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1 Introduction 

1.1 Feed Sustainability 

Animal feed sustainability is one of the biggest challenges for the next decades. The world 

population is constantly growing with an average annual rate of 1-2% and the 10 billion 

people mark is estimated to be reached until the year 2060 1. This growth goes hand in 

hand with a higher demand for human food and thus animal feed due to an intensification 

of animal farming. In an era of limited resources, the responsible use of nutrients is crucial 

to the future food and feed supply. 

The expansion of aquaculture, the world’s fastest growing food production sector with an 

average annual growth rate of 8-10% since 1970, was accompanied by a rapid increase in 

fish feed production 2,3. The prices for fish oil and fish meal, the most nutritious and di-

gestible ingredients in fish feed, were pushed to historic heights in late 2014 3. Also the 

feed efficiency, expressed by the feed conversion ratio (FCR), was heavily criticized since 

around 5 kg wild fish are needed to produce 1 kg of carnivorous fish 4. In this context, 

cheap and sustainable feed ingredients to substitute expensive fish oil and fish meal 

gained attention 5. In the livestock industry, strict regulations concerning the use of ani-

mal byproducts as feed additives have also driven the use of alternative, mainly plant-

derived, feed ingredients. However, the use of sustainable plant proteins was reported to 

be limited for several reasons in both livestock 6 and aquaculture industry 7. 

Although the bovine spongiform encephalopathy (BSE) crisis has highlighted the risk of 

their use, animal byproducts can be regarded as valuable nutrient resources. Reutilization 

of animal byproducts in feed considerably contributes to the goal of keeping nutrients, 

within the nutrient cycle and dealing responsible with limited resources 6,8. 

1.1.1 Animal Byproducts 

Every year around 360 million pigs, sheep, goats and cattle as well as more than 6 billion 

poultry are killed in European slaughterhouses for the purpose of human food produc-

tion 9. The meat production sector produced a total of 46.4 million tons of carcass weights 

in the year 2016 10. However, significant amounts of the animal’s live weight cannot be 

used for food production. There are also byproducts of around 25% for chicken, 34% for 

pigs and even 42% for cattle 9. As a consequence, more than 20 million tons of animal 
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byproducts annually emerge from European slaughterhouses, plants producing food for 

human consumption, dairies and fallen stock from farms 10. 

Animal byproducts are not waste, but rather valuable resources for fat, proteins, minerals 

and even essential vitamins and therefore they can be considered to improve the nutri-

tional value of animal feed 8. Further fields of utilization are feed additives for fur animals, 

food for pets, products in oleochemistry, fertilizers and combustibles (Figure 1). It has to 

be mentioned that the utilization of animal byproducts depends on a risk classification 

introduced in 2002 by Regulation (EC) No 1774/2002 later amended by Regulation (EC) 

No. 1069/2009 as a consequence of the BSE crisis 11,12 (see 1.1.3). 

 

Figure 1. Production flow and fields of utilization of animal products and byproducts modified from 
Lecrenier 13. Only animal byproducts of category 3 may be used for feeding purposes. Deadstock 
and animals with non-classical diseases like transmissible spongiform encephalopathies are not 
allowed to re-enter the food chain via animal feed (categories 1 and 2). 

 

Category 1 comprises specified risk material linked to non-classical diseases like BSE and 

scrapie. These products are only allowed to be used as combustibles, which safely dis-

poses the high-risk materials and serves for energy generation. Category 2 comprises me-

dium risk material, for example byproducts from animals that died other than by being 

slaughtered for human consumption such as fallen stock on farms. Same as category 1, 

these materials are not allowed to enter the food chain via utilization in animal feed for 

feed and food safety reasons. Possible fields of utilization are fertilizers or products in the 
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chemical industry. Category 3 comprises byproducts from animals that are slaughtered 

for the production of human food, however are not intended for human consumption for 

commercial reasons. These materials are the ones that are allowed to re-enter the food 

chain by utilization as protein additives in animal feed. The amount of category 3 material 

is estimated to be around 12 million tons out of the 20 million tons of animal byproducts 

annually emerging in the European Union 9. 

1.1.2 Processed Animal Proteins 

Animal byproducts can contain moisture, fatty tissue, bones, offal, and even entire car-

casses of animals from slaughterhouses and animals that died on farm. The process of 

animal rendering converts them into more stable and usable materials. During this pro-

cess the animal byproducts are simultaneously dried, crushed into smaller pieces and fi-

nally ground to powder. Heat and pressure are applied to sterilize and stabilize the mate-

rials. The dry materials are free from harmful microorganisms thus eliminating the risk 

for diseases and are stable for storage and further reprocessing. The rendering process 

also separates the fatty part from the bone and protein part yielding two fractions, the 

rendered animal fats and the so-called processed animal proteins (PAP) 8. 

One type of PAP is meat and bone meal (MBM), which typically has a crude protein content 

of around 48-56% 14,15. Mammalian MBM improve the nutritional profile of feed for mo-

nogastric animals like chicken or pigs 8,16,17. Poultry MBM effectively substitutes expen-

sive fish meal in aquaculture feed 18,19 or plant proteins 20. PAPs do not contain anti-nutri-

ents, which are often present in plant-derived products limiting their use as feed supple-

ments 7,21. Fish meal (FM) produced from water animals excluding mammals is a sepa-

rately defined type of PAP that is still used in aquaculture and in feed for pig and poultry 

animals 22. 

Blood is another important animal byproduct obtained during slaughter. The global 

amount of blood emerging from slaughterhouses is roughly estimated with 4.56 billion 

liters per year 23. While blood is only poorly used for the production of human food, there 

is a great interest in blood for animal feed production. Slaughter blood is part of the cate-

gory 3 materials and is commonly used in their processed form of blood meals (BM). BM 

is representing a special type of PAP, which is also increasingly used to substitute expen-

sive fish meal in aquaculture feed 8. The crude protein content of BM reaches 90% surpas-
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sing MBM and plant derived protein meals 24. Not only BM, but also lower processed prod-

ucts such as spray-dried hemoglobin meal (SDHM) and spray-dried plasma (SDP), in the 

sense of the Regulation (EU) No. 142/2011 22, are increasingly used since they show a 

good amino acid balance and a very high digestibility 25,26. 

To ensure food safety, PAPs have to be processed under defined conditions before they 

are allowed to be used as additives in animal feed. The minimum processing conditions 

for mammalian derived PAPs are 133°C, 3 bar, 20 min 22. As an exemption, porcine blood 

meals and PAPs from poultry have to be treated at 80°C for 120 min in order to eliminate 

pathogenic microorganisms. According to the law, SDHM and SDP are defined as “blood 

products”, a separate category in contrast to PAP. Therefore, they can be treated like por-

cine BM at 80°C for 120 min.  

1.1.3 Feed Ban 

The use of PAPs as additives in animal feed was a common procedure for several years 

until the outbreak of the bovine spongiform encephalopathy (BSE) in 1986 in the United 

Kingdom (UK). BSE is the bovine variant of the transmissible spongiform encephalopa-

thies (TSE) which affect animals including humans. TSE constitute a group of infectious, 

transmissible neurodegenerative diseases of the central nervous system caused by mis-

folded proteins, so-called prions 27. By protein aggregation, prions cause thread-like dep-

ositions and sponge-like tiny holes in the cortex giving the disease its name. After a very 

long incubation time of several months up to years, the disease progressively destroys the 

brain, causes mental and motoric disorders and finally always leads to death 28. 

The transmission of prions takes place via the consumption of contaminated food. After 

oral intake, prions enter the enteral nervous system via the intestinal epithelium and sub-

sequently spread into the brain via a neuronal pathway 29,30. Epidemiological studies 

came to the conclusion that BSE was spread by infectious cattle feed. In the UK, over 

180 000 infected cattle were reported during the crisis and 4.4 million precautionary 

slaughters took place during the eradication program 31. The human counterpart to BSE 

is known as new variant Creutzfeltd-Jakob disease (vCJD) 32. It was first identified in 1996 

in the UK and is was shown to be related to BSE 33. Until today, 177 people were killed by 

vCJD in the UK and 52 elsewhere, primarily in Western European countries 34,35. The Eu-

ropean Union took several measures to get the control over the BSE pandemic. The most 
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important measure was the ban for mammalian derived proteins in animal feed intro-

duced with Commission Regulation (EC) No. 999/2001 and later expanded by amend-

ment No. 1234/2003 36,37. The regulation prohibited the feeding of PAPs, such as MBM, to 

animals that are intended for human consumption. Prion-contaminated cattle MBM, 

which was supposed as the main vector of disease, was successfully excluded from animal 

feed which has led to a decreasing number of registered BSE cases nearly down to zero in 

Europe including the UK, the former hot spot of the BSE pandemic (Figure 2) 31,38. The few 

cases still occurring today are most likely spontaneous prion diseases that are not caused 

by an infection. 

 

Figure 2. Number of registered cases of bovine spongiform encephalopathy (BSE) in Germany (GER), the 
United Kingdom (UK) and the European Union (EU) since 2001 reported by the World Organiza-
tion for Animal Health 31. 

 

1.1.4 Progressive Reauthorization 

Today, the pandemic seems to be almost eradicated and a transmission of BSE between 

non-ruminants is considered unlikely. Nevertheless, the use of animal proteins in feed re-

mains strictly regulated 39. Except milk and egg products, bovine material is not allowed 

for feeding purposes, neither in non-ruminant feed nor in aquaculture. The feeding of non-

ruminant PAPs to ruminant animals is also prohibited (Table 1). In consideration of a sus-

tainable feed chain the European Commission is currently working on the reintroduction 

of non-ruminant PAPs in feed without by-passing the ban for intraspecies feeding 11. The 

first steps were done with the allowance of fish meal in milk replacer for weaning calves 

in 2008 40 and for non-ruminant PAPs in feed for aquaculture in 2013 41 amended by cer-

tain insects in 2017 42. Future EU plans comprise legalizing PAPs from pig and poultry 

origin for use in non-ruminant feed 39.  
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Table 1. Current legislation concerning the use of PAPs as feed additives. Table modified after an 
internal strategy paper from the European Commission 39. A = allowed; P = prohibited. 

Product Ruminant feed Non-ruminant feed Fish feed 

Ruminant meat and bone meal P P P 

Ruminant blood meal P P P 

Ruminant blood products P P P 

Ruminant gelatin or hydrolyzed proteins P P P 

Egg and milk products A A A 

Fishmeal P A A 

Porcine / poultry meat and bone meal P P A 

Porcine / poultry blood meal P P A 

Porcine / poultry blood products P A A 

Porcine / poultry gelatin or hydrolyzed proteins A A A 

Animal proteins other than mentioned above P A A 

Insect protein (seven defined species) P P A 

 

The progressive lifting of the feed ban demands for analytical methods with high sensitiv-

ity and specificity to prove the origin of PAPs and to ensure the absence of ruminant ma-

terial. In this regard, the risk assessment as well as the analytical methodology should 

cope with the real-life situation in the production chain. Minor cross contamination due 

to allowed animal proteins (e.g., derived from milk powder) or transport between slaugh-

ter houses, rendering plants, and feed producers can never be ruled out. Therefore, pro-

ducers, represented by the European Fat Processors and Renderers Association (EFPRA), 

but also control laboratories call for quantitative accurate thresholds to replace the pend-

ing zero-tolerance-concept. However, any decision on threshold levels of the European 

Commission will depend on a thorough risk assessment. A risk study of the European 

Food Safety Authority (EFSA) in the year 2011 concludes that a contamination level of 

0.1% of non-ruminant PAP in feed would lead to less than one BSE infected cattle in the 

EU per year with an upper 95% confidence level 43. EFSA currently works on an updated 

risk assessment as well as the implementation of a threshold (“technical zero”) for minor 

ruminant cross contamination on demand of the European Commission 44. If and at which 

tolerance level final thresholds for ruminant and non-ruminant PAPs will be implemented 

is not clear yet, but it can be strongly assumed that quantitative methods will be required 

with a sensitivity in the range of <1−2% PAP (w/w) 45. 
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1.2 Feed Authentication 

The ban of PAPs in feed introduced in 2001 was one of the main EU measures to control 

the BSE pandemic. To enforce the ban, analytical methods have been implemented that 

prove the absence of illegal PAPs. Currently, light microscopy and polymerase chain reac-

tion (PCR) are the official methods for the detection of illegal PAPs in feed. However, the 

changes in legislation due to the progressive reauthorization, required the development 

of alternative methods to quantitatively determine the exact origin of animal proteins in 

feed. The focus in the development of alternative methods is on spectroscopic methods, 

immunoassays and mass spectrometry. Current developments concerning the official 

methods and alternative methods are highlighted in the following. 

1.2.1 Official Analytical Methods 

In 1998 optical light microscopy was implemented as the first official method for PAP de-

tection and characterization in feed 46. The initial method was implemented to enforce the 

feed ban and was further developed over the past years 45. The method relies on the mor-

phological detection of particles such muscle fibers, cartilage, bones, hair or feathers. The 

technique is very sensitive with a limit of detection (LOD) of <0.1% PAP in a feed com-

pound 47. However, the method is neither able to differentiate species nor it can differen-

tiate visually not classifiable material such as powders. This led to the adoption of PCR as 

second official method in 2013 48. Based on the analysis of DNA, the PCR method is able 

to reliably determine the species origin on a level of 0.05% PAP in feed 49, even in visually 

not classifiable material. Despite the advantages, DNA-based methods suffer from signifi-

cant drawbacks. Since the genomic information does only differ between species but not 

between tissues of the same species, a tissue-specific PAP differentiation remains impos-

sible. As an example, the current legislation allows the feeding of bovine milk and egg 

products; however, the feeding of bovine blood and MBM is illegal. A differentiation of 

legal and illegal protein additives cannot be accomplished by the current official PCR 

method 50. Another drawback is linked to the fact that mammalian-derived PAPs have to 

be treated at 133°C, 3 bar, 20 min in order to be used as feed additives 22. At these harsh 

conditions DNA sequences tend to degrade and therefore the PCR analysis can be af-

fected 51. It also has to be mentioned that both, the light microscopy and the PCR method 

are not primarily focused on a quantification but more on a qualitative detection of PAPs. 
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To summarize, the official methods light microscopy and PCR show a highly sensitive de-

tection of illegal PAPs in feed on a level <0.1% however, they are limited in their species 

and tissue differentiation as well as quantification capability. 

1.2.2 Alternative Methods 

The official method light microscopy was further developed and optimized. To become 

more independent from experienced operators and to increase sensitivity, spectroscopic 

methods were introduced 45. Near-infrared spectroscopic methods were used either in 

combination with the official microscopy method (NIRM) 52 or as standalone method 

(NIRS) 53. The NIRM protocol is the same as it is for the official light microscopy but in-

stead of visually evaluating the particles, characteristic NIR spectra of thousands of parti-

cles are acquired. The throughput of this method was further increased by the use of a 

NIR imaging system to parallelly analyze particles 54. Since NIRM is based on the protocol 

of the microscopic method, a detection of <0.1% PAP is possible. Standalone NIRS is a non-

destructive method that can be used as on-line control directly in feed production plants 

detecting accidental contaminations within the production chain 55,56. However, the de-

tection limit of >1% is too high for an analysis in official control laboratories 45,56. The 

differentiation of terrestrial and fish PAPs can be accomplished by these methods 55. Alt-

hough results indicated that even a differentiation of terrestrial species is possible, there 

are possible overlaps in the NIR spectra between different species and a safe PAP differ-

entiation is not guaranteed 57. 

Immunoassays were recognized as a powerful tool for PAP analysis since certain proteins 

can be used to trace back the species as well as the tissue origin. Several immunological 

methods addressing heat-stable PAP fractions were developed 58-62. In principal, immu-

noassays are highly sensitive and quantitative. The latter is important since there are 

plans for the introduction of quantitative accurate thresholds, replacing the pending zero-

tolerance-concept of PAPs in feed. However, immunoassays are also affected by the harsh 

rendering conditions leading to protein denaturation and partial fragmentation reac-

tions 63. One commercial assay kit (MELISA-TEK), which is usually used for meat analysis, 

was applied to PAP detection by Bremer and colleagues 64. In an interlaboratory study this 

kit showed a detection limit of 0.5% ruminant PAP in non-ruminant PAP. The only immu-

noassays that was able to detect 0.1% bovine MBM in vegetal cattle feed showed a cross 

reactivity to porcine material 65. A developed immunoassay by Kim and colleagues 
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showed cross reactivities to porcine gelatin, canola and wheat material 60. A completely 

different approach that faces the issue of protein fragmentation was published by Huet 

and colleagues 66. The group developed competitive immunoassays using antibodies 

raised against tryptic peptides which are not influenced by high temperature and pres-

sure. One of the immunoassays was able to detect 2% bovine MBM in feed. Although the 

so far developed immunoassays are promising, immunoassays are always prone to inter-

ferences and cross reactivities to either other species or ingredients in the complex feed 

matrix limiting the sensitivity. 

Mass spectrometry is another very powerful tool for the sensitive and specific analysis of 

proteins. A mass spectrometric analysis can be either performed on the protein’s intact 

level (top down) or on the level of peptides after enzymatic fragmentation (bottom up). 

In feed analysis, only the bottom up approach is used since protein denaturation and frag-

mentation prevent an intact protein analysis. 

1.3 Protein Analysis by Mass Spectrometry 

In the past decade, the mass spectrometric (MS) analysis of tryptic peptides as protein 

surrogates has emerged as a powerful tool in the field of proteomics 67-69. This analysis is 

based on an enzymatic fragmentation of complex biological samples into peptides. These 

peptide mixtures are subsequently separated by liquid chromatography coupled to a tan-

dem mass spectrometric detection (LC-MS/MS) for the identification of peptides and in-

directly proteins. Depending on the type of instrument different experiments can be per-

formed to obtain both qualitative and quantitative information about the proteins present 

in biological samples. Usually, LC separations are connected via an electrospray ionization 

(ESI) source to a tandem MS instrument that mostly has a quadrupole (Q) mass-to-charge 

filter for a first stage MS selection coupled to a mass analyzer, mostly time of flight (Q-

TOF), additional quadrupoles (QQQ) or an orbitrap mass analyzer (Q-Orbitrap).  

Non-targeted MS detection is commonly used to profile the protein content of a complex 

biological digest and to qualitatively identify possible markers of diagnostic or therapeu-

tic relevance 70. The most common non-targeted MS approach is the data dependent ac-

quisition (DDA) which acquires full scan MS spectra in precursor level during chromato-

graphic elution of the peptides and then isolates the most intense peptide precursor mass-

to-charge ratios (usually top 10) for a further fragmentation step (Full-MS/ddMS2). The 
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characteristic fragment ion spectra produced by collisional induced dissociation (CID) in 

a collision cell, which is located between mass filter and mass analyzer, can be assigned 

to peptide sequences by comparison to spectra databases. 

Quantitative approaches are targeted MS methods like selected reaction monitoring 

(SRM) or multiple reaction monitoring (MRM) that allow a highly sensitive and specific 

detection of selected peptides 71,72. Tandem MS instruments using quadrupoles as mass-

to-charge filters provide a very high sensitivity since background interferences are 

greatly reduced during analyte isolation. The indirect detection of precursor ions via their 

fragment ions in the mass analyzer allows for an unambiguous peptide identification by 

their characteristic mass transitions. A precise and accurate quantification in targeted MS 

methods can be achieved by the use of stable isotope labeled standard peptides that are 

spiked into the samples prior LC-MS/MS analysis. The peptides with same sequence and 

physicochemical properties elute at the same time together with the analyte peptides, 

however the mass analyzer is able to discriminate the masses. Peptide concentrations can 

be calculated by referencing the analyte peptide signal to the internal standard signal of 

known amount 72-74. 

1.3.1 Methods for Food and Feed Analysis 

Because of their great success in the field of proteomics, MS methods have been quickly 

adopted in related fields like food chemistry especially in meat science 75-77. Targeted MS 

methods for the species identification in both raw 78-81 and cooked 82-84 meat samples 

were developed. Recently, also a non-targeted MS approach combined with spectral li-

brary matching to differentiate species in meat products was reported 85. In the field of 

animal feed authentication, MS methods gained attention as well. The BSE crisis has 

driven the development of MS methods for the species differentiation in processed 

MBM 86-88. Non-targeted MS combined with spectral matching was recently adapted to the 

field of feed authentication by Rasinger and colleagues 89. The species differentiation in 

both cooked meat and MBM samples proves the suitability of peptide-centric shotgun MS 

for the analysis of processed and denatured proteins and pose MS as a superior method 

compared to immunological methods. 

Currently, the focus in the feed sector is on the development of targeted MS methods to 

detect illegal PAPs in animal feeds that provide species and tissue specificity, high sensi-

tivity as well as the capability for quantification. Heat-stable species- and tissue-specific 
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marker peptides were identified in non-targeted MS studies of PAPs and blood 

meals 13,89,90. First targeted MS methods for the detection of banned ruminant PAPs were 

established. One targeted assay was developed to simultaneously detect bovine blood and 

milk proteins, providing a tissue differentiation of legal and illegal feed additives such as 

blood meals and milk powder 91. In this assay, blood meal was detected with a sensitivity 

reaching the 0.1% (w/w) limit, matching the legal requirement for analytical methods 

imposed by the European Commission. Another targeted assay for the detection of 

banned ruminant MBM was reported 90. This assay addresses three bovine peptides de-

rived from the two proteins hemoglobin α and heat shock protein β-1 and allows the de-

tection of banned ruminant MBM in vegetal feed with a limit of detection of 5% (w/w). 

However, the state of the art MS methods for feed authentication fulfill only some of the 

requirements imposed by the European Commission. Until now, no method was reported 

that simultaneously fulfills the following requirements: 

• Detection of PAPs like MBM and BM 

• Detection of blood products like SDHM and SDP 

• Differentiation of PAPs, blood products and milk products 

• Detection limit of <0.1% (w/w) for bovine MBM, the most critical type of PAP 

• Quantification <1-2% (w/w) 

Further developments in targeted MS methods for an improved detection of PAPs are very 

likely. Isotope labeled standard peptides were already introduced to provide the capabil-

ity for quantification 91. A simultaneously detection of different PAP and blood product 

types could be achieved if appropriate markers were selected. The remaining challenge is 

to combine the previous achievements with a sensitive detection on a level of 0.1% (w/w) 

PAP in feed. 

1.3.2 Immunoaffinity-Based Targeted Mass Spectrometry 

One approach to improve throughput and sensitivity of targeted MS assays are hybrid 

methods that combine immunoprecipitation with MS detection. Such hybrid methods 

have been established on both MALDI-MS and ESI-MS platforms 92,93. Immunoaffinity-

based MS assays are used in clinical and pharmaceutical research for the quantification of 

receptors 94, kinases 95, drug-metabolizing enzymes 96 and plasma proteins 97. Similar to 

sandwich immunoassays, the peptides or proteins of interest are captured by antibodies 
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that are immobilized on a stationary phase. However, instead of using a second antibody 

for the detection, the analytes are eluted and analyzed by LC-MS/MS. This workflow was 

termed stable isotope standards and capture by anti-peptide antibodies (SISCAPA) 92. Ap-

plying SISCAPA, a peptide enrichment of at least two and up to four orders of magnitude 

compared to pure targeted MS analysis was observed 92,98. An advantage over immunoas-

says is the capability to combine antibodies in multiplex assays since the MS detection 

provides an absolute specificity and is not affected by antibody cross reactivities 97,98. 

The disadvantage of generating one antibody per analyte was faced by the application of 

group-specific enrichment strategies. One example for a group-specific peptide enrich-

ment strategy is the concept of triple X proteomics (TXP) 99-102. This concept uses antibod-

ies that recognize short C-terminal peptide sequences comprising three amino acids plus 

the terminal arginine or lysine present in tryptic peptides. A group-specific enrichment 

can be performed for peptides that share a specific TXP motif. The TXP approach greatly 

reduces the number of antibodies that are necessary to enrich a large number of pep-

tides 103. The short epitopes are ideally suited to enrich peptides from homologous pro-

teins of different species or protein families 104.  
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2 Aim of the Thesis 

The aim of this thesis is to provide a new analytical method for an improved detection of 

banned processed animal proteins (PAP) in feed compounds. There are several require-

ments regarding analytical methods that need to be fulfilled in order to be applied in fu-

ture feed authentication studies. These requirements are mainly the species and tissue 

specificity, the sensitivity of ≤0.1% (w/w) PAP or blood product in feed and the ability for 

quantification on a level of <1-2% (w/w). An overview of the current achievements in 

state of the art methods is given in Table 2. 

The overall objective of this work is the introduction of immunoaffinity-based mass spec-

trometry to feed analysis in order to face the current limitations in PAP detection. The 

developed workflow should comprise an improved sample preparation for the release of 

peptides, an immunoaffinity enrichment of the peptides, and a peptide identification and 

quantification by LC-MS/MS using stable isotope labeled standards (Figure 3). 

The first objective is to improve the peptide release from highly processed protein sam-

ples in order to achieve a maximum analyte amount for the following immuno-MS analysis 

facilitating a detection below the required detection limit of 0.1% (w/w). 

The second objective is to apply the improved sample preparation to PAPs and blood 

products from different species and to identify possible marker peptides by non-targeted 

mass spectrometric experiments. The identified markers have to be properly selected by 

help of bioinformatics to achieve species as well as a tissue specificity. 

The third objective is to generate marker-specific polyclonal antibodies and to compile 

them in multiplex immuno-MS assays. The developed assays should be applicable to dif-

ferent species and tissue types in the common feed matrices. One idea is to multiplex pep-

tide-specific antibodies that address bovine tissue-specific marker in order to provide a 

highly sensitive detection and differentiation of PAPs and blood products from milk pow-

ders. Another idea is to apply the concept of a group-specific immunoenrichment using 

only one cross-species antibody for the detection and differentiation of the main livestock 

species, cattle, sheep, goat, pig, horse, turkey, chicken, duck and goose. The need for quan-

tification should be fulfilled by the use of stable isotope labeled standard peptides as in-

ternal standards in both multiplex assays. 
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Quantitative multiplex immuno-MS assays should be developed, validated and finally ap-

plied to feed compounds for an unambiguous species- and tissue-specific detection of 

PAPs and blood products on a level of ≤0.1% (w/w). 

 

Table 2. Comparison of state of the art methods and alternative methods for feed authentication. 

