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Z U S A M M E N FA S S U N G

Die Anzahl der verfügbaren Genomsequenzen für verschiedene Pathogene

hat in den letzten Jahren ausserordentlich zugenommen. Bestehende tradi-

tionelle Methoden für die phylodynamische Analyse sind nicht effizient für

eine große Anzahl von Sequenzen. Um mit den heute verfügbaren Daten-

sätzen umzugehen, sind effiziente Heuristiken notwendig.

In dieser Arbeit wird ein annähender Maximum-Likelihood Ansatz zur

phylodynamischen Analyse entwickelt. Der Hauptzweck dieses Ansatzes

war es die Divergenzzeiten in grossen Sequenz Alignments von schnell

evolvierenden Organismen zu schätzen. Ausserdem bietet er die Funktion

ancestrale Zustände zu schätzen, Evolutionsmodelle abzuleiten, Bäume neu

zu wurzeln, um zeitliche Signale zu maximieren, sowie um Phylogenien der

molekularen Uhr und die Geschichte von Populationsgrössen abzuschätzen.

Die Laufzeit der meisten entwickelten Algorithmen verhält sich dabei linear

zur Grösse des Datensatzes. Grundsätzliche Anwendungsfelder für diesen

Ansatz sind epidemologische Studien sowie solche, die sich mit der Evolu-

tion von Pathogenen beschäftigen. Dies beinhaltet das Datieren von Trans-

missionen über Speziesgrenzen hinweg, wie auch das des Eintretens in ge-

ographiche Regionen, sowie die Untersuchung von Populationsgrössen von

Pathogenen.

Im zweiten Teil dieser Arbeit stelle ich die Interferenzschemata der Evo-

lutionsmodelle vor, die sich in der Substitutionrate ihrer Sites unterschei-

den. Diese Art von Modell kann nicht nur bessere Ergebnisse bezüglich

der Annäherung der phylogenetischen Rekonstruktion hervorbringen, son-

dern auch die evolutionären Kräfte vorhersagen, die auf Protein- oder DNA-

Sequenzen einwirken.
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A B S T R A C T

The number of genome sequences available for different pathogens has in-

creased dramatically over the last couple of years. Existing traditional meth-

ods for phylodynamic analysis scale poorly with the number of sequences.

Therefore, efficient heuristics are needed to cope with the growing data sets

available today.

In this work, an approximate maximum-likelihood framework for phy-

lodynamic analysis is developed. Its main purpose has been to estimate

divergence times in large sequence alignments of rapidly evolving organ-

isms. In addition, it provides a functionality to estimate ancestral states,

infer evolution models, re-root trees to maximize temporal signals, and es-

timate molecular clock phylogenies and population size histories. The run

time for most of the developed algorithms scales linearly with dataset size.

The basic application fields for the framework are studies for epidemiology

and pathogen evolution, including dating cross-species transmissions, dat-

ing introductions into geographic regions, and studying the time course of

pathogen population sizes.

In the second part of this work, I present an inference scheme for evo-

lutionary models with substitution rate heterogeneity among sites. These

types of models can not only result in a better approximation of the phylo-

genetic reconstruction, but also predict the evolutionary forces acting along

protein or DNA sequences.
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1
I N T R O D U C T I O N

The biodiversity observed on Earth today is the result of evolution. The evo-

lution at the molecular level (molecular evolution) is a process of constant

changes in DNA (or sometimes RNA) sequences across generations. The

main source of molecular evolution are mutations. They appear as errors of

DNA replications. Since they are a result of a chemical process, the muta-

tions are stochastic in nature and typically occur randomly across genomes.

Therefore, they introduce genetic diversity into populations. Different mu-

tations may have different effects on the phenotypes of individuals. Those

that increase an individual’s fitness spread through a population by natu-

ral selection. “Neutral” mutations might spread in a population by genetic

drift. They are also likely to be found in descendant generations. Mutations

that decrease fitness will eventually disappear from the genome. So, benefi-

cial and neutral mutations that once appeared in a genome are transferred

to future generations. They can be observed in DNA samples taken from

population genomes.

The sampled mutations can be used as genetic markers to reconstruct the

evolutionary history of populations (phylogeny). Phylogeny reconstruction

usually starts with the sampling and sequencing of the DNA from popula-

tions. DNA sequences are then aligned to form a multiple sequence alignment.

Phylogenetic algorithms usually operate on multiple sequence alignments.

The history of an alignment can then be represented as a phylogenetic tree. It

is a model that explains how the observed sequences evolved from a single

common ancestor. It shows their phylogenetic relationships and, therefore,

how they came to be what they are today. An example of a simple recon-

struction of an evolutionary history, i. e. the building of the phylogenetic

1



2 introduction

tree, is presented in figure 1. It shows the evolutionary relationships among

sequences and suggests the evolutionary times at which different mutations

occurred. Despite many biological processes, such as horizontal gene trans-

fer [Ochman et al., 2000; Keeling and Palmer, 2008] or recombination [White-

house, 1982] make the evolutionary process look more like a network, the

phylogenetic tree has always been at the basis of evolutionary reconstruc-

tions. For many purposes, trees make a very good approximation for the

process of molecular evolution.

Figure 1: A simple example of reconstructing the phylogeny from a multiple se-
quence alignment. The sequences are represented as lines, the mutations
are shown as dots of different colors. The more abundant the mutation in
the population, the earlier in history it appeared.

1.1 divergence time estimation

Assuming the evolutionary history of an alignment to be a tree, one can

make the trivial observation that any two sequences from the alignment

have a common ancestor. The most recent time when the ancestor existed

corresponds to a tree branching event, in which the two lineages for the

sequences were split apart. This type of evolutionary events is referred to as

a divergence event, and the time of the event is referred to as the divergence

time. The estimation of the divergence times in large samples is the central

topic of this work.

The issue of divergence times estimation has been addressed since the

very beginning of evolutionary studies. A well-known example is the anal-

ysis of lineages divergence in apes [Hasegawa et al., 1985; Moorjani et al.,
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2016]. The time scale of the events being studied varies dramatically —

from the divergence times of species from different kingdoms with a diver-

gence time scale of hundreds of millions of years [Doolittle et al., 1996], to

real-time studies in viral populations, with typical divergence times of tens

to hundreds of years [Leitner and Albert, 1999; Suzuki and Nei, 2002]. A

good example to illustrate the results of the enormous number of studies is

the Time Tree project [Hedges et al., 2006; Kumar et al., 2017], which does a

unique job of great importance to map and time-stamp the whole biodiver-

sity on Earth.
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Figure 2: An illustration of the molecular clock. The figure represents the number
of substitutions in a cytochrome C sequence in different species versus the
species divergence times. Data adapted from [Margoliash, 1963], Table 1.
The number of substitutions increases almost linearly with the divergence
times, which inspired the molecular clock hypothesis in 1963.

According to observations performed in the beginning of the 1960s by

different authors [Margoliash, 1963; Zuckerkandl and Pauling, 1965], the

number of substitutions in proteins from different species increases almost

linearly with times passed since the divergence of these species. One such
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measurement is illustrated in figure 2. The figure was built from the data

of Margoliash [1963], where the divergence times and the number of sub-

stitutions in cytochrome C were given for human, horse, rabbit, pig, tuna,

chicken, and yeast. This and similar observations led to the conclusion that

the number of substitutions in protein (and later in DNA) sequences ac-

cumulate linearly with time. Therefore, the mutations observed in these

molecules can be used to estimate divergence times in phylogenetic trees.

This idea gave rise to the Molecular clock hypothesis, which states that the

substitutions accumulate steadily in time, like the ticking of a clock. Since

then, the molecular clock has become a routine instrument to determine the

divergence times at different timescales [Yoder and Yang, 2000]. Another

conclusion that can be drawn from figure 2 (and other findings) is that the

molecular clock is not a perfect timepiece, but rather a stochastic clock, in

which the substitutions accumulation is a random process.

1.2 molecular clock models

The Strict Clock

The first molecular clock methods assumed a constant and universal substi-

tution rate in all species. Fossil records were used to determine the rate and

therefore to calibrate the known phylogenetic trees to the time scale. This

type of models is referred to as the “Strict-clock” model, which has only

one parameter: the rate of evolution. The strict clock model is calibrated

using the known dates from the fossil records and then applied to the un-

known dates by using linear regression [Doolittle et al., 1996]. Later tests

of molecular clocks [Langley and Fitch, 1974; Felsenstein, 1981] showed that

this strong assumption is often violated. The substitution rate is constant

only in closely related species, such as apes. Furthermore, it became ev-
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ident that substitution rates can vary among different parts of a tree and

among sites along a sequence. Several refinements of the original molecular

clock have been developed [Kumar and Hedges, 2016] to account for the

observed phenomena. Nevertheless, the strict clock model is still used as a

null model for testing for the presence of rate heterogeneities.

Maximum-likelihood

Likelihood-based approaches to infer divergence times started from a work

of [Felsenstein, 1981]. As follows from its name, the method uses the maximum-

likelihood criterion to choose the best reconstruction. The basis of the method

is to estimate the tree likelihood provided the data. The data in this case is

the alignment and the calibration dates for some nodes in a phylogenetic

tree.

The tree likelihood is the probability to observe the data (D) on a particu-

lar tree T :

L = Pr(D|T). (1)

The likelihood is related to the probability of data observation via the Bayes

theorem. Namely, the probability to observe the tree and the data together

is defined by:

Pr(D, T) = Pr(D|T)Pr(T) = Pr(T |D)Pr(D), (2)

where the first term in the multiplication is the tree likelihood. Note that

contrary to intuition and the common language meaning, the tree likelihood

is not the same as the probability of the tree, but rather the probability of

observing the data given a certain tree.
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The maximum-likelihood method (ML) considers the probability of each

tree explaining the given data based on a model of evolution. The tree with

the highest probability of explaining the data is chosen over others. In other

words, it compares how the observed data is predicted by different trees and

chooses the most suitable one from among all the trees.

This classical implementation of the ML is very computationally intensive,

as it attempts to infer phylogenies and divergence times as a joint optimiza-

tion problem. Therefore, it needs to explore a large subset of tree topologies

from the tree space.

The main advantage of the ML is that it uses probabilistic models of

sequence evolution, which take into account nucleotide substitutions and

substitution rates. The described classic implementation of the ML is still

widely used by some phylogenetic analysis tools [Rambaut, 2000; Sander-

son, 2003]. However, at the end of the 1990s and the beginning of the 2000s,

the Bayesian methods took over.

Bayesian

The Bayesian methods for divergence times estimation were introduced by

the works of [Thorne et al., 1998; Kishino et al., 2001]. A Bayesian method

is similar to the ML. It also uses the probabilistic criterion to search for the

best tree. However, unlike the ML, the criterion to be maximized is the

probability of a tree conditional on the data. According to the Bayes theorem,

this probability is:

Pr(T |D) =
Pr(D|T)Pr(T)

Pr(D)
. (3)

The denominator is the probability of observing the data, which can be rep-

resented as the marginalization over the tree priors: Pr(D) =
∑
i Pr(D|Ti)Pr(Ti).

Since it does not depend on the choice of a tree, it can be omitted from the



1.2 molecular clock models 7

optimization problem. Therefore, the Bayesian reconstruction finds an en-

semble of trees that maximize the expression: Pr(T |D) ∝ Pr(D|T)Pr(T) →

max. This is the main difference between the Bayesian and the ML methods:

the ML discards the prior probability Pr(T) and maximizes the likelihood,

whereas the Bayesian converts the prior to the posterior and maximizes the

latter. To enable an efficient search in the tree space, the Bayesian usually

uses the Markov Chain Monte Carlo methods (MCMC). The core idea of

the MCMC is to sample from the posterior distribution of the hypothesis

(in this case, the trees). If the number of samples taken is big enough, it

becomes possible to make probability statements about the true tree. For

example, if 90% of the samples from the posterior distribution have the {Hu-

man, Chimp} split, then we can say that the probability of this split being

in a true tree is 90%. Obviously, if the uncertainty in such a prediction goes

down as the number of samples increase.

The three main advantages of the Bayes approach over the ML in phy-

logeny reconstruction are that (i) it allows the inclusion of prior knowledge

on a trees distribution, (ii) it is more computationally effective through the

realization of MCMC methods, and (iii) it samples an ensemble of trees

rather than search for a single phylogeny. The Bayesian methods allow for

greater flexibility in accounting for uncertainty for the substitution rates, as

well as for “relaxing” the strict molecular clock. It also accounts for the

non-idealities in the reconstructed tree topologies [Drummond et al., 2012].

