Routing Partial Permutations in General Interconnection Networks based on Radix Sorting

Tripti Jain and Klaus Schneider
University of Kaiserslautern, Germany
http://es.cs.uni-kl.de/

Abstract

In general, sorting networks can be used as interconnection networks in that the input messages are simply sorted according to their target addresses. If the target addresses form a permutation of all addresses, this is obviously correct since then the sorting algorithm routes each message to its target address. However, if not all inputs need a connection to one of the outputs, then some output addresses do not appear as target addresses, and thus, partial permutations have to be implemented. In this case, sorting networks work no longer correctly as interconnection networks since all messages with target addresses larger than the smallest missing target address will be routed to the wrong outputs. For merge-based sorting networks, there is a well-known general solution called the Batcher-Banyan network. However, for the larger class of radix-based sorting networks this does not work, and there is only one solution known for a particular permutation network [28]. In this paper, we present three general constructions to convert any binary sorter into a ternary split module which is the key to construct a radix-based interconnection network that can cope with partial permutations. We compare the sizes and depths of the circuits obtained by our constructions for six known binary sorters and show this way that the obtained circuits are of practical interest.

1. Introduction

Non-blocking unicast interconnection networks allow every input component x_{0}, \ldots, x_{n-1} to be connected with any output component y_{0}, \ldots, y_{n-1} provided that none of the outputs y_{j} is the target of more than one input x_{i}. Hence, such networks can implement all n! permutations of the addresses $\{0, \ldots, n-1\}$ as routes through a switching network that is typically built by 2×2 crossbar switches. In practice, however, not all input components have to be always connected to an output component. For this reason, even all $\sum_{i=0}^{n} i!\binom{n}{i}^{2}$ partial permutations have to be implemented by non-blocking unicast interconnection networks.

Even for total permutations, the efficient implementation of such networks turned out to be a difficult challenge for many decades: The simplest non-blocking network is the crossbar that can be implemented as circuit of size $O\left(n^{2}\right)$ and depth $O(\log (n))$ for connecting n components. While the depth of the crossbar is optimal, its size grows with $O\left(n^{2}\right)$ and becomes quickly prohibitive for large n. The challenge is therefore to develop non-blocking interconnection networks with a size of less than $O\left(n^{2}\right)$ and with a poly-logarithmic depth $O\left(\log (n)^{c}\right)$ (for some small constant $c \in \mathbb{N}$).

To reduce the size of the crossbar network, Clos [7] constructed a three-stage network using q $r \times p$ crossbars in the first stage, $p q \times q$ crossbars in the second stage, and $q p \times r$ crossbars in
the third stage with $n=q \cdot r$. He proved that his network is non-blocking without rearranging existing connections iff $p \geq 2 r-1$ and still non-blocking for $p \geq r$ when existing connections are rearranged. Based on these observations, Beneš [3,35] constructed special Clos networks built by $2 \log (n)-1$ stages of 2×2 crossbars only. Many other networks based on 2×2 crossbars were then proposed, e.g., the Ω-network [21], the butterfly (Banyan) networks [11], fat trees [25], flattened butterfly [18] to name just a few (see textbooks like [8,33] for further examples). For all of these networks, however, it turned out that they are either blocking or that it is very difficult to determine the configuration of their 2×2 crossbars to establish a desired permutation. In particular, the routing problem for the Beneš network has been considered in many research papers [23, 29] and the known parallel algorithms to compute configurations have a depth larger than the network itself.

Sorting networks [2] are therefore an attractive alternative for the design of non-blocking interconnection networks [10]: To that end, the inputs x_{0}, \ldots, x_{n-1} are simply sorted according to their target addresses to implement the desired permutation. The 2×2 crossbars become then compare-and-swap switches that determine their configuration by simply comparing the incoming target addresses. The AKS network [1] proves that there exist sorting networks with depth $O(\log (n))$ and size $O(n \log (n))$, so that the use of sorting networks can significantly improve the costs of crossbars ${ }^{1}$. However, the constants hidden behind the O-calculus turned out to be prohibitively large so that the AKS network is unfortunately impractical $[24,31,34]$. However, well-known sorting networks like Batcher's bitonic and odd-even merge networks [2] and related variants [9, 20, 30] with a depth $O\left(\log (n)^{2}\right)$ and size $O\left(n \log (n)^{2}\right)$ are still competitive ${ }^{2}$.