Method 

State of the Art Aim 

Microscopy PCR 
Immuno- 

assays 

Mass 

Spectrometry 

Immunoaffinity-Based 

Mass Spectrometry 

Detection Limit 0.1% 0.05% 0.5% 5% MBM 

<0.1% blood 

0.1% for all 

sample types 

Quantification no yes yes yes yes 

Tissue 

Specificity 

no no yes partially yes 

Species 

Specificity 

none high medium – high 

(cross 

reactivities) 

high high 

Time per sample 180 min 300 min 60 min 60 min 15 min 

 

 

 

Figure 3. Immunoaffinity-based mass spectrometry for the species and tissue differentiation in feed com-
pounds by the analysis of proteotypic peptides.  
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3 Materials and Methods 

3.1 Materials 

3.1.1 Consumables 

Table 3. Consumables 

Product and specification Manufacturer (location) 

0.2 mL Skirted 96-well robotic plate Thermo Fisher Scientific (Waltham, USA) 

Acclaim PepMap RSLC C18, 75 µm I.D. x 150 mm, 

2 µm 

Thermo Fisher Scientific (Waltham, USA) 

Acclaim PepMap100 C18 µ-precolumn, 0.3 mm 

I.D. x 5 mm, 5 µm 

Thermo Fisher Scientific (Waltham, USA) 

Axygen AxySeal Corning (NY, USA) 

Centrifuge tubes, 15 mL conical bottom Greiner Bio-One (Frickenhausen, DE) 

Centrifuge tubes, 50 mL conical bottom Greiner Bio-One (Frickenhausen, DE) 

Centrifuge tubes, 50 mL self-standing Greiner Bio-One (Frickenhausen, DE) 

Dynabeads Protein G Thermo Fisher Scientific (Waltham, USA) 

epT.I.P.S. Standard 0.1-10 µL Eppendorf (Hamburg, DE) 

epT.I.P.S. Standard 100-5000 µL Eppendorf (Hamburg, DE) 

epT.I.P.S. Standard 2-200 µL VWR (Darmstadt, DE) 

epT.I.P.S. Standard 50-1000 µL Eppendorf (Hamburg, DE) 

Filter devices VIVASPIN 6 30,000 MWCO PES Sartorius Stedim Biotech (Göttingen, DE) 

KingFisher 96 tip comb Thermo Fisher Scientific (Waltham, USA) 

Micro insert, 0.1 mL, clear glass 15 mm, top VWR (Darmstadt, DE) 

Micro inserts glass, 250 µL, conical neoLab (Heidelberg, DE) 

Microplate, 96 well, PS, F-Bottom, clear Greiner Bio-One (Frickenhausen, DE) 

Nitrile gloves VWR (Darmstadt, DE) 

NuPAGE 4-12% Bis-Tris Gel 12 well Thermo Fisher Scientific (Waltham, USA) 

Pasteur pipettes Assistant Karl Hecht GmbH & Co KG (Sondheim, DE) 

pH indicator paper range 1-14 Carl Roth (Karlsruhe, DE) 

Pipette tips SpaceSaver LTS 20 µL Mettler Toledo (Columbus, USA) 

Pipette tips SpaceSaver LTS 200 µL Mettler Toledo (Columbus, USA) 

Pipette tips SpaceSaver LTS 300 µL Mettler Toledo (Columbus, USA) 

QUICKRACK Tip Transfer System, 1250 µL Biozym Scientific (Oldendorf, DE) 

Reaction tubes PCR Tube Strips 0.2 mL VWR (Darmstadt, DE) 

Reaction tubes Protein LoBind Tube 1.5 mL Eppendorf (Hamburg, DE) 

Reaction tubes with screw thread, 1.5 mL, conical neoLab (Heidelberg, DE) 
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Reaction tubes with screw thread, 1.5 mL, self-

standing 

neoLab (Heidelberg, DE) 

Reaction tubes with screw thread, 2.0 mL, self-

standing 

neoLab (Heidelberg, DE) 

Reaction tubes, 1.5 mL, PP Eppendorf (Hamburg, DE) 

Reaction Tubes, 4 mL, PP round base Greiner Bio-One (Frickenhausen, DE) 

Reaction tubes, 5 mL, PP Eppendorf (Hamburg, DE) 

Screw caps for microcentrifuge tubes VWR (Darmstadt, DE) 

Screw caps for reaction 1.5 mL and 2 mL tubes neoLab (Heidelberg, DE) 

Screw caps, 9 mm, natural rubber red-orange VWR (Darmstadt, DE) 

Vial short thread, 1.5 mL, amber glass with label VWR (Darmstadt, DE) 

 

3.1.2 Chemicals, Biochemicals and Reagents 

Table 4. Chemicals, Biochemicals and Reagents 

Substance (abbreviation/specification) Manufacturer (location) 

1,4-Dithiothreitol (DTT) Sigma Aldrich (St. Louis, USA) 

2-Amino-2-(hydroxymethyl)propan-1,3-diol 

(TRIS) 

Carl Roth (Karlsruhe, DE) 

2-propanol, LC-MS grade (IPA) VWR (Darmstadt, DE) 

3-[(3-Cholamidopropyl)dimethylammonio]-1-pro-

panesulfonate (CHAPS)  

Carl Roth (Karlsruhe, DE) 

Acetone, ACS grade VWR (Darmstadt, DE) 

Acetonitrile, LC-MS grade (ACN) Carl Roth (Karlsruhe, DE) 

Albumin fraction V, protease-free (BSA) Carl Roth, Karlsruhe, DE 

Ammonia solution 25%, Rotipuran Carl Roth (Karlsruhe, DE) 

Ammonium bicarbonate (ABC) Sigma Aldrich (St. Louis, USA) 

BCA Protein Assay Reagent (bicinchoninic acid) Thermo Fisher Scientific (Waltham, USA) 

Blocking Reagent for ELISA Roche Diagnostics (Mannheim, DE) 

Citric acid, 99% Sigma Aldrich (St. Louis, USA) 

Coomassie Plus Protein Assay Reagent Kit Thermo Fisher Scientific (Waltham, USA) 

Customized polyclonal antibody sera Pineda GmbH (Berlin, DE) 

Customized synthetic standard peptides Intavis AG (Tübingen, DE) 

Dimethylsulfoxide (DMSO)  Sigma Aldrich (St. Louis, USA) 

Dionex Cytochrome C Digest, lyophilized Thermo Fisher Scientific (Waltham, USA) 

Ethanol, >99.8%, p.a. Carl Roth (Karlsruhe, DE) 

Formic acid , 99% (FA) Carl Roth (Karlsruhe, DE) 

Hydrochloric Acid, 37% fuming Carl Roth (Karlsruhe, DE) 
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InstantBlue Coomassie Based Staining Expedeon (San Diago, USA) 

Iodoacetamide (IAA) Sigma Aldrich (St. Louis, USA) 

Keyhole limpet hemocyanin (KLH) Thermo Fisher Scientific (Waltham, USA) 

L-Cystein hydrochloride monohydrate Sigma Aldrich (St. Louis, USA) 

LTQ Velos ESI Positive Ion Calibration Solution Thermo Fisher Scientific (Waltham, USA) 

m-maleimidobenzoyl-N-hydroxysulfosuccinimide 

ester (sulfo-MBS) 

Thermo Fisher Scientific (Waltham, USA) 

Methanol, LC-MS-Grade Carl Roth (Karlsruhe, DE) 

n-Octyl-ß-D-glucopyranoside (NOG) Carl Roth (Karlsruhe, DE) 

NuPAGE Antioxidant Thermo Fisher Scientific (Waltham, USA) 

NuPAGE LDS Sample Buffer (4X) Thermo Fisher Scientific (Waltham, USA) 

NuPAGE MES SDS Running Buffer (20X) Thermo Fisher Scientific (Waltham, USA) 

NuPAGE Sample Reducing Agent Thermo Fisher Scientific (Waltham, USA) 

Ovalbumin Imject Thermo Fisher Scientific (Waltham, USA) 

Phenylmethylsulfonyl fluoride (PMSF)  Thermo Fisher Scientific (Waltham, USA) 

Phosphate Buffered Saline 10x (PBS) Thermo Fisher Scientific (Waltham, USA) 

Powdered milk, blocking grade Carl Roth (Karlsruhe, DE) 

SeeBlue Plus2 Prestained Standard Thermo Fisher Scientific (Waltham, USA) 

Sodium azide, for synthesis Merck (Darmstadt, DE) 

Sodium hydroxide, 99% Carl Roth (Karlsruhe, DE) 

Sulfosuccinimidyl 4-(N-maleimidomethyl)cyclo-

hexane-1-carboxylate (sulfo-SMCC)  

Thermo Fisher Scientific (Waltham, USA) 

Technical buffer solution pH 4.01 Mettler Toledo (Columbus, USA) 

Technical buffer solution pH 7.00 Mettler Toledo (Columbus, USA) 

Technical buffer solution pH 9.21 Mettler Toledo (Columbus, USA) 

Thiourea, p.a. Thermo Fisher Scientific (Waltham, USA) 

Triethanolamine hydrochloride (TEA/TEA-HCl)  Carl Roth (Karlsruhe, DE) 

Trifluoroacetic acid, ULC/MS Optigrade (TFA)  LGC Promochem (Wesel, DE) 

Tris(2-carboxyethyl)phosphine (TCEP) Carl Roth (Karlsruhe, DE) 

Trypsin from bovine pancreas Sigma Aldrich (St. Louis, USA) 

Trypsin, modified, TPCK treated Worthington (Lakewood, USA) 

Urea, p.a. Carl Roth (Karlsruhe, DE) 

Water, HPLC LC-MS grade VWR (Darmstadt, DE) 
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3.1.3 Samples 

Table 5. Samples 

Sample description Code AST Code BFR Origin 

Spray-dried bovine plasma ANID001 C12129 CCL NutriControl (Veghel, NL) 

Spray-dried porcine plasma (1) ANID002 C12130 CCL NutriControl (Veghel, NL) 

Spray-dried porcine blood meal ANID005 C12131 CCL NutriControl (Veghel, NL) 

Blood meal poultry mix ANID006 C12135 CCL NutriControl (Veghel, NL) 

Citrate plasma chicken (1) ANID007 C14046 Preclincs GmbH (Potsdam, DE) 

Citrate plasma turkey (1) ANID008 C14047 Preclincs GmbH (Potsdam, DE) 

Citrate plasma goat (1) ANID009 C14048 Preclincs GmbH (Potsdam, DE) 

Citrate plasma sheep (1) ANID010 C14049 Preclincs GmbH (Potsdam, DE) 

Citrate plasma horse (1) ANID011 C14050 Preclincs GmbH (Potsdam, DE) 

Citrate plasma goose (1) ANID012 C14057 Preclincs GmbH (Potsdam, DE) 

Citrate plasma duck (1) ANID013 C14058 Preclincs GmbH (Potsdam, DE) 

Citrate plasma cattle (1) ANID014 C14059 Preclincs GmbH (Potsdam, DE) 

Citrate plasma pig (1) ANID015 C14060 Preclincs GmbH (Potsdam, DE) 

Citrate plasma cattle (2) ANID017 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma pig (2) ANID018 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma sheep (2) ANID019 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma goat (2) ANID020 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma horse (2) ANID021 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma turkey (2) ANID022 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma duck (2) ANID023 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma chicken (2) ANID024 - Preclincs GmbH (Potsdam, DE) 

Citrate plasma goose (2) ANID025 - Preclincs GmbH (Potsdam, DE) 

Spray-dried plasma, species 

unknown 

ANID026 C15097 T.T. Baits (Erlangen, DE) 

Spray-dried porcine plasma (2) ANID027 C16024 CCL NutriControl (Veghel, NL) 

Meat and bone meal, mix from 

poultry animals 

ANID028 C15167 GePro GmbH & Co. KG (Diepholz, 

DE) 

Milk performance feed for cattle (veg-

etal feed) 

ANID029 C08074 H.W. Schaumann GmbH (Pinne-

berg, DE) 

Bovine meat and bone meal (1) ANID030 C16113 CCL NutriControl (Veghel, NL) 

Porcine protein, SP60 ANID031 C16039 LUFA Nord-West (Oldenburg, DE) 

Pure porcine meat and bone meal 

from 2007, first production of a new 

production line 

ANID032 C16042 LUFA Nord-West (Oldenburg, DE) 

Porcine meat and bone meal, ANID033 C16043 LUFA Nord-West (Oldenburg, DE) 
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Category 3 (PAP) 

Porcine processed animal protein ANID034 C16044 LUFA Nord-West (Oldenburg, DE) 

Milk powder for human 

consumption 

ANID035 - Nestlé (Vevey, CH) 

Milk powder laboratory blocking 

reagent 

ANID036 - Carl Roth (Karlsruhe, DE) 

Fish feed without land living animals ANID049 C17168 BioMar (Brande, DK) 

Fish feed with land living animals ANID050 C17167 BioMar (Brande, DK) 

0.1% ruminant PAP (1) ANID052 C16001 EURL-AP (Gembloux, Belgium) 

0.1% ruminant PAP (2) ANID053 C16005 EURL-AP (Gembloux, Belgium) 

1% ruminant blood ANID054 C16010 EURL-AP (Gembloux, Belgium) 

3% bovine plasma ANID055 C16171 EURL-AP (Gembloux, Belgium) 

5% porcine blood ANID064 C14011 EURL-AP (Gembloux, Belgium) 

Fish feed containing hemoglobin meal ANID057 C17202 EURL-AP (Gembloux, Belgium) 

Bovine meat and bone meal (2) ANID058 C16151 PerNaturam (Gödenroth, DE) 

 

3.1.4 Laboratory Equipment 

Table 6. Laboratory Equipment  

Apparatus and type Manufacturer 

Analytical balance CPA225D-0CE Sartorius Stedim Biotech (Göttingen, DE) 

Analytical balance Explorer OHAUS Waagen (Bad Hersfeld, DE) 

Analytical balance XS205 DualRange Mettler Toledo (Columbus, USA) 

Ball mill Micro-Dismembrator U Sartorius Stedim Biotech (Göttingen, DE) 

Bead-based assay system FLEXMAP3D Luminex (Austin, USA) 

Bead-based assay system FlexMap3D Luminex (Austin, USA) 

Centrifuge for reaction tubes 5415 D Eppendorf (Hamburg, DE) 

Centrifuge Mini Star VWR (Darmstadt, DE) 

Chromatography System ÄKTAxpress GE Healthcare (Little Chalfont, GB) 

Chromatography UltiMate 3000 RSLC nano Thermo Fisher Scientific (Waltham, USA) 

DURAN Laboratory bottle with DIN thread, GL 45, 

1000 mL 

Duran Group GmbH (Wertheim/Mainz, DE) 

DURAN Laboratory bottle with DIN thread, GL 45, 

500 mL 

Duran Group GmbH (Wertheim/Mainz, DE) 

DURAN Laboratory bottle with DIN thread, GL 45. 

250 mL 

Duran Group GmbH (Wertheim/Mainz, DE) 

DURAN Measuring cylinder, 100 mL  0.5 mL Duran Group GmbH (Wertheim/Mainz, DE) 

DURAN Measuring cylinder, 25 mL  0.25 mL Duran Group GmbH (Wertheim/Mainz, DE) 
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DURAN Measuring cylinder, 50 mL  0.5 mL Duran Group GmbH (Wertheim/Mainz, DE) 

DURAN Measuring cylinder, 500 mL  2.5 mL Duran Group GmbH (Wertheim/Mainz, DE) 

Electronic pipette 5 – 100 µL research pro Eppendorf (Hamburg, DE) 

Electronic pipette 5 – 300 µL E4 XLS Mettler Toledo (Columbus, USA) 

Electrophoresis Power Supply Power Ease 500 Thermo Fisher Scientific (Waltham, USA) 

Electrophoresis System XCell SureLock Thermo Fisher Scientific (Waltham, USA) 

GL 45 Screw Caps Duran Group GmbH (Wertheim/Mainz, DE) 

Ice machine Scotman AF40 Frimont S.p.A. (Pogliano Milanese, IT) 

Magnet Dynal MPF -96S Thermo Fisher Scientific (Waltham, USA) 

Magnet DynaMag Spin Thermo Fisher Scientific (Waltham, USA) 

Magnet KingFisher 96 PCR head Thermo Fisher Scientific (Waltham, USA) 

Magnet Particel Processor KingFisher 96 Thermo Fisher Scientific (Waltham, USA) 

Magnet Particel Processor KingFisher Flex Thermo Fisher Scientific (Waltham, USA) 

Magnet stirrer RCT basic IKA-Werk (Staufen, DE) 

Magnet stirrer VARIOMAG MONO Thermo Fisher Scientific (Waltham, USA) 

Mass spectrometer QExactive Plus Thermo Fisher Scientific (Waltham, USA) 

Mass spectrometer QExactive Thermo Fisher Scientific (Waltham, USA) 

Microplate Reader FLUOstar Optima BMG Labtech (Ortenberg, DE) 

Mixer Vortex Genie 2 Scientific Industries (Bohemia, USA) 

Multichannel pipette 2 – 20 µL Pipet-Lite XLS Mettler Toledo (Columbus, USA) 

Multichannel pipette 5 – 50 µL Pipet-Lite XLS Mettler Toledo (Columbus, USA) 

Multichannel pipette 50 – 1200 µL Eppendorf Re-

search Pro 

Eppendorf (Hamburg, DE) 

pH-Meter 766 Calimatic Knick (Berlin, DE) 

Pipette 0.1 – 2.5 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Pipette 1 – 10 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Pipette 10 – 100 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Pipette 100 – 1000 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Pipette 2 – 20 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Pipette 20 – 200 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Pipette 50 – 5000 µL Eppendorf Research plus Eppendorf (Hamburg, DE) 

Sample Mixer Hulamixer Sample mixer Life Technologies (Carlsbad (USA) 

Sonication bath Sonorex Bandelin (Berlin, DE) 

Sonication bath Transsonic T780/H Elma (Singen, DE) 

Spectrophotometer Lambda Bio + Perkin Elmer (Waltham, USA) 

Spectrophotometer NANODROP 2000c Thermo Fisher Scientific (Waltham, USA) 

SWC Safety Weighing Cabinet Sartorius Stedim Biotech (Göttingen, DE) 

Thermomixer C Eppendorf (Hamburg, DE) 
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Thermomixer Comfort Eppendorf (Hamburg, DE) 

Water purification system arium 611VF/advance Sartorius Stedim Biotech (Göttingen, DE) 

Water purification system Milli Q Plus Sartorius Stedim Biotech (Göttingen, DE) 

 

3.1.5 Software and Databases 

Table 7. Software and Databases 

Software or database and version Distributor 

Chromeleon 6.8 Thermo Fisher Scientific (Waltham, USA) 

Endnote X8 Thomson (Philadelphia, USA) 

Mascot 2.3.02 Matrix Science (London, GB) 

Microsoft Office 2016 Microsoft (Redmond, USA) 

OPTIMA 2.20 BMG Labtech (Ortenberg, DE) 

Origin 7.5 OriginLab (Northampton, USA) 

Pinpoint 1.4 Thermo Fisher Scientific (Waltham, USA) 

Proteome Discoverer 2.1 Thermo Fisher Scientific (Waltham, USA) 

SEQUEST 28.0.0.0 University of Washington (Seattle, USA) 

Skyline 3.7 University of Washington (Seattle, USA) 

Tune 2.5 Thermo Fisher Scientific (Waltham, USA) 

TXP-Tools Internal script by Hannes Planatscher 

Unicorn 5.11 GE Healtcare (Little Chalfont, GB) 

UniProtKB Proteomes (Dec 2016) UniProt Consortium 

XCalibur 3.0 Thermo Fisher Scientific (Waltham, USA) 

xPONENT Software Solutions 2.2 Luminex (Austin, USA) 
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3.2 Identification and Selection of Marker Peptides 

3.2.1 In Silico Identification of Cross-Species Epitopes 

Cross-species epitopes were identified by a bioinformatics workflow (Figure 4). A previously 

published list of 150 most abundant human plasma proteins served as a basis 105. The Uniprot 

accession numbers were translated into their corresponding gene names and the respective pro-

tein sequences from all species of interest were collected: cattle (bos taurus), sheep (ovis ar-

ies), goat (capra hircus), pig (sus scrofa), horse (equus caballus), turkey (meleagris gal-

lopavo), duck (anas platyrhynchos), goose (anser anser) and chicken (gallus gallus). These 

protein sequences were fragmented in silico into tryptic peptides. To minimize analytical is-

sues, the list was filtered for peptide lengths between 8 and 25 amino acids and peptides that do 

not contain cysteine or methionine. The remaining peptides were grouped based on their C-

terminal sequence comprising four amino acids and by their corresponding gene names. The 

grouped peptide list was further sorted by the species coverage of the cross-species epitope and 

the maximum number of species-specific peptides for each epitope. The top 5 proteins with the 

highest species specificity and cross-species coverage were extracted and served as a basis for 

the final selection of one cross-species epitope. 

 

 

Figure 4. Bioinformatic workflow for the identification of cross-species epitopes. High abundant plasma 
proteins published by Hortin and colleagues 105 were in silico digested and homologous peptides 
were analyzed for a cross-species epitopes by a bioinformatic workflow. 
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3.2.2 Ruminant-Specific Plasma Marker Peptides 

Marker peptides were identified by a bioinformatic workflow combined with data ob-

tained from non-targeted mass spectrometric analyses of bovine milk powder and native 

bovine plasma (see 3.10.1). The proteins identified in the milk powder sample were sub-

tracted from the bovine plasma identifications in order to achieve a specific detection of 

blood derived proteins. The remaining protein sequences were divided in peptide frames 

consisting of eight amino acids. The frequency of these sequences in the Uniprot database 

(December 2016) was calculated using an internal script by Dr. Hannes Planatscher (Fig-

ure 5). Sequences of low frequency were manually chosen to minimize sequence similar-

ities to other species. Only peptide lengths between 8 and 25 amino acids, and peptides 

without cysteine and methionine were considered. Furthermore, only peptides that were 

already experimentally observed in bovine plasma were considered for a further selec-

tion. 

 

 
Figure 5. Identification of ruminant sequences with low inter-species similarity on the basis of spray-dried 

plasma (SDP) data using the tool Exitope Matcher developed by Dr. Hannes Planatscher. 
 

3.2.3 Tissue-Specific Ruminant Marker Peptides 

To increase tissue specificity, specific marker peptides for bovine meat and bone meal, 

milk powder and citrate plasma were identified. Therefore, a non-targeted mass spectro-

metric analysis of bovine milk powder, meat and bone meal and citrate plasma was per-

formed. Using bioinformatics, the results were filtered for peptides that allow a species 

and a tissue differentiation (Figure 6). The tissue specificity was achieved by filtering the 

results for unique peptides that were only identified in three different samples, respec-

tively. In this step, all peptides, even methionine and cysteine containing peptides, were 
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considered. However, peptide lengths below 8 amino acids and longer than 25 amino ac-

ids were excluded. The resulting list was filtered for peptides, for which antibodies al-

ready were available. To achieve species specificity a sequence alignment of the selected 

peptides and the sequences from the other species was performed. 

 

 

Figure 6. Identification of tissue-specific ruminant marker peptides on the basis of shotgun proteomic data 
of different tissues with available group-specific polyclonal antibodies addressing four terminal 
amino acids (triple X proteomics antibodies). 

 

3.3 Polyacrylamide Gel Electrophoresis 

The gel electrophoresis was performed under denaturing conditions using the NuPAGE 

Bis-Tris Mini Gel-System (life technologies). Protein samples (10 µg) were mixed with 

2.5 µL 4x lithium dodecylsulfate (LDS) sample buffer and 1 µL reducing agent 

(500 mmol L-1 dithiothreitol) was added to the sample. Afterwards, the samples were di-

luted with water to reach a total volume of 10 µL. The samples were denatured by heating 

for 10 min at 70°C and loaded on the 4-12% Bis-Tris gel. The separation was performed 

in 2-(N-morpholino)ethanesulfonic acid (MES) buffer by applying a constant voltage of 

200 V for 35 min. After migration, the gel was washed with water and stained using Coo-

massie InstantBlue solution for at least one hour. The staining solution was removed, and 

the gel was washed with water before taking a picture. 

3.4 Synthetic Standard Peptides 

Standard peptides with different modifications were synthesized by Intavis AG (Tü-

bingen, Germany). Unlabeled peptide standards and stable isotope labeled standards with 
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a 13C/15N-labeling of the C-terminal lysine and arginine were synthesized for assay devel-

opment. Peptide stock solutions for assay development were prepared with a concentra-

tion of 1 mmol L-1. Therefore, 1 mg to 2 mg of peptide was weighed. The peptide was dis-

solved in dimethyl sulfoxide (DMSO) and adjusted with water to achieve a final concen-

tration of 1 mmol L-1 in 20% (v/v) DMSO. Peptide stock solutions were stored at this con-

centration at -20°C and diluted to working concentrations before each experiment. 

3.5 Antibody Generation and Purification 

Antibodies have been generated as described previously 100. Antigen conjugation and an-

tibody purification have been performed by Cornelia Sommersdorf. Antibody sera were 

produced at Pineda GmbH (Berlin, DE). 

3.6 Determination of Protein and Peptide Concentrations 

3.6.1 Bicinchoninic Acid Assay 

The concentration of citrate plasma samples was determined using the Pierce BCA Assay 

Kit (Thermo Fisher). Plasma samples were diluted to an estimated concentration of 

<2 mg mL-1 assuming a concentration of the undiluted plasma of approximately 

60 mg mL-1. Bovine serum albumin was used as a standard for calibration. The BSA stock 

solution was diluted to concentrations between 25 µg mL-1 and 2 mg mL-1 using phos-

phate buffered saline as diluent. BCA reagent A and B were mixed in the ratio 50:1 and 

200 µL of the reagent solution was added to 25 µL of sample dilutions in a microplate. The 

microplate was incubated at 37°C for 30 min. Afterwards, the plate was cooled to room 

temperature and the absorption at 562 nm was measured. The sample concentrations 

were back-calculated using a four-parametric calibration function fitted to the BSA stand-

ard dilution series.  

3.6.2 Bradford Assay 

The concentration of protein solutions containing urea and thiourea were determined us-

ing the Pierce Coomassie Plus (Bradford) Assay Kit. Sample protein solutions were diluted 

1:10 in water. Bovine serum albumin was used as a standard for calibration. The BSA 

stock solution was diluted to concentrations between 25 µg mL-1 and 2 mg mL-1 using a 



26  3 Materials and Methods 

1:10 dilution of urea and thiourea sample buffer as diluent. 150 µL of the Coomassie Plus 

reagent solution was added to 5 µL of diluted samples in a microplate and mixed for 30 s. 

The plate was incubated for 10 minutes at room temperature and the absorption at 

595 nm was measured. The sample concentrations were back-calculated using a four-par-

ametric calibration function fitted to the BSA standard dilution series. 

3.6.3 UV-Absorption Measurement 

The total protein and peptide amount of complex protein extracts and tryptic digests was 

estimated using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, Wal-

tham, USA). Therefore, 2 µL of sample were placed on the sensor and the absorbance at 

280 nm was measured. The total protein and peptide amount was calculated on the basis 

of 1 Abs ≈ 1 mg mL-1 106. UV absorbance due to added trypsin and hydrogen iodide formed 

during alkylation with iodoacetamide was subtracted using blank digests. The absorption 

due to nucleic acids was determined by the A260/A280 ratio (Figure 7). The protein pu-

rity of the sample can be calculated on the basis of Formula 1 107. 

 

 

Figure 7. A620/A280 ratio dependency on the protein purity of sample solutions. 