Among the software packages for molecular clock analysis, BEAST is one

of the most sophisticated tools [Drummond et al., 2012]. BEAST samples

many possible histories to evaluate posterior distributions of divergence

times, evolutionary rates, and many other parameters. BEAST implements

a large number of different phylogenetic and phylo-geographic models.
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A note on phylogeny reconstruction

Most of the modern approaches [Chor et al., 2006; Drummond et al., 2012;

Ho and Duchêne, 2014; dos Reis et al., 2015] aim to reconstruct tree topology

along with the molecular clock. The solution of this joint problem indeed

results in a phylogeny that is at the global optimum with respect to the in-

put data and the criterion used. This global optimization problem consists

of two major aspects: to reconstruct tree topology, and to optimize branch

lengths of the tree to satisfy the molecular clock. Reconstructing tree topolo-

gies alone is, however, a mathematically and computationally complicated

problem. There are several factors that define its complexity:

First, the evolutionary history of an alignment may be described by sev-

eral phylogenies. Moreover, there is no way of inferring the real phylogeny.

Therefore, some criterion is needed to choose one phylogeny from among

all the possible ones. In other words, there should be a way of saying that,

for a particular alignment, a particular tree is better than another. Differ-

ent reconstruction algorithms are based on different criteria to compare the

trees thus resulting in different phylogenies. The most frequently used cri-

teria are the minimum evolution, the maximum parsimony, and maximum

likelihood.

Second, the size of the tree space is exponential on the number of leaves,

which makes the brute-force search over all trees computationally prohibitive.

Therefore, efficient algorithms to search the tree space are needed. Indeed,

the tree space increases exponentially with the number of nodes and hence

it is unfeasible to apply the brute-force search to find the most appropriate

tree. Namely, there are (2n−3)!
2n−2(n−2)! different binary tree topologies with n

leaves.

These factors result in the exponential average run-time for most of the

modern phylogeny packages based on maximum likelihood [Chor and Snir,
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2004; Chor et al., 2006] or the Bayesian approach [Drummond et al., 2012].

Exponential run-time complexity results in run-times of days to weeks for

moderately large data sets of a few hundred sequences.

This makes them impractical to be applied to large data sets, which nowa-

days grow very fast thanks to the next-generation sequencing. For instance,

during the recent outbreaks of EBOV and the Zika virus, hundreds of se-

quences were generated and needed to be analyzed in near real time to in-

form containment efforts. Similarly, the GISRS network for the surveillance

of seasonal influenza virus sequences produces hundreds of viral genomes

per month. Doing a timely analysis of the data with the Bayesian methods

such as BEAST is unfeasible.

1.3 motivation

Efficient heuristics are needed to cope with the growing data sets available

today. The goal of my research has been to develop a fast and robust method

for divergence times analysis in large alignments of homologous sequences,

where other modern methods become impractical or computationally pro-

hibitive. The primary goal is to study the viral evolution, which is observed

in real-time and produces large amounts of data.

1.4 an outline of treetime

This work presents an approach to inferring the divergence times for se-

quence alignments with known evolutionary history. I have developed a

new framework called TreeTime, which combines efficient heuristics with

probabilistic sequence-based inference.

TreeTime infers maximum-likelihood time trees with a few thousand tips

within a few minutes. TreeTime was designed for application in molecular
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epidemiology and the analysis of rapidly evolving heterochronous viral se-

quences. It is already in use as an integral component of the real-time time

outbreak tracking tool-kit next-strain [Neher and Bedford, 2015]. The main

applications of TreeTime are ancestral state inference, evolutionary model

inference, and time tree estimation.

Since TreeTime is an ML-based framework, I discuss the theoretical as-

pects of the maximum-likelihood methods in Chapter 2. The TreeTime core

algorithms, its function, and implementation will follow in the subsequent

chapters.



2
M A X I M U M - L I K E L I H O O D M E T H O D S I N

P H Y L O G E N E T I C S

In this chapter, I describe the maximum-likelihood tools that constitute the

theoretical basis of the TreeTime algorithms. In the introduction, I already

mentioned the ML method. It scans the tree space and chooses a tree that

meets the maximum-likelihood criterion. In other words, this method searches

for the tree that maximizes the likelihood function:

Pr(D|T)→ max

The central part is how to calculate the tree likelihood. The calculation re-

quires a model for sequence evolution. Therefore, I describe one of such

models first. Then, I provide the mathematical description of the algorithm

to compute the tree likelihood. In the following part, I also provide ML algo-

rithms for ancestral sequences reconstruction and branch lengths optimiza-

tion. Most of the theory from this chapter has been thoroughly developed

by J. Felsenstein and other authors in the period from the late 1980’s till the

beginning of 2000’s.

2.1 a model of sequence evolution

To estimate the likelihood of a given phylogenetic reconstruction, one needs

a model that describes the possibility to realize a current evolutionary sce-

nario. Such models usually operate on DNA or protein sequences as on

strings of characters. Each character (the site of a DNA or a protein se-

quence) can be in one of the pre-defined states. For DNA sequences, there

11



12 maximum-likelihood methods in phylogenetics

are are four possible states: A, C, G, and T. For protein sequences, there are

20 possible states, which correspond to the one-letter codes for the amino-

acids. Substitution models describe relative transition probabilities between

the possible states in the process of evolution. The transition probabilities

between the character states are usually written in the form of a matrix Pij(t),

which denotes the transition from state j to state i in a certain period of time

t. This study is based on the class of time-reversible models. These models

assume that the character concentrations in the genome are in equilibrium at

each point in time. Therefore, the fluxes between different character states

are balanced in time, which is usually expressed as the detailed balanced

condition. Given that the character concentrations are in equilibrium, de-

note these concentrations as πi. Then, the detailed balance is written as

πi Pr(j|i, t) = πj Pr(i|j, t). (4)

Another important assumption for sequence evolution models is that the

substitution process (transition from one character to another) occurs ran-

domly and independently. Furthermore, the constant substitution proba-

bility along tree branches is assumed. The class of the evolution models

developed under these assumptions is referred to as General-Time-Reversible

models (GTR models) [Yang, 2006]

GTR models describe the transition process as the time-homogeneous

Markov process. According to the process, each site in the sequence is

treated as a random variable, which can be in a finite discrete number of

states. The Markov process specifies the transition probabilities from one

state into another in a certain period of time t. These probabilities are col-
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lected in the transition probability matrix Pij(t). To ensure the probabilistic

nature of the Pij, its rows should sum to 1:

n∑
j=1

Pij(t) = 1, ∀i ∈ {1..n}

and Pij(t) > 0 ∀t > 0. It should also fulfill the Chapman-Kolmogorov equa-

tion: P(t+ s) = P(t)P(s), and the initial conditions: Pij(0) = I, where I is

the identity matrix. For small values of t, the Pij(t) can be expanded into

the Taylor series up to the first derivative: P(t) = P(0) +Qt, where Q = dP
dt .

From this expansion, we can write (using the Chapman-Kolmogorov equa-

tion):

P(t+ dt) = P(t)P(dt) = P(t)(P(0) +Qdt)

According to the initial conditions, P(0) = I. Therefore, after trivial math-

ematical transformations, we obtain the differential equation for the transi-

tion probability between character states in a sequence over time t:

dP
dt

= P(t)Q,

which is solved to

Pij(t) = e
Qt (5)

where Qij is the matrix that denotes the transition probabilities between

states j→ i per unit of time.

The eq. 5 is the central part of the GTR model. It provides a straightfor-

ward way to compute the transition probabilities between character states

separated by time t once the Q matrix is known. The assumption of inde-

pendent evolution between sites makes the transitions occurring at differ-

ent sites to be independent probabilistic events. Therefore, this assumption
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leads to a simple way to compute the transition probability from sequence

S1 to sequence S2 over time t:

Pr(S2|S1, t) =
∏
α

(
eQt
)
iαjα

(6)

where the product is taken over all sequence sites α.

The solution of the eqs. 5, 6 requires the exponentiation of the transition

matrix Qij, which is the computationally expensive problem for an arbitrary

matrix. However, given the time reversibility assumption, the Qij matrix can

be diagonalized by applying the spectral decomposition:

Q = UΛij(t)U
−1,

where

Λij(t) =



λ1t . . .

... λ2t 0
. . . ...

0 . . . λnt


and λi is the ith eigenvalue of the matrix Q. Given this decomposition, the

computation of the matrix exponent in the eq. 5 is trivial:

eQt =
∑
j

(Qt)k

k!
= UeΛij(t)U−1.

The decomposition makes it possible to compute the transition probabilities

over time t analytically.
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The parametrization of the Q matrix

The transition rates matrix has a form ensuring the probability conservation:

∑
i

Pi = 1⇔
∑
i

Qij = 0, (7)

and the detailed balance:

Qijπj = Qjiπi, (8)

where πi are the stationary populations, obtained by solving ∂Pi(t) = 0. It is

now easy to show [Felsenstein, 2003] that the rate matrix can be decomposed

in terms of equilibrium state populations and a symmetric attempt matrix

Wij =Wji as

Qij = πiWij for i 6= j (9)

Qii = −
∑
j 6=i
Qji. (10)

For short times (t << 1), the transition from state j to state i can be

obtained by using the Taylor expansion of the matrix exponent:

Pij(t) =
(
eQt
)
ij
≈ (1+Qt)ij = δi,j +Qijt = δi,j + πiWijt, (11)

where the expansion implies that time t is very short in the scale of the mu-

tation rate, i. e. of the inverse eigenvalues of the GTR matrix. In particular:

Pii(t) ≈ 1−
∑
j 6=i
πjWjit, and (12)

Pij(t) = πiWijt for i 6= j. (13)
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2.2 tree likelihood calculation

The GTR essentially models the probabilities of a sequence to evolve into

another sequence in over a certain period of time. This provides a direct way

to calculate the likelihood for a particular phylogenetic tree reconstruction.

Recapitulate, that the tree likelihood is the probability to observe data on a

certain tree:

L = Pr(D |M),

The following computation of the tree likelihood repeats the logic and as-

sumptions from [Felsenstein, 2003]. The mathematical derivation is partially

based on the work of [Pupko et al., 2000]. The likelihood L is usually calcu-

lated under assumptions that

(i) The evolution is independent in different lineages

(ii) The evolution in different sites in sequence is independent

As before, the second assumption allows to decompose the likelihood of

a sequence evolution into the product of likelihoods for character evolution:

L = Pr(D| T) =
∏
α

Pr(Dα| T), (14)

where Dα is the data at α’s site. Therefore, one can compute the likelihood

for each single character first, and then multiply the results to get the full

likelihood.

