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INTRODUCTION

Gorenstein rings form an important class of commutative rings. The foundations of the
theory of Gorenstein rings go back to the classic work of Bass [Bas63]. For futher devel-
opments in the theory of Gorenstein rings we refer to [Hun99].

If R is a finitely generated graded Gorenstein algebra over an algebraically closed field K,
then one can represent R as a quotient ring S/I of a polynomial ring S = K[x1, . . . , xn]
where I ⊂ S is a homogeneous ideal, which in this case is called the Gorenstein ideal, see
Proposition 1.1.5.16. The difference k ∶= dim(S) − dim(R) is called the codimension of
I. The Gorenstein algebra R has “as S-module” the minimal graded free resolution as
follows

0 Sb
S
k Sb

S
k−1 . . . Sb

S
1 Sb

S
0 S/I 0,

with bSk = bS0 = 1 and for bSi the equation bSi = bSk−i holds for all 1 ≤ i ≤ k, see Theorem
1.1.5.8 and Theorem 1.1.5.9. The structure of this resolution is known for k ≤ 3. In
the cases k = 1, or k = 2 the Gorenstein ideal is generated by k elements, and thus in
particular I is a complete intersection ideal, see Chapter 2, Subsection 2.1.1. In the case
k = 3, the structure theorem of Buchsbaum and Eisenbud [BE77] yields that the minimal
number of generators of I is an odd number 2m + 1 ≥ 3 and that this minimal system
of generators of I are given by the 2m + 1 Pfaffians of order 2m of a skew-symmetric
(2m + 1) × (2m + 1)-matrix A, see Chapter 2, Subsection 2.1.2. Therefore the minimal
graded free resolution is given as

0 S S2m+1 S2m+1 S S/I 0.A

The structure of the minimal graded free resolutions of Gorenstein ideals of codimension
4 is not yet fully understood. Some progress in this direction is due to Gulliksen and
Negård [GN72]. In this article they study the Gorenstein ring S/I, where S is the poly-
nomial ring in rs variables xij , 1 ≤ i ≤ r, 1 ≤ j ≤ s, over a field K and I is a Gorenstein
ideal, which is generated by the t-minors of the matrix (xij) for 1 ≤ i ≤ r and 1 ≤ j ≤ s.
For n = r = s and t = n − 1 the authors give an explicit minimal graded free resolution
of the quotient module S/I, where I has codimension 4. Further important results for
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2 Introduction

Gorenstein ideals of codimension 4 are due to Kustin and Miller [KM82] and [KM83].
The results of Kustin and Miller have an interesting application in a new construction of
Calabi-Yau manifolds [Kap11] and a classification of singular Fano varieties [PR04]. In
[Rei15] Reid developed further the results of Kustin and Miller and he partially general-
izes the Buchsbaum-Eisenbud theorem [BE77], see Chapter 4, Section 4.1.

Reid considers the polynomial ring S = K[x1, . . . , xn] over an algebraically closed field K
and I ⊂ S a Gorenstein ideal of codimension 4 generated by l + 1 elements. He proposes
that the minimal graded free resolution of the quotient module S/I is given as

F ∶ 0 F4 F3 F2 F1 F0 S/I 0,
d4 d3 d2 d1 d0

where F0 = S, F4 = S, F1 = Sk+1, F3 = Hom(F1, F4) ≅ F ∗
1 and F2 = S2k. Moreover,

F2 Ð→ F1 is dual to F3 Ð→ F2. By choice of appropriate bases of F2 and F3, we obtain
the matrix A of d2, which has the form

A = [B C] ,

where B and C are (k + 1) × k-matrices satisfying the following condition

[B C] [
0 I
I 0
] [B C]

t
= 0.

This is equivalent to BCt +CBt = 0 or to BCt being a skew-symmetric matrix.

The construction of Stanley-Reisner rings is a basic tool within algebraic combinatorics
and combinatorial algebra. Its properties were investigated by Richard Stanley, Melvin
Hochster, and Gerald Reisner in the early 1970s, see [Hoc77], [Sta78] and [Sta80].

Given a simplicial d-polytope P with n vertices {v1, . . . , vn}, let ∆(P ) be the boundary
complex of P . For a field K, we define the corresponding Stanley–Reisner ring of ∆(P ),
or face ring, denoted by K[∆(P )], as the quotient ring of the polynomial ring S =
K[x1, . . . , xn] and the ideal I∆(P ) generated by square-free monomials corresponding to
the nonfaces of ∆(P ):

K[∆(P )] = K[x1, . . . , xn]/I∆(P ),

where
I∆(P ) = (xi1 . . . xir ∶ i1 < i2 < . . . < ir, {vi1 , . . . , vir} ∉ ∆(P )).

The ideal I∆(P ) is called the Stanley–Reisner ideal or the face ideal of ∆(P ).

In this thesis we consider Stanley-Reisner rings that are at the same time Gorenstein
rings. Therefore their Stanley-Reisner ideals are Gorenstein ideals, see Proposition
1.1.5.16. We dedicate special attention to Stanley-Reisner rings associated to simplicial
d-polytopes with d+4-vertices, which represent an important illustration of the structure
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theory of Kustin-Miller [KM82] and Reid [Rei15] in codimension 4.

The aim of this thesis is to achieve some progress on the structure of minimal graded
free resolutions of Gorenstein ideals of codimension 4 by using Stanley-Reisner rings. We
apply the homological methods of commutative algebra on simplicial d-polytopes with
d + 4 vertices. We want to connect the structure theory of Gorenstein rings with com-
binatorial problems. The starting point of our investigation is the relation between the
classification of simplicial d-polytopes with d + 3 vertices and the structure theorem of
Buchsbaum and Eisenbud of Gorenstein ideals of codimension 3 [BE77], see Chapter 3,
Subsection 3.2.1.

In Chapter 1 , we give basic definitions of minimal graded free resolutions of graded
finitely generated modules over a graded polynomial ring with a homogeneous maximal
ideal and Hilbert series. Then we recall complete intersections, Cohen-Macaulay rings
and Gorenstein rings, and we shall show the relationship between them. After that we
introduce the Stanley-Reisner rings.

In Chapter 2 , we explain the structure of the minimal graded free resolution of the quo-
tient module S/I, where S is a polynomial ring and I is a Gorenstein ideal of codimension
3. Buchsbaum and Eisenbud study this case in [BE77]. Then we discuss correspond-
ing combinatorial concepts. We introduce the Gale diagram of a simplicial d-polytope
P with d + 3 vertices, following mainly [Grü03, Section 5.4 and Chapter 6] and [Zie95,
Section 6.5]. After that we elucidate how we can determine a minimal monomial set of
generators of the associated Stanley-Reisner Gorenstein ideal to P using a Gale diagram.
We conclude the chapter by describing the minimal graded free resolution of the Stanley-
Reisner ring.

In Chapter 3 , we discuss a suggestion of Reid [Rei15] on how to generalize the Buchsbaum-
Eisenbud theorem [BE77] to Gorenstein ideals of codimension 4. We illustrate this by
some examples. Then for d = 3, 4, we compute explicitly the minimal graded free resolu-
tion of the Stanley-Reisner rings associated to simplicial d-polytopes with d + 4 vertices
using Gale diagrams.

In Chapter 4 , we consider a simplicial d-polytope P with vertex set V = {v1, . . . , vn},
so that 0 ∈ int(P ) and the boundary complex ∆(P ). We apply a radial projection of
P from the origin onto the unit sphere Sd−1. The image of V under this projection is
denoted by V ′ ∶= {v′1, . . . , v′n}, where v′i is the image of vi, for i = 1, . . . , n. Then we use
the stereographic projection at each point v′i, for i = 1, . . . , n. For every v′i, we obtain a
simplicial (d−1)-polytope, which has at most n−1 vertices, see Proposition 3.2.1.4. The
resulting polytope is denoted by Pi, for the stereographic projection at the projection
point v′i and the corresponding vertex set we denote by V ′′ ∶= {v′′i1 , . . . , v

′′
ik
}, where v′′il

is the image of v′il under this projection. For every such polytope there is an associated
Stanley-Reisner ring K[∆(Pi)] = K[xi1 , . . . , xik]/I∆(Pi)

, where I∆(Pi)
is the associated
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Gorenstein Stanley-Reisner ideal to Pi and ∆(Pi) is the boundary complex of Pi.

Now we summarise the main results of this chapter. The first aim is to determine the
minimal set of monomial generators of the associated Gorenstein Stanley-Reisner ideals
I∆(Pi)

. We give an algorithm, that allows us to determine this set if the minimal set of
monomial generators of the Gorenstein Stanley-Reisner ideal I∆(P ) is known.

Next we turn to Gorenstein ideals of codimension 4. In order to answer a question of Reid
(see [Rei13, Open problems 4.9.4], [Rei15, Section 2.6]), about Stanley-Reisner ideals of
codimension 4 we introduce the following notion, see Theorem 4.2.0.2.

Definition. 4.2.0.1 Let S = K[x1, . . . , xn] be a polynomial ring, f ∈ S a polynom and let
I and I ′ be ideals in S. We say I is a complete intersection of I ′ and f , if I = I ′ + (f)
and f modulo I ′ is non-zero divisor in the residue class ring S/I ′.

So our second aim in this chapter is to prove the following theorem

Theorem. 4.2.0.2 Let P be a simplicial d-polytope with d + 4 vertices, ∆(P ) be the
boundary complex of P and K[∆(P )] = K[x1, . . . , xd+4]/I∆(P ) be the Stanley-Reisner
ring of ∆(P ). If the Gorenstein Stanley-Reisner ideal I∆(P ) is minimally generated by
the polynomials f1, . . . , f6, then there exists i ∈ {1, . . . ,6} such that T (fi) ∩ T (fj) = ∅ for
all i ≠ j and I ′ = (fj ∶ j ∈ {1, . . .6} ∖ {i}) is a Gorenstein ideal of codimension 3.

Finally, the third aim is to give a counterexample to a conjecture of Reid (see [Rei13,
Open problems 4.9.4]), that every Gorenstein ideal of codimension 4 with even number
of generators is a complete intersection of a Gorenstein ideal of codimension 3 and an
extra polynom.

In Chapter 5 , we introduce affine Gale diagrams of simplicial d-polytopes with d+ 4 ver-
tices, see Definition 5.1.0.1. Gale diagrams of these polytopes are in R3, but affine Gale
diagrams are of one dimension lower that the well-known Gale diagrams. For d = 3, 4,
Grünbaum and Sreedharan construct in [GS67] all simplicial d-polytopes with d + 4 ver-
tices. There are exactly 5 combinatorial types of simplicial 3-polytopes with 7 vertices
and 37 combinatorial types of simplicial 4-polytopes with 8 vertices. For all these poly-
topes we sketch affine Gale diagrams. That should help us to achieve the following main
aim.

Let P be a d-polytope with vertex set V = {v1, . . . , vd+4} and B̂ = {v̂1, . . . , v̂d+4} the Gale
diagram of P . Let B∗ = {v∗1 , . . . , v∗d+4}, where each of the v∗i is declared to be either black
or white, be an affine Gale diagram of P . There is a canonical bijection between B̂ and
B∗ with the point vi corresponding to v∗i . Therefore there is also a canonical bijection
between the points vi of V and the points v∗i of B∗, see Remark 5.1.0.2.

We characterize the minimal set of monomial generators of Gorenstein Stanley-Reisner
ideals I∆(P ) using affine Gale diagrams, for an arbitrary d.
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Theorem. 5.3.0.2 Let P be a simplicial d-polytope with vertex set V = {v1, . . . , vd+4},
∆(P ) its boundary complex and the configuration B∗ = {v∗1 , . . . , v∗d+4} an affine Gale
diagram of P . Let K be an algebraically closed field and K[∆(P )] = K[x1, . . . , xd+4]/I∆(P )

the Stanley-Reisner ring of ∆(P ). A monomial xi1 . . . xik is an element of the minimal
set of monomial generators of the Gorenstein Stanley-Reisner ideal I∆(P ) if and only if
the set B∗ ∖ {v∗i1 , . . . , v

∗
ik
} satisfies the following condition: The black and white points

can be split by an affine hyperplane. Morevore, there is no superset of B∗∖{v∗i1 , . . . , v
∗
ik
},

which satisfies the previous condition.

Finally Chapter 6 , we explain the complex of Gulliksen and Negård [GN72] and then
focus an the corresponding combinatorial concepts of neigbourly and cyclic polytopes.

Definition. 6.2.0.1 A neighbourly d-polytope is a convex d-polytope, such that any set
of vertices of cardinality ⌊d/2⌋ spans a face. A polytope is called k-neighbourly if any set
of k vertices spans a face.

Definition. 6.2.0.2 Let t1 < t2 < ⋯ < tn be real numbers. The cyclic d-polytope with n
vertices C = Cd(t1, . . . , tn) is the convex hull of the subset {f(t1), f(t2), . . . , f(tn)} ⊂ Rd,
where f ∶ R→ Rd is defined by f(t) = (t, t2, . . . , td) for t ∈ R.

We start by considering cyclic d-polytopes with d + 3 vertices. For Gorenstein Stanley-
Reisner ideals of codimension 3 associated to these polytopes, the structure theory of
Buchsbaum and Eisenbud states, the minimal number of generators of each such ideal
is an odd number 2m + 1 ≥ 3 and that this minimal system of generators is given by the
2m + 1 Pfaffians of order 2m of a skew-symmetric (2m + 1) × (2m + 1)-matrix A. We
describe in this chapter this matrix explicitly concerning cyclic 2d-polytopes with 2d + 3
vertices.

Theorem. 6.2.1.1 Let P be a cyclic (2d−2)-polytope with the vertex set V = {v1, . . . , v2d+1}
and the boundary complex ∆(P ). Let K[∆(P )] = K[x1, . . . , x2d+1]/I∆(P ) be the Stanley-
Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal associated to P .
Then the monomial generators of I∆(P ) are 2d-th order Pfaffians of the following skew-
symmetric (2d + 1) × (2d + 1)-matrix A of degree d.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x2d+1 xd+1 ⋯ 0
0 −x1 xd+2

0 ⋮
⋮

⋱ ⋱
0

−xd−1 x2d

x2d+1 ⋯ ⋯ 0 ⋯ ⋯ −xd

−xd+1 x1

0 −xd+2 x2

⋮ ⋮ 0
⋱ ⋱

⋮ 0
0 ⋯ −x2d xd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We can determine minimal sets of monomial generators of Gorenstein Stanley-Reisner
ideals associated to all simplicial d-polytopes with d+3 through minimal sets of monomial
generators of Gorenstein Stanley-Reisner ideals associated to cyclic d-polytopes with d+3
vertices. We achieve that as follows: If we take a product of a monomial (or more) from
the minimal set of monomial generators of the Gorenstein Stanley-Reisner ideal associ-
ated to a cyclic polytope with a new variable (or more), then we obtain a minimal set of
monomial generators of the Gorenstein Stanley-Reisner ideal of codimension 3 associated
to a polytope of dimension d + k with d + k + 3 vertices, where k is the number of new
variables, see Example 6.2.1.2.

As we want to use the same idea for d-polytopes with d + 4 vertices, we are interested
in Gorenstein Stanley-Reisner ideals associated to cyclic d-polytopes with d + 4 vertices.
Since every cyclic polytope is a neighbourly polytope, see Corollary 6.2.0.6, we start with
considering neighbourly polytopes in chapter 6. Grünbaum and Sreedharan construct all
simplicial neighbourly 4-polytopes with 8 vertices in [GS67]. There are exactly three
combinatorial types of such polytopes, two of them P 8

36, P
8
37 are not cyclic, and the other

one P 8
35 is cyclic, see Chapter 3, Subsection 3.2.2. In 1981 Barnette [Bar81] construct

a family of neighbourly polytopes that are not cyclic in any dimension. After that in
1982 Shemer [She82] shows that the number of combinatorially different neighbourly 2d-
polytopes with 2d+4 vertices grows superexponentially as d→∞. In 1987 all neighbourly
6-polytopes with 10 vertices are classified by Bokowski and Shemer [BS87]. There are
37 combinatorial types. In 2011 Devyatov [Dev11] classified neighbourly 2d-polytopes
with 2d + 4 vertices, which have a planer Gale diagram of a special type with exactly
d + 3 black points in convex position. Finbow in [FS04], [Fin10] and [Fin15] published
a list of the simplicial neighbourly 5-polytopes with 9 vertices. There are exactly 126
combinatorially distinct types.

In 1996 Teria and Hibi [TH96] compute the Betti numbers of the minimal graded free
resolution of the Stanley-Reisner ring of the boundary complex of a cyclic polytope.
Then in 2010 Böhm and Papadakis [BP12] study the structure of Stanley-Reisner rings
associated to cyclic polytopes and show how to express the Stanley-Reisner ring of cyclic
d-polytope with n+1 vertices in terms of the Stanley-Reisner rings of a cyclic d-polytope
with n vertices and a cyclic (d − 2)-polytope with n − 1 vertices.

Let C be a cyclic 2d-polytope with 2d + 4 vertices and ∆(C) the boundary complex of
C. Let K[∆(C)] be the associated Stanley-Reisner ring to C. The minimal graded free
resolution of K[∆(C)] over S ∶= K[x1, . . . , x2d+4], as explained in [TH96], is of the form

0 S(−(2d + 4)) S(−(d + 3))bS3 S(−(d + 2))bS2 t

S(−(d + 1))bS1 S K[∆(C)] 0,

where bS1 = (d + 2)2, bS2 = 2(d + 3)(d + 1) and bS3 = (d + 2)2.
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That means that Gorenstein Stanley-Reisner ideals associated to cyclic 2d-polytopes with
2d + 4 vertices are generated by (d + 2)2 monomials of degree d + 1.

Hence, we verify in this chapter that the cyclic polytopes have also a crucial role for the
associated Gorenstein ideals of codimension 4.

Conjecture. 6.2.0.7 Let P be a simplicial neighbourly 2d-polytope with 2d + 4 vertices.
The polytope P is cyclic if and only if there exists a (d+2)×(d+2)-matrix A, so that all
its (d + 1)-minors minimally generate the Gorenstein Stanley-Reisner ideal associated to
P .

The “only if” part of this conjecture is that the minimal graded free resolutions of the
Stanley-Reisner rings associated to cyclic 2d-polytopes with 2d + 4 vertices can be con-
sidered as a special version of the Gulliksen-Negård complex to a (d+2)×(d+2)-matrix.
We give a complete proof of this direction, but for the “if” part, we only give a partial
argument. In [Dev11] Devyatov classified special neighbourly 2d-polytopes with 2d + 4
vertices which are not cyclic. We prove for each polytope of Devyatov’s polytopes that
the associated Gorenstein Stanley-Reisner ideal is generated by exactly (d + 2)2 mono-
mials and all have degrees d + 1, but there is no square (d + 2) × (d + 2)-matrix, so that
its (d + 1)-minors generate it. That means that the minimal graded free resolutions of
the associated Stanley-Reisner rings to Devyatov’s polytopes can not be regarded as a
version of the Gulliksen-Negård complex.

Theorem. 6.2.2.1 Let P be a cyclic 2d-polytope with the vertex set V={v1, . . . ,vd+2,w1, . . .,
wd+2} and the boundary complex ∆(P ). Let K[∆(P )] = K[x1, . . . , xd+2, y1, . . . , yd+2]/I∆(P )

be the Stanley-Reisner ring of ∆(P ), where I∆(P ) is the Gorenstein Stanley-Reisner ideal
associated to P . Consider a (d + 2) × (d + 2)-matrix (or its transpose) of the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0 0 ⋯ yd+2

y1 x2 0 0 ⋯ 0
0 y2 x3 0 ⋯ 0
0 0 y3 x4 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ xd+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the (d + 1)-minors construct a minimal set of monomial generators of I∆(P ).

Hence, we characterize the minimal sets of monomial generators of the Gorenstein ideals
associated to special neighbourly 2d-polytopes with 2d + 4 vertices, which are different
from cyclic polytopes of Devyatov’s [Dev11], see Theorem 6.2.3.4. We refer to the affine
Gale diagrams of these polytopes as T -diagrams. These diagrams have a special type,
namely, with exactly d + 3 black points lie in convex position and the remaining d + 1
white points lie inside the (d + 3)-gon formed by the black points, see Definition 6.2.3.1.

Proposition. 6.2.3.5 Let P be a special neighbourly simplicial 2d-polytope with 2d+4 ver-
tices, which were classified by Devyatov [Dev11], with the vertex set V ={v1, . . . , vd+3,w1, . . . ,



8 Introduction

wd+1} and the boundary complex ∆(P ). Let K[∆(P )]=K[x1, . . . , xd+3, y1, . . . , yd+1]/I∆(P )

be the Stanley-Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal asso-
ciated to P . Then I∆(P ) is minimally generated by exactly (d+2)2 monomial generators
and all have degree d + 1.

At the end of this chapter we show the “if” part of Conjecture 6.2.0.7 for the class of
Devyatov’s polytopes.

Theorem. 6.2.4.1 Let P be a special neighbourly simplicial 2d-polytope with 2d + 4 ver-
tices, which were classified by Devyatov [Dev11], with the vertex set V ={v1, . . . , vd+3,w1, . . . ,
wd+1} and the boundary complex ∆(P ). Let K[∆(P )]=K[x1, . . . , xd+3, y1, . . . , yd+1]/I∆(P )

be the Stanley-Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal as-
sociated to P . Then there is no (d + 2) × (d + 2)-matrix, so that its (d + 1)-minors are
monomial generators of I∆(P ).

So we give an important step to toward proving the “if” part of the conjecture.



CHAPTER

ONE

PRELIMINARIES

In this chapter, we recall basic notions from commutative algebra and from convex ge-
ometry. All of this chapter’s content is well known. Our primary references are [Pee11],
[HH11], [BH93], [BIV89] and [Sta96]. In the first section, we give some basic definitions
of minimal graded free resolutions of graded finitely generated modules over a graded
polynomial ring, Hilbert series and Hilbert functions. We close the section with recalling
complete intersections, Cohen-Macaulay rings and Gorenstein rings, and we shall show
the relationship between them. In the second section, we introduce the “Stanley-Reisner
rings” because the construction of the Stanley-Reisner ring is a basic tool within algebraic
combinatorics and combinatorial commutative algebra.

1.1 Basic notions on commutative algebra

List of general notation

K an algebraically closed field
S ∶= K[x1, . . . , xn] the polynomial ring with

standard Z-grading by deg(xi) = 1 for 1 ≤ i ≤ n
m = (x1, . . . , xn) the homogeneous maximal ideal of S
I a graded ideal of S
R ∶= S/I the quotient ring of S modulo I

Throughout this thesis, we consider polynomial rings with finitely many variables over
fields and “dimension of a ring” is understood as the Krull dimension.

1.1.1 Graded polynomial rings, modules and homomorphisms

In this subsection, we define monomial ideals of a polynomial ring and show that there
exists a unique minimal monomial system of generators for each monomial ideal. We deal

9
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with monomial ideals in next chapters, then we explain and introduce a grading on the
polynomial ring S = K[x1, . . . , xn] and discuss graded R-modules and homomorphisms,
where R = S/I and I is a graded ideal of S.

Definition 1.1.1.1. Any product xa1
1 . . . xann from S with ai ≥ 0 is called a monomial .

Definition 1.1.1.2. An ideal I of S is called monomial ideal if it can be generated by
monomials. If a monomial ideal is generated by monomials not divisible by the square
of any of the variables, then it is called squarefree.

By Hilbert’s basis theorem we know that the polynomial ring S is Noetherian, hence any
monomial ideal is finitely generated.

Proposition 1.1.1.3. [HH11, Proposition 1.1.5] Let I be a monomial ideal and {u1, . . ., um}
be a monomial system of generators of I. Then a monomial v ∈ S belongs to I if and only
if there exists a monomial w ∈ S such that v = wui for some i.

Proposition 1.1.1.4. [HH11, Proposition 1.1.6] Each monomial ideal has a unique min-
imal set of monomial generators. More precisely, let V denote the set of monomials in
I which are minimal with respect to divisibility. Then V is the unique minimal set of
monomial generators.

Definition 1.1.1.5. The degree of a monomial xa1
1 . . . xann is defined as deg(xa1

1 . . . xann ) ∶=
∑ni=1 ai. We denote by Si the K-vector space generated by all monomials of degree i, for
i ≥ 0. In particular, S0 = K. The elements of Si are called homogeneous of degree i.
Note that 0 is a homogeneous element with arbitrary degree. We have a direct sum
decomposition S = ⊕i≥0 Si of S as a K-vector space such that SiSj ⊆ Si+j for all i, j ≥ 0.
Thus S is standard graded . Every polynomial f ∈ S can be written uniquely as a finite
sum f = ∑ fi of non-zero elements fi ∈ Si, and in this case fi is called the homogeneous
component of f of degree i.

Definition 1.1.1.6. A proper ideal I of S is called graded or homogeneous if it satisfies
the following equivalent conditions.

1. The ideal I has a system of homogeneous generators.
2. If Ĩ is the ideal generated by all homogeneous elements in I, then I = Ĩ.
3. The ideal I = ⊕i≥0 Ii = ⊕i≥0(Si ∩ I). In this case, the K-spaces Ii are called the

homogeneous components of I.
4. If f ∈ I, then every homogeneous component of f is in I.

Let I be a graded ideal in S. Note that SiIj ⊆ Ii+j for all i, j ∈ N. The quotient ring
R = S/I inherits the grading from S by Ri ∶= Si/Ii for every i ∈ N.

Definition 1.1.1.7. An S-module M is called graded , if it has a direct sum decomposi-
tion M = ⊕i∈ZMi as a K-vector space and SiMj ⊆Mi+j for all i, j ∈ Z. The K-spaces Mi

are called the homogeneous components of M . Elements of Mi are called homogeneous
of degree i. Every element m ∈ M can be written uniquely as a finite sum m = ∑mi,
where mi ∈Mi, and in this case mi is called the homogeneous component of m of degree
i. For p ≥ 0 denote by M(−p) the graded S-module such that M(−p)i = Mi−p for all i.
We say that M(−p) is the module M shifted p degrees, and call p the shift.
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Proposition 1.1.1.8. [Pee11, Proposition 2.1] Let M be a graded S-module.
1. There exists a system of homogeneous generators of M .
2. The degrees of the elements in a system of homogeneous generators determine the

grading of M .

Proposition 1.1.1.9. [Pee11, Proposition 2.3] The module S(−p) is the free S-module
generated by one element in degree p, for p ≥ 0 .

Proof. S(−p)p = S0.

Remark 1.1.1.10. The element 1 ∈ S(−p) has degree p and is called the 1-generator of
S(−p).

Definition 1.1.1.11. Let N be a submodule of a graded S-module M . We say that N
is graded or homogeneous if it satisfies the following equivalent conditions:

1. The submodule N has a system of homogeneous generators.
2. If Ñ is the submodule generated by all homogeneous elements in N , then N = Ñ .
3. The submodule N = ⊕i∈Z(Mi ∩N).
4. If f ∈ N , then every homogeneous component of f is in N .

Let N be a graded submodule of a graded S-module M , then M/N inherits the grading
from M via

M/N =⊕
i∈Z

(M/N)i with (M/N)i ∶=Mi/Ni.

Definition 1.1.1.12. LetM and T be graded S-modules. We say that a homomorphism
ϕ ∶ M → T has degree i ∈ Z if deg(ϕ(m)) = i + deg(m), for each homogeneous element
m ∈ M . Since 0 has arbitrary degree, then deg(ϕ(m)) = i + deg(m) is only a condition
on the homogeneous elements outside Ker(ϕ). The K-space of all homomorphisms of
degree i from M to T is denoted by Homi(M,T ). A homomorphism φ ∈ Hom(M,T ) is
called graded (or homogeneous) if there exists i ∈ Z such that φ ∈ Homi(M,T ); we also
say that φ is a homomorphism of graded modules.

Proposition 1.1.1.13. [Pee11, Proposition 2.9] If φ ∶ M → T is a homomorphism of
graded S-modules, then Ker(φ), Im(φ), and Coker(φ) are graded.

Theorem 1.1.1.14. [Pee11, Theorem 2.10] Let T be an S-module. Then T is a finitely
generated graded S-module if and only if T ≅ M/N , where M is a finite direct sum of
shifted free S-modules, N is a graded submodule of M (called the module of relations),
and the isomorphism has degree 0.

Definition 1.1.1.15. Let M be a finitely generated S-module. An exact sequence of
the form

F1 F0 M 0,A

is called a finite presentation of M , where F0 and F1 are finitely generated free S-
modules. Since the sequence is exact, M is isomorphic to F0/Im(A). The matrix A is
called a presentation matrix of M . The presentation is called graded if M , F0, F1 are
graded and the two homomorphisms have degree 0.
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1.1.2 Graded complexes and minimal free resolutions

Definition 1.1.2.1. A complex F over S is a sequence of homomorphisms of S-modules

F ∶ . . . Fi Fi−1 . . . F1 F0 F−1 . . . ,
di d1 d0

such that di−1 ○ di = 0 for all i ∈ Z. The set of maps d = {di}i∈Z is called the differential
of F. If Fi = 0 for all i < 0, it is called a left complex , that is,

F ∶ . . . Fi Fi−1 . . . F2 F1 F0 0,
di d2 d1

with i ≥ 0. Furthermore, F is called a left complex over M (or a complex over M) if it is
a left complex and we have a homomorphism d0 ∶ F0 →M , called an augmentation map.

Buchsbaum and Eisenbud gave in 1973 a criterion for the exactness of a finite complex
of finitely generated free modules over a commutative noetherian ring. The criterion
consists of a condition on the rank of the homomorphisms di and another condition
which involves only one of the maps di at a time. For more details see [BE73].

Definition 1.1.2.2. Let F be a complex of S-modules Fi. If the S-modules Fi are
graded and each di is a homomorphism of degree 0, we say that the complex F is graded .
In this case the S-modules Fi are actually bigraded since

Fi =⊕
j∈Z

Fi,j for i ∈ Z.

An element f ∈ Fi,j is said to have homological degree i and internal degree j. We denote
the homological degree of f by hdeg(f), and the internal degree of f by deg(f).

Lemma 1.1.2.3. [Pee11, Lemma 9.2] Let T be a graded S-module. If T is a direct
summand of a finitely generated graded free S-module, then T is free.

Construction 1.1.2.4. Let F be a complex of S-modules Fi. If each module Fi is a
finitely generated graded free S-module, then we can write it as

Fi = ⊕
p∈Z

S(−p)ci,p .

Then the graded complex F of finitely generated free modules takes the form

F ∶ . . . ⊕p∈Z S(−p)ci,p ⊕p∈Z S(−p)ci−1,p . . . .
di

Definition 1.1.2.5. The i-th homology Hi(F) of a complex F is defined as

Hi(F) = Ker(di)/Im(di+1).

The elements in Ker(di) are called cycles and the elements in Im(di) are called bound-
aries. The complex is exact at Fi (or at step i) if Hi(F) = 0. The complex is exact if
Hi(F) = 0 for all i ∈ Z. A left complex is acyclic if Hi(F) = 0 for all i > 0; it is acyclic
over M if it is acyclic and H0(F) =M .
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In the graded case, since the differential is graded, it follows that the homology is bigraded
by

Hi(F) =⊕
j∈Z

Hi(F)j for i ∈ Z.

Definition 1.1.2.6. A free resolution of a finitely generated S-module M is a sequence
of homomorphisms of S-modules

F ∶ . . . Fi Fi−1 . . . F2 F1 F0,
di d2 d1

such that
1. F is a complex of finitely generated free S-modules Fi,
2. F is exact,
3. M ≅ F0/Im(d1).

Throughout this thesis, we use the following notation for free resolutions

F ∶ . . . Fi Fi−1 . . . F1 F0 M 0.
di d1 d0

Remark 1.1.2.7. Every resolution is an acyclic left complex over M .

Now we introduce the Ext modules of finitely generated S-modules M and N . These
Ext modules are very important because many invariants (such as grade, depth and
projective dimension) can be defined in terms of vanishing of suitable Ext’s, see [GS76]
and [BH93]. We shall use them to define Gorenstein ideals.

Definition 1.1.2.8. Let M and N be finitely generated S-modules and

F ∶ . . . Fi Fi−1 . . . F1 F0 M 0,
di di−1 d1 d0

a free resolution of M . Now we consider the complex

HomS(F,N) ∶ 0 HomS(F0,N) HomS(F1,N) . . . ,
d0 d1

where the homomorphisms di are defined by di(f) = f ○ di+1 for f ∈ HomS(Fi,N). Then
ExtiS(M,N) is defined as the module Hi(HomS(F,N)) over S. If F is finite that is

F ∶ 0 Fn . . . F1 F0 M 0,
dn d1 d0

then we can consider in addition to the above complex the following complex

HomS(N,F) ∶ 0 HomS(N,Fn) HomS(N,Fn−1) . . . ,
d∗n d∗n−1

where the homomorphisms d∗i are defined by d∗i (f) = f ○di+1 for f ∈ HomS(N,Fi). Then
ExtiS(N,M) is defined as the module Hi(HomS(N,F)) over S.
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Definition 1.1.2.9. Let F be a free resolution ofM . IfM is graded, F is a graded com-
plex, and the isomorphism M ≅ F0/Im(d1) has degree 0, then we say that the resolution
is graded . Fix a homogeneous basis of each free module Fi. Then the differential di is
given by a matrix Ai, whose entries are homogeneous elements in S. These matrices are
called differential matrices.

Construction 1.1.2.10. [Pee11, Construction 4.2] We explain the construction of a
graded free resolution of a finitely generated graded S-module M by induction on the
homological degree.
Step 0: SetM0 ∶=M . Choose homogeneous generators m1, . . . ,mr ofM0. Let a1, . . . , ar

be their degrees, respectively. Set F0 ∶= S(−a1) ⊕⋯⊕ S(−ar). For 1 ≤ j ≤ r denote
by fj the 1-generator of S(−aj).
Thus, deg(fj) = aj . Define

d0 ∶ F0 →M
d0(fj) =mj for 1 ≤ j ≤ r.

This is a homomorphism of degree 0.
Step i + 1: Set Mi+1 ∶= Ker(di). Choose homogeneous generators u1, . . . , us of Mi+1.

Let c1, . . . , cs be their degrees, respectively. Set Fi+1 ∶= S(−c1) ⊕ ⋯ ⊕ S(−cs). For
1 ≤ j ≤ s denote by gj the 1-generator of S(−cj). Thus, deg(gj) = cj . Define

di+1 ∶ Fi+1 →Mi+1 ⊂ Fi
di+1(gj) = uj for 1 ≤ j ≤ s.

This is a surjective homomorphism of degree 0.
The constructed complex is exact since Ker(di)=Im(di+1) by construction.

Example 1.1.2.11. Let S = K[x, y] and I = (x, y). We will construct a graded free
resolution of S/I over S.
Step 0: Set F0 ∶= S and let d0 ∶ S → S/I.
Step 1: The elements x, y are homogeneous generators of Ker(d0). Their degree is 1.

Set F1 ∶= S(−1) ⊕ S(−1). Denote by (f1, f2) the 1-generators of S(−1) ⊕ S(−1).
Hence deg(f1) = deg(f2) = 1. Let d1 ∶ F1 → S be the homomorphism defined by
d1(f1) = x and d1(f2) = y. We obtain the beginning of the resolution:

S(−1) ⊕ S(−1) S S/I 0.
[x y]

Step 2: We need to find homogeneous generators of Ker(d1). Let αf1 + βf2 ∈ Ker(d1),
with α, β ∈ S. We want to solve the equation αx + βy = 0, where α, β ∈ S are the
unkowns. The element −yf1+xf2 is a homogeneous generator of Ker(d1). Its degree
is 2, deg(−y) + deg(f1) = deg(x) + deg(f2) = 2. Set F2 ∶= S(−2). Denote by g1 the
1-generator of S(−2). Hence deg(g1) = 2. Let d2 ∶ F2 → F1 be the homomorphism
S-modules that is uniquely defined by d2(g1) = −yf1 + xf2. We obtain the next
step in the resolution:
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S(−2) S(−1) ⊕ S(−1) S S/I 0.
[−y x]t [x y]

Step 3: Now we need to find homogeneous generators of Ker(d2). Let µg1 ∈ Ker(d2)
with µ ∈ S. Hence µ(−yf1+xf2) = −µyf1+µxf2 = 0, it then follows that µy = 0 and
µx = 0. We conclude that µ = 0. Thus F3 = 0. We obtain the graded free resolution

0 S(−2) S(−1) ⊕ S(−1) S S/I 0.
[−y x]t [x y]

Now we define when a graded free resolution is minimal and describe the properties of
minimal graded free resolutions. Theorem 1.1.2.19 shows that the minimal graded free
resolution is the smallest graded free resolution in the sense that the ranks of its free
modules are less than or equal to the ranks of the corresponding free modules in an
arbitrary graded free resolution of the resolved module.

Definition 1.1.2.12. Let S be a graded polynomial ring with m its homogeneous maxi-
mal ideal. A graded free resolution of a finitely generated graded S-moduleM is minimal
if

di+1(Fi+1) ⊆ mFi for all i ≥ 0.

This means, that no invertible elements (non-zero constants) appear in the differential
matrices.

