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Abbreviations and symbols 

  

AKIE apparent kinetic isotope effect 

CMB chloromethyl benzene 

Cr/HTC chromium based high temperature conversion 

CSIA  compound-specific stable isotope analysis 

DBP dibutyl phthalate  

DCB dichlorobenzene 

DEP diethyl phthalate  

DMP dimethyl phthalate  

DNAPL dense non-aqueous phase liquid  

E element 

EIE equilibrium isotope effects 

EP ethyl parathion 

ESIA enantioselective stable isotope analysis 

GC gas chromatography 

GC-IRMS gas chromatograph-isotope ratio mass spectrometer 

GC-MC-ICPMS 
gas chromatography coupled with multiple-collector inductively 

coupled plasma mass spectrometry  

HCHs hexachlorocyclohexanes 

HTC high temperature conversion 

ISCO in situ chemical oxidation  

KIE kinetic isotope effect  

MP methyl parathion 

NCB nitrochlorobenzene 

OPs organophosphorus compounds 

PAEs phthalate esters  

PS persulfate 
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SKIE secondary kinetic isotope effect 

SMOC standard mean ocean chloride 

TBA tert-butyl alcohol  

TBP tributyl phosphate 

TCEP tris(2-chloroethyl) phosphate 

TDCPP tris(1,3-dichloro-2-propyl)phosphate 

VPDB Vienna Pee Dee Belemnite 

VSMOW Vienna Standard Mean Ocean Water 

α-HCH α-hexachlorocyclohexane  

β-HCH β-hexachlorocyclohexane  

γ-HCH γ-hexachlorocyclohexane  

δ-HCH δ-hexachlorocyclohexane  

k  reaction rate constant 

R isotope ratio 

δ isotope composition (‰) 

ε isotope enrichment factor 

Λ slope derived from regression of a dual element isotope plot 

σ+ Hammett substituent constant 
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Summary 

Compound-specific stable isotope analysis (CSIA) is increasingly applied in 

fundamental research, environmental sciences and forensic studies. The analysis of 

stable isotopes may largely improve the evaluation of sources, transformation 

processes and sinks of organic compounds in the environment. To extend the CSIA 

application to new compounds and to improve the evaluation of organic pollutants 

transformation in the environment, this thesis focused on providing insights into the 

transformation of ubiquitous organic pollutants including pesticides (organophosphorus 

compounds (OPs), hexachlorocyclohexanes (HCHs)), plasticizers (phthalate esters 

(PAEs)) and substituted chlorobenzenes. 

Firstly, analytical challenges associated with the reproducibility and trueness of 

hydrogen isotope analysis of heteroatom-bearing OPs was overcome by applying the 

chromium based high temperature conversion system. Secondly, sample preparation 

procedures for extraction and clean-up of HCHs from various matrixes including water, 

soil, plants, milk, fish oil and pork liver were evaluated for conservation of isotopic 

values. The carbon, hydrogen and chlorine isotope fractionation observed in HCHs 

extracted from contaminated soil, plants and pork liver highlighted the potential of multi-

element CSIA for investigating the transformation of persistent contaminants in food 

webs. 

The main focus of this thesis was to characterize the fundamental (bio)chemical 

processes of relevant organic pollutants using CSIA. To determine factors governing 

isotope fractionation and to characterize fundamental processes at the molecular level, 

the stable isotope fractionation patterns associated with (1) hydrolysis at various pH, (2) 

oxidation by sulfate and hydroxyl radicals, (3) biodegradation by whole cells and (4) 

enzymatic transformation of selected compounds were obtained under controlled 

laboratory conditions. The results demonstrated that CSIA has a diagnostic value for 

characterizing transformation mechanisms of the tested compounds. Finally, the natural 

attenuation of OPs by hydrolysis at a contaminated site was investigated using carbon 

and hydrogen isotope analysis, which delineated the potential of CSIA for field 

applications.   
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Zusammenfassung 

Die Komponenten-spezifische Analyse stabiler Isotope (engl. CSIA) wird zunehmend in 

der Grundlagenforschung, den Umweltwissenschaften und in der Forensik eingesetzt. 

Die Analyse der isotopischen Zusammensetzung besitzt dabei ein großes Potential 

Quellen, Transformationsprozesse und Senken organischer Verbindungen in der Natur 

zu bewerten. Zur Ausweitung der Isotopenanalyse auf neue Verbindungsklassen 

wurden im Rahmen dieser Arbeit Studien mit organischen Modellverbindungen 

durchgeführt. Dabei wurden neben den als Pestizid verwendeten Organophosphaten 

(OPs) sowie Hexachlorozyklohexan (HCH), die als Weichmacher genutzten 

Phthalsäure-Ester (PAEs) und chlorierte Benzole untersucht. 

Es wurden Methoden für die Multiisotopenanalyse für OPs und HCHs entwickelt.   

Insbesondere wurde die Analyse der Wasserstoffisotopensignaturen heteroatomhaltiger 

organischer Verbindungen weiterentwickelt und validiert, wobei die Chrom-unterstütze 

Hochtemperaturpyrolyse verwendet wurde. Isotopenfraktionierungsfreie Techniken für 

die Extraktion und Aufreinigung von HCHs aus unterschiedlichen Matrices wurden 

entwickelt und für die Multiisotopenanalyse der HCHs (2H, 13C, 37Cl) aus Böden, 

Pflanzen, tierischen Produkten sowie  Organen (z. B. Leber) eingesetzt. Die Ergebnisse 

dieser Versuche demonstrieren das Potential von CSIA für die Analyse von 

Transformationen persistenter Chemikalien innerhalb von Nahrungsketten.  

Isotopenfraktionierungsmuster wurden genutzt um Transformationsreaktionen wie (1) 

die Hydrolyse bei verschiedenen pH Werten, (2) die Oxidation durch Sulfat- und 

Hydroxylradikale, (3) den biologischen Abbau sowie (4) enzymatische Reaktionen zu 

untersuchen. Labor-Referenzexperimente wurden mit Modellkomponenten durchgeführt 

und die erhaltenen isotopenspezifischen Faktoren wurden zur Charakterisierung der 

fundamentalen Prinzipien dieser biogeochemischen Transformationsprozesse auf 

molekularer Ebene genutzt. Der natürliche Abbau der OPs durch chemische Hydrolyse 

wurde anhand der im Labor bestimmten 13C und 2H Fraktionierungsfaktoren an einem 

kontaminierten Standort überprüft und validiert, wodurch das Potential von CSIA zur 

Feldanwendung aufgezeigt wurde.   
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1. General introduction 

1.1 Stable isotope fractionation as a tool for analysis organic contaminants 

The benefits of the massive usage of manmade organic chemicals in modern society 

come at the cost of their widespread occurrence in the environment. The occurrence of 

organic contaminants represents threats to human, animal, and environmental health. 

Therefore, it becomes a worldwide issue with increasing concerns. Knowledge of 

transformation mechanisms and factors governing transformation processes is an 

essential prerequisite for the understanding and assessment of the fate of organic 

contaminants in the environment. Current approaches to characterize the transformation 

of organic contaminants in nature either are based on the detection of parent compound 

disappearance, detection of transformation products, or rely on the evidence of an 

intrinsic transformation potential in a given environment. However, many of the existing 

methods suffer from their limitations (Fenner et al. 2013), for instance, when 

transformation products are unknown, their detection becomes more challenging or 

even impossible for suspect or non-target analysis. The stable isotope composition 

provides clues that can be used to identify sources, transformation reactions, and sinks 

of organic compounds in the environment (Meckenstock et al. 2004). The stability of 

chemical bonds of isotopologues depends on the mass of the substituent. Thus higher 

activation energy is needed to cleave a bond formed by heavy isotopologues leading to 

kinetic isotope fractionation in (bio)chemical processes (Bigeleisen and Wolfsberg 1958, 

Wolfsberg et al. 2010). Gas or liquid chromatography (GC, LC) coupled to isotope ratio 

mass spectrometry (IRMS) via an online conversion enables the precise measurement 

of stable isotopes at natural abundance (such as 13C/12C, 15N/14N, 2H/1H, 37Cl/35Cl) 

within organic molecules. The coupling of GC or LC to IRMS makes it possible to 

analyse isotope ratios of individual compounds in complex mixtures and is known as 

compound-specific stable isotope analysis (CSIA). Due to its highly reaction-specific 

isotope fractionation patterns, CSIA has the potential to provide insights into 

contaminant reaction mechanisms without the need to identify transformation products 

(Hunkeler et al. 2008). Therefore, the importance of CSIA is increasing in fundamental 
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research, environmental sciences, and forensic studies (Elsner 2010, Elsner and Imfeld 

2016, Nijenhuis and Richnow 2016, Vogt et al. 2016).  

1.2. Stable isotope effects and quantification of isotope fractionation 

The theoretical background and definitions of isotope effects in (bio)chemical reactions 

have been summarized elsewhere (Swiderek and Paneth 2013, Wolfsberg et al. 2010). 

Stable Isotope effects can be caused by equilibrium and kinetic processes of 

(bio)chemical and physical procedures. Equilibrium isotope effect (EIE) comes from 

considering equilibrium constants for isotopologues (molecules differing only in the 

isotopic composition), which is connected with any physical process or chemical 

reaction that reached an equilibrium. For instance, EIE could be relevant in reactions in 

which a substrate binds to the binding pocket of an enzyme (Swiderek and Paneth 

2013). Broadly speaking, EIE is usually much smaller than kinetic isotope effect (KIE). 

The KIE is based on the difference in kinetic rates during, for example, irreversible 

chemical bond change reactions (cleavage or formation) of isotopologues, reflecting the 

relative stability of bonds formed by the heavy vs. light stable isotopes of an element (E) 

(Wolfsberg et al. 2010). The KIE characterize the rate limitation associated with the 

activation energies needed to reach the transition stage and thus yield information on 

the mode of bond cleavage. A secondary kinetic isotope effect (SKIE) occurs when 

isotopologues substituted bonds are close to a reactive bond but not directly involved in 

the bond breaking reaction (Westaway 2006). Usually, SKIE tends to be much smaller 

than primary kinetic isotope effects which are directly involved in bond changes. 

Nevertheless, large SKIE is possible for hydrogen isotope fractionation due to the large 

mass difference of 2H and 1H (Franke et al. 2017). The apparent kinetic isotope effect 

(AKIE) is the observed KIE of an experimental reaction and is considered to contain 

information of the isotope sensitive mode of bond cleavage and rate limitations prior 

bond cleavage (Northrop 1981). The theoretical KIE can be calculated by pure quantum 

chemical calculation and may be compared with observed AKIE to obtain information 

about occurring isotope effects (Wolfsberg et al. 2010).   

Stable isotope composition of an element is conventionally expressed as the deviation 

of a sample from an international standard in parts per thousand (‰) and are given in 
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the δ notation (δ13C, δ2H and δ37Cl) as shown in Eq. (1). R indicates the isotope ratio of 

13C/12C, 2H/1H or 37Cl/35Cl. International standards for C, H and Cl are Vienna Pee Dee 

Belemnite (VPDB) (Coplen 2011, Coplen et al. 2006), Vienna Standard Mean Ocean 

Water (VSMOW) (Schimmelrnann et al. 2016) and Standard Mean Ocean Chloride 

(SMOC) (Bernstein et al. 2011, Brand et al. 2014), respectively. 

𝛿𝐸𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1                                                     (1) 

The isotope enrichment factor (ε) can be determined from the logarithmic form of the 

Rayleigh equation as in Eq. (2) (Meckenstock et al. 2004). δEt and δE0 are the isotopic 

signatures of the compound for the element E at a given time t and at the beginning of 

the reaction; while Ct/C0 is the fraction of the remaining compound. 

ln (
𝛿𝐸𝑡+1

𝛿𝐸0+1
) = 𝜀 × ln (

𝐶𝑡

𝐶0
)                                          (2) 

An extended Rayleigh-type equation was derived by Van Breukelen to improve the 

quantification of isotopic fractionation expressed during substrate consumption via 

competing pathways (Van Breukelen 2007). If a substrate is degraded via two pathways 

and the degradation reaction follows the first-order kinetics, the rate ratio of two 

competing degradation pathways (F) can be calculated from the observed isotope 

enrichment factor (εA) and the isotope enrichment factors associated with the two 

pathways ε1 and ε2, as shown in Eq. (3). F indicates contribution of pathway 1 to the 

observed isotope fractionation εA. Note that Eq. (3) is applicable only for two competing 

pathways (Van Breukelen 2007).  

𝐹 =
𝜀𝐴−𝜀2

𝜀1−𝜀2
                                                                   (3) 

The enrichment factors represent isotope effects for the whole molecule. To 

characterize the isotope effect at the reactive position for a given compound, the AKIE 

value is calculated using Eq. (4) (Elsner et al. 2005). For a given postulated reaction 

mechanism, n is the number of E atoms in the molecule, x is the number of E atoms at 

reactive positions, and z is the number of E atoms at reactive positions with equal 

reactivity. 
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𝐴𝐾𝐼𝐸 = 1/(
𝑧∙𝑛∙𝜀

𝑥∙1000
+ 1)                                (4) 

To overcome the bias related to single-element isotope analyses, the use of two-

element isotope analysis has been developed for identifying reaction mechanisms 

(Kuder et al. 2005, Zwank et al. 2005). If both elements are equally influenced by rate 

limitations in the rate-limiting step (known as the slowest step determining the overall 

kinetic rate) of a reaction, the effect on the KIE cancels (Fischer et al. 2008). Hence, the 

combination of two elements (eg. δ13C vs. δ2H values) is a useful way for more accurate 

assessment of the reaction mechanisms for many organic contaminants. The slope of 

the linear regression of simultaneously measured δ2H versus δ13C is known as the 

lambda value (Λ) which is calculated using Eq. (5) (Fischer et al. 2008). Accordingly, Λ 

values can be regarded as fingerprints of distinct reactions, providing useful and 

reproducible parameters for elucidating specific reaction pathways (Elsner et al. 2005). 

𝛬 =
∆𝛿 𝐻2

∆𝛿 𝐶13 =
𝛿 𝐻𝑡−𝛿 𝐻0

22

𝛿 𝐶𝑡−𝛿 𝐶0
1313 ≈

𝜀𝐻

𝜀𝐶
                                            (5) 

The extent of in situ degradation (D%) in the field can be estimated for individual 

compounds using the isotope shifts between the source and the residual non-degraded 

fraction of the reacting compound using the Eq. (6) which is derived from the 

rearrangement of the logarithmic form of the Rayleigh equation (Eq. (2)). Ct is the 

concentration at a given reaction time t or on a flow path downgradient a source; C0 is 

the concentration at the beginning of a reaction or in a source area; δt and δ0 are the 

corresponding isotope ratios of the reacting compound; ε is the isotope enrichment 

factor for a degradation process, obtained from reference experiments under laboratory 

conditions using the Rayleigh equation (Eq. (2)). 

𝐷 (%) = (1 −
𝐶𝑡

𝐶0
) × 100 = [1 − (

𝛿𝑡+1

𝛿0+1
)(

1

𝜀
)] × 100            (6)  

1.3. Analytical challenges of stable hydrogen and chlorine isotope analysis 

Current challenges in CSIA of organic contaminants in environmental science have 

been recently summarized elsewhere (Elsner and Imfeld 2016, Elsner et al. 2012, 

Nijenhuis et al. 2016, Nijenhuis and Richnow 2016, Schmidt et al. 2004, Vogt et al. 
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2016). CSIA has greatly facilitated assessment of sources and transformation 

processes of organic pollutants. However, most laboratories specialized in the usage of 

GC-IRMS focus on carbon isotope measurements. Until recently, the feasibility of multi-

element CSIA was limited by the low availability of a robust methodology for precise 

isotope analysis (except 13C) of heteroatom-bearing organic compounds (Nijenhuis et al. 

2016). The extension of CSIA methods to additional elements (H, Cl, S, O, etc.) is 

therefore needed to improve environmental monitoring schemes of organic pollutants. 

The high-temperature conversion (HTC) technique is a widely used method for H 

isotopic analysis of water and many organic materials (Sofer and Schiefelbein 1986, 

Tobias and Brenna 1997). However, it becomes more challenging for N-, Cl-, and S-

containing organics due to the formation of H-containing byproducts such as HCN, HCl 

and H2S. This incomplete conversion of organically bound H to molecular H2 can finally 

lead to inaccurate δ2H values. To overcome these limitations, many efforts have been 

made (Chartrand et al. 2007, Vetter et al. 2006). Gehre and colleagues (Gehre et al. 

2015) developed a concept using a pyrolysis unit filled with chromium in an elemental 

analyzer and coupled to an IRMS. Due to a quantitative scavenging of the heteroatoms 

by the chromium, a complete conversion of the organically bound H to molecular H2 

was obtained. Moreover, Renpenning and colleagues (Renpenning et al. 2015b) 

successfully demonstrated the principle feasibility of the chromium-based high-

temperature conversion (Cr/HTC) concept for CSIA in a GC-IRMS system. These 

findings imply that conventional HTC units for CSIA need critical evaluation as H-

containing byproducts may be formed, preventing the accurate determination of 

hydrogen isotope compositions. 

Chlorinated compounds are one of the priority environmental contaminants. Stable Cl 

isotope analysis of organic compounds is potentially applicable in various fields such as 

forensics and environmental analytics to investigate the fate of these substances. 

However, the wider use of this technique is still hampered by the limited applicability of 

available techniques. Several innovative solutions for GC coupling based on different 

strategies have been developed: (1) GC-MC-ICPMS method (Van Acker et al. 2006): Cl 

isotope composition is determined online using gas chromatography coupled with 
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multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS). This 

method is very precise (1σ=0.06‰) and universally applicable, but it suffers from high 

interference of ArH+ ions from the inductively coupled plasma. (2) GC–HTCMS method 

(Hitzfeld et al. 2011): an online HTC converts organic Cl into gaseous HCl under H2 gas 

flow. It successfully converts organic Cl online to a Cl-containing gas. However, so far 

analysis was only realized on a quadrupole MS instrument with an IRMS, and with a 

precision better than 1σ= 0.5–1‰. This method suffers from the stability of the ceramic 

tube used for HTC operating at high temperatures (Renpenning et al. 2015a). (3) non-

conversion method: the GC effluent is transferred directly to a high-precision IRMS 

(Shouakar-Stash et al. 2006) or a quadrupole MS (Aeppli et al. 2010, Jin et al. 2011, 

Sakaguchi-Soder et al. 2007). This method is only applicable to masses of target 

compounds for which a dedicated cup is configured in the IRMS detector. Therefore, 

molecularly identical reference components with defined isotope compositions and an 

anchor for scaling the chlorine isotope compositions are needed. Until recently, the 

isobaric interference of the 36ArH dimer with 37Cl was minimized by employing dry 

plasma conditions using GC-MC-ICPMS methods (Horst et al. 2017). The MC-ICPMS is 

operating in low resolution mode (m/Δm = 300) using a super dry plasma, which 

reduces interferences from protonation. The transfer line connecting GC and ICP was 

modified further in order to extend the range of analytes towards semi-volatile organic 

substances with boiling points of up to 350 °C (Renpenning et al. 2018). Thus, the 

modified method now allows the development of compound-specific stable chlorine 

isotope analysis concepts for virtually all GC-compatible organics with versatility, high 

accuracy, and sensitivity. 

1.4. CSIA application for characterizing transformation mechanisms and 

evaluating in situ degradation 

Previous studies have shown the potential use of stable isotope fractionation for 

characterizing transformation mechanisms of organic compounds. CAIS approach can 

reveal the rate-limiting step in reaction mechanisms such as the mode of chemical bond 

cleavage (Northrop 1981). It is well known that changes in single element isotope ratios 

(e.g. δ13C) tend to become smaller with larger molecular size due to isotope dilution 
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effects (Elsner et al. 2005, Meckenstock et al. 2004). Moreover, single element isotope 

ratios are possibly influenced by masking of isotope fractionation which makes the 

identification of degradation pathways by single-element isotope analysis more difficult 

(Renpenning et al. 2015c). Multi-element isotope analysis offers an opportunity to 

circumvent the problem. In the last decades, several studies showed the potential of 

multi-element CSIA (δ13C, δ2H, δ37Cl, δ15N etc.) to explore different transformation 

processes (Badin et al. 2014, Kuder et al. 2013, Penning et al. 2010, Zhang et al. 2016a, 

Zhang et al. 2015). 

CSIA opens the door to assess the field-based degradation reactions. CSIA enables the 

detection of in situ biodegradation of organic contaminants (Elsner 2010, Thullner et al. 

2012). It has been applied to estimate the extent of in situ biodegradation of a specific 

compound based on changes in isotope ratios of field samples if the isotope enrichment 

factor of that compound is determined in laboratory experiments based on the Rayleigh 

equation (Bashir et al. 2015, Hofstetter et al. 2008, Liu et al. 2017, Thullner et al. 2012). 

For a better interpretation of the field data applying CSIA, isotope enrichment factors 

from laboratory experiments on enzymatic transformation and abiotic transformation 

(such as hydrolysis and photodegradation) are necessary to understand transformation 

mechanisms. 

So far, CSIA has been used for investigation of traditional contaminant classes including 

BTEX, chlorinated aliphatic and aromatic hydrocarbons and others (Mak et al. 2006, 

Nijenhuis and Richnow 2016, Rosell et al. 2012, Vogt et al. 2016, Zhang et al. 2015). In 

addition, it has been proposed as a useful approach for characterizing degradation 

processes of micropollutants such as pesticides at field scale (Elsner and Imfeld 2016). 

However, only a few field studies applied CSIA to assess microbial degradation of 

different pesticides or herbicides (Bashir et al. 2015, Liu et al. 2017, Milosevic et al. 

2013). Nevertheless, the application of CSIA for characterizing degradation processes 

of organophosphorus compounds has not been reported prior this dissertation. 

CSIA is mostly applied to study the fate of organic pollutants in groundwater (Fischer et 

al. 2006, Mundle et al. 2012, Pooley et al. 2009, Thullner et al. 2012, Van Keer et al. 

2012, Wiegert et al. 2012). Its application to other environmental compartments such as 
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sediments (Passeport et al. 2016) and surface waters is limited. In natural environments 

such as lakes and rivers, and in water treatment plants where UV/H2O2 advanced 

oxidation processes are applied, organic compounds can be eliminated via direct 

photolysis and indirect photolysis induced by reactive species such as OH radicals (HO•) 

(Boreen et al. 2003, Wols and Hofman-Caris 2012). HO• are naturally generated in all 

surface water environments by the photolysis of dissolved organic (Vaughan and 

Blough 1998) and inorganic compounds (Zafiriou 1974). Therefore, there is a great 

potential to evaluate the attenuation of contaminants with HO• in various aquatic 

systems using CSIA, which could be a promising tool for water quality monitoring and 

assessment. 

1.5. Target compounds and their main degradation pathways in the environment 

1.5.1. Organophosphorus compounds (OPs) 

Organophosphorus compounds (OPs) are often used as pesticides, warfare agents, 

flame retardants, plasticizers, or flotation agents (Delfino et al. 2009). Today the 

consumption of OPs ranks in second position of the total global pesticide usage (Fenner 

et al. 2013). The OPs discussed in the present thesis are esters of phosphoric acids, 

thiophosphoric acids and dithiophosphoric acids, forming a wide variety of phosphates, 

phosphorothioates, or phosphorodithioates (Table 1), each of them has different 

reactivities towards hydrolysis, oxidation and biodegradation (Pehkonen and Zhang 

2002, Singh and Walker 2006). Many OP derivatives are associated with acute toxicity 

by inhibiting acetylcholinesterase (AChE) in the nervous system (Pope 1999). Hence, 

they are used as pesticides for control of insects and other higher organisms (Colovic et 

al. 2013). OP pesticides are less persistent in the environment when compared with 

organochlorine pesticides and thus have been widely used on a global scale. The 

continuous and excessive use of OPs has led to severe environmental pollutions. 

Hydrolysis is stated to be one major pathway controlling the fate of OPs in the 

environment. Hydrolysis of OPs proceeds by a bimolecular nucleophilic substitution 

mechanism (SN2 mechanism), where H2O and OH– act as nucleophiles (Pehkonen and 

Zhang 2002). The ester bonds of OPs can be hydrolyzed under acidic and alkaline 
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conditions by two different pathways, however, the relative contribution of each 

hydrolysis pathway is pH-dependent (Pehkonen and Zhang 2002). Photodegradation 

and chemical oxidation are other important degradation processes. Several studies 

investigated the reaction mechanisms of OPs during photodegradation, in which 

simultaneously proceeding pathways including oxidation of P=S to P=O, elimination of 

nitro group, re-methylation and oxidation of the alkyl substituent were proposed (Araújo 

et al. 2007, Durand et al. 1994, Kanmoni et al. 2012, Sakellarides et al. 2003, Santos et 

al. 2005, Wu and Linden 2008). Photosensitizer-promoted indirect photolysis is 

considered to be a naturally occurring degradation process, which could be an 

important factor governing the fate of organic contaminants in the environment. 

Microbial degradation of OPs by most of the bacteria is catalyzed by a structurally 

similar enzyme called organophosphate hydrolase or phosphotriesterase (Singh and 

Walker 2006). In previous studies, several species of bacteria have been isolated and 

were shown to be able to degrade parathion via co-metabolic and bio-mineralization 

modes, including Flavobacterium sp. (Sethunathan and Yoshida 1973), Bacillus sp. 

(Nelson 1982, Nelson et al. 1982), Pseudomonas sp. (Siddaramappa et al. 1973), 

Arthrobacter sp. (Nelson 1982). The proposed first step of biodegradation mechanisms 

of parathion include three pathways: (A) hydrolysis of the phosphotriester bond to form 

p-nitrophenol (P-O bond cleavage), which is the major pathway; (B) reduction of the 

nitro group acting as electron acceptor to form amino parathion (N-O bond cleavage); 

(C) oxidation of the sulfur group of parathion to form paraoxon (P=S bond cleavage). 

Table 1: Chemical structure of the target compounds of organophosphorus compounds (OPs). 

dichlorvos 

  

omethoate 

 

dimethoate 

 

parathion 

 

methyl parathion 

 

chlorpyrifos  
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TBP 

 

TCEP 

 

TDCPP 

 

 

1.5.2. Substituted chlorobenzenes 

Substituted chlorobenzenes are the basic chemical structures of many environmental 

contaminants such as the herbicides 2,4-D and dichlorprop, drugs and personal care 

products like triclosan and diclofenac. Isomers of dichlorobenzene (DCB), 

chloromethylbenzene (CMB), and nitrochlorobenzene (NCB) (Table 2) are the simplest 

forms of substituted chlorobenzenes. They are widely distributed in surface waters 

(Schwarzbauer and Ricking 2010) in the low ng L−1 or μg L−1 range (Bester et al. 1998, 

Lekkas et al. 2004, Trova et al. 1991), due to their use as chemical intermediates in the 

production of dyes, solvents, pesticides, and pharmaceuticals. They have all been listed 

as substances which belong to List I of European Council Directive 76/464/EEC 

(European Commission 1982) due to their known or suspected toxicity to aquatic 

organisms and mutagenic and carcinogenic potentials (Calamari et al. 1983, OECD 

2005, Shimizu et al. 1983, Weisburger et al. 1978). Characterizing transfer and 

transformation processes of substituted chlorobenzenes in surface waters is therefore 

essential for developing effective remediation strategies and, thus, to protect human 

and aquatic life. In natural environments such as lakes and rivers, and in water 

treatment plants where UV/H2O2 advanced oxidation processes are used, organic 

compounds can be eliminated via direct photolysis and indirect photolysis induced by 

the formation of reactive species such as HO• (Boreen et al. 2003, Wols and Hofman-

Caris 2012). The reaction mechanisms governing the direct and indirect 

photodegradation of substituted chlorobenzenes are not well understood yet. In addition, 

the magnitude of isotope fractionation during photodegradation reactions, and the 

extent to which it can contribute to deciphering reaction pathways have not been the 

subject of many studies. 
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Table 2: Chemical structure of the target compounds of substituted chlorobenzenes. 

1,3-DCB 

 

1,4-DCB 

 

3-NCB 

 

3-CMB 

 

4-CMB 

 

4-NCB 

 

 

1.5.3. Phthalate esters (PAEs) 

Phthalate esters (PAEs) are widely used as plasticizers and additives in numerous 

products, including polymers such as polyvinylchloride (PVC) and plastic toys, 

cosmetics, medical devices, and detergents (Staples et al. 1997). PAEs are not linked 

by covalent bonds within the product matrix; therefore, they can leach out from the 

matrix by lipophilic solvents or diffusion and spread into the environment (Sun et al. 

2015, Vamsee-Krishna and Phale 2008). Consequently, the broad usage of PAEs have 

resulted in rising concerns due to the potential hepatotoxic, teratogenic and 

carcinogenic effects (Tang et al. 2016). Dimethyl phthalate (DMP), diethyl phthalate 

(DEP) and dibutyl phthalate (DBP) (Table 3) have been listed as priority pollutants by 

the US EPA. Biodegradation plays an important role for PAEs removal in various 

environments. The de-esterification of phthalate diesters to phthalate monoesters is 

considered to be the primary biodegradation pathway under aerobic and anoxic 

conditions (Gao and Wen 2016, Shelton et al. 1984). A well-known model organism for 

aerobic biodegradation of PAEs is Rhodococcus opacus strain DSM 43250 (Engelhardt 

and Wallnöfer 1978, Engelhardt et al. 1975). Even though the hydrolysis rates of PAEs 

are reported to be rather slow, with half-lives of more than 100 days (Staples et al. 

1997), hydrolysis is expected to be an relevant abiotic degradation mechanism and 

even dominant abiotic process under certain environmental conditions, such as lower 

landfill layers due to high temperatures (Huang et al. 2013). It is well noted that PAEs 

21



 
 

undergo two hydrolytic steps: they are initially converted to the corresponding 

monoester releasing one alcohol moiety via hydrolysis of the ester group, and followed 

by the hydrolysis of the monoester to phthalic acid and a second alcohol moiety 

(Staples et al. 1997). Hydrogen peroxide (H2O2) and persulfate (PS) are the most 

commonly used oxidants in in situ chemical oxidation (ISCO) (Devi et al. 2016, Tsitonaki 

et al. 2010). UV/H2O2 has been proven as an efficient activation method to produce HO• 

and has been used to degrade several organic compounds such as PAEs, BPA, dyes, 

benzene and PAHs (Gmurek et al. 2017, Xu et al. 2009, Xu et al. 2007). Over the last 

few years, sulfate radicals (SO4
•−) generated by persulfate were suggested as an 

alternative to HO• due to its long lifetime and high redox potential. SO4
•− has the ability 

to oxidize a variety of compounds, including PAEs, BTEX, PCBs, PAHs and others 

(Tsitonaki et al. 2010, Zhang et al. 2016b). It has been well demonstrated that the 

formation of SO4
•− and HO• is pH dependent in the persulfate based ISCO system (Devi 

et al. 2016, Liang and Su 2009, Romero et al. 2010), however, it is still not clear how to 

quantify their relative contributions.  

Table 3: Chemical structure of the target compounds of phthalate esters (PAEs). 

DMP 

 

DEP 

 

DBP 

 

 

1.5.4. Hexachlorocyclohexanes (HCHs) 

Hexachlorocyclohexane isomers (HCHs) (Table 4) are commercially manufactured by 

the reaction between benzene and chlorine in the presence of UV light. Except for γ-

HCH which was one of the most extensively used organochlorine pesticides, all other 

isomers do not possess any specific insecticidal property. The production of γ-HCH 

generates up to 90% (weight) of HCHs containing waste. Huge amounts of HCHs waste 

were often deposited in uncontrolled manners, resulting in a serious environmental 

pollution worldwide (Li 1999, Vijgen 2006). HCHs are considered as persistent organic 

pollutants due to their relative long-life time in the environment. Because of their low 
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water solubility, HCHs tend to accumulate in the soil and enter the food web through 

plant uptake from the roots and air (Calvelo Pereira et al. 2006, Trapp 2015). HCHs can 

be transported over long distances by geochemical processes like global distillation 

(Simonich and Hites 1995). Thus, HCHs residues were found in elevated concentration 

in Arctic and Antarctic animals at the end of the food chain (Carlsson et al. 2014, Lana 

et al. 2014, Wiberg et al. 2000, Yasunaga et al. 2015). To date, the only study using 

CSIA to investigate reactive bioaccumulation of contaminants was reported by 

Holmstrand and colleagues (Holmstrand et al. 2007), where 

dichlorodiphenyltrichloroethane (DDT) was extracted from 16 kg of seal blubber by 

continuous partitioning using a Wallenberg perforator. This approach is limited by the 

availability of large amounts of sample material, as well as of appropriate laboratory 

equipment. Thus, methods for extraction and clean-up of HCHs from various biota 

matrixes, as well as routine laboratory preparation methods are needed to be developed 

for exploitation of isotope fractionation concepts for long range transports and food 

webs studies. The combination of enantiomer and isotope fractionation holds promising 

potential for the characterization and quantification of biodegradation processes, which 

has already been applied for evaluating chiral compounds such as phenoxy acid 

herbicides in the field (Milosevic et al. 2013). Recently, CSIA and enantioselective 

stable isotope analysis (ESIA) have been proposed as tools to monitor transformation of 

α-HCH in a complex groundwater system (Liu et al. 2017). Nevertheless, the application 

of the combined isotope and enantiomer fractionation analysis for evaluating 

contaminants degradation has challenged environmental scientists for almost a decade 

(Jammer et al. 2015), as a theoretical foundation for models which describe the 

molecular mechanisms governing isotope and enantiomer fractionation processes are 

still lacking. 

Table 4: Chemical structure of the target compounds of hexachlorocyclohexanes (HCHs). 

α-HCH 

 

(-)α-HCH 

 

(+)α-HCH 
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β-HCH 

 

γ-HCH 

 

δ-HCH 
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2. Objectives 

The aim of the thesis was to extend multi-element CSIA methods to new compounds 

(OP pesticides, flame retardants) and to characterize fundamental processes such as 

hydrolysis, photodegradation and enzymatic transformation using isotope fractionation 

concepts. Therefore, the specific objectives of this PhD study were the following: 

(1) To validate analytical methods for δ13C and δ2H analysis of eight OPs as model 

compounds for phosphates, phosphorothioates or phosphorodithioates for multi-

element CSIA and to explore method detection limits (section 3.1). 

(2) To develop methods for HCHs enrichment and clean-up from environmental and 

particularly from biological samples for stable carbon, hydrogen and chlorine isotope 

analysis in order to explore the potential of multi-element CSIA as tool for assessing 

transformation reactions in food web studies (section 3.2). 

(3) To characterize fundamental processes such as hydrolysis, radical oxidation, 

photodegradation and enzymatic transformation of target compounds using isotope 

fractionation concepts and to provide insights into the reaction mechanisms (section 

3.3). Specific transformation processes include the hydrolysis and radical oxidation of 

OPs (section 3.3.1 and 3.3.2), the direct and indirect photodegradation of CH3-, Cl-, and 

NO2- substituted chlorobenzenes in aqueous solution (section 3.3.3), the radical 

oxidation, hydrolysis and aerobic biodegradation of three PAEs (section 3.3.4), and the 

aerobic biodegradation and the LinA-catalyzed enzymatic transformation of α-HCH 

(section 3.3.5). 

(4) To investigate natural attenuation of parathion by hydrolysis at a contaminated site 

using CSIA (section 3.4). 

The ultimate goal was to understand the transformation of organic pollutants in the 

environment by applying CSIA. It was expected that the isotope fractionation patterns 

characterizing fundamental (bio)chemical processes of model compounds can be 

obtained from laboratory experiments under controlled conditions. This knowledge could 

be then applied for extending CSIA field application in complex environments. Particular 

process understanding is needed for tackling new issues such as transformation of 

persistent contaminants in food webs or degradation in engineered systems.  
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3. Results and discussion 

3.1. Validation of GC–IRMS techniques for δ13C and δ2H CSIA of OPs 

The feasibility of multi-element CSIA was limited by missing robust analytical methods 

for precise hydrogen isotope analysis of heteroatom-bearing organic compounds. This 

study aimed to compare the HTC and Cr/HTC conversion units to explore the limitations 

of hydrogen isotope analysis of OPs which are complex heteroatom-bearing 

compounds and may contain N, S, O and Cl in one molecule besides C and H. Some 

OPs are thermally labile and can disintegrate in the injector system, which may 

complicate analysis. The first aim was to develop analytical methods for δ13C and δ2H 

analysis of eight OPs (Fig. 1) used as model compounds for phosphates, 

phosphorothioates or phosphorodithioates for multi-element CSIA and to explore 

detection limits. The second aim was the comparison of HTC and Cr/HTC for complex 

heteroatomic compounds in order to validate the reliability of these methods using OPs 

as model substrates. 

Decomposition of OPs in the GC injector 

Many OPs including parathion, dimethoate and omethoate are thermally unstable and 

decompose at relatively low temperatures. For example, parathion decomposes above 

200 °C (ICSC 2004) and omethoate starts to decompose at about 135 °C (HSDB 2004). 

The disintegration of thermally labile OPs in the hot injector was investigated and the 

measures to reduce such thermal disintegration were taken. The following suggestions 

can be applied to get more reliable isotope analysis especially regarding δ2H analysis 

for OPs: 1) lower the injector temperature; 2) avoid high amounts of sample injected into 

the GC; 3) use glass liner without glass wool; 4) deactivate the liner with N,O-

Bis(trimethylsilyl)trifluoroacetamide (BSTFA). The GC injector temperature was 

optimized for each tested compound, which is 180 °C for omethoate, dimethoate, 

methyl parathion (MP) and parathion (EP), 195 °C for dichlorvos and tris(2-chloroethyl) 

phosphate (TCEP), 220 °C for chlorpyrifos and 260 °C for tris(1,3-dichloro-2-

propyl)phosphate (TDCPP).  

Dependency of isotope compositions on the concentration of OPs (Linearity ranges) 
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Linearity ranges of δ13C were obtained for both chlorinated and non-chlorinated OPs 

(Fig. 1 (Wu et al. 2014) and Fig. 1 (Wu et al. 2017)). The δ2H values via GC-Cr/HTC-

IRMS are independent of the injected amount of hydrogen within 42 - 120 Vs area 

signal for eight tested OPs. The significant variety of the lower limits for precise CSIA 

could be caused by the compound-specific transformation efficiency of different OPs in 

the Cr/HTC reactor. In contrast, linearity ranges for δ2H via GC-HTC-IRMS were only 

obtained for non-chlorinated OPs (Fig. 1). Nonlinearity of δ2H for analyzed chlorinated 

compounds may be due to the conversion process and byproduct formation via GC-

HTC-IRMS (Fig. 1). Mass spectrometric analysis of byproduct formation indicated that 

the formation of HCl was a significantly isotope fractionating process leading to 

inaccurate δ2H analysis in HTC. Nevertheless, in case of non-chlorinated OPs, 

byproduct formation of HCN, H2S or PH3 in HTC was observed. However, it did not 

affect the dynamic range of reproducible isotope values above the limit of detection. 

Good linearity for non-chlorinated OPs was obtained via conventional HTC, which 

indicates that H-containing byproducts might not be associated with isotope 

fractionation or the fractionation during thermal decomposition is minor and stable. No 

H-containing byproducts were found in the Cr/HTC conversion process by using ion trap 

mass spectrometry analysis (Fig. 2 (Wu et al. 2017)). The mean δ2H value of parathion 

obtained via HTC (-115 ± 3‰) differs from that obtained via Cr/HTC (-138 ± 4‰), which 

is mostly probably due to the typical peak shape of parathion via HTC, which usually 

shows peak fronting and peak tailing in the chromatogram. The accuracy of GC-IRMS 

was validated in comparison to EA-IRMS (Fig. 3 (Wu et al. 2017)). The developed 

method allows an accurate and precise isotope analysis of OPs. Cr/HTC is a promising 

approach for hydrogen isotope analysis of heteroatom-bearing organic compounds, 

such as OPs. However, if no Cr/HTC is available, 2H isotope fractionation processes 

can be reproducibly analyzed by conventional HTC for non-chlorinated OPs if a good 

linearity can be achieved. 

Effect of evaporation processes on the isotope composition 

Compound-specific stable isotope analyses of carbon, hydrogen and chlorine are 

several orders or magnitude less sensitive than modern GC or HPLC analysis, and thus 
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samples usually need to be concentrated to enrich sufficient material prior to their 

analysis via GC-IRMS systems. The effects of solvent evaporation on the isotope 

composition of analyte were evaluated. Evaporation is a distillation process which in 

principle can lead to isotope fractionation. Therefore, an evaporation experiment was 

conducted and the isotopic composition of the target OPs was determined before and 

after the evaporation procedure. After reducing the solvent volume from 100 mL to 0.5 

mL, the observed shifts of δ13C and δ2H for tested OPs are negligible. 

 

Fig. 1: Linearity analysis of δ2H values of parathion and TCEP to correlate isotope composition 

to the signal intensity. The linearity of δ2H measurements were assessed with GC-Cr/HTC-

IRMS (a, c) and GC-HTC-IRMS (b, d). Black dotted lines indicate the lower limits of precise 

CSIA; red dotted lines indicate the analytical uncertainty for hydrogen isotope analysis; solid 

lines represent the mean values of all measurements within the linearity ranges. 
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3.2. Effects of sample preparation on CSIA of HCHs for food web studies 

One of the main bottlenecks for CSIA is the moderate analytical sensitivity and high 

purity required for a good chromatographic baseline separation which is necessary for 

the accurate isotope analysis. The high detection limit of CSIA makes the investigation 

of contaminants in food webs challenging, since large amounts of sample material are 

required to enable isolation of sufficient compound quantities. Extraction is a process of 

phase partitioning which in principle is associated with isotope effects, and the isotope 

effects can become significant if it accumulated during phase partitioning (Kopinke et al. 

2005). Moreover, the high lipophilicity of HCHs makes the separation from lipids highly 

challenging. Thus, methods for extraction, separation and clean-up of HCHs from 

biological matrices, as well as routine laboratory preparation methods are needed for 

the implementation of CSIA. The main objective of this study is to develop methods for 

HCHs extraction and clean-up from environmental and particularly from biological 

samples including water, soil, plant, milk, fish oil and pork liver for stable carbon, 

hydrogen and chlorine isotope analysis. 

HCHs extraction protocols and efficiencies from different matrixes 

A central step of enrichment strategies is evaporation of the solvent for concentrating 

target components. Insignificant isotope effects associated with solvent evaporation 

were observed by Ivdra et al (Ivdra et al. 2017). Column chromatography packed with 

Florisil slurry and pre-eluted by hexane gives almost complete recovery of HCHs. 

Florisil was selected in the present study due to its potential to retain lipids and high 

polar materials, as well as its capability of effecting clean-up of nonpolar pesticide 

residues from food samples (Koc and Karakus 2011). Plants were first freeze-dried in 

order to minimize the losses in comparison to air-drying, as HCHs are relatively volatile 

hydrophobic compounds. Lipids have relative lower solubility in acetonitrile compared to 

hexane. Therefore, acetonitrile was applied to remove large amounts of lipids from fish 

oil which was selected to represent samples extremely enriched in lipids. Hexane was 

applied to remove water and hydrophilic substances in the first extraction step from the 

milk which is the representative sample containing not only lipids but also a large 

amount of water. Moreover, fresh pork liver was chosen as a representative sample 

29



 
 

containing high amounts of fat and protein. Liver sample was homogenized using a food 

blender before solvent extraction. Co-extracted lipids from fish oil, milk and liver were 

removed by acidic hydrolysis using 95% concentrated H2SO4, and then followed by a 

saponification process using 0.5 M NaOH solution. The majority of hydrolyzed 

carboxylic acids were deprotonated and polar hydrolysis products were dissolved in the 

water phase, so that HCHs could be extracted with hexane. Obtaining a clear phase 

separation in each step is essential to improve the HCHs recoveries. The overall HCHs 

recoveries were 86 - 95% from water and soil, 36 - 66% from plants, and 16 - 44% from 

fish oil, milk and liver, respectively. 

Effects of sample treatment on stable isotope composition 

Considering the typical analytical uncertainty of ±0.5‰ for δ13C, ±5‰ for δ2H and ±0.2‰ 

for δ37Cl, the slight shifts of isotope compositions before and after HCHs extraction from 

different matrices were found to be lower than the analytical uncertainty and hence 

within acceptable ranges (Table 2 (Wu et al. 2018b)). Conclusively, negligible stable 

isotope fractionation could be observed after extraction and separation of HCHs from 

biological samples. Among the procedures applied in the present study, HCHs 

transformation processes could occur during the saponification step, since HCHs can 

be hydrolyzed under alkaline conditions (Zhang et al. 2014). However, the observed 

slight shifts of isotope compositions indicated that the isotope fractionation occurring 

during the short time period of the saponification process was negligible. Despite the 

lower extraction recoveries achieved above, the main contribution of the presented 

study is to prove that it is possible to extract and purify HCHs from complicated matrices 

by using the modified methods, and most importantly the isotopic composition is not 

changed by the method procedures. Therefore, it can be applied to investigate the 

reactive transformation of HCHs in food webs. 

Matrix effects on the δ37Cl analysis 

The bottle neck for δ13C and δ2H analysis is the clean-up step to obtain analytes 

containing fractions that allow base line separation from other organic compounds. In 

contrast, the analysis of δ37Cl requires base line separation of only Cl-containing 
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analytes. In order to evaluate potential interference of the Cl-free matrix on δ37Cl values, 

HCHs and different amounts of diesel were dissolved in hexane. The GC-MS 

chromatography indicated that HCHs peaks overlapped with matrices (Figure S1 (Wu et 

al. 2018b)). However, when the same samples were injected into the GC-MC-ICPMS, a 

clear base line separation could be achieved (Figure S2 (Wu et al. 2018b)). No 

significant changes in δ37Cl were observed. The large carbon and hydrogen background 

from the diesel component do not cause interferences during determination of chlorine 

isotope ratios. Conclusively, Cl-free matrices are not likely to affect the performance of 

the δ37Cl analysis when using GC-MC-ICPMS. 

Environmental applications 

 

Fig. 2: δ13C and δ37Cl values of α-HCH (solid triangles) and β-HCH (open triangles) from 

contaminated soil, plants, animal liver and brain. The HCHs extracted from contaminated soil, 

plants and livers are indicated by brown, green and red color, respectively. Solid lines indicate 

the isotope composition variation of α-HCH muck; dotted lines indicate the isotope composition 

variation of β-HCH muck. 

The δ13C and δ37Cl of HCHs from various contaminated samples from Bitterfeld/Wolfen 

(Germany) were analyzed in order to validate the potential of CSIA for food web studies 

(Fig. 2). HCH muck, which is composed of gray to white crystals, contains more than 90% 

(weight) of HCHs and is considered to represent the original source and hence the initial 

isotopic composition of HCH waste material in Bitterfeld (Liu et al. 2017). Compared to 

the HCH muck, the shifts of δ13C and δ37Cl in contaminated plants indicated that uptake 
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of HCHs in plants were associated with isotope fractionation, suggesting biodegradation 

in the rhizosphere or in the plants. In addition, strong carbon isotope enrichment of 

HCHs in the liver (up to 14.1‰ for α-HCH and 9.7‰ for β-HCH) suggests that there is 

active degradation probably by liver enzymes and only a residual fraction was 

accumulated in the liver after intensive metabolism. Based on the Rayleigh approach, 

significant isotope enrichment combined with specific ε can be applied to quantify the 

reactive transport of HCHs from soil to plant, and to higher organisms. The isotope 

enrichment may illustrate the degradation taking place during this process. Correlation 

of 13C, 2H and 37Cl isotope fractionation (Multi-element CSIA) may be used to identify 

the bond cleavage reactions of degradation processes of halogenated contaminants in 

future studies (Franke et al. 2017, Kuder et al. 2013, Renpenning et al. 2014). 

3.3. CSIA for characterizing chemical and biological transformation of organic 

compounds 

3.3.1. Isotope fractionation of OPs during hydrolysis 

Hydrolysis is considered to be an important chemical transformation reaction of OPs in 

the environment. Dimethoate, EP, MP and tributyl phosphate (TBP) were selected as 

model compounds to study different modes of hydrolysis by CSIA. The main objective 

was to investigate the 13C and 2H isotope fractionation patterns associated with 

hydrolysis of OPs.  

Table 5: Summary of the reaction rate constants (κ), isotope enrichment factors (ε), and 95% 

confidence intervals (CI 95%) upon hydrolysis of OPs at different pH.  

reaction T 
(°C) 

pH Κ  
(× 10

-5
 s

-1
) 

εC ± 95%CI 
(‰) 

εH ± 95%CI 
(‰) 

dichlorvos 22 10 n.c. -0.2 ± 0.1 n.c. 

dimethoate 22 10 n.c. -1.0 ± 0.1 n.c. 

dimethoate 60 7 0.57 -8.3 ± 0.3 n.d 

dimethoate 30 9 0.35 -1.4 ± 0.1 -10 ± 3 

dimethoate 4 12 121.31 -0.4 ± 0.1 -10 ± 5 

MP 60 2 0.78 -10.0 ± 0.7 n.d. 

MP 60 5 1.00 -10.5 ± 1.1 n.d. 

MP 60 7 1.36 -9.9 ± 0.7 n.d. 

MP 60 9 1.53 -6.5 ± 0.4 n.d. 
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MP 20 12 5.58 n.d. n.d. 

EP 60 2 0.25 -6.9 ± 0.8 n.d. 

EP 60 5 0.28 -6.7 ± 0.4 n.d. 

EP 60 7 0.31 -6.0 ± 0.2 n.d. 

EP 60 9 0.42 -3.5 ± 0.4 n.d. 

EP 20 12 0.64 n.d. n.d. 

EP 30 12 2.19 n.d. n.d. 

EP 40 12 7.92 n.d. n.d. 

TBP 80 2 0.06 -3.8 ± 0.3 n.d. 

TBP 80 7 0.05 -4.6 ± 0.5 n.d. 

TBP 80 9 0.11 -2.8 ± 0.1 n.d. 

TBP 35 12 0.03 n.d. n.d. 

n.d. = “not determined”; n.c. = “not conducted”. 

The hydrolysis of EP is a homogeneous reaction following pseudo-first-order kinetics. 

Significant 13C isotope fractionation was observed at lower pH, corresponding to εC = -

6.9 ± 0.8‰ at pH 2, -6.7 ± 0.4‰ at pH 5 and -6.0 ± 0.2‰ at pH 7 (Table 5). Smaller but 

still significant 13C isotope fractionation corresponding to εC = -3.5 ± 0.4‰ for EP was 

observed during hydrolysis at pH 9. However, no 13C isotope fractionation was observed 

for EP hydrolysis at pH 12. The reduction of εC by almost half at pH 9 compared to 

neutral conditions suggests two pathways of hydrolysis. According to the calculation 

using the extended Rayleigh-type equation derived by Van Breukelen (Van Breukelen 

2007), EP hydrolysis at pH 9 has a contribution of 51 - 58% compared to the reaction 

pathway under acidic condition. Furthermore, no significant changes in hydrogen 

isotope ratios of EP were observed during hydrolysis at any pH, indicating no H bond 

cleavage is involved during the rate limiting step of the hydrolysis. Similar 13C and 2H 

isotope fractionation patterns were observed for the other tested OPs, the isotope 

enrichment factors are summarized in Table 5.  

In summary, two general hydrolysis pathways of OPs, including phosphates, 

phosphorothioates and phosphorodithioates, can be proposed (Fig. 3): one is P-O (or P-

S) bond cleavage by nucleophilic attack at the P atom, resulting in no 13C and no 2H 

isotope fractionation; another one is C-O bond cleavage by nucleophilic attack at the C 

atom, resulting in a significant 13C but no 2H isotope fractionation. Therefore, 13C isotope 

fractionation can be used to distinguish different hydrolysis pathways of OPs. 
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Fig. 3: Proposed transformation mechanisms of OPs during hydrolysis at different pH and HO• 

oxidation. R1 and R2 are predominantly aryl or alkyl group. R3 can be diverse and may belong to 

a wide range of aliphatic, aromatic or heterocyclic groups. 

3.3.2. Isotope fractionation of OPs during radical oxidation 

The main objective of this study was to evaluate the 13C and 2H isotope fractionation 

patterns associated with radical oxidation of OPs. HO• oxidation of EP (model of 

phosphorothioates) by indirect photolysis (UV/H2O2) was investigated to compare 

isotope fractionation patterns with those obtained from hydrolysis. HO• oxidation of 

TCEP (model of phosphate) by Fenton reaction and indirect photolysis (UV/H2O2) was 

performed to understand the isotope fractionation associated with an H-abstraction step. 

Moreover, the isotope fractionation patterns of TBP by SO4•– and HO• oxidation, 

generated by potassium peroxydisulfate (KPS) and UV/H2O2, were also examined in 

order to investigate the contribution of different radicals. 

Isotope effects and insight into reaction mechanisms of EP and TCEP by HO• oxidation  

The obtained ε values are summarized in Table 6. The 13C isotope fractionation of EP 

associated with HO• reaction induced by UV/H2O2 photolysis was low but still could be 

quantified by the Rayleigh model, which corresponded to a εC of -0.8 ± 0.1‰. No 
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detectable 2H isotope fractionation was observed. The 13C and 2H isotope fractionation 

of TCEP in the UV/H2O2 system yielded a εC of −1.4 ± 0.1‰, and a εH of −56 ± 3‰. The 

2H and 13C isotope fractionation are linearly correlated yielding a dual isotope 

enrichment factor (Λ) of 43 ± 5. The Fenton reaction of TCEP yielded an εC of −1.0 ± 0.2‰ 

and an εH of −34 ± 5‰, which corresponded to a Λ factor of 35 ± 5. These results 

suggest that the major reaction mechanisms of OPs during HO• reaction are related to 

their chemical structures as illustrated in Fig. 3: (1) In case of a phosphorothioate 

structure (e.g. EP), the P=S bond is oxidized to form a P=O bond in the rate determining 

step yielding very low or no 13C and 2H isotope fractionation. This is in contrast to (2) C-

H bond breaking during the H abstraction step in case of alkyl-substituted phosphate 

structure (e.g. TCEP). In addition, the photodegradation products of EP and TCEP were 

characterized to confirm proposed OP transformation pathways using transformation 

product patterns. These two major chemical structure-dependent reaction mechanisms 

of OPs can be distinguished by applying the 13C and 2H isotope fractionation approach 

diagnostically. 

Table 6: Summary of the reaction rate constants (κ), isotope enrichment factors (ε), and 95% 

confidence intervals (CI 95%) for radical oxidation of OPs at different pH. 

Reaction T 
(°C) 

pH Κ 
(× 10

-5
 s

-1
) 

Major 
radicals 

εC ± 95%CI 
(‰) 

εH ± 95%CI 
(‰) 

EP_UV/H2O2  25 7 4.6 HO
•
 -0.8 ± 0.1 n.d.

a
 

TCEP_UV/H2O2  20 7 7.9 HO
•
 -1.4 ± 0.1 -56 ± 3 

TCEP_Fenton  25 3 35.8 HO
•
 -1.0 ± 0.2 -34 ± 5 

b
TBP_UV/H2O2_1  20 7 474.2 HO

•
 -0.8 ± 0.1 -14 ± 1 

c
TBP_UV/H2O2_2  15 7 27.9 HO

•
 -0.6 ± 0.3 -13 ± 3 

c
TBP_UV/H2O2_3  15 7 6.8 HO

•
 -0.6 ± 0.2 -17 ± 7 

d
TBP_UV/H2O2_ave.     HO

•
 -0.7 ± 0.1 -15 ± 2 

TBP_pH7/KPS  35 7 10.4 SO4
•−

 -0.9 ± 0.1 -16 ± 2 

TBP_pH9/KPS  35 9 8.8 HO
•
, SO4

•−
 -0.8 ± 0.1 -20 ± 2 

TBP_pH12/KPS  35 12 5.5 HO
•
 -0.5 ± 0.1 -11 ± 1 

e
TBP_radical oxidation_ave.    HO

•
, SO4

•−
 -0.7 ± 0.1 -16 ± 3 

a: “n.d.”  = not determined; 
b: the distance between the photo-reactor and light source was 13 cm; 
c: the distance between the photo-reactor and light source was 22 cm; 
d: average ε values for UV/H2O2, which were calculated from the three individual UV/H2O2 experiments; 
e: average ε values for radical oxidation of TBP, which were calculated from all individual radical 
oxidation experiments expect pH 12/KPS. 

Isotope effects and the contribution of HO• and SO4
•– to TBP degradation 
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During the radical reaction of TBP, a C-H bond is cleaved at the sub-terminal position of 

the alkane side chain in the transition state, leading to 2H and 13C isotope fractionation. 

The 2H and 13C isotope fractionation observed in experiments showed that this pathway 

took place during the radical oxidation of TBP by HO• and SO4
•–. The obtained 

enrichment factors from pH7/KPS (SO4
•– dominating) and pH9/KPS (SO4

•– and HO• co-

existing) were nearly identical with the ones from UV/H2O2 (pure HO•) (Table 6). The 

slightly smaller εC of -0.5 ± 0.1‰ and εH of -11 ± 1‰ at pH12/KPS (HO• dominating) is 

due to the effect of alkaline hydrolysis of TBP at pH 12. Considering 35% of TBP 

degradation was contributed by alkaline hydrolysis at pH12/KPS (Fig. S2 (Liu et al. 

2018a)), the ε associated with the HO• oxidation process was estimated to be -0.8 ± 0.2‰ 

for carbon and -17 ± 2‰ for hydrogen using Eq. (3), which were identical with the ones 

obtained from radical oxidation of TBP under different conditions (Table 6). The average 

values of εC = -0.7 ± 0.1‰, εH = -16 ± 3‰, and Λ = 20 ± 4 calculated from all individual 

radical oxidation experiments suggest that SO4
•– and HO• oxidation processes of TBP 

cannot not be distinguished if the analytical uncertainty of the isotope enrichment 

factors is considered. The results suggest that both reaction processes had similar 

mechanisms of attacking carbon atoms and cleaving C–H bonds. However, P–O bond 

splitting cannot be characterized via the 2H and 13C isotope fractionation of TBP in this 

study. Therefore, the assessment 2H and 13C isotope fractionation cannot provide direct 

evidence to evaluate the process of P–O bond cleavage. 

3.3.3. Isotope fractionation of substituted chlorobenzenes during 

photodegradation 

Substituted chlorobenzenes are the basic substructure of many surface water 

contaminants. In this study, the isotope fractionation and reaction mechanisms involved 

during direct and indirect photodegradation of CH3-, Cl-, and NO2- substituted 

chlorobenzenes in aqueous solution were investigated in lab experiments. The 

objectives were: 1) to estimate the extent of direct and indirect photolysis using HO• for 

substituted chlorobenzenes in aqueous solution; 2) to quantify stable 13C isotope 

fractionation during photodegradation; 3) to characterize the mode of bond cleavage 

related to electron configuration of the substrate using the Hammett concept . 
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Photolysis and carbon isotope fractionation 

In general, direct photolysis through UV light absorption (for wavelength λ ≥ 280 nm) did 

not significantly affect concentrations and isotope values (±0.5‰) of most studied 

compounds. Only 4-NCB showed slow but isotopically fractionating direct photolysis. 

This is due to the potential of 4-NCB to partially absorb light at wavelengths higher than 

the cut-off filter at 280 nm, with a maximum absorbance at 281 nm. The 4-NCB direct 

photolysis was associated with a first-order degradation rate constant of 0.0043 ± 

0.0003 h−1 (R2 = 0.97) and an enrichment factor of −5.1 ± 0.4 ‰ (R2 = 0.96) over the 

reduction of 34% of the initial compound. During indirect photodegradation using 

UV/H2O2-generated HO•, the pseudo first-order reaction rate constants increased in the 

order of the NO2- < Cl- < CH3- substituted chlorobenzenes. The most pronounced εC 

was observed for nitrochlorobenzenes (up to −4.8 ± 0.5‰), whereas the least significant 

was for chlorotoluenes (≤ −1.0 ± 0.1‰).  

Hammett plot and insight into reaction mechanisms 

A Hammett plot was constructed using the pseudo first-order rate constants with 

respect to the aromatic compound (kX) obtained from the indirect photodegradion 

experiments for each substituted chlorobenzene. The linear relationship between 

log(kX/kH) vs. σ+ showed a good fit, and displayed a negative Hammett ρ value of −2.1 

(Fig. 4), suggesting that the reaction rates increase due to presence of electron-

donating groups (CH3), and decrease due to the presence of electron-withdrawing 

groups (Cl, NO2). This is in line with the observed lower half-live of CMBs compared to 

DCBs and NCBs. It is well established that the attack of HO• on aromatic compounds 

proceeds via a mechanism analogous to electrophilic aromatic substitution (Anbar et al. 

1966). For such reactions, electron-withdrawing groups increase the energy barrier for 

the addition of an electrophile to the aromatic ring. This is due to a combination of 

transition state destabilization and ground state stabilization, and results in a decreasing 

reaction rate.  
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Fig. 4: Hammett plot (left) and the relationship between AKIEC values and substituents' 

Hammett constants (right). The Hammett plot presents the logarithm of the ratio of the pseudo 

first-order rate constants for the reaction between HO• and the non-substituted chlorobenzene 

(kH, chlorobenzene), and the X-substituted chlorobenzenes (kX, X = Cl, CH3, and NO2). The 

Hammett constant, σ+, is the substituent constant obtained from Hansch et al. (1991). 

Isotope effects and Insight into reaction mechanisms 

AKIEC were calculated to characterize the isotope effect of the cleavage of the chemical 

bond at the reactive positions. The absolute magnitude of the εC and the AKIEC values 

for the meta-substituted chlorobenzenes were always lower than those of their para-

substituted counterparts (Table S2 (Passeport et al. 2018)). The AKIEC values 

increased with increasing Hammett substituent constants σ+ (Fig. 4). As the substituents 

became more electron-withdrawing, the activation energy barrier increased, leading to 

slower reaction rates, and the transition state changed to a more symmetrical or less 

reactant-like structure, resulting in larger AKIEC. Based on these kinetics and isotope 

results, the proposed dominant reaction pathway for the studied compounds involves 

the initial formation of a C–O bond at one of the unsubstituted carbon atoms on the 

benzene ring during the rate-determining step, followed by the release of a hydrogen 

atom. 

In summary, the kinetics and stable 13C isotope studies provided two lines of evidence 

that the reaction of HO• with substituted chlorobenzenes proceeds primarily via OH 

aromatic substitution, involving first the rate-determining C–O bond formation, followed 
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by H release. The substituents on the chlorobenzene structure affected both reactivity 

and stable 13C isotope fractionation. While the 13C isotope enrichment factors obtained 

in this study were small, they will likely be sufficient to identify indirect photodegradation 

of the NCB and potentially the DCB isomers provided that at least 40% of the NCBs and 

70 – 87% of the DCBs are degraded via reaction with HO•. In order to conclusively 

assess the diagnostic capabilities of CSIA for monitoring the photodegradation of 

substituted chlorobenzenes, further research should be conducted to analyze the 2H 

isotope fractionation as a further indicator for bond cleavage reactions. 

3.3.4. Isotope fractionation of phthalate esters during abiotic and biotic 

degradation 

PAEs have drawn increasing attention due to their wide utilization as plasticizers and 

additives in the manufacturing of plastic and personal care products (Ventrice et al. 

2013). The main aims of this study were (1) to investigate the potential of 13C and 2H 

isotope fractionations for characterizing different radical oxidation processes, hydrolysis 

and aerobic biodegradation of three PAEs, and (2) to get insights into the reaction 

mechanisms of PAEs by using the AKIE. Three PAEs (DMP, DEP and DBP) with 

different lengths of alkyl side chain were selected for investigation. The hypothesis is 

that multi-element isotope fractionation pattern allows characterizing reaction 

mechanisms at the aromatic rings and the side chains.   

Isotope fractionation of PAEs during radical oxidation 

The radical species discussed here include SO4
•− induced by heat-activated PS and 

HO• induced by UV/H2O2. The chemical oxidation processes of three PAEs followed a 

pseudo-first order kinetic in all experiments. εC values decreased with increasing length 

of the alkyl side chain, which is likely related to isotope dilution effect by carbon atoms 

in non-reactive positions during intrinsic isotope fractionation. εH values obtained in 

UV/H2O2 reactions were smaller than those from PS oxidation. The obtained εH values 

do not show a consistent trend of isotope dilution effects during PS oxidation, which is 

probably due to the to changing contributions of different pathways responsible for the 

decomposition of PAEs with different alkyl side chain lengths, as suggested in a 
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previous study on HO•-initiated photochemical transformation of four PAEs (Gao et al. 

2015). 

The correlations of 2H and 13C isotope fractionation of three PAEs from different 

reactions were compared in a dual isotope plot (Fig. 5, DEP as example). The 

difference between dual isotope fractionation patterns of UV/H2O2 and PS oxidation at 

pH 2 and pH 7 could be due to different dominating radical species. Previous studies 

have demonstrated that SO4
•− and HO• were possibly present in persulfate oxidation 

systems (Anipsitakis and Dionysiou 2004, Han et al. 2015, Li et al. 2016, Liang and Su 

2009, Xie et al. 2015). tert-Butyl alcohol (TBA) is considered as an efficient scavenger 

of HO•, as it reacts much slower with SO4
•− compared to the high reactivity of TBA/HO• 

systems (Li et al. 2016). Similar εH and Λ values were obtained from PS oxidation with 

DEP at pH 2 and 7 after the addition of TBA (Fig. 5). The Λ values of the DEP 

quenching experiment are almost identical to that of PS oxidation at pH 2 (Λ= 26 ± 3), 

suggesting that SO4
•− is the dominant radical at pH 2, while SO4

•− and HO• both 

contribute to the degradation at pH 7 yielding a smaller Λ value of 15 ± 3. A contribution 

of 21 - 63% by HO• was calculated from the 2H and 13C isotope enrichment using the 

extended Rayleigh-type equation (Van Breukelen 2007). 

Isotope fractionation of PAEs during hydrolysis and aerobic biodegradation 

In this study, the changes of carbon and hydrogen isotope signatures of three PAEs 

were systematically investigated during (1) abiotic hydrolysis over the pH range of 2, 7 

and 10, and (2) aerobic biodegradation by Rhodococcus opacus strain DSM 43250. 

Significant 13C isotope fractionation was detected under all investigated reactions. 2H 

isotope fractionation was observed and is hypothesized to be a secondary hydrogen 

isotope effect (Table 2 (Zhang et al. 2018b)). Dual stable isotope values determined 

from abiotic hydrolysis and aerobic degradation showed similar magnitudes for DMP 

and DEP, indicating that abiotic and enzymatically catalyzed hydrolytic processes 

proceed similarly. The 13C and 2H isotope fractionation pattern of the persulfate 

oxidation of DMP, DEP and DBP could be clearly separated from chemical and 

biological hydrolysis (Fig. 5, DBP as example). Although the 2H isotope fractionation is 

low, the fractionation pattern allows identifying hydrolysis mechanisms. The secondary 

40



 
 

isotope effect still allows classification of neutral, alkaline and biologically induced 

hydrolysis. Oxidation by SO4
•− and HO• can be different in any case from each other. 

This systematic investigation shows the prospects and limitations of 2H and 13C isotope 

fractionation analysis for diagnostically applying Λ values in laboratory and possibly in 

field studies. 

 

Fig. 5: Dual 2H-13C isotope plots of DEP during chemical oxidation reactions (left) and dual 2H-
13C isotope plots of DBP during abiotic hydrolysis, aerobic biodegradation and chemical 

oxidation reactions (right). 

AKIE and reaction mechanisms of PAEs 

Based on identified transformation product of diethyl 3-hydroxyphthalate, HO• addition 

to the aromatic ring of DEP is assumed to be the main reaction mechanism in the 

UV/H2O2 experiment, which is consistent with Gauss computational results on HO•-

initiated degradation of PAEs in a previous study (Gao et al. 2015). Experimentally 

determined KIE values for reactions involving oxidation of C-H bonds are generally in 

the range of 1.01-1.03 for carbon and 2-8 for hydrogen (Elsner et al. 2005). The 

calculated AKIEC =1.028 for DEP in UV/H2O2 experiment falls in the typical range. 

However, AKIEH of DEP in UV/H2O2 experiment was found to be 1.11 which was lower 

than the values reported for the same type of chemical reactions. The reason is likely 

associated with a sp2 to sp3 hybridization change at the reacting carbon in aromatic ring 

as reported elsewhere (Zhang et al. 2016a). AKIEC =1.017 and AKIEH =2.41 obtained 

from SO4
•− dominated reactions of DEP are both in accordance with the general KIE 

41



 
 

ranges for C-H bond oxidation, it supports the hypothesis of C-H bond cleavage but 

cannot be used to predict degradation mechanisms at the side chain or aromatic ring of 

DEP with SO4
•−. More information on intermediate products may be needed to further 

elucidate the reaction mechanisms. For possible hydrolytic mechanisms under aerobic 

and abiotic conditions, an acyl group transfer reaction of esters leads to a primary 

carbonyl-C kinetic isotope effect. H-bonding to the adjacent carbon atom is assumed to 

affect the vibration of the C-O bond and H-bonding to both α- and β-carbon can 

contribute to a secondary AKIEH (Wolfsberg et al. 2010). The calculated AKIEC for the 

proposed hydrolytic pathway (C-O bond cleavage) falls within the previous 

experimentally determined KIE range of 1.03-1.09 for typical nucleophilic substitution 

(SN2 type) reactions involving C-O bond cleavage (Elsner et al. 2005), with the 

exception of lower AKIEC values for DBP hydrolysis at pH 2 and aerobic biodegradation 

(Table 2 (Zhang et al. 2018b)). The slightly different AKIEC of DBP obtained during 

hydrolysis at pH 2 and pH 10 is likely related to a transition state from reactant-like to 

tetrahedral intermediate-like structure. Abiotic and biotic hydrolysis of PAEs 

demonstrate similar AKIEC and Λ values due to the C-O bond cleavage, thus indicating 

the potential of dual isotope analysis to characterize hydrolytic processes of PAEs in the 

environment. 

3.3.5. Enantiomer and carbon isotope fractionation of α-HCH 

The genes responsible for HCH degradation, known as lin genes, are generally present 

in aerobic HCH degrading Sphingomonads. The corresponding LinA enzyme catalyzes 

the initial step of dehydrochlorination. It has been reported that the linA enzymes are 

under continuous selection pressure and thus exist in several variants (Böltner et al. 

2005, Macwan et al. 2012, Mohn et al. 2006, Sharma et al. 2011, Shrivastava et al. 

2017). There are two copies of linA enzymes, linA1 and linA2, which differ by 10% in 

their amino acid sequence, and preferentially degrade (+)α-HCH and (-)α-HCH 

enantiomers, respectively (Suar et al. 2004, Verma et al. 2014). Aerobic biodegradation 

experiments were carried out with (1) resting cells and (2) crude cell extracts of 

Sphingobium indicum strain B90A in parallel and (3) isolated LinA1 and LinA2 proteins, 
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to investigate the underlying mechanisms leading to 13C isotope and enantiomer 

fractionation of α-HCH.  

Correlation of isotope and enantiomer fractionation 

The isotope fractionation of (+)α- and (-)α-HCH, along with the enantiomer fractionation 

were quantified to describe the degradation processes at different cell integrities (Table 

7). The average C obtained from parallel experiments for (+)α- and (-)α-HCH 

degradation were -6.3 ±0.1‰ and -2.3 ±0.03‰ by resting cells and -7.7 ±0.4‰ and -

3.4 ±0.02‰ by crude cell extract, respectively. Purified LinA1 and LinA2 enzymes gave 

an C of -11.1 ±0.3‰ for (+)α-HCH and -3.8 ±0.2‰ for (-)α-HCH, respectively. The 

absolute values of enantiomer fractionation factors (e) varied between 0.54 ± 0.14 % 

and 2.70 ± 0.50 % from resting cells to purified enzymes.  

Isotope fractionation is determined by bond cleavage/formation in the first irreversible 

reaction step and can be modified due to rate limitation of preceding steps in a complex 

biochemical reaction. For the degradation of α-HCH, LinA dehydrochlorinates the 

substrates most likely via an E2 elimination mechanism (Okai et al. 2010), which is 

probably identical for both enantiomers (Manna et al. 2015). As suggested by QM/MM 

modeling studies (Manna et al. 2015), the rate limitation might be a result of binding 

within the enzyme pocket. In addition, preceding reaction steps such as transport in the 

cell, binding to the enzyme can modify the KIE of the bond cleavage reaction (Nijenhuis 

et al. 2005), resulting in different carbon enrichment factors (Table 7). The kinetics of 

binding of α-HCH enantiomers to the individual enzymes might lead to rate limitation 

which would explain the observed different enantiomer fractionation factors (Table 7). 

Enantiomer fractionation can be influenced by two factors: (1) binding of substrate to the 

enzyme with respect to the stereo chemical position in the enzyme pocket which can 

lead to different reaction ratios (Reetz 2011); (2) the reactivity of two individual enzymes 

with specificity towards enantiomers as observed in the enzyme assays with LinA1 and 

LinA2. In this case, the enantiomer degradation should be rationalized as individual 

substances which are controlled by the expression and activity of individual enzymes 

within the machinery of the cell (Muller et al. 2001). 
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Table 7: Summary of carbon isotope enrichment factors (εc) and enantiomer fractionation 

factors (e) of (-)α-HCH and (+)α-HCH, and related kinetic constants κ in different sets of 

degradation experiments by strain B90A. 

 Kinetic constant Isotope fractionation Enantiomer 
fractionation bulk (-)α-HCH (+)α-HCH (-)α-HCH (+)α-HCH 

   
(h

-1
) 


 

(h
-1

) 

 

(h
-1

) 

εc
-
  

(‰) 
εc

+
 

(‰) 
εe(M) 
(%) 

εe(C) 
(%) 

Resting 
cell 

a 0.61±0.06 0.81±0.12 0.49±0.03 n.s. -6.4±0.7 -0.54±0.14 -0.52 

b 0.47±0.05 0.76±0.09 0.30±0.03 n.s. -6.2±1.2 -0.97±0.12 -0.96 

c 0.21±0.03 0.35±0.02 0.12±0.02 -2.3±0.4 -6.1±1.1 -1.07±0.20 -1.11 

d 0.10±0.01 0.15±0.02 0.06±0.01 -2.3±0.3 n.a. -0.82±0.07 -0.81 

Average value -2.3±0.03 -6.3±0.1  

Crude 
extract 

e 0.38±0.10 0.58±0.13 0.30±0.07 n.s. -7.4±0.7 -0.71±0.19 -0.73 

f 0.24±0.04 0.45±0.06 0.12±0.02 n.s. -8.0±1.3 -1.35±0.13 -1.38 

g 0.13±0.02 0.19±0.02 0.04±0.01 -3.4±0.5 n.a. -1.13±0.17 -1.12 

h 0.11±0.02 0.18±0.04 0.05±0.01 -3.4±0.6 n.a. -1.25±0.22 -1.27 

Average value -3.4±0.02 -7.7±0.4  

LinA2 i 0.23±0.06 0.65±0.10 n.a. -3.7±0.6 n.a. -2.70±0.50 -2.79 

j 0.23±0.11 0.54±0.28 n.a. -4.0±1.0 n.a. -2.28±0.19 -2.37 

k 0.11±0.02 0.27±0.05  -3.6±0.5 n.a. -2.42±0.20 -2.46 

Average value -3.8±0.2   

LinA1 l 0.12±0.02 n.a. 0.28±0.02 n.a. -11.3±2.0 2.13±0.52 2.23 

m 0.05±0.01 n.a. 0.13±0.02 n.a. -10.9±1.5 2.37±0.48 2.40 

Average value  -11.1±0.3  

n.a.: not assessed;  n.s.: no significant; εe (M): obtained by modeling; εe(C): obtained by calculation. 

Effect of mass transport on isotope and enantiomer fractionation 

The εc
+ values obtained from resting cells and crude extract with the same degradation 

rate showed that mass transfer across the outer and cytoplasmic membranes may 

reduce the isotope fractionation (Table 7). Significant higher εc
+ values were obtained in 

the purified enzyme (LinA1) experiments. The difference of εc
+ between crude extract 

and enzyme indicates that cell material such as vesicles or membrane remnants may 

affect the transport of substrate leading to lower isotope fractionation. Statistically 

similar εc
- values were obtained comparing pure enzyme and crude extract experiments, 

indicating that mass transfer is not limited and that bond cleavage of the reaction 

governs the observed isotope enrichment. Overall, the uptake and passage though the 

cell wall led to rate limitation reducing the εc for both enantiomers, indicating that uptake 

affects the isotope fractionation of individual enantiomers in a similar way. Moreover, 
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uptake of substrate into the cell often reduce isotope fractionation and a similar effect 

has been observed with a non-enantiomeric substance as well (Renpenning et al. 

2015c). The mass transport into cells and within the cells has different effects on the 

isotope fractionation of (+)α- and (-)α-HCH. However, as enantiomer fractionation only 

depends on the difference of the degradation rate of (-) and (+)α-HCH, mass transfer 

will only affect the enantiomer fractionation in the case that mass transfer is the rate 

limiting step of the reaction. 

Effect of the degradation rate on isotope and enantiomer fractionation 

Significant εc
- in the resting cell experiments was only observed when the - was lower 

than 0.35 h-1, the - higher than 0.76 h-1 lead to the masking of isotope fractionation 

(Table 7). The same observation was made in the crude extract experiments, 

demonstrating that the isotope fractionation at higher - does not characterize the bond 

cleavage because it is not the rate determining step of the reaction. When the + value 

of resting cell experiments fall below 0.5 h-1, significant but nearly identical εc
+ were 

observed in parallel experiments (Table 7), indicating that the bond cleavage was the 

main rate limiting step of the reaction. The same results were observed in the crude 

extract experiments. The εe values indicated preferential degradation of (-)α-HCH over 

(+)α-HCH in all resting cell and crude extract degradation experiments (Table 7). The 

significant variability of e indicates that the enantiomer fractionation depends on 

reaction rates and the amount of each individual enzyme. Comparison of resting cell 

with crude extract suggested that uptake of α-HCH into cells reduced the enantiomer 

fractionation to some extent. Nevertheless, the chemical passage through the 

membrane should not affect the enantiomer ratio as diffusion is identical for 

enantiomers. Therefore, the degradation kinetic of individual enantiomer governs the 

enantiomer fractionation of α-HCH. If varying enantiomer fractionation over time is 

observed, it is an indicator of multiple enzymes involved in the degradation. 

In summary, the isotope fractionation of individual enantiomers is governed by the 

mechanisms of bond cleavage. Nevertheless, the binding within the enzyme and the 

transition state of bond cleavage may not be chemically identical and therefore result in 
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different isotope enrichment factors. One may hypothesize that the kinetic of binding to 

enzymes leads to the rate limitation and thus modifies the observed εc, as the chemical 

bond cleavage is probably not much different in a chemical sense. Future studies on 

modeling the KIE during enzymatic transformation of α-HCH by QC/QM approaches are 

needed to gain deeper insights into enzyme mechanisms. This study validates that 

enantiomer fractionation and isotope fractionation are two independent processes and 

that both are affected by the degradation rate and mass transport. Therefore the 

quantification of the fate of chiral compounds in the environment by combination of 

isotope and enantiomer fractionation needs to be done with caution. 

3.4. Field application of CSIA for charactering natural attenuation of parathion by 

hydrolysis 

Parathion was one of the most widely applied organophosphorus insecticides in 

agriculture in the past decades, and was primarily used as an insecticide on fruit, cotton, 

wheat, vegetables, and nut crops (FAO 1990). Due to its toxicity, parathion has been 

banned or restricted in many countries; however, stockpiles and waste from previous 

manufacturing and former landfill sites often contain parathion (LRSB 2014, Nielsen et 

al. 2014) forming serious point source contaminations which require management 

strategies. Thus, it is crucial to have a proper understanding of the fate of parathion for 

risk assessment at landfill sites and for groundwater quality protection and management. 

CSIA has not been applied yet in field studies to assess the in situ degradation of OPs. 

In order to fill this research gap, parathion was selected as a model compound of OPs 

and its natural attenuation by hydrolysis at a contaminated site was investigated using 

13C and 2H isotope analysis. Groyne 42 is situated at Harboøre Tongue in Denmark 

facing the North Sea. Waste chemicals were disposed at the site between 1950 and 

1960. The area is heavily contaminated by approximately 100 tons of primarily OPs 

(NorthPestClean 2014). The background information of this site has been described 

elsewhere (Bondgaard et al. 2012, Hvidberg et al. 2008). Because of the demonstration 

experiments, the site contained discrete areas which were treated areas with sodium 

hydroxide (pH 13) and untreated areas with neutral to acidic conditions (pH 2-7). 

Hydrogeochemical conditions and isotope analysis of parathion from field samples  
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Concentrations of dissolved oxygen were always below 0.1 mg L-1, indicating almost 

anoxic conditions. The pH ranged from 3.2 to 6.5 in the untreated area, the acidic 

conditions were likely due to acid chemical waste deposition. In the treated area, the pH 

ranged from 6.9 to 12.4, demonstrating the effectiveness of the remediation measure. 

Samples from well TC3-9-3 in the treated area were strongly acidic (pH 2.2), indicating 

that this well is very close to the core of acid waste deposition and mixing of alkaline 

solutions with DNAPL did not result in alkaline conditions. Most of the parathion 

concentrations (0.76 to 155.33 mg L-1) in the treated area are above its solubility of 10.4 

mg L-1 in water at 8 °C (the average temperature of ground water in Denmark). This is 

due to the location of the treated area close to the contamination hotspot where free 

organic phases of a mixture of OPs, intermediate products, reactants and solvents are 

present. The large variations of pH values and parathion concentrations in both areas 

illustrate rather heterogenic biogeochemical conditions at the investigated site.  