In figure 3, a small example for likelihood computation is shown. The tree

likelihood is the probability to observe the given sequence states at the tree

leaves, given the tree:

L = Pr(Dα| T) =
∑
x

∑
y

Pr(C,C,A, x,y| T), (15)
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x

t1 t2

y

t4

t3

C C
A

Figure 3: Illustration to the tree likelihood computations. The likelihood of the tree
is the joint probability of observing the character states at the leaves of the
tree, given the topology and branch lengths.

where the summation is performed over all possible character states x,y

of the internal node in the tree. Given the assumption of the independent

evolution in different lineages, the evolution in different tree branches is

independent. So, the probability of observing all tree states simultaneously

can be decomposed into the product of probabilities:

Pr(C,C,A, x,y| T) = Pr(A| y, t4)Pr(x| y, t3)Pr(C| x, t1)Pr(C| x, t2)

Using the decomposition above, the tree likelihood can be computed using

the dynamic programming algorithm. The algorithm is based on the itera-

tive computations of the likelihoods of subtrees of the given tree. For the

example in figure 3, the likelihood of the subtree rooted at node x is then

Pr(Dx|x) = Pr(C| x, t1)Pr(C| x, t2), which denotes the probability of every-

thing below or at the node x (the subtree of node x), conditional on the state

x. Dx is the data of the x subtree, i.e. the sequences observed at the leaves

of the x subtree. The likelihoods of the parent subtrees can be recursively

expressed through that of the child subtrees. For example, for a node s,

which has children l and m with branch lengths between parent and chil-
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dren tl and tm, and pre-computed likelihoods Ll and Lm (see figure 4), the

likelihood is given by the expression:

Lk(s|p,Ds, ts) = Pr(s|p, ts)

(∑
x

Ll(x|s)

)(∑
y

Lm(y|s)

)
(16)

This likelihood is the likelihood of the s subtree given the subtree data Ds,

and the state of the parent node p. The quantity Pr(s | p) is the probability of

observing the transition from the parent state p into the child state s, which

is given by the GTR model eq. 5:

Pr(s|p, ts) =
(
eQijt

)
iαjα

,

where α denotes the site in the sequence, which the likelihood is computed

for. iα and jα are the character states on both sides of the tree branch at

the site α. It is convenient to represent the subtree likelihood as a vector,

l

m

s

ts

p

tm
tl

Pr(s|p, ts) = eQts

Ll(x|s, tl)

Lm(y|s, tm)

Figure 4: Recursive computation for the likelihood of a subtree s, if the likelihoods
of the children is known.

which length is the number of possible states. The ith element of the vec-

tor represent the likelihood of the subtree conditional on the parent state i:
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~Lk = |Lk(1),Lk(2), ...,Lk(n)|. For instance, for nucleotide sequence, there are

four possible states: A,C,G,T, which likelihoods are represented as elements

of a four-dimensional vector: ~Lk = |Lk(A),Lk(C),Lk(G),Lk(T)|. From the

above, it is now clear how to construct an algorithm, which computes the

likelihood of the tree. It should start from the tips of the tree and grad-

ually calculate the likelihoods of the internal nodes, visiting them in post-

order. At each step, the likelihood of an internal node is computed from

the data, obtained at previous steps. At the first iteration step, the initial

values of the likelihood vector are defined as the probabilities to observe

substitution from states p to the observed states i: Lp = |Pr(i|p)|, where s

is the state of the leaf node. For example, if the state of the node is A = 1,

then this vector contains the probability of mutation from any state to A:

Li = |Pr(A|A), Pr(A|C), Pr(A|G), Pr(A|T)|. After the likelihoods of the tree

leaves are defined in this way, the likelihood of the internal nodes is com-

puted iteratively according to the procedure described. At the last step, the

root state should be corrected to the stationary concentrations of the char-

acter states to eliminate the “sampling bias” and thus maintain the time-

reversibility of the solution. The root likelihoods should therefore be multi-

plied by the stationary concentrations πi defined in GTR model. In the end,

the total tree likelihood, which accounts for a single character evolution, is

the sum over all possible root states:

L(Dα| T) =
∑
x

πxLα,r(x) (17)

To get the total tree likelihood, one needs to compute the L(Dα| T) for each

character independently, and then multiply all single-character likelihoods

together, according to the eq. 14. Thus constructed algorithm comprises the

classic dynamic programming approach. This particular implementation

requires one tree traversal per each character, and hence it has linear com-

plexity on the number of nodes N and the sequence length L: T ∝ O(NL)
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2.3 ancestral sequences reconstruction

The algorithm described beforehand gives the straightforward way to esti-

mate likelihoods of different phylogenies. Resulting likelihoods are marginal-

ized over all possible states of the internal nodes, i.e. they take into account

every possible combination of ancestral states.

Another fundamental problem, which is approached by the ML methods,

is ancestral states reconstruction. In the scope of maximum-likelihood meth-

ods, this problem is formulated as follows: to maximize the tree likelihood

in respect to states of the internal nodes. Essentially, it means that instead

of summing over all possible internal node states, one should maximize the

likelihood function in respect to those states:

L({xi}) = Pr(Dα| T)→ max, (18)

where {xi} denote the possible states of all internal nodes.

Joint reconstruction

The joint reconstruction is accomplished using the same logic as for the tree

likelihood computation. The likelihood of an internal node is determined

by taking maximum over all possible states rather than by summation. This

modifies the eq. 16 to:

Lk(s|p, ts) = Pr(s|p, ts)
(

max
x

Ll(x|s)
)(

max
y

Lm(y|s)

)
(19)

The eq. 19 defines the maximum likelihood of a subtree conditional on the

parent node state, and assumes that all child likelihoods are maximized.

The state of the root is defined as one, which defines the maximum of the

root likelihood function. This maximum is iin turn, the likelihood of the
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particular ancestral states reconstruction. To reconstruct states of all other

internal nodes, one more tree traversal is needed. The second iteration starts

at the root node, which state is defined by

LR = max
x
πxLr(x). (20)

The value x, which corresponds to the maximum of L function is assigned

to be the state of the root node. Then, all other internal nodes in the tree

are visited in pre-order (parents first). At each step of the second itera-

tion, the states of the internal nodes are reconstructed from the parent node

state i and the likelihood of the node’s subtree conditional on the parent:

~Lk = |Lk(1),Lk(2), ...,Lk(n)|. The latter expression is the likelihood vector

described above. The ith position of this vector is the likelihood of the sub-

tree given the parent state i, so the subtree likelihood is reconstructed by

simply choosing the ith element of this vector. Obviously, the character state

of the internal node, which defines the value of this reconstructed likelihood

should be also reconstructed. It may be stored as a separate vector Ck along

with the Lk vector. The algorithm describes the the single-character recon-

struction. So, to accomplish the full sequence reconstruction, each character

should be reconstructed independently, and then the full likelihood of the

reconstruction is obtained by multiplication over the character likelihoods.

The complexity of the algorithm is obviously the same as for the tree likeli-

hood computation, which is O(NL).

Marginal reconstruction

The joint reconstruction assigns maximum-likelihood states to all nodes at

once. There is however, another way to find the maximum-likelihood states

for the ancestral sequences. That is, for each internal node, find its maxi-

mum likelihood sequence marginal over all possible states of the other in-
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ternal node sequences. The result of such reconstruction is the maximum

likelihood assignment of internal node states conditional only on the leaf

sequences. This type of ancestral sequence reconstruction is referred to as

marginal reconstruction. The algorithm is similar to that for the joint re-

construction. It also requires the two tree traversals. The first tree traversal

is similar to that of the tree likelihood determination with only difference

that the likelihoods from all children nodes should be stored for the second

traversal. The likelihood vector is also marginalized over all possible states

of the child nodes, as shown in eq. 16. Note that at each iteration step, the

likelihood is conditional on the leaves of the subtree of the particular internal

node. All states of the intermediate nodes are marginalized. The likelihood

is yet unconditional on the nodes of the complementary subtree, except for

the root node, which subtree corresponds to the full tree. The root sequence

is therefore determined straightforward, as given by eq. 20. Reconstruction

of the other internal nodes is however, more complicated, because account

for the complementary subtree data is required. This reconstruction is made

in the second (pre-order) tree traversal. At each iteration step of this second

tree traversal, the sequence likelihood conditional on the all leaves data is

restored. This likelihood consists of the three parts. First, the likelihood

of the node conditional on the parent state, and the states of all leaves of

the node n subtree (Dn): Ln(n|p, tn,Dn). It has been computed in the first

tree traversal. This likelihood is conditional on the parent state. Ton resolve

this condition, the two other likelihood inputs have to be taken into account:

(i) the likelihood of the parent node conditional on the “upstream” subtree

data (Dp), and (ii) the likelihood of the parent node conditional on the sib-

ling node data (Ds). The three ingredients of the likelihood of an internal

node n are sketched in figure 5. The likelihood of the node n is obviously

Ln(n|D) = Ln(n|p,Dn) ·Lp(p|Dp ∪Ds),
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n
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p

Ln(n|p, tn,Dn)

s

Ls(s|p, ts,Ds)
ts

L(p|Dp,Ds)

Dp = D/{Dn ∪Ds}
“upstream” subtree data

Ds

“sibling”
subtree data

LlLk

Figure 5: Reconstructing the node n ancestral state conditional on the leaf states D.
The n state likelihood conditional on the node’s subtree data Dn has been
computed in pre-order iteration. The conditions of the complementary
subtree are to be accounted for on the post-order iteration. The data of
the complementary subtree is comprised of the two parts: (i) the sibling
node s subtree dataDs and (ii) the “upstream” tree dataDp = D/Dn ∪Ds.
Under the assumptions made, the L(n|D) = L(n|P,Dn)L(p|Dp,Ds)

where the first term is the likelihood calculated in the first tree traversal, the

the second term is the likelihood of the parent node given the complemen-

tary leaves:

Lp(p|Dp ∪Ds) = Lp(p|Dp) ·Lp(p|s,Ds),

Using the time reversibility, the second multiplier is transformed into:

Lp(p|Ds) = Ls(s|p,Ds),

which is the same as the likelihood of the node n being computed in the

first tree traversal. Finally, the node likelihood is:

Ln(ni|D = {Dn ∪Ds ∪Dp}) = Ln(pi|Dn) ·Ls(si|p,Ds) ·Lp(pi|Dp) (21)
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where Ln(ni) is the likelihood of the character at node n to be in ith state.

The states of the parent (pi) and sibling (si) node are defined similarly. So,

the final likelihood shown in eq. 21 is defined as a vector, which elements

define the likelihood of a character to be in the state ni. The maximum-

likelihood state of the node n is then reconstructed by choosing the state

i, which defines the maximal value of the Ln(ni). The algorithm requires

some complications compared to the joint reconstruction.

First, during the pre-order traversal, all likelihoods from left and right sub-

trees should be stored for the pre-order traversal. Second, the pre-order tree

traversal requires additional computations rather than simple reconstruction

of the sequence states. The algorithm’s run-time complexity is nevertheless

O(NL), which is the same as of other ML methods discussed so far.

2.4 branch lengths optimization

GTR models define the probability of two characters to be separated by

time t. These probabilities can be calculated for every possible time thus

leading to the probability distribution. For a single character, the analytical

solution is trivial to find — it is defined by the eq. 5. In case of the equal

characters, the distribution is a simple exponential decay. For non-equal

characters, this distribution looks like 1 − e−t function. (see figure 6, left

panel). In case of multi-character sequence, and under the assumption of

the independent substitution across sites, the probability of a branch to have

length t is defined by multiplication of eq. 5 over all sites:

Pr(t) =
∏
α

(
eQt
)
iαjα

, (22)

where for each site α transition from state jα to state iα is observed. The mul-

tiplication over many functions like on the left panel in the figure 6 results

in a bell-shaped function, similar to one shown in the right panel. The prob-
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Figure 6: The likelihood distributions to observe the child given the parent and the

branch length t.
Left panel shows the likelihood distributions for single character se-
quences computed from Jukes-Cantor model [Jukes and Cantor, 1969] for
equal and different character states.
Right panel shows the branch length likelihood distribution for multi-
character sequences. This distribution is multiplication over the relevant
single character distributions. The example presented is the branch length
distribution for two Influenza H3N2 sequences of the NA segment. The
sequences are 1407 nucleotides long, the distance between them are 25

substitutions.

lem to optimize a branch length is to find the length t, which corresponds

to the maximum value of the distribution 22.

The problem to find maximum-likelihood lengths for all tree branches is

the coupled to the problem of ancestral sequence reconstruction. Indeed,

the ancestral sequence reconstruction uses the GTR model to calculate the

probability of each two sequences being separated by some time t. The time

in this case is the branch length, therefore, the ancestral reconstruction relies

on the branch lengths. On the other hand, the branch length optimization

requires knowledge of the ancestral sequences to calculate the branch length
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distributions. Traditionally, this problem is solved as the optimization prob-

lem with branch lengths and sequences together as free parameters:

L(D|T)→ max
{ti}

, (23)

where optimization is made in respect to all branch lengths {ti}, and marginal-

ized over all possible internal node sequences. Given that the likelihood in

eq. 23 is the continuous function on the branch lengths, its solution is usually

searched as:

dL(D|T) = 0.

For the methods in this work, we, however, designed a different approach.

In our algorithms, we decouple the ancestral sequence reconstruction from

the branch length optimization to conquer them separately, and optimize

iteratively. At the beginning, the approximate ancestral sequences are re-

constructed with or without usage of the initial branch lengths. The latter

is accomplished using the Fitch parsimony algorithm [Fitch, 1971]. Then,

the branch lengths are optimized independently followed by the reconstruc-

tion of the ancestral sequences. This procedure repeats iteratively until the

ancestral sequences converge to their stationary values.



3
T R E E T I M E

The maximum-likelihood methods described in the previous chapters pro-

vide us with the theoretical basis to discuss the algorithms that we have

developed to build time trees. The algorithms are combined in a single pack-

age, which we refer to as TreeTime. TreeTime was developed with large hete-

rochronous viral sequence alignments in mind. Currently, it is already used

as the core component of the nextstrain real-time phylogenetic pipeline

[Nextstrain, 2017].