 

A260

A280
=

(ε260,p x (%p) + ε260,n x (%n)) 

(ε280,p x (%p) + ε280,n x (%n))
 (1) 

 
ε = extinction coefficient, p = proteins, n = nucleic acids 
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3.7 Preparation of Validation Samples 

3.7.1 Mixtures for Species Differentiation 

The mixtures for proving the species differentiation capability of multiplex assay XA2M 

were prepared with citrate plasma from nine species (Preclinics GmbH, Potsdam, Ger-

many) that were spiked into a fish feed (BioMar A/S, Brande, Denmark). To validate the 

assay specificity, eight mixtures of digested citrate plasmas in digested fish feed were pre-

pared (10% w/w). In each mixture, one of the nine species was left out. Sheep and goat 

plasma were mixed in equal amounts and treated as one species since the marker peptide 

is identical in both species. To validate intra- and interassay variation, mixtures of all spe-

cies in fish feed on the solid non-digested level were prepared. Native citrate plasmas of 

nine species were mixed in equal volumes and lyophilized for two days using an alpha I-

6 freeze dryer (Christ, Osterode, Germany). The fine multispecies powder was then added 

to fish feed at three concentrations (1%, 5% and 10% w/w). Consequently, the single spe-

cies concentrations were 0.1%, 0.6% and 1.1% (w/w), respectively. Before mixing, the 

coarse fish feed powder was further homogenized into a fine powder using a ball mill 

(Sartorius Stedim Biotech, Goettingen, Germany). About 80 mg of fish feed was weighed 

into cryovials, cooled in liquid nitrogen and ground to a fine powder using 7 mm steel 

balls at 2000 rpm for 2 min. The fine powders were then mixed at the three concentra-

tions as stated above. To obtain a homogenous mixture, glass beads with a diameter of 

2 mm were added and mixed properly. 

3.7.2 Mixtures for Ruminant Protein Detection 

The validation samples for the detection of ruminant proteins were prepared at the BfR 

in Berlin with two different bovine meat and bone meals obtained from different sources 

(PerNaturam, Gödenroth, Germany and CCL NutriControl, Veghel, Netherlands) and a bo-

vine spray-dried plasma (CCL NutriControl, Veghel, Netherlands). The bovine samples 

were spiked in a vegetal cattle feed (H.W. Schaumann GmbH, Pinneberg, Germany). All 

samples were ground to powder in a Retsch MM 400 ball mill with 25 mm steel balls (Qi-

agen, Düsseldorf, Germany) prior to the preparation of feed mixtures. Grinding jars, filled 

with steel balls and sample material, were cooled in liquid nitrogen prior to pulverization 

at 25 Hz for 1 min. Feed mixtures were prepared in a Turbula Mixer type T2F (Willy A. 
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Bachofen AG, Basel, Switzerland) for 2 h at room temperature at a speed frequency of 

22 min-1. For the determination of intra- and interassay precision at the NMI, about 

250 mg of validation samples was cooled in liquid nitrogen and then pulverized for a sec-

ond time using a ball mill (Sartorius Stedim Biotech, Goettingen, Germany) and 7 mm steel 

balls at 2000 rpm for 2 min. 

3.8 Protein Extraction and Fragmentation 

3.8.1 Extraction in Phosphate Buffered Saline 

For protein extraction purposes 15 mg of animal protein sample was weighed in a tube 

and suspended in 750 µL of phosphate buffered saline (PBS). The suspension was shaken 

over night at 37°C and 1000 rpm. Afterwards, the suspension was centrifuged at 13 000 

g for 5 min and the supernatant was collected. The protein concentration was estimated 

with two methods, the bicinchoninic acid assay (3.6.1) and the measurement of optical 

density at 280 nm (see 3.6.3). The extracts were stored at -20°C until further use. 

3.8.2 TCA Acetone Extraction 

The TCA acetone protein extraction was carried out as described by Marbaix and col-

leagues with slight modifications 90. 900 µL acetone with 10% trichloroacetic acid (TCA) 

and 0.3% dithiothreitol (DTT) was added to 100 mg of PAP sample and stored at -20°C 

overnight. Each sample was centrifuged for 10 min at 16 000 g at 4°C and the superna-

tants were discarded. The remaining pellets were washed first in 900 µL acetone with 

0.3% DTT and second in 900 µL of 90% acetone containing 0.3% DTT with an incubation 

step of 30 min at -20°C and centrifugation at 16 000 g at 4°C after each washing step. The 

supernatant after the second washing step was discarded and 500 µL of resuspension 

buffer (urea 7 M, thiourea 2 mol L-1, Tris 30 mmol L-1, CHAPS 4%) was added. The sample 

was mixed for 1 h at 650 rpm at 12°C on a thermomixer and centrifuged for 10 min at 

16 000 g. The supernatant was transferred to a new tube and stored at -20°C. The protein 

concentration of the extracts was determined by a Coomassie plus assay (Bradford) as 

described in section 3.6.2. The tryptic digestion was performed as described in section 

3.8.4 with 100 µg protein extract. 
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3.8.3 Heterogeneous Phase Digestion 

620 μL of triethanolamine digestion buffer (50 mmol L-1) containing 0.5% n-octylgluco-

side (NOG) was added to 15 mg of animal protein or vegetal feed sample. The suspension 

was heated for 5 min at 99°C and cooled down to room temperature. The sample was re-

duced with tris(2-carboxyethyl)phosphine (TCEP) at a final concentration of 5 mmol L-1 

for 5 min at room temperature. Iodoacetamide (IAA) was added for a final concentration 

of 10 mmol L-1, and the samples were alkylated for 30 min at room temperature in the 

dark. Trypsin (Worthington, Lakewood, USA) was added in a 1:40 ratio (w/w) on the ba-

sis of the initial sample weight. The samples were digested at 37°C for 2 h while shaking 

at 1000 rpm to achieve a stable suspension. The digestion was stopped by adding phenyl-

methanesulfonyl fluoride (PMSF) for a final concentration of 1 mmol L-1. The suspension 

was centrifuged for 5 min at 13 000 g. Afterwards, the supernatant was transferred to a 

new reaction tube. The total protein and peptide content after digestion was estimated by 

UV absorption measurement at 280 nm as described in section 3.6.3. 

3.8.4 In-Solution Digestion 

Protein extraction was performed as described in 3.8.3. However, instead of adding tryp-

sin, the sample was incubated under the same conditions without enzyme. The insoluble 

fraction was removed by centrifugation, and the supernatant was digested by trypsin for 

2 h at 37°C while shaking at 1000 rpm. The digestion was stopped by adding PMSF for a 

final concentration of 1 mmol L-1. The protein estimation was performed via UV spectros-

copy as described in section 3.6.3. 

3.9 Immunoprecipitation of Peptides 

The immunoprecipitation was performed on a KingFisher magnetic particle processor 

(Thermo Fisher Scientific, Waltham, USA). Different amounts of samples were placed in a 

well of a 96 well PCR plate. Citrate plasma samples were analyzed in amounts ranging 

from 1 µg to 10 µg. Feed compounds containing processed animal proteins (PAPs) were 

analyzed in amounts up to 425 µg. The samples were incubated with single antibodies or 

antibody mixtures. Each antibody was used in an amount of 1 µg. The stable isotope la-

beled peptide stock solutions were diluted to a working concentration of 5 fmol µL-1. A 

volume of 10 µL, corresponding to a total amount of 50 fmol was added to the samples. 
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Phosphate buffered saline (PBS) containing 0.03% (w/v) CHAPS was added for a final 

volume of 100 µL. The samples were incubated at room temperature for 1 h, followed by 

the precipitation of the peptide-antibody complexes using protein G-coated magnetic mi-

crospheres. The microspheres were used in a ratio of 5 µL per 1 µg of antibody. The mi-

crosphere conjugates were washed two times in 100 µL of PBS and three times in 100 µL 

of 50 mmol L-1 ammonium bicarbonate, each containing 0.03% (w/v) CHAPS. The pep-

tides were eluted in 20 µL of 1% formic acid (FA). 

3.10 Chromatography and Mass Spectrometry 

3.10.1 Non-Targeted Peptide Identification 

Chromatography 

Marker identification experiments were performed using a non-targeted mass spectro-

metric workflow. The separation of peptides was performed on a nanoflow UHPLC system 

(Ultimate 3000 RSLCnano, Thermo Fisher Scientific). 1 µg of sample was loaded on an Ac-

claim PepMap100 C18 µ-precolumn (0.3 mm I.D. x 5 mm, 5 µm, Thermo Fisher Scientific) 

for 5 min at a flow rate of 20 µL min-1 in LC-MS grade water containing 2% acetonitrile 

(ACN) and 0.05% trifluoroacetic acid (TFA). The peptides were separated in 180 min by 

an Acclaim PepMap RSLC C18 (75 µm I.D. x 150 mm, 2 µm, Thermo Fisher Scientific) using 

a linear gradient from 5% to 55% at 0.3 µL min-1 and 40°C. The column was washed and 

equilibrated for a further 20 min. The aqueous phase consisted of 0.1% FA in LC-MS grade 

water. The organic phase consisted of 80% ACN and 20% LC-MS grade water containing 

0.1% FA. 

Mass Spectrometric Detection in Full Scan 

The nano UHPLC system was coupled to a QExactive Plus hybrid quadrupole orbitrap 

mass spectrometer (Thermo Fisher Scientific). For a non-targeted data acquisition, a top 

10 Full-MS/ddMS2 method was performed. Full MS resolution was set to 70 000 with an 

AGC target of 3 x 106 and a maximum injection time of 100 ms. The scan range was set 

from 300 to 2000 m/z. Data dependent MS2 spectra were acquired with a resolution of 

17 500 and an AGC target of 5 x 105 with a maximum injection time of 50 ms. The isolation 

window of precursor ions was set to 2.0 m/z. Normalized collision energy was set to 25. 

Dynamic exclusion of precursors was set to 5.0 s.  
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3.10.2 Targeted Peptide Quantification 

Chromatography 

For quantification experiments after immunoprecipitation, a short chromatographic gra-

dient was used. The peptide separation was performed on the same instrument as used 

in section 3.10.1. Here, 5 µL of the eluate from the immunoprecipitation step (see 3.9) was 

loaded on the precolumn for 0.25 min at a flow rate of 120 µL min-1 in LC-MS grade water 

containing 2% ACN and 0.05% TFA. The peptides were separated on an Acclaim PepMap 

RSLC C18 (75 µm I.D. x 150 mm, 2 µm, Thermo Fisher Scientific) using different two-step 

gradients at 1 µL min-1 and 55°C. The two-step gradients are shown in Table 8. The col-

umn was washed and equilibrated for further 5 min. Mobile phases were the same as de-

scribed in section 3.10.1. 

 

Table 8. Linear two-step gradients used for targeted quantification experiments. Ruminant pro-
tein quantification (RQ) was performed using RQ1, RQ2 and RQ3. Species identification 
was performed via cross-species multiplex addressing homologous alpha-2-macroglobu-
lin peptides (XA2M). 

Time 

/ min 

Eluent B / % 

RQ1 RQ2 RQ3 XA2M 

0.00 4 4 4 4 

0.50 4 4 4 4 

5.00 15 15 15 20 

5.25 35 45 40 30 

7.50 98 98 98 98 

7.75 98 98 98 98 

10.00 4 4 4 4 

 

 

Mass Spectrometric Detection using Selected Ion Monitoring 

The quantification of marker peptides on the precursor level was performed on the same 

instrument as in section 3.10.1 using a selected ion monitoring (SIM) method with a data 

dependent acquisition of MS2 spectra (ddMS2). SIM resolution was set to 35 000. Precur-

sor m/z was supplied by an inclusion list and ions were isolated with a mass window of 

3.0 m/z. Spectral multiplexing was set to 2 for light and heavy peptide pairs. For a maxi-

mum number of data points per chromatographic peak, the peptide isolation was time 

scheduled. The AGC target was set to 2 x 105 and a maximum injection time of 60 ms used. 
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The scan range was set from 400 to 1000 m/z. Data dependent MS2 spectra were acquired 

with a resolution of 17 500 and an AGC target of 2 x 105 with a maximum injection time 

of 60 ms. The isolation window of precursor ions was set to 2.0 m/z. Normalized collision 

energy was set to 25. Dynamic exclusion of precursors was set to 3.0 s. Data analysis was 

performed using Skyline v3.7. 

Mass Spectrometric Detection using Parallel Reaction Monitoring 

The quantification of marker peptides on the fragment ion level was performed on the 

same instrument as in section 3.10.1 using parallel reaction monitoring (PRM). PRM res-

olution was set to 70 000 with an injection time of 120 ms when only 4 peptides were 

analyzed (RQ1 and RQ2). The resolution was reduced to 35 000 with an injection time of 

60 ms when more than 4 peptides were analyzed (XA2M and RQ3). The AGC target was 

set to 2 x 105 in both cases. Precursor m/z was supplied by an inclusion list and ions were 

isolated with a mass window of 1.5 m/z. Spectral multiplexing was set to 2 for light and 

heavy peptide pairs. For a maximum number of data points per chromatographic peak, 

the peptide isolation was time scheduled. The optimal normalized collision energy (NCE) 

was found to be at a level of 25 for all selected marker peptides. Data analysis was per-

formed using Skyline v3.7. 

3.10.3 Determination of the Limit of Detection and Quantification 

The limit of detection (LOD) and limit of quantification (LOQ) was determined by a 

method evaluated and published by Mani and colleagues 108. This method was proven to 

reliably determine LOD and LOQ for mass spectrometry-based peptide assays. The deter-

mination of LOD and LOQ in this method is based on the measurement of blank samples 

as well as low concentrated analyte samples, considering alpha and beta errors (For-

mula 2). Mani and colleagues did not further specify the low concentration sample. In this 

thesis, the low concentration sample was chosen as the lowest dilution step of an analyte 

dilution series showing a signal-to-noise-ratio S/N ≥ 3. The LOQ was estimated as the 

threefold of the LOD. To assess the quantification range of assays, the lower limit of quan-

tification (LLOQ) was determined. The LLOQ was chosen as the lowest concentration level 

showing an accuracy in the range of 80% to 120% with a coefficient of variation ≤20%, 

according to a guideline for bioanalytical method validation published by the United 

States Food and Drug Administration 109. 
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LOD= Xblank+ (1-α) x (SDblank+SDlow)/√N (2) 

   

Xblank mean of blank measurements  

(1-α) z value, here alpha = 0.05 with z = 1.645  

SDblank standard deviation of blank  

SDlow standard deviation of low concentration sample (S/N>3)  

√N square root of number of replicates, here n=3  
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4 Results 

4.1 Identification of Species- and Tissue-Specific Marker Peptides 

4.1.1 Identified Marker Peptides by Non-Targeted Mass Spectrometry 

In order to identify species- and tissue-specific marker peptides, non-targeted mass spec-

trometric (MS) analyses were performed. For the experimental verification of the bioin-

formatically identified species-specific plasma peptides, non-targeted MS analyses of cit-

rate plasmas from the species cattle, sheep, goat, pig, horse, chicken, turkey, duck and 

goose were performed. Verifying mass spectra for each species-specific precursor ion are 

shown in Supplementary Data C. In order to identify tissue-specific marker peptides, non-

targeted MS analyses in samples of different tissue origin were performed. Therefore, 

spray-dried plasmas (SDP) of porcine and bovine origin, a porcine blood meal (BM) and a 

bovine meat and bone meal (MBM) were analyzed. In order to be able to differentiate legal 

and illegal protein additives, a bovine milk powder was also analyzed in a non-targeted 

MS analysis. 

Table 9 shows the number of identified proteins and peptides in bovine and porcine cit-

rate plasmas and SDPs, bovine milk powder, porcine BM and bovine MBM. In the non-

processed citrate plasmas, 349 proteins were identified in the bovine plasma and 385 

proteins in the porcine plasma. The number of identified peptides was highest in the cit-

rate plasmas with 1902 and 1911, respectively. The processed SDPs showed a slightly 

lower number of identifications with 238 proteins in the bovine SDP and 191 in the por-

cine SDP and 1297 and 917 identified peptides, respectively. 399 proteins were identified 

in the processed porcine BM. The number of identified peptides in the porcine BM was 

1005 and matched the range of the SDP of porcine and bovine origin, all processed at sim-

ilar conditions of at least 80°C. The milk powder sample showed 190 protein identifica-

tions and 666 peptide identifications. The bovine MBM was prepared using different sam-

ple preparation protocols. The comparison is shown in section 4.2.3. The bovine MBM, 

prepared by heterogeneous phase digestion (HPD) showed 267 protein identifications 

and 1024 peptide identifications. Therefore, the result was in the same range as it was 

observed for the SDP and BM samples, although MBM was processed under much higher 

temperature and pressure (133°C, 3 bar, 20 min). The same MBM prepared by extraction 
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and in-solution digestion (ISD) showed 86 protein identifications and 193 peptide identi-

fications, and the TCA/acetone-prepared MBM showed 91 protein and 146 peptide iden-

tifications. Data from citrate plasma, milk powder and MBM were used for the experi-

mental verification of bioinformatically identified and selected peptides (4.1.2 and 4.1.3). 

 

Table 9. Number of proteins and peptides identified in a non-targeted mass spectrometric analysis 
of different animal proteins of porcine and bovine origin. Two citrate plasmas, two spray-
dried plasmas (SDP), one blood meal (BM), one milk powder and one meat and bone meal 
(MBM). 

Sample type Sample ID Preparation # Runs Species #Proteins #Peptides 

Citrate plasma ANID017 ISD1 3 Bovine 349 1902 

 ANID018 ISD1 3 Porcine 385 1911 

SDP ANID001 HPD2 1 Bovine 238 1297 

 ANID002 HPD2 1 Porcine 191 917 

BM ANID005 HPD2 3 Porcine 399 1005 

Milk powder ANID036 HPD2 3 Bovine 190 666 

MBM ANID030 TCA3 3 Bovine 91 146 

 ANID030 HPD2 3 Bovine 267 1024 

 ANID030 ISD1 3 Bovine 86 193 

1 in-solution digestion, 2 heterogeneous phase digestion 3 trichloroacetic acid extraction 

 

4.1.2 Identified Cross-Species Epitopes for Species Differentiation 

Five plasma proteins that allow a cross-species enrichment of homologous peptides using 

one antibody were bioinformatically identified: alpha-2-macroglobulin (A2M), coagula-

tion factor VIII (F8), antithrombin-III (SERPINC1), serum albumin (ALB) and cholinester-

ase (BCHE). The sequence alignment for these proteins is shown in Table 10. The species 

coverage describes how many species are covered by the epitope and can be enriched 

using only one antibody. The highest species coverage was achieved for A2M that covered 

all 9 species of interest. The other four cross-species epitopes covered 8 of 9 species. The 

number of species-specific peptides describes how many of the species can be differenti-

ated from the others by a unique peptide sequence. Same peptide sequences of different 

species were counted as one species-specific peptide as long as they belong to the same 

taxonomic group, e.g. ruminants or poultry. A2M and F8 showed the highest number of 
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species-specific peptides with a number of 8. The other proteins showed a lower number 

of species-specific peptides of 6 for ALB and BCHE and 7 for SERPINC1. 

To summarize, A2M showed the highest species coverage in combination with the highest 

number of species-specific peptides. The peptides’ LC-MS/MS properties were considered 

as suitable, since peptide length, amino acid composition and polarity matched the crite-

ria (see 3.2.1). This epitope was chosen to generate a group-specific polyclonal antibody 

for the parallel enrichment of 9 species and the differentiation of 8 species. The species 

sheep and goat cannot be differentiated via the chosen marker peptides. However, both 

can be differentiated from the bovine-specific peptide.  
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Table 10. Cross-species epitopes identified in a bioinformatic workflow. 
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 GSGGTAEHPFTVEEFVLPK 

9/9 8 

X         

ESGGTAEHHFTVEEFVLPK  X X       

VVVQQESGETAEHPFTVEEFVLPK    X      

AEHPFIVEEFVLPK     X     

TIHHPFSVEEYVLPK      X    

TIQHPFTVEEYVLPK       X   

TIQHPFSVEEYVLPK        X  

IQHSFSVEEYVLPK         X 
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X         

IHPQSWVHHIALR  X        

SWVHHIALR   X       

IHPTSWAQHIALR    X      

IHPQSWGHQIALR     X     

HWHNHIALR      X    

IHPAWHNHIALR       X   

QWHNHIALR         X 
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X         

ITDVIPPQAIDEFTVLVLVNTIYFK  X X       

ITDVIPPEAINELTVLVLVNTIYFK    X      

ITDVIPHGAINELTVLVLVNTIYFK     X     

GIDDLTVLVLVNTIYFK      X    

GIDELTVLVLVNTIYFK       X   
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X         

DVFLGSFLYEYSR  X X       
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X X X       

FSEMGNNAFFYYFEHR    X      
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TIAEVGNNVFFYFFEHR      X    

IAEIGNNVFFYFFEHR       X   

FAQLGHNAFFYFFEHR         X 
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4.1.3 Identified Tissue-Specific Ruminant Marker Peptides 

The identification of tissue-specific ruminant marker peptides was performed in two se-

lection processes. First, the identification of ruminant-specific plasma peptides with a 

very low sequence similarity to other species that allow a comprehensive analysis of 

MBM, SDP and BM samples (see 3.2.2). Second, the identification of tissue-specific rumi-

nant marker peptides that allow a higher specificity in MBM and blood product detection 

(see 3.2.3). 

Figure 8 shows the number of unique peptides identified in the SDP and the milk sample 

via non-targeted MS analysis for the selection of ruminant plasma markers. After HPD 

sample preparation, 238 proteins were identified in bovine SDP and 209 proteins in bo-

vine milk powder with an overlap of 34 proteins. The 204 unique bovine SDP proteins 

were selected for further candidate selection via bioinformatics. Therefore, these proteins 

were in silico fragmented into overlapping 8 amino acid comprising peptide frames. The 

occurrence of these peptides in the UniProt database was counted by an internal tool de-

veloped by Dr. Hannes Planatscher. The result of the frequency calculations for the most 

promising marker proteins is shown in Supplementary Data A. The bioinformatic work-

flow revealed 86 peptide candidates from which 33 were experimentally verified in the 

performed non-targeted MS analysis of a bovine SDP sample (Table 9). Among these can-

didates, peptides from the three high-abundant plasma proteins alpha-2-antiplasmin 

(SERPINF2), complement component 9 (C9) and protein HP-25 homolog 2 (HP252) were 

selected since they showed very low inter-species similarity. The sequence alignment in 

Figure 9 shows that the sequences are identical for the ruminant group and different for 

pig, horse and poultry animals. 

 

Figure 8. Number of identified proteins in a bovine spray-dried plasma (SDP) and a bovine milk powder. 
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Figure 9. Sequence alignment of ruminant-specific plasma protein sequences identified via bioinformatics. 

 

The second part of the marker peptide identification was performed on the basis of a non-

targeted MS analysis of the bovine samples citrate plasma, milk powder and MBM. The 

focus was set on the identification of tissue-specific markers for the differentiation of ru-

minant MBM, blood products and milk powder. The result of the non-targeted MS analysis 

of the three sample types is shown in Figure 10. The non-targeted MS analysis of citrate 

plasma, milk powder and MBM revealed ruminant-specific targets that are unique for 

each sample type. By the use of bioinformatics, peptides were filtered that allow a differ-

entiation of ruminants and other species. Out of 913 unique MBM peptide identifications, 

138 peptides were suitable for species differentiation and 10 peptides for which antibod-

ies were already available in the working group. Out of these 10 peptides, myosin-7 

(MYH7) and matrilin-1 (MATN1) were selected as markers for meat and cartilage tissue. 

The analysis of milk powder revealed 271 unique peptides, with 160 unique bovine pep-

tides and 20 peptides with already available antibodies. Out of these, osteopontin (SPP1) 

was chosen as a high-abundant marker for ruminant bone and milk. The sequence align-

ment in Figure 11 shows that the sequences for the bovine peptides differ from those of 
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the species pig, horse and poultry animals. An overview over the selected ruminant-spe-

cific marker peptides is shown in (Table 11). 

 

 

Figure 10. Number of identified peptides in bovine plasma, milk powder and meat and bone meal (MBM). 

 

 

 
Figure 11. Sequence alignment of tissue-specific ruminant meat and bone protein sequences identified via 

bioinformatics. 
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Table 11. Selected ruminant- and tissue-specific tryptic marker peptides for the development of im-
munoaffinity-based mass spectrometric assays. 

Protein Gene Tissue Peptide sequence 

Alpha-2-macroglobulin A2M blood GSGGTAEHPFTVEEFVLPK 

Complement component 9 C9 blood YTPVEAIEK 

Alpha-2-antiplasmin SERPINF2 blood LPPLSLLK 

Protein HP-25 homolog 2 HP252 blood FGFDIELFQHAVK 

Myosin-7 MYH7 meat MLSSLFANYAGFDTPIEK 

Matrilin-1 MATN1 cartilage AGGIELFAIGVGR 

Osteopontin SPP1 milk, bone YPDAVATWLKPDPSQK 

 

4.2 Sample Preparation of Processed Animal Proteins 

4.2.1 Animal Protein Extracts Analyzed by Gel Electrophoresis 

The extent of fragmentation in processed animal proteins was analyzed by lithium-do-

decyl sulfate polyacrylamide gel electrophoresis (LDS-PAGE). A phosphate buffered saline 

extraction was performed with SDP, BM and MBM samples of different species origin. The 

total protein and peptide concentration was estimated by an absorption measurement at 

280 nm and equal amounts of the water soluble and extractable fraction were loaded on 

the gel. 

The result of the Coomassie-stained gel is shown in Figure 12. The bovine citrate plasma 

sample showed a typical band pattern as it was expected. Clear sharp bands of different 

intensity over the whole molecular weight range were observed. In comparison, the SDP 

samples still showed high molecular weight proteins, however the bands were blurrier 

rather than clear, indicating a partial fragmentation of the proteins. In the highly pro-

cessed PAP samples, BM from porcine and poultry origin and MBM from bovine and poul-

try origin, little to no protein bands were observed. Since the absorption measurement 

confirmed the presence of proteins, the extracted protein amount must have been highly 

fragmented, leading to no visible protein bands within the observed molecular weight 

range. 
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A 

 

B Sample Protein content 

/ µg µL-1 

SDP cattle 4.31 ± 0.02 

SDP pig 3.96 ± 0.01 

BM poultry 0.66 ± 0.01 

BM pig 2.92 ± 0.02 

MBM cattle 1.09 ± 0.01 

MBM poultry 1.52 ± 0.02 
 

 

 

Figure 12. Gel electrophoresis (LDS-PAGE) of different animal protein extracts compared to bovine citrate 
plasma (A).The result of the A280 protein determination in triplicate measurements is shown in 
the right table (B). A total amount of 10 µg was loaded on the gel. 

 

4.2.2 A280 Method Evaluation for Complex Sample Analysis 

The A280 measurement was considered as a fast and easy way to determine the total pep-

tide content in the supernatant after direct digestion of PAPs. Usually, the method is used 

for pure proteins with known extinction coefficients 106. The procedure’s suitability for 

the protein determination in complex mixtures such as blood plasma was evaluated in 

this thesis. Citrate plasma was measured by bicinchoninic acid assay (BCA) as a reference 

method and by the A280 method with application of the rule 1 Abs ≈ 1 mg mL-1 106. 