Remark 1.1.2.13. Recall that m = (x1, . . . , xn) is the unique homogeneous maximal
ideal of S.

Example 1.1.2.14. The resolution in Example 1.1.2.11 is minimal.

Theorem 1.1.2.15. [Pee11, Theorem 7.3] The graded free resolution constructed in Con-
struction 1.1.2.10 is minimal if and only if at each step we choose a minimal homogeneous
system of generators of the kernel of the differential.

Definition 1.1.2.16. A complex of the form 0 → S(−p) ⋅1→ S(−p) → 0 is called a short
trivial complex.

Definition 1.1.2.17. Let (F, d) be a complex of S-module Fi and (G, δ) be a complex
of S-module Gi. Then a homomorphism of complexes ϕ ∶ F→G is a set homomorphisms
ϕi ∶ Fi → Gi for all i ∈ Z, such that ϕ ○ d = δ ○ϕ. That is ϕi−1 ○ di = δi ○ϕi for all i ∈ Z. If
the complexes F and G are graded, then we call ϕ a homomorphism of graded complexes
if ϕi ∶ Fi → Gi is a homomorphism of a fixed degree q for all i ∈ Z.

Definition 1.1.2.18. Let (F, d) and (G, δ) be complexes, then their direct sum is the
complex (F⊕G, d⊕ δ) with modules (F⊕G)i ∶= Fi ⊕ Gi and differential d⊕ δ with
homomorphisms (d⊕ δ)i ∶= di⊕ δi for all i ∈ Z. A direct sum of short trivial complexes
in different homological degrees is called a trivial complex .

Theorem 1.1.2.19. [Pee11, Theorem 7.5] LetM be a graded finitely generated S-module.
There exists a minimal graded free resolution ofM and up to an isomorphism, there exists
a unique minimal graded free resolution of M .
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Remark 1.1.2.20. According this theorem we may say “the minimal graded free reso-
lution of M ”.

Example 1.1.2.21. Let S = K[x, y] and I = (x,xy). We construct a graded free resolu-
tion of S/I over S.
Step 0: Set F0 ∶= S and let d0 ∶ S → S/I.
Step 1: The elements x and xy are homogeneous generators of Ker(d0). Their degrees

are 1 and 2, respectively. Set F1 ∶= S(−1) ⊕ S(−2). Denote by f1 and f2 the
1-generators of S(−1), S(−2), respectively. Hence deg(f1) = 1, deg(f2) = 2. Let
d1 ∶ F1 → S be the homomorphism defined by d1(f1) = x and d1(f2) = xy. We
obtain the beginning of the resolution:

S(−1) ⊕ S(−1) S S/I 0.
[x xy]

Step 2: We need to find homogeneous generators of Ker(d1). Let αf1 + βf2 ∈ Ker(d1),
with α, β ∈ S. We want to solve the eqaution αx + βy = 0, where α, β ∈ S are the
unkowns. The element −yf1+f2 is a homogeneous generator of Ker(d1). Its degree
is deg(−y) + deg(f1) = deg(1) + deg(f2) = 2. Set F2 ∶= S(−2). Denote by g1 the
1-generator of S(−2). Hence deg(g1) = 2. Let d2 ∶ F2 → F1 be the homomorphism
S-modules that is uniquely defined by d2(g1) = −yf1 + f2. We obtain the next step
in the resolution:

S(−2) S(−1) ⊕ S(−2) S S/I 0.
[−y 1]t [x xy]

Step 3: Now we need to find homogeneous generators of Ker(d2). Let µg1 ∈ Ker(d2)
with µ ∈ S. Hence µ(−yf1 + f2) = −µyf1 + µf2 = 0, then it follows µy = 0 and µ = 0.
Thus F3 = 0. We obtain the graded free resolution

0 S(−2) S(−1) ⊕ S(−2) S S/I 0.
[−y 1]t [x xy]

It is not minimal, because the presentation matrix of d2 contains the entry 1.
We change the basis in S(−1) ⊕ S(−2) by setting

h1 = f1, h2 = −yf1 + f2.

With respect to the new basis, the resolution is

0 S(−2) S(−1) ⊕ S(−2) S S/I 0.
[0 1]t [x 0]

Thus, the resolution is the direct sum of the short trivial complex

0 S(−2) S(−2) 0.

The minimal graded free resolution is

0 S(−1) S S/I 0.
[x]
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In this case we say that the two copies of S(−2) cancel.

Remark 1.1.2.22. The minimal graded free resolution F of a graded finitely generated
S-module M is very important, because it describes the structure of M since it has the
form

⋯ F2 F1 F0 M 0.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a minimal system

of homogeneous

relations on the

relations ind1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a minimal system

of homogeneous

relations on the

relations inM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a minimal system

of homogeneous

generators ofM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The minimality of the relations encoded in di follows from Theorem 1.1.2.15. Not sur-
prisingly, many properties of M can be read off the structure of F.

Now we define the Betti numbers, the projective dimension of a graded finitely gener-
ated module M over a graded polynomial ring, because they help us to understand the
structure of the minimal graded free resolution.

Definition 1.1.2.23. Let F be a minimal graded free resolution of a graded finitely
generated S-module M

F ∶ . . . Fi Fi−1 . . . F1 F0 M 0,
di d1

The i’th Betti number of M over S is

bSi (M) ∶= rank(Fi).

By Theorem 1.1.2.19 the Betti numbers do not depend on the choice of the minimal
graded free resolution of M .

Definition 1.1.2.24. Let F be a minimal graded free resolution of a graded finitely
generated S-module M , that means, each free module Fi is a direct sum of modules of
the form S(−p). We define the graded Betti numbers ofM by

bSi,p(M) = number of summands in Fi of the form S(−p).

Proposition 1.1.2.25. [Pee11, Proposition 12.3] Let c be the minimal degree of an
element in a minimal system of homogeneous generators of M . We have that bSi,p(M) = 0
for p < i + c.

Example 1.1.2.26. In the Example 1.1.2.11, we have bS0,p(S/I) = 0 for p < 0, bS1,p(S/I) =
0 for p < 1 and bS2,p(S/I) = 0 for p < 2.

Definition 1.1.2.27. We define the length of a graded free resolution F by max{i ∈
N ∶ Fi ≠ 0}. We say that F is a finite resolution if its length is finite, otherwise we say
that F is an infinite resolution. The projective dimension of M is

proj.dimS(M) = max{i ∶ bSi (M) ≠ 0}.

Thus, proj.dimS(M) is the length of the minimal free resolution of M .
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Example 1.1.2.28. In Example 1.1.2.11, the projective dimension of S/I is 2.

Remark 1.1.2.29. By Theorem 1.1.2.19 we observe that proj.dimS(M) is the length of
the shortest graded free resolution of M .

Corollary 1.1.2.30. [BH93, Corollary 2.2.14] Let S = K[x1, . . . , xn], where K is a field.
Then

1. (Hilbert’s syzygy theorem) Every finitely generated S-module M has a finite graded
free resolution of length ≤ n.

2. proj.dimS(M) ≤ n for every finite S-module M .
3. Every finitely generated S-module has a finite free resolution of length ≤ n.

Definition 1.1.2.31. Let S be a graded polynomial ring with m its homogeneous maxi-
mal ideal and I be an ideal of S. The socle of S/I is soc(S/I) ∶= {f ∈ S/I ∶ mf = 0} (see
Remark 1.1.2.13), we denote it by soc(S/I).

Lemma 1.1.2.32. [Pee11, Corollary 14.12] Let S be a graded polynomial ring with m
its homogeneous maximal ideal and I an ideal of S. Let F be a minimal graded free
resolution of a graded finitely generated S-module S/I with proj.dimS(S/I) = n. Then
bSn(S/I) = dimK(soc(S/I)), with K ≅ S/m.

Theorem 1.1.2.33. (Serre’s Theorem) Every finitely generated graded R-module has
finite projective dimension if and only if R is a polynomial ring, that is, R = S/I for
some ideal I generated by linear forms.

Proof. See [Mat86, Theorem 19.2] for a proof of Serre’s theorem.

Now we come back to a graded free resolution F of a finitely generated graded S-module
M , in which each differential matrix has entries of the same degree, for defining a pure
free resolution of M (see [Pee11] and [Put16]). Especially interesting are the linear free
resolutions in which all differentials have linear entries, and we use the following notation.
Let ci,p(M) be the number of copies of S(−p) in Fi. Note that if the resolution is minimal
then the numbers ci,p(M) coincide with the graded Betti numbers bSi,p(M).

Definition 1.1.2.34. The set of i’th shifts in F is

{p ∈ N0 ∶ ci,p ≠ 0}.

Denote by ti the minimal i’th shift, and by Ti the maximal i’th shift, that is

ti = min{p ∈ N0 ∶ ci,p ≠ 0} and Ti = max{p ∈ N0 ∶ ci,p ≠ 0}.

Definition 1.1.2.35. We say that F is pure if it has the form

. . . S(−pi)ci,pi S(−pi−1)ci−1,pi−1 . . . ,
di

that is, for each i the set of i’th shifts consists of one number denoted pi, that is ti = Ti = pi.
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Proposition 1.1.2.36. [Pee11, Proposition 17.5] Let F be a graded free resolution of
a finitely generated graded S-module M . Then F is pure if and only if for each i there
exists a number pi such that ci,r = 0 for r ≠ pi.

Corollary 1.1.2.37. [Pee11, Corollary 17.6] If there exists a pure graded free resolution
of M , then the minimal graded free resolution of M is pure.

Example 1.1.2.38. Let S = K[x, y] and I = (x3, x2y, xy2). The minimal graded free
resolution of a finitely generated graded S-module S/I is

0 S(−4)2 S(−3)3 S S/I 0.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y 0

−x y

0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦ [x3 x2y xy2]

This resolution is pure with p0 = 0, p1 = 3, p2 = 4.

1.1.3 Hilbert series and Hilbert polynomial

The Hilbert function and the Hilbert series of a finitely generated graded algebra over
a field are very important, because they measure the growth of the dimension of the
homogeneous components of the algebra. We will be using these notions in the following
situation: the quotient by a homogeneous ideal of a graded polynomial ring (graded by
the total degree). Hilbert series are important in computational algebraic geometry, as
it is the easiest known way for computing the dimension and the degree of an algebraic
variety defined by explicit polynomial equations. Since the Hilbert series of an algebra
or a module is a special case of the Hilbert-Poincaré series of a graded vector space, we
will explain as a first step what the Hilbert-Poincaré series is, see [Sta78].

Definition 1.1.3.1. The Poincaré series of a graded finitely generated S-module M is

PSM(t) = ∑
i≥0

bSi (M)ti.

The properties of the Poincaré series are usually of interest for infinite free resolutions.

Example 1.1.3.2. In Example 1.1.2.11 the Poincaré series of S/I over S is

PSS/I(t) = 1 + 2t + t2.

Since R = S/I and S = K[x1, . . . , xn], we have a grading and hence we can measure the
dimension of the quotient ring R by measuring the dimension of its graded components.
We observe that Ri is a K-vector space because R0Ri ⊆ Ri and R0 = K. Its basis is called
a basis in degree i.

Definition 1.1.3.3. The Hilbert function of R is the function N0 → N0 defined by
iz→ dimK(Ri) for dimK(Ri) < ∞ for all i ≥ 0. The Hilbert series is defined by

HilbR(t) = ∑
i≥0

dimK(Ri)ti.
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Example 1.1.3.4. Let S = K[x, y] and I = (x3, y2). Then S/I is graded with basis {1}
in degree 0, {x, y} in degree 1, {x2, xy} in degree 2 and {x2y} in degree 3. Then the
Hilbert series is

HilbS/I(t) = 1 + 2t + 2t2 + t3.

Example 1.1.3.5. In Example 1.1.2.11 S/I is graded with basis {1} in degree 0. Hence
the Hilbert series of S/I is

HilbS/I(t) = 1.

Proposition 1.1.3.6. [Pee11, Proposition 1.8] Let I be an ideal ofS generated by mono-
mials. Then the K-vector space (S/I)i = Si/Ii has the basis

{monomial m ∈ S ∶ m ∉ I, deg(m) = i},

for all i ≥ 0. Hence, dimK((S/I)i) equals the number of monomials of degree i not in I.

Let M be a graded S-module. Then Mi is a K-vector space because S0Mi ⊂ Mi and
S0 = K. A basis of Mi is called a basis in degree i. If N is a finitely generated graded
S-module, then dimK(Ni) < ∞ for all i ∈ Z and Ni = 0 for i≪ 0.

Definition 1.1.3.7. Let N = ⊕i∈ZNi be a graded S-module. The generating function
iz→ dimK(Ni) is called the Hilbert function of N and the series

HilbN(t) = ∑
i∈Z

dimK(Ni)ti

is called the Hilbert series of N .

In the case that the module N is shifted p degrees, its Hilbert function is

HilbN(−p)(t) = tpHilbN(t).

Hilbert series can be computed using graded free resolutions, as it is illustrated by the
following results.

Proposition 1.1.3.8. [Pee11, Proposition 16.1] Let

0 K N W 0,

be a short exact sequence of graded finitely generated S-modules and homomorphisms of
degree 0, then

HilbN(t) = HilbK(t) +HilbW (t).

Theorem 1.1.3.9. [Pee11, Theorem 16.2](Hilbert) Let S = K[x1, . . . , xn] be the polyno-
mial ring and F be a graded free resolution of a finitely generated graded S-module M .
Write

Fi = ⊕
p∈Z

S(−p)ci,p .

For each p suppose that ci,p = 0 for i≫ 0. Then

HilbM(t) =
∑i≥0∑p∈Z(−1)i ci,p tp

(1 − t)n
.



1.1. Basic notions on commutative algebra 21

Theorem 1.1.3.9 can be applied in the following cases:
1. The resolution F is finite.
2. The resolution F is minimal. In this case ci,p = bSi,p(M) and we apply Proposition

1.1.2.25.

Example 1.1.3.10. Let S = K[x, y] and R = S/(x3, xy, y5). The graded free resolution
can be computed using by Construction 1.1.2.10 and we obtain

0 S(−4) ⊕ S(−6) S(−3) ⊕ S(−2) ⊕ S(−5) S R 0.

By Theorem 1.1.3.9 the Hilbert series is

HilbR(t) =
1 − t3 − t2 − t5 + t4 + t6

(1 − t)2
= 1 + 2t + 2t2 + t3 + t4.

Theorem 1.1.3.11. Let S be a graded polynomial ring. If S is generated by n homoge-
neous elements of positive degrees a1, . . . , an, then the Hilbert series is a rational function

HilbS(t) =
P (t)

∏ni=1(1 − tai)
,

where P (t) is a polynomial with integer coefficients.

Proof. See [AM69, Theorem 11.1], or [Smo72, Theorem 4.2].

Corollary 1.1.3.12. Let S = K[x1, . . . , xn] be the graded polynomial ring. The Hilbert
series may be rewritten as

HilbS(t) =
P (t)

(1 − t)n
,

where n is the dimension of S.

Remark 1.1.3.13. Let S = K[x1, . . . , xn] and R = S/I, the graded K-algebra R is finitely
generated by elements of positive degree. Thus R satisfies the above Theorem 1.1.3.11,
see [BH93, Proposition 4.4.1].

1.1.4 Cohen-Macaulay rings and complete intersection

The polynomial ring S = K[x1, . . . , xn] over a field K is a graded ring, in particular it has
the form S = ⊕i≥0 Si. Moreover S is a local ring with the unique homogeneous maximal
ideal m = ⊕i>0 Si = (x1, . . . , xn). Since S is also a regular ring by Proposition 1.1.4.7,
then regular local rings can be considered as analogues of polynomial rings with finitely
many variables over fields.

In what follows, “dimension of a module M over a ring S” is understood as the Krull
dimension of S/Ann(M).
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Definition 1.1.4.1. LetM be a finitely generated module over a graded polynomial ring
S. A sequence of elements a1, . . . , ar in an ideal I of S is called an M -regular sequence
or an M -sequence in I, if ai+1 is not a zero divisor of M/(a1, . . . , ai)M for 1 ≤ i < r
and (a1, . . . , ar)M ≠M . The sequence is said to be maximal if there does not exist any
element ar+1 ∈ I such that a1, . . . , ar, ar+1 is an M -sequence in I.

Example 1.1.4.2. In the polynomial ring S = K[x1, . . . , xn] the sequence x1, . . . , xn of
indeterminates is a S-regular sequence.

Definition 1.1.4.3. Let S be a graded polynomial ring with m its homogeneous maximal
ideal. An S-sequence a1, . . . , ar in m is called a system of parameters if a1, . . . , ar are
generators of m.

Definition 1.1.4.4. Let S be a graded polynomial ring with m its homogeneous max-
imal ideal and M be a finitely generated S-module with of dimension d. A system of
parameters of M is a set {a1, . . . , ad} of elements of m such that M/(a1, . . . , ad)M has
finite length.

Definition 1.1.4.5. A Noetherian local ring is called regular if it has a system of pa-
rameters generating its unique maximal ideal; such a system of parameters is called a
regular system of parameters.

Remark 1.1.4.6. [BH93, Definition 2.2.1] Equivalent definition to Definition 1.1.4.5 is,
a Noetherian local ring is regular if and only if its dimension is equal to the minimal
number of generators of its unique maximal ideal.

Proposition 1.1.4.7. A polynomial ring with finitely many variables over a field K is a
regular ring.

Proof. That follows immediately from [BH93, Theorem 2.2.13] or [BIV89, Theorem
14.31], since K is regular.

Theorem 1.1.4.8. [BH93, Theorem 1.5.17] Let S be a graded polynomial ring with m
its homogeneous maximal ideal and dim(S) = n. Then there exist homogeneous elements
x1, . . . , xn of m, such that they form a system of parameters of degree 1. Such elements
are algebraically independent over K, where K ≅ S/m.

Proposition 1.1.4.9. [BH93, Proposition 2.2.4] Let S be a regular graded polynomial
ring with m its homogeneous maximal ideal and I ⊂ S be an ideal. Then S/I is regular if
and only if I is generated by a subset of a regular system of parameters.

Note that S/I is a graded regular ring if and only if I is generated by linear forms.

Theorem 1.1.4.10. (Rees) Let M be a finitely generated module over a graded poly-
nomial polynomial ring S and I be an ideal such that IM ≠ M . Then all maximal
M -sequences in I have the same length s and it is given by

s = min{i ∶ ExtiS(S/I,M) ≠ 0}.
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Proof. See [BH93, Theorem 1.2.5].

Definition 1.1.4.11. Let M be a finitely generated module over a graded polynomial
ring S and I be an ideal such that IM ≠M . Then the grade of I on M is the common
length of the maximal M -sequences in I, denoted by grade(I,M).

To complement this definition we put grade(I,M) = ∞ if IM =M . By Theorem 1.1.4.10
we have

grade(I,M) = ∞ if and only if ExtiS(S/I,M) = 0 for all i.

Definition 1.1.4.12. Let S be a graded polynomial ring with m its homogeneous max-
imal ideal and M be a finitely generated S-module. Then the depth of M is the grade
of m on M , denoted by depth(M).

Corollary 1.1.4.13. Let M be a finitely generated non-zero module over a graded poly-
nomial ring S. Let K be the residue field. Then

depth(M) = min{i ∶ ExtiS(K,M) ≠ 0}.

Proof. It follows immediately from Theorem 1.1.4.10.

Proposition 1.1.4.14. [BIV89, Proposition 14.18] Let S be a graded polynomial ring
and M be a finitely generated S-module. If M ≠ 0, then depth(M) ≤ dim(M).

Definition 1.1.4.15. Let S be a graded polynomial ring and M be a finitely generated
non-zero S-module. Then the grade of M is given by

grade(M) = min{i ∶ ExtiS(M,S) ≠ 0}.

It follows directly from [BH93, Proposition 1.2.10 (e)] that grade(M) = grade(Ann(M), S).
For an ideal I of S it is customary to set

grade(I) = grade(S/I) = grade(I, S).

Now grade I has two different meanings, but we never use it to denote the grade of the
module I.

Proposition 1.1.4.16. [BH93, Proposition 1.2.14] Let S be a graded polynomial ring
and I ⊂ S be an ideal. Then

grade(I) ≤ height(I).

Theorem 1.1.4.17. (Auslander-Buchsbaum) Let S be a graded polynomial ring and M
be a finitely generated non-zero S-module. If proj.dimS(M) < ∞, then

proj.dimS(M) + depth(M) = depth(S).

In particular depth(M) ≤ depth(S).
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Proof. See [BH93, Theorem 1.3.3] for a proof of Auslander-Buchsbaum’s theorem.

Theorem 1.1.4.18. (Auslander-Buchsbaum-Serre) Let S be a graded polynomial ring
and M be a finitely generated S-module. Then S is regular if and only if proj.dimS(M) <
∞ for every finitely generated S-module M .

Proof. See [Ser56] or [AB57, Theorem 1.10 and Corollary 4.8].

Definition 1.1.4.19. Let S be a graded polynomial ring. A finitely generated non-
zero S-module M is a Cohen-Macauly module if depth(M) = dim(M). If S itself is a
Cohen-Macaulay module, then it is called a Cohen-Macauly ring . (For M = 0 we have
dim(M) = −∞ and depth(M) = ∞.)

Theorem 1.1.4.20. [BH93, Corollary 2.2.6] A regular graded polynomial ring is a Cohen-
Macaulay ring.

Theorem 1.1.4.21. [BH93, Corollary 2.1.4] Let S be a Cohen-Macaulay ring and I ≠ S
be an ideal. Then grade(I) = height(I), and if S/I is a graded ring, then

height(I) + dim(S/I) = dim(S).

Definition 1.1.4.22. Let S be a graded polynomial ring. A finitely generated non-zero
S-module M is perfect if proj.dimS(M) = grade(M). An ideal I of S is called perfect if
S/I is a perfect module, that is proj.dimS(S/I) = grade(I).

Theorem 1.1.4.23. [BH93, Corollary 2.2.10] Let S be a graded polynomial ring and I
be an ideal of S. If I is generated by a S-sequence, then I is perfect.

Theorem 1.1.4.24. [BH93, Corollary 2.2.15] Let K be a field, S = K[x1, . . . , xn] be the
polynomial ring, m = (x1, . . . , xn) be the homogeneous maximal ideal and M be a finitely
generated graded S-module. Then the following are equivalent:

1. M is Cohen-Macaulay,
2. M is perfect,
3. Mm is Cohen-Macaulay,
4. Mm is perfect.

Definition 1.1.4.25. Let R be a graded polynomial ring, such that R has the form
S/I, where S is a regular graded polynomial ring over a field K with m its homogeneous
maximal ideal. Then R is called a complete intersection if I is generated by an S-
sequence.

Definition 1.1.4.26. Let S be a graded polynomial ring. An ideal I of S with grade(I) =
r is called a complete intersection ideal , if I is generated by r elements. An equivalent
definition is: A graded ideal I of S is called a complete intersection ideal if I is generated
by a S-regular sequence x1, . . . , xr of polynomials.

Theorem 1.1.4.27. [BH93, Section 2.3] Let S be a graded polynomial ring I be an ideal
of S. For a complete intersection ideal I the ring S/I is a Cohen-Macaulay ring.
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1.1.5 Gorenstein rings and Gorenstein ideals

We introduce Gorenstein rings and show that Gorenstein rings are Cohen-Macaulay rings.
There are many equivalent definitions for Gorenstein rings, we give now some of them.
In this thesis we are intersted by a graded polynomial rings, thus we use such rings
in all definitions as assumption instead of a Noetherian local rings. In [Bas63] there
are many equivalent conditions for Gorenstein rings, it is defined and presented using
injective resolutions of rings. In this subsection we define a Gorenstein ring using Cohen-
Macaulay rings and systems of parameters. For a more extensive treatment see [Bas63],
[HK71] or [BH93].

Definition 1.1.5.1. Let S be a graded ring. We say that S is a Gorenstein ring if and
only if the following conditions are satisfied

1. S is a Cohen-Macaulay ring.
2. There exists a homogeneous system of parameters x1, . . . , xr in S, such that the

ideal (x1, . . . , xr) is irreducible, i.e.

if (x1, . . . , xr) = I ∩ J, then I = (x1, . . . , xr) or J = (x1, . . . , xr).

Proposition 1.1.5.2. Any regular graded polynomial ring is a Gorenstein ring.

Proof. Suppose that S is a regular graded polynomial ring in the variables x1, . . . , xn of
dimension n with m its homogeneous maximal ideal. Since S is regular, it is a Cohen-
Macaulay ring by Theorem 1.1.4.20, and

S/(x1, . . . , xn) ≅ S/m ≅ K,

where K is the residue field. We know that (0) is irreducible in K.

Example 1.1.5.3. Let S = K[x] and I = (x2). The ring R = S/I is a Gorenstein ring and
has dimension 0 and three ideals (0) ⊂ (x) ⊂ R. It is clear that (0) cannot be obtained
as an intersection of two non-zero ideals in R. On the other hand R is not regular. That
means not every Gorenstein ring is regular.

Proposition 1.1.5.4. Let R be a zero-dimensional graded ring with m its homogeneous
maximal ideal. Then the following are equivalent:

1. R Gorenstein ring.
2. soc(R) is a 1-dimensional vector space over K, where K is the residue field.
3. R is injective as an R-module.
4. The ideal (0) in R is irreducible.

Proof. (1) ⇔ (2) ⇔ (3) follow directly from [Eis95, Proposition 21.5]. To prove (2) ⇔
(4), assume that (0) is irreducible and dimK(soc(R)) ≥ 2. Choose linear independet
vectors v, u in soc(R). Then we have (v) ∩ (u) = (0), which is a contradiction since we
assumed that (0) was irreducible. Conversely assume that dimK(soc(R)) = 1. Let v be
a basis of soc(R) and suppose (0) = I ∩ J . Choose r ≥ 0 maximal such that mrI ≠ 0 and
s ≥ 0 maximal such that msJ ≠ 0. Since R has dimension 0, mn = 0 for all n ≫ 0. Also
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mrI ⊆ (0 ∶ m) ∩ I and msJ ⊆ (0 ∶ m) ∩J . Therefore soc(R) ∩ I ≠ (0) and soc(R) ∩J ≠ (0).
But soc(R) is a 1-dimensional vector space, so v ∈ I and v ∈ J , and this is a contradiction
to v ≠ 0.

Corollary 1.1.5.5. Let S be a regular graded polynomial ring of dimension n and I be
an ideal of S such that

√
I = m, so that R = S/I has dimension 0. Then R is a Gorenstein

ring if and only if bSn(R) = 1.

Proof. See Proposition 1.1.5.4 and Lemma 1.1.2.32.

Theorem 1.1.5.6. [BH93, Theorem 3.2.10] Let S be a regular graded polynomial ring
of dimension n and I be an ideal of S. Then R = S/I is Gorenstein ring if and only if it
is Cohen-Macaulay ring and its canonical module Extn−qS (R,S) is free of rank 1, where
dim(R) = q. The number dimK(Extn−qS (R,S)) is called the type of R.

Remark 1.1.5.7. The type of a ring R = S/I of depth 0 is the dimension of its socle.

Theorem 1.1.5.8. [Pee11, Theorem 25.7] Let S be a regular graded polynomial ring
of dimension n, I be an ideal of S and let q ∶= dim(S/I). Then the quotient S/I is a
Gorenstein ring if and only if

proj.dimS(S/I) = n − q and bSn−q(S/I) = 1.

Theorem 1.1.5.9. [Pee11, Theorem 25.6] Let S be a regular graded polynomial ring of
dimension n and I an ideal of S. If S/I is Gorenstein ring of dimension q, then

bSi (S/I) = bSn−q−i(S/I) for 0 ≤ i ≤ n − q.

Proposition 1.1.5.10. [Eis95, Corollary 21.19] Let S be a regular graded polynomial
ring and x1, . . . , xr be an S-regular sequence. Then S/(x1, . . . , xr) is a Gorenstein ring,
i.e. complete intersections are Gorenstein rings.

The converse is false: We see an example of a Gorenstein ring S/I where I has codi-
mension 3 and is generated by five quadrics, we will see that in the second chapter, see
Example 2.1.2.6. However, there is no such example in codimension 2.

Corollary 1.1.5.11. Let S be a regular graded polynomial ring and x1, . . . , xr be a system
of parameters. Then S/(x1, . . . , xr) is a Gorenstein ring.

Proposition 1.1.5.12. [Hun99, Corollary 3.5] Let S be a regular graded polynomial ring
and let I be an ideal of height k generated by k elements. Then S/I is Gorenstein. In
general the reverse is not true, an Example 2.1.2.6 shows.

Proposition 1.1.5.13. Let S be a graded polynomial ring S. Then we have the following

S is regular⇒ S is complete intersection⇒ S is Gorenstein⇒ S is Cohen −Macaulay.

Proof. See [BH93, Proposition 3.1.20], Theorem 1.1.4.20, Theorem 1.1.4.27 and Propo-
sition 1.1.5.10.
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Example 1.1.5.14. Let S = K[x, y] and I = (x2, xy, y2). Then R = S/I is a Cohen-
Macaulay ring, but it is not a Gorenstein ring. The ring R is Noetherian, Artinian and
local ring, since R has finite length and (x, y) is the unique maximal ideal in R. Thus
dim(R) = 0. Since every element in (x, y) is a zero divisor, there is no regular sequence
in R, i.e. depth(R) = 0, that means that R is a Cohen-Macaulay ring. But it is not a
Gorenstein ring, since R = K[x, y]/(x2, xy, y2) = K⊕Kx +Ky and soc(R) = (x, y), hence
dimK(soc(R)) = 2 ≠ 1, which implies by Proposition 1.1.5.4 that R is not a Gorenstein
ring.

Definition 1.1.5.15. Let S be a regular graded polynomial ring. An ideal I of S is
called Gorenstein ideal (of grade g) if I is perfect and ExtgS(S/I, S) ≅ S/I.

Proposition 1.1.5.16. [BH93, Theorem 3.3.7 (b)] If S is a Gorenstein ring and I is
perfect, then I is a Gorenstein ideal if and only if S/I is a Gorenstein ring.

Proposition 1.1.5.17. Let S be a graded polynomial ring over K of dimension n and I
be an ideal of S. Let S/I be a quotient ring of dimension q and generated by elements of
degree 1. If S/I is a Gorenstein ring, then the Hilbert series may be rewritten as:

HilbS/I(t) =
P (t)

(1 − t)n−q
,

with P (t) = ∑i≥0 pit
i; pi ∈ Z. If deg(P (t)) = m, then tmP (t−1) = P (t), with p0 = pm = 1

and pi = pm−i for all i.

Proof. See Corollary 1.1.3.12 and Theorem 1.1.5.8.

Corollary 1.1.5.18. If S/I is artian, then HilbS/I(t) = P (t).

1.2 Basic combinatorial concepts

We introduce basic concepts of combinatorial commutative algebra, a new branch of
commutative algebra created by Hochster and Stanley (see [Hoc77], [Sta78], [Sta80] and
[Sta96]). The combinatorial objects considered are simplicial complexes to which one
assigns algebraic objects, the Stanley-Reisner rings. It turns out that most a lot of im-
portant algebraic notions such as “Cohen-Macaulay ring”, “Gorenstein ring” and “Hilbert
series” are proper concepts in solving purely combinatorial problems.

1.2.1 Simplicial complexes

Definition 1.2.1.1. Let V = {v1, . . . , vn} be a set of vertices. A (finite) simplicial
complex ∆ on V is a collection of subsets of V such that if F ∈ ∆ and F ′ ⊂ F , then
F ′ ∈ ∆, and {vi} ∈ ∆ for all i = 1, . . . , n. Each element of ∆ is called a face. The
dimension of a face F is the number ∣F ∣ − 1 and denoted by dim(F ). The dimension of
the simplicial complex ∆ is dim(∆) = max{dim(F ) ∶ F ∈ ∆}. A vertex of ∆ is a face of
dimension 0. An edge of ∆ is a face of dimension 1.
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Definition 1.2.1.2. A maximal face is called a facets of ∆ (with respect to inclusion).
The set of facets of ∆ is denoted by F(∆). A nonface of ∆ is a subset F of V with
F ∉ ∆. Let N(∆) denote the set of minimal nonfaces of ∆.

The empty set ∅ is a face of dimension −1 of any nonempty simplicial complex. It is
clear that F(∆) determines ∆. When F(∆) = {F1, . . . , Fm}, we write ∆ = (F1, . . . , Fm).
This simplicial complex is said to be generated by F1, . . . , Fm.

Definition 1.2.1.3. A simplicial complex is called simplex if it generated by on face.

Definition 1.2.1.4. Let d = max{∣F ∣ ∶ F ∈ ∆}, then dim(∆) = d − 1. Let ∆ be a
simplicial complex of dimension d− 1 ≥ 0 on a vertex set V . Then we denote the number
of faces of ∆ of dimension i by fi = fi(∆). We have f0 = ∣V ∣, and f−1 = 1, since ∅ ∈ ∆.
The sequence F (∆) = (f0, . . . , fd−1) is called the f -vector of ∆.

Example 1.2.1.5. Figure 1.1 represents the simplicial complex ∆ of dimension 2 on the
vertex set {v1, v2, v3, v4, v5} with

v1 v2

v3v4

v5

Figure 1.1: The geometric realization of ∆.

F(∆) = {{v1, v2},{v1, v4},{v2, v3, v4},{v3, v4, v5}},

N(∆) = {{v1, v3},{v1, v5},{v2, v5},{v1, v2, v4}},

F (∆) = (5,7,2).

Example 1.2.1.6. A matroid is a simplicial complex on its ground set: faces correspond
to independent sets, and facets to bases.

1.2.2 Polytopes

Definition 1.2.2.1. A polytope P is the convex hull, conv(V ), of a finite set of points
V in Rd. A hyperplane of an d-dimensional space W is a subspace of dimension d− 1, or
equivalently, of codimension 1 in W . The set of points lying on one side of a hyperplane
(including the hyperplane) is a closed half space. A polyhedral set or polyhedron is the
intersection of a fnite number of closed half spaces.

Theorem 1.2.2.2. [BH93, Theorem 5.2.3] A subset of Rd is a polytope if and only if it
is a bounded polyhedron.
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Definition 1.2.2.3. A hyperplane H is called a supporting hyperplane of a polyhedron
P if H ∩ P ≠ ∅ and P is contained in one of the closed half spaces determined by H.
A face of P is H ∩ P , if H is a supporting hyperplane of P . The empty set and P
as faces are the improper faces. All the other faces of P are called proper faces. The
faces of a polyhedron (polytope) are again polyhedra (polytopes). The dimension of
its affine hull is called dimension of P and is denoted by dim(P ). A d-polyhedron is a
polyhedron of dimension d. A j-face is a face whose dimension as a polyhedron is j. We
set dim(∅) = −1. If dim(P ) = d, then faces of dimension 0, 1, d − 1 are called vertices,
edges, facets, respectively.

Theorem 1.2.2.4. [BH93, Theorem 5.2.4] Let P be a polyhedron. Then the following
holds

1. P has only a finite number of faces.
2. Let F be a face of P and F ′ a face of F . Then F ′ is a face of P .
3. Any proper face of P is a face of some facet of P .

Definition 1.2.2.5. The boundary of a polyhedron P is the union of all faces of P except
P itself and it is denoted by ∂P .

Definition 1.2.2.6. A d-simplex is a d-polytope P with exactly d + 1 vertices. A d-
polytope P is said to be simplicial if its facets are (d − 1)-simplices.

Remark 1.2.2.7. The facets of a d-simplex ∆ are (d − 1)-simplices.

Example 1.2.2.8. In the case d = 2 and 3:

(a) 2-simplex (b) 3-simplex

Figure 1.2: Illustration of low-dimensional simplices.

Example 1.2.2.9. In the case d = 3:

Figure 1.3: Illustration of low-dimensional simplicial polytope.

Proposition 1.2.2.10. [BH93, Proposition 5.2.6] Every j-face of a d-simplex P is a
j-simplex, and every j + 1 vertices of P are the vertices of a j-face of P .
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Definition 1.2.2.11. [BH93, Corollary 5.2.7] The boundary ∂P of a simplicial d-polytope
P is the geometric realization of a (d − 1)-dimensional simplicial complex of the set of
vertices of P vert(P ), called the boundary complex of P . It is denoted by ∆ = ∆(P ).

1.2.3 Stanley-Reisner rings and ideals

Definition 1.2.3.1. Let P be a simplicial d-polytope with the vertex set {v1, . . . , vn}
and the boundary complex ∆(P ). For a field K, the corresponding Stanley–Reisner ring
of ∆(P ), or face ring, is defined as

K[∆(P )] = K[x1, . . . , xn]/I∆(P ),

where the ideal

I∆(P ) = (xi1 . . . xir ∶ i1 < i2 < . . . < ir, {vi1 , . . . , vir} ∉ ∆(P ))

is generated by square-free monomials corresponding to the nonfaces of ∆(P ) and it is
called the Stanley–Reisner ideal or the face ideal of ∆(P ).

Remark 1.2.3.2. Observe that the minimal set of monomial generators of I∆(P ) are in
bijection with the set of minimal nonfaces of ∆(P ).

Theorem 1.2.3.3. [Sta96, Theorem 1.3] Let P be a simplicial d-polytope with the bound-
ary complex ∆(P ). Let K be a field. Then

dim(K[∆(P )]) = dim(∆(P )) + 1.

