
ScaLP: A Light-Weighted (MI)LP Library

Patrick Sittel
University of Kassel

sittel@uni-kassel.de

Thomas Schönwälder
University of Kassel

thomas.schoenwaelder@student.uni-kassel.de

Martin Kumm
University of Kassel
kumm@uni-kassel.de

Peter Zipf
University of Kassel
zipf@uni-kassel.de

Abstract.Many design flows involve the process of automatically solving complex optimization
problems using linear relations. Especially, modern circuits and systems are often optimized
using linear programming (LP). While code integration and portability are critical topics, it
is not obvious to the designer which of the numerous LP solvers is the best fitting regarding
runtime performance, problem modeling and licensing. Additionally, current state-of-the-art
integration tools include many dependencies, long compile times, are complicated to handle
or provide interfaces that are susceptible for design errors. To provide a solution for these
problems, we present the Scalable LP library ScaLP - an open-source C++ library that uses a
unified interface to generically model LP problems and enable runtime dynamic exchange of
solvers. Also, it reduces code complexity by providing denser ILP problem formulations.

1. Introduction

The method of mixed integer linear programming (MILP) is a general approach for solving mathe-
matical optimization problems which can be modeled using linear relationships. There are plenty
of fields where MILP finds application, such as agriculture, telecommunication or operations re-
search. The real-world goals in these fields may be different, but as long as the underlying systems
can be represented as an LP model, a mathematical statement and objective can be formulated. In
the early days of LP, shortly after George Dantzig published the simplex method in 1947 [5], the
method of transforming the complex mathematical descriptions into the solver specific input format
using low-level code was, in reality, holding back the efficiency of the development process. As
a solution, the first algebraic modeling languages (AMLs) were published in the late 1970s. They
provided system developers with the ability to formulate LP problems in a more natural and generic
way [24]. This led to ALM representations that are readable by both humans and computers [8].
After a problem is formulated, the solutions are generated using sophisticated solvers. With these
advantages, problems could be modeled easily and solved automatically, which allowed designers
to focus on high-level design problems.

Nevertheless, there still existed several major issues that needed to be resolved: portability, inte-
gration and extendibility. To fix this, the modeling process has been integrated with object-oriented

sittel@uni-kassel.de
thomas.schoenwaelder@student.uni-kassel.de
kumm@uni-kassel.de
zipf@uni-kassel.de

programming languages [12] as embedded domain specific language (eDSL). When Nielsen pub-
lished his C++ library for mathematical optimzation models [22] in the early 90s, the benefits of
using object oriented languages in the context of LP was widely recognized. Using such languages
for modeling and solving LP problems has many advantages. It allows designers to describe their
mathematical models in an object-oriented language which is easy to be integrated into a large
number of software projects.

However, commonly used interfaces are solver specific. As a result, the formulation and solving
process often are not separated from each other. We have also observed that other tools which are
often used for LP, e.g., OR-Tools [10] and JuMP [7], come with other dependencies and packages
that consume a lot of disk space and compile time. As a solution to those disadvantages, we
present ScaLP, a light-weighted and solver flexible (mixed-integer) linear programming (MI)LP
library for C++ applications. ScaLP was utilized with success in several projects ranging from
the modulo scheduler [23] also used in a high level synthesis (HLS) tool Origami HLS [17] to
arithmetic optimizations like the (reconfigurable) constant multiplication [21, 15] or compressor
tree optimization [16] used in the floating point core generator (FloPoCo) project [6].

1.1. Example Program

An example how to model a simple MILP problem using the ScaLP library is shown in Listing 1.
A solver object s is generated in line 9 using the dynamic solver interface specifying that either
CPLEX, Gurobi or the SCIP solver should be used. The used solver depends on what is installed on
the target system. Since the code does not depend on one specific solver, the example program is
portable and flexible. If more than one solver is available, the first available solver in the constructor
of the ScaLP::Solver class will be chosen. We call this feature of ScaLP a wishlist. A detailed
description is given in Section 2.4.

An example LP problem is formulated in the following lines. The variables are declared in lines
12–16. In this example, there is one binary variable and, bounded as well as unbounded, integer
and real typed variables. While x2 and x4 are unbounded, x3 and x5 are bounded to x3 ≥ 0 and
12.5 ≤ x5 ≤ 88. An objective is formulated and provided to the solver object in line 18. The
constraints are passed to s in the lines 20–22. Finally, the problem is solved and the information
whether the solution found was feasible or optimal is stored in r and evaluated in the lines 26–32.
The results are stored in a ScaLP::Result object res in line 28.

