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SUMMARY 

Earth is pictured to have been the scene for drastic environmental changes throughout the 

Precambrian while it developed into a life-hospitable setting. Among the most remarkable 

environmental developments of this time period is the redox evolution of the atmosphere 

and hydrosphere across the late Archean-Paleoproterozoic boundary that resulted by the 

emergence of oxygenic photosynthesis by about 2.7 Ga.  

While anoxic and ferruginous (Fe(II)-enriched) conditions prevailed in the open deep ocean 

throughout much of the Precambrian, coastal seawater in mid-depths of the ocean is thought 

of having turned euxinic (sulfide-enriched) whereas ocean surface waters turned slightly 

oxic and presumably Fe(II)-poor due to abiotic Fe(II) oxidation by oxygen during the early 

Proterozoic. Great amounts of sulfate became mobilized by increased oxidative weathering 

of terrestrial pyrite and riverine runoff, resulting in enhanced sulfate reduction rates that 

were causal for the ferro-euxinic transition of seawater. The actual extend of ferruginous 

versus euxinic conditions has not been fully deciphered yet, and factors that controlled their 

formation and expansion as well as the identity of the major minerals that formed from such 

waters remain ambiguous. Deciphering the biogeochemistry of these highly complex ocean 

zones specifically is intriguing because of their postulated role in retarding biological 

diversification, particularly becuase euxinic waters are known to scavenge trace nutrients 

and metals as molybdenum and Fe(II) through their precipitation as Mo- and Fe(II)-sulfides. 

Our grasp on this complex period remains vague as most of our knowledge comes from the 

interpretation of the geologic record that preserved biogeochemical signals, but however 

partly is incomplete and altered by diagenesis and metamorphism. The use of modern 

habitats that resemble ancient ocean conditions is a promising alternative way to gain 

information on ancient ocean composition and biogeochemical processes. Examples for 

ferruginous ocean analogues include Lake Matano (Indonesia), Lake Pavin (France), Lake La 

Cruz (Spain), Lake Cadagno (Switzerland), Lake Vechten (Netherlands) and Lake 

Nordbytjernet (Norway). Analogues of euxinic seawater are the Black Sea (Turkey, Georgia, 

Russia, Ukraine, Moldova, Romania and Bulgaria), the Cariaco Basin (Venezuela) and 
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Chesapeake Bay (USA). All of these habitats contain either Fe(II)- or sulfide-enriched waters, 

while h none of them comprises intermixed ferro-euxinic waters.  

The Fe- and S-rich Arvadi Spring in the eastern Swiss Alps borrows strong potential as a 

model habitat for ferro-euxinic intermixed transition zones of oxygenated ancient oceans to 

study ancient biogeochemical Fe-S-cycling. Such conditions presumably prevailed mostly 

during the late Archean in oxygen oases and in surface waters of shallow Proterozoic oceans. 

The overall goal of this thesis was to decipher the controlling factors on the formation of 

ferruginous versus euxinic conditions by (1) evaluating the suitability of the Arvadi Spring 

as an analogue for ferro-euxinic transition zones of ancient oceans, (2) by identifying its 

geochemical, mineralogical and microbiological composition and finally, (3) by transferring 

our observations on present models of ancient Fe-S-cycling in ferro-euxinic transition zones 

of the ancient ocean. 

Part I of this thesis followed the goal of evaluating the modern analogue value of the Arvadi 

Spring for ferro-euxinic transition zones of the ancient ocean by characterizing the 

geochemical composition of the Arvadi Spring water and sediment and comparing its 

geochemistry to modeled ancient seawater composition. We identified the Arvadi Spring 

water to have a circumneutral pH and cold temperature and to be fully saturated with 

oxygen. We found dissolved Fe(II) and sulfide to coexist at micromolar concentrations 

without reaching saturation with respect to Fe(II) sulfide (amorphous). Fe(III) primarily was 

observed in solid precipitates that covered the Arvadi Spring pond ground, while no 

dissolved Fe(III) was detectable in the Arvadi water. Overall, our results imply the Arvadi 

Spring to provide a suitable geochemical framework to study Fe-S-biogeochemistry in a 

natural laboratory, from which we can learn and transfer knowledge on ancient Fe-S-cycling. 

In part II of this thesis, we examined the morphology and the mineralogical composition of 

red and white colored mineral precipitates (termed red and white flocs in the following) that 

abundantly formed in the Arvadi Spring. A suite of spectroscopic analyses including XRD, 

XAS, EXAFS and Mössbauer spectroscopy revealed red and white flocs to primarily consist 

of quartz, dolomite and calcite. We identified the Fe-mineralogy to be dominated by green 
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rust, lepidocrocite and ferrihydrite, while S0 constituted the dominating S-mineral in white 

flocs. Fe(II) sulfides were found only in small abundance at locally restricted hot spots in red 

flocs, which was consistent with a calculated undersaturation of the Arvadi Spring water 

with respect to amorphous Fe(II) sulfide. The observed Fe(II) sulfides at red flocs hot spots, 

including pyrite and mackinawite, presumably resulted from locally intense Fe(III) and 

sulfate reduction in anoxic sediment layers where Fe(II) and sulfide could accumulate to 

higher concentrations and precipitate as Fe(II) sulfides. The identified mineralogy in red and 

white flocs particularly suggests an important role for green rust and S0 as precursor 

minerals for geologic rock deposits.  

The dense colonization of red and white flocs by microbial networks already implied 

respective minerals to be partly produced and/or consumed by microbes. Part III of this 

thesis addressed the identity, composition, abundance and metabolic activity of the observed 

microbial network in microbe-mineral assemblages and in the Arvadi Spring sediment. For 

this purpose, we carried out a suite of cultivation-based, molecular biological and controlled 

microcosm experiments. Generally, we found the microbial community in the Arvadi Spring 

sediment to be very diverse. We identified Thiothrix spec., a microaerophilic sulfide-oxidizer, 

to dominate the microbial community on the 16S rRNA gene level. We could show Fe- and S-

metabolizers to coexist as part of the Arvadi Spring microbial community at different 

abundances, with microaerophiles being the dominant types of Fe- and S-metabolizers. 

Anaerobes were present at lower abundances, indicating the oxygen saturation of the spring 

to limit anaerobes in the availability of ecological niches that they could inhabit. We could 

show that Fe(II) was mainly oxidized abiotically by O2, whereas no net Fe(II) oxidation was 

observed under anoxic conditions. Instead, Fe(III) reduction was the dominantly ongoing 

process in the Arvadi Spring sediment under anoxic incubation conditions, with the highest 

reduction intensity observed under the contemporaneous presence of sulfate reduction with 

elevated levels of organic carbon and ferrihydrite. Overall, our results imply a spatially 

separated cycling of Fe in the Arvadi Spring pond, with Fe(II) oxidation proceeding in oxic 

parts of the spring whereas Fe(III) reduction is ongoing in anoxic sediment layers. Generally, 

we suggest ferruginous conditions to have been promoted by sulfate reduction in ferro-
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euxinic transition zones of the ancient ocean, if the availability of organic carbon was 

sufficient for sustaining both, dissimilatory sulfate reduction and Fe(III) reduction in 

parallel.  

Collectively, our findings shed new light on the composition and ecosystem functioning in 

ferro-euxinic transition zones of ancient oceans and build the basis for future research with 

flow-through and column experiments to reconstruct stratified ancient oceans. 

Complementary data from such setups could ultimately reveal how the formation of 

ferruginous and euxinic conditions was controlled at different depths of stratified oceans, 

especially considering variations in microbial control due to a depth distribution pattern of 

different physiologies according to geochemical gradients in the water column. 



 

ZUSAMMENFASSUNG 

Die präkambrische Erde wird als Schauplatz drastischer Umweltveränderungen während 

ihrer Entwicklung zu einem lebensfreundlichen Ort dargestellt. Zu den bemerkenswertesten 

Umweltentwicklungen dieser Zeit zählt die Redoxentwicklung der Atmosphäre und 

Hydrosphäre während des spätarchaisch-paläoproterozoischen Übergangs, die durch das 

esrtmalige Auftreten oxygener Photosynthese vor etwa 2,7 Milliarden Jahren zustande kam. 

Es wird angenommen, dass im gesamten Präkambrium anoxische und Fe(II)-reiche 

Bedingungen in der offenen Tiefsee vorherrschten, während sich im Paläoproterozoikum 

euxinische (Sulfid-angereicherte) Bedingungen in mittleren Tiefen der Küstengewässer 

entwickelten und Ozeanoberflächenwasser oxidierten und auf Grund abiotischer Fe(II)-

Oxidation mit Sauerstoff an Fe(II) verarmten. Während dieser Zeit wurden große Mengen an 

Sulfat durch erhöhte oxidative Verwitterung terrestrischen Pyrits und Erosion in 

Küstengewässer eingetragen, was zu erhöhten Sulfatreduktionsraten führte welche für den 

ferro-euxinischen Wechsel der Meerwasserzusammensetzung verantwortlich waren.  

Das tatsächliche Ausmaß von eisenhaltigen gegenüber euxinischen Wassermassen ist 

bislang nicht vollständig entschlüsselt, und insbesondere Faktoren, die ihre Bildung und 

Expansion sowie die Identität der Minerale, die sich aus solchen Gewässern ablagerten, 

kontrollierten, sind ungeklärt. Die Entschlüsselung der Biogeochemie dieser hochkomplexen 

Ozeanzonen ist aufgrund ihrer postulierten Rolle bei der Verzögerung der biologischen 

Diversifizierung von grossem Interesse, hauptsachlich auf der Ausfällung von 

Spurenelementen und Metallen wie Molybdän und Fe(II) durch euxinische Gewässer als Mo- 

und Fe(II)-Sulfide beruhend. 

Unser Verständnis dieser komplexen Periode bleibt vage, da der Großteil unseres Wissens 

aus der Interpretation der geologischen Aufzeichnungen stammt, die zwar biogeochemische 

Signale konserviert haben, aber teilweise unvollständig und durch Diagenese und 

Metamorphose verändert sind. Die Nutzung moderner Habitate, welche in ihrer 

Zusammensetzung denen der Urozeane ähneln, ist ein vielversprechender alternativer Weg 

um Informationen über die Zusammensetzung der Urozeane und biogeochemische Prozesse 
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zu erhalten. Beispiele für eisenhaltige Ozeananaloga sind Lake Matano (Indonesien), Lake 

Pavin (Frankreich), Lake La Cruz (Spanien), Lake Cadagno (Schweiz), Lake Vechten 

(Niederlande) und Lake Nordbytjernet (Norwegen). Analoge Habitate für euxinische 

Gewässer sind das Schwarze Meer (Türkei, Georgien, Russland, Ukraine, Rep. Moldau, 

Rumänien und Bulgarien), das Cariaco Basin (Venezuela) und Chesapeake Bay (USA). All 

diese Habitate enthalten entweder Fe(II)- oder Sulfid-angereicherte Gewässer, wobei keines 

der genannten Habitate Fe(II)- und Sulfid-angereicherte Mischwässer enthält. 

Die Fe- und S-reiche Arvadi-Quelle in den östlichen Schweizer Alpen birgt großes Potenzial 

als Modell-Habitat zur Untersuchung des biogeochemischen Fe-S-Umsatzes in ferro-

euxinischen Übergangszonen oxygenierter Urozeane. Solche Bedingungen herrschten 

vermutlich haupstsachlich in spät archaischen Sauerstoffoasen und in seichten 

Ozeangewässern im Proterozoikum vor. Das übergeordnete Ziel dieser Arbeit war es, die 

Faktoren, welche die Bildung von eisenhaltigen gegenüber euxinischen Bedingungen 

kontrollierten, zu entschlüsseln, indem (1) die Tauglichkeit der Arvadi-Quelle als Analogon 

für ferro-euxinische Übergangszonen von Urozeanen bewertet wurde, (2) ihre 

geochemische, mineralogische und mikrobiologische Zusammensetzung analysiert wurde 

und schließlich (3) unserer Beobachtungen auf gegenwärtige Modelle des Fe-S-Umsatzes in 

ferro-euxinischen Übergangszonen des Urozeans übertragen wurden. 

Teil I dieser Arbeit verfolgte das Ziel, den Nutzen der Arvadi-Quelle als Modell-Habitat für 

ferro-euxinische Übergangszonen des Urozeans zu bewerten, indem die geochemische 

Zusammensetzung des Arvadi-Quellwassers und -sediments analysiert und die ermittelte 

Geochemie mit der modellierten Meerwasserzusammensetzung des Urozeans verglichen 

wurde. Unsere Analysen ergaben, dass das Arvadi-Quellwasser einen neutralen pH-Wert, 

kalte Temperaturen und eine vollständige Sauerstoffsättigung vorweist. Wir fanden heraus, 

dass gelöstes Fe(II) und Sulfid in mikromolaren Konzentrationen im Quellwasser 

koexistieren, ohne Sättigung in Bezug auf Fe(II)-Sulfid (amorph) zu erreichen. Fe(III) wurde 

hauptsächlich in festen Niederschlägen beobachtet, die den Arvadi-Quellboden bedeckten, 

während im Arvadi-Wasser kein gelöstes Fe(III) nachweisbar war. Insgesamt deuten unsere 

Ergebnisse darauf hin, dass die Arvadi-Quelle einen geeigneten geochemischen Rahmen für 
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die Untersuchung der Fe-S-Biogeochemie im Rahmen eines natürlichen Labors bietet, von 

dem wir neue Erkentnisse über den Fe-S-Zyklus im Urozean gewinnen und auf existierende 

Modelle transferiern können.  

In Teil II dieser Arbeit untersuchten wir die Morphologie und die mineralogische 

Zusammensetzung von roten und weißen Mineralpräzipitaten (im Folgenden als rote und 

weiße Flocken bezeichent), die in der Arvadi-Quelle in großen Mengen abgelagert wurden. 

Eine Reihe von spektroskopischen Analysen einschließlich XRD-, XAS-, EXAFS- und 

Mössbauer-Spektroskopie ergab, dass rote und weiße Flocken hauptsächlich aus Quarz, 

Dolomit und Calcit bestehen. Wir fanden heraus, dass die Fe-Mineralogie von Fougerit, 

Lepidokrokit und Ferrihydrit dominiert wird, während S0 das dominierende S-Mineral in 

weißen Flocken darstellt. Fe(II)-Sulfide wurden nur in kleinen Mengen an lokal begrenzten 

sogenannten ‘hot-spots’ in roten Flocken gefunden, was mit einer berechneten 

Untersättigung des Arvadi-Quellwassers in Bezug auf amorphes Fe(II)-Sulfid 

übereinstimmte. Die Fe(II)-Sulfide (einschließlich Pyrit und Mackinawit) in hot-spots der 

roten Flocken resultierten vermutlich aus lokal intensiver Fe(III)- und Sulfatreduktion in 

anoxischen Sedimentschichten, in denen sich Fe(II) und Sulfid zu höheren Konzentrationen 

anreichern und als Fe(II)-Sulfide ausfallen können. Die identifizierte Mineralogie in roten 

und weißen Flocken legt insbesondere eine wichtige Rolle für Fougerit und S0 als 

Vorläuferminerale für geologische Gesteinsablagerungen nahe. 

Die dichte Kolonisierung von roten und weißen Flocken durch mikrobielle Netzwerke 

implizierte bereits, dass die vorhandenen Minerale teilweise von Mikroben produziert 

und/oder verbraucht wurden. Teil III dieser Arbeit befasste sich mit der Identität, 

Zusammensetzung, Abundanz und metabolischen Aktivität des mikrobiellen Netzwerks in 

roten und weißen Flocken und im Arvadi- Sediment. Zu diesem Zweck führten wir eine Reihe 

von Kultivierungs-basierten, molekularbiologischen und kontrollierten Mikrokosmen-

Experimenten durch und fanden im Allgemeinen heraus, dass die mikrobielle Gemeinschaft 

im Arvadi-Sediment sehr divers ist. Wir identifizierten Thiothrix spec., einen 

mikroaerophilen Sulfid-Oxidierer, die mikrobielle Gemeinschaft auf der 16S-rRNA-Gen-

Ebene zu dominieren. Wir konnten zeigen, dass Fe- und S-Metabolisierer als Teil der 
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mikrobiellen Gemeinschaft der Arvadi-Quelle mit verschiedenen Abundanzen koexistieren, 

wobei Mikroaerophile deutlich dominierten. Anaerobe Fe-S-Metabolisierer waren gering 

abundant, was auf eine Limitierung der von Anaeroben bewohnbaren anoxischen 

ökologischen Nischen durch die Sauerstoffsättigung der Arvadi Quelle hinweist. Wir konnten 

zeigen, dass Fe(II) hauptsächlich abiotisch durch O2 oxidiert wird, während unter 

anoxischen Bedingungen keine Netto-Oxidation von Fe(II) nachgewiesen werden konnte. 

Stattdessen war Fe(III)-Reduktion der vorherrschende Prozess im Arvadi-Sediment unter 

anoxischen Inkubationsbedingungen, wobei die höchste Reduktionsintensität unter 

gleichzeitiger Anwesenheit von Sulfatreduktion und erhöhten Mengen an organischem 

Kohlenstoff und Ferrihydrit beobachtet wurde. Insgesamt deuten unsere Ergebnisse auf 

einen räumlich getrennten Fe-Umsatz im Arvadi-Quellteich hin, wobei Fe(II)-Oxidation in 

oxischen Teilen der Quelle abläuft, während Fe(III)-Reduktion in anoxischen 

Sedimentschichten fortschreitet. Im Allgemeinen schlagen wir vor, dass eisenhaltige 

Bedingungen durch Sulfatreduktion in ferro-euxinischen Übergangszonen des Urozeans 

gefördert wurden, vorausgesetzt organischer Kohlenstoff war in ausreichenden Mengen 

vorhanden, um sowohl dissimilatorische Sulfatreduktion als auch Fe(III)-Reduktion parallel 

aufrecht zu erhalten. 

Zusammengefasst werfen unsere Ergebnisse ein neues Licht auf die Zusammensetzung und 

das Funktionieren von Ökosystemen in ferro-euxinischen Übergangszonen von Urozeanen 

und bilden die Grundlage für zukünftige Forschung mit Durchfluss- und Säulenexperimenten 

zur Rekonstruktion geochemisch stratifizierter Urozeane. Ergänzende Daten aus solchen 

Ansätzen könnten letztlich zeigen, wie die Bildung von eisenhaltigen und euxinischen 

Gewässern in verschiedenen Tiefen stratifizierter Urozeane kontrolliert wurde, 

insbesondere unter Berücksichtigung potentieller Differenzen in der mikrobiellen Kontrolle 

aufgrund eines Tiefenverteilungsmusters verschiedener physiologischer Gruppen gemäß 

geochemischer Gradienten in der Wassersäule. 
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Abstract 

Early Earth processes are typically identified through the study of mineralogical, elemental 

and isotopic features in the rock record, including Precambrian banded iron formations 

(BIF).  However, post-depositional processes often obscure the primary geochemical signals, 

making the use of BIF as proxies for paleo-seawater and the paleo-biosphere potentially 

imprecise. Thus, alternative approaches are required to complement the information gained 

from the rock record in order to fully understand the distinctive biogeochemical processes 

on ancient Earth. Simulating these conditions in the lab is one approach, but this approach 

can never fully replicate the complexity of a natural environment. Therefore, finding modern 

environments with a unique set of geochemical and microbiological characteristics to use as 

analogues for BIF depositional environments can provide invaluable information. In this 

review, we provide an overview of the chemical, physical and biological parameters of 

modern, ferruginous lakes that have been used as analogue BIF environments. 
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Precambrian seawater composition, biogeochemical processes 

and BIF deposition 

The composition of Archean seawater has largely been interpreted through the study of 

banded iron formations (BIF), Fe- and Si-rich chemical sedimentary rocks that precipitated 

directly out of seawater since at least 3.8 Ga years ago (Mloszewska et al., 2012). BIF are 

typically composed of quartz (in the form of chert), magnetite, hematite, Fe-rich silicate 

minerals (stilpnomelane, minnesotaite, greenalite, and riebeckite), carbonate minerals 

(siderite, ankerite, calcite, and dolomite), and minor amounts of sulfide minerals (pyrite and 

pyrrhotite). The presence of both, ferric and ferrous minerals give BIF an average oxidation 

state of Fe2.4+ (Klein and Beukes, 1992) which means that 60% of Fe in BIF is made up by 

Fe(II). The deposition of such a high quantity of iron as present in BIFs required transport of 

huge amounts of dissolved Fe(II), most probably introduced by hydrothermal venting to the 

seawater (Holland, 1973), to the deposition sites in Precambrian shelf regions where it was 

either microbially or abiotically oxidized (Posth et al., 2013b). A mostly anoxic water column 

was necessary to maintain Fe(II) remained in solution. Under such conditions, oxidized 

anions as sulfate (SO42-) were present in much lower concentrations (Table 1) than 

nowadays resulting in a different microbial community as well as a different elemental 

composition compared to modern oceans (Habicht et al. 2002).  

The iron minerals in BIF are of particular interest in studies focusing on modelling the 

Precambrian seawater environment (Fig. 1), and have been used extensively as proxies for 

the abundance of trace metals in the ancient ocean (e.g., Bjerrum and Canfield, 2002; 

Konhauser et al., 2009; Mloszewska et al., 2012; Robbins et al., 2013; Partin et al., 2013). 

While BIF mineralogy reflects significant post-depositional alteration under diagenetic and 

metamorphic conditions, the layers of magnetite and hematite are interpreted to have 

formed from an initial Fe(III) (oxyhydr)oxide phase, e.g. ferrihydrite (Fe(OH)3) (Klein, 2005; 

Posth et al., 2008). It is thought to have precipitated in the photic zone of the water column 

when dissolved ferrous iron (Fe2+) was oxidized and hydrolysed to poorly soluble ferric iron 

minerals. The Fe(III) (oxyhydr)oxide particles then sank through the water column and 
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deposited on the seafloor where they eventually transformed to: (1) magnetite or Fe(II)-

containing carbonates by abiotic and microbial Fe(III) reduction, (2) the more stable Fe(III) 

oxide hematite in case the Corg content was low in sediments leading to dehydration of the 

Fe(III) (oxyhydr)oxides under elevated pressure and/or temperature, or (3) to iron silicates, 

possibly in the form of a precursor mineral such as greenalite, when silica-sorbed Fe(III) 

(oxyhydr)oxides reacted with other cationic species in the sediment pore waters (e.g., 

Johnson et al., 2008; Konhauser et al., 2005; Morris, 1993; Posth et al., 2013b; Posth et al., 

2014; Rasmussen et al., 2015; Sun et al., 2015). Indeed, silica concentrations are assumed to 

have been high in the Precambrian oceans, reaching concentrations of at least 0.67 mM 

(supersaturation with respect to crystobalite), and possibly as high as 2.2 mM (Siever, 1992; 

Maliva et al., 2005; Konhauser et al., 2007) (Table 1).  

Trace element sequestration by authigenic Fe(III) (oxyhydr)oxides, such as ferrihydrite, 

results from a continuum of adsorption and co-precipitation reactions. As a consequence, 

lumped-process distribution coefficient models can be used to relate the concentration of an 

element in the Fe(III) (oxyhydr)oxide to the dissolved concentration present at the time of 

precipitation. This predictive aspect of metal sorption reactions has been exploited to better 

understand the BIF record with respect to ancient seawater composition and nutrient 

limitations on Precambrian primary productivity. For instance, it has been proposed that low 

P concentrations in Archean and Paleoproterozoic BIF indicate limited marine phosphorous 

availability at that time (10-25% of present-day concentrations; Konhauser et al., 2007) 

(Table 1), which would have reduced levels of photosynthesis and carbon burial, thereby 

inhibiting long-term oxygen production on the early Earth (Bjerrum and Canfield, 2002). 

Similarly, it has been shown that the nickel content in BIF has changed dramatically over 

time, and that a drop in Ni availability in the oceans around 2.7 billion years ago would have 

had profound consequences for microorganisms that depended on it, that being methane-

producing bacteria called methanogens (Konhauser et al., 2009). These bacteria have a 

unique Ni requirement for their methane-producing enzymes (< 100 nm; Schönheit et al., 

1979), and importantly, these bacteria have been implicated in controlling oxygen levels on 

the ancient Earth as the methane they produced was reactive with oxygen and kept 
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atmospheric oxygen levels low. It is possible that a Ni famine eventually led to a cascade of 

events that began with reduced methane production, the expansion of cyanobacteria into 

shallow-water settings previously occupied by methanogens, and ultimately increased 

oxygenic photosynthesis that tipped the atmospheric balance in favor of oxygen, the so-

called Great Oxidation Event (GOE) at 2.5 Gyr. 

 

Tab. 1: Comparison of the chemical and physical composition of the Archean, Proterozoic 
and modern ocean including respective estimates on the atmospheric oxygen content given 
in % present atmospheric level (PAL). 

 

   Archean Proterozoic Modern 

O2 [% PAL] < 0.0012 10–202 100 

Fe(II) [µM] 40–1201 0.1-0.52 < 0.0012 

PO43- [µM] 0.03-0.293 0.91 0.91 

SO42- [µM] 0.06–0.084 500–30006 280005 

S2- [µM] n.a. n.a. < 0.0012 

SiO2(aq) [µM] 670–22007 670–22007 10-1807 

pH >6.52 >6.52 8.12 

T [°C] ~40-703 n.a. -2-36 

n.a. = not available 
1 Canfield (2005) 
2 Saito et al. (2003) 
2 Holland (2006) 
3 Grotzinger and Kasting (1993) 
4 Crowe et al. (2014) 
5 Jorgensen (1982) 
6 Canfield (1998) 
7 DeMaster et al. (1995)  
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It is widely accepted that photosynthetic bacteria played a crucial role in Fe(II) oxidation and 

the precipitation of BIF primary minerals throughout the Archean and Paleoproterozoic (see 

Posth et al., 2013b for review). Some of the earliest models of BIF deposition suggested that 

the abiotic oxidation of dissolved Fe(II) took place in the presence of free oxygen derived 

from oxygenic photosynthesis via the evolution of cyanobacteria (Cloud, 1973). However, on 

a dominantly anoxic Earth before 3.0 Ga (Crowe et al., 2013; Planavsky et al., 2014), the role 

of oxygen in terms of BIF deposition, if it existed, would have been limited. In this regard, 

anoxygenic photosynthetic bacteria (e.g., green and purple bacteria), which use Fe(II) as an 

electron donor for carbon assimilation rather than water and produce Fe(III) instead of 

dioxygen (e.g., Widdel et al., 1993), most probably colonized the anoxic waters of the 

Archean ocean. Laboratory experiments demonstrated that this form of metabolism could 

generate sufficient quantities of Fe(III) to account for all the oxidized iron in BIF even at 

rapid accumulation rates (Kappler et al., 2005; Konhauser et al., 2002). Fe(II) oxidation by 

anoxygenic phototrophs can be sustained in relatively deep waters (as much as one hundred 

meters of water depth) (Kappler et al., 2005), and their growth is not hindered by high 

concentrations of dissolved silica (Posth et al., 2008; Wu et al., 2014). Therefore, these 

organisms could easily have oxidized all of the upwelling Fe(II) before it made contact with 

the overlying oxygenated waters (if these existed) in the early Archean oceans 

(Czaja et al., 2013; Pecoits et al., 2015). As the redox state of the ocean most probably 

changed after the GOE in form of a slight oxygenation of the surface waters and anoxic 

bottom layers, the abundances of different types of bacteria must have changed crucially. For 

instance, microaerophilic Fe(II)-oxidizing bacteria likely thrived at the oxic-anoxic interface 

and contributed to the formation of Fe(III) (oxyhydr)oxides (Holm, 1989) in addition to 

anoxygenic photoferrotrophs that probably further colonized the anoxic photic zone. 