The average value of all isotope analyses of source samples was taken as source 

signature of parathion, resulting in -22.9 ± 0.8 ‰ for δ13C (n = 10) and -212 ± 15 ‰ for 

δ2H (n = 12). Compared to the source signature of parathion, δ13C enrichment from 0.8 ‰ 

to 4.9 ‰ was obtained from the wells in the untreated area (Fig. 6), indicating in situ 

acidic and neutral hydrolysis was taking place. The δ13C values in the treated area were 

almost identical with the source signature (Fig. 6) showing that no 13C isotope 

fractionation of parathion occurs under strong alkaline conditions, which is in agreement 

with the results of laboratory hydrolysis experiments (Wu et al. 2018a). δ13C 

enrichments of 2.8 ‰ and 2.1 ‰ were observed in samples from wells TC3-6-3 and 

TC3-7-2, respectively, which are characterized by strongly alkaline pH values (11.7 -

12.4). This result might be explained by mixing of alkaline water and plumes during 

sampling. Mixing during sampling needs to be taken into account for interpreting the 

isotope composition and leads to an underestimation of degradation reactions (Kopinke 

et al. 2005). The 13C isotope fractionation is an indication that the hydrolysis may have 

taken place under acidic, neutral or slight alkaline conditions. However, the δ2H values 

obtained in both areas were all overlapping with the source signature (Fig. 6) because 

the hydrolysis of parathion is not associated with a detectable 2H isotope fractionation 

effect, independent of the pH value. 
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Fig. 6: Carbon and hydrogen isotope ratios of parathion obtained from the ground water from 

the “Groyne 42” field site. Green squares indicate the samples from the treated area; blue 

circles indicate the samples from untreated area; Red dotted lines indicate the carbon and 

hydrogen source signatures of parathion. 

Isotopic profiles of parathion during hydrolysis and biodegradation 

Chemical oxidation of parathion occurs via oxidation of the P=S bond to a P=O bond by 

an HO• in the first rate-determining irreversible step; the reaction is not linked to 

detectable 2H or 13C isotope fractionation. In contrast, the hydrolysis of parathion results 

in no detectable 2H isotope fractionation but significant 13C isotope fractionation, 

corresponding to isotope enrichment factors of εC = -6.9 ± 0.8 ‰ at pH 2, -6.7 ± 0.4 ‰ 

at pH 5, -6.0 ± 0.2 ‰ at pH 7, -3.5 ± 0.4 ‰ at pH 9, and insignificant 13C isotope 

fractionation at pH 12. The reduction of the 13C isotope fractionation factor at pH 9 

suggests that two hydrolysis pathways take place simultaneously. Parathion is 

hydrolyzed completely by the P-O bond cleavage pathway at pH values above 10, as 

shown experimentally (Wanamaker et al. 2013). Therefore, 13C isotope fractionation can 

be expected and used to characterize parathion hydrolysis at pH < 10. 

Isotopic profiles of parathion during biodegradation were investigated under laboratory 

cultivation using two isolated aerobic strains and one anaerobic strain, however, the 

reaction using the three tested strains was not associated with 13C and 2H isotope 

fractionation. The biodegradation mechanisms of parathion using several microbial 

strains affiliated to the genera Flavobacterium, Bacillus, Pseudomonas or Arthrobacter 

have been proposed previously (Singh and Walker 2006), which are summarized in Fig. 
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7: (A) hydrolysis of the phosphotriester bond to form p-nitrophenol (P-O bond cleavage); 

(B) reduction of the nitro group acting as electron acceptor to form amino parathion (N-

O bond cleavage); (C) oxidation of the sulfur group of parathion to form paraoxon (P=S 

bond cleavage). No carbon and hydrogen bond breaking is involved in the first rate 

determining step of all three pathways, thus, no significant 13C and 2H isotope 

fractionation is expected to be associated with the biodegradation of parathion. 

However, only a limited number of studies exist on aerobic and anaerobic parathion 

degradation, it cannot be fully excluded that microorganisms could attack parathion by 

oxidizing a carbon entity leading to 13C and 2H isotope fractionation. 

 

Fig. 7: Different pathways of parathion first step degradation by microorganisms (modified from 

Sing & Walker 2006), including hydrolysis of the phosphotriester bond (A), reduction of the nitro 

group (B) and oxidation of the sulfur group (C).  

Quantitative assessment of in situ hydrolysis at the investigated field site 

It is unlikely that significant 13C and 2H isotope fractionation is associated with the 

biodegradation of parathion, and no 13C isotope fractionation can be expected during 

the hydrolysis of parathion at pH > 10. Hence, the 13C isotope enrichment obtained in 

parathion at the Groyne 42 site can be contributed exclusively to hydrolysis at pH < 10. 

The estimation using Eq. (6) revealed the evidence that up to 8.6 % natural attenuation 

of parathion was contributed by hydrolysis under neutral and acidic conditions and 

resulted in up to 16 % of removal was contributed by hydrolysis under slightly alkaline 

conditions when considering the mixed hydrolysis pathways. A half-life time of 1521 
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days at the average ground water temperature in Denmark (8 °C) can be roughly 

predicted according to the Arrhenius plot describing the correlation of temperature and 

the rate constants of parathion hydrolysis at pH < 7.8. Thus, the relative low 

temperature at the Groyne 42 field site would lead to long retention times of parathion in 

the untreated area. 

Muff and colleagues suggested that the hydrolysis reactions are limited by the rate of 

hydrolysis rather than NAPL dissolution (Muff et al. 2016). The results of present study 

contradict to some extent with this assumption and support that mixing is a major factor 

limiting the in situ degradation. Firstly, the indication for neutral and acidic hydrolysis 

was found even in the treated areas where someone would expect prevailing alkaline 

conditions. Secondly, the high parathion concentrations are clearly above the water 

solubility and this suggests that phases are present which are obviously not accessible 

to hydrolysis. Thirdly, in spite of long half-life time, the high concentrations suggest that 

phases not accessible to hydrolysis still provide a source of contamination leaching into 

the ground water. Thus, the kinetic of hydrolytic transformation is expected to be 

controlled by mixing of alkaline water in the subsurface, and mixing in porous media is 

slow. Similar assumptions could be made for neutral and acidic hydrolysis. Mixing of 

alkaline solutions with DNAPL seems to be a challenge for all in situ measures. 

Heterogenic reaction conditions could be expected as suggested by the 13C isotope 

enrichment of parathion even at places with high pH pointing to a predominance of 

neutral or acidic hydrolysis.   
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4. Conclusion and outlook 

The results of this study clearly demonstrate the great prospects for characterizing 

transformation processes of targeted organic components using CSIA. 

The CSIA approach has been successfully extended to the compound class of OPs. 

Accurate and precise δ13C and δ2H analysis of OPs could be obtained using the 

developed methods. The Cr/HTC system can be a promising approach for routine 2H 

isotope analysis of heteroatom-bearing organic compounds. The systematic study on 2H 

and 13C isotope fractionation patterns shows the potential of CSIA for investigating 

chemical transformation of OPs. The obtained knowledge has been applied for 

quantification of the hydrolysis of parathion at a contaminated field site. Therefore, the 

isotope fractionation approach might be used in the future to assess and monitor the 

hydrolysis of OPs in aquatic environments under typical environmental conditions (pH 3 

- 10). Results from the Hammett relationship, the stable carbon isotope analysis and 

degradation product analysis provide evidences that the reaction of OH• with substituted 

chlorobenzenes proceeds primarily via aromatic ring addition and is followed by H 

release. The substituents on aromatic ring affect both reactivity and stable carbon 

isotope fractionation due to the electron-donating or electron-withdrawing nature of the 

substituents affecting the reaction rate. As the substituents became more electron-

withdrawing, the activation energy barrier increased, leading to slower reaction rates, 

and the transition state changed to a more symmetrical or less reactant-like structure, 

resulting in larger apparent kinetic isotope effects. Further research should be 

conducted to analyze the hydrogen isotope fractionation as another indicator for bond 

cleavage reactions of substituted chlorobenzenes. Additionally, dual isotope analysis 

has diagnostic value for characterizing reaction mechanisms of PAEs. CSIA provides a 

novel approach to estimate the relative contribution of radicals (SO4
•− and HO•) to the 

overall reaction. The obtained isotope fractionation patterns are of fundamental 

importance to evaluate in situ chemical oxidation processes for the removal of PAEs. 

This study is an important step forward in understanding degradation mechanisms of 

organic compounds with SO4
•− and HO• radicals in the aqueous phase. 
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However, my studies also demonstrate the limitations of CSIA with regard to 

characterizing the transformation mechanisms of OPs. For instance, possible radical 

oxidation reactions cannot be analyzed by 2H and 13C isotope fractionation when the 

degradation process is initiated with a desulfurization step (P=S bond cleavage) in the 

first irreversible reaction of phosphorothioates and phosphorodithioates (Fig. 3). 13C and 

2H isotope fractionation is unlikely to characterize aerobic and anaerobic parathion 

biodegradation involving P=S, P-O or N-O bond cleavage (Fig. 7). Additionally, 

hydrolysis pathways of OPs involving P-O and C-O bond cleavage cannot be 

characterized by 2H isotope fractionation (Fig. 3). Interestingly, significant 2H isotope 

fractionation was observed in our preliminary experiments of parathion degradation 

using biogas slurry under anaerobic condition, resulting in a εH of -40 ± 6 ‰ using fresh 

slurry and εH of -61 ± 4 ‰ using cell-free slurry, respectively (unpublished data). This 

indicates that the enzymatic transformation of OPs may occur via a different mechanism 

which could be characterized by 2H isotope fractionation. The preliminary data suggests 

that unknown pathways cleaving a C-H bond are at work in biogas plants which 

remained to be discovered. In addition a yet uncharacterized pathway could be 

characterized by 2H isotope fractionation for the assessment of OPs degradation in 

biogas reactors or in waste water treatment plants. For further exploring the diagnostic 

potential of tracing reaction mechanisms of OPs in the environment using isotope 

fractionation concepts, more systematic studies on microbial degradation are needed in 

the future and the associated 2H and 13C isotope fractionation patterns need to be 

compared with those of chemical transformation of OPs. 

13C isotope fractionation of α-HCH enantiomers can potentially be used to quantify the 

degradation in field studies. The LinA1 and LinA2 enzymes have shown to exhibit a 

highly selective degrading potential using only one enantiomer almost exclusively. 

Therefore, the degradation can only be quantified robustly by enantiomer specific 

isotope analysis. Attempts for using the Rayleigh equation for modeling both enantiomer 

and isotope fractionation need to be critically assessed, as the basic Rayleigh concept 

holds no validation for quantifying enantiomer fractionation. This study represents the 

first step towards developing a better understanding of isotope and enantiomer 

fractionation and will aid in field site evaluation. For instance, enantiomer fractionation 
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may provide additional information reflecting degradation conditions. Additionally, a 

method for extraction and purification of HCHs for the analysis of stable isotope 

composition in various environmental compartments was developed and evaluated. All 

steps of sample preparation have been shown to be free of isotope fractionation 

concerning the typical uncertainty of the δ13C, δ2H and δ37Cl analysis. Due to the high 

detection limit of IRMS, improvements in the sensitivity of GC-IRMS and in the 

efficiency of HCHs enrichment are needed in the future for reducing the sample sizes 

and lowering matrix interferences. In the preliminary field study using CSIA, the isotope 

enrichment of HCHs observed in contaminated soil, plants and animal liver provided 

evidence that degradation took place. This lead to the hypothesis that isotope 

fractionation of HCHs can be used to assess biodegradation in food webs, whereas the 

isotope enrichment in the residual fraction reflects the metabolism in the higher 

organisms. Thus, isotope combined with enantiomer fractionation may be used as a 

biomarker for the contamination load in the diet of the organism at a specific position of 

the food chain. The work as presented herein is, the first step towards new 

investigations on tracing the reactive transport processes of organic contaminants in a 

complex environment and food webs. 

In order to overcome the limited diagnostic potential of 2H and 13C isotope fractionation, 

compound-specific oxygen isotope analysis (δ18O) may hold great potential for 

investigating the transformation processes of OPs, since O is involved in the first 

irreversible reaction steps of hydrolysis and biodegradation. Hitzfeld and colleagues 

evaluated the performance of different HTC reactors for δ18O analysis via GC-HTC-

IRMS system (Hitzfeld et al. 2017). It is shown that physical and chemical properties of 

a given reactor design impact high temperature conversion processes, and thus the 

accuracy of δ18O analysis was prevented by non-quantitative HTC and significant CO2 

byproduct formation. For instance, the reported variation of δ18O precision ranges from 

less than 0.5 ‰ to more than 2‰ for various sugars (Lehmann et al. 2016, Zech and 

Glaser 2009, Zech et al. 2013). Therefore, it may be necessary to standardize the 

precision for δ18O analysis, or to develop new concepts for HTC method for further 

investigation of 18O-CSIA.  
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Compound-specific sulfur isotope analysis (δ34S and/or δ33S) might be a very promising 

subject of future research, which could offer the opportunity for characterizing the P=S 

bond cleavage during radical oxidation and biodegradation of phosphorothioates such 

as parathion, and for characterizing the P-S bond cleavage during alkaline hydrolysis of 

phosphorodithioates such as dimethoate. The recent achievement on accurate and 

sensitive δ34S (34S/32S) analysis of volatile organic substances using GC-MC-ICPMS 

method makes the 34S-CSIA possible to be developed in the future (Said-Ahmad et al. 

2017). The δ34S analytical methods could be adapted to OPs inspired by of the recent 

development of δ37Cl analysis by operating in low resolution mode (m/Δm = 300) using 

a super dry plasma to reduce interferences from protonation (Horst et al. 2017), as well 

as by installing a transfer line connecting GC and ICP to extend the range of analytes 

towards semi-volatile organic substances (Renpenning et al. 2018). The isotope 

analysis at low mass resolution is expected to allow an increase of the sensitivity for 

isotope analysis and therefore gives new options to develop selective and sensitive 

methods for CSIA. Potentially, the sulfur isotope fractionation can be further 

investigated as a new indicator for sulfur bond cleavage reactions of OPs. This may 

open prospect for exploring the diagnostic potential of multi-element isotope analysis in 

transformation process studies but also for forensic approaches. For example, isotope 

analysis of δ18O, δ34S and δ37Cl is needed to exploit the potential of multi-element 

isotope fingerprinting for identification of sources and providing a database of isotope 

compositions of OPs, which might improve the tracing of origin, transport pathways and 

degradation of OPs in the environment. To verify the applicability of this approach for 

source identification of OPs, I have selected chlorpyrifos, one of the most applied OP 

pesticides, as a starting point for investigation. The preliminary results of δ13C, δ2H and 

δ15N analysis indicated the potential of multi-element isotope analysis as tool for 

distinguishing chlorpyrifos from different countries (Fig. 8). More information is expected 

to be obtained by the analysis of δ18O, δ34S and δ37Cl in the next step, as the multi-

element isotope ratios might reflect synthetic pathways and/or usage of different raw 

materials, as well as possible isotope fractionation during the synthesis reactions 

(Gilevska et al. 2015).  
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Fig. 8: Variability of δ13C, δ2H and δ15N values of commercial chlorpyrifos from different 

manufacturers in different countries including India (green balls), China (red balls) and Germany 

(black balls) (Wu and colleagues, unpublished data) 

As shown for halogenated ethenes, multi-element CSIA employing 13C, 2H and 37Cl 

isotope fractionation is promising to characterize the degradation reactions (Franke et al. 

2017, Kuder et al. 2013, Renpenning et al. 2014). The recent development of analytical 

technics using GC-Cr/HTC-IRMS for δ2H analysis and GC-MC-ICPMS for δ37Cl is 

feasible for HCH and has potential to provide insights into transformation mechanisms 

of HCHs in depth by applying multi-element CSIA. In addition, HCHs contain different 

isomers. Multi-element isotope analysis of HCH isomers may provide quantitative 

structure–activity relationship (QSAR) with respect to the relationship between HCH 

isomers with axial and planar Cl and the associated isotope fractionation during 

dehalogenation reactions. In a preliminary approach, initiative has been taken to study 

the 13C, 2H and 37Cl isotope fractionation of γ-HCH and β-HCH during alkaline 

hydrolysis, Fe reduction and enzymatic transformation using LinA. The preliminary 

results showed that similar εC and εCl were obtained from the alkaline hydrolysis of γ-

HCH and β-HCH. However, even though the similar dehydrochlorination mechanism is 

proposed, significantly different εH values were observed with -162 ± 26 ‰ for γ-HCH 
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and with -27 ± 8 ‰ for β-HCH, respectively (Wu and colleagues, unpublished data). The 

reason could be due to the different planar and axial positions of C-H and C-Cl bonds in 

the molecules of γ-HCH and β-HCH. This short example may indicate that for better 

characterizing bond cleavage reactions of HCHs, multi-element isotope fractionation 

patterns including 13C, 2H and 37Cl are needed and could be to be the next steps for an 

investigation of bond cleavage mechanisms.  

HCHs are one of the prominent persistent organic pollutants in the environment. Due to 

their low water solubility and persistence in the environment, HCHs tend to be 

accumulated in the soil and will be taken up into plants from the roots and air, and 

eventually be accumulated in food and wild animals. Thus, for sustainable management 

of contaminated lands and health risks assessment, it is necessary to trace the fate of 

HCHs in the food webs. In this thesis, the carbon isotope enrichment of HCHs observed 

in the contaminated soil and plants (Fig. 2) gives indication that isotope fractionation 

concepts could be used to assess their transformation in food webs. Especially, the 

strong carbon isotope enrichment of HCHs in the contaminated pork and deer livers (Fig. 

2) leads to the hypothesis that isotope fractionation of HCHs may reflect the metabolism 

in higher organisms. Future research interests can be focused on the degradation 

assessment of HCHs at a land scape scale. As an example for the investigation of the 

HCHs fate on a land scape level, preliminary data has been acquired from a HCHs 

dumpsite in Lucknow, India (Fig. 9). The δ13C values and enantiomeric fraction (EF) of 

were applied as tools to elucidate the transformation of α-HCH and the selective uptake 

processes of α-HCH enantiomers in soil, plant, animal milk and dung. The preliminary 

results of the δ13C signature of α-HCH showed that degradation processes were 

associated with the uptake into plants, implying degradation in the rhizosphere 

potentially attenuating the load of HCHs (Fig. 9). The isotope enrichment of α-HCH in 

dung samples indicated that degradation of HCHs may take place in the digestive track 

of cows and buffallo during metabolism potentially in the anaerobic rumens. This 

digestive passage of HCHs is probably undergoing the similar transformation processes 

as in the anaerobic digestion of contaminated biomass during biogas production (Lian et 

al. 2018). However, further investigations are necessary for confirmation. The significant 

carbon isotope enrichment of α-HCH in the contaminated milk samples (Fig. 9) is in 
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agreement with the significant isotope enrichment in liver samples (Fig. 2), which raises 

the hypothesis that the HCHs residuals in milk undergo the liver passage as well and 

that the metabolization of HCHs in higher organisms is more significant isotope 

fractionating processes comparing to HCHs transformation governed by microbial 

community. Additionally, the preliminary analysis on EF of α-HCH implied that (+)α-HCH 

was preferentially degraded in milk, in contrast, (-)α-HCH was preferentially transformed 

in other contaminated compartments (Fig. 9). It is well known that linA2 enzyme 

preferentially catalyzes (-)α-HCH transformation and is expressed in almost all identified 

microbes which are capable for HCHs degradation. My hypothesis is that Cytochromes 

P450 presented in liver could be the key factor governing the metabolization of HCHs in 

higher organisms, and that the corresponding P450 enzyme preferentially catalyzes 

(+)α-HCH transformation. Further reference experiments of HCHs transformation using 

P450 enzyme need to be conducted in the laboratory for proving of these hypotheses. 

 

Fig. 9: δ13C values (solid triangles) and enantiomeric fraction (EF) (red stars) of α-HCH 

extracted from water, sediment, soil, plants, animal milk and dung from contaminated site in 

Lucknow, India. The color of triangles indicates different sample matrixes. The solid bar 

indicates the isotope composition variation of α-HCH sources. The red dashed line indicates the 

EF = 0.5 for racemic α-HCH from the production (Wu and colleagues, unpublished data). 
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Many of the modern pesticides and pharmaceuticals contain enantiomers. The 

preliminary investigation described above illustrates the potential of enantiomeric 

fraction and stable isotope fractionation for characterization of transformation processes 

by microbes even in digestive tracks of higher organisms. The analysis of 

transformation of organic chemicals in higher organisms offers new perspective for 

evaluation of chemicals fates, which could be interesting for the regulation of pesticides 

and pharmaceuticals.  
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a b s t r a c t

Compound-specific isotope analysis (CSIA) has been established as a tool to study the environmental fate
of a wide range of contaminants. In this study, CSIA was developed to analyse the stable carbon isotope
signatures of the widely used organophosphorus pesticides: dichlorvos, omethoate and dimethoate. The
linearity of the GC–C–IRMS system was tested for target pesticides and led to an acceptable isotope com-
position within the uncertainty of the instrument. In order to assess the accuracy of the developed
method, the effect of the evaporation procedure on measured carbon isotope composition (d13C) values
was studied and showed that concentration by evaporation of solvents had no significant isotope effect.
The CSIA was then applied to investigate isotope fractionation of the hydrolysis and photolysis of selected
pesticides. The carbon isotope fractionation of tested pesticides was quantified by the Rayleigh model,
which revealed a bulk enrichment factor (e) of �0.2 ± 0.1‰ for hydrolysis of dichlorvos, �1.0 ± 0.1‰

and �3.7 ± 1.1‰ for hydrolysis and photolysis of dimethoate respectively. This study is a first step
towards the application of CSIA to trace the transport and degradation of organophosphorus pesticides
in the environment.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A growing food demand in the world forces intensive agricul-
ture accompanied by releasing of a variety of agrochemicals into
the environment. There are public concerns regarding the use of
pesticides and adequate monitoring of the fate of pestidies is an
urgent objective. Today, over 500 compounds are registered world-
wide as pesticides, or metabolites of pesticides, of which organo-
phosphorus compounds are a highly diverse family of organic
chemicals used in high amounts. For example, the annual produc-
tion of organophosphorus pesticides (OP pesticides) is more than
100.000 t in China, which accounts for more than 80% of total
pesticide production (Liu, 2010). In our study we focused on three

representatives from the group of OP pesticides: dichlorvos, ome-
thoate and dimethoate. These three OP pesticides are widely used
in China, are of public concern, and are on the list of Priority Mon-
itoring Pesticides published by the Ministry of Environmental Pro-
tection of the People’s Republic of China due to their high toxicity,
frequent use and appearance (Jiang, 1993).

Dichlorvos (2,2-dichlorovinyl dimethyl phosphate) is a volatile
organophosphorus insecticide with fumigant and penetrant action.
It is predominantly used as a fumigant or spray for stored grain and
for grain handling equipment (Oncescu et al., 2010). Dimethoate
(O,O-dimethyl S-[2-(methylamino)-2-oxoethyl] dithiophosphate)
is an OP pesticide which has both direct and systemic action
against a broad range of insect pests. It is considered as ‘moder-
ately hazardous, class II’ compound by WHO with a permissible
limit of 0.006 mg L�1 in drinking water. Omethoate (2-[(dimeth-
oxyphosphoryl)sulfanyl]-N-methyl-acetamide) is an structural
analog of dimethoate, and appears to play a dominant role in the
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0045-6535/� 2014 Elsevier Ltd. All rights reserved.
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toxicity of dimethoate for insects and mammals. These pesticides
may be characterised by classical analytical methods, like GC and
LC in combination with different detection techniques, like FID,
ECD, NPD and MS (Pappas and Kyriakidis, 2003; Evgenidou et al.,
2006; Priya et al., 2011). The complexity of aquatic systems always
makes it difficult to assess degradation based on concentration
data alone, especially, to distinguish degradation from dilution
processes in the environment.

Recently, CSIA has opened a promising avenue to study the con-
taminants behaviours in the environment employing isotope frac-
tionation to trace reactivity. The stability of chemical bonds is
dependent on the mass of substituent thus higher activation
energy is needed to cleave a bond formed by heavy isotopomers
leading to kinetic isotope fractionation in chemical processes
(Bigeleisen and Wolfsberg, 1958). This principle controls the reac-
tivity of the individual stable isotopes in the environment and
determines isotope fingerprints during synthesis of organic com-
pounds. The isotope composition provides clues that can be used
to identify sources, transformation reactions, and sinks of organic
compounds in the environment (Meckenstock et al., 2004). The
coupling of gas chromatographs with IRMS makes it possible to
analyse isotope ratios of individual compounds in complex mix-
tures and is known as CSIA. CSIA has offered novel avenues to trace
transformation processes of contaminants in complex environ-
ments because it can be used to identify (Hirschorn et al., 2004;
Elsner et al., 2005; Fletcher et al., 2009; Hofstetter and Berg,
2011) and quantify (Abe and Hunkeler, 2006; Aeppli et al., 2010)
transformation reactions by determining the isotope composition
of organic compound. Over recent years, CSIA has become an
increasingly valuable tool and has been applied to study several
groups of contaminants, mostly including benzene homologues
(Mancini et al., 2003; Fischer et al., 2008), chlorinated ethenes
(Vieth et al., 2003; Van Breukelen et al., 2005; Nijenhuis et al.,
2007), petroleum hydrocarbons (Richnow et al., 2003a, 2003b),
and fuel oxygenates (Mckelvie et al., 2007; Rosell et al., 2007,
2010, 2012). CSIA has been developed for several pesticides, such
as Lindane (Badea et al., 2009), isoproturon (Penning et al., 2010)
and 2,6-dichlorobenzamide (BAM) (Reinnicke et al., 2012). How-
ever, to our best knowledge, the evaluation of OP pesticides by
CSIA has, to date, not been reported.

The aim of this study was to develop a method for the analysis
of carbon isotope signatures of three OP pesticides (dichlorvos,
omethoate and dimethoate) extracted from aqueous samples and
to explore the applicability of CSIA to characterise the transforma-
tion of OP pesticides. For each compound, the precision of the
method was tested as well as the detection limits of precise isotope
analysis. All measurements were initially analysed by GC–FID in
order to find appropriate chromatographic conditions. Organo-
phosphorus esters are susceptible to hydrolysis, therefore this is
the most common environmental degradation pathway, so the
method was then applied to assess their isotope fractionation
changes during hydrolysis. Photolytic degradation of dimethoate
was conducted to demonstrate that CSIA could be used to explore
different degradation mechanisms by isotope fractionation.

2. Materials and methods

2.1. Chemicals

High purity standards of three pesticides were selected:
dichlorvos (PESTANAL�, analytical standard, 98.8% pure), ometho-
ate (PESTANAL�, analytical standard, 97.0% pure), dimethoate
(PESTANAL�, analytical standard, 99.6% pure) were purchased from
Fluka (Sigma–Aldrich, Germany). Methanol of HPLC gradient grand
(purity P 99.8%) was supplied by J.T. Baker (Netherlands), while

dichloromethane (Assay (GC), purity > 99.9%) were supplied by
Fluka (Sigma–Aldrich, Germany). Stock and standard solutions of
pesticides were stored at �4 �C. All other chemicals were analytical
grade and used without further purification. 2 � DI water was
obtained by a NANOpure� ultrapure water system (Barnstead,
USA).

2.2. Pesticides extraction

Solid-phase extraction (SPE) using 3 mL DSC-18 cartridges (Dis-
covery�, Bellefonte, USA) were used for extraction of pesticides
from aqueous solution. Before extraction, the SPE cartridges were
activated by passing consecutively 5 mL of dichloromethane,
5 mL of 2 � DI water, and 5 mL of purified water alkalized to pH
10 with 0.1 M NaOH (or acidified to pH 3 with 0.1 M HCl for control
experiments) (Demoliner et al., 2010). Cartridges were then loaded
with 6 mL samples and eluted with 1 mL of dichloromethane to
2 mL vials. The extracted phase was stored for subsequent analysis.
All extractions were performed in two parallels for each time point
of all experiments, one of them was immediately analysed by GC–
FID as described below, and the other one was stored at �4 �C for
isotope analysis.

2.3. Evaporation experiment

The evaporation test was conducted to quantify the effect of
evaporation procedures on isotope fractionation. Standard dichlo-
romethane solutions of dichlorvos, omethoate and dimethoate
mixture (100 mg L�1 1:1:1) were evaporated under a gentle stream
of N2 to volume of 15%, 25%, 40%, 60%, 80% and 100%, respectively,
and changes in their carbon isotope compositions were
determined.

2.4. Analysis methods

2.4.1. GC–FID analysis
An Agilent 6890 series gas chromatograph (GC, Agilent Technol-

ogies, Germany) equipped with a flame ionization detector (FID)
was used. OP pesticides were separated in a HP-608 column
(30 m � 0.53 mm � 0.5 lm, USA) with helium as the carrier gas
(flow of 6.0 mL min�1). The column was initially held at 60 �C for
1 min, ramped at 30 �C min�1 to 300 �C, and held for 2 min. Injector
and detector temperatures were set to 180 �C and 250 �C, respec-
tively. The samples were injected in splitless mode with injection
volumes of 1 lL. Each sample was measured in triplicate. Calibra-
tion of three tested pesticides was measured by diluting it with
dichloromethane.

2.4.2. EA–IRMS analysis
To validate the results of the GC–C–IRMS method, the carbon

isotope compositions of the reference compounds were deter-
mined with an elemental analyser (EuroVector, Milan, Italy)
directly coupled via a ConFlo III (open split, Thermo Fisher Scien-
tific, Bremen, Germany) to a MAT 253 isotope ratio mass spectrom-
eter (Thermo Fisher Scientific), as described elsewhere (Badea
et al., 2009).

2.4.3. CSIA analysis
The carbon isotope composition of dichlorvos, omethoate and

dimethoate was analysed by a GC–C–IRMS system consisting of a
gas chromatograph (Agilent 6890) coupled via a GC/C III interface
to isotope ratio mass spectrometer (Finnigan MAT 252, Thermo
Fischer Scientific). The oxidation furnace of the GC/C III interface
containing (Pt, Ni, CuO) was set to 980 �C. A DB-608 column
(30 m � 0.32 mm � 0.5 lm, USA) was used for pesticides separa-
tion, with helium as the carrier gas at a flow rate of 1.3 mL min�1.
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The column was initially held at 60 �C for 2 min, ramped at
12 �C min�1 to 225 �C, then up to 280 �C at 7 �C min�1 and finally
held for 2 min. The injector was set to 180 �C. Samples were
injected in the split injection mode (the split ratio was from 1:1
to 1:5, which was adjusted to concentrations resulting in suitable
peak areas). At least three replicates were measured per sample
in order to check the reproducibility. If necessary, the samples
were reduced under a gentle stream of N2 to increase the concen-
tration for isotope analysis.

2.5. Hydrolysis experiment

OP pesticides can be hydrolyzed rapidly in alkaline solution, but
are more stable in acidic solution. Thus, the hydrolysis experiments
of selected pesticides were carried out in buffer solution of pH 10,
while hydrolysis in solutions of pH 3 was used as control experi-
ments. Hydrolysis experiments were carried out at 22 �C in
200 mL buffer solution (pH 10) which was prepared with 0.1 M
NaOH (purity P 99%) and 0.1 M KCl–boric acid (purity > 99.5%).
Control experiments were performed in 50 mL buffer solution
(pH 3) which contains 0.1 M HCl (32%, Baker analytical grade)
and 0.1 M C8H5KO4 (potassium hydrogen phthalate, 99% purity,
Alfa Aesar, Germany). All hydrolysis experiments were conducted
in grinding mouth Erlenmeyer flasks with initial concentration of
100 mg L�1 of respective pesticides. Samples were collected at reg-
ular time intervals for further analysis. Remaining concentrations
of compounds during degradation were determined by GC–FID,
and then calculated according to the calibration curve of OP pesti-
cides (see Supporting Information, Fig. S3).

2.6. Photolysis experiment

Photolysis experiment was conducted in a tailor-made chamber
photoreactor using six mercury fluorescent lamps as a UVA radia-
tion source (CLEO 20 W, 438 mm � 26 mm, Philips; broad maxi-
mum at 355 nm) which was described in details elsewhere
(Černigoj et al., 2007). Before starting the degradation experiment,
the photoreactor was preheated for 15 min by turning on lamps to
keep stable temperature at 35 �C. 200 mL aqueous solution of
dimethoate (100 mg L�1) was taken in the reaction tube, and
50 mL of dimethoate solution was performed as dark control
experiment. Samples were collected at regular irradiation time
intervals for further analysis.

2.7. Quantification of carbon isotope fractionation

The quantification of carbon isotope fractionation has been
described in (Meckenstock et al., 2004). Briefly, the isotope ratios
measured by CSIA are reported in d notation in parts per thousand
(‰) relative to the international carbon isotope standard (VPDB)
(Coplen, 2011). Then bulk isotope enrichment factors (e) can be
obtaining from the slope of the Rayleigh equation. Eq. (1):

eC ¼ ln
ðdt þ 1Þ
ðd0 þ 1Þ

� �
ln

Ct

C0

� ��
ð1Þ

Isotope fractionation occurs during the chemical reaction step.
The apparent kinetic isotope effect (AKIE) was calculated to quan-
tify the intrinsic isotope effect of the bond cleavage. AKIE values
were calculated by Eq. (2) (Elsner et al., 2005)

AKIEC ¼
1

z� n
x � eC þ 1

� �
ð2Þ

where n is the number of carbon atoms in the molecule, x is the
number of carbon atoms in the reactive position, and z is the num-
ber of indistinguishable reactive sites.

3. Results and discussion

3.1. CSIA development

The mixtures of OP pesticides were successfully separated by
GC–FID and GC–C–IRMS system under selected temperature pro-
grams and columns (see Supporting Information, Fig. S1).

The linearity of the method was analysed using a stock solution
of OP pesticides, dissolved in DCM to different final concentrations
(concentrations of 40, 50, 100, 200, 300, 400, 500, 600, 800,
1000 mg L�1). A new glass liner, 4 mm ID filled with single taper
and quartz wool (SGE), was used for split/splitless injection into
GC system caused significant shifts in d13C values and gave a poor
linearity range, especially for omethoate (see Supporting Informa-
tion, Fig. S2). Glass liner deactivation using BSTFA gave a better lin-
earity and the isotope composition was almost identical to the
elementary analysis coupled to isotope ratio determination. There-
fore, we suggest that OP pesticides were decomposed in the liner. In
order to circumvent this problem, 1 lL of BSTFA (N,O-bis(trimeth-
ylsilyl)trifluoroacetamide, SUPELCO) was injected manually three
times into the GC inlet (The Agilent Multimode Inlet (MMI)),
adjusted to 100 �C with split ratio of 200:1. Then the injector was
heated to 180 �C. After deactivation of the liner, the linearity ranges
of OP pesticides was improved (Fig. 1). Linearity ranges were shown
for a range of signal areas: 12–35 vs (200–600 mg L�1), 1–68 vs
(40–1000 mg L�1) and 5.5–60 vs (100–1000 mg L�1) for dichlorvos,
omethoate and dimethoate respectively, showing that the linearity
of our method led to an acceptable isotope composition of pesti-
cides within the uncertainty of the instrument. Only signals with
this range of areas were used for evaluation of isotope values.

To assess the trueness of the GC–C–IRMS method, the isotope
composition of three pure compounds was analysed by EA–IRMS
system. The values obtained by two methods were compared in
Table 1. The systematic shifts in averaged d13C values determined
by the EA–IRMS and GC–C–IRMS systems were 0.8‰, 0.3‰ and
0.7‰ for dichlorvos, omethoate and dimethoate respectively, thus
showing relatively good agreement between the two methods.

The isotope effect of the evaporation procedure was evaluated.
The evaporation of mixture solution from the original concentra-
tion of 100% to 80%, 60%, 40%, 25% and 15% of the original volume
shows almost no difference compared with original d13C value of
the initial compound (Fig. 2). The standard deviations (2r) of 6
d13C values of dichlorvos, omethoate and dimethoate were
0.15‰, 0.14‰ and 0.11‰, which fit to the reproducibility by CSIA
for carbon isotope (2r 6 ± 0.5‰). Therefore, the precision of the
measurement was demonstrated as well. The evaporation proce-
dure is unlikely to induce significant isotope effects, thus, concen-
tration of components by evaporation can be used for sample
preparation. As the sensitivity of the GC–C–IRMS is relatively low
compared to GC–MS techniques, further efforts are needed for iso-
lation of OP pesticides from environmental samples. For example,
the limits of the source of drinking water in China are 0.08 and
0.05 mg L�1 for dimethoate and dichlorvos, respectively. For mon-
itoring of environmentally relevant concentration, isolation and
enrichment strategies need to be developed. However, as evapora-
tion does not affect the isotope composition, solvent extraction of
large sample volume and subsequent enrichment by careful evap-
oration might be employed.

3.2. Carbon isotope fractionation during degradation

Hydrolysis occurs at several reactive positions in OP pesticide
molecules. It can occur by a homogeneous mechanism, where
H2O and OH� act as nucleophiles (Bavcon et al., 2003). OP pesti-
cides can be hydrolyzed rapidly in alkaline solution, but are more
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stable in acidic solution. In all of our experiments, the heavier car-
bon isotope was enriched for tested compounds during the degra-
dation. Data from single experiments are shown in Fig. 3 (data of
control experiments are reported in Table S1). After 98.3% was
hydrolyzed, dichlorvos was detected with a carbon isotopic com-
position of �13.7 ± 0.2‰ (Fig. 3a), which is slightly heavier than
the isotopic signature of the parent compound at the beginning
of the experiment (d13C = �14.5 ± 0.2‰). 97.7% of omethoate was
degraded within 8 h, and the corresponding carbon isotope signa-
tures were enriched from �22.2 ± 0.1‰ to �20.5 ± 0.2‰ (Fig. 3b).
Similarly, during the hydrolysis of dimethoate, significant carbon
isotope fractionation was observed. The carbon isotope ratio of
dimethoate enriched from �42.8 ± 0.0‰ to �40.9 ± 0.2‰ (Fig. 3c)
within a 96 h experiment. The carbon isotope composition
enriched from �42.5 ± 0.3‰ to �40.4 ± 0.2‰ upon photolysis of
dimethoate over experimental period of 56 h (Fig. 3d).

3.3. AKIE and degradation mechanisms

The isotope fractionation process was quantified by the isotope
enrichment factor (e) using the Rayleigh equation (Eq. (1)), obtain-
ing enrichment factors of �0.2 ± 0.1‰ for hydrolysis of dichlorvos
and �1.0 ± 0.1‰ and �3.7 ± 1.1‰ for hydrolysis and photolysis
dimethoate respectively (Fig. 4). For further elucidation of the reac-
tion mechanism, AKIE values were calculated to characterise the
isotope effect of the cleavage of the chemical bond at the reactive
positions. According to Oncescu and Oancea (2007), the hydrolysis
of dichlorvos may occur by a homogeneous mechanism where
+H3O/OH� act as nucleophiles in a SN2 mechanism. Its a general
base-catalyzed reaction and has two parallel routes (Fig. S4). Both
routes show no carbon atoms are involved in the reactive

Fig. 1. Linearity test for dichlorvos, omethoate and dimethoate after deactivation of the liner. Signal area represent here correspond to concentrations of 40, 50, 100, 200, 300,
400, 500, 600, 800, 1000 mg L�1. Red diamonds (�) indicate d13C values and black squares (j) indicate amplitude values. Solid lines represent the means of all measurements;
dotted lines represent one standard deviation (2r) of all measurements. Error bars represent one 2r of triplicate. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Comparison of mean d13C (‰) values between EA–IRMS and GC–C–IRMS.

Compound d13C (‰) Dd13C (‰)

EA–IRMS GC–C–IRMS

Dichlorvos �10.4 ± 0.1 �11.2 ± 0.4 +0.8
Omethoate �20.8 ± 0.0 �20.5 ± 0.2 �0.3
Dimethoate �42.6 ± 0.1 �41.7 ± 0.3 �0.7

Fig. 2. Evaporation experiment for dichlorvos, omethoate and dimethoate. Isotope
composition was determined after reduction of the solvent volume from 100% to
80%, 60%, 40%, 25% and 15%. Dotted lines represent the average value of all
measurements. Error bars represent one 2r of two measurements.
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positions. Oncescu et al. found that the lowest value (0.61) of bond
energy in dichlorvos molecule belongs to phosphate–dichlorviniyl
bond, which indicates that this bond has to cleave first by hydroly-
sis. Thus, we suggest that there is no primary carbon isotope frac-
tionation occurs during the hydrolysis of dichlorvos. The obtained
relatively lower enrichment factors of �0.2 ± 0.1‰ may be caused
by the secondary isotope effects. Thus, changes in carbon isotope
ratios of dichlorvos induced by hydrolysis are expected to be low
and the enrichment in isotope signature of dichlorvos may offer
opportunities for detection of other processes or source allocation.

The fractionation upon hydrolysis of dimethoate (�1.0 ± 0.1‰)
was significantly higher than dichlorvos suggesting a primary iso-
tope effect associated with a carbon bond cleavage in the first uni-
directional and irreversible reaction step. In analogy to the
proposed mechanism for the hydrolysis of omethoate (Farooq
et al., 2004), we propose a similar mechanism proceeding by two

main pathways. A nucleophilic OH� attacking the phosphorus
atom will lead to P–S bond cleavage without any primary carbon
isotope effect. A parallel nucleophilic OH� attack on the C–O bond
may lead to a C–O bond fission associated with a primary stable
carbon isotope effect and lead to the formation of O-desmethyl-
dimethoate. O-demethyl-dimethoate and O,O-dimethylhydrogen
phosphorothioate acid as products of dimethoate hydrolysis at
alkaline conditions (WHO, 2012), suggesting that two parallel reac-
tions are at work. The calculation of AKIE value of 1.0050 ± 0.0005,
which is smaller than the theoretical value of KIE (1.061) for C–O
bond may reflect that two parallel mechanisms at work and lead-
ing to a lower isotope fractionation as expected for an typical SN2

reaction such as alkaline hydrolysis of a methoxy bond alone
(see Supporting Information).

During photolytic degradation, C–O bonds can be broken under
direct UV irradiation (Wang et al., 2006). There are two C–O bonds
in dimethoate molecule. Assuming that the photolysis of dimetho-
ate was a concerted reaction, where n = 5, x = 2, z = 1, the AKIE cal-
culation gives a value of 1.0094 ± 0.0027. If the reaction proceeds
in stepwise mode, where n = 5, x = 1, z = 1, the AKIE calculation
gives a value of 1.0188 ± 0.0054. Both AKIE values are typically
below the theoretical KIE O–C bond cleavages, but still in the sim-
ilar order. However, as documented so far, this is the first study on
CSIA of OP pesticides, therefore, no other values are available to
date for comparison. Further mechanistic studies employing CSIA
need to be conducted and compared with metabolite studies to
identify bond cleavage mechanisms in more details.

4. Conclusion

The GC–C–IRMS method for CSIA for dichlorvos, omethoate and
dimethoate was developed in this study. Linearity test shows that
carbon isotope ratios can be obtained for a signal size of area above
12, 1 and 5.5 vs for dichlorvos, omethoate and dimethoate, respec-
tively. The measurements obtained by GC–C–IRMS system exhib-
ited standard deviations (2r) that were mostly < ±0.5‰. To
explore the application of the developed CSIA, the degradation

Fig. 3. Changes in concentrations (Ct/C0) and carbon isotope ratios (d13C) of OP pesticides during degradation. (a–c) Demonstrate the hydrolysis degradation of dichlorvos (j),
omethoate (d) and dimethoate (N); (d) demonstrates the photolysis of dimethoate (H). (�) Indicate d13C values.

ε = -0.2 0.1
R2 = 0 68

ε = -1.0 0.1
R2 = 0 99

1.1ε = -3.7 
R2 = 0 94

±

±

±

Fig. 4. Double logarithmic plot according to the Rayleigh equation of the isotopic
composition vs the residual concentration of dichlorvos (j) form hydrolysis and
dimethoate form hydrolysis (N) and photodegradation (H). e values were calculated
according to equation (Eq. (1)) using the slope of the linear regression.
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experiments revealed a bulk enrichment factor (e) for hydrolysis of
�0.2 ± 0.1‰ and �1.0 ± 0.1‰ for dichlorvos and dimethoate,
respectively. The photolysis of dimethoate gave a larger enrich-
ment factor of 3.7 ± 1.1‰ and allow to distinct hydrolysis and pho-
tolysis. Our study clearly demonstrated that carbon isotope
fractionation occurs during degradation of tested pesticides. The
isotope enrichment factor may be used to characterise hydrolysis
reaction and direct photolysis in field studies.

Monitoring the carbon isotope signatures may be a promising
tool for the qualitative and quantitative assessment of the fate of
OP pesticides. In order to assess the transport of OP pesticides in
the environment and decipher their degradation in more details
by CSIA, further laboratory investigations providing reference
enrichment factors for degradation mechanisms occurring under
different hydrogeochemical conditions are needed. In addition,
2H, 18O and 15N could also be considered for isotope analysis in
order to obtain enhanced insight of OP pesticides from multi-ele-
ment isotope analysis in future studies.
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Chromatographic analysis of OP pesticides 

In this study, the concentrations of three OP pesticides were measured by an Agilent 6890 

series gas chromatograph (GC, Agilent Technologies, Germany) equipped with a flame 

ionization detector (FID). OP pesticides were separated in a HP-608 column (30 m × 0.53 mm 

× 0.5 μm, USA) with helium as the carrier gas (flow of 6.0 mL min
-1

). The column was initially 

held at 60 °C for 1 min, ramped at 30 °C min
-1

 to 300 °C, and held for 2 min. Injector and 

detector temperatures were 180 °C and 250 °C, respectively. The samples were injected in 

splitless mode with injection volumes of 1μL. The chromatograms of selected compounds are 

showed in Fig. S1(a), with retention time of 3.900 min, 5.828 min and 6.290 min for dichlorvos, 

omethoate and dimethoate respectively. 

The carbon isotope composition of dichlorvos, omethoate and dimethoate was analysed with a 

GC-C-IRMS system. For gas chromatographic separation of pesticides, a DB-608 column (30 

m × 0.32 mm × 0.5 μm, Agilent, USA) was used, with helium as the carrier gas at a flow rate of 

1.3 mL min
-1

. The column was initially held at 60 °C for 2 min, ramped at 12 °C min
-1

 to 225 °C, 

then up to 280 °C at 7 °C min
-1

 and finally held for 2 min. The injector temperature was 180 °C. 

Samples were injected in the split injection mode (the split ratio was adjusted so as to obtain 

suitable peak areas). The mixtures of OP pesticides were successfully separated by 

GC-C-IRMS system (Fig. S1(b)), which indicates that the temperature programs and columns 

described above were suitable to separate dichlorvos, omethoate and dimethoate. 

Linearity test 

For the linearity test, stock solutions of OP pesticides mixture, dissolved in dichloromethane to 

different final concentrations (40 to 1000 mg L
-1

), were used. First we used a new liner in the 

split/splitless injector and analyzed the linearity of the method as well as the reproducibility of 

the measurements. As shown in Fig. S2, dichlorvos has a good linearity range with area signal 

of 5 to 50 Vs (100 to 1000 mg L
-1

). A narrow linearity range of 12 to 22 Vs (200 to 400 mg L
-1

) 

for dimethoate was obtained. The δ
13

C values of omethoate were not stable and a limited 

linearity range was observed. We believe that the chromatographic conditions of OP 

pesticides were not optimal. Possibly the new liner was not completely inert and selected 

compounds were degraded in the liner of GC system, which caused significant changes in 

δ
13

C values and affect the linearity range, especially for omethoate. We therefore injected 

BSTFA several times into the GC inlet to deactivate the liner (see the main manuscript) 

Calibration curve 

In order to calculate the remaining concentrations of tested pesticides during degradation 

experiments, calibration curve was carried out by diluting standard solution of mixed pesticides 

(1:1:1) with dichloromethane to final concentrations of 10, 50, 100, 200, 300, 400, 500, 600, 

700, 800 and 1000 mg L
-1

. Calibration curves of three pesticides shows relatively good linearity, 

with correlation coefficient of 0.998, 0.994 and 0.997 for dichlorvos, omethoate and dimethoate 

(Fig. S3). 

Experiments for hydrolysis and photolysis of OP pesticides 
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Hydrolysis could occur at several reactive centers in a given OP pesticide molecule. It can 

occur by a homogeneous mechanism, where H2O and OH
-
 act as nucleophiles (Bavcon et al., 

2003). OP pesticides can be hydrolyzed rapidly in alkaline solution, but are more stable in 

acidic solution. Thus, the hydrolysis experiments of selected pesticides were carried out at 22 ℃ 

in 200 mL buffer solution (pH 10) which was prepared with 0.1 M NaOH (purity ≥ 99%) and 0.1 

M KCl-boric acid (purity > 99.5%). Control experiments were performed in 50 mL buffer 

solution (pH 3) which contained 0.1 M HCl ( 32%, Baker analytical grade) and 0.1 M C8H5KO4 

(potassium hydrogen phthalate, 99% purity, Alfa Aesar, Germany). All hydrolysis experiments 

were conducted in grinding mouth Erlenmeyer flasks with initial concentration of 100 mg L
-1

 of 

respective pesticides. 

Photolysis experiment was conducted in a tailor-made chamber photoreactor using six 

low-pressure mercury fluorescent lamps as a UVA radiation source (CLEO 20W, 438mm×26 

mm, Philips; broad maximum at 355 nm), described in details elsewhere (Černigoj et al., 2007). 

Before starting the degradation experiment, the photoreactor was preheated for 15 minutes by 

turning on lamps to maintain a stable temperature. A 200 mL aqueous solution of dimethoate 

(100 mg L
−1

) was taken in the reaction tube, and 50 mL of dimethoate solution was performed 

as a dark control experiment. The results of control experiment are shown in Table S1. 

Omethoate and dimethoate were hydrolyzed by 9% and 4% respectively over the whole period 

of control experiment (Table S1). In the dichlorvos experiment no degradation was evident, 

and the slightly higher concentration could be caused by the uncertainty of the analysis 

method. Correspondingly, the δ
13

C changed +0.3‰, 0‰ and +0.2‰ in the control experiments 

for hydrolysis of dichlorvos, omethoate and dimethoate are all within the reproducibility by 

CSIA for carbon isotope (2σ ≤ ±0.5‰). The control experiment for the photolysis of dimethoate 

showed no concentration or carbon isotope composition changes. The results indicate no 

detectable carbon isotope fractionation during all control experiments. 

Mechanism for the hydrolysis of dichlorvos and dimethoate 

The hydrolysis of dichlorvos is a general base-catalyzed reaction and has two parallel routes 

(Oncescu and Oancea, 2007). The phosphorus atom is electron deficient, and nucleophilic 

attack is the first step in the hydrolytic reaction. As shown in Fig. S4, both routes show that no 

carbon atoms are involved in the reactive positions. The calculation of the bond strength in 

dichlorvos molecule by Oncescu et al (Oncescu and Oancea, 2007) show that the lowest value 

(0.61) belongs to phosphate-dichlorviniyl bond, which indicates that this bond will cleave first 

by hydrolysis. Thus, we suggest that there is no significant carbon isotope fractionation during 

the hydrolysis of dichlorvos as no carbon bond cleavage could lead to a primary isotope effect. 

The obtained relatively lower enrichment factors of -0.2 ± 0.1‰ could be a result of a 

secondary isotope effect. 

For dimethoate degradation, hydroxide ions promote the rate of hydrolysis by catalysis. The 

hydrolytic cleavage of thioester bond leading to the formation of N-(methyl) 

mercaptoacetamide and O,O-dimethyl phosphorothioate (Yao et al., 2011). It is probable that 

the reaction proceeds via a metastable pentacoordinate phosphate intermediate formed by 

nucleophilic attack of OH
-
 (Farooq et al., 2004). The nucleophilic displacement reaction at the 
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phosphoryl center occurs with high stereospecificity and takes place with inversion of 

configuration at phosphorus. The mechanism for the hydrolysis of dimethoate under basic 

conditions is shown (Fig. S5). 

The AKIE of dimethoate was calculated assuming a C-S bond cleavage. Streitwieser 

semiclassical limits for C-S and C-O bond cleavage are 1.04994 and 1.06142 respectively 

(Huskey, 1991) and but in reality AKIE values are smaller. C-S bond cleavage may be 

assumed to be relevant under acidic conditions and may lead to a primary carbon isotope 

effect. Under alkaline condition the main pathway is the hydrolysis of the P-O bond not 

associated with a primary carbon isotope effect, whereas the hydrolysis of the methoxy group 

leading to formation of methanol and O-demethyl-dimethoate by cleavage of a C-O bond may 

be a relevant side reaction (Farooq et al., 2004). The AKIE for SN2 reactions assuming a 

nucleophilic attack is estimated to have a maximal carbon isotope effect (KIE) in the order of a 

C-O bond cleavage. The calculated AKIE assuming C-O bond cleavage under alkaline 

conditions is much lower which may suggest that the AKIE is a result of a side reaction 

cleaving a C-O bond whereas the P-O bond cleavage is a parallel pathway. Further 

investigations are needed to substantiate this interpretation.  
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Table S1: Changes in concentrations (Ct /C0) and carbon isotope ratios (δ
13

C) of OP pesticides 

during control experiments. ∆δ
13

C refers to the change of isotope composition during the 

experiment. 

 

 

Table S2: Carbon isotopic enrichment factors (ε) and apparent kinetic isotope effects (AKIEs) 

of dichlorvos and dimethoate (see Eqn. (2) in manuscript for the definition of n, x, z). 

Compound ε (‰) n x z AKIEs 

Dichlorvos (OH
-
) -0.2 ± 0.1 - - - -.- 

Dimethoate (OH
-
) -1.0 ± 0.1 5 1 1 1.0050 ± 0.0005 

Dimethoate (photolysis) -3.7 ± 1.1 5 2 1 1.0094 ± 0.0027 

  

Compounds Sampling 

time 

(h) 

Ct / C0 δ
13

C (‰) ∆δ
13

C (‰) 

dichlorvos 

(pH 3) 

0 1 -12.9 ± 0.2 +0.3 

58 1.03 -12.6 ± 0.3 

omethoate 

(pH 3) 

0 1 -20.4 ± 0.3 0 

8 0.91 -20.4 ± 0.1 

dimethoate 

(pH 3) 

0 1 -42.7 ± 0.1 +0.2 

96 0.96 -42.5 ± 0.1 

dimethoate 

(dark controle) 

0 1 -41.8 ± 0.1 0 

56 1.00 -41.8 ± 0.7 
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Fig. S1: The separation of standards mixture of dichlorvos, omethoate and dimethoate by 

GC-FID (a) and GC-C-IRMS (b) methods. 
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Fig. S2: Linearity test for dichlorvos, omethoate and dimethote without deactivation of GC 

injection port. Signal area correspond to concentrations of 40, 50, 100, 200, 300, 400, 500, 

600, 800, 1000 mg/L. Red diamonds (◆) indicate δ
13

C values and black squares (■) indicate 

amplitude values. Solid lines represent the means of all measurements; dotted lines represent 

one standard deviation (2σ) of all measurements. Error bars represent one 2σ of triplicate. 

 

Fig. S3: Calibration curve of dichlorvos, omethoate and dimethote by GC-FID. Signal areas of 

three tested pesticides were measured in DCM as solvent. 
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Fig. S4: Hydrolysis pathways of dichlorvos according to reference (Oncescu and Oancea, 

2007). 

 

 

Fig. S5: Mechanism for the hydrolysis of dimethoate at basic conditions according to 

references (Farooq et al., 2004; Yao et al., 2011). 

87



Appendix 6.2.  

Validation of GC-IRMS techniques for δ13C and δ2H CSIA of organophosphorus 

compounds and their potential for studying the mode of hydrolysis in the 

environment 

Published paper: Wu, L.; Kümmel, S.; Richnow, H. H., Anal. Bioanal. Chem. 2017, 409, 

(10), 2581-2590. 
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Abstract Compound-specific stable isotope analysis (CSIA)
is among the most promising tools for studying the fate of
organic pollutants in the environment. However, the
feasibility of multidimensional CSIAwas limited by the avail-
ability of a robust method for precise isotope analysis of
heteroatom-bearing organic compounds. We developed a
method for δ13C and δ2H analysis of eight organophosphorus
compounds (OPs) with different chemical properties. In
particular, we aimed to compare high-temperature conversion
(HTC) and chromium-based HTC (Cr/HTC) units to explore
the limitations of hydrogen isotope analysis of heteroatom-
bearing compounds. Analysis of the amount dependency of
the isotope values (linearity analysis) of OPs indicated that the
formation of HCl was a significant isotope fractionation
process leading to inaccurate δ2H analysis in HTC. In the case
of nonchlorinatedOPs, by-product formation of HCN,H2S, or
PH3 in HTC was observed but did not affect the dynamic
range of reproducible isotope values above the limit of detec-
tion. No hydrogen-containing by-products were found in the
Cr/HTC process by use of ion trap mass spectrometry
analysis. The accuracy of gas chromatography – isotope ratio
mass spectrometry was validated in comparison with
elemental analyzer – isotope ratio mass spectrometry. Dual-

isotope fractionation yieldedΛ values of 0 ± 0 at pH 7, 7 ± 1 at
pH 9, and 30 ± 6 at pH 12, indicating the potential of 2DCSIA
to characterize the hydrolysis mechanisms of OPs. This is the
first report on the combination of δ2H and δ13C isotope
analysis of OPs, and this is the first study providing a
systematic evaluation of HTC and Cr/HTC for hydrogen
isotope analysis using OPs as target compounds.

Keywords Organophosphorus compounds .

Compound-specific stable isotope analysis . Hydrogen
isotope . Pesticides . Chromium-based high-temperature
conversion

Introduction

Synthetic organophosphorus compounds (OPs) have a wide
spectrum of applications as plasticizers, flame retardants, and
chemical warfare agents, and they are used worldwide as pes-
ticides. The general chemical structure of organophosphorus
pesticides described by Sogorb et al. [1] comprises alkyl or
aryl groups bound to a phosphorus atom via an oxygen or
sulfur atom, forming phosphates, phosphorothioates, or
phosphorodithioates. The pesticide properties of OPs were
first recognized in 1854 [2], and so far, more than 100,000
OPs have been screened for their insecticidal properties, and
more than 100 are available for commercial use [3], which
contributed to approximately 30% of the total pesticide use
worldwide in 2008 [4]. In general, OPs, especially organo-
phosphorus pesticides, are not considered to be very persistent
in the environment as they are relatively quickly degraded in
comparison with organochlorine compounds. However, con-
tinuous and excessive use of OPs has led to environmental
contaminations, with rising public concerns as the residues
have repeatedly been detected in soils, sediments,
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waterbodies, and food and drinking water, and have been
found in rain, air samples [5], fishes [6], and human urine
[7]. To have a more thorough understanding of the fate of
OPs, tools are needed to investigate their sources, reactive
transport pathways, and sinks in the environment.

At present, compound-specific stable isotope analysis
(CSIA) using gas chromatography (GC) – isotope ratio mass
spectrometry (IRMS) is one of the most promising tools for
studying the fate of organic pollutants in the environment and
to assess in situ contaminant degradation [8–11]. CSIA has
primarily been applied to study the fate of volatile organic
groundwater pollutants such as benzene, toluene, ethylben-
zene, and xylene (BTEX) [12–14], chlorinated ethenes and
benzenes [15–19], and fuel oxygenates [20–22].

The carbon isotope fractionation associated with the hydro-
lysis of dichlorvos, omethoate, and dimethoate is to the best of
our knowledge the only application of CSIA for studying the
fate of OPs [23]. The changes of the isotopic signatures of two
elements are compared, leading to a mechanistic interpretation
of CSIA results [24–27], and consequently may allow a more
accurate interpretation of the underlying degradation path-
ways in the environment. Until recently, the feasibility of mul-
tidimensional CSIA was limited by the low availability of a
robust method for precise hydrogen isotope analysis of
heteroatom-bearing organic compounds, which is a major
drawback.

The high-temperature conversion (HTC) technique is a
widely used method for hydrogen isotope analysis of water
and many organic materials. However, it becomes more chal-
lenging for nitrogen-, chlorine-, and sulfur-containing or-
ganics because of the formation of hydrogen-containing by-
products such as HCN, HCl, and H2S. This incomplete con-
version of organically bound hydrogen to molecular H2 can
lead to inaccurate δ2H values. Many efforts have been made to
overcome these limitations [28, 29]. Gehre et al. [30] devel-
oped a concept that uses a pyrolysis unit filled with chromium
in an elemental analyzer (EA) coupled to an IRMS system.
Caused by quantitative scavenging of the heteroatoms by the
chromium, complete conversion of the organically bound hy-
drogen to molecular hydrogen was observed. Moreover,
Renpenning et al. [31] demonstrated successfully the feasibil-
ity of the chromium-based HTC (Cr/HTC) concept for CSIA
by transferring the Cr/HTC principle to a GC–IRMS system.
These findings imply that conventional HTC units for CSIA
need critical evaluation as hydrogen-containing by-products
may be formed, preventing the robust determination of hydro-
gen isotopes.

In this study, we aimed to compare HTC and Cr/HTC units
to explore the limitations of hydrogen isotope analysis of
heteroatom-bearing compounds, particularly nitrogen-, sulfur,
oxygen, and chlorine-containing compounds. OPs are com-
plex heteroatom-bearing compounds that may contain nitro-
gen, sulfur, oxygen, and chlorine in a single molecule. Some

OPs are thermally labile and can disintegrate in the injector
system, complicating analysis. Our first aim was to develop
analytical methods for δ13C and δ2H analysis of eight OPs as
model compounds for phosphates, phosphorothioates, or
phosphorodithioates for multi-isotope CSIA and to explore
the detection limits. The second aim was comparison of
HTC and Cr/HTC for complex heteroatom compounds to val-
idate the reliability of these methods with use of OPs as model
substrates. Finally, the methods developed were used for the
determination of carbon and hydrogen enrichment factors of
dimethoate hydrolysis at different pH values to explore the
potential of 2D CSIA for characterizing hydrolysis pathways.
To the best of our knowledge, this is the first report on the
combination of δ2H and δ13C isotope analysis of OPs, and this
is the first study providing a systematic evaluation of the an-
alytical characteristics of HTC and Cr/HTC for hydrogen iso-
tope analysis using OPs as target compounds.

Materials and methods

Target OPs

The target OPs used for this study were dichlorvos (2,2-
dichlorovinyl dimethyl phosphate; purity greater than
98.8%), omethoate (2-[(dimethoxyphosphoryl)sulfanyl]-N-
methyl-acetamide; purity greater than 97.0%), dimethoate
(O ,O -d ime thy l S - [2 - (methy lamino) -2 -oxoethy l ]
dithiophosphate; purity greater than 99.6%), parathion methyl
(O,O-dimethyl-O-(4-nitrophenyl) phosphorothioate; purity
greater than 99.8%), parathion (O,O-diethyl-O-(4-nitrophe-
nyl) phosphorothioate; purity greater than 99.7%), chlorpyri-
fos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphoro-
thioate; purity greater than 99.8%), tris(1,3-dichloropropan-
2-yl) phosphate (TDCPP; purity greater than 95.7%), and
tris(2-chloroethyl) phosphate (TCEP; purity greater than
97.0%), which were purchased from Sigma-Aldrich. The mo-
lecular structures of the target OPs are shown in Table S1. OP
stock solutions were prepared in dichloromethane (high-per-
formance liquid chromatography grade, purity greater than
99.9%).

Concentration determination by GC–FID

An 6890 series gas chromatograph (Agilent Technologies,
USA) equipped with a flame ionization detector (GC-FID)
was used to determine the concentration of OPs throughout
the study. OPs were separated on an HP-5 column (30 m ×
0.32 mm× 0.25 μm, Agilent, USA) with a helium flow rate of
1.5 mL min-1. The temperature program used was as follows:
hold for 2 min at 60 °C, then increase the temperature at
10 °C min-1 to 160 °C, at 5 °C min-1 to 220 °C, and at
15 °C min-1 to 280 °C, with a 2-min hold. Injector and detector
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temperatures were set to 180 °C and 250 °C respectively. The
samples were injected in split mode (1:10) with injection
volumes of 1 μL.

Isotope measurement by EA–IRMS

To validate the results of the GC–IRMS method, δ13C values
of target OPs were determined by a EuroEA3000 EA
(EuroVector, Italy) coupled to an IRMS system as described
elsewhere [32]. The reference δ2H values were measured by
the newly developed chromium-filled EA (EA–Cr/HTC)
method [30]. To reduce the evaporation of the samples on
the metal surface, approximately 5 mg of Com-Aid for liquids
(aluminum oxide powder, Leco, St Joseph, MI, USA) was
added together with the liquid sample in a tin cup before
analysis. All results were calibrated against international stan-
dards by a two-point calibration method [33, 34]. The follow-
ing international isotope standards from the International
Atomic Energy Agency (IAEA) were used: IAEA-CH-6 (su-
crose, δ13C = –10.4‰) and IAEA-CH-7 (polyethylene,
δ13C = –32.2‰) for δ13C calibration, and VSMOW2 (water,
δ2H = 0‰) and SLAP2 (water, δ2H = -428‰) for δ2H
calibration.

Carbon isotope analysis by GC– combustion–IRMS

The δ13C values of target OPs were measured with a GC–
combustion–IRMS (GC-C-IRMS) system [35]. A 7890A
gas chromatograph (Agilent Technologies, Palo Alto, CA,
USA) was coupled via a ConFlo IV interface (Thermo
Fisher Scientific, Germany) to a MAT 253 IRMS system
(Thermo Fisher Scientific, Germany) via an open split. A
DB-608 column (30 m × 0.32 mm× 0.5 μm, Agilent J&W,
USA) was used for separation of OPs with an oven tempera-
ture program of a 2-min hold at 60 °C, then an increase of the
temperature at 20 °C min-1 to 210 °C, at 1 °C min-1 to 220 °C,
and at 20 °Cmin-1 to a final temperature 280 °C, followed by a
5-min hold. For each analysis, an aliquot of 2 μL per sample
was injected into the system in split injection mode (1:5). To
avoid thermal decomposition of OPs in the injector, the tem-
perature of the split/splitless injector was adjusted according
to the temperature range of the boiling points of the target
OPs, which was 180 °C for dimethoate, omethoate, parathion,
and parathion methyl, 195 °C for dichlorvos and TCEP,
220 °C for chlorpyrifos, and 260 °C for TDCPP. Samples
were run in triplicate.

Hydrogen isotope analysis by GC–HTC–IRMS
and GC–Cr/HTC–IRMS

High-temperature pyrolysis was used to convert organically
bound hydrogen into molecular hydrogen at 1400 °C for δ2H
measurement. Samples were analyzed via the same setup and

separated on a DB-608 column with use of the same temper-
ature program as described for δ13C analysis. Aliquots (1–
3 μL) of samples were injected into a split/splitless injector,
which was set at 180–260 °C. Samples were run in triplicate.
For GC–HTC–IRMS, samples were converted in nonporous
tubular ceramic reactors (0.8-mm inner diameter, 320 mm
long, Degussit AL23 aluminum oxide ceramic, Friatec,
Germany) with a carrier gas flow rate of 1.2 mL min-1 to
achieve reaction time required for complete conversion. For
GC–Cr/HTC–IRMS, the same ceramic reactor was filled with
chromium powder (particle size of 250–300 μm, purity great-
er than 99%, Cr Patinal®, Merck, Germany) along the length
of the high-temperature oven. The design of the Cr/HTC re-
actor was as described elsewhere [31] with some minor mod-
ifications: the tubular ceramic reactor was filled for a length of
approximately 215 mm with chromium powder, resulting in
an empty space of roughly 65 mm at the beginning of the
reactor (gas flow direction). This modification was used to
reduce tar formation on surfaces at lower temperature at the
inflow leading to incomplete conversion of organic com-
pounds. Additionally, only the end of the chromium powder
bed was abutted by a 5-mm plug of quartz wool (HEKAtech,
Germany) to fix the chromium in the ceramic tube. The carrier
gas flow rate was adjusted to 1.1 mL min-1 at the outlet of the
Cr/HTC reactor. All results were calibrated by a two-point
calibration method against two reference compounds—
hexadecane A (δ2H = -167‰) and hexadecane B (δ2H = -
11‰)—as described elsewhere [31].

Characterization of by-product formation during HTC
and Cr/HTC via ITMS

The formation of pyrolytic by-products was analyzed by a
PolarisQ ion trap mass spectrometer (Thermo Finnigan,
Germany). The instrumental setup was described elsewhere
[36]. Omethoate, dimethoate, parathion methyl, and parathion
were used as model compounds for characterization of by-
product formation by an either empty (HTC) or a chromium-
filled (Cr/HTC) reactor at 1400 °C.The gas chromatograph
w a s e q u i p p e d w i t h a B P X - 5 c o l u m n
(30 m×0.25 mm×0.25 μm, SGE, Australia). Samples were
injected in splitless mode by an autosampler (A200S, CTC
Analytics, Switzerland) and with a gas flow rate of
1.1 mLmin-1. All conversion products were transferred online
to the ITMS system, where the molecular and fragment ions of
gases in a range of 10−200m/z were quantitatively analyzed.

Effect of sample pretreatment on the isotope composition

To quantify the effect of evaporation on the isotope composi-
tion, 100 mL of solutions of standard target OPs dissolved in
dichloromethane were evaporated to 0.5 mL or dryness by an
evaporator (TurboVap® II, Biotage, Sweden). The
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evaporation was performed at a pressure of 8–12 psi (55–83
kPa) and 25 °C. δ13C and δ2H values of OPs were determined
before and after evaporation (see the electronic supplementary
material).

Hydrolysis of dimethoate

Dimethoate hydrolysis experiments were performed in phos-
phate buffer solution of pH 7, pH 9 and pH 12 respectively,
and hydrolysis in acidic buffer solution of pH 3was conducted
as a control experiment [23]. To adjust the reaction time, the
incubation temperature was set at 60 °C for pH 7, at 30 °C for
pH 9, and at 4 °C for pH 12. All experiments were conducted
as batch experiments in 50 mL buffer solution with an initial
dimethoate concentration of 100 mg L-1. At different times,
the hydrolysis was stopped by adjustment of the pH of the
aqueous sample to 3 with 6 N HCl. The remaining dimethoate
was extracted with 2 mL dichloromethane under continuous
shaking at 120 rpm for 2 h. Dichlorvos (1000 mg L-1) serving
as an internal standard was added to the dichloromethane used
for extraction. Afterward, the organic phase was transferred
into 2-mL vials and stored at -20 °C until analysis. Calculation
and quantification of isotope fractionation have been de-
scribed elsewhere [37] and are briefly reported in the electron-
ic supplementary material.

Results and discussion

Decomposition of OPs in the GC injector

Isotope fractionation on thermal decomposition in the injector
is one of the challenges for stable isotope analysis of OPs
since many OPs, including parathion, dimethoate, and
omethoate, are thermally unstable and decompose at relatively
low temperatures. For example, parathion decomposes above
200 °C [38] and omethoate can start to decompose at about
135 °C [39]. To avoid thermal decomposition of OPs in the
injector, the GC injector temperature was optimized for each
compound tested, and was 180 °C for omethoate, dimethoate,
parathion methyl, and parathion, 195 °C for dichlorvos and
TCEP, 220 °C for chlorpyrifos, and 260 °C for TDCPP.
However, omethoate isotope measurement at 180 °C is still
critical since omethoate can react with the glass liner in the GC
injector when the liner is not completely deactivated. This
decomposition reaction is expected to increase with higher
injector temperatures and higher sample concentrations,
which can become critical for δ2H measurements. From the
GC–IRMS chromatograms (Fig. S1), omethoate decomposi-
tion by-product peaks were observed when the omethoate
injection amount was higher than approximately 2000 ng.
Additionally, higher omethoate concentrations lead to increas-
ing by-product peaks, which then affected the isotope ratio

more significantly. When the omethoate injection amount
was 1000, 2000, and 3000 ng respectively, the corresponding
δ2H values were -116‰, -134‰, and -152‰. To get more
reliable isotope measurements especially regarding δ2H mea-
surements for OPs, the following suggestions can be applied:
(1) lower the injector temperature; (2) as long as δ2H values
can be measured precisely, avoid a high absolute amount of
target analytes transferred to the column; (3) use a glass liner
without glass wool; (4) deactivate the liner with N,O-
bis(trimethylsilyl)trifluoroacetamide [23]. The deactivation
procedure is briefly reported in the supplementary material.
As shown in Fig. S1d, the deactivation of the liner by N,O-
bis(trimethylsilyl)trifluoroacetamide leads to the disappear-
ance of the decomposition products, and the δ2H values were
-117‰ after deactivation.

Dependency of isotope values on amount of OPs (linearity
ranges)

The lower limits of precise CSIA and the dynamic range of
concentrations needed for reproducible δ13C and δ2H values
were investigated for the eight target OPs with use of a stock
solution dissolved in dichloromethane. The dynamic range of
concentrations in which the isotope value is stable is often
defined as the linearity range, and was obtained for parathion
as a model compound for nonchlorinated OPs and TCEP as a
model compound for chlorinated OPs; the remaining OPs are
reported in the electronic supplementary material. For
nonchlorinated OPs, measurements of parathion documented
a dependency of δ13C values on the injected amount and de-
fined a required parathion sample amount for an area signal of
7 V s or more of approximately 1.1 nmol parathion, or
11.0 nmol C (Fig. 1a). For chlorinated OPs, measurements
of TCEP also documented a dependency of δ13C on the
injected amount, and defined a required TCEP sample size
for an area signal of 4.5 V s or greater of approximately
0.7 nmol TCEP, or 4.2 nmol C (Fig. 1b).The δ2H values ob-
tained via GC–Cr/HTC–IRMS become linear for an area sig-
nal of 42–120 V s for the eight OPs tested. The significant
variation in the lower limits of precise CSIA for different OPs
could be caused by the compound-specific transformation ef-
ficiency of the Cr/HTC reactor. For example, the linearity
range of parathion isotope analysis allows determination of
δ2H values down to 66 V s, leading to a required sample
amount of approximately 3.4 nmol parathion, or 48 nmol H
(Fig. 1c). The linearity range of TCEP isotope analysis ex-
tended down to 45 V s, which corresponds to a required sam-
ple amount of approximately 12.6 nmol TCEP, or 151 nmol H
(Fig. 1e). In contrast, linearity ranges for δ2H obtained via
GC–HTC–IRMS were obtained only for nonchlorinated
OPs. For example, the linearity range of parathion isotope
analysis allows determination of δ2H values down to 60 Vs,
corresponding to a required sample amount of approximately
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6.6 nmol parathion, or 92 nmol H (Fig. 1d). However, in the
case of TCEP, a clear dependency of δ2H values on the
injected amount was observed; with increasing area signals
from 34 to 260 V s, δ2H increased from -5‰ to 273‰; con-
sequently, no concentration range for amount-independent
isotope analysis (acceptable linearity) was obtained (Fig. 1f).
A similar dependency of the isotope value on concentration
was observed for all the chlorinated OPs analyzed (Fig. S4).

The linearity of δ13C and δ2Hmeasurements is defined here
as an acceptable isotope composition for the OPs tested within
the uncertainty of the instrument independent of the concen-
tration of the substrate. Only area signals within the linearity
ranges obtained can be used for evaluation of isotope values.
Nonlinearity of δ2H for the chlorinated compounds analyzed
may be due to the conversion process and by-product

formation via GC–HTC–IRMS, but within the linearity ranges
obtained, δ2H values for nonchlorinated organic compounds
can be measured by GC–HTC–IRMS.

Characterization of the conversion process by analysis
by-product formation

The molecular background scan of the HTC and Cr/HTC
(1400 °C) effluent gas stream was monitored with an ion trap
mass spectrometer. Except for H2O (m/z 18), N2 (m/z 28, 29),
and O2 (m/z 32), which are mainly caused by the background
of the system, the major by-products after conventional HTC
of parathion resulted in strong formation of HCN (m/z 27),
H2S or PH3 (m/z 34), COS (m/z 60), and CS2 (m/z 76)
(Fig. 2a), suggesting that hydrogen species other than H2 were

Fig. 1 Linearity analysis of δ13C
(a, b) and δ2H (c–f) values of
parathion and tris(2-chloroethyl)
phosphate (TCEP) to correlate
isotope composition with the
signal intensity. The linearity of
δ2H measurements was assessed
with gas chromatography (GC)–
chromium-based high-
temperature conversion (Cr/
HTC)–isotope ratio mass
spectrometry (IRMS) (c, e) and
GC–high-temperature conversion
(HTC)–IRMS (d, f). Dotted black
lines indicate the lower limits of
precise compound-specific stable
isotope analysis; dotted red lines
indicate the analytical uncertainty
for carbon and hydrogen isotope
analysis; solid lines represent the
mean values of all measurements
within the linearity ranges. EA
elemental analyzer
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formed, potentially leading to isotope fractionation. In com-
parison, no by-product formation from parathion was ob-
served via Cr/HTC (Fig. 2b). Formation of by-products oc-
curred during conventional HTC of all the OPs tested.
Additionally, the formation of HCl (m/z 35−38) as a by-
product was observed for all the chlorinated organic com-
pounds tested in previous studies but not when Cr/HTC was
used [31]. In comparison with HTC as the current routine
technique, conversion of heteroatom-bearing compounds to
H2 at hot chromium could benefit from a significant reduction
of by-product formation. Chromium reacts with heteroatoms
(especially Cl, N, S, and O) quantitatively to form chromium
salts and remains irreversibly scavenged in the Cr/HTC reac-
tor as described previously [30, 31].

Because of the formation of hydrogen-bearing by-prod-
ucts, the yield of H2 for isotope analysis is reduced.
However, H2 yields obtained via Cr/HTC compared with con-
ventional HTC can differ for different compounds and are
dependent on the age of the conversion reactor, suggesting
that carbon residues might be formed by the precipitation of
elementary carbon within the hot zone of the reactor, leading
to a changed reactivity. The linearity measurement of the in-
vestigated OPs indicated that the formation of HCl was a
significant isotope fractionating process leading to inaccurate
measurement of δ2H. In the case of TCEP, δ2H shifted from -
5‰ to 273‰ depending on the amounts injected, and no
linearity range was observed (Fig. 1f). The mean δ2H value
of parathion obtained via HTC, (-115 ± 3)‰, differs from that
obtained via Cr/HTC, (-138 ± 4)‰, which is mostly probably
due to the typical peak shape of parathion via HTC, which
usually shows peak fronting and peak tailing in the chromato-
gram. The comparison of peak shapes for hydrogen isotope
analysis of parathion using the HTC and Cr/HTC interface is
shown in Fig. S5. Good linearity for nonchlorinated OPs was
obtained via conventional HTC, which indicates that
hydrogen-bearing by-products might not be associated with

isotope fractionation even though two by-products are formed
or the fractionation during thermal decomposition is minor
and stable. The isotope fractionation associated with the by-
product formation was not affected by concentration, leading
to a dynamic range with a relatively acceptable linearity. Thus,
a critical analysis of the linearity is needed; if good linearity
can be achieved, hydrogen isotope fractionation processes
may be reproducibly analyzed by both conventional HTC
and Cr/HTC.

Validation and comparison of methods

To evaluate the accuracy of isotope measurement, the δ13C
and δ2H values for the eight OPs obtained via GC–IRMSwere
compared with the respective reference data obtained by EA–
IRMS. δ13C and δ2H values obtained via GC–IRMS were
calculated from the mean values of all measurements
(n≥15) within the corresponding linearity ranges. Carbon iso-
tope analysis of the OPs revealed good agreement between
GC–C–IRMS and EA–IRMS analysis (slope 0.98,
R2=0.996, shift of scale 31.3‰; Fig. 3a). Hydrogen isotope
analysis also resulted in good agreement between GC–Cr/
HTC–IRMS and EA–Cr/HTC–IRMS as well as in compari-
son with 18 reference materials analyzed by Renpenning et al.
[31] (slope 1.06, R2 = 0.997, interval of δ2H 896‰; Fig. 3b).
The hydrogen isotope composition of nonchlorinated OPs ob-
tained by GC–HTC–IRMS fit to the correlation obtained by
the analysis using EA–Cr/HTC–IRMS (Fig. 3b). However,
because of formation of HCl, the calculation of mean δ2H
values for chlorinated OPs measured via GC–HTC–IRMS
was not performed.

Effect of evaporation process on the isotope composition

Because of the low sensitivity of GC–IRMS systems, samples
usually need to be concentrated before their analysis.

Fig. 2 By-product formation during conventional HTC (a) versus Cr/
HTC (b) monitored with an ion trap mass spectrometer. HTC of parathion
at 1400 °C resulted in the formation of HCN (m/z 27), H2S or PH3 (m/z
34), COS (m/z 60), and CS2 (m/z 76) (a). No relevant formation of by-

products from parathion was observed via Cr/HTC at 1400 °C (b). H2O
(m/z 18), N2 (m/z 28), and O2 (m/z 32) are typical atmospheric
background signals of the system
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Concerning the measurement of reliable isotope composi-
tions, the preconcentration of the sample should in the end
deliver an amount above the lower limits of precise isotope
measurement. One of the commonest methods used to con-
centrate experimental samples is solvent evaporation.
Especially for the monitoring of environmentally relevant
samples, solvent extraction of large sample volumes and sub-
sequent enrichment of the analyte via careful evaporation is
inevitable in most cases. Thus, evaporation effects on the iso-
tope composition have to be considered for the development
of a CSIA method. Therefore, an evaporation experiment was
conducted, and the isotopic composition of the target OPs was
determined before and after the evaporation procedure. After
the solvent volume had been reduced by 200 times, the ob-
served shifts of δ13C and δ2H for the OPs tested were negligi-
ble. In addition, a solution of target OPs was evaporated to
dryness twice and the residue was dissolved in same amount
of solvent again, but no significant shifts were observed for
δ13C and δ2H (the original data are shown in Tables S4 and
Table S5). Consequently, our results suggest that evaporation
is unlikely to induce any significant shift of the isotope com-
position and can thus be regarded as an isotope-effect-free
approach that might be used for the preparation of OP
samples.

Carbon and hydrogen isotope fractionation
during dimethoate hydrolysis

During chemical hydrolysis at pH 7, δ13C of dimethoate
shifted from -43.9‰ to -11.4‰ with 98% degradation
(Fig. 4a). This isotope shift of 32.5‰ is 65 times larger than
the instrument uncertainty (±0.5‰), which demonstrates that
carbon isotope analysis might be applied for the tracking in
situ hydrolysis of dimethoate, in particular in neutral or slight-
ly acidic/alkaline conditions. In contrast, hydrolysis at pH 9

resulted in only a small shift of 4.3‰ with 98% degradation
(Fig. 4b), whereas hydrolysis at pH 12 revealed an overall
difference of 1.5‰ with 99% degradation (Fig. 4c), which is
hardly significant considering the analytical uncertainty of the
method (±0.5‰). However, no change in δ2H was observed at
pH 7 (Fig. 4a), a small shift from -123‰ to -100‰ with 91%
degradation was observed at pH 9 (Fig. 4b), and a shift from -
143‰ to -120‰with 95% degradation was observed at pH 12
(Fig. 4c). Regarding the control experiment at pH 3, no sig-
nificant change in δ13C and δ2H was observed (Table S6). The
enrichment factors for carbon (εC) were (-8.3 ± 0.3)‰ at pH 7,
(-1.4 ± 0.1)‰ at pH 9, and (-0.4 ± 0.1)‰ at pH 12 (Fig. 4d).
The enrichment factors for hydrogen (εH) were (0 ± 1)‰ at
pH 7, (-10 ± 3‰) at pH 9, and (-10 ± 5)‰ at pH 12 (Fig. 4e).
The dual-isotope fractionation of carbon versus hydrogen
yielded Λ values (=Δδ2H/Δδ13C) of 0 ± 0 at pH 7, 7 ± 1 at
pH 9, and 30 ± 6 at pH 12 (Fig. 4f).