However, the implementation of partial permutations by sorting networks is not straightforward and depends on the used sorting algorithms as we will outline in the next section. In particular, there is a general solution for the class of merge-based networks, while for radix-based sorting networks that were often considered for the design of interconnection networks [4, 5, 16, 17, 19, 22, 28], only a special solution given by Narasimha [28] was known so far. Unfortunately, his network has a bad depth of $O(n)$ and is therefore not efficient enough for many applications.

In this paper, we present three general constructions that can transform binary sorters to ternary Split modules. The latter are the key modules that directly lead to interconnection networks for partial permutations based on radix-based sorting. This way, many efficient interconnection networks $[4,5,16,17,19,22,28]$ that were designed for total permutations can be transformed so that the resulting networks can also work with partial permutations. While our constructions roughly double the size of the circuits, they nearly maintain their depths, and thus do not influence the latency of the networks. In particular, we still obtain networks of size $O\left(n \log (n)^{3}\right)$ and depth $O\left(\log (n)^{2}\right)$ (see [16]). By experimental results, we also show that the sizes of the obtained networks are still in a practical range and are competitive to other known solutions.

The outline of the paper is as follows: In the next section, we report about related work on the use of sorting networks as interconnection networks. In particular, we discuss problems and known solutions for establishing partial permutations with sorting networks. Section 3 contains the core of the paper where we show how to transform binary sorters to ternary Split modules to implement radix-sorting interconnection networks for partial permutations. Finally, Section 4 shows by experimental results that the obtained networks still have a competitive size and depth.

[^0]

Figure 1: Merge-based sorting (MBS) versus radix-based sorting (RBS): MBS merges already sorted sequences with Merge modules while RBS partitions input sequences by Split modules into two halves that are independently sorted.

2. Sorting Networks as Interconnection Networks

2.1. Routing Total Permutations by Sorting Networks

There are two important classes of sorting networks, namely the merge-based (MBS) and the radix-based (RBS) sorting networks which are recursively defined as shown in Figure 1. In the merge-based approach, a sorting network $\operatorname{MBS}(n)$ for n inputs is recursively constructed by splitting the given sequence into two halves, recursively sorting these by two sorting networks MBS $\left(\frac{n}{2}\right)$ of half the size, and then merging the two sorted halves by a merge module Merge (n). Well-known sorting networks following this paradigm are Batcher's bitonic and odd-even sorting networks [2] and related ones [9, 20, 30].

In radix-based sorting networks, the given inputs are partitioned into two halves by a Split(n) module, e.g., by sorting them according to the most significant bit of their target address. Thus, after the $\operatorname{Split}(n)$ module, the given inputs have already been routed to the right halves, so that the remaining problems can be solved recursively in the same way (ignoring now the most significant bits of the target addresses). The implementation of radix-based sorting networks is completely determined by the implementation of the Split modules.

There are many ways to implement a Split module for total permutations, e.g., by means of binary sorters $[4,5,16,17,19,22,28]$ or concentrators $[6,13,26,32]$: A (n, m)-concentrator is a circuit with n inputs and $m \leq n$ outputs that can route any given number $k \leq m$ of valid inputs to k of its m outputs. Split modules for total permutations can be obtained by two ($n, \frac{n}{2}$)-concentrators: One that routes the $\frac{n}{2}$ inputs with a most significant bit 1 from the n inputs to the upper half of outputs, and another one routing the other $\frac{n}{2}$ inputs with a most significant bit 0 to the lower half of outputs.

2.2. Routing Partial Permutations by Sorting Networks

Independent on the choice of a particular sorting algorithm, sorting networks at first only implement total permutations in that they can sort the n inputs by their target addresses which are numbers $0, \ldots, n-1$. If some inputs do not need a connection to an output, their target addresses are invalid, denoted as \perp in the following. Note that there is no ordering of $\{\perp, 0, \ldots, n-1\}$ that would still solve the routing problem by a simple sorting approach, since many values \perp may now occur and they may have to be routed to different places in the final output sequence.