The result of the protein determination, the deviation to the reference method and the 

protein purity of plasmas is shown in Table 12. For most species’ citrate plasma, the A280 

method achieved a similar result to that of the BCA determination. The maximum devia-

tion was observed in the pig plasma with +13.4% and in the goose plasma with -11.0%. 

The correlation of the two methods is shown in Figure 13. A correlation coefficient (Pear-

son) of 0.90 was observed. 
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Table 12. Protein determination of different species’ citrate plasma using the bicinchoninic acid as-
say (BCA) and the A280 method in triplicate measurements. 

Species 

BCA assay A280 Deviation 

mean 

/ mg mL-1 

C.V. 

/ % 

mean 

/ mg mL-1 

C.V. 

/ % 

A280/BCA 

/ % 

Pig 54.2 3.6 62.6 1.4 +13.4 

Cattle 67.6 5.0 67.3 0.1 -0.5 

Horse 66.4 4.4 69.2 0.1 +4.1 

Turkey 50.1 4.8 54.0 0.2 +7.4 

Chicken 41.1 4.8 43.8 0.4 +6.1 

Goat 68.1 5.6 62.0 0.2 -9.9 

Sheep 68.6 3.9 65.9 0.1 -4.0 

Goose 53.3 3.7 48.0 0.6 -11.0 

Duck 47.0 3.3 47.8 0.3 +1.7 

 

 

Figure 13. Correlation of bicinchoninic acid assay (BCA) and the A280 method for citrate plasma protein 
quantification. 

 

Possible interfering substances and reagents at 280 nm were evaluated. Nucleic acids can 

interfere with the protein determination at 280 nm. The ratio of A260 and A280 absorp-

tion was used to calculate the protein purity. In citrate plasma the protein purity was de-

termined with >99% and therefore nucleic acids did not interfere in plasma samples (Ta-

ble 13). The protein purity determination was repeated with PAPs and feed matrices. The 

lowest protein purity was observed for HPD-prepared fish feed with 90.1%. Since the pro-

tein purities are determined to be >90% a correction was not considered necessary. 
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Table 13. Protein purity of different sample types determined by A260/A280 ratio. 

Sample type A260/A280 Protein purity / % 

Citrate plasma 0.58 99.9 

Fish feed 1.32 90.1 

Vegetal feed 1.24 92.0 

Spray-dried plasma 0.65 99.4 

Blood meal 0.82 97.9 

Meat and bone meal 1.31 90.4 

 

 

During enzymatic digestion several reagents were added. Absorption caused by the buffer 

or the added reagents was evaluated. Neither the digestion buffer nor the used detergent 

and reducing agent showed an absorption at 280 nm (Figure 14). However, when iodoa-

cetamide was added, the absorption increased. The protease inhibitor PMSF, which was 

used to stop the enzymatic fragmentation, showed no additional absorption. The UV ab-

sorption due to added iodoacetamide and the enzyme should be blanked using a blank 

digest. 

 

 

Figure 14. UV absorption spectra of reagents used for tryptic digestion. 
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4.2.3 Evaluation of Heterogeneous Phase Digestion 

Optimization of Enzymatic Fragmentation Parameters 

The direct digestion of PAPs in suspension was optimized regarding the sample amount, 

mixing speed, trypsin type and enzyme ratio to sample (Figure 15 A-D). The parameters 

were checked for a porcine BM and a porcine SDP in an overnight incubation. The absorp-

tion at 280 nm in the supernatants was monitored to evaluate the parameters’ effects. 

Varying the sample amount showed a linear relationship between the initial sample 

weight and the absorption at 280 nm. The SDP sample showed a slight saturation at 

25 mg. The variation of the rotational speed showed higher absorption values with higher 

rotation speed. The digestion in suspension was supposed to be affected by the degree of 

mixing and the liquid-solid interface. The trypsin product of two manufacturer had no 

effect. However, an enzyme-to-sample ratio of 1:40 seemed to be more efficient than a 

ratio of 1:20. As final settings for HPD, a sample amount of 1 mg per 750 µL corresponding 

to 20 mg mL-1, 1000 rpm and Worthington trypsin in a ratio of 1:40 were chosen. 

 

A 

 

B 

 

C 

 

D 

 

Figure 15. Heterogeneous phase digestion (HPD) parameter optimization in terms of sample amount (A), 
mixing speed (B), enzyme manufacturer (C) and enzyme ratio to sample (D). 
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Application of HPD to Different Animal Protein Samples 

Using the optimized parameters, HPD was applied to different PAP and blood product 

types for different treatment times. The peptide release was determined by 280 nm ab-

sorption referred to the initial sample weight and its protein content. Typical protein con-

tent of the analyzed sample types known from literature are within the range of 67-78% 

for SDP 110 and 83-93% for BM 110 and 48-56% for MBM 14. The results were normalized 

to the mean values of the protein content ranges: 72.5% for SDP, 88% for BM and 52% 

for MBM. 

The total protein release was quite stable for a period from 2 h to 42 h HPD and did not 

increase with longer digestion times. The highest peptide release with mean of 93% was 

observed for the group of six SDP samples (Figure 16). SDPs tended to form gels when 

aqueous buffers were added, however when overnight HPD was applied, the SDPs com-

pletely dissolved. Mean releases of 39.9% and 44.5% were observed for BM deriving from 

pig and poultry, respectively. The MBM samples showed mean releases of 44.5% for poul-

try and 22.3% for bovine MBM (Table 14).  

 

 

Figure 16. Heterogeneous Phase Digestion applied to different animal protein types for varying treatment 
times. Total protein release is expressed as percent yield normalized to the initial sample amount 
and its mean protein content known from literature, 72.5% for spray-dried plasma (SDP), 88% 
for blood meal (BM) and 52% for meat and bone meal (MBM) 14,110.Single measurements were 
performed for each digestion time. 
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Table 14. Mean total peptide release from different animal protein sample types after heterogene-
ous phase digestion (HPD) in a time frame from 2 h to 42 h. Two spray-dried plasma (SDP), 
two blood meals (BM) and two meat and bone meals (MBM) of different species origin 
were analyzed. 

Sample Mean A280 

/ µg µL-1 

Mean protein yield 

/ % 

SDP cattle 15.1 ± 0.5 104.1 ± 3.2 

SDP pig #1 13.7 ± 1.0 94.4 ± 6.9 

BM poultry 7.8 ± 0.5 44.5 ± 3.0 

BM pig 7.0 ± 0.3 39.9 ± 1.7 

MBM poultry 4.5 ± 0.4 44.5 ± 3.0 

MBM cattle 2.3 ± 0.3 22.3 ± 2.4 

 

Comparison of Extraction with In-Solution Digestion to HPD by UV-monitoring 

Furthermore, it was assessed if the HPD is not simply a buffer extraction with the diges-

tion of dissolved proteins but more a direct digestion at the liquid-solid interface. There-

fore, the buffer extraction with in-solution digestion (ISD) of the supernatant after cen-

trifugation was compared to the direct digestion in suspension (HPD). As indicated by 

absorption at 280 nm, HPD significantly released more total peptide compared to ISD 

with a factor of 2 in a bovine MBM and a porcine BM. In the porcine SDP sample, HPD 

improved the total peptide released by a factor of 5.6 (Figure 17). 

 

 

Figure 17. Protein determination via A280 method after application of heterogeneous phase digestion 
(HPD) and extraction with in-solution digestion (ISD) to the sample types porcine blood meal 
(pBM), porcine spray-dried plasma (pSDP) and ruminant meat and bone meal (rMBM) in six rep-
licates. 
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Mass Spectrometric Evaluation of Heterogeneous Phase Digestion 

A more detailed comparison of HPD, ISD and the state of the art TCA/acetone (TCA) pro-

tocol was performed using a bovine MBM. Here, in addition to the determination by A280 

absorption, a detailed non-targeted MS analysis was performed. The non-targeted analy-

sis allowed to draw a conclusion whether HPD only releases more of the same peptides 

or more different peptides. 

The protein content after TCA/acetone extraction was determined with Coomassie Plus 

(Bradford) assay. 100 µg of extract was then digested according to the ISD protocol, giving 

the final protein concentration of 0.13 µg µL-1 (Table 15). The highest extraction efficiency 

determined by the protein concentration in the final digest was observed for HPD with 

2.22 µg µL-1, followed by the ISD protocol showing half the amount of HPD with a concen-

tration of 1.09 µg µL-1.  

 

Table 15. Protein determination after the application of three different sample preparation proto-
cols to a ruminant meat and bone meal. Three replicates were performed. 

Protocol Mean protein 

 / µg µL-1 

SD 

/ µg µL-1 

C.V. 

/ % 

TCA/acetone 0.13 0.002 1.14 

HPD 2.22 0.150 6.84 

ISD 1.09 0.080 6.93 

 

A total amount of 1 µg of each digest was subjected to a non-targeted LC-MS/MS analysis. 

Three runs per sample preparation protocol were performed. The number of identified 

proteins is shown in Figure 18. The number of identified peptides is given in brackets. The 

analysis of a bovine MBM using the HPD protocol revealed five times more peptides and 

three times more proteins compared to ISD. The total number of peptides identified by 

HPD was 1024 and only 193 by ISD preparation. The numbers of identified proteins are 

267 and 86, respectively. A total number of 146 peptides and 91 proteins were identified 

using the TCA/acetone protocol. The results show that HPD releases not only twice the 

amount compared to a buffer extraction but also significantly more peptides from a highly 

processed MBM sample. 
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Total numbers 

TCA: 91 (146) 

ISD: 86 (193) 

HPD: 267 (1024) 

Figure 18. Number of identified proteins and peptides (given in brackets) via non-targeted mass spectro-
metric analysis of a bovine meat and bone meal after the application of the different sample prep-
aration methods TCA/acetone, extraction with in-solution digestion (ISD) and heterogeneous 
phase digestion (HPD). Three non-targeted MS runs were performed for each preparation pro-
tocol. 

 

4.3 Development of Multiplex Immuno-MS Assays 

4.3.1 Multiplex Panel and Chromatographic Separation 

The selected marker peptides were compiled in different multiplex assays with different 

chromatographic gradients. Eight species-specific homologous A2M peptides were com-

piled in one 8-plex assay to identify the species origin of blood-derived animal protein 

samples. The three highly ruminant-specific plasma peptides and the bovine A2M peptide 

were compiled in one 4-plex assay to analyze blood product samples for ruminant protein 

ingredients. The tissue-specific ruminant peptides from MYH7, MATN1 and SPP1 were 

compiled together with the plasma-specific target for C9 in another 4-plex assay to ana-

lyze MBM for ruminant proteins. The two 4-plex assays, both comprising C9, were finally 

merged into one 7-plex assay to analyze unknown animal proteins for ruminant contam-

inations deriving from milk, blood products or MBM. The gradients and the chromato-

graphic separation of the marker peptides is shown in Figure 19. Since the samples were 

immunoaffinity purified, short 5 min chromatographic gradients with a 5 min column 

flush and equilibration step could be developed. This allowed a sample cycle time of only 

10 min. 
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A 

 

B 

 

C 

 

D 

 

Figure 19. Chromatographic separation of the marker peptides compiled in four multiplex assays: 8-plex 
assay XA2M targeting homologous peptides from different species (A), 4-plex assay RQ1 target-
ing ruminant-specific plasma peptides (B), 4-plex assay RQ2 targeting tissue-specific ruminant 
peptides (C) both combined in 7-plex assay RQ3 (D). 

 

4.3.2 Determination of Peptide Ionization and Fragmentation Properties 

The ionization properties of the chromatographically separated peptides were analyzed. 

A full MS scan of standard peptides was performed and each peptide’s charge state with 

the higher signal intensity was chosen for targeted experiments (Supplementary Data B). 

In a second targeted experiment the fragmentation properties of the chosen precursor 

m/z were analyzed. Different normalized collision energies (NCE) settings were checked: 

15, 20, 25 and 30. Data analysis was performed for single and double charged fragment 

ions. To discriminate the analytes from the isotope labeled standards, only y-ions were 

considered since the isotope labeling was on the peptide C-terminus. The result of the 

collision energy optimization is shown in Supplementary Data D. Table 16 shows the m/z 

and charge state of all precursor ions along with the m/z and charge states for the three 

most intense fragment ions of each peptide analyzed in this work. 
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Table 16. Selected marker peptides with precursor charge states and its most intense fragment ions. 

Protein Peptide sequence 
Precursor 

m/z 

Most intense 

fragments 

m/z 

C9 YTPVEAIEK 525.2793 p++ 
785.4403 y7+ 

688.3876 y6+ 

589.3192 y5+ 

SERPINF2 LPPLSLLK 440.7969 p++ 
384.2549 y7++ 

670.4498 y6+ 

335.7285 y6++ 

HP252 FGFDIELFQHAVK 517.6049 p+++ 
971.5309 y8+ 

842.4883 y7+ 

729.4042 y6+ 

MYH7 MLSSLFANYAGFDTPIEK 1002.4928 p++ 
1472.7056 y13+ 

1325.6372 y12+ 

486.2922 y4+ 

MATN1 AGGIELFAIGVGR 630.3590 p+++ 
719.4199 y7+ 

961.5465 y9+ 

832.5039 y8+ 

SPP1 YPDAVATWLKPDPSQK 605.9807 p++ 
459.2562 y4+ 

671.3359 y6+ 

778.4094 y14++ 

A2M, Cattle GSGGTAEHPFTVEEFVLPK 668.0021 p+++ 
929.4727 y17++ 

1305.7089 y11+ 

861.4716 y7+ 

A2M, Sheep/Goat ESGGTAEHHFTVEEFVLPK 705.3445 p+++ 
949.4758 y17++ 

1061.5877 y9+ 

861.4716 y7+ 

A2M, Pig VVVQQESGETAEHPFTVEEFVLPK 900.4569 p+++ 
1137.5499 y20++ 

1073.5206 y19++ 

1073.5206 y19++ 

A2M, Horse AEHPFIVEEFVLPK 552.2995 p+++ 
861.4716 y7+ 

732.4291 y6+ 

603.3865 y5+ 

A2M, Chicken TIHHPFSVEEYVLPK 599.3174 p+++ 
877.4666 y7+ 

1307.688+ y11+ 

748.4240 y6+ 

A2M, Turkey TIQHPFTVEEYVLPK 600.9892 p+++ 
877.4666 y7+ 

1321.7038 y11+ 

748.4240 y6+ 

A2M, Goose TIQHPFSVEEYVLPK 596.3173 p+++ 
877.4666 y7+ 

1307.6882 y11+ 

748.4240 y6+ 

A2M, Duck IQHSFSVEEYVLPK 559.2945 p+++ 
877.4666 y7+ 

748.4240 y6+ 

619.3814 y5+ 
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4.3.3 Antibody Functionality in Feed Matrices 

During the antibody generation process, the functionality of the polyclonal antibodies in 

rabbit serum was evaluated. After purification, the polyclonal antibodies were tested in 

phosphate buffered saline (Supplementary Data E). However, complex feed matrices can 

have an effect on the antibody functionality by cross-reactive epitopes. To assess possible 

matrix effects, 50 fmol of each isotope labeled standard peptide was measured in a back-

ground of different known amounts of digested feed matrix. 

Figure 20 shows the signal intensities of 8 species-specific A2M peptides, captured by the 

cross-species antibody at different background levels of digested fish feed. The fish feed 

matrix had no drastic effect on the measured signal intensity of the standard peptides, 

indicating that the antibody functionality was not affected. Rather the opposite was ob-

served: The log2-transformed fold changes in Figure 21 show a consistent improvement 

of the signal intensity for all peptides. Nonetheless, the effects can be considered low as 

indicated by the mean 95% significance borders shown as dashed horizontal lines. 

Figure 22 shows the results for the ruminant standard peptides in vegetal feed matrix. 

The peptide-antibody-pairs showed very different results in this feed matrix. The log2-

transformed fold changes in Figure 23 clearly show a steady decrease in SERPINF2 signal 

intensity with higher feed matrix amounts. It can be assumed that this antibody was af-

fected by the vegetal feed matrix and the marker peptide was enriched with a lower effi-

ciency. There were also opposite effects: HP252 and A2M peptides were detected with a 

higher signal intensity up to 10 µg matrix and then, a decrease was observed. Neverthe-

less, the signals were still higher than in the buffer control with 0 µg feed matrix. However, 

with the exception of SERPINF2, the effects were also considered low as indicated by the 

mean 95% significance borders 
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Figure 20. Stable isotope labeled standard signal intensities measured by multiplex XA2M at different 
amounts of fish feed matrix in triplicates. 

 

 
Figure 21. log2-transformed fold changes in stable isotope labeled standard signal intensities measured by 

multiplex XA2M at different amounts of fish feed matrix.The mean 95% significance levels are 
shown as horizontal lines. 
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Figure 22. Stable isotope labeled standard signal intensities measured by multiplex RQ3 at different 
amounts of vegetal cattle feed matrix in triplicates. 

 

 

Figure 23. log2-transformed fold changes in stable isotope labeled standard signal intensities measured by 
multiplex RQ3 at different amounts of vegetal cattle feed matrix. The mean 95% significance lev-
els are shown as horizontal lines.   
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4.3.4 Heterogeneous Phase Digestion in Targeted Analyses 

In section 4.2.3 it was shown that the HPD protocol is superior to an extraction in the same 

buffer system. HPD released more proteins which was shown in A280 measurements in 

the supernatant and in non-targeted MS analyses. However, A280 monitoring and non-

targeted MS do not indicate the improve in terms of marker peptide release. Since the 

release of marker peptides is important for an accurate, precise and sensitive quantifica-

tion, the efficiency of ISD and HPD in different sample types was determined by an analy-

sis with developed multiplex assays. 

The multiplex assay RQ3 was applied to an ISD- and HPD-prepared MBM to analyze the 

marker peptides for ruminant detection. The multiplex assay XA2M was applied to ISD- 

and HPD-prepared porcine BM and SDP samples (Figure 24). For the ruminant peptides, 

very different results were observed. The SPP1 peptide increased by a factor of 1.6, C9 by 

a factor of 2.6 and SERPINF2 by a factor of 5.7. There were also very drastic increases: The 

signals for HP252, A2M MYH7 and MATN1 after ISD preparation were in the attomole 

range and therefore near the limit of detection. After the application of HPD, the peptide 

amounts reached levels in the range of 19.2 fmol to 737 fmol, resulting in very high im-

provement factors. The HP252 release increased by a factor of 28, A2M by a factor of 113 

and MYH7 and MATN1 by factors of 2344 and 1307, respectively. The release of the por-

cine A2M peptide increased by a factor of 2.8 in the BM sample and 10.5 in the SDP sample. 

A 

 

B 

 

Figure 24. Quantification of seven marker peptides using multiplex RQ3 after application of heterogeneous 
phase digestion (HPD) and buffer extraction with in-solution digestion (ISD) to a ruminant meat 
and bone meal (A) and marker peptides for alpha-2-macroglobulin quantified in meat and bone 
meal (MBM), blood meal (BM) and spray-dried plasma (SDP), respectively (B). Six replicates 
were prepared for each sample and protocol combination.  
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4.3.5 Digestion Kinetics 

The time dependent release of the marker peptides from different sample types and spe-

cies was analyzed. In case of the cross-species approach, not for every species a PAP sam-

ple was available. Therefore, native citrate plasmas were subjected to an in-solution di-

gestion and the peptide release from the respective proteins was analyzed (Figure 25). 

Mostly, the peptides showed a relative constant appearance during tryptic digestion up 

to 42 h. In contrast, the A2M-specific peptides from turkey and goose showed steadily de-

creasing concentrations after 2 h digestion time. The chicken-specific peptide showed a 

constant concentration up to 10 h and rapid degradation at overnight digestion (16 h) and 

longer digestion times. The highest relative mean peptide release was observed to be at 

2 h which was therefore chosen as the standard digestion time. 

The release from different sample types was determined for the bovine species since bo-

vine plasma, MBM and SDP were available (Figure 25). Citrate plasma and rSDP showed 

very similar peptide releases. The peptide release from rMBM was slightly different at a 

digestion time of 16 h, however, the overall trend was the same including the rapid deg-

radation after 24 h to 42 h. The application of HPD to different sample types was consid-

ered to be unproblematic. 

The peptide release from different ruminant proteins was analyzed by the multiplex assay 

for ruminant quantification RQ3 (Figure 26). A bovine MBM and a bovine SDP served as 

samples and were treated by HPD for varying times. Again, some targets showed a con-

stant concentration between 2 h and 42 h of HPD (for example SERPINF2). In contrast, 

the proteotypic peptides for HP252, MATN1 and MYH7 showed a decreasing concentra-

tion over time in the MBM sample. MATN1 and MYH7 were not detected in the SDP sam-

ple, however, HP252 showed a decreasing concentration in the SDP sample as well. A di-

gestion time of 2 h was already sufficient to achieve a mean peptide release of 90%, which 

was the reason to choose this as the standard fragmentation time for HPD in all analyses. 
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Figure 25. Time dependent marker peptide release from different species’ citrate plasma after application 
of in-solution digestion (ISD) analyzed by multiplex XA2M (left). The bovine peptide released 
from the different animal protein types citrate plasma, spray-dried plasma and meat and bone 
meal after application of heterogeneous phase digestion (right). Three replicates were prepared. 

 

 

 
 

 

Figure 26. Time dependent marker peptide release after application of heterogeneous phase digestion 
(HPD) to a bovine meat and bone meal analyzed by multiplex RQ3 (left) and to a bovine spray-
dried plasma (right). Three replicates were prepared. 
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4.3.6 Linearity and Precision in Feed Matrices 

Linearity and precision were assessed with a dilution series of the synthetic analyte pep-

tides spiked with a constant amount of isotope labeled standard peptides in digested feed 

matrices. The prepared samples were measured with the multiplex assays RQ3 and XA2M 

in both SIM and PRM mode. The signal ratios from light and heavy peptides were plotted 

against the concentration ratios and a linear regression was performed. Accuracy and pre-

cision were calculated using the regression equation and plotted against the total peptide 

amount in the immunoaffinity step. The limit of detection (LOD) and lower limit of quan-

tification (LLOQ) were determined as described in section 3.10.3. Only PRM data are 

shown in the following graphs. SIM measurements are shown in Supplementary Data G 

(RQ3) and H (XA2M).  

Multiplex RQ3 showed a linear relationship between the analyte to standard signal ratios 

and the actual concentration ratios over a concentration range of four to five orders of 

magnitude in both measuring modes PRM (Figure 27) and SIM (Suppl. Figure 57). The 

coefficients of determination R2 ranged from 0.99465 for the bovine MATN1 peptide in 

SIM to 0.99993 for the bovine A2M peptide in SIM (Table 17). The calculated limits of 

detection (LOD) ranged from 38 amol for the bovine A2M peptide in PRM to 2.40 fmol for 

the bovine MYH7 peptide in SIM. For all peptides, the LODs were consistently lower in 

PRM compared to SIM detection. The lower limits of quantification (LLOQ) were observed 

in the range from 51 amol for the bovine C9 peptide in SIM (Suppl. Figure 58) to 1.37 fmol 

for most of the ruminant peptides in PRM (Figure 28). 

Multiplex XA2M showed a linear relationship between the analyte to standard signal ra-

tios and the actual concentration ratios over a concentration range of four to five orders 

of magnitude in both measuring modes PRM (Figure 29) and SIM (Suppl. Figure 63). The 

coefficients of determination R2 ranged from 0.98792 for the sheep and goat A2M peptide 

in SIM to 0.99992 for the turkey A2M peptide in PRM (Table 17). The calculated limits of 

detection (LOD) ranged from 30 amol for the bovine A2M peptide in PRM to 4.42 fmol for 

the goose A2M peptide in SIM. With the exception of the porcine A2M peptide, the LODs 

were consistently lower in PRM compared to SIM detection. The lower limits of quantifi-

cation (LLOQ) were observed in the range from 152 amol for the chicken A2M peptide in 

SIM (Suppl. Figure 64) to 37.0 fmol for the sheep and goat A2M peptide in PRM (Figure 

30) as well as for the goose A2M peptide in SIM (Suppl. Figure 64).  



60  4 Results 

  

  

  

 

 

Figure 27. Linearity and limit of detection (shown as dashed horizontal line) of multiplex RQ3 measured in 
PRM mode and vegetal cattle feed as matrix. Each concentration was prepared as triplicate.  
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Figure 28. Accuracy and precision of multiplex RQ3 measured in PRM mode and vegetal cattle feed as ma-
trix. Each concentration was prepared as triplicate.  
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Figure 29. Linearity and limit of detection (shown as dashed horizontal line) of multiplex XA2M measured 

in PRM mode and fish feed as matrix. Each concentration was prepared as triplicate.  
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Figure 30. Accuracy and precision of multiplex XA2M measured in PRM mode and fish feed as matrix. Each 

concentration was prepared as triplicate. 

 



 

Table 17. Linear regression data and the determined limit of detection (LOD) and lower limit of quantification (LLOQ) of the dilution 
series prepared in feed matrix and measured by multiplex XA2M and RQ3. 

Assay Peptide sequence 

SIM PRM 

Slope Intercept R2 
LOD 

/ fmol 

LLOQ 

/ fmol 
Slope Intercept R2 

LOD 

/ fmol 

LLOQ 

/ fmol 

RQ3 

YTPVEAIEK 1.02 1.19E-03 0.99786 0.137 0.051 1.09 -1.70E-03 0.99961 0.038 1.372 

LPPLSLLK 1.16 1.68E-02 0.99984 1.239 0.152 1.20 6.35E-04 0.99918 0.645 0.457 

FGFDIELFQHAVK 1.09 1.15E-02 0.99863 0.759 1.372 1.15 2.80E-03 0.99946 0.433 1.372 

MLSSLFANYAGFDTPIEK 1.00 1.20E-02 0.99877 2.397 1.372 1.02 -9.75E-03 0.99904 0.125 1.372 

AGGIELFAIGVGR 1.24 3.29E-03 0.99465 0.390 0.457 1.31 1.06E-03 0.99920 0.121 0.152 

YPDAVATWLKPDPSQK 1.31 2.47E-03 0.99942 0.308 0.152 1.35 -1.53E-03 0.99975 0.088 1.372 

GSGGTAEHPFTVEEFVLPK 0.58 2.49E-03 0.99993 0.212 0.152 0.61 -3.41E-05 0.99853 0.155 1.372 

XA2M 

GSGGTAEHPFTVEEFVLPK 0.47 2.97E-03 0.99973 0.486 0.457 0.46 -5.94E-03 0.99889 0.030 12.346 

ESGGTAEHHFTVEEFVLPK 0.70 1.55E-03 0.98792 0.336 0.457 0.74 -1.02E-02 0.99623 0.245 37.037 

VVVQQESGETAEHPFTVEEFVLPK 0.96 3.22E-03 0.99967 0.692 4.115 1.14 8.90E-03 0.99274 1.200 12.346 

AEHPFIVEEFVLPK 1.08 4.11E-03 0.99977 1.025 1.372 1.10 -7.45E-03 0.99080 0.167 4.115 

TIHHPFSVEEYVLPK 0.80 1.47E-03 0.99960 0.340 0.152 0.86 -1.51E-02 0.99927 0.155 12.346 

TIQHPFTVEEYVLPK 0.77 5.93E-03 0.99967 0.657 0.457 0.75 -1.35E-02 0.99992 0.235 12.346 

TIQHPFSVEEYVLPK 0.86 6.17E-03 0.99975 4.421 37.037 0.62 -2.13E-02 0.99966 0.431 12.346 

IQHSFSVEEYVLPK 0.91 -6.32E-03 0.99052 0.248 4.115 0.75 -1.18E-02 0.99838 0.116 12.346 

6
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4.3.7 Linearity and Precision in Phosphate Buffer 

The dilution series were also performed in phosphate buffered saline without feed matri-

ces in order to determine possible matrix effects on the assay performance. Dilution series 

of the synthetic analyte peptides were prepared in the presence of a constant amount of 

isotope labeled standard peptides in phosphate buffered saline and measured with the 

developed multiplex assays RQ3 and XA2M in both SIM and PRM mode. Data analysis was 

performed in the same way as described in the section 4.3.6. The graphics for SIM and 

PRM measurements in phosphate buffered saline are shown in Supplementary Data G 

(RQ3) and H (XA2M). Table 18 provides an overview over the linear regression data and 

the determined limit of detection (LOD) and lower limit of quantification (LLOQ) for mul-

tiplex RQ3 and XA2M. 