Because of the role microbes played in Fe(II) oxidation, the focus of a number of recent 

experimental studies on BIF deposition has been on how organic carbon may have (1) 

influenced trace metal sorption to the precursor ferrihydrite particles, and (2) affected the 

remobilization of trace metals during diagenesis and metamorphism when the heterotrophic 

respiration of the biomass would have been coupled to some form of terminal electron 
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accepting process, such as Fe(III) reduction. In the case of the former, Eickhoff et al. (2014) 

recently examined the partitioning of Ni to both abiogenic and biogenic ferrihydrite. They 

demonstrated that when normalized to specific surface area, biogenic ferrihydrite sorbed 

less Ni, apparently due to microbially derived organics or whole cells binding to the mineral 

surface and thereby competing with Ni for sorption sites. Given the potential for co-

precipitating organic matter to depress partitioning of Ni, the Eickhoff study suggested that 

previous estimates for Ni concentrations in Archean seawater may be too low, and that the 

decline of Ni in Precambrian ocean may have occurred closer to the GOE, at 2.45 Ga. In the 

case of the latter, coupling the reduction of Fe(III) minerals to the oxidation of organic matter 

not only explains the low content of organic carbon in BIF (<0.5%; Gole and Klein, 1981), but 

it also explains the prevalence of light carbon isotope compositions in associated carbonate 

minerals (e.g., Walker, 1984), and light iron isotope compositions of magnetite and siderite 

(e.g., Johnson et al., 2008; Craddock and Dauphas, 2011). In this regard, Posth et al. (2013a) 

and Köhler et al. (2013) both demonstrated that by incubating ferrihydrite at 1.2 kbar and 

170ºC (conditions that mimic some BIF burial conditions) for only 14 days, the mineralogical 

transition from ferrihydrite to hematite is already accomplished. The addition of organic 

carbon to these diagenetic experiments led to the formation of reduced, i.e. Fe(II)-containing 

minerals in the post-diagenetic capsules, mainly a mixture of hematite, magnetite, and 

siderite, a composition broadly consistent with the modern day mineralogy of BIF. Robbins 

et al. (2015) took this one step further, demonstrating that during these diagenetic mineral 

transformations, Ni and Zn remained largely immobile. 
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Fig. 1: Overview of the Fe-S biogeochemistry in the Archean and Proterozoic ocean. Archean: 
Fe(II) was introduced into the ocean hydrothermally and remained in its reduced state as 
oceans were dominantly anoxic. The occurrence of Fe(III) in the BIF record from that time 
can be explained by three different processes: (1) UV photolysis of Fe(II) (2) microbial 
oxidation of Fe(II) by photoautotrophic bacteria and (3) abiotic oxidation of Fe(II) by oxygen 
that started getting produced in minor amounts by cyanobacteria in the late Archean. Fe(III) 
was reduced to Fe(II) coupled to the oxidation of H2/organic C by Fe(III)-reducing bacteria. 
Sulfate mainly was introduced into the ocean by volcanic input in form of SO2 that further 
got oxidized to SO42- prior to its transfer to the ocean water. Sulfate-reducing bacteria 
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already produced small amounts of H2S by oxidizing H2 and/or organic carbon. Proterozoic: 
The ocean surface was slightly oxic after the Great Oxidation Event (GOE) and O2 starts 
accumulating also in the atmosphere. Increased oxidative weathering increased sulfate 
concentrations in the ocean by continental input in addition to volcanic input. Sulfate-
reducing bacteria produced high amounts of sulfide which started accumulating under the 
reducing conditions of the deep ocean. Microaerophilic bacteria started flourishing under 
microoxic conditions and oxidized Fe(II) and H2S to Fe(III) and sulfate, respectively. Fe(II) 
and H2S reacted and precipitated in form of FeS minerals which is preserved in the rock 
record. Phototrophic sulfide-oxidizing bacteria started being highly active in the photic zone 
of the water column and oxidized accumulating H2S to sulfate.  

 

 

Modern environments as ancient analogues 

A complete and accurate picture of all the important biogeochemical processes occurring in 

the Archean is impossible, if based solely on geological and geochemical observations, 

because the rock record is incomplete and has been altered by post-depositional processes 

(Sadler, 1981). Laboratory experiments that simulate BIF diagenesis or performing mineral 

precipitation experiments under Archean ocean compositions has also yielded valuable 

information (Kappler et al., 2005; Köhler et al., 2013; Konhauser et al., 2005; Posth et al., 

2008; Posth et al., 2013a), but the conditions for these experiments are based on estimations 

for seawater conditions at that time, and the data derived are based on artificial systems 

which will never be able to represent the complexity of natural systems. There is thus a high 

probability of overlooking important parameters that are either impossible to integrate into 

the experimental setup or are basically ignored. Furthermore, proxies derived from 

geochemical modelling or from the rock record, on which the experimental designs are based 

on, might be inaccurate or imprecise (for example, estimates on the pH and temperature of 

the ancient ocean).  

A way forward is through the study of modern environments that have geochemical 

conditions that might mimic Archean oceans. These analogues would include aqueous 

environments with the simultaneous presence of Si and Fe(II) at high concentrations, and a 

corresponding deficiency in sulfate in case of the Archean ocean. Correlation of observations 
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from such model habitats to results from simulative laboratory experiments can improve 

our current understanding of biogeochemical processes occurring in the Archean oceans 

(Fig. 2). In this review, we present five such model habitats which we evaluate for their 

suitability as modern analogues. All of them are redox-stratified lakes, either of meromictic 

or holomictic (Fig. 3; for definitions see the following section). In each case, ferruginous 

conditions can be found in a reducing bottom layer, which is assumed to have been the 

prevalent feature of the ancient ocean throughout much of the Precambrian and also the 

Phanerozoic (Zegeye et al., 2012). Two of the lakes – Lake Pavin and Lake Matano – are the 

best studied ferruginous basins with the purpose to transfer gained knowledge to models of 

the Precambrian ocean. The other three lakes – Lake La Cruz, Lake Vechten and Lake 

Nordbytjernet – were included to our study in order to present lakes with the potential to 

serve as ancient ocean analogues that have not been investigated as such, yet. By this, we aim 

to encourage scientists from different disciplines to investigate such environments in order 

to understand the ancient ocean in detail. Expanding on this unique feature of stratification, 

we first explain the basic definitions for different lake stratification scenarios in the following 

section and then compile information on Lake Pavin, Lake Matano, Lake La Cruz, Lake 

Vechten and Lake Nordbytjernet. 
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Fig. 2: Different approaches to evaluate the mineralogy, geochemistry and geomicrobiology 

of Archean and Proterozoic environments. 

 

 

Lake stratification 

Water circulation in lakes is largely controlled by variations in water density at different 

depths, resulting from seasonal differences in surface temperature and dissolved ions 

(chemical gradients) (Boehrer and Schultze, 2008; Drever, 1997). The topmost layer in a 
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lake, the epilimnion, is exposed to solar radiation, heat-loss by long-wave radiation and 

thermal contact with the atmosphere. In contrast, the deeper water layer, the hypolimnion, 

is shielded from major heat sources, and is thus colder than epilimnetic waters. The epi- and 

hypolimnion are separated from each other by the metalimnion, a zone with a sharp 

temperature gradient (Andersson, 1997).  Thus, lakes with sufficient depth tend to be 

stratified thermally during the warm season (separated into layers of different 

temperatures). When surface temperatures start exceeding those of the hypolimnion, 

warmer, more buoyant waters can only be mixed to a depth limited by colder, denser water. 

During stratification, the epilimnion and atmosphere exchange heat and volatile compounds 

(such as oxygen) resulting in the physical circulation of epilimnetic waters. Meanwhile, the 

hypolimnion is insulted from exchange with the atmosphere and thus the oxygen content 

steadily decreases in these deeper layers due to its consumption via aerobic respiration in 

the water column. The redox state of the lake differs in the hypo- and epilimnion, separated 

by a steep gradient of oxygen concentrations in the metalimnion, called oxycline. When 

epilimnetic temperatures start to decrease (e.g. during autumn) to values approaching 

hypolimnetic ones, density differences disappear, resulting in the complete vertical mixing 

of hypo- and epilimnetic waters (fall turnover). During this event, oxygen is mixed into the 

whole water column and is present at concentrations in equilibrium with air O2 

concentrations (Drever, 1997). When epilimnetic temperatures reach lower temperatures 

than hypolimnetic ones (e.g., during winter), density contrasts re-appear and stratification 

occurs, with a subsequent spring turnover. This phenomenon is observed in regions with 

seasonal temperature fluctuation, whereas changes in stratification pattern of lakes usually 

do not occur in areas with constant climate conditions. 

Lakes with at least one annual turnover are collectively called holomictic (Fig. 3A). 

Meromictic lakes in contrast, contain an additional chemically distinct bottom layer, called 

the monolimnion that has not been recirculated for more than a year (Fig. 3B). This layers is 

usually anoxic, and overlain by the epi-, meta- and hypolimnion. Seasonal mixing of epi- and 

hypolimnion result in the mixolimnion.  
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Fig. 3: Patterns of stratification and turnover in holomictic and meromictic lakes. 

 

 

Lake Matano 

Lake Matano, the world´s largest known ferruginous lake (Crowe et al., 2011), is located on 

Sulawesi Island, Indonesia (S2° 29' 9.215" E121° 22' 38.507"). The lake is categorized as 

meromictic (Crowe et al., 2008c), which results from the combination of its great depth 

(>590 m) with the absence of seasonal temperature fluctuations and a steep bathymetry 

(Crowe et al., 2008b; Crowe et al., 2008c). A persistent chemocline at ~100 m depth divides 

the lake into an oxic top and an anoxic bottom layer (Crowe et al., 2008c).  Although it is not 

clear when the last mixing of the lake occurred, stable vertical profiles of redox-sensitive 

elements, such as Fe and Mn, suggest redox conditions to have prevailed on a millennial time 

scale (Crowe et al., 2008c). Dissolved Fe(II) is present at concentrations of up to 140 µM, 

whereas dissolved Mn(II) reaches a maximum of 9.5 µM in the hypolimnion. Chromium was 
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180 nM in the epilimnion, but it was not detectable in the hypolimnion. Similarly, sulfate was 

20 µM in the epilimnion, but was not detectable in the hypolimnion. Instead, trace 

concentrations of sulfide below 0.2 µM were measured below the chemocline (Crowe et al., 

2008c) as a result of slow sulfate reduction (Crowe et al., 2008b). Dissolved silica was 

measured below saturation at 300-420 µM (Crowe et al., 2008b; Zegeye et al., 2012). An 

additional specific feature of Lake Matano results from the scavenging of phosphate by 

Fe(III) (oxyhydr)oxide phases, such as ferrihydrite, which limits primary productivity in the 

surface mixed layer. The lack of light-absorbing (in)organic particles in the water column 

enables light penetration down to a depth of 125 m, where oxygen is already absent. 

Combined with the supply of Fe(II), conditions favor the establishment of a large community 

of anoxygenic phototrophic bacteria, in this particular case green-sulfur bacteria (GSB), at a 

depth of 115-125 m (Crowe et al., 2008b). The shift from an oxygenic cyanobacteria 

population in the epilimnion to a community of anoxygenic phototrophs in the hypolimnion 

is accompanied with a transition in abundances of the photosynthetic pigments chlorophyll 

a that dominates the oxic waters to a similar quantity of bacteriochlorphyll e, which is used 

by Chlorobiaceae, a family of low light adapted green sulfur bacteria. The majority of this 

family are photolithoautotrophs that use sulfide as an electron donor with the exception of 

C. ferrooxidans that uses Fe(II) instead (Crowe et al., 2008b).  

The mineralogy of the mineral particles formed during Fe(II) oxidation was determined, and 

showed the presence of carbonated green rust together with magnetite as abundant Fe 

minerals below the chemocline (Crowe et al., 2008c; Zegeye et al., 2012). Green rust is a 

mixed-valence intermediate Fe mineral formed by interaction of Fe(III) minerals with Fe(II) 

(Parmar et al., 2001). Lake Matano is so far the only stratified water body where green rust 

has been found (Zegeye et al., 2012). Whether the green rust is a microbial product by 

photoferrotrophy (Kappler and Newman, 2004) driven by the large GSB community or 

dissimilatory Fe(III) reduction (Zegeye et al., 2007) or whether an abiotic solid-phase 

transformation of ferrihydrite following Fe(II) adsorption is the pathway for its formation in 

Lake Matano remains unknown (Zegeye et al., 2012).  
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Lake Pavin 

Lake Pavin is a meromictic crater lake located 35 km southwest of Clermont-Ferrand 

(France) within the youngest volcano in the French Massif Central (N45° 29' 58.326" E2° 53' 

12.743"). Surrounded by a ~50 m high ring of volcanic tuff, the lake is protected from 

physical mixing by wind. This, in combination with its almost circular geometry (750 m 

diameter, 0.44 km2 surface and ~92 m maximum depth), results in a persistent redox 

stratification at a depth of ~60 m (Aeschbach-Hertig et al., 2002). The depth of the redoxcline 

can vary due to temporal variations resulting by annual meteorological differences and also 

was found at ~50 m depth in 2011 (Cosmidis et al., 2014). The mixolimnion (0- ca. 60 m 

depth) is oxygenated by seasonal fall and spring turnover, whereas the monimolimnion (ca. 

60-92 m depth) remained anoxic for at least the last 100 years and thus reached a steady 

state (Busigny et al., 2014).  

The mineralogy and oxidation state of Fe in the suspended particles was identified by 

Cosmidis et al. (2014) at different depths, revealing Fe to mainly be present in Fe(III) 

(oxyhydr)oxides and phyllosilicates at shallower depths, as Fe(II)-Fe(III)-phosphate mineral 

phases near the redoxcline, and Fe(II)-phosphates (vivianite-like) at the lake bottom. Under 

the reducing conditions in the monimolimnion, dissolved Fe(II) accumulates to a 

concentration of up to 1.2 mM (Bura-Nakic et al., 2009). Fe and Mn colloids (particle size 

<0.45 µm) as well as dissolved silica (H4SiO4) and phosphate are present at high 

concentrations (1.1 mM and 340 µM, respectively) in the bottom layer (Michard et al., 1994). 

Sulfate exists at low concentrations (15-20 µM) in the mixolimnion, and is absent in the 

monimolimnion (Assayag et al., 2008) as a result of microbial sulfate reduction. This 

metabolism leads to total dissolved sulfide concentrations between 0.6–16.7 µM just below 

the oxycline, with 80% of it being in colloidal FeS form as a consequence of Fe being the 

dominant metal involved into sulfur redox cycling (Bura-Nakic et al., 2009).  

Lehours et al. (2005) identified the microbial community in Lake Pavin over different depths 

of the water column. They showed an elevated diversity of the archeal and bacterial 

communities in samples from anoxic water depths relative to samples from the oxic water 
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layers, with both changing in their structures over different lake depths (Lehours et al., 

2005). The largest microbial community is represented by methanogens belonging to the 

genera Methanosarcinales and Methanomicrobiales, with 71% of the sequences related to 

Methanosaeta concilii. At the upper part of the chemocline (~60 m) sequences were related 

to methylotrophs as well as to the microaerophilic Fe(II)-oxidizer Gallionella ferruginea 

(with 97.5% sequence similarity), suggesting ongoing methane and microaerophilic Fe(II) 

oxidation at the oxic-anoxic redox transition zone of the lake. At a depth of 90 m, three 

sequences related to Geothrix fermentans, an Fe(III)-reducing δ-Proteobacterium, were 

observed, suggesting the replenishment of Fe(II) at lower depths of the lake (Lehours et al., 

2007).  

 

 

Lake La Cruz 

Lake La Cruz is located at an altitude of 1000 m a.s.l. in the dolomitic karstic “Serrenia de 

Cuenca” mountains, near Cuenca, Spain (also called “Laguna de la Gitana”, N39° 59' 16.7" E1° 

52' 25.0") (Rodrigo et al., 2001). Located inside a sink dissolution basin with steep vertical 

walls rising 20-30 m above water surface, the lake is protected from wind. In combination 

with its small surface to depth ratio it is also persistently stratified for the past four centuries 

now, however, unlike Lake Matano and Lake Pavin, stratification is not at a constant depth. 

Depending on the seasonal meteorology of the region within the respective year, its water 

depth and diameter vary annually. Measurements in 1987 and 1988 revealed variations in 

the redoxcline depth between 12.8-18.7 m. After intense rainfalls in spring 1988, maxima in 

depth and diameter with 24 m and 136 m were measured, respectively (Rodrigo et al., 2001). 

This resulted in a sharper and shallower thermocline, as well as a shallower oxic-anoxic 

boundary relative to periods with lower water levels (Romero-Viana et al., 2010). 

Nevertheless, values for iron and sulfide are constant in the anoxic bottom layer at ~900 µM 

and <3 µM, respectively. Sulfate is present at 0.05 mM (Rodrigo et al., 2000). One of the lake’s 

main features is the annual summer 'whiting', a short-term precipitation event whereby 
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calcium carbonate is produced in the water column in sufficient quantities to be visible. The 

event is caused mainly by increased temperatures and increased CO2 uptake by 

photosynthetic microorganisms, such that the carbonate crystals appear in light colored 

laminae alternating with dark laminae that result from the precipitation of organic matter 

throughout the year (Rodrigo et al., 1993).  

Romero-Viana et al. (2010) identified photosynthetic pigments in the annual laminated 

sediment to reconstruct and interpret paleoproductivity in the lake. The study yielded the 

presence of marker pigments of phototrophic sulfur bacteria, including bacteriochlorophyll 

a, series of bacteriophaeophytin d, and the bacterial carotenoids oktenone and 

chlorobactene (Romero-Viana et al., 2010). Correlating with solar radiation fluxes, the 

relative abundance of zeaxanthin suggests picocyanobacteria (e.g., Synechococcus sp.), to 

have dominated primary productivity in Lake La Cruz over the last four centuries (Romero-

Viana et al., 2010). This is consistent with the general observation of promoted epicellular 

calcite precipitation in lakes with abundant picocyanobacteria communities (Romero-Viana 

et al., 2008). With midday solar fluxes >1 µEM-2s-2, light penetrates into the upper parts of 

the anoxic layer of the lake, enabling growth of a population of purple sulfur bacteria 

(Amoebobacter purpureus) immediately above green sulfur bacteria (Pelodictyon 

chlatratiforme). A. purpureus is capable of anaerobic photolithotrophy by metabolizing 

hydrogen sulfide, elemental sulfur and thiosulfate (Eichler and Pfennig, 1988) while P. 

chlatratiforme is capable of photosynthesis under low-sulfide and low-light conditions 

(Pfennig and Cohenbaz.G, 1967).  

 

 

 Lake Nordbytjernet 

Lake Nordbytjernet is located in the Upper Romerike area, 40 km northeast of Oslo, Norway 

(N60° 9' 23.299" E11° 9' 50.9"). The endogenic meromictic kettle lake has a maximum depth 

of 23 m, a persistent monimolimnion below 20 m and a surface area of 0.28 km2 (Hongve, 

2003). The major constituents of the anoxic zone are iron, manganese and phosphate with 
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concentrations reaching up to 710 µM, 1180 µM and 1130 µM, respectively. Most of the Fe 

and Mn originate from a stream flowing through a forest area that has been artificially 

drained in modern times. The reducing conditions in the monimolimnion of Lake 

Nordbytjernet are maintained by the production of organic matter in the trophogenic zone. 

In contrast to other lakes, sulfate is present at high concentrations (up to 416 µM) in the oxic 

zone but is depleted in the anoxic bottom (Hongve, 2003). According to this author, 

conditions in Lake Nordbytjernet below 22 m favor the precipitation of both siderite (FeCO3) 

and vivianite (Fe3(PO4)2•8H2O), but played a role in Fe sedimentation from the 

monimolimnion. Instead, Fe(III) (oxyhydr)oxides, dominated by goethite, were the 

important Fe compounds in newly formed bottom sediments. 

 

 

Lake Vechten 

Lake Vechten is a man-made gravel lake located in the municipality of Bunnik, the 

Netherlands (N52° 3' 40.23" E5° 9' 36.31") that was excavated in 1941 (Steenbergen and 

Korthals, 1982). It consists of two basins with maximum depths of 11.9 m and 10.5 m and a 

surface area of 4.7 ha, divided by a ridge at about 6 m depth (Steenbergen and Verdouw, 

1982). The lake’s water balance is regulated by meteorological conditions and horizontal 

groundwater flow. Of the five lakes presented here, Lake Vechten is the only holomictic lake 

with a summer stratification from May until October. A pronounced thermocline separates a 

cold hypolimnion (Crowe et al., 2014) from a warm epilimnion (0-5 m), resulting in 

hypolimnetic O2 depletion and thus a chemocline just below the thermocline. During 

summer, Fe(II) and Mn(II) can accumulate at concentrations up to 690 µM and 180 µM in the 

reducing bottom layer, respectively. In addition, sulfide concentrations nearly reach 

millimolar levels just below the oxic-anoxic boundary (Riera, 1988), above which sulfate 

reaches ~400 µM (Steenbergen and Verdouw, 1982). Sulfide decreases largely with 

increasing depth as Fe(II) becomes abundant enough to control sulfide levels (Riera, 1988; 

Verdouw and Dekkers, 1980). Availability of P and Si (52-104 and 3-17 µM, respectively) 
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strongly depends on the autumnal turnover, with 2- to 5-fold concentrations in the whole 

mixed water column during winter compared to epilimnetic values during summer. 

The deepest light penetration was found during summer stratification with Secchi disk 

depths of 3.5 to 4.5 m (extinction coefficients for green (0.38-0.85 m-1), yellow-orange (0.73-

0.75 m-1), red (0.73-1.02 m-1) and blue light (0.69-1.42 m-1)). Thus, dense populations of 

phototrophic bacteria establish themselves in the metalimnion and upper hyplomnion 

where the chemocline starts. According to pigment analyses by Steenbergen and Korthals 

(1982) the total concentration of chlorophyll is up to 200 mg m-3 during stratification, 

corresponding to several oxygenic photosynthesizers, including the genera Synechococcus, 

Chloronema, Chromatium and Thiopedia. At lake depths below 8 m, where light intensities 

are lower and sulfate concentrations decrease, abundances of sulfide-oxidizing bacteria, 

such as the families Chlorobiaceae and Chromatiaceae (Steenbergen and Korthals, 1982). A 

population of brown Chlorobiaceae, mainly Chlorobium phaeobacteroides was found where 

sulfide was measured at 870 µM, just beneath a population of green Chlorobiaceae where 

sulfide concentrations were <50 µM. As light extinction occurred mainly at the depths where 

Synechococcus-type cells and green Chlorobiaceae developed dense communities, brown 

Chlorobiaceae grew under very low light conditions with 0.001% incident surface light 

(Riera, 1988). As anaerobic bacteria respire low-molecular weight organic carbon 

compounds, such as acetate and lactate, in the lake sediment as well as the lower 

hypolimnion layers, fixation of produced CO2 coupled to sulfide oxidation by purple sulfur 

bacteria at depths below 8 m is likely (Steenbergen and Korthals, 1982).  

 

 

Modern stratified lakes as models for Precambrian ocean 

conditions 

From the presented five stratified lakes, four are meromictic and one, Lake Vechten, 

possesses a warm-holomixis stratification pattern. Their maximum depths vary greatly with 

Lake Matano showing the greatest depth (~590 m) followed by Lake Pavin (92 m), while the 
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other three are much shallower with similar depths (between 11.9-24.5 m, respectively, 

Table 2). All five lakes are stratified with regard to dissolved oxygen concentration, resulting 

in anoxic reduced bottom layers which enable the accumulation of redox-sensitive elements, 

such as Fe(II). Additionally, Si concentrations in respective bottom layers are relatively high 

(around 1 mM) combined with sulfate being almost deficient. Collectively their compositions 

suggest that all five lakes could serve as analogues for various times in the Archean and 

Paleoproterozoic.  

In terms of the Fe(II) content, only Lake Matano approximates the estimated upper limit for 

Archean seawater Fe(II) (given as 120 µM by Canfield, 2005) (Table 1) with a concentration 

of 140 µM (Table 2). By contrast, the other lakes (with Fe concentrations between 690–1200 

µM) significantly exceed Archean estimates (Table 2). In terms of Si, the 420 µM in Lake 

Matano and the 500 µM in Lake Nordbytjernet Si (Table 2) are below the suggested Archean 

Si lower limit of 670 µM (Maliva et al., 2005) (Table 1), whereas Lake Pavin and Lake La Cruz 

contain Si concentrations within the estimated range of Precambrian Si (1100 µM and 1178 

µM, respectively, Table 2). All five lakes exceed the upper estimate for Archean marine 

phosphate concentrations (5.3±2.6 µM, Konhauser et al., 2007) (Table 1), with Lake Matano 

exhibiting the lowest phosphate concentration of 9 µM, followed by Lake Vechten (20 µM), 

Lake La Cruz (52.6 µM), Lake Pavin (340 µM) and Lake Nordbytjernet (1130 µM, Table 2). 

Sulfate concentrations are very low in all lakes with values of <0.1 µM in case of Matano, 

Pavin and Nordbytjernet, while in Lake La Cruz and Lake Vechten sulfate is present at 

concentrations of around ~20 µM (Table 2), which is low but falls within the range of 

estimates for the Archean oceans of 200 µM (Habicht et al., 2002) to only 80 nM (Crowe et 

al., 2014) (Table 1).  

An important issue to take into account for the evaluation of Lake La Cruz as a model habitat 

is the annual summer whiting event, a massive calcium carbonate precipitation that likely 

changes lake geochemistry. This may limit the suitability of Lake La Cruz as a natural 

laboratory for ancient ocean conditions. In contrast, the geochemical composition of Lake 

Vechten is quite constant during stratification, which occurs during summer. However, for 

the evaluation of Lake Vechten as model habitat it is of greater importance to consider its 
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sulfide accumulation to high concentrations of up to 1000 µM in the hypolimnion (Table 2). 

Such high sulfide values are comparable to suggested euxinic conditions in Proterozoic 

marginal marine settings. Thus, Lake Vechten represents a model habitat for the Proterozoic 

rather than for the Archean ocean due to the availability of ferruginous and euxinic 

conditions in its bottom. The simultaneous presence of both dissolved Fe(II) and sulfide is 

necessary for studying Fe-S biogeochemistry in model habitats for the Proterozoic ocean.  

When comparing the microbial compositions of the different lakes, it is obvious that 

anoxygenic phototrophic green-sulfur bacteria (GSB) dominate the microbial communities 

in ferruginous basins, as is the case with the bottom waters of Lake Matano, Lake La Cruz 

and Lake Vechten. Anoxygenic photosynthesis is assumed to be an ancient metabolism 

indicated by the deep branching GSB and green non-sulfur bacteria (GNSB), as well as the 

utilization of one single photosystem to harvest light energy in contrast to the requirement 

of two photosystems for oxygenic photosynthesis (Woese, 1987; Blankenship, 1992). In 

samples from Lake Matano, the Fe(II)-oxidizing GSB Chlorobium ferrooxidans was identified 

as community member and to date is the only known GSB capable of photoferrotrophy 

(Heising et al., 1999). Since such GSB need a minimum concentration of 0.8 µM free sulfide 

for sulfide oxidation (Vangemerden, 1984), it is likely that in an Fe(II)-rich environment, 

where sulfide availability was restricted to hydrothermal vents as in the Archean ocean, their 

preferred electron donor was Fe(II). In photic environments, where Fe(II) oxidation and 

Fe(III) mineral precipitation takes place, phosphorus was less available due to scavenging 

by Fe(III) (oxyhydr)oxides, and GSB further are suggested to have been the most active 

primary producing metabolism by photosynthetic C-fixation before cyanobacteria evolved 

confirmed by primary production rates of 3.8 x 10-3 mol C m-2 d-1 by photosynthetic C fixation 

in Lake Matano (Crowe et al., 2008b). 

It is conceivable that the oxidation of hydrothermally derived Fe(II) and H2S in the photic 

zone to sulfate and Fe(III) by GSB and GNSB, respectively, facilitated the activities of already 

evolved anaerobic sulfate- as well as Fe(III)-respiring bacteria in deeper layers of the water 

column. Chemoorganotrophic metabolisms were further facilitated by the formation of 

organic carbon by CO2 fixation driven by oxygenic photosynthesis as cyanobacteria likely 
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evolved around 3.0 Ga (Crowe et al., 2013; Planavsky et al., 2014). However, sulfate 

reduction rates were quantified to be low but still sufficient to remove all sulfate (<20 µM in 

mixed layer, <0.1 µM in bottom layer) in the water column of Lake Matano. Unlike Lake 

Matano, Lake La Cruz and Lake Vechten, the microbial community in Lake Pavin consists 

mainly of methylotrophs and microaerophilic Fe(II)-oxidizers in upper water layers whereas 

methanogens and Fe(III)-reducers dominate the monimolimnion (Lehours et al., 2005). 

