
Containerization of Galaxy Workflows increases
Reproducibility

Felix Bartusch, Maximilian Hanussek and Jens Krüger

High-Performance and Cloud Computing Group, IT Center, University of Tübingen

Abstract—Published scientific findings supported by compu-
tational experiments should be reproducible by following the
methodical description in the publication. Because this is often
not the case, we present a method to containerize Galaxy
workflows within Singularity containers. These containers are
executable such that other researchers can reproduce compu-
tational experiments or run their own experiments using the
containerized workflows.

I. INTRODUCTION

Scientific findings in fields like bioinformatics usually
originate from processing primary data with computational
methods to get results that agree or disagree with the initial
assumption. The results are then published to make other
researchers aware of the new findings and maybe new ex-
perimental methods. The applied methods are documented in
the ’Methods’ section of the paper and should ensure the
reproducibility of the presented findings by other researchers.
The content of this section differs from field to field but are
often standardized. Examples for such standards in different
fields are MIASE [1] for simulation experiments or MIAME
[2] for microarray experiments. For computational methods it
is consensus to state at least the used program version. Some
publications state checklists of most important information
needed to reproduce computational experiments [3].

But often the reproducibility is not guaranteed although the
applied methods are described in detail in the corresponding
publication [4], [5], [6]. Among others, the reason for irre-
producibility is an insufficient description of used software,
parameters and the data-processing workflow topology [6].

Scientific workflow engines like Galaxy [7], [8], [9], Tav-
erna [10] and Knime [11] or portals like MoSGrid [12], [13]
solve these problems by describing the computational work-
flow explicitly. In case of the mentioned workflow engines,
the used software, parameters, and the workflow topology are
described in a single file that can also be shared with other
researchers via platforms like MyExperiment [14].

But also the use of workflow engines do not ensure full
reproducibility because the shared workflow decays over time.
A study based on a subset of Taverna workflows shared
on the MyExperiment platform between the years 2007 and
2012 showed that around 80% of the workflows are not
executable or do not produce the promised results any more
[15]. At the time of the study the workflows had a maximal
age of 5 years. The reasons for workflow decay are volatile

third-party resources, missing example data, missing execution
environment, and an insufficient description of the workflow.

Containerization techniques improved the mobility and us-
ability of computations in the last years by encapsulating an
operating system together with software and data. The most
widely used containerization technique is Docker [16], but
other techniques like Singularity [17] became more popular.
Containerization of software increases reproducibility enor-
mously [18]. One specific example is a Docker container
providing a complex software stack for the simulation of spec-
troscopic fragmentation of small molecules with QCEIMS.
The containerized software stack was used by UNICORE to
execute the simulation protocol and to access the workflow
conveniently [19].

In this work we combine the workflow engine Galaxy with
Singularity to increase the reproducibility and mobility of
scientific workflows. In the first part we describe how we
achieve a containerization of the workflow. Then we show
that the containerized workflow is straightforward executable
on a local machine, on a HPC-system, and in the cloud. Last
we show how our approach differs from related work that tries
to make scientific workflows more reproducible.

II. CONTAINERIZATION OF GALAXY WORKFLOWS

The containerization is a fully automated process in two
distinct steps as shown in Figure 1. The first step creates
a template Singularity container with an operating system
and installs a Galaxy instance in it. In the second step the
actual workflow and its tool dependencies are installed in
the container. Both encapsulation steps are explained in more
detail in this section. The whole code base, configuration
files and the example workflow are accessible via a GitHub
repository [20]. We used Singularity 2.3.2, Python 2.7.13 and
the Python package bioblend 0.9.0 for this work.

A. Create a template container

In this step a template Singularity container is created that
is able to store one or more Galaxy workflows. We provide a
shell-script that creates the container by bootstrapping with
a so-called Singularity definition file that describes how a
Singularity container is provisioned.

During the bootstrap we install CentOS 7.3 in the container,
but also other operating systems would be possible. Subse-
quently several system packages are installed by the yum pack-

16



bwHPC Symposium 2017, Tübingen, October 4th 2017

Fig. 1. Overview of the containerization workflow. 1. Create the template
Singularity container with an operating system and Galaxy. Also three folders
are created to serve as mount points for the input, output and temporary Galaxy
directory. 2. Import the Galaxy workflows. For each workflow a configuration
file is created 3. Specify input/output mounts and workflow parameters using
the execution configuration file. Then run the workflows in the cloud, on a
cluster, or your own workstation.

age manager: Development-Tools, epel-release,
python-pip, python-devel, bzip2, git.

Finally Galaxy is installed by cloning the GitHub branch
corresponding to the user specified Galaxy version. We start
Galaxy one time to initialize the Galaxy instance. After the
initialization completes, we shut down the initialized Galaxy
and the template container is ready to encapsulate Galaxy
workflows.