Using dimethoate as a model compound for OPs, we eval-
uated for the first time the potential of carbon and hydrogen
isotope fractionation to investigate the hydrolysis mechanisms
of OPs at different pH values. The differences in εC obtained
indicate that there are clearly two different pathways during
neutral and alkaline hydrolysis. We propose that in alkaline
conditions, a nucleophilic OH- attacking the phosphorus atom
will lead to P–S bond cleavage without any primary carbon
isotope effect; however, a parallel nucleophilic OH- attack on
the C–O bond may lead to a C–O bond fission associated with
a primary stable carbon isotope effect in neutral and acidic
conditions. The reaction scheme is shown in Scheme S1.
Our conclusion is supported by previous analysis of hydroly-
sis products of dimethoate. Hydrolysis at pH 5 and pH 7
yielded O-demethyl dimethoate; and O-demethyl dimethoate
and O,O-dimethyl hydrogen phosphorothioate acid were
found at pH 9 [40]. At pH 9, εC of (-1.4 ± 0.1)‰ showed good
agreement with εC of (-1.0 ± 0.1)‰ at pH 10 that we obtained

Fig. 3 δ13C (a) and δ2H (b) values for the eight organophosphorus
compounds (OPs) measured by GC–IRMS are compared with respective
data obtained by EA–IRMS to evaluate the accuracy. Error bars are smaller

than the symbols. The isotope compositions of the eight OPs are reported in
Table S2. δ2H values for reference materials (RMs) are reported in Table S3
and were taken from Renpenning et al. [31]
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in a previous study. The relative small carbon enrichment
factors suggest that two parallel pathways are active during
hydrolysis in weak alkaline conditions. In contrast, εH obtain-
ed at pH 9 and pH 12 indicates that a hydrogen atom next to
the position of bond cleavage might give a secondary isotope
effect in alkaline conditions. Thus, neutral and alkaline hydro-
lysis can be distinguished by use of combined carbon and
hydrogen isotope fractionation. As indicated by our data,
dual-isotope fractionation can elucidate differences in alkaline
hydrolysis more precisely; hydrolysis at pH 9 showed a sig-
nificantly smaller Λ value compared with hydrolysis at pH 12
(Fig. 4e).

Conclusions

A method to measure δ13C and δ2H values of OPs was devel-
oped and evaluated. The method developed allows accurate
and precise isotope analysis of OPs and is applicable for anal-
ysis of degradation reactions associated with isotope fraction-
ation such as hydrolysis. Hydrogen isotope analysis of

chlorinated OPs is impossible with conventional GC–HTC–
IRMS; in contrast this can be achieved for nonchlorinated
OPs. Cr/HTC is a promising approach for routine hydrogen
isotope analysis and has the potential to replace the routine
HTC as the standard method.

The method promises great potential for future investiga-
tions regarding the fate of OPs using CSIA. Because of the
high detection limit of IRMS, it remains a challenge to enrich
and clean up OPs from environmental samples with residual
levels of micrograms; for example, the OP residues in surface
water of agriculture intensive areas in India were 0.46 μg L-1

for chlorpyrifos [41]. However, at a typical waste dump site
with parathion concentration up to 31,000 mg kg-1 (wet
weight) in soil samples [42] or in a contaminated groundwater
area with parathion concentration up to 4 mg L-1 [43], CSIA
can be easily applied and has great potential to analyze hydro-
lysis reactions in the environment using a combination of
carbon and hydrogen isotope analysis.

Acknowledgements L.W. was financially supported by the China
Scholarship Council (file no. 201306460007). We are thankful to M.

Fig. 4 Changes in carbon
(triangles) and hydrogen (circles)
isotope ratios during hydrolysis of
dimethoate at pH 7 (a), pH 9 (b),
and pH 12 (c). Rayleigh plots of
carbon (d) and hydrogen (e)
isotope fractionation for
dimethoate hydrolysis at pH 7
(squares), pH 9 (triangles), and
pH 12 (stars). The logarithmic
plots were calculated according to
the modified Rayleigh equation
given in the electronic
supplementary material. Two-
dimensional plots (f) of hydrogen
versus carbon discrimination for
dimethoate hydrolysis at pH 7
(squares), pH 9 (triangles), and
pH 12 (stars). Error bars display
the accuracy of δ13C and δ2H
measurements, which were
always better than ±0.5% and
±5% respectively

2588 L. Wu et al.

96



Gehre and U. Günther for support in the Isotope Laboratory of the
Department of Isotope Biogeochemistry and for the support by the grad-
uate school of the Helmholtz Centre for Environmental Research
(HiGrade).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. SogorbMA, Vilanova E. Enzymes involved in the detoxification of
organophosphorus, carbamate and pyrethroid insecticides through
hydrolysis. Toxicol Lett. 2002;128(1-3):215–28.

2. Minton NA, Murray VS. A review of organophosphate poisoning.
Med Toxicol Adverse Drug Exp. 1988;3(5):350–75.

3. Organophosphate insecticides fact sheet (1996) http://www.pan-uk.
org/pestnews/Actives/organoph.htm.

4. He HB. The status and trend of development of organophosphorus
pesticide industry. World Pestic. 2008;30(6):29–34.

5. Aston LS, Seiber JN. Exchange of airborne organophosphorus pes-
ticides with pine needles. J Environ Sci Health Part B. 1996;31(4):
671–98.

6. Kim JW, Isobe T, Chang KH, Amano A, Maneja RH, Zamora PB,
et al. Levels and distribution of organophosphorus flame retardants
and plasticizers in fishes fromManila Bay, the Philippines. Environ
Pollut. 2011;159(12):3653–9.

7. Bravo R, Caltabiano LM, Weerasekera G, Whitehead RD,
Fernandez C, Needham LL, et al. Measurement of dialkyl phos-
phate metabolites of organophosphorus pesticides in human urine
using lyophilization with gas chromatography-tandem mass spec-
trometry and isotope dilution quantification. J Exposure Anal
Environ Epidemiol. 2004;14(3):249–59.

8. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A,
Schmidt TC, et al. Current challenges in compound-specific stable
isotope analysis of environmental organic contaminants. Anal
Bioanal Chem. 2012;403(9):2471–91.

9. Hofstetter TB, Berg M. Assessing transformation processes of or-
ganic contaminants by compound-specific stable isotope analysis.
Trends Anal Chem. 2011;30(4):618–27.

10. Hofstetter TB, Schwarzenbach RP, Bernasconi SM. Assessing
transformation processes of organic compounds using stable iso-
tope fractionation. Environ Sci Technol. 2008;42(21):7737–43.

11. Elsner M. Stable isotope fractionation to investigate natural trans-
formation mechanisms of organic contaminants: principles, pros-
pects and limitations. J Environ Monit. 2010;12(11):2005–31.

12. Mak KS, Griebler C, Meckenstock RU, Liedl R, Peter A.
Combined application of conservative transport modelling and
compound-specific carbon isotope analyses to assess in situ atten-
uation of benzene, toluene, and o-xylene. J Contam Hydrol.
2006;88(3-4):306–20.

13. Van Keer I, Bronders J, Verhack J, Schwarzbauer J, Swennen R.
Limitations in the use of compound-specific stable isotope analysis
to understand the behaviour of a complex BTEX groundwater con-
tamination near Brussels (Belgium). Environ Earth Sci. 2012;66(2):
457–70.

14. Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C,
Maloszewski P, et al. A multitracer test proving the reliability of
Rayleigh equation-based approach for assessing biodegradation in
a BTEX contaminated aquifer. Environ Sci Technol. 2006;40(13):
4245–52.

15. Mundle SOC, Johnson T, Lacrampe-Couloume G, Perez-de-Mora
A, Duhamel M, Edwards EA, et al. Monitoring biodegradation of
ethene and bioremediation of chlorinated ethenes at a contaminated
site using compound-specific isotope analysis (CSIA). Environ Sci
Technol. 2012;46(3):1731–8.

16. Pooley KE, Blessing M, Schmidt TC, Haderlein SB, Macquarrie
KTB, Prommer H. Aerobic biodegradation of chlorinated ethenes
in a fractured bedrock aquifer: quantitative assessment by
compound-specific isotope analysis (CSIA) and reactive transport
modeling. Environ Sci Technol. 2009;43(19):7458–64.

17. Wiegert C, Aeppli C, Knowles T, Holmstrand H, Evershed R,
Pancost RD, et al. Dual carbon-chlorine stable isotope investigation
of sources and fate of chlorinated ethenes in contaminated ground-
water. Environ Sci Technol. 2012;46(20):10918–25.

18. Bashir S, Hitzfeld KL, Gehre M, Richnow HH, Fischer A.
Evaluating degradation of hexachlorcyclohexane (HCH) isomers
within a contaminated aquifer using compound-specific stable car-
bon isotope analysis (CSIA). Water Res. 2015;71:187–96.

19. Zhang N, Bashir S, Qin JY, Schindelka J, Fischer A, Nijenhuis I,
et al. Compound specific stable isotope analysis (CSIA) to charac-
terize transformationmechanisms of alpha-hexachlorocyclohexane.
J Hazard Mater. 2014;280:750–7.

20. Rosell M, Gonzalez-Olmos R, Rohwerder T, Rusevova K, Georgi
A, Kopinke FD, et al. Critical evaluation of the 2D-CSIA scheme
for distinguishing fuel oxygenate degradation reactionmechanisms.
Environ Sci Technol. 2012;46(9):4757–66.

21. Youngster LKG, Rosell M, Richnow HH, Haggblom MM.
Assessment of MTBE biodegradation pathways by two-
dimensional isotope analysis in mixed bacterial consortia under
different redox conditions. Appl Microbiol Biotechnol.
2010;88(1):309–17.

22. Zhang N, Schindelka J, Herrmann H, George C, Rosell M, Herrero-
Martin S, et al. Investigation of humic substance photosensitized
reactions via carbon and hydrogen isotope fractionation. Environ
Sci Technol. 2015;49(1):233–42.

23. Wu L, Yao J, Trebse P, Zhang N, RichnowHH. Compound specific
isotope analysis of organophosphorus pesticides. Chemosphere.
2014;111:458–63.

24. Fischer A, Herklotz I, Herrmann S, Thullner M, Weelink SAB,
Stams AJM, et al. Combined carbon and hydrogen isotope fraction-
ation investigations for elucidating benzene biodegradation path-
ways. Environ Sci Technol. 2008;42(12):4356–63.

25. Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J.
Enrichment of stable carbon and hydrogen isotopes during anaero-
bic biodegradation of MTBE: Microcosm and field evidence.
Environ Sci Technol. 2005;39(1):213–20.

26. Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP,
Haderlein SB. New evaluation scheme for two-dimensional isotope
analysis to decipher biodegradation processes: Application to
groundwater contamination by MTBE. Environ Sci Technol.
2005;39(4):1018–1029.

27. Kuder T, van Breukelen BM, Vanderford M, Philp P. 3D-CSIA:
carbon, chlorine, and hydrogen isotope fractionation in transforma-
tion of TCE to ethene by a Dehalococcoides culture. Environ Sci
Technol. 2013;47(17):9668–77.

28. VetterW, ArmbrusterW, Betson TR, Schleucher J, Kapp T, Lehnert
K. Baseline isotopic data of polyhalogenated compounds. Anal
Chim Acta. 2006;577(2):250–6.

29. Chartrand MMG, Hirschorn SK, Lacrampe-Couloume G,
Sherwood Lollar B. Compound-specific hydrogen isotope analysis
of 1,2-dichloroethane: potential for delineating source and fate of
chlorinated hydrocarbon contaminants in groundwater. Rapid
Commun Mass Spectrom. 2007;21(12):1841–7.

30. Gehre M, Renpenning J, Gilevska T, Qi H, Coplen TB, Meijer HA,
et al. On-line hydrogen-isotope measurements of organic samples
using elemental chromium: an extension for high temperature

Validation of GC–IRMS techniques for δ13C and δ2H CSIA of organophosphorus compounds and their potential... 2589

97

http://www.pan-uk.org/pestnews/Actives/organoph.htm
http://www.pan-uk.org/pestnews/Actives/organoph.htm


elemental-analyzer techniques. Anal Chem. 2015;87(10):5198–
205.

31. Renpenning J, Kuemmel S, Hitzfeld KL, Schimmelmann A,
Gehre M. Compound-specific hydrogen isotope analysis of
heteroatom-bearing compounds via gas chromatography-
chromium-based high-temperature conversion (Cr/HTC)-iso-
tope ratio mass spectrometry. Anal Chem. 2015;87(18):
9443–50.

32. Gehre M, Strauch G. High-temperature elemental analysis and py-
rolysis techniques for stable isotope analysis. Rapid CommunMass
Spectrom. 2003;17(13):1497–503.

33. Coplen TB, Brand WA, Gehre M, Groning M, Meijer HAJ, Toman
B, et al. After two decades a second anchor for the VPDB delta C-
13 scale. Rapid Commun Mass Spectrom. 2006;20(21):3165–6.

34. Coplen TB. Guidelines and recommended terms for expression of
stable-isotope-ratio and gas-ratio measurement results. Rapid
Commun Mass Spectrom. 2011;25(17):2538–60.

35. Herrero-Martin S, Nijenhuis I, RichnowHH, GehreM. Coupling of
a headspace autosampler with a programmed temperature vaporizer
for stable carbon and hydrogen isotope analysis of volatile organic
compounds at microgram per liter concentrations. Anal Chem.
2015;87(2):951–9.

36. Renpenning J, Hitzfeld KL, Gilevska T, Nijenhuis I, Gehre M,
Richnow HH. Development and validation of an universal interface

for compound-specific stable isotope analysis of chlorine
(37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/
IRMS. Anal Chem. 2015;87(5):2832–9.

37. Meckenstock RU, Morasch B, Griebler C, Richnow HH. Stable
isotope fractionation analysis as a tool to monitor biodegradation
in contaminated aquifers. J Contam Hydrol. 2004;75(3-4):215–55.

38. International Programme on Chemical Safety. ICSC 0006 - parathion
http://www.inchem.org/documents/icsc/icsc/eics0006.htm (2004).

39. US National Library of Medicine. HSDB: omethoate. https://
toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~0ULjae:1 (2004).

40. Food and Agriculture Organization. Dimethoate (27). http://www.
fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/
JMPR/Evaluation03/Dimethoate_2003.pdf (2003).

41. Lari SZ, Khan NA, Gandhi KN, Meshram TS, Thacker NP.
Comparison of pesticide residues in surfacewater and groundwater
of agriculture intensive areas. J Environ Health Sci Eng.
2014;12(1):173–83.

42. Nielsen MB, Kjeldsen KU, Lever MA, Ingvorsen K. Survival of
prokaryotes in a polluted waste dump during remediation by alka-
line hydrolysis. Ecotoxicology. 2014;23(3):404–18.

43. Andersen L, Jørgensen C, Holm J (2007) In situ biologisk
nedbrydning som oprensningsmetode ved Høfde 42. http://
www2.mst.dk/Udgiv/publikationer/2007/978-87-7052-608-1/pdf/
978-87-7052-609-8.pdf.

2590 L. Wu et al.

98

http://www.inchem.org/documents/icsc/icsc/eics0006.htm
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~0ULjae:1
https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/f?./temp/~0ULjae:1
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation03/Dimethoate_2003.pdf
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation03/Dimethoate_2003.pdf
http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation03/Dimethoate_2003.pdf
http://www2.mst.dk/Udgiv/publikationer/2007/978-87-7052-608-1/pdf/978-87-7052-609-8.pdf
http://www2.mst.dk/Udgiv/publikationer/2007/978-87-7052-608-1/pdf/978-87-7052-609-8.pdf
http://www2.mst.dk/Udgiv/publikationer/2007/978-87-7052-608-1/pdf/978-87-7052-609-8.pdf


S1 
 

 
 

Supplementary material 

 

Validation of GC-IRMS techniques for δ
13

C and δ
2
H CSIA of organophosphorus compounds and 

their potential for studying the mode of hydrolysis in the environment 

 

Langping Wu, Steffen Kümmel, Hans H. Richnow* 

Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, 
Permoserstrasse 15, D-04318, Leipzig, Germany. 

 

*Email: hans.richnow@ufz.de, Tel: 0049 341 235 1212 Fax: 0341-450822 

 

Table S1: Molecular structures of the target OPs. 

 compound molecular Formula molecular structures density 
(g/cm

3
) 

 
CAS number 

1 dichlorvos C4H7Cl2O4P 

 

1.42, liquid  
62-73-7 

2 dimethoate C5H12NO3PS2 

 

1.28, solid  
60-51-5 

3 omethoate C5H12NO4PS 

 

1.32, liquid  
1113-02-6 

4 chlorpyrifos C9H11Cl3NO3PS 

 

1.40, solid  
2921-88-2 

5 parathion C10H14NO5PS 

 

1.27, liquid  
56-38-2 

6 parathion-
methyl 

C8H10NO5PS 

 

1.36, solid  
298-00-0 

7 TDCPP C9H15Cl6O4P 

 

1.52, liquid  
13674-87-8 

8 TCEP C6H12Cl3O4P 

 

1.42, liquid  
115-96-8 
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1. Decomposition of omethoate in the GC Injector 

Omethoate starts to decompose at 135 °C and can react with the glass liner in the GC injector when the 
liner is not completely deactivated. The reaction is expected to increase strongly with higher injector 
temperatures and higher sample concentrations. Fig. S1 shows screen shots of GC-IRMS 
chromatograms of omethoate isotope measurements for δ

2
H (via Cr/HTC) at injector temperature of 

180 °C. 1 µL, 2 µL and 3 µL of 1000 mg L
-1

 omethoate in DCM were injected in splitless mode yielding an 
injection of 1000 ng, 2000 ng and 3000 ng omethoate, respectively. Omethoate elute at retention time 
(RT) of 804 to 807s, whereas no byproduct peaks appeared when 1000 ng omethoate were injected (Fig. 
S1a), a very small peak prior to omethoate appeared when the injected concentration was increased to 
2000 ng (Fig. S1b). Moreover, this byproduct peak significantly increased when 3000 ng omethoate were 
injected (FigS1c) indicating that higher omethoate concentrations lead to increased byproduct formation 
caused by decomposition of omethoate in the injector. As shown in Figure S1d, the deactivation of the 
liner by BSTFA leads to disappearance of the decomposition products. 2000 ng omethoate injection is 
still sufficient for routine δ

13
C analysis, however for reliable δ

2
H analysis, much higher amounts of 

substrates are needed. Therefore, in order to avoid a decomposition of omethoate in the injector a 
completely deactivated liner is important and any potential formation of decomposition products should be 
carefully monitored. For precise analysis the activity of the liner need to be tested prior isotope analysis 
with individual pure OPs. 

2. Deactivation of the glass liner with N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA).  

In order to avoid the decomposition of OPs in the injector of GC, the glass liner needs to be deactivated 
prior to isotope measurements [1]. To deactivate the liner, 1 µL of BSTFA (N,O-bis(trimethylsilyl) 
trifluoroacetamide, SUPELCO) was injected manually 3 times into the GC inlet. The detailed steps are as 
follows: 1) adjust the injector temperature to 100 °C, and the split ratio to 1:200; 2) inject 1 µL of BSTFA 
manually for 3 times, wait for 5 min between each injection; 3) wait for 10 min; 4) reduce the split ratio to 
normal conditions and increase the injector temperature to 200 °C, heat up the GC column to its upper 
temperature limit for 30 min. 

3. Dependency of isotope values in the amount of target OP (linearity of the analytical system) 

The dependency of δ
13

C and δ
2
H values on the amount of analyst (linearity) was analyzed along ranges 

of concentrations for 8 target OPs using a stock solution of OPs dissolved in DCM. For reliable isotope 
analysis without correction the isotope value should be independent of the concentration which is the 
concentration interval where the system is linear with respect to constant isotope composition. The 
analytical methods are reported in the main text. Significant variety of linearity ranges for different OPs 
were obtained; the possible reasons were discussed in the main text. Here we document the linearity 
ranges of the OPs which were not reported in the manuscript. Linearity of δ

13
C values for parathion-

methyl, chlorpyrifos and TDCPP are shown in Figure S2. Measurements of different amounts of 
parathion-methyl, chlorpyrifos and TDCPP documented a linearity range starting from an area signal of 9 
Vs, 7 Vs and 5 Vs, respectively, which correspond to an injection of ∼2.5 nmol parathion-methyl, ∼1.1 

nmol chlorpyrifos and ∼0.7 nmol TDCPP. The linearity ranges of δ
13

C for dichlorvos, omethoate and 
dimethoate were reported previously.[1] 

Linearity of δ
2
H values for non-chlorinated OPs is shown in Figure S3. Measurements of parathion-methyl 

and omethoate via GC-Cr/HTC-IRMS documented a linearity range starting from an area signal of 53 Vs 

and 42 Vs, respectively, which correspond to an injection of ∼11.4 nmol parathion-methyl and ∼2.8 nmol 
omethoate. However, measurements of parathion-methyl and omethoate via GC-HTC-IRMS documented 
a linearity range starting from an area signal of 45 Vs and 12 Vs, respectively, which correspond to an 

injection of ∼14.2 nmol parathion-methyl and ∼1.7 nmol omethoate. In contrast, linearity ranges of δ
2
H for 

chlorinated OPs were only obtained via GC-Cr/HTC-IRMS (Fig. S4). Measurements of dichlorvos, 
chlorpyrifos and TDCPP via GC-Cr/HTC-IRMS documented a linearity range starting from an area signal 

of 66 Vs, 70 Vs and 120 Vs, respectively, which correspond to an injection of ∼13.6 nmol dichlorvos, 

∼11.4 nmol chlorpyrifos and ∼16.2 nmol TDCPP. However, in case of measurements via GC- HTC-IRMS, 
a clear dependency of δ

2
H values on the sample intensities was observed due to the formation of HCl. 

Consequently, no linearity ranges were obtained. 
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The linearity of δ
13

C and δ
2
H lead to an acceptable isotope composition for tested OPs within the 

uncertainty of the instrument. Only area signals within the obtained linearity ranges can be used for 
evaluation of isotope values. 

 

 

 

 

Fig. S1 GC-IRMS chromatograms of δ
2
H analysis of omethoate standard solutions. By-product peaks 

(RT 743.62s) appearing before omethoate (RT 804.23s) indicate a thermal decomposition of omethoate 
in the injector. 

  

a) δ
2
H analysis via Cr/HTC, 1000 mg L-1

, 1µL, splitless  

dddsplitlesssplitless 

b) δ
2
H analysis , via Cr/HTC 1000 mg L-1

, 2µL, splitless 

c) δ
2
H analysis via Cr/HTC , 1000 mg L-1

, 3µL, splitless 

d) δ
2
H analysis via Cr/HTC, 3000 mg L-1

, 1µL, splitless 

After deactivation of liner 
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Fig. S2 Linearity analysis of δ
13

C values for parathion-methyl, chlorpyrifos and TDCPP correlating isotope 
compositions to signal intensities. Black dotted lines indicate the lower limits of precise CSIA; red dotted 
lines indicate the analytical uncertainty for carbon isotope analysis; solid lines represent the mean values 
of all measurements within the linearity ranges. 
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Fig. S3 Linearity analysis of δ
2
H values for non-chlorinated OPs (omethoate, dimethoate and parathion-

methyl) correlating isotope compositions to signal intensities. The linearity of δ
2
H measurements were 

assessed with GC-Cr/HTC-IRMS and GC-HTC-IRMS. Black dotted lines indicate the lower limits of 
precise CSIA; red dotted lines indicate the analytical uncertainty for carbon and hydrogen isotope 
analysis; solid lines represent the mean values of all measurements within the linearity ranges. 
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Fig. S4 Linearity analysis of δ
2
H values for chlorinated OPs (dichlorvos, chlorpyrifos and TDCPP) 

correlating isotope compositions to signal intensities. The linearity of δ
2
H measurements were assessed 

with GC-Cr/HTC-IRMS and GC-HTC-IRMS. Black dotted lines indicate the lower limits of precise CSIA; 
red dotted lines indicate the analytical uncertainty for hydrogen isotope analysis; solid lines represent the 
mean values of all measurements within the linearity ranges; blue dotted lines indicate the mean values 
obtained via EA-Cr/HTC-IRMS. 
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Fig. S5 Comparison of peak shapes in chromatograms for hydrogen isotope analysis of parathion using 

the HTC (above) and Cr/HTC interface (below). 

4. Validation and Comparison of Methods 

In order to evaluate the accuracy of isotope measurement, the δ
13

C and δ
2
H values for 8 OPs analyzed 

via GC-IRMS were compared to the respective data obtained by an elementary analyzer with a chromium 
reactor coupled to an isotope mass spectrometer (EA-Cr/HTC-IRMS) as a reference values. The 
reference values via EA-Cr/HTC-IRMS were obtained from the mean value of triplicates for δ

13
C and four 

replicates for δ
2
H. The δ

13
C and δ

2
H values analyzed via GC-IRMS were calculated from the mean 

values of all measurements (n≥15) within the corresponding linearity ranges. Raw data of target OPs are 
shown in Table S2, raw data of other oxygen-, nitrogen-, chlorine-, and sulfur-containing materials used 
for reference are shown in Table S3 which is obtained from elsewhere[2]. 

Table S2: Comparison of δ
2
H Values of target OPs determined via online EA−Cr/HTC−IRMS, GC−HTC-

IRMS and GC−Cr/HTC−IRMS. This data are used in Fig. 3 (main text). 

OPs δ
13

C (‰)  δ
2
H (‰) 

EA-IRMS GC-C-IRMS  EA-Cr/HTC-
IRMS 

GC-Cr/HTC-
IRMS 

GC-HTC-
IRMS 

chlorpyrifos -29.2 ± 0.0 -30.0 ± 0.5  -279 ± 2 -278 ± 4 n.d. 
dichlorvos -11.3 ± 0.1 -11.2 ± 0.4  -139 ± 3 -142 ± 3 n.d. 
parathion -28.7 ± 0.1 -28.6 ± 0.4  -137 ± 1 -138 ± 4 -115 ± 3 
dimethoate -42.6 ± 0.1 -41.7 ± 0.3  -125 ± 1 -135 ± 3 -135 ± 3 
parathion-methyl -35.7 ± 0.0 -34.6 ± 0.3  -119 ± 1 -130 ± 3 -102 ± 3 
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omethoate -20.9 ± 0.0 -20.5 ± 0.2  -94 ± 2 -104 ± 4 -101 ± 4 
TCEP -28.4 ± 0.1 -28.4 ± 0.3  -26 ± 1 -17 ± 3 n.d. 
TDCPP -24.2 ± 0.0 -23.4 ± 0.3  52 ± 2 58 ± 2 n.d. 

Table S3: δ
2
H values for oxygen-, nitrogen-, chlorine-, and sulfur-containing materials used for reference 

via GC−Cr/HTC−IRMS are compared to respective data from online EA−Cr/HTC−IRMS to evaluate 
accuracy[2]. This data are used in Fig. 3 (main text). 

 δ
2
H (‰) 

EA-Cr/HTC-IRMS  GC-Cr/HTC-IRMS 

C16 #A -167 ± 1  -167 
C16 #B  -11 ± 1  -9 ± 1 
C16 #C 387 ± 2  387 
FAME #A -186 ± 1  -181 ± 2 
FAME #B   -6 ± 2  0 ± 1 
FAME #C 348 ± 2  349 ± 2 
IAEA 600 -158 ± 1  -161 ± 1 
caffeine #1   97 ± 1  96 ± 1 
caffeine #2 -157 ± 1  -162 ± 1 
caffeine #3  175 ± 1  180 ± 2 
DDD   71 ± 3  58 ± 1 
DDE  -89 ± 2  -103 ± 1 
DDT  -18 ± 2  -27 ± 1 
HCH  -80 ± 1  -82 ± 4 
TCE-PPG 463 ± 9  516 ± 2 
TCE-Merck 571 ± 6  629 ± 2 
DMSO2 123 ± 1  122 ± 1 
Ph2S2 -164 ± 1  -182 ± 1 

5. Effect of evaporation process on the isotope composition 

The carbon and hydrogen isotope fractionation associated with evaporation was evaluated as 
evaporation of solvents is commonly used in preparation procedures. After reducing the solvent volume 
for 200 times, the observed shifts of δ

13
C for 8 tested OPs ranged between 0.1 ‰ and 0.5 ‰, the 

respective shifts of δ
2
H for 4 tested OPs ranged between 1 ‰ and 5 ‰ (Table S4). Regarding the 

analytical uncertainty of carbon (± 0.5 ‰) and hydrogen (± 5 ‰) isotope analysis, all observed shifts can 
be considered to be negligible. After evaporating tested OPs to dryness twice and dissolved in same 
amount of solvent again, no significant shifts were observed (Table S5). In case evaporation to dryness is 
used in an extraction and isolation procedure the used technique need to be tested as distillation 
processes lead to isotope fractionation. 

Table S4: Effect of evaporation (reduce solvent volume for 200 times) on the isotope composition. 

Compound δ
13

C (‰) ∆δ
13

C (‰) δ
2
H (‰) Δδ

2
H (‰) 

before after before after 

dichlorvos -10.2 ± 0.1 -10.3 ± 0.2 -0.1 n.d. n.d. n.d. 

omethoate -20.2 ± 0.1 -20.7 ± 0.5 -0.5 -104 ± 8 -109 ± 4 -5 

dimethoate -40.2 ± 0.3 -40.3 ± 0.3 -0.1 -131 ± 2 -128 ± 5 3 

parathion-
methyl 

-34.2 ± 0.4 -34.7 ± 0.2 -0.5 -54 ± 7 -53 ± 1 1 

parathion -28.3 ± 0.1 -28.6 ± 0.2 -0.3 -106 ± 5 -101 ± 1 5 

chlorpyrifos -30.3 ± 0.0 -30.1 ± 0.1 0.2 n.d. n.d. n.d. 

TCEP -28.7 ± 0.1 -28.6 ± 0.2 0.1 n.d. n.d. n.d. 

TDCPP -22.5 ± 0.1 -22.3 ± 0.1 0.2 n.d. n.d. n.d. 
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Table S5: Effect of evaporation (evaporate to dry) on the isotope composition. 

Compound δ
13

C (‰) ∆δ
13

C (‰) δ
2
H (‰) Δδ

2
H (‰) 

before after before after 

dimethoate -40.2 ± 0.3 -40.5 ± 0.3 -0.3 -131 ± 2 -135 ± 1 -4 

parathion -28.3 ± 0.1 -28.5 ± 0.2 -0.2 -106 ± 5 -104 ± 1 2 

chlorpyrifos -30.3 ± 0.0 -30.3 ± 0.1 0.0 -237 ± 5 -240 ± 0 -3 

TCEP -28.7 ± 0.1 -29.1 ± 0.4 -0.4 -6 ± 5 -7 ± 2 -1 

6. Effect of temperature on the isotope composition 

In general OPs are thermal labile components which can easily decompose at certain temperatures. In 
order to conduct hydrolysis experiments at higher temperatures, the thermal stability of OPs in solvents 
was investigated. Therefore, 1000 mg L

-1
 of target OPs solutions dissolved in DCM were exposed at 60°C 

for 8 days, and stable carbon and hydrogen isotopic compositions were determined before and after 
thermal incubation. After incubation, shifts in the carbon isotope composition for 8 tested OPs ranged 
between 0.0 ‰ and 0.5 ‰ and observed shifts for hydrogen isotope composition for 4 OPs ranged 
between 1 ‰ and 3 ‰ (Table S4). Losses of components due to thermal composition were not observed 
(data not shown). As in the case of the evaporation experiment the observed shifts of isotopic 
composition caused by thermal incubation were also within the analytical uncertainty of carbon and 
hydrogen isotope analysis. Thus, an exposure to temperature of 60°C does not cause any carbon and 
hydrogen isotopic effect for tested OPs.  

Table S6: Effect of temperature on the isotope composition. Compounds were dissolved in DCM and 

were exposed at 60°C for 8 days. 

Compound δ
13

C (‰) ∆δ
13

C (‰) δ
2
H (‰) Δ

2
H (‰) 

before after before After 

dichlorvos -10.9 ± 0.1 -11.1 ± 0.4 -0.2 n.d. n.d. n.d. 

omethoate -18.9 ± 0.0 -18.4 ± 0.0 0.5 -109 ± 6 -109 ± 4 0 

dimethoate -39.4 ± 0.2 -39.3 ± 0.1 0.1 -103 ± 2 -106 ± 2 -3 

parathion-M -36.6 ± 0.5 -36.6 ± 0.3 0.0 -58. ± 2 -58 ± 4 0 

parathion -27.7 ± 0.1 -27.9 ± 0.2 -0.3 -107 ± 2 -106 ± 1 1 

chlorpyrifos -28.3 ± 0.6 -28.5 ± 0.2 -0.2 n.d. n.d. n.d. 

TCEP -28.7 ± 0.3 -28.6 ± 0.0 0.1 n.d. n.d. n.d. 

TDCPP -23.6 ± 0.1 -23.5 ± 0.1 0.1 n.d. n.d. n.d. 

n.d. = not determined 

7. Hydrolysis of dimethoate 

The hydrolysis experiments of dimethoate were carried out in phosphate buffer solution at pH 7, pH 9 and 
pH 12, respectively. The preparation of buffer solution is shown below: 

pH =3 (control): 102.75 mL of 0.2 mol L
-1

 Na2HPO4 + 397.25 mL of 0.1 mol L
-1

 C6H8O7.H2O (citric acid), fill 

the volume to 500mL with double-distilled water; 

pH = 7: 35 mL of 0.1 mol L
-1

 NaOH + 500 mL of 0.1 mol L
-1

 NaH2PO4 , fill the volume to 1000mL with 
double-distilled water; 

pH = 9: 213 mL of 0.1 mol L
-1

 NaOH + 500mL of 0.1 mol L
-1

 KCl-H3BO3 (boric acid), fill the volume to 
1000mL with double-distilled water; 

pH = 12: 269 ml of 0.1 mol L
-1

 NaOH + 500 ml of 0.05 mol L
-1

 Na2HPO4, fill the volume to 1000mL with 
double-distilled water. 
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Since hydrolysis of dimethoate at acidic condition is expected be very slow, control experiments were 
conducted at pH 3 in buffer solution. As shown in table S5, no significant changes in concentration in 
carbon isotope ratios during all three control experiments were 0.2 ‰, 0.8 ‰, and 0.2 ‰, respectively, 
and changes in hydrogen isotope ratios were -3 ‰, -4 ‰, and -3 ‰, respectively. Considering the 
analytical uncertainty of ±0.5 ‰ for δ

13
C and ±5 ‰ for δ

2
H, no carbon and hydrogen isotope fractionation 

occurred during the control experiments for dimethoate hydrolysis. No significant losses of substrates 
were observed in the control experiments.  

 

Scheme 1. Hydrolysis pathways of dimethoate. SN2@P hydrolysis reaction of dimethoate at high pH to 
produce O,O-dimethyl hydrogen phosphorothioate, and the SN2@C reaction at low pH to produce O-
demethyl-dimethoate (O-methyl S-[2-(methylamino)-2-oxoethyl] hydrogen phosphorothioate). 

 

Table S7: Changes in concentrations (Ct /C0) and carbon (δ
13

C) and hydrogen (δ
2
H) isotope ratios of 

dimethoate during control experiments at pH3. ∆δ
13

C and ∆δ
2
H refers to the changes of isotope 

composition during the experiment. 

8. Definition and calculation of isotope enrichment factors 

The carbon and hydrogen isotopic compositions are reported as δ values in parts per thousand (‰) 
relative to international standards (Pee Dee Belemnite (PDB) and Standard Mean Ocean Water (SMOW) 
for carbon and hydrogen, respectively) according to Eq. (1), where E indicates 

13
C or 

2
H and R indicates 

the isotope ratio of 
13

C/
12

C or 
2
H/

1
H. 

𝛿𝐸𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1           (1) 

 time(h) Ct / C0 δ
13

C (‰) ∆δ
13

C (‰) Δ
2
H (‰) ∆δ

2
H (‰) 

Control for 
pH 7 

0 1.00 -44.3 ± 0.6 0.2 -103 ± 2 -3 

195 0.98 -44.1 ± 0.1 -106 ± 2  

Control for 
pH 9 

0 1.00 -44.3 ± 0.6 0.8 -96 ± 1 -4 

288 0.93 -43.5 ± 0.2 -100 ± 3  

Control for 
pH 12 

0 1.00 -46.3 ± 0.0 0.2 -119 ± 2 -3 

1 1.00 -46.1 ± 0.1 -122 ± 5  
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The isotope enrichment factors (ε) are determined from the logarithmic form of the Rayleigh equation 
according to Eq. (2), where δ is the measured stable isotope compositions at time t and time 0 and C is 
the concentration of target compound at time t and time 0. 

𝜀 = 𝑙𝑛 [
(𝛿𝑡+1)

(𝛿0+1)
] 𝑙𝑛 [

𝐶𝑡

𝐶0
]⁄            (2) 
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highlights that the carbon and hydrogen fractionation patterns have the potential to elucidate the transformation
of OPs in the environment.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Organophosphorus compounds (OPs) are often used as pesticides,
warfare agents, flame retardants, plasticizers, or flotation agents. The
OPs discussed in the present study are esters of phosphoric acids,
thiophosphoric acids and dithiophosphoric acids forming awide variety
of phosphates, phosphorothioates, or phosphorodithioates (Fig. S1 in
Supplementary material (SM)), each of them has different reactivity to-
wards hydrolysis, oxidation and biodegradation (Pehkonen and Zhang,
2002; Singh and Walker, 2006). Many OP derivatives are associated
with acute toxicity by inhibiting acetylcholinesterase (AChE) in the ner-
vous system, hence they are used as pesticides for control of insects and
other higher organisms (Colovic et al., 2013). OP pesticides are less per-
sistent in the environment when compared with organochlorine pesti-
cides and thus have been widely used throughout the world. However,
continuous and excessive use of OPs has led to environmental contam-
inations which raise public concerns (EPA US, 2006).

Parathion (O,O-diethyl O-(4-nitrophenyl) phosphorothioate), also
known as ethyl parathion (EP), was one of the most widely applied or-
ganophosphorus insecticides in agriculture in the past decades, and
was primarily used as an insecticide on fruit, cotton, wheat, vegetables,
and nut crops (FAO, 1990b). The average half-life time of EP during hy-
drolysis, degradation in aerobic soil and anaerobic soil are 302 days,
58 days and 21 days respectively (Kegley et al., 2016b), which leads to
a huge potential for EP and itsmetabolic products to contaminate surface
water and groundwater. Its use is banned or restricted inmany countries
but continues in many other developing countries including China and
India, where the application is still legal for crops.

Methyl parathion (O,O-dimethyl-O-(4-nitrophenyl) phosphorothio-
ate, MP) is structurally very similar to EP and less persistent in the envi-
ronment,with an average half-life time during hydrolysis, degradation in
aerobic soil and anaerobic soil of 45 days, 12 days and 1 day, respectively
(Kegley et al., 2016a). Due to its severe hazardous potential classified by
the Rotterdam Convention, MP is not allowed for sale and import in
nearly all countries around the world (RotterdamConvention, 2004).

Tris(2-chloroethyl) phosphate (TCEP) is an anthropogenic organic
compound used as flame retardant, plasticizer, and viscosity regulator
in various types of polymers, and is commonly listed among a class of
emerging contaminants associated with wastewater pollution of fresh-
water resources (Andresen et al., 2004; Stackelberg et al., 2007). TCEP is
considered as almost non-biodegradable and not expected to hydrolyze
significantly under environmental conditions, thus advanced oxidation
processes (AOP), such as Fenton reaction and UV/H2O2, have been stud-
ied as a possible remediation strategy (Ou et al., 2017; Watts and
Linden, 2008; Watts and Linden, 2009; Yuan et al., 2015).

Compound specific stable isotope analysis (CSIA) can provide addi-
tional information on the organic pollutants' transformation pathways
in complex environments (Elsner et al., 2005; Hofstetter and Berg,
2011; Thullner et al., 2012). Previous studies have shown the potential
use of stable isotope fractionation to characterize transformation mech-
anisms of organic compounds (Elsner, 2010; Elsner and Imfeld, 2016;
Elsner et al., 2012; Nijenhuis and Richnow, 2016; Vogt et al., 2016; Wu
et al., 2014), as this approach is a valuable tool to analyze the rate-limit-
ing step in reaction mechanisms such as the mode of chemical bond
cleavage (Northrop, 1981).

Hydrolysis is one pathway controlling the fate of OPs in the environ-
ment and react by a common mechanism, where H2O and OH– act as
nucleophiles in a bimolecular nucleophilic substitution mechanism
(SN2 mechanism) (Pehkonen and Zhang, 2002). The esters of phos-
phates, phosphorothioates, and phosphorodithioates can be hydrolyzed

under acidic and alkaline conditions by two different pathways but the
relative contribution of each hydrolysis pathway is pH-dependent.
Photodegradation and chemical oxidation are other important degrada-
tion processes. Several studies investigated the reaction mechanisms of
OPs during photodegradation, in which simultaneous pathways includ-
ing oxidation of P_S to P_O, elimination of nitro group, remethylation
and oxidation of the alkyl substituent were proposed (Araújo et al.,
2007; Durand et al., 1994; Kanmoni et al., 2012; Sakellarides et al.,
2003; Santos et al., 2005; Wu and Linden, 2008). Although several
types of transformation products were typically determined, it is diffi-
cult to confirm photodegradation pathways via identified transforma-
tion products, as short-lived intermediates could be missed.

Previous studies reported OPs contamination in natural waters
(Pehkonen and Zhang, 2002) and atmosphere (Kawahara et al., 2005).
OP residues have been found in rain, snow, fog and air samples (Aston
and Seiber, 1996). Oxidation of OPs by OH radical is likely in surface
water and atmosphere (aerosols). OH radical can be generated by natu-
ral presented photosensitizers such as humic substances (Zhang et al.,
2015). The photosensitizers promoted indirect photolysis is a naturally
occurring degradation process. It may be an important factor governing
the fate of organic contaminants in the environment. The multi-isotope
fractionation pattern allows characterize the bond cleavage mecha-
nisms of photosensitization, and is thus a valuable tool for studying
the fate of OPs in surface waters and atmospheric media containing
photosensitizers.

Themain objective of this study is to evaluate the carbon and hydro-
gen isotope fractionation patterns associated with hydrolysis and pho-
tolysis which are considered to be important chemical transformation
reactions of OPs in the environment. We selected EP, MP and dimetho-
ate (Wu et al., 2017) as model compounds of phosphorothioates and
phosphorodithioates representing typical esters of phosphoric acids
and analyzed the carbon and hydrogen isotope fractionation patterns
upon hydrolysis at various pH values to study the different mode of hy-
drolysis by CSIA. Radical oxidation and photolysis of EP (model of
phosphorothioates) were investigated to compare isotope fractionation
patterns with those obtained from hydrolysis. In addition, OH radical
oxidation of TCEP (model of phosphate) by Fenton reaction (the iron
catalyzed hydrogen peroxide) and via indirect photolysis (UV/H2O2)
was performed to understand the isotope fractionation associated by
anH-abstraction step. The transformation products were further identi-
fied using Fourier Transform Ion Cyclotron Resonance Mass Spectrome-
try (FT-ICR MS) to analyze the transformation mechanisms.

2. Materials and methods

2.1. Chemicals

Parathion (O, O-diethyl O-(4-nitrophenyl) phosphorothioate, purity
N99.7%), methyl parathion (O, O-dimethyl-O-(4-nitrophenyl) phospho-
rothioate; purity N 99.8%), TCEP (tris(2-chloroethyl) phosphate, purity
N 97.0%) and dichlorvos (2,2-dichlorovinyl dimethyl phosphate, purity
N98.8%) were purchased from Sigma-Aldrich (Munich, Germany) and
used without further purification. Tributyl phosphate (TBP, purity 99%)
was purchased in Xiya Company in China. Hydrogen peroxide (30% w/
w) was supplied by Merck (Darmstadt, Germany).

2.2. Hydrolysis experiment

Hydrolysis of EP andMPwere carried out at up to 60 °C (to reduce the
reaction time) in 100 mM phosphate buffer solution at pH 2, pH 5, pH 7,
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pH 9 and pH 12, respectively. All experiments were conducted as batch
experiments in 100 mL buffer solution, with an initial concentration of
24 mg L−1 for EP and 50 mg L−1 for MP. At different time intervals, the
hydrolysis was stopped by adjusting the whole 100 mL aqueous sample
to pH 7 using 6 N HCl or 5 M NaOH. The residues of EP andMP were ex-
tracted by 2mL dichloromethane containing 400mg L−1 of dichlorvos as
internal standard, shaking at 180 rpm for 2 h. Afterwards, the organic
phase was transferred into 2 mL vials for concentration and isotope
analysis.

2.3. Direct photolysis and OH radical reaction

The photolysis of EP was conducted in a photochemical reactor sys-
temconsisting of a 2 L Pyrex cylindricalflask and a circulatingwater sys-
tem. Irradiation was achieved using a 150-W xenon lamp as the light
source (Type L2175, wavelength: 185–2000 nm, Hamamatsu, Japan).
The light spectrum is shown in Fig. S2. A filter with a 280 nm cut-off
wavelength (Schott WG 280 long pass filter, 3.15 mm thick, Galvoptics
Ltd., United Kingdom) was applied to provide emission spectrum with
wavelengths ≥280 nm typical of the sun at the Earth's surface. All EP ex-
periments were conducted in phosphate buffer (10 mM, pH 7) at 25 °C,
with initial concentration of 10mg L−1. For the OH radical oxidation ex-
periments, 30%H2O2was used to obtain initialmolar ratio of H2O2: EP to
500:1. The direct photolysis of EPwas performed at the same conditions
without H2O2 andwithout 280 nmfilter as EP hasmaximum absorption
at 277 nm inMilliQwater andmaximumabsorption at 289 nm in phos-
phate buffer (Fig. S3). Dark control experiments were conducted in the
same system without UV irradiation.

The OH radical reaction of TCEP was conducted in the same photo-
chemical reactor system as for EP, but using a 200 mL Pyrex cylindrical
flask. All TCEP experiments were conducted in phosphate buffer
(100 mM, pH 7) at 20 °C, with initial concentration of 500 mg L−1, 30%
H2O2was used obtain initial molar ratio of H2O2: TCEP to 50:1. Dark con-
trol experiments were conducted in the same systemwithout UV irradi-
ation in order to investigate the oxidation of TCEP by H2O2. Another
control experiment was performed at the same condition but without
H2O2 in order to investigate the direct photolysis of TCEP. More detailed
information is described in SM.

2.4. Fenton reaction

TheOH radical oxidation by Fenton reaction of TCEPwas investigated
at room temperature in 200 mL well-stirred phosphate buffer (100 mM,
pH 3) with an initial molar ratio of TCEP:H2O2:FeSO4 to 1:50:10. The ini-
tial concentration of TCEPwas 500mg L−1. To attain homogeneous reac-
tion, required amount of TCEP andFe2+ stock solutionwasfirst dissolved
into buffer and stirred for 30min. The Fenton reactionwas then initiated
by sequential addition of 1.8 mL of 30% H2O2 (30 min sequencing inter-
vals). The solution was continuously mixed at 400 rpm during 2-h reac-
tion. At 30 min intervals, 10 mL of aqueous sample was taken for the
extraction of TCEP residues by adding 0.5 mL of dichloromethane con-
taining 2000 mg L−1 TBP as internal standard and shaken at 180 rpm
at 4 °C for 2 h. The excessed OH radicals were quenched by an addition
of 1 mL of isopropanol to stop the reaction during extraction procedure.

2.5. Analytical methods

2.5.1. Concentration determination
AnAgilent 6890 series GC (Agilent Technologies, USA) equippedwith

a flame ionization detector (FID) was used to determine the concentra-
tion throughout the study. Analytes were separated in an HP-5 column
(30 m × 320 μm × 0.25 μm, Agilent 19091J-413, USA) with helium
flow of 1.5 mL min−1 as the carrier gas. The oven was first held at 60
°C for 2 min, then increased at 10 °C min−1 to 160 °C, at 5 °C min−1 to
220 °C, and finally at 15 °C min−1 to 280 °C and held for 2 min. Each
TCEP sample containing internal standard was measured once with a

split ratio of 50:1, EP and MP samples were measured with a split ratio
of 10:1.

2.5.2. Isotope analysis
The carbon and hydrogen isotope compositionswere analyzed by gas

chromatograph-combustion-isotope ratio mass spectrometer (GC-C-
IRMS) and gas chromatograph chromium based high temperature con-
version-isotope ratio mass spectrometer (GC-Cr/HTC-IRMS) system
using the samemethods as described byWu et al. (2017) but withmod-
ifications on oven temperature programs: the column was initially held
at 60 °C for 2 min, ramped at 8 °C min−1 to 280 °C, and then held for
2 min. All samples were run in triplicates and errors are reported in
SM. All hydrogen isotope results were calibrated by two-point calibra-
tion against two reference compounds using hexadecane A (δ2H =
−167‰) and hexadecane B (δ2H=−11‰) whichwere described else-
where (Renpenning et al., 2015). The quantification of isotope fraction-
ation was evaluated by isotope enrichment factors (ε) using Rayleigh
equation which is reported previously (Elsner et al., 2005; Hofstetter et
al., 2008) and described briefly in SM.

2.5.3. Transformation product analysis
Transformation products of EP and TCEP during photodegradation

were tentatively identified analyzing the precisemass via ultra-high res-
olution FT-ICR MS (Solarix XR 12 T, Bruker Daltonics) based on accurate
masses allowing calculating elemental compositions of ions. 10 mL of
aqueous solution was extracted by solid phase extraction (SPE) using
Bond Elut PPL cartridges (50mg, Agilent). The SPE extraction procedures
followed the manufacturer guidelines and the transformation products
were eluted with 0.5 mL methanol. The methanolic extract was diluted
1:100 or 1:1000 (v/v)withMilliQwater/MeOH(1:1, v/v) before analysis.
A FT-ICRMS equipped with a dynamically harmonized analyzer cell was
used for the analysis of themethanolic extracts. Samples weremeasured
with positive and negative mode electrospray ionization in direct infu-
sion mode with a 4 MWord time domain using typical electrospray ion-
ization (ESI) conditions. For each sample, 16 (TCEP) or 128 to 256 scans
(EP, 10–100ms ion accumulation time) were co-added in a range of 73–
3000m/z and the spectra externally calibratedwith fatty acids present in
the samples between m/z 83 andm/z 353. The high mass accuracy and
resolution (450,000 at m/z 200) allowed for a tentative assignment of
possible transformationproducts via their exactmass and calculatedmo-
lecular formulaswhere themolecular formulas of the parent compounds
were used as an upper element limit for the calculation. For further
method details, refer to the SM.

3. Results and discussion

3.1. Isotope fractionation patterns of EP and MP during hydrolysis

More than 90% of MP and EPwere hydrolyzed in phosphate buffer at
pH 2–12 and C and H isotope ratios were analyzed (Fig. 1). The hydroly-
sis ofMP and EP is a homogeneous reaction following pseudo-first-order
kinetics (Fig. S6), the rate constants under all examined conditions are
shown in Table 1. As shown in Fig. 1, significant C isotope fractionation
was observed duringMP hydrolysis at lower pH and could be quantified
by the Rayleighmodel, corresponding to isotope enrichment factors of εC
=−10.0±0.7‰ at pH 2, εC=−10.5± 1.1‰ at pH 5 and εC=−9.9±
0.7‰ at pH7. The C isotope fractionation uponEP hydrolysis correspond-
ing to isotope enrichment factors of εC =−6.9 ± 0.8‰ at pH 2,−6.7 ±
0.4‰ at pH 5 and−6.0 ± 0.2‰ at pH 7 were described by the Rayleigh
model as well. Smaller but significant C isotope fractionation corre-
sponding to isotope enrichment factor of εC = −6.5 ± 0.4‰ for MP
and εC = −3.5 ± 0.4‰ for EP were observed during hydrolysis at
pH 9, however, no C isotope fractionation was observed for both MP
and EP hydrolysis at pH 12, indicating a different pathway.

The reduction of C isotope fractionation by almost 50% at pH 9 sug-
gests compared to neutral conditions that two pathways of hydrolysis
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take place. If a substrate is being degraded via two competing pathways
and following first-order kinetics, the rate ratio (F) of two competing
pathways can be calculated from the observed isotope enrichment factor
and the isotope enrichment factors associated with the two pathways.
The extended Rayleigh-type equation derived by Van Breukelen (2007)
was employed to calculate the contribution of each pathway. According
to the calculation (described in SM), MP hydrolysis at pH 9 has a contri-
bution of 62–66% compared to the reaction pathway under acidic

condition, while EP hydrolysis at pH 9 has a contribution of 51–58% com-
pared to the pathway under acidic condition.

Furthermore, we did not observe significant changes in H isotope ra-
tios of MP and EP during hydrolysis at any pH, indicating no H bond
cleavage is involved during the rate limiting step of the hydrolysis. The
combination of negligible H and significant C isotope fractionation indi-
cates that hydrolysis under acidic and neutral conditions undergoes the
same transformation mechanism which involves C bond cleavage.

Fig. 1. Rayleigh plots for Carbon and hydrogen stable isotope fractionation of EP andMP during hydrolysis at different pH. Dashed lines indicate the 95% confidence intervals. The ε values
were reported in Table 1.

Table 1
Summary of the reaction rate constants (κ), isotope enrichment factors (ε), and the 95% confidence intervals (CI 95%) for chemical transformation of OPs.

Reaction T (°C) Κ (×10−5 s−1) R2 t 1/2 (h) εC ± 95%CI (‰) R2 εH ± 95%CI (‰) R2

hydro_dime_pH7a 60 0.57 0.999 37.7 −8.3 ± 0.3 0.998 n.d
hydro_dime_pH9a 30 0.35 0.999 56.3 −1.4 ± 0.1 0.987 −10 ± 3 0.924
hydro_dime_pH12a 4 121.31 0.997 0.2 −0.4 ± 0.1 0.950 −10 ± 5 0.901
hydro_MP_pH 2 60 0.78 0.993 23.2 −10.0 ± 0.7 0.995 n.d.
hydro_MP_pH 5 60 1.00 0.997 17.3 −10.5 ± 1.1 0.989 n.d.
hydro_MP_pH 7 60 1.36 0.995 16.2 −9.9 ± 0.7 0.997 n.d.
hydro_MP_pH 9 60 1.53 0.995 13.0 −6.5 ± 0.4 0.998 n.d.
hydro_MP_pH 12 20 5.58 0.999 3.7 n.d. n.d.
hydro_EP_pH 2 60 0.25 0.997 70.1 −6.9 ± 0.8 0.985 n.d.
hydro_ EP _pH 5 60 0.28 0.996 71.8 −6.7 ± 0.4 0.996 n.d.
hydro_ EP _pH 7 60 0.31 0.997 74.9 −6.0 ± 0.2 0.999 n.d.
hydro_ EP _pH 9 60 0.42 0.995 49.5 −3.5 ± 0.4 0.976 n.d.
hydro_ EP _pH 12 20 0.64 0.993 27.3 n.d. n.d.
hydro_ EP _pH 12 30 2.19 0.993 8.3 n.d. n.d.
hydro_ EP _pH 12 40 7.92 0.991 2.8 n.d. n.d.
UV/no filter _EP 25 0.36 0.976 72.8 −0.6 ± 0.1 0.979 n.d.
UV/H2O2_ EP 25 4.61 0.992 4.4 −0.8 ± 0.1 0.993 n.d.
UV/H2O2_TCEP 20 7.86 0.999 2.6 −1.4 ± 0.1 0.996 −56 ± 3 0.997
Fenton_TCEP 25 35.75 0.908 0.6 −1.0 ± 0.2 0.982 −34 ± 5 0.986

hydro is short for “hydrolysis”; dime is short for “dimethoate”; n.d. is short for “not determined”.
a Experimental details and results of hydrolysis of dimethoate are reported by Wu et al. (2017).
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Transformation mechanism changes under strong alkaline condition,
suggesting no C bond cleavage in the rate limiting step at pH 12. Thus,
C isotope fractionation can be used to distinguish different types of hy-
drolysis of MP and EP. The observed similar isotope fractionation pat-
terns during the hydrolysis suggest the same transformation
mechanisms for MP and EP. The smaller εC obtained in EP hydrolysis at
the same pH can be explained by isotope dilution effects, as EPmolecules
contain two more carbon atoms in comparison to MP molecules.

3.2. Exploring the hydrolysis mechanisms of OPs

General hydrolysis pathways of OPswere proposed in Scheme 1. Two
pathways have been reported previously for EP hydrolysis (Wanamaker
et al., 2013). The previous reported pathways can be characterized by
isotope fractionation analysis. Under acidic/neutral conditions, the prod-
uct O-ethyl O-(4-nitrophenol) hydrogen phosphorothioate is formed
through C\\O bond cleavage, which results in a significant C isotope en-
richment. Themajor transformation products of 4-nitrophenol and O, O-
diethyl hydrogen phosphorothioate at higher pH suggest a P\\O bond
cleavage which supports our interpretation that no C isotope fraction-
ation is observed at pH 12 due to no C bond cleavage in the rate limiting
step of the reaction. An enrichment factor of εC=−3.5±0.4‰ obtained
during hydrolysis at pH 9 indicates that two hydrolysis pathways of EP
are active simultaneously. The P\\O bond cleavage has no effect on iso-
tope composition of EP and lower the isotope fractionation contributed
from the O\\C bond cleavage mechanism. No H isotope fractionation is
observed during EP hydrolysis at any pH since no H bond cleavage is in-
volved in the rate determining step of the first irreversible reaction.

The similar hydrolysis pathways are reported forMP,where the dom-
inant product of acid hydrolysis is O-methyl O-(4-nitrophenol) hydro-
gen phosphorothioate while under alkaline hydrolysis the main
product is 4-nitrophenol (FAO, 1990a). The interpretation of the reaction
mechanisms suggested in former studies appears to be consistent with
the isotope fractionation results of the present study: O-methyl O-(4-ni-
trophenol) hydrogen phosphorothioate is formed through C\\O bond
cleavage during acid hydrolysis, leading to significant C isotope enrich-
ment in the remaining phase; 4-nitrophenol is produced through P\\O
bond cleavage during alkaline hydrolysis and gives no C isotope fraction-
ation. The same hydrolysis pathways were investigated using isotope
fractionation for dimethoate in a previous study from our laboratory
(Wu et al., 2017), where the enrichment factor of εC = −8.3 ± 0.3‰
at pH 7 indicated a C\\O bond cleavage; and a P\\S bond cleavage at
pH 12 resulted in a negligible enrichment factor of εC = −0.4 ± 0.1‰.

In summary, we propose two general hydrolysis pathways of OPs in-
cluding phosphates, phosphorothioates and phosphorodithioates
(Scheme 1): one is P\\O (S) bond cleavage by nucleophilic attack at
the phosphorus atom, resulting in no C (andH) isotope fractionation; an-
other one is C\\O bond cleavage by nucleophilic attack at the carbon
atom, resulting in a significant C (and no H) isotope fractionation. There-
fore, C isotope fractionation can be used to distinguish different hydroly-
sis pathways of OPs.

3.3. Isotope fractionation patterns of EP during direct photolysis and OH
radical reaction

EP shows amaximum absorption at 289 nmwhen dissolved in phos-
phate buffer (Fig. S3). Up to 99% of EP was converted slowly after 359 h
during direct photolysis without applying a 280 nm cut-off filter. The
same amount of EP was transformed much faster, within 23 h, during
the indirect photolysis (UV/H2O2) atwavelengths above 280 nm. The ob-
tained rate constants of 0.36 × 10−5 s−1 with R2 of 0.976 for direct pho-
tolysis and 4.61 × 10−5 s−1 with R2 of 0.992 for indirect photolysis
indicate that photolysis and the OH radical oxidation of EP follows pseu-
do-first-order kinetics (Fig. S8). C isotope fractionation associated with
direct photolysis and OH radical reaction of EP was low but still could
be quantified by the Rayleigh model. The δ13C was enriched by 2.8‰
after N99% of EP degradation during direct photolysis, corresponding to
a εC of −0.6 ± 0.1‰ (Fig. 2). The δ13C only enriched by 1.5‰ after
N98% of EP conversion during OH radical oxidation induced by UV/
H2O2 photolysis, corresponding to a εC of −0.8 ± 0.1‰ (Fig. 2). No de-
tectable H isotope fractionation was observed during both experiments
of EP, suggesting no H bond breaking occurs.

3.4. Isotope fractionation patterns of TCEP during OH radical reaction

TCEP is transparent in the wide range of 200–800 nm wavelengths
(Fig. S3) and thus has no potential to harvest light for direct photolysis.
The OH radical oxidation and corresponding C and H isotope fraction-
ation of TCEP was investigated using UV/H2O2 and Fenton reagents
FeSO4/H2O2, respectively. In the UV/H2O2 system, the δ13C value of
TCEP was enriched from −31.5 ± 0.2‰ to −26.3 ± 0.3‰ after 13 h
(97% of degradation) and δ2H value was enriched from −25 ± 5‰ to
185 ± 5‰ (Fig. S9). Rate constant of 7.86 × 10−5 s−1 with R2 of 0.999
indicates a pseudo-first-order kinetic reaction (Fig. S8). The C andH iso-
tope fractionation can be quantified by the Rayleigh equation yielding a
small εC of −1.4 ± 0.1‰, and a large εH of −56 ± 3‰. The hydrogen

Scheme1. Proposed transformationmechanisms of OPs during hydrolysis at different pH. Hydrolysis of OPs can occur via twopathways: attack byOH– andH2O at the phosphorus atom at
high pH and attack by H2O at theα carbon of the alkoxy group at low pH. R1 and R2 are predominantly aryl or alkyl group. R3 can be diverse andmay belong to a wide range of aliphatic,
aromatic or heterocyclic group.
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and carbon fractionation are linearly correlated yielding a dual isotope
enrichment factor (Λ) of 43± 5 (Fig. 3). Λ is the slope of the linear rela-
tionship of isotope composition shifts of both elements (Δδ2H vsΔδ13C),
expressed as Λ = Δδ2H/Δδ13C, where Δδ2H = δ2Ht − δ2H0, Δδ13C =
δ13Ct − δ13C0. The control experiment without adding H2O2 clearly
showed no loss of TCEP after 136 h, indicating that no direct photolysis
of TCEP occurred.

Fenton reaction of TCEP is a pseudo-first-order kinetic reaction too.
The δ13C value was enriched from −29.4 ± 0.3‰ to −26.2 ± 0.2‰
and δ2H was enriched from −28 ± 3‰ to 87 ± 4‰ after 96% degrada-
tion (Fig. S9), yielding a fractionation factor of εC of −1.0 ± 0.2‰ and
εH of−34±5‰. The hydrogen and carbon fractionation are linearly cor-
related by a Λ factor of 35 ± 5 (Fig. 3).

3.5. Exploring the OH radical reaction mechanisms of OPs

The FT-ICR MS analysis was used to identify photodegradation prod-
ucts of EP and TCEP to confirm proposed OP transformation pathways
using transformation products patterns. Photodegradation of EP yielded
five major transformation products (Table S1). The rate-limiting step of
photodegradation of EP involves OH radical addition to the central phos-
phorus atom to yield an phosphorenyl radical, this OH adduct radical
may be prone to stabilization by two different pathways as illustrated
in Scheme 2a: (A) stabilization by the elimination of sulfhydryl radical
to produce P_O bond to form Paraoxon (P1) (C10H14NO6P, m/z pos:
276.0632) whichwas one of themajor products determined in the reac-
tion solution. Previous studies shows that the oxidative attack of the OH

Fig. 2. Rayleigh plots for carbon and hydrogen stable isotope fractionation of EP during direct photolysis (without filter) and OH radical reaction (UV/H2O2). Dashed lines indicate the 95%
confidence intervals. No hydrogen isotope fractionation was obtained. The εC values were reported in Table 1.

Fig. 3. Rayleigh plots quantifying 2H and 13C fractionation of TCEP and the correlation of 2H and 13C fractionation duringOH radical oxidation by UV/H2O2 and Fenton reaction. Dashed lines
indicate the 95% confidence intervals. The εC and εH values were reported in Table 1.
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radicals on the P_S bond occurs firstly in the case of phosphorothioates,
such as dichlofenthion (Konstantinou et al., 2001), pirimiphos-methyl
(Herrmann et al., 1999), fenitrothion (Kerzhentsev et al., 1996) and di-
methoate (Evgenidou et al., 2006). Wu and colleagues studied desulfur-
ization of phosphorothioate and proposed that the sulfur atom can be
replaced by an oxygen atom via a radical mechanism (Wu et al., 2012).
(B) Stabilization by the elimination of nitrophenol from the phosphoric
center to form P2 (C6H5NO3, m/z neg: 138.0197) and P3 (C4H11O3PS,
m/z neg: 169.0094). The subsequent reaction of Paraoxon (P1) may
lead to the formation of P2 and P4 (C4H11O4P, m/z neg: 153.0322)
through a P\\O bond cleavage.

Transformation product analysis showed no difference between di-
rect photolysis andOH radical oxidation of EP, indicating the same trans-
formation mechanisms starting with the oxidation of the sulfur. The
proposed mechanisms are consistent with isotope fractionation results,
as no significant C or H isotope fractionation was observed (Fig. 2). Wu

and Linden proposed a third pathway where a hydroxyl radical attacks
the nitrophenyl bondwhich results in a formation of O,O-diethyl-phenyl
thiophosphate (Wu and Linden, 2008). The observed εC of−0.6± 0.1‰
from direct photolysis and εC of−0.8± 0.1‰ fromOH radical oxidation
(Fig. 2, Table 1) are too small to be indicatives of C\\N bond cleavage. In
addition, P5 (O,O-diethyl phenyl thiophosphate, C10H15O3PS) with ex-
pected m/z pos: 247.0552 or m/z neg: 245.0407 was not detected as a
transformation product by FT-ICR MS analysis in the present study.

Eight transformation products (P1 to P8) were detected in the
photodegradation of TCEP using UV/H2O2, the tentative structure of the
products are shown in Table S2. Scheme 2b illustrates the proposed
first step transformation of TCEP during OH radical reaction. Pathway A
involves hydrogen abstraction from the alkyl-C position by OH radical
to produce carbon-centered radical, which is followed by oxygen addi-
tion to generate the peroxyl radical. Peroxyl radicals typically undergo
a bimolecular Russell Mechanism (Miyamoto et al., 2003) leading to

Scheme2.Proposed transformationmechanisms of OH radical reactionwith EP (a) and TCEP (b). Scheme 2a illustrates the rate-limiting step of the photodegradation of EP,which involves
OH radical addition to the central phosphorus atom and stabilized by two different pathways: (A) the elimination of sulfhydryl radical to produce P_O bond to form paraoxon (P1); (B)
the elimination of nitrophenol from the phosphoric center to form P2 and P3. Scheme 2b illustrates the first step reactions of TCEPmay simultaneously occur over two different pathways:
(A) involves hydrogen abstraction by OH radical, followed by oxygen addition and then undergo Russell Mechanism and hydrolysis to form P1 and P2; (B) involves OH radical addition to
the central phosphorus atom, followed by the elimination of an ethyl chlorine arm from the phosphoric center to form P3.

26 L. Wu et al. / Science of the Total Environment 615 (2018) 20–28

117



the corresponding alcohol, P1 (C6H12Cl3O5P, m/z pos (Na): 322.9380),
and aldehyde which are expected to be readily hydrolyzed to P2
(C6H11Cl2O6P,m/z neg: 278.9598). Pathway B involves OH radical addi-
tion to the central phosphorus atom to yield an oxygen-centered
phosphorenyl radical, which is followed by the elimination of an
ethyl chlorine arm from the phosphoric center to form P3 (C4H9Cl2O4P,
m/z neg: 220.9543). In addition, P4 (C6H13Cl2O5P, m/z neg: 264.9805)
was detected with a lower intensity compared to other transformation
products, which is likely formed by the hydrolysis of TCEP resulting a
substitution of one chlorine terminal by a carboxyl. Further breakdown
products formed in subsequent reactions are found (P5 to P8 see SM)
which are not discussed in this study.

Hydrogen abstraction and addition-elimination are the primary
mechanisms for the photocatalytic oxidation of dimethyl
methylphosphonate (DMMP) via hydroxyl radical attack (Aguila et al.,
2001; Oshea et al., 1997). Similarmechanisms are proposed for the deg-
radation of TECP via persulfate radical attack (Ou et al., 2017). The sig-
nificant isotope fractionation of TCEP of εH = −56 ± 3‰ combined
with εC=−1.4±0.1‰ suggests a C\\Hbond cleavage, which supports
the H abstraction mechanism as well.

Our results suggest that the major reaction mechanisms of OPs dur-
ing OH radical reaction are related to their chemical structures as illus-
trated in Scheme 2: (1) The P_S bond is oxidized to P_O in case of
phosphorothioate structure (e.g. EP) in the rate determining step yield-
ing very low or no carbon and hydrogen fractionation in contrast to (2)
C\\H bond breaking through H abstraction step in case of phosphate
structure substitution by alkyl groups (e.g. TCEP). These two major
chemical structures-dependent reaction mechanisms of OPs can be dis-
tinct when applying C and H isotope fractionation approach
diagnostically.

4. Conclusions

Carbon and hydrogen stable isotope fractionation can be used diag-
nostically to characterize degradation pathways of phosphates,
phosphorothioates and phosphorodithioates which are core structural
elements of large variety of OPs. The variation of carbon isotope fraction-
ation pattern has a potential for characterizing differentmodes of hydro-
lysis. The hydrogen isotope fractionation is low when a P\\O(S) bond in
phosphates, phosphorothioates and phosphorodithioates is hydrolyzed.
The characteristic isotope fractionation upon hydrolysis may be used
for evaluation of remediation approaches using alkaline hydrolysis in
contaminated groundwater (LRSB L, 2014; Nielsen et al., 2014), whereas
the isotope fractionation pattern of the residual fraction may give infor-
mation about which mode of hydrolysis was at work. The isotope frac-
tionation may be used to characterize hydrolytic reaction in plumes of
contaminated aquifers or in the vicinity of industrial dump sites.

In case of OH radical oxidation or direct photolysis, cleavage of a
C\\H bond can lead to a characteristic correlation of hydrogen and car-
bon fractionation for exploring predominant degradation pathways in
surface water bodies or in aerosols. However, phosphorothioates and
phosphorodithioates will become desulfurized in the rate limiting step
not yielding a larger isotope fractionationwhich limits the CSIA concept
for tracing the process under environmental conditions. Possible radical
oxidation reaction cannot be analyzed by 2H and 13C fractionationwhen
the degradation process is initiated with a desulfurization step in the
first irreversible reactionwhich is a clear limitation for themulti isotope
fractionation analysis. Thus, the isotope fractionation might be used for
evaluating In Situ Chemical Oxidation (ISCO) of phosphate derivatives
but has limitation for phosphorothioates and phosphorodithioates.

Hydrolysis and oxidation are concerned to be major degradation
pathways for OPs. Our systematic study on 2H and 13C fractionation of
OPs shows the potential for analyzing chemical degradation reactions
in aquatic environments using the isotope fractionation concept. For fur-
ther exploring the diagnostic potential of tracing reactionmechanisms in
the environment using isotope fractionation, systematic studies on

microbial degradation are needed and 2H and 13C fractionation patterns
need to be compared with those of chemical transformation reactions.
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1. Structural Elements of Organophosphorus Compounds (OPs) 

OPs as discussed in this study are esters of phosphoric acids, thiophosphoric acids and dithiophosphoric 
acids forming a wide variety of phosphates, phosphorothioates, or phosphorodithioates (Fig. S1). Their 
general structural element is a phosphorus atom  
in an oxidation state +5 (P (V)) substituted by oxygen or sulfur. R1 and R2 are mainly the aryl or alkyl 
group, which can be attached to a phosphorus atom via oxygen. R3 can be diverse and may consist to a 
wide range of aliphatic, aromatic or heterocyclic structural units.(Singh and Walker, 2006) 

 

Fig. S1: Core structures of OPs discussed in this study. 

2. Light Spectrum of the Xenon Lamp and UV Absorption Spectra of EP and TCEP 

For the photolysis experiments in this study, irradiation was achieved using a 150-W xenon lamp as the 
light source (Type L2175, wavelength: 185-2000 nm, Hamamatsu, Japan). The xenon lamp is filled with 
xenon gas that emits “white light” at a high color temperature of 6000K, which is close to that of sunlight 
and covers a broad continuous spectrum from the ultraviolet to infrared region (185-2000 nm).The light 
spectrum is shown in Fig. S2. The UV absorption of the EP and TCEP was measured in triplicate on a 
UV/VIS/NIR spectrophotometer (Lambda 900, Perkin-Elmer, Waltham, U.S.). TCEP was dissolved in 
MilliQ water at a concentration of 100 mg L

-1
. EP was prepared at a concentration of 24 mg L

-1
 in MilliQ 

water and phosphate buffer (100 mM, pH 7), respectively. TCEP has no light absorption in the wide range 
of 200 – 800 nm (Fig. S3). On the contrary, EP has maximum absorption at 277 nm in MilliQ water, and at 
289 nm when dissolved in phosphate buffer (100 mM, pH 7). 

 

Fig. S2. Light spectrum of the xenon lamp. The original source of the spectrum is obtained from the 
website of Hamamatsu (Xenon lamp L2175): http://www.hamamatsu.com/resources/pdf/etd/Xe-
HgXe_TLSX1044E.pdf 
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Fig. S3. UV absorption spectra of EP and TCEP. 

3. Hydrolysis of Methyl Parathion (MP) 

Hydrolysis experiments of MP were carried out at 60°C to reduce the reaction time in 100mM phosphate 
buffer solution at pH 2, pH 5, pH 7, pH9 and at 20°C for alkaline hydrolysis at pH 12. All experiments 
were conducted as batch experiments using 120 mL serum bottles which were filled with 100 mL buffer 
solution and closed with Teflon coated butyl rubber septa and crimped.  
0.5 mL of stock solution of MP in acetone was added into each preheated serum bottle through rubber 
septa (shaken immediately) to achieve an initial concentration of 50 mg L

-1
 to initiate hydrolysis reaction. 

Gastight vails containing 2 ml of 1000 mg L
-1

 MP solution in hexane/acetone (1:1) was also put into an 
oven at 60°C as controls for thermal degradation. At different time intervals, the hydrolysis was stopped 
by adjusting the aqueous sample to pH 7 using 6N HCl or 5M NaOH. For extraction of the remaining MP, 
2 mL of DCM containing 400 mg L

-1
 of dichlorvos as internal standard was added through a rubber septa 

and shaken at 180 rpm for 2h at 4 °C. Afterwards, the organic phase was transferred into 2mL vials for 
concentration measurement as soon as possible, and the samples were stored at -20 °C for further 
isotope analysis. 

The results of the hydrolysis experiments are summarized in Fig. S4. After 70 h of reaction, the δ
13

C of 
MP become enriched from -37.9 ± 0.1‰ to -18.9 ± 0.1‰ for 87% of degradation at pH 2, from -38.0 ± 0.1‰ 
to -11.7 ± 0.3‰ for 93% of degradation at pH 5, and from -38.5 ± 0.0‰ to -5.3 ± 0.3‰ for 97% of 
degradation at pH 7. 94% of MP degradation was observed at pH 9 after 52 h, with δ

13
C enrichment from 

-38.1 ± 0.1‰ to -20.3 ± 0.2‰. However, 99% of MP degradation was obtained at pH 12 after 24 h but 
without any δ

13
C changes. During all MP hydrolysis experiments, no δ

2
H shift was observed. The 

hydrolysis of MP could be described  by degradation rate constants (× 10
-5

 s
-1

) of 0.78 (R
2
 = 0.993) at pH 

2 (60°C),  
1.00 (R

2
 = 0.997) at pH 5 (60°C), 1.36 (R

2
 = 0.995) at pH 7 (60°C), 1.53 (R

2
 = 0.995) at pH 9 (60°C), and 

5.58 (R
2
 = 0.999) at pH 12 (20°C) indicating homogeneous reactions and pseudo-first-order kinetics (Fi. 

S4). 

4. Hydrolysis of Parathion (EP) 

Hydrolysis experiments of EP were carried out at the same conditions as described for MP except with an 
initial concentration of 24 mg L

-1
. To investigate the effect of temperature on hydrolysis mechanisms, the 

hydrolysis of EP at pH 12 was conducted at 20 °C, 30 °C and 40 °C, respectively. The δ
13

C of EP 
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enriched from -29.4 ± 0.6‰ to -9.4 ± 0.3‰ for 94% of degradation at pH 2 after 306 h, from -29.8 ± 0.0‰ 
to 1.2 ± 0.2‰ for 99% of degradation at pH 5 after 426 h from -30.0 ± 0.0‰ to -1.2 ± 0.1‰ for 99% of 
degradation at pH 7 after 426 h, and from -29.7 ± 0.1‰ to -9.2 ± 0.1‰ for 99% of degradation at pH 9 
after 401 h (Fig. S5). During hydrolysis at pH 12, 88% of EP degradation was obtained after 92 h at 20 °C, 
97% degradation was obtained after 42 h at 30 °C, and 92% degradation was obtained after 9 h at 40 °C, 
all without any δ

13
C changes. No δ

2
H shifts were observed during all EP hydrolysis experiments (δ

2
H 

values for samples of more than 95% degradation were not measured due to the low concentration of EP). 
The hydrolysis of EP can be described by pseudo-first-order kinetics resulting in degradation rate 
constants (× 10

-5
 s

-1
) of 0.25 (R

2
 = 0.997) at pH 2 (60°C), 0.28 (R

2
 = 0.996) at pH 5 (60°C), 0.31 (R

2
 = 

0.997) at pH 7 (60°C), 0.42 (R
2
 = 0.995) at pH 9 (60°C), 0.64 (R

2
 = 0.993) at pH 12 (20°C), 2.19 (R

2
 = 

0.993) at pH 12 (30°C), and 7.92 (R
2
 = 0.991) at pH 12 (40°C), indicating homogeneous reactions (Fig. 

S6). 
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Fig. S4. Transformation of MP by hydrolysis at different pH. Carbon and hydrogen isotope signatures 
(δ

13
C signified by red triangles, δ

2
H signified by blue circles) vs the fraction of remaining substrate (Ct/C0 

signified by green squares) are shown. Uncertainties of isotope analysis represent standard deviations of 
triplicate measurements; error bars are smaller than symbols. 
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Fig. S5. Transformation of EP by hydrolysis at different pH. Carbon and hydrogen isotope signatures 
(δ

13
C signified by red triangles, δ

2
H signified by blue circles) vs. the fraction of remaining substrate (Ct/C0 

signified by green squares) are shown. Uncertainties of isotope analysis represent standard deviations of 
triplicate measurements; error bars are smaller than symbols. 

 

Fig. S6. Kinetics of EP and MP during hydrolysis at different pH. Solid lines show pseudo-first-order 
kinetics. 

5. Direct Photolysis and OH Radical Oxidation of EP 

The photolysis of EP was conducted in a photochemical reactor system consisting of a 2000 mL Pyrex 
cylindrical flask with a quartz window whose surface area was approximately 160 cm

2
. Irradiation was 

achieved using a 150-W xenon lamp as the light source (Type L2175, wavelength: 185-2000 nm, 
Hamamatsu, Japan). The temperature was controlled by a circulating water system positioned around the 
Pyrex reactor to guarantee constant reaction conditions at 25 °C. The distance between the quartz 
window of the reactor and the light source was approximately 13 cm. A filter with a 280-nm cut-off 
wavelength (Schott WG 280 long pass filter, 3.15mm thick, Galvoptics Ltd, United Kingdom) was applied 
to provide emission spectrum with a wavelengths ≥280 nm typical of the sun at the Earth's surface. EP 
stock solution was prepared at 20 mg mL

-1
 in acetone. For the OH radical reaction, 1 mL of EP stock 

solution was mixed into 2000 mL of phosphate buffer (10 mM, pH 7) for overnight in the photo reactor to 
achieve an initial concentration of 10 mg L

-1
. The reaction was started by addition of 2.68 mL of 30% H2O2 

into the EP buffer solution, resulting in a 500:1 initial molar ratio of H2O2 to EP. The solution was 
continuously stirred and maintained at a constant temperature of 25 °C. At different time intervals, 200 mL 
of aqueous sample was taken into a serum bottle. 4 mL of DCM containing 200 mg L

-1
 of dichlorvos as an 

internal standard was added to extract the remaining reactants. The direct photolysis of EP was 
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performed at the same condition without H2O2 and without 280 nm filter. Dark control experiments were 
conducted in the same system without UV irradiation. 

The δ
13

C values only enriched 2.8‰ (from -34.5 ± 0.2‰ to -31.7 ± 0.1‰) for more than 99% of substrate 
conversion after 359 h of direct photolysis. An enrichment of 1.5‰ (from -34.9 ± 0.5‰ to -33.3 ± 0.3‰) 
for more than 98% of substrate conversion after 23 h was found during OH radical oxidation with H2O2 
(Fig. S7). No δ

2
H shifts were observed during both photolysis experiments. The photolysis of EP could be 

described with pseudo-first-order kinetics (Fig. S8), resulting in degradation rate constants (× 10
-5

 s
-1

) of 
0.36 (R

2
 = 0.976) during direct photolysis and 4.61 (R

2
 = 0.992) during OH radical reaction. 

 

Fig. S7. Carbon and hydrogen enrichment during the direct photolysis and OH radical reaction of 
parathion. Carbon and hydrogen isotope signatures (δ

13
C signified by red triangles, δ

2
H signified by blue 

circles) vs. the fraction of remaining substrate (Ct/C0 signified by green squares) are shown. Uncertainties 
of isotope analysis represent standard deviations of triplicate measurements; error bars are smaller than 
symbols. 