Multiplex RQ3 showed a linear relationship between the analyte to standard signal ratios 

and the actual concentration ratios over a concentration range of four to five orders of 

magnitude in both measuring modes PRM (Figure 53) and SIM (Figure 54). The coeffi-

cients of determination R2 ranged from 0.99445 for the bovine SPP1 peptide in PRM to 

0.99976 for the bovine C9 peptide in PRM (Table 18). The calculated LOD ranged from 

10 amol for the bovine SPP1 peptide in PRM to 1.66 fmol for the bovine HP252 peptide in 

SIM. With the exception of the MATN1 peptide, the LODs were consistently lower in PRM 

compared to SIM detection. The LLOQ were observed in the range from 51 amol for the 

A2M peptide in SIM (Figure 56) to 4.12 fmol for most of the ruminant peptides in PRM 

(Figure 55). 

Multiplex XA2M showed a linear relationship between the analyte to standard signal ra-

tios and the actual concentration ratios over a concentration range of four orders of mag-

nitude in PRM (Figure 59) and four to five orders of magnitude in SIM mode (Figure 60). 

The coefficients of determination R2 ranged from 0.98768 for the turkey A2M peptide in 

PRM to 0.99997 for the sheep and goat A2M peptide in SIM (Table 18). The calculated 

LOD ranged from 95 amol for the turkey A2M peptide in PRM to 6.0 fmol for the pig A2M 

peptide in SIM. For all A2M peptides, the LODs were consistently lower in PRM compared 

to SIM detection. The LLOQ were observed in the range from 457 amol for the ruminant 

A2M peptides from cattle, sheep and goat in SIM (Figure 62) to 12.4 fmol for most of the 

A2M peptides in PRM (Figure 61).



 

Table 18. Linear regression data and the determined limit of detection (LOD) and lower limit of quantification (LLOQ) of the dilution 
series prepared in phosphate buffer and measured by multiplex XA2M and RQ3. 

Assay Peptide sequence 

SIM PRM 

Slope Intercept R2 
LOD 

/ fmol 

LLOQ 

/ fmol 
Slope Intercept R2 

LOD 

/ fmol 

LLOQ 

/ fmol 

RQ3 

YTPVEAIEK 1.03 8.34E-04 0.99881 0.101 0.152 1.10 -1.68E-03 0.99976 0.056 1.372 

LPPLSLLK 1.22 4.73E-03 0.99904 0.358 0.152 1.21 -4.72E-04 0.99968 0.086 0.457 

FGFDIELFQHAVK 1.07 2.56E-02 0.99969 1.659 4.115 1.14 -1.38E-03 0.99940 0.277 4.115 

MLSSLFANYAGFDTPIEK 0.99 6.22E-04 0.99845 0.229 0.457 1.02 -6.47E-03 0.99925 0.123 4.115 

AGGIELFAIGVGR 1.29 5.17E-03 0.99950 0.291 0.152 1.26 7.52E-03 0.99448 0.423 4.115 

YPDAVATWLKPDPSQK 1.33 1.38E-03 0.99823 0.157 0.152 1.30 -4.47E-03 0.99445 0.010 4.115 

GSGGTAEHPFTVEEFVLPK 0.60 3.75E-03 0.99513 0.239 0.051 0.61 -3.65E-03 0.99945 0.125 4.115 

XA2M 

GSGGTAEHPFTVEEFVLPK 0.54 -2.67E-05 0.99990 1.049 0.457 0.53 -7.17E-03 0.99934 0.237 12.346 

ESGGTAEHHFTVEEFVLPK 0.94 3.35E-03 0.99997 1.453 0.457 1.06 -3.79E-02 0.99513 1.341 12.346 

VVVQQESGETAEHPFTVEEFVLPK 1.07 3.40E-04 0.99970 5.999 4.115 1.18 -2.38E-02 0.99053 0.416 4.115 

AEHPFIVEEFVLPK 1.17 3.97E-03 0.99940 4.058 1.372 1.23 -1.66E-02 0.99977 0.518 12.346 

TIHHPFSVEEYVLPK 0.86 -6.50E-04 0.99753 1.401 1.372 0.91 -1.48E-02 0.99929 0.268 12.346 

TIQHPFTVEEYVLPK 0.80 3.50E-04 0.99969 1.829 1.372 0.85 -7.62E-02 0.98768 0.095 12.346 

TIQHPFSVEEYVLPK 0.63 -2.01E-03 0.99924 1.644 1.372 0.63 -2.04E-02 0.99543 0.236 4.115 

IQHSFSVEEYVLPK 0.76 -7.38E-03 0.99994 0.939 4.115 0.78 -3.05E-02 0.99867 0.613 12.346 
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4.3.8 Specificity of Mass Spectrometric Detection Methods 

Dilution experiments revealed that the precursor detection (SIM) is more sensitive, accu-

rate and precise for some marker peptides compared to the fragment ion detection (PRM) 

(section 4.3.6 and 4.3.7). However, the detection specificity seemed to be dramatically 

higher using PRM. This was further evaluated in a comparison of SIM and PRM measuring 

matrix blank samples after immunoaffinity enrichment and analyte measurements in low 

concentration samples in matrix. 

Figure 31 shows mass spectra acquired for three marker peptides in a matrix blank sam-

ple (VF). Both PRM and SIM scans were acquired with a mass analyzer resolution of 

35 000. The quadrupole isolation window in SIM was set to 3.0 m/z in order to isolate at 

least three precursor isotopes for a higher analyte specificity. The isolation window in 

PRM was set to 1.5 m/z since the specificity is already given by several fragment ions of 

the monoisotopic precursor m/z. The mass spectra acquired on the fragment ion level 

(PRM) showed a very low noise level and no interfering ions in the mass range of the an-

alytes were observed. Mass spectra acquired on the precursor level (SIM) showed several 

interfering ions over the whole mass range. Even in the mass range of the analytes, inter-

fering ions were detected in the matrix blank sample. 

Figure 32 shows extracted ion chromatograms from mass spectra acquired in the pres-

ence of a marker peptide at the lowest detectable concentration of 1.37 fmol. Interfering 

signals in the chromatogram were observed for precursor detection, which could affect 

peak integration. In contrast, no interfering ions were observed in the chromatogram of 

the fragment ions, facilitating peak identification and integration. The higher detection 

specificity of fragment ion scan was preferred over the higher sensitivity for some mark-

ers on the precursor level although the signal intensity was lower on the fragment ion 

level. 
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SERPINF2 
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MYH7 

  

Figure 31 Mass spectra of vegetal feed blank measurements acquired after immunoaffinity enrichment in 
selected ion monitoring (SIM) and parallel reaction monitoring (PRM) mode for three selected 
marker peptides. 

 

SIM PRM 

  

Figure 32. Extracted ion chromatograms (XIC) for SERPINF2 present in a low concentration (1.37 fmol) ac-
quired with selected ion monitoring (SIM) and parallel reaction monitoring (PRM) with a mass 
analyzer resolution of 30 000. Three ions were analyzed to achieve a specific detection. The three 
differently colored XICs represent the three most intense precursor isotope ions in SIM, and the 
three most intense fragment ions of the monoisotopic precursor ion in PRM. 
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4.3.9 Limit of Detection and Quantification in Spiked Samples 

Ruminant Quantification Assay RQ3 

Two types of PAPs with different processing degrees and analyte concentrations were 

spiked into a vegetal cattle feed matrix (VF). Ruminant spray-dried plasma (rSDP) was 

chosen as high concentration feed additive. The processed ruminant meat and bone meal 

(rMBM) served as low concentration feed additive. BM was expected to show analyte con-

centration between these two extrema and was not analyzed in spike-in experiments. 

Both samples were treated separately according to the HPD protocol, mixed afterwards 

with the digested VF and then analyzed by targeted MS. Additionally, the rSDP sample was 

spiked into digested porcine spray-dried plasma (pSDP) in order to determine the detec-

tion limit in PAP-PAP admixtures. The spike-in dilution series was used to determine the 

limit of detection expressed in femtomol as it was done in the standard dilution series 

(shown as dashed horizontal line). The first spike-in level that exceeded the determined 

LOD was used as the lowest detectable level expressed in weight percentage. The limit of 

quantification (LOQ) was determined as the lowest spike-in concentration that was ana-

lyzed with a coefficient of variation ≤20% and applying the rule LOQ = 3 x LOD (shown as 

solid horizontal line). The calculated detection and quantification limits and the regres-

sion data are shown in Table 19. 

In the rMBM in VF spike-in series, the most sensitive detection was achieved for C9, 

MATN1 and SPP1, where all spike-in samples starting with 0.05% were detected above 

the calculated LOD (Figure 33). The 0.1% spike-in sample was positively detected via the 

marker peptides from MYH7 and A2M. SERPINF2 and HP252 were the least sensitive 

markers, allowing the detection of 0.50% rMBM in VF. In terms of quantification similar 

results were observed. SERPINF2 and HP252 showed the highest LOQ of 5.00%. The LOQs 

for A2M and C9 were 0.75% and 0.25%, respectively. A quantitative detection of rMBM in 

VF was achieved at 0.05% for MATN1 followed by the markers MYH7 and SPP1 at 0.10%, 

respectively.  

In the rSDP in VF spike-in series all concentrations starting with 0.05% were quantita-

tively detected via all four plasma targets A2M, C9, SERPINF2 and HP252 (Figure 34). As 

expected the meat and bone markers MYH7 and MATN1 were not detected above the LOD 

in the rSDP spike-in sample. Since SPP1 occurs in low levels in plasma, SPP1 was detected 
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in spike-in levels above 0.75% and quantitatively determined above 5.00%. Plasma pro-

tein concentrations were much higher in SDP compared to MBM, indicated by the slope of 

the regression equations. For this reason, not only the detection limit was lower, but also 

the upper limit of quantification was achieved. High standard deviations and non-linear 

signals were observed for A2M, HP252 and SERPINF2. To avoid this, 10% SDP adultera-

tions needed to be diluted. 

In the rSDP in pSDP spike-in series the marker A2M was not analyzed since the corre-

sponding antibody enriches in a cross-species manner and therefore also the matrix spe-

cies. For this reason, the SDP spike-in samples were diluted and measured with a total 

amount of 20 µg instead of 100 µg. SERPINF2 showed a decreased sensitivity with a de-

tection limit of 5.00% rSDP in pSDP. However, C9 and HP252 were able to detect 0.10% 

and 0.25% spike-in levels, respectively. A quantification of rSDP in pSDP was possible at 

0.25% via C9 and 0.50% via HP252 (Figure 35).  

To summarize, developed multiplex RQ3 was suitable for detecting and quantifying a bo-

vine MBM or SDP in a VF background in a tissue-specific way at the regulatory level of 

0.1% (w/w) which is the approved limit of detection of the official PCR and microscopic 

method. Linearity is given up to 100% sample without a need for sample dilution for the 

rMBM samples. However, to avoid carry-over, the samples with SDP adulterations of 10% 

or higher should be diluted. 
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Figure 33. Dilution of a ruminant meat and bone 

meal (rMBM) in a vegetal cattle feed 
(VF) separately prepared by heteroge-
neous phase digestion, measured by 
multiplex RQ3. The limit of detection is 
shown as dashed horizontal line, and 
the limit of quantification as solid hor-
izontal line. The dilution series was 
prepared as a triplicate. 
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Figure 34. Dilution of a ruminant spray-dried 

plasma (rSDP) in a vegetal cattle feed 
(VF) separately prepared by heteroge-
neous phase digestion, measured by 
multiplex RQ3. The limit of detection is 
shown as dashed horizontal line, and 
the limit of quantification as solid hor-
izontal line. The dilution series was 
prepared as a triplicate. 
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Figure 35. Dilution of a ruminant spray-dried 

plasma (rSDP) in a porcine spray-
dried plasma (pSDP) separately pre-
pared by heterogeneous phase diges-
tion, measured by multiplex RQ3. The 
limit of detection is shown as dashed 
horizontal line, and the limit of quanti-
fication as solid horizontal line. The di-
lution series was prepared as a tripli-
cate. 

 
Table 19. Linear regression data and the determined limit of detection (LOD) and limit of quantifi-

cation (LOQ) of the ruminant meat and bone meal (rMBM) and ruminant spray-dried 
plasma (rSDP) dilution in a vegetal cattle feed matrix (VF) and a porcine spray-dried 
plasma matrix (pSDP). In the rSDP in pSDP dilution, A2M was not analyzed (n.a.). 

spike-in protein slope intercept R2 LOD LOQ 

/ fmol / % / fmol / % 

rM
B

M
 i

n
 V

F
 

A2M 1.31 -1.90E-01 0.99995 0.117 0.10 0.351 0.75 

C9 0.64 -5.62E-02 0.99906 0.007 0.05 0.021 0.25 

SERPINF2 0.40 5.62E-02 0.99950 0.113 0.50 0.340 5.00 

HP252 0.80 3.85E-01 0.99967 0.586 0.50 1.757 5.00 

MYH7 4.31 -2.33E-02 0.99565 0.105 0.10 0.316 0.10 

MATN1 9.37 -2.42E-01 0.99811 0.242 0.05 0.726 0.05 

SPP1 26.44 1.14E-02 0.99950 0.043 0.05 0.128 0.10 

rS
D

P
 i

n
 V

F
 

A2M 709.47 8.00E-01 0.99615 0.757 0.05 2.271 0.05 

C9 24.99 -4.52E-02 0.99930 0.042 0.05 0.126 0.05 

SERPINF2 111.26 -5.80E-01 0.99966 0.191 0.05 0.573 0.05 

HP252 208.94 -1.43E-01 0.99897 0.429 0.05 1.286 0.05 

SPP1 0.13 -8.01E-02 0.99968 0.020 0.75 0.060 5.00 

MYH7 0 0 0 0 0 0 0 

MATN1 0 0 0 0 0 0 0 

rS
D

P
 i

n
  

p
S

D
P

 

A2M n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

C9 2.48 -1.99E-01 0.99885 0.050 0.10 0.015 0.25 

SERPINF2 7.87 -7.72E+00 0.99845 0.187 5.00 0.562 5.00 

HP252 9.78 -2.28E+00 0.99827 0.052 0.25 0.156 0.50 
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Cross-Species Identification Assay (XA2M) 

The detection limit of the cross-species multiplex XA2M was determined as described for 

multiplex RQ3. Due to a lack of PAP samples for all species, the spike-in was performed 

with three MBMs: ruminant MBM (rMBM), porcine MBM (pMBM) and a poultry-mix-MBM 

(Figure 36). Table 20 shows the determined LOD and LOQ expressed as peptide amount 

and as weight percentage. The bovine MBM was detected at 0.1% via the bovine A2M pep-

tide. A quantification was possible at 0.75%. The detection limit for the porcine MBM was 

0.25% with quantification limit of 0.75%. The poultry-mix-MBM was analyzed to consist 

of turkey and chicken proteins in relative amounts of 91.7% chicken and 8.3% turkey, 

determined in the 100% poultry-mix-MBM. In total, the poultry-mix-MBM was detected 

by the chicken A2M peptide at 1.00% and a quantification was possible at 5.00%. Taking 

the relative poultry amounts into account, a pure chicken MBM could be detected at 

0.92% and a pure turkey MBM at 0.42%. 

  

  
Figure 36. Dilution of a ruminant (rMBM), a porcine (pMBM) and a poultry-mix (poultry-mix-MBM) meat 

and bone meal in a fish feed (FF) matrix separately prepared by heterogeneous phase digestion, 
measured by multiplex XA2M. The limit of detection is shown as dashed horizontal line, the limit 
of quantification as solid horizontal line. The dilution series was prepared as a triplicate.  
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Table 20. Linear regression data and the determined limit of detection (LOD) and limit of quantifi-
cation (LOQ) of the bovine, porcine and poultry-mix meat and bone meal dilution in a fish 
feed matrix.  

Species marker Slope Intercept R2 LOD 

/ fmol 

LOD 

/ % 

LOQ 

/ fmol 

LOQ 

/ % 

Bovine 1.03 -0.17 0.99222 0.015 0.10 0.045 0.75 

Porcine 7.26 -0.81 0.99938 0.899 0.25 2.697 0.75 

Poultry-mix - - - - 1.00 - 5.00 

chicken 0.62 -0.43 0.99998 0.092 0.92 0.277 4.59 

turkey 0.06 -0.28 0.99360 0.021 0.42 0.062 0.83 

 

4.3.10 Effect of Sample Homogenization 

To assess RQ1 intra- and interassay precision, rMBM in VF mixtures at 0.1%, 1% and 10% 

were analyzed in five HPD replicates. In a first experiment, no additional grinding step via 

ball mill was performed and very high coefficients of variation were observed. Only the 

10% mixture could be analyzed with an intraassay precision ≤20%. In a second experi-

ment the samples were additionally ground before HPD and LC-MS/MS analysis to im-

prove the sample homogeneity. Thereby, the coefficients of variation improved dramati-

cally and the signal to noise ratios increased for the 1% and 10% samples (Table 21). The 

1% and 10% mixtures were analyzed with coefficients of variation of <10%. The low con-

centration samples (0.1%) still showed high coefficients of variation and slight decreases 

in signal to noise ratios for three out of four marker peptides. Therefore, the boundary 

between signal and no signal became clearer. This highlighted the importance of sample 

homogeneity and representative sample taking for quantitative assays. 

However, in terms of a qualitative analysis, the additional grinding step showed a negative 

effect: The signals were diluted in the matrix and a qualitative detection became challeng-

ing for the 0.1% samples (Figure 37). In the non-ground samples, two out of five replicates 

showed signals with a higher intensity and confidence of detection. In these non-ground 

samples at 0.1%, the marker peptides were clearly detected above the calculated limit of 

detection, which is shown as dashed horizontal line (Figure 38). The comparison to the 

signals of the isotope labeled internal standards proof the fragmentation pattern of the 

analytes (Figure 37). In the corresponding ground sample, the signal intensity dramati-

cally decreased. Most replicates showed intensities in the range of the calculated LOQ. 
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Furthermore, the chromatographic peak shape declined and fragment ion detection and 

therefore the peptide identification was impeded. This experiment revealed that on the 

one hand, homogeneous samples are indispensable for quantitative determinations, but 

on the other hand a larger number of random sample taking in non-homogeneous sam-

ples allows for a qualitative detection with higher confidence on the level of 0.1%. 

 

Table 21. Effect of an additional grinding step via ball mill on the precision and signal to noise ratio 
of a ruminant meat and bone meal at three concentration levels (0.1%, 1% and 10%) pre-
pared by heterogeneous phase digestion in five replicates. 

Protein sample 

concentration 

/ % 

non-homogenized homogenized 

mean 

/ fmol 

C.V. 

/ % 

S/N mean 

/ fmol 

C.V. 

/ % 

S/N 

SERPINF2 10 19.4 18 584 18.5 7 1452 

1 2.0 88 61 1.1 3 87 

0.1 2.1 133 64 0.4 131 30 

HP252 10 33.9 13 169 40.1 6 271 

 1 3.3 30 16 2.1 8 14 

 0.1 2.4 121 12 1.1 110 8 

A2M 10 111.5 15 600 122.8 5 24561 

 1 11.0 32 59 6.5 2 1302 

 0.1 1.5 115 8 0.2 27 43 

C9 10 11.9 16 1775 11.9 2 2385 

 1 1.3 37 195 0.7 6 131 

 0.1 0.3 145 39 0.1 31 8 
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Figure 37. Extracted ion chromatograms for the ruminant SERPINF2, HP252, A2M and C9 marker peptides 

present in a low concentration sample, with and without additional grinding via ball mill,com-
pared to the internal standard signal at a higher concentration of 50 fmol. 
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Figure 38. Signal intensity of the marker peptides’ most intense fragment ion, present in a low concentra-

tion in five replicate runs and the mean, with and without additional grinding via ball mill. The 
limit of detection is shown as dashed horizontal line. 

 

4.3.11 Tissue Specificity 

The developed assays RQ1 addressing plasma proteins and RQ3 addressing plasma, meat, 

bone and cartilage proteins, were applied to three different animal proteins in order to 

assess the tissue specificity. Two milk powders, an MBM and two SDP were analyzed (Fig-

ure 39). 

For the RQ1 multiplex assay, all four plasma proteins were quantitatively detected in each 

sample. Hence, the presence of the proteins could not be used to differentiate the tissue 

types. However, the developed assay RQ1 allowed the differentiation of tissues when the 

relative peptide amounts were compared. The targeted peptides showed characteristic 

protein ratios in plasma, milk and MBM, respectively. Highest relative A2M amount was 

observed for SDP samples (65%) with the lowest amount of C9 (3%) with a ratio of 33:1. 

In the MBM sample, the A2M amount decreased to 42% and C9 increased to 20% (ratio 

2:1). In milk, the plasma proteins reached nearly equal relative amounts ranging from 
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17% (C9) to 28% (HP252). The ratio of A2M and C9 decreased to 1.5:1. These ratios can 

be compared with unknown samples in order to identify the sample’s origin and differen-

tiate between legal and illegal additives. 

A higher confidence of tissue differentiation was achieved by the application of the devel-

oped RQ3 7-plex assay. The MBM-specific markers MYH7 and MATN1 were detected nei-

ther in the milk powders nor in the SDP samples. In contrast, these markers were highest 

in the MBM sample with relative amounts of 50% for MATN1 and 20% for MYH7, followed 

by nearly 20% for SPP1 and a sum of 10% plasma proteins. High relative levels of SPP1 of 

around 99% with less than 1% of the plasma proteins and a lack of MYH7 and MATN1 

clearly indicated the presence of milk powder. Expanding the multiplex assay with more 

tissue-specific markers allowed the differentiation of milk powder, MBM and blood prod-

uct samples such as SDP. 

 

 
 

Figure 39. Relative protein amounts determined via marker peptide quantification using multiplex RQ1 and 
RQ3 in milk powder samples, a ruminant meat and bone meal (rMBM) and two spray-dried plas-
mas, one of ruminant origin (rSDP) and one of unknown species origin (SDP unknown). Results 
were normalized to the sum of analytes (set to 100%) in each sample and three replicates were 
analyzed. 
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4.4 Validation of Analytical Parameters 

4.4.1 Specificity 

Species and tissue specificity of the developed multiplex assays were determined with 

HPD-prepared animal protein samples and ISD-prepared citrate plasmas. A positive de-

tection was defined as detected signals of at least three fragment ions with a signal varia-

tion of ≤20% for the most intense fragment ion after referencing to the internal standard. 

Positive signals are shown in the tables below as mean peptide amounts with their stand-

ard deviations. 

The specificity of multispecies detection via the XA2M assay was assessed with citrate 

plasmas as clean reference samples. The plasma mixtures were prepared as described in 

section 3.7.1. In each mixture one species was left out, while the other species were pre-

sent in equal volumes. The result of the leave-one-species-out specificity is shown in Table 

22. All species were parallelly detected except the species that was left out. One exception 

was the mixture without porcine plasma, which showed a positive porcine A2M signal. 

The negative control measured as fish feed matrix without any plasma gave the same re-

sult. The negative control measured as phosphate buffer without fish feed and plasma 

gave no signal for porcine A2M. The signal for the A2M-peptide in the no-porcine mixture 

was not significantly higher than that of the matrix itself (P=0.67). This indicated a porcine 

contamination of the fish feed and a porcine-specific detection was assumed. 

The specificity for XA2M in processed animal protein samples was also assessed and is 

shown in Table 23. The expected species origin was confirmed. Again, the fish feed with-

out land living animals showed a slight porcine contamination. The second fish feed sup-

posed to contain land living animals was proven to contain mainly porcine material and a 

slight amount of chicken material. The unknown MBM and BM samples of poultry mix-

tures were proven to be pure chicken in case of MBM and a mixture of 80% chicken and 

20% turkey material in case of the BM sample. The ruminant MBM and SDP samples were 

confirmed to be pure samples. Four porcine PAP samples of different origin, a porcine BM 

and two porcine SDP were confirmed to be pure porcine samples. The SDP sample of un-

known species origin, was tested to consist of 80% bovine and 20% porcine material. In 

combination, the analyzed clean citrate plasmas and the processed animal protein sam-

ples showed a highly specific species detection via XA2M.  
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Table 22. Species specificity of multiplex XA2M assessed with citrate plasma as clean reference sam-
ples in triplicates. Only positive detections with C.V. ≤20% are shown, negative signals are 
shown with a value of zero. 

Sample 

/ species 

Peptide amount/ nmol g-1 

cattle sheep/goat horse turkey goose duck chicken pig 

no cattle 0 129 ± 10 265 ± 12 85 ± 2 67 ± 5 61 ± 3 112 ± 4 462 ± 24 

no sheep/goat 255 ± 19 0 268 ± 3 82 ± 3 73 ± 5 59 ± 4 119 ± 2 426± 12 

no horse 258 ± 10 140 ± 3 0 84 ± 1 72 ± 3 64 ± 2 112 ± 5 405 ± 8 

no turkey 231 ± 5 158 ±19 277 ± 6 0 67 ± 2 62 ± 2 119 ± 5 401 ± 9  

no goose 259 ± 10 158 ± 16 276 ± 4 81 ± 3 0 62 ± 6 116 ± 2 409 ± 7 

no duck 255 ± 5 167 ± 16 276 ± 3 87 ± 5 70 ± 4 0 114 ± 9 436 ± 11 

no chicken 261 ± 20 160 ± 9 276 ± 5 85 ± 1 71 ± 1 63 ± 2 0 402 ± 30 

no pig 241 ± 15 130 ± 10 248 ± 15 84 ± 5 66 ± 4 56 ± 5 119 ± 7 8 ± 1 

all species in FF 246 ± 3 145 ± 11 266 ± 13 86 ± 2 67 ± 3 63 ± 3 112 ± 9 421 ± 6 

all species in PBS 238 ± 2 146 ± 17 263 ± 9 86 ± 3 70 ± 4 60 ± 2 104 ± 4 412 ± 5 

FF, no plasma 0 0 0 0 0 0 0 8 ± 1 

PBS, no plasma 0 0 0 0 0 0 0 0  

 

 

Table 23. Species specificity of multiplex XA2M assessed with processed animal protein samples 
and blood products of different species origin in triplicates.  Only positive detections with 
C.V. ≤20% are shown, negative signals are shown with a value of zero. 