Proof. The Krull dimension of K[∆(P )] is maximal cardinality of an algebraically inde-
pendet set of vertices vi1 , . . . , vij by Theorem 1.1.4.8. On the other hand that is maximal
cardinality of any face of ∆(P ).

Definition 1.2.3.4. Let P be a simplicial d-polytope with the boundary complex ∆(P ).
Then ∆(P ) is pure if all its facets are of the same dimension, namely dim(∆(P )). The
complex ∆(P ) is called a Cohen-Macaulay complex over K if K[∆(P )] is a Cohen-
Macaulay ring.

Corollary 1.2.3.5. [HH11, Lemma 8.1.5] Any Cohen-Macaulay complex is pure.

Let P be a simplicial d-polytope with the boundary complex ∆(P ). We are intersted in
the Hilbert series of K[∆(P )] as a homogeneous graded algebra. For all i ∈ Z we have

K[∆(P )]i = ⊕
a∈Zn, ∣a∣=i

K[∆(P )]a,

where ∣a∣ ∶= a1 + . . . + an for a = (a1, . . . , an).
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Theorem 1.2.3.6. [Sta96, Theorem 1.4] Let P be a simplicial d-polytope and ∆(P )
be the boundary complex of P with f -vactor F (∆(P )) = (f0, . . . , fd−1) (see Definition
1.2.1.4). Define deg(xi) = 1, then the Hilbert series of K[∆(P )] is

HilbK[∆(P )](t) =
d−1

∑
i=−1

fit
i+1

(1 − t)i+1
.

And its Hilbert function is given by

mz→
⎧⎪⎪⎨⎪⎪⎩

1, for m = 0,

∑d−1
i=0 fi(

m−1
i

), for m > 0.

Definition 1.2.3.7. Let P be a simplicial d-polytope with the boundary complex ∆(P ).
Now we define Euler characteristic of ∆(P ), it is

X(∆(P )) =
d−1

∑
i=0

(−1)ifi.

And the reduced Euler characteristic of ∆(P ) is

X̃ (∆(P )) = X(∆(P )) − 1.

Corollary 1.2.3.8. [BH93, Corollary 5.2.17] Let P be a simplicial d-polytope and ∆(P )
be the boundary complex of P with f -vector (f0, . . . , fd−1). Then

X(∆(P )) =
d−1

∑
i=0

(−1)ifi = 1 − (−1)d and X̃ (∆(P )) = (−1)d−1.

For a more extensive treatment see [Sta96, Chapter II].

Now an important question is: For which simplicial complexes is the corresponding
Stanley-Reisner ring Cohen-Macaulay or Gorenstein?

Definition 1.2.3.9. Let K[x1, . . . , xn] be a polynomial ring over a field K. A multicom-
plex on V = {v1, . . . , vn} is a set Γ of monomials xa1

1 . . . xann ∈ K[x1, . . . , xn] of such that
y ∈ Γ, z∣y implies z ∈ Γ, for z ∈ K[x1, . . . , xn].

Definition 1.2.3.10. For a multicomplex Γ, let hi = #{y ∈ Γ ∶ deg(y) = i > 0}, and
define the h-vector of Γ as h(Γ) = (h0, h1, . . .). An h-vector may be infinite, and if Γ ≠ ∅,
then h0 = 1. If hi = 0 for i > d we write also h(Γ) = (h0, h1, . . . , hd), where d ∈ N.

Definition 1.2.3.11. Let P be a simplicial polytope. We define the h-vector of the
boundary complex ∆(P ) as follows

h(∆(P )) ∶= h(K[∆(P )]).

In this case h(∆(P )) is a finite vector, hi = 0 for i > d = dim(∆(P )) + 1.
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This definition is equivalent to the following explicit expression for h(∆(P )) = (h0, . . . , hd)
in terms of the f -vector (f0, f1, . . . , fd−1) of ∆(P )

hk =
k

∑
i=0

(−1)k−i(d − i
k − i

) fi−1, 0 ≤ k ≤ d,

where f−1 = 1.

Example 1.2.3.12. If ∆(P ) is the boundary complex of an octahedron P , then f(∆(P ))
= (6,12,8) and h(∆(P )) = (1,3,3,1).

Theorem 1.2.3.13. [BH93, Theorem 5.2.16](Sommerville) Let P be a simplicial polytope
and ∆(P ) be the boundary complex of P with (h0, . . . , hd) be the h-vector of ∆(P ). Then
hi = hd−i for 0 ≤ i ≤ d.

Corollary 1.2.3.14. [Sta96, Corollary 3.2] Let P be a simplicial d-polytope and ∆(P )
the boundary complex of P . If ∆(P ) is a Cohen-Macaulay complex, then h(∆(P )) is the
h-vector of some nonempty multicomplex Γ.

Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn} and the boundary
complex ∆(P ). Let K be a field and K[∆(P )] = K[x1, . . . , xn]/I∆(P ) be the Stanley-
Reisner ring of ∆(P ) with m its homogeneous maximal ideal, generated by the residue
classes of xi. We observe that (K[∆(P )],m) is a local ring and hence by Theorem 1.1.4.24
K[∆(P )] is a Cohen-Macaulay ring if and only if K[∆(P )]m is a Cohen-Macaulay ring.
Thus ∆(P ) is a Cohen-Macaulay complex.

Theorem 1.2.3.15. [MT11, Theorem 3.5] Let P be a simplicial d-polytope with the
vertex set V = {v1, . . . , vn} and the boundary complex ∆(P ). Let S = K[x1, . . . , xn] be a
graded polynomial ring, then ∆(P ) is a matroid if and only if S/Ik∆(P )

is Cohen-Macaulay
ring for k ≥ 1.

Example 1.2.3.16. If ∆(P ) is a matroid, then K[∆(P )] is a Cohen-Macaulay ring.
That means that matroids are a very special case of Cohen-Macaulay simplicial com-
plexes.

Definition 1.2.3.17. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). For F ∈ ∆(P ) define the link

lk(F ) = {F ′ ∈ ∆(P ) ∶ F ′ ∪ F ∈ ∆(P ), F ′ ∩ F = ∅}.

Notice that ∆(P ) = lk(∅).

Definition 1.2.3.18. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). Then ∆(P ) is an Euler complex if ∆(P ) is pure and
X̃ (lk(F )) = (−1)dim(lk(F )) for all F ∈ ∆(P ).

Definition 1.2.3.19. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). Then the complex ∆(P ) is called a Gorenstein com-
plex over a field K if K[∆(P )] is a Gorenstein ring.
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Definition 1.2.3.20. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). For F ∈ ∆(P ), the star of F is the set

st(F ) = {F ′ ∈ ∆(P ) ∶ F ′ ∪ F ∈ ∆(P )}.

And we define the core(∆(P )) to be ∆(P )core(V ), where core(V ) = {v ∈ V ∶ st(v) ≠
∆(P )}.

Notice K[∆(P )] ≅ K[core(∆(P ))][xi ∶ vi ∈ V ∖ core(V )]. It follows that ∆(P ) is a
Gorenstein complex if and only if core(∆(P )) is a Gorenstein complex.

Theorem 1.2.3.21. [BH93, Theorem 5.6.2] Let P be a simplicial d-polytope with the
vertex set V = {v1, . . . , vn} and the boundary complex ∆(P ) with ∆(P ) = core(∆(P )).
Then ∆(P ) is a Gorenstein complex over a field K if and only if ∆(P ) is an Euler
complex which is a Cohen-Macaulay complex over K.

Proof. We observe that K[∆(P )] ≅ Extn−dS (K[∆(P )], S) from [BH93, Lemma 5.6.3].
This implies that K[∆(P )] is a Gorenstein ring by Theorem 1.1.5.6. Then it follows
from Proposition 1.1.5.16 that I∆(P ) is a Gorenstein ideal.

In this thesis, we consider Stanley-Reisner rings that are at the same time Goren-
stein rings. Therefore their Stanley-Reisner ideals are Gorenstein ideals, by Proposition
1.1.5.16.

1.2.4 Graded Betti numbers of Stanley-Reisner rings

Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn} and the boundary
complex ∆(P ). Let K be a field and S = K[x1, . . . , xn] and K[∆(P )] = S/I∆(P ) be a
Stanley-Reisner ring. Since K[∆(P )] is a Zn-graded S-module, it has a minimal free
graded resolution, according Theorem 1.1.2.19.

F ∶ 0 Fm Fm−1 . . . F2 F1 F0 0,
dm d2 d1

where Fi = ⊕
bSi (K[∆(P )])

j=1 S(−aij) for i = 0, . . . ,proj.dimS(K[∆(P )]) =m with certain aij ∈
Nn, and where the maps di are homogeneous of degree 0. Minimality of the resolution
means that di(Fi) ⊆ (x1, . . . , xn)Fi−1 for all i. The numbers bSi,p(K[∆(P )]) = ∣{j ∶ aij =
p}∣ with p ∈ Zn are called the graded Betti numbers of K[∆(P )]. By Theorem 1.1.2.19 it
can be easily seen that the minimal graded free resolution is uniquely determined up to
isomorphism.

Lemma 1.2.4.1. [BH93, Corollary 5.5.2] The shifts aij in the minimal graded free res-
olution of K[∆(P )] are square-free.
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TWO

GORENSTEIN IDEALS OF CODIMENSION 3

In this chapter, we clarify minimal graded free resolutions of Gorenstein ideals of codi-
mension 1, 2 and 3, respectively. In [BE77] Buchsbaum and Eisenbud study the structure
of these resolutions of Gorenstein ideals of codimension 3. Then we discuss corresponding
combinatorial concepts. We explain Gale diagrams of simplicial d-polytopes with d + k
vertices, for k = 1,2,3, here we follow mainly [Grü03, Section 5.4 and Chapter 6] and
[Zie95, Section 6.5]. After that we consider Stanley-Reisner rings associated to simplicial
d-polytopes with d + 3 vertices and corresponding Stanley-Reisner Gorenstein ideals of
codimension 3. We explain how we can determine minimal sets of monomial generators
of these ideals using Gale diagrams. Then we conclude the chapter by descriping minimal
graded free resolutions of Stanley-Reisner ideals of codimension 3.

2.1 Gorenstein ideals of codimension 3 in commutative Al-
gebra

Let S be a regular graded polynomial ring with m its homogeneous maximal ideal. An
ideal I of S is called Gorenstein ideal of grade g (codimension g) if I is perfect and
ExtgS(S/I, S) ≅ S/I. Serre proved that an ideal of codimension 1 is Gorenstein if and
only if it is principal and showed that if an ideal has codimension 2, then it is a complete
intersection, see [Eis95, Corollary 21.20]. According to [Bur68] and [BH93, Theorem
1.4.17], Hilbert-Burch proved a structure theorem for codimension 2. If R is a regular
local ring, and I is an ideal of codimension 2 in R requiring n generators, then I is perfect
if and only if I is generated by the n×n-minors of an n× (n+ 1) matrix. For Gorenstein
ideals of codimension 3 there exists a structure theorem due to Buchsbaum and Eisenbud
[BE77], which we describe in next Subsections 2.1.1 and 2.1.2.

2.1.1 Gorenstein ideals of codimensin 1 and 2

As a starting point we determine the minimal number of monomial generators of Goren-
stein ideals in codimension 1 and 2. Then we describe the structure of the minimal

35
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graded free resolution of S/I over S, where S = K[x1, . . . , xn] and I is a Gorenstein ideal
of codimension 1 respectively 2.

Corollary 2.1.1.1. [Eis95, Corollary 21.20](Serre) Let S be a regular graded polynomial
ring with m its homogeneous maximal ideal, and I be an ideal of S.

1. If codim(I) = 1, then S/I is a Cohen-Macaulay ring if and only if S/I is a Goren-
stein ring if and only if I is principal.

2. If codim(I) = 2, then S/I is a Gorenstein ring if and only if I is generated by a
S-regular sequence of length 2.

For the case where I is Gorenstein ideal and has codimension 1, we have I = (a), with
a ∈ S = K[x1, . . . , xn] and deg(a) = k. We use Construction 1.1.2.10 to consturct the
minimal graded free resolution of S/I over S.
Step 0: Set F0 ∶= S and let d0 ∶ S → S/I.
Step 1: The element a is a homogeneous generator of Ker(d0) of degree k. Set F1 ∶=

S(−k). Denote by f1 the 1-generator of S(−k). Hence deg(f1) = k. d1 ∶ F1 → S be
the homomorphism defined by d1(f1) = a and d1(f2) = y. We obtain the beginning
of the resolution:

S(−k) S S/I 0.
[a]

Step 2: We need to find homogeneous generators of Ker(d1). Let αf1 ∈ Ker(d1), with
α ∈ S. Hence αa = 0, and it follows α = 0. Thus F2 = 0. We obtain the minimal
graded free resolution of S/I over S.

0 S(−k) S S/I 0.
[a]

By Theorem 1.1.3.9 we can write the Hilbert series of S/I

HilbS/I(t) =
1

(1 − t)n
− tk

(1 − t)n
= 1 − tk

(1 − t)n
.

We observe that bS1 (S/I) = 1. Then Theorem 1.1.5.8 implies that S/I is a Gorenstein
ring, since I is perfect. Hence we can use Proposition 1.1.5.17 and the Hilbert series is

HilbS/I(t) =
tk−1 + tk−2 + . . . + 1

(1 − t)n−1
.

If I is a Gorenstein ideal of codimension 2, then we can write I = (a, b) with a, b ∈ S and
deg(a) = k1, deg(b) = k2. As above we construct the minimal graded free resolution of
S/I over S.
Step 0: Set F0 ∶= S and let d0 ∶ S → S/I.
Step 1: The elements a and b are homogeneous generators of Ker(d0). Their degrees

are k1 and k2. Set F1 ∶= S(−k1) ⊕ S(−k2). Denote by f1 and f2 the 1-generators
of S(−k1) and S(−k2), respectively. Hence deg(f1) = k1 and deg(f2) = k2. Let
d1 ∶ F1 → S be the homomorphism S-modules that is uniquely defined by d1(f1) = a
and d1(f2) = b. We obtain the resolution:
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S(−k1) ⊕ S(−k2) S S/I 0.
[a b]

Step 2: We need to find homogeneous generators of Ker(d1). Let αf1 + βf2 ∈ Ker(d1),
with α,β ∈ S. Hence αa + βb = 0, and it follows that the kernel of d1 is generated
by −bf1 + af2. Its degree is k1 + k2. Set F2 ∶= S(−(k1 + k2)). Denote by g1 the
1-generator of S(−(k1 + k2)). Hence deg(g1) = k1 + k2. Let d2 ∶ F2 → F1 be the
homomorphism S-modules that is uniquely defined by d2(g1) = −bf1 + af2. We
obtain the resolution:

S(−(k1 + k2)) S(−k1) ⊕ S(−k2) S S/I 0.
[−b a]t [a b]

Step 3: We need to find homogeneous generators of Ker(d2). Let λg1 ∈ Ker(d2), with
λ ∈ S. Hence −λbf1 + λaf2 = 0, then it follows that λb = 0 and λa = 0. Thus λ = 0,
and hence F3 = 0. We obtain the minimal graded free resolution of S/I over S.

0 S(−(k1 + k2)) S(−k1) ⊕ S(−k2) S S/I 0.
[−b a]t [a b]

By Theorem 1.1.3.9 the Hilbert series of S/I takes the form

HilbS/I(t) =
1 − tk1 − tk2 + tk1+k2

(1 − t)n
.

Since bS2 (S/I) = 1, S/I is a Gorenstein ring by Theorem 1.1.5.8. Hence we can use
Proposition 1.1.5.17 and the Hilbert series becomes

HilbS/I(t) =
t(k1+k2−2) + . . . + 1

(1 − t)n−2
.

2.1.2 Structure Theorem for Gorenstein ideals codimension 3

In [BE77] Buchsbaum and Eisenbud show that an ideal I of codimension 3 of S is
Gorenstein if and only if I is an ideal of (m − 1)-th order Pfaffians of some m ×m skew-
symmetric matrix A of rank m − 1. For discussing that we recall some definitions from
linear algebra.

Definition 2.1.2.1. Let S be a commutative ring and F be a finitely generated S-
module. An S-module homomorphism ϕ ∶ F → F ∗ is called alternating if the matrix
A of ϕ with respect to some basis of F and its corresponding dual basis of F ∗ is skew-
symmetric and all its diagonal elements are 0.

Definition 2.1.2.2. The determinant of a skew-symmertic matrix A can always be
written as the square of a polynomial in the matrix entries. This polynomial is called
the Pfaffian of the matrix and it denoted by Pf(A). The (m − 1)-th order Pfaffians of
an m×m-skew-symmetric matrix is the determinant of the (m−1)×(m−1)-submatrices
obtained by deleting a row and the corresponding column of the matrix.
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More about Pfaffians can be found in [Bou80].

Remark 2.1.2.3. The Pfaffian is zero for (2m+ 1) × (2m+ 1) skew-symmetric matrices
(respectively rank(F ) is odd) and for 2m × 2m skew-symmetric matrices (respectively
rank(F ) is even) a homogeneous polynomial of degree m.

Theorem 2.1.2.4 (Buchsbaum-Eisenbud). Let S be a graded polynomial ring with m its
homogeneous maximal ideal and I an ideal of S. Then we obtain the following:

1. Suppose 2m+1 ≥ 3 is an integer and ϕ ∶ S2m+1 Ð→ S2m+1 an alternating homomor-
phism, such that the matrix A of ϕ has rank 2m and ϕ(S2m+1) ⊆ mS2m+1. If I is
generated by the (m − 1)-th order Pfaffians of the skew-symmetric matrix A, then
grade(I) ≤ 3. If grade(I) = 3, then the complex

0 S S2m+1 S2m+1 S S/I 0A

is acyclic and I is a Gorenstein ideal.
2. Conversely, let I be a Gorenstein ideal of grade(I) = 3. Then there exist a free

module F of odd rank and an alternating homomorphism ϕ ∶ F → F ∗, so that the
matrix A of ϕ, such that

0 S F F ∗ S S/I 0A

is a minimal free S resolution of S/I over S. In particular, any Gorenstein ideal
of grade 3 is minimally generated by an odd number of (m − 1)-th order Pfaffians
of the skew-symmetric matrix A.

Remark 2.1.2.5. For ideals I of Cohen-Macaulay rings grade(I) coincides with the
codimension (=height=rank) of I, see Theorem 1.1.4.21.

Example 2.1.2.6. Let S = K[x, y, z] be the graded polynomial ring and I = (xy, xz, yz,
x2 − y2, x2 − z2). Since R = S/I has finite length and the ideal (x, y, z) is the unique
maximal ideal of R, the ring R is Artinian and local, and dim(R) = 0. It follows from
Theorem 1.1.4.21 that height(I) = 3, since S is a Cohen-Macaulay ring by Proposition
1.1.4.7 and Theorem 1.1.4.20. Every element in (x, y, z) is zero divisor, hence there is no
regular sequence in R, that means depth(R) = 0, for that R is a Cohen-Macaulay ring.
By Theorem 1.1.4.17 we have proj.dimS(R) = 3. So the minimal free resolution of S/I
over S is

0 F3 F2 F1 F0 S/I 0.

Now we construct this minimal free resolution with the help of Construction 1.1.2.10.
Step 0: Set F0 ∶= S and let d0 ∶ S → S/I.
Step 1: The elements xy, xz, yz, x2−y2, x2−z2 are homogeneous generators of Ker(d0).

Their degrees are 2. Set F1 ∶= S5(−2). Denote by f1, f2, f3, f4, f5 the 1-generators
of S(−2). Hence deg(fi) = 2 for i = 1, . . . ,5. Let d1 ∶ F1 → S be the homomorphism
S-modules that is uniquely defined by d1(f1) = xy, d1(f2) = xz, d1(f3) = yz,
d1(f4) = x2 − y2 and d1(f5) = x2 − z2. We obtain the beginning of the resolution:
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S(−2)5 S S/I 0.
[xy xz yz x2−y2 x2−z2]

Step 2: We need to find homogeneous generators of Ker(d1). Let a1f1 + a2f2 + a3f3 +
a4f4 + a5f5 ∈ Ker(d1), with ai ∈ S for i = 1, . . . ,5. We want to solve the equation

a1xy + a2xz + a3yz + a4(x2 − y2) + a5(x2 − z2) = 0,

where ai ∈ S for i = 1, . . . ,5 are the unkowns. All solutions (a1 , a2, a3, a4, a5) are
generated by

v1 = (0, −x, y, z, 0), v2 = (−z, 0, x, 0, 0), v3 = (−z, y, 0, 0, 0),

v4 = (−x, 0, z, 0, y), v5 = (−y, z, 0, −x, x).

All vi, for i = 1, . . . ,5 linear independent, hence all solutions (a1, a2, a3, a4, a5) of
the above equation are minimally generated by vi, for i = 1, . . . ,5.
Thus g1 = −xf2+yf3+zf4, g2 = −zf1+xf3, g3 = −zf1+yf2, g4 = −xf1+zf3+yf5 and
g5 = −yf1 + zf2 − xf4 + xf5 are homogeneous generators of Ker(d1). Their degrees
are deg(gi) = 3 for i = 1, . . . ,5. Set F2 ∶= S5(−3). Denote by hi for i = 1, . . . ,5 the
1-generators of S5(−3). Hence deg(hi) = 3, for i = 1, . . . ,5. Let d2 ∶ F2 → F1 be the
homomorphism S-modules that is uniquely defined by d2(hi) = gi for i = 1, . . . ,5.
We obtain the resolution:

S5(−3) S5(−2) S S/I 0.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −x y z 0

x 0 −z 0 −y

−y z 0 −x x

−z 0 x 0 0

0 y −x 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦ [xy xz yz x2−y2 x2−z2]

Step 3: We need to find homogeneous generators of Ker(d2). Let b1h1 + b2h2 + b3h3 +
a4h4 + b5h5 ∈ Ker(d2), with bi ∈ S for i = 1, . . . ,5. Hence (−zb2 − zb3 −xb4 − yb5)f1 +
(−xb1 + yb3 + zb5)f2 + (yb1 + xb2 + zb4)f3 + (zb1 − xb5)f4 + (yb4 + xb5)f5 = 0, and
therefore bi for i = 1, . . . ,5 statisfy the equations

−zb2 − zb3 − xb4 − yb5 = 0, −xb1 + yb3 + zb5 = 0, yb1 + xb2 + zb4 = 0,

zb1 − xb5 = 0, yb4 + xb5 = 0.

We solve these five equations and hence all solutions (b1, b2, b3, b4, b5) are minimally
generated by only one generator

W1 = (xy,−y2 + z2, x2 − z2,−xz, yz).

Thus xyh1 +(−y2 + z2)h2 +(x2 − z2)h3 −xzh4 + yzh5 is a homogeneous generator of
Ker(d2). Its degree is 5. Set F3 ∶= S(−5). Denote by q1 the 1-generator of S(−5).
Hence deg(q1) = 5. Let d3 ∶ F3 → F2 be the homomorphism S-modules that is
uniquely defined by d3(q1) = xyh1 + (−y2 + z2)h2 + (x2 − z2)h3 − xzh4 + yzh5. We
obtain the resolution:
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S(−5) S5(−3) S5(−2) S S/I 0.
[xy −y2+z2 x2−z2 −xz yz]t A B

Step 4: Now we need to find homogeneous generators of Ker(d3). Let c1q1 ∈ Ker(d3)
with c1 ∈ S. Hence

c1(xyh1 + (−y2 + z2)h2 + (x2 − z2)h3 − xzh4 + yzh5) = 0,

and therefore c1 statisfies the equations

c1xy = 0, c1(−y2 + z2) = 0, c3(x2 − z2) = 0, −c1xz = 0, c1yz = 0.

We conclude that c1 = 0 and thus F3 = 0. We obtain the minimal graded free
resolution

0 S(−5) S5(−3) S5(−2) S S/I 0,Ct A B

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −x y z 0
x 0 −z 0 −y
−y z 0 −x x
−z 0 x 0 0
0 y −x 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B = [xy xz yz x2 − y2 x2 − z2] and C = [xy − y2 + z2 x2 − z2 − xz yz].

Since bS2 (S/I) = 1 and I is perfect, it follows from Theorem 1.1.5.8 that S/I is Gorenstein
ring. Hence I is Gorenstein ideal by Proposition 1.1.5.16. Moreover we have A is 5 × 5-
skew-symmetric matrix and all its diagonal elements are 0.

4 × 4-submatrices of A 4-th order Pfaffians of A

A1 = [
0 −z 0 −y
z 0 −x x
0 x 0 0
y −x 0 0

] Pf(A1) = xy

A2 = [
0 y z 0
−y 0 −x x
−z x 0 0
0 −x 0 0

] Pf(A2) = xz

A3 = [
0 −x z 0
x 0 0 −y
−z 0 0 0
0 y 0 0

] Pf(A3) = yz

A4 = [
0 −x y 0
x 0 −z −y
−y z 0 x
0 y −x 0

] Pf(A4) = −x2 + y2
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4 × 4-submatrices of A 4-th order Pfaffians of A

A5 = [
0 −x y z
x 0 −z 0
−y z 0 −x
−z 0 x 0

] Pf(A5) = x2 − z2

where Ai is the 4 × 4-submatrix of A obtained by deleting the i-th row and i-th column
of A. That means that I is generated by an odd number of polynomials, namely the five
4-th order Pfaffians of the skew-symmetric matrix A.

In contrary to Gorenstein ideals of codimension 2, not all Gorenstein ideals of codimen-
sion 3 are complete intersection, as Example 2.1.2.6 shows.

Now we construct the minimal graded free resolution of S/I over S, where S is the
graded polynomial ring K[x1, . . . , xn] and I is a Gorenstein ideal of codimension 3. In
this case I is generated by an odd number 2m + 1 of 2m-th order Pfaffians Pf(Ai) of
the (2m+ 1)× (2m+ 1)-skew-symmetric matrix A. By Remark 2.1.2.3 we obtain that all
2m-th order Pfaffians are homogeneous polynomials of degree m.
Step 0: Set F0 ∶= S and let d0 ∶ S → S/I.
Step 1: The elements Pf(Ai) are homogeneous generators of Ker(d0), for i = 1, . . . ,2m+

1. Their degrees are ni ∶= m for all i = 1, . . . ,2m + 1. Set F1 ∶= ⊕2m+1
i=1 S(−ni).

Denote by fi the 1-generators of S(−ni). Hence deg(fi) = ni. Let d1 ∶ F1 → S be
the homomorphism S-modules that is uniquely defined by d1(fi) = Pf(Ai). We
obtain the beginning of the resolution:

⊕2m+1
i=1 S(−ni) S S/I 0.

[Pf(A1) ... Pf(A2m+1)]

Step 2: We need to find homogeneous generators of Ker(d1). Let α1f1+. . .+α2m+1f2m+1 ∈
Ker(d1), with αi ∈ S. Hence ∑2m+1

i=1 αiPf(Ai) = 0 and it follows that all solutions
(α1, . . . , α2m+1) are generated by the columns of the (2m + 1) × (2m + 1)-skew-
symmetric matrix A (see Buchsbaum-Eisenbud Theorem 2.1.2.4). Thus we ob-
tain 2m + 1 homogeneous generators of Ker(d1). Let their degrees be ki. Set
F2 ∶= ⊕2m+1

i=1 S(−ki). Denote by gi the 1-generators of S(−ki). Hence deg(gi) = ki.
Let d2 ∶ F2 → F1 be the homomorphism S-modules that is uniquely defined by
(gi) ↦(i-th row of A)(f1, . . . , f2m+1)t. We obtain

⊕2m+1
i=1 S(−ki) ⊕2m+1

i=1 S(−ni) S S/I 0.A [Pf(A1) ... Pf(A2m+1)]

Step 3: We need to find homogeneous generators of Ker(d2). Let ∑2m+1
i=1 λigi ∈ Ker(d2),

with λi ∈ S and i = 1, . . . ,2m+1. Hence ∑2m+1
i=1 λi((i-th row of A)(f1, . . . , f2m+1)t) =

0. If we solve this equation, all solutions (λ1, . . . , λ2m+1) are minimally generated
by only one generator

W1 = (Pf(A1), . . . ,Pf(A2m+1)),

so there is one homogeneous generator z ∶= ∑2m+1
i=1 Pf(Ai)gi of Ker(d2) of degree

r ∶= max{(ki + ni) ∶ for i = 1, . . . ,2m + 1}. Set F3 ∶= S(−r)). Denote by h1 the
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1-generator of S(−r). Hence deg(h1) = r. Let d3 ∶ F3 → F2 be the homomorphism
S-modules that is uniquely defined by d3(h1) = z. We obtain

S(−r) ⊕2m+1
i=1 S(−ki) t

[Pf(A1) ... Pf(A2m+1)]
t

A

⊕2m+1
i=1 S(−ni) S S/I 0.

[Pf(A1) ... Pf(A2m+1)]

Step 4: We need to find homogeneous generators of Ker(d3). Let µh1 ∈ Ker(d3), with
µ ∈ S. Hence µz = 0. That means µ = 0. So F4 = 0. The minimal graded free
resolution is

0 S(−r) ⊕2m+1
i=1 S(−ki) t

[Pf(A1) ... Pf(A2m+1)]
t

A

⊕2m+1
i=1 S(−ni) S S/I 0.

[Pf(A1) ... Pf(A2m+1)]

By Theorem 1.1.3.9 we can write the Hilbert series of S/I in the form

HilbS/I(t) =
1 −∑2m+1

i=1 tni +∑2m+1
i=1 tki − tr

(1 − t)n
.

Example 2.1.2.7. Let S/I be the quotient module in Example 2.1.2.6. Then the Hilbert
series of S/I is

HilbS/I(t) =
1 − 5t2 + 5t3 − t5

(1 − t)3
= 1 + 3t + t2.

2.2 Combinatorics of Gorenstein ideals of codimension 3

We introduce the Gale transform and Gale diagram of simplicial d-polytopes with d + 3
vertices, here we follow mainly [Grü03, Section 5.4 and Chapter 6], [Zie95, Section 6.5],
[Stu88], [McM79] and [HRGZ97]. After that we consider Stanley-Reisner rings associated
to simplicial d-polytopes with d+3 vertices and corresponding Gorenstein Stanley-Reisner
ideals of codimension 3. We read off the minimal graded free resolutions of these ideals
from Gale diagrams, that means that the Gale diagrams uniquely determine the minimal
graded free resolutions.

2.2.1 Gale transforms and Gale diagrams

The Gale diagram construction assigns a finite set of vectors to a given polytope. We
construct the Gale diagram of a polytope through a concept of a positive set of vectors
and a new matrix. Many properties of polytopes can be read off from resulting corre-
spondence between the sets of normalized vectors and polytopes. Using Gale diagrams
allow us to visualize higher-dimensional polytopes as long as they do not have too many
vertices.
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We turn first to the description of the Gale transform and its properties, see [Gal] and
[Grü03, Section 5.4]. Let V = {v1, . . . , vn} with aff(V ) = Rd the affine hull of V . Let G
be the real (d + 1) × n-matrix

G = [ 1 1 . . . 1
v1 v2 . . . vn

] .

Since dim(aff(V )) = d, the matrix G contains d + 1 affinely independent rows (vectors),
hence it follows that the rank of G is d + 1. Let Ker(G) be the kernel of G. Then
dimR(Ker(G)) = n−d−1. Let B1, . . . ,Bn−d−1 ∈ Rn be a basis for the vector space Ker(G)
and B be the n × (n − d − 1)-matrix with Bi as the i-th column for i = 1, . . . , n − d − 1.

B = [B1 B2 . . . Bn−d−1].

Definition 2.2.1.1. Let v̄i ∈ Rn−d−1 be the i-th row of the matrix B. Then B =
{v̄1, . . . , v̄n} is called Gale transform of V = {v1, . . . , vn}.

Definition 2.2.1.2. The Gale diagram of V = {v1, . . . , vn} is defined as B̂ = {v̂1, . . . , v̂n},
where B = {v̄1, . . . , v̄n} is the Gale transform of V and where

{
v̂i = 0 if v̄i = 0,
v̂i = v̄i

∥v̄i∥
if v̄i ≠ 0,

and ∥ v̄i ∥ is the (Euclidean) length of the vector v̄i.

Let P be a polytope with the vertex set V . Throughout this thesis, “Gale diagram of the
polytope P ” is understood as the Gale diagram of the vertex set V of P .

Example 2.2.1.3. Let P be the 3-polytope with the vertex set V = {v1 = (1,0,−2), v2 =
(−1,−1,−2), v3 = (−1,1,−2), v4 = (−1,1,2), v5 = (−1,−1,2), v6 = (1,0,2)}, see Figure
2.1.

v1

v2 v3

v4v5

v6

Figure 2.1: Illustration of the polytope P .

We consider the following 4 × 6-matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 −1 −1 −1 1
0 −1 1 1 −1 0
−2 −2 −2 2 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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So dimR(Ker(G)) = 2 and {(0, −1, 1, −1, 1, 0), (−1, 0, 1, −1, 0, 1)} is a basis for Ker(G).
Let B be the 6 × 2-matrix with these two base vectors as columns.

Bt = [ 0 −1 1 −1 1 0
−1 0 1 −1 0 1

] .

Then the Gale transform B of V is the set of vectors v̄1 = (0,−1), v̄2 = (−1,0), v̄3 =
(1,1), v̄4 = (−1,−1), v̄5 = (1,0), v̄6 = (0,1), hence the Gale diagram of the polytope P
is B̂ = {v̂1 = (0,−1), v̂2 = (−1,0), v̂3 = (1

2 ,
1
2), v̂4 = (−1

2 ,−
1
2), v̂5 = (1,0), v̂6 = (0,1)}, see

Figure 2.2.

v̂6

v̂5

v̂4
v̂1

v̂2

v̂3

Figure 2.2: Gale diagram of the polytope P .

Let P be a d-polytope with the vertex set V = {v1, . . . , vn}. Now we explain how to read
off all faces of P from the Gale diagram of the polytope P .

Lemma 2.2.1.4. [Gal, Lemma 5.4] Let P be a d-polytope with the vertex set V =
{v1, . . . , vn}. Then for any subset J of {1, . . . , n}, F ∶= conv({vj ∶ j ∈ J}) is a face
of P if and only if

conv({vj ∶ j ∈ {1, . . . , n} ∖ J}) ∩ aff({vj ∶ j ∈ J}) = ∅.

Definition 2.2.1.5. Let P be a d-polytope. The interior of P , denoted by int(P ), is
the set of all points v in the polytope such that exists an ε > 0 so that Bε(v) ⊆ S, where

Bε(v) = {y ∈ Rd ∶ ∥ y − v ∥< 0}.

Remark 2.2.1.6. A polytope has a nonempty interior if and only if it is full-dimensional.

Definition 2.2.1.7. Let P be a d-polytope. The relative interior of P , denoted by
relint(P ), is the set of all points v in the polytope such that exists an ε > 0 with Bε(v) ∩
aff(P ) ⊆ S.

Remark 2.2.1.8. The relative interior of convex polytopes is a nonempty set and if the
polytope P is full-dimensional, then int(P ) = relint(P ).

Theorem 2.2.1.9. [BG69, Theorem 19] Let P be a d-polytope with the vertex set V =
{v1, . . . , vn} and B̂ = {v̂1, . . . , v̂n} be the Gale diagram of P . Then for any subset J of
{1, . . . , n}, F ∶= conv({vj ∶ j ∈ J}) is a face of P if and only if either J = {1, . . . , n} or
0 ∈ relint(conv({v̂k ∶ k ∉ J})).
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Example 2.2.1.10. We read off all faces of the triangular prism P (see Figure 2.1) from
the Gale diagram of P (see in Figure 2.2). We note that the 0 ∈ relint(conv({v̂k ∶ k ≠
i, for i = 1, . . . ,6})). This implies that v1, v2, v3, v4, v5 and v6 are faces of P . Now let us
find the edges of P . In this case, we take all pairs vivj such that 0 ∈ relint(conv({v̂k ∶ k ≠
i, j})). For example, v5v6 is an edge of P since 0 ∈ relint(conv({v̂1, v̂2, v̂3, v̂4})). However,
v1v5 is not an edge of P since 0 ∉ relint(conv({v̂2, v̂3, v̂4, v̂6})). So we can determine all
the other edges. Now let us find the facets of P . v1v2v3 is a face (facet) because 0 ∈
relint(conv({v̂4, v̂5, v̂6})), but v1v2v4 is not a face because 0 ∉ relint(conv({v̂3, v̂5, v̂6})).
In this way we can determine all faces (facets).

Corollary 2.2.1.11. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). Let B̂ = {v̂1, . . . , v̂n} be the Gale diagram of P .
Then F ∶= conv({vj ∶ j ∈ J ⊆ {1, . . . , n}}) is a nonface of ∆(P ) if and only if 0 ∉
relint(conv({v̂k ∶ k ∉ J})).

Proof. See Theorem 2.2.1.9.

Remark 2.2.1.12. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). Let B̂ = {v̂1, . . . , v̂n} be the Gale diagram of P .
Then F ∶= conv({vj ∶ j ∈ J ⊆ {1, . . . , n}}) is a minimal nonface of ∆(P ) if and only if
0 ∉ relint(conv({v̂k ∶ k ∉ J})) for a maximal set {v̂k ∶ k ∉ J}.