Compared to other methods recently developed for rapid estimations of

time trees [Britton et al., 2007; Tamura et al., 2012; To et al., 2016], treetime

uses GTR models, thus allowing inference of ancestral sequences and coa-

lescent models. TreeTime tries to strike a useful compromise between inflex-

ible but fast heuristics and computationally expensive Bayesian approaches,

which require extensive sampling from the tree space. The overarching al-

gorithmic strategy is iterative optimization of efficiently solvable subprob-

lems to arrive at a consistent approximation of the global optimum. While

this strategy is approximate and often assumes short branch lengths, it con-

verges fast for many applications. Trees with thousands of tips can be an-

alyzed in a few minutes. The time tree inference and dating are typically

faster than the estimation of the tree topology.

27
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3.1 divergence times reconstruction

Core algorithm

The core problem that is approached by the TreeTime is to find the maximum-

likelihood divergence times in a given phylogenetic tree. The data used as

input for the ML optimization are the multiple sequence alignment and its

phylogeny. Sequences of the alignment are time-stamped (i. e. the sam-

pling dates are known), thus providing information to build a time tree by

introducing constraints for ML optimization. In other words, the TreeTime

solves the following optimization problem:

LH(D|ni,M)→ max, (24)

where D is the data, which comprises the alignment, the sampling dates

and the tree topology. ni are the internal node positions, and the M is the

chosen model.

The core idea behind the ML inference of the divergence times is illus-

trated in figure 7. Knowing the sequences of the nodes n, m and the parent

node p, the probability distributions for the branch lengths τn, τm are cal-

culated from the GTR model. Given that the positions of the nodes n, m

are fixed by their sampling times tn and tm, the branch length distributions

define the likelihood of the parent node time tp. The independence of the

parallel lineage evolution leads to the parent node likelihood L(tp|tn, tm) to

be the multiplication of the children branch length distributions. The like-

lihood computed in this way is conditional on the positions of the nodes n

and m only.

TreeTime implements the described procedure to calculate divergence

times in a dynamic programming manner. The tree is traversed from chil-

dren to parents. At each iteration step, the times of nodes are calculated
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Figure 7: An illustration of the process to infer the ML divergence time of the in-
ternal node p, whose children sampling dates tn and tm are known. The
GTR model defines the probability distributions for the branch lengths τn
and τm, which, in turn, allows one to calculate the likelihood distribu-
tion L(tp) of the parent node p time tp. The resulting optimal position
of the parent node opt_tp is a “trade-off” between the optimal positions
reported by the children: opt_tn and opt_tm.

based on the constraints introduced by the child nodes. The logic of the

algorithm is similar to that of the ML ancestral sequence reconstruction.

The key difference from the approach in Chapter 2 is that the present al-

gorithm should account for the infinite number of possible node positions,

whereas the former approach deals with the finite number of possible char-

acter states.

The algorithm requires two tree traversals. The first traversal is in post-

order to build the subtree likelihoods conditional on the parent position.

Then the root position is fixed followed by the tree traversal in pre-order to

reconstruct the maximum-likelihood times of the other internal nodes.

Joint reconstruction

The joint reconstruction starts with the tree traversal in post-order. Terminal

nodes are visited first. For these nodes, priors on the sampling dates are
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determined. If the exact sampling date for a node is known, the prior is the

delta-function distribution δ(t). Otherwise, an appropriate prior is built to

account for known information of the sampling date, e. g., for cases when

only the sampling year is known. In case no sampling date information is

provided, the terminal node time is defined by its branch length distribution

on the second tree traversal.

After the terminal node distributions are set, internal nodes likelihood

distributions are built gradually based on the data from children. At each

iteration step, the likelihood distribution of the internal node time is com-

puted depending on the subtree data and the position of the parent node.

The example of such computation is shown in figure 8. Post-order traversal

ensures that the current node n is visited only after its children c and c2.

So, at the time n is visited, the likelihood distributions for c, c2 are known.

These distributions are conditional on the n’s time tn. Therefore, the joint

likelihood of a subtree n conditional on the tn is as follows:

Ln(tn) =
∏
c

L(tc|Dc, tn) (25)

where the product is taken over all children. To propagate the likelihood

to the parent, the condition on tn is changed to the condition on the parent

node time tp:

L(tn|tp, {Dc}) = max
τn

[
Pr(τn = tp − tn)

∏
c

L(tc|Dc, tn = tp − τn)

]
(26)

The first term in the eq. 26 is the probability that the sequence of the parent

node p is evolved into the sequence of the child node n over the time τn.

This probability was defined by the GTR model (see eq. 6). The maximum is

taken over all possible values of the branch length τn. Thus, eq. 26 defines

the maximum likelihood distribution of the n time conditional on the time
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of parent node time tp. The likelihood distribution eq. 26 implies also that

all subtrees of node n are assigned with the maximum likelihood times.
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Figure 8: To the calculation of the internal node times. The likelihood of the node
n is computed conditional on the parent node location tp and hence the
branch length τn. The subtree likelihoods of the children have been com-
puted on the previous iteration step.

In the last step of the post-order traversal, the tree root is visited. Its time

is assigned to maximize the subtree likelihoods of the root clades:

L(tn|tp, {Dc}) = max
tn

[∏
c

L(tc|Dc, tn = tp − τ)

]
(27)

The eq. 27 determines the joint likelihood of a given tree conditional on the

alignment, and all given sampling dates of the tree leaves. The value of tn,

which defines the maximum of the distribution in eq. 27, is the maximum

likelihood time for the tree root. This is the time of the most recent common

ancestor of the alignment (Tmrca).

To reconstruct all other divergence times, the pre-order tree traversal is

needed. In each step of the second traversal, the internal node times are re-

constructed using (i) the pre-computed likelihood distributions and (ii) the

position of the parent node tp. The former defines the likelihood distribu-



32 treetime

tions for node time tn conditional on the parent node time tp: Ln(tn|tp).

So, using the position of the parent node p, the likelihood and the position

of the child node n are easily reconstructed. In this way, the times of the

internal nodes are reconstructed starting at the root node and finishing at

the tree leaves.

Marginal reconstruction

Marginal reconstruction of the divergence times provides likelihood distri-

butions conditional on the sampling dates of the leaves and marginalized

over all other internal node positions. In contrast to the joint reconstruc-

tion, it provides the likelihood distributions for each internal node position,

which can be used, among other things, for error rate or confidence intervals

estimation (note that the joint reconstruction provides the maximum likeli-

hood position only). The algorithm requires more thorough computations

to be performed, though. The logic of the algorithm implementation is simi-

lar to that of the joint reconstruction. It also requires two tree traversals. The

first one is in post-order starting to build the likelihood distributions of the

subtrees conditional on the parent. The second is in pre-order to reconstruct

the internal nodes likelihood distributions from parent node times. On the

post-order tree traversal, the likelihoods of internal nodes are constructed as

follows. The likelihood for node n is marginalized over all possible times

of the internal nodes in the subtree. This marginalization modifies the equa-

tion 26 to the following expression:

L(tn|tp, {Dc}) =
∫
τ

dτ

[
Pr(τ = tp − tn)

∏
c

L(tc|Dc, tn = tp − τ)

]
(28)

where, as before, the Pr(τ = tp− tn) is the probability of the parent sequence

evolved into the child sequence over time τ. Note that the marginalization of
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the node position is performed only on the internal nodes of the current sub-

tree. The additional marginalization, on the complementary subtree, should

be made in the second (pre-order) tree traversal. At the last step of the

post-order traversal, the root node time distribution is defined as

LR(tR) =
∏
c

L(tc|tR)

The time of the root node is then the maximum of the above distribution.

Similarly to the marginal reconstruction of ancestral sequences, the distribu-

tions from the left and right subtrees should be stored in order to provide

the “messages” from the complementary subtrees (see figure 5 and the ex-

planation in the text for details). In order to complete the marginalization

and propagate the condition from the parent to the leaves, the data from the

“upstream” tree, as well as that of the “complementary” subtree, should be

taken into account. This is accomplished by combining the likelihood distri-

butions from the “upstream” tree and from the complementary subtree into

one likelihood distribution

Lp(tp|Dp ∪Ds) = Ls(ts|tp,Ds) ·Lp(tp|Dp)

Note that to account for the conditions on the missing data only, one should

track the subtrees that have not yet contributed to the likelihood distribution

of the particular node time. Thus, for the root left child, the “upstream

tree” is the right subtree and, for the left child, the “upstream tree” is the

right subtree. Finally, to compute the likelihood distribution of an internal

time tn, it should be marginalized over all possible positions of the parent
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node (conditional on data Ds and Dp). Therefore, the final likelihood of the

internal node is

Ln
(
tn|{Dn ∪Dp ∪Ds}

)
=

∫
dτLn(τ|tp,Dn) ·Lp(tp = tn+ τ|Ds ∪Dp) (29)

Two things to note in the above equation are: (i) the first term under the

integration is the function of τ, because the Ln is conditional on the parent

node time tp through the branch length; and (ii) the inverse direction of time

in the pre-order traversal changed the sign tp − τ to tp + τ, which converted

the convolution function in eq. 28 to convolution-like integral in eq. 29. The

integral eq. 29 defines the final likelihood distribution of the node n. This

distribution is built for each internal node by traversing the tree in pre-order,

starting from the root and finishing at the leaves. In this way, all distribu-

tions for the internal node positions are reconstructed, which completes the

description of the core algorithm of the TreeTime.

Tree pre-processing

In the description of the TreeTime core algorithm, I assumed that the proba-

bility distributions for all branch lengths are known. Moreover, I made some

implicit assumptions without explanation. In this paragraph, the missing

discussion is presented.

Before divergence times can be reconstructed, a few tree preparations

should be done. First, as noted above, the branch length distributions

should be calculated. This, in turn, requires the knowledge of the ances-

tral sequences. This is done by the iterative inferring of the ancestral se-

quence coupled to the branch length optimizations as shown in Chapter 2.

The resulting tree has the maximum-likelihood branch lengths and ances-

tral sequences. All branches of the tree are in the units of the substitu-
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tion probabilities. The TreeTime, however, is designed to infer the dates

of the internal nodes given the sampling dates of (some) leaves. The sam-

pling dates are usually provided in some human-readable calendar format.

Therefore, a conversion between the branch length units and the calendar

dates is needed. The natural conversion of this sort is the molecular sub-

stitution rate. Assuming the molecular clock, the number of substitutions

should increase linearly with time. Hence, the substitution rate is simply

the regression coefficient between the evolutionary distance from root and

the sampling dates. Thus defined, the substitution rate can be inferred from

the input tree. An example for substitution rates assessment is shown in

figure 9.
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Figure 9: The molecular clock for Influenza H3N2, an HA segment. Twenty se-
quences were randomly chosen from a bigger alignment.

One should note that, to infer the substitution rate by the described pro-

cedure, the sequence samples should be taken at various times including

those close to the tree root. For viral samples, this is usually not a problem,

because of the rapid evolution, which causes 1% divergence accumulation

within just a few years. For other organisms, however, the inference might

not be that straightforward. For these cases, TreeTime provides the possibil-
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ity to omit the substitution rate inference and allows instead for providing

a substitution rate obtained elsewhere.