Sample 
Peptide amount / nmol g-1 

cattle sheep pig horse turkey chicken duck goose 

FF (no mammals) 0 0 0 0 0 0 0 0 

FF (with mammals) 0 0 25.8 ± 1.4 0 0 0.5 ± 0.1 0 0 

poultry BM 0 0 0 0 2.9 ± 0.1 11.4 ± 0.5 0 0 

poultry MBM 0 0 0 0 0 0.5 ± 0.1 0 0 

MBM cattle 2.5 ± 0.2 0 0 0 0 0 0 0 

porcine meal 1 0 0 6.1 ± 0.2 0 0 0 0 0 

porcine meal 2 0 0 5.3 ± 0.3 0 0 0 0 0 

porcine meal 3 0 0 6.9 ± 0.5 0 0 0 0 0 

porcine meal 4 0 0 9.2 ± 0.7 0 0 0 0 0 

porcine BM 0 0 113.1 ± 12.6 0 0 0 0 0 

porcine SDP 1 0 0 159.6 ± 5.6 0 0 0 0 0 

porcine SDP 2 0 0 294.4 ± 17.9 0 0 0 0 0 

bovine SDP 185.0 ± 7.3 0 0 0 0 0 0 0 

unknown SDP 151.2 ± 3.8  0 37.1 ± 4.4 0 0 0 0 0 
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Specificity of multiplex RQ3 was assessed in digested vegetal feed as matrix (10% w/w) 

and is shown in Table 24. The ruminant marker peptides were not detected in pure vege-

tal feed and in none of the poultry and porcine animal protein samples. As expected, the 

ruminant plasma peptides were detected in legal milk powder as it was already observed 

in section 4.3.11. The SDP samples of bovine and unknown origin showed signals for the 

plasma derived peptides, as it was expected. The results proved a species-specific detec-

tion of ruminant plasma proteins. 

In terms of tissue specificity, the results for SPP1, MYH7 and MATN1 have to be consid-

ered. These markers also allow a ruminant-specific detection. Neither signals in the por-

cine and poultry samples, nor in the vegetal feed matrix were observed. High relative lev-

els of SPP1 of around 99% clearly indicated the milk powder samples. A relative amount 

of 20% SPP1 while also containing 20% MYH7, 50% MATN1 and 10% plasma proteins 

indicated the MBM. A lack of SPP1, MYH7 and MATN1 signals while showing high levels 

of A2M and lower levels of the other three plasma targets indicated the presence of BM or 

SDP in the feed compound. The two meat and cartilage-specific targets MYH7 and MATN1 

were only present in bovine MBM and therefore offered an unambiguous species and tis-

sue detection of illegal MBMs in cattle feed. 

 

Table 24. Species and tissue specificity of multiplex RQ3 assessed with processed animal proteins 
and blood products of different species origin in vegetal cattle feed as matrix (10% w/w). 
The analysis was performed in triplicate runs. Only positive detections with C.V. ≤20% are 
shown, negative signals are shown with a value of zero. 

Sample 
Peptide amount / nmol g-1 

SERPINF2 C9 HP252 A2M SPP1 MYH7 MATN1 

VF 0 0 0 0 0 0 0 

BM poultry 0 0 0 0 0 0 0 

MBM poultry 0 0 0 0 0 0 0 

BM pig 0 0 0 0 0 0 0 

MBM pig 0 0 0 0 0 0 0 

Milk powder 1 0.3 ± 0.02  0.2 ± 0.01 0.3 ± 0.03 0.3 ± 0.01 214.3 ± 21.6 0 0 

Milk powder 2 0.3 ± 0.02 0.2 ± 0.01 0.4 ±0.02 0.4 ± 0.01 189.1 ± 12.1 0 0 

MBM cattle 0.9 ± 0.04 1.3 ± 0.02 1.1 ± 0.01 2.4 ± 0.01 9.4 ± 0.2 10.6 ± 0.4 22.9 ± 0.3 

SDP cattle 29.9 ± 0.7 7.6 ± 0.2 36.5 ± 1.1 186.5 ± 1.9 0 0 0 

SDP unknown 27.4 ± 0.7 6.8 ± 0.3 31.4 ± 0.7 168.0 ± 1.9 0 0 0 
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4.4.2 Accuracy and Precision 

Assay accuracy and precision for RQ3 and XA2M in feed matrices was already assessed 

during the method development (4.3.6). The equation of the linear fit was used to calcu-

late the measurements accuracy and precision. The criteria for an accurate and precise 

measurement in PRM detection were 80% to 120% accuracy with a precision of ≤20%. 

This was achieved in the concentration range of 152 amol for the bovine MATN1 peptide 

and 1.37 fmol for most of the other bovine peptides in a vegetal cattle feed matrix. In the 

fish feed matrix, an accurate measurement was observed in the range of 4.12 fmol for the 

horse A2M peptide and 37.0 fmol for the sheep and goat A2M peptide (Table 17). The 

results showed an accurate and precise quantification for at least 3 to 4 orders of magni-

tude depending on the marker peptide and matrix. 

4.4.3 Linearity and Limit of Detection 

The assay linearity for RQ3 and XA2M in feed matrices was already assessed during the 

method development (4.3.6). The PRM detection showed a linear relationship between 

the measured signal ratios of analyte and internal standard and the concentration ratios 

of analyte and internal standard over a concentration range of 4 to 5 orders of magnitude 

(Table 17). The standard dilution was also used to estimate the limits of detection (LOD) 

for each analyte in PRM detection. The LODs in fish feed matrix ranged between 30 amol 

for the bovine A2M peptide and 431 amol for the goose A2M peptide (Table 17). The LOD 

for the porcine A2M peptide was even higher with 1.20 fmol, however the fish feed 

showed a porcine protein contamination, causing an over-estimation of the LOD. The LOD 

for this peptide determined in PBSC was only 416 amol. In the vegetal feed matrix, the 

LODs ranged between 38 amol for the bovine C9 peptide and 645 amol for the bovine 

SERPINF2 peptide. 

4.4.4 Recovery 

The recovery of the analytes in complex matrix was determined by measurements in PBSC 

and spiked in feed matrices, respectively. Since internal standards were used, the signal 

ratios itself should not be affected by the matrix. However, the absolute signal intensities 

can be affected by the matrix leading to an increase or decrease in the observed limits of 

detection. In order to determine the recovery in the quantitative dynamic range, the meas-
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urement accuracies in PBSC and in matrix were compared and expressed as relative re-

covery R in percent (Formula 3). An analyte recovery need not to be 100%, however the 

extent of recovery should be consistent and precise 109. 

𝑅 = 
accuracy(matrix)

accuracy(PBSC)
 x 100% (3) 

 

The recovery for RQ3 determined by measurements in PBSC and vegetal feed matrix are 

shown in Table 25. In the quantitative range of 4 fmol to 1000 fmol the recovery did not 

deviate more than 15% from the nominal value of 100%. The determined recoveries were 

consistent and precise with a maximum variation coefficient of 6.8%. The recovery for 

XA2M determined by measurements in PSBC and fish feed matrix are shown in Table 26. 

In the quantitative range of 37 fmol to 1000 fmol the recovery did not deviate more than 

20%. The determined recoveries were consistent and precise with a maximum variation 

coefficient of 10.8%. The results indicated that the matrices did not have a significant ef-

fect on the lower limits of quantification for both multiplex assays. 

 

Table 25. Recovery for multiplex RQ3 determined in phosphate buffered saline and vegetal cattle 
feed as matrix in triplicate runs. 

Peptide 

amount 

/ fmol 

Recovery (matrix:PBSC) / % 

A2M SERPINF2 HP252 C9 MYH7 SPP1 MATN1 

4 102 102 109 101 115 108 102 

12 107 104 104 101 96 101 85 

37 101 103 95 99 99 98 94 

111 103 98 101 98 96 99 102 

333 98 101 97 102 94 97 104 

1000 96 100 98 98 95 98 96 

mean 100.8 101.1 99.2 99.6 95.9 98.5 96.2 

SD 3.7 2.2 3.1 1.4 1.7 1.3 6.6 

C.V. 3.6 2.2 3.1 1.4 1.8 1.3 6.8 
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Table 26. Recovery for the multiplex XA2M determined in phosphate buffered saline and fish feed 
as matrix in triplicate runs. 

Peptide 

amount 

/ fmol 

Recovery (matrix:PBSC) / % 

cattle 
sheep 

/goat 
pig horse chicken turkey goose duck 

37 105 83 112 92 95 87 91 98 

111 105 98 93 101 104 98 83 101 

333 96 92 101 114 95 104 103 98 

1000 95 88 83 112 93 101 80 95 

mean 100.0 90.1 97.3 104.9 96.5 97.6 89.5 97.9 

SD 4.6 5.4 10.5 8.8 4.5 6.3 8.9 2.2 

C.V. 4.6 6.0 10.8 8.4 4.6 6.5 9.9 2.3 

 

4.4.5 Repeatability 

The intra- and interassay repeatability of multiplex XA2M, was assessed at three concen-

trations of a plasma mixture in fish feed (1%, 5% and 10%, w/w) on the dried and non-

digested level applying HPD (n=5). Single species concentrations in the fish feed were 

0.1%, 0.6% and 1.1%, respectively. The multiplex XA2M was capable to measure all pep-

tides with coefficients of variation ≤20% for the most intense fragment ion and at least 

three detected transitions for each marker peptide (Table 27). Precise measurements 

were achieved in the high, medium and low concentration ranges. The highest concentra-

tion precisely determined was 1351 fmol for the sheep and goat A2M peptide. Precise 

measurements in the medium range were shown for several peptides of different species. 

The lowest concentration precisely determined was in the range of the limit of quantifi-

cation with 10 fmol for the duck A2M peptide. 

The intra- and interassay repeatability of multiplex RQ3 was assessed by the analysis of 

three different validation samples (rMBM1, rMBM2, rSDP) at three concentration levels 

(0.1%, 1% and 10% w/w) in vegetal feed (VF) on the dried and non-digested level apply-

ing HPD (n=5). The result is shown in Figure 56. The rSDP in VF mixtures were detected 

with variation coefficients ≤20% on all three concentration levels for all four plasma tar-

gets. As expected, the tissue-specific markers SPP1, MYH7 and MATN1 were not detected 

in rSDP. In case of the meat and bone meal mixtures with rMBM1, the illegal admixtures 

were detected at the medium and high concentration levels of 1% and 10% by the pres-

ence of all markers with variation coefficients ≤20%. The lowest concentration level of 
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0.1% was detected by the marker proteins HP252 and MYH7 with coefficients of variation 

≤20%. The markers C9, A2M and MATN1 were only qualitatively detected with coeffi-

cients of variation >20%. In case of the meat and bone meal mixtures with rMBM2 all 

marker peptides were precisely quantified on the highest concentration level of 10%. The 

1% concentration level was quantitatively detected with coefficients of variation ≤20% 

for all markers except MATN1, which was only qualitatively detected. The lowest concen-

tration level of 0.1% could not be quantitatively detected for rMBM2, however a qualita-

tive detection was possible for HP252, MYH7 and MATN1 with signals above the calcu-

lated LODs but variation coefficients exceeding 20%. 

 



 

 

Table 27. Intra- and interassay repeatability of multiplex XA2M, assessed with citrate plasma mixtures on three concentration levels in five 
replicates, respectively. 

Species 

Intraassay Interassay 

10% w/w 

(1.1% per species) 

5% w/w 

(0.6% per species) 

1% w/w 

(0.1% per species) 

10% w/w 

(1.1% per species) 

5% w/w 

(0.6% per species) 

1% w/w 

(0.1% per species) 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

cattle 871 6 459 5 107 2 892 4 461 7 107 7 

sheep/goat 1423 10 651 7 153 7 1351 12 658 9 161 10 

pig 1104 5 571 6 152 7 1110 6 588 3 158 6 

horse 500 8 248 8 59 5 526 5 300 7 73 10 

chicken 189 7 103 5 22 8 203 6 103 16 24 8 

turkey 113 8 54 5 12 12 121 4 66 14 14 8 

duck 80 4 40 8 9 11 85 9 48 8 10 19 

goose 129 5 68 3 15 7 132 4 68 17 15 14 
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Table 28. Intra- and interassay repeatability of multiplex RQ3, assessed with two ruminant meat and bone meals (rMBM1 and rMBM2) of dif-
ferent origin and a ruminant spray-dried plasma (rSDP) on three concentration levels with five replicate runs, respectively. Not quan-
tifiable samples are shown with a value of zero. Qualitative detections with coefficients of variations exceeding 20% are marked (0a). 

Sample 

SERPINF2 C9 HP252 A2M SPP1 MYH7 MATN1 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

In
tr

a
a

ss
a

y
 

10% rSDP 4527.2 4.5 1038.4 2.3 8845.1 2.5 34431.8 3.7 0 - 0 - 0 - 

1% rSDP 394.8 4.0 99.8 3.5 760.9 1.7 3215.2 3.0 0 - 0 - 0 - 

0.1% rSDP 36.7 9.9 9.3 3.5 75.5 1.2 298.5 4.6 0 - 0 - 0 - 

10% rMBM1 69.4 5.9 37.3 4.4 162.0 8.9 489.1 7.5 8.1 7.0 2670.9 14.0 248.2 6.7 

1% rMBM1 4.4 16.9 2.5 4.2 10.2 6.0 29.9 6.8 0.7 9.3 212.2 11.5 5.6 7.8 

0.1% rMBM1 0 - 0a - 1.0 11.2 2.6 18.5 0.1 20.0 16.2 16.1 0.4 18.0 

10% rMBM2 12.6 11.7 12.1 12.1 25.5 12.1 71.3 12.3 119.7 8.6 471.5 13.0 136.6 9.0 

1% rMBM2 3.5 16.0 1.9 11.7 7.1 9.4 9.2 8.7 15.6 12.9 73.5 17.3 0a - 

0.1% rMBM2 0 - 0 - 0a - 0 - 0 - 0a - 0a - 

In
te

ra
ss

a
y

  

10% rSDP 4313.4 5.3 1120.5 12.6 9172.9 4.7 34581.5 3.4 0 - 0 - 0 - 

1% rSDP 389.3 5.0 97.8 3.8 742.9 4.4 3038.7 3.8 0 - 0 - 0 - 

0.1% rSDP 36.0 9.1 9.0 4.7 69.8 9.0 282.9 8.9 0 - 0 - 0 - 

10% rMBM1 67.6 6.7 37.7 3.4 155.2 7.2 461.7 5.5 8.7 2.8 2512.9 5.2 203.4 14.6 

1% rMBM1 4.8 10.2 2.9 11.6 11.4 7.9 33.7 11.0 0.7 12.6 255.3 12.6 7.1 17.3 

0.1% rMBM1 0 - 0a - 1.0 13.9 0a - 0 - 19.2 15.0 0a - 

10% rMBM2 14.9 3.7 14.8 12.0 30.4 14.8 83.1 8.9 137.3 8.2 564.1 6.4 185.8 10.7 

1% rMBM2 4.0 18.7 2.1 3.6 7.7 4.3 10.0 5.2 18.4 11.2 91.5 6.2 0a - 

0.1% rMBM2  0 - 0 - 0a - 0  - 0  - 0a - 0a - 

8
8
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4.5 Analysis of Proficiency Test Samples 

The developed multiplex assays RQ3 and XA2M were used to analyze official proficiency 

test samples provided by the German Federal Institute for Risk Assessment, originally ob-

tained in proficiency tests from the European Reference Laboratory for Animal Proteins 

(EURL-AP, Gembloux, Belgium). An overview over the proficiency test samples, the ex-

pected and experimentally determined species and tissues is given in Table 29. An over-

view about the quantification data is shown in Table 30. A detailed evaluation of the sam-

ples with the extracted ion chromatograms of each sample is shown in Supplementary 

Data I. 

In a first step, the cross-species XA2M multiplex assay revealed that all samples were from 

bovine or porcine origin. Feed 1, feed 2 and feed 4 were proven to contain only bovine 

material. Feed 3 was analyzed to consist of porcine and bovine material. Feed 5 and feed 

6 were proven to consist of only porcine material. In a second step, the ruminant- and 

tissue-specific RQ3 multiplex assay was applied. As expected, feed 5 and feed 6 did not 

contain ruminant proteins, which confirmed the findings observed first in the species 

identification. The highly tissue-specific proteins MYH7 and MATN1 were only detected 

in feed 1 and feed 2 along with the plasma proteins C9, HP252, A2M. This result indicated 

that feed 1 and feed 2 were adulterated with a ruminant meat and bone meal. The missing 

signal for SERPINF2 in low concentrated MBM samples is not surprising, since this target 

was shown to be less sensitive in comparison to the other plasma targets (4.4.5). The ab-

sence of SPP1 in the two feeds proved that the samples did not contain milk powder. In 

feed 3, missing SPP1, MYH7 and MATN1 signals, but signals for all four plasma targets 

indicated that this sample consists of blood derived ruminant proteins such as SDP or BM. 

The same was observed for feed 4, however, the signals were considerably higher com-

pared to feed 3. This can be explained due to fact that the adulteration in feed 4 is pure 

bovine and not consisting of bovine and porcine material as it was shown for feed 3. To 

sum up the results, the analysis of proficiency test samples showed the suitability of the 

two multiplex assays for the species identification and tissue differentiation of PAPs and 

blood products in animal feed compounds on a level of 0.1%.  
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Table 29. Overview about the expected and determined species and product types in the analyzed 
proficiency test feed compounds (n.p. = tissue identification not possible). 

Feed Description Expected 

species 

Expected 

product 

Determined 

species 

Determined 

tissue 

1 0.1% ruminant PAP 

in pig feed 

Cattle, sheep, 

goat 

BM, MBM Cattle Muscle 

2 0.1% ruminant PAP 

in pig feed 

Cattle, sheep, 

goat 

BM, MBM Cattle Muscle 

3 1% ruminant hemoglobin 

meal in fish feed 

Cattle, sheep, 

goat 

BM, SDHM Cattle in Pig Blood 

4 3% bovine plasma 

in fish feed 

Cattle SDP Cattle Blood 

5 5% porcine blood 

in fish feed 

Pig BM, SDHM Pig n.p. 

6 Hemoglobin meal 

in fish feed 

no info BM, SDHM Pig n.p. 
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Figure 40. Tissue-specific quantification of 0.1% ruminant PAP in a pig compound feed (Feed 1) determined 
by multiplex RQ3. The marker for A2M represents the plasma proteins, the other plasma proteins 
are shown in Supplementary Data I. 
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Figure 41. Species differentiation and quantification of 1% ruminant blood in a porcine background 
(Feed 3) determined by multiplex XA2M. Positive signals for cattle and pig are shown. The spe-
cies sheep/goat and duck showed negative signals. The other species were also negative and are 
shown in Supplementary Data I. 



 

Table 30. Species identification and tissue differentiation in official proficiency test feed compounds using the developed multiplex RQ3 and 
XA2M. Analysis was performed in three replicates for each sample. 

Assay Species 

Feed 1 Feed 2 Feed 3 Feed 4 Feed 5 Feed 6 Control 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

mean 

/ fmol 

C.V. 

/ % 

S
p

e
ci

e
s 

id
e

n
ti

fi
ca

ti
o

n
 

(X
A

2
M

) 

Cattle 4.1 ± 0.1  2.9 4.4 ± 0.4 8.8 88.0 ± 2.9 3.3 956.9 ± 32.3 3.4 0 - 0 - 0 - 

Sheep/Goat 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

Pig 0 - 0 - 834.3 ± 29.7 3.6 0 - 136.8 ± 4.2 3.0 537.0 ± 4.7 0.9 0 - 

Horse 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

Turkey 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

Chicken 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

Duck 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

Goose 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

T
is

su
e

 
d

if
fe

re
n

ti
a

ti
o

n
 

(R
Q

3
) 

SERPINF2 0 - 0 - 2.3 ± 0.1 4.4 156.3 ± 7.0 4.5 0 - 0 - 0 - 

C9 0.4 ± 0.1 14.9 0.4 ± 0.05 10.9 1.2 ± 0.1 8.9 50.1 ± 2.5 5.0 0 - 0 - 0 - 

HP252 1.2 ± 0.2 13.4 1.4 ± 0.1 4.4 10.7 ± 0.3 2.9 331.5 ± 10.0 3.0 0 - 0 - 0 - 

A2M 4.5 ± 0.3 6.6 4.7 ± 0.5 11.4 94.0 ± 4.3 4.6 1065.1 ± 165.9 15.6 0 - 0 - 0 - 

SPP1 0 - 0 - 0 - 0 - 0 - 0 - 0 - 

MYH7 5.6 ± 0.4 6.4 6.7 ± 1.0 14.2 0 - 0 - 0 - 0 - 0 - 

MATN1 7.8 ± 1.5 19.6 14.4 ± 4.3 29.4 0 - 0 - 0 - 0 - 0 - 
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5 Discussion 

5.1 Marker Peptide Identification and Multiplex Panel 

Aim of this thesis was the development of a method for the detection of processed animal 

proteins (PAPs) in feed on the basis of a peptide-centric approach. Basically, a species 

authentication in unknown PAP samples can be performed without a priori knowledge of 

specific marker peptides. To achieve this, a non-targeted mass spectrometry (MS) exper-

iment can be performed. The obtained mass spectra are then compared with spectral li-

braries of reference samples 89. However, for a highly sensitive, accurate and precise 

quantification, defined peptides have to be identified and a targeted method has to be de-

veloped 89-91. These targeted methods usually address species- and tissue-specific pep-

tides deriving from meat or bone proteins that were previously identified by non-targeted 

mass spectrometry of meat and bone meal (MBM) samples. An extensive study of possible 

MBM marker peptides was published by Marbaix and colleagues 90. However, meat-spe-

cific markers do not allow the detection of blood products, such as spray-dried plasma 

(SDP) or blood meals (BM). In this thesis, the focus was set on the identification of species- 

and tissue-specific markers, which allow a comprehensive analysis of SDP, BM and MBM 

products from relevant livestock species. 

Non-targeted MS analyses of citrate plasma, SDP, BM, MBM and milk powder of different 

species served as an experimental basis for the further bioinformatic selection of suitable 

peptides (Table 9). The highest number of identified proteins was observed in the native 

citrate plasmas. As expected, the processed SDP, BM and MBM samples showed lower 

numbers of peptide identifications. Nevertheless, more than 1000 potential marker pep-

tides were identified in these processed samples, when they were prepared using the 

newly developed sample preparation protocol, named heterogeneous phase digestion 

(HPD). An in-depth comparison and discussion of HPD and other sample preparation pro-

tocols is given in section 5.2.2. These non-targeted MS analyses provided experimentally 

verified peptides that were detected in differently processed samples and were used for 

the further bioinformatic marker selection (4.1.2 and 4.1.3). 

In a first bioinformatic analysis, possible cross-species epitopes were identified to estab-

lish a multispecies multiplex assay using only one antibody. The multispecies assay was 
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intended to be applied for a multispecies detection of PAPs and blood products in aqua-

culture feed. Five plasma proteins that allow a cross-species enrichment of homologous 

peptides using only one antibody were identified: alpha-2-macroglobulin, coagulation 

factor VIII, antithrombin-III, serum albumin and cholinesterase (Table 10). The cross-spe-

cies epitope of alpha-2-macroglobulin was chosen to generate a polyclonal antibody since 

it matched the selection criteria best (3.2). 

Cholinesterase was not chosen, because of its lower plasma abundancy compared to the 

other four targets. Serum albumin was not chosen because of the high risk for cross con-

taminations in biochemistry laboratories since it is commonly used as blocking reagent 

and standard protein in immunoassays and protein determination assays. The antithrom-

bin peptides comprise a very long epitope at the C terminus which would allow the gen-

eration of a highly specific cross-species antibody. However, the peptides are very large 

with quite similar sequences and therefore a chromatographic separation was supposed 

to be challenging. Factor VIII comprises shorter peptides with a higher inter-species se-

quence variation. The short cross-species epitope of these marker peptides comprises 

only four amino acids which could increase the risk for antibody cross-reactions to other 

high abundant sequences. 

In comparison, alpha-2-macroglobulin was considered superior to the other target pro-

teins: First, the C-terminus covers 9 species of interest with species-specific peptides for 

8 species. A differentiation of sheep and goat via alpha-2-macroglobulin is not possible 

since the peptide sequences are identical. However, this is not an issue since the legal reg-

ulations state ruminants as one group. Second, the N-terminal sequences show a high in-

ter species variability which facilitates a chromatographic separation. Third and most im-

portant, the conserved C-terminal sequence offers the possibility of expanding the cross-

species epitope to a length of eight amino acids if an immunization with the two sequence 

variations, containing either phenylalanine (F) or tyrosine (Y) in the X position of the 

epitope’s sequence (VEEXVLPK) is performed. This allowed the generation of a cross-spe-

cies antibody which is able to enrich different species’ A2M peptides from PAP and blood 

products with a high specificity. 

However, addressing a single bovine protein like alpha-2-macrogloblin (A2M) was not 

sufficient for tissue differentiation. A2M was also detectable in milk powder at very low 

concentrations (Table 24). Furthermore, a cross-species antibody was considered to be 
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less suitable if only a sensitive detection of ruminants in a background of other species is 

required. Therefore, a second bioinformatic search was performed in which three further 

ruminant-specific plasma peptides from alpha-2-antiplasmin (SERPINF2), protein HP-25 

homolog 2 (HP252) and complement component 9 (C9) were identified (Figure 9). These 

markers were chosen because they show only a low sequence similarity to the homolo-

gous peptides from other species. In mass spectrometry, a single amino acid exchange 

that is unique for the species would be sufficient for reliable species identification. How-

ever, in immunoaffinity-based mass spectrometry, inter-species sequence similarities 

could lead to cross reactivity of antibodies in multispecies mixtures. Consequently, the 

matrix species would block the antibody’s binding capacity and probably limit the assay’s 

sensitivity regarding the species of interest. This issue was addressed by the identification 

of species-specific peptide sequences with low inter-species similarity and the generation 

of peptide-specific antibodies. 

To further improve tissue specificity, additional marker peptides that are unique for each 

tissue were identified. Non-targeted MS analyses of milk powder, MBM and citrate plasma 

revealed ruminant-specific marker peptides that are unique for the respective sample 

types (Figure 10): myosin-7 (MYH7), matrilin-1 (MATN1) and osteopontin (SPP1) were 

selected as marker peptides for meat, bone and cartilage tissue, respectively. These six 

additionally selected ruminant-specific peptides offered the possibility for unambiguous 

species and tissue detection (Table 11). 