2.2.2 Gale diagrams of polytopes with few vertices

Let P and P ′ be two d-polytopes. We define P and P ′ to be combinatorially equivalent,
if there is a bijection between their faces that preserves the inclusion relation. If P and
P ′ are combinatorially equivalent, we write P ≃ P ′. To explain this definition we use
Theorem 2.2.1.9.

Definition 2.2.2.1. Let V = {v1, . . . , vn} and V ′ = {v′1, . . . , v′n} be the vertex sets of P
and P ′, respectively. Then we say that P and P ′ are combinatorially equivalent under a
bijection ϕ of F(P ) and F(P ′) such that v′ϑ(i) = ϕ(vi) for i = 1, . . . , n and a permutation
ϑ of 1, . . . , n, if and only if for every J ⊂ {1, . . . , n}, the condition 0 ∈ relint(cov({v̄j ∶ j ∈
J})) is equivalent to 0 ∈ relint(cov({v̄′ϑ(j) ∶ j ∈ J})). If this condition holds, we say
that the Gale transforms B and B′ of P and P ′, respectively, are isomorphic and write
B ≃B′.

Remark 2.2.2.2. Two polytopes P and P ′ are combinatorially equivalent if and only if
the Gale transforms of the sets of vertices are isomorphic.

Definition 2.2.2.3. The Gale diagrams are isomorphic if and only if the associated Gale
transforms are isomorphic. This is denoted by B̂ ≃ B̂′.

We study Gale diagrams of polytopes with few vertices, d-polytopes with only d-plus-a-
few vertices. Every d-polytope with d + 1 vertices is a d-simplex. Therefore it is known
that there are exactly ⌊d2/4⌋ combinatorial types of d-polytopes with d+2 vertices, among
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these, ⌊d/2⌋ different combinatorial types are simplicial d-polytopes with d + 2 vertices,
see [BG69], [Grü03], [Som58], [Sch05] and [Ewa96].

The Gale diagrams of any d-polytope with d + 1 vertices is in the 0-dimensional space
R0, so all vectors are 0-vector (only one point), therefore the Gale diagram for any d-
polytope with d + 2 vertices is in 1-dimensional space. Since the vectors of the Gale
diagram are normalized vectors of the Gale transform of the vertex set and are elements
of the 1-dimensional space R, they are contained in the set {0,1,−1}, those three points
having multiplicities m0, m1, m−1 assigned in such a way that m0 ≥ 0, m1 ≥ 2, m−1 ≥ 2,
and m0 +m1 +m−1 = d + 2, see [Grü03, Theorems 5.4.2 and 5.4.3] or [Stu88, Theorem
2.4].

Definition 2.2.2.4. Let P and P ′ be d-polytopes with d + 2 vertices, let (m0,m1,m−1)
and (m′

0,m
′
1,m

′
−1) be the associated multiplicities. We say that P and P ′ are combinato-

rially equivalent if either (m0,m1,m−1) = (m′
0,m

′
1,m

′
−1) or (m0,m1,m−1) = (m′

0,m
′
−1,m

′
1).

Remark 2.2.2.5. Let P be a d-polytope with d + 2 vertices, then P is simplicial if and
only if m0 = 0.

Proof. This follows directly from the definition of a d-simplicial polytope and Corollary
2.2.1.9.

Example 2.2.2.6. Let P be a 3-polytope with the vertex set V = {v1 = (0,0,1), v2 =
(−1,0,0), v3 = (1,−1,0), v4 = (0,1,0), v5 = (0,0,−1)}, see Figure 2.3a. We consider the
following 4 × 5-matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 −1 1 0 0
0 0 −1 1 0
1 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The kernel of G is generated by (3,−2,−2,−2,3) and hence dimR(Ker(G)) = 1. Then the
Gale transform B of V is the set of the vectors v̄1 = 3, v̄2 = −2, v̄3 = −2, v̄4 = −2, v̄5 = 3,
hence the Gale diagram of P is B̂ = {v̂1 = 1, v̂2 = −1, v̂3 = −1, v̂4 = −1, v̂5 = 1}, see Figure
2.3b. The associated multiplicities are m−1 = 2, m0 = 0 and m1 = 3.

v1

v2 v3

v4

v5

(a) Illustration of the 3-polytope P with 5 vertices.

v̂2v̂3v̂4 v̂1v̂50

(b) Gale diagram of P.

Figure 2.3: Simplicial 3-polytope P with 5 vertices and the Gale diagram of P .
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v̂1v̂5 v̂2v̂3v̂40

Figure 2.4: Combinatorially equivalent Gale diagram to Figure 2.3b.

We turn now to the much more interesting discussion of d-polytopes with d + 3 vertices.
Explicit formulas for the number of d-polytopes with d+3 vertices were obtained by Lloy,
see [Llo70]. In this thesis, we are interested in simplicial polytopes, hence we take now
simplicial d-polytopes with d+3 vertices. This case has been studied in [Grü03, Chapter
6]. The Gale diagram for any such polytope is a set of vectors of a 2-dimensional space
R2. Since the vectors of the Gale diagram are normalized vectors of the Gale transform
of the set of vertices, then the Gale diagrams of these polytopes are contained in the
set C+ = {0} ∪C, where C denotes the unit circle centered at the origin 0 of R2. When
drawing a Gale diagram B̂ of a polytope, we show that all vectors of B̂ are diameters of
the unit circl C and all these diameters have at least one endpoint in B̂. If a point of B̂
has k multiplicity for k > 1, then it will be marked by k. For a more extensive treatment
see [Grü03, Chapter 6].

Definition 2.2.2.7. Each combinatorial type of d-polytopes with d + 3 vertices has
representatives for which the consecutive diameters of its Gale diagram are equidistant.
We shall call such Gale diagrams standard diagrams. That is 0 is not a vector in the
Gale diagram.

Example 2.2.2.8. The standard diagram of the triangular prism in Example 2.2.1.3 is

v̂1

v̂2

v̂3

v̂4

v̂5

v̂6

Figure 2.5: Standard diagram of the triangular prism, see Figure 2.1.

Theorem 2.2.2.9. Let P and P ′ be d-polytopes with d + 3 vertices and let B̂ and B̂′ be
Gale diagrams (without loss of generality Standard diagrams) of P , P ′, respectively. If
the only difference between B̂ and B̂′ is in the position of one of the diameters, so that
its position in B̂′ being obtained by rotating the corresponding diameter in B̂ through an
angle sufficiently small not to meet any other diameter, then B̂ and B̂′ are isomorphic.
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Proof. Let V = {v1, . . . , vd+3} and V ′ = {v′1, . . . , v′d+3} be the vertex sets of P and P ′,
respectively. Since the only difference between B̂ and B̂′ is in the position of one of the
diameters, we can put without loss of generality v̂′j = v̂j , for i = 2, . . . , d + 3 and v̂′1 is
obtained by rotating the corresponding diameter v̂1 in B̂ through an angle sufficiently
small not to meet any other diameter. We prove now that B̂ ≃ B̂′ by induction on
the cardinality of the set J ⊆ {1, . . . , d + 3}. If 1 ∉ J , then there is nothing to pove it.
Therefore we consider that 1 ∈ J . For ∣J ∣ = 2 we have J = {1, j}, for j ∈ {2, . . . , d + 3}. If
0 ∈ relint(cov({v̂1, v̂j})), then v̂1 and v̂j are two endpoints of a diameter. By rotating this
diameter through a very small angle, 0 lies in the convex hull of v̂′1 and v̂′j . For ∣J ∣ = 3 we
have J = {1, j1, j2}, for j1, j2 ∈ {2, . . . , d+3} with j1 ≠ j2. If 0 ∈ relint(cov({v̂1, v̂j1 , v̂j2})).
By rotating the corresponding diameter of v̂1 through a very small angle not to meet any
other diameter, 0 ∈ relint(cov({v̂′1, v̂′j1 , v̂′j2})), see Figure 2.6.

v̂1

v̂j1

v̂j2

(a) Standard diagram of P .

v̂′1

v̂′j1

v̂′j2

(b) Standard diagram of P ′.

Figure 2.6: Standard diagrams.

The induction hypothesis is that the statement holds for 3 < ∣J ∣ ≤ d + 1. Now we prove
the statement for ∣J ∣ = d + 2. If 0 ∈ relint(cov({v̂1, v̂j ∶ for all j ∈ J})), then there
are three points of them by Carathéodory’s theorem such that 0 lies in their convex
hull. Assume that 0 ∈ relint(cov({v̂1, v̂j1 , v̂j2})), then the statement is true by the base
step, see Figure 2.6. If 0 ∈ relint(cov({v̂j1 , v̂j2 , v̂j3 ∶ ji ≠ 1, for i = 1,2,3})), then by
rotating the corresponding diameter of v̂1 through a very small angle not to meet any
other diameter, 0 stays in relint(cov({v̂′j1 , v̂′j2 , v̂′j3 ∶ ji ≠ 1, for i = 1,2,3})), hence
0 ∈ relint(cov({v̂′1, v̂′j ∶ for all j ∈ J})). For ∣J ∣ = d + 3 there is nothing to pove it.

Example 2.2.2.10.

3

22 22

2 3

2
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22

By Theorem 2.2.2.9 the first four Gale diagrams (standard diagrams) are isomorphic,
but the fifth is not isomorphic to any of them.

Definition 2.2.2.11. Each combinatorial type of d-polytopes with d + 3 vertices may
be represented by a Gale diagram. If a Gale diagram has the least possible number of
diameters among all isomorphic diagrams, then it is called contracted . If a Gale diagram
has the largest possible number of diameters among all isomorphic diagrams, then it is
called distended .

Example 2.2.2.12. The first Gale diagram in Example 2.2.2.10 is contracted and the
fourth is distended. We note that the points of the contracted diagram are situated on
alternate endpoints of the diameters.

Theorem 2.2.2.13. Let P be a simplicial d-polytope with d + 3 vertices and B̂ be its
Gale diagram. Then 0 ∉ B̂, and no diameter of B̂ has both endpoints in B̂. Therefore
the contracted Gale diagram of P has an odd number (bigger or equal 3) of diameters,
the points of B̂ being situated on alternate endpoints of the diameters.

Proof. Since P is a simplicial d-polytop, each facet has exactly d vertices. If 0 ∈ B̂, then
0 ∈ relint(conv({0})). In this case there is a facet which has d+2 vetices. If there is a di-
ameter of B̂ which has both endpoints, such as v̂1 and v̂2, then 0 ∈ relint(conv({v̂1, v̂2})).
In this case there is a facet which has d + 1 vetices. Since the points of a contracted di-
agram B̂ being situated on alternate endpoints of the diameters, see Theorem 2.2.2.9,
Example 2.2.2.10 and Example 2.2.2.12], we have an odd number (bigger or equal 3) of
diameters. We assume the number of diameters is even and thus equal to 2k for some
k ∈ N. Then we obtain the following diagram.

+
+

−

−

++

This is a contradiction, since there is no diameter of B̂ that has both endpoints in B̂.

2.2.3 Stanley-Reisner rings associated to simplicial d-polytopes with
d + 3 vertices

Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vd+3} and the boundary
complex ∆(P ). Let K be a field and K[∆(P )] = K[x1, . . . , xd+3]/I∆(P ) be the Stanley-
Reisner ring of ∆(P ), where I∆(P ) is the Stanley-Reisner ideal. We will determine the



50 Chapter 2. Gorenstein ideals of codimension 3

minimal monomial set of generators of I∆(P ), so that I∆(P ) is a Gorenstein ideal of
codimension 3. We would like to read off these generators from the Gale diagram of P .
We know from Definition 1.2.3.1 and Remark 1.2.3.2 that the minimal set of monomial
generators of I∆(P ) are minimal nonfaces of ∆(P ).

Example 2.2.3.1. Let P be a simplicial 3-polytope with the vertex set V = {v1, . . . , v5},
which is in Example 2.2.2.6 and the boundary complex ∆(P ). Then the Stanley-Reisner
ideal of the Stanley-Reisner ring K[∆(P )] is I∆(P ) = (x1x5, x2x3x4).

At the beginning we read off the minimal sets of monomial generators of Gorenstein
ideals of codimension 1 and 2. Therefore we consider a simplicial d-polytope P with
the vertex set V = {v1, . . . , vd+1} and the boundary complex ∆(P ). Let K[∆(P )] be
the Stanley-Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal. By
Proposition 1.1.5.16 K[∆(P )] is a Gorenstein ring. It follows from Proposition 1.1.5.13,
Theorem 1.1.4.21 and Theorem 1.2.3.3 that codim(I∆(P )) = 1. The Gale diagram of a
simplicial d-polytope with d + 1 vertices is in the 0-dimensional space R0, so all vectors
are the 0-vector trivially, see the Figure 2.7. This zero point has multiplicities d + 1.
By Theorem 1.1.5.8 we have proj.dimS(K[∆(P )]) = 1 and bS1 (K[∆(P )]) = 1, hence the
minimal graded free resolution of K[∆(P )] over S is

F ∶ 0 F1 F0 K[∆(P )] 0.
d1 d0

By Remark 2.2.1.12 we have I∆(P ) = (x1 . . . xd+1). We use Construction 1.1.2.10, to
obtain the minimal graded free resolution of K[∆(P )] over S is

F ∶ 0 S(−(d + 1)) S K[∆(P )] 0.
d1 d0

v̂1 . . . v̂d+1

Figure 2.7: Gale diagram of a simplicial d-polytope with d + 1 vertices.

Now we consider another case. Let P be a simplicial d-polytope with the vertex set V =
{v1, . . . , vd+2} and the boundary complex ∆(P ). Let K[∆(P )] be the Stanley-Reisner
ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal. By Proposition 1.1.5.16
K[∆(P )] is a Gorenstein ring. Proposition 1.1.5.13, Theorem 1.1.4.21 and Theorem
1.2.3.3 imply that codim(I∆(P )) = 2. The Gale diagram of a simplicial d-polytope with
d + 2 vertices is in the 1-dimensional space R, see Figure 2.8. By Theorem 1.1.5.8 we
have proj.dimS(K[∆(P )]) = 2 and bS2 (K[∆(P )]) = 1, hence the minimal graded free
resolution of K[∆(P )] over S is

F ∶ 0 F2 F1 F0 K[∆(P )] 0.
d2 d1 d0
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By Remark 2.2.1.12 we have I∆(P ) = (xi1 . . . xik , xik+1
. . . xid+2

). We construct now the
minimal graded free resolution of K[∆(P )] over S

F ∶ 0 S(−(d + 2)) S(−((d + 2) − k)) ⊕ S(−k) S K[∆(P )] 0.
d2 d1 d0

v̂i1 . . . v̂ik v̂ik+1
. . . v̂id+20

Figure 2.8: Gale diagram of a simplicial d-polytope with d + 2 vertices.

For a more extensive treatement see [BP12].

We consider now an important case, let P be a simplicial d-polytope with the vertex
set V = {v1, . . . , vd+3} and the boundary complex ∆(P ). Let K[∆(P )] be the Stanley-
Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal. By Proposition
1.1.5.16 K[∆(P )] is a Gorenstein ring. It follows from Proposition 1.1.5.13, Theorem
1.1.4.21 and Theorem 1.2.3.3 that codim(I∆(P )) = 3. The Gale diagram of a simplicial
d-polytope with d+3 vertices is in the 2-dimensional space R2, see Figure 2.9. We obtain
by Theorem 1.1.5.8 that proj.dimS(K[∆(P )]) = 3 and bS3 (K[∆(P )]) = 1, so that the
minimal graded free resolution of K[∆(P )] over S is

F ∶ 0 F3 F2 F1 F0 K[∆(P )] 0.
d3 d2 d1 d0

By Remark 2.2.1.12 and Theorem 2.2.2.13 we observe that the Gorenstein ideal I∆(P ) is
generated by an odd number bigger or equal to 3 of monomials. We explain now how
we can obtain them from Gale diagram of P . We consider at first the contracted Gale
diagram of P , then an arbitrary straight line which passes through origin 0. This line
split the point in two sets on its sides. Since the contracted Gale diagram has an odd
number of diameters, and no diameter of the diagram has both endpoints, there is an
odd number of different points in the contracted Gale diagram, i.e. 2m + 1 points for
some natural number m. We observe that 2m + 1 ≤ d + 3, because it may be that there
is a point which has multiplicities greater than one. In all cases for every position i of
the straight line, we have two sets of points B̂′

i and B̂′′
i on its sides, for i = 1, . . . ,2m+ 1.

Let ∣B̂′
i∣ = ai and ∣B̂′′

i ∣ = bi with ai + bi = d + 3. We have either ai > bi or bi > ai.
Without loss of generality we consider bi > ai. By Remark 2.2.1.12 we observe that
0 ∉ relint(conv({v̂k ∶ for all v̂k ∈ B̂′′

i })), for each i = 1, . . . ,2m + 1, see Figure 2.9. Then
the Gorenstein ideal I∆(P ) is generated by 2m + 1 sequare-free monomials fi. Their
degrees are ai for i = 1, . . . ,2m + 1.



52 Chapter 2. Gorenstein ideals of codimension 3

Figure 2.9: Gale diagram of P .

The minimal graded free resolution of K[∆(P )] over S is

F ∶ 0 S(−(d + 3)) ⊕2m+1
i=1 S(−bi) ⊕2m+1

i=1 S(−ai) t
d3 d2 d1

S K[∆(P )] 0.
d0

Remark 2.2.3.2. Let P be a simplicial d-polytope with d + 3 vertices. Let ∆(P ) be
the boundary complex of P . We observe that all monomials of the minimal set of
monomial generators of the Gorenstein Stanley-Reisner ideal I∆(P ) have the same degree,
see Remark 2.1.2.3 and Buchsbaum-Eisenbud Theorem 2.1.2.4. Since the number of
diameters of the contracted Gale diagram of P is the minimal number of the monomial
generators of I∆(P ) and all have the same degree and no diameter of the diagram has
both endpoints, we distinguish between two cases. The first one for d = 2k even with
k ∈ N, then the contracted Gale diagram of P has 2k + 3 deffirent diameters. The second
one for d = 2k + 1 with k ∈ N, then the contracted Gale diagram of P has k + 2 different
diameters.

Example 2.2.3.3. Let P be a simplicial 2-polytope with 5 vertices, such as V = {v1 =
(0,2), v2 = (1,1), v3 = (1,−1), v4 = (−1,−1), v5 = (−1,1)}, see Figure 2.10a, and the
boundary complex ∆(P ). We consider the 3 × 5-matrix

G =
⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 −1 −1
2 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
.

The kernel of G is generated by two vectors (−2,3,−2,1,0) and (−2,2,−1,0,1) and hence
dimR(Ker(G)) = 2. Then the Gale transformB of V is the set of the vectors v̄1 = (−2,−2),
v̄2 = (3,2), v̄3 = (−2,−1), v̄4 = (1,0), v̄5 = (0,1), hence the Gale diagram of P is B̂ =
{v̂1 = ( −1√

2
, −1√

2
), v̂2 = ( 3√

13
, 2√

13
), v̂3 = ( −2√

5
, −1√

−5
), v̂4 = (1,0), v̂5 = (0,1)}, see Figure 3.5f.

We consider now the corresponding Stanley-Reisner ring K[∆(P )] of ∆(P ), such that
K[∆(P )] = K[x1, . . . , x5]/I∆(P ), where I∆(P ) is the corresponding Gorenstein Stanley-
Reisner ideal of codimension 3. We observe that the minimal set of monomial generators
of I∆(P ) is {x1x3, x3x5, x2x5, x2x4, x1x4}. These monomial generators are of degree 2.
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v1

v2

v3v4

v5

(a) Illustration of the polytope P .

v̂5

v̂4

v̂1

v̂3

v̂2

(b) Gale diagram of P .

Figure 2.10: Simplicial 2-polytope P with 5 vertices and its Gale diagram.

The minimal graded free resolution of K[∆(P )] over S is

F ∶ 0 S(−5) ⊕5
i=1 S(−3) ⊕5

i=1 S(−2) S K[∆(P )] 0.
d3 d2 d1 d0

We observe that the Buchsbaum-Eisenbud Theorem 2.1.2.4 is valid. The 5 × 5-skew
symmetic matrix A of the map d2 has the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −x3 x4 0
0 0 0 −x5 x1

x3 0 0 0 −x2

−x4 x5 0 0 0
0 −x1 x2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and I∆(P ) is minimallly generated by the 4-th order Pfaffians of A.

Example 2.2.3.4. Let P be a simplicial 3-polytope with 6 vertices, such as V = {v1 =
(1,1,0), v2 = (−1,1,0), v3 = (1,−1,0), v4 = (−1,−1,0), v5 = (0,0,1), v6 = (0,0,−1)}, see
Figure 2.11a, and the boundary complex ∆(P ). We consider the 4 × 6-matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 −1 1 −1 0 0
1 1 −1 −1 0 0
0 0 0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

So dimR(Ker(G)) = 2 and {(1,−1,−1,1,0,0), (0,−1,−1,0,1,1)} is a basis for Ker(G).
Then the Gale transform B of V is the set of the vectors v̄1 = (1,0), v̄2 = (−1,−1),
v̄3 = (−1,−1), v̄4 = (1,0), v̄5 = (0,1), v̄6 = (0,1), hence the Gale diagram of P is B̂ =
{v̂1 = (1,0), v̂2 = ( −1√

2
, −1√

2
), v̂3 = ( −1√

2
, −1√

2
), v̂4 = (1,0), v̂5 = (0,1), v̂6 = (0,1)}, see Figure

2.11b. We consider now the corresponding Stanley-Reisner ring K[∆(P )] of ∆(P ),
such that K[∆(P )] = K[x1, . . . , x6]/I∆(P ), where I∆(P ) is the corresponding Gorenstein
Stanley-Reisner ideal of codimension 3. We observe that the minimal set of monomial
generators of I∆(P ) is {x1x4, x2x3, x5x6}. These monomial generators are of degree 2.
By Construction 1.1.2.10 we obtain that the minimal graded free resolution of K[∆(P )]
over S is
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v1

v2

v3

v4

v5

v6

(a) Illustration of the polytope P .

v̂2v̂3

v̂1v̂4

v̂5v̂6

(b) Gale diagram of P .

Figure 2.11: Simplicial 3-polytope P with 6 vertices and its Gale diagram.

F ∶ 0 S(−6) ⊕3
i=1 S(−4) ⊕3

i=1 S(−2) S K[∆(P )] 0.
d3 d2 d1 d0

We observe that the Buchsbaum-Eisenbud Theorem 2.1.2.4 is valid. The 3 × 3-skew
symmetic matrix A of the map d2 is the following

A =
⎡⎢⎢⎢⎢⎢⎣

0 −x1x4 −x2x3

x1x4 0 −x5x6

x2x3 x5x6 0

⎤⎥⎥⎥⎥⎥⎦

and I∆(P ) is minimally generated by the 2-th order Pfaffians of A.
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GORENSTEIN IDEALS OF CODIMENSION 4

Let S be the polynomial ring K[x1, . . . , xn] over an algebraically closed field K, graded
in positive degrees. The structure of the minimal graded free resolution of the quotient
module S/I, where I is a Gorenstein ideal of codimension 4, is still not fully understood.
Some progress in this direction is due to Kustin and Miller, see [KM82] and [KM83]. The
results of Kustin and Miller give an interesting application in the construction of new
Calabi-Yau manifolds [Kap11] and the classification of singular Fano varieties [PR04].
In recent work of Reid [Rei15] the results of Kustin and Miller were developed further
and he partially generalizes the Buchsbaum-Eisenbud Theorem [BE77]. In this chapter,
we discuss the structure theorem of Reid. Then for d = 3, 4, we compute explicitly the
minimal graded free resolution of the Stanley-Reisner rings associated to simplicial d-
polytopes with d + 4 vertices using Gale diagrams.

In what follows, the minimal graded free resolution of a Stanley-Reisner ring is understood
as the minimal graded free resolution of a quotient module.

3.1 Gorenstein ideals of codimension 4 in commutative Al-
gebra

Generalizing of the Buchsbaum-Eisenbud theorem [BE77] in codimension 3 to codimen-
sion 4 has been a notoriously elusive problem since the 1970s. In 2015 this has been
partially generalized by Reid [Rei15].

3.1.1 Structure theory for Gorenstein ideals of codimension 4

Let S be the polynomial ring K[x1, . . . , xn] over an algebraically closed field K. The
structure of the minimal graded free resolution of the quotient module S/I, where I is a
Gorenstein ideal of codimension 4 and generated by k + 1 elements, is

F ∶ 0 F4 F3 F2 F1 F0 S/I 0,
d4 d3 d2 d1 d0

55
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where F0 = S, F4 = S, F1 = Sk+1, F3 = Hom(F1, F4) ≅ F ∗
1 and F2 = S2k. Moreover,

F2 Ð→ F1 is dual to F3 Ð→ F2. By choice of appropriate bases of F2 and F3, we obtain
the matrix A of d2, which has the form

A = [B C] ,

where B and C are (k + 1) × k-matrices satisfying the following condition

[B C] [
0 I
I 0
] [B C]

t
= 0.

This is equivalent to BCt +CBt = 0 or to BCt being a skew-symmetric matrix.

Example 3.1.1.1. Let S = K[x1, . . . , x8] be the polynomial ring and I = (x1, x2, x3, x4)
an ideal of S. We observe that dim(S/I) = 4. Since S is a Cohen-Macaulay ring, it
follows from Theorem1.1.4.21 that codim(I) = 4 and from Proposition 1.1.5.12 that S/I
is a Gorenstein ring. So it is Cohen-Macaulay. Moreover, by Theorem 1.1.4.17 we have
proj.dimS(S/I) = 4. So I is perfect, and therefore I is a Gorenstein ideal by Proposition
1.1.5.16. Morover we observe that I is a complete intersection ideal. The minimal free
resolution is

0 S(−4) S4(−3) S6(−2) S4(−1) S S/I 0,
Qt

At A Q

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−x4 0 0 0 x3 −x2

0 −x4 0 −x3 0 x1

0 0 −x4 x2 −x1 0
x1 x2 x3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and Q = [x1 x2 x3 x4].

We observe that A = [B C], where

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−x4 0 0
0 −x4 0
0 0 −x4

x1 x2 x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 x3 −x2

−x3 0 x1

x2 −x1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore BCt +CBt = 0 and BCt is the skew-symmetric matrix

BCt =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 x3x4 −x2x4 0
−x3x4 0 x1x4 0
x2x4 −x1x4 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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3.2 Combinatorics of Gorenstein ideals of codimension 4

3.2.1 Radial projection and stereographic projection

Projections are fundamental techniques in this subsection and in the next chapter. To
introduce these projections we need the definition of a strongly convex spherical polytope
on Sd−1.

Definition 3.2.1.1. Let Sd−1 be the unit sphere in the Euclidean space centered at the
origin 0. A strongly convex spherical polytope on Sd−1 is a non-empty intersection of
finitely many hemispheres on Sd−1 that does not contain any pair of antipodal points.

Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}, the boundary
complex ∆(P ) and 0 ∈ int(P ). We want to apply a radial projection of the polytope P
from the origin 0 onto the unit sphere Sd−1. Consider the radial projection

φ ∶ ∆(P ) Ð→ Sd−1, vi ↦ r(vi) ∩ Sd−1,

where r(vi) is the ray with endpoint 0 containing vi. Put v′i ∶= φ(vi) for all vi ∈ V and
V ′ ∶= {v′1, . . . , v′n}. Then the image under φ of each proper face of P is a strongly convex
spherical polytope on Sd−1. For a more extensive treatment see [She71]. After that we
apply the stereographic projection at each point v′i for i = 1, . . . , n, respectively. This
projection is defined on the entire sphere, except at one point (the projection point). It
preserves angles at which curves meet, but it preserves neither distances nor the areas of
figures.

Definition 3.2.1.2. Let d ≥ 1 and v ∶= (0, . . . ,0,1) ∈ Rd. The stereographic projection is
defined by

ψ ∶ Sd−1 ∖ {v} Ð→ Rd−1 × {0}, x↦ ( x1

1 − xd
, . . . ,

xd−1

1 − xd
,0).

In this case we draw a line from the North Pole of the sphere (we could rotate the sphere
such that vi is at the pole); the line pass through both a point on the sphere and a point
on the plane. A point on the sphere is mapped to the corresponding point on the plane.

Definition 3.2.1.3. Let d > 1 and let P be a simplicial d-polytope with the vertex set
V = {v1, . . . , vn}, so that V ′ = {v′1, . . . , v′n} is the image set of V on Sd−1. For every v′i we
rotate the sphere such that v′i is at the pole, then we define the vertex projection Ψ to
be the map induced by ψ on V ′ ∖ {v′i}.

Proposition 3.2.1.4. Let P be a simplicial d-polytope with the vertex set V ⊍{v}, so that
V ′⊍{v′} is the image set of V ⊍{v} on the Sd−1. Let T be the image of a vertex projection
Ψ of P from v′. Then the boundary vertices of T are the vertices of a simplicial polytope
P ′′, and for U ⊂ V , Q ∶= conv(U ∪ {v}) is a k-face of P if and only if F ∶= conv(Ψ(U ′))
is a (k − 1)-face of a simplicial polytope P ′′ and F ∩ Ψ(V ′) = ψ(U ′), where U ′ is the
image set of U on Sd−1.
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Proof. See [Gon12, Lemma 0.3.6] and [Gon12, Corollary 0.3.7].

Remark 3.2.1.5. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}.
We observe that the simplicial (d − 1)-polytope P ′′, which we obtain in Proposition
3.2.1.4, has at most n − 1 vertices. If the stereographic projection is at the projection
point v′i, then this polytope is denoted by Pi, where its vertex set V ′′ ∶= {v′′i1 , . . . , v

′′
ik
}

with v′′il ∶= Ψ(Φ(vil)).

3.2.2 Stanley-Reisner ideals of codimension 4 for d = 3, 4

In [GS67], it is shown that there are 43 combinatorial types of simplicial d-polytopes
with d + 4 vertices for d ≤ 4. Let P be a simplicial d-polytope with the vertex set V
and the boundary complex ∆(P ). In this subsection, we determine the minimal set
of monomial generators of the Stanley-Reisner ideal that is associated to P using Gale
diagrams. After that we can compute the minimal free resolution of the corresponding
Stanley Reisner ring using the computer algebra system Singular. That help us in the
next Chapter 4 to prove that every Gorenstein ideal of codimension 4 which is generated
by an even number of monomials is not a complete intersection1. of a Gorenstein ideal
of codimension 3 and an extra monomial. Such ideals provide a counterexample to a
conjecture of Reid in [Rei13] and [Rei15].

We consider now simplicial 3-polytopes with 7 vertices and determine the minimal set of
monomial generators of the corresponding Stanley-Reisner ideals using Gale diagrams.
These polytopes are classified and there are only 5 different combinatorial types, see
[GS67].

Definition 3.2.2.1. Let P be a d-polytope, H a hyperplane such that H ∩ int(P ) = ∅,
and let v be a point in Rd. We say that v is beyond H, if v belongs to the open halfspace
determined by H which does not meet P . If F is a facet of P , we shall say that v is
beyond F if v is beyond aff(F ).

Definition 3.2.2.2. Let P be a d-polytope. A Schlegel diagram of P is a projection of
a polytope from Rd into Rd−1 through a point beyond one of its facets or faces.

Remark 3.2.2.3. A Schlegel diagram of P based at the facet F is a polytopal subdivision
of F in Rd−1 that is combinatorially equivalent to the original polytope.

Example 3.2.2.4. The Schlegel diagrams of the two types of pentahedra (pyramids and
roofs) are

Figure 3.1: Schlegel diagrams of 3-polytopes with 5 facets.

1See Definition 4.2.0.1.
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Remark 3.2.2.5. The Schlegel diagrams of the combinatorial types of simplicial 3-
polytopes with 7 vertices are

d1 d2 d3 d4 d5

Let D2 be one of the simplicial 3-polytopes with 7 vertices V = {v1, . . . , v7}, which its
Schlegel diagram d2 is considered in Remark 3.2.2.5, such that 0 ∈ int(D2) and let ∆(D2)
be its boundary complex. Now we would like to determine the minimal set of monomial
generators of the Gorenstein Stanley-Reisner ideal I∆(D2) using the Gale diagram. To
achieve this we use the following strategy. We apply a radial projection of D2 from
the origin 0 onto the unit sphere S2. Let V ′ = {v′1, . . . , v′7} be the image of V under
the radial projection. Then we use the stereographic projection at each point v′i, for
i = 1, . . . ,7. By doing that, we get simplicial 2-polytopes D2i (see Remark 3.2.1.5),
which have at most 6 vertices. After that we draw the Gale diagram of every vert(D2i),
then we determine the minimal set of monomial generators of every I∆(D2i

) using Gale
diagrams, see Chapter 2. If two monomial generators of two different ideals I∆(D2i

) exist,
which have at least two common divisors, such as xixjxk and xixjxl, then xixjxkxl is
a monomial generator of I∆(D2). Otherwise all other monomial generators of all I∆(D2i

)

are monomial generators of I∆(D2), see Chapter 4. Then we can compute explicitly the
minimal graded free resolution of the Stanley-Reisner ring associated to D2 using the
computer algebra system Singular.

By Remark 3.2.2.5 we have the Schlegel diagram of D2, hence we can draw it. Let
V ∶= {v1 = (−1,1,0), v2 = (−1,−1,0), v3 = (1,1,0), v4 = (2,1,0), v5 = (1,2,0), v6 =
(0,0,3), v7 = (0,0,−3)} be the vertex set of D2, see Figure 3.3a.

On the one hand, we can determine immediately the set of minimal nonfaces of ∆(D2),
which is at the same time the minimal set of monomial generators of I∆(D2), see Remark
1.2.3.2. On the other hand, we can determine them using Gale diagrams, because some-
times we have only the Gale diagram of the vertices set without any information about
the polytope. Consider for example the 4 × 7-matrix

G =
⎛
⎜⎜⎜
⎝

1 1 1 1 1 1 1
−1 −1 1 2 1 0 0
1 −1 1 1 2 0 0
0 0 0 0 0 3 −3

⎞
⎟⎟⎟
⎠
.

The set {(1,0,−3,2,0,0,0), (−1,1,−2,0,2,0,0), (0,−1,−1,0,0,1,1)} is a basis for the ker-
nel of G. Then the Gale transform B of V is the set of the vectors v̄1 = (1,−1,0),
v̄2 = (0,1,−1), v̄3 = (−3,−2,−1), v̄4 = (2,0,0), v̄5 = (0,2,0), v̄6 = (0,0,1), v̄7 = (0,0,1),
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hence the Gale diagram of D2 is the set B̂ = {v̂1 = ( 1√
2
, −1√

2
,0), v̂2 = (0, 1√

2
, −1√

2
), v̂3 =

( −3√
14
, −2√

14
, −1√

14
), v̂4 = (1,0,0), v̂5 = (0,1,0), v̂6 = (0,0,1), v̂7 = (0,0,1)}, see Figure 3.3b.

v1
v2

v4
v3

v6

v7

v5

(a) Illustration of D2.

v̂1

v̂2
v̂4

v̂3

v̂6v̂7

v̂5

(b) Gale diagram of D2.

Figure 3.3: Simplicial 3-polytope D2 with 7 vertices and its Gale diagram.

Now we assume that only the Gale diagram of D2 is given and the polytope itself is not
known. We can determine the faces of the polytope by Theorem 2.2.1.9 and using the
computer algebra system Maple through the following commands

> with(convex):

> C := poshull([1/sqrt(2),-1/sqrt(2),0], [0,1/sqrt(2),-1/sqrt(2)],
[0,1,0], [0,0,1]);

> containsrelint(C, [0,0,0]);

true

We obtain that the faces of D2 are:

Polytope Facets

v1v2v6 v1v2v7

v2v4v6 v2v4v7

D2 v3v4v6 v3v4v7

v4v5v6 v4v5v7

v1v5v6 v1v5v7

We apply a radial projection of D2 from the origin onto the unit sphere S3. Then we
use the stereographic projection at each point v′i, for i = 1, . . . ,7. For each i = 1, . . . ,7 we
obtain simplicial 2-polytopes D2i, see Figure 3.4.
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v′′7 v′′5

v′′6v′′2

(a) D21

v′′7 v′′1

v′′6v′′4

(b) D22

v′′7 v′′5

v′′6v′′4

(c) D23

v′′7 v′′3

v′′6v′′2

(d) D24

v′′7 v′′1

v′′6v′′3

(e) D25

v′′1v′′2

v′′3

v′′4

v′′5

(f) D26 =D27

Figure 3.4: Resulting polytopes from stereographic projection.

v̂′′2 v̂
′′
5 v̂′′6 v̂

′′
70

(a) Gale diagram of D21 .

v̂′′1 v̂
′′
4 v̂′′6 v̂

′′
70

(b) Gale diagram of D22 .

v̂′′4 v̂
′′
5 v̂′′6 v̂

′′
70

(c) Gale diagram of D23 .

v̂′′2 v̂
′′
3 v̂′′6 v̂

′′
70

(d) Gale diagram of D24 .

v̂′′1 v̂
′′
3 v̂′′6 v̂

′′
70

(e) Gale diagram of D25
.

v̂′′3

v̂′′2

v̂′′4

v̂′′1

v̂′′5

(f) Gale diagram of D26,7 .