In this case, an optimal solution will be identified and it is printed to the console in line 29. The
output, which reports all relevant values and solving time statistics, is shown in Listing 2. After
solving, all of the determined values and additional statistics are stored in the Result object and can
be accessed using the C++ API.

1.2. Related Work

Traditionally, the problem of generating and solving LP problems is driven by software develop-
ment. Using the benefits of the AML representation, several different tools and frameworks were
developed. They can be divided into three categories: general and solver specific AML systems
and object-oriented modeling languages (OOMLs).

Specific AML systems apply the model-data-solver independence model, supporting the use of
different solvers and data models. Information about popular representatives of this idea is shown

Listing 1: Dynamic ILP solving with ScaLP
1 # i n c l u d e < i o s t r e am >
2 # i n c l u d e <ScaLP / So l v e r . h>
3 # i n c l u d e <ScaLP / Excep t i on . h>
4
5 int main ()
6 {
7 try
8 {
9 ScaLP : : S o l v e r s { "CPLEX" , " Gurobi " , " SCIP " } ;
10 s . q u i e t =true ;
11
12 ScaLP : : V a r i a b l e x1 = ScaLP : : n ewBina ryVa r i ab l e (" x1 ") ;
13 ScaLP : : V a r i a b l e x2 = ScaLP : : n ew I n t e g e rVa r i a b l e (" x2 ") ;
14 ScaLP : : V a r i a b l e x3 = ScaLP : : n ew I n t e g e rVa r i a b l e (" x3 " , 0 , ScaLP : : INF ()) ;
15 ScaLP : : V a r i a b l e x4 = ScaLP : : n ewRea lVa r i ab l e (" x4 ") ;
16 ScaLP : : V a r i a b l e x5 = ScaLP : : n ewRea lVa r i ab l e (" x5 " , 1 2 . 5 , 8 8) ;
17
18 s . s e t O b j e c t i v e (ScaLP : : maximize (2∗ (x1+x3+x4)+4∗x2−x5)) ;
19
20 s << (5∗ x1+4∗x2+3∗x3+7∗x4+ x5 <=135) ;
21 s << (x1+7∗x2+5∗x3+4∗x4+2∗x5 <=135) ;
22 s << (8∗ x1+9∗x2+2∗x3+ x4+3∗x5 <=135) ;
23
24 ScaLP : : s t a t u s r = s . s o l v e () ;
25
26 if (r ==ScaLP : : s t a t u s : : OPTIMAL)
27 {
28 ScaLP : : R e s u l t r e s = s . g e t R e s u l t () ;
29 std : : c ou t << r e s << std : : e nd l ;
30 }
31 else
32 std : : c ou t << "No␣ op t ima l ␣ s o l u t i o n " << std : : e nd l ;
33 }
34 catch (ScaLP : : Excep t i on& e) { std : : c ou t << e << std : : e nd l ; }
35 return 0 ;
36 }

in Table 1. Solver specific AML systems are closed approaches. They are developed to support
exclusively one solver. Therefore, they provide a more complete and specific support. Most AMLs
are distributed commercially. And in general, all design concepts of the displayed AML systems
are based on the same fundamental ideas, but differ in data models and interfaces.

Another popular approach is to implement algebraic models for LP from OOMLs. Most of the
time, objects are used for the presentation of common expressions such as constraints, objectives and
variables. In general, relevant operators and functions are overloaded to model LP formulations
intuitively. While YALMIP, FlopC++ and Pyomo use the commonly used approach of operator
overloading, the Julia package JuMP adopts the syntactic macro concept that is provided by the
Julia language. The use of OOMLs is beneficial in many cases, because they are able to take
advantage of amuchmore comprehensive programming environment provided by standard libraries.

Today, the commercial AML systems, like AMPL and GAMS, are widely used and can be con-
sidered as state-of-the-art in academia and industry. However, each system has established its own
syntax which is entirely separated from any other programming language. As a result, it is difficult
to embed a commercial AML system into a complex software project. Open source alternatives
either have other dependencies like Matlab and COIN-OR [20] or have many dependencies like
the google OR-tools [2]. As a result, light-weighted and robust open source alternatives without

Listing 2: ScaLP output of the example program
1 Ob j e c t i v e : 47 .0714
2 Va r i a b l e s :
3 x1 = 1
4 x2 = 8
5 x3 = 1
6 x4 = 11 .7857
7 x5 = 12 .5
8 Du r a t i o n s :
9 p r e p a r a t i o n : 2 . 7 e−05
10 c o n s t r u c t i o n : 6 . 1 e−05
11 s o l v i n g : 0 .012401