For merge-based sorting networks, there is a well-known solution known as the Batcher-Banyan network [12,27]. The main idea is thereby to first treat \perp as a number larger than all target addresses so that after using a normal sorting network this way, one obtains a preliminary output sequence $y_{0}, \ldots, y_{k-1}, y_{k}, \ldots, y_{n-1}$ where the k valid inputs were sorted as the prefix y_{0}, \ldots, y_{k-1} while the invalid ones are placed in the suffix y_{k}, \ldots, y_{n-1}. A final Banyan permutation network can then
be used to move the valid inputs y_{0}, \ldots, y_{k-1} to the right places. To that end, one can simply use a bit-controlled network like the Ω-network [21] where invalid target addresses \perp are ignored, so that the valid ones are routed to their final destination. It can be shown [27] that the Ω-network [21] while being blocking in general will never block in this setting.

The same approach does however not work for the radix-based networks: If we treat \perp as a number larger than all target addresses, it may happen that valid inputs with a most significant bit 1 will be erroneously routed by Split modules to the lower sub-network, where they are mixed up with other valid inputs having a most significant bit 0 . Hence, the resulting preliminary output sequence will not consist of a sorted prefix of valid inputs as in the case of merge-based networks.

Hence, the Batcher-Banyan construction does not work for RBS networks. Recall that the task of Split modules was to route the inputs already in the right halves. Inputs with invalid target addresses can be routed to any half, but inputs with valid target address must be routed to the lower and upper sub-networks in case the most significant bit of the target address is 0 and 1, respectively.

Instead of using binary sorters as in case of total permutations, one could therefore use ternary sorters as Split modules using the ordering $0 \leq \perp \leq 1$. This way, the output sequence of a Split module will still route the inputs with valid target addresses to the right halves, while invalid inputs may be routed to any half (note that still at most $\frac{n}{2}$ inputs can have most significant bits $0 / 1$). However, while many constructions for binary sorters have been proposed [4, 5, 16, 17, 19, 22, 28], none are known for the ternary case. We therefore show in the next section how to construct ternary sorters from any binary sorter with almost the same circuit depth, but doubling the circuit size. This way, we can transform any RBS network that has been constructed for total permutations into a more powerful one that can work with partial permutations as well. Additionally, we consider two optimizations of the ternary sorters for implementing RBS networks.

Narasimha addressed the problem to route partial permutations in his RBS network in [28]. In Section III of [28], he explains without giving a proof that his network can also work with partial permutations if an additional Split module is added on the left side of his RBS network. While this is true for his network, and also for some others (we prove a characterization which networks can be transformed this way in an upcoming publication), it is definitely not true for general RBS networks (like three of the six we consider in the experimental results).

3. Split Modules for Routing Partial Permutations in RBS Networks

In this section, we present three constructions based on binary sorters to implement Split modules for routing partial permutations in RBS networks. For all implementations, we assume that any input x_{i} is a bitvector in the format given on the left-hand side below:

```
\begin{array} { | c | c | c c } { \hline x _ { i , 0 } \ldots x _ { i , q - 1 } } & { x _ { i , q } } & { x _ { i , q + 1 } \ldots x _ { i , q + \operatorname { l o g } ( n ) } } \\ { \hline } \end{array}
```

$x_{i, q}$	$x_{i, q+\log (n)}$	$m s b$
0	$*$	\perp
1	0	0
1	1	1

The leftmost q bits are the message bits that should be sent to an output, bit q is the valid bit that indicates whether this input shall be connected to some output, and the remaining bits are the bits of the target address where the most significant bit (msb) is the rightmost one (that is consumed by each Split module in the RBS network). Considering $x_{i, q}$ and $x_{i, q+\log (n)}$ only, we interpret inputs x_{i} as ternary values $\{0, \perp, 1\}$ as shown on the right hand side above.

$x_{i, q}$	$x_{i, q+\log (n)}$	$x_{i, q}^{0}$	$x_{i, q+\log (n)}^{0}$	$x_{i, q}^{1}$	$x_{i, q+\log (n)}^{1}$
0	$*$	0	1	0	0
1	0	1	0	1	0
1	1	1	1	1	1

$$
\begin{array}{ll}
x_{i, q}^{0}:=x_{i, q} & x_{i, q+\log (n)}^{0}:=\neg x_{i, q} \vee x_{i, q+\log (n)} \\
x_{i, q}^{1}:=x_{i, q} & x_{i, q+\log (n)}^{1}:=x_{i, q} \wedge x_{i, q+\log (n)}
\end{array}
$$

Figure 2: Construction of a Ternary Sorter by two Binary Sorters.

