requires; second, IR of the graph, i.e., understanding 

how the data is displayed; and finally IR of the graph’s content, i.e., understanding what the data 

means. A graph comprehension task usually requires all three internal representations; if one is 

missing or incorrect, the graph comprehension task will not be solved correctly. Notably, the IR of 

the graph in the POMoG is analogous to the IR of the display in Shah et al. (2005). The term ‘graph’ 

is used instead of ‘display’ because the POMoG specifically deals with graphs. Moreover, the IR 

of the content in the POMoG is analogous to the IR of the referent in Shah et al. (2005). ‘Content’ 

is used instead of ‘referent’ because content is more concrete.   

 Item characteristics are features of an item that can be quantified via cognitive task analy-

sis (Korossy, 1999). Item characteristics are referred to here in the general sense of stimulus char-

acteristics. Item characteristics can be related to the task (e.g., whether one has to extract a single 

point or a relationship), the graph (e.g., line or bar chart) or content (e.g., simple vs. complex data 

structure, financial vs. biological data). Item characteristics can be systematically manipulated in 

an experiment or can be features of a real-world problem. 
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Table 3. Comprehension processes of the POMoG and their process components with definitions. 

 Comprehension processes Definitions 

  

Visual Processes  

Visual search Search for indicators or labels1 

Encoding Read value of indicator or label1 

Mapping Attribute labels to axes, labels to indicators and values to indicators1 

Comparison Identify taller or longer indicator1 

Spatial difference Determine space in between indicators (length or height) 1 

  

Visual Imagery Processes  

Image Move Move mental image of indicator on x or y axis1 

Image Rotate Move mental image of indicator around a point1 

Image Compare Compare mentally manipulated indicators1 

Image Difference Determine differences between mentally manipulated indicators1 

  

Mental Processes  

Arithmetic operations Addition, subtraction, division, multiplication of values1 

Integration Attribute pattern to an IR in a different representation3 

Inference Augment IR with information from prior knowledge2 

Elaboration Augment IR with new information2 

 1Gillan (2009), 2Shah et al. (2005), 3Lachmayer (2008) 

 

I.4.2 Model architecture 

The POMoG is ‘process-oriented’ because it explains item responses on the basis of the 

comprehension process between item exposure and response (see Figure 2). The POMoG assumes 

that three processing cycles take place between item exposure and item response. ‘Cycle’ here 

refers to construction-integration cycles in which meaning is constructed through word activation 

(e. g., words in sentences and labels in graphs), the formation of propositions, and the production 

of inferences and elaborations. A construction-integration cycle results in an interrelated network 

of units. This network can be integrated into prior knowledge (Kintsch, 1988). The POMoG distin-

guishes between three cycles because each cycle addresses different internal representations, in-

volves different comprehension processes, and requires different prior knowledge. The construc-

tion of the IR of the task involves reading as the main comprehension process, as well as the indi-

vidual characteristic of knowledge about word meanings. In contrast, the construction of the IR of 
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the graph involves visual processes and knowledge of graphical conventions. Finally, the construc-

tion of the IR of the content can involve visual, visual imagery and other mental processes and 

content knowledge.  

The role of the three IRs can be illustrated with an example item from the 2011 TIMSS 

assessment (see Figure 3). The figure shows ‘population pyramids’ for two countries denoted X 

and Y. The questions to be answered is: ‘Why could the age structure of country X lead to more 

rapid population growth than the age structure of country Y?’ In this example item, the IR of the 

task involves the concepts ‘young people still get children’, ‘age structure is related to growth’, 

and ‘only young individuals contribute to population growth’. Individuals need to read the question 

and infer what information they need to read from the graph. Making such an inference requires 

the activation of mathematical knowledge (e.g., growth, relative and absolute magnitudes) and 

background knowledge (e.g., young people lead to more growth).  

The IR of the task is novel from a graph comprehension perspective; however, it is a sepa-

rate IR in the POMoG because graphicacy frameworks describe a number of task demands that do 

not fall within the purview of the IR of the graph or the IR of the content (e.g., Friel et al., 2001). 

For instance, individuals are only able to answer the question ‘Does ‘A’ increase linearly over time?’ 

if they are familiar with the term ‘linear’. Even though a person may understand the graph and be 

able to extract the necessary information, they will not be able to answer a graph comprehension 

task when the term ‘linear’ is unknown. Therefore, terminology is an important factor for difficulty. 

Another factor of difficulty is the propositional complexity of the task. For instance, the question 

‘What is the value of car A’ [WHAT IS(VALUE, CAR A] has a low number of propositions, the 

question ‘What is the value of red cars that drove more than 10000 kilometers in 1990’ [WHAT 

IS(VALUE, CAR), BEING(CAR, RED), MORE(CAR, 1000KM), IN(CAR, 1990)] has a high 

number of propositions. Additionally, individuals can be more or less fluent in reading. Whether 

the comprehension process leads to the construction of an IR of the task depends on the reading 

fluency of the individual as well as the terminology and prepositional complexity of the task. 

The IR of the display includes the concepts ‘two countries in two graphs’, ‘age is mapped 

to relative populations’, ‘males are left and female are right’, and ‘three zones show different age 

groups’. Individuals map the indicator age to the y-axis, map the percentage of population to the 

x-axis, map sex to the two sides of the graph, recognize the redundancy between the y-axis position 

and the color of the sections, and recognize the equivalent structure of both graphs. Individuals’ 

knowledge of graphical conventions may help them understand the structure of the graphs. 
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Knowledge of graphical conventions and graph type can influence which comprehension processes 

are applied. For instance, individuals with knowledge of conventions of histograms do not need to 

encode the y-axis of the histogram, because histograms by definition have frequency on the y-axis. 

In this case, knowledge of graphical conventions reduces the number of comprehension process 

involved in the construction of an IR of the graph. In contrast, some graph characteristics generally 

increase the number of required comprehension processes. More mapping is required to construct 

an IR of the graph when the graph has low spatial compatibility (Huestegge & Philipp, 2011), the 

graph type is unfamiliar (Rose graph; Wainer, 1992), or the graph has high dimensionality (Shah 

et al., 2005). When the graph has irrelevant or misleading design features (Hullman, Adar, & Shah, 

2011), visual searches become more demanding.  

Finally, the IR of the content in the example item involves the notion ‘country X has a 

greater proportion of old people compared to young people’. Therefore, test takers need to compare 

the relative share of the population between ages 0 – 19 across graphs to answer the task. Generally, 

the IR of the content is constructed by searching for indicators and labels, encoding them and map-

ping them to their axis positions, and applying visual imagery and mental processes. The construc-

tion of the IR of the content becomes more demanding as the number of comprehension processes 

required increases. Moreover, mental processes tend to be more demanding than visual imagery 

processes, and visual imagery more demanding than visual processes (Gillan, 2009). For instance, 

comparing the height of two bars with different origins is challenging because rather than visually 

comparing them, one has to use imagery, i.e. proportional judgment (Hollands & Spence, 1998). 

Furthermore, a low cognitive fit between the task and graphs (Hegarty & Just, 1993; Shah et al., 

1999) increases the number of mappings and comparisons required to construct an IR of the content. 

Similarly, more (visual) mapping is required when the graph has a weak spatial-to-conceptual map-

ping (Okan, Garcia-Retamero, Galesic, Cokely, & Maldonado, 2012). Predictions and interpola-

tions requires individuals to make inferences based on their knowledge about functions and to use 

imagery to aggregate data points, respectively (Friel et al., 2001; Lachmayer, 2008).  
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Figure 2. Example item from the Trends in International Mathematics and Science Study  

Up until now, this section has mostly explained how task characteristics make IR construc-

tion more demanding. Individual characteristics that facilitate IR construction represent the oppo-

site side of this. Specifically, there are three mechanisms underlying the influence of individual 

characteristics on IR construction. First, individual characteristics can substitute for process com-

ponents; second, they can increase the fluency of process components; and third, they can control 

the usage of process components. For instance, knowledge of graphical conventions can substitute 

for mapping processes. When individuals are familiar with a graph type, they need to perform fewer 

mapping processes to make sense of the graph (Hegarty, 2013). An example of the second mecha-

nism is arithmetic fluency accelerating arithmetic operations. Notably, in distinction to the substi-

tution mechanism, individuals still perform the same process component; however, the arithmetic 

operations are less demanding for individuals with greater arithmetic fluency (Geary, Frensch, & 

Wiley, 1993). An example of individual characteristics controlling the usage of process components 

was given by Gillan (1995). In this study, individuals had to extract the mean from graphs with 

multiple bars. This task can be solved either by mentally calculating the arithmetic mean using the 

bar’s values or by estimating the spatial mean between the bars without encoding the values of the 
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individual bars. Individuals who were aware of the second strategy performed the task faster. 

Therefore, knowledge of this strategy made individuals use different process components. Interest-

ingly, individuals applying this strategy were not just faster, they were also able to solve tasks with 

more bars and values. Similarly to this example, content knowledge can aid comprehension pro-

cesses not just by substituting for, but also by controlling the comprehension process (Shah & 

Freedman, 2011; Cox, Romero, du Boulay, & Lutz, 2004).  

To summarize, each of the three mechanisms can potentially aid IR construction. However, 

substitution and fluency aid IR construction by shortening the overall comprehension process, 

which implies that IR construction is performed faster. In contrast, choosing process components 

can either mean performing faster or performing IR construction at all. The differences between 

the three influencing mechanisms of individual characteristics should become evident in the rela-

tionship between comprehension success and process measures (e.g., time-on-task) 

Goldhammer et al. (2014) showed that time-on-task and task success in an information 

literacy assessment are negatively related (see also Naumann & Goldhammer, 2017). The authors 

argued that individuals can be both faster and more accurate when the tasks requires automatic 

processing. Therefore, individuals who are fluent in the individual process components can be fast 

and accurate at the same time. In their case, fluency referred to process components of reading such 

as phonological recoding, orthographic comparison, and the retrieval of word meanings from long-

term memory (Richter, Isberner, Naumann, & Neeb, 2013). However, they also showed that the 

relationship between time-on-task and task success becomes less negative as tasks become more 

complex. They argued that the less negative relationship indicates that comprehension processes 

need to be more controlled at high levels of complexity (Goldhammer et al., 2014). In other words, 

as tasks get more complex, the fluency of process components becomes less important relative to 

the control of process components. 

The differences between the three mechanisms can be further illustrated using a physical 

analogy. Van Der Linden (2009) pointed out that the speed equation, i.e., ‘rate of change of some 

measure with respect to time (p. 258),’ should be applied to psychological processes. In this analogy, 

individuals solving test items are considered as analogous to individuals who have to travel from a 

starting point to an end point. Item complexity is the ‘straight-line distance’ between the starting 

(i.e., item exposure) and ending points (i.e., item solved). Individuals generally have to travel fur-

ther to solve more complex items. Additionally, individuals may or may not reach the endpoint (i.e., 

solve or not solve the item). Individuals who engage in substitution characteristics can start closer 
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to the endpoint. Individuals can be more or less fluent in process components, meaning that they 

travel faster. Individuals can control the process components more or less effectively, meaning that 

the ‘distance traveled’ can deviate from the straight-line distance depending on how directly indi-

viduals navigate. In turn, the speed with which individuals reach the endpoint is a combination of 

where they start, how fast they travel and how directly they navigate. Comprehension processes 

are determined by individual characteristics related to substitution, fluency and control. Notably, 

navigation becomes more important as the distance increases, just like complex tasks require more 

controlled processing (Goldhammer et al., 2014). Fluency is most important for simple tasks in 

which the endpoint is in ‘viewing distance’. Furthermore, this analogy illustrates the two main 

aspects that need to be considered when inferences about comprehension processes have to be 

made.  

First, inferences about comprehension process have to be made based on the available in-

formation. In empirical studies, only item response and process measures can be observed. In the 

traveling analogy, individuals’ overall speed can only be compared based on their times when the 

distance is the same for everyone. Speed is distance divided by time; when the distances are the 

same, time equals speed. Analogously, process measures can be linked to comprehension processes 

if everyone solves the same items. For instance, time-on-task is an indicator of processing speed if 

everyone solves the same items. However, graphicacy tests are intentionally constructed so that not 

everyone solves every item. Therefore, process measures are not directly linked to comprehension 

processes in graphicacy tests. Just like time and distance, comprehension processes reflect the re-

lationship between process measures and comprehension success. Building on this logic, the influ-

ence of individual characteristics for comprehension processes can be investigated based on how 

they change the relationship between process measures and comprehension success.  

Second, the analogy states that navigation and speed are crucial. A mindful traveler will 

first explore their surroundings in order to navigate more effectively, and then approach the goal at 

full speed. A similar approach has been described in comprehension research. Schnotz et al., (2014) 

distinguished between two phases of text-picture comprehension: initial reading and task comple-

tion (see also Schnotz & Wagner, 2018). During initial reading, processing is coherence-oriented 

and general. The emphasis is on a global understanding of the content, which includes the con-

struction of an internal representation that does not concern the specific task. Viewers process the 

material in order to understand the subject matter as a whole. During task completion, processing 
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is goal-oriented and selective for task-relevant information. Viewers focus primarily on the task to 

be solved and select the relevant information from the external source of information. 

Similar distinctions were made by Lindner Eitel, Strobel, and Köller (2017), who found 

that students mainly focus on the question at the beginning and the answer options towards the end 

of the decision-making process. They divided item response into two phases: (1) an information 

acquisition phase, in which students construct a mental representation of the problem or situation 

described in the item stem, and (2) a decision-making phase, in which students evaluate the answer 

options with respect to the problem to be solved (Lindner et al., 2017; Greiff et al., 2013). 
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Figure 3. Diagram summarizing the Process-Oriented Model of Graphicacy (POMoG)
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 Research questions 

Up until now, this thesis has developed the POMoG to combine research on graphs from 

the literacy and comprehension communities. The proposed model combines the ‘real-world’ task 

demands of graphicacy research with models on comprehension processes from graph comprehen-

sion research. The POMoG explains item responses in graphicacy tests on the basis of individual 

and item characteristics, comprehension processes, and the presence of internal representations. 

Additionally, it proposes a rationale for interpreting process measures as comprehension processes.  

The POMoG has five core assumptions: first, individual differences in graphicacy are man-

ifested in differences in comprehension processes. Second, comprehension processes lead to the 

construction of three internal representations. Third, internal representations of the task, the graph, 

and the content are required to solve a task. Four, individual and task characteristics determine the 

process components of the comprehension process. Five, process measures are indirect indicators 

of comprehension processes. Additionally, individual characteristics can influence graphicacy via 

three different mechanisms, by substituting for process components, by making process compo-

nents more fluent, and by controlling the usage of process components. Based on a travel analogy, 

the POMoG assumes that the relationship between process measures and comprehension success 

serves to represent comprehension processes.  

The following studies address three of the core assumptions of the POMoG. The first study 

(Chapter II) investigates the influence of basic numerical abilities on graph reading performance. 

The influence of basic numerical abilities on graph reading performance can explain the underlying 

comprehension process because specific basic numerical abilities can be linked to specific process 

components of graphicacy performance. The study distinguishes among eight basic numerical abil-

ities: addition, subtraction, multiplication, number line estimation, proximal arithmetic skills, con-

ceptual knowledge about arithmetic operations, basic geometry, and non-symbolic magnitude com-

parisons. These basic numerical abilities can be linked to processing components of the POMoG. 

For instance, number line estimation can be linked to comparison processes. Therefore, the influ-

ence of basic numerical abilities addresses the core assumption that individual differences in graph-

icacy are manifested in comprehension processes. Consequently, the first research question is ‘how 

do basic numerical abilities influence graph reading?’ 

The second study (Chapter III) addresses the fifth core assumption, ‘process measures are 

indirect indicators of comprehension processes’. The POMoG argues that the relationship between 



Understanding graphs  Introduction  Research questions 

39 

 

process measures and comprehension success is representative of comprehension processes. How-

ever, it also states that comprehension processes change as a function of the comprehension phase 

(initial reading vs. task completion phase). Subsequently, it is hypothesized that the relationship 

between process measures and comprehension success depends on the comprehension phase. The 

study focus on the process measures ‘text-graph transitions’ and ‘time-on-task’ as indicators of 

‘integration’ because these measures are well established in multimedia research. Interestingly, 

text-graph transitions allow for two contradicting interpretations. Text-graph transitions can either 

indicate the integration of information from the graph and text or disorientation, the inability to 

find relevant information. Furthermore, individuals’ reading speed, graph comprehension ability 

and content knowledge are assumed to facilitate the comprehension of graph and text. The POMoG 

assumes that these individual characteristics substitute for process components, make them more 

fluent, or help control the comprehension process. In short, the POMoG stats that individual char-

acteristics influence the comprehension process and therefore influence the relationship between 

text-graph transitions, time-on-task and comprehension success. Consequently, the Chapter III ad-

dresses two research questions: ‘Does the relationship between process measures and comprehen-

sion success depend on the comprehension phase?’ and ‘Do individual characteristics influence the 

relationship between process measures and comprehension success?’ 

The third study (Chapter IV) addresses the POMoG’s assumption that ‘internal representa-

tions of the task, the graph, and the content are required to solve a task’, and specifically the hier-

archical dependency between the IR of the graph and content. Such a hierarchical dependency 

between these internal representations is linked to a debate in multimedia research. Specifically, 

two contradicting perspectives within multimedia research describe the hierarchical dependency 

between the comprehension processes that need to be performed for integrated text-graph compre-

hension. The text-centered perspective states that the IR of the content is a prerequisite for the IR 

of the graph. Conversely, the multiple-representation perspective implies that the IR of the graph 

is a prerequisite for the IR of the content. Therefore, a multimedia paradigm is used to investigate 

the hierarchical dependency between these two internal representations, comparing the two contra-

dicting perspectives. This leads to the research question: ‘Is a text-centered or multiple-represen-

tation perspective more applicable to text-graph comprehension?’ 

Notably, the questions in Chapters III and IV cannot be answered with standard statistical 

modeling approaches. Therefore, the following section introduces common modeling approaches 

and evaluates their ability to address the research questions posed in Chapters III and IV.
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 Statistical modeling approaches 

Graphicacy has been investigated using competence modeling approaches such as item re-

sponse theory (e.g., Lachmayer, 2008; Lai et al., 2016). However, this thesis proposes a process-

oriented model of graphicacy. Therefore, this section discusses common modeling approaches and 

evaluates their ability to capture the comprehension processes of graphicacy. Numerous aspects 

need to be considered when selecting an appropriate modeling approach. A modeling approach can 

conceptualize competence as a continuous dimension or as discrete states, and they should be able 

to account for the influence of process measures as well as individual and item characteristics. Each 

modeling approach has psychometric implications, practical implications, and enables different 

inferences about underlying comprehension processes. 

The most prevalent modeling approaches in educational research are based on item re-

sponse theory (IRT). IRT conceptualizes competence as a numerical continuum (Walker & Be-

retvas, 2003). The most commonly used model in IRT is the Rasch model (Wu & Adams, 2007). 

The basic assumption of the Rasch model is that ‘the probability of a correct item response only 

depends on one’s individual ability and item difficulties’. The Rasch model is used in many large-

scale assessments because it has several psychometric and practical advantages, for instance, inter-

val-scaled measurement, a joint scale for items and individuals, and easy reliability estimation 

(Wright, 1977). The Rasch model is designed to estimate a numerical value that accurately repre-

sents individual competence. This numerical value can be used to compare individuals; however, 

it carries no information about what distinguishes individuals and what level of performance 

individuals are capable of. Therefore, Rasch models do not allow for inferences about learning or 

comprehension processes (Leuders & Sodian, 2013; Rupp & Mislevy, 2007). Furthermore, the as-

sumption that ‘the probability of an correct item response depends only on one’s individual ability 

and item difficulties’ is very restrictive because in many domains it is plausible that individuals’ 

performance depends on multiple competencies. Additionally, in the Rasch model item difficulty 

is random and not explained by item characteristics. However, these aspects have been addressed 

in different modeling approaches, namely multi-dimensional item response theory (MIRT) and the 

linear logistic test model (LLTM). 

MIRT accounts for the possibility that item responses are the result of multiple competence 

dimensions (Hartig & Höhler, 2008). The assumption is that ‘the probability of a correct item re-

sponse depends on (multiple) individual abilities and item difficulties’. This modeling approach 
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can account for relationships between different competence dimensions, and even can account for 

items that require a mixture of abilities (Klieme, Hartig, & Rauch, 2008). This modeling approach 

enables inferences about comprehension processes on the basis of which items required similar or 

different competencies. Furthermore, when individuals’ performance is the result of multiple com-

petence dimensions, it is sometimes inferred that different competencies are associated with differ-

ent processing systems (Schroeders, Bucholtz, Formazin, & Wilhelm, 2013). However, MIRT still 

does not allow for inferences about what performance individuals are actually capable of.  

What performance individuals are capable of is addressed by Fischer’s LLTM (1995), 

which explains item difficulty based on item characteristics. The model is similar to the Rasch 

model except that item difficulty is explained by item characteristics. The assumption is that ‘the 

probability of a correct item response depends on one’s individual ability and the items’ character-

istics’. This modeling approach allows for inferences about comprehension processes because an 

individuals’ competence should be related to the task demands she or he is capable of performing 

(Embretson & Daniel, 2008). 

Another way of enabling inferences about comprehension processes is to include process 

measures. Goldhammer et al. (2014) presented a time-on-task model in which they assumed that 

‘the probability of a correct item response depends on time-on-task, individual ability, the individ-

ual’s processing speed and item difficulties’. This modeling approach allows inferences to be made 

about the comprehension process based on the strength of the correlation between time-on-task and 

task success. For instance, they show that the correlation is positive in problem-solving tasks and 

negative in literacy tasks. However, in this modeling approach no individual or item characteristics 

explain the strength of the correlation. 

The Rasch, MIRT, LLTM, and time-on-task models all conceptualize competence as a nu-

merical continuum. Yet in many cases learning and competence development is non-continuous, 

especially when ‘conceptual change’ is involved (Leuders & Sodian, 2013). When competence 

development is non-continuous, individuals should be evaluated with regard to their competence 

‘state’ or ‘stage’ rather than their position on a continuum. Cognitive diagnostic models (CDM; De 

La Torre, 2011) and knowledge space theory (KST; Falmagne, Koppen, Villano, Doignon, & Jo-

hannesen, 1990) address discontinuous competence development. CDMs assume that ‘the 

probability of a correct item response depends on a discrete set of skills (and slipping and guessing 

error)’. The CDM allows inferences to be made about comprehension processes because the as-

sumed skill set is directly related to item characteristics (similar to the LLTM). An individual’s skill 
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set refers to the task demands the individual can master. KST functions similarly, except that it 

additionally accounts for hierarchical dependency between items. KST was extended to estimate 

probabilistic knowledge structures with basic local independence models (BLIM). A BLIM as-

sumes that ‘the probability of a correct item response depends on individuals’ knowledge state 

within a knowledge structure (and slipping and guessing errors)’. KST and BLIMs allow inferences 

to be made about the comprehension process based on the hierarchical dependencies between 

knowledge states represented by the knowledge structure. The knowledge state in a knowledge 

structure refers to what performance an individual is capable of, what other abilities this implies, 

and what the individuals is able to learn in the future. 

To sum up, common modeling approaches were reviewed and evaluated with regard to their 

ability to allow inferences to be made about the comprehension process. First of all, whether com-

petence is seen as a continuous dimension or a discrete set of skills is essential. Generally, it is 

more informative to use discrete modeling approaches (i.e., CDM and KST) when competence 

development involves ‘conceptual change’. Otherwise, it is more practical to conceptualize com-

petence as a continuum (i.e., Rasch, MIRT, and LLTM), especially when items involve a variety of 

different comprehension processes. Second, a modeling approach allows inferences to be made 

about comprehension processes when it accounts for item characteristics (i.e., LLTM, CDM, and 

KST). When a model accounts for the influence of item characteristics on item difficulty, individ-

uals’ competencies are associated with the task demands they are capable of performing. Addition-

ally, modeling approaches can account for the influence of process measures on tasks to enable 

inferences about what comprehension processes lead to task success.  

In light of all this, what is a suitable modeling approach to investigate the research questions 

posed here? In Chapter III, which concerns the questions ‘Does the relationship between process 

measures and comprehension success depend on the comprehension phase?’ and ‘Do individual 

characteristics influence the relationship between process measures and comprehension success?’, 

text-graph comprehension is understood as a continuous competence. However, the chapter addi-

tionally addresses the influence of time-on-task and text-graph transitions on comprehension suc-

cess and how this influence changes across comprehension phases and in association with individ-

ual characteristics. These aspects are not addressed by any single one of the presented modeling 

approaches; however, the modeling approaches can be combined. Therefore, an IRT-based model 

with explanatory variables and process measures variables was developed to address the research 
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questions posed in Chapter III. This model, the Explanatory Model of Person-Process Interaction 

(EMPPI), is presented in the following section.  

Next, Chapter IV addresses the question ‘Is a text-centered or multiple representation per-

spective more applicable to text-graph comprehension?’ The study compares two perspectives that 

assume contradicting hierarchical dependencies between comprehension processes during the com-

prehension of text and graphs. KST is the only modeling approach that can address hierarchical 

dependencies between comprehension processes. Therefore, KST and more specifically the BLIM 

will be applied in Chapter IV. 

The next section addresses the two modeling approaches, EMPPI and BLIM. The EMPPI 

was developed specifically to investigate the questions from Chapter III. The BLIM is an already 

existing modeling approach. However, the BLIM is nevertheless introduced because it is currently 

mostly discussed in methodological journals. 

I.6.1 Item response theory with explanatory and process variables 

This section develops an IRT that accounts for the influence of explanatory variables and 

process variables. In the previous section, it was concluded that modeling approaches have to ac-

count for item characteristics and/or process measures in order to be able to make inferences about 

comprehension processes. Wilson and De Boeck (2004) distinguished between descriptive and ex-

planatory item response models. Descriptive item response models focus on measurement issues, 

which can help to improve the quality of tests in terms of reliability, but do not contribute to con-

struct validity. Reliability concerns how precisely a test measures a given competence, while con-

struct validity concerns what the test actually measures. Wilson and De Boeck (2004) suggested 

including ‘explanatory variables’ to improve construct validity. Explanatory variables can be either 

individual or item characteristics. Individual characteristics explain why some individuals are more 

competent than others, while item characteristics explain why some items are more difficult than 

others. For instance, an (explanatory) individual characteristic for graphicacy would be reading 

speed, and an explanatory item characteristic would be the propositional complexity of the ques-

tions. In the sense they are used here, individual and item characteristics are always explanatory. 

Therefore, they are simply referred to as individual and item characteristics. One modeling ap-

proach that accounts for both individual and item characteristics is the double explanatory item 

response model (Wilson & De Boeck, 2004).  

The double explanatory item response model combines the LLTM, which explains item 

difficulty based on item characteristics, and a latent regression Rasch model (LRRM) that explains 
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individuals’ competencies based on individual characteristics. It is also referred to as a latent re-

gression linear logistic test model (latent regression LLTM)3:  
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The latent regression LLTM explains item responses as the result of a combination of item 

and individual characteristics. The item characteristics have a fixed effect βj and individual char-

acteristics have a fixed effect ϑj. The item characteristics also include a constant predictor β0, while 

the individuals’ effect is composed of the fixed effect and the residual term εp. For graphicacy, 

typical item characteristics could be level of complexity, graph type or graph-task fit. Individual 

characteristics might be reading comprehension, knowledge of graph conventions or spatial abili-

ties. For instance, βcomplexity represents the effect of the level of complexity and ϑreading the effect of 

reading comprehension on the probability of correct responses, whereas εp represents individual 

variation in item responses that cannot be explained by reading comprehension. 

The latent regression LLTM accounts for individual and item characteristics. However, to 

address the research questions from Chapter III, the model additionally needs to account for the 

influence of process measures. Therefore, process measures are included as item-by-person varia-

bles. Essentially, the time-on-task model by Goldhammer et al. (2014) is integrated with the latent 

regression LLTM (Wilson & De Boeck, 2004). In addition, Chapter III addresses the influence of 

individual characteristics on the relationship between process measures and task success. There-

fore, the model has to account for the interaction between individual characteristics and process 

measures. The resulting model is the Explanatory Model of Process-Person Interaction (EMPPI). 

Below, the EMPPI is constructed in a step-by-step process beginning with the latent regression 

LLTM.  .  

First, process measures (WpiH) are included as a fixed effect on the item-by-person level. 

The fixed effect of a process measure (δH) depends on general nature of the task. For instance, 

Goldhammer et al. 2014 show that the fixed effect of time-on-task is positive for problem-solving 

                                                 

 

3 Formula 1: The latent regression linear logistic test model defines the probability of a correct 

answer πpi~ηpi as the sum of individual characteristics effects ϑj, a residual term εp, and the sum 

of item characteristics effects βk. Zpj is the matrix of individuals and their characteristics and Xik 

is the matrix of items and their characteristics. 
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tasks and negative for literacy tasks. However, to investigate individual differences in comprehen-

sion processes, process measures need to be included as individual random slopes (ζph). These ran-

dom slopes represent how much the individual effect of the process measure deviates from the 

fixed effect of the process measure. For instance, when the individual effect is more negative than 

the fixed time-on-task effect, it means that individual solves items faster than other individuals. In 

this case, the individual effect represents the individual’s processing speed (Van Der Linden, 2009).  

In the EMPPI, the individual random slopes for the process measures can be explained by 

the fixed interaction effect (ψJH) of a process measure (WpiH) and individual characteristics (ZpJ). 

The fixed interaction effect represents the extent to which an individual characteristic changes the 

individual effect. For instance, reading speed may decrease the time it takes to solve a task. In other 

words, reading speed increases processing speed in graphicacy. When the process-person interac-

tion is included, ζp represents a residual term, or the variation in the individual effect of process 

measures that cannot be explained by the process-person interaction. The formula F2 summarizes 

the different components and Figure 3 presents a graphical representation of the EMPPI. 
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The EMPPI combines different modeling approaches to maximize the ability to make in-

ferences about underlying comprehension processes that constitute individuals’ performance. In 

the case of graphicacy, first, individual characteristics can explain which other abilities are associ-

ated with graphicacy. Second, item characteristics explain why some items are more difficult than 

others. Third, process measures explain what behaviors are associated with comprehension success. 

Fourth, the person-process interaction explains the difference in the individual effect of process 

measures. It therefore covers all aspects that will be investigated in Chapter III.  
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Figure 4. Graphical representation of the Explanatory Model of Person-Process Interaction 

(EMPPI) 

Data: 

Ypi denotes the response of 

a person p to item i; 

 

Indices: 

p for person 

i for items 

K item predictor 

J for person predictors 

H for process measures 

(person-by-item) predic-

tors 

Predictors: 

X for item predictors (XiK ) 

Z for person predictors 

(ZpJ) 

W for person-by-item pre-

dictor (WpiH) 

 

Model: 

πpi for the probability of 

Ypi = 1 

ηpi for the transformed πpi 

based on the link function 

Effects: 

θ for person random intercept 

(θp) 

ζpH for person random slope of 

person-by-item predictors (ζp) 

β for fixed effects of item predic-

tors (βK) 

ϑ for fixed effects of person pre-

dictors (ϑJ) 

δ for fixed effects of person-by-

item predictors (δH) 

ψ for fixed effect of process-per-

son interaction (ψJH) 

ε person residual when predic-

tors included 
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I.6.2 Knowledge Space Theory 

Knowledge space theory (KST; Falmagne et al., 1990) was developed to assess students’ 

knowledge of mathematical and science concepts. According to KST, all knowledge in a certain 

domain has a domain ontology (Heller, Steiner, Hockemeyer, & Albert, 2006). The domain ontol-

ogy describes the concepts within the domain and how they depend on each other. For instance, 

the domain ‘fractions’ may consist of multiplying, dividing, and adding fractions and finding a 

common denominator. The concepts related to fractions depend hierarchically on each other. For 

instance, adding fractions requires students to find a common denominator. KST is a competence 

modeling approach that takes this hierarchical dependency into account. The classical example 

from Falmagne et al. (1990) illustrates how KST determines the dependency between concepts 

using five mathematical problems (left panel, figure 4). 

 

Figure 5. Five problem from Falmagne et al 1990 (left panel) and Hasse diagram of the 

knowledge structure (right panel). 

The five mathematical problems represent the knowledge domain. The problems involve 

different combinations of mathematical concepts. For instance, to answer Problem d (i.e., what is 

30% of 34?) student need to multiply an integer with a decimal number (i.e., 34 x 0.3). Students 

who manage to solve Problem d should be able to multiply integers and multiply decimal numbers. 

Therefore, students who get Problem d correct should get the first (i.e., a. 378 x 606) and second 

(b. 58.7 x 0.94) problems correct as well. This is an example of hierarchically dependency between 

mathematical concepts. Hierarchical dependencies are important for education because they deter-

mine which concept should be learned next. It is difficult to learn how to calculate percentages if 
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one is not able to multiply decimals. In some cases, concepts even depend on multiple other con-

cepts. In the example (Figure 4), Problem e requires the concepts of multiplying decimal numbers 

and multiplying fractions. All of these hierarchical dependencies4 can be combined to form the 

knowledge structure of the domain. Figure 4 (right panel) shows a Hasse diagram that represents 

the knowledge structure of Falmagne et al. ’s (1990) five example problems. The lines between the 

elements each represent a hierarchical dependency. In the following, it is explained how KST for-

mulates knowledge structures.  

Generally speaking, KST is a set-theoretical framework. Therefore, in contrast to other 

modeling approaches, KST is based on combinatorics. A knowledge structure delimits a space of 

all different possible combinations of responses. KST uses a notation system to define knowledge 

structures. A knowledge structure is defined as a pair (Q, K) in which Q is a non-empty set, and K 

is a family of subsets of Q. The set Q is called the domain of the knowledge structure. Q consists 

of elements that are referred to as items. The subsets of items in the family K are labeled knowledge 

states (Doignon & Falmagne, 1985). Items are denoted with parentheses (i.e., (a)), and knowledge 

states are denoted with brackets (i.e., {a}). A knowledge state represents the subset of items in the 

domain Q an individual has mastered.  