Table 1: Widely used AMLs. The top half shows stand alone tools while the bottom half shows language
extensions or libraries

ALM First Published Concept Solver Availability

AMPL [9] 1987 AMS generic commercial
GAMS [4] 1992 AMS generic commercial
ZIMPL [14] 2004 C command line tool generic open source

OPL 1987 AMS CPLEX commercial
LINGO 1989 Excel plugin LINDO commercial

FICO XPress 2002 AMS XPress Solver commercial

YALMIP [19] 2004 Matlab Toolbox generic open source
COIN-OR Osi [1] 2004 C++ bib generic open source
FlopC++ [12] 2007 C++ bib generic open source
Pyomo [11] 2011 Python package generic open source
OR-Tools 2012 C++/C#, Java, Python bib generic open source
JuMP [7] 2017 Julia package generic open source

dependencies are needed. With ScaLP which only uses the C++ standard library functions, we
reduce dependency complexity.

1.3. Contribution

We present the light-weighted open source (MI)LP library ScaLP [18] that is a C++11 compatible
library which offers a unified user friendly interface for MILP solvers. This interface can be seen
as a C++-wrapper for LP. ScaLP provides the following features, which (altogether) are unique to
C++ (MI)LP libraries:

• a natural interface that heavily uses the concept of operator overloading,

• a generic solver backend that enables the solver selection at runtime,

• solver support from open-source to commercial high-end solver.

To the best of our knowledge, dynamic solver flexibility combined with a unified and easy to
manage constraint interface was not addressed so far. All supported solvers, currently CPLEX,
Gurobi, SCIP [25] and LPSolve [3], can be switched dynamically once ScaLP was built and linked
to the project, because of ScaLP’s unified C++ interface for generating MILP formulations. By

detaching the ILP formulation modeling from the process of solving, the interface is intuitive and
robust to use. Additionally, all constraints can be formulated using less C++ code than state-of-the-
art MILP interfaces.

2. ScaLP Design Paradigms

The presented ScaLP library enables the generation and solving of LP problems using dynamically
interchangeable solvers. ScaLP is written in C++, which makes it easy to integrate into one of
the numerous C++ based toolflows for system design. Another main feature of ScaLP is the
independence from any tool or library other than the C++-standard-libraries, libdl for linking and
the used solvers, which can be switched dynamically. One benefit of this concept is that a designer
does not have to worry about user-compile-time dependencies. Nevertheless, problems are solved
using an arbitrary solver, which can be switched dynamically without recompilation of ScaLP.

2.1. Problem Formulation

The formulation of LP problems is based on objectives and constraints that describe relations
of variables. In our approach, these objectives and constraints are formulated using terms that
are formulated with operator overloading and declared variables. The relevant classes for this
construction process are shown in Figure 1. Variables are used to generate objects of the class Term
using +, - or * operators. These terms can be used to describe relations and generate constraints
or to generate an objective. As already shown in the motivational example, we tried to keep
the LP formulation as intuitive as possible. As a result, LP problem formulation with ScaLP is
straight-forward, accessible and easy to debug.

Variable

*

Constants

+,-

Term

+,-,*

Objective

Constraint
<=, >=,==,
>>=(then)

ScaLP::maximize()
ScaLP::minimize()

Figure 1: Construction process

2.2. Interface

ScaLP offers an unified interface for various (MI)LP solvers that is designed to detach the problem
formulation from the solving process. In that way, variables, constraints and the objective can
be formulated without setting any solver specifics. This allows designers to focus on high-level
problems while generating their code. As a side effect, this concept forces designers to use more
generic and immutable data structures, which leads to less mutation bugs. This is very useful for the

Table 2: Comparison of the definition of the example objective max 10x0 + 20x1 + 30x2 in the frameworks
Coin-OR Osi OR-Tools and ScaLP

Coin-OR Osi [1] OR-Tools [10] ScaLP

double ∗o =
new double [3] ;
o [0] = 1 0 . 0 ;
o [1] = 2 0 . 0 ;
o [2] = 3 0 . 0 ;
s o l v e r −>se tOb jSen s e (max) ;

MPObject ive∗ const o =
s o l v e r −>Mu t ab l eOb j e c t i v e () ;

o−>Se tMax im iza t i on () ;
o−> S e t C o e f f i c i e n t (x0 , 1 0) ;
o−> S e t C o e f f i c i e n t (x1 , 2 0) ;
o−> S e t C o e f f i c i e n t (x2 , 3 0) ;