 

 

Alternative field sites for studying Archean and Proterozoic 

ocean conditions 

In addition to the five lakes described above, there are two examples of ferruginous lakes 

that have not been very well studied with respect to their biogeochemical properties so far 

but also provide conditions similar to those described for the other five lakes: Brownie Lake 

in Minnesota, USA (N44° 58' 4.483" W93° 19' 26.677") (Myrbo, 2011; Swain, 1984), and 

Canyon Lake in Michigan, USA (N46° 49' 58.069" W87° 55' 14.858") (Anderson-Carpenter, 

2011; Davis, 2011; Smith, 1940). These lakes are redox-stratified and host ferruginous 

conditions with Fe(II) concentrations of 1500 µM in Brownie Lake and 857 µM in Canyon 

Lake, respectively. Both lakes are small with maximum depths of ~15 and ~25 m, 

respectively, compared to the well studied field sites Lake Matano and Lake Pavin.   



 

Tab. 2: Comparison of five holo- or meromictic lakes regarding their physical and chemical properties. 

 

  L. Matano L. Pavin L. La Cruz L. Nordbytjernet L. Vechten 

Stratification meromixis1 meromixis5 meromixis8 meromixis9 monomixis10 

Layer oxic anoxic oxic anoxic oxic anoxic oxic anoxic oxic anoxic 

Depth [m] 0–1201 120–5901 0–605 61–925 0-12/188 12/18-24.58 0-18/219 18/21-239 0-610 6/7-11.910 

Fe(II) [µM] 01 1401 05 >12005 0-108 10-10008 < 0.59 7149 010 69010 

Mn2+ [µM] 0.452 9.53 <275 <75 n.a. n.a. 0.79 11809 010 18010 

PO43- [µM] < 0.0251 91 05 3405 0.18 52.68 09 11309 52 – 10410 2010 

SO42- [µM] < 201 < 0.11 < 206 06 31.28 20.88 4169 09 40010 2010 

S2- [µM] 01 < 0.21 06 < 16.76 1-38 >158 n.a. n.a. n.a. <100010 

Mo [µM] n.a. n.a. > 0.45 < 0.85 n. a. n. a. n.a. n.a. n.a. n.a. 

Cr [µM] ~0.183 <0.033 n.a. n.a. n. a. n. a. n.a. n.a. n.a. n.a. 

SiO2(aq) [µM] 3001 4201 05 11005 10.48 1178.68 <107.19 5009 3.6 - 17.910 n.a. 

pH 8.61 7.01 6.2 – 8.57 6.0-6.27 8.3-8.78 6.6-7.58 7.0-8.29 7.0-7.99 6.3-7.210 6.1-6.310 

T [°C] 25-281 25-281 <177 <67 6-248 6-6.28 3.6-229 3.7-3.99 20-2410 4-510 

n.a. = not available 
1 Crowe et al. (2008b) 
2 Crowe et al. (2011) 
3 Crowe et al. (2008c) 
4 Crowe et al. (2008a) 
5 Busigny et al. (2014) 
6 Bura-Nakic et al. (2009) 
7 Cosmidis et al. (2014) 
8  Rodrigo et al. (2001) 
9 Hongve (1994) 
10 Riera (1988) 
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Furthermore, there are lakes with sulfidic bottom layers such as Green Lake in New York 

(United States, N43° 3' 5.965" W75° 57' 57.226") (Suits and Wilkin, 1998) and Lago Di 

Cadagno in the Swiss Alps (N46° 33' 2.246" E8° 42' 42.923") (Canfield et al., 2010), which 

both are not ferruginous since dissolved Fe(II) readily is scavenged by the sulfide and 

precipitates in form of iron sulfides in the water column. However, both lakes are subject of 

research projects already and contributed to the reconstruction of the ancient microbial 

sulfur cycle by analyses of the sulfur isotope compositions and contributions of microbial 

activities to the specific fractionation patterns (Canfield et al., 2010; Suits and Wilkin, 1998). 

Nevertheless, it remains unknown to which extent the iron cycle is coupled to the sulfur cycle 

in habitats that contain both Fe- and S-species, including questions on how bacterial 

abundances are spatially and temporally distributed and on which levels respective types of 

bacteria interact or compete for certain electron donors (Fe(II), sulfide, organic C) and 

electron acceptors (Fe(III), sulfate, nitrate). Since the holomictic Lake Vechten provides the 

presence of both, reduced Fe- and S-species at the same time, its investigation as modern 

model for Proterozoic oceans could improve our understanding of early biogeochemical Fe- 

and S-turnover and the coupling of these two cycles remarkably. One of the future challenges 

will be to find further habitats that are rich in Fe and S to evaluate and verify the observations 

from Lake Vechten. Such Fe- and S-rich habitats do not necessarily need to be stratified lakes 

but simply have to provide the simultaneous presence of dissolved Fe(II) and sulfide. One 

example for such a habitat is the Arvadi Spring, located in the higher Engadin window of the 

eastern Swiss Alps (N46° 40' 14.074" E9° 39' 52.956") within the Albula valley in the Canton 

of Grisons (Strauss et al., 2015). As one of several sulfur-containing springs of the area, the 

Arvadi spring stands out from the other springs by the presence of Fe- and S-species at tens 

of µM concentrations at the same time. Waters from two separate springs, namely the 

sulfide-containing Zuelper spring and a Fe(II)-containing spring, is mixed, resulting in the 

mixed Arvadi Spring water (Koeksoy, unpublished data). The spring is characterized by a 

distinct smell of sulfide and sediments of reddish colour, indicating the presence of Fe(III) 

(oxyhydr)oxides, covered with whitish flocks consisting probably of elemental sulfur (Fig. 

4). Additionally, whitish biofilms cover parts of the spring sediment and most probably 
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contain sulfide-oxidizing bacteria such as Thiothrix spp. that store S0 in their cells (Kurt 

Hanselmann, personal communication). Identification of the S0 sulfur isotopic composition 

revealed a depletion in 34S with δ34S values between -26 to -23‰, suggesting dissolved 

sulfide to be generated by microbial reduction of sulfate that was quantified at high 

concentrations up to 10.4 mM (Strauss et al., 2015). The source of sulfate is assumed to be 

the dissolution of evaporitic gypsum that is overlain by the Silvretta nappe crystalline rocks 

on which the Albula valley is based on. Associated with a minor isotope effect, microbial 

oxidation of sulfide is suggested to occur at the oxic-anoxic redox boundary, also being the 

likely source of S0 flocks (Strauss et al., 2015). The spring is currently evaluated for its 

suitability as Proterozoic ocean model by the identification of its microbial community and 

geochemical composition and promises a high chance to achieve a better understanding of 

Proterozoic FeS biogeochemistry. First results of Most Probable Number (MPN) studies on 

sediment samples from the spring identified microaerophiles to be the most abundant Fe- 

and S-metabolizing bacteria (Koeksoy and Kappler, unpublished data) which is in 

accordance to what is assumed for the Proterozoic ocean due to the formation of a redox 

transition zone in surface water layers after the GOE. As the oxygen content of the spring 

water is high being close to saturation of 100%, anaerobic phototrophic and 

chemolithotrophic Fe- and S-metabolizing bacteria were quantified at lower cell numbers 

and thus are concluded to colonize only deeper and thus oxygen-depleted layers of the spring 

sediment. Further evaluation of microbial activities and interactions are ought to be 

identified with current experiments with the major goal of gaining a better understanding of 

spatial and temporal interactions of the Fe- and S-cycles on the microbial as well the 

geochemical levels.  
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Fig. 4: The Fe- and S-rich Arvadi Spring, located in the eastern Swiss Alps. Photograph was 
taken in February 2014. A Front view of the spring with the spring pond in the back and 
creek outflow. B View on the spring front from the top. The white S0 flocks are distributed 
all over the spring pond, overlaying reddish Fe(III) minerals in the spring sediment. C White 
biofilms of Thiothrix like bacteria sticking to stones at the creek outflow are a strong 
indication for the presence of sulfide-oxidizing bacteria in the spring. D Spring creek flows 
downwards into forest. 

 

 

Outlook and future research needs 

The investigation of Precambrian environment-biosphere feedback systems to understand 

BIF deposition relies largely on circumstantial evidence to piece together an accurate picture 

of the functioning of ancient marine ecosystems. Our research approach must necessarily be 

multidisciplinary in this regard. While information obtained from the Precambrian rock 

record of banded iron formations sets the relevant geochemical parameters and laboratory 

experiments allow us to manipulate conditions in order to observe the effect of a set number 

of variables on processes relevant for BIF deposition, modern environments act as natural 

laboratories allowing us to observe the processes relevant for BIF deposition in situ. 

Therefore, there is need for well-suited natural habitats that provide conditions similar to 
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those on ancient Earth. Limited by the presence of specific features such as anoxic conditions 

as well as the presence of high Fe(II) concentrations, only a handful of lakes make suitable 

models for the ancient ocean. The two lakes that are currently used as modern analogues 

namely Lake Matano and Lake Pavin, are good but maybe not ideal, since they are diverging 

from estimated ancient seawater conditions in some aspects, such as high phosphate 

concentrations as well as probably too high Fe(II) concentrations relative to estimated 

ranges of respective compounds in Archean seawater. Alternatively, potential is hidden in 

Lake Vechten, Lake Nordbytjernet, Brownie Lake, and Canyon Lake, all ferruginous lakes that 

were not considered enough as model habitats so far. These lakes could be examined in more 

detail in the future, in order to compile insights comparable to those gained in the numerous 

studies of Lake Matano and Lake Pavin. The main challenge of our scientific community still 

is to find alternative habitats that also provide appropriate, and ideally, optimal conditions 

with parameters within the ranges delineated by the Precambrian rock record. However, 

more important than evaluating each habitat as a individual model for the ancient ocean is 

to connect the different aspects that we attain from each habitat and to transfer them to our 

current models of the Precambrian oceans and their biogeochemical processes. As there will 

never be the perfect model field site and as our view on ancient ocean conditions changes 

constantly, we will benefit most by answering different questions by using appropriate 

individual model habitats. 
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OPEN QUESTION AND OBJECTIVES OF THIS STUDY 

Deciphering the geochemical and biological constrains in ferro-euxinic transition zones of 

oxygenated ancient oceans is inevitable to improve our understanding of the factors that on 

the one hand controlled biogeochemical stasis during the mid-Proterozoic and on the other 

hand triggered the diversification of the biosphere towards the Neoproterozoic-Cambrian 

boundary. Many questions regarding the composition of these complex and highly dynamic 

settings remain unsolved, including the actual areal extant of Fe(II)-rich versus sulfidic 

waters and factors that controlled their formation and extension. More specifically, the 

identity of Fe- and S-minerals that potentially co-precipitated from ferro-euxinic waters are 

of particular interest with respect to their role as precursor minerals in Banded Iron 

Formations and Black Shales. Furthermore, the response of the existing microbial 

community (that presumably consisted largely of Fe-metabolizers) to increasing sulfate 

levels and thereby triggered sulfate reduction rates and elevated sulfide concentrations 

requires elucidation. Especially their potential co-existence with emerging S-metabolizers 

and their competition for habitable niches and electron donors and acceptors needs to be 

deciphered. 

These questions can partially be answered by analyzing the rock record, but based on its 

incomplete and partly diagenetically altered nature, additional verification from alternative 

approaches such as simulation-based laboratory and modeling experiments is required.  The 

presented work in this thesis addressed the above described questions by the use of a 

modern model habitat for ferro-euxinic transition zones of ancient oceans, i.e. the Arvadi 

Spring. For the purpose of our goals, the objectives that we addressed as part of this theses 

were: 

 to evaluate the suitability of the Arvadi Spring as a modern model habitat for late 

Archean and Proterozoic ferro-euxinic ocean transition zones through a detailed 

geochemical characterization of the spring water. Chapter 2 gives an overview about 

the geochemical composition of the Arvadi Spring water and compares its properties 

to ancient ocean conditions. 
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 to understand and evaluate the composition of ferro-euxinic ocean transition zones, 

specifically focussing on the equilibrium between dissolved Fe(II) and sulfide. While 

Chapter 2 shows a detailed overview on the geochemical composition of the Arvadi 

Spring water, the mineral saturation index for Fe(II) sulfide and reasons for Fe(II) 

sulfide precipitation in the Arvadi Spring are elucidated in Chapter 3. 

 to identify the composition, speciation and relative abundance of Arvadi Spring 

minerals, especially with regard to gaining insights on the identity of precursor 

minerals for Banded Iron Formation and Black Shale deposition. Chapter 3 focusses 

on the Fe- and S-mineralogy in Arvadi Spring precipitates and discusses potential 

mineral formation mechanisms. 

 to identify the microbial community composition, morphology, structure, relative 

abundance and activity, with the role of Fe- and S-metabolizing microorganisms being 

highlighted, which is discussed in Chapter 2 and Chapter 4. 

 to assess the relative contribution of abiotic and biotic Fe- and S-redox 

transformations during different periods of ocean oxygenation based on the 

knowledge obtained from the Arvadi spring. All chapters included in this thesis 

comprise an implications part in which the specific results are integrated into 

currently existing models of biogeochemical Fe-S-cycling in ferro-euxinic transition 

zones of ancient oceans.
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Abstract 

As a consequence of Earth´s surface oxygenation, ocean geochemistry changed from 

ferruginous (iron(II)-rich) into more complex ferro-euxinic (iron(II)-sulphide-rich) 

conditions during the Paleoproterozoic. This transition must have had profound 

implications for the Proterozoic microbial community that existed within the ocean water 

and bottom sediment; in particular iron-oxidizing bacteria likely had to compete with 

emerging sulphur-metabolizers. However, the nature of their co-existence and interaction 

remains speculative. Here we present geochemical and microbiological data from the Arvadi 

Spring in the eastern Swiss Alps, a modern model habitat for ferro-euxinic transition zones 

in late Archean and Proterozoic oceans during high-oxygen intervals, which enables us to 

reconstruct the microbial community structure in respective settings for this geological era. 

The spring water is oxygen-saturated but still contains relatively elevated concentrations of 

dissolved iron(II) (17.2±2.8 µM) and sulphide (2.5±0.2 µM) with simultaneously high 

concentrations of sulphate (8.3±0.04 mM). Solids consisting of quartz, calcite, dolomite and 

iron(III) oxyhydroxide minerals as well as sulphur-containing particles, presumably 

elemental S0, cover the spring sediment. Cultivation-based most probable number counts 

revealed microaerophilic iron(II)-oxidizers and sulphide-oxidizers to represent the largest 

fraction of iron- and sulphur-metabolizers in the spring, co-existing with less abundant 

iron(III)-reducers, sulphate-reducers and phototrophic and nitrate-reducing iron(II)-

oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide-oxidizing Thiothrix species 

to be the dominating genus, supporting the results from our cultivation-based assessment. 

Collectively, our results suggest that anaerobic and microaerophilic iron- and sulphur-

metabolizers could have co-existed in oxygenated ferro-sulphidic transition zones of the late 

Archean and Proterozoic ocean, where they would have sustained continuous cycling of iron 

and sulphur compounds. 
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Introduction 

Knowing the identity and composition of ancient microbial communities is vital in order to 

shed light onto the most compelling questions about the history of life, including the impact 

of rising oxygen levels in Earth’s atmosphere and oceans on life´s diversification. However, 

our understanding is incomplete as the remains of ancient metabolisms in the form of 

microfossils are rarely found in the rock record, and also because the interpretation of 

chemical fingerprints in ancient rocks is challenging due to diagenetic alteration and/or 

metamorphic overprinting (Klein, 2005; Koeksoy et al., 2016).  

The majority of Precambrian oceans were dominantly anoxic and ferruginous (rich in 

iron(II) (Poulton & Canfield, 2011)) and the bulk ocean presumably remained like this until 

the later Neoproterozoic (1.0-0.5 Ga) (Canfield et al., 2008; Planavsky et al., 2011). Hence, 

iron-metabolizing microorganisms probably played a key role in shaping the Precambrian 

biogeochemical environment before more complex eukaryotic life forms emerged and 

diversified. Striking evidence for the existence of such microorganisms early in Earth´s 

history comes from Banded Iron Formations (BIF), sedimentary rocks with a characteristic 

alternation of iron-rich and silica-rich layers that were deposited throughout the Archean 

(4.0-2.5 Ga) and Paleoproterozoic (2.5-1.6 Ga) (Bekker et al., 2014; Bekker et al., 2010). For 

instance, iron-isotope data in early Archean BIFs suggest the prevalence of phototrophic 

iron(II)-oxidizers by ca. 3.7 Ga (Czaja et al., 2013), while iron and neodymium isotopes 

together with rare Earth element analyses in late Archean BIFs suggest dissimilatory 

iron(III)-reducers to have recycled parts of continental iron in coastal sediments by ca. 2.5 

Ga (Li et al., 2015; Johnson et al., 2008). Furthermore, microfossil data found in the 

Nuvvuagittuq supracrustal belt in Quebec, Canada, imply the very early existence of 

microaerophilic iron(II)-oxidizers already by 3.7 Ga, possibly even by 4.5 Ga (Dodd et al., 

2017). Additional microfossil data from the Paleoproterozoic Jhamarkotra Formation, India 

(Crosby et al., 2014), and iron-isotope data in stromatolites from the Animkie basin of the 

Gunflint and Biwabik Formations, Canada and USA (Planavsky et al., 2009), indicate 

respective microorganisms to have flourished in slightly oxic surface zones of the ocean 
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during high-oxygen intervals. Respective conditions are thought of having been widespread 

during the late Archean in form of oxygen oases (Olson et al., 2013), during the 

Paleoproterozoic Great Oxidation Event (GOE) (Holland, 2006), and throughout the 

Proterozoic (Planavsky et al., 2014; see Lyons et al., 2014 for an overview).  

Although these patches of information hint at the establishment of an ancient network of 

iron-metabolizers on Precambrian Earth, outstanding questions about their spatial 

distribution, community composition and interplay with metabolically different 

communities remain unsolved. Especially their response to the expanding sulphate-reducing 

microbial community in coastal parts of the water column and in underlying sediments as a 

consequence of the enhanced delivery of dissolved sulphate to neritic ocean regions through 

increased oxidative weathering of terrestrial pyrite during high-oxygen intervals (Canfield, 

1998) is uncertain. As a consequence, the accumulation of euxinic (sulphide-rich) waters by 

enhanced sulphate reduction rates and their expansion to intermediate-depth ocean regions 

of high biological productivity (Poulton et al., 2004; Poulton et al. 2010; Canfield, 1998; 

Reinhard et al., 2009) likely triggered the proliferation of sulphur-oxidizers.  

Deciphering the nature of the coexistence of iron- and sulphur-metabolizers in oxygenated 

ferro-euxinic transition zones of Precambrian oceans is essential to understand the 

biological and geochemical factors that controlled the extent of euxinic versus ferruginous 

conditions and that shaped the biogeochemical cycling of redox-active elements, including 

carbon, oxygen, iron and sulphur. As the available rock record data is insufficient to assemble 

a complete picture of ancient microbial community structure and activity, an alternative 

promising approach is the analysis of existing modern habitats that resemble conditions of 

relevant ancient settings (Koeksoy et al., 2016), such as Lake Matano (Crowe et al., 2008), 

Lake Pavin (Busigny et al., 2014), Lake La Cruz (Walter et al., 2014) and Kabuno Bay of Lake 

Kivu (Llirós et al., 2015). Accordingly, we present data from the iron- and sulphur-rich 

Arvadi Spring in the eastern Swiss Alps, which we posit to simulate the geochemical and 

microbial composition in shallow ferro-euxinic transition zones of late Archean and 

Proterozoic oceans during high-oxygen intervals. The main goals of this study were to (1) 

analyse the geochemical composition of the Arvadi Spring, (2) to identify and quantify the 
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key players of the iron- and sulphur-metabolizing bacterial communities, and (3) to predict 

late Archean and Proterozoic ocean geochemical and microbial community composition.  

 

 

Materials and Methods 

Field site description. The highly mineralized Arvadi Spring is located in the Albula valley 

close to Bad Alvaneu (canton of Grisons, Switzerland) at an altitude of 928 m above sea level 

(46°40'17.4" N 9°39'18.8"E). It is situated in an alpine orogeny area comprising erosion of 

the Austroalpine overthrusts and the underlying Penninic rocks. Exposure of Jurassic 

oceanic crustal rocks and overlying sedimentary rocks resulted in the discharge of deeply 

circulating waters from lithologically variable rock units. The Arvadi Spring discharges from 

the crystalline rocks of the Silvretta nappe, which overlays carbonates and evaporitic 

gypsum, of which the latter is the source of sulphur species in the Arvadi Spring water 

(Strauss et al., 2016). The contemporaneous presence of both, iron and sulphur species, in 

the spring water results from a mixture of sulphur-rich water from a sulphide spring with 

iron-rich water from a second unknown subsurface water source. A scheme of the water flow 

system is provided in the supplementary information file (Fig. S1). Unfortunately, we had no 

access to the subsurface sources of the parental waters and hence cannot provide 

information on their geochemistry. The iron(II) and sulphide content of sulphide- and 

iron(II)-rich water could be identified, however, at a connection point between the two 

different sourced waters in a mixing tunnel (CP2, Fig. S1) and were found to be 13.81±1.33 

µM and 8.00±0.79 µM, respectively, at full oxygen saturation. From connection point 2 the 

intermixed water flows ca. 35 m downhill before it crops out into a manmade pond (the 

Arvadi spring) with a diameter of 3.3 m and a water depth of ~20 cm (Fig. 1). From the pond, 

the water flows into a creek of ca. 13 m length and converges with a second creek at 16.5 m 

distance from the spring discharge (Fig. 1), which dilutes the Arvadi Spring water. The 

sediment of the spring pond is completely covered by soft reddish particles, which are 

overlain partly by fluffy whitish flocs that apparently have a lower density (Fig. 2A, 2B). Rock 
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surfaces in the spring pond are partly covered by white biofilms with filamentous 

elongations and partly by orange-brownish biofilm-like crusts. The soft red and white flocs 

are not present along the spring creek. Instead, the creek floor is covered by a thin orange-

whitish crust. 

 

Field measurements of physical and chemical parameters and sampling. Major physical 

and chemical parameters (pH, temperature, oxygen content, electrical conductivity and 

salinity) were determined by in-situ measurements at 7 locations in the spring water  

(Fig. 1). Measurements were performed with a field multimeter (WTW, Multi 3430), 

containing an oxygen sensor (FDO®925, 0-200 ± 1.5% dissolved oxygen at 20°C), a 

conductivity electrode (TetraCon®925, conductivity range 1 µS cm-1 - 1 S cm-1 ± 0.5% of 

measured value) and a pH sensor (SenTix®, pH range 0.000-14.000 ± 0.004) with an 

additional temperature sensor. The pH and conductivity sensors were calibrated at room 

temperature according to manual instructions of the WTW Multi 3430 field multimeter. The 

pH sensor was calibrated with a three-point calibration using technical buffers at pH values 

4.01, 7.00 and 10.00. The conductivity electrode was calibrated using a 0.01 mol L-1 KCl 

conductivity standard with a conductivity of 1413 µS cm-1 at 25°C. The oxygen sensor is 

factory calibrated for the whole sensor lifetime with values stored in an internal memory 

chip within the sensor cap. The mean residence time of the pond water was identified by 

using NaCl as a tracer and conductivity measurements with the WTW TetraCon®925. The 

conductivity of the Arvadi Spring water at location 1 (L1, Fig. 1) was doubled by dissolving 

the NaCl tracer in the spring water. The tracer was distributed homogeneously in the spring 

pond by stirring the pond water over the length of the experiment. The conductivity was 

logged until it returned to initial values.  

Spring water for geochemical analyses was collected from two locations within the spring 

pond (L1 and L2, Fig. 1). Samples were filtered to 0.45 µm in order to quantify major anions 

and cations by ion chromatography, dissolved organic (DOC) and inorganic carbon (DIC) by 

a carbon analyzer (highTOC, Elementar, Germany) and silica by Microwave Plasma – Atomic 

Emission Spectroscopy (MP-AES) (4200, Agilent Technologies, USA). Samples for Si 
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quantification additionally were acidified with 2% HNO3 prior to analyses. Water for 

bicarbonate analyses was sampled without headspace and titrated in the laboratory against 

1 M HCl. To prevent oxidation of iron(II) by air-O2 during sampling, water and red floc 

samples from L1 and L2 for iron quantification were directly added to 0.5 M HCl on site 

(Porsch & Kappler, 2011). Iron(II) and total iron were quantified in respective samples by 

the spectrophotometric ferrozine assay (Stookey, 1970) with a microplate reader (FlashScan 

550, Analytic Jena, Germany). For the quantification of total iron, samples were added to 10% 

hydroxylamine hydrochloride (HAHCl) solution in order to reduce all iron(III) to iron(II). 

The iron(II) content in HAHCl reduced samples therefore represents total iron. Iron(III) 

concentrations were calculated by subtraction of iron(II) concentrations from total iron 

concentrations. Hydrogen sulphide was quantified in water samples from L1 and L2 by the 

methylene blue method after Cline (1969) with a photometer (FlashScan 550, Analytic Jena, 

Germany). Sulphide was prevented from oxidation by air-O2 during sampling by fixation of 

samples in 2% (w/v) zinc-acetate solution (Cline, 1969). 

 

Mineralogical analyses. The mineralogy of the red flocs was identified by Mössbauer 

spectroscopy (Larese-Casanova et al., 2012). Precipitates were collected at L2 (Fig. 1) and 

stored without headspace at 4°C in the dark prior to further treatment in the laboratory. 

Samples were dried by applying low pressure inside an anoxic glovebox (100% N2) to avoid 

oxidation of potentially present redox-sensitive iron(II) minerals. The dried samples were 

ground in a mortar, filled in a flat cylinder-shaped plexiglas holder (with open top and an 

inner diameter of 1.5 cm) and fixed by a second smaller sample holder. For measurements, 

samples were inserted into a closed‐cycle exchange gas cryostat (Janis cryogenics, USA). 

Spectra were recorded at 77 K and 4.2 K in transmission geometry using a constant 

acceleration drive system (WissEL GmbH, Germany). A 57Co source embedded in a Rhodium 

matrix was used as gamma radiation source. The sample spectra were calibrated against a 

7-µm-thick α‐57Fe foil at room temperature. The RECOIL software suite (University of 

Ottawa, Canada) was used for calibration and modelling of the spectra. The spectra were 

modelled using Voigt-based line shapes (Rancourt & Ping, 1991). The Lorentz half-width-
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half-maximum value (HWHM) was kept constant at 0.126 mm/s (determined from the 

minimum line width of the 3 and 4 peaks of the calibration foil) in the models. The Gauss’ 

sigma (σ) parameter was used to account for line broadening until the fitting was reasonable. 

Sample spectra were analysed with respect to the centre shift (CS), shift/quadrupole 

splitting/ (ε/QS) and hyperfine field (H). 

 

 

Figure 1: Schematic overview of the Arvadi Spring. Locations L1 and L2 are situated within 
the spring pond (B). L1 is located at the spring discharge and L3 at the transition of the water 
from the spring pond into the spring creek. Image (A) shows the transition of the spring pond 
to the creek at L3. Image (C) shows how the spring water flows via location L4 from the 
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spring pond to location L5. Image (D) shows whitish biofilms grown at several locations 
within the spring creek. Image (E) shows how water from another creek (L7) gets mixed into 
Arvadi Spring water. The mixed water flows out into forestal area (L6). 

 

 

Microscopy. White and red flocs were sampled and stored at 4°C in the dark until analysis 

with a BMS 133 Trino binocular microscope (BMS Microscopes, NL). Samples for light 

microscopy were fixed in 2% paraformaldehyde. For fluorescence microscopy, samples were 

stained with SYTO9 stain (BacLight, Invitrogen, Carlsbad, CA) before analysis with a Leica 

DM 5500 B microscope (Leica Microsystems, Germany). Biofilm samples were fixed in 2.5% 

glutaraldehyde in the field to preserve biotic structures for Scanning Electron Microscopy 

(SEM) (Schädler et al., 2008). The samples were then transported on ice and in the dark back 

to the laboratory where they were stored in a cold-room over-night. The next day, samples 

were prepared on TEM grids or on glass slides, both pre-treated with poly-lysine. The TEM 

grids were dipped into the preserved samples and then taken through a dehydration series 

consisting of 30, 70, 95 and 100% ethanol (with the samples being immersed for ca.  