 

Fig. S8. Kinetics of EP and TCEP during direct photolysis and OH radical reaction. Solid lines show 
pseudo-first-order kinetics. 

6. UV/H2O2 Photolysis and Fenton Reaction of TCEP 

The photolysis of TCEP was conducted in the same photochemical reactor system described above 
except for in a 200 mL Pyrex cylindrical flask with a quartz window whose surface area was 
approximately 64 cm

2
. The TCEP stock solution was prepared with a concentration of 500 mg mL

-1
 in 
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acetonitrile. For the OH radical oxidation by photolysis of H2O2, 0.2 mL of TCEP stock solution was 
dissolved in a 200 mL phosphate buffer (100 mM, pH 7) preheated at 20 °C and stirred overnight in the 
photo reactor to achieve an initial concentration of 500 mg L

-1
. And then 1.8 mL of 30% H2O2 was added 

into the TCEP buffer solution, resulting in a 50:1 initial molar ratio of H2O2 to TCEP. The solution was 
continuously mixed on a magnetic stirrer at 500 rpm during the experiment and the temperature was 
maintained at 20 °C with cooling system. After 15 min of mixing, the UV lamp source was turned on to 
start the photoreaction. At different time intervals, 10 mL of aqueous sample was taken through a rubber 
septum of the reactor using a syringe and transferred into a gas-tight vial. 0.5 mL of DCM containing 2000 
mg L

-1
 of TBP as an internal standard was added to extract the remaining reactants by shaking at 180 

rpm at 4 °C for 2h. The organic phase was transferred into 2 mL vials afterwards for further analysis. The 
direct photolysis of TCEP was performed at the same condition without H2O2. Dark control experiments 
were conducted in the same system without UV irradiation. 

Fenton reaction of TCEP was carried out at room temperature in 200 mL well-stirred solution under no 
light exposure and an initial selected mole ratio of TCEP:H2O2:FeSO4 = 1:50:10 (1.75 mM:87.5 mM:17.5 
mM). The initial concentration of TCEP was 500 mg L

-1
. To attain sufficient dissolution of the degraded 

compound, 100 mg of TCEP was dissolved into 200 mL phosphate buffer (100mM, pH 3) and stirred for 
30 min. Then required amount of Fe

2+
 stock solution was added to the reaction mixture. The Fenton 

reaction was initiated by sequential addition of 1.8 mL of 30% H2O2 (30min sequencing intervals). The 
solution was continuously mixed at 400 rpm during 2-hour reaction. The initial sample was taken before 
the initiation of the Fenton reaction by H2O2 (with Fe

2+
 already added in the solution, before H2O2 

addition). At 30 min intervals, 10 mL of aqueous sample was taken for the extraction of TCEP residues by 
adding 0.5 mL of DCM containing 2000 mg L

-1
 of TBP as internal standard and shaken at 180 rpm at 4 °C 

for 2h. The excessed OH radicals were quenched by an addition of 1 mL of isopropanol to stop the 
reaction during extraction procedure. 

The OH radical oxidation and corresponding C and H isotope fractionation of TCEP were investigated 
using UV/H2O2 and FeSO4/H2O2 system to generate OH radicals. In the UV/H2O2 system, the δ

13
C 

composition of TCEP enriched from -31.5 ± 0.2‰ to -26.3 ± 0.3‰ for 97% of degradation after 13 h and 
δ

2
H composition enriched from -25 ± 5‰ to 185 ± 5‰ (Fig. S9). A rate constant of 7.86 × 10

-5
 s

-1
 with R

2
 

= 0.999 indicates a pseudo-first-order kinetic reaction (Fig. S8). During Fenton reaction, the rate constant 
of 35.75 × 10

-5
 s

-1 
with R

2
 = 0.908 indicates a pseudo-first-order kinetic reaction. The δ

13
C of TCEP 

enriched from -29.4 ± 0.3‰ to -26.2 ± 0.2‰ and δ
2
H enriched from -28 ± 3‰ to 87 ± 4‰ within 96% of 

degradation (Fig. S9). 

 

Fig. S9. Carbon and hydrogen enrichment during OH radical oxidation induced by photosensitization of 
H2O2 and Fenton reaction of TCEP. Carbon and hydrogen isotope signatures (δ

13
C signified by red 

triangles, δ
2
H signified by blue circles) vs. the fraction of remaining substrate (Ct/C0 signified by green 
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squares) are shown. Uncertainties of isotope analysis represent standard deviations of triplicate 
measurements; error bars are smaller than symbols. 

7. Quantification of Isotope Fractionation 

7.1 Isotope Enrichment Factor (ε) 

The carbon and hydrogen isotopic signatures are reported as δ values in parts per thousand (‰) relative 
to international reference materials, Vienna PeeDee Belemnite (VPDB) for carbon and Standard Mean 
Ocean Water (SMOW) for hydrogen. The isotope enrichment factor (ε) can be determined from the 
logarithmic form of the Rayleigh equation (eq. S1). δEt and δE0 are the isotopic signatures of the 
compound for the element E at a given time t and at the beginning of the reaction; while Ct/C0 is the 
fraction of the remaining compound. 

ln (
𝛿𝐸𝑡+1

𝛿𝐸0+1
) = 𝜀 × ln (

𝐶𝑡

𝐶0
)                                                               S1 

7.2 Rate Ratio of Two Competing Degradation Pathways (F) 

Van Breukelen (Van Breukelen, 2007) derived extended Rayleigh-type equations to improve 
quantification of isotopic fractionation expressed during substrate consumption via competing pathways. If 
a substrate is being degraded via two pathways and following first-order kinetics, the rate ratio of two 
competing degradation pathways (F) can be calculated from the observed isotope enrichment factor (εA) 
and the isotope enrichment factor values associated with the two pathways ε1 and ε2, which is shown in 
eq. S2: 

𝐹 =
𝜀𝐴−𝜀2

𝜀1−𝜀2
                                                                       (S2) 

F indicates the isotope fractionation contribution of pathway 1 to the observed isotope fractionation εA. 
Note that eq. S2 is applicable for only two competing pathways, for three or more pathways unique 
solutions are not possible (Van Breukelen, 2007). Similar C isotope enrichment factors observed during 
hydrolysis of MP and EP at lower pH indicate one pathway (ε1 = -10.5 ~ -9.9‰ for MP and ε1 = -6.9 ~ -6.0‰ 
for EP), no C isotope fractionation observed for both MP and EP hydrolysis at pH 12 indicates another 
pathway (ε2 = 0). The reduction of C isotope fractionation by almost the half at pH 9 suggests that two 
pathways of hydrolysis are at work whereas εA = -6.5 ± 0.4‰ for MP and εA = -3.5 ± 0.4‰ for EP. 
Therefore, calculated from eq. S3, MP hydrolysis at pH9 have a contribution of 62 ~ 66% of pathway 1, 
while EP hydrolysis at pH9 have a contribution of 51 ~ 58% of pathway 1. 

8. Identification of Transformation Products of EP and TCEP during OH Radical Reaction 

In order to analyze the transformation products of EP and TCEP during OH radical reaction using 
UV/H2O2, experiments were conducted under the same conditions as described above. After achieving 51% 
degradation of EP during UV/H2O2 reaction, 99% degradation of EP during direct photolysis, 11% 
degradation of TECP during UV/H2O2 reaction, respectively, 10 mL of aqueous solution was extracted by 
solid phase extraction (SPE) using Bond Elut PPL cartridges (50 mg, Agilent). The SPE extraction 
procedures followed the manufacturer guidelines and were: cleaning with 1 mL methanol; conditioning 
with the cartridges with 2 mL acidic water (pH 2 adjusted with HCl); loading of 10 mL aqueous sample 
solution adjusted to pH 2 using HCl; washing with 1 mL acidic water to remove the residual buffer salts; 
drying the cartridges with a nitrogen steam and elution of the transformation products with 0.5 mL 
methanol. The methanolic extract was collected and diluted 1:100 or 1:1000 (v/v) with MilliQ water /MeOH 
(1:1, v/v) before analysis. Parallel experiments were conducted under the same conditions but in MilliQ 
water for direct analysis of aqueous solution, in order to investigate the SPE extraction efficiency by PPL 
cartridges. 
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A Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS, Solarix XR 12T, Bruker 
Daltonics) equipped with a dynamically harmonized analyzer cell was used for the analysis of the 
methanolic extracts. Samples were measured with positive and negative mode electrospray ionization in 
direct infusion mode with a 4 MWord time domain using typical ESI conditions. For each sample, 16 
(TCEP) or 128 to 256 scans (EP, 10 – 100 ms ion accumulation time) were co-added in a range of 73-
3000 m/z and the spectra externally calibrated with fatty acids. The high mass accuracy and resolution 
(450000 at m/z 200) allowed for a tentative assignment of possible transformation products via their exact 
mass and calculated molecular formulas where the molecular formulas of the parent compounds were 
used as an upper element limit for the calculation. For instance, as shown in Fig. S10, a transformation 
product of TCEP was found in negative mode with m/z 278.9598 and ion formula of C6H10Cl2O6P

-
, which 

was clearly not present in the 0h samples extracted by PPL and in the aqueous solution. Paraoxon (m/z 
pos: 276.0632) was not detected in sample from direct photolysis of EP, however, the formation of O,O-
diethyl phosphate (m/z neg: 153.0322) during direct photolysis of EP suggests that paraoxon was further 
degraded, considering the sample was extracted after 99% degradation of EP (Table S1). Therefore, 
same transformation products of EP were detected from the direct photolysis and OH radical reaction. 
Comparing the performance of SPE extraction using PPL cartridges to direct aqueous solution analysis, 
our results indicate that the SPE using PPL cartridges is efficient enough to extract all known 
transformation products. All detected transformation products of EP and TCEP are listed in Tables S1 
and S2, respectively. 

 

Fig. S10: Mass spectra of transformation products analysis of TCEP via FT-ICR MS. Spectra with same 
acquisition conditions were compared. 

1) TCEP_UV/H2O2_0h_0%_direct 

2) TCEP_UV/H2O2_1h_11%_direct 

3) TCEP_UV/H2O2_0h_0%_PPL 

4) TCEP_UV/H2O2_1h_11%_PPL 
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Table S1: List of tentatively characterized transformation products detected during direct photolysis and 
OH radical reaction of EP using FT-ICR MS. 

name neutral 
formula 

tentative structure m/z pos m/z neg Detected? 
(pos/neg) 

photolysis 
experiment 

Parathion C10H14NO5PS 

 

292.0403 (H)  pos (H)/- 
(lock mass) 

 

P1 
(Paraoxon) 

C10H14NO6P 

 

276.0632 (H)  pos (H)/- 
< 0.25 ppm 

UV/H2O2 

P2 
(4-nitro-phenol) 

C6H5NO3 

 

 138.0197 (H) -/neg (H) 
< 0.1 ppm 

direct and 
UV/H2O2 

P3 
(O,O-diethyl 
thiophosphate) 

C4H11O3PS 

 

 169.0094 (H) -/neg (H) 
< 0.3 ppm 

direct and 
UV/H2O2 

P4 
(O,O-diethyl 
phosphate) 

C4H11O4P 

 

 153.0322 (H) -/neg (H) 
< 0.1 ppm 

direct and 
UV/H2O2 

P5 
(O,O-diethyl 
phenyl 
thiophosphate) 

C10H15O3PS 

 

247.0552 (H) 245.0407 (H) -/-  

 

Table S2: List of tentatively characterized transformation products detected during OH radical reaction of 
TCEP using FT-ICR MS. 

name neutral 
formula 

tentative structure m/z pos m/z neg Detected? 
(pos/neg) 

TCEP C6H12Cl3O4P 

 

284.9612 (H) 
306.9431 (Na) 
 

 pos (H,Na)/- 
<0.009 ppm 

P1 
 

C6H12Cl3O5P 

 

322.9380 (Na) 
 

 pos (Na)/- 
<0.403 ppm 

P2 
 

C6H11Cl2O6P 

 

 278.9598 (H) 
 

-/neg (H) 
<-0.053ppm 
 

P3 
 

C4H9Cl2O4P 

 

 220.9543 (H) 
 

-/neg (H) 
<0.037 ppm 
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P4 
 

C6H13Cl2O5P 

 

 264.9805 (H) 
 

-/neg (H) 
<0.528 ppm 

P5 
 

C4H9Cl2O6P 

 

 252.9441 (H) 
 

-/neg (H) 
<0.045 ppm 

P6 
 

C4H8ClO6P 

 

 216.9674 (H) 
238.9494 (Na) 
 

-/neg (H,Na) 
<-0.006 ppm 

P7 
 

C4H11O6P 

 

 185.0220 (H) 
 

-/neg (H) 
< -0.396 ppm 

P8 
 

C2H6ClO4P 

 

 180.9439 (Na) 
 

-/neg(Na) 
<-0.032ppm 
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a b s t r a c t

Substituted chlorobenzenes are the basic substructure of many surface water contaminants. In this study,
the isotope fractionation and reaction mechanisms involved during the aqueous direct and indirect
photodegradation of CH3-, Cl-, and NO2- substituted chlorobenzenes were investigated in laboratory
experiments. Only 4-nitrochlorobenzene showed slow but isotopically fractionating direct photolysis.
During indirect photodegradation using UV/H2O2-generated OH radicals, the pseudo first-order reaction
rate constants increased in the order of the NO2-< Cl- < CH3- substituted chlorobenzenes. The most
pronounced carbon enrichment factors were observed for nitrochlorobenzenes (up to �4.8 ± 0.5‰),
whereas the lowest were for chlorotoluenes (��1.0± 0.1‰). As the substituents became more electron-
withdrawing, the activation energy barrier increased, leading to slower reaction rates, and the transition
state changed to a more symmetrical or less reactant-like structure, resulting in larger apparent kinetic
isotope effects. The results suggest that the rate-determining step in the reaction with OH radicals was
the addition of the electrophile to the benzene ring. Even though further research is needed to quantify
isotope fractionation during other transformation processes, these results showed evidence that com-
pound specific isotope analysis can be used as a diagnostic tool for the fate of substituted chlorobenzenes
in water.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Substituted chlorobenzenes are the basic chemical structure of
many environmental contaminants such as herbicides 2,4-D,
dichlorprop, chlortoluron, and drugs and personal care products
like triclosan and diclofenac. In their simplest form, substituted
chlorobenzenes, such as isomers of dichlorobenzene (DCB), chlor-
omethylbenzene (or chlorotoluene, CMB), and nitrochlorobenzene
(NCB), are widely distributed in surface waters (Schwarzbauer and

Ricking, 2010) in the low ng L�1 or mg L�1 range (Bester et al., 1998;
Lekkas et al., 2004; Trova et al., 1991), due to their use as chemical
intermediates in the production of dyes, solvents, pesticides, and
pharmaceuticals. They have all been listed as substances which
could belong to List I of European Council Directive 76/464/EEC
(European Commission, 1982) due to their known or suspected
toxicity to aquatic organisms and mutagenic and carcinogenic po-
tentials (Calamari et al., 1983; OECD, 2005; Shimizu et al., 1983;
Weisburger et al., 1978). The dichlorobenzene isomers also belong
to the U.S. EPA List of Priority Pollutants (USEPA, 1979). Character-
izing the transfer and transformation processes of substituted
chlorobenzenes in surface waters is therefore essential to protect
human and aquatic life and develop effective remediation strate-
gies. One method that can be used to evaluate in situ trans-
formation, Compound Specific Isotope Analysis (CSIA), is based on
the faster reaction rates of molecules containing light (e.g., 12C)
versus heavy (e.g., 13C) isotopes. While CSIA is widely used to study
the fate and removal of traditional groundwater contaminants, to
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date, its application to other environments such as sediments
(Passeport et al., 2016) and surface waters is limited, e.g., Elsayed
et al. (2014), Hartenbach et al. (2008), Maier et al. (2016), and
Ratti et al. (2015a). In some cases, CSIA can help identify trans-
formation processes that involve the breaking of chemical bonds. It
can also be used to quantify degradation and gain insight into
contaminant reaction mechanisms without the need to identify
transformation products (Hunkeler et al., 2008).

In natural environments such as lakes and rivers, and in water
treatment plants where UV/H2O2 advanced oxidation processes are
used, organic compounds can be eliminated via direct photolysis
and indirect photolysis induced by reactive species such as hy-
droxyl (OH) radicals (Boreen et al., 2003; Wols and Hofman-Caris,
2012). Hydoxyl radicals are naturally generated in all surface wa-
ter environments from the photolysis of dissolved organic
(Vaughan and Blough, 1998) and inorganic compounds (Zafiriou,
1974). Therefore, there is great potential to evaluate the attenua-
tion of contaminants with OH radicals in various aquatic systems
using CSIA, which could be a promising tool for water quality
monitoring and assessment. One of the limitations of stable carbon
isotope analysis is the need for about 0.2e20 ng of carbon to be
injected on-column (Giebel et al., 2010), resulting in typically
moderately high detection limits of 5e10 mg/L (Dempster et al.,
1997; Hunkeler and Aravena, 2000; Zwank et al., 2005), even
though accurate carbon isotope analysis has been successfully
conducted down to 0.1e1 mg/L (Schreglmann et al., 2013). The re-
action mechanisms governing the direct and indirect photo-
degradation of substituted chlorobenzenes are not well
understood. In addition, the potential of isotope fractionation
during photodegradation reactions, and the extent to which it can
contribute to deciphering reaction pathways have not been the
subject of many studies. Previous research showed that stable
carbon enrichment factors ranged from negligible values to ~�5‰,
e.g. during direct aqueous photolysis of polybrominated diphenyl
ethers (Rosenfelder et al., 2011), organophosphorus pesticide
dimethoate (Wu et al., 2014), herbicide atrazine (Hartenbach et al.,
2008), and a-hexachlorocyclohexane (Zhang et al., 2014). Previous
studies showed that direct photolytic dechlorination of the three
chloroaniline isomers was associated with highly variable carbon
and nitrogen isotope effects, which depended on pH and excited
spin state populations (Ratti et al., 2015b, 2015c). Aqueous reactions
of organic compoundswith OH radicals also led to a similar range of
stable carbon enrichment factors (Hartenbach et al., 2008; Ratti
et al., 2015a; Wu et al., 2018; Zhang et al., 2014, 2016, 2015). For
example, a negligible carbon enrichment factor (<~ �0.5‰) was
found during the reaction of OH radicals with atrazine (Hartenbach
et al., 2008), as well as for toluene, ethylbenzene, xylenes, and
anisole (Zhang et al., 2016); moderate values were obtained for a-
hexachlorocyclohexane (�1.9‰) (Zhang et al., 2014) and fuel oxy-
genates (�1.0 to �1.6‰); while larger values, up to �3.9‰, were
observed for anilines and nitrobenzene (Zhang et al., 2016). In some
cases, the determination of isotope fractionation for two or more
elements proved efficient to distinguish among degradation pro-
cesses. The apparent kinetic isotope effect values for carbon and
nitrogen for the direct (Ratti et al., 2015b, 2015c) and indirect (Ratti
et al., 2015a) photodegradation of chloroanilines correlated differ-
ently showing potential for the use of CSIA to differentiate between
these chemical degradation pathways. However, the variability of
isotope fractionation during aqueous photodegradation as a func-
tion of environmental conditions such as the type of reactive spe-
cies, pH, and oxygen concentration (Hartenbach et al., 2008; Ratti
et al., 2015a; Zhang et al., 2015), makes it difficult to predict reac-
tion mechanisms and isotope effect for new molecules.

The objectives of this study were: 1) to estimate the extent of
direct photolysis and indirect photolysis using OH radicals for

substituted chlorobenzenes in aqueous solutions; 2) to quantify
stable carbon isotope fractionation during photodegradation, 3) to
evaluate the potential to use CSIA to differentiate aqueous photo-
degradation from other environmentally-relevant processes such
as biodegradation; and 4) to propose reaction mechanisms based
on isotopic and kinetics data.

2. Materials and methods

2.1. Chemicals

Hydrogen peroxide (H2O2, 30% w/w), n-pentane, and sodium
chloride (NaCl) were obtained from Merck (Darmstadt, Germany).
The 1,2-, 1,3-, and 1,4-dichlorobenzene (1,2-, 1,3-, and 1,4-DCB), 3-
and 4-nitrochlorobenzene (3- and 4-NCB), and 3- and 4- chloro-
methylbenzene (3- and 4-CMB) isomers were purchased from
Sigma Aldrich. All chemicals were of analytical grade. A solution of
phosphate buffer (10mM, pH¼ 7.3) was made with Na2HPO4 and
NaH2PO4. Ultrapure water (Milli-Q System, Millipore GmbH,
Schwalbach/Ts. Germany) was used to prepare the standards and
pH buffer.

2.2. Photodegradation experiments

All experiments were conducted using a 215-mL Pyrex cylin-
drical reactor vessel with a 28-cm2 quartz window. The double-
layer reactor wall allowed for controlling the reactor temperature
at 20 �C. A 150-W xenon lamp (185e2000 nm, L2175, Hamamatsu,
Japan) was used with a filter to cut-off radiations below 280 nm to
better represent typical wavelengths at the Earth's surface. The
lamp was placed 10-cm away from the reactor. A schematic of the
experimental system is provided in Zhang et al. (2016). Each
experiment was conducted with one of the studied compounds
with initial concentrations ranging from 2� 10�4 to 7� 10�4M,
similar to other studies (Maier et al., 2016; Ratti et al., 2015a) and
sufficiently low for the solutions to be considered as optically dilute
as per OECD Guideline 316 (OECD, 2008) while guaranteeing
proper quantification of parent compounds and potential degra-
dation products, and accurate determination of stable carbon
isotope signatures. Each solution was prepared in a pH¼ 7.3
aqueous phosphate buffer solution. For the indirect photo-
degradation experiments, 0.25mL of 30% H2O2 was added to the
solution at the start of the experiment, resulting in initial H2O2
concentrations of 12.5mM, and contaminant to H2O2 molar ratios
ranging between 1:50 and 1:25, similar to former studies (Daifullah
and Mohamed, 2004; Zhang et al., 2016) and approximately one
order of magnitude higher than for typical UV/H2O2 advanced
oxidation treatment processes (Collins and Bolton, 2016). This
ensured the formation of excess OH radials therefore guaranteeing
that direct photolysis and reactions with OH radicals would
dominate in the reactors. A 200-mL volume of buffered solution
was introduced in the reactor, leaving an initial reactor headspace
of 15mL. The solution was continuously stirred at 500 rpm during
the experiment. Control dark experiments with 0.25mL of 30%
H2O2 were conducted for each compound without light and
covering the reactor with aluminum foil to prevent light penetra-
tion. At each time step, 2 and 3mL samples were collected for
concentration and stable carbon isotope analysis, respectively. At
the end of each experiment, a 10-mL sample was collected for
product identification by gas chromatography mass spectrometry
(GC/MS). The UV absorbance peaks of all studied compounds were
determined using a UV/VIS/NIR Lambda 900 spectrophotometer
(Perkin Elmer Instruments) (Supplemental Information (SI) Fig. S1
and Table S1). Only a portion of 3-NCB and 4-NCB showed signifi-
cant absorbance above 280 nm.
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2.3. Analytical methods

Concentrations. Concentrations of DCB, CMB, and NCB isomers
were measured by gas chromatography coupled to a flame ioniza-
tion detector (GC/FID). Details on temperature programs, sample
preparation, and error estimation are provided in SI Section S2.

Stable carbon isotope analysis. For all compounds, the 3-mL
samples collected for CSIA were extracted with 0.5mL of n-
pentane by shaking on an orbital shaker for 1 h at 200 rpm. The
extracts were immediately transferred to 2-mL vials with inserts
and kept at�20 �C until analysis. Stable carbon isotope values were
determined by gas chromatography e combustion e isotope ratio
mass spectrometry (GC/C/IRMS, GC Isolink, ConFlo IV, and MAT
253), using a ZB-1 column (60m� 0.32mm� 1 mm). The temper-
ature program started at 40 �C, held for 5min, then increased up to
280 �C at 20 �C min�1 and held for 2min. A total error of ±0.5‰
encompassing accuracy and reproducibility was accounted for on
each d13C value (Sherwood Lollar et al., 2007).

Product identification. Photodegradation products were identi-
fied by gas chromatography (GC, 7890A, Agilent, Palo Alto, USA)
mass spectrometry (MS, 5975C, Agilent, Palo Alto, USA). The GC
columnwasaHP-5 (30m� 0.32mm� 0.25 mm,Agilent), and theGC
temperature program started at 40 �C and held for 5min, the tem-
perature was then increased up to 90 �C at 3 �C min�1 and held at
90 �C for 2min, and increased up to 300 �C at 20 �C min�1 and held
for 5min. Samples from the last sampling time of the direct and
indirect photodegradation experiments were analyzed after deriv-
atization. Derivatization was conducted to identify potential
phenolic products as follows: 10mgof NaHCO3wasmixed into 1mL
of aqueous sample, and 5 mL of acetic anhydride (0.05M) was then
added to acetylate phenolic groups. The mixture was shaken for
20min at 150 rpmand0.5mL of dichloromethane (DCM)was added
before shaking again at 500 rpm for 1 h. The DCM extracts were
analyzed by GC/MS. Selected samples, collected before the last
sampling time for concentration measurement of the parent prod-
ucts, were also analyzed by GC/MS without prior derivatization.

2.4. Hammett relationship

A Hammett plot was constructed using the pseudo first-order
rate constants with respect to the aromatic compound (kX) ob-
tained from the indirect photodegradation experiments for each
chlorobenzene with substituent X placed inmeta or para positions,
i.e., X¼Cl for 1,3-DCB and 1,4-DCB, CH3 for the CMB isomers, and
NO2 for NCBs. The rate constants were normalized by the chloro-
benzene indirect photodegradation pseudo first-order rate con-
stant, kH¼ 0.173 h�1, determined under the same experimental
conditions by Zhang et al. (2016). The Hammett equation, log(kX/
kH)¼ r� s, was fitted to the data and parameter r, expressing the
effect of a substituent on the rate constant, was determined
graphically. The Hammett substituent constants, sþ, formeta (sþ

m)
and para (sþ

p) substituents, representing the total polar effect
exerted by a substituent on the reaction center when a positive
charge is delocalized, were obtained from Hansch et al. (1991). Due
to steric hindrance, the Hammett relationship is not applicable to
ortho-substituted compounds such as 1,2-DCB.

2.5. Isotope data analysis

Carbon enrichment factors (εC) were determined from the
Rayleigh equation, Eq. (1), using the linear regression of ln(R/R0) as
a function of ln(f), without forcing through zero, where R and R0 are
the isotopic compositions at any time t> 0 and the initial time t0,
and f is the fraction of remaining compound at time t, calculated
based on the stepwise correctionmethod reported by Buchner et al.

(2017), even though virtually no difference were observed in the
enrichment factors when determined using the ratio of the con-
centrations at times t and t0 for f:

R
R0

¼ ðf ÞεC (1)

The enrichment factors represent carbon isotope effects for the
whole molecule. To characterize the isotope effect at the reactive
position for each substituted chlorobenzene, apparent kinetic
isotope effect values for carbon (AKIEC) were calculated as in Eq. (2)
(Elsner et al., 2005):

1
AKIEC

¼ z$n$εC
x$1000

þ 1 (2)

where, for a given postulated reaction mechanism, n is the number
of carbon atoms in themolecule, x is the number of carbon atoms at
reactive positions, and z is the number of carbon atoms at reactive
positions with equal reactivity. Assuming negligible contribution
from secondary kinetic isotope effects (KIEC), i.e., the reactive po-
sitions are associated with primary isotope effect only, x¼ z.

3. Results

3.1. Control dark experiments

The control dark experiments were conducted for each of the
studied chemicals in presence of H2O2. No significant concentration
decrease was observed other than the expected headspace losses of
<7% due to liquid e gas phase re-equilibration after each sampling
(SI Fig. S2). This suggests that the sole presence of H2O2 does not
induce degradation of the studied chemicals under the experi-
mental conditions used.

3.2. Direct photolysis

In general, direct photolysis through UV light absorption (for
l� 280 nm) did not significantly affect concentrations and isotope
values (±0.5‰) of most studied compoundswith two exceptions (SI
Fig. S3). Direct photolysis of 1,4-DCB did not seem to produce sig-
nificant concentration decrease except during the 4 h and 19 h
sampling times (Fig. S3) during which the light was off. Given that
the subsequent samples showed constant concentrations, and that
the d13C values were within ±0.5‰ for times 0 h, 19 h, and 24 h, this
concentration decrease is not due to direct photolysis. For the direct
photolysis of 4-NCB, the d13C values remained within ±0.5‰ of the
initial value of �32.9‰ for 2 days. However, subsequently, 4-NCB
d13C values became significantly enriched in 13C by up to 2.2‰ af-
ter 4 days, when 34% of the initial concentration had disappeared
(SI Fig. S3 (d) and S4). This is due to the potential of 4-NCB to
partially absorb light at wavelengths higher than the cut-off filter at
280 nm (see SI Fig. S1), with amaximum absorbance at 281 nm, and
a corresponding molar absorption coefficient ε281nm of
3242M�1 cm�1 applying the Beer-Lambert law. The 4-NCB direct
photolysis was associated with a first-order degradation rate con-
stant of 0.0043 ± 0.0003 h�1 (R2¼ 0.97) and an enrichment factor
of �5.1± 0.4‰ (R2¼ 0.96) over the reduction of 34% of the initial
compound (SI Fig. S4 and Table S2).

3.3. Indirect photolysis

Figure 1 presents the kinetics of indirect photodegradation of
the studied compounds reacting with OH radicals. The reactions
followed pseudo first-order kinetics with respect to each
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contaminant, with R2 values greater than 0.94 and pseudo first-
order rate constants (kX) that increased in the order of NCBs
(0.018 and 0.056 h�1), DCBs (0.44e0.66 h�1), and CMBs (1.57 and
3.58 h�1) (see SI Table S2). This is in agreement with previously
reported pseudo first-order rate constants of related compounds at
similar initial concentrations reacting in UV/H2O2 systems, with
similar molar ratio and H2O2 initial concentrations, such as
substituted benzenes (Ghaly et al., 2001; Sundstrom et al., 1989;

Weir et al., 1987), e.g. with values ranging from 0.01 h�1 for nitro-
benzene to 0.50 h�1 for N,N-dimethylaniline (Zhang et al., 2016).
The CMBs degraded at the fastest rates with concentrations
reaching below detection limit levels after 2 h for 3-CMB and 3.5 h
for 4-CMB. The calculated indirect photodegradation half-live
(ln(2)/kX) were 1.0e1.6 h for DCBs, 0.2 h for 3-CMB and 0.4 h for
4-CMB, and 39 and 12 h for 3-NCB and 4-NCB, respectively.

The Hammett plot is shown in Fig. 2. The linear relationship

Fig. 1. Kinetics and Rayleigh plots of the studied substituted chlorobenzenes during indirect photodegradation.
Concentrations (left panels) and stable carbon isotope results (linear form of the Rayleigh plot, right panels) during the reaction of the studied substituted chlorobenzenes with OH
radicals. The pseudo first-order rate constants (kX) and enrichment factors (εC) are presented with 95% confidence interval errors. The error bars on concentrations (2� COV, i.e.
2� coefficient of variation) were 13% (1,2-DCB), 20% (1,3-DCB), 12% (1,4-DCB), 19% (3-CMB), 20% (4-CMB), 6% (3-NCB), and 7% (4-NCB). The error bars on stable isotope d13C values
were ±0.5‰, accounting for both accuracy and reproducibility (Sherwood Lollar et al., 2007). The error bars on the Rayleigh plots were determined from error propagation. Note the
differences in time intervals for the X-axis and concentration range for the Y-axis in the kinetics plots (left panels).
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between log(kX/kH) vs. sþ showed a good fit (R2¼ 0.85), and dis-
played a negative Hammett r value of �2.1, suggesting that the
reaction rate increases with electron-donating groups. This is in
line with the observed lower half-live of CMBs compared to DCBs
and NCBs, and with previous similar studies of the reaction of
substituted benzenes with OH radicals (Mohan et al., 1991).

The Rayleigh equation was applied as described in Eq. (1) to
determine stable carbon isotope enrichment factors. The CMB
isotope enrichment factors were insignificant (<�1.0± 0.1‰),
those for the DCB isomers were�1.75± 0.04 (1,2-DCB),�1.0± 0.1‰
(1,3-DCB), and �1.7± 0.2‰ (1,4-DCB), whereas those for the NCBs
were the highest,�3.9± 0.3‰ (3-NCB) and�4.8± 0.5‰ (4-NCB) (SI
Table S2 and Fig. 1). The εC values of NCBs were consistent with
the �3.9± 0.2‰ value obtained by Zhang et al. (2016) for nitro-
benzene aqueous reaction with OH radicals.

3.4. Transformation products

For each experiment, selected samples were analyzed by GC/MS
to identify remaining degradation products (SI Table S3). The
analysis did not reveal any phenolic products except for the reac-
tion of the two CMB isomers with OH radicals for which 2-chloro-6
(or 5)-methylphenol were detected. These results are not consis-
tent with the reported phenolic products obtained from OH radical
reactions with substituted benzenes. This is likely due to a com-
bination of two factors: first, the samples that underwent deriva-
tization prior to analysis were those from the last sampling points,
when the proportions of remaining parent contaminant and in-
termediate metabolites such as phenolic products were low; sec-
ond, the samples collected at intermediate sampling points were
analyzed without prior derivatization, which would have limited
the potential to detect phenolic compounds.

4. Discussion

4.1. Substituted chlorobenzenes are subject to aqueous
photodegradation

The first finding of this research is that the complete

disappearance of the compounds within 2e48 h e up to ~315 h for
3-NCB, the generation of some phenolic degradation products in
the case of the CMB isomers, and the observed stable carbon
isotope fractionation all demonstrate that substituted chloroben-
zenes are able to react with photo-induced OH radicals in aqueous
solution. The absence of significant amounts of degradation in-
termediates was partly explained by the absence of derivatization
for intermediate samples, but could also show that the degradation
products further degrade as well. The pseudo first-order degrada-
tion rate constants of 2,4-dichlorophenol, a potential product of the
reaction of 1,3-DCB with OH radicals, were found to be 3.1 h�1 in
H2O2/UV processes and 3.0 and 10.4 h�1 during direct photolysis
under similar initial concentration and pH conditions as those used
in this study (Pera-Titus et al., 2004). This is 5e16 times larger than
that of 1,3-DCB at 0.66± 0.02 h�1 measured here, and therefore
suggests that detection of phenolic products would have been
difficult due to their fast degradation in the reactor.

The second finding of this study is that 4-NCB can also degrade
directly via photolysis even in the absence of reactive species such
as OH radicals. However, this process was much slower
(k¼ 0.0043 ± 0.0003 h�1) than the reaction of 4-NCB with OH
radicals (k¼ 0.056± 0.001 h�1) and thereforemight not be relevant
when both processes occur concurrently.

4.2. Insight into reaction mechanisms

4.2.1. Hammett plot
The kinetics results showed a linear relationship between

log(kX/kH) and sþ with a good correlation coefficient (R2¼ 0.85)
(Fig. 2). This suggests that the reaction of substituted chlorinated
benzenes with OH radicals involves one main rate-determining
step. The relatively high magnitude of the proportionality con-
stant, r, with an absolute value greater than 1, shows that the effect
of the substituents on the reaction rate is significant. The fact that
the r value is negative, �2.1, indicates that the reaction rates in-
crease with electron-donating groups (CH3) and decrease with
electron-withdrawing groups (Cl, NO2). This is simply another way
to note that the reaction rates increase in the order of NO2-, Cl-, and
CH3-substituted chlorobenzenes. Mohan et al. (1991) studied OH
radical addition to substituted chlorobenzenes, with eCH3 and
eOCH3 as electron-donating groups, andeCF3,eCHCl2, andeCH2Cl
as electron-withdrawing groups. Using a similar Hammett plot
approach, they also obtained a negative but smaller slope of �0.52.
Other studies reported r values of �0.41 and �0.5 for the reaction
of monosubstituted benzenes with OH radicals (Anbar et al., 1966;
Neta and Dorfman, 1968). A negative value for r suggests that a
positive charge develops at the reaction center in the transition
state of the rate-determining step of the reaction of substituted
chlorinated benzenes with OH radicals. This is a characteristic of
Electrophilic Aromatic Substitution (EAS) reactions. It is well
established that OH radical attack on aromatic compounds pro-
ceeds via a mechanism analogous to EAS (Anbar et al., 1966). For
such reactions, electron-withdrawing groups (e.g., Cl, NO2) increase
the energy barrier for the addition of an electrophile, in this case
the OH radical, to the aromatic ring. This is due to a combination of
transition state destabilization and ground state stabilization, and
results in a decrease in the reaction rate. Electrophilic aromatic
substitution reactions are a two-step process. For the reaction of
substituted chlorobenzenes with OH radicals, the first step is rate
determining and involves the formation of a p complex transition
state followed by the addition of the OH radical and results in the
formation of a sigma complex hydroxycyclohexadienyl radical in-
termediate. The second step consists of the fast elimination of a H
atom from the ring to regain its aromaticity leaving a chlor-
ophenolic product (Smith and Norman, 1963).

Fig. 2. Hammett plot.
Hammett plot presenting the logarithm of the ratio of the pseudo first-order rate
constants for the reaction between OH radicals and the non-substituted chlorobenzene
(kH, chlorobenzene), and the X-substituted chlorobenzenes (kX, X¼Cl, CH3, and NO2).
The Hammett constant, sþ, is the substituent constant obtained from Hansch et al.
(1991).
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The addition of OH radical to the ring and further elimination of
a hydrogen atom to recover the ring's aromaticity have been
observed during the aqueous reaction of chlorotoluene (Mohan
et al., 1991) and nitrochlorobenzene with OH radicals that pro-
duced phenolic intermediate compounds (Guittonneau et al., 1990).
Zhang et al. (2016) also identified phenolic intermediates in the
reaction of substituted benzenes with OH radicals. In the present
study, phenolic products were observed in the early stage (<2 h) of
the reaction of 3- and 4-CMBwith OH radicals, with the production
of 2-chloro-6-methylphenol and 2-chloro-5-methylphenol,
respectively. This confirms that OH addition to the ring is the most
likely rate-determining step in the reaction of the studied
substituted chlorobenzenes with OH radicals.

4.2.2. Isotope effects
To further elucidate reaction mechanisms, AKIEC values were

calculated to characterize the isotope effect of the cleavage of the
chemical bond at the reactive positions. Based on the kinetics re-
sults discussed above, and former results on CMB and NCB
(Guittonneau et al., 1990; Mohan et al., 1991), OH radical aromatic
substitution is expected to be the dominant mechanism for the
indirect photodegradation of the substituted chlorobenzenes.
However, Zhang et al. (2016) showed that the methyl group in
toluene could also undergo H abstraction during reaction with OH
radicals, which could be expected for the CMB isomers. However,
reaction products following attack on the methyl group, such as 3-
and 4-chlorobenzaldehyde and benzyl alcohols, were not observed
in the present study, while chlorophenols were observed for 3- and
4-CMBs. To further evaluate if H abstraction was significant, in the
AKIEC value calculations, two main reaction pathways were hy-
pothesized: OH radical substitution to a H atom attached to one of
the unsubstituted carbon atom of the benzene ring, and H
abstraction from the methyl group in the CMB isomers. In addition,
instead of only considering all unsubstituted carbon atoms from the
benzene ring as potential reactive positions, the values for x and z
in Eq. (2) for the calculation of the AKIEC values were determined by
considering the substituents' ortho-,meta-, or para-directing effect,
and whether they were activating or deactivating substituents on
the benzene ring (see details in SI Section S5). The calculated AKIEC
values are summarized in SI Table S2.

By analogy with the conceptual framework developed for
enzyme-catalyzed reactions, we can represent the reaction of the
X-substituted chlorobenzenes with OH radicals as shown in
Scheme 1, where a hydroxycyclohexadienyl radical intermediate is
formed:

This let us introduce a commitment factor, C, such that C¼ k2/
k�1 in the expression of AKIEC:

AKIEC ¼ KIEC þ C
1þ C

(3)

where KIEC is the intrinsic kinetic isotope effect that depends only
on the irreversible reaction step:

KIEC ¼ kL2
kH2

(4)

Equation (3) assumes that the first reversible step is associated
with negligible isotope effects.

As it is not expected for k�1 to be significant, i.e., the addition of
the OH radical to the aromatic ring is not easily reversible, k2 [

k�1, resulting in large values for C regardless of the substituent and
its position. With large C values e equivalent to a very efficient
enzymatic reaction e the AKIEC values are reduced (masked) and
tend to be closer to unity rather than representing the intrinsic
KIEC.

All AKIEC values showed normal kinetic isotope effects
(AKIEC> 1) (SI Table S2). Under the assumption of OH radical
electrophilic aromatic substitution, the AKIEC values were very
close to unity for the DCB and CMB isomers, and somewhat higher
for 3-NCB (1.024± 0.004) and 4-NCB (1.030± 0.004).

The absolutemagnitude of the enrichment factors and the AKIEC
values for the meta-substituted chlorobenzenes were always lower
than those of their para-substituted counterparts. Given that the
meta-substituted chlorobenzenes reacted faster than their para-
substituted counterparts, Cmeta> Cpara, this resulted in the observed
lower AKIECmeta than AKIECpara and therefore more masking of the
intrinsic KIEC in the meta-substituted chlorobenzenes compared to
their para-substituted counterparts.

Theoretical and experimental KIEC values obtained for CeO
bond formation on alkenes typically range from 0.998 to 1.024 for
chemical oxidations with permanganate and epoxidation reactions
(Elsner et al., 2005; Singleton et al., 1997; Singleton and Wang,
2005). The oxidation on a ring can be expected to be associated
with even larger KIEC values due to the larger energy barrier of the
reaction to break a ring's aromaticity. Indeed, reported experi-
mental AKIEC values for CeO bond formation during ring hydrox-
ylation ranged from 1.005 to 1.026 in biodegradation experiments,
and from 1.029 to 1.051 for abiotic experiments of gas-phase OH
radical addition to various aromatic compounds (SI Table S4). To the
best of our knowledge, the only theoretical KIEC values calculated
for the ring addition of OH radicals are those reported in Zhang
et al. (2016) for OH addition to the para position of various
substituted benzenes, and ranged from 1.0239 to 1.0316. While the
AKIEC values of the two NCB isomers were within these ranges,
those for the CMB and the DCB isomers were lower (1.002e1.011),
possibly due to a masking effect. Given that the reactor was
continuously stirred, the reaction rates were expected to be
diffusion-controlled. Possible explanations proposed for the
masking of the KIEC in substituted benzenes (Zhang et al., 2016)
could apply here as well, such as the formation of the p complex
transition state prior to OH radical addition in Step 1 of Scheme 1,
and pre-equilibrium between the substituted chlorobenzene and
the OH radical prior to the rate-determining step. A recent study
proposed that the creation of a water cage could account for
masking of intrinsic KIE (Kopinke and Georgi, 2017). This cage effect
was explained by the trapping of the OH radical and substrate in the
water shell formed by complex interaction of the hydrophobic so-
lute with the surrounding water molecules. The correlation be-
tween AKIEC values and molecules' hydrophobicity (log(Kow)
values) was used to evaluate this assumption. A good correlation
(r2¼ 0.83) was found for themolecules studied in the present study
(SI Fig. S5). However a poor correlation (r2¼ 0.46) was obtained
when analyzing the dependency of AKIEC of substituted benzenes
using data from Zhang et al. (2016) (SI Fig. S5) suggesting that the
molecular structure of the organic substrate was the main factor
driving fractionation. The relationship between AKIEC values and
substituents' Hammett constants suggests that the electronic

Scheme 1. OH radical ring substitution on X-substituted chlorobenzenes (X¼CH3, Cl,
or NO2).
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structure of the organic molecules was the major factor governing
isotope fractionation for radical reactions in water. More research
may be needed to validate the cage effect as a potential contributor
to KIEC masking in OH radical aqueous reactions.

Under the scenario of OH radical addition to a substituted car-
bon atom, involving the breaking of a CeCl, CeN, or CeC bond, the
same values for AKIEC as those for OH radical addition to an
unsubstituted carbon atomwere obtained (SI Section S5). However,
these AKIEC values were significantly lower than the theoretical
KIEC Streitwieser limits for these cleavages, i.e. 1.057 for CeCl, 1.060
for CeN, and 1.049 for CeC (Elsner et al., 2005), which were ob-
tained under the assumption that the bond is broken during the
transition state. When considering a more realistic assumption, e.g.
that the bond is 50% broken, half these limits can be considered.
Even in this case, the theoretical KIEC values are still higher than the
calculated AKIEC values, except for CeN cleavage in the NCB iso-
mers, confirming that the breaking of a CeX bond in the rate-
determining step is unlikely.

Finally, AKIEC values of 1.002 and 1.007 for 3- and 4-CMB,
respectively, were obtained when assuming H abstraction on the
CH3 group of the CMB isomers. These were lower than theoretical
KIEC values of 1.020 expected for CeH bond cleavage (Elsner et al.,
2005), suggesting that OH radical addition to an unsubstituted
carbon atom likely played a more dominant role than H abstraction
in the reaction of the CMB isomers with OH radicals. This is in line
with the higher contribution of OH addition relative to H abstrac-
tion observed for toluene (Zhang et al., 2016). It is also confirmed by
the detection of phenol intermediates in the indirect photo-
degradation experiments with CMB isomers, which supports a
preferential attack of the OH radicals to the ring rather than the
methyl group. Finally, this is also the main reaction mechanism
proposed for the reaction of chlorotoluene isomers with OH radi-
cals in distilled water (Mohan et al., 1991).

The εC and AKIEC values increased with increasing Hammett
substituent constants sþ (Fig. 3). The most electron-withdrawing
substituents led to the highest carbon isotope fractionation. This
suggests that the transition state might be more symmetrical for
the reaction of OH radicals with the NCB and DCB isomers than for
the CMBs. More data are needed to propose a quantitative

relationship between isotope fractionation and substituent con-
stants, and to provide a mechanistic interpretation for such a
relationship. The influence of the electronic properties of aromatic
substituents on isotope effects was observed for nitrogen isotope
fractionation during the oxidation of substituted anilines (Ratti
et al., 2015a; Skarpeli-Liati et al., 2011; Skarpeli-Liati et al., 2012)
while no substituent effect was observed for the abiotic reduction
of nitroaromatic compounds (Hofstetter et al., 2008a).

Based on these kinetics and isotope results, the proposed
dominant reaction pathway for the studied compounds involves
the initial formation of a CeO bond at one of the unsubstituted
carbon atoms on the benzene ring during the rate-determining
step, followed by the release of a H atom (Scheme 1).

4.3. Potential to use CSIA to distinguish between aqueous
photodegradation and other processes

The negligible isotope fractionation observed for the CMB iso-
mers prevents stable carbon isotope analysis to be used as an
identification tool for CMB aqueous photodegradation. Conversely,
the NCBs, and to a lower extent the DCBs, showed quantifiable
carbon isotope fractionation during their reactionwith OH radicals.
While transformation reactions may produce significant isotope
fractionation, typically, negligible carbon isotope fractionation is
associated with transfer mechanisms such as equilibrium adsorp-
tion (Harrington et al., 1999; Passeport et al., 2014), diffusion
(Passeport et al., 2014; Xu et al., 2016), and volatilization
(Harrington et al., 1999), at least at scales relevant to most field
sampling strategies (Xu et al., 2016, 2017). Table S5 in SI summa-
rizes published carbon isotope enrichment factors for various
transformation processes of substituted chlorobenzenes that could
occur concurrently with indirect photodegradation, e.g., microbial
degradation under aerobic and anaerobic conditions, abiotic pro-
cesses, and direct photodegradation. Because significant gaps still
exist in the assessment of carbon isotope enrichment factors for
these compounds, those of related compounds were reported as
well.

During anaerobic microbial degradation, 1,3-DCB and 1,4-DCB
produce significant isotope fractionation with εC values
of �5.4± 0.4 and �6.3± 0.2‰, respectively, while 1,2-DCB is asso-
ciated with a low enrichment factor of �0.8± 0.1‰ (Liang et al.,
2014). While the large εC values of 1,3- and 1,4-DCB would pre-
vent the use of stable carbon isotope analysis to distinguish be-
tween anaerobic biodegradation and reaction with OH radicals,
situations where both processes occur simultaneously are rare.
Indeed, indirect aqueous photodegradation is only relevant in
surface waters, where oxygenated conditions dominate. In aquatic
surface environments such as rivers, wetlands, and oceans, the
concentrations in oxygen (Tao et al., 2006) and OH radicals (Zhou
and Mopper, 1990) decrease with depth, and anaerobic zones are
usually limited to the sediment phase or water depths at which
reactions with OH radicals are not expected. No carbon isotope
enrichment factors have been reported for the aerobic biodegra-
dation of DCB isomers; however, negligible carbon isotope frac-
tionation (<�0.4± 0.1‰) was observed for chlorobenzene (Kaschl
et al., 2005) and 1,2,4-trichlorobenzene (Griebler et al., 2004;
Liang et al., 2011), suggesting that DCBs might also be associated
with small εC values during aerobic biodegradation. There is
therefore potential to use CSIA to identify indirect aqueous pho-
todegradation of the DCB isomers.

For NCBs, the only other published εC value, �0.65‰, is that
associated with the abiotic reduction of 4-NCB in suspensions of
Fe(II)/goethite (Hartenbach et al., 2006). No information on stable
carbon isotope fractionation exists for the aerobic or anaerobic
biodegradation of NCB isomers. However, nitrobenzene was

Fig. 3. Relationship between AKIEC values and substituents' Hammett constants.
Correlation between AKIEC values and Hammett substituent constants for the reaction
between OH radicals and the X-substituted chlorobenzenes (kX, X¼Cl, CH3, and NO2).
The Hammett constant, sþ, is the substituent constant obtained from Hansch et al.
(1991); CMB is chloromethylbenzene, DCB is dichlorobenzene, and NCB is
nitrochlorobenzene.
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studied under aerobic conditions, and exhibited εC values
of �0.57± 0.06‰ during aerobic partial reduction by Pseudomonas
pseudoalcaligenes strain JS45 (Hofstetter et al., 2008b), and
between �3.5± 0.2 and �3.9± 0.2‰ for nitrobenzene aerobic
oxidation with various bacteria strains, cell extracts, and enzymes
(Hofstetter et al., 2008b; Pati et al., 2014). Smaller εC values were
obtained for the aerobic oxidation of 2-, 3-, 4-, and 2,6-di- nitro-
toluene, ranging from �0.4± 0.2 and �1.4± 0.4‰ (Pati et al., 2014,
2016). Altogether, these results suggest that the aerobic biodegra-
dation of NCB isomers could produce stable carbon isotope frac-
tionation within a similar range as that reported here for their
reaction with OH radicals. These effects should be evaluated in
future studies before CSIA can be used as a diagnostic tool for NCB
fate in surface water environments.

5. Conclusions

� Results from (i) the Hammett relationship, (ii) the stable carbon
isotope analysis, (iii) degradation product analysis, and (iv)
former literature studies provided multiple lines of evidence
that the reaction of OH radicals with substituted chlorobenzenes
proceeds primarily via OH aromatic substitution, involving first
the rate-determining CeO bond formation, followed by H
release.

� The substituents on the chlorobenzene structure affected both
reactivity and stable carbon isotope fractionation.

� While the carbon isotope enrichment factors obtained in this
study were small, they will likely be sufficient to identify indi-
rect photodegradation of the NCB and potentially the DCB iso-
mers provided that at least 40% of the NCBs and 70e87% of the
DCBs degrade via reaction with OH radicals.

� In order to conclusively assess the diagnostic capabilities of CSIA
for substituted chlorobenzenes, further research should be
conducted with more complex water matrices.

Acknowledgements

This research has been financially supported by the European
Union under the 7th Framework Program (project acronym
CSI:ENVIRONMENT, contract number PITN-GA-2010-264329), and
a Collaborative Research and Development grant from the Natural
Sciences and Engineering Research Council of Canada (#497236).

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.watres.2018.02.008.

References

Anbar, M., Meyerstein, D., Neta, P., 1966. The reactivity of aromatic compounds
toward hydroxyl radicals. J. Phys. Chem. 70 (8), 2660e2662.

Bester, K., Gatermann, R., Huhnerfuss, H., Lange, W., Theobald, N., 1998. Results of
non target screening of lipophilic organic pollutants in the German Bight. IV:
identification and quantification of chloronitrobenzenes and dichloroni-
trobenzenes. Environ. Pollut. 102 (2e3), 163e169.

Boreen, A.L., Arnold, W.A., McNeill, K., 2003. Photodegradation of pharmaceuticals
in the aquatic environment: a review. Aquat. Sci. 65 (4), 320e341.

Buchner, D., Jin, B., Ebert, K., Rolle, M., Elsner, M., Haderlein, S.B., 2017. Experimental
determination of isotope enrichment factors - bias from mass removal by re-
petitive sampling. Environ. Sci. Technol. 51 (3), 1527e1536.

Calamari, D., Galassi, S., Setti, F., Vighi, M., 1983. Toxicity of selected chlorobenzenes
to aquatic organisms. Chemosphere 12 (2), 253e262.

Collins, J., Bolton, J.R., 2016. Advanced Oxidation Handbook. American Water Works
Association, Denver, CO, USA.

Daifullah, A.H.A., Mohamed, M.M., 2004. Degradation of benzene, toluene ethyl-
benzene and p-xylene (BTEX) in aqueous solutions using UV/H2O2 system.
J. Chem. Technol. Biotechnol. 79 (5), 468e474.

Dempster, H.S., Sherwood Lollar, B., Feenstra, S., 1997. Tracing organic contaminants

in groundwater: a new methodology using compound-specific isotopic anal-
ysis. Environ. Sci. Technol. 31 (11), 3193e3197.

Elsayed, O.F., Maillard, E., Vuilleumier, S., Nijenhuis, I., Richnow, H.H., Imfeld, G.,
2014. Using compound-specific isotope analysis to assess the degradation of
chloroacetanilide herbicides in lab-scale wetlands. Chemosphere 99, 89e95.

Elsner, M., Zwank, L., Hunkeler, D., Schwarzenbach, R.P., 2005. A new concept
linking observable stable isotope fractionation to transformation pathways of
organic pollutants. Environ. Sci. Technol. 39 (18), 6896e6916.

European Commission, 1982, 14 July 1982. Official Journal of the European Com-
munities C176, Communication from the Commission to the Council on
Dangerous Substances Which Might be Included in List I of Council Directive
76/464/EEC, vol. 25, p. 14.

Ghaly, M.Y., Hartel, G., Mayer, R., Haseneder, R., 2001. Photochemical oxidation of p-
chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study.
Waste Manag. 21 (1), 41e47.

Giebel, B.M., Swart, P.K., Riemer, D.D., 2010. Delta 13-C table isotope analysis of
atmospheric oxygenated volatile organic compounds by gas chromatography-
isotope ratio mass spectrometry. Anal. Chem. 82 (16), 6797e6806.

Griebler, C., Safinowski, M., Vieth, A., Richnow, H.H., Meckenstock, R.U., 2004.
Combined application of stable carbon isotope analysis and specific metabolites
determination for assessing in situ degradation of aromatic hydrocarbons in a
tar oil-contaminated aquifer. Environ. Sci. Technol. 38 (2), 617e631.

Guittonneau, S., De Laat, J., Guguet, J.-P., Bonnel, C., Dore, M., 1990. Oxidation of
parachloronitrobenzene in dilute aqueous solution by O3 UV and H2O2 UV: a
Comparative Study. Ozone: Sci. Eng. 12 (1), 73e94.

Hansch, C., Leo, A., Taft, R.W., 1991. A survey of Hammett substituent constants and
resonance and field parameters. Chem. Rev. 91 (2), 165e195.

Harrington, R.R., Poulson, S.R., Drever, J.I., Colberg, P.J.S., Kelly, E.F., 1999. Carbon
isotope systematics of monoaromatic hydrocarbons: vaporization and adsorp-
tion experiments. Org. Geochem. 30 (8A), 765e775.

Hartenbach, A., Hofstetter, T.B., Berg, M., Bolotin, J., Schwarzenbach, R.P., 2006.
Using nitrogen isotope fractionation to assess abiotic reduction of nitroaromatic
compounds. Environ. Sci. Technol. 40 (24), 7710e7716.

Hartenbach, A.E., Hofstetter, T.B., Tentscher, P.R., Canonica, S., Berg, M.,
Schwarzenbach, R.P., 2008. Carbon, hydrogen, and nitrogen isotope fraction-
ation during light-induced transformations of atrazine. Environ. Sci. Technol. 42
(21), 7751e7756.

Hofstetter, T.B., Neumann, A., Arnold, W.A., Hartenbach, A.E., Bolotin, J., Cramer, C.J.,
Schwarzenbach, R.P., 2008a. Substituent effects on nitrogen isotope fraction-
ation during abiotic reduction of nitroaromatic compounds. Environ. Sci.
Technol. 42 (6), 1997e2003.

Hofstetter, T.B., Spain, J.C., Nishino, S.F., Bolotin, J., Schwarzenbach, R.P., 2008b.
Identifying competing aerobic nitrobenzene biodegradation pathways by
compound-specific isotope analysis. Environ. Sci. Technol. 42 (13), 4764e4770.

Hunkeler, D., Aravena, R., 2000. Determination of compound-specific carbon
isotope ratios of chlorinated methanes, ethanes, and ethenes in aqueous sam-
ples. Environ. Sci. Technol. 34 (13).

Hunkeler, D., Meckenstock, R.U., Sherwood Lollar, B., Schmidt, T.C., Wilson, J.T.,
2008. A Guide for Assessing Biodegradation and Source Identification of
Organic Ground Water Contaminants Using Compound Specific Isotope Anal-
ysis (CSIA). United States Environmental Protection Agency, Ada, OK, p. 67.

Kaschl, A., Vogt, C., Uhlig, S., Nijenhuis, I., Weiss, H., Kastner, M., Richnow, H.H.,
2005. Isotopic fractionation indicates anaerobic monochlorobenzene biodeg-
radation. Environ. Toxicol. Chem. 24 (6), 1315e1324.

Kopinke, F.D., Georgi, A., 2017. What controls selectivity of hydroxyl radicals in
aqueous solution? Indications for a cage effect. J. Phys. Chem. 121 (41),
7947e7955.

Lekkas, T., Kolokythas, G., Nikolaou, A., Kostopoulou, M., Kotrikla, A., Gatidou, G.,
Thomaidis, N.S., Golfinopoulos, S., Makri, C., Babos, D., Vagi, M., Stasinakis, A.,
Petsas, A., Lekkas, D.F., 2004. Evaluation of the pollution of the surface waters of
Greece from the priority compounds of List II, 76/464/EEC Directive, and other
toxic compounds. Environ. Int. 30 (8), 995e1007.

Liang, X., Howlett, M.R., Nelson, J.L., Grant, G., Dworatzek, S., Lacrampe-
Couloume, G., Zinder, S.H., Edwards, E.A., Sherwood Lollar, B., 2011. Pathway-
dependent isotope fractionation during aerobic and anaerobic degradation of
monochlorobenzene and 1,2,4-trichlorobenzene. Environ. Sci. Technol. 45 (19),
8321e8327.

Liang, X., Mundle, S.O.C., Nelson, J.L., Passeport, E., Chan, C.C.H., Lacrampe-
Couloume, G., Zinder, S.H., Sherwood Lollar, B., 2014. Distinct carbon isotope
fractionation during anaerobic degradation of dichlorobenzene isomers. Envi-
ron. Sci. Technol. 48 (9), 4844e4851.

Maier, M.P., Prasse, C., Pati, S.G., Nitsche, S., Li, Z., Radke, M., Meyer, A.,
Hofstetter, T.B., Ternes, T.A., Elsner, M., 2016. Exploring trends of C and N isotope
fractionation to trace transformation reactions of diclofenac in natural and
engineered systems. Environ. Sci. Technol. 50 (20), 10933e10942.

Mohan, H., Mudaliar, M., Aravindakumar, C.T., Rao, B.S.M., Mittal, J.P., 1991. Studies
on structure reactivity in the reaction of OH radicals with substituted hal-
obenzenes in aqueous solutions. J. Chem. Soc. Perkin Trans. 2 (9), 1387e1392.

Neta, P., Dorfman, L.M., 1968. Pulse Radiolysis Studies. XIII. Rate constants for the
reaction of hydroxyl radicals with aromatic compounds in aqueous solutions.
Adv. Chem. 81, 222e230.

OECD, 2005. p-chlorotoluene CAS N�: 106-43-4 Screening Information DataSheet -
Initial Assessment Report for SIAM 20. UNEP Publication, p. 154.

OECD, 2008. Organisation for Economic Co-operation and Development (OECD).
Test Guideline 316, Phototransformation of Chemicals in Water - Direct

E. Passeport et al. / Water Research 135 (2018) 95e103102

140

https://doi.org/10.1016/j.watres.2018.02.008
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref1
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref1
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref1
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref2
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref2
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref2
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref2
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref2
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref2
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref3
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref3
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref3
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref4
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref4
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref4
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref4
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref5
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref5
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref5
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref6
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref6
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref7
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref7
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref7
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref7
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref8
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref8
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref8
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref8
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref9
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref9
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref9
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref9
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref10
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref10
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref10
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref10
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref11
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref11
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref11
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref11
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref12
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref12
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref12
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref12
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref13
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref13
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref13
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref13
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref14
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref14
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref14
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref14
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref14
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref15
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref15
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref15
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref15
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref16
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref16
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref16
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref17
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref17
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref17
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref17
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref18
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref18
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref18
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref18
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref19
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref19
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref19
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref19
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref19
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref20
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref20
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref20
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref20
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref20
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref21
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref21
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref21
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref21
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref22
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref22
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref22
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref23
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref23
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref23
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref23
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref24
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref24
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref24
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref24
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref25
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref25
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref25
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref25
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref26
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref26
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref26
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref26
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref26
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref26
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref27
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref27
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref27
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref27
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref27
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref27
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref28
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref28
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref28
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref28
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref28
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref29
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref29
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref29
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref29
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref29
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref30
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref30
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref30
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref30
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref31
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref31
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref31
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref31
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref32
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref32
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref32
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref33
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref33


Photolysis, p. 53.
Passeport, E., Landis, R., Lacrampe-Couloume, G., Lutz, E.J., Mack, E.E., West, K.,

Morgan, S., Lollar, B.S., 2016. Sediment monitored natural recovery evidenced
by compound specific isotope analysis and high-resolution pore water sam-
pling. Environ. Sci. Technol. 50 (22), 12197e12204.

Passeport, E., Landis, R., Mundle, S.O., Chu, K., Mack, E.E., Lutz, E., Sherwood
Lollar, B., 2014. Diffusion sampler for compound specific carbon isotope analysis
of dissolved hydrocarbon contaminants. Environ. Sci. Technol. 48 (16),
9582e9590.

Pati, S.G., Kohler, H.P.E., Bolotin, J., Parales, R.E., Hofstetter, T.B., 2014. Isotope effects
of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitroben-
zene dioxygenase. Environ. Sci. Technol. 48 (18), 10750e10759.

Pati, S.G., Kohler, H.P.E., Pabis, A., Paneth, P., Parales, R.E., Hofstetter, T.B., 2016.
Substrate and enzyme specificity of the kinetic isotope effects associated with
the dioxygenation of nitroaromatic contaminants. Environ. Sci. Technol. 50 (13),
6708e6716.

Pera-Titus, M., Garcia-Molina, V., Banos, M.A., Gimenez, J., Esplugas, S., 2004.
Degradation of chlorophenols by means of advanced oxidation processes: a
general review. Appl. Catal. B Environ. 47 (4), 219e256.

Ratti, M., Canonica, S., McNeill, K., Bolotin, J., Hofstetter, T.B., 2015a. Isotope frac-
tionation associated with the indirect photolysis of substituted anilines in
aqueous solution. Environ. Sci. Technol. 49 (21), 12766e12773.

Ratti, M., Canonica, S., McNeill, K., Bolotin, J., Hofstetter, T.B., 2015b. Isotope frac-
tionation associated with the photochemical dechlorination of chloroanilines.
Environ. Sci. Technol. 49 (16), 9797e9806.

Ratti, M., Canonica, S., McNeill, K., Erickson, P.R., Bolotin, J., Hofstetter, T.B., 2015c.
Isotope fractionation associated with the direct photolysis of 4-chloroaniline.
Environ. Sci. Technol. 49 (7), 4263e4273.

Rosenfelder, N., Bendig, P., Vetter, W., 2011. Stable carbon isotope analysis (delta C-
13 values) of polybrominated diphenyl ethers and their UV-transformation
products. Environ. Pollut. 159 (10), 2706e2712.

Schreglmann, K., Hoeche, M., Steinbeiss, S., Reinnicke, S., Elsner, M., 2013. Carbon
and nitrogen isotope analysis of atrazine and desethylatrazine at sub-
microgram per liter concentrations in groundwater. Anal. Bioanal. Chem. 405
(9), 2857e2867.

Schwarzbauer, J., Ricking, M., 2010. Non-target screening analysis of river water as
compound-related base for monitoring measures. Environ. Sci. Pollut. Control
Ser. 17 (4), 934e947.

Sherwood Lollar, B., Hirschorn, S.K., Chartrand, M.M.G., Lacrampe-Couloume, G.,
2007. An approach for assessing total instrumental uncertainty in compound-
specific carbon isotope analysis: implications for environmental remediation
studies. Anal. Chem. 79 (9), 3469e3475.

Shimizu, M., Yasui, Y., Matsumoto, N., 1983. Structural specificity of aromatic
compounds with special reference to mutagenic activity in Salmonella typhi-
murium: a series of chloro- or fluoro-nitrobenzene derivatives. Mutat. Res. 116
(3e4), 217e238.

Singleton, D.A., Merrigan, S.R., Liu, J., Houk, K.N., 1997. Experimental geometry of
the epoxidation transition state. J. Am. Chem. Soc. 119 (14), 3385e3386.

Singleton, D.A., Wang, Z.H., 2005. Isotope effects and the nature of enantiose-
lectivity in the shi epoxidation. The importance of asynchronicity. J. Am. Chem.
Soc. 127 (18), 6679e6685.

Skarpeli-Liati, M., Jiskra, M., Turgeon, A., Garr, A.N., Arnold, W.A., Cramer, C.J.,
Schwarzenbach, R.P., Hofstetter, T.B., 2011. Using nitrogen isotope fractionation
to assess the oxidation of substituted anilines by manganese oxide. Environ. Sci.
Technol. 45 (13), 5596e5604.

Skarpeli-Liati, M., Pati, S., Bolotin, J., Hofstetter, T.B., 2012. Carbon, hydrogen, and
nitrogen isotope fractionation associated with oxidative transformation of

substituted aromatic N-alkyl amines. Environ. Sci. Technol. 46 (13), 7189e7198.
Smith, J.R.L., Norman, R.O.C., 1963. Hydroxylation. Part I. The oxidation of benzene

and toluene by Fenton's reagent. J. Chem. Soc. 2897e2905.
Sundstrom, D.W., Weir, B.A., Klei, H.E., 1989. Destruction of aromatic pollutants by

UV light catalyzed oxidation with hydrogen peroxide. Environ. Prog. 8 (1), 6e11.
Tao, W.D., Hall, K.J., Duff, S.J.B., 2006. Performance evaluation and effects of hy-

draulic retention time and mass loading rate on treatment of woodwaste
leachate in surface-flow constructed wetlands. Ecol. Eng. 26 (3), 252e265.

Trova, C., Cossa, G., Gandolfo, G., 1991. Behavior and fate of chloronitrobenzene in a
fluvial environment. Bull. Environ. Contam. Toxicol. 47 (4), 580e585.

USEPA, 1979. United States Environmental Protection Agency, List of Priority Pol-
lutants, 40 Code of Federal Regulations Part 423, Appendix a, p. 1.

Vaughan, P.P., Blough, N.V., 1998. Photochemical formation of hydroxyl radical by
constituents of natural waters. Environ. Sci. Technol. 32 (19), 2947e2953.

Weir, B.A., Sundstrom, D.W., Klei, H.E., 1987. Destruction of benzene by ultraviolet
light-catalyzed oxidation with hydrogen peroxide. HazardWaste Hazard. Mater.
4 (2), 165e176.

Weisburger, E.K., Russfield, A.B., Homburger, F., Weisburger, J.H., Boger, E.,
Vandongen, C.G., Chu, K.C., 1978. Testing of twenty-one environmental aromatic
amines or derivatives for long-term toxicity or carcinogenicity. J. Environ.
Pathol. Toxicol. 2 (2), 325e356.

Wols, B.A., Hofman-Caris, C.H.M., 2012. Review of photochemical reaction constants
of organic micropollutants required for UV advanced oxidation processes in
water. Water Res. 46 (9), 2815e2827.

Wu, L.P., Chladkova, B., Lechtenfeld, O.J., Lian, S.J., Schindelka, J., Herrmann, H.,
Richnow, H.H., 2018. Characterizing chemical transformation of organophos-
phorus compounds by C-13 and H-2 stable isotope analysis. Sci. Total Environ.
615, 20e28.

Wu, L.P., Yao, J., Trebse, P., Zhang, N., Richnow, H.H., 2014. Compound specific
isotope analysis of organophosphorus pesticides. Chemosphere 111, 458e463.

Xu, B.S., Sherwood Lollar, B., Passeport, E., Sleep, B.E., 2016. Diffusion related iso-
topic fractionation effects with one-dimensional advective-dispersive trans-
port. Sci. Total Environ. 550, 200e208.

Xu, S., Sherwood Lollar, B., Sleep, B.E., 2017. Rethinking aqueous phase diffusion
related isotope fractionation: contrasting theoretical effects with observations
at the field scale. Sci. Total Environ. 607e608, 1085e1095.

Zafiriou, O.C., 1974. Sources and reactions of OH and daughter radicals in seawater.
J. Geophys. Res. 79 (30), 4491e4497.

Zhang, N., Bashir, S., Qin, J., Schindelka, J., Fischer, A., Nijenhuis, I., Herrmann, H.,
Wick, L.Y., Richnow, H.H., 2014. Compound specific stable isotope analysis
(CSIA) to characterize transformation mechanisms of alpha-hexa-
chlorocyclohexane. J. Hazard Mater. 280, 750e757.

Zhang, N., Geronimo, I., Paneth, P., Schindelka, J., Schaefer, T., Herrmann, H., Vogt, C.,
Richnow, H.H., 2016. Analyzing sites of OH radical attack (ring vs. side chain) in
oxidation of substituted benzenes via dual stable isotope analysis (delta C-13
and delta H-2). Sci. Total Environ. 542, 484e494.

Zhang, N., Schindelka, J., Herrmann, H., George, C., Rosell, M., Herrero-Martin, S.,
Klan, P., Richnow, H.H., 2015. Investigation of humic substance photosensitized
reactions via carbon and hydrogen isotope fractionation. Environ. Sci. Technol.
49 (1), 233e242.

Zhou, X.L., Mopper, K., 1990. Determination of photochemically produced hydroxyl
radicals in seawater and fresh water. Mar. Chem. 30 (1e3), 71e88.

Zwank, L., Berg, M., Elsner, M., Schmidt, T.C., Schwarzenbach, R.P., Haderlein, S.B.,
2005. New evaluation scheme for two-dimensional isotope analysis to decipher
biodegradation processes: application to groundwater contamination by MTBE.
Environ. Sci. Technol. 39 (4).

E. Passeport et al. / Water Research 135 (2018) 95e103 103

141

http://refhub.elsevier.com/S0043-1354(18)30107-6/sref33
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref34
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref34
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref34
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref34
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref34
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref35
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref35
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref35
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref35
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref35
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref36
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref36
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref36
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref36
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref37
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref37
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref37
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref37
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref37
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref38
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref38
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref38
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref38
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref39
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref39
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref39
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref39
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref40
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref40
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref40
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref40
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref41
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref41
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref41
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref41
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref42
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref42
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref42
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref42
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref43
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref43
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref43
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref43
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref43
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref44
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref44
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref44
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref44
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref45
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref45
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref45
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref45
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref45
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref46
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref46
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref46
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref46
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref46
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref46
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref47
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref47
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref47
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref48
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref48
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref48
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref48
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref49
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref49
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref49
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref49
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref49
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref50
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref50
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref50
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref50
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref51
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref51
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref51
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref52
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref52
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref52
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref53
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref53
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref53
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref53
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref54
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref54
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref54
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref55
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref55
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref56
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref56
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref56
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref57
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref57
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref57
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref57
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref58
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref58
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref58
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref58
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref58
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref59
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref59
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref59
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref59
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref60
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref60
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref60
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref60
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref60
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref61
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref61
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref61
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref62
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref62
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref62
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref62
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref63
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref63
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref63
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref63
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref63
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref64
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref64
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref64
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref65
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref65
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref65
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref65
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref65
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref66
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref66
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref66
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref66
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref66
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref67
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref67
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref67
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref67
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref67
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref68
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref68
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref68
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref68
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref69
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref69
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref69
http://refhub.elsevier.com/S0043-1354(18)30107-6/sref69


S1 

 

Supplemental Information 

 

Aqueous photodegradation of substituted chlorobenzenes: Kinetics, carbon isotope fractionation, 
and reaction mechanisms 

 

Elodie Passeport*
1,†‡

, Ning Zhang
2, §

, Langping Wu
2
, Hartmut Herrmann

3
, Barbara Sherwood Lollar

1
, 

Hans-Hermann Richnow
2
 

1
 Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada 

Present addresses: 
†Department of Civil Engineering, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, 
Canada 
‡Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, 

Toronto, ON M5S 3E5, Canada
 

2
 Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, 

Permoserstrasse 15, 04318 Leipzig, Germany 
Present address: 
§ Department of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 

250353, China 
3
 TROPOS Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department (ACD), 

Permoserstrasse 15, 04318 Leipzig, Germany 
 
* Corresponding author 
Address: 35 St George Street, Room GB319F, M5S 1A4 Toronto ON Canada 
Phone number: 001 416 978 5747 
Fax number: 001 416 978 6813 
Email address: elodie.passeport@utoronto.ca 
 

 

Content 

Section S1. UV molar attenuation coefficients for all studied compounds as a function of the wavelength 

Section S2. Analytical methods 

Section S3. Control dark experiments 

Section S4. Direct photolysis experiments 

Section S5. Summary of kinetics and isotope experimental results 

Section S6. Degradation products detected 

Section S7. Experimental carbon isotope results for reactions involving a C–O bond formation  

Section S8. Literature review on εC for various processes affecting the studied compounds and related 
ones in surface water environments 

  

142

mailto:elodie.passeport@utoronto.ca


S2 

 

Section S1. UV molar attenuation coefficients for all studied compounds as a function of the 
wavelength 

Figure S1: UV molar attenuation coefficients versus wavelength 

 

Figure S1. Molar attenuation coefficient (mol
−1

 L cm
−1

) for 1,2-dichlorobenzene (1,2-DCB), 1,3-
dichlorobenzene (1,3-DCB), 1,4-dichlorobenzene (1,4-DCB), 3-chloromethylbenzene (3-CMB), 4-
chloromethylbenzene (4-CMB), 3-nitrochlorobenzene (3-NCB), and 4-nitrochlorobenzene (4-NCB) in 
phosphate buffer (10 mM, pH = 7.3). The vertical dashed line at 280 nm indicates that wavelengths below 
280 nm were filtered out of the lamp and did not reach the reactor. 

 

Table S1: Wavelengths at maximum absorbance. 

Compound Maximum absorbance 
wavelength (nm) 

1,2-DCB 215 
1,3-DCB 216 
1,4-DCB 224 
3-CMB 213 
4-CMB 220 
3-NCB 265 
4-NCB 281 

 

Section S2. Analytical methods 

Concentration determination. Concentrations of DCB and CMB isomers were measured from headspace 
injections (250 µL) by gas chromatography coupled to a flame ionization detector (GC/FID) (Agilent, 
G1530A), using a HP-5 column (30 m × 0.32 mm × 0.25 µm) and helium as the carrier gas. For each of 
the DCB and CMB samples, 0.6 g of NaCl was added into a 10-mL vial before the addition of the 2 mL 
sample, to enhance partitioning to the gas phase. The temperature program started at 55 °C and held for 
1 min, increased up to 90 °C at 10 °C min

−1
, then up to 130 °C at 6 °C min

−1
, and finally up to 220 °C at 

30 °C min
−1

.  
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Concentrations of NCBs were determined from liquid injections (1 µL) of extracts on an Agilent 7820A 
GC/FID using a HP-5 column (30 m × 0.32 mm × 0.25 µm) and helium as a carrier flow. Liquid-liquid 
extractions of 2-mL samples were conducted with 0.5 mL of n-pentane containing chlorobenzene (CB) as 
an internal standard (1-h shaking at 215 rpm). The extract was then immediately collected and placed in 
small vials at −20 °C until analysis. The temperature program started at 40 °C held for 8 min, then 
increased to 140 °C at 5 °C min

−1
 and held for 2 min, increased up to 250 °C at 45 °C min

−1
 and held 2 

min.  

Estimation of error on concentrations. The DCB and CMB concentrations were determined using a 
calibration curve made with external standards at 4 to 6 concentration levels. For each concentration 
level, the coefficient of variation (COV) of the peak area was calculated from at least three replicate 
injections. The error on sample concentration was determined as twice the highest value of the COV for a 
95% confidence interval: 13% (1,2-DCB), 20% (1,3-DCB), 12% (1,4-DCB), 19% (3-CMB), and 20% (4-
CMB). For NCBs, test aqueous solutions of 3-NCB and 4-NCB at known concentrations were prepared 
and extracted with the CB-spiked n-pentane similarly as done with the samples. The 3-NCB/CB and 4-
NCB/CB ratios were calculated for each test solution, and were 1.76 ± 0.05 (3-NCB/CB) and 1.23 ± 0.04 
(4-NCB/CB), corresponding to 2×COV of 6% (3-NCB) and 7% (4-NCB). These values for 2×COV were 
used as the errors on concentrations for 3-NCB and 4-NCB in the samples. 

Section S3. Control dark experiments 

Figure S2: Concentrations of substituted chlorobenzenes during the control dark experiments 

 
 
 

 
Figure S2. Concentrations of (a) 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), and 
1,4-dichlorobenzene (1,4-DCB); (b) 3-chloromethylbenzene (3-CMB) and 4-chloromethylbenzene (4-
CMB); and (c) 3-nitrochlorobenzene (3-NCB) and 4-nitrochlorobenzene (4-NCB) during the dark 
experiments in presence of H2O2. In each graph, the lines correspond to the theoretical concentration 
changes due to liquid – gas re-equilibration calculated after each sample taken. The error bars on 
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concentrations (2×COV, i.e. 2×coefficient of variation) were 13% (1,2-DCB), 20% (1,3-DCB), 12% (1,4-
DCB), 19% (3-CMB), 20% (4-CMB), 6% (3-NCB), and 7% (4-NCB). 

Section S4. Direct photolysis experiments 

Figure S3: Kinetics results for the direct photolysis of the studied compounds 

  

  
Figure S3. Concentrations of (a) 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), and 
1,4-dichlorobenzene (1,4-DCB); (b) 3-chloromethylbenzene (3-CMB) and 4-chloromethylbenzene (4-
CMB); (c) 3-nitrochlorobenzene (3-NCB); and (d) 4-nitrochlorobenzene (4-NCB) during the direct 
photolysis experiments in the absence of H2O2. In each graph, the lines correspond to the theoretical 
concentration changes due to liquid – gas re-equilibration after each sample taken. Note that for safety 
reasons, the light was turned off between times 8 h and 23 h for 1,3-DCB, and between 4 h and 19 h for 
1,4-DCB. The error bars on concentrations (2×COV, i.e. 2×coefficient of variation) were 13% (1,2-DCB), 
20% (1,3-DCB), 12% (1,4-DCB), 19% (3-CMB), 20% (4-CMB), 6% (3-NCB), and 7% (4-NCB). Note the 
differences in axis scales for the four graphs.  

Note for Figure S3 (b): For 4-CMB, a sharp concentration decrease, corresponding to 31% of the initial 
concentration, was noted after 3 hours. However, the δ

13
C values of 4-CMB at times 0 and 6 h were the 

same: −27.4‰. Therefore, the sudden decrease in concentration at 3 hours was likely due to the fact that 
the t0 sample was collected before liquid – headspace equilibrium occurred.  

Figure S4: Rayleigh plot for the direct photolysis of 4-NCB 
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Figure S4: Rayleigh plot for the direct photolysis of 4-nitrochlorobenzene (4-NCB). The enrichment factors 
(εC) is presented with 95% confidence interval error. The error bars on the Rayleigh plot were determined 
from error propagation, using a total error of 0.5‰, accounting for both accuracy and reproducibility 
(Sherwood Lollar et al. 2007), on stable isotope δ

13
C values, and 7% (2×COV, i.e. 2×coefficient of 

variation) for the 4-NCB concentration data.   

 

Section S5. Summary of kinetics and isotope experimental results 

Table S2: Pseudo first-order degradation rate constants (kX), measured carbon isotope bulk enrichment 
factors (εC), and apparent kinetic isotope effects for carbon (AKIEC) for the direct and indirect 
photodegradation of substituted chlorobenzenes. 