3.2 treetime additional functionality

Efficient search for the optimal root

As has been shown above (see figure 9), the molecular clock for a given tree

is built by relating the root-to-tip distance of the tree leaves to the sampling

dates. This molecular clock regression can be used to find a better root

position in the tree. The best root position is searched my maximizing the

molecular clock correlation coefficient. The correlation coefficient is given

by

r2 =

 N
∑
i tidi −

∑
i ti
∑
i di√

N
∑
i d
2
i − (
∑
i di)

2
√
N
∑
i t
2
i − (
∑
k ti)

2

2 (30)

where the sum runs over all tips i of the tree and ti and di are the sam-

pling date and the distance from the root to node i, respectively. The re-

gression and r2 depend on the choice of root via the di. The naive imple-

mentation of the maximization of the r2 takes O(N2) time to compute: for

each of (approximately) 2N− 1 internal nodes, N leaves should be scanned

to determine the di for the current internal node. This implementation is

usually used even in popular phylogenetic software such as TempEst [Ram-

baut et al., 2016] or LSD [To et al., 2016]. However, the optimization problem

can be solved in O(N) time using the dynamic programming approach that

I have developed for TreeTime. It requires two tree traversals: one in post-

order to compute the di and other auxiliary values, and one in pre-order to
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reconstruct the r2 for each node based on the pre-computed values. Denote

the values:

Θi =
∑
i

di, γi =
∑
i

diti, δi =
∑
i

d2i , τi =
∑
i

ti (31)

During the post-order tree traversal, the following auxiliary values are

computed iteratively, using the result of the computation for the child nodes:

Θi,Nst =
∑

children

(Θi,cst +ncLc)

γi,Nst =
∑

children

(γi,cst + τi,cstLc)

δi,Nst =
∑

children

(δi,cst + 2LcΘi,cst +ncLc) ,

where subscript Nst denotes that the values computed for node N take into

account only the data from the subtree of N, while subscript cst stands for

the values pre-computed for the child node subtree. nc is the number of

the leaves in the child node subtree and Lc is the branch length between

child node c and node N. In the last step of the post-order tree traversal,

the values for the root node are computed. Given that the subtree of the

root node is the complete tree, the st subscript can be omitted for the root

node and therefore all data for computing the regression for the root node

is obtained. To get the same data for all the other internal nodes in the tree,

a second tree traversal is performed. During the second tree traversal, each

node is visited in pre-order. The following values are computed for each

node N:

Θi,N = Θi,p + (nup −ndown)L

γi,N = γi,p + L (τi − 2τi,Nst)

δi,N = δi,p + 2LΘi,p − 4 (LΘi,Nst + Lndown) +nL
2
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where the N subscript shows that the corresponding values are computed

for nodeN and they account for all the leaves of the subtree. The p subscript

stands for the parent node and the Nst subscript shows where values com-

puted for the subtree of node N are used. n is the total number of leaves

in the tree, ndown is the number of leaves in the N subtree, and nup is the

number of leaves in the subtree complementary to N: nup = n− ndown. L

is the branch length between node N and its parent. Given the computed

values, the regression coefficient for each node N is calculated along the sec-

ond tree traversal, to get the values r2N. To take into account that the best

root can be in a branch between existing nodes, the above expressions are

adapted using the following reasoning. If the root is assigned to node Np,

it will result in the correlation coefficient r2Np . By moving the root along the

branch by length L, the new root would end up at node N and the regres-

sion will be r2N. If the root is moved by an intermediate value x, then the r2

will result in a continuous function r2(x), defined separately for each branch

in the tree. Therefore, by finding the maximum for the r2(x) on the closed

segment x ∈ [0,L], the optimal root position is obtained for each branch

separately. The r2 is the rational function of x, defined as

r2(x) = Const
αx2 +βx+ γ

µx2 + νx+ δ

with the coefficients expressed through the values of θi,γi, δi. The points of

the function extreme are defined by solving the equation

d
dx
r2(x) = 0,

which leads to the quadratic equation with roots given by the following

expression:

x1,2 =
−(αδ− µγ)±

√
(αδ− µγ)2 − (αν−βµ)(βδ− νγ)

αν−βµ
.
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The solutions are checked to (i) exist in R and (ii) to belong in the interval

x ∈ [0,L]. If any of the solutions belong in the valid interval x0 = x1,2 ∈ [0,L],

the value of the function at the extreme point x0 is compared to the function

values at the ends of the interval: r2max = max
{
r2(0) = r2Np , r2(L) = r2N, r2(x0)

}
.

The maximum value shows the best regression coefficient for the local root

position. The chosen value of x is then the best local position of the root

node on the branch between N and Np. The procedure to find the best local

root for every branch is repeated iteratively for each internal node in the tree.

The global solution for the best root is also performed during this iteration.

The global value of the best regression coefficient is stored as a separate

variable. Each optimal local regression coefficient is then compared to the

global optimum and, in case the local regression is better than the current

value of the global r2, the latter is overridden by the new optimal value, and

the position of the best root is updated. In the end, the tree is re-rooted

to the new best root. A new clade is inserted in the middle of a branch if

needed.

Resolving polytomies

Phylogenetic trees of many very similar sequences are often poorly resolved

and contain multifurcating nodes also known as polytomies. Tree building

software often randomly resolves these polytomies into a series of bifurca-

tions, because the sequences themselves have no information on the order

they should be joined together. The order of such randomly inserted bifur-

cations is often inconsistent with the temporal structure of the tree resulting

in poor approximations. To overcome this problem, TreeTime makes an at-

tempt to use the additional information from sequence time stamps and to

resolve the polytomies in a manner consistent with the sampling dates.



40 treetime

It first prunes all branches of length zero. Then, for each pair of nodes,

TreeTime estimates by how much the likelihood would increase when group-

ing this pair of nodes into a new clade of size two. Then, the polytomies are

resolved iteratively by merging the pairs resulting in the highest likelihood

gain.

Since the TreeTime algorithm finds the maximum-likelihood positions for

all nodes, the position for a root of a polytomic clade will result in the “trade-

off” in the branch lengths of its children. Some of them will end up having

branches longer than the optimal values (“stretched branches”), and some

will have branches shorter than the optimal length (“compressed branches”).

The procedure to merge the stretched branch lengths is shown in figure 10.

Merging two stretched nodes with introduction of a new binomial node, re-

sults in the highest likelihood gain, which consists of the following parts: (i)

the gain due to making the branch lengths values closer to their optimal val-

ues and (ii) loss in likelihood because of the introduction of the new branch

with zero optimal length. This estimate is not exact because polytomies res-

olution result in change of the parent node position. The likelihood gain

by merging the “compressed” nodes, however, is not as significant. Assum-

ing the fixed position for the parent node, merging the “compressed” nodes

does not gain anything, because they remain compressed, just introducing

a new clade with the zero-length branch. In real cases, sometimes a slight

decrease in the overall tree likelihood in observed after resolving the com-

pressed nodes. This effect is due to increasing the entropy of the tree (the

order of merging the “compressed” nodes is arbitrary and hence all possible

tree variants are equal).

Because the merging procedure requires to build the likelihood gains for

each node, and repeat this procedure n times, the computation complexity

of the merging is O(n3), where n is the number of polytomies in the tree.

However, this complexity is local to the multifurcating clade. For all practi-

cal cases, the number of polytomies in the tree is small relative to the total
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Figure 10: Estimation for likelihood change by merging two stretched branches.
The estimation does not take into account possible changing of the poly-
tomies root. The likelihood increases because of relaxing the existing
branch lengths to suboptimal values (∆Pr(τm), ∆Pr(τm), the latter is
not shown). The newly inserted branch decreases the likelihood gain by
the value −∆Pr(τp), because its optimal length is zero.

number of nodes. Therefore, the polytomies resolution does not affect the

overall TreeTime computation complexity.

Autocorrelated molecular clock

Substitution rates can vary across the tree and models that assume constant

clock rates may give inaccurate inference. Models that allow for clock-rate

variation have been proposed [Hasegawa et al., 1989; Yoder and Yang, 2000;

Drummond et al., 2006]. These models typically regularize the clock-rate

through a prior and penalize rapid changes of the rate by coupling the rate

along branches – known as autocorrelated or local molecular clock [Thorne

et al., 1998; Aris-Brosou et al., 2002]. TreeTime implements an autocorre-

lated molecular with a normal prior on variation in clock rates. The rate

variation is implemented in TreeTime by assigning to each branch a muta-

tion rate factor γ, so the local mutation rate is γ 〈µ〉, where 〈µ〉 is the average
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mutation rate given by the GTR model. The rate variation is determined by

maximizing the expression

∑
i

(γiLi − Li,opt)
2 +

α∑
i

(γ− 1)2 +β
∑
i,j

(γi − γj)
2

→ max (32)

where the summation is taken over all nodes. Li is the observed branch

length, Li,opt is the optimal branch length. The first term allows to relax the

mutation rate to its optimal value. The second term restricts the the muta-

tion rate deviation from the average value, (“stiffness”), and the third term

restrict the rate variation across sibling nodes (“coupling”). The solution of

the above optimization problem is found in linear time similar to the e.g.

forward/backward trace algorithm used for the inference of internal nodes.

It involves two tree traversals: in post-order to assign the values conditional

to parent and given that all downstream are set to optimal followed by the

pre-order traversal to reconstruct the optimal values.

Inference of time reversible substitution models

Large phylogenies typically contain 100s of substitutions and thus provide

enough information to infer substitution models from the data. TreeTime im-

plements an iterative algorithm to infer general time reversible substitution

models [Felsenstein, 2003] parameterized by equilibrium state frequencies πi

and a symmetric substitution matrix Wij. The instantaneous rate from state

j→ i is Qij = πiWij. The model is inferred by first counting the time spend

in different states across the tree Ti and the number of substitutions between
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nij in a joint maximum likelihood assignment using a simple substitution

model. Then, π and W are determined by iterating

Wij =
nij +nji + 2pc

πiTj + πjTi + 2pc
(33)

πi =

∑
j nij + pc +mi∑

jWijTj +
∑
j(mj + pc)

, (34)

where pc is a small pseudo-count driving the estimate towards a flat Jukes-

Cantor model in absence of data, and mi are the number times state i is

observed in the sequence of the root. In each iteration, the π is normalized

to one, the diagonal of Wij is set to −π−1i
∑
j 6=iWijπj, and Wij is rescaled

such that the total expected substitution rate −
∑
πiWiiπi equals one. The

rescaling of π and Wij can be absorbed into an overall rate µ. This algorithm

typically converges in a few iterations.

Coalescent priors

The genealogical tree of individuals within a species depends on the size of

the population, its geographic structure, and fitness variation in the popu-

lation [Kingman, 1982; Nordborg, 1997; Neher, 2013]. In the simplest case

of a panmictic population without fitness variation, the genealogies are de-

scribed by a Kingman coalescent [Kingman, 1982], possibly with a popula-

tion size that changes over time. Within the Kingman coalescent, any two

lineages merge at random with a rate λ(t) that depends on the population

size N(t) and the current number of lineages k(t).

λ(t) =
k(t)(k(t) − 1)

2N(t)
(35)

The rate at which a given lineage merges with any of the other lineages is

κ(t) = (k(t) − 1)/2Tc(t). Here, the population size N(t) defines a time scale
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measured in units of generation time and we will more generally refer to

this time scale by Tc(t) and measure it in units of the inverse clock rate.

The contribution of a branch between time points t0 (child) and t1 (parent)

in the tree to the likelihood is then given by

p(t0, t1) = e
−
∫t1
t0
dtκ(t) , (36)

where a merger at time t contributes with rate λ(t)

TreeTime adds the contribution of each branch to the coalescent likelihood

the branch likelihood object, which are then parameterized by the starting

and end point of the branch, bn(tn, tn + τ). The total coalescent likelihood

given a tree can be evaluated in one tree traversal such that Tc can be opti-

mized efficiently. In addition to a constant Tc, TreeTime can model Tc as a

piecewise linear function. Such piecewise functions are known as “skyline”

[Strimmer and Pybus, 2001] and can be optimized by TreeTime as well.

3.3 case study : analysis of the 2014-2015 ebola virus outbreak

In 2014, West Africa experienced the largest known outbreak of Ebola Virus

(EBOV) in humans. The genomic epidemiology has been studied intensively

by multiple groups [Dudas et al., 2017]. Here, we reanalyzed a subset of 350

EBOV sequences sampled throughout the outbreak from 2014-2016. Due

to the dense sampling, the maximum likelihood phylogeny has many unre-

solved nodes and TreeTime was used to resolve polytomies using temporal

information. After automatic rooting and GTR model inference, TreeTime
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produced the time tree shown in figure 11. The GTR model inferred from

the tree was

π =

A : 0.32

C : 0.21

G : 0.195

T : 0.275

W =

A C G T

A · 0.45 2.7 0.28

C 0.45 · 0.25 3.7

G 2.7 0.25 · 0.45

T 0.28 3.7 0.45 ·

(37)

TreeTime ran 4min on a regular laptop to complete this analysis. In ad-

dition to inferring a time tree, TreeTime estimated the time course of the

coalescent population size shown in the lower panel of figure 11. The esti-

mated population size closely mirrors the case counts reported by the WHO

throughout this period.
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Figure 11: EBOV phylodynamic analysis. The top panel shows a molecular clock
phylogeny of EBOV sequences obtained over from 2014-2016 in West
Africa. The lower panel shows the estimate of the coalescent population
size along with its confidence intervals. The estimate suggest an expo-
nential increase until late 2014 followed by a gradual decrease leading to
almost complete eradication by 2016. Ebola case counts, as reported by
the [WHO, 2016] agree quantitatively with the estimate.
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T R E E T I M E VA L I D AT I O N

4.1 objectives

TreeTime was tested predominantly on mildly diverged sequences from

viruses. The iterative optimization procedures are not expected to be ac-

curate for trees were the many sites are saturated. In such scenarios with

extensive uncertainty of ancestral states and tree topology, convergence of

the iterative steps can not be guaranteed. While in many cases TreeTime

might still give approximate branch length and ancestral assignments and

time tree estimates, these need to be checked for plausibility. In general

global optimization and sampling of the posterior can not be avoided.