3.1. Constructing Split Modules by Ternary Sorters

The left-hand side of Figure 2 shows how a ternary sorter can be constructed by two binary sorters that we call the 0 -sorter and the 1 -sorter, respectively. Both binary sorters obtain the n inputs x_{0}, \ldots, x_{n-1} after a preprocessing step that modifies the msbs $x_{i, q+\log (n)}$ of the invalid target addresses as shown on the upper right part of Figure 2 as $x_{i, q+\log (n)}^{0}$ and $x_{i, q+\log (n)}^{1}$ for the 0 - and 1 -sorter, respectively. Note that after the preprocessing step, only the valid inputs have msbs 0 and 1 for the 0 - and 1 -sorter, respectively.

After this, the 0 -sorter and the 1 -sorter sort their input sequences to output sequences l_{0}, \ldots, l_{n-1} and u_{0}, \ldots, u_{n-1}, respectively, by only considering the modified msbs $x_{i, q+\log (n)}^{0}$ and $x_{i, q+\log (n)}^{1}$. Hence, the 0 -sorter uses the ordering $0<\{\perp, 1\}$ while the 1 -sorter uses ordering $\{0, \perp\}<1$ (regarding the original inputs).

The lower right part of Figure 2 shows how the 0 - and 1 -sorter's output sequences look like in general: The 0 -sorter's output sequence starts with values $\left(l_{i, q}, l_{i, q+\log (n)}\right)=(1,0)$, i.e., 0 , followed by values $\left(l_{i, q}, l_{i, q+\log (n)}\right)=(*, 1)$, i.e., \perp or 1 , while the 1 -sorters output sequence starts with values $\left(u_{i, q}, u_{i, q+\log (n)}\right)=(*, 0)$, i.e., 0 or \perp, followed by values $\left(u_{i, q}, u_{i, q+\log (n)}\right)=(1,1)$, i.e., 1 .

The final stage of multiplexers will then determine output y_{i} by selecting one of the corresponding values l_{i} or u_{i} as follows where l_{i}^{\prime} is obtained from l_{i} by setting its valid bit to 0 :

$$
y_{i}:= \begin{cases}u_{i} & : \text { if } u_{i, q} \wedge u_{i, q+\log (n)} \\ l_{i} & : \text { if } l_{i, q} \wedge \neg l_{i, q+\log (n)} \\ l_{i}^{\prime} & : \text { otherwise }\end{cases}
$$

Note that the number of valid inputs can be at most n, hence, we never have both $u_{i, q} \wedge u_{i, q+\log (n)}$ and $l_{i, q} \wedge \neg l_{i, q+\log (n)}$. Note further that we have to set $l_{i, q}:=0$ in case l_{i} is chosen for y_{i}, but $l_{i, q} \wedge \neg l_{i, q+\log (n)}$ does not hold (this way, we avoid that an input with $\left(x_{i, q}, x_{i, q+\log (n)}\right)=(1,1)$ will be taken from the 0 -sorter that has already been copied from the 1 -sorter).

It can be easily verified that the circuit shown in Figure 2 implements a ternary sorter, i.e., any input sequence x_{0}, \ldots, x_{n-1} of values $\{0, \perp, 1\}$ is correctly sorted using the total order $0<\perp<1$.

$x_{i, q}$	$x_{i, q+\log (n)}$	$x_{i, q}^{0} x_{i, q+\log (n)}^{0}$	$x_{i, q}^{1} x_{i, q+\log (n)}^{1}$		
0	$*$	0	1	0	0
1	0	1	0	0	0
1	1	0	1	1	1

$\begin{array}{ll}x_{i, q}^{0}:=x_{i, q} \wedge \neg x_{i, q+\log (n)} & x_{i, q+\log (n)}^{0}:=\neg x_{i, q} \vee x_{i, q+\log (n)} \\ x_{i, q}^{1}:=x_{i, q} \wedge x_{i, q+\log (n)} & x_{i, q+\log (n)}^{1}:=x_{i, q} \wedge x_{i, q+\log (n)}\end{array}$

Figure 3: Construction of a Ternary Splitter by Binary Sorters.