B. Encapsulate Galaxy workflows in template container

The template container from above is now used to encapsu-
late Galaxy workflows. Because Singularity containers behave
like normal files on the file system one can copy the template
container and use the copy to encapsulate other workflows.

Galaxy workflows are explicitly described in .ga files that
can be exported from other Galaxy instances or downloaded
from platforms like myExperiment. Our import script will au-
tomatically install the workflow as described in the workflow
file. It is also possible to obtain the workflow from a running
Galaxy instance, but you need access to the workflow in the
Galaxy instance beforehand.

We wrote a Python script to import the workflow in the
container automatically. Prior to the workflow import, certain
settings are specified in a configuration file. During the import,
we generate another configuration file that is needed to execute
the encapsulated workflow afterwards. First, we startup Galaxy
in the container and use the Python module bioblend [21] to
interact with the Galaxy-API.

a) Create new Galaxy user: We need a Galaxy user in
the container in order to run the workflow and to use important
Galaxy features like data libraries. Therefore a new Galaxy
user is created in the containerized Galaxy instance. One has
to specifiy beforehand the user name and user mail-address in
the configuration file. We also generate an API-key as well as a
random password for this user and store them in the execution
configuration file. The API-key is used to run the containerized
workflow from the command line whereas the password is
needed to access the Galaxy instance in the browser.

b) Install tools and import workflow: Galaxy describes a
workflow explicitly in a .ga-file that contains a json-dictionary.
Among others, the file lists the inputs and computational steps
of the workflow. For the input steps we parse the required input
datasets together with their Galaxy datatype and an additional

description if provided. These input information are written
to the execution configuration file. Later the user specifies the
files that should serve as input when the workflow is executed
on the command line.

For the computational steps we parse the specified tool
version and install everything by using the Galaxy-API. The
tools and their dependencies are then installed from the
publicly available Galaxy ToolShed. Also so-called runtime
parameters are handled explicitly. Runtime parameters are
parameters whose values are not specified in the workflow file.
The user has to specify them when invoking the workflow, e.g.
number of iterations or cutoff values. The runtime parameters
for a tool are also written to the execution configuration file.

III. EXECUTION OF THE ENCAPSULATED WORKFLOW

Additionaly to Singularity the Python code presented in this
paper has to be installed on the remote system to run the
containerized Galaxy instance. Whereas Singularity has to be
installed by an administrator, the Python code can reside in
user space as it does not need any special privileges. The user
has to upload the container to the system that will execute the
container.

We provide a Python script that can execute the container-
ized workflow in two modes, an automatic and an interactive
mode. To execute the workflow automatically the user specifies
the path to the input files and parameters of the computational
steps in the execution configuration file. This file was automat-
ically created in the encapsulation step and needs just small
adjustments. The workflow is started by executing:

python execute_workflow.py --conf <ini-file>

The execution script starts Galaxy, uploads the input files,
invokes the workflow, waits until the workflow has completed,
and downloads the workflow results to a specified output
folder. The input files are not duplicated when they are
uploaded to Galaxy but a symbolic link to the location of each
input file on the file system is created in the Galaxy input data
library.

In the interactive mode, Galaxy is started by the script
and the user can then access the Galaxy instance via the
browser. The user can login to Galaxy, study the containerized
workflows, upload datasets to the Galaxy instance, and run the
workflow as well as just single tools. In the end the user can
also download the resulting datasets.

Because Singularity container cannot be changed by a non-
root user, we had to change the default Galaxy configuration
in some points for the execution. Most of the actions in Galaxy
cause changes of the Galaxy database, writes to logging files,
or leads to the creation of some temporary data. Therefore
we created a temporary directory for Galaxy in the container
where the database and temporary files reside. Upon execution
we create a unique temporary directory on the host and mount
it to Galaxy’s temporary directory in the container. All write
operations of Galaxy are performed in this temporary directory
on the host. This also ensures that the container itself is not

17



bwHPC Symposium 2017, Tübingen, October 4th 2017

altered during the execution. The temporary directory on the
host is deleted after the workflow was executed.

IV. CONTAINERIZATION INCREASES REPRODUCIBILITY

The created Singularity container encapsulates immediately
executable workflows. This fact alone increases the repro-
ducibility and reuse massively because it eliminates some of
the most important reasons of workflow decay like missing
execution environment or an insufficient description of the
workflow [15].

Sharing the container together with the execution configu-
ration files enables other researchers to reproduce published
results or adjust parameters of the workflows to run their
own analysis. Archiving the container ensures in principle
reproducibility and reuse of the workflow a long time after
creation. The CiTAR project 1 for example has the aim to
archive Docker and Singularity containers and provide an
infrastructure that secures the ability to execute the container
in the future.