Compound kX (h
-1

)
a
 R

2a
 εC (‰)

b
 R

2b
 n

c
 x

c
 z

c
 AKIEC

d
 

Direct photolysis 
4-NCB 0.0043 ± 0.0003 0.97 −5.1 ± 0.4 0.96 - - - - 
Indirect photolysis: reaction with OH radicals 
1,2-DCB 0.52 ± 0.02 0.99 −1.75 ± 0.04 1.00 6 4 4 1.011 ± 0.003 
1,3-DCB 0.66 ± 0.02 1.00 −1.0 ± 0.1 0.97 6 3 3 1.006 ± 0.029 
1,4-DCB 0.44 ± 0.01 1.00 −1.7 ± 0.2 0.97 6 4 4 1.010 ± 0.014 
3-CMB 3.58 ± 0.31 0.96 −0.3 ± 0.1 0.58 7 3 3 1.002 ± 1.311 
4-CMB 1.57 ± 0.14 0.94 −1.0 ± 0.1 0.90 7 2 2 1.007 ± 0.024 
3-NCB 0.018 ± 0.002 0.94 −3.9 ± 0.3 0.96 6 3 3 1.024 ± 0.004 
4-NCB 0.056 ± 0.001 1.00 −4.8 ± 0.5 0.97 6 2 2 1.030 ± 0.004 
a
 kX: Pseudo first-order degradation rate constants for X-substituted chlorobenzenes with 95% confidence 

interval uncertainties, and R
2
: correlation coefficients for the regression of ln(f) vs. time; 

b
 εC: stable 

carbon enrichment factors, and R
2
: correlation coefficients for the regression of ln(R/R0) vs. ln(f). 

Uncertainties on kX and εC represent 95% confidence intervals calculated from the standard deviation of 
the regression slopes. 

c
 Parameters from Equation (2) assuming OH radical aromatic substitution for the 

indirect photodegradation experiments. 
d
 AKIEC: Apparent Kinetic Isotope Effect for carbon with 

uncertainties representing 95% confidence intervals calculated from error propagation. 
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Calculations of AKIE values 

1. Identification of reactive sites 

1.1 Dichlorobenzenes 

1,2-DCB 1,3-DCB 1,4-DCB 

  

 
Chlorine is an ortho- and para- directing deactivator due to both an inductive electron withdrawing effect 
that lowers DCB reactivity, and a resonance donating effect from Cl lone pairs of electrons that 
determines the regiochemistry. In 1,2- and 1,4-DCB, all four unsubstituted carbons are equivalent for the 
addition of an OH radical and further release of a H atom; conversely, the directing effects of both 
chlorine groups reinforce one another in 1,3-DCB preferentially leading to OH substitution on carbon # 2, 
4, and 6. The values for x and z (x = z) are therefore 4 for 1,2- and 1,4-DCB, and 3 for 1,3-DCB. These 
results are in line with the observed highest rate constant for 1,3-DCB compared to the other two DCB 
isomers. The corresponding AKIEC values are therefore 1.011 ± 0.003 (1,2-DCB), 1.006 ± 0.029 (1,3-
DCB), and 1.010 ± 0.014 (1,4-DCB) (SI Table S2). The same AKIEC values are obtained under the 
scenario of OH addition to a carbon attached to one of the Cl substituents, using n = 6, x = z = 2. 

1.2 Chlorotoluenes 

 3-CMB 4-CMB 

 

 

 
The methyl group is an ortho- and para- directing activator due to an inductive donating effect. In 3-CMB, 
the directing effects of both the Cl and CH3 groups reinforce one another leading to x = z = 3 main 
reaction sites on carbons # 2, 4, and 6. Conversely, the directing influences of the Cl and CH3 groups 
oppose one another in 4-CMB. Because CH3 is an activating group, contrary to Cl, which is deactivating, 
the OH radical is expected to preferentially substitute on carbons # 3 and 5 preferentially in 4-CMB, 
leading to x = z = 2. If no assumptions are made on the preferred sites of attack in 4-CMB, then x = z = 4. 
In both cases, whether x = z = 2 or x = z = 4 is selected, the same AKIEC value of 1.007 is obtained. 
These predictions are consistent with 3-CMB exhibiting a higher degradation rate constant than 4-CMB. 
The corresponding AKIEC values are therefore 1.002 ± 1.311 (3-CMB) and 1.007 ± 0.024 (4-CMB) (SI 
Table S2). The same AKIEC values are obtained for the two isomers under the scenarios of either OH 
addition to a carbon attached to one of the benzene substituents (CH3 or Cl), or when considering H 
abstraction from the CH3 group, in both cases using n = 7, x = z = 1. 
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1.3 Nitrochlorobenzenes 

 3-NCB 4-NCB 

 

 

 
The nitro group is a meta-directing deactivator through a resonance withdrawing effect. In 3-NCB, the Cl 
and NO2 directing influences oppose one another. Given that Cl is the least deactivating of the two 
substituents, it will preferentially direct the reaction to carbons # 2, 4, and 6, resulting in x = z = 3. 
Whether this assumption of preferential OH attack on these three carbon atoms is made (x = z = 3), or all 
four unsubstituted carbon atoms are considered as associated with equal probabilities of attack (x = z = 
4), the same AKIEC values of 1.024 is obtained for 3-NCB. In 4-NCB, the directing effects of the Cl and 
NO2 substituents reinforce one another leading to carbons #2 and #6 as the preferential sites for the 
attack of the OH radical (x = z = 2). Again, these results are consistent with 4-NCB showing a higher 
degradation rate constant than 3-NCB. The corresponding AKIEC values are 1.024 ± 0.004 (3-NCB) and 
1.030 ± 0.004 (4-NCB) (SI Table S2). The same AKIEC values for each DCB isomer are obtained under 
the scenario of OH addition to a carbon attached to either the Cl or NO2 substituent, using n = 6, x = z = 
1. 

2. Potential for reaction at substituted carbon atoms 

If the rate-determining step for the reaction of OH radicals with substituted chlorobenzenes involves the 
breaking of a chemical bond at one of the substituted carbon atoms, i.e., C–Cl, C–N, or C–C, the 
corresponding AKIEC values would be 1.011 (1,2-DCB), 1.006 (1,3-DCB), 1.010 (1,4-DCB), 1.002 and 
1.007 for 3- and 4-CMB, respectively, and 1.024 and 1.030 for 3- and 4-NCB, respectively.  

Figure S5: Correlation between AKIEC values and molecules hydrophobicity to evaluate Kopinke and 
Georgi (2017)’s water cage effect hypothesis 
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Figure S5: AKIEC values for OH radical ring addition using data from the present study (blue circles) and 
those from Zhang et al. (2016) (red squares) as a function of the log Kow (octanol – water partition 
coefficient) of the molecules. The equations represent the linear relationships for data from the present 
study in blue (y = −0.02x + 1.07, R

2
 = 0.83), from Zhang et al. (2016) in red (y = −0.01x + 1.04, R

2
 = 

0.46), and for all the data together in black (y = −0.01x + 1.04, R
2
 = 0.34), with1,2-DCB: 1,2-

dichlorobenzene, 1,2-DCB: 1,3-dichlorobenzene, 1,4-DCB: 1,4-dichlorobenzene, 3-CMB: 3-
chloromethylbenzene, 4-CMB: 4-chloromethylbenzene, 3-NCB: 3-nitrochlorobenzene, 4-NCB: 4-
nitrochlorobenzene, Bzn: benzene, MCB: chlorobenzene, BB: bromobenzene, NC: nitrobenzene. 

 

Section S6. Degradation products detected 

Table S3: Summary of qualitative GC/MS analysis of selected samples 

Compound Derivatization Direct photolysis Indirect photolysis 

1,2-DCB Yes 8 h / 0 %
(a)

:  
- No products

(b)
 

10 h / 100 %: 
- No products 

 No N/A 2 h / 43 %: 
- No products 

1,3-DCB Yes 10 h / 8 %: 
- No products  

Sample broken 

 No N/A 2 h / 55 %: 
- No products  

1,4-DCB Yes 8 h / 40 %: 
- No products  

10 h / 96 %: 
- No products 

 No N/A 2 h / 41 %: 
- No products  

3-CMB Yes 6 h / 22 %: 
- No products  

4 h / 100 %: 
- No products 

 No N/A 0.75 h / 92 %: 
- Small amounts of 2-chloro-6-
methylphenol 

4-CMB Yes 6 h / 41 %: 
- No products  

3.5 h / 100 %: 
- No products 

 No N/A 1.5 h / 85 %: 
- Small amounts of 2-chloro-5-
methylphenol 

3-NCB Yes N/A 48 h / 63 %: 
- No products 

 No 6 h / 1 %: 
- No products  

24 h / 45 %, 28 h / 47%, 32 h / 48 %: 
- No products  

4-NCB Yes 96 h / 34 %: 
- No products 

98 h / 100 %: 
- No products  

 No 96 h / 34 %: 
- No products  

8 h / 34 %, 24 h / 74 %, 32 h / 90 %: 
- No products  

(a)
 Duration of irradiation / percent concentration decrease since start of the experiment at that sampling 

time; 
(b)

 No degradation products observed. 
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Section S7. Experimental carbon isotope results for reactions involving a C–O bond formation  

Table S4: Summary of carbon isotope enrichment factors and AKIEC values for biotic and abiotic experiments involving the formation of a C–O 
bond on an aromatic ring. 

Compound 

Transformation 

type Pathway εC (‰) 

AKIEC 

(reported or 

calculated) Comments Reference 

Biodegradation experiments 

Benzene Methanogenic Ring hydroxylation? −0.8 ± 0.2 1.005 ± 0.083 

Mixed culture OR 

CH4-1b (Mancini et al. 2008) 

Benzene Methanogenic Ring hydroxylation? −1.1 ± 0.1 1.007 ± 0.019 

Enrichment culture 

Cart CH4-1 (Mancini et al. 2008) 

Benzene Sulphate-reducing Ring hydroxylation? −3.6 ± 0.3 1.022 ± 0.004 

Enrichment culture 

Cart SO4-1a (Mancini et al. 2008) 

Benzene Aerobic Monohydroxylation −1.7 ± 0.2 1.010 ± 0.0012 R. pickettii PKO1 (Fischer et al. 2008) 

Benzene Aerobic Monohydroxylation −4.3 ± 0.4 1.026 ± 0.0025 C. necator ATCC (Fischer et al. 2008) 

Benzene Sulphate-reducing Unknown −1.9 ± 0.3 1.011 ± 0.0018 Enrichment culture (Fischer et al. 2008) 

Benzene Sulphate-reducing Unknown −3.0 ± 0.4 1.018 ± 0.008 Mixed culture (Fischer et al. 2009) 

Benzene Aerobic Ring monohydroxylation? −2.6 ± 0.8 1.016 ± 0.0050 A. denitrificans BC (Fischer et al. 2008) 

Benzene Aerobic Unknown −1.46 ± 0.06 1.009 ± 0.006 Acinetobacter sp. (Hunkeler et al. 2001) 

Benzene Aerobic Unknown −3.53 ± 0.26 1.022 ± 0.004 Burkholderia sp. (Hunkeler et al. 2001) 

Toluene Aerobic Ring monooxygenation −1.1 ± 0.2 1.008 ± 0.031 R. pickettii PKO1 (Morasch et al. 2002) 

Abiotic experiments 

Benzene Abiotic, gas phase Ring OH radical addition −7.47 ± 0.44 1.047 ± 0.001 

Atmospheric 

chemistry 

(Anderson et al. 

2004) 

Benzene Abiotic, gas phase Ring OH radical addition −8.07 ± 1.36 1.051 ± 0.004 

Atmospheric 

chemistry (Rudolph et al. 2000) 

Toluene Abiotic, gas phase Ring OH radical addition −5.91 ± 0.23 1.043 ± 0.001 

Atmospheric 

chemistry 

(Anderson et al. 

2004) 

Ethylbenzene Abiotic, gas phase Ring OH radical addition −4.32 ± 0.38 1.036 ± 0.003 

Atmospheric 

chemistry 

(Anderson et al. 

2004) 

o-xylene Abiotic, gas phase Ring OH radical addition −4.25 ± 0.04 1.035 ± 0.0003 Atmospheric (Anderson et al. 
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Compound 

Transformation 

type Pathway εC (‰) 

AKIEC 

(reported or 

calculated) Comments Reference 

chemistry 2004) 

p-xylene Abiotic, gas phase Ring OH radical addition −4.81 ± 1.13 1.040 ± 0.006 

Atmospheric 

chemistry 

(Anderson et al. 

2004) 

1,2,4-

trimethylbenzene Abiotic, gas phase Ring OH radical addition −3.17 (n = 1) 1.029 

Atmospheric 

chemistry 

(Anderson et al. 

2004) 

o-ethyltoluene Abiotic, gas phase Ring OH radical addition −4.69 (n = 1) 1.044 

Atmospheric 

chemistry 

(Anderson et al. 

2004) 

Benzene 

Abiotic, liquid 

phase Ring OH radical addition −7.98 1.0316 

Indirect aqueous 

photodegradation (Zhang et al. 2016) 

Toluene 

Abiotic, liquid 

phase Ring OH radical addition −6.05 1.0285 

Indirect aqueous 

photodegradation (Zhang et al. 2016) 

Ethylbenzene 

Abiotic, liquid 

phase Ring OH radical addition −5.49 1.0286 

Indirect aqueous 

photodegradation (Zhang et al. 2016) 

o-xylene 

Abiotic, liquid 

phase Ring OH radical addition −5.41 1.0286 

Indirect aqueous 

photodegradation (Zhang et al. 2016) 

Chlorobenzene 

Abiotic, liquid 

phase Ring OH radical addition −7.24 1.0295 

Indirect aqueous 

photodegradation (Zhang et al. 2016) 

Nitrobenzene 

Abiotic, liquid 

phase Ring OH radical addition −7.52 1.0308 

Indirect aqueous 

photodegradation (Zhang et al. 2016) 
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Section S8. Literature review on εC for various processes affecting the studied compounds and related ones in surface water 
environments 

Table S5: Summary of carbon isotope enrichment factors (εC, in ‰) for the studied compounds 

Compound 
Reaction with 
OH radicals 

Ref
a
 

Anaerobic 
biodegradation 

Ref
a
 

Aerobic 
biodegradation 

Ref
a
 Other processes 

Ref
a
 

Compounds studied in this work 

1,2-dichlorobenzene −1.75 ± 0.04 This study −0.8 ± 0.1 1         

1,3- dichlorobenzene −1.0 ± 0.1 This study −5.4 ± 0.4 1         

1,4- dichlorobenzene −1.7 ± 0.2 This study −6.3 ± 0.2 1         

3-chlorotoluene −0.3 ± 0.1 This study             

4- chlorotoluene −1.0 ± 0.1 This study             

3-nitrochlorobenzene −3.9 ± 0.3 This study             

4- nitrochlorobenzene −4.8 ± 0.5 This study         
Reduction by Fe(II) 
/goethite: −0.65 2 

Related compounds 

Chlorobenzene −0.9 ± 0.1 3 −5.0 ± 0.2  4 
−0.4 ± 0.1 for 
Ralstonia sp 5     

Chlorobenzene   

Field data 
suggests 

13
C 

enrichment  5       

Chlorobenzene         
−0.3 ± 0.04 for R. 
erythropolis 5     

Chlorobenzene         −0.2 ± 0.2 for P. veronii 5     

Chlorobenzene         −0.1 ± 0.1 for A. facilis 5     

1,2,4-trichlorobenzene      −3.2 ± 0.5  6 Negligible 6, 7     

1,2,4-trichlorobenzene     −3.0 ± 0.4  7 Negligible 6, 7     

1,2,3-trichlorobenzene     
−3.4 ± 0.3 and 
−3.4 ± 0.5 6         

Nitrobenzene −3.9 ± 0.2  3     

−3.9 ± 0.1 for aerobic 
oxidation by 
Comamonas sp. strain 
JS765 8     

Nitrobenzene         −0.57 ± 0.06 for aerobic 8     

152



S12 

 

 

Compound 
Reaction with 
OH radicals 

Ref
a
 

Anaerobic 
biodegradation 

Ref
a
 

Aerobic 
biodegradation 

Ref
a
 Other processes 

Ref
a
 

reduction by 
Pseudomonas 
pseudoalcaligenes strain 
JS45 

Nitrobenzene         

−3.7 ± 0.2 for aerobic 
oxidation by E. Coli 
clones 9     

Nitrobenzene         

−3.6 ± 0.3 for aerobic 
oxidation by cell extracts 
of E. Coli clones 9     

Nitrobenzene         

−3.5 ± 0.2 for aerobic 
oxidation by purified 
nitrobenzene 
dioxygenase (NBDO) 9     

Nitrobenzene         

−3.9 ± 0.2 for aerobic 
oxidation by 
Comamonas sp. strain 
JS765 9     

2-nitrotoluene         

−1.3 ± 0.1 for aerobic 
oxidation by E. Coli 
clones 9     

2-nitrotoluene         

−1.2 ± 0.3 for aerobic 
oxidation by cell extracts 
of E. Coli clones 9     

3-nitrotoluene         

−0.4 ± 0.2 by 
nitrobenzene 
dioxygenase (NBDO) 
and −0.6 ± 0.2 by 2-
nitrotoluene 
dioxygenase (2NTDO) 10     

4-nitrotoluene         

−1.4 ± 0.4 by 
nitrobenzene 
dioxygenase (NBDO) 
and −0.1 ± 0.1 by 2-
nitrotoluene 
dioxygenase (2NTDO) 10     

2,6-dinitrotoluene         −1.1 ± 0.4 by 10     
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Compound 
Reaction with 
OH radicals 

Ref
a
 

Anaerobic 
biodegradation 

Ref
a
 

Aerobic 
biodegradation 

Ref
a
 Other processes 

Ref
a
 

nitrobenzene 
dioxygenase (NBDO) 

Naphthalene         

−0.4 ± 0.3 by 
nitrobenzene 
dioxygenase (NBDO) 10     

Aniline −3.6 ± 0.06  3         

Indirect photodegradation 
reaction with 

3
AQDS*: 

−1.4 ± 0.5 11 

Aniline             

Indirect photodegradation 
reaction with 

3
MB

+
*:  

0.7 ± 1.1 11 

4-chloroaniline             

Direct photolysis: 
between −0.8 ± 0.2‰ to 
−2.7 ± 0.2‰ 12 

4-chloroaniline             

Indirect photodegradation 
reaction with 

3
AQDS*: 

−1.0 ± 0.1 11 

4-chloroaniline             

Indirect photodegradation 
reaction with 

3
MB

+
*:  

−0.2 ± 0.4 11 

4-methylaniline             

Indirect photodegradation 
reaction with 

3
AQDS*: 

from −0.2 ± 0.2 to 1.4 ± 
0.8 11 

4-methylaniline             

Indirect photodegradation 
reaction with 

3
MB

+
*:  

0.5 ± 1.0 11 

4-methoxyaniline             

Indirect photodegradation 
reaction with 

3
AQDS*: 

−0.2 ± 0.4 11 

4- methoxyaniline             

Indirect photodegradation 
reaction with 

3
MB

+
*:  

−1.4 ± 2.3 11 
a
 Ref: reference: 1: (Liang et al. 2014); 2: (Hartenbach et al. 2006); 3: (Zhang et al. 2016); 4: (Liang et al. 2011); 5: (Kaschl et al. 2005); 6: 

(Griebler et al. 2004); 7: (Liang et al. 2011); 8: (Hofstetter et al. 2008); 9: (Pati et al. 2014); 10: (Pati et al. 2016); 11: (Ratti et al. 2015a); 12: (Ratti 
et al. 2015b).
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H I G H L I G H T S

• Dual isotope fractionation character-
ized persulfate oxidation and UV/
H2O2 reaction.

• Radical quench study and CSIA were
combined to explore the contribution
of radicals.

• SO4
%− was the predominant radical

species for persulfate oxidation of DEP
at pH 2.

• SO4
%− and HO% contributed to DEP

degradation during persulfate oxida-
tion at pH 7.

• The mechanism of HO% reaction with
DEP tended to be radical addition to
aromatic ring.
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A B S T R A C T

This study investigated 13C and 2H isotope fractionation associated with oxidation of three phthalate esters
(PAEs) by radical species, including sulfate radical (SO4

%−) induced by heat-activated persulfate (PS) and hy-
droxyl radical (HO%) induced by UV/H2O2. For persulfate oxidation at pH=2 and pH=7, similar carbon
isotope fractionation (εC) but distinct hydrogen isotope enrichment factors (εH) were observed. The UV/H2O2

reaction of three PAEs showed smaller εH values in comparison with persulfate oxidation. The correlation of 2H
and 13C fractionation (Λ) allows to distinguish the persulfate oxidation (25.7 ± 2.6) and UV/H2O2 oxidation
(2.4 ± 0.2) of diethyl phthalate (DEP) highlighting the potential of compound-specific stable isotope analysis
(CSIA) to characterize chemical oxidation mechanism of PAEs. Moreover, study of radical quenching and CSIA
were combined to explore the dominant radical species during persulfate oxidation of DEP. SO4

%− was found to
be the predominant radical at pH=2. Both SO4

%− and HO% contributed to DEP degradation at pH=7 and HO%
was estimated to have a contribution of 21–63% according to dual CeH isotope fractionation values. Carbon and
hydrogen apparent kinetic isotope effects (AKIEs) (13C-AKIE= 1.017, 2H-AKIE= 2.41) obtained from dom-
inating sulfate radical reaction of DEP both supported the hypothesis of CeH bond cleavage. Thus, carbon and
hydrogen isotope enrichment factors clearly distinguish the different reaction mechanisms and hence, are a
promising approach to improve understanding of radical species reaction pathways for chemical oxidation of
PAEs.
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1. Introduction

Phthalate esters (PAEs) are widely used as plasticizers and additives
in numerous products, such as polyvinylchloride (PVC), cosmetics,
medical devices, plastic toys and detergents [1]. Worldwide production
of PAEs is more than 8 million tons per year [2]. PAEs are not linked by
covalent bonds within the product matrix. Therefore, they can be lea-
ched out from the matrix e.g. by organic solvents or by diffusion [3,4].
Previous studies [5,6] reported contamination of PAEs in environ-
mental compartments such as atmosphere (in and out door air, aero-
sols), water, sediment, soil, tissues and fluids of wildlife and humans.
Consequently, PAEs have caused increasing concerns due to the po-
tential hepatotoxic, teratogenic and carcinogenic effects [7]. Dimethyl
phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP)
have been listed as priority pollutants by US Environmental Protection
Agency (EPA) [8]. Several other environmental agencies from the
European Union, China and Canada either classify some commonly
occurring PAEs as priority pollutants or limit their use in children’s toys
[9]. Therefore, knowledge about the different degradation processes is
needed for efficient and economic removal of PAEs in the environment.

In situ chemical oxidation (ISCO) has become a promising technique
for the removal of organic contaminants in soil, groundwater and
aquifers making use of radical oxidation reactions [10]. Hydrogen
peroxide (H2O2) and persulfate (PS) are widely used oxidants in ISCO
[11,12]. UV/H2O2 is an efficient approach to produce hydroxyl radicals
(HO%) and has been used to degrade organic compounds such as PAEs,
BPA, dyes, benzene and PAHs [13–17]. Over the last few years, sulfate
radicals (SO4

%−) generated by PS or peroxymonosulfate (PMS) are
considered as an alternative to HO% due to its long lifetime and high
redox potential [10,18]. Heat-activation is a commonly used activation
method and it becomes attractive when combined with in situ thermal
remediation [19]. It has been reported that SO4

%− is able to oxidize a
variety of compounds, including PAEs, BTEX, PCBs, PAHs etc.
[11,20–22]. Meanwhile it is well demonstrated that the formation of
SO4

%− and HO% is pH dependent in activated PS system [10,23,24].
Radical quenching studies are mainly used to distinguish dominant
radical species according to different reactivities to probe potential
radicals and their reaction with compounds. However, it is still not
clear how to quantify the relative contribution of SO4

%− and HO%. Only
few studies calculated the relative contribution of SO4

%− and HO% to
the oxidation reaction based on different transformation yields or rate
constants [25–27]. Hence, it would be important to explore other
possible ways on radical contribution estimation in order to investigate
the complex interaction of radicals with PAEs and utilize the full po-
tential of ISCO processes.

Compound-specific stable isotope analysis (CSIA) has received in-
creasing attention in monitoring the fate of organic contaminants based
on isotope fractionation concepts [28]. CSIA has been successfully ap-
plied to identify sources, assess natural attenuation of contaminants and
investigate reaction mechanisms on both chemical reaction and bio-
degradation in contaminant hydrology and organic (bio)-geochemistry
[29,30]. In the last decades, several studies showed the potential of
multi-element CSIA (δ13C, δ2H, δ37Cl, δ15N etc.) to explore different
transformation processes [31]. For example, dual element stable iso-
tope analysis of δ13C and δ2H was found sensitive to analyze sites of
CeH bond cleavage (ring vs side chain) during oxidation of substituted
benzenes [32]. In previous studies, the application of CSIA on PAEs
mainly focused on the carbon isotope fractionation during photolysis
and biodegradation [33–36]. To our best knowledge, studies on multi-
element CSIA during PS oxidation and UV/H2O2 have not yet been
reported for PAEs. This knowledge is essential for the application of
stable isotope techniques to identify and quantify the removal of PAEs
by advanced oxidation processes in remediation applications.

The main objectives of this study were (i) to investigate the po-
tential of 13C and 2H isotope analysis for characterizing different oxi-
dation processes (heat-activated PS oxidation and UV/H2O2) of three

PAEs, (ii) to estimate the role of SO4
%− and HO% during DEP oxidation

and (iii) to explore apparent kinetic isotope effects (AKIEs) of two ra-
dicals’ reaction with DEP. Isotope enrichment factors of εC and εH for all
reactions were determined. A combined method based on radical
quenching and CSIA was established to identify potential radical spe-
cies which are responsible for the degradation of DEP. Moreover, ex-
tended Rayleigh-type equations and 2D-CSIA were used for the first
time to estimate the relative contribution of SO4

%− and HO% induced
degradation of DEP. The reported 2H and 13C fractionation factors have
the potential to be a reference for characterizing different degradation
processes in environmental studies.

2. Materials and methods

2.1. Chemicals

DMP, DEP and DBP with 99.5% purity (analytical grade) were
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China) and used without further purification. Potassium persulfate
(K2S2O8), hydrogen peroxide (30% H2O2), naphthalene (99%), di-po-
tassium hydrogen phosphate (K2HPO4) and potassium dihydrogen
phosphate (KH2PO4) were obtained from Merck (Guaranteed reagent
quality, Darmstadt, Germany). Hydrochloric acid solution (HCl, 6M),
hexane and ethanol were supplied by Carl Roth GmbH+Co. KG
(Karlsruhe, Germany). Ortho-xylene and tert-butyl alcohol (TBA,
99.5%) were purchased from Sigma-Aldrich (Munich, Germany).
Sulfuric acid (25%, w/w), acetone, acetonitrile and dichloromethane
(DCM) were supplied by Chem solute, Th. Geyer (Germany). Deionized
water was produced by a Milli-Q system (> 18.2MΩ cm−1, Millipore
GmbH, Schwalbach/Ts. Germany) and used to prepare all experimental
solutions.

2.2. Experimental procedures

2.2.1. Heat-activated persulfate oxidation
Persulfate oxidation reactions were conducted as batch experiments

in a series of glass vials. A phosphate buffer solution was used to keep
pH values stable and to maintain degradation condition constant during
the whole reaction [37]. Potassium persulfate (K2S2O8) was used to
generate SO4

%− at pH=2 and pH=7. The pH value was adjusted by
sulfuric acid (25% H2SO4). Preliminary experiment with persulfate at
pH=10 showed the degradation kinetic of DEP was similar to the one
obtained for alkaline hydrolysis at the same pH (data not shown), thus
we do not further analyze persulfate oxidation at alkaline pH. An ac-
tivation temperature of 35 °C was chosen for persulfate oxidation. In-
itial concentrations of PAEs were 1.09mM DMP, 0.97mM DEP and
0.037mM DBP, respectively, considering different solubilities in water
and to achieve adequate signal intensity for isotope measurements. The
molar ratio of persulfate and PAEs was 50:1. Control experiments were
conducted without addition of persulfate under identical conditions
simultaneously. At different time intervals, reaction vials were removed
and three PAEs were extracted by liquid–liquid extraction. 2mL of DCM
containing 500mg L−1 ortho-xylene (as internal standard) was added
to extract DMP and DEP from the aqueous solution. For DBP, 1mL of
hexane containing 100mg L−1 naphthalene (as internal standard) was
used as solvent in order to obtain good extraction efficiency.

To investigate the roles of SO4
%− and HO% species formed in PS

oxidation at pH=2 and pH=7, radical quenching experiments were
carried out separately in the presence of ethanol (EtOH) and tert-butyl
alcohol (TBA). The radical scavengers (EtOH and TBA) were added to
obtain a concentration of 195mM, which corresponded to a
200:1 molar ratio of the radical scavengers compared to target com-
pound (DEP). The second order rate constant of HO% with TBA (kTBA/
HO%=6×108M−1s−1) is almost 3 orders of magnitude faster than that
of SO4

%− with TBA = ×
− −

−(k 4 10 M s )TBA/SO
5 1 1

4
% [38]. TBA was always

used as a chemical probe to quench HO% completely but SO4
%−
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partially and thus differentiate these two radicals. EtOH was considered
to quench SO4

%− and HO% simultaneously [39,40].

2.2.2. UV/H2O2 photolysis
The reactions of three PAEs in UV/H2O2 system were carried out as

the representative experiment of HO% dominant reactions. The photo-
degradation system consisted of a 200-mL Pyrex cylindrical flask with
quartz window and was equipped with a 150W xenon lamp
(Hamamatsu, Japan). The xenon lamp covered a broad continuous
spectrum from 185 nm to 2000 nm. A filter was used to cut off wave-
lengths shorter than 280 nm and to avoid reactions in this range. DEP in
water showed no significant UV absorption at wavelengths longer than
280 nm, suggesting the absence of direct photolysis when a filter was
used (Fig. S2). The reaction solution consisted of 200mL phosphate
buffer solution at pH=7. Initial concentrations of PAEs were the same
as those in PS oxidation experiments. HO% were generated by adding
30% H2O2, producing a molar ratio of 30:1 between H2O2 and PAEs.
The experiment was carried out at 20 ± 1 °C using a temperature-
controlled cooling system. The reaction solution was mixed with a
magnetic stirrer at 250 rmp throughout the whole experiment. At dif-
ferent time intervals, aliquots of the reaction solution were withdrawn
using a syringe and extracted by liquid-liquid extraction as described in
Section 2.2.1.

2.3. Concentration and isotope analysis

2.3.1. GC-FID and GC–MS analysis
Gas chromatography (7820A, Agilent, USA) coupled with flame

ionization detection (GC-FID) was applied to determine the con-
centration of PAEs (DMP, DEP and DBP). A HP-5 column
(30m×0.32mm i.d., 0.25 μm, Agilent, USA) was used to separate
compounds. The oven temperature program was 60 °C (held 2min)
followed by a ramp of 10 °Cmin−1 to 290 °C (held 2min). The carrier
gas was helium (1.5 mLmin−1). Samples were injected in split mode
with a split ratio of 30:1 (1 μL) and the injector temperature was set at
250 °C. An Agilent GC–MS (7890A-5975C) system with the same
column and GC parameters was used to identify potential degradation
products.

2.3.2. Carbon and hydrogen isotope analysis
Carbon and hydrogen isotope compositions of PAEs were measured

by gas chromatography-isotope ratio mass spectrometry (GC-IRMS,
MAT 253, Thermo-Finnigan, Germany). Samples were injected in split
mode (5:1, 1 μL) for carbon isotope measurement, and splitless mode
was used for hydrogen isotope analysis to obtain optimum signal in-
tensity. Good separation and peak shape of analytes were achieved
using a ZB-1 column (60m×0.32mm i.d., 1 μm, Phenomenex Inc.,
USA). The GC oven temperature program and other GC parameters
were the same as those used for the GC-FID (see above). Reproducibility
of δ13C and δ2H values was monitored by triplicate injections for each
sample. The uncertainties of all samples were within typical analytical
uncertainties (δ13C:± 0.5‰, δ2H:± 5‰).

2.4. Data evaluation

2.4.1. Evaluation of isotope fractionation
Carbon and hydrogen isotope fractionation of PAEs during chemical

reactions were evaluated using the Rayleigh equation which is ex-
pressed as follows [33]:

+

+

= ×
δ
δ

ε fln 1
1

lnt

0 (1)

where δt and δ0 are the isotope compositions of substrate at time t and
zero, f is the remaining fraction of substrate at time t (f=Ct/C0), and ε
is obtained as the bulk isotope enrichment factor. For the correlation of
2H and 13C isotope values the isotopic shifts of hydrogen (δ2H) and

carbon (δ13C) were presented as Δδ2H vs Δδ13C during degradation
process. A linear regression of Δδ2H and Δδ13C was used to calculate the
slope (Λ) for the relationship between hydrogen and carbon isotope
fractionation.

2.4.2. Extended Rayleigh-type equations
An extended Rayleigh-type equation (Eq. (2)) was derived to cal-

culate the contribution of two processes degrading the same substrate
simultaneously by two different mechanisms [41]. F is the rate ratio of
the first process to the overall reaction where two competing de-
gradation pathways occurred, εA, ε1 and ε2 are the kinetic isotope en-
richment factors of the overall reaction, the individual process 1 and 2,
respectively.

=
−

−

F ε ε
ε ε
A 2

1 2 (2)

For improved two-dimensional isotope analysis, dual element stable
isotope data was used in a modified version of the Rayleigh equation to
estimate the individual contributions of two competing pathways to the
overall degradation [41,42]. The rate ratio F is obtained as

=
∧∊ −∊

∊ −∊ − ∧ ∊ −∊( ) ( )
F C H

H H C C

2 2

1 2 1 2 (3)

where Λ is the relationship of isotope shifts of two isotope pairs (H-C),
and the ε values are the corresponding isotope enrichment factors as-
sociated with two individual processes.

2.4.3. Apparent kinetic isotope effect (AKIE) calculation
For the Rayleigh equation, ε values are calculated from compound-

average isotope data whereas the intrinsic isotope effect is position
specific associated with the reaction step [43]. Therefore, in order to
investigate underlying reaction mechanisms and degradation pathways,
it is crucial to convert observable ε values into AKIEs. Eq. (4) is used to
correct bulk isotope enrichment factors for isotopic dilution, the
number of reactive sites within the molecule, as well as intra-molecular
isotopic competition [44].

=

+ z ε
AKIE 1

1 · (‰)/1000n
x bulk (4)

where εbulk is the bulk isotope enrichment factor, n is the number of
atoms of the element considered in the molecule, x is the number of
atoms at reactive positions and z is the number of indistinguishable
reactive positions.

3. Results and discussion

3.1. Degradation kinetics of PAEs

Three PAEs (DMP, DEP and DBP) with different lengths of alkyl side
chain were selected in this study. The chemical oxidation processes of
three PAEs followed pseudo-first order kinetics in all experiments
(R2≥ 0.965, Table 1). Control experiments of DEP by direct UV ra-
diation, UV radiation with filter and hydrolysis at 35 °C showed negli-
gible degradation compared to chemical oxidation (Figs. S1, S2). Rate
constants (k) for the UV/H2O2 reaction of DMP (0.0528 h−1), DEP
(0.0541 h−1) and DBP (0.1115 h−1) were determined to describe the
reaction (Table 1). A previous study [45] showed that the calculated k
values increased with the number of carbon atom in the alkyl side chain
of PAEs during %OH-initiated photodegradation using transition-state
theory. The activation energies for the reaction of the three PAEs differ
with the chemical structure and the rate constants of the PAEs de-
gradation due to UV/H2O2 reaction are probably related to the %OH
reaction with the aromatic ring and the side chain. During persulfate
oxidation of PAEs, the temperature was chosen at 35 °C for milder re-
action condition. The pH value is considered to be an important factor
for reaction kinetics and radical species, therefore the removal of three
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PAEs by persulfate oxidation was studied at pH=2 and pH=7. Three
PAEs presented different degradation kinetic behaviors. For DEP and
DBP, rate constants at pH=2 are larger than those at pH=7, which is
consistent with previous results of Li et al. [46] indicating that acidic
condition had positive effect on DBP degradation due to the pre-
dominant radical species of SO4

%−. However, DMP seems to show a
different kinetic trend, resulting in a slightly smaller removal rate at
pH=2. Wang et al. [47] reported similar rate constants of DMP at
pH=3.1 and pH=7.0 by thermally activated persulfate oxidation,
which indicated that initial pH values had a minor effect on the rate
constants of DMP. The different reaction kinetic of DMP compared to
DEP and DBP could be probably related to different dominant radical
species and their affinity to react with the longer alkyl side chain of the
PAE molecules.

3.2. Carbon and hydrogen isotope fractionation patterns of PAEs during
chemical oxidation

Both carbon and hydrogen isotopic values of three PAEs from all
investigated reactions showed the trend to more positive values during
the degradation, which indicates a normal isotope effect (Fig. S3). The
carbon and hydrogen isotope enrichment factors of DMP, DEP and DBP
can be quantified using Rayleigh equation (Fig. 1). The Rayleigh re-
gression of all three PAEs exhibited high correlation coefficients
(R2≥ 0.960) for δ2H and δ13C and the uncertainty was within the 95%
confidence interval (C.I.) (Table 1). For the UV/H2O2 reaction, carbon
isotope enrichment factors (εC) of DMP, DEP and DBP ranged from
−2.76 ± 0.25‰, to −2.30 ± 0.42‰, to −0.92 ± 0.16‰, respec-
tively. εC values decreases with increasing length of the alkyl side chain
in the PAE molecules. This result is likely related to the isotope dilution
effect caused by carbon atoms in non-reactive positions [33]. During
heat-activated persulfate oxidation, as shown in Table 1, degradation
rate constants of three PAEs vary at pH=2 and pH=7. However, εC
values remain similar for each PAE compared to those obtained from
the UV/H2O2 reaction. The isotope dilution effect is also observed for
DMP, DEP and DBP. Therefore, carbon isotope fractionation patterns
alone are not sufficient to distinguish between UV/H2O2 and PS oxi-
dation processes. In contrast, εH values obtained from the degradation
of three PAEs in the UV/H2O2 reaction are much smaller than those
from PS oxidation. Furthermore, for reaction with heat-activated PS
oxidation, εH values range from −8.7 ± 1.2‰ (pH=7) to
−23.9 ± 2.4‰ (pH=2) for DMP, from −28.3 ± 3.3‰ (pH=7) to
−41.8 ± 2.4‰ (pH=2) for DEP and from −24.6 ± 1.8‰ (pH=7)
to −31.0 ± 2.0‰ (pH=2) for DBP. In this case, δ2H values of three
PAEs show a similar trend to a larger hydrogen isotope fractionation at
pH=2 compared to pH=7. Thus, distinctly different hydrogen en-
richment factors could be used to distinguish different reaction pro-
cesses. The increase of 2H fractionation might be an indication that
SO4

%− become a major species at low pH in persulfate oxidation re-
actions leading to larger hydrogen isotope fractionation compared to

high pH where SO4
%− and HO% coexist (see discussion below). Con-

trary to the carbon isotope fractionation pattern, εH values of DMP, DEP
and DBP do not show a consistent trend for an isotope dilution effect
with increasing length of the alkyl side chain during PS oxidation ex-
periments. This is due to the possibility that different dominant path-
ways are responsible for the decomposition of three PAEs with different
alkyl side chain lengths, as suggested in a previous computational study
on HO%-initiated photochemical transformation of four PAEs [45].

3.3. Correlation of 2H and 13C isotope fractionation to differentiate reaction
processes

The correlation of hydrogen and carbon isotopic values of three
PAEs undergoing different reactions was compared individually in dual
isotope plots. All investigated experiments showed a well-fitted linear
correlation (Fig. 2). For reaction with UV/H2O2 and PS oxidation of
DMP, different slopes (Λ= Δδ2H/Δδ13C) are observed ranging from
2.0 ± 0.1 to 13.1 ± 1.4 (Table 1), which is attributable to different εH
values (ranging from−4.8 ± 0.5‰ to−23.9 ± 2.4‰) and similar εC
values (ranging from −2.08 ± 0.10‰ to −2.76 ± 0.25‰). Simi-
larly, significant variations of Λ values (2.4 ± 0.2, 14.9 ± 3.0 and
25.7 ± 2.6) are obtained for DEP during three reactions. In this case,
distinct dual H-C isotope slopes of DMP and DEP for radical oxidation
processes open the possibility of 2D-CSIA to differentiate chemical
oxidation reactions of PAEs in the field. However, DBP showed a dif-
ferent trend with almost identical Λ values at pH=2 (39.0 ± 3.4) and
pH=7 (35.3 ± 4.5) during persulfate oxidation. Despite this, the
correlation of 2H and 13C isotope fractionation obtained for DBP also
could be used to distinguish between UV/H2O2 (9.0 ± 2.3) and per-
sulfate oxidation reaction. Even if distinct εH values have the potential
to distinguish reactions, the dual element isotope approach may be
recommended for field studies. A significant advantage is that possible
transport and retardation processes on the extent of isotope fractiona-
tion can be canceled out because they may have a similar influence on
both elements [48]. The difference between dual element isotope
fractionation patterns of UV/H2O2 and PS oxidation could be due to
distinct dominant radical species leading to the degradation of PAEs. In
addition, significant isotope discrimination of DMP and DEP for PS
oxidation at pH=2 and pH=7 is likely associated with different ra-
dical species. Interestingly, the similar Λ values at pH=2 and pH=7
for DBP were not observed for DMP and DEP, which might be partly
explained with the influence of the chemical structure, particularly the
alkyl side chain which is a potential target for radicals. It is conceivable
that the competing reactions at the side chain and aromatic rings are
changing with chain length but we cannot quantify the reaction to
prove this hypothesis. Therefore, more research is needed to understand
the precise mechanisms of free radical reactions with the alkyl side
chain of PAEs and which affect the Λ values.

Table 1
Degradation kinetic and isotope fractionation parameters of PAEs during chemical oxidation.

Conditions k (h−1) R2 εC (‰) R2 εH (‰) R2 Λ f

DMP_pH 2_PS 0.0024 0.986 −2.09 ± 0.21a 0.994 −23.9 ± 2.4 0.995 13.1 ± 1.4 0.252
DMP_pH 7_PS 0.0037 0.983 −2.08 ± 0.10 0.998 −8.7 ± 1.2 0.985 4.8 ± 0.5 0.055
DMP_pH 7_UV/H2O2 0.0528 0.980 −2.76 ± 0.25 0.996 −4.8 ± 0.5 0.994 2.0 ± 0.1 0.075
DEP_pH 2_PS 0.0057 0.999 −1.39 ± 0.13 0.995 −41.8 ± 2.4 0.998 25.7 ± 2.6 0.066
DEP_pH 7_PS 0.0025 0.973 −1.57 ± 0.18 0.993 −28.3 ± 3.3 0.993 14.9 ± 3.0 0.112
DEP_pH 7_UV/H2O2 0.0541 0.993 −2.30 ± 0.42 0.990 −6.8 ± 1.3 0.989 2.4 ± 0.2 0.101
DBP_pH 2_PS 0.015 0.995 −0.73 ± 0.10 0.983 −31.0 ± 2.0 0.997 39.0 ± 3.4 0.080
DBP_pH 7_PS 0.0039 0.987 −0.63 ± 0.07 0.989 −24.6 ± 1.8 0.996 35.3 ± 4.5 0.136
DBP_pH 7_UV/H2O2 0.1115 0.985 −0.92 ± 0.16 0.974 −9.3 ± 2.0 0.960 9.0 ± 2.3 0.093
DEP_pH 7_TBA PS 0.0007 0.970 −1.35 ± 0.12 0.996 −39.8 ± 5.7 0.989 24.1 ± 4.3 0.478
DEP_pH 2_TBA PS 0.0007 0.965 −1.07 ± 0.29 0.989 −38.8 ± 7.7 0.988 30.5 ± 2.2 0.606

a Uncertainty given as 95% confidence interval.
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3.4. Identification of predominant radical species by studying radical
quenching combined with CSIA

Previous studies have demonstrated that SO4
%− and HO% were

probably generated and responsible for the decomposition of organic
contaminants in persulfate oxidation system [24,25,40,46,49]. Pre-
dominant radical species during heat-activated PS oxidation were in-
vestigated using two alcoholic radical scavengers. EtOH and TBA were
added to the solution, respectively and corresponded to a 200:1 molar
ratio of the radical scavengers and DEP. Both SO4

%− and HO% could be
quenched by EtOH due to the second-order rate constants of
1.2–2.8×109M−1s−1 for EtOH/HO% system and
1.6–7.7×107M−1s−1 for EtOH/SO4

%− system [50]. TBA is con-
sidered as an efficient scavenger of HO%, because TBA reacts relatively
slowly with SO4

%− (k= 4–9.1× 105M−1s−1) compared to high

reactivity of TBA/HO% system (k=3.8–7.6× 108M−1s−1) [46]. After
the addition of EtOH, the removal of DEP by persulfate could be ne-
glected compared to experiments without scavenger at pH=2 and
pH=7 (Fig. 3), which indicates that PS oxidation processes are mostly
attributed to free radical reactions of SO4

%− and HO%. In the presence
of TBA, strong inhibiting effects on the degradation of DEP were ob-
served. A slightly smaller degree of inhibition than that of EtOH pos-
sibly indicates the presence of SO4

%− during PS oxidation of DEP.
However, results for degradation kinetics of radical quenching experi-
ments in this study are not sufficient to identify dominant radical spe-
cies at pH=2 and pH=7 due to strong inhibition of EtOH and TBA. In
order to explore predominant reactive species responsible for the de-
gradation of DEP, carbon and hydrogen isotope fractionations of TBA
quenching experiments were investigated. Contrary to the distinct εH
and Λ values of PS oxidation with DEP at pH=2 and pH=7, the

Fig. 1. Rayleigh regression of carbon (left panels, A, C, E) and hydrogen (right panels, B, D, F) isotope data during chemical oxidation reactions of PAEs (DMP, DEP
and DBP).

D. Zhang et al. Chemical Engineering Journal 347 (2018) 111–118

115

162



obtained εH and Λ values after the addition of TBA were very similar
(Table 1, Fig. 2). The difference between PS oxidation and TBA
quenching experiments could be due to different radical species con-
tributing to the overall reaction. In the presence of TBA, SO4

%− be-
comes the predominant radical species which is responsible for the
degradation of DEP at pH=2 and pH=7 and which is consistent with
isotope fractionation results. In addition, Λ values of DEP quenching
experiments (Λ=24.1 ± 4.3 at pH=7, Λ=30.5 ± 2.2 at pH=2)
are almost identical to that of PS oxidation at pH=2
(Λ=25.7 ± 2.6). This result suggests that SO4

%− is the dominant
radical at pH=2 during PS oxidation of DEP, while SO4

%− as well as
HO% probably contribute to the degradation at pH=7 with a smaller Λ
value of 14.9 ± 3.0.

3.5. Estimating the relative contribution of SO4
%− and HO% in the overall

reaction using isotope fractionation analysis

In previous studies [41,42], Rayleigh-type equations were modified
to derive an equation for estimating the contribution of two simulta-
neous pathways to the overall degradation. To estimate the relative
contribution of SO4

%− and HO%, it is assumed that the impact of
phosphate buffer on major radical species during PS oxidation is small.
Phosphate buffer has been widely used to maintain a constant pH value
in many studies due to low reactivity with sulfate and hydroxyl radicals
[37,51–53]. A phosphate buffer of up to 100mM was used to keep the
pH value constant. Still, the radical chain reaction with phosphate an-
ions (HPO4

2− and H2PO4
−) might affect the reaction. The potential

Fig. 2. Correlation of 2H and 13C isotope fractionation for DMP (A), DEP (B) and DBP (C) during chemical oxidation reactions.

Fig. 3. Degradation kinetic curves of DEP during the study of radical quenching at pH=2 (A) and pH=7 (B).
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formation of HPO4
%− and H2PO4

% with respect to pH value and con-
centration of the phosphate buffer used in the experiments was esti-
mated according to literature data (Excel SI). The potential contribution
of phosphate radicals in the experiments of DEP was minor (< 8%) and
did not affect the discussion below (Text SI). Therefore, the contribu-
tion of secondary inorganic radical species was not considered further
for the estimation of the relative contribution of SO4

%− and HO%.
HO% is the predominant radical species in the UV/H2O2 reaction,

whereas the TBA quenching experiment of DEP at pH=7 suggests that
SO4

%− are the dominant radicals. In addition, distinct 2H and 13C iso-
tope enrichment factors allow to estimate the relative contribution of
SO4

%− and HO% on the removal of DEP during PS oxidation at pH=7
according to the extended Rayleigh-type equation. Error propagation
was used to calculate the 95% confidence intervals of the estimated
contribution (F) of HO% vs SO4

%−. HO% has a contribution of 0–47%
and 20–50% based on the uncertainty of carbon and hydrogen isotope
analyses, respectively. Moreover, Eq. (3) was also applied to calculate
the value of F using carbon and hydrogen isotope signatures simulta-
neously. A contribution of 21–63% for HO% was obtained, which is in
agreement with hydrogen isotope result. The reason is that the reaction
of DEP with SO4

%−/HO% shows similar carbon enrichment factors, but
different hydrogen enrichment factors. In this case, it is recommended
to estimate the relative contribution using hydrogen isotope data dif-
ferently than data from carbon isotope analysis. Even though a wide
range of variability is observed due to the uncertainty of Λ and ε values,
preliminary results indicate that a combination of radical quenching
experiments and CSIA has the potential to estimate the relative con-
tribution of SO4

%− and HO% in persulfate oxidation systems.

3.6. Apparent kinetic isotope effects of DEP with HO% and SO4
%−

The intermediate products from DEP reaction with UV/H2O2 were
investigated using GC–MS analysis. The main transformation product is
tentatively identified as diethyl 3-hydroxyphthalate (Fig. S4) by the
molecular ion, mass fragment peak and also by comparison with a
previous study [54]. HO% can oxidize organic compounds in aqueous
media via three possible reaction mechanisms: (i) HO% addition leading
to the radical adducts formation (RAF pathway), (ii) hydrogen atom
transfer by HO% (HAT pathway) and (iii) single electron transfer by HO
% (SET pathway) [55]. Based on the identified transformation product,
HO% addition to the aromatic ring of DEP is assumed to be the main
reaction mechanism, which is consistent with Gauss computational
results on HO%-initiated degradation of PAEs in a previous study [45].
The values of δ13C and δ2H are measured as average isotope composi-
tions in the compound, thus obtained εC and εH values are considered as
bulk isotope fractionation factors. According to Eq. (4), εC and εH can be
converted into position specific apparent kinetic isotope effects (13C-
AKIE and 2H-AKIE) considering the reactive sites and nonreactive po-
sitions in the molecule. Experimentally determined kinetic isotope ef-
fect (KIE) values which are typical for oxidation reactions involving
CeH bond cleavage are in the range of 1.01–1.03 for carbon isotopes
and 2–8 for hydrogen isotopes [44,56]. For calculation of 13C-AKIE
during UV/H2O2 reaction of DEP, the values of n, x and z are 12, 2 and
2, respectively. The calculated 13C-AKIE of 1.028 falls in the range of
1.01–1.03 (Table 2), which supports the speculation of the RAF

pathway. However, for 2H, an AKIE of 1.11 was obtained, which is
lower than the previously reported KIEH of 2–8. Much smaller experi-
mental kinetic isotope effect (AKIEH) might be likely associated with a
sp2 to sp3 hybridization change at the reacting carbon in the aromatic
ring as reported elsewhere [32].

For the reaction of SO4
%− with DEP, degradation products could not

be identified by GC–MS analysis. The concentration of the metabolites
was possibly very low and rapid degradation of metabolites in sub-
sequent radical reaction may prevent detection of the products which
would indicate hydroxylation of the side chain or the aromatic ring.
Previous mechanistic studies on the reaction of sulfate radicals with
PAEs suggested that the first step of SO4

%− oxidation was likely the
radical attack on the aromatic ring or oxidation of the aliphatic chain
[46,47,57]. Therefore, AKIEs were calculated for the reaction of DEP
with SO4

%− considering radical attack at the side chain and at the
aromatic ring. In the presence of TBA, SO4

%− becomes the predominant
radical species responsible for DEP decomposition. 13C-AKIE and 2H-
AKIE at pH=2 were 1.013 and 2.19, respectively, and considered to be
identical for both pathways, because the number of reactive positions
(x) and indistinguishable reactive positions (z) lead to calculation of
identical AKIEs in this simplified approach (Eq. (4)). Additionally,
corresponding AKIEs for PS oxidation at pH=2 and TBA quenching
experiment at pH=7 were shown in Table 2. As HO% and SO4

%− are
both involved at pH=7 during PS oxidation, it is difficult to confirm
exact values of n, x and z for the radical reaction due to competing
mechanisms. Therefore, 13C-AKIE and 2H-AKIE values are not calcu-
lated for PS oxidation at pH=7 in this study. Although the obtained
13C-AKIE and 2H-AKIE values of SO4

%− dominant reactions are both in
accordance with expected KIE ranges for CeH bond oxidation
(C:1.01–1.03, H: 2–8), it supports the hypothesis of CeH bond cleavage
but cannot be used to predict degradation mechanisms at the side chain
or aromatic ring of DEP with SO4

%−. More information on intermediate
products may be needed for further elucidation of reaction mechanisms.

4. Conclusions

In present study, dual isotope fractionation of radical reactions was
systematically investigated in heat-activated PS oxidation and UV/
H2O2 for three PAEs (DMP, DEP and DBP). Distinct Λ values (Δδ2H/
Δδ13C) indicate the potential of CSIA to characterize PS oxidation and
UV/H2O2 reaction in field studies as an example for environmental
remediation measures or technical systems. The combination of radical
quenching analysis and CSIA suggests that SO4

%− is the dominant ra-
dical species to oxidize DEP at pH=2 during PS oxidation, while both
SO4

%− and HO% are the major species at pH=7. Additionally, it pro-
vides a novel approach to estimate the relative contribution of SO4

%−

and HO% to the overall reaction using isotope fractionation for char-
acterizing radical reactions. Carbon and hydrogen isotope fractionation
patterns are of fundamental importance to evaluate ISCO processes for
the removal of PAEs. The results of this study are an important step
forward in understanding degradation mechanisms of organic com-
pounds with SO4

%− and HO% in the aqueous phase.

Table 2
Carbon and hydrogen AKIEs of DEP for investigated experimental systems.

Conditions Dominant radical εC (‰) 13C- AKIE εH (‰) 2H- AKIE

UV/H2O2 at pH 7 HO% −2.30 ± 0.42 1.028 −6.8 ± 1.3 1.11
TBA quench at pH 2 SO4

%− −1.07 ± 0.29 1.013 −38.8 ± 7.7 2.19
TBA quench at pH 7 SO4

%− −1.35 ± 0.12 1.016 −39.8 ± 5.7 2.26
PS oxidation at pH 2 SO4

%− −1.39 ± 0.13 1.017 −41.8 ± 2.4 2.41
PS oxidation at pH 7 SO4

%−+HO% −1.57 ± 0.18 n.d.a −28.3 ± 3.3 n.d.a

a n.d.: not determined.
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Control experiments of DEP 

For PS oxidation of DEP, control experiments without PS addition (hydrolysis) at pH = 2 and pH = 7 
were conducted at 35 °C. The remaining fraction of DEP showed no obvious decrease in concentration 
over the time course of the experiments (Fig. S1), which proved that the reduction in DEP concentration 
during PS oxidation was exclusively a result of degradation.  

         Fig. S1. Remaining fraction of DEP in control experiments. 

Control experiment of DEP reaction only with UV irradiation (λ≥ 185 nm, direct photolysis) showed 
less than 10% decrease within 50 hours whereas more than 90% of DEP degraded in 40 hours for 
UV/H2O2 reaction. Rate constants of direct photolysis and UV/H2O2 were 0.0018 h

-1
 and 0.0541 h

-1
, 

respectively, which indicated that degradation rate of direct photolysis was much slower than that of 
UV/H2O2. The degradation of DEP under direct photolysis can be explained by UV absorption spectrum of 
DEP, which was shown in Fig. S2. The measurement was performed with DEP dissolved in water using a 
UV spectrometer. The maximum absorption peak was observed at λ = 229 nm, which was in agreement 
with previous studies on PAEs [1, 2].  This indicates that direct photolysis is unlikely when a UV filter with 
cut off at λ≥ 280 nm is used. Control experiment of UV radiation with filter (λ≥ 280 nm) for cut of the 
shortwave UV irradiation showed almost stable concentration and suggested that photolysis at λ≥ 280 nm 
does not affect the concentration of DEP under the experimental conditions.

 

 Fig. S2. UV absorption spectrum of DEP in water. 
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Carbon and hydrogen isotope fractionation of PAEs 

The remaining fraction, carbon and hydrogen isotope composition of DMP, DEP and DBP in the 
degradation experiments were shown in Fig. S3. For all investigated reactions, δ

13
C and δ

2
H values of 

three PAEs showed a trend to more positive isotope values in the time course of degradation, which 
indicated a normal isotope effect.  
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Fig. S3. Remaining fraction (black squares), carbon isotope ratios (red circles) and hydrogen isotope 
ratios (blue triangles) of three PAEs (DMP, DEP and DBP) during transformation reactions catalyzed by 
persulfate oxidation at pH 2 (A, E and I), persulfate oxidation at pH 7 (B, F and J), UV/H2O2 process (C, D 
and K), quenching experiment with TBA at pH 2 (G) and quenching experiment with TBA at pH 7 (H). 

Carbon isotope composition of DMP exhibited 
13

C enrichment from -32.96 ± 0.04‰ to -30.15 ± 
0.02‰ after 75% degradation by persulfate oxidation at pH 2, from -33.01 ± 0.16‰ to -26.94 ± 0.02‰ 
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after 95% degradation by persulfate oxidation at pH 7 and from -33.32 ± 0.05‰ to -26.14 ± 0.06‰ after 
93% degradation by UV/H2O2 reaction, respectively. The hydrogen isotope composition of DMP showed a 
distinct 

2
H enrichment from 92.2 ± 0.7‰ to 130.1 ± 0.6‰ after 75% degradation by PS oxidation at pH 2, 

from 91.5 ± 1.5‰ to 121.5 ± 0.2‰ after 95% degradation by PS oxidation at pH 7, and from 102.8 ± 0.7‰ 
to 117.0 ± 0.5‰ after 93% degradation by UV/H2O2.  

The changes in 
13

C and 
2
H values of DEP during different batch experiments were shown in Fig. S3 

(D ~ H).  Radical quenching experiments with TBA at pH = 2 and pH = 7 were conducted to obtain further 
information on predominant radical species. For persulfate oxidation of DEP at pH 7 without and with 
TBA, hydrogen isotope ratios were enriched from -214.4 ± 1.1‰ to -164.5 ± 0.8‰ after 89% degradation 
and from -213.7 ± 0.9‰ to -190.6 ± 0.7‰ after 52% degradation. In these experiments, carbon isotope 
ratios were enriched from -27.98 ± 0.10‰ to -24.46 ± 0.02‰ after 89% degradation and from -27.94 ± 
0.02‰ to -26.94 ± 0.05‰ after 52% degradation. During the degradation experiments of DEP at pH 2 with 
persulfate oxidation but without TBA, 

2
H values were enriched from -216.2 ± 0.6‰ to -121.8 ± 1.0‰ after 

93% degradation. In the parallel batch experiment using persulfate oxidation with TBA, 
2
H isotope value 

became isotopically heavier from -219.3 ± 0.1‰ to -203.5 ± 1.1‰ after 40% degradation. Carbon isotope 
ratios were enriched in 

13
C from -28.12 ± 0.14‰ to -24.32 ± 0.01‰ after 93% degradation and from -

27.94 ± 0.04‰ to -27.43 ± 0.03‰ after 40% degradation, respectively (Fig. S3, E and G). 

Estimation of potential influence of secondary radicals generated by the reaction of phosphate 
ions with SO4

·−
/ HO·  

Potential effect of phosphate buffer on chemical reactions of DEP was investigated and radical 
reactions of SO4

·−
/ HO· with phosphate (HPO4

2-
 and H2PO4

-
) were considered to form secondary 

phosphate radicals (HPO4
·−

 and H2PO4
·
). For the experiments a 61.6 and 100 mM phosphate butter was 

used (see excel script for individual experiments). Potential contributions to the degradation of DEP with 
secondary radicals were estimated in order to evaluate if isotope fractionation of DEP could be affected. 
An excel script with the calculation was attached for the formation of phosphate radicals with 
experimental parameters, such as concentrations and pH (SI). For simplification of the model calculation, 
we considered a preferential reaction of radicals with the aromatic system of DEP. Absolute rate 
constants for the reaction of SO4

·−
 with aromatic compounds were found in the range of 10

9
 M

-1
s

-1
 [3], 

therefore, the rate constant of SO4
·−

 with DEP was estimated to be 1.010
9
 M

-1
s

-1
. Initial concentration of 

DEP was 0.97 mM and the first-order rate constant of SO4
·−

 with DEP representing the sink strength (S 

[SO4
·−

 +DEP]) was calculated to be 9.710
5
 s

-1
. According to different phosphate buffer compositions at 

pH = 2 and pH = 7, potential reactions of SO4
·−

 with phosphate anions (HPO4
2-

 and H2PO4
-
) were 

estimated and absolute second-order rate constants were obtained from previous study of Maruthamuthu 
and Neta [4]. Rate constants for the formation of phosphate radicals were estimated to be in the range of 

2.010
4
 M

-1
s

-1 
to 1.210

6
 M

-1
s

-1
 and were considerably smaller than the rate constants for DEP reaction 

with HO· (4.410
9
 M

-1
s

-1
)
 
and SO4

·−
 (1.010

9
 M

-1
s

-1
). 

Thus, maximal contribution of secondary radicals can be considered to be small compared to primary 
radical species during PS oxidation at pH = 2 and pH = 7. It was calculated to contribute between 0.7% 
and 7.9%, respectively assuming that they react with DEP. In addition, second-order rate constant of 

HO·-initiated DEP transformation was calculated to be 4.410
9
 M

-1
s

-1
 using transition-state theory [5]. The 

corresponding first-order rate constant of HO· with DEP representing the sink strength (S [HO· +DEP]) 

was estimated to be 4.310
6
 s

-1
 considering initial concentration of DEP. Similarly, secondary reactions of 

HO· with HPO4
2-

/H2PO4
-
 were considered according to literature data [4] and the effect of generated 

phosphate radicals on HO· was estimated to be 0.2%. The estimation showed that potential effects of 
phosphate radicals on SO4

·−
 and HO· were lower than 8%. It is known that oxidation capability of radical 

species decreases in the order: SO4
·−

 > H2PO4
·
 > HPO4

·−
 [4]. Therefore, we considered that the 

contribution of phosphate radicals was not significant in the investigated experiments of DEP. 

In addition, estimated calculation method was applied to the experiments of DMP with the 

assumption that second-order rate constant of SO4
·−

 with DMP was 1.010
9
 M

-1
s

-1
. To our best 

knowledge, accurate value of k [SO4
·−

 +DMP] was not available from literature. Hence, we assumed the 
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value according to previous study [3] and used it to roughly estimate the potential influence of secondary 
phosphate radicals on the reaction of HO· with DMP. The contribution of secondary radicals during PS 
oxidation experiments with DMP were estimated to be 0.6% (pH 2) and 7.0% (pH 7), respectively (see 
excel script). Moreover, potential contribution of secondary phosphate radicals on HO· catalyzed radical 

reaction was calculated as 0.3% when the value of k [HO· +DMP] was 2.710
9
 M

-1
s

-1
 based on literature 

data [5]. Thus, the estimated results indicated that potential influence of secondary phosphate radicals 
was not significant for DMP in this study.  

We did not estimate the contribution of secondary radical for DBP experiments because absolute 
second-order rate constant for the reaction of SO4

·−
 with DBP was lacking and it was difficult to estimate. 

Possible contribution of SO4
·−

 reaction with long alkyl side chain of DBP needed to take into 
consideration. For PAEs molecules, the reaction of radical species with the side chain became more 
significant with the increasing length of the alkyl side chain in HO·-initiated reactions [5]. More research 
on the reaction of phosphate radicals with PAEs is needed and will be conducted in the future study.  

Identification of degradation product of DEP in the UV/H2O2 reaction by GC-MS. 

Transformation products of DEP reaction with UV/H2O2 were tentatively identified by GC-MS. Based 
on the molecular ion, mass fragment peak and also through comparison with literature, the peak at 
retention time of 14.31 min was identified as diethyl 3-hydroxyphthalate according to the previous study of 
Tay et al. [6] (Fig. S4). The mass spectrum could be clearly distinct from the mass spectrum of diethyl 4-
hydroxyphthalate. 

Fig. S4. Mass spectra of identified degradation product (A) and diethyl 3-hydroxyphthalate (B) from 

Tay et al. [6].  
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ABSTRACT 

We have developed methods for the extraction and clean-up of hexachlorocyclohexane isomers 
(HCHs) from water, soil, plant, milk, fish oil and liver for studying sources and reactive transport 
processes of HCHs using multi-element compound specific isotope analysis (CSIA) approach. 
The extraction and clean-up methods were evaluated for recovery efficiency and isotope effects. 
The recovery resulted in sufficient precision and accuracy for carbon, hydrogen and chlorine 
isotope analysis within the analytical uncertainty of ±0.5‰, ±5‰ and ±0.2‰, respectively. The 
developed method was applied for stable isotope analysis of HCHs in soil, plant and liver 
samples from a contaminated landscape in Bitterfeld, Germany. The enrichment of isotope 
compositions of up to 14.1‰ for carbon and 2.6‰ for chlorine demonstrates the potential for 
analyzing reactive transport processes of HCHs in the food web. The methods can be applied for 
multi-element stable isotope analysis of HCHs for sources identification, characterization of 
degradation mechanisms, and particularly contaminant accumulation in the food web. 

Keywords: hexachlorocyclohexane isomers, extraction, isotope fractionation, food web, reactive 
transport. 

INTRODUCTION  

γ-hexachlorocyclohexane (γ-HCH) is one of the most produced and extensively used 
organochlorine pesticides of the past. Its application and production were banned by the 
Stockholm Convention in 2009 due to its persistent, toxic, cancerogenic and mutagenic 
properties.

1,2
 Today official use continues only in pharmaceutical treatment for lice and scabies.

1
 

Hexachlorocyclohexane isomers (HCHs) are commercially manufactured by the reaction between 
benzene and chlorine in the presence of UV light. Except for γ-HCH, the other isomers lack of 
specific insecticidal properties. The production of one ton of γ-HCH generates 8 to 12 tons of 
HCH containing waste, the so called “HCH muck”. α-HCH forms the major portion of technical 
HCH, while β-, and δ-HCH are chemically significantly more stable.

3
 Huge amounts of HCH muck 

was produced and largely deposited in an uncontrolled manner, which leads to serious 
environmental pollution world wide,

4,5
 and especially in Germany,

6,7
 Italy,

8
 Spain,

9
 China

10
 and 

India.
11

 HCHs are considered as persistent organic pollutants due to their relative long-life in the 
environment. Due to the low water solubility HCHs tend to accumulate in the soil and enter the 
food web through plant uptake from the roots and air.

12,13
 HCHs can be transported over long 

distances by natural processes like global distillation.Today HCHs residues can be found in 
elevated concentration in Arctic and Antarctic animals at the end of the food chain.

14-17
  

Compound specific isotope analysis (CSIA) appears to be a promising method to assess sources 
and fate of organic pollutants in the environment.

18-20
 Hydrogen, carbon and chlorine isotope 

compositions allow to indentify sources of HCHs.
21

 The carbon isotope fractionation can be used 
to characterise in situ (bio)degradation.

22-24
 One main bottleneck for CSIA is, however, the 

moderate analytical sensitivity and purity requirements for isotope analysis. In particular, the low 
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detection limit of CSIA makes the investigation of bioaccumulated contaminants in the food web 
challenging, since large amounts of samples are required to enable isolation of sufficient 
compound quantities. To date, the first and only study using CSIA to investigate reactive 
bioaccumulation of contaminants was conducted by Holmstrand et al.,

25
 where aromatic 

compounds were extracted from 16 kg of seal blubber by continuous partitioning with acetonitrile 
in 2.2 L lipid batches using a Wallenberg perforator. This approach is not feasible for routine 
investigations of contaminants in the food web as it is limited by the availability of large amount of 
samples as well as laboratory equipments or spaces. Furthermore, the high lipophilicity of HCHs 
makes the separation from remaining lipids highly challenging. Thus, methods for extraction, 
seperation and clean-up of HCHs from biota matrixes, as well as routine laboratory preparation 
methods are needed for implementation of CSIA. 

The main objective of this study is to develop methods for HCHs extraction and purification from 
environmental and particularly for biological samples for 

13
C,

 2
H and 

37
Cl stable isotope analysis 

in order to explore the potential for food web studies. The method development includes isolation 
of lipophilic HCHs from proteinaceous and fat-rich biological materials. The extraction and clean-
up protocols were provided in details. The HCHs extraction efficiency from different matrices 
(water, soil, plants, milk, oil, tissue) was evaluated through spiking experiments. The recovery 
and isotope artefact of the methods were critically examined. In order to conclude the potential of 
CSIA for the investigation of bioaccumulation and degradation at individual trophic levels in the 
food web, extracted HCHs samples from a contaminated site (Bitterfeld/Wolfen, Germany) were 
used for isotope analysis. 

EXPERIMENTAL SECTION 

Chemicals and Reference Matrixes 

α-, β-, δ-HCH (99.5% purity, Fluka) were purchased from Sigma-Aldrich. HCHs stock solution 
containing 10 g L

-1
 of α-, β-, δ-HCH (1:1:1) was prepared in acetone (ROTISOLV® ≥99.9 %, 

UV/IR-Grade) for spiking water and soil samples. A stock solution prepared in hexane was used 
for spiking lipid rich material including plant, fish oil, milk and liver samples. Stock solution was 
stored in the refrigerator at 4°C before use. High purity of acetonitrile (≥99.9%, Carl Roth GmbH & 
Co. KG, Germany), n-hexane (for pesticide residue analysis, Sigma-Aldrich) and dichloromethane 
(DCM, ≥99.9%, Carl Roth GmbH & Co. KG, Germany) were used for HCHs extraction. Florisil (for 
chromatography, ROTH, 100-200 mesh) was used as stationary phase for liquid column 
chromatography, glass wool (untreated, SUPELCO Analytical) and sea sand were used for 
packing the column. 7,12-dimethyl-benz[α]anthracene (p. A, Reagent Grade) was used as an 
internal standard to track elution of HCH fractions from the Florisil column. An UVA lamp (320-
420 nm) was use to visualize the 7, 12-dimethyl-benz[α]anthracene elution. HCH-free soil and 
grass (Calamagrostis epigejos) obtained from residential garden, fish oil (Den originale Moeller’s 
Tran), fresh milk (3.5% fat) and pork liver purchased from supermarket were used as matrixes to 
evaluate the extraction. 

Extraction of HCHs from Different Matrixes 

Water. HCHs stock solution was spiked into 1 L of distilled water in a separation funnel at 
concentration levels between 2900 and 10150 µg L

-1
. The spiked HCHs were extracted 3 times 

with 90 mL DCM in total (30 mL each time) by shaking thoroughly. The organic phases were 
combined and evaporated to ~0.5 mL under a gentle stream of nitrogen in a TurboVap 
concentrator (TurboVap II, Biotage, Sweden). At the end, the concentrated sample was 
transferred into a glass vail by a glass pipetteand reconstituted into 1 mL hexane for further 
analysis. 

Soil. HCHs stock solution was spiked into 10 g (wet weight) of HCH-free garden soil at 
concentration levels between 290 and 1015 µg g

-1
. 10g of spiked soil were extracted by 

accelerated solvent extraction (Dionex ASE 200, Thermo Scientific) equipped with 11 mL 
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stainless steel extraction cells. The extraction conditions are as following: solvent: 
hexane/acetone (1:1, v:v); oven heat up time: 6 min; final temperature: 100 °C; static time: 3 min; 
pressure: 1500 psi; purge time: 60 s; flush volume: 60%; static extraction cycles: 3. The extracted 
solution containing HCHs were combined and dried with ~ 5 g anhydrous Na2SO4. The HCH 
extracts were evaporated to dryness using a TurboVap concentrator and then re-dissolved to 1 
mL of n-hexane for further clean-up. 

Plants. Plant sample from residential garden was first cut into small pieces and fully dried in a 
freeze-dryer (Christ Beta-2-16 Freeze Dryer, Martin Christ Gefriertrocknungsanlagen GmbH, 
Germany) at -35°C and 0.310 mbar.  The dry sample was mechanically ground into a fine powder 
in a grinder. About 6 g of powdered plant was filled into a 22 mL stainless steel extraction cell 
(Dionex, Thermo Scientific) in which cellulose filters were placed on the both side of the cell. 
During filling of plant powder into cells, 1 mL of HCHs stock solution was spiked drop by drop (to 
ensure homogeneously distribution) until the target concentrations between 10 and 166 µg g

-1
 

were adjusted. The cell was then placed overnight in the fume hood for solvent evaporation 
before extraction. ASE extraction conditions are the same as for soil sample extraction, but 
temperature was adjusted to 125 °C. The extract from plant was transferred into a 50 mL round 
bottom flask, and then solvent was evaporated in a rotary evaporator at 40°C. A small amount of 
activated Florisil and DCM were added to re-dissolve the extracted materials. The extracted 
materials were adsorbed on Florisil by evaporation of DCM to dryness for further clean-up. 

Fish Oil. HCHs stock solution was spiked into 100 mL fish oil at concentration levels between 1 
and 100 µg g

-1
. 100 mL of spiked fish oil was extracted with 100 mL of acetonitrile in a 500 mL 

centrifuge bottle (PP Copolymer, Thermo Fisher Nalgene®) which was placed in ultrasonic bath 
for 1h. Acetonitrile and oil phases were separated by centrifugation at 10.000 rpm at 4°C for 
20min, and then acetonitrile phase was carefully transferred into a TurboVap vial using glass 
pipette. The same extraction procedures were repeated three times again with 50 mL, 25 mL, 25 
mL of acetonitrile, respectively. After which the acetonitrile phase were combined and evaporated 
in a TurboVap concentrator (25 °C, 9-14 psi) until the sample was concentrated to about 2 mL. If 
the co-extracted lipids were more than 10 mL, the sample was re-extracted three times with an 
equal volume of acetonitrile in an ultrasonic bath for 30 min. The same procedures were applied 
as described above. 

Liver. Fresh pork liver was first homogenized using a hand blender (VH007, Voche, UK), and 
then HCHs stock solution was spiked into 100 g liver to obtain a concentration of 10 µg g

-1
. The 

HCHs extraction procedures were same as described for fish oil. 

Milk. HCHs stock solution was spiked into 500 mL milk to obtain a concentration of 100 µg L
-1

. 
500 mL of milk are extracted with 50 mL of hexane in a 1L separation funnel. 5~10 mL ethanol 
was added to the hexane phase in order to obtain a better phase separation.  The hexane phase 
was collected in a TurboVap vial. After repeating the extraction procedures 3 times, the emulsion 
layer on top of aqueous phase was collected into a 500 mL centrifuge bottle and centrifuged at 
10.000 rpm for 20 min at 4°C, in order to obtain a phase separation. All hexane phases were 
combined and evaporated in a TurboVap concentrator (25 °C, 9-14 psi) until only co-extracted 
lipids remained. If the co-extracted lipids were more than 10 mL, the lipid phase was re-extracted 
3 times with an equal volume of acetonitrile in an ultrasonic bath for 30 min, as described for fish 
oil. 

Clean-up of HCHs Extracts 

Water and Soil. The clean-up method was modified from US EPA method 3620C.
26

 A glass 
Pasteur pipette (0.7 cm diameter × 15 cm length) was used as chromatographic column. The 
pipette was packed from bottom to top with a little glass wool, 1 cm clean sea sand, 1 g activated 
Florisil, and 0.5 cm layer of activated anhydrous Na2SO4. The column was first pre-eluted with 
1 mL of n-hexane. Then 50 µg of 7,12-Dimethyl-benz[a]anthracene (2 mg mL

-1
 in hexane, 25 µL) 

was added on top of the column as UV-tracer.  The 7,12-dimethyl-benz[α]anthracene can co-
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elute with HCHs and thus can be used as an indicator for the elution of HCHs. The extracted 
sample dissolving in hexane was loaded onto column and eluted continuously by 5 mL hexane 
(1

st
 fraction) and 5 mL hexane/DCM mixture (v/v 1:1) (2

nd
 fraction) at the natural gravity flow 

velocity. A 360 nm UVA lamp was used to monitor the fluorescence. The eluate from 1
st
 fraction 

containing mainly hydrocarbons was disposed. The eluate from 2
nd

 fraction was evaporated to 
~0.5 mL under a gentle nitrogen stream in a TurboVap concentrator, and then transferred and 
reconstituted into 1 mL DCM into glass vails for further concentration and isotope analysis. 

Plants. The final extract adsorbed to Florisil (as described above) was purified by column 
chromatography. The glass column (2.2 cm diameter × 32.5 cm length) was packed, from bottom 
to top, with a little glass wool, 1 cm of cleaned sea sand, 15 cm of activated Florisil and 4 cm of 
activated anhydrous Na2SO4. Anhydrous Na2SO4 was activated by heating at 200 °C overnight 
and saved in a closed container; Florisil was activated at 120°C for 12 h just before usage. Florisil 
was packed into column as slurry in hexane to ensure that the column is tightly and 
homogeneously packed. 15 mL hexane was passed through to wash the packed column (keep 1 
mL hexane above the upper surface of column). Then 100 µg of 7, 12-Dimethyl-
benz[a]anthracene (2 mg mL

-1
 in hexane, 50 µL) was added on top of the column as UV-tracer. 

The extracted sample adsorbed to Florisil was loaded onto column and eluted continuously by 30 
mL hexane (1

st
 fraction) and 45 mL hexane/DCM (v/v 1:1) (2

nd
 fraction). The fractions were 

collected as above, the 1
st
 fraction was disposed and the 2

nd
 fraction containing HCHs were 

subjected for further analysis. 

Fish Oil, Milk and Liver. The co-extracted lipids (about 2 mL) were transferred and mixed with 3 
times volume of 95% concentrated H2SO4 in a 20 mL glass bottle closed with Teflon coated 
screw cap. The mixed solution was reacted at 70°C in an ultrasonic bath for 2h to remove co-
extracted lipids by acidic hydrolysis. The hydrolyzed solution was transferred into a separation 
funnel with 100 mL of distilled water and 30 mL of hexane, and then shaken carefully for 
approximately 2 mins. The acidic aqueous phase was discharged after getting clear phase 
separation. The hexane phase was then washed with 50 mL distilled water. After that, 20 mL of 
0.5 M NaOH were added to the hexane phase to remove the remaining lipids by saponification. 
The mixture was shaken for 30 s, after 0.5 M NaOH were added to promote saponification of the 
lipids, until the hexane phase was transparent yellow and no further color change occurred on 
addition of NaOH solution. The solution mixture was then transferred and centrifuged at 4°C for 
20 min at 10k rpm to ensure a good phase separation. The hexane phase was collected and the 
remaining alkaline solution was extracted once more with 30 mL hexane under same conditions. 
Finally, the combined hexane phase was evaporated to ~1 mL with a TurboVap concentrator. 
The extract was then purified by column chromatography as described for plant sample. 

HCHs Contaminated Site and Sampling 

Soil, ground water, plant and wild animal tissue samples were obtained at a large-scale HCHs 
contaminated mega site which is located at Bitterfeld/Wolfen in the eastern part of Germany. The 
field site history and contamination have been described elsewhere.

23,27
 Four soil samples were 

taken from different locations at the contaminated site. Plants samples of two different species, 
Plantago lanceolate and Phragmites australis, were taken in October 2015 from two different 
locations at heavily contaminated “Area C”.

23
 Wild boar and deer (about one year old) feeding in 

this area were hunted in November 2015 with the support of the Environmental Agency in 
Bitterfeld. Liver and brain samples were collected for further studies. All samples were stored at -
20 °C until HCHs extraction. The HCHs extraction and purification methods described above 
were applied for preparation of each sample (10 g of soil, 6 g of dried plant, 150 g of liver and 86 
g of brain). 

Analytical Methods 

Concentration Analysis. An Agilent 6890 series GC (Agilent Technologies, USA) equipped with a 
flame ionization detector (FID) was used to determine the concentration throughout the study. 
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HCHs were separated with a HP-5 column (30 m × 320 µm × 0.25 µm, Agilent 19091J-413, USA) 
using helium flow of 1 mL min

-1
 as the carrier gas. The oven temperature can be found in the 

supporting information. Samples were measured with a split ratio of 1:1 with injector temperature 
of 250 °C and injection volume of 1 µL. Each sample was measured in triplicates. 

Isotope Analysis. Isotope composition of element (E) is reported as δ notation in parts per 
thousand (‰) and expressed as the deviation from international standards according to the 
following equation: 

𝛿𝐸𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1 

R indicates the isotope ratio of 
13

C/
12

C, 
2
H/

1
H or 

37
Cl/

35
Cl. International standards for carbon, 

hydrogen and chlorine are Vienna Pee Dee Belemnite (VPDB), Vienna Standard Mean Ocean 
Water (VSMOW) and Standard Mean Ocean Chloride (SMOC), respectively. 

Carbon isotope composition (δ
13

C) was analyzed using a gas chromatograph-combustion-isotope 
ratio mass spectrometer (GC-C-IRMS) system, where a GC (7890A, Agilent Technologies, USA) 
was coupled via a ConFlo IV interface (Thermo Fisher Scientific, Germany) to a MAT 253 IRMS 
system (Thermo Fisher Scientific, Germany). A Zebron ZB1 column (60 m × 0.32 mm × 1 μm; 
Phenomenex, Germany) with a constant carrier gas flow of 1.5 mL min

-1
 was applied for 

chromatographic separation. All samples were injected in splitless mode and injection 
temperature at 250 °C. The oven temperature was described in supporting information. 
Subsequently, compounds were converted to CO2 in the combustion reactor (Thermo Fisher 
Scientific, Germany) operating at 1000°C. Samples were analyzed as triplicates. Corresponding 
analytical precision for δ

13
C was below ±0.5‰. All δ

13
C values were normalized to VPDB scale by 

a two-point calibration using characterized in-house standards β-HCH (δ
13

C = -34.1‰) and γ-
HCH (δ

13
C = -25.3‰). A third standard α-HCH (δ

13
C = -29.1‰) was used for validation of the 

calibration. 

Hydrogen isotope composition (δ
2
H) was analyzed via a gas chromatograph-chromium based 

high temperature conversion-isotope ratio mass spectrometer (GC–Cr/HTC–IRMS) system, as 
previously described elsewhere.