5 seconds in each solution) and 2 final steps with hexamethyldisilazane before samples were 

left to air dry. Samples were prepared on glass slides by first adding a droplet of sample onto 

the slide, after which excess liquid was pipetted away and each of the solutions in the 

dehydration series above were added to the glass slide and left for 10-15 minutes before 

being exchanged. Finally, all samples were placed on aluminium stubs with carbon tape and 

sputter-coated with platinum (6-8 nm, SCD005, BAL-TEC, Liechtenstein, 35 mm working 

distance, 30 mA, 60 s). SEM micrographs were recorded with a secondary electron detector 

of a Leo Model 1450VP SEM (Carl Zeiss SMT AG, Germany) operated at 7 kV and 6 mm 

working distance. 

 

Quantification of cell abundance by Most Probable Number (MPN) counts. Red and 

white flocs were collected separately from each location (L1 and L2; Fig. 1) and stored 

without headspace at 4°C in the dark prior to the experiment. The red flocs were used for 
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MPN enumerations of iron-metabolizers, while white flocs were used for MPN counts of 

sulphur-metabolizers after Oblinger and Koburger (Oblinger & Koburger, 1975; Straub et al., 

2005). First, red and white flocs were homogenized separately. A 10-1 dilution was prepared 

by the addition of approximately 1 g wet weight of red flocs to 9 mL of freshwater (FW) 

medium and 1 g wet weight of white flocs to 9 mL of basal mineral (BM) medium, 

respectively (for detailed description of media composition, see SI). Starting with the 10-1 

dilution, a ten-fold dilution series was prepared by sample transfer in a 1:10 ratio up to a 

dilution of 10-12. The dilutions were used as inoculum for MPN experiments. Anaerobic iron- 

and sulphur-metabolizers were cultivated in anoxic growth media with selective additives, 

as listed below (Hegler et al., 2008; Straub et al., 2005). Microaerophilic iron(II)- and 

sulphide-oxidizers were cultivated in gradient tubes after Emerson et al. (2005). Both types 

of MPN experiments were conducted as described by Laufer et al. (2016). 

Iron-metabolizers were cultivated in FW medium amended with 30 mM NaHCO3. 

Phototrophic iron(II)-oxidizers were cultivated with 10 mM FeCl2 as iron(II) source and  

5 mM Na2MoO4 to inhibit growth of sulphate-reducers. Nitrate-reducing iron(II)-oxidizers 

were cultivated in FW medium amended with 10 mM FeCl2, 5 mM Na2MoO4, 4 mM NaNO3 

and 0.5 mM Na-acetate. Iron(III)-reducers were cultivated in FW medium amended with  

5 mmol L-1 ferrihydrite as iron(III) source, 5 mM Na-acetate and 5 mM Na-lactate.  

Phototrophic sulphide-oxidizers (purple and green sulphur bacteria as well as non-sulphur 

bacteria) were cultivated in BM medium amended with 30 mM NaHCO3. BM medium for non-

sulphur bacteria contained 0.1 mM Na2S, 5 mM Na-acetate, 5 mM succinic acid and 5 mM 

maleic acid and had a final pH of 6.8. BM medium for purple sulphur bacteria was amended 

with 1.2 mM Na2S and was adjusted to a final pH of 7.6. BM medium for green sulphur 

bacteria contained 2.5 mM Na2S and was adjusted to a pH of 6.8. Nitrate-reducing sulphide-

oxidizers were cultivated in BM medium amended with 1 mM NaNO3, 1 mM Na2S, 0.5 mM 

Na-acetate and 30 mM NaHCO3.  

Sulphate-reducers were cultivated in BM medium amended with 30 mM Na2SO4, 1 mM Na2S 

and 10 mM Na-acetate. Microaerophiles were cultivated in gradient tubes prepared with 
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Modified Wolfe´s Mineral Medium (MWMM) (see SI) containing an iron(II) bottom plug in 

case of iron(II)-oxidizers, while gradient tubes for sulphide-oxidizers contained a Na2S 

bottom layer.  

Generally, anoxic MPN deep-well plates and MPN gradient tubes were evaluated visually for 

positive growth due to a colour change in test wells and tubes, either from (1) light greenish 

or colourless to orange-brownish indicating the presence of iron(III) (oxyhydr)oxide 

precipitates and thus iron(II) oxidation or (2) from reddish to black indicating the 

precipitation of ferrous sulphides or mixed-valent iron(II)/iron(III) minerals and thus 

iron(III) reduction or (3) from colourless to blackish indicating precipitation of ferrous 

sulphides and thus sulphate reduction or (4) from colourless to purple indicating growth of 

purple (non-)sulphur bacteria or (5) from colourless to greenish indicating growth of green 

(non-)sulphur bacteria. In case of no visible colour change as it was the case for nitrate-

reducing sulphide-oxidizers, growth was evaluated by sampling of the test wells and 

subsequent quantification of sulphide. 

 

DNA extraction, 454 pyrosequencing of 16S rRNA gene amplicons & sequence 

analyses. Sediment samples for DNA extraction and subsequent 454 pyrosequencing were 

collected from L2 (pond) and L5 (creek) (Fig. 1). DNA was extracted from each sample with 

the Powersoil® DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA). DNA quality and 

quantity was determined spectrophotometrically using NanoDropTM (ND 2000, PEQLAB 

biotechnology GmbH, Germany). Bacterial 16S rRNA genes were amplified using primers 

27F (5’-AGAGTTTGATCMTGGCTCAG-3’, (Lane, 1991)) and 534R (5’-

ATTACCGCGGCTGCTGGC-3’, (Liu et al., 2007)) targeting the variable regions V1-V3 (507 bp). 

Both primers contained Roche 454 pyrosequencing barcodes. Primer 27F and 534R 

contained Roche 454-pyrosequencing adaptor sequences A and B, respectively. PCR was 

performed on each DNA extract in duplicate using the FastStart High Fidelity PCR system 

(Roche Diagnostics, Rotkreuz, Switzerland). PCR products were pooled in equal amounts. 

The amplified DNA was quantified using the Quant-iTTM PicoGreen® dsDNA assay kit (Life 

Technologies, Carlsbad, CA, USA) and a QuantiFluor®-ST fluorometer (Promega, Madison, 
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WI, USA). 454 pyrosequencing was performed on a Roche GS Junior Sequencer (454 Life 

Sciences, Branfort, CT, USA) according to the manufacturer´s instructions for amplicon 

sequencing. Amplicon reads have been deposited in the NCBI Sequence Read Archive 

(accession number: SRP124992, bioproject: PRJNA417005). 

Curation of the obtained sequencing data including quality control, sequence alignment and 

sequence classification was performed using the software package MOTHUR, version 1.35.1 

(Schloss et al., 2009). Pyrosequencing noise including primer dimers, single base errors and 

PCR chimeras were removed with the MOTHUR-implemented algorithms PyroNoise (Quince 

et al., 2009) and UCHIME (Edgar et al., 2011). Sequences shorter than 200 bp and 

homopolymers longer than 8 bp were removed from the dataset. All remaining high-quality 

sequences were aligned against the SILVA SSU Ref rRNA database (v119) (Pruesse et al., 

2007) and pre-clustered with the single linkage algorithm at a threshold of 2% (Huse et al., 

2010). Sequences were assigned to operational taxonomic units (OTUs) based on 3% genetic 

distance using the average neighbour algorithm (Schloss & Westcott, 2011). Sequence 

classification was performed using the Naïve Bayesian Classifier (Wang et al., 2007) and the 

SILVA SSU rRNA reference database with a minimum bootstrap confidence cut-off value of 

60%. Random subsampling was performed prior to alpha diversity analyses to normalize the 

dataset to the sample with the lowest number of reads. Rarefaction curves, richness 

estimators (Chao1, ACE) and diversity indices (Shannon diversity, Simpson diversity) were 

calculated based on 3% genetic distance using MOTHURs implementation DOTUR (Schloss 

& Handelsman, 2005). 

 

 

Results 

Geochemical composition of the Arvadi Spring water. Geochemical parameters were 

constant in the spring pond (locations L1, L2, L3; Fig. 1; Tab. S1), as well as over the creek 

length with increasing distance from the spring discharge (locations L4, L5, L6; Fig. 1; Tab. 

S1). Differences were observed at location L7, which is in the second creek and not the Arvadi 
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Spring (Fig. 1). The spring water in the pond had a circumneutral pH and a temperature of 

7.0 to 7.3°C (Tab. 1). The water was saturated with oxygen (337.5±1.3 µM, average±standard 

deviation, n=3, Table 1) but still contained dissolved iron(II) and sulphide at concentrations 

of 17.2±2.8 µM and 2.5±0.2 µM (n=5, Table 1), respectively. Dissolved iron(III) was not 

detected in the spring water. The average concentrations of the main anions and cations in 

the spring pond (L1-L3, Table S2; Table S3, n=3) were sulphate (8.3±0.1 mM), magnesium 

(3.2±0.0 mM) and calcium (7.0±0.0 mM). Total carbon was quantified at 50.9±0.3 mg L-1, of 

which 1.3±0.7 mg L-1 was DOC (n=3, Table S4). The bicarbonate content of the spring water 

was 4.5±0.0 mM (n=3, Table 1). Silica was quantified at 134.3±4.4 µM in the spring pond 

water (n=6, Table 1). On the basis of the conductivity measurements, which reflected the loss 

of the NaCl spike from the pond water, the mean residence time of the spring water in the 

pond was 16 minutes. 

 

Structure and composition of precipitates. The spring pond ground was completely 

covered by red floc precipitates partly overlain by whitish flocs (Fig. 2A, 2B). Light 

microscopy showed the red floc material to be bulky and densely packed (Fig. 2C), while 

white flocs consisted of filaments interspersed with smaller nodule structures (Fig. 2D). 

Staining of the red and white flocs with SYTO9, a nucleic acid dye, indicated that both types 

of flocs consisted mainly of biotic structures (Fig. 2E, 2F). SEM analyses of red and white 

biofilm samples recovered from rock surfaces at L3 (Fig. 1D) revealed similar results as the 

microscopic analyses of red and white floc samples. The red biofilm contained mainly bulky 

and heterogeneous structures (Fig. 2G) that were similar to the red floc morphology, 

whereas the white biofilm rather consisted of a web of filamentous structures (Fig. 2H), as 

found in white flocs. 

Quantification of the iron(II):iron(III) ratios in red flocs by the spectrophotometric ferrozine 

assay after acidic dissolution revealed iron(III) to be the dominant redox state, although the 

relative amounts varied between samples from L1 and L2. Red flocs from L1 had 77.0±2.2% 

(average ± standard deviation, n=5) iron(III) and a lower amount of iron(II) of 23.1±2.2%. 
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By contrast, red flocs from L2 contained 55.0±3.7% and 45.0±3.7% of iron(III) and iron(II), 

respectively. 

Analysis by µXRD revealed the crystalline part of the red flocs to be dominated by quartz, 

calcite and dolomite (Figure 3). The Mössbauer spectrum collected at 77 K is best fitted by 

three doublets corresponding to paramagnetic iron phases with an additional phase having 

broad quadrupole splitting indicating the partial onset of magnetic ordering. The narrow 

paramagnetic doublet at 77K (Fig. 3; CS = 0.5 mm/s; QS = 0.6 mm/s (Table S5)) can 

potentially correspond to a number of mineral phases, such as lepidocrocite, or iron(II) 

sulphides, including mono- and disulphides such as pyrrhotite and pyrite (Jeandey et al., 

1991; Montano and Seehra, 1976). The 4.2K spectrum is dominated by several magnetically 

ordered sextets in addition to two doublets (Fig. 3). The sextets are characteristic for poorly 

crystalline iron(III) (oxyhydr)oxide phases, with large inner-line broadening that are 

suggestive of an association with organic matter (Eusterhues et al., 2008; Shimizu et al., 

2013). The wide paramagnetic doublet at 4.2K (Fig. 3; CS = 1.3 mm/s; QS=2.7 mm/s (Table 

S5)) corresponds to an iron(II) phase, that could be either vivianite, green rust, siderite or 

even sorbed iron(II) (Domes et al., 1986). Based on the fitting of the spectrum collected at 

4.2K, the calculated iron(II):iron(tot) ratio in the sample is 0.169. 
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Figure 2: Binocular and microscopy images of red and white flocs and biofilm. Binocular 
images of a mixture of red and white flocs that cover the Arvadi Spring ground at L2 (A & B). 
Microscopy images of a red floc (C & E; taken from L2); red biofilm (G, taken from L3), white 
flocs (D & F, taken from L2) and white biofilm (H, taken from location 3). Binocular images 
(A & B) were taken at 10x magnification (A) and 15x magnification (B). Brightfield (C & D) 
and fluorescence mode images (E & F) were taken at 400x magnification. SEM images (G & 
H) were taken at 5000x (G) and 2000x (H) magnification.   
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Figure 3: Mössbauer spectra obtained at 77 K and 4.2 K (A) and X-ray diffractograms (B) of 
red flocs.  
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Microbial community composition and abundance of iron- and sulphur-metabolizers. 

The abundance of iron- and sulphur-metabolizing bacteria in red and white flocs was 

quantified by MPN counts (Fig. 4). Microaerophilic sulphide-oxidizers were most abundant 

at L1 and L2, with 2.47x105 and 2.40x105 cells g-1 in the white flocs, respectively, followed 

by microaerophilic iron(II)-oxidizers with 2.47x104 and 2.40x104 cells g-1 in the red flocs. 

Anaerobic iron- and sulphur-metabolizers were quantified at lower abundances, with the 

lowest abundance among phototrophic iron(II)-oxidizers (6.03x101 and 5.26x102 cells g-1 

red flocs), nitrate-reducing iron(II)-oxidizers (3.14x103 and 2.98x102 cells g-1 red flocs) and 

sulphate-reducers (3.05x102 and 2.40x102 cells g-1 white flocs). Iron(III)-reducers were the 

most abundant anaerobes among the iron- and sulphur-metabolizers with 2.47x103 and 

2.97x104 cells g-1 red flocs). MPN numbers could not be determined for phototrophic and 

nitrate-reducing sulphide-oxidizers as only very few tubes inoculated for purple (non-) 

sulphur bacteria were positive and did not show a clear trend or growth for green (non-) 

sulphur bacteria and nitrate-reducing sulphide-oxidizers. 

454 pyrosequencing of bacterial 16S rRNA genes revealed that the Arvadi Spring pond and 

creek sediments contained diverse bacterial communities with 213 genera identified in total 

(Table S6). The most abundant phyla in both samples were Proteobacteria (57.8% and 

59.0% rel. sequence abundance, respectively), Bacteroidetes (17.8% and 14.8% rel. 

sequence abundance, respectively) and Cyanobacteria (9.5% and 9.9% rel. sequence 

abundance; Fig. 5A). On the genus level, the samples were dominated by Thiothrix (14.0% 

and 17.2% rel. sequence abundance, respectively), Thiobacillus (4.1% and 5.9%, 

respectively), and Gemmobacter (3.3% and 2.5%, respectively) (Fig. 5B). Genera with 

relative sequence abundances below 1% were summarized as ‘Other’ and made up 17.5% 

and 19.2% of the total community, respectively. This group included various genera known 

to comprise iron- and sulphur-metabolizers such as Acidiferrobacter, Acidithiobacillus, 

Acidovorax, Albidiferax, Desulfathirabdium, Desulfocapsa, Ferrithrix, Nitrospira, Sideroxydans, 

Sulfuricella, Sulfuricurvum, Sulfuritalea, and Sulfurospirillum (Table S6). Rarefaction analyses 

indicated that sampling did not fully recover the total estimated diversity (Fig. S1). Richness 

estimators (Tab. S7) further suggested that the observed richness covered on average 57 to 
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72% of the estimated total bacterial richness in the pond and creek samples. In general, the 

observed and estimated richness (based on Chao1 and ACE richness estimators) were higher 

in the pond compared to the creek sample. Diversity indices (Shannon and Simpson) 

suggested the pond and creek samples to be diverse to a similar extent. 

 

 

Figure 4: MPNs of iron- and sulphur-metabolizers in red and white flocs at locations L1 and 
L2: Microaerophilic sulphide-oxidizers (MSOx), sulphate-reducers (SRed), microaerophilic 
(MFeOx), nitrate-reducing (NRFeOx) and phototrophic iron(II)-oxidizers (PFeOx) as well as 
iron(III)-reducers (FeRed). The error bars indicate upper and lower limits of the 95% 
confidence intervals for the estimates.  
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Figure 5: Taxonomic identity and relative sequence abundance of bacterial 16S rRNA genes 
on the class (A) and genus level (B) in Arvadi Spring pond and creek. For detailed 
information, see Table S6. 
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Discussion 

The Arvadi Spring is characterized by O2 saturation, low concentrations of iron(II) and 

sulphide, considerable amounts of sulphate, and high light availability. Figure 6 shows a 

model for biogeochemical iron and sulphur cycling in the Arvadi Spring that we hypothesize 

to apply to ferro-euxinic intermixed transition zones along redox interfaces of Proterozoic 

surface ocean waters and possibly also of late Archean oxygen oases during high-oxygen 

intervals (Fig. 6B, Table 1). We evaluated iron(II)- and sulphide-consuming and -producing 

processes and identified the present geochemical iron and sulphur species in the Arvadi 

Spring to determine the factors that limit iron(II) and sulphide bioavailability, aiming to 

better understand Precambrian biogeochemical iron- and sulphur-cycling under high-

oxygen conditions. 

 

 

Figure 6: Simplified model of biogeochemical iron and sulphur cycling in the Arvadi Spring 
and its relevance for late Archean and Proterozoic ocean iron and sulphur cycling. A: Abiotic 
oxidation reactions in the Arvadi Spring pond occur mainly in the oxic water, producing S0 
and iron(III) that are further metabolized in the spring sediment. Red and white flocs are 
potential products of abiotic and biotic iron(II) and sulphide oxidation. White flocs are 
expected to contain S0, while red flocs consist of iron(III) minerals. These compounds get 
metabolized by microbial processes (indicated by squares, see legend) at the oxic-anoxic 
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sediment surface and in anoxic deeper sediment layers. The same biotic and abiotic redox 
processes are also expected to occur in red and white floc precipitates (not shown). B: The 
Arvadi Spring model possibly represents conditions near the redox-cline in late Archean and 
Proterozoic oceans (see red dashed lines and box), where enough light and/or oxygen were 
available to support phototrophic and aerobic microbial processes and where sulphide-rich 
and iron(II)-rich waters were mixed with oxygenated surface waters. The iron cycle on the 
right hand side of the image probably also contemporaneously took place in neritic 
sediments (not shown). The grey shaded area indicates euxinic water masses formed by 
dissimilatory sulphate reduction. 

 

 

Iron(II)- and sulphide-producing and -consuming biogeochemical processes in the 

Arvadi Spring. Under full oxygenation and at the circumneutral pH of the Arvadi Spring 

water, dissolved iron(II) is expected to become oxidized abiotically by O2 within minutes 

(Millero et al., 1987a; Pham & Waite, 2008). As we found microaerophilic, phototrophic, and 

nitrate-reducing iron(II)-oxidizing microorganisms to colonize Arvadi Spring red flocs, we 

conclude that a significant fraction of the total iron(II) budget is consumed by their metabolic 

processes (Fig. 6A). The low but constant steady-state concentration of total dissolved 

iron(II) that we quantified (17.2 µM) is likely the result of a balance between its different 

sources and sinks. A certain fraction of dissolved iron(II) likely stems from dissimilatory 

iron(III) reduction, while iron(II) may also be formed by abiotic iron(III) reduction processes 

including photoreduction of ligand-bound iron(III) (Barbeau et al., 2001), the abiotic 

reaction of O2 with ligand-bound or dissociated iron(III) (Rush & Bielski, 1985), or iron(III) 

reduction coupled to abiotic sulphide oxidation (Yao & Millero, 1996; Lohmayer et al., 2014). 

The initial concentration of iron(II) introduced to the Arvadi Spring pond together with the 

iron(II) from reductive processes may be sufficient to avoid being completely consumed by 

abiotic and biotic oxidation processes during the mean water residence time of 16 minutes 

in the pond, leaving residual iron(II) in solution. Other reasons for the low but stable iron(II) 

concentrations may be the presence of humic ligands that can stabilize iron(II) (Hopwood et 

al., 2015; Statham et al., 2012) and the large amounts of sulphate in the Arvadi water that 

can retard the abiotic oxidation of iron(II) to a certain extent (Millero, 1985).  
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Microbial reduction of gypsum-derived sulphate that is present in large amounts in the 

Alpine orogeny is the major source of sulphide in the Arvadi Spring (Strauss et al., 2016). 

Compared to iron(II), sulphide is oxidized abiotically by O2 much more slowly, i.e., on the 

order of hours to days (Luther et al., 2011; Millero et al., 1987b). Hence, we expect the 

majority of aqueous sulphide to be oxidized microbially and not abiotically, since the water 

residence time in the pond is only 16 minutes. Our MPN and 16S rRNA gene sequence 

analyses suggest microaerophilic sulphide-oxidizers to play a major role in sulphide 

consumption within the Arvadi Spring, as Thiothrix, a genus representative of aerobic 

sulphide-oxidizers (Nielsen et al., 2000), was identified to dominate the Arvadi Spring 

microbial community. The observed growth of Thiothrix-like filamentous biofilms (Bland & 

Staley, 1978) at several locations (Fig. 1A, 1D) gives hints on respective microorganisms to 

flourish in the Arvadi Spring. Minor sulphide portions may be metabolized by phototrophic 

and nitrate-reducing sulphide-oxidizers (Fig. 6A) that were indicated to be part of the Arvadi 

Spring community based on 16S rRNA gene sequencing data (phototrophic sulphide-

oxidizers in the families Chlorobiaceae, Chromatiaceae, Chloroflexi and nitrate-reducing 

sulphide-oxidizers in the genera Arcobacter and Thiobacillus, respectively; see Table S6). 

However, we could neither determine taxonomic identity on the strain level nor whether 

respective microorganisms actually perform phototrophic and nitrate-reducing sulphide 

oxidation in situ. Furthermore, as we could not quantify the (probably low) abundance of 

respective microorganisms by MPN counts and do not have evidence for their metabolic 

activity in the Arvadi Spring, the overall role that phototrophic and nitrate-reducing 

sulphide-oxidizers play in the Arvadi Spring requires further investigations in the future.  

We expect elemental sulphur (S0) - a key intermediate during sulphur metabolism that is 

stored intra- or extracellularly by sulphide-oxidizing microorganisms such as Thiothrix spp. 

(Nielsen et al., 2000) - to be present in Arvadi Spring solids, in particular in white floc 

precipitates (Fig. 6A) and whitish biofilms (Fig. 1D). However, additional mineralogical and 

speciation experiments are required to decipher the identity of sulphur intermediates and 

related processes such as S0 disproportionation or S0 oxidation in Arvadi Spring precipitates 

in order to uncover their relative importance on the overall sulphur budget in the Arvadi 
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Spring and, by inference, in parts of ferro-euxinic transition zones along redox-interfaces and 

chemoclines of shallow Proterozoic and late Archean ocean waters during high-oxygen 

intervals.  

 

Table 1: Geochemical parameters in the Arvadi Spring pond water and approximations for 
respective parameters in late Archean and Proterozoic oceans from the literature. 

  Arvadi Spring Pond Late Archean & Proterozoic ocean (surface) 

T [°C] 7.2±0.1 20-701,2 

pH 8.0±0.0 6.5-8.53,4 

O2 [µM] 
  

337.5±1.3 
 

1-10 in late Archean oxygen oases5 

0.2 in mid-Proterozoic6 
>1 in Paleoproterozoic7 

Salinity [‰] 0.7 35-708 

HCO3- [mM] 4.5±0.0 ~703 

Sulphate [mM] 8.3±0.0 
~0.08 for the late Archean9 

1.0-4.5 for the Paleo- & Mesoproterozoic10,11 

Sulphide [µM] 2.5±0.3 n.a. 

Fe(II) [µM] 17.2±2.8 
40-120 in Archean oceans11 

<100 in Proterozoic oceans13 

SiO2(aq) [µM] 134.3±4.4 670-220014 

Values for the Arvadi Pond are average±standard deviation for n=3 (L1-L3, see also Tab. S1, S2) 
1 Pinti, 2005 
2 Robert & Chaussidon, 2006 
3 Grotzinger & Kasting, 1993 
4 Halevy & Bachan, 2017 

5 Olson et al., 2013 
6 Tang et al., 2016 
7 Hardisty et al., 2014 
8 Knauth, 2005 
9 Jamieson et al., 2013 
10 Canfield et al., 2010 
11 Kah et al., 2004 
12 Canfield, 2005 
13 Planavsky et al., 2011 
14 Konhauser et al., 2007  
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The coexistence of iron(II) and sulphide at the µM concentration range in the Arvadi Spring 

water likely applies to respective ancient habitats (Fig. 6B). However, respective values 

should not be taken as representative for the bulk of ancient seawater, as anoxia was the 

prevailing feature of Precambrian oceans. The (reductive) sources of iron(II) and sulphide 

probably exceeded their sinks (microaerophilic/abiotic oxidation and precipitation) during 

anoxic intervals, with iron(II) and sulphide concentrations presumably having peaked at 

higher concentrations (e.g. iron(II) reaching 40-120 µM as suggested for Archean oceans 

(Canfield, 2005)).  

 

Iron redox speciation in the Arvadi Spring and iron(II) bioavailability for iron(II)-

oxidizing microorganisms. Fe(III) is poorly soluble at neutral pH and dissolved iron(III) 

only occurs as colloidal or ligand-bound (complexed) iron(III) (Cornell & Schwertmann, 

2003). As we could not detect dissolved iron(III) in the spring water, iron(III) complexes 

must play a relatively minor role in the Arvadi Spring water, with most iron(III) precipitating 

directly after formation as iron(III) minerals. Wet-chemical extraction followed by ferrozine 

analyses and Mössbauer spectroscopy clearly showed red flocs to consist of poorly 

crystalline iron(III) (oxyhydr)oxides similar to ferrihydrite (Table S5, Fig. 3). This is in 

accordance with the common observation of ferrihydrite formation through abiotic iron(II) 

oxidation by O2 or by microaerophilic iron(II)-oxidizers in other cold-water springs with 

circumneutral pH (Jambor & Dutrizac, 1998; James & Ferris, 2004; Konhauser et al., 2011; 

Hegler et al., 2012). Thus, red flocs probably form through a combination of biotic and abiotic 

iron(II) oxidation (Fig. 6A).  

The Mössbauer spectra (Table S5) and ferrozine analyses showed iron(II) to be present in 

red flocs, which likely stems from dissimilatory iron(III) reduction proceeding in red flocs in 

addition to iron(II) oxidation based on our MPN results. Interestingly, the iron(II) content of 

45% as determined in red flocs from location L2 using acidic extraction and the 

spectrophotometric ferrozine assay contradicts our Mössbauer results which suggest an 

iron(II):iron(tot) ratio of 16.9% in the sample. This discrepancy may be due to abiotic 
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reduction of iron(III) by sulphide that is released during acidic extraction and thus made 

available for iron(III) reduction. Also, sulphide produced by potentially more intensely 

ongoing sulphate reduction in closely associated white flocs from L2 (see MPN results) may 

be responsible for the observed discrepancy.  