ScaLP : : O b j e c t i v e o =
ScaLP : : maximize (10∗ x0+20∗x1+30∗x2) ;

Table 3: Comparison of the definition of the example constraint 10x0+4x1+5x2 <= 600 in the frameworks
Coin-OR Osi, OR-Tools and ScaLP

Coin-OR Osi [1] OR-Tools [10] ScaLP

CoinPackedVec to r row1 ;
row1 . i n s e r t (0 , 1 0 . 0) ;
row1 . i n s e r t (1 , 4 . 0) ;
row1 . i n s e r t (2 , 5 . 0) ;
row_lb [0] = −1.0
∗ s i −> g e t I n f i n i t y () ;
row_ub [0] = 6 0 0 . 0 ;

MPCons t r a in t ∗ const c =
s o l v e r . MakeRowConstra int
(− i n f i n i t y , 6 0 0 . 0) ;

c−> S e t C o e f f i c i e n t (x0 , 1 0) ;
c−> S e t C o e f f i c i e n t (x1 , 4) ;
c−> S e t C o e f f i c i e n t (x2 , 5) ;

ScaLP : : C o n s t r a i n t c =
10∗x0+4∗x1+5∗x2 <= 600 ;

integration of LP solving into larger projects, because a well formulated LP problem is independent
from the solver backend.

The general idea is to design an interface that is as simple as possible and still allows proper
LP problem generation and solving. For example, ScaLP has only one type for constraints, while
OR-Tools distinguish between range constraint, indicator constraints, quadratic constraints. By
automatically detecting the proper constraint type, ScaLP removes this unnecessary burden from
the designer’s hands. When necessary, specific features, like indicator constraints, can be activated
using the ScaLP::Feature class. This is described in Section 2.4.
We use examples to compare the way LP formulations are defined in ScaLP and the two state-

of-the-art C++ libraries Coin-OR Osi [1] and OR-Tools [10]. Table 2 and Table 3 show code
examples how the objective

max 10x0 + 20x1 + 30x2 (1)

and the constraint

10x0 + 4x1 + 5x2 <= 600 (2)

are defined in the different frameworks.
While several containers and ranges have to be defined when the Coin-OR Osi or the OR-Tools

framework is used, the definition of constraints using ScaLP is as simple as it should. Taking
advantage of C++ operator overloading, ScaLP is able to reduce code usage to a one line statement
which is as readable as the mathematical statements in (1) and (2).

2.3. Solver Integration

Dynamic solver integration is a central feature of the ScaLP library. The supported solvers are
integrated by wrappers that are managed as plugins, which are based on shared libraries. This

allows ScaLP to load any supported solver plugin during runtime. As a result, it is possible to
compile the main library and the application once and later add any solver as needed.

Figure 2 shows the dynamic solver integration of the ScaLP library. All plugins implement the
SolverBackend class, which is used as a unified interface to the solvers. Every plugin needs to
export a specific C-Symbol, based on the solver name (e. g. "newSolverCPLEX"), that initializes
an instance of the SolverBackend class on the heap. In that way it is possible to instantiate the class
using the omnipresent loading mechanism for C-libraries. When there is more than one solver
given during the initialization of an instance of the main solver class, ScaLP tries to determine a
suitable solver-plugin. We call this a whishlist of solvers and explain this feature in the following.

SolverConstraints Objective

Result

Solver-Backend
libScaLPGurobi

libScaLPCPLEX
. . .

Figure 2: Solving process using ScaLP

2.4. Solver Wishlist and Feature Selection

As shown in the motivational example, it is possible to pass a list of solvers to the ScaLP::Solver
class that specifies the preferred solvers in a user specified descending order. The solvers mentioned
are prepended to the list passed to the ScaLP::Solver constructor. In that way, a designer can
specify some default solvers and switch or add solvers without recompilation using the environment
variable. The first found solver is used.

The general concept of ScaLP is to keep the LP problem generation and solving process as simple
and general as possible. Still, in some cases an experienced designer might want to take advantage
of solver specific features, e.g., indicator constraints that are often used to avoid so called big-M
constraints [13]. Often times these features are not available for all supported solvers. In these
cases, it is useful to branch the generating C++ code to treat those cases separately. For this reason
ScaLP offers a possibility to check whether a feature is supported or not.