4.2 validation on simulated data

To assess the accuracy of date reconstructions of treetime and to compare

its performance to existing tools such as BEAST and LST [Drummond et al.,

2012; To et al., 2016], we generated toy data using the FFPopSim forward

simulation library [Zanini and Neher, 2012]. We simulated population of

size N = 100 and used a range evolutionary rates µ = 10−5, . . . , 0.002 result-

ing in expected genetic diversity from 0.001 to 0.2. Sequences were sampled

every 10, 20, or 50 generations. The length of the simulated sequences was

L = 1000.

47
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Divergence times and mutation rate

figure 12 shows the error in the estimates of the clock rate for TreeTime,

LSD, and BEAST as a function of the evolutionary rate. TreeTime and LSD

estimates of the clock rate are very accurate for small rates but tend to under-

estimate the rates at when diversity exceeds a few percent. This is expected,

as maximum likelihood inference underestimates branch lengths. BEAST

tends to overestimate small rates and is accurate when branches become

long. By sampling trees, BEAST does not suffer from the atypical maximum

likelihood assignments.

In a similar manner, TreeTime, LSD, and BEAST estimate the time of the

most recent common ancestor to within 10% accuracy (relative to the coales-

cence time) across the range of simulated data.
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Figure 12: Estimation of the evolutionary rate from simulated data by TreeTime,
LSD, and BEAST. TreeTime and LSD (after tree reconstruction using Fast-
Tree) underestimate the rate when branch length are long. BEAST tends
to overestimate the rate at small rates. The error bars denote ± one stan-
dard deviation.

We also ran TreeTime on simulated data provided by [To et al., 2016] and

compared it to the results reported by [To et al., 2016] for LSD, BEAST and
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Figure 13: Estimation of TMRCA from simulated data by TreeTime, LSD, and
BEAST. All three programs estimate the time of the MRCA with 10%
accuracy, except for the very long branches when TreeTime tends to over-
estimate the age of the root. Error bars show one standard deviation.

a number of other methods. figure 14 compares the accuracy of TMRCA

and clock rate estimates, showing that TreeTime achieves similar or better

accuracy than other methods.

Coalescent model inference

Population bottlenecks, selective sweeps, or population structure, affect the

rate of coalescence in an often time variable way. BEAST can infer a his-

tory of effective population size (inverse coalescent rate) from a tree – often

known as skyline. TreeTime can do a similar inference by maximizing the

coalescence likelihood with respect to the pivots of a piecewise line approxi-

mation of the coalescence rate history Tc(t). To test the power and accuracy

of this inference, we simulated sinusoidal population size histories of differ-

ent amplitude and period, uniformly sampled sequences through time, and

used these data to estimate the coalescent rate history. Comparisons of true

and estimated histories are shown in figure 15.
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Figure 14: LSD test data. TreeTime has comparable or better accuracy as BEAST
(BSMC), LSD (LD, QPD), or root-to-tip regression (RTT) when run on
simulated data provided by [To et al., 2016]. Both panel use the tree set
750_3_25, the top and bottom panel show runs on alignments generated
with a strict and relaxed molecular clock, respectively.
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Figure 15: Reconstruction of fluctuating population sizes by TreeTime. The graph
shows simulated population size trajectories (dashed lines) and the in-
ference by TreeTime as solid lines of the same color. Different lines
vary in the bottleneck sizes of 10%(red), 20%(green) and 50%(blue) of
the average population size. The top panel shows data for fluctuations
with period 0.5N, the bottom panel 2N. The average population size is
N = 300.
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4.3 validation on influenza phylogenies

The dense sampling of influenza A virus sequences over many decades

makes this virus an ideal test case to evaluate the sensitivity of time tree

estimation to sampling depth. We estimated the clock rate and the time of

the most recent common ancestor of influenza A H3N2 HA sequences sam-

pled from 2011 to 2013 for sets of sequences varying from 30 to 3000, see

figure 16. TreeTime estimates are stable across this range, while estimates

by LSD tend to drift with lower rates and older MRCAs for larger samples.

Estimates by BEAST are generally concordant with TreeTime.
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Figure 16: Variation of the estimate of the rate of evolution of H3N2 and the for
different sensities of sampling.

Next, we tested how accurately TreeTime infers dates of tips when only

a fraction of tips have dates assigned. Every tip in TreeTime can either be

assigned a precise date, an interval within which the date is assumed to be

uniformly distributed, or no constraint at all. TreeTime will then determine

the probability distribution of the date of the node based on the distribution

of the ancestor and the substitutions that occurred since the ancestor. We

tested the accuracy at which missing dates can be inferred in an influenza

phylogeny by erasing date information of a fraction (5% to 95%) of all nodes,

see figure 17.
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In summary, on data sets with short branches but fairly unambiguous

topologies, timetrees inferred by TreeTime have similar accuracy to those

inferred by BEAST but results are obtained in a fraction of the time.
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Figure 17: Tip dating and sensitivity to missing information. A) The inter-quartile
range of the error of estimated tip dates decreases from 0.7 years to 0.5
years as the fraction of known dates increases from 5% to 90% (see inset).
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T R E E T I M E M O D U L E

5.1 python package

TreeTime code has been developed with the usability and extensibility in

mind. To facilitate the user-interactions and provide easy-to-use API, we

chose to write the core code in Python-2.7 programming language. All

algorithms of TreeTime are published open-source and are distributed as

TreeTime package under MIT license. The source code can be found on [GitHub,

b]. The complete set of the validation scripts is also available on-line [GitHub,

c]. These scripts also present thorough examples of the TreeTime usage.

The TreeTime algorithms and classes can be used in larger phylogenetic

analysis in python scripts. This is the most flexible way to use TreeTime.

All the different analysis steps can be combined in custom ways with pa-

rameters. In addition, the command-line scripts are provided for typical re-

curring tasks such as ancestral state reconstruction, re-rooting to maximize

temporal order, and time tree inference.

5.2 source code structure

The lower layer is implemented as TreeAnc class, which purpose is to per-

form the standard operations and to provide a user with the basic standard

algorithms, such as ancestral sequence reconstruction and inference substi-

tution models.

53
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The middle layer, presented by the ClockTree class implements the basic

functionality to build time trees. It realizes the core algorithms presented in

the chapter 3.

The top-most layer, which is in the TreeTime class is to provide the ad-

ditional functionality and, more important, to define the computational

pipeline, to split the global optimization problem into iteration levels, and

to implement iterative divide-and-conquer approach.

The core complication in implementing the algorithms in code has been

to properly deal with the likelihood distributions for branch lengths and

node dates as well as to perform the integration and interpolation and

transformations of the distributions. The distributions are implemented as

Distribution, NodeInterpolator, and BranchLengthInterpolator classes,

which encapsulate all necessary mathematical operations. The general time-

reversible model is implemented through the GTR class, which provides a set

of the most popular standard models for nucleotide and amino acid evolu-

tion. In addition, the possibilities to define random and user-specific models

are implemented.

5.3 implementation of likelihood distributions

The central part in implementing the mathematics is to properly discretize

the likelihood distributions and to implement mathematical operations (in-

tegration, convolution, multiplication, and others) on the discrete functions.

Another complication is that despite computing the exact values from the

analytical expressions is possible, it is impractical due to its complexity, so

the approximations should be introduced where needed.
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Branch lengths

The basic functions are the likelihood distributions for the branch lengths.

All other distributions for the TreeTime analysis are built on the basis of the

branch length distributions. The branch length distributions can be evalu-

ated from their analytical expressions in eq. 22. These evaluations are used

to determine the maximum likelihood branch length (refer to as “mutation

length”). The determination of the maximum likelihood is done using the

Brent optimization algorithm via its standard implementation of the SciPy

python library. The maximum likelihood branch lengths are then used to (i)

optimize the tree as described in the pre-processing section of chapter 3 and

(ii) to properly interpolate the branch length likelihood distribution.

To interpolate the branch length distributions, first the grid is constructed.

The construction the grid for the branch length distributions consists of the

two cases: (i) grid for the branch with no substitutions and (ii) for the branch

where one or more substitutions occurred. In the former case, the branch

length distribution is just an exponentially decaying function, which is a

straight line in log-scale. The grid construction for the latter case is made by

concatenating the three independent grids for the following regions of the

branch lengths: x ∈
[
0, x0

)
, x ∈

[
x0, 5 ∗ x0

)
, x ∈

[
5 ∗ x0,∞), where x0 is the

mutation length of the branch. In the first two regions, the grid constructed

is linearly spaced, whilst in the third region, the space between the grid

points is increased exponentially. For the infinity, an arbitrary big number

has been chosen. In addition, several points were placed around zero branch

length in order to increase the precision of the branch length evaluation

around zero length.

Given a grid constructed in this way, a branch length probability is eval-

uated in the node points of the grid followed by the linear interpolation

of the branch length distribution. Further grid refinement using the algo-



56 treetime module

rithms described below are also used, where the interpolation quality is not

enough.

Node positions

Discretizing branch length distributions is a trivial problem due to the pres-

ence of the natural scale on the t-axis, and the knowledge of the function

properties (location of the maximum, curvatures, definition area). For the

derivative distributions, however, there is no such prior information. There-

fore, the problem of constructing the grid for these distributions arise. The

solution of that problem is shown below for the example of the convolu-

tion between the branch length distribution g(τ) and another distribution

f(t). f(t) which can be computed previously, or alternatively, it can given

as a prior of a leaf date. Both input distribution are understood as inter-

polated discrete functions. The problem is to find an interpolated function

F(t) =
∫∞
−∞ f(t − τ)g(τ)dτ for t ∈ (−∞,∞) with the precision not worse

than the precision of interpolating f,g. The range of t is understood as “any

practical value of t”. To address the problem, a special grid {ti} should be

constructed, and the values F(ti) should be evaluated followed by the con-

struction of the interpolated function. To evaluate the error of the linear in-

terpolation between points x1, x2 , the standard expression is used: R 6 Mh2

8 ,

where M = maxx∈[x1,x2]f
′′(x), and h is the grid step. Given the expression

for the interpolation error, the grid construction is as follows. First, the

rough position of the maximum for the function F(t) is determined. This

position is calculated by simply shifting the peak position of f(t) by the

value of the peak position of g(τ). Due to the following refinement proce-

dure, the precision for the peak determination is enough. Then, a small grid

is constructed around the peak position. The typical number of points for

this preliminary grid is 50–100, the number has been found empirically to
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provide a good trade-off between the computation cost and the initial preci-

sion. Then, the error of the function determination is estimated between the

interpolation points, and additional, uniformly spaced, points are inserted

where needed until the function error is lower than the given error rate. The

procedure used in practice to detect the segment where grid refinement is

needed is comparing the error rate with some tolerance rate:

F ′′(ti) > 0.01 ·
(
1+

ymax − yi
10

)4
,

where the 0.01 is the overall tolerance coefficient, and the multiplier is to

attenuate the tolerance for regions far from the distribution maximum. The

typical values for the coefficients and exponent are found empirically to

gain the best trade-off between the grid density (and hence the computation

cost) and the interpolation precision. In practice, the equation above is used

to estimate roughly the number of the points to be inserted in the selected

region:

Npoints =
F ′′(ti)

0.01 ·
(
1+ ymax−yi

10

)4
The grid is iteratively refined this way until the function is determined with

the required precision in the whole interpolation region. The procedure de-

scribed allows to define grids specifically for each function, with the points

density correlating with the function curvature so that the interpolation pre-

cision is always higher than the pre-defined tolerance.

5.4 processing pipeline

TreeTime solves several coupled optimization problems. For instance, op-

timization of the branch lengths, inferring the ancestral sequences, and in-

ferring the GTR model are all coupled problems and therefore should be

optimized simultaneously. In addition, making a time tree would perturb
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the branch lengths and thus may influence the ancestral sequences and the

resulting GTR model. Therefore, it should also be included in this global op-

timization problem. The same consideration may be extended to the other

parts of the TreeTime functionality.