The domain Q in the example in Figure 4 has five items. Each of the five items can either 

be solved or not solved; therefore, students can generate any of 25 = 32 different response patterns. 

Hence, the knowledge structure of Q could contain up to 32 different knowledge states. However, 

not all response patterns are plausible due to the hierarchal dependencies between concepts. Fol-

lowing the knowledge structure in Figure 4, only ten different knowledge states are possible: 

                       Q = {{ᴓ},{a},{c},{b,c},{a,c},{a,b},{a,b,c},{a,b,d},{a,b,c,e},{Q}} F3 

Only ten knowledge states are plausible because (d) depends on (c) and (b), and (b) depends 

on (a). Thus, knowledge states that include (d), but not (c), (b), and (a) can be excluded. Also, all 

knowledge states that include (c), but not (b) and (a) can be excluded because (c) depends on (a) 

and (b).  

                                                 

 

4 Many equivalent terms are used to describe hierarchical dependencies: sub-sequential relation-

ships, partial orders, prerequisites, sumise relationships, and hierarchical relationships.  
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Until now, it was assumed that a student’s response pattern is a direct reflection of their 

knowledge state. However, in practice, students may guess the correct answer on an item or fail to 

correctly answer an item due to a careless mistake. The basic local independence model (BLIM) 

can account for the influence of these response errors. The BLIM assigns observed response pat-

terns to a probabilistic knowledge structure. Practically, the BLIM assigns responses that contradict 

the hierarchical dependency of the domain to a plausible knowledge state. For instance, a student 

who answers only problems (b) and (d) correctly can be assigned to the knowledge state {a,b,d} 

because it is likely that the student made a careless error in (a). In a BLIM, the rate of careless 

errors and guessing errors are assumed to be specific to individual items and the same for everyone.  

Formally, a BLIM calculates the probability of the observed response pattern given the 

knowledge state of a knowledge structure, taking guessing and slipping error into consideration 

(Heller & Wickelmaier, 2013). The response error is defined for each item, such that the responses 

are stochastically independent over items q and the response to each item q only depends on the 

probabilities of βq slipping, ηq guessing and a person’s knowledge state K. The probability of the 

response pattern R given the knowledge state K is determined as follows (Heller & Wickelmaier, 

2013):  

𝑃(𝑅|𝐾) =  ∏ 𝛽𝑞 

𝑞𝜖𝐾/𝑅

∏ 1 − 𝛽𝑞 

𝑞𝜖𝐾∩𝑅

∏ ηq

𝑞𝜖𝐾/𝑅

∏ 1 − ηq 

𝑞𝜖𝑄 (𝑅∪𝐾)

 F4 

The BLIM faces a specific estimation problem. The likelihood of any probabilistic knowledge 

structure increases with greater response error. Additionally, knowledge structures with few hier-

archical dependencies are more likely than very hierarchical knowledge structures. However, hier-

archical knowledge structures with few restrictions are less informative because they only describe 

general combinatorics possibilities (Heller & Wickelmaier, 2013). Therefore, the BLIM uses a min-

imum discrepancy maximum likelihood (MDML) estimation method to find the probabilistic 

knowledge structure that is most informative but has plausible response error. MDML uses a trade-

off between the minimum discrepancy method, which optimizes model parameters by minimizing 

the number of expected response errors, and the maximum likelihood method, which optimizes 

model parameters by maximizing the likelihood of the model (Heller & Wickelmaier, 2013). 

In sum, KST can be used to determine the knowledge structure of a domain. This knowledge 

structure is based on the domain ontology and delimits the combinatorial space of students’ re-

sponses. Students’ responses can include response error. The BLIM takes response error into ac-
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count and estimates a probability knowledge structure. Up until now, it was only referred to con-

cepts in the mathematical domain. In mathematics, the domain ontology is relatively clear and the 

dependency between concepts within the domain is evident. However, in Chapter IV, the question 

‘Is a text-centered or multiple representation perspective more applicable to text-graph compre-

hension?’ will be addressed because the domain ontology of text-graph comprehension has been 

described from two different theoretical perspectives. The multiple-representation and the text-

centered perspectives imply different hierarchical dependencies in text-graph comprehension. 

Therefore, in Chapter IV a BLIM is used to determine which knowledge structure is more applica-

ble to text-graph comprehension.



Understanding graphs  Introduction 

51 

 

 Study overview  

This thesis has presented a summary of the research on graphicacy and graph comprehen-

sion. Second, it has integrated these two research communities in the Process-Oriented Model of 

Graphicacy (POMoG). Third, research questions that address the core assumptions of the POMoG 

have been developed. Finally, appropriate modeling approaches have been selected. 

The following studies aim to find evidence for the core assumptions of the POMoG by 

investigating the influence of basic numerical abilities and the effect of process measures during 

different comprehension phases, as well as by evaluating the applicability of two contradicting 

perspectives from multimedia research. 

Chapter II seeks to find evidence for the assumption that comprehension processes express 

individual differences in graphicacy. The influence of basic numerical abilities on graph reading 

performance can elucidate the underlying comprehension process because basic numerical abilities 

are rooted in neuro and cognitive science. Therefore, specific basic numerical abilities can be linked 

to specific process components. To this end, the influence of basic numerical abilities and graph 

reading performance is determined via a multiple regression analysis and their relative contribu-

tions are determined with a relative weight analysis. Additionally, the influence of general cognitive 

ability, age, and gender are considered as control variables. The analyzed sample consisted of 750 

German students (grades nine to eleven).  

Chapter III seeks to find evidence for the assumption that process measures are indirect 

indicators of comprehension processes. The study investigates how inferences about the 

comprehension process can be made on the basis of process measures. In multimedia research, 

transitions between a text and a graphic can be interpreted in two opposing ways. Text-graphic 

transitions can be interpreted as the integration of information from the text and graph or as diso-

rientation, the inability to find relevant information. The POMoG argues that comprehension pro-

cesses are represented by the relationship between process measures and comprehension success. 

Additionally, it is hypothesized that comprehension processes are influenced by the comprehension 

phase. Comprehension is either coherence-oriented or task-selective. The relationship between pro-

cess measures and comprehension outcomes should be positive during the coherence-oriented 

phase and negative during the task-selective phase because processing should be more controlled 

during the coherence-oriented phase. Furthermore, the influence of individuals’ characteristics on 

the relationship between process measures and comprehension success is examined. Chapter III 
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includes two studies which analyze time-on-task and text-graph transitions in a total of 77 univer-

sity students who worked on twelve text-graph integration items. The analysis is conducted with 

the EMPPI, which was specifically developed for the study.  

Chapter IV addresses the hierarchical dependency between the internal representation of a 

graph and the graph’s content. A multimedia paradigm is used to investigate this dependency be-

cause two contradicting perspectives have been described that hypothesize different hierarchical 

dependencies between these comprehension processes. The text-centered perspective states that the 

internal representation of the content of the text is a prerequisite for the internal representation of 

the graph. Conversely, the multiple-representation perspective implies that the internal representa-

tion of the graph is a prerequisite for the internal representation of the content. In this study, the 

response patterns of 50 adults who answered a large number of text-graph integration items were 

analyzed. The fit between the response pattern and the probabilistic knowledge structures for the 

two perspectives are compared with a BLIM. 
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Chapter II. Influences of basic numerical abilities on graph reading performance 

 

Understanding graphically presented information is an important aspect of modern mathemat-

ical and science literacy. In our study we investigated the influence of basic numeric abilities 

on students’ ability answer mathematical tasks with graphically presented information. We an-

alyzed data of 750 German students (grades 9 – 11) and evaluated the determinants of graph 

reading performance with multiple regression analysis using predictors of basic numeric abil-

ities (such as number line estimation, basic arithmetic operations, etc.), considering also the 

influences of general cognitive ability, age, and gender. We found that number line estimation, 

subtraction, and conceptual knowledge were significant predictors of graph reading perfor-

mance beyond the influences of general cognitive ability. This indicates that basic numeric 

abilities are still relevant for real-life problem solving in secondary school. We discuss possible 

mechanisms which directly (through respective arithmetic procedures) as well as indirectly 

(through mathematization of the problem) effectuate that basic numeric abilities graph reading 

performance. 
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 Introduction 

 “Graphs, charts, cartograms, thematic maps, etc., are common tools for handling and com-

municating quantitative information in contemporary society.” (Åberg‐Bengtsson & Ottosson, 

2006, p. 112). During the last ten years, quantitative data have played an increasingly important 

role in our life. It has become a daily routine to interpret the line diagrams displaying our heart rate 

data when doing sports, to read bar graphs in newspapers and infographics on TV. It is thus uncon-

troversial that reading quantitative graphs is an important 21st-century skill (Ananiadou & Claro, 

2009). Accordingly, many large-scale assessments of scholastic achievement refer to tasks involv-

ing quantitative graphs, for instance, within scientific literacy and mathematics tests in TIMSS 

(Baumert, Bos, & Watermann, 1998) or reading, mathematical and science literacy assessments in 

PISA (Deutsches & Baumert, 2013). Strikingly, 60% of the international 8 graders were able to 

read a single value of a line graph and only 29% were able to determine the average of a graph 

(TIMSS 2011 Assessment, 2013). Due to the omnipresence and relevance of graphs in everyday 

life and education, it is worth investigating the factors that influence students’ ability to fluently 

extract and use information from graphs. This ability is closely related to graph literacy (Galesic & 

Garcia-Retamero, 2011). 

The majority of research on graph reading addressed the influence of task (e.g., Lachmayer, 

2008; Shah & Freedman, 2011) and graph (e.g., Wainer, 1992) characteristics (for reviews Friel, 

Curcio, & Bright, 2001; Shah & Freedman, 2011) on performance. In terms of the influence of 

graph reader characteristics, mathematical knowledge, experience with working on graphs, and 

general cognitive abilities have been identified as relevant factors for graph reading. However, to 

the best of our knowledge there is no research evaluating graph reading abilities from the numerical 

cognition perspective. 

Importantly, however, investigating influences of basic numerical abilities on graph reading 

allows for interconnecting two fields of research: i) Graph reading research that focuses on the 

ability to perform authentic everyday tasks with graphs, and numerical cognition research which 

focuses on underlying processes, structure and development of basic numerical abilities (e.g., un-

derstanding number magnitude, basic arithmetical operations, etc.). Interestingly, graph reading 

tasks involve working with visually, spatially and symbolically-coded quantities. As such measures 

of basic numerical abilities may allow to further differentiate individuals’ abilities to work with 
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these different codes of quantity. Therefore, by investigating the influence of basic numerical abil-

ities of graph reading, we may learn more about the underlying cognitive mechanisms that contrib-

ute to graph reading.  

The current study addresses the question of how basic numerical abilities influence graph 

reading performance. In the following, we will give a brief review of the literature investigating 

students’ graph literacy.  

II.1.1 Graph reading 

We define graph reading as the ability to fluently extract and use information from graphs. 

Graph reading is an important, if not the most essential aspect of graph literacy. Graph literacy is 

defined as the ability to understand information presented as graphs in everyday life (Galesic, & 

Garcia-Retamero, 2011). Various other terms have been used to denote similar constructs, such as 

graphicacy (Lowrie, Diezmann, & Logan, 2011; Åberg‐Bengtsson, 2006), graphing ability (Berg 

& Smith, 1994) and graph sense (Friel et al., 2001).  

Generally, graph reading involves decoding and interpretation of visually displayed infor-

mation. For Lowrie and Diezmann (2011) decoding and interpretation of bar and line graphs re-

quires knowledge about the graphical language. For bar and line graphs it is the apposed-position 

language which encodes information by a mark positioned along both the x and y-axes. To correctly 

interpret the coded information, it is necessary to integrate information from both axes. More spe-

cifically, Gillan and Lewis (1994) suggested that understanding a graph involves separate pro-

cessing steps with nonarithmetic and arithmetic components. According to their Mixed Arithmetic-

Perceptual Model, people interact with graphs to answer a certain question. They use search pro-

cesses for indicators, encode the values of indicators, perform arithmetic operations based on these 

values, make spatial comparisons between the indicators, and finally respond to the question. The 

sequence of processing components may be different for each task. In the following, we argue that 

nonarithmetic and arithmetic processing components seem to influence students’ graph reading 

performance.  

Guthrie, Weber, and Kimmerly (1993) examined undergraduate students’ understanding of 

graphs, tables, and illustrations. They found that two factors influenced their performance: i) an - 

what they called - elementary level questions factor reflecting students’ ability to locate specific 

information in the respective graphs and tables and ii) an overall level questions factor referring to 

students’ ability to perceive trends and patterns. The authors argued that perceiving trends and pat-

terns requires an abstraction processes which should be independent from the processes of locating 
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specific information in graphs (Guthrie et al., 1993). Later on, Åberg-Bengtsson (1999) analyzed 

the underlying dimensions of performance on the diagrams, tables, and maps items of the Swedish 

Scholastic Aptitude Test. Besides a general factor that influenced performance on all items, she 

found a quantitative factor as well as a complexity factor. The general factor reflected aspects of 

locating the necessary information in the respective graphs or tables (e.g., along the x and the y-

axis of a line diagram, similar to the factor found by Guthrie et al., 1993) and thus nonarithmetic 

processing components that primarily include encoding. In contrast, the quantitative and the com-

plex factor were more specific. The quantitative factor comprised all items that involved at least 

some calculations and thus arithmetic processing components. The third so-called complexity fac-

tor was associated with items that required multiple operations (numerical or not). The latter two 

factors may reflect students’ ability to “mathematize” the graph reading. With mathematizing we 

refer to the students’ ability to translate an ill-defined problem involving multiple steps into a math-

ematical structure (cf. Schoenfeld, 1989). 

Additionally, there is evidence indicating that graph literacy is significantly associated with 

general cognitive abilities. For instance, Berg and Smith (1994) found graph literacy to be related 

to logical thinking and proportional reasoning in a sample of 7th, 9th, and 11th graders. Moreover, 

Padilla, McKenzie and Shaw (1986) observed that interpreting line graphs was associated with 

abstract-reasoning abilities in a sample of 119 7th, 9th, and 11th graders.  

Furthermore, there is also evidence suggesting that there may be gender differences in graph 

literacy; boys were found to outperform girls (e.g., Lowrie & Diezmann, 2011; Åberg-Bengtsson, 

1999; but see Curcio, 1987). Therefore, it is important to control for general cognitive abilities as 

well as gender when investigating the specific influence of basic numerical abilities on graph liter-

acy.  

In sum, we suggest that students are facing different challenges when solving graph reading 

tasks. First, the respective graph reading problem needs to be mathematized to enable them to – 

second – locate the relevant information, either numerical information or patterns and trends. The 

third challenge may be to correctly perform the necessary arithmetic operations. 

In line with this idea, Curcio (1987) found that 7th graders’ comprehension of graphs and 

tables was associated positively with their prior knowledge about graphical language as well as 

about the mathematical content necessary to solve the tasks. This is first evidence suggesting that 

(basic) numerical abilities may specifically contribute to graph literacy. 
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However, there are hitherto no empirical studies evaluating which specific basic numerical 

abilities influence graph reading performance. The current study pursued this question. Before de-

scribing the details of the present study, we will give a brief introduction to the idea of basic nu-

merical abilities underlying numeric cognition. 

II.1.2 Basic numerical abilities 

Research has revealed that numerical cognition is not a unitary construct (e.g., Dowker, 

2005). This means that numerical and mathematical skills build upon several basic numerical rep-

resentations (e.g., Dehaene, 2009) and abilities, which are assumed to be the building blocks of 

numerical cognition in general and children’s numerical development in particular (von Aster & 

Shalev, 2007). Basic numerical abilities include – but are not limited to – an understanding of non-

symbolic and symbolic number magnitudes (e.g., Dehaene, Piazza, Pinel, & Cohen, 2003; Siegler, 

2016) and a spatial representation of the corresponding magnitude (aka the mental number line, 

e.g., Booth & Siegler, 2008; see Fischer & Shaki, 2014 for a review), a verbal representation of 

number words, but also arithmetical facts (such as multiplication tables, e.g., Dehaene et al., 2003), 

a visual Arabic representation for understanding number symbols (e.g., Dehaene & Cohen, 1997; 

De Smedt, Noël, Gilmore, & Ansari, 2013 for a review), an understanding of the place-value struc-

ture of the Arabic number system (e.g., Moeller, Pixner, Zuber, Kaufmann, & Nuerk 2011; see 

Nuerk, Moeller, Klein, Willmes, & Fischer, 2011), as well as abilities on procedural and conceptual 

numerical knowledge (e.g., carry operation, but also commutative law).  

A high level of mastery of these basic numerical abilities was repeatedly observed to be 

associated with actual numerical competencies but also predictive of future numerical competences 

as well as mathematical achievement in school (e.g., Moeller et al., 2011; Schneider, Grabner, & 

Paetsch, 2009). 

In the following, a few examples will be given to illustrate how basic numerical abilities 

were found to influence later mathematical achievement. For instance, Kolkman, Kroesbergen, & 

Leseman (2013) observed that, already in kindergarten, children’s early understanding of symbolic 

numbers as well as their skills in mapping these symbolic numbers to non-symbolic magnitudes, 

such as dot patterns, was an important predictor of their later numerical/mathematical development 

(see Schneider et al., 2017 for a meta-analysis). Furthermore, Booth and Siegler (2008) found that 

children’s performance on locating the position of a target number on an empty number line not 

only correlated positively with children’s actual basic numerical abilities (e.g., magnitude compar-
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ison, see also Link, Nuerk, & Moeller, 2014) but also predicted their ability to acquire new arith-

metical competences in the future. Related to this, Moeller et al. (2011) found that early place-

value understanding in first grade predicted later arithmetic performance as well as children’s math 

grades two years later. Moreover, recent evidence suggests that basic numerical abilities are pre-

dictive of understanding more complex mathematical concepts taught in secondary school such as 

fractions. For instance, Bailey, Siegler, and Geary (2014) found that basic arithmetic abilities as-

sessed in first grade predicted arithmetic performance on fractions in secondary school (see also 

Vukovic et al., 2014). Interestingly, however, to the best of our knowledge, there is currently no 

study investigating the association of basic numerical abilities and graph reading performance. This 

comes somewhat as a surprise given the above-mentioned importance of graph literacy in everyday 

life as well as in math curricula.  

Therefore, the current study set out to evaluate the association of different basic numerical 

abilities with graph reading performance in a cross-sectional design. We hypothesized that basic 

numerical abilities implying the understanding of number magnitudes but also of basic arithmetic 

operations should be particularly relevant to graph reading. We expected such a pattern of results 

because graph reading tasks usually require a combination of the respective basic numerical abili-

ties such as the identification and/or comparison of numerical magnitudes as well as (approximate) 

calculations. 
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 Method  

II.2.1 Sample  

The total sample included N = 812 students recruited from German schools. We excluded 

22 students older than 25 from the analysis. These students are likely to be in a higher develop-

mental stage than the majority of students and may not be comparable to the majority of students 

because the average age of those was about 17 years. Furthermore, we excluded 15 students, be-

cause of missing demographic data, and 25 students because they did not complete the graph read-

ing test. This left 750 students for the analyses. The final sample had a mean age of M = 17.34 

years (SD = 2.12) and included 36% females. 

II.2.2 Measures 

II.2.2.1 Graph reading test  

Graph reading was assessed by 14 items, seven of which addressed a bar and 7 a line graph. 

Respective responses were either a specific number or a specific label of the graph. The time for 

doing the whole test was restricted to 4 mins. Correctly answered items were considered in a sum 

score, which served as dependent variable.  

Successful completion of the graph reading items required locating of specific information 

in the graph, several numerical operations such as magnitude comparisons, basic arithmetical op-

erations, but there were also more complex modeling demands. An item was subject to modeling 

demands when it required an inference about which arithmetic operation had to be performed. For 

instance, to correctly answer a modeling item, participants had to infer that they would have to 

calculate the sum of two values.  

Figure 6 gives an example of a bar graph. An exemplary item might have been “Which 

worker should be rewarded?”. Students first needed to consider the context of the problem to infer 

that the worker who produced the highest quantity of shoes should be rewarded, (modeling de-

mands), second, determine the worker with the longest bar graph (relational operation), third, sum 

up the two bars of potential candidates (addition) by reading off the exact values (localization of 

information), fourth, read the label to identify the worker who had produced the most shoes (local-

ization of information). Please note that the item given in Figure 6 is for illustrative purposes only 

and was not an item actually used in the test. 
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Figure 6. Schematic illustration of item format introducing item stem with a sample item in open 

answer format. Please note that this is not an item used in the experiment. 

II.2.2.2 Basic numerical abilities 

Different basic numerical abilities – ranging from non-symbolic magnitude comparisons to 

(approximate) arithmetic – were assessed by separate tests. All eight tests comprised only material 

which the students should have mastered already in primary school. Therefore, timing of all sub-

tests was such to allow us concluding on the degree of automatization. For all tests, students were 

presented with examples familiarizing them with the topics. Unless indicated differently, correctly 

solved items were considered for sum scores which were used as dependent variable for all analyses. 

In the following, we will describe the tests used in more detail.  

Non-symbolic magnitude comparisons: Students were presented with 16 pairs of dot clouds 

each and had to mark the cloud with the larger quantity of dots. Overall surface of the dot clouds 

was systematically varied in a way that for half of the items the surface with the lower quantity of 

dots was larger, which was reversed for the other half of the items. Time for this task was limited 

to avoid counting-based strategies (time limit: 1 minute). 
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Number line estimation: In the number line estimation task, students had to estimate the 

spatial location of a given number on a number line, of which only the endpoints were specified 

(e.g., the spatial location of 24 on a number line ranging from 0 to 100). Overall, the task comprised 

24 items (6 items on a number line from 0 to 10 and 0 to 100, respectively, and 4 items each on a 

number line from 0 to 1.000, 0 to 10.000, and 0 to 100.000, respectively). Time for the task was 

limited to 1.5 minutes to ensure that students estimated the position of the target numbers intuitively. 

Mean absolute estimation accuracy in percent served as dependent variable and was used in the 

analyses. Items with no response were coded with an accuracy of zero.  

Arithmetic operations: Arithmetic operations included: i) Addition, ii) Subtraction and iii) 

Multiplication. Each test comprised 36 arithmetic tasks in the order of ascending difficulty. Multi-

plications were restricted to single digit times single digit tasks, whereas addition and subtraction 

tasks covered the number range up to 10,000. Out of each operation, students had to solve as many 

tasks as they could within 2 minutes. 

Approximate arithmetic: In the approximate arithmetic tasks, students had to choose the 

one out of two incorrect solution proposals that was closer to the correct result. The range com-

prised 16 addition and 16 subtraction tasks. For instance: “Which result is closer to 1546 - 687? 

Possible answers: 816 or 678”. As in the basic arithmetic tests, difficulty level increased with every 

item. Students had 2 minutes to solve the tasks.  

Basic geometry: Basic geometrical abilities were measured using 12 mirror image problems. 

Students were presented with a geometric shape (e.g., a rectangle) and an axis across which they 

had to mirror this shape by drawing the flipped form on the side opposite the mirror axis. For each 

correct line in a drawing, students were assigned one point. As a result, maximum scores for each 

item varied between 6 and 12. This resulted in a maximum score of 94 for this scale. A sum score 

was used as dependent variable. 

Conceptual knowledge about arithmetic: In this task, students were presented with 40 pairs 

of arithmetic problems containing addition, subtraction, multiplication and division. Of each pair, 

one of the two tasks was already solved. Students had to decide whether the solution to the first 

problem helped them solve the second problem without having to calculate. For example: A) “Does 

54 : 9 = 6 helps you solve 54 : 6 = ?” or B) Does 4 * 23 = 92 help you solve 92 : 4 = ?”. 

Additionally, we assessed children’s general cognitive ability as a covariate by two subtests 

of the German version of the Culture Fair Intelligence Scale 2-revision (i.e., sequence continuation, 

matrices; CFT 20-R; Weiß, Albinus, & Arzt, 2006). Subtests were administered as defined in the 
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manual. In the sequence continuation subtest, students needed to find a logical continuation of a 

sequence of shapes. In the matrix subtest, students needed to do the same kind of conclusion for 

finding a logical shape for a blank cell of a matrix. 

II.2.3 Procedure 

All tests were administered during school hours in the students’ classrooms by trained ex-

perimenters. Testing took maximally 90 minutes. Parents provided informed written consent; stu-

dents were told that they could withdraw from the test at any time without negative consequences. 

Students above the age of 18 provided informed written consent by themselves; parents received 

information about the study. The study was approved by the local ethical committee as well as the 

regional school board. 

II.2.4 Statistical Analyses 

Prior to running the analyses, we checked for multicollinearity between variables. However, 

multicollinearity was no issue, because no two variables correlated higher than rij > .8 and no pre-

dictor variable showed a Variance Inflation Factor (VIF) > 10 (cf. O’Brien, 2007). Moreover, all 

variables except age were approximately normally distributed. The distribution of age was skewed, 

due to few students who were older than is usually expected for students in the investigated school 

types. Therefore, we log transformed the age variable prior to the analyses.  

II.2.4.1 Multiple regression 

We used multiple regression analysis to determine the significant predictors of graph read-

ing performance with a False Discovery Rate (FDR) p-value adjustment for multiple testing (Ben-

jamini & Hochberg, 1995).  

II.2.4.2 Relative weight analysis 

Additionally, we reported the relative weight of each predictor. The relative weight analysis 

(Johnson, 2000) addresses a problem caused by correlated predictors. Relative weight analysis uses 

a variable transformation approach to create a set of new predictors that are maximally related to 

the original predictors but are orthogonal to one another. In contrast to standardized regression 

weights, resulting relative weights represent the predictors’ additive decomposition of the total 

model R². Two measures of relative weight can be calculated, the raw relative weight and rescaled 

relative weight. Raw relative weights add up to the R² of the model and the rescaled relative weights 

add up to 100%, representing the relative importance of a particular variable in regression model. 

Relative weights can be interpreted as the proportion of explained variance in criteria that can be 
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appropriately attributed to each predictor variable (Tonidandel & LeBreton, 2015). Finally, we de-

termined significance of relative weights using the procedure described by Tonidandel, LeBreton, 

and Johnson (2009).  

II.2.4.3 Variables 

For all analysis, we considered 29 predictor variables: the eight basic numerical abilities 

were assessed (i.e., addition, subtraction, multiplication, number line estimation, approximate 

arithmetic, conceptual knowledge, basic geometry, non-symbolic magnitude comparisons), as well 

as general cognitive ability, age, gender, and the interaction terms of age and gender with general 

cognitive ability and the eight basic numerical abilities.  

We used an effect coding for gender (-1 = female, male = 1) and centered all continuous 

variables to be able to interpret the effect of interaction terms.  

II.2.4.4 Statistical software 

All statistical analyses were performed in the R environment (R Core Team, 2017). Multiple 

regression analysis was performed using the ‘lm’ function for fitting the linear models of the stand-

ard R package “state” (R Core Team, 2017). We used the ‘p.adjust’ function with the ‘fdr’ method 

to adjust p-values. Finally, we applied the syntax adopted from Tonidandel and LeBreton (2015) to 

conduct the relative weights analysis.  
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 Results 

The average graph reading score was M = 6.71 (SD = 2.28) out of 14 possible points. 

Therefore, graph reading showed sufficient variability. The predictor variables also showed suffi-

cient variability (see Table 4), indicating that under the given time constraints none of the measures 

was either too easy or too difficult.  

Table 4. Mean (M), Standard Deviation (SD) and obtained range of all measures. 

 M             SD Range 

Graph reading       6.75                 2.28     1 - 12  

Addition      20.86                 4.23     2 - 31  

Subtraction 17.17                 4.96     0 - 32  

Multiplication 20.94                 4.32     2 - 29  

Number line estimation (%) 81.27              15.77     2.19 - 97.47 

Approximate arithmetic  20.40              5.33     0 - 32  

Conceptual knowledge  18.21                 6.10     1 - 36  

Basic geometry (%)  59.35               21.18       0.00 - 100.00  

Non-sym. mag. comp.  18.75                 3.13     1 - 24  

G. cognitive ability  19.01                 4.11     1 - 29  

N = 750 

The correlation matrix depicted in Table 5 indicated that almost all basic numerical abilities 

were significantly correlated with graph reading performance, as well as amongst each other. This 

held with only one exception: conceptual knowledge and non-symbolic magnitude comparisons 

were not related significantly. The control variables gender and age showed small correlations with 

some measures of basic numerical abilities (see Table 5). Gender was significantly correlated with 

graph reading performance. Age was negatively related to conceptual knowledge, basic geometry, 

and general cognitive ability. These significant correlations justified our decision to consider gen-

der and age as control variables when evaluating the influence of basic numerical abilities on graph 

reading performance. 
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Table 5. Correlations between graph reading, basic numerical abilities, general cognitive ability, 

as well as gender and age. 

 Variable 1 2 3 4 5 6 7 8 9 10 11 

1. Graph reading 1           

2. Addition   .31** 1          

3. Subtraction  .39** .68** 1         

4. Multiplication  .31** .58** .58** 1        

5. Number line estimation  .29** .25** .22**  .21** 1       

6. Approximate arithmetic  .29** .40** .44**  .36**  .37** 1      

7. Conceptual knowledge  .31** .32** .33**  .31**  .34** .39** 1     

8. Basic geometry  .24** .23** .21**  .15**  .09** .08*  .20** 1    

9. Non-sym. mag. comp.  .14** .15** .10*  .14**  .06* .12**  .07  .08* 1   

10. G. cognitive ability  .45** .34** .35**  .32**  .17** .21**  .28**  .41**  .24** 1  

11. Gendera   .10** .11** .23**  .14**  .24** .21** -.08* -.06 -.06  .00 1 

12. Log(age) -.05 .06 .07 -.05 -.03 .05 -.12** -.10**   .03 -.17** .25** 

Note: **p < .01, *p < .05. N = 750. aCode female = -1, male = 1 

Multiple regression analysis. The linear multiple regression analysis including 29 predictors (i.e., 

basic numerical abilities, general cognitive ability, age, gender, and the interactions of basic nu-

merical abilities with age and gender) explained about 34% of the variance [R² =.34, adj. R² = .31, 

F(30,720) = 12.61, p <.001] of graph reading performance. Four individual variables showed a 

significant effect on graph reading performance: general cognitive ability, number line estimation, 

subtraction, and conceptual knowledge (see Table 6). Inspection of the beta weights indicated that 

for all predictors better performance on the predictor was associated with better graph reading per-

formance. General cognitive ability had a considerably larger effect on graph reading performance 

than conceptual knowledge, because the 95%- confidence intervals for the respective coefficients 

did not overlap. However, effect sizes of all other predictors were indistinguishable.  

Additionally, we computed the relative weight of each variable (Johnson, 2000) to evaluate which 

predictors accounted for non-trivial variance of graph reading performance in contrast to regression 

weights that reflect incremental prediction. In case predictors are correlated they may not yield a 

significant incremental relationship.  

Rescaled relative weights revealed that general cognitive ability accounted for a share of 28.54% 

of the explained variance in graph reading performance. Therefore, general cognitive ability 

seemed to be the best predictor for graph reading performance. Interestingly, the sum of basic nu-

merical abilities accounted for a larger share of the explained variance in graph reading perfor-

mance. 
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 Furthermore, despite low regression weights consideration of rescaled relative weights indicated 

that addition (β > -.02), multiplication (β = .01), approximate arithmetic (β = .03), and basic ge-

ometry (β =.05) explained a significant proportion of the predicted variance (i.e., between 5% and 

6%). This showed that those may be relevant to the prediction of graph reading performance, but 

did not explain that there was enough incremental variance in the regression model to become 

significant. In contrast, gender and age had similarly low standardized regression weights (gender: 

β = .01; age: β = .01), but also very low rescaled relative weights (gender: RS-RW = 1.01; age: RS-

RW = .42). Therefore, they may not be as relevant for the prediction of graph reading performance. 

Table 6. Multiple regression results. Please note that for reasons of better readability only main 

effects are displayed (see appendix for a table including interaction terms). 

  B β [L-CI,U-CI] RW t p RS-RW 

(%) 

Criteria = Graph reading performance  

[multiple R²= .34,  adj. R² =  .31, F(30,720) = 12.61, p <.001] 

        

Intercept 6.71 .00 [-.06, .07]  80.53 .000  

G. cognitive ability 0.17 .30 [ .22, .37] .10 7.34 .000    28.54* 

Subtraction 0.09 .20 [ .11, .29] .05 4.17 .000    13.86* 

Number line estimation 2.13 .15 [ .06, .19] .04 4.07 .000    12.01* 

Conceptual knowledge 0.04 .11 [ .03, .18] .03 2.86 .026      9.92* 

Approximate arithmetic 0.01 .03 [-.04, .11] .02 0.80 .748      6.12* 

Multiplication 0.01 .01 [-.05, .11] .02 0.34 .914      6.22* 

Basic geometry 0.01 .05 [-.03, .11] .02 1.27 .616      5.17* 

Addition  -0.01 -.02 [-.14, .04] .02 -0.35 .914      5.79* 

Non-sym. mag. comp. 0.01 .01 [-.04, .09] .01 0.29 .925      1.70   

Gendera 0.07 .03 [-.04, .10] .00 0.87 .748      1.16 

Log(age) 0.14 .01 [-.06, .07] .00 0.22 .954      0.46 

 

Note: b: unstandardized regression weight, β: standardized regression weight, L-CI: lower boundary 

(2.5%), L-CI: upper boundary(97.5%), RW: raw relative weight (within rounding error raw weights 

will sum to R²), t: t-value measures the size of the effect relative to the variation in sample data, RS-

RW: relative weight rescaled as a, percentage of predicted variance in the criterion variable attributed 

to each predictor (within rounding error rescaled weights sum to 100 %). a code female = -1, male = 

1.* significantly different from a random variable.  
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 Discussion 

In the current study, we aimed at investigating the influence of basic numerical abilities on 

graph reading performance. In two separate analyses, we first identified the significant predictors 

of graph reading performance and then evaluated the relative importance of individual basic nu-

merical abilities. We observed general cognitive ability to be the most important predictor of graph 

reading performance. Beyond general cognitive ability, performance in number line estimation, 

subtraction and conceptual knowledge were significant predictors of graph reading performance. 