The proposed method increases also the portability of the
computation. One can develop the workflow in a local or
public Galaxy instance, encapsulate the workflow and run it
on any computational resource. We did this for a 14-step Next
Generation Sequencing workflow that is also included in the
GitHub repository of this project [20]. We encapsulated the
workflow in a Singularity container and were able to run the
workflow on BinAC [22] and a VM on the de.NBI cloud site
Tübingen2.

V. RELATED WORK

Research environments and workflows implemented in
Galaxy are often shared via virtual machine images [23], [24].
These virtual machine images contain all dependencies and
are ready-to-use. But virtual machine images are usually not
executable on HPC clusters because just few clusters installed
hypervisors for the virtual machines on the compute nodes.

Galaxy is available as a Docker container [25] and the
Galaxy team also provides the library Ephemeris to interact
with the Galaxy-API via bioblend to install workflows and
its dependencies3. Both, the Docker Galaxy container and
Ephemeris, could be combined to encapsulate scientific work-
flows in a Docker container. This would be a subset of the
functionality our approach provides. Besides we are using a
different containerization technique, we also provide automatic
execution of the workflow and handle input and output data.
Singularity containers are more suitable for scientific HPC
clusters because Singularity targets scientific applications and
supports HPC resources like MPI (Message Passing Interface),
Infiniband, and GPUs [17]. Another aspect is that Docker
needs a root owned daemon process whereas Singularity tries
to minimize the security risk with suid-executables that handle
the privilege escalations needed for software containerization.

1https://www.alwr-bw.de/kooperationen/bwzwm/
2https://denbi.uni-tuebingen.de
3https://github.com/galaxyproject/ephemeris

The project ViCE [26] works on sustainable virtual research
environments like Galaxy. ViCE offers a image registry for
virtual collaborative environments and an infrastructure to
support accessibility and reproducibility of the environments.

VI. OUTLOOK

Singularity will be further developed. At the time of writing
Singularity 2.4 was released. The new version offers some new
features of which the containerization of workflows benefits,
e.g. new container format, support of overlays and container
instances.

Also Singularity could be used to encapsulate other work-
flow engines like Taverna or Knime. The created containers
could be shared via newly platforms like Singularity Container
Registry 4.

REFERENCES

[1] D. Waltemath, R. Adams, D. A. Beard, F. T. Bergmann, U. S. Bhalla,
R. Britten, V. Chelliah, M. T. Cooling, J. Cooper, E. J. Crampin,
A. Garny, S. Hoops, M. Hucka, P. Hunter, E. Klipp, C. Laibe,
A. K. Miller, I. Moraru, D. Nickerson, P. Nielsen, M. Nikolski, S. Sahle,
H. M. Sauro, H. Schmidt, J. L. Snoep, D. Tolle, O. Wolkenhauer,
N. Novère, “Minimum information about a simulation experiment (MI-
ASE)”, PLoS Computational Biology, vol. 7, no. 4, pp. 1–4, 2011

[2] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman,
C. Stoeckert, M. Vingron, “Minimum information about a microarray
experiment (MIAME)-toward standards for microarray data”, Nature
Genetics, vol. 29, no. 2, pp. 365–371, 2001

[3] G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig,“Ten Simple Rules for
Reproducible Computational Research”, PLoS Computational Biology,
vol. 9, no. 10, pp. 1–4, 2013

[4] J. P. A. Ioannidis, D. B. Allison, C. A. Ball, I. Coulibaly, X. Cui, A. C.
Culhane, M. Falchi, C. Furlanello, L. Game, G. Jurman, J. Mangion,
T. Mehta, M. Nitzberg, G. P. Page, E. Petretto, and V. van Noort, “Re-
peatability of published microarray gene expression analyses”, Nature
Genetics, vol. 41, no. 2, pp. 149–155, 2008.

[5] K. A. Baggerly and K. R. Coombes, “Deriving chemosensitivity from
cell lines: Forensic bioinformatics and reproducible research in high-
throughput biology”, Annals of Applied Statistics, vol. 3, no. 4, pp. 1309–
1334, 2009.

[6] D. Garijo, S. Kinnings, L. Xie, L. Xie, Y. Zhang, P. E. Bourne, and
Y. Gil, “Quantifying reproducibility in computational biology: The case
of the tuberculosis drugome”, PLoS ONE, vol. 8, no. 11, pp. 1–11, 2013.

[7] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences”, Genome Biol,
vol. 11, no. 8, pp. 1–13, 2010.

[8] D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda, R. Lazarus,
M. Mangan, A. Nekrutenko, and J. Taylor, “Galaxy: A web-based
genome analysis tool for experimentalists”, Current protocols in molec-
ular biology, pp. 1–21, 2010.

[9] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. C. Miller, W. J.
Kent, and A. Nekrutenko, “Galaxy: a platform for interactive large-scale
genome analysis”, Genome research, vol. 15, no. 10, pp. 1451–1455,
2005.