28-30
 Briefly, Cr/HTC makes use of the combination of high 

temperature conversion and reduction at hot elemental chromium at 1200 °C. While hetero-
elements (i.e. N, S, halogens) are scavenge at elevated temperatures as chromium salts, H2 is 
released into the carrier stream and subsequently isotopically analyzed with the IRMS. 
Chromatographic separation was carried out using identical GC column and temperature program 
as described in the supporting information. Samples were analyzed as triplicates. Corresponding 
analytical precision for δ

2
H was below ±5‰. All δ

2
H values were normalized to VSMOW scale by 

a two-point calibration using characterized in-house standards: tetradecane (δ
2
H = -230‰) and 

hexadecane (δ
2
H = +381‰, reference ID: USGS69

31
). A third standard heptadecane (δ

2
H = -

73‰) was used for validation of the calibration.  

Chlorine isotope composition (δ
37

Cl) was determined online using gas chromatography coupled 
with multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS), as 
recently described elsewhere.

32
 A gas chromatograph (Trace 1310, Thermo Fisher Scientific, 

Germany), equipped with an auto-sampler (TriPlus RSH, Thermo Fisher Scientific, Germany) was 
used for analyte separation. Samples were injected with a split ratio of 1:10 and a constant career 
gas flow of 2 mL min

-1
. All samples were analyzed as triplicates and separated on a Zebron ZB-1 

capillary column using temperature programing as described in the supporting information. 
Solvent peak cut was done with a SilFlow GC Dean Switch (SGE Analytical Science, Austria) at 
the end of the GC column. Once separated, the analyte was directed to the ICP torch via a 
Thermo Elemental Transferline AE2080 (Aquitaine Electronique, France). Several modifications 
were introduced to the transfer line. The interface was specifically modified for the transport of 
semi-volatile organics from the GC to the cold ICP torch. The MC-ICPMS was operating in low 
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resolution mode (m/Δm = 300) using a super dry plasma reducing interferences from protonation. 
Parameters for the MC-ICPMS are described in detail before.

32,33
 After atomization and ionization 

in the dry argon plasma, chlorine isotope were analyses directly at mass 35 and 37 (
35

Cl
+
, 

37
Cl

+
) 

at low resolution mode (m/Δm = 300). Generated transient signals (“peaks”) were transformed 
into isotopic ratios after acquisition. All isotopic ratios were calculated using regression analysis. 
Linear regression of these plots yields a straight line whose slope represents the isotope ratio. 

All samples were spiked with an in-house reference (TCE No.2) as an internal isotopic reference 
for compensation of potential instrumental drifts. The δ

37
Cl was determined in two steps: (1) the 

deviation of a sample from an internal isotopic reference with a known δ
37

Cl value was calculated, 
and (2) obtained raw δ

37
Cl values were normalized to SMOC scale by applying a two-point 

calibration approach. Calibration to SMOC scale was done using in-house standards with 
characterized chlorine isotope composition, including methyl chloride (MC, δ

37
Cl = +6.02‰) and 

trichloroethene no.2 (TCE2, δ
37

Cl = -1.19‰). In addition trichloroethene no.6 (TCE6, δ
37

Cl = 
+2.17‰) was used for the validation of calibration, as described by Horst et al.

32
 

RESULTS AND DISCUSSIONS 

Development of Protocols for HCH Extraction from Different Matrixes 

Compound-specific stable isotope analyses of carbon, hydrogen and chlorine are several orders 
or magnitude less sensitive than modern GC or HPLC analysis and thus require larger amount of 
samples to enrich and clean up sufficient material for analysis. A central step of clean up and 
enrichment strategies are evaporation of solvent for concentrating target components. 
Insignificant isotope effects associated with solvent evaporation were observed by Ivdra et al.

34
 

We rigorously tested the recovery and potential isotope effects after evaporation of solvent with 
HCH isomers to dryness and found not statistically relevant changes in the δ

13
C

 
and δ

2
H isotope 

compositions. Evaporation processor does not change isotope composition of HCHs and thus 
large amount solvents can be used for extraction. Column chromatography packed with Florisil 
slurry and pre-eluted by hexane gives almost complete recovery. The use of co-eluting 
fluorescent aromatic tracer (7, 12-Dimethyl-benz[a]anthracene) allows visual inspection of the 
chromatography and precise cut of the fraction containing HCH isomers. The tracer can be used 
as internal standard for recovery if intended. 

Water and Soil. HCHs contaminated water samples were extracted simply by liquid-liquid 
extraction method using DCM. The extraction procedure was repeated three times to increase 
HCHs recoveries. Accelerated solvent extraction was applied for extraction of HCHs from soil. 
The extraction conditions are reported elsewhere

35
 with modification of three static cycles in order 

to improve the recovery rate. Interference from humic substances and co-extracted organic 
substances are expected. For example, fatty acids are very often co-extracted by organic solvent; 
therefore the HCHs extracts from water and soil were further separated by Florisil column 
chromatography. Florisil was selected in the present study due to its potential to retain lipids and 
high polar materials, as well as its capability of effecting clean-up of apolar pesticide residues 
from food samples.

36
 Overall recoveries of 88 - 95% and 86 - 94% were obtained from water and 

soil for α-, β-, δ-HCH, respectively (Table 1). 

Plants. In most crop species the typical leaf relative water content at initial wilting is about 60 - 
70%.

37
 Accordingly, 15 - 20 g of fresh plant is need for extracting sufficient HCH residues for δ

13
C 

measurement of HCH residues at a contaminated site,
13

 where residues of 2.5 - 18.7 mg kg
-1

 α-
HCH and 0.9 - 40.3 mg kg

-1
 β-HCH from 18 studied leaf samples (dry weight) were reported. 

Plants were first freeze-dried rather than air-dried in order to minimize the losses as HCHs are 
relatively volatile hydrophobic compounds. The clean-up method using Florisil column was 
modified from elsewhere.

25
  

ASE with hexane/acetone (1:1, v:v) at 125 
o
C was used for extraction. Hydrophobic compounds 

such as plant waxes, chlorophyll and lipids can be co-extracted from plants, which could form a 
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lipid-layer and block the Florisil column during HCHs separation by column chromatography. The 
HCHs extracts after ASE step were, therefore, first adsorbed to a small amount of Florisil before 
loading on the column. Overall recoveries of 36 - 66% were achieved for α-, β-, δ-HCH from 
plants (Table 1). The losses during extraction of HCHs from plants samples were evaluated step 
by step (data is shown in supporting information, Table S1). The recoveries of 98 - 107% after 
solvent evaporation and 92 - 98% after column chromatography indicated that almost no 
significant losses of HCHs were observed during these two steps. Only 12 - 17% of HCHs 
recoveries were obtained after ASE using hexane as extraction solvent, which is likely due to the 
polarity of hexane is too low to extract HCHs from the organic plant matrix. HCHs recoveries were 
significantly increased to 43 - 50% when ASE extraction solvent was changed to acetone/hexane 
1:1 (v/v), and furthermore slightly improved to 52 - 61% when same ASE extraction procedure 
was repeated twice. HCH extracts from ASE using acetone alone were difficult to be purified by 
column chromatography due to the co-extraction of large amounts of interfering compounds such 
as pigments. 

Fish Oil, Milk and Liver. The methods of HCHs extraction and clean-up from fish oil, milk and liver 
were adapted from elsewhere.

25,38
 Fish oil was selected to represent extreme lipids-enriched 

samples. Acetonitrile was applied to remove large amounts of lipids in the first extraction step as 
lipids have relative lower solubility in acetonitrile comparing to hexane. Instead of using phase 
partitioning in a separation funnel, we homogenize the sample solvent mixture in an ultrasonic 
bath and centrifugation was applied for better HCHs extraction and good phase separation 
between acetonitrile and oil phase. The extraction procedure using acetonitrile was repeated 
three times in order to improve the HCHs recoveries.  A recovery of 75 - 89% was achieved after 
repeating the acetonitrile extraction three times (Table S2). Milk was selected to represent fatty 
samples containing a large amount of water. Milk contains typically 88 % water and is rich in fat 
(3.4 %) and protein (3.3%).  Hexane extraction was applied to remove water and hydrophilic 
substances in the first extraction step from the milk. Fresh pork liver was chosen as a 
representative sample of animal tissues containing high amounts of fat and protein. The 
homogenization of this tissue is achieved with a food blender before acetonitrile can be used in 
order to increase the extraction recovery. Fish oil, milk and liver contain fatty matrixes which are 
co-extracted.  The separation of lipophilic HCHs is challenging.  

We choose a strategy to remove co-extracted lipids by acidic hydrolysis using 95% concentrated 
H2SO4, followed by saponification process using 0.5 M NaOH solution. The majority of hydrolyzed 
carboxylic acids are deprotonated and polar hydrolysis products (glycerol) are dissolved in the 
water phase, thus HCH can be extracted with n-hexane. Obtaining a clear phase separation in 
each step is essential to improve the HCHs recoveries. The overall HCHs recoveries of 16 - 30%, 
33 - 44% and 16 - 25% were obtained from Fish oil, milk and liver, respectively (Table 1).  

Table 1: HCHs Recoveries from Different Matrixes. 

sample code 
spiking 
concentration α-HCH β-HCH δ-HCH 

water 10 water 2900 µg L
-1

 93% 90% 88% 

water 20 water 5800 µg L
-1

 94% 91% 93% 

water 35 water 10150 µg L
-1

 95% 94% 94% 

soil 10 soil 290 µg g
-1

 91% 88% 86% 

soil 20 soil 580 µg g
-1

 92% 92% 92% 

soil 35 soil 1015 µg g
-1

 94% 92% 93% 

Grass Sp-3 10 F2 grass 10 µg g
-1

 38% 36% 66% 

Grass Sp 1000 ug F2 grass 166 µg g
-1

 39% 48% 40% 

FO Sp 10 F2 fish oil 10 µg g
-1

 30% 21% 16% 

FO Sp10000 ug F2 fish oil 100 µg g
-1

 26%  18% 

GM Sp 1ug/g F2 milk 100 µg L
-1

 40% 44% 33% 

Liver Sp 10 F2 liver 10 µg g
-1

 16% 25% 20% 
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Effects of Sample Treatment on Stable Isotope Composition 

The HCH molecule contains carbon, hydrogen and chlorine, which can be applied for the 
compound-specific stable isotope analysis. The corresponding isotope compositions of δ

13
C, δ

2
H 

and δ
37

Cl were determined using the highest HCHs concentrations of each sample matrix and 
compared before and after extraction. As shown in Table 2, isotopic shifts were from -0.6 to +0.6‰ 
for carbon, from -8 to +10‰ for hydrogen and from -0.12 to +0.27‰ for chlorine. Considering the 
typical analytical uncertainty of ±0.5‰ for δ

13
C, ±5‰ for δ

2
H and ±0.2‰ for δ

37
Cl, the shifts of 

isotope compositions before and after HCHs extraction from different matrixes are within the 
analytical uncertainty and within acceptable range. Conclusively, negligible stable isotope 
fractionation could be observed after extraction and separation of HCH from biological samples.  

The molecules remain intact under physical extraction processes; leading to negligible alteration 
of the isotope compositions of HCHs. Transformation processes involving breaking of chemical 
bonds could lead to kinetic isotope fractionation. Among the procedures applied in the present 
study, HCHs transformation process could occur during saponification step using NaOH solution, 
since HCHs can be hydrolyzed under alkaline condition.

39
 However, the observed slight shifts of 

isotope compositions were within analytical uncertainty, indicating that the isotope fractionation 
occurring during the short time period of the saponification process was negligible. Despite of the 
lower extraction recoveries achieved above, the main contribution of present study is to prove 
that the modified methods are able to extract and purify HCHs from complicated matrixes, and 
most importantly they are isotope effect free, and therefore can be applied to investigate the 
reactive transformation of HCHs in food web. 

Evaluation of the Isotope Effects of Matrix on 
37

Cl Analysis 

The bottle neck for δ
13

C
 
and δ

2
H analysis is the clean-up step to obtain analytes containing 

fractions that allow base line separation from other organic compounds. In contrast, the analysis 
of δ

37
Cl requires base line separation of only chlorine-containing analytes. Therefore, 

carbon/hydrogen containing matrix should not affect the δ
37

Cl analysis. In order to evaluate 
potential interference of chlorine-free matrix on δ

37
Cl analysis, analytical standards of HCHs and 

different amount of diesel were dissolved in hexane, representing HCHs in middle and high 
concentration level of a complex diesel matrix. The samples were first measured by GC-MS and 
then subjected to GC-MC-ICPMS for δ

37
Cl analysis. The GC-MS chromatography indicated that 

HCHs peaks were overlapped with matrixes (Figure S1). Detailed information can be found in 
supporting information. However, when the same samples were injected to GC-MC-ICPMS for 
δ

37
Cl analysis, a clear base line separation could be achieved (Figure S2). No significant changes 

in δ
37

Cl composition were observed for HCHs isotope analysis within a complex diesel matrix 
(Table S3). The large carbon and hydrogen background from the diesel component in the dry 
plasma do not interfere with determination of chlorine isotopes. Conclusively, chlorine-free 
matrixes will not affect the performance of the δ

37
Cl analysis. The δ

37
Cl analysis requires thus not 

rigorous clean-up steps by column chromatography. The analytical precision (1σ) was usually 
below ±0.2 ‰ for single compound as found before and with high sensitivity typically in the range 
of 2-3 nmol Cl on column.

33
 

Table 2: Changes in isotope compositions of HCHs after sample treatment procedures. 

sample 
 

α-HCH offset β-HCH offset δ-HCH offset 

HCH std 

δ
13

C 
[‰ vs VPDB] 

-29.3 ± 0.4  -28.8 ± 0.2  -28.8 ± 0.2  

water -29.1 ± 0.3 +0.2 -29.4 ± 0.3 -0.6 -28.9 ± 0.1 -0.1 

soil -28.7 ± 0.2 +0.6 -29.0 ± 0.1 -0.2 -28.9 ± 0.2 -0.2 

grass -29.7 ± 0.0 -0.4 -28.7 ± 0.4 +0.1 -28.4 ± 0.2 +0.4 

fish oil -29.5 ± 0.1 -0.1 -28.4 ± 0.1 +0.4 -28.3 ± 0.1 +0.5 

milk -29.3 ± 0.3 +0.1 -28.4 ± 0.2 +0.5 -28.2 ± 0.3 +0.6 

liver -29.8 ± 0.2 -0.4 -28.9 ± 0.0 -0.1 -28.7 ± 0.1 +0.1 
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HCH std 

δ
2
H 

[‰ vs VSMOW] 

-102 ± 3  -112 ± 5  -105 ± 6  

water -101 ± 3 +1 -110 ± 5 +2 -108 ± 4 -3 

soil -102 ± 1 0 -113 ± 3 -1 -106 ± 0 -1 

grass       

fish oil -106 ± 5 -4 -112 ± 3 0 -105 ± 8 0 

milk       

liver -110 ± 4 -8 -102 ± 2 +10 -111 ± 4 -6 

HCH std 

δ
37

Cl 
[‰ vs SMOC] 

-0.67 ± 0.14  -2.64 ± 0.13  -0.34 ± 0.28  

soil -0.56 ± 0.06 +0.11 -2.57 ± 0.13 +0.07 -0.30 ± 0.18 +0.04 

grass -0.40 ± 0.03 +0.27 -2.50 ± 0.10 +0.14 -0.31 ± 0.05 +0.03 

fish oil -0.55 ± 0.27 +0.12 -2.60 ± 0.15 +0.04 -0.34 ± 0.30 +0.00 

milk -0.47 ± 0.17 +0.20 -2.63 ± 0.08 +0.01 -0.26 ± 0.07 +0.08 

liver -0.42 ±0.10 +0.25 -2.59 ± 0.40 +0.05 -0.46 ± 0.43 -0.12 

Environmental Applications 

The methods were tested to analyse the isotope composition of α and β-HCH in a contaminated 
landscape in order to evaluate the potential for analysing reactive transport in food webs.  Multi 
isotope analysis allows the identification of chemical and biological transformation processes,

19
  

as well as allows obtaining information on dehalogenation reactions.
40

 Thus it can provide 
evidence for developing a concept for studying multi element isotope fractionation to characterise 
degradation processes in the food web at a field site.  

Surface and ground water in the area of Bitterfeld/Wolfen are heavily polluted by HCHs, which 
have been already described in several studies.

7,27
 However, only few studies focused on the 

contamination and transformation of HCHs in soil, uptake to plants, as well as transfer to higher 
organisms. We analyzed the isotope composition of HCHs from various samples in order to 
validate the potential for isotope forensics and food web studies. The concentration of HCH 
residues (without consideration of extraction recovery) were ranging from 0.7 to 833.5 µg g

-1
 for 

α-HCH and 1.4 to 406.8 µg g
-1

 for β-HCH in soil, ranging from 0.5 to 22.4 µg g
-1

 for α-HCH and 
1.0 to 14.8 µg g

-1
 for β-HCH in plants (dry weight), ranging from 0.03 to 0.15 µg g

-1
 for α-HCH and 

0.01 to 0.06 µg g
-1

 for β-HCH in pork/deer liver and brain. HCH muck, gray to white crystals 
contains of more than 90% (weight percent) of HCH isomers in industrial waste deposits and in 
former loading , is considered to represent the original source of waste material from HCH 
production and therefore represent the initial isotope composition of the source in Bitterfeld.

23
 

Stable carbon and chlorine isotope compositions (δ
13

C, δ
37

Cl) of α- and β-HCH from 
contaminated soil, plants, liver and brain were determined (Figure 1). The carbon isotope 
compositions of α-HCH and β-HCH in muck varied from -29.2‰ to -27.5‰, and from -28.4‰ to -
27.2‰ in, respectively. The δ

13
C of α-HCH shifted from -29.9‰ to -25.2‰ in soil, -26.8‰ to -25.5‰ 

in plants, -20.9‰ to -15.1‰ in liver and -25.5‰ in brain; δ
13

C of β-HCH changed from -28.0‰ to -
23.4‰ in plants and -25.8‰ to -18.7‰ in liver.  

The chlorine isotope compositions (δ
37

Cl) of α-HCH and β-HCH in muck varied from -0.83‰ to -
0.51‰, and from -1.46‰ to -0.80‰, respectively. The δ

37
Cl of α-HCH shifted from -0.92‰ to -

0.84‰ in soil, -0.23‰ to 1.16‰ in plants; the δ
37

Cl of β-HCH shifted from -0.95‰ to -0.01‰ in 
plants. δ

37
Cl was not determined from liver and brain samples due to low HCHs concentrations. 

Compare to HCH muck, the shifts of δ
13

C and δ
37

Cl in contaminated plants indicated that uptake 
of HCHs in plants were associated with isotope fractionation, suggesting biodegradation in the 
rhizosphere or in the plants. In addition, strong carbon isotope enrichment of HCHs (up to 14.1‰ 
for α-HCH and 9.7‰ for β-HCH) in the liver suggests that only a residual fraction was 
accumulated in the fat of the liver after intensive metabolism. The isotope enrichment in the 
residual HCHs fraction reflects the metabolic degradation in the higher organisms. This implies 
that the concentration of residual fraction does not reflect the exposure process in the organisms 
adequately as the enrichment is based on the hypothesis that phase partitioning into the lipid 
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governs accumulation. In contrast, the isotope fractionation of the residual HCHs fraction 
indicates that the exposure of the organisms might be higher as a major fraction of the HCHs 
have been degraded. The isotope enrichment of the HCHs suggests active degradation probably 
by liver enzymes. 

Based on the Rayleigh approach, significant isotope enrichment combined with specific stable 
isotope enrichment factors can be applied to quantify the in situ degradation of contaminants. For 
example, based on the carbon isotope fractionation of HCHs and an enrichment factor for 
microbial degradation the range of HCHs biodegradation could be estimated within contaminated 
aquifer at Bitterfeld/Wolfen.  Bashir et al. calculated that microbial degradation has removed 30 to 
86% on reactive transport pathways at a HCH contaminated site.

22
 The same approach using 

CSIA holds great potential to quantify the reactive transport of HCHs from soil to plant, and to 
higher organisms. Correlation of hydrogen, carbon and chlorine isotope fractionation may be 
used to identify bond cleavage reaction of degradation processes of halogenated contaminants.

41-

43
  

  

Figure 1: Isotope composition (δ
13

C, δ
37

Cl) of α- and β-HCH from contaminated soil, plants, liver 
and brain. Solid lines indicate the isotope composition variation of α-HCH muck; dotted lines 
indicate the isotope composition variation of β-HCH muck. The isotope compositions of α- and β-
HCH are indicated by solid and open symbol, respectively.  

CONCLUSIONS 

A method for extraction and purification of HCHs for the analysis of carbon, hydrogen and 
chlorine isotope composition of HCHs in various environmental compartments was developed 
and evaluated. All steps of sample preparation have been shown to be free of isotope 
fractionation concerning the typical uncertainty of the δ

13
C, δ

2
H and δ

37
Cl analysis. The method 

allows an accurate and precise isotope analysis of HCHs and is applicable for analyzing 
degradation reaction associated with isotope fractionation in water, soil, plants, milk and animal 
tissues. Furthermore, this is a great advantage for investigating the transformation of chlorinated 
compounds using stable chlorine isotope especially in food web, as residual lipids and 
hydrocarbons will not affect the performance of the δ

37
Cl analysis.  

Experientially, the minimum concentration of HCHs for reliable carbon isotope analysis is 15 mg 
L

-1
 for injection (assume at least 1.5 µg of HCH was extracted into 100 µL of solvent for 

measurement). Similar quantity of HCH is required for reliable chlorine isotope analysis, and 5 ~ 
10 times higher quantity is needed for reliable hydrogen isotope analysis. Based on the 
developed extraction and clean-up methods in the present study, 75 g of liver contaminated with 
0.1 µg g

-1
 of HCH is sufficient for carbon isotope analysis, even with a low extraction efficiency of 

20%. With a low extraction efficiency of 40%, 4 g of dried plant contaminated with 1 µg g
-1

 of HCH 
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is recommended for carbon isotope analysis. The methods have potential for monitoring HCH in 
food web to develop sustainable management options of contaminated sites as well as in risk 
assessment and public health studies. 
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GC Oven Temperature Program for HCH analysis 

Concentration Analysis. The oven temperature was held at 70 °C for 1 min, increased at 8 °C min-1 to 
180 °C and then at 2 °C min-1 to 195 °C, finally increased at 8 °C min-1 to 280 °C and held for 5 min.  
Samples were measured with a split ratio of 1:1 with injector temperature of 250 °C and injection volume 
of 1 µL. Each sample was measured in triplicates. 
Isotope Analysis. For δ

13
C, δ

2
H and δ

37
Cl analysis the the same oven temperature program was used. 

The oven temperature was initially held at 70 °C for 2 min, ramped at 10 °C min
-1

 to 175 °C and then at 1 
°C min

-1
 to 200 °C for 8 min, and finally ramped at 15 °C min

-1
 to 300 °C and held for 1 min. 

Evaluation of HCHs Losses during Extraction from Plants. 

The losses during extraction of HCHs from plants samples were evaluated step by step. As shown in 
Table S1, the recoveries of 104 ± 5% after solvent evaporation and 95 ± 3% after column 
chromatography indicated that almost no significant losses of HCHs were observed during these two 
steps. Only 15 ± 3% % of HCHs recoveries were obtained after ASE using hexane as extraction solvent. 
Probably the polarity of hexane is too low to extract HCHs efficiently from the organic plant matrix. HCHs 
recoveries were significantly increased to 47 ± 4% when ASE extraction solvent was changed to 
acetone/hexane 1:1 (v/v), and furthermore slightly improved to 58 ± 5% when same ASE extraction 
procedure was repeated twice. HCH extracts from ASE using acetone alone were difficult to be purified 
by column chromatography due to the co-extraction of large amounts of interfering compounds such as 
pigments. 
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Table S1: Recoveries of HCHs during Extraction from Plants. 

 α-HCH β-HCH δ-HCH methods Note 

extraction of HCHs from 6 g of plants (17 µg g
-1 

spiking concentration) 

1 98% 106% 107% solvent evaporation 45 mL solvent were evaporated to 0.5 
mL 

2 98% 92% 96% column chromatography HCHs were spiked into co-extracted 
plants residues before loading on 
column 

3 12% 17% 16% ASE using hexane sample was extracted once 

4 43% 49% 50% ASE using acetone/hexane 
1:1 

sample was extracted once 

5 52% 60% 61% ASE using acetone/hexane 
1:1 

sample was extracted twice 

Evaluation of HCHs Losses during Extraction from Fish Oil using Acetonitrile. 

100 mL of spiked fish oil was extracted with 100 mL of acetonitrile in a 500 mL centrifuge bottle which 
was placed in ultrasonic bath for 1h. Acetonitrile and oil phases were separated by centrifugation at 
10.000 rpm at 4°C for 20min, and then acetonitrile phase was subjected to HCHs concentration analysis. 
The same extraction procedures were repeated with 50 mL and 25 mL of acetonitrile, respectively, and 
the acetonitrile phases were analyzed to evaluate the HCHs concentrations after each extraction.  The 
extraction procedure using acetonitrile was repeated three times in order to improve the HCHs recoveries.  
A recovery of 75% ~ 89% was achieved after repeating the acetonitrile extraction three times (Table S2). 

Table S2: Recoveries of HCHs during Extraction from Fish Oil. 

 α-HCH β-HCH δ-HCH methods Note 

extraction of HCHs from 100 g of fish oil (1 µg g
-1 

spiking concentration) using acetonitrile 

1 47% 56% 58% 1
st
 extraction using 

acetonitrile 
 

2 32% 36% 37% 2
nd

 extraction using acetonitrile  

3 23% 23% 25% 3
rd

 extraction using acetonitrile  

 75% 86% 89%  total recovery of three extraction  

Evaluation of the Isotope Effects of Matrix on 
37

Cl analysis. 
In order to evaluate the isotope effects of matrix on δ

37
Cl analysis, HCHs were dissolved in hexane with 

addition of different amount of diesel fuel, representing HCHs in middle (300 mg L
-1

 HCHs + 25 mL L
-1

 
diesel fuel) and high (200 mg L

-1
 HCHs + 40 mL L

-1
 diesel fuel) concentration level of diesel matrix 

representatively. The two samples were first analyse by GC-MS (TIC, SIM) and then subjected to GC-
MC-ICPMS for δ

37
Cl analysis. 

An Agilent 7890A series gas chromatograph (GC, Agilent Technologies, Palo Alto, USA) equipped with a 
quadrupole mass spectrometer (MS) was used for identification of HCHs isomers. HCHs isomers were 
separated by BPX-5 capillary column (30 m x 0.25 mm ID x 0.25 µm, SGE, Darmstadt, Germany) with 
helium as the carrier gas (flow of 2.0 mL min

−1
). The oven temperature program started at 60°C, was held 

for 3 min isothermally, increased by 3 °C min
-1

 to 180 °C, then increase at 20 °C min
-1

 to 300 °C, and 
finally increased at 10 °C min

-1
to 350 °C, where it was held for 10 min. The samples were injected in 

splitless mode. δ
37

Cl was measured via GC-MC-ICPMS as described in the main text. 
The GC-MS analysis of α-, β-, δ-HCH isomers in diesel matrixes are shown in Figure S1. For 
concentration level of HCH similar to the diesel matrix (Figure S1 a), HCHs were separated from diesel 
however not by base line separation. Quantification of HCHs under this condition can cause bias. At high 
concentration of diesel matrix (Figure S1 b), HCHs peaks were overlapped with matrixes and 
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quantification was not possible using the TIC with poor base line separation. The broadening of peaks is 
a result of intentionally overloading the column with diesel fuel for demonstrating the selectivity for 
chlorine analysis with the GC-MC-ICPMS.  
 
However, when the same samples were injected to GC-MC-ICPMS for δ

37
Cl analysis, a clear base line 

separation was observed (Figure S2), demonstrating the selectivity of chlorine analysis. The hydrocarbon 
matrix was not visible although the chromatographic column was overloaded. The first peak was TCE of 
known δ

37
Cl composition which was used as reference compound for δ

37
Cl analysis (Figure S2 a, b). The 

other three peaks were α-, β-, δ-HCH, respectively. All hydrocarbons from diesel matrix do not appear in 
the GC-MC-ICPMS chromatography, and therefore will not interfere with determination of the chlorine 
isotope composition. δ

37
Cl values of HCHs before and after the addition of diesel matrix were compared, 

no significant δ
37

Cl changes were observed (Table S3). Therefore, non-chlorine containing matrixes will 
not affect the performance of the δ

37
Cl analysis.  

 

 
 

b_TIC 

a_TIC 

a_SIM 

α-HCH 

 

β-HCH 

 δ-HCH 
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Figure S1: Total ion counts (TIC) and selected ions mass (SIM, m/z xxx) chromatographs of α-, β-, δ-
HCH isomers in diesel matrixes. (a) indicates HCHs in the similar concentration level of the diesel fuel 
(300 mg L

-1
 HCHs + 25 mL L

-1
 diesel fuel); (b) indicates HCHs in high concentration level of diesel fuel 

(200 mg L
-1

 HCHs + 40 mL L
-1

 diesel fuel). The broadening of peaks is a result of intentionally overloading 
the column with diesel fuel for demonstrating the selectivity for chlorine analysis with the GC-MC-ICPMS.  

 
Figure S2: GC-MC-ICPMS chromatogram of α-, β-, δ-HCH isomers in diesel matrixes for δ

37
Cl analysis. 

(a) indicates HCHs in the similar concentration level with diesel fuel (300 mg L
-1

 HCHs + 25 mL L
-1

 diesel 
fuel); (b) indicates HCHs in high concentration of diesel fuel (200 mg L

-1
 HCHs + 40 mL L

-1
 diesel fuel). 

The first peak (TCE 2) is trichoroethene which was used as reference compound for δ
37

Cl analysis. 

Table S3: Changes in δ
37

Cl isotope compositions of HCHs in diesel matrix. 

sample 
α-HCH 
(‰) 

offset 
(‰) 

β-HCH 
(‰) 

offset 
(‰) 

δ-HCH 
(‰) 

offset 
(‰) 

HCHs std in clean hexane -1.29 ± 0.22  -2.80 ± 0.12  -1.09 ± 0.18  

HCHs in low level diesel matrix -1.45 ± 0.01 -0.16 -2.92 ± 0.12 -0.12 -1.01 ± 0.07 0.08 

HCHs in high level diesel matrix -1.35 ± 0.16 -0.06 -2.93 ± 0.15 -0.13 -1.28 ± 0.2 -0.19 

 
Figure S3: Linearity test for γ-HCH for transient peak signals. The mean value was normalized to zero for 
better comparability. Standard deviation (1σ) of ± 0.2 ‰ was determined for all 21 data points above the 
isotopic limit of detection (3V). 
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Carbon and hydrogen isotope analysis of parathion for characterizing natural 

attenuation by hydrolysis at a contaminated site 

Published paper: Wu, L.; Verma, D.; Bondgaard, M.; Melvej, A.; Vogt, C.; Subudhi, S.; 

Richnow, H. H., Water Res. 2018, 143, 146-154. 
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a b s t r a c t

The applicability of compound-specific isotope analysis (CSIA) for assessing in situ hydrolysis of parathion
was investigated in a contaminated aquifer at a former pesticide wastes landfill site. Stable isotope
analysis of parathion extracted from groundwater taken from different monitoring wells revealed a
maximum enrichment in carbon isotope ratio of þ4.9‰ compared to the source of parathion, providing
evidence that in situ hydrolysis took place. Calculations based on the Rayleigh-equation approach indi-
cated that the natural attenuation of parathion was up to 8.6% by hydrolysis under neutral and acidic
conditions. In degradation experiments with aerobic and anaerobic parathion-degrading microbes, no
carbon and hydrogen isotope fractionation of parathion were observed. For the first time, CSIA has been
applied for the exclusive assessment of the hydrolysis of phosphorothioate-containing organophos-
phorus pesticides at a contaminated field site.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Organophosphorus pesticides (OPs) have been used mainly as
insecticides throughout the world since the decline in the use of
organochlorine pesticides in the 1960s and 1970s. OPs exhibit acute
toxicity by inhibiting acetylcholinesterase (AChE) in the nervous
system. Today the consumption of OPs ranks second relative to the
total global pesticide usage (Fenner et al., 2013). OPs are considered
to be degradable in the environment in contrast to organochlorines,
however, continuous and excessive use of OPs has led to environ-
mental contaminations which raise public concerns (USEPA, 2006)
as the residues have repeatedly been detected in soils, sediments,
waterbodies, air samples, fishes and humans (Aston and Seiber,
1996; Kawahara et al., 2005; Pehkonen and Zhang, 2002). Para-
thion (O,O-diethyl O-(4-nitrophenyl) phosphorothioate) was one of
the most widely used organophosphorus insecticides in agriculture
in the past decades, and was primarily used on fruit, cotton, wheat,
vegetables, and nut crops (FAO, 1990). Due to its toxicity, parathion
has been banned or restricted in many countries; however,

stockpiles and waste from previous manufacturing and former
landfill sites often contain parathion (LRSB, 2014; Nielsen et al.,
2014) forming serious point source contaminations which require
management strategies. Thus, it is important to understand the
chemical fate of parathion for properly environmental risks
assessment at landfill sites and for groundwater quality protection
and management.

Hydrolysis is believed to be one of the major pathways con-
trolling the fate of OPs in the environment. Hydrolysis of OPs
proceeds by a common mechanism, where H2O and OH� act as
nucleophiles in a bimolecular nucleophilic substitution mechanism
(SN2 mechanism) (Pehkonen and Zhang, 2002; Thatcher and
Kluger, 1989). The ester bonds of OPs can be hydrolyzed under
acidic and alkaline conditions by two different pathways whereas
the relative contribution of each hydrolysis pathway is pH-
dependent (Wu et al., 2018). Alkaline hydrolysis is much faster
compared to acidic and neutral hydrolysis. For example, the half-
life of parathion is reported to be 133 days at pH 5 (25 �C), 247
days at pH 7 (25 �C), 102 days at pH 9 (25 �C) (FAO, 1990), and only
1.14 days at pH 12 (20 �C) (Wu et al., 2018). Generally, alkaline
hydrolysis is unlikely to contribute significantly to the natural
attenuation of parathion, since mostly neutral and slightly acidic
conditions are prevailing in the environment. Therefore, hydrolysis* Corresponding author.
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under neutral or slightly acidic environmental conditions will lead
to long half-life of parathion. The pH of seawater is typically limited
to a range between 7.5 and 8.4 and seawater ingressions in
dumpsites affected by tidal fluctuation may potentially contribute
to increase in situ hydrolysis.

Compound specific isotope analysis (CSIA) opens the door to the
development of field-based assessment of degradation reactions.
CSIA is one of the most promising fate investigative tools which
enable the detection of in situ biodegradation of organic contami-
nants (Nijenhuis and Richnow, 2016; Vogt et al., 2016). It has been
used to estimate the extent of biodegradation of a specific com-
pound from changes in isotope ratios of field samples if the isotope
enrichment factor (ε) of that compound is determined in laboratory
experiments based on the Rayleigh equation (Bashir et al., 2015;
Hofstetter et al., 2008; Liu et al., 2017; Thullner et al., 2012). The
molecular size of many micropollutants, such as pesticides, con-
sumer care products or pharmaceuticals, is greater than of typical
legacy contaminants (chlorinated-compounds, benzene, and
toluene) thus limiting the sensitivity of CSIA. As only bond change
reactions induce kinetic isotope effects which are used for char-
acterizing degradation reactions, large molecules exhibit more
atoms which are not reacting. Thus, changes in single element
isotope ratios (e.g. d13C) tend to become smaller with larger mo-
lecular size due to isotope dilution effects of non-reacting atoms.
Moreover, single element isotope ratios in the field can be always
influenced by masking of isotope fractionation which makes the
identification of degradation pathways by single element isotope
analysis more difficult (Elsner, 2010). Multi-element isotope anal-
ysis offers an opportunity to circumvent the problem associated
with single-element CSIA as it allows characterizing bond change
reactions of several elements.

In previous studies, we analyzed the carbon and hydrogen
isotope fractionation of several OPs upon chemical oxidation and
hydrolysis in laboratory experiments (Wu et al. 2014, 2018). We
could show that the rate-limiting step of the UV/H2O2 reaction of
parathion is the oxidative attack of the OH radical on the P¼S bond,
as indicated by negligible carbon and hydrogen isotope fraction-
ation. The hydrolysis of parathion under acidic and alkaline con-
ditions resulted in distinct but different carbon isotope
fractionation patterns, principally allowing the distinction of the
two different pH-dependent pathways and giving the possibility for
characterizing natural attenuation of parathion by hydrolysis in the
environment using isotope fractionation concepts.

CSIA has been widely used for biodegradation assessment of
different contaminant groups (Elsner, 2010; Thullner et al., 2012).
Recently Vogt and colleges summarized the concepts for applying
CSIA for characterization of natural attenuation of hydrocarbons in
field studies (Vogt et al., 2016). In addition, CSIA has been proposed
as a useful approach for characterizing degradation processes of
micropollutants such as pesticides at field scale (Elsner and Imfeld,
2016); however, only in a few field studies CSIA has been applied to
assess microbial degradation of different pesticides or herbicides
(Bashir et al., 2015; Liu et al., 2017; Milosevic et al., 2013). To our
best knowledge, CSIA has not yet been applied in field studies to
assess the in situ degradation of OPs. In order to fill this research
gap, we selected parathion as a model compound of OPs and
investigated its natural attenuation by hydrolysis at a contaminated
site using carbon and hydrogen isotope analysis.

2. Materials and methods

2.1. Chemicals

Parathion (O,O-diethyl O-(4-nitrophenyl) phosphorothioate,
>99.7%) was purchased from Sigma-Aldrich and dichloromethane

(DCM, �99.9%) and 25% HCl solution were purchased from Carl
Roth GmbH & Co. KG, Germany. Anhydrous Na2SO4 (�99%) was
obtained from Bernd Kraft GmbH, Germany.

2.2. Field site and sampling

Groyne 42 is situated at Harboøre Tongue in Denmark facing the
North Sea. Between 1950 and 1960, waste chemicals were disposed
at the site. The area is still heavily contaminated by approximately
100 tons of primarily OPs, mainly the highly toxic parathion
(NorthPestClean, 2014a). A complex dense non-aqueous phase
liquid (DNAPL) presenting in Groyne 42 is a mixture of OPs and
intermediate products, reactants, and solvents used or produced in
the manufacturing of OPs. The background information of this site
has been described elsewhere (Bondgaard et al., 2012; Hvidberg
et al., 2008). In 2006 the contaminated area (20,000m2) was
encapsulated by installing a 600m long and 14m deep steel sheet
piling and a plastic membrane cap in order to prevent further
leaching of toxins to the seawater (Fig. S1, (NorthPestClean, 2014a)).
From 2007 to 2014 the Central Denmark Region and the Danish
Environmental Protection Agency conducted research to develop a
new in situ treatment of the site. The treatment consisted of in situ
alkaline hydrolysis (ISAH) combined with pump-and-treat. The
demonstration experiments were carried out on site in controlled
test cells (TCs) and test pipes (TPs). More information can be found
in the online reports from North Pest Clean (NorthPestClean).
Because of the demonstration experiments in the NorthPestClean
project, the site contained discrete areas which are the treated
areas with sodium hydroxide (pH 13) and the untreated areas with
neutral to acidic conditions (pH 2e7). By 2014, the total removal of
contaminants from TCs and TPs in treated areas is up to 85% from
water and 76% from sediment by ISAH combined with pump-and-
treat (NorthPestClean, 2014b). However, the natural attenuation of
parathion in the untreated area remains unknown due to the lack of
efficient assessment methods.

The locations of monitoring wells are indicated in Fig.1. Two free
phase samples from the Groyne 42 DNAPL were taken in 2011 and
2014 and used to characterize the isotopic composition of the
source of parathion. The Groyne 42 DNAPL has a density of
1.16 gmL�1 and viscosity of 13.9 cP at 10 �C (Muff et al., 2016). The
composition by weight of the DNAPL was characterized to be 62%
parathion, 9% methyl-parathion (O,O-dimethyl-O-p-nitro-
phenylphosphorothioate), 7% mercury, 5% sulfotep (diethox-
yphosphinothioyloxy-diethoxy-sulfanylidene-l5-phosphane), 3%
malathion (diethyl 2-[(dimethoxyphosphorothioyl)sulfanyl]buta-
nedioate) and 14% other unknown contaminants (NorthPestClean,
2014a). The free phase samples were dissolved in DCM and
directly subjected for carbon and hydrogen isotope analysis to be
used as the source signature of parathion.

19 samples were collected from monitoring wells installed in
the treated area and 17 samples were collected from the untreated
area using a submersible electrical pump. 1 L of brown glass bottles
(Schott, Germany) were used for sampling from the treated area
where high concentrations of parathion were expected. In order to
avoid evaporation of parathion, bottles were filled with ground-
water almost completely and sealed with Teflon-coated caps
(Schott, Germany) without headspace. The pH of groundwater
samples was adjusted to neutral or slightly acidic conditions using
25% HCl solution to inhibit alkaline hydrolysis. Neutralization was
monitored by universal pH indicator strips (0e14 pH Indicator
Strips, Macherey-Nagel). 2.5 L of brown glass bottles (Schott, Ger-
many) were used for sampling from the untreated area using the
same procedures as described above but without adjusting the pH,
because parathion has a relative slow hydrolysis rate at neutral to
acidic conditions. The ground water level was measured on-site by
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an EL-WA water level meters. The concentrations of dissolved ox-
ygen, temperature, pH, and electrical conductivity (EC) were
measured on-site during sampling using a Multimeter (WTW,
Weilheim, Germany). Samples were sent to the laboratory and
stored at 4 �C until extraction. The extraction of samples was pro-
cessed within 2 weeks after sampling.

2.3. Sample preparation

Groundwater samples were transferred into a 2 L glass-
separation funnel. Each sample was extracted three times with
100mL, 50mL, and 50mL of DCM, respectively, by shaking thor-
oughly. The organic phases were combined and evaporated to
~2mL under a gentle stream of N2 in a TurboVap concentrator
(TurboVap II, Biotage, Sweden). The extraction and evaporation
procedure did not result in significant changes in carbon and
hydrogen isotope ratios of parathion as shown elsewhere (Wu et al.,
2017). The concentrated sample from the untreated area was then
transferred into a 4mL glass vial by a glass pipette and recon-
stituted into 3mL of DCM. The concentrated sample from the
treated area was transferred into a 20mL glass vial by a glass
pipette and reconstituted into 10mL of DCM due to the high con-
centration of parathion. Before analysis approximately 1.5 g (un-
treated area) or 5 g (treated area) of anhydrous Na2SO4 were added
in each vial to remove water.

2.4. Aerobic and anaerobic degradation of parathion

In order to investigate the isotopic profiles of parathion during
biodegradation, experiments were conducted using two isolated
aerobic strains (TERI OP1, TERI OP2) and one anaerobic strain (TERI
ANA-1), respectively. The strains were isolated from soil samples
collected from nearby garden located in Gwal Pahari (Gurgaon,
Haryana), India. The aerobic strains were isolated in mineral salt
(MS) medium with compositions as described elsewhere (Rokade
and Mali, 2013). Enrichment and isolation of anaerobic parathion

degraders was carried out under strictly anoxic conditions. MS
medium was prepared under anaerobic condition as described
elsewhere (Junghare et al., 2012), by simultaneous boiling for
10min and purging with nitrogen flush to remove the dissolved
oxygen. 0.1% of resazurin was added as redox indicator and L-
cysteine HCL (2.5%) was added as a reducing agent to maintain the
anoxic conditions. More details of the enrichment and isolation of
strains were described in the Supporting Information (section 3.1,
3.2 and 4.1). Batch experiments were conducted under oxic and
anoxic conditions in 500mL flasks containing 250mLMS medium
for studying parathion degradation kinetics. For each batch
experiment, seven flasks containing 34 mM parathion-spiked MS
mediumwere inoculated with 1mL of inoculum. More information
about inoculum preparation is provided in the Supporting
Information (section 3.3). Sterile control flasks were prepared by
the same procedures except adding inoculum. All control and cul-
ture flasks were incubated at 150 rpm and 30 �C in the dark. At
different time intervals, 1mL culture broth was taken for optical
density and pH variation measurement. Residual parathion and
potential metabolites in the medium were extracted by 10mL of
DCM containing naphthalene (6.5mg L�1) as internal standard for
further analysis.

2.5. Analytical methods and quantification

2.5.1. Concentration measurement
Parathion was quantified using an Agilent 6890 series GC (Agi-

lent Technologies, USA) equipped with a flame ionization detector
(FID) as described elsewhere (Wu et al. 2017, 2018). A modified
temperature program was used: the column was initially held at
60 �C for 2min, and increased at 8 �C min�1 to 280 �C, and then
held for 2min.

2.5.2. Isotope analysis
The carbon isotope compositions of parathion were analyzed by

a gas chromatography-combustion-isotope ratio mass

Fig. 1. Map of the “Groyne 42” field site showing the areas of in situ treatment by alkaline hydrolysis (TC1-TC3) and the locations of the sampling wells within the treated (pink
circles) and untreated area (red circles). The area colored in blue indicates the location of the contamination hotspot. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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spectrometer (GC-C-IRMS) system, which consists of a GC 7890A
(Agilent Technologies, Palo Alto, CA, USA) coupled via a ConFlo IV
interface (Thermo Fisher Scientific, Germany) to a MAT 253 IRMS
(Thermo Fisher Scientific, Germany) via an open split. High-
temperature pyrolysis was used to convert organically bound
hydrogen into molecular hydrogen at 1200 �C for hydrogen isotope
composition measurement via the gas chromatograph-high tem-
perature conversion-isotope ratio mass spectrometer system (GC-
HTC-IRMS). A DB-608 column (30m� 0.32mm� 0.5 mm, Agilent
J&W, USA)was used for sample separation, the columnwas initially
held at 60 �C for 2min, and increased at 8 �C min�1 to 280 �C, and
then held for 2min. All samples were measured in triplicate. The
other analytical details are the same as described elsewhere (Wu
et al., 2017).

2.5.3. Quantification of parathion degradation in the field
The carbon and hydrogen isotopic signatures are reported as

d values in parts per thousand (‰) relative to international refer-
ence materials which are Vienna PeeDee Belemnite (VPDB) for
carbon and Standard Mean Ocean Water (SMOW) for hydrogen
(Coplen, 2011; Coplen et al., 2006; Schimmelrnann et al., 2016). A
main objective of CSIA is to quantify the amount of (chemical or
biological) degradation in the field supporting monitored natural
attenuation (MNA) as a site remedy. The extent of degradation can
be estimated for individual compounds using the isotope shifts
between the source and the residual not yet degraded fraction of
the reacting compound using Eq. (1) which is derived from the
rearrangement of the logarithmic form of the Rayleigh equation Eq.
(2) (Meckenstock et al., 2004):

D ð%Þ ¼
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�
� 100 ¼
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1�

�
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�ð1
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Þ#

� 100 (1)

ln
�
dt þ 1
d0 þ 1

�
¼ ε� ln

�
Ct
C0

�
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where Ct is the concentration at a given reaction time t or on a flow
path downgradient a source; C0 is the concentration at the begin-
ning of a reaction or in source area; dt and d0 are the corresponding
carbon and hydrogen isotope ratios of the reacting compound; ε is
the isotope enrichment factor for a degradation process, which can
be obtained from reference experiment under laboratory condition
using Rayleigh equation Eq. (2). Thus, the extent of degradation (D
%) in the field can be retrieved from isotope values alone, without
additional information on concentrations or transformation
products.

3. Results and discussion

3.1. Parathion distribution and hydrogeochemical conditions

The physicochemical parameters of the groundwater samples
are listed in Table 1. The groundwater level in the monitoring wells
ranged from 1.40 to 5.15m below surface. The temperature was
between 11.4 and 13.0 �C. Concentrations of dissolved oxygenwere
always below 0.1mg L�1, indicating almost anoxic conditions. In the
untreated area, the pH ranged from 3.2 to 6.5, the acidic conditions
were likely due to acid chemical waste deposition. Only one well in
this area showed an alkaline pH of 9.4 (well V03-2). Parathion
concentrations of samples from the untreated area were always
lower than 5mg L�1. In the treated area, the pH ranged from 6.9 to
12.4, demonstrating the effectiveness of the remediation measure.
Samples fromwell TC3-9-3 in the treated area were strongly acidic
(pH 2.2) indicating that this well is very close to the core of acid

waste deposition and mixing of alkaline solutions with DNAPL did
not result in alkaline conditions. The concentrations of parathion
varied from 0.76 to 155.33mg L�1 in the wells within the treated
area (Table 1). The solubility of parathion is 10.4mg L�1 in water at
8 �C (the average temperature of ground water in Denmark), which
is calculated using the enthalpy of fusion for parathion as described
elsewhere (Polato�glu et al., 2015). Most of the parathion concen-
trations levels in the treated area are above its solubility. This is due
to that the treated area is located at the contamination hotspot
(Fig. 1) where free organic phases of a mixture of OPs, intermediate
products, reactants, as well as solvents used in the manufacturing
of OPs are present. Free contaminant phases probably fill pore
space of the sediment implying a limited contact to water phases,
thus reducing the mixing with alkaline water in the treated area.
The large variations of pH values and parathion concentrations in
both areas illustrate rather heterogenic biogeochemical conditions
at the investigated site.

Potential transformation products of parathion were investi-
gated in different treated and untreated areas of the site (Fig. S2 and
Table S1). The relative abundance and frequency of detected ami-
noparathion (4-diethoxyphosphinothioyloxyaniline) suggested
reduction of the nitro group of parathion by chemical or microbial
processes (see also below). Compared to the treated area, the
higher abundance of aminoparathion in the untreated area
(Table S1) showing neutral and acidic conditions indicates that the
reduction of the nitro group is preferentially a biological process.
The presence of aminoparathion may point to reducing conditions
prevailing at the dumpsite. Aminoparathion was detected in our
biological degradation experiments under aerobic conditions using
strain TERI OP1 and under anoxic conditions using strain TERI ANA-
1 as described below in section 3.4, which is also in line with
previous studies (Singh and Walker, 2006). p-nitrophenol (4-
nitrophenol) is a typical alkaline hydrolysis product of parathion
and was detected in both untreated and treated areas. The relative
abundance and detection frequency were higher in the treated area
(Table S1), showing the hydrolytic cleavage of the O-P bond. The
abundance of p-nitrophenol in biodegradation studies suggests
that biological hydrolysis may contribute to transformation of
parathion.

3.2. Carbon and hydrogen isotope analysis of parathion from field
samples

The average value of all isotope analyses of source samples was
taken as source signature of parathion, resulting in �22.9± 0.8‰
for d13C (n¼ 10) and �212± 15‰ for d2H (n¼ 12). In the untreated
area, the obtained d13C values differed from�22.1‰ to�18.0‰ and
d2H values differed from�226‰ to�208‰ (Table 1). In the treated
area, the d13C values varied from �23.6‰ to 20.1‰ and d2H values
varied from �227‰ to �201‰ (Table 1).

Compared to the source signature of parathion, the d13C
enrichment of 0.8‰e4.9‰ was obtained from the wells in the
untreated area (Fig. 2a), indicating in situ acidic and neutral hy-
drolysis was taking place. In the treated area, the d13C values were
almost identical with the source signature (Fig. 2a) showing that no
carbon isotope fractionation of parathion occurs under strong
alkaline conditions, which is in agreement with the results of lab-
oratory hydrolysis experiments (Wu et al., 2018). d13C enrichments
of 2.8‰ and 2.1‰ were observed in samples from wells TC3-6-3
and TC3-7-2, respectively, which are characterized by strongly
alkaline pH values (11.7e12.4). This result might be explained by
mixing of alkaline water and plumes during sampling. Mixing of
water in porous media under laminar flow conditions in sandy
aquifers is restricted, which imply that alkaline solution will not
mix easily with contaminant phases or highly contaminated water.
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Table 1
Physicochemical parameters of groundwater samples, parathion concentrations, parathion isotope values and qualitative assessment of in situ hydrolysis of parathion. Samples
containing parathion concentrations below detection limit are not listed.

Well
ID

water
level
(m)

Temp.
(�C)

O2

(mg
L�1)

conductivity
(mS cm�1)

pH sample
volumn (L)

Parathion (mg
L�1)

d13C
(‰)

d2H
(‰)

In situ hydrolysis at pH 2, 5
and 7a

(%)

In situ hydrolysis at
pH 9b

(%)

C0

(mg
L�1)

samples from treated area
TC3-1-

1
5.15 12.5 0.01 19.31 9.2 1.00 107.90 �23.6± 0.5 b.d.

TC3-1-
2

2.94 12.4 0.04 23.50 11.2 0.98 0.78 b.d.c b.d.

TC3-1-
3

3.96 12.6 0.05 10.03 6.9 1.01 133.65 �22.8± 0.1 b.d.

TC3-2-
2

3.06 12.2 0.09 33.00 11.9 0.98 0.76 b.d. b.d.

TC3-2-
3

3.04 12.4 0.04 12.70 10.3 0.98 1.37 b.d. b.d.

TC3-3-
3

3.12 13.0 0.03 12.23 9.5 1.00 56.99 �22.1± 0.1 �210± 2

TC3-6-
3

3.19 12.6 0.04 12.51 11.7 0.98 5.75 �20.1± 0.4 b.d. 3.7e5.0 7.4e9.3 5.97
e6.34

TC3-7-
2

2.95 11.6 0.05 27.50 12.4 0.87 155.33 �20.8± 0.0 �227± 3 2.8e3.7 5.5e7.0

TC3-7-
3

2.97 12.2 0.05 12.26 8.1 0.94 124.46 �22.4± 0.2 �211± 6

TC3-8-
3

4.00 12.3 0.06 9.28 9.4 0.96 132.51 �23.0± 0.1 �201± 2

TC3-9-
3

3.07 12.2 0.11 13.91 2.2 1.00 33.97 �22.7± 0.1 �211± 2

samples from untreated area
T1-3-1 3.59 11.4 0.09 20.20 4.4 2.19 2.64 �22.1± 0.1 b.d. 1.1e1.4 2.2e2.7 2.67

e2.72
TP2-1-

1
1.40 11.4 0.07 5.47 3.8 2.18 3.22 �21.1± 0.3 b.d. 2.4e3.2 4.7e5.9 3.30

e3.42
F5 3.81 12.7 0.08 5.46 4.1 2.00 3.16 �21.7± 0.2 �211± 1 1.6e2.1 3.1e3.9 3.21

e3.29
V03-2 3.85 11.8 0.05 6.73 9.4 2.13 1.86 �21.7± 0.0 �215± 4 1.6e2.1 3.1e3.9 1.88

e1.93
DGE15 3.88 12.0 0.08 6.81 4.0 2.33 4.94 �21.5± 0.6 �226± 0 1.8e2.4 3.6e4.5 5.03

e5.17
V05 A 4.03 11.4 0.09 17.23 3.2 2.50 0.58 �18.3± 0.4 �208± 1 6.1e8.1 12.0e15.1 0.62

e0.68
DGE13 3.51 12.5 0.10 9.34 6.5 2.50 0.01 �21.8± 0.0 b.d. 1.5e2.0 2.9e3.7 0.01

e0.01
V81 B 3.49 12.4 0.10 14.64 3.5 2.27 0.12 �18.0± 0.6 �214± 5 6.5e8.6 12.7e16.0 0.13

e0.14

a Quantitative assessment of in situ hydrolysis of parathion under neutral and acidic conditions using εC of �6.0± 0.2 at pH 7, εC of �6.7± 0.4 at pH 5 and εC of �6.9± 0.8 at
pH 2. The εC values were obtained from lab experiments (Wu et al., 2018).

b Quantitative assessment of in situ hydrolysis of parathion under slightly alkaline condition using εC of �3.5± 0.4 at pH 9 obtained from (Wu et al., 2018).
c b.d.: below detection limit.

Fig. 2. Carbon (a) and hydrogen (b) isotope ratios of parathion obtained from the ground water from the “Groyne 42” field site. Green squares indicate the samples from the treated
area; blue circles indicate the samples from untreated area; Red dotted lines indicate the carbon and hydrogen source signatures of parathion. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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Mass transfer processes are widely controlled by diffusive transport
resulting in transversal dispersion along a flow path. Convective
mixing in porous sediments practically can be neglected. For
example mixing of contaminants with electron donor or acceptor
under laminar flow conditions can be limiting for biodegradation.
Mixing during sampling need to be taken into account for inter-
preting isotope composition and lead to an underestimation of
degradation reactions (Kopinke et al., 2005). Mixing of water bodies
from different sections of an aquifer with specific reaction condi-
tions should be considered for quantitative interpretation of
isotope fractionation pattern (Thullner et al., 2012). The isotope
fractionation is an indication that the hydrolysis may have taken
place under acidic, neutral or slight alkaline conditions explaining
the carbon isotope enrichment. However, in both treated and un-
treated areas, the d2H values were all overlapping with the source
signature (Fig. 2b) because the hydrolysis of parathion is not
associated to a detectable hydrogen isotope fractionation effect,
independent of the pH value.

3.3. Isotopic profiles of parathion during hydrolysis and chemical
oxidation

Carbonandhydrogen isotope fractionationpatterns of hydrolysis
and chemical oxidation of parathion have been investigated sys-
tematically in our previous study (Wu et al., 2018). Chemical
oxidation of parathion occurs via oxidation of the P¼S bond to a P¼O
bond by an OH radical in the first rate-determining irreversible step
(Fig. 3B); the reaction is not linked to detectable hydrogen or carbon
isotope fractionation. In contrast, the hydrolysis of parathion results
in no detectable H isotope fractionation but significant C isotope
fractionation, corresponding to isotope enrichment factors of
εC¼�6.9± 0.8‰ at pH 2, -6.7± 0.4‰ at pH 5, -6.0± 0.2‰ at pH 7,
-3.5± 0.4‰ at pH 9, and no detectable carbon isotope fractionation
at pH 12. The different isotope fractionation patterns are due to two
hydrolysis pathways of parathion (Fig. 3A): one is P-O bond cleavage
bynucleophilic attack at the phosphorus atomunder strong alkaline
condition, resulting in no C andH isotope fractionation; another one
is C-O bond cleavage by nucleophilic attack at the carbon atom
under acidic, neutral and slightly alkaline conditions, resulting in a
significant C but no H isotope fractionation.

The obtained εC at pH 2, pH 5 and pH 7 are identical when
considering the confidence intervals. This is due to the similar
pathway taking place under neutral and acidic hydrolysis (Fig. 3A1)
which cannot be distinct by isotope fractionation analysis. In the
case of lower pH< 7, the changes of pH have effects on the reaction
rates, for instance, the hydrolysis half-life of parathion at 25 �C is
reported to be 133 days at pH 5 and 247 days at pH 7 (FAO, 1990).
However, no effects of pH changes on the reaction pathway and
therefore the identical εC were obtained. Two hydrolysis pathways
take place simultaneously in the range of 7 < pH >10. With the
increase of pH, the contribution from C-O bond cleavage pathway
decreases, resulting in smaller εC. The reduction of the εC at pH 9
revealed that the contribution to parathion degradation via C-O
bond cleavage pathway is 51e58% (Wu et al., 2018) using the
extended Rayleigh-type equation derived by Van Breukelen (Van
Breukelen, 2007). Parathion is hydrolyzed completely by the P-O
bond cleavage pathway at pH> 10, as shown experimentally
(Wanamaker et al., 2013), which is in agreement with the result
that no detectable εC was obtained during hydrolysis at pH 12.
Therefore, C isotope fractionation can be expected and applied to
characterize parathion hydrolysis at pH< 10.

3.4. Isotopic profiles of parathion during biodegradation

Isotopic profiles of parathion during biodegradation were

investigated under laboratory cultivation using two isolated aerobic
strains (TERI OP1, TERI OP2) and one anaerobic strain (TERI ANA-1).
Experimental details with regard to the microbiological in-
vestigations are described in the Supporting Information. During
aerobic degradation of more than 80% parathion, no carbon and
hydrogen isotope enrichment could be observed (Table S2). Simi-
larly under anoxic conditions, no carbon and hydrogen isotope
enrichment of parathion could be observed after 90% degradation
(Table S3). Thus, the reactions were not associated with detectable
carbon and hydrogen isotope fractionation of parathion using the
three tested strains. The potential biodegradation metabolites of
parathion were tentative analyzed via GC-MS (for analytical details
see supporting information). The tentative metabolites analyses
suggested that p-nitrophenol, formed through the hydrolysis of the
ester bond, was one initial reaction product under aerobic condi-
tions using strain TERI OP2. Aminoparathion was detected in
degradation experiments under aerobic conditions and anoxic
conditions using strain TERI OP1 and strain TERI ANA-1, respec-
tively. This indicates that the biodegradation leads to the reduction
of the nitro group to form the amino group.

In previous studies, several microbial strains have been isolated
capable of degrading parathion, affiliated e.g. to the genera Fla-
vobacterium, Bacillus, Pseudomonas or Arthrobacter (Singh and
Walker, 2006). The previously proposed biodegradation mecha-
nisms of parathion were summarized in Fig. 3C, which are (C1)
hydrolysis of the phosphotriester bond to form p-nitrophenol (P-O
bond cleavage), which is the major pathway; (C2) reduction of the
nitro group acting as electron acceptor to form aminoparathion (N-
O bond cleavage); (C3) oxidation of the sulfur group of parathion to
form paraoxon (diethyl (4-nitrophenyl) phosphate) (P¼S bond
cleavage). No carbon or hydrogen bonds breaking is involved in the
first rate-determining irreversible step of all three proposed path-
ways, thus, no significant carbon and/or hydrogen isotope frac-
tionation is expected to be associated with the biodegradation of
parathion. Therefore, the microbial degradation is not likely to be
characterized by carbon and hydrogen isotope fractionation.
However, only a limited number of studies exist on aerobic and
anaerobic degradation of parathion, it cannot be fully excluded that
microorganisms could attack parathion by oxidizing a carbon entity
leading to carbon and hydrogen isotope fractionation.

3.5. Quantitative assessment of in situ hydrolysis at the investigated
field site

Even though the formation of OH radicals is unlikely in an
anoxic or oxygen-limited aquifer, the chemical oxidation of para-
thion leads to desulfurization in the rate-limiting step and would
not yield significant carbon or hydrogen isotope fractionation (Wu
et al., 2018). As discussed above, it is unlikely that significant carbon
or hydrogen isotope fractionation is associated with the biodegra-
dation of parathion, and moreover, no carbon isotope fractionation
can be expected during the hydrolysis of parathion at pH> 10.
Hence, the carbon isotope enrichment obtained in parathion at the
Groyne 42 site can be contributed exclusively to hydrolysis at
pH< 10.

The extent of hydrolysis can be estimated by Eq. (1) using the εC

determined in laboratory experiments based on the Rayleigh
equation. However, the accuracy of the degradation estimation in
the field is highly dependent on the choice of an appropriate εC for
the given field situation (USEPA, 2008). The extent of in situ hy-
drolysis of parathion in the untreated area at the Groyne 42 sitewas
estimated using εC of �6.0± 0.2 (pH 7), �6.7± 0.4 (pH 5)
and �6.9± 0.8 (pH 2), respectively. The estimation using carbon
isotope enrichment revealed the evidence that up to 8.6% natural
attenuation of parathion was contributed by hydrolysis under
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neutral and acidic conditions (Table 1). The εC of �3.5± 0.4 (pH 9)
was used to estimate the extent of degradation in the untreated
area considering the mixed hydrolysis pathways, which resulted in
up to 16% of natural attenuation of parathion was contributed by
hydrolysis under slightly alkaline conditions (Table 1). The low

extent of in situ hydrolysis is due to long half-life of parathion under
acidic and neutral conditions and low ground water temperature at
the field site (11e13 �C). The initial concentration of parathion (C0)
in the untreated area was calculated by applying Eq. (1) using the
measured concentrations (Ct) and estimated extent of hydrolysis

Fig. 3. Proposed reaction schemes with transformation mechanisms of parathion during (A) hydrolysis at different pH, (B) chemical oxidation by OH radical and (C) biodegradation.
Scheme (A) illustrates that hydrolysis of parathion occurs via two pathways: (A1) nucleophilic attack by H2O at the a-carbon of the alkoxy group at acidic/neutral condition; (A2)
nucleophilic attack by OH� and H2O at the phosphorus atom at alkaline condition. Scheme (B) illustrates that the first rate-limiting step of the chemical oxidation of parathion by
OH radical occurs via OH radical addition to the central phosphorus atom and stabilized by two different pathways: (B1) the elimination of sulfhydryl radical to produce P¼O bond
to form paraoxon; (B2) the elimination of nitrophenol from the phosphoric center to form p-nitrophenol. Scheme (C) summarizes biodegradation pathways of parathion: (C1)
enzymatic hydrolysis of the phosphotriester bond to form p-nitrophenol; (C2) reduction of the nitrogroup to form amino parathion; (C3) oxidation of parathion to paraoxon.
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(Table 1). The initial concentrations of parathion inmonitoredwells
in the untreated area were calculated to be below 5.17mg L�1,
which is below the solubility of 10.4mg L�1 in water at 8 �C (the
average temperature of ground water in Denmark).

Muff and colleagues investigated the influence of co-solvents on
the aqueous solubility and reactivity of the OPs in the complex
Groyne 42 DNAPL. Their results suggest that the hydrolysis re-
actions are limited by the rate of hydrolysis rather than NAPL
dissolution (Muff et al., 2016). Chemical hydrolysis of parathion
follows pseudo-first-order kinetics within the accuracy of mea-
surement. Half-life of the reactions conducted at pH 1 to 7.8 and
temperatures from 0 to 90 �C under different conditions from
different studies are summarized in Table S4. Arrhenius plots are
often used to analyze the effect of temperature on the rates of
chemical reactions which displays the logarithm of kinetic con-
stants (ln (k)) plotted against inverse temperature (1/T). The
Arrhenius plot of parathion hydrolysis using collected data in
Table S4 gave a straight line with R2 of 0.976 (Fig. 4), fromwhich the
activation energy (Ea) 92.04 kJmol�1 was determined. The obtained
Ea is in the same order of the previous reported value of
22.35 kcalmol�1¼93.52 kJmol�1 which was calculated from the
hydrolysis of parathion at pH 7.8 at different temperatures (Weber,
1976). The equation obtained in Fig. 3 shows the correlation of
temperature and the rate constants of parathion hydrolysis at
pH< 7.8. From this, a half-life of 1521 days at the average ground
water temperature in Denmark (8 �C) can be roughly predicted. The
relative low temperature at the Groyne 42 field site would lead to
long retention time of parathion in the untreated area. A previous
study suggested that the enhancement of the average rate of hy-
drolysis could be achieved by a factor of 1.4e4.8 by increasing the
reaction temperature from 10 to 30 �C (Muff et al., 2016). Our re-
sults contradicts to some extent with the assumption that the rate
of hydrolysis is the rate limiting step in the in situ degradation, and
believe that mixing is a major factor. Firstly, we found indication for
neutral and acidic hydrolysis even in the treated areas where
someonewould expect prevailing alkaline conditions. Secondly, the
high parathion concentrations clearly over the water solubility
suggest that phases are present which are obviously not assessable
to hydrolysis. Thirdly, in spite of long half-life, the high concen-
trations suggest that phases not assessable to hydrolysis still pro-
vide a source of contamination leaching into the ground water.

Thus, the kinetic of hydrolytic transformation is expected to be
controlled by mixing of alkaline water in the subsurface, and

mixing in porous media is slow. Similar assumption could be made
for neutral and acidic hydrolysis. Mixing of alkaline solutions with
DNAPL seems to be a challenge for all in situmeasures. Heterogenic
reaction conditions could be expected as suggested by the carbon
isotope enrichment of parathion even at places with high pH
pointing to a predominance of neutral or acidic hydrolysis.

4. Conclusions

Carbon isotope fractionation can be used to characterize acidic
and neutral hydrolysis of parathion at contaminated field sites.
Anaerobic and aerobic biodegradation of parathion proceed via
reduction of the nitro group to aminoparathion and/or via enzy-
matic hydrolysis to p-nitrophenol, and chemical oxidation by rad-
icals occurs via desulfurization of parathion to paraoxon; both
reaction mechanisms were shown to be not associated with carbon
and hydrogen isotope fractionation. Therefore, the extent of hy-
drolysis under typical environmental pH values (3e10) can be
quantified robustly using the Rayleigh concept and the isotope
enrichment factors obtained in laboratory hydrolysis experiments.

At pH smaller than 7 where the C-O bond cleavage is the
dominant hydrolysis pathway, the pH changes will affect the re-
action rate but has no effects on the carbon isotope enrichment
factors of parathion. In addition, hydrolysis rates increase with
increasing temperature, for instance, the half-life of parathion at pH
7 is 247 days at 25 �C (FAO,1990) and 75 h at 60 �C (Wu et al., 2018).
However, the mechanisms will not change and the isotope frac-
tionation of SN2 reaction is considered to be not much effected by
temperature. A previous study reported that the hydrolysis rates of
methyl halides increased with increasing temperature, while car-
bon kinetic isotope effects for halide substitution were almost in-
dependent of temperature (Baesman and Miller, 2005). This
suggest that when both temperature and pH adjustments are
required for technical measures to improve parathion hydrolysis at
contaminated sites, the isotope enrichment factors obtained in
laboratory hydrolysis experiments are still applicable to analyze the
mode of hydrolysis.

Conflicts of interest

None.

Acknowledgment

Langping Wu is financially supported by the China Scholarship
Council (File No. 201306460007). Theworkwas partially financially
supported by BMBF-DBT Cooperation Science Program (project No:
01DQ15006 and BT/IN/Germany-BMBF/02/BL/2015-16). We are
thankful to Steffen Kümmel and Matthias Gehre for support in the
Isotope Laboratory of the Department of Isotope Biogeochemistry.
Banwari Lal and Subhasis Das are acknowledged for supporting this
work.

Appendix A. Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.watres.2018.06.039.

References

Aston, L.S., Seiber, J.N., 1996. Exchange of airborne organophosphorus pesticides
with pine needles. J. Environ. Sci. Heal. B 31 (4), 671e698.

Baesman, S.M., Miller, L.G., 2005. Laboratory determination of the carbon kinetic
isotope effects (KIEs) for reactions of methyl halides with various nucleophiles
in solution. J. Atmos. Chem. 52 (2), 203e219.

Bashir, S., Hitzfeld, K.L., Gehre, M., Richnow, H.H., Fischer, A., 2015. Evaluating

Fig. 4. The Arrhenius plot of parathion hydrolysis using collected data in Table S4.

L. Wu et al. / Water Research 143 (2018) 146e154 153

198

https://doi.org/10.1016/j.watres.2018.06.039
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref1
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref1
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref1
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref2
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref2
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref2
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref2
http://refhub.elsevier.com/S0043-1354(18)30489-5/sref3


degradation of hexachlorcyclohexane (HCH) isomers within a contaminated
aquifer using compound-specific stable carbon isotope analysis (CSIA). Water
Res. 71, 187e196.

Bondgaard, M., Hvidberg, B., Ramsay, L., 2012. Remediation of Pesticide Contami-
nation by in Situ Alkaline Hydrolysis - a New Soil Remediation Technology. In:
Eight International Conference on Remediation of Chorinated and Recalcitrant
Compounds, Monterey, Califonia.

Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-
isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass. Sp.
25 (17), 2538e2560.

Coplen, T.B., Brand, W.A., Gehre, M., Groning, M., Meijer, H.A.J., Toman, B.,
Verkouteren, R.M., 2006. After two decades a second anchor for the VPDB delta
C-13 scale. Rapid Commun. Mass. Sp. 20 (21), 3165e3166.

Elsner, M., 2010. Stable isotope fractionation to investigate natural transformation
mechanisms of organic contaminants: principles, prospects and limitations.
J. Environ. Monit. 12 (11), 2005e2031.

Elsner, M., Imfeld, G., 2016. Compound-specific isotope analysis (CSIA) of micro-
pollutants in the environment - current developments and future challenges.
Curr. Opin. Biotechnol. 41, 60e72.

FAO, 1990. Parathion (58). Food and Agriculture Organization of the United Nations.
Fenner, K., Canonica, S., Wackett, L.P., Elsner, M., 2013. Evaluating pesticide degra-

dation in the environment: blind spots and emerging opportunities. Science
341 (6147), 752e758.

Hofstetter, T.B., Schwarzenbach, R.P., Bernasconi, S.M., 2008. Assessing trans-
formation processes of organic compounds using stable isotope fractionation.
Environ. Sci. Technol. 42 (21), 7737e7743.

Hvidberg, B., Ramsay, L., Kirkegaard, C., Elkjær, L., Jorgensen, C., Oberender, A.,
Kiilerich, O., 2008. Remediation Technologies for a Large Pesticide-
contaminated Site: Enclosure. Alkaline Hydrolysis and Bioventing.

Junghare, M., Subudhi, S., BL, 2012. Improvement of hydrogen production under
decreased partial pressure by newly isolated alkaline tolerated anaerobe,
Clostridium butyricum TM9A: optimization of process parameters. Int. J.
Hydrogen. Energ. 4 (37), 3160e3168.

Kawahara, J., Horikoshi, R., Yamaguchi, T., Kumagai, K., Yanagisawa, Y., 2005. Air
pollution and young children's inhalation exposure to organophosphorus
pesticide in an agricultural community in Japan. Environ. Int. 31 (8), 1123e1132.

Kopinke, F.D., Georgi, A., Voskamp, M., Richnow, H.H., 2005. Carbon isotope frac-
tionation of organic contaminants due to retardation on humic substances:
implications for natural attenuation studies in aquifers. Environ. Sci. Technol. 39
(16), 6052e6062.

Liu, Y., Bashir, S., Stollberg, R., Trabitzsch, R., Weiss, H., Paschke, H., Nijenhuis, I.,
Richnow, H.H., 2017. Compound specific and enantioselective stable isotope
analysis as tools to monitor transformation of hexachlorocyclohexane (HCH) in
a complex aquifer system. Environ. Sci. Technol. 51 (16), 8909e8916.

LRSB, L., 2014. Pilot Experiments on the Remediation Technology in Situ Alkaline
Hydrolysis at Groyne 42. Final Report. NorthPestClean, Kongens Lyngby,
Denmark.

Meckenstock, R.U., Morasch, B., Griebler, C., Richnow, H.H., 2004. Stable isotope
fractionation analysis as a tool to monitor biodegradation in contaminated
aquifers. J. Contam. Hydrol. 75 (3e4), 215e255.

Milosevic, N., Qiu, S., Elsner, M., Einsiedl, F., Maier, M.P., Bensch, H.K.,
Albrechtsen, H.J., Bjerg, P.L., 2013. Combined isotope and enantiomer analysis to
assess the fate of phenoxy acids in a heterogeneous geologic setting at an old
landfill. Water Res. 47 (2), 637e649.

Muff, J., MacKinnon, L., Durant, N.D., Bennedsen, L.F., Rugge, K., Bondgaard, M.,
Pennell, K., 2016. The influence of cosolvent and heat on the solubility and
reactivity of organophosphorous pesticide DNAPL alkaline hydrolysis. Environ.
Sci. Pollut. Res. Int. 23 (22), 22658e22666.

Nielsen, M.B., Kjeldsen, K.U., Lever, M.A., Ingvorsen, K., 2014. Survival of prokaryotes
in a polluted waste dump during remediation by alkaline hydrolysis. Ecotoxi-
cology 23, 404e418.

Nijenhuis, I., Richnow, H.H., 2016. Stable isotope fractionation concepts for char-
acterizing biotransformation of organohalides. Curr. Opin. Biotechnol. 41,
108e113.

NorthPestClean Projects related to the toxic waste site at Groyne 42 http://www.
eng.northpestclean.dk/publications/.

NorthPestClean, 2014a. Layman Reports 2: Demonstration of in Situ Alkaline Hy-
drolysis as a Novel Soil Remediation Technique for a Pesticide Contamination,
Central Denmark Region. Department of Environment. http://www.eng.
northpestclean.dk/publications/layman-reports/.

NorthPestClean, 2014b. Pilot Experiments on the Remediation Technology in Situ
Alkaline Hydrolysis at Groyne 42-Final Report. http://www.northpestclean.dk/
publikationer/rapporter-fra-northpestclean-perioden-2011-2014/.

Pehkonen, S.O., Zhang, Q., 2002. The degradation of organophosphorus pesticides in
natural waters: a critical review. Crit. Rev. Env. Sci. Tec. 32 (1), 17e72.
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1. Groyne 42 site 
Groyne 42 is situated at Harboøre Tongue in Denmark facing the North Sea and was used to dispose of 
waste from production of chemicals between 1950 and1960. The area is heavily contaminated by approx. 
100 tons of primarily organophosphates (OPs), mainly the highly toxic parathion. The background 
information of this site has been described elsewhere (Bondgaard et al. 2012, Hvidberg et al. 2008). In 
2006, the contaminated area (20,000 m

2
) was encapsulated by installing a 600 m long and 14 m deep 

steel sheet piling and a plastic membrane cap in order to prevent further leaching of toxins to the 
seawater (Fig. S1, (NorthPestClean 2014)).   The Sheet piling is embedded in an impermeable clay layer 
at a depth of 14 meters. At a depth of 7.5 m below surface level is a silty clay layer with form a barrier to 
the vertical migration of the OP plume. The geology in the contaminated area consists of fine- to medium 
grained sand. Infiltration of precipitation for recharge of ground water in the containment is prevented by a 
plastic membrane and the water table in the enclosed area is controlled. The contaminant plume is 
located 4-8 meters below ground. The integrity of iron sheet piling guaranteed isolation of the plume at 
least to the year 2021 but is expected to last even much longer. 

 

Fig. S1: Schematic profile of the geological situation and the containment (NorthPestClean 2014). 

2. Tentative transformation products of parathion at field site 
Tentative transformation products of parathion at field site were measured by GC-MS using the same 
methods as described below in section 5. The relative abundance and frequency of detection are listed in 
Table S1. 
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Fig. S2: GC-MS chromatography of major transformation products of parathion at the Groyne 42 site. The 
dominat peaks indicate p-nitrophenol (retention time at 12.994-12.996 min), aminoparathion (retention 

time at 17.425-17.436 min) and parathion (retention time at 18.206-18.214 min). 

Table S1: The relative abundance and detection frequency of p-nitrophenol, aminoparathion and 
parathion in the field site samples. “+” indicates that the compound was detected; “++” indicates the 
relative more abundant compound as shown in Fig. S2. 

Well ID p-nitrophenol aminoparathion parathion 

untreated area 

MB1-2  ++  

MB4-1  ++  

MB4-2  ++  

MB5-1  ++  

b. DGE15 

c. TC3-1-3 

a. V30 
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MB5-2  ++  

T1-3-1  ++ + 

TP2-1-1  ++ + 

F5 ++ + + 

V03-1  ++ + 

V03-2 ++ + + 

DGE15 + ++ + 

V05A + ++ + 

V30  ++  

V81B + + + 

treated area 

TC3-1-1 ++ ++ + 

TC3-1-2 ++ +  

TC3-1-3 ++  + 

TC3-2-1 ++   

TC3-2-2 ++   

TC3-2-3 ++   

TC3-3-1 ++   

TC3-3-2 ++   

TC3-3-3 ++ + + 

TC3-6-1 ++   

TC3-6-2 ++   

TC3-6-3 ++ + + 

TC3-7-1 ++ +  

TC3-7-2  ++ + 

TC3-7-3 ++ + + 

TC3-8-3 ++ + + 

TC3-9-2 + +  

TC3-9-3 ++  + 

3. Aerobic degradation of parathion 

3.1. Enrichment for isolation of parathion-degrading bacteria 
Soil samples were collected from nearby garden located in Gwal pahari (Gurgaon, Haryana), India. These 
soil samples were enriched into the microcosms prepared by amendment of soil along with mineral salt 
(MS) medium supplemented with technical grade parathion as sole carbon source. The MS medium was 
composed of (in g per liter): NaNO3, 3 g; KCl, 0.5 g; MgSO4, 0.5 g; FeSO4, 0.001g; K2HPO4, 1g; KH2PO4, 
0.05g, as described elsewhere (Rokade and Mali 2013). For isolation of potential parathion degrading 
microbe(s), 10 g of microcosm soil sample, was enriched further into 100 mL of Erlenmeyer screw capped 
conical flask containing 50 mL MS medium which was pre-spiked with 34 µM parathion and homogenized 
overnight at 150 rpm, 25 °C. The flask was then incubated at 30 °C and 150 rpm in the dark. After 120 h 
incubation, 2.5 mL of culture broth from first enrichment cycle was further transferred to 50 mL of fresh 
prepared parathion-amended medium as described above for the next enrichment step, and 10 mL of 
culture liquid was extracted using 2 mL of DCM by shaking at 25 °C for 2 h followed by agitation of 
150rpm to avoid soil partials. The DCM extract was then analyzed for the residual parathion concentration. 
After the 3rd enrichment cycle, aliquots of 100 µL culture broth were spread on MS medium agar plates 
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pre-spiked with 34 µM of parathion and the plates were incubated at 30 °C. Morphologically different 
colonies were picked and streaked till the purified colonies were obtained. 

3.2. Screening and selection of parathion-degrading aerobic bacteria 
The purified isolates were picked and cultured in MS medium supplemented with 34 µM parathion as sole 
carbon source. Incubation was done at 150 rpm and 30 °C in the dark. An aliquot of cell culture was 
withdrawn at late log phase and centrifuged at 8000 rpm at 4 °C for 10 min. The cell pellet was washed 
with freshly prepared MS medium to remove traces of parathion and re-suspended in 5 mL freshly 
prepared MS medium to use as starter culture for further experimental investigations. 1 mL of the pre-
grown starter culture was transferred into 50 mL MS medium which was pre-spiked with 34 µM of 
parathion; the culture was subsequently incubated at 150 rpm and 30 °C in the dark. 10 mL of culture 
liquid was extracted and analyzed for the residual parathion concentration at different time intervals. Two 
isolates showing parathion-degrading capability named as TERI OP1 and TERI OP2 were selected for 
further investigation. 

3.3. Aerobic degradation of parathion using selected isolates TERI OP1 and TERI OP2 
Batch experiments were conducted in 500 mL flasks containing 250 mL MS medium for studying 
parathion degradation kinetics. In order to increase the production of biomass, cells were grown in 1000 
mL of flasks containing 500 mL MS medium supplemented with 34 µM parathion, and then cells were 
harvested at 8000 rpm, 4 °C for 10 min. The cell pellet was washed with freshly prepared MS medium 
and re-suspended in around 7 ml of fresh MS medium. The cell suspension was used as starter culture 
for bath experiment for studying the isotope fractionation of parathion. Seven flasks containing 34 µM 
parathion-spiked MS medium were inoculated with 1 mL of bacterial cell suspension. Sterile control flasks 
were prepared by the same procedures except adding inoculum. All control and culture flasks were 
incubated at 150 rpm and 30 °C in the dark. At different time intervals, 1 mL culture broth was taken for 
optical density and pH variation measurement. Residual parathion and potential metabolites in the rest of 
the whole spent medium were extracted by 10 mL of DCM containing naphthalene (6.5 mg L

-1
) as internal 

standard for further analysis.  