This finding is in line with the Mixed Arithmetic-Perceptual Model by Gillan and colleagues (Gil-

lan & Lewis, 1994; Gillan, 2009) as the significant predictors are associated with arithmetical pro-

cesses (subtraction and conceptual knowledge), and non-arithmetical processes (number line esti-

mation and general cognitive ability). Furthermore, they also map well with Åberg-Bengtsson’s 

(1999) differentiation between a general factor (reflected by general cognitive ability) and a quan-

titative factor (involving subtraction, number line estimation, and conceptual knowledge). 

In the following, we will discuss these results in more detail by addressing each of the 

relevant predictors of graph reading performance one after the other. In particular, we will consider 

two questions: How may the respective predictor be related to graph reading (e.g., identifying spe-

cific information, relational operations, etc.) and which general cognitive processes and cognitive 

strategies may underlie its influence?  

The most important predictor of graph reading was general cognitive ability. This influence 

of general cognitive ability is not surprising; however, there may be two reasons why general cog-

nitive ability may have been of particularly predictive value for graph reading performance. First, 

graph reading problems may not be a common part of the daily routine in schools. General cogni-

tive ability is often defined as the ability to solve new problems (e.g., Hartig, & Klieme, 2006). 

Therefore, general cognitive ability may be a significant predictor of graph reading performance. 

Second, the subtests of the Culture Fair Test used in the present study strongly rely on visual pro-

cessing and analogical reasoning (Weiß et al., 2006). These processing components may also relate 

to the non-arithmetical processes, visual and visual imagery processes as were proposed to be rel-

evant in graph reading by the Mixed Arithmetic-Perceptual Model by Gillan and Lewis (1994). 

Importantly, similar subcomponents of information processing have also been discussed to influ-

ence graph literacy by other authors (cf. Verschaffel, De Corte, & Lasure, 1994).  
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Moreover, number line estimation was observed to be the most important basic numerical 

ability to predict graph reading performance: Better number line estimation performance predicted 

better graph reading. Interestingly, number line estimation should relate to visual processes, such 

as performing spatial comparisons, value encoding and spatial differences as also reflected in the 

Mixed Arithmetic-Perceptual Model (Gillan & Lewis, 1994; Gillan, 2009). Therefore, the associa-

tion between number line estimation and graph reading performace seems plausible because num-

ber line estimation also requires translation of symbolically and spatially-coded representations of 

quantities (i.e., to indicate the spatial location corresponding to an Arabic number). Furthermore, 

number line estimation is the only basic numerical ability – among those predictors considered 

significant for graph reading – that involves translations between symbolically and spatially-coded 

representations of quantity. This again is specifically required in graph reading. Moreover, localiz-

ing specific information in a spatial graphical set-up is a core component of graph literacy (Guthrie 

et al.,1993) which usually necessitates processing of quantitative information across different rep-

resentational modalities. For instance, reading a specific value off a graph requires identifying the 

location of the respective information (e.g., the largest bar), and then to translate this spatial repre-

sentation of magnitude into a symbolic representation by reading the corresponding position off a 

scale. 

Additionally, recent research (e.g., Barth & Paladino, 2011; see Dackermann, Huber, 

Bahnmueller, Nuerk, & Moeller, 2015 for a discussion) has shown that number line estimation 

usually involves the application of so-called proportion-judgment strategies. This means that par-

ticipants estimate the position of a target number by considering its relation to specific reference 

points (e.g., the middle of the depicted number line, i.e., 50 on a 0 to 100 number line). Very similar 

proportion-based strategies were observed to be applied for the estimation of bar graph lengths 

(Hollands & Spence, 1998). Also, most of the present graph reading tasks involved relational op-

erations (i.e. using equal to, greater than, smaller than). Accordingly, students who performed well 

in number line estimation due to their ability to translate between symbolic and non-symbolic spa-

tial representations of quantity and/or the application of efficient proportion-based strategies might 

also have performed better in graph reading tasks.  

As another numerical predictor, subtraction was identified as a relevant and significant pre-

dictor of graph reading performance with better subtraction performance being associated with 

better graph reading. Most graph reading tasks in the present study involved arithmetic operations. 

However, subtraction was the only relevant and significant predictor of graph reading. There may 
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be at least three reasons for that. First, variability was more pronounced for subtraction as compared 

to addition, which might account for the fact that subtraction and not addition was incorporated in 

the variable selection regression model. Second, addition is more prone to influences of arithmetic 

fact retrieval, which has been suggested for single-digit additions (e.g., Butterworth, Zorzi, Girelli, 

& Jonckheere, 2001; Pesenti, Thioux, Seron, & De Volder, 2000). In turn, the subtraction scale may 

better reflect students’ procedural calculation skills. This argument is further corroborated by the 

fact that multiplication performance, which is widely agreed to reflect arithmetic fact retrieval (e.g., 

Butterworth et al., 2001; Pesenti et al., 2000), was not observed to be a significant predictor of 

graph reading. Finally, subtraction and addition performance were highly correlated. Considering 

the first two arguments, it is unlikely that addition explains unique variance over and above what 

had already been explained by subtraction.  

Finally, students’ conceptual knowledge was a significant predictor of their graph reading 

in a way that better performance in the conceptual knowledge scale was associated with better 

graph reading performance. In the conceptual knowledge scale, students needed to identify rela-

tionships between arithmetic operations rather than solve arithmetic problems by actually perform-

ing the necessary computations. As such, conceptual knowledge enables students to select and use 

problem solving strategies which are less resource demanding. For instance, in some tasks students 

had to compute means of two values depicted in a bar graph. The mean can be determined by 

reading the values off the two bars and then applying the arithmetic procedure [M = (x1 + x2+ … 

+ xn) / n]. However, knowledge about relationships between arithmetic operations enables students 

to select a problem solving strategy demanding fewer resources. Such a strategy could be to take 

the spatial middle between the two respective graphs and then read off the respective value (Gillan, 

1995). Therefore, higher conceptual knowledge may enable students to apply more efficient prob-

lem solving strategies in graph reading problems.  

As indicated by the relative weight analysis multiplication, approximate arithmetic, and 

basic geometry accounted for a considerable amount of predicted variance of graph reading per-

formance and might thus be relevant predictors of it as well. However, their influence turned out 

not to be significant in the multiple regression analysis – most probably because they share large 

parts of their variance with other predictors included in the model.  

Multiplication may be a generally relevant predictor because of the influence of arithmetic 

fact retrieval (i.e., multiplication tables), which describes a different way of solving numerical tasks 
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as compared to actual calculations. However, none of the problems in the graph reading test ex-

plicitly required multiplication. Moreover, approximate arithmetical abilities may be a relevant 

predictor because students with good approximation abilities may have advantages in judging the 

plausibility of possible results. However, all problems of the graph reading test required that stu-

dents provided a specific numerical result, which could not be solved by approximation alone. 

Finally, basic geometry may be relevant for graph reading due to the necessity to process spatially 

represented information and may relate different pieces of spatial information explicitly to each 

other (e.g., to evaluate which worker produced more shoes by comparing the size of the bars, cf. 

Figure 1). All that is reflected in the basic geometry task, which also required participants to process 

spatial information and relate various pieces of it to produce the respective mirror images. There-

fore, it may be necessary that these basic numerical abilities be acknowledged even though they 

were not identified as significant predictors of graph reading performance within the set of basic 

numerical abilities assessed in the current study. 

So, what were the basic numerical predictors of graph reading? We identified number line 

estimation and subtraction performance as well as students’ conceptual knowledge to be significant 

predictors of graph reading beyond the influence of general cognitive ability. Interestingly, these 

basic numerical abilities seem to be associated with graph reading because they reflect specific 

numerical processes and more general problem solving strategies required in graph reading. This 

indicates that graph reading performance may indeed be a mixture of arithmetical and non-arith-

metical cognitive processes (Gillan & Lewis, 1994). Therefore, influences of tests involving com-

putational skills such as the subtraction test seem obvious. Similarly, number line estimation im-

plies processes such as the translation between symbolically and spatially-coded representations of 

quantities that are also necessary in graph reading tasks.  

However, considering how number line estimation is achieved (by means of proportion-

based strategies) and considering the observed influence of students’ conceptual knowledge we 

conclude that the influence of basic numerical abilities goes beyond the level of providing mere 

numerical and arithmetical prerequisites for more applied everyday graph literacy. Instead, influ-

ence of number line estimation and conceptual knowledge indicates that mastery of basic numerical 

concepts allows for the application of more efficient problem solving strategies beyond mere arith-

metical procedures.  
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II.4.1 Conclusions and Perspectives 

As we pointed out above, we observed an influence of basic numerical abilities on graph 

literacy over and above influences of general cognitive ability. To the best of our knowledge, this 

is one of the first studies indicating that students who score high on basic numerical abiliites ac-

quired in primary school, also perform better on more applied everyday graph reading tasks at a 

secondary school level. Additionally, basic numerical abilities and general cognitive ability which 

we identified as significant predictors of graph reading closely map with the distinction between 

arithmetical and non-arithmetical processes described by the Mixed Arithmetic-Perceptual Model 

of graph reading (Gillan & Lewis, 1994). 

In sum, the present results underline the central importance of basic numerical abilities built 

up before and during the first years of formal schooling and later their impact on more complex 

math skills, which, in turn, are relevant for educational achievement and everyday life. We are 

faced with different forms of graphs in various situations every day (Åberg‐Bengtsson, 2006), for 

instance regarding results of elections, stock market development, labor market information, and 

so on. As indicated by the results of this study, the foundation for graph literacy is laid in primary 

school. However, in secondary education, teachers usually expect students to have acquired a suf-

ficient level of basic numerical abilities. Therefore, teachers do not focus on them later again, which 

is most obvious with regard to basic arithmetic operations. As a consequence, students with deficits 

in these areas may experience severe problems in solving more complex tasks such as graph read-

ing. Even though the present results rely on cross-sectional data, they indicate that even in second-

ary education, it seems worth reviewing elementary school knowledge in the context of real-world 

math problems. It would be desirable for future research to clarify the role of basic numerical abil-

ities on graph reading in a longitudinal study to help understand the developmental trajectory of 

their association with graph reading. 
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Chapter III. Interpreting process measures in text-graphics comprehension 

 

 

Process measures such as gaze patterns have been successfully used to investigate cognitive 

processes in educational research. However, process measures say nothing about the success 

or failure of the underlying cognitive processes, and process measures can have fundamentally 

different interpretations. In text-graphics comprehension, transitions between text and graphics 

can either be interpreted as integration, i.e., the building of referential connections, or as diso-

rientation, i.e., the inability to identify relevant information. In this study, we argue that differ-

ent interpretations apply depend on whether processing is more controlled or more automatic. 

Consequently, different interpretations apply during the (more controlled) initial reading of 

task material and the (more automatic) completion of tasks. Furthermore, prior knowledge as 

well as reading and graph comprehension abilities should influence individuals’ ability to pro-

cess material automatically. The results of two studies demonstrate that taking more time and 

performing more text-graph transitions is positively associated with task success during initial 

reading, but negatively associated with task success during task completion. Subsequently, we 

found that prior knowledge moderates the effect of time taken during initial reading and task 

completion. Our results indicate that the interpretation of process measures depends on 

comprehension phase (initial reading vs. task completion) and degree of prior knowledge. Fur-

thermore, we discuss theoretical implications for multimedia learning and educational research 

methods.  
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 Introduction 

Eye movements have been successfully used in educational research to investigate cogni-

tive processes in learning and testing situations (Scheiter & Eitel, 2017). Eye-tracking provides 

valuable process information. However, it tells us nothing about the success or failure of compre-

hension processes (Hyönä, 2010). The interpretation of process measures during text-graphic com-

prehension can be ambiguous. For instance, many transitions between text and graphics can indi-

cate either text-graphic integration (engaging in global coherence formation) or disorientation (a 

lack of ability to find relevant information). In this paper, we address this ambiguity by analyzing 

the relationship between transitions between text and graphs and time-on-task with comprehension 

outcomes. 

First, we describe cognitive processes essential to text-graphic comprehension and process 

measures that can be used to assess these cognitive processes. We operationalize cognitive pro-

cesses of text-graphic comprehension with local and global coherence formation and process 

measures with time-on-task and text-graphic transitions. We address a specific type of graphics, 

namely, graphs. Graphs are quantitative axis diagrams that use an apposed-position language to 

represent relationships between data points (Lowrie, Diezmann, & Logan, 2012) and see text-graph 

comprehension as a particular case of text-graphic comprehension. Second, we discuss how pro-

cess measures are indicative of cognitive processes during the initial reading of text-graph material 

and the completion of comprehension tasks. In two studies, we analyze the association between 

task success, time-on-task, and text-graph transitions during initial reading and task completion. In 

the second study, we additionally investigate whether prior knowledge as well as reading and graph 

comprehension ability moderate the effect of process measures on task success. 
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 Theory 

III.2.1 Text-graph comprehension 

Combinations of text and graphics are a major design feature in science textbooks (e.g., 

Schnotz, 2005), where they serve as a useful tool for enhancing learning outcomes (e.g., Butcher, 

2014; Carney & Levin, 2002; Mayer, 2005). However, students can only benefit from illustrated 

texts if they can mentally integrate information from the text and graphics (Seufert, 2003). Integra-

tion can be particularly challenging when the graphics are quantitative axis diagrams (Ullrich et al., 

2012), to which we refer to as graphs. There is empirical evidence from both online (i.e., eye 

movement data; e.g., Johnson & Mayer, 2012; Mason, Pluchino, Tornatora, & Ariasi, 2013) and 

offline indicators (i.e., cross-modal memory intrusions, e.g., Schüler, Arndt, & Scheiter, 2015; 

Arndt, Schüler, & Scheiter, 2015) that integration is essential to the comprehension of illustrated 

texts.  

Text-graph comprehension is successful when students are able to identify relevant infor-

mation from each representation format, organize it into coherent modality-specific mental models 

(form local coherence, Seufert, 2003), and identify correspondences between text and graphs (form 

global coherence, Seufert, 2003). 

Local coherence describes a person’s understanding of each of the given representations 

(Ainsworth, Bibby, & Wood, 2002), or in other words the selection and organization of information 

into modality-specific mental models (Mayer, 2005). Local text coherence enables students to dis-

tinguish between the surface and deep structures of sentences and texts. The deep structure of a 

sentence is a theoretical construct which makes the underlying logical and semantic relations ex-

plicit and is independent of a specific sentence with specific syntax and specific words (Chomsky 

& Halle, 1965). Accordingly, local text coherence enables a person to match sentences with the 

same deep structure despite their different surface structures (Royer, Hastings, & Hook, 1979). This 

process requires a mixture of linguistic knowledge, word knowledge, and reading skills (Kintsch, 

1988). Individuals who are fluent in reading comprehension take less time to select and organize 

relevant information from the text. 

Local graph coherence enables students to distinguish between the surface and deep struc-

tures of graphs. In this paper, we refer to a specific type of graphics, namely, graphs. Graphs are 

quantitative axis diagrams that use an apposed-position language to represent relationships between 

data points (Lowrie, Diezmann, & Logan, 2012). Graphs use two-dimensional space to visualize 
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relationships and convey meaning. The deep structure of a graph makes the conceptual and logical 

relationships between variables explicit, independent of the specific array of points and visual fea-

tures such as dots, lines, and areas (Schnotz & Baadte, 2015). Understanding a graph requires 

grasping the meaning of the graph by constructing a mental model of its content (Kosslyn, 1989; 

Pinker, 1990). In contrast to pictures and schematic drawings, for instance, understanding the con-

tent of graphs requires knowledge about graphical conventions (Lowrie et al., 2012; Shah & Freed-

man, 2011). Individuals who are fluent in graph comprehension may take less time to select and 

organize relevant information from the graph. 

Global processes link texts and graphs at a conceptual level (Ainsworth, 2006); in other 

words, they integrate modality-specific mental models (Mayer, 2005) or integrate a proportional 

representation of text with a mental model of its content (Schnotz, 2005). Global coherence enables 

students to map the deep structures of text and graphs onto one another. According to Schnotz et 

al. (2014), prior knowledge organizes the formation of global coherence. Therefore, individuals’ 

prior knowledge should influence global coherence formation. 

In this study, we investigate how students achieve global coherence. In the next section, we 

discuss how we elected to quantify global coherence formation. 

III.2.2 Process measures in text-graph comprehension 

We define process measures in opposition to outcome measures. Process measures capture 

behavior regulated by the individual, which is associated with and temporarily upstream to the 

outcome. Process measures can be indicators of cognitive processes. However, the two are not 

identical. In this paper, we address two common process measures: time-on-task and eye move-

ments (Scheiter & Eitel, 2017). Below, we discuss the effects of time-on-task and transitions be-

tween text and graphs on task success. 

III.2.2.1 The relationship between time-on-task and task success. 

Both positive and negative influences of time-on-task have been investigated in the context 

of skill assessments (Goldhammer et al., 2014; Naumann, & Goldhammer, 2017). There are two 

ways to explain the relation between time-on-task and task success in skill assessments. Taking 

more time to work on a task may be positively related to task success as the task is completed more 

thoroughly and answers are more elaborate. On the other hand, the relationship may be negative if 

working faster and more fluently reflects a higher skill level. Goldhammer et al. (2014) found a 

negative relationship between time-on-task and task success. They argue that the automatic nature 

of reading processes at the word, sentence, and local coherence levels leads to a negative time-on-
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task effect. The effect is negative because both faster and more accurate performance are associated 

with reading skills such as phonological recoding, orthographic comparison, or the retrieval of 

word meanings from long-term memory (Richter, Isberner, Naumann, & Neeb, 2013). More prior 

knowledge should also allow students to perform faster and more accurately. However, text-graph 

comprehension does not only require reading skills up to the local coherence level. According to 

Goldhammer et al., when reading becomes more controlled, the relationship between time-on-task 

and comprehension outcome can become less negative or even positive. Text-graphic comprehen-

sion requires a higher level of controlled processing to establish global coherence by making ref-

erential connections between text and graphics (Mason et al., 2013; Mason, Tornatora, & Pluchino, 

2015). 

In sum, time-on-task has a negative effect on task success when tasks require automatic 

processing. If the material allows for automatic processing, individuals with greater fluency are 

likely to be faster and more accurate at the same time, while individuals who are less fluent should 

be slower and make more mistakes. Time-on-task has a positive relationship with task success 

when tasks require more controlled processes (e.g., rereading, building referential connections). If 

the task material is complex, even highly skilled individuals cannot be fast and accurate at the same 

time. 

Consequently, text-graph comprehension involving only local text coherence formation 

may be a mostly automatic process, while building referential connections between text and 

graphics may be a more controlled process. 

III.2.2.2 The relationship between text-graph transitions and task success. 

Multimedia learning research has investigated the transitions between text and graphs using 

various methods (e.g., Hegarty & Just, 1993; Johnson & Mayer, 2012; Ozcelik, Karakus, Kursun, 

& Cagiltay, 2009). Similarly to time-on-task, there are two ways of explaining the relationship 

between text-graphic transitions and task success. First, referential connections allow students to 

integrate text and graphics mentally (Seufert, 2003). More referential connections between text 

and graphs facilitate comprehension and learning. Consequently, comprehension is positively re-

lated to transitions between text and graphics. For instance, more transitions between text and 

graphics during second-pass reading have been found to have a positive influence on outcome 

measures, such as verbal and graphical recall and transfer of knowledge (Mason et al., 2015, 2013). 

Transitions between problem statements and graphs are positively related to the probability of solv-
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ing the problem (Ögren, Nyström, & Jarodzka, 2017). The authors argue that these transitions re-

flect controlled processes. Furthermore, some multimedia studies have shown that design features 

that increase text-graphic transitions also increase recall and transfer performance (spatial contigu-

ity: Johnson & Mayer, 2012; signaling: Ozcelik et al., 2009). 

On the other hand, the relationship between text-graph transitions may be negative because 

it reflects a lack of ability to make referential connections between text and graphs. Students may 

be disoriented, alternating rapidly between text and graph while failing to complete the task cor-

rectly. Schwonke, Berthold, and Renkl (2009) found a negative or zero correlation between con-

ceptual understanding and text-diagram, text-equation and diagram-equation transitions in a mul-

tiple representations study. 

In summary, both positive and negative associations between comprehension outcomes, 

time-on-task, and text-graph transitions are plausible because different mechanisms play a role (See 

Table 7). First, the construction of a globally coherent mental model (which can be achieved via 

elaboration and integration) increases the chance of an accurate answer; second, a smooth, undis-

rupted answering process indicates that the answer will be correct. 

Previous research shows that various task and individual characteristics influence the extent 

and direction of the association between process measures and task success. In the following sec-

tion, we introduce the idea that this association can depend on the comprehension phase.  

 

Table 7. Which Underlying Cognitive Processes May Be Inferred from the Positive and Negative 

Associations between Process Measures and Comprehension Outcome. 

    
Time-on-task Text-graph transition 

Association 

with compre-

hension out-

come 

positive 
Elaboration (e.g., Gold-

hammer et al., 2014) 

Integration (e.g., Mason et 

al., 2013; Mason et al, 2015) 

negative  
Fluency (e.g., Gold-

hammer et al., 2014) 

Disorientation (e.g., 

Schwonke et al.,2009) 

 

III.2.3 Initial reading and task completion 

The degree to which processing is automatic and controlled not only depends on the mate-

rial’s level of complexity and the individual’s skill level (Goldhammer et al., 2014), it may also 

depend on the comprehension phase. Schnotz et al., (2014) distinguished between two phases of 

text-picture comprehension: initial reading and task completion. In the context of solving multiple-
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choice questions and complex problem-solving, authors distinguish between knowledge acquisi-

tion and knowledge application (Greiff, Wüstenberg, Molnár, Fischer, Funke, & Csapó, 2013; 

Lindner, Eitel, Strobel, & Köller, 2017).  

Individuals follow different processing goals during these phases. The aim of the initial 

reading phase is to construct a coherent mental model of the content (Schnotz et al. 2014; Schnotz 

& Wagner, 2018). Mental model construction is a controlled process. Therefore, it is plausible that 

investing more time into mental model construction will result in a more elaborated understanding 

of the material. In contrast, the task completion phase does not aim for mental model construction 

per se, but for the quick identification of information relevant to the task solution. Individuals who 

process more fluently identify task-relevant information within the text and graph faster and are 

more likely to be correct. Individuals who take longer may not have been able to find definite 

solution, and are forced to ruminate and finally guess the answer. Due to the fundamentally differ-

ent goals of the two comprehension phases, we hypothesize that the relationship between pro-

cessing measures and comprehension outcomes differs depending on phase. 

III.2.4 Hypotheses 

Our hypotheses are specified on the basis of two assumptions: (1) Time-on-task and text-

graph transitions are measures of cognitive processing (eye-mind hypotheses: Carpenter & Just, 

1975) und (2) individuals followed the instructions.  

 Process measures during initial reading and task completion affect task success in oppos-

ing directions (H1) 

o Time-on-task and text-graph transitions during initial reading are positively related 

to task success due to elaboration and integration processes, respectively (H1.1).  

o Time-on-task and text-graph transitions during task completion are negatively re-

lated to task success because individuals with good comprehension of the material 

are more fluent and quickly identify task-relevant information (H1.2).  

 Finally, global coherence is the critical cognitive process. Therefore, text-graph transitions 

explains task success above and beyond time-on-task. A model including both time-on-

task and text-graph transitions has better fit than a model with time-on-task alone (H2).  
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 General method 

III.3.1 Material 

III.3.1.1 Initial reading 

For initial reading, we chose three different topics from biology, namely population dynam-

ics, action potentials, and sleep cycles. Figure 7 shows the respective explanatory graphs from the 

initial reading material. 

 

Figure 7. Example graph for each topic: population dynamics (left), action potentials (middle), 

and sleep cycles (right). 

The three topics included text with 200 to 217 words. Each text consisted of 14 sentences 

and two paragraphs. The texts provided an overview of the interaction between predator and prey 

populations, the triggering of action potentials in neurons, and the sequence of sleep cycles. Figure 

8 shows the initial reading text for the sleep cycle topic.  

 

Figure 8. Initial reading page for the sleep cycle domain (translated into English). 

III.3.1.2 Task completion 

After the initial reading phase, participants answered text-graph integration items for each 

topic. The texts included two different task types. The first task type required participants to find a 
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contradiction between text and graph (see Figure 9). The second task type required participants to 

select graphs that matched the text. Hence, solving an item required integrated comprehension of 

the text and graph. However, the information presented in the item material was sufficient to iden-

tify the correct answer. Comprehension of the initial reading material should be helpful. However, 

a good understanding of the material was not sufficient to answer the items, because each item 

included new graphs.  

 

Figure 9. Sample item on sleep cycles. The item is solved by identifying the contradiction between 

graph and text. The text states that people enter sleep in the first non-REM phase. However, the 

graph depicts entering sleep via an REM phase. Participants have to click on the first sentence of 

the second paragraph to answer the item correctly.  

III.3.2  Procedure 

After filling out the informed consent form, participants worked through the items for all 

three topics in a random order. They began each topic by initially reading the task material. 

Participants were instructed to carefully process the material for general comprehension. The initial 

reading time was set to a minimum of one minute to prevent participants from rushing through the 

material. Afterwards, participants proceeded to the four text-graph comprehension items in the task 

completion phase. A simple example for each task type was presented to demonstrate how each 

task worked. The example item had to be answered correctly for participants to be able to proceed. 
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The items were then presented in random order; however, items of the same type were presented 

in sequence to reduce confusion due to task switching. This procedure was repeated for each of the 

three domains. Participants finished the study by answering a short demographic questionnaire. 

The study took 25 minutes on average. 

III.3.3 Process measures  

III.3.3.1 Equipment. 

The study was performed with an HP ZBook 15. Stimuli were presented with Experiment 

Center (v. 3.0.128) in the web browser Firefox on an HP 15.6 inch computer screen with a resolu-

tion of 1920 x 1080 pixels and a refresh rate of 260 Hz. Eye movements were recorded at 260 Hz 

with the SMI eye tracker from SensoMotoric Instruments running iView X (v. 2.7.13).  

III.3.3.2 Areas of interest. 

For the text-graph comprehension items, we divided the initial reading material and text-

graph items into two areas of interest: the text area and graph area. Due to the item design, we 

separated the text area and graph area with a divide along the Y-axis. 

III.3.3.3 Data preparation. 

Our analyses use raw time-on-task in minutes and the number of text-graph transitions (i.e. 

Saccade count; Lai, Tsai, Yang, Hsu, Liu, Lee, & Tsai, 2013). We ensured data quality by inspecting 

every trial for plausibility, eventual drift and by-trial tracking rate. Details on the data preparation 

procedure can be found in the appendix. 

III.3.3.4 Treating missing values. 

We considered the eye-tracking data from 68 trials as not trustworthy on the basis of a 

plausibility check and tracking rate. We removed three individuals from the sample because they 

had fewer than four valid trials. The remaining 38 (10.50%) non-trustworthy trials were spread 

across individuals and items. We avoided listwise deletion because it reduces the testing power and 

can potentially result in biased estimates. Since the responses and response times still provided 

reliable information about the trials, we estimated effects using multiple imputation procedures 

(Buuren, & Groothuis-Oudshoorn, 2011). More specifically, we applied predictive mean matching 

(PMM) because it produces unbiased imputations even when variables are not normally distributed 

(Rubin & Schenker, 1986). In principle, PMM constructs a metric for matching cases with missing 

values to similar non-missing cases within the same data set. Cases were selected on the basis of 

individual, item, domain, response accuracy, and response time. We matched each missing value 
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with the five non-missing values that had the closest predicted values, following the recommenda-

tion for smaller data sets (Morris, White, & Royston, 2014). The variables were imputed in a 

particular order. We started with the variables containing the most missing values and ended with 

the variable with the fewest missing values. Plots indicated convergence after a few iterations (i.e. 

10 iterations).  

III.3.4 Statistical analyses  

III.3.4.1 Process measures effects. 

We used the generalized linear mixed model (GLMM) framework (e.g., Baayen, Davidson, 

& Bates, 2008; De Boeck et al., 2011) to investigate the role of time-on-task (time) and text-graph 

transitions (transitions), on the probability of answering a text-graph comprehension item correctly. 

A generalized linear mixed model is a linear regression model that includes fixed and random ef-

fects (b) using a logit link function (ηpi = ln(πpi /(1 + πpi )) to transform a continuous linear compo-

nent ηpi into the probability of obtaining a correct response πpi. In our analysis, we define both 

(fixed) effects that are constant across items and persons and (random) effects that vary across 

items and persons (cf. De Boek). In other words, we first specify a regression model that assumes 

that the probability of an item being answered correctly depends on the ability of the individual 

and the difficulty of the item. The probability of an item being answered correctly increases with 

the individual’s ability, while the probability of an item being answered correctly decreases with 

the difficulty of the item. In addition to the random item effect, we include task characteristics as 

fixed effects. We consider this the baseline model (πpi ~ ηpi = β0 (grand mean) + (individual skill 

bop) + (relative easiness b0i) + β1-3 (tasks characteristics) + rpi).  

We include the domain of the item using dummy coding with two factors, one for action 

potentials and one for sleep cycles. In our study, all items were drawn from the domains of either 

population dynamics (action potential: 0, sleep cycle: 0), action potentials (action potential: 1, sleep 

cycle: 0) or sleep cycles (action potential: 0, sleep cycle: 1). We also include task type as a dummy-

coded factor. The task type is either mapping from text to graph (text to graph: 0) or mapping from 

graph to text (text to graph: 1). Therefore, the intercept must be interpreted as the probability of an 

answer being correct when submitted by an average person for an average item from the domain 

of populations dynamics and the task type mapping from graph to text. However, since we are 

primarily interested in the effect of the process measures, task characteristics serve as control var-

iables.  
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We then add the process measures to the model as fixed effects to investigate how they 

influence the probability of correct responses. In sum, we predict the probability of a correct re-

sponse based on the person’s ability, the difficulty of the item, the time-on-task, and the number of 

text-graph transitions or focus on the graph, while controlling for item characteristics. The effects 

we report are log odds ratios. 

III.3.4.2 Estimates for multiply imputed data. 

The multiple imputation resulted in five different imputed and therefore complete data sets. 

The estimates we report in the following analysis are averages of these five complete data sets. The 

rules we applied for combining the separate estimates, standard errors, confidence intervals and p-

values are based on Rubin & Schenker (1986). The number of degrees of freedom was calculated 

using the method by Barnard and Rubin (1999, as cited by Buuren, & Groothuis-Oudshoorn, 2011). 

III.3.4.3  Statistical software.  

We applied the glmer function of the R package lme4 (Bates, Mächler, & Bolker, 2014), to 

estimate the presented GLMMs. We used the mice function of the R package mice (Buuren, & 

Groothuis-Oudshoorn, 2011) as well as miceadds (Robitzsch, Grund, & Henke, 2017) to perform 

the multiple imputations. The ‘pool’ function was used to average estimates across imputed data 

sets. The R environment (R Development Core Team, 2012) was also used to conduct logistic re-

gression analyses. 
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 Study 1 

In the first reported study, we recorded students’ eye movements during the initial reading 

of 3 text-graph combinations on biological topics and completion of 12 text-graph comprehension 

items. Our goal was to investigate the association between text-graph transitions, time-on-task, and 

task success.  

III.4.1 Method 1 

III.4.1.1 Sample  

34 students (23 female; M = 20.46 years, SD = 3.36) from a university in southern Germany 

participated voluntarily in the study for course credit. Participants were psychology or cognitive 

science students. Data from 5 participants had to be excluded from data analysis because the data 

quality was not sufficient. More detailed data preparation criteria was reported in the method sec-

tion. Participants were invited to the eye-tracking laboratory in groups of up to 10 individuals.  

III.4.2 Results 1 

III.4.2.1 Descriptive 

The overall average initial reading time was 96.32 seconds and varied slightly across the 

different materials (Appendix Table 2 provides detailed statistics on the differences between the 

population dynamics, action potentials, and sleep cycles material). The overall average number of 

text-graph transitions during the initial reading phase was approximately 11. Participants tended to 

perform fewer transitions while reading the action potential material.  

Overall, 53% of all responses were correct (Appendix Table 3 provides detailed statistics 

on task completion phase by item). The accuracy rate varied across items and ranged from 13% to 

71%. Item 6 was answered correctly in 13% of all cases. The rest of the items varied between 40% 

and 71%. Responses took 52.51 seconds on average. The time-on-task ranged from 38.72 seconds 

to 66.81 seconds. Overall, about 11.56 transitions between text and graph were performed. The 

items of the second task type had a higher accuracy rate and required fewer text-graph transitions.  

In summary, average accuracy rate, time-on-task, and text-graph transitions varied both 

across items and across persons. We assume that the accuracy rates and means of the process 

measures varied randomly across items. Additionally, we account for possible systematic influ-

ences by including the topic and task type in the analysis.  
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III.4.2.2 Item and person effects.  

We analyze the effect of item and person on the probability of correct answers. The overall 

accuracy rate of 53.63% corresponds to a ‘grand’ intercept estimation of β intercept = 0.14; z = 0.57; 

p = .572. The βintercept = 0.14 estimate is the marginal log-odds of a correct answer for an average 

person completing an average item. The p-value indicates that the intercept is not significantly 

different from 50%.  

The average probability of correct answers is 54%. However, another critical aspect is the 

range of probabilities of a correct answer across items and persons. The effect of process measures 

is difficult to detect if the probability of a correct answer is already very high (or low). For instance, 

a person with very high ability working on a very easy item cannot improve his or her probability 

of a correct answer by taking more time. However, in this study, the probability of a correct answer 

for the person with the highest ability working on the easiest item and the person with the lowest 

ability working on the most difficult item ranged from 88.02% to 11.57%, respectively. This range 

indicates that we are not investigating extreme combinations of ability and difficulty, and that pro-

cess measures could still potentially have positive or negative effects on the probability of success 

across all responses.  