3.2. Constructing Split Modules by Ternary Concentrators

We have already mentioned that the Split modules do not have to be ternary sorters to partition the inputs according to their msbs. Instead, it is sufficient to route all inputs x_{i} with $\left(x_{i, q}, x_{i, q+\log (n)}\right)=$ $(1,1)$ to the upper half and all inputs x_{i} with $\left(x_{i, q}, x_{i, q+\log (n)}\right)=(1,0)$ to the lower half, while the invalid inputs x_{i} with $x_{i, q}=0$ may be routed to any half among the other values routed there.

For this reason, we can also consider the slightly simplified construction given in Figure 3. Compared to Figure 2, we modify the msbs $x_{i, q+\log (n)}$ of the target addresses in the same way, but additionally invalidate all 1 s and 0 s in the 0 - and 1 -sorter, respectively, as shown in the upper right part of Figure 3. Hence, the 0 -sorter will only have inputs $\left(x_{i, q}^{0}, x_{i, q+\log (n)}^{0}\right) \in\{(0,1),(1,0)\}$, i.e., $\{\perp, 0\}$, and the 1 -sorter will only have inputs $\left(x_{i, q}^{1}, x_{i, q+\log (n)}^{1}\right) \in\{(0,0),(1,1)\}$, i.e., $\{\perp, 1\}$.

Again, the 0 - and 1 -sorter only consider the modified $\operatorname{msbs} x_{i, q+\log (n)}^{0}$ and $x_{i, q+\log (n)}^{1}$, respectively, to generate their output sequences l_{0}, \ldots, l_{n-1} and u_{0}, \ldots, u_{n-1}, respectively.

Assuming now that at most $\frac{n}{2}$ inputs x_{i} satisfy $\left(x_{i, q}, x_{i, q+\log (n)}\right)=(1,0)$ and also at most $\frac{n}{2}$ inputs x_{i} satisfy $\left(x_{i, q}, x_{i, q+\log (n)}\right)=(1,1)$, we can simply determine y_{i} as follows (see lower right part of Figure 3):

$$
y_{i}:= \begin{cases}u_{i} & : \text { if } i \in\left\{\frac{n}{2}, \ldots, n-1\right\} \\ l_{i} & : \text { if } i \in\left\{0, \ldots, \frac{n}{2}-1\right\}\end{cases}
$$

As long as at most $\frac{n}{2}$ inputs x_{i} are 0 and 1 , the output sequence will even be a sorted ternary sequence. However, if more than $\frac{n}{2}$ inputs x_{i} should be 0 or more than $\frac{n}{2}$ inputs x_{i} should be 1 , the circuit will omit some of the inputs and will therefore no longer be correct. We therefore do not consider the circuit of Figure 3 as a ternary sorter, but each part of it is a $\left(n, \frac{n}{2}\right)$ concentrator that concentrates on the 0 and 1 values, respectively.

While not yielding a ternary sorter for general ternary sequences, Figure 3 still sorts all ternary input sequences that will appear in RBS networks for partial permutations. However, it does not allow some further optimizations as the one shown in the next section.

Figure 4: Construction of a Ternary Splitter by Ternary Sorters and a Half Cleaner.

3.3. Constructing Split Modules by Ternary Sorters and Half Cleaners

In previous work $[14,15]$, we have shown how (ternary) Split modules with n inputs/outputs can be constructed as shown in Figure 4 using two (ternary) sorters with $\frac{n}{2}$ inputs/outputs and a half cleaner circuit. Half cleaners were introduced by Batcher in [2] for the construction of his bitonic sorting networks. We observed that half cleaners can also be used to implement binary [15] and ternary [14] Split modules as shown in Figure 4. Due to lack of space, we cannot list details of the definition of half cleaners, and just mention here that these circuits have size $O(n)$ and depth $O(1)$, so that the depth is mainly determined by the used sorting networks (see $[14,15]$ for further details).

As outlined in [14], it is required to use sorting networks for the construction of Figure 4. In particular, the construction shown in the previous section, i.e., in Figure 3 cannot be used. Hence, even though our initial construction of Figure 2 cannot compete with the one in Figure 3, it allows the optimization shown in Figure 4. As our experimental results show, this implementation often turns out as the best one of the three versions discussed in this paper.

4. Experimental Results

The depth of the circuits is mainly determined by the depth of the binary sorters which is $O(\log (n))$ or $O\left(\log (n)^{2}\right)$ for known implementations. Note that modifying the msbs and the selection of the outputs as either l_{i} or u_{i} does only require circuits of depth $O(1)$. Also the size of the circuits is mainly dominated by the size of the binary sorters. While the depth does only increase by some constant, the size obviously is twice the size of the binary sorters plus some $O(n)$ gates for the mapping and possible multiplexer stages.