 

Fig. S3: Aerobic biodegradation experiments of parathion, showing the parathion degradation (solid 
squares), growth of strains (OD600, solid triangles) and degradation in abiotic controls (open squares) 
during aerobic biodegradation by TERI OP1 (a) and TERI OP2 (b). 

Analysis of results demonstrated that maximum parathion degradation by TERI OP1 and TERI OP2 was 
observed at 76 h. Further increase of parathion degradation was not observed with increase in incubation 
time beyond 76 h. Increasing of OD600 during incubation suggests that both aerobic strains can grow on 
parathion as the sole source of carbon (Fig. S3 a-b). After 76 h incubation, 86% and 80% of parathion 
were degraded in experiments using TERI OP1 (Fig. S3a) and TERI OP2 (Fig. S3b), respectively. No 
removal of parathion was observed in the abiotic control experiments, indicating parathion was not 
chemically hydrolyzed in the control during the experimental period.  
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3.4. Carbon and hydrogen isotope analysis of parathion during aerobic degradation  
Extracted samples were further concentrated to about 300 µl under a gentle stream of N2 to increase the 
concentration of parathion for carbon and hydrogen isotope analysis. The results of carbon and hydrogen 
isotope analysis of parathion are summarized in Table S2. Within more than 80% degradation of 
parathion, δ

13
C changed from -28.1‰ to -27.9‰ and from -28.1‰ to -28.0‰ during incubation using 

TERI OP1 and TERI OP2, respectively. Considering the δ
13

C analytical uncertainty of ±0.5‰, no carbon 
isotope enrichment was observed during aerobic degradation of parathion.  Similar to carbon isotope 
fractionation, no significant hydrogen isotope enrichment was observed during aerobic degradation of 
parathion (Table S2) when considering the δ

2
H analytical uncertainty of ±5‰. These results indicate that 

carbon and hydrogen isotope fractionation is not associated with the aerobic degradation of parathion by 
TERI OP1 and TERI OP2. 

Table S2: Changes in carbon and hydrogen isotope compositions of parathion during aerobic 

degradation by TERI OP1 and TERI OP2. 

 OP1 OP2 

Time (h) Ct/C0 δ
13

C (‰) δ
2
H (‰) Ct/C0 δ

13
C (‰) δ

2
H (‰) 

0 1.00 -28.1 ± 0.2 -135 ± 4 1.00 -28.1 ± 0.1 -135 ± 1 

16 0.42 -27.9 ± 0.2 -132 ± 3 0.71 -28.1 ± 0.1 -138 ± 0 

24 0.17 -27.9 ± 0.2 -130 ± 1 0.30 -28.3 ± 0.2 -137 ± 1 

48 0.16 -28.1 ± 0.2 -134 ± 1 0.20 -28.1 ± 0.2 -136 ± 1 

76 0.14 -27.9 ± 0.1 -128 ± 1 0.20 -28.0 ± 0.3 -135 ± 1 

4. Anaerobic degradation of parathion  

4.1. Enrichment and selection of parathion-degrading microbes under anoxic conditions 
Enrichment of anaerobic parathion degraders in the soil sample was carried out in MS medium as 
elaborated in section 3.1. However, in this case all the studies were performed under strictly anoxic 
conditions. MS medium as mentioned above was prepared under anaerobic condition as described 
elsewhere (Junghare et al. 2012), by simultaneous boiling for 10 min and purging with nitrogen flush to 
remove the dissolved oxygen. To this 0.1% of resazurin was added as redox indicator and L-cysteine 
HCL (2.5 %) was added as a reducing agent to maintain the anoxic conditions. The serum bottles were 
sealed with rubber septum and crimped with aluminium seal. Nitrate (3 g/L) was electron acceptor for the 
anaerobic degradation of parathion. Followed this nitrogen sparged medium bottles were autoclaved for 
15 min for 121 °C. Following sterilization, 100 mL of anaerobic MS medium was spiked with 34 µM of 
parathion with the help of 1 mL syringe and subsequently homogenized overnight at 25 °C in a horizontal 
shaker at 150 rpm. Inoculated bottle were further incubated at 30 °C by shaking at 150 rpm. All the 
experiments were performed in anaerobic chamber (Bactron IV) under anoxic condition. The anaerobic 
gas chamber atmosphere consists of mixture of Nitrogen (90 %), hydrogen (5 %) and carbon dioxide (5 %) 
to maintain the oxygen free atmosphere.  

Enriched broth was further plated out on MSM agar plates supplemented with 34 µM of parathion. 
Medium was prepared as mentioned in section 3.1 and plated out in anaerobic chamber. Volume of 100 
µL enriched broth was transferred by 1 mL syringe to MS agar plates and spread out with the help of 
glass spreader. Anaerobic chamber was used to incubate the inoculated plates. After incubation at 30 °C, 
morphologically different colonies were picked and streaked further to isolate pure colonies. The purified 
anaerobic bacterial isolates were picked and cultured in anaerobically prepared MS medium spiked with 
34 µM parathion as sole carbon source for monitoring their parathion degradation potential under anoxic 
condition. The protocols were followed as mentioned in section 3.2, except for the fact that these 
experiments were performed under anoxic conditions. One isolate showing best parathion-degrading 
capability named as TERI ANA-1 was selected for further investigation. 
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4.2 Anaerobic degradation of parathion using isolate TERI ANA-1 
The inoculum was pre-grown in parathion (34 µM) pre-spiked agar plates at 30° C in the anaerobic 
chamber and then re-suspended in 10 mL of liquid MS medium prepared anaerobically as mentioned 
above. Degradation experiments were carried out in 500 mL bottles containing 250 ml anoxic MS medium 
by following the protocols as mentioned in section 3.3 except for the anoxic condition. Control experiment 
was set without adding any inoculum culture. No response for oxygen was observed by color change of 
resazurin during degradation experiment with the living culture.   

 

Fig. S4: Anaerobic biodegradation experiment of parathion, showing the parathion degradation (solid 
squares), growth of strains (OD600, solid triangles) and degradation in abiotic controls (open squares) 
during anaerobic biodegradation by TERI ANA-1. 

Increasing of OD600 during incubation suggests the anaerobic strain can grow on parathion as the sole 
source of carbon (Fig. S4). 90% degradation of parathion was achieved after 120 h incubation using TERI 
ANA-1(Fig. S4). No removal of parathion was observed in anaerobic abiotic control experiment, indicating 
that parathion is biodegradable rapidly by the purified anaerobic strain.  

4.3. Carbon and hydrogen isotope analysis of parathion during anaerobic degradation 
The results of carbon and hydrogen isotope analysis of parathion of anaerobic degradation experiment 
are summarized in Table S3. The initial concentration of parathion was 34 µM. The concentration of the 
sterile control maintained stable at 34 µM. During the whole incubation period, δ

13
C changed from -31.8‰ 

to -32.2‰ and δ
2
H changed from -138‰ to -130‰. Therefore, no detectable carbon and hydrogen 

isotope enrichment were observed when considering the analytical uncertainty of ±0.5‰ for δ
13

C and ±5‰ 
for δ

2
H. Thus, there is no carbon and hydrogen isotope fractionation associated with the anaerobic 

degradation of parathion using TERI ANA-1. 

Table S3: Changes in carbon and hydrogen isotope compositions of parathion during anaerobic 

degradation by TERI ANA-1. 

Time (h) Ct/C0 δ
13

C (‰) δ
2
H (‰) 

0 1.00 -31.8 ± 0.1 -138 ± 1 

16 0.86 -32.2 ± 0.5 -137 ± 2 

48 0.56 -32.2 ± 0.5 -133 ± 2 

72 0.32 -32.4 ± 0.2 n.m.
a
 

120 0.10 -32.2 ± 0.2 -130 ± 1 
a
 n.m.: not measured. 
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5. Biodegradation mechanisms of parathion 
Parathion and potential biodegradation metabolites were extracted as described above after 24 h 
incubation under aerobic conditions using strain TERI OP1 and TERI OP2, and after 72 h incubation 
under anoxic conditions using strain TERI ANA-1. An Agilent GC-MS (7890A-5975C) system was used to 
identify potential biodegradation metabolites of parathion. A DB-608 column (30 m × 0.32 mm × 0.5 µm, 
Agilent J&W, USA) was used for sample separation with helium flow of 1.5 mL min

-1
 as the carrier gas. 

The GC oven was initially held at 60 °C for 2 min, and increased at 8 °C min
-1

 to 280 °C, and then held for 
2 min. 1 µL of sample was injected with a split ratio of 10:1 for each analysis. The tentative metabolites 
analyses suggested that p-nitrophenol was the initial reaction product under aerobic conditions using 
strain TERI OP2. Aminoparathion was detected under aerobic conditions using strain TERI OP1 and 
under anoxic conditions using strain TERI ANA-1 (data not shown). This may suggest that reduction of 
the nitro group may be a degradation mechanism and probably not leading to carbon or hydrogen isotope 
fractionation. 

6. Half-life of parathion hydrolysis 
Chemical hydrolysis of parathion follows pseudo-first-order kinetics within the accuracy of measurement. 
Half-life of the reactions conducted at pH < 7.8 under different conditions from different studies is listed in 
Table S4.  

Table S4. Half-life of parathion hydrolysis at pH < 7.8 under different conditions. 

T (°C) pH half-life 
(days) 

reference 

0 1-5 3000 (CES and IISc) 

20 1-5 690 (CES and IISc) 

20 7 130 (ATSDR 2017) 

23 7.8 218 (Weber 1976) 

25 5 133 (FAO 1990) 

25 7 247 (FAO 1990) 

30 1-5 180 (CES and IISc) 

50 7.8 7.5 (Weber 1976) 

60 2 2.9 (Wu et al. 2018) 

60 5 3.0 (Wu et al. 2018) 

60 7 3.1 (Wu et al. 2018) 

70 7.8 1.3 (Weber 1976) 

90 7.8 0.2 (Weber 1976) 
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Appendix 6.8.  

Carbon and hydrogen stable isotope analysis for characterizing the chemical 

degradation of tributyl phosphate 

Published paper: Liu, J.; Wu, L.; Kümmel, S.; Yao, J.; Schaefer, T.; Herrmann, H.; 

Richnow, H. H., Chemosphere 2018, 212, 133-142. 

 

209



Carbon and hydrogen stable isotope analysis for characterizing the
chemical degradation of tributyl phosphate

Jia Liu a, b, 1, Langping Wu b, 1, Steffen Kümmel b, Jun Yao c, Thomas Schaefer d,
Hartmut Herrmann d, Hans-Hermann Richnow b, c, *

a School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR
China
b Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße15, Leipzig 04318, Germany
c School of Water Resources and Environment, China University of Geosciences (Beijing), Xueyuan Road No.29, Haidian District, Beijing 100083, PR China
d Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße15, Leipzig 04318, Germany

h i g h l i g h t s

� Quantification of 2H and 13C isotope enrichment factors of TBP.
� Comparison of isotope fractionation patterns upon hydrolysis and radical oxidation.
� Charactering the CeO, CeH bond cleavage of TBP using apparent kinetic isotope effect.

a r t i c l e i n f o

Article history:
Received 6 April 2018
Received in revised form
6 August 2018
Accepted 8 August 2018
Available online 10 August 2018

Handling Editor: J. de Boer

Keywords:
Tributyl phosphate
Isotope fractionation
Hydrolysis
Radical oxidation
Apparent kinetic isotope effect

a b s t r a c t

Tributyl phosphate (TBP) belongs to the group of trialkyl substituted organophosphate esters. Its
chemical reactivity depends on the stability of various chemical bonds. TBP was used as a model com-
pound for the development of a concept using stable isotope fractionation associated with bond cleavage
reactions for better understanding the fate of TBP in the environment. Carbon isotope enrichment factors
(εC) of TBP hydrolysis were found to be pH dependent (�3.8± 0.3‰ at pH 2, -4.6± 0.5‰ at pH 7,
-2.8 ± 0.1‰ at pH 9, no isotope fractionation at pH 12), which is in accordance with the mode of a SN2
hydrolytic bond cleavage. Hydrogen isotope fractionation was negligible as no H bond cleavage is
involved during hydrolysis. The apparent carbon kinetic isotope effect (AKIEC) ranged from 1.045 to
1.058. In contrast to hydrolysis, both carbon and hydrogen isotope fractionation were observed during
radical oxidation of TBP by �OH and SO4

�e, yielding εC from �0.9 ± 0.1‰ to �0.5 ± 0.1‰ and εH

from �20± 2‰ to �11± 1‰. AKIEC and AKIEH varied from 1.007 to 1.011 and from 1.594 to 2.174,
respectively. The correlation of 2H and 13C isotope fractionation revealed L values ranging from 17± 1 to
25± 6. Results demonstrated that the correlation of 2H and 13C isotope fractionation of TBP allowed to
identify radical reactions and to distinguish them from hydrolysis. The presented dual isotope analysis
approach has diagnostic value for characterizing the chemical transformation of TBP in the environment.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Tributyl phosphate (TBP) is an organophosphorus compound
widely used as flame retardant, plasticiser, anti-foamer, component

of herbicides and hydraulic fluids (Regnery et al., 2011). In addition,
it was extensively used as a solvent for plutonium/uranium redox
extraction (PUREX) for nuclear fuel reprocessing (Mincher et al.,
2008). The production of commercially used TBP is about
3000e5000 tons/year in Europe (Nancharaiah et al., 2015). Due to
its extensive use, TBP is frequently detected in the aquatic envi-
ronment of many countries, including Germany (Fries and
Püttmann, 2003; Regnery and Puttmann, 2010), Austria
(Martinez-Carballo et al., 2007), Italy (Bacaloni et al., 2008), Spain
(Rodil et al., 2012), Korea (Lee et al., 2016), and China (He et al.,
2014; Shi et al., 2016).
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TBP can inhibit the enzyme acetylcholine esterase (AChE),
resulting in cholinergic toxicity of the autonomic system and can
thus lead to respiratory paralysis and even death (Bergman et al.,
2012; Greget et al., 2016). Given these adverse effects, TBP has
been an environmental concern for decades, especially in aquatic
systems. The main degradation pathways are hydrolysis, indirect
photo-oxidation ormicrobial degradation (Berne et al., 2005;Watts
and Linden, 2009; Nancharaiah et al., 2015; Su et al., 2016). These
are probably the key processes how TBP is degraded or attenuated
in the environment. Direct chemical oxidation is effective for the
removal of organic contaminants in waste water. In particular,
chemicals, such as hydrogen peroxide, persulfate, permanganate
and ozone, have been applied for in situ chemical oxidation (ISCO)
for the treatment of subsurface TBP or similar contamination
(Watts and Teel, 2006). Hydroxyl radicals (�OH) are an effective
oxidant with redox potential of 1.7e2.8 V and are frequently used
for wastewater remediation (Waclawek et al., 2017). Similar to �OH,
the sulfate radical (SO4

�e) with a redox potential of 2.5e3.1 V is
efficient for the oxidation of many organic compounds (Neta et al.,
1988). SO4

�e can be generated for example from peroxydisulfate
(S2O8

2�, PS) or peroxymonosulfate (HS2O5
�) salts by the activation of

the persulfate anion (S2O8
2�, E0¼ 2.01 V) using light (Herrmann,

2007; Yang et al., 2017) or heat (House, 1962; Liang and Su,
2009). Over the past ten years, considerable attention has been
paid to potassium peroxydisulfate (KPS) because of its lower cost
compared to H2O2 or O3 and the high efficiency for organic
mineralization (Lau et al., 2007; Waclawek et al., 2017).

Conventionally, degradation pathways are chemically analyzed
by measuring the concentrations decrease of reactants and the
appearance of degradation products. However, this approach often
has large uncertainties in field studies because of the influence of
physical processes (such as dilution, volatility and sorption), the
challenges of detecting unknown products and the difficulties to
establish mass balances. As an alternative technology, compound
specific isotope analysis (CSIA) making use of isotope fractionation
processes of degradation reactions can be used for the qualitative
characterisation and quantitative estimation of processes involved
in organic compound degradation in the environment. This tech-
nique is becoming a routine and practical approach in biogeo-
chemistry and environmental science (Elsner, 2010; Thullner et al.,
2012; Nijenhuis and Richnow, 2016; Vogt et al., 2016).

For better understanding of the transformation mechanisms,
the kinetic isotope effect (KIE) based on chemical bond change
reactions can be analyzed. The KIE characterizes the rate limitation
of a bond change reaction posed by isotopologues. The rate limi-
tation is equivalent to the stability of heavy and light isotope
substituted bonds and characterizes the transition state of a
chemical reaction (Northrop, 1981; Wolfsberg et al., 2009). The
apparent kinetic isotope effect (AKIE) can be calculated to
normalize the isotope enrichment factor (ε) for non-reacting po-
sitions and intermolecular competition to compensate for “dilu-
tion” of the isotope composition in reacting isotopologues. The
AKIE can be used to compare the kinetic isotope effect of bond
cleavage reactions of different molecules. Multi-element isotope
fractionation analysis correlating the isotope fractionation of two
(or more) elements can be used to evaluate the degradation path-
ways (Gray et al., 2002; Elsner et al., 2005). Previous studies
demonstrated the potential use of stable isotope fractionation for
characterizing the transformation mechanisms of organophos-
phorus compounds, such as dichlorvos, dimethoate, methyl para-
thion, parathion and tris(2-chloroethyl) phosphate (Wu et al., 2014,
2017, 2018a).

In the present study, we systematically examined the carbon
and hydrogen isotope fractionation upon hydrolysis of TBP under
acidic, neutral and alkaline conditions to characterise the reaction

pathways. The isotope fractionation patterns of TBP by radical
oxidation (SO4

�e and �OH) were also examined. The objectives of this
study were to (1) investigate the kinetic reaction rate constant kobs
of hydrolysis and radical oxidation; (2) characterise the stable
carbon and hydrogen isotope fractionation of TBP during hydrolysis
and radical oxidation; (3) distinguish different mechanisms by
using the AKIE values and correlating 2H and 13C isotope fraction-
ation to obtain L values, which may be used diagnostically for
tracing TBP degradation in the field.

2. Materials and methods

A detailed description of the analytical methods is provided in
the Supplementary Information (SI).

2.1. Chemicals

All chemicals were of analytical grade quality and used without
further purification. Tributyl phosphate (TBP, 99% purity) and
dibutyl phthalate (DBP, >99% purity) were purchased from Xiya
Company (China). Dichloromethane (DCM) was supplied by Carl
Roth GmbH þ Co. KG (Karlsruhe, Germany). Potassium perox-
ydisulfate (K2S2O8), hydrogen peroxide (30% H2O2), di-potassium
hydrogen phosphate (K2HPO4), potassium dihydrogen phosphate
(KH2PO4), sodium hydrogen carbonate (NaHCO3), sodium hydrate
(NaOH), and disodium hydrogen phosphate (Na2HPO4) were sup-
plied by Merck (Guaranteed reagent quality, Darmstadt, Germany).
Solutions and pH buffers were prepared in ultrapure water ob-
tained by a Milli-Q System (Millipore GmbH, Germany).

2.2. Hydrolysis and radical oxidation experiments

The following buffer solutions were used to obtain hydrolysis at
different pH conditions: KCleHCl (50mM for pH 2),
K2HPO4eKH2PO4 (100mM for pH 7), NaHCO3eNaOH (45.5mM for
pH 9), and Na2HPO4e NaOH (32.5mM for pH 12).

Hydrolysis experiments: TBP is hydrolyzed with very slow re-
action rates at room temperature under neutral to acidic conditions
but rapidly hydrolyzed under strong alkaline condition (Su et al.,
2016). In order to adjust the hydrolysis rates in the same order of
magnitude for a better comparison of the isotope fractionation
patterns associated with different reaction pathways, hydrolysis
experiments were carried out at 80 �C to accelerate the hydrolysis
rate at pH 2, pH 7 and pH 9, respectively. Hydrolysis experiments at
pH 12 were performed at 35 �C to slow down the reaction. All ex-
periments were conducted in 40mL buffer solutions in 150-mL
serum bottles with 100mg L�1 TBP as initial concentration. At
different time intervals, the reaction solutions were extracted by
adding 1mL DCM containing 1000mg L�1 DBP as internal standard
and shaking for at least 4 h at 10 �C. Extracts were stored at 4 �C
prior to analysis. The extraction recovery and effect of the extrac-
tion procedure on carbon and hydrogen isotope signature were
evaluated as described in Section 3 of the Supplementary
Information.

Potassium peroxydisulfate (KPS) oxidation: For KPS oxidation
experiments a molar ratio of TBP to KPS of 1:20 was used. The KPS
oxidation reaction was not conducted at pH 2 due to the exclusive
formation of secondary radicals and complicating subsequent re-
actions. At pH 2, the SO4

�� reacts exclusively with the Cl� from the
HCl/KCl buffer to produce a Cl atom, which will subsequently react
to form Cl2

��, a dichloride radical anion (Herrmann, 2003). There-
fore, the KPS oxidation reactions were only conducted at pH 7, pH 9
and pH 12, respectively. The initial concentration of TBP was
100 ppm. Buffer solutions with different pH values were prepared
as described above. All KPS oxidation reactions were carried out at
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35 �C. Control experiments were carried out without the addition of
KPS. Remaining TBP was extracted and analyzed as described in the
hydrolysis experiment.

UV/H2O2 oxidation experiment: Photolysis experiments were
carried out at pH 7 in phosphate buffer with 200mg L�1 initial TBP
concentration. Irradiation was achieved by a 150W xenon lamp
(Type no. L2175, Hamamatsu, Japan), which covered a broad
continuous spectrum from 185 nm to 2000 nm. A long-pass filter
with a cut-off of short UV wavelengths below 280 nm (20CGA-280,
Newport Corporation, Irvine, U.S.) was applied. Direct photolysis is
not expected at the applied UV wavelengths due to the almost
negligible photon absorption by TBP (Watts and Linden, 2009). The
molar ratio of TBP to H2O2 was 1:5. In order to investigate the ef-
fects of buffer solution concentrations and reaction rates on the
isotope fractionation of TBP, three experiments were carried out in
100mM buffer solution at 20 �C (UV/H2O2_1), 100mM buffer so-
lution at 15 �C (UV/H2O2_2) and 10mMbuffer solution at 15 �C (UV/
H2O2_3), respectively. 100mM buffer solution was applied to make
sure that the pH will remain stable at 7 during the reaction. Lower
buffer concentration of 10mM was applied to minimize the for-
mation of the secondary radicals (SI, section 5). The experiments
were conducted at different temperature of 20 �C and 15 �C to slow
down the reaction rate. For direct photolysis, experiments were
conducted under the same conditions but without the addition of
H2O2 in a 100mM buffer solution at 20 �C. Dark control experi-
ments were conducted under identical experimental conditions
without UV exposure (100mM buffer solution). More information
on the experimental setup of the UV degradation experiments are
described elsewhere (Zhang et al., 2016). The transformation
products of TBP in UV/H2O2 experiments were tentatively charac-
terized by a Fourier-transform ion cyclotron resonance mass
spectrometer (FT-ICR MS, Solarix XR 12T, Bruker Daltonics), the
analytical procedures were described in SI.

2.3. Data analysis

Isotope ratios were expressed as delta notation (dhE) in parts per
thousand (‰) based on Eq. [1]. Here, Rsample is the ratio of the heavy
(hE) to the light isotopes (lE) of a sample and Rref corresponds to the
ratio of the respective isotopes of reference. For stable carbon
isotope analyses the Vienna Pee Dee Belemnite (V-PDB) is used as
reference, whereas for stable hydrogen isotope analyses the Vienna
Standard Mean Ocean Water (V-SMOW) is applied (Coplen, 1996).

dhE ¼
 
Rsample

Rref
� 1

!
¼
 

hE=lE

hEref

.
lEref

� 1

!
[1]

The isotope enrichment factor (εE) can be determined from the
logarithmic form of the Rayleigh equation, as shown in Eq. [2]
(Rayleigh, 1896; Elsner, 2010). The variables dhEt and dhE0 are the
isotope compositions of a compound for the element E at time t and
time zero, respectively, and f is the residual substrate fraction. The
changes in concentration during the reaction (Ct/C0) can be related
to the changes in isotope composition by εE.

ln

 
dhEt þ 1

dhE0 þ 1

!
¼ εE$lnf ¼ εE$ln

�
Ct
C0

�
[2]

The AKIEE value of the bond cleavage at the reactive position can
be calculated with Eq. [3], where n is the total number of atoms for
element E in the molecule, x is the number of reactive sites, and z is
the number of indistinguishable reactive sites (Elsner et al., 2005).
The normalisation of AKIEE corrects the bulk isotope enrichment
for non-reactive positions and the intramolecular isotopic

competition.

AKIE ¼ 1
1 þ n

x � z � ε

[3]

Assuming that two processes (process 1 and 2) are reacting with
the same substrate simultaneously and both processes follow first-
order kinetics, the contribution of the individual processes in the
mixed reaction can be estimated by an extended Rayleigh-type
equation using the individual isotope enrichment factors of the
particular reaction (ε1 and ε2). The observable εi of the mixed re-
action and the ε1 and ε2 of the individual pathway 1 and 2 are
needed for this calculation. The rate ratio of two competing
degradation pathways (F) can be calculated by Eq. (4) (Van
Breukelen, 2007), indicating the isotope fractionation contributed
by pathway 1 to the observed εi.

F ¼ εi � ε2

ε1 � ε2
[4]

3. Results

3.1. Effects of extraction on isotope signature

The recovery of the liquid/liquid DCM extraction method was
91.2± 10.2% (Fig. S2 (a)). The isotope shifts of TBP before and after
DCM extraction were 0.05e0.65‰ for d13C, and 1e4‰ for d2H
(Fig. S2 (b)), respectively. Considering the analytical uncertainty of
carbon and hydrogen isotope compositions, which is < ±0.5‰ and
< ±5‰, respectively, carbon and hydrogen isotope shifts due to the
extraction process are insignificant. A detailed description was
provided in SI, section 3.

3.2. Isotope fractionation of TBP during hydrolysis

The degradation curves and changes in carbon and hydrogen
isotope compositions of TBP are illustrated in Fig. 1, and the ob-
tained kobs and ε values for TBP hydrolysis are summarized in
Table 1. All hydrolysis experiments followed pseudo-first order ki-
netics with R2 better than 0.97, alkaline conditions resulted in
higher reaction rates compared to neutral and acidic conditions (pH
12> pH 9> pH 7z pH 2) (Table 1). The stable carbon isotope
enrichment could be quantified by the Rayleigh equation. At pH 2,
90% degradation was achieved within 1236 h, resulting in a carbon
enrichment factor (εC) of �3.8± 0.3‰. 88% degradation was ach-
ieved within 1140 h at pH 7, yielding an εC of �4.6± 0.5‰. 94%
degradation was achieved within 864 h and yielding an εC

of �2.8± 0.1‰ at pH 9. At pH 12, 80% degradation was achieved
after 1464 h and no carbon enrichment was observed. Hydrogen
isotope fractionation was not observed in all hydrolysis experi-
ments (Fig. 1).

3.3. Isotope fractionation of TBP during KPS oxidation

The degradation curves and changes in carbon and hydrogen
isotope compositions of TBP are illustrated in Fig. 2, and the cor-
responding kobs and ε values are summarized in Table 1. All oxida-
tion experiments followed pseudo-first order kinetics and the kobs
values decreased with increasing pH (Table 1). The stable carbon
and hydrogen isotope fractionation could be quantified by the
Rayleigh equation. About 95% TBP was degraded within 292 h at
pH7/KPS, resulting in a εC¼�0.9± 0.1‰ and εH¼�16± 2‰,
respectively. At pH9/KPS, 95% degradation was achieved within
332 h, yielding an εC of �0.8± 0.1‰ and an εH of �20± 2‰. At
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pH12/KPS, TBP was depleted to 90% within 400 h, corresponding to
an εC¼�0.5± 0.1‰ and εH¼�11± 1‰. No degradation took place

in control experiments except for pH12/KPS (Fig. S2). Due to the
hydrolysis at pH 12, 35% of TBP was degraded within 400 h.

Fig. 1. TBP degradation via hydrolysis at (a) pH 2, (b) pH 7, (c) pH9, and (d) pH 12. Changes in concentrations (Ct/C0, black squares) are correlated with the changes of the carbon
(d13C, red triangles) and hydrogen isotope ratios (d2H, blue circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Table 1
Pseudo-first order kinetic rate constants (kobs), isotope enrichment factors (ε), AKIE and L values obtained from the hydrolysis and the radical oxidation of TBP at different pH.

Conditions kobs
(�10�3h�1)

Temp.
�C

TBP:oxidant
molar ratio

Major
radicals

Dd13Ch

(‰)
Dd2Hh

(‰)
εC (‰) R2

C εH (‰) R2
H AKIEC AKIEH L R2

L

Hydrolysis
pH 2 2.0± 0.3 a 80 9.1 �3.8± 0.3 0.990 n.d.b 1.048± 0.004 n.c.c n.d.
pH 7 1.8± 0.2 80 9.9 �4.6± 0.5 0.990 n.d. 1.058± 0.007 n.c. n.d.
pH 9 4.0± 0.5 80 8.3 �2.8± 0.1 0.997 n.d. n.c. n.c. n.d.
pH 12 1.1± 0.2 35 n.d. n.d. n.c. n.c. n.d.
Radical oxidation
pH7/KPS 10.4± 0.4 35 1:20 SO4

� - 2.7 52 �0.9± 0.1 0.986 �16± 2 0.987 1.011± 0.001 1.761± 0.167 17± 1 0.996
pH9/KPS 8.8± 1.1 35 1:20 SO4

� -
,�OH

2.1 51 �0.8± 0.1 0.989 �20± 2 0.991 1.010± 0.001 2.174± 0.255 23± 1 0.990

pH12/KPS 5.5± 0.3 35 1:20 �OH 1.1 21 �0.5± 0.1 0.980 �11± 1 0.993 n.c. n.c. 19± 1 0.991
dpH7/UV/H2O2_1 474.2± 11.4 20 1:5 �OH 2.4 38 �0.8± 0.1 0.995 �14± 1 0.993 1.010± 0.001 1.608± 0.070 17± 1 0.996
epH7/UV/H2O2_2 27.9± 2.4 15 1:5 �OH 1.3 23 �0.6± 0.3 0.928 �13± 3 0.985 1.007± 0.004 1.610± 0.209 19± 7 0.956
epH7/UV/H2O2_3 6.8± 0.5 15 1:5 �OH 1.6 40 �0.6± 0.2 0.972 �17± 7 0.983 1.007± 0.001 1.761± 0.418 25± 6 0.994
fpH7/UV/

H2O2_ave.
�0.7± 0.1f �15±2f 20±4f

gaverage �0.7± 0.1g �16±3g 20±4g

a “±” indicates the 95% confidence interval.
b “n.d.” is short for not detected.
c “n.c.” is short for not calculated.
d The distance between the photo-reactor and light source was 13 cm.
e The distance between the photo-reactor and light source was 22 cm.
f Average values of ε and L for UV/H2O2 experiment, calculating from the three individual UV/H2O2 experiments.
g Average values of ε and L for radical oxidation of TBP, calculating from all individual radical oxidation experiments expect pH 12/KPS.
h Isotope shifts of the d13C and d2H values from the first and last sampling points during the degradation period.
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3.4. Isotope fractionation of TBP during UV/H2O2 oxidation

Degradation curves and changes in carbon and hydrogen
isotope compositions of TBP are illustrated in Fig. 2. All experiments
followed pseudo-first order kinetics, and the kobs values (� 10�3

h�1) were 474.2± 11.4 in UV/H2O2_1, 27.9± 2.4 in UV/H2O2_2 and
6.8± 0.5 in UV/H2O2_3, respectively (Table 1). All coefficients of
determination (R2) were larger than 0.99. In the experiment UV/
H2O2_1, 96% TBP was degraded within 6.7 h, yielding a εC
of �0.8± 0.1‰ and εH of �14± 1‰. In the degradation experiment
UV/H2O2_2, 85% TBP was depleted in 72.5 h, resulting in a εC
of �0.6± 0.3‰ and εH of �13± 3‰. In the degradation experiment

UV/H2O2_3, 93% TBP was transformed within 385 h, and an εC

of �0.6± 0.2‰ and εH of �17± 7‰ were obtained. In the control
experiment without H2O2 employing the conditions used in UV/
H2O2_1, no significant change of the TBP concentration was
observed (Fig.S2 d), suggesting that direct photolysis did not take
place during these experiments.

3.5. Analysis of transformation products of TBP in the UV/H2O2

experiment

Three potential transformation products were tentatively char-
acterized as di-n-butylphosphate (P1), keto-tri-butylphosphate

Fig. 2. TBP degradation via radical oxidation. Reaction conditions were as follows: (a) pH7/KPS; (b) pH9/KPS; (c) pH12/KPS; (d) UV/H2O2_1; (e) UV/H2O2_2; (f) UV/H2O2_3. Changes
in concentrations (Ct/C0, black squares) are correlated with changes of the carbon (d13C, red triangles) and hydrogen isotope ratios (d2H, blue circles). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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(P2), and hydroxy-tri-butylphosphate (P3) (Table S1 and Fig. S3).
The detailed information of characterized transformation products
is given in the SI, section 7. The precise position of the hydroxyl or
keto group at the side chain of the TBP molecule could not be
confirmed, however, it is likely that the functional group is formed
by radical attack at the sub-terminal carbon of the butyl chain.

3.6. Two dimensional isotope fractionation (CeH)

In order to explore the diagnostic potential of two dimensional
isotope fractionation analysis, the hydrogen and carbon isotope

fractionation were plotted to obtain L values (L ¼ D2H
D13C

zεH
εC
,

D13C¼ dt
13C-d013C, D2H¼ dt

2H-d02H). However, due to the absence of
hydrogen isotope fractionation L could not be defined for hydro-
lysis. The radical oxidation of TBP under pH7/KPS, pH9/KPS and
pH12/KPS conditions resulted in L values of 17± 1, 23± 1, 19± 1,
respectively (Table 1). The reactions of TBP by UV/H2O2 (dominant
�OH reaction, described in SI, section 5) yielded an average L value
of 20± 4 (Table 1), which is statistically identical with the ones
obtained from KPS oxidation experiments. The two dimensional
isotope fractionation analysis of all radical oxidation experiments
including SO4

�e and �OH gave an average L value of 20± 4 (Table 1).

4. Discussion

4.1. Insight of the isotope fractionation during hydrolysis

A previous study proposed two hydrolysis pathways of organ-
ophosphorus compounds (OPs) (Fig. 3a and b): the first one is OH�

or H2O attacks the phosphorus atom; the second one is H2O attacks
the carbon atom (Wu et al., 2006). The acid-catalysed hydrolysis of
esters mainly proceeds via an AAC2 mechanism suggesting an acyl-
oxygen fission (AC) in a bimolecular reaction (Day and Ingold,
1941). For instance, under acidic and neutral conditions, trimethyl
phosphate may lead to a CeO bond split as demonstrated in ex-
periments with 18O-labelled water as indicator (Blumenthal and
Herbert, 1945). Consequently, the CeO bond cleavage leads to car-
bon isotope fractionation of TBP. At high pH (e.g., pH> 10), OH�

attacks the phosphorus atom through simple nucleophile
displacement (SN2-type) leading to a PeO bond cleavage
(Wanamaker et al., 2013). The reaction may proceed via a two-step
addition-elimination pathway involving a pentacoordinate inter-
mediate, such as TS1 and TS2 (Fig. 3b) (Kirby et al., 2013). The
observed negligible carbon and hydrogen isotope fractionation of
TBP at pH 12 highly supports a PeO bond split.

At pH 9, the observed carbon isotope fractionation of TBP pro-
vided evidence for a CeO bond split. However, the εC value at pH 9
was lower than that of pH 2 and pH 7. The same phenomenon was
observed during methyl parathion and ethyl parathion hydrolysis
(Wu et al., 2018a). Given that hydrolysis of OPs is pH dependent, no
precise pH boundary can be used for the identification of CeO or
PeO bond split. The two major degradation pathways occurred
simultaneously at pH 9. The PeO bond cleavage is not associated
with carbon isotope fractionation, and thus carbon isotope frac-
tionation can be solely attributed to the splitting of the CeO bond.
Considering that the carbon fractionation observed in experiments
for acid hydrolysis (pH 2) and alkaline hydrolysis (pH 12) are
representative for the mechanism for CeO and PeO bond split
respectively, and both processes follow the first-order kinetics, Eq.
[4] can be applied for the calculation of the contribution of the two
pathways acting during the hydrolysis at pH 9. The carbon isotope
enrichment factors of hydrolysis at pH 2 (ε1¼�3.8± 0.3‰) and the
ε2 value of 0‰ representing hydrolysis at pH 12 were used for
calculation. Within the uncertainty of isotope enrichment factors

observed in the experiments, the enrichment factor of TBP at pH 9
(εi¼�2.8± 0.1‰) suggests that 67e80% of TBP was hydrolyzed via
the CeO bond cleavage pathway, and the remaining 20e33% was
attributed to the PeO bond split. The mechanism of acidic and
neutral hydrolysis is almost identical, and the calculation is also
valid for comparing contributions at neutral conditions.

The hydrolysis pathways for OPs have been well studied previ-
ously as discussed above, and the determination of hydrolysis
products give no further information. Therefore, the hydrolysis
products of TBP were not determined in present study. For testing
the hypothesis of the degradation mechanisms the AKIE values
were compared to intrinsic KIE reactions. For TBP hydrolysis, AKIEC
(calculation is described in SI, section 6) ranged from 1.048 to 1.058,
which is in line with the intrinsic KIE values of nucleophilic sub-
stitution (1.03e1.09; SN2 type on CeO bond) (Paneth et al., 1992),
supporting the conclusion of CeO bond cleavage during TBP
hydrolysis.

4.2. pH-dependency of radical oxidation

In this study, either SO4
�e or �OH was involved in persulfate

oxidation, which is a pH-dependent reaction. Once SO4
�e was

generated by S2O8
2� scission, it could propagate a chain of reactions

involving the formation of other reactive species. SO4
�e can react

with water at all pH levels, forming �OH (Eq. [S1]) (Neta et al., 1988;
Herrmann et al., 1995). With the increase of pH, SO4

�e preferentially
reacts with OH� forming �OH with an increasing rate constant (Eq.
[S2]) (Neta et al., 1988; Herrmann et al., 1995). Hence, at low pH (i.e.
pH 7), SO4

�e is the predominant reactive species, whereas at pH 9,
both SO4

�e and �OH could coexist and at pH 12, �OH is predominant
(Liang and Su, 2009). Considering both radical species can be
quenched to some extent by the PO4

3� and CO3
2� components in the

buffer, the contributions of secondary radicals formed during the
reaction and subsequent reactionwith TBP were taken into account
and the contributions were estimated to be minor (description in
SI, section 5).

During radical oxidation of TBP, the rate constants have the
following order: pH 7> pH 9> pH 12 (Table 1), demonstrating that
the reaction can be retarded by increasing pH. The rate constants
are associated with the reactivity of the radicals as SO4

�e has a
stronger redox potential than �OH (Buxton et al., 1988; Neta et al.,
1988), and thus may result in larger kinetic rate constants. The
TBP oxidation by KPS at pH 12 had a 5 times larger rate constant
compared to the hydrolysis at pH 12 (Table 1) suggesting that
radical oxidation was dominating the degradation reaction.
Nevertheless, two degradation processes co-existed in the degra-
dation of TBP in the pH12/KPS system, namely, radical oxidation
and alkaline hydrolysis. The contribution of alkaline hydrolysis on
the TBP degradation was 35% based on the control experiment
without the addition of KPS (Fig. S2).

4.3. Insight of isotope fractionation during �OH and SO4
�e reaction

with TBP

�OH which can be generated by H2O2 under UV irradiation has a
high tendency to react non-selectively on functional groups via
electron transfer, hydrogen abstraction or electrophilic/radical
addition (Buxton et al., 1988). The transformation products formed
in the UV/H2O2 reaction with TBP were tentatively identified as
keto and hydroxylated derivatives (Table S1), suggesting a
hydrogen abstraction from the alkyl chain at sub-terminal posi-
tions. This suggests a formation of a radical at the side chain which
is quenched by oxygen forming a meta stable intermediate radical
followed by a Russell mechanism (Russell, 1957) to form keto and
hydroxyl TBP (Fig. 3c). In subsequent steps further reactions may
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lead to the formation of dibutyl phosphate. The hydrogen
abstraction mechanismwill lead to 2H and 13C isotope fractionation
of TBP. Alternatively, radical addition, for example �OH addition to
the central phosphorus atom, may form a (C4H9O)3PO�OH radical
leading to elimination of butanol and resulting in dibutyl phos-
phate (Fig. 3c). However, �OH addition to phosphate will lead to
PeO cleavage and is unlikely to induce 2H and 13C isotope frac-
tionation. Similar mechanisms have been observed in previous
studies during the �OH reaction with tri-(2chloroethyl) phosphate
(Wu et al., 2018a) and dimethyl phenylphosphonate (Oh et al.,
2003). According to the reaction mechanisms of SO4

�e and tri-
(2chloroethyl) phosphate, SO4

�e was reported to react with phos-
phorus and carbon atoms, thereby causing a PeO and CeH bond
split (Ou et al., 2017). Similarly, two pathways were proposed to be

involved in TBP oxidation induced by SO4
�e. One pathway involves

the addition to the phosphorus centre and rupturing of
eOCH2CH2CH2CH3 chains and the other one involves the addition
to the eCH2e moieties causing the CeH bond split. Similar isotope
fractionation pattern of TBP in reactions with both �OH and SO4

�e

radicals was observed, indicating that both reaction processes had
similar mechanisms. Therefore, the transformation products of TBP
in reaction with SO4�e were not determined in detail in this study.

The radical reaction with the alkane side chain at the sub-
terminal position cleaving a CeH bond in the transition state
leads to 2H and 13C isotope fractionation. The observed 2H and 13C
isotope fractionation in our experiments showed that this pathway
took place during radical oxidation of TBP by �OH and SO4

�e. The
obtained εC and εH at pH7/KPS (SO4

�e dominating) and pH9/KPS

Fig. 3. Proposed transformation mechanisms of TBP via hydrolysis and radical oxidation. Hydrolysis of TBP occurs via two pathways: (a) attacked by H2O at the a-carbon with SN2-
type substitution at low pH or (b) attacked by H2O at the P atom with SN2-type substitution at high pH. The latter reaction is accompanied with two transition states. Three water
molecules assisting the hydrolysis reaction by allowing two proton transfers, via a concerted six-membered cyclic activated complex (TS1) that includes general base catalysis in the
first step and the cleavage of the pentacoordinated intermediate in the second step (TS2). The radical oxidation by �OH can process via two mechanisms. Both processes can occur
simultaneously: (1). H-abstraction by �OH, followed by an oxygen addition and finally undergoing the Russell mechanism; (2). The �OH addition formed the (ButO)2POC,HC3H7

radical followed by the elimination of butanol.
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(SO4
�e and �OH co-existing) were very similar with the ones from

UV/H2O2 (pure �OH) (Table 1). The slightly smaller εC of�0.5± 0.1‰
and εH of �11± 1‰ at pH12/KPS (�OH dominating) is due to the
effect of alkaline hydrolysis of TBP at pH 12. Considering 35% of TBP
degradation was contributed by alkaline hydrolysis (process 1) at
pH12/KPS (Fig. S2), the ε associated with the �OH oxidation process
(process 2) can be estimated using Eq. (4) where F¼ 0.35,
εi¼�0.5± 0.1‰ for carbon and �11± 1‰ for hydrogen, ε1¼0‰.
Thus, ε2 was calculated to be �0.8± 0.2‰ for carbon and �17± 2‰
for hydrogen, which were identical with the ones obtained from
radical oxidation of TBP at pH7/KPS, pH9/KPS and UV/H2O2 con-
ditions (Table 1). The average values of εC¼�0.7± 0.1‰,
εH¼�16± 3‰, andL¼ 20 ± 4 calculated from all individual radical
oxidation experiments suggest that SO4

�e and �OH radical oxidation
processes of TBP could not be distinguished based on isotope
enrichment factors within the uncertainty of our results, and it may
suggest that both reaction processes had similar mechanisms of
attacking carbon atoms and cleaving CeH bonds. However, the
precise position of the hydrogen abstraction from the carbon atoms
at the side chain of the TBP molecule could not be confirmed
without further structural investigation of the transformation
products. In addition, the PeO bond splitting pathway cannot be
characterized by the 2H and 13C isotope fractionation of TBP in this
study, therefore, 2H and 13C isotope fractionation studies cannot
provide direct evidence to evaluate the process of PeO bond
cleavage.

The AKIEC which ranged from 1.007 to 1.011 for all radical
oxidation experiments (Table 1) is consistent with those reported
for n-alkanes' chemical transformation (1.01e1.02) (Bouchard et al.,
2008) and lower than the Streitwieser Limits for a CeH bond
(1.021) cleavage (Elsner et al., 2005). A series of studies yield AKIEH
values between 2 and 23 that are typical for H-bond cleavage
(Elsner et al., 2005). The AKIEH values reported in this study were
lower and ranged from 1.608 to 2.174, indicating that steps other
than the CeH bond cleavage were also rate-determining for radical
oxidation of TBP. Potentially a radical reaction at the phosphate
moiety may contribute to TBP degradation (Fig. 3c 2) but do not
contribute to 2H and 13C isotope fractionation. This may explain
why the calculated AKIE values are lower than those typically ex-
pected for CeH bond cleavage. In our case the calculated AKIE
values do not describe the KIE of the CeH bond cleavage at the side
chain of TBP because the overall transformation reaction has a
contribution of OH addition to the phosphate. However our current
data do not allow validating this hypothesis in more detail.

4.4. Identification of degradation pathways by 2D-plot to analyse L
values

The SO4
�e and �OH resulted in a characteristic isotope fraction-

ation pattern (L values) for radical oxidation reactions of TBP. As
hydrolysis did not lead to primary hydrogen isotope effects, hy-
drolysis and radical oxidation of TBP can be clearly distinguished by
the correlation of 2H and 13C fractionation (Fig. 4). Similar results
have been reported for radical oxidation of tris(2-chloroethyl)
phosphate by �OH formed in Fenton reactions and UV/H2O2 (Wu
et al., 2018a). However, considering the obtained identical L

values (section 3.5), the L values do not allow for separating the
mechanisms of SO4

�e and �OH reactions with TBP. The L values are
not affected when non-isotope-fractionating processes such as
alkaline hydrolysis are influencing overall degradation, showing
that mechanisms can also be identified when non-isotope-
fractionating processes are at work. This may imply that the
extent of isotope fractionation can be used for the assessment of
radical reactions and may allow for the selection of an isotope
enrichment factor representative for radical reactions. This isotope

enrichment factor could then be used to calculate the contribution
of degradation of TBP by radical reactions to the overall degradation
in the environment. For example the hydrogen enrichment factor
could be used to quantify the contribution of radical reactions
because hydrolysis does not exhibit 2H fractionation. The 2H and 13C
isotope fractionation pattern of parathion has been used at an in-
dustrial dumpsite to characterise the contribution of neutral and
acidic hydrolysis of parathion in a remediation measure (Wu et al.,
2018b). Similarly, the L values determined throughout the current
study could be used in the future to characterise degradation re-
action in field studies for quantifying hydrolysis or chemical
oxidation reactions. Further information for quantification of
degradation reactions in the environment using enrichment factors
have been summarized previously (Thullner et al., 2012).

5. Conclusions

In this study, the carbon and hydrogen isotope fractionation
caused by hydrolysis and radical oxidation of TBP were systemati-
cally examined at different pH conditions. The AKIEC of the hy-
drolysis under neutral and acidic conditions was 1.048e1.058,
which was consistent with an SN2-type displacement reaction
cleaving the CeO bond. At pH 12, a SN2-type nucleophilic
displacement reaction cleaving the PeO bond was characterized by
the absence of carbon and hydrogen isotope fractionation. During
hydrolysis at pH 9, the SN2-type displacement reaction cleaving the
CeO bond affects the carbon isotope fractionation and contributes
to 67e80% of the overall reaction. The radical oxidation of TBP re-
sults in AKIEC and AKIEH of 1.007e1.011 and 1.608e2.174, respec-
tively, which is consistent with a major contribution of a CeH bond
cleavage. The correlation of 2H and 13C isotope fractionation of TBP
allows identifying radical reactions and distinguishing radical re-
actions from hydrolysis.
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1. Concentration analysis of Tributylphosphate (TBP) 

TBP concentrations were determined by gas chromatography (GC,  Agilent 6890, Agilent 
Technologies, Germany) coupled with a flame ionization detector (FID). Samples were 
separated on a HP-5 column (30 m length, 0.32 mm inner diameter, 0.25 μm film thickness, 
Agilent Technologies, Germany) at a constant helium carrier gas flow of 1.5 mL/min with the 
following temperature program: 60 °C for 2 min, 20 °C/min to 160 °C, 5 °C/min to 220 °C, and 
15 °C/min to 280 °C for 2 min. An aliquot of the sample (1 µL ) was injected in split mode with 
a split ratio of 1:25. The injector temperature was set to 250°C.  

2. Carbon and hydrogen isotope analysis 

2.1 Analytical methods 

Stable carbon and stable hydrogen isotope compositions of TBP were measured by gas 
chromatography – combustion – isotope ratio mass spectrometry (GC-C-IRMS) (Wu et al., 
2017b) and gas chromatography – chromium-based high temperature conversion – isotope 
ratio mass spectrometry (GC-Cr/HTC-IRMS) (Renpenning et al., 2015; Renpenning et al., 
2017), respectively. A GC 7890A (Agilent Technologies, Germany) coupled via a GC IsoLink 
and a ConFlo IV open split system to a MAT 253 IRMS (Thermo Scientific, Germany) was 
used. Aliquots of the samples (1-4 µL) were injected with a split ratio of 1:5. Samples were 
separated on a ZB-1 column (60 m length, 0.32 mm inner diameter, 1 μm film thickness, 
Phenomenex Inc., USA) at a constant helium carrier gas flow of 2.0 mL/min with the following 
temperature program: 60 °C for 2 min, 10 °C/min to 160 °C, 5 °C/min to 220 °C, and 
15 °C/min to 280 °C for 2 min. The injector temperature was set to 280°C.  

2.2 Linearity 

The linearity; that is, the dependence of the isotopic ratios from the amount of sample 
material, was analyzed using stock solutions of TBP dissolved in DCM to different 
concentrations. Sample aliquots (1-4 µL) were injected in split (for carbon) or splitless (for 
hydrogen) mode. Measurements of different amounts of TBP documented a dependence of 
δ

13
C on the injected amount and defined the required TBP sample amplitude for a ≥ 1500 mV 

signal as 0.2 nmol TBP on column, or 2.4 nmol C on column; δ
2
H on the injected amount and 

defined the required TBP sample size for a ≥ 7500 mV signal as 7.5 nmol TBP on column, or 
202 nmol H on column (Fig. S1). 

 

Fig. S1 Linearity of δ
13

C values (A) and δ
2
H values (B) measured along ranges of injection 

sizes for TBP.   

3. Extraction recovery and isotope effects 

3.1 Extraction recovery 
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TBP standard solutions with six concentrations levels of 400, 1000, 2000, 4000, 5000 and 
6000 mg L

-1
 were prepared by dissolving in 1 mL of DCM containing 1000 mg L

-1
 DBP (as 

internal standard). The standard solutions were stored at 4 °C before analysis. 

TBP aqueous solutions were prepared by dissolving TBP in 40 mL of water in 50-mL bottles, 
obtaining final concentrations of 10, 25, 50, 100, 125 and 150 ppm, respectively. Each bottle 
was closed with a Teflon-coated butyl rubber septum and a crimp cap. The solutions were 
shaken overnight at room temperature to ensure complete dissolution of TBP. Afterwards, 
dissolved TBP were extracted with 1 mL of DCM containing 1000 mg L

-1
 DBP as internal 

standard by shaking for at least 4 h at 10 °C. The concentrations of the extracts and TBP 
standard solutions were analyzed by GC-FID as described above, and extraction recovery 
was calculated. The recovery of the liquid/liquid DCM extraction method was 91.2 ± 10.2% 
(Fig. S2 (a)).  

3.2 Effects of extraction on isotope signature 

To ensure that the liquid-liquid extraction method does not cause any isotope fractionation 
effect, the isotope signature of TBP was determined before and after DCM extraction. As 
shown in Fig S2 (b), the isotope shifts before and after DCM extraction were 0.05 – 0.65‰ for 
δ

13
C, and 1 – 4‰ for δ

2
H, respectively. Considering the analytical uncertainty of carbon and 

hydrogen isotope compositions, which is < ±0.5‰ for carbon and < ±5‰ for hydrogen 
(Sessions, 2006; Sherwood Lollar et al., 2007), carbon and hydrogen isotope shifts due to the 
extraction process are insignificant. 

 

Fig. S2. Extraction recovery of TBP (a) and effects of extraction on the stable carbon and 

hydrogen isotope signature of TBP (b). (a) Black squares and blue circles depict the TBP 

concentrations of standard samples and extracted samples, respectively; (b) red circles 

depict isotope signatures (δ
13

C and δ
2
H) of TBP from extracted samples; black squares 

depict isotope signatures of TBP from standard samples. Error bars represent 2σ of at least 

3 measurements.  

4. Control experiments 

Control experiments for KPS oxidation were conducted as batch experiments without the 
addition of KPS at pH 7, pH 9 and pH 12, respectively. Control experiments for UV/H2O2 
oxidation were performed either without UV irrigation or without the addition of H2O2, 
respectively. Over the entire reaction time, the losses of TBP concentrations were at most 1.5 
- 2.0% for the KPS control experiments at pH 7 (Fig. S3 (a)) and pH 9 (Fig. S3 (b)), and 
similar amounts of TBP loss were observed in the UV/H2O2 control experiments (Fig. S3 (d)). 
However, the TBP concentration decreased by about 35% within 400 h in the KPS control 
experiment at pH 12 due to alkaline hydrolysis of TBP (Fig. S3 c). 
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Fig. S3. Change of the TBP concentration in control experiments. (a) KPS control 
experiments at pH 7, (b) KPS control experiment at pH 9, (c) KPS control experiment at 
pH 12, (d) UV/H2O2 control experiments without UV irrigation (black symbols) and without 
the addition of H2O2 (red symbols). 

5. Calculation of secondary radical reactions in buffer solution. 

The formation of secondary radicals by reaction of SO4
−•

/ 
•
OH with various buffer systems was 

estimated to evaluate if secondary radicals could potentially affect the isotope fractionation of 
TBP. Secondary radicals are highly reactive species, however, generally still less reactive 
compared to the primary ones. Therefore, the ratios of the formation of secondary radicals 
have been calculated (see attached excel script). The following buffer systems have been 
used: KH2PO4/ K2HPO4 buffer at pH 7, NaHCO3/ NaOH buffer at pH 9 and NaH2PO4/ NaOH 
buffer at pH 12.  

(i) The phosphate buffer system at pH 7 in UV/H2O2 reaction  

The UV reaction with H2O2 forms 
•
OH at pH 7 which can react with the phosphate buffer to 

form H2PO4
•
 or HPO4

•−
 (Maruthamuthu and Neta, 1978). The reaction rate of 

•
OH with TBP is 

estimated to be > 100 times faster than with phosphate buffer and we consider a larger 
predominance of the 

•
OH reaction with the aliphatic side chain of TBP by H abstraction. A 

further secondary radical reaction of HPO4
•−

 will react with H2O2 to form 
•
OH again 

(Nakashima and Hayon, 1970). The reaction rate of HPO4
•−

 with alcohols is estimated to be 
slower than with H2O2. Therefore, we conclude that 

•
OH is only a relevant radical for TBP 

degradation in this buffer system (see excel script). 

(ii) The phosphate buffer system at pH 7 in KPS reaction 

The KPS reaction at pH 7 forms SO4
•−

. Even SO4
•−

 can react with water at all pH levels, 
however, the rate constant was very low, less than 6 × 10

1
 M

-1
s

-1
 (Eq. S1). The SO4

•−
 can 

react with H2PO4
− 

or HPO4
2−

 by electron transfer reaction to produce H2PO4
•
 or HPO4

•−
 by the 

same order of reaction rates compared to the estimated rate of SO4
•−

 with TBP 
(Maruthamuthu and Neta, 1978). The secondary reaction of HPO4

•−
 with TBP (referred to 

HPO4
•−

 reacted with tert-butanol and ethanol, respectively) is estimated to be calculated, and 

224



 

 

compared with reaction by KPS (referred to the H2O2 reacted with HPO4
•−

). The reaction with 
KPS will form SO4

•−
. We conclude that SO4

•−
 is the dominant radical for reactions with TBP in 

this buffer system. 

All pH:   SO4
•− + H2O → OH•  +  SO4

2− +  H+     k SO4
–

•+H2O < 6 × 10
1
 M

-1
s

-1
      [S1] 

(iii) The carbonate buffer system at pH 9 in KPS reaction 

The KPS reaction at pH 9 forms SO4
•−

 and 
•
OH (Herrmann et al., 1995; Liang and Su, 2009; 

Romero et al., 2010). SO4
•−

 reacts with the HCO3
−
 to form HCO3

•
 with a nearly 7 times higher 

reaction rate compared to the reaction with TBP (Huie and Clifton, 1990; Umschlag and 
Herrmann, 1999). The subsequent H atom abstraction reaction of the CO3

•−
 yields an alkyl 

radical as in the reaction of the SO4
•−

 with TBP.  

(iv) The phosphate buffer system at pH 12 in KPS reaction 

The KPS reaction at pH 12 forms almost exclusively 
•
OH and due to that, SO4

•−
 reacts rapidly 

with OH
−
 to form 

•
OH (Eq. S2) (Herrmann et al., 1995; Liang and Su, 2009; Romero et al., 

2010). Therefore, secondary reactions of SO4
•−

 with phosphate buffer to form H2PO4
•
 or 

HPO4
•−

 are minor. The addition reaction pathway where the formed radicals (SO4
•−

, 
•
OH, etc.) 

add to the P atom of organophosphates has been regarded to be unlikely (Abbott et al., 
2010). 

Alkaline pH: SO4
•− + OH− → OH•  +  SO4

2− k SO4
–
•+OH

–
 = (4.6 - 8.3) × 10

7
 M

-1
s

-1
  [S2] 

6. AKIE calculation 

The three butyl chains of TBP can be considered identical. The C-O bond could be cleaved 

during hydrolysis at pH 2 and pH 7 (discussed in section 4.1 in the main text). For the 

calculation of AKIEC for TBP hydrolysis, n = 12, x = 3, z = 3 were applied, resulting in 1.048 

± 0.004 at pH 2 and 1.058 ± 0.007 at pH 7, respectively. The AKIEC at pH 9 was not 

calculated since two hydrolysis pathways took place simultaneously. 

For the calculation of AKIE of TBP via H abstraction by 
•
OH, we assume 

•
OH attacks on sub-

terminal carbon of the butyl chain (Fig. 1c). Therefore, n = 12, x = 3, z = 3 were used for 

AKIEC calculation, resulting in 1.010 ± 0.001 (UV/H2O2_1), 1.007 ± 0.004 (UV/H2O2_2) and 

1.007 ± 0.001 (UV/H2O2_3), respectively. AKIEH was calculated applying n = 27, x = 6, z = 6, 

resulting in 1.608 ± 0.070 (UV/H2O2_1), 1.610 ± 0.209 (UV/H2O2_2) and 1.761 ± 0.418 

(UV/H2O2_3), respectively. The AKIEC and AKIEH of the individual experiments were 

statistically identical. 

SO4
•–

 is the dominating radical species for the pH7/KPS reaction. Similar to 
•
OH, we assume 

SO4
•–

 attacks on the sub-terminal carbon of the butyl chain. The reaction of pH9/KPS 

proceeds by two main radicals, SO4
•−

 and 
•
OH, in parallel, however, via a C-H bond 

cleavage at the same position. Therefore, the AKIE values were calculated using Eq. (2) by 

applying the same parameters as described in UV/H2O2 experiments. AKIEC were 

1.011±0.001 and 1.010±0.001 for reaction at pH7/KPS and pH9/KPS, respectively and are 

statistically identical. The corresponding AKIEH were 1.761 ± 0.167 and 2.174 ± 0.255, 

respectively which overlap slightly but are statistically not different taking the uncertainty into 

account. The AKIE values at pH12/KPS were not calculated since two degradation 

processes (hydrolysis and radical oxidation) took place simultaneously. 

225



 

 

7. Analysis of transformation products of TBP via •OH oxidation  

The analytical procedures for analyzing the transformation products of TBP in UV/H2O2 

reactions were the same as described previously (Wu et al., 2017a). A Fourier-transform ion 

cyclotron resonance mass spectrometer (FT-ICR MS, Solarix XR 12T, Bruker Daltonics) 

equipped with a dynamically harmonized analyzer cell was used for the analysis of the 

methanolic extracts. FT-ICR MS is a mass spectrometer for determining the mass-to-charge 

ratio (m/z) of ions based on the cyclotron frequency of the ions in a fixed magnetic field. The 

instrument was operated with a high mass accuracy and resolution (450000 at m/z 200) 

which allowed a tentative assignment of a chemical by calculating the elementary 

composition of possible transformation products using the exact mass.  

Solid phase extraction (SPE) using Bond Elut PPL cartridges (50 mg, Agilent) were applied 

to extract organic compounds from 10 mL of the reaction mixture which was taken after 4 h 

of reaction. The SPE extraction procedures were completed by following the manufacturer’s 

guidelines. The transformation products were eluted with 0.5 mL methanol. The methanolic 

eluent was diluted 100 or 1000 times with MilliQ water/MeOH (1:1, v/v) before analysis. 

Samples were measured with positive and negative electrospray ionization in the direct 

infusion mode with a 4 MWord time domain using typical electrospray ionization (ESI) 

conditions.  

TBP and three potential first step transformation products were identified (P1 to P3). For 

instance, as shown in Fig. S4, a transformation product of TBP was found in positive mode 

with m/z 281.1512 and ion formula of C12H26O5P
+
, which was not present in the initial 

solution at time 0. All detected transformation products of TBP are listed in Table S1. The 

mass for P1 allows calculating a molecular formula of C8H19O4P, suggesting that a di-n-

butylphosphate was formed. The mass of P2 allows calculating a molecular formula of 

C12H25O5P, suggesting that a keto-tri-butylphosphate was formed. The mass of P3 allows 

calculating a molecular formula of C12H27O5P suggesting that a hydroxy-tri-butylphosphate 

was formed. The keto and hydroxyl group is probably located at the side chain in sub-

terminal positions as an attack at the terminal carbon is unlikely.  
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Fig. S4. Positive ionization mode: m/z 281.1512, a possible TBP product.  

Table S1: List of characterized transformation products detected by FT-ICR MS. 

Name Formula Tentative structure Molar mass 
(g/mol) 

m/z pos m/z neg Detected 
(pos/neg) 

TBP C12H27O4P 

 
 

266.314 267.1720 
289.1539 

 pos(H,Na)/- 

P1 C8H19O4P 

 
 

210.208 211.1094 209.0948 
 

pos(H)/neg 

P2 C12H25O5P 

 
 

280.298 281.1512 
303.1331 

 pos(H,Na)/- 

P3 C12H27O5P 

 
 

282.314 283.1669 
 
 
 
 

 pos(H,Na)/- 
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ABSTRACT 

In order to understand the enantiomer specific and carbon stable isotope fractionation of α-
hexachlorocyclohexane (α-HCH) during aerobic degradation, biodegradation experiments were 
conducted with six Sphingobium strains which are different in their lin gene inventory. Experiments were 
carried out with (i) resting cells and (ii) crude cell extracts of Sphingobium indicum strain B90A in parallel 
and (iii) isolated LinA1 and LinA2 proteins, to investigate the underlying mechanisms leading to carbon 
isotope and enantiomer fractionation of α-HCH. The isotope fractionation of individual α-HCH 
enantiomers, (+)α- and (-)α-HCH, along with the enantiomer fractionation were quantified to describe the 
degradation processes at different cell integrities. The average isotope enrichment factors obtained from 
parallel experiments for (+)α- and (-)α-HCH degradation were -6.3 ±0.1 ‰ and -2.3 ±0.03 ‰ by resting 
cells, -7.7 ±0.4 ‰ and -3.4 ±0.02 ‰ by crude extract, respectively. Purified LinA1 and LinA2 enzyme give 

C  of -11.1 ±0.3 ‰ for (+)α-HCH and -3.8 ±0.2 ‰ for (-)α-HCH, respectively. The large carbon 
fractionation is consistent with an E2 elimination proposed for LinA degradation mechanisms. An 
approximate model, we derived from the first order rate law and the definition of enantiomer ratio used in 
the environmental science, has been successfully applied for the evaluation of enantiomer fractionation. 
We also described here our consideration on the approximation conditions required for the application of 
the suggested model. The absolute values of enantiomer fractionation factors varied between 0.54 ± 
0.14 % and 2.70 ± 0.50 % from resting cells to purified enzymes. Our study validated that enantiomer 
and isotope fractionations were two independent processes and those both were affected by reaction of 
individual enzymes and mass transport within the cell. Therefore the quantification of the fate of chiral 
compounds in the environment by combination of isotope and enantiomer fractionation needs to be done 
with caution. 

 

TOC  

INTRODUCTION 

An increasing level of anthropogenic chemicals are chiral compounds which raise not only environmental 
concerns but also possess enantiomer-specific environmental toxicity.

1
 Estimates suggest that up to one 

third of all anthropogenic compounds such as fungicides, herbicides, and antibiotics are chiral, of which 
many are produced by chemical synthesis as racemates.

2
 The changes in enantiomer ratio have been 

suggested as an indicator for biodegradation of chiral compounds and have also been applied to track in 
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situ degradation at field sites.
3, 4

 Similarly, the changes in stable isotope ratio of contaminants have been 
used to monitor biodegradation in environmental studies.

5
 Therefore, the combination of enantiomer and 

isotope fractionation holds immense potential for characterization and quantification of biodegradation 
processes.

6
 Combination of isotope fractionation and enantiomer fractionation has already been applied 

for the evaluation of chiral compounds in the field, for example, phenoxy acid herbicides and their 
metabolites.

7
 

Amongst these chiral compounds, α-hexachlorocyclohexane (HCH) is one of the persistent organic 
pollutants posing a threat to the environment appearing world-wide as point or dispersed pollution.

8
 Its 

enantiomer degradation and fate under natural or field conditions should therefore be evaluated.
9
 

Recently, compound specific isotope analysis (CSIA) and enantioselective stable isotope analysis (ESIA) 
have been proposed as tools to monitor transformation of α-HCH in a complex ground water system.

10
 

Indeed, the application of the combined isotope and enantiomer fractionation analysis for evaluation of 
contaminants degradation has challenged environmental scientists for almost a decade now. Jammer et 
al.

11
 provided a description of enantiomer fractionation by a quantitative structure–activity relationship 

model (QSAR) for enantioselective hydrolysis of 2-(phenoxy) propionate during enzymatic degradation 
by lipases from Pseudomonas fluorescens, Pseudomonas cepacia, and Candida rugosa. The authors 
recommend a quantification of enantiomer fractionation using the Rayleigh approach which is similar to 
the quantification of stable isotope fractionation. However, a theoretical foundation for models which 
describe the molecular mechanisms governing isotope and enantiomer fractionation processes remains 
lacking. 

The genes responsible for HCH degradation, known as lin genes, are generally present in aerobic HCH 
degrading Sphingomonads. These genes were first identified and characterized in Sphingobium 
japonicum UT26

12
 followed by S. indicum B90A

13
. The 156-amino acid long product of this gene, known 

as HCH dehydrochlorinase, was found localized in the periplasm.
12

 The LinA enzyme performs the initial 
step of dehydrochlorination, converting α-HCH into α-PCCH. It has been reported that the linA genes are 
under continuous selection pressure and thus exist in several variants.

14-18
 There are two copies of linA 

genes i.e., linA1 and linA2 present in S. indicum B90A and Pseudomonas aeruginosa ITRC-5, whereas 
only linA2 is present in S.indicum UT26. The linA1 and linA2 genes of strain B90A coded enzymes differ 
by 10% in their amino acid sequence, and preferentially degrade (+)α-HCH and (-)α-HCH enantiomers, 
respectively.

19-21
 Among all the strains included in the current study, the linA gene of strain HDIPO4 was 

shown as the most divergent, with 94.8 % sequence similarity to linA1 and 92.9 % to linA2.
21

 So far, 
studies have reported the difference in the degradation potential of these Sphingomonads based on 
sequence polymorphism

21, 22
, but there are no reports of enantiomer fractionation factors of α-HCH by 

using purified enzymes. 

In this study, the LinA protein group was selected as a model system with two variants namely LinA1 and 
LinA2. In order to understand the correlation of isotope fractionation and enantiomer fractionation, a 
series of experiments were conducted. The initial set of experiments involved six Sphingobium strains 
(namely Sphingobium quisquiliarum P25, S. lucknowense F2, S. chinhatense IP26, S. ummariense RL3, 
Sphingobium sp. HDIPO4, S. baderi LLO3) to observe their efficacy for α-HCH degradation during 
growth. Further experiments were conducted with the objective to reduce the complexity of the degrading 
system, represented by resting cells, crude cell extracts and purified enzymes. Resting cells were 
assumed to have a stable ratio of LinA1 and LinA2 enzymes (experiment a - d). Degradation 
experiments by crude extract were conducted to guarantee stable concentration of Lin enzymes and to 
avoid the effect of cell membrane and (experiment e - h). As a further step, experiments using purified 
enzyme were conducted to characterize the specificity of LinA1 (experiment I - k) and LinA2 (experiment 
l - m) towards the α-HCH enantiomers and to portray degradation mechanisms exhibited by individual 
enzymes. Reaction kinetics, carbon stable isotope fractionation and enantiomer fractionation were 
studied as descriptors for the reaction. Isotope and enantiomer fractionation were evaluated and 
discussed based on the concept of rate-limitation of preceding reaction steps during uptake, membrane 
transport and bond cleavage. Furthermore, we discuss the implication of applying enantiomer and 
isotope fractionation for charactering biodegradation in field studies, based on the molecular 
mechanisms of isotope fractionation and enantiomer fractionation processes. 
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MATERIALS AND METHODS 

Chemicals. α-HCH (analytical purity, 99%), hexachlorobenzene (HCB, analytical purity, 97%), imidazole 
(analytical purity, 99%) and ampicillin (analytical purity, 95%) were purchased from Sigma Aldrich 
(Germany). n-pentane (analytical purity,99%) was supplied by Carl Roth, Germany. TRIS was supplied 
by Geyer, Germany. 

Bacterial strains and Cultivation Conditions. Sphingobium spp.(B90A, P25, F2, IP26, RL3, HDIPO4, 
LLO3) and E.coli BL21 (AI) were maintained in the Molecular Biology Laboratory, University of Delhi, 
India. The information for cultivation can be found in SI. 

Cell Suspension and Bacterial Crude Extract of B90A. Bacterial cells were harvested by 
centrifugation at 8.000 × g at 4 °C for 20 min when the A600 of cultures reached 0.5-0.6 (logarithmic 
phase). The cells were washed twice by sequential re-suspending and centrifugation with 0.1 M TRIS-
HCl buffer at pH 7.5. The cell suspension was used in subsequent resting cell degradation experiments. 
For crude extract, the bacterial pellet was stored at -20 °C, and crude extract was prepared with French 
Press (Thermo Fisher Scientific, Bremen) at 20.000 psi before using.  

Enzyme Expression and Purification. Overnight grown culture was inoculated (1% v/v) in 100 mL LB 
media (See in SI) amended with antibiotics and incubated at 30°C with shaking at 200 rpm until the 
OD600 reached 0.5-0.6. The induced culture was then harvested by centrifugation at 8.000 × g for 15 min 
at 4

o
C. Enzyme purification procedures are provided in SI section 3. 

Degradation Experiments. Batch degradation experiments were conducted with 240mL bottles with 
100mL medium (for growing cell degradation) or buffer (for resting cells, crude extract and enzyme 
degradation). The initial concentration of α-HCH was 5.5 μM. Different amount of resting cells, crude 
extract and enzymes were used for the experiments. Bottles were sacrificed over degradation time. The 
detailed information of experiments, such as the concentration of enzymes and the amount that used for 
degradation experiments is described in SI section 2.  

Analytical Methods and Data Evaluation. The concentration of HCH was analyzed by a GC equipped 
with a FID. The concentration of protein was quantified by NanoDrop ND-1000 Spectrophotometer from 
Thermo Fisher Scientific. The carbon isotope composition was analyzed by gas chromatography isotope 
ratio mass spectrometry (GC-IRMS), as described previously.

23
 The carbon isotope fractionation of α-

HCH and its enantiomers were quantified using the Rayleigh equation. A model was developed as Eq.4 
for the quantification of enantiomer fractionation. The detailed information can be found in SI section 4 - 
6. 

RESULTS  

The carbon stable isotope composition of α-HCH was analyzed during biodegradation for quantification 
of isotope fractionation using the Rayleigh equation (Eq. 1). Enantiomer fractionation was quantified by 

the model (Eq. 3). The pseudo-first-order kinetic rate constants (), isotope enrichment factors and 
enantiomer fractionation factors obtained from each set of experiments are summarized in Table 1. 

Degradation by Growing Cells. Degradation experiments of α-HCH enantiomers were conducted using 
six Sphingobium spp. in minimal salt medium (MSM). Carbon isotope enrichment of α-HCH enantiomers 
associated with the degradation was observed in culture experiments (Fig. S1). Only the degradation of 
α-HCH enantiomers by strain HDIPO4 could be modeled by the pseudo-first order-kinetics with a good 
coefficient of determination (R

2
) of 0.96/0.95 (Fig. S2). Plotting EF(-) over time (Fig. S3), the enantiomer 

selectivity was variable during the degradation. Each of the Sphingomonas species has at least two 
enzymes (LinA1 and LinA2) catalyzing the initial step of α-HCH enantiomers degradation. Thus, we 
speculated that the expression of LinA enzymes changed during growth, which might affect the 
degradation kinetic of individual enantiomers and therefore the enantiomer selectivity changed. The six 
strains also showed differences in isotope enrichment of α-HCH enantiomers (Fig. S1). This variability of 
enantiomer and isotope fractionation leads to a tantalizing question on mechanisms controlling both 
processes. Particularly for the interpretation of enantiomer and isotope patterns in the environment which 
is a proxy of in situ degradation. Therefore, to characterize the factors governing enantiomer and isotope 
fractionation, we conducted a series of experiments with decreasing complexity of the degrading system.  
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Degradation by Resting Cells. Batch experiments with different amount of resting cells from 
Spingobium indicum strain B90A were conducted based on the hypothesis that the ratio of LinA enzymes 
and their activities are constant over the time in the individual experiments (experiments a~d). For (+)α-

HCH transformation, the degradation rates could be described by pseudo-first-order kinetics with 
+
 

values between 0.06 ± 0.01 h
-1 

and 0.49 ± 0.03 h
-1

, R
2
 >0.93 (Fig. S6). The obtained carbon isotope 

enrichment factors εc
+
 in the individual experiments were -6.4 ± 0.7 ‰, -6.2 ± 1.2 ‰ and -6.1 ± 1.1 ‰, 

which were statistically identical and thus describing isotope fractionation robustly. For (-)α-HCH 

transformation, no significant isotope fractionation was observed at higher 
-
 values of 0.81 ± 0.12 h

-1 

and 0.76 ± 0.09 h
-1

 (Fig. S4 a, b). However, at lower rates of 
-
 = 0.35 ± 0.02 h

-1 
and 0.15 ± 0.02 h

-1
, 

significant isotope enrichment was observed with εc
- 
= -2.3 ± 0.4 ‰ and -2.3 ± 0.3 ‰, respectively. This 

suggests that isotope fractionation was depending on the degradation rate and the uptake, transport of 
HCH across the cell envelope or enzyme binding which could be rate limiting and thus the higher rate 
constants, leading to decrease of observed carbon isotope fractionation.  

However, with an increase of the  value from 0.10 ± 0.01 h
-1 

over 0.21 ± 0.03 h
-1

 and 0.47 ± 0.05 h
-1 

to 
0.61 ± 0.06 h

-1 
(Fig. S6), the enantiomer fractionation factors varied between -1.07 ± 0.20 % and -0.54 ± 

0.14 % (Fig. 2_RC), suggesting that enantiomer fractionation was variable depending on the degradation 
rate.  

Degradation by Crude Extract. The degradation by using different amount of cell crude extracts 
followed pseudo-first-order kinetics (Fig. S6 e~h). Significant isotope fractionation was observed during 

(+)α-HCH transformation when the 
+
 values were 0.30 ± 0.07 h

-1
 and 0.12 ± 0.02 h

-1
 (Fig. S6) and 

identical εc
+

 

were obtained with -7.4 ± 0.7 ‰ and -8.0 ± 1.3 ‰ (Fig. 1), respectively. In case of (-)α-HCH 

transformation,  no significant isotope enrichment was observed when the corresponding 
-
 values were 

0.58 ± 0.13 h
-1 

and 0.45 ± 0.06 h
-1

( Fig. S6). Significant carbon isotope enrichment of  εc
+
 = -3.4 ± 0.5 ‰ 

and -3.4 ± 0.6 ‰ were observed with lower reaction rates of 0.19 ± 0.02 h
-1

 and 0.18 ± 0.02 h
-1

, 
respectively. The enantiomer fractionation factors varied between -1.35 ± 0.13 % and -0.71 ± 0.19 % (Fig. 

2_CE) with 
 
values between 0.11 ± 0.02 h

-1
 and 0.38 ± 0.1 h

-1
 (Fig. S6), which was similar to the resting 

cell degradation experiments (Table 1). 

Degradation by Purified Enzymes. The enzyme experiments showed a nearly exclusive degradation of 
(-)α-HCH by LinA2 and of (+)α-HCH by LinA1, respectively. The degradation of α-HCH enantiomers 
using different amount of purified enzymes could be described by the pseudo-first-order kinetics with rate 
constants between 0.13 ± 0.02 h

-1
and 0.65 ± 0.10 h

-1 
(Fig. S6). LinA1 degraded preferentially (+)α-HCH 

with a 
+
 of 0.28 ± 0.02 h

-1
 and 0.13 ± 0.02 h

-1
, the obtained εc

+ 
values were -11.3 ± 2.0 ‰ and -10.9 ± 

1.5 ‰, respectively (Fig. 1). Three sets of degradation experiments were conducted with LinA2. With 
- 
of 

0.65 ± 0.10 h
-1

, 0.54 ± 0.28 h
-1

 and 0.27 ± 0.05 h
-1

, the isotope enrichment factors were -3.7 ± 0.6 ‰, -4.0 
± 1.0 ‰ and -3.6 ± 0.5 ‰, respectively.  

The kinetic rate constants of enantiomers were used to evaluate the enantiomer fractionation (Fig. 2). 
For (-)α-HCH degradation by LinA2, different kinetic constants in parallel experiments (i ~k) were 
obtained and the enantiomer fractionation factors were statistically identical (-2.70 ± 0.50 %, -2.28 ± 0.19 
% and -2.42 ± 0.20 %, respectively). (+)α-HCH degradation by LinA1 resulted in the enantiomer 
fractionation factors of 2.13 ± 0.52 % and 2.37 ± 0.48 %. In all enzyme degradation experiments, despite 
the variation of kinetic rate constants, the enantiomer fractionation factors were nearly identical 
considering the confidence intervals (Table 1).  

The apparent kinetic isotope effect of carbon (AKIEC) was calculated amounting to 1.035 and 1.012 for 
LinA1 and LinA2 respectively (Tab. S1) when assuming an E2 elimination reaction with a concerted 
cleavage of a C-Cl and C-H bond. The AKIEC of LinA2 has consistent order of magnitude as the 
quantum chemical modeling.

24
  The AKIEC of LinA1 is higher than the value get from quantum chemical 

modeling but similar as the value observed in other studies which involving C-Cl bond cleavage. 
24-26

  

DISCUSSION 

Quantification of Enantiomer Fractionation. Quantification of enantiomer fractionation has already 
been proposed using different models, mainly based on the Rayleigh model. Gasser and colleagues

27
 

proposed to apply the simplified Rayleigh equation (Eq. 1): 
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𝑙𝑛 (
𝑅𝑡

𝑅0
) = 𝜀𝑐 × 𝑙𝑛

𝐶𝑡

𝐶0
                                               (1) 

where R=EF(-)/EF(+), EF is the enantiomer fraction, EF(-)=C(-)/C, EF(+)=C(+)/C, C is the total 
concentration of both enantiomers, C(-) and C(+) are the concentration of (-) and (+) enantiomers, 
respectively. This simplified Rayleigh equation was developed for the evaluation of isotope fractionation 
considering the concentration of the heavy isotope to be significantly smaller, thus, for most light 
elements (H, C, N and O) at natural abundance, RA+1≈1 (RA=

H
A/

L
A, 

H
A and 

L
A are the total amounts of 

the heavy and light isotope of an element in compound A). However, the assumption of R+1≈1 is not 
valid for the evaluation of enantiomer fractionation, as the enantiomers appear in similar initial 
concentration. The enantiomer fractionation was also proposed to be quantified by applying the general 
form of Rayleigh equation 

28
: 

𝑅𝑡

𝑅0
= (

𝐶𝑡
𝐶0

𝑅𝑡+1

𝑅0+1

)

𝜀

                                                        (2) 

which can be rewritten as Eq. 3.  