Item characteristics. The significant intercept means that the probability of a correct re-

sponse for the reference items (item characteristics: text-to-graph and population dynamics) is 

higher than 50%. More specifically, the probability of a correct response for the reference category 

is 76.20%. Therefore, the intercept represents the least difficult combination of item characteristics. 

In contrast, the most difficult combination of item characteristics is the topic of sleep cycles and 

the first task type, where the probability is 39.03%. 

III.4.2.3 Process measures and the probability of correct answers. 

Time-on-task. Time-on-task does not have a significant effect on task success during initial 

reading (βToT:IR = 0.57, SE = 0.31, z = 1.86, p = .063). Time-on-task has a negative effect during 

task completion (βToT:TC = -0.93, SE = 0.23, z = -4.07, p < .001). However, the effect of time-on-

task is different during initial reading and task completion, since the lower boundary of time-on-

task during initial reading (β ToT:IR CIlow = -.031) does not overlap with the upper boundary of time-

on-task during task completion (β ToT:TC CIupper = -0.48). 

The effect of time-on-task during task completion means that the probability of a correct 

response decreases (from the intercept and an average person) by 55.82% when the item is worked 

on for one minute longer. This result supports the hypothesis that the effect of time-on-task during 
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initial reading and task completion is different, since the effect during initial reading is positive in 

tendency, and the effect during task completion is negative. The negative effect of time-on-task 

during task completion is in line with the hypothesis that the quick identification of task-relevant 

information leads to correct responses (H3). The positive yet insignificant tendency during initial 

reading at least does not directly contradict our hypothesis that taking more time during this phase 

reflects more elaborate and thorough processing of the material. 

Text-graph transitions. Text-graph transitions have no significant effect on task success 

during initial reading (βTGT:IR = 0.02, SE = .02, z = 0.88, p = .327), but they do during task comple-

tion (βTGT:TC= -0.05, SE = 0.02, z = -2.49, p < .001). Again, even though the effect of transitions 

during initial reading is not significantly different from zero, text-graph transitions have a signifi-

cantly different effect during initial reading than they have during task completion. Their confi-

dence intervals do not overlap (βTGT:IR CIlow = -0.011; βTGT:TC CIupper = -0.024). The effect of text-

graph transition during task completion is equivalent to a roughly one percent (0.91%) decrease in 

the probability of a correct answer (assuming an intercept item and an average person) when one 

more transition occurs. These results support our expectation that text-graph transitions during task 

completion indicate disorientation and the inability to find task-relevant information. The positive 

yet insignificant tendency for more text-graph transitions during initial reading again at least does 

not directly contradict our interpretation that transitions are indicative of integration processes and 

global coherence formation. The effect of text-graph transitions during initial reading may be par-

ticularly important because text-graph transitions represent eye movement behavior during a much 

shorter period. 
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Table 8. Study 1: Generalized Mixed Effect Regression with Person and Item as Random Effects, 

and Time-on-Task (ToT), Text-Graph Transitions (TGT) during Initial Reading (IR) and Task 

Completion (TC) as Fixed Effects. 

 

III.4.2.4  Incremental fit. 

With the combined model, we tested whether text-graph transitions have added predictive 

value for determining task success. The combination of chi-square statistics for the five datasets of 

multiply imputed data shows a non-significant result χ2(2) = 0.31, p = .731. Thus, for this sample, 

we cannot distinguish between the effects of text-graph transitions and time-on-task due to the high 

correlation between the two. 

III.4.2.5  Process measures and random effects. 

The bottom of Table 8 shows the random part of the mixed effect models. The random 

effects vary across items and persons. The variance in person intercepts (τ00person) refers to ability, 

and the variance in item intercepts (τ00item) is the variance in difficulty that is not explained by item 

characteristics. Importantly, the τ00 person and τ00,item do not substantively change in the process 

measures models. This indicates that the process measures do not explain the variance in personal 

ability or item difficulty. The top of Table 8 shows the fixed part of the mixed effect models. The 

fixed effects are constant across persons and items. 

  Baseline   ToT  TGT 

    est. SE  z  p   est. SE  z  p   est. SE z p 

Fixed Effects 
              

ToT 
IR      0.57 .31 1.86 .063      

TC      -0.93 .23 -4.07 .000      

TGT 
IR           0.02 .02 0.88 .327 

TC           -0.05 .02 -3.49 .001 

                                

                

 Intercept 1.09 .38 2.85 .005  1.07 .64 1.67 .096  1.20 .42 2.87 .005 

Item 

char. 

Task ty. -0.83 .32 -2.63 .009  -0.97 .33 -2.97 .003  -0.36 .32 -1.13 .261 

Action p. -0.53 .35 -1.46 .146  -0.40 .36 -1.10 .272  -0.38 .33 -1.22 .222 

 Sleep cy. -0.68 .36 -1.88 .061  -0.74 .37 -2.00 .047  -0.68 .33 -2.06 .041 

                                

Random Effects               

 τ00,person .73  .88  .78 

 τ00,item .09  .08  .03 

 Nid 

 Nitem 

 Obser. 

 
Missings 

0  ToT:IR=0; ToT:TC=2  

TGT:IR =10; 

TGT:TC=38 

  Deviance 467.2   367.4   379.3 

Note: est = log-odds ratio estimates, SE = Standard Error 

29 

12 

348 
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III.4.2.6 Process measures and item characteristics. 

The effect of item characteristics (topic and task type) is influenced by the process measures 

time-on-task and text-graph transitions. Some of the change in the likelihood of giving a correct 

answer can be attributed to differences in time and integration requirements for different topics or 

task types. When adding text-graph transitions to the model, the estimated effect of task type is 

lower, because the two task types have different integration requirements. 

III.4.3 Discussion 1 

We investigated the association of time and text-graph transitions with task success during 

initial reading and task completion. We hypothesized that process measures have different effects 

during the two comprehension phases because initial reading requires more controlled processing 

than task completion and task completion more automatic processing than initial reading. Therefore, 

during initial reading, taking more time indicates more elaborate mental model construction, and 

more text-graph transitions indicate global coherence formation. During task completion, on the 

other hand, taking a shorter amount of time indicates fluent processing of the task material and 

fewer text-graph transitions indicates the ability to find relevant information quickly.  

In line with our hypotheses, time and text-graph transitions can have different effects on 

task success during initial reading and task completion. Time spent on initial reading has a margin-

ally significant positive effect on task success, whereas time-on-task has a significant negative ef-

fect on task success. Moreover, performing transitions between text and graph during initial reading 

has an insignificant positive tendency, while transitions during task completion have a significant 

negative effect. The negative association between time-on-task and task success is in line with our 

hypotheses, suggesting that fluent processing is more likely to result in an accurate answer because 

it reflects a higher skill level. The negative association between text-graph transitions and task 

success during task completion allows for a more fine-grained interpretation: fluent processing 

involves the ability to find relevant referential connections between text and graph with few search 

iterations. 

The effects of the process measures during initial reading were not significantly different 

from zero, although the effects for initial reading and task completion were significantly different 

from each other. Therefore, the effects of time and text-graph transitions are at least different be-

tween comprehension phases. Finally, the hypothesis that text-graph transitions improve model fit 

above and beyond time-on-task was not supported. 
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In light of our current results, it is necessary to consider that numerous studies have demon-

strated that individual characteristics, such as prior knowledge and reading and graph 

comprehension abilities, influence comprehension (e.g., Kintsch, 1988; Ozuru et al., 2009; Shah & 

Freedman, 2011). Moreover, comprehension outcomes may be influenced not only by individual 

characteristics, but also by the relationship between process measures and task success. Prior 

knowledge and reading and graph comprehension could potentially change the degree to which 

individuals process material in a controlled or automatic way.  

In summary, the overall pattern of results supports our hypotheses. However, the effects we 

found need to be replicated and refined with a second sample. In additions, we want to explore how 

individual characteristics such as prior knowledge and reading and graph comprehension ability 

influence the relationship between process measures and task success. 
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 Study 2 

In the second study, we first intended to replicate the first study’s findings. Therefore, we 

used the same materials, the same data preparation, and the same statistical analysis. Second, we 

further included the assessment of individual characteristics (i.e., reading and graph comprehension 

ability and prior knowledge) in the study design in order to assess how these individual character-

istics influence text-graph comprehension processes. 

III.5.1 Individual characteristics and text-graph comprehension 

It is uncontroversial that prior knowledge and reading and graph comprehension abilities (Kintsch, 

1988; Ozuru et al., 2009; Shah & Freedman, 2011) can affect comprehension outcomes. However, 

we know little about how they influence the relationship between process measures and compre-

hension outcomes. The following section discusses the role of prior knowledge and reading and 

graph comprehension skills for text-graph comprehension.  

III.5.1.1 Prior knowledge and the effect of process measures. 

For the purpose of this study, we define prior knowledge as individuals’ pre-existing 

knowledge related to the text content. We expect topic-relevant knowledge to have a significant 

influence on comprehension because the information explicitly stated in a text is often insufficient 

for the construction of a coherent mental model of the material; pre-existing knowledge is often 

required (Kintsch, 1988). Many studies have shown that prior knowledge improves text compre-

hension (e.g., Ozuru et al., 2009) and comprehension in general (McNamara & Magliano, 2009). 

In the context of text-picture comprehension, Schnotz (2005) argued that prior knowledge is the 

third source of information, in addition to text and graph, that helps organize mental model con-

struction. Consequently, prior knowledge may have a mediating effect because it organizes mental 

model construction or because it facilitates the selection of task-relevant information. 

III.5.1.2 Reading and graph comprehension and the effect of process measures. 

Text-graph comprehension may require comprehension skills unique to texts and graphs. 

Text comprehension requires reading skills (Kintsch, 1988). Reading skills depend on efficient 

component processes of reading comprehension on the word, sentence, and text level (Richter et 

al., 2013). Similarly, graph comprehension requires graph schemata (Pinker, 1990) and knowledge 

about display conventions (Lowrie et al., 2012). Graph comprehension skills depend on one’s abil-

ity to understand the visual-spatial array of the graph, map the spatial relations on different levels 

of complexity, and map this relation to proposition statements.  



Understanding graphs  Interpreting process measures in text-graphics comprehension 

91 

 

In sum, comprehension abilities enable individuals to process words, sentences, or spatial 

relations fluently. Fluent processing should reduce the time it takes to form local coherence for the 

text and graph. Consequently, higher comprehension abilities make processing more automatic. 

Therefore, the effect of time-on-task and text-graph transitions could be less positive or more neg-

ative for high-skilled individuals compared to low-skilled individuals (Goldhammer et al., 2014). 

III.5.2 Method 2 

The second study was conducted with a different sample of individuals and included the 

assessment of various individual characteristics. Apart from these aspects, we used the same mate-

rial and applied the same procedure in both studies.  

III.5.2.1 Sample  

72 students (23 female; M = 20.46 years, SD = 3.36) from a university in southern Germany 

participated voluntarily in the study for course credit. Participants were psychology or cognitive 

science students. Data from 24 participants had to be excluded from the data analysis (the data 

recording for seven was interrupted, five calibrations did not work even after the third trial, twelve 

due to poor data quality). The same preparation criteria were used as in Study 1. Participants were 

invited to the eye-tracking laboratory in groups of up to 15 individuals. 

III.5.2.2 Material  

The materials were identical to the materials from Study 1. However, we added the follow-

ing instruments to assess individual characteristics. 

Prior knowledge test. The prior knowledge test was author-constructed and was designed 

to assess prior understanding of the three subtopics. The population dynamics test had four single-

choice and two multiple-choice questions (max score of 10), while action potential and sleep cycles 

tests consisted of 7 single-choice items each. A total of 24 points were possible.  

Text comprehension ability test. We measured individuals’ reading comprehension using an 

analog version of the German reading speed and comprehension test (LGVT 6-12; Schneider, 

Schlagmüller, & Ennemoser, 2007). In this test, students were asked to read a text containing 25 

gaps and decide which of three word options should fill each gap. Reading comprehension was 

determined on the basis of the number of correctly identified filler words.  

Graph comprehension ability test. The author-designed graph comprehension test consisted 

of 12 bar and 12 line graphs. The graphs illustrated data for three factors (9 points). One of the 

three factors was relevant. The participants were asked to answer questions about the relationships 

between the displayed data points. Each item had four possible answers, and only one of the four 
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answers was correct. The items were presented in 3 item blocks, which were presented in 3 different 

orders (Latin square). The test took about 25 minutes; no time limit was set. The maximum score 

was 24.  

III.5.2.3 Procedure  

Participants were invited into a laboratory that contained multiple mobile eye trackers. The 

study started with the calibration of the eye trackers. The calibration of the eye tracker was repeated 

when the divergence was greater than 1. However, if calibration was not successful after the third 

trial, participants were instructed to move on anyway. Calibration was repeated before the graph 

comprehension test and the text-graph integration test.  

The procedure for Study 2 deviates from that of Study 1 with regard to the fact that reading 

comprehension, graph comprehension, and prior knowledge were assessed in addition to text-graph 

integration. The order of the reading comprehension, graph comprehension, and text-graph inte-

gration tests was permutated across individuals. The session ended with a short demographic ques-

tionnaire.  

III.5.2.4 Process measures 

The equipment and areas of interests were the same as in Study 1. The procedures for track-

ing rate, treating missing values, and trimming process measures were the same as in Study 1. A 

detailed report on the data preparation can be found in the appendix. 

III.5.2.5 Statistical analyses 

The analysis for Study 2 was identical to Study 1; however, we additionally tested whether 

the relationship between process measures and task success was influenced by individual charac-

teristics. 

We used mean-centered variables for this purpose (i.e. the mean of each variable is zero, 

but the unit of measurement remains minutes, number of transitions, and test scores for time-on-

task, text-graph transitions, and test results, respectively). 

We used the likelihood ratio test for nested models to determine whether the study data is 

more plausible under the assumption of interaction between individual characteristics and process 

measures. A likelihood ratio test compares the goodness of fit of two statistical models, one of 

which is the null model and the other is a particular case of the null model, called the alternative 

model. The test is based on a likelihood ratio, which expresses how many times more likely the 

data is under the assumption of one model than the other. This likelihood ratio is used to compute 
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a p-value. We used the process measure model from the previous analysis as the null model and 

the model including the interaction term as the alternative model. 

We apply the same procedure for all combinations of process measures and individual char-

acteristics separately. We start by comparing the process measure model (null model; time-on-task: 

ToT; text-graph transitions: TGT) to a model that includes individual characteristics (alternative 

model) only as the main effect. The next comparison includes this as the null model and alternative 

models that include the interaction terms between individual characteristics and process measures 

during task completion, with process measures during initial reading, and both interactions. We 

report the most complex alternative model. 

III.5.2.6 Estimates from multiply imputed data. 

The multiple imputation resulted in five imputed data sets. We performed the model com-

parisons for each of the five imputed datasets, and combined the chi-square statistics from all five 

multiply imputed datasets to test our statistical inferences.  

III.5.2.7 Statistical software. 

The combination of chi-square statistics from the multiply imputed datasets was performed 

with the function ‘micombine.chisquare’ from the package ‘miceadds’ (Robitzsch et al., 2017).  

III.5.3 Results 2 

III.5.3.1 Descriptive. 

The pattern of results was very similar to the descriptive results from the first experiment. 

Therefore, we only report results that deviated from the first experiment.  

The overall initial reading time (105.80 seconds) was consistently higher in the second experiment 

(96.32 seconds). However, the number of text-graph transitions was very similar (Experiment 1: 

10.04 TGT; Experiment 2: 10.89 TGT). We can only speculate that this was due to differences in 

perceived time pressure as a result of the different group sizes.  

Overall, Studies 1 and 2 were very similar in accuracy rate, time-on-task and number of 

transitions; however, items related to the sleep cycle topic were solved more often on average in 

Study 2, while items concerning population dynamics and action potential were solved less often. 

Again, we can only speculate that these differences might have been caused by the activation of 

prior knowledge during the prior knowledge test. 

III.5.3.2 Item and person effects 

We analyzed the effect of item and person on the probability of correct answers. The overall 

accuracy rate of 51.32% corresponds to a ‘grand’ intercept estimation of βintercept = 0.05, z = 0.22, 
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p = .817. However, the probability of a correct answer ranged from 13.67% to 85.66% for the 

person with the lowest ability working on the most difficult item, and the person with the highest 

ability working on the easiest item, respectively. 

III.5.3.3 Process measures and the probability of correct answers. 

Time-on-task. Time-on-task did not have a significant effect on task success during initial 

reading (βToT:IR = 0.04, SE = 0.18, z = 0.20, p = .840). Time-on-task had a negative effect during 

task completion (βToT:TC = -0.38, SE = 0.15, z = -2.46, p = .014).  

The estimate of the time-on-task effect during task completion means that the probability 

of a correct responses decreases (from the intercept and an average person) by 41.88% when a 

given item is worked on for one minute longer. The negative effect of time-on-task during task 

completion is in line with the hypothesis that the quick identification of task-relevant information 

leads to correct responses. The effect on time-on-task found in Study 2 does not support the ten-

dency found in the first study. 

Text-graph transitions. Text-graph transitions during both initial reading and task comple-

tion had a significant effect on the probability of answering an item correctly. In line with our 

hypothesis, text-graph transitions had a positive effect during initial reading (βTGT:IR = 0.03, SE 

= .01, z = 2.44, p = .015), but a negative effect during task completion (βTGT:TC = -0.03, SE = .01, z 

= -2.73, p = .007). These results fully support our hypotheses that text-graph transitions are 

associated with integration processes during initial reading and disorientation and a search for ref-

erential connections during task completion. 

III.5.3.4 Incremental model fit. 

In the second study, text-graph transitions did add predictive value to the model. The com-

bination of chi-square statistics for the five datasets of multiply imputed data is χ (2) = 5.54, p 

=.004. Text-graph transitions are informative above and beyond time-on-task, in line with our 

fourth hypothesis. 

In the model including both time-on-task and text-graph transitions, only transitions during 

initial reading still had a significant effect. This means that transitions during initial reading have 

a significant effect (βTGT:IR = 0.04, SE = .01, z = 2.78, p = .006) on the probability of answering 

item correctly even when controlling for the effect of initial reading time, text-graph transitions 

during task completion, and time-on-task.  



Understanding graphs  Interpreting process measures in text-graphics comprehension 

95 

 

The results for βTGT:TC in a model with time-on-task as control were unstable due to the 

imputation procedure, the high correlation with time-on-task, and the relatively low correlation 

with other variables. The reported p-value is the upper boundary. 
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Table 9. Study 1. Generalized Mixed Effect Regression with Person and Item as Random Effects, and Time-on-Task (ToT), Text-Graph 

Transitions (TGT) during Initial Reading (IR) and Task Completion (TC) as Fixed Effects. 

  Baseline   ToT   TGT  Combined model 

    est SE  z  p   est SE  z  p   est SE z p   est SE z p 

Fixed Effects                    

ToT 
IR      0.04 .18 0.20 .840       -0.31 .22 -1.42 .156 

TC      -0.38 .15 -2.46 .014       -0.04 .24 -0.18 .861 

TGT 
IR           0.03 .01 2.44 .015  0.04 .01 2.78 .006 

TC           -0.03 .01 -2.73 .007  -0.02 .02 -1.55 .124a 

                                          

                     

 Intercept 0.67 .38 1.77 .077  0.96 .50 1.94 .053  0.49 .38 1.28 .202  0.93 .50 1.87 .062 

Item 

char. 

Task type -0.78 .34 -2.27 .024  -0.82 .33 -2.49 .013  -0.58 .33 -1.75 .081  -0.61 .36 -1.58 .115 

Action pot. -0.43 .38 -1.12 .265  -0.37 .37 -0.99 .324  -0.21 .37 -0.57 .568  -0.16 .37 -0.44 .658 

 Sleep cy. 0.13 .39 0.34 .738  0.14 .38 0.38 .707  0.19 .37 0.53 .599  0.21 .37 0.64 .526 

                                          

Random Effects                    

 τ00,person 0.27  0.25  0.22  0.23 

 τ00,item 0.20  0.18  0.16  0.17 

 Nid 48 

 Nitem 12 

 Obser. 576 

 
Missings 

  

ToT:IR=5;  

ToT:TC: 2  

 TGT:IR = 21;  

TGT:TC = 88  … 

  Deviance 755.3   685.4   681.6   678.0 
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III.5.3.5 Moderation of individual characteristics 

We performed multiple model comparisons to find potential effects of prior knowledge on 

the relationship between process measures and task success (Appendix Table 9). Prior knowledge 

(βPK = 0.14, SE = .06, z = 2.37, p = .018) and graph comprehension (βGC = 0.08, SE = .03, z = 2.50, 

p = .013) had a significant effect on task success. However, the effect of reading comprehension 

(βRC = 0.05, SE = .04, z = 1.42, p = .158) was not significant.  

The model comparisons revealed that the model including interactions between prior 

knowledge and time during initial reading and between prior knowledge and time during task com-

pletion had significantly better model fit. Graph comprehension did additionally explain task suc-

cess in the time-on-task model, but prior knowledge and graph comprehension do additionally ex-

plain task success in the text-graph transition model. 

We will report the interaction effects of prior knowledge and time-on-task for task success. 

Both time-on-task during task completion (βTOT:TC = 0.11, SE = .05, z = 2.14, p = .032) and prior 

knowledge (βPK = -0.28, SE = .12, z = -2.341, p = .019) have significant main effects in the model. 

In addition, the interactions between prior knowledge and time-on-task during initial reading 

(βTOT:IR x PK = 0.29, SE = .09, z = 3.12, p = .002) and task completion (βTOT:TC x PK = -0.29, SE = .08, 

z = -3.51, p < .001) are both significant. We graph the overall moderation effect on prior knowledge 

in Figure 10. Extreme values for prior knowledge have been selected for instructional reasons. 

Figure 10 (left) shows the estimated initial reading time effect for individuals with high and 

very low prior knowledge. High and low prior knowledge individuals have a similar probability of 

success for initial reading times below and at the average. However, when the initial reading time 

is higher than average, the probability of success is different for high and low prior knowledge 

individuals, with the probability of success increasing for individuals with high prior knowledge 

individuals and decreasing for individuals with low prior knowledge. 

Figure 6 (right) shows the estimated task completion time effects for very high and very 

low prior knowledge. When task completion takes less time than average, the probability of success 

is high for individuals with high prior knowledge and low for individuals with low prior knowledge. 

In contrast, when task completion takes longer than average, the probability of success is low for 

high prior knowledge individuals and high for low prior knowledge individuals. At average times, 

both high and low prior knowledge individuals have a similar probability of success.  
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Figure 10. The plots show the estimated effect of initial reading time (left) and task completion 

time (right) for a person with very low (solid line) and very high (dashed line) prior knowledge. 

The thin lines represent the 95% confidence interval. Plots range from -1 to 2 minutes on average 

because the time-on-task distribution is skewed to the right. 

III.5.4 Discussion 2 

The second study was intended to replicate the results of Study 1. We investigated the as-

sociations of time-on-task and text-graph transitions during initial reading and task completion with 

task success. The findings of Study 2 mostly overlap with those of Study 1. Possibly due to the 

greater statistical power, we additionally found a significant effect of text-graph transitions during 

initial reading. This positive effect of text-graph transitions during initial reading was in line with 

our hypothesis and previous findings that text-graphics transitions are positively associated with 

learning outcomes (Mason et al., 2015; 2013). Furthermore, text-graph transitions increased model 

fit above and beyond time-on-task, indicating that global coherence formation and the inability to 

make referential connections are critical cognitive processes in addition to elaboration and fluency. 

The effect of time-on-task during initial reading was again not significant. We can only 

speculate that this effect was not present because participants, in general, invested enough time in 

reading the task. Given this baseline, engagement in global coherence processing seems to instead 

be more crucial.  

Surprisingly, even though we found no mean effect of time during initial reading, we found 

that prior knowledge moderated the effect of time-on-task on task success during both initial read-

ing and task completion. Similar to Schwonke et al. (2009), we found a positive moderation effect 

of prior knowledge for initial reading, meaning that the relationship between visual activity and 

comprehension outcomes becomes more positive when prior knowledge is high. 
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 Summary and conclusions 

In the current study, we aimed to disentangle the ambiguous interpretation of process 

measures in text-graph comprehension by analyzing the associations between time-on-task, text-

graph transitions, and task success. We made a distinction between the two comprehension phases: 

initial reading and task completion. We argued that the association between process measures and 

task success depends on the degree to which processing is automatic or controlled. The initial read-

ing phase is assumed to be more controlled because it serves to facilitate mental model construction. 

The task completion phase is more automatic than initial reading because it requires the fluent 

selection of task-relevant information. For the initial reading phase, we hypothesized that taking 

more time and more text-graph transitions would lead to greater task success because they are 

indicative of more thorough mental model construction, i.e., elaboration processes and integration, 

respectively. For the task completion phase, we hypothesized that taking more time and more text-

graph transitions would be indicative of a lack of fluency, i.e., the inability to find task-relevant 

information and a greater need to search for referential connections, respectively. Since individual 

differences influence processing of materials, prior knowledge and reading and graph comprehen-

sion could act as moderators.  

Our results show that text-graph transitions can be positively and negatively related to task 

success depending on the comprehension phase. Indeed, performing many text-graph transitions 

can indicate either integration on the one hand or disorientation on the other hand. Text-graph tran-

sitions during the initial reading phase indicate integration and the construction of an initial mental 

model, but they indicate disorientation when a specific task has to be solved.  

The results for time-on-task are a bit more complicated since time-on-task depends on the 

level of prior knowledge. Specifically, the effect of time becomes more positive with higher prior 

knowledge during initial reading and more positive with lower prior knowledge during task com-

pletion. We explain these results by referencing two different mechanisms of action of prior 

knowledge. On the one hand, prior knowledge may help with organization (Schnotz, 2005); on the 

other hand, it may help people focus on task-relevant information (Canham & Hegarty, 2010). 

More specifically, the construction of mental models from text-graph material requires controlled 

processing, but only organized controlled processing is associated with task success. Since prior 

knowledge helps organize mental model construction, time has a more positive effect on task suc-

cess when prior knowledge is higher.  
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In contrast, the effect of prior knowledge is different when a task is being answered. High 

prior knowledge enables a person identify task-relevant information in little time. When prior 

knowledge is low, investing more time into the search for relevant information may result in better 

task success. Low prior knowledge individuals have to process the material in a more controlled 

way than high prior knowledge individuals to be successful. Since low prior knowledge individuals 

need to invest more time to be successful, time-on-task has a more positive effect when prior 

knowledge is lower. 

We may conclude that spending time on initial reading indicates elaboration only when 

prior knowledge is high. Conversely, time-on-task during task completion likely reflects a person’s 

skill level and more fluent processing; in addition, prior knowledge accelerates processing. 

These results suggest that process measures can indicate different cognitive processes de-

pending on the comprehension phase. Consequently, it is essential to conceptually separate process 

measures (time and text-graph transitions) and cognitive processes (i.e. elaboration, fluency, inte-

gration, and disorientation). Time-on-task cannot be equated with processing speed (Van Der Lin-

den, 2009), and performing text-graph transitions cannot be equated with integrative processes or 

global coherence formation.  

Separating process measures and cognitive processes may also change our understanding 

of the eye-mind assumption (Carpenter & Just, 1975). The literature has consistently demonstrated 

that there is a relationship between eye movements and learning (e.g., Scheiter, & Eitel, 2015) and 

comprehension outcomes (e.g. Schnotz, et al., 2014). This supports the eye-mind assumption, i.e., 

the idea that gazes represent engagement of the mind. However, the presence of negative and pos-

itive relationships with task success indicates that the link between gazes and what the mind is 

engaged with is not direct. This may be particularly true for cognitive processes on a conceptual 

level, like text-graph comprehension, rather than a perceptual level. Consequently, interpreting 

gaze behaviors requires a cognitive task analysis that considers different processing phases, indi-

vidual characteristics, and item characteristics. 

III.6.1 Limitations and future studies 

Even though we aimed for replication, we found mean differences between Studies 1 and 2 

with respect to initial reading, as well as differences in the relative difficulty of the topics (i.e. sleep 

cycles appeared to be easy in the second study). These discrepancies may be the result of the prior 

knowledge test, which was only part of study 2. The prior knowledge test may have activated prior 

knowledge before participants read the text and exposed participants to task-relevant terms early 
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on. However, the results of the two studies concerning fixed effects are largely consistent, making 

us confident that the two studies reflect very similar cognitive processes. 

There is a possibility that the process measures may have had different effects on task suc-

cess depending on task type. However, we define text-graph integration as an activity that involves 

mappings both from text to graph and from graph to text. The two task types represent these two 

cognitive activities. The fixed effects we report are constant across all items and individuals. There-

fore, the fixed effect estimates represent two crucial cognitive activities related to text-graph inte-

gration, which we consider more meaningful than investigating the effect of process measures for 

a single activity. Nonetheless, our primary item selection criteria were difficult, because this study 

design relies heavily on obtaining a balanced proportion of correct and incorrect answers for sta-

tistical power.  

From a theoretical perspective, the non-linear effect of process measures (Naumann, & 

Goldhammer, 2017) on task success is highly interesting. For instance, the time-on-task effect 

could be u-shaped. This means spending a great deal of time on task completion may increase the 

probability of task success. We argue that elaboration and fluency processes can be superimposed 

during the task completion process, resulting in a u-shaped relationship between time or text-graph 

transitions and task success. In our study, we addressed this issue by separating these two processes 

as much as possible by introducing two comprehension phases into the design and using a sample 

with few individual differences and items that were similar in difficulty. However, future studies 

could address the non-linear effect by using items that range more in difficulty and a more diverse 

sample of individuals.
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Chapter IV. Contrasting a text-centered versus a multiple-representations perspective 

 

Students must mentally integrate information from both texts and graphics to comprehend il-

lustrated science texts. Mental integration can be especially challenging when text is combined 

with graphs (i.e., two-dimensional displays of relationships among quantitative variables). Re-

cent research suggests that the comprehension of text and graphs involves five sub-processes: 

(a) understanding the visual-spatial array of the graphs, (b) interpreting the graph, (c) compre-

hending relevant text passages, (d) mapping relevant text passages onto relevant graph ele-

ments, and (e) mapping relevant graph elements onto relevant text passages. Although the rel-

evance of these sub-processes is uncontroversial, their hierarchical dependency has not yet 

been studied in detail. The present study investigated the dependencies among these sub-pro-

cesses by contrasting a text-centered and a multiple-representations perspective. Knowledge 

Space Theory was used to define two different knowledge structures reflecting dependencies 

among the sub-processes above as postulated by the two perspectives. Fifty individuals were 

asked to work on five different task types to assess their ability to perform text-graph compre-

hension sub-processes. Results showed that the knowledge structure developed from a text-

centered perspective better fitted the observed response pattern. Accordingly, text-graphics 

comprehension may not necessarily require comprehension of graphic and text separately; in-

stead, text comprehension seems to serve as a prerequisite, whereas graphic comprehension 

may result from integrated text-graphic comprehension. 
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 Introduction 

Combined text and graphics layouts are a major design feature in, for instance, science textbooks 

(e.g., Schnotz, 2014), where they serve as an effective tool to enhance learning outcomes (e.g., 

Mayer, 2005). However, students will benefit from illustrated texts only when they can integrate 

information from both text and graphics (Seufert, 2003). Recent empirical evidence demonstrates 

that such integration is essential for comprehending illustrated texts derived from online (i.e., eye 

movement data) and offline (i.e., cross-modal memory intrusions) indicators (online e.g., Mason, 

Pluchino, Tornatora, & Ariasi, 2013; offline e.g., Schüler, Arndt, & Scheiter, 2015). For integration, 

students must identify relevant information from each representation, organize relevant infor-

mation into coherent modality-specific mental models for text and graphics (i.e., local coherence 

formation, Seufert, 2003) and then identify correspondences between text and graphics (i.e., global 

coherence formation, Seufert, 2003). Thus, several sub-processes contribute to the construction of 

an integrated mental model. The relevance of these processes is by-and-large uncontroversial; how-

ever, their dependency has been minimally investigated. 

Therefore, the present article addresses this gap by evaluating two different theoretical per-

spectives surrounding these dependency, namely, a text-centered and a multiple-representations 

perspective, which differ in prerequisite relationships that they come with. These prerequisite rela-

tionships are investigated by evaluating two different knowledge structures (Falmagne, Koppen, 

Villano, Doignon, & Johannesen, 1990) that may underlay text-graphics comprehension by their 

fit with the observed response patterns of student participants on different text and graphics com-

prehension tasks. Hence, the goal of this study was to identify the most applicable knowledge 

structure for text-graphics comprehension. 

We will refer to a specific type of graphics, namely, graphs. Graphs are quantitative axis 

diagrams that use an apposed-position language to represent relationships between data points 

(Lowrie, Diezmann, & Logan, 2012). Graphs use two-dimensional space to visualize relationships 

and to convey meaning, like schematic diagrams, line drawings and pictures of real-world objects. 

Hence, they can be considered depictive or analogous representations (Schnotz, 2014), in which 

the quantitative structure conveyed by the graph reflects the quantitative structure of what is being 

represented. In contrast to picture, for instance, graphs usually do not depict concrete objects; in-

stead, they focus on conveying abstract information about quantitative relationships among varia-

bles. Therefore, they are sometimes referred to as logical pictures (Schnotz, 2014). Despite these 
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differences, text-graph comprehension can be seen as a particular case of text-graphics comprehen-

sion, where integrating information presented in different symbol systems (i.e., symbolic text 

paired with analogous visual-spatial depictions) is essential for in-depth understanding.  

Therefore, we will discuss graph comprehension against the background of the literature on 

text-graphics comprehension, except where specifics of the visual representation (e.g., processes 

that are relevant to graphs only) are concerned. Benefits of using graphs as compared to pictures 

or schematic diagrams, for instance, are that students can perform a higher number of tasks within 

the same amount of time and those tasks can be designed so that they require only one cognitive 

process in isolation (e.g., reading, processing of visual information). Both features are relevant for 

the present study. 