At first, the 7 bovine-specific marker peptides were compiled in two different 4-plex as-

says for ruminant quantification (RQ), one addressing the four plasma targets A2M, SER-

PINF2, C9 and HP252 (RQ1) and another addressing the tissue-specific markers MYH7, 

MATN1 and SPP1 together with the plasma marker C9 (RQ2). The two multiplexes were 

intended to address different questions in feed authentication: RQ1 for highly specific 

blood product detection in feed and SDP-SDP admixtures; RQ2 for tissue-specific MBM 

detection. While RQ1 performed well, RQ2 was quite unstable and 5 µg of each antibody 

instead of 1 µg had to be used for immunoprecipitation (Supplementary Data F). Conse-

quently, also the number of magnetic microspheres needed for the precipitation of anti-

body-peptide-complexes had to be increased. Since the number of magnetic microspheres 

exceeded the maximum possible volume, the antibody-microsphere-ratio was reduced 

from 5 to 2.5, limiting the precipitation efficiency. As a consequence of this, new peptide-
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specific polyclonal antibodies against the RQ2 targets were generated. The new antibod-

ies performed better and could be used in lower amounts of 1 µg. This also allowed the 

combination of the two 4-plex assays into one 7-plex assay (RQ3) since the limiting factor 

of magnetic microsphere amount was not reached. The eight homologous A2M peptides 

of different species were combined in one cross-species 8-plex assay (XA2M) using the 

cross-species antibody anti-VEEXVLPK. The immunoaffinity enrichment allowed the de-

velopment of short chromatographic gradients with a cycle time of only 10 mins, thereby 

increasing the sample throughput. 

To sum up, a total number of 14 marker peptides were identified and compiled in two 

multiplex assays: One that allows a species differentiation of 8 species using one group-

specific antibody and another for the differentiation of ruminant tissues using highly ru-

minant-specific epitopes. The limitations of current analytical methods concerning the 

species and tissue differentiation of different animal protein types were addressed by the 

selection of these targets. On this basis, the two quantitative assays XA2M and RQ3 were 

developed and basic analytical parameters were validated. 

5.2 Sample Preparation of Processed Animal Proteins 

5.2.1 Optimization of Peptide Release 

In the course of marker peptide identification, extracts of SDP, BM and MBM samples were 

analyzed by gel electrophoresis. Therefore, a detergent-based buffer extraction of the 

samples’ heat stable and water-soluble protein fraction was prepared and compared to a 

native bovine citrate plasma. The gel electrophoresis revealed a partial fragmentation of 

proteins in the SDP samples and a high degree of fragmentation in the BM and MBM sam-

ples (Figure 12). Missing protein bands in BM and MBM did not indicate an unsuccessful 

extraction since the protein determination proved the presence of proteins in the extracts 

(Table 15). Consequently, the extracts loaded on the gel must have been highly frag-

mented. This result corroborated the hypothesis that protein-centric approaches, such as 

sandwich immunoassays, are relatively unsuitable for the detection and quantification of 

PAPs since antibody binding usually requires intact proteins as a prerequisite for detec-

tion. Without detailed knowledge of the epitope, the actual protein length and potential 

modifications of the PAPs, a targeted protein-centric approach remains challenging. 
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Whereas a peptide-centric approach, which could quantify proteins in PAP samples indi-

rectly through peptides via mass spectrometry, seemed to be the favorable solution. The 

experiment also revealed that the sample preparation or extraction needed to be opti-

mized since a high protein fraction still remained insoluble. 

Commonly used sample preparation protocols for protein extraction from processed an-

imal protein and processed meat samples include urea/thiourea buffers or TCA/acetone 

followed by clean-up steps because of incompatibility of some reagents with mass spec-

trometry 82,89,90. In this thesis, a peptide-centric approach was rated promising. A direct 

tryptic digestion of PAPs in suspension without prior protein extraction in order to im-

prove the release of peptides from denatured, fragmented and insoluble proteins was ap-

plied and evaluated. Since salts, fats and reagents were removed during the immunoaffin-

ity enrichment, a further clean-up before mass spectrometric analysis was not necessary. 

The direct tryptic digestion required a method to determine the total peptide content in 

the supernatant after digestion. The A280 method was considered as a fast and easy way 

to determine the total peptide content in digests and was preferred over a time-consum-

ing amino acid analysis. Usually, the A280 method is used for pure proteins with known 

extinction coefficients 106. Applying the rule 1 Abs ≈ 1 mg mL-1 citrate plasma samples 

were measured both with the bicinchoninic acid (BCA) assay and the A280 method (Table 

12). The two protein determination methods showed similar results with a correlation 

coefficient of 0.90 (Figure 13). Therefore, an accurate protein determination via A280 

method in complex digests was assumed. 

Since the A280 method is not a very specific determination, possible interfering sub-

stances were evaluated. The A260/A280 ratio was used to determine the protein purity 

of the enzymatically fragmented samples and to estimate the impact of potentially ex-

tracted nucleic acids. The calculated protein purities of citrate plasmas and SDP were 

>99%. The porcine BM was calculated with 97.9%. The lowest protein purity was calcu-

lated for fish feed with 90.1% (Table 13). A correction of the protein concentration was 

not considered necessary. In this thesis, the quantification was performed by the use of 

isotope labeled internal standard peptides added to the samples and then result was re-

ferred to the protein concentration determined via A280. Alternatively, the quantification 

could be referred to A260/A280-corrected concentrations or even directly to the initial 

sample weight of 15 mg per sample used for HPD. In this case, the A280 determination 
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would be only used to estimate the protein amount for immunoprecipitation. However, 

the A280 measurement was proven to be a very important tool to check for reproducibil-

ity and efficiency of HPD (Supplementary Data J). The interference of chemical reagents 

added during HPD was also evaluated. Iodoacetamide (IAA) was shown to interfere with 

the A280 measurement (Figure 14). Absorption due to IAA and the added trypsin were 

subtracted using blank digests. 

Different parameters of HPD were checked and optimized (Figure 15). In order to achieve 

a stable PAP suspension during HPD, the sample amount was limited to 15 mg per 750 µL 

digestion buffer and a mixing speed of 1000 rpm was used. While the enzyme manufac-

turer had no effect on the total protein release, the enzyme ratio to sample had a slight 

effect and was best in a ratio of 1:40. 

Optimized HPD was applied to different species SDP, BM and MBM for different fragmen-

tation times. The fragmentation time itself had no effect on the peptide release. However, 

the peptide yields strongly depended on the sample type and its processing conditions 

(Figure 16). Less processed SDP samples showed the highest peptide yield whereas the 

highly processed bovine meat and bone meal showed the lowest peptide yield. The differ-

ent peptide yields were expected to influence the limit of detection of the respective sam-

ple type. All HPD-prepared samples were also compared to a buffer extraction in phos-

phate buffered saline. However, dramatically lower peptide yields were observed for the 

pure buffer extraction (Figure 12). SDPs tended to form gels by the addition of PBS. In 

contrast, when HPD was applied, they completely dissolved in an overnight treatment. 

In conclusion, it was shown that a peptide-centric workflow was preferable to a protein-

centric one. This allowed direct enzymatic fragmentation of PAPs in suspension without 

prior protein extraction. In combination with immunoprecipitation, time-consuming 

clean-up steps prior to mass spectrometry could be avoided. However, the suspension 

stability during HPD had to be considered and a blank digest had to be performed in order 

to determine the total peptide content of the supernatant using the A280 method. The 

sensitivity of PAP and blood product detection was supposed to depend on the sample 

type since different peptide yields were observed. The direct enzymatic fragmentation 

was also shown to be more efficient than a buffer extraction of proteins. Whether only 

more total protein or even other proteins became soluble needed further investigation. 
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5.2.2 Heterogeneous Phase Digestion 

It was further investigated if HPD is not only a buffer extraction with tryptic digestion of 

dissolved proteins in solution, but rather a direct digestion at the PAP’s liquid-solid inter-

face. The hypothesis was that HPD not only releases more total peptide due to a higher 

digestion efficiency but also makes insoluble proteins accessible for analysis by a partial 

digestion and solubilization of certain protein domains. In course of this, HPD was also 

compared to the state of the art TCA/acetone protein extraction method. A detailed mass 

spectrometric analysis of the released peptides was performed. 

A side-by-side comparison of an extraction with in-solution digestion (ISD) of the super-

natant and a direct digestion (HPD) was performed (Figure 17). Compared to ISD, the 

A280 measurements after HPD-preparation showed a twofold increase in case of bovine 

MBM and porcine BM. The protein concentration increased by a factor of 5.8 for porcine 

SDP. A280 absorption indicated that HPD was significantly more efficient than ISD. The 

MBM sample was further analyzed in an in-depth comparison of HPD and ISD with a re-

cently published state of the art TCA/acetone protein extraction protocol for PAPs 90. 

Therefore, non-targeted mass spectrometric analyses in triplicate runs were performed 

(Figure 18). Using the TCA/acetone protocol, a comparable number of peptides and pro-

teins to that of the ISD protocol was observed. The analysis of bovine MBM by Marbaix 

and colleagues revealed a maximum number of 495 peptide identifications after TCA ac-

etone extraction followed by a cleanup step and LC-MS/MS analysis on a Q-TOF mass 

spectrometer 90. In direct comparison this is twice the amount of the ISD peptide identifi-

cations but half of the HPD result. The different types of mass spectrometers and different 

MBM sources may contribute to the variations in identified peptides. Hence, the results of 

the analysis in this thesis and the results from Marbaix and colleagues cannot be directly 

compared. Nevertheless, the higher number of identified peptides with the application of 

HPD indicated that trypsin was capable to digest proteins at the liquid-solid-interface re-

leasing peptides from highly processed MBM, which were not accessible via protein ex-

traction in the same buffer system. It was assumed that the additionally released peptides 

derived from insoluble proteins from which some domains were cleaved and thereby the 

peptides became soluble. 

The comparison of HPD and ISD was also evaluated in terms of marker peptide concen-

trations. Two bovine samples, rMBM and rSDP, and two porcine samples, pBM and pSDP 
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were analyzed by the targeted MS assays (Figure 24). The results confirmed that all 

marker peptides were released in significantly higher amounts using HPD, independent 

from the sample type that was analyzed (MBM, BM or SDP). 

For highly sensitive detection and quantification of proteins, indirectly through the detec-

tion of peptides, the digestion step is crucial. It has been reported that tryptic digestion is 

strongly influenced by digestion time. 96,111. HPD preparation was optimized in a time de-

pendent analysis of marker peptide concentrations in both rMBM and rSDP samples using 

multiplex RQ3 (Figure 26) and in citrate plasmas using XA2M (Figure 25). While the total 

protein release via HPD was proven to be not dependent on fragmentation time (Figure 

16), the marker peptide release was strongly time dependent. The experiments revealed 

that a 2 h HPD-preparation was already enough to achieve mean normalized peptide re-

leases of >90%. Longer digestion times showed negative effects on some marker peptides. 

Especially the tissue-specific markers MYH7, MATN1 and HP252 of multiplex RQ3 and the 

turkey, goose and chicken A2M peptides of multiplex XA2M, showed decreasing peptide 

concentrations over time, probably due to peptide degradation, adsorption or unspecific 

enzymatic fragmentation. Since different sample types could affect HPD, peptide release 

for the bovine A2M peptide was analyzed in three different bovine samples: citrate 

plasma, rMBM and rSDP (Figure 25). Except a slight difference at 16 h for rMBM, the sam-

ples showed similar peptide releases over time in different sample types. The application 

of optimized HPD fragmentation time to different sample types was considered unprob-

lematic. 

To summarize, HPD was proven to release both more and different peptides from highly 

processed animal protein samples compared to ISD or TCA/acetone. The marker peptides 

were released in significantly higher amounts, beneficial regarding the assays' sensitivi-

ties. Unlike the total peptide release, the release of marker peptides was shown to be af-

fected by digestion time. The optimum digestion time was determined and the applicabil-

ity of HPD to different animal protein types was confirmed. 
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5.3 Species and Tissue Differentiation 

5.3.1 Multispecies Detection 

Species differentiation in the feed sector is very difficult due to the strict regulations im-

posed by the European Union. A safe use of PAPs is only guaranteed if the species origin 

of proteins in feed can be unambiguously determined. For several reasons, this is an ana-

lytical challenge. First, there is a variety of different animal proteins deriving from differ-

ent slaughter byproducts that have to be detected (e.g. blood, meat, bone). These are pro-

cessed under different conditions depending on the product type, leading to denaturation 

and fragmentation reactions. An identification of intact markers that can be measured in 

all product types is very challenging. Second, identified markers must be suitable for spe-

cies differentiation of at least the most used livestock species namely cattle, pig and poul-

try animals. Third, and most critical, all these proteins have to be analyzed in very differ-

ent feed matrices used for farmed animals.  

In this thesis, the issue of different product types of several species in a variety of feed 

matrices was addressed by a cross-species immunoenrichment of plasma peptides com-

bined with mass spectrometric detection. A group-specific antibody targeting 8 species-

specific marker peptides which were present after rendering in PAPs and blood products 

was generated. This allowed the enrichment of 8 livestock species from MBM, BM and SDP 

samples in a complex feed background. The immunoprecipitated peptides were then 

identified via mass spectrometry. The highly specific multiplex detection in a fish feed 

background was shown for citrate plasma mixtures in Table 22. The specific differentia-

tion of species for several PAP and blood product samples was shown in Table 23. 

In conclusion, the multiplex XA2M overcomes current limitations in species differentia-

tion in the field of feed authentication. Multiplex XA2M is able to parallelly quantify the 8 

livestock species cattle, sheep/goat, pig, horse, turkey, chicken, goose and duck in the 

main PAP and blood product types MBM, BM and SDP and works in a complex feed matrix. 

XA2M is only limited in the differentiation of tissues since only one plasma protein is ad-

dressed. 
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5.3.2 Tissue-Specific Ruminant Detection 

The differentiation of legal and illegal proteins is one of the key points in animal feed au-

thentication. Current official methods such as polymerase chain reaction cannot differen-

tiate between allowed milk powder and not allowed BM or MBM ingredients deriving 

from the same species. Latest developments in PAP detection methods addressed this is-

sue by targeting meat-specific proteins 90 or blood proteins with parallel detection of milk 

proteins 91. In the former, meat proteins were targeted which cannot be found neither in 

milk nor in BM. This assay was able to specifically detect MBM in a cattle feed matrix on a 

level of 5% (w/w). However, the high detection limit for cattle MBM and the lack for a 

differentiation of illegal BM and legal milk powders are significant drawbacks of this 

method. In the latter, blood and milk proteins were targeted simultaneously, allowing the 

differentiation of the two sample types. A detection limit for BM samples of <0.1% was 

shown. Probably, the simultaneous detection will work for MBM samples, too. The occur-

rence of those marker peptides in MBM was observed in this thesis by shotgun proteomic 

analysis. Nevertheless, the suitability of the assay for MBM was not shown by the authors 

and it remains unclear, whether a detection limit of 0.1% can be reached for highly pro-

cessed MBM. 

In this thesis, multiplex peptide-centric assays targeting several proteins were used to 

address the stated issues. Multiplex RQ1 was developed to address four highly ruminant-

specific plasma proteins. During the bioinformatic marker peptide identification and se-

lection, proteins identified in milk powder were excluded. However, the developed mul-

tiplex RQ1 was able to detect the markers in milk powder samples in very low amounts 

(Figure 39). On the one hand, this highlighted the advantage of immunoaffinity-based 

mass spectrometry in terms of a highly sensitive peptide detection. On the other hand, 

this impeded the differentiation of milk and blood containing samples by measuring A2M 

as single protein. Nevertheless, RQ1 was able to differentiate MBM and BM from milk 

powder by calculating the relative protein amounts in the sample types, respectively. The 

marker peptides in plasma and milk have their own characteristic ratio that can be com-

pared with unknown samples in order to identify the sample’s origin and discriminate 

between legal and illegal. Moreover, the tested samples in this work consisted of 10% milk 

powder, 10% SDP, or 10% MBM. The concentration of A2M in milk powder was about 500 
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times lower than in the SDP sample and 10 times lower than in the MBM sample. There-

fore, animal feeds with very high amounts of milk powder, namely milk replacers for 

calves, would pose an analytical worst-case scenario with a milk protein content of up to 

50%. Due to monetary reasons, the amount of milk powder used in milk replacers is closer 

to 20-30% which would result in amounts of A2M comparable to a milk-free feed adulter-

ated with 0.04-0.06% rSDP or 2-3% rMBM, respectively. However, in the case of milk 

powder, the measured value for HP252 would be comparable to A2M whereas in case of 

SDP as additive the signal for A2M would be the 2-fold of HP252. Hence, concentration 

and ratio of the proteins have to be taken into account to judge a sample’s PAP content 

and origin. 

Unambiguous species and tissue differentiation are very important criteria for new ana-

lytical methods to determine the origin of animal proteins in feed. Although RQ1 was able 

to differentiate between MBM, SDP and milk, the required tissue specificity was shown to 

be challenging when only plasma peptides were addressed. For this reason, additional 

marker peptides that are unique for each tissue type were identified. The additionally se-

lected tissue-specific peptides from SPP1, MYH7 and MATN1 further increased the tissue 

specificity of detection in multiplex RQ3. While still having information about the absolute 

and relative plasma protein amounts, additional information about other tissue types 

were obtained. The marker SPP1 was not detected in SDP samples and in comparable lev-

els to the other proteins in bovine MBM (Table 24). In contrast, the milk powder samples 

showed a relative SPP1 amount of >99% strongly indicating the presence of a milk adul-

teration (Figure 39). The markers MYH7 and MATN1 clearly discriminated the bovine 

MBM from BM, SDP and milk powder.  

In conclusion, the results have proven the suitability of the developed multiplex assay RQ3 

to unambiguously detect and quantify bovine proteins from MBM, SDP, BM and milk with 

high precision and confidence. Until now, no method was reported that was able to sim-

ultaneously detect and differentiate all tissue types in a feed compound as matrix. 
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5.4 Detection and Quantification of Processed Animal Proteins 

5.4.1 Qualitative Detection 

A qualitative detection of 0.1% PAP in feed is the approved level for the official micro-

scopic method evaluated in former ring trials. The detection limit of polymerase chain 

reaction (PCR) even reaches 0.05% ruminant PAP in plant-based fish feed as demon-

strated in recent proficiency tests 49. Alternative methods are challenged by these quali-

tative limits since up to now no threshold for PAP in feed is in place. 

The qualitative detection capabilities of the developed assays RQ3 and XA2M were evalu-

ated. The absolute limit of the detection (LOD) expressed in peptide amounts was as-

sessed by dilution series of synthetic standard peptides spiked in feed matrices. The ap-

plication of multiplex assay RQ3 was intended to be in the authentication of cattle feed. 

For this reason, the corresponding dilution series was spiked into a digested vegetal cattle 

feed as matrix. Multiplex assay XA2M was intended to be applied for a multispecies detec-

tion in aquaculture feed authentication studies. In this case, a digested fish feed was used 

as matrix. A comparison of different possibilities to determine LOD for targeted mass 

spectrometric assays was published by Mani and colleagues 108. It was shown that blank 

measurements combined with measurements of a low analyte concentration give the 

most reliable LOD estimation. This method considers alpha and beta errors and is very 

suitable for highly specific mass spectrometric assays where the signal in blank measure-

ments is often zero or strongly fluctuates, leading to inconsistent LOD calculations. 

The used matrix amount and hence the later measured sample amount was assessed prior 

to the dilution experiment. A maximum sensitivity can be achieved by increasing the ab-

solute sample amount in the immunoaffinity step. Consequently, the matrix amount also 

increases, possibly leading to more pronounced matrix effects. To assess matrix effects, a 

constant known amount of stable isotope labeled standard peptides was analyzed at dif-

ferent matrix amounts. Some of the generated antibodies seemed to be affected by the 

vegetal cattle feed matrix (Figure 23). While the signal intensities increased for A2M and 

HP252, the signal intensity of SERPINF2 decreased with higher matrix amounts. In case 

of the cross-species antibody for homologous A2M peptides, the peptide signal intensities 

slightly increased with higher matrix amounts (Figure 21). It was supposed that contrary 

effects such as blocking of reagent tubes and cross-reactivity of antibodies with the matrix 
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determined the actual signal intensity. Therefore, multiplex XA2M was supposed to be not 

negatively affected by the matrix in higher sample amounts. Consequently, the sensitivity 

for low level contaminations could be increased if higher matrix amounts were analyzed. 

The same applied for most of the bovine-specific peptide-antibody pairs. However, the 

achievable sensitivity for SERPINF2 will most likely decrease when higher matrix 

amounts are analyzed. It was decided to spike the dilution series in a range of 50 amol to 

1000 fmol into a total amount of 100 μg feed matrix in order to assess the absolute 

amount LOD. 

The standard dilution experiments showed that the measurements were linear over a 

concentration range of 4 to 5 orders of magnitude. The blank measurement and the lowest 

concentration showing a S/N of ≥ 3 were used to determine LOD. The determined LODs 

using the method evaluated by Mani and colleagues were between 38 amol and 645 fmol 

for RQ3 in vegetal cattle feed and between 30 amol and 1.20 fmol for XA2M in fish feed 

(PRM detection, Table 17). 

The mass spectrometric detection after immunoaffinity enrichment and chromatographic 

separation was performed using a high resolution and accurate mass (HRAM) quadru-

pole-orbitrap hybrid mass spectrometer. Compared to low resolution triple quadrupole 

instruments that are common in routine analysis, HRAM instruments allow the measure-

ment of both, precursor and fragment ions with an outstanding accuracy and sensitiv-

ity 112,113. For this reason, the two MS detection modes SIM and PRM were compared re-

garding sensitivity and specificity in feed matrices. The detection of fragment ions using 

PRM showed lower LODs for most peptides than the detection of precursor ions using SIM 

(Table 17). Not only the detection limit improved but also the confidence of detection was 

higher using PRM. The precursor scans in SIM were shown to be affected by high noise 

levels in the extracted ion chromatograms even after immunoaffinity enrichment (Figure 

31). Peak integration for the three isolated precursor isotopes was shown to be inaccurate 

(Figure 32). It was decided that for qualitative detections, PRM offers a more confident 

marker peptide identification. 

Since an orbitrap analyzer was used, all fragment ions were detected in parallel, leading 

to an absolute specificity of peptide detection. However, the number of detected frag-

ments depends on the peptide concentration. The most intense fragment ions exceed the 

LOD first, followed by other fragment ions according to their relative intensities. In this 
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thesis, the LOD was determined only for the most intense fragment ion. Further fragment 

ions were considered only for quantitative analyses (Table 16). Nevertheless, the confi-

dence of illegal product detection while analyzing only one fragment ion per marker is 

still very high since in multiplex assays, several fragments of different markers are moni-

tored simultaneously. 

The detection limits in feed authentication studies are usually expressed as weight per-

centages of PAP in feed compounds. The weight percentage LOD indirectly depends on 

the contamination type SDP, BM or MBM and the actual analyte amount present in the 

respective product type. Highest sensitivity was supposed to be observed for SDP con-

taminations, since they are less processed and show high relative levels of plasma pro-

teins. In contrast, the lowest sensitivity was expected for highly processed MBMs as con-

taminants and addressing plasma proteins as markers for MBMs, since their relative 

abundancy was quite low. Higher concentrated and more tissue-specific targets such as 

myosin or matrilin should be addressed in that case. 

To determine the LOD expressed as weight percentage, feed matrices spiked with HPD-

prepared MBM and SDP were analyzed. SDP and MBM were chosen as the two extrema in 

terms of processing conditions and target analyte concentration. As expected, the detec-

tion limit of spiked rSDP was observed to be at the lowest analyzed level of 0.05% (Table 

19). An extrapolation of the linear regression indicated even lower detection limits (Fig-

ure 34). In case of the highly processed rMBM sample, the lowest level detected in a tissue-

specific way was 0.05% via MATN1 and 0.1% via MYH7 as marker peptides. Even a por-

cine SDP contaminated with 0.1% of a bovine SDP was safely detected via the C9 marker 

peptide, proving the high specificity of the generated antibody in multispecies mixtures. 

Although multiplex XA2M was not developed with the intention to be highly sensitive, the 

assay was able to detect 0.1% rMBM in a fish feed matrix via the bovine-specific A2M pep-

tide (Table 20). 

To summarize, the developed multiplex RQ3 qualitatively detected rMBM and rSDP in a 

VF matrix as well as rSDP in a pSDP matrix on a level of 0.1%. The detection via PRM was 

shown to provide a higher detection confidence compared to SIM. The VF matrix was ob-

served to affect the functionality of some of the developed polyclonal antibodies. 
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5.4.2 Quantitative Determination 

The European Commission currently works on the introduction of a PAP threshold for the 

presence in feed compounds 39. This requires future feed authentication methods to be 

quantitative. Although there are currently no thresholds in place, it is estimated that al-

ternative methods need to be quantitative in a range of <1-2% 45. The quantification ca-

pabilities of the developed assays were assessed within the same experiments as for the 

qualitative detection. The linear regression equation was used to calculate the measure-

ment’s accuracy and its precision. The lowest concentration level that was measured with 

an accuracy between 80-120% and a precision of ≤20% was defined as the lower limit of 

quantification (LLOQ). The LLOQs determined for RQ3 determined in vegetal cattle feed 

were in the range between 152 amol and 1.5 fmol, and LLOQs for XA2M determined in 

fish feed were in the range between 4.1 fmol and 37.0 fmol (Table 17). 

The quantification range was determined in phosphate buffered saline as well as in feed 

matrices (Table 18 and Table 17). These data were used to determine the analytical re-

covery and to answer the question whether the matrices affect the antibodies binding ef-

ficiency and therefore the limit of quantification. Slight effects of the matrix on the signal 

intensities were observed (Figure 21 and Figure 23). However, the quantification was not 

affected in a range of 4 fmol to 1000 fmol for RQ3 (Table 25) and 37 fmol to 1000 fmol for 

XA2M (Table 26).  

The rSDP- and rMBM-spiked VF samples were used to determine the limit of quantifica-

tion (LOQ) expressed as weight percentage for multiplex assay RQ3. Here, a quantitative 

determination was defined as signals above the calculated LOQ with a precision ≤20% for 

the most intense fragment ion. Additionally, two further qualitatively detected fragment 

ions, were chosen as criteria for quantification. Applying these rules, the lowest level of 

rMBM that was quantitatively detected in a tissue-specific way was 0.05% via MATN1 and 

0.1% via MYH7 and SPP1 (Table 19). The plasma proteins SERPINF2 and HP252 were 

least sensitive with a LOQ of 5.0%. In the rSDP spike-in series, all analyzed levels equal or 

higher than 0.05% were quantitatively determined. Furthermore, the upper limit of quan-

tification was exceeded for A2M, HP252 and C9 as it was shown in Figure 34. Mixtures 

containing more than 10% SDP as contaminant needed to be diluted in order to achieve a 

precise and accurate result. The rSDP in pSDP spike-in samples were quantitatively de-

termined on a level of 0.25% via C9, 0.5% via HP252 and 5% via SERPINF2. The group-
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specific antibody against A2M peptides was not used in this analysis since it would cap-

ture the porcine matrix as well. 