Generally, we suggest the iron(II) in red flocs to be consumed by iron(II)-oxidizers that 

colonize red flocs. However, the bioavailability of iron(II) in red flocs depends on its 

speciation as for instance the bioavailability of mineral-bound iron(II) depends on mineral 

solubility (Zhao et al., 2016; Kappler & Newman, 2004). Iron(II) in more stable minerals is 

less bioavailable, as for instance, pyrite (solubility product (KSP) = 10-16.4±1.2 (Davison, 

1991)) was shown not to be metabolized by phototrophic iron(II)-oxidizers at neutral pH, 

whereas other iron(II) minerals (such as poorly crystalline FeS (KSP = 10-2.95±0.1; (Davison, 

1991)) or iron(II) carbonate (KSP = 10-2.94±0.4; (Bénézeth et al., 2009)) with higher solubility 

were oxidized (Kappler & Newman, 2004). Intuitively, based on the presence of iron(II), 

sulphide and high carbonate content in the Arvadi Spring water, we considered the 

possibility that a fraction of the iron(II) in the red flocs occurs as iron(II) sulphide and as 

siderite minerals. Being highly reactive towards each other, iron(II) and sulphide precipitate 

as poorly crystalline ferrous sulphide if their concentrations reach supersaturation (Rickard 

& Luther, 2007) and transform further into more stable iron(II) sulphides (i.e. pyrite or 

pyrrhotite) (Rickard, 2006; Rickard & Luther, 2007). However, under the given Arvadi 

Spring water geochemistry and a calculated saturation index of -7.42 for amorphous FeS, 

such FeS-mineral phases are unlikely to precipitate in the Arvadi Spring, although the 

formation of dissolved and/or colloidal FeS complexes and nanoparticulate higher 

crystalline FeS species such as mackinawite at hotspots where higher sulphide and iron(II) 

are present (for example in deeper sediments) cannot be excluded (Luther & Rickard, 2005). 

Our Mössbauer results indicate the narrow paramagnetic doublet at 77K to potentially 

account for an FeS phase, suggesting locally formed iron(II) and sulphide from iron(III) and 

sulphate reduction that proceed in close association in red and white flocs to reach 

supersaturation and hence to result in the formation of different FeS-minerals at spatially 

restricted sites (Fig. 6A). Our Mössbauer results further indicate siderite to be formed in the 
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Arvadi Spring, which is in line with a calculated saturation index of 2.67 for siderite 

formation based on the Arvadi water geochemistry. As these conclusions are mostly based 

on theoretical considerations using the geochemical conditions in the Arvadi water, further 

investigation of the iron- (and sulphur-) speciation in red and white flocs is required to 

understand the actual mineral identity and the mechanisms behind their formation.  

Our observations suggest that dissolved iron(III) was probably absent in Precambrian ocean 

margins with intermixed ferro-euxinic-oxic waters, except in low abundances of ligand-

bound or colloidal forms. Moreover, the iron(III) minerals formed by microaerophilic and 

abiotic iron(II) oxidation were likely poorly crystalline and ferrihydrite-like. The formed 

iron(III) particles may have been similar in their structure and composition to Arvadi Spring 

red flocs and probably were colonized by microorganisms, in particular by iron-

metabolizers, during and after sinking to the ocean floor. These particles likely also 

contained ferrous minerals, which resulted from dissimilatory iron(III) reduction. 

Respective iron(II) phases could have included green rust (Halevy et al., 2017), as well as 

iron(II) sulphides that precipitated directly from the ferro-euxinic surface ocean waters 

(Canfield, 1998; Lyons, 2008). These iron sulphides likely settled together with red floc-like 

particles and transformed over time to more stable iron(II) sulphides (e.g., pyrite).  

  

Adaptation of iron and sulphur metabolizers to Arvadi Spring’s high O2 content. Our 

results show the co-occurrence of phototrophic, nitrate-reducing and microaerophilic 

iron(II)-oxidizers and microaerophilic sulphide-oxidizers with dissimilatory iron(III)- and 

sulphate-reducers in an iron- and sulphur-rich environment. Based on bioturbation in the 

spring ground by movement of the prevalent macrobiota together with the apparently low 

density of red and white flocs and hence their subjection to water movement from the top, 

we assume intermixing of different sediment layers with red and white flocs to proceed over 

the whole year and hence the different metabolic types of microorganisms to co-occur in 

different ecological niches throughout the seasons (especially as our results were 

reproducible with samples from different seasons, data not shown). Partial introduction of 
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certain metabolic types of microorganisms from the ambient water is inevitable and hence 

may have a minor impact on the observed composition.  

The dense microbial networks associated with Arvadi Spring red and white flocs (Fig. 2E, 

2F) contain heterotrophic aerobic respiring bacteria (Gemmobacter, Hydrogenophaga and 

Pseudomonas, see Tab. S6). Oxygen consumption by these microbes, alongside abiotic O2-

consuming reactions, e.g., abiotic O2-dependent sulphide and iron(II) oxidation can create 

microoxic or anoxic microniches in otherwise oxic environments (Brune et al., 2000). Based 

on the significant numbers of anaerobic and microaerophilic Fe- and S-metabolizing 

microorganisms that we found in MPN experiments, we suggest anoxic and microoxic 

microniches to be present in the Arvadi Spring and that such microsites should be analyzed 

in future experiments for example using O2-, Fe- or Eh-microelectrodes. Based on the lower 

abundance of anaerobes compared to microaerophiles, the high O2 content in the Arvadi 

Spring is probably limiting obligate anaerobes in their growth and activity. Additionally, it 

has to be considered that potentially some anaerobes could have been washed from other 

locations to the spots that were sampled and based on our data it is not possible to fully 

distinguish between scenarios where the different types of organisms really co-occur in 

association with each other or whether they just co-occur in the collected sample.  

Aerobic microorganisms are unlikely to have dominated the bulk of the late Archean and 

Proterozoic ocean microbiome as anoxia was the prevailing feature by that time with the 

exception of settings that were similar to the Arvadi Spring. Our finding of a predominance 

of microaerophiles over anaerobes therefore should only be understood as a likely scenario 

for redox-stratified ocean waters in paleo-shorelines during high-oxygen intervals. In 

respective settings, O2-tolerant and even O2-dependent lifestyles may have evolved and 

became widespread. We suggest that in settings similar to the Arvadi Spring, phototrophic 

and nitrate-reducing iron(II)-oxidizers would not have been abundant, if not generally 

metabolically inactive. Nitrate may have been scarce in Precambrian oceans (Fennel et al., 

2005; Godfrey & Falkowski, 2009) as it is the case in the Arvadi Spring, whereby a recent 

study by Michiels et al. (2017) on N-cycling in ferruginous Kabuno Bay implies the contrast, 

suggesting significant contribution of nitrate-reducing iron(II)-oxidizers to global 
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Proterozoic N-retention. Further, the redox stratification of the Precambrian ocean with the 

first appearance of oxic conditions and the accompanying formation of oxy- and chemoclines 

may have re-arranged the spatial distribution of microbial communities, with 

microaerophiles presumably having colonized topmost oxic (and photic) layers. They likely 

co-existed with phototrophs, but competing for iron(II), phototrophs may have decreased in 

their abundance in oxic intervals at respective sites. 

 

Implications for Fe-S-cycling in ferro-euxinic transition zones of 

shallow late Archean and Proterozoic ocean waters 

The present study provides new insights from a modern iron(II)-, sulphide- and O2-rich 

model habitat regarding the potential network of iron- and sulphur-metabolizing 

microorganisms in shallow ferro-euxinic transition zones of Precambrian oceans that were 

influenced by the presence of O2 in the water and atmosphere. The Arvadi Spring data 

implies the iron- and sulphur-metabolizing microbial community that presumably co-

existed in respective ancient sites to have been dominated by microaerophiles. However, 

considering a higher prevalence of anoxia for the bulk of Precambrian oceans, anaerobic 

iron- and sulphur-metabolizers presumably would have still been dominating over 

microaerophiles on the global level. Comparing the observed morphology in red and white 

flocs (Fig. 2) to microfossil structures found in the rock record that are interpreted as 

remains of early microorganisms (Schopf et al., 2015) we suggest similar microbial networks 

to have colonized mineral particles that settled from ferro-euxinic intermixed surface waters 

of the late Archean and Proterozoic ocean.  

Collectively, the Arvadi Spring helps us to understand how O2 consumption by aerobic 

microorganisms, and production of reduced compounds by anaerobic respiring 

microorganisms (e.g., iron(II), sulphide), could have affected the abundance, activity, and 

survival of anaerobic members of the upper, oxygenated ancient ocean metabolic network 

by forming anoxic niches. Especially for the interpretation of signatures found in the rock 

record the Arvadi Spring can help to understand which biotic and abiotic processes resulted 



Chapter 2  

 
 
 

81 
 

in the isotope composition that was preserved in the rock record (Strauss et al., 2016), to 

decipher the identity of the primary minerals prior to diagenesis, and to know the 

morphology of the microbial community that exists under envisaged conditions prior to 

preservation in form of microfossils. To further improve our model and our understanding 

of the metabolic network of iron- and sulphur-metabolizing microorganisms, we need to 

know the factors controlling the interrelation and competition of iron- and sulphur-

metabolizers with abiotic reactions in the Arvadi Spring. This includes understanding the 

relative importance of different metabolic types of iron- and sulphur-metabolizers by 

determining rates of the individual processes. To evaluate the impact of changing redox 

conditions on the microbial community activities, controlled laboratory microcosm 

experiments are required, which include variations in O2 availability and in iron(II) and 

sulphide concentrations. The quantification of microbial versus abiotic rates of iron(II) and 

sulphide oxidation, as well as rates of iron(III) and sulphate reduction in the Arvadi Spring 

by iron- and sulphur-metabolizers, is a prerequisite to decipher biogeochemical iron and 

sulphur cycling in detail. Only by unravelling the response of a living microbial community 

to postulated geochemical frameworks, we can reconstruct the ancient biosphere and 

geosphere as a whole. 
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SI. 1: Metabolism-selective growth media. All media were prepared anoxically with a 

N2:CO2 (90:10) headspace and were buffered with 30 mM NaHCO3. FW medium contained 

following salts per litre:  0.6 g of KH2PO4, 0.3 g of NH4Cl, 0.025 g of MgSO4*7H2O, 0.4 g of 

MgCl2*6H2O and 0.1 g of CaCl2*2H2O. BM medium contained following salts per litre: 1.0 g of 

NaCl, 0.4 g of MgCl2*6H2O, 0.15 g of CaCl2*2H2O, 0.2 g of KH2PO4, 0.5 g of KCl, 0.25 g of NH4Cl. 

MWMM contained following salt per litre: 0.1 g of NH4Cl, 0.2 g of MgSO4*7H2O, 0.1 g of 

CaCl2*2H2O and 0.05 g of K2HPO4. The pH was adjusted to 7.2 with either 1 M HCl or 0.5 M 

Na2CO3. Trace metals (selenite-tungstate solution & SL10 solution after Widdel et al., 1983) 

and vitamins (7-vitamine solution after Widdel & Pfennig, 1981) were added to all media in 

same amounts (1 ml L-1), metabolism selectivity was established by the addition of different 

electron donors and acceptors to respective media.  

 

SI. 2: MPN experiments with anaerobic Fe- and S- metabolizers. MPN counts for 

anaerobic Fe- and S-metabolizers were performed in 96-deep-well microtiter plates (Laufer 

et al., 2016). One MPN plate was prepared per sampling location and per type of bacterial 

metabolism. First, 900 µL of growth medium with respective metabolism-selective additives 

were dispersed to the test wells and inoculated with 100 µL of previously prepared sample 

dilutions in seven replicates. One row of negative control wells contained 1000 µL of medium 

without inoculum. After pipetting, plates were sealed with transparent plastic foils and 

inserted into incubation bags. In order to provide anoxic growth conditions, oxygen 

consuming catalyst bags (Anaerocult® A mini, Merck GmbH, Germany) and redox indicator 

stripes (Anaerotest®, Merck GmbH, Germany) were inserted to each incubation bag. The 

incubation bags were sealed oxygen-tight with Anaeroclip® (Merck GmbH, Germany) plastic 

clips. Plates were prepared under anoxic conditions in a glove box (100% N2) and were 

incubated afterwards for 8 to 10 weeks at 20°C under metabolism-selective conditions. MPN 

plates for the cultivation of phototrophic iron(II)-oxidizers were incubated under infra-red 

(IR) light (>730 nm) in order to prevent growth of cyanobacteria. IR light conditions were 

provided in a dark incubation box with an IR light filter on top, through which only the IR 
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spectrum of a 40 W bulb could pass. MPN plates for the cultivation of nitrate-reducing 

iron(II)-oxidizers, iron(III)-reducers and sulphate-reducers were incubated in the dark. 

 

SI. 3: MPN experiments with microaerophilic Fe- and S-metabolizers. MPN counts for 

microaerophilic iron(II)- and sulphide-oxidizers were performed in gradient tubes. Gradient 

tubes were prepared two days prior to inoculation in order to enable establishment of 

electron donor and acceptor gradients. For this, an electron donor (iron(II) or sulphide) and 

agarose-containing bottom layer was prepared either with FeS or Na2S. After solidification 

in the test tube, the bottom layer was overlain by a MWMM top layer. The whole procedure 

was performed anoxically in order to prevent oxidation of the electron donors. Tubes were 

inoculated in duplicates with the same sample dilutions as used for anaerobic MPNs. 

Thereby, tubes were opened for 1 minute under sterile conditions to let air enter the tube 

headspace in order to create an oxygen gradient from the top to the bottom of each tube. 

Afterwards, 100 µL of sample were injected homogeneously with a syringe starting at about 

0.5 cm above the bottom layer over the whole length of the top layer. Tubes were closed air-

tight and incubated for 2-3 days at 20°C in the dark. 
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Figure S1: Water flow scheme between the Sulphide Spring, Zuelper Spring, Fe-rich waters 
and the Arvadi Spring. The grey shaded rectangle indicates the inaccessible concrete tunnel, 
in which the Sulphide Spring is located that is the parental water source to Arvadi Spring 
sulphide. Also, Fe-rich waters with unknown source emanate in the tunnel and get mixed 
with sulphide-rich water. In an intermixed form, the Fe- and S-rich water is transported 
through a pipe system to connection points 1 and 2 (CP1, CP2). From the latter, water 
samples were taken for Fe(II), Fe(tot) and sulphide quantification. Fe-S-rich water further 
gets transported to the Arvadi Spring pond where it crops out. The Sulphide Spring water 
additionally flows into the Zuelper Spring, where no Fe-rich water is introduced. Zuelper 
Spring water flows additionally into CP2 and further to the Arvadi Spring pond. 
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Figure S2: Rarefaction curves representing the number of observed OTUs in the Arvadi 
Spring pond and creek bacterial community based on OTU clustering at a genetic distance of 
3%.  
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Table S1: Major geochemical parameters in Arvadi Spring water at different locations. 

location pH T [°C] O2 [mg L-1] O2 [%] σ [µS cm-1] 

1 7.9 7.2 10.8 101.1 1442.0 

2 8.0 7.3 10.9 100.7 1450.0 

3 8.0 7.0 11.0 100.8 1450.0 

4 8.0 7.0 10.9 100.4 1449.0 

5 8.1 6.8 11.0 101.0 1450.0 

6 8.2 5.8 11.2 99.7 1436.0 

7 8.1 6.7 11.0 111.1 1450.0 

Numbers of different locations refer to numbers in Fig. 1 
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Table S2: Concentrations of major anions [µM] in Arvadi Spring water at different locations. 

 location F- Cl- NO2- Br- NO3- PO43- SO42- 

1 96.7 14.0 b.d.l. b.d.l. b.d.l. b.d.l. 8268.5 

2 98.4 14.6 b.d.l. b.d.l. b.d.l. b.d.l. 8357.2 

3 97.7 15.6 b.d.l. b.d.l. b.d.l. b.d.l. 8337.3 

4 100.6 15.2 b.d.l. b.d.l. b.d.l. b.d.l. 8307.7 

5 100.7 15.5 b.d.l. b.d.l. b.d.l. b.d.l. 8344.1 

6 96.8 15.4 b.d.l. b.d.l. b.d.l. b.d.l. 8165.7 

7 100.0 15.5 b.d.l. b.d.l. b.d.l. b.d.l. 8317.5 

b.d.l.= below detection limit 
Numbers of different locations refer to numbers in Fig. 1 
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Table S3: Overview of major cations [µM] in Arvadi Spring water at different locations. 

location Na+ NH4+ K+ Mg2+ Ca2+ 

1 38.9 b.d.l. 26.1 3251.6 6981.0 

2 39.1 b.d.l. 26.4 3275.8 7038.6 

3 39.5 b.d.l. 26.4 3272.7 7062.3 

4 39.4 b.d.l. 27.0 3245.9 7044.3 

5 39.8 b.d.l. 26.9 3269.6 7061.3 

6 39.1 b.d.l. 26.8 3208.4 6909.5 

7 39.5 b.d.l. 27.3 3280.4 7095.1 

b.d.l.= below detection limit 
Numbers of different locations refer to numbers in Fig. 1 
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Table S4: Overview of total carbon (TC), total inorganic carbon (TIC) and dissolved organic 
carbon (DOC) content [mg/L] in Arvadi Spring water at different locations. 

location TIC DOC TC 

1 49.9 3.5 53.4 

2 49.8 3.7 53.5 

3 49.8 2.4 52.2 

4 49.5 3.6 53.1 

5 49.2 3.6 52.7 

6 48.6 3.0 51.6 

7 50.3 1.8 52.1 

Numbers of different locations refer to numbers in Fig. 1 
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Table S5: Mössbauer data collected for red flocs at 77K and 4.2K. 

T  
[K] 

  CS 
[mm/s] 

ε/QS 
[mm/s] 

H  
[T] 

σ 
[mm/s] 

pop 
[%] 

χ2 

77 Db1 Fe(III) 
(oxyhydr)oxide 

0.5 1.0 

 

0.4 58.0 0.6 

Db2 Fe(III) 
(oxyhydr)oxide 

0.4 4.3 
 

5.0 12.7 
 

Db3 Fe(II) sulphide 0.5 0.6 
 

0.2 21.0 
 

Db4 Fe(II)   1.3 2.7 
 

0.2 9.1 
 

4.2 Db1 Fe(II) 1.3 2.7 

 

0.8 4.4 0.7 

Db2 Unknown 0.2 0.9 
 

0.3 3.7 
 

S1 Fe(III) 
(oxyhydr)oxide 

0.5 0.0 49.1 1.7 18.9 
 

S2 Fe(III) 
(oxyhydr)oxide 

0.4 0.0 46.2 4.1 37.4 
 

S3 Fe(III) 
(oxyhydr)oxide 

0.6 -0.1 47.6 2.9 26.7 
 

S4 Poorly ordered 
Fe oxide 

0.7 -0.01 22.4 2.8 8.8 
 

Db = doublet 
S = sextet 
CS = centre shift 
ε/QS = shift/quadrupole splitting 
H = hyperfine field 
σ = Gauss’ sigma parameter 
pop = population 
χ2 = goodness of fitting 
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Table S6: Bacterial genera (including the number of sequences and relative sequence 
abundance per genus, respectively) in the Arvadi Spring pond and creek sediment samples. 

 

 No. of sequences  Rel. sequence abundance[%] 

Genus  Pond Creek  Pond Creek 

Acetivibrio  0 1  0.00 0.01 

Acidaminobacter  2 1  0.03 0.01 

Acidiferrobacter  26 38  0.34 0.53 

Acidisoma  1 0  0.01 0.00 

Aciditerrimonas  2 1  0.03 0.01 

Acidithiobacillus  2 1  0.03 0.01 

Acidovorax  1 0  0.01 0.00 

Actinomycetospora  0 1  0.00 0.01 

Adhaeribacter  0 1  0.00 0.01 

Afipia  14 9  0.18 0.12 

AKYG587  7 4  0.09 0.06 

Albidiferax  55 23  0.73 0.32 

Amaricoccus  9 0  0.12 0.00 

Anaerolinea  1 0  0.01 0.00 

Anaeromyxobacter  4 1  0.05 0.01 

Aquicella  2 0  0.03 0.00 

Aquimonas  7 13  0.09 0.18 

Arcobacter  1 0  0.01 0.00 

Arcticibacter  0 2  0.00 0.03 

Arenimonas  89 49  1.17 0.68 

Armatimonas  3 1  0.04 0.01 

Asticcacaulis  11 2  0.15 0.03 

Aureimonas  0 1  0.00 0.01 

Aureispira  1 1  0.01 0.01 
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Azotobacter  0 1  0.00 0.01 

Bacteriovorax  3 0  0.04 0.00 

Bacteroides  0 1  0.00 0.01 

Bauldia  5 2  0.07 0.03 

Bdellovibrio  6 7  0.08 0.10 

Blastocatella  70 67  0.92 0.93 

Blastopirellula  3 1  0.04 0.01 

Bosea  3 4  0.04 0.06 

Brasilonema  77 1  1.02 0.01 

Brevundimonas  87 60  1.15 0.83 

Bryobacter  11 17  0.15 0.24 

Caenimonas  0 4  0.00 0.05 

Calothrix  13 0  0.17 0.00 

Candidatus Accumulibacter  1 0  0.01 0.00 

Candidatus Alysiosphaera  1 1  0.01 0.01 

Candidatus Amoebophilus  10 7  0.13 0.10 

Candidatus Captivus  0 1  0.00 0.01 

Candidatus Methylacidiphilum  4 0  0.05 0.00 

Candidatus Microthrix  1 3  0.01 0.04 

Candidatus Nostocoida  1 1  0.01 0.01 

Candidatus Solibacter  2 0  0.03 0.00 

Candidatus Xiphinematobacter  1 0  0.01 0.00 

Chitinimonas  3 0  0.04 0.00 

Chitinophaga  7 15  0.09 0.21 

Christensenella  1 0  0.01 0.00 

Chroococcidiopsis  2 1  0.03 0.01 

Chryseolinea  61 43  0.81 0.59 

Chthoniobacter  1 3  0.01 0.04 

Chthonomonas  1 1  0.01 0.01 
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CL500-29 marine group  13 16  0.17 0.22 

CL500-3  2 2  0.03 0.03 

Clostridium sensu stricto 1  1 2  0.01 0.03 

Coxiella  0 1  0.00 0.01 

Crocinitomix  1 5  0.01 0.07 

Cyanobium  0 1  0.00 0.01 

Cytophaga  1 1  0.01 0.01 

Dechloromonas  1 0  0.01 0.00 

Deefgea  0 1  0.00 0.01 

Defluviicoccus  2 0  0.03 0.00 

Defluviimonas  7 1  0.09 0.01 

Desulfatirhabdium  1 1  0.01 0.01 

Desulfocapsa  0 3  0.00 0.04 

Devosia  3 7  0.04 0.10 

Dokdonella  1 0  0.01 0.00 

Dongia  2 0  0.03 0.00 

Dyadobacter  1 5  0.01 0.07 

Elstera  3 0  0.04 0.00 

Emticicia  12 4  0.16 0.06 

Exiguobacterium  1 0  0.01 0.00 

Falsirhodobacter  2 3  0.03 0.04 

Ferrithrix  1 1  0.01 0.01 

Ferruginibacter  35 33  0.46 0.46 

Fibrella  2 1  0.03 0.01 

Filomicrobium  34 62  0.45 0.86 

Flaviramulus  0 1  0.00 0.01 

Flavisolibacter  1 1  0.01 0.01 

Flavitalea  0 1  0.00 0.01 

Flavobacterium  185 51  2.44 0.71 
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Flectobacillus  0 2  0.00 0.03 

Flexibacter  1 0  0.01 0.00 

Fluviicola  1 0  0.01 0.00 

Friedmanniella  1 0  0.01 0.00 

Gaiella  11 7  0.15 0.10 

Geitlerinema  1 0  0.01 0.00 

Gemmata  24 14  0.32 0.19 

Gemmatimonas  31 18  0.41 0.25 

Gemmobacter  250 180  3.30 2.49 

Giesbergeria  1 0  0.01 0.00 

Gleocapsa  0 2  0.00 0.03 

Granulicella  1 1  0.01 0.01 

Haliangium  5 13  0.07 0.18 

Haliscomenobacter  100 45  1.32 0.62 

Haloferula  8 1  0.11 0.01 

Hirschia  26 36  0.34 0.50 

Hyalangium  1 2  0.01 0.03 

Hydrogenophaga  114 30  1.50 0.41 

Hymenobacter  0 1  0.00 0.01 

Hyphomicrobium  63 105  0.83 1.45 

Hyphomonas  12 22  0.16 0.30 

Iamia  2 0  0.03 0.00 

Ideonella  3 1  0.04 0.01 

Ilumatobacter  16 24  0.21 0.33 

Incertae Sedis  1 3  0.01 0.04 

Inhella  1 0  0.01 0.00 

Iodobacter  1 2  0.01 0.03 

Leadbetterella  13 1  0.17 0.01 

Leeia  1 0  0.01 0.00 
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Legionella  7 10  0.09 0.14 

Leptolinea  1 1  0.01 0.01 

Leptolyngbya  338 101  4.46 1.40 

Leptospira  6 9  0.08 0.12 

Leuconostoc  1 0  0.01 0.00 

Lewinella  115 96  1.52 1.33 

Litorilinea  1 0  0.01 0.00 

Lysobacter  2 0  0.03 0.00 

Mangroviflexus  1 0  0.01 0.00 

Marmoricola  0 1  0.00 0.01 

Megamonas  0 1  0.00 0.01 

Meganema  3 1  0.04 0.01 

Methylibium  15 2  0.20 0.03 

Methylorosula  0 1  0.00 0.01 

Microcoleus  9 0  0.12 0.00 

Mycobacterium  1 1  0.01 0.01 

Nakamurella  0 4  0.00 0.06 

Nevskia  2 6  0.03 0.08 

Niabella  3 0  0.04 0.00 

Nitrospira  21 23  0.28 0.32 

Nocardioides  9 2  0.12 0.03 

Nodularia  0 1  0.00 0.01 

Nordella  10 8  0.13 0.11 

Nostoc  113 2  1.49 0.03 

Novosphingobium  1 1  0.01 0.01 

Oceanicella  1 1  0.01 0.01 

Ohtaekwangia  91 88  1.20 1.22 

OM27 clade  25 43  0.33 0.59 

Opitutus  7 0  0.09 0.00 
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Paludibacter  1 0  0.01 0.00 

Parasegetibacter  2 0  0.03 0.00 

Parvularcula  16 17  0.21 0.24 

Paucibacter  2 0  0.03 0.00 

Pedobacter  0 1  0.00 0.01 

Pedomicrobium  10 2  0.13 0.03 

Pedosphaera  2 1  0.03 0.01 

Peredibacter  0 1  0.00 0.01 

Phormidium  6 38  0.08 0.53 

Phycisphaera  0 4  0.00 0.06 

Pir4 lineage  16 17  0.21 0.24 

Pirellula  12 16  0.16 0.22 

Piscinibacter  1 0  0.01 0.00 

Planctomyces  15 15  0.20 0.21 

Planktothrix  0 2  0.00 0.03 

Polaromonas  9 3  0.12 0.04 

Porphyrobacter  7 3  0.09 0.04 

Portibacter  4 7  0.05 0.10 

Prochlorothrix  5 0  0.07 0.00 

Pseudanabaena  32 33  0.42 0.46 

Pseudochrobactrum  1 6  0.01 0.08 

Pseudofulvimonas  5 3  0.07 0.04 

Pseudolabrys  2 1  0.03 0.01 

Pseudomonas  2 0  0.03 0.00 

Pseudonocardia  4 1  0.05 0.01 

Pseudorhodoferax  3 2  0.04 0.03 

Pseudospirillum  1 0  0.01 0.00 

Pseudoxanthomonas  7 1  0.09 0.01 

Reichenbachiella  4 1  0.05 0.01 
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Reyranella  8 7  0.11 0.10 

Rhizobacter  55 46  0.73 0.64 

Rhizobium  30 6  0.40 0.08 

Rhodobium  0 3  0.00 0.04 

Rhodopirellula  3 3  0.04 0.04 

Rickettsia  3 3  0.04 0.04 

Roseiflexus  3 5  0.04 0.07 

Roseomonas  25 11  0.33 0.15 

Rubellimicrobium  1 0  0.01 0.00 

Rubribacterium  7 7  0.09 0.10 

Rubrivirga  1 0  0.01 0.00 

Rudanella  1 0  0.01 0.00 

Runella  2 0  0.03 0.00 

Sandaracinus  1 3  0.01 0.04 

Sandarakinorhabdus  93 50  1.23 0.69 

Sediminibacterium  20 3  0.26 0.04 

Sideroxydans  2 0  0.03 0.00 

Silanimonas  5 4  0.07 0.06 

Singulisphaera  1 0  0.01 0.00 

Siphonobacter  2 0  0.03 0.00 

SM1A02  35 33  0.46 0.46 

Solibacillus  1 0  0.01 0.00 

Solirubrobacter  0 2  0.00 0.03 

Spirosoma  5 1  0.07 0.01 

Sporocytophaga  1 0  0.01 0.00 

Stenotrophomonas  0 1  0.00 0.01 

Steroidobacter  4 3  0.05 0.04 

Subdoligranulum  0 1  0.00 0.01 

Sulfuricella  1 0  0.01 0.00 
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Sulfuricurvum  1 3  0.01 0.04 

Sulfuritalea  0 1  0.00 0.01 

Sulfurospirillum  3 0  0.04 0.00 

Sulfurovum  106 124  1.40 1.71 

Tabrizicola  21 11  0.28 0.15 

Taibaiella  1 1  0.01 0.01 

Terrimonas  50 33  0.66 0.46 

Thermomonas  5 6  0.07 0.08 

Thiobacillus  314 428  4.14 5.92 

Thiothrix  1063 1241  14.03 17.16 

Turneriella  0 6  0.00 0.08 

Unclassified  3113 3480  41.09 48.13 

Undibacterium  1 2  0.01 0.03 

Woodsholea  17 20  0.22 0.28 

Xanthomonas  1 0  0.01 0.00 

Zavarzinella  4 0  0.05 0.00 
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Table S7: Richness estimators, diversity indices and observed OTU numbers of bacterial 
community in pond and creek sediment samples based on OTU clustering at a genetic 
distance of 3%. 