To consider concrete circuits, we have implemented the constructions described in the previous section for six binary sorters that we abbreviate by the acronyms of the authors of the paper where these binary sorters were published: Batc68 [2] (the bitonic sorter reduced to one bit), ChOr94 [5], ChCh96 [4], JaSJ17 [16], KoOr90 [19], and Nara94 [28].

The tables shown in Figure 5, Figure 6, and Figure 7 show the experimental results that we obtained for the constructions given in Figure 2, Figure 3, and Figure 4, respectively. In these tables, we list the depths and sizes of the generated circuits for n inputs/outputs, and the numbers of NOT, AND, OR, XOR gates, half adders (HA), full adders (FA), 2:1 multiplexers (MX) and 2×2 crossbar switches (SW). The tables show only the size of the Split modules, and not of the corresponding RBS networks. The size always improves from Figure 5 via Figure 6 to Figure 7, but the depths are sometimes best for Figure 6 and sometimes for Figure 7.

5. Conclusions

In this paper, we presented three transformations that convert binary sorters to ternary Split modules. Using the latter, interconnection networks based on radix-based sorting can be implemented that can correctly route also partial permutations. Our transformations yield Split modules with the same asymptotic complexities as the binary sorters in terms of circuit size and depth, and even only add a constant to the circuit depth, but roughly double the size of the circuits. Nevertheless, the sizes are still competitive since very good implementations of binary sorters have been developed in many previous research papers that can now be used also for the implementation of interconnection networks.