Listing 3 shows an example of branched generation code. Using the wishlist concept, a solver
object s is generated in line 1. While the CPLEX solver allows the use of indicator constraints, this
feature is not supported by LPSolve. In line 3, it is checked whether the used solver of the object s
supports the indicator constraints feature. Using this coding style, advanced solver specific features
can be used without breaking the concept of generating portable code for LP.

Table 4: Code density comparison based on the number characters

Problem Coin-OR Osi OR-Tools ScaLP Char Reduction

lines chars lines chars lines chars to Osi[%] to OR[%]

fixedCharge1 93 1965 66 1609 62 1202 38.8 25.3
projectSelection1 52 1194 54 1771 28 775 35.1 56.2
woodysProblem2 46 1066 36 1159 25 635 40.4 45.2
ILP example3 46 1059 36 1143 25 597 43.6 47.8

total 237 5284 192 5682 140 3209 39.3 43.5
1 http://www.ifp.illinois.edu/~angelia/ge330fall09_ilpmodel_l22.pdf
2 http://www.unc.edu/depts/stat-or/courses/provan/STOR614_web/lect11_IP.pdf
3 https://en.wikipedia.org/wiki/Integer_programming#Example

Listing 3: Branching between indicator constraints and bigM
1 ScaLP : : S o l v e r s { " LPSolve " , "CPLEX" } ;
2
3 if (s . f e a t u r e S u p p o r t e d (ScaLP : : F e a t u r e : : INDICATOR_CONSTRAINTS))
4 {
5 // create indicator constraints
6 }
7 else
8 {
9 // use bigM
10 }

Additionally, it is possible to specify a list ofwanted features and pass them to theScaLP::Solver
object. The first solver that supports all stated features is chosen from the wishlist. In that way,
the solver wishlist is filtered to guarantee a specific behavior of the solver if a feasible one can be
found. Listing 4 shows an example for passing a feature and a wishlist to the ScaLP::Solver
object. Using the ScaLP::Solver constructor, the indicator constraint feature is requested and the
solver wishlist, consisting of LPSolve and CPLEX, is provided. Although it is only stated as second
option, CPLEX will be chosen as solver, because LPSolve does not support indicator constraints.

Listing 4: Select the first solver using indicator constraints
1 ScaLP : : S o l v e r s ({ ScaLP : : F e a t u r e : : INDICATOR_CONSTRAINTS} ,{ " LPSolve " , "CPLEX" }) ;

3. Code Density

In this Section, we examine the code density, which is a significant metric for the simplicity and
effectiveness of the interface. We compare our approach with Osi and OR-Tools, which are two
state-of-the-art C++-based interfaces. For comparison, we used four different LP problems and
implemented them using the before mentioned interfaces.

Table 4 shows the results of the code density comparison. For each interface and problem, the
lines and characters used are displayed. The number of lines used depends on the coding style and
is an ambiguous metric. But, number of characters can be seen as a more accurate measurement
for code density. One can see from the results that the proposed ScaLP library provides a much

http://www.ifp.illinois.edu/~angelia/ge330fall09_ilpmodel_l22.pdf
http://www.unc.edu/depts/stat-or/courses/provan/STOR614_web/lect11_IP.pdf
https://en.wikipedia.org/wiki/Integer_programming#Example

denser description in all cases. Considering all problems and interfaces, the character reduction
using ScaLP varies from 35.1% up to 56.2%. In total, a significant character reduction of 39.3%
compared to Coin-OR Osi and of 43.5% compared to OR-Tools could be obtained. This, combined
with the more natural representation of constraints and objective, contributes to less error-prone
code.

4. Conclusion and Future Work

We presented the open-source C++ library ScaLP for interfacing (MI)LP solvers. Users can access
tutorials, support and the latest version of ScaLP via the project website [18]. Using ScaLP,
designers are able to generate robust and portable C++ code. Our library provides the ability to
switch between installed solvers without recompilation during runtime. The right solver is selected
from a wish list according to the problem-specific features. The interface that is used by ScaLP
enables intuitive and easy to debug code for solving (MI)LP problems. Using this interface, it
could be shown exemplary that the code density is reduced by 39.9% and 43.5% when compared
to Coin-OR Osi and OR-Tools, respectively.

In the future, we want to support non-linear problems and unconventional constraints, e.g.,
special ordered set (SoS) constraints. Additionally, we want to support additional solvers in the
backend. In some cases we observed that certain problems had to be solved multiple times. To
address this, we want to implement a solution cache for known problems to avoid unnecessary LP
solving.