IV.1.1 Processes involved in the comprehension of text and graphics 

To comprehend illustrated texts, local processes, which refer to the respective representational for-

mat in isolation, and global processes, which integrate both representational formats are required 

(Mayer, 2005; Seufert, 2003). In this vein, text-graphics comprehension can be described as result-

ing from five (a-e) sub-processes. 

On the one hand, local processes serve the understanding of each of the given representa-

tions (Ainsworth, Bibby, & Wood, 2002) or the selection and organization of information into mo-

dality-specific mental models (Mayer, 2005).  

As such, successful local processing of texts (c) enables students to distinguish between 

surface and deep structure of sentences and texts. The deep structure of a sentence is a theoretical 

construct, which makes the underlying logical and semantic relations explicit and is independent 

of a specific sentence with specific syntax and specific words (Royer, Hastings, & Hook, 1979). 

Accordingly, someone who grasps the meaning of a sentence can match two sentences with the 

same deep structure even though the sentences may have different surface structures (Royer et al., 

1979). This process requires a mixture of linguistic knowledge, word knowledge, and reading skills 

(Kintsch, 1988). 

Similarly, successful local processing of graphics information (b) enables students to dis-

tinguish between the surface and deep structure of a given graph. The deep structure of a graph 

makes the conceptual and logical relationships between variables explicit, and independent from a 

specific array of points and visual features such as dots, lines, and areas (Pinker, 1990). Under-

standing a graph requires constructing a mental model of its content (Pinker, 1990). Therefore, the 

deep structure of the graph directly represents the content of the graph (Schnotz & Baadte, 2015). 
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We further distinguish between (a) understanding of the mere visual array of the graph (Pinker, 

1990) and the (b) interpretation of the graph. Someone who understands the visual array of a graph 

should be able to match two graphs with the same deep structure even though they may show 

different point arrays and different visual features. Someone who can interpret a graph should also 

be able to match the meaning of a sentence to a referring feature of the graph. Both, understanding 

the visual array of a graph and its interpretation require graph schemata and knowledge about dis-

playing conventions (Lowrie et al., 2012). 

However, global processes have been argued to link both text and graph information at a 

conceptual level (Ainsworth, 2006), integrating modality-specific mental models (Mayer, 2005) 

and integrating a propositional representations of the text with mental models of the content 

(Schnotz, 2014). Successful global processing involves (d) the mapping of relevant text passages 

onto referring graph elements and (e) the mapping of relevant graphic onto the referring text pas-

sages (Seufert, 2003). Mapping text onto graph information requires matching the text’s deep struc-

ture onto specific graphs information with a corresponding deep structure. Likewise, mapping rel-

evant graph elements onto referring text passages requires matching the deep structure of a graph 

onto referring sentences of text.  

In the present study, five different item types were developed that allowed the assessment 

of each of the five sub-processes in isolation. As mentioned earlier, little controversy surrounds the 

relevance of local and global processes for text-graphic comprehension. However, exactly how 

these processes depend on one another remains less clear. Two different perspectives on that have 

been proposed in the literature, which are described in the following passages.  

IV.1.2 Hypothesized prerequisite relationships among text-graphic comprehension processes 

According to a text-centered perspective, local coherence formation within the text pre-

cedes and is a prerequisite for understanding a corresponding graph. That is, information from the 

text is used to build local coherence within the graph, which then results in global coherence be-

tween text and graph information. This perspective is supported by empirical findings suggesting 

that processing of multimedia materials is primarily driven by information given in the text (Ozce-

lik, Arslan-Ari, & Cagiltay, 2010; Scheiter, & Eitel, 2015). For instance, Hegarty and Just (1993) 

showed that students who learn about the functioning of a pulley system from an illustrated text 

passage first read a text paragraph and then consulted the picture for information corresponding to 

the textual information. This sequential reading pattern should affect the dependency between local 

and global coherence formation. Furthermore, the text-centered perspective is in line with findings 
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showing that comprehension of multimedia material is strongly related to students’ text compre-

hension abilities (Scheiter, Schüler, Gerjets, Huk, & Hesse, 2014).  

In contrast, the multiple-representations perspective assumes that local processes of text 

and graphics comprehension are both necessary before global processes of coherence formation 

can take place (Seufert, 2003). This perspective is prominent in theories of multimedia learning 

such as the Cognitive Theory of Multimedia Learning (CTML, Mayer, 2005). According to the 

CTML, relevant information from words and pictures is first selected and then organized into sep-

arate modality-specific (verbal and pictorial) mental models. Finally, these modality-specific mod-

els are integrated with each other into a single coherent mental representation under consideration 

of prior knowledge. Before integration, text and picture comprehension is assumed to occur in 

parallel and by-and-large independent of each other (cf. Eitel, Scheiter, Schüler, Nyström, & 

Holmqvist, 2013). 

At present, it is hardly possible to distinguish between these two different pathways to text-

graphics comprehension given the available empirical data. This is because local and global pro-

cesses of text and graphics comprehension could not be disentangled unambiguously in the studies 

described above, which in turn, prevent testing the different perspectives against each other. More-

over, because the contradictions between the perspectives occur at a detailed level of analysis that 

pertains to the order of prerequisite relationships among sub-processes, a higher level of precision 

in formulating assumptions is necessary than what is typically present in multimedia research. To 

achieve this higher level of precision, we made use of an approach to competence modeling called 

Knowledge Space Theory (Falmagne et al., 1990), which allowed us to specify the knowledge 

structures underlying the two perspectives outlined earlier.  

IV.1.3 Modeling knowledge structures underlying text-graphics comprehension using KST 

Knowledge Space Theory is a set-theoretical framework that allows defining knowledge structures 

(i.e., knowledge elements and their prerequisite relationships). In the following, we will provide a 

brief introduction to this approach (for a more detailed description see Heller, Steiner, Hockemeyer, 

& Albert, 2006). 

IV.1.3.1 Modeling of knowledge structures based on prerequisite relationships among items 

A knowledge structure is defined as a pair (Q, K) in which Q is a non-empty set, and K is a family 

of subsets of Q. The set Q is called the domain of the knowledge structure. Q consists of elements 

that are referred to as items. The subsets of items in the family K are labeled knowledge states 

(Falmagne et al., 1990). Items are denoted with parentheses (i.e., (a)), and knowledge states are 
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denoted with brackets (i.e. {a}). A knowledge state represents the subset of items an individual 

masters in the domain Q. Accordingly, the domain of text-graphics comprehension Qtgc consists of 

five items reflecting above described sub-processes (a) understanding the visual-spatial array of a 

graph, (b) graph interpretation, (c) sentence comprehension, (d) mapping text onto graph infor-

mation, and (e) mapping graph onto text information: Qtgc = {a,b,c,d,e}. 

Theoretically, an individual can generate one out of 25 = 32 different response pattern when 

answering five items of domain Qtgc, because each of the five items can either be solved or not 

solved. Hence, the knowledge structure of Qtgc may contain up to 32 different knowledge states. 

However, only some knowledge states are plausible due to hierarchically increasing cognitive de-

mands between items of the domain (Heller et al., 2006). The hierarchically increasing cognitive 

demands represent prerequisite relationships between items. Consequently, mastery of one item 

can be a prerequisite for mastery of another item. These prerequisite relationships between items 

must be derived from the domain ontology (Heller et al., 2006), which is the theoretical and em-

pirical evidence pertaining to a specific domain and its possible prerequisite relationships. In our 

case, the two perspectives on text-graphics comprehension described above allow the derivation of 

two different knowledge structures based on different prerequisite relationships among the consti-

tuting sub-processes (a to e as measured with different items). These theoretically derived 

knowledge structures can be compared directly to observed response patterns, which in turn allows 

the validity of these two perspectives to be evaluated.i  

IV.1.3.2 Knowledge structures regarding text-graphics comprehension 

According to the text-centered perspective (KTC) it is assumed that a graph is understood 

by making referential connections between text and graph information. As a consequence, (c) sen-

tence comprehension and (b) graph interpretation is required for mapping text onto graph infor-

mation and vice versa (c→d; b→d). Additionally, (a) the visual-spatial array of a graph is under-

stood through (b) interpreting graph information (b→a). Furthermore, (e) mapping graph onto text 

information first requires (d) mapping text onto graph information (d→e). Figure 11 (left panel) 

shows the prerequisite relationships derived from the text-centered perspective as a Hasse diagram 

(Falmagne et al., 1990). The respective knowledge structure defined by the prerequisite relation-

ships of KTC for the domain Qtgc has ten knowledge states (Figure 12, left panel):  

KTC = {{Ø},{b},{c},{a,b},{b,c},{a,b,c},{b,c,d},{a,b,c,d},{b,c,d,e},{Qtgc}} (1) 

 



Understanding graphs  Contrasting a text-centered versus a multiple-representations perspective 

108 

 

In contrast, following the multiple-representations perspective (KMR) global integration 

processes only take place after both text and graph have been understood separately. One must be 

able to (a) understand the visual-spatial array of graph before being able to (b) interpret the graph 

(a→b). To be able to both map text onto graph information and vice versa (d & e), one must be 

able to (b) interpret a graph and to (c) comprehend relevant sentences (i.e., b→d, b→e, c→d, c→e). 

Figure 11 (right panel) shows the prerequisite relationships derived from the multiple-representa-

tions perspective. The knowledge structure defined by the prerequisite relationships of KMR for the 

domain Qtgc has nine knowledge states (Figure 12, right panel):  

KMR = {{Ø},{a},{c},{a,b},{a,c},{a,b,c},{a,b,c,d},{a,b,c,e},{Qtgc}} (2) 

 

 

Figure 11. Hasse diagram (Falmagne et al., 1990) depicting prerequisite relationships among the 

five sub-processes underlying text-graph comprehension from the text-centered perspective (left 

panel) and the multiple-representations perspective (right panel): (a) understanding the visual 

array of the graph, (b) graph interpretation, (c) sentence comprehension, (d) mapping text onto 

the graph, and (e) mapping graph onto the text. 

 

Knowledge structures KTC (Figure 12, right panel) and KMR (Figure 12, left panel) include 

shared and distinct knowledge states. They share knowledge state KMR∩KTC  = {Ø}, {c}, {a,b}, 

{a,b,c}, {a,b,c,d}, and {Qtgc}, whereas knowledge states KMR∪KTC  = {b}, {a}, {b,c}, {a,c}, 

{b,c,d}, {a,b,c,e}, and {b,c,d,e} are distinct between the two knowledge structures KTC and KMR. 

The validity of the two knowledge structures can thus be tested empirically by determining whether 

the observed empirical response patterns to sub-processes a to e are more consistent with either 
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one of the two knowledge structures as distinguished by the distinct knowledge states and their 

prerequisite relationships.  

.  

 

Figure 12. The different knowledge states implied by KTC for the text-centered perspective (left 

panel) and KMR for the multiple-representations perspective (right panel). (Ø) no sub-processes 

were performed, (a) understanding the visual-spatial array of the graph, (b) graph interpretation, 

(c) sentence comprehension, (d) mapping text onto graph information and (e) mapping graph 

onto text information were performed. 

 

IV.1.3.3 Interpretation of knowledge states and response patterns 

We derived knowledge structures KTC and KMR, and they included different knowledge 

states. To make an empirical comparison, first, we needed items capable of assessing the respective 

sub-processes separately. Second, observed response patterns must be assigned to a specific 

knowledge state. For instance, a student who masters only (c) sentence comprehension obtains the 

response pattern 00100. This response pattern is assigned to the knowledge state {c}. Knowledge 

state {c} is plausible for both knowledge structures KMR and KTC. On the other hand, an individual 

who masters (b) graph interpretation and (c) sentence comprehension obtains the response pattern 
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01100. This response pattern can be assigned to the knowledge state {b,c}. This knowledge state 

{b,c} is only included in KTC. The knowledge structure that includes more of the empirically ob-

served response patterns is considered more plausible. In fact, this means that the frequency of the 

response patterns 01000, 10000, 01100, 10100, 01110, 11101, and 01111 is crucial to decide which 

of the two knowledge structures – and thus which perspective on text-graphics comprehension – is 

more plausible. 

However, assigning a response pattern directly to a knowledge state does not account for 

the possibility of response error. A response pattern may still be the result of the individual’s 

knowledge state and response error. For instance, without response error, the observed response 

pattern 11010 would be associated with the knowledge state {a,b,d}. However, knowledge state 

{a,b,d} is not plausible for theoretical reasons, because mapping text onto a graph information 

requires that individuals first comprehend the referring sentence (from both perspectives). Yet, it 

might be that response pattern 11010 would reflect knowledge state {a,b,c,d}, but the individual 

missed the correct answer for (c) sentence comprehension accidentally (i.e., pattern 11110 turned 

into 11010). Alternatively, 11010 might reflect knowledge state {a,b} but the individual correctly 

guessed the answer for (d) mapping text onto graph (i.e., pattern 11000 turned into 11010). 

Such influences of response error are addressed in a basic local independence model 

(BLIM). A BLIM constitutes a probabilistic knowledge structure and considers the effect of re-

sponse error (Wickelmaier, Heller, & Anselmi, 2016). Due to this advantage, we will compare the 

fit of BLIMs based on both hypothesized knowledge structures in our analysis. The exact procedure 

will be explained in the method section.  

 

IV.1.4 Overview of Study  

In this study, we evaluated which of two the perspectives on text-graphics comprehension 

(i.e., text-centered vs. multi-representational) can be supported empirically. Participants completed 

a series of items that assessed the different sub-processes contributing to text-graphics comprehen-

sion. The comprehension test involved three different sub-domains of biology to control for effects 

that may only be found in a specific sub-domain. We specifically analyzed the extent that obtained 

response patterns matched the expected patterns for either the text-centered or the multiple-repre-

sentations perspectives. The perspective that is favored by the obtained response pattern was con-

sidered more plausible. 
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 Method  

IV.2.1 Sample 

A total of 53 German adults participated in the study via Clickworkers.de. They were paid 

8.50 €. Three participants did not finish the study and had to be removed from the analysis. There-

fore, the analysis is based on the remaining 50 (32 males) participants (M = 34.87 years; SD = 

10.58). The highest educational degrees completed by participants were lower secondary school 

degree (n = 8), higher secondary school degree (n = 26) and University or a University of Applied 

Sciences degree (n = 19). None of the university degrees were related to biology.  

IV.2.2 Material 

Three different topics from biology were chosen to create test items: population dynamics, 

action potentials, and sleep cycles. We selected these topics because they could efficiently be con-

veyed through both graphs and verbal explanations. Each topic addressed three core concepts. A 

concept is a central idea that is explicitly mentioned in a sentence of the text and explicitly depicted 

in the configuration of the graph (Appendix Table 10). 

The three topics included text with 200 to 217 words. Each text had 14 sentences arranged 

into two paragraphs. Texts provided an overview of the interaction between predator and prey pop-

ulations, the triggering of action potentials in neurons, and the sequence of sleep cycles, respec-

tively. Examples of the respective graphs are shown in Figure 13. Based on these materials, an item 

pool of 81 items was created to assess participants’ abilities to perform each of the sub-processes 

of text-graphic comprehension. 

 

Figure 13. Examples of graphs from each topic, population dynamics (left), action potentials 

(center), and sleep cycles (right panel). 

IV.2.2.1 Understanding of the visual-special array of a graphic (a) 

Items that consisted of one reference graph and six graph options, which differed in their 

visual appearance, assessed participants’ understanding of the visual-spatial array (See Figure 14). 
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Two graphs were always structurally similar to the reference graph in that they depicted identical 

information relevant to the meaning of the reference graphic (e.g., people enter first non-REM 

sleep phase after falling asleep) and differed from the reference graph only in surface features (e.g., 

exact length of phases), which were not relevant to its interpretation. The remaining four options 

not only varied in surface features from the reference graph but also in structural features (e.g., 

entering sleep phase). Participants were asked to identify those two graphs that showed the same 

structural features as the reference graph. The task was scored as correct when participants selected 

these two graphs. This task design did not require any semantic processing of sentence information 

apart from task instructions. Instead, the answer could be inferred by relying visual information of 

the graphs. Eighteen items were created for this task type. 

  

Figure 14. Sample item referring to the circadian circle on understanding the visual-array of the 

graphic. The top reference graphic shows that people enter deep sleep after falling asleep. 

Graphic options b and d show the same pattern. The entered sleep phase is the only feature that 

is consistent throughout at least two graphics. All other features such as the length of the sleep 

phases vary across all graphics. Eighteen items of this task type were created. 
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IV.2.2.2 Interpreting a graph (b)  

Items that consisted of one reference graph and four sentence options assessed participants’ 

abilities to interpret the content of a graph. Only one of the sentences was consistent with the con-

tent of the graph, whereas the remaining options were inconsistent. Participants were asked to se-

lect the consistent sentence. The sample item in Figure 15 shows a reference graph according to 

which people enter the REM-sleep phase after falling asleep. Participants selected the sentence that 

states that “people enter the REM-sleep phase after falling asleep”. Eighteen items for this task 

type were created. 

 

Figure 15. Sample item for graph interpretation of the circadian circle. The top reference graphic 

shows that people enter REM sleep after falling asleep. Therefore, sentence b is correct. 

IV.2.2.3 Sentence comprehension (c) 

This sub-process was assessed with a cloze test, where the missing word had to be inferred 

from the context of the text. In the sample item, “After falling asleep one enters the ________ sleep 

phase”, the correct answer is the “first non-REM” sleep phase (see Figure 16.). The cloze sentence 

was a paraphrased version of a sentence of the corresponding text. Hence, the sentence in the text 

and the cloze sentence had the same structure but varied in wording and syntax structure. Eighteen 

items for this task type were created.  
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Figure 16. Depicts a sample item referring to the circadian circle. The missing word in the cloze 

sentence can be extracted from the material. The correct answer is “first non-REM” (all kinds of 

spelling were accepted, e.g., 1 non-REM, fist-non-REM) 

IV.2.2.4 Mapping of text onto graph (d) 

For this item type, six graphs were shown along with descriptive text. Participants had to 

select the two graphs that were consistent with the text. For instance, the text states that people 

enter the first non-REM sleep phase after falling asleep. Two graphs (a and c in Figure 17) show 

that the first sleep phase is the REM-phase, two graphs (b and f) indicate that the first sleep phase 

is a non-REM phase, and two graphs (d and e) depict that the first sleep phase is a deep sleep phase. 

Participants had to select graphics b and f. Nine items for this task type were created.  
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Figure 17. Sample item depicting the circadian cycle to assess the mapping of text on graphs. The 

six graphs showed different first sleep phases. The top left and top right images depict the REM 

phase as entering sleep phase. The bottom left, and bottom middle images show the deep sleep 

phase, and the top middle and bottom right images display a non-REM sleep phase as entering 

sleep phases, which would be the correct response. 

 

IV.2.2.5 Mapping from graph information onto text (e) 

This sub-process was assessed by presenting a graph that contradicted one sentence in the 

accompanying text. Participants answered the question by selecting the sentence in the text that 

was contradicted by the graph. For instance, the graph showed that the entering sleep phase is the 

REM-sleep phase (see Figure 8). However, the text states in one of its sentences that the entering 
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sleep phase is the first-non-REM sleep phase. Participants had to identify this contradiction to an-

swer the task correctly by clicking on the contradicting sentence. Eighteen items were created for 

this task type. 

 

Figure 18. Sample item referring to the circadian circle for assessing the mapping of graphic to 

text. The missing word in the cloze sentence can be extracted from the material. The correct an-

swer is “first non-REM” (all kinds of spellings were accepted, e.g., 1 non-REM, fist-non-REM). 

IV.2.2.6 Distribution of items across topics and concepts, item selection.  

A total of 81 items were constructed, with 27 items referring to each topic. Nine items for 

each topic addressed one core concept. These always included two items for assessing the under-

standing of the graph’s visual-array, two items on graph interpretation, two items on sentence com-

prehension, one item on mapping text onto graph, and two items on mapping graph onto text. 

Within task types, the two-item versions varied in wording or exact manipulation of the graph. For 

instance, regarding the entering sleep phase, the two-item versions for assessing participants’ abil-

ity to map the graph information onto the text used graph that contradicted the concept by either 

showing the REM sleep phase or the deep sleep phase as the entering sleep phase. For mapping 

text onto graph information, we constructed only one variation per concept because only a limited 
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number of graph manipulations could be performed without changing the conveyed structural fea-

tures. 

Wording and exact manipulation of the graphs may influence response accuracy. However, 

we have no prior assumption about the effect of specific wording and visual configurations. Nev-

ertheless, they are inseparable item characteristics. To reduce the item set to five items, where one 

item represents one sub-process, we only considered the item version with the higher variance. We 

chose this item selection method because high variance items create more distinct response pattern, 

thus an item with higher variance is more informative than its counterpart with less variance. More 

distinct response patterns make it less likely to identify differences between knowledge structures.  

IV.2.3 Procedure 

Participants were recruited via Clickworkers.de, which is a crowdsourcing platform similar 

to Mechanical Turk (MTurk™). We choose Clickworker.de over MTurk™ because Clickworker.de 

has a larger community of native German speakers5. For this study, a more diverse crowdsourcing 

sample was particularly suited, because our data analyses rely on natural occurring differences 

between individuals. 

Before assigning the comprehension tasks, we assessed participants’ domain knowledge 

regarding the three topics: domain interest, academic self-concept, and their preparedness to make 

an effort. Participants were instructed to complete each task as accurately as possible. Prior to each 

new task type, a practice item was presented. Each participant only worked on two of the three 

topics due to time limitations.  

When performing the tasks, participants first read the illustrated texts and then worked on 

the different items of task type a, b, c, d, and e, respectively. The order of topics as well as of items 

within each task type were randomized across participants. Participants were free to allocate as 

much time as they wanted to each task because the comprehension test was designed as a power 

test. The average duration of a session was M = 62.20 minutes (SD = 21.00).  

                                                 

 

5 Previous research suggested that sampling from crowdsourcing platforms can yield responses of 

quality comparable to those obtained from more traditional sampling methods, including data 

collection from undergraduate students and community samples (Follmer, Sperling, & Suen, 

2017). 
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IV.2.4 Statistical analyses 

All analyses are based on six item sets that each address a concept within one of the two 

topics encountered by an individual. This leaves us with 50 (individuals) x 6 (item sets) = 300 

response patterns. Analyses were performed in the R environment (R Core Team, 2012). We elab-

orate on model specification and model selection in the following sections. Computationally, log-

likelihood and response error of each model were estimated with the ‘blim’ function of the R pack-

age psk (Wickelmaier et al., 2016). 

IV.2.4.1 Model specification 

We analyzed response pattern using a basic local independence model (BLIM). A BLIM cal-

culates the probability of the response pattern given the knowledge state of the respective 

knowledge structure while considering guessing and slipping (Wickelmaier et al., 2016). The re-

sponse error is defined for each item type. Response error can be fixed to a certain value or esti-

mated. More formally speaking, we assume that responses are stochastically independent over item 

types q and that the response to each item type q only depends on the probabilities βq slipping, ηq 

guessing and the knowledge state K of a person. The probability of the response pattern R given 

the knowledge state K is determined as follows (Heller & Wickelmaier, 2013):  

 

𝑃(𝑅|𝐾) =  ∏ 𝛽𝑞 

𝑞𝜖𝐾/𝑅

∏ 1 − 𝛽𝑞 

𝑞𝜖𝐾∩𝑅

∏ ηq

𝑞𝜖𝐾/𝑅

∏ 1 − ηq 

𝑞𝜖𝑄 (𝑅∪𝐾)

 F5 

 

For the following analysis, we specified the guessing parameter ηq, based on the number of 

response options an item type offers: (a) understanding of the visual-spatial array of a graph: ηa = 

3% (two out of six), (b) for graph interpretation: ηb = 25% (one out of four), (c) sentence compre-

hension: ηc = 0% (open answer), (d) mapping text onto the graph: ηd = 3% (two out of six) and (e) 

for mapping graph onto text: ηe = 7% (one out of 14). We did not specify a slipping parameter βq 

but estimated it. The response error rates influence the maximum likelihood estimation of a BLIM, 

in the way that likelihood increases with greater response errors. To avoid inflation of response 

errors we used the minimum discrepancy maximum likelihood (MDML) estimation method. 

MDML uses a trade-off between the minimum discrepancy method that optimizes model parameter 

by minimizing the number of expected response errors, and the maximum likelihood method that 

optimizes model parameter by maximizing the likelihood of the model (Heller & Wickelmaier, 

2013). 
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Additionally, we specified two reference knowledge structure denoted as KNULL and KPOWER. 

KNULL assumes a restrictive sequential order of the item types (i.e., a→b→c→d→e). This sequen-

tial order determines on the observed overall difficulty of item types. KNULL assumes merely that 

less difficult item types serve as the prerequisite for more difficult item types. In case the observed 

response pattern are less likely for KMR and KTC than for KNULL, response patterns can simply be 

explained by differences in difficulty between item types. KPOWER is the power set of Qtgc and as-

sumes that there are no prerequisite relationships between the items types. KPOWER is the least re-

strictive knowledge structure. When the observed response pattern are less likely for KMR and KTC 

than for KPOWER, response pattern can be explained without any dependency between the item types.  

IV.2.4.2 Model selection 

We used the Akaike Information Criteria with correction for finite sample sizes (AICc; 

Wagenmakers, & Farrell, 2004; see Appendix formula 1) as a goodness-of-fit measure. AICc con-

siders a trade-off between good fit to the response pattern and the number of parameters that are 

necessary to fit the response pattern. The number of parameters in BLIM is related to the number 

of knowledge states in the knowledge structure. A BLIM with a knowledge structure that encoun-

ters all possible knowledge states would by definition fit perfectly to the response pattern. As a 

consequence, a knowledge structure that with more knowledge states always fits better, but may 

capitalize on response error. For this reason, we used the AICc to select the knowledge structure 

that fits well to the response pattern but only considered as many knowledge states as necessary. 

We used AICc instead of AIC because the number of observations divided by the number of pa-

rameters was smaller than 40 (Burnham & Anderson, 2003). AICc is used to calculate the fit dif-

ference between the BLIMs and the Akaike Weights (ωi; see Appendix formula 2).  
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 Results 

IV.3.1 Descriptive 

Correct solutions were given for 51.00% of understanding the visual-spatial array items, 

74.67% of the graph interpretation, 76.67% of the sentence comprehension, 71.67% mapping text 

onto graph, and 33.33% mapping graph onto text items. These results show that the item types 

address different aspects of text-graph comprehension and are overall neither too easy nor too dif-

ficult for the participants. 

Figure 19 depicts the frequency of each response pattern grouped by association to 

knowledge structures. The majority of observed response patterns (69.00%) can be assigned to at 

least one of the hypothesized knowledge structures. A proportion of 39.33% of response patterns 

can be assigned to KMR, whereas 65.33% can be assigned to the text-centered perspective KTC. 

Accordingly, the descriptive results favor KTC, because the frequency of response patterns assigned 

to KTC is higher than the frequency of response patterns associated with KMR. Also, 35.67% of 

response patterns could be assigned to either knowledge structure. In the following, we used the 

BLIM to test the empirical relevance of this difference.  
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Figure 19. Frequency of response patterns R. Grouping shows response patterns specifically as-

sociated with the knowledge structure representing the text-centered perspective (TC) 

R∈(KTC\KMR), with the knowledge structure representing the multiple-representation perspec-

tive (MR) R∈(KMR\KTC), with both R∈(KMR∪KTC) or none of them R∉(KMR∪ KTC) . 

Participants reported medium level of interest in biology (M = 57.16, SD = 28.79) and high 

preparedness to make an effort, M = 23.02 (SD = 2.18) on a scale ranging from 0 – 24. They 

reported relatively high academic self-concept, M = 11.20, SD = 3.08 on a scale ranging from 0 – 

18. Academic self-concept, r(48) =  .083, p = .56, and topic interest, r(48) = .17, p = .25, were not 

significantly correlated to text-graphics comprehension. However, in line with prior research on 

comprehension, prior knowledge (e.g., Kintsch, 1988) was significantly associated with overall 

text-graphics comprehension, r(48) = .50, p < .001.  
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IV.3.2 Basic local independency model (BLIM) selection  

To determine which of the knowledge structures best fits the observed response patterns, 

response errors, the value of the log-likelihood function, and AICc of the BLIM for KNULL, KMR, 

KTC and KPOWER were estimated first. Second, we calculated ∆i, and ωi, based on the BLIM’s AICc. 

Table 10 gives an overview of all indicators. Response errors estimated for slipping 

were .49, .54, .33, 0 for KNULL, KMR, KTC, and KPOWER respectively. Response errors for guessing 

were .10, .11, .09, and .13 for above models. KTC had the largest maximized log-likelihood value 

(logLikeTC = -907.63) and smallest overall response error. The log-likelihood value of KMR ranked 

second (logLikeMR = -923.48). Furthermore, the BLIM of KMR returned the largest over all response 

error. The BLIM of KNULL was the least likely (logLikeNULL = -931.43). Furthermore, results for 

AICc substantiated those observed for the log-likelihood value; KTC (AICTC = 1844.74) had the 

smallest AICc, followed by, AICPOWER = 1863.72, AICMR = 1874.23 and AICNULL = 1883.61. In 

addition, all models were substantively different from one another (∆i > 10). Consequently, ωi val-

ues indicated decisive evidence in favor of KTC relative to the other BLIMs of KPOWER, KMR and 

KNULL. In fact, KTC received about 99% of the total weight of the considered models. However, it 

is important to note that ωTC is not an evaluation of fit or explained variance, it only represents 

conditional probability. 

 

Table 10. Model summary for BLIM of KNULL, KMR, KTC, and KPOWER. 6 

BLIM 
Response error 

(Slipping - Guessing) 
logLike 

Number 

of Param-

eters (k) 

AICc ∆i ωi 

KNULL .49 - .10 -931.43 10 1883.61 38.87 > .001 

KMR .54 - .11 -923.48 13 1874.23 29.49 > .001 

KTC .33 - .09 -907.63 14 1844.74 - < .999 

KPOWER .0 - .13 -890.79 36 1863.72 18.98 > .001 

Note. BLIM = basic local independency model, logLike = value of the maximized log-likeli-

hood function, AICc =  Akaike Information Criteria with correction for finite sample sizes, ∆i 

= AICc difference, ωi = Akaike weights (conditional probability of the model).  

                                                 

 

6 The same analysis was performed without fixed guessing rates to check for robustness of model selection. In this 

case, differences between models were reduced. However, model selection still strongly favored KTC. The consistent 

difference indicated that model differences were not artifacts of the fixed parameters.  
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IV.3.3 Basic local independency model of the text-centered perspective 

The BLIM for KTC had an overall mean error of 41.58%. This total error could be separated 

into error caused by guessing (8.97%) and slipping (32.60%). The estimated slipping parameter for 

understanding the visual-array was βa = 0%, for graph interpretation βb = 18.70%, for sentence 

comprehension βc = 13.92%, the mapping from text to graph βd = 2.62%, and for mapping for graph 

to text βd = 0% as well. Estimated slipping parameters for understanding the visual-array of the 

graph and mapping from graph onto text were very low. This suggested that the knowledge struc-

ture KTC represented the response pattern best when it is assumed that individuals who understood 

the visual-array of the graph and were able to map the graph onto the text always answer the re-

spective items correctly. The larger slipping parameter for graph interpretation suggests that the 

knowledge structure represented the response pattern best when it is assumed that some participants 

do not answer these items correctly, even though they could. 

Based on the response patterns and the estimated response errors, the BLIM of KTC esti-

mated the probability for each knowledge state. Table 11 shows the proportion of knowledge states 

in the probabilistic knowledge structure KTC. 

Table 11. The proportion of knowledge states in the probabilistic knowledge structure KTC. 

Knowledge 

states in KTC 
% 

{a,b,c,d}   20.27 

{Q}   16.55 

{b,c,d}   15.17 

{b,c,d,e}   13.33 

{a,b,c}     7.22 

{b,c}     6.67 

{b}     5.89 

{Ø}     5.44 

{a,b}     4.94 

{c}     4.50 

total 100.00 

    

Only 5.44% of the assessed knowledge states indicate a complete lack {Ø} of all sub-pro-

cesses meaning that in these cases none of the items would have been solved correctly. On the other 

hand, in 16.55% of the assessed knowledge states, all processes {Q} were performed correctly 

meaning that in these cases local and global processes of text-graphics comprehension were fully 

mastered. Knowledge state {c}, which suggests that a person is only able to understand the text but 
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fails in comprehending graph information and relating it to text, was the least frequent, followed 

by the knowledge state {a, b}, which reflects understanding of the visual-spatial array and graph 

interpretation. Accordingly, it hardly occurred that participants were able to perform local pro-

cesses of understanding the visual array of the graph, while not understanding the text at all and 

being unable to relate text and graph information to each other. The most frequently assessed 

knowledge state was {a, b, c, d} suggesting that in most cases participants were able to perform all 

but one process, namely, mapping graph information onto the text. This suggests that albeit being 

seemingly symmetrical, mapping of text information onto a graph and mapping of graph infor-

mation onto text seem to impose different challenges, a finding that will be addressed in the dis-

cussion in more detail. 
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 Discussion 

In the present study, we investigated which sub-processes are necessary to achieve inte-

grated text-graphics comprehension. We distinguished between five different sub-processes to cap-

ture the fine-grained structure of text-graphics comprehension: (a) understanding the visual array 

of the graph, (b) interpret the graph, (c) comprehending relevant text passages, (d) mapping rele-

vant text passages onto relevant graph elements, and (e) mapping relevant graph elements onto 

relevant text passages. We were specifically interested in how these sub-processes depend on one 

another. We hypothesized their prerequisite relationships to reflect either a text-centered or a mul-

tiple-representation perspective. Using Knowledge Space Theory (Falmagne et al., 1990), we pro-

vided substantial evidence in favor of the text-centered perspective in that knowledge states spe-

cific to the text-centered perspective occurred more frequently than those specific to the multiple-

representation perspective. Furthermore, the text-center perspective out performed two reference 

model that assumed stronger (KNULL) and weaker (KPOWER) prerequisite relationships. 