To maintain the simplicity, and linear scaling of the TreeTime run-time,

we split the global optimization problem into sub-problems. These sub-

problems are conquered iteratively. The solution for each subproblem is

conditioned on the optimal solutions of the other ones. This approach allows

split the global problem into sub-problems, to conquer these sub-problems

in the iterative manner, and finally obtain the global optimum solution. The

iteration is used on multiple levels, converging the joint solutions of the

subproblems to the global optimum.

The simplified pipeline of the TreeTime run, which illustrates the iterative

approach described, is shown in figure 19.

Such an iterative procedure typically converges quickly when the branch

lengths of the tree are short such that ancestral state inference has little

ambiguity.
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Figure 19: Main pipeline of the TreeTime framework. Inference of time tree, which
is the core functionality of the TreeTime, is highlighted in pale orange.
Our approach is to split the complex optimization problem into subprob-
lems, and then iteratively solve each of them. The previously obtained
solutions for sub-problems are re-calculated where needed.

5.5 web application

We have also implemented a web-application for the TreeTime. It allows

exploration and analysis of heterochronous alignments in browsers without

the need to use the command-line. Another virtue of using the server ver-

sion of TreeTime is that it provides the computational power of our servers

to end users. It aims to facilitate the usage of TreeTime and to broaden the

audience using its algorithms.
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The server version of TreeTime implements only the standard well-tested

functionality though. So, for any type of a custom analysis, the command-

line version is still necessary. The web application is located in the server of

Basel University [treetime.ch].

The server part of the TreeTime web has been written in python to provide

natural access to the TreeTime algorithms. The server is based on the Flask

Python library. To enable TreeTime and server interaction, a small wrapper

class has been written. Its main purpose is to convert configurations from

the server format to the TreeTime format, and to report computation status

back to the server. It also saves all computation results, explicit logs and

temporary information in json format so that these files can be accessed by

the server and visualized on the client side.

The client side is implemented as dynamically created web pages, which

are rendered using client machine resources. Current functionality is limited

to creation of TreeTime run configurations, and to basic visualization of

the computation results. The former is accomplished by providing a web-

form. The latter renders phylogeny, plots the molecular clock and likelihood

distributions (see example in figure 20).

Despite its current functionality is limited, I have developed architecture

so that it can be easily extended and adapted to various usage scenarios.

The web pages design is based on the popular open-source React-JS li-

brary [GitHub, a], written in JSX format. To enable support for all browsers,

JSX files are compiled in plain javascript by using webpack utility. The plain

javascript is then inserted in html template pages, where the scripts repre-

sent the only element. This approach showed to be very easy to develop

and maintain as well as to extend to add new functionality. For instance,

one of the extension direction has been to create a standalone tree viewer,

which would allow to render trees in json format. The trees in turn may

carry arbitrary amount of meta-data.
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Figure 20: Screenshots for the TreeTime web application.
Upper panel: The TreeTime welcome page. TreeTime on the server
requires to upload the data files. Alternatively, a preloaded example
dataset can be used. The server version of TreeTime provided limited
configuration options.
Lower panel: The results page. An optimized tree with basic options for
coloring, zooming and navigation is shown on top. The molecular clock
estimation and the likelihood distributions for each internal nodes are
displayed in the lower panel. All data can be downloaded as a single
.zip archive.
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I N F E R E N C E O F G E N E R A L T I M E R E V E R S I B L E M O D E L S

6.1 site-specific substitution models

The theory for the GTR models in the phylogenetic inference has been de-

scribed in the chapter 2. One of the fundamental assumptions, which has

been made implicitly in that chapter is that each site in a sequence evolves

under similarly. This is expressed by the fact that the transitions for all cites

are described by the same evolution matrix Qij. The assumption made is

however, almost never observed in the reality [Pagel et al., 2004]. In DNA

sequences, first, second, and third codon positions, for example, tend to

evolve at different rates. In addition, they might have different substitu-

tion patterns. A well-known case in which heterogeneity across sites in the

pattern of evolution is predicted is in the stems and loops of ribosomal se-

quences [Schöniger and Von Haeseler, 1994]. If the data are nucleotides from

a coding region or the amino acids of a protein sequence, then the natural se-

lection may constrain variability at some sites more than at others (so-called

purifying selection). Therefore, different sites will exhibit different rates of

evolution. The heterogeneity in the evolutionary rates becomes very clear

from the the substitution patterns in protein sequences. For example, fig-

ure 21 illustrates the rate heterogeneity in HIV-1 protease. The evolutionary

rates were obtained from the the phylogenetic tree of approximately 10
4 se-

quences, which provides enough data to evaluate transition matrix for every

site. The relative substitution rates were estimated as the ratio between the

number of transition to the target state, and the time spent by a site in the

particular source state (valine (Val) in this case). Note that both the relative

62
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mutability of sites, and the evolution matrices are different. The former is

the overall substitution rate to all possible amino acids (the net height of

the bars of a single color), and the latter is the ratio between the transition

rates to different target states (the ratio of the heights of the bars of differ-

ent colors). In this chapter, we aim to develop the better approximation for
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Figure 21: The illustration of the substitution rate heterogeneity among sites of the
HIV-1 Protease. The relative substitution rate was calculated from the
tree for approximately 10.000 sequences as the ratio of time a site spent
in Val state to the number of transitions to the other states.

the GTR model, which accounts for the possible heterogeneity in mutation

rates and in the evolution matrix. The interest in site-specific GTR models

is not only to provide better approximation to the phylogeny inference, but

also to detect the selection constraints on protein evolution [Fay and Wu,

2003]. Such constraints originate, e.g., from the need to preserve protein

functionality.
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Although in some cases the residue conservation can be inferred directly

from the protein alignment [Weigt et al., 2009], this is generally not correct,

since the observed residue frequency in the alignment is influenced by its

state in the most recent common ancestor. Thus one usually starts with re-

construction of a protein phylogeny and and the ancestral sequences at each

of its nodes. While simple estimates can be done by simply going over all

branches on the tree and counting the number of mutations, most modern

approaches make explicit use of the Markovian models of nucleotide evo-

lution [Yang, 2006]. The main difficulty that one encounters when trying

to infer a GTR model in this way is maximizing the likelihood of the tree

in respect to the model parameters. Although there exist semi-empirical

approaches to achieve this goal [Waddell and Steel, 1997; Thyagarajan and

Bloom, 2014; Reis et al., 2009], the commonly used method is Markov chain

Monte-Carlo, which allows combining the GTR model inference with in-

ference of the tree topology and the ancestral residue states [Lartillot and

Philippe, 2004; Shapiro et al., 2006; Minin and Suchard, 2008]. Indeed, the

tree topology and the ancestral states are themselves inferred using a GTR

model, and therefore can, in principle, change when the model is modified.

Another sort of issues is related to the statistical validity of the site-specific

inference [Pond et al., 2005]. Indeed, using site-specific model risks over-

fitting the data due to excessively large number of parameters, sometimes

known as extensive parametrization [Rodrigue, 2013]. This problem is over-

come either by using sufficiently big alignments (and phylogenetic trees)

or by splitting residues into groups that would be described by the same

GTR model (known as CAT approach, [Lartillot and Philippe, 2004; Blan-

quart and Lartillot, 2008]). We have developed a novel method for inferring

the GTR model by maximizing tree likelihood. The method relies on the

assumption of the short tree branches, which allows us to obtain a set of

iterative equations for inferring the model parameters corresponding to the

likelihood maximum. While this assumption is not always full-filled, it al-
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lows to address the selection pressures in fast evolving organisms, such

as viruses. Indeed, while the next generation sequencing has made avail-

able a wealth of data about such organisms (see, e.g., [Zanini et al., 2015;

HIV-DataBase, 2017; Flu-DataBase, 2017]), applying Monte-Carlo methods

to such big alignments is inefficient and time-consuming.

From the statistical viewpoint, our approach is particularly powerful when

the GTR matrix is decomposed into an attempt matrix, common to all sites,

and the site-specific nucleotide/residue frequencies [Lartillot and Philippe,

2004], which correspond to the nucleotide frequencies in the equilibrated

alignment (i.e., the sequence alignment that one would have, if the organism

was allowed to evolve for very long time under the same conditions.) Finally,

we demonstrate that our approach can be modified to accommodate pos-

sible changes in reconstructed ancestral states (induced by improved GTR

model inference) and how to expand its range of validity to trees with longer

branches.

6.2 inference scheme for site-specific gtr

Model parametrization

We describe the substitution process using site-specific GTR (general time-

reversible) model, parametrized in a standard way as:

Qij,α = πi,αWij,α, for i 6= j (38)

Qii,α = −
∑
j

Qij,α, Wij,α =Wji,α, (39)

where index i designates a state of the nucleotide or amino-acid residue,

whereas α is the site index, i.e. it describes the location of the nucleotide/residue

in the sequence. In this general form, a site-specific GTR model for an al-

phabet of size q has q(q+ 1)/2− 1 parameters per site. The expression for
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the diagonal element of the substitution matrix, Qii,α, guarantees probability

conservation, whilst the symmetry of the attempt matrix, Wij,α, ensures the

time-reversibility of the substitution process:

Qij,απj,α = Qji,απi,α.

The site-specific frequencies, πi,α, satisfy normalization condition:
∑
i πi,α =

1. The procedure to infer the parameters of the model (39) relies on the

assumption that that the attempt matrix can be decomposed into a product

of the site-specific mutation rate and a constant (non-site-specific) matrix:

Wij,α = µαWij. (40)

The scale of the mutation rate is then fixed by normalization of the attempt

matrix to sum to unity:
∑
i,j 6=iWij = 1. eq. 40 constitutes the central assump-

tion for the present approach for the site-specific GTR model inference. It is

justified by the fact that nucleotide mutations are mainly governed by cellu-

lar chemistry and there is no reason to assume any site-specificity for them,

whereas the stationary populations, πi,α are mainly determined by the selec-

tion pressures acting on the nucleotide sequence (i.e. the necessity to encode

a viable protein.) Finally, µα may be site-dependent due to peculiarities of

the transcription process. For the nucleotide/amino-acid alphabet of size

q and sequence length L, decomposition eq. 40 reduces the number of pa-

rameters from (q− 1)L+ q(q− 1)L/2− 1 to qL+ q(q− 1)/2, thus reducing

the risk of the over-parametrization. Given the phylogeny, the substitution

model and the sequence states at every node, we can construct for every

sequence site the likelihood to observe the particular realization of the nu-

cleotide/residue states as

L
(
πi,Wij

)
= πi0

∏
k

Pr(ik | jk, tk), (41)
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where the product is over all tree branches, ik, jk are the child and parent nu-

cleotide/residue states corresponding to this branch, tk is the branch length,

i0 is the root state. The probability to observe child state i given the parent

state j and the branch length t is given by the GTR evolution equation:

Pij(t) =
(
eQ̂t
)
ij

. (42)

Finally, to calculate the likelihood of the whole tree, the eq. 42 should be sup-

plied to the general eq. 41 for each sequence site, followed by multiplication

over all tree branches and all sequence sites.

Maximizing tree likelihood

The likelihood eq. (41) differs from the likelihoods used to construct phyloge-

netic trees [Yang, 2006; Felsenstein, 2003] by the lack of summation over the

internal nucleotide/residue states. The goal is to maximize this likelihood

in respect to the parameters of the GTR model. Due to the large number of

parameters involved, this is usually done using Markov chain Monte-Carlo

simulations (see, e.g., [Rodrigue, 2013]), which is a time consuming proce-

dure. However, when the available sequences are known to have diverged

from the common ancestor relatively recently, the tree branches are going to

be short. In this case one can expand the exponent in eq. 13 and maximize

the likelihood analytically.

For a single site the likelihood has the following form:

L
(
πi,Wij

)
= πi0

∏
k

Pr(ik | jk, tk) = πi0
∏
i,j∈A

nij∏
k

Pij

[
t
(ij)
k

]
, (43)

where the product is over all branches of the tree, ik, jk specify the nucleotide

values for the child and parent sequences corresponding to branch k, tk is

the length of this branch, and i0 is the site state at n the root node. In-
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cluding the root value ensures that the tree is time-reversible, and therefore

insensitive to the choice of the root. This choice turns out to be important

to provide the pseudocounts, ensuring convergence of the iterative proce-

dure described below. In the second equality in eq. 43, the product has been

rearranged into classes corresponding to the state transitions with different

combinations of parent and child states, so that index k now runs over all

branches where the transitions is from j to i, nij is the number of branches

with such transitions and t(ij)k are the corresponding branch lengths. (The k

index now runs over the branches within the class of branches correspond-

ing to the same type of transition i, j.)