References

[1] COIN OR Open Solver Interface home page, 2017. https://projects.coin-or.org/Osi.

[2] Google Optimization Tools, April 2017. https://developers.google.com/optimization/.

[3] Berkelaar, Michel, Kjell Eikland, and Peter Notebaert: lpsolve: Open Source (Mixed-Integer)
Linear Programming System. Eindhoven U. of Technology, 2004.

[4] Brooke, A, D Kendrick, and A Meeraus: GAMS: A Users Guide, Release 2.25. 1992.

[5] Dantzig, George: Linear Programming and Extensions. Princeton University Press, 2016.

[6] Dinechin, Florent de and Bogdan Pasca: Designing Custom Arithmetic Data Paths with
FloPoCo. IEEE Design & Test of Computers, 28(4):18–27, 2012.

[7] Dunning, Iain, Joey Huchette, and Miles Lubin: JuMP: A Modeling Language for Mathemat-
ical Optimization. SIAM Review, 59(2):295–320, 2017.

[8] Fourer, Robert: Modeling Languages Versus Matrix Generators for Linear Programming.
ACM Transactions on Mathematical Software (TOMS), 9(2):143–183, 1983.

[9] Fourer, Robert, DavidMGay, and BrianWKernighan:AMPL: AMathematical Programming
Language. Citeseer, 1987.

[10] Google Inc.: Google Optimization Tools. https://developers.google.com/optimization/.

https://projects.coin-or.org/Osi
https://developers.google.com/optimization/
https://developers.google.com/optimization/

[11] Hart, William E, Jean Paul Watson, and David L Woodruff: Pyomo: Modeling and Solving
Mathematical Programs in Python. Mathematical Programming Computation, 3(3):219–260,
2011.

[12] Hultberg, Tim: flopC++ An Algebraic Modeling Language Embedded in C++. Operations
Research Proceedings 2006, pages 187–190, 2007.

[13] Klotz, Ed and AlexandraMNewman: Practical Guidelines for Solving Difficult Mixed Integer
Linear Programs. Surveys in Operations Research and Management Science, 18(1-2):18–32,
October 2013.

[14] Koch, Thorsten: Rapid Mathematical Programming. PhD thesis, Technische Universität
Berlin, 2004.

[15] Kumm,Martin:Optimal Constant Multiplication using Integer Linear Programming. In IEEE
International Symposium on Circuits and Systems (ISCAS), 2018.

[16] Kumm, Martin and Johannes Kappauf: Advanced Compressor Tree Synthesis for FPGAs.
IEEE Transactions on Computers, pages 1–1, 2018.

[17] Kumm, Martin, Patrick Sittel, and Konrad Möller: Origami HLS - Project Website, 2017.
http://www.uni-kassel.de/go/origami.

[18] Kumm, Martin, Patrick Sittel, and Thomas Schöwälder: ScaLP - Project Website, 2018.
http://www.uni-kassel.de/go/scalp.

[19] Lofberg, Johan:YALMIP: AToolbox forModeling andOptimization inMATLAB. InComputer
Aided Control Systems Design, 2004 IEEE International Symposium on, pages 284–289.
IEEE, 2004.

[20] Lougee-Heimer, R: The CommonOptimization Interface for Operations Research: Promoting
Open-Source Software in the Operations Research Community. IBM Journal of Research and
Development, 47(1):57–66, 2003.

[21] Möller, Konrad, Martin Kumm, Marco Kleinlein, and Peter Zipf: Reconfigurable Constant
Multiplication for FPGAs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 36(6):927–937, 2017.

[22] Nielsen, Soren S: A C++ Class Library for Mathematical Programming. In The Impact
of Emerging Technologies on Computer Ccience and Operations Research, pages 221–243.
Springer, 1995.

[23] Oppermann, J, A Koch, M Reuter-Oppermann, and O Sinnen: ILP-based Modulo Scheduling
for High-Level Synthesis. In Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES’16), 2016.

[24] Orchard-Hays, William: History of Mathematical Programming Systems. Annals of the
History of Computing, 6(3):296–312, 1984.

[25] Stephen J. Maher, et. al.: The SCIP Optimization Suite 4.0. 2017.

http://www.uni-kassel.de/go/origami
http://www.uni-kassel.de/go/scalp

	Introduction
	Example Program
	Related Work
	Contribution

	ScaLP Design Paradigms
	Problem Formulation
	Interface
	Solver Integration
	Solver Wishlist and Feature Selection

	Code Density
	Conclusion and Future Work