References

[1] Ajtai, M., J. Komlos, and E. Szemeredi: An $O(n \log (n))$ sorting network. In Symposium on Theory of Computing (STOC), pages 1-9. ACM, 1983.
[2] Batcher, K.E.: Sorting networks and their applications. In AFIPS Spring Joint Computer Conference, volume 32, pages 307-314, 1968.
[3] Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, 1965.
[4] Cheng, W. J. and W. T. Chen: A new self-routing permutation network. IEEE Transactions on Computers, 45(5):630-636, May 1996.
[5] Chien, M.V. and A.Y. Oruç: High performance concentrators and superconcentrators using multiplexing schemes. IEEE Transactions on Communications, 42(11):3045-3050, November 1994.
[6] Chung, F.R.K.: On concentrators, superconcentrators, generalizers, and nonblocking networks. The Bell Systems Technical Journal, 58(8):1765-1777, October 1978.
[7] Clos, C.: A study of non-blocking switching networks. Bell System Technical Journal, 32(2):406-424, March 1953.
[8] Dally, W.J. and B. Towles: Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.
[9] Dowd, M., Y. Perl, M. Saks, and L. Rudolph: The balanced sorting network. In Symposium on Principles of Distributed Computing (PODC), pages 161-172, Montreal, Quebec, Canada, 1983. ACM.
[10] Galil, Z. and W.J. Paul: An efficient general-purpose parallel computer. Journal of the ACM (JACM), 30(2):360387, 1983.
[11] Goke, L.R. and G. Jack Lipovski: Banyan networks for partitioning multiprocessor systems. In 25 Years of the International Symposia on Computer Architecture (ISCA), pages 117-124, Barcelona, Spain, 1998. ACM.
[12] Huang, A. and S. Knauer: Starlite: A wideband digital switch. In Global Telecommunications Conference (GLOBECOM), pages 121-125, 1984.
[13] Jain, T. and K. Schneider: Verifying the concentration property of permutation networks by BDDs. In Leonard, E. and K. Schneider (editors): Formal Methods and Models for Codesign (MEMOCODE), pages 43-53, Kanpur, India, 2016. IEEE Computer Society.
[14] Jain, T. and K. Schneider: The half cleaner lemma: Constructing efficient interconnection networks from sorting networks. Parallel Processing Letters, 28(1), March 2018.
[15] Jain, T., K. Schneider, and A. Jain: Deriving concentrators from binary sorters using half cleaners. In Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 2017. IEEE Computer Society.
[16] Jain, T., K. Schneider, and A. Jain: An efficient self-routing and non-blocking interconnection network on chip. In Network on Chip Architectures (NoCArc), pages 4:1-4:6, Boston, MA, USA, 2017. ACM.
[17] Jan, C.Y. and A.Y. Oruç: Fast self-routing permutation switching on an asymptotically minimum cost network. IEEE Transactions on Computers, 42(12):1469-1479, December 1993.
[18] Kim, J., W.J. Dally, and D. Abts: Flattened butterfly: a cost-efficient topology for high-radix networks. In Tullsen, D.M. and B. Calder (editors): International Symposium on Computer Architecture (ISCA), pages 126-137, San Diego, California, USA, 2007. ACM.
[19] Koppelman, D.M. and A.Y. Oruç: A self-routing permutation network. Journal of Parallel and Distributed Computing, 10(2):140-151, 1990.
[20] Kutyłowski, M., K. Loryś, B. Oesterdiekhoff, and R. Wanka: Periodification scheme: constructing sorting networks with constant period. Journal of the ACM (JACM), 47(5):944-967, September 2000.
[21] Lawrie, D.H.: Access and alignment of data in an array processor. IEEE Transactions on Computers (T-C), 24:1145-1155, December 1975.
[22] Lee, C. Y. and A.Y. Oruç: Design of efficient and easily routable generalized connectors. IEEE Transactions on Communications, 43(2-4):646-650, 1995.
[23] Lee, C. Y. and A.Y. Oruç: A fast parallel algorithm for routing unicast assignments in Beneš networks. IEEE Transactions on Parallel and Distributed Systems, 6(3):329-334, March 1995.
[24] Leighton, F.T.: Tight bounds on the complexity of parallel sorting. IEEE Transactions on Computers (T-C), 34(4):344-354, April 1985.
[25] Leiserson, C.E.: Fat-trees: Universal networks for hardware efficient supercomputing. IEEE Transactions on Computers (T-C), 34(10):892-901, October 1985.
[26] Masson, G.M., G.C. Gingher, and S. Nakamura: A sampler of circuit switching networks. IEEE Computer, 12(6):32-48, 1979.
[27] Narasimha, M.J.: The Batcher-Banyan self-routing network: universality and simplification. IEEE Transactions on Communications, 36(10):1175-1178, October 1988.
[28] Narasimha, M.J.: A recursive concentrator structure with applications to self-routing switching networks. IEEE Transactions on Communications, 42(2-4):896-898, February/March/April 1994.
[29] Nassimi, D. and S. Sahni: Parallel algorithms to set up the Beneš permutation network. IEEE Transactions on Computers (T-C), 31(2):148-154, February 1982.
[30] Parberry, I.: The pairwise sorting network. Parallel Processing Letters (PPL), 2(2-3):205-211, 1992.
[31] Paterson, M.S.: Improved sorting networks with $O(\log (N))$ depth. Algorithmica, 5(4):75-92, 1990.
[32] Pinsker, M.S.: On the complexity of a concentrator. In International Teletraffic Conference (ITC), pages 318:1318:4, Stockholm, Sweden, 1973.
[33] Schwederski, T. and M. Jurczyk: Verbindungsnetze - Strukturen und Eigenschaften. Springer, 1996.
[34] Seiferas, J.: Sorting networks of logarithmic depth, further simplified. Algorithmica, 53(3):374-384, March 2009.
[35] Waksman, A.: A permutation network. Journal of the ACM (JACM), 15(1):159-163, January 1969.

Figure 5: Circuit Size and Depth for Split Modules with n Inputs/Outputs as Discussed in Section 3.1 using Different Binary Sorters

Figure 6: Circuit Size and Depth for Split Modules with n Inputs/Outputs as Discussed in Section 3.2 using Different Binary Sorters

Figure 7: Circuit Size and Depth for Split Modules with n Inputs/Outputs as Discussed in Section 3.3 using Different Binary Sorters

[^0]: ${ }^{1}$ These complexities refer to the compare-and-swap modules that have to compare addresses $0, \ldots, n-1$ having $\log (n)$ bits. Gate-level implementations of these modules have size $O(\log (n))$ and depth $O(\log (\log (n)))$, so that gate-level implementations of the AKS network will have circuit depth $O(\log (n) \log (\log (n)))$ and size $O\left(n \log (n)^{2}\right)$.
 ${ }^{2}$ Their gate-level implementations have a depth $O\left(\log (n)^{2} \log (\log (n))\right)$ and size $O\left(n \log (n)^{3}\right)$.