Figure 3.5: Gale diagrams of polytopes in Figure 3.4.

Now let S = K[x1, . . . , x7] and K[∆(D2)] = S/I∆(D2) be the Stanley-Reisner ring of
∆(D2). The minimal sets of monomial generators of I∆(D2i

) for i = 1, . . . ,7 are given in
the following equations

I∆(D21)
= (x2x5, x6x7),

I∆(D22)
= (x1x4 , x6x7),

I∆(D23)
= (x4x5, x6x7),

I∆(D24)
= (x2x3, x6x7),

I∆(D25)
= (x1x3, x6x7),

I∆(D26,7)
= (x1x4, x4x2, x2x5, x5x3, x3x1),
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see Chapter 2, Subsection 2.2.3. We can write now the minimal set of monomial gener-
ators of I∆(D2)

I∆(D2) = (x1x4, x4x2, x2x5, x5x3, x3x1, x6x7).

We use computer algebra system Singular to compute the minimal graded free resolution
of K[∆(D2)].

> ring R = 0,(x1, x2, x3, x4, x5, x6, x7), Dp;
> ideal I = (x1*x4, x2*x4, x2*x5, x3*x5, x1*x3, x6*x7);
> def s = res(I, 0);
> s;

1 6 10 6 1
r <-- r <-- r <-- r <-- r

0 1 2 3 4

> list(s);
[1]:

_[1] = x6*x7
_[2] = x3*x5
_[3] = x2*x5
_[4] = x2*x4
_[5] = x1*x4
_[6] = x1*x3

[2]:
_[1] = - x2*gen(2) + x3*gen(3)
_[2] = - x4*gen(3) + x5*gen(4)
_[3] = - x1*gen(4) + x2*gen(5)
_[4] = - x1*gen(2) + x5*gen(6)
_[5] = - x3*gen(5) + x4*gen(6)
_[6] = - x3*x5*gen(1) + x6*x7*gen(2)
_[7] = - x2*x5*gen(1) + x6*x7*gen(3)
_[8] = - x2*x4*gen(1) + x6*x7*gen(4)
_[9] = - x1*x4*gen(1) + x6*x7*gen(5)
_[10] = - x1*x3*gen(1) + x6*x7*gen(6)

[3]:
_[1] = - x1*x3*gen(2) - x1*x4*gen(1) + x2*x4*gen(4) - x2*x5*gen(5) -

x3*x5*gen(3)
_[2] = - x6*x7*gen(1) - x2*gen(6) + x3*gen(7)
_[3] = - x6*x7*gen(2) - x4*gen(7) + x5*gen(8)
_[4] = - x6*x7*gen(3) - x1*gen(8) + x2*gen(9)
_[5] = - x6*x7*gen(4) - x1*gen(6) + x5*gen(10)
_[6] = - x6*x7*gen(5) - x3*gen(9) + x4*gen(10)
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[4]:
_[1] = - x1*x3*gen(3) - x1*x4*gen(2) + x2*x4*gen(5) - x2*x5*gen(6) -

x3*x5*gen(4) + x6*x7*gen(1)
[5]:

_[1] = 0
[6]:

_[1] = gen(1)
[7]:

_[1] = 0

> print(betti(s), "betti");

0 1 2 3 4
------------------------------------

0: 1 - - - -
1: - 6 5 - -
2: - - 5 6 -
3: - - - - 1

------------------------------------
total: 1 6 10 6 1

So we can explicitly write the minimal graded free resolution of K[∆(D2)] as

0 S(−7) S6(−5) S5(−4)⊕S5(−3) t

S6(−2) S K[∆(D2)] 0.

We repeat this method for all combinatorial types of simplicial 3-polytopes with 7 ver-
tices. We obtain that the minimal sets of monomial generators of the corresponding
Gorenstein Stanley-Reisner ideals I∆(D1), I∆(D3), I∆(D4) and I∆(D5) are given as

ID1 = (x3x7, x4x7, x4x6, x5x7, x3x5, x3x6, x1x2x4, x1x2x5, x1x2x6).
ID3 = (x1x7, x2x3, x2x4, x2x7, x3x5, x3x7, x1x5x6, x1x4x6, x4x5x6).
ID4 = (x1x7, x2x7, x2x5, x1x5, x1x3, x6x7, x3x4x5, x3x4x6, x2x4x6).
ID5 = (x5x6, x2x7, x4x7, x3x4, x1x2, x6x7, x1x3x5).

We can use computer algebra system Singular to compute the minimal graded free reso-
lutions of the Stanley-Reisner rings associated to D1, D3, D4 and D5. For i = 1,3,4, the
minimal free resolution of K[∆(Di)] is

0 S(−7) S6(−5)⊕S3(−4) S8(−4)⊕S8(−3) t

S3(−3)⊕S6(−2) S K[∆(Di)] 0.
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For i = 5, the minimal graded free resolution of K[∆(D5)] is

0 S(−7) S6(−5)⊕S(−4) S6(−4)⊕S6(−3) t

S(−3)⊕S6(−2) S K[∆(D5)] 0.

Furthermore we can write a summary for the minimal graded free resolutions of the
Stanley-Reisner rings associated to all combinatorial types of simplicial 3-polytopes with
7 vertices.

0 S(−(d + 4)) Sb
S
3,d+2(−(d + 2))⊕Sb

S
3,d+1(−(d + 1)) Sb

S
2,d+1(−(d + 1))⊕

Sb
S
2,d(−d) Sb

S
1,d(−d)⊕Sb

S
1,d−1(−(d − 1)) S K[∆(D5)] 0,

where d = 3, bS1,d−1 = bS3,d+2 = d + 3, bS1,d = b
S
3,d+1 = (k + 1) − (d + 3) and bS2,d = b

S
2,d+1 = k.

For every case we notice that the corresponding Gorenstein Stanley-Reisner ideal is gen-
erated by k + 1 elements, for k ∈ N.

In [GS67], not only the simplicial 3-polytopes with 7 vertices are classified, but also all
simplicial 4-polytopes with 8 vertices. There are 37 combinatorial types of these poly-
topes. We determine also the minimal graded free resolutions of the Stanley-Reisner rings
associated to them using Gale diagrams and our previous discussion about the simplicial
3-polytopes with 7 vertices. We explain this explicitly for the polytope P 8

35.

Let P 8
35 be a simplicial 4-polytopes with the vertex set V = {v1, . . . , v8}, the boundary

complex ∆(P 8
35) and 0 ∈ int(P 8

35). In [GS67], the facets of P 8
35 are given as

Polytope Facets P 8
35i

Type

v1v2v3v4 v1v2v3v8

v1v2v6v7 v1v2v7v8 P 8
351

: d1

v1v2v5v6 v2v3v7v8 P 8
352

: d1

v1v2v4v5 v1v3v4v8 P 8
353

: d1

P 8
35 v2v3v4v5 v3v4v7v8 P 8

354
: d1

v2v3v5v6 v1v4v5v8 P 8
355

: d1

v2v3v6v7 v4v5v7v8 P 8
356

: d1

v3v4v6v7 v1v5v6v8 P 8
357

: d1

v3v4v5v6 v1v6v7v8 P 8
358

: d1

v4v5v6v7 v5v6v7v8

Since the polytope P 8
35 has dimension 4, we cannot sketch it. Let V ′ = {v′1, . . . , v′8} be

the image of V under the radial projection of P 8
35 from the origin 0 onto S3. We use the
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same method as above, i.e. stereographic projections at point v′i of V
′ ∖ {v′i} for each

i = 1, . . . ,8, see Remark 3.2.1.5. These new polytopes are denoted by P 8
35i

for i = 1, . . . ,8,
respectively. From the facets of P 8

35 we know which point is connected with which point
and which points are in the same face. Then we can sketch easily the polytopes P 8

35i
,

for i = 1, . . . ,8. If a polytope P 8
35i

has 7 vertices, then we already know the minimal
set of monomial generators of the corresponding Stanley-Reisner ideal. If a polytope
P 8

35i
has less than 7 vertices, then we can determine the minimal set of monomial genera-

tors of the corresponding Stanley-Reisner ideal, see Chapter 2, Subections 2.2.2 and 2.2.3.

Our aim is to determine the minimal set of the monomial generators of the Gorenstein
Stanley-Reisner ideal I∆(P 8

35)
. Once we know the minimal set of monomial generators

of each I∆(P 8
35i

), we can determine the minimal set of monomial generators of I∆(P 8
35)

.
If xjxk is a monomial generator of an ideal I∆(P 8

35i
), then either xjxk or xixjxk is a

monomial generator of I∆(P 8
35)

. If xjxk is a face, then xixjxk is a monomial generator of
I∆(P 8

35)
, otherwise xjxk.

Polytope P 8
35i

P 8
35i

Type I∆(P 8
35i

)

v′′8

v′′2

v′′7

v′′6 v′′5

v′′4

v′′3

P 8
351

: d1 I∆(P 8
351
) = (x1x3x7, x1x3x6, x1x3x5, x1x4x7, x1x4x6,

x1x5x7, x2x4x8, x2x5x8, x2x6x8)

v′′1

v′′3

v′′8

v′′7 v′′6

v′′5

v′′4

P 8
352

: d1 I∆(P 8
352
) = (x2x4x8, x2x4x7, x2x4x6, x2x5x8, x2x5x7,

x2x4x6, x1x3x5, x1x3x6, x1x3x7)

v′′2

v′′4

v′′1

v′′8 v′′7

v′′6

v′′5

P 8
353

: d1 I∆(P 8
353
) = (x1x3x5, x3x5x8, x3x5x7, x1x3x6, x3x6x8,

x1x3x7, x2x4x6, x2x4x7, x2x4x8)
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v′′3

v′′5

v′′6

v′′7 v′′8

v′′1

v′′2

P 8
354

: d1 I∆(P 8
354
) = (x2x4x6, x2x4x7, x2x4x8, x1x4x6, x1x4x7,

x4x6x8, x1x3x5, x3x5x8, x3x5x7)

v′′4

v′′6

v′′3

v′′2 v′′1

v′′8

v′′7

P 8
355

: d1 I∆(P 8
355
) = (x3x5x7, x2x5x7, x1x5x7, x3x5x8, x2x5x8,

x1x3x5, x4x6x8, x1x4x6, x2x4x6)

v′′5

v′′7

v′′8

v′′1 v′′2

v′′3

v′′4

P 8
356

: d1 I∆(P 8
356
) = (x4x6x8, x1x4x6, x2x4x6, x3x6x8, x1x3x6,

x2x6x8, x3x5x7, x2x5x7, x1x5x7)

v′′6

v′′8

v′′1

v′′2 v′′3

v′′4

v′′5

P 8
357

: d1 I∆(P 8
357
) = (x1x5x7, x2x5x7, x3x5x7, x1x4x7, x2x4x7,

x1x3x7, x4x6x8, x3x6x8, x2x6x8)

v′′1

v′′7

v′′6

v′′5 v′′4

v′′3

v′′2

P 8
358

: d1 I∆(P 8
358
) = (x2x6x8, x2x5x8, x2x4x8, x3x6x8, x3x5x8,

x4x6x8, x1x3x7, x1x4x7, x1x5x7)
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Then the Gorenstein Stanley-Reisner ideal I∆(P 8
35)

is

I∆(P 8
35)

=(x2x4x7, x2x4x6, x2x5x7, x3x5x8, x3x5x7, x3x6x8, x1x3x7, x1x3x6, x1x3x5,

x1x4x7, x1x4x6, x1x5x7, x2x4x8, x2x5x8, x2x6x8, x4x6x8).

Finally we can compute explicitly the minimal graded free resolution of the Stanley-
Reisner ring associated to P 8

35 using computer algebra system Singular and we obtain
the following

0 S(−8) S16(−5) S30(−4) S16(−3) S K[∆(P 8
35)] 0.A

This resolution has the same structure of the minimal graded free resolution as in the
structure theorem of Reid (see Chapter 3, Subsection 3.1.1 and [Rei15]). We observe
that the matrix A has the form A = [B C] with B and C are 16 × 15-matrices.

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0
x3 x2 x2 ⋮
0

−x4 x2 x5
0 x4 x3 −x5 −0.5x4

0
x8 −x2

−x6 x2 x7 ⋮
⋮ x8 x3 −x4

x6 x3 −x4 −x7 0
−x8 −x7

x8 x5 −x6
0 x6 x5 −x7 −0.5x6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2 −x3 x4 0
0 −x5 x2 −x3 x6

x5 x4 −x5 x6
−x7 x2 −x3 x8 ⋮

⋮ x1
−x7 x4 −x5 x8

x1
0

−0.5x7 0.5x7 x6 −x7 x8
0.5x1 0.5x1 x1 0

0 x1
−x1 0

⋮ x1
−x1

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where BCt is a 16 × 16-skew-symmetirc matrix.

BCt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1x2 −x1x3

x1x4 −x1x5

−x1x2 x1x8
x1x7 x1x6

x1x3 −x1x4

−x1x8 −x1x7
x1x5 −x1x6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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So we have computed the minimal graded free resolutions of the Stanley-Reisner rings
associated to all simplicial 4-polytopes with 8 vertices, which are classifed in [GS67], see
the following table.

P 8 minimal free resolution of associated Stanley-Reisner ring

P 8
1 0 S(−8) S6(−6)⊕S3(−4) S8(−5)⊕S8(−3) S3(−4)⊕S6(−2) S K[∆(P8

1 )] 0

P 8
2 0 S(−8) 6(−6)⊕S3(−4) S8(−5)⊕S8(−3) S3(−4)⊕S6(−2) S K[∆(P8

2 )] 0

P 8
3 0 S(−8) S6(−6)⊕S3(−4) S8(−5)⊕S8(−3) S3(−4)⊕S6(−2) S K[∆(P8

3 )] 0

P 8
4 0 S(−8) S2(−4)⊕S2(−5)⊕S5(−6) S6(−5)⊕S4(−4)⊕S6(−3) t

S2(−4)⊕S2(−3)⊕S5(−2) S K[∆(P8
4 )] 0

P 8
5 0 S(−8) S2(−4)⊕S2(−5)⊕S5(−6) S6(−5)⊕S4(−4)⊕S6(−3) t

S2(−4)⊕S2(−3)⊕S5(−2) S K[∆(P8
5 )] 0

P 8
6 0 S(−8) S5(−6)⊕S2(−5)⊕S2(−4) S6(−5)⊕S4(−4)⊕S6(−3) t

S2(−4)⊕S2(−3)⊕S5(−2) S K[∆(P8
6 )] 0

P 8
7 0 S(−8) S5(−6)⊕S(−5)⊕S(−4) S5(−5)⊕S2(−4)⊕S5(−3) t

S(−4)⊕S(−3)⊕S5(−2) S K[∆(P8
7 )] 0

P 8
8 0 S(−8) S4(−6)⊕S4(−5)⊕S(−4) S4(−5)⊕S8(−4)⊕S4(−3) t

S(−4)⊕S4(−3)⊕S4(−2) S K[∆(P8
8 )] 0

P 8
9 0 S(−8) S4(−6)⊕S4(−5)⊕S(−4) S4(−5)⊕S8(−4)⊕S4(−3) t

S(−4)⊕S4(−3)⊕S4(−2) S K[∆(P8
9 )] 0

P 8
10 0 S(−8) S4(−6)⊕S4(−5)⊕S(−4) S4(−5)⊕S8(−4)⊕S4(−3) t

S(−4)⊕S4(−3)⊕S4(−2) S K[∆(P8
10)] 0

P 8
11 0 S(−8) S3(−6)⊕S7(−5)⊕S(−4) S3(−5)⊕S14(−4)⊕S3(−3) t

S(−4)⊕S7(−3)⊕S3(−2) S K[∆(P8
11)] 0

P 8
12 0 S(−8) S3(−6)⊕S7(−5)⊕S(−4) S3(−5)⊕S14(−4)⊕S3(−3) t

S(−4)⊕S7(−3)⊕S3(−2) S K[∆(P8
12)] 0

P 8
13 0 S(−8) S5(−6)⊕S(−5) S5(−5)⊕S5(−3) S(−3)⊕S5(−2) S K[∆(P8

13)] 0

P 8
14 0 S(−8) S4(−6)⊕S4(−5)⊕S(−4) S4(−5)⊕S8(−4)⊕S4(−3) t

S(−4)⊕S4(−3)⊕S4(−2) S K[∆(P8
14)] 0

P 8
15 0 S(−8) S4(−6)⊕S4(−5)⊕S(−4) S4(−5)⊕S8(−4)⊕S4(−3) t

S(−4)⊕S4(−3)⊕S4(−2) S K[∆(P8
15)] 0

P 8
16 0 S(−8) S4(−6)⊕S3(−5) S3(−5)⊕S6(−4)⊕S3(−3) t

S3(−3)⊕S4(−2) S K[∆(P8
16)] 0.

P 8
17 0 S(−8) S4(−6)⊕S2(−5) S2(−5)⊕S6(−4)⊕S2(−3) t

S2(−3)⊕S4(−2) S K[∆(P8
17)] 0

P 8
18 0 S(−8) S3(−6)⊕S6(−5) S2(−5)⊕S12(−4)⊕S2(−3) t

S6(−3)⊕S3(−2) S K[∆(P8
18)] 0

P 8
19 0 S(−8) S3(−6)⊕S6(−5) S2(−5)⊕S12(−4)⊕S2(−3) t

S6(−3)⊕S3(−2) S K[∆(P8
19)] 0

P 8
20 0 S(−8) S3(−6)⊕S6(−5) S2(−5)⊕S12(−4)⊕S2(−3) t

S6(−3)⊕S3(−2) S K[∆(P8
20)] 0
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P 8
21 0 S(−8) S3(−6)⊕S6(−5) S2(−5)⊕S12(−4)⊕S2(−3) t

S6(−3)⊕S3(−2) S K[∆(P8
21)] 0

P 8
22 0 S(−8) S3(−6)⊕S7(−5)⊕S(−4) S3(−5)⊕S14(−4)⊕S3(−3) t

S(−4)⊕S7(−3)⊕S3(−2) S K[∆(P8
22)] 0

P 8
23 0 S(−8) S2(−6)⊕S9(−5) S(−5)⊕S18(−4)⊕S(−3) t

S9(−3)⊕S2(−2) S K[∆(P8
23)] 0

P 8
24 0 S(−8) S2(−6)⊕S9(−5) S(−5)⊕S18(−4)⊕S(−3) t

S9(−3)⊕S2(−2) S K[∆(P8
24)] 0

P 8
25 0 S(−8) S2(−6)⊕S9(−5) S(−5)⊕S18(−4)⊕S(−3) t

S9(−3)⊕S2(−2) S K[∆(P8
25)] 0

P 8
26 0 S(−8) S3(−6)⊕S4(−5) S12(−4) S4(−3)⊕S3(−2) S K[∆(P8

26)] 0

P 8
27 0 S(−8) S2(−6)⊕S8(−5) S18(−4) S8(−3)⊕S2(−2) S K[∆(P8

27)] 0

P 8
28 0 S(−8) S2(−6)⊕S8(−5) S18(−4) S8(−3)⊕S2(−2) S K[∆(P8

28)] 0

P 8
29 0 S(−8) S2(−6)⊕S8(−5) S18(−4) S8(−3)⊕S2(−2) S K[∆(P8

29)] 0

P 8
30 0 S(−8) S(−6)⊕S12(−5) S24(−4) S12(−3)⊕S(−2) S K[∆(P8

30)] 0

P 8
31 0 S(−8) S(−6)⊕S12(−5) S24(−4) S12(−3)⊕S(−2) S K[∆(P8

31)] 0

P 8
32 0 S(−8) S(−6)⊕S12(−5) S24(−4) S12(−3)⊕S(−2) S K[∆(P8

32)] 0

P 8
33 0 S(−8) S(−6)⊕S12(−5) S24(−4) S12(−3)⊕S(−2) S K[∆(P8

33)] 0

P 8
34 0 S(−8) S4(−6) S6(−4) S4(−2) S K[∆(P8

34)] 0

P 8
35 0 S(−8) S16(−5) S30(−4) S16(−3) S K[∆(P8

35)] 0

P 8
36 0 S(−8) S16(−5) S30(−4) S16(−3) S K[∆(P8

36)] 0

P 8
37 0 S(−8) S16(−5) S30(−4) S16(−3) S K[∆(P8

37)] 0

We observe that if the minimal graded free resolution of the Stanley-Reisner ring associ-
ated to a simplicial 4-polytopes P 8 with 8 vertices has the form

0 S S6 S10 S6 S K[∆(P 8)] 0,

then the Gale diagram of the polytope P 8 is the same as the Gale diagram of the polytope
D2, but there is a vertex of the Gale diagram of P 8, which has two multiplicities.

If the minimal graded free resolution has the form

0 S S7 S12 S7 S K[∆(P 8)] 0,

then the Gale diagram of the polytope P 8 is the same as the Gale diagram of the polytope
D5, but there is a vertex of the Gale diagram of P 8, which has two multiplicities.

If the minimal graded free resolution has the form

0 S S9 S16 S9 S K[∆(P 8)] 0,

then the Gale diagram of the polytope P 8 is the same as the Gale diagram of the poly-
tope D1 or D3 or D4, but there is a vertex of the Gale diagram of P 8, which has two
multiplicities.





CHAPTER

FOUR

GORENSTEIN IDEALS OF CODIMENSION 4 WITH AN EVEN
NUMBER OF GENERATORS

Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}, the boundary com-
plex ∆(P ) and 0 ∈ int(P ). We apply a radial projection of P from the origin 0 onto the
unit sphere Sd−1. The image of V under this projection is denoted by V ′ ∶= {v′1, . . . , v′n},
where v′i is the image of vi, for i = 1, . . . , n. We then use a stereographic projection at
each point v′i, for i = 1, . . . , n. For every v′i, we obtain a simplicial (d − 1)-polytope Pi,
which has at most n − 1 vertices. Let V ′′ ∶= {v′′i1 , . . . , v

′′
ik
} be the vertex set of Pi, where

v′′il is the image of v′il under the stereographic projection, see Proposition 3.2.1.4 and Re-
mark 3.2.1.5. For every such polytope Pi we define a corresponding Stanley-Reisner ring
K[∆(Pi)] = K[xi1 , . . . , xik]/I∆(Pi)

, where I∆(Pi)
is the Gorenstein Stanley-Reisner ideal

associated to Pi and ∆(Pi) is the boundary complex of Pi. The first aim in this chapter
is to determine the minimal sets of monomial generators of the corresponding Goren-
stein Stanley-Reisner ideals I∆(Pi)

, for i = 1, . . . , n. We give an algorithm, that allows
us to determine these sets if the minimal set of monomial generators of the Gorenstein
Stanley-Reisner ideal I∆(P ) is known. The second aim is to answer a question of Reid
(see [Rei13, Open problems 4.9.4], [Rei15, Section 2.6]), about Stanley-Reisner ideals of
codimension 4, whether every Gorenstein ideal of codimension 4 with 6 generators is a
complete intersection1of a Gorenstein ideal of codimension 3 with 5 generators, and an
extra polynom. The third aim is to give a counterexample to a conjecture of Reid (see
[Rei13, Open problems 4.9.4]), that every Gorenstein ideal of codimension 4 with an even
number of generators is a complete intersection of a Gorenstein ideal of codimension 3
and an extra polynom.

4.1 Construction of monomial generators of Gorenstein ide-
als associates to projections of polytopes

Let S = K[x1, . . . , xn] be the polynomial ring over an algebraically closed field K and
K[∆(P )] the corresponding Stanley-Reisner ring of ∆(P ). Assume that the minimal set

1See Definition 4.2.0.1.
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of monomial generators of the Gorenstein Stanley-Reisner ideal I∆(P ) is known. In this
section, we prove some propositions, which help us to give an algorithm to determine
the minimal sets of monomial generators of I∆(Pi)

, through the minimal set of monomial
generators of I∆(P ), for i = 1, . . . , n .

Definition 4.1.0.1. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}.
A subset {vi1 , . . . vik} ⊆ V is called primitive in P , if

1. For every facet F of P , conv({vi1 , . . . , vik}) ⊈ F .
2. There is a facet F of P , such that conv({vi1 , . . . , vik} ∖ {vj}) ⊆ F , for every j ∈

{i1, . . . , ik}

Theorem 4.1.0.2. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). Then the Stanley-Reisner ideal is given as

I∆(P ) = (xi1 . . . xir ∶ i1 < i2 < . . . < ir, {vi1 , . . . , vir} primitive in P ), where

K[∆(P )] = K[x1, . . . , xn]/I∆(P ).

Proof. See Remark 1.2.3.2.

Now let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn} and 0 ∈ int(P ).
We apply a radial projection from the origin onto the unit sphere Sd−1. The point v′i
is the image of vi under this projection, for i = 1, . . . , n. We then use a stereographic
projection at each point v′i, for i = 1, . . . , n. For every v′i, we obtain a simplicial (d − 1)-
polytope Pi, which has at most n − 1 vertices. Let V ′′ ∶= {v′′i1 , . . . , v

′′
im

} be the vertex
set of Pi, where v′′il is the image of v′il under the stereographic projection, see Chapter 2,
Subsection 3.2.1.

Proposition 4.1.0.3. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}.
Let Pi be the new polytope obtained by the stereographic projection at the projection point
v′i, where V ′′ = {v′′i1 , . . . , v

′′
im

} is its vertex set with d ≤ m ≤ (n − 1). If {v′′i1 , . . . , v
′′
ik
}

primitive in Pi, then either {vi, vi1 , . . . , vik} or {vi1 , . . . vik} is primitive in P .

Proof. Assume that {vi, vi1 , . . . , vik} is not primitive in P . That means that either the
first condition of Definition 4.1.0.1 is not fulfilled or the second one. We consider now
the first case, then there is a facet F of P such that conv({vi, vi1 , . . . , vik}) ⊆ F . By
Proposition 3.2.1.4 there is a facet Fi of Pi such that conv({v′′i1 , . . . , v

′′
ik
}) ⊆ Fi, a con-

tradiction to {v′′i1 , . . . v
′′
ik
} being primitive in Pi. Now suppose that the second condition

of Definition 4.1.0.1 is not true, that is, there is at least a j ∈ {i, i1, . . . , ik} such that
for all facets F of P , we have conv({vi, vi1 , . . . , vik} ∖ {vj}) ⊈ F . There are two cases.
In the case j ≠ i we have by Proposition 3.2.1.4 that conv({v′′i1 , . . . , v

′′
ik
} ∖ {v′′j }) ⊈ Fi,

for all facets Fi of Pi. This leads to a contradiction to the primitivity of {v′′i1 , . . . v
′′
ik
}

in Pi. Now assume that j = i and that is conv({vi1 , . . . , vik}) ⊈ F , for every facet F of
P . Since {v′′i1 , . . . v

′′
ik
} is primitive in Pi, for every j ∈ {i1, . . . , ik} there exists a facet Fi

of Pi such that conv({v′′i1 , . . . , v
′′
ik
} ∖ {v′′j }) ⊆ Fi. By Proposition 3.2.1.4 there exists a

facet F of P such that conv({{vi1 , . . . , vik} ∖ {vj}} ∪ {vi}) ⊆ F and this is equivalent to
conv({vi1 , . . . , vik} ∖ {vj}) ⊆ F .
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Proposition 4.1.0.4. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}.
Let Pi be the new polytope obtained by the stereographic projection at the projection point
v′i, where V

′′ = {v′′i1 , . . . , v
′′
im

} is its vertex set with d ≤ m ≤ (n − 1). If {vi1 , . . . vik} is
primitive in P with vi ∉ {vi1 , . . . vik} and {vi, vj1 , . . . vjs} is not primitive in P for all
subsets {vj1 , . . . vjs} ⊂ {vi1 , . . . vik}, then {v′′i1 , . . . v

′′
ik
} is primitive in Pi.

Proof. Assume that {v′′i1 , . . . v
′′
ik
} is not primitive in Pi. Either the first condition of

Definition 4.1.0.1 is not fulfilled or the second one. Assume that the first condition
of Definition 4.1.0.1 is not true. This means that there is a facet Fi of Pi such that
conv({v′′i1 , . . . , v

′′
ik
}) ⊆ Fi. It follows from Proposition 3.2.1.4 that conv({vi, vi1 , . . . , vik}) ⊆

F , where F a facet of P . This is equivalent to conv({vi1 , . . . , vik}) ⊆ F , which leads
to a contradiction to the primitivity of {vi1 , . . . vik} in P . If the second condition
of Definition 4.1.0.1 is not true, then there is at least one j ∈ {i1, . . . , ik} such that
conv({v′′i1 , . . . , v

′′
ik
} ∖ {v′′j }) ⊈ Fi, for every facet Fi of Pi. By Proposition 3.2.1.4 this is

equivalent to conv({{vi1 , . . . , vik} ∖ {vj}} ∪ {vi}) ⊈ F , for every facet F of P . But we
have that {vi, vj1 , . . . vjs} is not primitive in P for all subsets {vj1 , . . . vjs} ⊂ {vi1 , . . . vik},
which means that {{vi1 , . . . , vik} ∖ {vj}} ∪ {vi} is not primitive in P . Hence there is at
least one h ∈ {i, i1, . . . , ik}∖{j} such that conv({({vi1 , . . . , vik}∖{vj})∪{vi}}∖{vh}) ⊈ F ,
for every facet F of P . We have two cases. In the case h = i we obtain a contradiction to
{vi1 , . . . vik} being primitive in P . In the case h ≠ i we have conv({vi} ∪ {vi1 , . . . , vik} ∖
{vj , vh}) ⊈ F , for every facet F of P . Recursively we obtain conv({vi, vis}) ⊈ F , for every
facet F of P . By assumption {vi, vis} is not primitive in P . Then there is an l ∈ {i, is}
such that either conv({vi}) ⊈ F or conv({vis}) ⊈ F , a contradiction, since the vertices
are faces.

Proposition 4.1.0.5. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}.
Let Pi be the new polytope obtained by the stereographic projection at the projection point
v′i, where V

′′ = {v′′i1 , . . . , v
′′
im

} is its vertex set with d ≤ m ≤ (n − 1). If {vi1 , . . . vik} is
primitive in P with vi ∉ {vi1 , . . . vik} and there exists at least one subset {vi, vj1 , . . . vjs}
of V , which is primitive in P for a subset {vj1 , . . . vjs} ⊂ {vi1 , . . . vik}, then {v′′i1 , . . . v

′′
ik
}

is not primitive in Pi.

Proof. Since there exists at least one subset {vi, vj1 , . . . vjs} of V , which is primitive in
P for a subset {vj1 , . . . vjs} ⊂ {vi1 , . . . vik}, then we have conv({vi, vj1 , . . . , vjk}) ⊈ F , for
every facet F in P . It follows by Proposition 3.2.1.4, that conv({v′′j1 , . . . , v

′′
jk
}) ⊈ Fi, for

every facet Fi in Pi. Hence {v′′i1 , . . . v
′′
ik
} is not primitive in Pi.

Proposition 4.1.0.6. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}.
Let Pi be the new polytope obtained by the stereographic projection at the projection point
v′i, where V

′′ = {v′′i1 , . . . , v
′′
im

} is its vertex set with d ≤ m ≤ (n − 1). If {vi1 , . . . vik} is
primitive in P with vi ∈ {vi1 , . . . vik} and k ≥ 3, then {v′′i1 , . . . v

′′
ik
} ∖ {v′′i } is primitive in

Pi.

Proof. Since {vi1 , . . . vik} is primitive in P , conv({vi1 , . . . , vik}) ⊈ F , for every facet F in
P . By Proposition 3.2.1.4 we have conv({v′′i1 , . . . , v

′′
ik
} ∖ {v′′i }) ⊈ Fi, for every Fi in Pi,
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because vi ∈ {vi1 , . . . vik}. Moreover there is a facet F of P for every j ∈ {i1, . . . , ik} such
that conv({vi1 , . . . , vik} ∖ {vj}) ⊆ F . It follows from Proposition 3.2.1.4 that for every
j ∈ {i1, . . . , ik}∖{i}, there is a facet Fi of Pi such that conv({v′′i1 , . . . , v

′′
ik
}∖{v′′i , v′′j }) ⊆ Fi.

So {v′′i1 , . . . v
′′
ik
} ∖ {v′′i } is primitive in Pi.

Definition 4.1.0.7. Let S = K[x1, . . . , xn] be a polynomial ring and f ∈ S a monomial.
We define T (f) ∶= {i ∈ {1, . . . , n} ∶ xi∣f}.
Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn} and the bound-
ary complex ∆(P ). Let {f1, . . . , fk} be the minimal set of monomial generators of
I∆(P ). Set I∆(P ) ∶= (f1, . . . , fk). Let Pi be the new polytope, which is obtained by
stereographic projection at the projection point v′i with ∆(Pi) its boundary complex.
For every such polytope Pi we define a corresponding Stanley-Reisner ring K[∆(Pi)] =
K[xi1 , . . . , xik]/I∆(Pi)

, where I∆(Pi)
is the Gorenstein Stanley-Reisner ideal associated

to Pi. Now we can introduce an algorithm to compute the minimal sets of monomial
generators of the Gorenstein Stanley-Reisner ideals I∆(Pi)

for i = 1, . . . , n, if the minimal
set of monomial generators of I∆(P ) is known.

Algorithm 1: Compute of minimal set of monomial generators of I∆(Pi)
.

Input : T (f1), . . . , T (fk)} and i (The stereographic projection is at v′i)
Output: Minimal set of monomial generators of I∆(Pi)

j ← 1;
N ′ ← ∅;
M ← {∅};
for j ← 1 to k do

if i ∈ T (fj) then
T (f) ← T (fj) ∖ {i};
N ′ ← {T (fl) ∈ N ∶ T (f) ⊈ T (fl)};
M ←M ∪ {T (f)};
if ∣T (f)∣ ≥ 2 then

N ← N ′ ∪ T (fj);
else

N ← N ′;

else
M ′ ← ρ(T (fj)); (where ρ(T (fj)) is the power set of T (fj))
if M ′ ∩M = ∅ then

N ← N ′ ∪ T (fj);
else

N ← N ′;

Proof of the correctness of the algorithm. That follows immediately from Propositions
4.1.0.3, 4.1.0.4, 4.1.0.5 and 4.1.0.6.
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Corollary 4.1.0.8. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vn}
and the boundary complex ∆(P ). Let Pi be the new polytope, which is obtained by stere-
ographic projection at the projection point v′i with ∆(Pi) its boundary complex. Then the
minimal number of monomial generators of I∆(Pi)

is smaller than or equal to the minimal
number of monomial generators of I∆(P ).

Proof. This follows from Algorithm 1.

Example 4.1.0.9. Let P be a simplicial 4-polytope with 8 vertices V = {v1, . . . , v8}
and the boundary complex ∆(P ). Let K[∆(P )] = K[x1, . . . , x8]/I∆(P ) with I∆(P ) ∶=
(x7x8, x6x8, x3x8, x5x7, x4x7, x4x6, x1x2x3x6, x1x2x4x5, x1x2x3x5). For i = 8 we have
by algorithm 1 that I∆(P8) = (x1x2x4x5). For i = 1 we have I∆(P1) = (x7x8, x6x8, x3x8,
x5x7, x4x7, x4x6, x2x3x6, x2x4x5, x2x3x5).

4.2 Gorenstein ideals of codimension 4 with 6 generators

Every Gorenstein ideal of codimension 4 with 4 generators is a complete intersection ideal.
That means it is a complete intersection of a Gorenstein ideal of codimension 3 with 3
generators and an extra polynom. We show that this is not true for every Gorenstein ideal
of codimension 4 with an even number of monomial generators. We answer in this section
a question of Reid (see [Rei13, Open problems 4.9.4], [Rei15, Section 2.6]), for Gorenstein
Stanley-Reisner ideals of codimension 4: Every Gorenstein ideal of codimension 4 with
6 monomial generators is a complete intersection of a Gorenstein ideal of codimension 3
with 5 generators and an extra polynom.

Definition 4.2.0.1. Let S = K[x1, . . . , xn] be a polynomial ring, f ∈ S a polynom and
let I and I ′ be ideals of S. We say that I is a complete intersection of I ′ and f , if
I = I ′ + (f) and f modulo I ′ is a non-zero divisor in the residue class ring S/I ′.

Theorem 4.2.0.2. Let P be a simplicial d-polytope with d + 4 vertices, ∆(P ) be the
boundary complex of P and K[∆(P )] = K[x1, . . . , xd+4]/I∆(P ) the associated Stanley-
Reisner ring to P . If the Gorenstein Stanley-Reisner ideal I∆(P ) is minimally generated by
6 monomials, such like f1, . . . , f6, then there exists i ∈ {1, . . . ,6} such that T (fi)∩T (fj) =
∅ for all i ≠ j and I ′ = (fj ∶ j ∈ {1, . . .6} ∖ {i}) is a Gorenstein ideal of codimension 3.