The text-centered perspective postulates that local coherence formation within the text pre-

cedes and is a prerequisite for understanding graphics. In other words, information from the text is 

used to build local coherence within graphics, which then results in global coherence between text 

and graphics. Hence, text-graphics comprehension like text comprehension alone seems to be 

driven by a sequential integration process (Kintsch, 1988) that involves both text and graphics 

information. Comprehension of relevant text passages appear to be prerequisite for mapping rele-

vant text passages onto relevant graph elements. This comprehension then serves as a prerequisite 

for mapping relevant graph elements back onto relevant text passages because the integration cycle 

is driven by the text. Text drives the integration cycle because of its sequential nature. In line with 

this idea, Zwaan and Radvansky (1998) argued that graphics are “jointly incorporated with infor-

mation derived from the text into an integrated situation model” (p. 164). This text-centered per-

spective is also supported by the sequential gaze behavior observed during comprehension of text 

and graphics (Hegarty & Just, 1993) as well as by the strong association between students’ text and 

multimedia comprehension ability (Scheiter et al., 2014). In line with the text-centered perspective, 

Schnotz and Wagner (2018) recently argued that text-pictures comprehension is “inherent asym-

metry because text and pictures serve fundamentally different but complementary functions.” (p.1). 

In conclusion, the present study provides further evidence that situation models – a construct ini-

tially introduced to explain higher-level text comprehension (Zwaan & Radvansky, 1998) seem to 
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be a parsimonious and accurate way to explain not only text but also text-graphics and thus multi-

media comprehension. 

IV.4.1 Implications for instruction 

These insights regarding individual performance concerning the five sub-processes of text-

graphics comprehension and their prerequisite relationships might be exploited to develop adaptive 

learning technologies (e.g., Aleven, McLaughlin, Glenn, & Koedinger, in press). In particular, per-

sonalized learning environments might adjust instructions according to individuals’ level of text-

graphics comprehension. The knowledge structure for graphics comprehension emphasizes (1) the 

importance of comprehension sub-processes and (2) their dependency. Therefore, a personalized 

adaptive learning environment may give instructional support that targets specific sub-processes. 

For instance, students may struggle to establish referential connections between graph labels and 

relevant text passages. As suggested by recent studies, these students may benefit from color coding 

that emphasizes references between text and graph information (Richter, Scheiter, & Eitel, 2016). 

Moreover, students who have trouble understanding the visual array of the graphic may benefit 

from instructions on displaying conventions (Lowrie et al., 2012). Furthermore, students who 

struggle to map textual onto graphical information on a conceptual level or to comprehend the 

relevant sentence may lack word knowledge and therefore benefit from more in depth explanations 

of domain-specific terms in the text (Kintsch, 1988). Finally, students who find it difficult to map 

graphical onto textual information on a conceptual level may benefit from explanations of terms in 

graph reading (Friel, Curcio, & Bright, 2001).  

Additionally, the observed prerequisite relationships imply optimal learning paths (Heller 

et al., 2006). This means that when students struggle with more than one sub-process, instructional 

support should be given in a specific order. The text-centered perspective implies that instructions 

aiming to improve text-graphics comprehension would not be useful when text comprehension in 

itself is an issue. After text comprehension would be established, text-graphics comprehension can 

best be supported by facilitating mapping from text onto graph information, for instance, using 

signaling text-graphic relations (Richter et al., 2016) or by asking students to additionally draw 

visual elements (Schmidgall, Eitel, & Scheiter, in press).  

IV.4.2 Limitations and perspective 

Some response patterns associated with neither of the hypothesized knowledge structures 

were more frequently observed than response patterns reflecting the multiple-representation per-

spective. This finding seems to indicate that there may be a yet unknown knowledge structure that 
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fits the data better than the ones we proposed and investigated in the present study. However, we 

are confident that the confirmatory logic underlying our deduction of knowledge structures from 

theory and previous research is a strength of the present study because it allows for testing explicit 

hypotheses. In fact, future studies are needed to evaluate whether the knowledge structures ob-

served in the study beyond the ones we hypothesized can be replicated. 

Another important point to consider in the context of text-graphics comprehension is par-

ticipants’ prior knowledge, which also became evident in the present study. We were not able to 

investigate the mechanism underlying this effect because the present study was primarily designed 

to contrast the two theoretical perspectives on text-graphics comprehension. These perspectives do 

not differ in terms of possible effects of prior knowledge. Nevertheless, Knowledge Space Theory 

provides a statistical framework to investigate effects of prior knowledge in more detail. Following 

the logic of the present study, a minimum of prior knowledge might be a prerequisite for compre-

hension. In future studies, we would like to focus on the effects of prior knowledge by differenti-

ating between prerequisite knowledge (i.e., knowledge that is necessary to comprehend), domain 

knowledge (i.e., knowledge useful for comprehension, but not necessary), and assessed knowledge 

(i.e., knowledge reflected in answers to comprehension tasks).
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Chapter V. General discussion 

Being able to understand visualizations of data and especially graphs became an important 

21st century skill (Ananiadou & Claro, 2009). Graphs represent quantities via a ‘paired with’ rela-

tion, whereas greater quantities is represented by more of some visual dimension (e.g., area, lines, 

diameter, angle, and color; Kosslyn, 1989). Large-scale studies found that students’ struggle to 

understand graphs (TIMSS, 2013). Some researchers even arguted that graphicacy is equal in status 

to literacy and numeracy (Åberg‐Bengtsson & Ottosson, 2006). However, compared the research 

in reading and mathematics, relatively like is known about the underlying principals and cognitive 

mechanism which constitute the ability to understand graphs. This thesis investigated the underly-

ing comprehension processes of graphicacy.  

Previous research on the ability to understand graphs was channeled in two research com-

munities: A literacy and a comprehension research community. On one hand, literacy research de-

scribes how individuals in a relevant population master realistic graphicacy tasks. On the other 

hand, comprehension research explains the comprehension processes in graphicacy tasks. This the-

sis proposed a Process-Oriented Model of Graphicacy (POMoG) to integrate perspectives from 

both research communities. The POMoG explains item responses in graphicacy tasks as a result of 

comprehension processes (e. g., mapping and visual imagery) which construct internal representa-

tions (i.e., internal representation of task, graph and content). The comprehension processes are 

influenced by individual characteristics (e.g., knowledge and skills), item characteristics, (e.g., 

complexity and graph types) and their interaction.  

The POMoG can be summarized by five major assumptions. First of all it assumes, that 

individual differences in graphicacy are manifested in differences in comprehension processes. 

Comprehension processes manifest individual differences because a correct items response re-

quires an internal representations of the task, the graph, and the content. (2) These internal repre-

sentations are constructed by the comprehension processes. (3) The comprehension process consist 

of different process component (i.e. visual, visual-imagery and mental process). (4) The process 

components are influenced by individual and item characteristics and their interaction. Finally, (5) 

Comprehension processes are indirectly related to process measures because the interpretation of 

process measures depends on the relationship between the process measure and comprehension 

success. The studies in Chapter II, III, and IV aimed at refining the main assumption of the POMoG. 

Chapter II addresses the influence of Basic Numerical Abilities (BNAs) on graph reading perfor-

mance, Chapter III addresses the association between time-on-task and text-graph transitions with 
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comprehension success across comprehension phases, and Chapter IV the hierarchal dependency 

between comprehension processes in text-graph comprehension.  

 Chapter II investigated the influence of BNAs on graph reading performance. The influ-

ence of BNAs on graph reading performance explains comprehension processes because BNAs 

can be associated to the specific process components of the comprehension process. Therefore, the 

differential influence of BNAs can be used to make inferences about underlying mechanism of 

graphicacy performances. The influence of BNAs on graph reading performance was determined 

with a multiple regression analysis. In addition to BNAs, the influence of general cognitive ability, 

age, and gender was considered as control variables. The analyzed sample consisted of 750 German 

students (grade nine to eleven). The results showed that general cognitive ability was the strongest 

predictor of graph reading performance. More important, beyond general cognitive ability, perfor-

mance in number line estimation, subtraction and conceptual knowledge about arithmetic opera-

tions (CKAO) were significant predictors of graph reading performance. The results suggested that 

the influence of number line estimation, subtraction and CKAO can be attributed to different un-

derlying mechanisms. Subtraction facilitates graph reading performance because it aid the perfor-

mance of arithmetic calculations and number line estimation because it aids comparisons and pro-

portional judgments. Both subtraction and number line estimation facilitate specific process com-

ponents. In contrast, CKAO may function through the control of process components. CKAO en-

ables students to use problem solving strategies which are more effective or more efficient. For 

instance, replacing complex calculations by proportional judgments, as examined by Gillan (1995).  

Chapter II showed that BNAs are relevant individual characteristics which determine graphicacy 

performance even in secondary education. Improving students BNAs can potentially aid graphic-

acy performance. Furthermore, improving individual characteristics like CKAO which function 

though the control of process components may be even more beneficial.  

Chapter III investigated the relationship between process measures and comprehension suc-

cess across different comprehension phases. The comprehension phases are either initial reading in 

which processing is coherence-oriented or task completion in which processing is task-selective. 

The studies of Chapter III considered time-on-task and eye-movements as process measures. In 

multimedia research it became apparent that transitions between text and graph can be interpreted 

in two opposing ways. Text-graph transitions can be interpreted as integration of information from 

text and graph or as disorientation, the inability to find relevant information. However, the associ-

ation between the text-graph transitions and comprehension success indicates whether individuals 
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integrated information or were disoriented. Additionally, it was hypnotized that the comprehension 

phase influences relationship between process measures and comprehension success because they 

required either coherence-oriented or task selective processing. The relationship is assumed to be 

positive in the initial reading phase because processing serves coherent mental model construction. 

On the contrary, the relationship is assumed to be negative in the task completion phase because 

processing serves selection of task-relevant information. In two studies time-on-task and text-graph 

transitions from in total 77 university students that worked on twelve text-graph integration items 

were analyzed. The analysis was conducted with the EMPPI. The results of two studies demonstrate 

that spending more time and performing more text-graph transitions, can be positively associated 

to comprehension success during initial reading while being negatively associated with compre-

hension success during task completion. Moreover, content knowledge moderated the effect of 

time during initial reading and task completion. The results indicate that the interpretation of pro-

cess measures is relative to comprehension phase and to the extent of content knowledge. Further-

more, the double sided mediating effect of content knowledge on time-on-task during initial read-

ing and task completion indicates that content knowledge either facilitates comprehension by struc-

turing and controlling mental model construction or by aiding the search for task relevant infor-

mation.  

Chapter IV investigated the hierarchical dependency of comprehension process in compre-

hension of text and graph. POMoG stats that responses can only be correct when individuals have 

an IR of the task, the graph and the content. However, it is unclear how comprehension process 

depend on each other when they construct internal representations. In multimedia research, there 

are two opposing perspectives about the hierarchical dependency of comprehension processes.    

From a text-centered perspective, IR of the graph is constructed as a result of an integrated com-

prehension of text and graph. From a multiple-representation perspective, the IR of the graph is a 

prerequisite for an integrated comprehension of text and graph. For this study response pattern of 

50 adults that answered a large number of text-graph integration items was analyzed. Knowledge 

Space Theory was used to define two different knowledge structures reflecting the prerequisite 

relationships among the comprehension processes as postulated by the text-centered and the mul-

tiple-representation perspective. Results showed that the text-centered perspective better fitted to 

the observed response pattern. Accordingly, text-graph comprehension may not necessarily require 

comprehension of graph and text separately; instead, text comprehension seems to serve as a pre-

requisite, whereas graph comprehension may result from integrated text-graph comprehension.  
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The implications for the POMoG are discussed in the following sections, after a brief ex-

amination of strength and limitations of the thesis. Furthermore, the methodological implications 

and practical implications are exhibited. 
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 Strength 

The strength of this thesis is the interdisciplinary integration of research on a theoretical 

and a methodological level. Additionally, the modeling approaches are carefully selected based on 

substance and methodological aspects and the studies maximize the benefit for theory development 

because they rigorously deduce alternative hypothesis from contradicting theoretical perspective. 

The first strength of this thesis is the integration of research from different disciplines, em-

bodied in the Process-Oriented Model of Graphicacy (POMoG). The POMoG combines the 

strength from the literacy and comprehension community. The literacy research describes ‘real-

world’ graphicacy, while experimental comprehension research explains underlying cognitive 

mechanism of graph comprehension, ultimately, the POMoG explains the underlying cognitive 

mechanism of real-world graphicacy. Since, the POMoG combines the strength of both communi-

ties, the POMoG can function as a translation tool for researchers across communities. Moreover 

it creates a common terminology (Section I.1), integrates the model of comprehension of visual 

displays (Section I.3.1) and the model of human interaction with graphs (Section I.3.2), and con-

siders the interaction between individual and item characteristic. The POMoG offers explanation 

for how item difficulty is manifested in comprehension processes, and how inferences about com-

prehension process can be made based on process measures and comprehension success. Mean-

while, the POMoG is measurable because it formulates the data sources and levels of analysis for 

all of its components (i.e. comprehension processes, internal representation individual and task 

characteristics). Finally, the integration of descriptive and explanatory aspects can surf as a tem-

plate for other research objects which are investigated from a primary ‘descriptive’ differential 

perspective and an ‘explanatory’ experimental community.  

The second strength of the thesis is the selection and development of well-suited statistical 

modeling approaches. The POMoG considers individual characteristics assessed by test and ques-

tionnaires, task characteristics assessed by cognitive task analysis, and process measures, for in-

stance, response times and eye-movements as influential factors on graph comprehension. The 

subsequent challenge is to jointly model these data sources. On one hand the EMPPI and on the 

other hand KST are modeling approaches that enable inference about comprehension processes 

and internal representations based on the different data sources. In detail, the EMPPI was developed 

in conjunction with the POMoG and combines process measures with modeling approaches from 

item response theory. Therefore, this thesis does not only integrate literacy and comprehension 
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research of a theoretical level with the POMoG, but integrates research communities on a method-

ological level with the EMPPI. Moreover, the POMoG addresses the issue of hierarchical depend-

ency between internal representations. The KST was selected because it is the only modeling ap-

proach that considers hierarchical dependencies. KST is a promising and underappreciated model-

ing approach, since hierarchical dependencies and prerequisite relationships are frequently dis-

cussed topics in educational research. Therefore, this thesis developed new and spots potent mod-

eling approaches that are currently only discussed in methodological journals and evaluate their 

potential for educational psychology.  

A third strength of the thesis is the rigorous deduction of alternative hypotheses. Research 

is most beneficial for theory development when two theories came to different hypotheses. The 

thesis presents two studies in which two alternative hypothesis compete in an empirical studies. In 

the Chapter III, process measures as indicator of integration or disorientation and in the Chapter 

IV, response pattern are explained as a result of a text-centered or a multiple representation per-

spective.
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 Limitations 

The limitation of this thesis concern the studies samples which do not integrate representa-

tive samples with fine-grain process data collection, the absence of a measure for ‘pure’ graphicacy 

and the lag of replication studies. 

The POMoG attempted to combine the strength of graphicacy and graph comprehension 

research. The strength of graphicacy are representative sample and realistic task and the strength 

of graph comprehension the collection of process data and controlled stimuli that allow inference 

about underlying comprehension processes. Strictly speaking, combining both means to collect 

process data on realistic tasks in a representative sample. However, the studies presented either 

analysis response from representative samples or analysis of process data from homogenous sam-

ples. In this regard, the thesis do not advance previous research. In the end, there is not just a the-

oretical and a methodological barrier, but also a practical barrier which separates research com-

munities. The practical barriers is a result of resource allocation. Resources are either spend to 

collect cost and time efficient test data in large samples or spend on relatively expensive technical 

devices like eye-trackers, laboratory space and skilled examiners. The thesis did not overcome 

this barrier due to resource limitations.  

Furthermore, the thesis emphasized the importance of putting more effort in teaching graph-

icacy. The benefit of teaching graphicacy depends on the degree to which graphicacy skills gener-

alize to science, mathematics, and reading literacy. A ‘pure’ measure of graphicacy would be 

needed to investigate to influence of graphicacy on the other literacy constructs. Assessing pure 

graphicacy implies that test items do not involve reading or concepts from science and mathematics. 

This thesis did not end-up developing a standardized measure of graphicacy. However, after exam-

ining the present literature it was concluded that graphicacy item are challenging because task de-

mand involve reading and mathematical or science concepts. Therefore, instead of excluding read-

ing, science and mathematics from the graphicacy tests they were intentionally included. Therefore, 

a limitation of the thesis is that there is no standardized test of graphicacy was created, however, 

the test items that were created involved other task demand to be able to study comprehension 

processes. 

Each Chapter of the thesis focuses a different aspect of the POMoG, however, the Chapters 

do not immediately build on each other. The POMoG proposed multiple novel assumptions. There-
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fore, it was attractive to focus on different assumptions and apply the related methodological ap-

proaches. This resulted in three chapter that focus on different assumptions of the POMoG and 

apply different methodological approaches in each study. Even though Chapter III includes two 

studies which build on each other, the thesis could have benefited from repeating more studies to 

refine and replicate results. However, future studies have to demonstrate the resilience of results. 
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 Theoretical implication 

The presented studies examined the underlying comprehension processes which lead to in-

dividual differences in graphicacy performances. The studies make inference about comprehension 

processes based on the influence of BNAs, based on the association between process measures and 

comprehension success across comprehension phases, and based on prerequisite relationships be-

tween comprehension processes in comprehension of text and graph. The result can be used to 

refine the assumptions of the POMoG. 

According to the POMoG, comprehension processes can be influenced by individuals char-

acteristics based on three underlying mechanisms: Substituting, fluency and control of process 

components. In Chapter II and III these mechanisms can be attributed to specific individual char-

acteristics that influence graphicacy performances. Chapter II found that the BNAs, subtraction, 

CKAO and number line estimation influence graph reading performance. Subtraction and number 

line estimation are assumed to influence the fluency of process components. More specifically, 

subtraction should facilitate the performance of arithmetic operations, whereas, number line esti-

mation should facilitate comparisons between distanced points and imagery comparisons (i.e. com-

parisons of mentally manipulated objects). On the contrary CKAO, may not facilitate specific pro-

cess components, but rather control the process components. In other words, CKAO may help a 

‘modeling’ to graphicacy problems. In Chapter III, a similar attribution is made based on the me-

diating effects of content knowledge. Content knowledge mediates the relationship between time-

on-task and comprehension success during the initial reading and during task completion phase in 

two different ways. Specifically, spending more time at the initial reading phase only leads to better 

comprehension when content knowledge is high. On the contrary, when content knowledge is low 

spending more time at initial reading does not lead to better comprehension. This mediation sug-

gests that content knowledge influences text-graph comprehension because it controls the compre-

hension process. In other words, content knowledge provides the structure to build a coherent in-

ternal representation ‘piece by piece’ over time. With content knowledge, more time leads to a more 

coherent mental model because each ‘piece’ solidifies the coherence structure. Without content 

knowledge, more time does not lead to better coherence because the collection of the ‘pieces’ is 

unstructured. However, content knowledge influences comprehension in a different way during 

task completion. During task completion, the primary goal is not the construction of a coherent 

internal representation but to quickly find the task relevant information. Individuals with more 
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content knowledge are both faster and more accurate during task completion. Individuals with low 

content knowledge only solved items when they invested more time, because it takes them more 

time to find the relevant information. The double sided mediation effect shows that content 

knowledge can facilitate comprehension based on two different underlying mechanisms.  

Both Chapters (II and III) allow the attribution of specific influencing mechanisms. The 

CKAO and content knowledge (during initial reading) facilitate graphicacy performance because 

they control and structure the comprehension process, whereas arithmetic fluency and number line 

estimation, and content knowledge (during task completion) facilitate graphicacy performance be-

cause they facilitate specific process components. However, the double sided mediation effect of 

content knowledge shows that the functioning mechanism can change relative to the comprehen-

sion phase. The POMoG as it was proposed did not take the specific individual characteristics 

arithmetic fluency, number line estimation and CKAO into account, and did not consider different 

mechanisms relative to the comprehension phase. Therefore, the POMoG can be updated based in 

the presented studies. The updated POMoG considers the individual characteristics arithmetic flu-

ency, number line estimation and CKAO. Furthermore, Chapter III showed that coherence-oriented 

processing influences comprehension success when content knowledge is high. Therefore, the up-

dated POMoG considers a processing path for coherence-oriented and task selective processing. 

Coherence-oriented processing does not involve the internal representation of the task, in distinc-

tion to task-selective processing (See updated POMoG in figure 20).  

Chapter IV demonstrated that an internal representation of the graph is not a prerequisite 

for an integrated comprehension of the text and graph. First of all, the results show that there are 

hierarchical dependencies between comprehension processes. These hierarchical dependencies de-

termine which internal representation can be constructed after another. The POMoG it was assumed 

that an internal representation of the graph proceeds the internal representation of the content. 

However, the internal representation of the content can aids the construction of an internal repre-

sentation of the graph, when text is present as another information source. This implies that the 

construction sequence of internal representations by the POMoG can deviate, whenever additional 

information sources are present.  Therefore, the update POMoG includes the possibility of pro-

cessing support the construction of the internal representation of the graph (See updated POMoG 

in figure 1).   
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Figure 20. Updated Process-Oriented Model of Graphicacy including a novel coherence-oriented and task selective processing path and 

an augmented list of individual characteristics. In gray: Individual characteristics with influencing mechanism. Gray pointy arrow indi-

cate influence on specific process competent. Gray round arrows indicate controlling or structuring function. 
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 Methodological implications 

The methodological implications evolve around the methodological integration of literacy 

research and comprehension research and the interpretation of process measures, especially gaze 

behavior can be interpreted when individuals have different test results.  

The thesis laid out that the separation of graphicacy and graph comprehension research is 

partly different statistical methods and research designs. Traditionally, graphicacy research applied 

factor analysis (and IRT model) based on test data and graph comprehension applied analysis of 

variance based on experimental data. However, the thesis presented analysis approaches that inte-

grate both perspectives and demonstrates that there is no fundamental difference between tests and 

experiments. A test is an experiment with repeated measurement. Each item is a measurement, 

whereas items characteristics are the experimental conditions. An experiment is a test. Every item 

of a test is an experimental condition. However, in research practice test and experiments are treated 

very differently. The test is usually constructed based on text book content or ‘real world’ problems 

(e.g., Åberg-Bengtsson & Ottosson, 2006; Ullrich et al., 2012). From the experimental perspective, 

item characteristics are not systematically manipulated, like an experimental condition. Subse-

quently, the unsystematic variation of items characteristics results in interpretations problems dis-

cussed in the first chapter (Section I.6.). On the other side, experimental studies usually assume 

that the experimental outcomes is one dimensional. From the factor analytical perspective, this 

practice could be problematic for measurement precision and potentially hind effects. Subsequently, 

both communities can befit from the perspective of the other. The statistical modeling approach 

presented in Section I.7 and applied in Chapter III integrates factor analytical and experimental 

perspectives. More general, the EMPPI is a Generalized Linear Mixed-Effect Regressions 

(GLMER; Bates, Mächler, Bolker, & Walker, 2014). GLMER allow researchers to treat experi-

ments like a tests and tests like experiments (Baayen, Davidson & Bates, 2008). In sum, graphicacy 

research can befit from systematic item construction based on theoretical models (e.g., the 

POMoG). Graph comprehension research can befit from taking the dimensionality of experimental 

outcomes into account. Both communities can befit from using GLMERs to estimate the influence 

of item characteristic as an experimental conditions and to estimate the measurement precision of 

of experimental outcomes. 

The second methodological implication concerns the eye-mind assumption (Carpenter & 

Just, 1975). The eye-mind assumption is the idea that gazes behavior ‘represents the engagement 
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of the mind’. Studies demonstrated that gaze behavior represents visual processing and attention 

allocation (e.g., Scheiter & Eitel, 2017), however, many studies are interest in mental processes 

(e.g., Hannus & Hyönä, 1999). However, mental process are not immediately to gaze behavior.  

Chapter III demonstrated that the link between text-graph transitions and information integration 

from text and graph is not immediate. Transitions between text and graph can be interpreted in two 

opposing ways relative to the comprehension phase. Text-graph transitions can indicates integra-

tion of information or disorientation, the inability to find relevant information. Therefore, the eye-

mind assumption may be more accurate by stating that ‘gaze behavior represents attention alloca-

tion and attention allocation allows under certain conditions inferences about the engagement of 

the mind’. In other words, the link between gaze behavior and mental processes is not immediate 

but, an indirect link can be established based on an experimental paradigm or a statistical model. 

In an experimental paradigm gaze behavior and mental processes can be linked because the stimuli 

is controlled and all can individuals master the experimental task. In this case, the gaze behavior 

represents the mental process because stimuli and outcome are the same, and difference in gaze 

behavior can be attributed to differences in mental processes. However, literacy research investi-

gates individuals’ differences. Consequently, the different outcomes are the research object. Gaze 

behavior cannot be linked to mental processes because individuals are more or less successful in 

different tasks. The POMoG uses an analogy to distance, time, and speed to illustrate this problem. 

The time it takes individuals to run a distance equals the individuals’ speed, only if everyone runs 

the same distance. However, when the individuals run a different distances, their speed can be 

inferred by setting distance in relation to time. The same applies to the interpretation of gaze be-

havior, when individuals are more or less successful at performing the given tasks. The relationship 

between gaze behavior and individuals’ success always inference about mental processes. The 

EMPPI is a statistical modeling approach that is based on this logic and allows inference about 

mental process relative to individuals’ outcomes and gaze behavior. Chapter III demonstrated that 

the EMPPI can be applied to eye-tracking studies. Notably, to establish a strong link between gaze 

behavior and mental processes, the gaze behavior should be closely linked to the outcome. For 

instance, the number of text-graph transitions in one item should be linked to the item success in 

the same item. To tighten the link, process data needs to be analyzed on the response level, not 

aggregated across item which are partly solved and unsolved. In sum, gaze behavior can be linked 

to mental process based on experimental paradigms or statistical models. Experimental paradigms 

make gaze behavior interpretable by holding stimuli and outcome constant. Statistical modeling 
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like the EMPPI enable inferences about mental processes by setting gaze behavior and outcomes 

in a relationship. The statistical modeling of gaze behavior and outcomes is necessary when indi-

viduals differ in their outcome. Therefore, studies that investigate mental process (i.e., not only 

attention allocation) based on gaze behavior, should either use an experimental paradigm in which 

ideally everyone solves every task, or use a statistical modeling approach that considers the rela-

tionship between task success and gaze behavior.
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 Practical implications 

The practical implications evolve from the influencing mechanism of individual character-

istics and the modeling approaches which could be used to create adaptive learning systems.  

The thesis investigates the influence of various individuals characteristics on graphicacy 

and there influencing mechanisms. The thesis showed that BNAs influence graphicacy perfor-

mance even in secondary education. Therefore, training BNAs, specifically arithmetic fluency, 

number line estimation, and CKAO may still be relevant in secondary education. Furthermore, it 

was argued that some individual characteristics either improve separate process components or 

help to structure and control process components. Training the controlling and structuring charac-

teristics CKAO and content knowledge may be, especially effective at improving complex graph-

icacy performances. Therefore, graphicacy performance may be most effectively aided by improv-

ing students CKAO and content knowledge.  

Chapter III showed a general positive association between text-graph transitions and com-

prehension success during initial reading, therefore, it may improve students’ comprehension suc-

cess by instructing students to perform more text-graph transitions during initial reading. In fact, 

interventions aiming at increasing transitions have been found to be effective at improving learning 

and comprehension (e.g., spatial contiguity: Johnson & Mayer, 2012; signaling: Ozcelik et al., 

2009). However, the results also show a negative association between text-graph transition and the 

comprehension success in task completion. Therefore, the results suggest that it may be even det-

rimental for learning and comprehension to increase text-graph transitions by any means when 

students have to perform specific tasks. Increasing text-graph transitions can be detrimental be-

cause more transitions ‘disrupt’ the fluency of task-selective processing. 

Furthermore, the modeling approaches applied in the thesis (i.e. KST & EMPPI) could be 

used to create adaptive systems learning systems (e.g., Aleven et at., in press), either based on 

individuals response pattern (Heller et al., 2006) or based on individuals’ process measures (i.e. 

eye-movements; Schubert, 2016). The prerequisite relationships determined with the KST suggest 

an optimal comprehension paths (Heller et al., 2006) for comprehension of text and graph. The 

text-centered perspective implies relative from the comprehension process at which students strug-

gle, instructional support can be more or less beneficial. For instance, the text-centered perspective 

implies that instructions aiming to improve text-graph comprehension would not be useful when 
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text comprehension in itself is an issue. The interaction between process measure effect and indi-

vidual characteristics implemented in the EMPPI could help to adjust adaptive systems to the indi-

vidual needs of an individual.
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Summary 

 

The ability to understand visualizations of data has become immensely important for 

education, work, and life in the 21st century. In most cases, data is visualized as a graph. 

Graphs represent quantities via a ‘paired with’ relation. Graphs represent greater quantities 

by longer lines, higher bars, or more of some other visual dimension. Despite the presence 

of graphs in all areas of life, large-scale studies have raised concerns about students’ ability 

to understand graphs. Compared to the long traditions of cognitive psychological work on 

reading and mathematics, relatively little is known about how individuals understand graphs. 

This thesis builds a cognitive psychological and psychometric model of the underlying com-

prehension processes, prerequisites and influential factors for individuals’ ability to under-

stand graphs.  

A literature review revealed two separate research communities: first, literacy re-

search describing individuals’ ability to solve realistic problems with graphs (i.e., graphicacy 

research), and second, research explaining the underlying processes behind graph compre-

hension (i.e., graph comprehension research). In Chapter I, a Process-Oriented Model of 

Graphicacy (POMoG) was developed to integrate these research communities on a theoret-

ical and methodological level. Chapters II, III and IV presented empirical studies that ad-

dress different assumptions of the POMoG.  

Chapter II investigated the influence of basic numerical abilities (BNAs) on graph 

reading performance. The influence of BNAs explains comprehension processes because 

specific BNAs can be linked to specific process components of graph reading. Subtraction, 

number line estimation, and conceptual knowledge about arithmetic operations were deter-

mined to be influencing factors based on test data from 750 students in secondary education. 

Subtraction and number line estimation facilitate unique process components, while concep-

tual knowledge helps students use efficient problem-solving strategies. 

Chapter III investigated the association between time-on-task, text-graph transitions 

and comprehension success across comprehension phases during the comprehension of a 

text and graph. Text-graph transitions can either be interpreted as the integration of infor-

mation or as disorientation, the inability to find relevant information. The association be-

tween time-on-task, text-graph transition and comprehension success was examined in two 

studies with 77 university students in total. The results showed that time-on-task and text-

graph transitions are positively associated during the initial reading phase and negatively 

associated during the task completion phase. Text-graph transitions indicate integration dur-

ing initial reading and disorientation during task completion. Additionally, students’ content 

knowledge moderates the effect on time-on-task during initial reading and task completion. 

This moderating effect indicates that content knowledge can either control initial model con-

struction or help students find task-relevant information. 
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Chapter IV investigated the dependency relationships between comprehension pro-

cesses in the comprehension of a text and graph. Two contradicting perspectives about these 

relationships are present in the literature. The text-centered perspective states that compre-

hension of the graph depends upon comprehension of the text, and the multiple-representa-

tion perspective states that comprehension of the text and graph separately are both prereq-

uisites for integrated comprehension. These perspectives were compared to the response pat-

terns of 50 adults using knowledge space theory. The results showed that the text-centered 

perspective is more applicable to text-graph comprehension. 

In sum, arithmetic fluency, number line estimation, conceptual knowledge about 

arithmetic operations, and content knowledge influence graphicacy via different underlying 

mechanisms. They either facilitate process components or help to control them. Further, it 

was demonstrated that process measures can be indicative of different comprehension pro-

cesses depending on the comprehension phase. Finally, graph comprehension is not a pre-

requisite for integrated comprehension of a text and graph. The theoretical, methodological 

and practical implications of the thesis are discussed in Chapter V. 
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Zusammenfassung 

Die Fähigkeit, Visualisierungen von Daten zu verstehen, ist für Bildung, Arbeit und Leben 

im 21. Jahrhundert enorm wichtig geworden. In den meisten Fällen werden die Daten als 

Graphen visualisiert. Graphen stellen Mengen über eine "gepaart mit"-Beziehung dar, wobei  

größere Mengen durch längere Linien, höhere Balken oder mehr von einer anderen visuellen 

Dimension dargestellt werden. Trotz des Vorhandenseins von Graphen in allen Lebensberei-

chen haben groß angelegte Studien Bedenken hinsichtlich der Fähigkeit von Schülern und 

Schülerinnen, Graphen zu verstehen, geäußert. Im Vergleich zu den langen Traditionen der 

kognitiven psychologischen Arbeit in den Bereichen Lesen und Mathematik ist relativ wenig 

darüber bekannt, wie Individuen Graphen verstehen. Diese Arbeit entwickelt ein kognitiv 

psychologisches und psychometrisches Modell, das die zugrunde liegenden Verständnispro-

zesse, Voraussetzungen und Einflussfaktoren der Fähigkeit, Graphen zu verstehen, abbildet.  

Im Kapitel I verwies die Literaturrecherche auf zwei getrennte Forschungsstränge. Zum ei-

nen die Literacy-Forschung, die die Fähigkeit des Einzelnen beschreibt, realistische Prob-

leme mit Graphen zu lösen (sog. Graphicacy-Forschung), und zum anderen die Forschung, 

die die zugrunde liegenden Prozesse des Graphenverstehens erklärt (sog. Graphenverste-

hensforschung). Um diese Forschungsstränge auf theoretischer und methodischer Ebene zu 

integrieren, wurde ein prozessorientiertes Modell der Graphicacy (eng. POMoG) entwickelt. 

Empirische Studien, die sich mit den verschiedenen Annahmen des POMoG, wurden in den 

Kapiteln II, III und IV vorgestellt. 