For the same reason, no determination of LOQ in SDP-SDP mixtures for multiplex XA2M 

was performed. However, spike-in samples of different species MBMs in fish feed were 

investigated. Multiplex XA2M was able to quantitatively determine 0.75% of a porcine and 

a bovine MBM in fish feed, respectively. The analyzed poultry-mix-MBM was quantita-

tively determined on a level of 5%. However, single species poultry-MBM would be prob-

ably quantified at lower levels. 

The RQ1 intraday repeatability was determined with validation samples (section 4.3.10). 

In this experiment, very high coefficients of variation were observed. It was assumed that 

these variations were caused by sample inhomogeneities. Indeed, an additional grinding 

step via ball mill reduced the coefficients of variation and increased the signal-to-noise 

ratios (Table 21). A detailed analysis of the ground and non-ground samples also revealed 

that the mean signal intensity decreased when an additional homogenization step was 

applied (Figure 38). The ground samples’ signal intensities for the 0.1% samples were 

around the detection limit in most cases. In contrast, the non-ground samples showed 

signals dramatically higher than the limit of quantification for 2 out of 5 replicates. A clear 

fragmentation pattern in the extracted ion chromatograms for these two samples was ob-

served, proving the peptides’ identity (Figure 37). The experiment revealed that a homo-

geneous sample is indispensable for an accurate and precise quantification. However, 

when it comes to a qualitative analysis, inhomogeneous samples and a high number of 

random sampling could increase the chance for detecting the contaminant with a high 

analytical confidence. The sampling strategy has to be clearly investigated in further pro-

jects. 

Intra- and interassay repeatability experiments for multiplex RQ3 and XA2M were then 

performed with additionally ground validation samples (Table 27 and Table 28). The as-

say repeatability was determined for both of the developed assays at three concentration 

levels for different sample types. SDP and citrate plasmas were precisely measured with 

interassay precisions ≤20% on all spiked levels (RQ3 and XA2M). RQ3 assay repeatability 

was shown for the two different meat and bone meals rMBM1 and rMBM2 on concentra-

tion levels of 1% and 10%, respectively. Different results were observed for the two MBMs 
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on the level of 0.1%. While 0.1% rMBM1 was precisely quantified via HP252 and MYH7, 

the mixture of rMBM2 was only qualitatively detected. 

Cause of this discrepancy could probably be a variation in the relative meat and bone 

amounts since the samples were obtained from different sources. This can be corrobo-

rated by the different total protein contents that were determined in the two MBMs. The 

plasma, muscle and cartilage protein levels were higher in rMBM1. In contrast, the rMBM2 

mixtures showed drastically higher SPP1 levels. This result highlights the importance of 

the analysis of several protein targets to achieve highest sensitivity in samples with vary-

ing protein composition. Furthermore, clear cut-offs for the MBM quantification should 

be determined on the basis of further analyses with a higher number of different MBMs. 

To conclude, in terms of a quantitative determination the admixtures of highly processed 

rMBMs were quantified with interday variations ≤20% in the range of 0.1-1% (w/w), 

which was not reported in literature, yet. Measurements of a higher number of both, MBM 

and SDP samples from different sources are required to confirm these results. 

5.5 Ring Trial Samples and Final Conclusion 

The developed and partially validated multiplex assays RQ3 and XA2M were applied to 

proficiency test samples that were provided by the German Federal Institute for Risk As-

sessment (Berlin) and were originally obtained from the European Reference Laboratory 

for Animal Proteins (EURL-AP, Gembloux, Belgium) in former ring trials (Table 30). The 

analyzed feed compounds were two compound feeds for pig, spiked with 0.1% ruminant 

PAP (Feed 1 and Feed 2); one fish feed, an industrial compound feed for trout farming 

containing 1% ruminant spray-dried hemoglobin powder (Feed 3); one fish feed, a com-

plete feed for fry containing 3% bovine plasma (Feed 4); one aquafeed (40% complete 

feed for salmon, 60% fish feed), containing 5% porcine blood meal (Feed 5) and a fish 

feed with hemoglobin meal, no detailed information available yet (Feed 6). 

The application of multiplex XA2M revealed the species origin of the test samples. Por-

cine- and bovine-specific A2M peptides were identified and quantified with a high analyt-

ical confidence. Three pure bovine contaminated feeds (Feed 1, Feed 2, Feed 4), two pure 

porcine contaminated feeds (Feed 5, Feed 6) and a mix of porcine and bovine contamina-

tion in feed were identified (Feed 3). Feed 1 and 2 were discriminated from the other 

ruminant species sheep and goat by the presence of the bovine-specific marker peptide. 
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The porcine background in feed 3 did not affect the detection of the bovine material. The 

intended application of XA2M for species identification in animal feed was proven by this 

analysis. Furthermore, XA2M successfully identified and quantified the bovine A2M pep-

tides in two pig feeds spiked with ruminant PAP on a level of 0.1%.  

Multiplex RQ3 was used to identify the tissue origin (legal or not) of the detected bovine 

contaminations. At first, two pure porcine contaminated feeds were analyzed with the bo-

vine-specific RQ3 multiplex to prove the absence of ruminant material. Since no ruminant 

material was detected in these samples, they would be legal for use in aquaculture feed. 

The four feeds containing bovine material were analyzed to be meat meals (Feed 1 and 

Feed 2), and blood products (Feed 3 and Feed 4). There were no indications for the pres-

ence of milk powder, since osteopontin was not detected in high relative protein levels 

(>99%). This result proved the illegal source of the bovine material contained in the feed 

compounds and therefore, their use as pig feed would be illegal. 

The analysis of ring trial samples via the two quantitative multiplex assays XA2M and RQ3 

showed a reliable species identification and tissue differentiation. The species contained 

in the feed compounds were identified by XA2M, without being affected by high porcine 

matrix levels. The tissue origin of the protein source in the bovine contaminated feed com-

pounds was determined by RQ3. The ring trial samples covered common animal protein 

additives such as PAPs and blood products. These animal proteins can be quantitatively 

detected on a level of 0.1% in common feed matrices such as fish feed and land living 

animal feed. A discrimination of illegal animal protein additives and legal milk powder 

using the developed assays is possible. Figure 42 shows a decision tree to draw a conclu-

sion about the exact species and tissue origin of unknown feed compounds. So far there is 

no other analytical method reported in literature that offers such a comprehensive quan-

tification and differentiation of animal proteins in feed compounds. 

As a final conclusion, the concept of immunoaffinity-based mass spectrometry for the 

quantitative detection of PAPs in feed was shown to be superior to other current analyti-

cal methods. This concept overcomes current limitations and closes the gap in analytical 

methods for safe PAP detection. The developed assays have great potential to be adopted 

as official methods in feed authentication studies and are promising candidates for rou-

tine feed analysis.



 

 

 

 

Figure 42. Decision tree for the determination of legal or illegal use of feed compounds analyzed by the two developed multiplex assays for species 
identification (XA2M) and ruminant tissue differentiation (RQ3). 
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6 Summary 

The present work introduced immunoaffinity-based mass spectrometry to feed analysis 

and improved the detection of banned processed animal proteins (PAPs) in animal feed. 

Current analytical methods show deficiencies in either sensitivity, species and tissue 

specificity or quantification ability. To address this issue, a peptide-centric workflow that 

comprises a more efficient sample preparation, an immunoaffinity enrichment of species- 

and tissue-specific peptides, and a LC-MS/MS analysis for identification and quantifica-

tion using stable isotope labeled standard peptides, was established. 

The release of peptides from poorly soluble PAPs and blood products was improved by a 

direct digestion in suspension. Further time-consuming clean-up steps are not necessary 

since reagents and salts are removed during the immunoenrichment. The enrichment also 

allows a fast peptide separation using short gradients with a 10 min cycle time and there-

fore an increased sample throughput. 

The species differentiation of the 8 livestock species cattle, sheep/goat, pig, horse, turkey 

chicken, duck and goose, was addressed in a multispecies approach. Therefore, a cross-

species polyclonal antibody was generated, which is able to enrich 8 homologous peptides 

from processed meat and bone meal, blood meal and spray-dried plasma, hence allowing 

a comprehensive analysis of common feed additives. A second multiplex assay was devel-

oped to differentiate ruminant tissues by targeting 7 peptides of meat, bone, cartilage, 

blood and milk proteins. This allows a differentiation of legal and illegal ruminant protein 

additives. The assays’ basic analytical parameters were validated. Both assays showed a 

detection limit in the picomolar concentration range allowing a qualitative detection over 

4 to 5 orders of magnitude and a quantification over 3 to 4 orders of magnitude. Depend-

ing on the tissue type, 0.05%-0.75% PAP was specifically and quantitatively determined 

in an animal feed background. 

The multiplex assays were finally applied to official proficiency test samples from the Eu-

ropean Reference Laboratory for Animal Proteins (EURL-AP, Gembloux, Belgium). The 

developed assays showed an unambiguous differentiation and quantification of species 

and tissues on a contamination level of 0.1% PAP in feed. As a final conclusion, immu-

noaffinity-based mass spectrometry was shown to overcome the current limitations in 

PAP detection and meets the requirements for future feed authentication methods. 
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7 Zusammenfassung 

Mit der vorliegenden Arbeit wurde erstmals das Konzept der immunoaffinitätsbasierten 

Massenspektrometrie im Bereich der Futtermittelanalytik angewendet. Die Detektion 

von verarbeiteten tierischen Proteinen (VTP) in Futtermitteln wurde damit verbessert. 

Die derzeitigen Methoden sind aufgrund unzureichender Sensitivität, Spezies- und Ge-

websspezifität oder mangelnder Quantifizierung nicht für den zukünftigen Einsatz in der 

Futtermittelanalytik geeignet. Im Rahmen dieser Arbeit wurde ein Verfahren entwickelt, 

welches diese Lücke schließen soll. Das peptidzentrische Verfahren umfasst eine verbes-

serte Probenvorbereitung, eine Immunoaffinitätsanreicherung von tierart- und gewebs-

spezifischen Peptidsequenzen sowie eine LC-MS/MS Analyse zur Identifikation und 

Quantifizierung mittels isotopenmarkierten Peptidstandards. 

Die Peptidfreisetzung aus schwerlöslichen VTP und Blutprodukten wurde mittels direk-

tem Verdau in Suspension verbessert. Weitere Probenaufarbeitungsschritte zur Entfer-

nung von Salzen und Reagenzien sind nicht notwendig, da diese während der Immunprä-

zipitation entfernt werden. Außerdem ermöglicht die Anreicherung eine schnelle chro-

matographische Auftrennung der Peptide mit Zykluszeiten von 10 Minuten und damit ei-

nen höheren Probendurchsatz.  

Die Tierartdifferenzierung der acht Hauptnutztierarten Rind, Schaf/Ziege, Schwein, Pferd, 

Pute, Huhn, Ente und Gans wurde in einem Multispeziesansatz verfolgt. Hierfür wurde ein 

speziesübergreifender polyklonaler Antikörper generiert, um acht homologe Peptide aus 

Fleischknochenmehlen, Blutmehlen oder sprühgetrockneten Plasmen anzureichern. Eine 

umfassende Detektion üblicher Proteinadditive in Futtermitteln ist damit gewährleistet. 

Zusätzlich wurde ein zweiter multiplexer Assay zur gewebsspezifischen Unterscheidung 

von Rinderproteinen entwickelt. Dieser adressiert sieben gewebsspezifische Peptidse-

quenzen aus Fleisch, Knochen, Knorpel, Blut und Milchproteinen und ermöglicht eine Un-

terscheidung von legalen und illegalen Proteinadditiven der Spezies Rind. Es wurden 

grundlegende analytische Parameter der beiden Assays validiert. Die Assays zeigten eine 

Nachweisgrenze im pikomolaren Konzentrationsbereich, was eine qualitative Detektion 

über vier bis fünf Größenordnungen sowie eine Quantifizierung über drei bis vier Grö-

ßenordnungen erlaubt. Abhängig vom Gewebetyp wurden Verunreinigungen von nur 

0,05 % bis 0,75 % VTP in einer tierischen Futtermittelmatrix spezifisch und quantitativ 

erfasst. 



116  7 Zusammenfassung 

Die entwickelten Tests wurden schließlich auf offizielle Ringversuchsproben des Europä-

ischen Referenzlabors für tierische Proteine (EURL-AP, Gembloux, Belgien) angewendet. 

Hierbei wurde eine eindeutige Differenzierung und Quantifizierung von Tierarten und Ge-

weben auf einer Konzentrationsstufe von 0,1% VTP in Tierfutter gezeigt. Die immunoaf-

finitätsbasierte Massenspektrometrie erwies sich damit als eine vielversprechende Me-

thode, um die derzeitige Lücke in der Futtermittelanalytik zu schließen. Die erforderli-

chen Kriterien an zukünftige offizielle Methoden zur Prüfung der Futtermittelauthentizi-

tät sind erfüllt.
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A. Exitope Analysis 

SERPINF2

 

 

Figure 43. Exitope analysis result for SERPINF2. The occurrence of the peptides in Uniprot is shown in the 
upper graph. High occurrence sequences are colored red and tryptic cleavage sites are high-
lighted in yellow. 

 

Protein HP-25 homolog 2 

 

 

Figure 44. Exitope analysis result for HP252. The occurrence of the peptides in Uniprot is shown in the up-
per graph. High occurrence sequences are colored red and tryptic cleavage sites are highlighted 
in yellow. 
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Complement C9 

 

 

Figure 45. Exitope analysis result for complement C9. The occurrence of the peptides in Uniprot is shown 
in the upper graph. High occurrence sequences are colored red and tryptic cleavage sites are 
highlighted in yellow. 

 

B. Peptide Ionization 

Table 31. Charge state determination of the selected marker peptides. 

Peptide 
Intensity  

p++ 

Intensity  

p+++ 

Most intense 

Precursor m/z 

YTPVEAIEK 6.68E+08 1.79E+05 525.2793 

LPPLSLLK 2.82E+09 0.00E+00 440.7969 

FGFDIELFQHAVK 1.53E+08 4.56E+08 517.6049 

MLSSLFANYAGFDTPIEK 1.06E+08 4.83E+07 1002.4928 

AGGIELFAIGVGR 1.68E+09 4.73E+07 630.3590 

YPDAVATWLKPDPSQK 1.94E+08 7.44E+08 605.9807 

GSGGTAEHPFTVEEFVLPK 3.01E+08 1.64E+09 668.0021 

ESGGTAEHHFTVEEFVLPK 1.52E+08 1.21E+09 705.3445 

VVVQQESGETAEHPFTVEEFVLPK 6.13E+07 3.16E+09 900.4569 

AEHPFIVEEFVLPK 2.12E+09 5.27E+09 552.2995 

TIHHPFSVEEYVLPK 4.62E+08 1.44E+09 599.3174 

TIQHPFTVEEYVLPK 8.25E+08 2.00E+09 600.9892 

TIQHPFSVEEYVLPK 9.02E+08 2.07E+09 596.3173 

IQHSFSVEEYVLPK 6.24E+08 1.34E+09 559.2945 
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C. Verification of Species-Specific alpha-2-Macroglobulin Peptides 

Cattle 
m/z = 668.0021 

Sheep 
m/z = 705.3445 

Goat 
m/z = 705.3445 

   
Pig 

m/z = 900.4569 
Horse 

m/z = 552.2995 
Duck 

m/z = 559.2945 

   
Chicken 

m/z = 599.3174 
Goose 

m/z = 596.3173 
Turkey 

m/z = 600.9892 

   
Figure 46. Verification of species-specific alpha-2-macroglobulin peptides in citrate plasmas via non-tar-

geted mass spectrometry. Three most intense isotope signals are highlighted for each precursor. 
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D. Collision Energy Optimization 

 

Figure 47. Optimization of collision energy for ruminant peptides. Different fragment ions are indicated by 
different colors in the stacked bar charts. 

 

  



130  Supplementary Data 

 

Figure 48. Optimization of collision energy for species-specific alpha-2-macroglobulin peptides. Different 
fragment ions are indicated by different colors in the stacked bar charts. 
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E. Antibody Functionality in Buffer 

 

Table 32. Antibody functionality of the two rabbit sera rbt1 and rbt2. determined in PBSC. 

Antibody Epitope 
EN signal intensity IS signal intensity 

rbt1 rbt1 rbt1 rbt2 

Cap_260_261 VEEXVLPK 1.41E+07 3.32E+07 2.23E+07 6.27E+07 

Cap33 LPPLSLLK 1.54E+08 5.05E+08 1.45E+08 4.77E+08 

Cap34 YTPVEAIEK 5.87E+08 7.06E+08 5.05E+08 6.16E+08 

Cap35 FGFDIELFQHAVK 3.05E+08 3.50E+08 1.84E+08 1.90E+08 

Cap36 MLSSLFANYAGFDTPIEK 2.85E+06 2.46E+06 2.88E+06 2.58E+06 

Cap37 YPDAVATWLKPDPSQK 1.26E+07 8.22E+06 8.93E+06 5.86E+06 

Cap38 AGGIELFAIGVGR 1.47E+07 8.95E+06 1.63E+07 1.01E+07 

 

F. Multiplex RQ2 Linearity and Precision 

  

  

Figure 49. Linearity and limit of detection (shown as dashed horizontal line) of multiplex RQ2 measured in 
PRM mode and PBSC as matrix. Each concentration was prepared as triplicate. 
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Figure 50. Accuracy and precision of multiplex RQ2 measured in PRM mode and PBSC as matrix.  Each con-
centration was prepared as triplicate. 
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Figure 51. Linearity and limit of detection (shown as dashed horizontal line) of multiplex RQ2 measured in 
PRM mode and vegetal cattle feed as matrix. Each concentration was prepared as triplicate. 
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Figure 52. RQ2 Accuracy and precision of multiplex RQ2 measured in PRM mode and vegetal cattle feed as 
matrix. Each concentration was prepared as triplicate. 
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G. Multiplex RQ3 Linearity and Precision 

  

  

  

 

 

Figure 53. Linearity and limit of detection (shown as dashed horizontal line) of multiplex RQ3 measured in 
PRM mode and PBSC as matrix. Each concentration was prepared as triplicate.  
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Figure 54. Linearity and limit of detection (shown as dashed horizontal line) of multiplex RQ3 measured in 
SIM mode and PBSC as matrix. Each concentration was prepared as triplicate.  
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Figure 55. Accuracy and precision of multiplex RQ3 measured in PRM mode and PBSC as matrix. Each con-
centration was prepared as triplicate. 
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Figure 56. Accuracy and precision of multiplex RQ3 measured in SIM mode and PBSC as matrix. Each con-
centration was prepared as triplicate. 
  



Supplementary Data  139 

 

  

  

  

 

 

Figure 57. Linearity and limit of detection (shown as dashed horizontal line) of multiplex RQ3 measured in 
SIM mode and vegetal cattle feed as matrix. Each concentration was prepared as triplicate.  
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Figure 58. Accuracy and precision of multiplex RQ3 measured in SIM mode and vegetal cattle feed as matrix. 
Each concentration was prepared as triplicate. 
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Figure 59. Linearity and limit of detection (shown as dashed horizontal line) of multiplex XA2M measured 

in PRM mode and PBSC as matrix. Each concentration was prepared as triplicate.  
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H. Multiplex XA2M Linearity and Precision 

  

  

  

  
Figure 60. Linearity and limit of detection (shown as dashed horizontal line) of multiplex XA2M measured 

in SIM mode and PBSC as matrix. Each concentration was prepared as triplicate.  
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Figure 61. Accuracy and precision of multiplex XA2M measured in PRM mode and PBSC as matrix. Each 

concentration was prepared as triplicate. 
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Figure 62. Accuracy and precision of multiplex XA2M measured in SIM mode and PBSC as matrix. Each con-

centration was prepared as triplicate. 
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Figure 63. Linearity and limit of detection (shown as dashed horizontal line) of multiplex XA2M measured 

in SIM mode and fish feed as matrix. Each concentration was prepared as triplicate.  
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Figure 64. Accuracy and precision of multiplex XA2M measured in SIM mode and fish feed as matrix. Each 

concentration was prepared as triplicate. 



 

 

I. Proficiency Test Sample Analysis 

Feed 1: 0.1% Ruminant PAP 
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Figure 65. Species identification in proficiency test sample “Feed 1” using multiplex XA2M. Analyte signals are shown in the first row, isotope labeled internal 
standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Figure 66. Ruminant tissue identification in proficiency test sample “Feed 1” using multiplex RQ3. Analyte signals are shown in the first row, isotope labeled inter-
nal standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 2: 0.1% Ruminant PAP 
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Figure 67. Species identification in proficiency test sample “Feed 2” using multiplex XA2M. Analyte signals are shown in the first row, isotope labeled internal 
standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 2: 0.1% Ruminant PAP 
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Figure 68. Ruminant tissue identification in proficiency test sample “Feed 2” using multiplex RQ3. Analyte signals are shown in the first row, isotope labeled inter-
nal standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 3: 1% Ruminant Blood 
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Figure 69. Species identification in proficiency test sample “Feed 3” using multiplex XA2M. Analyte signals are shown in the first row, isotope labeled internal 
standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 3: 1% Ruminant Blood 
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Figure 70. Ruminant tissue identification in proficiency test sample “Feed 3” using multiplex RQ3. Analyte signals are shown in the first row, isotope labeled inter-
nal standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 4: 3% Bovine Plasma 
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Figure 71. Species identification in proficiency test sample “Feed 4” using multiplex XA2M. Analyte signals are shown in the first row, isotope labeled internal 
standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Figure 72. Ruminant tissue identification in proficiency test sample “Feed 4” using multiplex RQ3. Analyte signals are shown in the first row, isotope labeled inter-
nal standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 5: 5% Porcine Blood 
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Figure 73. Species identification in proficiency test sample “Feed 5” using multiplex XA2M. Analyte signals are shown in the first row, isotope labeled internal 
standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 5: 5% Porcine Blood 
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Figure 74. Ruminant tissue identification in proficiency test sample “Feed 5” using multiplex RQ3. Analyte signals are shown in the first row, isotope labeled inter-
nal standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 6: Fish Feed Containing Hemoglobin Meal 
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Figure 75. Species identification in proficiency test sample “Feed 6” using multiplex XA2M. Analyte signals are shown in the first row, isotope labeled internal 
standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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Feed 6: Fish Feed Containing Hemoglobin Meal 
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Figure 76. Ruminant tissue identification in proficiency test sample “Feed 6” using multiplex RQ3. Analyte signals are shown in the first row, isotope labeled inter-
nal standard signals (IS) are shown in the second row. The different colors indicate the detected fragment ions. 
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J. A280 Measurements 

Table 33. Sample weight and A280 readout of HPD-prepared validation samples. 

weight 
fraction 

rMBM1 in VF rMBM2 in VF rSDP in VF 

Repli-
cate # 

Sam-
ple 

Weight 
A280 

Repli-
cate # 

Sam-
ple 

Weight 
A280 

Repli-
cate # 

Sam-
ple 

Weight 
A280 

10% 

1.1 15.3 4.733 4.1 15.2 4.648 7.1 15.2 5.650 
1.2 15.5 4.890 4.2 15.0 4.607 7.2 15.1 5.680 
1.3 15.1 4.665 4.3 15.0 4.535 7.3 15.3 5.722 
1.4 15.1 4.595 4.4 15.1 4.563 7.4 15.3 5.743 
1.5 15.2 4.703 4.5 15.0 4.580 7.5 15.5 5.732 
1.6 15.0 4.757 4.6 15.3 4.728 7.6 15.4 5.926 
1.7 15.1 4.985 4.7 15.1 4.764 7.7 15.2 5.996 
1.8 15.0 5.079 4.8 15.2 4.905 7.8 15.2 6.060 
1.9 15.1 5.167 4.9 15.1 4.967 7.9 15.1 6.102 

C.V. / %  1.0 3.9  0.7 3.1  0.8 2.8 

1% 

2.1 15.0 4.574 5.1 15.3 4.975 8.1 15.1 4.513 
2.2 15.2 4.601 5.2 15.0 4.968 8.2 15.4 4.527 
2.3 15.2 4.686 5.3 15.4 4.889 8.3 15.1 4.919 
2.4 15.2 4.635 5.4 15.1 4.973 8.4 15.5 5.019 
2.5 15.0 4.434 5.5 15.4 5.238 8.5 15.0 4.893 
2.6 15.0 4.484 5.6 15.1 5.010 8.6 15.4 5.414 
2.7 15.0 4.562 5.7 15.0 5.175 8.7 15.0 4.680 
2.8 15.0 4.744 5.8 15.4 5.336 8.8 15.2 4.780 
2.9 15.3 4.898 5.9 15.5 5.515 8.9 15.1 4.514 

C.V. / %  0.8 2.8  1.2 3.9  1.2 5.8 

0.1% 

3.1 15.4 4.858 6.1 15.2 4.647 9.1 15.4 4.949 
3.2 15.4 5.043 6.2 15.0 4.514 9.2 15.1 4.648 
3.3 15.5 4.834 6.3 15.2 4.505 9.3 15.2 4.821 
3.4 15.1 4.815 6.4 15.3 4.563 9.4 15.4 4.969 
3.5 15.3 4.816 6.5 15.0 4.559 9.5 15.3 4.910 
3.6 15.5 4.869 6.6 15.2 4.744 9.6 15.4 5.034 
3.7 15.4 4.878 6.7 15.5 4.891 9.7 15.1 5.227 
3.8 15.5 5.012 6.8 15.3 4.805 9.8 15.2 5.244 
3.9 15.0 4.867 6.9 15.0 5.049 9.9 15.4 5.242 

C.V. / %  1.1 1.6  1.0 3.8  1.0 3.9 

 



160  Supplementary Data 

  



  161 

 

Curriculum Vitae 

Andreas Erich Steinhilber 

born on April 6th 1990 in Tübingen 

 

03/2015  

– 05/2018 

 

 

 

 

08/2014 

– 02/2015 

 

 

 

 

03/2013 

– 07/2014 

 

08/2012 

– 02/2013 

 

 

 

03/2010 

– 07/2012 

PhD thesis at the Natural and Medical Sciences Institute at the 

University of Tübingen 

Title: Immunoaffinity-Based Mass Spectrometry for the Species 

Identification and Quantification of Processed Animal Proteins in 

Feed 

 

Master thesis at the Fraunhofer Institute for Interfacial 

Engineering and Biotechnology (1.0) 

Title: Synthesis and Characterization of Gelatin-. 

Chondroitin sulfate and Hyaluronic Acid-Based Hydrogels for 

Cartilage Tissue Engineering 

 

Study of Applied Chemistry (M.Sc.) at Reutlingen University 

of Applied Sciences (1.2) 

 

Bachelor thesis at the Fraunhofer Institute for Interfacial 

Engineering and Biotechnology (1.0) 

Title: Development of a HPLC-Based Analytical Method for the 

Quantitative Determination of Particle-Surface-Coupled Proteins 

 

Study of Applied Chemistry (B.Sc.) at Reutlingen University 

of Applied Sciences (1.5) 

  

02/2010 

– 07/2009 

Military service as medic, Artillerie-Kaserne in Kempten and Graf-

Stauffenberg-Kaserne in Sigmaringen  

  

06/2009 Abitur at Quenstedt Gymnasium Mössingen (2.3) 

 