[10] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat,
K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P.
Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna workflow suite:
designing and executing workflows of Web Services on the desktop, web
or in the cloud.”, Nucleic acids research, vol. 41, no. Web Server issue,
pp. 557–561, 2013.

[11] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,
P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, “KNIME: The Konstanz
Information Miner”, in Studies in Classification, Data Analysis, and
Knowledge Organization (GfKL 2007), Springer, 2007.

4https://singularity-hub.org/

18



bwHPC Symposium 2017, Tübingen, October 4th 2017

[12] J. Krüger, R. Grunzke, and S. Gesing, “The MoSGrid Science Gate-
way–A Complete Solution for Molecular Simulations”, Journal of
Chemical Theory and Computation, vol. 10, no. 6, pp. 2232–2245, 2014.

[13] L. Zimmermann, R. Grunzke, and J. Krüger, “Maintaining a Science
Gateway – Lessons Learned from MoSGrid”, Proceedings of the 50th
Hawaii International Conference on System Sciences, pp. 6233–6242,
2017.

[14] D. D. Roure, C. Goble, and R. Stevens, “The Design and Realisation of
the myExperiment Virtual Research Environment for Social Sharing of
Workflow”, Future Generation Computer Systems, no. November 2007,
pp. 561–567, 2009.

[15] J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne, E. Garcia-Cuesta,
A. Garrido, K. Hettne, M. Roos, D. De Roure, and C. Goble, “Why
Workflows Break -Understanding and Combating Decay in Taverna
Workflows”, (Washington, DC, USA), pp. 1–9, IEEE Computer Society,
2012.

[16] “Docker, https://www.docker.com/.”
[17] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific

containers for mobility of compute”, PLOS ONE, vol. 12, no. 5, pp. 1–
20, 2017.

[18] C. Boettiger, “An introduction to Docker for reproducible research”,
ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79,
2015.

[19] M. Hanussek, F. Bartusch, J. Krüger, and O. Kohlbacher, “Efficent Mass
Spectra Prediction through Container Orchestration with a Scientific
Workflow”, in 9th International Workshop on Science Gateways (IWSG),
2017.

[20] F. Bartusch, “fbartusch/galaxy2singularity: v.0.1.0, 10.5281/zen-
odo.1122568.”

[21] C. Sloggett, N. Goonasekera, and E. Afgan, “BioBlend: Automat-
ing pipeline analyses within Galaxy and CloudMan”, Bioinformatics,
vol. 29, no. 13, pp. 1685–1686, 2013.

[22] J. Krüger, V. Lutz, F. Bartusch, W. Dilling, A. Gorska, C. Schäfer,
and T. Walter, “Bioinformatics and astrophysics cluster (BinAC)”, 3rd
bwHPC Symposium, pp. 1–1, 2017.

[23] S. J. Schultheiss, G. Jean, J. Behr, P. Drewe, N. Görnitz, A. Kahles,
P. Mudrakarta, V. T. Sreedharan, G. Zeller, and G. Rätsch, “Oqtans: a
Galaxy-integrated workflow for quantitative transcriptome analysis from
NGS Data”, BMC Bioinformatics, vol. 12, no. Suppl 11, pp. 1–2, 2011.

[24] R. L. Davidson, R. J. M. Weber, H. Liu, A. Sharma-Oates, and M. R.
Viant, “Galaxy-M: a Galaxy workflow for processing and analyzing
direct infusion and liquid chromatography mass spectrometry-based
metabolomics data”, GigaScience, vol. 5, no. 1, pp. 1–9, 2016.

[25] B. Grüning, M. van den Beek, B. Batut, J. Chilton, M. ISHII, D. Ryan,
E. Afgan, H. Rudolph, K. Ellrott, C. Smith, P. Moreno, H.-R. Hotz,
G. V. Kuster, R. Baertsch, M. Edwards, G. L. Corguillé, A. Azab,
S. Hiltemann, Rdmorin, M. Chambers, T. Tanjo, R. Hernández, Jasper,
and A. Petkau, “bgruening/docker-galaxy-stable: Galaxy Docker Image
17.05, 10.5281/zenodo.583723.”

[26] C. B. Hauser, J. Domaschka, “ViCE Registry: An Image Registry for Vir-
tual Collaborative Environments”, 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 82–89,
2017

19


	Proceedings_bwHPC2017
	conference_071817
	bwhpc_gorska_camera_ready
	bwHPC_martin_camera_ready
	schaefer_bwhpc2017_cameraready
	bwhpc_bartusch_camera_ready
	bwhpc_witte_cameraready
	bwhpc_kratzke_cameraready
	bwHPC_rabbertz_camera_ready
	bwhpc_baumann_cameraready
	bwhpc_janczyk_cameraready
	bwhpc_renze_cameraready
	kley_bwhpc2017_cameraready