𝑙𝑛 (
𝑅𝑡

𝑅0
) = 𝜀𝑒 × 𝑙𝑛

𝐶(+)𝑡

𝐶(+)0
                                         (3) 

Conventionally the Rayleigh equation for quantifying the fractionation assumes one process compiling 
two constant reaction rates on individual species with almost homogeneous reaction conditions and 
predicts the separation of both species. However, the enantiomer fractionation of α-HCH is the results of 
two individual degradation processes, governed by LinA1 and LinA2 as the main enzyme for (+) and (-)α-
HCH degradation, respectively. In this case, the Rayleigh equation is not suitable in a strict sense for 
quantifying enantiomer fractionation, as two independent physio-chemical processes are not necessarily 
correlated in a homogeneous reaction. Therefore, we developed a model for quantification of enantiomer 
fractionation using rate laws by characterizing the relationship between the changes of enantiomer 
concentrations (enantiomer ratio) and bulk α-HCH concentration over time. In this study, degradation of 
α-HCH followed first order or pseudo-first-order kinetics over a certain concentration range practically in 
resting cell as well as in degradation experiments with crude extracts or isolated enzymes (Fig. S6). The 

development of this model assumes the first order rate law ( 𝐶𝑡 = 𝐶0 × 𝑒−𝑘×𝑡) for the degradation of bulk 
α-HCH and can be therefore applied for the experimental data fitting the first order bulk degradation 
which is the same assumption as reported by Jammer

29
. The development process of this model has 

been described in detail in SI section 6.  

This model (Eq. 4) was applied for quantification of enantiomer fractionation of our data sets. 

𝑙𝑛 (
𝐶(+)𝑡

𝐶(−)𝑡
) = 𝜀𝑒 × 𝑙𝑛

𝐶𝑡

𝐶0
+ 𝐴                                            (4) 

The plus and minus value of the enrichment factor indicate the preferred degradation of (+) and (-)α-HCH, 
individually. A can be calculated by the initial concentration of enantiomers (see SI 7) and indicates the 
possible ordinate shift of experimental data (e.g., in Fig. 2 some slops not going through the origin). The 
enantiomer fractionation factor εe links the changes in concentrations of individual enantiomers (C(+), C(-
)) to the changes in bulk concentration (C). Moreover, the enantiomer fractionation can be calculated 
from the degradation rate constants of individual enantiomers and bulk α-HCH using Eq. 5. 

𝜀𝑒 =
(𝑘(+)−𝑘(−))

𝑘
    (5) 

, (-) and (+) are the degradation rate constants of bulk α-HCH, (-)α-HCH and (+)α-HCH, respectively.  

Considering the CI (95%), the enantiomer fractionation factors obtained by Eq.
4
 are identical to the ones 

which calculated by the corresponding  values using Eq. 5 (Tab.1). The enantiomer fractionation 
quantified by Eq. 4 and Eq.5 showed a good linear correlation (Fig. 3).  Empirically, both equations can 
be used for describing enantiomer fractionation when both enzymes have constant degradation rates 
and the process thus follows pseudo-first-order reation kinetic.  

Variability of Enantiomer Fractionation. Due to the high variability of enantiomer fractionation during 
α-HCH degradation by the six Sphingobium strains, enantiomer fractionation data obtained from the 
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growing cells of strain B90A and UT26 from our previous work
28

 was re-evaluated by Eq. 4. For both 
strains, the degradation of (+) and (-)α-HCH did not follow pseudo-first-order kinetics with reliable 
uncertainty (Fig. S7). Similarly, the enantiomer fractionation changed over the course of degradation and 
the changes in concentration of bulk α-HCH and enantiomers could not be correlated by one factor (Fig. 
S7). 

In addition, the enantiomer selectivity of S. indicum B90A observed in different studies also indicates the 
variability of enantiomer fractionation. For example, biodegradation of α-HCH by S.indicum B90A 
showed preferential degradation of the (+)α-HCH enantiomer at the beginning of the degradation

28
. 

However, enantioselectivity of α-HCH was not observed with the same strain elsewhere
30

. In the present 
study, the resting cells and crude extract both preferred (-)α-HCH. This indicates that different growth 
phases (lag phase, log phase, and stationary phase) or different cultivation conditions lead to changes in 
the regulation of the LinA1 and LinA2 abundance. This is in agreement with the variable enantiomer 
selectivity of the six Sphingobium strains. Potentially, different ratios of LinA1 and LinA2 may be 
expressed under growth conditions which change the selectivity of enantiomer degradation. 

Correlation of Isotope and Enantiomer Fractionation. Isotope fractionation is determined by bond 
cleavage or formation in the first irreversible reaction step and can be modified due to rate limitation of 
preceding steps in a complex biochemical reaction

31, 32
. The observed isotope fractionation contains 

information on the transition state of bond cleavage and kinetic rate limitation prior irreversible bond 
cleavage. The isotope fractionation follows virtually first order kinetics as it depends on the kinetics of 
bond cleavage in the transition state which can be quantified by the Rayleigh equation. For the 
degradation of HCH, LinA dehydrochlorinates the substrates most likely via an elimination mechanism 
(E2 reaction) 

33
, which is probably identical for both enantiomers

34
. Assuming that the 

dehydrochlorination mechanism for both enantiomers is identical and follows E2 elimination
34

, the rate 
limitation might be a result of binding within the enzyme pocket. Binding of γ and β substrates within LinA 
can effect transition state and reaction rates as suggested by QM/MM modeling studies

34
. Preceding 

reaction steps such as transport in the cell, binding to the enzyme can modify the kinetic isotope effect 
(KIE) of the bond cleavage reaction

35
. The kinetics of binding of α-HCH enantiomers to the individual 

enzymes might lead to rate limitation which would explain the observed different fractionation factors. 
However, further QM/MM modeling studies would be required to solve this question. 

Enantiomer fractionation can be influenced by two factors: (i) binding of substrate to the enzyme with 
respect to the stereo chemical position in the enzyme pocket which can lead to different reaction ratios

36
; 

(ii) the reactivity of two individual enzymes with specificity towards enantiomers as observed in the 
enzyme assays with LinA1 and LinA2. In this case, the enantiomer degradation should be rationalized as 
individual substances which are controlled by the expression and activity of individual enzymes within the 
machinery of the cell

37
. The Rayleigh equation is valid for quantification of a single process, and 

therefore the empirical determined fractionation factor averages the two individual reactions. Empirically 
the obtained fractionation factors might characterize the reaction as long as the kinetic of the individual 
processes is constant. However if the kinetic reaction rate is changed due to individual regulation of the 
individual enzymes, the enantiomer fractionation process cannot be described by one factor. In growing 
cells experiments we observed a variability of enantiomer fractionation which leads to the hypothesis that 
change of reactivity of the individual enzyme systems is due to the expression of enzymes during growth. 
The isotope fractionation of individual enantiomers is governed by the mechanisms of bond cleavage. 
However, the binding within the enzyme and the transition state of bond cleavage may not be chemically 
identical and therefore result in different fractionation factors. As the chemical bond cleavage is probably 
not much different in a chemical sense, one may hypothesize that the kinetic of binding to enzymes leads 
to rate limitation and thus modifies the observed carbon isotope fractionation. Based on our data, we 
cannot evaluate the rate limitation and carbon isotope fractionation in more depth.  

Effect of Mass Transport on Isotope and Enantiomer Fractionation. In order to evaluate the effect of 
mass transport into the cells, isotope fractionation of α-HCH during resting cells and crude extract 
experiments were compared. For (+)α-HCH, even with the same degradation rate, the εc

+
 values 

obtained from resting cells and crude extract still show that mass transfer across the outer and 
cytoplasmic membranes may reduce the isotope enrichment, and lead to a relatively smaller isotope 
fractionation in resting cell experiments. Compared to resting cell and crude extract degradation of α-
HCH, significant higher isotope enrichment factors were obtained in the purified enzyme (LinA1) 
experiments. The difference of carbon fractionation between crude extract and enzyme indicates that cell 
material such as vesicles or membrane remnants may affect the transport of substrate leading to lower 
isotope fractionation. 
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Interestingly, εc
-
 values obtained from resting cell experiments were only slightly lower than the ones from 

the crude extract experiments. This indicates that mass transfer into the cells does not affect the isotope 
fractionation of (-)α-HCH significantly. Statistically similar values were also obtained comparing pure 
enzyme and crude extract experiments, indicating that mass transfer is not limited and that bond 
cleavage of the reaction governs the observed isotope enrichment.  

Overall, the uptake and passage though the cell wall led to rate limitation reducing the carbon isotope 
fractionation for both enantiomers, indicating that uptake affects the isotope fractionation of individual 
enantiomers in a similar way. A similar effect on the reduction of carbon isotope fractionation had been 
observed with a non-enantiomeric substance and uptake of substrate into the cell often reduce isotope 
fractionation

38
. The investigation of enantiomer and isotope fractionation of phenoxypropionic acid 

herbicides in aerobic biodegradation gave contrasting results as high enantiomer fractionation and minor 
carbon isotope fractionation were observed

39
. Qiu and colleagues observed higher carbon isotope 

fractionation of (R)-DCPP in RdpA enzyme degradation compared to degradation by whole cell of the 
host organism Sphingobium herbicidovorans MH, 

39
 however the enantiomer fractionation during uptake 

was not studied in detail. They speculated on active transport over the cell membrane as a mechanism of 
enantiomer fractionation and masking of isotope fractionation. In contrast the enantiomer and isotope 
fractionation during α-HCH degradation is related to the reaction kinetic govern by the uptake into the cell 
and activity of individual enzymes (LinA and LinA2).  

The mass transport into cells and in the cells have different effects on the isotope fractionation of (+)α- 
and (-)α-HCH. Significant effects will reduce the isotope enrichment and lead to smaller isotope 
enrichment factors. However, as enantiomer fractionation only depends on the difference of the 
degradation rate of (-) and (+)α-HCH, mass transfer will only affect the enantiomer fractionation in the 
case that mass transfer is the rate limiting step of the reaction. 

Effect of Degradation Rate on Isotope and Enantiomer Fractionation. Significant carbon isotope 

fractionation of (-)α-HCH in the resting cell experiments was only observed when the 
-
 were 0.35 ± 0.02 

h
-1

 and 0.15 ± 0.02 h
-1

. Higher degradation rates of 0.76 ± 0.09 and 0.81 ± 0.12 h
-1

 lead to the masking of 
isotope fractionation as the bond cleavage is not the main rate limiting step of the reaction. The same 
observation was made in the crude extract experiments, which demonstrates that the isotope 
fractionation at higher rates does not characterize the bond cleavage as it is not the rate determining 

step of the reaction. When the 
+
 value of resting cell experiments fall below 0.5 h

-1
, significant isotope 

enrichment can be observed and the enrichment factors of (+)α-HCH were nearly identical in parallel 
experiments (Table 1). The same results were observed in the crude extract experiments. These results 
indicate that the degradation rate did not significantly affect the carbon isotope enrichment of (+)α-HCH 
and that the bond cleavage was the main rate limiting step of the reaction. 

For enantiomer fractionation, with variable rate constants of individual enantiomers, the enantiomer 
fractionation factors (εe) from each set of experiments also showed variability (Table 1). εe can be 

determined by the difference of enantiomer degradation rates (
+
-

-
) and bulk α-HCH degradation rate () 

using Eq. 4. The εe values indicate preferential degradation of (-)α-HCH over (+)α-HCH enantiomer in all 

resting cell and crude extract degradation experiments. The significant variability of e indicates 
enantiomer fractionation depends on reaction rates governed by the activity and also the amount of each 
individual enzyme. Comparison of resting cell with crude extract suggests that uptake into cells reduced 
the enantiomer fractionation to some extent. As diffusion is identical for enantiomers, the chemical 
passage through the membrane should not affect the enantiomer composition. Therefore, the 
degradation kinetic of each enantiomer governs enantiomer fractionation. This is mechanistically not 
comparable to mass transfer limitation affecting isotope fractionation, as two individual substances are 
reacted by two individual enzymes and variability in degradation rate do not allow correlation with mass 
transfer limitation. If varying enantiomer fractionation over time is observed, it indicates there are multiple 
enzymes involved in the degradation. 

ENVIRONMENTAL IMPLICATION 

Our study shows that the carbon isotope fractionation of α-HCH enantiomers potentially can be used to 
quantify the degradation in field studies. The LinA1 and LinA2 enzymes have shown to exhibit highly 
selective degrading potential catalyzing the reaction of only one enantiomer almost exclusively. 
Therefore, the degradation can only be quantified robustly by enantiomer specific isotope analysis. The 
enantiomer fractionation pattern can be described by our model when both the bulk and enantiomers 
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degradation follow the pseudo-first-order kinetics. However, enantiomer fractionation is dependent on the 
expression of individual enzymes even in a pure culture. The expression of enzymes may change due to 
the concentration of contaminants or the physiological state of the cell. The variability of reaction 
conditions in soils with respect to enantiomer fractionation are currently difficult to assess.  

Studies have shown that low or fluctuating levels of energy sources, high to low levels of oxygen, 
fluctuating and often extreme temperatures, low pH and/or high osmolality in the environment can affect 
the growth of microbes.

40
 The physiology of cells is dependent on various abiotic and biotic factors in the 

environment, thereby regulating the enzymatic machinery for cellular metabolism. Thus, the enantiomer 
fractionation due to enzymatic degradation remains to vary for the organisms growing in field site with 
respect to the nutrient rich culture medium. The availability of nutrient sources affects the growth of 
organisms including the enzymatic activities for substrate utilization during metabolism and expression of 
enzymes. In the current study, highly selective LinA enzymes catalyze α-HCH enantiomer degradation 
by acting to provide carbon source for cellular activities 

20
. As the expression of enzymes is expected to 

change depending on environmental conditions, enantiomer fractionation may be variable leading to 
uncertainty in the quantification of biodegradation. Therefore, enantiomer fractionation may provide 
valuable information reflecting degradation conditions but seems to be limited value to describe a 
process quantitatively. 

In a recent paper we used EF and isotope fractionation of individual α-HCH enantiomers for 
characterizing in situ degradation in complex aquifer systems in Bitterfeld Germany with changing 
hydrological conditions.

10
 We found discrepancies in calculation of the extent of biodegradation when 

comparing isotope and enantiomer fractionation.  The mechanistic study on EF and CSIA of enantiomers 
show that EF fractionation is variable and depending on growth conditions.  Thus, a quantitative 
interpretation of enantiomer fractionation needs to be taken with discretion. Attempts for using the 
Rayleigh equation for modeling both enantiomer and isotope fractionation 

41
 need to be critically 

assessed, as the basic Rayleigh concept holds no validation for quantifying enantiomer fractionation. 
This study represents the first step towards developing a better understanding of isotope and enantiomer 
fractionation and will aid in field site evaluation. 
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Table 1.Summary of carbon isotope enrichment factors (εc), enantiomer fractionation factors (εe) of (-)α-HCH and (+)α-HCH, and related kinetic constants () in 1 
different sets of α-HCH degradation experiments by resting cell, crude extract and enzymes of strain B90A. 2 

 
 

Kinetic constant Isotope fractionation 
Enantiomer fractionation 

bulk (-)α-HCH (+)α-HCH (-)α-HCH (+)α-HCH 

 M N 
 ±CI95% 

(h
-1

) R
2

 


-
±CI95%

 

(h
-1

) R
2

 


+
±CI95%

 

(h
-1

) R
2

 

εc
-
 

±CI95%
 

(‰) 
R

2

 
εc

+
 ±CI95% 
(‰) R

2

 εe(M)(%) R
2

 εe(C)(%) 

Resting 
cell 

a 15 0.61±0.06 0.98 0.81±0.12 0.95 0.49±0.03 0.99 n.s. n.s. -6.4±0.7 0.97 -0.54±0.14 0.84 -0.52 

b 13 0.47±0.05 0.98 0.76±0.09 0.97 0.30±0.03 0.98 n.s. n.s. -6.2±1.2 0.92 -0.97±0.12 0.97 -0.96 

c 12 0.21±0.03 0.96 0.35±0.02 0.99 0.12±0.02 0.96 -2.3±0.4 0.92 -6.1±1.1 0.93 -1.07±0.20 0.95 -1.11 

d 16 0.10±0.01 0.95 0.15±0.02 0.95 0.06±0.01 0.93 -2.3±0.3 0.95 n.a. n.a. -0.82±0.07 0.98 -0.81 

Average value -2.3 
STDV: 
0.03 

-6.3 
STDV: 

0.1 
 

Crude 
extract 

e 10 0.38±0.10 0.93 0.58±0.13 0.94 0.30±0.07 0.93 n.s. n.s -7.4±0.7 0.99 -0.71±0.19 0.92 -0.73 

f 13 0.24±0.04 0.94 0.45±0.06 0.96 0.12±0.02 0.91 n.s. n.s -8.0±1.3 0.94 -1.35±0.13 0.98 -1.38 

g 13 0.13±0.02 0.94 0.19±0.02 0.98 0.04±0.01 0.95 -3.4±0.5 0.96 n.a. n.a. -1.13±0.17 0.95 -1.12 

h 14 0.11±0.02 0.91 0.18±0.04 0.91 0.05±0.01 0.91 -3.4±0.6 0.92 n.a. n.a. -1.25±0.22 0.93 -1.27 

Average value -3.4 
STDV: 
0.02 

-7.7 
STDV: 

0.4 
 

LinA2 

i 13 0.23±0.06 0.87 0.65±0.10 0.95 n.a. n.a. -3.7±0.6 0.95 n.a. n.a. -2.70±0.50 0.93 -2.79 

j 9 0.23±0.11 0.76 0.54±0.28 0.74 n.a. n.a. -4.0±1.0 0.93 n.a. n.a. -2.28±0.19 0.99 -2.37 

k 14 0.11±0.02 0.90 0.27±0.05 0.91   -3.6±0.5 0.95 n.a. n.a. -2.42±0.20 0.98 -2.46 

Average value -3.8 
STDV: 

0.2 
   

LinA1 

l 13 0.12±0.02 0.94 n.a. n.a. 0.28±0.02 0.98 n.a. n.a. -11.3±2.0 0.94 2.13±0.52 0.89 2.23 

m 14 0.05±0.01 0.91 n.a. n.a. 0.13±0.02 0.93 n.a. n.a. -10.9±1.5 0.96 2.37±0.48 0.90 2.40 

Average value -11.1 
STDV: 

0.3 
 

M: different sets of the experiments; N: number of samples; n.a.: not assessed since degradation was too low;  n.s.: degradation observed but no significant isotope 3 
fractionation was observed, the relevant data are reported in Fig. S4); εe(M) (%): enantiomer fractionation factors by modeling using Eq. 3; εe(C) (%): enantiomer 4 
fractionation factors by calculation using Eq. 4. 5 
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     7 

     8 

     9 

Fig.1. Linearized Rayleigh equation plots showing the carbon isotope fractionation for the biodegradation 10 
of α-HCH enantiomers (close symbols for (+)α-HCH and open symbols for (-)α-HCH) by resting cells 11 
(RC) and crude extract (CE) of S. indicum strain B90A and the corresponding enzymes LinA1 and LinA2. 12 
The individual evaluation of the isotope fractionation for each individual experiment can be found in SI 13 
Fig. S5. 14 
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     16 

Fig.2. Linearized plots of enantiomer fractionation in the biodegradation of α-HCH: resting cells (RC); 17 
crude extract (CE); the corresponding enzyme LinA2 and LinA1. The code (a to m) refer to individual 18 
experiments of which the fractionation factors are summarized in Table 1.  19 

 20 

  21 

Fig.3. Correlation of enantiomer fractionation factors derived from calculation of experimental data (εeC) 22 
and compared to modeling (εeM). 23 

 24 
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1. Cultivation Media 

Luria Bertini (LB) liquid medium: 5 g of yeast extract, 10 g of Peptone and 10 g of NaCl for 1 L of distilled 
water, adjust the pH to 7.0 using a NaOH (2M) solution. 

Minimal salt medium (MSM): for 1 L of distilled water, 0.5 g of (NH4)2SO4 and 0.1 g of K2HPO4, 1 mL of 
FeSO4 (w/w, 1%), 1 mL of Ca(NO3)2 (w/w, 1%), 10 mL of MgSO4 (w/w, 20%), 2 mL of glucose (w/w, 50%). 

2. Degradation Experiments 

Batch degradation experiments with the six Sphingobium spp.(strain P25, F2, IP26, RL3, HDIPO4, LLO3) 
were performed in 240 ml bottles with 100 mL minimal salt medium (MSM), respectively. 5.5 μL of α-HCH 
dissolved in acetone (0.1M) was added to get an initial concentration of 5.5 μM. All the bottles were 
incubated at 30 

o
C shaking incubator (200 rpm).  

All batch degradation experiments with resting cells, crude extract and purified LinA enzymes were 
conducted in 240 ml bottles with 100 mL Tris-buffer (0.1M, pH=7.5). 5.5 μL α-HCH in acetone (0.1 M) was 
spiked to get an initial concentration of 5.5 μM. All the bottles were incubated at 30 

o
C shaking incubator 

(200 rpm). Different amount (500 μL, 200 μL, 100 μL, and 50 μL) of resting cells (2.5-3.0×10
8
 cells mL

-1
) or 

crude extract (from 2.5-3.0×10
8
 cells mL

-1
 resting cells) were added to start the reaction, except in the abiotic 

controls. Three sets of degradation experiments using 10 μL, 8 μL and 5μL of LinA2 enzyme and two sets of 
degradation experiment using 10 μL and 5 μL of LinA1 were conducted respectively. The concentrations of 
the enzymes were 70 ng µL

-1
 for LinA1 and 240 ng µL

-1
 for LinA2. The sampling and extraction were done as 

reported before (Bashir et al., 2013). 

3. Cultivation and Enzyme Purification 

LinA genes were codon optimized for expression in Escherichia coli. These were synthesized by Geneart 
AG, Regensburg Germany. Further, the so obtained synthetic genes were cloned into an shuttle vector 
(pDONR201) using Gateway® Technology (Invitrogen Inc.), with the help of att DNA recombination 
sequences (attL, attR, attB and attP) and enzymes such as clonase enzyme excisionase. Amplicons from 
this shuttle vector were then transferred to pDEST

TM
17 using the BP and LR reactions, as per the 

manufacturers' instructions (Invitrogen, CA). In addition to this to achieve proper folding of the protein in the 
host strain E. coli BL21-AI™ (Invitrogen) cells were co-expressed with pGro7 chaperones as plasmids 
(Takara, Japan). 

Initially the bacterial cells were grown in 100 ml of Luria Bertini (LB) broth with addition of ampicillin (150  
mL

-1
) and chloramphenicol (34  mL

-1
) shaking (200rpm) at 28°C. Induction of these cells was undertaken 

at OD600 around 0.5 - 0.6 by addition of L-(+)-arabinose (2 g L
-1

). Cells were then grown overnight, followed 
by centrifugation to harvest the cells. The harvested culture pellet was first resuspended in equilibrium buffer 
containing10 mM imidazole (pH 7.5) with 1× bug buster (Novagen, Darmstadt), followed by mild sonication. 
The lysate thus obtained was centrifuged and the supernatant was then used to purify the Lin protein based 
on poly-Histidine (6X-His) tag present in pDEST

TM
17  using NTA-Ni

2+
 agarose column chromatography 

(Qiagen, GmbH) as per the manufacturers' instructions. The protein so purified was then quantified using 
Nanodrop (Thermo Scientific, DE). The isolated protein was then stored in the storage buffer (pH 7.5) 
containing 1 mM 2-mercaptoethanol and 10% glycerol at an approximate concentration of 1 mg mL

-1
at 4°C 

until use. 

4. Analytical Methods 

Gas chromatography - An Agilent 6890 series gas chromatograph (GC, Agilent Technologies, Palo Alto, 
USA) equipped with a flame ionization detector (FID) was used for measurement of bulk α-HCH 
concentration. Samples were separated in a HP-5 capillary column (30 m x 0.32 mm ID x 0.25 µm FD; 
Agilent Technologies, Palo Alto, USA) with helium as the carrier gas (flow of 2.0 mL min

−1
). The oven 

temperature program started at 35°C, was held for 5 min isothermally, increased at 8 °C min
-1

 to 180 °C, 
then at 2 °C min

-1
 to 195 °C, and finally increased at 8 °C min

-1 
to 220 °C, where it was held for 2 min. The 

samples were injected in splitless mode with injection volumes of 1 μL. 
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Compound specific isotope ratio mass spectrometry - The stable carbon isotope ratios of bulk α-HCH and its 
enantiomers were analyzed by a gas chromatograph−combustion-isotope ratio mass spectrometer (GC−C-
IRMS). The system consists a GC (6890, Agilent Technologies, Palo Alto, USA) coupled with Conflow III 
interface (Thermo Fisher Scientific, Bremen, Germany) to a MAT252 IRMS (Thermo Fisher Scientific, 
Bremen, Germany) as described previously 

1
. For CSIA of bulk α-HCH a HP-5 capillary column (30 m x 0.32 

mm ID x 0.25 µm FD; Agilent Technologies, Palo Alto, USA) was used with the temperature program used 
above.  

A γ-DEX
TM

 120 chiral column (Supelco, Bellefonte, PA, USA; column length * i.d. 30m * 0.25 mm, df=0.25 µM 
) was used for the separation of α-HCH enantiomers as described previously 

2
. Three μL aliquots of extract 

were injected with a split ratio of 1:3. Samples with concentration below 1 μM were injected with splitless 
mode. All samples were measured in at least three replicates and the typical uncertainty of analysis was < 
±0.5 ‰. 

5. Quantification of Isotope Fractionation 

The isotope composition of α-HCH was analyzed by gas chromatography isotope ratio mass spectrometry 
(GC-IRMS), as described previously 

2
. Quality control was done by using isotope laboratory standards of α-

HCH (99%, Sigma-Aldrich Chemie GmbH, Germany) with carbon isotope ratios determined by elemental 
analyzer isotope ratio mass spectrometry (EA-IRMS). The carbon isotope ratios of α-HCH measured by GC-
IRMS were reported in the δ notation (δ

13
C) relative to the international standard Vienna Pee Dee Belemnite 

(VPDB) according to eq.1 
3
.  

𝛿13𝐶𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1                                                        (1) 

Rsample and Rstandard are the 
13

C/
12

C ratios of the samples and VPDB, respectively. The δ
13

C-values were 
reported in per mil (‰). All the samples were measured in triplicate. 

Simplified Rayleigh equation in logarithmic form was used to quantify the stable carbon isotope fractionation 
of the biodegradation process in this study. The carbon isotope enrichment factor (εc) was determined as eq 
2. 

ln (
(𝛿𝑡 𝐶13 +1)

𝛿0 𝐶13 +1
) = 𝜀𝑐𝑙𝑛 (

𝐶𝑡

𝐶0
)                                                      (2) 

εc were reported in per mil scale and derived from the slope of the linear regression of ln(Ct/C0) vs 
ln[(δt

13
C+1)/( δ0

13
C+1)]. The error of εc was reported as 95% confidence interval (CI) determined by a 

regression curve analysis 
4
. 

6. Calculation of the AKIEC of enzymes 

The apparent kinetic isotope fractionation factor was calculated as previously described using Eq. 3.
5
 

𝐴𝐾𝐼𝐸 =
1

1+
𝑛𝑧

𝑥
∗𝜀𝑐/1000

   (3) 

Where n is the number of atoms of the selected element, x is the number of reactive positons, and z is the 
number of indistinguishable reactive positions for intramolecular competition. We calculate the AKIEC in 
order to interpret the extent of isotope fractionation and for comparison with quantum chemical calculation.  

Two scenarios were considered for a dehydrochlorination reaction in order to compare the AKIE with 
chemical modelling. In both cases, the number of carbon (n) in HCH is 6. For the first scenario (1) we 
assume that all the chlorine atoms are chemically equivalent with respect to reactivity. In this case the 
number of reactive positions are 2 and the positions for intramolecular competition are 2 (x=z=2).  Calculated 
by Eq.3, the AKIEC for LinA1 and LinA2 are 1.072 and 1.023 (Table S1), respectively. The AKIEC of LinA1 is 
higher than the Streitwieser semi-classical limit for a single C-Cl (1.057) or C-H (1.021) cleavage in the 
transition state. The initial step of hydrolysis is considered to be concerted bimolecular elimination 
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mechanism (E2 reaction) with an almost simultaneous C-Cl and C-H bond cleavage leading to the formation 
of a double bond. 

For scenario 2 we considered a specific reaction at axial chlorine hydrogen pairs consistent with an E2 
elimination reaction.  Elimination at two axial H/Cl pairs of α-HCH to form pentacyclohexenes 
(1,3S,4s,5R,6S-PCCH for (+)α-HCH and 1,3R,4R,5S,6R-PCCH for (-)α-HCH) during dehydrochlorination 
support this scenario.

6
 In this case 4 carbon with axial chlorine hydrogen pairs (x=4) with 2 indistinguishable 

positions (z=2) may react. The AKIE of the Lin A1 (1.035) and Lin A2 (1.011) reactions are expected to be in 
the range of KIE of a dehydrochlorination with an E2 mechanisms (see below).    

The quantum chemical modelling using 2 simplified model for enzyme reactions, the position-specific KIEC of 
LinA1 (for (+)α-HCH) dehydrochlorination was 1.0168 and 1.0218 for the C-H and C-Cl bond cleavage 
reaction, respectively

6
 whereas the dehydrochlorination of (-)α-HCH by Lin A2, the calculated KIEC resulting 

1.0169 (C-H) and 1.0104 (C-Cl).
6
  In the quantum chemical calculation, the overall primary KIEC in the 

reaction of α-HCH enantiomers by Lin A2 is smaller than by Lin A1 similar as observed in our experiments.  
The magnitude of the AKIE between 1.035 1.011 (AVG, Tab. S1) suggest a concerted a concerted reaction 
mechanism consistent with an E2 elimination reaction as the AKIE for a stepwise reaction is much above the 
Streitwieser Limits of a cleavage of a of C-Cl (1.057) or  C-H (1.021) bonds

7
.  

The AKIEC of and LinA1 for (+)α-HCH is higher than the value of quantum chemical calculation for the 
reaction sum up to εc of -7.38 ‰ using the date of Manna and clleagues.

6
  The KIEC of C-Cl bond cleavage 

which was similar as in our study was observed in the biodegradation of dichloromethane.
8
 Also the 

concerted dichloroelimination of 1,2 dichloroethane in biodegradation and Zn(o) reduction result in 
comparable AKIEC values.

9
  

Table S1: calculation of AKIE value of the enzyme degradation experiments and the average values. 

Enzymes 
εc ± CI(95%) (‰) AKIEC 

(-)α-HCH (+)α-HCH n=6, x=2,z=2 n=6, x=4,z=2 

LinA1 
 -11.3±2.0 1.073 

AVG.=1.072 
1.035 

AVG.=1.035 
 -10.9±1.5 1.070 1.034 

LinA2 

-3.7±0.6  1.023 

AVG.=1.023 

1.011 

AVG.=1.011 -4.0±1.0  1.025 1.012 

-3.6±0.5  1.022 1.011 

AVG. = average value 

7. Quantification of Enantiomeric Fractionation 

Enzymatic degradation of HCH by LinA is in a strict sense a second order kinetic reaction however most of 
our experimental data show that it actually follows a first order or pseudo-first-order kinetics over a certain 

concentration range. Only within the time range when the bulk -HCH degradation shows a first order 
kinetics, the following approach can be applied. Considering that the activity of LinA follows a first order or 
pseudo first order kinetic reaction, the integrated first order rate law is: 

𝑙𝑛 (
𝐶𝑡

𝐶0
) = −𝑘 × 𝑡                                                              (1) 

or 

𝐶𝑡 = 𝐶0 × 𝑒−𝑘×𝑡                                                               (2) 

Where C0 [μM] and Ct  [μM] are the concentrations of the chiral compound at initial condition and time t; t 
[min] is the reaction time; k [s

-1
] is the rate constant. For simplicity, we assign the concentrations and rate 

constants of the two enantiomers by the same letters, but differentiate individual enantiomers with (+) and (-
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). The experimental data on degradation kinetics for the -HCH and the two enantiomers (+/-) -HCH show 
that the reactions follow the first order kinetics (see Figure S2). Thus, the reaction kinetics of two individual 
enantiomers can be expressed as eq. 3: 

𝐶(+)𝑡 = 𝐶(+)0 × 𝑒−𝑘(+)×𝑡                                        (3.1) 

𝐶(−)𝑡 = 𝐶(−)0 × 𝑒−𝑘(−)×𝑡                                        (3.2) 

The enantiomer ratio (ER) is defined as the ratio of the 2 enantiomers in a mixture and is reported as the 
ratio of the percent of one enantiomer in a mixture to that of the other. In this study, we redefine ER as the 
concentration ratio of (+) and (-) enantiomers as eq. 4: 

𝐸𝑅 =
𝐶(+)

𝐶(−)
                                                         (4) 

In order to find a relation between ER and reaction time t, Eq. 3 can be combined for the expression of the 
enantiomer ratio at reaction time t (ERt): 

ERt = 
𝐶(+)𝑡

𝐶(−)𝑡
=

𝐶(+)0

𝐶(−)0
×

𝑒−𝑘(+)×𝑡

𝑒−𝑘(−)×𝑡  (5) 

Eq. 5 illustrates that ERt is a function of the reaction time t and the respective first order reaction rate 
constant of two enantiomers. α-HCH is synthesized as a racemic mixture in equal concentration of 
enantiomers, therefore, assuming the initial enantiomer concentrations (𝐶(+)0 and 𝐶(−)0) to be equal, the 
Eq.5 can be rewritten as  

ERt = 
𝐶(+)𝑡

𝐶(−)𝑡
=

𝐶(+)0∗ 𝑒−𝑘(+)×𝑡

𝐶(−)0∗ e−k(−)×t =
𝐶(+)0

𝐶(−)0
∗ 𝑒(𝑘(−)−𝑘(+))×𝑡            (6) 

Taken the logarithm on both sides of the Eq.6, one can get the subtracted equation as below: 

𝑙𝑛 (
𝐶(+)𝑡

𝐶(−)𝑡
) = 𝑙𝑛

𝐶(+)0

𝐶(−)0
+ ln (𝑒(𝑘(−)−𝑘(+))×𝑡) = 𝑙𝑛

𝐶(+)0

𝐶(−)0
+ (𝑘(−) − 𝑘(+)) × 𝑡         (7) 

Eq. 7 describes the correlation of concentrations C, rate constants k and reaction time t of the individual 
enantiomers. Based on reaction kinetic, one can find a correlation of kinetic parameters by the link of 
reaction time. The reaction time (t) can be expressed from Eq.1 as 

𝑡 = −
1

𝑘
× 𝑙𝑛 (

𝐶𝑡

𝐶0
) (8) 

Thus, the reaction time (t) in Eq.7 can be replaced by −
1

𝑘
× 𝑙𝑛 (

𝐶𝑡

𝐶0
), Eq.7 can be rewritten as  

𝑙𝑛 (
𝐶(+)𝑡

𝐶(−)𝑡
) = 𝑙𝑛

𝐶(+)0

𝐶(−)0
+

𝑘(+)−𝑘(−)

𝑘
× 𝑙𝑛

𝐶𝑡

𝐶0
 (9) 

The 𝑙𝑛
𝐶(+)0

𝐶(−)0
 term is a constant representing an initial enantiomer ratio. The 𝑙𝑛

𝐶(+)0

𝐶(−)0
= 𝐴 ≠ 0  condition 

corresponds to a case when the values of initial enantiomer concentrations are different. This constant A has 
to be considered if e.g., the first experimental data were acquired when the degradation was already in 
progress.  

𝑙𝑛 (
𝐶(+)𝑡

𝐶(−)𝑡
) = 𝐴 +

𝑘(+)−𝑘(−)

𝑘
× 𝑙𝑛

𝐶𝑡

𝐶0
 (10) 

α-HCH is synthesized as a racemic mixture in equal concentration of enantiomers, therefore, assuming the 
initial enantiomer concentrations (C(+)0 and⁡𝐶(−)0) to be equal. In this case, A=0, and Eq. 10 can be 
rewritten as 
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𝑙𝑛 (
𝐶(+)𝑡

𝐶(−)𝑡
) =

𝑘(+)−𝑘(−)

𝑘
× 𝑙𝑛

𝐶𝑡

𝐶0
                                                (11) 

Eq. 11 describes the relation between total racemic mixture concentration (𝐶𝑡  and 𝐶0 ) and enantiomer 

concentrations (𝐶(+)𝑡 and 𝐶(−)𝑡  ) employing the difference in enantiomer degradation rates (𝑘(+) − 𝑘(−)) 

normalized to the degradation rate of chiral compound (k). As 
𝑘(+)−𝑘(−)

𝑘
 is a constant, which can be defined as 

the enantiomeric fractionation factor 𝜀𝑒: 

𝜀𝑒 =
𝑘(+)−𝑘(−)

𝑘
 (12) 

The enantiomer fractionation factor 𝜀𝑒 gets close/equal to zero when the degradation rate constants are 

close/equal for both enantiomers. Taking the defined enantiomer fractionation factor 𝜀𝑒 into account, the 
relation between total chiral compound concentration and two enantiomer concentrations (Eq. 11) is 
expressed as: 

𝑙𝑛 (
𝐶(+)𝑡

𝐶(−)𝑡
) = 𝜀𝑒 × 𝑙𝑛

𝐶𝑡

𝐶0
                                                       (13) 

In the case of different values of initial enantiomer concentrations, the constant A ( 𝐴 ≠ 0 , Eq. 10) has to be 
introduced into the Eq. 13 to describe a possible ordinate shift of experimental data. 

As shown in Eq. 13, 𝜀𝑒 is a function of racemic mixture concentration (𝐶𝑡 and 𝐶0) and individual enantiomers 

concentrations (𝐶(+)𝑡 and 𝐶(−)𝑡  ), which can be obtained by the fitting of 

ln (
𝑐(+)𝑡

𝑐(−)𝑡
) / ln (

𝑐𝑡

𝑐0
). 

Based on the evaluation process above, enantiomeric fractionation factor 𝜀𝑒 can be calculated by numerical 

methods according to Eq. 12. To determine the quality of the this approach, the obtained 𝜀𝑒  by fitting 
procedure according to Eq. 13 were compared to the calculated values, and are reported in Table 1 and 
Figure 3 in the main text. 

8. Biodegradation of α-HCH Enantiomers During Growth  

Six Sphingobium spp. strains were cultivated and batch experiments with 5.5 µM α-HCH in minimal salt 
medium (MSM). Degradation experiments were conducted for a systematic analysis of enantiomer and 
carbon isotope fractionation. More than 90 % degradation was observed in all experiments in a time course 
of less than 8 h (Fig. S1). Enrichment of isotope composition of the residual enantiomer fraction was 
associated with degradation in all cases.  
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Fig. S1. Concentration (square) and carbon isotope composition (circle) of (-)α-HCH (open symbols) and 
(+)α-HCH (solid symbols) by the degradation of Sphingobium spp. (P25, F2, IP26, RL3, HDIPO4, LLO3). 

Reaction kinetics of enantiomers were evaluated using the integrated first order rate law (Figure S2). Only 
the degradation of α-HCH enantiomers using strain HDIPO4 fitted the first order kinetic yielding a coefficient 
of determination (R

2
) of 0.96/0.97. The degradation kinetics in the other experiments were variable and did 

not follow the pseudo first order kinetics with R
2
 vary from 0.71 to 0.93, suggesting that the reaction kinetic or 

the mode of degradation may be changed during degradation. 
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Fig. S2. Degradation kinetics of (+)α-HCH (■) and (-)α-HCH (□) by the six strains modeled by pseudo-first 
order kinetics.  

The enantiomer selectivities of these six strains in the experiments were evaluated by plotting the EF(-) (EF(-
)= c(-)/c, with c(-) the concentration of (-)α-HCH, and C the concentration of bulk α-HCH) over time (Fig. S3). 
The EF(-) changed in the course of the experiments and suggested that the preferential degradation of 
individual α-HCH enantiomers changed over time during growth. 

 

Fig. S3. Variability of EF(-) during α-HCH biodegradations during growth. 

9. Biodegradation of α-HCH Enantiomers in Stable Conditions 

Based on the hypothesis that the LinA proteins were relatively constant in resting cells (RC) and do not 
change after harvesting of grown culture, Sphingobium indicum B90A was selected as model strain and α-
HCH degradation experiments were conducted in Tris-buffer. For comparison, α-HCH degradation 
experiments with crude extract (CE) of Sphingobium indicum B90A and purified enzymes (LinA1 and LinA2) 
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were also performed in Tris-buffer. All experiments were conducted at least twice to evaluate the 
reproducibility of the degradation. 
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Fig. S4. The changes of concentration (black symbols) of (+)α-HCH (solid square), (-)α-HCH (open square) 
and isotope composition (blue symbols) of two individual enantiomers in degradation experiments with the 
resting cell (RC), crude extracts (CE) and the enzymes LinA1 and LinA2.  
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Fig.S5. Experiments for the biodegradation of α-HCH enantiomers by resting cells (RC), crude extract (CE) 
and the corresponding enzyme LinA1 and LinA2 of S. indicum strain B90A were conducted for the evaluation 
of carbon isotope fractionation of (+)α-HCH (■) and (-)α-HCH (□).  

Both enantiomers were degraded in all experiments using RC and CE. However, in RC degradation 
experiments (Fig.S4; a, b, c, d), the isotope composition of (+)α-HCH only significantly enriched in 
experiment a, b and c. The degradation of (+)α-HCH in experiment d was very minor  leading to around 10% 
degradation of the initial concentration and no significant isotope enrichment was observed. In CE 
degradation experiments (Fig.S4; e, f, g, h), carbon isotope enrichment factors of (+)α-HCH were obtained in 
experiments e and f, no significant isotope enrichment was observed in the sets g and h. In addition, carbon 
isotope enrichment of (-)α-HCH was observed in both RC and CE degradation experiments with relatively 
slower degradation, such as in experiments c, d, g and h. In contrast, in degradation experiments with faster 
reaction no significant isotope fractionation of (-)α-HCH could be observed (Fig. S4 a,b and e,f). Isotope 
enrichment of RC and CE degradation experiments was evaluated by simplified Rayleigh equation (Fig. S5 a 
- h). 

Degradation experiments with purified enzymes were conducted for analyzing the enantiomeric specificity of 
the LinA proteins. In agreement with previous reports 

10
, LinA2 catalyze preferentially (-)α-HCH  whereas  

LinA1 catalyse (+)α-HCH degradation (Fig.S4; i-k). Both LinA proteins showed very high specificity as one 
enantiomer become degraded in contrast to the other enantiomer showing almost constant concentration. 
The degradation was accompanied with isotope enrichment whereas the isotope composition of the non-
reacted enantiomer was stable. The evaluation of isotope fractionation by simplified Rayleigh equation for 
enzyme degradation experiments was showed in Fig. S5 (i - m). 

The degradation of α-HCH enantiomers with RC, CE and purified enzymes followed the pseudo first order 
kinetics with R

2
 vary from 0.76 to 0.98, (Fig. S6). In the RC and CE degradation experiments (Fig.S6; a - h), 
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the kinetic rate constants of (-)α-HCH were higher compared to those of (+)α-HCH, eg. 0.81 h
-1 

to 0.15 h
-1

 in 
RC experiments (a - d) and 0.58 h

-1
 to 0.18 h

-1
 in CE experiments (e - h). In the degradation experiments of 

LinA2, (-)α-HCH was preferentially degraded with the kinetic rate constants of 0.65/0.54 h
-1 

(Fig. S6; i, j). The 
kinetic rate constant of (+)α-HCH degradation in LinA1 experiments was 0.28 h

-1 
(Fig. S6_k). 
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Fig. S6. The degradation kinetics of the resting cell (RC), crude extracts (CE) and enzymes (LinA1 and 
LinA2) degradation experiments. C, C (-) and C (+) indicates the concentration of bulk α-HCH (●), (-)α-HCH 
(□) and (+)α-HCH (■), respectively. 

10. Re-evaluation of Enantiomer Fractionation Data from Growing Cells 

In order to compare the enantiomer fractionation of Sphingobium indicum B90A in growing condition, data 
from a previous report 

4
 was re-evaluated (Fig. 6S). The enantiomer fractionation could not be described by 

eq. 11 as changes of enantiomeric composition and changes in concentration were not linearly correlated 
(Fig.S7; b1) which indicates that the mode of enantiomer fractionation changed during the reaction. Two 
phases can be observed with specific preferences of enantiomers, showing that the enantiomer fractionation 
process was governed different processes with specific preferences for enantiomers (Fig. S7; b1). Similar 
trends could be observed in the degradation experiments of S. japonicum strain UT26 (Fig S7; a2, b2). 
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Figure S7. Biodegradation of α-HCH in growing cultures. Linearized plots showing the degradation kinetic(a) 
and enantiomer fractionation(b) for S.indicum strain B90A(1) and S. japonicum strain UT26(2). Data were 
taken from previous work 

4
. 
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ABSTRACT  

This study systematically investigated the changes of carbon and hydrogen isotope signatures of three 
phthalate esters (PAEs) during (i) abiotic hydrolysis over the pH range of 2, 7 and 10, and (ii) aerobic 
biodegradation by Rhodococcus opacus strain DSM 43250. Significant carbon isotope fractionations were 
exhibited under all investigated conditions. Hydrogen isotope fractionation was observed in some 
experiments and is hypothesized to be a secondary hydrogen isotope effect. Dual stable isotope analysis 
(Λ = Δδ

2
H / Δδ

13
C) resulting from abiotic hydrolysis and aerobic degradation showed similar magnitudes 

for dimethyl phthalate (DMP) and diethyl phthalate (DEP), indicating that abiotic and enzymatically 
catalyzed hydrolytic processes proceed similarly. The calculated carbon apparent kinetic isotope effects 
(AKIEC) for the proposed hydrolytic pathway (C-O bond cleavage) fall within an expected range of 1.03-
1.09, with the exception of lower AKIEC values for dibutyl phthalate (DBP) hydrolysis at pH 2 and aerobic 
biodegradation. Slightly different AKIEC of DBP at pH 2 and pH 10 is likely related to a transition state 
from reactant-like to tetrahedral intermediate-like structure. Abiotic and biotic hydrolysis of PAEs 
demonstrate similar AKIEC and Λ values due to the C-O bond cleavage, thus indicating the potential of 
dual isotope analysis to characterize hydrolytic processes of PAEs in the environment. 

 

INTRODUCTION  

Phthalate esters (PAEs) have drawn increasing attention due to their wide utilization as plasticizers and 
additives in the manufacture of plastic and personal care products. Global production of PAEs is in the 
order of millions of tons annually.

3
 PAEs can leach slowly from the products and can be transported in the 

environment because they are not covalently bonded to polymer chains. Therefore, PAEs have been 
detected in various environmental matrices, such as groundwater, rivers, lakes, soils and sediments. The 
majorities of PAEs are considered to end up in municipal landfills together with waste polyvinylchloride 
(PVC) like other compounds present in plastics. PAEs are suspected to be toxic for human beings and 
other organisms due to their potential carcinogenicity, teratogenicity and mutagenicity,

8
 causing particular 

concern about the environmental fate of PAEs. 

Generally, the primary processes that could decompose PAEs in the environment are hydrolysis, 
photolysis and biodegradation.

9
 Among those processes, biodegradation plays an important role for PAEs 

removal in various environments, with the exception that PAEs are more susceptible to photooxidation by 
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hydroxyl radicals in the atmosphere.
10

 The de-esterification of phthalate diesters to phthalate monoesters 
is considered to be the primary biodegradation pathway under aerobic and anaerobic conditions. A well-
known model organism for aerobic biodegradation of PAEs is Rhodococcus opacus strain DSM 43250. 
Even though the hydrolysis rates of PAEs are reported to be rather slow with long half-lives of more than 
100 days at ambient temperature and neutral condition,

10
 hydrolytic process is an important chemical 

reaction type and hydrolysis could even become dominant abiotic process under specific environmental 
conditions, such as lower landfill layers due to high temperature.

15
 It is well noted that PAEs undergo two 

hydrolytic steps: they are initially converted to the corresponding monoester and one alcohol moiety via 
hydrolysis of the ester group, and afterwards the obtained monoester is hydrolyzed to phthalic acid and a 
second alcohol.

10
  

In addition, esters hydrolysis can occur via acid-catalyzed, neutral and base hydrolysis pathways 
(Scheme 1). The acid-catalyzed hydrolysis of esters mainly proceeds by an AAC2 mechanism indicating 
an acid-catalyzed, acyl-oxygen fission (AC) and a bimolecular reaction.

18
 Under acidic condition, the ester 

reacts with hydrogen ion and then a water molecule attacks the carbonyl carbon to produce a tetrahedral 
intermediate. Subsequently, the leaving group (R2OH) quickly dissociates. Therefore, the AAC2 
mechanism is similar to a SN2 reaction.

16
 The base hydrolysis takes place via a BAC2 mechanism (B 

stands for base). The tetrahedral intermediate is generated via the attack of hydroxide ion on carbonyl 
carbon and breaks down to yield a carboxylate ion and an alcohol. At neutral condition, esters are 
hydrolyzed by a similar BAC2 mechanism with a water molecule. All hydrolysis mechanisms described 
involve the formation of tetrahedral intermediates with slight differences. 

 

Scheme 1. Different reaction mechanisms of ester hydrolysis. 

In recent years, compound-specific stable isotope analysis (CSIA) has been well established to identify 
contaminant sources and monitor the extent of pollutant degradation in the environment. As the rate 
constant of lighter isotopologues is usually greater than that of heavier isotopologue in (bio)chemical 
reactions, heavier isotopes will become enriched in the residual substrate, thus leading to isotope 
fractionation. CSIA has the potential to provide information on reaction mechanisms and degradation 
pathways in contaminants decomposition due to highly reaction-specific isotope fractionation pattern.

23-25
 

Previous studies provide evidence that variation of carbon and hydrogen isotope fractionation patterns 
has potential for characterizing different modes of hydrolysis of organophosphates. Liu and colleagues

28
 

determined the carbon isotope fractionation of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl 
phthalate (DBP) and di-iso-butyl phthalate (DiBP) during anaerobic biodegradation by Bacillus sp. SASHJ. 
The obtained carbon isotope enrichment factors for DMP, DEP, DBP and DiBP were -4.6±0.4‰, -
2.9±0.4‰, -0.5±0.1‰ and -0.8±0.1‰, respectively. In another study, changes in carbon isotope 
composition of DMP and DBP during aerobic biodegradation were reported using a laboratory microcosm 
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system consisting of natural marine sediment.
29

 However, quantitative analysis of carbon isotope 
enrichment factors was not conducted probably due to the limited numbers of the data set (n =3 or 4).  

In order to investigate the potential of CSIA to characterize the hydrolysis mechanism of PAEs, we 
analyzed for the first time a full set of dual stable isotope analysis (C and H) for abiotic and biotic 
reactions. DMP, DEP and DBP were selected as model compounds to determine the carbon and 
hydrogen isotope fractionation during hydrolysis at acid, neutral and alkaline conditions (pH 2, 7 and 10). 
Kinetic studies were performed to explore the influence of pH values and chemical structure on hydrolysis 
rates. Furthermore, carbon and hydrogen isotope fractionation during aerobic biodegradation of DMP, 
DEP and DBP by Rhodococcus opacus strain DSM 43250 were analyzed and compared to the reported 
data under anoxic condition. Apparent kinetic isotope effect for primary carbon (AKIEC) and secondary 
hydrogen AKIEH were calculated to provide more information on the hydrolysis mechanism of the three 
PAEs. 

MATERIALS AND METHODS  

Hydrolysis Experiments  

A list of materials and chemicals is available in the Supporting Information (SI). Hydrolysis experiments 
were conducted in batches at pH 2, 7 and 10, which represented typical acidic, neutral and alkaline 
conditions, respectively. 100 mM phosphate buffer (pH 2: KH2PO4 + HCl; pH 7: KH2PO4 + K2HPO4) and 
carbonate buffer (pH 10: Na2CO3 + NaHCO3) were used to maintain the pH value throughout the whole 
experiment.

30
 Two series of aqueous buffer solutions (40 mL), one spiking with 1.09 mM DMP and one 

spiking with 0.97 mM DEP, were prepared in glass bottles sealed with PTFE-coated rubber stoppers and 
aluminum crimp seals. Due to the low water solubility of DBP reportedly as 46.7 µM, initial concentration 
of DBP was chosen at 37 µM and batch experiments were carried out in 100 mL solution to ensure 
sufficient content for isotope analysis. Then the bottles were placed in an oven at a temperature of 80 °C 
for hydrolysis at pH 2 and 7, while hydrolysis experiments at pH 10 were conducted in a thermostatic 
chamber at 30 °C. Sample bottles were removed at different time intervals. 2 mL of dichloromethane 
(DCM) containing ortho-xylene (500 mg L

-1
) as internal standard was added to the reaction solutions for 

extracting DMP and DEP, while 1 mL of hexane containing naphthalene (100 mg L
-1

) as internal standard 
was used for the extraction of DBP. The mixture was shaken at 10 °C for at least 4 h before phase 
separation and then organic phase was transferred to 2 mL vial for concentration and isotope analysis.  

Aerobic Biodegradation Experiments  

Rhodococcus opacus DSM 43250 was purchased from the Leibniz-Institute DSMZ German Collection of 
Microorganisms and Cell Cultures (Braunschweig, Germany). Freeze-dried cells were initially incubated in 
GYM Streptomyces medium at 28 °C as suggested by the DSMZ. Modified Brunner mineral salt medium 
(MSM) with supplement of trace element solution SL-10 and a vitamin solution was prepared as 
described by Vogt and colleagues

33
. The medium (pH 6.9) was used for strain cultivation and batch 

biodegradation experiments. MSM containing PAEs was prepared by dissolution of the corresponding 
PAEs into the medium separately and the initial concentrations of three PAEs were the same as those in 
hydrolysis experiments. Then, the obtained solutions were equilibrated overnight by gentle stirring in the 
dark at room temperature. Subsequently, the medium was sterilized in an autoclave at 121 °C for 20 min. 
Cultures were prepared for biodegradation experiments by transferring the cells into sterile medium 
spiked with DMP, DEP and DBP, respectively. The cultures were incubated at 28 °C in the dark using a 
shaking speed of 100 rpm (ISF-1-W; Kuehner, Switzerland). Cells were transferred several times into 
fresh medium to make sure that the cells were capable of degrading DMP, DEP and DBP as the sole 
carbon source, respectively.  

For batch biodegradation experiments of DMP, a series of 240-mL serum bottles were prepared by 
dispensing 50 mL sterilized MSM containing DMP medium. Several bottles containing 50 mL sterilized 
MSM+DEP medium were used for DEP biodegradation experiments. The experiments for DBP aerobic 
biodegradation were carried out in 240-mL bottles containing 150 mL sterilized MSM+DBP medium. The 
microcosms were inoculated with 1 mL PAEs-pregrown cells (see above). The cultures were incubated at 
28 °C in the dark shaking at 100 rpm. Abiotic control experiments of three PAEs were carried out in the 
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absence of inoculated microcosms. At different time intervals, 240-mL bottles were removed and 
sacrificed by adjusting the culture to pH 2.5 using saturated Na2SO4-H2SO4 solution (pH 1) to stop further 
degradation activity. Procedures for extraction of the residual PAEs are the same as described in 
hydrolysis experiments.  

Concentration and Isotopic Analysis  

Detailed descriptions of analytical methods and equipment are available in the SI. Briefly, concentration of 
PAEs residuals were measured using a gas chromatography equipped with flame ionization detector 
(FID). The carbon and hydrogen isotope compositions of DMP, DEP and DBP were measured using a 
GC coupled via a GC-Isolink interface to an isotope ratio mass spectroscopy (IRMS).  

Quantification of Isotope Fractionation  

Carbon and hydrogen isotope compositions of DMP, DEP and DBP were expressed in δ values, which 
were denoted in per mil (‰) relative to Vienna Pee Dee Belemnite (VPDB) and Vienna Standard Mean 
Ocean Water (VSMOW), respectively. The relationship between the extent of PAEs degradation and 
corresponding isotope ratio variations was evaluated according to the Rayleigh equation.

34
 

ln
𝛿t+1

𝛿0+1
= 𝜀 × ln f                      (1) 

where δt and δ0 are the isotope ratios in the substrate at time t and zero, respectively, and f is the 
remaining fraction of substrate at a given time t, which stands for the ratio of substrate concentration at 
time t and initial concentration (f = Ct/C0). The obtained slope ε is the bulk isotope enrichment factor. 

The correlation of carbon and hydrogen enrichment factors obtained for a single reaction can be used 
diagnostically to characterize mechanisms of bond cleavage reactions.

35
 Dual stable isotope analysis 

(e.g., carbon and hydrogen) can be applied to cancel possible kinetic rate limitations which affect isotope 
fractionation of a single element, as the kinetic rate limitations affecting the reactions prior bond cleavage 
(e.g. for a C-H cleavage) is almost similar for both elements.

19
 The relationship between the hydrogen 

isotopic shift (Δδ
2
H) and carbon isotopic shift (Δδ

13
C) during the course of one experiment is calculated 

by linear regression, as shown in Equation 2.
19

 The obtained slope (lambda value, Λ) allows 
differentiating the reaction mechanisms. 

Λ =
△𝛿2

H

△𝛿13
C
≈

𝜀H

𝜀C
                             (2) 

The obtained bulk enrichment factors (ε) are calculated by the Rayleigh equation using compound-
average isotope compositions and taking into consideration of both reactive and nonreactive positions. 
Apparent kinetic isotope effects (AKIEs) for reactive positions are calculated using Equation 3. 

AKIE =
1

1+
𝑛

𝑥
𝑧∙𝜀(‰)/1000

                  (3) 

where ε is the obtained isotope enrichment factor, n is the number of atoms of considered element in the 
molecule, x is the number of reactive positions and z stands for the number of indistinguishable reactive 
sites. 

RESULTS AND DISCUSSION  

Degradation Kinetic of PAEs Hydrolysis at Different pHs  

DMP, DEP and DBP containing different alkyl side chain lengths were selected to explore the influence of 
the chemical structure on reaction kinetics, hydrolysis mechanisms and isotope fractionation patterns. 
The hydrolysis experiments were conducted at pH 2, pH 7 and pH 10 to investigate the effect on 
hydrolysis rates. The three PAEs hydrolysis followed the pseudo-first-order kinetic reaction in all 
experiments (R

2
 ≥0.977), as shown in Table 1. Aqueous hydrolysis half-lives range from about 3 years for 

DMP to 22 years for DBP at pH 7 (25 °C) and acid hydrolysis rate constants were estimated to be four 
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orders of magnitude slower than alkaline hydrolysis.
10

 Additionally, the results for control experiments at 
20 °C and pH = 7 (Figure S1, SI) suggested that the hydrolysis of three PAEs were both neglectable at 
ambient temperature. Therefore, the temperature was set at 80 °C to accelerate the degradation rate at 
pH 2 and pH 7. Based on the Van't Hoff equation, the reaction rate will increase by a factor of 2 to 4 for 
an increase of 10 °C in temperature. Compared with the rate constants of DMP in Table 1, it can be 
clearly seen that neutral condition are more beneficial to degradation efficiency of DMP than acid 
condition since the pseudo-first-order rate constant increased substantially from 0.0009 h

-1
 at pH 2 to 

0.0246 h
-1

 at pH 7. However, the decomposition for alkaline hydrolysis at pH 10 is much faster even at 
ambient temperature; hence, the reaction temperature was lowered to 30 °C. Here the rate constant was 
0.0965 h

-1
 (R

2
=0.988), and the corresponding half-life time was calculated as 7.2 h. A further decrease of 

the temperature from 30 °C to 20 °C was observed to slow down the alkaline hydrolysis rate of DMP to 
0.0263 h

-1
, which is in agreement with the Van't Hoff equation. The results in Table 1 demonstrate that 

hydrolysis of three PAEs is both strongly pH dependent with higher rate constants at higher pHs. It can 
therefore be concluded that the three PAEs show alkaline hydrolysis reaction as expected, especially at 
higher pH values. Furthermore, the ratio of kpH7 and kpH2 value decreased from 26.6 (DMP), 6.7 (DEP) to 
1.5 (DBP), demonstrating an increased proportion of kpH2 along with increasing alkyl side chain length in 
PAEs molecules. It would be plausible that acid-catalyzed hydrolysis is likely to play a role gradually 
depending on the alkyl groups in PAEs.  

Carbon Isotope Fractionation of PAEs during Hydrolysis and Aerobic Biodegradation 

The carbon isotope compositions of three PAEs were analyzed during abiotic hydrolysis and aerobic 
biodegradation. The changes in C and H isotope ratios during individual reactions for DMP (Figure 1) and 
the isotope values of DEP and DBP (Figures S2, S3) were investigated for characterizing the degradation 
reactions. δ

13
C values both showed the trend to be more positive in the remaining reactant over the 

course of degradation in all experiments, demonstrating that PAEs molecules containing heavy isotopes 
(
13

C) react slower and are left behind in the residual reactant so that a normal carbon isotope effect 
occurs. In addition, carbon isotope enrichment factors (εC) were evaluated by the Rayleigh equation, and 
95% confidence intervals were calculated (Table 2). Highly significant fits (R

2
 ≥0.93) were obtained 

(Figure S4). Considerable carbon isotope enrichment factors were observed in the hydrolysis processes 
of DMP. The values of εC at pH 2 (-3.4±0.3‰, R

2
=0.99) and pH 7 (-3.6±0.3‰, R

2
=0.99) were 

indistinguishable, indicating a similar reaction mechanism. According to previous kinetic results (Table 1), 
the k value at pH 2 is smaller than that at pH 7, which indicates no significant acid-catalyzed reaction. 
Therefore, neutral hydrolysis reaction is hypothesized to be dominant even at pH 2 based on carbon 
isotope fractionation results.  

A larger εC of -4.7±0.2‰ (R
2
=0.99) at pH 10 was observed and attributes to alkaline hydrolysis reaction. 

As discussed in previous studies, even for the same type of reaction, considerable variations of isotope 
fractionation may occur due to the extent of bond changes in the transition state or the dependence of 
isotope effects on the transition state structure. As for ester hydrolysis, although C-O bond at acyl group 
is cleaved, three reactions of acid-catalyzed, neutral and base hydrolysis are reported to exhibit different 
reaction scheme steps and form tetrahedral intermediates with slight differences at rate-limiting steps 
(Scheme 1). Hence, it seems likely that the deviations of εC values at three pHs could be related to the 
subtle differences in tetrahedral intermediates during neutral and alkaline hydrolysis of DMP. The carbon 
isotope fractionation pattern during hydrolysis of DEP was similar to that of DMP, which agrees with the 
kinetic results and possibly indicates the similar dominant reaction types as DMP at three pHs. However, 
the εC values of DBP show a different trend with pHs compared to DMP and DEP. The obtained carbon 
isotope enrichment factors at pH 7 and 10 are indistinguishable and larger than hydrolysis at pH 2. A 
hypothesis for the difference is that the acid-catalyzed reaction plays a role during DBP hydrolysis at pH 2. 
In addition, the obtained εC values of the three tested PAEs at the same pH conditions decreased along 
with the increase of total carbon atoms in PAEs molecules (DMP>DEP>DBP), which is caused by the 
isotope dilution effect on the observable carbon isotope fractionation. 

The aerobic biodegradation experiments were conducted with Rhodococcus opacus DSM 43250, which 
is capable of using DMP, DEP and DBP as carbon sources. The control experiments of three PAEs in the 
absence of microcosms (Fig. S1) indicated that the contribution of abiotic hydrolysis to biodegradation 

265



6 
 

was minor. The εC values for aerobic biodegradation of the three PAEs by R. opacus are reported in 
Table 2. The magnitude of εC for DMP (-4.3±0.4‰, R

2
=0.99) and DBP (-1.1±0.3‰, R

2
=0.93) agreed well 

with previously reported values from Liu et al.
28

 for a Bacillus strain degrading DEP under anoxic 
condition. However, the εC value for DEP biodegradation by R. opacus (-4.3±0.5‰, R

2
=0.98) is larger 

than the value reported (-2.9±0.1‰). The lower carbon isotope fractionation factors (εC) obtained for DEP 
degradation by Bacillus sp. SASHJ indicate that the mechanism of hydrolysis is likely a different means of 
catalytic hydrolysis in Bacillus sp. SASHJ and R. opacus. However, information on 

2
H isotope 

fractionation is missing for Bacillus sp. SASHJ, preventing a deeper discussion on possible mechanistic 

differences during bond cleavage in both strains. 

Hydrogen Isotope Fractionation of PAEs during Hydrolysis and Aerobic Biodegradation 

Unlike the carbon isotope fractionation pattern, the measured δ
2
H values of DMP did not always show an 

isotope enrichment trend (Figure 1). The variations of δ
2
H values at pH 2 were within the analytical 

uncertainty (±5‰) through the whole reaction, which was considered to be constant with no hydrogen 
isotope fractionation. However, δ

2
H values at pH 7, pH 10 and during aerobic biodegradation by 

R. opacus showed a significant trend to be more positive, and εH values (Table 3) were calculated to be -
9±1‰ (R

2
=0.99), -10±1‰ (R

2
=0.99) and -20±3‰ (R

2
=0.98), respectively, according to the Rayleigh 

equation. Hydrogen isotope fractionations are considered to be caused by secondary isotope effects, 
because no C-H bond is broken in the rate-determining step of ester hydrolysis; hence, primary hydrogen 
isotope effects are not expected to occur. The extent of 

2
H fractionation in all reactions was relatively low 

compared to primary isotope fractionation, which is in accordance with the assumed secondary hydrogen 
isotope effects. Almost identical hydrogen isotope fractionations of DEP at pH 7 and pH 10 are similar to 
those observed for DMP. The hydrogen isotope fractionation of DBP for hydrolysis at pH 10 was lower (εH 
value of -6±1‰), probably due to isotope dilution of the longer alkyl side chain. Aerobic biodegradation of 
DMP and DEP exhibit slightly larger εH values of -20±3‰ and -14±2‰, respectively, but it is still in a 
range that can be expected for secondary hydrogen isotope effects.  

Apparent Kinetic Isotope Effect of PAEs  

Apparent kinetic isotope effects (AKIEs) were calculated based on determined isotope enrichment factors 
according to Equation 3 for correcting the isotope dilution effects by nonreactive atoms in PAEs 
molecules and compared with literature values

28
 (Table 2). For possible hydrolytic mechanisms under 

aerobic and abiotic conditions (Scheme 1), an acyl group transfer reaction of esters leads to a primary 
carbonyl-C kinetic isotope effect (KIE). For DMP hydrolytic reactions, 

13
C-AKIEs were calculated using 

n=10, x=2 and z=2 because C-O bonds in two ester groups compete for reaction. Similarly, the values of 
x and z are both considered to be 2 and 2 for DEP and DBP, while the n value in DEP and DBP is 12 and 
16, respectively. The AKIEC values of the three PAEs in the investigated experiments are summarized in 
Table 2. AKIEC values for abiotic hydrolysis at three pH values and aerobic biodegradation of DMP and 
DEP in this study are both within the expected typical KIEC ranges for a SN2 reaction (1.03~1.09),

36
 which 

is consistent with reported AKIEC values for anaerobic degradation of DMP and DEP by Bacillus sp. 
SASHJ.

28
 This result shows that for hydrolytic reactions of DMP and DEP, similar AKIEC values are 

obtained irrespective of abiotic, aerobic or anaerobic processes; thus, carbon isotope effects primarily 
indicate the type of bond cleavage (C-O). 

For DBP, AKIEC values for abiotic hydrolysis at pH 7 and 10 agree well with the typical range of 1.03-1.09, 
while the obtained values for hydrolysis at pH 2 (1.018) and aerobic degradation (1.018) are clearly lower 
than the expected range. Liu and coworkers

28
 observed the similar phenomenon for anaerobic 

degradation of DBP and hypothesized that the low AKIEC (1.008) might be caused by the masking of 
intrinsic isotope effects in enzyme catalyzed reactions. Another explanation is based on the findings of 
Marlier and O'Leary

38
 who calculated the isotope effects of methyl benzoate hydrolyzed at acidic 

condition (91 °C) and at alkaline condition (25 °C). The carbonyl-C KIEs were reported to be 1.026 and 
1.043 for acid-catalyzed and alkaline hydrolysis, respectively. Compared with the data in Table 2, AKIEC 
values of the three PAEs hydrolyzed at pH 10 range from 1.040 to 1.054, which is in agreement with the 
reported carbonyl-C KIE of 1.043. Notably, the carbonyl-C KIE value of 1.026 for acid-catalyzed 
hydrolysis of methyl benzoate provides an indication for the lower AKIEC value (1.018) of DBP and 
supports the hypothesis that acid-catalyzed reaction plays a role during DBP hydrolysis at pH 2. The 
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smaller magnitude of AKIEC on hydrolysis at pH 2 and aerobic biodegradation of DBP is likely related to 
the relatively reactant-like transition state (TS), because the isotope effect is near unity for a reactant-like 
TS and gradually increases when TS becomes more like the tetrahedral intermediate.

38
 

For calculating the secondary AKIEH, hydrogen bonded to the adjacent carbon atom is assumed to affect 
the vibration of the C-O bond and hydrogen bonded to both α- and β-carbon can contribute to a 
secondary AKIEH.

39
 Therefore, the values of secondary AKIEH are estimated for DMP with the parameters 

(n=10, x=6 and z=2) and the corresponding values are 1.03, 1.03 and 1.07 for hydrolysis at pH 7, 10 and 
aerobic biodegradation, respectively (Table 3). For DEP, the secondary AKIEH values (n=14, x=4 and z=2) 
are estimated to be in the order of 1.07 (hydrolysis at pH 7), 1.07 (hydrolysis at pH 10) and 1.11 (aerobic 
degradation), respectively. Moreover, the calculated secondary AKIEH of DBP was found in the order 1.07 
for hydrolysis at pH 10 (n=22, x=4 and z=2). The secondary AKIEH is assumed to be in the range of 0.95-
1.05 for a SN2 type reaction.

36
 However, the obtained secondary AKIEH in this study ranges from 1.03 to 

1.11. The latter value is above the previously observed range, which we cannot explain mechanistically.  

Dual H-C Isotope Analysis of PAEs  

Dual isotope plots (△δ
2
H versus △δ

13
C) of DMP, DEP and DBP for the reactions under investigation were 

combined in Figure 2. Well-fitted linear regressions were obtained (R
2
 ≥0.96) and different slopes (Λ) 

were determined together with 95% confidence intervals. For DMP, hydrolysis at pH 7 and 10 lead to 
indistinguishable Λ values (3.0±0.1 versus 2.5±0.3), while the Λ value at pH 2 could not be obtained due 
to the absence of hydrogen isotope fractionation. In addition, a slightly larger Λ value (5.3±0.4) for aerobic 
biodegradation was observed as a result of the higher εH value. Potential reason for this result might be 
slightly different reaction mechanisms of aerobic biodegradation and abiotic hydrolysis, even though 
hydrolytic reaction of ester bond is both assumed to occur as the initial isotope sensitive step. For DEP, 
except for hydrolysis at pH 2, other reactions showed the similar Λ values ranging from 1.9±0.2 to 2.6±0.5, 
which supports the hypothesis of a similar hydrolytic mechanism. The type of reaction is considered to be 
acyl group transfer reaction of PAEs and primarily indicates the isotope patterns irrespective of 
enzymatically catalyzed or purely abiotic hydrolytic processes.  

For exploring the diagnostic potential of dual H-C isotope analysis, Λ values of abiotic hydrolysis and 
aerobic biodegradation were compared with our previous results of chemical oxidation reactions by 
persulfate and OH radical oxidation (Zhang et al., 2017 submitted) (Figure 2). The carbon and hydrogen 
fractionation pattern of the persulfate oxidation of DMP, DEP and DBP could be clearly separated from 
chemical and biological hydrolysis. Acidic hydrolysis of three PAEs almost gives no 

2
H fractionation in any 

case and forms a specific pattern. The Λ value of DMP allow to distinguish biodegradation from hydrolysis, 
however hydrolysis at pH 7 and pH 10 exhibits similar Λ values, which overlap with OH radical oxidation 
(UV/H2O2 reaction) to some extent (2.0±0.1). For DEP, the fractionation patterns of hydrolysis at pH 7 and 
pH 10 overlap to some extent with biodegradation and OH radical oxidation, making a separation of these 
reactions based on Λ value alone challenging. Persulfate and OH radical oxidation as well as hydrolysis 
reactions of DBP can be distinctly identified by Λ values, indicating the potential to characterize different 
degradation mechanisms. The low Λ values for abiotic hydrolysis and aerobic biodegradation of all three 
PAEs are similar due to the cleavage of a C-O bond in the rate limiting step and the PAEs with longer 
chain are predicted to yield not 

2
H isotope effect upon chemical and biological hydrolysis reactions.  

ENVIRONMENTAL SIGNIFICANCE  

The present study provides carbon and hydrogen isotope fractionation data in abiotic and biotic hydrolytic 
reactions of PAEs, which has the potential to be used as references for the further data evaluation in field 
studies. Both the kinetic results and carbon isotope enrichment factors support the hypothesis that the 
neutral hydrolysis reaction plays an important role for hydrolysis of DMP and DEP at pH 2 and pH 7. The 
hydrolysis rates at pH 7 and 10 give negative relationships with the side chain lengths in PAEs molecules. 
In addition, εC and position-specific AKIEC values demonstrate similar hydrolysis pathways irrespective of 
abiotic, aerobic or anaerobic processes. The exception of DBP hydrolysis at pH 2 and biodegradation is 
possibly caused by a reactant-like transition state and needs further study to investigate it.  
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Dual H-C isotope analysis has diagnostic value for characterizing mechanisms. Although the 
2
H isotope 

fractionation is caused by a secondary isotope effects it gives a characteristic pattern for short chain 
phthalate. Even the hydrogen isotope fractionation is low, the secondary isotope effect still allows 
classification of neutral, alkaline and biological induced hydrolysis for DMP and DEP. Oxidation by sulfate 

and OH radical can be distinct in any case from each other.  values of methyl and ethyl phthalates at 
neutral and alkaline hydrolysis overlapped with OH radical oxidation, but with increasing length of alkyl 

chains, primary isotope effects of C-H bond cleavage lead to characteristic  values for the identification 
of radical reactions. This systematic investigation shows the prospects and limitation of 

2
H and 

13
C 

isotope fractionation analysis for diagnostically applying Λ value in laboratory and possibly in field studies. 
Overall, this study exhibits the potential applicability to better understand the environmental fate of PAEs 
at the field scale. 
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Table 1. Hydrolysis kinetic parameters of PAEs  

Experiments 

DMP DEP DBP 

k (×10
-4

 
h

-1
) 

R
2
 f 

k (×10
-4

 
h

-1
) 

R
2
 f 

k (×10
-4

 
h

-1
) 

R
2
 f 

pH 2_80 °C 9.3 0.997 0.097 7.8 0.997 0.142 13.9 0.977 0.140 

pH 7_80 °C 247.5 0.978 0.034 52.2 0.998 0.059 20.8 0.986 0.094 

pH 10_30 °C 964.8 0.988 0.010 272.6 0.998 0.037 130.3 0.990 0.041 

pH 10_20 °C 263.2 0.999 0.041 not analyzed not analyzed 

 

Table 2. Carbon isotope enrichment factors and AKIEC of PAEs during hydrolysis and biodegradation 

Experiments 
DMP DEP DBP 

εC (‰) AKIEC εC (‰) AKIEC εC (‰) AKIEC 

Hydro_pH 2 -3.4±0.3 1.035 -2.6±0.4 1.033 -1.1±0.1 1.018 

Hydro_pH 7 -3.6±0.3 1.037 -3.1±0.4 1.038 -2.7±0.4 1.046 

Hydro_pH 10 -4.7±0.2 1.049 -4.3±0.3 1.054 -2.4±0.1 1.040 

Aerobic biodegradation by 
R. opacus DSM 43250 

-4.3±0.4 1.045 -4.3±0.5 1.055 -1.1±0.3 1.018 

Anoxic biodegradation by 
Bacillus sp. SASHJ 

a
  

-4.6±0.4 1.048 -2.9±0.1 1.036 -0.5±0.1 1.008 

a. The data information of anoxic biodegradation was obtained from Liu et al
28

.  
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Table 3. Hydrogen isotope enrichment factors and AKIEC of PAEs during hydrolysis and biodegradation 

Experiments 
DMP DEP DBP 

εH (‰) AKIEH εH (‰) AKIEH εH (‰) AKIEH 

Hydro_pH 2 n.d.
 a
 n.d. n.d. n.d. n.d. n.d. 

Hydro_pH 7 -9±1 1.03 -9±2 1.07 n.d. n.d. 

Hydro_pH 10 -10±1 1.03 -10±1 1.07 -6±1 1.07 

Aerobic biodegradation by 
R. opacus DSM 43250 

-20±3 1.07 -14±2 1.11 n.d. n.d. 

a. n.d. is short for “not determined”, the changes of hydrogen isotope composition were within 
measurement uncertainty (δ

2
H: ±5‰). 

 

 

  

Figure 1. Isotope fractionation patterns of δ
13

C (black circles) and δ
2
H (blue squares) measured in DMP 

during hydrolysis at pH 2 (A), pH 7 (B), pH 10 (C) and aerobic biodegradation (D).  
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Figure 2. Dual H-C isotope plots of DMP (A), DEP (B) and DBP (C) during abiotic hydrolysis, aerobic 

biodegradation and chemical oxidation reactions by OH and sulfate radicals. The  values for persulfate 
and UV/H2O2 oxidation were taken from Zhang and colleagues (2017, submitted).  
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Materials   

DMP, DEP and DBP were purchased from Sinopharm Chemical Reagent Co., Ltd., (China) with 
99.5% purity, and used without further purification. K2HPO4, KH2PO4 and naphthalene were 
obtained from Merck (Guaranteed reagent quality, Germany). 6 M HCl solution and hexane were 
purchased from Carl Roth GmbH + Co. KG (Germany). Na2CO3, NaHCO3, ortho-xylene, 
acetonitrile and dichloromethane (DCM) were supplied by Chem solute, Th. Geyer (Germany). 
All other reagents for bacteria growth medium preparation were of analytic grade. Deionized 
water was prepared by a Milli-Q system (>18.2 MΩ cm

-1
, Millipore GmbH, Schwalbach/Ts. 

Germany) and used for preparing all experimental solutions. 

Analytical Methods 

Concentration measurements of PAEs residuals were performed by a gas chromatography 
(Agilent 7820A, USA) equipped with flame ionization detector (FID). Concentrations were 
determined using internal standard calibration. PAEs and internal standards were separated by a 
HP-5 column (30-m length, 320-μm inner diameter, 0.25-μm film thickness, Agilent, USA). The 
oven temperature was programmed from 60 °C (2 min) to 290 °C with a ramp of 10 °C /min and 
maintained at 290 °C for 2 min. Helium was used as carrier gas and the flow rate was 1.5 
mL/min. The temperature of the injector was 250 °C. The injected amount of sample was 1 μL 
and the split ratio was 30:1. 

The carbon and hydrogen isotope compositions of DMP, DEP and DBP were measured using a 
6890 GC (Agilent, USA) coupled via a GC-Isolink interface to a MAT 253 isotope ratio mass 
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spectroscopy (IRMS, Thermo-Finnigan, Germany). The isotope analytical methods were 
described elsewhere.

1
 The GC was equipped with a ZB-1 column (60-m length, 320-μm inner 

diameter, 1-μm film thickness, Phenomenex Inc., USA) to obtain good peak shapes and other 
parameters were set same as those in GC-FID. Carbon isotope analysis was performed in split 
injection mode (5:1) and the injected volume was 1 μL. Hydrogen isotope analysis was done in 
splitless mode. A mixture solution of DMP, DEP and DBP in hexane was used as laboratory 
working standard in order to monitor instrument status and quality control. Based on triplicate 
analyses of each sample, reproducibility of isotope values was better than typical analytical 
uncertainties for C and H analysis, respectively (δ

13
C with a standard deviation ≤0.5‰, δ

2
H with 

a standard deviation ≤5‰). 

Control experiments 

Control experiments of three PAEs for hydrolysis were conducted at 20 °C and pH = 7. The 
remaining fraction of DMP, DEP and DBP in Fig. S1A both showed not significant decrease in 
concentration within 1200 hours (50 days), which indicated that the hydrolysis process of three 
PAEs at ambient temperature and neutral condition was neglectable. In addition, control 
experiments for aerobic biodegradation were carried out under the same culture and incubation 
condition in the absence of inoculated microcosms. The results in Fig. S1B suggested that the 
contribution of abiotic hydrolysis was minor during aerobic biodegradation of DMP, DEP and 
DBP, because Rhodococcus opacus DSM 43250 was capable to degrade three PAEs in less 

than 100 hours.    

Figure S1. Remaining fraction of DMP, DEP and DBP in control experiments for hydrolysis (A) 
and in control experiments for aerobic biodegradation (B). 

 

Changes in C and H Isotope Ratios of DEP and DBP in Hydrolysis and Aerobic 
Biodegradation  

The variations of carbon and hydrogen isotope ratios along with the decomposition of DEP and 
DBP in the investigated experiments were shown in Figure S2 and S3, respectively. For abiotic 
hydrolysis at different pH values (pH 2, 7 and 10) and aerobic biodegradation, δ

13
C values of 

DEP and DBP both showed a trend to be more positive during the degradation processes, which 
indicated a normal isotope fractionation. However, hydrogen isotope enrichment was not always 
observed, especially for hydrolysis at pH 2, changes in δ

2
H values of three PAEs were within the 

analytical uncertainty (±5‰) for δ
2
H analysis, which suggested no detected hydrogen 

fractionation. 
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Figure S2. Isotope fractionation patterns of δ
13

C (black circles) and δ
2
H (blue squares) 

measured in DEP during hydrolysis at pH 2 (A), pH 7 (B), pH 10 (C) and aerobic biodegradation 
(D). The uncertainty of the isotope analysis is reported as standard deviation (2 σ) of at least 3 
individual measurement and sometime smaller than the symbol.   
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Figure S3. Isotope fractionation patterns of δ
13

C (black circles) and δ
2
H (blue squares) 

measured in DBP during hydrolysis at pH 2 (A), pH 7 (B), pH 10 (C) and aerobic biodegradation 
(D). The uncertainty of the isotope analysis is reported as standard deviation (2 σ) of at least 3 
individual measurement and sometime smaller than the symbol. 

Rayleigh Isotope Plots 

The isotope composition and the remaining fraction of PAEs described above were used to 
assess bulk carbon and hydrogen enrichment factors (ε) from the slopes of Rayleigh plots

2
 

according to Equation 1 in the main text (Figure S4). The uncertainty was reported as 95% 
confidence intervals. 

 

Figure S4. Logarithmic plots of carbon (left panels) and hydrogen (right panels) isotope 
composition during DMP (A, B), DEP (C, D) and DBP (E, F) transformation according to Rayleigh 
equation. Blue squares for hydrolysis at pH 2, red circles for hydrolysis at pH 7, black triangles 
for hydrolysis at pH 10 and magenta triangles for aerobic biodegradation. 
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