Kapitel II untersuchte den Einfluss von grundlegenden numerischen Fähigkeiten (eng. 

BNAs) auf die Graphenleseleistung. Der Einfluss von BNAs erklärt Verständnisprozesse, da 

die jeweiligen BNAs mit bestimmten Prozesskomponenten des Graphenlesens verknüpft 

werden können. Subtraktion, Zahlenstrahlschätzung und konzeptionelles Wissen über arith-

metische Operationen wurden anhand von Testdaten von 750 Schülern aus der Sekundar-

stufe als Einflussfaktoren auf die Graphenleseleistung ermittelt. Subtraktion und Zahlen-

strahlschätzung unterstützen einzelne Prozesskomponenten, während konzeptionelles Wis-

sen bei der Anwendung effizienter Problemlösungsstrategien hilft. 

Kapitel III untersuchte den Zusammenhang zwischen Bearbeitungszeit, Text-Graphen-

Übergängen und Verständniserfolg über Verständnisphasen hinweg. Text-Graphen-Über-

gänge können entweder als Integration von Informationen oder als Desorientierung inter-

pretiert werden. In zwei Studien mit insgesamt 77 Studierenden wurde der Zusammenhang 

zwischen Bearbeitungszeit, Text-Graphen-Übergänge und Verständniserfolg untersucht. Die 

Ergebnisse zeigten, dass Bearbeitungszeit und Text-Graphen-Übergänge während der initi-

alen Lesephase positiv und während der Aufgabenerledigungsphase negativ assoziiert sein 

können. Beim initialen Lesen bedeuten mehr Text-Graphen-Übergänge mehr Integration, 
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während mehr Text-Graphen-Übergänge bei der Aufgabenbearbeitung auf Desorientierung 

hinweisen. Darüber hinaus moderiert das inhaltliche Wissen den Einfluss von Bearbeitungs-

zeit auf den Verstehenserfolg während der initialen Lesephase und der Aufgabenerledigung. 

Dieser moderierende Effekt deutet darauf hin, dass inhaltliches Wissen entweder den an-

fänglichen Modellaufbau steuern oder den Schülern helfen kann, aufgabenrelevante Infor-

mationen zu finden. 

Kapitel IV untersuchte die Abhängigkeitsbeziehung zwischen Verständnisprozessen bei Ver-

stehen von Text und Graphen. Zwei widersprüchliche Perspektiven über diese Abhängig-

keitsbeziehung sind in der Literatur vorhanden. Die textzentrierte Perspektive besagt, dass 

das Verständnis des Graphen vom Verständnis des Textes abhängt. Die Mehrfachrepräsenta-

tionsperspektive besagt, dass das Verständnis des Textes und des Graphen getrennt vonei-

nander Voraussetzung für ein integriertes Verständnis ist. Diese Perspektiven wurden mit 

den Antwortmustern von 50 Erwachsenen mit Hilfe der Wissensraumtheorie verglichen. Die 

Ergebnisse zeigten, dass die textzentrierte Perspektive eher für das Verständnis von Text und 

Graphen geeignet ist. 

Zusammenfassend lässt sich sagen, dass arithmetische Fähigkeiten, Zahlenstrahlschätzung, 

konzeptionelles Wissen über arithmetische Operationen sowie Inhaltswissen das Verstehen 

von Graphen über verschiedene zugrundeliegende Mechanismen beeinflusst. Entweder un-

terstützen sie Prozesskomponenten oder sie helfen bei deren Steuerung der Prozesskompo-

nenten. Des Weiteren wurde gezeigt, dass Prozessmaßnahmen je nach Verständnisphase un-

terschiedliche Verständnisprozesse anzeigen können. Schließlich ist das Verständnis von 

Graphen keine Voraussetzung für ein integriertes Verständnis von Text und Graphen. Die 

theoretischen, methodischen und praktischen Implikationen der Arbeit wurden in Kapitel V 

diskutiert. 
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Appendix Chapter II 

Appendix Table 1. Results of multiple regression analysis and relative weights of basic numerical 

abilities, general cognitive ability, age, gender and two-way interaction between age, gender with 

basic numerical abilities and general cognitive ability. 

 B β [L-CI,U-CI] RW t p 
RS-RW 

(%) 

Criteria = Graph reading performance 

 [multiple R²= .33,  adj. R² =  .31, F(30,720) = 12.46, p <.001] 

        

Intercept 6.71 .00 [-.06,.07]  80.53 .000  

Addition  -0.01 -.02 [-.14,.04] .02 -0.35 .914     5.79* 

Subtraction 0.09 .20 [ .11,.29] .05 4.17 .000   13.86* 

Multiplication 0.01 .01 [-.05,.11] .02 0.34 .914     6.22* 

Number line estimation 2.13 .15 [ .06,.19] .04 4.07 .000   12.01* 

Approximate arithmetic 0.01 .03 [-.04,.11] .02 0.80 .748     6.12* 

Conceptual knowledge 0.04 .11 [ .03,.18] .03 2.86 .026     9.92* 

Basic geometry 0.01 .05 [-.03,.11] .02 1.27 .616     5.17* 

Non-sym. mag. comp. 0.01 .01 [-.04,.09] .01 0.29 .925     1.70   

G. cognitive ability 0.17 .30 [ .22,.37] .10 7.34 .000   28.54* 

Gendera 0.07 .03 [-.04,.10] .00 0.87 .748     1.16 

Log(age) 0.14 .01 [-.06,.07] .00 0.22 .954     0.46 

Addition x age 0.2 .04 [-.05,.14] .00 0.89 .748     1.31 

Subtraction x age -0.15 -.04 [-.13,.05] .00 -0.82 .748     0.41 

Multiplication x age -0.01 .00 [-.09,.08] .00 -0.06 .954     0.22 

Number line estimation x age 2.56 .02 [-.05,.09] .01 0.59 .828     2.26 

Approximate arithmetic x age -0.07 -.02 [-.09,.05] .00 -0.54 .847     0.54 

Conceptual knowledge x age -0.11 -.03 [-.11,.04] .00 -0.92 .748     0.34 

Basic geometry x age 0.04 .04 [-.03,.11] .00 1.12 .713     0.31 

Non-sym. mag. comp. x age 0.18 .03 [-.04,.10] .00 0.83 .748     0.61 

G. cognitive ability x age -0.11 -.03 [-.09,.05] .00 -0.65 .828     0.80 

Addition x gender -0.06 -.11 [-.2, -.01] .00 -2.16 .155     0.16 

Subtraction x gender 0 .00 [-.09,.10] .00 0.08 .954     0.12 

Multiplication x gender 0.03 .06 [-.03,.13] .00 1.33 .616     0.13 

Number line estimation x gender -1.08 -.07 [-.14,.00] .00 -2.04 .178     0.09 

Approximate arithmetic x gender 0 .00 [-.08,.09] .00 0.07 .954     0.14 

Conceptual knowledge x gender -0.01 -.02 [-.09,.06] .00 -0.46 .877     0.57 

Basic geometry x gender 0 -.02 [-.10,.05] .00 -0.63 .828     0.51 

Non-sym. mag. comp. x gender 0.03 .05 [-.02,.11] .00 1.29 .616     0.44 

G. cognitive ability x gender 0 -.01 [-.08,.07] .00 -0.13 .954     0.07 

∑  - - - .33    - - 100.00    

 Note: B: unstandardized regression weight, β: standardized regression weight, L-CI: lower boundary of 

95%-confidence interval, L-CI: upper boundary of 95%-confidence interval,  RW: raw relative weight 

(within rounding error raw weights will sum to R²), t = t-value measures the size of the effect relative to 

the variation in sample data, p: FDR adjusted p-value, RS-RW: relative weight rescaled as a, percentage 

of predicted variance in the criterion variable attributed to each predictor (within rounding error rescaled 

weights sum to 100 %). a code female = -1, male = 1.* significantly different from a random variable. 
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Appendix Chapter III 

Data Preparation study 1 

Drift correction.We inspected all trials to check for plausibility and drift in eye movement 

patterns. We assumed that eye movement patterns for the text should be mostly sequential, while 

processing of the graph is more concentric. We applied a drift correction whenever fixations that 

were part of a sequential reading pattern fell into the graph area and fixations that were part of a 

concentric pattern fell into the text area. We used the first line of text to align the eye movement 

pattern with the stimulus material. We applied drift correction in 10% of all trials, and less than 1% 

of adjustments were larger than 150 pixels. 

Tracking rate. As a next preparatory step in the analysis, we calculated a by-trial tracking 

rate defined as the ratio between tracked overall fixation duration and time-on-task. This tracking 

rate can be expected to be one hundred percent due to time for saccades and blinking. However, 

since we were analyzing the combination of time-on-task and eye movements, they should be pro-

portional. We assumed that events that lower this tracking rate occur randomly. Therefore, we ex-

cluded trials in which fixation duration and time-on-task deviate to an extraordinary extent. We 

marked the eye-tracking measures for specific trials as missing when the ratio between tracked 

overall fixation duration and time-on-task was lower than 60%. A total of 68 trials did not reach 

this threshold.  

Trimming process measures. Due to the amount of content for each item, we assumed that 

response times shorter than 5 seconds do not provide information about the cognitive processes of 

interest. Therefore, we excluded these cases. Since data collection took place in an experimental 

setting and all responses had a reasonable length, we did not define an upper boundary.  

Data Preparation study 2. In the drift correction applied to 9% of trials, 8% of trials were 

deleted in the plausibility check. A further 205 trials had to be excluded due to a low tracking rate. 

This procedure led to the exclusion of 12 individuals from the analyzed sample. The remaining 88 

invalid trials were spread evenly across individuals and items.  

Again, two response times were below the 5-second threshold. Additionally, five initial 

reading times for the population dynamics material were much higher than average. The values are 

in line with events noted in the experiment protocol (a different browser version led to a difference 

in the display of the text bottom) and were marked as missing.  
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Appendix Table 2. Study 1: Means and Standard Deviations of Time-on-Task in Seconds and 

Count of Text-Graph Transitions during the Initial Reading Phase. 

Material 
ToT 

M (SD) 

TGT 

M (SD) 

Population dynamics 96.33 (9.99) 10.85 (0.56) 

Action potentials 94.46 (8.15) 8.12 (1.05) 

Sleep cycles 98.17 (9.49) 13.33 (1.41) 

Overall 96.32 (3.06) 10.89 (0.35) 

Note. N = 29. Means and standard deviations are pooled from five imputed datasets. 

 

Appendix Table 3. Study 1: Means and Standard Deviations of Time-on-Task in Seconds and 

Count of Text-Graph Transitions during Task Completion Phase. 

Material Number Task Accuracy 
ToT 

M (SD) 

TGT 

M (SD) 

Population dy-

namics 

1 2 .66 53.61 (38.60) 4.9 (0.92) 

2 1 .52 65.69 (50.35) 19.1 (5.92) 

3 1 .62 38.72 (16.75) 11.15 (1.28) 

4 1 .62 39.88 (35.62) 10.21 (2.36) 

Action poten-

tials 

5 2 .66 56.12 (74.83) 5.13 (1.24) 

6 1 .55 56.71 (76.69) 16.49 (4.97) 

7 1 .17 59.42 (62.45) 18.29 (7.57) 

8 1 .59 58.28 (44.56) 13.33 (2.71) 

Sleep cycles 

9 2 .62 43.31 (15.88) 4.19 (0.69) 

10 2 .62 66.93 (74.31) 6.81 (1.48) 

11 1 .34 48.79 (43.04) 15.72 (4.47) 

12 1 .41 42.68 (16.86) 13.33 (1.99) 

Overall    .53 52.51 (  3.95) 11.56 (0.32) 

Note. N = 29. Means and standard deviations are pooled from five imputed datasets. 

 

Appendix Table 4. Study 1: Correlations and p-Values of Time-on-Task (ToT) and Text-Graph 

Transitions (TGT) during Initial Reading (IR) and Task Completion (TC). 

 1 2 3 4 

1. Accuracy  r (p)       

2.ToT:IR  .11 (.040) r (p)   

3.TGT:TC  .10 (.067) .58 (.000) r (p)  

4.ToT:IR -.17 (.001) .12 (.022) -.00 (.933) r (p) 

5.TGT:TC -.24 (.000) .07 (.229)  .02 (.766) .67 (.000) 

 Note. N = 348. Correlations and p-values are pooled from five imputed da-

tasets. 

 



Understanding graphs  Appendix Chapter III 

152 

 

Appendix Table 5. Study 2: Means and Standard Deviations of Time-on-Task in Seconds and Count 

of Text-Graph Transitions during the Initial Reading Phase. 

Material 
ToT 

M (SD) 

TGT 

M (SD) 

Population dynamics 104.36 (4.74) 11.72 (0.51) 

Action potentials 103.76 (5.63) 6.24 (0.15) 

Sleep cycles 109.28 (7.76) 12.16 (0.57) 

Overall 105.8 (2.02) 10.04 (0.15) 

Note. N = 48. Means and standard deviations are pooled from five imputed datasets. 

Appendix Table 6. Study 2: Means and Standard Deviations of Time-on-Task in Seconds and 

Count of Text-Graph Transitions during Task Completion Phase. 

Material Number Task Accuracy 
ToT 

M (SD) 

TGT 

M (SD) 

Population dy-

namics 

1 2 .54 58.48 (23.63) 5.98 (1.14) 

2 1 .40 60.45 (34.23) 15.47 (2.61) 

3 1 .48 43.66 (16.65) 12.24 (2.01) 

4 1 .67 42.91 (21.52) 11.43 (1.41) 

Action poten-

tials 

5 2 .60 65.14 (47.87) 8.23 (2.77) 

6 1 .48 59.29 (34.19) 13.9 (2.53) 

7 1 .12 63.33 (28.59) 19.09 (3.04) 

8 1 .50 55.79 (27.77) 14.57 (2.52) 

Sleep cycles 

9 2 .75 54.62 (33.53) 6.8 (1.31) 

10 2 .69 60.35 (27.96) 7.59 (1.62) 

11 1 .42 58.43 (27.13) 18.3 (2.97) 

12 1 .52 46.56 (14.86) 14.57 (1.63) 

Overall     .51 55.75 (2.39) 12.35 (0.21) 

Note. N = 48. Means and standard deviations are pooled from five imputed datasets. 

 

Appendix Table 7. Study 2: Correlations and p-Values of Time-on-Task (ToT) and Text-Graph 

Transitions (TGT) during Initial Reading (IR) and Task Completion (TC). 

 1 2 3 5 

1. Accuracy  r (p)       

2.ToT:IR .01 (.745) r (p)   

3.TGT:TC .15 (.001) .51 (.000) r (p)  

4.ToT:IR -.12 (.006) .12 (.004) -.06 (.180) r (p) 

5.TGT:TC -.20 (.000) .06 (.174) -.04 (.509) .69 (.000) 

Note. N = 576. Correlations and p-values are pooled from multiple imputed datasets. 
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Appendix Table 8. Study 2: Means (M), Standard Deviations (SD), and Correlations of Individual 

Averages in Time-on-Task (ToT) and Text-Graph Transitions (TGT) during Initial Reading (IR) 

and Task Completion (TC), as well as Test Scores for Prior Knowledge (PK) and Graph (GC) 

and Reading Comprehension (RC). 

  1 2 3 4 5 6 7 8 

1. Acc         

2. Initial text view. 
-.11 

(.444) 
       

3. Initial graph 

view. 

.24 

(.093) 

.19 

(.198) 
      

4. Text viewing 
-.23 

(.111) 

.47 

(.001) 

-.05 

(.745) 
     

5. Graph viewing 
0  

(.996) 

-.02 

(.871) 

.31 

(.030) 

.27 

(.064) 
    

6. Prior knowledge 
.35 

(.014) 

-.35 

(.015) 

.21 

(.145) 

-.46 

(.001) 

.03 

(.842) 
   

7. Graph compr. 
.38 

(.007) 

-.29 

(.044) 

.37 

(.009) 

-.24 

(.095) 

.35 

(.016) 

.47 

(.001) 
  

8. Reading compr. 
.22 

(.136) 

-.28 

(.051) 

.17 

(.261) 

-.26 

(.075) 

.02 

(.880) 

.37 

(.010) 

.27 

(.066) 
 

M (SD) 
0.51 

(0.18) 

75.23 

(23.35) 

10.02 

(7.07) 

21.09 

(9.29) 

22.48 

(7.75) 

18.42 

(3.12) 

17.15 

(3.14) 

11.02 

(3.32) 

Note. N = 48. Correlations, p-values, means, and standard deviations pooled from five imputed datasets. 
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Appendix Table 9. Study 2: Likelihood ratio test results for nested model comparison. model com-

parisons indicate whether alternative model is a better description of the data than the null 

model. the individual characteristics prior knowledge (PK) and graph (GC) and reading compre-

hension (RC) and their interactions with time-on-task (ToT) and text-graph transitions (TGT) 

during initial reading (IR) and task completion (TC) are subsequently added to the original 

model including the main effects of ToT and TGT during IR and TC. 

 Process 

measure 

 Individual 

characteristic 
Null model Alternative model df χ2 p 

ToT 

 PK 

ToT + PK 1 5.25 .022 

ToT + PK + IR x PK 1 7.56 .006 

ToT + PK + TC x PK 1 10.29 .001 

ToT + PK + IR x PK + TC x PK 2 21.19 <.001 

      

GC 

ToT + GC 1 12.58 <.001 

ToT + GC + IR x GC 1 2.23 .136 

ToT + GC + TC x GC 1 1.93 .165 

      

RC TOT + RC 1 2.04 .153 

 TGT 

 PK 

TGT + PK 1 5.26 .022 

TGT + PK + IR x PK 1 2.09 .148 

TGT + PK + TC x PK 1 0.02 1.0 

      

 GC 

TGT + GC 1 5.99 .014 

TGT + GC + IR x GC 1 0.50 .482 

TGT + GC + TC x GC 1 0.03 .863 

      

 RC TGT + RC 1 2.04 .153 

Note. N = 576. χ2 and p-values of nested model comparisons are combined from imputed 

datasets. Combination rules are based on Enders (2010, p. 239 ff. as cited by Robitzsch, 

Grund, & Henke, 2017). Bolded p-values < .05 indicate that the alternative model de-

scribes the data significantly better than the null model. 
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Appendix Chapter IV 

Appendix Table 10. Shows the topics of the texts and the core concepts they contain.  

Topics Concept 

(a) population dynamics 

(1) predator peak after prey peak 

(2) peaks stay on the same level 

(3) predator mean below prey mean 

(b) action potential 

(4) threshold value -50mv 

(5) resting potential of -70mv 

(6) K+ open after action potential peaks 

(c) sleep cycle 

(7) falling asleep in first non-REM sleep phase 

(8) four to six sleep cycles per night 

(9) deep sleep in the first half of the night 

 

Appendix Formula 1: The AICc is calculated using the value of maximized log-likelihood function 

for the respective BLIM (Wagenmakers & Farrell, 2004). In principle, AICc relates the value of 

the maximized log-likelihood function to the number of parameters (k) of each model. The AICc 

additionally adds a constant to the AIC. This constant relates to the sample size (n) and the num-

ber of parameters (k):  

𝐴𝐼𝐶𝑐 = 2𝑘 − 2 ln(𝑙𝑜𝑔𝐿𝑖𝑘𝑒) +  
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 (4) 

 

Appendix Formula 2: Akaike Weights (ωi). The ωi can be interpreted as conditional probabilities. 

The ωi indicate which model is the most likely of all the hypothesized models. 

ω𝑖 =
exp(−

1
2 ∆𝑖)

∑ exp(−
1
2 ∆𝑖)

𝑚
𝑖=1

 (5) 



Understanding graphs  

156 

 

References 

Åberg-Bengtsson, L. (1999). Dimensions of performance in the interpretation of diagrams, tables, 

and maps: Some gender differences in the Swedish Scholastic Aptitude Test. Journal of 

Research in Science Teaching, 36, 565-582. doi:10.1002/(SICI)1098-

2736(199905)36:5<565::AID-TEA4>3.0.CO;2-L 

Åberg‐Bengtsson, L., & Ottosson, T. (2006). What lies behind graphicacy? Relating students' 

results on a test of graphically represented quantitative information to formal academic 

achievement. Journal of Research in Science Teaching, 43, 43-

62.https://doi.org/10.1002/tea.20087 

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple 

representations. Learning and Instruction, 16, 183-198. 

https://doi.org/10.1016/j.learninstruc.2006.03.001 

Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and 

instruction, 14, 241-255. https://doi.org/10.1016/j.learninstruc.2004.06.002 

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple 

representational systems in learning primary mathematics. The Journal of the Learning 

Sciences, 11, 25-61.  

Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (in press). Instruction based on 

adaptive learning technologies. In R. E. Mayer & P. Alexander (Eds.), Handbook of 

Research on Learning and Instruction. Routledge. 

Ananiadou, K., & Claro, M. (2009). 21st Century Skills and Competences for New Millennium 

Learners in OECD Countries (Report No. 41). Paris: OECD Publishing. 

http://dx.doi.org/10.1787/218525261154 

Arndt, J., Schüler, A., & Scheiter, K. (2015). Text–Picture Integration: How Delayed Testing 

Moderates Recognition of Pictorial Information in Multimedia Learning. Applied 

Cognitive Psychology, 29, 702-712. https://doi.org/10.1002/acp.3154 

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed 

random effects for subjects and items. Journal of Memory and Language, 59, 390-412. 

https://doi.org/10.1016/j.jml.2007.12.005 

Bailey, D., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction 

knowledge. Developmental Science, 17, 775-785, doi: 10.1111/desc.12155. 

Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence 

against a representational shift. Developmental Science, 14, 125-135. doi: 10.1111/j.1467-

7687.2010.00962.x 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models 

using lme4. Journal of Statistical Software, 67, 1-48. 

https://doi.org/10.18637/jss.v067.i01b  

Baumert, J., Bos, W., & Watermann, R. (1998). TIMSS/III: Schülerleistungen in Mathematik und 

den Naturwissenschaften am Ende der Sekundarstufe II im internationalen Vergleich: 

Zusammenfassung deskriptiver Ergebnisse. Berlin: Max-Planck-Institut für 

https://doi.org/10.1002/tea.20087
https://doi.org/10.1016/j.learninstruc.2006.03.001
https://doi.org/10.1016/j.learninstruc.2004.06.002
http://dx.doi.org/10.1787/218525261154
https://doi.org/10.1002/acp.3154
https://doi.org/10.1016/j.jml.2007.12.005
http://www.psy.cmu.edu/~siegler/Bailey-etal2014.pdf
https://doi.org/10.18637/jss.v067.i01b


Understanding graphs  References 

157 

 

Bildungsforschung. Retrieved from: http://hdl.handle.net/11858/00-001M-0000-0025-

A35F-4 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289-

300. Retrieved from http://www.jstor.org/stable/2346101 

Berg, C. A., & Phillips, D. G. (1994). An investigation of the relationship between logical 

thinking structures and the ability to construct and interpret line graphs. Journal of 

Research in Science Teaching, 31, 323-344. doi: 10.1002/tea.3660310404 

Berg, C. A., & Smith, P. (1994). Assessing students' abilities to construct and interpret line 

graphs: Disparities between multiple-choice and free-response instruments. Science 

Education, 78, 527-554. doi:10.1002/sce.3730780602 

Bieda, K. N., & Nathan, M. J. (2009). Representational disfluency in algebra: Evidence from 

student gestures and speech. ZDM, 41, 637-650. https://doi.org/10.1007/s11858-009-

0198-0 

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic 

learning. Child Development, 79, 1016-1031. doi:10.1111/j.1467-8624.2008.01173.x 

Brenner, M. E., Herman, S., Ho, H. Z., & Zimmer, J. M. (1999). Cross-national comparison of 

representational competence. Journal for Research in Mathematics Education, 541-557. 

Stable URL: https://www.jstor.org/stable/749773 

Burnham, K. P., & Anderson, D. R. (2003). Model selection and multimodel inference: a 

practical information-theoretic approach. New York: Springer Science & Business 

Media. 

Butcher, K. (2014). The Multimedia Principle. In R. Mayer (Ed.), The Cambridge Handbook of 

Multimedia Learning (Cambridge Handbooks in Psychology, pp. 174-205). Cambridge: 

Cambridge University Press. https://doi.org/10.1017/CBO9781139547369  

Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. R. (2001). Storage and retrieval of 

addition facts: The role of number comparison. The Quarterly Journal of Experimental 

Psychology: Section A, 54, 1005-1029. doi: 10.1080/02724980143000064 

Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by chained 

equations in R. Journal of Statistical Software, 45, 1-67. 

https://dx.doi.org/10.18637/jss.v045.i03  

Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension 

of complex graphics. Learning and Instruction, 20, 155-166. 

https://doi.org/10.1016/j.learninstruc.2009.02.014 

Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students' learning from 

text. Educational Psychology Review, 14, 5-26. https://doi.org/10.1023/A:1013176309260  

Carpenter, P. A., & Just, M. A. (1975). Sentence comprehension: a psycholinguistic processing 

model of verification. Psychological Review, 82, 45-73. 

http://dx.doi.org/10.1037/h0076248 

Chomsky, N., & Halle, M. (1965). Some controversial questions in phonological theory. Journal 

of Linguistics, 1, 97-138. https://doi.org/10.1017/S0022226700001134 

https://doi.org/10.1007/s11858-009-0198-0
https://doi.org/10.1007/s11858-009-0198-0
http://www.psy.cmu.edu/~siegler/boo-sieg08.pdf
https://www.jstor.org/stable/749773
https://doi.org/10.1017/CBO9781139547369
https://dx.doi.org/10.18637/jss.v045.i03
https://doi.org/10.1016/j.learninstruc.2009.02.014
https://doi.org/10.1023/A:1013176309260
http://psycnet.apa.org/doi/10.1037/h0076248
https://doi.org/10.1017/S0022226700001134


Understanding graphs  References 

158 

 

Cox, R., Romero, P., du Boulay, B., & Lutz, R. (2004, March). A cognitive processing 

perspective on student programmers’‘graphicacy’. In International Conference on Theory 

and Application of Diagrams (pp. 344-346). Springer, Berlin, Heidelberg. 

Curcio, F. R. (1987). Comprehension of mathematical relationships expressed in graphs. Journal 

for Research in Mathematics Education, 18, 382-393. doi:10.2307/749086 

Dackermann, T., Huber, S., Bahnmueller, J., Nuerk, H.-C., & Moeller, K. (2015). An integration 

of competing accounts on children's number line estimation. Frontiers in Psychology, 

6:884. doi:10.3389/fpsyg.2015.00884 

De Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., & Partchev, I. 

(2011). The estimation of item response models with the lmer function from the lme4 

package in R. Journal of Statistical Software, 39, 1-28. 

https://www.jstatsoft.org/article/view/v039i12/v39i12.pdf 

De La Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179-199. 

Doi: 10.1007/s11336-011-9207-7 

De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-

symbolic numerical magnitude processing skills relate to individual differences in 

children's mathematical skills? A review of evidence from brain and behavior. Trends in 

Neuroscience and Education, 2, 48-55. doi:10.1016/j.tine.2013.06.001c 

Dehaene, S. (2009). Origins of mathematical intuitions. Annals of the New York Academy of 

Sciences, 1156, 232-259. doi:10.1111/j.1749-6632.2009.04469.x 

Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation 

between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219-250. 

https://doi.org/10.1016/S0010-9452(08)70002-9 

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number 

processing. Cognitive neuropsychology, 20, 487-506. doi:10.1080/02643290244000239 

Deutsches, P. K., & Baumert, J. (Eds.). (2013). PISA 2000-Ein differenzierter Blick auf die 

Länder der Bundesrepublik Deutschland. Verlag: Springer-. doi:10.1007/978-

3-322-97590-4 

Doignon, J. P., & Falmagne, J. C. (1985). Spaces for the assessment of knowledge. International 

journal of man-machine studies, 23, 175-196. Doi: 10.1016/S0020-7373(85)80031-6  

Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, 

neuroscience and education. Psychology Press, Hove, New York, 2005. pp. 358. 

doi:10.1002/icd.531. 

Eitel, A., Scheiter, K., Schüler, A., Nyström, M., & Holmqvist, K. (2013). How a picture 

facilitates the process of learning from text: Evidence for scaffolding. Learning and 

Instruction, 28, 48-63. https://dx.doi.org/10.1016/j.learninstruc.2013.05.002 

Embretson, S. E., & Daniel, R. C. (2008). Understanding and quantifying cognitive complexity 

level in mathematical problem solving items. Psychology Science, 50, 328.  

Falmagne, J. C., Koppen, M., Villano, M., Doignon, J. P., & Johannesen, L. (1990). Introduction 

to knowledge spaces How to build, test, and search them. Psychological Review, 97, 201- 

224. https://dx.doi.org/10.1037/0033-295X.97.2.201  

https://dx.doi.org/10.3389%2Ffpsyg.2015.00884
https://www.jstatsoft.org/article/view/v039i12/v39i12.pdf
https://doi.org/10.1016/j.tine.2013.06.001
https://doi.org/10.1016/S0010-9452%2808%2970002-9
https://dx.doi.org/10.1016/j.learninstruc.2013.05.002
https://dx.doi.org/10.1037/0033-295X.97.2.201


Understanding graphs  References 

159 

 

Fischer, G. H. (1995). The linear logistic test model. In Rasch models (pp. 131-155). Springer, 

New York, NY. https://doi.org/10.1007/978-1-4612-4230-7_8 

Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition. From single 

digits to arithmetic. The Quarterly Journal of Experimental Psychology, 67, 1461-1483. 

http://dx.doi.org/10.1080/17470218.2014.927515 

Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based graph comprehension. 

In Diagrammatic representation and inference (pp. 18-30). Springer Berlin Heidelberg. 

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors 

influencing comprehension and instructional implications. Journal for Research in 

Mathematics Education, 32, 124-158. doi:10.2307/749671 

Friendly, M. (2008). A brief history of data visualization. In Handbook of data visualization (pp. 

15-56). Springer, Berlin, Heidelberg. 

Galesic, M., & Garcia-Retamero, R. (2011). Graph literacy a cross-cultural comparison. Medical 

Decision Making, 31, 444-457. doi:10.1177/0272989X10373805 

Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: 

strategy choice and speed-of-processing differences in younger and older 

adults. Psychology and aging, 8, 242. 

Gillan, D. J. (1995). Visual arithmetic, computational graphics, and the spatial metaphor. Human 

Factors, 37, 766-780. https://doi.org/10.1518/001872095778995571 

Gillan, D. J. (2009, October). A Componential model of human interaction with graphs: VII. A 

Review of the Mixed Arithmetic-Perceptual Model. In Proceedings of the Human Factors 

and Ergonomics Society annual meeting (Vol. 53, No. 12, pp. 829-833). Sage CA: Los 

Angeles, CA: SAGE Publications. doi: 0.1518/107118109X12524442637705 

Gillan, D. J., & Lewis, R. (1994). A componential model of human interaction with graphs: 1. 

Linear regression modeling. Human Factors, 36, 419-440. 

doi:10.1177/001872089403600303  

Goldhammer, F., Naumann, J., Stelter, A., Tóth, K., Rölke, H., & Klieme, E. (2014). The time on 

task effect in reading and problem solving is moderated by task difficulty and skill: 

Insights from a computer-based large-scale assessment. Journal of Educational 

Psychology, 106, 608-626. http://dx.doi.org/10.1037/a0034716 

Greiff, S., Wüstenberg, S., Molnár, G., Fischer, A., Funke, J., & Csapó, B. (2013). Complex 

problem solving in educational contexts—Something beyond g: Concept, assessment, 

measurement invariance, and construct validity. Journal of Educational Psychology, 105, 

364-379. http://dx.doi.org/10.1037/a0031856  

Guthrie, J. T., Weber, S., & Kimmerly, N. (1993). Searching documents: Cognitive processes and 

deficits in understanding graphs, tables, and illustrations. Contemporary Educational 

Psychology, 18, 186-221. doi:10.1080/10862969709547949 

Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook 

passages among low-and high-ability children. Contemporary educational 

psychology, 24, 95-123. Doi: 10.1006/ceps.1998.0987 

https://doi.org/10.1007/978-1-4612-4230-7_8
http://dx.doi.org/10.1080/17470218.2014.927515
https://doi.org/10.1177/0272989X10373805
https://doi.org/10.1518/001872095778995571
http://psycnet.apa.org/doi/10.1037/a0034716
http://psycnet.apa.org/doi/10.1037/a0031856


Understanding graphs  References 

160 

 

Hartig, J., & Höhler, J. (2008). Representation of competencies in multidimensional IRT models 

with within-item and between-item multidimensionality. Zeitschrift für 

Psychologie/Journal of Psychology, 216, 89-101.doi: 10.1027/0044-3409.216.2.89 

Hartig, J., & Klieme, E. (2006). Kompetenz und Kompetenzdiagnostik. Leistung und 

Leistungsdiagnostik, 127-143. doi:10.1007/3-540-33020-8_9 

Hegarty, M. (2013). Cognition, metacognition, and the design of maps. Current Directions in 

Psychological Science, 22, 3-9. doi: 10.1177/0963721412469395 

Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and 

diagrams. Journal of Memory and Language, 32, 717-742. 

https://doi.org/10.1006/jmla.1993.1036 

Heller, J., & Wickelmaier, F. (2013). Minimum discrepancy estimation in probabilistic knowledge 

structures. Electronic Notes in Discrete Mathematics, 42, 49-56.  

https://dx.doi.org/10.1016/j.endm.2013.05.145 

Heller, J., Steiner, C., Hockemeyer, C., & Albert, D. (2006). Competence-based knowledge 

structures for personalised learning. International Journal on E-Learning, 5, 75-88. 

Chesapeake, VA: Association for the Advancement of Computing in Education (AACE). 

https://www.learntechlib.org/p/21759/. 

Hill, M., Sharma, M. D., O'Byrne, J., & Airey, J. (2014). Developing and evaluating a survey for 

representational fluency in science. International Journal of Innovation in Science and 

Mathematics Education (formerly CAL-laborate International), 22. Retrieved from: 

https://openjournals.library.sydney.edu.au/index.php/CAL/article/download/7484/8465 

Hollands, J. G., & Spence, I. (1998). Judging proportion with graphs: The summation model. 