The likelihood for the whole tree is obtained by taking the product of the

likelihoods for every site in the nucleotide sequence,

L =
∏
α

Lα, (44)

where α is the site index. In order to make the calculations site-specific the

parameters of the GTR matrix has been made dependent on the site index:

πi → πiα, i0 → iα. However, the attempt matrix is assumed to be identical

up to the constant factor:

Wij,α = µαWij, (45)

and the scale of the attempt matrix factor is fixed so that the elements of Wij

sum up to unity:

∑
i,j 6=i

Wij = 1. (46)

(In practice it is convenient to treat Wij as a matrix with zero diagonal el-

ements. In the following we will always deal only with the non-diagonal

elements of Wij, unless stated otherwise.)
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Using the expressions for transition probabilities of eq. 13, and assum-

ing the branches are short, so that the exponent can be linearized, the tree

likelihood is written then as

L =
∏
α

∏
i

nii,α∏
k=1

1−∑
j 6=i
πjαµαWjit

(ii,α)
k

× ∏
i,j 6=i

nij,α∏
k=1

πiαµαWijt
(ij,α)
k × πiα,α

 ,

where the products over the branches without and with mutations have

been explicitly separated. (The mutation counts and branch lengths is also

supplied with the site index). The log-likelihood is then (after some simple

algebraic transformations):

logL =
∑
α

[
−
∑
i,j 6=i

πjαµαWjiTiα+

+
∑
i,j 6=i

nij,α
(

logπiα + logµα + logWij

)
+

+
∑
i,j 6=i

nij,α∑
k=1

log t(ij,α)k + logπiα,α
]
,

(47)

where Tiα denotes
∑nii,α
k=1 t

(ii,α)
k , which is approximately the time on the tree

that site α spends in the state i.

The assumptions of the short branches (on the scale of the mutation rate)

makes it possible maximizing the tree likelihood analytically. In particu-

lar, to find the maximum-likelihood values for the evolutionary model, the

following expression should be maximized:

logL−
∑
α

λα

(∑
i

πi,α − 1

)
→ max (48)

in respect to πiα, µα, Wij. The Lagrange multipliers λα are introduced to

ensure the correct normalization of the equilibrium nucleotide probabilities.
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The resulting equations to determine the GTR parameters for the extremum

position of the likelihood function are:

∑
j 6=i
nij,α + δi,iα = µαπiα

∑
j 6=i
WijTjα + λαπiα,

∑
i,j 6=i

nij,α = µα
∑
i,j 6=i

πiαWijTjα,

∑
α

(
nij,α +nji,α

)
=
∑
α

(
µαπiαWijTjα + µαπjαWijTiα

)
∑
i

πiα = 1. (49)

(In this derivation one should keep in mind that, due to the symmetry of

matrix Wij, ∂Wij/∂Wrs = δi,rδj,s + δi,sδj,r.)

Final equations

Summing the first of eqs. 49 over i and using the second and the last equa-

tions immediately produces the value of the Lagrange multipliers: λα = 1.

Given that, the eqs. 49 can be reformulate in the form suitable for iterative

solution:

Wij =

∑
α

(
nij,α +nji,α

)∑
α

(
µαπiαTjα + µαπjαTiα

) , (50)

µα =

∑
i,j 6=i nij,α∑

i,j 6=i πiαWijTjα
,

πiα =

∑
j 6=i nij,α + δi,iα

µα
∑
j 6=iWijTjα + 1

, (51)

which readily ensures the proper normalization for the stationary probabil-

ities. From technical viewpoint, eqs. (49) define the expressions to find the

maximum-likelihood parameters of the GTR model under the assumptions

taken.
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Area of applicability

The rate of mutations at a particular site can be characterized by quantity:

Γα = µα
∑
i,j 6=i

πi,αWi,jπj,α (52)

The branch length averaged over the tree is t = tk.

The applicability of the reconstruction algorithm requires that

Γtk � 1 (53)

The reasonable signal-to-noise ratio requires that there is more than one

mutation at every site, although they are still rare on the tree, i.e.

ΓT = ΓNbrtk � 1, (54)

where T = Nbrtk is the total tree lengths, i.e. the number of branches times

the mean branch length.

Finally, to ensure reliable tree reconstruction, the average number of the

mutations per branch should be more than one, i.e.

ΓtkL� 1, (55)

where L is the number of sites in the sequence.

6.3 gtr inference scheme validation

Simulating sequence evolution

The GTR inference scheme has been tested on the simulated data. The cre-

ation of the simulated dataset included the tree topology simulations, cre-
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ation of a random GTR model, generations of the ancestral sequence at the

root node, evolving the root sequence in the simulated tree using the GTR

model created. The evolved sequences from the tips of the tree comprised

the multiple sequence alignment, which used as an input alignment for the

GTR model reconstruction. The tree topologies were generated according to

specified coalescent models, using the existing software, previously devel-

oped by our group [Neher et al., 2013].

The parameters of the GTR model were chosen as follows. The attempt

matrix had the Jukes-Cantor [Jukes and Cantor, 1969] form, i.e. all of its

non-diagonal elements were identical. The mutation rates, µα were chosen

to be either uniform or selected from a Gamma distribution with specified

average µ. The nucleotide/residue frequencies for every site were gener-

ated randomly in such a way that they had a uniform distribution on sim-

plex boundary
∑
i πiα = 1. This is easily done by generating a set of expo-

nentially distributed random numbers {xi} and dividing them by their sum.

(The product of exponential distributions is a uniform distribution on any

surface y =
∑
i xi.)

The root sequence was then generated according to the probabilities πiα.

The probabilities of the nucleotide states of the root descendants were

then calculated using the (site-specific) transition probability Eq. (42). The

sequences of the descendants were then “measured”, i.e. chosen according

to these probabilities and the procedure was repeated till we reached the tips

of the tree. Finally, the sequences of the tips were taken as the alignment,

which was used to reconstruct phylogeny, ancestral sequences and the GTR

model.
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Phylogeny and ancestral reconstruction

The phylogenetic tree reconstruction was accomplished using FastTree pack-

age [Price et al., 2009, 2010], which uses neighbor joining algorithm followed

by the maximum likelihood (ML) optimization. The FastTree maximum-

likelihood optimization is performed using a standard GTR mode. For the

nucleotide sequence it is Jukes-Cantor model, for amino acid, it is either

WAG01 [Whelan and Goldman, 2001], or the evolution model based on BLO-

SUM [Henikoff and Henikoff, 1993] matrices. The model used is identical

for the whole genome. The ancestral sequences reconstruction for every

node of the tree was accomplished using the previously described TreeTime

software [Sagulenko et al., 2017].

Testing the inference scheme

In order to validate the inference scheme and determine its limits of its

validity, the sequence evolution has been simulated according to known (pre-

defined) phylogeny and GTR model for different range of input parameters.

We adopt the following simple measure of the reconstruction quality:

χ2π =
1

L

∑
i,α

(
π
(0)
i,α − πi,α

)2
, (56)

where the sum runs over all nucleotide/residue alphabet states and all se-

quence sites, π(0)i,α and πi,α are the frequency of the states for the input and

the inferred models respectively, L is the length of the sequence.

In practice one would usually start with the alignment of sequences cor-

responding to the tips of the phylogenetic tree. The residue frequencies

computed from this alignment are likely to be very different from those of

the underlying GTR model. One then has to (i) reconstruct the phylogeny,
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Figure 22: Distance between the model allele frequencies and the allele frequencies
calculated from the tree tips alignment and GTR reconstruction. (Boot-
strapped over 100 simulations.)

(ii) reconstruct the ancestral sequences for every node of the phylogenetic

tree, and (iii) infer the GTR model. Each of the above mentioned steps may

introduce errors. The errors introduced on different steps were identified,

using the knowledge of the phylogenetic tree, and the actual internal node

sequences, as shown below.

The results of GTR reconstruction for ACGT alphabet are shown in fig-

ure 22. For this simulation the mutation rate was assumed to be uniform

for all sites, whereas the underlying phylogeny corresponded to the King-

man coalescent. As expected, the nucleotide frequencies in the alignment

significantly differ from those of the model, but approach them as the mu-

tation rate increases, i.e. as the alignment becomes more equilibrated. This

improvement with mutation rate is roughly linear on semi-logarithmic scale,

which corresponds to the exponential in eq. 42.

The frequency inferences based in GTR reconstruction procedures signif-

icantly outperform the alignment average, even though they perform just

as bad at very small values of the mutation rate, where one simply doesn’t

have enough statistical data (i.e. enough mutation events) for reliable in-
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ference. When the mutation rate is of a moderate value, the number of

mutations can be approximately considered as a Poisson variable, i.e. the

error squared in GTR reconstruction should decrease inversely proportional

to the number of the mutations counted on the tree, i.e. inversely propor-

tional to the mutation rate. This is indeed seen in the log-log plot in the

right panel of figure 22, where the dependence of χ2π on the mutation rate is

almost a straight line with slope 1.

The highest mutation rates used in this simulation are still sufficiently

small for the assumptions of our GTR inference procedure to be valid. Cor-

respondingly, the curve in figure 22, corresponding to the reconstruction

using known topology and ancestral sequence, is monotonously decreasing,

showing the improved quality of reconstruction with increasing number of

mutation events. The necessity of reconstructing phylogeny and ancestral

sequences however imposes a limitation, as seen from the other curves in

the same figure. Indeed, as the mutation rate increases, we have a higher

probability of recurring mutation at the same sequence site, which cannot be

detected by any algorithms for phylogenetic and ancestral reconstruction.

The last assertion can be verified by looking at the reconstructed muta-

tion rate, shown in figure 23. Here the error bars correspond not to different

realizations of sequence evolution, but to the distribution of the mutation

rates along the sequence. The saturation of the mutation rate when per-

forming ancestral reconstruction reflects the impossibility of dealing with

sites where multiple mutations have occurred. In figure 24 we show how

the divergence of eq. 56 scales with the sequence length. The reconstruction

procedure itself can depend on the sequence length only via non-site-specific

matrix Wij, which is inferred more precisely for longer sequences. Longer

sequences however allow for more precise phylogenetic inference, which is

seen by downward shift of the line corresponding to the calculation involv-

ing phylogenetic reconstruction.
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Figure 23: Reconstructed mutation rate vs. the model mutation rate. (Sequence
length L = 100, averaged over sites.)

We finally address the issue of the number of parameters of the GTR

model. Increasing the number of parameters, e.g., by making the model site-

specific, necessarily improves the fit of the data (i.e. increases likelihood).

However, too many parameters may result in over-fitting, i.e. one may have

insufficient data to infer reliably the model parameters. This is a particular

risk when inferring site-specific GTR models: since the sequences in the

alignment are related via phylogenetic relations, adding more and more

sequences does not necessarily improve the parameter inference.

One can compare the informativeness of different models by using, e.g.,

Akaike information criterion (AIC) [Akaike, 2011], which balances the num-
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Figure 24: Scaling of the distance between the reconstructed and the model nu-
cleotide frequencies with sequence length: solid lines with circles corre-
spond to L = 100, dashed lines with squares to L = 400. (Boot-strapped
over 100 simulations.)

ber of parameters, k, with the maximum value of the likelihood, logL as

AIC = k− logL. (57)

The optimal model choice thus results in smaller AIC values.

In figure 25 we show the values of the likelihoods when using three dif-

ferent models: a) the model with site-specific nucleotide frequencies and

mutation rates, but a single for all sites attempt matrix, which has qL +

q(q − 1)/2 − 1 parameters (this is the model that has been used through-

out this paper), b) the model describing all sites by the same GTR matrix,

with q− 1+ q(q− 1)/2 parameters, and c) the fully site-specific model with

(q− 1)L+ q(q− 1)L parameters. The site specific models have higher likeli-

hoods than when using a single model to fit all sites. The fully site-specific

model however only slightly out-performs the model with the attempt ma-

trix common for all sites, and when the number of parameters is incorpo-
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Figure 25: Maximum values of likelihood (logL) and Akaike information criterion
for inference with a) model with site-specific πiα and µα but single Wij
for all sites, b) single GTR model for all sites; c) fully site-specific GTR
model (i.e. with site-specific Wij,α.) L = 100, bootstrapped over 100

simulations.

rated via AIC the latter outperforms the former. We thus conclude that

specifying a fully unique GTR model for every site is likely to result in over-

parametrization.
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