  
No. of sequences    Richness  Diversity 

  

 
Raw Quality-filtered 

 
OTUs 

 
Chao ACE 

 
Shannon Simpson 

Pond 
 

13351 7576 
 

1111 
 

1954 2908 
 

5.16 0.03 

Creek 
 

13049 7231 
 

965 
 

1519 2122 
 

4.88 0.04 
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Abstract 

For much of the Proterozoic Eon, bulk seawater was ferruginous (iron(II)-rich), while neritic 

waters with high primary productivity were either oxygenated or euxinic (sulfide-rich). 

Sedimentation on the continental shelves was therefore dominated by ferric oxyhydroxides 

leading to banded iron formations (BIF) or iron sulfides leading to black shales. Transition 

zones between ferruginous, euxinic and oxic ocean waters presumably played a key role in 

shaping the depositional environment along the oceanic redoxclines but little is reported 

about the primary iron and sulfur mineralogy in these settings. Here we present 

spectroscopic data on the iron- and sulfur-mineralogy in the Arvadi Spring, a proposed 

analogue for ferro-euxinic transitional zones in the Proterozoic. Our study reveals that green 

rust is the main iron mineral in low oxygenated waters together with ferrihydrite and 

lepidocrocite, while we found elemental sulfur to constitute the main sulfur precipitate. 

Given that green rust and elemental sulfur have reactivities and diagenetic histories that 

differ from ferric hydroxides and iron sulfides, their roles in the transfer of solutes from the 

marine mixed layer to sediments are important to understand, if we wish to use these 

sediments as sources of information on past conditions at Earth's surface.  
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Introduction 

The chemical, mineralogical and isotopic composition of banded iron formations (BIFs) and 

black shales have been successfully used as archives for Precambrian seawater composition. 

Their deposition was a consequence of marine Fe precipitation, either as Fe(III) 

(oxyhydr)oxides to form BIFs (Cloud, 1972) or as Fe(II) sulfides in black shales (Canfield, 

1998; Werne et al., 2002), respectively. An end to abundant BIF deposition, and an 

accompanying shift to increased black shale formation by around 1.8 Ga (Poulton et al., 

2004), reflects a major transition in seawater composition in the wake of an earlier 

atmospheric oxygenation pulse during the 2.3-2.0 Ga Lomagundi Event (Bekker and Holland, 

2012; Planavsky et al., 2012). Specifically, increased oxidative weathering of continental 

pyrite delivered substantial amounts of mobilized sulfate to ocean shores during the 

Archean-Proterozoic boundary and thereafter (Canfield, 1998; Reinhard et al., 2009). 

Enhancing sulfate reduction rates along the highly productive paleo-shoreline (Canfield, 

1998), the oceanic sulfide pool in respective zones became enlarged and presumably 

expanded into mid-depths of the ocean (Dahl et al., 2011; Reinhard et al., 2009) where Fe(II) 

was removed in the form of Fe(II) sulfides.  

Although knowledge of Proterozoic ocean redox chemistry has advanced significantly over 

the past decade, there remains no consensus on the primary mineral precipitates comprising 

the precursor sediments to BIF and black shales (Klein, 1983; Posth et al., 2014). Even more, 

despite the transition zones between ferruginous and euxinic conditions (referred to herein 

as ferro-euxinic) likely being a prominent feature on the Proterozoic shelves, their areal 

scope, biogeochemical composition and the composition of the chemical sediments 

precipitating from their respective water columns remain unknown. The rock record itself 

is particularly problematic in this regard because unlike BIF and black shales, it is unclear 

what lithologies would mark the ferro-euxinic environments. 

The analyses of modern habitats that resemble ancient ocean settings, such as Lake Matano 

(Crowe et al., 2008), Lake Pavin (Busigny et al., 2014; Cosmidis et al., 2014), Lake Cadagno 

(Canfield et al., 2010) and Lake La Cruz (Walter et al., 2014), is an emerging alternative 



Chapter 3  

 
 
 

111 
 

approach to reconstructing paleo-seawater composition and the identity of primary mineral 

phases (Koeksoy et al., 2016). Here we present spectroscopic data of Fe- and S-rich 

precipitates that formed by biogeochemical processes in an Fe- and S-rich proposed modern 

analogue for ferro-euxinic Proterozoic ocean waters, i.e., the Arvadi Spring (Koeksoy et al., 

in press). By integrating our results into current models of BIF and black shale deposition, 

we aim to reconstruct (1) the primary Fe- and S-mineral phases that precipitated in ferro-

euxinic transition zones of the Proterozoic ocean and (2) depending on the mineral identity, 

the major consequences for nutrient and trace metal bioavailability due to their sorption to 

mineral surfaces in ancient settings that the Arvadi Spring represents. 

 

 

Material and Methods 

All samples were collected in the Fe(II)- and sulfide-containing Arvadi Spring, Switzerland 

(46°40'17.4" N 9°39'18.8"E). The Fe(II) likely originates from corrosion of metal pipes 

through which water is transported until it emerges at the spring outlet (location 1, L1), 

whereas the water sulfide originates from reduction of sulfate in the sediment from 

evaporitic gypsum of the alpine orogeny (Strauss et al., 2016). Mineral precipitates of red 

and white color, referred to as ‘red flocs’ and ‘white flocs’ respectively, were collected from 

the sediment top layer at L1 and the pond side (location 2, L2) and from a deeper sediment 

layer at L2 (L2-D; Fig. A1 in the GSA Data Repositary1). Samples were collected anoxically 

and transported on ice and in the dark to the geomicrobiology laboratory at Tuebingen 

where they were immediately frozen at -80°C, freeze-dried and stored anoxically in the dark.  

Freeze-dried samples were analyzed using synchrotron-based X-ray absorption 

spectroscopy (XAS), which provides spectroscopic information about both, amorphous and 

crystalline mineral phases (in contrast to XRD which only provides information about the 

crystalline phases), on the Fe and S K-edges at the SUL-X beamline at ANKA, Karlsruhe 

Institute of Technology, Germany. To determine detailed Fe speciation in red flocs, 57Fe 

Mössbauer spectra of the freeze-dried samples were collected at 140 K. Spectra were fitted 
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using Recoil (University of Ottawa) with the Voigt based fitting routine (Rancourt and Ping, 

1991). White flocs were further subjected to elemental sulfur, sulfide and polysulfide 

analysis following the protocol of Wan et al. (2014), the methylene blue assay after Cline 

(1969) and the protocol of Kamyshny et al. (2006).  

 

 

Results and Discussion 

Water geochemistry. The Arvadi Spring water at L1 had a pH of 7.8, a temperature of 7.5°C 

and dissolved O2 concentration of 11.01 mg l-1 (i.e., saturated with respect to atmospheric 

O2), whereas at L2 the water had a pH of 8.0, a temperature of 7.5°C and a dissolved O2 

concentration of 10.9 mg l-1. Dissolved Fe(II) was quantified at 15.6±2.3 µM and 13.7±3.8 µM 

(n=3) and sulfide at 1.8±0.1 µM and 1.4±0.5 µM (n=4) at L1 and L2 respectively, whereas no 

dissolved Fe(III) was detected. Sulfate (8.4±0.0 and 7.1±1.4 mM at L1 and L2, respectively 

(n=3)), bicarbonate (4.5±0.0 mM at L2 (n=3)), magnesium (3.3±0.0 and 3.3±0.0 mM at L1 

and L2, respectively (n=3)) and calcium (7.0±0.4 mM and 7.3±0.4 mM at L1 and L2, 

respectively (n=3)) constituted the dominating anions and cations. Dissolved organic carbon 

was detected at 1.12±0.03 mg l-1 at L2.  

 

Bulk Fe speciation in red flocs Bulk Fe speciation in red flocs. Linear combination fitting 

(LCF) and shell-by-shell fitting of the Fe bulk spectra (Fig. 1A-D, Tab. A1 and Fig. A2) together 

with shell-by-shell EXAFS data fitting of all triplicate samples from L1, L2 and the deeper L2 

sediment (L2-D) revealed red flocs to consist largely of octahedrally coordinated Fe(III) 

minerals. Generally, the speciation was identified to be very heterogeneous, even within bulk 

spectra (Fig. 1A-D). The EXAFS data fitting corresponded to first shell oxygen-neighbors and 

second shell Fe-neighbors at distances typical for ferrihydrite and goethite, i.e. around 3.0 

and 3.4 Å, respectively (Tab. A1, Fig. A2). According to the LCF, the Fe(II)-Fe(III) mixed-

valent mineral green rust ([Fe(II)1–x Fe(III)x(OH)2]x+. [(x/n) An–, m H2O]x–, where An- denotes 

either Cl-, SO42-, or CO32-, together with the Fe(III) oxyhydroxides lepidocrocite and 
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ferrihydrite are the dominating Fe mineral species, with minor contributions from goethite, 

magnetite and organically complexed Fe (Fig. 1A, C & D). While the red color of the red flocs 

already suggested ferric iron to be abundant, the identification of the Fe(II)-Fe(III) mixed-

valent and highly reactive mineral green rust as a major fraction in these samples was 

unexpected. The LCF showed almost no Fe(II) sulfides, including pyrite and mackinawite, in 

red flocs, as expected based on a calculated saturation index of -7.42 of the Arvadi water with 

respect to amorphous Fe(II) sulfide. Calculations further predicted FeCO3 to precipitate from 

the Arvadi Spring water at a saturation index of 2.67, which we however could not identify 

in our samples. Pre-edge intensities and centroid positions within a detailed pre-edge 

analysis of red flocs according to Wilke et al. (2001) indicate results similar to the LCF with 

mixtures of octahedrally coordinated goethite, ferrihydrite and lepidocrocite, as well as 

Fe(II)-species in mostly octahedral coordination as green rust or in cubic coordination as 

pyrite (Fig. A3).  

Mössbauer spectroscopy data on the red floc sample from L1 were fitted with a wide 

paramagnetic doublet (δ (chemical shift) = 1.27 mm/s, ΔEQ (quadrupole splitting) = 2.74 

mm/s) that is characteristic of a Fe(II) mineral phase and accounts for 55.6% of the total 

spectral area. The parameters of this doublet were consistent with Fe(II) present in green 

rust, as reported by Génin et al. (1998), thus providing additional support to the LCF and 

EXAFS data fitting. Due to masking by Fe(III) (oxy)hydroxides present in the samples it is 

difficult to say whether or not the corresponding Fe(III) doublet of green rust, which is 

necessary for its conclusive identification, is present in the spectra. Nevertheless, the 

abundance of green rust as determined by Mössbauer analysis, is in agreement with XANES 

and EXAFS spectra, in which green rust was also identified (Fig. A4).  
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Figure 1. Results of Fe K-edge LCF of the EXAFS (A and B) and XANES (C-F) region in the red 
floc bulk (A-D) and µ-XANES points P1-P7 (E and F) spectra of white floc samples from L1. 
A) LCF of L1 and L2 samples, B) LCF fits of L1 triplicates (a-c) and g) deeper sediment from 
L2 (L2-D), C) LCF of normalized bulk XANES spectra of L1 and L2 samples, D) LCF of first 
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derivative XANES spectra of L1 and L2 samples, E) LCF of normalized µ-XANES of P1-P7 in 
the white floc sample from L1 and F) LCF of first derivative µ-XANES of P1-P7 in the white 
floc sample from L1. Blue lines represent experimental data and red lines are fits. 

 

 

The Fe(II)/Fe(III) ratios of red flocs were calculated from Mössbauer data to be 1.51±0.34 

and 0.21±0.04 for samples from L1 and L2, respectively, revealing the L2 sample to be much 

more oxidized (Table A2). This is also clear from differences between the two spectra, with 

L1 dominated by a wide paramagnetic Fe(II) phase compared to the L2 spectrum which is 

dominated by a narrow paramagnetic doublet with a low center shift and quadrupole 

splitting (δ=0.47 mm/s, ΔE0= 0.83 mm/s) that corresponds to an Fe(III) phase.  

Our data identified red flocs to be extremely heterogeneous in their Fe-mineral speciation, 

but green rust, lepidocrocite and ferrihydrite clearly play a major role in the overall Fe-

biogeochemistry in the Arvadi spring. Red flocs were found to be colonized by phototrophic, 

nitrate-reducing and microaerophilic Fe(II)-oxidizers as well as by Fe(III)-reducing 

microorganisms in a recent study of Koeksoy et al. (in press), that, in combination with the 

Fe-mineralogy data in the present study, implies red flocs to be the direct products of biotic 

and abiotic Fe(II) oxidation and Fe(III) reduction. We suggest that the apparent 

heterogeneity in Fe-mineralogy is a result of geochemically distinct microenvironments in 

the flocs and cell-mineral aggregates leading to a complex network of redox reactions and 

mineral transformation processes (summarized in Fig. 3).  

As green rust can be formed by direct precipitation of Fe(II) upon partial microbial and 

abiotic oxidation as well as by reduction of Fe(III) oxyhydroxides, mainly as lepidocrocite 

and ferrihydrite (Bhave and Shejwalkar, 2017; Guilbaud et al., 2013; Ona-Nguema et al., 

2002; Pantke et al., 2012; Parmar, 2001), we suggest both pathways to be possible sources 

for the Arvadi Spring green rust.   
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Fe and S bulk and spatially resolved speciation in white flocs. According to the peak fit 

of the S K-edge bulk spectra following similar approaches as outlined in references (Prietzel 

et al., 2007; ThomasArrigo et al., 2016), the sulfur speciation in the freeze-dried white flocs 

was dominated by elemental sulfur (S0; ~2472 eV) and sulfate (SO42-; ~2481 eV) (Fig. 2A). 

The sulfate most likely originates from the high concentrations of dissolved sulfate originally 

present in the pond water. Upon freeze-drying, the concentrations of Mg2+, Ca2+ and SO42- in 

the co-sampled original pond water overlying white floc samples may reach saturation, 

resulting in MgSO4 or CaSO4 precipitation. Interestingly, the speciation varied depending on 

local conditions (Fig. 2B), with S0 being dominant under high S concentrations (hotspots P1, 

P2, P4, P6 and P7), whereas more sulfate was detected in samples with low or very low S 

concentrations (P3 and P5; Fig. 2B). S0 concentrations were quantified by HPLC at 185±41 

and 229±36 mg g-1 dry flocs in the L1 and L2 samples, making up 18.5 and 22.9% of the white 

floc dry weight, respectively. Polysulfides in form of S52- were detected at much lower 

concentrations of only 186±72 and 356±6 µg g-1 dry flocs in unfiltered samples from L1 and 

L2, respectively.  

The fact that S52-, hydrogen sulfide and other polysulfides were below detection limits in the 

Arvadi water (2-5 µM for polysulfides, 1 µM for hydrogen sulfide), supports their quick 

turnover to more oxidized S0 and sulfate. Additional support for a major microbial 

contribution comes from Koeksoy et al. (in press) who showed that Thiothrix spec., i.e., 

aerobic sulfide-oxidizing microorganisms (Nielsen et al., 2000), dominate the Arvadi Spring 

microbial community and are highly abundant in white floc samples from L1 and L2.  

Apart from sulfur, white flocs also contained a minor fraction of Fe at ca. 837.8 µg g-1 and 

893.6 µg g-1 dry flocs in L1 and L2 samples, respectively, constituting 0.0838 and 0.0894 wt% 

of the white flocs, respectively. LCF of the XANES region together with µXANES analysis 

performed at hot-spots in white flocs from L1 (Fig. 1 E & F) reflected a high heterogeneity in 

Fe-mineral speciation, with the fitting corresponding mainly to green rust, ferrihydrite and 

lepidocrocite similar to red flocs, but interestingly, also to Fe(II) sulfides (pyrite and 

mackinawite, Fig. 1 E & F). We found the mineralogy to vary among hot spots depending on 

the prevailing Fe and S concentrations. For instance, about 50% of the mineral species at 
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hotspot P2, which has relatively high S and low Fe concentrations, corresponded to green 

rust, mackinawite and pyrite. In contrast, hotspots P1, P4, P6 and P7 that contained high Fe 

and S concentrations, were dominated by ferrihydrite and lepidocrocite which constituted 

about 60-70% of the Fe-species. These samples also contained some green rust, pyrite, 

mackinawite and potentially some Fe-organic complexes (Fig. 1 E & F). 

 

 

 

Figure 2. Results of peak fits of S K-edge XANES spectra of A) white floc samples from L1 
(top) and L2 (bottom) and B) hot spots P1-P7 in white floc sample from L1. The black lines 
correspond to experimental data, red lines to fits and dashed lines to the individual peak and 
step functions used in the fitting.  
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Figure 3. Connection of Fe- and S-cycles in the Arvadi Spring water column and sediment 
and proposed mineral formation & transformation processes in white and red flocs (adapted 
from Koeksoy et. al, in review). 

 

Despite their overall lower abundance compared to lepidocrocite, ferrihydrite and green 

rust, the higher prevalence of FeS, mackinawite and pyrite at white floc hot spots compared 

to their near absence in red flocs indicates FeS formation to be highly dependent on the local 

availability of S0 and polysulfides. Generally, we suggest sulfate reduction to be an ongoing 

process in white flocs based on S-isotope data (Strauss et al., 2016) and as Koeksoy et al. (in 

press) showed sulfate-reducing microorganisms to be fairly abundant in white flocs. We 

therefore suggest sulfate reduction in white flocs to produce locally high concentrations of 

sulfide that can reduce Fe(III) abiotically to Fe(II), which in turn can precipitate with the 

sulfide in form of amorphous FeS. The more reduced average Fe oxidation state at white floc 

hot spots compared to red floc samples (Fig. A3 and A5) supports our assumption of sulfide-

dependent Fe(III) reduction in respective samples (Yao and Millero, 1996). The prevalence 

of S0 and polysulfides in white flocs explains the appearance of higher crystalline pyrite and 

mackinawite, as both S-compounds are known to trigger FeS to transform into more 

crystalline forms (Hunger and Benning, 2007; Rickard, 1997).  

 

 

Implications for Fe-S-mineralogy and nutrient cycling in ferro-

euxinic intermixed waters of late Archean and Proterozoic 

Oceans 

Our study provides unique insights into the potential identity and composition of Fe- and S-

rich mineral precipitates that settled on the topmost seafloor layer underlying ferro-euxinic 

transition waters of late Archean and Proterozoic oceans during intervals of atmospheric 

oxygenation. More generally, our data provide a glimpse into the diversity and complexity of 

the primary mineral assemblage formed within the water column, at the sediment-water 

interface, and during the earliest stages of diagenesis. In Archean and Proterozoic 
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sedimentary rocks this complexity is obliterated by later diagenesis, and by metamorphism 

under increasing burial pressures and temperatures, making it difficult to constrain the 

initial mineral assemblage and extract environmental information.  

Our observations support previous studies suggesting ferrihydrite and lepidocrocite as 

important precursors to preserved Fe-mineral phases in geologic rock formations (Klein, 

2005). Most notably however, our data strongly support the recent suggestion of green rust 

as a highly reactive BIF precursor (Halevy et al., 2017), and shows that green rust might not 

only have played a role in Archean ocean settings with a dominantly anoxic and ferruginous 

water column (Zegeye et al., 2012) but presumably also precipitated from oxygenated ferro-

euxinic intermixing waters in surface layers of the ocean during the late Archean and 

throughout the Proterozoic. Given the higher reactivity of green rust (relative to Fe(III) 

oxides and hydroxides) towards silica, phosphate and trace metals (Hansen and Poulsen, 

1999; Kwon et al., 2007; Parmar, 2001), our findings may have important implications for 

nutrient and trace metal cycling in paleo-seawater. The fate of nutrients and metals upon 

diagenetic transformation of green rust to thermodynamically stable phases is uncertain and 

requires further research.  

Our study further highlights a previously neglected role of S0 in the overall geochemistry of 

ferro-euxinic oxygenated shallow ocean waters, as it appears to be the dominating solid S-

mineral in the Arvadi Spring. Being labile and highly reactive, mostly due to its electron 

donating and accepting capacities that are preferred not only by S- but also Fe-metabolizing 

microorganisms (Holmes et al., 2004), S0 was not preserved in ancient settings and hence 

cannot be tracked in the rock record (Cosmidis and Templeton, 2016). However, evidence 

for Precambrian S0-metabolism, including its disproportionation, come from S-isotope data 

already for the Archean (Farquhar et al., 2013; Havig et al., 2017; Philippot et al., 2007), and 

our data support a role for S0 in the subsequent Proterozoic era. S0 can chelate trace metals 

such as Cu, Hg, and As and is thought to limit their bioavailability (Helz, 2014) and hence, S0 

may have additionally affected mid-Proterozoic evolutionary stasis, similar to green rust.  
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In summary, we suggest green rust and S0 as key early precipitates in the late Archean and 

Proterozoic oceans, which contributed to the formation of the mineral assemblages observed 

in sedimentary rocks of these ages. Both green rust and S0 may have exacerbated trace metal 

limitation and hence impacted evolutionary stasis during the mid-Proterozoic. We 

emphasize the requirement for the consideration of both compounds as major contributors 

to biogeochemical Fe-S-cycling in respective modern and ancient environmental settings 

and to the observed rock record mineralogy by evaluating possible transformations through 

diagenesis. 
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SI. 1: Collection of flocs samples. White precipitate flocs from L1 and L2 were collected in 

acid-washed Schott bottles that were filled to the brim with pond water and then closed with 

oxygen-tight butyl stoppers for transport on ice and in the dark to the lab. The samples were 

immediately treated upon return to the lab. They were flushed with N2 and most of the 

supernatant was pipetted out (the flocs sedimented to the bottom of the bottle). These more 

concentrated floc samples were then brought into an anoxic glovebox, transferred into 

weighted plastic tubes and centrifuged. The supernatant was collected in acid-washed Schott 

bottles, the mass of the wet floc samples was determined. When necessary, the samples were 

diluted with the collected Arvadi pond water. 

 

SI. 2: Elemental sulfur analysis. 125 µL anoxic MilliQ and 125 µL of 2% (w/v) ZnAc were 

added to 500 µL of unfiltered sample. The samples were stored dark and at 4°C for 8 days. 

Six mL of methanol were added to the refrigerated samples, which were placed on a rolling 

shaker for 3 h with occasional shaking. The samples were then centrifuged for 5 minutes at 

4000 rpm. Liquid samples were subsequently analyzed for elemental sulfur by HPLC on an 

Ultrasphere ODS column, operated with an isocratic mixture of 98% methanol and 2% H2O 

run with a flow rate of 0.8 mL/min and detection at 265 µm. 

 

SI. 3: Polysulfide analysis. Triplicate samples from locations L1 and L2 (see Fig. A1) were 

prepared for unfiltered and 0.45-µm-filtered samples to distinguish between total and 

aqueous polysulfides. Obviously, this separation is hampered by the earlier centrifugation, 

but concentration of the flocks via e.g. flash-freezing in the field, using liquid nitrogen was 

not possible due to safety reasons as the sampling involved long-distance driving in a vehicle 

that did not allow transport of gas. For the unfiltered samples, 1067 µL anoxic methanol was 

pipetted to plastic tubes; 267 µL sample and 8 µL methyl trifluoromethanesulfonate were 

added simultaneously. The samples were then stored in the dark and at 4°C for ca. 36 h. The 

samples were then filtered in the glovebox using 0.45 µm filters and put back into the freezer. 

For the filtered samples, 800 µL anoxic methanol was pipetted into the plastic tubes, then 
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200 µL sample and 6 µL methyl-triflate was added. These samples were also stored dark and 

frozen until analysis. Finally, the samples were analyzed for polysulfides on a HPLC (Merck 

Hitachi, L-2130 pump, L-2200 autosampler, L-2420 UV-vis detector) using a C18 column 

(Waters-Spherisorb, ODS2) as previously described in Wan et al. (2014).   

 

SI. 4: Mössbauer spectroscopy. The Mössbauer spectrometer instrument was calibrated 

with a 7 µm thick α-57Fe foil measured at room temperature, which was also used to 

determine the half width at half maximum (fixed to 0.128 mm/s during fitting). Fitting was 

carried out using Recoil (University of Ottawa) with the Voigt based fitting routine (VBF) 

(Rancourt et al.,, 1991). The purpose of these 57Fe Mössbauer measurements was to 

determine Fe(II)/Fe(III) ratio and mineral composition as a complementary analysis to the 

synchrotron-based Fe K-edge X-ray absorption spectroscopy analysis.  

 

  



Chapter 3  

 
 
 

129 
 

Table A1. Fe K-Edge EXAFS shell-by-shell fit results of the red floc samples. 

Sample Path 
Coordination 

number 
σ2*  
(Å2) 

Bond 
distance  

(Å) 
ΔE0† Fi§ 

L1-1 Fe-O 5.8 0.0158 2.02 0.2 6.75 

 Fe-Fe 1.6 0.0100# 3.05   

 Fe-Fe 0.9 0.0100# 3.37   

L1-2 Fe-O 6.1 0.0144 2.00 -0.85 6.47 

 Fe-Fe 1.8 0.0100# 3.03   

 Fe-Fe 1.0 0.0100# 3.42   

L1-3 Fe-O 5.6 0.015 2.02 0.36 6.55 

 Fe-Fe 1.3 0.0100# 3.06   

 Fe-Fe 0.7 0.0100# 3.41   

L2-1 Fe-O 6.4 0.0145 2.00 -1.62 6.18 

 Fe-Fe 2.2 0.0100# 3.00   

 Fe-Fe 1.7 0.0100# 3.38   

L2-2 Fe-O 5.9 0.0122 1.98 -2.03 3.96 

 Fe-Fe 2.1 0.0100# 3.02   

 Fe-Fe 1.0 0.0100# 3.41   

L2-3 Fe-O 5.7 0.013 1.99 -1.58 4.41 

 Fe-Fe 1.8 0.0100# 3.03   

 Fe-Fe 1.2 0.0100# 3.42   

L2-D Fe-O 5.9 0.0135 2.01 0.37 7.81 

 Fe-Fe 1.7 0.0100# 3.05   

 Fe-Fe 0.6 0.0100# 3.38   

The amplitude reduction factor was set to 0.75. 
*Debye-Waller factor  
†E0 was assumed to be identical for all shells.  
§Fi is defined as ((k3exp-k3fit)2/( k3exp)2)×100, where exp and fit represent 
experimental and fitted data points, respectively. 
#Fixed to 0.0100 according to Maillot et al. (2011). 
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Figure A1. Schematic overview of the Arvadi Spring. Locations L1 and L2 are situated within 
the spring pond. The spring discharge is at L1. This figure is modified from Koeksoy et al. (in 
press).  
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Figure A2. k3-weighted (A) and Fourier Transformed (B) Fe K-edge EXAFS for Fe-rich flocs 
from location L1 (a, b, c), location L2 (d, e, f) and from deeper sediment at L2 (g) in the Arvadi 
Spring. Blue lines represent experimental data and red lines fit results.  