Applied Cognitive Psychology, 12, 173-190. doi:10.1002/(SICI)1099-

0720(199804)12:2<173::AID-ACP499>3.0.CO;2-K 

Huestegge, L., & Philipp, A. M. (2011). Effects of spatial compatibility on integration processes 

in graph comprehension. Attention, Perception, & Psychophysics, 73, 1903-1915.doi:  

10.3758/s13414-011-0155-1 

Hullman, J., Adar, E., & Shah, P. (2011). Benefitting infovis with visual difficulties. IEEE 

Transactions on Visualization and Computer Graphics, 17, 2213-2222. doi: 

10.1109/TVCG.2011.175 

Hyönä, J. (2010). The use of eye movements in the study of multimedia learning. Learning and 

Instruction, 20, 172-176. http://dx.doi.org/10.1016/j.learninstruc.2009.02.013 

Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect 

in multimedia learning. Journal of Experimental Psychology: Applied, 18, 178-191. 

http://dx.doi.org/10.1037/a0026923 

Johnson, J. W. (2000). A heuristic method for estimating the relative weight of predictor variables 

in multiple regression. Multivariate Behavioral Research, 35, 1-19. 

doi:10.1207/S15327906MBR3501_1 

Kintsch, W. (1988). The role of knowledge in discourse comprehension: a construction-

integration model. Psychological Review, 95, 163-182. http://dx.doi.org/10.1037/0033-

295X.95.2.163 

https://doi.org/10.1006/jmla.1993.1036
https://doi.org/10.1016/j.endm.2013.05.145
https://doi.org/10.1016/j.endm.2013.05.145
https://www.learntechlib.org/p/21759/
https://openjournals.library.sydney.edu.au/index.php/CAL/article/download/7484/8465
http://dx.doi.org/10.1002/(SICI)1099-0720(199804)12:2%3C173::AID-ACP499%3E3.0.CO;2-K
http://dx.doi.org/10.1002/(SICI)1099-0720(199804)12:2%3C173::AID-ACP499%3E3.0.CO;2-K
http://psycnet.apa.org/doi/10.1016/j.learninstruc.2009.02.013
http://psycnet.apa.org/doi/10.1037/a0026923
http://psycnet.apa.org/doi/10.1037/0033-295X.95.2.163
http://psycnet.apa.org/doi/10.1037/0033-295X.95.2.163


Understanding graphs  References 

161 

 

Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational contexts. 

In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational 

contexts (pp. 3-22). Ashland, OH, US: Hogrefe & Huber Publishers. 

Kohl, P. B., & Finkelstein, N. D. (2005). Student representational competence and self-

assessment when solving physics problems. Physical Review Special Topics-Physics 

Education Research, 1, 1- 11. DOI:https://doi.org/10.1103/PhysRevSTPER.1.010104 

Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. (2013). Early numerical development and 

the role of non-symbolic and symbolic skills. Learning and Instruction, 25, 95-103. 

doi:10.1016/j.learninstruc.2012.12.001 

Korossy, K. (1999). Modeling knowledge as competence and performance. In D. Albert & J. 

Lukas (Eds.), Knowledge spaces: Theories, empirical research, applications (pp. 103-

132). Mahwah, NJ: Lawrence Erlbaum. 

Kosslyn, S. M. (1989). Understanding charts and graphics. Applied Cognitive Psychology, 3, 185-

225. https://doi.org/10.1002/acp.2350030302 

Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses 

to different representations of chemical phenomena. Journal of research in science 

teaching, 34, 949-968. Doi: 10.1002/(SICI)1098-2736(199711)34:9<949::AID-

TEA7>3.0.CO;2-U 

Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representationl 

competence. In Visualization in science education (pp. 121-145). Springer, Dordrecht.   

https://doi.org/10.1007/1-4020-3613-2_8  

Lachmayer, S. (2008). Entwicklung und Überprüfung eines Strukturmodells der 

Diagrammkompetenz für den Biologieunterricht (Doctoral dissertation) [Development 

and evaluation of a structural model of graphing competence in science education]. 

Retrieved from http://macau.uni-kiel.de/receive/dissertation_diss_00003041  

Lai, K., Cabrera, J., Vitale, J. M., Madhok, J., Tinker, R., & Linn, M. C. (2016). Measuring graph 

comprehension, critique, and construction in science. Journal of Science Education and 

Technology, 25, 665-681. doi: 10.1007/s10956-016-9621-9 

Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., ... & Tsai, C. C. (2013). A 

review of using eye-tracking technology in exploring learning from 2000 to 

2012. Educational Research Review, 10, 90-115. 

http://dx.doi.org/10.1016/j.edurev.2013.10.001  

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, 

learning, and teaching. Review of educational research, 60, 1-64. doi: 

10.3102/00346543060001001 

Leroi-Gourhan, A. (1988). Hand und Wort: Die Evolution von Technik, Sprache und Kunst. 

Frankfurt am Main: Suhrkamp. 

Leuders, T., & Sodian, B. (2013). Inwiefern sind Kompetenzmodelle dazu geeignet kognitive 

Prozesse von Lernenden zu beschreiben?. Zeitschrift für Erziehungswissenschaft, 16, 27-

33. Doi: 10.1007/s11618-013-0381-5 

https://doi.org/10.1016/j.learninstruc.2012.12.001
https://doi.org/10.1002/acp.2350030302
https://doi.org/10.1007/1-4020-3613-2_8
http://macau.uni-kiel.de/receive/dissertation_diss_00003041
http://dx.doi.org/10.1016/j.edurev.2013.10.001


Understanding graphs  References 

162 

 

Lindner, M. A., Eitel, A., Strobel, B., & Köller, O. (2017). Identifying processes underlying the 

multimedia effect in testing: An eye-movement analysis. Learning and Instruction, 47, 

91-102. https://doi.org/10.1016/j.learninstruc.2016.10.007 

Link, T., Nuerk, H. C., & Moeller, K. (2014). On the relation between the mental number line and 

arithmetic competencies. The quarterly journal of experimental psychology, 67, 1597-

1613. http://dx.doi.org/10.1080/17470218.2014.892517 

Lowrie, T., & Diezmann, C. M. (2011). Solving graphics tasks: Gender differences in middle-

school students. Learning and Instruction, 21, 109-125. 

doi:10.1016/j.learninstruc.2009.11.005 

Lowrie, T., Diezmann, C. M., & Logan, T. (2012). A framework for mathematics graphical tasks: 

the influence of the graphic element on student sense making. Mathematics Education 

Research Journal, 24, 169-187. https://doi.org/10.1007/s13394-012-0036-5 

Mason, L., Pluchino, P., Tornatora, M. C., & Ariasi, N. (2013). An eye-tracking study of learning 

from science text with concrete and abstract illustrations. The Journal of Experimental 

Education, 81, 356-384. https://doi.org/10.1080/00220973.2012.727885 

Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture 

in processing and learning from an illustrated science text? Evidence from eye-movement 

patterns. Computers & Education, 60, 95-109. 

https://doi.org/10.1016/j.compedu.2012.07.011  

Mason, L., Tornatora, M. C., & Pluchino, P. (2015). Integrative processing of verbal and 

graphical information during re-reading predicts learning from illustrated text: an eye-

movement study. Reading and Writing, 28, 851-872. https://doi.org/10.1007/s11145-015-

9552-5  

Mayer, R. E. (2005). Cognitive Theory of Multimedia Learning. In R. E. Mayer (Ed.), The 

Cambridge Handbook of Multimedia Learning (pp. 43-71). New York, NY, US: 

Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139547369.005  

McKenzie, D. L., & Padilla, M. J. (1986). The construction and validation of the test of graphing 

in science (TOGS). Journal of Research in Science Teaching, 23, 571-579.doi:  

10.1002/tea.3660230702 

McNamara, D. S., & Magliano, J. (2009). Toward a comprehensive model of 

comprehension. Psychology of Learning and Motivation, 51, 297-384. 

https://doi.org/10.1016/S0079-7421(09)51009-2 

Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H. C. (2011). Early place-value 

understanding as a precursor for later arithmetic performance – A longitudinal study on 

numerical development. Research in developmental disabilities, 32, 1837-1851. 

doi:10.1016/j.ridd.2011.03.012 

Morris, T. P., White I. R., & Royston, P. (2014) Tuning multiple imputation by predictive mean 

matching and local residual draws. BMC Medical Research Methodology, 14, 75-87. 

https://doi.org/10.1186/1471-2288-14-75  

Naumann, J., & Goldhammer, F. (2017). Time-on-task effects in digital reading are non-linear 

and moderated by persons' skills and tasks' demands. Learning and Individual 

Differences, 53, 1-16. https://doi.org/10.1016/j.lindif.2016.10.002 

https://doi.org/10.1016/j.learninstruc.2016.10.007
http://dx.doi.org/10.1080/17470218.2014.892517
https://doi.org/10.1016/j.learninstruc.2009.11.005
https://doi.org/10.1080/00220973.2012.727885
https://doi.org/10.1016/j.compedu.2012.07.011
https://doi.org/10.1007/s11145-015-9552-5
https://doi.org/10.1007/s11145-015-9552-5
http://dx.doi.org/10.1017/CBO9781139547369.005
https://doi.org/10.1016/S0079-7421(09)51009-2
https://doi.org/10.1016/j.ridd.2011.03.012
https://doi.org/10.1186/1471-2288-14-75
https://doi.org/10.1016/j.lindif.2016.10.002


Understanding graphs  References 

163 

 

Nitsch, R., & Bruder, R. (2014). Diagnoseinstrument zum Aufdecken von Lernschwierigkeiten 

im Bereich funktionaler Zusammenhänge. Universitätsbibliothek Dortmund. 

Nitz, S., Ainsworth, S. E., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching 

predict the development of representational competence and biological 

knowledge?. Learning and Instruction, 31, 13-22. Doi: 

10.1016/j.learninstruc.2013.12.003 

Nuerk, H. C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental 

number line. Zeitschrift Für Psychologie, 219, 3-22. doi:10.1027/2151-2604/a000041 

O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality 

& Quantity, 41, 673-690. doi:10.1007/s11135-006-9018-6 

Ögren, M., Nyström, M., & Jarodzka, H. (2017). There’s more to the multimedia effect than 

meets the eye: is seeing pictures believing?. Instructional Science, 45, 263-287. 

https://doi.org/10.1007/s11251-016-9397-6  

Okan, Y., Garcia‐Retamero, R., Cokely, E. T., & Maldonado, A. (2012). Individual differences in 

graph literacy: Overcoming denominator neglect in risk comprehension. Journal of 

Behavioral Decision Making, 25, 390-401. doi: 10.1177/0963721413491570 

Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia 

learning? Evidence from eye movements. Computers in Human Behavior, 26, 110-

117. https://dx.doi.org/10.1016/j.chb.2009.09.001 

Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color 

coding affects multimedia learning. Computers & Education, 53, 445-453. 

https://doi.org/10.1016/j.compedu.2009.03.002 

Ozuru, Y., Dempsey, K., & McNamara, D. S. (2009). Prior knowledge, reading skill, and text 

cohesion in the comprehension of science texts. Learning and Instruction, 19, 228-242. 

https://doi.org/10.1016/j.learninstruc.2008.04.003 

Padilla, M. J., McKenzie, D. L., & Shaw, E. L. (1986). An examination of the line graphing 

ability of students in grades seven through twelve. School Science and Mathematics, 86, 

20-26. doi:10.1111/j.1949-8594.1986.tb11581.x 

Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of 

Arabic number processing, numerical comparison, and simple addition: A PET study. 

Journal of cognitive neuroscience, 12, 461-479. doi:10.1162/089892900562273 

Pinker, S. (1990). A theory of graph comprehension. In R. Freedle (Ed.), Artificial intelligence 

and the future of testing (pp. 73-126). Hillsdale, NJ: Erlbaum. 

Prenzel, M., Gogolin, I., & Krüger, H. H. (Eds.). (2008). Kompetenzdiagnostik: Zeitschrift für 

Erziehungswissenschaft. Sonderheft 8| 2007. Springer-Verlag. 

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

R Development Core Team (2012). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL 

http://www.R-project.org. 

https://doi.org/10.1027/2151-2604/a000041
https://doi.org/10.1007/s11251-016-9397-6
https://doi.org/10.1016/j.compedu.2009.03.002
https://doi.org/10.1016/j.learninstruc.2008.04.003
http://dx.doi.org/10.1162/089892900562273
https://www.r-project.org/
http://www.r-project.org./


Understanding graphs  References 

164 

 

Richter, J., Scheiter, K., & Eitel, A. (2016). Signaling text-picture relations in multimedia 

learning: A comprehensive meta-analysis. Educational Research Review, 17, 19-36.  

https://dx.doi.org/10.1016/j.edurev.2015.12.003 

Richter, T., Isberner, M. B., Naumann, J., & Neeb, Y. (2013). Lexical quality and reading 

comprehension in primary school children. Scientific Studies of Reading, 17, 415-434. 

http://dx.doi.org/10.1080/10888438.2013.764879 

Robitzsch, A., Grund, S., & Henke, T. (2017). miceadds: Some additional multiple imputation 

functions, especially for mice. R package version 2. 9-15. https://CRAN.R-

project.org/package=miceadds 

Roth, W. M., & Bowen, G. M. (2001). Professionals read graphs: A semiotic analysis. Journal for 

Research in mathematics Education, 159-194. doi: 10.2307/749672 

Royer, J. M., Hastings, C. N., & Hook, C. (1979). A sentence verification technique for 

measuring reading comprehension. Journal of Literacy Research, 11, 355-363. 

https://doi.org/10.1080/10862967909547341 

Rubin, D. B., & Schenker, N. (1986). Multiple imputation for interval estimation from simple 

random samples with ignorable nonresponse. Journal of the American Statistical 

Association, 81, 366-374. 

https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478280  

Rupp, A. A., & Mislevy, R. J. (2007). Cognitive foundations of structured item response models. 

In J. P. Leighton & M. J. Gierl (Eds.), Cognitive diagnostic assessment for education: 

Theory and applications (pp. 205-241). New York, NY, US: Cambridge University 

Press.http://dx.doi.org/10.1017/CBO9780511611186.008 

Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of 

highlighted text and diagram elements. Learning and Instruction, 36, 11-26. 

https://dx.doi.org/10.1016/j.learninstruc.2014.11.002  

Scheiter, K., Schüler, A., Gerjets, P., Huk, T., & Hesse, F. W. (2014). Extending multimedia 

research: How do prerequisite knowledge and reading comprehension affect learning from 

text and pictures. Computers in Human Behavior, 31, 73-84. 

https://dx.doi.org/10.1016/j.chb.2013.09.022 

Scheiter, S., Eitel, A. (2017). The Use of Eye Tracking as a Research and Instructional Tool in 

Multimedia Learning, Eye-Tracking Technology Applications in Educational 

Research (143-164). IGI Global. https://dx.doi.org/10.4018/978-1-5225-1005-5.ch008  

Schmidgall, S. P., Eitel, A., & Scheiter, K. (in press). Why do learners who draw perform well? 

Investigating the role of visualization, generation and externalization in learner-generated 

drawing. Learning and Instruction. https://dx.doi.org/10.1016/j.learninstruc.2018.01.006  

Schneider, M., Beeres, K., Coban, L., Merz, S., Susan Schmidt, S., Stricker, J., & De Smedt, B. 

(2017). Associations of non‐symbolic and symbolic numerical magnitude processing with 

mathematical competence: A meta‐analysis. Developmental science, 20. doi: 

10.1111/desc.12372 

Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, 

and mathematical achievement: Their interrelations in grades 5 and 6. Journal of 

Educational Psychology, 101, 359. doi:10.1037/a0013840 

https://doi.org/10.1016/j.edurev.2015.12.003
https://doi.org/10.1016/j.edurev.2015.12.003
http://dx.doi.org/10.1080/10888438.2013.764879
https://cran.r-project.org/package=miceadds
https://cran.r-project.org/package=miceadds
https://doi.org/10.1080/10862967909547341
https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478280
http://psycnet.apa.org/doi/10.1017/CBO9780511611186.008
https://dx.doi.org/10.1016/j.learninstruc.2014.11.002
https://doi.org/10.1016/j.chb.2013.09.022
https://dx.doi.org/10.4018/978-1-5225-1005-5.ch008
https://dx.doi.org/10.1016/j.learninstruc.2018.01.006
http://psycnet.apa.org/doi/10.1037/a0013840


Understanding graphs  References 

165 

 

Schneider, W., Schlagmüller, M., & Ennemoser, M. (2007). LGVT 6-12: Lesegeschwindigkeits-

und -verständnistest für die Klassen 6-12. Göttingen: Hogrefe. 

Schnotz, W. (2005). An Integrated Model of Text and Picture Comprehension. In R. E. Mayer 

(Ed.), The Cambridge Handbook of Multimedia Learning (pp. 71-103). New York, NY, 

US: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511816819.005 

Schnotz, W. (2014). Integrated model of text and picture comprehension. In R. E. Mayer (Ed.), 

Cambridge handbook of multimedia learning (2nd ed., pp. 72–103). Cambridge: 

Cambridge University Press. 

Schnotz, W., & Baadte, C. (2015). Surface and deep structures in graphics comprehension. 

Memory & Cognition, 43, 605-618. https://doi.org/10.3758/s13421-014-0490-2  

Schnotz, W., & Wagner, I. (2018). Construction and Elaboration of Mental Models Through 

Strategic Conjoint Processing of Text and Pictures. Journal of Educational Psychology. 

http://dx.doi.org/10.1037/edu0000246 

Schnotz, W., Ludewig, U., Ullrich, M., Horz, H., McElvany, N., & Baumert, J. (2014). Strategy 

shifts during learning from texts and pictures. Journal of Educational Psychology, 106, 

974-989. http://dx.doi.org/10.1037/a0037054 

Schoenfeld, A. H. (1989). Explorations of students' mathematical beliefs and behavior. Journal 

for research in mathematics education, 20, 338-355. doi: 10.2307/749440 

Schroeders, U., Bucholtz, N., Formazin, M., & Wilhelm, O. (2013). Modality specificity of 

comprehension abilities in the sciences. European Journal of Psychological Assessment, 

29, 3 -11. Doi: 10.1027/1015-5759/a000114 

Schubert, C. (2016). Supporting Adequate Processing of Multimedia Instruction: Two Gaze-

based Interventions (Doctoral dissertation, Eberhard Karls Universität Tübingen). 

http://dx.doi.org/10.15496/publikation-13763 

Schüler, A., Arndt, J., & Scheiter, K. (2015). Processing multimedia material: Does integration of 

text and pictures result in a single or two interconnected mental 

representations?. Learning and Instruction, 35, 62-72. 

https://doi.org/10.1016/j.learninstruc.2014.09.005 

Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are used 

and how they can be made more useful. Applied Cognitive Psychology, 23, 1227-1243. 

https://doi.org/10.1002/acp.1526 

Seufert, T. (2003). Supporting coherence formation in learning from multiple 

representations. Learning and Instruction, 13, 227-237. https://doi.org/10.1016/S0959-

4752(02)00022-1 

Shah, P., & Freedman, E. G. (2011). Bar and Line Graph Comprehension: An interaction of top‐
down and bottom‐up processes. Topics in Cognitive Science, 3, 560-578. 

doi:10.1111/j.1756-8765.2009.01066.x  

Shah, P., Freedman, E. G., & Vekiri, I. (2005). The Comprehension of Quantitative Information in 

Graphical Displays. In P. Shah (Ed.) & A. Miyake, The Cambridge Handbook of 

Visuospatial Thinking (pp. 426-476). New York, NY, US: Cambridge University 

Press.http://dx.doi.org/10.1017/CBO9780511610448.012 

http://psycnet.apa.org/doi/10.1017/CBO9780511816819.005
https://doi.org/10.3758/s13421-014-0490-2
http://dx.doi.org/10.1037/edu0000246
http://dx.doi.org/10.1037/a0037054
https://doi.org/10.1016/j.learninstruc.2014.09.005
https://doi.org/10.1002/acp.1526
https://doi.org/10.1016/S0959-4752(02)00022-1
https://doi.org/10.1016/S0959-4752(02)00022-1
http://psycnet.apa.org/doi/10.1017/CBO9780511610448.012


Understanding graphs  References 

166 

 

Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: 

Signaling techniques for guiding the process of graph comprehension. Journal of 

educational psychology, 91, 690 - 702. doi: 10.1037/0022-0663.91.4.690 

Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. 

Developmental Science, 19, 341-361. doi:10.1111/desc.12395 

Stieff, M., Hegarty, M., & Deslongchamps, G. (2011). Identifying representational competence 

with multi-representational displays. Cognition and Instruction, 29, 123-145. 

https://doi.org/10.1080/07370008.2010.507318 

TIMSS 2011 Assessment (2013). International Association for the Evaluation of Educational 

Achievement (IEA). Retrieved from https://nces.ed.gov/timss/pdf/TIMSS2011_G8_Math.pdf 

Tonidandel, S., & LeBreton, J. M. (2015). RWA web: A free, comprehensive, web-based, and 

user-friendly tool for relative weight analyses. Journal of Business and Psychology, 30, 

207-216. doi:10.1007/s10869-014-9351-z 

Tonidandel, S., LeBreton, J. M., & Johnson, J. W. (2009). Determining the statistical significance 

of relative weights. Psychological Methods, 14, 387-399. doi:10.1037/a0017735. 

Trafton, J. G., Kirschenbaum, S. S., Tsui, T. L., Miyamoto, R. T., Ballas, J. A., & Raymond, P. D. 

(2000). Turning pictures into numbers: extracting and generating information from 

complex visualizations. Int. J. Human-Computer Studies, 53, 827-850. 

doi:10.1006/ijhc.2000.0419 

Trickett, S. B., & Trafton, J. G. (2006, June). Toward a comprehensive model of graph 

comprehension: Making the case for spatial cognition. In International Conference on 

Theory and Application of Diagrams (pp. 286-300). Springer, Berlin, Heidelberg. 

Ullrich, M., Schnotz, W., Horz, H., McElvany, N., Schroeder, S., & Baumert, J. (2012). 

Kognitionspsychologische Aspekte eines Kompetenzmodells zur Bild-Text-

Integration. Psychologische Rundschau, 63, 11–17. Doi: 10.1026/0033-3042/a000105 

Van Der Linden, W. J. (2009). Conceptual issues in response‐time modeling. Journal of 

Educational Measurement, 46, 247-272. https://doi.org/10.1111/j.1745-984.2009.00080.x 

Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical 

modeling of school arithmetic word problems. Learning and Instruction, 4, 273-294. 

doi:10.1016/0959-4752(94)90002-7 

Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental 

dyscalculia. Developmental Medicine & Child Neurology, 49, 868-873. 

doi:10.1111/j.1469-8749.2007.00868.x 

von Kotzebue, L., & Nerdel, C. (2015). Modellierung und Analyse des Professionswissens zur 

Diagrammkompetenz bei angehenden Biologielehrkräften. Zeitschrift für 

Erziehungswissenschaft, 18, 687-712.doi: 10.1007/s11618-015-0639-1 

Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). 

Sources of individual differences in children's understanding of fractions. Child 

development, 85, 1461-1476. doi:10.1111/cdev.12218 

Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using Akaike 

weights. Psychonomic bulletin & review, 11(1), 192-196. Doi: 10.3758/BF03206482

http://www.psy.cmu.edu/~siegler/Siegler2016-magknow.pdf
https://doi.org/10.1080/07370008.2010.507318
https://doi.org/10.1111/j.1745-984.2009.00080.x
https://doi.org/10.1016/0959-4752(94)90002-7


Understanding graphs  

167 

 

Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21, 14-23. 

doi:10.3102/0013189X021001014 

Walker, C. M., & Beretvas, S. N. (2003). Comparing multidimensional and unidimensional profi-

ciency classifications. multidimensional IRT as a diagnostic aid. Journal of Educational 

Measurement, 40, 255–275. Retrieved from http://www.jstor.org/stable/1435130 

Weiß, R., Albinus, B., & Arzt, D. (2006). Grundintelligenztest Skala 2-Revision (CFT 20-R). 

Hogrefe. 

Wickelmaier, F., Helle, J., & Anselmi, P. (2016). psk: Probabilistic Knowledge Structures. R 

package version 0.4-0. https://CRAN.R-project.org/package=pks 

Wilson, M., & De Boeck, P. (2004). Descriptive and explanatory item response models. In Ex-

planatory item response models(pp. 43-74). Springer, New York, NY. doi: 

https://doi.org/10.1007/978-1-4757-3990-9_2 

Wright, B. D. (1977). Solving measurement problems with the Rasch model. Journal of Educa-

tional Measurement, 14, 97-116. doi: 10.1111/j.1745-3984.1977.tb00031.x  

Wu, M., & Adams, R. (2007). Applying the Rasch model to psycho-social measurement: A practi-

cal approach. Melbourne: Educational Measurement Solutions. 

Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and 

memory. Psychological Bulletin, 123, 162 -185. https://dx.doi.org/10.1037/0033-

2909.123. 

 

http://www.jstor.org/stable/1435130
https://cran.r-project.org/package=pks
https://doi.org/10.1007/978-1-4757-3990-9_2
https://dx.doi.org/10.1037/0033-2909.123
https://dx.doi.org/10.1037/0033-2909.123


Understanding graphs  List of tables 

168 

 

List of tables 

Table 1. Comparison of the literacy and comprehension research communities 

concerning prototypical research goals, stimuli, study designs, data sources, and 

statistical modeling approaches. .................................................................................. 11 

Table 2. Frequent terms describing the ability to understand graphs across research 

disciplines, with associated focus, relevant groups, representations and authors. ...... 14 

Table 3. Comprehension processes of the POMoG and their process components with 

definitions. ................................................................................................................... 30 

Table 4. Mean (M), Standard Deviation (SD) and obtained range of all measures. .................. 64 

Table 5. Correlations between graph reading, basic numerical abilities, general cognitive 

ability, as well as gender and age. ............................................................................... 65 

Table 6. Multiple regression results. Please note that for reasons of better readability 

only main effects are displayed (see appendix for a table including interaction 

terms). .......................................................................................................................... 66 

Table 7. Which Underlying Cognitive Processes May Be Inferred from the Positive and 

Negative Associations between Process Measures and Comprehension 

Outcome. ..................................................................................................................... 77 

Table 8. Study 1: Generalized Mixed Effect Regression with Person and Item as Random 

Effects, and Time-on-Task (ToT), Text-Graph Transitions (TGT) during Initial 

Reading (IR) and Task Completion (TC) as Fixed Effects. ........................................ 87 

Table 9. Study 1. Generalized Mixed Effect Regression with Person and Item as Random 

Effects, and Time-on-Task (ToT), Text-Graph Transitions (TGT) during Initial 

Reading (IR) and Task Completion (TC) as Fixed Effects. ........................................ 96 

Table 10. Model summary for BLIM of KNULL, KMR, KTC, and KPOWER. ................................ 122 

Table 11. The proportion of knowledge states in the probabilistic knowledge structure 

KTC. ............................................................................................................................ 123 



Understanding graphs  

169 

 

List of figures 

Figure 1. Model of comprehension of visual displays by Shah et al., 2005, indicating the 

interaction of bottom-up processes (solid arrows) and top-down processes 

(dashed arrows) in the construction of a mental model of the referent. ...................... 25 

Figure 2. Example item from the Trends in International Mathematics and Science Study ..... 33 

Figure 3. Diagram summarizing the Process-Oriented Model of Graphicacy (POMoG) ......... 37 

Figure 4. Graphical representation of the Explanatory Model of Person-Process 

Interaction (EMPPI) .................................................................................................... 46 

Figure 5. Five problem from Falmagne et al 1990 (left panel) and Hasse diagram of the 

knowledge structure (right panel). ............................................................................... 47 

Figure 6. Schematic illustration of item format introducing item stem with a sample item 

in open answer format. Please note that this is not an item used in the 

experiment. .................................................................................................................. 60 

Figure 7. Example graph for each topic: population dynamics (left), action potentials 

(middle), and sleep cycles (right). ............................................................................... 79 

Figure 8. Initial reading page for the sleep cycle domain (translated into English). ................. 79 

Figure 9. Sample item on sleep cycles. The item is solved by identifying the 

contradiction between graph and text. The text states that people enter sleep in 

the first non-REM phase. However, the graph depicts entering sleep via an 

REM phase. Participants have to click on the first sentence of the second 

paragraph to answer the item correctly. ....................................................................... 80 

Figure 10. The plots show the estimated effect of initial reading time (left) and task 

completion time (right) for a person with very low (solid line) and very high 

(dashed line) prior knowledge. The thin lines represent the 95% confidence 

interval. Plots range from -1 to 2 minutes on average because the time-on-task 

distribution is skewed to the right. .............................................................................. 98 

Figure 11. Hasse diagram (Falmagne et al., 1990) depicting prerequisite relationships 

among the five sub-processes underlying text-graph comprehension from the 

text-centered perspective (left panel) and the multiple-representations 

perspective (right panel): (a) understanding the visual array of the graph, (b) 

graph interpretation, (c) sentence comprehension, (d) mapping text onto the 

graph, and (e) mapping graph onto the text. .............................................................. 108 

Figure 12. The different knowledge states implied by KTC for the text-centered 

perspective (left panel) and KMR for the multiple-representations perspective 

(right panel). (Ø) no sub-processes were performed, (a) understanding the 

visual-spatial array of the graph, (b) graph interpretation, (c) sentence 

comprehension, (d) mapping text onto graph information and (e) mapping 

graph onto text information were performed. ........................................................... 109 

Figure 13. Examples of graphs from each topic, population dynamics (left), action 

potentials (center), and sleep cycles (right panel). .................................................... 111 



Understanding graphs  List of figures 

170 

 

Figure 14. Sample item referring to the circadian circle on understanding the visual-

array of the graphic. The top reference graphic shows that people enter deep 

sleep after falling asleep. Graphic options b and d show the same pattern. The 

entered sleep phase is the only feature that is consistent throughout at least two 

graphics. All other features such as the length of the sleep phases vary across all 

graphics. Eighteen items of this task type were created. ........................................... 112 

Figure 15. Sample item for graph interpretation of the circadian circle. The top reference 

graphic shows that people enter REM sleep after falling asleep. Therefore, 

sentence b is correct. ................................................................................................. 113 

Figure 16. Depicts a sample item referring to the circadian circle. The missing word in 

the cloze sentence can be extracted from the material. The correct answer is 

“first non-REM” (all kinds of spelling were accepted, e.g., 1 non-REM, fist-

non-REM) .................................................................................................................. 114 

Figure 17. Sample item depicting the circadian cycle to assess the mapping of text on 

graphs. The six graphs showed different first sleep phases. The top left and top 

right images depict the REM phase as entering sleep phase. The bottom left, 

and bottom middle images show the deep sleep phase, and the top middle and 

bottom right images display a non-REM sleep phase as entering sleep phases, 

which would be the correct response. ....................................................................... 115 

Figure 18. Sample item referring to the circadian circle for assessing the mapping of 

graphic to text. The missing word in the cloze sentence can be extracted from 

the material. The correct answer is “first non-REM” (all kinds of spellings were 

accepted, e.g., 1 non-REM, fist-non-REM). ............................................................. 116 

Figure 19. Frequency of response patterns R. Grouping shows response patterns 

specifically associated with the knowledge structure representing the text-

centered perspective (TC) R∈(KTC\KMR), with the knowledge structure 

representing the multiple-representation perspective (MR) R∈(KMR\KTC), with 

both R∈(KMR∪KTC) or none of them R∉(KMR∪ KTC) . ............................................. 121 

Figure 20. Updated Process-Oriented Model of Graphicacy including a novel coherence-

oriented and task selective processing path and an augmented list of individual 

characteristics. In gray: Individual characteristics with influencing mechanism. 

Gray pointy arrow indicate influence on specific process competent. Gray 

round arrows indicate controlling or structuring function. ........................................ 138 



 

171 

 

Curriculum vitae 

Ulrich Ludewig 

PERSONAL INFORMATION 

Name:  Ulrich Ludewig 

Date/Place of Birth:  April 12, 1990 / Steinfurt 

Private address: Haagasse 15/1, 72072 Tübingen 

Email: ulrich.ludewig@uni-tuebingen.de 

 

ACADEMIC CAREER 

10/2015 – present Ph.D. candidate at the Graduate School & Research Netzwork ‘LEAD’ 

(Learning, Educational Achievement, and Life Course Development), 

funded by the German Excellence Initiative 

10/2015 – present Associate member of the Leibniz-Institut für Wissensmedien, Tübingen 

and member of the research group ‚multiple representations‘ (Prof. Dr. 

Katharina Scheiter) 

04/2014 – 07/2014 Research intern in the project “Energy visualization in autonomous 

houses” in collaboration with BOUYGUES CONSTRUCTION and the 

Ideas Lab (Xavier Gauvin), Grenoble (supervised by Prof. Dr. Erica De 

Vries) 

01/2013 – 06/2013 Market Research Intern at United Internet Media GmbH (supervised by 

Dr. Uli Gleich) 

06/2012 – 12/2012 Research assistance in the project „BiTe – Integrative processes of pic-

tures and texts in secondary education“, (Prof. Dr. W. Schnotz), depart-

ment of Educational Psychology at University Koblenz-Landau 

02/2012 – 05/2012 Research intern in the project „BiTe – Integrative processes of pictures 

and texts in secondary education“, (Prof. Dr. W. Schnotz), department of 

Educational Psychology at University Koblenz-Landau 

EDUCATION 

10/2013 – 10/2015 Master of Arts in International Cognitive Visualization, Interdisciplinary 

Studies, California State University, Chico (final grade: 1.2) 

02/2014 – 07/2014 Erasmus Exchange Semester, University Pierre Mendès-France Greno-

ble, France 

04/2010 – 09/2013 Bachelor of Science in Psychology, University Koblenz-Landau, Ger-

many (final grade: 1.6) 

 

 

                                                 

 