Proof. The proof is by induction on d. The base case is for d = 3, because there is no
simplicial 2-polytope with 6 vertices, such that the Gorenstein Stanley-Reisner ideal of
its boundary complex is generated by 6 monomials. In Chapter 3, Subsection 3.2.2, we
have seen that there is a simplicial 3-polytope with 7-vertices P , such that the Gorenstein
Stanley-Reisner ideal of its boundary complex is generated by 6 monomials. The Gale
diagram of P has the following form
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v̂1

v̂2

v̂4

v̂3

v̂6v̂7

v̂5

and I∆(P ) = (x1x2, x2x3, x3x4, x4x5, x5x1, x6x7).

We observe that I ′ = (x1x2, x2x3, x3x4, x4x5, x5x1) is a Gorenstein ideal of codimension
3, see Example 2.2.3.3. For fj ∈ {x1x2, x2x3, x3x4, x4x5, x5x1} we have T (x6x7) ∩
T (fj) = ∅. Now let d = 4. There is a simplicial 4-polytope with 8-vertices P 8

13, see
[GS67], such that I∆(P 8

13)
is generated by 6 monomials, see Chapter 3, Subsection 3.2.2.

The Gale diagram of P 8
13 is

v̂1

v̂2

v̂4

v̂3

v̂6v̂7v̂8

v̂5

and I∆(P 8
13)

= (x1x2, x2x3, x3x4, x4x5, x5x1, x6x7x8).

We observe that I ′ = (x1x2, x2x3, x3x4, x4x5, x5x1) is a Gorenstein ideal of codimension
3, see Example 2.2.3.3, T (x6x7x8) ∩ T (fj) = ∅ for fj ∈ {x1x2, x2x3, x3x4, x4x5, x5x1}.

Induction hypothesis Let P ′ be a simplicial k-polytope with k+4 vertices and its boundary
complex ∆(P ′). We assume that the claim is true for such 4 < k < d. If the corresponding
Gorenstein Stanley-Reisner ideal I∆(P ′) = (f ′1, . . . , f ′6), then it exists i ∈ {1, . . . ,6} such
that T (f ′i) ∩T (f ′j) = ∅ for all i ≠ j and I ′ = (f ′j ∶ j ∈ {1, . . .6}∖ {i}) is a Gorenstein ideal
of codimension 3.

Induction step: Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vd+4}
and the boundary complex ∆(P ) with 0 ∈ int(P ). Let I∆(P ) be the Gorenstein Stanley-
Reisner ideal of ∆(P ) with I∆(P ) = (f1, . . . , f6). Now we apply a radial projection of
P from the origin onto the unit sphere Sd−1. The image of V under this projection is
denoted by V ′ ∶= {v′1, . . . , v′d+4}, where v

′
i is the image of vi, for i = 1, . . . , d + 4. Then

we use the stereographic projection at each point v′i, for i = 1, . . . , d + 4. The resulting
polytopes are denoted by Pi according to the projection point v′i. These (d−1)-polytopes
Pi are simplicial, see Proposition 3.2.1.4 and Remark 3.2.1.5, and each of them has at
most d + 3 vertices. We distinguish between four cases depending on the number of the
vertices of Pi.

In the first case, if ∣V ′′∣ = d + 3 = (d − 1) + 4, where V ′′ is the vertex set of Pi. Since the
stereographic projection at each point v′i, thats mean the image of vi under the function
composition of the radial projection and stereographic projection is not vertex of Pi. By
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Theorem 1.2.3.3 and Theorem 1.1.4.21 we have codim(I∆(Pi)
) = 4. Hence the polytope

Pi is a simplicial k-polytope with k + 4 vertices. Since I∆(P ) is minimal generated by 6
elements, the minimal number of generators of I∆(Pi)

is smaller than or equal to 6, by
Corollary 4.1.0.8. We distinguish the following cases:

1. The minimal number of monomial generators of I∆(Pi)
is smaller than 4. This case

is excluded, because codim(I∆(Pi)
) = 4.

2. The minimal number of monomial generators of I∆(Pi)
is equal to 4. Then I∆(Pi)

is a complete intersection ideal. Let {g1, . . . , g4} be the minimal set of monomial
generators of I∆Pi

. Since a complete intersection ideal is generated by a regular
sequence, there is a j ∈ {1, . . . ,4} and j ≠ il such that T (gj) ∩ T (gil) = ∅ for
il ∈ {1, . . . ,4} and l ∈ {1, . . . ,3}. Let pik and p′ik be two monomials which divide gik
for ik = 1, 2, 3, 4. By Propositions 4.1.0.3, 4.1.0.4, 4.1.0.5 and 4.1.0.6 we have only
the following possibilities

I∆(P ) = (xigj , gi1 , gi2 , gi3 , gjpi2 , pi3gj), (4.1)

I∆(P ) = (xigj , gi1 , xigi2 , gi3 , gjpi2 , pi3gj), (4.2)

I∆(P ) = (xigj , gi1 , xigi2 , xigi3 , gjpi2 , pi3gj), (4.3)

I∆(P ) = (xigj , xigi1 , xigi2 , xigi3 , gjpi2 , pi3gj), (4.4)

I∆(P ) = (gj , gi1 , xigi2 , xigi3 , gjpi1 , p
′
i1gi3), (4.5)

I∆(P ) = (xigj , xigi1 , xigi2 , xigi3 , gjpi1 , p
′
i1gi3), (4.6)

I∆(P ) = (xigj , gi1 , xigi2 , xigi3 , gjpi1 , p
′
i1gi3). (4.7)

If we apply a radial projection of P with the vertex set V from the origin onto the
unit sphere Sd−1, and use the stereographic projection at an appropriate projection
point of V ′, where V ′ is the image of V under the radial projection, see Remark
3.2.1.5, then we obtain an ideal of codimension 4 with 6 generators, and we observe
that it does not satisfy the induction hypothesis.

3. The minimal number of monomial generators of I∆(Pi)
is equal to 5. In this case

the ideal is not Gorenstein, see [Kun74].
4. The minimal number of monomial generators of I∆(Pi)

is equal to 6. Let {g1, . . . , g6}
be the minimal set of monomial generators of I∆Pi

. By induction hypothesis there
exists j ∈ {1, . . . ,6} with j ≠ il such that T (gj) ∩ T (gil) = ∅ for il ∈ {1, . . . ,6} and
l ∈ {1, . . . ,5}, and I ′ ∶= (gi1 , gi2 , gi3 , gi4 , gi5) is a Gorenstein ideal of codimension 3.
That means that all gil for il ≠ j have the same degree, see Buchsbaum-Eisenbud
Theorem 2.1.2.4. Now we can determine the minimal set of monomial generators of
I∆(P ) by Propositions 4.1.0.3, 4.1.0.4, 4.1.0.5 and 4.1.0.6. There are the following
possibilities

I∆(P ) = (xigj , gi1 , gi2 , gi3 , gi4 , gi5), (4.8)

I∆(P ) = (xigj , xigi1 , gi2 , gi3 , gi4 , gi5), (4.9)

I∆(P ) = (xigj , xigi1 , xigi2 , gi3 , gi4 , gi5), (4.10)

I∆(P ) = (xigj , xigi1 , xigi2 , xigi3 , gi4 , gi5), (4.11)
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I∆(P ) = (xigj , xigi1 , xigi2 , xigi3 , xigi4 , gi5), (4.12)

I∆(P ) = (xigj , xigi1 , xigi2 , xigi3 , xigi4 , xigi5), (4.13)

I∆(P ) = (gj , xigi1 , gi2 , gi3 , gi4 , gi5), (4.14)

I∆(P ) = (gj , xigi1 , xigi2 , gi3 , gi4 , gi5), (4.15)

I∆(P ) = (gj , xigi1 , xigi2 , xigi3 , gi4 , gi5), (4.16)

I∆(P ) = (gj , xigi1 , xigi2 , xigi3 , xigi4 , gi5), (4.17)

I∆(P ) = (gj , xigi1 , xigi2 , xigi3 , xigi4 , xigi5). (4.18)

All are excluded except the first one (4.8). Let us for example check the equation
(4.9). Assume ∣T (gi)∣ = 2. Since I ′ ∶= (gi1 , gi2 , gi3 , gi4 , gi5) is a Gorenstein ideal
of codimension 3, we observe that the polytope P is a simplicial 4-polytope with
8 vertices, see Example 2.2.3.3. If we compute the monomial generators of the
Gorenstein Stanley-Reisner ideal, then they are different from the generators we
computed in Chapter 3, Subsection 3.2.2, a contradiction. In the case ∣T (gi)∣ ≥ 3
we consider that gj ∶= xixh1 . . . xhk , then we apply at first a radial projection on
P with the vertex set V , after then a stereographic projection at v′hr , such that
xhr ∣gj , where v′hr is the image of vhr under the radial projection. Since T (gj) ∩
T (gil) = ∅ for j ≠ il, we obtain the following Gorenstein Stanley-Reisner ideal
I∆(Phr )

= (xixh1 . . . xhr−1 . . . xhr+1 . . . xhk , xigi1 , gi2 , gi3 , gi4 , gi5). We have that Phr
is a simplicial (d−1)-polytope with d+3 vertices, for which the induction hypothesis
does not apply.

In the second case, , if ∣V ′′∣ = d + 2 = (d − 1) + 3, where V ′′ is the vertex set of Pi.
Since the stereographic projection at each point v′i, thats mean the image of vi under the
function composition of the radial projection and stereographic projection is not vertex
of Pi. Consider that the image of vj under this function composition is also not vertex
of Pi. It follows from Theorem 1.2.3.3 and Theorem 1.1.4.21, that codim(I∆(Pi)

) = 3.
Hence the polytope Pi is a simplicial k-polytope with k + 3 vertices. Since I∆(P ) is
generated by 6 elements, the minimal number of generators of I∆(Pi)

is smaller than or
equal to 6, by Corollary 4.1.0.8. Moreover by the Buchsbaum Eisenbud Theorem 2.1.2.4,
the Gorenstein Stanley-Reisner ideal of the Stanley-Reisner ring of ∆(Pi) is minimally
generated by an odd number of monomials and all have the same degree. Hence the
number of generators is either 3 or 5.

1. The minimal number of monomial generators of I∆(Pi)
is equal to 3. Let {g1, g2, g3}

be the minimal set of monomial generators of I∆Pi
. Then I is a complete intersec-

tion ideal and T (g1) ∩ T (g2) ∩ T (g3) = ∅. We observe that {vi, vj} is primitive in
P . Let pi and p′i be two monomials which divide gi for i = 1, 2, 3. By Propositions
4.1.0.3, 4.1.0.4, 4.1.0.5 and 4.1.0.6 we have the following possibilities

I∆(P ) = (xixj , xig1, xig2, g3, xjp1, xjp3), (4.19)

I∆(P ) = (xixj , g1, g2, g3, xjp1, xjp3), (4.20)

I∆(P ) = (xixj , g1, xig2, g3, xjp1, xjp2), (4.21)
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I∆(P ) = (xixj , g1, xig2, g3, xjp1, xjp
′
1), (4.22)

I∆(P ) = (xixj , g1, g2, g3, xjp1, xjp
′
1), (4.23)

I∆(P ) = (xixj , xig1, xig2, x1g3, xjp1, xjp3). (4.24)

If ∣T (gi)∣ = 2 for i = 1, 2, 3, then P in this case is a simplicial 4-polytope with
8 vertices. If we compute the monomial generators of the Gorenstein Stanley-
Reisner ideal, then they are different from the generators we computed in chapter3,
Subection 3.2.2, a contradiction. Otherwise we apply a radial projection of P with
the vertex set V from the origin onto the unit sphere Sd−1, and use a stereographic
projection at an appropriate projection point of V ′, where the image of V under this
projection is denoted by V ′, see Remark 3.2.1.5. We obtain an ideal of codimension
4 with 6 generators, then it do not satisfy the induction hypothesis.

2. The minimal number of monomial generators of I∆(Pi)
is equal to 5. Let {g1, . . . , g5}

be the minimal set of monomial generators of I∆Pi
. By Example 2.2.3.3, we observe

that T (gk) ∩ T (gk+1) ≠ ∅ (if we all the generators arrange in a certain way), for
k ∈ {1, . . . ,5}. Moreover we observe that {vi, vj} is primitive in P . Now we can
determine the minimal set of monomial generators of I∆(P ) by Propositions 4.1.0.3,
4.1.0.4, 4.1.0.5 and 4.1.0.6. There are the following possibilities

I∆(P ) = (xixj , g1, g2, g3, g4, g5), (4.25)

I∆(P ) = (xixj , xig1, g2, g3, g4, g5), (4.26)

I∆(P ) = (xixj , xig1, xig2, g3, g4, g5), (4.27)

I∆(P ) = (xixj , xig1, xig2, xig3, g4, g5), (4.28)

I∆(P ) = (xixj , xig1, xig2, xig3, xig4, g5), (4.29)

I∆(P ) = (xixj , xig1, xig2, xig3, xig4, xig5). (4.30)

All are excluded except the first one (4.25). Assume that ∣T (gk)∣ ≥ 3. Since
T (gk) ∩ T (gk+1) ≠ ∅ for k ∈ {1, . . . ,5}, we have s ∈ T (g4) ∩ T (g5). Now we apply a
radial projection of P with the vertex set V from the origin onto the unit sphere
Sd−1. Then we use a stereographic projection at v′s, where v′s is the image of
vs. We obtain a contradiction to the induction hypothesis. If ∣T (gk)∣ = 2, then
P is a simplicial 3-polytope with 7 vertices. We have only one type of simplicial
3-polytopes with 7 vertices such that the Gorenstein Stanley-Reisner ideal of its
boundary complex is generated by 6 vertices. It is a complete intersection of a
Gorenstein ideal of codimension 3 and an extra polynom.

In the third case, if ∣V ′′∣ = d + 1 = (d − 1) + 2, where V ′′ is the vertex set of Pi. Since the
stereographic projection at each point v′i, thats mean the image of vi under the function
composition of the radial projection and stereographic projection is not vertex of Pi.
Consider that the image of vj and the image of vl under this function composition are
also not vertex of Pi. It follows codim(I∆(Pi)

) = 2, by Theorem 1.2.3.3 and Theorem
1.1.4.21. Hence the polytope Pi is a simplicial k-polytope with k+2 vertices. Since I∆(P )

is minimally generated by 6 elements, then the minimal number of generators of I∆(Pi)
is
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smaller than or equal to 6, by Corollary 4.1.0.8. In this case the Gale diagram of Pi has
dimension 1 and the Gorenstein Stanley-Reisner ideal of Stanley-Reisner ring of ∆(Pi)
is I∆Pi

= (g1, g2) with T (g1)∩T (g2) = ∅, see Chapter 2, Subsections 2.2.2 and 2.2.3. We
observe that {v1, v2} and {v1, v3} are primitive in P . But {v1, v2, v3} is not primitive in
P . Let pi and p′i be two monomials which divide gi for i = 1,2. Now we can determine the
minimal set of monomial generators of I∆(P ) using Propositions 4.1.0.3, 4.1.0.4, 4.1.0.5
and 4.1.0.6. There are the following possibilities

I∆(P ) = (xixj , xixl, g1, g2, xjp
′
1, xlp1), for {v2, v3} not primitive in P, (4.31)

I∆(P ) = (xixj , xixl, xjxl, g1, g2, p1p2), for {v2, v3} primitive in P, (4.32)

I∆(P ) = (xixj , xixl, xjxl, xig1, g2, p1p2), for {v2, v3} primitive in P, (4.33)

I∆(P ) = (xixj , xixl, xjxl, xig1, xig2, p1p2), for {v2, v3} primitive in P, (4.34)

I∆(P ) = (xixj , xixl, g1, g2, xjp1, xjp2), for {v2, v3} not primitive in P, (4.35)

I∆(P ) = (xixj , xixl, xig1, g2, xjp2, xjp2), for {v2, v3} not primitive in P (4.36)

I∆(P ) = (xixj , xixl, g1, g2, xjp1, xjp2), for {v2, v3} not primitive in P, (4.37)

I∆(P ) = (xixj , xixl, xig1, g2, xjp1, xjp2), for {v2, v3} not primitive in P. (4.38)

All are excluded except the first one (4.31). The reason is same as above.

In the fourth case, if ∣V ′′∣ = d = (d − 1) + 1, where V ′′ is the vertex set of Pi. Since the
stereographic projection at each point v′i, thats mean the image of vi under the function
composition of the radial projection and stereographic projection is not vertex of Pi.
Consider that the images of vj , vk and vl under this function composition are also not
vertex of Pi. It follows from Theorem 1.2.3.3 and Theorem 1.1.4.21 that codim(I∆(Pi)

) =
1. Hence this polytope Pi is a simplicial k-polytope with k + 1 vertices. Since I∆(P ) is
generated by 6 elements, the minimal number of generators of I∆(Pi)

is smaller than or
equal to 6, by Corollary 4.1.0.8. In this case the Gale diagram of Pi has dimension 0 and
the Gorenstein Stanley-Reisner ideal of the Stanley-Reisner ring of ∆(Pi) is I∆Pi

= (g1),
as explained in Chapter 2, Subsections 2.2.2 and 2.2.3. Let g1 ∶= xi5 . . . xid+4

and let p1

and p′1 be two monomials which divide g1. We observe that {vi, vj}, {vi, vk}, {vi, vl}
are primitive in P . There are the following possibilities for the minimal set of monomial
generators of I∆(P ) By Propositions 4.1.0.3, 4.1.0.4, 4.1.0.5 and 4.1.0.6.

I∆(P ) = (xixj , xixk, xixl, xjxk, xjxl, g1), for {vj , vk}, {vj , vl} primitive in P, (4.39)

I∆(P ) = (xixj , xixk, xixl, xjxk, xjxl, xig1), for {vj , vk}, {vj , vl} primitive in P, (4.40)

I∆(P ) = (xixj , xixk, xixl, xjxk, g1, xjp1), for {vj , vk} primitive in P, (4.41)

I∆(P ) = (xixj , xixk, xixl, xjxk, xig1, xjp1), for {vj , vk} primitive in P, (4.42)

I∆(P ) = (xixj , xixk, xixl, xig1, xjp1, xkp
′
1). (4.43)

In the equation (4.43), {vj , vk}, {vj , vl}, {vk, vl}are not primitive inP .

All are excluded, because if we apply a radial projection of P with the vertex set V from
the origin onto the unit sphere Sd−1 and use a stereographic projection at an appropriate
projection point, we obtain a contradiction to the induction hypothesis.
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4.3 Counterexample

In this section, we show that not all Gorenstein ideals of codimension 4 with even number
of monomial generators are a complete intersection of a Gorenstein ideal of codimension
3 and a polynom. We give a counterexample for that.
Simplicial 4-polytopes with 8 vertices have been classified by Grünbaum and Sreedharan
in [GS67]. There is for example P 8

35. The Gorenstein Stanley-Reisner ideal associated to
P 8

35 is generated by an even number of monomials, but they are not complete intersection
of a Gorenstein ideal of codimension 3 and a polynom. In Chapter 3, Subection 3.2.2 we
have determined the minimal set of monomial generators of this ideal.





CHAPTER

FIVE

CHARACTERIZATION OF MONOMIAL GENERATORS OF
GORENSTEIN IDEALS OF CODIMENION 4

Let P be a simplicial d-polytope with d+ 4 vertices and ∆(P ) be the boundary complex
of P . Let K be an algebraically closed field and K[∆(P )] = K[x1, . . . , xd+4]/I∆(P ) the
Stanley-Reisner ring of ∆(P ). In Chapter 3, Subection 3.2.2, we explained for cases
d = 3, 4 how to determine the minimal set of monomial generators of the associated
Gorenstein Stanley-Reisner ideals I∆(P ) using Gale diagrams. Gale diagrams of simplicial
d-polytopes with d + 4 vertices are subsets of R3, but affine Gale diagrams are of one
dimension lower that the well-known Gale diagrams. Therefore simplicial d-polytopes
with d + 4 vertices can be represented by planar point configurations. In this chapter,
we sketch the associated affine Gale diagrams of all combinatorial types of simplicial
d-polytopes with d + 4 vertices, for d = 3, 4. Then we characterize the minimal set of
monomial generators of the Gorenstein Stanley-Reisner ideal I∆(P ) using affine Gale
diagrams, for an arbitrary d. Our primary references in this chapter are [Zie95, Section
6.4], [Stu88], [Dev11, Section 3] and [Gal].

5.1 Affine Gale diagrams

Ziegler gave in [Zie95, Section 6.4] a formal definition of an affine Gale diagram of a
d-polytope with n vertices. Let P be a d-polytope with the vertex set V = {v1, . . . , vn}.
We showed in Chapter 2, Subsection 2.2.1, that the Gale diagram B̂ = (v̂1, . . . , v̂n) of
P is contained in the unit (n − d − 2)-sphere. Now we choose an arbitrary hyperplane
e, so that no vector of B̂ pokes out through the hyperplane e in Rn−d−2. Either e or
another hyperplane, which is parallel to e, divides the sphere into two hemispheres. If we
look at this sphere from outside, we only see one hemisphere, which we call the northern
hemisphere. Then we project the configuration B̂ from the origin to the hyperplane e.
The image of v̂i under this project is denoted by v∗i . If v∗i is belong to the southern
hemisphere, then we mark it with a black point and denote it by i. If v∗i is belong to the
northern hemisphere, we mark it with a white point and denote it by ī. So we obtain a

83
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configuration B∗ = {v∗1 , . . . , v∗n} of black and white points in Rn−d−2, see Figure 5.1.

Rn−d−1

e

v̂1v̂2

v̂4

v̂5v̂3

53 4 2̄1̄

Figure 5.1: Affine Gale diagram.

Definition 5.1.0.1. Let P be a d-polytope with the vertex set V = {v1, . . . , vn}. A
configuration B∗ = {v∗1 , . . . , v∗n} of black and white points in affine space Rn−d−2 is called
an affine Gale diagram of P .

Remark 5.1.0.2. Let P be a d-polytope with the vertex set V = {v1, . . . , vn}, the
configuration B̂ = {v̂1, . . . , v̂n} be the Gale diagram of P and B∗ = {v∗1 , . . . , v∗n} be an
affine Gale diagram of P . There is a canonical bijection between B̂ and B∗, where the
point vi corresponds to v∗i . Therefore there is also a canonical bijection between the
points vi of V and the points v∗i of B∗.

Remark 5.1.0.3. An affine Gale diagram B∗ of the polytope P is not determined by the
combinatorics of the vertex set of P , since the choice of a hyperplane e is involved. On the
other hand, the combinatorics of an affine Gale diagram determines the combinatorics
of a Gale diagram, and therefore it determines the combinatorics of the original set of
points, see [Dev11].

Definition 5.1.0.4. We say that two affine Gale diagrams are combinatorially equivalent
if there is a bijection between the two sets of points preserving the colours and the
orientations of Gale transforms vectors. That means, interchanging black and white
points does not change the combinatorial type of the polytope.

In [Zie95], Ziegler has characterized affine Gale diagrams of polytopes by the following
corollary.

Corollary 5.1.0.5. [Zie95, Corollary 6.20] A point configuration A = {a1, . . . , an} ⊂
Rn−d−2, each of them declared to be either black or white, that affinely spans Rn−d−2,
is the affine Gale diagram of a d-polytope with n vertices if and only if the following
condition is satisfied: for every oriented hyperplane H in Rn−d−2 spanned by some points
of A, the number of black points on the positive side of H plus the number of white points
on the negative side of H is at least two.
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In this chapter, we discuss only simplicial d-polytopes. From Chapter 2, Subsection
2.2.2, we know that Gale diagrams of simplicial d-polytopes with d + 1 vertices are in
the 0-dimensional space, so all vectors are equal to the 0-vector trivially. Gale diagrams
of simplicial d-polytopes with d + 2 vertices are subsets of the 1-dimensional space, so
affine Gale diagrams are subsets of the 0-dimensional space and may be represented by
a “cloud” of black and white points, see Figure 5.2.

Example 5.1.0.6. Let P be a simplicial 3-polytope with 5 vertices, which has been
already considered in Example 2.2.2.6.

Figure 5.2: Affine Gale diagram of the polytope P .

For a simplicial 3-polytope with d + 3 vertices, we know that Gale diagrams are in a
2-dimensional space, so affine Gale diagrams are in 1-dimensional space, i.e., a line,
see Figure 5.3. The special case of simplicial polytopes has been treated in Grünbaum
[Grü03, Section 6.2].

Example 5.1.0.7. Let P be a simplicial 3-polytope with 6 vertices, which has already
considered in Example 2.2.3.4, where B̂ = {v̂1 = (1,0), v̂2 = ( −1√

2
, −1√

2
), v̂3 = ( −1√

2
, −1√

2
), v̂4 =

(1,0), v̂5 = (0,1), v̂6 = (0,1)}. Now we choose an arbitrary line e, see Figure 5.3, then
we project the configuration B̂ from the origin to the hyperplane e. Let us declare
the left hemisphere to be the southern hemisphere. The Gale vector v̂2v̂3 intersect this
hemisphere. We mark the images of point v̂2v̂3, under this projection with black dot and
label them 23. We mark the images of points v̂1v̂4 and v̂5v̂6 under this projection with
black dots and label them 1̄4̄ and 5̄6̄, respectively. The affine Gale diagram of P is the
configuration B∗ = {v∗1 = 1̄4̄, v∗2 = 23, v∗3 = 5̄6̄}.

v̂2v̂3

v̂1v̂4

v̂5v̂6

e

1̄4̄ 5̄6̄23

Figure 5.3: Affine Gale diagram of the polytope P .
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5.2 Affine Gale diagrams of simplicial d-polytopes with d+4
vertices, for d = 3, 4

Now we are interested in simplicial d-polytopes with d+4 vertices. In this case affine Gale
diagrams are subsets of R2. As a starting point, we begin with simplicial 3 polytopes
with 7 vertices. In Chapter 3, Subsection 3.2.2, we gave a method to compute the Gale
diagram of these polytopes. The Schlegel diagrams of these polytopes are presented
in Remark 3.2.2.5. Since these polytopes are in R3, we know the coordinates of their
vertices, hence we can easily compute their Gale diagrams.

v̂1v̂2

v̂3 v̂4

v̂5

v̂6

v̂7

Gale diagram of D1.

v̂4

v̂7v̂3

v̂1

v̂5

v̂6

v̂2

Gale diagram of D3.

v̂1

v̂2

v̂3

v̂4

v̂5

v̂6

v̂7

Gale diagram of D4.

v̂1

v̂2

v̂3

v̂4

v̂5

v̂6

v̂7

Gale diagram of D5.

Now we choose an arbitrary plane e and project the configuration of Gale vectors of the
vertex sets of D1, D2, D3, D4 and D5, respectively, from the origin to the hyperplane e.
Then we can compute the white and black points. We obtain the following affine Gale
diagrams.

Polytope Affine Gale diagram

D1

5̄

1̄2̄

7̄

6

3

4
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Polytope Affine Gale diagram

D2
4

67

5

2

3̄

1̄

D3

6̄

4̄

7̄

1̄

5

3

2

D4

5̄

4̄

6̄

2̄

31

7

D5 1̄

2̄

6̄

5̄

3

4

7

Now we focus on simplicial 4-polytopes with 8 vertices, which have been classified by
Grünbaum and Sreedharan in [GS67]. In this paper, they only give the facets of these
polytopes. Therefore it is very difficult to compute Gale diagrams of some of them, as we
don’t have the coordinates of the vertices of these polytopes. To determine affine Gale
diagrams of these polytopes we need the following criterion.

Notation 5.2.0.1. Let P be a d-polytope with the vertex set V = {v1, . . . , vn}. Given a
subset M ⊂ V , we denote the subset of its corresponding points of B∗ by M∗.

Ziegler gives in [Zie95] a corollary that can be used to read off the properties of a polytope
from its affine Gale diagram.

Corollary 5.2.0.2. [HRGZ97, Page 260] Let V be the vertex set of a simplicial d-polytope
P and B∗ an affine Gale diagram of P . A set M ⊂ V is the vertex set of a face of P if
and only if the set B∗ ∖M∗ satisfies the following condition: If we remove the points of
M∗ from the diagram, then the relative interiors of the sets

conv({A ∈B∗∖M∗ ∶ A is a black point}) and conv({A ∈B∗∖M∗ ∶ A is a white point})
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have nonempty intersection.

Proof. Let V = {v1, . . . , vn} and M = {vj ∶ j ∈ J ⊆ {1, . . . , n}}. Assume that F ∶=
conv({vj ∶ j ∈ J ⊆ {1, . . . , n}}) is a face of P . Then it follows from Theorem 2.2.1.9
that 0 ∈ relint(conv({v̂k ∶ k ∉ J})), because M ⊂ V . That means that there is a strictly
positive linear dependence ∑k∉J bkv̂k = 0 with bi > 0, see [Mar84, Theorem 3] and [Mar84,
Lemma 1]. Now if we turn to the affine Gale diagram and project all the Gale vectors
from the origin to an arbitrary hyperplane e, we obtain a configuration of black and white
points. The bicolored points {v∗k ∶ k ∉ J} are affine dependent, with positive coefficients
on the black points, and with negative coefficients on the white points, see definition
[Zie95, Definition 6.17]. Equivalently, the convex hull of all the black points not in our
set and the convex hull of all the white points not in the set, intersect in their relative
interiors, see [Zie95, Section 6.1 (a)].

Corollary 5.2.0.3. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vd+4}.
We can formulate Criterium 2.2.1.9 differently. A set M ⊂ V is the vertex set of a face of
P if and only if there are four points of the set B∗ ∖M∗, which have one of the following
forms

With this criterion, we can determine affine Gale diagrams of all combinatorial types
of simplicial 4-polytopes with 8 vertices. We take each polytope alone, then we choose
an arbitrary plane e and we take the following steps: we suggest, that images of some
points of the vertex set of a polytope are white points and the other black points, then
we use Corollary 5.2.0.3 and check the criterion. We can make that, since the affine Gale
diagram of the polytope does not need a specific plane. After that we can sketch the
affine Gale diagram and we obtain the following table.

Polytope Affine Gale diagram

P 8
1

1̄2̄

6̄

8̄

3̄

5

7

4



5.2. Affine Gale diagrams of simplicial d-polytopes with d + 4 vertices, for d = 3, 4 89

Polytope Affine Gale diagram

P 8
2

6̄

1̄2̄

5̄

4̄

38

7

P 8
3

5̄

1̄2̄3̄

7̄

6

8

4

P 8
4

2̄

4̄6̄

7̄

1̄

3

8

5

P 8
5

7̄

2̄

3̄

1̄

465

8

P 8
6

5̄

6̄ 2̄

1̄

8

3 4

7̄

P 8
7

1̄3̄

2̄

4̄

5̄

7

6

8

P 8
8

1̄

4̄ 3̄

2̄

6̄
7

8

5
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Polytope Affine Gale diagram

P 8
9

1̄2̄

3̄

4̄

6̄

75

8

P 8
10

5̄

1̄2̄

7̄

6

8

34

P 8
11

8̄

5̄ 3̄

1̄

4

2

6

7

P 8
12

6̄

4̄ 2̄

3̄

8

7

5

1̄

P 8
13

8

123

7

5

6̄

4̄

P 8
14

7̄

6̄ 4̄

5̄

1

3
2

8

P 8
15

4̄6̄

2̄3̄

7̄

8

5

1
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Polytope Affine Gale diagram

P 8
16

6̄

2̄3̄

7̄

5̄

4

8

1

P 8
17

23

45

6

7

8̄

1̄

P 8
18

3̄

6̄

8̄

4̄

7

5

12

P 8
19

5̄

1̄

6̄

7̄

28

34

P 8
20

8

5

6

2

7̄

3̄

1̄

4̄

P 8
21

6̄

1̄2̄

3̄4̄

5

8

7

P 8
22

5̄ 4̄

3̄

7̄

1

2

8

6
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Polytope Affine Gale diagram

P 8
23

8̄ 6̄

3̄

1̄

5

2
4

7

P 8
24

8

3

7

4̄

1̄

6̄

2̄

5

P 8
25

1 7

5

3

4̄

8̄

6̄

2̄

P 8
26

6̄

7̄

5̄

4̄

8

1

23

P 8
27

2̄

8̄ 5̄

1̄

3

4

7

6

P 8
28

6

3 8

1

5̄

7̄

4̄

2̄

P 8
29

1

2 5

7

8̄

4̄

3̄

6̄
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Polytope Affine Gale diagram

P 8
30

5

8

7

3

6̄

2̄

1̄

4̄

P 8
31

2̄ 5̄

8̄

7̄

1

4

6

3

P 8
32

62

7

4

3̄

1̄

5̄

8̄

P 8
33

5

7 2

4

1̄

8̄

6̄

3̄

P 8
34

1̄

3̄ 2̄

8̄

6

5

4

7

P 8
35

2

8 6

4

7̄

3̄

1̄ 5̄

P 8
36

3̄ 4̄

7̄

1̄

8

5

6

2
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Polytope Affine Gale diagram

P 8
37

7

1 4

2

6

5̄

3̄8̄

Remark 5.2.0.4. We would like to give an example of Remark 5.1.0.3. By working
out these affine Gale diagrams, we observed that P 8

2 and P 8
6 both have the same Gale

diagram. But the affine Gale diagrams are not necessarily the same, since they depend
on the choice of a plane e. The polytope P 8

6 can have the same affine Gale diagram of
P 8

2 when we choose an appropriate plane e.

5.3 Generators of Gorenstein Stanley-Reisner ideals of codi-
mension 4

In this section, we characterize the Gorenstein Stanley-Reisner ideal corresponding to a
given simplicial d-polytope with d + 4 vertices using affine Gale diagrams. This char-
acterization applies not only to simplicial d-polytopes with d + 4 vertices, but also for
simplicial d-polytopes with n vertices. In this section, we deal with this criterion to sim-
plicial d-polytopes with d+4 vertices, because in the next chapter 6 we deal with special
d-polytopes with d + 4 vertices.

Remark 5.3.0.1. The notiation in the next theorem is as in Remark 5.1.0.2.

Theorem 5.3.0.2. Let P be a simplicial d-polytope with the vertex set V = {v1, . . . , vd+4},
the boundary complex ∆(P ) and an ffine Gale diagram B∗ = {v∗1 , . . . , v∗d+4}. Let K be an
algebraically closed field and K[∆(P )] = K[x1, . . . , xd+4]/I∆(P ) the Stanley-Reisner ring
of ∆(P ). A monomial xi1 . . . xik is an element of the minimal set of monomial generators
of the Gorenstein Stanley-Reisner ideal I∆(P ) if and only if the set B∗ ∖ {v∗i1 , . . . , v

∗
ik
}

satisfies the following condition: The black and white points can be split by an affine
hyperplane. Morevore, there is no superset of B∗ ∖ {v∗i1 , . . . , v

∗
ik
}, which satisfies the

previous condition.

Proof. Since the minimal set of monomial generators of the Gorenstein Stanley-Reisner
ideal I∆(P ) is the set of minimal nonfaces, see Remark 1.2.3.2, the theorem holds by
Corollary 5.2.0.2.

Example 5.3.0.3. Let P 37
8 be a simplicial 4-polytope with 8 vertices V = {v1, . . . , v8}

and K[∆(P 37
8 )] = K[x1, . . . , xd+4]/I∆(P 37

8 ) the associated Stanley-Reisner ring. Let B∗

be the affine Gale diagram considered in the previous table. We shall use the criterion in
Theorem 5.3.0.2 to determine the minimal set of monomial generators of the associated
Gorenstein Stanley-Reisner ideal I∆(P 37

8 ). For example, if we take the set {v∗i1 = 1, v∗i2 =
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3̄, v∗i3 = 7}, we observe that its complement {2,4, 5̄,6, 8̄} satisfies the above condition.
That means, if we remove the points {v∗i1 = 1, v∗i2 = 3̄, v∗i3 = 7} from the affine Gale
diagram, then the remaining black and white points {2,4, 5̄,6, 8̄} can be splitted by a
straight line. Therefore, there is no set in B∗, which is contained in the set {v∗i1 = 1, v∗i2 =
3̄, v∗i3 = 7} and its complement satisfies the previous condition.
.





CHAPTER

SIX

ON THE STRUCTURE OF GORENSTEIN IDEALS OF
CODIMENSION 4 ASSOCIATED TO CYCLIC POLYTOPES

In this chapter, we begin by explaining the complex of Gulliksen and Negård [GN72],
which describes the structure of a minimal graded free resolution of a quotient module
obtained from a polynomial ring modulo a Gorenstein ideal of codimension 4. In this
case, we can use this complex to prove that the Gorenstein ideal is generated by minors
of a squar matrix. Our first aim in this chapter is to prove that minimal graded free
resolutions of Stanley-Reisner rings associated to cyclic 2d-polytopes with 2d+4 vertices
can be considered as a special versions of the Gulliksen-Negård complex. The second aim
is to characterize the minimal sets of monomial generators of Gorenstein ideals associated
to special neighbourly 2d-polytopes with 2d + 4 vertices, which are different from cyclic
polytopes and were classified by Devyatov [Dev11]. Moreover, we raise a conjecture
that only for cyclic 2d-polytopes with 2d + 4 vertices minimal graded free resolutions
of associated Stanley-Reisner rings can be considered as a special version of Gulliksen-
Negård complex. Finally, our third aim is to make an important step, that may help
to prove our conjecture, namely we prove that the minimal graded free resolutions of
Stanley-Reisner rings associated to Devyatov’s polytopes, which are not cyclic, can not
be regarded as a version of the Gulliksen-Negård complex.