  



Chapter 3  

 
 
 

132 
 

 

Figure A3. Pre-edge analysis following Wilke et al. (2001) comparing centroid energies and 
integrated pre-edge intensity of model compounds (orange filled squares), L1 samples 
(green stars) and L2 top sediment and deeper sediment samples (grey filled circles) of red 
flocs. The open circles represent pure Fe(II) and Fe(III) compounds in tetrahedral and 
octahedral configuration. 
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Figure A4. 57Fe Mössbauer spectra collected at 77 K for red flocs from L1 (A) and red flocs 
from L2 (B). Fe(III) crystalline phases likely correspond to ordered Fe(III) phases such as 
goethite. The Fe(II) phase is best fitted with parameters that show close similarity to green 
rust. Fe(III) paramagnetic phase likely corresponds to poorly crystalline phases such as 
ferrihydrite or lepidocrocite. A minor FeS phase appears to be present in sample L1. 
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Figure A5. Pre-edge analysis following Wilke et al. (2001) comparing centroid energies and 
integrated pre-edge intensity of model compounds (orange filled squares). Blue diamonds 
correspond to the sample points in the white floc sample from L1 analyzed by µXANES. The 
open circles represent pure Fe(II) and Fe(III) compounds in tetrahedral and octahedral 
configuration. 
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Abstract 

Fe was an abundant constituent of ancient seawater throughout much of the Precambrian, 

but the rise of atmospheric oxygen across the Archean-Proterozoic boundary came along 

with a partial transition of seawater composition towards more sulfidic conditions in ocean 

neritic zones. While ferruginous conditions are thought to still have persisted in the open 

deep ocean, the actual extent of sulfidic vs. ferruginous waters and controlling factors on 

their relative prevalence remain poorly constrained. Evidence from the rock record suggests 

a major role for Fe(II)-oxidizing and Fe(III)-reducing microorganisms in shaping the ancient 

ocean environment, but their actual contribution requires to be deciphered. Here we present 

Fe(II) oxidation and Fe(III) reduction data from controlled microcosm experiments with 

sediment from the Arvadi Spring, a model habitat for ferro-euxinic transition zones of late 

Archean and Proterozoic oceans. Fe(II) oxidation was demonstrated not to take place under 

anoxic conditions, whereas a clear increase in Fe(III) was observed in microoxic microcosms 

with 0.5%, 1% and 3% headspace oxygen. Fe(III) reduction was identified to be intensely 

proceeding under anoxic conditions, with a full reduction of the available Fe(III) within 9 

days in organic-spiked microcosms. We demonstrated Fe(III) reduction to be limited by the 

organic carbon availability in the Arvadi Spring and to be accelerated under the 

contemporaneous presence of active sulfate reduction and sufficient organic carbon. Our 

results imply a spatial separation of Fe(II) oxidation and Fe(III) reduction into oxic and 

anoxic parts of the ferro-euxinic ocean transition zones. Furthermore, we suggest Fe(II) 

accumulation and hence the development of ferruginous conditions to have been elevated 

under high organic carbon availability and contemporaneous dissimilatory sulfate 

reduction. 
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Introduction 

Ancient Earth´s atmosphere, hydrosphere and biosphere differed much from today, and the 

majority of past conditions is reconstructed with information from the geologic record. 

Banded Iron Formations (BIFs), sedimentary rocks that deposited between the Eoarchean 

(3.8 Ga) and Paleoproterozoic (1.8 Ga), consist of up to 40 wt% Fe, implying their 

depositional settings to have been ferruginous (Fe(II)-enriched) [1, 2]. Fe-speciation data 

from a variety of mid-Proterozoic marine mudstones [3] and Neoproterozoic geologic 

formations [4] revealed the open deep ocean to have persisted dominantly ferruginous even 

throughout much of the Proterozoic, with Fe(II) concentrations ranging between 40 to 120 

µmols liter-1 [5]. The direct consequence of these assumptions on ancient ocean chemistry is 

that biotic and abiotic Fe-cycling must have played a major role early in Earth´s history.  

Evidence for the existence of Precambrian Fe-metabolizers most notably comes in form of 

microfossil [6-8] and Fe-isotope data [9-13]. For instance, Fe-isotopes combined with Nd-

isotope and rare earth element (REE) data from the late Archean Brockman Iron Formation 

(Hamersley Basin, Australia) revealed dissimilatory Fe(III) reduction to have mobilized 

continental Fe from riverine runoff in coastal margin sediments [11]. Dissimilatory Fe(III) 

reduction therefore is suggested to have contributed significantly to the late Archean oceanic 

Fe(II) budget in addition to the hydrothermal Fe(II) source [14, 15]. Furthermore, Fe-isotope 

and REE data from the Paleoproterozoic Gunflint and Biwabik Iron Formations (Lake 

Superior, Canada & USA) unveiled the presence of Fe(II)-oxidizing ecosystems in respective 

depositional settings [7]. Microfossil data from the Paleoproterozoic Jhamarkotra Iron 

Formation (Rajasthan, India, [6]) indicate a similar scenario, with an emphasis on the role of 

microaerophilic Fe(II)-oxidizers in the Fe-metabolizer community. Respective microfossils 

resembled the morphology of twisted stalks, Fe(II) oxidation products with characteristic 

shapes that are typically formed by certain extant microaerophilic Fe(II)-oxidizers [16-18]. 

In addition to evidence from the rock record, laboratory simulation of past ocean conditions 

together with theoretical calculations suggest anaerobic phototrophic Fe(II)-oxidizers to 

have played a crucial role in the deposition of Banded Iron Formations [19]. Most recently, a 
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study of Kabuno Bay of Lake Kivu (Rwanda and Dem. Rep. of Congo) showed nitrate-

reducing Fe(II) oxidation to be a significant process in ferruginous water columns, 

suggesting a similar scenario for corresponding ancient ocean settings [20]. 

Despite the evident presence of Fe-metabolizers early in Earth´s history, little is known 

about their relative activity and response to challenging environmental conditions. The 

advent of oxygenic photosynthesis [21, 22] and the therein involved oxygen overshoot and 

recovery during the Paleoproterozoic Lomagundi Event [23, 24] caused drastic geochemical 

changes in surface seawater and in intermediate depths of the ocean during the late Archean 

[25] and Paleoproterozoic [26-28]. Fe(II) levels in respective settings are assumed to have 

decreased substantially as a consequence of (1) Fe(II) oxidation by molecular oxygen and 

therewith associated precipitation of poorly soluble Fe(III) (oxyhydr)oxides, and (2) Fe(II) 

precipitation as Fe(II) sulfides in euxinic (anoxic and sulfide-rich) seawater. The latter 

accumulated in intermediate depths of neritic ocean zones in form of ‘sulfide wedges’ as a 

result of increased oxidative weathering of terrestrial pyrite and an accompanying elevation 

of oceanic sulfate levels in ocean neritic zones, stimulating dissimilatory sulfate reduction 

[29]. The transition from ferruginous to euxinic conditions in respective ocean zones 

remains vague, and especially the relative extent of ferruginous versus euxinic conditions 

and factors controlling their expansion require to be deciphered [30, 31]. 

Our knowledge gaps on the relative extent of ferrouginous and euxinic conditions and the 

impact of this drastic transition on the activity of Fe-metabolizers but also the contribution 

of Fe-metabolizers on shaping ocean geochemistry are mostly due to the metamorphosed 

and incomplete rock record that impedes interpreting observed biogeochemical signatures. 

An alternative way to study ancient ocean composition and microbial community structure 

and activity is the analyses of modern model habitats, i.e. environments that resemble 

conditions of the ancient ocean [32]. This type approach was the basis for studies with 

Kabuno Bay [20], Lake Matano (Indonesia) [33, 34], Lake Pavin (France) [35] and Lake 

Cadagno (Switzerland) [36] that all represent either ferruginous or euxinic ancient seawater 

conditions. A recent study by Koeksoy et al. (in press) on a modern model habitat for ferro-

euxinic transition zones of late Archean and Proterozoic oceans, i.e. the Arvadi Spring 
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(Switzerland) revealed phototrophic, nitrate-reducing and microaerophilic Fe(II)-oxidizers 

and Fe(III)- and sulfate-reducers to be part of the microbial community, with 

microaerophiles being the dominant Fe- and S-metabolizers. Koeksoy et al. suggested a 

similar scenario for oxygenated, ferro-euxinic transition zones of late Archean and 

Proterozoic oceans, but have not addressed the relative metabolic activity of respective Fe- 

and S-metabolizers in the Arvadi Spring, and hence conclusions on their relative contribution 

on the Fe- and S-rich water geochemistry prevail uncertain. 

In this study, we examined the activity of Fe(III)-reducers and Fe(II)-oxidizers in the Arvadi 

Spring sediment under controlled anoxic and microoxic conditions in microcosms with 

specific amendments. By testing different conditions, we followed the ultimate goal to 

understand limiting factors on biogeochemical Fe-cycling and on the formation of 

ferruginous versus euxinic waters in late Archean and Proterozoic oceans. 

 

 

Methods 

Sampling and Arvadi water processing. Major physical and chemical parameters (pH, 

temperature, O2 saturation, salinity) were measured in the Arvadi Spring pond water with a 

field multimeter (WTW, Multi 3430) containing an oxygen sensor (FDO®925), a 

conductivity electrode (TetraCon®925) and a pH sensor (SenTix®) with an additional 

temperature sensor. Water samples for Fe(II) and sulfide quantification were fixed in 1 M 

HCl and 2% (w/v) Zn-acetate. Sediment and water samples for the microcosm setup were 

collected from the spring pond and were transported and stored in the lab at 4°C and in the 

dark until their use. The Arvadi water was flushed with N2 for 1 h liter-1 prior to filter-

sterilization (0.22µm, steritop) in the glovebox under a 100% N2 atmosphere. Afterwards, 

the water headspace was exchanged with N2:CO2 (90:10) before 30 mM bicarbonate buffer 

was added. The buffered water was further supplemented with 1 mL liter-1 7-vitamine 

solution [37], 1 mL liter-1 selenite tungstate solution and 1 mL liter-1 SL10 solution [38].  
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Additional supplements were added to the Arvadi water according to the conditions to be 

tested. Arvadi water for phototrophic Fe(II) oxidation microcosms was supplemented with 

10 mM FeCl2 only. Arvadi water for nitrate-reducing Fe(II) oxidation microcosms was 

amended with 10 mM FeCl2, 10 mM NaNO3 and 10 mM Na-acetate. Arvadi water for 

microoxic Fe(II) oxidation microcosms was amended with 10 mM FeCl2. Different 

combinations of supplements were added to Arvadi water for Fe(III) reduction microcosms. 

Arvadi water for non-amended conditions was not supplemented with any additions. Arvadi 

water for Fe(III) reduction microcosms with elevated Fe(III) levels were spiked with ~5mM 

ferrihydrite. Arvadi water for Fe(III) reduction microcosms with additional organic carbon 

were amended with 5 mM Na-acetate and 5 mM Na-lactate. Arvadi water for Fe(III) 

reduction microcosms with elevated Fe(III) and organic carbon levels were amended with 5 

mM ferrihydrite, 5 mM Na-acetate and 5 mM Na-lactate. Arvadi water for Fe(III) reduction 

microcosms with inhibited sulfate reduction was amended with 5 mM Na-molybdate. Arvadi 

water for abiotic microcosms was amended with 164 mM NaN3, an inhibitor of respiratory 

cytochromes [39]. For each experiment, the pH of the Arvadi water was adjusted to 7.2 by 

0.5 M Na2CO3 after the addition of the specific supplements. 

 

General experimental setup 

Anoxic microcosms. Microcosms for the quantification of Fe(II) oxidation and Fe(III) 

reduction under anoxic conditions  were prepared according to a non-sacrificial sampling 

approach, i.e. all samples at each sampling time point of a replicate were collected from the 

same microcosm. Each experiment was prepared in triplicates with ca. 5 g of homogenized 

Arvadi sediment in each replicate that was deoxygenated with N2:CO2 (90:10) prior to the 

addition of supplemented Arvadi water. Fe(II) oxidation microcosms contained 50 mL of 

Arvadi water, while Fe(III) reduction microcosms contained 60 mL of Arvadi water due to a 

higher requirement of sample volume over time in the latter. The microcosm headspace was 

exchanged with N2:CO2 (90:10) prior to closing the bottle with a butyl stopper via Hungate 

technique. After the first samples were collected from each replicate, all microcosms were 
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incubated either in the dark (covered with aluminum foil) or under visible light (40W 

halogen bulb) over the course of the experiment. 

 

Microoxic microcosms. Microcosms for the quantification of Fe(II) oxidation rates under 

microoxic conditions were prepared according to a sacrificial sampling approach, i.e. each 

sample from each replicate at each sampling time point was collected from a single 

microcosm. Each experimental condition was tested in triplicates. Every microcosm 

contained ca. 1 g of homogenized Arvadi sediment and 2 mL of Arvadi water in 20 mL 

headspace vials. The microcosms were prepared anoxically first with a headspace of N2:CO2 

(90:10), and were amended with defined amounts of sterile-filtered (0.22 µm) air O2 via 

Hungate syringe afterwards. The headspace O2 content thereby either was 0.5%, 1% or 3%. 

Abiotic control microcosms were incubated for 4 days prior to the first addition of O2 to 

ensure all respiratory cytochromes were blocked before the experiment was started. All 

microcosms were incubated horizontally on rolling shakers at a speed of 40 rpm in the dark 

upon sampling, in order to increase the surface area of the incubated slurry phase and hence 

to yield a better diffusion of oxygen. 

 

Microcosm sampling. All microcosms with the exception of O2 monitoring vials for optode 

measurements during microoxic Fe(II) oxidation analyses were sampled in the glovebox 

under a 100% N2 atmosphere. During the sampling process, 1 mL of slurry sample was taken 

from each microcosm via syringe and with contemporaneous thorough shaking of the 

microcosm. For subsequent quantification of total Fe in the slurry phase, 100 µL of slurry 

sample were added to 900 µL of 1 M HCl. In case of Fe samples from nitrate-reducing Fe(II) 

oxidation microcosms, slurry samples were added to 40 mM sulfamic acid instead of 1 M HCl 

in order to avoid abiotic Fe(II) oxidation by nitrite [40]. Fe was extracted for 1 h and the 

extraction was stopped afterwards by centrifugation at 7000 g for 5 minutes and transfer of 

the supernatants into fresh plastic tubes. The Fe extracts were used for Fe-quantification by 

the spectrophotometric ferrozine assay after Stookey [41]. The remaining slurry samples 
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were centrifuged at 7000 g for 10 minutes and the supernatants were transferred into fresh 

plastic tubes. These samples were used for dissolved Fe quantification by the ferrozine assay 

and nitrate, nitrite and ammonium quantification by flow injection analyses in case of 

nitrate-reducing Fe(II) oxidation microcosms.  

 

Fe quantification. Total Fe (Fe(tot)) and Fe(II) in the slurry extract and dissolved phase 

samples were quantified spectrophotometrically by the ferrozine assay after Stookey [41]. 

For the quantification of Fe(II), 20 µL of sample were added to 80 µL of 1 M HCl. For the 

quantification of Fe(tot) in the same samples, 20 µL of sample were added to 80 µL of 

hydroxylamine hydrochloride (10% w/v) in order to reduce all Fe(III) in the sample to Fe(II) 

during an incubation of 30 minutes. Afterwards, 100 µL of ferrozine were added to each test 

well and incubated for 5 minutes prior to measuring the absorption at 562 nm with a plate 

reader (FlashScan 550, Analytic Jena, Germany). Each sample was measured in triplicates. 

Sulfide quantification. Sulfide in dissolved phase samples was quantified photometrically 

by the methylene blue method after Cline [42]. Thereby, 50 µL of sample were added to 50 

µL of N,N-dimethyl-p-phenylendiamine sulfate, forming an aromatic compound. 50 µL of 

NH4Fe(III)SO4 x 12 H2O were added to each test well to oxidize the formed aromatic 

compound to methylene blue prior to measuring its absorption at 664 nm with a plate reader 

(FlashScan 550, Analytic Jena, Germany). Each sample was measured in triplicates. 

 

Oxygen quantification. Oxygen concentrations in microoxic Fe(II) oxidation microcosms 

were analyzed in the microcosm headspace and slurry phase by optodes (Fibox3, PreSens/ 

OXY-4 Mini, PreSens) that enabled non-invasive quantification. Headspace vials for oxygen 

measurement were equipped with small patches (ca. 4 x 4 mm) of oxygen sensitive foil that 

were fixed with silicon glue in the inner glass wall. The optode was calibrated at 19.8°C and 

a pressure of 1116 hPa. Signals for 0% O2 (0.1 M Na-ascorbate in 0.1 M NaOH) and 100% O2 

(air-saturated Arvadi water) were determined. Based on the measured O2 concentration, the 
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volume of air-oxygen that was required to maintain 0.5%, 1% and 3% headspace oxygen in 

the microcosms was determined and added through a sterile filter (0.22 µm) via Hungate 

syringe to the respective microcosms. 

 

 

Results 

The pH of the Arvadi water was measured to be 7.9 with a temperature of 7.1, a salinity of 

0.7 and an O2 saturation of 101.1% (with respect to atmospheric O2). We could quantify 

16.0±2.2 µM Fe(II), 8.3±0.1 mM sulfate and 2.7±0.3 µM sulfide in the Arvadi pond water, 

whereas no dissolved Fe(III) was found to present. The water contained 3.2±0.6 mg liter-1 

organic carbon and 4.3±0.1 mM bicarbonate.  

The pH remained stable in all microcosms over the course of the experiment at the initially 

adjusted value of 7.2-7.3. Sulfide was below the detection limit of the Cline assay (1 µM) in 

all microcosms throughout the experiment. Based on the heterogeneous nature of the Arvadi 

Spring sediment, it was not possible to monitor the Fe(II)/Fe(III) development in the slurry 

phase in molar concentrations, and hence the data is presented in percent Fe(II) and Fe(III) 

relative to the total Fe content (Fe(tot)).  

 

Fe(II) oxidation under anoxic conditions. The initial Fe(II)/Fe(III) ratios were quite 

similar among biotic phototrophic Fe(II) oxidation microcosms with 6.2±1.4 and 5.2±1.1 in 

light and dark incubated microcosms, respectively, and were slightly higher in abiotic 

controls with 7.1±1.1 and 7.9±0.8. No net increase in the Fe(III) content was observed. 

Instead, all initially available Fe(III) (14.4±2.4 and 16.6±2.8% in light and dark incubations) 

was reduced in biotic microcosms within 12 days. In contrast, it took 16 days in abiotic 

microcosms to reduce nearly all initial Fe(III) (12.5±2.4 and 11.3±1.0% in light and dark 

incubations, respectively, Fig. 1A).  
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Comparable results were recorded for the Fe(II)/Fe(III) development in nitrate-reducing 

Fe(II) oxidation microcosms. The initial Fe(II)/Fe(III) ratios were similar to those in 

phototrophic Fe(II) oxidation microcosms with 5.3±1.0 and 6.5±1.1 in biotic microcosms and 

6.8±2.2 and 4.9±0.9 in abiotic microcosms, respectively. A complete reduction of the initial 

Fe(III) content was observed in biotic (16.2±2.6 and 13.7±1.9%, light and dark incubations) 

and abiotic (13.6±3.1 and 17.4±2.3%) microcosms within 12 days (Fig. 1B). In dark 

incubated biotic microcosms, a decrease in the Fe(II) content of 10.8±2.8% was recorded 

after 12 days (Fig. 1B). In the same microcosms, the initial nitrate concentrations of 8.1±0.1 

mmols liter-1 decreased to 3.7±0.2 and 4.0±0.4 mmol liter-1 in biotic microcosms that were 

incubated in the light and in the dark, respectively (Fig. 2A). An accompanying increase in 

ammonium concentrations to 1.8±1.1 and 2.8±0.1 mmols liter-1 was recorded in light and 

dark incubated microcosms (Fig. 2B). No nitrite could be detected (Fig. 2A). Nitrate, nitrite 

and ammonium concentrations did not change in abiotic controls, except for a slight increase 

in nitrate in light and dark incubated microcosms at day 9. (Fig. 2A). 

 

 

 

Fig. 1: Fe(II) (circles) and Fe(III) (squares) in the slurry phase of phototrophic (A) and 
nitrate-reducing Fe(II) oxidation (B) microcosms that were incubated in the light (open 
symbols) and in the dark (filled symbols), respectively. Black graphs show data from biotic 
microcosms, grey graphs show abiotic controls.  
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Fig. 2: Nitrate (diamonds, A), nitrite (squares, A) and ammonium (triangles, B) 
concentrations in the dissolved phase of nitrate-reducing Fe(II) oxidation microcosms over 
time.  

 

 

Fe(II) oxidation under microoxic conditions.  Despite thorough homogenization of the 

sediment during microcosm preparation, the initial Fe(II)/Fe(III) ratio varied among 

microcosms between 0.4 and 1.5 at the start of the experiment and abiotic microcosms were 

found to generally have a higher Fe(II) content. 

In none of the microcosms, a complete turnover of Fe(II) into Fe(III) could be monitored 

within the time frame of the experiment (Fig. 3). In biotic microcosms, the lowest 

Fe(II)/Fe(III) ratio was reached already after 24 hours in 3% headspace O2 setups 

(0.19±0.02) and persisted similar until the end of the experiment. Similar Fe(II)/Fe(III) 

ratios were reached in 1% headspace O2 microcosms after 96 hours (0.17±0.01). The lowest 

Fe(II)/Fe(III) ratios in 0.5% headspace O2 microcosms was 0.33±0.02 and was reached at 96 

hours as well. 

Generally, the total increase in the slurry phase Fe(III) content between 0 and 196 hours was 

found not to depend on the headspace O2 content. An Fe(III) increase of 17.7±9.5%, 21.2±5.3 

and 19.0±3.8% could be recorded for biotic microcosms incubated with 0.5%, 1% and 3% 

headspace O2, whereas a higher increase in Fe(III) of 26.4±5.2, 27.6±7.0 and 27.9±3.4% was 

observed in abiotic microcosms with 0.5%, 1% and 3% headspace O2, respectively.  
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In contrast to the slurry phase, Fe(II) in the dissolved phase was oxidized completely within 

24 hours in 3% O2 microcosms and within 96 hours in 1% headspace O2 microcosms. Fe(II) 

was still detectable in the millimolar range (1.7±1.2 mM) at the end of the experiment in 

biotic and abiotic microcosms with 0.5% O2 (Fig. 3, bottom left). Fe(III) was not detected in 

the dissolved phase. 

 

 

Fig 3:  Fe(II) (circles) and Fe(III) (squares) in slurry phase (top) and dissolved phase 
(bottom) over time in microcosms for microaerophilic Fe(II) oxidation at 0.5%, 1% and 3% 
headspace oxygen. Black graphs show biotic sample data, grey graphs show abiotic controls. 

 

 

Oxygen concentrations were kept stable in the headspace by spiking with filter-sterilized 

(0.22 µm) air O2 every 24 h. The headspace O2 content decreased within 24 hours in all 

microcosms, but the discrepancy between present O2 and required headspace O2 became 

smaller after each O2-spiking event over the course of the experiment (Fig. 4 top). The 

discrepancy was observed to be overcome fastest in abiotic microcosms, with a near O2 
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saturation in 3% O2 microcosms already after 24 hours. Furthermore, O2 was observed to 

accumulate faster and to higher concentrations in the slurry phase of abiotic microcosms 

compared to biotic microcosms, reaching maximal concentrations of 36.3±1.4 µM in 3% O2 

microcosms after 72 hours that remained stable until the end of the experiment at 192 hours. 

O2 accumulated to 10.0±0.6 and 4.9±0.1 µM in abiotic microcosms with 1% and 0.5% 

headspace O2 after 120 hours. In contrast, O2 accumulated to a maximum of  30.6±1.7 µM in 

biotic microcosms with 3% O2 after 120 hours and only to 3.5±1.3 and 2.0±0.1 µM in 1% and 

0.5% O2 microcosms (Fig. 4, bottom). 
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Fig. 4: Oxygen concentrations in the microcosm headspace (top) and slurry (bottom) over 
time. Diamonds show setups containing 3% headspace O2, triangles show 1% headspace O2 
and squares show 0.5% headspace O2 microcosms. 

 

 

Fe(III) reduction under anoxic conditions. Despite extensive homogenization of the 

sediment during the experimental setup, the initial Fe(II)/Fe(III) ratio in the slurry phase of 

the microcosms varied between 0.27 and 1.45 at the start of the exoeriment. Generally, 

Fe(II)/Fe(III) ratios changed in the first 2 to 4 days of incubation in all abiotic microcosms, 

but stabilized afterwards until the end of the experiment. No significant discrepancies were 

observed between light and dark incubated microcosms in the slurry phase (Fig. 5 & 6), while 

light-dependent trends could be observed in the dissolved phase (Fig. 7 & 8).  

Major differences were observed between microcosm with active and inhibited sulfate 

reduction. Under active sulfate reduction conditions, complete Fe(III) reduction was 

observed only in microcosms that were amended with additional organic carbon in form of 

acetate and lactate (Fig. 5, top right) or with a combination of acetate, lactate and ferrihydrite 

(Fig. 5, bottom right). In unamended microcosms (Fig. 5, top left), a remaining Fe(III) pool of 

16.1±2.4 and 15.8±1.6% was recorded at 17 days, while 33.0±1.6 and 36.3±0.4% Fe(III) 

were found in ferrihydrite-spiked microcosms that were incubated in the light and in the 

dark, respectively (Fig. 5, bottom left).  

Under inhibited sulfate reduction conditions, Fe(III) reduction was complete in non-

amended and organic carbon-spiked microcosms (Fig. 6 top left and top right). In 

microcosms spiked with ferrihydrite- and a combination of ferrihydrite and organic carbon, 

Fe(III) reduction was found to be incomplete with a remaining pool of 29.0±1.9 and 

31.1±6.5% as well as 17.5±2.5 and 18.8±3.3% Fe(III) in light and dark incubated conditions, 

respectively (Fig. 6, bottom left). 

Overall, the highest total increase in Fe(II) was observed in microcosms with active sulfate 

reduction that were amended with acetate, lactate and ferrihydrite, as the complete 

reduction of initially 71.8±4.0 and 71.6±3.3% Fe(III) over 17 days was observed in light and 
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dark incubated microcosms, respectively (Fig. 5, bottom right). Following on this were 

microcosms with active sulfate reduction that were spiked with additional organic carbon 

with a total of 50.7±2.3 and 54.5±3.7% Fe(III) having been reduced. Similarly contents of 

Fe(III) were reduced in microcosms with inactive sulfate reduction that were spiked with 

organic carbon (53.4±10.9 and 47.3±1.5% Fe(III), Fig. 6, top right), and spiked with organic 

carbon and ferrihydrite (51.9±1.5 and 49.2±3.7% Fe(III), Fig. 6, bottom right), incubated in 

the light and in the dark, respectively. The lowest relative amount of Fe(III) that was reduced 

was found in microcosms with active sulfate reduction that were not amended (39.9±4.6 and 

39.9±2.7% Fe(III)) or spiked with ferrihydrite (43.6±2.7 and 38.8±1.9% Fe(III)) and in 

microcosms with inhibited sulfate reduction that were not amended (37.9±4.8 and 

39.8±3.2% Fe(III)) or spiked with ferrihydrite (37.7±2.0 and 33.6±6.8% Fe(II), incubated in 

the light or in the dark, respectively). 

 



Chapter 4  

 
 
 

151 
 

 

Fig. 5: Fe(II) oxidation and Fe(III) reduction in the slurry phase of microcosms with active 
sulfate reduction. Black graphs correspond to biotic microcosms, grey graphs to abiotic 
microcosms. Circles indicate Fe(II), squares Fe(III). Filled symbols correspond to incubation 
in the dark, empty symbols to light incubation. Shown are means of triplicates. Error bars 
indicate standard deviations of three parallel incubations. 
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Fig. 6: Fe(II) oxidation and Fe(III) reduction in the slurry phase of microcosms with 
inactivated sulfate reduction. Black graphs correspond to biotic microcosms, grey graphs to 
abiotic microcosms. Circles indicate Fe(II), squares Fe(III). Filled symbols correspond to 
incubation in the dark, empty symbols to light incubation. Shown are means of triplicates. 
Error bars indicate standard deviations of three parallel incubations. 
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The highest dissolved phase Fe(II) concentrations were quantified in microcosms with active 

sulfate reduction that were amended with organic carbon and ferrihydrite and incubated in 

the dark at 6 days (1.0±0.0 mM, Fig. 7, bottom right). Slightly lower Fe(II) concentrations 

were found in their light incubated counterparts (0.8±0.1 mM Fe(II)) and in microcosms 

amended with organic carbon only (0.8±0.0 and 0.8±0.1 mM Fe(II) in light and dark 

incubated microcosms, respectively). Fe(II) concentrations were found to be much lower in 

not amended (0.4±0.0 and 0.6±0.0 mM Fe(II)) and ferrihydrite-spiked microcosms (0.5±0.0 

and 0.7±0.0 mM Fe(II) in light and dark incubated microcosms, respectively).  