6.1 The complex of Gulliksen and Negård

In [GN72], Gulliksen and Negård considered the polynomial ring S = K[x11, . . . , xrs] with
rs variables and a Gorenstein ideal I, which is generated by the t-minors of the matrix
(xij) for 1 ≤ i ≤ r and 1 ≤ j ≤ s. The authors gave for n = r = s and t = n − 1 an explicit
minimal graded free resolution of the quotient module S/I, where I has codimension 4.

Let S be a polynomial ring in n2 variables and Mn(S) the ring of n × n-matrices with
entries in S. Then Mn(S) is a free S-module of rank n2, i.e. Mn(S) ≅ Sn

2
. Let

A ∈ Mn(S), then there is a complex of S-modules as the following

97
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polytopes

F ∶ 0 S Sn
2

F2 Sn
2

S 0.
d4 d3 d2 d1

To determine F2, we consider the zero-sequence (π ○ ı = 0)

S Sn
2

⊕Sn
2

S,ı π

where ı(s) = (sE, sE), E being the unit matrix of Mn(S) ≅ Sn
2
, and π(V1, V2) =

trace(V1 − V2), for V1 and V2 in Sn
2
. Let Eij , 1 ≤ i, j ≤ n, be the canonical basis

of Sn
2
. Then Ker(π) is generated by the elementes (Eij , 0), i ≠ j, (0, Euv), u ≠ v,

(Eij , E11), 1 ≤ i ≤ n, and (0, Euu − E11), 2 ≤ u ≤ n. Since Im(ı) is generated by
∑ni=1(Eii, Eii) = ∑ni=1(Eii, E11) + ∑nu=2(0, Euu − E11), F2 ∶= Ker(π)/Im(ı) is a free S-
module of rank 2n2 − 2. Then we get the following complex of S-modules:

F ∶ 0 S Sn
2

S2n2−2 Sn
2

S 0.
d4 d3 d2 d1

Now we want to determine the maps di, for i = 1, . . . ,4. Let A#T
be the matrix of

cofactors of A, i.e.

A#t

=
⎡⎢⎢⎢⎢⎢⎣

A11 ⋯ (−1)1+nA1n

⋮ ⋱ ⋮
(−1)1+nAn1 ⋯ Ann

⎤⎥⎥⎥⎥⎥⎦

t

where the Aij are the (n−1)-minors of A (determinants of (n−1)×(n−1)-submatrices).
We put d1(V1) ∶= trace(A#T

V1), d4(s) ∶= sA#t
. To define d2, d3, we consider the zero

sequence (ϕ ○ ψ = 0)

Sn
2

Sn
2 ⊕ Sn2

Sn
2
,

ψ ϕ

where ψ(V1) = (AV1, V1A) and ϕ(V1, V2) = V1A − AV2. Clearly Im(ı) ⊂ Ker(ϕ) and
Im(ψ) ⊂ Ker(π) so that we may define d2, d3 as the maps induced by ϕ and ψ, resp.
Since Im(ı) ⊂ Ker(ϕ) and Ker(ϕ) ⊆ Sn2 ⊕ Sn2

, it follows that ϕ∣Im(i) = 0 and ϕ∣Ker(π) is
well defined. So we define d2 ∶ Ker(π)/Im(ı) → Sn

2
, d2((V1, V2) + Im(ı)) = ϕ(V1, V2) =

V1A −AV2. We consider the sequence

Sn
2

Ker(π) Ker(π)/Im(ı),ψ

d3

φ

since Im(ψ) ⊂ Im(π), we have d3(V1) = φ ○ ψ(V1) = φ(AV1, V1A) = (AV1, V1A) + Im(ı).
A trivial calculation shows that di ○ di+1 = 0, for i = 1, 2, 3, whence F is in fact a com-
plex over S. Since d1(V1) = trace(A#T

V1), it is Im(d1) = In−1(A), where we denote by
In−1(A) the ideal generated by the (n − 1)-minors of A.

Theorem 6.1.0.1. [GN72, Theorem 2.26] Let S be a polynomial ring over a field and A
an n × n-matrix with enteries in S. If height(In−1(A)) ≥ 4, then F is acyclic.
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The minimal graded free resolution of S/In−1(A), where In−1(A) has codimension 4 is
the following

F ∶ 0 S Sn
2

S2n2−2 Sn
2

S S/In−1(A) 0.
d4 d3 A d1

6.2 Gorenstein ideals of codimension 4 associated to neigh-
bourly polytopes

Definition 6.2.0.1. A neighbourly d-polytope is a convex d-polytope, such that any set
of vertices of cardinality ⌊d/2⌋ spans a face. A polytope is called k-neighbourly if any set
of k vertices spans a face.

Definition 6.2.0.2. Let 1 ≤ i ≤ n, ti ∈ R with t1 < t2 < ⋯ < tn. The cyclic d-polytope with
n vertices C = Cd(t1, . . . , tn) is the convex hull of the subset {f(t1), f(t2), . . . , f(tn)} ⊂
Rd, where f ∶ R→ Rd with f(t) = (t, t2, . . . , td) for t ∈ R.

Example 6.2.0.3. Let P be a 2-polytope with the vertex set V = {(−1,1), (0,0), (1,1)}.
Then P is a cyclic polytope, because d = 2, t1 = −1, t2 = 0 and t3 = 1.

Remark 6.2.0.4. A cyclic d-polytope with n vertices is a simplicial d-polytope, which
up to combinatorial equivalence does not depend on the choice the point ti in Definition
6.2.0.2. But not every simplicial d-polytope is cyclic, see Example 6.2.0.5.

Example 6.2.0.5. Let P be a simplicial 2-polytope with the vertex set V ={(1,1), (−1,1),
(−1,−1), (1,−1)}. This polytope is not cyclic, because the equation t2 = −1 has no solu-
tion.

Corollary 6.2.0.6. [Zie95, Corollary 0.8] A cyclic polytope is an example of a neigbourly
polytope.

We are interested in Gorenstein Stanley-Reisner ideals associated to cyclic d-polytopes
with d + 4 vertices. Since every cyclic polytope is a neighbourly polytope, see Corollary
6.2.0.6, we consider only neighbourly polytopes in this section. Grünbaum and Sreed-
haran construct all simplicial neighbourly 4-polytopes with 8 vertices in [GS67]. There
are exactly three combinatorial types of such polytopes, two of them P 8

36, P
8
37 are not

cyclic, and the other one P 8
35 is cyclic, see Chapter 3, Subsection 3.2.2. In 1981 Barnette

[Bar81] construct a family of neighbourly polytopes that are not cyclic in any dimension.
After that in 1982 Shemer [She82] shows that the number of combinatorially different
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neighbourly 2d-polytopes with 2d + 4 vertices grows superexponentially as d → ∞. In
1987 all neighbourly 6-polytopes with 10 vertices are classified by Bokowski and Shemer
[BS87]. There are 37 combinatorial types of them. In 2011 Devyatov [Dev11] classified
neighbourly 2d-polytopes with 2d + 4 vertices, which have a planer Gale diagram of a
special type with exactly d + 3 black points in convex position. Four years ago Finbow
in [FS04], [Fin10] and [Fin15] published a list of the simplicial neighbourly 5-polytopes
with 9 vertices. There are exactly 126 combinatorially distinct types of such polytopes.

In 1996 Teria and Hibi [TH96] compute the Betti numbers of the minimal graded free
resolution of the Stanley-Reisner ring of the boundary complex of a cyclic polytope.
Then in 2010 Böhm and Papadakis [BP12] study the structure of Stanley-Reisner rings
associated to cyclic polytopes and show how to express the Stanley-Reisner ring of cyclic
d-polytope with n+1 vertices in terms of the Stanley-Reisner rings of a cyclic d-polytope
with n vertices and a cyclic (d − 2)-polytope with n − 1 vertices.

Let C be a cyclic 2d-polytope with 2d + 4 vertices and ∆(C) the boundary complex of
C. Let K[∆(C)] be the associated Stanley-Reisner ring to C. Then the minimal graded
free resolution of K[∆(C)] over S ∶= K[x1, . . . , x2d+4], as it is clarified in [TH96], is of
the form

0 S(−(2d + 4)) S(−(d + 3))bS3 S(−(d + 2))bS2 t

S(−(d + 1))bS1 S K[∆(C)] 0,

where bS1 = (d + 2)2, bS2 = 2(d + 3)(d + 1) and bS3 = (d + 2)2.

That means that Gorenstein Stanley-Reisner ideals associated to cyclic 2d-polytope with
2d + 4 are generated by (d + 2)2 monomials of degree d + 1.

Because of that, we verify whether in this chapter that cyclic polytopes have also an
important role for associated Gorenstein ideals of codimension 4.

Conjecture 6.2.0.7. Let P be a simplicial neighbourly 2d-polytope with 2d+4 vertices.
The polytope P is cyclic if and only if there exists a (d + 2) × (d + 2)-matrix A, so that
all its (d+1)-minors generate minimally the Gorenstein Stanley-Reisner ideal associated
to P .

The direct assertion of this conjecture means that the minimal graded free resolutions
of Stanley-Reisner rings associated to cyclic 2d-polytopes with 2d + 4 vertices can be
considered as a special version of the Gulliksen-Negård complex to a (d+2)×(d+2)-matrix.
We prove this direction completely. For the reversal assertion, we show Conjecture 6.2.0.7
partially. In [Dev11], Devyatov classified special neighbourly 2d-polytopes with 2d + 4
vertices which are not cyclic. We prove for each polytope of Devyatov’s polytopes that the
associated Gorenstein Stanley-Reisner ideal is generated by exactly (d + 2)2 monomials
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and all have degrees d+1, but there is no square (d+2)×(d+2)-matrix, so that its (d+1)-
minors generate it. That means that the minimal graded free resolutions of associated
Stanley-Reisner rings to Devyatov’s polytopes can not be regarded as a version of the
Gulliksen-Negård complex.

6.2.1 Gorenstein ideals of codimension 3 associated to cyclic polytopes

Our starting point is cyclic d-polytopes with d + 3 vertices. For Gorenstein Stanley-
Reisner ideals of codimension 3 associated to these polytopes, the structure theory of
Buchsbaum and Eisenbud states, the minimal number of generators of each such ideal
is an odd 2m + 1 ≥ 3 and that this minimal system of generators is given by the 2m + 1
Pfaffians of order 2m of a skew-symmetric (2m + 1) × (2m + 1)-matrix A. We describe
now this matrix explicitly.

Theorem 6.2.1.1. Let P be a cyclic (2d−2)-polytope with the vertex set V ={v1, . . . , v2d+1}
and the boundary complex ∆(P ). Let K[∆(P )] = K[x1, . . . , x2d+1]/I∆(P ) be the Stanley-
Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal associated to P .
Then the monomial generators of I∆(P ) are 2d-th order Pfaffians of the following skew-
symmetric (2d + 1) × (2d + 1)-matrix A of degree d.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x2d+1 xd+1 ⋯ 0
0 −x1 xd+2

0 ⋮
⋮

⋱ ⋱
0

−xd−1 x2d

x2d+1 ⋯ ⋯ 0 ⋯ ⋯ −xd

−xd+1 x1

0 −xd+2 x2

⋮ ⋮ 0
⋱ ⋱

⋮ 0
0 ⋯ −x2d xd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Proof. The Gorenstein Stanley-Reisner ideal associated to P is generated by (2d + 1)
monomials of degree d, see [TH96, Proposition 3.1], therefore the Gale diagram of a
cyclic polytope is contracted and distended in the same time, see Definition 2.2.2.11.
That means the Gale diagram of P has the following

v̂2d+1 v̂2

v̂1
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Using Gale diagram we can determine all monomial generators of I∆(P ), see Chapter 2,
Subsection 2.2.3. These generators are the following

Pf(A1) ∶= x1 . . . xd,
Pf(A2) ∶= x2 . . . xd+1,

⋮
Pf(Ad+1) ∶= xd+1 . . . x2d,

⋮
Pf(A2d+1) ∶= x2d+1 . . . xd−1.

By Eisenbud-Buchsbaum Theorem 2.1.2.4 the generators are 2d-th order Pfaffians of a
skew-symmetric. We obtain this matrix using construction of the monimal graded free
resolution of K[∆(P )]. We consider the Step 2 of Construction 1.1.2.10. Let α1f1 + . . .+
α2d+1f2d+1 ∈ Ker(d1), where d1 ∶ ⊕2d+1

i=1 S →⊕2d+1
i=1 S and αi ∈ S. Hence ∑2d+1

i=1 αipf(Ai) = 0
and it follows all solutions (α1, . . . , α2d+1) are generated by the columns of a (2d + 1) ×
(2d + 1)-skew-symmetric matrix A, see Buchsbaum-Eisenbud Theorem 2.1.2.4. Thus we
obtain 2d + 1 homogeneous generators of Ker(d1). Their degrees are d − 1, see [TH96,
Proposition 3.1]. That means each αi has degree 1. It follows all solutions (α1, . . . , α2d+1)
are generated by

(0, . . . ,0,−x2d+1, xd+1,0, . . . ,0), (0, . . . ,0,−x1, xd+2,0, . . . ,0),

⋮
(−x2d+1,0, . . . ,0), (−xd+1, x1,0, . . . ,0), (0,−xd+2, x2,0, . . . ,0),

⋮
(0, . . . ,−x2d, xd,0, . . . ,0).

We can determine minimal sets of monomial generators of Gorenstein Stanley-Reisner
ideals associated to all simplicial d-polytopes with d+3 through minimal sets of monomial
generators of Gorenstein Stanley-Reisner ideals associated to cyclic d-polytopes with d+3
vertices. We achieve that as follows: If we take a product of a monomial (or more)
from the minimal set of monomial generators of the Gorenstein Stanley-Reisner ideal
associated to a cyclic polytope with a new variable (or more), then we obtain a minimal
set of monomial generators of the Gorenstein Stanley-Reisner ideal of codimension 3
associated to a polytope of dimension d+k with d+k+3 vertices, where k is the number
of new variables, see Example 6.2.1.2.

Example 6.2.1.2. Let C be a cyclic 2-polytope with the vertex set V = {v1, . . . , v5},
the boundary complex ∆(C) and the Gale diagram B̂ = {v̂1, . . . , v̂5}. Let K[∆(C)] =
K[x1, . . . , x5]/I∆(C) be the Stanley-Reisner ring associated to C, where I∆(C) is the
corresponding Gorenstein Stanley-Reisner ideal. From Chapter 2, Subsection 2.1.2, we
get I∆(C) = (x1x4, x3x4, x2x3, x2x5, x1x5). If we take a product of a monomial (or more)
from the minimal set of monomial generators of I∆(C) with a new variable, then we obtain
the minimal set of monomial generators of the associated Gorenstein Stanley-Reisner
ideal to a simplicial 3-polytope P with 6 vertices {v1, . . . , v6}. So the corresponding
Gorenstein Stanley-Reisner ideal is I∆(P ) = (x1x4x6, x3x4x6, x2x3, x2x5, x1x5).
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v̂5

v̂4

v̂3
v̂2

v̂1

(a) Gale diagram of the polytope C.

v̂5

v̂4v̂6

v̂3
v̂2

v̂1

(b) Gale diagram of the polytope P .

6.2.2 Sufficiency statement of Conjecture 6.2.0.7

Theorem 6.2.2.1. Let P be a cyclic 2d-polytope with the vertex set V={v1, . . . ,vd+2,w1, . . .,
wd+2} and the boundary complex ∆(P ). Let K[∆(P )] = K[x1, . . . , xd+2, y1, . . . , yd+2]/I∆(P )

be the Stanley-Reisner ring of ∆(P ), where I∆(P ) is the Gorenstein Stanley-Reisner ideal
associated to P . Consider a (d + 2) × (d + 2)-matrix (or its transpose) of the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0 0 ⋯ yd+2

y1 x2 0 0 ⋯ 0
0 y2 x3 0 ⋯ 0
0 0 y3 x4 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ xd+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then the (d + 1)-minors construct a minimal set of monomial generators of I∆(P ).

Proof. We claim that the following monomials

Apq = x1 . . . xd+2 ∏
p≤i≤q

( yi
xi

) ⋅ y−1
q , for p ≤ q,

Apq = (−1)dy1 . . . yd+2 ∏
q+1≤j≤p−1

(
xj

yj
) ⋅ y−1

q , for p > q

are all (d + 1)-minors of A. To check that, we take a matrix A′, so that its entries are
a′qp = (−1)p+qApq for p, q = 1, . . . , d + 2.
We should check, whether the equality A′ ⋅A = det(A)E(d+2) is true. If we multiply the
two matrices A and A′, we get the following equalities:

x(p−1)A(p−1)q = y(p−1)Apq, for p ≠ q and p, q = 1, . . . , d + 2.

In other words, x(p−1)A(p−1)q−y(p−1)Apq = 0, for p ≠ q and xpApp−ypA(p+1)p = x1 . . . xd+2−
(−1)dy1 . . . yd+2 = det(A), for p = q. That means A′ ⋅ A = det(A)E(d+2). Therefore it
follows A′ = A#, where A# is the adjugate matrix of A, and hence Apq are (d+1)-minors
of A.

Now we prove that all these minors are generators of the Gorenstein Stanley-Reisner
ideal I∆(P ).
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The cobminatorial type of a Gale diagram of a cyclic 2d-polytope with 2d + 4 vertices is
the following figure, see [Dev11].

1̄

2̄

1

Figure 6.2: Planar Gale diagram of cyclic 2d-polytope with 2d + 4 vertices.

There are (d+2) black points and (d+2) white points. We enumerate these points in the
diagram, so that each consecutive black and white points have the same number. The
minimal set of monomial generators of the Gorenstein Stanley-Reisner ideal associated
to P contains (d + 2)2 elements, according to Theorem 5.3.0.2.

There are (d + 2) different monomials, which correspond to (d + 1) black points, (d + 2)
different monomials, which correspond to d black points and a white point, etc. That
means there are (d + 2)2 monomials.

We can now define a bijection between the set of the above minors Apq and the minimal
set of monomial generators of I∆(P ). So that the monomials, which are corresponding
to (d + 1) black points, are corresponding to App, for p = 1, . . . , d + 2, respectively. The
monomials, which correspond to d black points and a white point, correspond to Ap(p+1)

and A(d+2)1, for p = 1, . . . , d + 1, respectively, etc.

6.2.3 Characterization of monomial generators of Gorenstein ideals
associated to T -polytopes

All neighbourly 2d-polytopes with 2d+4 vertices, which have been classified by Devyatov
[Dev11], have a Gale diagram with exactly d + 3 black points in convex position. In this
subsection, we prove for each polytope of Devyatov’s polytopes that the corresponding
Gorenstein Stanley-Reisner ideal is generated by exactly (d+2)2 monomials and all have
degree d + 1, but there is no square (d + 2) × (d + 2)-matrix, so that its (d + 1)-minors
generate it. That is not a complete proof of the reversal direction of Conjecture 6.2.0.7,
but it is an important step to achieve that, since all these polytopes are not cyclic.

At first we need some definitions from [Dev11].

Definition 6.2.3.1. Let P be a neigbourly 2d-polytope with the vertex set V = {v1, . . . ,
v2d+4} and an affine Gale diagramB∗ = {v∗1 , . . . , v∗2d+4}, each of them declared to be either
black or white. Then B∗ is called T -diagram if the following conditions are satisfed:

1. 2d > 4;
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2. the points of B∗ are in general position;
3. the diagram B∗ contains exactly d+3 black points, and they are in convex position

and vertices of a (d + 3)-gon;
4. all white points of B∗ lie inside the (d + 3)-gon formed by the black points;
5. Each triangle formed by three black vertices ofB∗ contains exactly one white point.

Definition 6.2.3.2. The convex hull of a set of consequent vertices of the (d+ 3)-gon is
called lune of a T -diagram.

Notation 6.2.3.3. Let P be a neighbourly simplicial 2d-polytope with 2d + 4 vertices,
which are classified by Devyatov [Dev11], with the vertex set V = {v1, . . . , vd+3,w1, . . . ,
wd+1} and the boundary complex ∆(P ). LetK[∆(P )]=K[x1, . . . , xd+3, y1, . . . , yd+1]/I∆(P )

be the Stanley-Reisner ring of ∆(P ) and I∆(P ) the Gorenstein Stanley-Reisner ideal as-
sociated to P . Let B∗ = {v∗1 , . . . , v∗d+3,w

∗
1 , . . . ,w

∗
d+1} be the T -diagram of P , where the

v∗i are declared as black points and the w∗
j are declared as white points. We denote the

black points v∗i by i and the white points by j̄. By Remark 5.1.0.2 there are canonical
bijections between the variables xi and the black points i of B∗ and between the variables
yj and the white points j̄ of B∗. Analogously a subset M ⊂ V corresponds to M∗ ⊂B∗.

Now we characterize minimal sets of monomial generators of Gorenstein ideals associated
to T -polytopes. In what follows (in this and the next subsection), a “monomial generator”
is understood as the momomial generator in the minimal set of generators of I∆(P ).

Theorem 6.2.3.4. Let P be a special neighbourly simplicial 2d-polytope with 2d + 4
vertices, which were classified by Devyatov [Dev11]. We consider the assumptions in
Notation 6.2.3.3. Let {i1, . . . , ik} be a set of black points, and {j̄1, . . . , j̄s} a set of white
points of B∗.

1. For 1 ≤ #{i1, . . . , ik} ≤ d, a monomial xi1 . . . xikyj1 . . . yjs is a generator of I∆(P ) of
degree d + 1 if and only if the set M ∶= {i1, . . . , ik, j̄1, . . . , j̄s} of B∗ contains d + 1
points and the black points {i1, . . . , ik} are consecutive points of the (d+3)-gon and
the white points {j̄1, . . . , j̄s} are all white points, which are located in the convex
hull (lune) of all black points of B∗ ∖ {i1, . . . , ik}.

2. For #{i1, . . . , ik} = d + 1, a monomial xi1 . . . xik is a generator of I∆(P ) of degree
d+1 if and only if the set M ∶= {i1, . . . , ik} is a subset of B∗ and these black points
are consequent points of the (d + 3)-gon.

3. For #{i1, . . . , ik} = 0, a monomial yj1 . . . yjs is a generator of I∆(P ) of degree d+1 if
and only if the set M ∶= {j̄1, . . . , j̄s} is a subset of B∗ and contains all white points.

Proof. Since all white points of B∗ lie inside the (d + 3)-gon formed by the black point
and each triangle formed by three black vertices of B∗ contains exactly one white point,
the assertion holds by Theorem 5.3.0.2.

Proposition 6.2.3.5. Let P be a special neighbourly simplicial 2d-polytope with 2d + 4
vertices, which were classified by Devyatov [Dev11]. We consider the assumptions in
Notation 6.2.3.3. The associated Gorenstein Stanley-Reisner ideal I∆(P ) is minimally
generated by exactly (d + 2)2 monomial generators and all have degree d + 1.
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Proof. We would like to determine the minimal set of monomial generators of I∆(P )
using a T -diagram. Let {i1, . . . , ik} be a set of black points and {j̄1, . . . , j̄s} a set of white
points of the T -diagram B∗.

1. For 1 ≤ #{i1, . . . , ik} ≤ d, by Theorem 6.2.3.4, since there are exactly d + 3 black
points in the T -diagram, there are d(d + 3) monomial generators of the form
xi1 . . . xikyj1 . . . yjs of degree d + 1.

2. For #{i1, . . . , ik} = d + 1, by Theorem 6.2.3.4, there are d + 1 monomial generators
of the form xi1 . . . xik of degree d + 1

3. For #{i1, . . . , ik} = 0, by Theorem 6.2.3.4, there is a one monomial generator of the
form yj1 . . . yjs of degree d + 1.

So we obtain d(d+3)+(d+1)+1 = (d+2)2 monomial generators of I∆(P ) of degree d+1.

By Definition 6.2.3.1 (4) and (5), we observe that the complement set of the black and
white points, which correspond to the variables of a monomial generator of degree smaller
than d + 1, does not satisfy the condition in Theorem 5.3.0.2.There is always at least a
lune of 3 black points, which contains a white point. Hence there is by Theorem 5.3.0.2
no monomial generator of I∆(P ) of degree smaller than d + 1.

If there is a set of the T -diagram, that contains more than d + 1 black points so that its
complement satisfies the condition in Theorem 5.3.0.2, that means all these black points
have to be consecutive points of the (d+3)-gon, then the set is not minimal, see Theorem
6.2.3.4.

If the set contains more than d+1 black and white points, so that its complement satisfies
the condition in Theorem 5.3.0.2, then the set is also not minimal. By Theorem 6.2.3.4,
the corresponding white points to variables of a monomial generator of I∆(P ) are located
in the lune of the complement set of the black points, which correspond to other variables
of the same generator. Hence there is no monomial generator of I∆(P ) of degree more
than d + 1.

Definition 6.2.3.6. Let P be a special neighbourly simplicial 2d-polytope with 2d + 4
vertices, which were classified by Devyatov [Dev11]. We consider the assumptions in
Notation 6.2.3.3. Let i be a black point and j̄ a white point of the T -diagram B∗. We
call i and j̄ neighbors, if j̄ lies inside a lune of a set of three consecutive vertices of
(d + 3)-gon, in which i lies in the middle of this sequence. If i and j̄ are neighbors, then
we write i ∈ Sj̄ , where Sj̄ is a subset of B∗.

Example 6.2.3.7. In Example 6.2.5.2, the points 4 and 2̄ are neighbors, we write 4 ∈ S2̄.

According to this definition, we can distribute the black points in different sets as follows.

Remark 6.2.3.8. Let P be a special neighbourly simplicial 2d-polytope with 2d + 4
vertices, which were classified by Devyatov [Dev11]. We consider the assumptions in
Notation 6.2.3.3. Let j̄ be a white point of the T -diagram B∗. Two black points i and
k of B∗ lie in the same set Sj̄ ⊂B∗, if they are neighbors to the same white point j̄.

Example 6.2.3.9. In Example 6.2.5.2, the black points 3 and 4 are in S2̄.
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Remark 6.2.3.10. According to Definition 6.2.3.1 it follows that each black point has
exactly one white point as a neighbor. Since we have (d + 1) white points and there is
exactly one white point inside each triangle with black vertices, see Definition 6.2.3.1,
each white point has either one or two neighbors.

Definition 6.2.3.11. If ∣Sj̄ ∣ = 1, then we say that the white point j̄ has type 1 , otherwise
type 2.

Corollary 6.2.3.12. Let P be a special neighbourly simplicial 2d-polytope with 2d + 4
vertices, which were classified by Devyatov [Dev11]. We consider the assumptions in
Notation 6.2.3.3. Let i be a black point and j̄ a white point of the T -diagram B∗ with
i ∈ Sj̄. Then the corresponding variables xi and yj can not appear in one of the monomial
generators of I∆(P ).
Proof. See Theorem 6.2.3.4.

Proposition 6.2.3.13. Let P be a special neighbourly simplicial 2d-polytope with 2d+ 4
vertices, which were classified by Devyatov [Dev11]. We consider the assumptions in
Notation 6.2.3.3. Let i be a black point and j̄ a white point of the T -diagram B∗, where
j̄ has type 2. Then the corresponding variables xi and yj appear exactly ((d+1)(d+2))/2
times in the monomial generators of degree d + 1 of I∆(P ).
Proof. Let i be a black point. Coming back to the proof of Proposition 6.2.3.5, we observe
that

1. For 1 ≤ #{i1, . . . , ik} ≤ d, the corresponding variable xi turns up exactly 1+2+. . .+d
times in the monomial generators of degree d + 1 of I∆(P ).

2. For #{i1, . . . , ik} = d+1, the corresponding variable xi turns up exactly d+1 times
in the monomial generators of degree d + 1 of I∆(P ).

3. For #{i1, . . . , ik} = 0, the corresponding variable xi turns up exactly 0 times in the
monomial generators of degree d + 1 of I∆(P ).

So the corresponding variable xi appears exactly 1 + 2 + . . . + (d + 1) = ((d + 1)(d + 2))/2
times in the monomial generators of degree d + 1 of I∆(P ).
Let j̄ be a white point has type 2. Coming back to the proof of Proposition 6.2.3.5, we
observe that

1. For 1 ≤ #{i1, . . . , ik} ≤ d, by Corollary 6.2.3.12, the corresponding variable yj turns
up exactly (d + 1) + . . . + 2 times in the monomial generators of degree d + 1 of
I∆(P ), since by Theorem 6.2.3.4, the corresponding white points to variables of a
monomial generator of I∆(P ) are all points, which are located in the lune of the
complement set of the black points, which are corresponding to another variables
of the same generator.

2. For #{i1, . . . , ik} = d + 1, the corresponding variable yj turns up exactly 0 times in
the monomial generators of degree d + 1 of I∆(P ).

3. For #{i1, . . . , ik} = 0, the corresponding variable yj turns up exactly 1 time in the
monomial generators of degree d + 1 of I∆(P ).

So the corresponding variable yj appears also exactly ((d + 1)(d + 2))/2 times in the
monomial generators of degree d + 1 of I∆(P ).
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6.2.4 Necessity statement of Conjecture 6.2.0.7

We show the reversal direction partially. In [Dev11], Devyatov classified special neigh-
bourly 2d-polytopes with 2d+4 vertices which are not cyclic. For every one of Devyatov’s
polytopes, we prove there is no square (d+2)×(d+2)-matrix, so that its (d+1)-minors gen-
erate the Gorenstein Stanley-Reisner ideal associated to a Devyatov’s polytope. That
means that the minimal graded free resolutions of Stanley-Reisner rings associated to
Devyatov’s polytopes can not be regarded as a version of the Gulliksen-Negård complex.

Theorem 6.2.4.1. Let P be a neighbourly simplicial 2d-polytope with 2d + 4 vertices,
which were classified by Devyatov [Dev11], where V ={v1, . . . ,vd+3,w1, . . . ,wd+1} is the ver-
tex set and ∆(P ) is the boundary complex. Let K[∆(P )]=K[x1, . . . , xd+3,y1, . . . ,yd+1]/I∆(P )

be the Stanley-Reisner ring of ∆(P ), where I∆(P ) is the Gorenstein Stanley-Reisner ideal
associated to P . Then there is no (d + 2) × (d + 2)-matrix, so that its (d + 1)-minors are
monomial generators of I∆(P ).

Proof. Proof by contradiction. Assume there is a (d + 2) × (d + 2)-matrix A such that
its (d + 1)-minors are monomial generators of I∆(P ) and A# its adjugate matrix. Let
B∗ be a T -diagram of P , i ∈ B∗ a black point and j̄ ∈ B∗ a white point, which has
type 2 with i ∈ Sj̄ (in each T -diagram there always exists at least one white point, which
has type 2 by Remark 6.2.3.10). Now we put as zero the corresponding variables xi
and yj in K[∆(P )]. For the case xi ∶= yj ∶= 0, we denote A respectively A# by Axi,yj
respectively A#

xi,yj . According to the Propositions 6.2.3.5, 6.2.3.12 and 6.2.3.13 there
remain only (d + 2) monomial generators of I∆(P ) of degree d + 1, which don’t have
xi and yj as variabels. Since the black points are vertices of (d + 3)-gon, see Definition
6.2.3.1, because of that we can number the vertices of (d+3)-gon respectively sequentially,
as the following Figure 6.3.

12

3

4

5

d + 3
1̄

Figure 6.3: (d + 3)-gon with the white point 1̄1.

Without loss of generality we choose i ∶= 1, j̄ ∶= 1 and Sj̄ ∶= {1,2}. Then the (d + 2)

1In Figure 6.3 there should be d + 1 white points inside the (d + 3)-gon.
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remaining monomial generators of I∆(P ) of degree d + 1 are

x3x4 . . . xd+3,
x2x3 . . . xd+2,

x2x3 . . . xd+1yd+1,
x2x3 . . . xdyd+1yd,

⋮
x2x3yd+1 . . . y3,
x2yd+1 . . . y3y2.

We denote this set by (∗).

Assume that det(Axi,yj) ≠ 0, it means rank(Axi,yj) = rank(A#
xi,yj) = d + 2, hence the

remaining elements lie on the main diagonal of A#
xi,yj . Therefore

det(A#
xi,yj) = x

(d+1)
2 x

(d+2)
3 xd4 . . . xd+3y

d
d+1 . . . y2.

Since A#
xi,yj . . .Axi,yj = det(Axi,yj)Ed+2 we have det(A#

xi,yj) = (det(Axi,yj))d+1, i.e. the
powers of variables in det(A#

xi,yj) should be divisible by d + 1, a contradiction. So
det(Axi,yj) = 0, because the entries of the matrix A#

xi,yj are monomial generators of
I∆(P ) of K[∆(P )], we have A#

xi,yj ≠ 0. Since det(Axi,yj) = 0, it follows rank(A#
xi,yj) = 1.

That means, the remaining monomial generators belong to either the same column or
the same row of A#

xi,yj or not.

Assume that the remaining monomial generators of I∆(P ) of K[∆(P )] do not belong to
the same column or row. Then there is at least a 2×2-minor H, such that the all entries
are not equal to zero, but H = 0. Without loss of generality we substitute yj ∶= 1 into
the remaining monomial generators for all j ∈ {1,2,⋯, d + 1}.

H = ∣x2x3 . . . xk1 x2x3 . . . xk2

x2x3 . . . xk3 x2x3 . . . xk4

∣

such that 2 ≥ k1 > k2 > k3 > k4 ≥ (d + 3). Then it follows

(x2
2x

2
3 . . . x

2
k4
xk4+1 . . . xk3 . . . xk2)(xk2+1 . . . xk1 − 1) = 0.

So we have xk2+1 . . . xk1 = 1. If we substitute this value into the first generator in (*),
this leads to a contradiction with Theorem 6.2.3.4. Therefore the remaining monomial
generators belong to the same column or row of A#

xi,yj .

Since the entries of the matrix A#
xi,yj are the monomial generators of degree d + 1,

det(A#
xi,yj) is a polynomial of degree (d + 1)(d + 2). On the other hand det(A#

xi,yj) =
(det(Axi,yj))d+1, thus det(Axi,yj) is a polynomial of degree (d + 2). Let A−1

xi,yj be the
inverse matrix of Axi,yj , then the entries of the matrix A−1

xi,yj have degree −1, therefore
the entries of the matrix Axi,yj = (A−1

xi,yj)
−1 have degree 1.
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The entries of Axi,yj are linear polynomials in 2d + 2 variables. Suppose that each poly-
nomial has this form:

a
(n)
m2x2 + a(n)m3x3 +⋯ + a(n)

m(d+3)
xd+3 + b

(n)
m2y2 +⋯ + b(n)

m(d+1)
yd+1 (6.1)

with amk1 , bmk2 ∈ K, k1 = 1, . . . , d + 3, k2 = 1, . . . , d + 1 and n, m = 1, . . . , d + 2, so that
n refers to the corresponding row and m refers to the m-th entry. Suppose without
loss of generality that the remaining generators lie on the first column of A#

xi,yj
2,. Since

Axi,yj ⋅A
#
xi,yj = det(Axi,yj)Ed+2 = 0, we get a homogeneous system of equations, consisting

of d + 2 equations. For each n = 1, . . . , d + 2 we obtain an equation of the form

(a(n)12 x2 + a(n)13 x3 + . . . + a(n)1(d+3)
xd+3 + b

(n)
12 y2 + . . . + b(n)1(d+1)

yd+1) x3x4 . . . xd+3+

(a(n)22 x2 + a(n)23 x3 + . . . + a(n)2(d+3)
xd+3 + b

(n)
22 y2 + . . . + b(n)2(d+1)

yd+1) x2x3 . . . xd+2+

⋮

(a(n)
(d+2)2

x2+ . . . +a(n)(d+2)(d+3)
xd+3+b

(n)
(d+2)2

y2+ . . . +b(n)(d+2)(d+1)
yd+1) x2yd+1 . . . y3y2=0

If we solve these equations, we get the following solution

a
(n)
12 = −a(n)

2(d+3)
and b(n)

r(d+3−r)
= −a(n)

(r+1)(d+4−r)
, for r = 2, . . . , d + 1.

That means, the solution space of each equation has dimension d + 1. Since the solution
space of a system of equations is the intersection of the solution spaces of the individual
equations, and all equations have the same solution space. It follows the solution space
of the system of equations has dimension d + 1 with a basis B, which is generated by
(1,0, . . . ,0,−1,0, . . . ,0) ∈ K(d+2)(2d+2) (where −1 on the (3d + 4)-th position) and all
vectors (0, . . . ,0,−1,0, . . . ,0,1,0, . . . ,0) ∈ K(d+2)(2d+2) (where −1 on the [(r − 1)(2d+ 2)+
d + 4 − r]-th position and 1 on the [(r − 1)(2d + 2) + 2d + 4 − r]-th position). Since there
is at least a (d + 1)-minor of Axi,yj , which is not zero, such as x3x4 . . . xd+3, we have
rank(Axi,yj) = d+ 1. That means there are d+ 1 rows respectively columns in the matrix
Axi,yj , which are linear independent. Now we take all vectors of B and substitute them
into the polynomials in (6.1), so we obtain almost all enteries of the matrix Axi,yj .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ⋯ ∗ ∗
x2 −xd+3 0 0 . . . 0 0
0 yd+1 −xd+2 0 . . . 0 0
0 0 yd −xd+1 . . . 0 0
0 0 0 yd−1 ⋱ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 . . . y2 x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3x4 . . . xd+3 0 ⋯ 0
x2x3 . . . xd+2 ⋮ ⋱ ⋮

x2x3 . . . xd+1yd+1 0 ⋯ 0
x2x3 . . . yd+1yd 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
x2x3yd+1 . . . y3 0 ⋯ 0
x2yd+1 . . . y3y2 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

Now we take another black point k, which lies in Sj̄ , in our case it is k = 2, because
Sj̄ = {1,2}. Exactly as above we put the corresponding variables xk and yj in K[∆(P )]

2By neglecting the order of the monomial generators. Hence we can take the order as in (∗).
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as zero. In this case we denote A and A#, where xk and yj are replaced by 0, by
Axk,yj and A#

xk,yj , respectively. Therefore, as explained above, there remain only (d + 2)
monomial generators of I∆(P ) of degree d + 1, which don’t have xk and yj as variabels.
They are

xd+3xd+2 . . . x4x3,
x1xd+3 . . . x4,
x1xd+3 . . . x5y2,
x1xd+3 . . . x6y2y3,

⋮
x1y2 . . . yd,

x1y2 . . . ydyd+1.

Then the remaining monomial generators belong to the same column or row of A#
xk,yj .

We may notice that the monomial xd+3xd+2 . . . x4x3 is a common element between the
first set of the remaining generators (in the case xi = 0 and yj = 0) and the second one (in
the case xk = 0 and yj = 0). Thus, if the remaining monomial generators in the first set
are in a column of A#

xk,yj , then the second one are in a row and the other way around.
Since we have assumed in the first case that the remaining generators are in a column, it
follows in the second case that remaining generators are in the row, where the common
element is. If we arrange the elements appropriately 3 and multiply the matrix A#

xk,yj by
Axk,yj , we obtain the following

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xd+3xd+2 . . . x4x3 0 ⋯ 0
x1y2 . . . ydyd+1 ⋮ ⋱ ⋮
x1xd+3y2 . . . yd 0 ⋯ 0

x1xd+3x(d+2) . . . yd−1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮

x1xd+3 . . . x5y2 0 ⋯ 0
x1xd+3 . . . x4 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 0 0 ⋯ 0 x1

∗ −xd+3 0 0 ⋯ 0 0
∗ yd+1 −xd+2 0 ⋯ 0 0
∗ 0 yd −xd+1 ⋯ 0 0
∗ 0 0 yd−1 ⋱ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
∗ 0 0 0 ⋯ y2 x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

So according to above the required matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

* 0 0 0 ⋯ 0 x1

x2 −xd+3 0 0 . . . 0 0
0 yd+1 −xd+2 0 . . . 0 0
0 0 yd −xd+1 . . . 0 0
0 0 0 yd−1 ⋱ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 . . . y2 x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This leads to a contradiction with Theorem 6.2.3.4, because we obtain by deleting the
(d + 2)-th row and the second column the (d + 1)-minor: x1x2x4 . . . xd+2. This minor is
not a monomial generator of degree d + 1 of I∆(P ) by Theorem 6.2.3.4.

3If we do not arrange the elements in a nice sequence, we get a matrix, with elementary row and
column transformations we get the desired matrix.
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6.2.5 Examples

Example 6.2.5.1. Let P be a cyclic 4-polytope with the vertex set V ={v1, . . . ,v4,w1, . . . ,
w4} and the boundary complex ∆(P ). Let K[∆(P )] = K[x1, . . . , x4, y1, . . . , y4]/I∆(P ) be
the Stanley-Reisner ring of ∆(P ), where I∆(P ) is the Gorenstein Stanley-Reisner ideal
associated to P . In this case P is P 8

35. Consider the following 4 × 4-matrix (or the
transpose)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0 y4

y1 x2 0 0
0 y2 x3 0
0 0 y3 x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The 3-minors of the matrix A are given in the following table

3 × 3-minors of A

A11 = x2x3x4 A12 = x3x4y1 A13 = x4y1y2 A14 = y1y2y3

A21 = y2y3y4 A22 = x1x3x4 A23 = x1x4y2 A24 = x1y2y3

A31 = x2y3y4 A32 = y1y3y4 A33 = x1x3x4 A34 = x1x2y3

A41 = x2x3y4 A42 = x3y1y4 A43 = y1y2y4 A44 = x1x2x3

We sketched in Chapter 5, Section 5.2 the affine Gale diagram of this polytope, as the
following

12

3 4

1̄

2̄

3̄

4̄

Figure 6.4: Gale diagram of cyclic 4-polytope P 8
35 with 8 vertices.

The Gorenstein Stanley-Reisner ideal I∆(P 8
35)

has exactley 42 monomial generators, which
have degree 3, see [TH96]. By Theorem 5.3.0.2 we can determine the minimal set of
monomial generators of I∆(P 8

35)
of K[∆(P 8

35)] using the affine Gale diagram and we
obtain the following
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I∆(P 8
35)

=<x1x2x3, x2x3x4, x3x4x1, x4x1x2, 3 black points

x1x2y4, x2x3y1, x3x4y2, x4x1y3, 2 black points and 1 white point

x1y3y4, x2y1y4, x3y1y2, x4y2y3, 1 black point and 2 white points

y1y2y3, y2y3y4, y3y4y1, y4y1y2 > . 3 white points

Using the computer algebra system Singular we can obtain the minimal graded free
resolution of the Stanley-Reisner ring of K[∆(P 8

35)] over S = K[x1, . . . , x4, y1, . . . , y4]

0 S(−8) S16(−5) S30(−4) S16(−3) S K[∆(P 8
35)] 0.

There is a canonical bijection between the minimal set of monomial generators of I∆(P 8
35)

and the set all 3-minors of A. So the minimal graded free resolution of K[∆(P 8
35)] can

be considered as a special version of Gulliksen-Negård complex.

Example 6.2.5.2. Let P be one of the Devyatov’s polytopes and neighbourly simplicial
4-polytope with the vertex set V = {v1, . . . , v5,w1, . . . ,w3} and the boundary complex
∆(P ). Let K[∆(P )] = K[x1, . . . , x5, y1, . . . , y3]/I∆(P ) be the Stanley-Reisner ring of
∆(P ), where I∆(P ) is the Gorenstein Stanley-Reisner ideal associated to P . This poly-
tope is P 8

37.

1

3

2̄

43̄

5

2

1̄

Figure 6.5: T -diagram of P 8
37.

According to Proposition 6.2.3.5, I∆(P 8
37)

has exaclty 42 monomial generators of degree
3. We can determine them by Theorem 6.2.3.4 as follows

I∆(P 8
37)

=<x1x2x3, x2x3x4, x3x4x5, x4x5x1, x5x1x2, 3 black points

x1x2y2, x2x3y3, x3x4y1, x4x5y1, x1x5y2, 2 black points and 1 white point

x1y2y3, x2y2y3, x3y1y3, x4y1y3, x5y1y2, 1 black point and 2 white points

y1y2y3 > . 3 white points
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Using the computer algebra system Singular we can obtain the minimal graded free
resolution of the Stanley-Reisner ring of K[∆(P 8

37)] over S = K[x1, . . . , x5, y1, . . . , y3]

0 S(−8) S16(−5) S30(−4) S16(−3) S K[∆(P 8
37)] 0.

Exactly as in proof of Theorem 6.2.4.1, we assume that there is a 4×4-matrix A, so that
its 3-minors are monomial generators of I∆(P 8

37). Let i ∶= 1, k ∶= 2 and j̄ ∶= 1 4, we obtain
that Sj̄ = {1,2}.
As first step we put x1 ∶= 0 and y1 ∶= 0, then there remain only 4 monomial generators of
degree 3 of I∆(P 8

37)
, they are

x2x3x4, x3x4x5, x2x3y3, x2y2y3.

These monomials should belong to the same column or row of A#
x1,y1 , see proof of Theorem

6.2.4.1. Without loss of generality we put them on the first column, then we obtain the
following

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗
x2 −x5 0 0
0 y3 −x4 0
0 0 y2 x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x3x4x5 0 0 0
x2x3x4 0 0 0
x2x3y3 0 0 0
x2y2y3 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

As second step, x2 ∶= 0 and y1 ∶= 0, then there remain only 4 monomial generators of
degree 3 of I∆(P 8

37)
, they are

x3x4x5, x4x5x1, x1x5y2, x1y2y3.

We notice that x3x4x5 is a common element, therefore, they belong to the same row of
A#
x2,y1 , in particular on the first row. Then we obtain the following

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x3x4x5 0 0 0
x1y2y3 0 0 0
x1x5y2 0 0 0
x4x5x1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

t ⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 0 x1

∗ −x5 0 0
∗ y3 −x4 0
∗ 0 y2 −x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

So the required matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

* 0 0 x1

x2 −x5 0 0
0 y3 −x4 0
0 0 y2 −x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We obtain by deleting the 4-th row and the 2-th column the 3-minor x1x2x4. This minor
is not a monomial generator of degree 3 of I∆(P 8

37)
by Theorem 6.2.3.4, a contradiction

to all 3-minors of A being monomial generators of I∆(P 8
37)

. So the minimal graded free
resolution of K[∆(P 8

37)] can not be regarded as version of Gulliksen-Negård complex.

4We use the same notation as in proof of Theorem 6.2.4.1.
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ZUSAMMENFASSUNG IN DEUTSCHER SPRACHE

Gorenstein Ringe bilden eine wichtige Klasse von Ringen in der kommutativen Algebra.
Die Grundlagen der Theorie der Gorenstein Ringen gehen auf die klassische Arbeit von
Bass [Bas63] zurück. Weitere Entwicklungen dieser Theorie sind im Artikel von Huneke
[Hun99] zusammengefasst.

IstR eine endlich erzeugte graduierte Gorenstein Algebra über einem algebraisch abgeschl-
ossenen KörperK, so kann manR als Restklassenring eines Polynomrings S=K[x1, . . . , xn]
nach einem homogenen Ideal I ⊂ S darstellen, wobei I in diesem Fall Gorenstein Ideal
genannt wird. Die Differenz k ∶= dim(S) − dim(R) heißt die Kodimension von I. Als
S-Modul besitzt die Gorenstein Algebra R die minimale freie Auflösung

0 Sb
S
k Sb

S
k−1 . . . Sb

S
1 Sb

S
0 S/I 0,

wobei bSk = bS0 = 1 gilt und bSi die Gleichung bSi = bSk−i für alle 1 ≤ i ≤ k erfüllt, siehe
Satz 1.1.5.8 und Satz 1.1.5.9. Die Struktur dieser Auflösung ist für k ≤ 3 bekannt.
Im Fall k = 1 und k = 2 wird das Gorenstein Ideal genau von k Elementen erzeugt
(d.h. I ist ein vollständiger Durchschnitt), see Kapitel 2, Abschnitt 2.1.1. Im Fall
k = 3 besagt der Satz von Buchsbaum und Eisenbud [BE77], dass man dieses minimale
Erzeugendensystem von I ist durch die 2m + 1 Pfaffschen Determinanten der Ordnung
2m einer schiefsymmetrischen (2m + 1) × (2m + 1)-Matrix A, siehe Kapitel 3, Abschnitt
2.1.2. Dabei erhält man die minimale freie Auflösung der Gestalt

0 S S2m+1 S2m+1 S S/I 0.A

Die Struktur der freien Auflösungen von Gorenstein Idealen der Kodimension 4 ist bis
heute nicht vollständig geklärt. Einige Fortschritte in dieser Richtung wurden von Gul-
liksen und Negård [GN72] gemacht. In diesem Artikel untersuchen sie den Gorenstein
Ring S/I, in dem S der Polynomring in rs Variablen xij , 1 ≤ i ≤ r, 1 ≤ j ≤ s, über einen
Körper K ist und I ein Gorenstein Ideal ist, das von den t-Minoren einer Matrix (xij)
erzeugt wird, für 1 ≤ i ≤ r und 1 ≤ j ≤ s. Sie konstruieren eine explizite minimale freie
Auflösung von S/I der Länge 4 für den Fall n = r = s, t = n − 1, wobei I ein Gorenstein
Ideal der Kodimension 4 ist. Zehn Jahre später haben Kustin und Miller [KM82] und
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[KM83] einige wichtige Ergebnisse über Gorenstein Ideale der Kodimension 4 erzielt.
Die Resultate von Kustin und Miller finden eine interessante Anwendung in der Kon-
struktion neuer Calabi-Yau-Mannigfaltigkeiten [Kap11] und der Klassifikation singulärer
Fano-Varietäten [PR04]. In [Rei13] entwickelte Reid die Ergebnisse von Kustin und
Miller weiter und verallgemeinert teilweise das Buchsbaum-Eisenbud Theorem [BE77],
siehe Kapitel 4, Abschnitt 4.1.

Reid betrachtet den Polynomring S = K[x1, . . . , xn] über einem algebraisch abgeschlosse-
nen Körper K und ein Gorenstein Ideal I ⊂ S, das von l + 1 Elementen erzeugt wird. Er
schlägt vor, dass die Struktur der minimalen freien Auflösung des Quotientenmoduls S/I
wie folgt ist

F ∶ 0 F4 F3 F2 F1 F0 S/I 0,
d4 d3 d2 d1 d0

wobei F0 = S, F4 = S, F1 = Sl+1, F3 = Hom(F1, F4) ≅ F ∗
1 und F2 = S2l. Außerdem ist

F2 Ð→ F1 dual zu F3 Ð→ F2. Durch Wahl geeigneter Basen von F2 und F3 erhalten wir
die Matrix A von d2, die die Form hat

A = [B C] ,

wobei B und C je (l + 1) × l-Matrizen sind, die die folgende Bedingung erfüllen

[B C] [
0 E
E 0

] [B C]
t
= 0.

Das ist äquivalent zu BCt + CBt = 0 oder zu der Aussage, dass BCt eine schiefsym-
metrische Matrix ist.

Die Struktur von Stanley-Reisner Ringen ist ein grundlegendes Werkzeug der algebrais-
chen Kombinatorik und kombinatorischen Algebra. Seine Eigenschaften wurden von
Richard Stanley, Melvin Hochster und Gerald Reisner in den 1970er Jahren untersucht,
siehe [Hoc77], [Sta78] and [Sta80].

Seien P ein simpliziales d-Polytop mit n Ecken {v1, . . . , vn} und ∆(P ) der Randkomplex
des Polytops P . Für einen Körper K definieren wir den assoziierten Stanley-Reisner Ring
von ∆(P ), als den Quotienten des Polynomringes S = K[x1, . . . , xn] nach dem Ideal
I∆(P ), das von quadratfreien Monomen erzeugt. Wir bezeichnen den Stanley-Reisner
Ring mit K[∆(P )].

K[∆(P )] = K[x1, . . . , xn]/I∆(P ),

wobei
I∆(P ) = (xi1 . . . xir ∶ i1 < i2 < . . . < ir, {vi1 , . . . , vir} ∉ ∆(P )).

Das ideal I∆(P ) wird Stanley-Reisner Ideal von ∆(P ) genannt.
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In dieser Dissertation wir betrachten Stanley-Reisner Ringe, die gleichzeitig Gorenstein
Ringe sind. Deshalb sind ihre Stanley-Reisner Ideale nach Proposition 1.1.5.16 Goren-
stein. Besondere Aufmerksamkeit widmen wir den zu simplizialen d-Polytopen mit d+ 4
Ecken assoziierten Stanley-Reisner Ringen, die eine wichtige Illustration für die Struk-
turtheorie von Kustin-Miller [KM82] und Reid [Rei15] in der Kodimension 4 darstellt.

Das Ziel der Dissertation ist, einige Fortschritte für die Struktur der minimalen freien Au-
flösungen von Gorenstein Idealen der Kodimension 4 durch die Untersuchung der Stanley-
Reisner Ringe zu erzielen. Andererseits beabsichtigen wir, die homologischen Methoden
der kommutativen Algebra mit der Untersuchung von simplizialen d-Polytopen mit d+ 4
Ecken zu verknünpfen. Die Strukturtheorie von Gorenstein Ringen soll mit kombina-
torischen Fragestellungen verknüpft werden. Der Ausgangspunkt für die Untersuchungen
ist die Verbindung zwischen der Klassifikation simplizialer d-Polytope mit d+3 Ecken und
dem Struktursatz von Buchsbaum und Eisenbud für Gorenstein-Ideale der Kodimension
3, [BE77], siehe Kapitel 3, Abschnitt 3.2.1.

Im Folgenden verstehen wir unter einem „Erzeugendensystem“ ein Erzeugendensystem,
das aus Monomen besteht.

Im ersten Kapitel erinnern wir an die Definitionen von minimalen freien Auflösungen der
endlich erzeugten Modulen über einen graduierten Polynomring mit einem homogenem
maximalem Ideal und der Hilbert-Reihe. Dann erinnern wir an vollständige Durch-
schnitte, Cohen-Macaulay Ringe und Gorenstein-Ringe, und wir zeigen die Beziehung
zwischen ihnen. Danach führen wir „Stanley-Reisner Ringe “ ein.

Im zweiten Kapitel erklären wir die Struktur der minimalen freien Auflösung des Quo-
tientenmoduls S/I, wobei S ein Polynomring ist and I Gorenstein Ideal der Kodimension
3 ist. Dieser Fall wird auch von Buchsbaum und Eisenbud in [BE77] behandelt. Dann
führen wir entsprechende kombinatorische Konzepte ein. Wir führen das Gale-Diagramm
der Eckenmenge V eines simplizialen d-Polytopes P mit d + 3 Ecken ein, siehe [Grü03,
Section 5.4 und Chapter 6] und [Zie95, Section 6.5]. Danach erläutern wir, wie das
minimale Erzeugendensystem von zu P assoziierten Gorenstein Stanley-Reisner Idealen
mittels Gale-Diagrammen bestimmt werden kann. Wir schließen das Kapitel ab, indem
wir die minimale freie Auflösung des Stanley-Reisner Rings beschreiben.

Im dritten Kapitel diskutieren wir einen Vorschlag von Reid [Rei15] zur Verallgemeinerung
des Buchsbaum-Eisenbud Theorems [BE77] auf Gorensteins Ideale der Kodimension 4.
Wir illustrieren dies anhand einiger Beispiele. Dann berechnen wir für d = 3, 4 explizit
die minimale freie Auflösung von zu simplizialen d-Polytopen mit d+4 Ecken assoziierten
Stanley-Reisner Ringen mittels Gale-Diagrammen

Im vierten Kapitel betrachten wir ein simpliziales d-Polytop P mit Eckenmenge V =
{v1, . . . , vn}, so dass 0 ∈ int(P ) und den Randkomplex ∆(P ). Wir wenden eine ra-
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diale Projektion von P vom Ursprung der Einheitssphäre Sd−1 an. Das Bild von V
unter dieser Projektion wird mit V ′ ∶= {v′1, . . . , v′n} bezeichnet, wobei v′i das Bild von
vi für i = 1, . . . , n ist. Dann verwenden wir die stereographische Projektion an jedem
Punkt v′i, für i = 1, . . . , n. Für jedes v′i erhalten wir ein simpliziales (d − 1)-Polytop,
das höchstens n − 1 Ecken hat, siehe Proposition 3.2.1.4. Dieses resultierende Polytop
wird mit Pi bezeichnet, wenn die stereographische Projektion am Projektionspunkt v′i,
und seine Eckenmenge ist V ′′ ∶= {v′′i1 , . . . , v

′′
ik
}, wobei v′′il das Bild von v′il unter dieser

Projektion ist. Für jedes solches Polytop gibt es einen assoziierten Stanley-Reisner
Ring K[∆(Pi)] = K[xi1 , . . . , xik]/I∆(Pi)

, wobei I∆(Pi)
das assoziierte Gorenstein Stanley-

Reisner Ideal zu Pi und ∆(Pi) der Randkomplex von Pi ist.

Jetzt fassen wir die Hauptergebnisse dieses Kapitels zusammen. Das erste Ziel ist, das
minimale Erzeugendensystem der assoziierten Gorenstein Stanley-Reisner Ideale I∆(Pi)

zu bestimmen. Wir geben einen Algorithmus an, der es uns erlaubt, dieses minimal
Erzeugendensystem zu bestimmen, wenn das minimale Erzeugendensystem des Goren-
stein Stanley-Reisner Ideals I∆(P ) bekannt ist.

Jetzt wenden wir uns Gorenstein Idealen der Kodimension 4 zu. Wir führen die folgende
Definition 4.2.0.1 ein, um eine Frage über Stanley-Reisner Ideale der Kodimension 4 von
Reid zu beantworten (siehe [Rei13, Open problems 4.9.4], [Rei15, Section 2.6]), siehe Satz
4.2.0.2.

Definition. 4.2.0.1 Seien S = K[x1, . . . , xn] ein Polynomring, f ∈ S ein Polynom und
seien I und I ′ Ideale in S. Wir sagen, I ist ein vollständiger Durchschnitt von I ′ und
f , wenn I = I ′ + (f) und f modulo I ′ nicht-Nullteiler in dem Restklassenring S/I ′ ist.

Also ist unser zweites Ziel in diesem Kapitel, den folgenden Satz zu beweisen:

Satz. 4.2.0.2 Seien P ein simpliziales d-Polytop mit d + 4 Ecken, ∆(P ) der Randkom-
plex von P und K[∆(P )] = K[x1, . . . , xd+4]/I∆(P ) der Stanley-Reisner Ring von ∆(P ).
Wenn das Gorenstein Stanley-Reisner Ideal I∆(P ) minimal von den Polynomen f1, . . . , f6

erzeugt wird, dann existiert ein i ∈ {1, . . . ,6}, so dass T (fi)∩T (fj) = ∅ für alle i ≠ j und
I ′ = (fj ∶ j ∈ {1, . . . ,6} ∖ {i}) ein Gorenstein Ideal der Kodimension 3 ist.

Schließlich ist das dritte Ziel dieses Kapitels, ein Gegenbeispiel einer Vermutung von Reid
zu geben (siehe [Rei13, Open problems 4.9.4]), nämlich dass jedes Gorenstein Ideal der
Kodimension 4 mit gerader Anzahl von Erzeugenden als vollständiger Durchschnitt von
einem Gorenstein Ideal der Kodimension 3 und einem zusätzlichem Polynom darstellbar
ist.

Im fünften Kapitel führen wir affine Gale-Diagramme simplizialer d-Polytopen mit d + 4
Ecken ein, siehe Definition 5.1.0.1. Gale-Diagramme solcher Polytope sind in R3, aber
affine Gale-Diagramme sind Teilmengen von Vektorräumen, deren Dimension um eins
kleiner ist als die Dimension des Vektorraumes, der eine natürliche Obermenge des zuge-
hörigen Gale-Diagramm bildet. Für d = 3, 4 konstruieren Grünbaum und Sreedharan alle
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simpliziale d-Polytope mit d+4 Ecken in [GS67]. Es gibt genau 5 kombinatorische Typen
simplizialer 3-Polytopen mit 7 Ecken und 37 kombinatorische Typen von simplizialen 4-
Polytopen mit 8 Ecken. Für all diese Polytope skizzieren wir affine Gale-Diagramme.
Das wird uns helfen, das folgende Hauptziel zu erreichen.

Seien P ein d-Polytop mit der Eckenmenge V = {v1, . . . , vd+4} und B̂ = {v̂1, . . . , v̂n} das
Gale-Diagramm von V . Sei B∗ = {v∗1 , . . . , v∗n} ein affines Gale-Diagramm von P , wobei
jeder Punkt v∗i entweder schwarz oder weiß ist. Es gibt eine kanonische Bijektion zwis-
chen B̂ und B∗, unter der vi auf v∗i abgebildet wird. Daher gibt es auch eine kanonische
Bijektion zwischen den Punkten vi von V und den Punkten v∗i vonB∗, siehe Bemerkung
5.1.0.2.

Wir charakterisieren das minimale Erzeugendensystem der Gorenstein Stanley-Reisner
Ideale I∆(P ) mittels affiner Gale-Diagramme für ein beliebiges d.

Satz. 5.3.0.2 Seien P ein simpliziales d-Polytop mit der Eckenmenge V = {v1, . . . , vd+4},
∆(P ) sein Randkomplex und die Konfiguration B∗ = {v∗1 , . . . , v∗d+4} ein affines Gale-
Diagramm von P . Seien K ein algebraisch abgeschlossener Körper und K[∆(P )] =
K[x1, . . . , xd+4]/I∆(P ) der Stanley-Reisner Ring von ∆(P ). Ein Monom xi1 . . . xik ist
genau dann ein Element des minimalen Erzeugendensystems des Gorenstein Stanley-
Reisner Ideals I∆(P ), wenn die Menge B∗ ∖ {v∗i1 , . . . , v

∗
ik
} die folgende Bedingung erfüllt:

Die schwarzen und weißen Punkte sind durch eine affine Hyperebene geteilt. Außerdem
gibt es keine echte Obermenge, die die vorherige Bedingung erfüllt.

Im sechsten Kapitel beginnen wir mit der Erklärung des Komplexes von Gulliksen und
Negård [GN72]. Dann wenden wir uns den entsprechenden kombinatorischen Konzepten
zu und führen die Begriffe der benachbarten und zyklischen Polytope ein.

Definition. 6.2.0.1 Ein benachbartes d-Polytop ist ein Konvexes d-Polytop, so dass jede
Menge seiner ⌊d/2⌋ Ecken eine Fläche überspannt. Manchmal wird ein Polytop genau
dann k-benachbart genannt, wenn jede Menge seiner k Ecken eine Fläche überspannt.

Definition. 6.2.0.2 Seien t1 < t2 < ⋯ < tn reele Zahlen. Das zyklische d-Polytop mit n
Ecken C = Cd(t1, . . . , tn) ist die konvexe Hülle von der Teilmenge {f(t1), f(t2), . . . , f(tn)}
⊂ Rd, wobei f ∶ R→ Rd durch f(t) = (t, t2, . . . , td) für t ∈ R definiert ist.

Unser Startpunkt ist ein zyklisches d-Polytop mit d+3 Ecken. Für assoziierte Gorenstein
Stanley-Reisner Ideale der Kodimension 3 zu diesen Polytopen bedeutet die Struktur-
theorie von Buchsbaum und Eisenbud, dass die minimale Anzahl von Erzeugenden eines
solchen Ideals eine ungerade Anzahl 2m + 1 ≥ 3 ist und dass dieses minimales Erzeu-
gendensystem als die 2m + 1 Pfaffschen Determinanten der Ordnung 2m einer schief-
symmetrischen (2m + 1) × (2m + 1)-Matrix A gefunden werden kann. Wir beschreiben
in diesem Kapitel diese Matrix explizit bezüglich für zyklische 2d-Polytope mit 2d + 3
Ecken.
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Satz. 6.2.1.1 Sei P ein zyklisches (2d − 2)-Polytop mit Eckenmenge V ={v1, . . . , v2d+1}
und sein Randkomplex ∆(P ). Sei K[∆(P )] = K[x1, . . . , x2d+1]/I∆(P ) der Stanley-Reisner
Ring von ∆(P ) und I∆(P ) das assoziierte Gorenstein Stanley-Reisner Ideal zu P . Dann
sind die Erzeugende von I∆(P ) Pfaffische Determinante der Ordnung 2d der schiefsym-
metrischen (2d + 1) × (2d + 1)-Matrix von Grad d

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x2d+1 xd+1 ⋯ 0
0 −x1 xd+2

0 ⋮
⋮

⋱ ⋱
0

−xd−1 x2d

x2d+1 ⋯ ⋯ 0 ⋯ ⋯ −xd

−xd+1 x1

0 −xd+2 x2

⋮ ⋮ 0
⋱ ⋱

⋮ 0
0 ⋯ −x2d xd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Wir können minimale Erzeugendensysteme von assoziierten Gorenstein Stanley-Reisner
Idealen zu allen simplizialen d-Polytopen mit d + 3 Ecken durch minimale Erzeugenden-
systeme von assoziierten Gorenstein Stanley-Reisner Idealen zu zyklischen d-Polytopen
mit d + 3 Ecken bestimmen. Wir erreichen das wie folgt: Wenn wir ein Produkt eines
Monoms (oder mehr) aus dem minimalen Erzeugendensystem des assoziierten Goren-
stein Stanley-Reisner Ideals zu einem zyklischen Polytop mit einer neuen Variablen (oder
mehr) nehmen, dann erhalten wir ein minimales Erzeugendensystem von dem assoziierten
Gorenstein Stanley-Reisner Ideal der Kodimension 3 zu einem Polytop der Dimension d+k
mit d + k + 3 Ecken, wobei k die Anzahl der neuen Variablen ist, siehe Beispiel 6.2.1.2.

Daher sind wir interessiert an assoziierten Gorenstein Stanley-Reisner Idealen zu zyklis-
chen d-Polytopen mit d + 4 Ecken. Da jedes zyklische Polytop ein benachbartes Polytop
ist, siehe Korollar 6.2.0.6, betrachten wir in diesem Kapitel nur benachbarte Polytope.
Grünbaum und Sreedharan konstruieren alle simplizialen 2-benachbarten 4-Polytope mit
8 Ecken in [GS67]. Es gibt genau drei kombinatorische Typen solcher Polytopen, von de-
nen zwei P 8

36, P
8
37 nicht zyklisch sind und das andere P 8

35 zyklisch ist, siehe Kapitel 2, Ab-
schnitt 3.2.2. In 1981 konstruiert Barnette [Bar81] eine Familie benachbarten Polytopen
für jede Dimension, die nicht zyklisch sind. Danach zeigt Shemer [She82] in 1982, dass die
Anzahl der kombinatorischen verschiedenen d-benachbarte 2d-Polytope mit 2d+4 Ecken
superexponentiell mit d→∞ wächst. In 1987 werden alle 3-benachbarte 6-Polytope mit
10 Ecken von Bokowski und Shemer [BS87] klassifiziert. Es gibt 37 kombinatorische
Typen von ihnen. In 2011 klassifizierte Devyatov [Dev11] d-benachbarte 2d-Polytope
mit 2d + 4 Ecken, die ein affines Gale Diagramm eines speziellen Typs mit genau d + 3
schwarzen Punkten in konvexer Position haben. Vor vier Jahren veröffentlichten Finbow
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in [FS04], [Fin10] und [Fin15] eine Liste der simplizialen 2-benachbarten 5-Polytope mit
9 Ecken. Es gibt genau 126 kombinatorisch verschiedene Typen solcher Polytope.

In 1996 berechnen Teria und Hibi [TH96] die Betti Zahlen der minimalen freien Au-
flösung des Stanley-Reisner Rings des Randkomplexes eines zyklischen Polytops. Dann
untersuchen Böhm und Papadakis [BP12] in 2010 die Struktur von assoziierten Stanley-
Reisner Ringen zu zyklischen Polytopen und zeigen, wie man den assoziierten Stanley-
Reisner Ring zu eines zyklischen d-Polytops mit n + 1 Ecken in Termen der assoziierten
Stanley-Reisner Ringen zu einem zyklischen d-Polytop mit n Ecken und einem zyklischen
(d − 2)-Polytop mit n − 1 Ecken ausdrückt.

Sei C ein zyklisches 2d-Polytop mit 2d+4 Ecken und Randkomplex ∆(C). Sei K[∆(C)]
der assoziierte Stanley-Reisner Ring zu C. Dann hat die minimale freie Auflösung von
K[∆(C)] über S ∶= K[x1, . . . , x2d+4], wie in [TH96] erklärt ist, die Form:

0 S(−(2d + 4)) S(−(d + 3))bS3 S(−(d + 2))bS2 t

S(−(d + 1))bS1 S K[∆(C)] 0,

wobei bS1 = (d + 2)2, bS2 = 2(d + 3)(d + 1) und bS3 = (d + 2)2.

Das heißt, assoziierte Gorenstein Stanley-Reisner Ideale zu zyklischen 2d-Polytopen mit
2d + 4 sind von (d + 2)2 Monomen vom Grad d + 1 erzeugt.

Deshalb verifizieren wir, ob in diesem Kapitel zyklische Polytope auch eine wichtige Rolle
für assoziierte Gorenstein-Ideale der Kodimension 4 spielen.

Vermutung. 6.2.0.7 Sei P ein simpliziales neighbourly 2d-Polytop mit 2d + 4 Ecken.
Das Polytop P ist genau dann zyklisch, wenn es eine (d + 2) × (d + 2)-Matrix A gibt,
so dass alle ihre (d + 1)-Minoren das assoziierte Gorenstein Stanley-Reisner Ideal zu P
minimal erzeugen.

Die direkte Richtung dieser Vermutung bedeutet, dass die minimalen freien Auflösungen
von assoziierten Stanley-Reisner Ringen zu zyklischen 2d-Polytopen mit 2d+4 Ecken als
eine spezielle Version des Gulliksen-Negård Komplexes zu einer (d + 2) × (d + 2)-Matrix
aufgefasst werden können. Wir beweisen diese Richtung vollständig. Für die Umkehrrich-
tung zeigen wir Vermutung 6.2.0.7 teilweise. In [Dev11] klassifizierte Devyatov spezielle
neighbourly 2d-Polytope mit 2d + 4 Ecken, die nicht zyklisch sind. Wir beweisen für
jedes Polytop von Devyatovs Polytopen, dass das zugehörige Gorenstein Stanley-Reisner
Ideal von genau (d + 2)2 Monomen erzeugt wird und alle Grad d + 1 haben, aber es gibt
keine quadratische (d+2)×(d+2)-Matrix, so dass ihre (d+1)-Minoren es erzeugen. Das
bedeutet, dass die minimale freie Auflösungen der assoziierten Stanley Reisner-Ringen zu
Devyatovs Polytopen nicht als eine Version des Gulliksen-Negård Komplexes aufgefasst
werden kann.
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Satz. 6.2.2.1 Sei P ein zyklisches 2d Polytop mit Eckenmenge V = {v1, . . . , vd+2,w1, . . . ,
wd+2} und der Randkomplex ∆(P ). Sei K[∆(P )] = K[x1, . . . , xd+2, y1, . . . , yd+2]/I∆(P )

der Stanley-Reisner Ring ∆(P ) und I∆(P ) das assoziierte Gorenstein Stanley-Reisner
Ideal zu P . Betrachte eine (d + 2) × (d + 2)-Matrix (oder ihre transponierte) der Form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 0 0 ⋯ yd+2

y1 x2 0 0 ⋯ 0
0 y2 x3 0 ⋯ 0
0 0 y3 x4 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ xd+2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Dann bilden die (d + 1)-Minoren ein minimales Erzeugendensystem von I∆(P ).

Daher charakterisieren wir das minimale Erzeugendensystem der assoziierten Gorenstein
Ideale zu speziellen neighbourly 2d-Polytopen mit 2d+4 Ecken, die nicht zyklische Poly-
tope sind und bei Devyatov [Dev11] klassifiziert wurden, siehe Satz 6.2.3.4. Wir beziehen
uns auf die affine Gale Diagramme dieser Polytope als T -Diagramme. Diese Diagramme
haben einen speziellen Typ, nämlich mit genau d+3 schwarzen Punkten in konvexer Po-
sition und d+ 1 weißen Punkten, die innerhalb des regelmäßigen (d+ 3)-Polygons liegen,
das durch den schwarzen Punkt gebildet wird, siehe Definition 6.2.3.1.

Proposition. 6.2.3.5 Sei P ein simpliziales d-benachbartes 2d-Polytop mit 2d+4 Ecken,
die bei Devyatov [Dev11] klassifiziert wurden, mit Eckenmenge V ={v1, . . . , vd+3,w1, . . . ,
wd+1} und der Randkomplex ∆(P ). Sei K[∆(P )] = K[x1, . . . , xd+3, y1, . . . , yd+1]/I∆(P )

der Stanley-Reisner Ring von ∆(P ) und I∆(P ) das assoziierte Gorenstein Stanley-Reisner
Ideal zu P . Dann wird I∆(P ) von genau (d+ 2)2 Monomen erzeugt und alle haben Grad
d + 1.

Wir zeigen die Umkehrrichtung der Vermutung 6.2.0.7 teilweise. Deshalb beweisen wir
den folgende Satz.

Satz. 6.2.4.1 Sei P ein simpliziales d-benachbartes 2d-Polytop mit 2d + 4 Ecken, die bei
Devyatov [Dev11] klassifiziert wurden, mit Eckenmenge V = {v1, . . . , vd+3,w1, . . . ,wd+1}
und der Randkomplex ∆(P ). Sei K[∆(P )] = K[x1, . . . , xd+3, y1, . . . , yd+1]/I∆(P ) der
Stanley-Reisner Ring von ∆(P ) und I∆(P ) das assoziierte Gorenstein Stanley-Reisner
Ideal zu P . Dann gibt es keine (d + 2) × (d + 2)-Matrix, so dass ihre (d + 1)-Minoren
minimale Erzeugende von I∆(P ) sind.

Unsere Vorarbeiten sind ein wichtiger Schritt hin zu einem Beweis unserer Vermutung
6.2.0.7, den wir dem geneigten Leser überlassen.
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