Similar observations were made for dissolved phase Fe(II) in microcosms with inhibited 

sulfate reduction (Fig. 8). The highest Fe(II) concentrations were quantified at 0.9±0.1 mM 

and 0.9±0.0 mM in microcosms amended with organic carbon (Fig. 8, top right) and with 

organic carbon and ferrihydrite (Fig. 8, bottom right), both incubated in the dark. Slightly 

lower Fe(II) concentrations were recorded for their light incubated counterparts with 

0.9±0.0 mM and 0.8±0.0 mM Fe(II) respectively. Fe(II) concentrations were lower in 

microcosms that were not amended with additional organic carbon, with 0.7±0.0 and 0.7±0.0 

mM in unamended microcosms (Fig. 8, top left) and 0.6±0.0 and 0.6±0.0 mM Fe(II) in 

ferrihydrite-spiked microcosms (Fig. 8, bottom left). 

Fe(II) concentrations were observed to decrease after reaching their highest concentration 

in all of the microcosms. Thereby, the decrease was much faster and steep in organic-spiked 

microcosms than in those without organic carbon amendment.  
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Fig. 7: Fe(II) in the dissolved phase of microcosms with active sulfate reduction. 
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Fig. 8: Fe(II) in the dissolved phase of microcosms with inactivated sulfate reduction. 

 

 

Discussion 

Fe(II) oxidation under anoxic conditions. The results for the Fe(II)/Fe(III) development 

were quite similar between phototrophic and nitrate-reducing Fe(II) oxidation microcosms. 

We showed that there was no net increase in the Fe(III) content in phototrophic Fe(II) 

oxidation microcosms, but instead the initially available Fe(III) to have been reduced 

completely within 12 to 16 days. The Fe(II) development was similar in nitrate-amended 

microcosms. Only a decrease in the Fe(II) content in dark incubated biotic microcosms after 
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12 days indicates Fe(II) oxidation to have started in respective microcosms towards the end 

of the experiment. We therefore suggest Fe(II) oxidation to possibly have proceeded in both, 

phototrophic and nitrate-reducing Fe(II) oxidation microcosms, over the course of the 

experiment and with certainty to have started in dark incubated biotic nitrate-reducing 

Fe(II) oxidation microcosms after 12 days. However, the net increase in Fe(II) implies Fe(III) 

reduction to have been the dominating process, masking potential Fe(II) oxidation. 

Unfortunately it was not possible in our approach to distinguish between the relative 

contributions of Fe(II) oxidation and Fe(III) reduction to net Fe(II)/Fe(III) development. 

As phototrophic Fe(II)-oxidizers had been shown to exist in the Arvadi sediment before in 

long-term incubation experiments of about two months by Koeksoy et al. (in press), a reason 

for their missing or low activity could be the comparably short duration of our Fe(II) 

oxidation microcosm experiment. Fe(II)-oxidizers may have required a lag phase longer than 

16 days before metabolic activity could have been recorded (except for dark incubated 

nitrate-reducing Fe(II) oxidation microcosms). To examine this possibility, additional 

experiments with longer incubation times would be required in future tests. Reasons for low 

metabolic activities could have been the lack of suitable ecological niches in the oxygen 

saturated Arvadi Spring pond. Anoxic niches for the anaerobic lifestyle of phototrophic and 

nitrate-reducing Fe(II)-oxidizers may be located too deep in the Arvadi sediment where the 

wavelength spectrum presumably does not allow for photoferrotrophy, hence forcing these 

microorganisms to either perform chemolithotrophic metabolisms (e.g. sulfide oxidation) or 

to switch into a dormant state [43]. In case of the latter, microorganisms may have required 

longer incubation periods in order to become fully metabolically active again. 

We generally expected nitrate-reducing Fe(II)-oxidizers to be metabolically inactive due to 

the scarcity of nitrate and its intermediate products in the Arvadi Spring [44, 45]. However, 

the intense reduction of nitrate in nitrate-amended microcosms was against our 

expectations. Nitrite was shown not to accumulate, which on the one hand can be explained 

by its transition into ammonia (that in fact accumulated) or N2 [46], while on the other hand, 

nitrite may have partially oxidized Fe(II). Generally, we cannot assign the observed 

reduction of nitrate to Fe(II) oxidation with certainty for several reasons: (1) To evaluate a 
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dependence of nitrate reduction and Fe(II) oxidation, additional test microcosms amended 

with nitrate but not with Fe(II) are required; however, for such microcosms, the Arvadi 

Spring sediment would be required to be devoid of Fe itself. Furthermore, control 

experiments without organic carbon are necessary to evaluate whether nitrate reduction is 

a heterotrophic process, but for this purpose, the Arvadi Spring sediment would be required 

to be devoid of organic carbon. (2) A calculated stoichiometry of reduced nitrate per oxidized 

Fe(II) would give further indications on nitrate-dependent Fe(II) oxidation. However, based 

on the large fluctuations in the total Fe concentrations over time, it was not possible to 

compile the Fe(II) development with the nitrate decrease. (3) Data on the consumption of 

organic carbon in respective microcosms could give additional hints on whether nitrate was 

reduced mainly by heterotrophic, mixotrophic or autotrophic nitrate-reducers that would be 

required to be tested in future experiments. (4) We cannot rule out analytical mistakes in the 

presented nitrogen data since the measured initial nitrate concentrations were 

approximately 2 mM lower than the intentionally added 10 mM NaNO32-. We therefore are 

cautious with drawing conclusions on the relative importance of nitrate-reducing Fe(II) 

oxidation in the overall cycling of Fe in the Arvadi Spring. 

The increasing Fe(II) levels in abiotic phototrophic and nitrate-reducing Fe(II) oxidation 

microcosms implies a role for abiotic Fe(III) reduction in the Arvadi Spring. Koeksoy et al. 

(submitted) showed sulfide to be present in the Arvadi Spring water and sediment in form 

of dissolved sulfide, polysulfides and amorphous and higher crystalline Fe(II) sulfides. We 

therefore assume abiotic Fe(III) reduction coupled to the oxidation of sulfide [47, 48] to have 

caused the increase in Fe(II) in abiotic microcosms, and to have also played a role in biotic 

microcosms in addition to dissimilatory Fe(III) reduction. We exclude the reduction of Fe(III) 

by dissolved sulfide from contemporaneously ongoing sulfate reduction in phototrophic and 

nitrate-reducing Fe(II) oxidation microcosms as on the one hand, these microcosms were 

amended with molybdate and hence sulfate reduction was inhibited during the microcosm 

incubation, while on the other hand, dissolved phase sulfide concentrations were shown to 

be below the detection limit of the Cline assay throughout the experiment. We rather suggest 
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sediment-bound sulfide to have been released during acidic Fe-extraction and to have 

reduced Fe(III) in the extract prior to Fe quantification by the ferrozine assay. 

 

Fe(II) oxidation under microoxic conditions. Na-azide was shown by Otte et al. 

(unpublished data) to require 3 to 4 days to block all respiratory cytochromes in 

microorganisms of environmental soil and sediment samples [39]. Accordingly, we chose a 

4 day pre-incubation to prevent microbial Fe-cycling in the microcosms after the addition of 

oxygen. Consequently, the Fe(II)/Fe(III) ratios were observed to be generally higher. The 

higher Fe(II) content in abiotic microcosms compared to biotic microcosms likely was the 

result of active dissimilatory Fe(III) reduction during these 4 days of the microcosm pre-

incubation with Na-azide under anoxic conditions.   

We could show a clear dependence between the time required to reach the smallest 

Fe(II)/Fe(III) ratio and the headspace O2 content in microoxic microcosms, with the fastest, 

near complete Fe(II) oxidation recorded in 3% headspace O2 microcosms already after 24 

hours and the slowest Fe(II) oxidation in 0.5% O2 microcosms that was not completed after 

192 hours yet. The maximal increase in Fe(III) was generally higher in abiotic microcosms 

compared to biotic microcosms. This likely depended on the one hand on the higher Fe(II) 

content that was available for oxidation and on the other hand on the lack of dissimilatory 

Fe(III) reduction that could continuously supply Fe(II). Furthermore, O2 was more available 

for Fe(II) oxidation in abiotic microcosms compared to biotic microcosms, in which much of 

the added O2 was readily consumed within 24 hours (Fig. 4, top). Koeksoy et al. (in press) 

could show that heterotrophic microorganisms are abundant in the Arvadi Spring microbial 

community, hence we assume much of the added oxygen in biotic microcosms to have been 

consumed by aerobic respiration of heterotrophic microorganisms, whereby this 

assumption could not be evaluated quantitatively. Partially, the decrease in the headspace 

O2 levels can be assumed to have been based on the oxidation of reduced compounds as well, 

including Fe(II) and sulfide. With a decreasing prevalence of reduced compounds upon their 
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oxidation and the accumulation of oxygen in the slurry phase, the discrepancies between 

measured and desired headspace O2 levels became smaller after each O2-spiking event.  

Overall, Fe(II) oxidation was not complete in any of the microcosms, indicating Fe(II) to be 

continuously supplied by Fe(III) reduction in biotic and abiotic microcosms. This 

observation indicates an abiotic source for Fe(II) and similar to anoxic Fe(II) oxidation 

microcosms, we suggest a role for sulfide-dependent Fe(III) reduction in both types of 

microcosms. 

While the near complete consumption of oxygen in biotic microcosms certainly slowed down 

abiotic Fe(II) oxidation, the impact of fluctuating O2 concentrations on the microbial activity 

remain uncertain. While continuous exchange of the headspace with a gas mixture 

containing defined amounts of O2 may have prevented big fluctuations in the O2 levels in 

biotic microcosms, gradient formation in the slurry phase would have been an accompanying 

side-effect.  

We suggest abiotic Fe(II) oxidation by O2 to be the dominant source for Fe(III) in microoxic 

microcosms and microaerophilic Fe(II) oxidation not to play a role at the O2 concentrations 

tested in this study. However, considering microaerophiles to be the dominating type of Fe- 

and S-metabolizers in the Arvadi Spring (Koeksoy et al. (in press)), further tests with lower 

oxygen concentrations could reveal a larger impact of microaerophilic Fe(II) oxidation. 

Already at 0.5% headspace O2, abiotic Fe(II) oxidation slowed down significantly compared 

to 1% and 3% headspace O2 microcosms (Fig.3).  

 

Fe(III) reduction under active and inactive sulfate reduction. We could demonstrate 

Fe(III) reduction in the Arvadi Spring to be limited by the availability of organic carbon. 

Complete Fe(III) reduction was observed in microcosms with active sulfate reduction only if 

they were spiked with additional organic carbon in form of acetate and lactate (Fig. 5 top and 

bottom right). We could show that the Arvadi Spring is not limited in Fe(III) as no significant 

improvement in the total Fe(II) increase was achieved by the amendment with ferrihydrite 
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(Fig. 5, bottom left). Only by the combined amendment with ferrihydrite and organic carbon, 

an increase in the Fe(II) content and complete Fe(III) reduction was observed (Fig. 5, bottom 

right), that further supported our finding that the system is limited in organic carbon 

availability.  

The complete reduction of Fe(III) in microcosms with inhibited sulfate reduction that were 

not amended with either organic carbon or ferrihydrite (Fig. 6, top left) implies much of the 

Arvadi Spring organic carbon to be consumed by sulfate-reducers and hence sulfate 

reduction to be indirectly limiting Fe(III) reduction in the Arvadi Spring. The incomplete 

reduction of Fe(III) and the significantly lower increase in Fe(II) in ferrihydrite-spiked 

microcosms with inhibited sulfate reduction indicates the organic carbon content of the 

Arvadi Spring to be sufficient only for the available amount of Fe(III). For a higher demand, 

as for instance in ferrihydrite-spiked microcosms or at contemporaneously ongoing 

dissimilatory sulfate reduction as in microcosms with active sulfate reduction, the available 

organic carbon in the Arvadi Spring was demonstrated to be insufficient.  

While a slight improvement in the Fe(III) reduction capacity could be monitored in 

microcosms that were spiked with organic carbon and ferrihydrite with inhibited sulfate 

reduction, Fe(III) was not reduced completely in these microcosms (Fig. 6, bottom right). 

These results, compared to the complete reduction of Fe(III) in organic carbon- and 

ferrihydrite-spiked microcosms with active sulfate reduction (Fig. 5, bottom right), indicate 

the highest yield of Fe(II) to be achieved under the contemporaneous presence of active 

sulfate reduction and additional organic carbon that is sufficient for both, dissimilatory 

Fe(III) and sulfate reduction together. Thereby, Fe(II) is produced on the one hand by 

dissimilatory Fe(III) reduction and on the other hand abiotically by sulfide from sulfate 

reduction. Our observation of sulfide levels to be below detection limit in dissolved phase 

samples from all Fe(III) reduction microcosms supports its rapid reaction with either Fe(III), 

reducing it to Fe(II), or with Fe(II), precipitating as Fe(II) sulfide. 

It was not possible to identify the Fe(II)/Fe(III) development in absolute concentrations in 

microcosms with the Arvadi Spring sediment due to its heterogeneous composition. To avoid 
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great deviations among the total Fe concentrations through varying amounts of Fe particles 

in samples from different sampling time points, we suggest future microcosms to be set up 

with enrichment cultures of the original Arvadi Spring sediment that were grown on specific 

substrates. Microcosms inoculated with respective enrichment cultures could aid in the 

collection of absolute concentrations of Fe(III), Fe(II), sulfate, sulfide and organic carbon,  

with which mass balances for the specific metabolic and abiotic processes could be set up to 

quantitatively evaluate the impact of the respective processes under Arvadi Spring and 

controlled conditions. 

 

 

Implications for Precambrian Fe-cycling  

Our results indicate the cycling of Fe in ferro-euxinic transition zones of the ocean to have 

been spatially separated to a great extent into anoxic ocean zones, where Fe(III) got reduced 

and into oxic ocean parts, where Fe(II) was oxidized mainly abiotically by O2. We suggest a 

diminished role for anaerobic Fe(II)-oxidizers in ferro-euxinic transition zones of the 

Proterozoic Ocean under anoxic conditions with elevated Fe(II) levels. Phototrophic Fe(II)-

oxidizers presumably played a major role in photic zones of ferro-euxinic waters, where 

their required wave length spectrum for photosynthetic Fe(II) oxidation was available. In 

contrast, photoferrotrophs probably were in a dormant state in oxygenated parts of ferro-

euxininc intermixed waters, where most of the Fe(II) was rather oxidized abiotically by 

oxygen. In zones where less then 3.5 µM O2 was present, microaerophiles may have played a 

bigger role in the oxidation of the present Fe(II) as well.  

Our data generally indicates Fe(II) production and hence the formation of ferruginous 

conditions to have been triggered by sulfate reduction under the contemporaneous presence 

of sufficient organic carbon for both, dissimilatory Fe(III) and sulfate reduction. Only if the 

organic carbon content would have been insufficient for both processes, the prevalence of 

sulfate-reducers would have diminished Fe(II) levels, not only by its precipitation as Fe(II) 

sulfide through emerging euxinic water masses, but also by limiting Fe(III)-reducers by 
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organic carbon availability. In this assumption, the contribution of hydrothermal venting 

however is not considered, which additionally elevates total Fe(II) concentrations. Generally, 

we could not observe the development of euxininc conditions. To evaluate the conditions 

under which sulfide starts accumulating with Fe(II), additional tests with anoxic and 

microoxic microcosms with elevated sulfate levels would be required. Furthermore, column 

experiments for the simulation of geochemical gradient formation and additional factors 

such as wave action are necessary in future experiments, in which the accumulating 

concentrations of Fe(II) and sulfide in the dissolved phase could be taken as representative 

for ancient ferruginous and euxinic seawater. Our batch culture approach does not represent 

ocean conditions and hence, the observed Fe(II) concentrations in the dissolved phase of 

Fe(III) reduction microcosms cannot be taken as representative values for ferruginous 

conditions in the ancient global ocean. However, our experiments set the onset for further 

tests focusing on the interplay of Fe(III) reduction, sulfate reduction and organic carbon 

limitation, that once tested under different conditions with different approaches, could 

reveal how ferruginous and euxinic waters formed, were controlled and persisted over 

geologic timescales.  
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GENERAL CONCLUSIONS AND OUTLOOK  

The primary goals of this thesis were to evaluate the suitability of the Arvadi Spring as an 

analogue for ferro-euxinic transition zones of oxygenated ancient oceans and to transfer our 

observations on its geochemical, mineralogical and microbiological composition on existing 

models for biogeochemical Fe-S-cycling in respective parts of the ancient ocean.  

To follow our objectives, we primarily conducted a detailed characterization of the Arvadi 

Spring water geochemistry and compared our results to the modeled composition of ancient 

seawater in the current literature (see Chapter 2). We could show that the Arvadi Spring 

combines the presence of dissolved Fe(II), sulfide and sulfate under fully oxygenated 

conditions, providing a geochemical framework that is suitable for studying biogeochemical 

Fe-S-cycling in ancient oceans under natural conditions. The conditions that the Arvadi 

Spring resembles presumably prevailed mostly during the late Archean in oxygen oases 

(Olson et al., 2013) and in shallow waters of the Proterozoic ocean (Partin et al., 2013, Kipp 

et al., 2017).  

However, several aspects that appear as problematic in using modern model habitats to 

study ancient ocean biogeochemistry specifically also apply to the Arvadi Spring and 

therefore require consideration for a proper evaluation of its value as an ancient ocean 

analogue. For instance, the salinities of certain modern analogues, including Lake Matano 

(Crowe et al., 2008), Lake Pavin (Busigny et al., 2014) and Lake La Cruz (Walter et al., 2014), 

are far below those of marine systems (35‰ for the modern ocean and 1.5 to 2x the modern 

value in ancient oceans (Knauth, 2005)). The Arvadi Spring salinity is in the lower brackish 

range with 0.7‰, hence not resembling the ionic strength of a marine environment either. 

Similarly, the temperature ranges estimated for ancient oceans are much higher (55-85°C 

(Knauth, 2005)) than those present in the listed analgoues and specifically of the Arvadi 

Spring temperature. Furthermore, the Arvadi Spring O2 content presumably exceeds the O2 

concentrations of late Archean oxygen oases and shallow Proterozoic ocean waters that are 

estimated to have contained at least 0.4 to 5 µM O2 (Olson et al., 2013, Kipp et al., 2017).  
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Despite the listed discrepancies to anticipated ancient seawater conditions, we conclude that 

the Arvadi Spring resembles ferro-euxinic conditions in redox-stratified shallow waters of 

ancient oceans to a certain extent (Fig. 1). Overall, it is important to emphasize that no 

potential ancient ocean analogue on modern Earth, including the Arvadi Spring, can fully 

resemble past conditions. Rather, the major insights we can gather from such an approach is 

the functioning of complex biogeochemical processes and ecosystems in their natural 

environment that presumably were present to a certain degree in specific spatio-temporal 

parts of the ancient ocean as well. 

 

 

Fig. 1: Arvadi Spring Fe-S-cycling (A) and the corresponding zones of ancient oceans where 
the Arvadi Spring model fits in (B). 

 

 

The emergence of euxinic seawater as a consequence of intense oxidative weathering of 

terrestrial pyrite during the Lomagundi Event (Planavsky et al., 2012; Canfield et al., 2013) 

is pictured in form of sulfide-‘wedges’, i.e. sulfidic waters that accumulated in intermediate 

depths of neritic ocean zones (Reinhard et al., 2009). Addressing the factors that controlled 
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the expansion of euxinia versus ferruginous conditions requires a full understanding of the 

composition of ferro-euxinic transition zones that we partly examined by generating a 

geochemical profile of the Arvadi Spring water (see Chapter 2). We showed that dissolved 

Fe(II) and sulfide can coexist in micromolar concentrations at contemporaneous full oxygen 

saturation and conclude similar concentrations to have prevailed in ferro-euxinic transition 

zones of late Archean and Proterozoic oceans. A calculated saturation index of -7.42 for 

amorphous Fe(II) sulfide in the Arvadi Spring water (see Chapter 3) implies that Fe(II) and 

sulfide could have indeed accumulated to higher concentrations in the Arvadi Spring water 

before reaching saturation. However, under the oxygen saturation of the Arvadi Spring 

water, Fe(II) and sulfide consumption by abiotic oxidation with oxygen prevented Fe(II) and 

sulfide to accumulate to higher amounts. Dissolved Fe(II) and sulfide presumably could have 

coexisted at somewhat higher micromolar concentrations in ferro-euxinic ocean transition 

zones as well, depending on the oxygen content and the relative intensity of Fe(II)- and 

sulfide-producing and consuming processes in respective waters. Overall, we suggest the 

determined Fe(II) and sulfide concentrations in the Arvadi Spring to be a good basis for 

future experiments with controlled conditions, in which a variety of environmental 

conditions including pH, salinity and oxygen concentrations could be tested for controls on 

the formation of ferruginous versus euxinic conditions.  

Another objective in this thesis was to identify the Fe- and S-mineralogy in the Arvadi Spring 

to assess the primary origin of the observed rock record mineralogy in late Archean and 

Proterozoic deposits. For this purpose, we examined the Fe- and S-mineralogy in mineral 

precipitates in the Arvadi Spring pond by XRD, XAS, EXAFS and Mössbauer spectroscopy (see 

Chapter 3). We could demonstrate that the mineral precipitates in the Arvadi Spring were 

dominated by quartz, dolomite and calcite, but the major Fe-mineralogy to be characterized 

by green rust, lepidocrocite and ferrihydrite. Furthermore, we could show that the S-

mineralogy was dominated by elemental sulfur. Despite the calculated saturation index of -

7.42 for amorphous Fe(II) sulfide in the Arvadi Spring water, we identified minor amounts 

of Fe(II) sulfides including pyrite and mackinawite at hot spots of red flocs, while Fe(II) 

sulfides indeed were found not to dominate the bulk Fe-S-mineralogy (see Chapter 3). Based 
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on their spatially restricted and rather low appearance, we assume Fe(II) sulfides in the 

Arvadi Spring mineral assemblages to be the results of locally high rates of Fe(III) and sulfate 

reduction. Nevertheless, the scenario could have been different in zones with higher Fe(II) 

and sulfide concentrations that reached saturation, resulting in the abundant precipitation 

of Fe(II) sulfides and the ultimate formation of pyrite that deposited in Black Shales 

(Canfield, 1998; Werne et al., 2002; Reinhard et al., 2009). Our results imply a rather bigger 

role for green rust, lepidocrocite, ferrihydrite and S0 as precursors to geologic rock 

formations. Unfortunately, due to the high surface reactivities of green rust and S0 tracking 

their presence as original mineral phases in geologic deposits is challenging. However, 

together with recent studies that suggest green rust as a BIF precursor (Halevy et al., 2017; 

Zegeye, 2014), our findings provide a fundament for future experiments to identify the 

signals that are produced during the biotic and abiotic formation of green rust and S0 from 

solutes and during their transformation into more stable mineral phases.  

We examined the Arvadi Spring microbial community composition and structure by a suite 

of cultivation-based and molecular biological techniques combined with SEM imaging (see 

Chapter 3) and microcosm experiments (see Chapter 4). Generally, we found the microbial 

community in the Arvadi Spring sediment to be very diverse, with the microaerophilic 

sulfide-oxidizer Thiothrix spec. being the dominating genus on the 16S rRNA gene level. 

Furthermore, we could demonstrate the Arvadi Spring mineral assemblages to be densely 

colonized by microbial networks (see Chapter 2) that already implied a close association 

between the observed Fe- and S-mineralogy and microbial Fe-S-turnover. In fact, the Arvadi 

mineral-microbe-assemblages contained a community of coexisting Fe- and S-metabolizers, 

including microaerophilic, phototrophic and nitrate-reducing Fe(II)-oxidizers, 

microaerophilic sulfide-oxidizers and dissimilatory Fe(III)- and sulfate-reducers. The 

relatively low abundance of anaerobic Fe- and S-metabolizers compared to microaerophilic 

Fe(II)- and sulfide-oxidizers implies anaerobes to be limited in the availability of suitable 

ecological niches, while microaerophiles are implied to flourish under the oxygen saturation 

of the Arvadi Spring. However, comparing the results of the relative abundances of the 

different types of Fe-metabolizers to our microcosm data, microaerophilic Fe(II) oxidation 
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seems rather not to play a major role in the overall cycling of Fe in the Arvadi Spring under 

the oxygen concentrations that we tested (Chapter 4). Instead, most of the available Fe(II) 

was consumed by abiotic Fe(II) oxidation with O2, indicating microaerophiles not to be able 

to outcompete the abiotic reaction at O2 concentrations above 2 µM O2. In order to assess 

under which conditions microaerophiles can outcompete abiotic Fe(II) oxidation, while 

Fe(III) reduction still does not prevail under same incubation conditions, additional 

experiments with a detailed range of oxygen ranges requires to be tested between 0 and 2 

µM O2. 

We conclude a microbial network to have inhabited ferro-euxinic transition zones of the 

ancient oceans that was similar to the Arvadi Spring microbial community and that showed 

approximately the same abundances of the different types of Fe – and S-metabolizers. Our 

results generally support recent studies that suggest microaerophiles to have emerged and 

colonized the topmost ocean surface layers (Field et al., 2016). However, the actual metabolic 

activity of microaerophiles in the Arvadi Spring requires further investigation with lower 

oxygen levels in order to draw conclusions on the impact of microaerophilic Fe(II) oxidation 

on the overall cycling of Fe. Independently of their metabolic activity, we suggest that the 

emergence of microaerophiles and their colonization of the topmost oxygenated surface 

ocean/coastal sediment layers would have caused a rearrangement of the present microbial 

community. Assuming that the sequence of geochemical gradients would have been fairly 

similar in the ancient ocean water column and sediment to the present gradients in the 

modern ocean, the depth distribution of microorganisms presumably would have followed 

the sequence of microaerophiles - phototrophs - anaerobic chemolithotrophs with 

increasing depth (Laufer et al., 2016). Our understanding about the structure and depth 

distribution of ancient marine microbial communities is vague, and a possibility to evaluate 

this would be the use of graded columns to reconstruct the ancient ocean stratification with 

wich the water geochemistry, mineralogy and microbial community could be examined at 

different depths.  

Such experiments have been conducted in the past and a recent study with a graded column 

by Swanner et al. (2018) showed dissolved Fe(II) concentrations to have been maintained in 
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oxic layers of the column by the continuous supply of Fe(II) from Fe(III) reduction in higher 

depths. The authors showed the major sink for Fe(II) to have been abiotic oxidation by O2, 

suggesting a steady cycling of Fe in Precambrian continental margins between abiotic Fe(II) 

oxidation and dissimilatory Fe(III) reduction. The results of the batch microcosm 

experiments that we conducted with sediment from the Arvadi Spring revealed similar 

results (see Chapter 4), supporting a major fraction of ancient Fe(II) to have been consumed 

by O2 from oxygenic photosynthesis. Also, the major source of Fe(II) was found to be Fe(III) 

reduction in anoxic microcosms. To extend our knowledge from the batch microcosms 

experiments conducted within the framework of this thesis, we suggest Arvadi sediment to 

be used for column experiments as described by Swanner et al. (2018), with a focus being 

set on organic carbon availability and the presence of sulfate reduction in higher depths of 

the column and a controlled variation in oxygen concentrations in surface parts of the 

column. By this, the conditions under which ferruginous and euxinic waters form could be 

fully evaluated and also the establishment of microbial communities with different 

metabolisms in different depths of the water column could be reconstructed.  

In summary, the results presented in this thesis provide a good basis for future work that 

combine simulation-based laboratory experiments in form of column experiments with 

samples from modern model habitats such as the Arvadi Spring, following the aim to fully 

decipher under which conditions ferruginous and euxinic conditions form, when ferro-

euxinic transition zones enlarge and narrow down and when nutrient and trace metal 

scavenging becomes limiting for the apparent microbial community. 
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